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Abstract

The research presented in this thesis is concerned with soliton interactions and

bound states. We consider a non-topological soliton in (1 + 1) dimensions and

topological models in (2 + 1) and (3 + 1) dimensions.

In chapter 2 we consider Qballs, which are non-topological solitons, in (1 + 1)

dimensions. Here we note the semi-integrable behaviour of small-charge Qballs.

This leads us to propose a possible mechanism to explain the two distinct oscillatory

modes of a Qball breather. In chapter 3 we are interested in the (2 + 1)-dimensional

baby-skyrme model, which is a lower-dimensional analogue of the Skyrme theory.

We discover new chain-like bound-state minimum-energy solutions. We then analyse

whether these solutions are the minimum-energy solutions on a cylinder, and then

finally on the torus. In chapter 4 we discuss a new (2 + 1)-dimensional model

containing a baby skyrmion coupled to a vector meson. This is an analogue of

the (3 + 1)-dimensional Skyrme theory containing a vector meson. We use this

lower-dimensional analogue to numerically justify the use of a rational map ansatz

in the analysis of the (3 + 1)-dimensional skyrmion. Also we analytically prove

why the baby-skyrme model, and the model containing a baby skyrmion stabilised

by a vector meson, have very similar solutions. Chapter 5 discusses Hopf solitons.

Instead of being lumps, Hopf solitons actually resemble loops of string. Their charge

is related to the string’s knotting and twisting. In this chapter we include an extra



iv

mass term in the Skyrme-Faddeev theory; this gives solitons which are exponentially

localised. We then explore the infinite-coupling case, which gives compact Hopfions.

This chapter is part of an ongoing investigation. All of the original research results

presented are my own results. This thesis is based on three publications [1–3].

Papers [1, 2] were written in collaboration, and I present my own results. Paper [3]

is purely my own research.
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Chapter 1

Solitons in field theory.

There is a small class of nonlinear equations which have solitary, localized, lump-like

solutions. These solutions are often referred to as soliton solutions. More precisely a

soliton solution is a finite-energy solution of a nonlinear partial differential equation.

Solitons tend to be stabilised by a conserved charge associated with the physical

field theory. A soliton’s energy density tends to be smooth and localized in a

finite region of space. The nonlinear partial differential equation needs two main

terms: a sharpening nonlinear term and a dispersive term. Soliton solutions capture

the nonlinear nature of the relevant theory, making soliton dynamics a very rich

and interesting topic. Nonlinear field theories, which possess soliton solutions as

part of their energy spectrum, are of great interest in modern particle physics.

Like in solitons can repel and scatter off each other; they can also attract to form

bound states. The analysis of solitons necessitates a large expanse of mathematical

techniques often amalgamating analytical, geometrical and sophisticated numerical

techniques. These numerical techniques are usually very computationally intensive

but, due to the recent advancements in computing power, we can now dynamically

solve these highly nonlinear equations to a good order of accuracy.

Soliton solutions are not just interesting mathematically. They also occur in a wide

1



1.1. Skyrme theory. 2

variety of field theories. Solitons are predicted to exist in cosmology as Q-balls [4];

in particle physics as magnetic monopoles [5] and in condensed matter physics as

baby skyrmions [6], plus in many more field theories. Solitons are also found in

superconductivity, fluid dynamics and nonlinear optics.

There are two main classes of soliton solutions, integrable solitons and numerically

derived solitons. Integrable solitons tend to occur in 1-dimensional theories which

have an infinite number of conserved charges. Also their governing differential

equations can usually be expressed as a compatibility condition of an over determined

linear system. This allows their form and dynamics to be analytically derived. The

nonlinear differential equations, derived from larger dimensional and non-integrable

theories, can only been solved using powerful numerical relaxation techniques.

1.1 Skyrme theory.

With the aim to outline two fundamental principals of solitons in field theory,

namely Derrick’s theorem and the finite energy criteria, it is efficient to work with

an example model. The model of choice is the Skyrme theory [7] which is a (3 +

1)-dimensional nonlinear theory of pions. Skyrme’s motivation was to create a field

theory where the field’s topological degree is identified with the baryon number.

Hence the Skyrme theory is a topological field theory of the atomic nucleus. One of

the most incredible parts of this theory is Skyrme’s vision. He realised that under

quantisation, of the rotationally symmetric skyrmion, it is possible to gain spin 1/2

fermion states from the bosonic theory. The Skyrme theory can also be derived

as a low energy effective field theory of Quantum Chromodynamics, in the large

colour limit [8]. It is also found that at low energies the pion fields are the major

contributors. We can best describe this theory using the Lagrangian

L =

∫
R3

(
−1

2
Tr(RµR

µ) +
1

16
Tr([Rµ, Rν ][R

µ, Rν ])

)
d3x, (1.1.1)
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where Rµ is the su(2)-valued current, Rν = (∂νU)U †, in terms of the SU(2)-valued

field U(x, t). This theory is comprised of two main terms. It has a sigma term,

Tr(RµR
µ), which is quadratic in derivatives and inherits its name from theO(n)-sigma

model. The second term, Tr([Rµ, Rν ][R
µ, Rν ]), is quartic in derivatives and refereed

to as the Skyrme term. The field, U(x, t), is a solution of the associated highly

nonlinear partial differential equation known in field theory as the Euler-Lagrange

equation,

∂µ

(
Rµ +

1

4
[Rν , [Rν , R

µ]]

)
= 0. (1.1.2)

This highly nonlinear partial differential equation has no non-trivial known closed

form solution. Skyrmion solutions have only been derived using substantial numerical

techniques. Over the years there has been extensive research of the skyrmion

model [9–19]. Multiple charged skyrmions have been found [9], where for topological

charge greater than two the charge density is found to be a shell-like polyhedron.

One of the major recent advances has been the discovery of the rational map ansatz

[20]. This ansatz was motivated by the observed similarities between skyrmion

and monopole solutions. It takes advantage of the Platonic structure of skyrmions,

so the Skyrme field can be re-expressed as a radial profile function and an angular

dependence. The angular dependence is specified by a rational map between Riemann

spheres. This results in a significant reduction in complexity of the numerical

minimisation scheme, to calculating a profile function and a rational map. Also

the ansatz can be used to create approximate skyrmions, which have energy close

to the global minimum. This is a very useful tool for speeding up 3-dimensional

energy minimisation schemes, by removing a computationally expensive scattering

process.

The polyhedral skyrmions, produced in the above pure Skyrme model, do not

correlate with the existing understanding of the atomic nucleus; especially for larger

mass numbers. Primarily it contradicts with the roughly homogeneous density of the
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nucleus core. An extra term can be included in the Skyrme theory, known as a mass

term, which gives rise to a pion tree level mass. This extra term causes the Skyrme

model to favour a modular structure. They are composed of essentially unperturbed

topological charge four skyrmions. This is in agreement with the alpha particle

picture of the atomic nucleus. It also replicates some of the necessary symmetries

needed to reproduce nuclear energy spectra under quantisation. Particularly for

nuclei like 8Be and 12C which are known to be composed of alpha particles.

The Skyrme model gives the possibility of a more fundamental and mathematical

understanding of the atomic nucleus. Especially when compared to more traditional

phenomenological approaches.

1.2 Derrick’s theorem.

One of the most fundamental criteria for solitons in field theory is a scaling

argument known as Derrick’s theory [21]. This theory is applicable to static theories

defined in flat space. It states that under a spatial rescaling if there is no stationary

point of the energy, as a function of the scaling, then there are no non-vacuum

solutions of the associated Euler-Lagrange equation. This is best shown using the

Skyrme theory example which has the associated static energy functional

E =

∫
R3

(
−1

2
Tr(RiRi)− 1

16
Tr([Ri, Rj][Ri, Rj])

)
d3x. (1.2.1)

Under the spatial rescaling x 7→ λx we can re-express the energy as

E(λ) =
1

λ
Eσ + λES,

whereEσ is the contribution of energy from the sigma term and ES is the contribution

from the Skyrme term. In 3-dimensions the two terms scale in opposite ways.

Therefore, any soliton solution will neither expand nor contract. This shows why
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the Skyrme theory needs the extra quartic derivative Skyrme term. A static solution

of the Euler-Lagrange equation, for a given topological charge, will have a minimum

energy when λ = 1. Therefore, for the energy to be a stationary point the sigma

term and the Skyrme term must contribute equally to the total energy, Eσ = ES.

1.3 Finite energy criteria.

Physically sensible soliton solutions must have finite energy. In flat space this

requires the field to smoothly attain the theories vacuum value at spatial infinity.

This is needed so the theories energy density vanishes at infinity, which is required

for the total energy to be finite. Due to the field having the same boundary value,

at r =∞, this gives rise to a one point compactification of the flat space Rn∪{∞}.
This is topologically equivalent to the surface Sn. Also if the field takes its value in

a sphere, Sm, the field will then belong to the homotopy class πn(Sm). Therefore

the field could have an associated topological degree, which in this thesis we refer

to as the topological charge.

For finite energy, in the Skyrme example, we choose U(|x| → ∞) = 12. This allows

a one-point compactification of the domain, R3 ∪ {∞} ∼ S3. Also, it is well known

that the group manifold of SU(2) is S3. Hence the Skyrme field at fixed time is a

map

U(x, t) : S3 → S3. (1.3.1)

Therefore the field, U(x, t), can be assigned an element of to the homotopy class

π3(S3) = Z. So there is an integer topological degree associated with the map

U(x, t). For skyrmions we refer to the topological degree as the topological charge B.

A point worth noting is that a field configuration with topological charge B1 cannot

be smoothly deformed into a field configuration with topological charge B2 6= B1.

This shows that for differing topological charges the solution spaces are not smoothly

connected and hence topological charge is always conserved.
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There are also non-topological soliton models which are stabilised by the conservation

of a non-integer Noether charge. Qballs for example, are stabilised by a conserved

U(1) Noether charge. Again, in this non-topological case, the Noether charge is

conserved under evolution of the Euler Lagrange equation.

1.4 Elementary concepts.

All of the theories discussed in this thesis originate from classical physical field

theories. Therefore they can all be defined by an action which has associated

Noether currents. The action also has an associated energy functional, which is

manifested as an invariance of time transformation. This means all of the theories

are physically interesting. Also we shall be using natural units, where the speed of

light c ≡ 1. We shall now define some of the notation used in the remainder of this

thesis. We denote a point in the smooth n-dimensional physical space M as xi ∈M ,

where the Latin index indicates spacial coordinates (x1, ..., xn). We shall also define

the space-time coordinates as xµ ∈ M × R. Where x0 = t and the Greek indices

resemble spacial dimensions plus one time dimension (x0, ..., xn). All the physical

space-times are Minkowski with metric gµν = diag(1,−1, ....) and we make use of

the Einstein summation convention throughout. Also we shall denote the complex

conjugate of the field ψ as ψ̄.

This concludes the thesis introduction. We start to present the research in chapter

2. Chapter 2 is concerned with a non-topological soliton theory known as the Qball

model. This is a (1 + 1)-dimensional theory where we studied the dynamics of

Qball-Qball collisions. This led to the realisation that small charge Qballs start to

display semi-integrable behaviour during interactions. We also analyse the structure
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of Qball breathers. We explain the nature of the two oscillatory modes observed in

the breather spectrum.

In chapter 3 we are interested in the (2 + 1)-dimensional baby skyrmion model.

This is a lower dimensional analogue of the (3 + 1)-dimensional Skyrme theory.

We propose that the static minimum energy bound solutions are chains of baby

skyrmions. We perform the numerical analysis on R2, then on the cylinder R× S1

to find the infinite chain energy per unit charge. Then, finally, on T2 in order to

find the minimum energy solution which fills the whole space.

In chapter 4 we introduce a new baby skyrmion model which does not have a Skyrme

term. It is instead stabilised, under Derricks theorem [21], by a coupling to an

extra vector field. This is a lower dimensional analogue of the (3 + 1)-dimensional

skyrmion theory coupled to a vector meson. We numerically find that the baby

skyrmion model and the baby skyrmion coupled to a vector meson model produce

very similar solutions. We then verify this proof using an analytical approximation.

Chapter 5 is concerned with (3+1)-dimensional Hopf solitons. This model is related

to the baby skyrmion model due to the Lagrangians being very similar. We include

a mass term in this model. This gives exponentially localised Hopfions.

All of these chapters have an introduction, methodology, discussion and conclusion.

All the presented results are my own research.



Chapter 2

Qballs, interaction and

integrability.

2.1 Introduction.

Most solitons are stabilized by topological effects, but there are also class of soliton

that are not stabilised by topology. Non-topological solitons tend to be stabilised

by an associated conserved current. In 1985 Sidney Coleman [4] conjectured a

new type of non-topological soliton, the Qball. Coleman showed that Qballs can

occur in theories that have a time dependent field, with an internal phase, and a

continuous unbroken global symmetry. This time dependent internal phase gives rise

to a stabilising conserved Noether charge, Q. It is mainly due to this non-topological

charge not being quantised in any manner that complicates Qball-Qball interactions.

This causes a myriad of possible charge related dynamics ranging from charge

exchange to Qball fission.

Qball solutions can arise in any theory with a scalar potential U(|φ|), which has a

global minimum and an unbroken global U(1) symmetry.

8
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It was shown in 1997 by Alexander Kusenko that Qballs can occur in the minimal

supersymmetric standard model [22]. This gives rise to Qballs that are linked to

the conservation of baryon and lepton number. Also, there are an assortment of

physical processes which could have created Qballs during the early universe [23];

hence the possibility that primordial Qballs could still exist.

The possibility that primordial Qballs could still exist means Qballs could be a

potential dark matter candidate [24]. This is our main motivation for studying

Qballs. We were motivated to try and determine the dynamics of Qball-Qball

interactions. This could then be used to understand if primordial Qballs could

still exist today, or would they simply annihilate each other and vaporise?

To answer this question we first carried out numerical simulations of Qball collisions.

We observed the phenomena of charge exchange and Qballs radiating when in excited

states. We then realised that the complex sine-Gordon soliton is also another type

of Qball solution. Following this we noticed that in the small Qball limit the

standard Qball model converged with the complex sine-Gordon model. Therefore,

the non-integrable model will start to present semi-integrable behaviour in the small

charge limit. This was one of the main turning points in our research and led to

the understanding of small Qball collisions. This semi-integrable behaviour was also

fundamental to understanding the behaviour of perturbed Qballs.

This led us to formulate a new truncated Qball model, which attempts to link the

complex sine-Gordon model and the usual Qball models. From our observations of

Qball collisions, we have come to the conclusion that Qballs interact less as they lose

charge. They begin to behave in a semi-integrable way in the small charge limit.

This chapter is interested in Qballs in (1 + 1)-dimensions, but they can also occur

in higher dimensions [25,26].
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2.2 Qballs in (1 + 1)-dimensions.

One of the simplest models with Qball solutions is a (1 + 1)-dimensional complex

scalar field theory with a global U(1) symmetry. Described by the Lagrangian

density

L = ∂µφ∂
µφ̄− U(|φ|). (2.2.1)

The unbroken U(1) symmetry gives rise to a conserved Noether current qµ,

qµ = iφ∂µφ̄− iφ̄∂µφ. (2.2.2)

The continuity equation, ∂µq
µ = 0, shows that this theory has a conserved global

charge

Q =

∫ ∞
−∞

i
(

¯̇φφ− φ̇φ̄
)
dx =

∫ ∞
−∞

q(x)dx, (2.2.3)

where we have set q0(x) = q(x). To find the minimum energy solution of (2.2.1), for

a fixed charge Q, we introduce the Lagrangian multiplier, ω, into the Hamiltonian

HQ as

HQ = H + ω(Q−
∫ ∞
−∞

qdx),

where H is the stationary energy. This gives the minimum energy for a fixed Q.

Then using the U(1) symmetry we can re-express the field, φ, as an angle θ ∈ R and

a profile function f(x) ∈ R as

φ = eiθ(t)f(x, t). (2.2.4)

This gives

HQ = ωQ+

∫ ∞
−∞

ḟ 2 + f ′2 + f 2(θ̇ − ω)2 − Uω dx (2.2.5)

where Uω = ω2f 2−U . We can minimise (2.2.5) by setting the positive definite term

θ̇ − ω = 0 and ḟ = 0. These are the only terms we can set to zero not to give a
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trivial f(x). Doing this gives the standard stationary Q-Ball form

φ = f(x)eiωt. (2.2.6)

This describes a Qball centred at the origin of a coordinate system with a constant

internal frequency, ω > 0, and a real profile function. The profile function, f , is a

solution of the ordinary differential equation

f ′′ = −ω2f +
1

2

dU

df
= −1

2

dUω
df

, (2.2.7)

with the boundary conditions f ′(0) = 0 and f(∞) = 0. On multiplication of (2.2.7)

by f ′(x) and then integration over x we gain the first order differential equation

f ′2 = −ω2f + U.

Using the boundary conditions on f we gain a constraint on the potential,

U(f0) = ω2f 2
0 , (2.2.8)

where f0 ≡ f(0). Substituting (2.2.6) into (2.2.3) gives the Noether charge Q(ω),

Q(ω) = 2ω

∫ ∞
−∞

f 2dx.

2.3 Qball existence, ω bounds.

To find a constraint on the form of the potential U we can interpret (2.2.7) as a

mechanical Newtonian system. We interpret (2.2.7) as a unit mass particle moving

in potential −Uω/2 at time x and position f . The method is to find a solution for

a stationary particle which starts at f ′(0) = 0 and comes to rest at f = 0, after

infinite ‘time’ x. This imposes the condition that f → 0 as x → ∞. This restricts
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the possible form of the effective potential Uω in two ways.

1. Undershooting. If the particles starts at a point f , where −Uω < 0, then

it cannot reach f(0) (2.2.8). This is due to the initial position having less

effective potential energy than the final position. Hence

max(−Uω) > 0⇔ min

(
U

f 2

)
= ω−

2 < ω2. (2.3.1)

2. Overshooting. For the particle to come to rest at f = 0, −Uω must be concave

about f = 0. hence

−d
2U

df 2

∣∣
f=0

> 0⇔ 1

2

d2U

df 2

∣∣
f=0

= ω+
2 = m2 > ω2. (2.3.2)

Combining (2.3.1) and (2.3.2) we find the static single Qball existence bound

ω− 6 ω < ω+. (2.3.3)

Note that there is also a solution for ω < 0. This solution is termed as the anti-Qball

solution and has Q < 0.

2.4 Qball stability.

For a Qball solution, of fixed charge Q, to be stable to all perturbations it must

be the global minimum energy solution. For this to be the case a solution must fit

the two criteria below.

2.4.1 Absolute stability.

For small perturbations about the vacuum, φ = 0 + ε(x, t), if we only include first

order in ε the theory becomes linear. If we then place the theory on a large section
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L [27] the equation of motion then becomes the Klein Gordon equation. This has

the fundamental particle plane wave solution

ε(x, t) = Ne−i(kx−ωkt), (2.4.1)

where k is the wave number, ωk =
√
m2 + k2 and N =

√
Q/2ωkL is a charge

normalising factor. In the low momentum infra-red limit this plane wave solution

has total energy

Hparticle = Qm. (2.4.2)

This is interpreted as the energy of Q free particles of mass m. So, for a soliton

solution to be stable, the Qball must have less energy than Q single bosons of rest

mass m. This criterion is known as the absolute stability criterion,

HQ < Hparticle ⇒ HQ

Q
< m. (2.4.3)
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2.4.2 Fusion stability.

For a Qball to be stable against decay into smaller Qballs the total energy per-unit

charge must be convex. This is implied because a Qballs energy per-unit charge

must be lower than the energy per-unit charge for two Qballs. So a charge QT Qball

must have less energy per-unit charge than two Qballs of charges Q1 = (1 − ε)QT

and Q2 = εQT , where ε ∈ [1
2
, 1]. Therefore

H(QT ) 6 H(Q1) +H(Q2). (2.4.4)

If we then create a line segment h(Q), betweenH(Q1) andH(QT ), which is parametrised

as Q = (1− λ)Q1 + λQ2 where λ ∈ [0, 1] as

h(Q) = (1− λ)H(Q1) + λH(QT ). (2.4.5)

Then at Q = Q2 λ = (2ε− 1)ε−1, so

h(Q2) = −ε− 1

ε
H(Q1) +

2ε− 1

ε
H(QT ) < H(Q2) ∀ ε ∈ [

1

2
, 1]. (2.4.6)

In the second relation of (2.4.6) we have used (2.4.4) and that the two terms involving

ε are always positive and less than one. This simple analysis shows that the function

H(Q) must be convex over the interval Q ∈ [Q1, QT ]. One of the characteristics of

a convex function leads to a strong constraint which is

d2HQ

dQ2
< 0. (2.4.7)

If we then re-express (2.2.5) as

HQ = ωQ+ Sω, (2.4.8)
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with the Euclidean action

Sω =

∫ ∞
−∞

(
f ′

2 − Uω
)
dx. (2.4.9)

Then taking the charge derivative, for fixed Sω, of (2.4.8) we get one of the well

known Legendre relations [28]

dHQ

dQ

∣∣∣∣
Sω

= ω. (2.4.10)

We can use this relation with (2.4.7) to give the classical stability criterion,

dQ

dω
≤ 0. (2.4.11)

2.5 General Qball profile function.

For a stationary solution the momentum density

p(x) = φ̇φ̄′ + ˙̄φφ′ = 0. (2.5.1)

By the continuity equation, ∂tp = ∂xj, the momentum density has an associated

current

j = −|φ̇|2 − |φ′|2 + U(|φ|) = 0. (2.5.2)

Substituting (2.2.6) into (2.5.2) gives the first order ordinary differential equation

f ′
2

= −ω2f 2 + U(f). (2.5.3)

This first order equation for f can also be found by multiplying (2.2.7) by f ′ and

integrating over x. The above technique is of more use later. Choosing a potential

that is a degree 3 polynomial in φφ̄

U = f 2(1− f 2) + βf 6, (2.5.4)
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which we can re-write as

U(f) = f 2(1− 1

2
f 2)2 + (β − 1

4
)f 6. (2.5.5)

We find for β > 1/4 there is only one vacuum value which is f = 0, so ω− =
√

1− 1
4β

.

For β < 1/4 the potential is not bounded from below but f = 0 is still a local minima;

hence there could still be Qball solutions based on this false vacuum with the lower

bound ω− = 0. Also if β = 1/4 there is no longer a unique vacuum, there are

two degenerate values at f = 0 and f =
√

2. Qball models with two vacua have

previously been studied [28]. For all β the upper bound on ω is found to be ω+ = 1.

For arbitrary β we find that (2.5.3) has the solution

f =

√
2a√√

1− 4βa2 cosh(2ax) + 1
, (2.5.6)

where a =
√

1− ω2. This solution has the associated Noether charge

Q =
4ω√
β

tanh−1

(
1−√1− 4βa2

2a
√
β

)
. (2.5.7)

On substitution of (2.5.6) and (2.5.4) into (2.2.1) we gain the static energy

E =
4aω +Q(4βa2 − 1)

8ωβ
. (2.5.8)

2.6 Truncated Qballs.

Setting β = 0 in the potential (2.5.4) we gain a new truncated Qball model. We

shall find this truncated model is of great interest later. Stable solutions only occur

when the lowest order term in the potential is quadratic in f and the highest order

term is quartic in f . This can be shown for a general truncated Qball model with
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the Lagrangian density

L = ∂µφ∂
µφ̄− |φ|2 + |φ|n, (2.6.1)

where n = 2Z > 4. Using the same procedure as above we find the first order

ordinary differential equation for f

f ′2 = −ω2f 2 + f 2 − fn. (2.6.2)

This is solved by

f = (a sech(xap))
1
p , (2.6.3)

where p = 1
2
(n− 2) and a =

√
1− ω2.
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Figure 2.1: Charge as a function of ω for different truncated potentials U = |φ|2 −
|φ|n.

If we then numerically calculate the Noether charge of (2.6.1), for different values

of n, we find Figure 2.1. Figure 2.1 which shows, by the classical stability criteria
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(2.4.11), that the only truncated potential which may give rise to stable Qball

solutions is n = 4. Throughout this text we will refer to the n = 4 truncated

model simply as the truncated model. The energy and charge of the truncated

model can be found by taking the limit of (2.5.7) and (2.5.8) for β → 0 giving

Q = 4ωa, (2.6.4)

E =
4a

3
(2ω2 + 1)

and

f(x) = asech(ax). (2.6.5)

The truncated model has the usual upper limit ω < ω+ as shown for the general

potential. However, the lower limit is not ω > 0 for this unbounded potential. But,

as shown for n = 4 in Figure 2.1, the derivative of Q with respect to ω becomes

positive for ω < 1/
√

2. Therefore, by classical stability, a Qball solution is only

stable in the truncated model for

1√
2

6 ω < 1. (2.6.6)

2.7 Integrable complex sine-Gordon model.

A third theory of interest, which also has Qball solutions, is the complex sine-Gordon

model [29–31]. This theory is described by the Lagrangian density

L =
1

1− φφ̄
(
∂µφ∂

µφ̄− U(|φ|)) ,
where U = (1− φ̄φ)|φ|2 giving

L =
∂µφ∂

µφ̄

1− φφ̄ − |φ|
2. (2.7.1)
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Unlike the previous models this theory has a non-trivial denominator below the

sigma term. This allows a more general choice of potential. This is because if

we chose a general potential U(|φ|) = (1 − φ̄φ)W (|φ|), where for the complex

sine-Gordon model we have W (|φ|) = |φ|2. As long as W (0) = 0 then we gain

the usual bound

ω+ =
1

2

d2W

df 2
= 1.

Therefore, this model yields stable solutions for 0 < ω < 1. Again using momentum

conservation and (2.2.6) we find the first order ordinary differential equation

f ′2 = −ω2f 2 + (1− f 2)f 2. (2.7.2)

(2.7.2) is the same as the first order equation describing the truncated model (2.6.2),

hence they share the same solution (2.6.5). The static energy and charge associated

with (2.7.1) are

E = 4a, Q = 4 arccosω. (2.7.3)

The complex sine-Gordon model has previously been shown to have Qball-type

solutions [32]. The integrable nature, of the complex sine-Gordon model, does not

seem to have yet been used to help understand Qball dynamics in a non-integrable

system. Unlike the previous, non-integrable, models the complex sine-Gordon model

has a well known multiple soliton solution [31]. We shall discuss and make use of

this multi-soliton solution later.

Now that the main theories of interest have been introduced, for a more powerful

and compact analysis later, we shall combine all of the above theories into one

Lagrangian density

L =
∂µφ∂

µφ̄

F (|φ|) −W (|φ|). (2.7.4)
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2.8 QBall collisions.

In order to try and understand how Qballs interact we shall now discuss some

numerically simulated Qball-Qball collisions in the truncated model. As initial

conditions for our simulation we shall use the sum of two minimum energy solutions,

located at ±α, gently boost towards each other with velocity ±v

φ = eiω1tfω1 + eiω2tfω2 .

Using this initial condition we then numerically evolved the relevant equations of

motion. This simulation used a finite difference leap frog algorithm on a lattice of

∆x = 0.1 and time step ∆t = 0.0001. Below we shall discuss some of the phenomena

uniquely associated with Qball-Qball collisions.

2.8.1 Charge exchange.

One of the signature phenomena of QBall-QBall interactions is the continual exchange

of charge. This is when charge oscillates between two Qballs positioned next to each

other, with a periodicity in time. An example of this is shown in Figure 2.2 where

we placed two truncated Qballs with, ω1 = 0.9 and ω2 = 0.91, next to each other

with no relative velocity; and then numerically evolved the system.

If we allow this configuration to evolve much later in time the two Qballs seem

to swap position. This gives the impression that the two Qballs pass through each

other. However, if we observe the fields at finite time it is apparent that two Qballs

exchange charge. If we then allow the system to evolve even further we gain a field

configuration that is a close match to the initial condition. Another very interesting

observation which can be made from these simulations is shown in Figure 2.3. Here

we have gently boosted two Qballs (ω1 = 0.9, ω2 = 0.91) towards each other. As

they approach they begin to exchange charge and later in time the charge is totally
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Figure 2.2: Two truncated Qballs of initial internal frequencies ω1 = 0.9 and ω2 =
0.91 exchanging charge.

exchanged. For asymptotic time this gives the impression that the Qballs have

swapped over. The similarity of the two Qballs at t = 0 and for large t mimics the

integrable behaviour of the complex sine-Gordon model. In the complex sine-Gordon

model this can be analytically proven. This semi-integrable behaviour becomes more

apparent in the small Qball limit. This is not surprising because as φ → 0 all the

above theories converge; their Lagrangian densities become similar hence so do their

equations of motion, charges and energies. Therefore we expect to see integrable

characteristics in the non-integrable model.
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Figure 2.3: Two truncated Qballs of initial internal frequencies ω1 = 0.9 and ω2 =
0.91 exchanging charge.

2.8.2 QBall anti-QBall collisions.

Another interesting interaction is the Qball anti-Qball interaction. As stated previously

an anti-Qball simply has an ω < 0 and therefore negative charge. An interesting

interaction occurs when, in the truncated model, we collide a Qball and an anti-Qball

each with velocity v = 0.9. This interaction is shown in Figure 2.4. We see that

the Qballs appear to pass through each other without interacting and neither of the

Qballs seem to lose charge.
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Figure 2.4: Charge density of a Qball anti-Qball with internal frequencies ω1 =
−ω2 = 0.9 boosted towards each other at v = 0.9.

This effect can be attributed to the lack of time for annihilation to occur.

Another interesting interaction in the truncated model is a slow, small charge, Qball

anti-Qball collision. We can simulate this by boosting a Qball and an anti-Qball

towards each other at v = 0.08, with the internal frequencies ω1 = −ω2 = 0.998.

On first inspection we would expect total annihilation. But the convergence with

the integrable model outlined above predicts minimal charge should be annihilated,

leaving two similar Qballs. On simulation the latter prediction proves to be correct.

Figure 2.5 shows how negligible charge has been annihilated in this non-integrable

model.
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Figure 2.5: Charge density of a Qball anti-Qball collision with internal frequencies
ω1 = −ω2 = 0.998. Each Qball was boost at v = 0.08, towards each other.

These interesting phenomena led us to add a Qball anti-Qball (ω1 = −ω2 = 0.9)

pair each with zero velocity and both at x = 0. Simulation of this zero charge

configuration is found to oscillate over a very long time as shown in Figure 2.6.
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Figure 2.6: Maximum squared field value for a Qball anti-Qball system with internal
frequencies ω1 = −ω2 = 0.9. Each Qball was placed on top of each other.

2.9 Forces between general Qballs.

For a field configuration of two well separated Qballs. The force exerted by one

Qball on the other can be found by calculating the rate of change of momentum in

a region containing one Qball, due to the presence of the second Qball. Using the

two Qball summation ansatz

φ = φ1 + φ2 = eiω1tf1 + eiω2t+iθf2, (2.9.1)

where f1 = f(ω1) and f2 = f(ω2) are each centred at ±α respectively with a phase

difference θ. It must be noted that this ansatz does not conserve charge for varying

α. But this ansatz, (2.9.1), is suitable as a well separated static approximation. We
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can calculate the force, F , between two Qballs by taking the time derivative of the

momentum, P , over a large interval [x+, x−] as

F =
dP

dt
=

∫ x+

x−

∂tp dx. (2.9.2)

Instead of performing this integration, (2.9.2), we can again use the continuity

equation, ∂tp = ∂xj
p, giving

F =

∫ x+

x−

∂xj dx =

[
−|φ̇|

2 − |φ′|2
F (|φ|) +W (|φ|)

]x+

x−

. (2.9.3)

Now using the above summation ansatz and due to the soliton tails, |φ| ≈ 0, at

x+, x− we only need to keep terms up to quadratic order in φ. This gives

F = − [|∂tφ1|2 + |∂xφ1|2 − φ1φ̄1 + |∂tφ2|2 + |∂xφ2|2 − φ2φ̄2

]x+

x−
(2.9.4)

− [
∂tφ1∂tφ̄2 + ∂xφ1∂xφ̄2 − φ1φ̄2 + ∂tφ2∂tφ̄1 + ∂xφ2∂xφ̄1 − φ2φ̄1

]x+

x−
.

We can simplify (2.9.4) further by using the fact that for a single Qball j = 0. Hence,

when evaluated at x±, the top bracket must vanish for two well separated Qballs.

Re-expressing φ in terms of f, ω and a phase difference θ we gain an expression for

the force

F = 2 cos((ω2 − ω1)t+ θ) [(1− ω1ω2)f1f2 − ∂xf1∂xf2]x+

x−
. (2.9.5)

For this expression, (2.9.5), of the force to be physically sensible we need the total

force on a region containing two Qballs to be identically zero. Choosing a region

[x+, x−] which contains two Qballs each centred at ±α where |x+|, |x−| >> |α|. We
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can the linearise the two profile forms for large |x| as

f1(x >> −α) ∼ Cω1e
−a1(x+α), (2.9.6)

f2(x << α) ∼ Cω2e
a2(x−α).

Cωi
is some positive function of ωi that is dependent on the model. Substituting

these into (2.9.5) gives,

F [x+, x−] = 4Cω1Cω2 cos((ω2−ω1)t+θ)(1+a1a2−ω1ω2)sinh((a2−a1)L) exp(−α(a1+a2)).

(2.9.7)

This is the total force on an interval, [x−, x+] = [−L,L], that contains the two

Qballs. We find that (2.9.7) is zero if and only if ω1 = ω2. Hence the above

analysis only works for two Qballs with the same internal frequency ω. Therefore

we are restricted to ω1 = ω2 = ω. If we evaluate F over the interval (L,∞], where

0 < L < α, and note that due to f(x = ∞) = 0 there is no contribution to the

force at x = ∞. Then on substitution of the linearised forms of f into (2.9.5) and

evaluating at L we gain

F = −4C2
ωa

2 exp(−2αa) cos θ. (2.9.8)

(2.9.8) is independent of the position L and reduces to zero for infinite separation.

For two Qballs with phase θ = 0 it is known that there is an attractive force

between them [2]. This is shown in (2.9.8) where F < 0, hence attractive. Also it

is known, [33–35], that two Qballs which are exactly out of phase, θ = π, repel and

this is again verified as F > 0.

For the non-integrable case (F = 1) we have a potential of the form

W = |φ|2 − |φ|4 + β|φ|6, (2.9.9)
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where the function,

Cω =
2a√

1− 4βa2
. (2.9.10)

This gives an interaction force

FQB = − 16a4

1− 4βa2
cos θe−2aα. (2.9.11)

In the complex sine-Gordon case F = 1− φφ̄, W = φφ̄ and Cω = −16a2 giving

FCSG = −16a4e−2αa cos θ. (2.9.12)

(2.9.11) and (2.9.12) show that for β = 0 two complex sine-Gordon solitons have the

same interaction force as the force between two Qballs in the truncated model. Also

in the small charge limit, a → 0, the usual Qball model, the truncated model and

the complex sine-Gordon model all have the same interaction force. In this limit the

respective charges, energy and equations of motion all converge. This shows that

two small charged, well separated, Qballs will behave similarly irrespective of the

model. Hence we expect to observe some integrable characteristics starting to occur

in the non-integrable models in the small charge limit, as previously numerically

shown.

2.10 Qball perturbation.

A general property of field theories is that we can perturb their minimum energy

field configurations by a small amount. In the Qball model this has to be performed

in a charge conserving manner. Due to the non-static internal phase this gives two

main classes of perturbation; spatial perturbations and an internal space perturbations.

These perturbations supply the Qball with energy causing it to oscillate about

its charge specific minimum energy solution. These oscillations can manifest in a

number of different ways depending on the nature of the model. In a non-integrable



2.10. Qball perturbation. 29

model the Qball oscillations are damped by consistently radiating energy.

2.10.1 Perturbations in the complex sine-Gordon theory.

Setting F = 1 − φφ̄ and W = φφ̄ in (2.7.4) gives the Complex Sine-Gordon

Lagrangian density. As stated above there are two main types of perturbations,

spatial and internal. For the perturbation to conserve charge Q,

Q = i

∫
(φ ¯̇φ− φ̄φ̇)

1− φφ̄ dx = 2ω

∫ (
f 2

1− f 2

)
dx. (2.10.1)

The simplest perturbations are:

1. The spacial perturbation

x → λx, (2.10.2)

f 2 → λf 2

1 + (λ− 1)f 2
.

2. Internal space perturbation

x → λx, (2.10.3)

φ → eiωtλf. (2.10.4)

We simulate the above perturbations by perturbing the minimum energy complex

sine-Gordon solution (2.6.3) for ω = 0.4. Using the same technique as previously

described we evolve the new initial conditions on a lattice of 25000 grid points, with

spacial separation ∆x = 0.02 and time steps ∆t = 0.001. To replicate an infinite

line we implement absorbing boundary conditions. This stops radiation from being

reflected back into the bulk and causing secondary perturbations. After every 4000

time steps we plot the field value at the origin, |φ(0)|, giving Figure 2.7.
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Figure 2.7: |φ(0)| of a perturbed complex sine-Gordon soliton with internal
frequency ω = 0.4.

Figure 2.7 shows that the two perturbations give rise to almost exactly the same

oscillations, and there is more than one excited mode. This led us to numerically

calculate a power spectrum of the data in Figure 2.7, giving Figure 2.8.

The Power spectrum shows the relative distribution of energy in each oscillation

mode and the vibrational frequency of that mode. This is achieved by first normalising

the data in Figure 2.7, giving φ(0)N , then numerically evaluating

P (Ω) =

∫ ∞
−∞

eiΩt|φ(0)N |dt, (2.10.5)

where P (Ω) is the power spectrum. The power spectrum, P (Ω), in Figure 2.8

shows the oscillatory modes and their relative excitations in the complex sine-Gordon

model.
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Figure 2.8: Power spectrum density of a perturbed complex sine-Gordon soliton
with internal frequency ω = 0.4.

2.10.2 Normal Qball perturbations.

As previously detailed for any perturbation to be consistent it must conserve Q,

Q = i

∫
(φ ¯̇φ− φ̄φ̇)dx = 2ω

∫
f 2dx. (2.10.6)

Due to the non-integrable Qball theory not having a fractional sigma term, in its

Lagrangian density, the charge conserving perturbations take the different forms:

1. Spacial perturbation

x→ λx, f →
√
λf. (2.10.7)

2. Combined internal and spacial perturbation

x→ λx, ω → λω. (2.10.8)
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Using the same technique as outlined above, for the complex sine-Gordon model,

we can simulate the behaviour of a perturbed Qball. One thing to be noted is that

the non-integrable Qballs do not need to have a lattice spacing and time step as

small as the complex sine-Gordon model; for these simulations we used a lattice of

24000 grid points with a spacing ∆x = 0.05 and time step ∆t = 0.01. Absorbing

boundary conditions were implemented, which in this case played a more significant

role, due to the perturbed Qball continuously radiating. If we again record |φ(0)|
every 4000 time steps for both perturbations we gain Figure 2.9.
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Figure 2.9: |φ(0)| of a perturbed truncated Qball with internal frequency ω = 0.85.
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Figure 2.9 clearly shows that the purely spacial and the combined perturbations

excite the same modes, but with different relative energies. Calculating the power

spectrum for the data in Figure 2.9 gives Figure 2.10; which shows that there are two

oscillatory modes. It is worth noting that the non-integrable model has a vibration

mode of Ω > 1 which is outside of the region of ω for a stable Qball.
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Figure 2.10: Power spectrum density of truncated Qball with internal frequency
ω = 0.85.
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2.11 Perturbation moduli approximation.

We used a moduli approximation to understand what each of these vibrational

modes physically represent. To do this, for the non-integrable model, we perturb

(2.2.1) and then solve the subsequent equations of motion with respect to two real

moduli, α(t) and θ(t). Choosing a more general perturbation of the internal space

as

φ = αeiθf(x), (2.11.1)

then simplifying components of the resulting Lagrangian density as,

∫
φ̇ ˙̄φ = (α̇2 + α2θ̇2)I2,∫

|φ′|2 = α2Ix,∫
|φ|2 = α2I2,∫
|φ|4 = α4I4,∫
|φ|6 = α6I6.

We gain the Lagrangian density

L = (α̇2 + α2θ̇2)I2 − α2Ix − α2I2 + α4I4 − βα6I6.

We can then vary this Lagrangian with respect to the real moduli, α and θ, giving

the two equations of motion

α̈I2 − αθ̇2I2 + α(Ix + I2)− 2α3I4 + 3βα5I6 = 0 (2.11.2)

2α̇θ̇ + αθ̈ = 0. (2.11.3)

To solve these coupled equations for a small perturbation we set θ̇ = ω + η̇ and
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α = 1 + ε, where η << 1 and ε << 1. From (2.11.3) we gain

η̇ = −2ωε+ c

where c is a constant of integration. Substituting this into (2.11.3) gives a differential

equation for ε,

ε̈I2 + ε(3ω2I2 + Ix + I2 − 6I4 + 15βI6)− ω2I2 + Ix + I2 − 2I4 + 3βI6 = 0.

Hence the system oscillates at

Ω =

√
3ω2I2 + Ix + I2 − 6I4 + 15βI6

I2

.

Calculating all the necessary integrals, I, we can verify this for a single truncated

Qball as

Ω =

√(
20ω2 − 8

3

)
. (2.11.4)

So for an ω = 0.85 we find Ω = 1.47. This is in very close agreement to the power

spectrum of the previous simulation of a perturbed truncated Qball, with internal

frequency ω = 0.85, which has a oscillatory mode at Ω = 1.45. From this we believe

the upper frequency vibrational mode to be caused by a perturbation in internal

space.

2.12 Qball minor-Qball coupling.

In section 2.10.2 on calculation of the power spectrum we noticed that there were

two main vibrational modes, and in section 2.11 we have shown that the upper

frequency mode is due to a perturbation in internal space.

During the cycle of a perturbed Qball we noticed that the field configuration is

comparable to that of a complex sine-Gordon breather. Using this we are able to
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predict the creation of a second much smaller Qball under perturbation.

2.12.1 Complex sine-Gordon breather.

To construct a complex sine-Gordon breather we first need a two soliton solution of

the complex sine-Gordon model. The construction of a multi-soliton solution, by a

Bäcklund transformation of the complex sine-Gordon model, is highly involved and

slightly exceeds the focus of this thesis. Bäcklund transformations were first used by

differential geometers to iteratively create pseudo-spherical surfaces [36]. They link

two or more solutions, of the relevant equations of motion, together with solutions

of a dual model and Bäcklund parameters δi. Using a Lorentz boosted complex

sine-Gordon soliton solution centred at αi at time t = 0

φi = ai exp(iωi(t− vi(x− αi)))sech(aiγi(x− αi − vit)),

where γi is the Lorentz factor

γi =
1√

1− v2
i

.

Then defining an associated complex kink function defined as

ψi = −ai tanh(aiγi(x− αi − vit))− iωi. (2.12.1)

We can combine two complex sine-Gordon solutions φ1 and φ2 with two kink solutions

ψ1 and ψ2. This gives the two soliton complex sine-Gordon solution

φ1,2 =
(−δ1ψ̄2 + δ2ψ̄1)(δ1φ1 − δ2φ2) + (−δ1φ2 + δ2φ1)(−δ1ψ1 + δ2ψ2)

δ2
1 + (−φ̄1φ2 − φ̄2φ1 − ψ̄1ψ2 − ψ̄2ψ1)δ1δ2 + δ2

2

. (2.12.2)

This solution was first found in [30] using the Hirota method. It gives a two soliton

solution, φ1,2, via a superposition technique with Bäcklund parameters {δ1, δ2}. We
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can set the Bäcklund parameters to be

δi =

√
1− vi
1 + vi

. (2.12.3)

The way in which we create our complex sine-Gordon breather from (2.12.2) is by

setting αi = vi = 0 in (2.12.3). This places two complex sine-Gordon solitons on

top of each other, at the origin of the system, and has the field configuration

φB =
∆ω(a2e

iω2t cosh(x1)− a1e
iω1t cosh(x2))

(1− ω1ω2) cosh(x1) cosh(x2)− a1a2(cos(∆ωt) + sech(x1)sech(x2))
, (2.12.4)

where

∆ω = ω1 − ω2, xi = aix. (2.12.5)

It is simply seen in (2.12.4) that the system will oscillate with angular frequency

Ωc = ∆ω. This led us to hypothesize that for a small perturbation it is energetically

inexpensive for a Qball to create a second smaller Qball of internal frequency ω2. So

a perturbed Qball has the ability to lose energy by creating a second smaller Qball

as long as total charge is conserved.

To test this coupled Qball hypothesis we performed a simulation of two truncated

Qballs placed on top of each other using the initial condition

φ = eiω1tfω1 + eiω2fω2 . (2.12.6)

This ansatz is two minimum energy solutions place on top of each other with ω1 =

0.95 and ω2 = 0.99999. Using the above analysis we expect the system to oscillate

at Ωc = 0.9999 − 0.95 = 0.04999. Figure 2.11 shows that the two-Qball system

oscillates at Ω ∼ 0.055. This is very close to the predicted Ωc = ∆ω = 0.04999.

This minor deviation could be explained by numerical approximations and the two

Qball system not being integrable.
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Figure 2.11: Power Spectrum density of a truncated Qball coupled to a smaller
Qball with internal frequencies ω1 = 0.95 and ω2 = 0.99999.

We now have the ability to understand the oscillatory nature of the total charge

zero Qball anti-Qball superposition in section 2.8.2. If we calculate the power

spectrum of the data in Figure 2.6 we gain Figure 2.12. This shows that there is a

major oscillatory mode at Ω ∼ 1.8. This matches the value predicted by (2.12.4) of

Ωc = ∆ω = 1.8. This shows that the charge-less Qball anti-Qball system can also

enter into a breather state.
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2.13 Summary and conclusion.

We noticed that the soliton solution of the complex sine-Gordon model is actually a

Qball type solution. This motivated the observation that the standard Qball model

and the complex sine-Gordon model converge in the small charge limit. This led us

to realise that all the non-integrable Qball models posses a limit where they display

semi-integrable behaviour. We verified this behaviour by numerical simulations of

Qball-Qball collisions and breather states.

Using this semi-integrable behaviour we managed to gain an understanding of the

outcome of Qball collisions. We found the surprising resistance Qballs have to total

annihilation under Qball anti-Qball collisions. In the event of a collision not only

do the Qballs interact they also enter an excited perturbed state. These perturbed

states were found to have quite specific oscillatory modes, two of which we have
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been able to explain. We found the upper frequency mode to be a consequence

of a perturbation of internal space. The second major mode, the lower frequency

mode, was found to be caused by a second small (ω ∼ 1) Qball being formed which

absorbed the excess energy. We also found that small charge breathers exist for a

long period of time and radiate negligible amounts of radiation. This is similar to

the known complex sine-Gordon breather state. Also, the link between the complex

sine-Gordon model and the normal Qball model led us to formulate a new truncated

Qball model. This truncated model has stable soliton solutions based on a false

vacuum.



Chapter 3

Baby skyrmion chains.

3.1 Introduction.

The Skyrme model is a (3 + 1)-dimensional non-linear theory of pions and admits

topological soliton solutions, which describe baryons. In this chapter we are concerned

with a lower dimensional analogue, known as the baby skyrmion model [1,38]. As a

lower dimensional analogue of the Skyrme model the baby skyrmion model can be

used to guide investigations of the Skyrme model. Hence the baby skyrmion theory

can be used to aid the application of the Skyrme theory to nuclear physics. In this

chapter we present alternative numerical solutions. These solutions are new baby

skyrmion chain solutions, which have lower energy than those found previously.

These chains are good candidates for the global minimum energy solutions. The

baby skyrmion model also has applications in condensed matter physics [6, 39];

but this goes beyond the scope of this thesis. The baby skyrmion model has the

Lagrangian density

L =
1

2
∂µφ · ∂µφ− κ2

4
(∂µφ× ∂νφ) · (∂µφ× ∂νφ)−m2(1− φ3), (3.1.1)

41
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where the field is a three component scalar, φ = (φ1, φ2, φ3), and takes its value on

the unit sphere, φ · φ = 1.
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Theory (3.1.1) is a modifiedO(3)-σ model which includes a fourth power derivative

and a symmetry breaking potential. The fourth power derivative is commonly known

as the Skyrme term. The Skyrme term coupled with the potential term gives rise to

a scale in (3.1.1). This scale means Derrick’s theorem, [21], does not exclude soliton

solutions in 2-dimensions. This potential is analogous to the pion mass term in the

(3+1)-dimensional Skyrme model. The positive constant κ in combination with the

mass, m, determines the size of the baby skyrmion as being proportional to
√
κ/m.

For finite energy φ has to be a constant at the spacial boundary thus we impose the

condition

lim
|x|→∞

φ = (0, 0, 1). (3.1.2)

This condition is the vacuum value of the potential in (3.1.1). The physical space

can now be one-point compactified, R2 ∪ {∞}, which is topologically equivalent to

S2. This compactification of the physical space and the compact target space gives

rise to the field configuration φ at fixed time being a map

φ : S2 → S2. (3.1.3)

Such maps can be classified by the homotopy class π2(S2) = Z. This gives the model

a topological degree, otherwise known as a topological charge B. The topological

charge of the map φ can be calculated using the pull back of a normalised area form

ω, from the target S2, as

B = deg[φ] (3.1.4)

=

∫
R2

φ∗ω d2x

= − 1

4π

∫
R2

φ · (∂1φ× ∂2φ)d2x,

=

∫
R2

j(x1, x2) d2x. (3.1.5)
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Here j is defined as the topological charge density.

The aim of this chapter is to discuss the structure of static multi-charge solutions,

focusing on the chain-like structure. We show that these chain solutions could be

the minimum energy configurations of multi-charge baby skyrmions. Firstly we

shall outline the well known symmetry reduction technique used to calculate charge

one and two baby skyrmions. Then we shall discuss the numerical computation of

higher charge structures, producing the minimum energy chain configurations. We

then extend our investigation to include periodic spaces, firstly investigating infinite

chains on R1 × S1 and then baby skyrmion crystal structures on the torus T2.

3.2 Topological charge one and two.

Static baby skyrmions are energetic minima of the energy associated with (3.1.1)

namely,

E =

∫
R2

(
1

2
∂iφ · ∂iφ+

κ2

2
|∂1φ× ∂2φ|2 +m2(1− φ3) +

1

2
λ(1− φ · φ)

)
d2x.

(3.2.1)

The static field equation found from the variation of (3.2.1) is the highly non-linear

partial differential equation

0 = ∂i∂iφ+m2e3 + λφ (3.2.2)

+ κ2 (∂i∂iφ(∂jφ· ∂jφ) + ∂iφ(∂i∂jφ· ∂jφ)− ∂i∂jφ(∂iφ· ∂jφ)− ∂jφ(∂i∂iφ· ∂jφ)) .

Here e3 = (0, 0, 1) and λ is a Lagrange multiplier to impose the constraint φ ·φ = 1

as,

λ = ∂iφ · ∂iφ−m2e3 · φ

+ κ2(∂iφ · ∂iφ(∂jφ · ∂jφ)− ∂jφ · ∂iφ(∂jφ · ∂iφ)).
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The only way to find solutions of (3.2.2) is to use a numerical technique. Throughout

this chapter we used a gradient flow numerical minimisation scheme. This minimises

(3.2.1) by relaxing the partial differential equation (3.2.2). A very effective simplification

of (3.2.1), and hence its corresponding field equation (3.2.2), is to use the underlying

symmetry of an O(2) rotation in the physical space. This rotation can be neutralised

by an iso-rotation of the target space. This technique is known as the Hedgehog

ansatz and is covered extensively in [38]. Here it is shown that the field, φ, can be

re-expressed with axial symmetry in terms of a profile function, f(r), and a polar

angle, θ, as

φ(x) = (sin f cos(Bθ − χ), sin f sin(Bθ − χ), cos f), (3.2.3)

with a phase χ ∈ [0, 2π). The profile function, f(r), takes the values f(0) = π

and f(∞) = 0. Using this simplification the static energy (3.2.1) becomes

E = 2π

∫ ∞
0

(
1

2
f ′

2
+ (1 + κ2f ′

2
)
B2

2r2
sin2 f +m2(1− cos f)

)
rdr. (3.2.4)

Varying (3.2.4) gives

0 = f ′′
(
r +

κ2B2 sin2 f

r

)
+ f ′

(
1− κ2B2

r2
sin2 f + f ′

κ2B2

2r
sin(2f)

)
(3.2.5)

− B2

2r
sin(2f)−m2r sin f.

For comparative consistency with [38] we chose κ = 1 and m2 = 0.1. A gradient

flow algorithm is then implemented using (3.2.5) to minimise (3.2.4). The minimum

energies for B = 1 and B = 2 are found to be E1 = 19.66 and E2 = 36.90

respectively. These energies are within 0.03% agreement with the results of [38].

The profile functions for these solutions are then used to generate the 2-dimensional

topological charge density plots in figure 3.1.

It is known that the minimal energy solutions are not axially symmetric for
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Figure 3.1: Two-dimensional plots of the topological charge density, j, of baby
skyrmions with B = 1 on the left and B = 2 on the right.

B > 2 [38]. Only B = 1, 2 minimum energy baby skyrmion solutions can be

calculated using the above method. For B > 2 this approach creates ring baby

skyrmion structures. These are not stable to perturbations and break the axial

symmetry. Therefore to calculate B > 2 minimum energy baby skyrmions full field

two-dimensional gradient flow is required.

3.3 Larger charge baby skyrmions B > 2.

For B > 2 it is known, [38], that axially symmetric solutions are not stable to

perturbations which break axial symmetry. To proceed we solve the static field

equation, (3.2.2), using a 2-dimensional gradient flow algorithm. To create multiple

baby skyrmion initial conditions it is conducive to use the stereographic coordinates

W =
φ1 + iφ2

1 + φ3

. (3.3.1)

Then using the previous Hedgehog ansatz we can create n baby skyrmions of topological

charge Bi, each with field configuration centred at φi(xi, yi). Using the stereographic

coordinates (3.3.1) and summing these configurations as,

W =
n∑
i

Wi. (3.3.2)
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Then under the inverse stereographic projection we gain a smooth field configuration

of multiple baby skyrmions. With topological charge

B =
n∑
i

deg[φi].

A sum of n charge one baby skyrmions in stereographic coordinates (3.3.1),

equally separated on a circle, with arbitrary phase is used as an initial condition.

This configuration is then numerically minimised using gradient flow, on a 200 ×
200 lattice with a spacing of ∆x = 0.2, using fourth-order accurate derivatives.

As a comparison, which validates the two-dimensional minimisation algorithm, the

minimum energies of the B = 1 and B = 2 are calculated to be E1 = 19.65

and E2 = 36.90. These B = 1, 2 values differ slightly from the two-dimensional

results in [38], [40] and [41]. The previously published results seem to differ by

1% compared to the greater accuracy axial solutions. Our results are in better

agreement with the previous dimensionally reduced solutions, with E1 = 19.66 and

E2 = 36.90. We also have a closer agreement with the dimensionally reduced results

of the collective literature. We believe our slightly greater accuracy is due to the

use of the fourth-order accurate finite differences in comparison to the second-order

differences commonly used.

3.3.1 Topological charge B = 3, 4.

Minimisation of B = 3, 4 initial conditions reveal energies of E3 = 55.58 and E4 =

73.61. These are close to the previous literatures energies plus a 1% perceived

discrepancy in their computations. We also gain similar charge density distributions

as in [38], shown in figure 3.2.

The configurations for B = 1, 2, 3, 4 which we obtain are essentially identical to

those of [38]. The first major difference between our results and the results contained

in [38] arises at B = 5.
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Figure 3.2: Two-dimensional plots of the topological charge densities, j. For the
B = 3 baby skyrmion on the top and the B = 4 baby skyrmion on the bottom.

3.3.2 Topological charge B = 5.

A configuration of five B = 1 baby skyrmions, equally spaced to form a ring,

each with a random relative phase, χ, is used as the initial condition. This initial

configuration gradient flows to the chain configuration shown in Figure 3.4. This

configuration has energy E5 = 92.02 and is different to the B = 3 + 2 solution

proposed in [38]. By setting up a system of baby skyrmions as in figure 3.3, which

possesses an underlying symmetry about the y-axis, we are able to minimise to a

B = 3 + 2 solution with an energy of E = 92.41.

Therefore we believe our chain solution is of a lower energy. A third justification

of our results is shown in figure 3.4. This figure shows that the initial condition,

of five B = 1 baby skyrmions in a ring, flows through a slightly perturbed 3 + 2

solution, and minimises to a chain configuration. This shows that the chain solution
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Figure 3.3: Two-dimensional plots of topological charge density, j. On the left five
B = 1 baby skyrmionswhich was used as initial conditions to create the B = 3 + 2
solution on the right.

must be of a lower energy than the accepted 3 + 2 modular solution. We believe the

3 + 2 solution is a very long lived saddle point in the energetic landscape. Also, [42]

has a B = 5 static chain configuration for a potential term of the form m2(1−φ3)0.9,

but there seems to be no comment on this new configuration.
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Figure 3.4: Two-dimensional plots of topological charge density, j, of a B = 5 baby
skyrmions. A perturbed version of the previously accepted B = 3 + 2 configuration
on the left which then flows to the new B = 5 chain on the right.

3.3.3 Topological charge B = 6.

The next configuration which differs from the common results of the literature is the

B = 6 case. Using a circle of six B = 1 baby skyrmions as the initial configuration

led to a minimum energy configuration similar to the B = 6 configuration presented

in [38]. This is a configuration of three B = 2 baby skyrmions located at the

vertices of an equilateral triangle as in figure 3.5. We found the minimum energy of

this triangular solution to be E∆
6 = 110.30. This configuration does not match with
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the incremental structure common to all the previous lower charge configurations.

This deviation from the chain form led us to minimise the energy of a row of six

out of phase baby skyrmions. This produced a B = 6 chain of static energy E6 =

110.22. Due to the difference in energy being less than 0.1% we believe the triangular

structure to be a local minimum energy configuration.

Figure 3.5: Two-dimensional plots of the topological charge densities, j. The
previously accepted B = 2 + 2 + 2 baby skyrmion triangular configuration on the
left and the new B = 6 chain solution on the right.
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3.3.4 Topological charge B > 6.

For topological charges 6 < B ≤ 10 we systematically found the minimum energy

solution to be a baby skyrmion chain. We also energetically minimised some larger

charges, namely B = 20, 21, and were again able to find chain solutions.

B E E/4πB
1 19.65 1.564
2 36.90 1.468
3 55.58 1.474
4 73.61 1.464
5 92.02 1.464
6 110.22 1.462
7 128.55 1.461
8 146.81 1.460
9 165.11 1.460
10 183.38 1.459
20 366.20 1.457
21 384.48 1.457

Table 3.1: Minimum energies of charged baby skyrmions

One of the features of the chains is that for large topological charge the central

body appears to be made of uniform, overlapped charge one baby skyrmions. Also

the topological charge density tends to be less uniform nearer the ends of the chain,

where upon they appear similar to highly perturbed topological charge two baby

skyrmions. These B = 2 baby skyrmions seem to ‘cap’ the ends of the chain, as in

figure 3.6 for B = 20.

Apart from the exceptional case of B = 3 the general trend, as observed in figure 3.7,

is that the energy per-unit topological charge decreases with increasing topological

charge. On top of this general trend there is a finer structure that differentiates

between even and odd B.

This is because even B baby skyrmion chains can be interpreted as a modular

structure of tightly bound B = 2 baby skyrmions. The odd B baby skyrmion chains

again have the same B = 2 modular structure but also with an extra, less tightly

bound, B = 1 baby skyrmion. The asymptotic energy per-unit topological charge
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Figure 3.6: Two-dimensional plot of the topological charge density, j, of the B = 20
baby skyrmion chain.

with the periodic nature of the central topological charge density, as shown in Figure

3.6. This motivated the calculation of the energy per-unit topological charge of an

infinitely charged baby skyrmion chain. This is described in the next section.

3.4 Baby skyrmions on a cylinder.

This section is similar to the work in [43]. The aim is to calculate the minimum

baby skyrmion energy per-unit topological charge of an infinitely topological charged

chain. As presented in [38] it can be shown that two well separated baby skyrmions

have an interaction energy, that depends on a relative phase ∆χ. This can be

calculated using a dipole approximation to be

Eint =
p2m2

π
K0(mR) cos(∆χ). (3.4.1)

HereK0 is the order zero modified Bessel function, p is a numerically found asymptotic

decay constant and R is the large separation distance. (3.4.1) shows that the relative
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Figure 3.7: Plot of energy per-unit charge, in units of 4π, against the topological
charge of the baby skyrmion chain.

phase, ∆χ, of two baby skyrmions dictates the type of interaction. For ∆χ = 0 the

baby skyrmions repel, and for ∆χ = π they attract. Hence to create a stable chain

of interacting baby skyrmions we have to start with an anti-periodic chain of B = 1

baby skyrmions. To proceed the same numerical procedure as outlined above is

implemented. Instead of imposing φ = e3 at the boundaries, we imposed periodic

boundary conditions in the y-direction. We then vary the length of the periodic

y-direction to find the minimum energy as shown in Figure 3.8. Due to the smaller

lattice size than the infinite plane case ∆x = 0.08 is used for a greater energy

resolution.

This shows a minimum energy for a cell of periodic length L = 8.56 for κ = 1

and m =
√

0.1. The minimum energy for a baby skyrmion on a cylinder is found

to be Emin = 1.4549, this energy is the dashed line plotted in Figure 3.7, which is
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Figure 3.8: Plot of baby skyrmion chain energy per-unit charge, in units of 4π, for
a varying periodic cell length, L.

consistent with the asymptotic of the curve in Figure 3.7.

3.5 Baby skyrmion on a torus

To discover the minimum energy per-unit topological charge of a baby skyrmion

crystal we need to impose periodic boundary conditions. Hence the physical space

is now a 2-torus, so

φ : T2 → S2. (3.5.1)

It is already known that the topological charge density of the minimum energy

configuration forms a hexagonal lattice [44]. Each hexagon hole effectively represents

a charge of B = 1/2. For numerical simplicity it is easier to study a hexagonal

configuration by working on a fundamental rectangular torus of size L′ ×√3L′, as
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in [45]. Note that the space is still discretized on a regular rectangular lattice. This

fundamental torus has the geometry to contain eight hexagons, hence a B = 4 initial

configuration is needed. To proceed we used the above algorithm to energetically

minimise two B = 2 baby skyrmions, on a L′×√3L′ bi-periodic lattice. The length

L′ is then varied to find how the minimum energy varies with cell size, giving figure

3.9.

 1.46

 1.48

 1.5

 1.52

 1.54

 1.56

 1.58

 1.6

 6  8  10  12  14  16  18  20

E
/ 4

πB

y-direction length

Torus energy
Double length cylinder energy

Figure 3.9: Plot of baby skyrmion chain and lattice energy per-unit topological
charge, in units of 4π, for varying periodic cell lengths L and L′.

The result is that the natural unit cell size for a baby skyrmion lattice is a cell

of size L′ = 10.4, for κ = 1 and m =
√

0.1. Figure 3.9 also has the energy per-unit

topological charge data for the cylinder case, where the periodic length is doubled to

allow for a B = 4 unit cell. This shows that as the fundamental rectangle becomes

large the baby skyrmion behaves as if it were on a cylinder. So the baby skyrmion

configuration for increasing fundamental rectangle first starts off as a compressed
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crystal, then a hexagonal crystal, then a deformed chain, then an energetically

minimum chain and finally a single B = 4 baby skyrmion. One of the main points

of interest of the torus case is that the minimum energy of a lattice, Elatt = 1.4555,

and the minimum B = 4 infinite chain, Echain = 1.4549, are well within 0.05%.

This difference in energy is smaller than the numerical accuracy. So we cannot

conclude which is the lower energy solution; only that the two configurations have

very comparable energies.

Figure 3.10: Two-dimensional plot of the topological charge density, j, of a B = 4
baby skyrmion on a torus.

3.6 Conclusion

We have presented new minimum energy solutions for multi-charge baby skyrmions.

This discrepancy, between our solutions and the previously accepted solutions, is

believed to be due to the extra computing power now available. This has allowed

us to find lower energy solutions for B ≥ 5. This has led to the proposal that

baby skyrmion minimum energy configurations are chains. We are confident in this
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result because of the smooth lowering of energy, per-unit topological charge, for

increasing topological charge configurations. Also, the energy per-unit topological

charge asymptotes to the periodic chain energy per-unit topological charge case.

This shows the increasing stability as the topological charge of a chain grows.

The planar hexagonal lattice and the periodic chains minimum energies are too

similar to be able to identify the preferred configuration. This energetic similarity,

between the hexagonal lattice and the chain energies, is similar to the negligible

difference between the commonly accepted B = 2 + 2 + 2 solution and the B = 6

chain solution. The energetic similarity between the B = 2 + 2 + 2 and the B = 6

chain is an exact analogue to the (3 + 1)-dimensional Skyrme model. In the Skyrme

model it is found that the B = 12 solution can be either: a linear chain of three

B = 4 skyrmions, or three B = 4 skyrmions each placed at a vertex of an equilateral

triangle, [46]. These two configurations again have similar energies.

An interesting extension to this work would be to extend the numerical algorithms

to higher orders. With the aim to confidently identify the minimum energy periodic

space topological charge configuration. Also it would be interesting to see if similar

chain solutions are also minimum energy solutions to the (3+1)-dimensional Skyrme

model.



Chapter 4

Baby skyrmion stabilized by a

vector meson.

4.1 Introduction.

As discussed in the previous chapter the baby skyrmion model can be motivated as

a lower dimensional analogue of the full (3 + 1)-dimension Skyrme theory [7]. The

Skyrme theory is a non-linear theory of pions, where the topological degree of the

field is interpreted as the baryon number. The (3+1)-dimensional Skyrme theory is

stable under Derricks theorem, [21], because its Lagrangian has a sigma term, which

is quadratic in derivative, and a Skyrme term which is quartic in derivatives. It has

been shown, [47], that if the Skyrme term is removed and the theory is coupled

to a vector field using the charge density. Then there is still a stable topological

charge one soliton solution. Numerically it has been shown that charge specific

solutions of this modified model share qualitative features with those of the usual

Skyrme theory. For topological charge one the modified theory also has spherically

symmetric solutions [47]. Due to the extra computational intensity needed for larger

topological charges this analysis has only been performed using the rational map

59
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ansatz [20]. This constrains the system with a certain symmetry.

Here we are interested in a (2 + 1)-dimensional modified O(3)-sigma model. Unlike

the baby skyrmion model this model does not have a Skyrme term. This model

is stabilised by including a massive vector meson coupled to the topological charge

density. We find that the charge specific solutions of this model are qualitatively

similar to those of the baby skyrmion model and their energies are comparable.

This is a justification of the symmetry ansatz used in the analysis of the (3 +

1)-dimensional Skyrmion coupled to a vector meson [48]. For clarity, in the remainder

of this chapter, we shall refer to the baby skyrmion stabilised by a vector meson

model simply as the vector meson model.

4.2 Baby skyrmion model stabilised by a vector

meson.

Removing the Skyrme term from the baby skyrmion model and including a vector

field gives a theory described by the Lagrangian density [1]

LVM =
1

2
∂µφ · ∂µφ−m2

π(1− φ3) (4.2.1)

− 1

4
(∂µων − ∂νωµ)(∂µων − ∂νωµ) +

1

2
m2
ωωµω

µ + gωµj
µ.

Where we have defined the two masses mπ and mω which are the pion and vector

field masses respectively. The vector field, ωµ, is coupled to the topological charge

current, jµ, of φ by a positive constant g. In this planar model the vector field,

ωµ, can be interpreted as the lower dimensional analogue of the vector field in the

(3 + 1)-dimensional Skyrme theory coupled to a vector meson [48].

As in the baby skyrmion model, due to the finite energy criteria, φ(r → ∞) =

(0, 0, 1) so the field is a map φ : R2 ∪ {∞} ∼ S2 → S2. This map belongs to the

homotopy class π2(S2) = Z 3 B hence each field, φ, has an associated topological
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degree B. Each field, φ, cannot be smoothly altered to have a new topological

invariant. So the configuration spaces for separate B are not connected. We define

the topological degree as the topological charge, B. The topological charge can be

calculated from the conserved topological current,

jµ = − 1

8π
εµαβφ · (∂αφ× ∂βφ), (4.2.2)

as

B =

∫
R2

j0d2x. (4.2.3)

This is found in a similar way as the topological charge density j, in the previous

chapter. However, instead of an area form being pulled back by φ(x) to R2, the

normalised 2-form is pulled back by φ(x, t) to R2 × R.

Our research is concerned with static fields hence it is convenient to work with

the static energy

EVM =

∫
R2

(
1

2
∂iφ · ∂iφ+m2

π(1− φ3) (4.2.4)

− 1

2
(∂iω)2 − 1

2
m2
ωω

2 +
gω

8π
εijφ · (∂iφ× ∂jφ))d2x.

For static fields the spacial components of the topological current, (4.2.2), all equal

zero, ji = 0. ji is the source for ωi. So in the static limit there is no coupling with

the spacial components of the vector field. For simplicity we have set ω0 ≡ ω and

ωi ≡ 0 in (4.2.4). A point worth noting is that the vector field, ω, is constrained

by its equation of motion. This stops the ω field from becoming very large and

making the energy, (4.2.4), negative. In this chapter we shall denote the energy

associated with the vector meson model as EVM , and the energy associated with

the normal-baby skyrmion model as EBS. Varying the energy (4.2.4) gives the two
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static field equations

∂2
iφ+m2

πe3 +
g

4π
εij∂jωφ× ∂iφ+ (∂iφ · ∂iφ−m2

πφ3)φ = 0, (4.2.5)

∂2
iω −m2

ωω +
g

8π
εijφ · (∂iφ× ∂jφ) = 0. (4.2.6)

If we multiply (4.2.6) by ω and substitute it into (4.2.4). Then after an integration

by parts the energy can be rewritten as

EVM =

∫
R2

(
1

2
∂iφ · ∂iφ+m2

π(1− φ3) +
g

16π
ωεi,jφ · (∂iφ× ∂jφ)

)
d2x. (4.2.7)

To leading order we can approximate (4.2.6) by assuming ω varies negligibly when

compared to φ, and also for large enough mω. Then neglecting the Laplacian term

we find

ω =
g

4π2m2
ω

φ · (∂1φ× ∂2φ) +O
(
∂2
iω

m2
ω

)
.

This gives an approximate solution for ω which we can substitute into (4.2.7)

giving

EVM w
∫

R2

(
1

2
∂iφ · ∂iφ+m2

π(1− φ3) +
g2

32π2m2
ω

|∂1φ× ∂2φ|2
)
d2x. (4.2.8)

If we identify κ from the previous baby skyrmion chains chapter as

κ =
g

4πmω

,

we gain the static energy for the normal-baby skyrmion model. Therefore, for large

mω, we expect this vector meson model to have similar topological charge specific

solutions as the baby skyrmion model. We show this similarity numerically in the

next section. So that we can compare this model directly with the previous baby

skyrmion chapter we chose mπ
2 = 0.1 and κ = 1. We also chose the ratio of mπ/mω

to be similar to the ratio used in the analysis of the (3 + 1)-dimensional skyrmion
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coupled to a vector field [48], hence mω = 3/2.

4.3 Soliton solutions.

4.3.1 Topological charge B ≤ 2.

As discussed in the baby skyrmion chains chapter it is expected that the topological

charges one and two minimum energy solution, of the vector meson model, will also

be axially symmetric. Again using the hedgehog ansatz

φ =
(

sin f(r) cosBθ, sin f(r) sinBθ, cos f(r)
)

(4.3.1)

where r and θ are the polar coordinates, and a profile function, f(r), which satisfies

f(0) = π and f(∞) = 0. This gives a topologically non-trivial ansatz for the field φ.

For the vector field, ω, we choose ω(r) with the boundary conditions ω′(r = 0) = 0

and ω(∞) = 0. These conditions are required by regularity and the finite energy

criteria. Using this ansatz we gain the energy as a function of r,

EVM = π

∫ ∞
0

(
f ′2 +

B2 sin2 f

r2
+ 2m2

π(1− cos2 f)− ω′2 −m2
ωω

2 +
gBωf ′ sin f

2πr

)
rdr.

(4.3.2)

Varying this energy, (4.3.2), yields the axial partial differential equations

0 = f ′′ +
f ′

r
− B2 sin f cos f

r2
−m2

π sin f +
gBω′ sin f

4πr
, (4.3.3)

0 = ω′′ +
ω

r
−m2

ωω +
gBf ′ sin f

4πr
. (4.3.4)

It is worth noting that, by symmetric criticality [49], we would have arrived at

the same axial differential equations, (4.3.3) and (4.3.4), if we had substituted the

ansatz (4.3.1) and the radial expression, ω(r), into (4.2.5) and (4.2.6).

We can solve (4.3.3) and (4.3.4) using a heat flow type method, where we numerically
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gradient flow (4.3.3) and evolve (4.3.4) at the same time. For B = 1 we find

EVM
1 = 19.66 where we have chosen g = 20.83. This is chosen so the vector

meson model has the same energy as the topological charge one baby skyrmion,

EBS = EVM . This energetic choice of g is slightly larger than that found in

the previous analysis, g = 4πmωκ ≈ 18.85. This small difference is due to the

approximation of the removal of the Laplacian term in (4.2.6). With the energetically

chosen value of g Figure 4.1 shows that for B = 1, 2 the profile functions, f(r), only

slightly differs from those found in the normal baby skyrmion model. Also Figure

4.2 shows the form of the vector field, ω(r), which as expected is located about the

topological charge density.
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Figure 4.1: The profile functions, f(r), of the usual baby skyrmion model compared
to the vector meson model for B = 1, 2.

As discussed in the previous baby skyrmion chains chapter, for this choice of
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potential the B > 2 minimum energy solutions are no longer axially symmetric.

Therefore we expect the B > 2 vector meson model minimum energy solutions also

not to be axially symmetric.
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Figure 4.2: The vector fields, ω(r), for the axial B = 1, 2 vector meson model.

B EBS EBS/B EVM EVM/B
1 19.66 19.66 19.66 19.66
2 36.90 18.45 37.32 18.66
3 55.58 18.53 56.19 18.73
4 73.61 18.40 74.48 18.62

Table 4.1: Charge specific comparison of energy between the baby skyrmion model,
EBS, and the vector meson model, EVM .

4.3.2 Topological charge B > 2.

To find potentially non-axially symmetric soliton solutions of the coupled partial

differential equations (4.3.3) and (4.3.4), for B > 2, we perform the same heat
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flow type minimisation as described above. The minimisation was performed on a

two-dimensional lattice of 250 × 250 points, with spacing ∆x = 0.2, using fourth

order accurate derivatives. This lattice is found to be large enough to contain a

soliton which can smoothly attain its vacuum value, without an energetic penalty.

We can create topologically non-trivial initial conditions using the hedgehog ansatz

(4.3.1). Which we then minimise to find the minimum energies in Table 4.1 and the,

1 6 B 6 4, topological charge density plots, j0(x), in Figure 4.3. For this choice

of g Table 4.1 shows that the charge specific energies of the two models are very

similar. In Figure 4.3 the plots on the left side are the topological charge densities

of the vector meson model; these are very similar to the topological charge densities

of the baby skyrmion model shown on the right. These very similar plots, and the

closely matching energies, show the remarkable similarity of the soliton solutions of

the two models.

4.4 Symmetric potential.

The choice of the potential in the baby skyrmion model is not general. In [40] the

authors proposed a new symmetric potential (4.4.1). This potential is invariant

under the transformation φ3 7→ −φ3,

V (φ) =
1

2
(1− φ2

3). (4.4.1)

This choice of potential, (4.4.1), has no contribution to the energy at the origin,

φ = (0, 0,−1), of the axially symmetric soliton. Baby skyrmions with this potential

are all axially symmetric. For B > 1 the maximum charge density is located on

a ring of constant radius [40]. Using the axial Hedgehog ansatz defined earlier we

can calculate the axially symmetric minimum energies for this potential. For both

the baby skyrmion model and the vector meson model we find the charge specific

energies in Table 4.2. Even though we have kept g = 20.83, from the previous
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Figure 4.3: Topological charge density plots for 1 6 B 6 4 from top to bottom. On
the left are minimum energy solutions of the baby skyrmion model and on the right
the vector meson model.

non-symmetric potential model, the energies are still very comparable between the

baby skyrmion and vector meson model. Also as shown in Figure 4.4 the charge

specific profile functions, f(r), are very similar between the vector meson model and

the baby skyrmion model, for this symmetric potential (4.4.1). Similar to the baby

skyrmion model, with a symmetric potential [40], the vector meson model also has

its maximum charge density located on a ring. This is shown by the minimum value

of ω in Figure 4.5. For all the discussed models Tables 4.1 and 4.2 show that we

have found bound states. We can verify that the symmetric solutions of the vector

meson model, with the symmetric potential (4.4.1), are minimum energy solutions

by minimising perturbed 1 6 B 6 4 solution of the Hedgehog ansatz (4.3.1). We
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used a 2-dimensional lattice as described above, but with the symmetric potential

(4.4.1), and again we found the same axial results.

B EBS EBS/B EVM EVM/B
1 18.18 18.18 18.30 18.30
2 32.91 16.46 33.28 16.64
3 48.29 16.10 48.82 16.27
4 63.89 15.97 64.58 16.15

Table 4.2: Charge specific comparison of energy between the baby skyrmion model,
EBS, and the vector meson model, EVM , with the symmetric potential (4.4.1).
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Figure 4.4: Plots of the profile functions, f(r), of the baby skyrmion model and the
vector meson model with the symmetric potential (4.4.1). For 1 ≤ B ≤ 4.
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Figure 4.5: Plots of the vector field, ω(r), of the vector meson model with the
symmetric potential (4.4.1). For 1 ≤ B ≤ 4.

4.5 Conclusion.

In this chapter we have numerically presented the remarkable similarities between

the baby skyrmion model and the new vector meson model. This model is stabilised

by coupling to a vector meson via the topological charge density. For topological

charges 1 ≤ B ≤ 4 we have shown that the two models have very similar, topological

charge densities. We have also shown that their energies are very similar. We also

presented this similarity for two different choices of potentials, where the potential

has a great effect on the form of the solutions. We have analytically understood

this similarity using a derivative expansion of the static vector meson field equation.

On substitution into the energy density this gives a Skyrme-term as in the baby

skyrmion model. This analysis is a lower dimensional analogue justification of the

rational map ansatz [20] used in [48].



Chapter 5

Hopf solitons.

5.1 Motivation.

The research presented in this chapter is my own results from part of an on going

collaboration with Dr. D. Harland and Prof. P. M. Sutcliffe. The collaboration

is concerned with formulating a string ansatz approximation for Hopfions in the

Skyrme-Faddeev model. We intend for this ansatz to have two degrees of freedom,

the string location and a continuous phase parametrized along the length of the

string. We aim for this reduced degrees of freedom model to be simpler than the

full Skyrme-Faddeev model and not present the relative computational intensity.

The cross-sections of Hopfion strings, in the normal Skyrme-Faddeev model, are

not symmetric and decay as a power. The string ansatz assumes the Hopfions are

actually compactons with symmetric cross-sections. We have added a potential term

to the Skyrme-Faddeev model to make it have a stronger correspondence with the

string model. Doing this increases the similarities between the two models, where as

we increase the coupling the Hopfions become increasingly localized in space. This

also reduces the strings self interaction. This research is still on going.

71
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5.2 The Skyrme-Faddeev model.

The Skyrme-Faddeev model is a (3+1)-dimension O(3)-sigma model [54] modified

by including a quartic term. This quartic term is known as the Skyrme term and is

required to provide a scale for Derricks theorem, [21], in 3-spacial dimensions. The

theory is described by the Lagrangian

L =
1

32π2
√

2

∫ (
∂µφ · ∂µφ− 1

2
(∂µφ× ∂νφ) · (∂µφ× ∂νφ)− 2m2V (|φ|)

)
d3x.

(5.2.1)

The field, φ, is a three component unit vector, φ = (φ1, φ2, φ3), and is constrained to

S2

φ = {φ|φ ·φ = 1}. At fixed time φ is the map φ : R3 → S2
φ. This model is usually

studied with the parameter m = 0, [50–54], which we shall discuss now, and we shall

discus m > 0 later. For finite energy solutions of (5.2.1) the field, φ, must tend to a

constant value at spatial infinity, which we select to be φ(t, r =∞) = (0, 0, 1) = e3

for all time, t. This allows a one-point compactification of the domain, R3∪{0} ∼ S3.

So static, finite energy, solutions are φ : S3 → S2
φ where S3 can be interpreted as a

fibration of S1 over S2
φ. This map, φ, belongs to an equivalence class characterised

by the homotopy group π3(S2
φ) = Z. This shows that there is an integer topological

invariant associated with φ, known as the Hopf invariant. In this case we will refer

to the Hopf invariant as the topological charge Q.

The charge associated with a Hopf projection can be found by defining an area form

ω, which is a generator of the cohomology group H2(S2) on the target S2. The

smooth map φ : S3 → S2
φ, has an induced pull-back of the de Rham cohomology

group φ∗ : H2(S2)→ H2(S3). This pull-back maps closed forms to closed forms and

exact forms to exact forms [55]. We can now define g = φ∗ω, which is the pull-back

of the area form, ω, by φ. Due to the second cohomology group of the three sphere

being trivial, H2(S3) = 0, all closed forms on S3 are exact forms. Therefore, we can

now re-define the exact form g by the 1-form a as g = da. Therefore we can express
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the topological charge, Q, as

Q =
1

4π

∫
S3

g ∧ a. (5.2.2)

This is the integral of a Chern-Simons 3-form over S3.

Unlike most other topological solitons, such as Skyrmions and vortices, the dimensions

of the domain and the target space are not equal. Therefore the topological charge

is not equal to the degree of φ. Also the topological charge cannot be expressed in

the domain as a local density. This non-local definition of the topological charge,

(5.2.2), is not particularly useful in this thesis. But the topological charge of φ can

also be found as the linking number of loops in the domain. These are formed as

preimages of two distinct points on the target space. For example if we define the

two curves Cp and Cq as the preimages of the points p and q. Then if we choose a

smooth surface D, with a boundary Cp, then the linking is defined as

link(Cp, Cq) =
∑
D∩Cq

±1,

where the ± refers to the relative orientations of D and Cq. This definition of the

topological invariant can be shown to be the same as (5.2.2), [56]. There is a well

known lower bound on the energy, [57–59], which is based on an involved argument

using Sobolev-type inequalities,

E ≥ c Q3/4 where c =

(
3

16

)3/8

. (5.2.3)

The fractional power of (5.2.3) is widely accepted. But the value of c might not be

optimal. Ward, [57], was motivated by his study of the Skyrme-Faddeev theory on

a unit three-sphere to propose that c = 1 might be a more optimal value.

The Hopfion location cannot be defined as the position of maximum local topological

charge density, as in most topological soliton systems. Instead it is commonly chosen
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to be the curve C = φ−1(0, 0,−1) ≡ φ−1e−3, which is the antipodal value to the

boundary vacuum value.

Over the years there have been many extensive and detailed investigations into the

static minimum energy solutions of (5.2.1), [50, 52–54, 60, 61]. For charges one to

seven it is believed their respective global minimum energy solutions have all been

identified. It is known for topological charges one to three that the minimum energy

solutions have a planar loop position curve. Topological charges five and six have

the minimum energy solutions of two linked Hopfions. For topological charge seven

the minimum energy location curve is a trefoil knot. In [51] Sutcliffe devised a new

knotted rational map ansatz as initial conditions. These initial conditions were then

energetically minimised to give new minimum energy solution candidates for a large

class of topological charges. We shall be describing and making use of this technique

later.

5.3 m > 0.

The actual model of interest here is a modification of the usual Skyrme-Faddeev

model. It is modified by an additional coupling to a potential term, so m > 0 in

(5.2.1) and

V (φ) = (1− φ3). (5.3.1)

This choice of potential, (5.3.1), is not general but is one of the simplest choices. If

we restrict ourself to the plane this model reduces to the old Baby Skyrmion model.

Also this potential, (5.3.1), meets the finite energy criteria for the chosen boundary

condition; where the single vacuum of V (φ) is also the chosen boundary value. This

potential, (5.3.1), increases the energy density along the location of the Hopfion.

This is because the location curve, C = φ−1(0, 0,−1), corresponds to the maximum

of the potential (5.3.1). Therefore we expect the Hopfion location curve to become

smaller in length for increasing m. We also expect the Hopfion string to become
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finer with increasing m; as it is analogous with the Baby Skyrmion model. This is

best understood by an asymptotic analysis where we approximate the field for large

r as

φ = (ε1, ε2, 1− ε21 − ε22) +O(ε3a),

where a ∈ (0, 1). For large r we know that, due to finite energy criteria, |∂iεa| < 1

therefore the energy density associated with (5.2.1) becomes

E = (∂iεa)
2 + 2m2ε2a +O ((∂iεa)4

)
.

Where εa is a solution of the partial differential equation

(∆− 2m2)εa = 0. (5.3.2)

Separating εa into radial and angular components as εa = r−
1
2Ra(r)Θa(θ, ψ). Where

Ra(r) is a purely radial function, Θa is a spherical harmonic (∇s2Θa = −λ(λ+1)Θa)

and (r, θ, ψ) are the usual spherical polar coordinates. Then solving (5.3.2) we gain

an asymptotic approximation for Ra(r >> 1),

Ra(r >> 1) ∼ Ca

√
π

2
√

2mr
e−
√

2mr

(
1 +O

(
1√
2mr

))
.

Where Ca is a constant of integration. This shows that Hopfions become increasingly

exponentially located as the coupling, m, increases. Hence the Hopfions in this

massive theory will have Yukawa type asymptotic tails.

5.4 Static solutions.

It is already well known that charged Hopfions can be knotted objects, [50–54,60,61].

One of the most effective ways to create non-trivial knotted initial conditions, to be

minimised, is to use the rational map ansatz technique described in [51]. Here the
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author used a degree one spherically equivariant map to compactifiy R3 → S3
Z1,Z0

⊂
C2 by

(Z1, Z0) =

(
(x1 + ix2)

r
sin f, cos f +

ix3

r
sin f

)
, (5.4.1)

where f(0) = π, f(∞) = 0 and

S3
Z1,Z0

∼= {(Z1, Z0) ∈ C2 | |Z1|2 + |Z0|2 = 1}. (5.4.2)

Using these complex coordinates an (a, b)-torus knot can be described as the intersection

of a complex curve q(Z1, Z0) with a unit three-sphere [62]. Hence we can formulate

the rational map ansatz

W =
p(Z1, Z0)

q(Z1, Z0)
, (5.4.3)

where p, q have no common roots. This is a map W : S3 → CP1. We can also notice

that the stereographic projection, W , of S2
φ = {φ | φ ·φ = 1} also maps to CP1 as,

W =
φ1 + iφ2

1 + φ3

. (5.4.4)

Therefore, as shown in Figure 5.1, the inverse stereographic projection of the curve

q = 0 produces a φ3 = −1 closed curve in R3. The asymptotic value of p in the

rational map ansatz (5.4.3) is used to fix the boundary conditions of φ. Therefore,

we need p(r)|r→∞ = 0 so the inverse stereographic projection gives φ = (0, 0, 1) at

the spacial boundary of R3.

Therefore an initial condition for a Hopfion, with a position curve of an (a, b)-torus

knot, can be formed by the rational map ansatz

W =
Z1

αZ0
β

Z1
a + Z0

b
(5.4.5)

where α ∈ {x > 0|x ∈ Z} and β ∈ {x > 0|x ∈ Z}. This gives a closed curve that

wraps a and b times about the two circumferences of a torus, [62]. The topological
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Figure 5.1: Commutative maps.

charge associated with this ansatz is most easily found by extending the map (5.4.1)

to be

(p, q) : B4 ∈ C2 → C2. (5.4.6)

This extension is achieved by altering the constraint for S3
Z1,Z0

to |Z1|2 + |Z0|2 ≤
1 giving a B4. This produces a map between spaces of equal dimensions, with

deg[(p, q)] = Q. The topological degree of (p, q) can then be found by counting the

number of preimages of a point on S2
Z1,Z0

. Also, the map (p, q) being holomorphic

means orientation is preserved locally. Hence the Jacobian is positive everywhere

(Cauchy-Riemann), so all the preimages of a point occur with positive multiplicity.

Therefore choosing a general point, (a, 0) ∈ C2, the Hopf invariant of (5.4.5) is given

by the number of solutions of (Z1
αZ0

β, Z1
a + Z0

b) = (a, 0). This can be shown to

have

Q = αb+ βa (5.4.7)

solutions [51].

This approach not only produces a non-trivial knotted location curve with an

analytically known topological charge; it also gives a smooth field with the correct
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boundary conditions.

To find static Hopf solitons we set φ̇ = 0 in the Skyrme term of (5.2.1). This gives a

non-relativistic theory which has the same static equations of motions as the those

derived from (5.2.1). This greatly simplifies the corresponding equations of motion

by removing a numerically cumbersome matrix inversion. It also still facilitates

time evolution by the second order dynamics derived from the the sigma term. The

non-relativistic equation of motion can then be numerically evolved on a discrete

lattice using a fourth-order derivative approximation. We also need an additional

Lagrangian multiplier, λ, to constrain φ to take its value on S2

φ. If we periodically

remove kinetic energy the potential energy will also become minimised; this will

yield minimum energy static solutions. This minimisation technique produces static

solutions and uses much less CPU time when compared to other similar minimisation

algorithms. A numerical grid of 250× 250× 250 points, with ∆x = 0.08, was found

to be large enough to contain the exponentially located Hopfion. On this lattice the

Hopfion can smoothly attain the vacuum value at the boundary without a noticeable

expense of energy. This lattice is also fine enough not to lose the fundamental

topology. The definition of the position of a Hopf soliton is sensible, but not useful

for display purposes. Therefore, all the images of Hopf solitons in this chapter are

plots of an isosurface of the preimage of the curve φ3 = −0.85 in the domain. This

gives a surface that is a fine tube in the physical space and produces much clearer

images. To show the linking number we also need to plot the preimage of a second

loop, but there is no unique loop to choose. In all the plots shown we generate

general loops on the target space by choosing a point, p = (
√

1− µ2, 0, µ), on S2

φ.

We then find the distance on the surface of S2

φ between p and φ. This distance is

then normalised by the distance between p and the south pole of S2

φ, e−3, as

dist(p,φ) =
cos−1(p · φ)

cos−1(p · e−3)
.
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This gives many loops of constant radius on S2

φ. The preimages, of these loops,

are tubes of varying thickness in the domain. Also, an isosurface of unitary value

is known to intersect with the position curve of a Hopf soliton. Throughout this

chapter we will choose µ = −0.9 which is an arbitrary choice for aesthetics.

5.4.1 Q 6 4 trivial knots.

A Hopfion initial condition, where the position curve is contained completely on a

plane, can be formed by the rational map ansatz

W =
Zn

1

Zp
0

. (5.4.8)

We refer to a Hopfion location curve of this configuration as An,p. This configuration

has topological chargeQ = np [51], which again can be shown by counting pre-images

as shown previously. So if we set n = p = 1 in (5.4.8) this gives the initial condition

of a topological charge one Hopf soliton which is located along a planar loop. Using

this initial condition, and the above described minimisation procedure, we can find

the minimum energy configurations for m = (0, 1, 2, 4, 5) for a topological charge

one Hopfion as shown in Figure 5.2.

Figure 5.2: Minimum energy topological charge one Hopfions. Of mass m =
(0, 1, 2, 4, 5), all on the same scale.
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Figure 5.3: φ3 for masses m = 0, 1, 2, 4, 5.

Mass, m E
0 1.236
1 1.421
2 1.668
4 2.017
5 2.170

Table 5.1: Minimum energies for, m = (0, 1, 2, 4, 5), topological charge one Hopfions.

Figure 5.2 shows as expected that the larger m is the smaller the Hopfion is. This

is due to the potential term creating an energy penalty where φ = (0, 0,−1), which

corresponds to the maximum value for the potential. Thus the minimum energy

Hopfion location loop becomes smaller with growing m. The energy for m = 0 is

1.236, this is within 2% of the previously accepted result [51]. This similarity is a

nice validation of our numerical procedure. The small difference can be attributed

to the difference in lattice spacing between our algorithm and the one used by the

author. As shown in Figure 5.3 for larger values of mass the field φ3 is increasingly



5.4. Static solutions. 81

symmetric about the Hopfion location. Due to this we have decided to perform

the remaining analysis with the relatively large m = 5. This choice of coupling is

arbitrary, we could have chosen m > 5; but this choice gives sharply located Hopfions

and is still large enough so the topology is not lost by the numerical lattice. We find

a minimum energy Q = 1 Hopfion to be E1 = 2.17.

Using (5.4.8) with (n, p) = (2, 1) this again gives a planar loop Hopfion location but

with topological charge Q = 2. Minimising this configuration we find the minimum

energy E2 = 3.45, with a planar Hopfion location curve. We can construct a Q = 3

Hopfion by setting (n = 3, p = 1) in (5.4.8) or (α = β = b = 1, a = 2) in (5.4.5). The

latter configuration produces a Hopfion which is located along an unknotted twisted

loop. Minimisation of these two configurations produces the same configurations

with the same energy, E3 = 4.74, located on a twisted unknotted loop.

A topological charge Q = 4 Hopfion initial condition can be made using (5.4.5)

with either (α = a = 2, β = b = 1) or (α = a = 4, b = 1, β = 0). This gives Hopfion

location curves K2,1 and K4,1 respectively. Minimising both of these configurations

give a Ã4,1 (twisted A4,1) Hopfion location curve, with energy E4 = 6.051. We can

also generate Q = 4 axial initial conditions using (5.4.8) with (n = p = 2) and

(n = 4, p = 1). This gives A2,2 and A4,1 planar curves respectively. Minimisation

of the A2,2 configuration remains as an A2,2, with an energy ∼ 0.6% larger than

the Ã4,1. This is within numerical accuracy of our minimisation scheme. Therefore

we are not able to define which of these two configuration is the lower energy. The

A4,1 configuration also minimises to a planar curve described by A4,1. This seems

to show that twisting the loop slightly reduces the energy. The Q = 4 planar loops

are most likely long lived saddle point solutions, preserved by symmetry.
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Figure 5.4: Minimum energies for m = 5, Hopfions.

5.4.2 Q > 5 knotted/linked Hopfions.

For a select few simulations Figure 5.5 and 5.6 show a plot of minimum energy

Hopfion locations. Also Figure 5.5 and 5.6 show the linking of the initial rational

map ansatz and the linking of the corresponding minimum energy Hopfion curve. For

topological charges Q 6 4, both in the massive case and in the normal massless case,

the Hopfion location curves are all found to be unknot solutions. For topological

charges Q > 5 we find the minimum energy Hopfions have either a linked or knotted

location curves, as shown in Figure 5.6. The minimum energy solutions presented

have very similar qualitative features with the massless model [51]. The minimum

energy Hopfion location curves for each charge sector have comparable linking form

hence, due to the computational intensity, we have restricted our analysis to the

presented charges.



5.4. Static solutions. 83

7K5,2 → K3,2 7K4,3 → K2,3 7A7,1 → A7,1

6K3,2 → A3,2 6K2,2 → L1,1
2,2 6L1,1

3,1 → L3,1
1,1

6K5,1 → K5,1 6K4,2 → L2,2
1,1

5L1,1
2,1 → L1,1

2,1 5K3,2 → L1,1
1,2 5K4,1 → A5,1

Figure 5.5: Minimum energies for m = 5 Hopfions of charge 5 ≤ Q ≤ 7. The most
top left plot represents the lowest energy solutions for each topological charge.

One main difference between our results and those of [51] is that we are presenting

potentially new energetic local minimum or saddle point solutions. As shown in

Figure 5.6 we have new linked topological charges Q = 8, 12, 15 excited solutions.
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16L1,1
7,7 → K4,3

L3,3,3,3
1,1,1,1 → K4,3 16K4,3 → K4,3

15K5,3 → L6,3
4,2 15K4,3 → K4,3 15K3,2 → L3,3

7,2

12K4,3 → L2,2,2
2,2,2 12K5,3 → L2,2,2

2,2,2 12L1,1
5,5 → L1,1

5,5

8K3,4 → Ã2,2 8K3,2 → Ã4,4 8L1,1
3,3 → L1,1

3,3

Figure 5.6: Minimum energies for m = 5 Hopfions of charge Q = (8, 12, 15, 16). The
most left plot represents the lowest energy solutions for each topological charge.

Also our topological charge eight and six minimum energy solutions seem to have

the same linking structure as in the m = 0 case. But in the m = 5 case the links
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E E/Q3/4

Q = 4

K2,1 → Ã4,1 6.05 2.14

K4,1 → Ã4,1 6.05 2.14
A4,1 → A4,1 6.07 2.15
A2,2 → A2,2 6.09 2.15

L1,1
1,1 → L1,1

1,1 7.17 2.53

Q = 5

L1,1
2,1 → L1,1

1,2 6.23 1.86

K3,2 → L1,1
1,2 7.17 2.14

K4,1 → A5,1 7.43 2.22
Q = 6

K3,2 → A3,2 8.01 2.09

K2,2 → L1,1
2,2 8.19 2.14

L1,1
3,1 → L1,1

3,1 8.41 2.19
K5,1 → K5,1 8.60 2.24

K4,2 → L2,2
1,1 9.07 2.37

Q = 7
K5,2 → K3,2 9.19 2.14
K3,2 → K3,2 9.20 2.14
K4,3 → K2,3 9.64 2.24
A7,1 → A7,1 10.18 2.37
Q = 8

L2,2
2,2 → Ã4,2 9.86 2.07

K3,2 → A4,2 9.88 2.08

K3,4 → Ã4,2 9.88 2.08
K5,2 → A4,2 9.97 2.10

L1,1
3,3 → L1,1

3,3 10.45 2.20

Q = 12

K4,3 → L2,2,2
2,2,2 13.77 2.16

K5,3 → L2,2,2
2,2,2 13.77 2.16

L1,1
5,5 → L1,1

5,5 15.30 2.37

Q = 15

K5,3 → L6,3
4,2 16.17 2.12

K4,3 → K4,3 16.56 2.17

K3,2 → L3,3
7,2 17.11 2.25

Q = 16

L3,3,3,3
1,1,1,1 → K̃4,3 17.07 2.13
K4,3 → K4,3 17.12 2.14
K3,2 → K4,3 17.25 2.17

Table 5.2: Table of initial configurations and final configurations form and energy.
For m = 5 Hopfions.
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seem to be almost on top of each other. The minimum energy location curve of the

topological charge 15 Hopfion is topologically similar to that found in [51]; but it is

qualitatively different.

Figure 5.7 shows how the energy grows with increasing charge.

 2

 4
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 12

 14

 16

 4  8  12  16

E
ne

rg
y

Q

Figure 5.7: Minimum energies for m = 5 Hopfions. As a function of topological
charge Q.
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5.5 Infinite mass, m→∞.

Rescaling the Lagrangian density (5.2.1) by x 7→ √mx gives

L(
√
mx)√
m

=
L2

m
+ L4 + L0.

Where La refers to the ath order derivative in the Lagrangian density. We can then

define

Lm→∞ = lim
m→∞

L(
√
mx)√
m

= L4 + L0. (5.5.1)

This rescaling gives a model which can be interpreted as a Skyrme-Faddeev model

which has an infinite coupling to a potential term. A model comprising only of

a Skyrme term and a potential term has been addressed before [63]. In [63] this

model was derived by setting a constant to zero. This effectively removes the sigma

term in the Skyrme-Faddeev coupled to a potential model. Soliton solutions of this

model are commonly refereed to as compactons [63]. This is because they reach their

vacuum value in finite distance and therefore have no asymptotic tails. Hence they

are effectively BPS for large separation. This compact nature of the minimum energy

solutions gives a stronger correspondence with the string ansatz, which assumes no

self interaction of the Hopfion loop. Also the string ansatz is derived by assuming

the Hopfion is a compacton. In order to numerically find minimum energy solutions

of (5.5.1) it is computationally easier to work with a modified model of the form

LModified =
∂0φ · ∂0φ

32π2
√

2
+ Lm→∞|∂tφ=0

. (5.5.2)

This modified model can be simulated by a trivial extension of the previous Skyrme-Faddeev

model. The equation of motion and the energy density of (5.5.2) will converge with

the infinite mass case, (5.5.1), in the static limit. This model, (5.5.2), also allows

for time evolution, by the second order dynamics of the purely kinetic sigma term.

Again we use the rational map ansatz, (5.4.5), to give non-trivial knotted initial
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conditions. For this infinite mass compacton model, (5.5.1), we find the topological

charge-specific minimum energy candidates in Table 5.3. The numerical scheme is

fundamentally the same as the one used in the finite mass case. But now due to this

model having a different scale we found ∆x = 0.1 to be a suitable lattice spacing.

The results and initial conditions of this investigation are shown in Table 5.3. Also,

for topological charge 1 6 Q 6 5 the Hopfion location curves are shown in Figure

5.8. We find, in this infinite mass model, that the minimum energy solutions, for

1 6 Q 6 5, are the same as the m = 5 and m = 0 models. The compact nature of

this model can be seen in Figure 5.9; which show φ3 along a radius that is in the same

plane as the planar, Q = 1, Hopfion. This shows how the compact Hopfion field

attains the vacuum value in finite distance. This shows that in the m = ∞ model

two well-separated static Hopfions do not attract or repel each other. This is due to

there being no overlap of the Hopfion tails. Therefore, the string self-interaction of

this m =∞ model is much less than in the finite mass model. Also the shape of φ3,

in Figure 5.9, is more symmetric about its minimum than the plots of φ3 in the finite

mass model, Figure 5.3. This shows that in the m =∞ limit the string cross-section

is much more symmetric. Again, in this infinite mass case, we have found new local

minimum energy solutions for Q = 4; both of which have location curves described

as a very twisted A4,1. A point worth noting is that for these solutions the boundary

of the numerical lattice is very far from the Hopfion.
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E E/Q3/4

Q = 1
A1,1 → A1,1 0.86 0.86
Q = 2

A2,1 → A2,1 1.37 0.82
Q = 3

K2,1 → Ã3,1 1.90 0.83
A3,1 → A3,1 2.02 0.90
Q = 4

A2,2 → A2,2 2.50 0.88
A4,1 → A4,1 2.56 0.91

K2,1 → Ã4,1 3.19 1.13

L1,1
1,1 → L1,1

1,1 3.38 1.20 (not shown)
K4,1 → A4,1 4.22 1.50
Q = 5

L1,1
2,1 → L1,1

2,1 3.00 0.90
A5,1 → A5,1, 3.23 0.97
K3,2 → K3,2 3.88 1.16
Q = 7

k3,2 → K3,2 3.97 0.92

Table 5.3: Table of the infinite mass Hopfions initial and final configurations, with
their respective energies.

Table 5.3 shows that in this m =∞model the initial and final minimised location

curves rarely differ. A good example of this is the Q = 5 K3,2 trefoil knot; under

minimization in this model it remains as a K3,2 trefoil knot, but in the m = 5 and

m = 0 models it minimises to a L1,1
2,1. The Q = 5, L1,1

2,1, is also a lower energy solution

for this charge in the m = ∞ model. This reluctance to deform from one location

curve to another is due to the reduced self interaction of this compact Hopfion model.
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5L1,1
2,1 → L1,1

2,1 5A5,1 → A5,1 5K3,2 → K3,2

4A2,2 → A2,2 4A4,1 → A4,1 4K2,1 → Ã4,1

4K4,1 → Ã4,1 3K2,1 → Ã3,1 3A3,1 → A3,1

2A2,1 → A2,1 1A1,1 → A1,1

Figure 5.8: Minimum energy solutions for m = ∞. For topological charges 1 6
Q 6 5. The upper most left plot represents the lowest energy solutions for each
topological charge sector.

We have also found a topological charge seven trefoil knot, in the m = ∞
model, which is shown in Figure 5.10. For the range of topological charges we



5.5. Infinite mass, m→∞. 91

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

φ 3
 (

r)

r

m=∞

Figure 5.9: φ3 along a radius of a Q = 1 Hopfion in the infinite mass case.

have investigated, in this m = ∞ model, we have found that the charge-specific

lowest energy solutions are the same as in the m = 0 and m = 5 models. But as in

the m = 5 model we have discovered more local minima or saddle point solutions.
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Figure 5.10: The Q = 7 trefoil knot minimum energy solution for the m = ∞
Skyrme-Faddeev model plus a potential.

5.6 Conclusion.

In this chapter we explored the Skyrme-Faddeev model with a potential term included.

We found that including a potential in the model makes the Hopf solitons exponentially

decay to their vacuum value. Increasing the coupling makes the Hopf solitons

string cross-section increasingly exponentially localized. We found for m = 5 the

minimum energy solutions are described by the same linking curves as the, m = 0,

Skyrme-Faddeev model. Using a spatial rescaling we were able to formulate an

infinite mass model. This infinite mass model is known to yield compact Hopfions

[63]. For this infinite mass, compact, model we have presented a number of topologically

charged solutions. We showed that the minimum energy compact solutions have the

same location curves as in the usual, m = 0, Skyrme-Faddeev model and the m = 5,

massive, model. In both m = 5 and m =∞ models we found new local minimum, or
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stationary point energetic solutions. The increasing localization of the strings in the

two massive models reduces the string self interaction. Therefore, it is not surprising

that these models possess solutions stabilised by symmetry. This chapter contains

my results which complement an ongoing collaboration, which is concerned with

creating a synthetic Hopfion ansatz. The infinite mass compact Hopfion model is

especially applicable to this ansatz. There has been some recent success in predicting

the energy and radius of the Q = 1, 2, 3 solutions, of this infinite mass model, using

the string ansatz.
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