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ABSTRACT 

Petrogenesis of Late Cenozoic Collision Volcanism in Western Anatolia, Turkey 

Western Anatolia exhibits a record of almost all stages of a collision event and its related 

magmatic processes. Following an Eocene continent-arc collision, Western Anatolia region 

experienced a complete cycle of thickening and orogenic collapse. The early stage of collision-

related volcanism, which was most evident during the Early Miocene (<21 Ma), produced a 

considerable volume of lavas and pyroclastic deposits covering a broad compositional range 

from basaltic andesites to rhyolites. The volcanic activity continued into the Middle Miocene 

with a gradual change in eruptive style and rock compositions. The Middle Miocene activity, 

formed in relation to localised extensional basins and was dominated by lava flows and dykes of 

basalts to andesites composition. Both the Early-Middle Miocene rocks have calc-alkaline and 

shoshonitic character. The late stage volcanism, from 11.0 to 8.3 Ma, was marked by alkali 

basalts and basanites erupted along the localised extensional zones. 

The Early-Middle Miocene volcanic rocks exhibit enrichment in LILE and LREE relative 

to the HFSE (characterised by negative Nb and Ta anomalies) and are characterised by high 

^̂ Sr/̂ Ŝr and low '''^Nd/''^Nd (-ENCI) ratios. These characteristics indicate a mantle lithospheric 

source region carrying a subduction component inherited from a pre-collision subduction event. 

Perturbation of this subduction-metasomatised lithosphere by delamination of the thermal 

boundary layer is the likely mechanism for the initiation of the post-collision magmatism. 

Trace elements systematics suggest that the Early-Middle Miocene series underwent a 

hydrous crystallisation (dominated by pargasitic amphibole) in deep crustal magma chambers. 

Subsequent crystallisation in shallower magma chambers follows two different trends: (1) 

anhydrous (pyroxene + plagioclase-dominated; and (2) hydrous (edenitic amphibole -t-

plagioclase + pyroxene dominated). 

Trace element and isotope modelling shows that the Early-Middle Miocene rocks have 

been affected by assimilation combined with fractional crystallisation processes, and that the 

effects of assimilation decrease gradually from the Early Miocene into the Middle Miocene. 

This indicates a progressive crustal thinning related to the extensional tectonics that prevailed 

from the latest Early Miocene onwards. 

In contrast to the Early-Middle Miocene rocks, the Late Miocene alkaline rocks are 

characterised by low ^̂ Sr/̂ Ŝr and high ''''Nd/''^Nd (-(-£Nd) ratios and have OIB-type like trace 

element patterns characterised by enrichment in LILE, HFSE and L-MREE, and a slight 

depletion in HREE, relative to the N-MORB compositions. REE inversion modelling indicates 

that these rocks formed by partial melting (with degrees of ~2 to -10%) of a spinel + garnet 

Iherzolite source. Trace element and isotopic systematics are consistent with decompression 

melting of an enriched mantle asthenospheric source. 
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Chapter J: Introduction 

CHAPTER ONE 
I N T R O D U C T I O N 

In recent years, magmatism generated in continental collision settings has 

attracted significant attention. It is widely accepted that a large proportion of volcanic 

and plutonic bodies in collision settings may be genetically related to collisional tectonic 

processes during the formation of mountain belts. However, there has also been 

increasing recognition of the complexity of the genesis and evolution of collision zone 

magmatism. The widely accepted general view is that three main stages of tectonic 

processes are involved in collision settings: (1) a subduction period marked by 

subduction magmatism and high-P, low-T metamorphism; (2) a major compression 

period which is marked by large thrusts and syn-collision magmatism; and (3) a late-

collision period which is marked by extension, transtension and transpression tectonics 

and post-collision magmatism. Magmatism in collision settings may be a consequence 

of various mechanisms, including crustal thickening, strike-slip movement related to 

continental escape and late-stage lithospheric thinning either by localised extension and 

lithospheric stretching or orogenic collapse and/or lithospheric delamination. In this 

context, magma can be generated by: (1) mantle and crustal melting by subduction of 

continental crust; (2) decompression melting of mantle by localised lithospheric 

extension: and (3) mantle or crustal melting by internal heat generated by mantle-

derived magma injections or asthenospheric upwelling resulted by lithospheric 

delamination (Pearce et al, 1994). 

In this study, an attempt has been made to evaluate the nature and characteristics 

of the volcanism of Western Anatolia (Turkey) and the relationship between collisional 

tectonics and magma generation. Western Anatolia has been chosen because this region 

exhibits a record of almost all stages of a collision event and its related magmatic 

processes. Attention has been focused on the petrogenetic evolution of Western 

Anatolian volcanism and its relationship to the regional tectonic evolution. 
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1.1. Geological Setting and The Distribution of Volcanism 
1.1.1. Tectonic Setting 

Much of the geological and tectonic history of Turkey is linked to Tethyan 

evolution. §engor and Yilmaz (1981) suggested that Turkey was situated on the 

northernmost part of the Gondwanaland during the Permian. After the Middle Triassic, 

the northern margin of Gondwanaland began to rift away from the main continent to 

form a continental fragment known as the Cimmerian continent. This in turn caused the 

formation of a southern branch of the ocean known as Neotethys between the 

Cimmerian continent and Gondwanaland. Further rifting and fragmentation of the 

Cimmerian continent itself also took place during the Early Jurassic to form a northern 

branch of Neotethys and the Anatolite-Tauride platform between the two branches of the 

Neotethys (§engor and Yilmaz, 1981; §engor et al., 1984). The Palaeotethys Ocean was 

eliminated by a subduction event during the Late Palaeozoic-Early Mesozoic. The 

direction of subduction of Palaeotethys is, however, still debated. Some authors (e.g. 

§engor et al., 1980, 1984; Okay et al., 1991) proposed a southward direction for the 

subduction of Palaeotethys that can explain northward-vergent structures in NW 

Anatolia. Others (e.g. Adamia et al., 1981; Robertson and Dixon 1984) put forward a 

northward-dipping subduction model which can fit with the broad picture of an active 

Eurasian margin and a passive Gondwanan margin, extending from the Eastern 

Mediterranean to the Himalayas. However, Pickett and Robertson (1996) have recently 

suggested that elements of both northward and southward subduction are involved in 

closure of the Palaeotethys Ocean in NW Anatolia. In their model, the Cimmerian 

continent collided with Eurasia during the Middle Jurassic, causing regional uplift and 

the terminal closure of the Palaeotethys Ocean. This was followed by northward-dipping 

subduction from the Late Cretaceous to the Paleocene which formed the Pontide 

volcanic arc and led to the closure of Neotethys. 

The north-dipping subduction episode ended when the Anatolide-Tauride 

platform collided with the Pontide arc along the Izmir-Ankara suture zone (Fig. 1.1). 

The timing of this collision is poorly constrained. §engor et al. (1979) and §eng6r and 

Yilmaz (1981) proposed a Late Palaeocene - Early Eocene collision age. Harris et al. 

(1994) have also recently discussed that the obduction of the ophiolite fragments along 

the collision zone indicate that the time of collision was certainly earlier than Middle 

Eocene (50 Ma) and probably later than the Upper Cretaceous (Turonian). However, arc 
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magmatism along the Pontide zone continued into the Middle Eocene (§engor and 
Yilmaz, 1981). This may indicate a Middle Eocene age for the collision. This collision 
caused large-scale intra-crustal deformation and thickening together with the burial of 
the Menderes metamorphic Massif beneath the Lycian nappe piles. 

Further to the east, collision between the Arabian and the Anatolian plates 

started along the Bitlis-Zagros suture zone during the Middle to early-Late Miocene 

(§engor and Yilmaz, 1981; §engor et al., 1985; Pearce et al., 1990) (Fig. 1.1). This 

caused uplift of the eastern part of Anatolia to form a plateau and also led to the tectonic 

escape of the Anatolian plate by right-lateral strike-slip along the North Anatolian Fault 

(NAF) and left-lateral strike-slip along the East Anatolian Fault (EAF). Although 

estimates of the onset of the NAF give variable ages from Late Miocene to Pliocene (13 

- 4 Ma) (Ketin, 1969; Barka and Hancock, 1984; §engor et al., 1985), Barka and 

Kadinsky-Cade (1988) used stratigraphic correlations in the basins related to strike-slip 

movements of NAF to suggest that the North Anatolian Fault initiated during the Late 

Miocene. 

Towards Western Anatolia, the NAF splays into three main branches: (1) a 

northern branch which lies mostly offshore, beneath the Marmara Sea; (2) a middle 

branch which lies south to the Marmara Sea and extends from ^an to Ezine through the 

Bayramig trough; and (3) a southern branch which extends through the Edremit Graben 

(Fig. 1.1). The total relative displacement of the northern branch of NAF has been 

reported as approximately 40 km in the Marmara Sea (Barka and Kadinsky-Cade, 1988) 

and northeastern Aegean Sea (Le Pichon et al., 1984). The estimated displacement on 

the middle and southern branches is -40 - 45 km (Westaway, 1994). The effect of the 

major, dextral, E-W trending strike-slip activity in Northwestern Anatolia was that the 

movement of the Anatolian plate relative to the Pontides changed from westwards to 

southwestwards. This generated small pull-apart basins related to NE-SW trending 

strike-slip faulting in the north (in the Biga Peninsula and Edremit Graben) and E-W 

trending normal faults with significant strike-slip movements linked to graben formation 

in the south (south of the Edremit Bay). 

Since the Late Miocene-Pliocene, Western Anatolia has experienced extensive 

crustal extension and lithospheric thinning, leading to the formation of E-W trending, 

low angle, listric normal faults with strike-slip components on their hanging-wall blocks 

(Angelier et al., 1981; King and Vita Finzi, 1982; Eyidogan and Jackson, 1985; §engor 



Chapter 1: Introduction 

et al., 1985). The cause of this extension is still debated. Mechanisms that may 
contribute include: (1) gravitational collapse and spreading of thickened and unstable 
lithosphere (Dewey, 1988; Seyitoglu and Scott, 1996); (2) subduction beneath the 
Aegean and Anatolian plates along the Hellenic trench (Le Pichon and Angelier, 1979; 
1981; Meulenkamp et al., 1988); and (3) counterclockwise rotation of the Anatolian 
plate (Westaway, 1994; Reilinger et al., 1997). 

The geological and seismological analyses of Zanchi and Angelier (1993) show 

that the Quaternary stress regime of Western Anatolia was dominantly extensional and 

associated with approximately NNE - SSW and NE - SW trending normal faults. 

Although strike-slip mechanisms are subordinate in the area between the Menderes 

Massif and Edremit Graben, there is an increase of strike-slip faulting from south to 

north, towards the Edremit Graben (the southern branch of the North Anatolian Fault 

system). Crustal thicknesses and extension rates of the Aegean area cannot be calculated 

accurately because of a lack of gravity and seismic data. However, it has been reported 

that the average crustal thicknesses are approximately 40 km on the Anatolian plate, 30-

35 km on the coastal region of Western Anatolia and 25 km beneath the central and 

southern Aegean Sea (Makris and Stobbe, 1979; 1984a, b; Meissner et al., 1987; 

Mindevalli and Mitchell, 1989). A southward extensional strain rate across much of the 

Western Anatolia has been modelled by Jackson (1992) as >2 x 10"'̂  s"'. Similarly, 

Paton (1992) calculated from the topography that the stretching factor p (the ratio of 

initial to final lithospheric thickness) gives a maximum value of approximately 2 in the 

central Aegean and 1.2 - 1.5 in Western Turkey. 

Although most of the extension is considered to have taken place during the Late 

Miocene-Pliocene and, particularly. Quaternary Periods, there is no clear consensus 

about the timing of the initiation of the extension in Western Anatolia and Aegean. 

§engor and Yilmaz (1981), §engor (1982) and §eng6r et al. (1985) proposed that 

extensional tectonics started to be effective in the Late Miocene, following N-S 

compression and crustal shortening. Hayward (1984) also proposed a Late Miocene age 

for the timing of the final emplacement of the Lycian nappes and hence the end of the 

compressional tectonic regime. Controversially, Kaya (1981) reported Early Miocene, 

graben-fill sequences in the Gordes and Foga areas that may indicate that subsidence 

started during the Early Miocene, although §eng6r et al. (1985) interpreted these basins 

as palaeotectonic structures which have been resurrected by neotectonic episodes. 
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Similarly, Seyitoglu and Scott (1992, 1995) have recently used sporomorph assemblages 
in the sedimentary basins (Benda and Meulenkamp, 1979) to propose that extensional 
tectonics initiated in the Latest Oligocene-Early Miocene (-20-24 Ma). This is 
supported by the radiometric dating of syntectonic granitoids in the Menderes Massif 
(Hetzel et al., 1995). However, these controversies may be a result of the complex 
tectonic patterns of Western Anatolia which include both compressional and extensional 
regimes and localised extension and basin formation during the compressional episodes. 

1.1.2. Distribution of The Volcanism 

Extensive volcanic activity has characterised the Aegean area since the Late 

Eocene. Volcanic products cover a large area from the Hellenic subduction zone through 

Western Anatolia and the Aegean islands into Thrace (Fig. 1.2). Volcanism in the area 

may be divided into two groups according to their relationship to regional tectonic 

activity: (1) Late Eocene-Recent volcanism related to collision between the Anatolide-

Tauride platform and Pontides and to subsequent orogenic collapse; and (2) Late 

Miocene-Recent volcanism related to northward-dipping subduction of the African plate 

beneath the Eurasian plate along the Hellenic trench (Fig. 1.2). The products of the 

subduction-related volcanism are distributed along the southern Aegean arc, from the 

Cyclades through the Dodecanese provinces (Samos, Patmos and Kos islands) to SW 

Anatolia (the Bodrum Peninsula) and have been dated as 12 Ma to Recent (~3 Ka) 

(Keller, 1982; Schliestedt et al., 1987; Wyers and Barton, 1987; Robert et al., 1992). 

The products of the Late Eocene-Recent, collision-related volcanism, however, occupy a 

wide area in the northern part of the Aegean Sea and Western Anatolia. The collision-

related volcanism of Western Anatolia is the subject of this thesis and termed as "The 

Western Anatolian, Late Cenozoic Volcanic Province". 

The Western Anatolian, Late Cenozoic Volcanic Province is one of the few 

modern examples of volcanism associated with continental crust which has been 

thickened and subsequently thinned by orogenic processes. The volcanic rocks in 

Western Anatolia are observed in a large area from the Menderes Massif in the south to 

Thrace in the north (Fig. 1.2). The oldest radiometric ages (K-Ar) on the Western 

Anatolian collision-related volcanism are 37.3 ± 0.9, 31.4 ± 0.4 and 30.4 ± 0.7 Ma 

(Ercan and Satir, 1994; Ercan et al., 1995). Thus, the volcanic activity is believed to 

have started in the Late Eocene-Early Oligocene, following the collision between the 
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Anatolide-Tauride Block and the Pontides. The volcanic products of Late Eocene-Early 
Oligocene ages, however, occupy only small areas of the Northern and eastern part of 
the Biga Peninsula (Ercan et al., 1995). In the area studied, most of the volcanic rocks 
are of Early to Late Miocene age. The youngest known radiometric ages on the Western 
Anatolian volcanism are 1.67 ± 0.22, 1.10 ± 0.03, 0.13 ± 0.09 and 0.025 ± 0.006 Ma 
(Borsi et al., 1972; Ercan et al., 1984; Richardson-Bunbury, 1996). These are the dates 
reported for the alkaline basic volcanics from the Kula area (outside the area studied in 
this thesis). 

The volcanic products show a considerable compositional variability in time and 

space. Three major stages of volcanic activity may be distinguished on the basis of the 

compositional variations. The Early stage of volcanic activity (Late Oligocene-Early 

Miocene) is represented by acid-intermediate rock types. These are pyroclastic fall and 

flow deposits accompanied by mostly porphyritic lava flows, domes and dykes. The 

Middle stage (Middle-Late Miocene) volcanic activity gave dominantly basic-

intermediate rock types. Common volcanic products were lava flows, domes and dykes. 

Pyroclastic eruptions were absent in this stage. The Late stage activity (Late Miocene-

Recent) is, however, represented by locally-developed small lava flows of basic and 

ultrabasic rock types. 

1.2. Previous Studies of Western Anatolian Volcanism 

The first study on the Western Anatolian volcanics was carried out by 

Washington (1893; 1900) who used wet chemical analyses on the Kula basalts to 

suggest an alkaline character and the term "Kulaite" for the hornblende-bearing basaltic 

rocks in the Kula area (Fig. 1.2). 

Borsi et al. (1972) discussed the general petrological characteristics and the 

geochronological relationships of the Eastern Aegean and Western Anatolian volcanics. 

They described a Lower-Middle Miocene (21.5 to 16.2 Ma) calc-alkaline volcanism 

associated with minor acid and basic products, mainly of Late Miocene age (11.9-9.7 

Ma). They proposed two principal models for the origin of the calc-alkaline, andesitic 

volcanics based on their geochemical data: (1) andesitic liquids are derived from high-

Al basaltic magma by fractional crystallisation or assimilation of crustal materials; and 

(2) andesites are primary liquids derived by melting of the lower crust or the upper 
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mantle material. On the basis of their isotope data, they also argued that the rhyolitic 
volcanic rocks were derived by partial melting of the upper crust. 

Krushensky (1976) carried out research on the Neogene, calc-alkaline extrusive 

and intrusive rocks of the Karalar-Yesiller area (east of Edremit Bay), NW Anatolia. On 

the basis of petrological, geochemical data and radiometric ages, he suggested that the 

intrusive and extrusive rocks are comagmatic and that the parent magma is probably 

derived from partial melting of subducted oceanic crust and accompanying oceanic 

sediments. 

Fytikas et al. (1976) argued that the magmatism in the Aegean area and Western 

Anatolia could be divided into two groups, each of which is related to different 

subduction processes. These are: (1) Tertiary magmatism, which is related to subduction 

in the northern Aegean; and (2) Recent calc-alkaline magmatism, which is related to the 

Hellenic subduction zone in the southern Aegean. Fytikas et al. (1984) further classified 

the Tertiary-Quaternary volcanics in the area into three distinct groups: (1) an Oligo-

Miocene volcanic phase (North Aegean Tertiary activity); (2) a Pliocene-Quaternary 

volcanic phase (South Aegean active arc) and (3) an Upper Miocene to Quaternary 

scattered volcanic activity. They argued that the volcanic activity started in the 

northernmost part of the North Aegean area mostly with calc-alkaline, intermediate and 

acid volcanic products. The volcanism shifted successively southward becoming 

progressively enriched in potassium. They interpreted this evolution as being related to a 

subduction zone which moved gradually south as a result of slab steeping and extension 

of the overlying crust and increase in the dip of the Benioff zone under the Eurasian 

plate, resulting from a reduction in the plate convergence rate after continental collision. 

Ercan (1979; 1982) reported some major element geochemical data for the 

Cenozoic volcanic rocks from Western Anatolia, Thrace and Aegean islands. Ercan et 

al. (1984) further reported and interpreted some major-trace element, isotopic and 

radiometric age data on the Cenozoic volcanics of Western Anatolia. They identified 

calc-alkaline and alkaline volcanics with K-Ar ages between 37.3 and 21.7 Ma and 

between 7.55 Ma and 25.0 Ka respectively. On the basis of their isotope data, they 

proposed a crustal and an upper mantle origin for calc-alkaline and alkaline volcanics 

respectively. Ercan and Satir (1994) and Ercan et al. (1995) dated the Tertiary volcanics 

of the Biga Peninsula, NW Anatolia and classified the volcanics into four groups: (1) an 

Eocene volcanism (commenced about 37.3 Ma ago), which consists generally of 
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pyroclastics and lavas of dacite and andesite compositions; (2) an Oligocene volcanism 
(34.3 to 23.6 Ma), which consists of andesitic, dacitic, trachy-andesitic and rhyodacitic 
lavas; (3) an Early-Middle Miocene volcanism (22.3 to 15.3 Ma) which is characterised 
by lava, tuff and ash flows of dacitic, rhyodacitic, andesitic and trachy-andesitic 
composition; and (4) a Late Miocene alkaline volcanism (11.0 to 8.4 Ma) which consists 
of alkali olivine basalts. 

Pe-Piper (1980) studied on the Miocene volcanics of the Lesbos Island (west of 

Edremit Bay) in the NE Aegean and showed that thick Miocene volcanics of the Island 

have calc-alkaline and shoshonitic character. A main phase of shoshonitic volcanism 

was dominant and followed by minor calc-alkaline volcanism. Pe-Piper (1980) argued 

that the shoshonites show two distinct differentiation trends on the basis of the major 

element data. One trend, characteristics of the earlier shoshonites, resulted from 

fractional crystallisation of anhydrous phases. The second trend, characteristics of later 

shoshonites, resulted from fractional crystallisation of amphibole and biotite. A further 

study was carried out on the Cenozoic high-K volcanic rocks of the Lesbos Island by Pe-

Piper and Piper (1992). They pointed out that shoshonitic and calc-alkaline volcanic 

rocks alternate in the Miocene volcanic sequence of the Island. According to their 

geochemical and radiometric data, volcanism on the Island started 21.5 Ma ago with a 

calc-alkaline character. Following a 3 Ma hiatus, the main shoshonitic phase took place 

from 17.7 to 16.9 Ma and was followed by minor late calc-alkaline phase. 

The study of Pe-Piper and Piper (1989) concentrated on the Late Cenozoic 

extensional volcanic rocks of the Aegean area and Western Anatolia. They described the 

Late Cenozoic volcanics of the Aegean area as back-arc volcanism formed behind the 

southern Aegean arc. They used the geochemical and radiometric data to classify the 

magmatic rocks into five groups: (1) calc-alkaline rocks of the Voras-Kamena-Vourla 

area which are characterised by LIL element enrichment and Nb depletion; (2) 

shoshonitic rocks of the Volos-Atalanti area and the Voras Mountains which are 

characterised by greater LIL element enrichment than the calc-alkaline rocks and by 

greater fractionation of HREE; (3) potassic, trachytic rocks of the Cos, Bodrum, Patmos, 

Urla and Doirani-Stratonion areas; (4) sodic mafic rocks of the Psathoura, Kalogeri, 

Samos, Urla, Fo9a and Chios areas and (5) continental alkaline rocks of the Kula area. 

Giilen et al. (1986) used Sr-Nd-Pb isotope systematics and the existence of the 

hydrous mineral assemblages (e.g. kaersutite and phlogopite) in the alkaline rocks from 
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the Kula area to suggest that the alkaline magma was generated from a mixture of 
components from a mantle which has had a time-integrated depletion in Rb/Sr, Nd/Sm 
and Pb/U and a mantle which had undergone a recent metasomatism event. 

Giilen (1990) studied the isotopic characterisation of Aegean magmatism and the 

geodynamic evolution of the Aegean subduction. He argued that the least contaminated, 

Quaternary Kula alkali basalts and the Miocene granitoids within the Attic-Cycladic-

Menderes Massif, represent Sr, Nd and Pb isotopic compositions for the Aegean mantle 

and crust respectively. On the basis of isotopic data, he suggested that the Aegean 

volcanics and granitoids can be interpreted in terms of four end-member components, 

namely the upper crust, the lower crust, the sub-continental mantle and the 

asthenosphere. He considered that the Oligo-Miocene magmatism in the area was 

related to the subduction of the Aegean slab. He argued that the Aegean magmatism 

throughout the Oligocene-Recent period could be explained by more than one 

subduction event. 

Yilmaz (1989; 1990) suggested that the Post-Oligocene volcanism in Western 

Turkey had a strong tectonic control. He argued that, following the continental collision 

during the Late Cretaceous-Early Eocene, Western Anatolia was affected by a north-

south compressional tectonic event and crustal thickening processes until the Middle 

Miocene. Hence, young calc-alkaline volcanic activity began and produced andesites, 

latites and dacites as a result of continental underthrusting and crustal melting. He 

argued that a mechanism similar to the MASH (melting, assimilation, storage and 

homogenisation) hypothesis of Hildreth and Moorbath (1988) was effective during the 

formation of the hybrid andesitic magma. According to his observations, hybrid 

andesitic magmatism lasted until the end of the compressional tectonic regime and 

extended until the initial stage of the extensional regime (Late Miocene). He also 

suggested that, during the Middle Miocene, the north-south compressional regime was 

replaced by a north-south extensional regime and that the basic alkaline magmatism was 

related to this extension during the more advanced stage of rifting in the Pliocene and 

Quaternary. He used the Ti contents of the rocks to divide the alkaline magmatism into 

two subgroups (low-Ti and high-Ti), and related these varieties to a heterogeneous 

source region which had, in part, been metasomatised prior to rifting. 

Giile? (1991) used the Sr and Nd isotope geochemistry of the Western Anatolian 

Tertiary-Quaternary volcanic rocks to suggest that crust-mantle interaction was an 
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important factor in the magma genesis. She argued that the volcanics were derived from 
variable mixtures of melts generated from two different mantle sources: (1) the calc-
alkaline volcanics were generated from the continental lithospheric or shallow 
asthenospheric mantle and contaminated with upper crustal materials; and (2) the 
alkaline volcanics were derived from relatively deep, isotopically depleted mantle 
regions and contaminated with lower crustal materials. She identified two possible 
crustal components: an upper crustal material with radiogenic Sr and non-radiogenic 
Nd; and a lower crustal material with non-radiogenic Sr and non-radiogenic Nd. She 
also argued that the relative involvement of mantle and crustal components is time-
dependent with a general decrease in a crustal component by a factor of about five from 
Tertiary to Quaternary, consistent with a change in tectonic regime from compressional 
to extensional. 

Seyitoglu and Scott (1992) argued that the Late Cenozoic volcanism occurred in 

relation to an extensional tectonic regime in the north-eastern Aegean and that activity 

began in north-eastern Greece during the Early Oligocene, and in north-western Turkey 

during the Late Oligocene-Early Miocene. They proposed that the volcanic activity was 

initially characterised by acid-intermediate, calc-alkaline volcanic products; however, 

from the Late Miocene onwards, basic-intermediate, alkaline products became 

dominant. They used stratigraphic correlation between volcanic and sedimentary units in 

extensional basins to suggest that N-S extensional tectonic regime in Western Turkey 

began in the Latest Oligocene-Early Miocene. Thus, they proposed that the transition of 

the regional tectonic pattern from compressional to extensional and the transition of 

volcanic character from acid-intermediate, calc-alkaline to basic-intermediate, alkaline 

are not simultaneous and related events. 

Seyitoglu et al. (1997) examined the magmatism in the U^ak-Selendi-Emet area 

(Western Anatolia) which evolved from potassic character in the Miocene to sodic in 

the Quaternary. They reported some new K-Ar ages and major and trace element 

analyses and suggested that the characteristics of volcanism changed from dominantly 

calc-alkaline and siliceous in the Early Miocene to largely alkaline and mafic in the 

Middle Miocene. They argued that all the Miocene volcanism formed in an extensional 

regime, and that the change in magma characteristics reflects a decreasing amount of 

contamination from the crustal components with time as a result of extensional 

tectonics. They used the high levels of incompatible elements and the variations in 
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element ratios (Nb/Y, Ti/Y and Th/Nb) to suggest a lithospheric mantle source 
heterogeneously enriched by two processes: (1) subduction enrichment producing high 
Th/Nb but low Nb/Y and Ti/Y; and (2) enrichment by small degree melts of depleted 
upper mantle producing low Th/Nb but high Nb/Y and Ti/Y. They considered that both 
of these enrichment processes contributed to Middle Miocene, high-K (or ultrapotassic) 
volcanics. To produce the calc-alkaline magma, they proposed a decompression-melting 
model to initiate the melting of the mantle lithosphere, resulting from lithospheric 
extension. They also argued that the lower K20/Na20 ratios of Pliocene-Quaternary 
Kula lavas with respect to those of Miocene lavas and their high levels of incompatible 
elements relative to OIB indicate that these lavas have been derived from the melting of 
an anhydrous asthenospheric source as a result of the continued extension, and that they 
were contaminated by mantle lithosphere material during their ascent to the crust. 

Paton (1992) studied the relationship between extension and volcanism in 

Western Turkey, the Aegean Sea and central Greece. He suggested that extension in the 

area began about 12 Ma ago, but has been most effective and rapid in the last 5 Ma. He 

classified the volcanism into two groups: (1) an arc volcanism associated with 

subduction along the Hellenic trench; and (2) an extension-related volcanism, which is 

younger than 12 Ma and characterised by higher Nb and Ti concentrations than the 

rocks of the arc volcanism. He argued that asthenospheric melting should not produce 

the extension-related mafic volcanics, as the amount of extension in the area is too small 

(maximum p ~2) to generate asthenospheric melting. He used REE modelling of the 

extensional volcanics to suggest that the source composition for all the extensional 

volcanics is a depleted lithospheric mantle that has been further depleted by the removal 

of an arc tholeiite, and then re-enriched by a small amount (-3-5 %) of a small degree 

melt from the asthenosphere. 

Richardson-Bunbury (1992) used the relationship between sedimentation, 

eruption and erosion to suggest that the timing of the volcanism is closely related to the 

start of extension in the Kula area. She also used the REE to propose that the melts are 

derived from an amphibole-bearing, enriched lithospheric mantle source as a result of 

decompression melting that underwent to form the basalts. She reported Ar-Ar ages in 

the Kula area between 1.67 ± 0.22 Ma and 0.13 ± 0.09 Ma. 

McKenzie and O'Nions (1995) used REE data to propose that the extension-

related basic volcanics of Western Anatolia and Aegean area were derived from melts 
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generated within continental lithosphere. They argued that the concentrations of 
moderately incompatible elements, such as Nd and Pr, in the volcanic rocks are greater 
than can be generated by a single-stage melting process from either the primitive mantle 
or MORB source. Thus, they suggested that the melts must be generated from a source 
that had previously been enriched and that the most likely source for such melt 
generation is continental lithosphere that had previously been enriched by the addition 
of a small melt fraction with high concentrations of incompatible elements, water and 
carbonates that may reduce the melting point. 

1.3. Objectives of this thesis 

As described above. Western Anatolia has been the subject of numerous studies 

in recent years. The common belief is that the Late Cenozoic magmatic activity of the 

area is strongly controlled by regional tectonic evolution. Thus, recent attempts have 

been made to relate magma composition and regional tectonic activity. However, the 

mechanisms associated with the Late Cenozoic tectonic evolution and related magmatic 

processes are still debated. Some authors (e.g. Yilmaz, 1989, 1991; Sava§9m, 1990) 

have suggested that a N-S compressional regime was replaced by a N-S extension 

during the Middle-Late Miocene and that these two different tectonic patterns are 

represented by dominantly acid-intermediate calc-alkaline and basic alkaline magmatic 

assemblages respectively. Giile? (1991) used Sr-Nd isotopes on volcanic rocks from a 

variety of locations to propose that the Early-Middle Miocene volcanics were generated 

from a shallow mantle and modified by extensive crustal contamination, and that the 

Late Miocene-Quaternary volcanics were generated by upwelling of an isotopically-

depleted deeper mantle source and are extension-related. Others (e.g. Seyitoglu and 

Scott, 1992, Seyitoglu et al.,1997), however, propose that the N-S extension started in 

the Latest Oligocene-Early Miocene and hence that even the volcanism which has been 

active since the Latest Oligocene-Early Miocene may have been generated in an 

extensional tectonic regime. 

In this work, volcanic rocks from the Western Anatolian, Late Cenozoic 

Volcanic Province have been studied to examine the spatial and temporal variations in 

magma type and chemical characteristics across the collision zone. Research has been 

focused on some key areas in the coastal section of Western Anatolia (Fig. 1.3). 
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The major objectives of this thesis are: (1) to document the type and the 
distribution of volcanic rocks across the collision zone and so to describe the volcanic 
evolution of the collision zone; (2) to document the spatial and temporal variations in 
the geochemical characteristics of the magmas to investigate any relationship between 
the regional tectonic patterns and the mechanisms that may have generated magma; (3) 
to investigate the type and extent of lithosphere involvement during the processes of 
subduction, continental collision and late stage crustal stretching, transpression-
transtension; (4) to define the compositional variations of the mantle source in time and 
space; and (5) to achieve major implications for our understanding of how magmas are 
generated and evolved in continental collision environments. 

1.4. Description of the thesis 

This thesis consists of seven chapters: 

Chapter 2 describes the general geological and the volcano-stratigraphic 

characteristics of the Western Anatolian, Late Cenozoic Volcanic Province, including 

the distribution and the type of the volcanic products, eruptive types and spatial-

temporal variations. 

Chapter 3 documents the major and trace element geochemical characteristics of 

the volcanic rocks of Western Anatolia and classifies them on the basis of their element 

concentrations. 

Chapter 4 presents the petrographic characteristics of the volcanic rocks. This 

chapter mainly describes textural and mineral compositional properties of the rock 

groups from the Western Anatolian Late Cenozoic Volcanic Province using the 

microscopic observations. 

Chapter 5 documents the mineral chemical characteristics of the volcanic rocks. 

This chapter is in two parts: (1) chemical compositions of minerals (olivine, pyroxenes, 

feldspars, amphibole, biotite-phlogopite, magnetite and ilmenite) and compositional 

variations of minerals throughout the magmatic evolution; and (2) calculations and 

estimations of the magmatic, intensive parameters including pressure-temperature-

oxygen fugacity. 

Chapter 6 consists of three parts. The first part describes the Nd-Sr isotopic 

characteristics of the volcanic rocks and presents the preliminary observations that may 

be useful to interpret the petrogenesis of the rocks. The second part discusses the 
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possible magmatic processes and develops a petrogenetic model for the magma genesis 
of the volcanic rocks related to coUisional tectonics and crustal thickening events. The 
third part discusses the petrogenetic model for the magma genesis of the lavas related to 
lithospheric extensional processes. 

Chapter 7 summarises the overall conclusions documented in the previous 

Chapters. 
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CHAPTER TWO 

G E O L O G Y A N D V O L C A N O - S T R A T I G R A P H Y O F 

W E S T E R N A N A T O L I A 

Introduction 

This chapter describes the general geological and the volcano-stratigraphic 

characteristics of the Western Anatolian, Late Cenozoic Volcanic Province. It 

incorporates the field observations obtained from the fieldwork carried out in an area of 

approximately 3500 km^. The area studied is located in the coastal region of Western 

Anatolia, between the cities of ^anakkale in the north and Izmir in the south (Fig. 2.1). 

The fieldwork has been undertaken in two key areas, each of which comprise a number 

of sub-areas characterised by specific geological and volcanological characteristics. 

These are: (1) the Ezine-Gulpinar-Ayvacik (EGA) area which is located in the southwest 

of the Biga Peninsula; and (2) the Dikili-Ayvalik-Bergama (DAB) area which is located 

further south, between the cities of Izmir and Edremit (Fig. 2.1). 

Two, 2-month field seasons have been carried out in Western Anatolia. During 

the fieldwork, some key areas in both the EGA and the DAB areas have been mapped. 

In order to establish the relationship between the volcanic units and define the lateral 

and vertical variations in the volcanic succession, a number of representative sections 

through the volcanic sequences have been logged. The volcanic facies criteria described 

by Cas and Wright (1988) have been used to describe the volcanics and distinguish the 

volcanic formations from one another. These main criteria are eruptive styles, 

depositional properties, petrographic characteristics and general physical properties of 

the volcanic products. A total of 350 volcanic rock samples have been collected 

systematically through the sections for further petrographic studies and geochemical 

analyses. 

Construction of the volcano-stratigraphic sections and mapping in Western 

Anatolia was difficult not only because of the complexities of the stratigraphic 

relationships of the volcanic rocks in general but also due to the lack of basic geological 
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information on the stratigraphy of the Western Anatolian volcanic rocks. This study is 
the first attempt of its kind to differentiate and map volcanic formations in detail in the 
area. Thus, most of the formation names used here are the names assigned in this study 
except for those of the basement rocks, plutonic bodies and a few volcanic formations 
that have previously been named by other workers. The main criteria used to name the 
volcanic formations are the type localities, rock compositions (given by the observable 
modal mineralogy here) and general depositional characteristics (for the pyroclastic 
deposits). The lava units with unique composition and eruptive style, for instance, have 
been named by their locality and rock type (e.g. The Behram Andesite), whereas the 
term "Unit" has been used with locality names to term the lava units with multiple 
composition (e.g. The Dededag Unit). Pyroclastic deposits have been termed by their 
locality and depositional type (e.g. The Cakmak Tuff or The Bergas Ignimbrite). 

In the following section, the geological and volcanological characteristics of the 

Ezine-Gulpinar-Ayvacik (EGA) and the Dikili-Ayvalik-Bergama (DAB) areas will be 

introduced. 

Table 2.1. Whole-rock K-Ar ages for selected volcanic rocks from Western Anatolia. 

Sample Area Locality and Rock Type SiOj K 2 O radiogenic *'Ar Atm. Age 

name formation name (TAS classification) (wt %) (wt <• %) (mm g ) cont. (%) (Ma ± 1 0 ) 

EA270 EGA Ayvacik (Ayvaeik volcanics) Basanite 41.81 1.43 0.385 ±0.080 54.1 8.32 ±0.19 

EA418 EGA Ayvacik (Kovacli dyke swarms) Basaltic TraAndesite 56.24 2.48 1.662 ±0.022 35.8 19.7 ±0.30 
EA37 EGA Assos (Behram andesite) Trachyandesite 61.67 3.53 3.330 ±0.060 19.7 20.3 ±0.60 

EA77 EGA Ayvacik (Koyunevi Ignimbrite) Rhyolite 73.43 5.04 3.330 ±0.080 78.9 20.7 ±0.50 

EA67 EGA Ezine (Kiziltepe Unit) Trachyandesite 59.96 4.77 3.090 ±0.040 19.7 21.3 ±0.30 
EA143 DAB Dikili (Nebiler volcanics) Basaltic andesite 52.69 2.33 1.312 ±0.028 41.6 15.2 ±0.40 

EA314 DAB Bergama (Egrigol andesite) Andesite 60.32 2.67 1.116 ±0,021 36.5 15,5 + 0.30 

EA151 DAB Ayvalik (Akcapinar Unit) Trachyandesite 60.95 3.42 2.188 + 0.032 32.9 19,7 ±0,30 
EA278 DAB Ayvalik (Ballica Unit) Trachyandesite 59.40 3.27 2.220 ±0.050 66.9 20,9 ±0,50 

2.1. The Ezine-Gulpinar-Ayvacik (EGA) Area 

The Ezine-Gulpinar-Ayvacik (EGA) area is located in the south-westernmost 

part of the Biga Peninsula (Fig. 2.1). Tectonically, the area is characterised by E-W and 

NE-SW trending fault systems. Some of the faults have right-lateral strike-slip patterns 

and were formed related to the North Anatolian Fault (e.g. the Bayramic Trough), whilst 
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Table 2.2. Published radiometric ages for the volcanic rocks from Western Anatolia and the Aegean. 

Locality (Corresponding) Unit 
Name 

Rock Type SiOz 
(wt %) 

:Age;(Ma) Analytical 
Method 

Data 
Source 

Late Miocene-Recent 
Kula (Divlit) Kula basalt Alkali basalt 46,36 0.025 ± 0.006 K-Ar 2 
Kula (Elekci) Kula basalt Alkali basalt 47,13 0.03 ± 0.005 K-Ar 2 
Kula (Burgaz) Kula basalt Alkali basalt 0.13 ±0 .09 Ar-Ar 1 
Kula Kula basalt Alkali basalt 1.10 + 0.03 K-Ar 5 
Kula (Burgaz) Kula basalt Alkali basalt 1.67 ± 0 . 2 2 Ar-Ar 1 
Kula (Burgaz) Kula basalt Alkali basalt 46,10 7.55+0.11 K-Ar 2 
Ezine Ezine volcanics Alkali basalt 7.10 + 2.3 Ar-Ar 3 
Ayvacik Ayvacik volcanics Basanite 41.44 8.40 + 0.3 K-Ar 4 
Ezine Ezine volcanics Alkali basalt 46.38 9,70 + 0,33 K-Ar 5 
Ezine Ezine volcanics Alkali basalt 46.39 9,90 + 0.6 K-Ar 4 
Tavsan Island Alkali basalt 45,00 9.50 + 0.3 K-Ar 4 
Prosa Island Alkali basalt 45,14 10.1 +0.2 K-Ar 4 
N of Ezine Tastepe volcanics Alkali basalt 47,17 11.0 + 0.4 K-Ar 4 
Izmir (Urla) Hawaiite 11.3+0.4 K-Ar 5 
Izmir (Urla) Alkali Urachyte 11.9 + 0.4 K-Ar 5 
Middle Miocene 
Selendi Trachyandesite 57.42 14.9 + 0 3 K-Ar 8 
Lesbos Island Basaltic andesite 52.94 L5.5+0 5 K-Ar 5 
Usak Trachyandesite 57.67 15.5+0.4 K-Ar 8 
Chios Island Basaltic andesite 55.92 15.9 + 0.8 K-Ar 7 
Lesbos Island Trachyandesite 16.5 ± 0 . 6 K-Ar 6 
Izmir (Karaburun) Trachyandesite 16.6 + 0.5 K-Ar 5 
Early Miocene 
Selendi Trachyandesite 59.75 16.8 + 0.7 K-Ar 8 
Lesbos Island RhyoUtic ignimbrit 68.46 16.9 ± 0 . 6 K-Ar 5 
Bergama Graben Kalarga andesite Andesite 61.13 17.3 ± 0 . 6 K-Ar 5 
Bergama Graben Kalarga andesite Andesite 62.44 17.6 ± 0 . 6 K-Ar 5 
Dikili Karagol Lavas Trachyandesite 61.37 17.7 + 0.6 K-Ar 5 
Usak Rhyolite 71.80 17.6 ±0 .1 K-Ar 8 
Lesbos Island Trachyandesite 62.18 18.0 ± 0 . 6 K-Ar 5 
Izmir (Karaburun) Trachyandesite 18.2 + 0.5 K-Ar 5 
Izmir (Karaburun) Trachyandesite 19.2 ± 0 . 6 K-Ar 5 
Gulpinar Babakale Unit Trachyandesite 57,82 19.5 ± 0 . 6 K-Ar 5 
Bozcaada Trachyandesite 58.92 19.6 ± 0 . 4 K-Ar 4 
Selendi Rhyolite 20.3 ± 0.6 K-Ar 8 
Izmir (Karaburun) Trachyandesite •21,3±0,7~ K-Ar 5 
Ayvacik Dededag Unit Trachyandesite 62.93 •21.5 ± 0 . 7 K-Ar 5 
Lesbos Island Trachyandesite 21.5 ± 0 . 6 K-Ar 6 
Edremit Trachyandesite 57.58 21.9 ± 0 . 6 K-Ar 4 
Oligocene 
E of Edremit Andesite 23,6 ± 0 . 6 K-Ar 9 
Can 27,6 ± 0.6 K-Ar 4 
Gokceada Trachyandesite 61.05 30.4 ± 0.7 K-Ar 4 
Ayvalik Trachyandesite 57.32 31.4 ± 0.4 •K-Ar 2 
Gokceada Trachyandesite 57.9 34.3 ± 1 . 2 K-Ar 4 
Late Eocene 
Biga Dacite 63.57 37.3+0.9 K-Ar 4 

Data source: (1) Richardson Bunbury, 1996; (2) Ercan et al„1984; (3) Paton, 1992; (4) Ercan et al„ 1995; 
(5) Borsi et al„ 1972; (6) Pe-Piper, 1980; (7) Bellon et al„ 1979; (8) Seyitoglu et al., 1997; (9) Krushensky, 1976. 

Others are normal faults formed in a relation to the N-S extension and the opening of the 

Aegean (e.g. the Edremit Graben). 

In the EGA area, the Cenozoic igneous activity started with pluton emplacement 

(the Kestanbol Pluton) which has been dated as 28 Ma (Bingol et al., 1982). The 

volcanic activity followed the emplacement of the pluton after an about 6-Ma hiatus. 
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The oldest dates obtained for the volcanic rocks are 21.3 ± 0.3 Ma (in this study; Table 
2.1) and 21.5 ± 0.7 Ma (Ercan et al., 1982; 1995). The volcanic products cover well over 
1200 km^ area with a thickness reaching over 900m. They are represented by lava flows, 
domes and pyroclastic fall and flow deposits. Abundant dyke swarms cut the volcanic 
successions in some places. The Early stage of volcanic activity (the Early Miocene) 
commenced with lava flows and continued with lava and pyroclastic successions. This 
stage of activity was restricted in the short interval of time from 21.3 ± 0.3 Ma to 20.3 ± 
0.6 Ma and was followed by the injection of abundant dyke swarms which have been 
dated as 19.7 ± 0.3 (Table 2.1). Middle Miocene activity is absent in the EGA area. 

A new stage of volcanic activity began in the Late Miocene and produced locally 

developed, small lava flows of basic and ultrabasic compositions. The available 

radiometric data indicate that the Late Miocene volcanism continued during the period 

from 11.0 ± 0.4 Ma (Ercan et al., 1995) to 8.32 ± 0.19 Ma (Table 2.1). 

In the following sections, characteristics of the lithological formations of the 

EGA area will be presented as two different sub-areas each of which represents a unique 

volcano-stratigraphic sequence. These are: (1) the Ezine-Ayvacik section (in the north); 

and (2) the Assos-Babakale-Gulpinar section (in the south). Although there is a close 

similarity between the Early Miocene volcanic products from the two sections in terms 

of the compositions and age of the rocks, the physical properties of the products are 

remarkably different from one another. The volcanic succession in the former consists 

dominantly of lava flows with minor debris (lahar) and ash flow deposits, whilst the 

volcanic rocks form a large ignimbrite deposits with much lesser amount 

(volumetrically) of lava flows in the later. The two sections are separated from one 

another by the Tuzla fault system which obscures the stratigraphic relationships between 

the rock formations from these two sections (Fig. 2.2). 

2 .1 .1 . The Basement Rocks 

The basement of the volcanic sequences in the EGA area is represented by two 

different formations: (1) a metamorphic basement unit known as the Kazdag Massif; 

and (2) a Palaeo-Tethyan subduction-accretionary complex known as the Karakaya 

Complex. 

The metamorphic rocks of the Kazdag Massif are observed in the southern and 

southeastern part of the Biga Peninsula. The Massif has a total structural thickness 
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Figure 2.2. Simplified geological map of the SWpart of the Biga Peninsula (modifiedfrom Karacik and Yilmaz, 1995) 
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of over 10 km (Bingol, 1969; Okay et al., 1991) and is composed mainly of quartzo-
feldspathic micashist and gneiss intercalated with marble and amphibolite. According to 
Okay et al. (1991), the core of the Massif includes meta-ophiolite assemblages of meta-
gabbro, meta-harzburgite, plagiogranite and amphibolite. These metamorphic 
assemblages have a faulted contact with an Upper Cretaceous Neotethyan melange and 
are intruded by Oligo-Miocene granitoids. Okay et al. (1991) and Pickett (1994) 
interpreted the Massif as a metamorphic core complex that was exhumed along normal 
faults, detachments and extensional mylonite zones during the Miocene. Bingol (1971) 
used radiometric dating on the Kazdag gneisses to suggest a pre-Late Triassic age for 
the protoliths of these rocks. More recently, however. Okay et al. (1996) used 
207p|^/206p,^ dating to obtain Upper-Middle Carboniferous ages (292 + 8 Ma and 323 ± 14 
Ma) of single zircon crystals separated from a cordierite-gneiss and a quartzo-
feldspathic gneiss. They interpreted these dates as representing the high-grade 
metamorphism and migmatization ages of the rocks of the Kazdag Massif. 

The metamorphic rock assemblages of the Karakaya Complex are abundant in 

the Biga Peninsula and the Edremit area. The Complex is composed mainly of low-

grade meta-sedimentary and meta-volcanic rocks and a succession of clastic deposits. 

Okay et al. (1991) described the Karakaya Complex as intra-oceanic fore-arc deposits 

and divided them into three different units, namely the Niliifer, Ortaoba and ^al Units. 

The Niliifer Unit is best observed in the southern part of the Biga Peninsula and Edremit 

area. It contains green spilitic basalts, volcaniclastic debris flow deposits, ignimbrites, 

volcanogenic sedimentary rocks and recrystallised limestone. Kaya and Mostler (1992) 

dated the Niliifer Unit as Middle Triassic using conodonts. The Niliifer Unit is 

tectonically overlain by the clastic rocks of the Ortaoba Unit which is composed mainly 

of disrupted basalt, siliceous mudstone, grey chert and sandstone. These rock 

assemblages are tectonically overlain by debris flows, disrupted fragments of Upper 

Permian carbonate platform sequences and basal clastic rocks of the ^al Unit (Okay et 

al., 1991; Pickett and Robertson, 1996). 

The rocks of the Karakaya Complex have been, in general, deformed extensively 

and affected by greenschist facies metamorphism leading to the formation of spilitised 

basalts. Pickett and Robertson (1996) used the existence of MORB-type basic rocks 

overlain by pelagic sediments to suggest that the Karakaya Complex was originally 

formed in a wide oceanic basin. 
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The metamorphic rocks of the Karakaya Complex are accompanied by 
serpentinized harzburgite (the Denizgoren ophiolite of Okay et al., 1991). These 
ophiolitic assemblages form large thrust sheets with approximately SSW-NNE 
orientation from Ezine to ^anakkale and tectonically overlie the Permian platform 
carbonate sequences (the Karadag Unit of Okay et al., 1991) and the other metamorphic 
lithologies of the Karakaya Complex. Pickett (1994) proposed that the geochemical 
characteristics of NW Anatolian ophiolites are similar to those from supra-subduction-
type ophiolites of the Eastern Mediterranean such as Troodos and Oman ophiolites. 

2 .1 . 2. The Ezine-Ayvacik Section 

2.1. 2.1. The Kestanbol Pluton 

A plutonic body known as the Kestanbol Granite (Karacik and Yilmaz, 1995) 

intruded the basement units of the Ezine-Gulpinar-Ayvacik area. Its outcrops are 

common over a large area (approximately 260 km of total outcrops) to the southwest of 

the town of Ezine, between the villages of Asarlik to the northeast, Yaylacik to the south 

and Kestanbol to the southwest (Fig. 2.2). Bingol et al. (1982) reported a K-Ar age of 28 

Ma for the pluton. The rock types forming the pluton are dominantly quartz-monzonite, 

monzonite and granite in composition. They are made up of oligoclase (An3g^5), alkali-

feldspar, quartz, biotite, hornblende, augite and minor amounts of apatite, sphene, 

magnetite and zircon. Textures vary between inequigranular and porphyritic, with grain 

sizes of about 1 to 5mm, although some K-feldspar megacrysts may reach 10-12mm. 

Towards the edge of the pluton, fine-grained rock types with the dominant textures of 

micro-granular porphyritic to granophyric are observed. Extensive aplite and aplogranite 

dykes and quartz veins have cut the pluton. Pegmatitic dykes have also been found in 

some areas. The wall rocks are represented by the metamorphic assemblages of 

Karakaya Complex, Karadag Unit (carbonate sequences) and serpentinized harzburgite 

of the Denizgoren ophiolite. Contact metamorphism has been identified around the 

pluton leading the formation of hornblende-hornfels and pyroxene-homfels facies rocks. 

Contact metamorphism has produced the assemblages of garnet, diopsite, epidote, 

tremolite, actinolite, wollastonite and chlorite along the contact between the Kestanbol 

Pluton and the dolomitic rocks of the Karadag Unit. Along the southwest margin of the 

Pluton, gneissic texture has been developed. 
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2. 1. 2. 2. The Kiziltepe (Volcanic) Unit 

The Kiziltepe Unit crops out to the southwest of Ezine, in the vicinity of the 

villages of Kiziltepe, Uskupcu, Karadagoba and ^inarkoy (Fig. 2.2). It is composed of 

porphyritic dacite and andesite and covers an area of about 10-15 km^. It overlies 

unconformably the metamorphic assemblages and ophiolitic rocks of the basement 

units. The volcanic rocks of this Unit also cover the contact between the basement rocks 

and the monzonites and granites of the Kestanbol pluton along the southeastern border 

of this intrusive body. The Unit consists mainly of massive lava flows, displaying 

variable shades of pink, grey and purple. The total thickness of the Unit varies between 

60 and 100m. The rocks are composed mainly of plagioclase, K-feldspar, augite, biotite 

and minor amounts of sphene, zircon and magnetite. Some dacite samples also contain 

phenocrysts of quartz. In the area between ^inarkoy and Kiziltepe villages, the lavas of 

this volcanic Unit have effectively been altered, leading the formation of iron oxides on 

joints and flow surfaces of the lavas. 

An andesite sample from the lavas of this Unit gave a K-Ar age of 21.3 ± 0.3 Ma 

(Table 2.1). 

2.1. 2. 3. The (Jinarkdy Pyroclastic Deposits 

Pyroclastic flow deposits crop out over a large area to the south of Ezine, in the 

vicinity of ^inarkoy village and to the west of Ezine, in the vicinity of Karadag village. 

They consist mainly of intercalated unconsolidated or semi-consolidated ash flow and 

volcanic debris flow deposits. Ash layers have variable thickness up to 2-3m, whereas 

the thickness of the deposits as a whole, varies from few meters to 60m. The deposits 

are internally structureless, unsorted to poorly sorted and matrix-supported. The matrix 

is made up of grey, pink, orange and brown-coloured, sand-size volcanic materials and 

includes volcanic clasts of pebble-size to 0.5-lm in diameter. The clasts are andesitic 

and dacitic in composition and mostly exhibit porphyritic textures. 

2.1. 2. 4. The (Jakmak Tuff 

The ^akmak tuff layer overlies the ^inarkoy pyroclastic deposits between Ezine 

and Ayvacik towns. It is mainly composed of semi-consolidated fine ash and lapilli size 

pyroclastic fragments. Its best exposure has been observed to the east of ̂ akmak village 

where it crops out over a small area of about 2-3 km^. The tuff layer mantles the 

topography and its thickness varies from Im to 15m. Pumice is the most common 
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detrital material comprising approximately 80% of the total. Lithic fragments of 
andesites and dacites are common at the base of the layer and decrease upwards. In 
some localities, it consists of alternations of fine-ash and sandstone beds, which are 
entirely made up of volcanic rock fragments. The ^akmak tuff layer is wedged out to 
the southeast, between the ^inarkoy pyroclastic deposits and the Ezine Unit. 

2.1. 2. 5. The Ezine (Volcanic) Unit 

The Ezine Unit overlies the ^inarkoy pyroclastic deposits and the ^akmak tuff 

layer over a wide area between Ezine and Ayvacik and in some localities to the west of 

Ayvacik (Fig. 2.2). It is entirely made up of massive porphyritic lava flows. The rocks 

are mainly andesitic and trachy-andesitic in composition and are light grey, beige-

yellowish in colour. In some localities, the alteration of augite phenocrysts causes a 

change in colour to reddish and purple. The maximum thickness has been estimated as 

approximately 300m, although the thickness of the lavas varies from one locality to 

another depending mostly on degrees of resistance of the rocks to erosion which is 

controlled mainly by degree of alteration. 

The rocks are composed mainly of plagioclase, K-feldspar, augite and biotite. 

Most samples also contain magnetite, apatite, zircon and ilmenite. The groundmass is 

made up of microcrysts of plagioclase and, rarely, augite set in a partly glassy matrix. 

To the west of Ayvacik, lava flows have extensively been affected by weathering 

and alteration. Iron oxide and copper salts are common on joints and flow surfaces. 

Secondary albite, calcite, sericite and chlorite were formed mainly as a consequence of 

sericitic alteration. In some areas, alteration also formed economic mineral deposits such 

as clay minerals of kaolinite-montmorillonite (to the southwest of Ezine) and Cu-Zn 

mineralisation (to the west of Ayvacik). 

2. i . 2. 6. The Dededag (Volcanic) Unit 

The Dededag volcanic Unit crops out in a large area around the town of 

Ayvacik. In the area studied, the total extent of the Unit is approximately 300 km^. It 

consists mainly of porphyritic andesite and dacite lava flows and flow-breccias. The 

lavas form massive layers almost constant texture and colour. In some places, the lavas 
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were emplaced as cryptodomes' indicating that near-surface intrusions caused the 
formations of the lavas. 

The rocks are mainly composed of phenocrysts of plagioclase, augite, K-

feldspar, biotite, magnetite and minor zircon and apatite in a groundmass containing 

microcrysts of plagioclase, minor augite and a cryptocrystalline matrix. 

In the Dededag Unit, flow-breccias (fragmental rocks) are as abundant as the 

porphyritic, massive lava flows with which they appear in lateral continuity. The flow-

breccias show compositional and textural similarities to the lava flows. In some parts, 

they have striated and/or gouged margins that may indicate that they have been formed 

by autobrecciation during the movement of the highly viscous lavas. 

In some places (e.g. Erecek village), volcaniclastic sediments are intercalated 

with the lava and breccia flows of the Dededag Unit. The sediments are mostly 

lacustrine sandstones and have a maximum thickness of about 15m. 

2.1. 2. 7. The Ultrapotassic Lamproite Dykes 

Locally developed, minor, isolated lamproite dykes have been observed in a few 

localities around the town of Ezine (Fig. 2.2). To the south of Ezine, between Kiziltepe 

and Uskupcu villages, a small (with a total extent of only 0.5 km^), NW-SE trending 

dyke is found near the contact zone between the Ezine Unit and the peripheral micro-

granitic zone of the Kestanbol Pluton. Further northwest, to the north of Aladagoba 

village, a few small (with a total extent of <0.3 km^) lamproite dykes cut the lavas of the 

Ezine Unit. The lamproites are hard, compact, fresh looking, aphyric or 

microporphyritic rocks with a characteristic black colour. They are mostly absarokite in 

composition and contain microcrysts of augite, olivine, plagioclase, Ti-phlogopite, 

magnetite and ilmenite. 

2.1. 2. 8. The Tastepe Volcanics 

The name "Tastepe Volcanics" was first used by Ertiirk et al. (1990) for the 

basic volcanic rocks that crop out in an area of about 7.5-8 km^ between the city of 

(^anakkale in the north and the town of Ezine in the south (Fig. 2.1). The best exposure 

is observed in the east of Tastepe village in a cutting on the main ^anakkale to Ezine 

road. The products of the Tastepe Volcanics are also abundant in the northeast of 

' A dome-like uplift of the surface rocks as described by Cas and Wright (1988). 
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Tastepe. They consist mainly of small, isolated lava flows, with a total thickness of 
about 50-60m. The rocks are fine-grained, aphyric and/or olivine-phyric basalts. They 
are composed mainly of plagioclase, diopside, olivine, ilmenite and magnetite. 

The lavas in most places lie on the ophiolitic rocks of the basement lithologies 

(the Denizgoren ophiolite). To the northeast of Tastepe, the lavas have been found 

overlying young sedimentary rocks which made up of limestone (lacustrine sediments) 

interbedded with poorly consolidated sandstone. Towards the east and southeast of 

Tastepe village, a number of SW-NE trending faults have been observed cutting the 

lavas. The fault zones are characterised by abundant brecciated, serpentinized 

harzburgite of the Denizgoren ophiolites. 

Ercan and Satir (1994) and Ercan et al. (1995) reported whole-rock, K-Ar age of 

11.0 ± 0.4 Ma for the rocks of the Tastepe Volcanics (Table 2.2). This is the oldest 

known age for the Late Miocene volcanic rocks in the EGA area. 

2. / . 2. 9. The Ezine Volcanics 

The rocks of the Ezine Volcanics crop out around the town of Ezine. They are 

represented by small, isolated lava flows in the vicinity of Kizilkoy, Araplar and Akkoy 

villages. The lavas have a total aerial extent of approximately 6.5 - 7 km^. The average 

thickness is about 5-10m, but towards the southeast of Ezine, the maximum thickness 

was observed as 30-40m. The rocks are compositionally rather similar to the basalts of 

the Tastepe Volcanics. They are mainly fine-grained, olivine-phyric basalts. More basic 

rock types such as basanites are also found, particularly in the vicinity of Akkoy village 

(North of Ezine). The rocks are composed mainly of microcrysts of plagioclase, 

diopside, olivine, ilmenite and magnetite set in a black, glassy matrix. 

The lavas lie on the southern side of the Bayramic trough, which extends in a 

NE-SW direction along the middle branch of the North Anatolian Fault (NAF). 

Interpretation of the tectonic processes and understanding the fault geometries and their 

relationships with lava formations are difficult because of the complex tectonic history 

of the area. Although the area has widely been affected by normal faulting linked to the 

opening processes of the Aegean, tectonic and seismological analyses (e.g. Barka and 

Kadinsky-Cade, 1988; Zanchi and Angelier, 1993) have shown that the strike-slip 

activity related to the NAF is predominant in this part of Western Anatolia. Existence of 
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both normal and strike-slip fault patterns further emphasises that the distribution of the 
lavas is influenced by both of the processes mentioned above. 

K-Ar ages of 9.7 ± 0.4 Ma and 9.9 ± 0.6 Ma have been reported for the Ezine 

volcanics by Borsi et al. (1972) and Ercan et al. (1995) respectively. Paton (1992) also 

obtained a date of 7.1 ± 2.3 Ma by Ar-Ar laser ablation for the basalts from the same 

area (Table 2.2). 

2.1. 2.10. The Ayvacik Volcanics 

They are exposed in two different localities around the town of Ayvacik. These 

are Karayiv hill, which is located to the northeast of Ayvacik, and Ahmetce village, 

which is located to the southeast of Avyacik. On Karayiv hill, where the lavas are best 

exposed, they cover an area of approximately 3-4 km^ with a total volume of about 0.2 

km^ 

Plate 2.1. Columnar jointed basalts of the Ayvacik Volcanics. 

The volcanic products consist mainly of small, isolated lava flows. The rocks are 

composed almost entirely of fine-grained, aphyric and/or weakly porphyritic basanites. 

31 



Chapter 2: Geology and Volcano-stratigraphy of Western Anatolia 

The microcrysts are plagioclase, diopside, olivine, ilmenite and magnetite in a black 
glassy groundmass. The rocks have a hard, compact appearance and are black in colour. 
Columnar jointing is abundant (Plate 2.1). The joint spacing is generally about 30-35 cm 
and the joint surfaces are vertical and sub-vertical. 

In the Ahmetce area, the Ayvacik Volcanics are represented by small, isolated 

lavas. They were formed along N-E trending fault boundaries related to the opening 

processes of the Edremit Bay. The lavas are generally poorly exposed with a total 

estimated volume of approximately 0.02 km^. They have similar composition and 

petrographic properties to those that crop out on Karayiv hill. 

A basanite sample from Karayiv, which is considered to be the youngest 

volcanic product of the Ayvacik volcanics according to the field observations, has been 

analysed using the K-Ar method, as 8.32 ± 0.19 Ma (Table 2.1). This is the youngest 

known age for the Late Miocene volcanic rocks in the EGA area. Ercan et al. (1995) 

also reported K-Ar age of 8.40 + 0.30 Ma for the basic rocks from Karayiv area (Table 

2.2). 

2 .1 . 3. The Assos-Babakale-Gulpinar Section 

The distribution and the stratigraphic position of the lithological formations of 

the Assos-Babakale-Gulpinar section are shown in Figures 2.4 and 2.5 respectively. The 

following paragraphs describe the formations in order of their position in the volcano-

stratigraphic succession, from bottom to top. 

2.1. 3.1. The Babakale (Volcanic) Unit 

The Babakale Unit consists mainly of lavas and volcanogenic debris-flows. The 

Unit was first named by Karacik and Yilmaz (1995) as the "Babakale lava-lahar 

association". Volcanic products of the Unit crop out to the east of Babakale, along the 

coastal line of the south-westernmost part of the Peninsula (Fig. 2.4). The maximum 

thickness of the Unit has been measured as approximately 150-200m. Lavas are mainly 

porphyritic andesites and dacites. They contain phenocrysts of plagioclase, augite, K-

feldspar, biotite and magnetite. 

Debris-flows contain clasts which are between 10 mm and 25 cm in diameter. 

They are mostly sub-angular to sub-rounded (Plate 2.2). All clasts have volcanic origin 
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Figure 2.5. Schematic generalised stratigraphic column illustrates the volcano-stratigraphy of the 
Assos-Babakale-Gulpinar section. 
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and display compositional characteristics similar to the lava flows. In some places, 
extensive weathering and alteration formed Fe oxide and secondary clay mineralisation, 
particularly around the outer zone of the clasts. 

Plate 2.2. Debris flow deposits of the Babakale volcanic Unit. 

The Babakale Unit is stratigraphically the oldest in the Assos-Babakale-Gulpinar 

section. In most localities, it is cut by extensive dyke systems (the Kovacli Dyke 

Swarms). The Unit is overlain by the Kepez Ignimbrites towards the north and by the 

Koyunevi Ignimbrite to the east. 

2.1. 3. 2. The Bademli (Volcanic) Unit 

The Bademli Unit crops out to the east of Kepez and to the south of Bademli 

village with a total aerial extent of 20 km^. It is composed mainly of massive lava flows 

of porphyritic andesites and dacites. The total thickness of the lavas has been estimated 

about 150-200m. Plagioclase is the most abundant phenocryst and is accompanied by K-

feldspar (sanidine), augite and biotite. Unlike all other volcanic products in the Ezine-

Gulpinar-Ayvacik area, some rocks of this unit also contain amphibole xenocrysts. They 

are mostly pargasitic and ferroan-pargasitic hornblende and surrounded by opaque outer 

zone. 
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Plate 2.3. Basaltic and basaltic-andesitic feeder dykes cut the massive lava flows of the Bademli Unit 

with NNW-SSE and NNE-SSW orientations. 

In the coastal part of the region, the lavas of the Bademli Unit are cut by a 

number of E-W trending, listric normal faults that are related to the opening of the 

Edremit Bay (Graben). A number of dyke swarms (the Kovacli Dyke Swarms) also cuts 

the massive lavas (Plate 2.3). 

2.1. 3. 3. The Koyunevi Ignimbrite 

The Koyunevi Ignimbrite crops out over a large area along the Tuzla stream 

valley and in the south-westernmost part of the Biga Penisula, along the coast (Fig. 2.4). 

The total thickness of the ignimbrite is about 30-35m. It consists of several cooling 

parts. The lower part is characterised by a thin (approximately Im) ground surge deposit 

which mantles the topography. The ground surge is followed by pumice fallout deposit 

which consists of fibrous pumice clasts. In most localities, pumice clasts are porphyritic 

and contain phenocrysts of zoned plagioclase, biotite, quartz and oxides. Clasts are also 

strongly flattened in some localities. Pumice fallout deposits are followed by a flattened 

tuff layer with a thickness of about 2m. The tuff layer contains abundant pumice as well 

as lithic fragments of mainly dacite and andesite. 
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The upper part of the ignimbrite is a conspicuous pinkish-reddish, welded layer 
defining flat structural surfaces on top of the pyroclastic sequence (Plate 2.4). It overlies 
the flattened tuff layer and consists mainly of three different zones: (1) a slightly welded 
zone (2-3 m-thick) which is characterised by glass shards, lithic fragments of dacites and 
andesites and crystals of biotite, plagioclase, quartz, oxides and K-feldspar; (2) a welded 
zone which has a thickness of approximately 5-10m and includes flattened pumice 
fragments, small fiamme and lithics; (3) a sillar zone, which is characterised by 
abundant vapour phase crystallisation of K-feldspar, tridymite and cristobalite resulting 
from the percolation of hot gases through the pyroclastics during cooling. The sillar 
zone is the extremly welded portion of the ignimbrite and has a thickness of about 20m 
and regular columnar jointing. 

Plate 2.4. Welded zone of the Koyunevi Ignimbrite forming flat structural surface on top of the 

pyroclastic sequence. 

The field evidence show that the Koyunevi ignimbrite is stratigraphically the 

oldest ignimbrite formation among the pyroclastic deposits erupted in the Assos-Tuzla-

Gulpinar area. A sample from this ignimbrite has been analysed, using K-Ar method, as 

20.7 + 0.3 Ma (Table 2.1). 

2.1. 3. 4. The Suruce Andesite 
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The lavas of the Suruce Andesite crop out around Cape Suruce (Fig. 2.4) and 
overlie the pyroclastic assemblages of the Kojoinevi Ignimbrite. The lavas have a total 
thickness of about 50m and extend over an area of 10 km^. The rocks are hard, compact 
porphyritic andesites, generally variable shades of grey and beige. The phenocryst phase 
consists mainly of plagioclase, hypersthene, augite, K-feldspar, biotite and magnetite. 

The lava flows are extensively cut by E-W trending listric normal faults and 

locally intercalated with thin layers (<5-10m) of volcanogenic lacustrine sandstone. 

Towards the north and the northeast from the coast, the lavas are overlain by the 

pyroclastics of the Bergas Ignimbrite. The Suruce Andesite is a good stratigraphic 

marker horizon between the Koyunevi and Bergas Ignimbrites. 

2. / . 3. 5. The Bergas Ignimbrite 

The Bergas Ignimbrite is exposed over an area of approximately 55-60 km 

around the villages of Bergas, Pinarli, Bektas, Akkaya and Kalabak (Fig. 2.4). It is 

named after its best outcrops in the vicinity of Bergas village. The Ignimbrite is exposed 

as a succession of prominent, partly cliff-forming ignimbrite sheets, which are laterally 

continuous and of near-constant thickness. Individual sheets range in thickness from 15 

to 40m. Four successive sheets may be distinguished and as they represent progressive 

deposition within the ignimbrite formation may be designated as members. These are: 

(1) the Pinarli member; (2) the Bektas member; (3) the Akkaya member; and (4) the 

Kalabak member. Each member has a characteristic texture and most may be further 

subdivided into sub-units on the basis of depositional types, degree of welding and 

devitrification. Some members are also separated from one another by clastic 

sedimentary rock formations. 

The Pinarli member crops out to the southeast of Pinarli village (Fig. 2.4). It is 

approximately 35m thick and consists of a succession of three different parts (Fig. 2.6a). 

The lower part begins with a rhyolitic basal pumice fall deposit which exhibits internal 

stratification resulting from fluctuations in grain size and lithic content. The lithic 

concentration decreases upwards. The basal pumice fall deposits are overlain by an 

internally-layered pumice deposit that includes locally-developed ash beds. The ash 

layers are generally graded and partly intercalated with pumice falls. Pumice clasts 

exhibit a strongly fibrous texture and include phenocrysts of plagioclase, biotite and 

quartz. A layer of pumice tuff with a thickness of about 0.5-lm overlies the fallout 
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deposits. Pumice tuffs pass upwards into flattened pumice tuffs. 

The middle part is represented by welded ignimbrites. The base of this part is 

characterised by a remarkably high proportion of glassy fiamme that exhibit a strong 

flattening and rheomorphic structures with parallel lineations (Plate 2.5). The fiamme-

rich zone is overlain by partially welded and welded ignimbrites. The welded zone is 

approximately 10m thick and contains a considerable amount of lithics of mostly 

andesitic-dacitic and rarely metamorphic rock fragments. 

Plate 2.5. The glassy fiamme-rich part of the Pinarli member exhibits rheomorphic structures. 

The upper part is a relatively thick (approximately 20-m) layer of a sillar zone. It 

consists mainly of densely welded and devitrified tuffs and is characterised by abundant 

sub-solidus crystallisation of K-feldspar. The Pinarli member is overlain by 

volcanogenic lacustrine sandstones (7-10-m thick) which separate the Pinarli member 

from the Bektas member. 

The Bektas member crops out to the south of Bektas village, over an area of 

approximately 13-15 km (Fig. 2.4). The base of the member is characterised by an 

extensive basal pumice fall layer with a low content of phenocrysts (K-feldspar, 

plagioclase, biotite, quartz, oxides) and lithics (volcanic rock fragments), hi most places, 

the fallout basement layer is overlain by a set of laminated, fine-grained layers with 
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plane-parallel or low-angle cross bedding and abundant accretionary lapilli. This 1.5-m 
thick fall deposit is followed by a welded zone, which includes four different zones, 
each of which is characterised by different degree of welding (Fig. 2.6b). From bottom 
to top, they are: (1) a densely welded zone that is characterised by a dark, glassy-
looking, reddish-brown vitrophyre with poorly-developed columnar jointing; (2) a 
welded and flattened pumice tuff with abundant microlites of K-feldspar, plagioclase, 
biotite and quartz; (3) a 1-1.5 m-thick fiamme-rich zone; and (4) a partially welded zone 
that includes abundant andesitic and dacitic rock fragments. 

The top (~15m thick) of the Bektas member consists of several flows, with 

inverse grading of pumice in each. The size of the pumice clasts varies from 10 to 25 

cm. The pumice clasts are strongly banded and contain two types of matrices: (1) a 

clear, colourless matrix; and (2) a dark, grey matrix with abundant microlites of 

plagioclase, biotite and oxides. The sharp contacts between the clear and grey matrices 

may be attributed to mingling of different magmas to form hybrid compositions 

(Anderson, 1976; Sparks and Marshall, 1986). The concentration of the lithic clasts 

increases from bottom to top. 

The Akkaya member is exposed around Akkaya, SW of Kuruoba and north of 

Bektas village (Fig. 2.4). The base of the member is represented by locally-developed 

base surge deposits (Fig. 2.7a) consisting of alternating, internally-bedded, particulate 

ash and pumice and fine-ash beds. To the north of Bektas village, the deposits show 

cross-stratification with minor sand-wave bedding. The bedding changes gradually up 

into plane parallel and/or low-angle cross-stratification. In some localities, fine-grained 

ash beds enclose abundant accretionary lapilli. The surge deposits are overlain by 

pumice tuff layers with a maximum thickness of about 5m. They contain a high 

proportion of predominantly tuffaceous, lithic clasts at the base of the layer. Throughout 

the layer, the abundance of the clasts decreases with height, but their size remains 

constant, suggesting a decreasing supply rather than a decreasing eruption intensity. 

A welded zone overlies the pumice tuffs in most localities. This zone is a 10 m-

thick zone of generally massive, lithic-bearing ignimbrites with occasional well-sorted 

tuff layers near the top. 

The uppermost part of the Akkaya member consists mainly of approximately 20 

m-thick pumice flow with depositional and textural characteristics similar to those from 

the upper part of the Bektas member. 

41 



Chapter 2: Geology and Volcano-stratigraphy of Western Anatolia 

3 

AH 

c 
w 
u 
C 

•c 
o 

I 
4̂  

} J B d 3IPPIIAI 

o 

•0 • -f,. -u 
o:'9-;(;:-P 

o;-0-.o:.o 

o:-0-.o;'o 
I-:»;•()•:».• 
o;-'9-.o:-0 

(Ul) SS3U>[0im 

O 

o 

3 
O H 

PC7 

3 

' l ] • -A 

to 

3 
O H 

4 

4 
(Ul) SS9lD]3iqX 

a 

I 

I 

I 

I 
.1 

42 



Chapter 2: Geology and Volcano-stratigraphy of Western Anatolia 

The Akkaya member is cut by a number of E-W and SE-NW trending fault 
systems near the coast, south of the Bektas village. These fault systems appear to be 
responsible for the general tilting of the basal layers of the ignimbrite to the north. This 
member is overlain by a 5-7 m-thick sedimentary unit, which consists mainly of 
lacustrine volcanogenic sandstones. 

The Kalabak member is best exposed around Kalabak village and to the south 

of Balabanli village. It overlies the Akkaya member and, in some localities, the Bektas 

member. It has a total thickness of about 50m and consists of three different parts each 

of which represents a different depositional type (Fig. 2.7b). 

The lower part is characterised by ground surge deposits. They are mostly 

stratified and cross-stratified deposits and up to 1.5m total thickness. They are 

composed of alternating coarse and fine-grained laminae that are typically inclined at 

low angles (up to 10°) and commonly form large wavelength, sand-wave structures. The 

presence of stratification and cross-stratification may indicate that the deposits are 

pyroclastic surges that formed by deposition directly from dilute turbulent flows. 

The middle part is represented by a welded zone that consists of partially welded 

and welded ignimbrites containing abundant homogeneously distributed lithic 

fragments. There are two types of lithic fragments: xenoliths; and cognate lithics 

(juvenile magmatic fragments). The xenoliths originate mainly from the metamorphic 

basement unit (the Karakaya Complex) and the serpentinized harzburgites of the 

Denizgoren ophiolites. The cognate lithics are mainly of porphyritic rock fragments of 

rhyolite, dacite and andesite. Rheomorphic stmctures are common around the lithic 

fragments. 

The main volume of the upper part is characterised by distinctive pumice flows 

with flattened, elongate vesicles, sub-rectangular shapes and milk-white glass. Pumice 

clasts generally show inverse grading and local concentrations of lithic clasts. The latter 

consist mainly of lavas with compositions from rhyolite to andesite. Locally, these 

pumice flows are intercalated with volcaniclastic sandstones and thin (<10m) lava 

flows. 

2. / . 3. 5. The Ciceklik Andesite 

The Ciceklik Andesite overlies the pyroclastic assemblages of the Kalabak 

member. It is composed of several lava flows and crops out to the south of Bektas 
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village with an aerial extent of approximately 5 km" (Fig. 2.4). The maximum total 
thickness of the lavas is about 20m. The rocks are mainly porphyritic andesites and 
characterised by their hard, compact appearance and dark grey, black colour. They 
contain phenocrysts of plagioclase, augite, K-feldspar, biotite and minor hypersthene. 

2.1. 3. 6. The Bakacak (Volcanic) Unit 

The lava flows of the Bakacak Unit crop out to the west of Behram village over 

an area of approximately 4-5 km^. The total maximum thickness of the lavas is about 

15-20m. The rocks are mostly porphyritic dacites, though rocks of andesitic composition 

are also present. The microcrystalline matrix includes phenocrysts of plagioclase, augite, 

sanidine biotite and quartz with minor zircon, apatite and magnetite. The rocks have 

extensively been altered along the joints and flow surfaces to form a pale green 

appearance. In some places, the original mineral phases have been replaced by calcite, 

sericite, kaolinite and quartz. 

2. i . 3. 7. The Behram Andesite 

The Behram lavas comprises olivine- and orthopyroxene-bearing andesites 

which form several isolated lava flows. The lavas crop out in an area of approximately 

12 km^, near Behram (Assos) village, along the coast (Fig. 2.4.). The thickness of the 

lavas varies widely, with a maximum (estimated as 250m) in the region of Behram 

castle (Plate. 2.6). In the Behram castle, well-formed columnar and blocky jointed lava 

lobes are found. Further south, towards the coast, the lava lobes are surrounded by 

irregular layers of scoriaceous and blocky lavas. These are interpreted to be 

autobrecciated lavas (Plate. 2.7) formed by continuous movement and expansion of the 

viscous, congealed lava as described by Sigurdsun, (1981); and Cas and Wright, (1988). 

The rocks of the Behram Andesite are porphyritic, grey and beige. They contain 

phenocrysts of plagioclase, hypersthene, olivine, augite, sanidine, biotite and magnetite. 

To the southwest of Behram village, the lavas are cut by several NW-SE 

trending normal faults. To the west and the north of Behram village, the lavas are 

overlain by young sediments deposited in the Tuzla stream valley which obscure the 

stratigraphic relationships between the lavas of the Behram Andesite and the older 

volcanic formations. However, to the east of Behram castle, at the eastern end of the 

outcrop, the stratigraphic relationship between the Behram lavas and the Balabanli 
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Plate 2.6. Columnar jointed andesitic front of the Behram Andesite. 

Plate 2.7. Autobrecciated lavas of the Behram Andesite. 
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Ignimbrite can be observed asa sharp and planar contact. In this locality, the Behram 
lavas are overlain by the Kadirga member of the Balabanli Ignimbrite. 

A sample from the Behram Andesite has been dated as 20.3 ± 0.6 Ma using the 

K-Ar method (Table 2.1). 

2.1. 3. 8. The Balabanli Ignimbrite 

The Balabanli Ignimbrite occupies a large area in the southwest part of the Biga 

peninsula with a total aerial extent of >200 km^. Its best exposures are around the 

localities of Tamis, Kepez, Balabanli and Kadirga (Fig. 2.4). Although the Balabanli 

ignimbrite forms a single stratigraphic level on the basis of its position in the volcano-

stratigraphic succession, it consists of several ignimbrite sheets, each of which is 

characterised by specific depositional properties. Characteristics of the ignimbrites vary 

from one locality to another. Thus, the Balabanli Ignimbrite has been divided into three 

different ignimbrite members: (1) the Tamis member; (2) the Kepez member; and (3) 

the Kadirga member. 

The Tamis member is best observed to the north of the Tuzla stream valley, around the 

village of Tamis (Fig. 2.4). It covers an area of about 35-40 km^ with a total thickness of 

approximately 45-50m (Fig. 2.8a). The base of the member is characterised by a basal 

pumice fall layer, a moderately low content of phenocrysts and a white, yellow colour. 

A pumice tuff layer with a thickness of 1-1.5m mantles the pumice fall deposits. Pumice 

clasts in this layer typically have a strongly fibrous texture and a milk-white colour. 

Towards the top of the sequence, the pumice tuff passes gradually into flattened tuffs. 

Here, pumice clasts characteristically contain tabular bubbles and translucent pearly 

glasses. Pumice tuffs are overlain in many places by a welded layer (~ 1.5-m thick) 

which consists mainly of densely flattened, fiamme-rich tuffs, the amount of the fiamme 

decreasing towards the top. 

The welded lower layer is overlain by pumice flows, which are made up of 

pumice tuff, pumice block flows and flattened pumice tuffs from the bottom towards the 

top of the succession respectively. The total thickness of this pumice-rich layer is about 

7-7.5m. The pumice clasts are mostly porphyritic and contain approximately 10-15 

volume % phenocrysts, which in order of decreasing abundance consist of euhedral-

subhedral plagioclase, biotite, K-feldspar, augite and titano-magnetite. 

Further towards the top of the succession, a welded upper layer with an average 
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Plate 2.8. The welded upper part of the Tamis member overlaying pumice flows. 

Plate 2.9. Large glassy, elongated fiamme in the welded upper part of the Tamis member. 
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total thickness of about 10m overlies the pumice unit (Plate 2.8). The welded zone 
begins with a slightly welded zone and passes gradually upward into a densely welded 
zone. The densely-welded zone is a typical pinkish-yellow ignimbrite characterised by 
abundant large (up to 10-15 cm), black fiamme (Plate 2.9) with some phenocryst-rich 
layers. A thin (20-30 cm) layer of black, glassy ignimbrite mantles the welded zone. 

The Kepez member is the most abundant ignimbrite deposit in the area. It is 

exposed in the south-westernmost part of the Biga Peninsula, between the villages of 

Tamis to the northeast, Babakale to the southwest and Gulpinar to the northwest (Fig. 

2.4). It has a total aerial extent of about 175-180 km and is best exposed in the Kepez 

area. The member is cut by two faults. The northern end of the outcrop is bounded by 

the NW-SE trending Tuzla fault which forms the Tuzla stream valley, whereas the 

northwestern end is bounded by the SW-NE trending Gulpinar fault. Although the 

thickness of the Kepez member varies from one locality to another, the average 

thickness has been estimated as about 80-90m. 

The Kepez member consists of three different cooling parts (lower, middle and 

upper in Fig. 2.9), with intervening volcaniclastic sediments of continuous and lenticular 

bodies. Each layer has a characteristic textural variation and can be further subdivided 

into zones on the basis of varying degrees of welding and devitrification. 

The base of the lower part is characterised by ground surge deposits with a 

thickness of about 0.5m. They consist mainly of alternating, internally-bedded ash and 

pumice and fine ash beds. A pumice tuff about 4-6m thick covers the surge deposits. 

The pumice tuff begins with a plinian fallout and passes gradually into flattened pumice 

tuff (Plate 2.10). The pumice clasts are milk-white and yellowish colour, and include 

phenocrysts of plagioclase, biotite, K-feldspar, magnetite and minor amount of augite. 

Some exhibit fibrous textures which form thin elongate vesicles. Clastic sedimentary 

rocks overlie the lower part of the Kepez member. They are mainly lacustrine 

volcanogenic sandstones and have a total thickness of about 1.5-2m (Plate 2.11). 

The middle part, which overlies the clastic sediments, consists mainly of welded 

ignimbrites. The base of it is represented by a 1-1.5 m-thick fiamme-rich zone which 

characteristically shows a eutaxitic texture with planar foliation and regular alignment of 

glassy fiamme. The fiamme-rich zone is followed by a densely welded zone which has 

an average thickness of 1.5m. The rocks of this zone are hard, compact, glassy, dark red 

and partly brown ignimbrites. They can easily be recognised in the field with their high 
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Plate 2.10. Pumice tuffs of the Kepez member overlain by flattened pumice layers. 

degrees of resistance to erosion which build up continuous layers and red colours 

resulted from oxidation. The densely-welded zone passes gradually up into a 3-4m 

thick, partially-welded zone which is composed of crystal-rich rhyolites and dacites. In 

some parts lithic clasts are also abundant. The ignimbrites in the partially-welded zone 

exhibit rheomorphic structures and flow banding surrounding the crystals and lithic 

fragments. K-feldspar is the most abundant phenocryst and is accompanied by 

plagioclase, biotite and magnetite. Some also contain clinopyroxene and quartz 

phenocrysts. The welded zone is partly overlain by lava-like ignimbrites in some areas. 

They are characterised by their high (>60% vol.) proportions of phenocrysts and lava­

like flow structures. The phenocryst phases are the same as those of the partially welded 

ignimbrites. 

The upper part of the Kepez member overlies volcaniclastic, shallow lacustrine 

sediments and consists mainly of variable proportions of pumice block flows and 

welded ignimbrites with a total thickness of about 65-70m. The pumice blocks are 

present at the base of the upper part. They are mostly vesiculated, porphyritic, white-

grey pumices and contain phenocrysts of plagioclase, K-feldspar, biotite, quartz and 

titano-magnetite. The matrix glass in the grey pumices is generally colourless, but 
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Figure 2.9. Representative section illustrates the stratigraphy of the Kepez member. 
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Plate 2.11. Lacustrine clastic sediments overlaying flattened pumice tuffs of the Kepez member. 

contains abundant microlites of magnetite and titano-magnetite which give the glass its 

grey colour. In some places, vapour-phase crystallisation results in the formation of 

quartz, tridymite, K-feldspar and zeolite as infills of pumices cavities and pore spaces of 

the matrix. These crystallisation events form a 5-7m thick sillar zone. In most localities, 

the pumice blocks are flattened and banded at the base. However, the degree of 

flattening decreases upwards. 

Further upwards, a widespread welded zone mantles the pumice blocks. The 

bottom 25-30m of this welded zone is massive strongly welded, high grade, and brick-

red ignimbrites, outcropping as cliff-forming sheets with well-formed colunmar jointing 

(Plate 2.12). It contains abundant proportions of fiamme and glass shards which 

generally exhibit compactional flattening. Rheomorphic stmctures are well-developed in 

places. This may be due to secondary mass flowage leading to form a lineation parallel 

to the plane of fiamme. The glassy matrix is partly devitrified to form radiating fibrous 

crystallites of quartz, K-feldspar and cristobalite as spherules and orbs. A basal layer of 

partially-welded zone (10-15 m-thick) which is a good stratigraphic marker horizon 

overlies the densely-welded zone. 
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A 

Plate 2.12. Columnar jointed densely-welded layers of the Kepez member. 

A number of feeder-dykes filled with ignimbritic material was observed along 

the coast near Babakale village. This may indicate that the ignimbrites formed mostly by 

fissure eruptions. 

The Kadirga member crops out further east, near Kadirga village (Fig. 2.4) 

with a total thickness of approximately 30-35m and an aerial extent of 20-25 km^. It is 

cut by the SW-NE oriented Tuzla fault system in several places to the north of the 

Kadirga village. Although the Kadirga member appears to be a single outcrop isolated 

from the other ignimbrites, its position in the volcanostratigraphic succession and 

depositional characteristics show remarkable similarities to those of the Tamis and the 

Kepez members. 

A 2-3 m-thick of ground surge deposit characterises the base of the member. The 

depositional properties of this ground surge deposit resemble to the surge deposits of the 

Kepez member. The surge deposits are overlain by a thin layer (2m of maximum 

thickness) of pumice tuffs which pass gradually up into flattened pumice blocks. High 

proportions of large fiamme were observed in most localities overlying the pumice tuffs 

and blocks. In some localities, a welded zone overlies the pumice blocks with an 

absence of fiamme-rich layers. The welded zone shows a remarkable similarity to those 
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of the Tamis member and consists mainly of interbedded partially welded ignimbrites 
and welded zones. Unlike the Tamis and the Kepez members, however, the densely 
welded ignimbrites are absent in the Kadirga member. The top of the Kadirga member is 
represented by an approximately 8-10 m-thick sillar zone characterised by vapour phase 
crystallisation. 

2. / . 3. 9. The Kovacli Dyke Swarms 

A widespread dyke system occupies large areas, particularly in the southernmost 

part of the Peninsula, along the northern coast of the Edremit Bay. They typically have 

NNW-SSE and NNE-SSW directions. The dykes are mainly fresh, hard, compact, grey 

to black microporphyritic andesites and basaltic andesites. They consist mainly of 

microcrysts of plagioclase, augite and hypersthene with subordinate olivine, magnetite 

and ilmenite set in a microlitic groundmass. A basaltic andesite sample from the dyke 

swarms gave a K-Ar age of 19.7 + 0.3 Ma (Table 2.1). 
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2. 2. The Dikili-Ayvalik-Bergama (DAB) Area 
The Dikili-Ayvalik-Bergama (DAB) area is located to the south of Edremit Bay, 

between the city of Izmir to the south and the town of Edremit to the north (Fig. 2.1). 

Recent tectonic activity in the area, related to the stmctural system of the Aegean region, 

led to the formation of NW-SE and NE-SW oriented fault systems. A number of E-W 

and NW-SE trending graben (e.g. the Edremit and Bergama Graben) (Plate 2.13) have 

been formed in relation to these fault systems. 

The oldest known age for the Cenozoic igneous activity in the DAB area is 37.6 

± 3.3 Ma. This is the age reported by Bingol et al. (1982) for the emplacement of the 

plutonic body known as the Kozak Pluton, although the reported ages for the pluton 

vary significantly from 13 to 37 Ma (Ataman, 1975; Bingol et al., 1982). Ercan et al. 

(1985) and Kmshensky (1976) also reported K-Ar dates of 31.4 ± 0.4 Ma (near Ayvalik) 

and 23.6 ± 0.6 Ma (east of Edremit; outside the area studied) respectively for the minor 

pre-Miocene volcanism. 

In this study, the oldest date obtained for the volcanic rocks of the DAB area is 

20.9 ± 0.5 Ma (Table 2.1). The emptive products of the Miocene volcanism cover an 

area of >1500 km^ along the coastal section of Dikili, Ayvalik and Foca as well as 

inland between Ayvalik and Bergama (Fig. 2.10). They are mainly lava flows, domes 

and pyroclastic fall and flow deposits. The Early Miocene volcanism began with lava 

and pyroclastic successions and lasted until the latest Early Miocene (17.3 ± 0.6 Ma; 

Borsi etal., 1972). 

The volcanic activity continued into the Middle Miocene with a gradual change 

in eruptive style and rock compositions. The Middle Miocene activity mosdy produced 

lava flows and dyke swarms of basic-intermediate compositions. Pyroclastic eruptive 

products are totally absent in this period. The Middle Miocene volcanism continued 

from 16.6 ± 0.6 Ma (Borsi et al., 1972) to 15.2 ± 0.4 Ma (Table 2.1). 

The volcano-stratigraphy of the Dikili-Ayvalik-Bergama area will be described 

in the following paragraphs as two different sub-areas: (1) the Ayvalik-Kozak section; 

and (2) the Dikili-Bergama-Foca section. The volcanic units of each sub-areas are 

illustrated using schematic column sections (Fig. 2.12 and 2.14 respectively). 

2. 2.1. The Basement Rocks 

In the Dikili-Ayvalik-Bergama (DAB) area, the basement is represented by two 
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different formations. In the northern part of the area, between Edremit and Bergama 
towns, the dominant basement lithologies are the metamorphic rocks of the Karakaya 
Complex that have been described in Section 2.1.1. Further south, the metamorphic 
basement known as the Menderes Massif occupies a large area. This crystalline Massif 
is a large (~ 200 x 300 km) structural dome that is identified as the eastern continuation 
of the Aegean domain (Attic-Cycladic Crystalline Complex) (Diirr et al., 1978). It is 
elongated in a SW-NE direction along the Izmir-Ankara suture zone (Sengor et al., 
1984) (Fig. 2.1). 

Plate 2.13. A view of the Bergama Grabenfrom the south of the town of Bergama. 

The rocks of the Massif have been subdivided into two structural divisions: (1) a 

core complex; and (2) an overlying cover series (Verge, 1993; Hetzel et al., 1995). The 

core complex is represented mainly by granitic augen gneisses, high-grade schists and 

metavolcanic rocks. The augen gneisses are the most abundant lithologies in the core 

division and exhibit porphyritic textures, characterised by large megacrysts of alkali 

feldspar and plagioclase within a fine-to medium-grained matrix of quartz, muscovite 

and biotite. Bozkurt et al. (1995) proposed that the augen gneisses were former granitic 

plutons intruded into high-amphibolite - greenschist metamorphics of gametiferous 

pelitic and psammitic gneisses, garnet ortho-amphibolites and dolomitic marbles. The 
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Figure 2.11. Geological map of the east ofAyvalik Peninsula. 
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cover series consists of metasedimentary rocks of low-grade schists, phyllites, quartzites 
and marbles (Dora et al., 1990). Mica-schist is the most abundant rock type in the cover 
series and consists mainly of quartz, muscovite, biotite, chlorite, plagioclase and minor 
garnet (Hetzel et al., 1995). Reischman et al. (1991) reported zircon dating for the 
augen gneisses as Late Proterozoic to Early Palaeozoic which corresponds to the early 
metamorphism of the Massif at upper amphibolite facies conditions. Following the 
collision between the Anatolide-Tauride Block and the Pontides, the Massif underwent 
Barrovian metamorphism that has been attributed to its burial beneath the Lycian nappes 
during the Late Paleocene-Early Eocene (Sengor et al., 1984; Satir and Friedrichsen, 
1986). 

The central part of the Massif contains syntectonic granitoid intrusions that have 

andalusite and sillimanite in their contact aureoles (Whitney and Dilek, 1998). Similar 

Miocene granitoid intrusions are found in the Cycladic Islands of the Aegean (Lister et 

al., 1984; Altherr et al., 1988; Lee and Lister, 1992) and the Central Anatolian 

Crystalline Complexes (e.g. the Nigde and Kir§ehir Massifs; Kogak and Leake, 1996; 

Whitney and Dilek, 1998). 

2.2.2. The Ayvalik-Kozak Section 

2. 2. 2.1. The Kozak Pluton 

In the Dikili-Ayvalik-Bergama (DAB) area, the Kozak Pluton is the oldest 

known magmatic body. The pluton intruded the basement metamorphic rocks and 

occupies a large area of about 290-300 km^ (Figs. 2.10; 2.11). It was first named by 

Bingol et al. (1982) as Kozak Pluton after its best exposure around the town of Kozak. 

The rocks are dominantly granodiorite in composition and display inequigranular and 

porphyritic textures with medium to coarse grains of minerals. They contain plagioclase 

(An32-4o), amphibole, K-feldspar, augite, biotite and quartz. Sphene, zircon, magnetite 

and apatite are the accessory minerals. Amphibole is the most abundant mafic phase and 

has the compositions of edenite and ferroan pargasitic hornblende. Blocky jointing and 

spheroidal weathering are common in places. In some localities, aplite, aplogranite and 

granodiorite porphyry dykes cut the pluton. Homblende-homfels and pyroxene-homfels 

facies contact metamorphism has produced the assemblages of epidote, tremolite, 

actinolite, woUastonite and rare garnet along the northwestern margin of the pluton (the 

contact zone between the Kozak pluton and basement metamorphic rocks). 
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The timing of emplacement of the pluton is poorly constrained. Ataman (1975) 
obtained Rb/Sr ages of 13, 16 and 23 Ma from the granodiorites of the Kozak pluton. 
Bingol et al. (1982), however, reported K/Ar ages of 20.3 ± 0.3 and 24.6 ± 1.5 Ma 
obtained from biotite separates and 37.6 + 3.3 and 24.2 + 1.1 Ma obtained from 
orthoclase separates. 

2. 2. 2. 2. The Maden Island Pluton 

A small plutonic intrusion crops out on Maden Island, to the west of the town of 

Ayvalik (Fig. 2.10). The remaining portion of the plutonic body occupies a small area of 

only a few km^. The dominant rock types forming the pluton are monzonites and 

monzogranites. The rocks are generally inequigranular and medium- to coarse-grained. 

They contain a high proportion of feldspar which significandy exceeds the quartz 

content and confirms its monzonitic affinity. Plagioclase is represented by oligoclase 

and andesine (An 19.33) and is accompanied by large, fresh orthoclase megacrysts. The 

mafic mineral phase is represented by clinopyroxene (augite) and orthopyroxene (mostly 

hypersthene). Minor amphibole is also present in some rocks accompanying apatite and 

oxides (magnetite and ilmenite). The Maden Island Pluton has not been yet studied in 

detail and therefore no geochronological age has been obtained so far. However, 

stratigraphic relations indicate that the rock formations of the pluton are partly overlain 

by the Kucukkoy volcano-sedimentary Unit. Thus, the pluton is considered to be older 

than the overlying volcanic rocks. 

2. 2. 2. 3. The Kucukkoy (Volcano-Sedimentary) Unit 

The Kucukkoy volcano-sedimentary Unit consists mainly of alternating clastic 

sedimentary rocks and lava flows. It is best observed to the southwest of Ayvalik and on 

Alibey Island (Fig. 2.10). The total thickness of the Unit has been estimated as about 75-

80m. The sediments are mostly volcanogenic sandstones which make up 10-15 m-thick 

layers. The volcanics are generally made up of rhyolitic and dacitic lava flows. The 

rocks have been extensively affected by alteration and weathering. Towards the top of 

the Unit, hard, compact, strongly silicified lavas are abundant. In some places, the rocks 

of this Unit are cut by the Alibey dyke swarms. 

2. 2. 2. 4. The Ballica (Volcanic) Unit 

The Ballica volcanic Unit crops out to the east of Ayvalik, around the villages of 
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Ballica, Haciveliler and Kumgedigi (Fig. 2.11). It is made up of massive lava flows with 
a maximum total thickness of about 250m. The rocks are mostly andesite and dacite. 
They are locally jointed, grey to black, porphyritic lavas with fine-grained groundmass. 
The phenocrysts are primarily of plagioclase, hornblende, augite and titano-magnetite. 
Most dacites also contain quartz and rare sanidine phenocrysts. 

The mineral composition, texture and colour of the lava flows differ little 

laterally or vertically throughout the logged sections. The lavas usually do not show any 

oxidised zones at the top of flows. Thus, it is generally difficult to recognise individual 

lava flows within the Unit. In some places, however, lava flows include platy-jointing 

(related to flow banding) which has been developed parallel to the basal surface as a 

result of intensive shear between the channel walls and the coherent central part of lava. 

Close to the base, the distance between these joints is in the order of centimetres or even 

millimetres. The joint spacing increases upwards and, after a certain limit, it disappears 

where the lava turns into a massive body. In the field, the platy-jointing is one of the 

criteria which has been used to differentiate individual lava flows one from another. 

An andesite sample from the lavas has been dated as 20.9 ± 0.5 Ma using the K-

Ar method (Table 2.1). 

2. 2. 2. 5. The Alibey Dyke Swarms 

An aphyric dyke system is located particularly in the coastal section of Ayvalik 

and on Alibey Island. The rocks of this dyke system crop out in only a small area of 2-3 

km^. They are hard, fresh, compact, black- grey- and beige-coloured andesites and 

trachy-andesites. They consist mainly of plagioclase, hypersthene, K-feldspar, augite 

and subordinate olivine. Unlike most other volcanic rocks of the Dikili-Ayvalik-

Bergama area, the rocks of the Alibey Dyke Swarms contain hypersthene, but no 

amphibole. Their mineral compositions are rather closely similar to the Behram 

Andesite of the Ezine-Gulpinar-Ayvacik area, although they display aphyric textures, 

unlike the Behram Andesite. They also contain some xenoliths of monzonitic 

composition that indicates that the dykes may have been generated from the same source 

as the monzonites of the Maden Island Pluton. 

2. 2. 2. 6. The Ulubey (Volcanic) Unit 

The Ulubey Unit consists of intercalated lava flows and pyroclastic deposits. It 
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crops out in an area of about 25 km^, between Ayvalik and Kozak towns, around the 
villages of Ulubeyler, Bektasdere, Turkozu and Kircalar (Fig. 2.11). The maximum total 
thickness of the Unit has been estimated as approximately 250m. Although thin lava 
flows (<10m) have been observed within the volcaniclastics, the Unit is dominantly 
made up of pyroclastic deposits. The lavas are mostly porphyritic andesites, dacites and 
rarely rhyolites and contain phenocrysts of plagioclase, homblende, K-feldspar, biotite, 
augite and quartz. Accessory minerals of magnetite, apatite and zircon are also observed 
in some rocks. The matrix is made up of microcrysts of plagioclase set in a glassy 
groundmass. In some places, the lavas have been strongly affected by alteration leading 
to the formation of oxides and copper salts on flow surfaces. 

The pyroclastic deposits are mainly lithic ash-flow tuffs but also include breccia, 

lapilli tuff and fine-ash. The tuffs are of mostly rhyodacitic to rhyolitic in composition. 

The breccias are abundant and form massive layers. They are interbedded with the lavas 

and contain clasts of andesites, dacites and rhyodacites. The clasts are mostly angular, 

poorly sorted and their sizes vary between 1 and 30 cm. They are surrounded by a 

matrix that was previously glass displaying fluidal textures and collapsed vesicles. 

Lapilli and fine-ash flows alternate with breccias and lavas. The best exposures 

of the lapilli and ash flows are observed to the west of the Karayit and Bektasdere 

villages. They form several different layers, each of which has thickness of about 10-

15m and is separated by lavas and/or breccias. In the lower part of the Unit, they are 

represented by relatively coarse-grained, poorly stratified lapilli tuffs and they pass 

gradually up into well-bedded fine-tuffs. The lapilli tuffs are crystal-rich and include 

lithic clasts of andesite - dacite and metamorphic fragments from the basement rocks. 

The tuffs comprise euhedral-subhedral quartz, plagioclase, homblende and K-feldspar as 

well as abundant pumice and glass shards that have mostly been chloritised and 

silicified. 

The lapilli tuff grades into the overlying bedded fine-grained tuffs in which the 

bedding is accentuated by thin, graded parallel laminae. The thickness of the fine­

grained tuffs varies from centimetre- to metre-scale and may reach up to 10m in some 

localities. 

2. 2. 2. 7. The Akcapinar (Volcanic) Unit 

This volcanic unit, composed mainly of porphyritic dacite and andesite, occupies 
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a large area to the east of Ayvalik and south of Edremit, between the villages of 
Akcapinar, Tifillar, Karaayit and Cakmak (Fig. 2.11). In general, the Unit forms massive 
lava flows with a maximum thickness of approximately 350m, although a few lava 
domes have been observed in some localities. The lavas overlie the metamorphic 
basement rocks in the east and the Ballica volcanic Unit in the north. The rocks exhibit a 
variety of shades of grey and beige and contain phenocrysts of plagioclase, augite, 
amphibole (edenite and edenitic hornblende), biotite and quartz. Accessory phases are 
represented by zircon, apatite and magnetite. The groundmass is mostly glassy and 
includes microlites of plagioclase and hornblende. 

In some localities, between Ayvalik and Dikili, porphyritic dyke swarms cut the 

lavas of the Akcapinar Unit. The prevalent directions of the dykes are approximately 

NNE-SSW and NNW-SSE, consistent with the regional tectonic trends and fault 

directions. The dykes are porphyritic andesites and dacites with the same mineral 

compositions as the rocks of the Akcapinar lavas. An andesite sample from the 

Akcapinar Unit has been dated as 19.7 ± 0.3 Ma using the K-Ar method (Table 2.1). 

2. 2. 2. 8. The Seytansofrasi Ignimbrite 

An ignimbrite sheet crops out in an area of about 10 km^, to the southwest of 

Ayvalik. The best exposure of the ignimbrite is around Seytansofrasi and on a few small 

islands, near Ayvalik. The total thickness is approximately 75-80m. It forms a 

succession of massive, cliff-forming sheets which shows lateral continuity along the SW 

coast of Ayvalik. The base of the sequence is characterised by lithic-rich pumice tuff. 

Lithics are mostly andesitic, dacitic and rhyolitic fragments. Metamorphic xenoliths 

from the basement rocks are also abundant in some places. A layer of flattened pumice 

tuff overlies the lithic-rich pumices. The pumice clasts are characterised by a high 

proportion of phenocrysts of mainly plagioclase, K-feldspar, biotite, quartz and titano-

magnetite. 

Welded ignimbrites make up more than half of the total thickness. The base of 

the welded zone is represented by densely-welded ignimbrites, which display distinctive 

pink and reddish coloration and strong eutaxitic texture. They exhibit well-developed 

columnar jointing (Plate 2.14). Towards the top, welded ignimbrites are characterised by 

varying proportions of lithic clasts, crystals and obsidian-like lenticles set in a 

devitrified glass shard matrix. Lithic clasts are represented by volcanic rocks (mosdy 
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dacites). The phenocrysts are mainly plagioclase, K-feldspar, biotite and magnetite. 

Plate 2.14. Columnar jointed densely-welded layers of the Seytansofrasi Ignimbrite 

2. 2. 2. 9. The Besiktepe Dacite 

The lavas of the Besiktepe Dacite with a total thickness of about 50-60m crops 

out to the east of Ayvalik, between Besiktepe and Uckabaagac villages (Fig. 2.11). The 

rocks are mostly microporphyritic/porphyritic dacites and exhibit pale grey to black 

colours. The phenocryst phase consists primarily of plagioclase, homblende, quartz and 

biotite with minor K-feldspar, augite and magnetite. The lavas are mostly homogenous 

in terms of texture and composition. They overlie the lavas of the Akcapinar Unit over 

an area of approximately 5-6 km^. 

2, 2. 2.10. The Odaburnu Dyke Swarms 

This dyke system cuts the lavas of the Akcapinar Unit with a prevalent direction 

of NW-SE. The dykes have a total aerial extent of only 2-2.5 km^ and crop out on the 

northern side of the Madra River valley, around the villages of Odabumu and 

Uckabaagac (Fig. 2.11). The rocks are predominantly microporphyritic basalts and 

basaltic andesites. Plagioclase is the most abundant phenocryst and is accompanied by 
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augite, olivine and titano-magnetite. Some basaltic andesites also contain minor K-
feldspar and biotite set in a fresh matrix. 

2. 2. 3. The Dikili-Bergama-Foca Section 

2. 2. 3.1. The Kiratli (Volcanic) Unit 

The Kiratli Unit crops out over a large area (-70-80 km^) to the SE of Ayvacik 

and west of Bergama, between the villages of Kiratli to the north, Ovacik to the east and 

Islamlar to the southwest (Fig. 2.11; 2.13). It is made up of intercalated lava flows and 

silicified ash tuff and is cut by minor dyke swarms. The total maximum thickness has 

been estimated approximately 250m, although the thickness of the Unit varies 

considerably from a few tens of meters to over hundred of meters. A large portion of the 

Unit is made up of massive lava flows. The rocks are predominantly porphyritic 

andesites and dacites. They show a great similarity in appearance and phenocryst 

composition to the lavas of the Akcapinar Unit. They are, however, distinguished by 

their higher volume of phenocrysts. The phenocrysts are plagioclase, amphibole 

(edenitic hornblende) and biotite with subordinate augite and quartz. Small zircon and 

apatite crystals form inclusions in biotite. Some rocks also include minor sanidine. 

The lavas are interlayered with thick layers of ash flows in some localities (Plate 

2.15). They are mostly crystal-rich and include abundant plagioclase, hornblende, quartz 

and biotite. Some ash flows have widely been affected by alteration to silicified and 

partly oxidised. The altered layers have distinctive pinkish to reddish colours and 

usually form good stratigraphic marker horizons. In some places, NW-SE dyke swarms 

cut the lava-tuff intercalation. The dykes are mostly aphyric andesites/dacites and only 

locally developed as a few small outcrops. In some localities (e.g. west of Bergama), the 

lavas are cut by silicified rocks forming large epithermal gold deposits. 

2. 2. 3. 2. The Madra River Dyke Swarms 

This dyke system cuts the volcanic rocks of the Kiratli Unit to the SE of Ayvalik, along 

the Madra River (Fig. 2.11). The dykes are only locally developed over a small area of 

approximately 8-10 km^ and are oriented in a NW-SE direction, consistent with the 

regional tectonic trends and fault orientations. The rocks are completely porphyritic and 

display light-grey and beige colours. They are mostly andesites and rarely dacites. 

Phenocrysts are plagioclase, biotite and augite with minor amount of K-feldspar, 

magnetite and zircon. The more acid rocks also contain quartz phenocrysts. 
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Figure 2.14. Schematic generalised stratigraphic column illustrating the volcano-stratigraphy of the 
Dikili-Bergama-Foca section. 
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Plate 2.15. Massive lava layers of the Kiratli Unit overlie ash flow deposits of the same Unit. 

2. 2. 3. 3. The Salihler Volcanics 

The Salihler Volcanics crop out to the east of Altinova, around the villages of 

Salihler and Yenikansiz and occupy an area of approximately 10-15 km^ (Figs. 2.10; 

2.11). They are composed mainly of autobrecciated block lava flows. Although the lava 

flows are fairly irregular and the thicknesses vary from one locality to another, the 

maximum thickness of the lavas has been estimated about 150m. The blocks are mostly 

angular or sub-rounded and their sizes vary between 5 and 60 cm. Most have striated 

with partly gouged margins indicating a high viscosity before they were extmded. The 

lavas are compositionally homogenous and show no significant lateral or vertical 

variation. They are porphyritic andesites and are characterised by a high proportion of 

phenocrysts. The phenocrysts are plagioclase, homblende, biotite and minor sanidine. 

Accessory minerals are apatite, zircon and magnetite. In most places, the rocks are 

extensively altered to form sericite, calcite and chlorite. 

2. 2. 3. 4. The Kabakum Dacite 

The Kabakum Dacite consists of aphyric and/or microporphyritic basal lava 
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flows and overlies the Kiradi Unit (Plate. 2.16). The lavas crop out to the southeast of 
Altinova, between the villages of Kabakum to the south, Gokceagil to the north and 
Kizilcukur to the east (Figs. 2.10; 2.11). They extend over an area of about 20-25 km^ 
with a total thickness of over 150m. The rocks are almost completely dacite in 
composition and grey to black in colour. They are mostly homogenous lavas and show 
almost no mineral compositional difference between the separate lava flows throughout 
the sequence. The individual lava flows can generally, however, be distinguished by 
their altered and oxidised flow surfaces. 

Plate 2.16. Lava flows of the Kabakum Dacite forming a basal layer on top of the Kiratli Unit 

The rocks contain phenocrysts of plagioclase, quartz, biotite and homblende 

with minor sanidine and augite embedded in a glassy matrix. In some localities, there 

are hard, compact, black vitreous lava layers, characteristically displaying vitrophyric 

textures. Towards the top, highly vesicular lava flows are abundant. Alteration affected 

the rocks extensively, forming secondary sericite, calcite, chlorite and Fe-oxides. 

Abundant fault systems with approximate NW-SE trend cut the lava flows, 

particularly to the northwest of Kabakum village. To the north of Gokceagil village, the 

lavas are overlain by Nebiler Volcanics. Young sediments also cover the Kabakum 

70 



Chapter 2: Geology and Volcano-stratigraphy of Western Anatolia 

dacites along the coast. 

2. 2. 3. 5. The Mt Seyret (Volcanic) Unit 

The Mt. Seyret Unit consists mainly of pyroclastic deposits with minor lava 

flows. It crops out around the villages of Katiralan and Merdivenli, near Mt. Seyret and 

the village of Sindel, to the south of Bergama, with an aerial extent of >70 km^ (Fig. 

2.13). The lava flows interspersed with the pyroclastic deposits are mostly porphyritic 

andesite and dacite. The pyroclastics are consolidated and semi-consolidated crystal ash 

flow tuffs. They are mostly intermediate- to coarse-grained, crystal-rich, well-sorted, 

and form beds with a variable thickness from 2 to 50m. The dominant crystal size is 

Plate 2.17. Consolidated and semi-consolidated pumice ash flows of the Mt. Seyret Unit including 

abundant rounded arui sub-rouruled andesitic and dacitic blocks. 

about 1 cm. The tuffs are rhyolitic in composition and contain abundant fresh, 

euhedral/subhedral, often zoned and fragmented plagioclase accompanied with biotite, 

hornblende and sanidine. Quartz crystals are concentrated in some parts but are sparse 

and isolated. Some augite, apatite and zircon in biotite crystals, and magnetite are 

present in lesser amounts. The clasts are abundant in all parts of the succession. They 
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are mostly andesites and dacites and have similar mineral compositional and 
petrographic characteristics to the interlayered lava flows. Clast sizes vary from a few 
mm to 50-60 cm. In some places, rounded and sub-rounded, andesitic and dacitic blocks 
are common (Plate 2.17). 

In the upper part of the Unit, massive, coarse-grained, heterolithic, clast- to matrix-

supported debris flow deposits are abundant. In some places, they are intercalated with 

volcaniclastic sandstones and tuffs. Lithic clasts in the debris flow deposits range in 

composition from andesite to rhyolite and are petrographically indistinguishable from 

the lava flows. 

2. 2. 3. 6. The Karagdl (Volcanic) Unit 

Abundant acid-intedmediate lavas crop out in the Dikili area and to the northeast 

of Yenisakran (Fig. 2.13). The products of this period are mostly lava flows and domes. 

Andesites and dacites are the dominant rock types, although lesser amounts of basaltic 

andesites and rhyolites are found in some places. The best exposures of the lavas are 

around the Karagol Caldera Lake, which is located on the summit of one of the most 

important eruptive centres of this area known as Mt. Seyret (Plate 2.18). The lavas are 

all porphyritic and contain phenocrysts of plagioclase, hornblende, sanidine, biotite and 

augite. Quartz is found in dacites and rhyolites. Most samples also contain zircon, 

magnetite and apatite. The most silicic rhyolites contain a trace amount of sphene 

phenocrysts. 

The outcrops of the Karagol Unit are mostly located at the intersection of two 

major fault systems. One of these fault systems is oriented in a NE-SW direction and 

forms the Bergama Graben. It cuts the volcanic rocks outcropping in the area between 

Bergama and Dikili . Another fault system extends from Ayvalik through Dikili to 

Candarli Bay (Fig. 2.13) with a NW-SE orientation. 

In some localities, clastic sedimentary rocks are interbedded within the lavas 

indicating the lava flows have been formed by several eruptive phases. Borsi et al. 

(1972) reported a K-Ar age of 17.7 ± 0.6 Ma for the lava flows from the Mt. Seyret 

(Table 2.2). 

2. 2. 3. 7. The Kalarga Andesite 

The Kalarga Andesite crops out between the towns of Dikili to the west and 

Bergama to the east. It consists of lava domes and flows and its best exposures are 
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Plate 2.18. A view of the Karagdl Caldera Lake located on the summit of the Mt. Seyret. 

located around Kalarga hill (SW of Bergama), and the villages of Saganci and 

Narlica. To the southwest of Bergama, it forms a few isolated lava domes on the 

Bergama Graben floor (Plate 2.19). On Kalarga hill, the lavas display folded structures 

characterised by massive lavas in the center, but with a concentrically jointed and 

autobrecciated outer zone (Plate 2.20). This may indicate that the lavas were highly 

viscous when extruded. 

The rocks are porphyritic andesites and characterised by their high proportions of 

phenocrysts. Plagioclase is the most abundant phenocryst and is accompanied by 

euhedral/subhedral amphibole (mostly edenite and ferroan pargasitic hornblende) and 

less abundant biotite. Augite and minor sanidine also form in phenocryst phases. Zircon 

and apatite form inclusions in biotite phenocrysts and are accompanied by accessory 

magnetite. 

Almost all the outcrops of the Kalarga Andesite are found along the Bergama 

Graben. Exposure of these lava domes on the Graben floor may indicate a relationship 

with the extensional tectonics that formed the Graben. Borsi et al. (1972) reported K-Ar 

ages of 17.6 ± 0.6 and 17.3 ± 0.6 Ma for the andesites from the lava domes (Table 2.2). 
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Plate 2.19. Porphyritic lavas of the Kalarga Andesite forming isolated lava domes on the Bergama 

Graben floor. 

Plate 2.20. Folded lavas of the Kalarga Andesite forming concentric jointed and autobrecciated outer 

zone. 
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2. 2. 3. 8. The Foca (Volcanic) Unit 

The Foca Unit consists mainly of interlayered acid-intermediate lava flows and 

pyroclastic deposits. The total maximum thickness of this lava-pyroclastic succession 

has been estimated as about 350m. The base of the Unit is represented by a tuff" layer. 

The tuffs are mostly semi-consolidated and include abundant crystals of plagioclase, K-

feldspar and biotite. They pass upwards into a fine-grained, consolidated, white tuff. 

Massive lava flows overlie the tuffs in most places (Plate 2.21). They are mostly 

porphyritic and show a compositional range from rhyolite to andesite. The thickness of 

Plate 2.21. Massive lava flows overlie the crystal-rich tuffs of the Foca volcanic Unit 

the massive lavas varies between 30 and 70m. Further upwards, altered, silicified tuff 

layers alternate with the massive lavas. The thickness of the tuff's may reach 50-60m. 

Abundant white perlite and dark-green to black obsidian is present in some parts of the 

Unit (Plate 2.22). 

The uppermost part of the succession is represented by a 30-40m thick, welded 

ignimbrite layer. It is made up of densely-welded, crystal- and fiamme-rich ignimbrites 

displaying columnar jointing in some places. It forms a basal layer on top of the Foca 

Unit (Plate 2.23). 
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Plate 2.22. White perlite and dark-green obsidian deposits included in the tuffs of the Foca Unit 

Plate 2.23. Densely-welded ignimbrites forming a basal layer on top of the volcanic succession of the 

Foca Unit 
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2. 2. 3. 9. The Foca Dyke Swarms 

A dyke system with a prevalent direction of NW-SE cuts the rocks of the Foca 

volcanic Unit. The rocks are fine-grained, aphyric to microporphyritic basalts and 

basaltic andesites. They are composed mainly of plagioclase, diopsite and forsteritic 

olivine. Dmenite and magnetite are also found in some rocks. In some localities, the 

fresh, hard, black basalts are accompanied by highly vesiculated scoria flows. They also 

have basaltic compositions and include abundant, calcite-filled cavities and vesicules. 

Foca dyke swarms formed along the NW-SE oriented normal faults, indicating a 

relationship with local extensional tectonics. Savasgin (1975) reported a K-Ar age of 

16.5 Ma for the Foca dykes. 

2. 2. 3.10. The Egrigol Andesite 

The Egrigol Andesite crops out over an area of about 15-20 km^ to the south of 

the town of Yenisakran and to the southwest of Bergama (Fig. 2.13). It forms massive 

lava flows and domes around Yenisakran and lava domes in Egrigol hill, near Bergama. 

The rocks are fresh, grey to black aphyric andesites with a fine grained, partly glassy 

groundmass. The maximum thickness of the lavas has been estimated as 250m. The 

lavas have well-developed columnar jointing. On Egrigol hill, the joint surfaces are 

vertical in orientation, producing regular polygonal columns (Plate 2.24). Further 

southwest, near Yenisakran, however, columnar jointing displays a two-tiered 

arrangement. The bottom of the lavas consist of well-formed, thick, vertical columns 

normal to the base of the flows whereas the top is characterised by an entablature layer 

forming thinner, irregular, sub-vertical and sometimes horizontal columns (Plate 2.25). 

The rocks contain microphenocrysts of plagioclase, clinopyroxene (mostly 

diopsite and augite) and minor olivine, although the phenocryst contents are always 

<5%. Amphibole (edenitic and pargasitic hornblende) is found in some samples together 

with accessory magnetite and ilmenite. Unlike most of the volcanic rocks in the Dikili-

Bergama-Foca section, minor orthopyroxene (hypersthene) is present in some rocks. 

Although the mineral assemblages of the rocks indicate that they are basaltic in 

composition, the whole rock chemical analyses give mostly andesitic compositions (see 

also Chapter 3). 

The lavas lie mostly on the small localised extensional basins bounded by NE-

SW oriented fault systems. To the southwest of Bergama, lavas emplaced at the bottom 

of the Graben forming isolated lava domes on the Bergama Graben floor (Plate 2.26). 
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Plate 2.24. Vertical oriented, well-developed, regular polygonal columns of the Egrigol Andesite. 

Plate 2.25. The Upper layer of the Egrigol Andesite forming thin, sub-vertical and horizontal polygonal 

jointing. 
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Plate 2.26. Isolated lava domes of the Egrigol Andesite formed on the Bergama Graben floor. 

This may indicate a close relationship between the emplacement of the lavas and 

the localised extensional movements. An andesite sample from Egrigol, southwest of 

Bergama, gave K-Ar age of 15.5 + 0.5 Ma (Table 2.1). 

2. 2. 3.11. The Nebiler Volcanics 

The Nebiler Volcanics crop out to the southeast of the town of Altinova, around 

the villages of Nebiler and Gokceagil and to the southwest of Dikili (Fig. 2.11). The 

volcanic products consist mainly of lava flows with a maximum thickness of about 50m. 

The lavas are locally developed with a total aerial extent of about 15 km^. The rocks are 

predominantly fresh, grey to black basalts, basaltic andesites and basaltic trachy-

andesites. They are mostly microporphyritic, though some aphyric samples are also 

present. Mineral phases are clinopyroxene (mostly diopsite and augite), microcrystalline 

plagioclase and forsteritic olivine. Minor phases include Fe-Ti oxides (magnetite and 

ilmenite) together with phlogopite and Ti-rich biotite. 

The lavas are distributed along the NW-SE oriented faults which are related to 

the local extensional movements that produce hot spring activity in the area. The lavas 
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overlie the andesite and dacite lavas of the Kiratli Unit. A basalt sample from the 
Nebiler area, near Dikili , gave a K-Ar age of 15.2 ± 0.4 Ma (Table 2.1). 

2. 3. Summary 

The Late Cenozoic igneous activity, both in the Ezine-Gulpinar-Ayvacik (EGA) 

and Dikili-Ay valik-Bergama (DAB) areas started with pre-Miocene pluton 

emplacements (e.g. the Kestanbol and the Kozak plutons). The field observations, 

volcanological characteristics and radiometric data show that major volcanic activity 

took place both in the EGA and DAB areas during the Early Miocene. It produced a 

considerable volume of pyroclastics and lavas of intermediate-acid composition. 21.3 ± 

0.3 Ma is the oldest K-Ar age obtained for the Early Miocene volcanic rocks of the EGA 

area. The early stage of activity began with lava flows and continued with lava and 

pyroclastic successions. The lavas, in general, andesitic to rhyolitic in composition and 

are characterised by their high proportions of phenocryst contents. The pyroclastics 

generally form large ignimbrite deposits and accompanied by minor debris (lahar) and 

ash flow deposits. Compositionally, the pyroclastics are rhyolitic and dacitic. Abundant 

dyke swarms cut the lava-pyroclastic successions in most places. Radiometric (K-Ar) 

analyses performed during the course of this study give ages of 21.3 ± 0.3, 20.9 ± 0.5, 

20.7 ± 0.3, 20.5 + 0.3, 20.3 ± 0.6 and 19.7 ± 0.3 Ma for the Early Miocene rocks. Clastic 

sedimentary deposits within the lava-pyroclastic successions indicate that the volcanic 

rocks formed by several eruptive phases. 

Although the rock types and volcanological characteristics of the Early Miocene 

volcanics from the both areas (EGA and DAB) are similar to one another, they show 

some differences in mineral composition. Amphibole is the main hydrous phase for the 

lavas from the DAB and none of the samples contains orthopyroxene. On the other 

hand, orthopyroxene is one of the most common phenocrysts and amphibole is absent in 

the lavas from the EGA area. 

In the EGA area, 19.7 Ma is the youngest date for the Early Miocene volcanism 

and Middle Miocene volcanism is absent. In the DAB area, however, volcanic activity 

continued into the Middle Miocene with a gradual change in eruptive style and rock 

compositions. The Middle Miocene activity is marked by lava flows, domes and dykes 

of basic-intermediate compositions. Pyroclastic eruptive products are absent in this 

period. The Middle Miocene lavas erupted along the major normal faults related to 
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graben tectonics, indicating a relationship between volcanism and an extensional 
tectonics. Radiometric data show that the Middle Miocene volcanism lasted until 15.2 + 
0.4 Ma. 

A new stage of volcanic activity in the EGA area began in the Late Miocene and 

produced locally-developed small lava flows of basic and ultrabasic compositions. The 

Late Miocene activity continued from 11.0 ± 0.4 to 8.3 + 0.19 Ma. The distribution of 

the Late Miocene lavas along the strike-slip fault zones (the middle and southern 

branches of the North Anatolian Fault) indicate a close relationship with the strike-slip 

activity and localised extension in the area. 
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CHAPTER T H R E E 

M A J O R A N D T R A C E E L E M E N T G E O C H E M I S T R Y 

Introduction 

In this chapter, the major and trace element geochemical characteristics of 

whole-rock samples from the Western Anatolian, Late Cenozoic Volcanic Province will 

be presented. Geochemical data used in this chapter were obtained by two different 

analytical techniques: (1) the concentrations of major element oxides and selected trace 

elements (Sc, Cr, V, Ni, Co, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Pb, Th and U) 

were determined using X-ray Fluorescence (XRF) spectrometer on a total of 219 

samples; and (2) a subset of 56 whole-rock samples was analysed using Inductively 

Coupled Plasma Mass spectrometry (ICP-MS) for Cs, Hf, Ta and Rare Earth Elements 

(REE) from La to Lu in addition to all the elements previously analysed by XRF. Both 

XRF and ICP-MS analyses were performed at the University of Durham. The sample 

preparation methods-analytical procedures and the full data set are described in 

Appendix A and B respectively. Estimates of precision and accuracy calculated using 

replicate analyses on International Reference Materials (IRM) are presented in 

Appendix C. 

The chapter is subdivided into two main parts: (1) classification of the volcanic 

rocks from Western Anatolia on the basis of major element oxides, and assessment of 

the major element variations throughout the volcano-stratigraphic successions; (2) trace 

element characteristics of the volcanic rocks presented as (a) log-normal trace element 

plots; (b) multi-element patterns (MORB- and chondrite-normalised diagrams); and (c) 

element ratio plots. 

3.1. Major Element Characteristics of the Volcanic Rocks 

3.1.1 Classification of The Volcanic Rocks Using Major Element Geochemistry 

The volcanic rocks of Western Anatolia have been classified here on the basis of 

their total alkalis and silica contents using the total alkalis (K2O-1- Na20) versus Si02 

(TAS) classification diagram of Le Bas et al. (1986) (Fig 3.1 and 3.2). The alkaline and 
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subalkaline fields defined by Irvine and Baragar (1971) have also been plotted onto this 
diagram. The volcanic rocks have been plotted onto the diagram as 7 different data 
groups according to their age, locality, position on the volcano-stratigraphic succession, 
eruptive properties and/or petrographic characteristics (e.g. aphyric or porphyritic). Each 
group corresponds to either a particular stratigraphic age which may include several 
volcanic units or to a rock formation (e.g. a dyke swarm). These groups are presented in 
Table 3.1, together with their corresponding formation names used in Chapter 2. The 
rocks from the EGA (Ezine-Gulpinar-Ayvacik) area have been plotted as four different 
groups: (1) Early Miocene, (highly porphyritic) lavas; (2) Early Miocene crystal- and 
clast-free ignimbrites (plotted as Early Miocene Ignimbrites); (3) Early Miocene dykes 
(Kovacli Dyke Swarms); and (4) Late Miocene basaltic lavas. The volcanic rocks of the 
DAB (Dikili-Ayvalik-Bergama) area have been plotted as three different groups: (1) 
Early Miocene (highly porphyritic) lavas; (2) Middle Miocene intermediate rocks; and 
(3) Middle Miocene basaltic rocks. 

Table 3.1. The volcanic rock groups from the Western Anatolian, Late Cenozoic Volcanic Province. 

Late Miocene basaltic lavas 8.3 Ayvacik Volcanics Late Miocene basaltic lavas 
Ezine Volcanics 

Late Miocene basaltic lavas 

11.0 Tastepe Volcanics 
Earlyi Miocene dykes 19.7 Kovacli Dyke Swarms 
Early Miocene (crystal-free) ignimbrites Balabanli Ignimbrite Early Miocene (crystal-free) ignimbrites 

Bergas Ignimbrite 
Early Miocene (crystal-free) ignimbrites 

Koyunevi Ignimbrite 
Early Miocene (highly porphyritic) lavas 20.3 Behram Andesite Early Miocene (highly porphyritic) lavas 

Bakacak Unit 
Early Miocene (highly porphyritic) lavas 

Ciceklik Andesite 

Early Miocene (highly porphyritic) lavas 

Suruce Andesite 

Early Miocene (highly porphyritic) lavas 

Bademli Unit 

Early Miocene (highly porphyritic) lavas 

Babakale Unit 

Early Miocene (highly porphyritic) lavas 

Dededag Unit 

Early Miocene (highly porphyritic) lavas 

Ezine Unit 

Early Miocene (highly porphyritic) lavas 

21.3 Kiziltepe Unit 
Middle Miocene basic rocks 15.2 Nebiler Volcanics Middle Miocene basic rocks 

Foca Dyke Swarms 
Middle Miocene intermediate rocks 15.5 Egrigol Andesite Middle Miocene intermediate rocks 

Odabumu Dyke Swarms 
Early,:Miocene (highly porphyritic) lavas Kalarga Andesite Early,:Miocene (highly porphyritic) lavas 

17.7 Karagol Unit 
Early,:Miocene (highly porphyritic) lavas 

Mt. Seyret Unit 

Early,:Miocene (highly porphyritic) lavas 

19.7 Akcapinar Unit 

Early,:Miocene (highly porphyritic) lavas 

Kiratli Unit 

Early,:Miocene (highly porphyritic) lavas 

Ulubey Unit 

Early,:Miocene (highly porphyritic) lavas 

20.3 Ballica Unit 

E G A 

DAB 
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Figure 3.1. Western Anatolian volcanic rocks plotted on the total alkalis versus silica diagram of Le Bas 

et al. (1986). The alkaline and subalkaline fields are from Irvine and Baragar (1971). 

Almost all the Early Miocene rocks from the EGA area fall in the subalkaline 

field and show a compositional trend from trachyandesite to trachydacite and rhyolite. 

The Early Miocene, porphyritic lavas fall mostly within the trachyandesite and 

trachydacite compositional fields with silica contents ranging from 56 to 70 wt.% Si02, 

whereas the crystal-free ignimbrites plot mostly in the rhyolite field with silica contents 

between 65 and 80 wt.% Si02 (Fig. 3.1 and 3.2a). The total alkalis contents of the 

crystal-free ignimbrites show a strong negative correlation with Si02 content. The Early 

Miocene dykes are, however, restricted to the trachyandesite field having a lower silica 

content (from 55 to 63 wt.% Si02) than the other Early Miocene rocks from the EGA 

area (Fig. 3.2a). 

The Early Miocene rocks from the DAB area also plot in the subalkaline field 

and classify as trachyandesite, trachydacite and dacite with silica contents ranging from 

55 to 68 wt.% (Fig. 3.2b). The Early Miocene rocks from both the EGA and DAB areas 

are compositionally similar to one another and are characterised by high silica contents. 

Overall, their silica contents range from 55 to 80 wt.% Si02 and true basalts and basaltic 

andesites (<55 Si02 wt.%) are rare or absent. 

The Middle Miocene rocks from the DAB area range from trachybasalt to dacite 
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with silica contents ranging from 48 to 57 wt.% Si02 for the basic suite and from 54 to 
66 wt.% Si02 for the intermediate suite (Fig. 3.1). Although few samples show alkaline 
character and plot in the trachybasalt and basaltic trachyandesite fields, most are 
subalkaline and classify as basalt, basaltic trachyandesite, basaltic andesite, 
trachyandesite and andesite. A few samples also plot in the dacite field. 

A more detailed classification for the Middle Miocene rocks is given in Figure 

3.2c where they are plotted as three different subgroups on the basis of age and locality 

as mentioned in Chapter 2. These are: (1) the Foca Dyke Swarms; (2) the Egrigol 

Andesite; and (3) the Nebiler Volcanics. The Foca Dykes, which are the most basic 

rocks of Middle Miocene age, plot in the alkaline field and classify as trachybasalt, 

whereas the Nebiler samples follow a trend from basalt through basaltic trachyandesite 

to trachyandesite. The rocks of the Egrigol Andesite are characterised by lower total 

alkalis for a given silica content relative to the other Middle Miocene rocks and plot 

mostly in the andesite field. 

Al l Late Miocene lavas from the EGA area plot in the alkaline field and also 

classify as basanite (with >10% olivine), basalt and trachybasalt. They have silica 

contents ranging from 42 to 50 wt.% Si02. The TAS diagram also reveals a significant 

negative correlation between SiOa and total alkalis content for this group (Fig. 3.1). The 

rocks from the Tastepe, Ezine and Ayvacik Volcanics have been defined as individual 

groups in Figure 3.2d to illustrate the compositional differences and evolution of the 

volcanics through time. The Tastepe Volcanics, which are the oldest known rocks of the 

Late Miocene alkaline group (11.0 Ma), plot mostly in the trachybasalt field, spanning 

the alkaline and subalkaline fields. Some of the rocks are, however, strongly alkaline. 

The samples from the Ezine Volcanics (8.4 to -9.7 Ma) plot in the basalt, trachybasalt 

and basanite fields. The rocks of the Ayvacik Volcanics (8.3 Ma) are the most basic of 

the Late Miocene alkaline suite and plot in the basanite field (Fig. 3.2d). 

The subalkaline rocks (Early-Middle Miocene age) from both the EGA and DAB 

areas have been plotted onto the Si02 versus K2O classification diagram of Peccerillo 

and Taylor (1976) (Fig. 3.3). The potassic nature of virtually all the Early-Middle 

Miocene rocks is demonstrated by this plot in which most of the data follow either 

shoshonitic or high-K calc-alkaline trends. The Early Miocene rocks from both the EGA 

and the DAB areas fall within the high-K andesite, banakite, high-K dacite and rhyolite 

fields. The Middle Miocene rocks from the DAB area, however, plot in two distinct 
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fields. The intermediate rocks follow a high-K calc-alkaline trend and display a range 
from high-K basaltic andesite to high-K dacite, whereas the more basic rocks are 
characterised by their higher potassium content with respect to the intermediate rocks 
and fall within the absarokite and shoshonite fields. 
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Figure 3.3. Western Anatolian volcanic rocks plotted on the K2O versus silica classification diagram of 

Peccerillo and Taylor (1976). 

The terms absarokite and shoshonite were first used to describe rocks from the 

Absaroka volcanic field of Montana and Wyoming (Iddings, 1895). The terms have 

been used in several ways to describe potassic, basic and intermediate volcanic rocks. 

Absarokite describes the volcanic rocks with abundant phenocrysts of olivine and augite 

but no feldspar. Shoshonites and banakites were also defined as possessing less olivine 

and augite but more feldspar. Gary et al. (1972) proposed the term shoshonite for 

volcanic rocks containing leucite in the groundmass. Morrison (1980) used the 

shoshonite nomenclature for volcanic rocks that were relatively oxidised, silica-

saturated and characterised by high contents of large ion lithophile elements (LILE). 

However, the chemical definition of Peccerillo and Taylor (1976) is used here (Fig. 3.3). 

3.1.2 Barker diagrams of major elements 

Marker diagrams of major elements plotted against silica are shown in Figure 
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3.4. Of these, the Ti02 plot is particularly distinctive. The Ti02 concentrations of all the 
volcanic rocks from Western Anatolia decrease with increasing silica contents. The Late 
Miocene alkaline basalt and basanites, however, have distinctively high TiOi contents 
ranging from 2.5 to 3.1 wt.%, whereas the Ti02 concentration of the most basic of the 
Middle Miocene rocks only reaches 1.2 wt.%. The Early Miocene porphyritic lavas and 
the dykes from the EGA area also have slightly higher Ti02 concentrations with respect 
to the Early Miocene rocks from the DAB area at a given silica value. 

As with the Ti02 concentrations, the alkaline basalts and basanites of the Late 

Miocene suite have distinctly low AI2O3 (<15 wt.%) contents. The AI2O3 concentrations 

for these lavas increase with increasing silica. For the basic-intermediate and acid rocks 

of the Early-Middle Miocene as a whole, there is an inflection in the AI2O3 against silica 

diagram. This probably reflects a change in the extent of plagioclase crystallisation. 

Basic-intermediate rocks of the Middle Miocene suite are non-porphyritic (e.g. the 

Egrigol Andesite) or weakly to moderately porphyritic (e.g. the Foca Dykes and the 

Nebiler Volcanics), containing microlites and small phenocrysts of plagioclase. They 

follow a trend of increasing AI2O3 with increasing silica. They have probably been 

fractionated in deep-crustal levels where plagioclase is unstable and the role of 

plagioclase in determining differentiation trends is limited. On the other hand, most 

highly porphyritic rocks of Early Miocene age describe a trend of decreasing AI2O3 with 

increasing silica. This may be attributed to fractionation of plagioclase-dominated 

mineral assemblages, most probably in long-lived, shallow level magma chambers. The 

highly porphyritic nature of the rocks and high abundances of plagioclase phenocrysts 

may also support this idea. 

The volcanic rocks, as a whole, exhibit a negative correlation between Fe203-

Si02 (Fe203 is taken here as total Fe203) and also between MnO-Si02. The alkaline 

group follows a separate trend on the Fe203 versus silica diagram having higher Fe203 

contents than the other rock groups. The Early Miocene, porphyritic lavas and dykes 

from the EGA area also have slightly lower MnO concentrations relative to the Early 

Miocene rocks from the DAB area at a given silica value. 

The MgO concentrations of the Late Miocene alkaline suite generally increase 

with increasing silica except for few samples. On the other hand, the majority of the 

Middle Miocene and almost all the Early Miocene rocks from both the EGA and the 

DAB areas exhibit a negative correlation between MgO and silica. MgO concentrations 
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Figure 3.4. Marker diagrams of the volcanics rocks from Western Anatolia. 
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for some samples from the Middle Miocene basic group, however, increase with silica. 
This may be due to forsteritic olivine accumulation as some of these rocks contain 
abundant olivine xenocrysts. The Middle Miocene intermediate rocks are generally 
characterised by higher MgO concentrations than the Early Miocene rocks at a given 
silica value. 

CaO concentrations are roughly constant for most of the Late Miocene alkaline 

rocks. On the other hand, CaO shows a rapid decrease with silica for almost all the 

Early-Middle Miocene rocks except for the crystal-free ignimbrites of the EGA area 

which are characterised by constant CaO concentrations with increasing silica values. 

P2O5 abundances steadily decrease for the Late Miocene alkaline rocks from 

1.33 wt.% at 42 SiOi wt.% to 0.49 wt.% at 50 wt.% SiOa forming a good negative trend 

between phosphorous and silica. The basic and intermediate rocks of the Middle 

Miocene suite together with the Early Miocene porphyritic lavas have P2O5 values that 

decrease with silica forming a negative correlation. P2O5 concentrations of the crystal-

free ignimbrites, however, stay constant with increasing silica values over a 

considerable range from 65 wt.% Si02 to 80 wt.% Si02. 

3.2. Trace Element Characteristics of the Volcanic Rocks 

3.2.1 Trace Element Variations of The Volcanic Rocks 

Trace element concentrations are plotted on log-normal diagrams against silica 

in Figure 3.5 to demonstrate the compositional differences between the different 

volcanic rock groups. The transition metals Sc, Ni, Cr, Co, V, Cu and Zn show negative 

correlations with silica for the Early-Middle Miocene calc-alkaline and shoshonitic 

rocks from both the EGA and the DAB areas (Fig. 3.5). On the other hand, Sc, Co, V 

and Cu concentrations of the Late Miocene basic alkaline lavas stay broadly constant 

with increasing silica values. Cr and Ni for the same lavas increase steadily and Zn 

concentrations decrease with increasing Si02. 

The incompatible trace elements, Sr, Rb, Y, Zr, Nb, Ba, La, Ce, Nd and Th, 

show a negative correlation with Si02 for all the Late Miocene basic alkaline suite. 

Fractional crystallisation from a basic magma would be expected to create a positive 

correlation between silica and incompatible elements. Thus, the negative correlation 

observed in Figure 3.5 may best be explained by a decrease in the degree of partial 

melting towards the top of the sequence of the alkaline lavas (partial melting processes 
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Figure 3.5. Log-normal plots showing trace element behaviour of the volcanic rocks from Western Anatolia. 
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Figure 3.5. (Continued) 
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Figure 3.5. (Continued) 

are discussed further in Chapter 6). 

On the log-normal, incompatible trace element diagrams, the Early Miocene 

rocks from the EGA area are, in general, enriched in La, Ce, Nd and Pb at a given silica 

value with respect to the Early-Middle Miocene rocks from the DAB area (Fig. 3.5). 

The Middle Miocene basic-intermediate rocks have lower Y, Zr and Rb at a given silica 

content than the Early Miocene rocks from both the EGA and the DAB areas. Ba 

concentrations of the Middle Miocene rocks in general exhibit a strong positive 

correlation with silica, whereas Ba values of the Early Miocene rocks from both areas 
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stay almost constant with increasing sihca content from 54 wt.% Si02 to 80 wt.% Si02. 

Th and Rb concentrations, in general, exhibit a good positive correlation with 

silica for most Early-Middle Miocene rocks except for the crystal-free ignimbrites for 

which Th stays constant and Rb decreases with increasing in silica. 

3.2.2 Rare Earth Element (REE) Patterns 

The rare earth element ( R E E ) data used in this study were obtained from ICP-

MS (Inductively Coupled Plasma-Mass Spectrometry) analyses and the R E E 

concentrations of the rocks have been normalised to the chondritic (CI) abundances 

proposed by Boynton (1984). Chondrite-normalised ratios of (La/Eu*)N and (EU*AT3)N 

have been taken as the L R E E / M R E E and M R E E / H R E E ratios respectively. Eu* has 

been taken as extrapolated Eu calculated using normalised concentrations of Sm, Eu and 

Gd (the geometric mean; Taylor and McLennan, 1985). 

The chondrite-normalised REE patterns for representative samples of acid, 

intermediate and basic rocks from both the EGA and DAB areas are shown in Figure. 

3.6 (a-e). Samples have been plotted in order of increasing Si02 contents. The Early 

Miocene, calc-alkaline and shoshonitic rocks from the EGA area in general show L-

MREE enriched patterns with LREE/MREE (La/Eu*)^ ratios of about 5.5-8.2 for the 

intermediate porphyritic lavas, 6.5-7.8 for the intermediate dykes, 8.1-9.1 for the crystal-

free acid rocks (ignimbrites) and MREE/HREE (Eu*/Yb)N ratios of 2.6-5.2 for the 

porphyritic lavas, 3.0-3.4 for the dykes and 2.5-2.8 for the ignimbrites (Fig. 3.7). 

Although all the Early Miocene calc-alkaline and shoshonitic samples from the EGA 

area have similar REE patterns, the crystal-free acid ignimbrites (e.g. EA33a) have 

higher LREE/MREE ratios and negative Eu anomalies. The intermediate rocks of the 

Kovacli Dyke Swarms from the EGA area have Eu/Eu* ratios of 0.79-0.89 and show 

only small Eu anomalies, whereas acid rocks have larger negative Eu anomalies with 

Eu/Eu* ratios of 0.62-0.73 (Fig. 3.8). Litermediate, porphyritic lavas from the EGA area 

also show small Eu anomalies with Eu/Eu* ratios ranging between 0.76 and 0.93. 

The Early and Middle Miocene basic-intermediate, calc-alkaline and shoshonitic 

rocks of the DAB area have similar REE profiles. The Early Miocene porphyritic lavas 

of intermediate compositions have LREE/MREE (La/Eu*),^ ratios of 4.9-7.7 and 

MREE/HREE (Eu*/Yb)N ratios of 1.8-2.9. The Middle Miocene rocks from the same 
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Figure 3.6. Chondrite (CI) normalised REE plots for the volcanic rocks from Western Anatolia. 
Chondrite normalising values are taken from Boynton (1984) and average N-MORB and OIB values are 
taken from Sun and McDonough (1989). 
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Figure 3.6. (Continued) 

area have LREE/MREE (La/Eu*)^ ratios of 4.9 - 6.8 at intermediate compositions, 4.2 -

7.5 at basic compositions and MREE/HREE (Eu*/Yb)[^ ratios of 1.9-2.8 at intermediate 

compositions, 2.1-4.3 at basic compositions. Eu/Eu* ratios range from 0.76 to 0.97 for 

the Early Miocene porphyritic lavas of intermediate compositions. The Middle Miocene 

rocks also have Eu/Eu* ratios ranging from 0.77 to 0.93 at intermediate compositions 

and from 0.76 to 0.83 at basic compositions. Eu anomalies for almost all calc-alkaline 

and shoshonitic rocks from the DAB area are generally small (Fig. 3.8). 
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Figure 3.8. Variable Eu anomalies (Eu/Eu*) for the volcanic rocks from Western Anatolia. 

LREE concentrations of the Early Miocene rocks differ significantly between the 

EGA and DAB areas. The plot of La against silica demonstrates that the rocks from the 

EGA area have higher La abundances than the rocks from the DAB area at a given silica 

content (Fig. 3.7). LREE/MREE (La/Eu*) and LREE/HREE (La/Yb) plots also 

highlight the relative enrichment in LREE for the Early Miocene rocks of the EGA area 

as a whole with respect to the rocks from the DAB area. 

REE concentrations of samples representative of the whole compositional range 

of the Late Miocene, mafic alkaline lavas from the EGA area are shown in Figures. 3.6e 

and 3.7. Al l alkali basalts and basanites of this group have almost straight chondrite-

normalised REE patterns with LREE/MREE (La/Eu*)^ ratios of 2.5 - 4.8 and 

MREE/HREE (Eu*/Yb)[^ ratios of 3.6 - 4.3. The samples show sub-parallel patterns and 

absolute REE concentrations that decrease with increasing Si02 content. Although most 

of the rocks have slightly greater LREE/HREE ratios than average OIB (except for the 

Tastepe Volcanics; EA249), they show OIB-like REE element patterns. These alkaline 

lavas have Eu/Eu* ratios of around 1.0, indicating no significant Eu anomalies (Fig. 

3.8). Eu/Eu* ratios slightly increase with increasing Si02 contents of the rocks. Strong 

negative correlations between REE concentrations and silica values may indicate a 

possible decrease in the degree of partial melting for the Late Miocene, mafic alkaline 

rocks through time as the silica contents of the rocks decrease with time. This possibility 

is examined in detail in Section 6.2.2. 

3.2.3 Multi-Element Patterns 
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N-type MORB normalised trace element concentrations of representative rocks 
from the West Anatolian, Late Cenozoic Volcanic Province have been plotted on 
incompatible multielement diagrams in Figure 3.9(a-f) to demonstrate some of the 
petrogenetic variations in space and time. The rocks have been plotted as the 7 different 
groups defined previously. Normalised, average OIB values have also been plotted on 
each diagram for comparison. Normalisation values (N-MORB) and average trace 
element abundances of OIB used for the diagrams are from Sun and McDonough 
(1989). 

As can be seen from Figure 3.9(a-c), the Early Miocene, calc-alkaline and 

shoshonitic rocks from the EGA and DAB areas have similar multielement profiles. 

These patterns are all characterised by significant enrichment in all the large ion 

lithophile elements (LILE), Rb, Ba, Th, U, Pb, K and the light rare earth elements 

(LREE), La, Ce, Pr, Nd, relative to the high field strength elements (HFSE) Ta, Nb, Ti, 

Zr, Hf, Y and heavy rare earth elements (HREE). Ta, Nb, Zr and Hf are, however, 

themselves slightly enriched, and HREE are slightly depleted (except for sample EA359 

which contains abundant amphibole phenocrysts) with respect to N-type MORB. 

Almost all the Early Miocene volcanic rocks exhibit similar N-MORB 

normalised patterns. Average enriched abundances, as a whole, range considerably from 

100 to 500 times N-MORB normalising values for Cs - U and 5 to 40 times for LREE. 

The Middle Miocene, basic-intermediate rocks of the DAB area also have similar 

patterns to those of the Early Miocene rocks (Fig. 3.9d). The abundances of the HFSE 

of Ta, Nb, P, Zr, Hf and Ti are, however, slightly higher than those of the Early Miocene 

rocks at similar silica contents (Fig. 3.9e). 

The Early-Middle Miocene volcanic rocks from both the EGA and DAB areas are 

characterised by trace element patterns with significant negative Nb and Ta anomalies. 

These are similar to those from subduction-related (active) continental margins, where 

the preferred explanation is now a metasomatism of a mantle source by a subduction 

component selectively enriched in LILE. Basic and intermediate magmas generated 

from a mantle source enriched by a subduction component (e.g. aqueous fluids and/or 

sedimentary component) show enrichment in large ion lithophile elements (LILE) 

because these elements are highly mobile. They can be transported by aqueous fluids 

from the subduction zone to the mantle wedge (Pearce, 1983). However, records of the 
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100 



Chapter 3: Major and trace element geochemistry 

1000 

1 100 

O 
10 

0.1 

Middle Miocene (DAB) 

•» EA300 (49.96 % SiOj) 
o E A l O l (56.32 % SiO,) 
• EA346 (60.14 % S i O J 
© Average O I B 

Middle Miocene 

Cs Ba Th K Nb Ce P Zr Sm Gd Dy Ho Tm Lu 
Rb Pb U Ta La Pr Nd Hf Ti Tb Y Er Yb 

1000 

^ 100 

o 

i 
10 

0.1 

Inter-series comparison 
(e) 

•» E A l l O (56.47 % S i O J Middle Miocene 
o EA278 (56.69 % SiOj) Early Miocene ( D A B ) 
• EA412 (57.23 % S i O J Early Miocene ( E G A ) 
<a Average G I B 

Cs Ba Th K Nb Ce P Zr Sm Gd Dy Ho Tm Lu 
Rb Pb U Ta La Pr Nd Hf Ti Tb Y Er Yb 

1000 

1 100 
13 

o 
PQ 

O 
10 

0.1 

Late Miocene (EGA) (f) 

o EA270 (41.81 % S i O J (8.3 Ma) 
• EA260 (42.75 % S i O J 
« EA415 (46.07 % SiO,) (-9-10 Ma) 
• EA249 (49.97 % S I O J (11.0 Ma) 
Q Average O m 

Cs Ba Th K Nb Ce P Zr Sm Gd Dy Ho Tm Lu 
Rb Pb U Ta La Pr Nd Hf Ti Tb Y Er Yb 

Figure 3.9. (continued) 

101 



Chapter 3: Major and Trace Element Geochemistry 

tectonic evolution of the area indicate that the Late Cenozoic volcanism of Western 
Anatolia formed in a collision setting following the Late Cretaceous-Middle Eocene 
north-dipping, subduction beneath the Pontides which ended in a collision between the 
Anatolide-Tauride platform and the Pontides (see also Chapter 1 for details). For 
collision-related (post-coUisional) calc-alkaline and shoshonitic magmas, the possible 
options to explain enrichment in LE^E and LREE relative to Ta and Nb are: (1) a 
subduction component from earlier subduction events; or (2) crustal contamination 
through AFC (assimilation and fractional crystallisation) and/or MASH (melting, 
assimilation, storage and homogenisation) processes. 

Representative patterns from the Late Miocene mafic alkaline lavas of the EGA 

area have also been plotted in Figure 3.9f. Al l are enriched in LE.E, HFSE and L-

MREE, and slightly depleted in HREE relative to the N-MORB normalising values. 

Average enriched abundances range from 20-100 times N-MORB values for LILE, 20-

60 times N-MORB for Ta and Nb and 3-30 times N-MORB values for the LREE. 

Incompatible element concentrations correlate with both silica contents and age. Almost 

all incompatible element concentrations of the rocks increase with decreasing Si02 

contents towards the top of the sequence of the alkaline suite. In general, their patterns 

are parallel to that of an average OIB. Unlike the Early-Middle Miocene volcanic rocks, 

none of the alkali basalt or basanite samples of the Late Miocene age show negative Ta 

or Nb anomalies. This may indicate that the Late Miocene alkaline volcanic rocks have 

not been derived from the same source as the earlier calc-alkaline and shoshonitic rocks. 

The source region for the alkaline basalts and basanites carries no subduction 

component and the lavas have not been affected by crustal contamination. High 

abundances of both LILE and HFSE for the alkaline rocks with respect to N-MORB 

may, however, be explained by several mechanisms: (1) melting of a lithospheric mantle 

source enriched by a small volume melt fraction derived from the asthenosphere; (2) 

melting of a lithospheric mantle which has previously been depleted in LILE and LREE 

by extraction of earlier calc-alkaline and shoshonitic magmas and lost its subduction 

component; or (3) small degrees of partial melting of an asthenospheric mantle source 

(e.g. Depleted MORB Mantle). These options are discussed in detail in Section 6.2.2. 

3.2.3 Trace Element Ratios 

Representative basic and intermediate samples from the West Anatolian, Late 
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Cenozoic Volcanic Province have been plotted on the Th/Yb versus Ta/Yb diagram 
proposed by Pearce (1983) (Fig. 3.10). Plots of these ratios are almost independent of 
fractional crystallisation and/or partial melting (with pyroxenes and feldspars as the 
dominant- crystallisation or residual phases), and highlight source variations and crustal 
assimilation. Basaltic magmas derived from the mantle asthenosphere (e.g.,Depleted 
MORB Mantle; DMM), plume asthenosphere or mantle lithosphere enriched by small-
degree melts from the asthenosphere all lie within or close to a diagonal mantle array 
defined by constant Th/Ta ratios. Source region metasomatism by subduction processes, 
however, results an enrichment of Th with respect to Ta and hence in Th/Yb ratios 
higher than Ta/Yb, as subduction components in general carry Th but not Ta or Yb. 
Crustal contamination may also increase Th/Yb ratios relative to Ta/Yb ratios because 
of higher abundances of Th relative to Ta in the crustal rocks (except for granulite facies 
crust, which has low Th contents; Pearce, 1983). 

Figure. 3.10 shows that all Early and Middle Miocene volcanic rocks from both 

the EGA and the DAB areas are shifted to high Th/Yb ratios relative to the mantle array. 

Although the effects of crustal contamination on magma compositions are difficult to 

distinguish from those of metasomatism by subduction processes, the significantly high 

Th/Yb ratio for the most basic sample (49.82 wt.% Si02) of the Early-Middle Miocene 

rocks is unlikely to be explained solely by crustal contamination. Furthermore, because 

basic and intermediate volcanic rocks are shifted equally from the mantle array forming 

a sub-parallel trend to that array, source region metasomatism by an earlier subduction 

component is a more likely explanation than crustal contamination for this shift. 

However, there is likely also to be further crustal contamination as the degree of 

displacement in Figure 3.10 correlates with the silica content for most of the rocks (Fig. 

3.11). 

The Early Miocene rocks of the EGA area are characterised by higher Th/Yb 

ratios than the rocks of the DAB area, indicating either a greater subduction component 

in the source region or further crustal assimilation of a metasomatised-mantle derived 

magma for the rocks from the EGA area. Note that three different groups (Early 

Miocene EGA and Early-Middle Miocene DAB) all form trends parallel to the mantle 

array. This can reflect a variety of processes from fractional crystallisation (rocks up to 

63 wt.% Si02 are plotted), partial melting and crustal assimilation-fractional 

crystallisation (AFC) acting on a magma derived from mantle containing a subduction 
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component. 

The Late Miocene mafic alkaline lavas of the EGA area plot on the MORB-OIB 

mantle trend, confirming the interpretation from the trace element patterns (e.g. N-

MORB normalised patterns) that the mantle source had no subduction component and 

that the resulting magma was not affected by any significant crustal contamination. High 

ratios of both Ta/Yb and Th/Yb relative to N-MORB suggest that the magma has been 

generated either by melting of an enriched mantle or by small degree partial melting of a 

garnet-bearing mantle source, or by a combination of both processes. 

3.2. Chapter 3 Summary 
The volcanic products of the Western Anatolian, Late Cenozoic Volcanic 

Province can be distinguished into two main groups on the basis of their major and trace 

element characteristics. These are: (1) the Early-Middle Miocene, calc-alkaline and 

shoshonitic group; and (2) the Late Miocene alkaline group. 

The calc-alkaline and shoshonitic rocks of Early Miocene age are generally acid-

intermediate (55-80 wt.% SiOz), changing progressively to basic-intermediate (48-62 

wt.% SiOi) into the Middle Miocene. 

The calc-alkaline and shoshonitic rocks have characteristic enrichments in LILE 

and LREE relative to the HFSE (characterised by negative Ta and Nb anomalies). Trace 

element ratio plots have shown that this feature can most likely be explained by a 

subduction component in a mantle source region, though crustal contamination 

processes may also have contributed. 

The Late Miocene, alkaline rocks are mostly classified as basalts and basanites 

with their low silica contents ranging between 42 and 50 wt.% Si02. They are sodic 

alkaline ([Na20-2]>K20) and are characterised by high Ti02 (2.5-3.1 wt.%) and low 

A I 2 O 3 (12-15 wt.%) contents. 

Trace element characteristics show that the alkaline rocks have been generated 

from a mantle source that carries no subduction component and that the alkaline magma 

has not been greatly affected by crustal contamination processes. The most likely source 

for the alkaline magma may be either a mantle lithosphere with significant enrichment 

of a small volume melt fraction from the asthenosphere, or a small degree of partial 

melting of asthenospheric mantle (e.g. Depleted MORB Mantle). 
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CHAPTER FOUR 
P E T R O G R A P H Y 

Introduction 

This Chapter (jescribes the petrographic characteristics of the volcanic rock 

groups from the Western Anatolian, Late Cenozoic volcanic province and discusses 

some of the genetic implications of phenocryst assemblages and textural features. The 

volcanic rock formations from both the Ezine-Gulpinar-Ayvacik (EGA) and Dikili-

Ayvalik-Bergama (DAB) areas have been divided into different groups according to 

their main textural and compositional properties and age as described in Chapters 2 and 

3. 

4.1. Volcanic rocks from the Ezine-Gulpinar-Ayvacik (EGA) Area 

4.1.1. Highly Porphyritic Acid-Intermediate Lavas (Early Miocene) 

The calc-alkaline and shoshonitic rocks of the Early Miocene porphyritic lavas 

from the Ezine-Gulpinar-Ayvacik area are generally hypersthene- or quartz-normative 

andesites and dacites. Most of the rocks in this suite are highly porphyritic, with modal 

proportions of total phenocrysts ranging from 20 to 60% by volume. The rocks generally 

include both macrophenocrysts (>0.5mm) and microphenocrysts (from 0.05 to 0.5mm in 

diameter). The most common phenocryst phases are plagioclase, clinopyroxene, 

orthopyroxene, alkali feldspar, biotite and magnetite. Minor apatite and zircon 

accompany them in most of the lavas. Quartz and olivine are present in only few 

andesitic and dacitic lavas, and then only rarely. Amphibole is rare or absent and present 

in only one of the lava Units of Early Miocene age (The Bademli Unit). 

Plagioclase is the dominant phenocryst phase and is present in almost all the 

volcanic rocks of the porphyritic lavas. Its modal abundances vary between 30 and 65% 

of the total phenocrysts. The crystals are generally euhedral or subhedral and their sizes 

range from <0.05mm (microcryst) to 4mm (macrophenocryst). They usually display 

complex oscillatory normal zoning and sometimes reverse zoning. Compositionally they 

are andesine and labradorite. Core and rim compositions are An37.6o and An35.66 
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respectively. Most phenocrysts include small needles of euhedral apatite as inclusions. 
In some andesite samples, rounded phenocrysts characterised by irregular rounded edges 
are common and are accompanied by multiply-intercepted re-entrants characterised by 
spongy cores or dusty core and zones (sieve texture). These characteristics may be 
attributed to resorption (or reaction) resulting from magma mixing. In some cases, 
however, resorbed centers are mantled by fresh, non-resorbed rims indicating an interior 
melting followed by overgrowth of equilibrium plagioclase resulting from the 
subsequent quenching (Cox et al., 1979) (Plate 4.1,2,3). The sieve-textured phenocrysts 
contain abundant glass inclusions. 

Clinopyroxene is present as phenocrysts in all andesites and dacites. Its modal 

abundance varies from <5% to 25%. In general, clinopyroxene phenocrysts become 

much less abundant in the lavas with increasing Si02 contents. They are mostly 

subhedral-euhedral, although some rounded anhedral and partially resorbed crystals are 

present. They are compositionally augite and diopside and most phenocrysts exhibit 

oscillatory-normal and/or sector zoning. Core and rim compositions are W042-45 En46-44 

Fsi2-ii and W043.41 En4i.39 Fs14.11 respectively. 

Most samples contain orthopyroxene as phenocrysts. Their modal abundances 

range between <5% and 25%, similar to the abundances of clinopyroxene. The ratio of 

augite to hypersthene is, however, greater in more felsic rocks, and some dacites and 

rhyodacites include no orthopyroxene phenocrysts. They usually form euhedral crystals 

with grain sizes between 0.02 and 0.5mm (Plate 4.4). They are generally unzoned or 

slightly zoned with Mg-rich cores, and compositionally, they are hypersthene (En62 -

Enes). Most phenocrysts are optically homogenous and are characterised by pale pink 

colours and slight pleocroism under the microscope (Plane Polarized Light). Some are 

rimmed by, or aggregated with, augite and diopside. 

The fourth most abundant phenocryst phase is biotite. Almost all lavas contain 

biotite phenocrysts. They are mostly subhedral-euhedral with grain sizes ranging from 

<0.03mm to 1mm. Apatite needles, small zircon and magnetite crystals and plagioclase 

laths are common inclusions in biotite phenocrysts. In some samples, biotite phenocrysts 

are always subhedral and resorbed, and they are often surrounded by thick granular 

breakdown corona of pyroxene, opaque oxides and plagioclase. These features may 

indicate that biotites were not in equilibrium with the host liquid. 
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Plate 4.1. Large, intermediate plagioclase set in a partially crystalline groundmass. The plagioclase is 

surrounded by a dark, dusty reaction rim. Field of view 3x1.9mm, shown in plane polarized light (PPL). 

Plate 4.2. Intermediate plagioclase with a resorbed core surrounded by a fresh, equilibrium rim. Field of 

view 3x1.9mm, PPL 
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Plate 4.3. A sieve-textured plagioclase shows extensive internal melting followed by overgrowth of 

equilibrium rim. 3x1.9mm, PPL 

Plate 4.4. A trachyandesite containing euhedral orthopyroxene with plagioclase, clinopyroxene, 

magnetite and biotite phenocrysts set in a glassy matrix. 3x1.9mm, PPL 
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Olivine is rare and present as a phenocryst phase only in the least siliceous (57-
62 % SiOz) andesites-trachyandesites. It generally occurs as subhedral crystals 0.1-
0.5mm across and as larger (up to 1mm), equant crystals with euhedral outline. Most 
crystals have been altered along crystal margins to form serpentine. 

Amphibole is characteristically absent in the lavas of this suite and it is found as 

phenocryst in only one lava Unit (the Bademli Unit). It mostly forms euhedral and 

subhedral crystals ranging from 0.05-0.5mm in size. Almost all phenocrysts are 

surrounded by opaque rim that may indicate that they were not in equilibrium with the 

host liquid (Plate 4.5). Some are completely altered to form opaque granules. They are, 

however, still recognisable by the euhedral shapes of their basal sections (amphibole 

pseudomorphs) (Plate 4.6). 

Alkali feldspar is present as phenocrysts in some andesites and dacite lavas. 

The phenocrysts are generally large (up to 4mm) and represented by sanidine. Alkali 

feldspar is, however, more abundant in the groundmass of most of the rocks in this 

group. Magnetite, with or without ilmenite, is present as phenocrysts and in the 

groundmass in most rocks. In most cases, magnetite is present as inclusions in pyroxene 

phenocrysts. Trace amounts of sphene are also found in some rocks. 

Groundmass is generally glassy and may include plagioclase microlites. In 

some cases, alkali feldspar, clinopyroxene and magnetite microcrysts accompany 

plagioclase laths. The crystallinity (the ratio of total microlites to glass) of the 

groundmasses is highly variable ranging from <5% to 60%. Texturally, the 

groundmasses vary between intersertal and intergranular depending on the degree of 

crystallinity. Some samples also show trachytic textures (pilotaxitic or hyalopilitic) 

characterised by a subparallel arrangement of plagioclase microlites. In addition to the 

main textural types, most of the andesite and some dacite samples are 

glomeroporphyritic as they contain up to 5% coarse-grained polycrystalline aggregates, 

or crystal-clots (Plate 4.7). The aggregates are generally 2 to 4mm across but may be up 

to 6mm. Most commonly, the aggregates consist of euhedral plagioclase and magnetite 

complexly intergrown with euhedral or subhedral clinopyroxene and orthopyroxene. 

Some samples also include olivine glomerocrysts with plagioclase and clinopyroxene. 

Plagioclase glomerocrysts are often more calcic than the average composition of 

isolated plagioclase phenocrysts. They range from An48.67. 
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Plate 4.5. Amphibole phenocrysts are surrounded by opaque rims. This may suggest that the phenocrysts 

are not in equilibrium with the host liquid. 3x1.9, PPL 

Plate 4.6. Amphibole pseudomorphs are represented by opaque granules in an altered trachyandesite. 

3x1.9, PPL 
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Plate 4.7. A trachyandesite containing glomerophyric aggregates of plagioclase, orthopyroxene, 

clinopyroxene and magnetite. 6x3.7mm, Crossed Polars (XP) 

4.1.2. Pyroclastic Rocks (Ignimbrites) (Early Miocene) 

Crystal-rich, lava-like ignimbrites contain phenocrysts and microphenocrysts of 

plagioclase, biotite, K-feldspar, quartz, clinopyroxene, orthopyroxene and magnetite. 

These are set in a red-brown glass (Plate 4.8). Plagioclase phenocrysts exhibit complex 

zoning and are represented mainly by oligoclase and andesine with core and rim 

compositions of An28-4o and An23-37 respectively. Biotite is the second most abundant 

phenocryst forming prismatic, subhedral crystals ranging from 0.05 to 2mm in size. 

Most contain trace amounts of zircon and magnetite inclusions. K-feldspar is 

represented mainly by sanidine. It mostly forms small crystals (<0.5mm) and has 

compositions of Ab47-29 Or48-68 An5.3. Clinopyroxene is present as phenocrysts and 

microphenocrysts and represented by augite. Hypersthene and quartz also accompany 

the other mineral assemblages in the phenocryst phase. Olivine and amphibole are 

absent in the crystal-rich ignimbrites. Glass compositions are generally rhyolitic (72-

74% SiOz). 

Small (mm- to cm-sized) lithic fragments comprising varying proportions of 

plagioclase, clinopyroxene, orthopyroxene, olivine and magnetite occur in most samples 

(Plate 4.9). They are predominantly medium- to fine-grained andesites, and rarely 

basaltic andesites. Most samples are largely oxidised. The mineral assemblages of the 
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volcanic fragments in the pyroclastic rocks are similar to those of the intermediate lavas 
in the area. 

Plate 4.8. A crystal-rich ignimbrite containing phenocrysts of plagioclase, biotite, sanidine, magnetite 

and minor clinopyroxene set in a eutaxitic-textured glassy groundmass. 3xl.9mm, PPL 

Pumice fragments and glass shards are found in most ignimbrites. They are 

generally flattened (Plate 4.10) and some are homogenised by extreme welding (Plate 

4.11). Most ignimbrites exhibit layering which is due to alternating poikilomosaic layers 

(Shelley, 1993) and felcitic layers. The poikilomosaic layers comprise altered 

pumiceous material that often exhibits a whispy structure interpreted to be collapsed or 

sheared-out vesicles from extremely attenuated fiamme. Individual layers generally 

show considerable variation in thickness along their length in response to deformation 

around rigid lithic fragments and phenocrysts. The layers usually exhibit elongate or 

lens-shaped snowflake texture subparallel to the fiamme. Felsitic layers are lighter in 

colour than the poikilomosaic layers and were originally fragmental ash layers while the 

poikilomosaic layers are interpreted as intact pumiceous pyroclasts. 

In the welded ignimbrites, devitrification processes during cooling of the tuff 

layers led to the formation of different crystallisation zones such as the vapour phase 

zone, pervasively devitrified phase zone, spherulite zone and lithophysae zone. These 

crystallisation phases generally occur successively throughout the welded zones of the 
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Plate 4.9. A large volcanic fragment set in a glassy ignimbrite. The fragment is andesitic in composition 

and partly oxidised. 3xL9mm, PPL 

Plate 4.10. A partially welded glassy rhyolite tuff containing flattened pumice fragments and crystals of 

plagioclase, alkali feldspar and quartz embedded in a glassy groundmass. 3x1.9mm, PPL 
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ignimbrite sequences, and transitions between the phases are mainly gradational. 

Plate 4.11. A welded crystal tuff containing abundant glass shards that are flattened arui partially 

homogenized. 3xl.9mm, PPL 

The vapour phase zone, which may be described as a sillar zone, is developed in 

most of the welded and partially welded ignimbrites. These zones comprise mainly 

porous devitrified tuff with mineral precipitation from vapour crystallisation. The sizes 

of these minerals range from cryptocrystalline to microcrystalline. In the 

cryptocrystalline vapour phase zones, most glassy material crystallised, but the 

vitroclastic texture is partly preserved. In many cases, devitrification crystals are not 

recognisable in hand specimens. The very fine-grained, axiolitic structure of shards is 

revealed under the microscope. The silica phase is mostly cristobalite. In the 

microcrystalline subzones, the axiolitic structures are, however, coarser grained with 

crystal sizes ranging between 0.05 and 1mm; the largest crystals occur along vesicle 

walls (Plate 4.12). The silica phase in the microcrystalline subzones is mostly tridymite 

with minor cristobalite. 

Pervasively devitrified zones are mostly developed in tuffs that are densely 

welded with fiammes. They are generally characterised by good retention of flattened 

glass shard structures in thin section. The sizes of devitrification crystals are similar to 
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Plate 4.12. Microcrystalline vapour phase crystallisation products of tridymite and cristobalite formed 

along the vesicle walls. 1.3x0.77mm, XP and PPL 
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Plate 4.13. Radiate-fibrous divitrification spherulites set in a devitrified glassy ignimbrite. 3x1.9mm, PPL 

P/ate ^.i^^. 5r7ica phase crystallisation products and spherulites formed in the gas cavities of a devitrified 

ignimbrite. 3xl.9mm, XP 
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Plate 4.14. Continued (PPL) 

those of the microcrystalline vapour phase. The spherulite zone develops almost 

exclusively in most of strongly welded vitric tuff layers. Spherulites range from 0.3 to 

1mm (Plate 4.13). Glass shards and lenticular fiammes are not visible in the spherulite 

zones, suggesting that most were totally homogenised by welding. The lithophysae are 

developed in the devitrified matrix as spherical shapes (Plate 4.14). They may range 

from solid to completely hollow with a crystallisation rind lining the walls. The silica 

phase is mainly tridymite and cristobalite. The generation of hollow lithophaysae may 

be related to the release of volatiles as suggested by Ross and Smith (1980). 

4.1.3 Weakly to Moderately Porphyritic Dyke Swarms (Early Miocene) 

The rocks in this suite are of silica saturated, hypersthene-normative andesites 

and trachyandesites. The crystallinities of the rocks vary considerably from <10% to 

about 45%. Phenocrysts are mainly plagioclase, orthopyroxene and clinopyroxene with 

subordinate olivine and magnetite. Hydrous minerals (amphibole and biotite) are absent 

in these rocks. 

In most of the rocks, plagioclase accounts for approximately 40-45% of the total 

phenocrysts. It usually forms prismatic crystals with grain sizes range between 0.2 and 

3mm. Lamellar twinning is common and most of the phenocrysts exhibit complex 
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zoning (normal and/or reverse zoning): core and rim compositions are An54.62 and An48-
66 respectively. Most phenocrysts have been resorbed along their crystal margins. Some 
crystal centres have also been resorbed to form sieve texture (Plate 4.15). Resorption 
characteristics may be attributed either to thermal disequilibrium and mixing of magmas 
with different compositions (Cox et al., 1979) or to rapid, isothermal decompression 
accompanied by magma mixing processes in magma chambers (Nelson and Montana, 
1992). Despite the fairly high K2O whole rock contents, there are no alkali feldspar 
phenocrysts. 

Orthopyroxene is an abundant phenocryst (~ 20-25% of total phenocrysts) and 

is represented mainly by bronzite and hypersthene. It is typically homogenous, but rare 

zoned examples show a core to rim variation of W03.2 En75.69 FS22-27 and W03.4 En69-67 

FS27-29 which span the entire range of orthopyroxene variation. Most of the 

orthopyroxene phenocrysts range between 0.02 and 0.5mm in size, although some may 

reach up to 1mm. They are mostly euhedral and subhedral and occur either as individual 

phenocrysts or, occasionally, in glomerocrysts and radiating crystals with clinopyroxene 

and/or plagioclase. Most have body colours of pale-pink or pale green and are slightly 

pleochroic under the microscope. Small apatite needles and opaque magnetite crystals 

are common inclusions in most of the orthopyroxene phenocrysts. 

The relative abundance of clinopyroxene is about 20-25% of phenocrysts. The 

sizes of the crystals are variable ranging between 0.01 and 0.1mm. They mostly form 

oscillatory-zoned crystals, but no systematic compositional variation has been observed 

between the zones. The phenocrysts are generally augite and diopsite in composition. 

Observed core and rim compositions are W042-38 En46-44 FS12-18 and W040-41 En5i.44 Fs8-

16 respectively. Some samples show abundant evidence of disequilibrium crystallisation, 

with coexisting skeletal, resorbed large phenocrysts and smaller euhedral crystals. Some 

clinopyroxenes also have alteration rims suggesting that a reaction has taken place with 

the host matrix. 

Olivine is rare or absent in this suite and, when present, does not exceed 2% of 

the total phenocrysts. It generally forms small, euhedral-subhedral crystals which are 

mostly altered to serpentine and iddingsite (Plate 4.15). In addition to the phenocrysts 

described above, minor amounts of magnetite, ilmenite and apatite are also present in 

the phenocryst phase of the rocks of this suite. They form small euhedral crystals with 

grain sizes ranging from 0.02 to 0.3mm. Some are present as inclusions in the other 
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Plate 4.15. Resorted plagioclase and altered olivine phenocrysts set in a microcrystalline groundmass. 

Olivines are altered to iddingsite. 3x1.9mm, XP and PPL 
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phenocrysts. 

The groundmasses are generally fine-to medium-grained and consist mainly of 

microcrystalline plagioclase laths and, more rarely, anhedral clinopyroxene and 

magnetite set in a brown glass. The abundance of crystallinity of the groundmass ranges 

between 30 and 60%. Groundmass plagioclase compositions are rather similar to those 

of phenocrysts, ranging between labradorite and bytownite (An57.65). The groundmass is 

usually intersertal and intergranular. Some rocks also have a hyalophitic groundmass 

with abundant fresh, brown glass. 

4.1.4 Aphyric to Weakly Porphyritic Mafic Alkaline Lavas (Late Miocene) 

The Tastepe, Ezine and Ayvacik Volcanics are alkali basalts and basanites, 

ranging from strongly alkaline, sihca undersaturated, nepheline-normative to mildly 

alkaline, silica saturated hypersthene-normative rock types, with corresponding 

mineralogy. They consist mainly of olivine, clinopyroxene and plagioclase phenocrysts 

in a microcrystalline to glassy groundmass. Phenocryst contents are variable, generally 

ranging from <3% (aphyric) to 20% (weakly porphyritic), although the majority of the 

rocks are aphyric. The degree of crystallinity decreases gradually in time from the 

Tastepe volcanics towards the Ayvacik volcanics. 

In the weakly porphyritic rocks, clinopyroxene generally forms subhedral 

phenocrysts with grain sizes from 0.1 to 1.5mm (mostly <0.5mm). They are mostly fresh 

and display simple twinning and strain banding in some cases. They are all either 

diopside or augite with core and rim compositions of W047-43 En44.46 Fsg.n and W050-45 

En4o-44 Fsio-13 respectively. In some samples, clinopyroxene phenocrysts display 

glomerophyric textures, forming spherulite shapes with clustered pyroxene crystals 

radiating outwards from an early formed olivine crystal (Plate 4.16). In some samples 

from the Ayvacik Volcanics, clinopyroxene microphenocrysts are intergrown with 

nepheline. 

The olivine phenocrysts are commonly subhedral and range from 0.1 to 1mm in 

size. Their abundances range between 40 and 70% of total phenocrysts. They are mostly 

fresh but are sometimes altered to serpentine, chlorite and reddish-brown iddingsite 

minerals along cracks and around the crystal margins (Plate 4.16). Some crystals display 

skeletal (quench texture) forms indicating rapid cooling. No significant compositional 
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zoning has been observed in the olivine phenocrysts; core and rim compositions are 
F075.86 and F071.83 respectively. 

Plate 4.16. Alkali olivine basalt, containing small altered olivine and zoned clinopyroxene phenocrysts. 

Pyroxenes form spherulite shape glomerocrysts. 3x1.9mm, XP 

Plagioclase occurs as a phenocryst phase in only the least basic rocks of the 

Tastepe Volcanics. Average plagioclase phenocryst content has been accounted <5%. It, 

when presents, generally forms prismatic, tabular crystals with grain sizes ranging 

between 0.2 and 0.5mm. Lamellar twinning is typical for most of the phenocrysts and 

none of the plagioclases show compositional zoning. Their compositions range between 

labradorite and bytownite (An 68-95)-

Ilmenite and magnetite are common phases in the groundmass and as 

microphenocrysts. In most samples, ilmenite is more abundant than magnetite. 

Typically, oxide phases form euhedral and subhedral microcrysts that range in size from 

-0.3 to 0.05mm. Modal proportions of the oxides range from about 5 to 15% by volume 

of phenocrysts. 

The groundmass in the rocks consists of: plagioclase microlites of mainly 

andesine - labradorite and rarely bytownite; clinopyroxene as subhedral and, more 
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Plate 4.17. Alkali olivine basalt characterised by intergranular groundmass texture with abundant 

plagioclase microlites and interstitial clinopyroxenes. 3xl.9mm, XP 

Plate 4.18. Felty textured aphyric alkaline basalt Plagioclase microlites characteristically show parallel 

alignment 3xl.9mm, XP 
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Plate 4.19. Olivine microphenocrysts set in an intergranular groundmass that consists of plagioclase 

laths and interstitial clinopyroxenes. 3x1.9mm, XP 

Plate 4.20. A basanite with olivine microphenocrysts set in a very fine-grained groundmass. 3x1.9mm, 

XP 
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Plate 4.21. Prismatic crystals of clinopyroxene set in a fine-grained groundmass. 1.3x0.77mm, XP 

Plate 4.22. Curved quench crystals of plagioclase aggregates in a basanite sample. 1.3x0.77mm, XP 
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commonly, anhedral yellow/brown grains or laths of augite and diopside; abundant 
subhedral/euhedral magnetite and needles of ilmenite; glass and alteration products of 
mostly calcite and chlorite. Small subhedral to anhedral olivine crystals also occur in the 
groundmass. The size of the grains varies from microcrystalline (~0.3mm) to 
cryptocrystalline. The groundmass textures show a considerable variation; most are 
intersertal and intergranular, characterised by glassy material or pyroxene microcrysts 
filling spaces between plagioclase laths (Plate 4.17), and an ophitic/subophitic texture 
with plagioclase laths embedded in clinopyroxene crystals. Pilotaxitic and felty textures 
are also seen in some aphyric samples characterised by randomly-aligned plagioclase 
microlites. (Plate 4.18). Most of the rocks from the Ayvacik volcanics are characterised 
by their very fine-grained, black, partly glassy matrix (Plate 4.19, 20). Some also exhibit 
quench textures with skeletal, swallowtail and parallel-elongated olivine, small 
prismatic crystals of clinopyroxene with hollow terminations, and sheaf-like, curved, 
acicular quench crystals of plagioclase in a fine-grained groundmass (Plate 4. 21, 22). 

4.2 Volcanic rocks from the Dikili-Ayvalik-Bergama (DAB) area 

4.2.1 Highly Porphyritic, Acid-intermediate Lavas (Early Miocene) 

The Early Miocene, porphyritic lavas of the Dikili-Ayvalik-Bergama area are 

represented by hypersthene- or quartz normative andesites and dacites'. The rocks are 

generally highly porphyritic with modal abundances of total phenocrysts varying 

between 15 and 65% by volume. The most abundant phenocrysts are plagioclase, 

amphibole, clinopyroxene, biotite, alkali feldspar and magnetite. Subordinate quartz and 

olivine also occur in the least siliceous and the most siliceous rock types respectively, 

whereas orthopyroxene is rare or absent. 

Plagioclase occurs in all lavas and makes up 35 to 60% by volume of 

phenocrysts. The sizes of crystals vary from microcrystalline (<0.05) to large 

macrophenocrysts (up to 5mm). They characteristically exhibit oscillatory-normal and 

oscillatory-reverse zoning (Plate 4.23). In general, there is a similarity between the 

zoning in the mantles of large phenocrysts and the complete zoning patterns of the 

smaller, euhedral phenocrysts. Core and rim compositions are An33.74 and An3i.57 

respectively. Some andesites contain plagioclase grains that are coarsely embayed or 

finely sieved. They display sieve-textured cores (penetrative resorption features in core). 

Resorption surfaces exhibit variable morphologies, from smooth to irregular. Cores of 
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^9* 

Plate 4.23. Large oscillatory zoned plagioclase in an andesite sample. 3x1.9, XP 

Plate 4.24. Euhedral amphibole phenocrysts set in a mostly glassy groundmass. 3x1.9mm, PPL 
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these grains may be either similar to or more calcic than unsieved grains. The textural 
and zoning characteristics may result from magma mixing, as discussed by Dungan and 
Rhodes (1978) and Tsuchiyama (1985) or, from rapid adiabatic decompression during 
magma ascent as discussed by Nelson and Montana (1992). 

Amphibole is the second most common phenocryst phase in most andesite and 

dacite samples. It mostly forms euhedral and subhedral individual crystals (Plate 4.24) 

as well as glomerocrysts with plagioclase, magnetite and more rarely clinopyroxene 

(Plate 4.25). The sizes of phenocrysts are generally between 0.02 and 2mm. They are 

mostly hornblende in composition. Some contain magnetite and small plagioclase laths 

as inclusions. In most of the samples, the hornblende phenocrysts are remarkably free of 

reaction rims indicating no oxidation or disequilibrium with the host liquid, although 

crystals surrounded by a fine-grained reaction rim of opacite are found in some samples. 

Clinopyroxene occurs in most andesitic and some dacitic samples. It makes up 

between <5% and 15% by volume of total phenocrysts. The sizes of crystals are usually 

0.05-0.5mm but some may reach up to 1mm in length. Most display oscillatory-normal 

or reverse zoning and cluster to form glomerocrysts with magnetite and plagioclase 

(Plate 4.26). They are generally augite and diopside with core and rim compositions of 

W040-43 En45.47 FS15.10 and W042-46 En45.42 Fs^.n respectively. 

Biotite is primarily a subhedral-euhedral phenocryst phase in most andesites and 

dacites; exceptions include some less siliceous (57-60% SiOa) andesite samples. Most 

of the phenocrysts contain apatite, zircon, magnetite and small plagioclase crystals as 

inclusions. Alkali feldspar joins the other phenocryst mineral assemblages in some lava 

Units. They are mostly subhedral crystals and represented mainly by sanidine and 

anorthoclase. 

The groundmass is highly variable, ranging from glassy or cryptocrystalline to 

microcrystalline. The crystallinity of the groundmasses generally decreases with silica 

content of the rocks. Microcrystalline plagioclase laths are common in the 

groundmasses of most rocks and are accompanied by microcrysts of clinopyroxene, 

magnetite and rarely amphibole. Groundmass textures are rather similar to those of 

highly porphyritic lavas of the EGA area, varying between intersertal and intergranular. 

Trachytic textures are also found in some rocks. 

4.2.2 Aphyric to Slightly Porphyritic Intermediate Lavas (Middle Miocene) 

The Egrigdl andesites are characteristically very fine-grained (<0.15mm), fresh. 
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Plate 4.25. Large glomerophyric aggregates of amphibole, magnetite and plagioclase. 3x1.9mm, XP 

Plate 4.26. Glomerocrysts of zoned pyroxene and plagioclase set in a microlitic groundmass. 3x1.9mm, 

XP. 
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mostly aphyric rocks. Although some minor porphyritic rocks are found, their total 
phenocryst contents are always <10% by volume. In these weakly porphyritic andesites, 
clinopyroxene is the most abundant phenocryst, forming small (0.1-0.5mm), subhedral 
crystals. Most clinopyroxenes exhibit oscillatory zoning with a composition of W046-40 
En46-5i FS8-9. Clinopyroxene is accompanied by relatively lesser amounts of plagioclase 
and olivine as phenocryst phases. Plagioclase forms predominantly small (<5mm) 
tabular crystals and displays normal zoning. They are all labradorite and bytownite with 
core and rim compositions of An63-75 and An64-77 respectively. Olivine phenocrysts (Fo 
73.86) are also generally <0.5mm in diameter, euhedral or subhedral, partly altered to 
serpentine. Subordinate orthopyroxene is also present in the phenocryst phase of some, 
though not all, the slightly porphyritic samples. It is generally hypersthene in 
composition and forms euhedral-subhedral in shape. 

The groundmass always contains a brown glass, invariably with minute 

colourless blebs that are taken to be a silicate melt. Plagioclase forms abundant small 

(fine-grained to cryptocrystalline) microlites in the groundmass. The plagioclase laths 

are often flow-aligned and are accompanied commonly by clinopyroxene to form 

trachytic and felty textures. Hyalopilitic examples are also present with glassy material 

between the plagioclase microlites. 

4.2.3 Aphyric to Moderately Porphyritic Basaltic Lavas (Middle Miocene) 

The Nebiler Volcanics are of silica-saturated, hypersthene normative, 

absarokites, shoshonites and banakites. They range widely from very fine-grained glassy 

rock types to very much coarser-grained, holocrystalline types. The vast majority of the 

rocks are moderately porphyritic with 10-30% of phenocrysts, although some 

completely aphyric samples are also present. The phenocrysts are mainly clinopyroxene, 

olivine, plagioclase and subordinate phlogopite and Fe-Ti oxides (magnetite and 

ilmenite). 

Clinopyroxene is phenocryst in almost all of the porphyritic rocks of this suite. 

It varies from 15-65% of the total phenocrysts. It forms prismatic, often twinned, 

subhedral and euhedral crystals and frequently clusters to form glomerocrysts with 

olivine and, rarely, plagioclase. Phenocryst sizes are generally between 0.01-1mm, but 

may reach up to 3mm in some samples. They characteristically show oscillatory and 

sector zoning (Plate 4.27). They are generally diopside and diopsidic augite. Some are 
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Plate 4.27. Oscillatory zoned phenocrysts of clinopyroxenes forming glomerocrysts with olivine crystals 

that are largely altered to iddingsite. 3x1.9mm, XP 

characterised by colourless diopside cores and pale greenish augite overgrowths with 

well-developed oscillatory zoning near the rims. The observed core and rim 

compositions are W048-42 En44.5i FS8-7 and W049-45 En4.4o FS9.15 respectively. In some of 

the basaltic andesite samples, large (~3mm) augite phenocrysts have been resorbed and 

the interiors of crystals have been pervaded by calcite (Plate 4.28) and, more rarely, 

opaque oxides arranged in trains parallel to the oscillatory zones. These characteristics 

may have been resulted from extensive intemal melting followed by overgrowth of the 

phenocrysts and reflect a thermal and/or compositional disequilibrium during 

crystallisation in the magma chambers (Cox et al., 1979). 

Olivine is the characteristic phenocryst of most of the rocks. The abundance of 

olivine phenocrysts is highly variable: the absarokites contain abundant olivine 

phenocrysts (30 and 65% of the total phenocryst), whereas the shoshonites contain 

lesser amounts of olivine (~ 5-20% of the total phenocryst). They mostly form euhedral-

subhedral crystals and their sizes vary considerably ranging between 0.01 and 1.5mm, 

but mostly less than 0.5mm in diameter. In most samples, olivines are zoned fresh 

crystals although, in some shoshonitic samples, they have been replaced by green 

131 



Chapter 4: Petrography 

Plate 4.28. A zoned clinopyroxene phenocryst shows extensive internal resorption. 3x1.9mm, XP and PPL 
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Plate 4.29. Poikilitic phlogopite crystals set in a coarse-grained matrix of sanidine, diopsite and 

magnetite-ilmenite. 3xl.9mm, XP and PPL 
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serpentine and red-brown iddingsite. Core and rim compositions are F074.91 F073.86 
respectively. In most cases, olivine forms the core to glomerocrysts of predominantly 
clinopyroxene. 

Plagioclase phenocrysts are notably rare or absent in the absarokites (48-52% 

Si02) but present in most of the shoshonites and andesites with abundances ranging 

from 5-30% of the total phenocrysts. They are generally prismatic crystals with grain 

sizes of 0.3-1mm in length. Although some unzoned plagioclase phenocrysts are found, 

they predominantly exhibit oscillatory zoning in the shoshonites and normal zoning in 

the andesites. A large compositional difference can be observed between the zones: the 

observed core and rim compositions are Anso-ss and A n 3 o - 6 5 respectively. 

Phlogopite is found in some absarokites representing the only hydrous phase. It 

is often present as a late, poikilitic phase. Although phlogopite is found an essential 

phenocryst in some samples (-20% of the total phenocrysts), and some crystals may 

reach up to 1mm length in the phenocryst phase, they are in general minor and restricted 

to the groundmass. 

The groundmass consists of microcrystalline plagioclase laths with subordinate 

interstitial clinopyroxene, magnetite-ilmenite and ohvine microlites. Glass is rare and 

present only in few samples. The sizes of groundmass plagioclase range from very fine-

to medium-grained. The most common groundmass textures vary between intergranular 

and intersertal depending on whether the material between the plagioclase laths are 

crystalline (mostly clinopyroxene) or glassy. Some also show pilotaxitic texture 

characterized by randomly oriented plagioclase microlites around the glomerocrysts 

and/or phenocrysts. 

For most of the phlogopite-bearing rocks, the groundmass is a significant feature 

with a considerable amount of alkali feldspar (mostly sanidine), accompanied by 

phlogopite, plagioclase, augite and magnetite-ilmenite (Plate 4.29). The textural 

relationship of most of the phlogopites may imply the presence of a late volatile- and K-

rich fluid. Such a fluid may also be responsible for the existence of alkali feldspar of 

variable compositions in the groundmass. 

4.3. Interpretation and Summary of the Petrography 

General petrographic features (e.g. the degree of crystallinity and average 

phenocryst abundances) of the volcanic rocks from Western Anatolia is summarised in 
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T(Me 41. Simmary if the petn>gmpNc characteristics (fthe volcanic mcksfirm WesteniAnatalia 
Area Vokanc Rock (jh)up Age Wiole-rock Average Abundances of Fhenocî sts (%) 

SiO!i(«t%) Hienocos(s(%) f^agidclase oUtihe c/pyroxene o/pyraxene anphibole bietite addes 
EGA Alkaline Miiic Lavas LateNiocen^ 42-50 <3-20 <5 45-55 40-55 5-15 

ftrphyritic S\\Qrms EariyMooene 55-61 <10-45 40 45 <2 20-25 20-25 <15 
Oystal-ridi Ignintrites EariyMooene 65-80 15-50 35 60 <5-15 <5-15 20-55 <5 
H ^ y Paph>ritic Lavtfi EariyMocene 56-70 20-60 30 65 <2 <5-25 <5-25 <5 15-35 <5 

DAB Basic Lavas MddleMooms 48-57 <3-10 <5 30 30-65 15-65 0-20 5-10 
Intemcdiate Lavas MdcHeMooae M-66 <10-30 30 40 10-25 35-50 <10 <2 5-10 
H ^ y RipiijTitic Lavas EadyMooene 55-68 15-65 35 60 <5-15 30-45 15-25 <5 

Table 4.1. Compositional and textural characteristics of the rocks have shown that the 

most important petrographic features of the Early Miocene, acid-intermediate rocks are 

their high proportions of phenocrysts (up to 65%) and complex compositional zoning of 

phenocrysts (especially plagioclases and some pyroxenes). 

Complex compositional zoning of crystals is mostly attributed to magma mixing 

processes (e.g. Kuno, 1936 and 1950; Dungan and Rhodes, 1978; Tsuchiyama, 1985; 

Nixon and Pearce, 1987). For plagioclase, normal compositional zoning that is 

characterised by more calcic core compositions relative to rim compositions can be 

explained by increasing degree of crystallinity within a sample. However, reversed 

zoning that is accompanied by normal zoning in crystals within the same rock can most 

likely be explained by magma mixing (or crustal contamination). In mixing systems, a 

more sodic crystal, derived from the felsic magma component, will tend to be resorbed 

as it is reheated by the more mafic magma component. This may give rise a subsequent 

crystallisation of more calcic plagioclase at the outer zones of phenocrysts. If calcic 

crystals of the mafic component happen to be present at the time of mixing, they will not 

be resorbed and will retain good crystal shape and mostly enclosed by further growth 

zones. Overgrowths of these mixing plagioclase crystals are mostly dusty and dendritic 

plagioclase resulting from quenching of relatively calcic plagioclase melt of the mafic 

component. In some cases, nucleation of plagioclase dendrites may form a dendritic core 

of a crystal that has an overgrowth of later formed non-dendritic plagioclase rim. In 

some other cases, repetitive injection of the mafic magma into a relatively less mafic 

magma chamber may form oscillatory zoned phenocrysts which are marked by multiple 

resorption cycles producing resorbed and sieve-textured crystals, although, as previously 

mentioned. Nelson and Montana (1992) argue that forming of sieve-textured plagioclase 

may be attributed to rapid magmatic decompression rather than mixing. 

Most plagioclase phenocrysts of the highly porphyritic. Early Miocene acid-

intermediate rocks from both the EGA and DAB areas display most of the textural 
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features described above. These mineralogical and textural characteristics of plagioclase 
phenocrysts may indicate that lavas in these suites have experienced extensive, open-
system differentiation. Highly porphyritic nature of most of these lavas may further 
suggest that the open-system modification might be operational in shallow magma 
chambers (crystallisation depths are discussed further in Chapter 5). 

It is evident from the low proportion of phenocrysts contents (<3-30%) of the 

Middle Miocene basic-intermediate rocks that the degree of crystallinity decreases 

gradually in time from the Early Miocene to the Middle Miocene. Unlike the Early 

Miocene rocks, aphyric or weakly porphyritic nature of the rocks of Middle Miocene 

age may indicate that the magma has not experienced long-lived, shallow magma 

chamber processes. This may possibly reflect a rapid ascent of the magmas through the 

continental crust as a consequence of progressive crustal thinning related to extensional 

tectonics. 

The Late Miocene, mafic alkaline rocks contain phenocryst phases of olivine, 

clinopyroxene, ilmenite and magnetite with subordinate plagioclase and nepheline. 

Phenocryst contents are generally low (<3 - 20%) and most samples exhibit quench 

textures. 
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C H A P T E R F I V E 
M I N E R A L C H E M I S T R Y 

I n t r o d u c t i o n 

This chapter presents the mineral chemical characteristics of the volcanic rocks 

from the Western Anatolian, Late Cenozoic volcanic province. It is subdivided into two 

main parts. The first part defines the compositions of the mineral assemblages from 

different volcanic formations throughout the volcano-stratigraphic sequence and 

discuses the crystallisation conditions of the minerals. The second part presents the 

estimates of magmatic intensive parameters, including crystallisation temperatures (T), 

pressures (P) and oxygen fugacities (/O2). 

Analytical data used in this chapter were obtained using the facilities of the 

Electron Microprobe Unit of Edinburgh University. Details of the analyses and the full 

electron-probe dataset are given in Appendix A and B respectively. 

5 .1 . Class i f lca t ion o f the Mine ra l s 

5.1.1. Olivine 

Olivine occurs in some form in all basanites and alkali basalts of Late Miocene 

age (the Tastepe, Ezine and Ayvacik Volcanics) and most calc-alkaline and shoshonitic 

basic-intermediate rocks of Middle Miocene age (the Foca Dyke Swarms, the Nebiler 

Volcanics, the Egrigol Andesite and the Odabumu Dyke Swarms). It is, however, a 

scarce phenocryst phase in the acid-intermediate rocks of Early Miocene age, although 

the rocks of the Kovacli Dyke Swarms and the Behram Andesite contain serpentinized 

olivine phenocrysts. 

Olivine phenocrysts and microphenocrysts in general show a range of 

compositions from F091 to Foe? (Fig. 5.1). Mg concentrations of the olivines show only 

a small variation within the olivine-bearing rocks. The most Mg-rich (forsteritic) 

olivines are found in the Middle Miocene shoshonites and absarokites of the Nebiler 

Volcanics (e.g. sample EA350) while the most Fe-rich (fayalitic) are from the Middle 

Miocene aphyric or slightly porphyritic intermediate rocks of the Egrigol Andesite (e.g. 
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sample EA313) and the Odabumu Dyke Swarms. Most of the phenocrysts are normally 
zoned within a range of 5-15 mole % Fo. However, extreme core to rim zonations (Fogg 
to Foe?) are also observed in some samples (e.g. EA309 of the Foca Dyke Swarms). 
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Figure 5.1. Distribution of average composition of olivine phenocrysts and microphenocrysts from the 
different formations of the Late Cenozoic West Anatolian volcanic province. 

Figure 5.2 illustrates the variation in the forsterite content (Fo) of olivines with 

changing silica concentration (SiOz) of host whole-rocks. The forsterite contents of the 

olivines from the Middle Miocene calc-alkaline and shoshonitic basic-intermediate 

rocks generally decrease with increasing silica content which can be explained by 

fractional crystallisation. The exception is one of the basalt samples which includes 

abundant xenocrysts with extreme compositional zoning. The forsterite content of the 

olivines from the Late Miocene alkali basalts and basanites increases with increasing 

silica content of the host rock. 

The experimental work of Roder and Emslie (1970) on olivine-liquid equilibria 

in basaltic systems shows that the exchange coefficient (KD) relating the distribution of 

Fe and Mg between olivine and liquid should be 0.3 (±0.03) i f equilibrium has been 

attained. Using the method of Roder and Emslie (1970), the Mg/Fe ratios of the liquid 

with which the olivine compositions would have been in equilibrium were calculated 
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and compared with the Mg/Fe ratio of the bulk rock, to assess whether the olivines were 
in equilibrium with the host rock. To avoid the effects of phenocrysts, calculations were 
applied only to aphyric or <10% phyric samples assuming that they represent liquid 
compositions. 

Core Rim 

• O Late Miocene alkaiine rocks 

• O Middle Moceoe calc-alkaline 
& shoshonitic rocks 

45 50 55 
Whole-rock SiO^ (wt%) 

65 

Figure 5.2. Olivine compositions plotted against silica content (SiOi wt%) of their host whole-rock. 

[Fe/Mg] 

Late Miocene 
• ĵ acik, Ezine, Tastepe volcanics 

Middle Miocene 
0 Nebiler volcanics 
M Egrigol andesite & 

Qt̂ miu dyke swarms 

2 3 
XMgO/XFeO (host bulk-rock) 

Figure 5.3. Equilibrium XMgO/XFeO ratio of liquid calculated from olivine compositions plotted against 
XMgO/XFeO ratio of host bulk-rock. X is the mole fraction of the oxide. Lines represent equilibrium 
between minerals and bulk rock compositions. Equilibrium '''^^^KD^i^jg values are from Roeder and 
Emslie, (1970). 
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Figure 5.3 illustrates that most of the olivines from the alkaline basalts and 
basanites of the Late Miocene lavas are within the equilibrium range. Among the calc-
alkaline and shoshonitic rocks of the Middle Miocene age, some olivines are within the 
equilibrium range, but the majority is not. In particular, olivines from the intermediate 
rocks (e.g. the Egrigol Andesite) are too Fe-rich to have crystallised from a liquid 
compositionally similar to their host rocks. This may be explained either by mixing of 
magmas with different compositions or by the existence of olivine xenocrysts. 

5.1.2. Pyroxene 

Clinopyroxene is one of the most abundant mineral phases in the non-acidic 

alkaline, calc-alkaline and shoshonitic volcanic rocks. Orthopyroxene is found in most 

of the calc-alkaline and shoshonitic rocks from the Ezine-Gulpinar-Ayvacik (EGA) area, 

while it is a rare or scarce phenocryst phase in the rocks from the Dikili-Ayvalik-

Bergama (DAB) area. 

Pyroxene end-members were calculated using the computer program PX 

(Gomez, 1990) and plotted on the diopside (Di: CaMgSi206) - hedenbergite (Hd: 

CaMgSi206) - enstatite (En: Mg2Si206) - ferrosilite (Fs: Fe2Si206) classification 

quadrilateral (Fig. 5.4). Clinopyroxenes in general plot into the diopside, salite, 

endiopside and augite fields, whilst the orthopyroxenes plot mostly into the bronzite and 

hypers thene fields. 

It is apparent from Figure 5.5 that clinopyroxenes and orthopyroxenes from most 

of the Early-Middle Miocene, calc-alkaline and shoshonitic rocks have both reverse and 

normal zoning. Reverse zoning of phenocrysts may be explained by a number of 

processes including: (1) decompression during magma ascent (Ewart et al., 1975; 

Kontak et al., 1984); (2) more oxidising conditions during the later stages of 

crystallisation (Luhr and Carmichael, 1980; Grunder and Mahood, 1988); or (3) magma 

mixing (Nixon, 1988). Clinopyroxenes from the Late Miocene, alkaline rocks mostly 

show normal zoning, though the compositional difference between cores and rims are 

generally small. 

In Figure 5.6, minor elements in pyroxenes are plotted against the Fs (Ferrosilite 

= Fe2Si206) contents. Ti02 generally shows a positive correlation with Fs content of 

clinopyroxenes (Fig. 5.6a). Distinctively high Ti02 concentrations of the clinopyroxenes 
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Figure 5.4. Compositions of pyroxene pheno- and microphenocrysts from the volcanic rocks of Western 
Anatolia. 
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of the Late Miocene alkaline rocks (the Ayvacik, Ezine and Tastepe Volcanics) relative 
to the Early-Middle Miocene, calc-alkaline and shoshonitic rocks are consistent with the 
Ti02 contents of the whole rocks (previously given in Chapter 3). This may be attributed 
to the high concentrations of Ti02 in the alkaline magma. 

Notably, clinopyroxenes of the acid-intermediate rocks of the DAB area 

including the highly porphyritic rocks, the Egrigol Andesite and the Odabumu Dyke 

Swarms are in general enriched in MnO at a given Fs content relative to those of the 

more basic Middle Miocene rocks of the Foca Dyke Swarms and the Nebiler Volcanics 

(Fig. 5.6b). A similar relationship is observed between pyroxenes of the Early Miocene 

rocks from the EGA area as both clinopyroxenes and orthopyroxenes of the highly 

porphyritic lavas are more enriched in MnO than those of the Kovacli Dyke Swarms 

(Fig. 5.6c). Since Mn "̂̂  can substitute for Fê "̂ , not only in pyroxene, but also in olivine 

and/or Fe-Ti oxides, this may be explained by olivine crystallisation (with or without 

Fe-Ti oxides) prior to pyroxene crystallisation for the later-formed volcanic rocks from 

the two areas. This is also supported by the existence of abundant olivine phenocrysts in 

the Foca Dyke Swarms and the Nebiler volcanics of the DAB area and the Kovacli Dyke 

Swarms of the EGA area. 
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Figure 5.5. Molar Mg-number (Mg# = 100Mg/[Mg-i-Fe *]) of (a) clinopyroxene and (b) orthopyroxene 
cores and rims. 
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Figure 5.6. Minor element variations in pyroxene shown by plots of (a) TiO^ content of clinopyroxene, 
MnO contents of(b) clinopyroxene and(c) orthopyroxene and (d) Al/Ti molar ratio of clinopyroxene a-
gainst the molar percentage of ferrosilite (Fs) in pyroxene. 
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The Al/Ti ratios in the clinopyroxenes of most of the calc-alkaline and 
shoshonitic rocks increase with decreasing Fs contents from the Early Miocene acid-
intermediate rocks towards the Middle Miocene basic-intermediate rocks (Fig. 5.6d). 
This may reflect the greater rate of depletion of Al tied up in plagioclase relative to Ti in 
ilmenite or titano-magnetite in a plagioclase-dominated fractionation for the Early 
Miocene rocks. Supporting this is the absence of ilmenite in the Early Miocene rocks. 
Elevated ratios of Al/Ti in the clinopyroxenes of the Middle Miocene rocks of the 
Nebiler Volcanics coincide with the appearance of ilmenite which has extremely low 
Al/Ti ratios requiring removal of only a small amount of ilmenite to cause rapid 
depletion of Ti, and thus increase Al/Ti ratios even in liquids fractionating plagioclase. 
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Figure 5.7. Ti versus Al (per 6 oxygens) for clinopyroxenes showing compositional differences between 

the volcanic rocks. 

Experimental and petrological studies have demonstrated that partitioning of 

minor elements such as Ti and Al into pyroxene is strongly growth-rate dependent, 

although equilibrium partitioning of Ca, Mg and Fe may not be seriously affected by 

cooling rates (Grove and Bence, 1977; Gamble and Taylor, 1980). In particular, high 

cooling rates favour crystallisation of pyroxene with elevated Ti and Al contents (Fig. 

5.7). The existence of the Ti- and Al-rich microphenocrysts particularly in some of the 

alkaline basalt and basanites of the Late Miocene suite and basalts from the Foca dyke 

swarms therefore probably reflect more elevated cooling rates. Their aphyric or weakly 

porphyritic nature also supports this idea. 
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5.1.3. Plagioclase Feldspar 

Most plagioclase phenocrysts show some degrees of compositional zoning. 

Zoning may be normal, reverse, and oscillatory or a complex combination of these three 

types. Thus, plagioclase analyses of at least two points, one near the rim, the other in the 

centre, were conducted. The compositional range of Western Anatolian Late Cenozoic 

volcanic suite as a whole is summarised in Figure 5.8. The majority of plagioclase 

feldspars lie within the andesine, labradorite and bytownite fields, although two analyses 

plot in the oligoclase field. 

Compositions of plagioclases generally correlate with the silica contents of the 

host rocks (Fig. 5.9). The most An-rich plagioclases are found in the Middle Miocene 

basic rocks of the DAB area (The Foca dyke swarms and the Nebiler volcanics) while 

the most Ab-rich are from the Early Miocene acid porphyritic lavas. The phenocrysts are 

mostly within the range of 5-25 mole % An unit, although extreme core to rim zoning 

(up to 45 mole % An unit) is observed in some phenocrysts. 
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Figure 5.8. Ternary projection of plagioclase compositions from the Western Anatolian volcanic rocks. 
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5.1.4. Amphibole 

Amphibole is an abundant mineral phase in most of the Early Miocene acid-

intermediate rocks from the DAB area. Some intermediate rocks of the Middle Miocene 

age from the DAB area (e.g. the Egrigol Andesite) and of Early Miocene age from the 

EGA area (e.g. the Bademli Unit) also include a minor amount of amphibole 

phenocrysts and xenocrysts in some forms. 

Al l the analysed amphibole phenocrysts from the Western Anatolian volcanic 

rocks have (Ca -i- Na)M4>1.34 and (Na)M4<0.67, and thus are calcic amphiboles 

according to the classification scheme of Leake (1978). In Figure 5.10, the data have 

been plotted on the classification diagram of Hawthorne (1981). Two distinct 

compositional ranges can be identified: (1) edenites; and (2) pargasites. Amphibole 

phenocrysts and microphenocrysts from the Early Miocene, highly porphyritic acid-

intermediate lavas of the DAB area predominantly classify as edenite and partly edenitic 

hornblende, though some of the data points fall into the pargasitic homblende and 

ferroan pargasite fields. Amphiboles from the Middle Miocene Egrigol Andesite of the 

DAB area and the highly porphyritic lavas of the EGA area mostly classify as pargasite 

or ferroan pargasite and are characterised by their low silica contents (<6.5 Si mole %) . 

The plots of A l ^ against (Na + K) cations in the A site of amphibole phenocrysts 

also reveal two distinct compositional trends (Fig. 5.11). The experimental studies of 

Helz (1973) demonstrated that amphibole compositions, in general, exhibit correlated 

increases in A l ' ^ and (Na + K)A with increasing crystallisation temperatures. The 

significant compositional difference between the two trends can therefore be attributed 

to different crystallisation temperatures (P-T conditions for amphiboles are discussed 

further in Section 5.2). The co-existence of both edenitic and pargasitic amphibole in 

some samples (e.g. the Kalarga Andesite) may further indicate that they are the 

composite products of more than one petrogenetic step. 

5.1.5. Biotite-Phlogopite 

Biotite occurs as phenocrysts in only the highly porphyritic acid-intermediate 

rocks (Early Miocene) from both the EGA and DAB areas. Some absarokites and 

shoshonites of the Nebiler Volcanics include phlogopite as phenocryst and groundmass 

phases, as previously mentioned in Chapter 4. In Figure 5.12, Ti, Al contents and Mg/Fe 

ratios of biotite and phlogopite phenocrysts are plotted against the silica contents of their 
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Figure 5.10. Amphibole phenocrysts plotted on the classification diagram of Hawthorne (198]). 
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Figure 5.12. (a) Ti content, (b) Mg/Fe ratio and (c) Al content of biotite and phlogopite phenocrysts 
plotted against silica content of the host bulk-rock. 
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whole rocks. The compositions of the biotite phenocrysts do not show any significant 
variations among different volcanic rock groups and within individual lava flows. They 
have constant Mg/Fe ratios (<2) and Al contents (>2.5 mole %). Phlogopite phenocrysts 
characteristically have higher Mg/Fe ratios (>2.5) and lower Al contents (<2.3 mole %) 
than biotites. Ti contents are high for all the phlogopites. 

5.1.6. Oxide minerals 

A magnetite-rich (Fe304 - Fe2Ti04) phase is found in most of the rocks from Western 

Anatolian volcanic suites, the exception being the crystal-free ignimbrites. Magnetite (or 

titano-magnetite) occurs in the groundmass and as microphenocrysts. Dmenite is less 

abundant and is found only in the alkaline basalts and basanites of Tastepe, Ezine and 

Ayvacik Volcanics (Late Miocene) and some basic-intermediate members of the Nebiler 

Volcanics (Middle Miocene). Figure 5.13 highlights the compositional variations of the 

oxide phases on the basis of their FeO, Ti02 and Fe203 contents. It should be noted that 

the Fê "̂  in the oxide minerals is estimated from the difference between Ti and Fe plus 

other divalent cations. Compositions of titano-magnetite lie close to the binary solid 

solution series of magnetite-ulvospinel. 

TiOj 
rutile, anastase, brookite 

pseudobrookite 

\yvicik,EiiiiBft 

Foudytc 

KxrvKlidyfce 

(EGA A DAB) 

ilmenite 

ulvospmel 

hamatite 
maghemite 

FeO magnetite Fe,03 

Figure 5.13. Triangular diagram for the Fe-Ti oxides in the Fe-Ti-0 systems. 
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The Ti02 concentrations of both titano-magnetites and ilmenites are plotted 
against the silica content of the host rock in Figure 5.14. Titano-magnetite and ilmenite 
from the basalts and basanites of the alkaline lavas (the Ayvacik, Ezine and Tastepe 
Volcanics) generally have the highest Ti02 contents, consistent with the high Ti02 
contents of their whole-rocks (see Chapter 3). The average mole fraction of Fe2Ti04 
(ulvospinel) in titano-magnetites from the alkaline rocks is also generally higher than 
that of the other rocks (calc-alkaline and shoshonitic), which reflects the higher Ti 
content of the alkaline lavas. 

SiO^wtro (host bulk-rock) 

Figure 5.14. Ti02 concentration of titanomagnetite and ilmenite grains plotted against silica content of 
host bulk-rock. Closed symbols represent titanomagnetites and open symbols represent ilmenites (see Fig. 
5.13 for the symbols). 

Bacon and Hirschmann (1988) used Mg/Mn partitioning between coexisting Fe-

Ti oxides to examine whether the coexisting oxide phases are in equilibrium. According 

to their experiments, a plot of log[Mg/Mn]niagnetite against log [Mg/Mn] iimenite should yield 

a straight line i f the oxide phases are in equilibrium. They conducted their experiments 

over a temperature range of 600 to 1100°C. They also argue that the effect of oxygen 

fugacity (/O2) on the partitioning of the Mg/Mn ratios between coexisting oxide phases 

is insignificant. The test is, however, only applicable to fresh volcanic rocks and may 

not be accurate enough for oxidised or exsolved oxide minerals. Coexisting titano-

magnetite and ilmenite grains in the volcanic rocks from the Western Anatolian suites 

are variable in composition, although a dominant population is usually present. Most 

titano-magnetite - ilmenite pairs from the alkaline basalts, basanites and calc-alkaline 

basalts and basaltic andesites have Mg/Mn atomic ratios consistent with equilibrium 

partitioning as defined empirically by Bacon and Hirschmann (1988). This implies that 
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they are coexisting phases in equihbrium (Fig. 5.15). Deviation of some of the analyses 
above the best-fit equilibrium line in Figure 5.15, especially at lower Mg/Mn ratios, may 
suggest a temperature and/or compositional dependence on partitioning in the oxide 
minerals, which is consistent with experimental studies of Bacon and Hirschmann 
(1988). 

100 c 

Log(Mg/Mn) ilmenite 

Figure 5.15. Atomic Mg/Mn ratios of titanomagnetite and ilmenite grains. Line represents equilibrium 
between two oxide phases determined by Bacon and Hirschmann (1988). 

5.2. Estimation of Magmatic Intensive Parameters 

5.2.1. Temperatures and Oxygen Fugacities 

5.2.1.1. Pyroxene geothermometry 

In recent years, a number of researchers have attempted to define a relationship 

between crystallisation temperature and crystal chemical composition of pyroxenes 

(Boyd, 1969 and 1973; Saxena and Nehru, 1975; Wells, 1977; Saxena, 1976; Mercier, 

1976; Kretz, 1982; Lindsley and Andersen, 1983; Lindsley, 1983). Most of the studies 

on pyroxene thermometry are established on the basis of the theory that the Ca content 

of Ca-rich pyroxene (augite-diopsite) decreases with increasing temperature, whereas 

that of Ca-poor pyroxene (orthopyroxene) increases. Kretz (1982) used the temperature-

dependence of Ca contents and Mg/Fê "̂  ratios of pyroxenes determined by transfer and 

exchange reactions respectively to produce empirical temperature indicators applicable 

to natural metamorphic and igneous pyroxene minerals. He also estimated the 

uncertainty in this method to be ±60°C. Lindsley and Anderson (1983) and Lindsley 

(1983) produced one of the most successful and commonly used pyroxene 

geothermometers. They used experimentally-determined Ca-Mg-Fe pyroxene phase 
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relations over pressure range of latm to 15 kbar and combined them with calculated 
phase equilibria for the diopside-enstatite and hedenbergite-ferrosilite joins to propose a 
graphical two-pyroxene thermometer applicable to natural systems. Their 
geothermometer is mainly based on Ca partitioning between coexisting Ca-rich (augite-
diopsite) and Ca-poor (orthopyroxene) pyroxenes and involves plotting the pyroxene 
end-member compositions onto the pyroxene quadrilateral and using experimentally-
determined temperature contours to estimate the temperature. The uncertainty in this 
method, due to the calculation and location of the isotherms was estimated as ±20-30°C 
by Lindsley and Anderson (1983). The total error in this two-pyroxene geothermometry, 
including the errors in the analyses of the pyroxenes, is approximately ±50°C according 
to same authors. 

Electron microprobe data of pyroxenes from the Western Anatolian volcanic 

rocks were used to calculate the Wo-En-Fs end-members according to the projection 

scheme of Lindsley and Anderson (1983). The ratio of Fê "̂  to Fê "̂  for these calculations 

was estimated using the PX program of Gomez (1990). Compositions of coexisting 

clinopyroxene and orthopyroxene with less than 10% nonquadrilateral components were 

used to estimate the temperatures. Figure 5.16 shows data plotted on the Di-En-Hd-Fs 

quadrilateral of Linsley (1983) which is calibrated for latm and contoured at 100°C 

intervals. The use of low-pressure (latm) diagram for pyroxene phenocrysts is 

appropriate only if the host magmas resided and fractionated in shallow magma 

chambers. However, estimated pyroxene temperatures would be negligibly different at 

5kbar, as there is only a slight difference between the contours of the diagrams 

calibrated for latm and 5kbar. 

Unfortunately, orthopyroxene does not coexist with clinopyroxene in most of the 

rocks. Thus, the use of the two-pyroxene geothermometer was restricted to the Early 

Miocene rocks of the EGA area (the highly porphyritic lavas and the Kovacli Dyke 

Swarms) and some Middle Miocene lavas of the DAB area (the Egrigol Andesite). 

Within the volcanic rocks from the EGA area, pyroxenes from the porphyritic lavas 

have lower crystallisation temperatures than those from the Kovacli Dyke Swarms. 

Temperature estimates for the former range between 750 and 980°C while the estimates 

for the later range between 850 and 1170°C. Pyroxenes from the Middle Miocene 

intermediate rocks (the Egrigol Andesite) yield high crystallisation temperatures ranging 

between 1000 and 1120°C. Distribution of the pyroxene temperature estimates is also 
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Figure 5.17. Pyroxene temperature estimates of different volcanic suites of Western Anatolia plotted 
against silica content of host bulk-rock. Closed and open symbols represent temperatures obtained from 
pyroxene core and rim compositions respectively. 

In Figure 5.17, the available pyroxene temperature estimates are plotted against 

silica content of their host rocks. Pyroxene temperature estimates of most of the highly 

porphyritic Early Miocene acid-intermediate rocks from the EGA area display a 

negative correlation with their host rock silica contents indicating that acidity of the melt 

has a significant influence on the pyroxene temperatures. On the other hand, the 

temperature estimates of the pyroxenes from the Kovacli Dyke Swarms stay mostly 

constant with increase in their host rock silica contents. Notably, phenocryst cores in 

most samples of the highly porphyritic Early Miocene lavas yield higher temperatures 

than their rims. In the Kovacli Dyke Swarms, however, clinopyroxene phenocrysts are 

reversely zoned and their Ca-poor rims yield temperature estimates 5-50°C higher than 

their core compositions. This feature may suggest that, throughout the formation of 

these rocks, the magma chambers were periodically heated, probably through recharge 

of hotter magma to their bases. 

5.2.1.2. Amphibole-plagioclase geothermometer 

A number of recent experimental studies have focused on amphibole minerals 

(e.g. Plyusnina, 1982; Hammarstrom and Zen, 1986; 1992; Hollister et al., 1987; Blundy 

and Holland, 1990; Schmidt, 1992) because it is generally considered that amphiboles 

are a good potential indicator of pressure and temperature for many igneous and 
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metamorphic suites. Holland and Richardson (1979) and Graham and Powell (1984) 
used amphibole stability to calculate crystallisation temperatures in metamorphic rocks. 
Nabelek and Lindsley (1985) proposed an empirical cahbration of a homblende-
plagioclase thermometer. Subsequently, Blundy and Holland (1990) used their 
experimental data on amphiboles together with published data to develop an empirical 
homblende-plagioclase thermometer. Their model is mainly based on the A r content of 
amphibole and the albite (Ab) content of coexisting plagioclase in silica-saturated 
systems. This model has been criticised for its over-simplicity (Hammarstrom and Zen, 
1992; Poll and Schmidt, 1992). More recently, however, Holland and Blundy (1994) 
improved their previous thermometer and formulated two new amphibole-plagioclase 
thermometers for the following reactions: 

a) edenite + 4quartz = tremolite + albite 

b) edenite + albite = richterite + anorthite 

These thermometers are pressure-dependent and the temperature uncertainty is given as 

±20-30°C by the authors, although the uncertainty may increase for iron-rich amphiboles 

with different oxidation states from those used for the calibrant dataset. According to 

Holland and Blundy (1994), the thermometers can be applied to natural systems in the 

temperature range of 400-1000°C and the pressure range of 1-15 kbar over a broad 

compositional range. 

In this study, electron microprobe data of amphibole and plagioclase phenocrysts 

from the Western Anatolian volcanic rocks are used to estimate temperatures using the 

equations of Holland and Blundy (1994). Since amphibole does not occur in most of the 

volcanic rocks from the EGA area (with one exception) and any of the basic rocks from 

the DAB area, application of Holland and Blundy's (1994) method was restricted to 

amphibole-bearing porphyritic acid-intermediate rocks from the DAB area. For these 

calculations, core compositions of amphibole and plagioclase phenocrysts were selected 

assuming that they are coexisting phases. Pressures for the mineral assemblages used in 

the temperature calculations are estimated using Schmidt's (1992) Al-in-homblende 

geobarometer (see Section 5.2.2.2 for details). 

The results obtained from the amphibole-plagioclase thermometer are illustrated 

in Figure 5.18. The temperatures estimated from the amphibole phenocrysts in the 

highly porphyritic lavas (the Bademli Unit; sample EA273 and EA231) of the EGA area 

range between 860 and 980°C, which is slightly higher than the range of the 
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temperatures obtained from the pyroxene geothermometry (Table 5.1). The temperature 
estimates from the amphibole phenocrysts of the Early Miocene acid-intermediate 
porphyritic rocks from the DAB area (the Ballica volcanic Unit, the Akcapinar volcanic 
Unit, Karagol volcanic Unit, the Mt. Seyret volcanic Unit and the Kalarga Andesite in 
Table 5.1) range between 790 and 970°C. The estimates obtained from the rocks of the 
DAB area are generally lower (<900°C) than those obtained from the rocks of the EGA 
area. 

Early Miocene 

Figure 5.18. Temperatures of crystallisation estimated using amphibole-plagioclase geothermometer of 
Holland and Blundy, (1994). . 

5.2.1.3. Fe-Ti oxide thermometry and oxygen fugacities 

The thermodynamic significance of the compositional variations of coexisting 

Fe-Ti oxides was first realized by Buddington et al. (1955) and Buddington (1956). 

Subsequently, Buddington and Lindsley (1964) experimentally calibrated the following 

equilibria in the system FeO-Fe203-Ti02 and developed a graphical Fe-Ti oxide 

geothermometer / oxygen barometer. 

Fe203 + Fe2Ti04 = FeTiOj + Fe^O^ 

6FeTi03 + 2Fei04 = 6Fe2Ti04 + O2 

They used the first reaction to determine temperature and the second reaction to 

determine /O2 because the reactions are independent of /O2 and temperature 

respectively. In recent years, a number of additional attempts have been made to 

improve and simplify the use of the Fe-Ti oxide geothermometer and oxygen barometer 

(Powell and Powell, 1977; Andersen and Lindsley, 1979, 1981, 1988; Ghiorso and 

Carmichael, 1981; Ghiorso and Sack, 1991; Lindsley and Spencer, 1982; Lindsley et al., 

1990; Stormer, 1983; Stormer and Whitney, 1985). Among these, that of Lindsley et al. 
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(1990), which couples the projection algorithm of Lindsley and Spencer (1982) with 
thermodynamic analysis of the Fe-Mg-Ti oxides calibrated by Andersen (1988), is 
probably the most successful and commonly used method. 

In this study, temperatures and oxygen fugacities (/O2) at the time of 

crystallisation were estimated using the equilibria between two solid solutions (ilmenite 

and titano-magnetite). Only samples that were likely to have preserved equilibrium 

conditions, as previously determined from Mg and Mn partitioning (Fig. 5.15), were 

used to calculate temperatures. Unfortunately, as mentioned in Section 5.1.6, ilmenite 

does not coexist with titano-magnetite in most of the rocks from the Western Anatolian 

volcanic suites, preventing utilisation of the "two-phases method" to estimate 

temperature and /O2. Temperature and /O2 estimation using Fe-Ti oxides was therefore 

restricted to the alkaline basalts and basanites of the Tastepe, Ezine and Ayvacik 

Volcanics together with a few samples from the Nebiler Volcanics and the Kovacli 

Dyke Swarms. 

Figure 5.19 shows the temperatures and /O2 values estimated using a routine in 

the QUDLF program developed by Andersen (1992) based on the model of Andersen 

(1988). Although some of the results obtained have large uncertainties (>50°C) due to 

Ayvacik, Ezioe & 
Tastepe volcanics 
(Late Miocene) 
NebUervolcanics 
(Middle Miocene) 
Kovacli dyke swaims 
(Early Miocene) 

700 800 900 1000 
Temperature ("C) 

1100 1200 

Figure 5.19. Values of temperature and oxygen fugacity calculated from the composition of coexisting 
cubic (titanomagnetite) and rhombohedral (ilmenite) oxides. Curves define solid oxygen buffers 
corresponding to hematite-magnetite (HM, Myers and Eugster 1983), quartz-fayalite-magnetite (QFM, 
Berman 1988), magnetite-wiistite (MW, Myers and Eugster 1983) and nickel-nickel oxide (NNO, Huebner 
and Sato 1970). Error bars relate to the variation in oxide composition within the individual samples. 
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significant quantities of minor elements (Al, Mg etc.) and to a high variation of oxide 
compositions within samples, only temperature estimates with uncertainties <50°C are 
plotted in Figure 5.19. The majority of Fe-Ti oxide pairs in the alkaline basalts and 
basanites yield temperatures that range from 870 to 1150°C. The temperature estimates 
lie between 800 and 1040°C for samples of the Nebiler Volcanics (e.g. EA350 and 
EA348) and between 910 and 1070°C for the Kovacli Dyke Swarms. Temperatures of 
the intermediate rocks of the Kovacli Dyke Swarms lie within the range of the 
temperatures obtained from the two-pyroxene geothermometer (850-1170°C; Table 5.1), 
although the number of coexisting oxide pairs is very limited for a precise comparison. 
The oxygen fugacities of the alkaline basalt and basanite samples are mostly slightly 
below the curve of the synthetic quartz-fayalite-magnetite (QFM) buffer of Berman 
(1988), although a few data points plot onto QFM buffer. On the other hand, the oxygen 
fugacities obtained from the basic-intermediate rocks of the Nebiler Volcanics and 
Kovacli Dykes Swarms fall just above the QFM buffer curve. 

5.2.2. Pressure Estimates 

5.2.2.1. Clinopyroxene geobarometer 

Providing quantitative information about pressures at the time of crystallisation 

has a great importance in petrology because it can be used to estimate the depth of 

mineral crystallisation and hence the location of magma reservoirs. A number of 

workers have attempted to extract thermodynamic information from the chemical 

compositions of clinopyroxenes in basaltic systems, comparing the compositions of 

natural minerals with those of minerals synthesised at known pressure-temperature 

conditions (e.g. Green and Hibberson, 1970; Knutson and Green, 1975). It is, however, 

a difficult task to establish a general relationship between the pressure of crystallisation 

and the chemical composition of pyroxenes because of the great variance of magmatic 

systems. In recent years, some workers have attempted to relate the pressure effects to 

the structural parameters of natural clinopyroxenes using the sensitivity of cell and site 

volumes to crystallisation pressures, instead of using the chemical components (Dal 

Negro et al., 1989a,b; Bertolo et al., 1994; Salviulo, 1997). Most of these methods 

require crystal structural data that can be obtained from crystal chemical study of 

pyroxenes based on single-crystal X-ray diffraction (XRD). 

Nimis (1995) combined experimental chemical and structural data to produce a 
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crystal-structure simulation that makes it possible to calculate the structural parameters 

of clinopyroxene from a known chemical composition without requiring direct X-ray 

diffraction (XRD) analyses. The empirical clinopyroxene geobarometer constructed by 

Nimis (1995) is mainly based on the relationship between cell volume (Vc) and Ml-site 

volume (VMl) . According to the author, the clinopyroxene geobarometer is applicable 

only to natural mega- or phenocrysts crystallised from melts of basaltic composition 

([Mg / (Mg -I- Fe^^)])cpx = 0.7-0.9) excluding high-alumina basalts (Al203>18). The error 

in the calculation is also given by the same author to be within ± 2kbar in the range 0-

24kbar. For this crystal-structure modelling, calculation of the distribution of Mg and 

Fe"̂ ^ between M l and M2 sites has critical importance because calculations of the 

structural parameters or pressures directly from the chemical data are too sensitive to the 

site occupancies. Thus, this method should be used with caution. 

The electron microprobe data of clinopyroxene phenocrysts from the Western 

Anatolian volcanic rocks were used to estimate the pressure of crystallisation according 

to the clinopyroxene geobarometer of Nimis (1995). Representative clinopyroxene 

analyses were selected according to the above restrictions on the use of this method. The 

results are presented in Figure 5.20 and Table 5.1. 
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Figure 5.20. Pressures estimated using clinopyroxene geobarometer of Nimis, 1995. 

Pressure estimates of clinopyroxenes from the Middle Miocene basic-

intermediate rocks of the Foca Dyke Swarms, the Nebiler Volcanics and the Egrigol 

Andesite are between 5.0 and 1 l.Okbar, but the majority is >7.0kbar. Pressure estimates 

of clinopyroxenes from the Early Miocene intermediate volcanic rocks including the 
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highly porphyritic rocks from both the EGA and DAB areas and Kovacli Dyke Swarms 
range between 3.0-7.0kbar and are generally lower than those obtained from Middle 
Miocene basic-intermediate rocks. Within the Early Miocene volcanic rocks from the 
EGA area, a remarkable difference can be observed between the pressure estimates of 
clinopyroxenes from the highly porphyritic lavas and those from the Kovacli Dyke 
Swarms. Clinopyroxenes from the highly porphyritic lavas (e.g. the Behram Andesite) 
yield pressure estimates in the range of 3.0-4.5kbar while the clinopyroxene pressure 
estimates from the Kovacli Dyke Swarms give a range of 4.0 to 7.0kbar. 

5.2.2.2. Al-in-hornblende geobarometer 

An empirical formulation of the Al-in-homblende barometer was first produced 

by Hammarstrom and Zen (1986). This barometer is mainly based on pressures 

determined in adjacent aureole rocks. Subsequently, Hollister at al. (1987) calibrated the 

Al-in-homblende barometer with a larger dataset to improve the method. Johnson and 

Rutherford (1989) and Thomas and Eamst (1990) have attempted to calibrate the 

barometer experimentally for the assemblage of quartz + alkali feldspar + plagioclase + 

hornblende + biotite + Fe-Ti oxides + titanite + melt + fluid. More recently, Schmidt 

(1992) used an experimental calibration conducted at near H2O saturated solidus 

temperatures to produce a barometer. 

Al l the proposed Al-in-homblende barometers mentioned above use the linear 

increase in Al'°' content of magmatic hornblende with pressure and are given by 

following equations. 

P(± Skbar) = -3.92 + 5.03Af'" P = 0.80 (Hammarstrome and Zen, 1986) 

P(± Ikbar) = -4.76 + 5.64AI"" / = 0.97 (Hollister et al. 1987) 

P(± O.Skbar) = -3.46 + 4.23Ar = 0.99 (Johnson and Rutherford, 1989) 

P(±0.6kbar) = -3.01 -\- 4.76AI'"' / = 0.99 (Schmidt, 1992) 

The electron microprobe data of amphibole phenocrysts from the Early-Middle 

Miocene intermediate rocks are used to estimate crystallisation pressures by applying 

the Schmidt (1992) Al-in-homblende barometer. The results are illustrated in Figure 

5.21 and Table 5.1. Amphibole phenocrysts of the samples from most of the highly 

porphyritic lavas of the DAB area (the Ballica volcanic Unit, the Akcapinar volcanic 

Unit and the Mt.Seyret volcanic Unit) generally yield similar pressure between 3.2 and 
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4.0kbar. On the other hand, amphiboles of the Karagol volcanic Unit and the Kalarga 
Andesite from the same area yield two different pressure estimates: one ranges between 
2.1 and 3.8kbar (edenites) and the other ranges between 6.0 and 8.6kbar (pargasites-
ferroan pargasites). This may be explained by more than one phase of amphibole 
crystallisation in magma chambers at different depths. The pressure estimates for the 
edenites from the Kalarga Andesite are between 3.0 and 3.8, which lies within the range 
of the pressure estimates obtained from the same samples using the pyroxene 
geobarometer (3.0 - 5.5kbar). Amphiboles from the Early Miocene, Bademli volcanic 
Unit of the EGA area also yield two different pressure estimates, namely 3.2 to 3.4kbar 
and 6.5 to 9.Ikbar respectively. Pargasitic (or ferroan pargasitic) amphibole xenocrysts 
from the Middle Miocene, Egrigol Andesite of the DAB area also yield high pressures 
of7.2-8.1kbar. 
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Figure 5.21. Pressures estimated using Al-in-homblende barometer of Schmidt, 1992. 

5.3. Chapter 5 Summary 

Phenocryst phases (pyroxene and plagioclase) from most of the Early-Middle 

Miocene rocks show complex (normal and reverse) compositional zoning which may 

indicate a strong influence of mixing or cmstal assimilation processes in their genesis. 

The existence of hydrous mineral phases (e.g. phlogopite) and high /O2 for the 

basic rocks of the Middle Miocene age may imply crystallisation from melts with high-

H2O contents. 

A number of geothermometers, including two-pyroxene thermometer (Lindsley, 

1983), amphibole-plagioclase thermometer (Holland and Blundy, 1994) and Fe-Ti oxide 
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thermometer (Lindsley et al., 1990) have been used to estimate the temperatures of 
crystallisation of the Western Anatolian volcanic rocks. Within the Early Miocene 
volcanic rocks, the highest temperatures of crystallisation have been obtained from the 
rocks of the Kovacli Dyke Swarms from the EGA area (850-1170°C) using the two-
pyroxene and Fe-Ti oxide geothermometers. For the porphyritic lavas from the same 
area, the two-pyroxene geothermometry gave temperatures of crystallisation ranging 
between 750 and 980°C, but mostly >900°C. The temperatures of the porphyritic lavas 
from the DAB area have been estimated using the amphibole-plagioclase thermometer. 
The temperatures range between 790 and 970°C, but they are mostly <900°C. 

For the Middle Miocene suites, the two-pyroxene and Fe-Ti oxide thermometers 

have been applied to estimate the temperatures of crystallisation for the intermediate and 

the basic rocks respectively. The temperatures range between 1000 and 1120°C and 

between 830 and 1040°C for the intermediate and basic rocks respectively. The 

temperature estimates obtained from the Middle Miocene rocks are generally higher 

than those obtained from the Early Miocene rocks. 

For the Late Miocene, basic alkaline lavas the temperatures of crystallisation 

have been estimated using the Fe-Ti oxide geothermometer. They range between 870 

and 1150°C, but are mostly >1050°C. 

The pressures of crystallisation for the volcanic rocks have been estimated using 

the clinopyroxene geobarometer (Nimis, 1995) and the Al-in-homblende barometer 

(Schmidt, 1992). For the Early Miocene rocks from both the EGA and the DAB areas, 

two distinct ranges of pressure have been obtained: one range between 2.1 and 4.0kbar 

and the other range between 6.0 and 9.1 kbar. The significant difference between the two 

ranges has been attributed to more than one phase of crystallisation at different depths. 

The pressure estimates for the Middle Miocene rocks are between 5 and 1 Ikbar, 

but are mostly >7kbar. 

For the Late Miocene alkaline rocks, the lack of hydrous mineral phases and Fe-

Ti oxide equilibria indicate that the /O2 was low and the magma was probably dry. 
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CHAPTER SIX 

I S O T O P E S Y S T E M A T I C S A N D P E T R O G E N E S I S 

Introduction 

This Chapter is divided into two parts. The first part presents the Sr-Nd isotope 

characteristics of the volcanic rocks from Western Anatolia. The second part uses 

combinations of the major-trace element and isotopic data to describe the petrogenesis 

of the rocks and to establish a model for the genesis of the volcanic rocks. The 

petrogenetic modelling presented here is mainly based on the framework of assimilation 

and fractional crystallisation and melt modelling. 

The isotope data used in this chapter were obtained on 9 whole-rock samples 

using the VG 354 5-collector thermal ionisation mass spectrometer of the London 

University radiogenic isotope facility at Royal Holloway College. The samples are 

representative of composition and age. Details of the sample preparation methods and 

analytical procedures are given in Appendix A. 

6.1. Nd-Sr isotope characteristics of the volcanic rocks 

The Nd and Sr isotopic ratios for the chosen samples are reported in Table 6.1. 

Notably, all the analysed calc-alkaline and shoshonitic rocks of the Early Miocene 

volcanic suites of the EGA area, and the Early-Middle Miocene volcanic suites from the 

DAB area, give a range of high ^''Sr/^Sr ratios (0.707517 - 0.708681) and low 

^^^Nd/"^Nd ratios (0.512318 - 0.512460) {Zm = -3.64 to -6.50). In contrast, the Late 

Miocene alkaline lavas of the EGA area are characterised by low ^̂ Sr/̂ ^Sr ratios 

(0.703108 - 0.703253) and high '^^Nd/"*Vd ratios (0.512929 - 0.512978) (£Nd = +5.49 

to +6.51). 

Ercan et al. (1984) and Giile? (1991) also obtained isotope data from the 

volcanic rocks of Western Anatolia. Some of their samples were the Early-Middle 

Miocene, calc-alkaline and shoshonitic volcanic rocks collected from one part of the 

area studied in this thesis (the Dikili-Ayvalik-Bergama area) and the isotopes analysed 

are mainly Sr (Ercan etal., 1984) and Sr-Nd (Giile?, 1991). The data are reported in 
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Chapter 6: Isotope systematics and petrogenesis 

Table 6.2 for comparison. The published data from the Quaternary, mafic alkaline lavas 
of the Kula area are also listed in Table 6.2. Although the Kula area is SE of the area 
studied (see Chapter 2 for details) and the Kula volcanism is not the subject of this 
thesis, they are comparable with the Late Miocene mafic alkaline lavas of the EGA area. 
This is because there is a close similarity between the mafic volcanic rocks of Kula and 
those of the Late Miocene mafic alkaline suite of the EGA area in terms of major and 
trace element compositions (Innocenti et al., 1982; Ercan et al., 1984; Gule9, 1991; 
Richardson-Bunbury, 1992). 
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Figure 6.1. The Nd-Sr isotope covariation shows that the Late Miocene alkaline rocks of Ayvacik and 
Tastepe Volcanics, together with the Quaternary alkaline rocks of Kula (Western Anatolia) plot in the 
mantle array, extending from MORB-OIB (HIMU)-like compositions towards Bulk Earth. The Early-
Middle Miocene calc-alkaline and shoshonitic rocks plot in the enriched quadrant. MORB and HIMU 
compositions are from Zindler and Hart (1986), BSE (Bulk Silicate Earth) and enriched mantle 
compositions (El and E2) are from Hart et al. (1992). The Aegean basement rocks are from Briqueu et 
al. (1986). 

In Figure 6.1, the isotope data from Table 6.1, together with the published data 

from the volcanic rocks of the DAB area and the alkaline lavas of Kula, have been 

plotted on diagram of eNd against (^^Sr/^Sr)j (Sr initial ratio). Also plotted for 

comparison are the MORB and HIMU fields (Zindler and Hart, 1986), Bulk Silicate 

Earth, enriched mantle end-members (EMI and EM2) (Hart et al., 1992) and 

metamorphic basement rocks from the Aegean area (Briqueu et al., 1986). Volcanic 

rocks from Western Anatolia as a whole show a curvilinear trend on a ENd versus 
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(^^Sr/̂ ^Sr), diagram. The Late Miocene alkaline lavas of the EGA area (the Ayvacik and 
Tastepe Volcanics in Table 6.1) and the Quaternary lavas of the Kula area plot within 
the mantle array and extend from MORB-like compositions towards Bulk Earth. The 
Early Miocene volcanic rocks from the EGA area (the Behram Andesite and the Kovacli 
Dyke Swarms in Table 6.1) and the Early-Middle Miocene volcanic rocks from the 
DAB area (the Foca Dyke Swarms, the Nebiler Volcanics, the Egrigol Andesite, the 
Odaburnu Dyke Swarms and the Akcapinar Unit in Table 6.1), together with the 
published data from the same area, are, however, displaced from the mantle array with 
higher ^̂ Sr/̂ ^Sr initial ratios and lower eNd values. All samples in this group are 
displaced into the enriched quadrant relative to Bulk Earth and show a linear trend 
extending towards the compositions of the metamorphic basement rocks (Briqueu et al., 
1987). Samples from the Early Miocene volcanic suites of the EGA and DAB areas 
may, however, be distinguished by their slightly lower ENCI values with respect to the 
Middle Miocene volcanic rocks of the DAB area at given ^̂ Sr/̂ ^Sr ratios. 

87 86 

In Figure 6.2, the initial Sri Sr ratios have been plotted against the Si02 and 

the Rb contents of the volcanic rocks respectively to carry out a preliminary evaluation 

into the role of assimilation and fractional crystallisation (AFC) processes in their 

magma genesis. Both diagrams show two distinct trends. The Late Miocene mafic 

alkaline rocks of the EGA area together with the Quaternary alkaline rocks of Kula 

show fairly constant ^^Sr/^Sr initial ratios with an increase in Si02 content from 41.81 

to 49.97 wt.% and an increase in Rb content from 17.8 to 80.0 ppm. This can be 

explained either by a variable degree of partial melting and/or by a variable fractional 

crystallisation of an isotopically homogeneous source. In both cases, however, 

contamination from continental crust can be ruled out for these mafic alkaline rocks. 

The calc-alkaline and shoshonitic rocks of the Early Miocene suites from the 

EGA area and of the Early-Middle Miocene suites from the DAB area are, however, 

characterised by high and slightly variable ^̂ Sr/̂ ^Sr initial ratios. Figure 6.2 shows that 

the most primitive sample (49.82 wt.% S'lOi) of these Early-Middle Miocene rocks has 

a ^̂ Sr/̂ ^Sr initial ratio as high as 0.707517 indicating derivation from a source that had 

been modified by earlier additions of material having high Rb/Sr and/or Sr isotope ratio, 

most probably a subduction-modified mantle source. The rocks from all the Early-

Middle Miocene suites follow a low angle, linear trend in which Sr/ Sr ratios only 

increase slightly (from 0.7075 to 0.7091) for a significant increase in SiOi (from 49.82 
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Figure 6.2. Plots ofSr initial isotope ratios against (a) silica and(b) Rb contents highlighting sub-
duction metasomatism and assimilation-fractional crystallisation (AFC) processes for the volcanic 
rocks from Western Anatolia. 
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to 75.08 Wt.%) and in Rb (from 63.2 to 262.1 ppm) contents. These increases indicate 
that the line between the most basic and the most acidic members of these volcanic 
rocks represents an AFC trend. Extrapolation of this trend to low Si02 gives a mantle 
with extremely high ^^Sr/^Sr initial ratio. Extrapolation to high Si02 gives a possible 
contaminant end-member. Note that the flat trend results because the mantle and the 
crustal end-members have similar and high ^̂ Sr/̂ ^Sr initial ratios. Plots in Figure 6.2 
may also suggest that all the calc-alkaline and shoshonitic rocks were generated from 
similar sources and that the compositional differences between the Early- and Middle-
Miocene rocks (from both the EGA and DAB areas) are mainly controlled by AFC 
processes. 

In accordance with the behaviour of trace elements, as previously described in 

Chapter 3, isotopic ratios of the volcanic rocks from Western Anatolia also support the 

hypothesis that the alkaline and calc-alkaline/shoshonitic volcanic rocks are unlikely to 

have generated from a single source. Two different sources can therefore be considered 

for the Western Anatolian volcanic rocks: (1) a subduction modified, radiogenic mantle 

source characterised by high ^^Sr/^Sr but low '̂ ^Nd/"*^Nd ratios (for the Early - Middle 

Miocene, calc-alkaline and shoshonitic volcanic rocks); and (2) an isotopically 

homogeneous and possibly OIB-type mantle source characterised by low ^^Sr/^Sr but 

high ''̂ •̂ Nd/'̂ '̂̂ Nd ratios (for the Late Miocene (and Quaternary) alkaline volcanic rocks). 

6.2. Petrogenesis of The Volcanic Rocks 

This section aims to identify the petrogenetic processes that produced the 

magma(s) and affected the primary magma compositions. The preliminary observations 

obtained from the major-trace element and isotopic characteristics of the volcanic rocks 

from Western Anatolia have shown that the petrogenetic processes (e.g. the source 

region characteristics and assimilation-fractional crystallisation) which produced the 

Early-Middle Miocene calc-alkaline-shoshonitic volcanic rocks differ from those which 

affected the nature of the Late Miocene alkaline volcanic rocks. The petrogenesis of 

these rocks will therefore be investigated in two separate parts. 

6.2.1 Petrogenesis of The Calc-alkaline and Shoshonitic Volcanic Rocks 

(Early-Middle Miocene) 
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6.2.1.1 Crystallisation history of the volcanic rocks 

The observed mineral phases in the volcanic rocks represent the fractionating 

mineral assemblages: (1) plagioclase, clinopyroxene, orthopyroxene, olivine, Ti-

magnetite and biotite with minor ilmenite for the Early Miocene rocks from the EGA 

area; (2) plagioclase, clinopyroxene, amphibole, Ti-magnetite and biotite for the Early 

Miocene rocks from the DAB area; and (3) clinopyroxene, olivine, plagioclase, Ti-

magnetite and ilmenite for the Middle Miocene rocks. 

Quantitative modelling of fractional crystallisation has been carried out to 

evaluate the variations in trace element concentrations. Theoretical fractionation trends 

for the crystallisation of a particular mineral or relevant mineral assemblages from the 

magma are drawn and compared with observed trends. The Rayleigh equation used to 

calculate the theoretical fractionation vectors is: 

Cl/Co = I^'^'" where 

d: weight concentration of a trace element in the liquid 
Co-' the weight concentration of a trace element in the parental liquid 
F: the fraction of melt remaining 
D: bulk distribution coefficient of the fractionation assemblage during crystal 
fractionation. 

The mineral/melt partition coefficients of trace elements used here for the 

modelling (e.g. olivine, clinopyroxene, plagioclase, hornblende, biotite, orthopyroxene 

and garnet in basic-intermediate-acid compositions) have been taken from a compilation 

of Keskin (1994; unpublished Ph.D. Thesis) (Table 6.3). 

For fractional crystallisation modelling, Th and Rb are used as fractionation 

indexes because they are highly incompatible, resulting in a good positive correlations 

with silica contents for all rocks except the crystal-free ignimbrites from the EGA area 

for which Rb contents decrease and Th contents stay mostly constant with increasing 

silica (Section 3.2.1). In Figure 6.3, Y concentrations are plotted against Th, together 

with calculated fractionation vectors to examine possible crystallisation phases for the 

calc-alkaline and shoshonitic volcanic rocks. The data were plotted as three different 

series. These are: (1) the Early Miocene rocks from the EGA area (note that the rocks 

from the porphyritic lavas and the Kovacli Dyke Swarms do not exhibit discrete patterns 

and therefore were plotted together; and that the crystal-free ignimbrites are excluded 

for the reason mentioned above); (2) the Early Miocene rocks from the DAB area; and 
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Figure 6.3. Y against Th log-log diagram showing theoretical Rayleigh fractionation vectors modelled for 
crystallisation of individual mineral phases and also phase assemblages. Phase combinations ar e presen­
ted in the inset. Thick marks on each vector correspond to 5% crystallisation intervals. 
Key to abbreviations: am: amphibole, ol: olivine, cpx: clinopyroxene, opx: orthopyroxene, pi: plagioclase, 
bi: biotite, gt: garnet, b: basic, i: intermediate, a: acid. 
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(3) the Middle Miocene rocks from the DAB area. The rocks from the DAB area were 
plotted in two different diagrams in order to avoid overlap between the data points of 
the Early and Middle Miocene rocks, but the rocks from the EGA area were plotted in 
both diagrams for comparison. 

It can be seen that the data points generally follow two distinct trends. The Y 

content of the Early Miocene volcanic rocks from the EGA area exhibit a good positive 

correlation with Th content which can be explained by plagioclase, orthopyroxene, 

clinopyroxene and olivine crystallisation according to the theoretical Rayleigh vectors. 

The theoretical vector calculated using the average mineral assemblage of the Early 

Miocene volcanic rocks of the EGA area (plg[45%] + opX[25%] -i- cpx[25%] + olv[5%]) 

(shown as vector 1 in Fig. 6.3) is also consistent with the observed fractionation trend. 

In accordance with observed phenocryst assemblages, fractional crystallisation 

modelling also indicates an amphibole-free fractionation for the volcanic rocks from the 

EGA area. However, this does not completely rule out early amphibole crystallisation, 

as amphibole phenocrysts might have been resorbed. Supporting this is the existence of 

a minor amount of resorbed amphibole phenocrysts in some of the rocks in this area. 

The Y contents of the Middle Miocene basic-intermediate rocks from the DAB 

area, on the other hand, slightly decrease or stay constant with increasing Th contents 

(Fig. 6.3a). As mentioned in Chapter 4, the observed phenocryst assemblage for these 

rocks is predominantly clinopyroxene, olivine and plagioclase. However, the theoretical 

vector calculated using the average mineral assemblage of these rocks (cpX[6o%] + 

plg[i5%] + olV[25%]) (shown as vector 2 in Fig. 6.3) is not consistent with the observed 

fractionation trend. This results because, even domination of clinopyroxene (a mineral 

with the highest distribution coefficient for Y ("""""''KdY = 0.55) after garnet (̂ '""''KdY -

2.0) and amphibole (̂ '"•'"'"'KdY = 1.1) at basic compositions) cannot create a negative 

trend between Y and Th. An Y retaining phase is therefore needed to explain the 

fractionation history of these rocks. Although garnet fractionation could explain Y 

depletion, there is no petrographic evidence for garnet fractionation in any of the 

volcanic rocks from Western Anatolia. Thus, amphibole fractionation is the most likely 

Y-retaining phase for the Middle Miocene basic-intermediate rocks. Although most of 

the rocks of Middle Miocene age do not contain amphibole phenocrysts or 

microphenocrysts (which occur in the Egrigol Andesite only), earlier amphibole 

fractionation is evident from the significant amount of amphibole in the phenocryst 
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phases of the Early Miocene volcanic rocks from the same (DAB) area. The Early 
Miocene volcanic rocks from the DAB area themselves, however, show no clear trend 
on an Y versus Th log-log diagram. This may be explained by their highly porphyritic 
nature and variable content of amphibole phenocrysts (Fig. 6.3b). However, most of 
them still have lower Y concentrations relative to the rocks from the EGA area. 

Similar fractional crystallisation modelling has been carried out for the middle 

rare earth element (MREE) of Sm which is an effective indicator of amphibole 

fractionation (Fig 6.4). Since Sm has high distribution coefficients for amphibole C""^' 

'"'Kdsm ~ 0.85-6.0), its concentration in the melt is strongly controlled by amphibole 

fractionation. The trends are consistent with the earlier modelling (Y v Th) and support 

the hypothesis that the contrast in trace element behaviour between the volcanic rocks 

from the EGA and DAB areas reflects two different fractionation assemblages. 

100 
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Figure 6.4. Log-Log diagram of Sm against Rb showing the contrast in REE behavior between the 
volcanic rocks from the EGA and DAB areas. 

As previously mentioned, the Rb content of most crystal-free ignimbrites, unlike 

that of the other volcanic rocks, decreases with increasing silica. In order to evaluate the 

extent to which fractionation phase or phases control trace element distribution, Sr was 

plotted against Rb on the log-log variation diagram on which theoretical Rayleigh 

fractionation vectors were modelled for the removal of individual minerals (Fig. 6.5). It 

can be seen that the both Sr and Rb concentrations decrease with fractionation 
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(monitored by the silica contents of the rocks), which should imply plagioclase- and 
biotite-dominated fractional crystallisation for these high-silica pyroclastic rocks. The 
rocks themselves are mostly crystal-free and show no indication of which crystal 
assemblages were effective in their genesis. However most of the ignimbrites, which are 
cogenetic with the crystal-free ignimbrites, have variable proportions of plagioclase, K-
feldspar and biotite phenocrysts that can account for the observed fractionation trend in 
Figure 6.5. The trend on Figure 6.5 also emphasises that the fractional crystallisation 
was more effective than crustal assimilation in the genesis of the ignimbrites. This is 
equally evident from the negative correlation between the Rb (and Th) and the silica 
contents. 
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Figure 6.5. Log-Log diagram of Sr against Rb highlights the possible fractionation trend of the crystal-
free ignimbrites from the EGA area. 

Figure 6.6 shows that most calc-alkaline and shoshonitic volcanic rocks of the 

Early-Middle Miocene age, as mentioned in Section 3.2.2, have Eu/Eu* ratios less than 

1.0 (ranging between 0.97-0.56). The presence of negative Eu anomalies should 

generally result from plagioclase fractionation. This is because Eu (present in the 

divalent state) is compatible in plagioclase (particularly in acid and intermediate 

compositions; '''̂ "'"'KdEu = 1.0-6.5), in contrast to the trivalent REE which are 

incompatible. Alternatively, mixing of mafic magmas with components formed by 
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crustal melting with a plagioclase-rich residue can create a negative Eu anomaly. For the 
calc-alkaline and shoshonitic rocks of Western Anatolia, these alternatives are 
illustrated in Figure 6.6 where Eu anomalies were plotted against silica contents. Figure 
6.6 shows that the Eu anomalies for most of the calc-alkaline and shoshonitic rocks are 
related to increasing silica content. The theoretically-calculated, plagioclase 
fractionation-dominated AFC line and the bulk mixing line between the most mafic 
rock (with 49.82 wt.% Si02) and the most acidic rock (with 79.9 wt.% Si02) follow 
similar trends and do not provide a definitive answer to whether they reflect plagioclase 
fractionation or crustal contamination. However, taking into account the fact that most 
of the rocks contain substantial amount of plagioclase phenocrysts, it can be argued that 
the Eu anomalies are mostly reflections of plagioclase fractionation, although crustal 
contamination may contribute. The observed negative correlation between the Eu 
anomalies and the silica contents of the ignimbrites also reveals a greater fractional 
crystallisation effect than contamination. 
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Figure 6.6. Plot of Eu/Eu* (Eu anomalies) against silica showing the possible effects of plagioclase 
fractionation or contamination from plagioclase fractionated crustal material. The mixing line is for 
simple mixing between the most basic and the most acidic rocks. Numbers on the line are percentage of 
the most basic member in the modelled mixture. AFC line is representative for r = 0.3 and is drawn for a 
mineral assemblage ofplg(60) + cpx(20) + amp(lO) + opx(lO). 

6.2.1.2 Assimilation combined with fractional crystallisation (AFC) 

6.2.1.2.1 Evidence for assimilation and/or mixing: Overview 
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Petrographic and mineral chemical data provide the most compelling evidence 
that assimilation and/or mixing has taken place. In particular, the complex zoning 
patterns shown by the pyroxene and plagioclase phenocrysts in most rocks are difficult 
to reconcile with a simple, isobaric, fractional crystallisation. Furthermore, as 
mentioned in Section 6.1, the positive, curvilinear, correlation between Sr isotopic ratios 
and silica contents (Fig. 6.2) emphasises that crustal contamination was one of the most 
important processes in the magmatic evolution of the Western Anatolian volcanic rocks. 

Crustal contamination can be modelled comparing observed trends or values of 

the data points and theoretical AFC curves on trace element and/or isotope ratio graphs. 

This type of modelling shows the amount of change that would take place when the end-

members of known (or, in some cases, estimated) compositions are mixed during 

assimilation and fractional crystallisation. 

Simultaneous assimilation and fractional crystallisation (AFC) has been 

modelled by numerous of workers (O'Hara, 1977; Allegre and Minster, 1978; Langmuir 

et al., 1978; DePaolo and Wasserburg, 1979; Taylor, 1980; DePaolo, 1981; Taylor and 

Sheppard, 1986; Aitcheson and Forrest, 1994; Roberts and Clemens, 1995). One of the 

most popular and widely employed equations is that of DePaolo (1981). His equations 

used here for AFC modelling are summarised below: 

CJCmo = F^' + [r/(r-l)] [Ca/zCno] [1-F'J (not applicable for r = 1) 

Cn/Cmo = 1 + [r/(r-l)] [Ca/Cmo] InF^ (for the case of r+D = 1 and z = 0) 

[Em - Emo] / [ Ea - Emo] = 1 - (Cmo / C n i ) F ^ (for the isotopc ratios) 

where 

F = MrJMmo (the ratio of magma mass to original magma mass) 
r = Ma/Mc (the ratio of the rate of assimilation to fractional crystallisation) 
Z = [r+D-l]/[r-l] 
Mm = mass of magma 
Mmo = initial mass of magma 
Mc = crystallisation rate (mass/unit time) 
Ma = assimilation rate (mass/unit time) 
Ca = elemental concentration in wall-rock 
Cm = elemental concentration in magma 
Cmo = original elemental concentration in magma 
D = bulk solid/liquid partition coefficient for the element. 
Em = isotope ratio in the magma 
Emo = initial isotope ratio in the magma 
Ea = isotope ratio in the wall-rock. 
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6.2.1.2.2 Estimation of the end-member compositions and bulk partition 
coefficients 

Estimation of the compositions of possible crustal contaminants and source 

components for the Western Anatolian volcanic rocks is difficult because of the lack of 

geochemical data on both the crustal and mantle rocks. The composition of the 

continental crust in the area has not yet been studied in detail, and therefore information 

about trace element compositions and isotopic ratios of the crustal rocks is very limited. 

Some workers (e.g. Giilen et al. 1987; Gulen, 1990) argue that the Miocene granitoids 

within the metamorphic Massifs of the Aegean domain (e.g. the Attic-Cycladic and the 

Menderes Massifs) are crustal derivatives, and hence represent the Aegean crust. Altherr 

et al. (1988) performed Sr and O (oxygen) isotope analyses on the metaluminous to 

peraluminous (I-type), Miocene granitoids (granodiorite, monzodiorite, qz-monzonite) 

of the Attic-Cycladic metamorphic Massif which is located to the south of the area 

studied. Their conclusion is that the granitoids in this area are mostly mantle-derived 

and have been affected by crustal contamination to some extent. However, no 

quantitative information is given to define the amount of contamination and possible 

source characteristics. Thus, it is difficult to estimate the crustal end-member 

composition using the granitoid data from the Aegean area. 

The only published Nd-Sr isotope work on the metamorphic basement rocks in 

the Aegean area was carried out by Briqueu et al. (1986). They analysed a variety of 

metamorphic rocks (marble, schist, metavolcanics and glaucophane schist) from the 

basement of the Santorini and Milos islands of the Aegean. Although these islands are 

located some distance to the SW of the area studied, it has been shown by numerous 

authors that the basement lithologies in Western Anatolia (e.g. the Menderes Massif) 

show a great similarity to those of the Aegean islands (Attic-Cycladic Massif). In fact, 

some workers (e.g. Diirr et al. 1978) argue that the Menderes Massif is the eastern 

continuation of the Attic-Cycladic Massif. Thus, the isotope analyses reported by 

Briqueu et al. (1986) can be regarded as representative contaminant for the Western 

Anatolian volcanic rocks. 

Similarly, the inference of the mantle source end-member composition is very 

difficult because there are no mantle xenoliths found in the volcanic rocks in Western 

Anatolia. Thus, the composition of the source material from which the magma was 

generated remains unknown. However, the composition of the most primitive (the least 

isotopically enriched and most basic) sample can be regarded as the source component, 
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as it is the least affected by crustal contamination. The most basic rock of Middle 
Miocene age is selected as the starting composition for all calc-alkaline and shoshonitic 
rocks for the following reasons. 

(1) The basic rocks of Early Miocene age (with -55 Si02 wt%) are unlikely to 

represent the source composition, because they have already been affected significantly 

by crustal contamination (evident from petrographic and chemical characteristics). 

(2) It is evident from the isotope and trace element data that all calc-alkaline and 

shoshonitic rocks (from both the EGA and DAB area) were generated from similar 

sources. 

(3) Compositionally, the Early-Middle Miocene rocks form a continuous trend 

and none of the samples indicates any evidence of source variations. 

The bulk partition coefficients (D) used for AFC modelling were calculated 

using the same mineral/melt partition coefficient (Kd) (Keskin, 1994) values in the 

earlier fractional crystallisation modelling. AFC curves were calculated for two different 

cases. In the first case, the bulk partition coefficients for the selected elements are 

calculated for fractionating assemblage of plg[45%] + opX[25%] + cpx[25%] -i- olV[5%] 

(amphibole-free assemblage), which is the average phenocryst assemblage of the 

volcanic rocks from the EGA area. In the second case, the bulk distribution coefficients 

are calculated for a fractionating assemblage of plg[35%] + cpx[35%] + amp[2o%] + olv[io%], 

which is the average phenocryst assemblage of the volcanic rocks from the DAB area. 

6.2.1.2.3 AFC plots 

Figure 6.7 displays the diagram of Th/U ratio plotted against Th for the calc-

alkaline and shoshonitic volcanic rocks from Western Anatolia. Theoretical curves have 

been superimposed on these diagrams and show how the most primitive end-member 

would evolve by AFC for different values of r, the ratio of the rate of assimilation to 

fractional crystallisation and F, the ratio of the final mass of magma to the initial mass 

of magma. Values of F have been marked onto each curve at 5% intervals. Th/U ratio 

has been chosen for this plot because these elements are highly incompatible and are 

little affected by either the amphibole-bearing or amphibole-free fractionation 

assemblages observed in the rocks. It should be noted that the precise values of r are not 

very meaningful because of potential variations in end-member compositions and in 

bulk partition coefficient (D) of elements during the course of fractional crystallisation. 
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However, the values of r can still highlight the relative effects of AFC between the 
rocks with respect to each other and with respect to the most primitive composition. 

r5 = 0.4 

rl=0 
Composition Component A : 
Th = 19.4ppm (average Aegean basement) 
U = 1.25ppm (Taylor's [1977] andesitic model bulk crust) 
D(Th) = 0.01 
D(U) = 0.10 
Composition Component B (EA399) : 
Th = 10.1 ppm 
£/= 2.65 ppm 

• Middle Miocene (DAB) 

^ Early Miocene (DAB) 

• Early Miocene (EGA) 

10 
Thppm 

100 

Figure 6.7. Modeling of the AFC process based on the equations of DePaolo (1981) and using the 
assmmilation -sensitive ratio the Th/U for the calc-alkaline and shoshonitic rocks. 

The diagram shows that a number of samples from the Middle Miocene suite 

plot along the theoretical trend for r = 0, indicating no significant contamination from 

the crust. The constant Th/U ratio with increasing Th for these rocks can be explained 

by fractional crystallisation. The remaining samples from the same suite display a wide 

scatter and plot on AFC trends with values of r from 0.1 to 0.7, but mainly r <5. The 

samples from the Early Miocene DAB suite plot mostly in a restricted field with values 

of r from 0.2 to 0.3. The rocks from the EGA area, on the other hand, are generally 

characterised by slightly higher r values with respect to the rocks from the DAB area 

and plot mostly between r = 0.2 and r = 0.4, but they are mostly r <0.3. 

A comparable model has been constructed using the Nd-Sr isotope ratios and the 

combination of trace elements (Th, U and Rb) and Nd-Sr isotope ratios (Fig. 6.8; 6.9). 

In the first two diagrams (Fig. 6.8a-b) ('^^Nd/"*Vd v ^^Sr/̂ ^Sr), the AFC trajectories 

are drawn for two different cases of bulk partition coefficients (D) calculated for 

different mineral assemblages as previously mentioned. It can be seen that variation 

in crystallisation phases has only a slight effect on the placements of the AFC 

trajectories. The reason is that the bulk distribution coefficients for Sr and Nd are only 

slightly affected by whether the crystallising assemblage is amphibole-bearing or 
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Figure 6.8. Modelling of AFC processes using the Nd-Sr isotope ratios. AFC trajectories in Figure (a) 
and (b) were constructed for variable mineral assemblages (see text for details). Selected source and 
and contaminant end-member compositions represent the most primitive (the least isotopically enriched 
and most basic) sample and the Aegean basement (Briqueu et al., 1986) respectively (except for Nd 
which is taken from Goldstein et al., 1984). 
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Figure 6.9. AFC plots ofNd isotope ratios against (a) Th, (b) U and (c) Rb. 
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amphibole-free (pyroxene-dominated). The diagrams mainly highlight the difference 
between the Early and Middle Miocene volcanic rocks in terms of the degree of crustal 
contamination. The Early Miocene rocks form both the EGA and DAB areas plot mostly 
along the AFC trajectory drawn for r = 0.3. The Middle Miocene rocks, together with 
the published data from the same area and age, on the other hand, generally lie between 
the trajectories drawn for r = 0.1 and r = 0.2. The plots of "*^Nd/""Nd versus Th, U and 
Rb (Fig. 6.9a-c) are also consistent with the AFC modelling shown in Figure 6.8. Unlike 
the trace element plots of Th/U and Th/Rb ratios versus Th, isotope ratio plots do not 
show any difference in degree of contamination between the Early Miocene rocks from 
the EGA and DAB areas, although the isotope data are very limited. 

Recently, Cavazzini (1996) has produced an equation to quantify the degree of 

contamination (amount of material contaminated) in magmas evolving by assimilation 

and fractional crystallisation (AFC). He realised that, if a trace element in the original 

magma is characterised by an isotope ratio that is different from the contaminant, then a 

linear correlation exists between the degree of contamination of the element and the 

isotope ratios. He, therefore, used this relationship to propose a method for calculation 

of the degree of contamination. His equations are: 

Ci = 1 - (Cmo / Cni)F^ (for the trace element) 

£m = £mi, + Ci{£a - Emo) (for the isotopc ratio) 

where 

d is the degree of contamination; and the rest of the symbols are as listed 

previously (in Section 6.2.1.2.1). 

A quantitative calculation of the degree of contamination has been attempted 

here using the available Nd isotope ratios and concentrations. Nd has been chosen 

because it is generally incompatible and because the ''^^Nd/''^Nd ratios are generally not 

affected by alteration as Nd and Sm are generally immobile (Marsh, 1989). The results 

obtained from the calculations are listed in Table 6.4. It can be seen that the degree of 

contamination for the Western Anatolian volcanic rocks ranges between 9% and 20%. 

As in the previous AFC modelling, the volcanic rocks of the Middle Miocene age differ 

from those of the Early Miocene age with their lower degree of contamination (9% and 

12%, compared to 17% and 20%). However, it should be noted that these estimates 

assume that the selected end-member represents the source composition. 
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Table 6.4. Estimated degree o f crustal contamination for tlie calc-alkaline and shoshonitic rocks. 

Sample Locality and Rock Type Age SiOa Sm Nd ""Nd/ '«Nd Degree of 
unit name (Ma) (wt %) (ppm) (ppm) contamination (%) 

EA348 Foca (Foca Dyke) Basaltic And. -15 54.40 5.35 28.84 0.512395 ± 5 9.3 
EA314 Bergama (Egrigol And.) Tra.Andesite 15.5 60.32 4.51 24.31 0.512372 ± 5 12.0 
E A l O l Dilcili (Odabumu Dyke) Basaltic And. -16 56.32 7.24 42.81 0.512398 ± 4 9.4 
EA147 Ayvalik (Akcapinar Un.) Dacite 19.0 65.08 6.19 35.96 0.512318 ± 4 20.2 
EA418 Ayvacik (Kovacli Dyke) Basaltic And. 20.1 56.24 7.06 43.49 0.512336 ± 4 17.7 
EA37 Assos (Behram And.) Tra.Andesite 20.3 61.67 6.48 42.10 0.512324 ± 5 19.1 

6.2.1.3 Model for magma generation 

The volcanological and petrographic characteristics of the rocks show that water 

plays an important role in the genesis of the Western Anatolian calc-alkaline and 

shoshonitic series. These include common explosive magmatic products, the 

development of highly vesicular products (pumice flows etc.; see Chapter 2 for details), 

eruption of phenocryst-rich magmas with dramatic zoning of phenocrysts, and frequent 

crystallisation and preservation of hydrous mineral phases (even in basaltic 

compositions; Chapters 4 and 5). Fractional crystallisation modelling further shows that 

crystallisation of amphibole in the genesis of the calc-alkaline and shoshonitic rocks 

may be of particular importance. 

In recent years, a number of experimental studies have been carried out on 

basaltic and andesitic systems to define the possible role of amphibole crystallisation 

(with other mineral assemblages) on magma genesis in island arc and continental 

environments. The experimental studies of Gill (1981) and Green (1982) showed that 

amphibole is a liquid phase in basaltic to basaltic-andesitic magmas under near water-

saturated conditions (>10% H2O) under 8 to 25 kbar (between depths of 25 and 80 km). 

More recently, Foden and Green (1992) have conducted experiments in the high-Al 

basalt (with H2O) system in the melting range at pressures between 1 atm and 10 kbar to 

define the amphibole stability field and the composition of the liquids which coexist 

with amphibole. As a result, they proposed a phase diagram for the high-Al basalt 

system with 5% H2O illustrating the possible cooling paths and crystallisation products 

at different stages. 

The phase diagram of Foden and Green (1992) is presented in Figure 6.10, 

together with the cartoon of the proposed petrological modelling which displays the 

general framework of the plumbing system in thickened continental crust beneath 

Western Anatolia. The approximate depth of proposed magma chambers have been 
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estimated using the crystallisation pressures (from the clinopyroxene and Al-in-
hornblende barometers) previously calculated in Chapter 5 (see table 5.1) assuming the 
average density of crust to be approximately 2.7 g.cm" .̂ The present total crustal 
thickness, as mentioned in Chapter 1, approximates to 30-35 km in the coastal section 
of the Western Anatolia. This thickness does, in fact, follow a considerable amount of 
extension and lithospheric thinning and hence does not represent the actual thickness of 
the Early-Middle Miocene period. However, the total crustal thickness can still be 
estimated using the average strain rate (given as >2 x 10"'̂  s"' by Jackson, 1992) and the 
stretching factor (given as |3 = 1.2 - 1.5 by Paton, 1992) to have been around 45-52 km 
during the Early Miocene and 40-45km during the Middle Miocene. Note that these 
estimates assume that the regional extension in the area initiated in the latest Early 
Miocene or beginning of the Middle Miocene, which is evident from the field 
relationships of the volcanic rocks (e.g. the rocks of the Kalarga Andesite and the 
Egrigol Andesite formed at the time of the graben formation; see Chapter 2 for details). 

The crystallisation pressure calculations and petrographic characteristics showed 

that the volcanic rocks from the EGA area have a polybaric origin and are the composite 

products of more than one petrogenetic process. This is evident from the strong 

compositional variations in a single phenocryst, as well as the considerably variable 

crystallisation pressures. The rocks in this suite generally have large proportions of 

phenocrysts that crystallised at pressures between 3.0 and 7.0 kbar, corresponding to the 

crystallisation depth from 12 to 27 km. These are mainly plagioclase-, pyroxene- and 

magnetite-bearing assemblages. Amphibole xenocrysts in some of the rocks, on the 

other hand, yield higher pressures of between 6.4 and 9.1 kbar implying that the early 

crystallisation of the magma took place at depths of about 23 to 34 km. 

The composition of amphiboles that Foden and Green (1992) synthesised in 

their experiments is mainly pargasitic hornblende. They showed that plagioclase is the 

anhydrous liquidus phase between 1 atm and 10 kbar, but that in the hydrous 

environments its role is taken by olivine at <7 kbar and then by clinopyroxene at more 

elevated pressures. Amphibole (pargasitic hornblende) may crystallise in magmatic 

systems if the body of magma as a whole remains motionless over a period of time and 

the magma undergoes extensive convection and mixing (closed-system equilibrium 

crystallisation), or i f the wall-rocks with which the cooling, hydrous basaltic melts are in 

contact (in open magmatic systems) are composed of olivine and pyroxene as in the case 
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of upper mantle or lower crust (point C in Fig. 6.10). 

The xenocrysts found in the rocks from the EGA area are pargasitic (or ferroan 

pargasitic) hornblende that yield high-pressure crystallisation conditions. This may 

imply that the primary magmas initially ponded in deep crustal reservoirs (-35 km) 

where they underwent combined fractional crystallisation and crustal assimilation, or 

mixing with crustal melts. Processes that affected the primary magma compositions in 

deep crustal reservoirs, may be similar to the MASH (melting, assimilation, storage and 

homogenisation) hypothesis proposed by Hildreth and Moorbath (1988). However, the 

effects of MASH are difficult to distinguish from those of AFC as the characteristics of 

the magmas have been widely modified by later contamination events and hence it is 

difficult to asses the geochemical characteristics of the deep magma chambers. The 

early fractionation in deep magma chambers is likely to have performed the function of 

re-establishing buoyant ascent of magma to form higher level magma chambers having 

variable depths, sizes and fractionation assemblages. 

In the deep magma chambers, i f the liquid tapped and extracted from the 

crystalline matrix, the crystallisation phases will move back into the field of olivine and 

clinopyroxene (with or without plagioclase) as the adiabatic temperature gradient of 

magma becomes significantly less than the gradient of the amphibole-out reaction (point 

D in Fig. 6.10; Foden and Green, 1992). As a consequence, the early-formed pargasitic 

amphiboles break down as a result of decompressive, incongruent melting, eventually 

forming corona-textured xenoliths or being completely resorbed. The resultant 

crystalline assemblages are either pyroxene- or olivine-dominated (with plagioclase). 

The estimated pressures for the rocks of the Kovacli Dyke Swarms range from 4.0 to 6.0 

kbar at crystallisation temperatures of 900-1170 °C. This suggests that the pyroxenes 

(with plagioclase and minor olivine) crystallised at a depth of about 16-22km which 

corresponds to point D in Figure 6.10 (also shown as mid-crustal magma chambers). 

Petrographic observations indicate that the magmas in these chambers crystallised 

anhydrous phases such as plagioclase and pyroxene with minor olivine because 

amphibole was not equilibrium at these P-T conditions. 

The cooling paths that produce amphibole-free crystallisation assemblages 

would be either F2 or F3 (Fig. 6.10). The former suggests a continuous adiabatic 

decompression, an ascending magma, which at depth had been in equilibrium with 

amphibole, may simply erupt with an anhydrous pyroxene-feldspar assemblage as the 
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ascending path will nor cross the amphibole-out curve, and the later indicates a possible 
late-stage heating. Resorption of plagioclase crystals, as previously discussed in Chapter 
4, further indicates a late-stage heating which may be a consequence of either an 
entrainment of hotter mafic magmas by cooler felsic magmas during eruption of layered 
magma chamber, or the release of latent heat of crystallisation during enforced 
decompressive precipitation of plagioclase. In either case, the crystallising phases would 
be represented by pyroxene- and plagioclase-dominated and amphibole-free 
assemblages. 

The crystallisation pressure estimates obtained from the highly porphyritic rocks 

(and ignimbrites) mostly yield values of 2.5 to 5.5 kbar, indicating that they were 

derived from magma chambers located between 10-15 km depth. These magma 

chambers are shown as high-level silicic magma chambers in Figure 6.10, because their 

products are dominantly acid-intermediate rocks. The crystallisation assemblages in the 

high level chambers are generally plagioclase-dominated with pyroxenes, K-feldspar 

and biotite. Foden and Green (1992) argued that the magmas become normative 

plagioclase-enriched after fractionation of clinopyroxene and olivine at point D (Fig. 

6.10). Thus, the magma chambers near point D probably fed the high-level magma 

chambers as the magmas ascending to high-level silicic chambers should have 

crystallised clinopyroxene and olivine in the mid-crustal chambers. 

In the high-level chambers, further assimilation of crustal material becomes very 

limited which is probably due to the fact that the magmas do not have enough energy to 

assimilate the crust significantly (DePaolo, 1992). As a result, the most important 

evolutionary process becomes fractional crystallisation, which produces large volumes 

of acidic magmas with isotopic characteristics similar to those of the basic/intermediate 

rocks of the Kovacli Dyke Swarms. Fractional crystallisation modelling of the acid-

ignimbrites (discussed in Section 6.2.1.1) also provides a good evidence of more 

fractional crystallisation than crustal contamination in the high-level magma chambers. 

In the DAB area, the effects of amphibole fractionation have already been 

demonstrated from petrographic observations (Chapter 4) and trace element 

characteristics (Section 6.2.1.1). The pressure estimates obtained from the Al-in 

hornblende geobarometer yield two different ranges of crystallisation pressures for the 

acid-intermediate Early Miocene rocks of the DAB area. These are: (1) pressures 
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of 7-7.5 kbar which correspond to crystallisation depths of 23-28 km; and (2) pressures 
of 2.0-3.5 kbar which indicate crystallisation depths of about 10-15 km. The amphibole 
xenoliths (mostly pargasitic) found in the porphyritic andesites and dacites of the DAB 
area are compositionally identical to those found in the rocks from the EGA area. This 
indicates that the early crystallisation histories of the magmas from both areas are 
similar to one another. However, the existence of edenitic hornblendes (the products of 
the high-level magma chambers) in the rocks from the DAB area suggests a later 
crystallisation which is different from the crystallisation history of the rocks from the 
EGA area. The experiments of Foden and Green (1992) suggested that the cooling paths 
of ascending magmas shallower than point E may change to produce smaller P/T slopes 
than those of the amphibole-out curve which they eventually re-cross (path F l in Fig. 
6.10). In this case, the commonly observed hornblende of siliceous andesite and dacite 
is crystallised. The temperature estimates (obtained from the homblende-plagioclase 
thermometer) that range from 750-900 °C also indicate a low-temperature crystallisation 
for the acid-intermediate rocks from the DAB area which is consistent with the 
experimental result shown in Figure 6.10. 

Amphibole xenocrysts with pargasitic composition have also been observed in 

some of the Middle Miocene intermediate rocks from the DAB area (e.g. the Egrigol 

Andesite), indicating a similarly early fractionation history in the deep level magma 

chambers as the Early Miocene rocks. The pressure estimates, however, suggest that the 

Middle Miocene basic-intermediate rocks have not experienced high-level magma 

chamber fractionation as the crystallisation pressures for these rocks range between 5.3 

and 10.2 kbar, but mostly >7 kbar. Trace element and isotopic characteristics also 

indicate less contamination by crustal material and less fractionation for the Middle 

Miocene rocks relative to those of the Early Miocene age. This can be attributed to the 

extensional tectonics and progressive crustal thinning which lead to the rapid movement 

of the magmas with primary compositions through the thinned and fractured crust. 

Rapid ascent of the magmas during the Middle Miocene period is also evident from the 

aphyric or weakly porphyritic nature of the Middle Miocene rocks. 

6.2.1.4. Mantle melting in response to post-collisional tectonics 

In Figure 6.11, the P-T diagram constructed by Pearce et al. (1990) for the 

Eastern Anatolian collision zone also shows the conditions and possible mechanisms of 
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melting across Western Anatolia, assuming that the proposed thermal and structural 
parameters (e.g. thickness and thermal gradients) are representative of the Western 
Anatolian collision zone. The thicknesses of rigid, mechanical boundary layer (MBL) 
and the thermal boundary layer (TBL) were both assumed to be 150 km. The MBL is 
assumed to have a linear geotherm of gradient 9°C km"', and the asthenosphere 
adiabatic gradient of 6°C km ' with a potential temperature (Tp) of 1280°C (see Pearce 
et al., 1990 for details). 

temperature (°C) 

1000 Tp= 1280 1500 

phl+cait) 
gt peridotite 

convecting 
asthenosphere 

P-T diagram is taken from 
Pearce etal. (1990) 

saturated 
solidi 

Figure 6.11. P-T diagram showing conditions of melting in the thickened mantle lithosphere beneath 
Western Anatolia. MBL - Machanical Boundary Layer; TBL = Thermal Boundary Layer; G = 
continental geotherm; G p , „ = perturbed geotherm; Tp = potential mantle temperature; Mantle 
compositions on the geotherm: gt = garnet; am = amphibole; phi = phologopite; carb = carbonate. 
Shaded region = field of initiation of melting of volatile-rich compositions ranging from pure water 
(XH2O = I)to pure carbondioxide (XCO2 = 7). 

For the case of Western Anatolian Early-Middle Miocene volcanism, which has 

been shown to have generated from a subduction modified mantle source (Chapter 3 and 

Section 6.1.1), the possible mechanisms for magma generation are: 

(1) Melting of mantle lithosphere by adiabatic decompression resulting from 
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lithospheric extension or uplift. 

(2) Melting of mantle lithosphere by perturbation of the geotherm by heat from 

either a mantle plume or upwelling asthenospheric mantle. 

The validity of the first option depends largely upon the amount and the age of 

initiation of extension in the area. Theoretically, mantle lithosphere with a peridotitic 

composition is unlikely to produce melt under dry conditions because the dry solidus 

curve will not cross the geotherm of the thickened lithosphere (Fig. 6.11) unless a 

considerable amount of extension takes place (conditions of the dry mantle melting are 

discussed in section 6.2.2.6). However, taking into account that the source region from 

which the Early-Middle Miocene magmatism was generated is a metasomatised mantle, 

it can be argued that depression of the metasomatic part of the mantle below the 

amphibole stability field may cause release of water (Pearce et al., 1990). This can then 

lower the melting temperature and initiate melting of the metasomatised mantle layer. 

Recent studies (e.g. Gallagher and Hawkesworth, 1992; Leeman and Harry, 1993, 1995) 

also showed that volatile enrichment (H2O and CO2) in the mantle can lower the solidus 

temperature for peridotite compositions by 300-500 °C at pressures of 2-5 GPa. Thus, 

volatile-saturated compositions of the mantle lithosphere may be near to their melting 

temperature prior to the extension and hence, may start to melt after small degrees of 

stretching. It can, therefore, be argued that the metasomatic nature of the mantle 

lithosphere beneath Western Anatolia is consistent with the theory of the initiation of 

melting by lithospheric extension. 

Nevertheless, another important question is the timing of the onset of extension. 

As previously mentioned in Chapter 1, the oldest date for the onset of extension is that 

proposed by Seyitoglu and Scott (1992) and Seyitoglu et al. (1997). They argue that the 

N-S extension in Western Anatolia initiated in the Latest Oligocene-Early Miocene (24-

20 Ma). Thus, they relate the initiation of the Miocene magmatism to the N-S 

extensional tectonics in the area. In this study, however, the oldest volcanic rocks 

formed in association with the extensional basins were found in the DAB area. These 

are the rocks of the Kalarga Andesite (dated as 17.6-17.3 Ma by Borsi et al., 1972) and 

the Egrigol Andesite (dated as 15.5 Ma in this study). These dates are clearly much 

younger than the dates proposed by the above authors for the onset of the extension. 

Furthermore, the onset of the post-collision volcanism in Western Anatolia is much 

earlier than the Latest Oligocene-Early Miocene (see Chapter 1 for details). Thus, the 
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regional N-S extension, even if it starts in the Latest Oligocene-Early Miocene, cannot 
explain the initiation of melting in the source region. 

In collision zones in general, localised stretching due to the lateral stress release 

associated with a transtensional tectonic regime can be considered as an alternative 

mechanism to create the thermal perturbation of the mantle lithosphere. In the area 

studied, there is no clear evidence to indicate the existence of strike-slip structures (e.g. 

fracture zones or pull-apart basins) formed during or before the Early Miocene. 

Furthermore, no evidence has been found to indicate a possible link between the 

possible strike-slip movements and the volcanism (e.g. linear alignment of the volcanic 

centres). However, taking into account the fact that it is very difficult to recognise the 

pre-Miocene structures because they are mostly covered by young volcanic and 

sedimentary rocks and/or are complicated by the Miocene-Recent structures, the 

possibility of the thermal perturbation by localised stretching cannot categorically be 

ruled out. 

Melting of mantle lithosphere by perturbation of the geotherm by heat from a 

mantle plume is unlikely for Western Anatolia because there is no evidence for any 

elevated topography resulting from a domal uplift. Thus, a perturbation of the geotherm 

by heat from upwelling asthenospheric mantle would be the most likely mechanism for 

initiating melting in the mantle lithosphere. Although there is no geophysical data that 

can support the hypothesis, a possible analogy for this mechanism may be the model for 

the Eastern Anatolian collision zone proposed by Pearce et al. (1990). This model 

requires delamination of the thermal boundary layer (TBL) of the mantle lithosphere. 

The concept of lithospheric delamination was first proposed and discussed by 

Bird (1978, 1979), Bird and Baumgardner (1981) and Housmann et al. (1981). 

Subsequently, several geophysical and geological research undertaken on collision 

zones showed that the delamination was potentially an important mechanism in these 

zones (England and McKenzie, 1982; Vilotte et al., 1986; Nelson, 1992). Delamination 

of the TBL is generally attributed to either convective removal (Piatt and England, 

1993) or to separation of a slab from beneath the mechanical boundary layer (MBL) 

following lithospheric thickening. Since the TBL is defined as a weak and convectively 

unstable temporary part of the lithosphere (Anderson, 1994), it can be delaminated 

following lithospheric thickening and internal cooling which in turn causes the TBL to 

be replaced by relatively less dense asthenospheric mantle material. Delamination of the 

194 



Chapter 6: Isotope systematics and petrogenesis 

TBL may therefore cause the direct contact of hot asthenospheric mantle with the 
metasomatised part of the mantle lithosphere and initiate melting as the perturbation of 
the geotherm can bring a part of the metasomatised mantle lithosphere above its solidus 
(Fig. 6.11; 6.12). 

It has been argued that one of the major consequences of lithospheric 

delamination is rapid uplift and extensional collapse which would result isostatically 

from replacing relatively dense (cold) mantle lithosphere by less dense (hot) 

asthenospheric mantle (Dewey, 1988; England and Houseman, 1988; Nelson, 1992; 

Piatt and England, 1993). In the case of Western Anatolian collision zone, as discussed 

above, the lithospheric extension began no later than the latest Early Miocene (-17.6 

Ma). Although, as discussed in Chapter 1, the extension may have been assisted by the 

westward movement and counterclockwise rotation of the Anatolian plate (which 

initiated about 13 Ma ago) and/or the subduction beneath the Aegean and the Anatolian 

plates along the Hellenic trench (which initiated about 12 Ma ago), the prime cause for 

the early beginning of extension should be gravitational collapse and spreading of the 

thickened and unstable lithosphere. This is because the first two processes initiated later 

than the onset of the extension. Theoretically, during collision, body forces arising from 

elevated topography and the corresponding lithospheric root are dynamically balanced 

by the plate boundary forces driving the collision. When the latter are removed, the belt 

will tend to collapse under its own weight. However, for this to occur following 

collision and uplift depends largely upon the thermal profile of the lithosphere at that 

time. I f this thermal profile is hot enough the strength of the lithosphere would be too 

weak to resist collapse, and then geologically significant extension could occur on 

release of compression (Sonder and England, 1989; Sonder et al., 1987; Nelson, 1992). 

Conversely, i f the thermal profile is not hot enough the lithosphere cannot flow rapidly 

and destruction of the belt may take several tens of million of years (Nelson, 1992). 

Therefore, i f the delamination of the TBL is the cause of melting of the thickened 

lithosphere beneath Western Anatolia, it may be responsible, or perhaps the required, 

mechanism for the initiation of extension (Fig. 6.12). 
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6.2.2 Petrogenesis of The Alkaline Volcanic Rocks (Late Miocene) 

The following sections are aimed at addressing the melting and fractionation 

processes in order to (1) characterise the mineralogy and composition of the mantle 

source(s) of the alkaline basic volcanic rocks from Western Anatolia, and (2) define the 

degree of partial melting. The Western Anatolian alkaline rocks provide an excellent 

opportunity for using basalt data to define mantle source characteristics because the 

lavas erupted continuously during a short interval within a small geographic region. 

Moreover, most of the rocks in the alkaline suite fulf i l several criteria for primary 

magmas (liquids generated by partial melting of a mantle source without any significant 

subsequent compositional modification), particularly the high Ni-Cr concentrations in 

the least basic members (~ 50 wt.% Si02). It is already established that the mantle 

source of the Western Anatolian alkaline rocks was isotopically homogenous and has 

not been affected by subduction processes. It has also been shown that crustal 

contamination processes have not affected the alkaline magma. Thus, this section will 

focus on the melting processes to evaluate the source compositions of the alkaline basic 

rocks. However, it is essential to evaluate the possible roles of fractional crystallisation 

and remove any such effects from the primary basalt compositions before considering 

any qualitative or quantitative melt modelling. 

6.2.2.1 Fractional crystallisation 

Petrographic observations have shown that olivine, clinopyroxene and Fe-Ti 

oxides (titano-magnetite and ilmenite) are the main crystalhsation assemblages in all the 

alkaline rocks from the area studied. Although the effects of fractional crystallisation on 

primary magma compositions can be very difficult to distinguish from those of partial 

melting, the use of compatible-incompatible element plots may still be helpful. 

Fractionation of ferromagnesian minerals such as olivine and clinopyroxene would be 

expected to decrease the abundance of the compatible elements (e.g. Ni and Cr) and 

increase the abundance of the incompatible elements (e.g. Th, La and Nd) in the liquid. 

The plots in Figure 6.13 indicate a time-related decrease in compatible and an 

increase in incompatible, element concentrations. This could be explained by fractional 

crystallisation. Nevertheless, Figure 6.13 also shows that decrease in compatible, and 

increase in incompatible, element concentrations are accompanied by a gradual decrease 

in Si02 content. This is the opposite of what would be expected during fractional 

197 



Chapter 6: Isotope systematics and petrogenesis 

CM 

• mo 

o 

00 

o 
1/5 

5̂  

o 

00 

o 
00 

o o o o o o o o o o 
O O ' O ' v f C N I O O O V O ^ C N 

mdd 

sasEqd sruoqdsoqd 
JO UOpEUOpOEJJ 

• ® O 

& I 

OH 

H 

'-̂  d d d d 

o 

00 

d 
00 

o o o o o o o lo o lo o in 
( T l (Nl 0 4 ^ ^ 

mdd J3 

o 

I 

1^ 

a, 
-Si 3 
o 

•S 
o 

g 
§ 
o 
CO 

En 
•S 
3 

"S. 
I 

I : 

i 

a .S 

I I 
-S 

198 



Chapter 6: Isotope systematics and petrogenesis 

uiddBa 

tudd 

uidd 

I 

u 

2 

I 

s 

I 
s -a 
c 

r 

2J 
.1 

199 



Chapter 6: Isotope systematics and petrogenesis 

crystallisation. It could be argued that any possible mineral accumulation (e.g. olivine) 
might affect the silica concentration of the rocks and create patterns similar to those in 
Figure 6.13. However, the mostly aphyric or <10% phyric nature of the plotted alkaline 
samples makes it almost impossible to attribute the observed trends to this process. 
Thus, the observed trends can most likely be explained by variable degrees of partial 
melting of a mantle source. 

Petrographic and mineral chemical characteristics of the alkaline rocks (e.g. 

equilibrium crystallisation of olivine and clinopyroxene) also support the idea that the 

alkaline magma has not been greatly affected by fractional crystallisation processes or 

mineral accumulation. Experimental studies (e.g. Takahashi and Kushiro, 1983) have 

shown that, under constant pressure conditions, a decrease in degree of melting is 

accompanied by a decrease in the SiOa content of the melt. The observed relationships 

in the alkaline rocks are consistent with a model in which low degrees of partial melting 

lead to less silicic primary melts (-42-44 Si02 wt.%) and higher abundances of 

incompatible elements. The plots of highly and moderately incompatible elements (Fig. 

6.14) further suggest that the concentrations of most of these elements are mainly 

controlled by decreasing degrees of partial melting of a geochemically homogenous 

mantle source. More detailed modelling will be presented in the following sections of 

this Chapter to constrain the nature and the effects of the melting processes. 

6.2.2.2 The source mineralogy 

In Figure 6.15a-b, the A^Os/CaO and Al203/Ti02 ratios are plotted against Th 

abundance for the alkaline rocks. Th was chosen because it is the most incompatible 

element and its abundance should therefore increase systematically with decreasing 

degree of partial melting. The selected major element ratios are considered to be the best 

indicators to distinguish the effects of garnet from those of clinopyroxene in the source 

mantle. This is because garnet is the only mantle phase which retains A I 2 O 3 , at depth, 

whereas the CaO and Ti02 contents of the liquid are mostly controlled by clinopyroxene 

(note that clinopyroxenes in the alkaline rocks, as shown in Chapter 5, are all high-Ti 

phases). The systematic decrease in the ratios of Al203/CaO and Al203/Ti02 with 

decreasing degree of partial melting suggests a time-integrated increase of 

garnet/clinopyroxene ratio in the residue of the source. 
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The ratios, Eu/Dy and Eu/Yb, are plotted against Th as another means of 
evaluating the role of garnet in the genesis of the Western Anatolian alkaline rocks (Fig. 
6.15c-d). These ratios are rather sensitive indices of garnet- versus clinopyroxene-
dominated residual phases. As shown by the distribution coefficients of Eu, Dy and Yb 
in clinopyroxene, plagioclase, spinel and garnet (shown as inset diagram in Fig 6.15c), 
only garnet is able to fractionate these elements during the partial melting processes. It 
can be seen that both ratios increase significantly from alkaline basalt compositions (the 
Tastepe Volcanics) to basanites (the Ayvacik Volcanics). The decreasing degree of 
partial melting of a garnet-bearing Iherzolite source (with residual garnet) should be 
marked by an increase of Eu/Dy and Eu/Yb ratios, due to the high distribution 
coefficients of Dy and Yb in garnet compared to Eu. Thus, garnet play an important role 
in the partial melting processes that generate the alkaline rocks from Western Anatolia. 

6.2.2.3 Partial melting processes 

6.2.2.3.1 Overview 

There are mainly two types of melting and melt-extraction processes described 

in the geological literature: (1) equilibrium- or batch-melting; and (2) fractional- or 

Rayleigh-melting (Wilson, 1989; Rollinson, 1993). The first describes the partial 

melting process in which the melt continuously reacts and equilibrates with the solid 

residue while the bulk composition remains constant. The second describes the partial 

melting process in which the melt is instantaneously removed from the source. 

The foundation of batch-melting was first laid down by Schilling and 

Winchester (1967). Several modifications were later introduced by Cast (1968), Shaw 

(1970) and Albarede (1983). Shaw (1970) postulated that a batch-melting equation 

could be written as: 

C=Co/[Do + F(l-P)] 

where 

C and Co are the concentrations of a trace element in the melt and the source, 

respectively, and F is the fraction of melt. Do the bulk distribution coefficient of the 

initial solid source and the P the total mineral/melt distribution coefficients weighted for 

their modal consumption into the melt. 

It should be noted that this equation assumes that the distribution coefficients 

stay constant during the partial melting. The approximation of constant Do is valid 

providing the mineral proportions in the source are constant and the degree of partial 
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melting is significantly small so that none of the mineral phases are used up completely 
by the melt. P may be expected to remain approximately constant only for melting 
occurring under invariant (eutectic) melting conditions. For partial melting under variant 
(peritectic) conditions, P is expected to vary linearly with F (Albarede, 1995). 

The fractional melting process produces distinctive magma series in which the 

first liquid (produced by a very small degree of melting) incorporates almost all the 

highly incompatible elements present in the source, and the successive liquids 

(generated from the residue) are strongly depleted in those elements relative to the 

previous melts. I f there is no later mixing of the successive liquids, this process leads to 

characteristic concave downward patterns in normalised REE diagrams, even at small 

degrees of melting. In contrast, when the successive liquids are mixed, the resulting 

magma is almost identical to that produced by a single batch melting (Williams and 

Gill, 1989; Plank and Langmuir, 1992). The pooled result of fractional melting will 

therefore strongly resemble that of an equivalent amount of batch melting. 

The melting equation outlined above have been widely criticised for being not 

realistic because the critical parameter is the ability of magma to separate from the solid 

matrix (e.g. the threshold value of the porosity of the source). Because of residual 

porosity after melting completion, some magma is expected to be left behind. Langmuir 

et al. (1977) called continuous melting (also known as dynamic melting) a fractional 

melting process with residual porosity. This model considers an upwelling of mantle 

material through a zone of melting with a continuous but incomplete removal of melt as 

melting proceeds. Dynamic melting can be considered as intermediate between batch-

and fractional-melting because flow of melt through the system allows a substantial 

amount to interact with the residual solid. The process has been formulated by 

McKenzie (1985) and Williams and Gill (1989) as: 

1 Q G - r i - ( l - Z ) ^ ^ ' - ^ ^ ^ ' ' 
C = -

X [ G ( l - D ) + 1 

where 

^ [pf-'P + PX^-'P) 
G ~ 

Co is the initial concentration of the element in the source, X represents the mass 

203 



Chapter 6: Isotope systematics and petrogenesis 

fraction of liquid extracted, D is the bulk distribution coefficient, Pf is the density of the 
melt, ps is the density of the solid matrix and (p, expressed as a volume fraction, is the 
threshold value for melt separation or the porosity of the solid. Melt extraction begins 
when the melt fraction in the solid matrix is greater than fo, threshold value for melt 
separation expressed as a mass fraction: 

fo = Pf. </>/[pf- ^ + ps(l - ^)] 

As the melt porosity 0 (and then fo) approaches zero, the partial melting process 

approaches that of pure fractional melting (Williams and Gill, 1989). 

6.2.2.3.2 Modellins mantle melting 

An attempt has been made here to constrain, by semi-quantitative modelling, the 

source characteristics of the alkaline rocks from Western Anatolia in terms of trace 

element composition, mineralogy and the degree of melting. For the preliminary 

observations, the melt modelling was carried out using the non-modal batch melting 

equations of Shaw (1970). The modelling used the REE distribution coefficient 

compilation of McKenzie and O'Nions (1991; 1995) and the modal mineralogies and 

melting proportions of Kostopoulos and James (1992). 

The purpose of the modelling was to discover whether the depleted MORB 

mantle (DMM) has the appropriate trace element composition to serve as the source 

region for Western Anatolian alkaline volcanic rocks. It should be noted that the DMM 

is assumed here to represent the convecting asthenospheric mantle with a composition 

of the hypothetical depleted MORB source proposed by McKenzie and O'Nions (1991; 

1995). As the mantle source mineralogy is not precisely known, modelling was 

attempted with three different source compositions: (1) garnet Iherzolite; (2) spinel 

Iherzolite; and (3) mixing of garnet and spinel Iherzolite (50% : 50%). The results of 

modelling are first looked at in terms of concentrations of highly incompatible (e.g. 

LRE) elements, as these are not affected significantly by variations in the source 

mineralogy. La and Ce were selected first in an effort to compare the concentrations of 

these elements in the alkaline rocks with what would be produced by variable degrees of 

melting of the DMM. 

Figure 6.16 shows that most of the alkaline rocks from the Western Anatolian 

suite have La and Ce concentrations greater than that what could be generated by direct 

melting of a DMM, even when the degree of partial melting is very small (0.1 %). The 
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Figure 6.16. Plots of (a) Ce and (b) La/Nd against La shows melting curves for Depleted MORB 
Mantle (DMM) and data from the Western Anatolian alkaline suite. The absolute abundances of 
plotted incompatible elements are unaffected by the mantle mineralogy, therefore the sole control 
is the bulk chemical composition of the source, (c) Variation ofLa/Yb vs La/Ce showing melting 
curves for a DMM-type source varying the source mineralogy. The points on the curves represent 
the degree of partial melting. The modal mineral proportions and distribution coefficients used in 
the modelling are from Table 6.6. DMM values are from McKenzie and O'Nions (1991). 
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plots of La/Nd vs La and La/Yb vs La/Ce also show that the concentrations of these 

elements do not match those produced by direct melting of DMM-type mantle source. 
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Figure 6.17. Chondrite (CI) normalised REE patterns showing the compositions of modelled batch melts 
produced by 0.1% melting of a DMM-type source with mineral proportions of garnet-lherzolite, spinel-
Iherzolite and garnet (50%) + spinel (50%) Iherzolite. The modal mineral proportions and distribution 
coefficients used in the modelling are from Table 6.6. Normalised values are from Boynton (1984) and 
the batch melting equation is from Shaw (1970). DMM values are from McKenzie and O'Nions (1991). 

When complete REE patterns are considered, the calculated concentrations of all 

LREE are lower than those of most alkaline rocks whereas concentrations of some 

MREE and all HREE vary significantly depending on the mantle mineralogy and, to 

lesser extent, melt proportion (Fig. 6.17). A small degree of partial melting of a spinel 

Iherzolite source with element concentrations similar to the DMM, for example, cannot 

account for the M-HREE concentrations of the alkaline rocks. This indicates a residual 

garnet phase involvement in the source of the alkaline rocks as it creates a flat pattern in 

Figure 6.17. 

Although using garnet or garnet - I - spinel Iherzolite compositions may account 

for most M-HREE concentrations of the alkaline rocks, the model LREE abundances 

are still significantly lower than those of most alkaline rocks. Thus, it can be argued that 

the one-stage melting of DMM cannot produce magma with incompatible element 

concentrations similar to those of the alkaline rocks from Western Anatolia. Clearly, a 

mantle source that has been enriched in LREE with respect to DMM composition is 
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required to produce the composition of the alkaline rocks. The source compositions of 
the alkaline rocks will be discussed further in the following paragraphs after presenting 
a more rigorous trace element modelling. 

6.2.2.4 Constraints on the degree of partial melting and the initial mantle 

composition 

The characterisation of the source region from which the primitive magmas are 

generated is one of the major aims of the study of the mantle-derived basaltic 

magmatism. In recent years, as mentioned in Section 6.2.2.3.1, numerous quantitative 

approaches, based on geochemical data sets of increasing size and quality, have been 

performed to place constraints on the melting processes and parameters (e.g., nature of 

the melting processes, the degree of partial melting, the values for distribution 

coefficients between mantle minerals and magma and the chemical, isotopic and 

mineralogical composition of the mantle sources of the primitive basaltic magmas). 

Most of them rely on relatively simple models or hypothesis (e.g. the batch melting 

model of Shaw, 1970) and use a large number of assumptions (e.g. Hofmann and 

Feigenson, 1983; Ormerod et al., 1991; Feigenson and Carr, 1993), while others have 

developed sophisticated mathematical models (e.g., O'Hara, 1985; McKenzie and 

O'Nions, 1991; O'Hara, 1995) which are not always possible to test on natural systems. 

However, almost all of the proposed models on the mantle melting processes require 

making poorly-founded assumptions about melting parameters and processes. 

Estimation of the degree of partial melting using the conventional melting equations 

mentioned above, for example, requires assumptions about the element concentrations 

and mineral proportions (or the values for the bulk distribution coefficients) of the 

source mantle. However, an accurate estimation on the source concentrations is 

extremely difficult, especially for continental or OIB-type basalts because of possible 

source region metasomatism and/or interaction between magmas with different 

compositions. Thus, it would be useful if one could estimate the degree of partial 

melting without having to make assumptions about source concentrations. 

There are two different methods reported for calculating the approximate degree 

of partial melting without making assumptions about source concentrations. One uses 

the concentration ratios in the source and is referred to as the source ratio (SR) method 

(Treuil and Joron, 1975; Minster and Allegre, 1978; Cebria and Lopez Ruiz, 1995). Use 

of the SR method is limited, as it can only be applicable to batch melting. The second is 
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called the concentration ratio (CR) method and uses the concentration ratios of two 

incompatible trace elements in at least two magmas presumed to derive from the same 

source. The CR method was first demonstrated by Maal0e (1994) with the equations 

deduced from the simple batch-melting model of Shaw (1970). Subsequently, Zou and 

Zindler (1996) argued that true batch-melting does not, in general, occur during basaltic 

magma extraction, and that dynamic melting would be a more realistic scenario. Thus, 

they formulated the CR method in the context of the dynamic partial melting (referred to 

as dynamic melting inversion or DMI method) to determine the approximate degree of 

melting and the source composition. The equations derived by Zou and Zindler (1996) 

are: 

^"x,-[i-(i-x,f('-""^'' 

>1 

h2 1 - ( 1 - X , ) 

where 

Qa and Qb are the enrichment ratios for two different incompatible elements between 

two different but cogenetic magmas (given as 1 and 2 respectively), and the rest of the 

parameters are given in the equation in Section 6.2.2.3.1. 

After obtaining Xj and X2 by solving the equations (e.g. by Newton's method for 

a system of non-linear equations), the degree of partial melting can be calculated using 

the following equation; 

f = X 
{p^-(/>+pXi-(/>)) 

+ 
{p,-<p)+pXi-^)_ 

(see the equation in Section 6.2.2.3 for the parameters). 

The source concentrations can also be calculated from the relationship given by 

the equation in Section 6.2.2.3.1. It should be noted that the extent of partial melting 

and source composition are sensitive to variations in D, and </> values, which have to be 

assumed. Since reported A values for the incompatible elements in mantle assemblages 

(e.g., olivine, clino- and orthopyroxenes) vary considerably (e.g., with a factor of 2 to 4 

for the REEs: Frey et al., 1978; Minster and Allegre, 1978; Irvine, 1978; Leeman et al., 
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1980; Chen et al., 1990; McKenzie and O'Nions, 1991) and ^ value is not precisely 
known, the method should be used with caution. Zou and Zindler (1996) have tested 
these variations and shown that a 40% change in £), (they used Nd as incompatible 
element) leads to a c.30% change in the degree of partial melting and the source 
composition and that a change in (p from 0.01 to 0.02 results in a c.20% change in these 
parameters. 

The D M I method has been applied to the Late Miocene alkaline volcanic rocks 

from Western Anatolia. Several parameters should be considered in producing the 

above model numerically. The densities of the melt (p/) and the solid matrix (ps) are 

assumed to be 2.8 and 3.3 g.cm"̂  respectively and a value of 1% is selected as the 

porosity of the source (0) which is considered as realistic by McKenzie (1985). For this 

modelling, aphyric or <10% phyric samples were selected to avoid any possible effect of 

mineral accumulation. The primary basalts used for the modelling range from alkaline 

basalts to basanites and cover the whole compositional range of the mafic alkaline suite 

of Western Anatolia. It is evident from the isotope data that they have been generated 

from the same source. 

For the calculations, Th was selected as a highly incompatible element (Dth 

<0.001) to minimise the effect of the variations in the source mineralogy and the 

distribution coefficients on the calculations. One of the LREE (La is used here) was 

selected as the second (not-so-highly incompatible) component in order to achieve 

different enrichment ratios (Qi) in magmas formed by different degrees of partial 

melting (Table 6.5). The bulk distribution coefficients for both the source mantle (Di) 

and the extracted melt (Pi) were estimated using the same mineral proportions as those 

used in the previous melt modelling and are listed in Table 6.6. Using the enrichment 

ratios of (Q th ) 3.88 and (Qta) 3.51 between a basanite (EA270) and an alkaline basalt 

(EA249), degrees of partial melting of 2.9% and 10.1% have been obtained by solving 

the above equations (DMI method) (Table. 6.5). 

For comparison, using the CR method for batch melting proposed by Maal0e 

(1994), degrees of partial melting have been calculated as 2.4% and 9.0% for the 

basanite and the alkaline basalt respectively. The difference between two methods is 

probably due to the </> value, which is not considered in the batch melt modelling. It 

should be noted that the estimated values of degree of melting are strongly dependent on 

the bulk distribution coefficients (Dj). In other words, uncertainties in the applied bulk 
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distribution coefficients may cause significant variations in the estimated values of 
degree of melting. Thus, an average estimate based on several incompatible elements 
would be comparable and more useful. To reduce the effect of the uncertainties in the 
bulk distribution coefficients, the calculations of the degree of melting have been 
attempted with 12 different incompatible elements using both the DMI and CR 
methods. 

Table 6.5. Estimation of partial melting degrees and mantle source composition for alkali basalt and basanite 
of the Western Anatolian suite. 

Element D, Pi Basanite AlkaU Bas. Qir DMI BM Co (ppm) (CO)N 
(ppm) (ppm) fl (%) f2(%) fl(%) f2(%) 

Th 0.00011 0.00021 10.20 2.63 3.88 
L a 0.00559 0.03728 70.23 20.00 3.51 2.92 , 10.17 2.43 9.06 1.85 2.69 
Cc 0.00916 0.06736 135.51 42.36 3.20. 3.04 > 11.22 2.62 9.12 3.98 2.24 
Nd 0.01942 0.05781 64.88 25.08 2.59; 2.51 9.77 ' 2.17 8.67 2.52 1.86 
Ta 0.00722 0.0153 6.67 2.10 3.16: • . 2,20 8.56 2.01 7.56 0.19 4.51 
Nb 0.00782 0.01532 101.15 31.90 3.17 2.40 9.34 2.08 8.14 2.86 4.01 

Average >2:6I 9.81 , 2.26 8.51 

D M I = C R method for dynamic melting 
BM = C R method for batch melting 
Di = bulk distribution coefficient of the soUd source; Pi = bulk distribution coefficient of the melt; 
Qi = enrichment concentration rat io; / l = partial melting degree for basanite;/2 = partial melting degree for alkali basalt; 
Co = source concentration; (CO)N = C I (chondrite) normalised Co concentrations 
<t) = 1%; = 2.8 g/cm', and Ps = 3.3 g/cm' 

The results are given in Table 6.5 and 6.6, together with the calculated D, and Pi 

values, the enrichment ratios (QO and the estimated source compositions (Co). It can be 

seen that the variations between the calculated degrees of melting are not significant for 

most of the incompatible elements. Exceptions are the HREE (Er, Tm, Yb and Lu) 

which behave as compatible elements in the presence of garnet in the source or in the 

melt mineralogy; thus, they are excluded from the estimates of the average degree of 

melting. The average estimates by the DMI method have been obtained as 2.8% (± 0.6) 

and 9.9% (± 1.5) for the basanite and the alkaline basalt samples respectively. The CR 

method, on the other hand, yields relatively low degrees of partial melting of 2.2% (± 

0.3) and 9.2% (± 1.4) for the same samples. 

The source concentrations for the Western Anatolian alkaline rocks were 

estimated for three different source mineral proportions. The results are plotted on a CI 

(chondrite)-normalised REE diagram together with the representative compositional 

range of the alkaline rocks and the DMM and PM (primitive mantle) values (McKenzie 
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Figure 6.18. Chondrite (CI) normalised REE patterns showing the source compositions calculated by the 
dynamic melting inversion (DMI) method (Zou and Zindler, 1996) using the data from the Western 
Anatolian alkaline basic rocks. See table 6.6 for the modal mineral proportions, the calculated source 
concentrations and distribution coefficients used in the modelling. Normalising values (CI) are from 
Boynton (1984) and DMM and PM values are from the compilation of McKenzie and O'Nions (1991). 

and O'Nions, 1991) (Fig. 6.18). It can be seen that the concentrations of the LREE are 

not affected by whether the source is garnet or spinel Iherzolite, whereas the M-HREE 

are affected significantly by the source mineralogy. The estimated source concentrations 

range from 7.6 to 5.7 times CI for the LREE, to 1.6 to 2.5 times CI for the HREE when 

the source composition is taken as garnet + spinel Iherzolite. It should be noted that two 

different calculations based on two different X (the mass fraction of liquid extracted) 

values yield similar source concentrations for all the REEs. On the other hand, using the 

garnet Iherzolite composition yields two different ranges of source concentrations (for 

two different X values) for the HREE: 3.0 to 5.1 and 4.2 to 7.6 times CI respectively. 

Notably, the greater the garnet involvement in the source region the greater the 

uncertainty of the estimated M-HREE concentrations. 

An important point from the CI normalised REE plots is that the estimated LREE 

concentrations of the source are always greater than those of the DMM as they range 

from 8.3 (La) to 3.3 (Nd) times DMM. The M-HREE, on the other hand, may be similar 

to those of the D M M depending on the modal mineralogy of the source. 

Figure 6.19a-b show diagrams of Ce and La/Nd ratio against La for rocks 

representative of the whole compositional range of the Western Anatolian alkaline suite, 

213 



Chapter 6: Isotope systematics and petrogenesis 

along with the theoretical melting curves calculated using the DMI equations. In both of 
these plots, the alkaline samples plot between 2% and 9% partial melting values, which 
decrease gradually from the Tastepe alkaline basalts towards the Ayvacik basanites. 

A more useful approach to melt modelling is the use of plots of MREE/HREE 

against LREE abundance or LREE/HREE ratios, e.g. Eu/Yb vs La/Yb. These plots are 

particularly useful as they distinguish between melting of garnet- and spinel-lherzolite 

sources. Melting a spinel-lherzolite source produces little change in Eu/Yb ratios in 

melts compared with their mantle source and there is also little change in Eu/Yb with 

melt fraction as monitored by La/Yb ratios. Melting of a spinel Iherzolite source will 

therefore create a horizontal trend. In contrast, melting of a gamet-lherzolite source 

produces large changes in Eu/Yb ratios with melt fraction, and then the melt faction is 

very different from the source ratio leading to a curvilinear trend on a Eu/Yb against 

La/Yb diagram. 

Modelling of Eu/Yb and La/Yb ratios, coupled with plots of Yb against La and 

La/Yb against Zr/Nb is presented in Figure 6.20. It should be noted that the element 

concentration of the source mantle is taken as average of the DMI and CR methods. It 

can be seen that variable degrees of partial melting of a spinel Iherzolite cannot generate 

the observed co-variation in Eu/Yb ratio with changing La/Yb ratio. Melting of a spinel 

Iherzolite should produce a curvilinear trend on a diagram of Yb against La. This is 

clearly not the case for the observed trend of the alkaline rocks from Western Anatolia. 

Variable degrees of partial melting of a garnet Iherzolite with mineral proportions given 

in Table 6.6 also cannot generate the observed trends on the Eu/Yb v La/Yb and Yb v 

La diagrams. First, melting of a garnet Iherzolite with a given mantle composition 

produces melts with much higher Eu/Yb ratios than the Western Anatolian samples at a 

given degree of partial melting. Thus, the mantle source would require an unusually low 

Eu/Yb ratio i f the samples were to be simply the product of garnet Iherzolite melting. 

Second, melting of a garnet Iherzolite should produce melts exhibiting a near-horizontal 

trend on the Yb v La diagram, as Yb is essentially retained or buffered by garnet in the 

source region. 

The simplest model to account for the REE systematics of the Western 

Anatolian alkaline samples involves garnet + spinel mantle mineralogies. This is 

because the curved line calculated for variable degrees of melting of a source with 

mineral proportions accounted by 50% gt-lherzolite and 50% sp-lherzolite best fits the 
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Figure 6.19. Plots of (a) Ce and (b) La/Nd against La shows melting curves obtained using the 
Dynamic Melting Inversion (DMI) and data from the Western Anatolian alkaline suite. The ab­
solute abundances of plotted incompatible elements are unaffected by the mantle mineralogy, 
therefore the sole control is the bulk chemical composition of the source, (c) Variation of La/Yb 
vs La/Ce showing melting curves obtained using DMI for varying proportions of source mine­
ralogy. The points on the curves represent the degree of partial melting. See Table 6.6 for the 
modal mineral proportions and distribution coefficients used in the modelling. 
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Figure 6.20. Plots of (a) Eu/Yb vs La/Yb, (b) Yb vs La and (c) La/Yb vs Zr/Nb highlight the variation 
of trace element abundance and ratios with variable mineral proportions and the degree of partial 
melting. The parameters used in the modelling are the same as that in Figure 6.19. 
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observed trends for the alkaline rocks on both the Eu/Yb v La/Yb and the Yb v La 
diagrams. 

In summary, the compositions of the alkaline rocks of Western Anatolia 

represent melts from a source that is characterised by garnet involvement, although it is 

impossible to assess the precise composition of the source in terms of mineral 

abundances (e.g. garnet/clinopyroxene ratios). The average degree of partial melting 

apparently ranged from <2% to -9%. The stratigraphic relationships of the alkaline 

rocks indicate that the degree of partial melting decreased gradually in time as the 

youngest rocks (the Ayvacik Volcanics) represent the smallest degrees of melting. The 

modelling of the bulk chemical compositions of the source indicates a source region that 

has been enriched in LREE relative to DMM, possibly a PM (primitive mantle)-like 

composition. 

6.2.2.5 The Source Characteristics 

The calculated REE concentrations for the mantle source of the alkaline volcanic 

rocks from Western Anatolia have shown that the model mantle source has considerably 

higher concentrations of moderately incompatible LREE with respect to the average 

D M M (depleted MORB mantle) source, although the concentrations of M-HREE may 

be similar to those of DMM. This indicates that the alkaline magma cannot be generated 

by a one-stage melting process from DMM even when the melt fraction is very small 

(<0.1%). In contrast, the Nd isotope ratios of the alkaline rocks are characterised by 

positive ENd (+6.51 to +5.49) values indicating a source that was significantly depleted 

relative to Bulk Earth, though less depleted than most N-type MORB. It appears that 

this type of mantle source is the rule rather than the exception away from ridges, as 

many oceanic and continental alkalic primary suites have positive 8Nd in association 

with strong LREE enrichments relative to DMM-derived rocks (N-MORB) (e.g. the 

Rhine graben of Western Europe and the Canary islands, the Calatrava province of 

Spain, the Kauai and Honolulu suites of Hawaii, the Basin and Range and the Great 

Basin provinces of the Western USA, SE Australia, the Tubuai suite of Austral islands: 

Wilson et al., 1995; Cebria and Lopez Ruiz, 1995; Maal0e et al., 1992; Fitton et al., 

1991; Caroff et al., 1997; Hoemle et al., 1991). 

The enriched nature of many oceanic and continental intraplate alkalic suites 

with respect to N-type MORB has been widely attributed to a lower mantle-derived 
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plume component in the source region. It is generally believed that the source regions 
from which plumes are generated are isolated from the convecting mantle, and thus 
have not been affected by depletion processes during MORB formation. Some scientists 
suggest that the most OIB components are derived from ancient recycled oceanic 
lithosphere, plus small amounts of sediments (also known as H M U OIB source) 
(Hofmann and White, 1982; Zindler and Hart, 1986; Wilson, 1993). However, in the 
case of Western Anatolia, the alkaline magmatism cannot be explained by a mantle 
plume component because, as previously noted by McKenzie and O'Nions (1995), there 
is no evidence for a mantle plume beneath Western Anatolia. First, a mantle plume 
would be expected to produce a dynamic uplift and an elevated topography over an area 
about 1000-2000 km in diameter. This is clearly not the case for Western Anatolia. 
Second, the alkaline volcanic rocks in the area were formed in the localised extensional 
zones and show no symmetric expression. 

An alternative view may be that the trace element concentrations are partly 

controlled by reactive melt transport during melting and ascent of magmas (e.g. 

chromatographic effects caused by percolation through partially molten mantle in the 

sense of Navon and Stolper, 1987, Vasseur et al., 1991 and Iwamori, 1993). It has been 

argued that the rate of interaction is faster in the incompatible elements than the 

compatible elements and, as a result, the abundance ratios of elements of different 

compatibilities can vary considerably with time. Thus, it could be argued that the alkali 

basic magma might have reacted with large volumes of solid mantle during melt 

migration and ascent, preferentially leaching incompatible elements from the 

surrounding mantle. The alkaline rocks from Western Anatolia, as mentioned in Section 

6.2.2.1, show a temporal compositional trend of increasing incompatible elements with 

time. This is the opposite of what would be expected for reactive melt transport. As 

recently shown by Reiners (1998), the composition of the leading melt batch through a 

column of refractive mantle will be shifted towards the composition of an incipient 

partial melt of the mantle matrix. Successive melts migrating through and emerging 

from the columns will then show a temporal compositional trend that reflects the 

exhaustion of the reactive capacity of the mantle. Thus, these effects should be manifest 

as an enrichment of incompatible elements relative to the original input melt, and a 

temporal compositional trend of decreasing incompatible elements in erupted melt 

batches with time. Eventually, element concentrations should return to the original melt 
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concentrations in order of increasing compatibility (Reiners, 1998). Thus, enrichment in 
LREE concentrations cannot obviously be explained by reaction between melt and the 
source matrix. 

Alternatively, as has often been pointed out, positive ewd together with 

enrichment in LREE can be reconciled by proposing the long-term existence of a LREE-

depleted source that has only recently become enriched and subsequently melted to 

produce the LREE-enriched magmas. These late enrichment processes are mostly 

considered to be due either to small volume melt fractions or to subduction. 

McKenzie (1989) recognised that the bulk of continental basalt magmas 

probably come from metasomatised sub-continental lithospheric mantle (SCLM). He 

argued that a combination of small degree partial melt of asthenospheric mantle material 

beneath the continents and upward migration of such melts would lead to metasomatism 

of the base of the SCLM by melt strongly enriched in both incompatible elements (e.g. 

LREE) and volatiles. The enriched layer would melt at lower temperatures than normal 

dry mantle and, when involved in the magma genesis, would contribute to the enriched 

nature (in terms of LREE) of continental alkaline rocks relative to DMM-derived rocks. 

He also proposed that such small melts would have experienced strong fractionation of 

Rb from Sr, and Sm from Nd in their source region which can account for the depleted 

isotopic ratios observed in most continental basic alkaline rocks. 

Andersen (1994) recently proposed that the convecting mantle (= asthenospheric 

mantle) initially has depleted trace element and isotopic characteristics (DMM-like) 

before upwelling and interacting with shallow and enriched (by subduction zone fluids 

and sediments and/or infiltration of melts from deeper mantle) mantle. He termed 

"perisphere", the enriched shallow mantle and suggested that it could be in the 

asthenosphere, or the lower part of the TBL. He further argued that the enriched part of 

the shallow mantle may provide the source region chemical characteristics (trace 

element and isotopes) similar to continental basaltic or OIB magmatism. 

McKenzie and O'Nions (1995) argue that the enrichment of the SCLM and its 

subsequent remelting can account for the composition of all oceanic and continental 

basic volcanics that require an enriched (relative to DMM) source. Their model involves 

enrichment of the mechanical boundary layer (MBL) (in both continental and oceanic 

environments) by metasomatic small volume melts from the asthenosphere. They also 

argue that such a mechanism may account for the similarity between ocean-island and 
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small volume continental basalts. Their estimates of REE inversion modelling of the 
Kula alkaline volcanic rocks from Western Anatolia yield melt generation depths of 
between 55 and 70 km, a region that is 100°C or more below the sohdus for anhydrous 
asthenospheric mantle. Their argument is that the anhydrous mantle at normal upper 
mantle temperatures only begins to melt when it is brought up to a depth of about 45 
km, a statement based on the parameterisation by McKenzie and Bickle (1988). Thus, 
with no evidence for elevated mantle potential temperatures beneath Western Anatolia 
and, given the degree of lithospheric extension they argue that melting of anhydrous 
asthenospheric mantle is unlikely. Instead they propose a melt generation within a 
SCLM that had been previously enriched. 

The proposed models (by McKenzie, 1989; McKenzie and O'Nions, 1995) 

outlined above require involvement of melts generated from the SCLM in order to 

provide the enriched compositions observed in most OIB and continental basalts. This 

involvement may be either by direct melting of metasomatised SCLM or by interaction 

of melts generated from depleted asthenospheric mantle (DMM-like) with enriched 

SCLM. 

However, the difficulty with applying these models to Western Anatolia lies in 

the likely composition of the SCLM beneath Western Anatolia. It has already been 

shown that the SCLM beneath Western Anatolia carries a subduction component which 

is characterised by large negative Nb and Ta anomalies. It has also been shown that the 

alkaline rocks are unlikely to have generated from the same source as the earlier formed 

(Early-Middle Miocene), calc-alkaline and shoshonitic rocks which are the derivatives 

of the SCLM. Thus, the involvement of the SCLM in the genesis of the alkaline 

magmas is unlikely, as none of the alkaline rocks have negative Nb and Ta anomalies. 

The absence of hydrous mineral assemblages (unlike the Kula basalts which McKenzie 

and O'Nions (1995) examined) may further suggest that the involvement of the 

subduction modified SCLM in the genesis of the alkaline magmas is unlikely. 

It could be argued that the earlier (Early-Middle Miocene) calc-alkaline and 

shoshonitic magmatism have removed the subduction component from the mantle that 

eventually provides OIB-type source (a model similar to that of Andersen, 1994). 

However, this requires almost total removal of incompatible trace elements from the 

enriched SCLM source in a geologically short period (~3Ma which is the time interval 

between the formation of the calc-alkaline and the alkaline magmatism), which is also 
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unlikely. Thus, on the basis of the assumption that the SCLM beneath Western Anatolia 
is not horizontally heterogeneous, the most likely site for the melt generation (for the 
alkaline magmas) is within asthenospheric mantle. 

Since normal convecting asthenospheric mantle source with a DMM-like 

composition (or at least a single-stage melting of asthenospheric mantle) cannot account 

for the observed incompatible trace element and isotopic characteristics of the alkaline 

rocks, enrichment processes are required to explain the mantle source characteristics of 

the alkaline rocks (note that this statement is based on the assumption that the 

asthenospheric mantle is depleted). The Nd and Sr isotopic ratios for the alkaline 

samples clearly indicate time-integrated growth in reservoirs depleted in Rb/Sr and 

Nd/Sm relative to Bulk Earth. Thus the enrichment processes should have been recent. 

However, the isotopes lie between those of the MORE and HIMU-like compositions 

(see Fig. 6.1) and therefore do not provide strong constraints on whether the magmas are 

D M M derivatives. Unfortunately, there are no mantle xenoliths found either in the 

alkaline rocks in the area studied or elsewhere in Western Anatolia that would be useful 

to determine the composition of the source region. Thus, it is very difficult to assess the 

nature of the enrichment processes. However, in the light of the available data presented 

so far, several options are possible to explain the processes. 

One possible explanation could be that the geochemical characteristics (in terms 

of trace elements and isotopes) of the asthenospheric mantle beneath Western Anatolia 

may be similar to that of HMU-like component, in a manner similar to that proposed by 

Wilson et al. (1993) and Granet et al. (1995) for the European Asthenospheric 

Reservoir. From the recent work of Wilson et al. (1997) on the alkaline basaltic rocks 

from the north-west Central Anatolia (the Galatia province), it is apparent that the 

isotopic and trace element characteristics of these rocks are similar to the alkaline 

basalts of Western Anatolia (e.g. the Tastepe basalts). Wilson et al. (1997) proposed that 

the source component of the Galatia alkaline rocks (formed in a relation to the NAF) 

carries a HIMU-like component inferred to be present in the shallow asthenospheric 

mantle throughout Western and Central Europe. The difficulty with applying this model 

to Western Anatolia is that the isotopically-enriched nature of HIMU components 

relative to D M M is generally mantle plume related. Thus, enrichment processes in 

relation to a typical plume (e.g. as described by White and McKenzie, 1989) are 

unlikely for Western Anatolia for the reasons discussed above. On the other hand, 
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Granet et al. (1995) have recently proposed that the alkaline magmatism throughout 
Central and Western Europe is linked to the upwelling of a series of individual mantle 
diapirs which are of smaller diameter than the typical plumes (e.g. Hawaii and Iceland) 
and formed in association with continental break-up. A similar mechanism was invoked 
by Cebria and Lopez Ruiz (1995) to explain the genesis of the Calatrava alkaline 
volcanic province (Central Spain) in the absence of a typical mantle plume. Although a 
similar model could well explain the geochemical characteristics (in terms of trace 
element and isotopes) of the alkaline rocks from Western Anatolia, more data (e.g. 
geophysical and perhaps Hf isotopes) are needed to constrain this possibility. 

An alternative explanation is that the enrichment event may be an integral part of 

the small degree partial melting processes of an asthenospheric mantle (DMM-like) 

source. In this context, it is possible that the enrichment documents an autometasomatic 

event, for example related to release of volatile-rich fluids in the subsolidus peridotite 

shortly before melting. This type of enrichment process was first discussed by Roden et 

al. (1984) to explain the source characteristics of the strongly LREE enriched (relative 

to N-MORB) and isotopically depleted OIB-type alkaline basalts from St. Paul's Island 

(0°56' N., 29°22' W; near the axis of the mid-Atlantic ridge). They argue that the 

metasomatic event is a result of the addition of either a silicate melt or a hydrous 

metasomatic fluid which was derived from the same mantle source as the alkaline basic 

rocks. Without knowing the nature of the mantle source from which the enriched 

material was derived, it is very difficult to assess whether it was a silicate melt or a 

hydrous metasomatic fluid. However, if this is the case for the enrichment process of the 

source region of the Western Anatolian alkaline rocks, enrichment by silica melts would 

be a more likely explanation rather than volatile-rich fluids, as there is no evidence for 

hydrous mineral assemblages in the genesis of the rocks. This then requires a multi­

stage melting process in the source region. 

A similar explanation has recently been proposed by Zou and Zindler (1996) for 

the enrichment processes in the source region of the Koloa and Honolulu volcanics of 

Hawaii. They argue that an integrated melting process, where the first stage affects a 

large volume of source material, produce, at or just prior to the true onset of melting, 

LREE enriched (relative to the original source material) and possibly C02-rich fluid or 

silicate melt. According to these authors, this early formed melt produced in the 

peripheral regions of a melting anomaly, will separate from its source and invade the 
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adjacent mantle to produce a second-stage source which will be affected by greater 
extents of melting. 

If this is the mechanism that formed the melts and produced the alkaline lavas of 

the Western Anatolia, then, it could be argued that the model concentrations of the 

source that previously estimated using DMI and CR methods only characterise the 

second- or final-stage source that had already been modified by earlier stage of melting 

process(es). The original source composition prior to the metasomatism events may 

therefore be similar to that of DMM. 

6.2.2.6 Mantle melting and magma generation in response to lithospheric 

extension 

Adiabatic ascent is now the generally accepted mechanism for mantle melting in 

extensional systems. This mechanism is particularly well established at oceanic 

spreading centres where the system is in steady state and the physical parameters such as 

the potential mantle temperature, spreading rate and lithospheric thickness are 

reasonably well known. In continental settings, however, the mechanisms are more 

complicated as the mantle potential temperature, lithospheric thickness and the amount 

of extension have to be defined by poorly-constrained estimates. In an attempt to model 

magma generation processes in extensional systems, McKenzie and Bickle (1988) 

assumed that the melting behaviour of the mantle (both lithospheric and asthenospheric 

portions) could be constrained by the dry mantle peridotite solidus. The P-T diagram of 

Pearce et al., 1990 (used in Section 6.2.1.3) illustrates possible mechanisms that can 

contribute the melting and the magma production processes for the Western Anatolian 

alkaline magmatism (Fig. 6.21). Although there are no physical data to constrain the 

lithospheric structure beneath Western Anatolia, the average total lithospheric thickness 

has been estimated (using the average strain rate in the area) to have been not less than 

70-80 km prior to the onset of the Late Miocene alkaline magmatism. The model 

assumes that the thermal parameters such as the mantle potential temperature (Tp), and 

the conductive and advective geotherm gradients are the same as that given in section 

6.2.1.3. 

Melting conditions of the mantle lithosphere will not be discussed here, as it is 

not relevant to the magma genesis of the alkaline lavas. The only possible mechanism 

for melt generation in asthenospheric mantle in the extensional system of Western 

Anatolia is melting of the normal mantle by adiabatic decompression. The validity of 
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Figure 6.21. P-T diagram showing conditions of melting in the asthenospheric mantle beneath 
Western Anatolia. MBL = Mechanical Boundary Layer; TEL = Thermal Boundary Layer; Tp -
potential mantle temperature. 
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this, however, depends upon the physical conditions of the asthenospheric mantle prior 
to melting (dry or volatile enriched) and the thickness of the overlying lithosphere 
which is a function of the stretching factor (P). Melting conditions in continental 
extensional systems have recently been discussed by Bradshaw et al. (1993) and 
Hawkesworth and Gallagher (1993). Figure 6.22 shows their model calculations for 
determining the value of p required to initiate melting (i.e. when the solidus temperature 
is intersected by the geotherm in Fig. 6.21) for given values of the initial lithospheric 
thickness (taken as MBL), mantle potential temperature and mantle viscosity. It can be 
seen that, for a MBL thickness of 80-100 km, melting of asthenospheric mantle under 
dry conditions requires P values higher than 2 - 2.5 i f the mantle potential temperature 
is taken as 1280°C as assumed by McKenzie and Bickle (1988). The proposed P values 
(-1.5 Paton, 1992; McKenzie and O'Nions, 1995) for Western Anatolia are therefore 
not sufficient to initiate melting of the sublithospheric mantle beneath Western 
Anatolia. However, taking into account the fact that the alkaline volcanism in restricted 
to the area studied formed along the North Anatolian Fault (NAF; strike-slip), it could 
be argued that the melting processes are not related only to a simple or pure shear 
stretching, but also to lateral stretching. Consistency between the timing of the onset of 
the NAF and the alkaline magmatism in the area may also suggest a response to 
localised stretching due to the lateral stress release to initiate the melting and produce 
the alkaline magma. 

6.3. Chapter 6 Summary 
Consistent with the behaviour of the trace elements, described in Chapter 3, the 

isotopic characteristics also reveal two geochemically distinct sources for the Miocene 

volcanic rocks in Western Anatolia. These are: (1) a subduction modified, radiogenic 

mantle source characterised by high ^̂ Sr/̂ ^Sr but low "*^Nd/'^Nd ratios (for the Early -

Middle Miocene, calc-alkaline and shoshonitic volcanic rocks); and (2) an isotopically 

homogeneous and possibly OIB-type mantle source characterised by low ^̂ Sr/̂ ^Sr but 

high ''̂ '̂ Nd/̂ '̂ '̂ Nd ratios (for the Late Miocene alkaline volcanic rocks). 

Fractional crystallisation modelling, combined with the estimates of the 

crystallisation pressures and temperatures (Chapter 5), showed that amphibole 

(pargasitic) crystallisation took place in deep (-28-35 km) magma chambers for almost 

all calc-alkaline and shoshonitic (Early-Middle Miocene) magma series from both the 

224 



Chapter 6: Isotope systematics and petrogenesis 

EGA and DAB areas. Subsequent crystallisation histories in shallower magma chambers 
show some differences between the Early Miocene rocks from the EGA and DAB areas: 
(1) anhydrous (pyroxene + plagioclase-dominated) crystallisation assemblages in the 
EGA area; and (2) hydrous (edenitic hornblende + plagioclase + pyroxene) 
crystallisation in the DAB area. This difference is consistent with the crystallisation 
temperatures between the two areas (>900°C in the EGA area v <900''C in the DAB 
area). The Middle Miocene rocks show no indication of shallow magma chamber 
processes. 

Fractional crystallisation modelling also showed that the ignimbrites are the 

products of feldspar- and biotite-dominated fractional crystallisation and their formation 

cannot be explained solely by crustal melting or crustal contamination. 

AFC modelling showed that all Early-Middle Miocene calc-alkaline and 

shoshonitic rocks have been affected by assimilation combined with fractional 

crystallisation, but the effects of the assimilation decrease gradually from the Early 

Miocene into the Middle Miocene which can possibly be explained by extension and 

progressive crustal thinning in time. 

With no evidence for elevated mantle temperatures beneath Western Anatolia 

(e.g. a mantle plume origin), initiation of magmatism has been inferred to have been 

caused by thermal perturbation of metasomatised (by subduction) sub-continental 

lithospheric mantle (SCLM). Because of the constraints in timing of the onset of the 

extension in the area and because of lack of evidence for localised extension (pre-

Miocene), the likely mechanism is the delamination of the thermal boundary layer 

(TBL). 

The alkaline magmas (the Late Miocene) have been shown to have been 

generated by variable degrees of partial melting of an isotopically homogenous source 

with garnet residue. REE inversion modelling indicates partial melting (with degrees of 

-2% to -10%) of a spinel + garnet Iherzolite source with trace element compositions 

enriched in LREE with respect to a depleted MORB mantle (DMM) composition. On 

the basis of the consideration that the subduction modified SCLM beneath Western 

Anatolia cannot provide the observed trace element characteristics of the alkaline 

magmas, convecting asthenosphere is inferred to be the source for the alkaline rocks. 

Because of the assumption that convecting asthenospheric mantle is depleted, high 

levels of LREE contents (in association with depleted isotope characteristics) have been 
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attributed to a recent enrichment process which is either by small individual diapiric 
upwellings or by multiple-stage melting of convecting asthenospheric mantle. 
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CHAPTER SEVEN 
C O N C L U S I O N S 

Introduction 

In this chapter, a general summary of results documented in previous chapters 

will be presented. 

7.1. Volcano-stratigraphy 

The evolution of the collision-related volcanism in Western Anatolia has been 

examined in two key areas: (1) the Ezine-Gulpinar-Ayvacik (EGA) area which is 

located in the southwest of the Biga Peninsula; and (2) the Dikili-Ayvalik-Bergama 

(DAB) area which is located further south, between the cities of Izmir and Edremit. The 

field observations, volcanological characteristics and radiometric data show that major 

volcanic activity took place both in the EGA and DAB areas during the Early Miocene. 

It produced a considerable volume of pyroclastics and lavas of intermediate-acid 

compositions. Radiometric data show that the Early Miocene volcanic activity in the 

area studied commenced about 21.3 ± 0.3 m.y. ago. This early stage activity in both 

areas was represented mainly by lava flows, domes and lava pyroclastic successions. 

The lavas are, in general, andesitic to rhyolitic in composition and are highly 

porphyritic. The pyroclastics generally form large ignimbrite deposits accompanied by 

minor debris (lahar) and ash flow deposits. They are mostly rhyolitic and dacitic. Clastic 

sedimentary deposits within the lava and pyroclastic successions indicate that the 

volcanic rocks formed by several eruptive phases. Abundant dyke swarms with 

prevalent orientations of NNW-SSE and NNE-SSW cut the volcanic successions. 

Although the rock types and volcanological characteristics of the Early Miocene 

rocks from the two areas (EGA and DAB) are similar to one another, they show some 

differences in phenocryst assemblages. Amphibole is the main hydrous phase and 

orthopyroxene is rare or absent in the rocks from the DAB area. On the other hand, 

orthopyroxene is one of the most common phenocrysts and amphibole is absent in the 

rocks from the EGA area. 
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Radiometric data show that, in the EGA area, the youngest date for the Early 
Miocene activity is 19.7 ± 0.3 Ma. Middle Miocene activity is absent in this area. In the 
DAB area, the volcanic activity continued into the Middle Miocene with a gradual 
change in eruptive style and rock compositions. The Middle Miocene activity mostly 
produced lava flows and dyke swarms of basic-intermediate compositions. Pyroclastic 
eruptive products are absent in this period. The Middle Miocene volcanism lasted until 
15.2 ±0 .4 Ma. 

A new stage of volcanic activity in the EGA area began in the Late Miocene and 

produced locally developed small lava flows of basic and ultrabasic compositions. The 

Late Miocene activity continued from 11.0 ± 0.4 Ma to 8.32 ± 0.19 Ma. 

7.2. Structural Evolution 

In the area studied, the pre-Miocene structures cannot be recognised properly 

because they are mostly covered by young volcanic and sedimentary rocks and/or are 

complicated by the Miocene-Recent structures. 

Two different structural patterns characterise the Miocene tectonics of Western 

Anatolia: (1) listric, normal faulting; and (2) strike-shp faulting. The former dominates 

the morphology, particularly in the DAB area, whereas the influence of the latter is best 

observed in the EGA area (along the North Anatolian Fault zone). 

The major effect of the normal faulting in the area is the formation of the E-W 

and NE-SW trending graben (e.g. the Bergama and Edremit Graben). In most places 

(e.g. Edremit and Dikili), the normal faults cut the Early Miocene volcanic sequences 

confirming that they were formed later than the Early Miocene. The oldest volcanic 

rocks formed in association with the E-W trending extensional basins (graben) are the 

rocks of the Kalarga Andesite (17.6-17.3 Ma) and the Egrigol Andesite (15.5 Ma). 

These dates are much older than the Late Miocene (-12 Ma), which has been previously 

proposed by Sengor and Yilmaz (1981), Sengor et al. (1985), Yilmaz (1989; 1991) and 

Giile? (1991) for the onset of the N-S extension in Western Anatolia. The above dates 

are also younger than the Late Oligocene-Early Miocene (~ 24-20 Ma) which are the 

dates proposed by Seyitoglu and Scott (1992) and Seyitoglu et al. (1997) for the onset 

of the extension. 

The strike-slip faults strongly control the morphology along the north side of 

Edremit Bay (the southern branch of the NAF) and along the Bayramic trough (the 

middle branch of the NAF). The distribution of the Late Miocene volcanic rocks along 
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the Strike-slip faults implies a close relationship with the strike-slip movements in the 
area. The consistency between the timing of the onset of the strike-slip movement and 
the formation of the Late Miocene rocks also supports this hypothesis. 

7.3. Magmatic evolution 

The volcanic products of the Western Anatolian, Late Cenozoic Volcanic 

Province can be divided into two main groups on the basis of their major-trace element 

and isotopic characteristics. These are: (1) the Early-Middle Miocene calc-alkaline and 

shoshonitic rocks; and (2) the Late Miocene alkaline rocks. 

The calc-alkaline and shoshonitic rocks have enrichments in LILE and LREE 

relative to the HFSE (characterised by negative Ta and Nb anomalies). This has been 

interpreted as evidence for enrichment of the magma source by a subduction component 

which is most probably inherited from pre-collision subduction event. The presence of 

this subduction component is well illustrated by multielement patterns and by the ThP{h 

versus Ta/Yb ratio plot (Chapter 3). In the latter, the calc-alkaline and shoshonitic rocks 

display a consistent displacement from the mantle trend towards higher TlVYb values. 

In keeping with the behaviour of the trace elements, the isotopic characteristics also 

reveal a subduction modified, radiogenic mantle source characterised by high ^̂ Sr/̂ ^Sr 

but low '"^^Nd/'̂ ^Nd ratios for the Early-Middle Miocene, calc-alkaline and shoshonitic 

volcanic rocks (Chapter 6). 

The crystallisation pressure estimates (Chapter 5) and petrographic 

characteristics (Chapter 4) showed that the Early Miocene volcanic rocks from both the 

EGA and DAB areas have a polybaric origin and are the products of more than one 

petrogenetic processes. This is evident from the strong compositional variations in a 

single phenocryst, as well as from the highly variable crystallisation pressures. 

Fractional crystallisation modelling, combined with the estimates of the 

crystallisation pressures and temperatures, showed that amphibole (pargasitic) 

crystallisation took place in deep (-28-35 km) magma chambers for almost all calc-

alkaline and shoshonitic (Early-Middle Miocene) magma series from both the EGA and 

DAB areas. Subsequent crystallisation histories in shallower magma chambers show 

some differences between the Early Miocene rocks from the EGA and DAB areas: (1) 

anhydrous (pyroxene + plagioclase-dominated) crystallisation assemblages in the EGA 

area; and (2) hydrous (edenitic hornblende -i- plagioclase + pyroxene) crystallisation in 

the DAB area. This difference is consistent with the crystallisation temperatures 
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between the two areas (>900°C in the EGA area v <900°C in the DAB area). The 
Middle Miocene rocks show no indication of shallow magma chamber processes. 

Fractional crystallisation modelling shows that the ignimbrites in the area are the 

products of feldspar- and biotite-dominated fractional crystallisation and that their 

formation cannot be explained solely by crustal melting or crustal contamination. 

Modelling of the trace element and isotopic data (Chapter 6) shows that the 

Early-Middle Miocene calc-alkaline and shoshonitic rocks have been affected by 

assimilation combined with fractional crystallisation (AFC) processes, and that the 

effects of the assimilation decrease gradually from the Early Miocene into the Middle 

Miocene. This can most likely be explained by rapid ascent of the magmas through the 

continental crust as a consequence of progressive crustal thinning related to extensional 

tectonics from the latest Early Miocene onwards. Petrographic observations also reveal 

that the phenocryst contents of the rocks decrease from the Early Miocene into the 

Middle Miocene which can be attributed to a rapid movement of the magmas during 

their ascent through the crust. 

Because of the weight of evidence against elevated mantle temperatures beneath 

Western Anatolia, and hence against a mantle plume origin, initiation of magmatism 

across the Western Anatolian collision zone has been inferred to have been caused by 

thermal perturbation of metasomatised (by subduction) sub-continental lithospheric 

mantle (SCLM). Because of the constraints in timing of the onset of the extension in the 

area (e.g. the magmatism started before the oldest date proposed for the onset of the 

extension) and because of lack of evidence for localised extension (pre-Miocene), the 

likely mechanism is the delamination of the thermal boundary layer (TBL) (Chapter 6). 

This delamination would have caused the direct contact of hot asthenospheric mantle 

with the metasomatised part of the SCLM beneath Western Anatolia and thus initiated 

the melting. Delamination of the MBL also have increased the thermal gradient, and 

hence weakened the lithosphere. This may then have assisted or initiated lithospheric 

extension (orogenic collapse) that followed collision and uplift. 

The Late Miocene, alkaline rocks are mostly classified as basalts and basanites 

with their low silica contents ranging between 42 and 50 wt.% SiOi. They are sodic 

alkaline ([Na20-2]>K20) and are characterised by high TiOz (2.5-3.1 wt.%) and low 

AI2O3 (12-15 wt. %) contents. In general, they show OIB-like trace element patterns 

characterised by enrichment in LILE, HFSE and L-MREE, and a slight depletion in 

HREE relative to the N-MORB composition. Unlike the Early-Middle Miocene 
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volcanic rocks, none of the alkali basalt or basanite samples of Late Miocene age have 

negative Ta or Nb anomalies. This indicates that: (1) the source region for the alkali 

basalts and basanites carry no subduction component; (2) the alkaline magmas have not 

been affected by crustal contamination processes; and (3) the Late Miocene alkaline 

rocks have not been derived f rom the same source as the earlier calc-alkaline and 

shoshonitic rocks. The isotopic characteristics also indicate an OIB-type mantle source 

characterised by low ^^Sr/^^Sr but high "*^Nd/"^Nd ratios for the Late Miocene, alkaline 

volcanic rocks. 

The alkaline magmas have been shown, by semi-quantitative modelling, to have 

been generated by variable degrees of partial melting of an isotopically homogenous 

mantle source with a garnet residue. REE inversion modelling indicates partial melting 

(with degrees of ~2 to -10) of a spinel + garnet Iherzolite source with trace element 

compositions enriched in LREE with respect to a depleted MORB mantle ( D M M ) 

composition. Because subduction modified SCLM beneath Western Anatolia cannot 

produce the observed trace element characteristics of the alkaline magmas, convecting 

asthenosphere is inferred to have been the source for the alkaline rocks. Because of the 

general assumption that convecting asthenospheric mantle is depleted, high levels of 

LREE contents (in association with depleted isotope characteristics) have been 

attributed to a recent enrichment process, linked either to small individual mantle 

diapirs or to multiple-stage melting of convecting asthenospheric mantle. The likely 

mechanism for melting of the asthenospheric mantle in the area, where the stretching 

factor (p) is approximately 1.5, is decompression melting resulting f rom the movement 

of the North Anatolian Fault. 
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Appendix 1: Analytical geochemistry 

APPENDIX A 
A N A L Y T I C A L G E O C H E M I S T R Y 

Al . PREPARATION OF THE SAMPLES FOR ANALYSES 

A l . l Powdered sample preparation 

Bulk-rock samples collected in the field were between 0.5-lkg. Weathered 

surfaces were removed and samples were cut down to cubes about 4cm in diameter 

using a diamond-saw. The samples were then washed using water and a bristle brush to 

remove traces of dust and soil. The clean, dry rock pieces were crushed to a fine gravel 

in a 'Fritsch Pulverisette jaw crusher (type 01-704). To avoid contamination, the 

crushing equipment was thoroughly cleaned before use and between samples using wire 

brushes and absolute alcohol. Rock dust was kept to a minimum by using a vacuum 

cleaner. 

A fraction of gravel sample was then put in a Fritsch agate ball mill for 15 to 20 

minutes and ground down to a fine powder. The agate pots were carefully cleaned and 

dried between samples using water and absolute alcohol. Then powdered samples were 

bagged, labelled and stored in dry conditions. 

A1.2 Preparation of the pressed powder pellets 

Previously dried 6-7g of powdered sample was mixed thoroughly with 8 to 12 

drops of Mowiol binding agent in glass baker by using a glass rod until an even 

consistency is obtained. The mixture was transferred to a stainless steel mould and 

compressed between a pair of polished steel discs using a hydraulic press at 10-15 bars. 

The pellet was then dried in an oven at 100°C prior to analysis. 

A1.3 Determination of loss on ignition (L.O.I.) 

3-4g of the sample powder from each sample was placed in 10ml glass vial and 

labelled. These powders were than dried at 100°C for >1 hours to remove surface water. 

Loss on ignition values were then determined by heating an about 3g of powder of the 

sample in a porcelain crucible at >900°C for >2 hours. 
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A1.4 Preparation of fused discs 
Previously ignited powder was mixed thoroughly with dried lithium tetraborate 

flux (Spectroflux lOOB) in the proportion 1:5 (0.45g powdered sample: 2.25g flux) 

using an agate mortar and pestle. The mixture was then placed in platinum crucibles and 

heated to 1050''C for 20 minutes. The molten glass was then poured into graphite 

moulds standing on a hotplate and immediately flattened with a stainless steel plunger. 

Heated glass bakers were placed over the moulds to prevent quench shattering. After 

cooling, the discs were labelled and bagged, care being taken not to touch the analytical 

surface. The fusion discs were stored in a dessicator prior to analysis. The platinum 

crucibles were cleaned by boiling them in hot 50% HCl for >10 minutes between 

successive samples. 

A2. ANALYTICAL PROCEDURES 

A2.1 XRF analysis 

X-Ray Fluorescence (XRF) analysis was carried out on a Philips PW 1500 

spectrometer with a rhodium anode tube at the University of Durham. A total of 219 

samples were analysed both on fused discs and pressed powder pellets for major (Si02, 

Ti02, AI2O3, Fe203, MnO, MgO, CaO, Na20, K2O and P2O5) and trace (Rb, Sr, Ba, Zr, 

Y, Nb, Sc, Cr, V, Ni, Zn, Cu, Co, Ga, Ce, Nd, La, Th, Pb) elements respectively. A full 

range of international standards from across the compositional range were run as 

calibration standards. A number of internal standards were run over the full study period 

to monitor between run variations and machine drift. Estimates of analytical accuracy 

and precision were made by repeated analysis of international reference standards. 

Recommended values for standards were taken from Govindaraju (1989). 

A2.2 ICP-MS analysis 

A subset of 56 samples was analysed using Inductively Coupled Plasma Mass 

spectrometry (ICP-MS) for Cs, Hf, Ta, and Rare Earth Elements (REE) from La to Lu 

in addition to all the trace elements analysed by XRF. ICP-MS analysis was performed 

at the University of Durham. 

Small amount of powdered samples were placed in glass containers in an oven at 

>100°C to dry. Savillex teflon vials were cleaned by rinsing with MQ water and then 

leaving them filled with 2ml Aristar concentrated HNO3 on a hot-plate at >140°C for 2 

hours. A powder aliquot of 0.1 ± 0.00Ig was weighed out from each sample and 
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t r a n s f e r r e d i n t o t h e t e f l o n v i a l s . I n a d d i t i o n t o t h e s a m p l e s , 6 i n t e r n a t i o n a l s t a n d a r d s a n d 

2 b l a n k s w e r e p r e p a r e d . 1 m l o f A r i s t a r H N O 3 a n d 4 m l o f H F w e r e a d d e d i n t o t h e t e f l o n 

v i a l s , t h e i r l i d s w e r e c l o s e d t i g h t l y a n d t h e s a m p l e s w e r e l e f t i n t h e a c i d o n a h o t - p l a t e a t 

a b o u t 1 4 0 ° C f o r > 2 d a y s f o r c o m p l e t e d i g e s t i o n . T h e s a m p l e s w e r e t h e n e v a p o r a t e d i n 

o r d e r t o e l i m i n a t e H F a c i d f r o m t h e s y s t e m a n d t o a l l o w t h e f o r m a t i o n o f n i t r a t e s a l t s . 

1 m l o f A r i s t a r HNO3 w a s a d d e d t o t h e v i a l s a n d e v a p o r a t e d a g a i n . T h i s p r o c e d u r e w a s 

f o l l o w e d t w i c e . T h e n 2 . 5 m l o f A r i s t a r HNO3 a n d a b o u t 2 0 m l o f M Q w a t e r w e r e p u t i n t o 

t h e v i a l s , t h e i r l i d s w e r e c l o s e d a n d b o i l e d f o r > 1 h o u r t o d i s s o l v e s a l t s . T h e s o l u t i o n s 

w e r e a l l o w e d t o c o o l , c h e c k e d f o r a n y s o l i d r e s i d u e a n d t h e n s p i k e d w i t h 1 . 2 5 m l o f 2 

p p m R h , R e a n d B i i n t e r n a l s t a n d a r d s p i k e s o l u t i o n . T h e s o l u t i o n s w e r e t h e n t r a n s f e r r e d 

i n t o 5 0 - m l p o l y p r o p y l e n e v o l u m e t r i c flasks a n d m a d e u p a c c u r a t e l y t o 5 0 m l w i t h M Q 

w a t e r . F i n a l l y , t h e s o l u t i o n s w e r e t r a n s f e r r e d i n t o p o l y p r o p y l e n e c o n t a i n e r s a n d k e p t i n 

a c o o l p l a c e p r i o r t o a n a l y s i s . 

A 2 . 3 E l e c t r o n m i c r o p r o b e a n a l y s i s 

P o l i s h e d t h i n - s e c t i o n s w e r e p r e p a r e d a t t h e U n i v e r s i t y o f D u r h a m a n d w e r e 

c a r b o n c o a t e d a t t h e U n i v e r s i t y o f E d i n b u r g h . A n a l y s e s w e r e p e r f o r m e d a t E d i n b u r g h 

o n a C a m e c a C A M E B A X e l e c t r o n m i c r o p r o b e u s i n g n a t u r a l m i n e r a l s a s s t a n d a r d s . 

O p e r a t i n g p r o c e d u r e s w e r e ~ 2 0 k V a c c e l e r a t i o n v o l t a g e , b e a m c u r r e n t ~ 2 / n A , 3 0 s . p k 

2 2 

c o u n t , 1 5 s . b / g c o u n t , 1 m m s p o t s i z e a n d a 2 5 m m r e t a r d b e a m s i z e . 

A 2 . 4 R a d i o g e n i c i s o t o p e a n a l y s i s 

S r a n d N d i s o t o p e a n a l y s e s w e r e d e t e r m i n e d u s i n g t h e V G 3 5 4 5 - c o l l e c t o r m a s s 

s p e c t r o m e t e r o f t h e L o n d o n U n i v e r s i t y r a d i o g e n i c i s o t o p e f a c i l i t y a t R o y a l H o l l o w a y . S r 

a n d N d w e r e e x t r a c t e d o n t h e s a m e d i s s o l u t i o n f r o m 2 0 0 ± 2 0 m g o f r o c k p o w d e r . T h e 

s a m p l e s w e r e l e a c h e d i n h o t 6 M H C l f o r > 1 h r , a n d r i n s e d s e v e r a l t i m e s i n u l t r a c l e a n 

w a t e r i n o r d e r t o r e m o v e a n y a l t e r a t i o n e f f e c t s . T h e s a m p l e s w e r e t h e n w a s h e d w i t h M Q 

w a t e r a n d w e r e d i s s o l v e d u s i n g a p p r o x i m a t e l y 1 m l o f H N O 3 a n d 3 - 5 m l o f H F . A f t e r 

d i s s o l u t i o n , t h e s o l u t i o n w a s e v a p o r a t e d t o d r y n e s s . I t w a s t h e n c o n v e r t e d t o n i t r a t e b y 

t h e a d d i t i o n o f 1 m l o f H N O 3 , f o l l o w e d b y e v a p o r a t i o n a n d d r y n e s s . T h e r e s i d u e w a s 

c o n v e r t e d t o c h l o r i d e u s i n g 2 . 5 M H C l . 

T h e s e p a r a t i o n o f R b a n d S r a n d t h e p r e l i m i n a r y s e p a r a t i o n o f S m - N d w e r e 

p e r f o r m e d o n a c a t i o n e x c h a n g e c o l u m n e l u t e d w i t h 2 . 5 M H C l . B e f o r e s e p a r a t i o n o f t h e 

s a m p l e s , t h e c o l u m n r e s i n w a s c l e a n e d b y p a s s i n g s e q u e n t i a l v o l u m e s o f 5 0 % a c i d a n d 

w a t e r . A s m a l l v o l u m e o f t h e r o c k s o l u t i o n w a s l o a d e d i n t o t h e c o l u m n , w a s h e d i n t o t h e 
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r e s i n b e d c a r e f u l l y w i t h e l u e n t , a n d t h e n w a s h e d t h r o u g h w i t h m o r e e l u e n t u n t i l a 

f r a c t i o n w a s c o l l e c t e d w h e n t h e d e s i r e d e l e m e n t w a s r e l e a s e d f r o m t h e r e s i n . T h i s w a s 

e v a p o r a t e d t o d r y n e s s , r e a d y t o l o a d o n t o a s i n g l e T a f i l a m e n t f o r t h e r m a l i o n i s a t i o n i n 

t h e m a s s s p e c t r o m e t e r . S m a n d N d w e r e s e p a r a t e d o n a c a t i o n e x c h a n g e c o l u m n e l u t e d 

w i t h d i l u t e m i n e r a l a c i d a n d w e r e r u n o n a s i n g l e R e f i l a m e n t w i t h s i l i c a g e l . F o l l o w i n g 

t h e c h e m i c a l s e p a r a t i o n , S r a n d N d w e r e d e t e r m i n e d m u l t i d y n a m i c a l l y w i t h N d 

d e t e r m i n e d a s N d O ( T h i r l w a l l , 1 9 9 1 a , b ) . 

D u r i n g t h e p e r i o d o f a n a l y s e s , S R M 9 8 7 g a v e ^ ' ' S r / ^ ^ S r o f 0 . 7 1 0 2 4 6 ± 2 1 ( 2 s . d . , 

N = 5 8 ) , w h i l e t h e A l d r i c h l a b o r a t o r y N d s t a n d a r d g a v e ' " ^ ^ N d / ' ^ N d o f 0 . 5 1 1 4 1 8 ± 8 

( 2 s . d . , N = 2 8 ) , e q u i v a l e n t t o ^ ^ ^ N d / " ^ N d i n t h e L a J o l l a s t a n d a r t o f 0 . 5 1 1 8 5 6 . B l a n k s 

w e r e a r o u n d 1 n g a n d 2 0 0 p g f o r S r a n d N d r e s p e c t i v e l y , a n d a r e i n s i g n i f i c a n t . N o a g e 

c o r r e c t i o n s w e r e m a d e o n ^ ^ S r / ^ ^ S r , s i n c e t h e r e s i d u e s a r e l i k e l y t o h a v e R b / S r r a t i o s t o o 

l o w t o g e n e r a t e s i g n i f i c a n t a g e c o r r e c t i o n s . A g e c o r r e c t i o n s f o r ' ' * ^ N d / ' ' ' ^ N d w e r e 

e s t i m a t e d f r o m S m a n d N d c o n c e n t r a t i o n s d e t e r m i n e d b y I C P - M S : u n c e r t a i n t y i n t h i s 

p r o c e d u r e w o u l d h a v e n o e f f e c t o n t h e i n i t i a l ' ' * ^ N d / ' ' * ^ N d a t ~ 2 0 M a . 
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S y m b o l s o f F o r m a t i o n s 

A r e a S y m b o l s F o r m a t i o n n a m e s 

E G A Ayv. Vol. A y v a c i k v o l c a n i c s 

Ezn. Vol. E z i n e v o l c a n i c s 

Tas. Vol. T a s t e p e v o l c a n i c s 

Kov. Dyke K o v a c l i d y k e s w a r m s 

Bal. Ign. B a l a b a n l i i g n i m b r i t e 

Berg. Ign B e r g a s i g n i m b r i t e 

Koy. Ign. K o y u n e v i i g n i m b r i t e 

D A B Behr. And. B e h r a m a n d e s i t e 

Bak. Unit B a k a c a k U n i t 

Cice. And. C i c e k l i k a n d e s i t e 

Sur. And S u r u c e a n d e s i t e 

Bad. Unit. B a d e m l i U n i t 

Bab. Unit B a b a k a l e U n i t 

Dad. Unit D e d e d a g U n i t 

Ezn. Unit E z i n e U n i t 

Kiz. Unit K i z i l t e p e U n i t 

Neb. Vol. N e b i l e r v o l c a n i c s 

Foe. Dyke F o c a d y k e s w a r m s 

Egr. And E g r i g o l a n d e s i t e 

Oda. Dyke O d a b u m u d y k e s w a r m s 

Klg. And K a l a r g a a n d e s i t e 

Krg. Unit K a r a g o l U n i t 

Mt.Sey. U. M t . S e y r e t U n i t 

Akc. Unit A k c a p i n a r U n i t 

Kir. Unit K i r a t l i U n i t 

Ulb. Unit U l u b e y U n i t 

Bal. Unit B a l l i c a U n i t 
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O O ( N 0 ^ O 

r ~ -d- ( N T j - o e n \ o 
^ O C*1 O N 

o d c s d d f * i a \ d 

t s o " o o 

o o o o >o o 
i n ly^ 

d r n c N d 

Q 9 
H S S u z 

OS 

§5 

rr 

c s i d — - o d d - ^ ' — - d o 

cn — ON i r i ON O 
r - » n \ o ^ n 
d ON d — d 

o 

O O O ^ C S O O O O N O 

— d d d d d d d 

— o o o o o o o 

— o o o o o o o 

— o o o 

O o o r - l 

o oo o o o 
d d d d 

O N O O C S O O O O O O 

— d d d d d d d 

— o o o o o o o 

< s v o r ~ 
o o o — ' < s 

— d d d d d d d 

O N O — ' C S O O O O O O 

— d d d d d d d 

§ 8 2 
— d d d d d d d 

O N O — ' C N O t ^ o o O 

— d d d d d d d 

O N O O m o t ^ o G O 

— d d d d d d d 

— ' O O O O O O O 

c ^ — m v o c s r ^ o c n 
CTvOOMOt^ONO 

— d d d d d d d 

— O O O O O O O 

O N 

— d 

O m O — NO ( N 

o o m o OO OO o 
• d d d d d d 

, - 1 \ 0 

O 

o 

o 

o 

O K H •< fa S S O Z 
o 

3 

^ C\ 
ON C I r~ 
r i ci m 

TT 
T f •<t 

« Ov in 0 0 irj 
- H t<i T T 

i - ( 

§ 5 1̂ 

m ON 
t-; ON 

in o . 
t<l t - ; O N 
- J i n r i 

M NO 

<S \ o 

d NO f ) 
T t T T 

290 



r-l ^ 

3̂ 

=2 

—' O O O O O 

CN o — O — 
i n — ( N 

i n ( N O 
r - O T f 

T j - CO 

d ^ 

o — r-~ o — 

r - ( N r - o o a \ ^ -Tf 
O >n O N — • C O 0 0 

d —• r - ' d — ' 

i n o 

C S O O O 

m o o i n o — 
— CM 

* 0 ^ O 
T j - C S O N i n 

• d d d i n — 

0 ^ C O 

c 4 d o d d ^ — 

C7\ O e n c n O o l ^ 
\ 0 m O » n 0 0 •<3-

o 2 2 : ^ „ | | o 
K H <: fa !S S u 

— o o o o — o 

— o o o o — o 

— o o o o — o 

— O O O O —' o 

— o o o o — 

^ — oo c s — o o 
O N O O >n O O 

— d o o o — o 

T j - — oo fN) — >n o o 
O N O O » n O r o O 

— d d d d — d 

v o — - cs v o 
O N o o >n o m o 
— d d d d —• d 

— o o o o —' o 

— o o o o — o 

— o o o o - H o 

0\ 
— d 

o o C-i o § o 
5 d d 

v o ^ » n v o u-i v o 
O N o o m o m o 
— d d d d — d 

V O — ' — N O v o 
O N O O T f O T f O 

— d d d d — d 

N O — — N O N O 

O N O O T f O T f O 

—̂  d d d d — d 

f2 

N O 

I I 

O 

o o 

o 

o 

o 

O 

O 

O 

CO r o 

O ) o 
N O > 0 0 0 

od r-̂  ro 

N O 

oo " 
d >n rol 

>o o 
T j - T t — 
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Appendix C 

X R F and ICP-MS ERROR CALCULATIONS 
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