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Abstract 

No universally accepted statistical explanation of black hole entropy exists up to now, 
therefore, i t is worth another try. Admittedly, black hole entropy does not have to have 
a statistical origin. I f the "black hole entropy" is called "black hole index" instead, 
someone might be lured to give i t an economic explanation. 

Nonetheless, the only way to jus t i fy one's claim about the statistical origin of black 
hole entropy is to compute i t statistically. This is the motivation for the construction 
of black hole models. 

In chapter 1, I first review the four laws of classical black hole mechanics which 
fo rm the basis for the introduction of black hole thermodynamics. After observing 
the formal analogy between the four laws of the black hole mechanics and that of the 
ordinary thermodynamics, I further explore the thermodynamic properties of black 
holes i n chapter 2 by reviewing the phenomenon of Hawking radiation and introducing 
the idea of black hole entropy. 

Three statistical explanations of black hole entropy are introduced in chapter 3. I 
w i l l start w i t h ' t Hooft 's brick wall model. Then, a la Brown and York, I review the 
approach based on the gravitational degrees of freedom via path integral. In the final 
part of this chapter, I present my own version of a quantum statistical explanation of 
black hole entropy by regarding a black hole as a cavity wi th thermal states inside. 

The final chapter wi l l be devoted to the construction of black hole models to ma­
terialise the idea that a black hole, in some sense, can be regarded as a cavity where 
thermalised quantum states reside w i t h quantised spectrum. These quantum states and 
the corresponding spectrum w i l l then jus t i fy the statistical explanation of black hole 
entropy presented in the final section of chapter 3. 



Contents 

Introduct ion 1 
Outline 2 

1 Clas s i ca l B l a c k Hole Phys ics 5 
Abstract of chapter 1 5 

1.1 Black hole formation f rom classical matter 7 
1.1.1 General developments 7 
1.1.2 Black hole formation in the CGHS model 9 

1.2 Four laws of black hole mechanics 12 
1.2.1 Two four laws 12 
1.2.2 Derivation of the zeroth law 14 
1.2.3 Derivation of the first law 16 

Symplectic potential 3-form 16 
Noether current 3-form 17 
Noether charge 2-form 18 
Symplectic current 3-form and the Hamiltonian 18 
The first law 20 

A Some B a s i c E lements of 2-D Dilatonic G r a v i t y 24 
A . l Di la ton field via dimensional reduction 25 
A.2 The CGHS model 26 
A. 3 Eternal black hole solutions 27 

B Differential Forms 31 
B. l Convention and notation 31 
B.2 Two nice formulae 32 

i n 



1 Semi-class ical B l a c k Hole Phys ics 33 
Abstract of chapter 2 33 

2.1 Black hole radiation 35 
2.1.1 Bogoliubov transformation 35 

Bogoliubov transformation—basic idea 35 
Bogoliubov coefficients 37 

2.1.2 Hawking radiation 39 
Mode decomposition 39 
Late time behaviours of Bogoliubov coefficients 41 
Black hole radiation is thermal 43 

2.1.3 Information puzzle 44 
2.2 Black hole entropy 46 

2.2.1 Black hole entropy and the generalised laws of thermodynamics . 46 
Black hole entropy—a short history 46 
The generalised second law of thermodynamics 47 
The generalised laws of thermodynamics 47 

2.2.2 Comments to proofs of the GSL from thermodynamic point of view 49 
How I see thermodynamics 49 
Comments to proofs of the GSL 51 

2.2.3 M y arguments 54 
The scenario 54 
Prescription for various thermodynamic quantities 55 
Two routes 56 

T h r e e Stat is t ica l Explanat ions of Black Hole E n trop y 59 
Abstract of chapter 3 60 

3.1 Brick wall model 61 
3.1.1 The model 61 

Thermal bath outside a black hole 61 
Thermodynamic quantities 62 
Building up the wall 64 

3.1.2 Comments 64 
3.1.3 Removing the divergence 65 

Pauli-Villars regularisation 65 
Apparent horizon as the brick wall 66 

3.2 Black hole entropy in terms of gravitational degrees of freedom 70 
3.2.1 Part i t ion function and entropy via path integral 70 

Part i t ion function for an ordinary system 70 

I V 



Parti t ion function for a self-gravitating system 72 
Saddle point approximation of entropy 72 

3.2.2 Micro-canonical action 73 
The Hamilton's action for a gravitational system 74 
The preliminary micro-canonical action 77 
Micro-canonical action without space-like boundary 78 

3.2.3 Entropy for spherically symmetric black holes 79 
The saddle point 79 
The entropy 81 

3.3 Statistical origin of black hole entropy f rom inside 82 
3.3.1 General assumptions 82 
3.3.2 For Schwarzschild black holes 83 

Thermodynamic quantities 83 
Quantisation rule of black hole masses 84 
Reminders 85 

3.3.3 For Reissner-Nordstrom black holes 86 
There are two independent variables 86 
Thermodynamic quantities 87 

C K i n e m a t i c s 94 
C . l Induced quantities on hypersurfaces 95 

C.1.1 Space-like hypersurfaces 95 
C. l .2 Time-like boundary a M „ 96 
C.l .3 FoUation of dMu in terms of 2 surfaces Bt 97 
C.l .4 Special case of n^w^ = 0 and N^u^, ^0 98 
C.l .5 Co-ordinate conditions 99 

C.2 Collection of equations 100 
C.2.1 Simplification of 0 on a 3-hypersurface 100 
C.2.2 Simplification of S{ar • (n • e)) on a 2-surface 102 
C.2.3 Simplification of dn • {n • e) — 6u • {u • e) on a 2-surface 103 
C.2.4 Simplification of TT^J^^" as n^u>' = 77 = 0 103 

4 Q u a n t u m M a t e r i a l Models of Spherical ly Symmetr ic B lack Holes 105 
Abstract of chapter 4 106 

4.1 Motivat ion and prescription 108 
4.1.1 Motivat ion for constructing black hole models 108 

Lesson f rom atomic physics 108 
Analogy f rom thermodynamics 109 



Entropy as a low energy quantum phenomenon 110 
Material goal I l l 

4.1.2 Quantum-mechanical prescription of static Einstein field equation 111 
Semi-classical prescription I l l 
Quantum-mechanical prescription 112 
Application to spherically symmetric system 113 

4.2 Models of static Schwarzschild black holes 117 
4.2.1 The Kleinian signature ( 117 

Bound states 117 
The spectrum 117 
The problem of two times 118 

4.2.2 The first model: h - q parametrisation 119 
Boundary conditions 120 
Asymptotic behaviours 120 

4.2.3 The second model: 77 — r parametrisation 121 
The equations 121 
Boundary conditions 122 
Asymptotic behaviours 122 
Normalisation condition 123 

4.3 Model of charged, non-rotating black holes 124 
4.3.1 The model 124 

The system 124 
Equations 125 
Normalisation 126 
Ambiguity in the meaning of the charge 127 

4.3.2 The solutions 128 
General solutions 128 
Large and small charge limits 129 

4.4 Prospects and conclusions 132 

D B l a c k Hole Solutions 137 
D . l Schwarzschild solution 137 
D.2 Reissner-Nordstrom solution 138 

Figure 141 
Figures for section 4.2 141 
Figures for section 4.3 I44 

V I 



M = Ml 144 
M = Ms 150 
L i m i t of g = 0 156 

Figures for section 4.4 162 

Bibl iography 168 

vn 



List of Figures 

1.1 Penrose diagram for a space-time of black hole formation 11 

A . l Penrose diagram for an eternal black hole 30 

3.1 Penrose diagram for an evaporating black hole 69 
3.2 Manifold M 76 
3.3 Examples of quantised mass of charged black hole wi th respect to A ĉ as 
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Introduction 

Although astronomers can s t i l l only talk about the evidence of the existence of black 

holes [44], I suppose few theorists doubt their existence. The process of a real (astro­

nomical) black hole formation f rom the gravitational collapse of a sufficiently massive 

star inevitably involves very complicated dynamics due to the enormous degrees of 

freedom contained. However, theoretically, our understanding of black hole physics, at 

least classically, has enhanced a lot since the Schwarzschild solution of the Einstein field 

equation was discovered eighty years ago. 

I suppose i t is uncontroversial to say that the interests in black hole physics received 

a boost th i r ty years ago after the combined work of Hawking and Penrose about the 

singularity theorem [33]. Especially, after the introduction of black hole entropy [4], the 

formulat ion of four laws of black hole mechanics [2], the discoveries of Hawking radiation 

30] and Unruh effect [64], quantum theory around/of black holes also experienced a 

boom in the past two decades, as can be seen clearly f rom the abundant references in 

the SLAG pre-print archive [37 . 

Although intensive efforts have been put on this area, some aspects are st i l l as 

enigmatic as they were twenty years ago. Quantum gravity aside, one of them is the 

statistical explanation of black hole entropy [7]. I n recent years, programs for under­

standing black hole entropy became ever more sophisticated.^ Complete references can 

be found in the pre-print archive [37 . 

The subject I am going to address in this thesis is the statistical origin of black 

hole entropy. Admittedly, the fa i th that the black hole entropy indeed has a statistical 

Ŝee review articles [7], [26], and [59] for examples. 



origin can be challenged because, as far as I can see, no universally accepted proposal 

of the statistical explanation of black hole entropy exists up to now. 

Therefore, i t w i l l be interesting to ask why people take the conjecture of Bekenstein's 

about black hole entropy so seriously. There must be some hints indicating that i t could 

be true. As reflected by Bekenstein himself in an article [7], the idea of black hole entropy 

was not embraced without doubt after i t was proposed. I suppose one of the reasons is 

that at that time, most of the understanding of black hole physics was classical. 

I t was the discovery of the Hawking radiation that changed our understanding about 

black hole physics. Perhaps i t is more appropriate to say that Hawking radiation raised 

our understanding of black hole physics from the classical level to a quantum-mechanical 

one. Only then the idea is justified that the black hole entropy is genuinely quantum-

mechanical [4], and that black hole entropy might have a statistical origin. 

My opinion about the statistical origin of black hole entropy is that, phenomenolog-

ically, i t is just like the entropy of thermal radiation: There are quantum states inside a 

cavity and their distribution is governed by certain statistical distribution law regarding 

to the statistics and the quantised spectrum. 

Though the dynamics involved in black hole physics and the thermal radiation in a 

cavity are total ly different, the analogy between the four laws of black hole mechanics 

and thermodynamics, and the phenomenon of black hole radiation seem to indicate that 

the phenomenological similarities are worth exploring further. In order to understand 

what those states are and what the corresponding spectrum is, I wi l l construct a model 

of a black hole to realise the idea that in some sense, a black hole is just like a cavity 

w i t h thermal radiation inside. 

Outl ine 

The outline of this thesis is as follows:^ 

C h a p t e r 1 I w i l l review the four laws of classical black hole mechanics which form 

the basis for the introduction of black hole thermodynamics. However, before we dive 

•̂ For more detailed abstract and references, see the beginning of each chapter. 



into the various properties of black holes, i t makes sense to convince oneself that black 

holes exist at least theoretically. I therefore start wi th reviewing black hole formation 

in the 2-D CGHS dilatonic gravity. 

C h a p t e r 2 Af te r observing the formal analogy between the black hole mechanics and 

ordinary thermodynamics in chapter 1, I further explore the thermodynamic properties 

of black holes in this chapter. The Hawking radiation is reviewed within the 2-D CGHS 

dilatonic gravity model, which realises the thermodynamic properties of a black hole by 

endowing i t w i th a temperature. Afterwards, Bekenstein's idea of black hole entropy is 

introduced. 

C h a p t e r 3 Three different statistical explanations of black hole entropy are intro­

duced to contrast their approaches and show the way which leads me to the idea that 

the quantum states responsible for black hole entropy should contain both the quan­

t u m field and gravitational degrees of freedom. I w i l l start wi th ' t Hooft 's brick wall 

model which applies the conventional quantum field theory in a straightforward manner. 

Then, a la Brown and York, I review the approach based on the gravitational degrees of 

freedom via path integral. In the final section, I present mj^ own version of a quantum 

statistical explanation of black hole entropy by regarding a black hole as a cavity wi th 

thermal states inside. 

C h a p t e r 4 This chapter wi l l be devoted to the construction of black hole models 

to materialise the idea that a black hole, in some sense, can be regarded as a cavity 

where thermalised quantum states reside wi th quantised spectrum. These states and 

the corresponding spectrum w i l l then jus t i fy the statistical explanation of black hole 

entropy presented in section 3.3, chapter 3. 

Constra ints In this thesis, I wi l l confined myself to spherically symmetric cases only. 

Most of the results in the first three chapters can be extended to rotating black holes, 

too. However, solving PDE's numerically is inevitable in chapter 4 i f one is interested 

in rotat ing black holes. 



For charged black holes, I also exclude the extreme cases. The thermal properties 

of extreme black holes are st i l l under debate.^ In fact, extreme charged black holes are 

ruled out as unstable wi th in my model as wi l l be explained in section 4.3, chapter 4. 

In recent years, there has been great interest in understanding black hole physics 

f r o m the point of view of superstring theory [60]. Since the philosophy involved in 

superstring theory is total ly different f rom mine which is based on the Einstein field 

equation and the quantum field theory, I am not able to address that line of approach. 

However, since my models are based on the Kleinian signature, ( \-+), I think 

i t is necessary to point out that i t seems the superstring theory is a proper context to 

address the problem of two time co-ordinates [3]. 

In fact, there are more questions raised than solved in my approach. Basically, all 

of them are related to the extra time co-ordinate. However, the problem of two-time is 

a big issue by itself. I have to leave i t for future investigations. 

Ŝee article [21] and references therein. 



Chapter 1 

Classical Black Hole Physics 

I n this chapter, I review some of the classical aspects of black hole physics in order to 

establish the classical black hole mechanics. Though, chronologically, the idea of black 

hole entropy was introduced before the proof of the four laws of black hole mechanics^ 

and the discovery of black hole radiation, I think i t is more appropriate to review them 

in the other order because i t is the latter two which support the idea of black hole 

entropy. 

A b s t r a c t of chapter 1 

Sect ion 1.1 I at first briefly describe the general development about the description 

of black hole formation in subsection 1.1.1. Then I review the black hole formation in 

the 2-D CGHS dilatonic gravity model [11] in subsection 1.1.2, which wi l l provide the 

background for the discussion of Hawking radiation in section 2.1, chapter 2. 

Section 1.2 The formal analogy between the four laws of black hole mechanics and 

thermodynamics relies on the similarity of the statements and the appearance of math­

ematical formulae of these two sets of laws. I therefore at first compare the statements 

of these two sets of laws [2, 36] in subsection 1.2.1. I then review the derivations of the 

^However, note that the second law—the area theorem—was proved before the proposal of the black 
hole entropy [33]. In fact, as noted by Bekenstein in reference [7], the area theorem constituted one of 
the initiatives for the idea of black hole entropy. 



first two of the four laws of black hole mechanics. The zeroth law is foremost derived 

in subsection 1.2.2, which, basically, involves straightforward algebra only [2, 67]. In 

subsection 1.2.3, I explicitly derive the first law for non-rotating charged black holes 

w i th in the Einstein-Maxwell theory following the Noether charge method developed by 

Wald [70, 71]. This method is perhaps the most general one. I t can be applied to any 

metric theory that can be given a covariant Lagrangian formalism.^ 

Unfortunately,^ the proof of the second law [33] cannot be reviewed wi th in one 

section. On the other hand, I know of no rigorous proof of the third law, though there 

are failed attempts to disprove i t reported in reference [66]. I therefore only describe 

the statements of the second and th i rd laws. 

A p p e n d i x A I introduce the notation and convention employed. Some basic elements 

of the CGHS model are explained. 

A p p e n d i x B The convention and notation regarding the differential forms are ex­

plained. 

'^The readers are referred to references [71, 72] for a flavour of the generality of this method. 
^Perhaps "Fortunately" is the word. Anyway, it is not a simple topic. 



1.1 Black hole formation from classical matter 

I f i t doesn't quantum-mechanically, so be i t . 

1.1.1 General developments 
O S model When the Schwarzschild solution was derived more then eighty years ago, 

i t was noted by h im that the region of r < (where is the Schwarzschild radius) 

is unphysical [74]. Later, some models concerning the interior of a star were devel­

oped.'' Amongst them, those related to a black hole are the dynamically gravitational 

stellar collapse. The simplest one is perhaps the OS model developed by Oppenheimer 

and Snyder in 1932 [74]. In this model, a pressureless dust of uniform density is al­

lowed to contract due to its own gravity. The exterior region can be chosen to be the 

Schwarzschild solution as dictated by Birkholf 's theorem [74]. I t is attached to an in­

terior solution of contracting spatially homogeneous, isotropic cosmological model wi th 

proper boundary condition across the boundary of the dust. Since there is no pressure 

among those particles constituting the dust, they are in the motion of free falling. Two 

of the most important observations f rom this model are [74]: 

1. A f lu id sphere of in i t ia l density p(0) and zero pressure w i l l collapse f rom 

rest to a state of infinite proper energy density in a finite proper time (co-

moving t ime). 

2. The collapse to the Schwarzschild radius appears to an outside observer 

to take an infinite time, and therefore the collapse to = 0 is utterly 

unobservable f rom outside (where R is proportional to the Schwarzschild 

co-ordinate r by a finite factor). 

N u m e r i c a l studies In recent years, due to renewed interest in black hole physics 

and the advance in computer technology, black hole formation is re-addressed from 

both analytical and numerical points of view. 

^See tex tbook [74] and references therein. 



The difficulties in solving the four dimensional, dynamic Einstein field equations 

should never be overestimated. Therefore, numerical study has become another impor­

tant alternative to understand the classical dynamics of the Einstein field equation. In 

fact, some observations have prompted new understanding about the dynamic aspects 

of the Einstein field equation. One of the most interesting observations is probably the 

crit ical phenomenon related to a phase transition in a gravitational collapse [14]. I f one 

prepares a family (characterised by one parameter, p) of spherically symmetric ini t ial 

states of matter field in which the parameter p characterises the energy contained in a 

particular in i t ia l state, then one finds that the final states depend on the in i t ia l states in 

a certain manner: lip < Pc in which Pc is a critical value, then all matter w i l l eventually 

be scattered off to infinity. However, as p > Pc, a black hole forms and its mass, M , 

can be put in a simple formula, 

M oc{p- p^y, 

where 7 is the critical exponent. The universality of this exponent is s t i l l under debate. 

From the present evidence, i t seems that the exponent depends on the matter content 

29]. However, such a phenomenon is hardly to be expected without the evidence from 

numerical simulation. 

A n a l y t i c a l studies Regarding this observation, some analytical analyses have been 

put forward to understand this aspect [29, 42]. This development opened a new channel 

of studies of dynamic Einstein field equation. 

Another development is based on the analytical approach in low dimensional the­

ories. One of the reasons for considering low dimensional theories is, obviously, that 

more can be done analytically. On the other hand, its advantage is also its disadvantage: 

Since the dimension is reduced, some physics is also erased f rom the spectrum. Though 

Einstein's theory of general relativity in 2-D is t r iv ia l because the Einstein-Hilbert ac­

t ion is a topological constant and all space-times are conformally flat, some new features 

appear i f a dilaton field is included. Especially, the 4-D spherically symmetric system 

can be recast in the form of 2-D gravity coupled to a dilaton field. 



1.1.2 Black hole formation in the CGHS model 

T h e equations In the rest of this section, I wi l l review the black hole formation 

f rom classical matter in the CGHS dilatonic gravity model by considering the following 

action [11],^ 

S = ^ J d^x\l\^\ [e-^^i-Tl + 4Va( / )V> + ^X^) - 87rGVa(/>V>' . 

I n the conformal gauge wi th the metric parametrised as 

ds" = -e^'dx+dx- = -e^'idt^ - dx^) , 

we can always find a gauge such that p = (p. Furthermore, i f the scalar field (p is 

restricted to be x+-dependent only, the equations (A.8)-(A.12) can be simplified to 

d+d4e-'1>) + = 0 , (1.1) 

a_5_(e-2'^) = 0 , (1.2) 

a+a+(e-2^) + 87rGT++ = 0 , (1.3) 

V a ( ^ V > = 0 . (1.4) 

T h e black hole solutions The general solution of equations (1.1)-(1.4) for (p ( = p) 
IS 

= -X'x+x- -STTG r dy^ r dy+T++iy+) (1.5) 

X - + 87TGP{X+)] , (1.6) 
8TrGM{x+) ^ 

Ax 

where 

A 

M ( x + ) = X[ d y V T + + ( y + ) , (1.7) 
J 0 

Pi^^) = ^lj\y^T^Ay^), (1.8) 
See appendix A for an in t roduc t ion of some basic elements of 2-D dilatonic gravi ty and the CGHS 

model . 



and I have assumed that the matter field </? is restricted wi th in a period of advanced 

time, say f rom xf (> 0) to xj (> x f ) . Define the following quantities for convenience. 

Moo = M{xp , Poo = P{xj) . (1.9) 

I n the asymptot ic flat form To see that a black hole always forms classically i f 

the energy-momentum is non-zero, we consider the late advanced time behaviour (i.e., 

x"^ > x^) of the metric in the new co-ordinate system {= a° ± a^) which is related 

to x^ by the following relations 

A.T+ = e^"^ , X{x- + STTGPOO) = -e-^"' • (1.10) 

Then the metric is 
2 _ —do^da~ 

A 

I t is clearly seen that the metric is asymptotically flat and the mass of the black hole 

is Moo.^ Its Penrose diagram can be derived by attaching the Penrose diagram of an 

eternal black hole solution to that of a vacuum solution (see figure 1.1). 

Though the exact classical black hole solution can be found in the CGHS model, 

the f u l l quantum theory is s t i l l beyond control. However, there are some discussions at 

the semi-classical level 

See appendix A for explanation. 

10 



mat te r flux 

Figure 1.1: Penrose diagram for a space-time of black hole formation. 

11 



1.2 Four laws of black hole mechanics 
1.2.1 Two f o u r l a w s 

F o u r laws of thermodynamics Let us at first review the four laws of thermody­

namics [12, 36]: 

0. T h e zeroth law: For a thermal equiUbrium system, the temperature, T, is a 

constant over the system. 

1. T h e first law: For two neighbouring equilibrium states, the following relation 

holds, 

dU = TdS + ixdN , (1.12) 

where U is the internal energy, S the entropy, p. the chemical potential, and A'̂  

the particle number. 

2. T h e second law: For a thermally isolated system, the state of equilibrium 

is the state of maximum entropy consistent wi th the external constraints. Or, 

equivalently, the total entropy of a thermally isolated system does not decrease 

w i t h time.^ 

3. T h e th ird law: I t is impossible to reduce the temperature of a system to absolute 

zero by a finite sequence of operations.^ 

Four laws of black hole mechanics The four laws of black hole mechanics have 

very similar statements [2]: 

0. T h e zeroth law: For a static black hole, the surface gravity, K, is a constant over 

the event horizon. 

' 'Though the second law is of ten stated in terms of entropy, this indeed can be derived as a conse­
quence o f either the Kelv in ' s or the Clausius' statement o f the second law [36]. 

^Unl ike the second law of black hole mechanics, the second law of thermodynamics cannot be exactly 
t rue at microscopic level [36]. 

^ There are at least two different versions of the t h i r d law [36], I adopt the one which is used in the 
t h i r d law of black hole mechanics [2]. 

12 



1. T h e first law: For two neighbouring static black hole solutions, the following 

relation holds,^° 

dS = ^dA^Mq , (1.13) 
ZTT 

where £ is the A D M mass of the black hole, A the area of the cross-section of 

the event horizon, $ the Coulomb potential at the event horizon, and q the total 

charge of the black hole. 

2. T h e second law: The area of the cross-section of the event horizon of a black hole 

does not decrease wi th time. 

3. T h e t h i r d law: I t is impossible to reduce the surface gravity, to zero by a finite 

sequence of operations. 

T h e difference The analogy between these two sets of laws are too obvious to ignore 

though I cheat a bit by stating them in almost the same manner. Nonetheless, there is 

one great difference between them that one has to keep in mind: The thermodynamic 

laws are true at macroscopic level, they can only be derived f rom the underlying mi­

croscopic statistical models through a kind of coarse-graining, say, by assuming that 

the scattering process between those constituent particles are Markov processes [1]. On 

the other hand, the laws of black hole mechanics are exact classical laws which can be 

derived f rom the equations of motion governing the system concerned. 

I thereby review the derivations of the zeroth and the first law in the rest of this 

section [2, 67, 69, 70, 71, n]P 

^ ° T h e expl ic i t f o r m of this relat ion depends on the content of the theory. The above one is applicable 
to the E ins te in -Maxwel l theory. 

^^ I t is because of this difference tha t when these laws were f i rs t derived by Barteen, et al . , i n article [2], 
they opposed the idea tha t the black hole area should be regarded as a k ind of thermodynamic entropy 
though they had observed the s imi la r i ty between them. 

^'^The reasons for not reviewing the derivat ion of the other two laws have been given in the abstract 
i n the beginning of this chapter. 
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1.2.2 Derivation of the zeroth law 

T h e statement of the first law The more precise statement of the zeroth law of 

black hole mechanics is: the surface gravity, K,, is a constant on any Ki l l i ng horizon'^"' of 

a solution of the Einstein field equation i f the energy-momentum satisfies the dominant 

energy condition. 

T h e definition of surface gravity The surface gravity, K, of a Ki l l ing horizon is 

defined by the relation 

r V ^ e ^ . = . (1.14) 

Note that the surface gravity is defined on the Ki l l i ng horizon only. In order to prove 

its constancy over a Ki l l i ng horizon, we at first extend K outside the Ki l l ing horizon 

analytically so that the diff"erentiation V^«; is well-defined. The following result is 

independent of how the extension is performed. 

Derivat ion I f we write V ^ k = c^^„ + c„n^ + ciml 4- C2m^ where (^, n , rn^^m?) forms a 

local orthogonal basis w i th ^ and n null , which are normalised as ^'^n^ = — 1, and with 

m"s space-like tangent vectors of the Ki l l ing horizon, then c„ = 0 because ^ " V ^ / t = 

0.^^ The constancy of K over the Ki l l i ng horizon is equivalent to the statements that 

Ci = C2 = 0.̂ ^ And this is a consequence of the following identity, 

(e<^V^ - e^V.)/^ = 0 . (1.15) 

A K i l l i n g horizon is a nu l l hypersurface which is invariant under the action of the group of isometry 
generated by a K i l l i n g vector f ie ld , and on which ^"^^ = 0 [67]. A K i l l i n g vector field, ^, of a space-
t ime is a vector field which generates the isometry of i t , i.e., Sg^v = V ^ ^ ^ + V ^ ^ ^ = 0 under the 
co-ordinate t r ans format ion a;̂  —> — [67]. 

^' 'The dominant energy condi t ion states tha t -T'^px^ is fu tu re t ime-like or null-l ike for any time-like 
or nul l - l ike vector, x [33, 67]. 

^^This can be proved by applying ^"^V^ to equation (1.14) and using equation (1.17) below. 
^^The value o f is determined by the way i t is extended outside the K i l l i n g horizon. I ts value is 

irrelevant. 
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To prove equation (1.15), we at first apply ^[•y'^s]^'^ to both side of equation (1.14). W i t h 

the help of equation (1.14) itself and the identities true for a Ki l l ing vector field on the 

K i l l i n g horizon^^ 

eaV/j^T = -2e [ /3v^]e . , ( i . i e ) 

we have 

e/3e(7V51/̂  = C'C^aPalS^,] • (1.18) 

Then, we apply ^[s'^x] to equation (1.16) and, wi th the help of equations (1.16) and 

(1.17), we have the following relation 

^a^l^T^"X]P'r^a = ^IsT^"X]a['y^l3]^a • (1-19) 

Afte r contracting a w i th A, the LHS is zero and from the RHS we arrive at 

e^^^bOlCa = ^^eT^aMS^y] • (1.20) 

Equation (1.18) minus equation (1.20) gives 

^l^Vs]K = W'l^^s]^, . (1.21) 

Now, ff the Einstein field equation holds, 7^^(r^^ = 0̂ ^̂  implies T^^^rC = 0 since 

^ is nul l . Furthermore, i f the dominant energy condition holds, namely, -T'^a^" is 

future time-like or null-like, then we can conclude that —T^a^'^ oc E,^. This thus implies 

^[sT^]^^'' oc ^[5^7] = 0. The Einstein field equation then implies the RHS of equation 

(1.21) is zero. We thus arrive at the desideratum that ii-^^S\K = 0. 

Another version of the zeroth law which does not employ the Einstein equation, but 

w i t h other constraints required, can be found in reference [53 . 

^''The to t a l ant isymmetr isa t ion is defined as 

i n which the summat ion is over a l l possible permutations, a, of ( 1 , 2 , . . . , n ) . 
^^The f i r s t one follows f r o m the Frobenius's theorem that i f the normal , ^, is surface fo rming , then 

^[a'^P^-y] = 0. Using the relat ion, 2 V [ o V ^ ] ^ 7 = -^aT^"-iPa, the second one follows f r o m the summation 
of three such relations w i t h the index orders, (a , (i, 7) , (/?, a, 7) , (a , 7, /S), and the ident i ty Vf^aPj] = 0. 

^^This relat ion can be derived f r o m the equation (1.19) by contract ing A w i t h 7 and /? w i t h 6. 
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1.2.3 Derivation of the first law 

The whole derivation is more transparent and elegant i f i t is done wi th the help of 

differential forms. However, when explicit calculations are involved, the tensorial indices 

are inevitable, I therefore use the Lat in and Greek letters to denote the indices of 

diff"erential forms and tensors, respectively. 

Symplec t i c potential 3-form 0 

Consider a system described by the action^° 

S = I dx'^HLg + La + Lm) = I m + K + L,„) , 

where 

= eLg = 
" 167rG^ ' (1.22) 

La = = eLa = 

Lm = - ^Ljn -= ^ ( V . ( ^ V > + m V ' ) , 

where e is the volume 4-form and = 1. 

Then, the variation of L = -Lg + La + hm can be writ ten as 

SL = ( T f 

+Em6ip+~T^^Sg^0 + dG^ 

= Yl W z + d 0 , (1.23) 
i=g,a,m 

where I have used the symbol for either g^^, or A^, or (p, and 0 = Ei=g,a,m®i-
Explicit ly, we have 

T f = ^ ^ ; ^ = ^ ( 7 ^ " ^ - ^ y " ^ 7 ^ ) , (1.24) 

^°See appendix B for convention and nota t ion related to different ial forms. 
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= eT^^ - 6 [ V > V ^ ( ^ - ^ ( V > V . ^ + m V ^ ) ] (1.25) 

g a . . . ^ ^ ^ ^ ^ ' " ^ ^ - ^ ' ' ' ^ " ) ' (1-26) 

&i{(t>i,54>z) = 9i-e , i^g,a,m, (1.27) 

w i t h 

e: = -tAT^^bA, , Ql^ = - V > ^ ^ . 

The 0 is called the symplecUc potential 3-form [71]. There are ambiguities in the choices 

of @i in general [71]. However, the above explicit calculation fixes the choice. 

Noether current 3-form J 

I f the variation in the ©j ' s is generated by a smooth vector field, i.e., 54>i = 

where is the Lie derivative wi th respect to x, ^ Noether current 3-form, i{x); 

associated wi th x ^'^d any field configuration can be defined as follows [71 

J{x)bcd = ( Jp + J f l + Jm)6cd 

i—g,a,m 

+ ^ V . ( V [ " x ^ ^ ) e ^ 6 c d + eAV^{A^x.^^"^^)epta , (1.28) 

where the identity G'"'' = mnG{T^'' + Ei^^^m^p^) and the definitions of 0 , T^^^ in 

equations (1.27), (1.24), (1.25) have been used in the th i rd fine. 

W i t h the help of the Bianchi identity and the conservation of the energy-momentum 

tensor, we find 

d J = d 0 - d ( x L) 

= dQ-C^L + x-dL 
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= d 0 - ( ^ E,£^^, + d 0 ) 
i=g,a,m 

= - E E,C^cf>,, (1.29) 
i=g,a,m 

where I have used equation ( B . l ) , the fact that d L = 0, and the following relation f rom 

the variation of the Lagrangian (1.23), 

i=g,a,Tn 

Noether charge 2-form Q 

I f the field configuration (f>i satisfies the equations of motion, i.e., Ei = O.i = g,a,m, 

then i t is seen f rom equation (1.29) that J is closed, i.e., d J = 0. Furthermore, i t 

is easily seen f rom equation (1.28) that as the equations of motion are satisfied, the 

Noether current 3-form, J(x), is exact,^^ namely, 

Hx) = dQix), (1.30) 

where Q(x) is the Noether charge 2-form defined as [71 

Q ( X ) = X ' " ' V [ ^ X . ] + X'^W. , (1.31) 

w i t h 

0 
l e ^ G 

W^ab = -eA^F'^^A^eapab • (1.33) 

= T K ^ ' (1-32) 

Symplec t i c current 3-form u» and the Hamil tonian H 

Symplect ic current 3-form u; Before we are able to prove the first law, we need 

another concept, the Hamiltonian. Define the symplectic current 3-form, uj{(j), 5i(j), 62(p), 

as [43 

a;(0, S,(j), 52<j)) = (5i0(</., 52(t>) - <J20(</', ^i-^) . (1.34) 

^^This is a general result fo l lowing f r o m a theorem in reference [68]. 
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A symplectic form, fi, w i th respect to a Cauchy surfacej^^ C, can be defined from oj, 

n{<t>,6i(j>,62(t>)= f u;i<P,6,4>,62cl>) . (1.35) 
J o 

H a m i l t o n i a n H I f the variation, 62(p, in Q is generated by a symmetry of the system 

w i t h respect to a vector field,^^ i.e., (520 = C^cj), then we can define the variation of 

the Hamiltonianf'^ H, w i th respect to ^ as 

Note that u}{(j),5(f), C^cf)) is conserved, i.e., da; = 0, i f both ( f ) and 4> + 6(j) satisfy the 

equations of motion because, wi th the help of equation (1.22) and the definition of J in 

equation (1.28), we have 

a;(0,6(l>, C^(t>) = S3{0 - d(e • ©) . (1.36) 

The result du; = 0 follows from the exactness of J(0 (see equation (1.30)). 

Using equations (1.36) and (1.30), we can write 

5H = [ 5 ( j ( o - d[^ • 0(</>, 6m = I m i o - e • 0(<^, m . 
JC JdC 

Now, assuming that the solution, 0, in the symplectic current 3-form uj is invariant 

under the symmetry generated by ^, i.e., £^0 = 0 and the boundary, dC, is comprised 

of two disconnected 2-surfaces such that one is at spatial infinity, denoted by oo, and 

another one is denoted by E,̂ ^ we then arrive at 

6E j [ 5 Q ( O - e - 0 ] 
J CO 

/ [ 5 Q ( O - e - 0 ] , (1.37) 
J 2j 

^•^Since i n general the Cauchy surface is non-compact, some asymptotic boundary condit ion should 
be imposed on the f ie ld configurations [43]. 

'^^The vector f ie ld , is defined w i t h respect to the background field metric, g^^, i t is thus fixed 
irrespective of any var ia t ion, 6g^^. 

'^''Recall tha t i f the Lagrangian is not expl ic i t ly time-dependent, the Hamil ton 's equation is: dH -
{dtq)dp - {dtp)dq = d{dtqp) - dtipdq). 

'^^We should use the freedom of co-ordinate t ransformat ion to enforce the boundary, E, defined on 
b o t h solutions of g^v and g^i, + (5^^^ coincident, and, consequently, the variat ion, 5, and integration 
on S can be interchanged. 
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where we have use the fact that 6H = 0 and the orientation of the surface integral has 

been chosen such that JQQ = /QQ — / g . 

Equation (1.37) is the basic result which wi l l be used in the following to prove the 

first law of black hole mechanics. 

T h e first law 

T h e A D M mass In a static black hole background which is asymptotically flat,^*" 

we consider the case in which the Ki l l i ng vector field, if, is the time translation, dt-

asymptotically at oo. Then a 3-form 'B{(f)) exists such that^*" 

5 j i-B{cj>)= I ^•Q{cp,6ci>) 
J oo Joo 

I t is a straightforward exercise to show that the £ , defined as £ = J^{Q{^) — (, • B ) , is 

in fact the A D M mass of the black hole [67].^^ 

Var ia t iona l formula on any cross-section of the K i l l i n g horizon We have f rom 

equation (1.31) 

5QiO = 5(X'"^V[,.e.]) + 5 ( r W . ) . (1.38) 

To calculate 6V[^^i,], recall at first that 6^" — 0.̂ ^ And note that V[^^y] = «:e,ij.+ai^[^mj,] 

on a K i l l i n g horizon where e^j, = ^^jiy - ^^n^^ is the binormal of the Ki l l i ng horizon with 

'^^This can be generalised to s tat ionary cases. See reference [71] for a f u l l discussion. 
•^''It is unclear i f this is always t rue in any metric theory of gravity, but , for our case, 

^ • B = - 5o.9io + v'^idiQij - digij)]e , 

where e = r'^ sm{9)d9Ad(l) is the volume element on the 2-surface at oo, the gij is the spatial par t of the 
met r ic g^^^, and we require tha t g^^ = ij^^ -\- 0 { l / r ) , = 0{l/r'^), ip = 0 ( l / r ) , daf = 0 { l / r - ) , 
Av = 0 ( l / r ) , and daAv = 0{l/r^) as r —> oo asymptotically. 

'^^This is because 

/ Q ( ^ ) = / ^^°9io - ai5oo)e -CA [ AoJ^'e , 

where the electrostatic t e rm should be zero because we have chosen the gauge so tha t A^ = 0 ( l / r ) at 
spat ial i n f in i ty . 

'̂ ^See footnote 23 on page 19. 
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n^n, = 0, = - 1 . 3 ° 

Define the tensor A^^, as 

Then, for its variation, we have 

= / ia[^A^]" + (f^V(,J^^) - {5K)e^, + 5w^^ , (1.39) 

where h^i, = Sg^i,, and 

Sw^^ = -Kg^iJe^f . 

For the first term on the LHS of equation (1.38), we can write 

+6X>^''A,, + X'^'^ih^^^A.f + (5V[^)e.]) . (1.40) 

Combining equations (1.37), (1.38), and (1.40), we arrive at 

5£ = ^6s+ [ [5 ( rw, ) -e -0] 

+ / [x^-'dw,, + 5X'^^A,, + X>^^ih^[,A^f + (JV[,)e.])] , (1.41) 

where E is any cross-section of the Ki l l ing horizon and we have defined the black hole 

entropy, S, as 

S = 2n [ X'^'e^, . (1.42) 

The integration involving X^"5w^^ is zero because X''" and Sw^j,^ have only normal-

normal and normal-tangential components'^ wi th respect to E, respectivel}'. 

^ ° T h e m \ i = 1,2, are two hnear independent tangent vectors of the K i l l i n g horizon and a"s are 
constants. (See the paragraph D e r i v a t i o n i n subsection 1.2.2 on page 14.) This can be proved by 
expanding V[;,f^] = ^[(lU^]. Using the def in i t ion and the surface-forming property of a K i l l i n g vector 
field, i t is seen tha t we can do such an expansion. 

^^A tensor, w^v, is said to have only normal-tangent components w i t h respect to a 2-surface, E, i f 
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V a r i a t i o n a l formula on the bifurcation surface of the K i l l i n g horizon I f we 

choose the E as the bifurcation 2-surface of the black hole on which the Ki l l i ng vector 

field, ^, vanishes,^^ then the second line of equation (1.41) is zero because A^^, = 0.^^ 

From equations (1.41), (1.33), and (1.27), we have 

be = ^bS -EA f krA^"^ea^7M) - ^^T''6A,exrJ dx'' A dx^" . (1.43) 

We have kept terms involving A^, because they have to be dealt wi th greater care. Recall 

that for a Reissner-Nordstrom black hole^'' the Ki l l ing vector is ^ = dt oc Vdy — Udy, 

and the gauge field is ^ = Atdt oc ^ - ^ . Therefore, ^"A,, = constant^^ on the 

K i l l i n g horizon even though the Ki l l i ng vector, C^, is zero and the gauge field is infinite 

on the bifurcation 2-surface on which U = V = 0. However, noting that, formally, 

E•y<^, C'SA^J^^^ea^-y^.dx'^ Adxi" = J2-y<i,^^bA^:F''''exrj^dx'^ Adxf" when evaluated on any 

cross-section of the Ki l l i ng horizon of a static black hole background, we then arrive at 

the desired expression, 

6£ = ^5S + ^5q , (1.44) 

where 

* = - r A , (1.45) 

eA [ J""^e^p^^dx"' Adx'' . (1.46) 

w^ulil2 — 0 except when one of the k's is normal , and another one is tangent to S. Similar defini t ion 
extends to normal -normal case. For X ' " ' , this is obvious because, f r o m equation (1.32), X ^ " is i n fact 
the volume 4- form. For Sw^^, at first expand Se^,'^ = (J^^n" + ^,^6n'' — ̂ "bn^^. Then i t can be checked 
t h a t Jtf^iy has only normal- tangent ial components by mu l t i p ly ing bui^^v w i t h various combinations of 

and n and w i t h the help of the identi ty, i^bn^ = 0. (This is because of the normalisat ion condit ion 
i"n, = - 1 . ) 

^ ^ I t has been proved i n reference [33] tha t the event horizon of a stat ionary black hole is always a 
K i l l i n g horizon. The generality of extending this K i l l i n g horizon to a b i furca t ion K i l l i n g horizon is 
discussed i n reference [52, 53]. 

^^Note tha t , by expl ic i t calculation for specific cases, t^u is non-zero even though i t is linear in ^. 
Therefore, expl ic i t calculat ion is necessary to ident i fy the specific f o r m of the first law. 

^''For the solut ion of Reissner-Nordstrom black holes, see section D.2 in appendix D at the end of 
chapter 4. 

^^The fac t tha t Av = constant on a K i l l i n g horizon can be proved as follows: The Einstein-
M a x w e l l equat ion and the identi ty, T^f^ui^'i" = 0, on a K i l l i n g horizon imp ly tha t i,"J-v^ oc Using 
the fac t t ha t C^^Af^ = 0, we then arrive at ^^.{(,''Av) oc We then conclude tha t ^''A^ is a constant 
on the K i l h n g horizon. 
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Note that the differential formula of the first law (1.44) is obtained by employing the 

vanishing property of on the bifurcation 2-surface. I t is unclear to me i f the various 

terms involving Sg^j^^, in equation (1.41) can be exactly cancelled on any cross-section of 

the K i l l i n g horizon, though i t is so for SA^,. However, the black hole entropy, 5, can 

be calculated on any cross-section of the Ki l l ing horizon due to the static nature of the 

background metric [40, 71 . 

E x a m p l e On the space-time of a Schwarzschild black hole in the Kruskal co-ordinate 

(T,X,e,(l)) [67], we have 

e = K{XdT + Tdx), 
1 

K 
4TTGM ' 

32(MG)3e-' ' /(2^^) 

32(MG')3e-'-/(2«^) 

r2sin(^) , 

(1.47) 

(1.48) 

(1.49) 

Note that due to the abnormal choice of orientation of boundary, E, in equation (1.37), 

the volume element on E is e^^^^gd9d^, instead of e^^ecj>d9d^. I t is then easily seen, 

f rom equations (1.42) and (1.32), that S = A'KGM'^ = A/4 in which A is the area of the 

cross-section of the event horizon. 
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Appendix A 

Some Basic Elements of 2-D 
Dilatonic Gravity 

Some basic elements of the 2-D dilatonic gravity is introduced. I employ units such 

that h = c = kg = I in which /c^ is the Boltzmann's constant. The gravitational 

constant, G, w i l l be shown explicitly, though G = 1 as its value is used in numerical 

calculations. The signature of Lorentzian space-time is ( — h -t-+). The definitions of 

various geometric quantities follow Weinberg's [74] such that 

V - 7?" 

where 71^satisfy, for an arbitrary vector. 

When only 4-D physics is involved, I wi l l use the Greek letters to denote the tesorial 

indices which range f rom 0 to 3. Frequently, we wi l l consider a spherically symmetric 

system. Then we have the following correspondence of co-ordinate indices: (0 ,1 , 2, 3) = 

it,r,e,<i>). 
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A . l Dilaton field via dimensional reduction 

In order to motive the introduction of dilaton field f rom the point of view of 4-D gravity,^ 

we start w i t h spherically symmetric 4-D system wi th the action 

STTG 

The most general metric w i th respect to spherical symmetry is [74 

ds'^ = Qabdz^'dx^ + e-^'^dn^ , 

where gab and (/> are functions of x'' only, dfl^ is the angular part of the metric, and 

the first and second half of Lat in indices run over 0,1 and 2, 3, respectively. In order 

to distinguish the intrinsic 2-D geometric quantities defined by gab f rom the 4-D ones, 

I w i l l use a tilde to indicate explicitly the 4-D character of that quantity when 2-D 

quantities are involved. 

Straightforward algebra gives us Einstein field equation as follows 

T^ab - ^gabT^ = T^ab " ^QabT^ 

-2\/aVb(f) + 2 V a 0 V f t 0 - i?af.(3V^0V"<^ - 2D(f> - e'^) 

= -SnGTab , ( A . l ) 

TZram ' ^Qmrn'R' = -gmmi\n - • < / - + V « . ^ V » = 0 , (A.2) 

where 

and note that in 2-D 

Tab = ^a^Vb^ - ^ 5 a 6 ( V , ( / P V » 

Tiab - \gabn = 0 . 

Because the curvature tensor, TZabcd-, has only one algebraically independent component, 

7^1212, the curvature scalar can be wri t ten as 7?. = 2TZi2i2/g [74]. 

Effectively, equations ( A . l ) and (A.2) can be derived f rom the following action 

S = ^J d^x^\e-''\-n + 2 V a 0 V ' ^ < / . + 2e2^ - 8 7 r G V , < ^ V » . 

^For the origin of the dilaton field in higher dimensional theories, the reader is referred to article [11] 
and references therein. 
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A.2 The CGHS model 

Unfortunately, the above system is st i l l too complicated to be solved analytically. The 

so called CGHS^ model considers the following action [11], 

The equations of motion are 

( A . 3 ) 

n + 4iVa(/)V^ -n^-\^) = 0 , ( A . 4 ) 

2VaWb(p + 2 p a 6 ( V a ( ^ V > - • < / . - A ^ ) - STrGc^^T^fc = 0 , ( A . 5 ) 

= 0 , ( A . 6 ) 

where 

Tab = Va(/?V6(/? - - ( ? a 6 V V V c < / 5 . 

In 2 -D, we can always choose a conformal gauge locally such that the metric is 

wr i t ten as 

where x"^ = x'^ ±x^.^ Note that there is st i l l a residual gauge invariance within the 

conformal gauge because a co-ordinate transformation like x"^ - x^{z'^) changes the 

metric to 

ds^ = -e^P'dz-^dz- , ( A . 7 ) 

^The CGHS refers to the initials of Callan, Giddings, Harvey, and 5trominger. 
^This can be seen by considering the identity [16] 

ds^ = gatdy'^dy" = { ^ d y ° + ^ ° l ± ^ d y ' ) { ^ o d y ° + dy') = -e^'dx+dx'. 
'900 V5oo 

Wi th the help of the continuity condition, dyodyix" = dyidyox", one arrives at the condition, CBX" = 0, 
where the Beltrami's operator, £B, is defined as 

. _^ ^Qoidyi -giidyo^ , ^ .goidyo-goodyi 
CB - dyOi ) + dy.{ ^= ) . 

The theory of partial differential equation teaches us that if gab is analytic, then there are solutions 
which are one-to-one between (2/°,?/̂ ) and {x°,x^). 
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where p' = p-\-\ \n{dz+x^dz-x'). 

In conformal gauge we then have TZ — —8e~^''5+5_p, and equations (A.4)-(A.6) can 
be simplified to 

2d+d^p + 45+</>9_0 - Ad+d-(t) + \^e^P = 0 , (A.8) 

Ad+(t>d-(l) - 2d+d-(j) + X^e^" - 87rGe^^T+_ = 0 , (A.9) 

9+5+0 - 2d^pd+(t) - 8nGe^'^T++ = 0 , (A.IO) 

d^d-cj) - 2d-pd-^ - STrGe^^T-- = 0 , ( A . l l ) 

V . W = 0 . (A.12) 

Equations (A.8) and (A.9) give us 2 5 + 5 _ ( p - 0) = 87rG'e2^T+_. The general solution is 

then ^ 

p - ( j ) = U{x-^) + f 4 x - ) + 4 7 r G f \ y ' - f dy-e'^T+^ . (A.13) 

However, using the residual co-ordinate invariance described in equation (A.7) we can 

chose a p' such that p' = p-t- /+(a;"^) - I - / - ( — ) • Therefore, we can set f± = 0 in equation 

(A.13). 

A.3 Eternal black hole solutions 

Let us consider the eternal black hole solution as the scalar field ip = constant. 

Solutions Then equations ( A . 8 ) - ( A . l l ) can be further simplified to 

a+a_(e-2'^)-|-A2 = 0 , (A. 14) 

a±5±(e-2^) = 0 , (A. 15) 
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w i t h p = (t) because of equation (A. 13). The general solution^ for the metric of the 

above equations is 
2 9̂  , 4- , - -dx~^dx~ 

ds^ = -e^'I'dx+dx-
^ - X^x+x- ' 

where M is a constant. We then have 

n STTGM - X^x+x-

The metric has a space-like singularity at M = A ^ X + X ' / S T T G . On the other hand, i t 

is seen to be asymptotically flat by performing the co-ordinate transformation, Xx^ = 

±6"^^"^ {a^ = (7° ± (T^). Then we arrive at 

ds' 
-da^da' 

A 

(A.16) 

M a s s of the black hole The constant M is the mass of the eternal black hole. This 

can be understood f rom the Noether charge method developed by Wald [71].^ 

For the Lagrangian (A.3) wi th cp = constant, the symplectic potential 1-form, 

®i9ab, Sgab, = Qedx^, IS 

27rG 

IGTTG 

-2(V"<?i)^'"^5pM + 2(VV)p" '5^6d 

where e = Ea<6 ^abd^'^ A dx'' is the volume 2-form and 

(A.17) 

rpabcd _ ^ 
' ~ 32TIG 

^gaCgba _ gaagbC^ 

''The most general solution should be 

STTGM 
A 

-y{x+ +B+){x- +B^) , 

where B± are constants. They can be removed by shifting the origin of the co-ordinates x^. 
^See also section 1.2.3 for an introduction. 
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The Noether current 1-form, J = Jadx"-, wi th respect to a Ki l l ing vector field, is 

= 8 ^ ^ ^ ( e - ^ ^ V t ' T l + 2e[^V'=]e-^^) = {dQ)a , 

where Q is the Noether charge 0-form, defined as 

Q = ^ ( e - ^ ^ V ^ e ' + 2^^-6 -2^) . 

The variation of Hamiltonian, dH, is 

5H = 5Q{oo) - e • 0 (oo) , 

where the relevant quantities are calculated at spatial infinity, denoted by oo. Consider 

the black hole solution of equation (A. 16) wi th the KiUing vector field, ^ = d^o, and 

the variation, 6M, we found that ^ • 0 (oo) = 0. Therefore, the variation of the mass of 

the black hole, 6£, is 

01 

d£^5H = SQioo) = — ( e - 2 ^ a . . e o - 2^od.,e'"l') = 5M . (A.18) 

The mass of the black hole is thus Q{oo) = M. 

Penrose d iagram Since the metric (A. 16) is similar to the t—r^ part of a Schwarzschild 

black hole in Kruskal co-ordinates, its Penrose diagram can be derived following ref­

erence [33]. We consider the co-ordinate transformation = arctan(2;''') such that 

-TT/2 < < 7r/2. We then have 

, n 1 —du^du~ 
ds = 

S T T G M 
A Xx+x- cos2(u+) cos^{u~) 

W i t h the help of the relation, tan(u+ + u ) = i _ t a n ( M + ) t a n ( « - ) ' '̂ ^̂  the constraint 

that -Tx/2 <u^ + u~ < -K/2. The Penrose diagram is shown in figure A . l . 
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Figure A . l : Penrose diagram for an eternal black hole. 
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Appendix B 

Differential Forms 

The adopted convention and notation for differential forms are introduced. Two useful 

formulae are listed. For more detailed discussion, see textbook [67. 

I w i l l use the La t in letters to denote the indices of differential forms which range 

f rom 0 to 3. 

B . l Convention and notation 

Symbols of differential forms I wi l l use the boldface of a letter to denote the 

differential form of the corresponding totally anti-symmetric tensor, e.g., 

f = J2 fo.bcd dx" A dx^ A dx" A dx'^ , 
a<b<c<d 

where fabcd is total ly anti-symmetric. 

Volume 4-form The volume 4-form for a Lorentzian space-time is 

e = ^ eabcd dx"' A dx'' A dx'^ A dx''' , 
a<b<c<d 

where eabcd is normalised according to t"'"^''eabcd = —4! in which the indices are raised 

by g'^K 
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C o n t r a c t i o n The notation ( • f indicates the contraction of the first index of f wi th 

the vector ^, e.g., 

Q 
6<c 

E x t e r i o r derivative The symbol, d, stands for the exterior derivative, e.g., 

d{J2fbcdx'' Adx") = Y.Vafbcdx" Adx'' Adx\ 
''<'' 

= E ( ^ a / f t c - Vft/ac + ^cfba)dx'' A dx' A dx'' . 
a<b<c 

L i e derivative The Lie derivative, C-^ of a tensor, T"^ , wi th respect to a vector 

is defined as 

Its generalisation to higher rank tensors is straightforward. The Lie derivative of a 

differential form is defined accordingly. 

B.2 Two nice formulae 

T h e F i r s t The following identity for components of the volume 4-form wi th respect 

to a Lorentzian metric holds: 

E ^'^^••"^"^•^'•••'^^e6....6,c,+....c. = - ( 4 - j ) ! j ! < 5 f < ^ ' , , •••<5' '^1,, . ( B . l ) 
Cj + l,---,C4 

T h e Second The following identity for an arbitrary vector field x ^-i^d a differential 

fo rm f w i l l be useful: 

d ( x • f ) = £;,f - X • df . ( B . 2 ) 
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Chapter 2 

Semi-classical Black Hole Physics 

The black hole thermodynamics was firmly established after Hawking discovered that 

a black hole is not black at all. I t radiates, too; and one can therefore attribute a 

temperature to a black hole [30]. Only then, the concept of black hole entropy had 

a more solid foundation because in the textbook thermodynamics, the entropy and 

temperature form a conjugate pair of variables. I n this chapter, I review two of the 

semi-classical aspects of black hole physics—black hole temperature and entropy—in 

order to establish black hole thermodynamics, which, in turn, wi l l motivate the search 

for a statistical explanation of black hole entropy. 

A b s t r a c t of chapter 2 

Sect ion 2.1 The derivation of Hawking radiation is reviewed wi th in the context of 

the 2-D CGHS dilationic gravity model [11] which provides a more transparent and 

tractable description than the 4-D case originally developed by Hawking [30]. 

The underlying principle which governs the black hole radiation is the Bogoluibov 

transformation, I thus foremost review the basic idea of the Bogoluibov transformation 

in subsection 2.1.1. In subsection 2.1.2, the black hole radiation is derived by applying 

the Bogoluibov transformation to the specific case of quantum field theory on a black 

hole forming background. No discussion about black hole radiation could be complete 

these days without mentioning the issue of information puzzle [32]. However, this issue 

by itself is so big and diff icult that i t deserves another PhD thesis. I thus only briefly, 
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in subsection 2.1.3, describe the source of this problem and record two proposals which, 

personally, I think most likely to be able to offer the resolution. 

Section 2.2 Af te r having determined the temperature of a black hole, the concept 

of black hole entropy proposed by Bekenstein [4] and the generalised laws of thermo­

dynamics [5] are introduced in subsection 2.2.1. Before I present my own arguments 

in support of the generalised second law in subsection 2.2.3, I comment on previous 

attempts to prove i t in subsection 2.2.2 in order to contrast their approach wi th my 

atti tude. 

34 



2.1 Black hole radiation 
Deep in the hole, dormant in the black; where sunshine dares not stay. But ardour wi l l 
never wane. 

2.1.1 Bogoliubov transformation 

Phenomenologically, the Hawking radiation f rom a black hole resulting f rom the gravi­

tat ional collapse can be regarded as a reminiscence of the electron-positron pair creation 

in strong electric field background [8 . 

Following the arguments in reference [25], we employ the Bogoliubov transformation 

method which has become a standard approach since i t was first used by Hawking to 

derive black hole radiation [30]. Though, in 2-D there is another more elegant and 

quicker method based on the relation between trace anomaly of conformally coupled 

matter field and the curvature scalar [8], I st i l l apply the more mundane, but general 

method based on the Bogoliubov transformation. 

Bogoliubov transformation—basic idea 

M o d e decomposition The basic idea behind the Bogoliubov transformation is quite 

straightforward [8]. In quantum field theory on a classical, stationary space-time back­

ground, the real, massless scalar field operator, (p, can be expanded in terms of the 

eigen-modes, u^, as follows, 
roo 

(p = / dw{a^u^ + alu*J , 
Jo 

wi th the normalisation condition 

{u^,u^')^ = - (K«>t i^ ' ) s = 2nS^^> , 

where 

( / , gh = ( / v , p * - ( v ^ / ) ^ * ) dE'^. 

The integration region E is a suitably chosen Cauchy surface.^ 

^In the massless case we are considering, the convenient choice of the Cauchy surface, E, is a null 
hypersurface. Though the same symbol, S, will be used throughout the text, the precise choice of S 
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U n i q u e in a flat space-time I f the space-time background is stationary as i t is in 

the case of quantum field theory in Minkowski background, the eigen-modes for init ial 

states {in modes) and final states {out modes) can be chosen the same. They thus 

define the same vacuum states and Fock spaces. The isomorphism between the init ial 

Fock space and the final one in an interacting theory is indeed a buil t - in principle of 

quantum field theory in flat space-time [38]. However, when the background space-time 

is non-stationary, situation is much more complicated and interesting. 

Need for the time-like K i l l i n g vector field However, as far as I am aware, there 

has not existed a satisfactory quantum field theory in a dynamic, classical background 

up to now, not to mention addressing the problem of quantum field theory of gravita­

tional field. However, as the energy scale involved in the quantum field is much less 

than the Planck energy, the so called quantum field theory on curved space-times is 

reliable at leading order [8].^ Even so, there are st i l l some complication when the space-

time is dynamic. The one which is related to the Bogoliubov transformation is the 

choice of eigen-modes. This is then related to the well-known issue of time because an 

eigen-mode is necessarily an eigen-mode of Hamiltonian. The definition of Hamiltonian 

is in fact a definition of time-variable. I f the space-time background is stationary, i.e., 

there exist a time-like Ki l l i ng vector field, then the Hamiltonian can be chosen as the 

generator of the K i l l i ng vector field. 

Non-unique in a dynamic space-times I n a dynamic space-time background, there 

is no privileged choice of time-variable. Though, i f the change of space-time background 

is not so rapid w i t h respect to a prejudicially chosen time-variable, then the adiabatic 

depends on the context. 
"This statement might be a backfire to our approach because, as shown later, the Hawking radi­

ation necessarily involves trans-planck frequency modes. Therefore, the back-reaction of the energy-
momentum resulting from the radiation cannot be ignored. The semi-classical approach is much more 
involved because, in general, the Einstein field equation cannot be solved exactly anymore. Fortunately, 
in certain models, e.g., the RST model, this can be achieved [55]. Nonetheless, the back-reaction only 
changes the background metric, the correlation between various radiating modes, perhaps also the 
final fate of an evaporating black hole [59], but not the fact of radiating and the late time thermal 
behaviours. I thus confine myself to the classical background case. 
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expansion is s t i l l applicable [8]. Black hole formation is definitely not the case. Nonethe­

less, i f the in i t i a l and final stages of the dynamic process are stationary, there are st i l l 

well defined eigen-modes there. But, generally, the in and out modes wi l l not be the 

same. However, i f we s t i l l assume that the Hilbert spaces, Hm and Tiout generated by 

the in and out modes are the same, we can sti l l expand the field operator in terms of in 

and out modes, respectively. However, since there are two different sets of eigen-modes, 

the expansion can be done in two ways. Explicitly, we can write 

/•oo 
<^ = dw{d^u^ + dlu*J 

= / dw{bu,Vw + blvl^ + b^Vy, + b^v*J , (2.1) 

w i t h the normalisation condition (with unlisted being zero) 

{Uyj,U^>)^ = {Vyj,Vyji)Y. = {vw, ^w')T. = 27^8^^: , (2.2) 

« , = « - = {^1, W^OE = - 2 7 r 5 w , (2.3) 

where u^, stands for in modes and and Vyj for out modes. ^ We have assumed that 

the Hilbert space, Hout-, is a direct product of two Hilbert spaces spanned by and 

Vu, whose defining regions are exclusive, i.e., Hout = 'Hy^^'Hy^. We thus label the 

normalisation conditions wi th £ to indicate that the normalisation is performed on the 

respective defining region. 

As we w i l l see later, i t is indeed because of this exclusiveness that the exciting 

phenomenon of Hawking radiation occurs. 

Bogoliubov coefficients a and P 

M o d e transformations For equation (2.1) to hold, we should be able to expand Vy, 

and v-uj in terms of u^, and w^, i.e., we can write 

roo 
/ dw'{ay,y,,Uyj, + pyjyj'U^,) , (2.4) 

roo 
/ dw'{ayjyj>Uyj> + Pyjyjiul,,) . (2.5) 

J 0 

^We will call and v^, the external and internal out modes, respectively. 
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The Bogoliubov coefficients, aww' and /3ww'i are determined from the normalisation, 

{vw, u^'h = STTQ;^^. , {vyj, ul,)s = -2-KP^^, , (2.6) 

where the inner products are evaluated on a proper Cauchy surface, E. There are 

similar relations for ay^^' and Piow'- W i t h the help of these relations, we can expand u^^ 

in terms of Vyj, v^, and their complex conjugates as 

I" CO 
Uw = 

roo 
dw'{al,^v^, - p^i^vl, + al,^v^, - P^^^vl,) 

J 0 

Operator transformations Consequently, we arrived at the relations between vari­

ous creation and annihilation operators, 
roo , . ^ 

a,,,' = 
/o 
roo 

dw{h^al^, + blPl^, + b^al^, + V j l ^ , ) , (2.7) 

b^. = / dw{d^al,,^ - aiPl,J , (2.8) 
JQ 

K' = dw{ay,al,^ - dlp^,J . (2.9) 

Meaning of Bogoliubov coefficients The meaning of coefficient can be under­

stood by observing that 
/•oo 

^n{0\N:\OU^l rfT«'/?w/?W, (2.10) 

where — bl^bw is the number operator for the external out modes and |0)i„ is the 

in vacuum such that a^ |0)i„ = 0. In words, i t means that the wi th respect to the 

out eigen-modes, the in vacuum is not the vacuum. The Bogoliubov coefficients then 

contain the information of the particle content of the in vacuum wi th respect to out 

eigen-modes. 

From the above formal discussion, we have found that in order to observe that 

particles are created f rom the vacuum, the in and out vacua have to be different. In 

other words, the natural choice of in and out eigen-modes are different. Hawking 

radiation is in fact such a phenomenon due to gravitational collapse as we w i l l illustrate 

below in the 2-D CGHS model following the approach in references [25, 26]. 

''Similar expression can also be found for a. 
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2,1.2 Hawking radiation 
Mode decomposition 

Before the black hole forms In section 1.1.1 the classical solution of black hole 
formation from matter has been given. As x"*" < xl, the solution is the dilatonic 
vacuum {in vacuum) because there is no matter anywhere. The metric is given by 
equation (1.6) with M and P set to zero, i.e., 

d^" = = -dy^dy- , (2.11) 

where 

Xx+ = e^y^ , -\x- = A87rGPooe"^ '̂ , (2.12) 

and Poo is defined in equation (1.9). From equation (2.11) it is seen that the natural 
choice for a right-moving in eigen-mode, is 

Recall that when compared with the 4-D case, the x^ co-ordinate is the analogue of the 
r co-ordinate, a right-moving modes is thus the analogue of a particle escaping from 
the neighbourhood of the black hole. Those left-moving ones, at late time, are thus 
swallowed by the black hole formed. To recover the observations performed at future 
infinity, we need considering right-moving modes only. 

After the black hole formed At late time after the black formed, i.e., 3;+ > x^^, 
the metric is (see equations (1.6) and ( l U) ) 

—dx'^dx~ —da^da~ 
ds' = 

- X^x+{x- + STTGPOO) 1 + 8-^e^(.—cr+) • 

The natural choice for a right-moving, external out eigen-mode, Vw, is 

2iu 
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where y'^ are related to x"^ through the relation (2.12) and ^ is a step function such that 
9{z > 0) = 1, otherwise zero. The reason for the appearance of 9 function is that, in 
fact, there are two exclusive regions as .T"*" —> oo. The boundary of these two regions 
is the event horizon x~ = -STTGFOO which corresponds to y~ = 0 from equation (2.12) 

and a" = oo from equation (1.10) (see figure 1.1). A physical measurement made at 
exterior region should be independent of the choice of the internal out eigen-modes, Vyj, 
because they are unobservable, and therefore should be traced out . However, a good 
choice makes the explicit calculation easier. The following is a convenient choice [25 

/2w 

where e^^~ = 87rGXP^{e^y~ - 1) . 

Resulting Bogoliubov coefficients Using the definition of BogoUubov coefficients, 
equation (2 .6) , we have 

-I roo 

2TI J-OO 

- i rO 
/

oo 

dy-{v^d^u*^,-{d.v^)u*^,) (2.13) 
-oo 

— r dy-v^d^ul, , (2.14) 
TT J-oo where in the second line we have used the fact that the right-moving, external out 

modes are defined only in the lower half of real y~ axis. We also performed integration 
by parts once. The resulting surface terms are discarded by replacing w and lu' with 
w — ie and w' — i2e (e > 0 ) , respectively. As shown later, such pole insertion is needed 
to define Bogoliubov coefficients properly. With the help of the transformation that 
Xix' + STTGPOO) = -e'^"' (cf. equation (1 .10)) , we can write 

2-77 W J-oo 
1 w' 

2n w 
(ASTTGPOO) / ' dz{l - z ) ' x ^ - i + ^ ^ , (2.15) 

J 0 

where we have changed the variable to z = e^^ in the second line. I t is easily seen that 
the pole prescription given above makes the integral finite. 
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Late time behaviour of Bogoliubov coefficients 

For a Now, if we are interested in the late time (a;+ —> oo) behaviour of the Bogoli­
ubov coefficients, we can approximate the integrand in the first line of equation (2.15) 
by its value near event horizon [25], y~ ~ 0, so we have 

« w f d?/-e^xK-A^8.GP^.-)W.- (2.16) 
27r w J-oo 

This is equivalent to approximating the exponent of the exp in the integrand by its 
saddle point i f ^ 1 since that is where the dominated contribution comes from and 
we expect those contributions from large phases cancel off. Physically, the condition 
^ > 1 is understandable due to the extremely large red-shift a wave suffers while it is 
emerging from the neighbourhood of a black hole [74]. Recall the relation between the 
in mode, Uu,', and out mode, v^, is given by equation (2.4). Therefore, the observed 
out mode of low frequency w started off with an extremely high frequency w'. The 
involvement of trans-planck frequency modes in the derivation of the Hawking radiation 
has been causing concerns. Though the phenomenology of Hawking radiation seldom 
raises doubt, there are indeed considerably efforts trying to avoid the involvement of 
the ultrahigh frequencies. ^ Since certain modification in the approach used above is 
inevitable due to the effect of quantum gravity induced by those trans-planck modes, I 
have to leave this question aside. 

For (3 Similarly, we can write down the late time behaviour of /3 as'̂  

= 7 ^ - r ciy-e'f'"(^«'^«^-(^-'''"-i))-™'^- (2.17) 
27r w J-oo 

^ ,-^rf\n{-X^8^GPooy-)-iw'y- (2 18) 

2TC W J-OO 

Relating the late time behaviour of ct and /3 The difference between the a^w' 
and Pww' is so small that it seems to suggest that there is a relation between them. Note 
that for the negative frequency in modes, u^,, it is analytic on the lower half w' and y~ 

^See reference [39] for an example. 
''Note that the pole prescription in this case is w —> w - ie and ui' —> w' + i2e 
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complex planes, respectively, if the branch cut is chosen at upper half complex plane, 
i.e., I n ( - l ) = -ZTT. We can then analytically continue the integration range in 
from the negative real y~ axis to positive axis (cf. equation (2.14)). From equation 
(2.16), we therefore arrive at 

roo 

ZTT W Jo 

-Iw' 
2'K W Joo 

e ' ^ ^ w . (2.19) 

Planck distribution With the help of the relation'^ 

8WW- = / dw"{ayj^na.*^,^„ - Pnjw"Pl'yj") 
J 0 

roo 
= (ex(-W) _ 1) / dw"(3^^.p:,^„ , (2.20) 

J 0 

we can now calculate the particle number of out mode between frequency w and w + dw 
(cf. equation (2.10)), 

roo roo 
,{0\N:,\Ohndw = dw / dw' / dw"P^^>P:„^.6. 

Jo Jo 
dw6{0) 

2lTW 

e A 
(2.21) 

where dw5{0) is normalised to a constant. To understand the above expression properly, 
we can introduce a periodic boundary condition so that the spectrum is discrete. Then 
the continuous integrating, / dw, on the left hand side of equation (2.21) corresponding 
to a discrete summation, J2wj; on the right hand side. The above equation shows that 
the observed spectrum distributes according to the Planck rule with temperature 
This is one of the basic conclusion of Hawking's seminal work of article [30 . 

'^The first line follows from the normalisation condition that {vu,,Vw') = 2w5iaw'- Use has been made 
of the relation (2.19) in the second fine. 

^Surely, the temperature depends on the context. In the 4-D cases, the temperature, T, is given 
by T = where K is the surface gravity of the background black hole. I t is proportional the 
temperature appeared in the first law of black hole mechanics (cf. equation (1.13)). 
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Black hole radiation is thermal 

Constructing new out modes Another even more far-reaching conclusion is that, 

at late time (x"*" > x~^), the observed particle states are thermal radiation. This can 

be seen by expanding the in vacuum, |0)i„, in terms of the out modes, v.^) and v^. 

Usually, this is achieved through a trick by noting that the positive frequency mode 

Q-iwy- jg analytic and bounded on the lower half complex y~ plane [64]. Using the 

same approximation at y~ ~ 0 which was used to derive equation (2.16), we have 

= e-''''-9{-y-) = ie-'^-yf9{-y')^{-X'8nGP^y-y'^e{-y-) , (2.22) 

Vm = e '""''eiy-) = {e''-yfeiy-) ~ {X'SnGP^y-y^eiy-) . (2.23) 

Next, consider the following combination, 

= (1 - e-'^fr^'{v^ + e-^fv:) ^ iX'87.GP^y-r/'-^f , (2.24) 

4 = {l-e-'^f)-'/'{v,, + e-^fv*J^{\'87rGP^y-rf , (2.25) 

where the branch cut, as described in the paragraph above equation (2.19), is chosen 

at upper half complex plane of y~ such that ln(—1) = -ZTT. They have the same 

analytic properties as u^ oc e~™^ . Therefore the new out modes, u]^^^ and M^/;^, are 

positive frequency modes with respect to y~. The annihilation operator, â ;̂̂  (^^/A)> 

corresponding to the mode, u]^^^ («^/A)) then annihilates the in vacuum because u]^^}^ 

(''^w/x) ^ superposition of only. 
From equations (2.24) and (2.25), we have 

a l f , = ( l - e - 2 ' ^ x ) ( 6 ^ - e - f 5 l ) , (2.26) 

al/x - ( l - e - 2 ^ f ) ( 6 ^ - e - ^ n t ) . (2.27) 

The content of the in vacuum Regarding the fact that 

o/X^w/X ^w/X^w/X 

we see that the in vacuum contains the same number of particle and anti-particle for 

each out mode. Therefore, we can write down the following general expression 

)in^ c({n,„})|{n^})|{n^}) 
{n-u,} 
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where (= n^,) is the particle (anti-particle) number of out mode with frequency w. 
With the help of equation (2.26) and the fact that alj^^^\0)in — 0, we arrived at for a 
single mode 

c(n,„) = e"''^c(n^ - 1) . 

By iteration, we then have c({n„,}) = c(0)e~^ in which c(0) is a normalisation 
constant. 

2.1.3 Information puzzle 

The decline of the pure According to the physical picture given in reference [30], 
after a particle pair is created, the one with negative energy falls into the black hole, 
another one with positive energy escapes to infinity.^ We therefore cannot observe the 
in-falling particles. From an outsider's point of view, s/he does not observe the pure 
state of the in vacuum, instead, s/he can only measure the density matrix arrived from 
integrating over the in-falling particle states, i.e., the physical quantities are coded in 
the following density matrix PoutHnw}{n'^j}) 

Pouti{nw}{nl}) = X] (n«,|(ri,JO)i„,„(0|n,„)|n^) 

^ - " ' " " ' ^ { " . K n U • (2-28) 
2 j r 

Assume that the black hole evaporates completely,^° what is left is a mixed state of 
thermal radiation. I f we accept this conclusion and we also assume that the in-falling 
matter which collapses to form the black hole is in a pure state initially, we then arrived 
at the so called information puzzle [32]: A pure state can involve into a mixed state. 

The possible salvation Whether the above conclusion can be accepted or not is 
still under much debate. There are several opinions around. I only record the two 

^The Hawking radiation! 
^°It seems inevitably that as the black hole mass is reduced to that of several Planck mass, the 

quantum field theory on curved space-times used to derive above picture breaks down. However, there 
is no clear picture about what will/should happen at this stage. For competitive candidates, see the 
review article [50] and references therein. 

^̂ See reference [50] for a comprehensive review. 
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possibilities which I feel^^ most likely to provide the resolution. The first was proposed a 
long time ago by Page [49]: The subtle correlation between various modes of the thermal 
radiation will return us a pure state. The second is proposed by Myers recently [47]: 
A pure state cannot form a black hole. The latter one is of particular interest because 
it tries to solve the problem by illegitimating the question. The argument given in 
reference [47] is based on the approach of superstring theory. However, I wonder this 
idea can be tested in the context of quantum theory plus the Einstein field equation. 

^^Regarding to the fact that neither are there compeUing arguments endorsing any one, thus also 
ruling out others, nor can I provide my own arguments, I feel i t is better to resort to one's intuition. 
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2.2 Black hole entropy 

A simple, but beautiful idea. That is the extreme of physics. 

2.2.1 Black hole entropy and the generalised laws of thermo­
dynamics 

Black hole entropy—a short history 

The conjecture that the area of a black hole is its measure of entropy was given by 
Bekenstein in reference [4]. He wrote. 

We take the area of a black hole as a measure of its entropy—entropy in the 

sense of inaccessibility of information about its internal configuration. 

Note that this happened before Hawking's discovery that a black hole radiates [30 . 
The motivation behind this conjecture was recounted by Bekenstein in reference [7 . 
They included the Christoloulou's irreducible mass. Wheeler's suggestion of a demon 
who violates the second law with the help of a black hole, Penrose and Floj'd's observa­
tion that the event horizon area tends to grow and Hawking's area theorem. As noted 
by Bekenstein [7], 

Carter and Bardeen, Carter, and Hawking were aware of the analogy be­

tween horizon area and entropy as reflected in their first and second laws of 

black hole mechanics, but did not take the analogy seriously. 

I t should not surprise us very much if some opposed this idea for the reason that 
the laws of black hole mechanics are exact classical laws following the Einstein field 
equation and several assumed energy conditions [2]. On the other hand, the laws of 
thermodynamics are postulates true only at macroscopic level [36].̂ ^ Furthermore, it is 

•̂̂ One may wonder if the thermodynamic laws can be derived from the statistical mechanics. As far 
as I can see, the zeroth law cannot be derived from statistical mechanics because one cannot derive 
the concept of equilibrium (in terms of constant temperature) from statistical mechanics though one 
definitely can construct models such that the temperature can be identified with certain measurable 
quantities with the assumption that the system is in equilibrium. Then, one needs introduce certain 
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unclear, in the context of black hole physics, what is the quantity that corresponds to 

the temperature of a thermal system which is needed in order to define entropy. 

The generalised second law of thermodynamics 

Nonetheless, in the same article, Bekenstein also proposed a generalised second law of 
thermodynamics (GSL) [4]: 

When some common entropy goes down a black hole, the black hole entropy 
plus the common entropy in the black hole exterior never decreases. 

According to Bekenstein's personal historical experiences recounted in reference [7], 
the idea of black hole entropy 

was embraced widely after Hawking's demonstration that black holes radiate 

thermally. By the end of the 1970's it was generally accepted that a black 

hole, at least quasi-statically, and semi-classically evolving one, is endowed 

with an entropy Sbh = A/{AGh). 

Since i t is not my intention to give a historical account of how this transition of the 
attitude towards the black hole entropy occurred, I think it is appropriate to stop such 
historical retracing here. 

The generalised laws of thermodynamics 

Specifying the systems When a thermal system consisted of black holes and or­
dinary material, the generalised second law combines to a single one the statements 
from that of thermodynamics and black hole mechanics. It is reasonable to expect that 
such a generalisation can be extended to the other three laws. Before I specify the 
various generalised laws of thermodynamics, it is necessary to be more specific about 

coarse-graining to derive the second law. However, the choice of the coarse-graining is, in a loose sense, 
arbitrary, and the validity of the second law is used as a criterion for a good one. As to the first law, 
its un-derivabihty can be traced back to the explicit involvement of temperature in its statement. For 
the third law, the reader is referred to discussions in textbook [36]. 

^' 'It is not my intention to give a systematic development of thermodynamics of a gravitational 
system. They are simply straightforward generalisation. 
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the system concerned. In the rest of this section, i.e., section 2.2, I will be considering 

a spherically symmetric^^ thermal system enclosed in a cavity of radius Re- This cavity 

is not included as part of this system; it only serves to confine those material to form 

a well-defined thermal system. It is made of energy restrictive wall (ERwall) [12 . 

Furthermore, it is well-known that within a gravitational field the temperature, like 
frequency, also suffers from the red-shift or blue-shift. The Tolman relation gives the 
transformation rules [63 . 

The statements Then for such systems, we can state the following generalised laws 
of thermodynamics: 

0. The zeroth law: For a thermal equilibrium system, the temperature, T, is a con­

stant over the wall of the cavity and the surface gravity, is also a constant over 
the event horizon of the black hole (if there is one black hole). The temperature 
for the rest of the system,̂ ^ is determined by the Tolman relation. 

1. The first law: For the material part of the system, we have 

dS^ = /3dU - fidN , (2.29) 

where /5 = 1/T and jl = P/j,. For the black hole, as before we have 

d£ - ^dSb + ^dq , (2.30) 

such that d£ + dU = total energy input from outside the cavity.^^ 

^^The reason for restriction to spherically symmetric system is because a stationary black hole, only 
which can be regarded as in thermal equilibrium, is either spherically symmetric or axi-symmetric [33]. 
Since I have always been considering a spherically symmetric black hole, I therefore also restrict the 
other part of the system having the same symmetry. 

^^Namely, outside the black hole but inside the cavity. 
^''Note that, such a simple-minded extrapolation in fact give us an arbitrarily high temperature just 

outside a black hole. However, if the temperature is always combined with other quantities in use so 
that the combined quantities are finite, then such simple-mindedness can be justified within our present 
understanding of the thermodynamics around the black hole. Obviously, this problem is related to the 
trans-planck frequency encountered in the derivation of Hawking temperature (see section 2.1.2). 

^^For more detail about the prescription of various quantities, see subsection 2.2.3 below. 
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2. The second law: For a thermally isolated system, the state of equilibrium is the 

state of maximum entropy consistent with external constraints. Or, equivalently, 
the total entropy of a thermally isolated system does not decrease with time.^^ 

3. The third law: I t is impossible to reduce the temperature (as measured on the 

wall of the cavity) of a system to absolute zero by a finite sequence of operations, 

though, the surface gravity could be reduced to zero due to black hole radiating. 

Since the justification of thermodynamic laws relies on experiments very much, it 
is not something that can be done by a theorist. However, some heuristic arguments 
in support of the generalised second law can be found in the literature. Furthermore, 
from purely thermodynamic point of view, some arguments can be devised to support 
i t . 

2.2.2 Comments to proofs of the GSL from thermodynamic 
point of view 

How I see thermodynamics 

Thermodynamics is simple and general Thermodynamics (see [12, 36] for an 
introduction) is one of the physical disciplines in which physical laws are governed by 
simplicity and generality (S&G). Due to the largeness of physical degrees of freedom, 
most macroscopic systems are untraceable microscopically. Therefore, a systematic way, 
based on macroscopic S&G regardless of the microscopic details, is needed in order to 
extract the information we are interested in, amongst which one of the most important 
is perhaps the equilibrium states. Thermodynamics suffices such task by employing 
extremising (maximising or minimising) principles [12]. Even though a microscopic 
model is introduced later to give thermodynamic quantities a statistical-mechanical 
interpretation, the major roles of thermodynamic quantities, and hence the extremising 
principles, are unquestionable. 

^This generahsed second law suffers from the same problem as the second law of thermodynamics. 
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Thermodynamic laws are postulates Like all other micro/macro-scopic physical 
laws, the status of the second law of thermodynamics (SLT) is more a postulate than a 
theorem [12, 36]: I t is taken as one of the starting points for a long journey of searching 
statistical descriptions of a physical system. Therefore, it has to be checked up again and 
again throughout the journey. In other words, it can only be verified in a self-consistent 
way, or in a circular way by Callen's word [12]. And because SLT is an experimental 
law applicable only at macroscopic scale, it cannot survive under the closest scrutiny 
from the viewpoint of microscopic unitary evolution. Even so, up to now, we have all 
of the reasons to believe that its S&G is unquestionable if we do not go beyond the 
border. 

Including gravity into thermodynamics On the other side of physics, we are 
used to thinking of space-time in geometric language after Einstein formulated general 
relativity, which is always regarded as a dynamic theory. Presumably, i t would have 
surprised him very much, as we are, that, along with the development of black hole 
physics [33, 67], gravitational degrees of freedom can also be cast in the language of 
thermodynamics [41], as can be seen most transparently from the identification of the 
area of an event horizon with entropy [4, 30] and the formulation of four laws of black 
hole mechanics [2 . 

However, as being pointed out by Callen [12], thermodynamics by itself is not a 
theory; it is a way of thinking: thinking about the laws of nature which are universal 
and revealed in macroscopic scale whatever the microscopic compositions and dynamics 
the system has. From this point of view, it should not surprise us anymore that gravity, 
which is usually neglected in thermodynamics because of its weakness, can/should also 
be incorporated into thermodynamics. 

An early high tide amongst these developments was Bekenstein's conjecture [4] about 
the generalised second law of thermodynamics. 

After Bekenstein offered his conjecture of the GSL, strong evidences for its truism 
have been given in references [4, 5, 20, 57, 58, 65, 76]. It is thus natural to regard the 
GSL as a special case of the SLT which involves a black hole. 
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They proved it Nonetheless, with above attitude towards the SLT in mind, I feel 
that the proofs of the GSL available to me are unsatisfactory in two aspects: The 
first, the status of the GSL in thermodynamics is not revealed explicitly. As being 
stressed above, the GSL of thermodynamics is not a consequence of any other physical 
laws within thermodynamics (or statistical mechanics); it is the starting point of the 
following story: By maximising entropy we can determine the equilibrium states of the 
system. I t is virtually hopeless to do this following the microscopic dynamic evolution. 
Conversely, as far as I know, only an equilibrium state has well-defined thermodynamic 
functions of state; entropy is one of them. The second, the flavour of thermodynamics— 
simplicity and generality—is veiled by the detailed microscopic dynamics. 

In next subsection, I would like to offer examples to see how the GSL works and 
evidences for its truism from the point of view described above. Because we have 
accepted its truism as the first law, the arguments are not a proof, but self-consistent 
statements that serves as its foundation. 

Before I present my approach, I will give a few comments on those proofs. Although 
Frolov and Page have given several comments to those prior to theirs [20], I would like 
to add some to contrast those approaches with my attitude. 

Comments to proofs of the G S L 

The first Since Bekenstein offered his conjecture before Hawking radiation was dis­
covered, his proof [4, 5] suffered from the unavoidable incompleteness in which the 
entropy of radiation was missed. He proposed a lower bound of spatial expansion (with 
respect to fixed S and U) for ordinary thermodynamic system (m, for matter) as a 
remedy. We think this is neither necessary (as will be shown later) nor sufficient: Con­
sider the case in which the initial and final masses of the black hole are the same, then 
the entropy difference comes purely from those matter outside the black hole. Due to 
the universality of Bekenstein's bound [6], it cannot inform us how to calculate this 
difference. 
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The second In Unruh and Wald's version [65], the importance of the entropy con­
tribution from radiation was stressed, and it was used to remedy the incompleteness of 
Bekenstein's proof by considering the buoyancy force originated from radiation. This 
buoyancy force will be felt by m in a stationary Schwarzschild frame (SSF), but not 
in a locally inertial frame (LIF). As a consequence, after the rope is cut, which ties m 
to someone standing outside the system concerned, such buoyancy force can be forgot­
ten. On the other hand, because the GSL concerns the never-decreasing property of 
entropy of a thermally closed system, what we are interested in is the entropy change 
during the period of approaching equilibrium after the rope is cut when the system can 
be regarded as thermally closed. Nevertheless, the non-negligibility of the entropy of 
Hawking radiation will never be over-stressed. We will see later that the GSL is rescued 
not only by the existence of Hawking radiation, but also by its massless and thermal 
properties. 

The third Zurek's proof [76](later generalised by Schumacher [57]) gave a strong 
support to Bekenstein's statistical interpretation of black hole entropy as the lack of 
information about the internal configurations of a black hole. Nonetheless, his proof only 
achieved half of the goal: if the surrounding thermal radiation has a higher temperature 
than that of the black hole, the GSL will be violated. However, as we will show later, 
if the equilibrium states can be handled properly, a final equilibrium state with higher 
entropy can always be found. 

The fourth In Frolov and Page's proof [20], quantum modes in the interior of a black 
hole were assumed to be the CPT reversal of those outside a black hole. We suppose 
that this is an assumption. And, since the black hole entropy can be determined at 
spatial infinity, it seems unnecessary to worry about what is happening inside a black 
hole. On the other hand, in the last step of their proof, they compared two Massieu 
functions^° defined on different spaces—exterior and interior of the black hole. However, 

•̂ °A Massieu function is a Legendre transform of the entropy [12]. For example, consider the entropy, 
S{U), as a function of the internal energy, U, so we have the differential relation, dS{U) = dU/T. One 
can perform a Legendre transformation so that the entropy is a function of the inverse temperature, 
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entropy is an extensive quantity (this is still roughly true for a composite system which 

is not separated by an impermeable wall), its value depends on the volume where the 

system is confined. In the terminology of quantum field theory, it depends on the 

normalisation. I t is thus unclear, since the practical computation scheme was not given 

in such a general approach, whether their difference can be explicitly calculated to be 

semi-positive definite, as claimed in their proof. 

I like this one, the fifth The proof provided by Sorkin [58] is perhaps the most 
general one. The author explicitly chooses a coarse-graining by assuming what happens 
at the exterior region of the black hole can be approximated by a Markov process. 
The statement of the GSL is effectively reduced to a statement of SL of conventional 
thermodynamics for the matter outside the black hole, i.e., S{Sout ~ P{Eout)) > 0 where 
{Eout) is the quantum mechanical expectation value of the energy of matter. By re­
quiring (Eout) + = constant, the GSL follow immediately. This approach is akin 
to mine most in flavour. However, it is unclear to me how general the assumption of 
Markov process is in the present context. On the other hand, due to the process of 
matter-absorption and radiation-emission, it is unclear how to justify the assumption 
that the transition probability, Tki between different states outside the black hole is 
unitary,^^ which is used in Sorkin's proof. 

Is it possible? Furthermore, I am sceptical about the possibility of proving the GSL 

from a dynamic point of view within current understanding about the dynamics under­

lying the generalised thermodynamics. Before one starts to prove i t , s/he has to answer 

the following question: Is the underlying dynamics unitary or non-unitary? 
If the answer is non-unitary as claimed by Hawking [32], then the GSL should be 

l / T , i.e., define S{l/T) = S(U) - U/T. Then we have d 5 ( l / T ) = -Ud{l/T). The 5 (1 /T) can be seen 
relating to the Helmholz free energy, F, by the relation, 5 (1 /T) = -F/T. 

^^A Markov process is the next-to-leading order approximation of stochastic process [1]. Roughly 
speaking, by discretising time with spacing dt, the event at arbitrary time t + dt depends on events 
happened at time t only. 

^^There are two problems: The first, the Hilbert space is changing. The second, the unitary rule is 
hard to justify. 
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a straightforward consequence of the non-unitary dynamics . I f the answer is unitary, 
then one has to specify the coarse-graining which results in the entropy increasing. 

I t is unclear to me that if the unitarity/non-unitarity concerned about the black hole 
entropy can be derived from the ultimate theory (U-theory—whatever it is) or it should 
be regarded as one of the building blocks of the U-theory, i.e., one has to make up one's 
mind right from the very beginning of constructing a theory if s/he wants to make a 
unitary or non-unitary theory. This question is related to the intriguing problem about 
the relation between phenomena and the theory (or model): I f something is missed, one 
can always insist that the underlying phenomenon should be unitary so that all we have 
to do is work harder to sort it out. Whatever the outcome of this debate is, to me, it 
seems that no physics can totally exclude the subjectivities of the physicists involved. 

On the other hand, the origin of the thermal radiation has never been addressed in 
above mentioned proofs. They are assumed to be there from the very beginning. As 
explained in section 2.1, the thermal radiation arises from the emerging of the event 
horizon during a collapsing process. A dynamic proof, from my point of view, should be 
able to give detailed explanation, say using Feynman diagrams, how the transformation 
between different matter forms happens, because if whatever the black hole swallows 
up, it always returns us "TV sets", it is quite unlikely that the generalised second law 
could be true. 

2.2.3 My arguments 
The scenario 

To help clarify the scenario of my approach, let me review the basic statement of the 
SLT at first. From the point of view of entropy, it says that the entropy (5) for a 
thermally closed system {6Q — 0) will never decrease. For a thermally closed system 
in equilibrium, by definition (since this is how we determine the equilibrium state), S 
is maximum, and the temperature T = 1/(5, defined as ^ = {dS/dU)v, is a constant 
throughout the system. 

•^•^I cannot rule out the possibility that a non-unitary dynamics will decrease the entropy. But, I 
think i t is quite unlikely. 
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How can we benefit from the SLT? Consider a composite system which consists of 
two boxes of matter attached to each other along a wall which is restrictive with respect 
to energy (ERWall)[12]; and each one is in equilibrium on its own. Then, we change 
the wall to a heat-permeable (or particle-permeable) one with negligible effects on the 
system so that they can approach final equilibrium state. The final state is determined 
by maximising the entropy with internal energy and volume kept fixed. Even though 
this is not the only way to get the information about the final state, this is perhaps the 
simplest one. In this case, the SLT is verified directly from daily experiences. 

I will apply a similar picture to the GSL. As mentioned previously, the GSL will 
be violated without Hawking radiation. Consequently, we need to include Hawking 
radiation to form an equilibrium state involving a black hole. We confine a black hole 
{H, we consider Schwarzschild black holes only) and thermal radiation (R) of total 
internal energy (ADM mass) Ui = Mm + Um at temperature = in a ball {B) of 
volume V (black hole has no volume by prescription). This picture was pioneered by 
Hawking [31 . 

Prescription for various thermodynamic quantities 

Some remarks are in order since V and Um are divergent in the SSF (stationary 
Schwarzschild frame) without a proper prescription. Consider, at spatial infinity, a 
thin spherical shell of box of volume 5V — abr (where a is the area orthogonal to ra­
dial co-ordinate and br is radial expansion in the co-ordinates of the SSF) containing 
thermal radiation of temperature T. The entropy is then 5^ = /^(f/a - F^), where 
is the corresponding Helmholtz free energy. If we put this shell at co-ordinate r, to an 
observer in a LIE (locally inertial frame), the energy and temperature then scale in the 
same manner by a factor x = (1 —2M/r)~^/^ [63]. Therefore, the entropy is independent 
of frames (SSF or LIE) even though x diverges at the event horizon. Furthermore, if 
we use a box with the same 6r, then the energy density is also frame-independent since 
the volume also scales by a factor of x (but entropy density is thus zero, and Stefan's 
constant is not a fundamental constant). We therefore build up the ball at spatial in­
finity at first, then we pull it to the nearby of the black hole while at the same time 
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keeping the radial co-ordinate expansion fixed. Since in our equations only entropy, 
hence the combinations of PU and PF, will appear, we can dismiss the factor x totally. 
We thus can use these quantities as if we are in spatial infinity. This perhaps is one of 
the reasons that entropy is more important and interesting than other quantities. 

The criteria for the existence of various configurations of the system described above 
have been analysed in [31, 23]. In our approach, these criteria are not used explicitly 
because i t is not necessary to require that there is a black hole in either the initial or 
final state. 

To see how the GSL works, we attach to the outer surface of S a spherical shell of 
box (6) of volume v which can contain any kind of ordinary matter (m) of temperature 
Tj with internal energy and Helmholtz free energy F^. 

Two routes 

From here, we can have two different approaches. The first, B and b is always separated 

by a heat-permeable wall while they are approaching equilibrium, so there is only heat 

exchange between them. The final matter form is still m. The second, the wall between 

B and b will be removed so that m will fall into the hole (if there is one), thus the 

final matter form is thermal radiation (r). The second case shows a new feature of 

thermodynamics involving a black hole in which the black hole acts as a matter-to-

radiation transformer (if m is not thermal radiation in the first place). We will explain 

its significance later. We consider these two cases separately. 

The first From the first case we will learn how the GSL works and this will provide 
us with a basis for the consideration of the second case. The whole entropy change can 
be separated into three parts, 

dS = CISH + dSR + dSm , (2.31) 

where 

dSn = iirMl^-ATTMl,, (2.32) 
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dSR = Pf{URj-Fn.f)-Pi{UR^-FRi) , (2.33) 

dSm = PfiUmf - Fmf) - P,{Um, ' F™) • 

Uab and Fab are internal energy and Helmholtz free energy for matter form a at tem­

perature Tb, respectively. 
To understand why the final state of the triple-phase system (if MHJ 7̂  0) has 

the highest entropy without doing a calculation, let us consider the following slow-
motion thought experiment in which the whole system approaches equilibrium through 
an infinite-step procedure: We cover the black hole by an ERWall at first, then let R 
and m approach equilibrium with UR + Um being fixed. According to the SLT, the 
entropy change is semi-positive definite. Afterwards, we remove the ERWall around the 
black hole, but cover B with an ERWall. Then, let H and R approach equilibrium with 
MH + UR fixed. According to the GSL, the entropy change is also semi-positive definite. 
We then carry on the above procedure again and again until the whole system, H+R+m, 
arrives at equilibrium. Because entropy is a function of state, the entropy change is 
unique for a thermally closed system if the final state determined by maximising entropy 
is so (we assume it is). Therefore, the total entropy change is semi-positive definite. 
(The reader may suspect that with delicate arrangement, the above procedure could 
have no definite final state, just like the sequence 1 , - 1 , 1 , - 1 , . . . has no limit. However, 
it is not difficult to convince oneself that if T, > Tj (Tj < Tj), then T of m will decrease 
(increase) only. And if a phase transition happens, i.e., MH / 0 MH = 0 or 
MH = 0 -> MH 7̂  0, then the other direction will not happen. Therefore, we can safely 
expect that the final equilibrium state will be the limit state of the above procedure.) 
Alternatively, one can write down those entropy terms explicitly and maximise the total 
entropy. 

The second The second case is generic to the GSL because it involves transformations 
between different matter forms. The total entropy change can be separated into four 
parts, 

dS = dSn + dSR + dSr + dSm , 
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where dSn and (ISR are respectively as those in (2.32) and (2.33), and 

dSr = Pf{Urf-Frf)-PtiUr-T-Frj) , 

dSm = PtiUrJ - Frl) - P,{UmT - F „ z ) • 

Urt and /3f = l / T f are determined by replacing initial matter m in 6 with thermal 
radiation r of the same internal energy, namely, Uri = Umi- Now, if we consider a 
system with initial state Hi + Ri + rj, then we can borrow the conclusion of the first 
case that the entropy change, dSn + dSn + dSr, is semi-positive definite. However, if 
the final state of our original system Hi + Ri + rrii contains a black hole (i.e., m will be 
swallowed by H), then this final state is just the same final state arrived at from the 
initial state Hi + Ri + rj. Therefore, if dSm is semi-positive definite, we then arrive at 
the desideratum. Though it is quite unlikely to give a proof to this statement, it seems 
intuitively true. On the other hand, if the final state of H + Ri + rrii does not contain 
a black hole, then we come back to the first case. 

From the other point of view, by accepting the truism of GSL in the first place (as I 
did), we can indeed turn the logic around to make the conjecture: Given fixed volume 
V and fixed internal energy U as constraints, massless thermal radiation (if no black 
hole forms) has the largest entropy amongst all possible kinds of matter. In this way, 
we find that a black hole is a nature-born entropy generator by way of transforming 
matter into thermal radiation. How cute Nature is to realise the GSL in such a delicate 
way! In Jacobson's approach of space-time thermodynamics [41], the status of the first 
law of thermodynamics is lowered to a more fundamental one than that of Einstein field 
equation. We wonder if this can also be done to the GSL? 

Obviously, it is of vital importance that Hawking radiation is massless thermal 
radiation. From Page's estimation [48], this is indeed the case for large mass black 
holes for which thermodynamics can be ensured to make sense. 
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Chapter 3 

Three Statistical Explanations of 
Black Hole Entropy 

In previous chapters, I have introduced those results which could serve as the initiatives 
for the pursuing of the statistical origin of black hole entropy. It seems that everyone 
in this field has her/his own version of explanation. Since the event horizon separates 
the space-time to two regions plus a boundary—the event horizon, all attempts can be 
catalogued, by force, according to where the entropy calculated resides. 

However, most of the them are done at the outside, or on the boundary, of the black 
hole. There are also attempts which use both of the inside and outside regions of a 
black hole.^ 

Al l attempts can also be classified according to the signature of space-times used. 
The most common ones are Lorentzian and Euclidean signatures. As far as I know, the 
only example using Kleinian signature is reported by the author.^ 

The methods employed vary according to a researcher's intuition or taste because, it 
seems that no one has yet had a clue why a black hole, a classically almost bald^ animal, 
should/could have so much quantum hair so hard to comb. Some apply quantum field 
theory, some adopt path integral. I borrow some tricks from history. 

•^More accurately, they use both wedges of the maximal extension of a Schwarzschild black hole. 
^In a higher dimension theory, presumably, there are even more possibilities. 
•^In 4-D, according no-hair theorem, a stationary black hole has only three classical hairs: the mass, 

charge, and angular momentum. See the article [70] for a short review and references therein. 
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Abstract of chapter 3 

Section 3.1 I start w i t h ' t Hooft's brick wall model [62] in subsection 3.1.1 because, 
i t seems that this is the first reported attempt to calculate the black hole entropy 
statistically. The entropy derived is formally divergent, 't Hooft introduced a straight­
forward, but simple-minded, cut-off to regularise the divergent. After I give two short 
comments to the model in subsection 3.1.2, two attempts trying to justify such a cut-off 
are reviewed afterward [15, 55 . 

Section 3.2 I review the explanation proposed by Brown and York [9, 10], via path 

integral, by attributing the origin of black hole entropy to the gravitational degrees of 

freedom. In order to understand their prescription of the path integral representation 

of partition functions, I at first consider an ordinary statistical system as an example 

following references [9, 18] in subsection 3.2.1. The prescription of micro-canonical ac­

tion used to evaluate the black hole entropy in subsection 3.2.3 is reviewed in subsection 

3.2.2. 

Section 3.3 I present my own version of a statistical explanation of black hole entropy 
from the point of view of quantum states inside a black hole. Each quantum state 
contains degrees of freedom of both the quantum and gravitatinal fields. This idea 
is, basically, derived from the unsatisfactoriness to the previous two attempts in which 
these two degrees of freedom are dealt with separately. I foremost in subsection 3.3.1 
give several general assumptions regarding a static black hole as a thermal equilibrium 
system. I then calculate the quantum statistical entropy of neutral and U{1) charged 
black holes in subsections 3.3.2 and 3.3.3, respectively. 

Appendix C Various standard kinematic formulae are presented in C.l . The simpli­

fications of several equations used in section 3.2 are shown in section C.2. 

^See section 4.1.2, chapter 4 for detail. 
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3.1 Brick wall model 

't Hooft considers a thermal bath propagating outside the horizon of a black hole [62 . 
The black hole entropy is identified as the entropy of the thermal bath. Though the 
entropy is proportional to the area of the cross-section of the horizon, its coefficient is 
divergent. The divergence can be traced back to the infinite large time-dilation^ factor 
near the horizon. In order to regularise this divergent coefficient, 't Hooft introduces a 
naive cut-off—brick wall—near the horizon and imposes the boundary condition that 
the quantum field vanishes on the wall. By choosing a suitable proper distance between 
the brick wall and the horizon, it is possible to adjust the thermal entropy to the value 
of the black hole entropy. 

Not everyone is happy with the naive building-up of a brick wall. There are two 
attempts trying to regularise the divergence in a more systematic manner. The first 
is given in reference [15] by employing the Pauli-Villars regularisation. Another one is 
reported in reference [54] by replacing the brick wall with an apparent horizon. 

3.1.1 The model 
Thermal bath outside a black hole 

The equations We consider a massive, neutral scalar field propagating outside a 
Schwarzschild black hole with the boundary condition in Schwarzschild co-ordinates 
x>' = {t,r,e, </.), 

(p{x) = 0 , a,s r < + h and r > L , 

where = Vg + h is the radial co-ordinate of the brick wall. Another large distance 

regulator, L, is also introduced. If the scalar field is expanded as 

ip = e-''^'YUe,<P)R{r) , 

^Namely, the red- or blue-shift factors depending on one's viewpoint. 
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where Yim{9,(f)) is the spherical harmonics of order {l,m), then the radial part, R{r), 

satisfies the equation. 

1 
dr{r{r - r,)drR) ( 

/(/ + 1) 2^r. r. 

^ . ^ + m^)R + R = 0 , r — r. 
(3.1) 

where h have been written down explicitly. To proceed computing the leading contri­

bution to the free energy, F, 't Hooft employs the WKB approximation [56] by writing 

R = RQC^^/^ in which i?o is a constant and 5 is a slow varying phase. Expanding 

equation (3.1) in terms of S and keeping the lowest order terms of h, we arrive at 

{S'Y = (1 - ^ ) S\-2 2 . ^^^.^(^ti)+^^) E ' - { l - - ) { 
r r 

Energy quantisation rule The WKB quantisation condition [56] gives 

1 
(n + - ) f f = / drdrS , (3.2) 

2 JT}, 

where the E is always chosen such that the integrand is real. To estimate the degeneracy, 

z/(i?), of eigen-modes with eigen-energy E, we sum over those I which ensure the reality 

of the integrand in equation (3.2), i.e., 

dr, 
iE) = ^ ( 2 / + 1) / -drS (3.3) 

Thermodynamic quantities 

The free energy F The entropy of a thermal bath at temperature of l / f } can be 

calculated from the free energy, F, defined as 

1 f-,EM^,^^,_,-,E^ 

(3.4) 

{3 JEO dE 
u{E)dE 

Eo eP^ - 1 
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where in the last line an integration by parts has been used and the surface terms do 

not contribute to F. Note that the lower bound EQ in equation (3.4) depends on the 

mass, m, and the regulator, L. By approximating the summation over I by integration 

in equation (3.3),^ we have 

- 2 r°° dE dr 
F 

Sir JEO e^^ 

dE - 2 

37r JEO 

(1 - 'ff 

PL ^ [p + TsY 

2N3/2 

fPL 1 + 
-.3/2 

p + rsE^ 
( ^ 2 _ ^ 2 ) 3 / 2 ^(3 5) 

where p = r — rg has been used in the last line. At this moment, we are interested 

in those terms in equation (3.5) diverging as h = Th — —> 0, i.e., as the brick wall 

approaches the horizon, and the bulk term which behaves as L^. They correspond to 

terms of r^/p^, 4r^/p, and p^ in the expansion of {p + /p^. For terms of r^/p^ and 

4r^/p, we approximate p as 0 in the rest of the integrands in equation (3.5). For the 

term of p^, we set = 0 since rg. We then arrive at the approximated F as 

F 
f°° dEE^ [L , 2 /"°° dEE 

37r h eP^ 
2 /-oo dE(£;2 - m2)3/2 

4r? 
— + 
p2 p 

+ 37r Jm 

Doing the integration,^ we arrive at 

^27r3 

dpp^ 

F 
45 ^P' h 9TT 

-U L )3 /2 

(3.6) 

(3.7) 

where a constant term has been added in to constructed ln{h/rg). It is seen there is 

a surface contribution apart from the expected volume contribution. In the following, 

we will ignore the volume term, i.e., term proportional to L^, and concentrate on the 

surface terms. 

'^Note that the suitable upper bound of dr depends on E and m. 
^The following integral is used [28]: 

r°° x^dx _ 6 ^ 
Jo 1 90 
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The entropy Sth The entropy of the thermal bath, Sth — P djsF, is 

^ - 4 1 n ( A : 
h r. (3.8) 

I t is then obvious that the entropy, in the leading order, diverges as h ^. 

Building up the wall 

In order to prescribe a finite entropy that is proportional to the area, 't Hooft introduces 

a proper distance cut-off, eh, which is related to h by 

The value of eh is determined by equating the thermal entropy, Sth, with the black hole 
entropy, Sbh = ^TTGM'^. Then e| ~ l/(907r). It is of the order of Planck length. 

The introduction of a cut-off is inevitable in continuous quantum field theory. How­

ever, it is unclear why the eh should be chosen in such a manner. Before we review two 

attempts trying to overcome this seemly arbitrary choice, two comments are in order. 

3.1.2 Comments 

Why black hole entropy? It is unclear to me in what sense the thermal entropy, 

Sth, is the black hole entropy. If one accepted the original interpretation of black hole 

entropy proposed by Bekenstein^ that the black hole entropy has something do to with 

lost information about the interior of the black hole, then, it seems obvious that the 

Sth has no such character. 

Does a neutron star have gravitational entropy? Furthermore, if Sth can be 
attributed to the entropy of the object enclosed by the brick wall, then, as far as I can 
see, such a calculation can also be done around, say, a neutron star. The radius of the 
neutron star can serve as a natural co-ordinate cut-off Vh, though the proper distance 

*̂ See section 2.2.1. 
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cut-off, e/i, will be of macroscopic order. However, no conceptual obstacle to rule out 

such a calculation. Then, 't Hooft's interpretation seems to suggest that a neutron star, 

and generally any star, also has gravitational entropy in addition to the usual thermal 

entropy associated with the matter. This is contradictory to the conventional wisdom 

that a star has no gravitational entropy because of the lack of an event horizon [22]. 

Admittedly, perhaps a normal star can indeed be attributed with certain gravitational 

entropy, but, the question raised in previous paragraph remains. 

3.1.3 Removing the divergence 

There are two attempts trying to evade the naive brick wall cut-off. One is given by 
Russo by replacing the brick wall with an apparent horizon [54]. Another one is reported 
in reference [15] with the help of Pauli-Villars regularisation. 

Pauli-Villars regularisation 

The difficulties it faces In this approach, several auxiliary fields of large masses 
are introduced. To achieve the goal of regularisation, their masses, statistics (hence 
the signs of free energies) are chosen so that the divergent terms in equation (3.7) are 
cancelled. Though the conclusion from this approach is quite remarkable, I think this 
approach has its limit due to the great approximation involved in the calculation of 
free energy, F, in equation (3.7). Recall that two basic approximations are used in 
order to arrive at the expression (3.7): WKB approximation in equation (3.2) and the 
boundary condition in the integral in equation (3.6). Unlike in quantum field theory 
on a flat space-time, few of the computations involved on a curved background can be 
done exactly. I t is then unclear if the power of Pauli-Villars regularisation can be fully 
generalised to the present case. But, let us have a quick look how it is done. 

A quick look at this method As in reference [15], we introduce 5 auxiliary fields 
with masses^ rrii = {m? + a^/i^)^/^, i = 1 , . . . , 5, where Ci 's are constants and p the 

'The mass of the original field will be denoted as mo-
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cut-off scale. Repeat the calculation leading to equation (3.7) for each field, we have 

the total free energy,̂ " 

5 2 /•oo dEE'^ , 
p2 p (3.10) 

where A , = 1 for commuting fields and = — 1 for anti-commuting fields. Note that 

the integrand and the boundary of integral are independent of i , so the divergent terms 

from various fields will cancel if we arrange Yli=o^i = 0- Back to equation (3.5), for 

the Ftot, we have 

Ftot-
-2r? /-^ dE / " i ' ds 

s 
3 . r ^ i v ^ s - - ' - ^ - ? ) ' ' ^ 

where s = 1 — Vg/r, L' = 1 — Vg/L, and the lower bound of dE is approximated by zero. 
One can then follow reference [15] to derive the entropy and make it finite by considering 
the one-loop renormalisation of the gravitational constant. However, as explained in 
previous paragraph, the whole derivation is done with great approximations; though 
above result might suggest that Pauli-Villars regularisation could still work in an exact 
computation. 

Apparent horizon as the brick wall 

Because I think the scope of the above method is quite vague, I now review another 

method given by Russo based on the idea of the apparent horizon [54]. The basic idea is: 

The global apparent horizon is a natural place to impose the cut-off if the back-reaction 

of the black hole radiation is taken into account. 

Assumption The underlying assumption behind the replacement of the brick wall 
with the apparent horizon is: The quantum mechanical information of a black hole is 
encoded in the Hawking radiation [54]. If one adopts this attitude, then one should 
recover a finite entropy from the black hole radiation. Furthermore, its value should be 
comparable to the black hole entropy. However, as shown in section 3.1.1, this can be 

^°Note that the cut-ofF near the horizon is still imposed at this moment. 
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achieved only when a cut-off, i.e., the brick wall, is imposed at a proper position. One 

is then motivated to justify this particular choice. 

The importance of being dynamic At first, recall that the divergences are orig­
inated from the arbitrarily large red-shift a mode sufi'ers near the event horizon of a 
static black hole. However, if this black hole is radiating and it totally disappears, due 
to the evaporation, at a finite moment of time with respect to an observer at spatial 
infinity, then the overall red-shift effect should be finite.Therefore, the question has 
been reduced to the identification of a particular boundary, in a dynamic black hole 
background, where the radiation originates. 

Building the wall at the apparent horizon Now, with the above assumption in 

mind, the black hole radiation should be causally connected with the future infinitj'. 

The last frontier where this is possible is obviously the event horizon. However, the 

event horizon is a global concept that its identification needs the global knowledge of 

the space-time [33]. Locally, one can only determine the apparent horizon which is 

the concept most similar to the event horizon from a local point of view. In order for a 

mortal to find the place to build up the wall, the last frontier should be chosen as the 

apparent horizon. 

The background We now calculate the position of the appar'ent horizon following 

Russo's method [54]. For a large black hole, the metric is given by the Schwarzschild 

Otherwise, to this observer, the black hole disappears in an infinite amount of time due to the 
infinite time dilation, which then corresponds to the infinite red-shift. 

^^An apparent horizon is a boundary where a bundle of outgoing null geodesies begin to converge. In 
the spherically symmetric case, its position is determined by the condition = 0 where r is the radial 
co-ordinate and v = t+r^, in which r , is the tortoise co-ordinate corresponding to r [54]. Intuitively, the 
condition | j < 0 just means that the outgoing null geodesies are bent inward, so they are converging. 

^^In fact, the identification of this particular boundary with the global apparent horizon is given as 
an ansatz in Russo's article [54]. I only describe things in a slightly different manner. And note that 
there is no difference between the apparent horizon and the global apparent horizon after the in-falling 
matter flux has stopped. Though, I have to admit that I do not understand the prescription given 
by Russo that one can construct the global apparent horizon from the late time apparent horizon by 
analytic continuation. 
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solution. 

r 

= J-^^^-^e~^dUdV + rH^\ (3.11) 

where 

u = t - r „ v = t + r„ (3.12) 

+ P = - 6 3 * ^ 7 , • l / = e5Si7, (3.13) 

and r^ — r + 2 G ' M l n ( ^ ^ — 1). Since the black hole is radiating, the M is a function 

of time, t. The factor p in equation (3.13) is an arbitrary factor to shift the origin 

of the U (cf. equation (1-10)) so that the end point of evaporation corresponds to 

([/, V) = (—P, Ve) (see figure 3.1) and the final flat space-time iŝ ^ 

ds" = -de^drl + rldn'' 

= -dudv + rldCl^ 

= -WG^Mh-^dUdV+ rldn^ , (3.14) 

where u, v and U, V are defined as in equations (3.12) and (3.13), respectively. 

Locating the apparent horizon From the definition of the apparent horizon |^ = 

1̂  = 0 [54], we have 
dr 
— -dur = duVdvr = 0 . (3.15) 
dU 

To determine dyr, we at first solve r in terms of U and V from the definitions in 
equation (3.13). Write r = 2GM + 6, we can solve ^ as ^ < 1 and ^ < 1, 

6'^-2GMV{U + P) . (3.16) 

We then arrive at 
dur ~ -2GMV . (3.17) 

^''Ignore the curvature resulting from the Hawking radiation. 
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Figure 3.1: Penrose diagram for an evaporating black hole. The shaded region is the 
analytic continuation of the exterior Schwarzschild sulotion (white region) of a collapsing 
star. 

To calculate recall the black hole evaporation rate is ^ = ^ = -an^T'^A = 

where 7 = 25^n 
(3.16) and (3.13), we have 
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^fj,-^^' ^^.^ ^^^t-^.^"^"- du - dt - " -
° and Q; is a constant of order 1 [8]. Then with the help of equations 

dr du dM 
dU^ dU~d^ {U + P)M • ^^-^^^ 

Combining equations (3.18) and (3.17), we arrive at 5 ~ ^ following the condition 
(3.15). 

Prom equation (3.9) with h = S,we arrive at the proper distance between the event 
horizon and the apparent horizon, es ~ VI6G7, which is also of the order of Planck 
length. The entropy can be calculated from equation (3.8), which is Sth = i^^TrGM^. 
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3.2 Black hole entropy in terms of gravitational 
degrees of freedom 

Brown and York advocate that the statistical origin of black hole entropy can be traced 
back to the gravitational degrees of freedom [9, 10]. In standard statistical mechanics, 
the entropy can be calculated accordingly if one can write down the partition function 
of the system concerned [36]. Following the observation by Gibbons and Hawking [22], 
they proposed a partition function of the gravitational degrees of freedom via path 
integral [9]. In order to motivate the prescription they adopted, I at first review how 
they write down the partition function via path integral for an ordinary non-relativistic 
statistical system[9, 19 . 

3.2.1 Partition function and entropy via path integral 
Partition function for an ordinary statistical system 

The canonical partition function, Z{P), for a system with positive energy spectrum, E, 

at inverse temperature, P, can be formally expressed as 

Z{p)=Tre-^"= dETr(S{E-H))e-f^^ = dEu{E)e-^'', (3.19) 
Jo ^ ' JQ 

where H is the Hamiltonian, u{E) the density of states of energy E, and Tr the trace 

over all states. If we are able to rewrite the via path integral, then we almost 

arrive at our aim. 

Density of states via path integral We see that ^{E) = Tr{5{E — H)) from 
equation (3.19). Taking the trace in configuration space with co-ordinate x, we have 

u{E) = I d x { x \ 5 { E - H)\x) . (3.20) 

In turn, the matrix element of the delta function can be re-expressed as 

{x'\5{E -H)\x) = ~^ dre'^^/'^(a;'|e-^^^/'^|a;) . (3.21) 
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Using the particle path integration ansatz given by Feynman [19], the matrix element 

in the above equation can be represented as 

rx(T)—x' 
{x'\e-'^^/^\x) = / Vxe''^/^ , (3.22) 

Jx{0)=x 

where Vx is the functional integration over particle paths, IT is the Hamilton's action 

of the system w i t h the time interval fixed to value T , and note that, the time interval, 

T, is allowed to be negative in the present case. 

Combining equations (3.20)-(3.22), we arrive at the path integral representation for 

u{E) = ~ r dT r^^^ T)^S'T^ET)in (3 23) 
Z'Kh J-oo Jx{0)=x 

The above expression can be further recast in terms of the Jacobi's action^° as follows 

[9], 

u{E)= I VHj,e'^^'^ , (3.24) 

where IE is the Jacobi's action wi th energy E and VHp indicates that the path inte­

gration is done over all periodic paths. 

C a n o n i c a l part i t ion function v ia path integral Put t ing equation (3.23) into 

(3.19) and performing the change of variables, T —> -zr ,we arrive at the following 

representation for the part i t ion function, 

dE /"'°° dr ^j^^i^ r r<T)=x 

_/x{0)=x 

Note that the above equation can be formally read as the Laplace transform of the 

inverse Laplace transform of the quantity inside the square brackets. We then finally 

arrive at the path integral representation of the canonical parti t ion function as 

rx{T)=x 

lx{0)=x 

Z(p) = r'l^e-'^ r 5 ? I e - / « [ / • " • ' = • D x e * / " 
Jo ZTTl J-icx h Jx(0)=x 

(3.25) 
J r = - i T 

Z{P)= r^^^ ' P x e ' ^ - / ' ^ | T = - . ^ . (3.26) 
Jx(0)=x 

^^Hamilton's action is just the usually so-called action, which is used to derived the Euler-Lagrange 
equation via the variational principle in which the time-interval of the path history is fixed. The 
Jacobi's action is the action used in the least action principle in which, instead of the time-interval, 
the energy is fixed. For a closed system in which the energy is conserved, the Jacobi's action can be 
derived from the Hamilton's through a certain algebra [27]. 
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This expression is foremost derived by Feynman [19 . 

P a r t i t i o n function for a self-gravitating system 

Brown and York propose that the path integral representations of the density of states, 

u{E), in equation (3.24)^^ and the canonical parti t ion function, Z{P), in equation (3.26), 

can be generalised to the gravitational degrees of freedom of a self-gravitating system. 

Formally, 

u{E) = j VHpe'^^l^ , (3.27) 

Z{(i) = JvHpe''^^^\T=-^np , (3.28) 

where IT is the Hamilton's action and IE the corresponding Jacobi's action. The exphcit 

prescription of IE of Brown and York's is shown in next subsection. Note that we have 

gloss over the diff icul t problem about the choice of the measure, VHp}^ Also note that 

the time interval in equation (3.27) is real and unfixed; contrarily, i t is imaginary and 

fixed in equation (3.28). 

Saddle point approximation of entropy 

Given the canonical part i t ion function in equation (3.19), the formal expression of the 

entropy is 

S{p) = - I dEv{E)P{E) In P{E) = In ZiP) + P{E) . (3.29) 

where P{E) = e'^^/Z{I3). I t is a formidable task to do the computation exactly. 

However, i f we are content w i th the leading order contribution, then we can approximate 

the par t i t ion function by the saddle point of the exponent of the exp}^ i.e., 

Z{(3) = j dEu{E)e-P'' - ^^--^{El-^E- ^ (3 3Q) 

An alternative name for v{E) is the micro-canonical partition function because no energy excliange 
is allowed between members of an ensemble. 

^'''Although I use the same symbol, VH-p, for the measure in both expressions, i t by no means implies 
that they need to be the same. 

Assuming that the saddle point is a maximum point, otherwise, this system is unstable. 
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where E* is the energy of the solution of OE In v{E) = (3. W i t h i n this approximation, 

the average energy, {E), is 

„ l n i / ( E ' ) - / 3 £ ; * 

{E) = j dEu{E)P{E) ~ = E* . (3.31) 

Combining equations (3.31) and (3.29), we arrive at 

S{p)r^lnu{E*) . (3.32) 

I f we also approximate the path integral representation of i'{E) in equation (3.24) in 

terms of its saddle point, we can write I'iE*) ^ e'^^'^'. We then arrive at the simple 

relation between the entropy and the Jacobi's action that^^ 

S{P) - IIE' • (3.33) 

Such an approximation wi l l be generalised to the gravitational degrees of freedom later 

to evaluate the black hole entropy. 

3.2.2 Micro-canonical action 

As described in previous section, at leading order, the evaluation of the entropy is 

equivalent to the evaluation of the action^" at a suitable solution. I t is a laboured job 

to determine the form of the micro-canonical action,^^ and this is the content of Brown 

and York's prescription [9, 10]. Since the essential point of their prescription concerns 

the boundary terms in the Hamilton's action, and their occurrence can be traced back 

to the variational process. We start wi th the variational principle of the Hamilton's 

action. 

^^In order to make sense of this expression, we optimistically hope that the action calculated from 
the saddle point is purely imaginary so that the entropy is real and positive. 

•^°Since this action appears in the micro-canonical partition function, i.e., the density of states, i ' (B) , 
i t is therefore called the micro-canonical action [9]. I t is the counterpart of the Jacobi's action for an 
ordinary statistical system. 

2̂ 1 will leave some length algebra in appendix C at the end of this chapter. 
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T h e Hamil ton's action for a gravitational system 

Need for boundary terms in the variational principle One usually omits the 

boundary terms resulting f rom the Stoke's theorem while one is considering the varia­

tional principle because the spatial boundaries are always put at spatial infinity. How­

ever, i t has been argued by York in reference [10] that a black hole in an infinitely large 

space is unstable. In order to stabilise a black hole, i t is then necessary to confine the 

black hole wi th in a cavity by imposing certain boundary condition at the surface of the 

cavity. On the other hand, in order to arrive at the Hamiltonian formulation, one needs 

to foliate a space-time into a family of space-like hypersurfaces, we therefore encounter 

space-like boundaries, too. Since certain boundary conditions wi l l be imposed on them, 

both space-like and time-like boundaries, one has to keep track of those boundaries 

terms. 

T h e appearance of the boundary terms We start wi th the Einstein-Hilbert action 

in equation (1.22) on a space-time, {M,g^^), of topology / x S and wi th boundaries 

dM?'^ Under the variation of the metric, we arrive at (cf. equation (1.23)) 

= G^^'Sg^, + d 0 , , 

where G"" = j^iTl"" - y^^Tl)- Using the Stoke's theorem, we rewrite d@g as an 

integral on the boundary, dM. On a particular piece of boundary, 5 M „ , we have the 

integrand (cf. equation (1.27)) 

@g = 9g • e = -TUyO^n • e . 

From equation (C.52), we arrive at, on the boundary 5 M „ wi th unit outward-pointing 

normal n'^, 

0 , = -rP.Jh^'^ + ^ S { K n • e) - ^ d [6n • (n • e)] . (3.34) 

•̂ Ŝee appendix C at the end of this chapter for further explanation of some basic properties of M 
we endowed. 
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Since K involves first order derivatives of the metric, i t is seen that i t is not enough to en­

sure a solution of the Einstein equation being a stationary point of the Einstein-Hilbert 

action by requiring the metric variation, 5g^^, vanishing on the boundary. Therefore, 

first proposed by Gibbons and Hawking [22], a surface action term, —r J Kn - e/SiiG, is 

added to cancel the second term in equation (3.34) resulted f rom performing variation. 

Need also for corner terms This not yet enough. Extra "corner terms" are needed 

to cancel the contribution f rom d[6n-{n-e)] [35]. A t a particular junction corner between 

a space-like boundary, 5 M „ and a time-like one, 5 M „ , the total corner contribution, 

51, is 

61 = [ [5n •{n-e)-5u-iu- e)] . (3.35) 

From equation (C.66), we see that 

6l = - ^ l v { n - e ) 6 a , (3.36) 

where a = sinh~^(77). Therefore, i f a corner action term, J a r • {n • e)/8TrG, is added 

into the Einstein-Hilbert action, the variation of the action wi l l depend on 6g^^ only, 

but not its derivatives. 

T h e result ing Hamil ton's action Ffji T h e general case Wri t ing them explicitly, 

for a manifold, M, w i th two space-like boundaries, the upper one is dMn" = and 

the lower one is 9M_„/ = S f , one time-like boundary, 9M„ = B, and two corners, 

C" = E(" n B and C = Sj ' f l 5 (cf. figure 3.2), we have the following variation. 

f 1 f^t" I f 1 r^" 
/ ^9 - / Kn-e + —— / Tu-e + —— / ar-{n-e) 

JM " STTG JE,, STTG JB STTG JC' 

= I G^'5g,. - r " P.M^" + [ TI.JY" 
JM VEJ, JB 

The action, is the Hamilton's action for a gravitational system wi th boundaries. 
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Figure 3.2: Manifold M. 

T h e Hamil ton's action In- Special case of n>^u^ = rj = Q = A^^M,^ In the rest of 

this section, following Brown and York [9, 10], we consider the special case in which the 

fami ly of space-like hypersurfaces, E^, intersect the time-like boundary, B, orthogonally, 

i.e., n^Un = rj = 0, and the Hamiltonian does not generate the spatial diffeomorphisms 

which map the field variables across the time-like boundary, i.e., N^u^ = 0. Therefore, 

all corner terms discussed in previous paragraph disappeared. We wi l l call 1^ the action 

resulted f rom in equation (3.37) by subtracting corner terms (cf. equation (C.26)). 

From the results in section 0.2.4 (cf. equation (0.76)), we can rewrite equation (3.37) 

as 

M 
7ii/ 
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- ^ ( - y s ^ ' ^ ^ a , , + sdN - ],5m) . (3.38) 

Note that we have use the relations -P^^(5/i '" ' = P^^dh^^ and -s^^^a'"^ = s^^^Sa^^^. 

In the Hamiltonian formulation of general relativity [67], the % and Hfj. (see equations 

(0.13) and (0.14)) are interpreted as the energj'-momentum conjugate to N and A''''. 

I t is then nature to interpret e and as the conjugate energy-momentum of N and A'̂ '' 

w i t h respect to the boundary B. These variables are the counterparts of the energy and 

chemical potentials in an ordinary thermodynamic system. The variable cr^i, determine 

the size and shape of the system, i t is therefore the counterpart of volume. 

T h e pre l iminary micro-canonical action 

The action, / / / , suitable for variation wi th fixed metric at boundary is derived f rom 

in equation (3.37) w i th corner terms ignored. I f we add the following term, Ii, to IH, 

(cf. equations (0.31) and (0.32)) 

h = -h~h = j^eu-e-^J,N'^ , (3.39) 

the variation of IE = IH + is 

SIE = S{IH + IL) 

+ [^s^'6a,. + NSie"^) - N'^S{j,'^)] . (3.40) 

I t is obvious that, at the boundary B, now the suitable boundary condition are the 

fixed energy-momentum density, e~, j ^ ^ , and the induced metric, a^^. 

I f we regard e, j ^ , and a^i, as the thermodynamic quantities which characterises 

a system enclosed by the boundary B, then what we are doing is performing a Leg-

endre transformation which transforms the functional dependence of a state function 

amongst the conjugate pair [9]. I f the path integral prescription of micro-canonical par­

t i t i on function (cf. equation (3.27)) is generalised to a gravitational system so that the 

integrated paths are constrained to satisfy the imposed boundary condition of fixed e, 

77 



jfj^, and afj,iy at B, the action, IE, w i l l be a proper candidate as the micro-canonical ac­

t ion for evaluating the micro-canonical parti t ion function. We therefore write u{e,j,a) 

henceforth.^^ 

Micro-canonica l action without space-like boundary 

Hami l ton's action without space-like boundary In order to compute the black 

hole entropy via path integral, as prescribed in section 3.2.1 (cf. equation (3.27)), the 

integrated paths are constrained being periodic in time co-ordinate. Therefore, the 

topology of the manifold, M , is 5*̂  x E. This causes some changes in the form of the 

Hamilton's action. In-, because we do not add IK^'^ into the Einstein-Hilbert action, 

IR. Furthermore, we are interested in the case that the topology of E is / x 5^ in 

which the two end points of / corresponding to two time-like boundaries. Bo and Bi^^ 

which have topology x 5^. Though there are two of them, the boundary condition 

is prescribed only on the outer one, Bo [9].^'' Therefore, only the /p term (cf. equation 

(C.29)) of the outer boundary, denoted as / r „ , is add to IR. The resulting Hamilton's 

action, / / i , is 

= ^« + = l i ^ ^ I ' ^ ' + S g 

= Ie + h + I r - ^ f IX ' • e - 2 / Lma^^V^Hi, i • £ , (3.41) 
OTTLr JBi JBi iV 

where is the unit outward-pointing normal of the inner boundary, Bi. 

'̂ ^ Recall that the integrated paths in the path integral representation of the density of states is 
periodic with respect to time. Therefore, there is no dependence on h^^ at space-like hypersurfaces. 

^̂ ee equations (C.27)-(C.29) for the definitions of various action terms. 
^^Alternatively, notice that the periodicity in time co-ordinate means the two IK terms cancelled. 
^•'Therefore, the topology of M is (annulus) x S'^. 
^''This could mean that we can only measure the relevant quantities on the outer boundary. 
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Micro-canonica l action w^ithout space-like boundary Performing the Legendre 

transformation by adding in (cf. equation (3.39)), we arrive at the micro-canonical 

action, / „ , 

Im = Ih + l L = l E - - ^ l ^ I X ^ • ^ ~ ^ / B ^ ^ ' ' ^ M - ^ ' ^ ^ ^ ^ • ̂  • (3-42) 

The micro-canonical action, / „ , wi l l be used in next section to evaluate the entropy of 

a spherically symmetric black hole. 

3.2.3 Entropy for spherically symmetric black holes 

I w i l l content myself w i th the spherically symmetric cases only.^^ 

T h e saddle point 

B o u n d a r y condition I n order to calculate the entropy of a black hole, the boundary 

condition, e, j ^ , and a^i,, at B is necessarily derived f rom the black hole solution—a 

Lorentzian one. This can be done by, at first, choosing a 2 sphere, B2, on a hypersurface, 

E3, of i = constant of the black hole solution, one can then obtain the boundary 

condition by embedding B2 as a hypersurface in E3, as described in section 0.1.3, 

appendix 0 . To implement the saddle point approximation described in section 4.2.1 

(cf. equation (3.32)), we need to find the stationary point of the micro-canonical action 

which satisfies the imposed boundary condition at B = x B2. 

Need for complex solution Though the boundary condition at B is derived f rom a 

t =r constant hypersurface of a Lorentzian black hole, this black hole solution cannot be 

the stationary point of the micro-canonical action because i t contains two wedges, which 

is separated by the bifurcation 2 surface of the Ki l l i ng horizon, therefore i t cannot be 

placed on a manifold wi th one single boundary, B, of topology x 5^ [9]. However, i f 

we analytically continue this solution to a complex one, this complex black hole solution 

could have a single boundary wi th topology x 5 .̂̂ ^ 

'•̂ ^For more general cases, see reference [9, 10]. 
^^Therefore, either the measure of the path integral should include complex metrics or analytic 

continuation should be used to rotate the integral path on the complex metric plane. 
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Too see this, we at first write the metric in the A D M form, (cf. equation (C . l ) ) 

g^^ = -N^(r)dt^ + grr{r)dr^ -\- aabdx"'dx'' . 

where the shift vector is zero because of spherical symmetry and iV, grr, (Jab are t-

independent. The horizon 2-surface is located at the "bolt" where N = 0 [24]. Analyt i ­

cally continuing this solution to a complex one, in fact, an Euclidean one, by t —)• —it, 

we arrive at the solution, 

g^^ = -N^dr^ -t- grr{r)dr^ + Oabdx'^dx^ , (3.43) 

where r is real and A'' = —iN. Away from the horizon 2-surface of N — 0, the 

above metric satisfies the vacuum Einstein field equation because the equation is also 

analytic w i t h respect to t. By requiring the t co-ordinate being periodic wi th period, 

P = constant, we could put this solution in a manifold wi th a single boundary of 

topology 5*̂  X 5^ i f the boundary corresponds to the hypersurface of fixed r co-ordinate. 

However, as TV = 0, a conical singularity could arise [24]. To avoid the appearance of 

a conical singularity, a certain constraint should be imposed on regarding to the 

period, P [9 . 

R e g u l a r i t y condition Rewrite the metric in equation (3.43) in the Gaussain normal 

form, we have, 

g^^ = N\r,)dt^ + drl + Oabdz^'dx^ . (3.44) 

Near N = 0, the i — s e c t i o n of the metric describes an Euclidean 2-surface. Therefore, 

the conical singularity is avoided if, as A^ —>• 0, the proper circumference, PN, ap­

proaches 27rr* asymptotically, namely, the Euclidean 2-surface approaches an Euclidean 

2-plane. In terms of the original co-ordinates, this is equivalent to the condition that 

dr. (PN) - P ^ d r N = -PFd^N = 2n, (3.45) 

where is the unit inward-pointing normal of the bolt, i.e., the outward-pointing 

normal of the boundary, Bi. 
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T h e entropy 

In order to employing the saddle point approximation as described in section 3.2.1 (cf. 

equation (3.33)) for the solution of equation (3.43), we consider a manifold of topology 

(annulus) x 5^ wi th two boundaries. Bo and B j , corresponding to the two edge circles of 

the annulus [9]. The outer one. Bo, is therefore corresponding to B where the boundary 

condition is s p e c i f i e d . N o boundary condition is specified at the inner boundary, Bi, 

because we have to take the l imi t such that the radius of the hole inside the annulus 

shrinks to zero. The l imi t of Bi is therefore the bolt corresponding to iV = 0. We then 

evaluate the micro-canonical action, in equation (3.42) for the Euclidean solution 

of equation (3.43). 

Explici t ly, the action is (cf. equations (3.42) and (O.30)) 

= / ( P ' ^ ' ^ V - ^ H -A^'^H^) - - ^ f i x / • e - 2 / l-N^a,,V^^lp l-e. (3.46) 

The first integral on the RHS of the above equation is zero because the stationary 

solution satisfies the Einstein field equation. The third integral is also zero because the 

shift vector, N'^ is zero. For the remaining term, note that f rom equation (0.38), we 

have / • e = \/— de t7 = Ny/deta. From equation (0.36), we have ar = drN/N. The 

remaining term can therefore be rewritten as 

Im = / d^xVd^ l^'d.N = dt [ d^xVdeta l^d.N . (3.47) 
STTU JBi OTTG JO J 

W i t h the help of the constraint of equation (3.45), and note that A'' = —iN, we arrive 

at 

= ^AH , (3.48) 

where AH = / d^xVdetcr is the area of the horizon 2-surface. Therefore, f rom equation 

(3.33), the entropy is 5 = AH/AG. 

^°See the paragraph B o u n d a r y cond i t ion on page 79 
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3.3 Statistical origin of black hole entropy from in­
side 

In this section, a version of quantum statistical explanation of Black hole entropy is 

present f rom the point of view of quantised thermal states inside a black hole. The 

whole approach is in fact modelled f rom the case for blackbody radiation [19]. This 

is the simplest method I know of. I suppose this is also its strength. Nonetheless, I 

also have to admit that the underlying physics is perhaps not as easy to jus t i fy as the 

computation itself could be. However, i t points me a route to investigate. 

3.3.1 General assumptions 

S t a n d a r d stat ist ical mechanics is applicable I f one assumes, as I do, that the 

statistical aspect of a statistical explanation of black hole entropy can be borrowed from 

the textbook statistical mechanics, then the two basic ingredients for computing the 

statistical entropy of a thermal equilibrium system are the spectrum of the states in the 

system and the statistical distribution law governing them. 

A stat ic black hole is a thermal equi l ibrium system of non-interacting states 

W i t h i n the standard thermodynamics, only equilibrium systems have well-defined state 

functions; entropy is one of them. Or, we call those systems which have well-defined 

state functions equilibrium systems. I therefore assume that a static Schwarzschild black 

hole of mass M is in fact a thermal equilibrium system which consists of non-interacting 

'^^ neutral states whose distribution is governed by the Bose-Einstein statistics. As for 

a static, non-rotating, charged black hole, I w i l l assume the black hole is composed of 

non-interacting charged bosonic states.^^ 

T h e temperature is T = K/2TZ A thermal equilibrium system is characterised by a 

constant temperature. I thus assume that the temperature, T, of a static black hole is 

^^This is a very strong assumption. Nonetheless, an equilibrium system, at leading order, can be 
described by free states like the free electrons inside a piece of metal [36]. 

^^More generally, a mixture of neutral and charged states. 
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T = K/2TX where K is the surface gravity of the black hole. I am not able to jus t i fy why 

the temperature of the black hole should be the temperature of the thermal radiation 

observed at future inf ini ty i f the black hole is radiating, though, in the cases I am 

considering i t is not. However, since i t is the temperature that appears in the first law 

of black hole mechanics (cf. equation (1.13)), I assume the temperature is so. 

T h e energy spec trum is E j = /cj Furthermore, I assume that the spectrum of these 

states is given by Ej = tzj, j = 1,2,3,.... This seems to be an arbitrary assumption. Its 

just if icat ion w i l l be left to next chapter^^ where I wi l l explain how the Kleinian signature 

forces me to make such a choice. A t this moment, I only remind the readers to notice 

the similari ty between this choice and that used by Planck for a thermal radiation. 

3.3.2 For Schwarzschild black holes 
T h e r m o d y n a m i c quantities 

P a r t i t i o n function and Helmholtz free energy Having given the spectrum and 

the distr ibution law, the thermal properties of a Bose system can be calculated f rom 

the logarithm of the part i t ion function Z [19], 

\nZ = -PFb = nb In E 
L{%} 

e = - n , ^ l n ( l - e - ^ ^ 0 , (3-49) 

where nh is a degeneracy factor, F(, the Helmholtz free energy, and hj the state-number 

for the j - t h eigen-state. The summation is over all possible sets of numbers, {hj} = 

( n i , n 2 , . . . ) , hj = 0 ,1 ,2 , . . . . 

Definit ions I define the following quantities for convenience: 

1 
e^-i - 1 ' 

6o = - ^ ln( ) , 6i = ^ n̂ - , 62 = ^ 27ri 

^^See equation (4.14). 
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U = TS + F Then the relation between the Helmholtz free energy, Fb, internal en­

ergy, Ub, and entropy, Sb is 

Ub = nbJ2 ^jE,P ( { n , } ) = -{dp In Z)E,,n, = TSb + Fb = Tnbh , (3.50) 

where 

Sb = - n b E P P ii^j)) = fi\dfiFh)E„n, = n,{h + 60) , (3.51) 

and P {{fij}) is the probability of finding the configuration wi th the state-number set 

{hi]. Explici t ly, we have 

Tota l number of state Nb The total number of states, Nb, is 

CXD 
Nb = nbY^ njP{{hj}) = nb = 77,561 . (3.52) 

E n t r o p y per state is a constant Then the entropy per state 5^ is, 

- _ ^ _ ^0 + ^2 

which is independent of M due to the specific dependence of T and Ej on K. 

Quant isat ion rule of black hole masses 

Determinat ion of I n order to determine the normalisation constant, Ub, we 

equate the state function for entropy f rom equation (3.50) and that f rom black hole 
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mechanics,^^ 
M 

Sbh = PY • (3.53) 

The normalisation constant then is determined to be 

nft = . 3.54 

M a s s quantisation rule The above relation then give us a quantisation rule for the 

masses of Schwarzschild black holes: Since the total number of state. A';,, should be a 

positive integer,^^ consequently, f rom equations (3.52) and (3.54), we obtain 

^ " 47rG'6i 

This conforms (up to a pre-factor) wi th various derivations.^'' Note that there is only 

one independent variable for neutral black holes. Olassically, i t is the mass, M , of the 

black hole. W i t h i n the present quantum statistical explanation, i t can be replaced by 

either or A^ .̂ 

R e m i n d e r s 

From above approach we see that, phenomenological, there are great similarities between 

the calculation of black hole entropy and the entropy of blackbody radiation in a cavity i f 

the assumptions in section 3.2.1 are accepted. This is one of the lessons which strengthen 

Effectively, I use the value of entropy to determine the normalisation constant, n;,. Therefore, 
I am not deriving the value of black hole entropy. Instead, I am explaining its statistical origin. 
Alternatively, one can interpret the ny, as the area (corresponding the to volume, V, of the cavity 
which contains the black-body radiation) and a quantity hke ln\, is then the internal energy density 
(per area). However one performs the normalisation, generally, one arrives at 5^ oc M'-^, U a M , and 
nj, oc M " , as required. The latter fact conforms with the general opinions that the proper extensive 
quantity regarding the size of a black hole is the area, instead of the volume. See reference [58] for an 
example. 

^^In the expression of the partition function, equation (3.49), I have assumed that the bosonic state 
number is not conserved due to state-antistate pair creation. Therefore, i t is not obvious why the 
average number of state, A^t, should be an integer. However, if Â ^ is interpreted as a kind of additive 
quantum (say, baryon) number such that the quantum number of an antistate is the negative of a 
state, then i t is nature to require that the total quantum number being an integer. 

^®See article [45] and references therein. 
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my fa i th that a black hole indeed has statistical entropy and its origin should be resorted 

to the quantum states inside a black hole. 

On the other hand, I think my explanation, compared wi th those two reviewed in 

previous sections of this chapter, has the merit of simplicity. Although I have ignored 

the possible dynamic complexity due to the non-linearity of gravitational field, I think, 

i f entropy indeed has a statistical explanation which can be extrapolated f rom the 

textbook statistical mechanics as I have assumed in the beginning of this section, then 

the simplicity and generality of statistical description of a equilibrium thermal system 

should also be applied to a black hole. I wi l l explore this point further in next chapter. 

3.3.3 For Reissner-Nordstrom black holes 
T h e r e are two independent variables 

A charged black hole is a mixture of charged and neutral states The cal­

culation of quantum statistical entropy of charged black holes is, for the most parts, 

the same to the case of Schwarzschild black holes. However, recall that there are two 

independent variables in the first law of (charged) black hole mechanics: the black hole 

mass, M ( = £), and the total charge, q. In a statistical explanation of black hole 

entropy based on a microscopic material model, there exists necessarily a certain rela­

t ion between the mass and the charge i f all of the material constituents of the charged 

black hole are charged states. Then, effectively, there is only one independent variable. 

Fortunately, there are chargeless states as explained in previous section. Therefore, I 

w i l l assume that, in general, a charged black hole is a mixture of charged and neutral 

states. 

C h e m i c a l potential Since an extra energy, the Coulomb potential, enters the first 

law, one can expect the extra energy behaves as a chemical potential [4]. In order to find 

the relation between the chemical potential and the Coulomb potential of the charged 

black hole, I w i l l further assume that the total charge, q, observed f rom the outside of 

the black hole is determined by a charge unit, e, through the relation, q = N^^e where Â c 
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is the total number of charged states.^'' The first law of black hole mechanics, equation 

(1.13), says 

dM = TdS + Mq . 

W i t h the assumption that q = NcC, we can then rewrite the first law as 

dM = TdS + fidN^ , 

where ^ = — eq/r+ is therefore the chemical potential.^^ According to the assump­

t ion about the spectrum that Ej = Kj,l w i l l require that Ej > ji for all allowed j. This 

constraint follows f rom the requirement that those quantum states inside a black hole 

should be bounded states, as wi l l be explained in section 4.3.2, chapter 4 (cf. equation 

(4.40)). A t this moment, this condition can also be understood f rom a purely statistical 

point of view: I f the chemical potential, / i , is larger than the eigen-energy, E , of a par­

ticular state, then the sum E ^ o e~^"(^"'') is divergent. In other word, such a system 

cannot be dealt w i th by conventional statistical mechanics. Admittedly, i t could hint 

that the conventional statistical mechanics needs being generalised to include such S3'S-

tems. But , based on my strategy of approach and current understanding of statistical 

mechanics, I rule out such possibility. 

T h e r m o d y n a m i c quantities 

P a r t i t i o n functions and Helmholtz free energies We can therefore write down 

the logari thm of the part i t ion function. 

oo 
I n Z = -n,$3ln[l-e-^(^^- '^)] - n 6 ^ 1 n ( l - e - ' ' ^ 0 

= - / ? (F , + F,) , (3.55) 

^ '^ I will explain in section 4.3, chapter 4 while I am constructing a model for charged black holes 
that the situation is, in fact, much more complicated than this simple-minded assumption can grasp. 

^̂ See section D.2 in appendix D at the end of chapter 4 for the explanation of 
Reissner-Nordstrom solution and the definitions of various quantities. 
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where Uc and Ub are normalisation constantsf^ Fc and Fh the Helmholtz free energ}' for 

the charged and neutral states, respectively.'"^ The /3 is the inverse of the temperature 

as determined by the first law of black hole mechanics and n is the chemical potential. 

M o r e definitions I t is convenient to further define the following quantities: 

= J' - ^ ' = e^.s]_i ' (3-56) 
oo g-27rsj oo oo 

Co = - ^ ln( ) , ci = ^ m j , C2 = ^ 2^3^171^ , (3.57) 

where K. is the surface gravity of a Reissner-Nordstrom black hole (cf. equation (D.12)). 

T h e entropy Then following the derivation in section 3.3.2 and by equating the state 

functions for entropy, we have 

v r r i 

G 
= Sc + Sb = n^{co + C2) + ribibo + b2) • (3.58) 

The total number of states. A'', is 

N = Nc + Nb = n^ci + ribh , (3.59) 

where Nc and Nb are the total numbers of the charged and neutral states, respectively. 

Then equation (3.58) turns to 

Mass quantisation rule for charged black holes By requiring Nb and iV^ being 

positive integers, equation (3.60) gives us a quantisation rule of the masses of charged 

black hole. Because the three c-factors in equation (3.57) depend on M and q, hence 

^^Effectively, they account for the two independent variables. 
will use subscript c and b to denote the quantities corresponding to charged and neutral states, 

respectively. 
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A''̂  and N^, in a very complicated manner, i t is easier to read the quantised masses 

by looking for the intersections of the two curves respectively f rom the LHS and RHS 

of equation (3.60) as functions of Nb and A'c. Since (60 + 62)761 is independent of Nb 

and Nc, the curve of the RHS wi th Nb ^ 0 can be arrived easily f rom the special case 

that A'fo = 0 by shift ing the curve vertically. Two examples wi th Nb = 0 are shown in 

figures 3.3 and 3.5 for two different choices of charge unit, e. Note that although only 

one intersection point is shown, say in figure 3.3.1, there are in fact two of them, as in 

figure 3.3.7. They are not shown up because the ini t ia l points of M in those figures are 

not close enough to Mmin{Nc) which is determined by equation (4.42) following f rom 

the requirement that Ej > /j,, or, equivalentlt, > 0 for all possible j. In figures 3.4 

and 3.6, the local magnifications are presented to provide a better view around the 

intersection points close to Mmin{Nc)-'^^ 

Therefore, for fixed e and small A ;̂,, equation (3.60) has two solutions of M as 

Nc < Ncd{Nb,e) in which Ncd{Nb,e) is a degenerate point, obviously depending on Nb 

and e, where the two solutions coincide. For A'';, > Ned, solution of M does not exist. 

However, as Nb is large, there is only one solution of M as Nc < Ncd{Nb) in general. 

The physical significance of such transitions is unclear to me at this moment. 

Analytically, from equations (3.56) and (3.57), we see that as si approaches 0 (equivalently, as M 
approaches Mmin{Nc)), mi diverges as 1/si. Consequently, (CQ + C 2 ) / c i —> 0 because CQ OC Inmi, 
ci a mi , and 0-2 is finite as si —> 0. However, the LHS of equation (3.60) is strictly positive. 
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Figure 3.3.1 Figure 3.3.2 
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Figure 3.3: Examples of quantised mass of charged black hole wi th respect to Nf. as 
Nb = 0 and e — 0.01. The — and • • • lines corresponds to the LHS and RHS of equation 
(3.60), respectively. The value of Mmvn{Nc) is indicated by a *. 
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Figure 3.4: Local magnification around M = Mmin of figure 3.3. 
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Figure 3.5: Examples of quantised mass of charged black hole wi th respect to A ĉ as 
N/, = 0 a.nd e = 0.001. The two solutions of M for Â ^ = 50000 are M , ~ 177.66 and 
Ml ~ 208.65, which w i l l be used as example masses for constructing numerically the 
eigen-states in section 4.3. 
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Figure 3.6.1 
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Figure 3.6: Local magnification around M = Mmin of figure 3.5. 
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Appendix C 

Kinematics 

I n this appendix, I present some basic equations used in section 3.2, chapter 3, following 

references [9, 34, 35, 67]. A t first, I specify some concepts employed throughout the 

current appendix and section 3.2, chapter 3. We consider a 4 dimensional space-time 

( M , Qfj,^), admit t ing a scalar time function, t, which foliates M into a family of space-like 

hypersurfaces, Et. The boundary, dM, of M could consist of several disconnected pieces 

of boundary, 9 M „ ' s . Each one of them is characterised by its unit outward-pointing 

normal vector, n", which is normalised to be n'^n^ = —r. They could be either time-Uke 

( r = 1) or space-like ( r = —1). Furthermore, at the junction of two pieces of boundary, 

e.g., dMn and 5 M „ , the normal is allowed to be discontinuous, i.e., the boundary 5 M 

needs not being smooth at the "corners". However, we w i l l assume that the normal 

vector is continuos on either a single space-like or time-like boundary. In other words, 

the corners only appear at the junction between a space- and time-like boundaries. (See 

figure 3.2 for an example.) 

For the notation concerning differential forms, see appendix B at the end of chap­

ter 1. The induced orientation of a particular piece of boundary, dMn, is derived f rom 

the orientation of M by the following method: Permute the normal, n'^, to the first slot 

in an orthogonal basis, {n^, t^, ^2, ^ 3 ) , which has the correct orientation of M and where 

( ^ 1 , ^ 2 , ^ 3 ) forms a basis of dMn- Then, the induced orientation of dMn is determined 

by {t',X2,t^^). 
Since there exists a time function, a la Arnowitt-Deser-Misner [67], we can decom-
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pose the metric g^^ in a particular basis, { f , sj'), i = 1, 2, 3, so that 

g^^ = -N^df + h^j {dx' + N'dt) {dx^ + N^dt) . (C. 1) 

The A'̂  and TV* in the above equation are defined through the relation 

f = Nn' + N's"; = Nn"" + A^'' , (C.2) 

where = —Nd^t is the future-pointing unit normal of a space-like hypersurface, and 

s-"s are three linear independent tangent vectors of a hypersurface. Similar decompo­

sition can be performed wi th respect to time-like hypersurfaces, B^, 

g^^ = M^dr^ + (dx' + M'dr){dx^ + M^dr) , (C.3) 

where i,j = 0, 2,3. The hij and can further be decomposed as 

hi, = M^dr^ + aab{dx'' + M''dr){dx'' + M''dr) , (C.4) 

= -N'^de + aab{dx'' + N''dt){dx^ + N^dt) , (C.5) 

where a, 6 = 2, 3.̂  

C . l Induced quantities on hypersurfaces 

C.1.1 Space-like hypersurfaces 

The induced metric, h^u, and the induced covariant derivative, D^ , for a tensor, e.g., 

T^p, on a hypersurface, Ef, w i th time-Uke, future-pointing unit normal, n", are 

hfiu = Qiiu + n^n^ , (C.6) 

= / i / / i ^ / i / V . r \ . (C.7) 

Note that is compatible w i th / i ^ ^ , i.e., Dah^,, = 0. The extrinsic curvature, K^^,, is 

K f , , = / i / V c . n , = J ^ ( V - 2I?(^A^.)) , (C.8) 

^There are certain relations between A ,̂ M, N, and M resulting from the equivalence between these 
two decomposition. See reference [35] for detail. 
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where / i ^ j , is the Lie derivative of / i ^ ^ along t,y. From the Gauss-Codazzi's relations 

= ha^hih/h^nxra' + h^Kpf-Kp^K^'', (C.9) 

^ 7 A n ^ / i % = -D^K^ii + D^K , ( C . I O ) 

where TZ^^Xj and R^„xrj, respectively, satisfy 2V[^VA]X,y = -XiJ^'^uXi and 2D[jDx]Xy -

—XiiR^iyXj for an arbitrary vector x, one can derive 

n = R - K^^K^" + - 2V^{n^K - a'') , ( C . l l ) 

where = vyV^n^. Define the following quantities,^ 

V^"" = — ^ ( A T ' ^ ^ ' - Z i ^ ^ A T ) , ^ V ' n - e , (C.12) 
167rG 

H = 87rG{2V^,V'"'-V^)--J—R , H = nn-e, (C.13) 
IDTTG 

= -2D,V%, H^ = n^n-e. (C.14) 

From equations (C.9)-(C.14), one can derive 
- ^ { - R + K^.K''-' - K^) = V^'h^, - N H - - 2D,{V''m^) . (C.15) 
IDTTG 

C.1.2 Time-like boundary dMu 

The induced metric, 7̂ ,̂ and the extrinsic curvature, F^i,, of dM^ w i th space-like unit 

outward-pointing normal u" are 

lixi' = SHU - u^Uy , (C.16) 

T;,. = 7 / V „ u , . (C.17) 

Define three quantities, 77, A, a, and a vector, v^j_, as 

T] = n^u^', \= J - - ^ , a = smh-^{r]), (C.18) 
V l -F??̂  

= Xj^^n" = A(n^ - r]u^) . (C.19) 

^They are in fact the conjugate energy-momenta with respect to, / i ^ ^ , TV, and A''''. 

96 



I t can be easily seen that v^,v'' = - 1 , v^u" = 0, and Wj .n" = - 1 / A . In words, i f n" and 

are not orthogonal, then v" is the vector which lies on the boundary, 5 M „ , and is 

orthogonal to u'^. 

The momentum conjugated to 7̂ ^̂  is 

= - ^ { r " " - r7^ ' ' ) , U^" = TT^^ i • e . (C.20) 
IGTTG 

C . l . 3 Foliation of dMu in terms of 2 surfaces Bt 

Since the manifold, M, is foliated into a family of hypersurfaces, S j , the time-like 3 

dimensional boundary, dMy,, can also be foliated into a family of 2 dimensional surfaces, 

Bt, accordingly. The 2-surface Bt is indeed the intersection of and (9M„. In order to 

regard Bt as a hypersurface in Et, and define its induced metric and extrinsic curvature 

accordingly, we need its unit normal, r„, which lies in E j (cf. figure 3.2). This can be 

done by projecting the normal, u„, of dMu to E i . Define, r^, as 

ri, = Xh^°'Ua = \{uy + Tyn )̂ , (C.21) 

i t can be verified that ryu" = 0, r^r^ = 1, r'^v^ = -rj, and r^u^ = 1/A. 

The induced metric, a^^, and the extrinsic curvature, k^^, of Bt as a hypersurface 

of Sf are 

= giiu - A^(n^nt, - u^Uy - 2'qnf^^Uy)) , (C.22) 

V = <Jt.'"D^r' = a^^hJhjy^Tr . (C.23) 

Taking the trace of k^y and wi th the help of the definitions of K, F, one can derive 

k = X{T + 'qK- u.a^ + Xv^Vrj) . (C.24) 

For the special case that -q = u^n^ = 0, i.e., the family of E j intersect 9M„ orthogonally. 
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the following relation w i l l be used,^ 

k^iu = r^t . + n^n^u^a^ - 2n(^^a^fKaj3u'^ • (C.25) 

C.1.4 Special case of n '̂w^ = 0 and N^u^ = 0 

Consider the special case that M is foliated by a family of space-like hypersurfaces, 

Tjt, w i t h the upper and lower space-like boundaries, dMn" = and 5M_„ ' = Si',' ' 

respectively, and one time-like boundary, dMu = B, which connects these two space-like 

boundaries. Furthermore, we require that B intersects the family of Ef orthogonally, 

i.e., n^u^ = 0 on 5 , and N'^Ufj, = 0. Then, the following identity wi l l be useful, 

IH = lR + lK + lT = lE + Ip + h , (C.26) 

where^ 

IR 

IK 

IE = f - N H - i V H J , (C30) 
JM 

•̂ This can be derived by expanding the RHS of the identity 

And note that for 77 = 0, "f^.^ha^ = /i^"7a^ = cr^"/ia^-
"•Note that both n" and n' are future-pointing. 
^In the second line, we will use the shorthand, 
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c . l . 5 Co-ordinate conditions 

W i t h i n the A D M decomposition, the following specific results wi l l be useful. 

A t first, we have the matr ix identity, 

{ A - % = ^ - ^ d e t A { z , j ) , (C.33) 

where A{i,j) is the matr ix arrived by removing the i - th row and j - t h column from A. 

Using the above identity, for the space-like decomposition in subsection C.1.1 wi th 

the metric form ( C . l ) , we have 

n, = {-N,0,0,0) (C.34) 

^J-^detg^ 
n%i23 = y d ^ = ^ ^ — ( C . 3 5 ) 

When the shift vector N'^ = 0 we have 

i 00 - ^ > -L Oi ^ • 

W i t h the definition = n '^V^n^, we then obtain 

ao = 0 , = ^ • (C-36) 

For the time-like decomposition in subsection C.l.2 wi th the metric form (C.3), we 

have 

u^ = ( 0 , M , 0 , 0 ) , (C.37) 

^ ~ det g^y 
u^e,032 = ^J-detj,, = ^ , (C.38) 

Furthermore, for the decomposition in equation (C.5) and the foliation in section 

C. l .3 , we have 

y - d e t 7 , j = NX^Jdetaab • (C.39) 

99 



C . 2 Collection of equations 
C.2.1 Simplification of 0 on a 3-hypersurface 

E x p a n d i n g 0 Considering the term, d 0 , in equation (1.23), i t can be reduced to 

surface integral via Stoke's theorem when i t is evaluated on M wi th boundary dM. On 

a particular piece of boundary, 9 M „ , the integrand is (cf. equation (1.27)) 

= 9g • e = —TTiaO'^n • e 

= h 'V, ( .9«^5g„^) - n^V^bg,p\ n-e. (C.40) 

The first term in the square brackets on the second line can be rewritten as 

n^Vxig'^'Sgc.p) = -n"Wa{h,Mn + 2 T n " V , ( 7 i , 5 n ' ^ ) . (C.41) 

Similarly, the second term is 

n"V^6gap = Kc.pSh"^ + rn"Va(n^5n'^) + TKUJU" - rajn" - Vpdn^ . (C.42) 

I n above equations, the symbols h^y, K^^, and a^, have been defined in previous section. 

Combining equations (C.40)-(C.42) and after some algebra, we have 

+ [Vfl(/i^«(5n") - Veinf^KM"") + rajn''--2rKnJn''\ , (C.43) 
167rG L J 

where 1*^(5 is defined in equation (C.12). 

E x p a n d i n g 5{Kn • e) The 5{Kn • e) can be writ ten as the sum of two terms, 

5{Kn^e) = 5Kn • e + K5{n • e) . (C.44) 

Using the definition of Kfj,^ in equation (C.8), one can derive the following expression 

for SK, 

5{K^,h'"') = Vyih^pdn^ - In'^hp^Sh^^) - rKnJn'' + ^Kh^pdh"^ . (C.45) 
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Note that in deriving above equation, the following gauging fixing condition has been 

used, 

nJK'^ = 0 . (C.46) 

This constraint is necessary in order for the perturbed metric preserving the form of 

A D M decomposition (cf. equation ( C . l ) ) . Consequently, we have h"^5np = 0 because 

of the normalisation condition that h"'^np = 0. The second term give us 

K6{n • e) = 

Overall, we arrive at 

S{Kn • e) = 

n • e 

n • e 

(C.47) 

(C.48) 

E x p a n d i n g d[5n • (n • e)] A t first, expand d[6n • [n • e)] according to the definition of 

exterior derivative, 

d [5n • (n • e)] = ^ 3 [^ib{S'^n")ecd]ap] dx^ A dx" A dx'^ . (C.49) 
b<c<d 

On the other hand, because there is only one algebraically independent 3-form on a 3-

hypersurface wi th outward-pointing unit normal n^, we can write d[^n- [n-e)] = fn-e. 

W i t h the help of equation ( B . l ) , / can be determined. So we have 

d [Sn • (n • e)] = IVpSn'^ + rn'^Vpin^M") - ra^5n^ + rKn^Sn^) n • e (C.50) 

T h e result From equation (C.48) and (C.50), we found that 

25{Kn • e) - d [(5n • (n • e) 

= ^f){hl^Jrf) - Vp{n'^K,5h'"') + rajn'' - 2TKnJn°'] n e . 

From equation (C.51) and (C.43), we arrive at 

e , = -rPc.pSh'^f' + ^ 6 { K n • e) r 
167rG' 

d [5n • {n • e) 

(C.51) 

(C.52) 
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c .2 .2 Simplification of S{ar • (n • e)) on a 2-surface 

Consider a 2 dimensional surface which is the intersection of two 3-hypersurfaces wi th 

outward-pointing unit normals, time-like n ' ' and space-like u'^, respectively. Define r ' ' 

and a according to equations (C.21) and (C.18). Expanding 6{ar • {n • e)), we arrive at 

four terms, 

6 [ar • (n • e)] = 5ar • (n • e) + ar • (n • 5e) 

+aSr •{n-€) + ar- {Sn • e) . (C.53) 

I t is easily see that 5a = X6r] and 6e = ^g^u^Qfi^^- W i t h the help of the equation 

( B . l ) , one can check that 

5r-{n-e) = rjr'^r • (n • e) , (C.54) 

r • {5n- e) = -n^Svyr • (n • e) . (C.55) 

Note that r" and n" are space- and time-like, respectively. Using the definition of r " 

(cf. equation (C.21)), one can check 

rjr" - nM" = X^iuM" - nM'') • (C.56) 

Combine equations (C.53)-(C.56), we arrive at 

5a + aX^iuM" - nM") - i^g^Jg'"' r • (n • e) . (C.57) 5 [ar • {n • e) 

Using the definition of a (cf. equation (C.22)), one can derive 

g^Jg^^'^ = ^ + 2'nX^5r] + 2X\M'' + 2(7?'A' - \)nM'' + a^M^' . (C.58) 
A 

Note that we have used the identity r^r^,6a'^'' = 0 in deriving the above equation. This 

is a consequence of n^n^Sa'^'' = u^Uy5a'^'' = nfj_u^5a^^ = 0. They can be further traced 

back to the gauging fixing conditions^ 

n,5hr^ = 0 = u,5Y^ . (C.59) 

W i t h the help of equation (C.58), as expected, equation (C.57) turns to 

5{ar • [n • e)) = {5a - ^^Ja^^ • (n • e) . (C.60) 

^The origin of the condition, u^dj"'^ = 0, is the same to n^Sh"'^ = 0. See equation (C.46). 
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C.2.3 Simplification of 6n • {n • e) - 6u • {u • e) on a 2-surface 

Again, we consider a 2 dimensional surface as described in the beginning of previous 

subsection. At first, rewrite 6n • {n • e) and 5u- {u- e) in terms of r • (n • e), we have 

<5n • (n • e) = r j r f r • (n • e) , (C.61) 

5u-{u-e) = -vM^r • (n • e) . (C.62) 

With the help of the identities,'' 

n^8u^ = 5r] — •qn^Sn'^ , (C.63) 

uM'' = Sr] + rjuju" , (C.64) 

we have 
rM" + vju" = 26a . (C.65) 

Finally, from equation (C.65), i t is seen that equation (C.61) minus equation (C.62) 

gives us 
5n-{n-e) - 5u-{u-e) = 2Sar • (n • e) . (C.66) 

C.2.4 Simplification of TT^J-f^"" as n^ui" = 77 = 0 

On a time-like hypersurface, B, using the definition, = a'^" - n^n" (cf. equation 

(C.22)),^ and with the help of the identities, 77,^,0-"'' = u^a"'^ — 0, we have 

TT^Jj^"" = n^Ja^-' - 271 ̂ ,nW , (C.67) 

where TT î̂  = j^ir^^^ — Tj^i,). Recalling the definition of F^^ in equations (C.17), and 

with the help of equations (C.24), (C.25), and the gauge conditions, equation (C.59), 

one can rewrite the first term in the above equation as follows,^ 

7T,Ja>'' = [k,u -ik + u^a'')a^,] Sa'^" . (C.68) 

^From the relations, 8u'' = u^.Sg^""+gi'''5u^, ^5"" = Sh'"''-Sn^'n"-n''5n", and 5r] = Sn^u^+n^Su^, 
the first one follows. The second one can be derived similarly. 

*Note that because rj = 0, = and r*" = u'^. 
"The identity, n^Sa"" = -u^'nju" = 0, as r? = 0, will be used. (cf. equation (C.63)) 
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The second term can be transformed to 

-27r^,n''5n'' = ^ ( " ^ " ^ - <Jt.aK''^up)6n^ . (C.69) 

Combining equations (C.69) and (C.68), we can rewrite equation (C.67) as 

n^JY" = -\s^.M^'' - en^5n^ - j^8n^ , (C.70) 

where 

= -2a,,V''^ip , (C.72) 

S/^i. = [ V - { k + Uaa'')af,^] . (C.73) 

When the metric is ADM-decomposed (cf. equation (C.l)), we have^" 

SN 

n,5n^ = — , (C.74) 

a.aSn'^ = ^a^J{Nn^) = -^<^,aSN^ • (C.75) 

We can then rewrite equation (C.70) as follows, 
^.Jl^'' = ^{-js,,5a^^ - eSN + j^dN^ . (C.76) 

i °The first equation is a straightforward result of equations (C.l) and (C.34). To derive the second 
one, use definition (C.2) and note that a^^n'' = 0 and Sf^ = 0. 
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Chapter 4 

Quantum Material Models of 
Spherically Symmetric Black Holes 

I t is unclear to me why most of the attempts to explain the statistical origin of black hole 
entropy are done at the outside or surface of a black hole. Presumably, it is because of a 
singularity sitting inside a black hole and the ambiguous status of time there. However, 
intuitively, I feel it is more natural to attribute the origin of the black hole entropy to 
the matter residing inside a black hole. I have assumed that there exists matter inside a 
black hole. I believe it is incontrovertible to assume that no one on earth has ever gone 
into a black hole, this is thus an open question. Personally, I do not feel like to descend 
into a black hole because, though life has not always been easy on the earth, I still have 
a lot of the unforgettable. Nonetheless, imagination has no border. A painter realises 
her/his visions with colours. A poet realises her/his dreams with pens. A physicist 
realises her/his imagination with models. I therefore try to explore the interior of a 
black hole, staying outside. 

Because my attempt is to give an outsider's statistical explanation of black hole 
entropy from inside, I then, out of ignorance at this moment as explained in section 
3.3, chapter 3, extend to the interior of a black hole the applicability of the concepts 
of statistical mechanics in Lorentzian space-time. ^ There, a statistical explanation of 

^Newtonian space-time is perhaps more accurate because, in my knowledge, there is no fully devel­
oped relativistic statistical mechanics. 
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black hole entropy has been given and the spectrum of eigen-states is chosen as Ej = KJ. 
Besides the spectrum, another important ingredient of the model is the corresponding 

eigen-states, which should be obtained from some Schrodinger-like equation. The main 

theme of this chapter is therefore to justify the chosen spectrum and to identify the 

corresponding eigen-states. 

Abstract of chapter 4 

Section 4.1 In subsection 4.1.1, I will foremost explain in more detail the motiva­
tions behind the construction of black hole models: the lesson from atomic physics 
and the analogy from blackbody radiation. Subsection 4.1.2 is then devoted to the 
prescription of the Schrodinger-like equation—the quantum-mechanical, static Einstein 
field equation—which will be imposed on the matter wave function and the associated 
metric in order to construct the matter-metric energy eigen-states inside a black hole. 

Section 4.2 The models for Schwarzschild black hole are presented. In subsection 

4.2.1, I shall explain at first why the model is constructed on space-times with Kleinian 
signature ( h+). I will then be able to justify the spectrum Ej = Afterwards, 
two models based on different parametrisations of the metric are given in the next 

two subsections, 4.2.2 and 4.2.3, respectively. We will therefore see that, within my 

approach, all Schwarzschild black holes can be classified by a positive integer, A'̂ , the 

analogue of atomic number. 

Section 4.3 A model for charged, non-rotating black holes is then explained. Due to 
the appearance of the extra energy scale, the coupling constant, e, of U{1) gauge field, 
the whole situation is complicated. However, following the naive assumption given in 
section 3.3.3, I can normalise the wave function accordingly. 

Section 4.4 In the final section, I will review the whole approach from various points 
of view. Several important questions are raised which should be addressed in order to 
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provide more complete pictures of black hole models and the statistical origin of black 

hole entropy. 
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4.1 Motivation and prescription 

The innermost motivation is to complete my PhD. The ultimate prescription is, don't 

do it at all. 

4.1.1 Motivation for constructing black hole models 

Analogy has always been an important feature in the progress of physics [51]. This 
can be seen clearly from the development of atomic, nuclear, and later, particle physics. 
Another example is the simulation of QCD from QED. It seems that such analogies have 
had no great impact in the field of gravity up to now. One of the reasons is perhaps that 
the underlying principles governing the dynamics of gravity differ from other physical 
fields. This is indeed also the reason why gravity is still excluded from the unification 
scheme which works so well for other three forces. 

However, this does not rule out the possibility of borrowing some ideas from other 
fields to tackle problems involving gravity. The spontaneous symmetry breaking, which 
is employed in standard model for the generation of Higgs particle, is at first developed in 
condensed matter physics [38]. On the other hand, the renormalisation group approach, 
which has had very successful applications in condensed matter physics, is foremost 
formulated in particle physics [75]. One of the essentials of making progress is to let the 
ideas flow. My approach to the models of black holes has in fact evolved under such a 
strategy and spirit. 

Lesson from atomic physics 

Let us start with the singularity theorem of classical general relativity. The singularity 
theorem states that once a trapped surface forms, a singularity is inevitable [33]. If 
classical general relativity is still applicable beyond the event horizon, matter will simply 
fall into the singularity without any sigh. Since a self-consistent quantum gravity is still 
beyond our scope, it is unclear how the fortune of matter falling into a black hole will 
be changed. 

Nevertheless, it is not too naive to expect that the quantum effect could turn such a 
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catastrophe into a new chance of surviving—much like what happens inside an atom: If 
one treats an electron around a proton classically, then the catastrophe of the electron 
falling into the proton is inevitable. The quantum effect rescues the electrons, and us, 
from the death penalty of being annihilated. Encouraged by the lesson from atomic 
physics, we think it makes sense to ask this question: How could this also happen inside 
a black hole so that the quantum effect can prevent the matter from falling into the 
singularity? 

Analogy from thermodynamics 

On the other hand, the idea of black hole entropy and the phenomenon of Hawking 
radiation seem to suggest that there are great similarities, at least phenomenologically, 
between a black hole and a blackbody. Let us look at the statistical explanation of 
black hole entropy formulated in section 3.3, chapter 3 from another point of view. At 
a deeper level, i.e., if one see things from the point of view of QED, the interaction 
between matter which forms the cavity and the radiation is much more complicated 
than the simple picture of Planck's quantised radiation can provide. However, as far 
as the statistical, hence the thermodynamic, properties of the blackbody radiation are 
concerned, the simple quantisation rule suffices to account for them. This is one of the 
most important lessons I will elaborate in this chapter. 

Historically, Planck proposed quantised energy to explain the observed spectra of 
blackbody radiation far before people understood QED. I t seems that this is the first 
instance that the idea of quantised radiation field appeared in physical history. And, 
in fact, it is the phenomenological understanding of blackbody radiation which in part 
induced the understanding of quantum mechanics. We therefore ask: How could a 
similar quantised energy spectrum arise in the interior of a black hole which will then 
provide a basis for the explanation of thermal properties of a black hole? 
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Entropy as a low energy quantum phenomenon 

There are various claims that the black hole entropy could only be properly explained 

once we have a quantum gravit;^. Since no one has yet come up with a properly under­

stood and universally accepted quantum gravity, it is not clear to me what a quantum 

gravity should look like. However, I suppose that it is appropriate to consider the 

following analogy: 

Classical Electrodynamics — Classical General Relativity 

Quantum Electrodynamics — Quantum Gravity . 

If the so-called quantum gravity corresponds to QED, then I think that we need 
quantum gravity to explain black hole entropy no more than we need QED to explain 
the entropy of black-body radiation. Admittedly, it also depends on what one would 
like to regard as an explanation. 

With the lesson from atomic physics and the analogy from thermodynamics in mind, 
my opinion regarding to the relation between black hole entropy and the quantum 
gravity is thus more conservative, and perhaps also more simple-minded: By accepting 
the phenomenon of black hole entropy, a kind of quantum theory of gravity is needed 
in order to calculate the quantised spectrum and the corresponding states. However, 
quantum gravity as a kind of QED in above analogy is too high-brow for this purpose. 
Though, quantum gravity is inevitable to explain how these states can exist at first 
instance, just like we need QED to explain why the matter constituting the cavity 
radiates. 

Nonetheless, if history has another say about the development of a physical theory, 
then the lesson of the development from classical mechanics to quantum mechanics, 
finally arriving at quantum field theory seems to indicate that we need a kind of quantum 
mechanics which incorporates the effect of gravity in an explicit manner, which will 
eventually form the basis for the understanding of quantum field theory of gravity. 
And, to me, the difference between quantum mechanics and quantum field theory is 

•^I only provide one reference [61] as a representative. 
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the energy scale involved. Though the concept of energy is ambiguous when gravity is 

involved. I think it is appropriate to regard the energy involved in the collision of two 

black holes, or the big bang, is larger than that of the gravitational collapse of a star. 

If such an energy hierarchy can be established, I think it is reasonable to assume that 

there is also a hierarchy in the corresponding theories. 

Material goal 

Therefore, my goal is to construct the eigen-states inside a black hole and the corre­
sponding eigen-energies. As explained in section 1.1, chapter 1, our present understand­
ing of black hole formation are strongly related to the gravitational collapse. Though, 
due to both conceptual and technical difficulties, I will work on an eternal, i.e., strictly 
static black hole, I believe that a black hole is not just a kind of gravitational field 
devoid of matter content. I thus feel, intuitively,^ that those eigen-states should be 
associated with matter which forms the black hole, however they get there at the first 
instance. Moreover, for static black hole, all matter is confined within it, those eigen-
states should therefore be bound states within the black hole. I am thus motivated to 
construct a material model based on an appropriate quantum theory. 

4.1.2 Quantum-mechanical prescription of static Einstein field 
equation 

Semi-classical prescription 

In quantum field theory in curved space-times [8], the semi-classical Einstein field equa­
tion is give by 7̂ ^̂  — l/2g^^TZ = —87rG'(1^ti/) in which 7?.̂ ^ is the Ricci tensor, 7^^ 
the energy-momentum tensor, and G the gravitational constant. In words, the geom­
etry is determined by the expectation value of energy-momentum tensor with respect 
to a certain state. In conventional approach the expectation value is taken with re­
spect to the vacuum state, one then constructs an effective action and renormalises the 
energy-momentum tensor. In such an approach, the background space-time has to be 

^Since i t is a kind of intuition, I can only feel about i t , instead of thinking. 
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prescribed beforehand in order to construct the eigen-states of Hamiltonian. Then the 

field variable can be expanded in terms of these eigen-states. If one wishes to consider 

the influences of the energy-momentum on the background space-time, one has to resort 

to considering back-reaction. 

However, I think one of the most important features of the Einstein field equation, 

which should be respected, is that it has to be solved self-consistently. In the classical 

level, it means that the Einstein field equation and the Euler-Lagrange equations for 

the matter which produce the relevant energy-momenta should be used together to 

determine the geometry and the matter distribution once and for all. This is well-

known to be hard to implement. 

Quantum-mechanical prescription 

Furthermore, at quantum-mechanical level, my opinion is that such an attitude should 

also be preserved so that a matter eigen-state and the associated space-time geometry 

should be solved together. Different matter eigen-states will induce different space-time 

geometry according to the Einstein field equation. In other words, a matter eigen-state 

and the associated space-time geometry together should be regarded as a matter-metric 

eigen-state. More precisely, the quantum-mechanical, static Einstein field equation can 

be written as TZ^i, — l/25'^j.7^ — —87rG(j|:7)i^:|j) in which \j) is the j - t h eigen-states and 

: ( ) : denotes the normal ordering as one used in quantum field theory. Note that the 

difference between the prescription in the conventional quantum field theory in curved 

space-time and ours rests principally in the interpretation. However, it js indeed such an 

interpretative jump that leads a c/asszca/Schrodinger equation to a quantum-mechanical 

one. 

The above quantum-mechanical prescription is understandably irrelevant if the sys­

tem of interest is an astronomical planet system, such as the sun and the earth. Never­

theless, when the system concerned is a black hole, we think i t is important to proceed 

quantum-mechanically as one is required to treat an electron in an atom quantum-

mechanically. 
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Application to spherically symmetric system 

Equations Our prescription is not yet precise enough for us to do anything. In the 

rest of this section, we will confine ourselves to a specific system to see how to implement 

this prescription practically. 

We will consider a spherically symmetric, self-gravitating system of real scalar field. 

The Euler-Lagrange equation and the (classical) Einstein field equation can be written 

as 

* " + * ' ( ; + i 4 ) + ^ ^ ? * = ° ' ( 4 , ) 

^ - J(l - «') = 0 , (4.3) 

h h 2 q 2r 2 q rq q^h^ 

where a prime denotes the differentiation with respect to r. Note that we do not list 

the t — r compenent of the Einstein equation, which is exactly zero in the present static 

case according our prescription (see later). These equations are derived from the action 

and we have written the metric in the standard form [74], 

ds' = h'Ut' + -dr^ + r^dQ' . (4.5) 
r q 

We have a spherically symmetric system in mind, so there is no angular dependence in 
our equations. Since we are giving a quantum-mechanical prescription of static Einstein 
field equation, the metric is t-independent. There are in fact only three independent 
equations due to the Bianchi identity. Note that up to now, everything is classical. 
To implement the quantum-mechanical prescription, we will dress a hat to the field 
variable cf) which will be realised as operator-valued henceforth. 
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Probability density function Before we implement the quantum-mechanical pre­

scription, we have to introduce another important concept in a quantum theory: the 

probability density function (square of the moduli of wave functions). We expand ^ as 

(with Ej > 0) 

<P = E ^ j = E^j^~''''%i^)^ (4-6) 
j j 

where dj and a] are the annihilation and creation operators for j - t h eigen-state \ j) such 

that [dj, dj] = Sji.'^ We can then regard J* = —i^"((^t • dt<p - dt(p^ • (p) as the probability 

density operator so that the function, will be identified as the probability 

density function of matter in a matter-metric eigen-state. The normalisation condition 

is 

j drd^^\{3\J'\3) = - j drdn^f\^\{j\Jt\j) = N, , (4.7) 

where Nj is the normalisation of the matter wave function and QS is the spatial part of 

the metric in the j-ih matter-metric eigen-state. This definition is a generalisation of 

number density operator in the quantum field theory in flat space-time [8 . 

Operational interpretation We would like to remind the reader again that in the 

present static case our approach is a quantum-mechanical one. The role of ^ is thus 

more like a superposition of wave functions in quantum mechanics, rather than a field 

operator in quantum field theory. The terms exp{—iEjt) and exp{iEjt) are thus like 

''The main purpose of introducing operators is to project the field operator to a single eigen-state. 
I t is possible to do without operators i f one writes down the Einstein field equation with the energy-
momentum tensor resulting from a complex scalar field. One then regards the complex scalar field as 
the wave function of an eigen-state. One may wonder how to go beyond the static case. I intend to 
understand the dynamics from the viewpoint of path integral. The most significant quantities in the 
dynamic case are probably the transition amplitudes between initial and final states. The dynamics 
responsible for a transition is decreed by the propagator. The initial and final states are therefore 
the energy eigen-states. The path integral approach to gravity has been explored in the paradigm of 
Quantum Cosmology. See anthology [17] and references therein. 
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the t-dependent phase terms of an energy eigen-state in quantum mechanics. The wave 

function in quantum mechanics is realised at operational level, i.e., only the probability 

density can be associated with experimental outcomes. We also give the probability 

density function, {j J* j), such an operational meaning. 

I t is therefore inappropriate to interpret the ipj as propagating on the corresponding 

space-time geometry, which is solved self-consistently using the quantum-mechanical 

static Einstein field equation, because the underlying principle of our approach is: There 

is no prescribed space-time background. The Einstein field equation has to be dealt 

with in its full value. 
Consequently, a question like initial-value problem for the field (f) has to be asked 

carefully if one would like to adopt the above attitude; one should not try to formulate 
such a problem in a background space-time, even though that space-time geometry is 
the solution in a particular matter-metric eigen-state. 

A challenging question is: How to interpret the static space-time geometry in a 
particular matter-metric eigen-state? I interpret i t in this manner: Theoretically, i t is 
calculated according the quantum-mechanical, static Einstein field equation. Experi­
mentally, it is the space-time geometry a particle (i.e., the matter in a matter-metric 
eigen-state) is experiencing while it is being measured. We need sufficient amount of 
measurement outcomes to draw a fairly good picture of the probability density function. 
Similarly, we also need the same amount of measurements to build up the structure of 
the metric. A single measurement will not tell us anything about the probability density 
function and the metric. 

Implementing We can now implement the quantum-mechanical prescription by re­
placing (/> in equations (4.1)-(4.4) with </> expanded as in equation (4.6). With the new 
variables W — 87rGR'j{j\: ajdy -|- ajOj : | i ) , x = EjV and / , they can be rewritten as 
follows after taking the expectation value of %^ with respect to 

W W j 1, a;2 11^2 

115 



Z , J ^ W - - - ~ - = 0 (49) 

j - ^ = 0 , (4.10) 

where 

f=qh^E,gh=E,f , 

and a dot denotes differentiation with respect to x. 

Normal ordering Before we turn to next section, where we will solve the matter-
metric eigen-states inside a black hole using the prescription just given, a remark is 
in order for the operation of normal ordering. We will interpret this operation in a 
line similar to that in quantum field theory. Therefore, we are only interested in the 
difference of energies, though the definition of energy has always been an intriguing issue 
when the theory of general relativity is involved. It is unclear to us if it is possible to 
formulate a quantum theory without ever mentioning things like Hamiltonian or energy. 
(Even though this can be achieved theoretically, it is unclear if experimenters will be 
happy with it.) Our present understanding, experimentally and theoretically, about 
the universe depends on the concept of energy so much that we will try to conform 
ourselves with this fact at this moment. 

116 



4.2 Models of static Schwarzschild black holes 
Nothing could be darker than a human's mind; nor could anything brighter than a 
human's intelligence: I t is sad to learn that Schwarzschild died in a battle field. 

4.2.1 The Kleinian signature ( h + ) 
Bound states 

In order to motivate our approach, we at first consider the conventional quantum field 

theory on the background of the interior of a Schwarzschild black hole. We write the 

background metric in the standard form as in equation (4.5) and decompose an eigen-

state of the massless real scalar field as (with Ej > 0) 

(Pj = e-'^'^Rj{r)+c.c, (4.12) 

like that in equation (4.6). The Euler-Lagrange equation (4.1) is then reduced to 

1 a' h' E^r'^ 
R" + R'i' + - + T^ = ^ R - (4.13) 

I t can be easily checked that q = r — rs {rs = 2GM in which M is the mass of 
the black hole) and h = constant is a solution of the vacuum Einstein field equation. 
The choice oi h = i then corresponds to the well-known Schwarzschild solution. From 
equation (4.13) we clearly see that i f we choose h = i, then the wave function oscillates 
as (rs — r)^*''"^ + c.c. as r tends to from inside. However, if we choose h — 1 (the 

signature of space-time is therefore ( 1"+))) then we could have bound states within 
the region 0 < r < which asymptotically behave as (r^ - r)~^^^^ as r tends to r^. 
Though these wave functions then diverge logarithmically near the origin r = 0, they 
are normalisable. But, how to identify the spectrum? 

The spectrum 

Similar to the Euclidean Schwarzschild solution [22], the Kleinian solution (i.e., with 

signature ( h+)) can also be derived from the Lorentzian one through analytic 
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continuation. By introducing Kruskal co-ordinates, we can write the metric of the 

Lorentzian Schwarzschild solution as (see equation (D.4)) 

ds' = l ! l e - 2 - ( - d r 2 + d X ' ) + r'dQ . 

where t and r are related to T and X by relations (see equations (D.8) and (D.9)) 

T 
tanh(«;t) = -— , 

X 
( ^ - l ) e 2 - = X^-T\ 

If we analytically continue T to —iT and t to —it, we then arrive at the Euclidean 
Schwarzschild solution with the constraint r > r^. However, instead of T, we can 
analytically continue X to iX. Combined with continuing t to —it, we arrive at the 
Kleinian Schwarzschild solution which is confined within the interior of the black hole 
with the restriction that - 1 < -{T"^ + X^) < 0 in which the end points - 1 and 0 
corresponding to ?' = 0 and r = r^, respectivelj'. As in the Euclidean solution, t is 
also required to be periodic with period /3 = 27r/«: in the Kleinian case to avoid conical 
singularity. Back to equation (4.12), we are thus constrained to choose the spectrum as 

E, = ^ ^ = ^ K j , J = 1,2,3,..., (4.14) 

where K (= 1/2TS) is the surface gravity so that Ejl3 — 2iTj. Note that this spectrum is 

the one we used in section 3.3, chapter 3 to calculate the statistical entropy of a black 

hole. 

The problem of two times 

Based on the above observations, I thus propose that we should understand the statis­
tical (thermodynamic) properties of a black hole from inside using Kleinian signature. 

This definitely raises alarm questioning how we cope with the two time-like co­
ordinates in a Kleinian space-time; even more, we compactified one of them so that it 
is periodic. A classical particle whose trajectory is required only to be time-like could 
travel around by moving along the non-t time-like direction with t co-ordinate frozen. I f 
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it does travel along the compactified time-like direction, a closed time-like curve could 
form. More basically, what is the concept of a particle of which our understandings 
have always been associated with the Lorentzian space-time? We therefore refer to a 
state on a Kleinian space-time as a generalised state; moreover, as one is destined to 
arrive at incorrect conclusions if one treats an electron around a proton classically, we 
think only a genuine quantum theory (in the sense given in section 4.1) makes sense in 
a Kleinian space-time. 

On the other hand, according to current understanding, we live in a Lorentzian 
space-time, not a Kleinian one.^ However, just like one uses Euclidean space-times as 
a mathematical tool for formulating thermal field theories and quantum gravity, we 
should/can adopt the same attitude toward Kleinian space-times.^ As discussed above, 
the Euclidean and Kleinian Schwarzschild solutions cover the exterior and the interior 
of the black hole, respectively. They therefore can be regarded as a comphmentary pair 
so that the thermal properties of the whole Schwarzschild black hole, both inside and 
ouside, can be accounted for. 

4.2.2 The first model: h — q parametrisation 

Though we have recovered the desired spectrum (4.14), there is one grave unsatisfac-
toriness: Since we intend to interpret the quantum field as the constituent components 
of the black hole, the metric should not be the vacuum solution of the Einstein field 
equation. We thus have to take the energy-momentum tensor of the quantum field 
into account, i.e., we need to implement the quantum mechanical, static Einstein field 
equation (4.8)-(4.11). 

We then regard the metric variable h, q, and the W as unknown variables, with 
proper boundary conditions at Xi ^ Xg = EjTs, we can solve them numerically. 

^Nonetheless, see reference [3] for a proposal for the possible fundamental signature (Kleinian) and 
dimensions (13 or 14) of space-times. 

am grateful to I . Moss for stressing the importance of this point and pointing out to me that one 
cannot match a Kleinian Schwarzschild solution to a Lorentzian one. 
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Boundary conditions 

We chose the following boundary condition, 

q {xs-x)+ qj+i{xs - , 

h ^ I + hj{xs — xy , W ~ Wj{xs — xy 

We then find the following self-consistent conditions 

= X ) J = 1; 2, 3,... , 

-J 'Wj 

J + 1 2 ' 

where Wj is a free parameter and will be determined by the normalisation condition of 
W. Note that we have chosen j as positive integers which is the consequence of the 
choice Ej = nj. Though we have no compulsive reason to make such a choice, this is a 
natural one if we parametrise the metric as 

ds^ = f'^idt' + 4 V ) + r'dn' , (4,15) 
^ Jo 

where fo = P ~ Ps, Ps = fs, and p is implicitly defined by the equation 

1̂  = ^ 7 . (4.16) 
dr p f 

By comparing the co-ordinates t and p in equation (4.15) with the co-ordinates t and r in 

a Kleinian Schwarzschild solution, it is thus natural to endow t with the character of an 

angular co-ordinate. The above choice of spectrum is thus demanded for a topological 

reason. We will call the solution of / and W corresponding to j the j-th eigen-state. 

Asymptotic behaviour 

From equations (4.8)-(4.11) we can discover the asymptotic behaviour at x ~ 0 of the 
j-th eigen-state: h x"'^, q ^ , and W ^ 2aj\n'^{x) in which aj is positive. Then 
W is always normalisable (cf. equation (4.7)). 
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Divergence of the energy-momentum tensor The integral of the expectation 

value of t-* component of the energy-momentum tensor is 

W — 1 P/^ 
2GEjJo " • " ' ^ ' \ 2 / 2 - - 8W 

I t diverges logarithmically. 
Using h-q parametrisation in equation (4.5), we found that it is possible to obtain 

sensible solutions for the fully implemented quantum-mechanical, static Einstein field 
equation. However, There are two drawbacks in the model based on the h-q parametri­
sation. The first, since the analytical solution is unavailable, it is a bit tricky to integrate 
the equation (4.16). Particularly, we are interested in knowing the range of co-ordinate 
p. The second, the £ in equation (4.17) is divergent. I t should be interesting to construct 
another model to bypass these two problems. 

4.2.3 The second model: 77 - r parametrisation 

We consider a model based on a different parametrisation of the metric. We parametrise 

the metric as ^ 
ds' = '^{dt' + ^dp') + r'dn' , (4.18) 

Jo 

with 77 and r being regarded as unknown variables. 

The equations 

Then it is a straightforward exercise to write down the Euler-Lagrange and Einstein field 
equations. With proper initial condition at Ui ^ ys = EjPs, we will show numerically 
that the boundary condition at and the asymptotic behaviour at ?/ ~ 0 given below 
can be linked together (see figures 4.1-4.3 for examples) [46]. We will give the relevant 
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equations directly, 

W W 1 X iW^ 

1 M + 1 M ( ^ _ 1 ) _ ^ . 0 (4 20) 

(T + a - - + — ^ + ^ T y - f = 0 , (4.21 
/o y a;3/o /o 4 

where y = E'jP, d = ln{—fj), = y — y^, x = Ejr, and a dot denotes diff'erentiation 

with respect to y. 

Boundary conditions 

We consider the following boundary conditions at y j 

v—ivs - y) + Vj+iivs - yy^^, 

W ~ Wjiy, - y ) ^ x ^ y + Xj+, {y, - yy+' , (4.22) 

where = j/2, j = 1, 2,3..., then Xj+i and t̂ ^+i are determined by Wj from the following 

relations, 

In deriving the above relations, the spectrum Ej = Kj (j = 1, 2, 3,...,) has been chosen 
to conform with the interpretation that the t co-ordinate in the metric (4.18) has the 
character of an angular co-ordinate so that t is periodic with a period of 2n/i<i. The 
choice of Wj will be determined by the normalisation condition of W. 

Asymptotic behaviour 

Asymptotically near y = 0,W, x, and -q behave as 

W r^WQ^ W2y'^ , a; ~ xo + xgy^ , ?7 ~ ?7o + , (4.24) 

'''Note that, apart from the junction conditions mentioned above, the boundary condition also 
satisfies the regularity condition of equation (3.45). 
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where wt, Xi, and 77, (i = 1, 2) are constants. The numerical results suggest that XQ 7^ 0, 
in contrast to the model based on the h-g parametrisation in which the range of x is 
0 < X < Xs = EjTs . The origin of the difference lies on the boundary conditions. 
For the h-q parametrisation (4.5), it can be derived, using equation (4.16) by requiring 
self-consistence, that x = y -\- 0 {{ys — y)-̂ "*"̂ ), in contrast to equation (4.22). 

Finiteness of the energy-momentum tensor With the help of the boundary con­

dition (4.22) and the asymptotic behaviour (4.24), it is seen that the integral of the 

expectation value of r* component of the energy-momentum tensor for any eigen-state 

is finite because 

£ = ATT dp^\{j\:f^:\j) 

2GEJO ^\fo\\2" Sy^W 

def 
~ 2GE 

3 
TTT / dy£,{y) . (4.25) 
ril/j Jo 

Normalisation condition 

The numerical value of Wj are determined by the normalisation condition (4.7) with Nj 
yet to be specified. Recall that in our statistical explanation of black hole entropy in 
section 3.3, chapter 3, the probabiUty of finding matter in the j-th eigen-state is nbUj. 
Therefore, we should set iVj = Ubiij. With the help of equations (3.52), (3.54), and the 
definition of K, equation (4.7) can be reduced to 

r ^ y ' ^ W ^ J r i y W , ( y ) = \ ^ ' l l M , . (4.26) 
JO Jo I ^0 ^ Oo + 02 

Note that the above expression is independent of the mass of a black hole. Consequently, 

within our model, all static Schwarzschild black holes can be classified according to an 

integer—the black-hole number, A'̂ . The first three eigen-states are shown in figures 

4.1-4.3. 
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4.3 Model of charged, non-rotating black holes 

When I gave a statistical explanation of the (charged) black hole entropy in section 
3.3.3, chapter 3, I have assumed that, in general, a charged black hole is a mixture 
of charged and neutral states. Especially, there is no interaction between those states. 
Therefore, those neutral and charged eigen-states can be solved independently. The 
examples of neutral states have been given in previous section. In this section, I show 
examples of charged states. Due to the appearance of a new length scale, the charge 
unit, e, the situation is much more complicated. In particular, we should not expect 
the equations and the normalisation condition can be written in a scale-independent 
manner. In order to perform the numerical computation, values of charge unit, e, and 
gravitational constant, G, have to be chosen. I set e = 10~^ and G = 1. The choice of 
G is for convenience and it sets up the length scale. The choice of e is arbitrary. It is 
one of the values used in figures 3.3-3.6 to read the quantised masses. 

4.3.1 The model 
The system 

The action The action of the charged sector is 

/ d'x^li-
IGTTG ' ^ ^ 4 

where 

TZ is the curvature scalar, A^^ the U{1) gauge field, i9 the complex scalar field. 

The parametrisation I adopt the 77-r parametrisation used in section 4.2.3 so that 

ds^ = ^dt" + ^dp") + r^dn^ , (4.27) 
/o 

where /o = / i ( p — P+)- To recover the Reissner-Nordstrom solution, we set 

P = r J i = i^-^^ , V = - ^ ^ { P - P+) , (4.28) 
P P 

where r± = p±^GM ± V G W ^ - ATrGq'. 
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The choice of CA and eg In section 4.2.1,1 rotated the signature of the interior space-
time of a Schwarzschild black hole to Kleinian type by analytic continuation through the 
Kruskal co-ordinates. A Kruskal co-ordinates for a Reissner-Nordstrom black hole can 
be also be constructed in a similar line.^ However, if one wishes to recover an Euclidean 
or a Kleinian Reissner-Nordstrom solution, one has also to change the sign of from 
the conventional +1 to - 1 . Although it is unclear if there exists any mechanism to 
induce such a change associated with the change of signature, I will consider = - 1 . ^ 
On the other hand, I choose the conventional eg = 

To solve the charged eigen-states, the variables, rj and r, in metric (4.27) will be 
regarded as unknown variables. We set / i = (r+—r_)/r_|_ in order to endow t co-ordinate 
the character of an angular co-ordinate with period /? = 27r/«; where K — (r+ — r_)/2r^. 

The Equations 

The Euler-Lagrange equations of 6' = VSTtGd, A = y/SrcGAt and the relevant compo­

nents of the classical Einstein field equation are (with e = e/VSnG) 

9" + 9'{^ - - + 2-) + ^Dle = 0 , (4.29) 
fo P r 

^" + A! ( ^ - M " ) _ ^egeAe%{e^ • D.O - ( A ^ ) ^ • ̂ ) = 0 , (4.30) 
V r^fo VP J rfo' 

2 r2 2 r2 \ / o pj r^fi 2r] 

a" + a'{& _ 1) - f ^ + 2eg^{Dtey • Dtd + 2eg9'^9' + EA^-A'' = 0 , (4.32) 
Jo P r^Jo Jo 2 7 7 

where a = ln(—77), = 5^ — ieA, and a prime denotes differentiation with respect to 

P-

Mode decomposition Following the quantum-mechanical prescription of static Ein­

stein equation in section 4.1.2, d is at first expanded as (realised as operator-valued 

*See appendix D.2. 
''For the possibility of using CA = 1, see the discussion in the paragraph, eA= ± 1 , in section 4.4. 
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henceforth) 

j 3 

in which hj is the annihilation operator of the j - t h eigen-state and i\ is the creation 

operator of the j - t h eigen-anti-state such that [%,a-] = = 6ji. 

Rationalised equations After employing the quantum-mechanical prescription that 

TZ^i, - l/2gn^7l = -87rG(j|:7)i^:|j), equations (4.29)-(4.32) can be rewritten as follows 

(with new variables W = 167rG'i2|(i|a]aj|j), x = Ejr, f j = Ejrj, y = Ejp, and e = 

e/Ej = e/{8TrGEj)), 

^ + i f (4« _ _ + , A ) = 0 , ( 4 ^ 3 4 ) 

x^fo vy J 

2 a;2 2 x^ \^/o y j xVo 2 77 

where a = ln(—77), /o = fi{y — y+), and a dot denotes differentiation with respect to y. 

The normalisation 

General case The normalisation condition for states is 

I dpdn^\{j\P\j) = - j dpd^^J\^\{j\Jt\]) = N, , 

where 
J^ = -10^ . dt^ - dt^^ • d) , 

Nj is the normalisation, QS is the spatial part of the metric, and the integration region 

is the interior of the black hole. I t can be reduced to 

r dy^W = r dyWj = 2GE^Nj . (4.37) 
Jo Jo Jo 
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Note that although the above probability density operator is not the one appeared in the 

Maxwell equation, i t is still conserved. Using above normalisation condition amounts 

to normalise the number of states, instead of the total charges. 

Special case In order to provide numerical examples of the solutions of charged eigen-

state, we need explicit value of Nj. Recalling the assumption and calculation made in 

section 3.3.3, chapter 3, we have Nj = Ncirij/ci (cf. equation (3.59)). However, the Nc 

is determined by equation (3.60) which depends on the value of Nb, the total number 

of neutral states inside the charged black hole. To simplify the situation, I assume that 

Nb = 0. Then, for the RHS of equation (4.37), we have 

RHS = 2GE'N, = ^ J ^ { 1 - - ) 2 'il A/- , (4.38) 

where r± are defined in equations (D.IO) and ( D . l l ) . The numerical solutions of the 
first three eigen-states with Nc = 5 x and e = 10"^ are shown in figures 4.4-4.9. 

Ambiguity in the meaning of the charge 

The relation between e and q is indeed unclear in our system since the self-interaction 

has been involved in the Maxwell equation explicitly. There are three charge-related 

terms in this system: total charge q, coupling constant e, and the charge density that 

is defined from the charge density operator, Jt, appeared in the Maxwell equation, 

Jt = -i . Dt'd - {Dtdy • d . 

If the lesson from the conventional quantum field theory is valuable, we expect some 

renormalisation schemes should be brought in to related these three terms. The sit­

uation is in fact more intricate because, as shown later, we can confine the effect of 

charges inside the black hoe totally so that even though the boundary condition is from 

that of a neutral black hole (i.e., q = 0), the complex scalar field and the U{1) gauge 

field could be non-zero inside. 

Naive assumption I will follow the naive assumption in section 3.3.3, chapter 3 that 

q = Net in order to implement the normalisation condition. 
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4.3.2 The solutions 
General solutions 

Boundary conditions I consider the following boundary conditions near y+=Ejp+ 

(with z = y+ — y and 5^ > 0 ) , 

X - Xc{z) + Xj+iz'i^^ , A - A^{z) - f aj+iz'i^^ , ( 4 . 3 9 ) 

where fjc{z), Xc{z), and v4c(2;) are the c/as5zca/solution of equations ( 4 . 3 4 ) - ( 4 . 3 6 ) with 

W — 0. By expanding t J C , XC, and ylc in terms of polynomials of z, i t can be checked 

that the classical solution^" is uniquely determined by the following boundary condition 

at 2 = 0 

VciO) = f]c = 0 , fjc{0) = fic = h , 

•'Ec(O) =Xc = ys , Xc{0) = Xc = l , 

A ( 0 ) = A = - ^ , i , ( 0 ) = i , = 4 - , 

y+ ^+ 

where fx = {y+ - yJ)/y+ and q = V&TrGEjq. 
Using equations ( 4 . 3 3 ) - ( 4 . 3 6 ) , we obtain 

^ 2x^(1+ eA^) ^ E , eq E^_eq_^ 
h K y+ K Kr+ 

where Sj > 0 in order to form bounded states and the rest of coefficients are determine 

by Wj from the following relations 

Vj+i = ^eVcY ' 

Ac Vj+l _ fjcXc , - , ̂  

^ ^ - ^ ^ - ^ / r 2 7 ^ / ^ ^ i - F 5 ) ^ + ^ ^ ^ ^ 7 ^ , i + 5 -

i°This is just the Kleinian Reissner-Nordstrom black hole solution as = - 1 -
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The spectrum To conform with our interpretation that the t co-ordinate has the 

character of an angular co-ordinate with period 27r/«;, we should set Ej = nj. The 

choice of Wj will be determined by the normalisation condition of W. 

Asymptotic behaviour Asymptotically, near x = 0, 77, x, and A behave as 

W WQ-{- W2y^ , 7] ?7o + 772?/̂  , 

X xo-{- X2y^ , A-^ ao-h 02?/^ , 

where w^, Oj, x^, and 77, (z = 1, 2) are constants. 

Finiteness of the energy-momentum tensor With the help of the boundary con­
dition and the asymptotic behaviour, it is seen that the integral of the expectation value 
of t-* component of the energy-momentum tensor for any eigen-state is finite because 

£ = 47r£^dp^/\i\{j\:7^:\j) 

2GE,Jo n /o l V 2 ^ ^ "8y^ W " 2 7 7 7 / 

^ dy£Ay) • (4-41) 2GEj Jo 

Large and small charge limits 

There are two special situations worth being pointed out. One is the large q limit. 

Another one is the limit of g = 0. 

Large q limit Within my model, the extreme black holes satisfying GM'^ = inq'^ is 

ruled out by requiring those states inside a charged black hole being bound states, i.e., 

Sj > 0, j = 1, 2, 3,.. . . Because it implies 
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with the constraint that eq = e^N^ < | . On the other hand, for the non-extreme 

Reissner-Nordstrom black, we need > ^g^ , it is seen that the boundedness imphes 

the non-extremeness. 

Limit of q = 0 For the limit that q = 0, there exists an interesting phenomenon 
of charge confinement in the sense that even though the black hole appears as a 
Schwarzschild black hole to an observer outside of it , the gauge field at the inside 
is non-zero. By taking the limit oi q = 0, the boundary condition (4.39) can be reduced 

tol2 

W ~ Wj{ys ~yy , f] ̂  -{ys-y)+ fjj+i(y, - yy+^ , 

x - y + Xj+i{y, - yy+^ , A - ao + aj+i{ys ~ 7/)^+^ , (4.43) 

where yg = j/2,j = 1,2,3..., and Xj^i, fjj+i, and a^+i are determined by Wj from the 

following relations, 

Wj -EetAeiVj _ 

The coefficient is a gauge degree of freedom. It is set to zero so that the gauge field is 

continuous across the event horizon. The asymptotic behaviours near the origin y = 0 

look just like that for g 7̂  0 cases. Examples of numerical solutions are shown in figures 

4.10-4.12. 
^^With the help of the defintion of /t in equation (D.12), we see that si = 1 - eq/{K,r+) > 0 implies 

1 — 2eq > r_/r-|_. This constraint follows from the requirement that r _ / r + > 0. In general, one can 
require that Sj > 0 only for j > J, where J is a positive constant, i.e., those eigen-states with j < J 
do not exist. Then equation (4.42) becomes 

with the constraint that eq = e^Nc < ^ , and the summation of j in partition functions in equation 
(3.55) should be modified accordingly. I have implicitly assumed that 7 = 1. The physical significance 
of this constraint is unclear at this moment. Also note that in order for the solution of M of equation 
(3.60) existing, Nc is constrained by a maximum value, Ncd{Nb,e). See the last paragraph of section 
3.3.3 on page 89 for further explanation. 

^^It is easier to check this by working on the equations directly with the following ansatz. 

130 



Regarding to the phenomenon of charge confinement, we can thus ask how much 
of the total charge will be revealed if such a black hole is formed from the collapse of 
charged matter. I f not all of them, then to an observer at the outside of the black hole, 
the charge is not conserved. Admittedly, this claim is hard to justify at this moment 
since I am considering an eternal black hole. However, I think this question is still 
interesting in a general setting. 

Since the q observed from the outside cannot represent the total charge at the inside, 
this further worsens the problem concerning the ambiguity of the meaning of charge 
mentioned in section 4.3.1. It seems that a more fundamental approach is needed in 
order to solve this problem. However, the naive choice made in section 3.3.3, chapter 3 
such that q = N^e removes, by force, the ambiguity temporarily. 
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4.4 Prospects and conclusions 
As a theory, my approach is only a starter. Objections can be easily raised and a lot 
of questions are awaiting to be addressed. Nonetheless, I am trying to see things from 
a point of view that is different from the one adopted in conventional quantum field 
theory which, I believe, has its fimitation. 

In order to understand the statistical origin (in the sense of the textbook statistical 

mechanics) of black hole entropy, I felt obliged to put matter into a black hole. In order 

to construct matter bound states, I rotated the signature of the interior space-time of 

a black hole to Kleinian type. I also gave a quantum-mechanical prescription of static 

Einstein field equation as the building foundation of the matter-metric eigen-states. 

None of these is easy to justify by itself standing along. However, things began to make 

sense as they were combined to form a logical argument. 

The urgent questions The most urgent question concerning my approach is the 

existence of two-time co-ordinates. It seems that a higher dimensional theory is a more 

nature context to deal with it, where the two-time co-ordinates originates from other 

fundamental principles [3 . 

How to choose a good time As mentioned in the text, the concept of energy, hence 
time, in the theory of general relativity is not so clear. I have chosen, a priori, a time 
variable by hand. In fact, I have sacrificed the covariance of general relativity in favour 
of the prejudicial time variable in quantum mechanics. I do not think this is a drawback 
of my approach; nonetheless, i t does reflect one of the most basic questions we have to 
face as dynamics is brought in. The so-called problem of time has been re-appearing 
again and again in different contexts. I am not able to review the various opinions at 
this moment. However, a relevant question that can be asked immediately about our 
approach is: We have got a finite energy £ (cf. equation (4.25)), what are we going to do 
with it? Can we associate the black hole mass M to any quantities calculated locally? 
We also encounter another (thermodynamic) energy in the calculation of statistical 
entropy. What are the relations between all these energy terms? A complete physical 
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picture of black holes can emerge only after these physical questions have been answered 

satisfactory. 

e A = ± 1 I changed not only the signature, but also the relative sign of Lagrangians. 

As far as a physical theory is concerned, it seems that the relative sign of various 

Lagrangian terms can only be determined experimentally. It is unclear to me if there 

is any theoretical principle or self-consistency constraint which can help us determining 

this. In an unified theory, perhaps all children Lagrangians can be derived from a single 

parent. 

One may wonder if solutions exist for the case that €A = I- For the explicitly charged 

cases, namely, q ^ 0, I did not find satisfactory solutions. However, for the limit of 

g = 0 discussed in the end of section 4.2.2, the solution between C/i = 1 and CA = - 1 , 

superficially, do not differ much except that the sign of gauge field, A is reversed due 

to the e^-dependence of the boundary condition (4.3.2). To compare, I show in figures 

4.13-4.15 the solution of ê i = 1 with all other parameter the same to those used to 

integrate figures 4.10-4.12. 

This consideration therefore raises another important question: How trustful are 

those numerical solutions? I am no expert of numerical analysis. However, I think the 

existence of the eigen-states for Schwarzschild black holes is unquestionable because 

they can be regarded as perturbations of the classical vacuum solution. As j increases, 

the solutions approach the Schwarzschild solution because the matter content decreases. 

For the charged cases, again, the problem is complicated by the extra length scale, the 

charge unit, e. Though I only show one set of solutions corresponding to e = 10~^, my 

results suggest the inner horizon cannot survive in a material black hole. I am not 

able to scan a very wide range of possible choice of e,̂ ^ because I do not believe that 

ten, or a hundred sets of data could convince anyone who does not appeal to numerical 

solutions. 
^^In fact, Matlab rejected to solve them at all due to the divergent behaviours of the solutions. 
^^In a loose sense, this agrees with the well-known result that the inner horizon of a 

Reissner-Nordstrom black hole is unstable against perturbation [13]. 
^^On the other hand, I do not see the necessity. 
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As a physical theory, the second triumph of Schrodinger atomic theory is that the 

eigen-states can be solved exactly for the simplest, perhaps also the most significant, 

case of an hydrogen atom. I t thus makes sense to try to construct a simpler model 

in which the eigen-states can be solved exactly, however one prescribes the relevant 

equations. 

What is the right statistical mechanics inside a black hole? I have assumed 
that the concepts from textbook statistical mechanics can be generalised to the region 
inside a black hole, based on the faith of the generality of the underlying principle of 
statistical mechanics. This should be a reasonable assumption. However, I also assumed 
that those states behaves as free states. Due to the non-linearity of the Einstein field 
equation, it is hard to imagine why i t must be so, though the self-interaction of an eigen-
state has been included. However, based on the assumption that entropy is a kind of low 
energy quantum phenomenon (see section 4.1.1), I suppose that the mutual-interaction 
belongs to the high energy regime, which needs a quantum gravity to account for. 

What is the correct interpretation? In the models, the matter-metric eigen-states 
are confined within the black hole totally. Since all eigen-states in a model derive their 
boundary conditions from the same Schwarzschild solution, they can be regarded as 
residing in the same black hole. However, if the transition between different matter-
metric eigen-sates is allowed to happen, then it seems necessary to put different eigen-
states inside different black holes because as the contents of a black hole changes, its 
radius should change accordingly. Then the meaning of a model probably needs being 
re-addressed: Should it be regarded as a model of a black hole or, an ensemble of black 
holes such that each eigen-state lives inside a different black hole? In the later case, we 
can then evade the difficult problem of the interactions between different eigen-states 
since the members of an statistical asemble are not allowed to interact with each other. 

^'^The first triumph is that, i t works! 
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How to parametrise physically? I have given models based on different parametri-

sations and boundary conditions. Obviously, there is no reason to rule out the possibility 

of constructing further models based on other parametrisations and boundary condi­

tions, or totally different approaches. As far as my approach is concerned, it will be 

important for us, as a guidance, to choose a proper parametrisation and boundary con­

ditions i f further physical criteria for choosing a co-ordinate gauge can be given. In the 

T] — r parametrisation where the energy-momentum is finite, the two variable, rj and r, 

are indeed conformal factors at the sub-topology sectors, and 5^, respectively. I t is 

not yet clear to me what this suggests, but it seems obvious that the conformal factors 

do play special role in a gravity theory. 

Introducing coupling I f we introduce the simplest coupling between the gravity and 

the scalar field, then for the neutral black hole case, the action is 

where ^ is a coupling constant such that ^ = 0 and ^ = — | correspond to the minimally 
and conformally coupled cases, respectively. The Euler-Lagrange equation and one 
component of the Einstein field equation are (with rj-r parametrisation) 

where a prime denotes the differentiation with respect to p, and ^ = —1/6, 72. = 0for 

the conformally coupled case, ^ / 0, —1/6, 

^ - ( 1 + 60 (r_^.^ ^ 1 r £ 

for the general case. Given the ansatz (4.22) at p ~ Ps, it is found that no self-consistent 
solution exists due to the appearance of W" in the Einstein field equation. Similar 
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conclusion applies to the charged case. Admittedly, our statement does not serve as a 

proof. Nonetheless, it could hint that the minimally coupled case is privileged. 

Back to classical limit I t seems widely accepted that black hole entropy is a gen­

uine quantum phenomenon. However, recent progress concerning classical black hole 

mechanics shows that the zeroth and first law are true in a variety of gravity theories 

73]. One may thus wonder if the so-called black hole entropy has something more to 

do with the classical physics. Even though the black hole entropy does need a quantum 

interpretation, one may wonder if we should require it having such a generality that 

i t can be applied to various gravity theories in which the classical laws of black hole 

mechanics hold. 

On the other hand, the four laws of black hole mechanics are classical laws. Any 

quantum mechanical explanation of black hole entropy seems inevitably face the chal­

lenge to recover them as a limit in some sense, which I have to leave out. 
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Appendix D 

Black Hole Solutions 

Some basic properties of Schwarzschild and Reissner-Nordstrom black holes, which are 

used, are reviewed [33, 67 . 

D . l Schwarzschild solution 

The metric in Schwarzschild co-ordinate is 

ds' = - ( 1 - -)dt' + (1 - "^r'dr' + r'dn' . (D.l) 
r r 

Define the tortoise co-ordinate, r* = r + l n ( ^ — 1), r > and u = t — V:^, v = t + r^, 

then (D. l ) can be written as 

ds'' = - - e -2 -+«( - -« )dudu + r'dn' , (D.2) 
r 

where K — l/2rs, is the surface gravity. Introducing Kruskal co-ordinates U and V such 
that U = —e"*̂ ", V = e'^'", we obtain the maximal extension of Schwarzschild solution 

ds^ = - l ! l e - 2 - d [ / d T / + r^dQ^ . (D.3) 
r 

Finally, define co-ordinates T and X, such that 2T = U -\-V and 2X = V — U, we can 

write 

ds' = -''-^e-^'^U-dT^ + dX'') + r'dQ' , (D.4) 
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where t and r are related to T and X by relations 

T + X 

(-

X - T ' 
l ) e 2 - = X ^ - T \ 

(D.5) 

(D.6) 

From the Lorentzian Schwarzschild solution, the Euclidean Schwarzschild solution 

can be derived that is useful for investigating the thermal properties of the Schwarzschild 

black hole [22, 23]. At first, rewrite equation (D.5) as 

ta,nh{K,t) = tanh T_ 
X 

(D.7) 
' X - T ' 

If we analytically continue T to —iT and t to —it, we then arrive at the Euclidean 

Schwarzschild solution such that 

T 
X 

tan(Kt) (D.8) 

(D.9) 

with the constraint r > Tg. I t is seen that the t co-ordinate has a nature interpretation 

as the angular co-ordinate at the t - r plan if the period of i is ^ = ^ . This is indeed 

necessary in order for the Euclidean Schwarzschild solution being devoid of the conical 

singularity and satisfying the vacuum Einstein field equation everywhere for r > [22]. 

D.2 Reissner-Nordstrom solution 

The metric of a Reissner-Nordstrom black hole is 

ds^ = - ( 1 -
2GM , 47rGQ^^^^2 2GM . AirGQ^ 

+ + 

Define the tortoise co-ordinate r*, (r > r+, r_) 

)-'dr' + r'dn' 

= ^ + ! ± i n ( i - - l ) - ^ l n ( — - 1 ) 

r r 
; - - i ) ( - - i r 
r_|_ r_ 
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in which a = - ( ^ ) ^ , 'r±=rj^- r_, and 

r+ = G M -t- ^{GUy - 47rC?Q2 ^ 10) 

r_ = G M - v^(G'M)2 _ 4̂ <5(52 P U ) 

Introduce co-ordinates u and such that u = t — and w = t -|- r, , the metric can be 

written as 

ds^ = - ^ ( 1 - —)i-"e-2«^+''(''-«)d«d?; + t H Q } , 

in which the surface gravity, /c, is 

K = r± /2r^ . (D.12) 

Introducing Kruskal-like co-ordinates U and V such that U = —e~'^^ and V = e'^'", we 

obtain. 

Finally, define 2T = {U + V) and 2X = {V -U), we obtain the desideratum 

ds^ = - 1 ^ ( 1 - ! : z ) i - e - 2 - ( - d r 2 + dX') + r^ f ]^ . 

The relations between co-ordinates t, r and T, X are 

X 2 - T 2 = e 2 ' ^ ' - ( — - 1 ) ( — - 1 ) ^ (D.13) 

^ = e^" . (D.14) 

Similar to the Schwarzschild black hole case, by continuing analytically T to —iT and 

t to -it, we arrived at the Euclidean Reissner-Nordstrom solution with the constraint 

r > r+. 

Note that, the maximal extension copied from the Schwarzschild black hole case are 

good only for the region of r > r_. 

The gauge potential. A, in a Reissner-Nordstrom solution is 

A = Atdt = --dt . 
r 
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The associated Coulomb potential, is defined as 

where ^ = dt is the Killing vector field. 
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Figures 

Figures for section 4.2 
Figure 4.1.1 

0.1 0.2 0.3 0.4 0.5 

Figure 4.1.3 

0.1 0.2 0.3 0.4 0.5 

Figure 4.1.5 

uii = 11.(2 

0.1 0.2 0.3 0.4 0.5 

Figure 4.1.7 

.V, =0.21495 

ai'ea= 0.21502 

Figure 4.1.2 

0.1 0.2 0.3 0.4 0.5 

Figure 4.1.4 

0 0.1 0.2 0.3 0.4 0.5 

Figure 4.1.6 

0 0.1 0.2 0.3 0.4 0.5 

Figure 4.1.8 

0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

Figure 4.1: The eigen-state of j = 1. The functions, £j, Wj, and Mj are defined in 
equations (4.25) and (4.26), respectively. The Wj is the coefficient in equation (4.22). I t 
is expected that the value of Wj depends on the initial position from which the equations 
are integrated by the Runge-Kutta-Fehlberg method. Nonetheless, I beleive the curves 
presented can represent the typical qualitative features of the solutions. 
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Figure 4.2: The eigen-state of j = 2. 
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Figure 4.3: The eigen-state of j = 3. 
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Figures for section 4.3 
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Figure 4.4: The eigen-state of j = 1 for the interior of a Reissner-Nordstrom black hole 
with parameters, = - 1 , eg = 1, M = Mi, Nc = 5 x 10^ e = lO'^ The £j, Afj, and 
Wj are defined in equations (4.41), (4.38), and (4.37), respectively. 
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Figure 4.5: The eigen-state of j = 2. 
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Figure 4.5.5 Figure 4.5.6 

-0.04 

-0.06 

0.2 0.4 0.6 0.8 

•r 0.3 

0,2 0.4 0.6 0.8 

Figure 4.5.7 Figure 4.5.8 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Figure 4.5.9 Figure 4.5.10 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

147 



x10"^ Figure 4.6.1 ^10'^ Figure 4.6.2 

11)3 = l-O X 10" 

X10"^ Figure 4.6.3 Figure 4.6.4 

aiea= 3.6506 x 10 

A''3 = 3.6616x10^ 

1.5 

Figure 4.6: The eigen-state of j = 3. 
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M = M , 
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Figure 4.7: The eigen-state of j = 1 for the interior of a Reissner-Nordstrom black hole 
with parameters, = - 1 , eg = 1, M = M^, Nc = 5 x 10^ e = 10"^ 
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Figure 4.8: The eigen-state of j = 2. 

152 



^•^Q-i Figure 4.8.5 Figure 4.8.6 

0 0.05 0.1 0.15 

Figure 4.8.7 Figure 4.8.8 
0.13 

0.125 

0.12 

0.115 

Figure 4.8.9 Figure 4.8.10 
-1.32 

-1.34 

153 



X , Q - i Figure 4.9.1 ;10"^ Figure 4.9.2 

ffis = 0.034 

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 

. ^0"^ Figure 4.9.3 

Ni = 2.6953 X 10 

Figure 4.9.4 

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 

Figure 4.9: The eigen-state of j = 3. 
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L i m i t of g = 0 
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Figure 4.10: The eigen-state of j = 1 for the charged interior of a Schwarzschild black 
hole w i t h parameters, q = 0, EA = -1, ee = I, M = Mi, e = 10"^ The £j, A f j , and Wj 
are defined in equations (4.41), (4.26), and (4.37), respectively. 
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Figure 4.11: The eigen-state of j = 2. 
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Figure 4.12: The eigen-state of j = 3. 
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Figures for section 4.4 
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Figure 4.13: The eigen-state of j = 1 for the charged interior of a Schwarzschild black 
hole w i t h parameters, q = 0, eA = eg = I, M = Mi, e = 10'^. 
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Figure 4.14: The eigen-state of j = 2. 
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Figure 4.15: The eigen-state of j = 3. 
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