
DURHAM UNIVERSITY

A Longitudinal Evaluation of the Impact of a Problem-Based

Learning Approach to the Teaching of Software Development in

Higher Education

A Thesis Submitted for the Degree of Doctor of Education from the
School of Education, Durham University.

by

James Doody

December 2009

ii | P a g e

Table of Contents

ABSTRACT .. IX

DECLARATION .. X

STATEMENT OF COPYRIGHT... X

DEDICATIONS .. XI

ACKNOWLEDGEMENTS ... XI

CHAPTER 1 - INTRODUCTION AND RATIONALE .. 12

1.1. INTRODUCTION ... 12

1.2. CONTEXT OF THE STUDY .. 13

1.3. RESEARCH PROBLEM .. 14

1.3.1. Aims and Objectives of the Research .. 14

1.3.2. The Significance of this Study and Potential Impact of the Research 15

1.4. RESEARCH QUESTIONS .. 15

1.5. ETHICS ... 17

1.6. STRUCTURE OF THE THESIS .. 18

CHAPTER 2 - REVIEW OF RELATED LITERATURE .. 19

2.1. INTRODUCTION ... 19

2.2. THE LITERATURE ON THE PEDAGOGY OF SOFTWARE DEVELOPMENT ... 19

2.2.1. Overview and Scope .. 20

2.2.2. Introduction .. 21

2.2.3. The Difficulty of Learning to Program ... 21

2.2.4. Programming Knowledge and Strategies ... 23

2.2.4.1. Strategies and Models of Program Comprehension and Program Generation 24

2.2.5. Mental Models and Processes .. 26

2.2.6. The Programming Capabilities and Behaviours of Novice Programmers 28

2.2.7. Different Kinds of Novice Programmers and Indicators of Success................................... 31

2.2.8. Motivation in Programming ... 35

2.2.9. The Teaching and Learning of Novice Programmers .. 37

2.2.10. Course Design and Teaching Methods .. 38

2.2.11. Programming Languages Used to Teach Programming ... 41

2.2.12. Summary ... 43

2.3. THRESHOLD CONCEPTS ... 44

2.3.1. Types of Troublesome Knowledge .. 46

2.3.2. Liminality .. 50

2.3.3. Criticisms of Threshold Concepts .. 53

2.3.4. Threshold Concepts in Computing .. 55

2.3.4.1. Levels of Abstraction ... 58

2.3.4.2. Object Orientation .. 60

2.4. PROBLEM-BASED LEARNING LITERATURE.. 62

2.4.1. What is PBL? ... 62

2.4.2. The Effectiveness of PBL.. 64

2.4.3. PBL and Approaches to Learning .. 69

2.4.4. PBL from the Teacher’s Perspective .. 72

2.5. LEARNER MOTIVATION AND SELF-EFFICACY .. 73

iii | P a g e

2.6. SUMMARY .. 85

CHAPTER 3 - CONTEXT AND RESEARCH METHODOLOGIES ... 88

3.1. INTRODUCTION ... 88

3.2. CONTEXT OF THE INTRODUCTION OF PBL IN ANON COLLEGE .. 88

3.2.1. The Hybrid PBL Model Used at Anon College .. 88

3.2.2. Implementation of the Hybrid PBL Module... 89

3.2.3. Development Software Used and Virtual Learning Environment Support 91

3.3. RESEARCH QUESTIONS .. 93

3.4. PARTICIPANTS ... 94

3.4.1. Analysis of Learner Participants Background Questionnaires .. 95

3.5. METHODS OF ANALYSIS .. 96

3.5.1 Methodology Procedure .. 96

3.6. QUANTITATIVE METHODOLOGY .. 97

3.6.1. Experimental Design ... 97

3.6.2. Instruments and Measures ... 99

3.6.2.1. Learner Attainment (Hypotheses 1a and 1b) .. 99

3.6.2.2. Learner Self-Regulation (Hypothesis 2) ... 100

3.6.2.3. Programming Self-Efficacy (Hypothesis 3) .. 102

3.6.2.4. Students’ Approaches to Learning and Learner Preferences (Hypotheses 4 & 5) 103

3.6.2.5. The Adaptation of Instruments ... 105

3.6.3. Controls ... 105

3.6.3.1. Random Allocation of Learners to Treatment and Control Group .. 105

3.6.3.2. Control for Prior Attainment ... 106

3.6.3.3. Control for Teacher Effects ... 106

3.6.3.4. Control for Types of Assessment .. 106

3.6.3.5. Control for Physical Teaching Environment .. 107

3.6.3.6. Control for Statistical Assumptions ... 107

3.7. EFFECT SIZES... 107

3.8. QUESTIONNAIRE DATA ... 108

3.8.1. PBL Questionnaire ... 108

3.8.2. General Background Questionnaire .. 108

3.9. DATA COLLECTION PROCEDURES .. 109

3.10. DATABASE INFORMATION MINING .. 109

3.11. QUALITATIVE METHODOLOGY .. 109

3.11.1. Interviews ... 111

3.11.1.1. Interview Procedures .. 111

3.11.1.2. Interview Protocol .. 111

3.11.2. Conversations ... 112

3.11.3. Participant Observations .. 112

3.11.4. Field Notes and Diary .. 113

3.11.5. Student PBL Journals ... 114

3.11.6. The Reliability and Validity of the Quantitative Data ... 114

3.11.7. The Trustworthiness of the Qualitative Data .. 116

3.12. LIMITATIONS OF THE ANALYSIS ... 120

3.13. CONCLUSIONS ... 120

CHAPTER 4 - QUANTITATIVE ANALYSIS .. 121

4.1. POPULATION... 121

4.2. ANALYSIS OF LEARNER ATTAINMENT SCORES (HYPOTHESES 1A AND 1B) .. 123

iv | P a g e

4.2.1. Analysis of Exam Attainment Scores (Hypothesis 1a) ... 125

4.2.2. Analysis of Continuous Assessment Scores (Hypothesis 1b) ... 125

4.2.3. Additional Analysis of Attainment Data ... 126

4.3. ANALYSIS OF LEARNER SELF-REGULATION (HYPOTHESIS 2) .. 127

4.4. ANALYSIS OF LEARNER PROGRAMMING SELF-EFFICACY (HYPOTHESIS 3) ... 130

4.5. ANALYSIS OF STUDENTS’ APPROACHES TO LEARNING (HYPOTHESIS 4) ... 131

4.6. ANALYSIS OF LEARNER PREFERENCES (HYPOTHESIS 5) ... 134

4.7. SUMMARY .. 137

CHAPTER 5 - ADDITIONAL DATA COLLECTION AND QUALITATIVE FINDINGS 138

5.1. INTRODUCTION ... 138

5.2. DATABASE INFORMATION MINING .. 138

5.2.1. Analysis of Learner Class Attendance ... 138

5.2.2. Analysis of Virtual Learning Environment Learner Logs ... 139

5.2.3. Analysis of Computer Network Logs ... 139

5.3. ANALYSIS OF QUESTIONNAIRE RESPONSES .. 139

5.3.1. Analysis of Learner PBL Questionnaires .. 139

5.3.1.1. PBL Group Work .. 140

5.3.1.2. The PBL Method .. 141

5.3.1.3. Student Interest in Software Development .. 142

5.3.1.4. Course Objectives and Content... 143

5.3.1.5. The PBL Tutor .. 144

5.3.1.6. Teaching Resources... 144

5.4. QUALITATIVE FINDINGS ... 144

5.4.1. Analysis of Classroom Observations ... 145

5.4.2. Analysis of Students’ PBL Journals .. 148

5.4.3. Analysis of Informal Conversations ... 149

5.4.4. Analysis of Interviews ... 149

5.4.4.1. Staff Interviews ... 150

5.4.4.2. Learner Interviews .. 156

5.4.5. Categories and Themes Identified .. 165

5.5. SUMMARY .. 166

CHAPTER 6 - DISCUSSION AND CONCLUSIONS ... 167

6.1. INTRODUCTION ... 167

6.2. DISCUSSION OF FINDINGS .. 167

6.2.1. Attainment .. 167

6.2.2. Motivation .. 169

6.2.3. Software Development Self-Efficacy ... 170

6.2.4. Approaches to Studying .. 171

6.2.5. Preferences for Different Types of Teaching ... 172

6.2.6. Acquisition of Threshold Concepts in Computing .. 172

6.2.7. The Computing Curriculum and Other Subjects .. 174

6.2.8. At What Stage to Apply PBL .. 175

6.2.9. Types of Learners .. 175

6.2.10. Discussion of Other Findings ... 176

6.3. IMPLICATIONS FOR INSTRUCTIONAL PRACTICE AND FOR EDUCATIONAL THEORY AND RESEARCH 180

6.4. SUGGESTIONS FOR FURTHER RESEARCH ... 184

6.5. LIMITATIONS OF THE STUDY ... 189

v | P a g e

6.6. CONCLUSION .. 190

APPENDIX A - ETHICS ... A-1

A.1. ETHICS FORM DURHAM 2006 ... A-1

A.2. ETHICS FORM DURHAM 2008 ... A-13

A.3. ETHICS FORMS ANON COLLEGE 2007 ... A-16

APPENDIX B - PARTICIPANTS’ CONSENT FORMS .. B-1

APPENDIX C - SELF-REGULATION QUESTIONNAIRES ... C-1

C.1. ORIGINAL SELF-REGULATION QUESTIONNAIRE ... C-1

C.2. SELF-REGULATION QUESTIONNAIRE FOR COMPUTING STUDENTS ... C-2

APPENDIX D - SELF-EFFICACY QUESTIONNAIRE FOR COMPUTING STUDENTS D-1

APPENDIX E - APPROACHES AND STUDY SKILLS INVENTORY FOR STUDENTS (ASSIST)

QUESTIONNAIRE FOR COMPUTING STUDENTS ... E-1

APPENDIX F - ADDITIONAL QUESTIONNAIRES FOR STUDENTS .. F-1

F.1. PBL QUESTIONNAIRE FOR STUDENTS .. F-1

F.2. GENERAL BACKGROUND QUESTIONNAIRE FOR STUDENTS ... F-6

APPENDIX G - INTERVIEW QUESTIONS FOR STAFF ... G-1

APPENDIX H - INTERVIEW QUESTIONS FOR STUDENTS .. H-1

APPENDIX I - INTERVIEW AND OBSERVATION SCHEDULE .. I-1

I.1. INTERVIEW SCHEDULE FOR STAFF INTERVIEWS: ... I-1

I.2. INTERVIEW SCHEDULE FOR STUDENT INTERVIEWS: ... I-1

I.3. OBSERVATION SCHEDULE ... I-1

APPENDIX J - INTERVIEW TRANSCRIPTIONS .. J-1

J.1. STAFF INTERVIEW TRANSCRIPTIONS..J-1

J.1.1. David ..J-1

J.1.2. Natasha ...J-4

J.1.3. Mary ..J-6

J.1.4. Catherine ...J-8

J.1.5. Stuart .. J-11

J.2. STUDENT INTERVIEW TRANSCRIPTIONS .. J-14

J.2.1. Paul ... J-14

J.2.2. William ... J-16

J.2.3. Darren ... J-18

J.2.4. Nichole .. J-20

J.2.5. Sarah... J-22

J.2.6. Ahmed .. J-24

APPENDIX K - ANALYSIS OF LEARNER ATTAINMENT SCORES .. K-1

K.1. TESTS CARRIED OUT ON THE OVERALL ATTAINMENT SCORES OF THE FOUR COHORTS 2005/2009 K-1

K.1.1. Overall Exam Score: Descriptive Statistics, F-tests and t-tests... K-1

K.1.1.1. Descriptive statistics .. K-1

K.1.1.2. F-tests .. K-1

K.1.1.3. t-tests ... K-1

vi | P a g e

K.1.2. Overall CA Score: Descriptive Statistics, F-tests and t-tests ... K-2

K.1.2.1. Descriptive Statistics .. K-2

K.1.2.2. F-tests .. K-2

K.1.2.3. t-tests ... K-2

K.1.3. Leaving Certificate Score: Descriptive Statistics, and t-tests ... K-3

K.1.3.1. Descriptive Statistics .. K-3

K.1.3.2. t-test tests .. K-3

K.2. GENERAL LINEAR MODEL ... K-4

K.2.1. Analysis of Variance for CA, using Adjusted SS for Tests ... K-4

K.2.2. Analysis of Variance for Exam, using Adjusted SS for Tests ... K-5

K.2.3. Means for Covariates ... K-5

K.2.4. Least Squares Means ... K-5

K.3. ADDITIONAL TESTS CARRIED OUT ON THE OVERALL ATTAINMENT SCORES OF THE FIRST COHORT 2005/2006 . K-

6

K.4. EFFECT SIZE CALCULATIONS ON THE ATTAINMENT SCORES (OVERALL, EXAM AND CA) OF THE FOUR COHORTS

2005/2009 .. K-7

APPENDIX L - ANALYSIS OF LEARNING SELF-REGULATION, PROGRAMMING SELF-EFFICACY,

APPROACHES TO LEARNING, AND PREFERENCES FOR TYPES OF TEACHING SCORES L-1

L.1. TESTS CARRIED OUT ON THE OVERALL AND YEARLY SELF-EFFICACY SCORES OF THE TWO COHORTS 2007/2009,

INCLUDING PRE- AND POST-TEACHING RESULTS .. L-1

L.1.1. Overall Self-Efficacy Scores: Descriptive Statistics and t-tests ... L-1

L.1.1.1. Descriptive Statistics of Pre-teaching Scores .. L-1

L.1.1.2. Descriptive Statistics of Post-teaching Scores .. L-1

L.1.1.3. t-test on Pre-teaching Scores ... L-2

L.1.1.4. t-test on Post-Teaching Scores ... L-2

L.1.1.5. t-tests on Group Scores .. L-2

L.1.2. 07/08 Self-Efficacy Scores: Descriptive Statistics and t-tests ... L-3

L.1.2.1. Descriptive Statistics of Pre-teaching Scores .. L-3

L.1.2.2. t-test on Pre-teaching Scores ... L-3

L.1.2.3 Descriptive Statistics of Post-teaching Scores ... L-4

L.1.2.4. t-test on Post-teaching Scores .. L-4

L.1.3. 08/09 Self-Efficacy Scores, Descriptive Statistics and t-tests ... L-5

L.1.3.1. Descriptive Statistics of Pre-teaching Scores .. L-5

L.1.3.2. t-test on Pre-teaching scores ... L-5

L.1.3.3. Descriptive Statistics of Post-teaching Scores .. L-5

L.1.3.4. t-test on Post-teaching Scores .. L-6

L.2. TESTS CARRIED OUT ON THE OVERALL RELATIVE AUTONOMY SCORES OF THE TWO COHORTS 2007/2009,

INCLUDING PRE- AND POST-TEACHING RESULTS .. L-6

L.2.1. Descriptive Statistics of Pre-teaching and Post-teaching scores L-6

L.2.2. t-tests on Pre-teaching and Post-teaching Scores .. L-7

L.3. TESTS CARRIED OUT ON THE OVERALL APPROACHES TO LEARNING SCORES OF THE 2008/2009 COHORT,

INCLUDING PRE AND POST-TEACHING RESULTS ... L-8

L.3.1. Tests Carried Out on the Overall Deep Approach to Learning Scores of the 2008/2009

Cohort, Including Pre- and Post-Teaching Results ... L-8

L.3.1.1. Descriptive Statistics of Deep Approach Pre-teaching and Post-teaching Scores L-8

L.3.1.2. t-tests on Deep Approach Pre-teaching and Post-teaching Scores .. L-8

L.3.2. Tests Carried Out on the Overall Strategic Approach to Learning Scores of the 2008/2009

Cohort, Including Pre- and Post-teaching Results .. L-10

L.3.2.1. Descriptive Statistics of Strategic Approach Pre-teaching and Post-teaching Scores L-10

vii | P a g e

L.3.2.2. t-tests on Strategic Approach Pre-teaching and Post-teaching scores L-10

L.3.3. Tests Carried Out on the Overall Surface Apathetic Approach to Learning Scores of the

2008/2009 Cohort, Including Pre- and Post-teaching results .. L-12

L.3.3.1. Descriptive Statistics of Surface Apathetic Approach Pre-teaching and Post-teaching Scores .. L-

12

L.3.3.2. t-tests on Surface Apathetic Approach Pre-teaching and Post-teaching Scores L-12

L.4. TESTS CARRIED OUT ON THE OVERALL PREFERENCES FOR TYPES OF TEACHING SCORES OF THE 2008/2009

COHORT, INCLUDING PRE- AND POST-TEACHING RESULTS ... L-14

L.4.1. Tests Carried Out on the Overall Supporting Understanding Teaching Scores of the

2008/2009 Cohort, Including Pre- and Post Teaching Results ... L-14

L.4.1.1. Descriptive Statistics of Supporting Understanding Pre-teaching and Post-Teaching Scores L-14

L.4.1.2. t-tests on Supporting Understanding Pre-teaching and Post-teaching Scores L-15

L.4.2. Tests Carried Out on the Overall Transforming Information Teaching Scores of the

2008/2009 Cohort, Including Pre- and Post-teaching Results ... L-16

L.4.2.1. Descriptive Statistics of Transforming Information Pre-teaching and Post-Teaching Scores . L-16

L.4.2.2. t-tests on Transforming Information Pre-teaching and Post-teaching Scores L-17

L.5. EFFECT SIZE CALCULATIONS OF THE LEARNING SELF-REGULATION, PROGRAMMING SELF-EFFICACY, APPROACHES

TO LEARNING, AND PREFERENCES FOR TYPES OF TEACHING SCORES .. L-19

APPENDIX M : RESULTS OF THE PBL QUESTIONNAIRE FOR STUDENTS .. M-1

M.1. THE PBL GROUP ... M-1

M.2. THE PBL METHOD .. M-4

M.3. STUDENT INTEREST IN SOFTWARE DEVELOPMENT .. M-6

M.4. COURSE OBJECTIVES AND CONTENT .. M-7

M.5. ACTUAL RESPONSES ... M-13

BIBLIOGRAPHY .. I

viii | P a g e

List of Tables

TABLE 1-1: INITIAL RESEARCH QUESTIONS ... 16

TABLE 3-1: RESEARCH QUESTIONS ... 93

TABLE 3-2: PRE-TEST/POST-TEST - HYPOTHESES 1A AND 1B (LEARNER ATTAINMENT) .. 97

TABLE 3-3: PRE-TEST/POST-TEST - HYPOTHESIS 2 (LEARNER SELF-REGULATION)... 97

TABLE 3-4: PRE-TEST/POST-TEST - HYPOTHESIS 3 (PROGRAMMING SELF-EFFICACY) .. 98

TABLE 3-5: PRE-TEST/POST-TEST - HYPOTHESIS 4 (STUDENTS’ APPROACHES TO LEARNING) 98

TABLE 3-6: PRE-TEST/POST-TEST - HYPOTHESIS 5 (LEARNER PREFERENCES FOR DIFFERENT TYPES OF COURSE AND

TEACHING) ... 98

TABLE 4-1: LEARNER POPULATION ... 122

TABLE 4-2: GROUP A (EXAM RESULTS) VS. GROUP B (EXAM RESULTS) (HYPOTHESIS 1A) 124

TABLE 4-3: GROUP A (CA RESULTS) VS. GROUP B (CA RESULTS) (HYPOTHESIS 1B) .. 124

TABLE 4-4: LEARNER SELF-REGULATION (HYPOTHESIS 2) ... 129

TABLE 4-5: LEARNER PROGRAMMING SELF-EFFICACY (HYPOTHESIS 3) .. 129

TABLE 4-6: STUDENTS’ APPROACHES TO LEARNING: DEEP, STRATEGIC AND SURFACE APATHETIC APPROACH SCORES

(HYPOTHESIS 4) .. 133

TABLE 4-7: LEARNER PREFERENCES, SUPPORTING UNDERSTANDING AND TRANSFORMING INFORMATION (HYPOTHESIS 5)

 .. 136

TABLE 5-1: DATABASE INFORMATION MINING (4 COHORTS) ... 138

TABLE 5-2: LEARNER BACKGROUND QUESTIONNAIRES ... 95

List of Figures

FIGURE 5-1: Q4: THE GROUP CLIMATE FACILITATED THE LEARNING PROCESS .. 141

FIGURE 5-2: Q13: PBL WAS FUN .. 141

FIGURE 5-3: Q19: THE CONTENT OF THE TUTORIALS FITTED THE LEVEL OF MY KNOWLEDGE 142

FIGURE 5-4: Q21: THE QUESTIONS INCLUDED ON PAST EXAMS AND CONTINUOUS ASSESSMENTS FOR SOFTWARE

DEVELOPMENT TO A LARGE EXTENT DETERMINE WHAT I WILL STUDY .. 143

FIGURE 5-5: Q26: THE PBL TUTOR’S INTERVENTIONS WERE ADEQUATE .. 144

ix | P a g e

Abstract

First year students on Computing courses at tertiary level find Software

Development difficult: learner outcomes are poor, with high failure rates and low

learner retention. A number of research studies have shown that novice programmers

have low intrinsic motivation and low programming self-efficacy. One of the other

possible explanations for the difficulties many learners have with Software

Development is that it may be a Threshold Concept in Computing. The literature

suggests that Problem-Based Learning (PBL) can improve the teaching of difficult

concepts, and it has been promoted by professional and funding bodies as a teaching

strategy that can improve learner outcomes and bring about positive changes in

learner behaviour. The main aim of this research study was to establish the impact on

learner outcomes and behaviour of a Hybrid PBL approach used in the teaching of an

introductory Software Development module at an Irish tertiary level institution.

Learners on the Software Development module are characterised by low prior

attainment in State college entry examinations, and the majority are from low

income socio-economic backgrounds. Learner outcomes and behaviours were

investigated over four cohorts of learners using a large range of data sources. A

randomised controlled experimental design was used to measure changes in

attainment, programming self-efficacy, motivation, approaches to study and

preferences for types of teaching. Questionnaires, data mining of learner activity and

attendance logs were used to provide additional information about learner behaviour,

and further analysis was undertaken using qualitative techniques such as classroom

observations and interviews. Both qualitative and quantitative measures were used to

confirm, cross-validate and corroborate findings. The study made significant

discoveries about the strengths and limitations of the Problem-Based Learning

approach in the teaching of Software Development to low attainment learners. The

implications for instructional practice and for educational theory and research are

discussed and a number of recommendations are made.

Keywords: Problem-Based Learning, Software Development, Computer

Programming, Curriculum, Attainment, Programming Self-Efficacy, Motivation,

Approaches to Studying, Teaching, Learning.

x | P a g e

Declaration

This thesis is my own work and has not been offered previously in candidature at this or

any other university.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation should be published in

any format, including electronic and the Internet, without the author’s prior written

consent. All information derived from this thesis must be acknowledged appropriately.

xi | P a g e

Dedications

For my wife Mairéad Creed a truly exceptional woman and my children James,

Fionn, and Saoirse.

In memory of my late Mother Brenda to whom I owe everything.

Acknowledgements

I wish to thank Professor Steve Higgins for his invaluable comments on
the penultimate draft of the thesis and my supervisor Dr Julie Rattray for her
support, and for taking a genuine interest in my studies and welfare. Finally
and above all I’d like to thank Mairead Creed for all her substantial help and

direction without which I would not have been able to complete this Ed.D.

12 | P a g e

Chapter 1 - Introduction and Rationale

 “How can we know the dancer from the dance?”
 (From the poem ‘Among School Children’ by William B. Yeats, 1928).

1.1. Introduction

The production of defect-free quality software is essential for the correct operation of

many critical systems such as auto-pilot systems, nuclear power station control

systems and intensive care systems. The demand for software is growing and it has

become ubiquitous, controlling devices as diverse as mobile phones and washing

machines. However, there are many problems with the production of software, in

particular that it is often poorly written and faulty. More time is spent fixing errors in

existing software than writing new code. The economic cost of software failure is

counted in billions: in the U.S. alone, software bugs cost the economy an estimated

$59.5 billion annually (Newman, 2002). There are many causes of software failure

and key among them are the deficits in the education and training its creators

received. Software is not a mass-produced product: it is handmade, crafted by

individuals. Most of these individuals are educated as Software Developers in

universities and other higher education institutes and they require mastery of a

diverse range of skills to become competent programmers (Lohr, 2001).

Some educationalists suggest that using a Problem-Based Learning (PBL) approach

to teach Software Development may improve the education learners receive.

Newman (2004a, p. 5) states that Problem-Based Learning (PBL) “represents a

major development and change in educational practice that continues to have a large

impact across subjects and disciplines worldwide. PBL is promoted by professional

and funding bodies [such as Ireland’s Higher Education Authority’s Strategic

Initiatives Programme] as an appropriate strategy for education and increasingly as a

method of choice”. This is a view shared by many other researchers (Barrett, Mac

Labhrainn & Fallon, 2005). Newman (2004a, p. 5) also states that “[t]he claims

made for PBL would, if substantiated, represent an important improvement in

outcomes from higher education. Thus it is of considerable importance that questions

13 | P a g e

about what forms of PBL produce which outcomes for which students in what

circumstances are rigorously investigated”.

This study attempts to evaluate the impact on learner outcomes of a Hybrid PBL

approach used in the teaching of an introductory Software Development (computer

programming) module at an Irish third-level institution. This institution will be

referred to as Anon College throughout the thesis.

1.2. Context of the Study

Ireland is one of the biggest producers of software in the world (Enterprise Ireland,

2004), and the Irish Government views software production as an environmentally

friendly industry that is central to economic development and prosperity (Kawasaki

& Williams, 2008). Career prospects for graduates are good and jobs in the software

industry are well paid; therefore many Governmental and industry bodies consider it

vital that there is a supply of Computing graduates to meet the growing demand for

software and to address the shortage of software developers (Expert Group on Future

Skills Needs, 2008). However, the low take up by school leavers of offers of places

on tertiary level Computing courses and the high dropout and failure rates on those

courses is a cause for particular concern (Radio Telefís Éireann, 2005; Skelly, 2006).

In recent years, the number of second level students choosing Computing at third

level generally has been falling (Donnelly, 2008; Donnelly & Walshe, 2008; Radio

Telefís Éireann, 2005; Skelly, 2006). This has led to the entry into first year

Computing at Anon College of low attainment learners. This in turn has exacerbated

the problem of poor student retention in first year, with the Software Development

module having particularly high failure rates.

At Anon College it was considered that if a new way of teaching the Software

Development module was introduced, the high failure rates in that subject could be

redressed and first year retention rates ultimately improved. This study examines

whether PBL can help to address the retention problem, and whether the PBL

approach provides any other benefits to learners.

14 | P a g e

1.3. Research Problem

It is well accepted within the computer science community that first year students

find Software Development difficult (Dijkstra, 1989; Jackson, 2003; Jenkins, 2002).

Failure rates are high and learner retention is low (Bennedsen & Caspersen, 2007).

Many learners have low intrinsic motivation (Mamone, 1992). Many students show

high reproduction orientation in their approaches to studying (Jenkins, 2001).

Novices’ programming self-efficacy levels are low (Wiedenbeck, LaBelle & Kain,

2004); and improvements need to be made in the way that Software Development is

taught (Fincher, 1999b; Fincher et al., 2005; Jenkins, 2002). Recent educational

research may help provide some solutions to these problems. A number of research

papers have identified that Software Development (Java programming) is a

Threshold Concept in Computing (Boustedt et al., 2007; Eckerdal et al., 2006). The

literature suggests that Problem-Based Learning can improve the teaching of difficult

concepts (Ayres, 2002; Hmelo-Silver, 2004; O'Kelly, 2005) and bring about

improvements in learner behaviour (Dolmans & Schmidt, 2006; Richardson, 2005;

Schmidt, Loyens, van Gog & Paas, 2007). This study examines PBL classes to see if

they can improve first year learners’ acquisition of Threshold Concepts in

Computing and modify their behaviours. If improvements could be made in learners’

acquisition of the key Threshold Concepts in Computing then this would be of great

benefit to learners and the wider Computing community.

1.3.1. Aims and Objectives of the Research

The overall objective was to investigate whether PBL is a more effective teaching

method for Software Development than the traditional approach, both in terms of

student attainment, approaches to learning and motivation. Hence the aim of the

research was to determine whether using a Problem-Based Learning approach

instead of conventional lectures:

1. improves learner attainment in the subject;

2. improves learner motivation to learn the subject;

3. improves learner Software Development self-efficacy;

4. changes learners’ approaches to studying the subject (towards a deep

approach);

15 | P a g e

5. changes learners’ preferences for different types of teaching (towards

teaching that supports understanding).

1.3.2. The Significance of this Study and Potential Impact of the Research

Most studies of PBL have been based on high-attainment learners, particularly in the

field of medicine (Albanese & Mitchell, 1993; Colliver, 2000). There have been few

studies of low-attainment learners and few studies in the field of Software

Development. As far as this author is aware, this research is the first of its kind in

Ireland to investigate the effectiveness of a PBL model for first-year students with

low attainment status in an Irish college. While there have been a number of

excellent Irish PBL case studies (e.g. Barrett et al., 2005), none has provided a

rigorous quantitative statistical analysis of students’ attainment.

Dolmans, De Grave, Wolfhagen, and van der Vleuten (2005, p. 739) state that

“[r]esearch is needed [to provide] a clearer understanding of how PBL does or does

not work and under which circumstances [and to provide] us with guidelines on how

to deal with problems encountered in PBL practice”. They go on to call for research

that “makes use of mixed methods, triangulates multiple sources and types of data

and does not rely on a single method […], or a single source of data”. This study

attempts to meet both of these demands. It seeks to link educational theory to

practice by using a mixed methods approach, by triangulating multiple sources and

types of data, and by investigating the effectiveness or otherwise of PBL in

facilitating the acquisition of key Threshold Concepts in computer programming. It

is hoped that findings from this study will assist educational researchers and

practitioners alike by providing empirical evidence of the impact of PBL on a range

of outcomes and by providing a set of practical recommendations and guidelines for

curriculum developers and teaching practitioners that will help to improve the

experiences and behaviours of learners on introductory programming courses.

1.4. Research Questions

This thesis asks five main Research questions and tests five related hypotheses as

outlined in Table 1-1 below:

16 | P a g e

Table 1-1: Initial Research Questions

Research questions Hypotheses

(1.a) What are the effects of using a PBL

model on learner attainment in exams on

a first year programming module?

(1.b) What are the effects of using a PBL

model on learner attainment in

continuous assessment on a first year

programming module?

(1.a) Learners in the PBL group will

score higher in exams than those in the

control group.

(1.b) Learners in the PBL group will

score higher in continuous assessment

than those in the control group.

(2) What are the effects of using a PBL

model on learner self-regulation?

(2) Learners who complete the PBL

course will have a higher degree of

intrinsic motivation than those in the

control group.

(3) What are the effects of using a PBL

model on learners’ programming self-

efficacy?

(3) Learners in the PBL group will show

a higher degree of programming self-

efficacy than those in the control group.

(4) What are the effects of using a PBL

model on students’ approaches to

learning and on general learner

engagement?

(4) Learners in the PBL group will show

higher scores on meaning orientation and

lower scores on reproduction orientation

than those in the control group.

(5) What are the effects of using a PBL

model on learner preferences for

different types of course and teaching?

(5) Learners in the PBL group will show

a greater preference for courses and

teaching that supports deep learning (as

opposed to surface learning) than those

in the control group.

Hypotheses 1a and 1b were tested over four cohorts of learners, using statistical

analysis of variance of learner attainment data. Hypothesis 2 was tested over two

cohorts of learners, using a statistical analysis of learner responses on the Learning

Self-Regulation Questionnaire (SRQ-L) (Williams & Deci, 2007a). Hypothesis 3

17 | P a g e

was tested over two cohorts of learners, using a statistical analysis of learner

responses on the Programming Self-Efficacy instrument (PSE) (Ramalingam &

Wiedenbeck, 1998). Hypotheses 4 & 5 were measured over one cohort of learners,

using a statistical analysis of learner responses on parts B and C of the Approaches

and Study Skills Inventory for Students (ASSIST) (Entwistle, 1997; Entwistle,

McCune & Tait, 2006)1. Learner motivation, engagement and approaches to

studying were also examined over four cohorts of learners using qualitative

techniques such as observations, field notes and interviews.

In addition to the five hypotheses, the study allowed some tentative conclusions to

be drawn about a number of related issues. These concerned what higher education

subjects may lend themselves to using Problem-Based Learning (e.g. Computer

Science versus English); what aspects of the Computing curriculum may be most

suitable for applying a Problem-Based Learning approach; whether PBL classes can

improve first year learners’ acquisition of Threshold Concepts in Computing; when

in a learner’s college lifetime a Problem-Based Learning approach might be most

effective (e.g. with first-years or with final year learners); and which sets of learners

may benefit most from using a Problem-Based Learning approach (low attainment or

high attainment)?

1.5. Ethics

The study was conducted ethically from a professional, academic and moral

standpoint. Pole and Morrison (2003) make the point that researchers need “to

recognise that ethical issues will permeate every stage in the research process”. From

the outset of this research, ethical issues were considered and the research

methodology was shaped to incorporate these concerns. To protect participants’

rights and welfare, the study was bound by the Republic of Ireland’s "Data

Protection (Amendment) Act (2003)”, which contains strict rules about how data

must be stored, who can access it, and how it can be processed (Clark, 1996).

1 The Approaches and Study Skills Inventory for Students (ASSIST) can be downloaded from the
Enhancing Learning and Teaching project website at
http://www.etl.tla.ed.ac.uk/publications.html#measurement

18 | P a g e

The research builds upon a pilot study done by this author in 2006, which received

Durham University Ethics Committee approval. The full study received Ethics

Committee approval from the author’s own college in 2007 and from Durham

University School of Education Ethics Committee in 2008. The research design was

informed by the research ethical guidelines issued by the Sociological Association of

Ireland (SAI, 2008) and the British Educational Research Association (BERA,

2004): these guidelines state in particular that before any surveys, observations or

interviews are completed, the participants will receive a consent form outlining the

purpose of the research, guaranteeing their anonymity, and specifying that their

participation/non-participation will not be discussed with their instructors or

otherwise affect their standing in the college. Appendices A1, A2 and A3 contain the

Ethics approval forms. Appendix B contains the consent forms for participants, an

audit trail and procedures for management of data collection.

1.6. Structure of the Thesis

This thesis starts with a review of the literature on a number of interrelated areas: the

pedagogy of Software Development, Threshold Concepts, Problem-Based Learning

student approaches to learning, learner motivation and self-efficacy. Following the

literature review, in chapter three, details of the hybrid PBL model used at Anon

College and its implementation are described. The research methodologies used are

set out. In chapters four and five the quantitative and qualitative findings are

presented. Finally, in chapter 6 a discussion of the findings, including the

implications for instructional practice and for educational theory and research, is

undertaken.

19 | P a g e

Chapter 2 - Review of Related Literature

2.1. Introduction

This literature review provides the theoretical foundation for the present study and

has five major sections. The first is a review of the literature on the pedagogy of

Software Development, focusing in particular on the problems associated with

teaching computer programming to novices. The second is an examination of

Threshold Concepts, both as a way of characterising particular concepts that are

troublesome for learners and as a framework for examining the wider Computing

curriculum. It includes a review of Threshold Concepts in Computing. Consideration

is given to how Threshold Concepts might be used to organise and focus the

educational process and the relationship between Threshold Concepts and PBL is

examined. The third section provides a critical review of the literature on the

effectiveness of PBL, including an examination of the literature on approaches to

learning in a PBL context. The chapter continues with a discussion of two key

theories of motivation: goal theory and self determination theory, which were

selected to provide a framework for understanding some of the psychological factors

that underpin and explain learner behaviour. The chapter ends with a consideration

of how these different areas of literature converge in the context of using PBL to

teach Software Development, and from this discussion a number of research

questions emerge.

2.2. The Literature on the Pedagogy of Software Development

This section provides an overview of the research into the learning and teaching of

computer programming, identifying several significant issues. It focuses in particular

on novice programmers, exploring the difficult nature of the tasks they are asked to

master, the nature of the knowledge they must understand, the strategies they need to

apply that knowledge, the mental models they must build, their capabilities and

typical problems, and their characteristic behaviours.

This is followed by an exploration of the different types of novices, their motivations

and possible predictors of their success at programming courses. The levels of

20 | P a g e

achievement of students on introductory programming courses are examined. Factors

relating to teaching and course design are explored; a number of studies on the use of

Problem-Based Learning to teach programming are scrutinized. And finally, issues

relating to the types of programming languages taught are discussed.

2.2.1. Overview and Scope

Studies of programming generally divide into two main categories. The first is those

that focus on experienced or professional programmers, often working in teams, and

how they develop large and complex commercial software projects effectively

(Boehm, 1981; Brooks, 1995; Humphrey, 1999). The second category of studies

focuses on novice programmers and the initial development of an individual’s

programming skills, in which learning is addressed from a psychological and

educational perspective. This second category is the focus of this review. Also, while

some comparisons between procedural and object-oriented programming languages

will be made, the main focus will be on object-oriented languages such as Java.

Other programming paradigms such as functional or logic programming will not be

covered, as these paradigms are seldom taught to novices, are often not taught on

general Computing courses, and are rarely used in commercial Software

Development.

Weinberg (1971) and Sackman (1970) have identified programming as an area of

psychological interest. Weinberg (1971) was one of the first researchers to address

programming as an individual and team effort, focusing on programming as a people

oriented rather than a technologically focused task. Hoc, Green, Samurcay, &

Gilmore (1990) in their book continue this focus on people, deploying more recent

developments in psychology to study the behaviour of programmers. Soloway and

Spohrer’s (1989) book explicitly focuses on novice programmers and the types of

programming errors that they make. Robins et al. (2003) and Winslow (1996) have

also conducted extensive reviews of the literature relating to the educational study of

programming and identified several areas of research including programming

knowledge versus programming strategies; the ability to comprehend versus the

ability to generate code; the differential learning effects of different programming

languages; the programming behaviour of expert versus novice programmers; and

the characteristics of effective novices. Using these sources and others, these

21 | P a g e

research areas and their findings are summarised, critiqued and the implications for

practice discussed in the following sections.

2.2.2. Introduction

Both in Ireland and internationally there is evidence of high failure and dropout rates

and low retention rates in introductory programming courses at tertiary level

(Bennedsen & Caspersen, 2007), particularly among first year students (Jackson,

2003). Computer Science courses have the highest university dropout rates in the

UK, with one in 10 undergraduates not continuing into a second year of study

(Williams, 2007). These figures are in stark contrast to medicine and dentistry,

which have the highest retention rate, at 98 per cent (UK National Audit Office,

2007). PBL is well established in the teaching of medicine and dentistry, but not in

Software Development. This suggests a possible link between the use of PBL and

learner retention rates that needs to be investigated further. Exactly why Software

Development should pose these difficulties for learners is an active subject of cross-

disciplinary research involving Psychology, Education and Computer Science

researchers (Hoc et al., 1990; Khalife, 2006). The research has focused on the

learning process in introductory programming courses, and considerable work has

been done to identify the difficulties encountered by learners (Barros, Estevens,

Dias, Pais, & Soeiro, 2003; Connolly, Murphy, & Moore, 2008; Fincher et al., 2005;

Simon et al., 2006).

Students approach Computing degrees with a variety of motivations (Jenkins, 2001).

However, almost all students are motivated to succeed. Jenkins (2002, p. 54) makes

the point succinctly, saying that “they do not fail on purpose”. Therefore the

difficulty may lie in the types of learning tasks novices are asked to perform, or in

the teaching methods employed on introductory programming courses. Since the

main interest of this thesis lies in novices and the early stages of learning, novices

are now examined in detail, focusing on the difficulty of the task they must master,

their mental models, their behaviours, and their capabilities.

2.2.3. The Difficulty of Learning to Program

Learning to program is a difficult task (Dijkstra, 1989; du Boulay, 1989; Jackson,

2003; Jenkins, 2002) and many lecturers find it a very difficult skill to teach (van

22 | P a g e

Roy & Haridi, 2004). Programming is a new subject for the majority of students who

take first-year programming courses, and this might be part of the problem. Dijkstra

(1989), in his classic essay on the teaching of computer programming, titled “On the

Cruelty of Really Teaching Computing Science”, argues that programming is a

"radical novelty" that the existing higher education learning system cannot cope

with. According to Dijkstra (1989, p. 1398), at the heart of the problem is that

“radical novelties are so disturbing that they tend to be suppressed or ignored, to the

extent that even the possibility of their existence in general is more often denied than

admitted”. Two particular features of computer programming are, as Perkins et al.

(1988) say, both "problem-solving intensive" and "precision intensive". To be

precise, programming requires both a significant amount of effort in several skill

areas to produce a very modest return, and the modest success that can be achieved

by a novice programmer requires a very high level of precision, and certainly a much

higher level than most other academic subjects (Dijkstra, 1989; Jenkins, 2002).

Dijkstra (1989, p. 1399) notes that the "smallest possible perturbation" in a program,

for example, “changes of a single bit - can have the most drastic consequences”

(ibid, p. 1399), rendering a program totally worthless. A single missing semi- colon

in a thousand lines of code can be, as Jenkins (2002, p. 56) puts it, “the difference

between glorious success and ignominious failure…This is precision indeed”.

Outlining what is involved in learning to program, du Boulay (1989) describes five

overlapping domains that are each potential sources of difficulty and which must be

mastered. These are: (1) general orientation, what programs are for and what can be

done with them; (2) the notional machine, a model of the computer as it relates to

executing programs; (3) notation, the syntax and semantics of a particular

programming language; (4) structures, that is, the design schema and plans; and (5)

pragmatics, which are skills such as testing and debugging. Du Boulay goes on to

clarify the problems faced by learners:

None of these issues are entirely separable from the others, and much
of the ‘shock’ [. . .] of the first few encounters between the learner
and the system are compounded by the student’s attempt to deal with
all these different kinds of difficulty at once.

Du Boulay (ibid, p. 284)

23 | P a g e

Rogalski and Samurçay sum up the task as follows:

Acquiring and developing knowledge about programming is a highly
complex process. It involves a variety of cognitive activities, and
mental representations related to program design, program
understanding, modifying, debugging (and documenting). Even at the
level of computer literacy, it requires construction of conceptual
knowledge, and the structuring of basic operations (such as loops,
conditional statements, etc.) into schemas and plans. [And] it requires
developing strategies flexible enough to derive benefits from
programming aids (programming environment, programming
methods).

 (Rogalski & Samurçay, 1990, p. 170)

Green (1990, p. 117) suggests that programming is best regarded not as a

“transcription from an internally held representation”, but as an exploratory process

where programs are created “opportunistically and incrementally”. This view is

supported by Visser (1990) and by Davies (1993, p. 265), who argues that “emerging

models of programming behaviour suggest an incremental problem-solving process

where strategy is determined by localized problem-solving episodes and frequent

problem re-evaluation”.

2.2.4. Programming Knowledge and Strategies

This section focuses on the nature of the programming knowledge novices must

master and the characteristics of the strategies they must employ to utilise that

knowledge. The majority of studies of programming have focused on the content and

structure of programming knowledge, particularly upon the declarative aspects of

programmers' knowledge (R. E. Brooks, 1990; Détienne & Soloway, 1990; Guindon,

1990; Rist, 1990; Robertson & Yu, 1990; Visser, 1990). Davies (1993, p. 237) states

that “this literature has sought to describe the nature of programming knowledge

structures and their organization”. Robins et al. (2003, p. 140) support this, saying

that “[t]ypical introductory programming textbooks devote most of their content to

presenting knowledge about a particular language […], and in our experience typical

introductory programming courses are also ‘knowledge driven’’’. However, Davies

(1993, p. 237) points out “that one major limitation of many of these knowledge-

based theories is that they often fail to consider the way in which knowledge is used

or applied”.

24 | P a g e

One kind of knowledge representation identified as fundamental is the schema or

plan (Abelson & Sussman, 1996). Ormerod (1990) states that “[a] schema [...]

consists of a set of propositions that are organised by their semantic content”. This

view of a schema as structured pieces of related knowledge is common. Nonetheless,

there is considerable flexibility and overlap in the interpretation of the terms schema

and plan. Rist (1995) claims that “[t]here is considerable evidence in the empirical

study of programming that the plan is the basic cognitive chunk used in program

design and understanding. Exactly what is meant by a program plan, however, has

varied considerably between authors”. Robins et al. (2003, p. 140) say the term

‘‘plan is often used to emphasize an ‘action oriented’ rather that [sic] static

interpretation. In other words, the term ‘schema’ implies a ‘program as text’

perspective, while the term ‘plan’ implies a ‘programming as activity’ perspective”.

This view of plans and schemas is supported by other researchers (Rogalski &

Samurçay, 1990).

Davies (1993) contends that the strategic aspects of programming skills are less well

represented in the literature. He suggests that research is needed to determine “the

relationship between the development of structured representations of programming

knowledge and the adoption of specific forms of strategy” (ibid, p. 238), and he

identifies as significant strategies relating to the general problem domain, the

specific programming task, the programming language and the programming tools

used. Davies (1993, p. 237) states that this area of research has been “directed

towards an analysis of the strategies commonly employed by programmers in the

generation and comprehension of programs”.

2.2.4.1. Strategies and Models of Program Comprehension and Program

Generation

There are six major models of program comprehension: the Letovsky (1986) model;

the Shneiderman and Mayer (1979) model; the Brooks (1983) model; Soloway,

Adelson and Ehrlich's (1988) top-down model; Pennington's (1987a, 1987b) bottom-

up model; and the integrated meta-model of von Mayrhauser and Vans (1995b).

While these general models can be used to promote a complete understanding of a

piece of code, the literature suggests that it is doubtful that programmers rely on any

one of these models and related strategies exclusively, rather, they subconsciously

25 | P a g e

adopt one of these to be their predominant strategy, based on their knowledge of the

domain under study (Shaft & Vessey, 1998; von Mayrhauser, Vans & Howe, 1997),

and switch between strategies as cues become available to them (von Mayrhauser &

Vans, 1995b). Von Mayrhauser and Vans (1995a) identify a number of open

research questions that relate to the scalability of existing experimental results due to

the small programs used, and the validity and credibility of results which are based

on experimental procedures. Also Wiedenbeck et al. (1999) note that the

comprehension models used by novice programmers can be influenced by different

task requirements, for example, whether they are coding using an object-oriented or

procedural programming language.

Of the models mentioned, the Brooks (1983) model has the strongest support. Davies

(1993) reviewed a range of studies that support Brooks’ model. The Brooks model is

set in the context of various knowledge domains such as the original problem

domain, which is transformed and represented as values and structures in

intermediate domains, and finally instantiated and coded in the data structures and

algorithms of a program in the programming domain. The same set of domains has

been identified by Pennington (1987a, 1987b), based on the text comprehension

model developed by van Dijk and Kintsch (1983). Brooks (1983) claims that his

model is able to account for observed variation in comprehension performance

arising from such factors as the nature of the problem domain, variations in the

program text, the effects of different comprehension tasks and the effects of

individual differences.

Rist (1995) presents a comprehensive model of program generation. Knowledge is

represented using nodes in a programmer’s internal memory, including working,

episodic, semantic, and procedural memory, or recorded externally in written notes,

books, internet, the program specification, and the code itself. A node encodes an

“action” that may range from a line of code to one or more code routines of arbitrary

size. A program is built by starting with a search cue and retrieving any matching

nodes from memory. Nodes can contain cues, so cues within the newly linked node

are then expanded and linked in the same way. Linked systems of code that produce

a specific output are called plans, and common and useful plans are assumed to be

stored by experts in schema-like knowledge structures (Rist, 1986a, 1986b, 1989,

26 | P a g e

1990). Using these underlying knowledge representations, a number of different

code generation strategies can be implemented, including both expert and novice

strategies. Rist (1995) remarks that a realistic code generation process will involve

“the interaction between a search strategy and opportunistic design, plan creation and

retrieval, working memory limitations, and the structure of the specification and the

program” (ibid, p. 508).

Studies and models of comprehension are more numerous than studies and models of

generation. A possible reason for this is, as Robins et al. (2003, p. 144) say, “because

comprehension is a more constrained task and … is therefore easier to interpret and

describe”. Robins et al. (2003, p. 144) go on to say that “clearly [comprehension and

generation] are related, not least because during generation the development,

debugging (and in the long term maintenance) of code necessarily involves

reviewing and understanding it. Although we might therefore expect that these

abilities will always be highly correlated, the situation may in fact be more

complex”. This view is supported by Winslow (1996), who in his review of

psychological studies of programming pedagogy states that “studies have shown that

there is very little correspondence between the ability to write a program and the

ability to read one. Both need to be taught along with some basic test and debugging

strategies” (ibid., p. 21).

2.2.5. Mental Models and Processes

A mental model is a person’s internal model of a system’s properties and behaviour

(Johnson-Laird, 1983). The use of a mental model makes it possible to predict the

system’s responses to various actions and thus makes it possible for an individual to

select the best possible action (Kieras & Bovair, 1984). The consequence of this is

that an incorrect mental model can lead to incorrect actions. So a faulty mental

model of how various computer programming constructs work will cause problems

when learners try to write programmes.

Winslow (1996, p. 21) stresses that mental “[m]odels are crucial to building

understanding. Models of control, data structures and data representation, program

design and problem domain are all important. If the instructor omits them, the

students will make up their own models of dubious quality”. Programs are written

27 | P a g e

for a purpose, with respect to some problem, or specification. Clearly an

understanding and associated mental model of this problem domain must precede

any attempt to write an appropriate program (Brooks, 1983, 1999; Davies, 1993;

Rist, 1995; Spohrer, Soloway & Pope, 1989). This suggests the need to use relevant

problems directly in the teaching of programming languages, possibly imbedded in

the Problem-Based Learning teaching method (Deek, Kimmel & McHugh, 1998).

Ben-Ari (2001) argues that the lack of mental models plays an important part in why

students find it difficult to learn how to program. His argument is that, having no

previous models to build on, programmers are forced to construct their own mental

models from scratch. Wiedenbeck and Ramalingam (1999) investigated how novice

programmers’ mental models of their programs depended on whether a procedural or

an object-oriented language was used. Similarly, Yehezkel et al. (2005) describe the

importance of forming a mental model of a computer system in order to understand

it, suggesting that visualization tools can enable the construction of a viable mental

model.

Other important mental models can be identified. Many studies have noted the

central role played by a model of (an abstraction of) the computer, often called a

‘notional machine’ (Cañas, Bajo & Gonzalvo, 1994; du Boulay, 1989; du Boulay,

O'Shea & Monk, 1989; Hoc & Nguyen-Xuan, 1990; Mayer, 1989; Mendelsohn,

Green & Brna, 1990). Du Boulay et al. (1989, p. 431) say that “the notional machine

[is] an idealized, conceptual computer whose properties are implied by the constructs

in the programming language employed”. According to Robins et al. (2003, p. 149),

“the notional machine is defined with respect to the language is an important point”.

For example, the notional machine underlying an object-oriented language like Java

is very different from the machine underlying a logic programming language like

Prolog. Robins et al. (ibid, p. 149) go on to state that “[t]he purpose of the notional

machine is to provide a foundation for understanding the behaviour of running

programs”. Du Boulay et al. (1989) also add the requirement that the ‘notional

machine’ be visible to the learner and simple in its construction and workings.

Mayer (1989) showed that students supplied with a notional machine model were

better at solving some kinds of problem than students without the model. Du Boulay

explains the purpose of the ‘notional machine’ as follows:

28 | P a g e

[T]o present the beginner with some model or description of the
machine she or he is learning to operate via the given programming
language. It is then possible to relate some of the troublesome hidden
side-effects to events happening in the model, as it is these hidden,
and visually unmarked, actions which often cause problems for
beginners. However, inventing a consistent story that describes events
at the right level of detail is not easy.

 (du Boulay, 1989, pp. 297-298).

The programmer must also develop a model of the written static programming code,

and the dynamic executing program it will become. Du Boulay (1989, p. 285), states

that a “running program is a kind of mechanism and it takes quite a long time to

learn the relation between a program on the page and the mechanism it describes”.

Building the model is complicated by the fact that there are many different ways of

viewing a program, such as linear order, control flow, data flow, and object based

structure (Rist, 1995).

Robins et al. (2003, p. 150) add that “[c]omplicating this picture still further […] is

the distinction between the model of the program as it was intended, and the model

of the program as it actually is. Designs can be incorrect, unpredicted interactions

can occur, bugs happen. Consequently, programmers are frequently faced with the

need to understand a program that is running in an unexpected way”. Perkins et al.

(1989) suggest that for a learner to be able to build a model of the program and

predict its behaviour, the learner must be able to mentally trace the flow of code by

“taking the computer’s point of view” Robins et al. (2003, p. 150) say that “[t]he

process of building such a model (which itself supposes models of both the features

of the language and the behaviour of the machine) is a central part of program

comprehension, and of the planning, testing and debugging involved in program

generation”.

2.2.6. The Programming Capabilities and Behaviours of Novice

Programmers

The distinction between a novice and an expert may become clearer by asking the

question, what makes an expert programmer? Winslow (1996) reviewed a number of

psychological studies of programming pedagogy that were undertaken between 1974

and 1994 and reported that it takes 10 years to turn a novice into an expert

programmer, a view that is now generally accepted. Dreyfus et al. (2000) suggest

29 | P a g e

five stages in this process: novice, advanced beginner, competence, proficiency, and

expert. There are many studies of expert programmers, although Robins et al. (2003,

p. 139) point out that “some are based on graduate students who are probably only

competent or proficient”. Most studies of experts focus on the sophisticated

knowledge representations and problem solving strategies that they employ

(Détienne, 1990; Gilmore, 1990; Pennington, 1987b; Visser & Hoc, 1990). Von

Mayrhauser and Vans (1994) reviewed a number of studies, most notably Guindon

(1990), and state that experts have efficiently organised and specialised

programming knowledge schemas that have associated testing and debugging

strategies (Linn & Dalbey, 1989). Experts employ both general problem solving

strategies and specialised strategies and are flexible in their approach to program

comprehension and construction. This was demonstrated by Widowski and Eyferth

(1986) who showed that in program comprehension experts demonstrate highly

flexible strategies and are better able to recognise and respond to novel situations.

Novices do not have these strengths, and studies of novices have concluded that, as

Robins et al. (2003, p. 140) state, they “[are] limited to surface and superficially

organised knowledge, lack detailed mental models, fail to apply relevant knowledge,

and approach programming ‘line by line’ rather than using meaningful program

‘chunks’ or structures.” A number of studies collected in Soloway and Spohrer

(1989) and other studies reviewed by Winslow (1996) outline, as Robins et al.

(2003, p. 140) put it, “deficits in novices’ understanding of various specific

programming language constructs (such as variables, loops, arrays and recursion),

shortcomings in their planning and testing of code, [and] how prior knowledge can

be a source of errors”. Novices are also, as Wiedenbeck et al. state (1999, p. 278),

“very local and concrete in their comprehension of programs”.

Robins et al. (2003, p. 151) state that “in contrast to experts, novices spend very little

time planning. Novices also spend little time testing code, and tend to attempt small

‘local’ fixes rather than significantly reformulating programs (Linn & Dalbey, 1989).

They are often poor at tracing the flow of control through multiple lines of code

(Perkins et al., 1989). Robins et al. (2003, p. 151) state that “[n]ovices can have a

poor grasp of the basic sequential nature of program execution”. Du Boulay (1989, p.

294) adds that “[w]hat sometimes gets forgotten is that each instruction operates in

30 | P a g e

the environment created by the previous instructions”. Kurland, Pea, Clement and

Mawby (1989) found that even after two years of study, novices’ programming

knowledge tends to be context specific rather than general. Some of these failings

relate to aspects of knowledge, while others relate to strategies.

Novices’ understanding and use of specific features of programming languages are

also problematic. Programme variables cause particular problems with assignment

and initialisation (du Boulay, 1989; Samurcay, 1989). Spohrer et al. (1989) found

that errors associated with loops and conditionals were much more common than

those associated with input, output, initialisation, update, syntax/block structure, and

overall planning. That novices have particular difficulty with loops has been

identified by a number of other researchers (Rogalski & Samurçay, 1990; Soloway,

Bonar & Ehrlich, 1989). Du Boulay (1989) states that ‘for’ loops are problematic

because novices often fail to understand that ‘behind the scenes’ the loop control

variable is being updated. Du Boulay (ibid, p. 295) points out that “[t]his is another

example of the ubiquitous problem of hidden, internal changes causing problems”.

Another language feature that novices find difficult is arrays, with errors such as

confusing an array subscript with the value stored being common (du Boulay, 1989;

Rogalski & Samurçay, 1990). Rogalski and Samurçay (1990) suggest that this

difficultly might be caused by the array data structure itself rather than issues

relating to processing array elements. Novices also have more difficulty

understanding issues relating to flow of control than other kinds of processing

(Rogalski & Samurçay, 1990).

While specific language related features cause problems, the main difficulty for

novices is program design and planning. Robins et al. (2003, p. 153) state that “[t]he

underlying cause of the problems faced by novices is their lack of […] programming

specific knowledge and strategies […and] this lack manifests itself primarily as

problems with basic planning and design”. Spohrer and Soloway (1989) conducted a

study of programming errors made by first year university students, and identified

two “common perceptions” of errors:

Our empirical study leads us to argue that (1) yes, a few bug types
account for a large percentage of program bugs, and (2) no,
misconceptions about language constructs do not seem to be as

31 | P a g e

widespread or as troublesome as is generally believed. Rather, many
bugs arise as a result of plan composition problems – difficulties in
putting the pieces of the program together [. . .] and not as a result of
construct-based problems, which are misconceptions about language
constructs

 (Soloway & Spohrer, 1989, p. 401).

Spohrer et al. (1989) found that novices mix up plans and often omit part of the plan.

This suggests that Robins et al. (2003, p. 153) are correct when they say that “basic

program planning rather than specific language features is the main source of

difficulty”. This finding is supported by Winslow in his 1996 review of studies:

[A] large number of studies conclude[d] that novice programmers
know the syntax and semantics of individual statements, but they do
not know how to combine these features into valid programs. Even
when they know how to solve the problems by hand, they have
trouble translating the hand solution into an equivalent computer
program.

 (Winslow, 1996, p. 17).

Winslow suggests that the problem with novices is their lack of ability to create a

program rather than any general lack in understanding the required underlying

problem solving. Robins et al. (2003, p. 154) state that “the most basic manifestation

of novices’ lack of relevant knowledge and strategies is evident in problems with

focal design”. Rist (1995, p. 537) defines focus design as “when a problem is

decomposed into the simplest and most basic action and object that defines the focus

of the solution, and then the rest of the solution is built around the focus. Essentially,

the focus is where you break out of theory into action, out of the abstract into the

concrete level of design”.

2.2.7. Different Kinds of Novice Programmers and Indicators of Success

Connolly et al. (2008) point out that for some Computing students, learning

programming is intimidating, giving rise to a lack of confidence and anxiety. Barros

et al. (2003) suggest that the high variability of students' backgrounds typically

found in introductory programming courses creates additional difficulties in

fostering motivation. Robins et al. (2003, p. 155) add that “[a] group of novices

learning to program will typically contain a huge range of backgrounds, abilities, and

levels of motivation, and also typically result in a huge range of unsuccessful to

32 | P a g e

successful outcomes”. This assertion suggests a need to identify what factors might

be good indicators of success. A study by Evans and Simkin (1989) has shown that

no demographic factor is a strong predictor of success in programming, and while

there are a number of commercially developed programming aptitude tests which

claim to test aptitude for computer programming, the evidence for their effectiveness

is inconclusive (Mazlack, 1980). Alexander et al. (2003) carried out an analysis of

students' success during the early part of their study of programming at university

and found nothing in entry qualifications that indicated which students will be

successful in the study of programming. On the other hand, Moran and Crowley

(1979) analysed the relationship between entry qualifications and attainment of

learners on courses at an Irish tertiary level colleges and found a tipping point in

entry qualifications, below which learners do not make good progress and above

which prior attainment is not an indicator of success.

Wiedenbeck et al. (2004) claim that the ability to form mental models is a predictor

for Software Development course outcome. Nonetheless, Bishop-Clark (1995) found

no clear trends emerging from a review of studies of the effects of cognitive style

and personality on programming, saying that “the work relating cognitive styles and

personality traits to computer programming has been both scattered and difficult to

interpret” (ibid, p. 257). The author goes on to say that:

[c]ognitive styles and personality traits […] have failed to
consistently explain individual differences in achievement. In the
majority of these studies, computer programming has been measured
as a single activity. Computer programming has been described as an
activity having separate and distinct phases: problem representation,
program design, coding, and debugging. It may be that certain
cognitive styles and personality dimensions affect some phases but
not others.

 (ibid, p. 241)

Rountree et al. (2002) conducted a study of first year students on a computer

programming course at the University of Otago, examining factors such as

background, intended major and expected workload, and found that the most reliable

predictor of success was the grade that the students themselves expected to achieve.

The authors say (ibid, p. 124) that “[w]e believe that there is a […] problem in

learning to program: many people would like to have the skill, but find the mental

33 | P a g e

attitude required to gain it is hard to sustain. Our results suggest that a positive

attitude is the most important factor”. It is estimated that between 25 and 80 percent

of students choose not to major in Computing due to the difficulty they face in

learning a programming language (Carter & Jenkins, 2002).

Rountree et al. (2002) also reported that students who feel confident about their

learning perform best. Two similar studies at the University of Glasgow support

these findings (Black, 2003; Roddan, 2002). Black (2003) found that students’ self-

estimates correlate with exam performance, reporting a reasonably strong significant

positive correlation of (0.586), and that a second significant factor was the level of a

student’s academic integration into the Computing course. Black (2003, p. 14)

reports that 36% of the variance in class test results was explained by academic

integration, however social integration did not predict a significant amount of the

variance. These results are in line with Tinto’s (1975) theory of integration.

Nonetheless, caution must be exercised when interpreting these results as the

questionnaire items used were completely exploratory and had not been used

previously to test levels of academic and social integration.

Good indicators of success include measures of general intelligence, which have

been shown to relate to success at learning to program (Mayer, 1989; Mayer, Dyck

& Vilberg, 1989; Nickerson, 1982). Other than measures of intelligence, the best

indicators of success appear to be self-predicted success, attitude, keenness and

general academic motivation (Black, 2003; Roddan, 2002; Rountree et al., 2002).

However, this does not distinguish computer programming from other disciplines,

and given the large effect sizes of these factors, they may mask more subtle,

discipline-specific, indicators.

Cantwell-Wilson and Shrock (2001) undertook a wide-ranging study to determine

factors that promote success in an introductory Computer Science course. Examining

105 participants, the authors explored twelve possible predictive factors including

mathematical background, attribution for success/failure (luck, effort, difficulty of

task, and ability), domain specific self-efficacy, encouragement, comfort level in the

course, work style preference, previous programming experience, previous non-

programming computer experience, and gender. The study revealed three predictive

34 | P a g e

factors in the following order of importance: firstly, ‘comfort level’ was based on

students’ perceptions of course/programming difficulty and level of anxiety;

secondly mathematical background; and thirdly, ‘attributions’ which were based on

students’ beliefs about their reasons for success or failure. Comfort level was found

to be the most significant positive predictor of success, with mathematical

background second, and attribution of success to luck, which correlated negatively

with success, was the third in order of significance. That mathematical background is

a good predictor of success has been found by other researchers (Konvalina,

Wileman & Stephens, 1983). The Cantwell-Wilson and Shrock (2001) study also

found some minor factors relating to different types of previous computer

experiences. Previous formal training in programming had a positive influence and

computer game playing had a negative influence on class grade. Previous experience

was also investigated by Jenkins (2002) who found that students who have had some

training in programming before beginning programming courses have a higher

probability of success, and this finding is supported by other studies (Hagan &

Markham, 2000).

Fincher et al. (2005; 2006) describe a multi-national, multi-institutional study that

investigated predictors of success in a first programming course. Participants were

drawn from eleven institutions, and four different diagnostic tasks were used in the

study: a spatial visualisation task (a standard paper folding test); a behavioural task

used to assess ability to design and sketch a simple map; a second behavioural task

used to assess the ability to articulate a search strategy; and an attitudinal task

focusing on approaches to learning and studying. The authors reported a significant

relationship between novice programmers' map-drawing styles (landmark, route or

survey) and success in a first programming course at tertiary level. The authors also

reported a significant correlation between high scores and increasing measures of

richness of articulation of a search strategy. The results indicate that a deep approach

to learning was positively correlated with high scores for the course, while a surface

approach was negatively correlated. However, there was only a small positive

correlation between scores in the spatial visualisation (paper folding) task and

programming marks. Fincher et al. (2005, p. 45) suggest that “components of ‘IQ’

other than spatial skills may account for most of the effect of IQ on programming

35 | P a g e

success”. A strong point of the Fincher et al. (2005; 2006) study is the large number

of participants, with 177 participants from eleven institutions in three countries. The

main limitations of the study arise from the use of multiple experimenters, and

include issues with respect to the consistency of the application of the study

protocol, and the consistency of coding, transcription and analysis.

Different kinds of characteristic behaviour are evident when observing novices in the

process of writing programs. Perkins et al. (1989) distinguish between three main

kinds of behaviour, what they call “stoppers”, “movers”, and “tinkerers”. Stoppers,

when confronted with a problem or a lack of a clear direction to proceed, simply

stop. Perkins et al. (1989, p. 265) say that “[t]hey appear to abandon all hope of

solving the problem on their own”. Movers on the other hand are students who keep

trying, experimenting, and modifying their code. Movers can use feedback about

errors effectively, and have the potential to solve the current problem and progress.

Perkins et al. (1989) call a form of excessive movers “tinkerers”. These are students

who are not able to trace their program, and make a large number of random changes

to their code. Tinkerers, like stoppers, have little effective chance of progressing.

Perkins et al. (1989) also found that students’ attitudes to mistakes are an important

factor in their progress, with those who are frustrated by their mistakes or have a

negative emotional reaction to making errors, likely to become stoppers.

2.2.8. Motivation in Programming

A number of studies have examined the importance of motivation in programming,

with some researchers focussing on the reasons why students choose to study

programming and how students’ motivations change over the time they spend on the

course (Jenkins, 2001; Mamone, 1992). Curzon and Rix (1998), found that the major

motivation when students start programming courses is to become a professional

programmer but this is not the case when the course has advanced. Although

programming continues to be regarded as useful, it is seen as a secondary skill later

on. Indeed, being able to program appears not to be the ultimate objective of some

students taking programming courses, with Curzon and Rix (1998, p. 62), stating

that many “students appear not to ultimately expect to become programmers or

directly use their programming skills”. Low levels of intrinsic motivation and high

levels of extrinsic motivation have been identified in programming courses. Mamone

36 | P a g e

(1992), in a three year study of 126 students on programming courses at two New

York universities, found that 22% of the first year introductory programming class

were studying programming because they were interested in it, with the remaining

78% studying it because of career prospects and because it was a requirement.

Unfortunately, none of these studies correlated the reasons for studying

programming with performance on the course.

Some researchers have considered the relationship between student motivation and

impressions of Computing subjects. Mitchell, Sheard, and Markham (2000) found

that students who have a strong motivation to study programming have a more

positive perception of the subject, of the amount of practical work involved and of

their final grades. Other researchers have focused on aspects of programming and

technologies that can be used as motivators. Tharp (1981) suggested that

programming exercises should be improved to make them more motivating. Feldgen

and Clua (2003) found programming examples based on the internet and computer

game programming to be more motivating than classical mathematical or business-

based programming examples on first programming courses. Lawrence (2004)

reports that the use of competitive games and competitive programming, where

students develop and improve their code throughout an assignment by competing in

a tournament against instructor-defined code and the code of other students,

increases student motivation. Some researchers have suggested redesigning

introductory programming courses specifically to improve students’ experiences and

to improve retention (Mahmoud, Dobosiewicz & Swayne, 2004). Hadjerrouit

(1998b) suggests that Java should be used as a first programming language due to its

perceived ability to improve learner motivation because of the high levels of pay for

Java programmers.

In recent years, a number of studies have examined the role of comfort-level in

programming. Irani (2004), drawing on surveys, interviews, and five years of

enrolment data at Stanford University, suggests that while female and male students

report similar levels of comfort in using computers, women assessed their peers on

the course as being more comfortable with computers than they were, while men

assessed themselves, on average, as slightly more comfortable than their peers.

Thomas et al. (2003) studied students on an introductory programming course that

37 | P a g e

replaced all individual assignments with paired assignments. Programming

confidence levels were found to be important in students participating in pair

programming activities, most notably in that students who were very confident did

not enjoy the experience of pair programming as much as other students, and that

students produced their best work when placed in pairs with students of similar

confidence levels. Researchers have also examined the relationship between

students’ expectations of, and experiences on, an introductory Computing module.

Wiedenbeck et al. (2004) found that a positive relationship has recently been

identified between students’ self-efficacy for programming and performance. Bergin

and Reilly (2005, 2006) carried out a multi-institutional multivariate study of Irish

first year students and found a link between comfort-level and introductory

programming performance.

2.2.9. The Teaching and Learning of Novice Programmers

Teaching standards clearly influence the outcomes of courses that teach

programming (Linn & Dalbey, 1989). Linn and Dalbey (1989) propose a set of

“cognitive accomplishments” that should arise from the ideal computer

programming instruction. This starts with the features of the language being taught,

followed by design skills, including plans, and skills of planning, testing and

reformulating code. The final element of the set of cognitive accomplishments

includes problem-solving skills, and knowledge and strategies that are abstracted

from the specific language being taught that can be applied to new languages and

situations. Robins et al. (2003, p. 155) say that this set of “accomplishments forms a

good summary of what could be meant by deep learning in introductory

programming”.

An observation that recurs with regularity in the literature is that the average student

does not make much progress in an introductory programming course. Linn and

Dalbey (1989) suggest that few students get beyond the ‘features of the language’

accomplishment, and conclude that “the majority of students made very limited

progress in programming” (ibid, p. 74). This view is supported by Kurland et al.

(1989) who studied students who had completed two years of programming

instruction and found that “many students had only a rudimentary understanding of

programming”. Winslow (1996, p. 21) adds that “study after study has shown that

38 | P a g e

[students] do not understand [even] basic loops”. Soloway et al. (1982) studied

students who had completed a single semester programming course, and found that

38% could not write a loop to calculate the average of a set of numbers. McCracken

et al. (2001) conducted a multi-national, multi-institutional study of the

programming skills of first-year students on Computer Science courses, and found

that “many students do not know how to program at the conclusion of their

introductory courses”. Others agree: Fincher et al. (2005, p. 2) say they “believe that

learning to program is problematic, and that the results achieved by students do not

correlate well with their other academic results. Understanding of this phenomenon

is patchy and poorly integrated, but it does seem clear that there are many influences

at play”. There is clearly room for improvement in the way students are taught

programming. Jenkins (2002, p. 53) makes the point strongly, saying that “[a]t the

moment the way in which programming is taught and learned is fundamentally

broken”.

2.2.10. Course Design and Teaching Methods

Brooks (1990) points out that the programming strategies that novices use strongly

impact on the quality of final program that is produced. Yet most introductory

programming courses are conventionally structured with lectures and practical

laboratory work, and, as Robins et al. (2003, p. 157) state, are based on a

“conventional curriculum focused largely on knowledge – particularly relating to the

features of the language being taught and how to use them”. This may be due to the

fact that, as Robins et al. (2003, p. 157) state, “strategies themselves cannot (in most

cases) be deduced from the final form of the program. Finished example programs

are rich sources of information about the language which can be presented, analysed

and discussed. The strategies that created those programs, however, are much harder

to make explicit”. Soloway and Spohrer (1989, p. 412) add that “students are not

given sufficient instruction in how to ‘put the pieces together.’ [There is a need to

focus] explicitly on specific strategies for carrying out the coordination and

integration of the goals and plans that underlie program code”. Given the

observations regarding the limited progress made by novices in introductory courses,

Robins et al. (2003, p. 157) call for introductory courses that are realistic in their

expectations. Winslow (1996, p. 21) echoes this call, saying that “[g]ood pedagogy

39 | P a g e

requires the instructor to keep initial facts, models and rules simple, and only expand

and refine them as the student gains experience”.

A number of studies show that students who are encouraged to actively engage with

and explore programming related information perform better at problem solving

(Hoc & Nguyen-Xuan, 1990; Mayer, 1989). Robins et al. (2003, p. 157) say that

“laboratory based programming [problems] have some pedagogically useful features.

Each one can form a ‘case based’ problem solving session. The feedback supplied by

compilers and other tools is immediate, consistent, and (ideally) detailed and

informative. The reinforcement and encouragement derived from creating a working

program can be very powerful”. Linn and Dalbey (1989) make the point that students

using laboratory based programming problems can work and learn on their own and

at their own pace, and “programming can be a rich source of problem-solving

experience” (ibid, p. 78). Nevertheless, problems need to be carefully selected and

based on clear programming principles (Kurland et al., 1989).

Working collaboratively on programming problems in groups has been shown to be

beneficial, particularly for weaker students (van Gorp & Grissom, 2001). Paired

programming, where two students code together, working on the same problem, has

been demonstrated to make students more self-sufficient (Williams, Wiebe, Yang,

Ferzli & Miller, 2002). Wills et al. (1999) have shown that peer learning is beneficial

for novices on introductory programming courses.

There is some evidence that teaching schemas to novices rather than waiting for

schemas to emerge from examples and experience, improves skills transfer (Robins,

1996). While supporting the idea of teaching schemas, Perkins et al. (1989) also

suggest that constructivist methods may be more generally effective:

Instruction designed to foster bootstrap learning but not providing an
explicit schematic repertoire might produce competent and flexible
programmers, and might yield the broad cognitive ripple effects some
advocates of programming instruction have hoped for.

 (Perkins et al., 1989, p. 277).

Anderson (1976, 1993, 1996) developed a cognitive architecture model called ACT-

R (Adaptive Control of Thought - Rational), and used this architecture to explore

learning and knowledge consolidation. He suggests that abstract representations of

40 | P a g e

knowledge (such as program code) cannot be learned directly and must be learned by

the learner practising the operations on which the representations are based. This

suggests that problem solving should be central to any programming course

(Fincher, 1999b). Nonetheless, Robins et al. (2003, p. 160) say that “problem

solving is necessary, but not sufficient, for programming. The main difficulty faced

by novices is expressing problem solutions as programs. Thus the coverage of

language features and how to use and combine them must remain an important

focus”. This view is supported by other researchers (Rist, 1995; Winslow, 1996).

Deek et al. (1998) describe a first year Computer Science course at the New Jersey

Institute of Technology which was based on a Problem-Based Learning model, and

where programming language features were introduced only in the context of the

students’ solutions to specific problems. Deek et al. (1998, p. 319) reported

outstanding results, stating that the “final grades for the class receiving the

alternative [problem-based] methodologies is skewed towards the higher grades

(71% of the students received a grade of ‘A,’ ‘B+,’ or ‘B.’) But the class of students

using the traditional approach received grades skewed towards the lower end of the

scale (Approximately 56% received a grade of ‘D,’ ‘F,’ an Incomplete, or a

Withdrawal.)”. However, there are methodological issues affecting this study,

particularly relating to the lack of controls for other non-PBL influences.

Kay et al. (2000) describe a foundation Computer Science course where Problem-

Based Learning was implemented. The authors report exceptional success, for

example, an increase in mean examination marks from 63% in the last non-PBL year

to 91% in the second full PBL year. Kay et al. (ibid) also describe feedback from six

students (2 from the PBL group and 4 from the non-PBL group), noting that the PBL

students found “learning programming a positive experience”, although one student

in the PBL group “had extremely negative memories” of PBL (ibid, p. 121). Kay et

al. (ibid) go on to describe a three year longitudinal follow-up of PBL students using

self-report questionnaires, noting that students were satisfied with the PBL course.

However, while the Kay et al. (ibid) study provides a detailed description of the

implementation of PBL in a Computing context, there are a number of major

methodological weakness in the study, including the small sample size (16) of the

long term follow up, and the lack of controls for other non-PBL influences, such as

41 | P a g e

students’ prior attainment, student general intelligence levels, the teacher effect, and

the introduction of a different programming language.

2.2.11. Programming Languages Used to Teach Programming

Many researchers have called for the use of simple, specially-designed programming

languages for teaching such as Logo (du Boulay, 1989; Jenkins, 2002). However,

they are seldom used, with the vast majority of courses using standard workplace

languages such as Java or C++ (Robins et al., 2003). While early studies in particular

explored particular kinds of programming language structure or notation (Sheil,

1981), during the mid 1990s there was a focus on exploring issues relating to the

object-oriented programming paradigm, in contrast to the procedural paradigm.

Robins et al. (2003, p. 145) say that “in general such studies should be seen in the

context that there is not likely to be any universally ‘best’ programming notation”.

Nevertheless a given notation may assist in the comprehension of certain kinds of

information by highlighting it in some way in the program code (Gilmore & Green,

1984). Traditionally, Software Development courses have focused on the teaching of

procedural computer programming languages. Over the last 15 years, nearly all

Software Development courses have moved to teaching object-oriented

programming languages, with the most widely taught programming language being

the Java programming language. Java is also used extensively within the Software

Development industry (Sun Microsystems, 2008). Therefore, in many ways the

analysis of the differences between paradigms is now redundant, as nearly all

Computing programming courses now use the object-oriented paradigm, reflecting

its near total dominance in industrial and commercial Software Development, due to

its expressive power which allows the development of new types of computer

systems, particularly web based systems (Meyer, 1997). Nonetheless discussion is

necessary to place the object-oriented paradigm in context and for a consideration of

its characteristics.

While the object-oriented paradigm may be more powerful, many claims were also

made that programming using the object-oriented approach would be easier than

using the procedural approach (Meyer, 1997; Rosson & Alpert, 1990). However, the

literature does not support this view. Détienne (1997) reviews a number of studies

and shows that identifying objects is not an easy process, that objects identified in

42 | P a g e

the problem domain are not necessarily useful in the program domain, that the

mapping between domains is not straightforward, and that novices need to construct

a model of the procedural aspects of a solution in order to properly design objects

and classes. Similarly, Rist (1995, p. 555) describes the relationship between

program design plans and objects as “orthogonal, because one plan can use many

objects and one object can take part in many plans”. Rist (1996, p. 39) suggests that

object-oriented programming is not different, “it is more”, because object-oriented

design adds the overheads of class structure to a procedural system.

It seems that object-oriented programming might be particularly difficult for novices.

Wiedenbeck et al. (1999) studied students’ comprehension of procedural and object-

oriented programs in their second semester of study at university, finding (ibid, p.

276) that “the distributed nature of control flow and function in a[n object-oriented]

program may make it more difficult for novices to form a mental representation of

the function and control flow of a[n object-oriented] program than of a

corresponding procedural program”. This suggests that when teaching the object-

oriented paradigm, particular attention should be paid to control flow and data flow

(Wiedenbeck & Ramalingam, 1999), and some researchers advocate the use of

visualisation tools to aid comprehension (Baecker, 1998; Cooper, Dann & Pausch,

2003).

One new area of research is the identification and teaching of detailed reusable

object-oriented program schemas called design patterns. Patterns are solutions to

particular classes of programming problems (Gamma, Helm, Johnson & Vlissides,

1995). Some researchers have suggested teaching special pedagogical patterns, using

pattern languages such as Seminars (Sharp, Manns & Eckstein, 2003; The

Pedagogical Patterns Project, 2001). However, these have been subject to detailed

examination and problems have been identified with them (Fincher, 1999a). Fincher

and Utting (2002, p. 200) make the point that pedagogical patterns “miss some of

the requirements: they are either so abstracted from the domain (of tertiary Computer

Science education), and therefore generic, that they lack insight; or they are so

tightly coupled to specific instances of practice that they are not transferable.” Others

are in favour of patterns, suggesting that they allow students to adapt simpler

strategies to new and more complex problems (Proulx, 2000; Reed, 1998).

43 | P a g e

2.2.12. Summary

Computing courses have high failure and dropout rates (McAllister & Alexander,

2003). Programming has been shown to be a difficult task (Dijkstra, 1989). It

requires the application of complex knowledge and associated strategies. The

literature shows a clear distinction between the nature of the programming

knowledge novices must master and the characteristics of the strategies they must

employ to utilise that knowledge. Most introductory programming courses

concentrate on teaching programming knowledge but not on the strategies needed to

use this knowledge. Furthermore, there is little correspondence between the ability to

write a program and the ability to read one; both need to be taught to novices. A

number of complex mental models need to be constructed by novices if they are to

learn to program effectively. Ensuring the correct construction of these mental

models is crucial in allowing novices to build an understanding of programming. The

literature shows that the main problem for novices is program design and planning.

The strategies that they employ appear to distinguish effective from ineffective

novices.

For some Computing students, learning programming is intimidating, giving rise to

anxiety and a lack of confidence. Other than measures of general intelligence,

novices’ programming self-efficacy is the most accurate predictor of success at

programming. Cognitive styles and personality traits do not impact success at

programming. Low levels of intrinsic motivation and high levels of extrinsic

motivation have been identified in programming courses.

A review of the literature shows that the results achieved by students in

programming do not correlate well with their other academic results. There is clear

evidence that there is room for improvement in the way students are taught

programming. Brooks (1990) points out that the programming strategies that novices

use strongly impacts on the quality of final program that is produced. Yet most

introductory programming courses are conventionally structured with lectures and

practical laboratory work. A number of researchers suggest that constructivist

methods may be more effective; in particular Problem-Based Learning has been

reported to produce better outcomes (Deek et al., 1998; Kay et al., 2000). A number

of studies show that students who are encouraged to actively engage with and

44 | P a g e

explore programming related information perform better at problem solving, and

working collaboratively on programming problems in groups has been shown to be

beneficial, particularly for weaker students (Mayer, 1989; van Gorp & Grissom,

2001; Wills et al., 1999). A number of researchers have called for the use of simple

teaching programming languages to improve outcomes, though most programming

courses use fully functional industrial standard object-oriented programming

languages.

This section has shown that the Software Development curriculum is viewed as one

of the most challenging to teach and one of the most difficult and troublesome for

learners. In the next section on Threshold Concepts, one possible framework is

examined that may help explain why learners find computer programming so

troublesome. A general discussion of Threshold Concepts will be followed by an

examination of Threshold Concepts in the context of Computing.

2.3. Threshold Concepts

Meyer and Land (2005) have proposed using the term Threshold Concepts to

characterise particular concepts whose mastery is necessary to make progress in a

discipline, that transform the way a student looks at a discipline, but are also places

in the curriculum where students get stuck, unable to make progress until they

become unstuck.

Threshold Concepts are a subset of core concepts in a discipline. Core concepts are

building blocks that must be understood. As well as being core concepts, Threshold

Concepts have additional properties. As Meyer and Land state:

[a] Threshold Concept can be considered as akin to a portal, opening
up a new and previously inaccessible way of thinking about
something. It represents a transformed way of understanding, or
interpreting, or viewing something without which the learner cannot
progress. As a consequence of comprehending a Threshold Concept
there may thus be a transformed internal view of the subject matter.
[…] This transformation may be sudden or it may be protracted over
a considerable period, with the transition to understanding proving
troublesome. […] Such a transformed view […] may represent how
people ‘think’ in a particular discipline, or how they perceive,
apprehend, or experience particular phenomena within that discipline

45 | P a g e

 (Meyer & Land, 2006, p. 3).

Meyer and Land (ibid, p. 7) define Threshold Concepts as:

1. Transformative: they change in a significant way a student’s perception of a

subject.

2. Irreversible: the change in perspective occasioned by acquisition of a

Threshold Concept is unlikely to be forgotten or can be unlearned only by

considerable effort.

Meyer and Land (ibid, p. 7) suggest that “this can account for the difficulty

experienced by expert practitioners looking back across thresholds they have

personally long since crossed and attempting to understand (from their own

transformed perspective) the difficulties faced from (untransformed)

students’ perspectives”.

3. Integrative: they expose the previously hidden interrelatedness of something

and tie together concepts in ways that were previously unknown to the

student.

4. Often boundary markers: they indicate the limits of a conceptual area or the

discipline itself. Students who have mastered these Threshold Concepts have,

at least in part, crossed over from being outsiders to belonging to the field

they are studying.

5. Potentially troublesome for students: they can be conceptually difficult for

students. Perkins (1999) has defined troublesome knowledge as that which

appears counter-intuitive, alien, or incoherent.

Meyer and Land (2006, p. 9) make the point that “[g]iven the centrality of such

[threshold] concepts within sequences of learning and curricular structures, their

troublesomeness for students assumes significant pedagogical importance”.

Therefore, it is worth examining why Threshold Concepts should be so troublesome

for learners.

46 | P a g e

2.3.1. Types of Troublesome Knowledge

Threshold Concepts are closely tied to the constructivist tradition. Indeed, Meyer and

Land’s use of the term ‘troublesome’ follows from Perkins’ (1999) discussion of the

challenges that constructivists must face. Perkins (2006) suggests five types of

troublesome knowledge, which he classifies as ritual knowledge, inert knowledge,

conceptually difficult knowledge, tacit knowledge, and foreign knowledge. Perkins

goes on to suggest that constructivist teaching practices, such as problem-based

learning, can help students master these troublesome areas.

Ritual knowledge has a routine and rather meaningless character (Perkins, 1992). It

feels like part of a social or individual ritual. Gardner (1993) suggests that a number

of misconceptions in science are a consequence of ritual knowledge. A

constructivist response to the problem of ritual knowledge strives to make the

knowledge more meaningful, for example, Solomon (1998) outlines how this could

be done in the teaching of mathematics.

Inert knowledge, as Perkins (2006, p. 37) claims, “sits in the mind’s attic, dusted off

only when specifically needed”, Much research has been done on how knowledge

and skill acquired in one context for one purpose impacts performance in other

contexts for other purposes (Haskell, 2001). There is a long history of research into

the transfer of learning that shows that transfer where the initial learning and target

applications differ occurs only partially and sporadically. Indeed as McKeough,

Lupart and Marini (1995) point out in the preface of their book Teaching for

Transfer:

Transfer of learning is universally accepted as the ultimate aim of
teaching. However, achieving this goal is one of teaching’s most
formidable problems. Researchers have been more successful in
showing how people fail to transfer learning than they have been in
producing it, and teachers and employers alike bemoan students’
inability to use what they have learned.

 (McKeough et al., 1995, p. vii)

Eylon and Linn (1988) have observed of science education that students deal with

apparent contradictions between subjects by keeping their knowledge isolated. This

might explain why students often fail to transfer knowledge from one module to

another. However, conditions of learning that foster good initial mastery, diverse

47 | P a g e

practice, and mindful abstraction can enhance transfer substantially (Bransford &

Schwartz, 1999). This solution has been shown to be particularly true of computer

programming instruction (Salomon & Perkins, 1989). Strategies and approaches that

students bring to learning are also important: Bereiter and Scardamalia (1985, p. 66)

say that “efforts to solve the inert knowledge problem may fail if they deal only with

how knowledge is presented to students and what they are asked to do with respect

to that knowledge. Unless direct attention is given to the coping strategies [learners]

bring to knowledge use tasks, those strategies may defeat instructional intentions”.

Perkins (2006, p. 38) suggests that one constructivist solution to the knowledge

transfer problem is to “engage students in problem-based learning, where they

acquire the target concepts while addressing some medium-scale problem”. This

view is strongly supported by other researchers (Boud & Feletti, 1998; Savery &

Duffy, 1995).

Another problem is learners’ misconceptions. Research into the misconceptions of

learners has been influential in the formation of constructivist theory (Smith, diSessa

& Roschelle, 1994). As Eckerdal et al. (2006, p. 105) state, “[m]isconceptions

naturally occur as students modify and extend their knowledge frameworks to learn

new topics. For example, an individual’s previous understanding can lead to

misconceptions when familiar terms are used in unfamiliar contexts”, such as in a

computer programming context. Bonar and Soloway (1985, p. 133) say that “many

programming bugs can be explained by novices inappropriately using their

knowledge of step-by-step procedural specifications in natural language”. They

illustrate this by using the while statement to demonstrate the problem of linguistic

transfer. In common language the while can imply continual testing of the condition

(e.g., “hold your breath while underwater”). In programming loops the time of the

test is limited, it occurs only once on each iteration. Students who interpret the test as

continual have a misconception. The overloading of language, mathematical symbols

and previous programming experience, have all also been shown to cause

misconceptions for novice programmers (Clancy, 2004).

In any field of study students at some stage have to deal with conceptually difficult

knowledge. Some researchers suggest that this is a particular problem in the study of

mathematics, science and computer programming at higher levels (Boustedt et al.,

48 | P a g e

2007; Perkins & Simmons, 1988). Perkins (2006, p. 39) suggests that there is a need

to “engage students with qualitative problems rather than with solely quantitative

ones, as qualitative problems lead students to confront the character of the

phenomenon rather than just to master computational routines”. Another possible

solution suggested by Gentner and Stevens (1983) is to introduce learners to

imagistic mental models or to invite them to invent their own.

There is evidence that in the context of computer programming, having an incorrect

mental model can cause problems. In a study of first year students on a university

Java programming course using tape-recorded interviews, Fleury (2000) found that

as students familiarize themselves with new topics, their partial knowledge leads

them to develop their own rules. Unfortunately, if the knowledge is incomplete,

these self-constructed rules may result in false assumptions and misconceptions,

which once established are difficult to change. In a study of students on an object-

oriented programming course using Smalltalk at the Open University, Holland,

Griffiths and Woodman (1997) observed that these premature generalizations are

then used to filter and distort new information, often compounding the

misconception. McCracken, Newstetter, and Chastine (1999) conducted a

descriptive study of 290 first year students in a technological institute and found that

in order to repair such misconceptions significant effort is required, and that this

involves a radical reordering of the concepts taught.

While there are some similarities between Threshold Concepts and mental models -

both, for example, can be transformational - there are major differences. Threshold

Concepts are troublesome while some mental models can be easily learnt, for

example modelling the computer screen as a desktop (Eckerdal et al., 2006).

Threshold Concepts are accepted concepts within a discipline, while mental models

are subjective and individual (Johnson-Laird, 1983).

It has been observed that students in Computing often display ritualised routines

rather than genuine enquiry and problem solving (Sproull, Kiesler & Zubrow, 1984).

This is also true of students in mathematics and science. Perkins (2006, p. 42)

suggests that “authentic problem solving and Problem-Based Learning that

foreground the games of the discipline are constructivist practices that can help”.

49 | P a g e

Perkins (2006, p. 40) argues that “much of the knowledge we rely upon everyday in

both commonplace and professional activities is tacit; we act upon it but are only

peripherally aware or entirely unconscious of it”, and he goes on to say that

constructivist approaches to teaching can make tacit knowledge clear.

Perkins (2006, p. 39) characterises foreign or alien knowledge as that which “comes

from a perspective that conflicts with our own”. Many students consider the process

of creating a set of precise instructions in code, submitting these instructions to a

machine, and then having the machine accept or reject the instructions an alien one.

As du Boulay (1989, p. 278) points out, “[t]he notion of the system making sense of

the program according to its own very rigid rules is a crucial idea for the learner to

grasp”. Indeed, as novices know how they intend a given piece of code to be

interpreted, they have a tendency to assume that the computer will interpret it in the

same way, and are surprised when it does not (Soloway & Spohrer, 1989).

It could in fact be argued that in Computing courses, not only do the concepts and

knowledge appear alien to learners, but the whole culture of the course is strange to

many students. Sproull, Kiesler, and Zubrow (1984) carried out a study at Carnegie-

Mellon University to measure levels of learner alienation in different college

courses. This empirical study compared the experiences of 250 novice programmers

in their freshman year on a Computer Science course to the novices’ other first year

courses (English, Social Science, and Mathematics) by using a fixed-response

questionnaire. The results showed much higher levels of alienation in the Computer

Science course than in other courses. Sproull, Kiesler, and Zubrow (ibid, p. 2) point

out the need to address “the social, organizational, and cultural context within which

encounters with Computing occur”, and add that “introducing novices to Computing

is more than simply providing a machine and teaching a set of skills for using it. It is

also introducing a new culture. Novices learn cultural lessons as well as technical

ones. And the nature of those cultural lessons does much to determine novices'

attitudes toward Computing and their willingness to pursue it further”. Sackrowitz

and Parelius (1996), in a study of first year Computing students at two major

universities, found strong evidence that women find Computing an even more alien

environment than men, and that this places women at a disadvantage in introductory

Computer Science classes.

50 | P a g e

Perkins and Martin (1986) classify some of the knowledge that Computing novices

have as “fragile”. This is characterised by the novice appearing at first not to

understand. Nonetheless, the required knowledge may have been learned and can be

uncovered by the tutor providing judicial hints. Perkins and Martin (1986) suggest

that fragile knowledge may be either inert and unused or misplaced and used

inappropriately. Strategies can also be fragile, with novices failing to trace code even

when showing an understanding of the technique (Davies, 1993; Gilmore, 1990).

2.3.2. Liminality

The above categories of troublesome knowledge are not the only ones, and they are

not mutually exclusive. Perkins (2006, p. 41) states that “[c]oncepts as categoriser

set the stage for a more elaborate function. Associated with clusters of concepts are

activity systems or conceptual games that animate them”. Perkins (ibid, p. 41) adds

that “[a]lthough some of what is troublesome about knowledge squarely concerns the

categorical function of concepts, much concerns the larger conceptual games around

them [and] difficulty with particular disciplinary concepts may derive from difficulty

with the underlying episteme” (ibid, p. 43). The solution he suggests is that

educators make the rules of the epistemic game explicit. The value of making things

explicit, principally in problem solving and mathematics, is supported by other

researchers (Schoenfeld, 1979, 1980; Schoenfeld & Herrmann, 1982).

Meyer and Land (2006, p. 16) state that “difficulty in understanding Threshold

Concepts may leave the learner in a state of liminality (Latin limen – ‘threshold’), a

suspended state in which understanding approximates to a kind of mimicry or lack of

authenticity”. As they point out: “central to the acquisition of Threshold Concepts is

a consideration of what it might mean to be ‘in the threshold’.” (ibid, p. 22). Meyer

and Land (2005), drawing directly on the work of Van Gennep (2004) and Turner

(1995), develop the argument that acquiring a Threshold Concept may be likened in

some disciplines to ‘a rite of passage’. They propose a number of reasons for the rite

of passage analogy, including that the condition of liminality may be transformative

in function, with participating individuals acquiring new knowledge and

subsequently a new status and identity within the community. This sense of a rite of

passage is echoed in the words used to describe their experiences by students who

have completed computer programming courses (Sproull et al., 1984). Meyer and

51 | P a g e

Land (2006, p. 24) state that “the transformation can be protracted over periods of

time, and involve oscillations between states, often with temporary regression to

earlier states. This regression may be viewed as a form of compensatory mimicry”,

and they point out that “in student learning terms mimicry, it seems, may involve

both attempts at understanding, and perhaps not merely an intention to reproduce

information in a given form”. Rountree and Rountree (2009, p. 140) point out that

“there is a significant emotional reaction to dealing with liminality, and that such

reaction is normal and should be managed rather than ignored or dismissed”. Palmer

(2001) adds that crossing the threshold might be distressing and leave learners with a

sense of loss.

Interestingly, Meyer and Land (2006, p. 29) suggest that one possible solution to

moving learners out of liminality or what Ellsworth (1997) calls “stuck places”, is to

use simplified representations of authentic concepts in a form that novices can

engage with. These representations are proxies for the underlying Threshold

Concepts, and retain the correct episteme, but without troublesome definitions.

However, as Reimann and Jackson (2003) illustrate in the discipline of economics,

the procedure of formulating proxies is difficult and likely to involve a process of

trial and error.

Savin-Baden (2000) calls these “stuck places” disjunction and suggests that

disjunction can be both enabling and disabling in terms of its impact on learners. She

suggests that disjunction can occur when a learner encounters a Threshold Concept

but has not yet mastered it fully. She goes on to suggest that staff and students use

various strategies to try to deal with disjunction, which include “retreating from the

difficulty and opting out of any further learning, using strategies to avoid it,

temporising and waiting for an event or stimulus that will help them to move on or

engaging with it directly in an attempt to relieve their discomfort” (Savin-Baden,

2006, p. 161).

Evidence that a Problem-Based Learning approach might help with disjunction is

provided by Savin-Baden (ibid), who argues that although disjunction occurs in

many forms and diverse ways in different disciplines, it seems to be particularly

52 | P a g e

evident in curricula where Problem-Based Learning has been implemented. She

suggests that this is because:

Problem-Based Learning programmes prompt students to critique and
contest knowledge early on in the curriculum and thus they encounter
knowledge as being troublesome earlier than students in more
traditional programmes. [However] it might also be that Problem-
Based Learning encourages students to shift away from linear and
fact-finding problem solving. Instead they move towards forms of
problem management that demand the use of procedural and personal
knowledge as students are asked to engage with strategy or moral
dilemma problems. Thus it might be that disjunction is not only a
form of troublesome knowledge but also a ‘space’ or ‘position’
reached through the realisation that the knowledge is troublesome.
Disjunction might therefore be seen as a ‘troublesome learning space’
that emerges when forms of active learning (such as problem-based
learning) are used that prompt students to engage with procedural and
personal knowledge.

 (ibid, p. 178)

Indeed, Savin-Baden (ibid) describes Problem-Based Learning itself as a Threshold

Concept that is difficult to grasp as it challenges both staff and learners to see

learning and knowledge in a new way.

To help students develop an understanding of a troublesome concept, a number of

studies e.g. Colby, Ehrlich, Beaumont, & Stephens (2003); Klem and Connell (2004)

point to the need for teachers to support active student engagement with, and

manipulation of, the conceptual material. This has also been shown to be true in the

teaching of computer programming, with the addition of multimedia visualisation

proving to be most useful in helping understanding (Bergin et al., 1996; Razmov &

Anderson, 2006).

Efklides (2006, p. 48) emphasises the role of metacognition in the learning process,

“both directly by activating control processes and indirectly by influencing the self-

regulation process that determines whether the student will get engaged in Threshold

Concepts or not”. She also claims (2003, p. 1) that “[m]etacognitive experiences

serve the monitoring and control of the learning process and at the same time provide

an intrinsic context within which learning processes take place”. Section 2.4 of this

literature review will discuss further the role of self-regulation in the process of

learning.

53 | P a g e

Threshold Concepts can be used to evaluate teaching strategies. Meyer and Land

(2006, p. 16) state that wherever Threshold Concepts are present they “constitute an

obvious, and perhaps neglected, focus for evaluating teaching strategies and learning

outcomes”. However, it is worth considering Meyer and Land’s (2006, p. 16)

question ‘whose threshold concepts?’ as it is possible to interpret Threshold

Concepts as part of a “colonising view of the curriculum”, tools used to cement

power relations within curricula. Expanding this point, Meyer and Land (2005, p.

375) state that “[F]rom the learner's perspective there is an unwelcome power

relation deemed to be in operation in which one academic tribe is seen

imperialistically to be colonising the discursive space of other tribes”. Nonetheless,

in Computer Science, like other science subjects, there is an assumption that what is

taught is empiric physical knowledge and that educators can safely assume that

students must and should internalise these Threshold Concepts in order to progress

in their discipline. The assumption is made that the thresholds and the knowledge are

essentially politically or culturally neutral in nature (Palmer, 2001).

2.3.3. Criticisms of Threshold Concepts

Although the Threshold Concepts model is fashionable and gaining popularity, not

all researchers are convinced of its usefulness. Rowbottom (2007) puts forward

several criticisms of Threshold Concepts, all of which could apply to Threshold

Concepts in Computer Science. His main criticism is “that ‘threshold concepts’ as

defined by Meyer and Land [(2006)] are unidentifiable even in principle”, adding

“that several authors understand ‘threshold concepts’ in different and incompatible

ways”. Rowbottom is supported in this view by Rountree & Rountree (2009, p. 142)

who in their discussion of Threshold Concepts in Computing state that “[t]he

features attributed to threshold concepts are insufficiently precise to distinguish them

from any other concept”, adding that “any concept you care to mention might be a

threshold concept, even though it has none of the features [of Threshold Concepts

described by Meyer & Land], and any concept that has all of the features may not in

fact be a threshold concept [and without a clear definition of Threshold concepts], it

is not logically feasible even to use empirical research to support or refute a claim

that something is or is not a threshold concept”.

54 | P a g e

Rowbottom’s (2007, p. 264) second criticism is that there are at least three standard

definitions of concepts and it is not clear which is meant by the ‘concept’ in

Threshold Concepts. Firstly, in Cognitive Science, a concept is seen as a mental

model functionally equivalent to symbols or words. Secondly, in Philosophy,

“concepts are abilities. More carefully, any given concept is supposed to be reducible

to a peculiar set of abilities” (ibid). Thirdly, also in Philosophy, concepts can be seen

as abstract entities of thought associated with names. Rowbottom (ibid) argues that

Meyer & Land have not clearly articulated which of the “three standard accounts of

concepts” they are referring to when they talk about concepts.

Rowbottom’s (2007, p. 267) third criticism is that “being transformative is arguably

an extrinsic property, rather than an intrinsic one. Specifically, what is

transformative for Mr. A need not be so for Mrs. B, because this depends on the

conceptual scheme (or system of concepts) initially possessed by each”.

Rowbottom (2007, p. 263) goes on to argue that these shortcomings raise a barrier to

empirical research into Threshold Concepts, questioning “how is it possible to test

for concepts, rather than abilities? [and] how can we tell if there is more than one

possible conceptual route to the same ability?”

These criticisms suggest that before we can apply Threshold Concepts to our

teaching we must overcome some difficulties and answer important questions

relating to the operationalisation of the idea of Threshold Concepts:

[W]hat precisely are threshold concepts? Can we identify them? Can
we agree on which concepts are threshold concepts and which are
not? Can we validate them? If threshold concepts do exist, and can be
identified and agreed upon, then how would they alter what we teach,
how we teach, and how we assess? Do threshold concepts represent
anything new or unexpected?

 (Rountree & Rountree, 2009, p. 139).

Nonetheless, Rountree & Rountree (2009, p. 142) argue that these “caveats are not

necessarily enough to dismiss the Threshold Concepts model, nor the possibility of

identifying good candidates for threshold concept instances. Even though our

definitions of Threshold Concepts may not be perfectly precise, we can defeasibly

posit their existence, and agree upon their most distinctive features, until such time

55 | P a g e

as we find evidence to suggest that we should retract our assertion. Imprecise

definitions are insufficient evidence for retraction”. The next section looks in detail

at Threshold Concepts in Computing.

2.3.4. Threshold Concepts in Computing

The Computing field has evolved from its origins in Computer Science, and new

Computing-related disciplines have emerged, such as software engineering,

information technology, information systems and computer engineering (Association

for Computing Machinery, 2008). Many universities and colleges also have general

Computing degree courses which cover aspects of all five strands. It is important to

point out at this stage that the focus of the research for this thesis is on a general

Computing curriculum, rather than on any of the five strands.

As Threshold Concepts are a subset of the core concepts in a given discipline, a list

of the core concepts in Computing would be a good basis for any identification of

the Threshold Concepts in Computing. The concepts covered vary from course to

course, but a review of the literature shows some common themes. There are two

main approaches to designing the Computing curriculum: firstly what has been

termed the ‘fundamental ideas’ approach, and secondly the breadth-first approach.

Schwill (1994, 1997) has proposed a set of ‘fundamental ideas’ that are central in

Computing and he suggests that the Computing curriculum be arranged around them.

In this, Schwill follows from the work of Bruner (1960), who proposed that science

teaching should be organized around the structure of science, as expressed by its

fundamental ideas. Schwill (1994, 1997) suggests that these ‘fundamental ideas’

should be taught throughout the curriculum, and when new concepts are presented,

they are related to the appropriate fundamental ideas that the students already know,

thus providing context. In addition, relating new concepts to these ideas should

further develop the ideas, so in the learning process, the learner gradually gains a

greater understanding of these fundamental ideas. There is some obvious overlap

between fundamental ideas and Threshold Concepts. Both are integrative, and both

include topics that should be understood by any competent Computing professional.

However fundamental ideas are not likely to be transformative, in that they are

gradually developed from common-sense understanding of everyday phenomena,

56 | P a g e

and they are clearly not boundary markers, as these ideas have everyday out-of-

discipline meanings.

Eckerdal et al. (2006, pp. 105-106) say that Threshold Concepts and fundamental

ideas:

seem to be orthogonal. Threshold Concepts are based on
transformative events, while fundamental ideas are based on long-
term development. It seems likely that any given Threshold Concept
could be described in terms of the related fundamental ideas, and that
there are Threshold Concepts that appear at points in the development
of a given fundamental idea. Threshold Concepts identify the
discontinuities in a student’s development, while fundamental ideas
identify different ongoing threads in this process which may or not
have such discontinuities.

 (Eckerdal et al., 2006, pp. 105-106)

The breadth-first approach to the Computing curriculum is well defined. The

Computing Curricula (2001) project, which was a joint undertaking of two

international organisations, the Computer Society of the Institute for Electrical and

Electronic Engineers and the Association for Computing Machinery, set out to

develop curricular guidelines for all undergraduate programmes in Computing. The

project recommended a set of breadth-first guidelines which includes the following

concepts and topics: decision trees, number representation, patterns in programming,

divide-and-conquer, recursion, the Church-Turing thesis, the von Neumann

architecture, time complexity, intractability, types and values, object-orientation

(including classes and objects, design, encapsulation, inheritance, and

polymorphism), program correctness, iteration, recursion, conceptual and formal

models, levels of abstraction, reuse, and tradeoffs. These concepts and topics have

also been identified as core topics by other researchers (Biermann, 1997;

Brookshear, 2007; Denning, 2004; Schneider & Gersting, 2006; Zendler &

Spannagel, 2008). While these concepts are well established core concepts in

Computer Science, they are probably not all Threshold Concepts, as many of the

concepts on the breadth-first courses may not be transformative. Which, if any, of

them qualify as Threshold Concepts is a question for ongoing empirical investigation

(Boustedt et al., 2007; Eckerdal et al., 2006; Rountree & Rountree, 2009).

57 | P a g e

Davies (2006) points out that the identification of Threshold Concepts may be

difficult due to their being ‘taken for granted" within a subject, and therefore rarely

‘made explicit’. He goes on to suggest two methods for recognising the Threshold

Concepts within a discipline. The first approach suggests that Threshold Concepts

might be identified by examining the different ways in which two disciplines analyse

the same situation. The second approach focuses on the differing ways in which

novices and experts in the field analyse the same problem or group of problems.

Rountree & Rountree (2009, p. 142) argue that this “is empirically very convenient

for educators in a given field, as they have the best opportunities to conduct research

on their own students. Consequently, most work on identifying Threshold Concepts

within disciplines has focused on this approach”. Rountree & Rountree go on to say

that the “clear disadvantage [of this approach] is that there is no equivalence between

novice/expert comparisons and expert/expert comparisons” (ibid). Most substantial

work on identifying Threshold Concepts in Computer Science has used this second

approach, examining the responses of students in Computer Science to questions

about what they found troublesome while studying. An example of this approach is a

study by Boustedt, et al (2007) who conducted in-depth interviews with both final

year Computer Science students nearing graduation and their lecturers, and identified

object-oriented programming as a Threshold Concept in Computer Science.

However, the research shows that there are difficulties in articulating the granularity

of Threshold Concepts. For example, while both lecturers and students referred to

object-orientation as a threshold concept, Boustedt et al (2007) note that this is

almost certainly too broad a term, given that their interviews reflected that the ‘stuck

places’ were more at the level of polymorphism or object cooperation. Two

subcomponents of object-oriented programming have been suggested as Threshold

Concepts in a number of studies. These are levels of abstraction and object-

orientation (Eckerdal et al., 2006). These are areas of the Computing curriculum that

are part of both the breadth-first and fundamental ideas approaches. Both of these

concepts would be included in any object-oriented programming course and both are

mainly covered as part of introductory Java programming courses.

58 | P a g e

2.3.4.1. Levels of Abstraction

Abstraction is a core concept in Computing and it has been widely studied. Détienne

(1997), in a review of empirical research on object-oriented programming, found that

the ability to deal with and move between many different levels of abstraction is

central to gaining the ability to design and write object-oriented programming code.

Using a cognitive task analysis taxonomy regarding abstraction and inheritance, Or-

Bach and Lavy (2004) came to the same conclusion and further determined that

abstraction is a higher order cognitive skill that is difficult for students to

conceptualize. These findings are supported by Rehder et al. (1995), who show a

clear distinction in the way novices and expert object-oriented developers handle

different levels of abstraction and point out that abstraction is a key skill that

students need to acquire to be able to successfully design software. In addition, one

of the major stumbling blocks for learners is the abstraction of the problem to be

solved from the exercise description (McCracken et al., 2001). Hoc and Nguyen-

Xuan (1990) showed that certain kinds of abstractions can lead to errors in the use of

conditional tests.

A number of researchers have identified that many students have an inadequate

appreciation of the concept of abstraction (Détienne, 1997; Haberman & Averbuch,

2002; Sooriamurthi, 2001). One of the main difficulties, particularly for novices, is

an inability to distinguish between the declarative and procedural aspects of a

solution (Sooriamurthi, 2001). This distinction between the declarative and

procedural aspects of code has also been identified by Haberman and Averbuch

(2002) as a barrier to the understanding of recursion, which is a central concept in

Computer Science and has been identified as a very difficult concept for beginners to

learn (Anazi & Uesato, 1982; Levy & Lapidot, 2000; Wiedenbeck, 1988). Although

constructivist approaches to teaching and dramatization have been shown to be

helpful (Ben-Ari, 2001; Ben-Ari & Reich, 1997), Velázquez-Iturbide (2000)

suggests that the difficulty in learning recursion does not come from the recursion

concept itself, but from its interaction with other mechanisms of imperative

programming such as abstraction. Interestingly, in the context of pharmacy

education, Fisher (1994) has shown that Problem-Based Learning helps students to

59 | P a g e

develop or reformulate declarative and procedural knowledge in such a way that

students’ cognitive strategies are enhanced.

The mental models of recursion that students develop have been identified (Bhuiyan,

Greer & McCalla, 1994; Dicheva & Close, 1996; Kahney, 1983). Kahney (1989)

showed that users have a variety of (mostly incorrect) approximate models of

recursion. Similarly, Kessler and Anderson (1989) found that novices were more

successful at writing recursive functions after learning about iterative functions, but

not vice versa. Constructivist approaches to teaching programming have been shown

to help repair misconceptions that can develop in students’ mental models of

recursion (Gotschi, Sanders & Galpin, 2003).

Détienne (1997) points out that while an object can be thought of as an abstract data

type, in object-oriented programming it is also appropriate to consider the abstraction

inherent in object orientation as a behavioural abstraction. This understanding is seen

in advanced object-oriented designers, but not in novices (Rehder et al., 1995).

Box and Whitelaw (2000) argue from a constructivist perspective that abstraction

helps partially explain the difficulty of learning object-oriented programming, saying

that abstraction is the most difficult step a student has to face when learning object-

oriented programming. Significant parts of this abstraction are the decisions as to

which entities are to be grouped together and which attributes are to be ignored or

parameterized (Eckerdal et al., 2006).

Hadjerrouit (1998a) describes a pedagogical framework motivated by constructivist

learning principles for integrating the Java object-oriented programming language

into the undergraduate curriculum. When discussing students’ learning of Java, she

states the need for students to understand abstraction, saying that “...to understand

Java concepts properly, problem solving should begin at the conceptual level, not at

the code level where programming becomes the main issue. Furthermore, substantial

attention should be devoted to the meta-level process required to develop solutions”

(ibid, p. 107).

60 | P a g e

2.3.4.2. Object Orientation

Object orientation is another core concept in Computing taught to most first-year

students on Computing courses, and it is considered essential that all Computing

students understand it. Like abstraction, the teaching of object orientation,

particularly to novices, has been widely studied. The literature suggests that object

orientation possibly satisfies the requirements of a Threshold Concept. There is

much evidence in the literature that students find basic object-orientation

troublesome to learn and it is widely acknowledged that object-oriented

programming is difficult to teach (Kölling, 1999).

Eckerdal and Thuné (2005) interviewed first year students who had just finished

their first programming course on their understanding of the concepts of object and

class. Many students stated that they found the concepts troublesome to learn despite

expending great effort to understand them. Likewise Ragonis and Ben-Ari (2002)

identified that students on a first programming course in Java had great difficulty

understanding the creation of an object by a constructor method. Fleury (2001, p.

191), through audio-taped student interviews, examined novice Java students'

conceptions of object-oriented programming, particularly their comprehension of

encapsulation and reuse of code. One result she reports is that many students find

methods with parameters difficult to learn. Also many students are annoyed by the

“jumping around” necessary when reading programs with multiple classes. Détienne

(1997) summarises some problems that are specific to novices learning object-

oriented languages, including a tendency to think that instance objects are created

automatically, and misconceptions about how inheritance structures operate. Holland

et al. (1997) claim that misconceptions of object-oriented concepts can be hard to

shift later, pointing out that such misconceptions can act as barriers through which

all later teaching on the subject may be inadvertently filtered and distorted.

There is evidence that object orientation is transformative. In addition, many learners

describe their experiences of learning to program as transformative in their

understanding of the wider Computing curriculum. Indeed Luker (1994, p. 58) goes

so far as to argue that learning the object-oriented paradigm “requires nothing less

than a complete change of world view”. Eckerdal (2004) carried out a

phenomenographic study at Uppsala University of fourteen first year students'

61 | P a g e

understanding of the concepts object and class after sitting a semester long Java

programming course. She reports that some students, who had used other

programming paradigms before, could use the concepts object and class in a way that

made programming more efficient. She found that most students had problems

separating the concepts object and class. Luker (1994) suggests using encapsulation

to tie together the concepts object and class, and suggests that object orientation

integrates these concepts.

The connection between fundamental programming concepts in Java, such as

objects, and the understanding of the programming paradigm itself is stressed by

Hadjerrouit (1998a) who writes that “[i]t is critical to understand that Java is not only

a programming language, but that it is also an [object-oriented] paradigm with a set

of fundamental concepts that can be used to explore a wide range of problems that

was previously beyond the reach of Computing”. Later she points out the need to

view the “Java [programming language] as a Computing paradigm organised around

a set of fundamental concepts”. Eckerdal (2004, p. 33) states that “[u]nderstanding

central concepts within object-oriented programming is fundamental, and is closely

related to understanding the object-oriented paradigm itself”. She goes on to add that

“[a] rich understanding of the concepts object and class includes an understanding

that classes and objects are models of real world phenomena” (ibid, p. 33).

Abstraction and object-orientation are two possible concepts that may be Threshold

Concepts; certainly evidence exists that they have the appropriate characteristics.

Both abstraction and object-orientation are taught through the medium of the Java

programming language; therefore, as these concepts may be thresholds that students

must cross and are places where many students find difficulty, if the teaching of

object-oriented (Java) programming can be improved, students can be helped over

the threshold, thus ensuring that they continue to make progress in the Computing

discipline.

This section has shown that constructivist approaches, and PBL in particular, may

help learners with the disjunction caused by Threshold Concepts (Savin-Baden,

2000). This, coupled with the evidence from Section 2.1 that PBL has improved

outcomes on programming courses, suggests that PBL would be a good instructional

62 | P a g e

choice for the teaching of programming. The next section examines PBL in more

detail.

2.4. Problem-Based Learning Literature

The theoretical basis for Problem-Based Learning has roots in a number of learning

theories: social constructivism theories where social interaction plays a fundamental

role in the development of any higher cognition (Phillips, 2000; Vygotsky, 1978);

experiential learning theories where learning is seen as a cyclic process with the

starting point of the learning process being the learners’ own experiences (Dewey,

1998; Kolb, 1984); and person-centred learning theories that emphasize the

communal and interactive nature of learning and allow the learner to control the

learning process, with the teacher taking the role of facilitator who fosters the

learning process (Rogers, 1969).

2.4.1. What is PBL?

PBL emerged from the work of Barrows in 1963, and was first implemented in

medical education in McMaster University in Canada in 1964. Since its inception,

PBL has been adopted in many institutions worldwide and has been implemented in

many different ways in diverse contexts, which makes PBL difficult to define

exactly.

According to Barrows and Tamblyn:

Problem-Based Learning is the learning that results from the process
of working toward the understanding or resolution of a problem. The
problem is encountered first in the learning process!

 (Barrows & Tamblyn, 1980, p. 1)

A useful definition of PBL that is cited on many websites is that:

PBL is both a curriculum and a process. The curriculum consists of
carefully selected and designed problems that demand from the
learner acquisition of critical knowledge, problem solving
proficiency, self-directed learning strategies, and team participation
skills. The process replicates the commonly used systemic approach
to resolving problems or meeting challenges that are encountered in
life and career.

63 | P a g e

(Maricopa Community Colleges Center for Learning and Instruction, 2001) 2

PBL is part of the shift from the teaching paradigm to the learning paradigm (Barr &

Tagg, 1995). The focus is on what the students are learning rather than what the

teacher is teaching. PBL is a teaching method that can be used in many formats, such

as small-group tutorials, problem-based lectures, large-group case method

discussion, and problem-based laboratories (Kaufman, 1995). However, it is used

most commonly in small groups with a facilitator/tutor. The essence of the PBL

method involves three steps: confronting the problem; engaging in independent

study; and returning to the problem (Wilkerson & Feletti, 1989).

Boud (1985) outlined broad characteristics of PBL that move beyond any single

prescriptive definition. Barrows (1986) developed a taxonomy of PBL methods.

However, since then there have been a myriad number of PBL and hybrid PBL

implementations. Nonetheless, several researchers have made attempts to define and

provide guidelines for the implementation of a ‘true’ PBL instructional model

(Savery & Duffy, 1995; Woods, 1996), while Boud and Feletti (1998) have provided

a list of the practices considered characteristic of the philosophy, strategies and

tactics of Problem-Based Learning. Even so PBL can mean quite different things to

different people (Thomas, 2000). Maudsley (1999) claims that the widespread

adoption of the PBL instructional approach in different disciplines, at different stages

of learning, and in different content domains has produced some misapplications and

misconceptions of PBL. This suggests a need, as Richardson (2005, p. 51), points

out, to “develop an authoritative classification of the different ways that PBL has

been implemented”. This would allow future research to identify the key

characteristics that differentiate successful from unsuccessful PBL. Even given this

lack of classification, Richardson (2005, p. 51), goes on to state that “the evidence

suggests that the implementation of PBL can bring about measurable changes in

students’ performance that are of theoretical and practical importance. Nevertheless,

all recent reviews of the effectiveness of PBL have shown that the observed effect

2 This definition, which is cited on many websites, has been attributed by some to Barrows & Kelson;
however, Professor John T. E. Richardson reports correspondence from Barrows stating that he didn’t
formulate this definition. The author would like to thank Professor Richardson for his help on this
matter.

64 | P a g e

sizes are extremely heterogeneous. […] So the answer to the question ‘Does PBL

work?’ is ‘it depends’”. Factors that impact on the effectiveness of PBL will now be

examined in more detail.

2.4.2. The Effectiveness of PBL

The research literature on the value of PBL analyses the advantages and

disadvantages of the PBL method. While some aspects of PBL are considered highly

effective, the effectiveness of other aspects is disputed (Albanese, 2000; Albanese &

Mitchell, 1993; Berkson, 1993; Butler, Inman & Lobb, 2005; Newman, 2004a;

Norman & Schmidt, 1992; Schmidt, Henny & de Vries, 1992; Vernon & Blake,

1993).

The literature has focused on five principal areas which are discussed below:

• attitudes;

• cost;

• basic knowledge;

• team working skills;

• stress and enthusiasm.

Examples of positive changes in students’ attitudes include those occurring when the

University of Southern California introduced a new PBL approach to the teaching of

introductory accounting (Pincus, 1995), and when PBL was introduced in medical

and managerial education (Bernstein, Tipping, Bercovitz & Skinner, 1995; Bridges

& Hallinger, 1991; Schmidt et al., 1992). From these studies, it would appear that

PBL students are more positively disposed to their course than non-PBL students.

The effects of a more positive attitude were reflected in a greater number of students

enrolling on PBL courses, a higher level of interest by students in their major course

of study, positive feedback from employers and lecturers, including non-PBL

lecturers (Pincus, 1995); lower dropout rates (Bridges & Hallinger, 1991; Pincus,

1995) and favourable comments by students about their PBL course (Bernstein et al.,

1995). Schmidt, Henny & de Vries (1992, p. 197) conclude that "Problem-Based

curricula do appear to provide a friendlier and more inviting educational climate."

Finucane et al. (1998, p. 447) say that “[m]ost students enjoy the active participation

which PBL fosters and consider the process to be relevant, stimulating and even

65 | P a g e

fun”. This view is supported by others (Albanese & Mitchell, 1993; Des Marchais,

1993), while lecturers tend to enjoy the increased student contact (Albanese &

Mitchell, 1993). According to both students and lecturers, the removal of traditional

barriers between teacher and learner leads to a more positive learning environment

(Blight, 1995).

A number of studies (Duch, Groh & Allen, 2001; Hmelo-Silver, 2004; Torp & Sage,

2002) describe the methods used in PBL and claim that PBL enhances a range of

learning skills, including the ability to think critically, to analyze and solve complex,

real-world problems, to find, evaluate, and use appropriate learning resources, to

work cooperatively in teams, to demonstrate effective communication skills, and to

use content knowledge and intellectual skills to become continual self-directed

learners who reflect on what they learned and the effectiveness of the strategies they

employed.

PBL appears to foster self-motivation in learners (Barrows & Tamblyn, 1980;

Blumberg & Michael, 1992; Norman & Schmidt, 1992; Shin, Haynes & Johnson,

1993), which may help medical graduates to become life-long learners (Donner &

Bickley, 1993; Headrick, Kaufman, Stillman, Wilkerson & Wigton, 1994; Shin et

al., 1993). But “while there is both theoretical support and anecdotal evidence that

PBL enhances motivation and helps in the development of interpersonal skills, these

effects have never been proven”. (Finucane et al., 1998, p. 446). Berkson (1993) also

supports the view that these effects have not been proven due to the lack of

evidence-based studies.

One major criticism of PBL is that it is expensive to implement and places a strain

on both staff time and on physical resources. The physical resources required for

PBL include well-equipped classrooms and access to high-quality computer and

library facilities. PBL curriculum development and training for lecturers and students

entail ongoing costs over several years, while staff workload may see a significant

increase. Cost considerations must therefore be taken into account in deciding

whether to implement a PBL module.

It has been estimated that the staff workload increased by 30% at the University of

Sherbrooke in Canada when PBL was introduced (Des Marchais, 1993). Finucane,

66 | P a g e

Johnson and Prideaux (1998) state that class size is the major factor determining

staff workload in PBL courses. Compared with the cost of conventional courses, the

relative cost of PBL rises as class size increases. A point of equilibrium between the

cost of PBL and conventional courses appears to be reached with class sizes of

around 40 or 50 (Berkson, 1993; Donner & Bickley, 1993). According to Albanese

and Mitchell (1993), PBL may not be economically viable for courses with more

than 100 students. Advances in Computing and telecommunications technology may,

however, make it viable to introduce PBL to larger classes.

Another major problem with PBL compared with traditional learning is that it is

more difficult to cover the curriculum in the same number of hours. Albanese and

Mitchell (1993) found that only 80% curriculum coverage can be attained in the

same number of contact hours. Albanese and Mitchell (1993) also found shortfalls in

students’ knowledge following PBL courses compared with students enrolled on

traditional courses. This shortfall in knowledge is supported by the findings of other

studies (Baca, Mennin, Kaufman & Moore-West, 1990; Eisenstaedt, Barry & Glanz,

1990).

Newman (2004a) carried out a meta-analysis of 91 studies reviewing the

effectiveness of PBL. Of these 91 studies, only 12 provided acceptable data and were

included in the analysis. Newman (2004a) showed a negative mean effect size of (-

0.3) for students’ acquisition of knowledge. A negative effect size of (ES = -0.22) on

knowledge was also reported by Dochy et al. in their meta-analysis of the effects of

PBL (2003, p. 548). However Dochy et al. state “that students in PBL remember

more of the acquired knowledge” (ibid, p. 543), and they go on to suggest that a

possible explanation for this is the emphasis placed on elaboration in PBL (Schmidt,

1990), as elaboration promotes the recall of declarative knowledge (Gagné, 1978;

Wittrock, 1989). As Dochy et al. say, “[a]lthough the students in PBL would have

slightly less knowledge…, their knowledge has been elaborated more and

consequently they have better recall of that knowledge.” (2003, p. 543)

This finding is supported by Albanese and Mitchell (1993) who found that while

PBL students performed worse than their peers on traditional courses in

examinations immediately following the PBL module, there was no difference

67 | P a g e

between the marks obtained by the two groups in later tests given three months later

and again two years later. Based on this finding, Albanese and Mitchell suggest that

PBL learning may become more deeply rooted than traditional lecture-based

learning. It should be noted that lecturer enthusiasm may have a positive impact on

the effectiveness of PBL (Marsh, 1987), and the introduction of PBL in less fertile

educational environments may be more problematic (Finucane et al., 1998). An

examination of the effect of PBL on skills reveals a different picture, with Dochy et

al. reporting a positive effect size of 0.46 for PBL (2003, p. 548). This distinction

between knowledge and skills highlighted by Dochy et al. (2003) is used in this

study because it provides a framework for a more in depth analysis of the

effectiveness of PBL than simply analysing the combined overall module grade.

PBL has been implemented in environments varying in scope from one single course

(Lewis & Tamblyn, 1987) up to an entire curriculum (Kaufman et al., 1989). As

Dochy et al. state, “while the impact of PBL as a curriculum is certainly going to be

more profound, a single course can offer a more controlled environment to examine

the specific effects of PBL”. This view is shared by other researchers (Albanese &

Mitchell, 1993; Schmidt, 1990) and is the approach taken in this study.

As most PBL is done in small groups, PBL students tend to prefer cooperative

learning and teamwork (Bernstein et al., 1995). Albanese and Mitchell (1993) found

that medical graduates who had been taught using PBL preferred to work in group

practices rather than on their own, pointing possibly to a need to collaborate within

their profession and a difficulty in making independent diagnoses.

Berkson (1993) argues that PBL can initially be stressful for students and lecturers

since most students have previously been taught in traditional learning situations.

Unlike conventional learning, PBL does not place boundaries on students’ learning,

so it may provide little direction to students about how to achieve their learning

goals. According to Finucane, Johnson and Prideaux (1998), students may become

fearful that their learning strategies are wrong, and PBL lecturers should address

these fears in PBL tutorials by helping students to master the necessary skills.

Unfortunately, however, some PBL lecturers are uncomfortable with their role as

68 | P a g e

facilitators and dislike working with small groups. Other lecturers also resent the fact

that PBL is unduly demanding of their time (Finucane et al., 1998).

Finally, it should be noted that most of the accounts of PBL have come from higher-

level colleges where PBL has been introduced as part of a major reform of the

curriculum, with much enthusiasm and investment in the process. It is therefore

likely that this enthusiasm itself positively impacts on PBL effectiveness

(Roethlisberger & Dickson, 1939; Rosenthal & Jacobson, 1992), and it may be

difficult to differentiate enthusiasm for the new curriculum from real gains in student

learning. Lecturer enthusiasm may also have a positive impact on the effectiveness

of PBL (Marsh, 1987), and the introduction of PBL in less fertile educational

environments may be more problematic (Finucane et al., 1998).

Kirschner, Sweller, and Clark (2006) suggest that minimally guided instructional

approaches, such as PBL, are less effective and efficient for novices than guided

instructional approaches because they ignore the structures that constitute human

cognitive architecture, and specifically that PBL is in conflict with the architecture

commonly used by cognitive load theory (Sweller & Sweller, 2006). In other words,

as Kirschner et al. (2007, p. 116) say: “novices should not be presented with material

in a manner that unnecessarily requires them to search for a solution with its

attendant heavy working memory load rather than being presented with a solution”.

When Dolmans and Schmidt (2006) researched the cognitive and motivational

effects of small group tutorials in PBL, they found that “studies focusing on the

motivational effects of PBL demonstrate that group discussion positively influences

students' intrinsic interest in the subject matter under discussion” (p. 321). Others

disagree: Groves (2005), in her study of medical students, found evidence that

questions previous conclusions that PBL curricula foster a deep approach to learning,

and suggests that other factors such as work load may be greater determinants of

learning approach than curriculum type. Taken together, these findings emphasise

the context-dependent nature of learning approach as well as the importance of

assessment as a driver of student learning.

Norman and Schmidt (1992, p. 557) carried out a critical review of the PBL

literature and they concluded “that (1) there is no evidence that PBL curricula result

69 | P a g e

in any improvement in general, content-free problem-solving skills; (2) learning in a

PBL format may initially reduce levels of learning but may foster, over periods up to

several years, increased retention of knowledge; (3) some preliminary evidence

suggests that PBL curricula may enhance both transfer of concepts to new problems

and integration of basic science concepts into clinical problems; (4) PBL enhances

intrinsic interest in the subject matter; and (5) PBL appears to enhance self-directed

learning skills, and this enhancement may be maintained”. A positive link between

PBL and intrinsic interest was also found in a study based on biology students in the

Netherlands (De Volder, Schmidt, Moust & De Grave, 1986). The same study noted

that the increased interest shown did not result in improved learner grades. However,

Sweller, Kirschner and Clark (2007) reemphasize the importance of randomized,

controlled experimental tests of competing instructional procedures and point out a

number of methodological flaws in the experiments carried out by De Volder et al.

These findings appear to point to a link between PBL as an instructional method and

increased intrinsic motivation, possibly through the promotion of mastery goals over

performance goals. However, researchers do not concur on the value of PBL as a

learning approach, and further research is required to determine whether the apparent

enhanced motivation observed with PBL compared to traditional learning can be

applied across student groups and disciplines, including low attainment learners.

From the research, it would appear that PBL would be better employed in later

academic years and not with first year college learners, but this assertion also

requires further investigation to determine whether it holds across student groups and

disciplines.

It has been suggested that the PBL environment, where students work together as a

team, focused on mastering a problem, promotes mastery goals (Barrett et al., 2005;

Dolmans & Schmidt, 2006), and hence increases learner motivation, but establishing

a causal link requires more research.

2.4.3. PBL and Approaches to Learning

Two main approaches to studying have been identified: a deep approach based on

mastery and understanding of the material; and a surface approach based on

memorising of the course material for the purposes of assessment performance

70 | P a g e

(Laurillard, 1979; Marton, 1976; Ramsden, 1979). These approaches to learning

have been investigated by a number of researchers and a number of instruments have

been developed to measure them (Biggs, 1988, 1993; Entwistle & Waterston, 1988).

Richardson (2005, p. 43) notes that “the same students may exhibit different

approaches to studying in different courses”. Recent research has shown that student

approaches are moderated by the academic demands, the quality of teaching, and the

nature of assessment on different courses. Richardson (2005, pp. 43-44) clarifies that

“[t]he choice of one approach to studying rather than another seems to depend upon

the content, the context, and the demands of specific learning tasks”.

There is some evidence that PBL enhances students’ approaches to learning, their

perceptions of the quality of their course, their conceptions of learning (Sadlo &

Richardson, 2003), and their academic attainment (Deek et al., 1998; Kay et al.,

2000). Sadlo (1997) conducted a study which compared 255 students’ approaches to

studying on occupational therapy courses in six different countries. Two of the

courses used Problem-Based Learning teaching methods, two used a hybrid of

problem-based and traditional methods, and two used traditional lecture-based

teaching methods. Students in their second year were given a short version of the

Approaches to Studying Inventory (ASI) devised by Richardson (1990). The

students on the problem-based curricula scored higher on deep learning approach

measures and lower on surface learning approach measures than students taking the

traditional curricula, while students following the hybrid curricula obtained

intermediate scores on both measures, implying that the quality of learning tends to

increase with the extent to which a problem-based approach has been implemented

by an institution (Sadlo & Richardson, 2003). These results suggest that, as

Richardson (2005, p. 45) puts it, “the use of PBL can bring about desirable changes

in students’ approaches to studying” and more generally suggest:

that changes in the design and delivery of particular courses affect
how students tackle those courses, and in particular that desirable
approaches to studying could be promoted by appropriate course
design, teaching methods and modes of assessment.

 (Sadlo & Richardson, 2003, p. 254)

71 | P a g e

This general view is supported by other studies. Gibbs (1992) highlights ten studies

in which students moved away from a superficial reproducing approach to studying

towards one involving them in a search for understanding through the introduction of

new teaching, learning and assessment methods. Nonetheless, a number of studies

have found PBL to be largely ineffective in inducing desirable approaches to

studying. Indeed some argue that PBL is generally ineffective (Sweller et al., 2006;

Sweller et al., 2007), especially for novices, and that discovery learning techniques

have failed in the teaching of computer programming (Mayer, 2004). Richardson

(2005, p. 45) asks “why is this the case?” suggesting that “[o]ne possibility is that the

effects of contextual factors are mediated by students’ perceptions of their academic

environment. Consequently, PBL and other teaching interventions will not be

effective unless they also bring about changes in the students’ perceptions”.

Sadlo (1997) examined students’ perceptions of the academic quality of their courses

using the Course Experience Questionnaire (CEQ) devised by Ramsden (1991). The

results show, as Richardson (2005, p. 45) points out, that “the use of PBL can

enhance students’ perceptions of their programme in terms of the teaching, the

assessment, their own independence and the acquisition of generic skills, but

probably not in terms of the clarity of goals and standards or their workload”.

However, Sadlo and Richardson (2003, p. 268) add that “students at problem-based

schools might judge their programs more favourably because they have adopted

more congenial ways of studying”. Nonetheless, on traditional courses students’

approaches to studying still vary, even when taking into account variations in their

perceptions of their course. This may be because, as Richardson (2005, p. 46) puts it,

“students may adopt one approach rather than another depending on their

conceptions of learning and their conceptions of themselves as learners”.

Marton (1976) suggests that students who take a deep approach to learning take on

an active role and see learning as something that they themselves do, whereas

students who adopt a surface approach take a passive role and see learning as

something that happens to them. Building on the work of Säljö (1979), Van Rossum

and Taylor (1987) and Morgan et al. (1981), Marton et al. (1993) say students have a

limited number of conceptions of learning, and summarises them as follows:

increasing one’s knowledge; memorising and reproducing; applying; understanding;

72 | P a g e

seeing something in a different way; changing as a person. These conceptions

represent a development hierarchy through which students proceed during the course

of their studies. This seems to suggest that PBL may be better suited to later stages

of learning rather than with novices.

Savin-Baden (2000) suggests that students’ conceptions of learning and their

conceptions of themselves as learners are a key factor in any attempt to implement

Problem-Based Learning effectively. Claims are made for PBL that it promotes

improvements in students’ conceptions of learning to a greater extent than traditional

curricula, thereby increasing their potential to be lifelong learners (Savin-Baden,

2000). However, Richardson (2005, p. 49) points to the need for “more systematic

research both to confirm the role of PBL in encouraging the development of more

sophisticated conceptions of learning and also to identify the conditions under which

this does and does not occur”. Richardson (ibid, p. 49) adds that “it can also be

argued that PBL actually presupposes more sophisticated conceptions of learning on

the part of the students, and this might explain why some students have difficulty

adapting to PBL”. This might be an explanation for the high dropout rates reported

in the Newman meta-analysis on the effectiveness of PBL (Newman, 2004a; Utley,

2004), and suggests the need for further research into students’ conceptions before

they commence a Problem-Based Learning course.

2.4.4. PBL from the Teacher’s Perspective

Richardson (2005, p. 54) points out that “PBL presupposes a student-centred and

learning-orientated conception of teaching on the part of the teacher”. However, the

evidence suggests that it is difficult to change teachers’ conceptions of teaching

(Trigwell & Prosser, 1996). Richardson (2005, p. 54) suggests that “[t]his might

explain why some teachers have difficulty adapting to PBL or accepting it as an

approach. In particular, teachers who have a teacher-centred conception of teaching

through experience with a subject-based curriculum may well have considerable

difficulty adapting to a problem-based curriculum”. Contextual factors can frustrate

teachers’ intended approaches to teaching (Gibbs, 1992). In particular, as Richardson

(2005, p. 54) points out, “situational factors will tend to undermine attempts to

implement PBL in contexts where subject-based curricula are well established”.

Students can demand a more didactic approach from teachers (Newman, 2004b, p.

73 | P a g e

131), while Richardson (2005, p. 54) states that “staff who hold traditional, teacher-

focused conceptions of teaching will raise issues about standards and coverage of the

curriculum”.

2.5. Learner Motivation and Self-Efficacy

Given the evidence that PBL improves learners’ motivation and self-efficacy, two

theories of motivation will now be examined that may help to explain observed

learner behaviours and clarify the reasons behind any increase in learner motivation

seen on PBL courses. This discussion also includes an overview of the literature on

self-efficacy to provide the theoretical groundwork for exploring the relationship

between PBL and learners’ programming self-efficacy.

According to Elliot and McGregor (2001, p. 501), “[o]ver the last two decades, a

majority of the theoretical and empirical work conducted in the achievement

literature has used an achievement goal perspective”. Pintrich (2000a, p. 92) states

that “current achievement goal constructs address the issue of the purpose or reason

students are pursuing an achievement task as well as the standards or criteria they

construct to evaluate their competence or success on the task”. The achievement goal

construct was developed in the 1970s and 1980s by Carol Ames, Carol Dweck,

Marty Maeher and John Nicholls, and the work of Dweck and Nicholls has been

particularly influential (Ames, 1984; Ames & Archer, 1988; Dweck, 1975, 1986;

Dweck & Reppucci, 1973; Maeher, 1983; Nicholls, 1976, 1978, 1979, 1980).

In a series of studies, Dweck et al. found that children of similar ability differed in

their responses to failure (Diener & Dweck, 1978, 1980; Dweck, 1975; Dweck &

Reppucci, 1973). Some pupils persisted whilst other pupils chose to move on to

another task. Dweck et al. (1986; 1983) sought to explain this by suggesting that in

achievement settings, individuals operate with one of two goals. Firstly, to try and

understand as much as possible about the task they are attempting, which Dweck

called learning or mastery goals, or secondly to perform well and outdo their peers,

which Dweck called performance goals.

Brophy (2004, p. 91) suggests that because performance goals emphasise

maintaining a good impression of oneself, they should be labelled “ego-protective

74 | P a g e

goals” or “ability display goals”. Therefore, it is not just about achieving a certain

level of performance, it is about how that performance is perceived by others.

According to Nicholls (1976, 1978, 1980), children do not distinguish between

ability and effort until about the age of 12, when they start to construe ability as a

fixed capacity. From this perspective, high ability is inferred when one outperforms

others while expending equal effort, or performs the same as others while expending

less effort. Although they use different terminology, the work of Nicholls and Dweck

has many similar features. Indeed, Ames and Archer (1987, 1988) proposed that the

theories on the achievement goal concept by Dweck, Nicholls and others (Ames,

1984; Covington, 1984; Maeher, 1983) had a common base and justified the

adoption of a common mastery/performance dichotomy terminology. Ames and

Archer (1988) assessed students’ classroom goal perceptions, mastery or

performance, and linked these perceptions to students’ learning strategies, task

choices, attitudes, and attributions, and they examined how different combinations of

mastery and performance perceptions correlated with these processes and outcomes.

Maehr and Midgley (1991) postulated the need to promote mastery goals over

performance goals. Mastery goals were associated with positive learning behaviours,

e.g. attributing failure to insufficient effort, using failure information diagnostically,

and sustained persistence in the face of failure. Performance goals, when

accompanied by high confidence, also led to the mastery pattern. However, when

performance goals were accompanied by low confidence, they were associated with

negative learning behaviours, such as helplessness upon failure, attributing failure to

lack of ability, negative expectancies, and avoidance of subsequent challenges

(Diener & Dweck, 1978, 1980; Dweck, 1975). A belief that ability is a stable entity

was posited to lead to performance goal adoption whereas a belief that ability is

malleable was posited to lead to mastery goal adoption (Dweck & Leggett, 1988).

While both Nicholls and Dweck view achievement goals as applicable to situation

specific as well as dispositional levels of analysis, they also identified some

limitations of dispositional constructs.

Nicholls (1979) stated his belief in equal motivational opportunities for all, and that

from this standpoint alone mastery/task involvement should be championed over

75 | P a g e

performance/ego involvement, as only mastery involvement provides equal

opportunity for all. In this tradition Ames (1990, 1992) designed the TARGET

(Tasks, Authority, Recognition, Grouping, Evaluation, Time) intervention

framework, which aimed to create classroom environments that would enhance

mastery goal adoption and minimize performance goal adoption in students.

The view that the effects of performance goals were entirely negative was challenged

by a number of researchers, particularly Harackiewicz (Butler, 1992; Harackiewicz

& Elliot, 1993). It was shown that performance goals had a positive effect or no

effect in certain types of achievement contexts (Koestner, Zuckerman & Koestner,

1987), and for individuals with certain types of personality dispositions

(Harackiewicz & Elliot, 1993; Harackiewicz & Sansone, 1991). A number of studies

indicated that a high mastery and high performance goal combination was linked to

the best processes and outcomes (Bouffard, Boisvert, Vezeau & Larouche, 1995;

Wentzel, 1993), while others supported the high mastery and low performance goal

combination (Meece & Holt, 1993; Pintrich & Garcia, 1991).

Elliot and Harackiewicz (1996) suggested adding a third motivation, the motivation

to avoid performing badly, an avoidance goal. Further work suggested that the goals

divided into approach and avoidance orientations: consequently a distinction can be

made between performance-approach, performance-avoidance, and mastery-

approach (Elliot, 1999; Elliot & Church, 1997; Elliot & Harackiewicz, 1996).

Mastery-avoidance was identified at a later stage and will be discussed later in this

review.

A number of research studies tested the trichotomous framework, as it was termed,

and it was shown that goals could be measured and separated by factor analysis, and

that each type of goal had different predictive utility (Elliot & Church, 1997;

Middleton & Midgley, 1997). Additional empirical work showed the usefulness of

the framework (Elliot & McGregor, 1999) and that an individual’s perceived

confidence could be used to predict selection of achievement goals (Lopez, 1999).

Using the trichotomous achievement goal framework, Church, Elliot and Gable

(2001) carried out two studies to examine the classroom impact of learners’ goal

choices. Using the Patterns of Adaptive Learning Styles questionnaire (PALS)

76 | P a g e

(Midgley et al., 2000), pupils were asked to rate their perceptions of their classrooms

as either performance-focused or mastery-focused. They found that performance

goals lead to shallow learning styles, an increased level of cheating and less

willingness to seek help, while mastery goals lead to deep learning styles and a more

positive attitude to school (Church et al., 2001). These findings were also supported

by other studies (Elliot & McGregor, 2001, p. 515). However, when, in attempting to

identify why some students excel in their college classes and develop an interest in

an academic discipline, Harackiewicz et al. (2000) examined both the short-term and

long-term consequences of students' achievement goals in an introductory

psychology course, they found that mastery goals positively predicted subsequent

interest in the course, but not course grades, and performance goals positively

predicted grades, but not interest. The finding that performance goals have been

linked to positive outcomes in terms of graded academic performance is supported

by other studies (Barron & Harackiewicz, 2001; Bouffard, Vezeau & Bordeleau,

1998; Elliot & Church, 1997; Elliot & McGregor, 2001; Harackiewicz, Barron,

Carter, Lehto & Elliot, 1997; Harackiewicz et al., 2000; Skaalvik, 1997; Wolters, Yu

& Pintrich, 1996).

This phenomenon might be explained by suggesting that in the context of a

competitive environment with an emphasis on attaining grades, adopting a mastery

approach may help students understand material but it may also result in them

spending too much time studying non-specific or non-examinable material.

Therefore, adopting a mastery approach, given existing higher education assessment

methods and limited study time, may be maladaptive when it comes to getting high

marks.

Elliot and McGregor (2001, p. 501) suggest that “competence is at the conceptual

core of the achievement goal construct”, and that competence can be defined and

evaluated according to “whether one has acquired understanding or mastered the task

(absolute), improved one’s performance or developed one’s knowledge or skills

(intrapersonal), or performed better than others (normative)”. This view is also

supported by Dweck (2005).

77 | P a g e

Elliot and McGregor (2001, p. 501) further state that “competence can be valenced

in that it is either constructed in terms of a positive, desirable possibility (i.e.

success) or a negative undesirable possibility (i.e. failure)”. These approach and

avoidance tendencies are present in infancy, and are ubiquitous across situations

(Elliot & Covington, 2001). Rawsthorne and Elliot (1999) carried out a meta-

analysis and observed that in general, measures classified as performance-approach

tended to produce a positive set of outcomes and processes, while those classified as

performance avoidance produced a negative set of outcomes and processes.

Harackiewicz et al. (2002a) suggest that goal theory needs to be revised in three

ways: to confirm the separation of approach and avoidance, and this is generally

accepted (Elliot & Harackiewicz, 1996; Pintrich, 2000c); to identify the ways in

which performance-approach goals can combine with mastery goals to promote

optimal motivation (Barron & Harackiewicz, 2001; Pintrich, 2000b); and most

controversially, that the positive potential of performance-approach goals relative to

mastery goals be recognised (Harackiewicz, Barron & Elliot, 1998; Harackiewicz,

Barron, Tauer & Elliot, 2002b).

On the concept that individuals can hold multiple goals, McGregor and Elliot (2002,

p. 393) state that: “[r]ecent work on multiple goals indicates that mastery and

performance-approach goals are not necessarily incompatible, and that the

combination of mastery goals and performance-approach goals may indeed be

optimal for some outcomes”.

The value of a mastery goal orientation in promoting adaptive patterns of cognition,

effect and behaviour, is generally recognised, as are the maladaptive patterns of

learning associated with performance avoidance. The role of performance approach

goals is more controversial: Midgley, Middleton and Kaplan (2001) argue that while

some studies (Bouffard et al., 1995; Elliot & Church, 1997) have found performance

approach goals to have positive outcomes, these outcomes only arise when mastery

goals are also present, and the positive outcomes may indeed be ones that only

measure surface level learning, such as high scores on multiple choice tests,

memorization and rote learning for exams.

78 | P a g e

Harackiewicz et al. (2002a) disagree, challenging Midgley et al’s methodology,

suggesting that in the studies they reviewed they mixed up both performance-

approach goal measures and general unspecified performance goal measures.

Harackiewicz et al. (2002a) also disagree with Midgley et al’s view of the outcomes

of research studies, claiming that they have overstated the maladaptive outcomes of

performance-approach goals and that outcomes for performance-approach goals are

more consistent than Midgley et al. suggest. A point to note is that Harackiewicz et

al’s (2002a) review focused on college level studies and their findings may not be

generalisable to younger children.

Harackiewicz et al. (2002a) state that while performance-approach goals have been

shown to be unrelated to some adaptive variables, such as deep processing (Elliot,

McGregor & Gable, 1999; Harackiewicz et al., 2000) and intrinsic motivation

(Church et al., 2001; Elliot & Church, 1997; Harackiewicz et al., 2000), they

nonetheless can promote positively related adaptive variables such as task value

(Church et al., 2001), academic self-concept (Skaalvik, 1997), effort expenditure

(Elliot et al., 1999; Lopez, 1999) and performance attainment (Barron &

Harackiewicz, 2001; Bouffard et al., 1998; Elliot & Church, 1997; Elliot &

McGregor, 2001; Harackiewicz et al., 1997; Harackiewicz et al., 2000; Skaalvik,

1997; Wolters et al., 1996).

Kaplan and Middleton’s (2002) response to Harackiewicz et al. (2002a) helps

illuminate some philosophical differences between the two groups of researchers,

and indeed educationalists in general. Kaplan and Middleton (2002, p. 647) state that

“the discrepancy between our agreement over research findings and our

disagreements about the meaning of these findings…may be grounded in somewhat

different ideologies concerning social science” and that the view that “the simplistic

statement that ‘mastery goals are always good and performance goals are always

bad’ (Harackiewicz et al., 2002a, p. 643) is not an inherent underlying assumption of

achievement goal theory. Rather, it is a value that is based on the type of success that

one believes should be emphasized in the achievement context.” Nicholls sees this

not as a question of theory but as an ethical question (Nicholls, 1989). Others agree:

Urdan (1997, p. 136) suggests that the positive associations of performance goals

with outcomes “may be due more to the way schools are than the way they could be.

79 | P a g e

Task [mastery] goals represent a hope that all students, not just those who think they

are more able than others or those that enjoy beating others, can become actively

involved in school and be motivated to learn for the sake of learning.”

Kaplan and Middleton (2002) make the point that from an equality perspective,

“instead of interpreting the finding that performance-approach goals contribute to

achievement whereas mastery goals contribute to interest as indicating that the most

desirable motivational orientation is high performance approach–high mastery, one

might question the educational characteristics of a context in which a focus on

mastering and understanding the material does not contribute to a higher grade.”

Returning to whether performance-approach goals are adaptive, more recent research

paints a more complex picture. Brophy (2005, p. 167) states that “evidence is

emerging that students disposed toward performance-approach goal orientations in

the present are at risk for shifting to performance-avoidance goal orientations in the

future and that students’ responses to performance-approach goal scales are more

reflective of their past achievement histories in the domain than of motivational

states likely to exert forward effects on subsequent achievement”. Brophy suggests

that the term performance goals be phased out in favour of output goals to minimise

the social comparison connotations carried by the term performance goals.

Bråten et al. (2004, p. 232) suggest that “another possibility [for] the mixed pattern

of findings for performance goals results from a failure to consider a moderating

influence of self-efficacy beliefs on performance goal effects”. However, when they

tested this hypothesis they found no (ibid, p. 241) “significant interaction of self-

efficacy with performance-approach goals on self-regulatory strategies”, but “found

evidence that perceived self-efficacy moderated the relation between performance-

avoidance goals and reported use of self regulatory strategies for business

administration students but not for student teachers”. These mixed results may be

explained by the fact that the sample of business students only included high

achievers and that the business students were immersed in a more competitive grade-

focused learning environment than the student teachers, suggesting that achievement

goals are context specific. The nature of the interaction between performance

avoidance and self-efficacy was unexpected, with “a negative effect of increased

80 | P a g e

performance-avoidance goal orientation for students with high self-efficacy and a

positive effect of increased performance-avoidance goal orientation for students with

low self-efficacy”.

The trichotomous achievement goal framework was modified when Elliot and

McGregor (2001) suggested there was also a fourth goal construct, mastery-

avoidance. Elliot (2005, p. 61) defines this as where individuals “focus on avoiding

self-referential or task-referential incompetence”. This construct was tested by Elliot

and McGregor (2001) as part of a 2 X 2 achievement goal framework in three studies

conducted on undergraduate students, and they (ibid, p. 501) found “distinct

empirical profiles for each of the achievement goal” constructs.

Further research studies tested the 2 X 2 framework and the mastery-avoidance goal

construct, showed them to be viable, and identified the antecedents and

consequences of the mastery-avoidance goal to be similar to performance-approach

goals rather than mastery-approach goals (Elliot & Reis, 2003; Finney, Pieper &

Barron, 2004; Karabenick, 2003, 2004).

Other researchers (Ford, 1992) have adopted a broader perspective on goals and

motivation, arguing that there are many different kinds of goals that individuals can

have in achievement settings and that other goals may have equal or greater

importance than mastery and performance goals. Some of the other suggested goals

include social goals that focus on building friendships (Wentzel, 1989); intimacy

goals that focus on maintaining close friendships; social-responsibility goals where

the focus is on meeting social obligations; status goals where inviduals want to be

admired by their peer group (Urdan & Maeher, 1995); extrinsic goals where

individuals are seeking a reward (Brophy, 2004, p. 100; Maeher, 1983; Pintrich &

Garcia, 1991); and work-avoidant goals where the focus is on trying to get away

with as little work as possible (Elliot, 1999; Nolen, 1988). Elliot and Thrash (2001,

p. 150) suggest it is best to conceptualize work avoidance goals as objectives that

individuals have in achievement settings when they do not have an achievement goal

of any type.

There are issues around the limitations of the survey and experimental methods used

in the goal theory research to be considered: for example, when interviewed, students

81 | P a g e

do not spontaneously mention the types of goals that appear on goal questionnaires

(Brophy, 2005; Urdan & Mestas, 2006). There may also be issues about how

generally applicable results are, given that so much of the research has been done

with undergraduate psychology students or in laboratory settings. These issues raise

important questions about the external validity of such studies, and highlight the

need for careful consideration when extrapolating to the classroom findings derived

from experimental research. As Urdan and Mestas (2006, p. 364) suggest:

“achievement goals may be more complex and multidimensional than often depicted

in research, and this complexity warrants further examination”.

There are empirical links between achievement goal theory and self-determination

theory, suggesting that the controlling features of performance orientation undermine

autonomy and foster an external locus of causality, whereas mastery orientation

facilitates autonomy of behaviour (Brunel, 1999; Ntoumanis, 2001).

Self-determination theory is based on an organismic-dialectical meta-theory (Deci &

Ryan, 1985). It is organismic in the sense that individuals have a natural and innate

tendency to seek out challenges and be curious, and dialectic in the sense that “[t]his

natural human tendency does not operate automatically, however, but instead

requires ongoing nutriments and supports from the social environment in order to

function effectively” (Williams & Deci, 2007b).

Self-determination theory suggests that people are fundamentally motivated if they

perceive themselves as the origin of their actions, and not a pawn being manipulated

by somebody or something else (Ryan & Grolnick, 1986). Deci and Ryan (2000, p.

231) define autonomy as “volition - the organismic desire to self-organise experience

and behaviour …”. Whenever a person’s perception of autonomy changes, their

locus-of-causality changes and as soon as they perceive an external reason for

engaging in an activity, they also change their locus-of-causality. People’s levels of

perceived autonomy or perceived choice strongly determine the type of motivation

they have.

Deci and Ryan (1985) proposed a self-determination continuum to describe

motivational variables with different degrees of self-determination. From higher to

lower self-determination, these are: intrinsic motivation, extrinsic motivation

82 | P a g e

(integrated regulation, identified regulation, introjected regulation and external

regulation) and amotivation. Intrinsically motivated behaviour has the highest self-

determination, occurs without the incentive of external rewards and is undertaken out

of interest in the activity itself rather than the outcomes of the activity.

Extrinsic motivation refers to activities that are carried out as a means to an end and

not for their own sake (Deci & Ryan, 1985). Extrinsic motivation comprises four

dimensions. The first, integrated regulation, represents the most self-determined

form of the internalization process. It refers to behaviours where individuals may be

doing something for extrinsic reasons but they fully agree with those reasons. The

second dimension, identified regulation, describes behaviours that are highly valued

and performed out of choice but the individual does not fully enjoy doing the

activity. Both integrated and identified regulation represent self-determined forms of

behaviour but they are still extrinsic because individuals perform them to achieve

personal goals and not for their inherent appeal (Deci & Ryan, 2000).

The third dimension of extrinsic motivation is introjected regulation, which refers to

behaviours that individuals perform to achieve social recognition, out of pride or to

avoid feelings of guilt. The fourth dimension, external regulation, describes

behaviours only regulated through external means, such as rewards or constraints.

Both introjected regulation and external regulation are considered to be controlling

or low self-determined types of motivation. Finally, amotivation, or a lack of

intrinsic or extrinsic motivation, is evident when individuals perceive no

contingencies between their actions and the end result, and question whether they

should still be involved in a particular activity. It is viewed as a non-self-determined

type of motivation.

A learner being intrinsically motivated has many benefits and leads to greater

persistence, enjoyment and interest (Deci, 1971), greater conceptual understanding

(Grolnick & Ryan, 1987), and a more positive attitude to school (Miserandino,

1996). Being extrinsically motivated has negative affects and leads to anxiety (Ryan

& Connell, 1989) and an increased probability of dropping out of school (Vallerand

& Bissonnette, 1992). However, this view has been challenged as simplistic, with

83 | P a g e

some researchers arguing that moderate amounts of both intrinsic and extrinsic

motivation are optimal for learning.

Self-determination theory suggests that rather than increasing intrinsic motivation,

efforts must be made to try and reduce extrinsic motivation and make learning as

autonomy- supportive as possible. The literature postulates that this can be achieved

by teachers spending more time listening and less time giving directives, asking the

students what they want, answering students’ questions specifically, promoting the

value of education, and providing a clear rationale for tasks (Reeve, Bolt & Cai,

1999, p. 546; Urdan & Turner, 2005, p. 304).

A number of studies suggest that the PBL teaching method promotes perceived

autonomy and self-determination (Butler, 1999; van Grinsven & Tillema, 2006),

which in turn can have a positive effect on students’ motivation (Deci & Ryan, 1985;

Hidi & Harackiewicz, 2000) Goal theory and self-determination theory are two

complementary theories of motivation. They share an emphasis on promoting

feelings of autonomy and providing a non-competitive learning environment.

More evidence of a link between PBL and learner motivation can be seen in studies

on the introduction of PBL in medicine, accountancy and managerial education

(Bernstein et al., 1995; Bridges & Hallinger, 1991; Pincus, 1995; Schmidt et al.,

1992). These studies show positive changes in student attitudes and motivation

compared to non-PBL students. The positive changes include a greater number of

students enrolling on PBL courses, a higher level of interest by students in their

major course of study, positive feedback from employers and lecturers, including

non-PBL lecturers (Pincus, 1995), lower dropout rates (Bridges & Hallinger, 1991;

Pincus, 1995), and favourable comments by students about their PBL course

(Bernstein et al., 1995). Schmidt, Henny and de Vries (1992, p. 198) conclude that

"Problem-Based curricula do appear to provide a friendlier and more inviting

educational climate." According to both students and lecturers, the removal of

traditional barriers between teacher and learner leads to a more positive learning

environment (Blight, 1995).

Another factor in determining learner motivation is the role of students’ self-efficacy

beliefs. Bandura (1994) asserts that highly efficacious students see difficult tasks as

84 | P a g e

challenges to be mastered, not threats to be avoided. In Computing, efficacy levels

have been found to affect the type of interaction with computers, which in turn

affects proficiency (Compeau & Higgins, 1995). This finding is supported by studies

that have shown that self-efficacy is related to computer anxiety as well as learning

performance and computer literacy (Beckers & Schmidt, 2001; Chou, 2001). An

individual's computer self-efficacy and outcome expectations were found to be

positively influenced by the encouragement of others in their work group (Compeau

& Higgins, 1995). This suggests that PBL groups may promote increased computer

self-efficacy.

Bergin and Reilly (2005) carried out a study at an Irish university on the role of

motivation and comfort-level on a first-year object-oriented Java programming

module. The module was taught using a Problem-Based Learning approach (O'Kelly

et al., 2004). Bergin and Reilly (2005, p. 293) found “that intrinsic motivation had a

strong correlation with programming performance as did self-efficacy for learning

and performance, [with] r=0.512, p < 0.01 and r=0.567, p < 0.01 respectively”.

Dunlap (2005) examined how students’ self-efficacy, as it relates to becoming

Software Development professionals, changed while involved in a PBL

environment. In a study of 31 undergraduate university Computer Science students

on a 16-week course in Software Development during their final semester prior to

graduation, Dunlap, using a self-efficacy scale as pre-and post-measures, and guided

journal entries as process data, found that students increased their levels of self-

efficacy. In explaining these findings, she suggests that specific instructional

strategies used in PBL, namely the use of authentic problems of practice,

collaboration and reflection, are the catalysts for students' improved self-efficacy.

Venkatesh and Davis (1996) suggest that a computer user with a high level of

computer self-efficacy feels a stronger sense of control over the computer-based

activities being performed. Self-determination theory would suggest that this

increase in autonomy may lead to increased intrinsic motivation.

Another significant issue is students’ attributions, what they perceive as the causes of

success or failure (Schunk, 1991). Individuals can perceive success or failure as

either independent of their own actions and thus externally controlled, or dependent

85 | P a g e

on the way they behave and thus internally controlled. An attribution such as effort

would most likely be considered controllable, whereas luck or task difficulty would

be considered uncontrollable (Weiner, 1983). Whether students believe they have

control over learning outcomes affects how much effort they expend in learning and

how long they persist in their efforts. This ‘locus of control’ has been shown to be

true for software developers, with self-esteem and locus of control having a direct

relationship to perceived performance (Rasch & Tosi, 1992).

Overall these findings point to a link between PBL as an instructional method and

increased intrinsic motivation, possibly through the promotion of greater student

autonomy. However, researchers do not concur on the value of PBL as a learning

approach, and further research is required to determine whether the apparent

enhanced motivation observed with PBL compared to traditional learning can be

applied across student groups and disciplines, including low attainment learners.

2.6. Summary

A review of the literature shows that Computing courses have high failure and

dropout rates and there is clear evidence that learning to program is problematic. It

has been shown that programming is a difficult task and the results achieved by

students do not correlate well with their other academic results. Programming

requires a diverse range of skills and the application of complex knowledge and

associated strategies. The literature shows that the main problem for novices is

program design and planning, not code syntax. The programming strategies that they

employ appear to account for the distinction between effective and ineffective

novices. However, most introductory programming courses are conventionally

structured with lectures and practical laboratory work; they concentrate on teaching

programming knowledge but not on the strategies needed to use this knowledge.

There is evidence that there is room for improvement in the way students are taught

programming. A number of researchers suggest that constructivist methods may be

more generally effective, and PBL in particular has been shown to produce

improvements in outcomes (Deek et al., 1998; Kay et al., 2000).

Threshold Concepts were examined as a framework that may help explain why

learners find computer programming so troublesome. Two aspects of programming

86 | P a g e

were identified that may be Threshold Concepts in Computing: object orientation

and levels of abstraction, both of which are included in any object-oriented

programming course. The literature suggests that constructivist approaches and PBL

in particular can help learners with the disjunction caused by Threshold Concepts

(Savin-Baden, 2000). This, coupled with the evidence that PBL has improved

outcomes on programming courses, suggests that PBL would be a good instructional

choice for the teaching of programming. The literature on PBL shows differential

effects on learners’ knowledge and skills acquisition. PBL can be effective in

improving students’ skills; however, its effect on knowledge has not been proven.

The effect of PBL on skills acquisition may be particularly relevant to programming

courses given that some researchers suggest that computer programming is more

appropriately viewed not as a body of knowledge but rather as a skill or competence-

based task (Robins et al., 2003; van Roy & Haridi, 2004).

Low levels of intrinsic motivation and high levels of extrinsic motivation have been

identified in programming courses. Studies have found that PBL enhances intrinsic

interest in the subject matter (De Volder et al., 1986; Norman & Schmidt, 1992),

possibly because the PBL teaching method promotes perceived autonomy and self-

determination (Blumberg & Michael, 1992; Butler, 1999; Shin et al., 1993; van

Grinsven & Tillema, 2006), which in turn can have a positive effect on students’

motivation (Deci & Ryan, 1985; Hidi & Harackiewicz, 2000). It has been suggested

that the PBL environment, where students work together as a team, focused on

mastering a problem, promotes mastery goals (Barrett et al., 2005; Dolmans &

Schmidt, 2006), and hence increases learner motivation, but establishing a causal

link requires more research. These findings appear to point to a link between PBL as

an instructional method and increased intrinsic motivation, possibly through the

promotion of mastery goals over performance goals.

Dunlap (2005) examined how students’ self-efficacy levels, as they relate to

becoming Software Development professionals, increased while involved in a PBL

environment. In explaining these findings she suggests that specific instructional

strategies used in PBL, namely the use of authentic problems of practice,

collaboration and reflection, are the catalysts for students' improved self-efficacy.

For some Computing students, learning programming is intimidating, giving rise to

87 | P a g e

anxiety and a lack of confidence. Other than measures of general intelligence,

novices’ programming self-efficacy is the most accurate predictor of success at

programming. Cognitive styles and personality traits do not impact on success at

programming.

The literature suggests that the use of PBL as an instructional method to teach

programming may help improve both learner motivation and self-efficacy. A number

of studies show that students who are encouraged to actively engage with and

explore programming-related information perform better at problem solving; and

working collaboratively on programming problems in groups has been shown to be

beneficial, particularly for weaker students (Mayer, 1989; van Gorp & Grissom,

2001; Wills et al., 1999). It was demonstrated that PBL can bring about positive

changes in the approaches to study that students employ (Sadlo & Richardson,

2003).

From the literature review a number of initial research questions emerge. These

research questions will be examined in detail in the coming chapter in the context of

the implementation of a hybrid PBL Java programming module for novices at an

Irish higher education establishment. They are:

(1.a) What are the effects of using a PBL model on learner attainment in exams

(measuring knowledge) on a first year programming module?

(1.b) What are the effects of using a PBL model on learner attainment in continuous

assessment (measuring skills and strategies) on a first year programming module?

(2) What are the effects of using a PBL model on learner self-regulation?

(3) What are the effects of using a PBL model on learners’ programming self-

efficacy?

(4) What are the effects of using a PBL model on students’ approaches to learning

and on general learner engagement?

(5) What are the effects of using a PBL model on learner preferences for different

types of course and teaching?

88 | P a g e

Chapter 3 - Context and Research Methodologies

3.1. Introduction

This chapter begins with a description of the context of the study and model of PBL

used in Anon College, followed by a reiteration of the five research questions that

determine the empirical design, the process and the selection and adaptation of

appropriate measurement instruments. The variables measured and methods of

analysis utilized are then illustrated, including a description of the experimental

design. The instruments and measures used are examined and the different data

collection techniques employed are described. The qualitative analysis used is

outlined: this includes a review of the participant observations, field notes and

interview procedures used. The validity and reliability of the different instruments

employed is examined and the experimental controls are presented. Finally, some

limitations of the analysis are outlined.

3.2. Context of the Introduction of PBL in Anon College

Following the introduction of a Hybrid PBL model to teach first year Software

Development in the Computer Science Department of another Irish College

(O’Kelly, 2005), it was decided to apply the same model at Anon College. This

decision to implement PBL and to evaluate it using a controlled trial was not made

by this researcher; rather it was made by the Department of Computing at Anon

College. As was done in the other College, lecturers at Anon College were provided

with PBL training to help initiate and develop the PBL programme and to assist

them in adjusting to the role of facilitator/mentor/coach (Woods, 1996).

3.2.1. The Hybrid PBL Model Used at Anon College

First year Software Development is traditionally taught at Anon College using a

combination of lectures, tutorials and labs (7 hours per week). Due to constraints in

the course schedule, it was not possible to increase the total amount of time allocated

to Software Development under the PBL model. The major differences between the

hybrid PBL model used at Anon College and the pure PBL model are: the short

duration of the problems, the continued inclusion of at least one lecture every week

89 | P a g e

and the methods of assessment (which include traditional end term exams). Under

the hybrid PBL model, the physical learning environment of classrooms and

computer laboratories remained unchanged, but groups were allocated space to work

in and resources such as whiteboards, markers and flipcharts. A tutor was also

assigned to each group to help manage the PBL process.

Furthermore, all Computing students at Anon College have access to a virtual

learning environment using Moodle, where course notes, interactive quizzes, past

exam papers, discussion groups, attendance monitoring, etc., are used to support

teaching. The PBL students also use Moodle to keep an online PBL journal. The

journal was updated by the students on a week-by-week basis, and contained a

record of their collaborative work.

3.2.2. Implementation of the Hybrid PBL Module

In addition to the induction programme run by the Department for all Computing

students, an additional induction programme was run in the first week of semester

for students taking the PBL Software Development module. This was designed

specifically to introduce the students to each other and to the concept of teamwork.

Students were given an introduction to PBL, the roles involved and the expectations

for those roles, and were shown their designated workspaces. Every student in the

class was also assigned to a formal group. Ellis and Dick (2000) argue that group

size has a number of effects, including the degree of participation possible and the

strength of bonds between members. Groups of 7-8 students were decided upon.

Gender balance was difficult to achieve with approximately 90% of the class being

male each year. Each group developed its own set of ground rules for behaviour and

goal achievement, and these rules were reviewed regularly by the group. Each group

worked together for the entire semester.

The problems used to teach the PBL module at Anon College were developed by

O’Kelly (2005) and are based around specific Software Development learning

outcomes. The problems created fall into three broad categories: firstly, extendable

conceptual problems, that is, problems that ensure the students focus on core

concepts of computer programming in order to solve a problem. These problems

involve no programming but require that the students understand programming-

90 | P a g e

related concepts. The problems also allow for increased levels of difficulty to be

added to the problem once a solution is found to ensure that the problem sustains the

students’ interest. The second category of problems used is non-extendable

conceptual problems which help students to understand programming-related

concepts without performing any programming. This type of problem has just one

solution and is not extendable. The third category of problems, programming

problems, are typical computer programming problems that the group tries to solve

collectively. This type of problem aids the weaker student as he/she gets to see how a

stronger student solves a programming problem (O'Kelly et al., 2004).

In selecting the problems to use in the PBL module, a number of factors were

considered. Ellis et al. (1998) argue that first-year students who are making the

transition from a teacher-centred school environment to a more self-directed

university environment may need the comfort of a well-defined problem with

considerable scaffolding. However, PBL advocates the use of ‘messy ill-structured

problems’ (Mauffette, Kandlbinder & Soucisse, 2004). The problems chosen by the

Anon College lecturers fell between these two poles and took into consideration the

following needs: each problem should be engaging, engender multiple viable

hypotheses, allow enquiry, represent real-world problems, sustain engagement,

provide accessible resources for subsequent learning and be based on the current

curriculum. The problems were discussed at a weekly meeting between tutors and

any perceived difficulties were addressed.

While the amount of lecture time provided for Software Development remained

unchanged under the PBL model, the structure of the lectures was altered. Waite et

al. (2003) argue that if students sit passively while difficult concepts are explained

and they are told what is important, they are not taking responsibility for their

learning. The approach traditionally employed in lectures begins by introducing the

syntax of a particular programming construct. This is demonstrated in isolation and

later incorporated into a larger program that solves a particular problem. It has been

found that students are able to understand the construct in isolation and recognise it

in the sample programme but are unable to transfer this knowledge to their

laboratory work.

91 | P a g e

The PBL approach used copied that used by O’Kelly (2005) and was informed by

the work of Deek and Kimmel (1993), Woods (1996) and Waite et al. (2003). A

problem is presented at the beginning of each PBL laboratory class: each group is

asked to generate possible ideas to solve the problem. Then each group is asked to

develop an algorithmic solution based on their agreed combined ideas. The scribe

then writes this solution in pseudocode on the whiteboard assigned to the group. The

tutor facilitates the group during this period of problem solving. The tutor then

collaborates with all the students to solve the problem algorithmically with ideas

generated from different groups of students. Once a solution to the problem is

drafted, the tutor steps through the solution with the students, any difficulties are

identified and rectified by the class and the step-through process begins again until

such time as a viable solution is reached. At this point the translation of the

algorithm to Java code occurs. During this process any programming concepts that

students do not understand are flagged and covered later in tutorials. It is the

responsibility of each group member to keep their own PBL journal. The PBL

journal records the problem solving process and is updated after each PBL session.

The methods used to assess the students summatively remained unchanged under the

PBL model (two in-laboratory practical assignments and a paper-based closed book

end-term exam). This allowed for a feasible comparison with the previous year’s

results and with the results of the non-PBL Software Development learners in the

same semester, in the knowledge that the only change instigated was the course

delivery. Formative assessment of students’ performance in the PBL tutorials was

introduced.

3.2.3. Development Software Used and Virtual Learning Environment

Support

IBM's Eclipse development platform is used in all laboratories at Anon College to

run students’ Java programmes (Eclipse Foundation, 2004). Eclipse is a fully

functional professional development platform and it contains complex Software

Development tools that are not required in an introductory programming course. To

simplify the process of code creation, the DrJava development environment plug-in

for Eclipse was used to allow students to create their programmes. DrJava is

designed primarily for students, providing an intuitive interface and the ability to

92 | P a g e

interactively evaluate Java code. It is available free of charge and was developed by

the JavaPLT group at Rice University (JavaPLT Group, 2008).

The open-source e-learning platform Moodle was chosen as the VLE (Virtual

Learning Environment) for all Computing courses at Anon College. On the first-year

Software Development course the VLE is used for a number of purposes:

dissemination of course material; formative self e-assessment and guided learning;

module forums and learner blogs; learner activity tracking; virtual whiteboard; and

mobile phone enquiry-based collaborative learning support. A study was undertaken

using interviews and questionnaires of learners’ experiences of the VLE and it was

found that the majority of learners on the course agreed that the VLE provided useful

support for their learning (Doody, O'Reilly, Cardiff & Magee, 2006).

93 | P a g e

3.3. Research Questions

From the literature review a number of research questions and related hypotheses

emerged. These are outlined in Table 3-1 below:

Table 3-1: Research Questions

Research questions Hypotheses

(1.a) What are the effects of using a PBL

model on learner attainment in exams on

a first year programming module?

(1.b) What are the effects of using a PBL

model on learner attainment in

continuous assessment on a first year

programming module?

(1.a) Learners in the PBL group will

score higher in exams than those in the

control group.

(1.b) Learners in the PBL group will

score higher in continuous assessment

than those in the control group.

(2) What are the effects of using a PBL

model on learner self-regulation?

(2) Learners who complete the PBL

course will have a higher degree of

intrinsic motivation than those in the

control group.

(3) What are the effects of using a PBL

model on learners’ programming self-

efficacy?

(3) Learners in the PBL group will show

a higher degree of programming self-

efficacy than those in the control group.

(4) What are the effects of using a PBL

model on students’ approaches to

learning and on general learner

engagement?

(4) Learners in the PBL group will show

higher scores on meaning orientation and

lower scores on reproduction orientation

than those in the control group.

(5) What are the effects of using a PBL

model on learner preferences for

different types of course and teaching?

(5) Learners in the PBL group will show

a greater preference for courses and

teaching that supports deep learning (as

opposed to surface learning) than those

in the control group.

94 | P a g e

The different research questions and related hypotheses probe the impact of PBL on

each of the different specified outcomes, namely attainment, motivation,

programming self-efficacy, approaches to studying and preference for a deep

approach to learning. These research questions and hypotheses are tested and

explored using the methods of analysis outlined in subsequent sections of this

chapter.

3.4. Participants

Participants in the study were drawn from four cohorts of first-year students who

enrolled at Anon College for the academic years 2005/2006, 2006/2007, 2007/2008,

and 2008/2009. In all, 398 first year students (294 Computing students and 104

Engineering students) took part in the study. Repeat students taking the module for a

second time were excluded from the study, therefore, each year the cohort contained

a different set of participants from the previous year.

Demographic details show a learner population profile with a male:female ratio of

around 9:1, with all students speaking English as their first language, almost all of

Irish nationality, all except one learner between 18 and 23 years of age, and the

majority living in areas of Dublin suffering from socioeconomic disadvantage. In

general, students in Ireland do not study programming in secondary school and the

majority of students taking this module had recently completed second level

education.

Ten lecturing staff and four tutors also took part in the study. The lecturing staff

comprised five female and five male staff members aged between 28 and 60 years.

Nine of these staff members are Irish nationals while one is British. All the lecturing

staff are full-time tenured employees of the Department of Computing. The four

tutors comprised one male and three female tutors aged between 23 and 26 years. All

are post-graduate students at Anon College and all have similar qualifications in

Computing. All the tutors come from outside the European Union, with one male

from Mexico, two females from Russia, and one female from Turkey. The role of

lecturers and tutors was strictly limited to their participation in the study: they were

observed working in Software Development laboratories and some were interviewed

about their PBL experiences. No staff members were involved in data collection.

95 | P a g e

3.4.1. Analysis of Learner Participants Background Questionnaires

To provide background and contextual information, a general questionnaire was

given to all four cohorts of learners. The questionnaire was distributed at student

induction and 284 out of 294 students completed it. The general questionnaire

therefore includes students who later dropped out of the course. Learner self report

responses were analysed statistically. The questionnaire included data on the

following items: gender, socio-economic and family background (via home address),

previous programming experience, previous non-programming computer experience,

and encouragement by others to pursue Computing as a career. The full

questionnaire is given in Appendix F2.

The results show that 270 out of 284 participants (95%) had no previous computer

programming experience. The 14 participants who had previous programming

experience were split evenly between the PBL and non-PBL groups. Most of those

who had some programming experience gained it during their school years, while the

rest had some self-learned programming experience. None had any professional

programming experience. All the participants had some previous computer usage

experience, mainly playing computer games (91%). Only 37 (13%) claimed to have

been encouraged by others to pursue Computing as a career. 181 out of 284 (63.7%)

participants come from areas of Dublin city classified as disadvantaged. These

details are presented in Table 3-2: .

Table 3-2: Learner Background Questionnaires

Total

Number of

Learners

Number with

Previous

Computer

Programming

Experience

Number

with any

Previous

Computer

Experience

Number

Encouraged

by Others to

Pursue

Computing as

a Career.

Number with a

Disadvantaged

Socio-Economic

or Family

Background

284
students

14 students 284 students 37 students 181 students

Both encouragement and previous programming experience seem to give some

indication of future success in Software Development. The correlation coefficients

96 | P a g e

were (r=0.69) for encouragement and (r=0.81) for previous programming

experience. However, these results are based on very small sample sizes of (n=37)

and (n=14) respectively.

3.5. Methods of Analysis

A mixed method design including both qualitative and quantitative measures was

used in this study. A concurrent triangulation strategy was employed to add validity

to the research findings (Creswell, 2003, p. 215). The approach is concurrent because

both collection and analysis of quantitative and qualitative data was performed at the

same phase of the study. It is also a triangulation strategy as qualitative and

quantitative measures were used to confirm, cross-validate or corroborate findings.

A quantitative, controlled, experimental research design was used to empirically test

each of the research questions. In addition, a qualitative approach based on grounded

theory was used to further explore and scrutinize each research question. The

qualitative approach aims to explore the feelings and experiences of learners and

staff, and focuses on a number of contextual factors that might explain learner

behaviour. This included an examination of how these various factors interrelate and

the interplay between them. Using a mixed method approach provided a better

picture of the phenomenon under study and both qualitative and quantitative

approaches were seen as complementary (Alasuutari, 1995).

3.5.1 Methodology Procedure

Students in the study were split into a PBL group and a non-PBL control group.

Each hypothesis was tested quantitatively over a number of cohorts using the

instruments described in sections 3.6.2.1 to 3.6.2.4, which were given out before and

after the teaching, and effect sizes for each hypothesis were calculated. In addition,

information on learners’ attendance and use of computer systems was taken from a

number of databases and analysed statistically. Qualitative information on learners’

backgrounds and PBL experiences was collected using questionnaires. Furthermore,

interviews were carried out with learners and staff involved in the PBL group and

detailed field notes were taken of observations of learner in-class behaviour.

97 | P a g e

3.6. Quantitative Methodology

Fraenkel and Wallen (2005) suggest that statistics can be viewed in a descriptive or

inferential manner. In this study, descriptive statistics were used to illustrate features

of the learner cohort such as composition and performance in assessments.

Inferential statistics such as t-tests and analysis of variance were used to provide a

deeper analysis of the data.

3.6.1. Experimental Design

Torgerson and Torgerson (2001) recommend that more educational studies use the

experimental method, and that studies use the random assignment of learners to

treatment and control groups. This study follows that recommendation and uses an

experimental design, with random assignment of students to PBL classes, and a non-

PBL control group as outlined in Tables 3.2 to 3.6. The unit of analysis is the

individual learner.

Table 3-2: Pre-test/post-test - Hypotheses 1a and 1b (Learner attainment)

For each of 4

cohorts

Group A Group B

Pre-test (start of
semester 1)

Prior attainment (Leaving
Certificate Points)

Prior attainment (Leaving
Certificate Points)

Intervention PBL Teaching Non PBL Teaching
During Intervention Programming assignments Programming assignments
Post-test (end of
semester 1)

Closed book exam Closed book exam

Table 3-3: Pre-test/post-test - Hypothesis 2 (Learner Self-Regulation)

For each of 2

cohorts
Group A Group B

Pre-test (start of
semester 1)

Learning Self-Regulation
Questionnaire (SRQ-L)

Learning Self-Regulation
Questionnaire (SRQ-L)

Intervention PBL Teaching Non PBL Teaching
During Intervention Observation of PBL classes,

Learner attendance
monitoring

Observation of PBL classes,
Learner attendance
monitoring

Post-test (end of
semester 1)

Learning Self-Regulation
Questionnaire (SRQ-L),
Interviews

Learning Self-Regulation
Questionnaire (SRQ-L),
Interviews

98 | P a g e

Table 3-4: Pre-test/post-test - Hypothesis 3 (Programming Self-Efficacy)

For each of 2

cohorts
Group A Group B

Pre-test (start of
semester 1)

Programming Self-Efficacy
instrument (PSE)

Programming Self-Efficacy
instrument (PSE)

Intervention PBL Teaching Non PBL Teaching
During Intervention Observation of PBL classes,

Learner attendance
monitoring

Observation of PBL classes,
Learner attendance
monitoring

Post-test (end of
semester 1)

Programming Self-Efficacy
instrument (PSE), Interviews

Programming Self-Efficacy
instrument (PSE), Interviews

Table 3-5: Pre-test/post-test - Hypothesis 4 (Students’ Approaches to Learning)

For 1 cohort Group A Group B

Pre-test (start of
semester 1)

Approaches and Study Skills
Inventory for Students
(ASSIST)

Approaches and Study Skills
Inventory for Students
(ASSIST)

Intervention PBL Teaching Non PBL Teaching
During Intervention Observation of PBL classes,

Learner attendance
monitoring

Observation of PBL classes,
Learner attendance
monitoring

Post-test (end of
semester 1)

Approaches and Study Skills
Inventory for Students
(ASSIST), Interviews

Approaches and Study Skills
Inventory for Students
(ASSIST), Interviews

Table 3-6: Pre-test/post-test - Hypothesis 5 (Learner preferences for different types of course and teaching)

For 1 cohort Group A Group B

Pre-test (start of
semester 1)

Approaches and Study Skills
Inventory for Students
(ASSIST)

Approaches and Study Skills
Inventory for Students
(ASSIST)

Intervention PBL Teaching Non PBL Teaching
During Intervention Observation of PBL classes,

Learner attendance
monitoring

Observation of PBL classes,
Learner attendance
monitoring

Post-test (end of
semester 1)

Approaches and Study Skills
Inventory for Students
(ASSIST), Interviews

Approaches and Study Skills
Inventory for Students
(ASSIST), Interviews

99 | P a g e

3.6.2. Instruments and Measures

A review of the literature identified a number of established instruments that could

be used to help test the different hypotheses. The chosen instruments are discussed in

the following sections.

3.6.2.1. Learner Attainment (Hypotheses 1a and 1b)

Due to the differential effects of PBL on knowledge and skills identified in the

literature, it was necessary to distinguish between these when looking at attainment

marks.

Learner attainment results comprise both continuous assessment and exam scores.

End semester exams in Software Development are designed to test learning

outcomes that reflect students’ knowledge of the module, while continuous

assessments are designed to test learning outcomes that reflect students’

programming skills. Thus, students’ attainment scores in end semester exams are

taken to indicate basic ability in Software Development theory and knowledge, while

attainment scores in continuous assessment are taken to indicate team working and

programming skills.

The attainment data used to test Hypotheses 1a and 1b was collected over four

cohorts of learners. The attainment data of all learners who attended the Software

Development module was analysed using statistical techniques including residual

gain analysis, t-tests and analysis of variance, and an effect size was identified.

ANCOVA general linear modelling was applied to the attainment data to control for

prior attainment.

An indicator of the success of the Hybrid PBL model is whether Group A’s

performance in Software Development is superior to Group B’s. A number of

statistical tests were carried out on the results to assess the effectiveness of the PBL

module:

• Group A’s attainment results (for semester 1) from both final exam and

continuous assessments were compared against Group B’s results.

• Group A’s course entry points (achieved in the Irish Leaving Certificate or

equivalent) were compared against Group B’s course entry points.

100 | P a g e

From these comparisons it was possible to test the following Hypotheses:

(1.a) Learners in the PBL group will score higher in exams than those in the control

group.

(1.b) Learners in the PBL group will score higher in continuous assessment than

those in the control group.

3.6.2.2. Learner Self-Regulation (Hypothesis 2)

Participants’ Learning Self-Regulation (Autonomous or Controlled Regulation) was

measured over two cohorts of learners using a statistical analysis of learner responses

on the Learning Self-Regulation Questionnaire (SRQ-L) (Williams & Deci, 2007a),

which was given out to all participants in both groups at the start and end of

semesters 1 and 2.

Two other possible questionnaires could have been used: these were the Motivated

Strategies for Learning Questionnaire (MSLQ) (Pintrich, Smith, Garcia &

McKeachie, 1991) or the Academic Motivation Scale Questionnaire (Vallerand et

al., 1992). Both alternatives were investigated, but the SRQ-L questionnaire was

selected due to its validation and reported use with science subjects at college level

(Black & Deci, 2000).

The Learning Self-Regulation Questionnaire (SRQ-L) investigates why people

engage in learning-related behaviours, and was developed at the Department of

Clinical and Social Sciences in Psychology at the University of Rochester by

Williams and Deci (1996). The scale was later adapted slightly for use with

university students learning organic chemistry3 (Black & Deci, 2000). Williams and

Deci (2007a) state that this “is essentially the same scale, although two items were

dropped for the sake of brevity. The questionnaire can be adapted as needed to refer

to the particular course or program being studied”. The version used in the study at

Anon College was adapted very slightly from this scale, the only change being the

words ‘organic chemistry’ replaced by ‘computer programming’ to allow for use

3 Both versions of the Learning Self-Regulation Questionnaire (SRQ-L) can be downloaded from the
University of Rochester website at http://www.psych.rochester.edu/SDT/measures/selfreg_lrn.html

101 | P a g e

within the context of a Computing course. In addition the final two questions from

the original questionnaire were retained. Both the fully adapted Learning Self-

Regulation Questionnaire and the original questionnaire are provided in Appendix C.

Analyses can be done with the two separate subscales (Autonomous or Controlled

Regulation), and a Relative Autonomy Index is formed by subtracting the controlled

subscale score from the autonomous subscale score. Expanding on this, Williams

and Deci (2007a) say that “the responses that are provided are either controlled (i.e.,

external or introjected regulation) or autonomous (identified regulation or intrinsic

motivation). Because the scale was designed to have just the two ‘super’ categories

of regulation, there was no attempt to have the same number of items from each

regulatory style (e.g., identified and intrinsic), and there was no psychometric work

done on the individual regulatory styles. The validation was done only at the level of

the two ‘super’ categories.” All the Self-Regulation Questionnaires are well

validated, with details of their validation described by Ryan and Connell (1989). In

particular, the Learning Self-Regulation Questionnaire has been validated in a

number of studies set in the higher education context (Black & Deci, 2000), with

Williams and Deci (2007a) reporting “alpha reliabilities [of] approximately 0.75 for

controlled regulation and 0.80 for autonomous regulation” for the Learning Self-

Regulation Questionnaire ‘Chemistry’ (SRQ-L).

An indicator of the success of the Hybrid PBL model is whether Group A’s

Computer intrinsic motivation increased at a greater rate than Group B’s. A number

of statistical tests were carried out on the results to assess changes in learners’

intrinsic motivation due to attending the PBL module:

• Group A’s Learning Self-Regulation results at the start and finish of semester

1 were compared against Group B’s results;

• Any change in Group A’s Learning Self-Regulation during semester 1 was

compared against Group B’s results.

From these comparisons it was possible to test the following hypothesis:

(2) Learners who complete the PBL course will have a higher degree of intrinsic

motivation than those in the control group.

102 | P a g e

3.6.2.3. Programming Self-Efficacy (Hypothesis 3)

‘Programming’ rather than ‘Computer’ Self-Efficacy was investigated in this study

as it is more appropriate to a study on the teaching of programming. Also, as the

participants have chosen a specialised Computing degree rather than a general

Science degree, they probably already have high computer efficacy but might not

have high efficacy about how to programme computers.

Participants’ Programming Self-Efficacy was measured over two cohorts of learners

using a statistical analysis of learner responses on the Computer Programming Self-

Efficacy instrument (PSE) (Ramalingam & Wiedenbeck, 1998), which was given out

to all participants in both groups at the start and end of semesters 1 and 2. The full

Computer Programming Self-Efficacy instrument is provided in Appendix D.

The Computer Programming Self-Efficacy Scale was developed by Ramalingam and

Wiedenbeck (1998) for use with object-oriented programming languages. The PSE

has been used in a number of studies in higher education on learners of the Java

programming language (Askar & Davenport, 2009; Bergin & Reilly, 2005), and in

studies of introductory programming courses (Cantwell-Wilson & Shrock, 2001;

Ramalingam & Wiedenbeck, 1998). The PSE is a well-validated and reliable

instrument, with Cronbach’s alphas of (.89) and (.98) reported by Bergin and Reilly

(2005), and Cantwell-Wilson and Shrock (2001) respectively.

The Computer Programming Self-Efficacy Scale consists of thirty-three items that

ask students to judge their capabilities in a wide range of programming tasks and

situations. Responses are answered on a 7-point Likert-type scale (1=not at all

confident, 7=absolutely confident). Computer Programming Self-Efficacy is

measured as a continuous variable, which is the summation of the choices made on

the scale. The maximum score achievable is 231. An indicator of the success of the

Hybrid PBL model is whether Group A’s Computer Programming Self-Efficacy

increased at a greater rate than Group B’s. A number of statistical tests were carried

out on the results to assess changes in learners’ Self-Efficacy due to attending the

PBL module:

• Group A’s Computer Programming Self-Efficacy results at the start and

finish of semester 1 were compared against Group B’s results.

103 | P a g e

• Any changes in Group A’s Computer Programming Self-Efficacy during

semester 1 was compared against Group B’s results.

From these comparisons it was possible to test the following hypothesis:

(3) Learners in the PBL group will show a higher degree of programming self-

efficacy than those in the control group.

3.6.2.4. Students’ Approaches to Learning and Learner Preferences

(Hypotheses 4 & 5)

Students’ approaches to studying and learner preferences were measured over one

cohort of learners, using a statistical analysis of learner responses on parts B and C

of the Approaches and Study Skills Inventory for Students (ASSIST)4, which was

given out to all participants in both groups at the start and end of semesters 1 and 2.

The ASSIST instrument used in this study is provided in Appendix E.

ASSIST was developed by Entwistle (1997) at the Centre for Research on Learning

and Instruction in the University of Edinburgh in 1997. ASSIST is based on the

Revised Approaches to Studying Inventory (RASI) developed by Entwistle and Tait

(1994) which in turn was based on the Approaches to Studying Inventory (ASI)

developed by Ramsden (1979).

The theoretical basis for current research into students’ approaches to studying

comes from research undertaken by Marton and Saljo (1976, 1997) on approaches to

learning, Entwistle and Ramsden's (1983) research on approaches to studying,

combined with the work of Biggs (1979, 1987) on learning outcomes. In particular,

the ASSIST inventory is conceptually based on research studies by Briggs (1993)

and Richardson (2000). Entwistle and McCune (2004) provide a detailed description

of the conceptual bases of the ASSIST inventory, while Entwistle, McCune, and Tait

(2006) provide details of its usage, validity and reliability.

4 The Approaches and Study Skills Inventory for Students (ASSIST) can be downloaded from the
Enhancing Learning and Teaching project website at
http://www.etl.tla.ed.ac.uk/publications.html#measurement

104 | P a g e

Entwistle et al. (2006, p. 1) state that “[ASSIST] identifies the tendencies of students

to adopt deep, surface and strategic approaches to learning and studying. The

inventory uses a Likert technique for measuring attitudes which involves asking

students to rate the extent of their agreement on a five-point scale with a series of

related items that cover the aspects of a specific construct. Summing these responses

across items produces a scale score for each construct”. ASSIST has been widely

used, is well validated, and has had its reliability well tested (Entwistle, Tait &

McCune, 2000; Long, 2003; Tait & Entwistle, 1996). This is also true of its

predecessor the RASI (Duff, 1997).

The first section of ASSIST contains items relating to conceptions of learning, and

this section was not used in this study. Section B is based on the Approaches to

Studying Inventory (ASI) which was developed in the University of Lancaster in the

late 1970s (Entwistle & Ramsden, 1983). Section B contains 52 items and produces

scores on Deep, Surface and Strategic Approaches to learning. The ‘alertness to

assessment’ scale was omitted from this study because it is not suitable for use with

first-year students early on in their course. The final section (C) invites students to

indicate their preferences for different kinds of teaching.

An indicator of the success of the Hybrid PBL model is whether learners in Group A

show higher scores on meaning orientation and lower scores on reproduction

orientation and a greater preference for teaching that supports deep learning than

learners in Group B. A number of statistical tests were carried out on the results to

measure and assess changes in learners’ learning orientation and preferences due to

attending the PBL module:

• Group A’s approaches to study and their preferences scores at the start and

finish of semester 1 were compared against Group B’s results;

• Any change in Group A’s approaches to study and preference scores during

semester 1 was compared against Group B’s results.

From these comparisons it was possible to test the following Hypotheses:

(4) Learners in the PBL group will show higher scores on meaning orientation and

lower scores on reproduction orientation than those in the control group.

105 | P a g e

(5) Learners in the PBL group will show a greater preference for courses and

teaching that support deep learning (as opposed to surface learning) than those in the

control group.

3.6.2.5. The Adaptation of Instruments

As has been seen in sections 3.6.2.2, 3.6.2.3 and 3.6.2.4, the quantitative instruments

(Learning Self-Regulation Questionnaire, Programming Self-Efficacy Instrument

and the Approaches and Study Skills Inventory for Students) used in this study have

been employed in numerous studies, are well validated, and have had their reliability

well tested (Black & Deci, 2000; Entwistle et al., 2000; Long, 2003; Ramalingam &

Wiedenbeck, 1998; Tait & Entwistle, 1996; Williams & Deci, 1996, 2007a). For

convenience, the Learning Self-Regulation Questionnaire (SRQ-L), the Computer

Programming Self-Efficacy Scale and parts B and C of the Approaches and Study

Skills Inventory for Students were combined into one long multipart questionnaire

for distribution to students. A small-scale pilot study was carried out before the main

process of data collection was started. As a result of this study some minor

modifications were made to the instruments.

3.6.3. Controls

A well-controlled research design is an essential feature of the experimental method

(Cohen, Manion & Morrison, 2000, p. 211). The controls used in this study are

outlined in the following sections.

3.6.3.1. Random Allocation of Learners to Treatment and Control Group

That participants are divided into a treatment group and a non-treatment control

group is one of the most important controls in an experiment (Bell, 1993, pp. 11-12).

This was the approach taken in this study.

First year full-time Computing students at Anon College are randomly split into two

groups for Software Development (Java programming). Software Development is

taught over two 15 week semesters. Due to resource issues, for the 2005/2006,

2006/2007, 2007/2008 and 2008/2009 academic years, in semester 1 half of the class

(Group A) were taught using PBL, while the other half (Group B) were taught using

a traditional approach. In semester 2, the groups switched over, i.e. Group B was

taught using a PBL approach, while Group A reverted to the traditional approach.

106 | P a g e

The random allocation of learners to the treatment groups (Groups A and B) helps to

maximise the probability that they do not differ in any systematic way. This

situation, where two groups of students are taught the same subject using different

instructional approaches, afforded a unique opportunity to gauge the effectiveness of

the PBL approach in semester 1. Only semester 1 exam and continuous assessment

results were used to gauge the effectiveness of the PBL approach in terms of

attainment (Hypotheses 1a and 1b).

3.6.3.2. Control for Prior Attainment

When testing the impact of PBL on attainment scores (Hypotheses 1a and 1b),

course entry points (achieved in the Irish Leaving Certificate or equivalent) were

used to control for prior attainment. This was done for each of the four cohorts.

Overall Leaving Certificate entry points have been shown to be a fair indicator of

success at Computing, with a correlation coefficient of (r = .66) (Moran & Crowley,

1979).

3.6.3.3. Control for Teacher Effects

The same staff member acted as overall coordinator for the module for the duration

of the study. The same four lecturers (two male and two female) delivered the

module in all four years, with two lecturers assigned to each group. This allowed for

the control of teacher effects. Over the duration of the study an additional five

lecturing staff and four tutors provided support in computer laboratories. However,

in any given year both groups had the same staff and tutors.

3.6.3.4. Control for Types of Assessment

The same methods of summative assessment were used for all four cohorts of

learners. Within each cohort, identical marking schemes and assessments were used

for both groups (two in-laboratory practical assignments and a paper-based closed

book end-term exam). All learners had their final grade point averages calculated in

the same way. This allowed for a feasible comparison between groups and with

attainment results from previous non-PBL years as the only change instigated was

the teaching method.

107 | P a g e

3.6.3.5. Control for Physical Teaching Environment

The physical learning environment of classrooms and computer laboratories, and the

time allocation and combination of lectures, tutorials and laboratories (7 hours in

total per week), was the same for both groups. The same computer hardware and

software was used by both groups.

3.6.3.6. Control for Statistical Assumptions

In cases where statistical tests assumed a normal distribution of data, the

Kolmogorov-Smirnov normality test was carried out to ensure normality. For testing

normality the Kolmogorov-Smirnov test is less powerful than the Shapiro-Wilk test

or Anderson-Darling test but it was considered sufficient. In all cases equality of

variances between groups was tested using F-tests. Given the characteristics of the

data, the more robust tests for variances, such as Levene's test, Bartlett's test, or the

Brown-Forsythe test were considered unnecessary.

3.7. Effect Sizes

In this study effect size measures were used as they separate the magnitude of an

effect from whether or not it is statistically significant and provide a measure that is

independent from the instruments and procedures used (Richardson, 1996;

Rosenthal, 1994). These properties allow effect size results from different studies to

be combined together in a meta-analysis. Cohen (1988) provides a framework for

comparing and measuring effect sizes, suggesting that an effect size of (0.2) is small,

(0.5) is medium and (0.8) is large. Colliver (2000) suggests that when measuring the

effectiveness of PBL, an effect size of 1.0 should be sought. However, Albanese

(2000, p. 729) disagrees, saying that “[e]ffect sizes of 0.8-1.0 are an unreasonable

expectation from PBL”. Others agree: Richardson (2005), citing the work of Lipsey

and Wilson (1993), suggests that an effect size of 0.50 would be a more reasonable

choice. For the purposes of this study, an effect size of (0.5) was used as a

benchmark measure of effectiveness.

108 | P a g e

3.8. Questionnaire Data

Two additional questionnaires were used in this study. The first questionnaire

examined learners’ Software Development PBL experiences and the second was a

general learner background questionnaire. Learner self report responses were

analysed statistically. The design of both questionnaires was refined by

implementing an additional small scale pilot study before the main process of data

collection began. The PBL questionnaire is provided in Appendix F1, and the

background questionnaire in Appendix F2.

3.8.1. PBL Questionnaire

The PBL questionnaire was given to all four cohorts of learners in the PBL groups

after completion of their PBL course. The questionnaire was adapted for use in a

Software Development context from an instrument developed by Antepohl and

Herzig (1999) for use with Medical Students. The questionnaire is well validated

(Dolmans & Schmidt, 2000). It contains 32 questions/statements aimed at testing six

areas influencing students’ opinions and decisions on Software Development:

• PBL group work;

• the PBL method;

• student interest in Software Development;

• course objectives and content;

• the PBL tutor;

• teaching resources.

Learners were asked to indicate on a 5-point Likert scale whether they (1) totally

disagreed, (2) disagreed, (3) were neutral, (4) agreed, or (5) totally agreed with each

statement. At the end of the questionnaire learners were asked to add their own

comments.

3.8.2. General Background Questionnaire

To provide background and contextual information, a general questionnaire was

given to all four cohorts of learners. The questionnaire collected data on the

following items: gender, socio-economic and family background (via home address),

109 | P a g e

previous programming experience, previous non-programming computer experience,

and encouragement by others to pursue Computing as a career.

3.9. Data Collection Procedures

All data was collected and stored in accordance with the ethical requirements

outlined in section 1.5. In particular, before the questionnaires were handed out, their

purpose was explained to the participants. They were told that the results would be

included in a thesis. All the participants were guaranteed anonymity. In line with

ethics requirements, all participants gave informed consent to being interviewed and

recorded. At the start and end of each winter and spring semester, the questionnaires

were distributed at a class lecture session. The questionnaires were completed during

class by participants and collected by the researcher.

3.10. Database Information Mining

Over the four cohorts of learners detailed information on participants’ prior

educational attainment, level of class attendance and time spent ‘logged on’ was

taken from a number of Anon College’s databases and online systems (Virtual

Learning Environment, Attendance Registers, Student Computer Network Audit

Logs, and College Management Information System). In particular, participants’

attendance at PBL classes was taken from the college attendance database and used

to compare Group A’s class attendance against Group B’s class attendance in

semester 1.

3.11. Qualitative Methodology

In addition to the measures outlined above qualitative techniques were used to

provide a greater insight into the feelings, thinking and experiences of learners and

staff. Participants’ attitudes, motivation, stress and enthusiasm were qualitatively

analysed using a variety of techniques including participant observation, field notes

and both formal and informal interviews. This allowed the development of a deeper

understanding and examination of all the hypotheses.

Qualitative research explores a social or human problem through an inquiry process

that occurs in the natural setting where the researcher is an instrument of data

110 | P a g e

collection (Creswell, 2003). Connelly and Clandinin (1990) point out that all

qualitative observational research involves formulating a thoughtful and well-

understood relationship between the researcher and research participants.

Patton (1990, p. 40) states that a “holistic approach assumes that the whole is greater

than the sum of its parts.” This research takes a holistic perspective, focusing on the

experiences of the whole group, which were uncovered through observations and

interviews of individuals as well as group measures.

Interviews and participant observations were used as data-collection instruments to

measure feedback from staff and learners on their PBL experience. As outlined in

section 3.11.1., eleven semi-structured interviews (five with staff and six with

learners) were conducted. Also as set out in sections 3.11.2 and 3.11.3, field notes

were made of classroom observations and informal conversations for both the PBL

and non-PBL groups. The journals kept by all learners in the PBL groups were also

examined. The results of these inquiries are presented in this section.

A grounded theory approach was employed for the analysis of the field notes and

interview responses. Strauss and Corbin's (1990, p. 24) analysis method was used to

develop “an inductively derived grounded theory about a phenomenon". The first

stage involved the ‘open-coding’ of interview data, defined as "breaking down,

examining, comparing, conceptualizing, and categorizing data" (Strauss & Corbin,

1990, p. 61). All transcripts from the interviewees were read for emerging

commonalties and patterns. A line-by-line approach was taken to analyse each

sentence and to separate data into categories relevant to staff and students' attitudes,

motivation, stress and enthusiasm. Five main categories were identified, and are

described in section 5.4.5. Category selection was modified during the coding

process for a richer description of the phenomenon. The next step involved ‘axial

coding’ in which connections were formed among the categories found in open

coding, and some possible causal relationships were identified within a frame of

relationships. Then ‘selective coding’ was done to see if one category could be

identified as a core category, and to relate all other categories to that category.

Data analysis took place both during and after data collection, in line with Creswell’s

(1998) emphasis on a crisscross approach between data gathering and its analysis.

111 | P a g e

This allowed the patterns, commonalties and differences that emerged early in the

collection process to be examined in further detail in later interviews and

observations. To support this process, Minitab 15 software was used to help

statistically analyse the questionnaire data, while NVivo 7 software was used to help

analyse both the interview and observation data sets. NVivo assisted in classifying,

sorting, and arranging information, as well as exploring trends and testing theories. It

must be emphasised that this was not an easy option: the software was used to

support the manual analysis and was not employed to provide a simple ‘automated’

set of categories.

3.11.1. Interviews

The interviews allowed an in-depth exploration of the values, feelings and beliefs of

the lecturing staff, tutors and learners involved in the PBL module. Two female and

four male learner participants, and two male and three female staff/tutor participants

were selected at random and asked to take part in an interview. If a participant

declined the request, another was selected at random. In all, eleven interviews (five

with staff and six with learners) were conducted.

3.11.1.1. Interview Procedures

Interviews with learners and staff were conducted individually in an empty

classroom in Anon College. Each interview lasted between 10 or 15 minutes. All

interviews were carried out in English. The interviews were audio recorded and

transcribed before data analysis was carried out.

3.11.1.2. Interview Protocol

Before each interview started, its purpose was explained to the participant, who was

told that the interview transcripts would be included in a thesis. Participants were

guaranteed anonymity and were assured that if individual portions or full transcripts

were published, their real names would be substituted by a pseudonym.

In line with ethics requirements, all participants gave informed consent to being

interviewed and recorded. Most questions were open-ended and designed to explore

the perspectives of the interviewee. However, a few directive questions were also

embedded to test responses. To ensure that all key areas would be investigated, the

same set of interview questions was used in all interviews. The set of interview

112 | P a g e

questions for staff was adapted from Maudsley (2002). Maudsley (2002) designed

her questions to explore how PBL tutors conceptualised their students’ integrated

learning agenda.

All participants were allowed to freely answer the pre-set questions in the interview.

No limits were placed on their answers and they could discuss any area they wanted

to. After all the pre-set questions had been asked, participants were asked if they had

any questions or comments, or if they would like to add anything, which allowed all

participants to speak their mind freely. In addition to audio-recording the interviews

field notes were made after each interview of how the interview went. This included

observations of how certain new avenues of interest opened up and of the mood of

the participant: whether they were talkative or reserved, cooperative or resistant,

nervous or relaxed, etc. About a week after the interview, the transcript of the

interview was shown to the participant to verify that it was accurate. The set of

interview questions for staff is given in Appendix G, while the set of interview

questions for students is given in Appendix H. The entire set of transcripts is

contained in Appendix J.

3.11.2. Conversations

In addition to the interviews, a large number of informal conversations were held

with staff and learners. These mainly involved small talk although there were some

longer discussions. The conversations helped the researcher explore the feelings and

experiences of the participants. Field notes of conversations were made in the

research diary.

3.11.3. Participant Observations

Burns (1999, p. 80) describes observation as the process “of taking regular and

conscious notice of classroom actions and occurrences which are particularly

relevant to the issues or topics being investigated”. This enables researchers to gain

personal insights into classroom activities and helps to build a deeper understanding

that can help provide a framework to support possible answers to research questions.

A great strength of observation is that it allows the researcher to reflect on actual

occurrences in the classroom, and as Burns (1999, pp. 81-82) points out, it builds

new “perspectives […] on familiar situations [and …] allows us to see in a relatively

113 | P a g e

unobtrusive way what it is that people actually do compared with what they say they

do”.

In this study, the researcher is a staff member in the Department under study and

therefore had a position in the group before taking on the role of observer. In this

sense, the researcher could be viewed as an observing-participant. However, the

researcher did not teach or take part in any of the classes observed and had never

taught any of the participants, and in that sense was a neutral-observer in all

Computing classes. The researcher’s role was to look and listen and record group

interactions and behaviours as objectively as possible for later analysis (Eisner,

1993).

At all times the observer was aware that his presence might influence the behaviour

of participants. To guard against Hawthorne effects, the observer was as unobtrusive

as possible, and account was taken of the influence the act of observing the

participants (both staff and learners) was having on their behaviour. In addition, the

observer did not take part in any classroom activities and he tried to be aware of any

presumptions he held that might influence the findings.

Each week of the 15 week semester the researcher spent half an hour in PBL and half

an hour in non-PBL Software Development laboratories observing participants’

behaviour. In addition, the researcher observed five minutes of participant social

interaction both before and after laboratory classes. This was done for each of the

four cohorts of learners over four academic years, resulting in a total of 80 hours of

participant observation. The full observation schedule is given in Appendix I.3.

Notes were taken of learners’ class arrival and departure times, their body language

and discussions, and their time spent ‘on task’ on programming problems. After each

laboratory session detailed field notes were written up. These direct, first-hand

observations of daily behaviour provided a high face validity of data and an

understanding of group behaviour.

3.11.4. Field Notes and Diary

Wallace (1998, p. 59) states that “field-notes […] are terms used to describe what

has happened during a lesson, and may be written up during the lesson or shortly

114 | P a g e

after”. Burns (1999, p. 87) advises that field notes should be “relatively informal”

and taken “at suitable intervals during the lesson through ‘jottings’ or stream-of-

behaviour records made on the spot as the lessons proceed”. Burns (ibid) goes on to

suggest that the advantage of this technique is that issues that are central to the

classroom investigation can be clarified and emerging classroom patterns can be

identified.

As outlined earlier, detailed field notes were taken of all activities. Notes were dated

and organised in categories. Supplementing the field notes, a reflective research

diary was kept to allow contemplative analysis of the time-line of observations and

interviews, and to link with the time-line of the quantitative analysis. This allowed

for later analysis and the identification of issues and areas that needed to be

researched further.

3.11.5. Student PBL Journals

All PBL students keep a journal of their classroom activities, which they update on a

week-by-week basis, and which contains a record of their collaborative work

including details of the problems worked on and coded solutions. However,

unfortunately the PBL journals are not reflective of and do not record students’

feelings or experiences of the learning process. Even given this shortcoming, the

journals do provide a measure of student engagement and interest in problem-

solving. A random sample of these journals was taken each year and analysed. Ten

journals were analysed in the first year and five journals in each subsequent year. In

total twenty five journals were analysed. The researcher read the journals a number

of times to help eliminate any errors and reduce any possible misunderstandings.

3.11.6. The Reliability and Validity of the Quantitative Data

According to Creswell (2003), research findings must be reliable, valid and

objective. In the following sections, issues of reliability and validity will be

discussed in relation to the study at Anon College.

‘Reliability’ refers to the dependability, consistency, and stability of the research

findings and ensures that the results are stable over time and across research methods

(Hammersley, 1993). Three key types of reliability are: Equivalency Reliability,

Stability Reliability and Internal Consistency (Colorado State University, 2009).

115 | P a g e

Equivalency reliability is the extent to which two items measure identical concepts at

an identical level of difficulty. Equivalency reliability is determined by relating two

sets of test scores to one another to highlight the degree of relationship or

association. In quantitative studies and particularly in experimental studies, a

correlation coefficient, statistically referred to as r, is used to show the strength of

the correlation between a dependent variable (the subject under study), and one or

more independent variables, which are manipulated to determine effects on the

dependent variable. An important consideration is that equivalency reliability is

concerned with correlational, not causal, relationships (Creswell, 2003).

Stability reliability (sometimes called test-retest reliability) is the agreement of

measuring instruments over time. To determine stability, a measure or test is

repeated on the same subjects at a future date. Results are compared and correlated

with the initial test to give a measure of stability. Internal consistency is the extent to

which tests or procedures assess the same characteristic, skill or quality. It is a

measure of the precision between the observers or of the measuring instruments used

in a study. This type of reliability often helps researchers interpret data and predict

the value of scores and the limits of the relationship among variables (Colorado State

University, 2009).

For each of the four years of the study, the end of semester exams used to measure

attainment were designed to be of equivalent difficulty and to measure student

knowledge of the required learning outcomes. Exams are reviewed by external

examiners to ensure adherence to these requirements. Learning outcomes are

specified in the Software Development syllabus and they did not change during the

course of the study. Correlation coefficients are reported for all suitable statistical

tests.

There are a number of types of validity that must be considered, in particular both

internal and external (Miles & Huberman, 1984). An experiment is internally valid to

the extent that it shows a cause-effect relationship between the independent and

dependent variables, while external validity is “the extent to which causal

propositions hold true in other settings” (Seale, 1999, p. 40). The conclusions drawn

through the interpretation of the results of data analysis should be objective, that is,

116 | P a g e

they should be based on the facts of the findings derived from actual data and not on

one’s own subjective or emotional values. This ensures that the researcher has no

conflict of interests (Eisner, 1993).

Another important type of validity is construct validity. Construct validity refers to

the degree to which inferences can legitimately be made from the operationalisations

used in a study to the theoretical constructs on which those operationalisations were

based. In other words, construct validity seeks agreement between a theoretical

concept and a specific measuring device or procedure. For example, when

researchers measure ‘programming self-efficacy’, is that what they are really

measuring? Carmines and Zeller (1979, p. 23) suggest that to determine if a piece of

research has construct validity, three steps should be followed. “First, the theoretical

relationships must be specified. Second, the empirical relationships between the

measures of the concepts must be examined. Third, the empirical evidence must be

interpreted in terms of how it clarifies the construct validity of the particular measure

being tested”. As discussed in section 3.6.2, all the instruments used in this study

have been used in many other studies and are well validated.

Another type of validity is face validity. Face validity is concerned with how a

measure or procedure appears. Does it seem like a reasonable way to gain the

information the researchers are attempting to obtain? As outlined in section 3.11.3.,

the participant observations helped to provide face validity as they are direct, first-

hand observations of daily behaviour.

3.11.7. The Trustworthiness of the Qualitative Data

Mertens (1998) suggests that validity and reliability in qualitative research is based

upon the trustworthiness of the data. Lincoln and Guba (1985) discuss four

constructs against which the trustworthiness of a study can be evaluated: credibility;

transferability; dependability and confirmability. These criteria are explicitly offered

as an alternative to more traditional quantitatively-oriented criteria. They suggest

that credibility should be used in place of internal validity, transferability in place of

external validity, dependability in place of reliability, dependability and

confirmability in place of objectivity. Lincoln and Guba (ibid) suggest that their four

117 | P a g e

criteria better reflect the underlying assumptions involved in much qualitative

research, and in this they are supported by other researchers (Talbot, 1995).

Credibility depends on how accurately the subject is identified and described. To be

credible it must be established that the results of qualitative research are credible or

believable from the perspective of the participant in the research.

Transferability refers to the degree to which the results of qualitative research can be

generalized or transferred to other contexts or settings. Transferability is noted to be

impossible from the stance of external validity, but is greatly assisted by providing

the greatest possible range of information, and thick descriptive data. Lincoln and

Guba (1985) suggest that thick description is a way of achieving a type of external

validity, as by describing a phenomenon in sufficient detail, one can begin to

evaluate the extent to which the conclusions drawn are transferable to other times,

settings, situations, and people. Thick description was first described by Geertz

(1977) who applied it in ethnography. It refers to the detailed account of field

experiences in which the researcher makes explicit the patterns of cultural and social

relationships and puts them in context (Holloway, 1997). From a qualitative

perspective, transferability is primarily the responsibility of the one doing the

generalizing. The qualitative researcher can enhance transferability by doing a

thorough job of describing the research context and the assumptions that were central

to the research. The person who wishes to ‘transfer’ the results to a different context

is then responsible for making the judgment of how sensible the transfer is.

Therefore, the applicability of one set of findings to another setting rests more with

the later researcher making the transfer than the original researcher.

The idea of dependability, on the other hand, emphasizes the need for the researcher

to account for the ever-changing context within which research occurs. Lincoln and

Guba (1985) point out that dependability is difficult to predict in a changing social

world. The researcher is responsible for describing the changes that occur in the

setting and how these changes affected the way the researcher approached the study.

To help establish dependability, the researcher attempts to account for changing

conditions in the phenomenon chosen for study as well as changes in the design

created by an increasingly refined understanding of the setting.

118 | P a g e

Qualitative research tends to assume that each researcher brings a unique perspective

to the study (Patton, 1990). Confirmability refers to the degree to which the results

could be confirmed or corroborated by others. McLean et al (1997) advocate that

“qualitative confirmation provides a way of reporting the researcher's thought

processes, helps promote a constructivist approach to qualitative research and

answers the demand for increased rigor”. This demand for rigour is made by a

number of researchers, for example, Miles and Huberman (1984, p. 21) state that

"we lack a body of clearly-defined methods for drawing valid meaning from

qualitative data. We need methods that are practical, communicable, and not self

deluding; scientific in the positivist's sense of the word, and aimed toward

interpretive understanding in the best sense of that term". To help ensure that there

was internal agreement between the investigator's interpretations and the actual

evidence, a number of strategies for enhancing confirmability were employed.

Mays and Pope (1995) suggest that if the researcher can “create an account of

method and data which can stand independently”, then that will help improve rigour

and establish the ‘trustworthiness’ of the qualitative findings (Guba & Lincoln,

1989). To this end, a transparent and open research process was employed in this

study.

Talbot (1995) suggests a number of steps to improve the credibility of findings,

including that the researcher remains in the field over a long period of time, using

triangulation, and having participants review the researcher's interpretations and

conclusions. Lincoln and Guba (1985, p. 328) also list a number of techniques that

help establish the trustworthiness of a study. These include persistent observation,

triangulation (sources, methods, and investigators) and negative case analysis. All these

techniques were used in this study.

In this study the researcher carried out observations over a four year period and the

summaries of interviews were discussed with participants. In addition, triangulation

(Hammersley, 1998) was used to check the validity of the observational, interview

and questionnaire data by ensuring that all data sets confirmed and supported each

other. The type of triangulation used in this study was ‘methods triangulation’,

119 | P a g e

which involved checking out the consistency of findings generated by different data

collection methods (Denzin, 2006; Patton, 1999).

Lincoln and Guba (1985) describe deviant case analysis as a process of refining an

analysis until it can explain or account for a majority of cases. Analysis of deviant

cases may revise, broaden and confirm the patterns emerging from data analysis.

Thus, during the data analysis the researcher actively undertook a deviant/negative

case analysis. This involved searching for and discussing elements of the data that

did not support or appeared to contradict patterns or explanations that were emerging

from the data analysis.

Lincoln and Guba (1985, p. 328) suggest that researchers should provide an “audit

trail” to help establish trustworthiness. An audit trail is a transparent description of

the research steps taken from the start of a research project to the development and

reporting of findings. These are records that are kept regarding what was done in an

investigation. Malterud (2001, p. 486) underscores the need for researchers to

provide a detailed report of the analytical steps taken in a study when she writes:

"Declaring that qualitative analysis was done, or stating that categories emerged

when the material had been read by one or more persons, is not sufficient to explain

how and why patterns were noticed. [...] the reader needs to know the principles and

choices underlying pattern recognition and category foundation". To this end, once

data collection was complete an audit trail was conducted to examine the data

collection and analysis procedures. The researcher documented the procedures for

checking and rechecking the data throughout the study and reported any potential

bias or distortion.

120 | P a g e

3.12. Limitations of the Analysis

The unique occasion of a random allocation of learners to the PBL and non-PBL

groups on the first year Software Development course at Anon College allowed the

use of a randomised experimental design. Nonetheless, the sampling frame used in

the study at Anon College was an opportunity sample. However, the likelihood of

obtaining a biased sample was reduced because data was taken from the total

population of learners on the course. No participants declined to take part in the

study and therefore problems relating to self-selected samples were prevented.

Nonetheless, the study would have been be greatly strengthened if it had been carried

out across a number of different higher education institutions in different countries.

The analysis could be strengthened through the use of a larger sample size, and a

better gender balance within groups. The lack of female participants could impact

the transferability of findings to domains where females predominate. Although

hypothesis 1 was measured over four cohorts of learners, hypotheses 2 and 3 were

measured over only two cohorts, and hypotheses 4 and 5 were measured over only

one cohort. The analysis of additional cohorts would improve the dependability of

the findings.

Another limitation of the analysis is that there was only one researcher. Having

additional researchers would increase the trustworthiness of the data by allowing the

cross-checking of qualitative findings by other researchers. However, issues of inter-

rater Reliability would have to be addressed in the study design if there were more

than one researcher.

A point worthy of note is that the groups were not totally statistically independent, as

both groups of learners are located in the same college and Computing students mix

freely between groups outside of class time. Therefore there is the possibility of

learners mixing socially and discussing Software Development topics.

3.13. Conclusions

The study design employed makes it possible to integrate in detail the five research

questions identified in the literature review. The next two chapters will present the

quantitative and qualitative findings.

121 | P a g e

Chapter 4 - Quantitative Analysis

In this chapter the results of the quantitative analysis of the data relating to

Hypotheses 1 to 5 are presented. However, the quantitative results provide an

incomplete view of the findings, in the absence of the qualitative results. For this

reason, an elucidation and interpretation of the results is not undertaken until chapter

6. A summary of the results is given in the tables which are presented throughout

this chapter.

4.1. Population

Over the four cohorts of students there were 51 dropouts from the course. Data from

these students are not included in the study. Overall 40 of the 51 students who

dropped out of the module either enrolled and never attended or dropped out within

the first two weeks, and therefore their omission from the analysis did not bias the

results.

As can be seen in Table 4-1: Learner Population, in semester 1 2005/2006 63

students (3 female and 60 male) enrolled on the module. 49 students completed the

module: three female (6%) and 46 male (94%). They were split randomly between

Group A (24 Students) and Group B (25 Students).

In semester 1 2006/2007 74 students (6 female and 68 male) enrolled on the module.

58 students completed the module: six female (11%) and 52 male (89%). They were

split randomly between Group A (29 Students) and Group B (29 Students).

In semester 1 2007/2008 76 students (10 female and 66 male) enrolled on the

module. 64 students completed the module: ten female (11%) and 52 male (89%).

They were split randomly between Group A (32 Students) and Group B (32

Students).

In semester 1 2008/2009 81 students (12 female and 69 male) enrolled on the

module. 72 students completed the module: 12 female (17%) and 61 male (83%).

They were split randomly between Group A (37 Students) and Group B (35

Students).

122 | P a g e

Table 4-1: Learner Population

Semester

Enrolment Drop out Completed

Group A

(#

Students)

Group A

(Mean

Entry

points)

Group B

(#

Students)

Group B

(Mean

Entry

points)

2005/06 63 students (3 female
and 60 male)

14 students (all male)
(A:7, B:7)

49 students completed
the module: three
female (6%) and 46
male (94%).

24 269 25 248

2006/07 74 students (6 female
and 68 male)

16 students (all male)
(A:9, B:7)

58 students completed
the module: six
female (11%) and 52
male (89%).

29 248 29 245

2007/08 76 students (10
female and 66 male)

12 students (all male)
(A:5, B:7)

64 students completed
the module: 10
female (16%) and 54
male (84%).

32 255 32 258

2008/09 81 students (12
female and 69 male)

9 students (all male)
(A:6, B:3)

72 students completed
the module: 12
female (17%) and 60
male (83%).

37 259 35 265

2005/08 294 students (31
female and 263 male)

51 students (A:27,
B:24)

243 students
completed the
module: 31 female
(13%) and 212 male
(87%).

122 257 121 255

123 | P a g e

4.2. Analysis of Learner Attainment Scores (Hypotheses 1a and 1b)

Detailed results of the statistical tests carried out on the attainment data are presented

in Appendix K, while an overview is provided below.

Attainment marks in Software Development are divided into two components: final

exam and continuous assessment. Each learner’s overall grade is determined by

combining both components in equal proportion. As well as analysing this combined

grade, each component was analysed separately. This allowed an investigation into

how a hybrid PBL teaching method influences learners’ skills, as measured by

continuous assessment mark, and knowledge, as measured by exam mark.

As described in section 3.6.2.1., a number of statistical tests were carried out on the

attainment scores of all four cohorts to assess the effectiveness of the PBL module:

• Group A’s attainment results (for semester 1) from both final exam and

continuous assessments were compared against Group B’s results.

• Group A’s course entry points (achieved in the Irish Leaving Certificate or

equivalent) were compared against Group B’s course entry points.

The above tests are sufficient to test Hypotheses 1a and 1b. However, for

completeness, the following additional tests were carried out on the attainment

scores of the first cohort 2005/2006):

• Group A’s attainment results (for semester 1) from both final exam and

continuous assessments were compared against historical (semester 1)

attainment data for the Software Development module.

• First year engineering students were used as an additional control group.

They also take the Software Development module but do not use PBL. The

Engineering students have very similar course entry points to the Computing

students (achieved in the Irish Leaving Certificate or equivalent), and both

the Computing and Engineering class have very similar demographics.

124 | P a g e

Table 4-2: Group A (Exam Results) vs. Group B (Exam results) (Hypothesis 1a)

Year Group A Mean

(Rounded)

Group B

Mean

(Rounded)

F-test (Rounded) T-test (equal variance) Effect Size

2005/06 57 51 P=0.0756 (variances are equal) P=0.1593 (not significant) 0.28
2006/07 51 52 P=0.0636 (variances are equal) P=0.4211 (not significant) -0.05
2007/08 50 52 P=0.0806 (variances are equal) P=0.3012 (not significant) -0.13
2008/09 48 54 P=0.4088 (variances are equal) P=0.0933 (not significant) -0.31
2005/09 50.91 52.35 P=0.1970 (variances are equal) P=0.2836 (not significant) -0.07

Table 4-3: Group A (CA Results) vs. Group B (CA results) (Hypothesis 1b)

Year Group A

Mean

(Rounded)

Group B

Mean

(Rounded)

F-test t-test (equal variance) Effect Size

2005/06 67 52 P=0.2001 (variances are equal) P=0.0072 (significant @ .05) 0.71
2006/07 63 58 P=0.4882 (variances are equal) P=0.1647 (not significant) 0.25
2007/08 64 61 P=0.3411 (variances are equal) P=0.2800 (not significant) 0.14
2008/09 64 54 P=0.4078 (variances are equal) P=0.0114 (significant @ .05) 0.54
2005/09 64.28 56.37 P=0.4776 (variances are equal) P=0.0009 (significant @ .05) 0.40

125 | P a g e

4.2.1. Analysis of Exam Attainment Scores (Hypothesis 1a)

As can be seen in Table 4-2, when Group A’s exam marks were compared with

Group B’s for each of the four academic years 2005/06, 2006/07, 2007/08 and

2008/09, there were some small changes in the mean scores but t-tests show that

these differences are not statistically significant at the .05 level. While an effect size

of 0.28 can be seen in the first year of PBL introduction, a trend of increasing

negative effects on knowledge is noticeable in the following three years (-0.05, -0.13

and -0.31 respectively). When the data for the four years were tested as a single

population, no evidence was found that the hybrid PBL module made a positive

difference to students’ knowledge as measured by exams, with an overall effect size

of (ES = -0.07). Indeed, over the four years of the study, PBL had a small negative

effect on knowledge acquisition.

4.2.2. Analysis of Continuous Assessment Scores (Hypothesis 1b)

Table 4-3 shows the comparison of Group A’s continuous assessment marks against

Group B’s for the four academic years 2005/06, 2006/07, 2007/08 and 2008/09. An

examination of skills as measured by continuous assessment marks reveals a

different picture. Here a larger difference in the means is noticeable, particularly in

the first and last year of the study, where the differences are statistically significant.

The difference in continuous assessment marks over the four years of the study is

also statistically significant. This significance was shown by both simple t-tests and

by further more rigorous tests on Groups A and B through the performance of

residual gain analysis, which compares like with like explicitly by taking out the

effect of a student’s ability at entry (measured by Leaving Certificate points or

equivalent). These more rigorous tests show that the differences in means between

Group A and Group B in 2005/06, and 2008/09 as well as the overall marks are

significant at the .05 level.

Confirmation of the finding that the differences in means were significant was

provided by creating an ANCOVA general linear model (GLM) using the overall

mark and group, and then making the Leaving Certificate (LC) points the covariate,

which produces a p-value that also takes the control (LC points) into account

explicitly.

126 | P a g e

Group A’s course entry points (achieved in the Irish Leaving Certificate or

equivalent) were compared against Group B’s course entry points to determine

whether there was any difference in ability between the two groups. Overall Leaving

Certificate performance has been shown to be a reasonable predictor of Software

Development performance with a correlation coefficient of (r = .66) (Moran &

Crowley, 1979). Over the four years of the study Leaving Certificate points had a

correlation coefficient of (r = .602) with combined exam and continuous assessment

scores. However, the regression analysis for the 05/06 data showed that Leaving

Certificate points had a correlation coefficient of (r = .3).

Over the four years of the study the mean Leaving Certificate entry points for Group

A were 257 while Group B’s were 255, and t-tests showed that that these differences

in the mean are not statistically significant at the .05 level. The biggest difference in

mean entry points between the groups was in 2005/06. In that year the mean entry

points for Group A were 269 while Group B’s were 248. However, again t-tests

show that that these differences in the mean are not statistically significant at the .05

level.

An examination of the effect of PBL on skills reveals larger effect sizes than those

for knowledge. Indeed, there is a very large effect size of 0.71 in the first year of

PBL, with effects of 0.25, 0.14 and 0.54 in the following three years. When the data

for the four years were tested as a single population, evidence was found that the

hybrid PBL produced a significant improvement in learners’ skills as measured by

continuous assessment, with an overall effect size of (ES = 0.40).

4.2.3. Additional Analysis of Attainment Data

In the year 2005/ 2006 some additional tests were carried out on the attainment data.

A comparison of the PBL Group (Group A) against historical (semester 1)

attainment data for the Software Development module, shows that the mean

increased from 55 to 62 when compared against the 04/05 intake and from 57 to 62

when compared against the 03/04 intake. However, t-tests show that these effect

sizes are not statistically significant at the .05 level.

When compared against the non-PBL Engineering Group, overall performance

showed an improvement with the mean score increasing from 53 to 62. Simple t-

127 | P a g e

tests show that this change is significant at the .05 level. However, performing more

rigorous tests on Group A and the Engineering Group through the performance of

residual gain analysis showed that between Group A and the Engineering Group the

changes in mean were not significant at the .05 level.

The effect sizes reported here on knowledge and skills are in line with those reported

in a number of other studies (Dochy et al., 2003). A point worthy of note is that the

groups are not totally independent, as Computing students mix freely between

groups and with Engineering students outside of class time.

4.3. Analysis of Learner Self-Regulation (Hypothesis 2)

As described in section 3.6.2.2., participants’ Learning Self-Regulation

(Autonomous or Controlled Regulation and their Relative Autonomy Index) was

measured over two cohorts of learners, using a statistical analysis of learner

responses on the Learning Self-Regulation Questionnaire (SRQ-L), which was given

out to all participants in both groups at the start and end of semesters 1 and 2.

A number of statistical tests were carried out on the results to assess changes in

learners’ intrinsic motivation due to attending the PBL module:

• Group A’s Relative Autonomy Index at the start and end of semester 1 were

compared against Group B’s results.

• Group A’s and Group B’s Relative Autonomy Index at the start and end of

Semester 1 were compared separately using t-tests.

• Any change in Group A’s Relative Autonomy Index during semester 1 was

compared against Group B’s results.

Detailed results of the statistical tests carried out on the Relative Autonomy Index

data are presented in Appendix L, while an overview is provided below.

In total 136 students took the SRQ-L, 64 in 2007/08 and 72 in 2008/09. As shown in

Table 4-4, when Group A’s Relative Autonomy Index scores were compared with

Group B’s at the start of semester one for each of the two academic years 2007/08

128 | P a g e

and 2008/09, there were some small changes in the mean scores but t-tests show that

these differences were not statistically significant at the .05 level.

When both groups’ Relative Autonomy Index mean scores were compared at the end

of semester one, after the teaching intervention, a slightly different picture emerges.

The overall mean Relative Autonomy Index scores for the PBL group show a small

increase from 11.08 to 13.98, while the overall mean scores for the non-PBL group

show a slight decrease from 12.38 to 11.73. Statistical analysis using t-tests show

that these differences are not statistically significant at the .05 level. However, when

the data for the two years were tested as a single population, some evidence was

found that the hybrid PBL model produced a slight improvement in learners’ relative

autonomy with an overall effect size of (ES = 0.23). Nonetheless, given the

statistical results it cannot be said that learners who complete the PBL course will

have a higher degree of intrinsic motivation than those in the control group.

129 | P a g e

Table 4-4: Learner Self-Regulation (Hypothesis 2)

 Group A (PBL) Relative Autonomy Index Scores Group B (Non-PBL) Relative Autonomy Index Scores

Two

Cohorts

Mean (Rounded)
(Start of Semester
1 Before PBL
Teaching)

Mean (Rounded)
(End of Semester
1 After PBL
Teaching)

Mean Difference
between Start and
End of Semester

Scores.

Mean (Rounded)
(Start of Semester
1 Before Non PBL

Teaching)

Mean (Rounded)
(End of Semester 1
After Non PBL

Teaching)

Mean Difference
between Start and
End of Semester

Scores.

2007/09
11.08 13.98 2.9 12.38 11.73 -0.65

Table 4-5: Learner Programming Self-Efficacy (Hypothesis 3)

 Group A (PBL) Programming Self-Efficacy Scores Group B (Non-PBL) Programming Self-Efficacy Scores

Cohort

Mean (Rounded)
(Start of Semester
1 Before PBL
Teaching)

Mean (Rounded)
(End of Semester
1 After PBL
Teaching)

Mean Difference
between Start and
End of Semester

Scores.

Mean (Rounded)
(Start of Semester
1 Before Non PBL

Teaching)

Mean (Rounded)
(End of Semester 1
After Non PBL

Teaching)

Mean Difference
between Start and
End of Semester

Scores.

2007/08
132 181 49 132 153 21

2008/09
116 179 63 119 138 19

2007/09
123 180 57 125 145 20

130 | P a g e

4.4. Analysis of Learner Programming Self-Efficacy (Hypothesis 3)

As described in section 3.6.2.3., participants’ Programming Self-Efficacy was

measured over two cohorts of learners using a statistical analysis of learner responses

on the Computer Programming Self-Efficacy Instrument (PSE) which was given out

to all participants in both groups at the start and end of semesters 1 and 2. A number

of statistical tests were carried out on the PSE results to assess changes in learners

Self-Efficacy due to attending the PBL module:

• Group A’s Computer Programming Self-Efficacy results at the start and end

of Semester 1 were compared against Group B’s results.

• Group A’s and Group B’s Computer Programming Self-Efficacy results at

the start and end of Semester 1 were compared separately using t-tests.

• Any changes in Group A’s Computer Programming Self-Efficacy during

Semester 1 was compared against Group B’s results.

Detailed results of the statistical tests carried out on the Self-Efficacy data are

presented in Appendix L, while an overview is provided below.

In total 136 students took the PSE: 64 in 2007/08 and 72 in 2008/09. As can be seen

in Table 4-5, when Group A’s PSE scores were compared with Group B’s at the start

of semester one for each of the two academic years 2007/08 and 2008/09, there were

some small differences in the mean scores but t-tests show that these differences are

not statistically significant at the .05 level.

When both groups’ PSE mean scores were compared at the end of semester one,

after the teaching intervention, much wider differences in the mean scores can be

seen. In 2007/08 and 2008/2009 the mean PSE scores for the PBL group were 181

and 179 respectively, while the mean scores for the non-PBL group were 153 and

138. Statistical analysis using t-tests shows that these differences are statistically

significant at the .05 level. In 2007/08 the effect size was (ES = 1.53), and in

2008/09 the effect size was (ES = 1.92) Furthermore, when the data for the two years

were tested as a single population, evidence was found that the hybrid PBL model

produced a significant improvement in learners’ self-efficacy with an overall effect

131 | P a g e

size of (ES = 1.70). Therefore it can be said that learners who complete the PBL

course will have a higher degree of programming self-efficacy than those in the

control group.

4.5. Analysis of Students’ Approaches to Learning (Hypothesis 4)

As described in section 3.6.2.4., participants’ approaches to studying were measured

over one cohort of learners, using a statistical analysis of learner responses on part B

of the Approaches and Study Skills Inventory for Students (ASSIST), which was

given out to all participants in both groups at the start and end of Semesters 1 and 2.

Section B contains 52 items and produces scores on Deep, Surface and Strategic

Approaches to learning.

An indicator of the success of the Hybrid PBL model is whether learners in Group A

show higher scores on meaning orientation and lower scores on reproduction

orientation than learners in Group B. A number of statistical tests were carried out on

the results to measure and assess changes in learners’ learning orientation due to

attending the PBL module:

• Group A’s approaches to study results at the start and end of semester 1 were

compared against Group B’s results.

• Group A’s and Group B’s Approaches to Study results at the start and end of

Semester 1 were compared separately using t-tests.

• Any change in Group A’s approaches to study scores during semester 1 was

compared against Group B’s results.

Detailed results of the statistical tests carried out on the approaches to learning data

are presented in Appendix L, while an overview is provided below.

In total 72 students from the 2008/09 cohort took part B of the Approaches and

Study Skills Inventory for Students (ASSIST). As can be seen in Table 4-6, when

Group A’s ASSIST mean scores for deep, strategic and surface apathetic approaches

were compared with Group B’s at the start of semester one, there were some small

differences in the mean scores, but t-tests show that these differences were not

statistically significant at the .05 level. However, when both groups’ ASSIST mean

132 | P a g e

scores were compared at the end of semester one, after the teaching intervention,

much wider differences in the mean scores could be observed. The mean ASSIST

scores for deep, strategic and surface apathetic approaches for the PBL group were

58.89, 66.06 and 40.10 respectively, while those for the non PBL group were 54.59,

71.01 and 47.63. Statistical analysis using t-tests show that these differences are

statistically significant at the .05 level.

Furthermore, evidence was found that the hybrid PBL model led to an improvement

in learners’ meaning orientation, with an overall effect size of (ES = 0.35) on deep

approaches to learning and a reduction in reproduction orientation, with an effect

size of (-0.75) on surface apathetic approach. A small negative effect was also seen

on the strategic approach with an effect size of (ES = -0.41). From these findings it

can be said that learners in the PBL group will show higher scores on meaning

orientation and lower scores on reproduction orientation than those in the control

group.

133 | P a g e

Table 4-6: Students’ Approaches to Learning: Deep, Strategic and Surface Apathetic Approach Scores (Hypothesis 4)

Group A (PBL) Students’ Approaches to Learning

Scores

Group B (Non-PBL) Students’ Approaches to Learning

Scores

Cohort

Mean (Rounded)
(Start of Semester
1 Before PBL
Teaching)

Mean (Rounded)
(End of Semester
1 After PBL
Teaching)

Mean Difference
between Start and
End of Semester

Scores.

Mean (Rounded)
(Start of Semester
1 Before Non PBL

Teaching)

Mean (Rounded)
(End of Semester
1 After Non PBL

Teaching)

Mean Difference
between Start and
End of Semester

Scores.

Deep

Approach

2008/09

57.13 58.89 1.76 57.20 54.59 -2.61

Strategic

Approach

2008/09

71.0 66.06 -4.94 69.87 71.01 1.14

Surface

Apathetic

Approach

2008/09

46.20 40.10 -6.10 46.79 47.63 0.84

134 | P a g e

4.6. Analysis of Learner preferences (Hypothesis 5)

As described in section 3.6.2.4., participants’ preferences for different types of

teaching were measured over one cohort of learners, using a statistical analysis of

learner responses on part C of the Approaches and Study Skills Inventory for

Students (ASSIST), which was given out to all participants in both groups at the start

and end of semesters 1 and 2.

Section (C) invites students to indicate their preferences for different kinds of

teaching. The scales are ‘Supporting Understanding’ which indicates a deep

approach and ‘Transforming Information’ which indicates a surface approach.

An indicator of the success of the Hybrid PBL model is whether learners in Group A

show a greater preference for teaching that supports deep learning than learners in

Group B. A number of statistical tests were carried out on the results to measure and

assess changes in learners’ preferences due to attending the PBL module:

• Group A’s preferences for different types of teaching preference scores at the

start and end of Semester 1 were compared against Group B’s preference

scores.

• Group A’s and Group B’s Preferences for Different Types of Teaching scores

at the start and end of Semester 1 were compared separately using t-tests.

• Any change in Group A’s preference scores during Semester 1 was compared

against Group B’s scores.

Detailed results of the statistical tests carried out on the learner preference data are

presented in Appendix L, while an overview is provided below.

In total 72 students from the 2008/09 cohort took part B of the Approaches and

Study Skills Inventory for Students (ASSIST). As can be seen in Table 4-7, when

Group A’s ASSIST mean scores for Supporting Understanding and Transforming

Information were compared with Group B’s at the start of semester one, there were

some small differences in the mean scores but t-tests show that these differences

were not statistically significant at the .05 level. However, when both groups’

135 | P a g e

ASSIST mean scores were compared at the end of semester one, after the teaching

intervention, much wider differences could be seen in the mean scores.

The mean ASSIST scores at the end of semester for Supporting Understanding and

Transforming Information for the PBL group were 15.42 and 15.80 respectively,

while the mean scores for the non-PBL group were 14.22 and 17.82. Statistical

analysis using t-tests showed that these differences are statistically significant at the

.05 level.

Evidence was found that the hybrid PBL model led to an improvement in learners’

preference for Supporting Understanding approaches to teaching, with an overall

effect size of (ES = 0.36), and a reduction in learners’ preference for Transforming

Information approaches to teaching, with an effect size of (-0.63). These results

suggest that learners in the PBL group will show a greater preference for courses and

teaching that support deep learning (as opposed to surface learning) than those in the

control group.

136 | P a g e

Table 4-7: Learner preferences, Supporting Understanding and Transforming Information (Hypothesis 5)

 Group A (PBL) Learner preferences Scores Group B (Non-PBL) Learner preferences Scores

Cohort

Mean (Rounded)
(Start of

Semester 1
Before PBL
Teaching)

Mean (Rounded)
(End of

Semester 1 After
PBL Teaching)

Mean Difference
between Start
and End of

Semester Scores.

Mean (Rounded)
(Start of

Semester 1
Before Non PBL

Teaching)

Mean (Rounded)
(End of Semester
1 After Non PBL

Teaching)

Mean Difference
between Start
and End of

Semester Scores.

Supporting

Understanding

2008/09

13.97 15.42 1.45 14.54 14.22 -0.32

Transforming

Information

2008/09

16.93 15.80 -1.13 17.63 17.82 0.19

4.7. Summary

This chapter outlined a randomised controlled experiment that took place over four

cohorts of learners. The experiment tested five hypotheses: around whether using a

Problem-Based Learning approach instead of conventional lectures in the subject of

Software Development:

1. improves learner attainment in the subject;

2. improves learner motivation to learn the subject;

3. improves learner Software Development self-efficacy;

4. changes learners’ approaches to studying the subject (towards a deep

approach);

5. changes learners’ preferences for different types of teaching (towards

teaching that supports understanding).

The results show that using a Problem-Based Learning approach instead of

conventional lectures brought about statistically significant:

• improvements in learner attainment in continuous assessment (ES = 0.40).;

• improvements in learner Software Development self-efficacy (ES = 1.70);

• changes in learners’ approaches to studying the subject (towards a deep

approach) (ES = 0.35);

• changes in learners’ preferences for different types of teaching (towards

teaching that supports understanding) (ES = 0.36).

However, the results showed no statistically significant effects on:

• improvements in learner attainment in exams (ES = -0.07);

• improvements in learner motivation to learn the subject (ES = 0.23).

Chapter 5 will outline the second part of the study where additional data was

collected and analysed and where a qualitative study was also undertaken. A full

discussion of the findings from Chapter 5 will be undertaken in Chapter 6.

138 | P a g e

Chapter 5 - Additional Data Collection and Qualitative Findings

5.1. Introduction

This chapter has three sections. The first examines the classroom activities of all

learners participating in the study based on the log files stored on a number of

databases. Secondly an analysis of students’ responses to two questionnaires is

undertaken. Finally, the results of a qualitative study based on observations and

interviews are analysed. A full discussion of the findings is undertaken in Chapter 6.

5.2. Database Information Mining

Over the four years of the study, detailed information was taken from a number of

Anon College’s databases and online systems (Virtual Learning Environment,

Attendance Registers, Student Computer Network Audit Logs, and College

Management Information System). This data allowed an analysis of student

attendance and participation. A summary of the results is given in Table 5-1.

Table 5-1: Database Information Mining (4 cohorts)

05/06, 06/07, 07/08, 08/09

Grouped Data on:

Group A Mean

(Rounded)

Group B Mean

(Rounded)

Class attendance 61 out of 78 classes 45 out of 78 classes

VLE usage (Weekly,
theoretical maximum
possible time 10080
minutes)

115 minutes 156 minutes

Time logged onto PC
during labs (Weekly,
maximum possible time
360 minutes)

49 minutes 322 minutes

5.2.1. Analysis of Learner Class Attendance

An analysis of the student attendance registers showed that on average each semester

the PBL group attended 61 out of 78 classes, while the non-PBL group attended 45

out of 78 classes. Therefore the PBL group attended on average approximately 20%

more classes. This large difference was seen in all four years of the study. An

139 | P a g e

important point to make in relation to student attendance at class is that at Anon

College all students receive a European Social Fund Grant, the value of which is

based on their rate of attendance.

5.2.2. Analysis of Virtual Learning Environment Learner Logs

The Moodle Virtual Learning Environment (VLE) logs record when and for how

long learners access Software Development course notes (slides, tutorial sheets,

examples, etc.). Analysis of the VLE logs showed that the PBL Group spent less

time accessing course material than the non-PBL group. This difference may be due

to the fact that the PBL group do their problem-solving as a group without course

notes away from the PC, while in contrast the non-PBL group work at their PC with

course notes when working on problems.

5.2.3. Analysis of Computer Network Logs

The Computer Network logs record when students log on to and log off their PC.

Analysis of the Network logs taken of Software Development Laboratories shows

that the PBL Group spent only about 15% of the time the non-PBL group spent

logged on to their PC. This large difference is again likely to be due to the fact that

the PBL group do their problem-solving as a group on the white board away from

the PC, while in contrast the non-PBL group work individually at their PC on

problems. Also, only logs of Software Development laboratories were analysed.

Students often spend time working at the PC on Software Development problems

outside of class contact hours.

5.3. Analysis of Questionnaire Responses

As outlined in section 3.8., two questionnaires were given to learners, firstly a

background questionnaire to all students and secondly a PBL questionnaire to the

PBL groups. This section details the results of these questionnaires. The

questionnaire responses of the four cohorts were analysed as a single population.

5.3.1. Analysis of Learner PBL Questionnaires

The PBL Questionnaires were given to all students in Group A (PBL Group) who

completed the module for the four academic years 2005/06, 2006/07, 2007/08 and

2008/09. In total 122 students were given the questionnaire with 106 students

140 | P a g e

completing it. The PBL questionnaires are contained in Appendix F1 and students’

answers are given in full in Appendix M. A summary is provided in the following

sections.

The questionnaire focuses on six areas influencing students’ opinions and decisions

on Software Development:

• PBL Group work;

• the PBL method;

• student interest in Software Development;

• course objectives and content;

• the PBL tutor;

• teaching resources.

5.3.1.1. PBL Group Work

Students had broadly positive opinions of the work done in the PBL group. 69.8%

(74 out of 106) felt that the tutorial group discussions were an important stimulus for

their Software Development learning activities, while 73.6% (78 out of 106)

considered that the learning issues generated in the group tutorials were the most

important starting point for their learning activities. 63.2% of the students (67 out of

106) said they did not study independently of the learning issues generated by the

PBL group tutorials, which reinforces the view that the learning issues generated in

the group tutorials were an important starting point for students’ learning activities.

Most students (79.2%, 84 out of 106) felt that they learned something in the PBL

tutorials that improved their Software Development skills. However, 46.2% (49 out

of 106) of students did not feel that the PBL tutorials improved their

communications skills. 63 out of 106 students (59.4%) said they would recommend

PBL tutorials to other students.

141 | P a g e

Figure 5-1: Q4: The group climate facilitated the learning process

As seen from Figure 5-1, one interesting finding was that 62 out of 106 students

(58.5%) felt that the group climate did not facilitate the learning process, a result that

held true for all four years of the study. This was a surprising result given the

students’ other answers about the PBL groups, and it was investigated further in the

interviews with students and in the classroom observations.

Figure 5-2: Q13: PBL was fun

5.3.1.2. The PBL Method

100 out of 106 students (94.3%) were open to the PBL method before the tutorials

but were neutral when asked whether, if they had had the possibility to choose before

the course, they would have opted for the PBL-course or the lecture-based course.

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q4. The group climate facilitated the

learning process

0

10

20

30

40

50

totally disagree disagree are neutral agree totally agree

Q13. PBL was fun

142 | P a g e

This may reflect a lack of information about PBL at the start of the course. However,

at the end of the PBL course, 93.4% (99 out of 106) felt they were well informed

about the PBL method.

When asked whether, after their experience of the course, they would now opt for the

PBL-course or the lecture-based course if they had to choose again, 62.2% (66 out of

106) chose the PBL course. However, as seen in Figure 5-2., 75 out of 106 students

(70.6%) did not consider that PBL was fun, or that the PBL classes motivated them

to use additional learning resources, although 64.1% (68 out of 106) did consider

PBL to be an effective way of learning for themselves. The finding that students did

not find PBL fun but that they did consider PBL to be an effective way of learning

was investigated further in the interviews with students and in the classroom

observations.

5.3.1.3. Student Interest in Software Development

80 out of 106 students (75.5%) were interested in Software Development and

considered it to be an important part of their study of Computing. However, other

than class attendance, the mean amount of additional learning time (per student)

invested each week in Software Development was just under two hours. This would

be considered less than adequate by academic staff within the Computing

Department and was investigated further in interviews with students. However it

should be noted that in informal conversations many students said they were ‘too

busy’ working in paid employment to ‘study hard’.

Figure 5-3: Q19: The content of the tutorials fitted the level of my knowledge

0

10

20

30

40

totally disagree disagree are neutral agree totally agree

Q19. The content of the tutorials fitted the

level of my knowledge.

143 | P a g e

5.3.1.4. Course Objectives and Content

Slightly over half of the students (52.8%, 56 out of 106) felt that the topics covered

during PBL classes stimulated their interest in Software Development. Nonetheless,

as shown in Figure 5-3., 42.45% of students (45 out of 106) did not feel that the

content of the tutorials fitted their level of knowledge.

59.4% of the students (63 out of 106) agreed that the problems used in the PBL

classes illustrated Software Development concepts. However, students were

ambiguous about whether the learning issues generated in the PBL classes were

tuned to the subject matter to be tested.

Figure 5-4: Q21: The questions included on past exams and continuous assessments for Software

Development to a large extent determine what I will study

As shown in Figure 5-4., 89 out of 106 students (84%) agreed that the questions

included on past exams and continuous assessment for Software Development to a

large extent determined what they would study. This strategic approach to learning

was to a degree limited by the fact that a majority of students did not consult the

course objectives set out in the Software Development syllabus, either at the start or

end of the Software Development course, to check whether they had covered all the

subject matter they were expected to cover in Software Development (84%, 89 out of

106 at the start and 63.2%, 67 out of 106 at the end).

0

10

20

30

40

50

totally disagree disagree are neutral agree totally agree

Q21. The questions included on past exams

and continuous assessment for software

development to a large extent determine

what I will study.

144 | P a g e

Figure 5-5: Q26: The PBL tutor’s interventions were adequate

5.3.1.5. The PBL Tutor

72.6% of students (77 out of 106) felt that the PBL tutor had steered the group

strongly. But surprisingly, as seen in Figure 5-5., 60.4% (64 out of 106) felt that the

PBL tutor’s interventions were inadequate. 74.5% (79 out of 106) felt their PBL

tutor was enthusiastic about PBL, though 52.8% (56 out of 106) did not feel that the

tutor stimulated students to make use of different sources of information and 40.6%

(43 out of 106) did not consider that in general the tutor stimulated their Software

Development learning activities. These findings were further explored in the

interviews.

5.3.1.6. Teaching Resources

Overall students were very happy with the teaching resources used in the teaching of

Software Development. 95 out of 106 (89.6%) students were content with the

classrooms; laboratories and computer equipment used in the Software Development

course. 92 out of 106 (86.8%) students were satisfied that the Moodle e-learning

environment supported their learning activities, while only 11 wanted more

timetabled PBL Software Development classes.

5.4. Qualitative Findings

The Qualitative findings are presented in the following sections and will be

discussed in chapter 6.

0

10

20

30

40

totally disagree disagree are neutral agree totally agree

Q26. The PBL tutor’s interventions were

adequate.

145 | P a g e

5.4.1. Analysis of Classroom Observations

Each week of the 15 week semester the researcher spent half an hour in PBL and half

an hour in non-PBL Software Development laboratories observing participants’

behaviour. This was done for each of four cohorts of learners over four academic

years, resulting in a total of 80 hours of participant observation. The full observation

schedule is given in Appendix I.3.

No observable difference between groups was noted in relation to students’ arrival

and departure times at class. However, there was a difference in the numbers of

students attending each class, with the PBL students having a better attendance. This

finding was supported by the analysis of Learner Class Attendance data (see Section

5.2.1).

There was a striking difference between how the PBL and non-PBL groups spent

their classroom time. The non-PBL group spent much more time ‘logged-on’ to their

computers, while the PBL groups spent more time developing solution plans and

schemas on paper.

Students’ in-class behaviour showed a difference between groups. A large proportion

of the non-PBL groups’ time was spent ‘off task’ engaged in entertainment-related

computer activities such as emailing friends, playing computer games, surfing the

web, watching Youtube videos and interacting with their social networks (Bebo,

Myspace, etc.). At times the non-PBL groups would spend up to 60% of class time

on these activities. Consequently students really enjoyed their time in the computer

lab although they got little useful Software Development work done. The non-PBL

groups showed little intra group tension, with students chatting and laughing about

their social activities.

The PBL groups only spent about 10% of class time ‘off-task’, usually chatting to

other members of their tutorial group about their social life. The rest of the time was

spent ‘on task’ discussing Software Development problems. The vast majority of

these conversations were good natured but sometimes (in approximately one lab in

every five) intra-group tension and conflict was apparent, and on a limited number of

occasions the tension escalated into open conflict between group members. This

conflict was always non-physical, involving shouting, heated arguments and name

146 | P a g e

calling. The conflict sometimes led to an unsuccessful laboratory session where the

time wasted arguing resulted in the problem not being solved during the allocated

time. Successful sessions seemed to rely most crucially on balanced discussions

between the students and careful preparation of the session by the tutors/lecturers.

PBL groups that worked well had a majority of the following characteristics: group

members participated in the discussion of the PBL problems; the atmosphere in the

group was relaxed; group members had done some preparation for the tutorial

sessions; and group members attended nearly all PBL classes. Problem PBL groups

had a majority of the following characteristics: group members did not participate in

the discussions of the PBL problems, with some members making no contribution at

all, consequently, the programming problem was solved only by one or two

conscientious group members; the atmosphere in the group varied from pleasant to

distant and tired; and some members were dominant and had very strong opinions,

which they failed to convey or make comprehensible to other members.

It was also noted that the PBL groups sought less direct assistance from

tutors/lecturers than the non-PBL groups. Tutors in the non-PBL groups spent a lot

of time answering basic programming syntax questions and were asked few

questions about alternative solution schemas. In the PBL groups this was completely

reversed, with the focus on schema construction.

In the PBL groups it became clear that students had many misconceptions of, or an

incomplete understanding of, the problems under discussion. Tutors/lecturers would

make notes of these deficiencies and then cover material aimed at rectifying the

problems at the end of the tutorial session. In the course of exploring a problem, the

members of the PBL group inevitably discovered areas in which their collective

knowledge was deficient. Staff would hope that, having recognised such a

deficiency, students would study the topic further outside of the tutorial session, and

then bring back new knowledge to the tutorial group during the next class. However,

observations of the PBL groups showed that students seldom did this.

The Software Development problems used in laboratories aimed to help students

master basic object orientation and abstraction. The same set of programming

problems was used in both the PBL and non-PBL groups. However, the way in

147 | P a g e

which the groups tackled the search for solutions to these programming problems

was strikingly different. Students in the non-PBL group worked individually on

problems seated at their computers. Students’ efforts focused on writing Java code

and then trying to compile this code into a running programme. Generally they had

numerous (usually between 10 and 30) syntax errors in their solutions, and their

focus would turn to removing the syntax errors in their code. They would then ask

basic syntax-related questions of their tutors. This process was quite demoralising

for students as even after fixing a large number of syntax problems and getting their

code to run, they would find that the solution schema they had used did not produce

the correct answer. They would then try to modify the schema, in the process

introducing new syntax errors into their code and the whole process would start

again. Sometime students would become disheartened and would stop working on

their Software Development problems and start to surf the web instead. Tutors also

found this process irritating as they spent so much time answering basic code syntax-

related questions rather than more advanced programme construction schema

questions. They constantly had to exhort students to work on their lab sheet instead

of surfing the web. Sometimes tutors would become bored and disengaged from the

students: so much so that they would surf the web or answer emails themselves.

Overall the learning effort was individual and mainly focused on programme syntax,

with trial and error attempts to develop a correct programme schema.

Students in the PBL groups worked in teams based around a white board and away

from the computers, which would usually be switched off. Students’ efforts focused

on describing the correct algorithm or schema to solve the programming problem.

The process would usually involve one or two of the more ‘talented’ group members

suggesting the steps towards a solution. The talented members would explain their

choices to the less talented group members, some of whom would withdraw from the

group discussions; indeed, many seemed not to take an active part in the search for

solutions at all. Sometimes the more talented members could not agree a set of steps

towards a solution. When this happened they would argue about the different

approaches until they either decided on one approach or asked the tutor for the

‘correct’ answers. Tutors would then try to get the whole group to consider the issues

and see if they could approach the problem from a different perspective; seldom did

148 | P a g e

tutors ‘impose’ a solution. This process would continue until the group felt they had

a correct and working solution schema. Then they would have the tutor examine

their solution for flaws and sometimes this would lead to a revision of the proposed

solution. Students then recorded their solution schemas in their PBL journals.

Overall it appeared that the learning effort was team-based and focused primarily on

developing a correct programme schema, rather than on code syntax.

Observation of the students revealed that most students in the PBL groups

constructed new contextualized knowledge through the process of problem-solving

and through their search for solutions to the problems. However, while most students

in the PBL groups took ownership of the problems, a minority did not take an active

part in problem-solving. This was also the case in the non-PBL groups where some

students seemed to be helpless in the face of difficult problems. The non-

participation of some students was investigated further during the interviews with

learners.

These direct, first-hand observations of in-class behaviour provided a high face

validity of data and an understanding of group behaviour. The observed tensions

within the PBL groups were investigated further in interviews with staff and

students.

5.4.2. Analysis of Students’ PBL Journals

All PBL students are required to keep a journal of their classroom activities. A

random sample of these journals was taken each year over four cohorts and analysed.

Ten journals were analysed in the first year and five journals in each subsequent

year. In total twenty-five journals were analysed. These journals are not reflective of

and do not record students’ feelings about, or experiences of, the learning process.

Nonetheless, they do provide a measure of student engagement and interest in

problem-solving. One thing that became clear from looking at the journals was that

the vast majority of students kept their journals up to date and had clearly recorded

many aspects of their problem solving work. For example, details of different

programming problems, initial attempts at solutions, and fully completed efficient

and effective solutions were recorded. These problems ranged from simple

introductory problems to advanced coding problems using complex programming

149 | P a g e

structures such as two dimensional arrays. The journals clearly showed students

involved in the process of problem solving, outlining a progressive series of possible

solution schemas, incrementally working towards an optimal solution. An analysis of

the plans and schemas developed by students showed that work on abstraction and

object orientation were key components of the solutions developed. A key point

identified was that abstraction and object orientation were made explicit within the

solution process undertaken by the PBL students.

5.4.3. Analysis of Informal Conversations

The researcher had a number of informal conversations about their experiences of

Software Development with students from both the PBL and non-PBL groups in

each of the four academic years of the study. The researcher also had informal

conversations with staff about their opinions of PBL.

One interesting finding was that a number of students felt that the group climate did

not facilitate the learning process. This point was raised mainly by the female

students. The main problem, they suggested, was that some students always wanted

to lead or take over the group, and when others resisted, arguments ensued. Two

female students stated that this problem was caused by ‘non-nationals’, in particular

male Asian and African students. When the author discussed this group interaction

problem with staff, they pointed out that it was a problem in a very small number of

groups and that a number of steps had been taken to address this problem, such as

tutors assigning and rotating roles (scribe, etc.) between all members of the PBL

group. When the author asked staff members if this was a particular problem for

groups containing non-national students, none of them said the problem was related

to nationality or ethnicity, although they did suggest it was sometime caused by male

students trying to impress other group members. These different possible causes of

conflict within PBL groups were investigated further in the interviews with staff and

students.

5.4.4. Analysis of Interviews

In the fourth year of the study eleven semi-structured interviews (five with staff and

six with learners) were conducted. Each interview lasted between 10 and 15 minutes.

150 | P a g e

Interviews were carried out over a two week period at the end of semester one. After

the interviews, detailed field notes were made of how the interviews proceeded.

Transcription of tapes was carried out after the interviews were complete. The

process of transcribing digital audio inevitably meant the loss of some data from the

original interviews as it involved translating verbal and non-verbal material into the

rules of written language (Cohen et al., 2000). Miles and Huberman (1984) note that

transcripts are unavoidably selective so the outcome is material that has undergone

not only reduction, but also a transformation and a form of interpretation. To

minimise any errors, great care was taken in the making of transcripts, and notes

were taken during the interviews regarding body language, voice inflection, mood,

interruptions and facial expressions. Transcriptions are presented in Appendix J.

Four male and two female learner participants, and two male and three female

staff/tutor participants were selected at random and asked to take part in an

interview. All names used are pseudonyms. It should be noted that all findings based

on the interview data are tentative due to the small number of interviews conducted

and their short duration.

5.4.4.1. Staff Interviews

The set of interview questions used for staff was adapted from Maudsley (2002) and

are listed in Appendix G. Eleven questions were asked of staff, exploring how they

conceptualised their students’ learning. In addition, questions were asked that

explored some of the observations noted in section 5.4.1. The names of all staff

members who taught on the PBL module were put in a hat and five names drawn at

random. If a staff member refused to be interviewed, another name was drawn from

the hat. Five staff members were interviewed (Catherine, Stuart, Mary, David, and

Natasha). Catherine, Stuart, Mary and David are all in their late thirties/early forties

and are Irish full-time members of academic staff, while Natasha is in her early

twenties and is a foreign postgraduate student working part-time as a tutor. Stuart

was the overall PBL coordinator and was in charge of the PBL module. All five staff

members had also taught in the non-PBL Software Development laboratories. This

allowed them make comparisons with students’ behaviour in non-PBL Software

Development laboratories.

151 | P a g e

The results of the staff interviews showed that some staff found their PBL

experience rewarding and most had a high level of enthusiasm, but some also

reported an increased workload. Some staff felt that while management was

supportive of PBL, the extra workload involved was not recognised. There was also

some tension between the PBL coordinator and other staff. Stuart felt that the other

staff members were not doing their fair share of the preparatory work, while some of

the other staff thought that Stuart did not delegate work to them and wanted all the

credit for undertaking PBL.

Staff reported an improvement in students’ motivation levels and better student

engagement with the PBL course. They also felt that students’ critical reasoning

skills had improved vis-à-vis non-PBL, particularly in relation to their ability to

create programme schemas and plans. In addition, staff felt that learners took more

ownership of the Software Development problems and asked fewer ‘basic’ questions

of tutors. The following excerpt from the interview with Catherine gives a flavour

both of the satisfaction tutors gained from seeing the PBL students’ progress, and of

the tensions between staff teaching PBL:

Interviewer: “For PBL then, what do you see as its main

advantage…..main disadvantage?”

Catherine: “Well...I think the good thing is seeing how involved

with the problems the students get. And after they have tried

their initial solutions, working with the students is enjoyable,

much better than in the ordinary labs.”

Interviewer: “Why is that?”

Catherine: “Because they are actually trying to construct a

solution that works rather than just stopping every time they

have a problem and asking for help, so their labs are much

better.”

Interviewer: “Any disadvantages?”

152 | P a g e

Catherine: “Yes, there is a lot of extra work preparing for a

lab.”

Interviewer: “Why is that?”

Catherine: “Well in the ordinary labs you are never stuck for a

solution as the questions are so simple. But in the PBL labs you

come up against complex problems that you have to figure out

on the spot. But look the worst thing is having to deal with X

[other staff member]. [Segment of interview omitted
5
]

It may be that the observed tension between staff was a result of personal animosity

between individuals. It is certainly the case that teaching Software Development

using PBL requires greater interaction between the staff and this may exacerbate

existing tensions or bring them to the fore.

Staff felt that the VLE technologies used in Anon College had a positive impact on

the PBL tutorials. However, they noted that some students tended to use the internet

to access coded solutions and get immediate answers to questions. Staff also

questioned whether the process of accessing information from the internet reduced

their students’ depth of understanding of Software Development concepts. Concerns

were raised as to the reliability and validity of the code accessed on the internet. It

should be noted that this was not just a problem in the PBL group: it was even more

the case for the non-PBL group due to the fact that they spent more time logged on

to their computers.

When asked during the interviews to account for the time learners spent off task in

the non-PBL labs, staff stated that they felt management would not support them if

they insisted on students concentrating solely on Software Development problems.

Staff also felt under pressure to ‘entertain’ their students.

One interesting point made by both Stuart and Catherine during the interviews was

that students working in the non-PBL group remained stuck dealing with syntax

5 See note at start of Appendix J.1.

153 | P a g e

issues, rather than mastering the concepts of abstraction and object orientation. They

both noted that the PBL students seemed to better master these concepts than the

non-PBL students. Other staff members also noted that the PBL students did not get

stuck at the syntax level. The following excerpts give a flavour of these issues. Here

is what Catherine said:

Interviewer: “Have you noticed any change in learner

behaviour in the PBL lab classes as opposed to the traditional

lab environment?”

Catherine: “In the PBL labs the students actually keep working

on their problems and are not surfing the web and using Bebo.

You don’t have to be constantly asking them to stop messing.”

Interviewer: “Have you noticed any change in how students go

about problem-solving?”

Catherine: “Yes well it is quite different. Em, firstly the PBL

students are in a group and away from the machines. They are

trying to get the steps in their algorithm right. Whereas the

others are always stuck on syntax.”

Interviewer: “In your opinion, have the students’ problem-

solving skills improved more in the PBL lab classes as opposed

to the traditional lab environment?”

Catherine: “Yes I think they have. They have better critical

reasoning skills.”

Interviewer: “Can you expand on that?”

Catherine: “I mean they can have a higher level focus on the

problem and they work out their overall problem-solving

approach before they start to code. They have a plan of what

they want to do. Also they understand the underlying concepts

154 | P a g e

better. They know what is meant by abstraction for example.

They know what you mean when you talk about an object-

oriented programme. They know what a class is.”

Here is what Stuart had to say:

Interviewer: “Have you noticed any change in learner

behaviour in the PBL lab classes as opposed to the traditional

lab environment?”

Stuart: “Em, my labs are much more professional. The students

love the problems and love working together. (Laughs) When I

bring in the whiteboard they fight over the pens. They really

enjoy the labs. They only thing is I’m so busy I never get a

break, I have to get around to all the groups. Yesterday I missed

lunch, but I don’t care, it’s fun.”

Interviewer: “Have you noticed any change in how students go

about problem-solving?”

Stuart: “My students are much better team workers and they

are better problem solvers because I make them work on their

problems at a high level, working out the correct set of steps in

pseudo code before they go near Java.”

The interview David also suggests that PBL helps develop learners’ problem-solving

skills:

David: “I suppose the main advantage would be the group

work, building a common solution, building on suggestions of

other students and trying to see the positives and negatives for

each suggestion and then building that into a solution without

as I say getting bogged down in low level details of how it would

be solved at a code level or whatever. So it’s just focusing on

the problem as a whole.”

155 | P a g e

Interviewer: “Have you noticed any change in learner

behaviour in the PBL lab classes as opposed to the traditional

lab environment?”

David: “ […] they’re not really thinking about the larger

problems in the low-level traditional labs. They’re more stuck

with syntax errors when they’re starting programming. So

they’re bogged down in that rather than thinking about how

they would solve the problem and worried about viewing bits of

code that might do what they want rather than thinking about it

in a logical step-by-step what do I need to do, not what’s this bit

of code that I might need to use. So it kind of focuses their

thinking a little bit more.”

David also raised the issue of tensions in the PBL groups which as will be seen later,

was also an issue for some of the student interviewees.

David: “Sometimes you might get a loud mouth or someone

who’s a bit more vocal than the others or may have some prior

knowledge or just natural ability and it’s their way or no way

and that can be a little bit unfortunate … you need to get

everybody contributing and not just agreeing with the leader. I

haven’t really seen too much of people being shouted down but

there have been. It’s more … somebody might say something

stupid and they get a little bit of slagging
6
 for it and they don’t

contribute anything more after that. So you have to try and kind

of guide that in the right way.”

Stuart and Catherine suggested during interviews that PBL had fostered in students

not just a greater interest in Software Development in first year but also in

Computing in general and that this effect lasts into the following years of their study.

6 To slag (Hiberno-English slang): to mock or to criticize someone in an unpleasant way

156 | P a g e

During the interviews some staff members acknowledged that some students were

not happy working in a group, especially the weaker less confident ones. The

following excerpts from the interviews with Mary and Natasha demonstrate this

point:

Mary: “One of the main disadvantages that I’ve found in my

work was to do with the way we structured the groups. I found

that the groups were far too big, that a lot of people got lost

within the group … there’s some very extrovert people and very

quiet people and it didn’t really suit some people. It suited

some, and others it didn’t, so you’re losing some people in that

setting.”

Natasha: “The disadvantage is that the students who are weak,

like, they don’t really need to work in the PBL because the

stronger students do everything for the group…”

Catherine noted that a disadvantage of PBL was that:

“only some students do the work, the rest are just too weak to

work out the problems so they just tag along. Also most of the

students don’t know where to start, they have no idea.

David on the other hand, considered that the PBL environment actually helped some
less confident students, as the following extract shows:

David: I think they enjoyed it. Certainly in the latter stages they

seemed to get a decent amount out of it especially the group

work. Actually some of them might be a bit reluctant say in a

lecture to speak up but in a small group setting may be more

inclined to volunteer their opinion.

5.4.4.2. Learner Interviews

Six learners from the 08/09 cohort were interviewed (Sarah, Ahmed, Nichole, Paul,

William and Darren). Sarah, Nichole, Paul, William and Darren are all Irish full-time

students, while Ahmed is a foreign student studying in Ireland. All are between the

157 | P a g e

ages of nineteen and twenty-one. The set of interview questions for students is given

in Appendix H and the transcriptions of the interviews are provided in Appendix J.

The interviews with learners supported the opinion of staff that there were

differences in students’ comfort levels when involved in teamwork. The stronger or

at least more confident students were happy to contribute to the group, while the

weaker, or less confident, students were inclined not to contribute. The following

excerpt from the interview with William demonstrates this point:

Interviewer: Did you enjoy the PBL classes?

William: “No. Not at all.”

Interviewer: “Why was that?”

William: “Cos like you’re sitting there and if you didn’t know

anything and then the lecturer comes over and starts talking to

you and you feel under pressure and it’s like ooooh I don’t

know anything and everyone else is just standing around and

they’re doing everything and you just haven’t got a clue what’s

going on so it’s not really very nice just sitting there like that.”

[…]

Interviewer:” Do you think the PBL group environment

facilitates the learning process?”

William: “No. I didn’t learn much in it.”

Interviewer: “Why did you think that was? Was it as you were

saying that you felt a bit lost?”

William: “Yeah, they knew everything and if you were lost and

behind and all that and they were flying ahead of you so you

don’t know and they’re moving on. You don’t really know what

158 | P a g e

they’re on about like cos you’re like you’re falling behind.

You’re unsure.” […]

Interviewer: “Did you feel isolated or uncomfortable in your

PBL Group?”

William:” Yeah, I did, because if you don’t know what you’re

doing you just feel, you know, you’re just sitting there.”

Four of the six interviewees gave positive answers when asked if working together

with other students in the PBL groups helped them make friends. PBL seems to have

facilitated students in developing a peer group support network. The following

excerpt from an interview with Darren was indicative of the general opinion:

Interviewer: “Did working together with other students in the

PBL groups help you make friends?”

Darren: “Oh yes, you get to meet all the other people in the

class and as you’re working together you get to really know

them. You wouldn’t be friends with them all but you get to

know people and you’ll know who to ask if you get a problem.”

These results show that the PBL model used in Anon College may provide a good

transition for students to a third-level environment.

In their interviews, Sarah and Ahmed noted that the stated role of the tutors outlined

in the induction at the start of the PBL course diverged from the actual situation that

emerged. The students were given to believe that they would have a choice of topics

to cover and that they could set some of their own learning objectives, depending on

their prior knowledge. This element of choice, they claimed, did not transpire; in fact

the tutors decided on the problem topics and set all the learning objectives. For

example:

Interviewer: “Did you feel well informed about the PBL

method?”

159 | P a g e

Sarah: “Yes, but I thought we would be able to pick some of the

problem areas ourselves, but the tutors always set the problems.

We had no say in choosing them.”

Ahmed: “Yes I did, but I think the tutors didn’t. You see I did

Java before coming here and I wanted to pick problems on

arrays or methods but they didn’t allow that. I had to do the

same problems as everyone else.”

Learner control is referred to in many of the definitions of student-centred learning

(Boud & Feletti, 1998), and is an important goal of the implementation of PBL at

Anon College. The finding from this study suggests that there is a role for further

PBL research to examine how the power relationships between staff and learners in

the learning process should best be developed.

PBL questionnaire responses showed that a majority of the students (64 out of 106)

felt that the PBL tutor’s interventions were inadequate. When this was explored

further in the interviews it transpired that some of the students interviewed found the

method troublesome. For example, during her interview Nichole said that PBL was

‘too much effort’ and thought the tutors were ‘a bit lazy’ or ‘didn’t know how to

solve some of the problems’. This comment suggests that some learners were

challenged by having to try to solve the problems ‘on their own’ and that they

expected the tutor to provide them with the ‘right answer’. Such feelings might

explain why some students said during interview that they did not like the course

structure and would have preferred to work independently or in smaller groups. For

example, William stated that:

William: “Classes should be smaller. [……] I think you need a

lecturer beside you. Like if there was a lecturer like there’d be

two between four or five groups and that’s not enough. I think

you need more lecturers. Like I think you need to look at that

and there should be less people within the class rather than

having so many groups and the lecturer not being able to help

you that much like.”

160 | P a g e

Interviewer: “Ok, so you’d like to see the lecturers help a bit

more.”

William: Yeah, and less students in the PBL groups. We had

eight in our group sometimes and that’s too much. You’re not

going to learn much.

Nichole went on to say that she did not feel she had actively participated in the PBL

sessions.

Interviewer: “Why didn’t you take an active part in the

sessions?”

Nichole: “I couldn’t be bothered. I’m a bit lazy in the

mornings. I’ll ask someone to go over it with me later on, and

then I’ll know the solutions for the exams. I don’t like talking

in the big group; if you make a mistake, they will always say

you’re wrong. Not everyone like, but some of them will.”

Nichole’s comment suggests that the PBL group environment did not suit some

students. This view is supported by results from the PBL questionnaires, with a

majority of students stating that the group climate did not facilitate the learning

process. The following excerpts from interviews with William and Paul illustrate the

fact that some students did not learn in the groups:

Interviewer: “How did you find the distribution of the work

between group members?”

William: Yeah, it was ok but there was always certain people.

Like, half of them would know what they were doing and the

other half was just sitting there not knowing what was going on

so the people that knew what they were doing would

communicate between themselves and we kind of just sat back

and you may say the odd thing whether it was right or wrong

161 | P a g e

but people who knew what they were doing they just moved

ahead really. We were falling behind still.

Paul: “The stronger ones took on more but everyone

contributed in my personal group. I saw other groups where it

was desperate, where two people did everything but in mine

personally it was brilliant.”

Given the very low numbers of females in the classes it is possible that they felt

isolated and uncomfortable in a mainly male atmosphere. However, during their

interviews, both female participants stated that they were not isolated. Rather, they

did not like arguments and some male members of the group did not contribute to the

problem solving, instead they tried to ‘act like jokers’. These issues were explored

further in the interviews. The following excerpts from the interviews with Nichole

and Sarah give a flavour of the difficulties. Firstly Nichole:

Interviewer: “Do you think the PBL group environment

facilitates the learning process?”

Nichole: “Yes in a way. It’s good to be in the group because

you get help solving the problems, but the guys are always

trying to show off who knows the most, and impress the tutors. I

couldn’t be bothered with all that stuff.”

Interviewer: “Did you feel isolated or uncomfortable in your

PBL Group”?

Nichole: “No not at all, working in a group was good, but the

problems were hard but I made friends and stuff.

When asked the same question Sarah had a different perspective:

Interviewer: “Do you think the PBL group environment

facilitates the learning process?”

162 | P a g e

Sarah: “Yeah, but not everyone does the work. Some of the

guys just sit back and let others do all the work. They don’t do

any preparation or nothing, but they still get credit when we get

the right answer. It’s not fair, the tutors don’t do anything

about it.”

Interviewer: “Did you mention it to the tutors?”

Sarah: “No, I’m not going to get into a fight over it. Like, it

doesn’t bother me that much. And some of the guys are me

mates anyway, so I’m not going to cause trouble. You know

what I mean? Anyway the tutors are paid to do the job, aren’t

they? They should notice and do something about it.”

 Interviewer: “Did you feel isolated or uncomfortable in your

PBL Group”?

Sarah: “No that’s not what I’m saying. I wasn’t isolated or

uncomfortable, I just didn’t like it that I had to do more work

than some of the others.”

The PBL questionnaire results showed that many of the students did not feel the PBL

sessions were fun. When the interviewees were asked about this they gave the

following replies:

Interviewer: “Do you enjoy the PBL classes?”

William: “No. Not at all.”

Nichole: “No not really, they are ok, but they’re a bit boring.

You can’t do anything but talk about the problems. That’s not

fun, that’s work. I’d rather be doing something else.”

Sarah: “Yes, they are enjoyable. Some of the problems are very

difficult and you feel great when you get them sorted out.”

163 | P a g e

Darren: “Well, they get you involved and are a good way of

learning, but I can think of better things to be doing.”

Ahmed: “I know a lot about Java and I enjoy showing the

others how to solve the problems.”

 Paul: “I would say overall yes. At first more so than at the end.

Interviewer: “Why was that?”

Paul: “At the end I think maybe I got bored with it. Like, it

starts off at the start and you’re interested. Half way through

you think it’s the best thing that ever happened and by the end

you’re just frustrated with it.”

Interviewer: “What’s the cause of that frustration?”

Paul: “I don’t know, maybe just doing the same thing again

and again.”

Some students found the PBL journal useful and were proud of their work. For

example, when asked about the journal Sarah said:

Interviewer: “Do you think keeping a PBL journal is useful?”

Sarah: “Yeah, you can use it to study the answers and it shows

you how much you have learnt. Yeah, the journal is a good

idea.”

The PBL questionnaire results show that only two students did not consider Software

Development to be important within the frame of their studies. This view that

knowing how to program is important is reflected in most of the answers given

during the interviews that contain references to the Software Development course

being a ‘rite of passage’ that had to be undertaken in order to become a true

computer scientist. The literature suggests that when confronted with difficult

Threshold Concepts learners view them as a rite of passage (Meyer & Land, 2005;

164 | P a g e

Turner, 1995; van Gennep, 2004). The following experts from student interviews

illustrate the importance most interviewees attach to Software Development.

Interviewer: “Do you consider Software Development to be an

important subject?”

Nichole: “Yeah, it is a very difficult subject, but if you can get

through it, you have made it, because it is the subject people

fail.”

Sarah: “Yes of course. If you can’t program you can’t do

anything. You need to know how to program to be able to

handle other subjects. […] Once you know how to program

then you feel like you have made it.”

Darren: “Yes, so many people fail it, it’s scary but you just have

to get through it. You’ll never get a job if you can’t program.”

Paul: “Yeah”

Ahmed: “Yes, the most important subject. If you can’t program

you’ll never make much money. Some of the others don’t

realize that, that’s why they fail. It is easy once you work at it.

You have to do all the lab problems and study the notes. You

can’t learn it from a book, you just have to do the labs.”

William: “It is if you want to go down that road of doing games

and all that and if you don’t it’s not of use at all but it wouldn’t

be of use to me now because I don’t want anything to do with it.

I hate it.”

When asked how much time they spent studying Software Development outside of

class contact hours, most of the students said that they had to go to work at their

part-time jobs, and that this left little or no time for study. This was the case for all

subjects, not just Software Development.

165 | P a g e

The interviews show that most students see value in doing individual work. The

following excerpts demonstrate the general opinion:

Interviewer: “What advice would you give to other students

who are having problems with Java programming?”

Darren: “I’d tell them that they need to work on their own.”

Sarah: “They need to sit down and think about what they’re

doing, try the problems for themselves.”

 Paul: (Laughs). “Ask for help.”

William: “Listen from the very beginning and take out loads of

books, and study. And take out books and all. And ask loads of

questions as well.”

Ahmed: “Sit down and work it out on paper first and so you

really understand what is happening.”

5.4.5. Categories and Themes Identified

An attempt was made to identify categories and themes from the work. Open coding

was undertaken which involved scrutinising, line by line, the interview transcripts,

PBL questionnaires, PBL journals and field notes of observations. This process

resulted in the identification of five categories of issues of relevance to the PBL staff

and students, as follows:

• Learner engagement with problem solving;

• The difficulty of learning to program;

• Managing intra-group relationships;

• Managing tutor-student relationships;

• The troublesome nature of PBL for staff and students.

166 | P a g e

Axial coding was then undertaken in an attempt to make connections between the

categories by examining the data in context and examining causal

relationships/conditions. This process points to “expressions of learner behaviour in

the PBL classroom” as the main theme.

5.5. Summary

The findings from the experiment outlined in Chapter 4 as well as the findings from

the questionnaires, database logs and qualitative study were analysed using a

concurrent triangulation strategy as outlined in Chapter 3.5, and Chapter 6 provides a

detailed discussion of these findings.

167 | P a g e

Chapter 6 - Discussion and Conclusions

“[T]he answer to the question ‘Does PBL work?’ is: it depends.”

 (Richardson, 2005, p. 51).

6.1. Introduction

This chapter discusses the quantitative and qualitative findings presented in chapters

4 and 5, linking them to the work of other researchers in the field and to the literature

on PBL, motivation and Computing. It looks at the implications of the research for

educational theory and practice, and examines what future research could be

undertaken in the area to improve educational outcomes for learners.

6.2. Discussion of Findings

This section discusses the findings around whether using a Problem-Based Learning

approach instead of conventional lectures improves outcomes for learners. The main

outcomes focused upon are learner attainment, learner motivation, learner Software

Development self-efficacy; learners’ approaches to studying and learner preferences

for different types of teaching. In addition, a discussion of whether PBL classes can

improve first year learners’ acquisition of Threshold Concepts in Computing is

undertaken. Questions relating to what parts of the Computing curriculum are most

suitable for PBL, what types of learners are most suited to learning through PBL and

at what stage in their college lifetime they should undertake PBL are also discussed.

Discussion of the findings has been postponed until this chapter, as delaying the

interpretation of the experimental results, the qualitative findings and the data mining

allows the results of each part to be cross referenced against each other and provides

a fuller picture.

6.2.1. Attainment

The quantitative analysis of the data from the four cohorts shows in relation to

knowledge acquisition a small negative difference in the performance of students

taught using the PBL approach over those not using PBL, but this difference is not

significant, with an effect size of (ES = -0.07). However, an examination of the

168 | P a g e

effect of PBL on skills shows a significant increase and a larger effect size (ES =

0.40). The effect sizes reported here in relation to knowledge and skills are in line

with those reported in Dochy et al. (2003) in their meta analysis on the effects of

PBL. The finding that the PBL groups had a knowledge deficit compared to the non-

PBL groups is supported by other studies (Albanese & Mitchell, 1993; Baca et al.,

1990; Eisenstaedt et al., 1990). However, the emphasis placed on problem

elaboration in PBL has been shown promote the recall of declarative knowledge

(Gagné, 1978; Schmidt, 1990; Wittrock, 1989), and mastering declarative knowledge

has been shown to be central to an understanding of programming (Brooks, 1990;

Détienne & Soloway, 1990; Guindon, 1990; Rist, 1990; Robertson & Yu, 1990;

Visser & Hoc, 1990). As Dochy et al. say “[a]lthough the students in PBL would

have slightly less knowledge…, their knowledge has been elaborated more and

consequently they have better recall of that knowledge.” (2003, p. 543). Albanese

and Mitchell (1993) also support this view.

The causes of the observed deterioration in the positive effects of PBL on knowledge

in the second, third, and fourth years, and skills in the second and third years of its

implementation are unknown. One possible contributing factor is that when PBL was

first introduced in the Computing Department, staff were particularly enthusiastic

and devoted a great deal of effort to its organisation and delivery. In the following

years the enthusiasm lessened, mainly due to the high workload involved in

supporting the PBL classes. Marsh (1987) reports that this is a common occurrence

when PBL is introduced. Also, it should be noted that course entry points decreased

over the time period analysed in this study and students in the earlier years had a

higher ability level (gauged by Leaving Certificate points or equivalent). However,

this applied to both groups equally, and was taken into account in the linear model

used in the comparison of PBL with historical non-PBL attainment data.

A point worthy of note is that the continuous assessment results of the non-PBL

students improved considerably over the first three years under scrutiny, a

phenomenon which merits further investigation. However, the continuous

assessment results of the PBL group remained better than those of the non-PBL

group throughout. It is also interesting to note that dropouts were spread evenly

between both the PBL and non-PBL group, a finding which is contrary to what

169 | P a g e

Newman (2004a, p. 151) observed in his meta-analysis of PBL, where dropout rates

were much higher in the PBL groups. However, at Anon College all students receive

a grant, the value of which is based on their rate of attendance, and this monetary

incentive may serve to reduce dropout rates.

This study found support for the hypothesis that using a PBL approach in the

teaching of first year Software Development will improve students’ performance in

continuous assessment that tests skills, but not in final exams that test knowledge.

This is perhaps because the PBL group spent more time ‘on task’ working on

Software Development problems. Another likely reason for the differences in

programming skill levels as measured by continuous assessment grades is that in the

non-PBL group the learning effort was mainly focused on programming strategies

based on code syntax and a trial and error attempt to develop a correct program

schema, while in the PBL group the learning effort was mainly focused on

developing programming strategies based on a correct program schema, and not on

code syntax. This view finds support in the literature: for example, creating correct

schemas has been shown to be a central element in program design (Davies, 1993;

Ormerod, 1990). Brooks (1990) points out that the programming strategies that

novices use strongly impact on the quality of final program that is produced, and

Winslow in his review of studies (1996) states that:

[A] large number of studies conclude[d] that novice programmers
know the syntax and semantics of individual statements, but they do
not know how to combine these features into valid programs
(Winslow, 1996, p. 17).

This view that novices’ main difficulties lie with schema composition problems and

not programming language construct-based problems is supported by many other

researchers (du Boulay, 1989; Linn & Dalbey, 1989; Perkins et al., 1989; Robins et

al., 2003; Soloway & Spohrer, 1989). Thus would appear that using a PBL approach

focusing on producing a correct program schema rather than on code syntax provides

better training for novice programmers.

6.2.2. Motivation

Some evidence was found that the hybrid PBL model brought about a slight

improvement in learners’ relative autonomy with an overall effect size of (ES =

170 | P a g e

0.23). Nonetheless, given that the results are not statistically significant, it cannot be

said that learners who complete the PBL course will have a higher degree of intrinsic

motivation than those in the control group. This was an unexpected result in view of

the research that suggests that the PBL teaching method promotes perceived

autonomy and self-determination (Butler, 1999; De Volder et al., 1986; van

Grinsven & Tillema, 2006), which in turn can have a positive effect on students’

motivation (Deci & Ryan, 1985; Hidi & Harackiewicz, 2000). Furthermore, studies

on the introduction of PBL in medicine, accountancy and managerial education show

positive changes in student attitudes and motivation compared to non-PBL students

(Bernstein et al., 1995; Bridges & Hallinger, 1991; Pincus, 1995; Schmidt et al.,

1992). However, one major difference between those studies and the study at Anon

College is that the participants in the former were high attainment learners. This

suggests a need for more research into the possible motivational benefits of PBL for

low attainment learners which will be discussed in section 6.2.9. In addition, given

that research has shown low levels of intrinsic motivation and high levels of extrinsic

motivation to be attributes of learners on programming courses (Mamone, 1992),

research is needed to examine if learners on certain Computing courses are less

intrinsically motivated than learners on high status courses like medicine.

6.2.3. Software Development Self-Efficacy

Evidence was found that the hybrid PBL model brought about a significant

improvement in learners’ programming self-efficacy with an overall effect size of

(ES = 1.70). Therefore it can be said that learners who complete the PBL course will

have a higher degree of programming self-efficacy than those in the control group.

This result was expected given the research that shows a link between programming

self-efficacy and PBL (Bergin & Reilly, 2005; Dunlap, 2005), and programming

self-efficacy and improved performance in skills (Wiedenbeck et al., 2004). To

explain this finding, it might be the case that the specific instructional strategies used

in PBL, namely the use of authentic problems of practice, collaboration and

reflection, increase student engagement and are therefore the catalysts for students'

improved self-efficacy (Hendry, Frommer & Walker, 1999).

The effect size in this study was larger than that reported by Bergin and Reilly

(2005) in a study at an Irish university on the role of comfort-level (including

171 | P a g e

programming self-efficacy) on a first-year object-oriented Java programming module

taught using a Problem-Based Learning approach. This divergence in findings might

be partially explained by the difference in prior attainment of the participants. Given

the low prior attainment of learners in the study at Anon College, it is possible that

they had greater scope for improvement in programming self-efficacy.

As exam attainment results were similar for both PBL and non-PBL groups,

improved exam attainment grades can be ruled out as an explanation for the

increased learner self-efficacy on the PBL module. However, the improvements in

continuous assessment results, which are given out to students during the semester,

may have a role to play in the increase in learner programming self-efficacy.

6.2.4. Approaches to Studying

When compared against the non-PBL group there was evidence that the hybrid PBL

model led to an improvement in learners’ meaning orientation, with an overall effect

size of (ES = 0.35) on deep approaches to learning, and a reduction in reproduction

orientation with an effect size of (-0.75) on surface apathetic approach. A small

negative effect was also seen on the strategic approach, with an effect size of (ES = -

0.41). From these findings it can be said that learners in the PBL group will show

higher scores on meaning orientation and lower scores on reproduction orientation

than those in the control group. This result was expected and is in line with the

results of studies of paramedical and medical students (Newble & Clarke, 1986;

Sadlo, 1997). It supports the claim by Sadlo and Richardson (2003, p. 267) that

“students who are taking programs with a problem-based curriculum appear to have

approaches to studying that are more desirable than those of students taking

programs with a subject-based curriculum in the sense that they are more compatible

with the stated aims of most programs of study in higher education”. However,

Groves (2005) disagrees that PBL curricula foster a deep approach to learning, and

suggests that other factors such as workload may be greater determinants of learning

approach than curriculum type. Taken together, these findings emphasise the

context-dependent nature of learning approaches as well as the importance of

assessment as a driver of student learning.

172 | P a g e

Although the experimental findings show a significant effect on approaches to

studying, one issue which may require further investigation is that 89 out of 106

students in the PBL group stated that the questions included on past exams to a large

extent determined what they would study. This suggests that, while less so than the

control group, the PBL learners are still extrinsically motivated by performance in

exams, and have a strategic or surface-learning approach to learning. However, as

only the PBL group was asked this question, their responses cannot be compared

against those of the non-PBL group.

As stated earlier, there was no statistically significant difference between the PBL

and non-PBL teaching approaches in terms of exam attainment marks. This finding

is in line with the research which shows that adopting a deep learning approach alone

may not be the most optimal for achieving high grades (Barron & Harackiewicz,

2001; Bouffard et al., 1998; Elliot & Church, 1997; Elliot & McGregor, 2001;

Harackiewicz et al., 1997; Harackiewicz et al., 2000; Skaalvik, 1997; Wolters et al.,

1996).

6.2.5. Preferences for Different Types of Teaching

Evidence was also found that the hybrid PBL model led to an increase in learners’

preference for Supporting Understanding approaches to teaching with an overall

effect size of (ES = 0.36) and a reduction in learners’ preference for Transforming

Information approaches to teaching with an effect size of (-0.63). These results

suggest that learners in the PBL group will show a greater preference for courses and

teaching that support deep learning (as opposed to surface learning) than those in the

control group. These findings are in line with results from other studies that show

evidence that PBL enhances students’ approaches to learning and improves their

perception of the quality of their course (Sadlo, 1997; Sadlo & Richardson, 2003).

6.2.6. Acquisition of Threshold Concepts in Computing

Threshold Concepts were examined in section 2.3 as a framework that may help

explain why learners find computer programming so troublesome. A review of the

literature identified two aspects of programming that may constitute Threshold

Concepts in Computing: object-orientation and levels of abstraction (Eckerdal et al.,

2006). These concepts are certainly concepts that students find troublesome to

173 | P a g e

master (Eckerdal & Thuné, 2005; Fleury, 2001; Or-Bach & Lavy, 2004; Ragonis &

Ben-Ari, 2002; Rehder et al., 1995). Misconceptions of object-oriented concepts and

abstraction can be hard to shift later, and such misconceptions can act as barriers

through which all later teaching on the subject may be inadvertently filtered and

distorted (Hoc & Nguyen-Xuan, 1990; Holland et al., 1997). There is evidence that

the concepts of object-orientation and abstraction are transformative (Eckerdal,

2004) “requir[ing] nothing less than a complete change of world view” (Luker, 1994,

p. 58). From the PBL questionnaires, observations and interviews it was clear that

students saw their Software Development course as a rite of passage that had to be

undertaken in order to become a Computing professional. The literature suggests that

this can be a view that learners take of difficult Threshold Concepts (Meyer & Land,

2005; Turner, 1995; van Gennep, 2004).

Student responses to the PBL questionnaires show that a majority of students

thought that the learning issues generated in the group tutorials were the most

important starting point for their learning activities and that the problems used in the

PBL classes illustrated Software Development concepts. The same set of

programming problems was used in both the PBL and non-PBL groups. These

problems aim to help students master basic programming constructs, object

orientation and the use of different levels of abstraction in Software Development.

The analysis of the PBL journals shows that students worked on the problems of

abstraction and object orientation in a detailed, thorough and thoughtful way, with a

focus on schema development. In contrast, interviews with staff suggest that the non-

PBL group working on the same set of problems remained stuck dealing with syntax

issues, rather than mastering the Threshold Concepts of abstraction and object

orientation.

This finding suggests that the PBL method may be better than conventional lectures

and tutorials at helping students to master Threshold Concepts in Computing.

Coupled with the evidence that PBL has improved outcomes on programming

courses, including the skills element of the course at Anon College, this indicates

that PBL may be a good instructional choice for the teaching of programming. This

in turn suggests that the use of PBL to teach novice learners may help to increase

student retention. Such a view is supported by the literature which postulates that

174 | P a g e

constructivist approaches, and PBL in particular, can help learners overcome the

disjunction caused by Threshold Concepts (Savin-Baden, 2000). This may be

because Computer Programming requires learners to master complex conceptual

knowledge, and any misunderstandings at the conceptual level will directly affect

learners’ skill levels (Bonar & Soloway, 1985; Clancy, 2004). The PBL tutorials

cause students to engage with and attempt to solve complex programming problems

earlier in the curriculum than the traditional approach (Savin-Baden, 2006).

Therefore any misconceptions students have are confronted immediately they

attempt to solve the PBL problems. Tutors can then identify the misconceptions and

intervene to correct them, thus preventing the misconception from becoming

ingrained. Learning problems are identified and dealt with earlier than in the

traditional approach. Tutors can help this process by selecting PBL tutorial problems

that focus learners’ efforts on concepts that they find troublesome. In addition, the

group work aspect of PBL may be beneficial because it allows learners to articulate

the underlying concepts they are trying to master.

6.2.7. The Computing Curriculum and Other Subjects

Although Mayer (2004) argues that discovery learning techniques have failed in the

teaching of computer programming, this study suggests that PBL may be more

effective than traditional methods in producing improved outcomes on programming

courses. Its effectiveness is that it teaches strategies rather than concentrating on

syntax, which in turn may render it effective in helping master the Threshold

Concepts of abstraction and object-orientation. In addition, PBL may be a more

effective teaching methodology on other courses on the wider Computing curriculum

where learning outcomes require similar skills to programming courses. Examples

are subjects such as networking, databases, systems analysis and software

engineering that require students to apply the same complex design and diagnostic

skills as are needed in Software Development. This view is supported by reports in

the literature of the successful application of PBL to network design (Linge &

Parsons, 2006), databases (Connolly & Begg, 2006), systems analysis (Bentley,

Lowry & Sandy, 1999) and software engineering (Kay et al., 2000). Outside of the

Computing discipline there are many other higher education subjects where

175 | P a g e

improving learners design and diagnostics skills would lead to better outcomes, such

as in Civil, Electrical, and Mechanical Engineering.

6.2.8. At What Stage to Apply PBL

Kirschner, Sweller, and Clark (2006) suggest that PBL is less effective and efficient

for novices than guided instructional approaches because it is in conflict with the

architecture commonly used by cognitive load theory (Sweller & Sweller, 2006).

However, this study found positive effects on first year learners and discovered that

first year students were open to trying the PBL method. This suggests that PBL

should be introduced at the beginning of a degree course, when students are more

open to new ideas rather than towards the end. This view is supported by a study of

the introduction of PBL in the final year of an Electronic Engineering degree, where

Mitchell et al. (2005) found that the students had difficulty changing and were very

uncertain when faced with anything that required initiative. This suggests that the

introduction of PBL is a profound change to teaching and learning and that, if

changes so profound are to succeed, they must be based on evaluated experience and

good theory.

6.2.9. Types of Learners

A number of studies have shown PBL to be effective in improving some learning

outcomes for higher attainment learners in higher education, mainly in the fields of

business and medical related studies (Bernstein et al., 1995; Bridges & Hallinger,

1991; Pincus, 1995; Schmidt et al., 1992). This study has shown PBL to have

beneficial effects for a group of learners, many of whom would be classed as low

attainment in a higher education context. However, this study has also highlighted

that many weaker students dislike the group work associated with PBL. Nonetheless,

a number of studies have shown that working collaboratively on programming

problems in groups is beneficial for weaker students (Mayer, 1989; van Gorp &

Grissom, 2001; Wills et al., 1999). These findings suggest that PBL can bring about

desirable changes in learning outcomes on courses attended by learners with either

low or high attainment. Nonetheless, given that the effect size on motivation

measured in this study was not statistically significant, it is possible that the positive

effects of PBL on the motivation of high attainment learners observed in other

studies (Blumberg & Michael, 1992; Norman & Schmidt, 1992; Shin et al., 1993)

176 | P a g e

may not hold for low attainment learners. More research is needed to determine if

this is true and if so, why.

6.2.10. Discussion of Other Findings

Feedback from interviews with learners suggests that the PBL model used in Anon

College may provide a good transition for students to a third-level environment by

helping them get to know the other students in their class. It also facilitates students

in developing peer group support networks that help to remove the feelings of

isolation commonly experienced by first-year students. This view is supported by the

results of a study on the introduction of PBL in Computer Science in another Irish

college (O'Kelly, 2005). However, due to the lack of a comparative study, it is

impossible to determine whether the PBL approach is more successful than other

student induction programmes using different methods (Edward, 2001).

Nearly all the students felt the classes helped them make friends, and 66 out of 106

said they would like to take another PBL module. 68 out of 106 students considered

PBL to be an effective way of learning for themselves. 56 out of 106 students felt

that the PBL classes stimulated their interest in Software Development. However,

some students said during interview that they did not like the course structure and

some students said that they did not feel that they had actively participated in the

PBL sessions. A group size of 7-8 may be too large and allow some members to

avoid working on the problems. Tutors need to be aware of these difficulties and

provide independent work in the laboratories and closely monitor the division of

work within PBL groups. Successful tutorials seemed to rely most crucially on

balanced discussions between the students and careful preparation for the session.

Learner responses on the PBL questionnaire and learner and staff interviews showed

that the use of virtual learning environments such as Moodle was found to be helpful

to students and useful in managing the students’ learning. This result was as

expected and is supported by the literature (O'Neill, Singh & O’Donoghue, 2004).

There were observable differences in the rate of attendance at the PBL and non-PBL

classes, with the PBL groups having a higher attendance. This was evident both from

observation and from an analysis of Learner Class Attendance logs. There was also a

striking difference in how students spent their classroom time. The non-PBL group

177 | P a g e

spent much longer ‘logged-on’ to their computers, while the PBL groups spent more

time developing solution plans and schemas on paper. This observation was

supported by an analysis of network activity logs.

Students’ in-class behaviour showed a striking difference between groups. A large

proportion of the non-PBL groups’ time was spent ‘off task’ while the PBL group

was much more focused on Software Development problem solving. This raises

issues about how staff manage activities in the non-PBL laboratories. The non-PBL

group enjoyed their time in the computer lab although they got little useful Software

Development work done. It was also noted that the PBL groups asked for less direct

assistance from tutors than the non-PBL groups. Tutors in the non-PBL groups spent

a large amount of time answering basic programming syntax questions and were

asked few questions about alternative solution schemas. In the PBL groups this was

completely reversed, with the focus on schema construction. This finding is in line

with studies of PBL that show it enhances learners’ ability to analyse and solve

problems (Duch et al., 2001; Hmelo-Silver, 2004; Torp & Sage, 2002).

Observations of the PBL labs showed that they were in general active learning

environments where there was a dynamic interplay of questioning, explanation,

argumentation, design of programme schemas, communication of ideas and findings,

and collaboration. However, questionnaire responses showed that students did not

spend much time outside of class revising software topics or problems. This suggests

that students do not reflect on their learning activities outside of class time. The lack

of teamwork observed in the non-PBL group and the high level of teamwork

observed in the PBL group is supported by the body of research showing that PBL

students tend to prefer cooperative learning and teamwork (Bernstein et al., 1995).

However, the point needs to be made that staff discourage teamwork in the non-PBL

laboratories because of fears of students colluding on individual assignments. The

observations of the PBL labs as active learning environments support the finding that

learners in the PBL group will show higher scores on meaning orientation and lower

scores on reproduction orientation than those in the control group, and that they will

also show a greater preference for courses and teaching that support deep learning

(as opposed to surface learning) than those in the non-PBL group. However, the

178 | P a g e

observation that the PBL learners did little further work outside class time shows that

these effects are limited.

The analysis of the VLE logs showed that the PBL Group spent less time accessing

course material than the non-PBL group. This difference may be due not to any less

engagement with the Software Development course but rather to the fact that the

PBL group undertook their problem-solving as a group without course notes, away

from the PC, while in contrast the non-PBL group worked at their PC with course

notes when working on problems. This view is supported by the observation that the

PBL students carefully recorded their learning in their PBL journals.

The non-PBL groups showed little inter group tension, with students chatting and

laughing about their social activities. The PBL groups displayed some limited intra

group tension and arguments, and a number of students felt that the group climate

did not facilitate the learning process. This point was raised particularly by the

female students. Given the very low numbers of females in the classes it is possible

that they felt isolated and uncomfortable in a mainly male atmosphere. However, in

interviews, both female participants stated that this was not the case. The issues they

raised were that some male members of the group did not contribute to the problem-

solving and that the females did not like engaging in arguments about group

activities. Other studies have also identified issues of an unfair distribution of work

in PBL groups (Kinnunen & Malmi, 2005; Woods, Hall, Eyles, Hrymak & Duncan-

Hewitt, 1996), and strategies need to be identified to address this problem.

PBL groups that worked efficiently had focused discussions about programming

problems: their conversations did not lapse into irrelevant topics. Another aspect of

efficient groups was that members gave each other positive encouragement and this

fostered an increase in positive contributions from group members. In some

inefficient groups members made ill-mannered comments to each other and this

caused a decrease in positive contributions from group members. Similar findings

have been found in other studies of group interactions (Postmes, Tanis & de Wit,

2001; Wheelan & Williams, 2003). Inefficient PBL groups also had members who

were very dominant due to their previous knowledge or their personality. Tutors

need to be aware of this problem and can help other students to cope with

179 | P a g e

dominating students in constructive ways. Other studies have also identified the

problem of dominant group members and they provide guidance for tutors in

addressing this problem (Benbow & McMahon, 2001; Woods, 1996).

PBL group tensions have also been noted by Kinnunen & Malmi (2005) who

conducted a study of PBL in an introductory programming course in Finland. In their

findings they stress the need for tutor intervention to prevent conflict between PBL

group members. One possible cause of the PBL group tensions is that students find

PBL troublesome (Savin-Baden, 2000), possibly because they can become worried

that their strategies are wrong (Finucane et al., 1998), leading to a wish for more

tutor intervention and demands for a more didactic approach from teachers

(Newman, 2004b, p. 131). This view is supported in this study by the fact that a

large number of PBL students stated that the PBL tutor needed to steer the group

more strongly. Nonetheless, both staff and students said PBL helped to remove

barriers between staff and students, and this has been shown to lead to a better

learning environment (Blight, 1995). The study at Anon College highlights the fact

that the learner/learner and learner/tutor relationships need careful monitoring due to

their importance in influencing students’ learning and performance. Tutors need to

be aware that some learners who find the programming problems difficult may seek

solutions from tutors and peers without understanding the key concepts that underlie

the solutions, and in these cases there is a danger that these learners may plagiarise

the work of others (Irons & Alexander, 2004).

Staff believed that PBL helps to develop students’ verbal and written

communications skills and their ability to work in teams. However, a majority of

students did not feel that PBL helped their communication skills. Students and staff

alike believed that PBL helps to develop students’ critical thinking skills, but this

opinion was not given in comparison to the traditional teaching method. Whether

these beliefs are true remains unproven as this study found no difference in

knowledge between the PBL and non-PBL groups. Nonetheless, as seen from the

continuous assessment results, the PBL group were able to apply their knowledge

better than the non-PBL group.

180 | P a g e

It should be noted that in this study learner participants had very homogeneous

backgrounds. However, other than previous programming experience, students’

backgrounds were found not to be a factor in their success, with no demographic

factor or personality trait a strong indicator of success. This is in line with the

findings of other studies (Bishop-Clark, 1995; Evans & Simkin, 1989).

6.3. Implications for Instructional Practice and for Educational

Theory and Research

The magnitude of the effects on skills, programming self-efficacy, approaches to

learning and preferences for different types of teaching identified in the study at

Anon College implies that the findings are of both theoretical and practical

importance.

There is evidence of high failure and dropout rates and low retention rates in

introductory programming courses at tertiary level (Bennedsen & Caspersen, 2007),

particularly among first year students (Jackson, 2003). Computer Science courses

have the highest university dropout rates in the UK (Williams, 2007). Given that

almost all students starting Computing degrees are motivated to succeed (Jenkins,

2001, 2002), it is important to examine why outcomes are so poor. Learning to

program is a difficult task (Dijkstra, 1989; du Boulay, 1989; Jenkins, 2002) and

achieving mastery can take a long time, about 10 years of constant effort (Winslow,

1996). Therefore it is hardly surprising, as Connolly et al. (2008) point out, that for

many Computing students, learning programming is intimidating.

Many multi-national, multi-institutional studies conclude that the average first year

student does not make much progress on an introductory programming course

(Fincher et al., 2005; Kurland et al., 1989; Linn & Dalbey, 1989; McCracken et al.,

2001; Soloway et al., 1982; Winslow, 1996). These studies show that there is clearly

room for improvement in the way students are taught programming. Jenkins (2002,

p. 53) makes the point strongly, saying that “[a]t the moment the way in which

programming is taught and learned is fundamentally broken”. Given that novices

make limited progress in introductory programming courses, the literature calls for

introductory courses that are realistic in their expectations (Robins et al., 2003;

Winslow, 1996). Some researchers have suggested redesigning introductory

181 | P a g e

programming courses specifically to improve students experiences and to improve

retention (Mahmoud et al., 2004). How might the design and delivery of novice

computer programming courses be improved? The literature shows that teaching

standards clearly influence the outcomes of courses that teach programming (Linn &

Dalbey, 1989) and that the main problem for novices is program design and planning

(Winslow, 1996).

The programming strategies that they employ appear to account for the distinction

between effective and ineffective novices (Brooks, 1990; Robins et al., 2003).

However, most introductory programming courses are conventionally structured

with lectures and practical laboratory work; they concentrate on teaching

programming knowledge but not on the strategies needed to use this knowledge.

This may be due to the fact that, as Robins et al. (2003, p. 157) state, “strategies

themselves cannot (in most cases) be deduced from the final form of the program”.

PBL may be able to help in this regard, and this study has shown that students’ PBL

journals contain finished example programs which are rich sources of information

that can be presented, analysed and discussed. However, as Robins et al. (2003, p.

157) add, “[t]he strategies that created those programs, however, are much harder to

make explicit.” Soloway & Spohrer (1989, p. 412) suggest that “students are not

given sufficient instruction in how to ‘put the pieces together.’ [There is a need to

focus] explicitly on specific strategies for carrying out the coordination and

integration of the goals and plans that underlie program code”. Again PBL can help

in this case: this study has shown that PBL students focus explicitly on strategies that

‘put the pieces together’.

PBL can help to bring about other desirable changes. Sadlo (1997) conducted a study

which suggested that the quality of learning tends to improve with the extent to

which a problem-based approach has been implemented by an institution (Sadlo &

Richardson, 2003). These results suggest that, as Richardson (2005, p. 45) puts it,

“the use of PBL can bring about desirable changes in students’ approaches to

studying” and more generally suggests:

that changes in the design and delivery of particular courses affect
how students tackle those courses, and in particular that desirable

182 | P a g e

approaches to studying could be promoted by appropriate course
design, teaching methods and modes of assessment

 (Sadlo & Richardson, 2003, p. 254).

This general view is supported by other studies (Deek et al., 1998; Gibbs, 1992; Kay

et al., 2000).

The results of the present study point towards an improved learning environment and

the increased adoption of a deep approach to learning. This is perhaps partly due to

the creation of a learning space where mastery goals are promoted. However, the

introduction of some group-based work on non-PBL courses could possibly of itself

promote mastery over performance learning goals.

Alexander and Murphy (2000, p. 44) make the point that as issues of motivation

become part of instructional practice there will be “questions about the way in which

instructional practice may need to be formed or transformed to energize these

positive motivation forces.” For example, “will teachers view these [motivational]

constructs as unalterable traits that only serve to sort and categorize learners or to

rationalize their current educational progress or the lack thereof? Or will these

teachers see these constructs as motivational dimensions that are susceptible to

instructional intervention?” And if so, what instructional strategies are most likely to

bring about optimal motivation? For instance, “should teachers specifically aim their

efforts at altering a particular motivation construct (e.g., self-efficacy or individual

interest) or the conditions that might give rise to it (e.g., academic success or

domain-specific knowledge)? With regard to these various constructs, what

configuration of achievement motivations should be expected in highly successful

students and how should these profiles transform over the course of students’

educational careers?” (ibid, p. 44). Further research is needed to provide answers to

these questions and to identify how PBL may need to be modified to create

additional constructive motivation forces.

Studies (Lieberman & Remedios, 2007) have shown that as learners progress

through college, they become more concerned with grades and are substantially less

likely to want to master their subjects than first year learners. This raises questions as

to whether pressure for grades undermines course enjoyment and, if so, what could

183 | P a g e

be done to counteract this effect. It is possible that the adoption of teaching

methodologies such as PBL that lead to learners adopting deeper approaches to

learning might lead to improvements in students’ motivation that would counteract

the negative effects of exams on motivation.

The area of PBL implementation costs is not addressed in this study. However, the

literature shows that the implementation costs and staff workload of PBL are directly

related to class size (Finucane et al., 1998), and PBL may not be economically viable

with more than 100 students (Albanese & Mitchell, 1993). The study at Anon

College highlights the need for a high level of academic management support for

PBL and for the provision of additional teaching resources. Several of the staff

involved in the delivery of the PBL module reported a greatly increased work load,

even higher than the 30% increase suggested by Des Marchais (1993). If PBL were

to be rolled out across all courses in Anon College, then significant industrial

relations issues would need to be addressed. In fact, PBL in Computing will not be

sustainable in the long term without the provision of additional resources.

The transition from lecturer to PBL facilitator may be stressful for staff (Berkson,

1993). It involves an increased workload, requires some prior PBL training, and

necessitates management and peer support. There is also a major difficulty in finding

suitable PBL problems in Software Development (O'Kelly et al., 2004), as problems

need to be carefully selected and based on clear programming principles (Kurland et

al., 1989). The creation of a facilitator/tutor support network and a database of

suitable PBL problems would go some way towards solving these problems

(O'Kelly, 2005).

The findings of this study give rise to some practical recommendations to improve

the workings of PBL groups. Rules need to be put in place that encourage all

students to actively engage with the problems. For example, the marking schemes for

PBL programming problems should require students to be active participants before

they receive marks. The PBL problems given out at the start of the course should

include problem-solving tasks, as even at an early stage in their course students are

capable of a conceptual analysis of the problem domain, and many can even sketch

out a draft solution before they know many programming concepts or related syntax.

184 | P a g e

This focuses learner effort on problem-solving rather than code syntax. The

composition of the PBL group should be as homogeneous as possible with all

members having the same level of previous knowledge and skills, due to the

observation that when some group members have more programming knowledge

than others, weaker group members are inclined to ask them to provide the ‘correct’

answers rather than attempting to work out the solutions for themselves together

with the group. There is a danger that these weaker students may become passive

members of the group (Kinnunen & Malmi, 2005).

6.4. Suggestions for Further Research

Given that PBL has been implemented in many diverse contexts, in different

disciplines, and at different stages of learning, there is a need, as Richardson (2005,

p. 51) points out, “for an authoritative classification of the different ways PBL has

been implemented”.

The finding from the Anon College study that PBL led to a significant improvement

in learners’ Software Development skills, but had no effect on learners’ knowledge

as measured by exams, suggests that the type of knowledge tested in exams is not

what ought to be tested on a practical-based course like Software Development:

indeed it may be the case that Software Development should be tested through

continuous assessment alone. On the other hand, if the knowledge tested by exams is

essential knowledge, this suggests that research is needed to see how PBL can be

adapted to help ensure better knowledge acquisition.

The study at Anon College took learners’ mean prior attainment into account when

measuring the effect of PBL on attainment. Given that individual learners had a wide

range of prior attainment, further analysis could answer questions such as whether

PBL was more successful with the higher prior attainment learners than with the

lower prior attainment learners or vice versa. Taking this approach further, it would

be interesting to examine the nature of the measured effects of PBL on attainment,

self-efficacy, approaches to studying and preference for types of teaching at the

individual level. The observed effects are non-linear, that is to say, they are mediated

differently by the attributes of individual students. Therefore one could, for example,

seek answers to questions such as what characteristics of learners would improve the

185 | P a g e

effect of PBL on self-efficacy and would the same characteristic mediate differently

other outcomes, like attainment or approaches to study, and if it did, then the exact

relationship between the characteristic and the outcome could be studied.

In the course of informal conversations and interviews, some staff at Anon College

suggested that PBL had fostered in students not just a greater interest in Software

Development in first year but also in Computing in general and that this effect lasted

into the following years of their study. Further research is needed to test this

hypothesis. A longitudinal study that followed individual students through all four

years of their study could answer questions about the impact of using PBL in year

one on learners’ longer term academic motivation and whether using PBL beyond

year one could help to address the reduced course enjoyment and grade attainment

pressures in later academic years.

The study at Anon College highlighted issues for PBL group composition,

particularly in relation to gender, ethnicity, and dominance by some group members.

Cases were identified where group members were uncomfortable with the group

interactions and where there were tussles for leadership and dominance, and cases

where female group members were uncomfortable with the group interactions and

perceived male dominance of groups. Group members also reported tensions

between different ethnic minority groups within PBL groups. However, it should be

noted that in this study there were very small numbers of female or ethnic minority

participants. While the study of gender and ethnicity issues within PBL groups was

not the focus of this study, the findings suggest the need for further research in this

area.

Many learners on the PBL course were frustrated and found the method troublesome,

with some even stating that they thought the tutors were “lazy” or “didn’t know how

to solve the problems”. Learners were challenged by having to try and solve the

problems “on their own” and without the tutor providing them with the “right

answer”. This suggests the need for research to find better ways of dealing with the

kinds of anxiety, self-doubt and frustration that learning can evoke and to provide

better support for learners both in managing the transition from traditional

186 | P a g e

approaches to a PBL-based approach and in facilitating better communication

between tutors and learners.

It was stated by some learners in interviews that there was a difference between the

roles of tutors outlined during induction at the start of the PBL course and the

realities of their practice as tutors. Students wished for more control over their

learning. This element of control is referred to in many of the definitions of student-

centred learning (Boud & Feletti, 1998) and suggests that there is a role in further

research in examining how the power relationships between staff and learners in the

PBL learning process should best be developed.

Dysfunctional PBL groups and tensions between members have been noted in a

number of studies (De Grave, Dolmans & van der Vleuten, 2001; Hendry, Ryan &

Harris, 2003; Hitchcock & Anderson, 1997). The role of the tutor is critical in

addressing the problem of dysfunctional PBL groups. Tutors who are too directive or

too passive hinder the learning process (De Grave et al., 2001; Hendry et al., 2003),

and research has shown that a tutor’s performance is partly situation-specific and

partly dependent on contextual circumstances (Schmidt, 1994). More research is

needed to identify the role of the PBL tutor in different contextual situations and to

provide guidance on how tutors might best guide dysfunctional PBL groups.

Further research is also needed to determine the causes of the tensions between

students and tutors, between staff, and between students involved in the PBL groups.

A possible reason may be that students’ conceptions of learning and their

conceptions of themselves as learners are a key factor in any attempt to implement

Problem-Based Learning effectively (Savin-Baden, 2000). Claims are made for PBL

that it promotes improvements in students’ conceptions of learning to a greater

extent than traditional curricula (ibid). However, Richardson (2005, p. 49) states that

“it can also be argued that PBL actually presupposes more sophisticated conceptions

of learning on the part of the students, and this might explain why some students

have difficulty adapting to PBL”. He goes on to point out that “PBL presupposes a

student-centred and learning-orientated conception of teaching on the part of the

teacher [and t]his might explain why some teachers have difficulty adapting to PBL

or accepting it as an approach” (ibid, p. 54). This hypothesis suggests the need for

187 | P a g e

further research into “whether students with a reproductive conception of learning

and teachers with a teacher-centred conception of teaching have difficulty adapting

to problem-based curricula, and which are the key characteristics determining the

effectiveness of problem-based curricula” (ibid, p. 42).

Further exploration of the relationship between Threshold Concepts and learning

difficulties is needed along with further research to develop a systematic method of

identifying Threshold Concepts. Research is also needed to identify the full set of

Threshold Concepts in Software Development and the wider Computer Science

curriculum and to identify and develop innovative teaching strategies that help

students better master Threshold Concepts in all disciplines.

Rountree & Rountree (2009, p. 142) suggest that “examining the different ways in

which practitioners in Computer Science, Information Systems, Mathematics,

Physics, Electrical Engineering and Linguistics tackle similar problems may produce

excellent candidates for Threshold Concepts in each discipline, and opens up a

research question concerning whether Threshold Concepts are shared between

disciplines (and thus whether there is a hierarchy of Threshold Concepts), and

whether Threshold Concepts mutate as they cross between disciplines”.

Research is also needed into how software applications such as messaging programs,

virtual learning environments, Web 2.0, and social networks can be better integrated

into the classroom. The computerised activity logs of such applications can provide a

rich alternative source of data about learners. Research packages and tools need to be

developed to allow researchers to access and analyse this data with ease, and more

research is needed into how these data sources could be mined for a greater insight

into learner behaviour. In harnessing these sources, privacy and ethical issues will

need to be addressed to protect learners and teaching staff from unwarranted

surveillance.

Davies (1993, p. 238) contends that research is needed to determine “the relationship

between the development of structured representations of programming knowledge

and the adoption of specific forms of strategy” and he identifies as significant

strategies relating to the general problem domain, the specific programming task, the

programming language and the programming tools used.

188 | P a g e

Von Mayrhauser and Vans (1995a) identify a number of open research questions in

the area of program comprehension and generation that relate to the scalability of

existing experimental results due to the small programs used, and the validity and

credibility of results which are based on experimental procedures.

The study at Anon College supports the call by many researchers for the use of

simple, specially-designed programming languages for teaching such as Logo (du

Boulay, 1989; Jenkins, 2002). However, the pressure on programming course

designers to ensure compliance with the norms of the software industry means that

the vast majority of courses use standard workplace languages such as Java or C++

(Robins et al., 2003). More research is needed into the possible benefits or

disadvantages of teaching detailed reusable object-oriented program schemas called

design patterns, particularly teaching special pedagogical patterns, using pattern

languages (Sharp et al., 2003; The Pedagogical Patterns Project, 2001), that allow

students to adapt simpler known strategies to new and more complex problems

(Proulx, 2000; Reed, 1998).

It seems that object-oriented programming might be particularly difficult for novices.

Some researchers, including Wiedenbeck et al. (1999), suggest the use of

visualisation tools to aid comprehension (Baecker, 1998; Cooper et al., 2003).

However, more research is needed to identify the pedagogical requirements so that

these tools can be applied effectively in different teaching contexts (Gomez-

Albarran, 2005; Rößling & Naps, 2002; Smith & Escott, 2006).

Most of the research findings reported in the literature relate to mainstream learners,

often in the field of psychology, while the motivational requirements and the impact

of learning environments on the motivation of other learners, such as those with

disabilities or special educational needs, are not focused upon. Another factor that

was apparent from the literary review done for this study was that the vast majority

of the research reviewed was conducted by American, British or Australian

researchers studying American, British or Australian students. Furthermore, almost

all of the literature represents a Western philosophical orientation. This raises

questions as to whether the conclusions and implications that educators draw from

189 | P a g e

the literature can be applied across a broader cultural population. Such questions can

only be answered through programmes of cross-cultural motivation studies.

6.5. Limitations of the Study

As far as this author can ascertain, this research is the first of its kind in Ireland

which focuses on investigating the effectiveness of a PBL strategy for first-year

students with low prior attainment status in an Irish college. Due to the fact that these

efforts constitute the first research in response to the needs of students of this level,

there are some limitations of this study that must be taken into account before

reaching any generalisations.

First, the learners in this study were mainly low attainment learners and the findings

may not be more generally applicable to contexts involving high attainment learners.

Second, the groups are not totally statistically independent, as Computing students

mix freely between groups and with engineering students outside of class time.

Third, most of the learners in the Anon College study are grant-aided in that they are

paid for attending classes. This may skew attendance and retention rates and lessen

the general applicability of the findings. Fourth, some of the findings in this study

are based on learner responses on self-report questionnaires. However, a number of

steps were taken, as outlined in chapter 4, to ensure validity. Fifth, learner

participants in this study were very homogeneous: there was a small number of

female and ethnic minority participants, and the needs of students with disabilities

and special educational needs were not focused upon. Finally, it should be noted that

the sample frame used in this study, Anon College, constituted an opportunity

sample, and that the finding cannot therefore be safely generalized to higher

education as a whole. In addition this study was undertaken in only one tertiary level

college. A multi-national, multi-institutional study would provide more generalisable

findings and overcome some of the possible shortcomings of using an opportunity

sample.

190 | P a g e

6.6. Conclusion

Although it cannot be said that learners who complete the PBL course will have a

higher degree of intrinsic motivation than those in the control group, the

comparisons between groups provide support for the hypotheses that first year

Software Development students taught using a PBL approach will: have a higher

degree of programming self-efficacy than those in the control group; show higher

scores on meaning orientation and lower scores on reproduction orientation than

those in the control group; show a greater preference for courses and teaching that

support deep learning (as opposed to surface learning) than those in the control

group; and perform better in continuous assessment that test skills but not in final

exams that test knowledge.

The improvement in skills is perhaps because in the non-PBL group the learning

effort was mainly focused on programming strategies focused on code syntax and a

trial and error attempt to develop a correct programme schema, while in the PBL

group the learning effort was mainly focused on developing programming strategies

based on a correct programme schema, and not on code syntax.

The study at Anon College provides evidence that the PBL model assists students in

problem abstraction, problem definition and problem refinement. Interviews with

staff suggest that the non-PBL group working on the same set of problems remained

stuck dealing with syntax issues, rather than mastering the concepts of abstraction

and object orientation. Thus it is likely that the students taught using the PBL

method will develop greater mastery of the concepts of object orientation and

abstraction. This suggests that the PBL method is better at helping students master

Threshold Concepts in Computing, which in turn suggests that the use of PBL to

teach novice learners may help to improve student retention. And better student

retention is the ultimate aim of the introduction of PBL in the first year Software

Development course at Anon College.

191 | P a g e

Appendices

A-1 | P a g e

Appendix A - Ethics

A.1. Ethics Form Durham 2006
FORM EC2

(revised December 2004)

UNIVERSITY OF DURHAM

ETHICS ADVISORY COMMITTEE

APPLICATION FORM FOR RESEARCH ETHICS APPROVAL

OF WORK WITH HUMAN PARTICIPANTS

Introduction:

All University work with human volunteers must be assessed for ethics approval, whether it is in

teaching, undergraduate or taught postgraduate project work or research. Applications should

normally be submitted two months before the intended project start date.

Normally, Departmental Ethics Committees consider applications from undergraduates and taught

postgraduates and from academic staff for teaching projects. Ethics approval for research projects,

by research postgraduates or staff must be sought from either the University Ethics Advisory

Committee or an NHS Local or Multi-Centre Research Ethics Committee.

Here, and in any country where it is intended to undertake work involving patients, tissue sampling,

invasive procedures, or any clinical trial, full prior permission must be sought and obtained from the

NHS Research Ethics Committee (www.corec.org.uk) or its authorised equivalent . Certain work with

babies and children must also be referred to an NHS Local or Multi-Centre Research Ethics

Committee. The researcher or academic supervisor must check as early as possible with the

Insurance Officer, Claire Robinson (Claire.robinson@durham.ac.uk) that full insurance cover is in

place and should forward to the Committee’s Secretary a copy of the application form to (and later

decision letter from) the NHS’ MREC or LREC or equivalent.

Please use this form for research work and project work. Both need signed approval from the Head

of your Department/School and, where established, the Chairman of your Department/School’s Ethics

Committee, before submission to the Ethics Advisory Committee.

You should also enclose a copy of the consent form you will be asking participants to sign and the

information sheet (written in layperson's language) you will give to participants, and - where applicable

- parents and teachers. (The term "participant" is used to cover any volunteers involved in the project,

with the exclusion of the researcher and his/her supervisor.) An example consent form is included at

the end of this form, and this should be followed as closely as possible.

You are recommended to provide participants with a separate information sheet, rather than

combining the information sheet and consent form into one, in order that participants can take the

information sheet away with them.

Please send the signed EC2 application form to the Secretary of the Ethics Advisory Committee

(Katrina Tomlin, School of Education, telephone: ext 48402, e-mail: k.m.tomlin@durham.ac.uk).

A-2 | P a g e

Returned applications must be either typed or word-processed. It would assist members if you could

also forward your form to the Secretary as an e-mail attachment - it is understood that this additional

copy would be unsigned.

NB Please consult with the Research and Economic Development Support Services and the Home

Office Website before planning any work involving animals.

SECTION A INVESTIGATOR:

1. NAME, QUALIFICATIONS, POST HELD STUDENT (course) /ACADEMIC STAFF/OTHER:

2. E-MAIL ADDRESS, DEPARTMENT, CONTACT ADDRESS and CONTACT TELEPHONE

NUMBER

3. PRINCIPAL INVESTIGATOR

4, PRINCIPAL INVESTIGATOR'S E-MAIL ADDRESS, DEPARTMENT, CONTACT ADDRESS and

CONTACT TELEPHONE NUMBER

5. RESEARCH SUPERVISOR OR ACADEMIC-IN-CHARGE (TEACHING):

6. RESEARCH SUPERVISOR/ACADEMIC-IN-CHARGE’S E-MAIL ADDRESS, UNIVERSITY

DEPARTMENT, CONTACT ADDRESS AND TELEPHONE NUMBER

7. LIST ALL CO-WORKERS, THEIR: STATUS, EMPLOYER (AND DEPARTMENT), AND

RESEARCH EXPERIENCE:

8. INTENDED LOCATION/S FOR THE STUDY

James Doody, M.Sc., Student (Ed.D.) / Lecturer

James Doody

Prof. Peter Tymms

p.b.tymms@durham.ac.uk Director CEM in the School of Education, +44 (0) 191 33 48413

None

Anon College, Ireland.

A-3 | P a g e

9. CONSENT: Please give details of any other consents applied for and/or obtained from: NHS

Local Research Committees in this country, or their equivalent overseas, for medical/clinical

projects etc., and attach copies of any relevant application forms submitted and decision

letter/s received.

SECTION B DESCRIPTION OF WORK

10. TITLE OF PROJECT:

11. PROPOSED ROUTES OF PUBLICATION (for students, this may be by dissertation; for staff: an

indication of the type of publication envisaged)

12. ABSTRACT:

N/A

An evaluation of the effectiveness of using a Problem-Based Learning approach in the
teaching of the Java programming language to 1st year third level students.

EdD. Assignment, Thesis, possible conference paper.

Abstract

This study will evaluate the effectiveness of using a Problem-Based Learning (PBL)
approach in the teaching of the Java programming language to 1st year third level students.
Effectiveness will be measured solely by quantifying any change in students’ attainment
marks attributable to using PBL in the module. Other – qualitative - non-attainment
improvements possibly attributable to PBL, such as any improvement in the learning
environment and students’ enjoyment of the subject, will be measured by means of
questionnaires and the results presented, but a detailed analysis of these factors will be
outside the scope of this study.

Detailed overview

PBL has been introduced (as outlined below) in the teaching of the Software Development
module to 1st year Computing students at ITT Dublin for the 2005/06 academic year.

First year full-time Computing students at ITT Dublin are randomly split into two groups for
Software Development (Java programming). Software Development is taught over two
semesters. This year, due to resource issues, in Semester 1 Group A were taught using a
PBL approach, while Group B were taught using a traditional approach (lectures and
tutorials). Both groups were taught by the same lecturer and used the same computer
equipment and laboratory space. At the time of writing, Semester 1 has finished and
Semester 2 has yet to start. In Semester 2, the Groups will be switched over, i.e. Group B
will be taught using a PBL approach, while Group A will revert to the traditional approach.

A-4 | P a g e

13. AIMS and OBJECTIVES: Please state the Research Question, including, where appropriate, the

hypothesis to be tested.

14. EXPERT INDEPENDENT REVIEW: Please state who has conducted an expert independent

review of your proposed project, and his/her verdict. (For a student, this will be your research

supervisor; for staff, the review may be by another member of your department.)

15. DESIGN OF STUDY and METHODOLOGY, in brief:

16. IS THIS PROJECT TO BE A DECEPTION STUDY? NO

Research question:

Is problem based learning (PBL) appropriate in the teaching of object-oriented programming
languages (java) to first year college students?

Hypothesis: Using a PBL approach will improve students’ performance in both final exam
and continuous assessment.

Prof. Peter Tymms

Questionnaires will be used to obtain qualitative data (students’ attitudes towards Problem
Based Learning) Quantitative data (examination and assessment results) will be used to analyse
the value added by using PBL. All data will be analysed using the SPSS statistical package,
version 12.0.1 for windows.

The following statistical tests will be carried out:

• Group A’s attainment results (for both semesters) from both final exam and continuous
assessments will be compared against Groups B’s results.

• Both groups’ (A & B) attainment results (for both semesters) from both final exam and
continuous assessments will be compared to the students’ course entry points (achieved
in the Irish Leaving Certificate or equivalent).

• The attainment results for the whole of 2005/06 will also be compared against historical
attainment data for the Software development module, to identify any historical trend in
the underlying data.

• First year engineering students will be used as a control group. They also take the
Software Development module but do not use PBL. The Engineering students have
very similar course entry points to the Computing students (achieved in the Irish
Leaving Certificate or equivalent).

From these comparisons we should be able to determine whether there is a statistically
significant relationship between the benefit (or otherwise) of using PBL and a student’s ability
(as measured by Irish Leaving Certificate points or equivalent).

This will allow us to test the following Hypothesis:

That using a PBL approach in the teaching of first year Software development will improve
students’ performance in both final exam and continuous assessment.

A-5 | P a g e

 (If the response is YES, then please contact REDSS for advice and guidelines on how to

proceed.)

17. PARTICIPANTS:

(a) Who are they (eg students, colleagues,…)?

(b) If students: course, year, size of groups, % of students involved

 (Names of students may be required subsequently)

(c) How many participants are to be recruited?

(d) Selection (eg age, sex)?

 (e) How are the participants to be recruited?

(f) Is there any link with the investigator (supervisor, tutor, etc.)?

(g) Are any participants likely to be pregnant, or would pregnant women be excluded?

 (h) How are the participants to be involved in the study?

18. TESTS – QUESTIONNAIRES/OTHER

19. ARE SUBSTANCES TO BE GIVEN TO PARTICIPANTS? NO

 If YES - complete Appendix A

20. ARE SAMPLES TO BE TAKEN FROM PARTICIPANTS? NO

 If YES - complete Appendix A

21. ARE OTHER PROCEDURES TO BE APPLIED i.e. A QUESTIONNAIRE OR OTHER TOOL?

 YES / NO

Anon College Students.

Bachelor Degree of Science (Computing) - Year 1 – approx 80 students - 100%
involved, and Bachelor Degree of Engineering - Year 1 – approx 40 students. 100%

Approx 120

Age range between 18-21, 80% male, 20% female

Anon College, first year students taking the module Software Development

No

Possibly, and no.

Their attainment statistics (their software development exam and assignment results) will be
examined and they will be asked to complete questionnaires.

Questionnaires made up of about 16 questions

A-6 | P a g e

 If YES - complete Appendix A, including a copy of your questionnaire.

22. DETAILS OF DRUGS AND MATERIALS TO BE USED (name of compound and dosage where

appropriate - full details to be given in Appendix (A) with details of NHS LREC/equivalent

consent sought and obtained)

23. CONTROLS (needed?). If so, how many, who are they, how recruited/selected?

24. RISKS AND HAZARDS

Has a full risk assessment been carried out? YES/NO

Further details: Health and Safety Office at

http://www.dur.ac.uk/healthandsafety/NewManualIndex.htm

What risks to participants are present? PROBABILITY SERIOUSNESS

 State precautions to minimise each risk

25. DEGREE OF STRESS EXPECTED

26. DISCOMFORT, INCONVENIENCE OR DANGER

 What discomfort, danger or interference with normal activities will be suffered by the participant?

 State precautions to minimise them:

None

Bachelor Degree of Engineering, year 1 students will be used as a control group.

 None

N/A

None

None

N/A

A-7 | P a g e

27. STATE SPECIAL ARRANGEMENTS FOR INDEMNIFICATION IN THE EVENT OF INJURY AND

NONE-NEGLIGENT HARM TO THE PARTICIPANTS

28. BENEFIT

Please state what benefit to society or individuals should arise from the work:

29. STATISTICS

 Has statistical advice been sought on study design?

 YES X NO NOT APPLICABLE

If YES, from whom? If NO, give reasons

30. SAMPLE SIZE

Please describe the statistical/other rationale for the sample size/number of participants to be used

in this study and how the study size will yield meaningful research results.

31. CONSENT

(a) Who will explain the investigation to the participant?

(b) Will written explanation be given to the participant as a summary of the project written in
layman's language? Please attach a copy to your form, or advise on why one is not to be
used. Where schoolchildren/minors are involved, there should also be an information sheet
directed at the teachers, parents/guardians.

None

An improvement in the teaching methodology used to teach 1st year computing students an object
oriented programming language, and if PBL is shown to enhance attainment it is assumed that it is
beneficial to students and it can be extended to the teaching of other subjects and other courses.

Prof. Tymms

I won’t be taking a sample; I will be using data from the whole population of 1st year
computing students. For the qualitative questionnaires I will be asking all the students to
complete it, but cannot guarantee that this will happen.

The investigator, James Doody.

Yes.

A-8 | P a g e

(c) Will written consent be obtained? This is the normal expectation, therefore if your response is
that you do not intend to obtain written consent, please explain in detail

(d) How and where will consent be recorded? Where schoolchildren/minors/persons with a
mental incapacity are involved, there should be full details of your procedures for ensuring
informed written consent would be given before participation commences.

Please attach copies of any participant explanation leaflets and written consent forms (it is

advised that the University's consent form is used).

32. CONFIDENTIALITY

 (a) Please indicate what steps will be taken to safeguard the anonymity and confidentiality of the

participant’s records, and confirm that the requirements of the Data Protection Acts will be

complied with.

 (b) If you are intending to make tape recordings or video recordings of participants please answer

the following questions:

 (i) Will tape or video recordings and any written transcriptions from these be destroyed

at the end of the project? YES / NO

(ii) If NO, what further use do you intend to make of the recordings and what
arrangements will be made for their secure storage?

 (iii) Will consent be requested for this future use? YES/NO

If your response is "no", please give reasons:

33. PROJECT DURATION

(i) When do you hope to commence the project?

(ii) When will the project finish and how long will it take to complete?

Yes.

Consent will be recorded by the investigator and stored in ITT Dublin. All Participants will be
over 18 years of age.

Participants will be identified only by a sequence number. Individual students’ attainment data
will be kept in ITT Dublin in accordance with the Irish Data Protection Act. Individual students
will not be identifiable from the results published.

N/A

N/A

March 2006

August 2009

A-9 | P a g e

34. FOLLOW-UP ACTION

 (i) Please confirm that at the project's conclusion, all participants who have contributed to the

project will receive a summary written in layman's language of the project and its results

 (ii) If your response to the above is "no", please provide an explanation.

35. FUNDING

 Please state the source of funding for the work

36. OTHER

Are you, or a collaborator, proposing to undertake any other related work which might involve any

species of animal?

SECTION C: NOTES

• Applications must normally be submitted at least two months before the expected start of
the project.

• On receipt of this form, members of the Committee will normally be given at least 3 weeks to
consider the application. At the end of the three weeks, members’ queries will be forwarded
to the applicant for a response. The Chairman will then require a further 7 days from receipt
of the applicant’s responses to determine the application (totalling at least 4 weeks per
application).

• Major modifications in the course of the study should be resubmitted to the Ethics Advisory
Committee for approval.

• You should submit a report at the close of the project on form EC3, available on the
University’s website, or on request from the REDSS Office.

• Adverse events of a serious or potentially serious nature should be notified directly to the
University Health and Safety Adviser.

SIGNATURE OF INVESTIGATOR: DATE:

.. ..

SIGNATURE OF SUPERVISOR/ACADEMIC TEAM LEADER: DATE:

... ..

DECLARATION BY HEAD OF SCHOOL OR DEPARTMENT:

Yes

No funding

No

A-10 | P a g e

I confirm that:

1. I have read and approved this application for consideration by the Ethics Advisory Committee

and

2. The principal investigator and other key researchers have the necessary expertise and

experience and have access to the resources needed to conduct the proposed research

successfully and

3. The research proposal is worthwhile, of high scientific value and represents good value for

money.

SIGNATURE OF HEAD OF DEPARTMENT/SCHOOL: DATE:

..

NAME IN BLOCK CAPITALS

WHEN COMPLETE, PLEASE RETURN THIS FORM TO THE SECRETARY

OF THE ETHICS ADVISORY COMMITTEE

Following approval by the Head of School/Department, this signed form, with attachments,

accompanied by an electronic unsigned copy of the form and all attachments, should be forwarded to

the Secretary of the Ethics Committee, Katrina Tomlin, School of Education, telephone: ext 48402, e-

mail: k.m.tomlin@durham.ac.uk.

Approved / Not Approved by the Ethics Advisory Committee

.. Date: ...

PLEASE NOTE THAT THIS APPROVAL EXPIRES:

1. WHERE THE PROJECT CONTINUES UNCHANGED, THREE YEARS AFTER THE DATE OF

APPROVAL;

2. WHERE THERE IS ANY CHANGE TO THE PROJECT, FROM THE DATE OF THAT CHANGE;

3. WHERE THERE IS ANY CHANGE TO THE LEGISLATION/REGULATIONS AFFECTING THIS

PROJECT, FROM THE DATE OF THAT CHANGE.

FORM EC2 (cont/...)

Project Title:

A-11 | P a g e

University of Durham School of Education

Ethical Guidelines for Research
7

The University of Durham School of Education believes that all educational research should be
conducted within an ethic of respect for persons, knowledge, democratic values and quality of
educational research.

Code of Conduct: Responsibility to students and participants

1. The informed consent of participants should always be gained prior to research and participants
should, in particular, be informed about the aims, purposes and any likely consequences of the
publication of findings.

2. Informants have a right to remain anonymous. Researchers are responsible for taking appropriate
precautions to protect the confidentiality of both participants and data. Where data is kept on a
computer the researchers will be responsible for ensuring that the requirements of the Data
Protection Act are fulfilled.

3. In the case of interviews involving children below school leaving age, permission should be
obtained from the school and if they so suggest, the parents.

4. When filming or recording, researchers should make it clear to research participants the purpose
of the recording and to whom the recording will be communicated.

5. Researchers should not deceive or coerce their students into serving as research subjects or
assistants. They should not represent a student’s work as their own.

6. In planning, and in the conduct and reporting of research, researchers should act in ways that
ensure that no participant is disadvantaged by their age, class, ‘race’, gender, sexual orientation,
religious or political beliefs or disability.

7. Sexual and racial harassment are recognised as abuses of power. Researchers have a duty to
refrain from, and actively oppose such behaviour. Researchers should not use the inequalities of
power which characterise the tutor – student, researcher – respondent relationship to obtain
personal, sexual, economic or professional advantages.

8. Where a tutor/supervisor enters into an intimate or sexual relationship with their student, the
emotional involvement, whether reciprocal or otherwise, is liable to compromise evaluation and
assessment. Particular dangers arise in post-graduate supervision where the relationship between
student and supervisor is necessarily one-to-one, protracted and supportive. In any such cases it is
the tutor/supervisors responsibility to ensure that an alternative tutor/supervisor is found for the
student.

Responsibility to the research profession

Educational researchers should;

1. Avoid fabrication, falsification or misrepresentation of evidence, data, findings or conclusions.
2. In case study and evaluative research, actively seek and include data and evidence provided by all

relevant stakeholders.
3. Report their findings to all relevant stakeholders and avoid selective communication of findings.

7 We are grateful to the British Sociological Association and to the British Educational Research Association
who have granted us permission to adapt and abridge their documents; Guidelines for Good Professional
Conduct (1991) and Ethical Guidelines for Funded Research (1992) , in the compilation of these guidelines.

A-12 | P a g e

4. Report research conceptions, procedures, results, and analysis accurately and in sufficient detail
for other researchers to understand and interpret them.

5. Never knowingly, omit reference to any relevant work by others.

Responsibility to research assistants/partners

1. All employees should be properly informed of the terms and conditions of their employment.
Care should be taken not to underpay part-time staff or to use them or secretarial staff for duties
for which they are not being paid.

2. All those involved in research should be aware of the intellectual property rights with respect to
the data collected or to which they have access. The general principle of academic freedom
means that freedom to analyse and publish the results of research should only be limited in
exceptional circumstances.

3. Researchers should never present other people’s work as their own, nor hold up the publication of
work by others so that their own gets precedence.

4. Researchers should acknowledge fully all of those who contributed to their research and
publications.

5. Attribution and ordering of authorship and acknowledgements should accurately reflect the
contributions of all main participants in both research and writing processes, including students.

6. Material quoted verbatim from the writing of others must be clearly identified and referenced to
the author.

Relationship with Funding Agencies

The University of Durham School of Education code of practice governs ethical principles and
establishes appropriate standards of academic freedom, including the right to disseminate research
findings. While this code should be observed within all research it is particularly important in respect
to contract research. The code should be honoured by researchers in the negotiation of contractual
arrangements put forward by funding agencies, and in the carrying out of these obligations once they
have been agreed.

1. The aims and sponsorship of research should always be made explicit by researchers.
2. Researchers should not agree to conduct research that conflicts with academic freedom, nor any

other principles included in these guidelines. They should not agree to any undue or questionable
influence by government or other funding agency in the conduct, analysis or reporting of research.

3. Academic staff should not engage in contract research without agreement by the institution and
the institution will not compel academic staff to engage in any particular contract research.

JSB10/97

Research: Ethics 25 02 00

A-13 | P a g e

A.2. Ethics Form Durham 2008

Durham University

School of Education

Research Ethics and Data Protection Monitoring Form

Research involving humans by all academic and related Staff and Students in the

Department is subject to the standards set out in the Department Code of Practice

on Research Ethics. The Sub-Committee will assess the research against the British

Educational Research Association's Revised Ethical Guidelines for Educational

Research (2004).

It is a requirement that prior to the commencement of all research that this form be

completed and submitted to the Department’s Research Ethics and Data Protection

Sub-Committee. The Committee will be responsible for issuing certification that the

research meets acceptable ethical standards and will, if necessary, require changes

to the research methodology or reporting strategy.

A copy of the research proposal which details methods and reporting strategies must

be attached and should be no longer than two typed A4 pages. In addition you

should also attach any information and consent form (written in layperson’s

language) you plan to use. An example of a consent form is included at the end of

the code of practice.

Please send the signed application form and proposal to the Secretary of the Ethics

Advisory Committee (Sheena Smith, School of Education, tel. (0191) 334 8403, e-

mail: Sheena.Smith@Durham.ac.uk). Returned applications must be either typed or

word-processed and it would assist members if you could forward your form, once

signed, to the Secretary as an e-mail attachment

A-14 | P a g e

Name: James Doody

Course: Ed.D.

Contact e-mail address:

Supervisor: Dr. Julie Rattray Second Supervisor: Professor Steve Higgins

Title of research project: A longitudinal evaluation of the impact of a Problem-

based learning approach to the teaching of Software Development in higher

education

Questionnaire

 YES NO

1. Does your research involve living

human subjects?

Yes IF NOT, GO TO DECLARATION

AT END

2. Does your research involve only

the analysis of large, secondary

and anonymised datasets?

 No IF YES, GO TO DECLARATION

AT END

3a Will you give your informants a

written summary of your research

and its uses?

Yes If NO, please provide further

details and go to 3b

3b Will you give your informants a

verbal summary of your research

and its uses?

Yes If NO, please provide further

details

3c Will you ask your informants to

sign a consent form?

Yes If NO, please provide further

details

4. Does your research involve covert

surveillance (for example,

participant observation)?

 No If YES, please provide further

details.

5a Will your information automatically

be anonymised in your research?

 No If NO, please provide further

details and go to 5b

5b IF NO Will you explicitly give all

your informants the right to remain

anonymous?

Yes If NO, why not?

6. Will monitoring devices be used

openly and only with the

permission of informants?

Yes If NO, why not?

7. Will your informants be provided

with a summary of your research

Yes If NO, why not?

A-15 | P a g e

findings?

8. Will your research be available to

informants and the general public

without authorities restrictions

placed by sponsoring authorities?

Yes If NO, please provide further

details

9. Have you considered the

implications of your research

intervention on your informants?

Yes Please provide full details

10. Are there any other ethical issues

arising from your research?

 No If YES, please provide further

details.

Further details

Q4: There will be observations and notes taken of learners “on task” behaviours but no

covert surveillance.

Q5: All information/data collected will be made anonymous by me, student numbers will be

used and false names will be used in published transcripts etc.

Continuation sheet YES/NO (delete as applicable)

Declaration

I have read the Department’s Code of Practice on Research Ethics and believe that

my research complies fully with its precepts. I will not deviate from the methodology

or reporting strategy without further permission from the Department’s Research

Ethics Committee.

Signed …………………………………….. Date: …………………………

SUBMISSIONS WITHOUT A COPY OF THE RESEARCH PROPOSAL WILL NOT BE CONSIDERED.

A-16 | P a g e

A.3. Ethics Forms Anon College 2007

Application for Ethical Clearance for a Research Project Involving Human

Participants RE_2 Form

To be completed by staff proposing to submit an application to conduct research involving human

participants and human biological samples. The signed original and an electronic copy of the completed form

should be returned to the Secretary of the Research Ethics Board.

Research must not commence until written approval has been received from the Research Ethics Board.

Guidelines to applicants submitting applications for ethical clearance are given in the SOP entitled

“Procedures for Submitting an Application for Ethics Clearance for Research Projects”.

Please check that all supplementary information is attached to your application (in both

hard and soft copy).

 ATTACHED NOT
APPLICABLE

Information on existing protocols/best practice to be
followed in the proposed research

X

Ethical Approval from Other Committees Form X

Bibliography/Reference Section X

Participant recruitment advertisement X

Informed Consent form(s) X

Case report forms/diary cards/questionnaires to be
used

X draft final

Interview Schedule X draft final

Hazard Assessment Form X

Use of Drug/Medical Device Additional Information
Form

 X

Use of Ionising Radiation Additional Information
Form

 X

Use of GMO Form X

Curriculum Vitae of principal researchers(s) and
collaborators indicating expertise in the research
area proposed

X

SECTION 1: APPLICANT DETAILS

1.1 General Information

PROJECT TITLE An evaluation of the effectiveness of using a Problem-Based
Learning approach in the teaching of the Java programming
language to 1st year third level students.

THIS PROJECT IS: X Staff Research Project Consultancy Project

A-17 | P a g e

(tick as many as apply) Contract Research Project Clinical Trial

 Funded Research Consultancy

 Student Research Project
NO

 Other

 Masters Taught postgraduate

 X PhD Undergraduate

Project Start Date: May 2008 Project End Date: Oct 2009

1.2 Investigator Contact Details

PRINCIPAL INVESTIGATOR(S):

TITLE SURNAME FIRST NAME POSITION & ROLE
IN RESEARCH

PHONE FAX EMAIL

Mr Doody James Investigator

OTHER INVESTIGATORS:

TITLE SURNAME FIRST NAME POSITION & ROLE
IN RESEARCH

PHONE FAX EMAIL

Dr Rattray Julie Supervisor julie.rattray@durham.ac.uk

Prof. Higgins Steven Supervisor s.e.higgins@durham.ac.uk

DEPARTMENT Computing

SCHOOL Science & Computing

RESEARCH CENTRE

WILL THE RESEARCH BE UNDERTAKEN ON-SITE AT THE INSTITUTE OF

TECHNOLOGY TALLAGHT?

X YES NO (If NO, give details of off-campus location.)

IS THIS PROTOCOL BEING SUBMITTED TO ANOTHER ETHICS COMMITTEE,

OR HAS IT BEEN PREVIOUSLY SUBMITTED TO AN ETHICS COMMITTEE?)

X YES NO (If YES, please complete the Ethical Approval from Other

Committees Form and provide letter of approval, detail on decision
received etc.)

A-18 | P a g e

SECTION 2: DETAILS OF RESEARCH STUDY

2.1 PROJECT OUTLINE - LAY DESCRIPTION

The Project aims to determine if Problem Based Learning (PBL) improves the teaching of
Software Development to first year learners. Participants will be required to fill out
questionnaires detailing their experiences of PBL in Software Development and some
participants will be interviewed about their experience of PBL

2.2 AIMS OF AND JUSTIFICATION FOR THE RESEARCH

 Aims and objectives of the research:

To discover if using a Problem-Based Learning approach instead of conventional lectures
improves learners’:

1. attainment in the subject;
2. motivation to learn the subject;
3. enjoyment of the subject.

2.3 PROPOSED METHOD

Participants’ time commitment will be about 30 minutes for the questionnaires, and 30 for
interviews.

The following data will be collected:

• Questionnaires and interviews will be used to obtain qualitative data on participants’
attitudes towards Problem Based Learning.

• Participants’ examination and assessment results will be used to help analyse the
value added by using PBL.

• Participants’ class attendance records will also be analysed for evidence of increased
learn involvement.

• Field notes of participants’ actions in Software Development labs will be made. These
observations will be helpful in determining an increase in time spent “on task”

Data will be analysed using the SPSS and NVIVO statistical packages and a grounded theory
approach will be employed for the analysis of the field notes and interview responses.

2.4 PARTICIPANT/SAMPLE PROFILE

Participants in this study will be drawn from approximately 60 first year students, 40 second

and third year students, 14 lecturing staff and 2 postgraduates in the Department of

Computing. At the start of the academic year, all students will be informed of the study and

their participation will be solicited. No participants will be under 18 years of age.

Demographic details will of the first year students not be available until the students enrol in

September 2008. However based on the 2007 learner intake, whose population profile

should be similar, we would expect a male:female ratio of around 9:1, with all students

speaking English as their first language, almost all of Irish nationality, all between 18 and 20

A-19 | P a g e

years of age, and the majority from areas of Dublin suffering from socioeconomic

disadvantage. The research design is informed by the British Educational Research

Association ethical guidelines (BERA, 2004): in particular, before any surveys, observations

or interviews are completed, the participants will receive a consent form outlining the

purpose of the research, guaranteeing their anonymity, and specifying that their

participation/non-participation will not be discussed with their instructors or otherwise affect

their standing in the college. Confidentiality will be respected by limiting access to the audio

taped interviews, interview transcripts and field notes to the author and supervisor. All

respondents to questionnaires and the tapes and transcripts of interviews will be filed using

a code number only. All data collected will be documented, stored on computer hard drives,

kept confidential and kept in a secure place. Audio tapes, computer files, transcripts, and

field notes will be destroyed after successful completion of the thesis. In addition to protect

participants’ rights and welfare the study will be bound by the Data Protection (Amendment)

Act (2003), which contains strict rules about how data must be stored, who can access it,

and how it can be processed (Clark, 1996)

2.5 PLEASE EXPLAIN WHEN, HOW, WHERE, AND TO WHOM RESULTS WILL BE
DISSEMINATED, INCLUDING WHETHER PARTICIPANTS WILL BE PROVIDED
WITH ANY INFORMATION AS TO THE FINDINGS OR OUTCOMES OF THE
PROJECT?

Results will be presented at a seminar in Anon College that all participants can attend.
Results of the research will be disseminated to the wider education research community
conference papers, journal articles, and an Ed.D. Thesis.

2.6 OTHER APPROVALS REQUIRED Has permission to gain access to another
location, organisation etc. been obtained?

 YES NO X NOT APPLICABLE

(If YES, please specify from whom and attach a copy of approval letter. If NO, please
explain when this will be obtained.)

2.7 HAS A SIMILAR PROPOSAL BEEN PREVIOUSLY APPROVED BY THE
RESEARCH ETHICS BOARD?

 YES X NO

(If YES, please state both the REC Application Number and Project Title)

SECTION 3: PARTICIPANT SELECTION

What are the primary location(s) for data collection? Classroom and computer laboratories.

Please specify the types of subjects involved in this study and indicate the number of
each type:

Type of Subject: Number Type of Samples: Number

� healthy subjects 80 – specify:

A-20 | P a g e

� in-patients a)

� clinic attendees b)

� minors c)

3.2 TO BE COMPLETED WHERE THE RESEARCH INVOLVES HUMAN SUBJECTS

With regard to subjects to be involved in the research:

How will subjects be recruited for the study? Participants in this study will be drawn from
approximately 60 first year students, 40 second and third year students, 14 lecturing staff and 2
postgraduates in the Department of Computing.

���� Is written consent to be obtained? If YES, you must also complete Section
4

Yes

���� Are subjects under the age of 18 to be included? If YES, you must also
complete Section 5

 No

���� Will any payments be made to subjects? If YES give details: No

���� Is any proportion of this payment being paid by a commercially sponsored
organisation and if so by whom?

 No

���� Are there potential risks within the project, if any, for the investigator,
subjects, samples, the environment and/or participants? If YES, you must
complete Section 6

 No

���� If controls are to be included please state how they are to be selected:

NB. Names of Student Subjects receiving payment in commercially sponsored research must be notified to
the Research Ethics Committee (attach list)

Students who did not attend PBL classes, may be used as controls.

Specify the number of subjects to be used in this project, the selection criteria and the
exclusion criteria to be used: Number:

List your exclusion/inclusion criteria for participant selection:

Inclusion criteria:

Taking the Software Development module

Exclusion criteria:

Not taking the Software Development module or under 18 years of age

Specify whether any of the following procedures are involved: (Delete yes or no as necessary)

a) Any invasive procedures No

b) Physical contact No

c) Any procedure that may cause mental distress No

Is a product such as pharmaceutical or devices to be administered to the participant? NO

Information on the sampling procedures involved in your study:

���� Are samples to be taken? If YES, indicate: No

a) Types of sample to be taken:

A-21 | P a g e

b) Frequency of samples:

c) Amount of sample:

d) Is this part of the person’s normal treatment? Yes

SECTION 4: PARTICIPANT CONSENT I

Informed consent is required for all human subject participants in the proposed

research.

4.1 Will informed consent be obtained from the research participants?

YES NO

X

 If yes, please give details of who will take consent and how it will be done.

(Please attach a copy of letter, consent form (if required) and information leaflet. See
guidelines on how to prepare these documents in the Appendix 2 associated with the
Institute Ethics Procedures and adapt examples accordingly to suit your study and
participants)

Consent forms and information sheets will be given to participants by the principle
researcher. The official record of consent will be held in hard copy with an original
signature. Also each participant giving an interview will be given a transcript of the
interview and, provided with an opportunity of deleting any wording that they may
perceive as identifying them. The Consent forms and information sheet attached.

4.2 What is the time interval between giving information and seeking consent?

7 days will be allowed between giving information and seeking consent

4.3 Will the participants be from any of the following groups? (Put an x in the

appropriate box)

 YES NO

Children under 18 years of age No

Adults with learning disabilities, if YES, please specify: There may
possibly be participants who have dyslexia or dyspraxia

Yes

Adults with communication difficulties No

Adults who are unconscious or very ill No

Adults who have a terminal illness No

A-22 | P a g e

Adults with mental illness No

Adults suffering from dementia No

Prisoners No

Young Offenders in custodial care No

Those who could have been considered to have a particularly dependent
relationship with the investigator, e.g. those in care homes, students

Yes

People engaged in illegal activities (e.g. drug taking; illegal internet
behaviour etc.). If YES please specify group:

 No

Other groups who may be considered vulnerable
(Please specify below)

 No

4.4 If participants are to be recruited from any of the potentially vulnerable groups

listed above, please give details of:

(a) the extra steps taken to ensure that participants from any of these vulnerable
groups are as fully informed as possible about the nature of their involvement:

All participants will be informed of the aims and objectives of the research and that
their participation is entirely voluntary.

(b) who will give consent:

All participants involved.

(c) how consent will be obtained (e.g. will it be verbal, written or visually indicated?):
Written consent will be obtained

(d) When consent will be obtained:
At the start of the study.

(e) The arrangements that have been made to inform those responsible for the care of
the research participants of their own involvement in research:

Questions 4.5 and 4.6 to be completed for research involving human participants in

biological or clinical trial studies

SECTION 6: POTENTIAL RISKS & RISK MANAGEMENT

6.1 ARE THE RISKS TO SUBJECTS AND/OR RESEARCHERS ASSOCIATED WITH YOUR PROJECT

GREATER THAN THOSE ENCOUNTERED IN EVERYDAY LIFE?
 YES X NO

A-23 | P a g e

6.2 DOES THE RESEARCH INVOLVE? YES NO

use of a questionnaire? (if YES please attach copy) X

interviews (if YES please attach interview questions) X

observation of participants without their knowledge X

participant observation X

audio- or video-taping interviewees or events X

access to personal and/or confidential data (including student, patient or client data) without the
participant’s specific consent

 X

administration of any stimuli, tasks, investigations or procedures which may be experienced by
participants as physically or mentally painful, stressful or unpleasant during or after the research
process

 X

performance of any acts which might diminish the self-esteem of participants or cause them to
experience embarrassment, regret or depression

 X

investigation of participants or direct contact with anyone involved in illegal activities X

procedures that involve deception of participants X

administration of any substance or agent to participant (if YES, please attach a Hazard Assessment
Form [Anon College RE_5 Form] and a Use of Drug/Medical Device Form [Anon College

RE_6])

 X

the use of a medical device on or in a human participant (if YES, please attach a Use of
Drug/Medical Device Additional Information Form [Anon College RE_6])

 X

the use of genetically modified organisms (if YES, please attach a Use of GMO Form [Anon College

RE_7])
 X

the use of ionising radiation on a human participant (if YES, please attach a Use of Ionising
Radiation Additional Information Form [Anon College RE_8])

 X

use of non-treatment placebo control conditions X

collection of body tissues or fluid samples X

collection and/or testing of DNA samples X

participation in a clinical trial X

A-24 | P a g e

6.3 POTENTIAL RISKS TO PARTICIPANTS AND RISK MANAGEMENT

PROCEDURES

Identify, as far as possible, all potential risks to participants (physical, psychological, social,
legal or economic etc.), associated with the proposed research. Please explain what risk
management procedures will be put in place.

There are no risks for participants.

6.4 ARE THERE LIKELY TO BE ANY BENEFITS (DIRECT OR INDIRECT) TO
PARTICIPANTS FROM THIS RESEARCH?
 YES X NO (If YES, provide details.)

6.5 ARE THERE ANY SPECIFIC RISKS TO RESEARCHERS? (e.g. risk of infection or
where research is undertaken at an off-campus location)
 YES X NO (If YES, please describe.)

6.6 ADVERSE/UNEXPECTED OUTCOMES

Please describe what measures you have, or will put in place, in the event that there are any
unexpected outcomes or adverse effects to participants arising from involvement in the
project.

 All participants will have access to the Institute’s extensive student and staff support systems.

6.7 MONITORING
Please explain how you propose to monitor the conduct of the project (especially where
several people are involved in recruiting or interviewing, and administering procedures) to
ensure that it conforms with the procedures set out in this application. In the case of student
projects please give details of how the supervisor(s) will monitor the conduct of the project.

 As well as two external supervisors, the principle investigator will monitor project on a daily
basis.

6.8 SUPPORT FOR PARTICIPANTS
Depending on risks to participants you may need to consider having additional support for participants during and/or
after the study. Consider whether your project would require additional support, e.g., external counseling available to
participants. Please advise what support will be available.

 All participants will have access to the Institute’s extensive student and staff support systems.

SECTION 7: FUNDING & PAYMENT OF PARTICIPANTS

7.1 OUTLINE SOURCES OF FUNDING FOR THE STUDY IF APPLICABLE

AND HOW YOU WILL MANAGE ANY POSSIBLE CONFLICT BETWEEN

THOSE FUNDING THE STUDY AND THE AIMS AND RESULTS OF THE

STUDY IF APPLICABLE?

N/A

7.2 DO YOU PROPOSE TO PROVIDE INCENTIVES AND/OR EXPENSES TO

PARTICIPANTS?

7.3 WILL A PAYMENT BE MADE TO RESEARCH PARTICIPANTS? No

 YES X NO

A-25 | P a g e

SECTION 8: CONFIDENTIALITY/ANONYMITY

8.1 WILL THE IDENTITY OF THE PARTICIPANTS BE PROTECTED?

X YES NO (If NO, please explain)

If you have answered YES to question 8.1, then please answer questions 8.2 to 8.8:

8.2 What steps will you take to protect the confidentiality of the following, during
and after the study?

Participant identities: All respondents to questionnaires and the tapes and

transcripts of interviews will be filed using a code number only.

Data collected and patient/client records:

Hardcopy records: All data collected will be documented, stored on computer

hard drives, kept confidential and kept in a secure place.

8.3 Is there any potential confidentiality issue through identification of the study
location?

No

8.4 If your data is to be held on computer, how will it be protected?

The computer is in an access controlled office, and both the computer and software
files will be password protected.

8.5 What other person(s) other than the researcher/team as listed will have access to

the data collected and what steps will be done to protect confidentiality?

No other persons will have access to the data

8.6 The Institute Data Protection Policy recommends secure retention of data for 5
years. If there is any reason to apply for variation from these guidelines,
please give details and justify:

No

8.7 If identifiable data or material will be retained after the study is completed, is it

stated on an informed consent form that this will be done and that material will

not be used in future unrelated studies without further specific permission being

obtained?

YES NO If No, please explain Why

X

8.8 If the study involves audio taping interviews, you must allow the participant

access to the transcript, if they so wish. This must be included in an Informed

Consent Form and Information Leaflet (if these forms are being used). Will the

participant be given access to a transcript of the audio tape interview?

A-26 | P a g e

YES NO N/A IF NO, PLEASE EXPLAIN WHY

X

SECTION 9: DATA/SAMPLE STORAGE, SECURITY & DISPOSAL

For the purpose of this section, “Data” includes that in a raw or processed state (e.g. interview
audiotape, transcript or analysis). “Samples” include body fluids or tissue samples.

9.1 HOW WILL THE DATA/SAMPLES BE STORED? (The REB recommends that

all data be stored on campus)

Stored at Anon College X

Stored at another site

(Please explain where and for what purpose)

9.2 WHO WILL HAVE ACCESS TO DATA/SAMPLES?

Access by named researchers only X

Access by people other than named researcher(s)

(Please explain who and for what purpose)

 Other

(Please explain who and for what purpose)

9.3 IF DATA/SAMPLES ARE TO BE DISPOSED OF, PLEASE EXPLAIN HOW,

WHEN AND BY WHOM THIS WILL BE DONE?

The researcher will disposed of all data other than exam and

assessment results at the end of the study. This will be done by

shredding questionnaires, interview transcripts, notes etc. Any digital

video or audio recordings will be deleted. Exam and assessment results

will be kept in line with the Institutes data protection policy.

SECTION 10: QUALIFICATIONS, EXPERIENCE & SKILLS OF

PROPOSED RESEARCHERS

A-27 | P a g e

List the academic qualifications and outline the experience and skills relevant to this project that the
researchers and any supporting staff have in carrying out the research and in dealing with any
emergencies, unexpected outcomes, or contingencies that may arise. No more than 200 words.

The principle researchers has the following educational and professional qualifications

Dublin City University
B.Sc. in Computer Applications. Oct. 1984 - Jun. 1988
M.Sc. in Computer Applications. Oct. 1989 - Jun. 1991

The researcher has over 16 years experience working as a lecturer, including supervising four
Masters level 9 postgraduate students.

SECTION 11: DECLARATION BY INVESTIGATORS & APPROVAL

SIGNATURES

PRINCIPAL INVESTIGATOR DECLARATION

The information contained herein is, to the best of my knowledge and belief, accurate. I have read and agree to
comply with the Institute’s Code of Conduct for Researchers and Process and Procedures for Seeking Ethics
Clearance for Research Projects. I have attempted to identify all risks related to the proposed research that
may arise in conducting this research and acknowledge my obligations to and the rights of the participants. I
am not aware of any other ethical issue not addressed within this form.

I and my co-investigators have the appropriate qualifications, experience and facilities to conduct the research
set out in the attached application and to deal with any emergencies and contingencies related to the research
that may arise.

I/We agree to abide by the decision of the Research Ethics Board.

Name of Principal Investigator(s): __________________________

BLOCK CAPITALS

 Signature(s):

Date: __________________________

HEAD OF SCHOOL/DEPARTMENT APPROVAL

The Head of School/Department must countersign and date the application below:

I approve this study to be carried out under the auspices of my School/Department:

Name of Head of School/Department: __________________________

Signature: __________________________

Date: __________________________

B-1 | P a g e

Appendix B - Participants’ Consent Forms

Information Sheet and Informed consent form8

Purpose of the Study: As part of the requirements for a Doctorate in Education at Durham
University I have to carry out a research study. The study is concerned with evaluating the
effectiveness of using a Problem-Based Learning (PBL) approach in the teaching of the Java
programming language to 1st year third level students.

What will the study involve? The study will involve filling in a couple of questionnaires
which should take about 30 minutes. You may also be asked to give an interview about your
experience of PBL (these interviews maybe videotaped).

Why have you been asked to take part? You have been asked because you were taught java
in 1st year using PBL.

Do you have to take part? No, participation is totally voluntary. By signing the consent
form you agree to take part in the study and allow your data to be kept and used in the study,
however if you wish you have the option of withdrawing before the study commences (even
if you have agreed to participate) or discontinuing after data collection has started, and you
can ask to have any data (questionnaire responses etc) destroyed.

Will your participation in the study be kept confidential? Yes. I will ensure that no clues
to your identity appear in the thesis. Any extracts from what you say that are quoted in the
thesis will be entirely anonymous. Group data (e.g. average, mean, mode etc.) will be referred
to by class group, but no individual will be named.

What will happen to the information which you give? The data will be kept confidential
for the duration of the study. On completion of the thesis, data will be retained for a further
five years in a secure environment and then destroyed.

What will happen to the results? The results will be presented in the thesis. They will be
seen by my supervisor, and the external examiner. The thesis may be published in a library
and read by future students. The study may be published in an academic journal.

What are the possible disadvantages of taking part? I don’t envisage any negative
consequences for you in taking part. It is possible that talking about your experience in PBL
may cause some distress, but this is highly unlikely.

8 The following draws extensively on a document produced by Dr R. Swain of UCC, and is used with permission. Copyright is vested in

same and all rights therein remain with Dr Swain.

B-2 | P a g e

What if there is a problem? At the end of the interview or after filling in the questionnaires,
I will discuss with you how you found the experience and how you are feeling. If you
subsequently feel distressed, you should contact student support services, such as the nurse or
student counsellor

Who has reviewed this study? Both Anon College and Durham University Research Ethics
Committees’ have reviewed the study and approval was given.

Any further queries? If you need any further information, you can contact me:

If you agree to take part in the study, please sign the consent form overleaf.

INFORMED CONSENT FORM

Project title: An evaluation of the effectiveness of using a Problem-Based Learning
approach in the teaching of the Java programming language to 1st year students.

Principal Investigators: James Doody

BACKGROUND: Participants’ will have to fill in questionnaires and take part in

interviews, all data will be kept will be entirely anonymous.

Participant Declaration: I (i.e. the participant): Tick yes or no as appropriate

Have read or have had the information sheet read to me and that

I understand the contents.

Yes No

Have been given an opportunity to ask questions and am satisfied

with answers.

Yes No

Consent to take part in the study. Yes No

Understand that participation is voluntary and that I can

withdraw at any time.

Yes No

Understand that withdrawal will not affect my access to services

or legal rights.

Yes No

Consent to possible publication of results. Yes No

I (the participant) give my permission to:

Use the data obtained from me in other future studies without

the need for additional consent.

Yes No

Researcher Declaration: I James Doody have Tick yes or no as appropriate

Have explained the study to the participant Yes No

B-3 | P a g e

Have answered questions put to me by the participant about

the research

Yes No

Believe that the participant understands and is freely giving

consent

Yes No

Participant’s Statement:

I have read, or had read to me, this consent form. I have had the opportunity

to ask questions and all my questions have been answered to my satisfaction. I

freely and voluntarily agree to be part of this research study, though without

prejudice to my legal and ethical rights. I understand I may withdraw from the

study at any time. I have received a copy of this consent form.

Participant’s Name: Contact

Details:

Participant Signature: Date:

Date:

Researcher’s Statement:

I have explained the nature and purpose of this research study, the procedures

to be undertaken and any risks that may be involved. I have offered to answer

any questions and fully answered such questions. I believe that the participant

understands my explanation and has freely given informed consent.

Signature:

Date:

C-1 | P a g e

Appendix C - Self-Regulation Questionnaires

C.1. Original Self-Regulation Questionnaire

Learning Questionnaire

The following questions relate to your reasons for participating in the interviewing class.
Different people have different reasons for participating in such a class, and we want to know
how true each of these reasons is for you. There are three groups of items, and those in each
group pertain to the sentence that begins that group. Please indicate how true each reason is
for you using the following scale:

 1 2 3 4 5 6 7

 not at all somewhat very

 true true true

A. I will participate actively in the organ systems classes:

 1. Because I feel like it's a good way to improve my skills and my understanding of
patients.

 2. Because others would think badly of me if I didn't.

 3. Because learning to interview well is an important part of becoming a doctor.

 4. Because I would feel bad about myself if I didn’t study this approach.

B. I am likely to follow my instructor's suggestions for interviewing:

 5. Because I would get a good grade if I do what he/she suggests.

 6. Because I believe my instructor's suggestions will help me interview effectively.

 7. Because I want others to think that I am a good interviewer.

 8. Because it's easier to do what I'm told than to think about it.

 9. Because it's important to me to do well at this.

 10. Because I would probably feel guilty if I didn't comply with my instructor's
suggestions.

C-2 | P a g e

C. The reason that I will continue to broaden my interviewing skills is:

 11. Because it's exciting to try new ways to work interpersonally with my patients.

 12. Because I would feel proud if I did continued to improve at interviewing.

 13. Because it's a challenge to really understand what the patient is experiencing.

 14. Because it's interesting to use the interview to try to identify what disease the
patient has.

C.2. Self-Regulation Questionnaire for Computing Students

Learning Self-Regulation Questionnaire (SRQ-L)

The following questions relate to your reasons for participating in the Software Development (java
programming) classes. Different people have different reasons for participating in such a class, and
we want to know how true each of these reasons is for you. There are three groups of items, and
those in each group pertain to the sentence that begins that group. Please indicate how true each
reason is for you using the following scale:

1 2 3 4 5 6 7

not at all true somewhat true very true

A. I will participate actively in the software development classes:

1. Because I feel like it's a good way to improve my skills and my understanding
of software development.

1 2 3 4 5 6 7

not at all true somewhat true very true

2. Because others would think badly of me if I didn't.

1 2 3 4 5 6 7

not at all true somewhat true very true

3. Because learning to programme well is an important part of becoming a
Computing professional.

1 2 3 4 5 6 7

C-3 | P a g e

not at all true somewhat true very true

4. Because I would feel bad about myself if I didn't participate actively in the
software development classes.

1 2 3 4 5 6 7

not at all true somewhat true very true

B. I am likely to follow my lecturer/instructor's suggestions for studying software
development:

5. Because I would get a good grade if I do what he/she suggests.

1 2 3 4 5 6 7

not at all true somewhat true very true

6. Because I believe my instructor's suggestions will help me programme
effectively.

1 2 3 4 5 6 7

not at all true somewhat true very true

7. Because I want others to think that I am a good programmer.

1 2 3 4 5 6 7

not at all true somewhat true very true

8. Because it's easier to do what I'm told than to think about it.

1 2 3 4 5 6 7

not at all true somewhat true very true

9. Because it's important to me to do well at this.

1 2 3 4 5 6 7

not at all true somewhat true very true

C-4 | P a g e

10. Because I would probably feel guilty if I didn't comply with my instructor's
suggestions.

1 2 3 4 5 6 7

not at all true somewhat true very true

C. The reason that I will continue to broaden my software development skills is:

11. Because it's exciting to try new ways to solve software development problems.

1 2 3 4 5 6 7

not at all true somewhat true very true

12. Because I would feel proud if I did continued to improve at programming.

1 2 3 4 5 6 7

not at all true somewhat true very true

13. Because it's a challenge to really understand how to solve programming
problems.

1 2 3 4 5 6 7

not at all true somewhat true very true

14. Because it's interesting to develop programmes to solve problems.

1 2 3 4 5 6 7

not at all true somewhat true very true

D-1 | P a g e

Appendix D - Self-Efficacy Questionnaire for Computing Students

Student Number: ----------------------- Class Group 1B

Programming Self-Efficacy Scale

Rate your confidence in doing the following programming related tasks using a scale of 1
(not at all confident) to 7 (absolutely confident). If a specific term or task is totally
unfamiliar to you, please mark 1.

Not

confident

at all

1

Mostly not

confident

2

Slightly

confident

3

50/50

4

Fairly

confident

5

Mostly

confident

6

Absolutely

confident

7

1. I could write syntactically correct statements. _______

2. I could understand the language structure of and the usage of the reserved

words. _______

3. I could write logically correct blocks of code. _______

4. I could write a program that displays a greeting message. _______

5. I could write a program that computes the average of three numbers. _______

6. I could write a program that computes the average of any given number of

numbers. _______

7. I could use built-in functions that are available in various program libraries. _______

8. I could build my own libraries. _______

9. I could write a small program given a small problem that is familiar to me. _______

10. I could write a reasonably sized program that can solve a problem this is

only vaguely familiar to me. _______

D-2 | P a g e

11. I could write a long and complex program to solve any given problem as long as the

specifications are clearly defined. _______

12. I could organize and design my program in a modular manner. _______

13. I could understand the object-oriented paradigm. _______

14. I could identify the objects in the problem domain and could declare, define,

and use them. _______

15. I could make use of a pre-written function, given a clearly labelled declaration of the

 function. _______

16. I could make use of a class that is already defined, given a clearly labelled declaration

of the class. _______

17. I could debug (correct all the errors) in a long and complex program that I had

written and make it work. _______

18. I could comprehend a long, complex multi-file program. _______

19. I could complete a programming project if someone showed me how to solve the problem

 first. _______

20. I could complete a programming project if I had only the language reference

manual for help. _______

21. I could complete a programming project if I could call someone for help if

I got stuck. _______

22. I could complete a programming project once someone else helped me get

started. _______

23. I could complete a programming project if I had a lot of time to complete

the program. _______

D-3 | P a g e

24. I could complete a programming project if I had just the built-in help facility

for assistance. _______

25. While working on a programming project, if I got stuck at a point I could find ways

of overcoming the problem. _______

26. I could come up with a suitable strategy for a given programming project in

a short time. _______

27. I could manage my time efficiently if I had a pressing deadline on a

programming project. _______

28. I could mentally trace through the execution of a long, complex multi-file

program given to me. _______

29. I could rewrite lengthy and confusing portions of code to be more readable

and clear. _______

30. I could find a way to concentrate on my program, even when there were many

distractions around me. _______

31. I could find ways of motivating myself to program, even if the problem area

was of no interest to me. _______

32. I could add features to a program in a modular manner that adhered to the

style of the given program. _______

33. I could write a program that someone else could comprehend and add features

to at a later date. _______

E-1 | P a g e

Appendix E - Approaches and Study Skills Inventory for Students

(ASSIST) Questionnaire for Computing Students

Approaches and Study Skills Inventory for Students
(Short version)

This questionnaire has been designed to allow you to describe, in a systematic way, how you
go about learning and studying. The technique involves asking you a substantial number of
questions which overlap to some extent to provide good overall coverage of different ways of
studying. Most of the items are based on comments made by other students. Please respond
truthfully, so that your answers will accurately describe your actual ways of studying, and
work your way through the questionnaire quite quickly.
Background information
Name or Identifier ... Age years Sex M / F

B. Approaches to studying
The next part of this questionnaire asks you to indicate your relative agreement or
disagreement with comments
about studying again made by other students. Please work through the comments, giving your
immediate response. In deciding your answers, think in terms of this particular lecture
course. It is also
very important that you answer all the questions: check you have.
5 means agree (√) 4 = agree somewhat (√?) 2 = disagree somewhat (x?) 1 = disagree (x).
Try not to use 3 = unsure (??), unless you really have to, or if it cannot apply to you or your course.
√ √? ?? x? x
1. I manage to find conditions for studying which allow me to get on with my work easily. 5 4 3 2 1
2. When working on an assignment, I’m keeping in mind how best to impress the marker. 5 4 3 2 1
3. Often I find myself wondering whether the work I am doing here is really worthwhile. 5 4 3 2 1
4. I usually set out to understand for myself the meaning of what we have to learn. 5 4 3 2 1
5. I organise my study time carefully to make the best use of it. 5 4 3 2 1
6. I find I have to concentrate on just memorising a good deal of what I have to learn. 5 4 3 2 1
7. I go over the work I’ve done carefully to check the reasoning and that it makes sense. 5 4 3 2 1
8. Often I feel I’m drowning in the sheer amount of material we’re having to cope with. 5 4 3 2 1
9. I look at the evidence carefully and try to reach my own conclusion about what I’m studying. 5 4 3 2 1
10. It’s important for me to feel that I’m doing as well as I really can on the courses here. 5 4 3 2 1
11. I try to relate ideas I come across to those in other topics or other courses whenever possible. 5 4 3 2 1
12. I tend to read very little beyond what is actually required to pass. 5 4 3 2 1
13. Regularly I find myself thinking about ideas from lectures when I’m doing other things. 5 4 3 2 1
14. I think I’m quite systematic and organised when it comes to revising for exams. 5 4 3 2 1
15. I look carefully at tutors’ comments on course work to see how to get higher marks next time. 5 4 3 2 1
16. There’s not much of the work here that I find interesting or relevant. 5 4 3 2 1
17. When I read an article or book, I try to find out for myself exactly what the author means. 5 4 3 2 1
18. I’m pretty good at getting down to work whenever I need to. 5 4 3 2 1
19. Much of what I’m studying makes little sense: it’s like unrelated bits and pieces. 5 4 3 2 1
20. I think about what I want to get out of this course to keep my studying well focused. 5 4 3 2 1
21. When I’m working on a new topic, I try to see in my own mind how all the ideas fit together. 5 4 3 2 1
22 I often worry about whether I’ll ever be able to cope with the work properly. 5 4 3 2 1
23. Often I find myself questioning things I hear in lectures or read in books. 5 4 3 2 1
24. I feel that I’m getting on well, and this helps me put more effort into the work. 5 4 3 2 1
25. I concentrate on learning just those bits of information I have to know to pass. 5 4 3 2 1
26. I find that studying academic topics can be quite exciting at times. 5 4 3 2 1
27. I’m good at following up some of the reading suggested by lecturers or tutors. 5 4 3 2 1

E-2 | P a g e

28. I keep in mind who is going to mark an assignment and what they’re likely to be looking for. 5 4 3 2 1
29. When I look back, I sometimes wonder why I ever decided to come here. 5 4 3 2 1
30. When I am reading, I stop from time to time to reflect on what I am trying to learn from it. 5 4 3 2 1
√ √? ?? x? x
31. I work steadily through the term or semester, rather than leave it all until the last minute. 5 4 3 2 1
32. I’m not really sure what’s important in lectures so I try to get down all I can. 5 4 3 2 1
33. Ideas in course books or articles often set me off on long chains of thought of my own. 5 4 3 2 1
34. Before starting work on an assignment or exam question, I think first how best to tackle it. 5 4 3 2 1
35. I often seem to panic if I get behind with my work. 5 4 3 2 1
36. When I read, I examine the details carefully to see how they fit in with what’s being said. 5 4 3 2 1
37. I put a lot of effort into studying because I’m determined to do well. 5 4 3 2 1
38. I gear my studying closely to just what seems to be required for assignments and exams. 5 4 3 2 1
39. Some of the ideas I come across on the course I find really gripping. 5 4 3 2 1
40. I usually plan out my week’s work in advance, either on paper or in my head. 5 4 3 2 1
41. I keep an eye open for what lecturers seem to think is important and concentrate on that. 5 4 3 2 1
42. I’m not really interested in this course, but I have to take it for other reasons. 5 4 3 2 1
43. Before tackling a problem or assignment, I first try to work out what lies behind it. 5 4 3 2 1
44. I generally make good use of my time during the day. 5 4 3 2 1
45. I often have trouble in making sense of the things I have to remember. 5 4 3 2 1
46. I like to play around with ideas of my own even if they don’t get me very far. 5 4 3 2 1
47. When I finish a piece of work, I check it through to see if it really meets the requirements. 5 4 3 2 1
48 Often I lie awake worrying about work I think I won’t be able to do. 5 4 3 2 1
49 It’s important for me to be able to follow the argument, or to see the reason behind things. 5 4 3 2 1
50. I don’t find it at all difficult to motivate myself. 5 4 3 2 1
51. I like to be told precisely what to do in essays or other assignments. 5 4 3 2 1
52. I sometimes get ‘hooked’ on academic topics and feel I would like to keep on studying them. 5 4 3 2 1

C. Preferences for different types of course and teaching
5 means definitely like (√) 4 = like to some extent (√?) 2 = dislike to some extent (x?) 1 = definitely dislike (
x).
Try not to use 3 = unsure (??), unless you really have to, or if it cannot apply to you or your course.
√ √? ?? x? x
a. lecturers who tell us exactly what to put down in our notes. 5 4 3 2 1
b. lecturers who encourage us to think for ourselves and show us how they themselves think 5 4 3 2 1
c. exams which allow me to show that I’ve thought about the course material for myself. 5 4 3 2 1
d. exams or tests which need only the material provided in our lecture notes. 5 4 3 2 1
e. courses in which it’s made very clear just which books we have to read. 5 4 3 2 1
f. courses where we’re encouraged to read around the subject a lot for ourselves. 5 4 3 2 1
g. books which challenge you and provide explanations which go beyond the lectures. 5 4 3 2 1
h. books which give you definite facts and information which can easily be learned. 5 4 3 2 1

Thank you very much for spending time completing this questionnaire: it is much appreciated.

F-1 | P a g e

Appendix F - Additional Questionnaires for Students

F.1. PBL Questionnaire for Students

Questionnaire for Students taking PBL based software development classes

The following questions relate to your opinions of Software Development (java
programming) PBL classes. There are six groups of items, and those in each group pertain to
the title at the top of that group. Please indicate your opinions using the scale provided:

PBL Group work

1. The tutorial group discussion is an important stimulus for my software development
learning activities.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

2. The learning issues generated in the group tutorials are the most important starting
point for my learning activities.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

3. I study to a large extent independently from the learning issues generated by my PBL
group tutorials.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

4. The group climate facilitated the learning process.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

5. In the PBL tutorials I learned something that improved my software development
skills.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

F-2 | P a g e

6. In the PBL group, I improved my communication skills.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

7. I would recommend PBL tutorials to other students.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

The PBL method

8. The PBL classes have motivated me to use additional learning resources.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

9. If you had had the possibility to choose before the course, would you have opted for
the PBL-course or the lecture-based course? (Tick as appropriate)

1 2 3

yes are neutral no

10. After the experience of the course, would you now opt for the PBL-course or the
lecture-based course if you had to choose again? (Tick as appropriate)

1 2 3

yes are neutral no

11. I felt well informed about the PBL method.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

12. I consider PBL to be an effective way of learning for myself.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

F-3 | P a g e

13. PBL was fun.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

14. Before the tutorials, I was open to the method.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

Student interest in Software Development

15. I am interested in the subject (Software Development) of the PBL tutorials.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

16. I consider the subject (Software Development) to be important within the frame of my
studies.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

17. After class attendance, how much additional learning time did you invest each week
in Software Development (time in hours).

Time (Hours)

Course objectives and content

18. Topics covered during PBL classes stimulated my interest in Software Development.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

19. The content of the tutorials fitted the level of my knowledge.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

F-4 | P a g e

20. The problems used in the PBL classes illustrate Software Development concepts
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

21. The questions included on past exams and continuous assessment for software
development, to a large extent determine what I will study.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

22. The learning issues generated in the PBL classes are tuned to the subject matter to be
tested.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

23. At the start of the Software Development course, I consulted the course objectives set
out in the syllabus.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

24. At the end of the Software Development course, I consulted the course objectives to
check whether I covered all the subject matter I was expected to cover.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

The PBL tutor

25. The PBL tutor has steered the group strongly.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

26. The PBL tutor’s interventions were adequate.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

F-5 | P a g e

27. The PBL tutor is enthusiastic about PBL.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

28. In general, the tutor stimulates students to make use of different sources of
information.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

29. In general, the tutor stimulates my Software Development learning activities.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

Teaching resources

30. The class room, laboratories, and computer equipment were adequate.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

31. The Moodle e-learning environment supported my learning activities.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

32. I would like more timetabled PBL Software Development classes.
1 2 3 4 5

totally disagree disagree are neutral agree totally agree

33. In general do you have any other additional comments about PBL or Software
Development? (write in the space provide below)

F-6 | P a g e

F.2. General Background Questionnaire for Students

The following questions relate to your background and your reasons for selecting a
computing course. All answers are anonymous.

Please enter an X in the correct box:

Male Female

Nationality: ______________________

Home address: (please do not enter house numbers or name)

Street Town County Post Code

Parents’ occupation (optional):

Father ___________________ Mother ___________________

Please describe any previous non-programming computer experience you may have:

Please describe any previous programming experience you may have:

Where you encouraged by other people to pursue Computing as a career? YES/NO

If YES please give details:

G-1 | P a g e

Appendix G - Interview Questions for Staff

Q1: What for you are the essential characteristics of PBL?

Q2: For PBL then, what do you see at its main advantage…..main disadvantage?

Q3: Why did you “volunteer” to be a PBL tutor?

Q4: What makes a good PBL tutor? It might help to focus on your “main three elements”.

Q5: In your opinion, how have the students taken to the PBL environment?

Q6: Have you noticed any change in learner behaviour in the PBL lab classes as opposed to

the traditional lab environment?

Q7: What do you understand by the term problem-solving skills?

Q8: How does “problem-solving” per se fit into your view of PBL?

Q9: In your opinion, have the students’ “problem-solving” skills improved more in the PBL

lab classes as opposed to the traditional lab environment?

Q10: What is your opinion on the work load associated with PBL classes?

Q11: Have you anything further to say about PBL as a guiding philosophy for the

curriculum?

H-1 | P a g e

Appendix H - Interview Questions for Students

Q1: Do you enjoy the PBL classes?

Q2: Did working together with other students in the PBL groups help you make friends?

Q3: Do you think the PBL group environment facilitates the learning process?

Q4: What was your opinion of the atmosphere of your PBL group meeting?

Q5: What was your opinion of the relationships between group members?

Q6: How did you find the distribution of the work between group members?

Q7: Did you feel isolated or uncomfortable in your PBL Group?

Q8. Did you fell well informed about the PBL method?

Q9: Do you think keeping a PBL journal is useful?

Q10: Do you consider Software Development to be an important subject?

Q11: How do you go about writing a Java solution to your programming problems?

Q12: What advice would you give to other students who are having problems with Java

programming?

Q13: How much time do you spend studying Software Development outside of the class

contact hours?

Q14: Is there anything you would like to add?

I-1 | P a g e

Appendix I - Interview and Observation Schedule

I.1. Interview Schedule for staff interviews:

All names used are pseudonyms:

Catherine: 10.30am, Monday, 12 May 2008

Stuart: 11.15am, Monday, 12 May 2008

Mary: 12.15am, Monday, 12 May 2008

David: 11.15am, Wednesday, 14 May 2008

Natasha: 12.15am, Wednesday, 14 May 2008

I.2. Interview Schedule for student interviews:

All names used are pseudonyms:

Sarah: 10.30am, Monday, 8 December 2008

Ahmed: 14.30am, Monday, 8 December 2008

Nichole: 10.30am, Wednesday, 10 December 2008

Darren: 14.30am, Wednesday 10 December 2008

Paul: 15.00am, Wednesday 10 December 2008

William: 15.30am, Wednesday 10 December 2008

I.3. Observation Schedule

Each week of the 15 week semester the researcher spent half an hour in PBL and half an hour
in non-PBL Software Development laboratories observing participants’ behaviour. This was
done for each of four cohorts of learners over four academic years, resulting in a total of 80
hours of participant observation.

J-1 | P a g e

Appendix J - Interview Transcriptions

J.1. Staff Interview Transcriptions

Some staff members requested that small portions of their interviews that related to their
views of college management and colleagues should not be transcribed. These portions have
not been recorded in the transcriptions, but the researcher was cognisant of the issues. The
location of the omitted portions is shown in the transcriptions.

J.1.1. David

Q1: What for you are the essential characteristics of PBL?

David: First of all the group work … getting a group of students together to solve a common

problem working together focusing on teamwork ...with an emphasis on problem-solving

rather than low-level implementation so … how are they going about solving the problem?

What issues are they taking into consideration rather than building in our case in Software

Development, a code solution to a real world problem. So it’s just about taking a high-level

view of a problem and working towards one or more solutions.

Q2: For PBL then, what do you see at its main advantage…..main disadvantage?

David: I suppose the main advantage would be the group work, building a common solution

building on suggestions of other students and trying to see the positives and negatives for

each suggestion and then building that into a solution without as I say getting bogged down

in low level details of how it would be solved at a code level or whatever. So it’s just focusing

on the problem as a whole.

The main disadvantage that I would suggest is that sometimes they skip over low level details

that actually require a bit more investigation. So sometimes students take a very simplistic

view of some of the problems, which is fine in some cases because that’s not the focus of the

main activity. But sometimes you do want them to get down to a greater level of detail for

some complex area. But it really depends on the scope of the activity.

Q3: Why did you volunteer to be a PBL tutor?

David: Eh… I was assigned the role.

Q4: What makes a good PBL tutor?

J-2 | P a g e

David: Essentially to get the best out of the students is to guide them towards a solution

without giving it to them so to get them to come up with a solution but em to stand back a

little bit and let them at it themselves. But if they’re not getting anywhere to try and

encourage them, to try and look at what they have and maybe suggest some alternatives

without giving them the answer but really just trying to focus the direction of the group.

Q5: In your opinion, how have the students taken to the PBL environment?

David: I think they enjoyed it. Certainly in the latter stages they seemed to get a decent

amount out of it especially the group work. Actually some of them might be a bit reluctant say

in a lecture to speak up but in a small group setting may be more inclined to volunteer their

opinion.

Q6: Have you noticed any change in learner behaviour in the PBL lab classes as opposed to

the traditional lab environment?

David: Em, it’s been a while since I would have done a direct comparison with the two but I

guess some of the problems with the … they’re not really thinking about the larger problems

in the low-level traditional labs. They’re more stuck with syntax errors when they’re starting

programming. So they’re bogged down in that rather than thinking about how they would

solve the problem and worried about viewing bits of code that might do what they want

rather than thinking about it in a logical step-by-step what do I need to do not what’s this bit

of code that I might need to use. So it kind of focuses their thinking a little bit more.

Q7: What do you understand by the term problem-solving skills?

David: Generally a logical approach to solving a problem. So step-by-step thinking about all

the different issues, the assumptions, the prerequisites, what needs to happen in what

sequence, what sequences are repeated, error conditions, what will happen in certain cases.

Those kinds of core concepts that students need to learn for Software Development.

Q8: Do you think problem-solving per se fits into your view of PBL?

David: Yeah definitely. It’s the very centre of it really. It’s about solving the problem

although you do have to give them some sort of solution near the end.

J-3 | P a g e

Q9: In your opinion, have the students’ problem-solving skills improved more in the PBL lab

classes as opposed to the traditional lab environment?

David: To be honest I wouldn’t be able to really give a proper answer on that because eh I

don’t see the result of that em I’m just a facilitator I don’t see the other side of it. I would

hope so.

Q10: What is your opinion on the work load associated with PBL classes for you as a tutor?

David: Em there’s very little to do. Really it depends on the amount of students you have. At

the earlier stages there’s a lot more work to do because you have to make sure that they’re

doing it right and one person isn’t just shouting down the others, just to make sure that

everyone’s involved and not just sitting silently by, that they’re all making a contribution. So

from that point of view it depends on the number of students that you have to look after.

Interviewer: Did you ever notice many of them shouting at each other or is there tension in

the groups?

David: Not normally, but sometimes you might get a loud mouth or someone who’s a bit

more vocal than the others or may have some prior knowledge or just natural ability and it’s

their way or no way and that can be a little bit unfortunate … you need to get everybody

contributing and not just agreeing with the leader. I haven’t really seen too much of people

being shouted down but there have been. It’s more … somebody might say something stupid

and they get a little bit of slagging for it and they don’t contribute anything more after that.

So you have to try and kind of guide that in the right way.

Q11: Have you anything further to say about PBL as a guiding philosophy for the

curriculum?

David: I think it definitely needs to be there. Certainly in the early stages. Not really sure

about after say first year but it’s no harm as an activity. Even at project stage it might be no

harm in the initial stages for project planning, defining the goal of the project and how much

you’re going to do… where you get the group and maybe their project supervisor and maybe

sit around a whiteboard and brainstorm.

J-4 | P a g e

J.1.2. Natasha

Q1: What for you are the essential characteristics of PBL?

Natasha: Well first of all it’s that the students work in groups. Another thing is that the

problems that are presented are … they are different in that they are not like any of the

problems that you encounter in the text books on Java. They are original in a way. And I

think the third characteristic that comes out from the second one is that they come up with an

original solution so there are never two solutions that are the same. Yeah.

Q2: For PBL then, what do you see at its main advantage…..main disadvantage?

Natasha: The advantage is that everyone is interacting all the time and that the tutor is near

so that you don’t have to wait for half an hour till the tutor comes to every student in the class

as in the Java labs like, but in the PBL he’s always there like and you can always get

feedback from the tutor. And em the disadvantage is that the students who are weak, like, they

don’t really need to work in the PBL because the stronger students do everything for the

group, well, if it comes out finally.

Q3: Did you volunteer to become a PBL tutor?

Natasha: Well, more or less. I like it.

Q4: What makes a good PBL tutor?

Natasha: Well first of all I think it must be the wish of the tutor to improve the knowledge

and the skills. Like, the tutor must be motivated because if he doesn’t care about what the

students know or don’t know then it won’t work. Another thing is that it should be of course

more social, communicative. And another thing, I think that the tutor should not be afraid to

make a mistake because I think that many of the bad things come out of the fact that the tutor

cannot admit something that he doesn’t know because em the most important thing em is to

be willing to help and not knowing everything by heart.

Q5: In your opinion, how have the students taken to the PBL environment?

Natasha: Do you mean they like it or not?

Interviewer: Yeah.

J-5 | P a g e

Natasha: Well, most people enjoy the environment but there are a few of them who feel it’s

even more complicated, I mean ones like who aren’t really… who don’t really like PBL at

all.

Q6: Have you noticed any change in learner behaviour in the PBL lab classes as opposed to

the traditional lab environment?

Natasha: Em yes, I think that in the PBL the students are more motivated to solve the

problems by themselves while, when they write a program they more feel like asking like

more questions and they are really sometimes trying to make the teacher make the solution

instead of them, while in the PBL, well, it’s more or less their work.

Q7: What do you understand by the term problem-solving skills?

Natasha: Well, I think first of all it is to break the task into a number of small steps, small

and logical, and that’s the most important. So sometimes you don’t really have to know the

language but you have to be able to make the task look logical.

Q8: How does problem-solving per se fit into your view of PBL? Do the students focus on

problem-solving?

Natasha: Yes, more or less yes. But to my mind PBL might be a little bit more standardised

or something.

Q9: In your opinion, have the students’ problem-solving skills improved more in the PBL lab

classes as opposed to the traditional lab environment?

Natasha: I would say rather yes.

Q10: What is your opinion on the work load associated with PBL classes?

Natasha: For me I think it’s as much workload as in the classes. It’s the same.

Interviewer: And for the students? Do you think they have more work or less work?

Natasha: I think they have more work. Just in Java labs they have more work without

thinking. In the PBL there is more work going on outside like interacting, writing things and

changing things, yeah.

J-6 | P a g e

Q11: Have you anything further to say about PBL as a guiding philosophy for the

curriculum?

Natasha: No, I think no.

J.1.3. Mary

Q1: What for you are the essential characteristics of PBL?

Mary: Well really to get the students to step back from looking at problem-solving as a

computing activity and to think about the problem itself as distinct from programming.

Q2: For PBL then, what do you see at its main advantage…..main disadvantage?

Mary: OK well really following on from the answer to the first question, it’s getting the

students to focus on the problem and to go through the whole brainstorming process; to go

through all the specific cases without thinking about the programming and to get an

understanding of the problem. I think there’s a lot of advantages to it.

One of the main disadvantages that I’ve found in my work was to do with the way we

structured the groups. I found that the groups were far too big, that a lot of people got lost

within the group … there’s some very extrovert people and very quiet people and it didn’t

really suit some people. It suited some, and others it didn’t, so you’re losing some people in

that setting.

Q3: Did you volunteer to be a PBL tutor?

Mary: Yeah I did actually. I think I put my name on a list. I was interested in problem-

solving anyway, the different aspects of problem-solving for programming.

Q4: What makes a good PBL tutor? The characteristics?

Mary: First of all you need to have an understanding of the problem that you’re presenting

to the students so you want to be able to be a good problem-solver yourself. Also I find that

not jumping in too quickly during the whole process … to throw a few pointers in, to guide

the students to solve the problem, and to go back to the students who are less likely to solve

the problem, to bring them in to the whole process, to try to, you know, let them have a part.

Q5: In your opinion, how have the students taken to the PBL environment?

J-7 | P a g e

Mary: Mostly positive. I know that they say that it’s a bit of a chore at times. Here we go

again, we have to do all this writing and it’s tedious, and there’s that aspect to it definitely,

and you know when after a few sessions with PBL they were able to go back to the computer,

they were just absolutely dying to get back to programming. So you do have to force them to

take the time to take that step back.

Q6: Have you noticed any change in learner behaviour in the PBL lab classes as opposed to

the traditional lab environment?

Mary: Em, they’re more likely to consider other aspects of the problem rather than how do I

get to that solution so they look at extreme cases and unusual cases of the problem. And they

might work through, I mean we coach them to work through specific problems with say

numbers or something like that and they’re more likely I think to do that.

Interviewer: “So they have a broader view?

Mary: I think so.

Q7: What do you understand by the term problem-solving skills?

Mary: Just reiterating what I said, to take a problem and to look at what you have and to

look at all the different ways that you could possibly get to the solution that you want and

then the different actions you could take and the means that you could take to get there.

Q8: How does problem-solving per se fit into your view of PBL? (question unintentionally

omitted)

Q9: In your opinion, have the students’ problem-solving skills improved more in the PBL lab

classes as opposed to the traditional lab environment?

Mary: Definitely. They don’t get lost in the coding. I think it’s very very helpful.

Q10: What is your opinion on the work load associated with PBL classes?

Mary: Em, the workload outside the classes is not huge. You would need to go and get the

problems and possibly work through it yourself but there’s not a huge workload.

Interviewer: What do you think about the students’ workload?

J-8 | P a g e

Mary: No, they come in and they’re presented with a problem and all the work is done

within the class. All the thinking work is done there so I don’t think it’s extra for them.

Q11: Have you anything further to say about PBL as a guiding philosophy for the

curriculum?

Mary: It would probably be very useful in other areas. It’s very useful in Computing. I’d

probably see it as being useful in Engineering and Science, other disciplines.

J.1.4. Catherine

Q1: What for you are the essential characteristics of PBL?

Catherine: Group work. That’s the main thing.

Q2: For PBL then, what do you see at its main advantage…..main disadvantage?

Catherine: Well...I think the good thing is seeing how involved with the problems the

students get. And after they have tried their initial solutions, working with the students is

enjoyable, much better than in the ordinary labs.

Interviewer: Why is that?

Catherine: Because they are actually trying to construct a solution that works rather than

just stopping every time they have a problem and asking for help, so their labs are much

better .

Interviewer: Any disadvantages?

Catherine: Yes, there is a lot of extra work preparing for a lab.

Interviewer: Why is that?

Catherine: Well in the ordinary labs you are never stuck for a solution as the questions are

so simple. But in the PBL labs you come up against complex problems that you have to figure

out on the spot. But look the worst thing is having to deal with X [other staff member].

[Section of transcription omitted – The omitted segment discussed work load between staff]

Interviewer: Any more disadvantages?

J-9 | P a g e

Catherine: There are many, only some students do the work, the rest are just too weak to

work out the problems so they just tag along. Also most of the students don’t know where to

start, they have no idea.

Q3: Why did you “volunteer” to be a PBL tutor?

Catherine: I didn’t. I just needed to make up hours. I would have tutored on any available

course.

Q4: What makes a good PBL tutor?

Catherine: Being able to guide the students and help them understand the problem.

Q5: In your opinion, how have the students taken to the PBL environment? Do they like it?

Catherine: Yes most of them. Some don’t like the group work as they can be shown to be

weak in front of their friends.

Q6: Have you noticed any change in learner behaviour in the PBL lab classes as opposed to

the traditional lab environment?

Catherine: In the PBL labs the students actually keep working on their problems and are not

surfing the web and using Bebo. You don’t have to constantly be asking them to stop

messing.

Interviewer: Why do you think they spend so much time doing other things rather than

working on their lab-sheets?

[Section of transcription omitted – The omitted segment discussed the lack of management

support for staff disciplining students for not working solely on Software Development

problems in lab time.]

Interviewer: Have you noticed any change in how students go about problem-solving?

Catherine: Yes well it is quite different. Em, firstly the PBL students are in a group and away

from the machines. They are trying to get the steps in their algorithm right. Whereas the

others are always stuck on syntax.

Q7: What do you understand by the term problem-solving skills?

J-10 | P a g e

Catherine: It means being able to break a problem down into its parts. Organising the facts

you have and applying them to the problem to be solved.

Q8: How does problem-solving per se fit into your view of PBL?

Catherine: I think it is at the core of PBL.

Q9: In your opinion, have the students’ problem-solving skills improved more in the PBL lab

classes as opposed to the traditional lab environment?

Catherine: Yes I think they have. They have better critical reasoning skills.

Interviewer: Can you expand on that?

Catherine: I mean they can have a higher level focus on the problem and they work out their

overall problem-solving approach before they start to code. They have a plan of what they

want to do. Also they understand the underlying concepts better. They know what is meant by

abstraction for example. They know what you mean when you talk about an object-oriented

programme. They know what a class is.

Interviewer: Ok, any other comments on the students’ problem-solving skills?

Catherine: One thing that is a problem is that…well they sometime try to Google the

answers. And its is a problem because they don’t understand what the code they find does.

You can’t just take it out of context and lots of it are full of errors, but they think it’s perfect

and they are just looking for a quick answer.

Interviewer: Is that just a problem for the PBL group?

Catherine: Er..no. Both groups do it, sorry.

Q10: What is your opinion on the work load associated with PBL classes?

Catherine: Yes, as I said earlier there is a lot of extra work preparing for a lab. Although

haveing all the material online is a big help.

[Section of transcription omitted – The omitted segment discussed management support for

PBL and recognition of the extra workload]

J-11 | P a g e

Q11: Have you anything further to say about PBL as a guiding philosophy for the

curriculum?

Catherine: I think it has its place, especially for subjects that require the students to develop
diagnostic skills.

Interviewer: Would you like to say anything else?

Catherine: Er..well. I think by doing the PBL module they get a greater interest in their
course in general. I mean in all their other Computing subjects, and that seems to last even
into second and third year.

J.1.5. Stuart

Q1: What for you are the essential characteristics of PBL?

Stuart: The team work. It gets the students to work as a team. That is the most important

thing.

Q2: For PBL then, what do you see at its main advantage…..main disadvantage?

Stuart: Em, I think the team work is a big advantage, having the students working together is

more like real life. And that’s what we need to do prepare them for working in industry. Also

it helps to create a love of Computing in the students. It really does and they don’t lose that.

Interviewer: Any disadvantages?

Stuart: No not really.

Q3: Why did you volunteer to be a PBL tutor?

Stuart: I’m the PBL coordinator, not just a tutor.

Interviewer: Sorry, I mean why did you volunteer to be the PBL coordinator?

Stuart: I wanted us to implement PBL and I pushed for its introduction so it was natural that

I’d lead on it.

Q4: What makes a good PBL tutor?

Stuart: Em, knowing how to lead the students to a solution, without giving them the answer.

And having good problem-solving skills and having enthusiasm for PBL and the energy and

drive to make it work.

J-12 | P a g e

Q5: In your opinion, how have the students taken to the PBL environment?

Stuart: Oh they love it.

Q6: Have you noticed any change in learner behaviour in the PBL lab classes as opposed to

the traditional lab environment?

Stuart: Em, my labs are much more professional. The students love the problems and love

working together. (Laughs) When I bring in the whiteboard they fight over the pens. They

really enjoy the labs. The only thing is I’m so busy I never get a break, I have to get around

to all the groups. Yesterday I missed lunch, but I don’t care, it’s fun.

Interviewer: Have you noticed any change in how students go about problem-solving?

Stuart: My students are much better team workers and they are better problem solvers

because I make them work on their problems at a high level, working out the correct set of

steps in pseudo code before they go near Java. Also they know the basic concepts of object-

oriented programming, like classes, methods, abstraction etc.

Interviewer: All good then?

Stuart: Yes, well except some of them still try to get the answers on the web. That’s no good.

We tried to stop that by making them turn off the machines at the start of the lab, but then

they couldn’t get Moodle, and that was a problem, as they needed to access the course notes

online. We couldn’t do without Moodle so we had to allow them to turn on the machines

again. Still it is better than the other labs, where they are just surfing the web all the time.

Interviewer: Why do you think they spend so much time surfing the web rather than working

on their lab-sheets?

Stuart: I think they are bored. Those labs are not much fun for them, so they get bored and do

other things. We have to keep them interested.

Q7: What do you understand by the term problem-solving skills?

Stuart: Well if you can’t problem-solve you won’t be able to program that’s for sure.

Q8: How does problem-solving per se fit into your view of PBL?

J-13 | P a g e

Stuart: Well, that and working together as a team is what PBL is all about. Problem-solving

as a group is the key activity.

Q9: In your opinion, have the students’ problem-solving skills improved more in the PBL lab

classes as opposed to the traditional lab environment?

Stuart: Absolutely. They are so much better than they were before. I think the PBL has really

made a difference. The students design their solutions from the top down, they work out their

plan first and start from there, rather than just hacking away on the computer. Also when

they meet a problem they can look at it from a number of different angles and they find better

solutions.

Q10: What is your opinion on the work load associated with PBL classes?

Stuart: There is an awful lot of work, but it’s worth it, it really makes a difference.

Q11: Have you anything further to say about PBL as a guiding philosophy for the

curriculum?

Stuart: Eh, no, I think I’ve said all the important stuff. I’m leading on it and I think it’s
crucial.

J-14 | P a g e

J.2. Student Interview Transcriptions

J.2.1. Paul

Q1: Did you enjoy the PBL classes?

Paul: I would say overall yes. At first more so than at the end.

Interviewer: Why was that?

Paul: At the end I think maybe I got bored with it. Like, it starts off at the start and you’re

interested. Half way through you think it’s the best thing that ever happened and by the end

you’re just frustrated with it.

Interviewer: What’s the cause of that frustration?

Paul: I don’t know, maybe just doing the same thing again and again.

Q2: Did working together with other students in the PBL groups help you make friends?

Paul: Em, personally I don’t think it helped that much for me.

Q3: Do you think the PBL group environment facilitates the learning process?

Paul: Absolutely, yes.

Interviewer: In what way?

Paul: In the teambuilding, well, the teamwork. And then, in the course of what we do, finding

alternative ways for a solution. I think it’s brilliant, yeah.

Q4: What was your opinion of the atmosphere of your PBL group meeting?

Paul: My personal group was an excellent group. Lovely mix of people, lovely mix of talents,

so it was brilliant.

Q5: What was your opinion of the relationships between group members?

Paul: Again everybody had something different to bring to the table. It was all very positive.

And those who were strong helped and waited for those who weren’t as strong. So it was very

nice.

J-15 | P a g e

Q6: How did you find the distribution of the work between group members?

Paul: The stronger ones took on more but everyone contributed in my personal group. I saw

other groups where it was desperate, where two people did everything but in mine personally

it was brilliant.

Q7: Did you feel isolated or uncomfortable in your PBL Group?

Paul: No, not at all.

Q8. Did you fell well informed about the PBL method?

Paul: Yeah, great information came through. There was great supervision of all groups,

yeah.

Q9: Did you think keeping a PBL journal was useful?

Paul: Retrospectively no, but at the time possibly yes.

Interviewer: And useful in what way?

Paul: Well, at the time it was important because there were marks allocated to it. But em,

maybe you could have traced back your previous problems to help.

Q10: Do you consider Software Development to be an important subject?

Paul: Yeah

Q11: How do you go about writing a Java solution to your programming problems?

Paul: I suppose you’d find the way. An element of PBL would be in the mind. First you’d

figure out how you’ve got to overcome the problem and then put it down. You might draw

pictures, you might map it out. And you pull out all the little complex bits and work them out.

And then you pull it all together.

Interviewer: So you don’t start on the computer?

Paul: No.

Q12: What advice would you give to other students who are having problems with Java

programming?

J-16 | P a g e

Paul: (Laughs). Ask for help.

Q13: How much time do you spend studying Software Development outside of the class

contact hours? (Question unintentionally omitted)

Q14: Is there anything you would like to add?

Paul: No, overall very good. It’s a great tool.

J.2.2. William

Q1: Did you enjoy the PBL classes?

William: No. Not at all.

Interviewer: Why was that?

William: Cos like you’re sitting there and if you didn’t know anything and then the lecturer

comes over and starts talking to you and you feel under pressure and it’s like ooooh I don’t

know anything and everyone else is just standing around and they’re doing everything and

you just haven’t got a clue what’s going on so it’s not really very nice just sitting there like

that.

Q2: Did working together with other students in the PBL groups help you make friends?

William: Yeah, no, I did.

Q3: Do you think the PBL group environment facilitates the learning process?

William: No. I didn’t learn much in it.

Interviewer: Why did you think that was? Was it as you were saying that you felt a bit lost?

William: Yeah, they knew everything and if you were lost and behind and all that and they

were flying ahead of you so you don’t know and they’re moving on. You don’t really know

what they’re on about like cos you’re like you’re falling behind. You’re unsure.

Q4: What was your opinion of the atmosphere of your PBL group meeting? Were people

helpful?

William: Yeah, they were. They were really friendly. Like they do try to help you. Sometimes

if you’re stuck and you didn’t understand the other person … I think you need a lecturer

J-17 | P a g e

beside you. Like if there was a lecturer like there’d be two between four or five groups and

that’s not enough. I think you need more lecturers. Like I think you need to look at that and

there should be less people within the class rather than having so many groups and the

lecturer not being able to help you that much like.

Interviewer: Ok, so you’d like to see the lecturers help a bit more.

William: Yeah, and less students in the PBL groups. We had eight in our group sometimes

and that’s too much. You’re not going to learn much.

Q5: What was your opinion of the relationships between group members? Were people happy

with the people in their group?

William: Yeah, they were. It was OK.

Q6: How did you find the distribution of the work between group members?

William: Yeah, it was ok but there was always certain people. Like, half of them would know

what they were doing and the other half was just sitting there not knowing what was going on

so the people that knew what they were doing would communicate between themselves and

we kind of just sat back and you may say the odd thing whether it was right or wrong but

people who knew what they were doing they just moved ahead really. We were falling behind

still.

Q7: Did you feel isolated or uncomfortable in your PBL Group?

William: Yeah, I did, because if you don’t know what you’re doing you just feel, you know,

you’re just sitting there.

Q8. Did you fell well informed about the PBL method?

William: Yeah, I understand like what it was all about and all but like sometimes I didn’t get

the concepts, like the steps… I didn’t know … there were certain steps and I was like wooh I

didn’t really get it to be honest. I knew all the bits of the general thing but I didn’t know how

to do it like I didn’t have a good idea of how to do each step like.

Q9: Do you think keeping a PBL journal is useful?

J-18 | P a g e

William: Em, kind of. It was all right. Like you could look back at things but I suppose if you

don’t understand it, em…

Q10: Do you consider Software Development to be an important subject?

William: It is if you want to go down that road of doing games and all that and if you don’t

it’s not of use at all but it wouldn’t be of use to me now because I don’t want anything to do

with it. I hate it.

Q11: How do you go about writing a java solution to your programming problems?

William: Em… how did I go about it? I dunno, I’d ask questions, of the people sitting beside

me or whatever.

Interviewer: So you’d ask other people in the group.

William: Yeah.

Q12: What advice would you give to other students who are having problems with java

programming?

William: Listen from the very beginning and take out loads of books, and study. And take out

books and all. And ask loads of questions as well.

Q13: How much time do you spend studying Software Development outside of the class

contact hours?

William: Very little, I’ve got a job and that takes up most of my time.

Q14: Is there anything you would like to add, other than what you’ve already said?

William: Classes should be smaller.

J.2.3. Darren

Q1: Do you enjoy the PBL classes?

Darren: Well, they get you involved and are a good way of learning, but I can think of better

things to be doing.

Q2: Did working together with other students in the PBL groups help you make friends?

J-19 | P a g e

Darren: Oh yes, you get to meet all the other people in the class and as you’re working

together you get to really know them. You wouldn’t be friends with them all but you get to

know people and you’ll know who to ask if you get a problem .

Q3: Do you think the PBL group environment facilitates the learning process?

Darren: Yeah.

Q4: What was your opinion of the atmosphere of your PBL group meeting?

Darren: Great, yeah.

Q5: What was your opinion of the relationships between group members?

Darren: It was great, yeah, great.

Q6: How did you find the distribution of the work between group members?

Darren: Ok, it was ok, yeah, no problem.

Q7: Did you feel isolated or uncomfortable in your PBL Group?

Darren: Me? No.

Q8. Did you fell well informed about the PBL method?

Darren: Yes, yeah.

Q9: Do you think keeping a PBL journal is useful?

Darren: Yeah.

Q10: Do you consider software development to be an important subject?

Darren: Yes, so many people fail it, it’s scary but you just have to get through it. You’ll

never get a job if you can’t program.

Q11: How do you go about writing a Java solution to your programming problems?

(Question unintentionally omitted)

Q12: What advice would you give to other students who are having problems with Java

programming?

J-20 | P a g e

Darren: I’d tell them that they need to work on their own.

Q13: How much time do you spend studying Software Development outside of the class

contact hours?

Darren: Er..em, I don’t spend that much, maybe an hour or two a week. I have go to work in

the evening and that takes a lot of time.

Q14 Is there anything you would like to add?

Darren: No.

J.2.4. Nichole

Q1: Do you enjoy the PBL classes?

Nichole: No not really, they are ok, but they’re a bit boring. You can’t do anything but talk
about the problems. That’s not fun, that’s work. I’d rather be doing something else.

Q2: Did working together with other students in the PBL groups help you make friends?

Nichole: Yes it did.

Q3: Do you think the PBL group environment facilitates the learning process?

Nichole: Yes in a way. It’s good to be in the group because you get help solving the
problems, but the guys are always trying to show off who knows the most, and impress the
tutors. I couldn’t be bothered with all that stuff. The problems are so hard, it’s too much
effort, I mean, you can’t take a break or anything, and we have to solve the problems on our
own. The tutors don’t give us much help. I think they are a bit lazy or maybe they don’t know
how to solve some of the problems. It’s not right that we have to do it all on our own, the
tutors should give us more help.

Interviewer: When you ask the tutors for help what do they do?

Nichole: They never give you the right answer, they just say try this or that, I think they don’t
know the right answer.

Q4: What was your opinion of the atmosphere of your PBL group meeting?

Nichole: It was ok.

Q5: What was your opinion of the relationships between group members?

Nichole: Er..we all got on like.

J-21 | P a g e

Q6: How did you find the distribution of the work between group members?

Nichole: You can get away with doing nothing. Sometimes I would do nothing.

Interviewer: Why didn’t you take an active part in the sessions?

Nichole: I couldn’t be bothered. I’m a bit lazy in the mornings. I’ll ask someone to go over it
with me later on, and then I’ll know the solutions for the exams. I don’t like talking in the big
group; if you make a mistake, they will always say you’re wrong. Not everyone like, but some
of them will.

Q7: Did you feel isolated or uncomfortable in your PBL Group?

Nichole: No, not at all, working in a group was good, but the problems were hard but I made
friends and stuff.

Q8. Did you fell well informed about the PBL method?

Nichole: Yeah, I know what it is.

Q9: Do you think keeping a PBL journal is useful?

Nichole: Yeah, I could use it to look over the solutions.

Q10: Do you consider Software Development to be an important subject?

Nichole: Yeah, it is a very difficult subject, but if you can get through it, you have made it,
because it is the subject people fail.

Q11: How do you go about writing a Java solution to your programming problems?

Nichole: Just start working out what has to be done…I just get someone to help me when I

get stuck.

Q12: What advice would you give to other students who are having problems with Java

programming?

Nichole: Get help with the problems from someone who knows the answers.

Q13: How much time do you spend studying Software Development outside of the class

contact hours?

Nichole: I’ve no time for that, what with work and everything.

J-22 | P a g e

Q14: Is there anything you would like to add?

Nichole: No.

J.2.5. Sarah

Q1: Do you enjoy the PBL classes?

Sarah: Yes, they are enjoyable. Some of the problems are very difficult and you feel great

when you get them sorted out.

Q2: Did working together with other students in the PBL groups help you make friends?

Sarah: Yes.

Q3: Do you think the PBL group environment facilitates the learning process?

Sarah: Yeah, but not everyone does the work. Some of the guys just sit back and let others do
all the work. They don’t do any preparation or nothing, but they still get credit when we get
the right answer. It’s not fair, the tutors don’t do anything about it.

Interviewer: Did you mention it to the tutors?

Sarah: No, I’m not going to get into a fight over it. Like, it doesn’t bother me that much. And
some of the guys are me mates anyway, so I’m not going to cause trouble. You know what I
mean? Anyway the tutors are paid to do the job, aren’t they? They should notice and do
something about it.

Q4: What was your opinion of the atmosphere of your PBL group meeting?

Sarah: Mainly good, sometimes we would have an argument about what to do next but

overall it was ok.

Q5: What was your opinion of the relationships between group members?

Sarah: Like I say, it was ok.

Q6: How did you find the distribution of the work between group members? Was it fairly

distributed?

Sarah: As I said before, no. Some people just sat back and let others do all the work.

Q7: Did you feel isolated or uncomfortable in your PBL Group?

J-23 | P a g e

Sarah: No that’s not what I’m saying. I wasn’t isolated or uncomfortable, I just didn’t like it
that I had to do more work than some of the others.

Q8. Did you fell well informed about the PBL method?

Sarah: Yes, but I thought we would be able to pick some of the problem areas ourselves, but

the tutors always set the problems. We had no say in choosing them.

Q9: Do you think keeping a PBL journal is useful?

Sarah: Yeah, you can use it to study the answers and it shows you how much you have learnt.
Yeah, the journal is a good idea.

Q10: Do you consider Software Development to be an important subject?

Sarah: Yes of course. If you can’t program you can’t do anything. You need to know how to

program to be able to handle other subjects. […] Once you know how to program then you

feel like you have made it.

Q11: How do you go about writing a Java solution to your programming problems?

Sarah: I’d get all the notes and read them and then I’d start working out the steps on paper.

Once I had all that done, I’d start writing the code.

Q12: What advice would you give to other students who are having problems with Java

programming?

Sarah: They need to sit down and think about what they’re doing, try the problems

themselves.

Q13: How much time do you spend studying Software Development outside of the class

contact hours?

Sarah: I try to do at least an hour a day, and go over what we did in class. I’d like to do

more but I have to work. I work four evenings a week and Saturday mornings so it’s difficult.

I need the money. I try to do some revision when I get home from work but I’m usually too

tired.

Q14: Is there anything you would like to add?

Sarah: No.

J-24 | P a g e

J.2.6. Ahmed

Q1: Do you enjoy the PBL classes?

Ahmed: I know a lot about Java and I enjoy showing the others how to solve the problems.

Interviewer: What about the PBL rather than just Java programming?

Ahmed: Yes I get to help all the others in the group. I like that.

Q2: Did working together with other students in the PBL groups help you make friends?

Ahmed: No, not really.

Q3: Do you think the PBL group environment facilitates the learning process?

Ahmed: Yes.

Q4: What was your opinion of the atmosphere of your PBL group meeting?

Ahmed: It was good. Yes.

Q5: What was your opinion of the relationships between group members?

Ahmed: A good relationship, we all had a good working relationship.

Q6: How did you find the distribution of the work between group members?

Ahmed: Well some people can’t solve the problems and can’t do the work, the group would

be better without them.

Q7: Did you feel isolated or uncomfortable in your PBL Group?

Ahmed: No.

Q8. Did you fell well informed about the PBL method?

Ahmed: Yes I did, but I think the tutors didn’t. You see I did Java before coming here and I

wanted to pick problems on arrays and methods but they didn’t allow that. I had to do the

same problems as everyone else.

Q9: Do you think keeping a PBL journal is useful?

Ahmed: It was good. Yes. I was proud to record my solutions.

J-25 | P a g e

Q10: Do you consider Software Development to be an important subject?

Ahmed: Yes, the most important subject. If you can’t program you’ll never make much
money. Some of the others don’t realize that, that’s why they fail. It is easy once you work at
it. You have to do all the lab problems and study the notes. You can’t learn it from a book,
you just have to do the labs.

Q11: How do you go about writing a Java solution to your programming problems?

Ahmed: I just start writing the code… I work out the solution in code and just program it

Q12: What advice would you give to other students who are having problems with Java

programming?

Ahmed: Sit down and work it out on paper first and so you really understand what is
happening.

Q13: How much time do you spend studying Software Development outside of the class

contact hours?

Ahmed: About two hours a week.

Q14: Is there anything you would like to add?

Ahmed: No.

K-1 | P a g e

Appendix K - Analysis of Learner Attainment Scores

Statistical tests were carried out using Minitab 15 and MS Excel. Descriptive statistics, t-tests
and F-tests were carried out using MS Excel, while the residual gain analysis and the general
linear model were carried out using Minitab 15. The results are presented below.

K.1. Tests Carried Out on the Overall Attainment Scores of the Four Cohorts

2005/2009

K.1.1. Overall Exam Score: Descriptive Statistics, F-tests and t-tests

K.1.1.1. Descriptive statistics

Group A Exam Group B Exam

Mean 50.91803279 Mean 52.34710744

Standard Error 1.690589772 Standard Error 1.834949603

Median 50 Median 50

Mode 57 Mode 34

Standard Deviation 18.67317436 Standard Deviation 20.18444564

Sample Variance 348.6874407 Sample Variance 407.4118457

Kurtosis -1.01979063 Kurtosis -0.75824461

Skewness 0.284887117 Skewness 0.077572055

Range 80 Range 80

Minimum 16 Minimum 12

Maximum 96 Maximum 92

Sum 6212 Sum 6334

Count 122 Count 121

Confidence Level(95.0%) 3.346968326 Confidence Level(95.0%) 3.633072468

K.1.1.2. F-tests

F-Test Two-Sample for Variances

 Exam A Exam B

Mean 50.91803 52.34711

Variance 348.6874 407.4118

Observations 122 121

df 121 120

F 0.85586

P(F<=f) one-tail 0.196987

F Critical one-tail 0.740253

K.1.1.3. t-tests

t-Test: Two-Sample Assuming Equal Variances

 Exam A Exam B

Mean 50.91803279 52.34710744

Variance 348.6874407 407.4118457

Observations 122 121

Pooled Variance 377.9278084

Hypothesized Mean Difference 0

K-2 | P a g e

df 241

t Stat -0.572954263

P(T<=t) one-tail 0.283604921

t Critical one-tail 1.651200843

P(T<=t) two-tail 0.567209842

t Critical two-tail 1.969856158

K.1.2. Overall CA Score: Descriptive Statistics, F-tests and t-tests

K.1.2.1. Descriptive Statistics

Group A CA Group B CA

Mean 64.27868852 Mean 56.37066116

Standard Error 1.765605792 Standard Error 1.781945406

Median 63.5 Median 58

Mode 46 Mode 72

Standard Deviation 19.50175338 Standard Deviation 19.60139947

Sample Variance 380.318385 Sample Variance 384.2148612

Kurtosis -0.81430402 Kurtosis -0.92061104

Skewness -0.14102747 Skewness -0.30300265

Range 77 Range 76

Minimum 21 Minimum 16

Maximum 98 Maximum 92

Sum 7842 Sum 6820.85

Count 122 Count 121

Confidence Level(95.0%) 3.495482322 Confidence Level(95.0%) 3.528127848

K.1.2.2. F-tests

F-Test Two-Sample for Variances

 CA A CA B

Mean 64.27869 56.37066

Variance 380.3184 384.2149

Observations 122 121

df 121 120

F 0.989859

P(F<=f) one-tail 0.477638

F Critical one-tail 0.740253

K.1.2.3. t-tests

t-Test: Two-Sample Assuming Equal Variances

 CA A CA B

Mean 64.27868852 56.37066116

Variance 380.318385 384.2148612

Observations 122 121

Pooled Variance 382.2585392

Hypothesized Mean Difference 0

K-3 | P a g e

df 241

t Stat 3.152528558

P(T<=t) one-tail 0.000911932

t Critical one-tail 1.651200843

P(T<=t) two-tail 0.001823863

t Critical two-tail 1.969856158

K.1.3. Leaving Certificate Score: Descriptive Statistics, and t-tests

K.1.3.1. Descriptive Statistics

Group A LC Points Group B LC Points

Mean 64.27868852 Mean 56.37066116

Standard Error 1.765605792 Standard Error 1.781945406

Median 63.5 Median 58

Mode 46 Mode 72

Standard Deviation 19.50175338 Standard Deviation 19.60139947

Sample Variance 380.318385 Sample Variance 384.2148612

Kurtosis -0.81430402 Kurtosis -0.92061104

Skewness -0.14102747 Skewness -0.30300265

Range 77 Range 76

Minimum 21 Minimum 16

Maximum 98 Maximum 92

Sum 7842 Sum 6820.85

Count 122 Count 121

Confidence Level(95.0%) 3.495482322 Confidence Level(95.0%) 3.528127848

K.1.3.2. t-test tests

t-Test: Two-Sample Assuming Equal Variances

 Group A LC Points Group B LC Points

Mean 257.4180328 254.9586777

Variance 4550.096532 4336.039945

Observations 122 121

Pooled Variance 4443.512339

Hypothesized Mean Difference 0

df 241

t Stat 0.28755936

P(T<=t) one-tail 0.386965586

t Critical one-tail 1.651200843

P(T<=t) two-tail 0.773931172

t Critical two-tail 1.969856158

LC points Correlation = 0.602177

K-4 | P a g e

K.2. General Linear Model

Output from the General Linear Model (CA, Exam versus Group, Year) is given below:

Factor Type Levels Values

Group fixed 2 A, B
Year fixed 4 05/06, 06/07, 07/08, 08/09

K.2.1. Analysis of Variance for CA, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Points 1 23660.9 23706.0 23706.0 82.59 0.000
Group 1 3457.2 3477.3 3477.3 12.11 0.001
Year 3 777.0 777.0 259.0 0.90 0.441
Error 237 68028.3 68028.3 287.0
Total 242 95923.4

S = 16.9422 R-Sq = 29.08% R-Sq(adj) = 27.58%

Term Coef SE Coef T P

Constant 22.106 4.346 5.09 0.000
Points 0.14935 0.01643 9.09 0.000

Unusual Observations for CA

Obs CA Fit SE Fit Residual St Resid

17 87.0000 47.9106 3.1689 39.0894 2.35 R
23 27.0000 65.8320 2.6744 -38.8320 -2.32 R
72 39.0000 75.5431 2.5925 -36.5431 -2.18 R
101 87.0000 47.5375 2.8266 39.4625 2.36 R
105 53.0000 86.3673 3.4247 -33.3673 -2.01 R
113 85.0000 49.0310 2.7310 35.9690 2.15 R
123 20.0000 70.9583 3.1378 -50.9583 -3.06 R
134 76.0000 42.5827 3.0076 33.4173 2.00 R
146 25.0000 62.7443 2.7584 -37.7443 -2.26 R
161 23.0000 57.1707 2.4771 -34.1707 -2.04 R
190 23.0000 62.0012 2.4153 -39.0012 -2.33 R
207 89.0000 51.5471 2.4934 37.4529 2.23 R

R denotes an observation with a large standardized residual.

K-5 | P a g e

K.2.2. Analysis of Variance for Exam, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Points 1 22785.0 22996.5 22996.5 80.50 0.000
Group 1 194.2 184.8 184.8 0.65 0.422
Year 3 524.3 524.3 174.8 0.61 0.608
Error 237 67701.1 67701.1 285.7
Total 242 91204.7

S = 16.9014 R-Sq = 25.77% R-Sq(adj) = 24.20%

Term Coef SE Coef T P

Constant 14.152 4.336 3.26 0.001
Points 0.14709 0.01639 8.97 0.000

Unusual Observations for CA

Obs Exam Fit SE Fit Residual St Resid

12 96.0000 54.9433 2.6615 41.0567 2.46 R
17 85.0000 38.0276 3.1613 46.9724 2.83 R
44 85.0000 44.9843 2.5470 40.0157 2.39 R
73 83.0000 44.7996 2.4531 38.2004 2.28 R
97 26.0000 59.8993 2.5044 -33.8993 -2.03 R
123 20.0000 69.9266 3.1302 -49.9266 -3.01 R
136 34.0000 69.9266 3.1302 -35.9266 -2.16 R
145 81.0000 47.1271 2.7732 33.8729 2.03 R
188 90.0000 48.0154 2.4102 41.9846 2.51 R

R denotes an observation with a large standardized residual.

K.2.3. Means for Covariates

Covariate Mean StDev

Points 256.2 66.53

K.2.4. Least Squares Means

------CA------ -----Exam-----

Group Mean SE Mean Mean SE Mean

A 64.15 1.543 50.96 1.540
B 56.58 1.546 52.71 1.543

K-6 | P a g e

K.3. Additional Tests Carried out on the Overall Attainment Scores of the

First Cohort 2005/2006

• Group A’s attainment results (for Semester 1) from both final exam and continuous
assessment were compared against historical (Semester 1) attainment data for the
Software Development module.

Firstly Group A was compared against the Software Development class of 04/05 overall

results for Semester 1. An F-test to test the two samples for variances was carried out. As the

P value (0.508) is not less than .05 we can accept that the variances are equal. Next a t-test to

test two samples assuming equal variances was carried out. As the P value (0.109) on the one

tail test is not less than .05 we can accept the null hypothesis that there is no significant

difference between the means.

Secondly Group A was compared against the Software Development class of 03/04 overall

results for Semester 1. An F-test to test the two samples for variances was carried out. As the

P value (0.396) is not less than .05 we can accept that the variances are equal. A t-test to test

two-samples assuming equal variances was carried out. As the P value (0.178) on the one tail

test is again not less than .05 we can accept the null hypothesis that the means are the same

and accept that there is no significant difference between the means.

• First year engineering students were used as a control group. They also take the
Software Development module but do not use PBL. The Engineering students have
very similar course entry points to the Computing students (achieved in the Irish
Leaving Certificate or equivalent). Group A’s attainment results (for Semester 1) from
both final exam and continuous assessments were compared against the Engineering
Group’s results.

Again an F-test to test the two samples for variances was carried out. As the P value (0.184)

is not less than .05 we can accept that the variances are equal. However, to be conservative, a

t-test to test two samples assuming unequal variances was carried out. As the P value (0.045)

on the one tail test is less than .05 we can reject the null hypothesis that the means are the

same and accept that there is a significant difference between the means.

Note: In the above t-tests, a one tail test was used in each case, since the null hypothesis
(indirectly) predicts the direction of the difference (i.e. that the PBL group will have a higher
mean).

K-7 | P a g e

K.4. Effect Size Calculations on the Attainment Scores (Overall, Exam and CA) of the Four Cohorts 2005/2009

DATA ENTRY RAW DIFFERENCE STANDARDISED EFFECT SIZE

Outcome
measure

Treatment group Control group

p
o
o

le
d
 s

ta
n
d

a
rd

d
e
v
ia

tio
n

p
-v

a
lu

e
 fo

r

d
iffe

re
n
c
e
 in

 S
D

s

M
e
a
n

 D
iffe

re
n
c
e

p
-v

a
lu

e
 fo

r m
e
a
n

 d
iff

(2
-ta

ile
d
 T

-te
s
t)

Confidence
Interval for
Difference

E
ffe

c
t S

iz
e

B
ia

s
 c

o
rre

c
te

d

(H
e
d
g
e
s
)

S
ta

n
d
a
rd

 E
rro

r o
f

E
.S

. e
s
tim

a
te

Confidence
Interval for
Effect Size

E
ffe

c
t S

iz
e

 b
a
s
e

d
 o

n

c
o
n
tro

l g
p
 S

D

 mean n SD mean n SD

 lower upper lower upper

exam 0607 50.72 29 17.22 51.79 29 23.08 20.36 0.06 -1.07 #### #### 9.64
-

0.05
-

0.05 0.26 -0.57 0.46
-

0.05

ca 0607 63.14 29 20.74 57.79 29 20.63 20.69 0.49 5.34 0.33 -5.54 16.23 0.26 0.25 0.26 -0.26 0.77 0.26

exam 0506 57.13 24 23.29 51.24 25 17.25 20.43 0.08 5.89 0.32 -5.86 17.63 0.29 0.28 0.29 -0.28 0.85 0.34

ca 0506 66.96 24 21.89 52.31 25 18.38 20.17 0.20 14.64 0.01 3.05 26.24 0.73 0.71 0.29 0.14 1.29 0.80

exam 0708 49.69 32 17.58 52.34 32 22.69 20.30 0.08 -2.66 #### #### 7.49
-

0.13
-

0.13 0.25 -0.62 0.36
-

0.12

ca 0708 63.72 32 19.3 60.78 32 20.79 20.06 0.34 2.94 0.56 -7.09 12.96 0.15 0.14 0.25 -0.35 0.64 0.14

exam 0809 48.11 37 17.13 53.6 35 17.8 17.46 0.41 -5.49 #### #### 2.72
-

0.31
-

0.31 0.24 -0.78 0.15
-

0.31

ca 0809 63.91 37 17.61 54.06 35 18.31 17.96 0.41 9.85 0.02 1.41 18.29 0.55 0.54 0.24 0.07 1.01 0.54

overall exam 50.91 122 18.67 52.35 121 20.18 19.44 0.20 -1.44 #### -6.35 3.47
-

0.07
-

0.07 0.13 -0.33 0.18
-

0.07

overall ca 64.28 122 19.5 56.37 121 19.6 19.55 0.48 7.91 0.00 2.97 12.85 0.40 0.40 0.13 0.15 0.66 0.40

L-1 | P a g e

Appendix L - Analysis of Learning Self-Regulation, Programming Self-

Efficacy, Approaches to Learning, and Preferences for Types of

Teaching Scores

Statistical tests were carried out using Minitab 15 and MS Excel. Descriptive statistics, t-tests
and F-tests were carried out using MS Excel, while the residual gain analysis and the general
linear model were carried out using Minitab 15. The results are presented below.

L.1. Tests Carried Out on the Overall and Yearly Self-Efficacy Scores of the

Two Cohorts 2007/2009, Including Pre- and Post-Teaching Results

L.1.1. Overall Self-Efficacy Scores: Descriptive Statistics and t-tests

L.1.1.1. Descriptive Statistics of Pre-teaching Scores

Group A Overall Self Efficacy Pre Group B Overall Self Efficacy Pre

Mean 123.4203 Mean 125.4478

Standard Error 3.076283 Standard Error 2.21639

Median 121 Median 126

Mode 119 Mode 147

Standard Deviation 25.55352 Standard Deviation 18.14193

Sample Variance 652.9825 Sample Variance 329.1298

Kurtosis -0.50964 Kurtosis -1.18428

Skewness -0.04018 Skewness -0.30852

Range 118 Range 57

Minimum 67 Minimum 95

Maximum 185 Maximum 152

Sum 8516 Sum 8405

Count 69 Count 67

L.1.1.2. Descriptive Statistics of Post-teaching Scores

Group A Overall Self Efficacy Post Group B Overall Self Efficacy Post

Mean 180.0435 Mean 145.4328

Standard Error 2.653589 Standard Error 2.229609

Median 183 Median 147

Mode 179 Mode 159

Standard Deviation 22.04236 Standard Deviation 18.25013

Sample Variance 485.8657 Sample Variance 333.0674

Kurtosis 1.014831 Kurtosis -0.68099

Skewness -0.80992 Skewness -0.51162

Range 116 Range 69

Minimum 103 Minimum 102

Maximum 219 Maximum 171

Sum 12423 Sum 9744

Count 69 Count 67

L-2 | P a g e

L.1.1.3. t-test on Pre-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Overall Self Efficacy

Pre
Group B Overall Self Efficacy

Pre

Mean 123.4202899 125.4477612

Variance 652.9825234 329.1298055

Observations 69 67

Pooled Variance 493.4729758
Hypothesized Mean
Difference 0

df 134

t Stat -0.532127286

P(T<=t) one-tail 0.29775951

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.595519019

t Critical two-tail 1.97782573

L.1.1.4. t-test on Post-Teaching Scores

t-Test: Two-Sample Assuming Equal Variances

 Group A Overall Self Efficacy Post Group B Overall Self Efficacy Post

Mean 180.0434783 145.4328358

Variance 485.8657289 333.0673903

Observations 69 67

Pooled Variance 410.6068457

Hypothesized Mean Difference 0

df 134

t Stat 9.958388391

P(T<=t) one-tail 3.98102E-18

t Critical one-tail 1.656304542

P(T<=t) two-tail 7.96205E-18

t Critical two-tail 1.97782573

L.1.1.5. t-tests on Group Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Overall Self Efficacy
Pre

Group A Overall Self Efficacy
Post

Mean 123.4202899 180.0434783

Variance 729.9889173 485.8657289

Observations 69 69

Pooled Variance 607.9273231
Hypothesized Mean
Difference 0

df 136

t Stat -14.10349296

P(T<=t) one-tail 1.07156E-28

t Critical one-tail 1.656134989

L-3 | P a g e

P(T<=t) two-tail 2.14313E-28

t Critical two-tail 1.977560747

t-Test: Two-Sample Assuming Equal Variances

Group B Overall Self Efficacy

Pre
Group B Overall Self Efficacy

Post

Mean 125.4477612 145.4328358

Variance 329.1298055 333.0673903

Observations 67 67

Pooled Variance 331.0985979
Hypothesized Mean
Difference 0

df 132

t Stat -6.356960414

P(T<=t) one-tail 1.54674E-09

t Critical one-tail 1.65647927

P(T<=t) two-tail 3.09348E-09

t Critical two-tail 1.978098814

L.1.2. 07/08 Self-Efficacy Scores: Descriptive Statistics and t-tests

L.1.2.1. Descriptive Statistics of Pre-teaching Scores

Group A Self Efficacy Pre 07/08 Group B Self Efficacy Pre 07/08

Mean 132.3125 Mean 132.4375

Standard Error 4.913862 Standard Error 3.023076

Median 135.5 Median 140

Mode 149 Mode 148

Standard Deviation 27.797 Standard Deviation 17.1011

Sample Variance 772.6734 Sample Variance 292.4476

Kurtosis -0.22878 Kurtosis -0.23015

Skewness -0.49918 Skewness -0.90583

Range 118 Range 57

Minimum 67 Minimum 95

Maximum 185 Maximum 152

Sum 4234 Sum 4238

Count 32 Count 32

L.1.2.2. t-test on Pre-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

 Group A Self Efficacy Pre 07/08 Group B Self Efficacy Pre 07/08

Mean 132.3125 132.4375

Variance 772.6733871 292.4475806

Observations 32 32

Pooled Variance 532.5604839

Hypothesized Mean Difference 0

df 62

t Stat -0.021666339

L-4 | P a g e

P(T<=t) one-tail 0.491391847

t Critical one-tail 1.669804163

P(T<=t) two-tail 0.982783695

t Critical two-tail 1.998971498

L.1.2.3 Descriptive Statistics of Post-teaching Scores

Group A Self Efficacy Post 07/08 Group B Self Efficacy Post 07/08

Mean 181.0625 Mean 153.5313

Standard Error 3.615585 Standard Error 2.567235

Median 182 Median 156.5

Mode 179 Mode 147

Standard Deviation 20.45284 Standard Deviation 14.52247

Sample Variance 418.3185 Sample Variance 210.9022

Kurtosis -0.53529 Kurtosis 1.558101

Skewness -0.40022 Skewness -1.1061

Range 78 Range 63

Minimum 141 Minimum 108

Maximum 219 Maximum 171

Sum 5794 Sum 4913

Count 32 Count 32

L.1.2.4. t-test on Post-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Self Efficacy Post

07/08
Group B Self Efficacy Post

07/08

Mean 181.0625 153.53125

Variance 418.3185484 210.9022177

Observations 32 32

Pooled Variance 314.6103831
Hypothesized Mean
Difference 0

df 62

t Stat 6.208681703

P(T<=t) one-tail 2.46282E-08

t Critical one-tail 1.669804163

P(T<=t) two-tail 4.92564E-08

t Critical two-tail 1.998971498

L-5 | P a g e

L.1.3. 08/09 Self-Efficacy Scores, Descriptive Statistics and t-tests

L.1.3.1. Descriptive Statistics of Pre-teaching Scores

Group A Self Efficacy Pre 08/09 Group B Self Efficacy Pre 08/09

Mean 115.7297 Mean 119.0571

Standard Error 3.436609 Standard Error 2.849721

Median 114 Median 121

Mode 107 Mode 95

Standard Deviation 20.90408 Standard Deviation 16.85918

Sample Variance 436.9805 Sample Variance 284.2319

Kurtosis -0.50533 Kurtosis -1.22418

Skewness -0.04623 Skewness 0.046098

Range 86 Range 52

Minimum 69 Minimum 95

Maximum 155 Maximum 147

Sum 4282 Sum 4167

Count 37 Count 35

L.1.3.2. t-test on Pre-teaching scores

t-Test: Two-Sample Assuming Equal Variances

 Group A Self Efficacy Pre 08/09 Group B Self Efficacy Pre 08/09

Mean 115.7297297 119.0571429

Variance 436.9804805 284.2319328

Observations 37 35

Pooled Variance 362.7883287

Hypothesized Mean Difference 0

df 70

t Stat -0.740881428

P(T<=t) one-tail 0.230621735

t Critical one-tail 1.66691448

P(T<=t) two-tail 0.46124347

t Critical two-tail 1.994437086

L.1.3.3. Descriptive Statistics of Post-teaching Scores

Group A Self Efficacy Post 08/09 Group B Self Efficacy Post 08/09

Mean 179.1622 Mean 138.0286

Standard Error 3.875796 Standard Error 3.09879

Median 183 Median 138

Mode 206 Mode 126

Standard Deviation 23.57554 Standard Deviation 18.33269

Sample Variance 555.8063 Sample Variance 336.0874

Kurtosis 1.748393 Kurtosis -1.02299

Skewness -1.03079 Skewness -0.04289

Range 114 Range 67

Minimum 103 Minimum 102

Maximum 217 Maximum 169

Sum 6629 Sum 4831

Count 37 Count 35

L-6 | P a g e

L.1.3.4. t-test on Post-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Self Efficacy Post

08/09
Group B Self Efficacy Post

08/09

Mean 179.1621622 138.0285714

Variance 555.8063063 336.087395

Observations 37 35

Pooled Variance 449.0856922
Hypothesized Mean
Difference 0

df 70

t Stat 8.231910676

P(T<=t) one-tail 3.41579E-12

t Critical one-tail 1.66691448

P(T<=t) two-tail 6.83158E-12

t Critical two-tail 1.994437086

L.2. Tests Carried out on the Overall Relative Autonomy Scores of the two

Cohorts 2007/2009, Including Pre- and Post-Teaching Results

L.2.1. Descriptive Statistics of Pre-teaching and Post-teaching scores

Group A Overall Relative Autonomy Index Pre Group B Overall Relative Autonomy Index Pre

Mean 11.08695652 Mean 12.3880597

Standard Error 1.021193315 Standard Error 1.097457121

Median 12 Median 13

Mode 12 Mode 23

Standard Deviation 8.482668756 Standard Deviation 8.983073686

Sample Variance 71.95566922 Sample Variance 80.69561284

Kurtosis -0.641952234 Kurtosis -1.084322285

Skewness -0.131114926 Skewness -0.3076217

Range 34 Range 32

Minimum -5 Minimum -5

Maximum 29 Maximum 27

Sum 758 Sum 830

Count 69 Count 67

Group A Overall Relative Autonomy Index Post Group B Overall Relative Autonomy Index Post

Mean 13.985507 Mean 11.73134

Standard Error 1.1588447 Standard Error 1.19201

Median 13 Median 12

Mode 11 Mode 6

Standard Deviation 9.626087 Standard Deviation 9.757021

Sample Variance 92.661552 Sample Variance 95.19946

Kurtosis -0.156612 Kurtosis -0.74435

Skewness 0.1394151 Skewness -0.00865

Range 43 Range 42

Minimum -6 Minimum -9

Maximum 37 Maximum 33

L-7 | P a g e

Sum 965 Sum 786

Count 69 Count 67

L.2.2. t-tests on Pre-teaching and Post-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Overall Relative Autonomy
Index Pre

Group B Overall Relative Autonomy
Index Pre

Mean 11.08695652 12.3880597

Variance 77.10997442 80.69561284

Observations 69 67

Pooled Variance 78.87603514
Hypothesized Mean
Difference 0

df 134

t Stat -0.854145181

P(T<=t) one-tail 0.197274477

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.394548955

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Group A Overall Relative Autonomy
Index Post

Group B Overall Relative Autonomy
Index Post

Mean 13.98550725 11.73134328

Variance 92.66155158 95.19945726

Observations 69 67

Pooled Variance 93.91156482
Hypothesized Mean
Difference 0

df 134

t Stat 1.356183501

P(T<=t) one-tail 0.088660801

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.177321602

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Group A Overall Relative Autonomy
Index Pre

Group A Overall Relative Autonomy
Index Post

Mean 11.08695652 13.98550725

Variance 71.95566922 92.66155158

Observations 69 69

Pooled Variance 82.3086104
Hypothesized Mean
Difference 0

df 136

t Stat -1.942263584

P(T<=t) one-tail 0.027085978

t Critical one-tail 1.656134989

P(T<=t) two-tail 0.054171957

t Critical two-tail 1.977560747

L-8 | P a g e

t-Test: Two-Sample Assuming Equal Variances

Group B Overall Relative Autonomy
Index Pre

Group B Overall Relative Autonomy
Index Post

Mean 12.3880597 11.73134328

Variance 80.69561284 95.19945726

Observations 67 67

Pooled Variance 87.94753505
Hypothesized Mean
Difference 0

df 132

t Stat 0.405311048

P(T<=t) one-tail 0.342952519

t Critical one-tail 1.65647927

P(T<=t) two-tail 0.685905039

t Critical two-tail 1.978098814

L.3. Tests Carried Out on the Overall Approaches to Learning Scores of the

2008/2009 Cohort, including pre and post-teaching results

L.3.1. Tests Carried Out on the Overall Deep Approach to Learning Scores of the

2008/2009 Cohort, Including Pre- and Post-Teaching Results

L.3.1.1. Descriptive Statistics of Deep Approach Pre-teaching and Post-teaching

Scores

Overall Group A Deep Approach Pre Overall Group B Deep Approach Pre

Mean 57.13043478 Mean 57.20895522

Standard Error 1.057170749 Standard Error 0.929816008

Median 58 Median 56

Mode 64 Mode 59

Standard Deviation 8.781519772 Standard Deviation 7.610872035

Sample Variance 77.11508951 Sample Variance 57.92537313

Kurtosis 0.172967773 Kurtosis 1.356553438

Skewness -0.571836026 Skewness -0.015770148

Range 42 Range 40

Minimum 34 Minimum 35

Maximum 76 Maximum 75

Sum 2114 Sum 2002

Count 37 Count 35

L.3.1.2. t-tests on Deep Approach Pre-teaching and Post-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

 Overall Group A Deep Approach Pre
Overall Group B Deep
Approach Pre

Mean 57.13043478 57.20895522

Variance 77.11508951 57.92537313

Observations 37 35

Pooled Variance 67.66343816

L-9 | P a g e

Hypothesized Mean Difference 0

df 70

t Stat -0.055654232

P(T<=t) one-tail 0.477850078

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.955700157

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Deep
Approach Post

Overall Group B Deep
Approach Post

Mean 58.89855072 54.59701493

Variance 167.3572038 128.3048394

Observations 37 35

Pooled Variance 148.1224571

Hypothesized Mean Difference 0

df 70

t Stat 2.060656391

P(T<=t) one-tail 0.020635116

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.041270232

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Deep Approach
Pre

Overall Group A Deep Approach
Post

Mean 57.13043478 58.89855072

Variance 85.00809889 167.3572038

Observations 37 35

Pooled Variance 126.1826513
Hypothesized Mean
Difference 0

df 70

t Stat -1.091247156

P(T<=t) one-tail 0.138546827

t Critical one-tail 1.656134989

P(T<=t) two-tail 0.277093654

t Critical two-tail 1.977560747

t-Test: Two-Sample Assuming Equal Variances

Overall Group B Deep Approach
Pre

Overall Group B Deep Approach
Post

Mean 57.20895522 54.59701493

Variance 57.92537313 128.3048394

Observations 67 67

Pooled Variance 93.11510629
Hypothesized Mean
Difference 0

df 132

t Stat 1.566662968

L-10 | P a g e

P(T<=t) one-tail 0.059793842

t Critical one-tail 1.65647927

P(T<=t) two-tail 0.119587683

t Critical two-tail 1.978098814

L.3.2. Tests Carried Out on the Overall Strategic Approach to Learning Scores of

the 2008/2009 Cohort, Including Pre- and Post-teaching Results

L.3.2.1. Descriptive Statistics of Strategic Approach Pre-teaching and Post-teaching

Scores

Overall Group A Strategic Approach Pre Overall Group B Strategic Approach Pre

Mean 71 Mean 69.86567164

Standard Error 1.156544814 Standard Error 0.739740784

Median 71 Median 70

Mode 68 Mode 62

Standard Deviation 9.606982755 Standard Deviation 6.05503928

Sample Variance 92.29411765 Sample Variance 36.66350068

Kurtosis 0.10306458 Kurtosis -1.037097221

Skewness 0.259796656 Skewness 0.043919905

Range 47 Range 21

Minimum 49 Minimum 60

Maximum 96 Maximum 81

Sum 2627 Sum 2445

Count 37 Count 35

Overall Group A Strategic Approach Post Overall Group B Strategic Approach Post

Mean 66.05797101 Mean 71.01492537

Standard Error 1.610372927 Standard Error 1.299983046

Median 65 Median 73

Mode 79 Mode 73

Standard Deviation 13.37676218 Standard Deviation 10.64081983

Sample Variance 178.9377664 Sample Variance 113.2270466

Kurtosis 0.101111177 Kurtosis -0.562200636

Skewness 0.476286249 Skewness -0.163531171

Range 65 Range 49

Minimum 39 Minimum 48

Maximum 104 Maximum 97

Sum 2444 Sum 2486

Count 37 Count 35

L.3.2.2. t-tests on Strategic Approach Pre-teaching and Post-teaching scores

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Strategic Approach

Pre
Overall Group B

Strategic Approach Pre

Mean 71 69.86567164

Variance 92.29411765 36.66350068

Observations 37 35

Pooled Variance 64.89396302

Hypothesized Mean Difference 0

L-11 | P a g e

df 70

t Stat 0.82097349

P(T<=t) one-tail 0.206559762

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.413119524

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Strategic
Approach Post

Overall Group B Strategic Approach
Post

Mean 66.05797101 71.01492537

Variance 178.9377664 113.2270466

Observations 37 35

Pooled Variance 146.572785

Hypothesized Mean Difference 0

df 70

t Stat -2.38715568

P(T<=t) one-tail 0.00918791

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.01837582

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Strategic
Approach Pre

Overall Group A Strategic Approach
Post

Mean 71 66.05797101

Variance 117.5029838 178.9377664

Observations 69 69

Pooled Variance 148.2203751
Hypothesized Mean
Difference 0

df 70

t Stat 2.041687897

P(T<=t) one-tail 0.021557939

t Critical one-tail 1.656134989

P(T<=t) two-tail 0.043115879

t Critical two-tail 1.977560747

t-Test: Two-Sample Assuming Equal Variances

Overall Group B Strategic

Approach Pre
Overall Group B Strategic Approach
Post

Mean 69.86567164 71.01492537

Variance 36.66350068 113.2270466

Observations 67 67

Pooled Variance 74.94527363
Hypothesized Mean
Difference 0

df 70

t Stat -0.768362571

P(T<=t) one-tail 0.221822137

t Critical one-tail 1.65647927

L-12 | P a g e

P(T<=t) two-tail 0.443644275

t Critical two-tail 1.978098814

L.3.3. Tests Carried Out on the Overall Surface Apathetic Approach to Learning

Scores of the 2008/2009 Cohort, Including Pre- and Post-teaching results

L.3.3.1. Descriptive Statistics of Surface Apathetic Approach Pre-teaching and Post-

teaching Scores

Overall Group A Surface Apathetic Approach
Pre

Overall Group B Surface Apathetic Approach
Pre

Mean 46.20289855 Mean 46.79104478

Standard Error 1.224323623 Standard Error 0.795321381

Median 47 Median 47

Mode 56 Mode 53

Standard Deviation 10.16999582 Standard Deviation 6.509986067

Sample Variance 103.428815 Sample Variance 42.37991859

Kurtosis -0.791828787 Kurtosis -1.087905414

Skewness -0.210033122 Skewness -0.246923749

Range 42 Range 22

Minimum 26 Minimum 35

Maximum 68 Maximum 57

Sum 1710 Sum 1638

Count 37 Count 35

Overall Group A Surface Apathetic Approach
Post

Overall Group B Surface Apathetic Approach
Post

Mean 40.10144928 Mean 47.62686567

Standard Error 1.406073922 Standard Error 0.970351021

Median 42 Median 46

Mode 44 Mode 46

Standard Deviation 11.67972719 Standard Deviation 7.94266542

Sample Variance 136.4160273 Sample Variance 63.08593397

Kurtosis -0.73501194 Kurtosis -0.163949852

Skewness -0.301549907 Skewness -0.043346088

Range 45 Range 33

Minimum 14 Minimum 32

Maximum 59 Maximum 65

Sum 1484 Sum 1667

Count 37 Count 35

L.3.3.2. t-tests on Surface Apathetic Approach Pre-teaching and Post-teaching

Scores

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Surface Apathetic
Approach Pre

Overall Group B Surface Apathetic
Approach Pre

Mean 46.20289855 46.79104478

L-13 | P a g e

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Surface Apathetic
Approach Post

Overall Group B Surface Apathetic
Approach Post

Mean 40.10144928 47.62686567

Variance 136.4160273 63.08593397

Observations 37 35

Pooled Variance 100.2982201
Hypothesized Mean
Difference 0

df 70

t Stat -4.381031893

P(T<=t) one-tail 1.18173E-05

t Critical one-tail 1.656304542

P(T<=t) two-tail 2.36346E-05

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Overall Group A Surface Apathetic
Approach Pre

Overall Group A Surface Apathetic
Approach Post

Mean 46.20289855 40.10144928

Variance 113.5029838 136.4160273

Observations 69 69

Pooled Variance 124.9595055
Hypothesized Mean
Difference 0

df 70

t Stat 3.426796554

P(T<=t) one-tail 0.000404095

t Critical one-tail 1.656134989

P(T<=t) two-tail 0.00080819

t Critical two-tail 1.977560747

t-Test: Two-Sample Assuming Equal Variances

Overall Group B Surface Apathetic
Approach Pre

Overall Group B Surface Apathetic
Approach Post

Mean 46.79104478 47.62686567

Variance 42.37991859 63.08593397

Variance 103.428815 42.37991859

Observations 37 35

Pooled Variance 73.35995558
Hypothesized Mean
Difference 0

df 70

t Stat -0.400357784

P(T<=t) one-tail 0.344765284

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.689530568

t Critical two-tail 1.97782573

L-14 | P a g e

Observations 67 67

Pooled Variance 52.73292628
Hypothesized Mean
Difference 0

df 70

t Stat -0.666184758

P(T<=t) one-tail 0.253227811

t Critical one-tail 1.65647927

P(T<=t) two-tail 0.506455623

t Critical two-tail 1.978098814

L.4. Tests Carried Out on the Overall Preferences for Types of Teaching

Scores of the 2008/2009 Cohort, Including Pre- and Post-teaching Results

L.4.1. Tests Carried Out on the Overall Supporting Understanding Teaching Scores

of the 2008/2009 Cohort, Including Pre- and Post Teaching Results

L.4.1.1. Descriptive Statistics of Supporting Understanding Pre-teaching and Post-

Teaching Scores

Group A Supporting Understanding Pre Group B Supporting Understanding Pre

Mean 13.97101449 Mean 14.537313

Standard Error 0.330961949 Standard Error 0.2263992

Median 14 Median 15

Mode 16 Mode 15

Standard Deviation 2.749176425 Standard Deviation 1.8531575

Sample Variance 7.557971014 Sample Variance 3.4341927

Kurtosis -0.502991024 Kurtosis -1.0489293

Skewness -0.226906751 Skewness -0.3920331

Range 12 Range 6

Minimum 8 Minimum 11

Maximum 20 Maximum 17

Sum 517 Sum 509

Count 37 Count 35

Group A Supporting Understanding Post Group B Supporting Understanding Post

Mean 15.42028986 Mean 14.223881

Standard Error 0.454871237 Standard Error 0.346737

Median 16 Median 15

Mode 12 Mode 15

Standard Deviation 3.778444269 Standard Deviation 2.8381647

Sample Variance 14.27664109 Sample Variance 8.0551787

Kurtosis -0.507909959 Kurtosis -1.0358511

Skewness -0.06238063 Skewness -0.1358235

Range 18 Range 10

Minimum 6 Minimum 9

Maximum 24 Maximum 19

Sum 571 Sum 498

Count 37 Count 35

L-15 | P a g e

L.4.1.2. t-tests on Supporting Understanding Pre-teaching and Post-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Supporting Understanding
Pre

Group B Supporting
Understanding Pre

Mean 13.97101449 14.53731343

Variance 7.557971014 3.434192673

Observations 37 35

Pooled Variance 5.526856309

Hypothesized Mean Difference 0

df 70

t Stat -1.404426949

P(T<=t) one-tail 0.081252708

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.162505417

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Group A Supporting
Understanding Post

Group B Supporting Understanding
Post

Mean 15.42028986 14.2238806

Variance 14.27664109 8.055178652

Observations 37 35

Pooled Variance 11.2123387

Hypothesized Mean Difference 0

df 70

t Stat 2.083167318

P(T<=t) one-tail 0.019568222

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.039136444

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Group A Supporting Understanding
Pre

Group A Supporting Understanding
Post

Mean 13.97101449 15.42028986

Variance 7.557971014 14.27664109

Observations 37 35

Pooled Variance 10.91730605
Hypothesized Mean
Difference 0

df 70

t Stat -2.576337258

P(T<=t) one-tail 0.005525996

t Critical one-tail 1.656134989

P(T<=t) two-tail 0.011051992

t Critical two-tail 1.977560747

L-16 | P a g e

t-Test: Two-Sample Assuming Equal Variances

Group B Supporting Understanding
Pre

Group B Supporting Understanding
Post

Mean 14.53731343 14.2238806

Variance 3.434192673 8.055178652

Observations 37 35

Pooled Variance 5.744685663
Hypothesized Mean
Difference 0

df 70

t Stat 0.756891731

P(T<=t) one-tail 0.225231802

t Critical one-tail 1.65647927

P(T<=t) two-tail 0.450463605

t Critical two-tail 1.978098814

L.4.2. Tests Carried Out on the Overall Transforming Information Teaching Scores

of the 2008/2009 Cohort, Including Pre- and Post-teaching Results

L.4.2.1. Descriptive Statistics of Transforming Information Pre-teaching and Post-

Teaching Scores

Group A Transforming Information Pre Group B Transforming Information Pre

Mean 16.92753623 Mean 17.626866

Standard Error 0.338190638 Standard Error 0.5125454

Median 17 Median 17

Mode 17 Mode 20

Standard Deviation 2.80922242 Standard Deviation 4.1953648

Sample Variance 7.891730605 Sample Variance 17.601085

Kurtosis 1.992382167 Kurtosis 36.884943

Skewness -1.300904502 Skewness 5.2474721

Range 13 Range 34

Minimum 8 Minimum 13

Maximum 21 Maximum 47

Sum 625 Sum 617

Count 37 Count 35

Group A Transforming Information Post Group B Transforming Information Post

Mean 15.79710145 Mean 17.820896

Standard Error 0.479138413 Standard Error 0.2629937

Median 16 Median 18

Mode 16 Mode 17

Standard Deviation 3.980022577 Standard Deviation 2.1526965

Sample Variance 15.84057971 Sample Variance 4.6341022

Kurtosis -0.324334342 Kurtosis -0.6078111

Skewness -0.317032795 Skewness 0.2484895

Range 17 Range 8

Minimum 6 Minimum 14

Maximum 23 Maximum 22

L-17 | P a g e

Sum 585 Sum 624

Count 37 Count 35

L.4.2.2. t-tests on Transforming Information Pre-teaching and Post-teaching Scores

t-Test: Two-Sample Assuming Equal Variances

Group A Transforming Information
Pre

Group B Transforming
Information Pre

Mean 16.92753623 17.62686567

Variance 7.891730605 17.60108548

Observations 37 35

Pooled Variance 12.67395017

Hypothesized Mean Difference 0

df 70

t Stat -1.145297482

P(T<=t) one-tail 0.127063667

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.254127334

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Group A Transforming
Information Post

Group B Transforming Information
Post

Mean 15.79710145 17.82089552

Variance 15.84057971 4.634102216

Observations 37 35

Pooled Variance 10.32097139

Hypothesized Mean Difference 0

df 70

t Stat -3.672810532

P(T<=t) one-tail 0.000172805

t Critical one-tail 1.656304542

P(T<=t) two-tail 0.000345611

t Critical two-tail 1.97782573

t-Test: Two-Sample Assuming Equal Variances

Group A Transforming Information
Pre

Group A Transforming Information
Post

Mean 16.92753623 15.79710145

Variance 7.891730605 15.84057971

Observations 37 35

Pooled Variance 11.86615516
Hypothesized Mean
Difference 0

df 70

t Stat 1.927525127

P(T<=t) one-tail 0.027999473

t Critical one-tail 1.656134989

P(T<=t) two-tail 0.055998947

t Critical two-tail 1.977560747

L-18 | P a g e

t-Test: Two-Sample Assuming Equal Variances

Group B Transforming Information
Pre

Group B Transforming Information
Post

Mean 17.62686567 17.82089552

Variance 17.60108548 4.634102216

Observations 37 35

Pooled Variance 11.11759385
Hypothesized Mean
Difference 0

df 70

t Stat -0.336810445

P(T<=t) one-tail 0.368397349

t Critical one-tail 1.65647927

P(T<=t) two-tail 0.736794698

t Critical two-tail 1.978098814

L-19 | P a g e

L.5. Effect Size Calculations of the Learning Self-Regulation, Programming Self-Efficacy, Approaches to Learning, and

Preferences for Types of Teaching Scores

DATA ENTRY RAW DIFFERENCE STANDARDISED EFFECT SIZE

Outcome measure Treatment group Control group

p
o
o

le
d
 s

ta
n
d

a
rd

d
e
v
ia

tio
n

p
-v

a
lu

e
 fo

r
d
iffe

re
n
c
e
 in

 S
D

s

M
e
a
n

 D
iffe

re
n
c
e

p
-v

a
lu

e
 fo

r m
e
a
n

 d
iff

(2
-ta

ile
d
 T

-te
s
t)

Confidence
Interval for
Difference

E
ffe

c
t S

iz
e

B
ia

s
 c

o
rre

c
te

d

(H
e
d
g
e
s
)

S
ta

n
d
a
rd

 E
rro

r o
f

E
.S

. e
s
tim

a
te

Confidence
Interval for
Effect Size

E
ffe

c
t S

iz
e

 b
a
s
e

d
 o

n

c
o
n
tro

l g
p
 S

D

 mean n SD mean n SD

 lower upper lower upper

Self Efficacy post
overall 180 69 22 145 67 18 20.26 0.06 34.61 0.00 27.74 41.48 1.71 1.70 0.20 1.31 2.09 1.90

Self Efficacy 0708 181 32 20 154 32 15 17.74 0.03 27.53 0.00 18.67 36.40 1.55 1.53 0.28 0.98 2.09 1.90

Self Efficacy 0809 179 37 24 138 35 18 21.19 0.07 41.13 0.00 31.17 51.10 1.94 1.92 0.28 1.36 2.48 2.24

Relative Autonomy
Index 14 69 10 12 67 10 9.69 0.46 2.25 0.18 -1.03 5.54 0.23 0.23 0.17 -0.11 0.57 0.23

deep 59 37 13 55 35 11 12.17 0.14 4.30 0.04 0.17 8.43 0.35 0.35 0.17 0.01 0.69 0.38

strategic 66 37 13 71 35 11 12.11 0.03 -4.96 #### -9.06 -0.85
-

0.41
-

0.41 0.17 -0.75 -0.07
-

0.47

surface apathetic 40 37 12 48 35 8 10.01 0.00 -7.53 #### #### -4.13
-

0.75
-

0.75 0.18 -1.09 -0.40
-

0.95

Supporting
Understanding 15 37 4 14 35 3 3.35 0.01 1.20 0.04 0.06 2.33 0.36 0.36 0.17 0.02 0.69 0.42
Transforming
Information 16 37 4 18 35 2 3.21 0.00 -2.02 #### -3.11 -0.93

-
0.63

-
0.63 0.18 -0.97 -0.28

-
0.94

M-1 | P a g e

Appendix M : Results of the PBL Questionnaire for Students

All graphs show 106 respondents.

M.1. The PBL Group

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q1:The tutorial group discussion is an

important stimulus for my software

development learning activities.

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q2:The learning issues generated in the group

tutorials are the most important starting point

for my learning activities.

M-2 | P a g e

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q3. I study to a large extent independently

from the learning issues generated by my PBL

group tutorials.

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q4. The group climate facilitated the learning

process.

0

10

20

30

40

50

60

70

totally disagree disagree are neutral agree totally agree

Q5. In the PBL tutorials I learned something

that improved my software development skills

M-3 | P a g e

0

5

10

15

20

25

30

35

40

45

totally disagree disagree are neutral agree totally agree

Q6. In the PBL group, I improved my

communication skills.

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q7. I would recommend PBL tutorials to other

students.

M-4 | P a g e

M.2. The PBL Method

0

5

10

15

20

25

30

35

40

totally disagree disagree are neutral agree totally agree

Q8. The PBL classes have motivated me to use

additional learning resources.

0

20

40

60

80

100

yes are neutral no

Q9. If you had had the possibility to choose

before the course, would you have opted for

the PBL-course or the lecture-based course?

0

10

20

30

40

50

60

70

yes are neutral no

Q10. After the experience of the course, would

you now opt for the PBL-course or the lecture-

based course if you had to choose again?

M-5 | P a g e

0

10

20

30

40

50

60

70

80

totally disagree disagree are neutral agree totally agree

Q11. I felt well informed about the PBL

method.

0

5

10

15

20

25

30

35

40

45

totally disagree disagree are neutral agree totally agree

Q12. I consider PBL to be an effective way of

learning for myself.

0

5

10

15

20

25

30

35

40

45

totally disagree disagree are neutral agree totally agree

Q13. PBL was fun

M-6 | P a g e

M.3. Student Interest in Software Development

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q14. Before the tutorials, I was open to the

method.

0

10

20

30

40

50

totally disagree disagree are neutral agree totally agree

Q15. I am interested in the subject (Software

Development) of the PBL tutorials.

0

10

20

30

40

50

60

70

totally disagree disagree are neutral agree totally agree

Q16. I consider the subject (Software

Development) to be important within the frame

of my studies.

M-7 | P a g e

Q17. After class attendance, how much additional learning time did you invest each week in
Software Development (time in hours). The mean answer was 2 hours.

M.4. Course Objectives and Content

0

5

10

15

20

25

30

35

totally disagree disagree are neutral agree totally agree

Q18. Topics covered during PBL classes stimulated

my interest in Software Development.

0

5

10

15

20

25

30

35

totally disagree disagree are neutral agree totally agree

Q19. The content of the tutorials fitted the level of

my knowledge.

M-8 | P a g e

0

5

10

15

20

25

30

35

totally disagree disagree are neutral agree totally agree

Q20. The problems used in the PBL classes

illustrate Software Development concepts

0

10

20

30

40

50

totally disagree disagree are neutral agree totally agree

Q21. The questions included on past exams and

continuous assessment for software development,

to a large extent determine what I will study.

0

5

10

15

20

25

30

totally disagree disagree are neutral agree totally agree

Q22. The learning issues generated in the PBL

classes are tuned to the subject matter to be

tested.

M-9 | P a g e

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q23. At the start of the Software Development

course, I consulted the course objectives set out in

the syllabus.

0

20

40

60

totally disagree disagree are neutral agree totally agree

Q24. At the end of the Software Development

course, I consulted the course objectives to check

whether I covered all the subject matter I was

expected to cover.

0

5

10

15

20

25

30

35

40

45

50

totally disagree disagree are neutral agree totally agree

Q25. The PBL tutor has steered the group strongly

M-10 | P a g e

0

5

10

15

20

25

30

35

40

totally disagree disagree are neutral agree totally agree

Q26. The PBL tutor’s interventions were adequate.

0

5

10

15

20

25

30

35

40

45

totally disagree disagree are neutral agree totally agree

Q27. The PBL tutor is enthusiastic about PBL.

0

5

10

15

20

25

30

35

40

45

totally disagree disagree are neutral agree totally agree

Q28. In general, the tutor stimulates students to

make use of different sources of information

M-11 | P a g e

0

5

10

15

20

25

30

35

totally disagree disagree are neutral agree totally agree

Q29. In general, the tutor stimulates my Software

Development learning activities

0

10

20

30

40

50

60

70

totally disagree disagree are neutral agree totally agree

Q30. The class room, laboratories, and computer

equipment were adequate

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q31. The Moodle e-learning environment

supported my learning activities.

M-12 | P a g e

Q33 asked students if in general they had any other additional comments about PBL or
Software Development.

0

10

20

30

40

50

60

totally disagree disagree are neutral agree totally agree

Q32. I would like more timetabled PBL Software

Development classes.

M-13 | P a g e

M.5. Actual Responses

Q

yes are

neutral

no Total

Q9. If you had had the possibility to choose before the course, would you

have opted for the PBL-course or the lecture-based course? 2 87 17 106

Q10. After the experience of the course, would you now opt for the PBL-

course or the lecture-based course if you had to choose again? 66 8 32 106

Q

totally

disagree

disagree are

neutral

agree totally

agree

Total

Q1. The tutorial group discussion is an important stimulus for my software

development learning activities 7 13 12 50 24 106
Q2. The learning issues generated in the group tutorials are the most

important starting point for my learning activities 5 12 11 52 26 106

Q3. I study to a large extent independently from the learning issues

generated by my PBL group tutorials 16 51 7 21 11 106

Q4. The group climate facilitated the learning process 10 52 3 30 11 106

Q5. In the PBL tutorials I learned something that improved my software

development skills 7 9 6 58 26 106

Q6. In the PBL group, I improved my communication skills. 10 39 32 18 7 106

Q7. I would recommend PBL tutorials to other students. 5 13 25 56 7 106

Q8. The PBL classes have motivated me to use additional learning

resources. 32 36 18 8 12 106

Q11. I felt well informed about the PBL method. 2 1 4 29 70 106

Q12. I consider PBL to be an effective way of learning for myself. 6 11 21 41 27 106

M-14 | P a g e

Q13. PBL was fun 41 34 16 7 8 106

Q14. Before the tutorials, I was open to the method. 1 2 3 48 52 106

Q15. I am interested in the subject (Software Development) of the PBL

tutorials. 1 3 22 37 43 106

Q16. I consider the subject (Software Development) to be important within

the frame of my studies. 1 1 12 31 61 106

Q18. Topics covered during PBL classes stimulated my interest in Software

Development. 9 27 14 32 24 106

Q19. The content of the tutorials fitted the level of my knowledge. 16 29 12 28 21 106

Q20. The problems used in the PBL classes illustrate Software Development

concepts 11 14 18 31 32 106

Q21. The questions included on past exams and continuous assessment for

software development, to a large extent determine what I will study. 4 6 7 47 42 106

Q22. The learning issues generated in the PBL classes are tuned to the

subject matter to be tested. 16 19 26 23 22 106

Q23. At the start of the Software Development course, I consulted the

course objectives set out in the syllabus. 38 51 1 10 6 106

Q24. At the end of the Software Development course, I consulted the

course objectives to check whether I covered all the subject matter I was

expected to cover. 19 48 2 21 16 106

Q25. The PBL tutor has steered the group strongly 8 10 11 45 32 106

Q26. The PBL tutor’s interventions were adequate. 9 21 12 38 26 106

Q27. The PBL tutor is enthusiastic about PBL. 8 12 7 42 37 106

Q28. In general, the tutor stimulates students to make use of different

sources of information 17 39 24 21 5 106

Q29. In general, the tutor stimulates my Software Development learning

activities 11 32 21 32 10 106

Q30. The class room, laboratories, and computer equipment were

adequate 1 2 8 37 58 106

Q31. The Moodle e-learning environment supported my learning activities. 0 1 13 36 56 106

Q32. I would like more timetabled PBL Software Development classes. 7 36 52 9 2 106

Bibliography

Abelson, H., & Sussman, G. J. (1996). Structure and Interpretation of Computer
Programs. Cambridge, Massachusetts, USA: MIT Press.

Alasuutari, P. (1995). Researching Culture: Qualitative Method and Cultural Studies
(1st ed.). London: Sage.

Albanese, M. A. (2000). Problem-based learning: why curricula are likely to show
little effect on knowledge and clinical skills. Medical Education, 34, 729-
738.

Albanese, M. A., & Mitchell, S. (1993). Problem-based learning: a review of
literature on its outcomes and implementation issues. Academic Medicine,
68(8), 52-81.

Alexander, P. A., & Murphy, P. K. (2000). A motivated exploration of motivation
terminology. Contemporary Educational Psychology, 25, 3–53.

Alexander, S., Clark, M., Loose, K., Amillo, J., Daniels, M., Boyle, R., et al. (2003).
Case studies in admissions to and early performance in computer science
degrees. ACM SIGCSE Bulletin, 35(4), 137-147.

Ames, C. A. (1984). Competitive, cooperative, and individualistic goal structures: A
cognitive-motivational analysis. In C. A. Ames & R. Ames (Eds.), Research
on motivation in education: Student Motivation (Vol. 1, pp. 177-208).
Greenwich: Academic Press.

Ames, C. A. (1990). Motivation: What Teachers Need to Know. Teacher's College
Record, 91(3).

Ames, C. A. (1992). Achievement goals, motivational climate and motivational
processes. In G. C. Roberts (Ed.), Motivation in Sport and Exercise (pp. 161–
176). Champaign, IL: Human Kinetics.

Ames, C. A., & Archer, J. (1987). Mother’s beliefs about the role of ability and
effort in school learning. Journal of Educational Psychology, 18, 409-414.

Ames, C. A., & Archer, J. (1988). Achievement goals in the classroom: Students'
learning strategies and motivation process. Journal of Educational
Psychology, 80(3), 260 - 267.

Anazi, Y., & Uesato, Y. (1982). Is Recursive Computation difficult to Learn. CIP
paper No. 439, Dept. of Psychology, Carnegie-Mellon University, Pittsburg.

Anderson, J. R. (1976). Language, Memory, and Thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum
Associates.

II | P a g e

Anderson, J. R. (1996). The Architecture of Cognition. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Antepohl, W., & Herzig, S. (1999). Problem-based learning versus lecture-based
learning in a course of basic pharmacology: a controlled, randomized study.
Medical Education, 33(2), 106-113.

Askar, P., & Davenport, D. (2009). An Investigation of Factors Related To Self-
Efficacy For Java Programming Among Engineering Students. The Turkish
Online Journal of Educational Technology, 8(1).

Association for Computing Machinery (2008). Curricula Recommendations
Retrieved 16 November, 2008, from
http://www.acm.org/education/curricula-recommendations

Ayres, F. (2002). Problem-based learning: the benefits to students and organisations.
Training Journal, 20-22.

Baca, E., Mennin, S. P., Kaufman, A., & Moore-West, M. (1990). Comparison
between a problem-based, community-oriented track and a traditional track
within one medical school. In Z. H. Nooman, H. G. Schmidt & E. S. Ezzat
(Eds.), Innovation in medical education: An evaluation of its present status
(pp. 9–26). New York: Springer.

Baecker, R. (1998). Sorting Out Sorting: A Case Study of Software Visualization for
Teaching Computer Science. In J. T. Stasko, J. B. Domingue, M. H. Brown
& B. A. Price (Eds.), Software Visualization: Programming as a Multimedia
Experience (pp. 369-381). Cambridge, Massachusetts, USA: MIT Press.

Bandura, A. (1994). Self-efficacy. In V. Ramachaudran (Ed.), Encyclopaedia of
Human Behaviour (Vol. 4, pp. 71-81). New York: Academic Press.

Barr, R. B., & Tagg, J. (1995). From teaching to learning - a new paradigm for
undergraduate education. Change, 27(6), 12-25.

Barrett, T., Mac Labhrainn, I., & Fallon, H. (Eds.). (2005). Handbook of Enquiry
and Problem-based Learning: Irish Case studies and International
Perspectives (1st ed.). Galway: CELT NUI Galway.

Barron, K. E., & Harackiewicz, J. M. (2001). Achievement goals and optimal
motivation: Testing multiple goal models. Journal of Personality and Social
Psychology, 80, 706–722.

Barros, J. P., Estevens, L., Dias, R., Pais, R., & Soeiro, E. (2003). Using lab exams
to ensure programming practice in an introductory programming course.
Paper presented at the Annual Joint Conference Integrating Technology into
Computer Science Education, Thessaloniki, Greece.

Barrows, H., & Tamblyn, R. (1980). Problem-based learning: an approach to
medical education. New York: Springer Publishing Company.

III | P a g e

Barrows, H. S. (1986). A taxonomy of problem-based learning methods. Medical
Education, 20(6), 481-486.

Beckers, J. J., & Schmidt, H. G. (2001). The structure of computer anxiety: a six-
factor model. Computers in Human Behavior, 17(.), 35-49.

Bell, J. (1993). Doing Your Research Project: A Guide for First-Time Researched in
Education and Social Science (2 ed.). Milton Keynes, England: Open
University Press.

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of
Computers in Mathematics and Science Teaching, 20(1), 45-73.

Ben-Ari, M., & Reich, N. (1997). Recursion: From Drama to Program. Journal of
Computer Science Education, 11(3), 9–12.

Benbow, E. W., & McMahon, R. F. T. (2001). Mature students? In P. Schwartz, S.
Mennin & G. Webb (Eds.), Problem-based Learning. Case Studies,
Experience and Practice (pp. 119-125). London: Kogan Page.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory
programming. ACM SIGCSE Bulletin, 39(2), 32-36.

Bentley, J. F., Lowry, G. R., & Sandy, G. A. (1999). Towards the compleat
information systems graduate: a problem based learning approach. Paper
presented at the 10th Australasian Conference on Information System.

BERA (2004). British Educational Research Association (BERA) ethical guidelines.

Bereiter, C., & Scardamalia, M. (1985). Cognitive coping strategies and the problem
of inert knowledge. In J. W. Segal, S. F. Chipman & R. Glaser (Eds.),
Thinking and learning skills: Current Research and Open Questions (Vol. 2,
pp. 65-80). Hillsdale, NJ: Lawrence Erlbaum Associates.

Bergin, J., Brodie, K., Patiño-Martínez, M., McNally, M., Naps, T., Rodger, S., et al.
(1996). An overview of visualization: its use and design: report of the
working group in visualization. Paper presented at the 1st conference on
integrating technology into computer science education, Barcelona, Spain.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on
learning to program. Paper presented at the 17th Workshop of the
Psychology of Programming Interest Group, Sussex University.

Bergin, S., & Reilly, R. (2006). Predicting introductory programming performance:
A multi-institutional multivariate study. Computer Science Education, 16(4),
303-323.

Berkson, L. (1993). Problem-based learning: have the expectations been met?
Academic Medicine, 68(10 Supplement), S79-88.

IV | P a g e

Bernstein, P., Tipping, J., Bercovitz, K., & Skinner, H. A. (1995). Shifting students
and faculty to a PBL curriculum: Attitudes changed and lessons learned.
Academic Medicine, 70(3), 245-247.

Bhuiyan, S., Greer, J. E., & McCalla, G. I. (1994). Supporting the Learning of
Recursive Problem Solving. Interactive Learning Environments, 4(2), 115-
139.

Biermann, A. W. (1997). Great Ideas in Computer Science: A Gentle Introduction.
Cambridge, Massachusetts, USA: MIT Press.

Biggs, J. B. (1979). Individual differences in study processes and the quality of
learning outcomes. Higher Education, 8(4), 381-394.

Biggs, J. B. (1987). Learning Process Questionnaire Manual. Student Approaches to
Learning and Studying. Hawthorn, Australia: Australian Council for
Educational Research Ltd.

Biggs, J. B. (1988). Assessing student approaches to learning. Australian
Psychologist, 23(2), 197-206.

Biggs, J. B. (1993). What do inventories of students' learning processes really
measure? A theoretical review and clarification. British Journal of
Educational Psychology, 63(1), 3-19.

Bishop-Clark, C. (1995). Cognitive style, personality, and computer programming.
Computers in Human Behavior, 11(2), 241-260.

Black, A. E., & Deci, E. L. (2000). The effects of instructors' autonomy support and
students' autonomous motivation on learning organic chemistry: A self-
determination theory perspective. Science Education, 84(6), 740-756.

Black, S. R. (2003). Predictors of first year computing science student failure.
Glasgow: University of Glasgow

Blight, J. (1995). Problem based, small group learning: an idea whose time has
come. British Medical Journal, 311(7001), 342-343.

Blumberg, P., & Michael, J. (1992). Development of self-directed learning
behaviours in a partially teacher-directed problem-based learning curriculum.
Teaching and Learning in Medicine(4), 3-8.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ:
Prentice-Hall

Bonar, J., & Soloway, E. (1985). Preprogramming Knowledge: A Major Source of
Misconceptions in Novice Programmers. Human-Computer Interaction, 1(2),
133-161.

Boud, D. (1985). Problem-based Learning in Education for the Professions:
HERDSA.

V | P a g e

Boud, D., & Feletti, G. (Eds.). (1998). The Challenge of Problem-Based Learning
(2nd ed.). London: Routledge.

Bouffard, T., Boisvert, J., Vezeau, C., & Larouche, C. (1995). The impact of goal
orientation on self-regulation and performance among college students.
British Journal of Educational Psychology, 65, 317-329.

Bouffard, T., Vezeau, C., & Bordeleau, L. (1998). A developmental study of the
relation between combined learning and performance goals and students’
self-regulated learning. British Journal of Educational Psychology, 68, 309-
319.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K.,
et al. (2007). Threshold concepts in computer science: do they exist and are
they useful? ACM SIGCSE Bulletin, 39(1), 504-508.

Box, R., & Whitelaw, M. (2000). Experiences when migrating from structured
analysis to object-oriented modelling. Paper presented at the Australasian
conference on Computing education, Melbourne, Australia.

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal
with interesting implications. In A. Iran-Nejad & P. D. Pearson (Eds.),
Review of Research in Education (Vol. 24, pp. 61–100). Washington, DC:
American Educational Research Association.

Bråten, I., Samuelstuen, M. S., & Strømsø, H. I. (2004). Do Students’ Self-Efficacy
Beliefs Moderate the Effects of Performance Goals on Self-Regulatory
Strategy Use? Educational Psychology, 24(2), 231-247.

Bridges, E. M., & Hallinger, P. (1991, September). Problem-based learning in
medical and managerial education. Paper presented at the Cognition and
School Leadership Conference of the National Center for Educational
Leadership and the Ontario Institute for Studies in Education, Nashville, TN.

Brooks, F. P. (1995). The Mythical Man-Month, Essays on Software Engineering,
20th Anniversary Edition (pp. 336). Reading, Massachusetts: Addison-
Wesley.

Brooks, R. E. (1983). Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6), 543-554.

Brooks, R. E. (1990). Categories of programming knowledge and their application.
International Journal of Man-Machine Studies, 33(3), 241-246.

Brooks, R. E. (1999). Towards a theory of the cognitive processes in computer
programming. International Journal of Human-Computer Studies, 51(2),
197-211.

Brookshear, J. G. (2007). Computer science: an overview (10th ed.). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

VI | P a g e

Brophy, J. (2004). Motivating Students to Learn (2nd ed.). Mahwah, NJ: Lawrence
Erlbaum.

Brophy, J. (2005). Goal theorists should move on from performance goals.
Educational Psychologist, 40(3), 167-176.

Brunel, P. C. (1999). Relationship between achievement goal orientations and
perceived motivational climate on intrinsic motivation. Scandinavian Journal
of Medicine & Science in Sports, 9(6), 365-374.

Bruner, J. S. (1960). The Process of Education: Harvard University Press.

Burns, A. (1999). Collaborative action research for English language teachers:
Cambridge University Press.

Butler, R. (1992). What young people want to know when: Effects of mastery and
ability goals on interest in different kinds of social comparisons. Journal of
Personality & Social Psychology, 62, 934-943.

Butler, R., Inman, D., & Lobb, D. (2005). Problem-based learning and the medical
school: another case of the emperor’s new clothes? Advances in Physiology
Education(29), 194-196.

Butler, S. (1999). Catalysing student autonomy through action research in a problem
centred learning environment. Research in Science Education, 29(1).

Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer
programming. International Journal of Human-Computer Studies(40), 795-
811.

Cantwell-Wilson, B., & Shrock, S. (2001). Contributing to success in an
introductory computer science course: a study of twelve factors. Paper
presented at the 32nd SIGCSE technical symposium on Computer Science
Education Charlotte, North Carolina, United States.

Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment.
Thousand Oaks, CA: Sage Publications.

Carter, J., & Jenkins, T. (2002). Gender differences in programming? ACM SIGCSE
Bulletin, 34(3), 188-192.

Chou, H. W. (2001). Effects of Training Method and Computer Anxiety on Learning
Performance and Self-Efficacy. Computers in Human Behavior, 17, 51-69.

Church, M. A., Elliot, A. J., & Gable, S. L. (2001). Perceptions of classroom
environment, achievement goals and achievement outcomes. Journal of
Educational Psychology, 93(1), 43-54.

Clancy, M. (2004). Misconceptions and Attitudes that Interfere with Learning to
Program. In S. Fincher & M. Petre (Eds.), Computer Science Education
Research (pp. 239). London: Routledge.

VII | P a g e

Clark, R. (1996). Data Protection in Ireland. The Journal of Information, Law and
Technology, 11(2), 203 - 220.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
New York: Lawrence Erlbaum.

Cohen, L., Manion, L., & Morrison, K. R. B. (2000). Research Methods in
Education (5 ed.). London: Routledge.

Colby, A., Ehrlich, T., Beaumont, E., & Stephens, J. (2003). Educating Citizens:
Preparing America’s Undergraduates for Lives of Moral and Civic
Responsibility. San Francisco, CA: Jossey-Bass.

Colliver, J. A. (2000). Effectiveness of Problem-based Learning Curricula. Academic
Medicine(75), 259-266.

Colorado State University (2009). Writing Guides Reliability & Validity Retrieved
14 March, 2009, from
http://writing.colostate.edu/guides/research/relval/index.cfm

Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of
a Measure and Initial Test. MIS Quarterly, 19(2), 189-211.

Connelly, F. M., & Clandinin, D. J. (1990). Stories of Experience and Narrative
Inquiry. Educational Researcher, 19(5), 2-14.

Connolly, C., Murphy, E., & Moore, S. (2008). Programming Anxiety Amongst
Computing Students - A Key in the Retention Debate? IEEE Transactions on
Education(99), 1-4.

Connolly, T. M., & Begg, C. E. (2006). A constructivist-based approach to teaching
database analysis and design. Journal of Information Systems Education,
17(1), 43.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory
computer science. Paper presented at the 34th SIGCSE technical symposium
on Computer science education, Reno, Navada, USA.

Covington, M. V. (1984). Strategic thinking and the fear of failure. In J. W. Segal, S.
F. Chipman & R. Glaser (Eds.), Thinking and Learning Skills: Relating
instruction to research (Vol. 1, pp. 389-416). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among
five traditions. Thousand Oaks: Sage Publications.

Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed
Method Approaches (2nd ed.). London: Sage Publications Inc.

Curzon, P., & Rix, J. (1998). Why do students take programming modules? ACM
SIGCSE Bulletin, 30(3), 59-63.

VIII | P a g e

Data Protection (Amendment) Act (2003). Oireachtas Éireann.

Davies, S. P. (1993). Models and theories of programming strategy. International
Journal of Man-Machine Studies, 39(2), 237-267.

De Grave, W. S., Dolmans, D. H. J. M., & van der Vleuten, C. P. M. (2001). Student
perceptions about the occurrence of critical incidents in tutorial groups.
Medical Teacher, 23(1), 49-54.

De Volder, M. L., Schmidt, H. G., Moust, J. H. C., & De Grave, W. S. (1986).
Problem-based-learning and intrinsic motivation. In J. H. C. van der Berchen,
T. C. M. Bergen & E. E. I. de Bruyn (Eds.), Achievement and task motivation
(pp. 25-32). The Netherlands: Swets.

Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation.
Journal of Personality and Social Psychology, 18(1), 105-115.

Deci, E. L., & Ryan, R. M. (1985). Intrinsic Motivation and Self-Determination in
Human Behavior. New York: Plenum Press.

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human
needs and the self-determination of behaviour. . Psychological Enquiry,
11(4), 227-268.

Deek, F. P., & Kimmel, H. (1993). Changing the Students' Role: From Passive
Listeners to Active Participants. Paper presented at the 23rd Frontiers in
Education Conference, Washington, D.C., USA.

Deek, F. P., Kimmel, H., & McHugh, J. A. (1998). Pedagogical Changes in the
Delivery of the First-Course in Computer Science: Problem Solving, Then
Programming. Journal of Engineering Education, 87(3), 313-320.

Denning, P. J. (2004). Great Principles in Computing Curricula. ACM SIGCSE
Bulletin, 36(1), 336-341.

Denzin, N. K. (2006). Sociological Methods: A Sourcebook: Aldine Transaction.

Des Marchais, J. (1993). A student-centred, problem-based curriculum: 5 years'
experience. Canadian Medical Association Journal (148), 1567-1572.

Détienne, F. (1990). Expert Programming Knowledge: a Schema-Based Approach.
In J. Hoc, T. R. G. Green, R. Samurcay & D. J. Gilmore (Eds.), Psychology
of programming (pp. 205-222): Academic Press.

Détienne, F. (1997). Assessing the cognitive consequences of the object-oriented
approach: a survey of empirical research on object-oriented design by
individuals and teams. Interacting with Computers, 9(1), 47-72.

Détienne, F., & Soloway, E. (1990). An Empirically-Derived Control Structure for
the Process of Program Understanding. International Journal of Man-
Machine Studies, 33(3), 323-342.

IX | P a g e

Dewey, J. (1998). Experience and education: The 60th Anniversary Edition: Kappa
Delta Pi.

Dicheva, D., & Close, J. (1996). Mental Models of Recursion. Journal of
Educational Computing Research, 14(1), 1-24.

Diener, C. I., & Dweck, C. S. (1978). An analysis of learned helplessness:
Continuous changes in performance, strategy, and achievement cognitions
following failure. Journal of Personality & Social Psychology, 36(5), 451-
462.

Diener, C. I., & Dweck, C. S. (1980). An analysis of learned helplessness II. The
processing of success. Journal of Personality and Social Psychology, 39(5),
940-952.

Dijkstra, E. W. (1989). On the Cruelty of Really Teaching Computing Science.
Communications of the ACM, 32(12), 1398-1404.

Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of
problem-based learning: a meta-analysis. Learning and Instruction, 13(5),
533-568.

Dolmans, D. H. J. M., De Grave, W. S., Wolfhagen, I. H. A. P., & van der Vleuten,
C. P. M. (2005). Problem-based learning: future challenges for educational
practice and research. Medical Education, 39(7), 732-741.

Dolmans, D. H. J. M., & Schmidt, H. G. (2000). What directs self-directed learning
in a problem-based curriculum? In D. Evensen & C. E. Hmelo-Silver (Eds.),
Problem-Based Learning. A Research Perspective on Learning Interactions
(pp. 251-262). Mahwah New Jersey: Lawrence Erlbaum.

Dolmans, D. H. J. M., & Schmidt, H. G. (2006). What Do We Know About
Cognitive and Motivational Effects of Small Group Tutorials in Problem-
Based Learning? Advances in Health Sciences Education, 11(4), 321-336.

Donnelly, K. (2008, Thursday August 21). Record number of college courses
unfilled. Irish Independent. Retrieved 6 October 2008, from
http://www.independent.ie/national-news/record-number-of-college-courses-
unfilled-1460197.html

Donnelly, K., & Walshe, J. (2008, Monday August 18). Thousands of jobs 'lost' as
courses snubbed. Irish Independent. Retrieved 6 October 2008, from
http://www.independent.ie/national-news/thousands-of-jobs-lost-as-courses-
snubbed-1457757.html

Donner, R. S., & Bickley, H. (1993). Problem-based learning in American medical
education: an overview. Bulletin of the Medical Library Association, 81(3),
294-298.

X | P a g e

Doody, J. R., O'Reilly, D., Cardiff, J., & Magee, P. (2006, September). Reflections
On Teaching And Learning In A Virtual Learning Environment Using
Learning Objects In Face-To-Face And Distance Learning Programmes.
Paper presented at the 22nd ICDE World Conference on Open Learning and
Distance Education, Rio de Janeiro, Brazil.

Dreyfus, H. L., Dreyfus, S. E., & Anthanasiou, T. (2000). Mind over Machine: The
Power of Human Intuition and Expertise in the Era of the Computer: Simon
& Schuster.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J.
C. Spohrer (Eds.), Studying the novice programmer (pp. 283-299). Hillsdale,
NJ: Lawrence Erlbaum.

du Boulay, B., O'Shea, T., & Monk, J. (1989). The black box inside the glass box:
presenting computing concepts to novices. In E. Soloway & J. C. Spohrer
(Eds.), Studying the novice programmer (pp. 431-446). Hillsdale, NJ:
Lawrence Erlbaum.

Duch, B. J., Groh, S. E., & Allen, D. E. (2001). Why problem-based learning? A
case study of institutional change in undergraduate education. In B. J. Duch,
S. E. Groh & D. E. Allen (Eds.), The Power of Problem-Based Learning: A
Practical" How To" for Teaching Undergraduate Courses in Any Discipline
(pp. 3-11). Sterling, VA: Stylus Publishing, LLC.

Duff, A. (1997). A note on the reliability and validity of a 30-item version of
Entwistle & Tait's Revised Approaches to Studying Inventory. British
Journal of Educational Psychology, 67(4), 529-539.

Dunlap, J. C. (2005). Problem-based learning and self-efficacy: How a capstone
course prepares students for a profession. Educational Technology Research
and Development, 53(1), 65-83.

Dweck, C. S. (1975). The role of expectations and attributions in the alleviation of
learned helplessness. Journal of Personality and Social Psychology, 31(4),
674-685.

Dweck, C. S. (1986). Motivational processes affecting learning. American
Psychologist, 41, 1040-1048.

Dweck, C. S., & Elliott, E. S. (1983). Achievement motivation. In P. Mussen & E.
M. Hetherington (Eds.), Handbook of child psychology: Socialization,
Personality, and Social Development (Vol. IV, pp. 643–691). New York:
Wiley.

Dweck, C. S., & Leggett, E. L. (1988). A Social–Cognitive Approach to Motivation
and Personality. Psychological Review, 95(2), 256–273.

XI | P a g e

Dweck, C. S., & Reppucci, N. D. (1973). Learned helplessness and reinforcement
responsibility in children. Journal of Personality and Social Psychology, 25,
109-116.

Eckerdal, A. (2004). On the understanding of Object and Class. Technical Report
2004-058.: Dept. of Information Technology, Uppsala University, Sweden.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., & Zander,
C. (2006). Putting threshold concepts into context in computer science
education. ACM SIGCSE Bulletin, 38(3), 103-107.

Eckerdal, A., & Thuné, M. (2005). Novice Java programmers' conceptions of
'object' and 'class', and variation theory. Paper presented at the 10th annual
SIGCSE conference on Innovation and technology in computer science
education, Caparica, Portugal.

Eclipse Foundation (2004). Eclipse Retrieved 11 Janurary 2009, from
http://www.eclipse.org/

Edward, N. S. (2001). Evaluation of a constructivist approach to student induction in
relation to students' learning styles. European Journal of Engineering
Education, 26(4), 429 - 440.

Efklides, A. (2003, August). Metacognition and affect: What can metacognitive
experiences tell us about the learning process? Paper presented at the 10th
EARLI Conference, University of Padova, Italy.

Efklides, A. (2006). Metacognition, affect, and conceptual difficulty. In J. H. F.
Meyer & R. Land (Eds.), Overcoming Barriers to Student Understanding:
Threshold Concepts and Troublesome Knowledge (pp. 48-69). London:
Routledge.

Eisenstaedt, R. S., Barry, W. E., & Glanz, K. (1990). Problem-based learning:
Cognitive retention and cohort traits of randomly selected participants and
decliners. Academic Medicine, 65(9), 11–12.

Eisner, E. (1993). Objectivity in educational research. In M. Hammersley (Ed.),
Educational research: Current issues (Vol. 1, pp. 49-56): Sage.

Elliot, A. J. (1999). Approach and Avoidance Motivation and Achievement Goals.
Educational Psychologist, 34(3), 169-189.

Elliot, A. J. (2005). A conceptual history of the achievement goal construct. In A. J.
Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp.
52-72). New York: Guilford Press.

Elliot, A. J., & Church, M. A. (1997). A hierarchical model of approach and
avoidance achievement motivation. Journal of Personality & Social
Psychology, 72(1), 218-232.

XII | P a g e

Elliot, A. J., & Covington, M. V. (2001). Approach and Avoidance Motivation.
Educational Psychology Review, 13(2), 73-92.

Elliot, A. J., & Dweck, C. S. (2005). Competence and motivation: Competence as
the core of achievement motivation. In A. J. Elliot & C. S. Dweck (Eds.),
Handbook of competence and motivation (pp. 3–14). New York: Guilford
Press.

Elliot, A. J., & Harackiewicz, J. M. (1996). Approach and Avoidance Achievement
Goals and Intrinsic Motivation: A Mediational Analysis. Journal of
Personality and Social Psychology, 70(3), 461-475.

Elliot, A. J., & McGregor, H. A. (1999). Test anxiety and the hierarchical model of
approach and avoidance achievement motivation. Journal of Personality and
Social Psychology, 76(3), 628-644. .

Elliot, A. J., & McGregor, H. A. (2001). A 2 x 2 Achievement Goal Framework.
Journal of Personality and Social Psychology, 80(3), 501–519.

Elliot, A. J., & McGregor, H. A. (2002). Achievement goals as predictors of
achievement-related processes prior to task engagement. Journal of
Educational Psychology, 94, 381-395.

Elliot, A. J., McGregor, H. A., & Gable, S. L. (1999). Achievement goals, study
strategies, and exam performance: A mediational analysis. Journal of
Educational Psychology, 91(3), 549-563.

Elliot, A. J., & Reis, H. T. (2003). Attachment and exploration in adulthood. Journal
of Personality and Social Psychology, 85, 317-331.

Elliot, A. J., & Thrash, T. M. (2001). Achievement goals and the Hierarchical Model
of achievement motivation. Educational Psychology Review, 13(2), 139-156.

Ellis, A., Carswell, L., Bernat, A., Deveaux, D., Frison, P., Meisalo, V., et al. (1998).
Resources, tools, and techniques for problem based learning in computing. [
Special issue on the working group reports of the 3rd annual
SIGCSE/SIGCUE ITiCSE conference]. ACM SIGCUE Outlook, 26(4), 41-
56.

Ellis, S., & Dick, P. (2000). Introduction to Organisational Behaviour (3rd ed.).
London: McGraw-Hill.

Ellsworth, E. (1997). Teaching Positions: Difference, Pedagogy, and the Power of
Address. New York: Teachers College Press.

Enterprise Ireland (2004, December). Software: Why Ireland? Retrieved 19 October,
2008, from http://www.enterprise-
ireland.com/SourceIreland/Ireland/Software.htm

XIII | P a g e

Entwistle, N. J. (1997). The Approaches and Study Skills Inventory for Students
(ASSIST), Centre for Research on Learning and Instruction, University of
Edinburgh, Edinburgh.

Entwistle, N. J., & McCune, V. (2004). The Conceptual Bases of Study Strategy
Inventories. Educational Psychology Review, 16(4), 325-345.

Entwistle, N. J., McCune, V., & Tait, H. (2006). Approaches and Study Skills
Inventory for Students (ASSIST) Report of the development and use of the
inventory

Entwistle, N. J., & Ramsden, P. (1983). Understanding student learning. London,:
Croom Helm.

Entwistle, N. J., & Tait, H. (1994). The Revised Approaches to Studying Inventory.
Centre for Research into Learning and Instruction, University of Edinburgh,
Edinburgh.

Entwistle, N. J., Tait, H., & McCune, V. (2000). Patterns of Response to an
Approaches to Studying Inventory across Contrasting Groups and Contexts.
European Journal of Psychology of Education, 15(1), 33-48.

Entwistle, N. J., & Waterston, S. (1988). Approaches to Studying and Levels of
Processing in University Students. British Journal of Educational
Psychology, 58(pt3), 258-265.

Evans, G. E., & Simkin, M. G. (1989). What best predicts computer proficiency?
Communications of the ACM, 32(11), 1322-1327.

Expert Group on Future Skills Needs (2008). Strong Future and Opportunities for
ICT Sector in Ireland. Retrieved 19 October 2008. from
http://www.skillsireland.ie/press/releases/2008-06-23-future_ict_skills.html.

Eylon, B.-S., & Linn, M. C. (1988). Learning and Instruction: An Examination of
Four Research Perspectives in Science Education. Review of Educational
Research, 58(3), 251.

Feldgen, M., & Clua, O. (2003). New motivations are required for freshman
introductory programming. Paper presented at the 33rd Annual Frontiers in
Education Conference, , Boulder, CO, USA.

Fincher, S. (1999a). Analysis of design: an exploration of patterns and pattern
languages for pedagogy. Journal of Computers in Mathematics and Science
Teaching, 18(3), 331-348.

Fincher, S. (1999b). What are we doing when we teach programming? Paper
presented at the 29th Annual Frontiers in Education Conference, 1999. FIE
'99., San Juan, Puerto Rico.

XIV | P a g e

Fincher, S., Baker, B., Box, I., Cutts, Q., de Raadt, M., Haden, P., et al. (2005).
Programmed to succeed?: a multi-national, multi-institutional study of
introductory programming courses.

Fincher, S., & Utting, I. (2002). Pedagogical Patterns: Their Place in the Genre.
ACM SIGCSE Bulletin, 34(3), 199-202.

Finney, S. J., Pieper, S. L., & Barron, K. E. (2004). Examining the Psychometric
Properties of the Achievement Goal Questionnaire in a General Academic
Context. Educational and Psychological Measurement, 64, 365-382.

Finucane, P. M., Johnson, S. M., & Prideaux, D. J. (1998). Problem-based learning:
its rationale and efficacy. Medical Journal of Australia(168), 445-448.

Fisher, R. C. (1994). The Potential for Problem-Based Learning in Pharmacy
Education: A Clinical Therapeutics Course in Diabetes. American Journal of
Pharmaceutical Education, 58, 183-183.

Fleury, A. E. (2000). Programming in Java: student-constructed rules. Paper
presented at the thirty-first SIGCSE technical symposium on Computer
science education, Austin, Texas, United States.

Fleury, A. E. (2001). Encapsulation and Reuse as Viewed by Java Students. ACM
SIGCSE Bulletin, 33(1), 189-193.

Ford, M. (1992). Motivating humans: Goals, emotions, and personal agency beliefs.
Newbury Park, CA: Sage.

Fraenkel, J. R., & Wallen, N. E. (2005). How to Design and Evaluate Research in
Education (6th ed.). Boston: McGraw-Hill.

Gagné, E. D. (1978). Long-term retention of information following learning from
prose. Review of Educational Research, 48(4), 629–665.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1995). Design patterns:
elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.

Gardner, H. E. (1993). The Unschooled Mind: How Children Think and How
Schools Should Teach. New York: Basic Books.

Geertz, C. (1977). The Interpretation of Culture. New York: Basic Books.

Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental Models (1st ed.). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Gibbs, G. (1992). Improving the quality of student learning. Bristol, UK.: Technical
and Educational Services.

XV | P a g e

Gilmore, D. J. (1990). Expert programming knowledge: a strategic approach. In J.-
M. Hoc, T. R. G. Green, R. Samurcay & D. J. Gilmore (Eds.), Psychology of
programming (pp. 223–234). London: Academic Press.

Gilmore, D. J., & Green, T. R. G. (1984). Comprehension and recall of miniature
programs. International Journal of Man-Machine Studies, 21(1), 31-48.

Gomez-Albarran, M. (2005). The teaching and learning of programming: a survey of
supporting software tools. The Computer Journal, 48(2), 130-144.

Gotschi, T., Sanders, I., & Galpin, V. (2003). Mental Models of Recursion. ACM
SIGCSE Bulletin, 35(1), 346-350.

Green, T. R. G. (1990). Programming languages as information structures. In J.-M.
Hoc, T. R. G. Green, R. Samurcay & D. J. Gilmore (Eds.), Psychology of
programming (pp. 117-137). London: Academic Press.

Grolnick, W. S., & Ryan, R. M. (1987). Autonomy in Children's learning: An
experimental and individual difference investigation. Journal of Personality
and Social Psychology, 52(5), 890-898.

Groves, M. (2005). Problem-Based Learning and Learning Approach: Is There a
Relationship? Advances in Health Sciences Education, 10(4), 315-326.

Guba, E. G., & Lincoln, Y. S. (1989). Fourth Generation Evaluation. Newbury Park:
Sage Publications.

Guindon, R. (1990). Knowledge exploited by experts during software system design.
International Journal of Man-Machine Studies, 33(3), 279-304.

Haberman, B., & Averbuch, H. (2002). The case of base cases: why are they so
difficult to recognize? student difficulties with recursion. ACM SIGCSE
Bulletin, 34(3), 84-88.

Hadjerrouit, S. (1998a). A Constructivist Framework for Integrating the Java
Paradigm into the Undergraduate Curriculum. ACM SIGCSE Bulletin, 30(3),
105-107.

Hadjerrouit, S. (1998b). Java as First Programming Language: A Critical Evaluation.
ACM SIGCSE Bulletin, 30(2), 43-47.

Hagan, D., & Markham, S. (2000). Does it help to have some programming
experience before beginning a computing degree program? Paper presented
at the 5th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and
technology in computer science education Helsinki, Finland.

Hammersley, M. (1993). Educational Research: Current Issues (Vol. 1): Sage.

Hammersley, M. (1998). Reading Ethnographic Research: A Critical Guide (2nd
ed.). London: Longman.

XVI | P a g e

Harackiewicz, J. M., Barron, K. E., Carter, S. M., Lehto, A. T., & Elliot, A. J.
(1997). Predictors and consequences of achievement goals in the college
classroom: Maintaining interest and making the grade. Journal of Personality
and Social Psychology, 73, 1284–1295.

Harackiewicz, J. M., Barron, K. E., & Elliot, A. J. (1998). Rethinking achievement
goals: When are they adaptive for college students and why? Educational
Psychologist, 33, 1-21.

Harackiewicz, J. M., Barron, K. E., Pintrich, P. R., Elliot, A. J., & Thrash, T. M.
(2002a). Revision of Achievement Goal Theory: Necessary and Illuminating.
Journal of Educational Psychology, 94(3), 638–645.

Harackiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M., & Elliot, A. J.
(2000). Short-Term and Long-Term Consequences of Achievement Goals:
Predicting Interest and Performance Over Time. Journal of Educational
Psychology, 92(2), 316–330.

Harackiewicz, J. M., Barron, K. E., Tauer, J. M., & Elliot, A. J. (2002b). Predicting
Success in College: A Longitudinal Study of Achievement Goals and Ability
Measures as Predictors of Interest and Performance From Freshman Year
Through Graduation. Journal of Educational Psychology, 94(3), 562–575.

Harackiewicz, J. M., & Elliot, A. J. (1993). Achievement goals and intrinsic
motivation. Journal of Personality and Social Psychology, 65, 904-915.

Harackiewicz, J. M., & Sansone, C. (1991). Goals and intrinsic motivation: You can
get there from here. In M. L. Maeher & P. R. Pintrich (Eds.), Advances in
motivation and achievement: Goals and self-regulatory processes (Vol. 7,
pp. 21-50). Greenwich, CT: JAI Press.

Haskell, R. E. (2001). Transfer of Learning: Cognition, Instruction, and Reasoning.
London: Academic Press.

Headrick, L., Kaufman, A., Stillman, P., Wilkerson, L., & Wigton, R. (1994).
Teaching and learning methods for new generalist physicians. Journal of
General Internal Medicine (9), S42-S49.

Hendry, G. D., Frommer, M., & Walker, R. A. (1999). Constructivism and problem-
based learning. Journal of further and higher education, 23(3), 369-371.

Hendry, G. D., Ryan, G., & Harris, J. (2003). Group problems in problem-based
learning. Medical Teacher, 25(6), 609-616.

Hidi, S., & Harackiewicz, J. M. (2000). Motivating the academically unmotivated: A
critical issue for the 21st century. Review of Educational Research, 70(2),
151-179.

Hitchcock, M. A., & Anderson, A. S. (1997). Dealing with dysfunctional tutorial
groups. Teaching and Learning in Medicine, 9(1), 19-24.

XVII | P a g e

Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do Students
Learn? Educational Psychology Review, 16(3), 235-266.

Hoc, J.-M., Green, T. R. G., Samurcay, R., & Gilmore, D. J. (Eds.). (1990).
Psychology of programming. London: Academic Press.

Hoc, J.-M., & Nguyen-Xuan, A. (1990). Language semantics, mental models and
analogy. In J.-M. Hoc, T. R. G. Green, R. Samurcay & D. J. Gilmore (Eds.),
Psychology of programming (pp. 139–156). London: Academic Press.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding Object
Misconceptions. ACM SIGCSE Bulletin, 29(1), 131-134.

Holloway, I. (1997). Basic Concepts for Qualitative Research: Blackwell Publishing.

Humphrey, W. S. (1999). Introduction to the Team Software Process (1st ed.).
Reading, Massachusetts: Addison-Wesley Professional.

Irani, L. (2004). Understanding gender and confidence in CS course culture. ACM
SIGCSE Bulletin, 36(1), 195-199.

Irons, A., & Alexander, S. (Eds.). (2004). Effective learning and teaching in
computing. London, UK: RoutledgeFalmer.

Jackson, M. (2003). Why software writing is difficult and will remain so.
Information Processing Letters, 88(1-2), 13 - 25.

JavaPLT Group (2008). About DrJava Retrieved 11 January 2009, from
http://www.cs.rice.edu/~javaplt/drjava/

Jenkins, T. (2001). The motivation of students of programming. Paper presented at
the 6th annual conference on Innovation and technology in computer science
education, Canterbury, UK.

Jenkins, T. (2002, August 27- 29). On the difficulty of learning to program. Paper
presented at the 3rd Annual conference of the LTSN Centre for Information
and Computer Sciences, Loughborough, UK.

Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of
language, inference, and consciousness (Vol. 6). Cambridge: Harvard
University Press.

Kahney, H. (1983). What do novice programmers know about recursion. Paper
presented at the the SIGCHI conference on Human Factors in Computing
Systems, Boston, Massachusetts, United States.

Kaplan, A., & Middleton, M. J. (2002). Should Childhood Be a Journey or a Race?
Response to Harackiewicz et al. (2002). Journal of Educational Psychology,
94(3), 646-648.

XVIII | P a g e

Karabenick, S. A. (2003). Seeking help in large college classes: A person centered
approach. Contemporary Educational Psychology, 28, 37-58.

Karabenick, S. A. (2004). Perceived achievement goal structure and college student
help seeking. Journal of Educational Psychology, 96, 569-581.

Kaufman, A., Mennin, S., Waterman, R., Duban, S., Hansbarger, C., Silverblatt, H.,
et al. (1989). The New Mexico experiment: Educational innovation and
institutional change. Academic Medicine, 64(6), 285–294.

Kaufman, D. M. (1995). Preparing faculty as tutors in problem-based learning.
Teaching Improvement Practices—Successful Strategies for Higher
Education (eds. W. A. Wright & Associates), 101-125.

Kawasaki, G., & Williams, A. (2008). Software Driving Global Business
Opportunities. Paper presented at the ISA Annual Conference.

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J. H., et al.
(2000). Problem-Based Learning for Foundation Computer Science Courses.
Computer Science Education, 10(2), 109-128.

Khalife, J. T. (2006, September 2006). Threshold for the introduction of
programming: Providing learners with a simple computer model. Paper
presented at the 18th Workshop of the Psychology of Programming Interest
Group, University of Sussex.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate
a device. Cognitive Science, 8(3), 255-273.

Kinnunen, P., & Malmi, L. (2005). Problems in Problem-Based Learning -
Experiences, Analysis and Lessons Learned on an Introductory Programming
Course. Informatics in Education, 4(2), 193-214.

Klem, A. M., & Connell, J. P. (2004). Relationships Matter: Linking Teacher
Support to Student Engagement and Achievement. Journal of School Health,
74(7), 262-273.

Koestner, R., Zuckerman, M., & Koestner, J. (1987). Praise, involvement and
intrinsic motivation Journal of Personality and Social Psychology, 53, 383-
390.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and
development. Englewood Cliffs, NJ: Prentice-Hall.

Kölling, M. (1999). The problem of teaching object-oriented programming. Journal
of Object Oriented Programming, 11(8), 8-15.

Konvalina, J., Wileman, S. A., & Stephens, L. J. (1983). Math proficiency: a key to
success for computer science students. Communications of the ACM, 26(5),
377-382.

XIX | P a g e

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1989). A study of the
development of programming ability and thinking skills in high school
students. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice
programmer (pp. 283-299). Hillsdale, NJ: Lawrence Erlbaum.

Laurillard, D. (1979). The processes of student learning. Higher Education, 8(4),
395-409.

Lawrence, R. (2004). Teaching data structures using competitive games. IEEE
Transactions on Education, 47(4), 459-466.

Letovsky, S. (1986). Cognitive Processes in Program Comprehension. In E. Soloway
& S. Iyengar (Eds.), Empirical studies of programmers, First Workshop (pp.
58-79). Norwood, NJ: Intellect Books.

Levy, D., & Lapidot, T. (2000). Recursively speaking: analyzing students' discourse
of recursive phenomena. ACM SIGCSE Bulletin, 32(1), 315-319.

Lewis, K. E., & Tamblyn, R. M. (1987). The problem-based learning approach in
Baccalaureate nursing education: How effective is it? Nursing Papers, 19(2),
17–26.

Lieberman, D., & Remedios, R. (2007). Do undergraduates' motives for studying
change as they progress through their degrees? British Journal of
Educational Psychology, 77(2), 379-395.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry (1st ed.): Sage
Publications Inc.

Linge, N., & Parsons, D. (2006). Problem-based learning as an effective tool for
teaching computer network design. IEEE Transactions on Education, 49(1),
5-10.

Linn, M. C., & Dalbey, J. (1989). Cognitive consequences of programming
instruction. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice
programmer (pp. 57-81). Hillsdale, NJ: Lawrence Erlbaum.

Lipsey, M. W., & Wilson, D. B. (1993). The efficacy of psychological, educational,
and behavioral treatment. Confirmation from meta-analysis. American
Psychologist, 48(12), 1181-1209.

Lohr, S. (2001). Go To: The story of the math majors, bridge players, engineers,
chess wizards, maverick scientists and iconoclasts - the programmers who
created the software revolution. New York. USA.: Basic Books.

Long, W. F. (2003). Dissonance Detected by Cluster Analysis of Responses to the
Approaches and Study Skills Inventory for Students. Studies in Higher
Education, 28(1), 21-35.

XX | P a g e

Lopez, D. F. (1999). Social cognitive influences on self-regulated learning: The
impact of action-control beliefs and academic goals on achievement-related
outcomes. Learning and Individual Differences, 11(3), 301-319.

Luker, P. A. (1994). There's more to OOP than syntax! Paper presented at the
twenty-fifth SIGCSE symposium on Computer science education, Phoenix,
Arizona, United States.

Maeher, M. L. (1983). On doing well in science: Why Johnny no longer excels, why
Sarah never did. In S. G. Paris, G. M. Olsen & H. W. Stevenson (Eds.),
Learning and Motivation in the Classroom (pp. 179-210). Hillsdale, NJ:
Erlbaum.

Maeher, M. L., & Midgley, C. (1991). Enhancing student motivation: A schoolwide
approach. Educational Psychologist, 26(3/4), 399-427.

Mahmoud, Q. H., Dobosiewicz, W., & Swayne, D. (2004). Redesigning introductory
computer programming with HTML, JavaScript, and Java. Paper presented
at the 35th SIGCSE technical symposium on Computer science education,
Norfolk, Virginia, USA.

Malterud, K. (2001). Qualitative research: standards, challenges, and guidelines. The
Lancet, 358(9280), 483-488.

Mamone, S. (1992). Empirical study of motivation in a entry level programming
course. ACM SIGPLAN Notices, 27(3), 54-60.

Maricopa Community Colleges Center for Learning and Instruction (2001). PBL
Definition Retrieved 30 Sept 2008, from
http://www.mcli.dist.maricopa.edu/pbl/info.html

Marsh, H. W. (1987). Student's evaluations of university teaching: research findings,
methodological issues, and directions for future research. International
Journal of Educational Research, 11(3), 253-388.

Marton, F. (1976). What does it take to learn? Some implications of an alternative
view of learning. In N. J. Entwistle (Ed.), Strategies for Research and
Development in Higher Education (pp. 32-43). Amsterdam: Swets and
Zeitlinger.

Marton, F., Dall'Alba, G., & Beaty, E. (1993). Conceptions of Learning.
International Journal of Educational Research, 19, 277-300.

Marton, F., & Säljö, R. (1976). On Qualitative Differences in Learning: 1 - Outcome
and Process. British Journal of Educational Psychology, 46, 4-11.

Marton, F., & Säljö, R. (1997). Approaches to learning. In F. Marton, D. J. Hounsell
& N. J. Entwistle (Eds.), The experience of learning (2nd ed.). Edinburgh:
Scottish Academic Press.

XXI | P a g e

Maudsley, G. (1999). Do we all mean the same thing by "problem-based learning"?
A review of the concepts and a formulation of the ground rules. Academic
Medicine, 74(2), 178.

Maudsley, G. (2002). Making sense of trying not to teach: an interview study of
tutors' ideas of problem-based learning. Academic Medicine, 77(2), 162-172.

Mauffette, Y., Kandlbinder, P., & Soucisse, A. (2004). The problem in problem-
based learning is the problems: But do they motivate students? In M. Savin-
Baden & K. Wilkie (Eds.), Challenging Research into Problem-based
learning (pp. 11-25): Buckingham: SRHE and Open University Press.

Mayer, R. E. (1989). The psychology of how novices learn computer programming.
In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp.
129–159). Hillsdale, NJ: Lawrence Erlbaum.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery
learning. American Psychologist, 59(1), 14-19.

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1989). Learning to program and learning
to think: what’s the connection? In E. Soloway & J. C. Spohrer (Eds.),
Studying the novice programmer (pp. 113-124). Hillsdale, NJ: Lawrence
Erlbaum.

Mays, N., & Pope, C. (1995). Qualitative Research: Rigour and qualitative research.
British Medical Journal, 311(6997), 109-112.

Mazlack, L. J. (1980). Identifying potential to acquire programming skill.
Communications of the ACM, 23(1), 14-17.

McAllister, G., & Alexander, S. (2003). Key aspects of teaching and learning in
information and computer sciences. In H. Fry, S. Ketteridge & S. Marshall
(Eds.), A handbook for teaching and learning in higher education: enhancing
academic practice (2nd ed.). London, UK: Kogan Page.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.
D., et al. (2001). A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. [Report by the ITiCSE 2001
Working Group on Assessment of Programming Skills of first-year CS
Students.]. ACM SIGCSE Bulletin, 33(4), 125-180.

McCracken, M., Newstetter, W., & Chastine, J. (1999). Misconceptions of
designing: a descriptive study. ACM SIGCSE Bulletin, 31(3).

McKeough, A., Lupart, J. L., & Marini, A. (Eds.). (1995). Teaching for Transfer:
Fostering Generalization in Learning: Lawrence Erlbaum Associates.

McLean, L., Myers, M., Smillie, C., & Vaillancourt, D. (1997). Qualitative Research
Methods: An essay review. Education Policy Analysis Archives, 5(13).

XXII | P a g e

Meece, J. L., & Holt, K. (1993). A pattern analysis of students' achievement goals.
Journal of Educational Psychology, 85, 582-590.

Mendelsohn, P., Green, T. R. G., & Brna, P. (1990). Programming languages in
education: The search for an easy start. In J.-M. Hoc, T. R. G. Green, R.
Samurcay & D. J. Gilmore (Eds.), Psychology of programming (pp. 175-
199). London: Academic Press.

Mertens, D. M. (1998). Research Methods in Education and Psychology: Integrating
Diversity with Quantitative & Qualitative Approaches: Sage Publications.

Meyer, B. (1997). Object-oriented software construction (2 ed.). Upper Saddle
River, NJ: Prentice Hall.

Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge
(2): Epistemological considerations and a conceptual framework for teaching
and learning. Higher Education, 49(3), 373-388.

Meyer, J. H. F., & Land, R. (2006). Threshold concepts and troublesome knowledge:
An introduction. In J. H. F. Meyer & R. Land (Eds.), Overcoming Barriers to
Student Understanding: Threshold Concepts and Troublesome Knowledge
(pp. 3-18): Routledge.

Middleton, M. J., & Midgley, C. (1997). Avoiding the Demonstration of Lack of
Ability: An Under-Explored Aspect of Goal Theory. Paper presented at the
Annual meeting of the American Education Research Association.

Midgley, C., Kaplan, A., & Middleton, M. J. (2001). Performance-approach goals:
Good for what, for whom, under what circumstances, and at what cost?
Journal of Educational Psychology, 93, 77–86.

Midgley, C., Maeher, M. L., Hruda, L. Z., Anderman, E., Anderman, L., Freeman,
K. E., et al. (2000). Manual for the Patterns of Adaptive Learning Scales
(PALS). Ann Arbor, MI:: University of Michigan.

Miles, M. B., & Huberman, M. A. (1984). Qualitative data analysis: A sourcebook
of new methods. Beverly Hills: Sage Publications.

Miserandino, M. (1996). Children who do well in school: Individual differences in
perceived competence and autonomy in above-average children. Journal of
Educational Psychology, 88(2), 203-214.

Mitchell, J. E., Smith, J., & Kenyon, A. J. (2005). 'It's not for lazy students like me.'.
International Journal of Electrical Engineering Education, 42(1), 41-51.

Mitchell, M., Sheard, J., & Markham, S. (2000). Student motivation and positive
impressions of computing subjects. Paper presented at the Australasian
conference on Computing education, Melbourne, Australia.

XXIII | P a g e

Moran, M. A., & Crowley, M. J. (1979). The Leaving Certificate and First Year
University Performance. Journal of the Statistical and Social Inquiry Society
of Ireland, 24, 231-266.

Morgan, A., Gibbs, G., & Taylor, E. (1981). What do Open University students
initially understand about learning (No. 8). Walton Hall, Milton Keynes
England: The Open University.

Newble, D. I., & Clarke, R. M. (1986). The approaches to learning of students in a
traditional and in an innovative problem-based medical school. Medical
Education, 20(4), 267-273.

Newman, M. (2002). Software Errors Cost U.S. Economy $59.5 Billion Annually
Retrieved 27 August, 2009, from
http://www.nist.gov/public_affairs/releases/n02-10.htm

Newman, M. (2004a). A pilot systematic review and meta-analysis on the
effectiveness of Problem Based Learning: The Learning and Teaching
Support Network subject centre for Medicine, Dentistry and Veterinary
Medicine.

Newman, M. (2004b). Problem-based learning: An exploration of the method and
evaluation of its effectiveness in a continuing nursing education programme:
Middlesex University.

Nicholls, J. G. (1976). Effort Is Virtuous, But It's Better to Have Ability: Evaluative
Responses to Perceptions of Effort and Ability. Journal of Research in
Personality, 10(3), 306-315.

Nicholls, J. G. (1978). The Development of the Concepts of Effort and Ability,
Perception of Academic Attainment, and the Understanding That Difficult
Tasks Require More Ability. Child Development, 49(3), 800-814.

Nicholls, J. G. (1979). Quality and equality in intellectual development: The role of
motivation in education. American Psychologist, 34, 1071-1084.

Nicholls, J. G. (1980). The Development of the Concept of Difficulty. Merrill-
Palmer Quarterly, 26(3), 271-281.

Nicholls, J. G. (1989). The competitive ethos and democratic education. Cambridge,
MA: Harvard University Press.

Nickerson, R. S. (1982). Computer programming as a vehicle for teaching thinking
skills. Thinking: The Journal of Philosophy for Children, 4(3), 42-48.

Nolen, S. B. (1988). Reasons for studying: Motivational orientations and study
strategies. Cognition and Instruction, 5(4), 269-287.

Norman, G. R., & Schmidt, H. G. (1992). The psychological basis of problem-based
learning: a review of the evidence. Academic Medicine, 67(9), 557-565.

XXIV | P a g e

Ntoumanis, N. (2001). Empirical links between achievement goal theory and self-
determination theory in sport. Journal of Sports Sciences, 19, 397-409.

O'Kelly, J. (2005). Designing a hybrid problem-based learning (PBL) course: A case
study of first year computer science in NUI Maynooth. In T. Barrett, I. Mac
Labhrainn & H. Fallon (Eds.), Handbook of Enquiry and Problem-based
Learning: Irish Case studies and International Perspectives.

O'Kelly, J., Mooney, A., Ghent, J., Gaughran, P., Dunne, S., & Bergin, S. (2004). An
Overview of the Integration of Problem Based Learning into an existing
Computer Science Programming Module. Paper presented at the Problem-
Based Learning International. Conference 2004: Pleasure by Learning, 2004,
Cancun, Mexico.

O'Neill, K., Singh, G., & O’Donoghue, J. (2004). Implementing eLearning
Programmes for Higher Education: A Review of the Literature. Journal of
Information Technology Education, 3.

Or-Bach, R., & Lavy, I. (2004). Cognitive Activities of Abstraction in Object
Orientation: An Empirical Study. ACM SIGCSE Bulletin, 36(2), 82-86.

Ormerod, T. C. (1990). Human cognition and programming. In J.-M. Hoc, T. R. G.
Green, R. Samurcay & D. J. Gilmore (Eds.), Psychology of programming
(pp. 63-92). London: Academic Press.

Palmer, R. E. (2001, 29 May). The Liminality of Hermes and the Meaning of
Hermeneutics Retrieved 7 November, 2008, from
http://www.mac.edu/faculty/richardpalmer/liminality.html

Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.).
London: Sage.

Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis.
Health Services Research, 34(5 Pt 2), 1189-1208.

Pennington, N. (1987a). Comprehension Strategies in Programming. In G. M. Olsen,
S. Sheppard & E. Soloway (Eds.), Empirical Studies of Programmers: 2nd
Workshop (pp. 100-112). Norwood, NJ: Ablex Publishing Corp.

Pennington, N. (1987b). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19(3), 295-
341.

Perkins, D. N. (1992). Smart Schools: From Training Memories to Educating Minds.
New York: Free Press.

Perkins, D. N. (1999). The Many Faces of Constructivism. Educational Leadership,
57(3), 6-11.

Perkins, D. N. (2006). Constructivism and troublesome knowledge. In J. H. F. Meyer
& R. Land (Eds.), Overcoming Barriers to Student Understanding:

XXV | P a g e

Threshold Concepts and Troublesome Knowledge (pp. 33-47). London:
Routledge.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1989).
Conditions of learning in novice programmers. In E. Soloway & J. C.
Spohrer (Eds.), Studying the novice programmer (pp. 261-279). Hillsdale,
NJ: Lawrence Erlbaum.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in
novice programmers. In E. Soloway & S. Iyengar (Eds.), Empirical studies of
programmers, First Workshop (pp. 213-229). Norwood, NJ: Intellect Books.

Perkins, D. N., Schwartz, S., & Simmons, R. (1988). Instructional Strategies for the
Problems of Novice Programmers. In R. E. Mayer (Ed.), Teaching and
Learning Computer Programming: Multiple Research Perspectives (pp. 153-
178): Lawrence Erlbaum Associates.

Perkins, D. N., & Simmons, R. (1988). Patterns of Misunderstanding: An Integrative
Model for Science, Math, and Programming. Review of educational research,
58(3), 303.

Phillips, D. C. (Ed.). (2000). Constructivism in Education: Opinions and Second
Opinions on Controversial Issues. Ninety-Ninth Yearbook of the National
Society for the Study of Education. Chicago: University of Chicago Press.

Pincus, K. V. (1995). Introductory Accounting: Changing the First Course. New
Directions for Teaching and Learning(61), 89-98.

Pintrich, P. R. (2000a). An Achievement Goal Theory Perspective on Issues in
Motivation Terminology, Theory, and Research. Contemporary Educational
Psychology, 25, 92-104.

Pintrich, P. R. (2000b). Multiple goals, multiple pathways: The role of goal
orientation in learning and achievement. Journal of Educational Psychology,
92, 544–555.

Pintrich, P. R. (2000c). The role of goal orientation in self-regulated learning. In B.
M., P. R. Pintrich & Z. M. (Eds.), Handbook of self-regulation (pp. 451-502).
San Diego: Academic Press.

Pintrich, P. R., & Garcia, T. (1991). Student goal orientation and self-regulation in
the college classroom. In M. L. Maeher & P. R. Pintrich (Eds.), Advances in
motivation and achievement: Goals and self-regulatory processes (Vol. 7,
pp. 371-402). Greenwich, CT: JAI Press.

Pintrich, P. R., Smith, D., Garcia, T., & McKeachie, W. J. (1991). A manual for the
use of the Motivated Strategies for Learning Questionnaire (MSLQ). Ann
Arbor: University of Michigan, School of Education.

XXVI | P a g e

Pole, C., & Morrison, M. (2003). Ethnography for Education: Open University
Press.

Postmes, T., Tanis, M., & de Wit, B. (2001). Communication and commitment in
organizations: A social identity approach. Group Processes & Intergroup
Relations, 4(3), 227-246.

Proulx, V. K. (2000). Programming patterns and design patterns in the introductory
computer science course. Paper presented at the thirty-first SIGCSE technical
symposium on Computer science education, Austin, Texas, United States

Radio Telefís Éireann (2005, Thursday, 26 May 2005). Not enough graduates for IT
jobs Retrieved 19 October, 2008, from
http://www.rte.ie/business/2005/0526/technology.html

Ragonis, N., & Ben-Ari, M. (2002). Teaching constructors: A difficult multiple
choice. Paper presented at the 16th European Conference on Object-Oriented
Programming, Universidad de Málaga, Málaga, Spain.

Ramalingam, V., & Wiedenbeck, S. (1998). Development and Validation of Scores
on a Computer Programming Self-Efficacy Scale and Group Analyses of
Novice Programmer Self-Efficacy. Journal of Educational Computing
Research, 19(4), 367-381.

Ramsden, P. (1979). Student learning and perceptions of the academic environment.
Higher Education, 8(4), 411-427.

Ramsden, P. (1991). A performance indicator of teaching quality in higher
education: The Course Experience Questionnaire. Studies in Higher
Education, 16(2), 129-150.

Rasch, R. H., & Tosi, H. L. (1992). Factors Affecting Software Developers'
Performance: An Integrated Approach. MIS Quarterly, 16(3), 395-413.

Rawsthorne, L. J., & Elliot, A. J. (1999). Achievement goals and intrinsic
motivation: a meta-analytic review. Personality and Social Psychology
Review, 3, 326-344.

Razmov, V., & Anderson, R. (2006). Pedagogical techniques supported by the use
of student devices in teaching software engineering. Paper presented at the
37th SIGCSE technical symposium on Computer science education,
Houston, Texas, USA

Reed, D. (1998). Incorporating problem-solving patterns in CS1. Paper presented at
the twenty-ninth SIGCSE technical symposium on Computer science
education, Atlanta, Georgia, United States.

Reeve, J., Bolt, E., & Cai, Y. (1999). Autonomy-supportive teachers: How they
teach and motivate students. Journal of Educational Psychology, 91, 537-
548.

XXVII | P a g e

Rehder, B., Pennington, N., & Lee, A. Y. (1995). Cognitive Activities and Levels of
Abstraction in Procedural and Object-Oriented Design. Human-Computer
Interaction, 10(2), 171-226.

Reimann, N., & Jackson, I. (2003). Threshold concepts in economics–a case study.
Paper presented at the 10th Conference of the European Association for
Research on Learning and Instruction (EARLI), .

Report of The Joint Task Force on Computing Curricula (2001). Computing
Curricula 2001: Computer Science: IEEE Computer Society and The
Association for Computing Machinery.

Richardson, J. T. E. (1990). Reliability and replicability of the Approaches to
Studying Questionnaire. Studies in Higher Education, 15(2), 155-168.

Richardson, J. T. E. (1996). Measures of effect size. Behavior Research Methods,
Instruments, & Computers, 28(1), 12-22.

Richardson, J. T. E. (2000). Researching Student Learning: Approaches to Studying
in Campus-based and Distance Education: Society for Research into Higher
Education & Open University Press.

Richardson, J. T. E. (2005). The future of research in problem-based learning. In H.
Crabtree, A. Darvill, K. Holland, S. MacKay, M. McLoughlin, D. Oakley &
J. Supyk (Eds.), Problem-based Learning 2004 A Quality Experience? (pp.
41-59): University of Salford.

Rist, R. S. (1990). Variability in Program Design: The Interaction of Process with
Knowledge. International Journal of Man-Machine Studies, 33(3), 305-322.

Rist, R. S. (1995). Program structure and design. Cognitive Science, 19(4), 507-562.

Rist, R. S. (1996). Teaching Eiffel as a first language. Journal of Object-Oriented
Programming, 9(3), 30-41.

Robertson, S. P., & Yu, C.-C. (1990). Common Cognitive Representations of
Program Code Across Tasks and Languages. International Journal of Man-
Machine Studies, 33(3), 343-360.

Robins, A. (1996). Transfer in cognition. Connection Science, 8(2), 185-203.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching
Programming: A Review and Discussion. Computer Science Education,
13(2), 137-172.

Roddan, M. (2002). The Determinants of Student Failure and Attrition in First Year
Computing Science. Unpublished Final-year undergraduate project.,
University of Glasgow, Glasgow.

Roethlisberger, F. J., & Dickson, W. J. (1939). Management and the Worker.
Cambridge, Mass: Harvard University Press.

XXVIII | P a g e

Rogalski, J., & Samurçay, R. (1990). Acquisition of programming knowledge and
skills. In J.-M. Hoc, T. R. G. Green, R. Samurcay & D. J. Gilmore (Eds.),
Psychology of programming (pp. 157-174). London: Academic Press.

Rogers, C. R. (1969). Freedom to learn: A view of what education might become.
Columbus, Ohio: Merrill.

Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V.
Hedges (Eds.), The handbook of research synthesis (pp. 231-244). New
York: Russell Sage Foundation.

Rosenthal, R., & Jacobson, L. (1992). Pygmalion in the Classroom: Teacher
Expectation and Pupils' Intellectual Development. New York: Irvington
Publishers.

Rößling, G., & Naps, T. L. (2002). A testbed for pedagogical requirements in
algorithm visualizations. Paper presented at the 7th annual conference on
Innovation and technology in computer science education (ITiCSE), Aarhus,
Denmark.

Rosson, M. B., & Alpert, S. R. (1990). The Cognitive Consequences of Object-
Oriented Design. Human-Computer Interaction, 5(4), 345-379.

Rountree, J., & Rountree, N. (2009). Issues Regarding Threshold Concepts in
Computer Science. Paper presented at the The Eleventh Australasian
Computing Education Conference (ACE2009), Wellington, New Zealand.

Rountree, J., Rountree, N., & Robins, A. (2002). Predictors of Success and Failure in
a CS1 Course. ACM SIGCSE Bulletin, 34(4), 121-124.

Rowbottom, D. P. (2007). Demystifying threshold concepts. Journal of Philosophy
of Education, 41(2), 263-270.

Ryan, R. M., & Connell, J. P. (1989). Perceived locus of causality and
internalization: Examining reasons for acting in two domains. Journal of
Personality and Social Psychology, 57(5), 749-761.

Ryan, R. M., & Grolnick, W. S. (1986). Origins and pawns in the classroom: Self-
report and projective assessments of children's perceptions. Journal of
Personality and Social Psychology, 50(3), 550-558. .

Sackman, H. (1970). Man-computer problem solving. Princeton, NJ: Auerbach.

Sackrowitz, M. G., & Parelius, A. P. (1996). An unlevel playing field: women in the
introductory computer science courses. ACM SIGCSE Bulletin, 28(1), 37-41.

Sadlo, G. (1997). Problem-based learning enhances the educational experiences of
occupational therapy students. Education for Health, 10(1), 101–114.

Sadlo, G., & Richardson, J. T. E. (2003). Approaches to Studying and Perceptions of
the Academic Environment in Students Following Problem-Based and

XXIX | P a g e

Subject-Based Curricula. Higher Education Research & Development, 22(3),
253-274.

SAI (2008). The Sociological Association of Ireland (SAI) ethical guidelines.

Säljö, R. (1979). Learning in the Learner's Perspective: Some Common-sense
Conceptions (No. 76). Göteborg: Institute of Education, University of
Göteborg.

Salomon, G., & Perkins, D. N. (1989). Rocky Roads to Transfer: Rethinking
Mechanism of a Neglected Phenomenon. Educational Psychologist, 24(2),
113-142.

Samurcay, R. (1989). The concept of variable in programming: Its meaning and use
in problem solving by novice programmers. In E. Soloway & J. C. Spohrer
(Eds.), Studying the novice programmer (pp. 161–178). Hillsdale, NJ:
Lawrence Erlbaum.

Savery, J. R., & Duffy, T. M. (1995). Problem Based Learning: An Instructional
Model and its Constructivist Framework. Educational Technology, 35(5), 31-
38.

Savin-Baden, M. (2000). Problem-based Learning in Higher Education: Untold
Stories. Buckingham: Society for Research into Higher Education & Open
University Press.

Savin-Baden, M. (2006). Troublesome knowledge in problem-based learning. In J.
H. F. Meyer & R. Land (Eds.), Overcoming Barriers to Student
Understanding: Threshold Concepts and Troublesome Knowledge (pp. 160-
172): Routledge.

Schmidt, H. G. (1990). Innovative and conventional curricula compared: What can
be said about their effects? In Z. H. Nooman, H. G. Schmidt & E. S. Ezzat
(Eds.), Innovation in medical education: An evaluation of its present status
(pp. 1-7). New York: Springer.

Schmidt, H. G. (1994). Resolving inconsistencies in tutor expertise research: does
lack of structure cause students to seek tutor guidance? Academic Medicine,
69(8), 656-662.

Schmidt, H. G., Henny, P. A., & de Vries, M. W. (1992). Comparing problem-based
with conventional education: A review of the University of Limburg medical
school experiment. Annals of Community-Oriented Education, 5, 193-198.

Schmidt, H. G., Loyens, S. M. M., van Gog, T., & Paas, F. (2007). Problem-Based
Learning is Compatible with Human Cognitive Architecture: Commentary on
Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 91-
97.

XXX | P a g e

Schneider, M. G., & Gersting, J. L. (2006). Invitation to Computer Science: Java
Version (3rd ed.). Florence, KY, USA: Course Technology, Cengage
Learning.

Schoenfeld, A. H. (1979). Explicit Heuristic Training as a Variable in Problem-
Solving Performance. Journal for Research in Mathematics Education,
10(3), 173-187.

Schoenfeld, A. H. (1980). Teaching Problem-Solving Skills. The American
Mathematical Monthly, 87(10), 794-805.

Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge
structure in expert and novice mathematical problem solvers. Journal of
Experimental Psychology: Learning, Memory and Cognition, 8(5), 484-494.

Schunk, D. H. (1991). Learning Theories: An Educational Perspective. New York:
McMillan Publishing Company.

Schwill, A. (1994). Fundamental Ideas of Computer Science. Bulletin European
Association for Theoretical Computer Science, 53, 274-295.

Schwill, A. (1997). Fundamental Ideas: Rethinking Computer Science Education.
Learning and Leading with Technology, 25(1), 28-31.

Seale, C. (1999). The Quality of Qualitative Research: Introducing Qualitative
Methods. London: Sage.

Shaft, T. M., & Vessey, I. (1998). The relevance of application domain knowledge:
characterizing the computer program comprehension process. Journal of
Management Information Systems, 15(1), 51-78.

Sharp, H., Manns, M. L., & Eckstein, J. (2003). Evolving Pedagogical Patterns: The
Work of the Pedagogical Patterns Project. Computer Science Education,
13(4), 315-330.

Sheil, B. A. (1981). The Psychological Study of Programming. ACM Computing
Surveys (CSUR), 13(1), 101-120.

Shin, J. H., Haynes, R. B., & Johnson, M. E. (1993). The effect of problem-based,
self-directed undergraduate education on lifelong learning. Canadian
Medical Association Journal.(148), 969-976.

Shneiderman, B., & Mayer, R. E. (1979). Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International
Journal of Parallel Programming, 8(3), 219-238.

Simon, S., Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., et al. (2006).
Predictors of success in a first programming course. Paper presented at the
8th Australian conference on Computing Education Hobart, Australia.

XXXI | P a g e

Skaalvik, E. M. (1997). Self-Enhancing and Self-Defeating Ego Orientation:
Relations With Task and Avoidance Orientation, Achievement, Self-
Perceptions, and Anxiety. Journal of Educational Psychology, 89(1), 71-81.

Skelly, B. (2006, 27 July 2006). Weird science as students ignore buoyant tech
sector Retrieved 19 October, 2008, from
http://www.siliconrepublic.com/news/news.nv?storyid=single6811

Smith, G., & Escott, E. (2006). Using Animations to Support Teaching in IT. In C.
Bruce, G. M. Mohay, G. Smith, I. Stoodley & R. Tweedale (Eds.),
Transforming IT Education: Promoting a Culture of Excellence (pp. 243-
255): Informing Science.

Smith, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions Reconceived: A
Constructivist Analysis of Knowledge in Transition. The Journal of the
Learning Sciences, 3(2), 115-163.

Solomon, Y. (1998). Teaching Mathematics: Ritual, Principle and Practice. Journal
of Philosophy of Education, 32(3), 377-390.

Soloway, E., Adelson, B., & Ehrlich, K. (1988). Knowledge and processes in the
comprehension of computer programs. In M. Chi, R. Glaser & M. Farr
(Eds.), The Nature of Expertise (pp. 129-152). Hillsdale, NJ: Lawrence
Erlbaum.

Soloway, E., Bonar, J., & Ehrlich, K. (1989). Cognitive strategies and looping
constructs. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice
programmer (pp. 191-207). Hillsdale, NJ: Lawrence Erlbaum.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982). What do novices know
about programming. In B. Shneiderman & A. Badre (Eds.), Directions in
Human-Computer Interactions (pp. 27-54). Norwood, NJ: Ablex.

Soloway, E., & Spohrer, J. C. (1989). Novice mistakes: are the folk wisdoms
correct? In E. Soloway & J. C. Spohrer (Eds.), Studying the novice
programmer (pp. 401-416). Hillsdale, NJ: Lawrence Erlbaum.

Sooriamurthi, R. (2001). Problems in comprehending recursion and suggested
solutions. ACM SIGCSE Bulletin, 33(3), 25-28.

Spohrer, J. C., Soloway, E., & Pope, E. (1989). A goal/plan analysis of buggy Pascal
programs. Human-Computer Interaction., 1(2), 163 - 207.

Sproull, L., Kiesler, S., & Zubrow, D. (1984). Encountering an Alien Culture:
Carnegie-Mellon University, Committee on Social Science Research in
Computing.

Strauss, A., & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory
Procedures and Techniques (2nd ed.). Thousand Oaks: Sage Publications.

XXXII | P a g e

Sun Microsystems (2008, October 2008). Java Everywhere Retrieved 19 October
2008, from http://www.sun.com/java/everywhere/

Sweller, J., Kirschner, P. A., & Clark, R. E. (2006). Why Minimal Guidance During
Instruction Does Not Work: An Analysis of the Failure of Constructivist,
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching.
Educational Psychologist, 41(2), 75-86.

Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why Minimally Guided
Teaching Techniques Do Not Work: A Reply to Commentaries. Educational
Psychologist, 42(2), 115–121.

Sweller, J., & Sweller, S. (2006). Natural information processing systems.
Evolutionary Psychology, 4, 434–458.

Tait, H., & Entwistle, N. J. (1996). Identifying students at risk through ineffective
study strategies. Higher Education, 31(1), 97-116.

Talbot, L. A. (1995). Principles and practice of nursing research: C. V. Mosby.

Tharp, A. L. (1981). Getting more oomph from programming exercises. Paper
presented at the Twelfth SIGCSE technical symposium on Computer science
education, St. Louis, Missouri, USA.

The Pedagogical Patterns Project (2001). The Pedagogical Patterns Project Retrieved
11 December, 2008, from http://www.pedagogicalpatterns.org/

Thomas, J. W. (2000). A review of research on project-based learning. San Rafael,
CA: Autodesk Foundation.

Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code warriors and code-a-
phobes: a study in attitude and pair programming. Paper presented at the
34th SIGCSE technical symposium on Computer science education, Reno,
Navada, USA.

Tinto, V. (1975). Dropout from Higher Education: A Theoretical Synthesis of
Recent Research. Review of educational research, 45(1), 89.

Torgerson, C. J., & Torgerson, D. J. (2001). The Need for Randomised Controlled
Trials in Educational Research. British Journal of Educational Studies, 49(3),
316-328.

Torp, L., & Sage, S. (2002). Problems As Possibilities: Problem-Based Learning for
K-16 Education (2nd ed.): Association for Supervision & Curriculum
Development.

Trigwell, K., & Prosser, M. (1996). Changing approaches to teaching: A relational
perspective. Studies in Higher Education, 21(3), 275-284.

Turner, V. W. (1995). The Ritual Process: Structure and Anti-Structure: Aldine
Transaction.

XXXIII | P a g e

UK National Audit Office (2007). Value for Money Report: Executive Summary,
Staying the course: The retention of students in higher education. from
http://www.nao.org.uk/publications/nao_reports/06-07/0607616es.htm.

Urdan, T., & Turner, J. C. (2005). Competence motivation in the classroom. . In A.
J. Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp.
297-317). New York: Guilford Press.

Urdan, T. C. (1997). Achievement goal theory: Past results, future directions. In M.
L. Maeher & P. R. Pintrich (Eds.), Advances in motivation and achievement
(Vol. 10, pp. 99-142). Greenwich, CT: JAI Press.

Urdan, T. C., & Maeher, M. L. (1995). Beyond a Two-Goal Theory of Motivation
and Achievement: A Case for Social Goals. Review of Educational Research,
65(33), 213-243.

Urdan, T. C., & Mestas, M. (2006). The Goals Behind Performance Goals. Journal
of Educational Psychology, 98(2), 354-365.

Utley, A. (2004, 28 May 2004). Problem method has high dropout. The Times, p. 13,
from
http://www.timeshighereducation.co.uk/story.asp?storyCode=188968§io
ncode=26

Vallerand, R. J., & Bissonnette, R. (1992). Intrinsic, extrinsic, and amotivational
styles as predictors of behaviour: A prospective study. Journal of
Personality, 60(33), 599-620.

Vallerand, R. J., Pelletier, L. G., Blais, M. R., Briere, N. M., Senecal, C., &
Vallieres, E. F. (1992). The Academic Motivation Scale: A measure of
intrinsic, extrinsic, and amotivation in education. Educational and
Psychological Measurement, 52, 1003-1017.

van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New
York: Academic Press.

van Gennep, A. (2004). The Rites Of Passage (M. Vizedom & G. L. Caffee, Trans.
2nd ed.). London: Routledge.

van Gorp, M. J., & Grissom, S. (2001). An Empirical Evaluation of Using
Constructive Classroom Activities to Teach Introductory Programming.
Computer Science Education, 11(3), 247-260.

van Grinsven, L., & Tillema, H. (2006). Learning opportunities to support student
self-regulation: comparing different instructional formats. Educational
Research, 48(1), 77 - 91.

van Rossum, E. J., & Taylor, I. P. (1987). The relationship between conceptions of
learning and good teaching: A scheme of cognitive development. Paper

XXXIV | P a g e

presented at the Annual meeting of the American Educational Research
Association, Washington DC, USA.

van Roy, P., & Haridi, S. (2004). Concepts, Techniques, and Models of Computer
Programming. Cambridge, Massachusetts, USA: MIT Press.

Velázquez-Iturbide, J. Á. (2000). Recursion in gradual steps (is recursion really that
difficult?). Paper presented at the thirty-first SIGCSE technical symposium
on Computer science education, Austin, Texas, United States.

Venkatesh, V., & Davis, F. D. (1996). A Model of the Antecedents of Perceived
Ease of Use: Development and Test. Decision Sciences, 27(3), 451-481.

Vernon, D. T., & Blake, R. L. (1993). Does problem-based learning work? A meta-
analysis of evaluative research. Academic Medicine, 68, 550-563.

Visser, W. (1990). More or Less Following a Plan During Design: Opportunistic
Deviations in Specification. International Journal of Man-Machine Studies,
33(3), 247-278.

Visser, W., & Hoc, J.-M. (1990). Expert software design strategies. In J.-M. Hoc, T.
R. G. Green, R. Samurcay & D. J. Gilmore (Eds.), Psychology of
programming (pp. 235–250). London: Academic Press.

von Mayrhauser, A., & Vans, A. M. (1994). Program Understanding-A Survey (No.
CS-94-120): Colorado State University Computer Science Technical Report
CS94-120.

von Mayrhauser, A., & Vans, A. M. (1995a). Program comprehension during
software maintenance and evolution. Computer, 28(8), 44-55.

von Mayrhauser, A., & Vans, A. M. (1995b). Program Understanding: Models and
Experiments. Advances in Computers, 40(4), 25-46.

von Mayrhauser, A., Vans, A. M., & Howe, A. E. (1997). Program Understanding
Behaviour during Enhancement of Large-scale Software. Journal of Software
Maintenance Research and Practice, 9(5), 299-327.

Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological
Processes (14th ed.): Harvard University Press.

Waite, W. M., Jackson, M. H., & Diwan, A. (2003). The conversational classroom.
Paper presented at the The 34th SIGCSE technical symposium on Computer
science education, Reno, Navada, USA.

Wallace, M. J. (1998). Action research for language teachers: Cambridge University
Press.

Weinberg, G. M. (1971). The psychology of computer programming: Van Nostrand
Reinhold.

XXXV | P a g e

Weiner, B. (1983). Some Methodological Pitfalls in Attributional Research. Journal
of Educational Psychology, 75(4), 530-543.

Wentzel, K. R. (1989). Adolescent classroom goals, standards for performance, and
academic achievement: An interactionist perspective. Journal of Educational
Psychology, 81, 131-142.

Wentzel, K. R. (1993). Social and academic goals at school: Motivation and
achievement in early adolescence. Journal of Early Adolescence, 13(1), 4-20.

Wheelan, S. A., & Williams, T. (2003). Mapping dynamic interaction patterns in
work groups. Small Group Research, 34(4), 443-467.

Widowski, D., & Eyferth, K. (1986). Comprehending and recalling computer
programs of different structural and semantic complexity by experts and
novices. In H. P. Willumeit (Ed.), Human decision making and manual
control (pp. 267-275). Amsterdam: North-Holland Elsevier.

Wiedenbeck, S. (1988). Learning Recursion As a Concept and As a Programming
Technique. ACM SIGCSE Bulletin, 20(1), 275-278.

Wiedenbeck, S., LaBelle, D., & Kain, V. N. R. (2004, April). Factors affecting
course outcomes in introductory programming. Paper presented at the 16th
Annual Workshop of the Psychology of Programming Interest Group,
Carlow, Ireland.

Wiedenbeck, S., & Ramalingam, V. (1999). Novice comprehension of small
programs written in the procedural and object-oriented styles. International
Journal of Human-Computer Studies, 51(1), 71-87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A
comparison of the comprehension of object-oriented and procedural
programs by novice programmers. Interacting with Computers, 11(3), 255-
282.

Wilkerson, L., & Feletti, G. (1989). Problem-based learning: One approach to
increasing student participation. The Department Chairperson’s Role in
Enhancing College Teaching. New Directions for Teaching and Learning
(37), 51-60.

Williams, G. C., & Deci, E. L. (1996). Internalization of biopsychosocial values by
medical students: A test of self-determination theory. Journal of Personality
and Social Psychology, 70, 767-779.

Williams, G. C., & Deci, E. L. (2007a, 27-Nov-2006). Learning Self-Regulation
Questionnaire (SRQ-L) Retrieved 29 January, 2009, from
http://www.psych.rochester.edu/SDT/measures/selfreg_lrn.html

Williams, G. C., & Deci, E. L. (2007b). Self-determination theory Retrieved 2
August 2007, from http://www.psych.rochester.edu/SDT/theory.html

XXXVI | P a g e

Williams, L. (2007). IT undergraduates have UK’s highest dropout rate Retrieved 19
October 2008, from
http://www.computing.co.uk/computing/news/2195437/undergraduates-uk-
highest

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In Support of
Pair Programming in the Introductory Computer Science Course. Computer
Science Education, 12(3), 197-212.

Wills, C. E., Deremer, D., McCauley, R. A., & Null, L. (1999). Studying the Use of
Peer Learning in the Introductory Computer Science Curriculum. Computer
Science Education, 9(2), 71-88.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM
SIGCSE Bulletin, 28(3), 17-22.

Wittrock, M. C. (1989). Generative processes of comprehension. Educational
Psychologist, 24(4), 345–376.

Wolters, C. A., Yu, S. L., & Pintrich, P. R. (1996). The relation between goal
orientation and students’ motivational beliefs and self-regulated learning.
Learning and Individual Differences, 8, 211-238.

Woods, D. R. (1996). Problem-based Learning: How to gain the most from PBL.
Ontario, Canada: Waterdown.

Woods, D. R., Hall, F. L., Eyles, C. H., Hrymak, A. N., & Duncan-Hewitt, W. C.
(1996). Tutored versus tutorless groups in problem-based learning. American
Journal of Pharmaceutical Education, 60, 231-238.

Yehezkel, C., Ben-Ari, M., & Dreyfus, T. (2005). Computer architecture and mental
models. Paper presented at the 36th SIGCSE technical symposium on
Computer science education.

Zendler, A., & Spannagel, C. (2008). Empirical Foundation of Central Concepts for
Computer Science Education. Journal on Educational Resources in
Computing, 8(2), 1-15.

