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A b s t r a c t 

Calculations of band-to-band impact ionisation rates performed in the semi-classical 

Fermi's Golden Rule approximation are presented here for the semiconductors GaAs, 

Ino.53Gao.47As and Sio.sGeo.5 at 300K. The crystal band structure is calculated using 

the empirical pseudopotential method. To increase the speed w i t h which band struc

ture data at arbitrary k-vectors can be obtained, an interpolation scheme has been 

developed. Energies are quadratically interpolated on adapted meshes designed to en

sure accuracy is uniform throughout the Br i l lou in zone, and pseudowavefunctions are 

quadratically interpolated on a regular mesh. Mat r ix elements are calculated f rom the 

pseudowavefunctions, and include the terms commonly neglected in calculations for 

narrow band gap materials and an isotropic approximation to the f u l l wavevector and 

frequency dependent dielectric function. The numerical integration of the rate over all 

distinct energy and wavevector conserving transitions is performed using two differ

ent algorithms. Results f rom each are compared and found to be in good agreement, 

indicating that the algorithms are reliable. The rates for electrons and holes in each 

material are calculated as functions of the k-vector of the impacting carriers, and found 

to be highly anisotropic. Average rates for impacting carriers at a given energy are cal

culated and f i t ted to Keldysh-type expressions w i t h higher than quadratic dependence 

of the rate on energy above threshold being obtained in all cases. The average rates 

calculated here are compared to results obtained by other workers, w i t h reasonable 

agreement being obtained for GaAs, and poorer agreement obtained for InGaAs and 

SiGe. Possible reasons for the disagreement are investigated. The impact ionisation 

thresholds are examined and k-space and energy distributions of generated carriers are 

determined. The role of threshold anisotropy, variation in the matr ix elements and the 

shape of the bands in determining characteristics of the rate, particularly the softness 

of the rate's threshold behaviour are investigated. 
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Chapter 1 

Introduction 

Band-to-band impact ionisation is the process in which an electron in the conduction 

band collides with an electron in the valence band, exciting it across the band gap and 

thus creating an electron-hole pair. Alternatively, the process can be initiated by a 

hole in the valence band colliding with a hole in the conduction band, again resulting 

in the creation of an electron-hole pair. The process of impact ionisation is associated 

only with high energy carriers, since the initiating carrier must supply kinetic energy 

at least equal to the band gap. Significant numbers of such high energy carriers are 

obtained when created optically by photons with energy well above the band gap, 

in which case the process of impact ionisation can increase the quantum yield above 

1 or more usually when carriers are moving under the influence of a high field. In 

this latter case, the generated electron-hole pairs are also accelerated by the field and 

can themselves initiate impact ionisation. I f the field is high enough, the resulting 

auto-catalytic charge multiplication leads to avalanche breakdown t 2 l . 

The process of impact ionisation is often detrimental to device performance. The 

onset of avalanche breakdown above some breakdown voltage (which is characteristic 

of the material and device structure) limits the maximum output of power devices. 

Impact ionisation can also be a problem in high speed devices, which are made small 

to reduce transit times. I f the dimensions of the devices are scaled down without a 

1 



CHAPTER 1. INTRODUCTION 2 

corresponding reduction in the applied voltages, the internal fields can become high 

enough to cause significant impact ionisation. This in turn results in undesirable ef

fects such as gate and substrate currents I 2 " 5 ' , and may be responsible for the kink 

effect in field effect transistors'6"9! and oxide breakdown t 1 0 - 1 2 ! . However, in certain 

applications impact ionisation can be used to advantage. Detectors such as avalanche 

photodiodes ( A P D S ) t 1 3 ' 1 4 ! and microwave sources such as I M P A T T diodes '1 51 rely on the 

charge multiplication caused by impact ionisation. 

Important quantities in determining the role of impact ionisation in a device are 

the a and (3 coefficients, which are defined as the mean number of impact ionisation 

events initiated by an electron (a) or hole (/?) per unit length of drift in the field 

direction I 1 3- 1 4!. These will generally not be equal, will depend on the material and 

the field, and can be influenced by the design of the device. Experimentally they can 

be determined from measurements of gate or substrate currents in F E T S t 4 ' 5 , 1 6 ] or from 

multiplication factors in APDs I 1 3 ' 1 4 ' . Calculation of the a and ft coefficients requires 

consideration of two aspects of carrier transport: the process by which carriers are ac

celerated up to sufficiently high energies to initiate impact ionisation, and the rate at 

which ionisation occurs once carriers have attained sufficient energy. The first of these 

— the acceleration of carriers to high energy — is commonly studied using Monte Carlo 

simulation t 1 7 - 2 9 ! . The high energy nature of the impact ionisation process invalidates 

simple band structure approximations, and the simulations must be carried out using 

realistic band structure. The resulting numerical complexity requires intensive compu

tational effort. The second aspect — the rate at which the impact ionisation process 

itself scatters carriers which have attained sufficient energy — is the subject of this 

thesis. As with the Monte Carlo simulation, the details of the realistic band structure 

must be considered when calculating the rate, requiring considerable computational 

resources. 

The performance of the simulated device will be affected by several aspects of 

the impact ionisation scattering rate, which are studied here. Carriers must have at 
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least some minimum energy to initiate the process. Because the energy distribution 

of hot carriers is often a rapidly falling function near the threshold energy, the num

ber of carriers in the device able to initiate ionisation will depend sensitively on this 

threshold energy. For carriers above the threshold, the magnitude of the scattering 

rate will determine the overall amount of charge multiplication occurring. The perfor

mance of avalanche photodiodes depends on the ratio of electron and hole coefficients 

a/(5. Noise in the device can be reduced if a and (3 differ greatly I 1 3 ' 1 4 ] , as they do in 

silicon t 3 0 ' 3 1 ^ but is increased when a/(3 ~ 1 as is the case in germanium and many m - v 

materials t 3 0 ' 3 2 ! . Thus the relative magnitudes of electron and hole thresholds and rates 

is of particular interest for such applications. The ratio a/(3 can be increased (or de

creased) and hence the noise performance of A P D S improved for m - v materials through 

the use of heterostructures I 1 4 ' 3 3 - 3 6 ] . The technique relies on carriers gaining energy at 

band edge discontinuities rather than through acceleration by the field. The variation 

of the rate with respect to energy above the threshold is of particular interest. I f the 

rate rises rapidly once threshold is achieved, so that carriers which attain the threshold 

energy are quickly ionised, the threshold is said to be 'hard', and conversely a slow rise 

in the rate, allowing carriers to reach energies significantly higher than the threshold 

energy before ionising, corresponds to a 'soft' threshold. The degree of softness of the 

threshold can influence various aspects of carrier transport, including the effectiveness 

of heterostructures in controlling the a and /? coefficients I 2 1 ' 3 7 ! . Anisotropy of the rate 

in k-space is of interest as the field-dependence of the a and (3 coefficients may vary 

for fields applied in different directions with respect to the crystallographic axes. The 

coefficients are found to be isotropic in Si [25>31>381 and InP t 3 9 ' 4 0 ! for example, while in 

GaAs there is some disagreement between experiments t 4 1 - 4 3 ! , which find them to be 

anisotropic, and theory t 1 7 ' , which predicts isotropic behaviour. The anisotropy of the 

rate has implications for the choice of growth direction of devices such as A P D S in which 

the ratio of a/(3 may vary with direction, or I M P A T T diodes in which the avalanche 

build-up time may vary I 4 4 ' . Knowledge of the distributions of generated carriers is of 
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use for performing Monte Carlo device simulations, and of general interest in under

standing the process of impact ionisation. 

1.1 Previous Work on Impact Ionisation 

Early calculations of the impact ionisation a and /? coefficients were performed by 

Wolff t 4 5 l and Shockley t 4 6 l . Wolff assumed the charge carriers were in thermal equi

librium at a temperature dependent on the applied field, and that impact ionisation 

was initiated by carriers in the high energy tail of the distribution. Shockley took the 

opposite approach of assuming that impact ionisation was caused by non-equilibrium 

'lucky' electrons which were fortunate enough to avoid collisions and be accelerated to 

high energy. Wolff's approach is applicable at high fields while Shockley's is applicable 

at low fields. Baraff ^ assumed that the distribution of electrons was a combination 

of Wolff's thermalised and Shockley's lucky electrons and obtained results applicable 

at intermediate fields. More recently, Ridley ^ has developed a simple model, later 

refined by Burt I 4 9 - 5 0 ] , and referred to as the 'lucky-drift' model. I t assumes that a car

rier's momentum is rapidly randomised by collisions, but that i t can escape significant 

energy relaxation for longer periods. In this way carriers can achieve sufficiently high 

energy through lucky-drift to initiate impact ionisation. A l l these theories are con

cerned mainly with the mechanism by which carriers gain sufficient energy from the 

field to cause impact ionisation, which is assumed to occur rapidly once the threshold 

energy is reached. The lucky-drift theory has been refined to take account of a finite 

scattering rate above threshold t 5 1 , 5 2 ' , but does not consider the form of the rate in 

detail. 

Keldysh ^ calculated the actual scattering rate as a function of the energy of the 

initiating carrier. He applied Fermi's Golden Rule to determine the transition rate 

due to impact ionisation processes and integrated over all final states. By assuming a 

direct gap, spherical parabolic band structure and constant transition matrix elements, 
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he obtained the expression for the rate of ionisation by a carrier at energy E as 

R(E) = Ro(E - E0)p (1.1) 

where P — 2 and R0 and E0 are constants dependent on the details of the band 

structure which, in the application of the model to real materials, are usually fitted to 

experimental data. Due to its simplicity, the Keldysh formula has been widely used 

in device simulations, e.g. [17,24,54-56]. However, it is derived using approximations 

that do not apply to realistic band structure at high energy and so its validity is highly 

questionable. In addition, i t is found that widely varying values of the parameters Rq 

and E0 give similar results when used in Monte Carlo simulations t 5 7 l , which has resulted 

in very different scattering rates being used throughout the literature ' 5 6 ' , hence giving 

little physical insight into the process. To determine the role of impact ionisation in 

devices with more accuracy, the ful l band structure must be taken into account. 

Kane t 5 8 l calculated numerically the rate in silicon using realistic band structure, 

taking into account the proper surfaces of energy and momentum conserving transitions 

in k-space, and the transition matrix elements, thus obtaining the rate as a function 

of the wavevector (rather than just the energy, as in Eq. (1.1)) of the ionising particle. 

By neglecting momentum conservation he also derived an energy-dependent expression 

for the rate, which proved to be a good approximation to that obtained from the ful l 

calculation. 

Several other authors have obtained the rate using methods very similar to Kane's 

(e.g. [20,21,59,60]), or a variation in which the Brillouin zone is discretised into small 

tetrahedra and the rate obtained analytically in each (e.g. [22,25,26]). Beattie has 

developed an alternative method to calculate the rate involving an explicit surface 

integration l 6 1 ' , which has been applied to a number of materials I 6 2 - 6 4 ! . A l l these cal

culations have several aspects in common: 

• The calculations, being based on non-analytic band structure, are very computer-

intensive. 
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• Due to restrictions imposed by energy and crystal momentum conservation, 

the rate is found to be a function of the specific k-vector of the initiating 

par t ic le ' 1 0 ' 2 2 ' 2 5 ' 2 6 ' 6 5 ' 6 6 ] rather than a function of just its energy as in Eq. (1.1). 

Carriers with the same energy but different wavevectors will in general have 

widely varying rates. 

• For carriers located throughout the Brillouin zone, the individual rates plotted 

as a function of carrier energy form a scatter graph (as implied in the previous 

point). I f an expression of the form of Eq. (1.1) is fitted through these points, 

the value of P must usually be set to a value greater than two to obtain the 

best fit I 2 6 ' 2 8 - 6 7 !. This higher P-value is an indication of a softer threshold 1 2 2 > 6 6 J 

in agreement with the soft threshold indicated by experimental data [ 5 1 > 5 2 > 6 8 1 . 

Most recently, calculations i 6 9 - 7 2 ! have been performed which go beyond the semi-

classical Fermi's Golden Rule theory, including the effects of collision broadening and 

intracollisional effect. Both these result in the relaxation of the condition of energy 

conservation imposed by the semi-classical approach leading to an increase in the 

anisotropy of the rate and a softening of the thresholds. 

1.2 Work Presented in this Thesis 

This thesis is concerned with the actual process of impact ionisation and not the trans

port of carriers up to energies at which it is possible. The materials studied here 

are GaAs, Ino.53Gao.47As and Si0.5Ge0.5, at 300K. GaAs and the alloys A ^ G a ^ A s 

are important materials in the fabrication of high-speed electrical devices and opti

cal devices t 7 3 l The In-rGai^AsyPi-y alloys are another important system, of which 

Ino.53Gao.47As is the lowest band gap composition which is lattice matched to InP. 

These alloys provide materials for device fabrication with lower band gaps than the 

ALrGai_ xAs alloys, in particular corresponding to the 1.3 and 1.55/xm low dispersion 

and absorption windows in optical fibres t 7 4 ' , and therefore have applications in optical 

http://Ino.53Gao.47As
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communications t 7 5 l . Alloys of SiiGej-z also have band gaps in the optical fibre low 

dispersion and absorption windows, and allow the well established Si-based materials 

technology to participate in the fabrication of devices previously the preserve of the 

I I I — V semiconductors I 7 6 - 7 8 ] . The unstrained alloy is considered in this thesis, though 

in real devices the material may be strained with a corresponding modification in its 

properties I 7 9 - 8 0 ! . 

For each material, the calculations carried out here include the following. The 

impact ionisation thresholds and rates are calculated as a function of wavevector for 

impacting electrons and holes. The rates are calculated in the semi-classical Fermi's 

Golden Rule approximation, with the crystal band structure being obtained by the 

empirical pseudopotential method t 8 1 l An interpolation scheme has been developed to 

increase the speed with which the band structure data can be retrieved. Matrix ele

ments are obtained from the pseudopotential wavefunctions, including terms commonly 

neglected in narrow band gap materials t 8 2 l and a frequency- and wavevector-dependent 

dielectric function t 8 3 l The surfaces of allowed transitions are obtained using two dif

ferent numerical methods: that of Beattie t 6 1 l and a method developed here which is 

a variation of Kane's method ' 5 8 1 , optimised to be more efficient near the threshold. 

Each method has certain strengths and weaknesses, and also the comparison of the 

two different methods provides a reliable check of the numerical accuracy of the algo

rithms for the integration over allowed transitions. As well as thresholds and rates, 

the distributions of the generated carriers are obtained and examined, and the band 

structure and other factors affecting the rates are investigated. 

The rest of this thesis is divided up in the following way. Chapters 2 and 3 deal 

with the band structure. In Chapter 2 the relevant pseudopotential theory is briefly 

reviewed, along with the calculation of the dielectric function, which is performed 

using the method of Walter and Cohen ^ . Chapter 3 covers the implementation of the 

interpolation scheme used to obtain efficiently the energies, wavefunctions and dielectric 

function for the rate calculation. Chapters 4 and 5 discuss the impact ionisation process 
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itself. The basic theory is dealt with in Chapter 4 and details of the implementation 

of the two integration methods are discussed in Chapter 5. The results are presented 

in Chapters 6 and 7. General results including thresholds, rates and generated carrier 

distributions are surveyed in Chapter 6, and the results obtained there are compared 

to the results of similar calculations performed by other authors. In Chapter 7, a 

more detailed analysis of the results is performed, with a view to understanding the 

underlying factors affecting the rates in each material. Finally, in Chapter 8 conclusions 

are drawn and suggestions for further research made. 



Chapter 2 

Band Structure Theory 

In order to calculate the impact ionisation rate of a carrier in a crystal, a knowledge 

of the band structure is required — that is to say, we must be able to obtain the 

energies and wavefunctions of the single electron states throughout the first Brillouin 

zone. Various methods exist for calculating these quantities, employing greater or lesser 

approximations, and requiring varying amounts of computational effort. 

Whichever method is used, we will normally require the electronic structure infor

mation as a function of position in k-space, i.e. 

E = En(k) 
(2.1) 

where n is a band index. Frequently we will also require the relation between energy and 

wavevector in the alternative form k = k„(.E), such as when considering the positions 

of the energy-conserving final states in a given transition. In this case, the positions 

of k corresponding to the required energy will have to be searched for, requiring many 

band structure calculations throughout k-space. 

9 
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2.1 Choice of Calculation Method 

10 

Various methods are available for calculating crystal band structure (see, for example, 

[84], [85]). They can be classified as ab initio or empirical. Ab initio methods calculate 

the band structure of the crystal from first principles, requiring few or no adjustable 

parameters'86^ In contrast, empirical methods rely on several parameters which are 

adjusted to give results that fit data obtained experimentally. Because of this explicit 

fitting procedure, the band structure information obtained from empirical methods is 

generally more reliable (provided the data used is reliable). A further disadvantage of 

ab initio calculations for this work is the fact that they are usually designed to give 

ground state properties only — reliable conduction band results cannot be guaranteed. 

Since reliable experimental data is available for the semiconductors of interest here, 

an empirical method is chosen. Furthermore, the method used must be able to provide 

energy and wavefunction data throughout the Brillouin zone and at high energies, 

since the electronic states involved in the impact ionisation process will be similarly 

distributed. This unfortunately rules out the use of effective mass models t 8 7 l and the 

less computationally intensive approaches such as the few band kp method I 8 8 ' . Instead 

the method used is the empirical pseudopotential method t 8 1 ' 8 9 ] , which can provide data 

of acceptable accuracy at the energies required. Fig. 2.1 compares the simple parabolic 

band approximation for the F and satellite valleys with a pseudopotential calculation 

for the conduction band structure of GaAs. The parabolic approximation is applicable 

only up to carrier energies of less than an electron volt. Since impact ionisation involves 

states of much greater energy, the parabolic band approximation is of no use in such 

calculations. 

Unfortunately, the use of the pseudopotential method is considerably more com

putationally intensive than analytic methods. In fact, in applications such as impact 

ionisation rate calculations in which the functions E()c) or ip(k.) must be evaluated 

many times, the pseudopotential method is too CPU intensive to be used directly with 
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Figure 2.1: The first and second conduction bands of GaAs, obtained by the pseu
dopotential method (black line) and the parabolic band approximation (red line). 

the facilities normally available, and instead is used to set up an interpolation scheme. 

The implementation of this scheme is the subject of Chapter 3. 

2.2 The Pseudopotential Method 

The pseudopotential method l 8 1 - 8 9 - 9 1 ] can provide energy and wavefunction data as a 

function of position in k-space throughout the Brillouin zone and at all energies of 

interest here. The method seeks to solve the Schrodinger equation numerically for 

single electron states in the crystal, but with the real crystal potential replaced by a 

pseudopotential which is weaker, but nevertheless gives the same energy band structure. 

To see why the pseudopotential is required in practical numerical calculations, consider 

attempting to solve the Schrodinger equation using the real potential. 
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2.2.1 Direct Solution of the Hamiltonian 

The allowed energies E and eigenfunctions ^ ( r ) of single electron states in the crystal 

are obtained by solving the Schrodinger equation 

P 
2m 

+ V (r ) U ( r ) = (2.2) 

where V(r) is a function representing the average potential felt by each electron due 

to the lattice of ions and the other electrons. I f we know the form of V(r) we can in 

principle solve Eq. (2.2) for all possible E and 4>(r). The potential is expanded as a 

Fourier series in terms of reciprocal lattice vectors, G: 

V(T) = J > ( G m ) e l (2.3) 

For a given point in k-space, eigenfunctions of the crystal Hamiltonian can be written 

in the Bloch form, i.e. as V'k(r) = u\i(r)elk r where Uk(r) has the periodicity of the 

crystal and can be expanded (like the potential) as a Fourier series. iV plane waves are 

used in the expansion, giving 

N 

^ ( r ) = c*-r J > n ( k ) e l G - r . (2.4) 
n = l 

where a sufficiently large value of iV must be chosen to ensure that the corresponding 

energy eigenvalue converges with respect to i t . 

The potential in Eq. (2.3) and the wavefunction in the form of Eq. (2.4) are put 

into Eq. (2.2), which is then reduced to a matrix eigenvalue problem. 

Ti V12 

V2i T2 

V1N 

V2N 0-2 

\ VNi V N 2 • •• TN J y aN J 

= E 
a2 (2.5) 



CHAPTER 2. BAND STRUCTURE THEORY 13 

The elements of the matrix are 

Vi3 = ( K i M r J I K , - ) 

(2.6) 

(2.7) 

where |K n > = e ^ k + G ^ T . 

Using N plane waves in the expansion of the wavefunction at given k, we obtain 

N eigenvalues, each corresponding to the energy of a different band at k. For each 

eigenvalue there is an eigenvector whose components give us the coefficients a\... a/v 

for the wavefunction of the band in question at k. Thus solving Eq. (2.2) at given 

k gives energies and wavefunctions for as many bands as we use plane waves in the 

expansion of the wavefunctiona. 

In practice this method cannot be used. The rapid oscillations of the wavefunction 

in the regions of large negative potential around the ions of the lattice requires the 

expansion of Eq. (2.4) to contain of the order of 106 terms or more to achieve a good 

(i.e. converged) representation. Solving the eigenvector problem obtained from putting 

this into the Schrodinger equation thus requires diagonalisation of matrices of 106 x 106 

elements — the computational requirements for this are clearly prohibitive. 

2.2.2 The Pseudo-Hamiltonian 

Pseudopotential techniques seek to find an alternative form of the potential which gives 

the same eigenvalues (band energies), but leads to eigenvectors (wavefunctions) that 

require expansion in terms of fewer coefficients. The matrices to be diagonalised are 

thus smaller and the computational requirements much reduced. 

The pseudopotential method assumes that the electronic states can be divided into 

two types: core states and valence states. The core states are the closed shells of inner 

electrons around each ion. The core states of neighbouring ions do not overlap, and 
aNote that only the lowest solutions can be assumed to be converged — the Nth eigenfunction for 

example will certainly not be. 
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the wavefunctions of the core states of each ion are the same as in the free atoms. 

(The energy levels in the core will all be shifted due to the coulomb interaction with 

neighbouring ions, but the inter-level energy separations are assumed to remain the 

same). The valence states are the remaining outer states. Here 'valence' denotes any 

non-core state i.e. the states known as the valence and conduction bands in the usual 

semiconductor terminology. I t is these states (and not the core states) that influence 

the properties of the crystal of interest here. 

The lowest eigenvector obtained from a direct solution of Eq. (2.2) would be the Is 

core state. The remaining core states — 2s, 2p, etc . . . — would come next, then finally 

the valence states. In the pseudopotential method used here, the lowest eigenvector 

corresponds to the first valence state — the core states are 'by-passed'. This is achieved 

by expanding the wavefunction in a basis set which is itself orthogonal to the core states 

— a set of orthogonalised plane waves. 

Orthogonalised Plane Waves 

An orthogonalised plane wave ( O P W ) is a plane wave with core states added in such a 

way as to make it orthogonal to those core states t 9 ° ] : 

OPW(k) = |k> - l « ) H k > ( 2 - 8 ) 
a 

(OPW|a) = 0 (2.9) 

where |k) = e'k r is a plane wave and \a) is an atomic core wavefunction. We then 

express the electron wavefunction as an expansion in terms of M orthogonalised plane 

waves, 

M 

iMO = 5 > 0 0 ( i - £ k * K a l ) l k + G ; > (2.io) 
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where the b\...bM are coefficients to be determined. Eq. (2.10) is substituted into 
Eq. (2.2) and the resulting terms re-arranged to give 

where </?k(r) = J2j bj(k)el(-k+G^'r is a sum of plane waves. Finally, Eq. (2.11) is written 

as 

This pseudo-Hamiltonian is of the same form as the original Schrodinger equation 

Eq. (2.2), and can be solved in the same way. However the real potential V(r) has 

been replaced by a non-local operator called the pseudopotential, 

V p s = V(r) + £ ( £ k ~ Ec)\ct)(a\ (2.13) 

and the real wavefunction V'k(r-) has been replaced by a pseudowavefunction <^k(r)) 

related to the real one by 

l M r ) = ( l - ^ | a )H ) f t ( r ) (2.14) 

a 

Eqs. (2.2) and (2.12) have the same energy eigenvalues, except that eigenvalues cor

responding to the core states are only obtained from the real Hamiltonian and not 

from the pseudo-Hamiltonian. Because of the initial expansion of the wavefunction in 

a basis orthogonal to the core states, the lowest eigenvalue of the pseudo-Hamiltonian 

corresponds to the first valence state. 

2.2.3 The Advantage of the Pseudopotential 

The important difference between the real potential V ( r ) and the pseudopotential V p s 

is that the pseudopotential is weak in the sense that i t has no bound states in the 

region of the ionic cores. This is due to the fact that the second term on the right 
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hand side of Eq. (2.13) acts to cancel out the effect of the first term (the real attractive 

potential). This in turn results in the pseudowavefunctions being smooth functions 

throughout all space, including near the ion cores where the real wavefunctions oscillate 

rapidly. This smooth characteristic of the pseudowavefunctions allows them to be 

expanded in terms of only a few plane waves (~ 100). The matrices that require 

diagonalisation in order to solve the pseudo-Hamiltonian equation are correspondingly 

small, and the computational requirements more manageable. Note however that for 

many applications the computational requirements are not reduced to the point where 

the pseudopotential calculation can be used directly. As will be discussed in Chapter 3, 

in this work it is used indirectly through an interpolation scheme. 

Figs. 2.2 and 2.3 are schematic diagrams comparing the real potential and wavefunc

tion with their pseudo- counterparts. In Fig. 2.2 it can be seen that the real potential 

is very deep near the ion itself (~ £). In contrast, the pseudopotential remains weak 

near the ion. Similarly, the real wavefunction oscillates rapidly near the ion while the 

pseudowavefunction remains smooth. Away from the ion — that is, outside the volume 

occupied by the inner core orbitals — the potential and wavefunction are the same in 

both real and pseudo cases. 

In many applications the pseudowavefunctions can be used as approximations to 

the real wavefunctions without converting from one to the other via Eq. (2.14). This 

is due to the fact that they only differ in the small volume of the core regions — see 

§2.3.2. 

2.3 Solving the Pseudo-Hamiltonian 

The pseudo-Hamiltonian, Eq. (2.12), is solved in the same way as described at the 

beginning of §2.2 for the real Hamiltonian, Eq. (2.2). The pseudopotential Vps, and 

the Bloch part of the pseudowavefunction (p(r) are each expanded as a Fourier series 

in terms of reciprocal lattice vectors G, as was done in Eqs (2.3) and (2.4) for the 
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Figure 2.2: A schematic diagram of the pseudopotential (solid line) 
and real ionic potential (dashed line). The real potential becomes 
very strong near the ion (V ~ but the pseudopotential remains 
weak everywhere. Away from the ion, pseudo- and real potentials 
are the same. 

TO 

- P S E U D O W A V E F U N C T I O N 
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Figure 2.3: A schematic diagram of the pseudowavefunction (solid 
line) and real wavefunction (dashed line). The real wavefunction 
oscillates rapidly near the ion (where the real potential is strong) 
whereas the pseudowavefunction has no such rapid variation. Away 
from the ion, pseudo- and real wavefunctions are the same. 
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real potential and wavefunction. These are put into the pseudo-Hamiltonian, leading 

to an eigenvector problem of the form of Eq. (2.5) whose solution gives the energies 

and pseudowavefunctions. The problem then is to evaluate the matrix elements, given 

by Eqs. (2.6) and (2.7) in the case of the real potential, which in the case of the 

pseudopotential become 

Ti = ^ ( k + Gi)2 + (Ki\Vpa\Ki) (2.15) 

v i j = (Ki\%.\Kj) (2-16) 

Calculating the matrix elements using the expression for V p s in Eq. (2.13) would 

be a complicated task, and require knowledge of the core states \ot). Cohen and 

Bergstresser I 8 9 ' approximated VPS with a simple local potential Vj,(r) (which is much 

weaker than the real potential), and obtained a good fit to the experimentally de

termined band structurefor a number of semiconductors. Chelikowsky and Cohen '8 11 

improved the accuracy of the fitted band structure by including non-local terms in 

the pseudopotential, as well as terms accounting for the spin-orbit interaction. It is 

this form of the pseudopotential which is used in this work. The discussion here will 

concentrate on the parameters needed to specify the potential, and for a ful l account 

the reader should refer to [81]. 

Using the pseudopotential of [81], the matrix elements can be considered to be 

the sum of three parts: 

< K i | V p i | K j ) = ( K i | VL + V N L + V S O \Kj) (2.17) 

in which VL is a local pseudopotential, V/vx is a non-local pseudopotential and Vso 

accounts for spin-orbit coupling. Each of these terms is described below. 

The Local Pseudopotential, VL 

The first term in the pseudopotential is a local potential, i.e. a simple function of 

position, r. The local potential is expanded as a Fourier series in terms of reciprocal 
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lattice vectors, G: 

F L ( r ) = ^ l / ( G n ) e i G - r (2.18) 
n 

For the diamond and zinc-blende structures it is convenient to express the V(G)'s in 

the form 

V(G) = VS(G) cos(G • r ) + iVA{G) sin(G • r ) (2.19) 

where r = | a 0 ( 1,1,1), a 0 being the lattice constant, and where V S and V A are the 

symmetric and antisymmetric form factors for the crystal. They are related to the 

form factors for the potential due to the cation and anion by 

V S = - (VC + V A ) 
2 (2.20) 

yA = i ( y c - y a ) . 

If we assume the pseudopotentials due to the cation and anion are spherically symmet

ric, VS(G) and VA(G) become functions only of the magnitude of G i.e. VS(G) and 

VA(G). 

For the crystals of interest here, converged band structure can usually be obtained 

using form factors up to and including the G = reciprocal lattice vectors (i.e. 

the (3,1,1) vectors). This gives us three symmetric and three antisymmetric form 

factorsb. In the case of the diamond structure, the antisymmetric form factors must 

all be zero due to the fact that the same ion is located at each site in the basis. 

Thus the local part of the pseudopotential is specified in terms of the parameters 

V S ( V 3 ) , V S ( V S ) , V S ( V U ) , V A ( V 3 ) , V A ( J 4 ) , V A ( V U ) and a 0 . 

The Non-Local Pseudopotential, VNL 

The second term in the pseudopotential of Eq. (2.17) is a non-local potential. For 

each of the cation and anion, the non-local potential is written as a sum of spherical 

b T h e V s ( \ / 4 ) and V A ( y / 8 ) form factors do not contribute due to cos (G • r ) and s i n ( G • r ) being 
zero for the G-vectors with these magnitudes respectively. 
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potential wells surrounding the ion, each of which acts on a different angular momentum 

component of the wavefunction. Matrix elements for each ion are then of the form 

( K ^ V V i l K , ) - Y,(Ki\ME)fi{r)nkj) (2.21) 
i 

The sum over / includes all angular momentum states present in the core wavefunctions, 

i.e. for the semiconductors of interest here, the s, p and d states with / = 0,1 or 2. For 

one of these components the non-local well can be 'absorbed' into the expression for 

the local potential, and as in [81] this is done for the p-well. Thus the sum is over the 

components / = 0 and 1 — 2. The terms in the sum are as follows. 

Ai(E) is the well depth and in general is a weak function of energy. The s-well 

depth is given by 

A0(E) = a0 + ft, { [E^KAE0^)} * - E°(KF)} (2.22) 

and it is adequate to give the d-well a fixed depth, A2. 

The function fi(r) defines the shape of the well, which is usually taken to be a 

square well c: 

1 r<Rh 

Mr) = \ (2-23) 
[O r>Rt 

in which Ri is some suitable value for the radius. 

The term CP/ is the projection operator for the Z t h angular momentum component 

of the wavefunction, which ensures that the / t h well acts only on the appropriate com

ponent of the wavefunction. 

The non-local potential has therefore introduced five new parameters for each of 

the cation and anion: a 0, Po, Ro, A2 and R2, i.e. ten new parameters in total. 
c T h e square well is used due to its simplicity, although in G a A s for example, a gaussian well of 

suitable width is used. 
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Spin-Orbit Coupling, Vso 

The final term in the pseudopotential in Eq. (2.17) accounts for the effect of the spin-

orbit interaction. Matrix elements for the cation and anion are of the form 

(Ki\V£0\Kj) = -piivil&luj) • (Ki x K , ) 
(2.24) 

(Ki\V^0\Kj) = -afiiivifflvj) • (Ki x Kj) 

where vn is a spinor and the components of a are the Pauli spin matrices. In the 

Chelikowsky and Cohen formulation, the spin-orbit matrix elements also include terms 

of the form 

poo 

Bm(K) oc / jt(Kr) Rm(r) r 2 d r (2.25) 
Jo 

where ji(Kr) is a spherical Bessel function and Rniir) is a radial wavefunction. In this 

work, the contribution of these terms is found to be negligible in InGaAs and SiGe, 

but is included in GaAs (for which the relevant data was already available). 

Inclusion of the spin-orbit interaction in the pseudo-Hamiltonian doubles the num

ber of terms used to expand the pseudowavefunction. Where previously there were 

AT terms corresponding to N reciprocal lattice vectors, there are now 2N terms: N 

spin-up terms and N spin-down. The size of the matrix involved in the resulting eigen

vector problem is correspondingly doubled. (An alternative approach, which is used 

by Chelikowsky and Cohen but not used in this work, is to include the spin-orbit in

teraction as a perturbation which is applied after the matrix eigenvector problem has 

been solved l92>93]. This leads to wavefunction expansions of 2N terms as before, but 

avoids the doubling in size of the Hamiltonian matrix). 

Inclusion of the spin-orbit interaction introduces two new adjustable parameters 

for fitting: /x and a, corresponding to the overall strength of the interaction and the 

cation-anion weighting respectively. 



CHAPTER 2. BAND STRUCTURE THEORY 22 

2.3.1 Fitting Pseudopotentials 

The pseudopotential used here is described in terms of 19 parameters. Since the amount 

of experimental data available for fitting these parameters may well be limited for a 

given material, i t is undesirable to use so many adjustable parameters in fitting the band 

structure. Therefore, as in the procedure of [81], several are fixed before any fitting is 

carried out. The non-local potential radii can all be given fixed values. The s-well radii 

(i?o) a r e fixed using the Heine-Animalu t9 4>9 5] calculations, while the d-well radii are are 

set to i ? 2 — ^ a 0 i which makes the d-wells touching spheres. The value of a appearing 

in the spin-orbit term is set at the ratio of the spin-orbit splittings in each of the free 

atoms, and of course the lattice constant do is known beforehand. Thus the fitting 

procedure must adjust the values of 13 of the parameters to fit the pseudopotential 

band structure to experimental data. Table 2.1 summarises the situation. 

In this work, adjustment of the 13 fitted parameters was performed by a Monte 

Carlo fit t ing method which compares the band structure of the pseudopotential calcu

lation to the experimental data, and randomly adjusts each parameter, until satisfac

tory agreement is achieved. The procedure and further constraints that can be applied 

to the fi t t ing parameters are discussed in Chapter 3, §3.1. 

2.3.2 Output of the Pseudopotential Calculation 

Once the parameters defining the pseudopotential have been set, the pseudopotential 

calculation itself (that is, the solving of the pseudo-Hamiltonian) can be viewed as a 

'black box'. I t takes as input one k-vector in the 1 s t Brillouin zone and gives as output 

energies and wavefunctions for the first 2N bandsd at that k-vector, where N is the 

number of plane waves used to expand the wavefunction. 

d T h e factor of 2 is due to the inclusion of spin. 
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Parameter 
Symbol 

Parameter Fitted/Fixed 

VS(V8) 
Vs(Vn) 

Symmetric form factors 

VA{y/i) 
vA(Vn) 

Antisymmetric form factors 
Fitted 

«S, ft < ft s-well depths (cation & anion) 

A\ 
A% 

d-we\\ depths (cation & anion) 

Spin-orbit coupling 

R% 
pa 

R% 
DO 

s-well radii (cation & anion) 

d-well radii (cation & anion) Fixed 

a Ratio of S-0 splitting in free atoms 

a0 Lattice constant 

Table 2.1: The parameters required to specify the form of the pseu
dopotential. Those marked 'Fitted' are adjusted to give band struc
ture fitting experimentally measured data. Those marked 'Fixed' 
can be set before fitting takes place. 
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Energies and Wavefunctions 

Energies are output in the form of 2N scalars 

Energies = En(k), n = 1...2N (2.26) 

where £ i (k ) is the energy of the lowest valence state at k, and energy increases with 

increasing band index n — see Table 2.2. Wavefunctions are output as 2N vectors 

Wavefunctions = c„(k), n = 1 . . . 2N (2.27) 

where vector cn corresponds to the state with energy En, and each vector has 2N 

components, 

c„(k) = ( T c n j i ( k ) , - - - , t c n , i V ( k ) , i c n i i ( k ) , . . . / c n , A r ( k ) ) (2.28) 

each of which are generally complex numbers. The pseudowavefunction <£>„(k) is ob

tained from the vector c n (k) using the expression 

N 

where u n (k) is the Bloch periodic part of </?„(k) and Q, is the volume of the crystal. The 

eigenfunctions 11) and 11) are orthonormal spin-up and spin-down states respectively. 

Thus, a general wavefunction is not a pure spin-up or spin-down eigenstate but is a 

linear combination of the two. 

Fig. 2.4 shows the first 20 energy bands of GaAs obtained using the pseudopotential 

calculation. Note that each line on the plot is in fact a pair of bands, which along L - r 

and T-X are degenerate, but along X - U , K - r and at general points in the Brillouin 

zone are minutely split by the spin-orbit interaction. These pairs will frequently be 

referred to together, for example, the expression ' 1 s t conduction band' will be used to 

denote the first pair of bands immediately above the band gap. Table 2.2 lists the band 

indices (as returned by the pseudopotential calculation) along with the usual names 

<pn(k) = w n (k)e i k r = -±= E C c ^ l t ) + ^ n j | 4 - ) ) e ^ - e i k r (2.29) 
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Figure 2.4: The lowest 20 energy bands of GaAs, obtained by the pseudopo
tential method. Along L - T - X the bands are doubly degenerate. In the other 
directions, each line on the plot is in fact pair of bands, minutely split by the 
spin-orbit interaction. The numbering on the right hand side indicates the 
band indices. See also Table 2.2. 

given to those bands in semiconductors. 

Overlap Integrals, Orthonormality and Degeneracy 

The overlap integral between the periodic parts of Bloch functions at general values of 

wavevector is given by the expression 

N 

( u ^ k O M k a ) ) = 5 > - j ( k i ) 1c*dM + ' c m j ( k i ) i c n j ( k 2 ) . (2.30) 
3=0 

The wavefunctions of the bands output for a given wavevector form an orthogonal set 

which can be normalised, and hence 

( u m ( k ) | u n ( k ) ) = 6m,n (2.31) 

where S M I N is the Kronecker delta function. 

Calculations of crystal properties such as the impact ionisation rate require the 

evaluation of overlap integrals of the form of Eq. (2.30). The true matrix element should 

19.20 

17.IS 

15,16 

13,14 
1.12 

9. O 

1.2 
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Band 
Index 

Name 

3,4 
5,6 
7,8 

9,10 
11,12 

Spin Split-off 
Light Hole 
Heavy Hole 

1 s t Conduction 
2 n d Conduction 

Table 2.2: The band indices of the pseudopotential calculation 
(with spin) and their usual names in semiconductors. See also 
Fig. 2.4. 

be calculated using the real wavefunctions, obtained from the pseudowavefunctions via 

Eq. (2.14). However the additional core-core and plane wave-core terms introduced 

by using the real instead of pseudo wavefunction are small due to the small volume 

occupied by the core, and i t is usually sufficient to use pseudowavefunctions in the 

evaluation of matrix elements ^ . 

At a general point in k-space in a zinc-blende semiconductor, all bands will be non-

degenerate, but this is not necessarily the case at symmetry points. At the T-point 

for example, all bands are at least doubly degenerate as the spin-orbit interaction 

does not cause the small splitting between pairs of bands that i t does elsewhere. The 

wavefunctions of degenerate bands are not uniquely specified as at non-degenerate 

points. Any linear combination of degenerate wavefunctions is equally valid, and the 

exact combination output by the pseudopotential 'black box' is in general random. 

However, the degenerate wavefunctions output from the calculation can be combined 

to ensure that they are orthogonal to each other and normalised, just as in the non-

degenerate case. 

In the case of diamond structure semiconductors, this spin-degeneracy is present at 

all points in k-space and hence no single-electron state has a uniquely defined wave-

function. 
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2.4 The Dielectric Function 

27 

The expression for the impact ionisation matrix element includes the longitudinal di

electric function e of the crystal ^ (see §4.2 of Chapter 4), which is calculated from the 

band structure obtained using the pseudopotential method. Generally e is a function 

of wavevector and frequency of the field being screened, e = e(q,u;), and is obtained in 

this work from the expression ^ 

k,c,u 

x {[Ec(k) - Ev(k + q) - fko - ir)}-1 + [Ec(k) - Ev(k + q) + tku + i r? ] - 1 } . 

(2.32) 

where is the crystal volume, En(k) and w£ are the energy and Bloch periodic part of 

the wavefunction at k in the n t h band, 77 is a positive infinitesimal value and the sum 

is over all k-states in the 1 s t Brillouin zone and all valence bands v and conduction 

bands c. 

This expression has real and imaginary parts which, writing them explicitly as er 

and ti respectively are 

e r ( q ' w ) = 1 + ^ E i « K + q > r 
(2.33) 

x {[Ec{k) - Ev(k + q) - huj]-1 + [Ec(k) - Ev(k + q) + foj]"1} . 

and 

2 
e i ( q , U ; ) = ^ E l K I M U ) f W ) - ^ ( k + q ) - M (2-34) 

k,c,ti 

The real and imaginary parts can be calculated directly from these expressions. In each 

case the sum over k can be performed by Monte Carlo sampling of the 1 s t Brillouin 

zone, and in the case of evaluation of the imaginary part, the Dirac delta function 

can approximated by a top-hat function of small energy width and unit area. The 

numerical evaluation of er and ej is discussed further in Chapter 3, §3.5. 
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Figure 2.5: The real and imaginary parts of the dielectric function of GaAs, as 
a function of frequency at fixed wavevector (q = 0). The black lines correspond 
to er and calculated directly using the pseudopotential method. The red lines 
correspond to er obtained through the use of the Kramers-Kronig relations from the 
pseudopotential calculation of e;, and vice versa. 

The real and imaginary parts of the dielectric function are also related by the 

Kramers-Kronig expressions t 9 7 ' 

I f both parts of the dielectric function have been calculated, these relations can be 

used as a test of the numerical accuracy of the calculation. Alternatively, i f only the 

real (imaginary) part has been calculated, the imaginary(real) part can be obtained 

through the use of Eqs. (2.35) and (2.36). Fig. 2.5 shows the real and imaginary parts 

of the dielectric function of GaAs, calculated directly using Eqs. (2.33) and (2.34), and 

via the Kramers-Kronig relations. The black and red lines are almost indistinguishable 

except for small differences near hu> ~ 3eV, indicating good numerical accuracy. 

oo 

- / 
7T Jo 

r (q ,w ) = 1 + duj 
12 0 

(2.35) 

r q X - 1 oo 2u 
i (q .w) 

12 7T (J 0 
(2.36) 
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Figure 2.6: The convergence of the dielectric function with respect 
to the number of plane waves used in the pseudopotential calcula
tion. 

Convergence of the Dielectric Function 

The basis set of plane waves used to expand the pseudowavefunctions is finite. Use of 

the pseudopotential rather than the real crystal potential ensures that convergence of 

the wavefunction is rapid with respect to the number of plane waves used and Fig. 2.6 

gives an illustration of this. I t shows the result of calculating the real part of e(q = 0, a;) 

for GaAs using 27, 65 and 137 plane waves in the expansion. From the plot it can be 

seen that convergence is very good by 65 plane waves (as used in this work). 



Chapter 3 

Interpolation Schemes 

To carry out calculations of crystal properties such as impact ionisation rates in semi

conductors, it is necessary to have information on the band structure, in particular the 

single electron state energies E(\s) and wavefunctions ^>(k) at all values of wavevector 

k in each of the relevant bands. The empirical pseudopotential method discussed in 

Chapter 2 is well suited to this task since it can provide accurate band structure infor

mation throughout the Brillouin zone for many bands above and below the fundamental 

band gap. However, the method is CPU intensive and the number of pseudopotential 

calculations required during execution of a typical impact ionisation rate calculation 

would take an impractical length of time and cannot be used directly. 

To overcome this problem, we make use of the storage of pre-calculated information 

and interpolation. Rather than perform many band structure calculations within the 

application, data previously obtained for chosen bands and positions in k-space by 

the pseudopotential method is used. We interpolate E(k) and V O O at arbitrary k 

from the stored information. Performing the interpolation is more rapid than the 

full pseudopotential calculation by several orders of magnitude. While the initial pre

calculation is time consuming, it only needs to be performed once. Each time the 

application is run, the interpolation scheme reduces execution time to a manageable 

level. 

30 
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Unfortunately, the use of an interpolation scheme inevitably incurs a loss of accuracy 

in the band structure obtained. For an arbitrary k, the energy and wavefunction 

interpolated from the stored values will not exactly match that which would have been 

obtained with a direct pseudopotential calculation. Of course, the pseudopotential 

method itself has inherent errors, but it is important to limit as much as possible the 

further error introduced by the interpolation scheme. 

The interpolation error, i.e. the discrepancy between interpolated and calculated 

band structure data, depends on the density of pre-calculated points in k-space. If 

calculated points are closely spaced in the Brillouin zonea, arbitrary k-vectors will 

never lie far from a stored point and interpolation errors will be low. Conversely, if 

the pre-calculated points are sparsely distributed, interpolation errors may far exceed 

any error inherent in the pseudopotential method itself. However, the demands on the 

computer's memory must also be considered. Thus, we must design an interpolation 

scheme with a satisfactory combination of accuracy, memory-efficiency and rapid data 

retrieval. 

3.1 Pre-Calculation of Band Structure — Fitting 

The empirical pseudopotential method of calculating band structure relies on several 

adjustable parameters, which are chosen to give the best possible fi t to experimental 

band structure data for the material in question. These parameters are listed in Ta

ble 2.1 of Chapter 2. As explained in the caption below that table, the parameters 

labelled 'Fixed' are given values independently of the experimental data fitted to. The 

remaining parameters — those marked 'Fitted' — are adjusted in this work by a Monte 

Carlo method which compares the band structure obtained from the pseudopotential 

calculation with the experimental data, and randomly adjusts each parameter, until 

satisfactory agreement is achieved. 

a A s will be discussed in §3.2, points need only be distributed throughout a small part of the 
Brillouin zone. 
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Figure 3.1: The Monte Carlo algorithm 
used to adjust parameters for the pseu
dopotential calculation so as to fit the ex
perimentally determined band structure. 

The fitting error e is calculated using the expression 

(3.1) 

where Ej and Fi are the experimental and fitted values of the i t h energy difference, 

and W{ is a weighting factor applied to the i t h difference. This weighting allows energy 

differences for which particularly reliable experimental data is available, such as the 

fundamental band gap, to be fitted more accurately at the expense of less important 

values such as those relating to certain higher conduction bands. The aim of the fitting 

procedure is to minimise the value of e in Eq. (3.1) by adjusting the pseudopotential 

parameters. The algorithm is represented in Fig. 3.1. 

Although the adjustment of the pseudopotential parameters is random, certain 

constraints can be placed on the values they take, as follows: 

• The final fitted band structure is required with spin-orbit effects included. How

ever, these effects are relatively small and the fitting procedure is performed 

without them. Energies are fitted taking into account the splittings that will 
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occur when the effects are later included, e.g. for fitting purposes, the band gap 

is taken to be the real (with spin) band gap Eg, plus | of the spin split off gap 

A c 

• The spin parameter ^ (see Table 2.1) is determined after the Monte Carlo fitting 

procedure is finished, and is chosen so as to ensure that the spin split off gap at 

the top of the valence band matches the experimental value. 

• In non-elemental semiconductors, the anti-symmetric form factors are constrained 

to be a monotonically decreasing function of G-vector magnitude. In elemental 

semiconductors, the anti-symmetric form factors are always zero. 

• In the non-elemental semiconductors, the remaining non-local parameters can 

take different values for the anion and cation. In the elemental semiconductors, 

in which the atoms of the basis are the same, 'anion' and 'cation' values for the 

non-local parameters are constrained to be the same. 

Fig. 3.2 shows the result of an example fit for Sio.sGeo.s. The energy gaps for which 

experimental data was used for fit t ing are indicated. Table 3.1 shows how closely the 

calculated band structure reproduces the experimental results. The fundamental gap, 

Eg was given the highest weighting during fitting, resulting in it being the best fit. 

The vertical gaps at T are also well fitted — all to within 50 meV. The gaps at X 

and L were given the least weighting during the fit due to the unreliable experimental 

information for these, and as a result are the worst fitted. 

When suitable values for the pseudopotential parameters have been obtained using 

the fitting procedure, they can be used to pre-calculate the interpolation data. 

3.2 The Irreducible Wedge 

The interpolation scheme is required to provide band structure data at points through

out the first Brillouin zone. However, we can make use of the symmetry of the reciprocal 
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Figure 3.2: The fitted band structure of Sio.sGeo.5 at room temper
ature. The experimentally measured energy gaps which are used 
for fit t ing the pseudopotential parameters are indicated. 

Gap Experiment (eV) Fit (eV) 
E f l (Minimum gap) 0.905 0.908 

Eo 2.409 2.360 
E 0 + A 0 2.524 2.475 

Ei 2.724 2.944 
Ei + A i 2.866 3.012 
E(, + A 0 3.242 3.265 

E2 4.358 4.194 

Table 3.1: Comparison of energy gaps for Sio.sGeo.5, determined 
from experiment ^ at room temperature and from the fitted pseu
dopotential calculation. See Fig. 3.2 for the position of the energy 
gaps. 
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K 
W 

Figure 3.3: The Brillouin zone of the Zinc Blende lattice, and 
its irreducible wedge. The special points r(000), X(100), L(±± | ) , 
W ( l | 0 ) and K ( | | 0 ) , all in units of g , are shown. 

lattice to reduce the amount of data we actually need to store. 

The Brillouin zone can be divided into 48 equal wedge-shaped volumes. One such 

wedge is shown in Fig. 3.3. I t occupies the volume defined (in units of ^ ) by 

0 < kz < kv < kx < 1 
(3.2) 

k% ~\~ iCy ~\~ kg ^ 1.5 

and is known as the irreducible wedge. Each point k i in the irreducible wedge has 

a 'corresponding' point k„ in the nth wedge (n = 2... 48) which can obtained by 

permuting the coordinates of (6 permutations) and changing their signs (a further 

8 combinations, giving 48 wedges in total). 

These permutations and combinations are performed by the application of symme

try operations which are listed in Table 3.2 with the corresponding transformations of 

coordinates. Thus, if we know the band structure throughout the volume of the irre

ducible wedge, we can obtain the band structure at any point the Brillouin zone by the 

application of the appropriate symmetry operations. Both energy and wavefunction 

data can be obtained in this way. 
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Before Operation After 
{ k x , k y k z ) 120° rotation about [111] {kz, k x , ky) 

{kx, k y k z ) 240° rotation about [111] {ky, k z , k x ) 

(kxi ky k z ) 180° rotation about [100] {kxi ky, k z ) 

{ k x , ky k z ) 180° rotation about [010] { k x , ky, k z ) 

{ k x , ky k x ) 180° rotation about [001] ( k x , ky, k z ) 

{ k X , ky k z ) reflection in kx = ky plane {ky, k x , k z ) 

{ k x , ky k z ) time inversion { k x , ky, k z ) 

Table 3.2: The set of symmetry operations required to transform a 
k-point from one irreducible wedge to any other. 

To illustrate this point, Fig. 3.4 shows a contour map of the 1 s t conduction band of 

GaAs, plotted in the kz — 0 plane. From the plot it can be seen that the ^ ( k ) relation 

in each of the eight irreducible wedges is the same, to within a suitable transformation 

of coordinates. Thus to obtain energy at arbitrary k, it is necessary only to know the 

energy at the corresponding k within the irreducible wedge. 

By making use of this symmetry property of the Brillouin zone we are able to 

reduce the amount of band structure data i t is necessary to store by a factor of 48, 

which is a crucial saving as the accuracy of our interpolation scheme will ultimately be 

limited by the amount of RAM available to store the data. 

3.3 Energy Interpolation 

Electron energies in the crystal are a function of k and band index b: E — i?&(k). Each 

band is interpolated separately, so for an electron in a given band we must interpolate 

energy as a function of three Cartesian k-space coordinates: kx, ky and kz. 

Quadratic interpolation is used. This was found to be considerably better than the 

simpler linear interpolation due to the nearly parabolic nature of the band structure 

at the band extrema. 
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Figure 3.4: The 1 s t conduction band of GaAs, plotted in the kz = 0 
plane. Note that the energy in the irreducible wedge (marked by a 
solid outline) can be used to obtain the energy in any other wedge. 
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Figure 3.5: An interpolation element. The energy at a k-point 
within its volume is interpolated using the energies stored at the 
27 nodes, marked as solid circles. 

3.3.1 Implementing the Interpolation Scheme 

The irreducible wedge is divided into cubic regions of space, which will be known as 

interpolating dements. Each element has associated with it 27 k-points, or nodes, at 

each of which the energy of the particular band in question is stored. Fig. 3.5 shows a 

cubic interpolating element and its 27 nodes. 

Other interpolation schemes (e.g. [99]) have used tetrahedral interpolating elements. 

Cubic elements are chosen for this work primarily to improve the interpolation scheme's 

ease of implementation and retrieval of band structure information. 

A polynomial of the form 

E(kx, ky, kz) = ei + e2kx + e3ky + e4kz + ebk2

x + ... 

h e2hkxkyk\ + e26klkykz + e21k\k2

yk\ (3.3) 
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Figure 3.6: A regular interpolation grid's intersection with the \s.z = 0 plane. 
Note how the grid extends beyond the volume of the irreducible wedge — to 
allow interpolation right up to the edge of the zone. 

is used to approximate the energy throughout the volume of the interpolating element. 

The polynomial contains 27 constants, e\... e27, which are set so that the energy given 

by the pseudopotential calculation is obtained at the nodes. 

The interpolation elements fill the volume of the irreducible wedge, as shown in 

Fig. 3.6. Any arbitrary point in the irreducible wedge will therefore be contained within 

one of these elements. In order to interpolate band structure right up to the boundary 

of the wedge, the elements extend just outside. Thus some of the pre-calculated band 

structure lies on nodes not actually within the irreducible wedge. Note that, although 

each element has 27 nodes, elements share nodes thus reducing the number of k-points 

stored. 

To obtain energy at an arbitrary point in k-space, the element containing that point 

must first be identified, and then used to interpolate the energy at the exact k-point 

in question. The algorithm is represented in Fig. 3.7. 
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Figure 3.7: The energy interpolation algorithm. 

3.3.2 Adapted Grids 

As stated earlier, the accuracy of the interpolation is determined mainly by the density 

of pre-calculated k-points (nodes) in the region to be interpolated. We would ideally 

like as many points throughout the irreducible wedge as possible, thus improving the 

accuracy, but are limited by the amount of available computer memory. A useful 

compromise is to concentrate the interpolating elements in regions of the band structure 

which are difficult to interpolate, leaving the more easily interpolated regions with fewer 

elements. Such an 'adapted' grid for the lowest conduction band of GaAs is shown in 

Fig. 3.8. 

A comparison of Figs. 3.4 and 3.8 shows that the elements are clustered around 

the region between the T- and X-valleys, which is a rapidly varying part of the band 

structure and thus difficult to interpolate. In contrast the smoothly varying and nearly 

parabolic region around the X-valley minimum contains fewer elements, due to the ease 

of interpolation here. 

Generally a different adapted grid is required for each band, tailored to the specific 
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Figure 3.8: An adapted interpolation grid for the 1 s t conduction band of GaAs. 
The interpolating points are most densely packed into the region between the 
T- and X-valleys where the energy varies rapidly — compare with Fig. 3.10. 
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Figure 3.9: The adaptation algorithm. The aim is to distribute 
the grid points so as to ensure interpolation errors are uniform 
throughout the irreducible wedge, and below some threshold value. 

shape of that band. The grid is produced by starting with a simple regular grid such 

as the one in Fig. 3.6. In regions where the interpolation is inaccurate, the elements 

can be divided in one or more of the kx, ky or kz directions to form two, four or eight 

new elements. Alternatively, pairs of elements lying in easily interpolated regions can 

be joined together to form a single element. This process is repeated several times 

for each element until the inaccuracy of the interpolation has been reduced to some 

predetermined threshold throughout the irreducible wedge. In this work the threshold 

was taken to be 4 meV. There is no advantage to improving the accuracy beyond this 

as the band structure produced by the pseudopotential method is itself only of this 

order of accuracy. The algorithm is represented in Fig. 3.9 

3.3.3 Quality of the Interpolation 

The aim of the interpolation is to provide accurate band structure as rapidly as possible, 

working within the limitations of the available computer memory. In this section, the 

scheme's performance in these three respects is examined. 
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Memory Use 

The interpolation scheme is implemented in Fortran 77, with all data stored to single 

precision — that is to say one real number requires four bytes of storage space. Thus, 

four bytes are required to store a single energy value, and 12 bytes are required to store 

a k-vector. Additional memory is used to store the information specifying how these 

k-vectors are combined in groups of 27 to form elements. Table 3.3 shows the memory 

required by various grids constructed for GaAs. 

Band Number of k-points RAM required (MBytes) 
1-8 6127 0.311 
9,10 9 969 0.274 
11,12 25 695 0.718 
13,14 45 595 1.270 
Total 87386 2.573 

Table 3.3: Memory requirements of stored energies for GaAs, based 
on the assumption that a real number can be stored in four bytes 
of RAM. 

The valence bands (bands 1-8) use the same grid, which needs to be stored only 

once. For higher bands, a new grid needs to be used for each pair b of bands, adapted 

to their specific features. The number of points (nodes) needed to obtain the required 

accuracy increases rapidly for the higher bands, where the structure becomes more 

complicated. 

The total memory required to store all the energy data for GaAs is under three 

megabytes — well within the capability of a modern workstation. 

Speed 

The time required to perform a large number of interpolations or calculations was 

measured using a Hewlett-Packard 735 workstation. I t was found that the direct pseu-
bEach band, e.g. the first conduction band, is in fact a pair of nearly degenerate bands which at 

a general k-point are split by the spin-orbit interaction. These bands are very similar in shape, and 
one grid can be adapted for both. 
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dopotential eigenvalue calculation could be performed at a rate of 3.1 calculations per 

second (i.e. energy band structure information could be obtained at 3.1 positions in k-

space per second). In comparison, 7000 interpolations could be performed each second 

— an increase in speed by a factor of 2250. 

Accuracy 

The accuracy of the interpolation scheme is tested by choosing a large number of k-

vectors randomly throughout the irreducible wedge and at each comparing the energies 

evaluated by interpolation and by the full calculation. Figs. 3.10 and 3.11 compare the 

interpolation errors incurred using a regular grid of 9177 k-points, and an adapted grid 

of 9969 k-points respectively. 

Both are plotted in the kz = 0 plane of the Brillouin zone. In each case the 

vertical axis measures the energy as a function of k, while the colour denotes the 

degree of interpolation error. I t can be seen that using the regular grid, error increases 

around the tightly curved (and non-parabolic) region of band structure between the T-

and X-valleys. With the adapted grid, errors are reduced to a roughly uniform level 

throughout the wedge. Table 3.4 summarises the interpolation error levels band-by-

band. 

Band RMS interpolation error (meV) 
1-8 0.96 
9,10 0.85 
11,12 0.89 
13,14 0.93 

Table 3.4: Interpolation errors for GaAs — that is, the RMS differ
ence between the interpolated and calculated values for the energy 
evaluated at a large number of randomly chosen points throughout 
the zone. 
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Figure 3.10: Interpolation errors on a regular grid. The base of the plot is the k 2 = 0 
plane of the Brillouin zone and the height denotes the 1 s t conduction band energy. 
The plot is coloured according to the interpolation error at that point: the key is 
in units of meV. Note that the worst error occurs in the region between the T- and 
X-valleys — compare with the distribution of points in Fig. 3.8. 
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Figure 3.11: Interpolation errors on an adapted grid. The plot is the same type 
as that in Fig. 3.10. Note that the interpolation error is more-or-less uniform 
throughout the zone. 
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3.4 Wavefunction Interpolation 

As discussed in §2.3.2, the pseudopotential calculation returns the wavefunctions in 

the form 

where b is the band index, and the Bloch periodic part w;,(r,k) is expressed as a sum 

of 2N plane waves0: 

where f2 is the volume of the crystal. Wavefunction data for the crystal is stored in the 

same way as energy data — on a grid of points distributed throughout the irreducible 

wedge. At each k-point we must store the Bloch part tt(,(k), which means storing the 

coefficients ( ^ ( k ) evaluated at that point in k-space. This requires storage of 2N 

complex numbers, or equivalently 4N real numbers. The storage requirements for the 

wavefunctions are thus AN times greater than for the energies. In this work N = 6b, 

and so storage of the wavefunction data places considerable demands on the computer 

memory. 

3.4.1 Zone Centre Coefficients 

The wavefunctions, returned by the pseudopotential calculation as expansions of plane 

waves, form an orthonormal set of basis functions. The plane wave basis would be 

complete if we used an infinite number of terms in the expansion. In practice we use 

a finite number N, which is chosen to provide sufficiently good convergence in quan

tities of interest such as transition matrix elements whilst not requiring unreasonable 

computational effort. (The time required to pre-calculate band structure information 

°That is, N plane waves for the spin-up part of the wavefunction and N for the spin-down part. 
For the purposes of this chapter, it is not important that spin-up and spin-down terms exist, only 
that the expansion contains 2N terms. 

^ ( r , k ) = e i k r M 6 ( r , k ) (3.4) 

2N 
1 

2j«6,n(k) 
i G n - r ub(r,k) 

71=1 

(3.5) 
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at a point in k-space is 0(N3)). 

The wavefunction can be expanded in any suitable basis set, and as will be discussed 

in this section, an alternative orthonormal basis set — the zone centre wavefunctions 

— exists that can accurately represent the wavefunction at most points in k-space 

using fewer terms than the plane wave basis. 

The zone centre wavefunctions are the wavefunctions of the crystal evaluated at 

k = 0. The zone centre wavefunction for the mth band is </>m(r), where 

0m(r ) = V m ( r , k = 0) = u m ( r , k = 0) (3.6) 

A Bloch periodic part of a wavefunction evaluated at some point in k-space can be 

expanded in terms of M zone centre wavefunctions: 

M 

^ ( r , k ) = ^ ^ , m ( k ) 0 m ( r ) (3.7) 
m=l 

where /3b,i • • • Pb,M are generally complex coefficients. 

The pseudopotential calculation returns 2N bands of energy and wavefunction data 

(where N is the number of terms in the plane wave expansion). Thus there are 2N 

zone centre wavefunctions available for use as a basis set, i.e. in Eq. (3.7) M < 2N. I f 

all 2N terms are used, the expansions of Eqs. (3.5) and (3.7) are exactly equal. I f we 

use less than 2N terms in Eq. (3.7) then converting from a plane wave expansion to a 

zone centre expansion will 'lose' some of the wavefunction. This loss can be measured 

by I: 

(3-8) 

where i p p w and i j j z c are the plane wave and zone centre expansions of some wavefunction. 

A value of / = 0 corresponds to the two representations being exactly equal, with / 

increasing as the accuracy of the zone centre expansion decreases. 

We find that by using M = 30, the value of / is generally small (/ < 0.01) for 

wavefunctions throughout most of the Brillouin zone. Thus by using the zone cen-

l = 1 - (lf>pw\lpzc) 
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tre basis set instead of the plane wave set, we can expand the wavefunctions of the 

crystal in terms of just 30 complex coefficients instead of 130, wi thout significant loss 

of accuracy. The saving in memory requirement of more than a factor of four is of 

particular importance as the large quantity of wavefunction data poses considerable 

storage problems. 

Thus the interpolation scheme interpolates the coefficients / 3 6 > 1 . . . pbtM f rom a grid 

pre-calculated k-points. These zone centre coefficients can be used directly, for example 

in the case of simple overlaps (k/|kj), or converted back to the original plane wave 

expansion for evaluation of more general matr ix elements (k / |0 |kj ) where O is some 

operator. 

The details of the transformation between plane wave and zone centre representa

tions of the wavefunctions are set out in Appendix A . 

S y m m e t r y of the Zone C e n t r e Wavefunct ions 

As w i t h storage of the energy data, we can make use of the 48-fold symmetry of the 

Br i l lou in zone, thus reducing the volume in which wavefunction data is stored to the 

irreducible wedge. However, while energy for a given band at an arbitrary point in the 

Br i l lou in zone can be obtained straightforwardly f rom energy in the irreducible wedge, 

the corresponding operation is not so simple when dealing w i t h wavefunction coeffi

cients. The symmetry operations required to transform a point k„, in the irreducible 

wedge to a corresponding point k a elsewhere in the zone must also be applied to the 

wavefunction itself. Thus, while the energy at k a is simply the same as that at k^, this 

is clearly not so for the set of wavefunction coefficients at these two points. 

The zone centre wavefunctions have symmetry properties which make the applica

t ion of the operations in Table 3.2 a simpler matter than would be the case i f they 

were applied to wavefunctions expanded as plane waves. This improves the speed at 

which wavefunction data can be obtained at general k-points f rom the interpolation 

scheme. Figs. 3.12 and 3.13 show the symmetry of the charge density associated w i t h 
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Figure 3.12: The probability density of the zone centre wavefunc-
t ion for band 9 (the 1 s t conduction band) of GaAs, w i t h symmetry 
i\S t ) - The density of dots denotes the electron probabil i ty density. 
Five anions (regions of high density) can be seen in the vy = 0 plane 
of the plot. 

two example zone centre wavefunctions for GaAs. 

3.4.2 Implementing the Interpolation Scheme 

The real and imaginary parts of each zone centre coefficient used in the expansion of 

the wavefunction are interpolated in the same way as for energy data, i.e. quadratically 

wi th in interpolating elements of the type shown in Fig. 3.5. As w i t h the energy data, 

these elements are stored in the form of a grid f i l l ing the volume of the irreducible 

wedge and extending just outside i t . Note that the amount of data to be handled is 

much greater — a single band of wavefunction data is equivalent to 60 bands worth 

of energy data, corresponding to the real and imaginary parts of the 30 expansion 

coefficients. 
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Figure 3.13: The probabili ty density of the zone centre wavefunc-
t ion for band 5 (the light hole band) of GaAs, w i t h symmetry 
-^\(X + iY) t ) . As w i t h Fig 3.12, the plot is i n the r y = 0 plane, 
and so only the Px-symmetry of the wavefunction is apparent. 
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The accuracy of the interpolated wavefunctions can be characterised by the value 

where ipt and ipc are interpolated and calculated wavefunctions respectively. Perfectly 

interpolated wavefunctions correspond to 8 = 0, w i t h 5 increasing as the interpolation 

becomes worse. 

I t turns out that the wavefunction data is more diff icul t to interpolate accurately 

than the energy data. Fig. 3.14 indicates why. I t shows the energy of band 9 (the 

first conduction band) plotted along the line L - r - X . Also plotted along the same 

line are the squared magnitudes of the 9 t h and 13 t h zone centre coefficients of the 

wavefunction. These coefficients correspond to zone centre wavefunctions wi th the 

same type of symmetry as those shown in Figs. 3.12 and 3.13 respectively. From 

the figure, i t can be seen that the energy is a slowly varying funct ion of k, which is 

therefore easily interpolated. In contrast, the wavefunction coefficients vary rapidly at 

places along the line, particularly at k ~ ( f 00), where the character of the wavefunction 

changes f r o m s-like to p-like. The rapid variation in certain regions of the irreducible 

wedge, which is typical of all the wavefunction coefficients, makes interpolation diff icult 

and leads to large interpolation errors. 

Another factor l imi t ing the accuracy of the interpolated wavefunctions is the ac

curacy of the zone centre expansion. As explained in §3.4.1, this is generally high 

(wi th in ~ 1%). However regions of the irreducible wedge exist in which the value of 

/ in Eq. (3.8) becomes significant for certain bands. The upper diagram of Fig. 3.15 

shows the value of / plotted in the kz = 0 plane of the irreducible wedge for band 

5. In the region near K , / increases rapidly as the zone centre basis set, l imited to 

30 coefficients, fails to give an acceptable representation of the wavefunction. In such 

regions, the interpolation scheme cannot be used and wavefunction data must be ob

tained by direct application of the pseudopotential calculation. The lower diagram of 

Fig. 3.15 shows the intersection of the band 5 interpolation grid w i t h the kz = 0 plane 

2 
5 = 1 - <^|Vc> (3.9) 
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Figure 3.14: Band 9 ( 1 s t conduction band) energy and wavefunc
t ion data for GaAs, plotted along the line L - T - X . Whi le the en
ergy varies relatively slowly as a funct ion of k, the coefficients vary 
rapidly, particularly at k ~ ( |00) . 
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of the irreducible wedge. No interpolating elements are defined throughout the region 

in which the zone centre representation of the wavefunction is poor. 

Fig. 3.16 represents the overall algorithm for interpolating, or calculating where 

necessary, wavefunction data. 

3.4.3 The Use of Adaptive Grids 

Adaptive grids are not found to be effective in the interpolation of wavefunction data in 

the way that they are for energy data. I n the case of energy interpolation, the criteria 

for adapting a region of the mesh are clear: i f the error in the interpolated energy is 

above some threshold, the mesh is made finer at that point; i f i t is below some other 

threshold, the mesh is made coarser at that point. 

I n the case of the wavefunction interpolation, i t is not possible to specify easily the 

criteria to define the interpolation error. The value of 8 defined i n Eq. (3.9) gives an 

indication of the accuracy of the interpolated wavefunction. However, in an application 

the quantity of interest is not the wavefunction itself but mat r ix elements obtained f rom 

sets of wavefunctions — sets of four wavefunctions, in the case of impact ionisation. 

The error on the value of such a mat r ix element calculated using interpolated data is not 

simply obtained f rom the interpolation errors of each of the individual wavefunctions. 

Because i t is not known a priori which matr ix elements w i l l be required in an 

application, there is no way of effectively adapting the wavefunction grids to ensure a 

uniformly low interpolation error in the matr ix elements. Wavefunctions are therefore 

interpolated on regular grids. The only fo rm of band dependent adaptation performed 

is the removal of regions in which the zone centre expansion fails, as discussed in §3.4.2. 

3.4.4 Quality of the Interpolation 

As w i t h the energy eigenvalues, the performance of the wavefunction interpolation 

scheme is measured in terms of its memory efficiency, speed and accuracy. 
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Figure 3.15: Loss of wavefunction accuracy in band 5 (light hole band) of 
GaAs due to an incomplete zone centre basis set. The upper diagram shows 
contours of /, as defined in Eq. (3.8), expressed as a percentage. The lower 
diagram shows the wavefunction interpolation grid, which is undefined in the 
region of high inaccuracy near K - W . 
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Figure 3.16: The algori thm for interpolation of wavefunction data, 
which resorts to the f u l l pseudopotential calculation in uninterpo-
lated regions of the wedge. 
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M e m o r y 

For each k-point at which wavefunction data is required, 30 complex zone centre co

efficients must be stored — 60 single precision real numbers, each requiring four bytes 

of storage space. The wavefunction grids consist of about 34000 points for each band, 

of which some are removed f rom regions of the irreducible wedge in which the zone 

centre expansion for the given band's wavefunctions fails. The wavefunction data for 

10 bands of GaAs can be stored in under 90 MBytes of R A M , which is available on 

many modern workstations. 

Table 3.5 gives the volume of the irreducible wedge removed in each band, expressed 

as a percentage of the whole irreducible wedge. 

Band Vol . uninterpolated (%) 
3,4 576 
5,6 3.3 
7,8 0.2 

9,10 0.5 
11,12 5.0 

Table 3.5: The percentage of the volume of the irreducible wedge 
which, due to poor zone centre representation of the wavefunction, 
is left uninterpolated in each band for GaAs. 

Speed 

As w i t h the energy interpolation scheme, a Hewlett-Packard 735 workstation was used 

to compare the speed of interpolating and calculating the wavefunction data. I t was 

found that the direct pseudopotential calculation of the wavefunction could be per

formed 0.65 times per second, while 1100 interpolations could be carried out each 

second — an increase in speed by a factor of 1800. 

The overall rate at which wavefunction information can be obtained f rom the in

terpolation scheme is less than 1100 k-points per second, due to the need to perform 

the f u l l calculation in uninterpolated regions corresponding to poor zone centre expan-
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sion. The exact reduction in the rate depends on the fract ion of points required during 

execution of the application which lie in such regions. Fortunately i t turns out that 

impact ionisation transitions involve states in the uninterpolated regions only rarely. 

This is because the zone centre expansion tends to fa i l for states corresponding to the 

highest carrier energies (i.e. the higher electron energies in the conduction bands and 

lower electron energies in the valence bands). The states for which band structure 

data is required throughout the zone — the generated hole and f inal state electrons — 

generally lie at lower energies, and hence in regions for which the interpolation grid is 

defined. Therefore the total interpolation rate is less than 1100 k-vectors per second, 

but not considerably so. 

A c c u r a c y 

The accuracy of the wavefunction interpolation is tested in the same way as for the 

energy interpolation — by comparing the interpolated and calculated wavefunctions 

for a large number of k-points picked at random throughout the irreducible wedge. Ta

ble 3.6 shows the accuracy obtained f rom the interpolated wavefunctions. The accuracy 

is given in terms of 5, defined in Eq. (3.9) and expressed as a percentage. The smaller 

the value of 5, the better the interpolation, wi th 5 = 0 corresponding to perfect in

terpolation. Any error introduced due to imperfect representation of the wavefunction 

using the zone centre basis set is also included in these results. 

Band RMS value of 6 (%)~ 
3,4 0.7 
5,6 3.2 
7,8 2.2 

9,10 2.9 
11,12 3.8 

Table 3.6: Accuracy of the wavefunction interpolation, averaged 
over a large number of k-points chosen randomly throughout the 
zone. The parameter 6 is defined in Eq. (3.9). 
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Figure 3.17: Comparison of impact ionisation matr ix elements obtained f rom inter
polated and calculated wavefunctions (sorted into order of increasing magnitude of 
calculated element). The elements all correspond to energy and momentum conserv
ing transitions ini t iated by electrons in the 1 s t conduction band of Ino.53Gao.47As. 
Although interpolation errors on individual elements are often large, the to ta l ob
tained by interpolation is w i th in ~ 2% of that obtained by calculation. Similar 
accuracy is obtained for transitions ini t iated f r o m the second conduction band 

As explained in §3.4.3, the value of 8 only acts as a guide to the accuracy of the 

interpolation, and the quantities of interest are actually matr ix elements. Fig. 3.17 

compares impact ionisation matr ix elements obtained f rom wavefunction data produced 

by the direct application of the pseudopotential calculation, and via the interpolation 

scheme. From the figure, i t is clear that individual matr ix elements M j obtained f rom 

interpolated wavefunction data are generally poor approximations to the equivalent 

matr ix elements Mc obtained f rom calculated data. However, the trend in the values 

of M{ follows the variation of Mc, and the value obtained by summing all M j ' s is a good 

approximation to the equivalent value for the M c ' s . Since the rate integration involves 

summing matr ix elements in this way, the overall accuracy of the rate obtained f rom 

http://Ino.53Gao.47
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interpolated wavefunctions is high. 

3.5 Epsilon Interpolation 

The dielectric funct ion of the crystal e(q,u>) appears in the expression for the impact 

ionisation mat r ix element (as discussed in Chapter 4), and so we must be able to obtain 

values for e as a funct ion of q and cu rapidly. The calculation of e is computer intensive 

and so, as w i t h energies and wavefunctions, values for i t are pre-calculated and stored 

on a grid of points. During running of the application, values of e at general (q, CJ) are 

interpolated f rom the values in the grid. 

The pre-calculation is performed using the expressions for the real and imaginary 

parts of the dielectric funct ion given in Eqs. (2.33) and (2.34) of Chapter 2. These are 

combined in the expression 

e(q, u;) = 1 + £ / (k , q, u) (3.10) 

where Qc is the volume of the crystal and the funct ion / (k ,q ,u; ) is given by 

/(i.ii«)=£K«k k + , > i 2 x { + + i - m] } 

(3.11) 

in which Ecv = Ec(k) — Ev(k + q), and the remaining symbols have the same meanings 

as in Eqs. (2.33) and (2.34). The expression of Eq. (3.10) is re-written as 

=1 + I^F^M (3-12) 
(27r) Jeor 

where VtBz is the volume of the Br i l louin zone and F(q,u>) is the average value of 

/ (k ,q ,u ; ) throughout FIBZ- The problem then is to determine the value of F(q,u>), 

and this is done numerically by a Monte Carlo method as follows. 

The value of F(q,a») is determined at fixed q. A value of k is picked at random 

in the Br i l lou in zone and the energies and wavefunctions in each band at k and k + q 
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Figure 3.18: The Monte Carlo algorithm 
to integrate real and imaginary parts of 
the dielectric funct ion at a given q-vector. 
The algorithm must be run several times 
to get e(q,Lo) throughout the range of q-
values of interest. 

calculated. The real and imaginary parts of / (k , q ,w) at the given k and q are then 

calculated at hu values ranging in small steps f rom 0-30eV and stored in histograms 

wi th respect to energy (one histogram for each of the real and imaginary parts). This 

procedure is repeated at fixed q for a large number of random k vectors, each time 

adding to the histograms of stored real and imaginary parts. Af te r a large number of 

such evaluations, the values in the histograms are divided by the number of k-points 

sampled to give the real and imaginary parts of F(q,u) at given q and a range of u. 

Hence the real and imaginary parts of e as a funct ion of u> at given q are obtained. 

The algori thm is summarised in Fig. 3.18 

3.5.1 Approximations in the Numerical Integration 

The evaluation of / (k , q, u>) over the energy range of fouj requires certain approximations 

to avoid numerical difficulties. 

In the evaluation of the real part of / ( k , q , ui) over the energy range of tko values, 

care must be taken to ensure that the expression in the first set of brackets in Eq. (3.11) 
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does not become very large as hcu —> Ecv, as this leads to spikes appearing in the values 
of e(q,u;). To avoid this error, the term in brackets is approximated by 

1 + „ 1 - I - \ - + - 1 - \ (3.13) J } 
Ecv — hu Ecv + hbj {Ecv - hu> — irj Ecv + 

where r\ is a small positive value. When huj Ecv, the right hand side of Eq. (3.13) 

is a good approximation to the left hand side. As hw —v Ecv and the left hand side 

becomes very large, the right hand side tends to zero. Thus the spikes in e(q,u) are 

avoided. 

In the evaluation of the imaginary part of / ( k , q , u), the Dirac delta function 8(E) 

in the second pair of brackets must be approximated by some funct ion of finite wid th 

and unit area. I n this case, a top-hat funct ion h(E) is used: 

± - i f \ECV -tuj\< 8e, 
8(ECV -haj)~ h{Ecv - huj) = { (3.14) 

0 otherwise. 

where 8e is a small energy value. 

Values for rj and 8e are chosen to ensure that e(q, ui) has converged w i t h respect to 

them, i.e. that the dielectric funct ion does not change significantly w i t h small changes 

in rj and 8e. The numerical accuracy of the integrals can also be checked by comparing 

the values of the real and imaginary parts of e(q, u) obtained by direct calculation 

w i t h those obtained by application of the Kramers-Kronig relations (see §2.4). This 

comparison is made for GaAs in Fig. 2.5 of Chapter 2. 

3.5.2 Isotropic e(q,u;) Approximation 

To obtain values of e(q, a>) at positions throughout q-space as well as w-space, the 

numerical evaluation of F ( q , u>) and hence e(q, u>) is performed separately for different 

q-vectors. In principle, e(q, u>) would be interpolated as a funct ion of four variables, 

corresponding to its variation w i t h respect to the three components of q and to u. 

However, the number of mesh points in the 4-dimensional interpolation grid required 
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Figure 3.19: The anisotropic dielectric funct ion of GaAs plotted in 
the [100], [110] and [111] directions, and its isotropic approximation. 
Each line is plotted at UJ — 4eV. 

for such a funct ion would be very large, leading to problems both in the time required 

to pre-calculate the dielectric funct ion data, and the memory required to store the 

grid. Therefore the f u l l q-dependent expression for e(q, u>) is replaced w i t h an isotropic 

approximation e(q,co), defined as: 

e(9, w) = ^ 6 x e{q100,uj) + 12 x e(qno, w ) + 8 x e(qni, u) (3.15) 

where e(qabC,u)) is e(q, u>) evaluated along the [abc]-direction. Fig. 3.19 compares in 

the case of GaAs the true anisotropic fo rm of e(q,u;) for certain directions of q w i t h 

the isotropic approximation, e(q,UJ). I t can be seen that the variation of e(q,a;)with 

direction is not great, and the f u l l anisotropic funct ion is well approximated by an 

isotropic one. 

Use of the isotropic expression for e reduces i t to a funct ion of just two variables — 
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fico 

Figure 3.20: Schematic representation of the interpolation grid used 
for e(q,(jj). The actual grid is denser than the one represented here. 

q and cu — and so the interpolation grid is 2-dimensional. Fig. 3.20 shows the form of 

the grid. Values of e are calculated and stored at the (q, UJ) coordinates corresponding 

to the intersection of the lines. W i t h i n the rectangular elements, e is interpolated b i -

linearly. Note that as well as being only 2-dimensional, i t is a simpler form of grid 

to that used for energy band structure interpolation. Fig. 3.21 shows e plotted as a 

funct ion of q and u. 

3.5.3 Use of Calculated Band Structure 

I n the evaluation of e(q,u;), the interpolation scheme does not give good results as 

q —>• 0. In this l im i t the magnitude of the matr ix element ( U k l u k + q ) a l s o tends to zero 

due to the orthogonality of the wavefunctions in different bands but at the same k . 

The interpolated wavefunctions are only approximately orthogonal, and so their matr ix 

elements do not tend exactly to zero as q —> 0. Thus the absolute interpolation error 

remains finite and the percentage error becomes very large, which leads to correspond

ingly large percentage errors in the value of e(q,u;). The dielectric calculation at small 

q is therefore carried out by direct application of the f u l l pseudopotential calculation, 

which is computer intensive but gives correctly orthogonalised wavefunctions. 
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Figure 3.21: The dielectric function of GaAs, as a funct ion of q and 
u). The upper plot shows the real part, the lower plot the imaginary 
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This is an i l lustrat ion of the point made in §3.4.3: l imi t ing the interpolation error 

on individual wavefunctions, measured in terms of 5 defined in Eq. (3.9), does not 

necessarily l im i t the interpolation error present in quantities of interest, i.e matr ix 

elements. 

The implications of this for the calculation of impact ionisation rates are not severe, 

however. The wavefunction overlap integrals involved in the calculation of impact 

ionisation matr ix elements also tend to zero as q —>• 0 (see Chapter 4). However i n a rate 

calculation the major i ty of transitions correspond to finite q, and the problem of lack 

of orthogonality of interpolated wavefunctions does not affect the result significantly. 



Chapter 4 

Impact lonisation: Theory 

Band-to-band impact ionisation is the process in which a high energy carrier excites 

an electron f r o m the valence band to the conduction band, thus creating two new 

charge carriers (see, for example, [14], [100]). One such process is shown in Fig. 4.1. 

I t shows a high energy conduction band electron, labelled w i t h its wavevector and 

known as the impacting electron, being scattered by a valence band electron labelled 

k 2 and known as the impacted electron. The result of the process is that the impacted 

electron is excited f rom the valence band to a state near the bot tom of the conduction 

band, the energy to achieve this being supplied by the impacting electron, which is also 

scattered to a state near the bot tom of the conduction band. These two final states 

are labelled and . Thus, where before the process takes place there is one carrier 

(the impacting electron), after there are three (the two conduction band electrons and 

the hole in the valence band). 

This is an example of electron initiated impact ionisation, and many similar pro

cesses can take place involving various combinations of bands. I n each case, an electron 

is excited f rom the valence to the conduction band, resulting in the creation of two 

new charge carriers — an electron and a hole. Fig. 4.2 shows two other examples of 

electron ini t iated processes. 

Care must be taken in considering the generated hole. The process of impact 

67 
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Figure 4.1: A schematic representation of an impact ionisation process. The left-
hand side shows the electrons in their in i t i a l states k x and k 2 . There is only one 
charge carrier - the electron at k i . On the right-hand side, the electrons are in their 
final states, k ^ and k 2 ' . Now there are three charge carriers - the electrons ki» and 
k 2 ' and the hole associated w i t h the vacancy remaining at k 2 . 

ionisation leaves an unoccupied state at k 2 in the valence band. This corresponds to 

a positively charged carrier, i.e. a hole, at —k 2 . Thus the generated hole lies at minus 

the wavevector of the impacted electron l 1 0 1 ! . 

Impact ionisation can also be ini t iated by high energy holes, a process which can 

be thought of as the exact analogue of the electron ini t iated process. The example in 

Fig 4.3 shows a high energy hole in the valence band, k i , which excites a hole in the 

conduction band, k 2 . The final state consists of two holes, k i / and k 2>, at low energy 

in the valence band and an electron remaining in the conduction band. 

The hole ini t iated process can alternatively be considered in terms of transitions 

made by electrons. Fig 4.4 shows exactly the same process as F ig 4.3, but this t ime 

represented as a change in occupancy of electron states. Here the process is init iated 

by an electron at the top of the valence band, ky, dropping down to fill a vacant state, 

k j , at lower energy. The energy made available is taken up by a valence band electron 

k 2 ' , which is excited to an unoccupied conduction band state, k 2 . 

The reverse of impact ionisation is Auger recombination ^100\ which provides a mech-
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Conduction band 

1 

Valence band Valence band 

Figure 4.2: Schematic representations of other possible transitions, involving 
higher conduction bands. The impacting and impacted electrons need not 
have final states i n the same band (as in the left-hand diagram), nor need the 
impacting carrier remain in the same conduction band (as in the right-hand 
diagram). In principle, up to four different bands may be involved. 
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• Conduction band 4 Conduction band Conduction band 

1 

Valence band Valence band 

Figure 4.3: Hole ini t iated impact ionisation. A high energy hole in the valence 
band (hole energy increases down the y-axis) ionises a hole in the conduction 
band (which is normally f u l l of holes), leaving behind an electron. The event 
represented here is identical to that represented in Fig. 4.4. 

Conduction band Conduction band 

i 

Valence band Valence band 

Figure 4.4: Hole ini t iated impact ionisation. This event is identical to that 
represented in Fig. 4.3. Here, i t is shown in terms of transitions made by 
electrons instead of holes. The electron at k j / initiates the process, losing 
energy and promoting the electron at k2' to the conduction band as a result. 
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Conduction band Conduction band 

k , 

Valence band Valence band 

Figure 4.5: A schematic representation of an Auger recombination process. On the 
left is the in i t i a l state w i t h three charge carriers — the electrons at k i and k 2 and 
the hole associated w i t h the vacancy at k i ' . On the right is the final state wi th just 
one carrier at k 2<. The electron-hole pair k i - k i * have recombined. Note that this 
figure is the same as Fig. 4.1, but w i t h t ime reversed. 

anism for the non-radiative recombination of electron-hole pairs. In this process, a low 

energy electron in the conduction band makes a transit ion to a vacant state in the 

valence band. The energy made available excites another conduction band electron, or 

a valence band hole, to a higher energy. One such process is represented in Fig. 4.5. 

Note that this figure depicts the same transition as Fig. 4 .1 , but w i t h t ime reversed. 

As wi th other carrier scattering mechanisms, when considered in the Fermi's Golden 

Rule approximation energy and crystal momentum conservation apply to the impact 

ionisation and Auger recombination process, i.e. 

where E\, E2, Ey and Ey are the energies of the states at k i , k 2 , ky and k 2 / respec

tively, and G is a reciprocal lattice vector. 

The processes described above do not involve interaction w i t h phonons. However, 

processes can occur in which one or more phonons are created or annihilated, and for 

E\i + Ey = Ei + E2 (4.1) 

kv + k 2 / = k i + k 2 + G (4.2) 
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such 'phonon assisted' processes, the conservation laws of Eqs. (4.1) and (4.2) must be 

amended to include the energy and wavevector of the phonon(s) involved. Since phonon 

assisted processes are a second order effect, they are neglected in this work, and only 

scattering rates for which Eqs.(4.1) and (4.2) are applicable are considered. However, 

future study may show that the phonon assisted transitions can become important 

near threshold, where the first order transitions are highly restricted by energy and 

momentum conservation. 

To determine the to ta l rate at which an in i t ia t ing carrier at k i in a given band w i l l 

be scattered via the process of impact ionisation or Auger recombination, the rates due 

to all distinct transitions to all possible final states must be summed over. 

For brevity, only electron ini t iated impact ionisation processes w i l l be considered 

explicit ly in the remainder of this chapter. However, i t is straightforward to adapt the 

theory discussed to the case of hole init iated impact ionisation and to electron or hole 

init iated Auger recombination. 

4.1 The Transition Rate 

The rate of transition due to impact ionisation for two electrons in i t ia l ly in states at 

k x and k 2

a to final states at and k 2 ' is given by Fermi's Golden Rule I 1 0 0 ' : 

J ? / / ( k 1 > k 2 , k 1 i , k 2 / ) = — \Mif\2 6(EV + Ev - El - E2) (4.3) 

where the energy conservation expressed in Eq. (4.1) is ensured through the Dirac 

delta function, and as w i l l be discussed in the next section, the crystal momentum 

conservation of Eq. (4.2) is ensured by the matr ix element. 

To obtain the total rate of scattering due to all possible transitions that a given 

impacting carrier at k x can undergo, we must integrate Eq. (4.3) over all final states b 

for which the Dirac delta funct ion is non-zero. This w i l l involve evaluating the matr ix 

aTo simplify the notation, k is used here to denote a position in k-space and a band index. 
bCare must be taken to include each distinct transition only once — see §5.5. 
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element Mij at points throughout the Bri l louin zone. 

4.2 The Matrix Element 

The impact ionisation matr ix element is of the famil iar fo rm 

Mi if dr (4.4) 

where ^ and \& / are the wavefunctions of the in i t i a l and final states respectively, and 

V is the appropriate operator representing the perturbation that causes the process. 

The situation for impact ionisation is complicated by the fact that two electrons 

take part, and so the in i t i a l and final states must have the required anti-symmetry, 

that is I 1 0 0 ' 1 0 2 ! 

^/2 
1 

V2[ 

^ 1 ( r 1 ) ^ 2 ( r 2 ) - $ 2 ( r i ) ^ i ( r 2 ) 

^ i ' ( r i ) ^ ( r 2 ) - ih(ri)il>v(T2) 

(4.5) 

(4.6) 

where spin has been neglected for notational simplicity. Substi tuting the wavefunctions 

of Eqs. (4.5) and (4.6) in Eq. (4.4) gives 

M, if ^ ( r i ) ^ ( r a ) - ^ ( n ) ^ ( r a ) V dhxdh2 

(4.7) 

which, mult ipl ied out gives 

- V i ' ( r i ) ^ y ( r 2 ) V ^ ( r i ) ^ i ( r 2 ) 

d 3 r i d 3 r 2 (4.8) 

Since Vi and r 2 are simply variables of integration in Eq. 4.8, the first and second terms 



CHAPTER 4. IMPACT IONISATION: THEORY 74 

are equal, as are the t h i r d and four th terms. Thus the mat r ix element can be wri t ten 

as 

Mif = Md- Me (4.9) 

where 

Md = J rviriWA^VM^M^dh^ (4.10) 

Me = J rA^Wvi^VMr^M^T^Ti (4.11) 

The terms Md and Me are referred to as the direct and exchange matr ix elements 

respectively (which is labelled direct and which exchange is arbi t rary) . The impact 

ionisation perturbation operator, V, is the screened Coulomb potential [ 6 6> 1 0 21 

e 2 

F ( r i , r 2 ) = (4.12) 
47re 0e(q,w)|r 1 - r 2 | 

where the dielectric funct ion, e(q, u;), is i n general a complex function of the energy 

transfer, tuo = E\ — E^, and wavevector transfer, q = k i — ky, that occurs dur

ing the scattering event — see §4.2.3. To evaluate the mat r ix elements, the electron 

wavefunctions may be expressed as expansions in terms of plane waves: 

^ = ^ E ^ « ( G a ) e i ( k a + G a ) r (4.13) 

where a = 1, 2, 1' or 2' and Q is the crystal volume. Then the direct matr ix element 

in Eq. (4.10) becomes 

t» i ,G2 ,G 1 / ,G 2 / 

x / ' c t [ ( G i - G 1 , + k 1 - k 1 , ) r 1 + ( G 2 - G 9 / + k 2 - k , / ) r 2 ] d3Tld3T2 ^ ^ 

J k i - r 2 | " 

The integral of Eq. (4.14) can be evaluated using the result that t 1 0 3 l 

/ 1 J l K m + K i - r ; ! ^ ,3_ _ 4 ? r ^ f 

Jn l r i — r 2 | l-^i 
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Thus, using Eq. (4.15) in Eq. (4.14) we get 

e 0e(q,w)fi 
A*l,(Gv)A*2,(G2/)A1(G1)A2(G2) 

G i + G 2 - G ! / - G 2 i + k 1 + k 2 - k 1 / - k 2 , ,0 

G Gv+k 1 
(4.16) 

where q = G i — Gi< + k i — k y , fuo = E\ — and the Kronecker delta funct ion leads to 

the conservation of crystal momentum to w i th in a reciprocal lattice vector. A similar 

expression can be obtained for the exchange matr ix element, Me, but for brevity, only 

the direct expression w i l l be considered in what follows. Appendix B discusses the 

fo rm of the exchange matr ix element in more detail. 

4.2.1 Commonly Neglected Terms 

The terms in Eq. (4.16) can be divided into two types, Tx and T 2 . The terms of type 

7\ are those for which G i = Gj* and so the denominator of the Ti-terms is | k i — k ^ 2 . 

The remaining terms T 2 are those for which Gi ^ G 2 and therefore the denominator 

of these terms is | G + k j — k i / | . Because the T^-terms have the smaller denominators, 

they tend to contribute more to the sum in Eq. (4.16) than the T 2-terms. 

As w i l l be discussed in §4.3, the impacting electron must have an energy above the 

conduction band edge at least equal to the band gap in order to excite an electron 

f rom the valence band. I t follows that for wide band gap semiconductors, the electron 

of min imum energy to required cause impact ionisation w i l l generally be higher in the 

conduction band than for narrow band gap semiconductors. This in tu rn means that 

in the wide band gap case, the impacting electron w i l l normally have a larger k-vector 

than in the narrow band gap case. For example, Ino.53Gao.47As has a band gap of 

about half that of GaAs, and consequently impact ionisation in Ino.53Gao.47As can be 

ini t iated f r o m k-states lying much closer to the T-point than in GaAs, as can be seen 

f rom Figs. 4.8 and 4.9 (which are discussed fu l l y in §4.3). 

Thus, i n a narrow band gap semiconductor, the value of k i — k y is small — much 

http://Ino.53Gao.47As
http://Ino.53Gao.47As
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smaller than the smallest reciprocal lattice vector. The result is that the terms of 

type T\ dominate because their denominator is particularly small when G i — Gi< = 0. 

In this case, i t is possible to neglect the terms of type T 2 , reducing the expression in 

Eq. (4.16) to ! 1 0 2 ! 

Md^ f ^ ; , ( G 0 ^ ( G 0 ^ , ( G 2 ) A 2 ( G 2 ) (4.17) 

which is simply proportional to the product of the overlaps between the Bloch periodic 

parts of each particle's in i t i a l and final wavefunction, 

Md ~ f (<M</>i) (4.18) 

where {ipa^p) denotes the overlap of the Bloch periodic parts of the wavefunctions ipa 

and tpp. Thus for narrow band gap semiconductors, the terms T 2 can be neglected due 

to their negligible contribution to the matr ix element, and w i l l be referred to here as 

the Commonly Neglected Terms or CNTs t 8 2 l . 

I n a wide band gap semiconductor, the magnitude of k± — ky is generally a signif

icant fraction of the magnitude of the smallest reciprocal lattice vectors, and so the 

contribution to the matr ix element of the terms in T2 is important . In this case, the 

expression in Eq. (4.18) is not a good approximation and the f u l l summation, as given 

by Eq. (4.16) must be used. Brand and Abram ^ have calculated that for the thresh

old impact ionisation transition of the form shown in Fig. 4.1 for GaAs, the correction 

to | M i / | 2 obtained by including the CNTS is about 50%. 

Unfortunately, the use of the f u l l sum given in Eq. (4.16), instead of the approx

imation given in Eq. (4.18) to calculate the matr ix element, involves a considerable 

increase in computational effort. The sum in Eq. (4.16) has 0(N2) times as many 

terms as Eq. (4.18), where N is the number of plane waves used in the basis set to 

expand the wavefunctions (65 in this work). In §4.2.4 i t w i l l be shown that by factoris-

ing Eq. (4.16), this can be reduced by a factor of TV . Nevertheless, for wide band gap 

semiconductors, evaluation of the matr ix element is more computationally intensive 
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than for narrow gap semiconductors where the approximate matr ix element can be 

used wi thout significant error. 

4.2.2 Umklapp Terms 

The terms of Eq. (4.16) can be divided into 'normal ' and 'umklapp' terms. This 

division is separate to the division discussed above into types 7\ and T2 — terms in T\ 

can be both normal or umklapp, as can terms in T2. The Kronecker delta funct ion of 

Eq. (4.16) ensures that 

k r + k y = k i + k 2 + G (4.19) 

i.e. that crystal momentum is conserved to w i th in a reciprocal lattice vector. W i t h all 

the k-vectors chosen so as to lie in the first Br i l lou in zone, normal processes are those 

for which G = 0 and thus conserve crystal momentum exactly. Umklapp processes are 

the remaining terms for which G ^ 0 and therefore conserve crystal momentum only 

to w i th in a reciprocal lattice vector. 

Some authors (e.g. [59,104]) use the term 'umklapp' to denote the terms of type T 2 

described in the previous section. I n this work, 'umklapp' w i l l be used only to describe 

transitions for which G ^ 0 in Eq. (4.19), and the terms in T 2 w i l l be referred to as 

the CNTS. 

4.2.3 The Dielectric Function 

The dielectric funct ion of the crystal, e, appears in the impact ionisation perturbation 

operator and hence in the transition matr ix element for the process. Generally, e is a 

complex number which is a function of wave vector and frequency: e = e(q,o»). In this 

case, q is interpreted as the momentum transfer i n the process and u is the energy 

transfer I 6 6 l . 

In wide band gap semiconductors, where both energy and momentum transfer are 
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likely to be significant, accurate calculations of impact ionisation rates require the use 

of the f u l l q- and w-dependent expression for the dielectric funct ion. 

4.2.4 Factorisation of Matrix Element Summation 

I n the evaluation of the expression for Md in Eq. (4.16) one of the four summations 

can be carried out immediately by virtue of the Kronecker delta which ensures the 

conservation of crystal momentum to w i th in a reciprocal lattice vector, i.e. 

G i + G 2 - Gi# - G 2 , + k i + k 2 - kv - k 2 / = 0 (4.20) 

Summing over G 2 gives 

Md = 
e0il 

Sd (4.21) 

where Sd contains the terms that are functions of the summation indices: 

Sd = 
G i , G ^ G ^ 

E All(Gr)A*,(G2l)A1(G1)A2(G2) (4.22) 

and 

G 2 — Gi» + G 2 / — G i + G u (4.23) 

where 

G u = ki> + k 2 - - k i - k 2 (4.24) 

This sum, S, can be factorised as follows [ 1 0 4 - 1 0 5 1 . A vector G A is defined as 

G A — G i — G i ' (4.25) 

which gives G 2 = G2< — G A + Gu and Gi> — G i — G A - S is then summed over the 
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indices G i , G 2 / and G A . 

Sd = 
G i , G 2 / ,Ga 

E ^ > ( G x - G A ) ^ , ( G y ) A 1 ( G 1 ) A 2 ( G y - G A + G M ) 
e(q,u;)g2 

(4.26) 

which can be factorised as 

S* = E | [X>i ' ( Q i " G A ) ^ I ( G I ) ] [ ^ ^ G ^ G * - G A + G „ ) 
1 

G 
J e{q,uj)q2 

(4.27) 

Note that Eqs. (4.22) and (4.26) are exactly equivalent expressions only i f we use 

an infini te number of plane waves in the basis set (i.e. there is an infini te number of 

G-vectors in each sum). In the f ini te basis set used, the change of indices discards 

some terms. However, only the terms corresponding to the largest values of q are lost, 

and the error is negligible. The sum over three indices in Eq. (4.26) has 0 ( i V 3 ) terms 

in i t (N being the number of plane waves in the basis set — 65 in this case), while the 

sum in Eq. (4.27) has only 0 ( i V 2 ) terms, making i t much quicker to evaluate. This is 

an important consideration since the matr ix element w i l l be required at a large number 

of points in k-space during a typical rate calculation. Eq. (4.27) is therefore used to 

obtain \Mif\. 

As w i t h Eq. (4.16), we can identify the two types of terms 7\ and T 2 in Eq. (4.27). 

Terms for which G A = 0 correspond to Tx, and in this case Eq. (4.27) leads directly to 

Eq. (4.17). Terms for which G A ^ 0 correspond to T 2 , the CNTs. Normal and umklapp 

terms correspond to G u = 0 and G „ ^ 0 respectively. 

As already discussed in §2.3.2, the wavefunctions are i n general not pure spin-up or 

spin-down, but a linear combination of the two. The wavefunction can be expressed as 

4.2.5 Mixed Spin States 

^ ( r ) = V ( r ) | t ) + V ( r ) U > . (4.28) 
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where | f ) and | 4-) represent orthonormal spin-up and spin-down eigenstates respec
tively. Put t ing Eq. (4.28) into Eq. (4.10) we get 

Mn -I 
+ V M r i ) V 2 M r 2 ) V ^ ( r O V 2 ( r 2 ) 

+ V i * ' ( r i ) V 2 M r 2 ) V ^ i * ( r i ) V 2 * ( r 2 ) 

+ V M r O V M r ^ V i t r O W r . ) dhxdh2 (4.29) 

The exchange mat r ix element contributes another four terms. Numerically, each of 

these terms is integrated separately, using Eq. (4.27) w i t h the appropriate spin part of 

the wavefunction t , 0 Q ( r ) or i i p a ( r ) substituted in place of " 0 a ( r ) > and the amplitudes 

summed to obtain the complete matr ix element. 

A more detailed discussion of the fo rm of the matr ix element summation, including 

the spin terms for the direct and exchange matr ix elements, is given in Appendix B. 

4.2.6 Convergence of Mif with respect to N 

The wavefunctions are represented as in Eq. (4.13) using a basis set of AT plane waves. 

A tota l of 2N terms are needed to represent both the spin-up and spin-down parts 

of the wavefunction. F ig 4.6 shows how impact ionisation mat r ix elements calculated 

for InGaAs and SiGe converge as a funct ion of N. The ordinate shows the average 

squared magnitude of matr ix elements calculated for a large number transitions which 

are chosen randomly, but are all energy and momentum conserving. I n the case of 

InGaAs, the matr ix element is slightly sensitive to the number of plane waves even 

when as many as 307 are used. However, the average value obtained w i t h 65 plane 

waves (as used in this work) is w i th in about 2% of the value obtained w i t h 307. For 

SiGe, in which the matr ix elements are generally significantly lower than in InGaAs, 

the convergence is much poorer, w i t h 307 plane waves not being sufficient to ensure 

good convergence. However, the number of plane waves that can be used is l imited 
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Figure 4.6: The convergence of impact ionisation matrix elements in InGaAs 
and SiGe as a function of iV — the number of plane waves in the expansion 
of the wavefunctions. The matrix elements for each material are in the same 
(arbitrary) units. Note the different scales used for the ordinate in each case. 

by the available computer processing power, and so in this work 65 are used, as for 

InGaAs. This gives matrix elements that are in error with respect to those obtained 

using 307 plane waves by about 30%. 

4.3 Impact Ionisation Thresholds 

During the process of impact ionisation, the impacted electron is given sufficient energy 

to be excited from the valence band to the conduction band. In an electron initiated 

process, this energy is supplied by the impacting electron which undergoes a transition 

in the conduction band from a state of high energy to one of low energy. I t is therefore a 

minimum requirement that the impacting electron be at least Eg above the conduction 

band edge, where Eg is the band gap energy. In fact, the additional requirement of 
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momentum conservation means that in general the impacting electron must have a 

significantly greater energy. 

The range of k-states from which an electron can cause impact ionisation is therefore 

limited. Anderson and Crowell have developed a method to determine the location in 

k-space of the thresholds t 1 0 6 l . However it has been shown to obtain incorrect thresholds 

under certain conditions Therefore a method due to Beattie I 1 0 7 ' 1 0 8 ! is used here. 

We begin by defining an energy difference function. 

4.3.1 The Energy Difference Function 

Although energy is conserved in an allowed impact ionisation process0, i t is still possible 

to consider formally transitions in which there is a change of energy and define an energy 

difference function. 

For any single impact ionisation process, from states k i and k 2 to states k^ and 

k 2 ' , the energy difference function is defined as 

A £ ( k i , k i , , k 2 i ) = [ ^ ( k j / ) + £ ( k y ) ] - fe(ki) + E(kr + k 2 , - k x + G ) l (4.30) 

where the impacted electron state k 2 is expressed in terms of the other vectors so as 

to ensure crystal momentum is conserved to within a reciprocal lattice vector. Energy 

conservation is satisfied when 

AE(kl,k1,,k2')=0 (4.31) 

Ignoring energy conservation for the moment, we can treat AE simply as a function 

of three k-vectors. For any value of k i (the state of the impacting electron), there is a 

combination of the two remaining vectors (the final states) for which AE is a minimum. 

Therefore this minimum value AEmin is a function of k i only. Similarly the maximum 

value of the energy difference function, AEmax, is also a function of kx only. 
cAs discussed in the introduction to this chapter, energy can be transferred to or from the electron 

system if other agencies such as phonons are also involved but such processes are not considered here. 
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Since the energy in each band is a smooth function of wavevector, AE is also a 

smoothly varying function of the final state vectors and k 2 / . Therefore if AEmin < 0 

and AEmax > 0 there must be some combination of k i and k 2 for which AE = 0, cor

responding to an energy conserving transition. Momentum is conserved automatically 

in the Eq. (4.30) by expressing k 2 in terms of the other three vectors and so we can 

say that, if for a given state k i in a given band, 

AEmin < 0 < AEmax (4.32) 

then impact ionisation can be initiated by a carrier in that state. 

When kx and k^ are in the same band, AEmax is always positive. When k^ is in a 

lower band than k i , this is also usually the case, and it is sufficient in most cases only 

to test that AEm{n < 0 to determine whether impact ionisation can be initiated from 

a given state. 

4.3.2 Thresholds and Anti-thresholds 

For k i near the bottom of the conduction band, the value of AEmin will be positive, 

since impact ionisation cannot be caused by low energy electrons. As k i moves away 

from the band edge, AEmin changes as a function of k ^ Fig. 4.7 illustrates an example 

variation of AEmin(ki). 

The point on the kx-axis at which AEmin changes from positive to negative values 

(marked T in Fig. 4.7) is known as the threshold for the process. I t is at this point that 

impact ionisation becomes possible. Further along the ki-axis in the example shown, 

the value of AEmin passes back through zero to become positive. This point (marked 

A on the diagram) is known as the anti-threshold. Here, due to the nature of the 

band structure and the difficulty of simultaneously satisfying energy and momentum 

conservation, impact ionisation becomes impossible once again. 

Thresholds and anti-thresholds for the first conduction bands of GaAs and InGaAs 

are shown in Figs. 4.8 and 4.9 respectively. In each figure, the base of the plot is the 
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Figure 4.7: The minimum value of AE, defined in Eq. (4.30), as a function 
of the impacting vector, k i . Where AEmin < 0, impact ionisation is possible. 
The point marked T is the Threshold, and the point marked A is the Anti-
threshold. 

kz = 0 plane of the Brillouin zone, while the vertical axis represents the energy of the 

conduction band as a function of (kx, ky). The bands are coloured green where impact 

ionisation can be caused by an electron at that wavevector and red otherwise. 

The band gap of GaAs is about 1.5 eV, and so electrons must gain at least this 

energy (and in practice more) to cause impact ionisation. The thresholds for GaAs, 

shown in Fig. 4.8, are therefore located high in the first conduction band. In this part 

of the Brillouin zone, the E(k) relation for the band is highly anisotropic, and this is 

reflected in the anisotropy of the thresholds. 

InGaAs has a much smaller band gap than GaAs of about 0.75 eV, and the thresh

olds in this material, shown in Fig. 4.9, are at correspondingly lower energy in the first 

conduction band. The threshold (the transition from red to green on moving out from 

the T-minimum) is more isotropic, being located in a more spherically-symmetric part 

of the band structure. Anti-thresholds can also be seen in the [100] and [110] directions 

as a transition from green to red as the edge of the Brillouin zone is approached. 
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Figure 4.8: Thresholds in GaAs (at T = 300K). The base of the upper plot is the 
kz = 0 plane of the Brillouin zone and the height is the energy of the 1 s t conduction 
band. The plot is coloured green at k-points from which impact ionisation can be 
initiated and red where impact ionisation is impossible. The lower plot shows the 
process for which the threshold is calculated. 
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Figure 4.9: Thresholds in Ino.53Gao.47As (at T = OK). The plot is of the same 
form as that in Fig. 4.8. The band gap of Ino.53Gao.47As is approximately half that 
of GaAs, hence the much greater range of states for which impact ionisation is 
possible. Note also that the threshold is closer to the T-point, the significance of 
which is discussed in §4.2.1. 

http://Ino.53Gao.47
http://Ino.53Gao.47As
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Figure 4.10: The algorithm to determine if a given impacting carrier can initiate 
impact ionisation, by finding the minimum of the energy difference function, AEmin. 
If it is less than zero, impact ionisation can occur from the given impacting state. 
To find thresholds, the Brillouin zone must be sampled throughout its volume and 
AEmin evaluated for each initiating k-point. 

4.3.3 Finding Thresholds 

To determine whether a state can initiate impact ionisation, we must search for the 

position of the minimum of the energy difference function. This is performed by an 

algorithm which 'walks' down the gradient of the AE function in 6-dimensional k i ' , k 2 ' -

space in decreasing step lengths as the minimum is approached. This algorithm is 

represented in Fig. 4.10. 

There is a difficulty in that the function AECky, k 2 / ) will generally have several local 

minima for a given impacting vector, and the algorithm wil l find only one of them from 
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a given starting point in ki',k2'-space. The local minimum thus obtained may not be 

the absolute minimum of the function as required, and so the search algorithm must 

be tried from several starting points to ensure that the absolute minimum is found. 

In the case of electron initiated transitions with final states in the first conduction 

band, the search is initialised with and k 2/ located at the bottom of the T-, X- and 

L-valleys — all combinations of valley pairs are taken. For hole initiated transitions 

with the impacted hole states in the first conduction band, one final state is initialised 

to the top of the valence band (i.e. the bottom of the band in terms of hole energies) 

and the other final state initialised either to the top of the valence band also, or at 

such a position that the impacted carrier is located at the T-, X- or L-valley bottom. 

4.3.4 The Condition of Equal Velocities 

I t has been shown that A£ l

m j „ (k i ) = 0 at thresholds and anti-thresholds. It can also 

be shown that the group velocities associated with the states k 2 , k^ and k2> are equal 

there t1 0 6^. The proof starts by demonstrating that the result is true for any minimum 

of the energy difference function, whatever its value. 

Hence we first seek to prove that if for a given state of the impacting electron k 1 ( the 

final states ki< and k 2/ are varied so that the energy difference function AE(ki, k^ , k2<) 

is a minimum, the group velocities at each of the states k 2 , ki< and k2< will be equal. 

Consider small variations made in k v and k 2 ' . To conserve crystal momentum, we 

where the zero on the left hand side is due to the fact that the impacting state is fixed, 

so dki = 0. The change in the k-vectors, affects the energies of those states. The 

change in AE is given by 

must have 

0 + dk2 = dkv + dk •2' (4.33) 

d(AE) = dkv • V k E v + dk2> • VkE2> - dk2 • VkE2 (4.34) 
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but since we are considering the case when AE is minimised, small changes in and 

k 2 ' lead to no change in AE. Hence, 

0 = dkv • V k E v + dk2' • VkE2> - dk2 • VkE2. (4.35) 

Using the definition of group velocity v 

v = \\/kE (4.36) 
n 

we can write Eq. (4.35) as 

0 = dki* • vy + dk2> • \2i — dk2 • v 2 (4.37) 

which, using Eq. (4.33), can be re-written as 

0 = dkv • (vv - v 2 ) + dk2, • (v 2/ - v 2 ) . (4.38) 

Since k x/ and k 2/ can be varied independently, each of the terms in parentheses in 

Eq. (4.38) must be zero, and so we have 

v i ' = v 2/ = v 2 . (4.39) 

That is, the group velocities of the state of the impacted electron and the final states 

are equal at the point at which AE is minimised. In particular the result holds for 

the cases where AEmin = 0 which are the thresholds and anti-thresholds of the impact 

ionisation process. 

4.4 The Rate Integration 

The rate given by Fermi's Golden Rule in Eq. (4.3) is the transition rate for one single 

transition from initial states k i and k 2 to final states k^ and k2<. To obtain the total 

rate of transitions for an impacting electron at k i , it is necessary to sum the rates for 

all possible individual transitions corresponding to distinct processes. Thus, the total 
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rate is given by 

Rnik,) = Y , Y \Mn\2 HEv + Ev - E x - E2). (4.40) 

k]i ,k2> 

where i t is assumed that all states in the conduction band are unoccupied and all 

states in the valence band are occupied. Note that the sum is over the final states only 

because the remaining state k 2 = + k2* — k i + G is determined by the conservation 

of crystal momentum. 

It is convenient to convert the sum over discrete k-states to an integral 
Q 2

 f O-jr 

i?/ /(ki) = ^ J — \Mlf\2 S(EV + E2, - E x - E2) d6k (4.41) 

which is performed over the six-dimensional volume containing all pairs of final states 

k i ' and k2*. Note that the volume element is written here as d6k rather than d3ki'd3k2> 

to emphasise the fact that the integral is performed over six independently variable 

coordinates. For the purposes of the integration, no significance need be attached to the 

fact that these six coordinates are in fact two sets of coordinates in three-dimensional 

space. 

The matrix element Mtj in Eq. (4.41) is replaced with the expression in Eq. ( B . l l ) d . 

Writing Ev + E2> - Ev - E2 as A E , we get 

Care must be taken in the interpretation of the expression 'all pairs of final states', 

over which the integral is performed and this will be discussed in §5.5 of Chapter 5. 

dWhich is the complete version of the expression of Eq. (4.21) for the direct matrix element. 



Chapter 5 

Impact Ionisation: Numerical 

Integration 

The expression for the impact ionisation rate given in Chapter 4, 

R l l { k l ) = 32^ejh J 1 5 , 2 5 { A E ) ^ ( 5 " 1 } 

is an integral over a 6-dimensional volume in k-space, but the Dirac delta function 

ensures that only points on the surface satisfying the condition A £ ' ( k 1 , k ^ , k 2 ' ) = 0 

contribute to the result. Numerically, the integral can be treated in two ways: as a 

volume or a surface integral. 

To treat it as a volume integral, we must relax the requirement imposed by the 

delta function that energy be conserved exactly. The delta function is replaced with 

a top-hat function of finite width '58^ which ensures that energy is conserved to within 

some suitably small value. Instead of lying on a surface, the final states corresponding 

to allowed transitions now lie within a shell of finite volume. The integral in Eq. (5.1) 

can then be performed by evaluating the integrand at a large number of randomly 

chosen pairs of final states. Only final states lying within the volume defined by the 

top-hat function contribute to the result. The width of this top-hat must be small 

enough to ensure that the original delta function is accurately approximated, but large 

91 
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enough that a statistically significant number of sampled points lie within the volume 

it defines. 

The alternative approach is to convert the volume integral of Eq. (5.1) into an 

integral over the surface for which AE = 0 is satisfied exactly l 6 1 i . This eliminates the 

problem of having to choose a suitable width for the top-hat function. However, the 

difficulty now lies in determining the position in ki',k2'-space of the AE = 0 surface, 

which may be complicated. 

In this work, both volume and surface methods are used to evaluate rates. The two 

methods have different advantages and disadvantages, as will be discussed in §5.5.1, 

and so the use of both provides a convenient check on the accuracy of the numerical 

calculations. The implementation of these methods is discussed in subsequent sections. 

5.1 Numerical Volume Integration 

Replacing the Dirac delta function of Eq. (5.1) with a top-hat function of width 25e, 

we obtain the following expression for the rate: 

and is the mean value of throughout the hyper-volume f2 0 over which the inte

gration is to be done. This volume, which will be referred to in what follows as the 

'joint-Brillouin zone',contains all pairs of points ( k i ' , k 2 ' ) , such that k v and k 2 ' lie in 

the familiar Brillouin zone of 3-dimensional k-spacea. The problem then is to find the 

value of /„ which is achieved in this work using a Monte Carlo algorithm. 
aCare must be taken to include each pair of states only once in the integration — see §5.5 

/ Iv cf k BZ 32n5eih o o 
(5.2) 

where 

I | 5 | 2 if \AE\ < 6e, 26e 
Iv(kv,k2>) 

otherwise. 0 

(5.3) 
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Figure 5.1: A 2-dimensional representation of a simple 6-dimensional volume 
integration algorithm. The square is the volume f2 0 over which the integration 
is performed. The ellipses are the AE = ±Se surfaces which enclose the volume 
£lse- The dots are random sampling points: the integrand is zero at the black 
dots and non-zero at the red dots. The statistical error on the integral is a 
function only of the number of red sampling points. 

5.1.1 A Simple Integration Algorithm 

A simple approach to obtaining Iv would be to pick coordinates randomly throughout 

the volume CtQ and at each evaluate /„ given by Eq. (5.3) — and hence calculate the 

mean ' 1 0 9 l Fig. 5.1 illustrates the essential features of the procedure. The square 

represents the volume to be sampled, f2 0 , and the ellipses represent the AE = ±Se 

surfaces which enclose volume contributing to the integral, tlge- The integrand at 

sampling points lying outside fi,$e (marked black) is zero and these do not contribute 

to the rate. The red points lying inside £l$e correspond to transitions which conserve 

energy to within ±r5e, and these contribute to the total rate. A sufficiently large number 

of points must be picked so that the statistical error on the value of /„ is reduced to 

some required tolerance. 

Two factors affect the numerical accuracy of the algorithm. Firstly, the value of 

Se must be sufficiently small that the Dirac delta function of Eq. (5.1) is well approxi

mated. Secondly, the statistical noise on the final value of /„ is reduced only by points 
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for which the integrand is non-zero (i.e. the red points of Fig. 5.1). We can pick a very 

large number of points throughout Q 0, but if only a few lie inside the volume £lse> the 

statistical error on will be large. 

These two considerations work against one another. I f we reduce the value of Se, 

the run-time of the rate integration program is increased due to the need to pick 

more sampling points to obtain a given statistical error on the result. Conversely, 

increasing 5e reduces the run-time necessary, but increases the error due to the poor 

approximation of the energy conserving delta function. I t turns out that using the 

computers available for this work, the value of 5e could not be chosen to approximate 

the delta function sufficiently well without increasing the computational requirements 

beyond a practical level. Thus the simple rate integration algorithm described above 

cannot be used. In the next section, a more sophisticated algorithm is described which 

reduces this problem. 

5.1.2 A Better Integration Algorithm 

As described above, the problem to be overcome is the fact that the volume for which 

the integrand is non-zero is much smaller than the volume to be sampled, i.e. flse >C f V 

Thus very few randomly sampled points contribute to the total rate and the statistical 

error on the result is high. One approach to solving this problem is to restrict the 

sampling points to some volume &B which is much smaller than f2 0 but which never

theless completely encloses £lge. The Monte Carlo integration is performed in the same 

way as for the simple algorithm described in §5.1.1. However, because Qse now consti

tutes a much greater fraction of QB than of Cl0, far more sampled points correspond to 

positions of non-zero integrand, and the convergence of the result with respect to the 

number of points sampled is correspondingly more rapid. 

As before, the total rate is calculated from the mean value of the integrand. The 

quantity returned by the above algorithm is I'v — the mean value of the integrand 

within QB. To get the rate, we require the mean value of the integrand throughout Q 0, 



CHAPTER 5. IMPACT IONISATION: NUMERICAL INTEGRATION 95 

which is given by 

S2 0 
(5.4) 

from which the total rate is obtained using Eq. (5.2). 

The method of reduction of the sampled volume from $10 to QB is described in the 

next section. 

5.1.3 Reduction of the Volume to be Sampled 

The reduction of the volume to be sampled from Q0 to Q,B is performed by identifying 

parts of VLQ that do not contain any of the volume Q,se. I t is an iterative procedure 

which begins by dividing Q 0 into several 'sub-volumes'. The sub-volumes not containing 

any of the region £lje are discarded. Those remaining go on to the next iteration in 

which they are themselves each divided into sub-volumes. The process of dividing 

and discarding is repeated B times, the volume remaining at the end being Q,B- The 

algorithm is represented schematically in Fig. 5.2. 

Diagram A of Fig. 5.2 represents the initial state which is the same as for the 

simple algorithm in Fig. 5.1. fio is represented by the square, and £lge by the region 

lying between the ellipses. 

Diagram B represents the situation after the first iteration. The initial volume f2 0 

has been bisected in each direction to form a set of sub-volumes. In the 2-dimensional 

representation of the diagram, four sub-volumes are formed; in 6-dimensions, bisection 

in every direction results in 64 sub-volumes. In the diagram, all the sub-volumes 

contain part of Qse and so all are kept. 

Diagram C corresponds to the state after two bisections. The unshaded sub-

volumes do not contain any part of £lse and have been discarded. The shaded sub-

volumes are retained for the next iteration. 

Diagram D shows the shaded sub-volumes remaining after the fourth iteration. 

The volume they occupy is considerably smaller than the original Q0 but nevertheless 
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Figure 5.2: A 2-dimensional representation of the better 6-dimensional volume in
tegration algorithm (compare with the simple algorithm of Fig. 5.1). The square 
in Diag. A is the volume Cl0 over which the integration is performed and Q,se is the 
volume of interest, between the ellipses. In Diags. B-D, Q,0 is iteratively divided 
into sub-volumes, and those not containing Qse discarded. 
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completely contains Q,$e between the ellipses marking the AE = ±5e surfaces. 

A summary of the notation that will be used in describing the volume reduction 

algorithm is now given. 

• The iterations are numbered with the index b. The initial state, shown by Dia

gram A in Fig. 5.2, corresponds to the 0 t h iteration, and the final iteration is the 

Bth, i.e. 0 < b < B. The bth iteration is complete after b bisections and discards 

are complete. 

• The volume remaining after b iterations is labelled Qj,. Hence, Qo is the ini

tial integration volume, f i g the volume remaining after the reduction phase is 

complete, and: Cl0 > Qi > ... > > ... > QB > Qse-

• The number of sub-volumes remaining after b iterations is labelled Nf,. I f no 

sub-volumes are discarded then iVj , + 1 = 64iV(,. In all but the earliest iterations, 

sub-volumes can be discarded and Nb+\ < 64./V&. 

• The initial volume O 0 is taken to be a hyper-cube centred at the origin of k i ,k 2 -

space and of side length 2 (in units of ^ ) . The actual integration volume — the 

joint-Brillouin zone — is smaller than, and contained within this cube. When the 

Monte Carlo integration is performed, the integrand at points in the hyper-cube 

lying outside the double-Brillouin zone is taken to be zero. Since f2 0 is cubic, all 

sub-volumes are cubic. The side length of sub-volumes formed after b iterations 

is 21~b (in units of ^ ) 

The actual number of bisection steps used in the algorithm can be adjusted to give 

acceptable accuracy of the integration — B should be chosen as large as possible to 

minimise interpolation errors, but memory requirements increase rapidly with increas

ing B (see §5.1.4 and §5.1.6). After only a few bisections (< 10) the volume Q,B which 

must now be sampled will in many cases be smaller than the original volume f2 0 by a 

factor exceeding 107. 



CHAPTER 5. IMPACT IONISATION: NUMERICAL INTEGRATION 98 

start with one 
sub-volume 

containing 

for each 
b= 1...B 

bisect all 
sub-volumes 

discard those not 
containing £2 t 

store remaining 
sub-vols (total 
volume i2 4) 

perform Monte 
Carlo integration 

in SI, 

Figure 5.3: A graphical representation the 
better volume integration algorithm. 

It should be noted that the major time saving achieved by this algorithm is as a 

result of discarding sub-volumes at each bisection iteration. The number of sub-volumes 

that would be obtained from eight bisections without discarding any is iV 8 = 648, i.e. 

more than 10 1 4. Determining in which of these the volume Qse l a Y would be no more 

efficient than performing the integral using the simple algorithm of §5.1.1. However, by 

using the above algorithm, the tiny fraction of sub-volumes containing part of the Qge 

volume can be located without having to consider the vast majority directly. Fig. 5.3 

summarises this bisection algorithm. 

5.1.4 Discarding Sub-Volumes 

To implement the algorithm described in the previous section, a method of quickly 

determining which sub-volumes can be discarded is required. Given a particular sub-

volume, one possible method is as follows. 

Within the sub-volume, the maximum and minimum values of the energy difference 

function A £ , ( k 1 / , k 2 ' ) are determined15. As was noted in §4.3.1, if AEmin < 0 < AEmax, 
bThese maximum and minimum energies should not be confused with stationary points — most 

sub-volumes will not contain a stationary point. 
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then the sub-volume must contain the surface AE = 0. Similarly, if AEmin < +Se and 

&-Emax > —5e then it must contain the volume \AE\ < 8e, i.e. the volume Site- Thus 

we have the rule that a sub-volume must be kept i f 

AEmin < +5e and AEmax > -Se (5.5) 

and discarded otherwise. 

Searching 6-dimensional phase space for the positions of AEmin and AEmax in 

every sub-volume is impractically time consuming, and so the condition given above 

for keeping or discarding sub-volumes is not applied directly. 

Instead the following energies are defined: 

j^min jjjmin _|_ j^min £jmax ^ 

jjimax j^max _j_ j^ymax j^^ jjjmin (5 7) 

where E m t n . . . E™ax is the range of energies for states ki< within the sub-volume, 

E™n ... E™ax the range of energies for k2>, and E™m ... E™11* the range of energies of 

the corresponding impacted states, k 2 . I t follows that within any sub-volume i t must 

always be the case that 

Emin < AEmin < AEmax < Emax. (5.8) 

Thus, we can adjust the rule for keeping or discarding sub-volumes to the following: a 

sub-volume is kept if 

Emin < + 6 ( , a n ( J Emax > _ 5 ( , ^ g) 

and discarded otherwise. Because of Eq. (5.8), the above rule will never discard a 

sub-volume the would have been kept using Eq. (5.5). Therefore the use of Eq. (5.9) 

in place of Eq. (5.5) will not affect the result of the integration. 

The new rule is not as efficient at reducing the volume to be sampled, as it will 

keep some sub-volumes that could have been discarded using the old rule. However, as 
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the side length of the sub-volumes becomes smaller with each bisection step, Emin and 

Emax tend towards AEmin and AEmax respectively, and the conditions in Eqs. (5.5) 

and (5.9) converge. 

The advantage of using the new rule is that we must now search three independent 3-

dimensional functions (i.e. Ei^ky), E2'(k2>) and £ ,

2 (k 2 ) ) for their maxima and minima 

instead of the 6-dimensional function AJ5'(k1', k2<). Searching a 3-dimensional function 

for maxima and minima is not significantly easier than searching a 6-dimensional one, 

and in that sense little has been gained by adopting the new rule for keeping and 

discarding sub-volumes. However the advantage of the 3-dimensional rule is that all 

the necessary maxima and minima can be pre-calculated and stored. It only remains 

to retrieve their values during the rate integration, which can be done very rapidly. 

Pre-calculation of Energy Maxima and Minima 

The 3-dimensional Brillouin zone is divided into a grid, labelled GB, of equal cubes 

each having a side length of 2 1 - 5 (in units of i.e. the same side length as the 

6-dimensional sub-volumes created as a result of the final bisection iteration. Energy 

is assumed to vary linearly within each cube and hence the maximum energy in a cube 

is taken to be the maximum energy of its corners, and similarly for the minimum. 

Maximum and minimum energies in each cube are stored for each of the final and 

impacted state bands. 

Fig. 5.4 represents schematically how the 3-dimensional mesh of cubes is related 

to the 6-dimensional sub-volumes of integration. A given 6-dimensional sub-volume 

created by the Bth iteration will contain final states (ki/ ,k 2 / ) . One of the 3-dimensional 

cubes of grid GB wil l contain all the states in the sub-volume while another cube (or 

possibly the same one) will contain states k2>. By requiring that the impacting carrier 

wavevector lies at one of the nodes of G B , the impacted carrier states k 2 associated 

with the sub-volume in question will also be contained in eight of the cubes in GB 

(eight because the impacted carrier states lie in a cubic volume of twice the side length 
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Figure 5.4: A 2-dimensional representation of the 6-dimensional grid used to dis-
cretise the final state phase space, and 1-dimensional representations of the cor
responding 3-dimensional grids on which energy data is stored. A 6-dimensional 
element of final state space is shown in red. The energy data associated with this 
6-d volume is stored in the corresponding 3-dimensional elements, also shown in red, 
of the impacted and final state grids. 

of the 6-D sub-volume). Since the maximum and minimum energies of the bands of 

interest in each cube are stored, we can apply the rule of Eq. (5.9) simply by retrieving 

their values from memory, which is very rapid. 

Similar grids Gb are constructed to correspond the the sub-volumes formed by each 

stage of bisection b, up to the 0 t h grid which consists of a single cube surrounding the 

Brillouin zone. These coarser grids can be rapidly obtained: the maximum energy in 

a cube in grid Gb is straightforwardly obtained from the maxima of the eight cubes in 

grid Gb+i from which it is formed. 

Several points are worth noting about the above procedure: 

• The use of the 3-dimensional grids is essential. Storing maximum and minimum 

values of AE for 6-dimensional grids would allow application of Eq. (5.5) instead 

of the less efficient Eq. (5.9), but we would again have the problem of finding max-
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ima and minima in the order of 10 1 4 mesh cubes. The number of 3-dimensional 

grid cubes required is about seven orders of magnitude smaller. 

9 The requirement that impacting carrier wavevectors lie at the nodes of the finest 

grid GB is generally not very restrictive. In a typical rate calculation B will be 

set to 7 or 8, which makes the spacing of GB'S nodes ^ or ^ (in units of ^ ) 

respectively. 

• The memory required by Gt is MB oc 86. Thus the total memory MTOT required by 

all the grids G0 . . . G B , increases very rapidly with B; MTOT oc 8B. Furthermore, 

the majority of the memory is used only by the finest grid; MB — | M t o ( . However, 

because impacting carrier wavevectors are required to lie at the nodes of GB, the 

symmetry of the Brillouin zone can used to advantage, and GB is defined only 

within the irreducible wedge (discussed in §3.2). This reduces MB by a factor of 

48 and MTOT by a factor of about 8. Because the impacting carrier wavevector 

does not in general lie at the nodes of the coarser grids, Go.. . G B - I must be 

denned throughout the Brillouin zone. 

• A saving in run-time is achieved through the fact that the calculation of maximum 

and minimum energies in G B need only be performed once for all impacting 

vectors (provided the combination of bands involved remains the same). Only 

the coarser grids need to be re-constructed for each impacting vector. 

5.1.5 Storage of Sub-Volumes 

During the volume integration, the positions throughout f i 0 of all undiscarded sub-

volumes must be stored. After a certain number of bisection iterations, the storage 

requirements will usually exceed the available memory (depending on how much of 

the phase space is occupied by f2,$e). Therefore an upper limit must be placed on the 

number of sub-volumes that will be stored during the integration. 
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Suppose that at the bth iteration, the number of sub-volumes Nb retained by the rule 

of Eq. (5.9) exceeds the limit imposed, Nmax. In this case, Nmax of the A^ sub-volumes 

are chosen at random and stored for the next iteration, while the rest are discarded 

despite their being selected by Eq. (5.9). Thus, the fraction of the total volume that 

should be sampled that has actually been retained at this iteration is FB, where 

0 < F 6 = % ^ < 1 (5.10) 
Aft 

It is assumed that provided Nmax is large, the fraction of sub-volumes retained is a 

representative sample of all the sub-volumes that should have been kept. The volume 

QB remaining at the end of B bisection stages, as a fraction of that which would remain 

if N M A X were infinite, is F, given by 

B-l 

F = ] ] F B (5.11) 

b=l 

The product is over all bisections except the BTH due to the fact that the sub-volumes 

formed at the last iteration do not need to be stored. As these final sub-volumes are 

created by bisection of their predecessors, the Monte Carlo integration is carried out 

in each and then they are discarded. Thus, FB effectively has the value 1. 

As in §5.1.2, the Monte Carlo integration returns the mean value of the integrand I'v 

within the volume Q.B- Because the fraction F of sub-volumes sampled is representative 

of all the sub-volumes that would be sampled for infinite Nmax, I'v is the same for this 

reduced set as it would be for the whole set. To obtain the mean value of the integrand 

for the whole integration volume /„, Eq. (5.4) must be replaced with the expression 

4 = ^ x ^ x 1 (5.12) 

Finally the total rate Rn(k\) is obtained from Iv using Eq. (5.2), as before. 
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5.1.6 Performance of the Volume Algorithm 

The volume integration algorithm described above requires the setting of several ad

justable parameters which are not directly connected with the physical aspects of the 

problem but determine the performance of the numerical algorithm. Therefore, we 

attempt to choose values for the parameters such that the final result is insensitive to 

small variations of the values. The parameters are summarised below, together with 

considerations to be made when choosing their values. 

Top-hat function width, 6e: The top-hat function is used to approximate the Dirac 

delta function that ensures conservation of energy, and therefore the smaller the 

value of Se, the better the approximation. Too small a value will cause large 

statistical errors in the final rate due to few sampled points lying in the volume 

in which i t is non-zero. 

Number of bisection stages, B: Since band energy is interpolated linearly in the 

sub-volumes created by the final bisection step, the sub-volume side length should 

be as small as possible to reduce interpolation errors. This means as many bisec

tions as possible should be performed. However since memory use increases as 

8 B , the number of bisections is limited by the available computational resources. 

We hope to be able to choose a sufficiently large value for B that the calculated 

rate converges. A higher value for B also allows more freedom in where impacting 

carrier wavevectors can be located. 

Maximum number of sub-volumes stored, N m a x : As with the number of bisec

tion steps, the highest possible value of Nmax should be chosen that is compatible 

with the available memory resources. Again, we hope to be able to choose a value 

sufficiently large that the rate has converged with respect to i t . 

Number of sampling points taken, i V a a m p : The more points sampled within the 

volume remaining after the bisection and reduction phase, the lower will be the 
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Figure 5.5: Calculated impact ionisation rate from the 2 n d conduction band of GaAs 
plotted versus wavevector along the 100-direction using the values of the algorithm 
parameters given in Table 5.1. 

statistical error on the rate. However, more sampling points require more matrix 

element evaluations and hence more computer time. Thus a suitable balance 

between accuracy and run-time must be found. 

Fig. 5.5 shows the impact ionisation rate in GaAs as a function of position of 

the impacting carrier wavevector. The rate is calculated for transitions in which the 

initial states are in bands 12 and 8, and the final states are in band 9 (see Chapter 2, 

Table 2.2 for the band labelling notation). The abscissa corresponds to the position of 

the impacting carrier wavevector along the 100 direction, and the ordinate (logarithmic 

scale) is the corresponding rate (in arbitrary units). The rate calculation was performed 

with the parameters B, Nmax, N s a m p and 5e set to values given in the 'Near threshold' 

column of Table 5.1, i.e. values for which the result of the calculation was converged 

for all impacting carrier wavevectors. 

Figs. 5.6, 5.7, 5.8 and 5.9 indicate how the convergence occurs with respect to each 

of the parameters B, N m a x , N s a m p and 8e. In each case, the vertical axis corresponds to 
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Parameter Value Required for Convergence Parameter 
Away from threshold Near threshold 

B > 6 > 7 
N >io 4 >io 4 

N 
1 v samp 

>io 3 >io 3 

8e (eV) 10" 6-10- 1 10- 6 -10" 2 

Table 5.1: Parameter settings for the volume integration giving well 
converged rates. 

the logarithm of the transition rate, and one of the horizontal axes to the magnitude of 

k i along the 100 direction, i.e. the same information as presented in Fig. 5.5. The other 

horizontal axis then corresponds to the variation of the relevant adjustable parameter. 

The plots show that each parameter can be given values for which convergent rate 

results are obtained. For each parameter the highest rates (i.e. away from threshold) 

converge quickest, with lower rates (i.e. near threshold) converging slower. The rele

vant quantitative details are given in the figure captions and Table 5.1. In the case 

of parameters B, Nmax and Nsamp convergence improves as the parameter value is in

creased. Computational requirements (memory and/or CPU) also increase with these 

parameters, and so the smallest values for which acceptable convergence is achieved 

should be used. In the case of the Se, there is a 'window' of values which give converged 

results, with non-convergent rates being obtained if the parameter is set too low or too 

high. 

5.2 Conversion of Integral from Volume to Surface 

An alternative algorithm is one due to Beattie t 6 1 l which treats the rate calculation as 

a surface integral. Thus, where the integral described in §5.1 is performed throughout 

the volume defined by the approximate energy conservation condition AE < 5e, the 

integral here is performed over the surface defined by the exact energy conservation 

condition AE = 0. 
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Figure 5.6: Convergence of the rate WRT B — the number of division iterations. The 
rate converges to the result of Fig. 5.5 for B > 7. Note that number of impacting 
vectors at which the rate is calculated falls with decreasing B. Hence the rate at, 
for example, B — 3 can only be calculated at 5 impacting vectors. 

7̂ 1° 

4. 

Figure 5.7: Convergence of the rate WRT i V m a x — the maximum number of sub-
volumes stored. Statistical errors in the calculated rate decrease as Nmax increases. 
Good convergence is achieved for i V m a a ; > 104. 
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Figure 5.8: Convergence of the rate WRT N S A M P — the number of random sampling 
points taken. As with i V m a i , the statistical error on the result decreases as N S A M P 

increases, with good convergence being obtained for N S A M P > 103. 
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Figure 5.9: Convergence of the rate WRT 8e — the width of the the top-hat function. 
Too large a value for 8e poorly approximates the Dirac delta function, while too small 
a value leads to large statistical errors in the result (and also problems related to 
machine precision). Convergence is achieved for 1 0 - 6 < Se < 1 0 - 2 eV. 
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The volume integral in ki/,k2'-space of Eq. (5.1) is converted into an integral over 

the AE = 0 surface in the following way. The volume element c?6k can be written in 

terms of polar coordinates as 

( f k = k5dkdQ (5.13) 

where dk is an element of length in the radial direction and dQ is an element of 6-

dimensional solid angle. Thus, in polar coordinates, Eq. (5.1) is written as 

The integral with respect to k in braces can be carried out first: 

/ | 5 | 2 S(AE) k5dk = \S\2 kb 

Jk 

in which the Dirac delta function has picked out the value of the integrand at the radial 

coordinate where AE = 0. Finally, putting Eq. (5.15) into Eq. (5.14) gives the surface 

integral 

dQ (5.16) 
A £ = 0 

Note that in [61], Beattie describes the application of his algorithm to analytic band 

structure. Here, the application of his algorithm to pseudopotential band structure is 

similar to that described by Wilson et al t 6 4 l 

d(AE) 
dk 

(5.15) 

327r5eg/l 

d(AE) 
dk 

5.3 Numerical Surface Integration 

The surface integral is carried out using a numerical method analogous to that described 

in §5.1 for the volume integral. Writing the element of solid angle as '6 11 

dQ = sin30! sin 20 2 sin0 3 d(cos0i) d(cos02) d(cos03) d(cos04) dd5 (5.17) 
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the integral of Eq. (5.16) will be carried out with respect to the set of coordinates 

(cos#!,... , cos #4, #5) throughout the 6-dimensional solid angle Or, defined by '61^ 

- 1 < COS0; < 1 

0 < 0 5 < 2TT 

Eq. (5.17) is substituted into Eq. (5.16) giving 

(* = 1 . . . 4 ) 

i? / / (ki) 
3 2 7 r 5 e ^ , W T 

/ Is d(cos#i) d(cos#2) d(cos#3) d(cos#4) d65 

where 

7 s(cos0!,... ,cos0 4,0 5) = [ | 5 | 2 kb 
d(AE) 

dk ) AE 

(5.18) 

(5.19) 

sin30! sin 20 2 sin6>3 (5.20) 

and Is is the mean value of the integrand throughout the whole solid angle Or over 

which the integral is to be done. As with the volume integral, the problem now is to 

calculate the mean value Is, which is done using a Monte Carlo algorithm. 

5.3.1 The Integration Algorithm 

The evaluation of Is is carried out using a similar algorithm to that described in 

§5.1.1 to evaluate /„. In the volume algorithm, coordinates ( k i ' , k 2 ' ) were picked at 

random throughout the volume f2o and hence Iv calculated. Similarly, here coordinates 

(cos0!,... , cos #4, #5) are picked at random throughout Or and hence Is is calculated. 

Fig. 5.10 schematically represents the algorithm. The thick line represents the 

AE — 0 surface in k^k^-space. The coordinate origin has been moved to the point 

marked O on the diagram, which is the position at which AE — AEmin (see §4.3.3). 

This position always lies inside the surface. 

A set of coordinates (cos#i,. . . ,cos0 4 ,cos9 5) have been picked at random, the 

corresponding radial direction being marked on the diagram. The intersection of this 
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k2-

Figure 5.10: A schematic representation of the surface of allowed transitions in 
ki',k2'-space. The coordinate origin is moved to O — the point at which AE is a 
minimum — which lies inside the surface. From this origin, the surface is sampled 
in randomly chosen radial directions to determine the average value of the integrand 
over i t . 

radial line with the AE = 0 surface is determined, and the integrand Is evaluated 

at this point. By repeating this evaluation for many randomly chosen sets of angular 

coordinates, the average value of the integrand, 7S, is determined, to within some 

statistical error. 

5.3.2 Inclusion of the Whole Surface 

The surface shown in Fig. 5.10 is relatively easy to integrate over. However, in regions 

of the Brillouin zone where the band structure is complicated, the surface of allowed 

transitions is likely to be correspondingly complicated. Several surfaces may exist 

for a given initiating electron, and these surfaces may join. Fig. 5.11 shows how the 

AE = 0 surface may become complicated as the impacting electron gains energy above 

threshold. 

Figs. 5.11a, b and c show the surface(s) of allowed transitions for increasing impact

ing electron energy. Fig. 5.11a shows the case just above threshold: only one surface 

of allowed transitions exists, and i t is of the form shown in Fig. 5.10. 

In Fig. 5.11b the electron has gained sufficient energy as to be able to access two 
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Figure 5.11: The surface of allowed transitions in k1',k2'-space, growing as the 
impacting electron gains energy above threshold. In Fig. a, the initiating electron 
is just above threshold and the surface is simple. In Fig. b, at higher energy, two 
surfaces are accessible, each one contributing to the rate. In Fig. c, at still higher 
energy, the two surfaces have joined to form a single complicated surface that poses 
problems for integration. 

surfaces of allowed transitions. Each is of the form of the simple surface in Fig. 5.11a 

and each is integrated over separately from origins AEmin and AE^in. The total rate 

for the impacting carrier is the sum of the sub-totals for each of the surfaces. 

In Fig. 5.11c the two surfaces have joined to form one single surface containing two 

local minima in the AE function. I t is in this case that care must be taken to ensure 

that each of the final states is included in the integration exactly once. Fig. 5.12 shows 

how a problem can arise. 

In Fig. 5.12a the pair of joined surfaces is treated as a single surface. The result is 

that some of the surface lies 'in shadow' from the chosen origin, and is therefore not 

included in the integration. 

In Fig. 5.12b the pair of joined surfaces are treated as separate, each being in

tegrated over from its own origin. The result now is that parts of each surface are 

included in the integration twice. 

In order to ensure surfaces are included just once, the integration is performed 

separately from each origin, as in Fig. 5.12b, but with the condition that if the gradient 

of AE with respect to a change in k in the radial direction is not always positive along 

the length of the radius, the integrand for this direction is taken to be zero. Fig 5.13 
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Figure 5.12: Problems of integrating over a complicated surface. In Fig. a the 
surface is integrated over from one origin, which results in some of the surface which 
lies 'in shadow' not being included. In Fig. b, the surface is integrated over from 
each of its minima, resulting in parts being counted twice. 

illustrates how applying this condition leads to correct inclusion of all parts of the 

surface. 

Fig. 5.13a shows a case similar to Fig. 5.11b in which there are two simple surfaces. 

Here integration takes place separately from origins AE^^ and AE^^. The parts of 

the surface marked A and B on the figure are integrated from AE^^ and the parts 

marked C and D are integrated from AE^in. 

In Fig. 5.13b the two surfaces have merged to form a single one, which corresponds 

to the case shown in Fig. 5.11c. In this case we must be careful not to include the 

parts of the surface marked E and F twice, once from each origin. To avoid this, we 

stipulate that if the gradient of AE as a function of (k i ' , k 2 ' ) becomes negative as we 

move away from the origin, the corresponding integrand is taken to be zero. Thus, 

from AE^n, E is included, but F is taken to have zero integrand due to the gradient 

going negative at G. Similarly, F is included from A £ ^ j n , but E is not, again due 

to the gradient becoming negative at G. Hence E and F are included just once each 

during the integration. 
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Figure 5.13: Solving the problem of integrating over complicated surfaces. Fig. a 
shows the situation represented in Fig. 5.11b: two simple surfaces exist, each in
tegrated over separately. Fig. b shows the case represented in Fig. 5.11c: one 
complicated surface. 
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5.3.3 Performance of the Surface Algorithm 

As discussed in §5.1.6, there are several numerical parameters used in the volume algo

rithm, specifically Se, B, Nmax and Nsamp, which must be adjusted to give convergent 

results. In the surface algorithm described here, there is only one parameter: the num

ber of random sampling points taken, N s a m p . This value should be set high enough to 

reduce the statistical error on the result to an acceptable level. In this work, sampling 

points are taken until the statistical error is 1% or below. 

5.4 Comparison of Integration Methods 

I t is useful to compare the results of integrations performed using the different algo

rithms. They approach the problem in quite different ways, and therefore agreement 

in their results to within some small error can be taken as confirmation of a correct 

evaluation of the integral. However, it should be remembered that both algorithms 

use the same band structure data (discussed in Chapter 3) and the same method of 

calculating the matrix element (discussed in Chapter 4), and so it does not follow that 

the overall error on each of the results is of the same order as any discrepancy between 

them. 

Fig. 5.14 shows rates calculated using the volume and surface integration methods 

for impacting electrons in the first conduction band of GaAs lying along the line defined 

by k = (0.32+t, 0.32 — t, 0) . For these states, only one surface of allowed transitions 

is accessible, corresponding a minimum in AJ51 located near = k2> = T (i.e. the 

situation is as shown in Fig. 5.11a). Agreement is generally good, except where the 

rate is at its lowest in which case the volume algorithm becomes inaccurate. 

Fig. 5.15 compares the results of the volume and surface algorithms, this time for 

impacting electrons located along the line k = (t, 0.055 + §, 0) in the first conduction 

band of GaAs. For 0.3 < t < 0.45 there is only one surface of allowed transitions 

accessible, which is centred near ky = k 2 ' = T, and the rates obtained using the volume 



CHAPTER 5. IMPACT IONISATION: NUMERICAL INTEGRATION 116 

1 0 Vo . band 9 
Vol, band 10 

1 0 • Surf, band 9 
OSurf, band 10 

10 

10 

10 

0 

0 

1 0 

10 

1 0 
0 0 0 0 . 0 5 0 . 1 0 0 . 1 5 

Figure 5.14: Comparison of rates in the 1 s t conduction band of GaAs obtained by 
the volume and surface algorithms when only one surface of allowed transitions is 
accessible. 

and surface algorithms agree. For t > 0.45, other surfaces corresponding to minima 

in AE located in the satellite valleys become available (i.e. the situation is as shown 

in Fig. 5.11b). The volume algorithm includes these other surfaces automatically, and 

the rate obtained by it correspondingly increases. The surface algorithm, which in this 

case is applied only to the minimum in AE at ki< = k 2 ' = T, misses these new surfaces 

and therefore underestimates the rate when t > 0.45. 

Fig. 5.16 shows the rates plotted for the same impacting electrons as in Fig. 5.15, 

but this time the surface algorithm has been applied to all the accessible surfaces 

and the integrands summed. In this case there is good agreement between the rates 

calculated by the volume and surface algorithms. 

5.4.1 Umklapp Processes 

For any electron state at k in the first Brillouin zone there are equivalent states outside 

the zone at k ' = k + G (where G is any reciprocal lattice vector) with the same 

energy and wavefunction. I f the original state k lies on a surface of allowed (energy 

and momentum conserving) transitions, then any equivalent state k ' lies on another 
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Figure 5.15: Comparison of rates in the 1 s t conduction band of GaAs obtained by 
the volume and surface algorithms when multiple surfaces of allowed transitions are 
available. The surface algorithm is only applied to the surface corresponding to the 
minimum in AE near = k 2 ' — T. 
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Figure 5.16: Comparison of rates in the 1 s t conduction band of GaAs obtained by 
the volume and surface algorithms when multiple surfaces of allowed transitions are 
available. The surface algorithm is applied to surfaces corresponding to all minima 
in AE. 
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Figure 5.17: A schematic representation of equivalent surfaces of allowed (energy 
and momentum conserving) transitions, related by a reciprocal lattice vector. Al l 
states k' on the green surface are quantum mechanically equivalent to states k on 
the red surface, and only one surface should be included in the integration (usually 
the one in the first Brillouin zone). 

surface of identical transitions. The situation is represented in Fig. 5.17. 

In fact, the wavevectors k and k' just provide different descriptions of the same 

quantum mechanical state, and if one 'state' is included in the rate integral, the other 

should not be. That is, only one of the surfaces shown in Fig. 5.17 should be integrated 

over. In the case shown where the red surface is continuous within the first Brillouin 

zone it is sensible to work in the spirit of the reduced zone scheme and integrate over 

the surface in the first zone. However, i f the surface is not continuous as in Fig. 5.18a 

then the volume and surface algorithms proceed in different ways. 

The volume algorithm restricts all final state vectors to the first Brillouin zone, thus 

ensuring that no two transitions related by a reciprocal lattice vector are both included 

in the rate. This is represented in Fig. 5.18a. The k-vectors involved in the transition 

conserve crystal momentum only to within a reciprocal lattice or umklapp vector, i.e. 

k x + k 2 = kX/ + k2< + G u . 

The surface algorithm, on the other hand, chooses the surface of allowed transitions 

in such a way as to be continuous as is represented in Fig. 5.18b. This is more conve-
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(a) Volume algorithm (b) Surface algorithm 

Figure 5.18: Different (but equivalent) surfaces of allowed transitions integrated over 
by the volume and surface algorithms. The volume algorithm requires that all final 
states lie in the first Brillouin zone, while the surface algorithm requires that the 
surface be continuous. In Fig. b, the part of the surface lying outside the zone is 
equivalent to the green surface lying inside the zone. 

nient for the surface algorithm, which relies on choosing a coordinate origin inside the 

surface (see §5.3.1). Such a choice may lead to the final state k-vectors lying outside 

the first Brillouin zone. However the origin (or origins, in the case of there being multi

ple surfaces) from which the integration is performed, is restricted to the first Brillouin 

zone to avoid wrongly including transitions related by a reciprocal lattice vector. 

5.5 Summation of Rates Over Band Index 

Consider the transition rate from a state in band 12 due to its impact ionisation 

of states in band 8, leaving the electrons in bands 9 or 10 (i.e. initial states in the 

second conduction and heavy hole bands, final states in the firstc conduction band 

(see Chapter 2, Table 2.2 for notation). There are four separate rates to be calculated, 

corresponding to the four possible combinations of final state bands. If transitions from 

the impacting band A and impacted band B to the final bands c and D are denoted 
c In principle, either particle could make a transition to a higher conduction band, if energy and 

momentum allow, but transitions of this sort are neglected for the moment. 
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symbolically as A,B-»C,D, then the four rate integrations correspond to transitions of 

the types: 

12,08->09,09 12,08^09,10 

12,08^-10,09 12,08-^10,10 

The total rate of impact ionisation might then be assumed to be equal to the sum 

of rates of all the possible sub-transitions listed above. In fact, this is not the case, 

and instead summing the rates of all possible transitions gives a value for the total rate 

that is twice the actual theoretical value [ 6 4> 1 0 7]. This is because in summing the rates 

due to all possible transitions, as described above, each quantum-mechanically distinct 

transition is counted twice. The two individual transitions 

kx, k 2 -» k : / , k 2 ' and k x , k 2 -» k2>, k v 

are not quantum-mechanically distinct because the second is the exchange of the first. 

They are therefore the same, and their contribution to the transition rate should only 

be counted onced. Note that the effect of exchanging the final states is accounted 

for explicitly in the matrix element, which consists of direct and exchange parts (see 

Chapter 4, §4.2). 

Therefore, when integrating over all final pairs of k-vectors for transitions of the 

type 12,08-^09,09, the value obtained for the rate must be halved to obtain the true 

theoretical value. The same is true of the rate obtained for 12,08-^10,10. 

In the case of the rate 12,08-^09,10, simply swapping the final state k-vectors does 

not give the exchange transition since the band indices also differ. Thus all transitions 

included in the integral are quantum-mechanically distinct as they should be. However 

each transition in the rate 12,08^10,09 is the exchange process of a transition already 

summed over when integrating 12,08-409,10, and so including these again leads to double 

counting. 
d Which one is counted is unimportant since the magnitude of the matrix element is the same in 

each case. 
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Thus the total rate of transitions from a state in band 12 due to impact ionisation 

of states in band 8 is given by 

12,08->CB1,CB1 = - (12,08-^-09,09 + 12,08^-09,10 + 12,08^10,09 + 12,08->-10,10) (5.21) 

where the second form, which makes use of the relation 12,08-»09,10 = 12,08^10,09, is 

more convenient as it only requires three, rather than four, numerical integrations. 

In this example, the rate obtained from Eq. (5.22) is that due to all transitions 

involving impacted carriers in band 8 and final states in the first conduction band. 

Generally the quantity of interest is the total rate of impact ionisation caused by a 

particular impacting carrier due to any allowed transitions. This total transition rate 

is obtained by summing the contributions from all valence and conduction bands for 

which energy and momentum conserving transitions exist. 

1 ( 
(12,08-^09,09) + 12,08-^09,10+ -(l2,08->10,10) (5.22) 
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5.5.1 Pros and Cons of the Two Algorithms 

The two algorithms have different strengths and weaknesses which in many cases are 

complementary. The columns below list the main properties of each algorithm. Com

ments marked with a 0 correspond to advantageous characteristics, with those marked 

with a 0 corresponding to disadvantageous characteristics. 

Volume Algorithm Surface Algorithm 

0 Impacting carrier wavevectors must lie 
at the nodes of the finest grid GB on which 
energy maxima and minima are stored 
(see the discussion of pre-calculation of 
maxima and minima in §5.1.4). 

© Impacting carrier wavevectors are free 
to lie anywhere. 

Q Care must be taken to ensure the 
numerical parameters Se, B, N m a x and 
Nsamp are chosen so that convergent rates 
are obtained. 

© The algorithm relies on only one pa
rameter, N s a m p , which can be chosen rel
atively easily to give an acceptable statis
tical error. 

© All transitions are integrated automat
ically in one pass of the algorithm. 

0 The algorithm must be run separately 
for each sub-surface accessible to the im
pacting electron. 

© No matter how complicated the surface 
of final states, the algorithm sums over all 
transitions without special provisions be
ing made. 

0 As the surface of final states becomes 
complicated, extra care must be taken to 
avoid mis-counting the transitions to this 
surface (see §5.3.2). 



Chapter 6 

General Results 

In this chapter, general results relating to the band structure, thresholds and rates of 

the materials studied are presented. The aim of the chapter is to provide a comprehen

sive survey of the results of the calculations described in the previous chapters. The 

results are discussed where appropriate, and are compared with calculations performed 

by other authors. 

6.1 Terminology Used in this Chapter 

In order to improve the clarity of the following sections, the definitions of some of the 

terms used in the rest of this chapter are given below. 

Carrier is used in the usual sense to mean an electron in the conduction band or a 

hole in the valence band. 

Carrier Energy is used to denote the energy of an electron above the conduction 

band edge, or a hole below the valence band edge. Thus for electrons, carrier 

energy increases with increasing energy eigenvalue of the occupied eigenstate, 

whereas for holes, carrier energy increases with decreasing energy eigenvalue of 

the unoccupied electron eigenstate. 

123 
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State. Strictly, a state can be either occupied or unoccupied only by an electron. 

However, in the case of hole initiated impact ionisation, the hole will be discussed 

as if i t were a real positively charged particle (as is conventional), and as such will 

be said to occupy a state. Additionally, for the sake of conciseness, expressions of 

the form 'the ionising state' (or similar) will be used when strictly what is meant 

is 'the state occupied by the ionising carrier'. 

Secondary States are the impacted and final states. After an electron initiated im

pact ionisation has taken place, the final states are occupied states in the con

duction band and the impacted state is a state unoccupied by an electron in the 

valence band (corresponding to a hole — see Generated Carriers below). After a 

hole initiated impact ionisation, the final states in the valence band are occupied 

by holes, while the impacted state in the conduction band is unoccupied by a 

hole (corresponding to an occupied electronic state — again, see below). 

Generated Carriers are the three carriers remaining after a single impact ionisation 

event — two of the same type (electron or hole) as the ionising carrier, one of the 

opposite type. I t should be noted that there is a distinction between the gener

ated carriers and the secondary states. In the case of electron initiated impact 

ionisation, the generated electrons occupy the final secondary states. However, if 

the impacted secondary state (that is, the state left unoccupied by an electron) 

lies at k 2 , then the generated hole lies at —k 2 (see, for example, Kittel I 1 0 1!). Sim

ilarly, for hole initiated impact ionisation, the generated holes 'occupy' the final 

states, while the generated electron lies at minus the wavevector of the impacted 

state. Making this distinction will only be important in §6.5.1 where the k-space 

distribution of secondary states in discussed. 

Finally, throughout this chapter, where InGaAs and SiGe are referred to, the com

positions are always Ino.53Gao.47As and Si 0.5Ge 0.5, and all material parameters are for 

unstrained bulk material at 300K. 

http://Ino.53Gao.47
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6.2 Band Structure 

125 

A summary of the parameters required to perform the pseudopotential band structure 

calculation (i.e. those listed in Chapter 2, Table 2.1) for each material is presented 

here, along with the results of the calculations. 

GaAs 

The pseudopotential parameters for GaAs were taken from Chelikowsky and Cohen ' 8 1 ' . 

The band structure calculation for GaAs involved several small differences in compar

ison to the calculations for InGaAs and SiGea. Firstly, Gaussian non-local wells of the 

form Vi — ^4;exp(—j^) were used instead of square wells as for the other materials. 

Secondly, the calculation of the spin orbit interaction included the Bni(K) terms which 

are neglected in the other materials studied here, as discussed in §2.3 of Chapter 2. 

Finally, the pseudopotential parameters used were for GaAs at OK. When calculating 

band structure at 300K, as was used in all the calculations presented in this work, the 

band gap was 'scissored', i.e. conduction band energy eigenvalues were all reduced by 

118 meV. 

The values of the parameters used in the calculation are listed in Table 6.1, and 

energies of some of the important gaps obtained with these values are given in Table 6.2. 

The energy band structure and dielectric function resulting from the pseudopotential 

calculation are shown in Figs. 6.1 and 6.2. 

InGaAs 

An initial set of pseudopotential parameters were generated for InGaAs by interpolating 

parameters between the binary compounds, taken from Chelikowsky and Cohen' 8 1 ' . 
aThis is simply due to that fact that the pseudopotentials for InGaAs and SiGe were fitted for this 

work, whilst that for GaAs was already available. 
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The form factors were interpolated using the expression 

K , l l o y ( G ) 
1 

[xttAVA(G) + (1 - x)QBVB(G)} (6.1) 
ft alloy 

where 0 is the volume of the unit cell of the material indicated by the subscript, A 

and B refer to InAs and GaAs respectively, and x = 0.53. The non-local well depth 

parameters were interpolated linearly. This required the band structure for GaAs to be 

re-fitted, using a square non-local well, so that the pseudopotentials used for it and InAs 

would be of the same type. The initial estimate of the parameters thus obtained was 

then refined using the fitting procedure described in Chapter 3, §3.1. The experimental 

data for unstrained InGaAs at 300K used for fitting was taken from [75]. The final 

fitted pseudopotential parameters are listed in Table 6.3. Table 6.4 gives energy gaps 

calculated using these parameters along with the corresponding experimental data 

used for fitting. The energy band structure and dielectric function obtained from the 

pseudopotential calculation are shown in Figs 6.3 and 6.4. 

Pseudopotential parameters for SiGe were obtained in a similar way to those of InGaAs. 

Using local pseudopotential form factors for Si and Ge given in [110], a local pseudopo

tential for SiGe was obtained by interpolation with Eq. (6.1). The interpolated form 

factors were then used as the starting point for the fit to experimental data. The data 

for unstrained SiGe at 300K was taken from [98]. The final fitted pseudopotential 

parameters are listed in Table 6.5 with energy gaps thus obtained listed in Table 6.6, 

along with the corresponding experimental values. The energy band structure and 

dielectric function are shown in Figs.6.5 and 6.6. 

SiGe 
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Parameter Value Parameter Value 
-0 .2140 ac

0 0.000 

VS(V8) 0 .0140 Pco 0.000 

Vs(Vn) 0 .0670 Al 0 .125 

0 .0550 RQ 1.296 

0 .0380 1.219 

vA(Vn) 0 .0010 < 0.000 

PS 0.000 

a 1.38 A% 0.625 

a0 5.648 p a 1.058 

RA

2 
1.219 

Table 6.1: The pseudopotential parameters for GaAs (see Chapter 2, Table 2.1 for 
the meanings of the symbols). VA, V 5 , ot0, and A2 are in units of Rydbergs; R and 
ao are in A ; (3Q and a are dimensionless. was adjusted to give the r H H — r s s o 

splitting listed in Table 6 .2. 

Energy Pseudopotential 
gap value 

T C B I — T H H ( E 3 ) 1.540* 

X C B I r C B i 0.501 

LcBl — TcBl 0.311 

T H H — T S S O 0.350 
Position of X (0.86, 0, 0) 
Position of L (0.50, 0.50, 0.50) 

Table 6.2: Energy gaps in GaAs (in eV), obtained from the pseudopotential calcu
lation. P B denotes the energy eigenvalue (as opposed to carrier energy) at position 
P in band B. The letters X and L denote the positions of the minima in the 1 s t 

conduction band, not the symmetry positions at the zone boundary, 
tin all calculations, the band gap is 'scissored' to 1.422 eV 
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Figure 6.1: The first 20 energy bands of GaAs obtained from the pseudopotential 
parameters listed in Table 6.1. 
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Figure 6.2: The dielectric function of GaAs for q = 0, obtained from the band 
structure shown in Fig. 6.1. The real part is shown as the solid line, the imaginary 
part as the dashed line. 
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Parameter Value Parameter Value 
-0.2064 ac

0 0.0000 
VS{V8) 0.0065 P°o 0.0005 

vs(VTi) 0.0558 A\ 0.5575 

VA(V3) 0.0480 RQ 1.2696 
0.0441 1.2691 

vA(Vu) 0.0092 0.0000 

PS 0.1287 
a 0.9927 Aa

2 1.5583 
ao 5.8618 K0 1.0580 

D O 

K2 

1.2691 

Table 6.3: The pseudopotential parameters for InGaAs (see Chap
ter 2, Table 2.1 for the meanings of the symbols). VA, Vs, a 0 , and 
A2 are in units of Rydbergs; R and a0 are in A; /30 and a are di-
mensionless. // was adjusted to give the r H H — r s s o splitting listed 
in Table 6.4. 

Energy Pseudopotential Experimental 
gap value value 

TCBI — THH 0.749 0.75 

XcBl TcBl 0.671 0.67 

LcBl TcBl 0.552 0.55 
- ^ C B l X H H 4.293 4.84 
LcBl — L H H 2.528 2.55 
TCB2 — r H H 

4.312 4.33 
•THH r s s o 0.360 0.35 
LHH — L L H 0.203 0.27 

Position of X (0.99, 0, 0) 
Position of L (0.49, 0.49, 0.49) 

Table 6.4: Energy gaps in InGaAs (in eV), obtained from the pseudopotential cal
culation. See also caption to Table. 6.2. 
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Figure 6.3: The first 20 energy bands of InGaAs obtained from the pseudopotential 
parameters listed in Table 6.3. 
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Figure 6.4: The dielectric function of InGaAs for q = 0, obtained from the band 
structure shown in Fig. 6.3. The real part is shown as the solid line, the imaginary 
part as the dashed line. 
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Parameter Value Parameter Value 
VS(V3) -0.225548 0.003569 

Vs(VS) 0.026800 PS 0.200779 

Vs(Vu) 0.064081 0.526179 

0.000000 RQ 1.059587 

VA(V4) 0.000000 1.198185 

V A ( V T T ) 0.000000 0.003569 

PS 0.200779 
a 1.0 Aa

2 0.526179 
a0 5.5344 pa 1.059587 

1.198185 

Table 6.5: The pseudopotential parameters for SiGe (see Chapter 2, 
Table 2.1 for the meanings of the symbols). VA, VS, ceo, and Ai are 
in units of Rydbergs; R and a0 are in A; @0 and a are dimensionless. 
H was adjusted to give the r H H — r s s o splitting listed in Table 6.6. 

Energy Pseudopotential Experimental 
gap value value 

XCBI — THH (E f l) 0.908 0.91 

TcBl — THH 2.360 2.41 

XQBI — X H H 
4.194 4.36 

LCBI — L H H 
2.942 2.72 

LCBI — L L H 3.010 2.87 

TCB2 — TsSO 3.265 3.24 

THH — Tsso 0.115 0.12 
Position of X (0.82, 0, 0) 
Position of L (0.49, 0.49, 0.49) 

Table 6.6: Energy gaps in SiGe (in eV), obtained from the pseudopotential calcula
tion. See also caption to Table. 6.2. 



CHAPTER 6. GENERAL RESULTS 132 

15 

10 

0 
SO 

10 

.15 i 1 1 1 1 
L r x U,K r 

Figure 6.5: The first 20 energy bands of SiGe obtained from the pseudopotential 
parameters listed in Table 6.5. 
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Figure 6.6: The dielectric function of SiGe for q = 0, obtained from the band 
structure shown in Fig. 6.5. The real part is shown as the solid line, the imaginary 
part as the dashed line. 
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6.3 Impact lonisation Thresholds 

Impact ionisation thresholds are discussed in Chapter 4, §4.3. Although the thresh

olds give no information on the actual magnitude of the rate, they are important in 

determining the number of carriers in a device that can initiate impact ionisation and 

so it is of interest to determine where in k-space they lie. In this section the positions 

in k-space from which carriers can initiate ionisation, and the corresponding energies 

of these states are presented and compared between the different bands and materials 

studied. 

6.3.1 Thresholds with respect to k-vector 

The position in k-space of those states from which impact ionisation can be initiated 

was determined using the procedure described in §4.3.3. Briefly, the algorithm involves 

searching the final state phase space (k]_/, k 2 ' ) for the minimum in the energy difference 

function A.E (defined in §4.3.1 of Chapter 4) given a fixed value of the initiating carrier 

wavevector kp If the minimum lies below zero, then a carrier in state k i is able to 

initiate impact ionisation. 

Values of AEmin were determined for impacting carriers in a given band whose 

wavevectors were located on a grid of points distributed throughout the irreducible 

wedge. The value of AEmin could then be interpolated at all points throughout the 

Brillouin zone in exactly the same way as band energies. Hence, by testing whether 

the interpolated values of the energy difference function lie above or below zero, the 

position of the thresholds can be located throughout the Brillouin zone. 

The plots of the thresholds in Figs. 6.7-6.9 are all of the same type: the octagonal 

base of the plot is the kz = 0 plane of the Brillouin zone with the energy of carriers'3 

measured on the vertical axis. The energy surface is shaded dark in regions where 
bRecaJl from §6.1 that the carrier energy of holes increases as the energy eigenvalue of the cor

responding unoccupied electronic state decreases — hence the inversion of the valence band energy 
surfaces 
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impact ionisation can be initiated, light in regions where it cannot. 

Thresholds in GaAs are shown in Fig. 6.7 for the first and second conduction bands 

and the heavy hole, light hole and spin split off bands. I t is clear that in each band 

the main factor governing whether a carrier can initiate impact ionisation is its energy: 

the ionising states are those of higher energy. The restriction of impacting states to 

the higher energy regions of k-space results in the thresholds displaying anisotropy 

reflecting that of the energy bands themselves. Thus the spin split off band, which 

is the most isotropic, has the most isotropic threshold (i.e. for the 2-D plots shown 

here, the most circular). Other bands, particularly the conduction bands, have highly 

anisotropic thresholds. 

Although the surface of threshold wavevectors is highly anisotropic, it corresponds 

to approximately constant energy. I f the threshold were to lie exactly on an energy 

contour then whether a carrier were able to initiate impact ionisation would be deter

mined by its energy alone (although the rate would in general vary with direction in 

k-space). In the materials studied here this is not the case, and in each band there 

exists a range of energies for which determination of a carrier's ability to initiate impact 

ionisation requires knowledge of its actual k-vector. This is discussed in §6.3.2. 

Figs. 6.8 and 6.9 show the thresholds in the first conduction bands of InGaAs and 

SiGe. I t can be seen that the thresholds in these materials behave in a similar way to 

GaAs, i.e. a carrier's energy is the main factor influencing its ability to impact ionise. 

The band structure of InGaAs is a very similar shape to that of GaAs, differing mainly 

in that the band gap of InGaAs is about half that of GaAs. The energy carriers must 

obtain is correspondingly lower and hence impact ionisation is possible from states 

throughout more of the zone. Thresholds are also of a similar form in SiGe, although 

impact ionisation is possible from all points within SiGe's shallow T-valley. 

The high degree of anisotropy in the thresholds in k-space does not necessarily 

imply that similar anisotropy will be observed in the impact ionisation coefficients a 

and P for fields applied in different directions with respect to the crystallographic axes. 
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The anisotropy of the thresholds in k-space will only be reflected in a and (3 if bal

listic electrons are primarily responsible for causing impact ionisation, as supposed by 

Shockley l 4 6 l If, as suggested by other theories [1 7>4 5>4 7>4 8] ; carriers have undergone many 

phonon-scattering events before reaching threshold, they will be scattered throughout 

the zone. Thus k-space anisotropics will be 'integrated out' and the observed a and f3 

coefficients will be isotropic with respect to field-crystal orientation. 

The a and 0 coefficients are found to be isotropic in, for example, Si t 2 5 > 3 1 ' 3 8 l and 

InP t 3 9- 4 0!. In GaAs, there is some disagreement over the anisotropy of the a coeffi

cient. Experimentally, it has been observed to be anisotropic t 4 1 - 4 3 l while theoretically 

it is predicted to be isotropic t 1 7 l . However, both experimentally and theoretically, 

field directions were considered along the 100, 110 and 111 directions (and at various 

orientations between 110 and 111 in [17]). Along 111, no threshold can be reached bal-

listically, so for fields oriented in this direction, all electrons reaching threshold must 

have been scattered at least once. Along 100, electrons can only reach threshold bal-

listically by tunnelling into the second conduction band and along 110 a very small 

region of k-space from which ionisation can be initiated can be reached ballistically. 

Therefore, along all these directions we would expect the role of ballistic electrons to 

be limited in causing impact ionisation and hence the thresholds to be more-or-less 

isotropic. Examining the plot of thresholds for the first conduction band in GaAs in 

Fig. 6.7 it is clear that the majority of ionising states lie approximately along the 210 

line. We expect therefore that if a ballistic contribution to the overall impact ioni

sation rate is to be measured, it would be for a field applied along this axis. To the 

author's knowledge, no such measurement has been made, which is presumably due to 

difficulties in growing crystals along such a direction. 



CHAPTER 6. GENERAL RESULTS 136 

CB 1 

\ 
.6° 

0 « 

.,6 

HH 

P 0 

2! 

i 
!><> 

sso 

5* " \ 

0» 

.6° 

s 0 ° 

0* 
ft; 

CB 2 

5.° 

0 ° 

5* 
i ,0* 

it 

LH 

9° 

it 

I • 6° (ft* 
1* 

Figure 6.7: Thresholds in five bands of 
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6.3.2 Thresholds with respect to Energy 

The thresholds presented in §6.3.1 as functions of the wavevector of the initiating 

carrier are reconsidered here as functions of the carrier energy. A fraction / is defined 

for a given band n as 

f ( F , I tn(k) 6(En(\t) - EJ d*k 
! n { t j i ) ~ f 8(En(k) - Et) d*k 

where Ei is impacting carrier energy, En{\i) is the carrier energy in band n at wavevector 

k, and i n ( k ) is defined as a function whose value is 1 if state k in band n can initiate 

impact ionisation and zero otherwise. The integrals with respect to k are performed 

over the first Brillouin zone. 

The denominator of Eq. (6.2) is proportional to the density of states at energy Ei, 

and the numerator is proportional to the density of states capable of initiating impact 

ionisation (the constant of proportionality being the same in each case). Thus fn(Ei) 

is the fraction of carriers at energy Ei which can initiate impact ionisation. 

If, as mentioned in §6.3.1, the thresholds in k-space were to lie along an energy 

contour, the function f(E) would be a step function, rising from 0 to 1 at the energy of 

the contour on which the thresholds lay. The actual variation of f(E) in each material 

is plotted in Figs. 6.10 to 6.12. As the plots show, the fraction of ionising states is not 

a step function but instead rises rapidly from 0 to 1 over an energy range of the order 

of 1 eV in most bands. Within this energy range a carrier's ability to initiate impact 

ionisation is influenced by the details of the band structure and is dependent on its 

actual k-vector. Note that every state in the second conduction band of InGaAs can 

initiate impact ionisation and so f(E) for this band is represented as a step function, 

rising from 0 to 1 at the energy of the bottom of the band. 

In each material, the range of energy in which f(E) rises from 0 to 1 is the greatest 

for the first conduction band. This reflects the fact that this is a band of complicated 

shape and low carrier energy, and hence simultaneously satisfying energy and momen

tum conservation is most difficult in this band. The thresholds therefore show the 
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greatest dependence on actual carrier wavevector, rather than just energy, particularly 

in InGaAs where the form of the f(E) function is clearly influenced by the shape of 

the band. 

The thresholds in the valence bands are similar for the direct gap materials GaAs 

and InGaAs. The absolute threshold for holes lies in the spin split off band, despite this 

band being of generally higher energy than the light and heavy hole bands. This reflects 

the fact that the difficulty of simultaneously conserving energy and momentum pushes 

the lowest ionising states to higher energy in the light and heavy hole bands. The spin 

split off bands also show the most step-like behaviour in f(E). This can be understood 

by noting that all states involved in transitions near the threshold lie close to V (the 

locations of the secondary states involved in impact ionisation processes is discussed in 

§6.5) where anisotropy in all the relevant bands (of the impacting, impacted and final 

states) is least. Thus we expect to find the threshold at about the same |k| (and hence 

energy) in all directions. 

The valence bands in the indirect gap SiGe show qualitatively different threshold 

behaviour to that of the direct gap materials. As well as the fact that the energy 

threshold for holes in SiGe lies above that for electrons, in contrast to the direct band 

gap materials, the rise of f(E) from 0 to 1 occurs for the valence bands in the opposite 

order than in the direct gap case, i.e. the absolute threshold lies in the heavy hole 

band instead of the spin split off band. This is due to the fact that the lowest energy 

transition across the band gap corresponds to one of high q for indirect gap materials. 

The lowest energy states able to provide such momentum transfer lie in the heavy 

and light hole bands which have higher effective masses than the spin split off band. 

The indirect gap also accounts for the lack of step-like behaviour in the spin split off 

band. The arguments based on spherical symmetry made in the case of the direct gap 

materials do not apply to the indirect gap SiGe, and thus the isotopic behaviour of the 

threshold is not present. 
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6.4 Impact Ionisation Rates 

The impact ionisation rates presented in this and subsequent sections were calculated 

using the volume integration algorithm discussed in §5.1.2 of Chapter 5. For both elec

tron and hole initiated processes, impacted and final states in the lower two conduction 

bands and upper three valence bands were included. To avoid excessive computational 

requirements, not all band combinations were included, but those neglected accounted 

for < 5% of the total rate. 

The variation of the rate with respect to the wavevector and energy of the impacting 

carriers is examined below. 

6.4.1 Rates with respect to k-vector 

Rates in each band for each material are plotted here with respect to the impacting 

carrier's wavevector along the lines T-X, T-K and T-L (with the exception of the first 

conduction band of GaAs for reasons made clear below). Al l k-states in SiGe, and 

states lying along the T-X and T-L lines in GaAs and InGaAs are at least doubly spin 

degenerate. For such degenerate states, a single rate is plotted which is the average 

of the rates for each degenerate band. Along the T-K line in GaAs and InGaAs, the 

spin-orbit interaction splits the degeneracy and a pair of lines is plotted, one for each 

band. 

The rates in the first conduction band of GaAs, InGaAs and SiGe are shown in 

Figs. 6.13-6.15. In GaAs i t is not useful to plot along the X, K and L directions as they 

do not significantly intersect the small regions of k-space from which impact ionisation 

can be initiated, and instead rates are plotted along the four lines shown in Fig. 6.13. 

Rates in the second conduction bands of each material and the third conduction band 

of GaAs, plotted along T-X, T-K and T-L, are shown in Figs. 6.16-6.19. 

The complicated variation of the rates with impacting k-vector reflects the com

plexity of the energy band structure in the conduction band, and the rates are in 
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general highly anisotropic functions. Several discontinuities in the value of the rate 

with respect to k-vector can be seen in the various plots: along T-X in the first and 

second conduction bands of SiGe, and along T-L in the second conduction band of 

InGaAs and second and third conduction bands of GaAs. These points correspond to 

crossing points in the energy bands, and the discontinuity in the rate is caused by a 

discontinuity in the matrix elements as the bands cross. (In the case of the volume of 

phase space, which is discussed in §7.1 of Chapter 5, the discontinuity is in the first 

derivative). 

Where the rate is highest it shows qualitatively similar behaviour from material to 

material, while where it is low the materials differ considerably. Thus the plots along 

T-K and T-L in the second conduction band are similar in shape for all materials, while 

along T-X of the second conduction band and in all directions in the first conduction 

band, the rates are quite different. 

A high rate corresponds to a large surface or surfaces of final states. In such cases, 

small differences in the shape of the bands have little effect on the availability of allowed 

transitions, and hence the three materials, having broadly similar second conduction 

band structures, show similar behaviour in the rates. Where the rate is low it is due to 

the surfaces of allowed final states being small. In this case, subtle differences in band 

structure can radically alter the availability of final states and hence the rates differ 

considerably between materials. 

As discussed in Chapter 2, the spin-orbit interaction breaks the double degeneracy 

of the bands in GaAs and InGaAs. The effect this has on the rates can be seen in 

the plots along the non-degenerate T-K line, and in all the lines plotted for the first 

conduction band of GaAs. I t can be seen that there is a significant difference in the 

rates for the upper and lower spin-split bands only where the rate is lowest, i.e. in the 

first conduction band. Along T-K in the second conduction bands of these materials 

(and the third conduction band of GaAs) the splitting is of less significance. 

Fig. 6.20 shows the rates in the first and second conduction bands of GaAs through-
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out the kz = 0 plane of the Brillouin zone. This figure can be compared to the threshold 

plots in Fig. 6.7. Obviously, the regions of non-zero rates match the dark-shaded re

gions denoting ionising states on the threshold plots. A qualitative correspondence 

between the energy band structure and the rate is also clear for each of the two bands. 

Figs. 6.21-6.23 show the rates of hole initiated impact ionisation plotted along 

the T-X, r-K and T-L lines for each material. Variation of the rate with k-vector 

is of a simple monotonic form, reflecting the simpler structure of the valence bands 

themselves. As with the conduction bands, where the rate is highest the most similarity 

is seen between materials. Thus the spin split off bands of each material show quite 

good quantitative correspondence, while the light hole and particularly the heavy hole 

bands show less similarity. 
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S t Figure 6.14: Rates in the 1 s t conduction band of InGaAs plotted with respect to 
k-vector of the initiating carrier along the lines T-X, F-K and T-L. 
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Figure 6.15: Rates in the 1 s t conduction band of SiGe plotted with respect to k-
vector of the initiating carrier along the lines T-X, T-K and T-L. 



CHAPTER 6. GENERAL RESULTS 146 

4 
10 

12 
10 

10 
3 10 

100 
8 110 10 

111 

10 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 6.16: Rates in the 2 n d conduction band of GaAs plotted with respect to 
k-vector of the initiating carrier along the lines T-X, T-K and T-L. 
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Figure 6.17: Rates in the 2 n d conduction band of InGaAs plotted with respect to 
k-vector of the initiating carrier along the lines T-X, T-K and T-L. 
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Figure 6.19: Rates in the 3 r d conduction band of GaAs plotted with respect to 
k-vector of the initiating carrier along the lines T-X, T-K and T-L. 
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to k-vector of the initiating carrier in the kz — 0 plane. The rates shown here can 
be compared with the threshold plots in Fig. 6.7. 
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Figure 6.21: Hole initiated rates in GaAs plotted with respect to k-vector of the 
initiating carrier along the lines T-X, T-K and T-L. 
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Figure 6.22: Hole initiated rates in InGaAs plotted with respect to k-vector of the 
initiating carrier along the lines T-X, T-K and T-L. 
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Figure 6.23: Hole initiated rates in SiGe plotted with respect to k-vector of the 
initiating carrier along the lines f - X , T-K and T-L. 
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6.4.2 Rates with respect to Energy Along Symmetry 

Directions 

It is of particular interest to examine how the rates vary with the energy of the im

pacting carrier as this will be of importance in the operation of many devices. In 

Figs. 6.24-6.29, the same data as presented in §6.4.1 is plotted, but with the abscissa 

representing impacting carrier energy rather than wavevector. 

In all six plots, it is clear that the rate of impact ionisation associated with a 

particular carrier cannot generally be expressed as a function of its energy alone — 

carriers at the same energy have different rates depending on their position in k-space. 

The behaviour of the rates in each material can be compared with the behaviour of 

the thresholds plotted in Figs. 6.10-6.12. I t was noted there that the threshold in the 

spin split off band showed the least anisotropy, and this is also seen in the rates which 

are the most nearly approximated by functions of energy alone, particularly in GaAs 

and InGaAs. 

The threshold plot for InGaAs (Fig. 6.11) shows the f ( E ) function having the most 

explicit dependence on wavevector rather than just energy in this material, particularly 

for the first conduction band, and this is reflected in the rates. 

Another feature noticed in the threshold plots was the qualitatively different be

haviour of the valence band thresholds in SiGe to that of GaAs and InGaAs. The 

valence band rates for these materials also differ in that their energy dependence in 

GaAs and InGaAs show clear differences between the bands, while in SiGe all valence 

bands are broadly similar. 

Both electron and hole initiated rates in each material can be more accurately 

approximated by a function of carrier energy alone as this energy increases — a feature 

that will be examined in §6.4.3. 

As mentioned in §6.3.1, GaAs and InGaAs have band structures of similar shape, 

but with InGaAs having a fundamental band gap of about half that of GaAs. Compar-
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ing the plots of their electron and hole initiated rates it can be seen that for both types 

of carrier the rates in InGaAs have a greater spread of values at given carrier energy 

than in GaAs. Since the band gap of InGaAs is lower, the energy transfer in impact 

ionisation processes will be correspondingly lower (this is confirmed by Figs. 6.10 and 

6.11 which show lower thresholds in InGaAs). The anisotropics of the bands in com

parison to this will be larger in InGaAs therefore, leading to the greater variation of 

the rates with respect to k at given carrier energy. 

Applying this argument to SiGe, whose band gap is closer to that of InGaAs than 

GaAs, would suggest that rates in SiGe should be highly k-dependent. In fact this is 

not the case. Electron initiated rates in SiGe show a similar degree of k-dependence as 

the wider band gap GaAs, and hole initiated rates are much more accurately expressed 

as a function of energy alone than hole rates in either GaAs or InGaAs. I t seems likely 

that the cause of this difference is the indirect gap of SiGe, as compared to the direct 

gaps of GaAs and InGaAs. This possibility discussed again in §6.5.1. 
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Figure 6.25: Rates of electron ini
tiated transitions in InGaAs plotted 
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6.4.3 Rates with respect to Energy Throughout the Zone 

In §6.4.2 the rates calculated along symmetry lines of the irreducible wedge were plot

ted as functions of energy. To fully investigate the rate's dependence on energy, all 

initiating states in the Brillouin zone should be considered, and so in this section 

data is presented for rates calculated at k-vectors distributed throughout the zonec. 

Figs. 6.30-6.32 show the rates in each material plotted as a function of energy for each 

band. The value of the rate plotted for a given band n at a given impacting carrier 

energy E{ is obtained from the expression 

^ W = / *(tf B (k) - E i ) d 3 k

 ( 6 " 3 ) 

where i?(k) is the rate associated with a specific state at k in band n having carrier 

energy En(k). The integrals with respect to k are performed over the first Brillouin 

zone. Thus the rate at E i is the average rate for carriers at all k-vectors in band n 

with energy E^. 

In order to keep the required CPU time down to manageable proportions, the 

number of points throughout the Brillouin zone at which the rate could be calculated 

had to be rather limited and so some noise on the calculated results is inevitable. With 

more computer time, the lines presented could be smoothed out. 

In Fig. 6.33 the rates for each band have been combined into average rates for 

electrons and holes. The average electron rate at energy E i is obtained by taking an 

average of the rates in each conduction band at E i , weighted by the corresponding 

density of states. A similar procedure is used for the hole initiated rates. 

From the plots i t can be seen that the rates for both types of carrier in all the mate

rials are of the same order of magnitude at high energy, in agreement with observations 

made elsewhere t 6 6 - u l l . The rates in the direct gap materials GaAs and InGaAs show 

similar qualitative behaviour with the spin split off band dominating at low energy. In 

SiGe the situation is reversed, with the rates in the conduction bands dominating at 
c Actually, only initiating states in the irreducible wedge need be considered. 
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low energy. This of course corresponds to the ordering of the thresholds in these mate

rials, as discussed in §6.3.2. (Note that the point at which the rates in Figs. 6.30-6.33 

goes to zero may be less than the actual threshold value due to the finite energy width 

of the histogram bins used to obtain the plot). 

As already noted in §6.4.2, the rate associated with a particular state in k-space 

cannot be expressed as a function of that state's energy alone. Figs. 6.34-6.36 indicate 

the extent to which the rates are explicitly k-dependent. In each figure the average 

rate for a band is plotted as the dark line, with the rates from individual k-points 

contributing to this average plotted as the lighter points. I t can be seen that for each 

material, states at the same energy have rates with a range of values. The spread of 

individual rates generally decreases with increasing energy, also noted in §6.4.2. As was 

discussed in §6.4.1, at high rates the surface or surfaces of allowed transitions are large 

and relatively insensitive to the precise form of the band structure, and thus carriers 

of the same energy have similar rates. At low rates, where the energy and momentum 

conserving surfaces are small, the rates are highly dependent on the actual wavevector 

of the carrier, and so carriers at the same energy can have widely varying rates. 

Electron initiated rates in InGaAs, plotted in Fig. 6.34, show the greatest spread 

of values at given energy. The k-space thresholds in the first conduction band of this 

material are also the most poorly defined in terms of carrier energy alone, as discussed 

in §6.3.2. Electron initiated rates for carriers in SiGe are comparatively well expressed 

in terms of the carrier energy, except near the threshold, and as noted in §6.4.2, it seems 

likely that this is as a result of its indirect band gap. The spread of hole initiated rates 

in GaAs is shown in Fig. 6.36. Rates in the spin split off band show the least explicit 

k-dependence, as is the case for the threshold in this material discussed in §6.3.2. 

Although the mean rate at any given energy is generally a poor indicator of the rate 

due to a carrier in some specific state at that energy, particularly near the threshold, 

under high-field conditions carriers will be spread throughout the Brillouin zone [ 1 7 > 2 5 > 5 4 1 , 

In these circumstances, k-space variation in the rate will be 'integrated out' and the 
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overall rate due to all carriers at some particular energy will correspond reasonably 

well with the mean rate. Thus the mean rates plotted in Figs. 6.30-6.33 are a useful 

indication of the rate of ionisation in each material. 

For each band of each material an analytic expression of the form 

R{E) = A(E - E 0 ) P (6.4) 

is fitted to the rate. The parameters A, P and E0 are adjusted to give the best fit as 

follows. Taking the logarithm of both sides of Eq. (6.4) gives a straight line of the form 

y — ax + b where y = log/?, x = log(£' — E0), a = P and b = log A. The values of a 

and b giving the best fit by least squares to y(x) are determined for a fixed value of 

E0. The fit has an associated RMS error, which can itself be minimised by adjusting 

EQ. Table 6.7 lists the fitting parameters obtained for the rates in each band of each 

material. Note that the small spin splitting of each band has been neglected for these 

parameters, which are fitted to the average rate for each band pair. Note also that the 

fitted value of .Co is obtained without reference to the actual threshold energies, which 

are also listed in Table 6.7. 

To put the parameters listed in Table 6.7 in context, consider the fits obtained 

from idealised band structure consisting of spherical parabolic bands, and for which 

the matrix elements are constant. For the case of a direct gap Keldysh t 5 3 ' calculated 

that P — 2, and for an indirect gap Beattie obtained the value P = 3 near threshold. 

In these cases, the value of A then determines how hard or soft the threshold is. The 

impact ionisation threshold is described as hard if carriers ionise very quickly once the 

threshold energy has been achieved, and conversely a soft threshold corresponds to the 

case in which carriers are not immediately ionised upon reaching the threshold but can 

survive to considerably higher energies. Thus, the higher the value of A, the greater is 

the ionisation rate above threshold and so the harder the threshold is. 

Examining the parameters presented in Table 6.7, i t is clear that for both carrier 

types in all materials, the values of P obtained are significantly higher than those 
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obtained from the calculations based on the idealised band structure, particularly in 

the case of the direct gap materials. Rate calculations based on ful l band structure 

typically obtain such higher P-values 1 2 6 > 2 8 > 6 7 1 , A higher P-value, as well as indicating 

greater deviation of the real band structure from the idealised case, is also an indication 

of a softer threshold I 2 2 ' 6 6 ! . Thus the use of real band structure significantly increases 

threshold softness over that obtained from the Keldysh formula. Values of A listed in 

the table range over about an order of magnitude, with the largest being for electrons 

in GaAs indicating the hardest threshold. However, when P-parameters differ, the 

A-parameters are not strictly comparable. Thus threshold softness is influenced by the 

combination of A and P values. 

Note that the characteristics of the rate alone do not determine whether the thresh

old is hard or soft, but only act as a guide to what we might expect. The question of 

whether carriers ionise quickly upon reaching threshold or continue to higher energies 

can only be answered by considering in detail the transport of carriers in the mate

rial, including the effects of the real band structure and other scattering mechanisms, 

particularly phonon scattering. Monte Carlo simulation is an appropriate technique to 

perform these calculations. 
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Material Band A P Eo (fit) E0 (calc) 
SSO 1.4xl0 1 2 3.2 1.51 1.51 
LH 1.4x10" 4.6 1.71 1.75 
HH 2 . 8 x l O u 4.4 1.99 1.98 

GaAs CB 1 8 .5x l0 0 9 8.7 1.68 1.85 
CB 2 2 .2x lO n 4.7 1.91 2.00 

e~ 1.4xlO u 5.2 1.89 1.85 
h+ 8.2xl0 1 0 5.1 1.43 1.51 

SSO 2 .4x l0 1 2 2.6 0.75 0.78 
LH l .OxlO 1 1 4.4 0.84 0.93 
HH 2 .6x l0 1 0 5.4 1.03 1.20 

InGaAs CB 1 1.3xl0 1 0 5.6 0.75 0.87 
CB 2 1.3xlO u 4.3 1.07 1.43 

e~~ 1.6xl0 1 0 5.6 0.75 0.87 
h+ 1.5xlO n 4.2 0.73 0.78 

SSO 8 .2x lO n 3.5 1.71 1.65 
LH 2 .3x lO n 4.1 1.39 1.41 
HH 7 .3x l0 1 0 5.2 1.22 1.27 

SiGe CB 1 2 .7x l0 1 0 5.1 0.81 0.91 
CB 2 1.5xlO n 4.1 0.95 0.95 

e~ 4 .6x l0 1 0 4.9 0.84 0.91 
h+ 7 .8x l0 1 0 4.7 1.23 1.27 

Table 6.7: Fitting parameters for the rates shown in Figs. 6.30-
6.33. The fitted value of the rate is given by: R(E) = A(E - E0)p 

(with R in units of s _ 1 and E in eV). 
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Figure 6.34: Spread of electron ini
tiated rates in InGaAs. The dark 
line is the averaged rate as a func
tion of energy. The lighter points 
are the individual rates evaluated at 
specific k-vectors. 
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6.5 Generated Carriers 

164 

The distr ibution of the carriers generated by the impact ionisation process is of in

terest, both in understanding the factors influencing the rate and f rom the point of 

view of transport simulations. In §6.1, the distinction between secondary states and 

generated carriers was noted, in particular that the wavevector of the impacted state is 

minus that of the corresponding generated carrier. To avoid confusion, the discussion 

in §6.5.1 below is l imi ted str ict ly to the distributions of secondary states only. The cor

responding distributions of generated carriers can be straightforwardly obtained f rom 

these according to the considerations outlined in §6.1. 

Since t ime reversal symmetry ensures that E(k) = E(—k), §6.5.2 and §6.5.3 which 

discuss the energies of the generated carriers do not need to be concerned w i t h the 

distinction between secondary states and generated carriers. 

6.5.1 Distribution in k-Space of Secondary States 

Figs. 6.37-6.42 are all of the same type. Each figure consists of a line graph at the 

top of the page and two rows of five surface plots below i t . The line graph is a rate 

plotted wi th respect to the wavevector of the in i t ia t ing state along a symmetry line in 

the Br i l louin zone. The base of each of the ten octagonal plots is the kz = 0 plane of 

the Br i l louin zone w i t h the height of the plot indicating the density of secondary states 

in k-space, projected onto this plane d . The density of secondary states is obtained by 

considering al l states sampled in the Monte Carlo rate integration, weighted by the 

corresponding matr ix elements. Spaced along the rate graph are five circles indicating 

the rates due to specific in i t ia t ing k-states. The upper row of surface plots shows the 

final states corresponding to these five circles and the lower row shows the impacted 

states. The left-most upper and lower surface plots correspond to the left most circle, 

and so on f rom left to right. 

d Due to projecting secondary state density onto the kz = 0 plane, states lying in the valleys at 001 
and 001 appear to lie at T. On a 2-dimensional plot this ambiguity unfortunately cannot be avoided. 
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Figs. 6.37 and 6.38 are plotted along the T - X and T - K lines respectively for electron 

init iated transitions in InGaAs of the type CB2,HH-»CB1,CB1 (as defined in §5.5 of 

Chapter 5) i.e. the f inal states lie in the first conduction band and the impacted states 

lie i n the heavy hole band. For the in i t ia t ing states along T - X , where the rates are lower, 

the distr ibution of f inal states is sharply peaked in the valley bottoms. The impacted 

states also lie at the position of lowest carrier energy, i.e. near V. For impacting states 

along T - K , where the rates are generally higher, the f inal states are located throughout 

the Br i l lou in zone, although preferentially in the conduction band valleys at all but the 

highest rates. The impacted states are similarly located throughout the zone — the 

roughly square shape to the distr ibution is as a result of the states in the L-directions 

corresponding to low energy holes being favoured. 

Figs. 6.39 and 6.40 show the positions of secondary states for CB1,HH->CB1,CB1 

type transitions in SiGe, w i t h impacting carriers located along the T - X and T - K lines 

respectively. Since the T-valley of SiGe is very shallow, i n each case no final states lie 

there, being located generally in the X-valleys (recall that the projection of states onto 

the kz — 0 plane means states in the 001 and 001 valleys appear to lie at V). As wi th 

InGaAs, the impacted states tend to lie towards T where hole energy is lowest, and also 

have the square-shaped distr ibution which is as a result of the low energy L-directions 

being favoured. 

I n §6.4.3, Figs. 6.34 and 6.35 were compared and i t was noted that the electron 

ini t iated rates in SiGe could be much better fitted by a funct ion of energy alone than 

could the electron rates in InGaAs. The distributions of secondary states plotted in 

Figs. 6.37 and 6.38 for InGaAs and Figs. 6.39 and 6.40 for SiGe hint at the cause of 

this better fit i n SiGe. Comparing the plots for the X - and K-directions in InGaAs, i t 

can be seen that the distributions of secondary states differ considerably between the 

two. Along T - X both the impacted and final states are located at sharp peaks near 

the minima of their respective bands. In the T - K direction however, secondary states 

corresponding to both types of carrier are distributed widely throughout the zone. A 
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similar comparison of plots for the X- and K-directions in SiGe reveals much greater 

similarity in the distributions of secondary states, despite the range of magnitudes of 

rates involved being no smaller than for InGaAs. The X-valleys of the first conduction 

band are well populated by the final states in both directions at al l rates but the very 

lowest. Similarly the impacted states are not sharply peaked as along the X-direction 

of InGaAs, but are distributed about T in a similar way for both lines. 

For low energy impacting states in InGaAs, i t seems likely that the highly localised 

distributions of impacted and final states leads to rates that are sensitive to the in i t ia t 

ing state's specific k-vector. In SiGe, the secondary states are distributed throughout 

all the X-valleys even at low energy, and the qualitative form of this distr ibution does 

not change greatly as the impacting state energy increases. Thus the rates in SiGe are 

less sensitive to the in i t ia t ing carrier's specific k-vector. 

I n Fig. 6.41, secondary states involved in hole ini t iated impact ionisations in GaAs 

are plotted. Impacting vectors lie in the spin split off band along the T - X line, and 

make transitions of the type SSO,CBl-»HH,HH, i.e. the final states lie in the heavy hole 

band and generated electrons lie in the first conduction band. As in the case of electron 

init iated transitions, final states lie at low energy (i.e. near T) at low rate, and tend to 

lie throughout the heavy hole band as the rate increases. Again, the secondary states 

lying in the valence band have a roughly square dis t r ibut ion when projected onto the 

kz — 0 plane due to favouring the low energy L-directions in the heavy hole band. The 

impacted state dis tr ibut ion is sharply peaked in the T-valley at the lowest rates. As 

the rate increases, the distr ibution spreads but remains peaked in the conduction band 

valleys. Only at the highest rates do the impacted states lie throughout the Bri l louin 

zone. 

Fig. 6.42 shows the same hole init iated data as in Fig. 6.41, but plotted for SiGe 

instead of GaAs. The final state distr ibution is qualitatively very similar to that of 

GaAs. A t low rate the impacted states are located near the minima of the conduction 

band as is also the case in GaAs. However, in SiGe this means that near threshold 
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impacted states are located at X rather than at F as in GaAs. As was discussed 

in §6.3.2, the fact that at threshold, impacted states do not lie at T leads to the 

qualitatively different behaviour of the thresholds in SiGe compared to the direct gap 

materials GaAs and InGaAs. 
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Figure 6.37: Secondary 
states in InGaAs. Impacting 
states lie along T-X in the 
2 n d conduction band. See 
also text on p. 164 
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Figure 6.38: Secondary 
states in InGaAs. Impacting 
states lie along T - K in the 
2 n d conduction band. 
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Figure 6.39: Secondary 
states in SiGe. Impacting 
states lie along F-X in the 
2 n d conduction band. 
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Figure 6.40: Secondary 
states in SiGe. Impacting 
states lie along T - K in the 
2 n d conduction band. 
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Figure 6.41: Secondary 
states in GaAs. Impacting 
states lie along T-X in the 
spin split off band. 
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Figure 6.42: Secondary 
states in SiGe. Impacting 
states lie along T-X in the 
spin split off band. 
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6.5.2 Mean Energies of Generated Carriers 

The mean energies of the generated carriers are presented here as a function of the 

in i t ia t ing carrier energy. The mean energy of the secondary final states Esf is calculated 

for an impacting carrier of energy E{ using the expression 

_ J2n \ ( E n , \ i V + En^2,)\Mn\2 

where the sum is over all pairs of final states sampled in the Monte Carlo integration, 

En,v.x, and En^2, are the energies of the nih sampled pair and \Mn\2 is the squared 

modulus of the corresponding matr ix element for the transition. Thus in calculating 

the mean energy of the final states, each pair is weighted by the corresponding matr ix 

element, reflecting the probabili ty that i f a transition occurs, i t w i l l be made to that 

specific pair of states. Note that the Monte Carlo integration procedure itself accounts 

for the effect of the density of final states. The mean energy of the impacted secondary 

states is calculated similarly using the expression 

E-&) = E ^ " | f f n | 2 ( 6 - 6 ) 

Figs. 6.43 and 6.44 show the mean energies of the carriers generated by transitions 

f rom states i n the first and second conduction bands of InGaAs. The colour of the 

points on the plots indicates which symmetry line the in i t ia t ing carrier is located on. In 

the second conduction band plot, an approximately linear relation between the energies 

of the impacting carrier and generated carriers can be seen. In the first conduction 

band, i.e. at lower energy, the relation is much less clear; as w i t h rates, the generated 

carrier energy is more sensitive to the actual k-vector of the in i t ia t ing carrier at low 

energy. The difference in energies plotted along the 100- and 110-directions in the first 

conduction band is of the order of several percent. This should be compared w i t h the 

two orders of magnitude separating the corresponding rates, plotted in Fig. 6.25. The 

deviation of the energies of the generated holes f r o m a simple funct ion of impacting 

carrier energy is greater than that for generated electrons. This is to be expected, since 
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energy conservation requires that 

2KTf + E7i = E i - E g (6.7) 

where Ey is the energy gap. Thus a deviation in the mean secondary final state energy 

ESf must be accounted by a deviation in the mean secondary impacted state energy 

Esi of twice the magnitude. 

Figs. 6.45-6.47 compare the mean energies of generated carriers for electron and 

hole ini t iated impact ionisation in each material. As w i t h other aspects of impact 

ionisation examined, the behaviour of GaAs and InGaAs is qualitatively similar, while 

that of SiGe differs. In the direct gap materials, the generated electrons i n both electron 

and hole init iated transitions tend to take the slightly greater share of the available 

energy. I n contrast, for low impacting energy in SiGe, the energies of impacted and 

final states are similar, while at higher impacting energies the generated holes tend to 

be of slightly greater energy. I n SiGe, generated carrier energies are more accurately 

represented by a funct ion of energy only, while in GaAs and InGaAs, they are more 

explicit ly k-dependent, as is also the case wi th the rates themselves. 
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Figure 6.43: The mean energy of carriers generated by impacting electrons located 
along the 100, 110 and 111 directions in the 1 s t conduction band of InGaAs 
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6.5.3 Distribution of Energies of Generated Carriers 

In §6.5.2 the mean energies of the generated carriers were presented. Naturally, a given 

impacting carrier does not generate secondary carriers with a specific energy but rather 

with a distribution of energies. The form of the distribution is examined here. 

Figs. 6.48-6.53 show the energy-distribution of generated carriers as a function of 

the impacting carrier energy. The height f(Ei,Es) of each plot shows in arbitrary 

units the number of secondary carriers generated with energy Es by an impacting 

carrier of energy E{. The distribution of generated carriers is calculated using the final 

state pairs considered in the Monte Carlo integration of the rate, each weighted by the 

corresponding matrix element. The plots are normalised so that 

P O O 

/ f(Et,Es)dEs = C (6.8) 
Jo 

where C is an arbitrary constant. 

In Figs. 6.48 and 6.49, the distributions of final and impacted states are plotted 

for impacting electrons in the second conduction band of SiGe. The distributions of 

each type of secondary carrier are similar, with the generated hole distribution being 

at slightly higher energy for the more energetic impacting carriers. This confirms the 

observations made for the mean energies of these carriers, plotted as the dark circles 

in Fig. 6.47. 

Figs. 6.50 and 6.51 show the corresponding plots for impacting electrons in the 

second conduction band of InGaAs. At low energy the distribution of final states 

(Fig. 6.50) has a doubly peaked structure: the lower energy peak corresponds to final 

states in the T-valley, while the higher energy peak corresponds to the X-valley. Re

membering that at low energy, impacting carriers in the second conduction band lie 

along the T-X line, this observation is confirmed by Fig. 6.37 which shows the k-space 

distribution of secondary states for these carriers. At higher impacting electron ener

gies, the structure of the distribution is smoothed out to a single flatter peak. The 

distribution of generated holes (Fig. 6.51) shows none of the complexity of the gener-
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ated electrons as a result of the valence band structure being correspondingly simpler. 

As was noted for the plots of mean carrier energy (Fig. 6.46), the electrons are gen

erated with generally slightly higher energies than the holes. Note that although the 

bottom of the X-valley lies 0.67 eV above the conduction band edge (see Table 6.4), 

final states lying within the upper peak of Fig. 6.50 appear to have energies down to 

about 0.55 eV. This is as a result of the finite bin width of the histogram used to cal

culate the carrier distribution, and the interpolation algorithm applied by the plotting 

package. 

Figs. 6.52 and 6.53 show final and impacted states for impacting carriers in the spin 

split off band of GaAs. The distribution of generated electrons corresponding to the 

impacted states in Fig 6.53 shows none of the double peaked structure seen in InGaAs 

for the final state distribution of electrons. Fig. 6.41 showing the k-space distribution 

of secondary states indicates that the impacted states (corresponding to generated 

electrons) are singly peaked in k-space at F for low energy impacting holes. As was 

noted for the mean secondary carrier energies, plotted as the lightly shaded circles 

in Fig. 6.45, the generated electrons (Fig. 6.53) take a greater share of the available 

energy than the generated holes (Fig. 6.52). 
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6.6 Comparison of Results with Other Authors 

In this section, the results obtained in this work are compared to those obtained by 

other authors from calculations based on realistic band structure. Most authors in

tegrate the rate using either Kane's method or a tetrahedron method, summarised 

below: 

Kane's method Kane's method I 5 8l is similar to the simple algorithm described in 

§5.1.1 of Chapter 5. Pairs of final states distributed uniformly in k-space through

out the Brillouin zone are considered. For each pair, the impacted state is chosen 

so as to conserve crystal momentum. Those which are then determined to also 

conserve energy to within a fixed tolerance (0.2 eV in the case of Kane) contribute 

to the total rate. 

Tetrahedron method The Brillouin zone is discretised into tetrahedral sub-volumes. 

By interpolating energy and and matrix elements linearly within each sub-volume, 

a sub-volume's contribution to the rate can be determined analytically. The total 

rate is obtained by considering all sub-volumes in turn. Note that, within the 

approximation of linear interpolation, energy is conserved exactly. 

The following is a list of the other authors whose work is compared, along with the 

method of integration used and some of the other features of their particular calcula

tions: 

Bude &: Hess t 2 0 ' The rate integration is performed for electrons in GaAs and In-

GaAs using a method similar to that of Kane, with local pseudopotential band 

structure. Matrix elements include the commonly neglected terms and a q- and 

u;-dependent e. 

Wang & Brennan t21^ The rate for electrons in GaAs is integrated by a similar 

method to that of Kane, with the band structure provided by the k • p method. 
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The matrix elements are taken to be a statically screened Coulomb interaction 

in which e is constant and the simple overlap approximation is used. 

Kamakura, Mizuno, Yamaji , et al t 2 2 ' The rate is calculated for electrons in Si 

using local pseudopotential band structure. Matrix elements are calculated in

cluding all the commonly neglected terms and q- and a>-dependent e. The rate 

integration is performed using a mesh of 2361 points throughout the Brillouin 

zone, spaced | { ^ j apart. Within each mesh cube the integral is performed by 

a tetrahedron method. 

Jung, Taniguchi & Hamaguchi t26J The rate for electrons in GaAs is integrated 

by a tetrahedron method, with the band structure being provided by the local 

pseudopotential method. Matrix elements include a ful l q- and w-dependent 

dielectric function and the commonly neglected terms. 

Oguzman, Wang, Kolnik & Brennan t 2 7 l The rate for holes in GaAs is integrated 

in the same way as by Wang and Brennan above, using k • p band structure. 

The matrix elements were calculated using the simple overlap approximation, 

assuming a statically screened Coulomb potential and q-dependent e. 

Stobbe, Redmer &; Schattke t 5 9 l The rate for electrons in GaAs is integrated using 

a method similar to that of Kane in which the delta function is approximated 

by a top-hat function 0.2 eV wide. The band structure is calculated using the 

local pseudopotential method, and the matrix elements are obtained from a stat

ically screened Coulomb potential in which e is taken to be q-dependent and the 

commonly neglected terms are included. 

Williams ^ The rate for electrons and holes in Sio.sGeo.s is integrated in a similar 

way to Kane, in which energy is conserved to within a given tolerance. The 

band structure is obtained using the local pseudopotential method, although it 

is fitted to correctly reproduce heterojunction band offsets, and as such the bulk 
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band gaps are inaccurate. Matrix elements are calculated using a q-dependent 

dielectric function and include the commonly neglected terms. 

Stobbe, Konies, Redmer, Henk & Schattke t 1 0 5 J The rate for electrons in GaAs 

is integrated by using a special point method in which the delta function is 

approximated by a Lorentzian function whose F W H M is 0.4 eV. The band struc

ture is obtained by the pseudopotential method, although the authors do not 

say whether local or non-local. Matrix elements are obtained from a statically 

screened Coulomb potential in which e is constant and include the commonly 

neglected terms. 

Sano &c Yoshii ' i n l Band structure is obtained using a local pseudopotential calcula

tion. The rate is calculated for electrons in GaAs and InGaAs by an approximate 

method which does not conserve k and treats the matrix elements as a constant 

which is fitted to give the rate calculated from first principles at an impacting 

carrier energy of 5 eV. 

Fig. 6.54 shows the averaged electron initiated rate in GaAs compared with six 

other similar calculations. I t can be seen that the the results of different authors at 

any given energy typically vary over about two orders of magnitude. The variations in 

rate are due to variations in the way the matrix elements are calculated, the differences 

between the band structures used (which in much of the other work under comparison 

here is obtained either by the k • p or local pseudopotential methods), and differences 

in the implementation of the numerical rate integration. From the figure i t can be seen 

that the rates calculated in this work are among the lowest. Possible reasons for this 

are examined in §7.2 of Chapter 7. 

For each line, an expression of the form R = A(E — E0)P can be fitted, as described 

in §6.4.3. Table 6.8 lists the P parameters obtained for such fits for all the lines in 

Fig. 6.54. 
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Author P 
This work 5.2 

JTH 
WB 

SKRHS 
BH 
SY 

SRS 

6.7+ Table 6.8: Comparison of the P parameters 
2.3+ for electron initiated rates in GaAs. tThe orig-
0.8+ inal paper fits the rate with two expressions: P = 7.8 
4.9 (E < 3 .55) , P = 5.6 (E > 3 .55 ) . *The rate is poorly 
5.5 represented by the fit formula. 
4.0 

As discussed in §6.4.3, a higher value of P indicates greater deviation of the rate ob

tained using real band structure from that using idealised direct gap spherical parabolic 

bands and constant matrix elements (which give P = 2), and softer threshold be

haviour. The fits marked with a | symbol correspond to rates whose form is not well 

represented by the fitting formula, and thus the P parameter obtained may be mislead

ing. The remaining fitted P-parameters are of roughly similar values, with the results 

of this work being fairly typical of them. 

Fig. 6.55 compares hole initiated rates calculated here for GaAs with those of 

Oguzman et al The agreement between the results is quite good, the rates calcu

lated here being slightly lower as with the electron initiated rates. The P-parameters 

for each band can be examined in the same way as for the electron initiated rates, the 

results being tabulated below: 

Clearly, results for the light hole bands are very similar, with a higher P-value (i.e. 

harder threshold) obtained in the spin split off band in this work. The rate in the heavy 

hole band obtained by Oguzman et al is not well represented by the fitting formula, 

and so the value of P is misleading. 

In Figs. 6.56 and 6.57, electronic rates in InGaAs and the rate for both types of 

carrier in SiGe are compared with the calculations of other authors. In both cases, 

This work OWKB Table 6.9: Comparison of the P param
eters for hole initiated rates in GaAs. 
*The rate is poorly represented by the fit for
mula. 

sso 
LH 
HH 

3.2 4.4 
4.6 4.4 
4.4 2.0+ 
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the rates calculated here are higher, and have a different type of dependence on the 

impacting carrier energy, the rates of the other authors appearing to be more expo

nential in nature. For the rates in InGaAs, the fitted P-parameters are 8.7 and 10.4 

for Bude et al ' 2 0 ' and Sano et al ! n i l respectively. In SiGe the P-parameters obtained 

by Williams' 6 01 are 13.4 and 9.5 for electrons and holes respectively. These very high 

values reflect the fact that the rates obtained by these authors have a dependence on 

energy that is closer to being exponential than of the form of Eq. (6.4). 

In Fig. 6.58, the mean energies of final states obtained here and in the calculations 

of Jung et al 1261 are compared. The energies correspond well between the plots. In 

addition, both plots show a similar spread of mean final state energies, and both show 

a slight kink in the dependence of the final state energies with respect to the impacting 

state energy at about 3 eV. Fig. 6.54 comparing the electronic rates in GaAs shows 

that the results of Jung et al are the closest to the results presented here over a wide 

range of energies. 

Fig. 6.59 examines the accuracy with which energy is conserved in rate calculations 

performed here and by Kamakura et al Energy conservation requires that 

£(kx) + E(k2) - E(kv) - E(kv) = 0 (6.9) 

where the energies are energy eigenvalues, rather than carrier energies. However, in 

the calculation performed here which explicitly relaxes the conservation imposed by 

the Dirac delta function, energy is conserved only to within half the width of the 

top-hat function used in the numerical integration. In addition, the Brillouin zone 

is discretised into cubes and energies interpolated linearly within these, which entails 

further inaccuracy in the energy conservation condition. The calculation of Kamakura 

also discretises the zone into cubic volumes. Within these, the rate is integrated by 

a tetrahedron method which, although it treats the energy conserving delta function 

exactly, nevertheless interpolates energies linearly. Thus in the calculation of Kamakura 

et al, any non-conservation of energy is due to interpolation errors alone. 
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The upper half of Fig. 6.59 plots the mean value of the left hand side of Eq. (6.9) 

against the energy of the impacting carrier for the calculations performed here and 

by Kamakura et al. Note that the calculation of Kamakura is for Si, whereas in 

this work the calculation is for SiGe. Nevertheless, energy conservation errors can 

be meaningfully compared. It is clear that energy conservation is more approximate 

in the calculation of Kamakura than in the calculation performed here, despite this 

work's explicit approximation of the energy conserving delta function. This is due to 

the different levels i f discretisation used by the two calculations. Kamakura divides 

the zone into cubes of side length | ( | f ) i corresponding to 2361 k-points, which is 

fairly typical of the other calculations which require discretisation of the zone. In this 

work, the irreducible wedge is divided into cubes of side length ^ ( i f ) ' w m c h would 

correspond to more than 106 k-points throughout the zone. As a result, energies of the 

final and impacted states are interpolated more accurately here than by Kamakura. 

A more informative indication of the magnitude of the interpolation errors incurred 

by discretising the zone is given by the RMS energy conservation errors, plotted for 

this work in the lower half of Fig. 6.59. The error is typically around 10 meV, which 

includes the 2.5 meV error explicitly allowed by the top-hat function used here. 
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Figure 6.54: Electron initiated rates in GaAs. The other authors are: J T H Jung, 
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Chapter 7 

Analysis of Results 

In this chapter, further analysis of the results is performed with the specific aim of un

derstanding the main factors determining the magnitude of the rates in each material, 

and the causes of the qualitative differences in the properties of the materials. 

The magnitude of the impact ionisation rate is determined by two factors: the area of 

the energy conserving surface in k^lc^-space, i.e. the volume of available phase space, 

and the average squared magnitude of matrix elements throughout this phase space. 

In this section the relative importance of each of these contributions is discussed. 

In Fig. 7.1 the rate and the volume of available phase space are compared for 

initiating carriers in the second conduction band of InGaAs. In the upper half of the 

figure, the rate is plotted with respect to k as the dark lines (i.e. the same data as 

presented in §6.4.1). The quantities represented by the grey lines are calculated by 

setting the matrix elements to a constant, and describes the influence of phase space 

on the rate. The constant is chosen so as to make the volume of phase space give 

the best fit by least squares analysis to the actual rate. In the lower half of the plot, 

the mean value in arbitrary units of the squared magnitude of the matrix element is 

7.1 Phase Space and Matrix Elements 

192 
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plotted w i t h respect to k . This is obtained for a given impacting carrier simply by 

dividing the rate by the volume of available phase space. 

Fig. 7.2 shows a similar plot for in i t ia t ing carriers in the second conduction band of 

SiGe. Comparing Figs. 7.1 and 7.2, i t can be seen that i n each case the volume of phase 

space qualitatively reproduces the features of the rate. However, in SiGe there is good 

quantitative correspondence between the variation in the rate and the volume of phase 

space. This is due to the fact that the matr ix elements in SiGe, plotted in the lower 

half of Fig. 7.2, do not i n general vary as greatly w i t h respect to k as in InGaAs. Note 

that where the rate is zero, the average matr ix element is plotted as being zero, though 

is really undefined. The apparent rapid decrease in the matr ix element occurring at 

| k | ~ 0.7 is not a real feature, but is due to an increase in statistical noise on the mean 

value of \M\ where the rate (and hence number of sampled points) is very low. 

Similar behaviour can be seen in the hole init iated case. Figs. 7.3 and 7.4 compare 

rate and phase space plotted along the T - X line for the valence bands of InGaAs and 

SiGe. In InGaAs, the features of the rates are again approximately reproduced by 

the phase space. However, in each hole band the matr ix elements have the effect of 

hardening the threshold (which is discussed further in §7.1.2), and in the light and 

heavy hole bands also disguise some of the structure in the dependence of the volume 

of phase space on k that can be seen around | k | = 0.5. As was the case for electron 

ini t iated transitions, there is good quantitative agreement between the variation of 

phase space and rate in the valence band of SiGe. Here, as in the second conduction 

band, the variation of the average mat r ix element is much less in SiGe than in InGaAs. 

M a t r i x elements in GaAs, not plotted here, show similar behaviour to those of InGaAs, 

though w i t h less variation in the valence band. 
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Figure 7.1: Comparison of rate and volume of available phase space, plotted w i t h 
respect to k-vector of the in i t ia t ing carrier along symmetry directions in the second 
conduction band of InGaAs 
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7.1.1 Effect of Matrix Elements on Secondary State 

Distribution 

The distr ibut ion of secondary states is determined by the shape of the energy conserving 

surfaces of allowed transitions. However, transitions to each possible final state occur 

w i t h a probabil i ty proportional to the squared magnitude of the mat r ix element, and 

hence the dis t r ibut ion of secondary states w i l l be further influenced by variations in 

the matr ix element. Here, the importance of this latter effect is examined. 

Figs. 7.5 and 7.6 indicate how the matr ix elements affect the dis tr ibut ion of final 

states in InGaAs and SiGe respectively. The plots are of a similar type to those shown 

in §6.5.1. In each, the line graph at the top shows the rate due to transitions of 

the type CB2,HH-»CB1,CB1 plotted w i t h respect to impacting carrier wavevector along 

the line T - K . The row of surface plots immediately below shows the distr ibution of 

the f inal states in the first conduction band associated wi th impacting states located 

at the positions of the circles on the line graph. These final state distributions are 

calculated f r o m the pairs of final states used in the Monte Carlo integration, each 

weighted by the corresponding mat r ix element. The lower row of surface plots also 

show the distributions obtained f rom the pairs of final states, but wi thout including 

the weighting due to the matr ix elements. 

In the case of InGaAs, plotted in Fig. 7.5, each of the lower (unweighted) surface 

plots indicate that the final states are distributed throughout the Br i l lou in zone. A t 

low impacting carrier energy, i.e. near T, they are generally confined towards the valley 

bottoms of the first conduction band while at higher energies they are located at all 

points of the zone. Comparing these distributions w i t h those in the upper (weighted) 

row of plots, i t is clear that the matr ix elements have a significant effect on the distribu

t ion of final states in InGaAs. Specifically, the matr ix elements act to favour the near 

vertical (low q) transitions, as in each case the peak in the weighted distr ibution lies 

near to the position of the impacting state. Similar favouring of the low q transitions 
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is seen in GaAs (not shown here). 

The final state distributions for SiGe, plotted in Fig. 7.6, show different behaviour. 

In SiGe, all X-valleys tend to be populated wi th f inal state carriers for impacting states 

of all wavevectors. The matr ix elements tend to favour some valleys over others, but 

not strongly, and in particular do not act to favour the low q transitions. The weak 

influence of the matr ix elements on the distr ibution of f inal states leads to the rate and 

phase space (plotted in Fig. 7.2) showing very similar variation as a funct ion of the 

impacting carrier's wavevector. 

The effect that the matr ix elements have on the momentum transfer of transitions 

is examined more closely in Figs. 7.7 - 7.12. In each of these, the mean momentum 

transfer q of transitions for a given impacting carrier is plotted as a funct ion of the 

carrier's wavevector. The solid lines show q calculated by weighting all transitions wi th 

the corresponding matr ix element, while the dashed lines show the unweighted mean. 

(The horizontal dotted line at q ~ 0.75 shows the mean momentum transfer obtained 

by considering uniformly distributed random transitions). 

The results for the first and second conduction bands and spin split off band of 

InGaAs are plotted in Figs. 7.7 - 7.9. In the first conduction band the mean q-transfer 

is approximately equal to the impacting carrier wavevector itself, as a result of the 

fact that transitions mainly occur to the T-valley. Furthermore, the similari ty of the 

weighted and unweighted g-values at all impacting vectors indicates that the matr ix 

elements have l i t t l e effect on the position of final states. This is to be expected, as 

in the first conduction band, where impacting energies are low, there is only a small 

range of possible final states and thus the matr ix elements have l i t t l e opportunity to 

affect the distr ibution. In the second conduction band, the mat r ix elements can be 

seen to have a much greater effect. For all impacting carrier wavevectors except those 

close to X (where the energy is lowest), the effect of the mat r ix elements is to reduce 

the momentum transfer, particularly near V. The effect of the mat r ix elements on 

transitions ini t iated by holes in the spin split off band is plotted in Fig. 7.9. As w i t h 
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the first conduction band, the mean q-transfer is approximately equal to the impacting 

carrier wavevector due to f inal states lying near T, and similarly the matr ix element 

generally has only a l imited effect on this distr ibution. 

Figs. 7.10 - 7.12 plot the mean momentum transfer as a funct ion of impacting 

carrier wavevector for transitions in SiGe. Comparison of these plots w i t h those for In 

GaAs shows three main differences. Firstly, the magnitude of the momentum transfer 

in SiGe is greater i n all bands than in the corresponding bands of InGaAs. Secondly, 

the variation in q w i t h respect to the impacting vector is much less in SiGe. Finally, 

the solid and dashed lines corresponding to any given crystallographic direction gen

erally lie close together, indicating that the matr ix elements do not affect the mean 

momentum transfer as they do in InGaAs, particularly in the second conduction band. 

A consequence of the different behaviour of the direct and indirect gap materials is 

examined in the following section. 
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Figure 7.5: The effect of the y \ % 

matrix element on final states 
in InGaAs. Impacting states 
lie along T-X in the 2 n d con
duction band. See also text on 
p.196. 
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Figure 7.6: The effect of the 
matrix element on final states 
in SiGe. Impacting states lie 
along F-X in the 2 n d conduc
tion band. See also text on 
p.196. 
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Figure 7.7: Mean q-transfer 
for transitions f rom the 1 s t con
duction band in InGaAs, plot
ted w i t h respect to k . 
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Figure 7.8: Mean q-transfer 
for transitions f rom the 2 n d 

conduction band in InGaAs, 
plotted w i t h respect to k . 
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Figure 7.9: Mean q-transfer 
for transitions f rom the valence 
bands in InGaAs, plotted w i t h 
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Figure 7.10: Mean q-transfer for 
transitions f rom the l 8 t conduc
t ion band in SiGe, plotted w i t h 
respect to k . 

Figure 7.11: Mean q-transfer 
for transitions f rom the 2 n d 

conduction band in SiGe, plot
ted w i t h respect to k . 
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7.1.2 Effect of Matrix Elements on Threshold Softness 

In §6.4.3 of Chapter 6, the calculated impact ionisation rates were fitted using the 

expression (repeated f rom Eq.(6.4)) 

R(E) = A{E- E0)p (7.1) 

where A, E0 and P are the fitted parameters. As was noted in §6.4.3, the P parameter 

gives an indication of the softness of the threshold: a larger value of P indicates a softer 

threshold. The volume of available phase space can be f i t t ed to the same expression as 

the rate, and the values of P thus obtained for different cases are compared in Table 7.1 

to those for the rates themselves. 

Material 
Band GaAs InGaAs SiGe 

Pr p 
1 ps 

Pr p 
1 ps 

P P 
1 r 1 ps SSO 3.2 5.5 2.6 4.9 3.5 3.9 

L H 4.6 4.7 4.4 6.6 4.1 4.0 
H H 4.4 4.3 5.4 6.3 5.2 4.7 

CB 1 8.7 9.7 5.6 11.6 5.1 4.8 
CB 2 4.7 5.5 4.3 6.9 4.1 4.1 

e~ 5.2 6.1 5.6 9.4 4.9 4.8 
h+ 5.1 6.1 4.2 6.4 4.7 4.4 

Table 7.1: The P-parameter of Eq. (7.1) fitted to the rate, Pr, 
compared to that fitted to the corresponding volume of phase space, 
Pps, for the various bands in each material. 

Examining the values presented in the table shows that the rates tend to show 

harder threshold behaviour (that is, have a smaller value of P) than the corresponding 

volume of phase space in GaAs and InGaAs. In contrast, the rates tend to show slightly 

softer behaviour than the phase space in SiGe. This can be understood in terms of the 

momentum transfer data discussed in the previous section, in the following way. 

As noted earlier in this chapter, the value of the impact ionisation rate can be 

considered to be the product of two factors: the available phase space and the average 
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matr ix element. I f the P parameter of the rate is lower than that of the phase space 

volume, as in the direct gap materials studied here, i t follows that the average matr ix 

element must be a decreasing function of impacting carrier energy. Similarly, i n SiGe 

where the P-parameter of the rate is usually slightly higher than that of the phase 

space, the average matr ix element must generally increase slightly w i t h the impacting 

carrier energy. From Eq. (4.16) of Chapter 4 i t can be seen that the squared magnitude 

of the momentum transfer appears in the denominator of the expression for the matr ix 

element, and so we expect the dependence of | M | 2 on q to be given approximately by 

an expression of the form 

\Mif\2 oc 1 (7.2) 

Hence the relative behaviour of the rates and phase space volume in the materials 

studied could be explained i f q were an increasing funct ion of impacting carrier energy 

in GaAs and InGaAs and a decreasing funct ion in SiGe. Fig. 7.13 plots the variation 

of q w i t h impacting carrier energy for transitions ini t iated in the first conduction band 

of each material. The points represent the mean momentum transfer calculated for 

individual impacting k-vectors, while the solid lines are averages taken of these points. 

The wide spread of q values about the average indicates that the momentum transfer is 

not well represented as a funct ion of energy alone, in common w i t h the rates themselves. 

Nevertheless, trends in the value of q are clear f rom the graph: the mean momentum 

transfer is an increasing function of energy in the direct gap materials, and is relatively 

constant in the indirect gap material. This then leads to the matr ix elements being 

decreasing functions of energy in the direct gap materials and relatively constant in 

the indirect gap material, as observed. 

I n Fig. 7.14, the variation of q w i th respect to impacting carrier energy is plotted 

for transitions ini t ia ted by holes in the spin split off band. I n this case, q can clearly 

be seen to be an increasing function of impacting carrier energy in all three materials. 

This accounts for the fact that the P-parameter indicates a harder threshold for the 
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rates in the spin split off band than for the phase space in all materials, though much 

more so in GaAs and InGaAs, for which q increases more steeply w i t h impacting carrier 

energy. 

The data presented in this section suggests that a calculation which approximates 

the f u l l expression for the matr ix element w i t h a fitted constant matr ix element (i.e. 

calculations that approximate the rate by the volume of available phase space, suitably 

scaled) should expect to obtain softer electron thresholds for GaAs and InGaAs than 

would be obtained w i t h a f u l l calculation, and quite accurate (or very slightly harder) 

electron thresholds for SiGe. For hole ini t iated rates, the constant matr ix element 

( C M E ) approximation predicts softer thresholds i n the direct gap materials, in which 

the spin split off band dominates the tota l rate. In SiGe, the C M E approximation 

also leads to a hole ini t iated threshold which is softer. However, no individual valence 

band dominates the rate in SiGe, and the relative positions of the threshold in each 

band is likely to be at least as influential on the characteristics of the overall rate as 

variation in the mat r ix element. Of the other authors whose work is compared in §6.6 

of Chapter 6, Sano et al t 1 1 1 ' used such a C M E approximation, and did indeed obtain 

among the softest electron thresholds for GaAs and InGaAs (in their paper, they 

recognise the possibility of the C M E approximation fai l ing for direct gap materials). 

Figs. 7.15 and 7.16 compare electron ini t iated rates in InGaAs and SiGe obtained 

using the C M E approximation wi th those obtained using the f u l l matr ix element. I n 

each case the magnitude of the constant mat r ix element has been chosen so as to fit 

the phase space to the rate at the highest energy plotted. I n the case of InGaAs, the 

C M E approximation can be seen to badly underestimate the rate at low energy, while 

in SiGe i t is a reasonably good approximation at all energies. 

Al though the analysis presented here has been applied to InGaAs and SiGe (results 

for GaAs, not presented here, show similar though less pronounced behaviour to those 

for InGaAs), the arguments based on q-transfer should be applicable in other materials. 

Thus we expect that i t w i l l generally be true that the use of the C M E approximation 
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w i l l lead to a softening of the thresholds for electron and hole ini t iated rates in direct 

gap materials, and l i t t l e change in the threshold for electron ini t iated rates for indirect 

gap materials. I t is diff icul t to make predictions about the threshold for hole init iated 

rates in the indirect gap case as i t is likely to depend sensitively on the relative energies 

of the individual thresholds for the heavy, light and spin split off hole bands. 
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Figure 7.13: Mean q-transfer for transitions f rom the 1 s t conduction band, plotted 
w i t h respect to impacting carrier energy. 
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Figure 7.14: Mean q-transfer for transitions f rom the spin split off band, plotted 
w i t h respect to impacting carrier energy. 
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Figure 7.15: Electron ini t iated rates in InGaAs, calculated using the f u l l matr ix 
element, and the C M E approximation. 
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Figure 7.16: Electron ini t iated rates in SiGe, calculated using the f u l l matr ix ele
ment, and the C M E approximation. 
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7.2 Approximations Made in the Rate Calculation 

In §6.6 of Chapter 6, i t was seen that for each material, there is considerable variation 

in the rates obtained by different authors. Causes of this variation arise f r o m differences 

in: 

• Approximations used in evaluating | M j / | . These include the number of plane 

waves used to expand the wavefunctions, the inclusion or neglect of the C N T S , 

and the form of the dielectric funct ion used. 

• Band structure. A number of methods are used to obtain electronic structure 

information (e.g. empirical pseudopotential, both local and non-local, and k • p ) , 

and can involve fi ts to different sets of experimental data which may vary signifi

cantly for the same material. The band structure influences both the availability 

of phase space and the magnitude of the mat r ix elements. 

• Numerical integration. Methods of integration vary, particularly w i t h regard 

to the approximation of the energy conserving delta funct ion and the degree of 

discretisation of the Br i l lou in zone. 

This section examines the effect on the rates of variations in band structure, the in

clusion or neglect of the C N T S , and the use of different approximations for the dielectric 

funct ion. Note that the aim is not to determine the exact cause of the differences be

tween each calculation, since this would be impossible wi thout detailed knowledge each 

implementation, but to test whether the magnitude of the variation in rates produced 

by the use of different the approximations is sufficient to account for the variations 

seen between authors. 

7.2.1 Effect of the Commonly Neglected Terms 

The inclusion of the commonly neglected terms ( C N T S ) in the calculation of the matr ix 

elements (as discussed in §4.2.1 of Chapter 4) requires more computational effort than 
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the use of the simple overlap approximation which is applicable to impact ionisation 

calculations for narrow band gap materials. Wang et al t 2 1 ' and Stobbe, Konies, et 

al t 1 0 5J are the only authors referred to in §6.6 that have performed electron init iated 

calculations neglecting the C N T S , and the rates they obtain show the least agreement 

wi th the general consensus of results obtained by the remaining authors plotted in 

Fig. 6.54. Oguzman et al t 2 7 l have neglected the C N T S in calculating hole init iated 

rates in GaAs. 

The C N T S have the greatest significance in matr ix elements for which q is large, 

and so we expect to f ind that their inclusion is most important for electron init iated 

transitions i n SiGe, and transitions init iated by holes near the Br i l lou in zone edge. 

Fig. 7.17 compares rates calculated for SiGe and InGaAs (which is assumed to be 

representative of GaAs also). As anticipated, they influence the rate most in the 

conduction band of SiGe, and at higher energies in the valence bands of both materials, 

increasing the rate by up to a factor of about five, and have a relatively small effect for 

most states in InGaAs. The rates for certain states above 4 eV in the second conduction 

bands of InGaAs and SiGe show anomalously large sensitivity to the inclusion of the 

CNTs. These carriers lie in a small volume of k-space about the K-point of the Br i l louin 

zone, and the relatively large difference in the results of the two calculations is due to 

a rapid fa l l in the value of the overlap integral | ( , 0 C B 2 (k ) | ' 0cBi (k=O)) | 2 as | k | increases 

f rom 0.9 to 1.0 along the T - K line, which is not seen in the f u l l mat r ix element. 

The magnitude of the difference in electron init iated rates i n the direct gap material 

obtained by calculating the matr ix elements w i t h and wi thout the CNTs is much too 

small to account for the large discrepancy in rates obtained by Wang et al I 2 1 ' and 

Stobbe, Konies, et al t 1 0 5 ' relative to the other workers whose results are plotted in 

Fig. 6.54. The discrepancy between the hole ini t iated rates in GaAs obtained here 

and by Oguzman et al ^ is of the same order of magnitude as that introduced by the 

neglect of the C N T S . Calculations performed by Bude et al t 2 0 l and Wil l iams I 6 0 ' , for 

InGaAs and SiGe respectively, included the C N T S , and so this factor cannot account 
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for the differences in rates obtained here and by these other authors. The calculation 

of Sano et al t 1 1 1 ! for InGaAs used the C M E approximation, making the inclusion or 

neglect of the C N T S irrelevant. 
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Figure 7.17: Comparison of rates calculated using the f u l l expression for the matr ix 
element (including the C N T S ) , and using the simple overlap approximation (neglect
ing the C N T S ) . Figs, a and b are rates in InGaAs for electrons and holes respectively. 
Figs, c and d are rates in SiGe. 
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7.2.2 Effect of the Dielectric Function 

The functions used by the other authors cited in §6.6 to represent the dielectric response 

of the crystal can be divided into three types: q- and ^-dependent expressions (as used 

in this work) , g-dependent expressions, and constants. To investigate the effects of 

these approximations, the g-dependent expression and constant were obtained using 

e(q) = e(q,u)=0) and e0 = e(q=0,u;=0), where the general fo rm e(q,co) was that used 

elsewhere i n this thesis. 

The dielectric funct ion appears in the denominator of the expression for the matr ix 

element (Eq. (4.16) of Chapter 4), and so we expect | M | 2 and e(q,u) to be approxi

mately related by an expression of the form 

| M | 2 « R ^ ) r <7-3> 
The variation in | e (g ,o ; ) | - 2 w i t h respect to q and LO is plotted for InGaAs (which is 

typical of the other materials also) in Fig. 7.18. The plot indicates that the value 

of \e\~~2 is low at (q = 0,u> = 0), and generally highest at f ini te q-values along the 

line u — 0, w i t h intermediate values at general (q,oo) (the rapid increase in |e|~2 for 

HOJ > 6 lies beyond the range of energy transfer of interest here). Thus we would 

expect the rates obtained wi th each dielectric approximation to be lowest when using 

Co, intermediate for e(q, UJ) and highest for e(q). The rates plotted in Fig. 7.19 confirm 

these expectations. 

The use of a constant expression for e is found to be a poor approximation, partic

ularly where q-transfer is high such as for impacting carriers ly ing near the zone edge 

in the valence bands of both materials, and for al l impacting carriers in the conduction 

band of SiGe. The only authors referred to in §6.6 to use this approximation are Wang 

et al t 2 1) and Stobbe, Konies, et al f 1 0 5 l (who have also neglected the C N T S ) . In the case 

relevant to their calculations, i.e. for electronic rates in a direct gap semiconductor, 

the use of the constant expression in place of a q- and w-dependent one has the least 

effect and, as w i th the neglect of the C N T S , cannot account for the large discrepancy 

file:///e/~~2
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between their rates and those of other authors. 

Fig. 7.19 shows that the rates obtained using the e(q) and e(q,ui) approximations 

for the dielectric function differ by a factor of up to about two for both materials 

and carrier types. The maximum discrepancy is seen where impacting carrier energy 

and hence energy transfer is greatest, as expected. This factor of up to two could 

account for differences in high energy hole init iated rates in GaAs obtained here and 

by Oguzman et al f 2 7 ' , but is insufficient to account for the larger discrepancies between 

the electronic rates in GaAs and InGaAs, and rates for both types of carrier in SiGe 

obtained here and by authors using a g-dependent expression for e. 

Note that the q- and ^-dependent expression for the dielectric funct ion used here 

is an isotropic approximation to the f u l l q - and u;-dependent expression given by 

Eq. (2.32) of Chapter 2. The RMS error introduced into the matr ix elements due to the 

use of this isotropic approximation is estimated to be less than ~ 5%, and the effect 

on the overall rate w i l l be much less due to integration over many mat r ix elements. 

6 

1* 

Figure 7.18: Variation of the funct ion |e(g,u;)| 2 in InGaAs 
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Figure 7.19: Comparison of rates using various dielectric funct ion approximations. 
Figs, a and b are rates in InGaAs for electrons and holes respectively. Figs, c and 
d are rates in SiGe. 
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7.2.3 Effect of the Band Structure 

The rate calculations compared in §6.6 use band structure obtained by various meth

ods including local and non-local empirical pseudopotential methods and the k • p 

method, and the energy bands obtained by each w i l l generally differ. In addition, the 

experimental data used to f i t the band structure may differ f r o m author to author, and 

even where the same data is used, the f i t t i ng procedure is itself not exact and different 

fits may lead to different calculated energy bands. Since the rates are sensitive to the 

exact shape of the bands, particularly at low energy, variation in the band structure is 

likely to be a factor contributing to the discrepancies between the calculated rates. I n 

this section, rates in GaAs calculated using band structure obtained f r o m two different 

pseudopotential calculations are compared. One is the calculation of Chelikowsky and 

Cohen l 8 1 l , as used elsewhere in this thesis, which utilises a non-local pseudopotential 

and includes the effect of the spin-orbit interaction. The other calculation is that of Co

hen and Bergstresser t 8 9 ' , which is based on a local pseudopotential method neglecting 

the spin-orbit interaction. 

The energy bands calculated using the two methods are compared in Fig. 7.20. 

The overall form of the two band structures is broadly similar. However, in the local 

calculation, the energy of the X-valleys is lowered in comparison to the non-local case, 

the energies of the valence bands raised (i.e. carrier energies in the valence bands are 

lower in the local case) and the inclusion of the spin-orbit interaction in the non-local 

calculation splits the valence bands at the T-point. The dielectric functions at q = 0 

obtained f rom the two calculations are compared in Fig. 7.21. The value of e(q,uj) is 

generally higher i n the local case at energies of interest (although only the q = 0 case 

is plotted, this is also true for non-zero q-vectors). 

Figs. 7.22 and 7.23 compare separately the contributions of the volume of available 

phase space and matr ix elements calculated using the two band structures for electron 

and hole ini t iated transitions. For both types of carrier, the available phase space at 

any given impacting energy is larger when calculated using the local band structure. In 
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the case of electron ini t iated transitions, the lower X-valleys and higher valence bands 

both act to increase the number of possible final states. For the hole init iated transi

tions, i t is perhaps surprising to f ind that despite the reduction in impacting carrier 

energy, the phase space volume is higher in the local case. However, the flatter valence 

bands obtained f rom the local calculation, while reducing the impacting carrier energy, 

correspondingly reduce the final state energy, making more final states accessible. In 

addition, the lower energy X-valleys (i.e. higher energy, in terms of holes) also provide 

more accessible impacted states. 

From Eq. (7.3), we expect the larger value of e(q,ui) obtained f rom the local band 

structure to lead to matr ix elements that are smaller by about 20%. Figs. 7.22 and 7.23 

show that for both electrons and holes, matr ix elements calculated using the local band 

structure are smaller typically by a factor of about two. The greater than expected 

reduction in matr ix elements when going f rom the non-local to the local band structure 

is due to the different distributions of secondary states in each case. For example, i n 

the case of electron ini t iated transitions, much of the increase in phase space volume 

is due to additional final states available in the X-valleys. However, matr ix elements 

involving transitions to these states tu rn out to be smaller than for other transitions 

(in both band structures), and so the average value of | M j / | 2 is reduced. 

Figs. 7.24 and 7.25 compare the rates a themselves obtained f rom the two band 

structures. The counteractive effects of increased volume of phase space and reduced 

matr ix element in going f rom non-local to local pseudopotential calculation reduces 

the difference that might otherwise be seen in the rates obtained f rom these two band 

structures. Nevertheless, the increase in available phase space volume dominates and 

the rates for both types of carrier are higher when calculated using the local band 

structure. This would appear to account, at least to some extent, for the fact that 

rates calculated in this work are among the lowest of those plotted in Fig. 6.54. 

aNote that the rates in Figs. 7.24 and 7.25 have been calculated for impacting carriers located 
along the 100, 110 and 111 directions only, and hence differ from the more complete calculations done 
for impacting carriers located throughout the zone, presented in Fig. 6.30. 
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The variation in rates obtained using the two band structures is greatest at low 

energy as expected and, in the case of GaAs, could account for much of the disagreement 

seen there in the results of other workers discussed in §6.6. The magnitude of the 

variation is not great enough to explain the much larger discrepancies between results 

previously reported and obtained here for InGaAs and SiGe. However, GaAs is a 

much studied material for which there is considerable experimental data, and hence 

the fitted band structures of different authors are likely to be similar (as in the case 

of Chelikowsky and Cohen's and Cohen and Bergstresser's f i ts) . In other materials, 

particularly alloys, less data is generally available and the band structure may vary 

much more greatly between different calculations. Furthermore, in the case tested here, 

i t turns out that the differences between the bands lead to changes in the surfaces of 

allowed transitions that just happen to lie at regions in which the matr ix elements are 

significantly lower than their mean, diminishing the overall effect of the change. Stobbe 

et al t 5 9l have investigated the effect of using different band structures in the calculation 

of the impact ionisation rate in GaAs, obtaining slightly greater variation in the rates 

than found here. Therefore, in InGaAs and SiGe, i t is possible that variation in the 

band structure used by different authors has a greater effect on the rates. 

A further source of variation in the rates obtained by different calculations is the 

number of plane waves used to expand the wavefunction when performing the pseu-

dopotential calculation. This affects the shape of the energy bands, and the pseu-

dowavefunctions and hence matr ix elements. Convergence of the energy bands wi th 

respect to the number of plane waves used is rapid, being well converged when using 

65 plane waves as in this work. The convergence of the mat r ix elements is discussed in 

§4.2.6 of Chapter 4. There i t was shown that in InGaAs, the matr ix elements are well 

converged when using 65 plane waves. In SiGe, convergence was found to be more of a 

problem, w i t h errors in the matr ix elements being of the order of 30%. However, these 

errors are negligible in comparison to the magnitude of the typical variation in rates 

obtained by the different authors discussed in §6.6. 
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Figure 7.20: Comparison of the band structure of GaAs obtained using the non
local pseudopotential method of Chelikowsky and Cohen ^ and using the local 
pseudopotential method of Cohen and Bergstresser t 8 9 L 

e r (Chel & Co) 

6, (Chel & Co) 

E r (Co & Berg) 

6, (Co & Berg) 

Ha (eV) 

Figure 7.21: Comparison of the dielectric funct ion of GaAs obtained using the non
local pseudopotential method of Chelikowsky and Cohen t 8 1 ' and using the local 
pseudopotential method of Cohen and Bergstresser t 8 9 ' . 
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Figure 7.22: Average phase space and matr ix element in GaAs plotted w i t h respect 
to impacting electron energy, calculated using the local (Cohen and Bergstresser) 
and non-local (Chelikowsky and Cohen) band structures. 
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Figure 7.23: Average phase space and matr ix elements in GaAs plotted w i t h respect 
to impacting hole energy, calculated using the local (Cohen and Bergstresser) and 
non-local (Chelikowsky and Cohen) band structures. 
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Figure 7.24: Electron init iated rates in GaAs, obtained using the local (Cohen and 
Bergstresser) and non-local (Chelikowsky and Cohen) band structures. 
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Figure 7.25: Hole ini t iated rates in GaAs, obtained using the local (Cohen and 
Bergstresser) and non-local (Chelikowsky and Cohen) band structures. 
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7.2.4 Variation in Rates: Summary 

The neglect of the C N T S , and the use of a constant for the dielectric function are found 

to lead to significantly different rates f rom those obtained using the more sophisticated 

approximations. However, neither of these approximations is now widely used. Of the 

remaining sources of disagreement between authors, the use of a ^-dependent dielectric 

funct ion leads to over estimation of the rates at higher energy, in comparison to the 

rate obtained using a f u l l q- and cj-dependent funct ion, while uncertainty in the band 

structure can lead to variations in the predicted rate at lower energies. However, the 

wide variation in rates calculated by different authors cannot be fu l ly accounted for 

by the factors discussed above, and so i t must be assumed that differences in the 

implementation of the rate integration account for much of the variation in the rates. 
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7.3 The Importance of the T-Valley 

A general feature of the results presented in this and the previous chapter is the fact 

that the direct gap materials studied frequently show qualitatively similar behaviour, 

while the indirect gap material has some distinctive properties. The origin of the 

differences is the existence in GaAs and InGaAs of a deep T-valley, which in SiGe 

is only very shallow and not the lowest part of the conduction band. The T-valley, 

having a light effective mass, does not provide a high density of states in comparison 

to the heavy effective mass satellite valleys, and i t might therefore be expected that its 

influence on quantities involving integration over the Br i l lou in zone, such as the impact 

ionisation rate, would be small. I n fact the qualitative differences in the properties of 

the direct and indirect gap materials studied here suggest that i t is highly influential, 

and this is investigated in this section. 

Fig. 7.26 shows the tota l density of states in the first conduction band of InGaAs, 

and the density of states lying in the r -va l ley b . For energies above 0.55 eV the satellite 

valleys quickly dominate the density of states. Fig. 6.46 of Chapter 6 shows that final 

states of this energy correspond to impacting electrons of carrier energy ~ 2 eV. Thus, 

by considering only the density of states lying i n the T-valley, we would expect this 

valley to have a small influence on the rates for impacting carriers above about 2 eV. 

Fig. 7.27a shows electron init iated rates for InGaAs plotted as a funct ion of the 

impacting carrier energy. The grey points represent to ta l rates, calculated in the usual 

way, and the black points represent rates calculated by excluding all pairs of final 

states which include a state in the T-valley. For impacting carriers below about 2 eV, 

all transitions involve at least one state in the T-valley, since this valley provides the 

only final states of sufficiently low energy to be accessible. However, at higher energies, 

for which final states in the satellite valleys are available, the T-valley is s t i l l involved 

in more transitions than would be expected based on its contribution to the density 

b A state is defined as lying in the T-valley if moving it down the energy gradient in k-space would 
take it to the T-point. 
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of states alone. Fig. 7.27b shows the to ta l volume of available phase space (the grey 

points) and the volume of phase space calculated by excluding the T-valley (the black 

points). I t is apparent that the influence of the T-valley on the to ta l volume of available 

phase space is much less significant than on the rate. 

The data in Fig. 7.27 is re-plotted in an alternative fo rm in Fig. 7.28. The black 

points indicate the fraction of the tota l rate which is due to transitions involving at 

least one final state i n the T-valley. The grey points similarly represent the T-valley's 

fractional contribution to the phase space. The dotted line is an estimate of the phase 

space provided by the T-valley based on the density of states of Fig. 7.26, and assuming 

the final state carrier energy Ej is related to the impacting state carrier energy Ei by 

E f = l - ( E i - E g a p ) (7.4) 

which is based on the s implifying assumption that the three generated carriers share the 

energy made available by the impacting carrier equally. From this plot i t is clear that 

the fractional contribution of the T-valley to the tota l phase space drops off rapidly once 

the heavier satellite valleys become accessible, and is approximately equal to the value 

we would expect based on the 3-dimensional density of states in this valley. However 

the fractional contribution to the rate remains much higher, accounting for the major i ty 

of transitions for impacting carriers up to about 3.5 eV. The fact that the T-valley has 

a greater significance in influencing the total rate than would be expected f rom its 

contribution to the phase space indicates that the corresponding mat r ix elements are 

higher. This is due to the low q-transfer involved in transitions f rom the top of the 

valence band to states in the conduction band near F. 

By excluding transitions involving the T-valley, the properties of the rates calculated 

for the direct gap materials GaAs and InGaAs become similar to those calculated 

for the indirect gap SiGe. Fig. 7.29 compares electron ini t ia ted rates in the three 

materials. In Fig. 7.29a the total rates are plotted, calculated in the usual way. In 

Fig. 7.29b, the rates have been calculated by excluding final states in the T-valley. The 
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highly k-dependent nature of the to ta l rates at low energy in the direct gap materials, 

particularly InGaAs, is reduced when the T-valley is excluded, and the rates become 

relatively well represented by a function of energy alone, as i t was noted in §6.4.2 of 

Chapter 6 is already the case in SiGe. 

Fig. 7.30 compares the electron init iated rate in InGaAs calculated using the f u l l 

expression for the matr ix element, and using the C M E approximation discussed in 

§7.1.2. I n Fig. 7.30a the to ta l rates are plot ted 0 , and in Fig. 7.30b the rates obtained 

by excluding final states in the T-valley are plotted. In §7.1.2 i t was noted that the C M E 

approximation leads to softer thresholds when applied to the direct gap materials, but 

is a good approximation in the indirect gap. From Fig. 7.30 i t can be seen that when 

the T-valley is excluded, the accuracy of the C M E approximation is much improved 

for the direct gap material, and in this case InGaAs shows similar behaviour to SiGe. 

Table 7.2 compares values of the P parameters obtained by fitting Eq. (7.1) to the 

rates calculated w i t h the T-valley included or excluded. I t shows that the A and P 

parameters for each material are quite similar for the fits in which the T-valley has 

been excluded, i.e. all three materials show similar threshold hardness in this case. 

Fits obtained for the volume of phase space show correspondingly good agreement 

between materials when the T-valley is excluded, indicating that the closeness of the 

behaviour seen for each of the materials is due to genuine similarities and not merely 

to different dependencies of the volume of phase space and magnitude of the matrix 

elements leading to coincidentally equivalent results for the rates. 

In GaAs, the T-valley plays a similar role in softening the thresholds, though the 

effect is less marked than in InGaAs due to the smaller separation of the F and satellite 

valleys i n GaAs. Hence the P-parameter for electron ini t ia ted rates in GaAs lies 

between that of SiGe and InGaAs. Bude and Hess f 2 0 l have also noted that thresholds 

are expected to be softer in materials for which the T-satellite valley separation is larger 

cNote that although Figs. 7.15 and 7.30a are equivalent plots, they differ quantitatively due to the 
fact that the rates in Fig. 7.30 were calculated using a reduced (but representative) set of impacted 
and final state bands. 
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and the band gap smaller, and Al l am ^ has noted that we should expect enhanced 

probabili ty of transitions to the T-valley due to the low q-transfer involved. Al lam 

also argued that although the materials Si, GaAs, InAs and Ino.53Gao.47As have a wide 

range of band gaps, they are all similar in that they have similar values of (Eind), 

defined as 

where Ey is the energy gap between the top of the valence band and the conduction 

band valley located at V , and therefore similar rates are obtained in each material at 

high impacting carrier energy. Thus the similarities obtained here between materials 

when the F-valley is excluded may not extend to InP for example, which has a rather 

larger value of (Eind). 

1 
(Eind) — g ( ER + SEX + AE (7.5) 

http://Ino.53Gao.47
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T included T excluded 
A P EQ A P EQ 

GaAs 3 . 1 x l 0 9 6.5 1.64 2 . 5 x l 0 1 0 4.8 2.14 
InGaAs l . l x l O 8 7.0 0.17 3 . 6 x l 0 1 0 4.5 2.04 

SiGe 1 . 4 x l 0 1 0 4.4 0.87 1 . 4 x l 0 1 0 4.4 0.87 

Table 7.2: F i t t i n g parameters for electron init iated rates calculated by considering 
all possible final states, and by excluding final states i n the T-valley. Note that 
parameters on the left hand side of this table are fitted to impacting vectors lo
cated along the 100, 110 and I l l -d i rec t ions and hence do not match those listed in 
Table 6.7 for carriers throughout the zone. 
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Figure 7.26: Density of states in the 1 s t conduction band of InGaAs. The solid 
line is the tota l D.O.S . while the dashed line is the D .O.S . in the T-valley only. 
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Figure 7.27: Comparison of rates and phase space for InGaAs evaluated by including 
all transitions, and by excluding those to the T-valley. The rate is plotted in Fig. a, 
and the phase space in Fig. b. 
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Figure 7.28: The electron ini t iated rate in InGaAs due to transitions involving at 
least one final state lying in the T-valley, expressed as a fract ion of the tota l rate 
(the black points), and the equivalent data for the phase space (the grey points). 
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Figure 7.29: Electron ini t iated rates in GaAs, InGaAs and SiGe, obtained in the 
usual way by considering al l transitions (plotted in Fig. a) , and by excluding tran
sitions to the T-valley (plotted in Fig. b). 
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Figure 7.30: Electron ini t iated rates in InGaAs, calculated using the f u l l expression 
for | M j / | 2 , and using the C M E approximation. I n Fig. a, total rates are plotted. In 
Fig. b, rates calculated by excluding transitions to the T-valley. 
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7.4 Threshold Anisotropy and Softness of Rates 

I n this section the role of threshold anisotropy in affecting the softness of the rates 

is discussed. In order to investigate this, results presented in Chapter 6 w i l l be re

examined. 

I n §6.3.2 of Chapter 6 the impact ionisation thresholds were plotted as a function 

of energy. I t was shown that there does not generally exist a single energy above 

which impact ionisation can be init iated f rom any k-state, and below which i t can be 

ini t iated f rom none, but rather a range of energies over which the fraction of ionising 

states increases f rom 0 to 1. This fraction is given by the expression (repeated f rom 

Eq. (6.2)): 

f { E l ) - f 5(E(k) - Et) d 3 k

 ( 7 - 6 ) 

where t(k) is defined as a funct ion whose value is 1 i f state k can init iate impact 

ionisation and zero otherwise. The range over which 0 < f(Ei) < 1 was found to vary 

between materials and bands. 

I n §6.4.3, rates for each band in each material were presented as a funct ion of energy. 

The rate plotted for a given energy is the mean rate due to al l k-states at that energy, 

given by the expression (repeated f rom Eq. (6.3)): 

J R(k) S j E M - E j ) d 3 k 

t t a v W - j S(E(k) - Ei) d*k • K < J ) 

I t was noted in §6.4.3 that the rate averaged w i t h respect to k at a given energy is an 

appropriate quantity to consider when carriers are scattered throughout the Bri l louin 

zone, as they are when moving under the influence of a high field [ 1 7> 2 5> 5 41. 

The integrals in Eq. (7.7) are performed for some particular value of E\ over all 

states, including those for which the rate is zero. We can obtain the mean rate at a 

particular energy due to only those states f rom which ionisation is possible f rom the 



CHAPTER 7. ANALYSIS OF RESULTS 230 

expression 

Ltion(Fi) 
J t(k)R(k) 8{E(k) - Ej) d 3 k 

/ t ( k ) 5(E(k) - Ei) d 3 k 
(7.8) 

Using the result that / t(k)R(k)S(E) = J R(k)6(E), Eqs. (7.6), (7.7) and (7.8) can be 

combined to give 

Since f(Ei) is generally an increasing function of energy, we expect Rav(Ei) to show 

softer threshold behaviour than Rion(Ei). 

Sano et al t 1 1 2 l have studied the effect of anisotropy of the threshold on softness of 

the rate, concluding that rates in Si and GaAs are hard, but that greater anisotropy 

in the threshold of Si, combined w i t h the fact that carriers are located at al l points 

throughout the zone, leads to a softer effective rate. In terms of the notation used here, 

Sano et al claim that the dependence of Rim on Ei is such as to give the same hard 

threshold behaviour in each material, and the variation in actual threshold softness 

seen in the values of Rav is due only to variation in f(Ei). In view of this they suggest 

a k-vector dependent rate of the fo rm 

where U(x) is the unit step function U(x) = 0 for x < 0 and U(x) = 1 for x > 0, and 

i?o(k) is a k-dependent threshold energy. A n altered fo rm of this expression has been 

used in Monte Carlo simulations by Sano and co-workers to simulate Si I 1 8 , 1 9 ' and by 

Chandramouli et al to simulate InP ' 1 1 3 l The expression they use is a variation of the 

Keldysh expression, 

Below, the results obtained in this work are analysed to determine i f they show the 

same behaviour seen by Sano et al. 

Rav{Ei) = f(Ei) x Ri0n(Ei) (7.9) 

R(k) = u ( E - E 0 ( k ) j (7.10) 

R(k) = Ro(E - EQ(k)) (7.11) 
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7.4.1 Comparison of Threshold Anisotropy 

In Fig. 7.31, the values of f{Ei) calculated here and by Sano et al are compared. The 

solid lines on the plot compare f(Ei) calculated for electrons ( in the first and second 

conduction bands) here and by Sano for GaAs. Agreement is quite good, and what 

differences there are can probably be at t r ibuted to differences in the band structure 

of each calculation (Sano uses the local pseudopotential band structure of Cohen and 

Bergstresser I 8 9 l ) . The dashed lines show f(Ei) calculated here for SiGe and by Sano 

for Si. Since the lines are for different materials, they are not strictly comparable. 

However, Si and SiGe have similar band structure (an indirect gap wi th the bot tom of 

the conduction band lying close to X ) , and we would expect to see qualitative similarity 

between the lines. I t is surprising to see that the funct ion of f(Ei) obtained by Sano 

rises f rom 0 to 1 over a range of almost 5eV — considerably greater that the range of 

just 0.5eV obtained here for SiGe. In view of the fact that the largest range of any 

plot i n §6.3.2 over which 0 < f(Ei) < 1 is about 1.5eV (for the first conduction band 

of InGaAs), i t seems highly unlikely that the threshold-finding algori thm of Beattie I 6 1 ' 

used in this work would obtain such a large range had i t been applied to Si. Sano 

has used the algori thm of Anderson and Crowell I 1 0 6 ! to obtain the thresholds, which is 

known l 2 0 ' to overestimate threshold anisotropy. We conclude therefore that the results 

for threshold anisotropy obtained here using Beattie's algori thm are to be preferred. 

The effect this has on the softness of the rate at threshold is examined below. 

7.4.2 Effect of Anisotropy on Rates 

Fig. 7.32 compares Rav(Ei) (the overall mean rate) and ir! j o n (£ ' j ) (the mean rate due to 

only those states above threshold) calculated for electrons in SiGe. The energy range in 

which Rav is lower than Rion corresponds to the energy range in which 0 < f(Ei) < 1. 

The effect of the variation in f(Ei) on the overall rate is not great. Table 7.3 gives f i t t i n g 

parameters for Rav and Rim for carriers in each material. For Rav, the parameters A, 
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P and E0 are al l f i t t ed as described in §6.4.3. For Rion, A and P are f i t ted w i t h E0 

fixed to the same value as obtained for Rav. From the values presented in the table 

i t can be seen that when only those states able to ini t iate ionisation are considered, 

mean rates for both types of carrier show harder threshold behaviour, i.e. A increases 

and P decreases, as expected. However, the changes in A and P are not particularly 

great (in comparison to the differences seen between materials), confirming what can 

be seen f r o m Fig. 7.32, i.e. that the effect of anisotropy in the thresholds plays only a 

small role i n increasing the softness of the rates. 

I n the case of the electron init iated rates, i t is interesting to note that for Rion 

the P-parameter is the same for each material. However, f i ts to the mean volume 

of phase space as a funct ion of energy do not give similar P-values for each material 

when the effect of anisotropy of the threshold is removed. Thus the equal P-values 

obtained for the rates is to some extent a coincidental combination of the different 

energy-dependencies of available phase space and matr ix elements in each material 

and not too much significance should be read into this result. I n addition, the softness 

of the threshold for i ? j o n s t i l l varies considerably between materials i n that the fitted 

yl-parameters vary (wi th GaAs showing the hardest threshold behaviour). 

To summarise the information presented in this section, although the k-space 

anisotropy of the threshold has the effect of softening the threshold behaviour of the 

rates in each material studied, its influence is not great and the fact that the thresholds 

are soft (insofar as the f i t ted P parameters are large) is due mainly to the energy de

pendence of the rate itself on carrier energy rather than the dependence of the fraction 

of carriers at that energy that are above threshold. I t seems likely that Sano et al 

have over estimated the anisotropy of the thresholds due to the use of Anderson and 

Crowell's threshold-finding algorithm. 
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F i t to R Fi t to Ri0n (Ei) 
A P Eo A P 

GaAs 1 . 4 x l O u 5.2 1.89 2 . 0 x l 0 u 4.7 
e" InGaAs 1 . 6 x l 0 1 0 5.6 0.75 4 . 2 x l 0 1 0 4.7 

SiGe 4 . 6 x l 0 1 0 4.9 0.84 6 . 1 x l 0 1 0 4.7 

GaAs 8 . 2 x l 0 1 0 5.1 1.43 9 . 0 x l 0 1 0 5.0 
h+ InGaAs 1.5x10" 4.2 0.73 1 . 6 x l O u 4.2 

SiGe 7 . 8 x l 0 1 0 4.7 1.23 l . l x l O 1 1 4.5 

Table 7.3: F i t t i ng parameters for the mean rate Rav for all states at a particular 
energy calculated f r o m Eq. (7.7), and for the mean rate Rion due to only those states 
able to ini t iate impact ionisation calculated f rom Eq. (7.8). 
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Figure 7.31: Comparison of threshold anisotropics obtained here for GaAs and SiGe 
and by Sano et al t 1 1 1 ! for GaAs and Si. The funct ion f(Ei) is defined in Eq. (7.6) 
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Figure 7.32: Mean rate Rav due to all states (Eq. (7.7)) compared to the mean rate 
Rion due to only those states above threshold (Eq. (7.8)), plotted for SiGe. 



Chapter 8 

Conclusions 

I n this thesis, methods and results have been presented of band-to-band impact ionisa

t ion rate calculations carried out in the semi-classical Fermi's Golden Rule approxima

t ion for the materials GaAs, Ino.53Gao.47As and S i 0 . 5 G e 0 . 5 . The software developed to 

perform the calculations is i n principle applicable to any unstrained diamond or zinc 

blende structure semiconductor. 

Band structure for each material was obtained using the empirical pseudopotential 

method I 8 1 ' , discussed in Chapter 2. Pseudopotential parameters for InGaAs and SiGe 

were fitted by a Monte Carlo method (described in Chapter 3) to experimentally de

termined band gaps. Previously published pseudopotential parameters ^ are used for 

GaAs. 65 plane waves are used in the expansion of the pseudowavefunctions, which was 

found to give good convergence in calculated quantities such as the energy eigenvalues 

and dielectric function. 

In order to rapidly obtain the band structure data at arbi trary k-vectors in the 

Br i l lou in zone, an interpolation scheme has been developed, as discussed in Chapter 3. 

Energies are interpolated quadratically f rom a mesh of pre-calculated points adapted 

to ensure that interpolation errors are kept uniformly low throughout the zone. Errors 

in energy values introduced by the interpolation scheme are typically less than a meV. 

The pseudowavefunctions are similarly quadratically interpolated f rom pre-calculated 

235 
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expansion coefficients. More efficient use of computer memory is achieved by expanding 

wavefunctions at arbi trary k-vectors in terms of the wavefunctions at the zone centre. 

Uniform meshes of pre-calculated points are used to interpolate the expansion coeffi

cients as i t was found that, although adapted meshes were effective in reducing inter

polation errors on the wavefunctions themselves, errors on mat r ix elements calculated 

f rom interpolated wavefunctions could not be effectively reduced by mesh adaptation. 

The errors introduced by interpolation on the wavefunctions themselves (wi th respect 

to wavefunctions obtained directly f rom the pseudopotential calculation) are a few per

cent ( < 4%). Errors on individual matr ix elements incurred due to the interpolation of 

the wavefunctions were found to be considerably larger. However, quantities involving 

integration over many matr ix elements, such as the impact ionisation rate, were found 

to be accurate to w i t h a few percent. 

The integration of the rate over all distinct energy and wavevector conserving tran

sitions has been performed using two numerical algorithms, as described in Chapter 5. 

One is the surface integration algorithm of Beattie t 6 1 ' and the other, which has been 

developed here, is a variation of Kane's algorithm 1581 which (unlike Kane's) is efficient 

close to threshold. The rates obtained f rom each algori thm are i n good agreement 

despite the quite different approaches employed by each, indicating that they are nu

merically reliable. 

The calculation of the impact ionisation transition mat r ix elements was discussed 

in Chapter 4. The matr ix elements are calculated using the pseudowavefunctions ob

tained f rom the pseudopotential calculation, via the interpolation scheme, and in

clude the terms which are commonly neglected in calculations for narrow band gap 

semiconductors ' 8 2^. The q- and cj-dependent expression for the dielectric funct ion was 

calculated f rom the pseudopotential band structure using the expression given by Wal

ter and Cohen t 8 3 l A n isotropic approximation to this funct ion (i.e. t(q, u) ~ e(q,o»)) 

is used in the evaluation of the matr ix elements. The error incurred in the calculated 

rate due to the use of this isotropic approximation is estimated to be less than ~ 5%. 
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The convergence of the matr ix elements w i t h respect to the number of plane waves 

used to expand the pseudowavefunctions was tested. In InGaAs i t was found to be 

good (to w i th in a few percent) and i t was assumed similarly good convergence would 

be obtained in GaAs. In SiGe the convergence was found to be considerably worse 

( ~ 30%), due to the fact that in this material transitions generally involve greater 

q-transfer which does not favour rapid convergence of the matr ix elements. 

The aspects of the rate calculation described above were combined to obtain impact 

ionisation rates for electrons and holes in each of the three materials studied. In 

common w i t h many rate calculations using real band structure [ 1 ° . 2 2 . 2 5 . 2 6 . 6 5 . 6 6 ] j the rates 

were found to be explicitly dependent on the k-vector of the impacting carrier, and not 

on just its energy as is the case in the Keldysh formula ' 5 3 l This is due to the restrictive 

nature of the requirement for simultaneous energy and momentum conservation. Thus 

carriers at the same energy but different positions in k-space can have widely varying 

rates. These explicit ly k-dependent rates were approximated by a function of energy 

alone of the fo rm (repeated f rom Eq. (6.4) of Chapter 6) 

R(E) = A(E - E 0 ) p , (8.1) 

where E is the impacting carrier energy and A, P and E0 are f i t t ed parameters. Values 

of A, P and E0 for each material are listed in Table 6.7 of Chapter 6. I t was generally 

found that the best f i t was obtained w i t h P > 2, in common w i t h other realistic band 

structure calculations presented in the literature t 2 6 ' 2 8 , 6 7 l The Keldysh formula! 5 3 ] for 

the rate is of the fo rm of Eq (8.1) w i t h P = 2, which is obtained assuming a direct gap, 

spherical parabolic band structure and constant mat r ix elements. The greater value of 

P obtained here is due to the deviation of the real band structure f rom the idealised 

parabolic case, and indicates a softer threshold. 

Rates obtained in this work were compared w i t h those obtained by several other 

workers [ 2 ° - 2 2 > 2 6 , 2 7 ,59 ,60 , i05 , i i i ] Reasonably good agreement was found in GaAs, but in 

InGaAs and SiGe rates obtained here and by other authors varied considerably. The 
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effect on the rates of using different band structure and different approximations in 

evaluating the mat r ix elements was investigated and found to be relatively small in 

comparison to discrepancies between authors, particularly for InGaAs and SiGe, and 

so i t was concluded that the details of the implementation of the numerical rate inte

gration accounted for much of the variation. I t was noted, however, that the effects 

of differences in the band structure was not fu l l y explored, and that in materials for 

which l imi ted experimental data is available, variation in band structure may have a 

greater influence than was determined here. 

The impact ionisation thresholds were found using the algori thm of Beattie ' 1 0 7 ' , 

rather than the commonly used algorithm of Anderson and Crowell I 1 0 6 ] which is known 

to give inaccurate estimates for the thresholds under certain conditions t 2 0 l . The thresh

olds were found to be highly anisotropic in k-space, part icularly in the case of electron 

ini t iated processes, reflecting the anisotropy of the energy bands themselves. Tests of 

whether this k-space anisotropy leads to anisotropy in the a-coefncient are typically 

carried out by applying fields in the 100, 110 and 111 directions [ 1 7 > 4 1 - 4 3 1 . However, in 

GaAs i t was found that the shape of the thresholds in k-space was such that ballistic 

electrons would be most likely to reach threshold when travelling in the 210-direction, 

and therefore any anisotropy in the a-coefficient, i f i t exists, would be most clearly 

seen for fields oriented along this axis. 

I t was found that the threshold cannot be characterised in terms of a single energy 

above which impact ionisation can be ini t iated f r o m any k-state and below which i t can 

be ini t iated f rom none. Instead, in each material the fract ion of all points in k-space 

at a particular energy f rom which carriers can init iate impact ionisation was found to 

increase f r o m 0 to 1 over an energy range typically of the order of 1 eV. I t was found 

that this gradual rise in the number of ionising states w i t h respect to energy had the 

effect of softening the threshold, as predicted by Sano et al t l u l . However the degree 

of softening introduced by the threshold energy range was found to be much smaller 

than that suggested by Sano, the softness obtained f rom the rate calculations being 



CHAPTER 8. CONCLUSIONS 239 

mainly due to the gradual rise in the volume of available phase space of final states as 

the threshold energy is exceeded rather than the rise in the number of ionising states 

at a given energy. The apparent over-estimation by Sano et al of the importance of 

the threshold anisotropy is probably due to their use of Anderson and Crowell's t 1 0 6 ' 

threshold-finding algorithm, which is known to give inaccurate results under certain 

circumstances ^ . 

The distr ibution throughout k-space of the secondary states (i.e. the impacted and 

final states) has been examined. Generated carriers were found to be confined to the 

conduction band valleys and the top of the valence band for low energy impacting carri

ers, whereas they are distributed throughout the zone for the highest energy impacting 

carriers. In the direct gap materials studied (GaAs and InGaAs), the distr ibution of 

generated carriers was found to vary significantly depending on the position in k-space 

of the impacting carrier. I n the indirect gap material (SiGe) the distributions of gener

ated carriers were found to be similar for different impacting carriers. In all materials, 

the mean energy of the generated carriers was found to be approximately proportional 

to the energy of the impacting carriers. I n the direct gap materials, the generated 

electrons on average each take a slightly greater share than the generated holes of the 

kinetic energy made available by the impacting carrier (whether i t is an electron or a 

hole), while in the indirect gap material, the opposite was found. 

The individual contributions of the volume of available phase space and the matr ix 

elements to the overall rate was examined. The rate and the volume of phase space 

were found to be in good quantitative agreement in SiGe (to w i th in a scaling factor 

corresponding to the mean matr ix element), while in the direct gap materials, although 

there was a qualitative correspondence between the two, poor quantitative agreement 

was observed. I n the direct gap materials, particularly InGaAs, the P-parameter of 

Eq. (8.1) was found to be lower when fitted to the rate than the volume of phase space 

as a funct ion of energy, i.e. the threshold behaviour of the rate was harder than that 

of the phase space. In SiGe, the fits for the rate and volume of phase space were very 
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similar. I t was concluded that approximation of the matr ix elements by a constant 

expression w i l l lead to a softening of predicted electron and hole ini t iated rates in 

direct gap materials, but give a good estimate of the electron init iated rate in indirect 

gap materials. General predictions regarding the softness of hole ini t iated transitions 

for indirect gap materials could not be made due to the complicated influence on the 

threshold softness of the closely spaced thresholds for the light, heavy and spin split 

off bands. 

The role of the matr ix elements in influencing the dis tr ibut ion of secondary states 

was examined. For electron ini t iated rates in the direct gap materials i t was found 

that the matr ix elements act to enhance the low q-transfer transitions, particularly for 

impacting carriers in the second conduction band. For electron ini t iated transitions in 

SiGe and hole ini t iated transitions in all the materials, the mat r ix elements were found 

to have l i t t l e effect on the secondary state distr ibution. 

I t has been noted throughout this thesis that the properties of the direct gap ma

terials studied are frequently in qualitative agreement, while those of the indirect gap 

material differ. I n the direct gap materials the role of the T-valley (which is only very 

shallow in SiGe) in influencing the rates was found to be considerably greater than 

would be expected f r o m its density of states in comparison to the higher effective mass 

satellite valleys. This in tu rn was found to be due to the small q-transfer associated 

wi th transitions involving this valley, and hence enhancement of the corresponding ma

t r i x elements. The contribution to the rate of the T-valley has the effect of softening 

the threshold, particularly in InGaAs where the T-satellite separation is a considerably 

greater fraction of the band gap than in GaAs. 

Suggestions for F u r t h e r W o r k 

The calculations in this thesis were performed in the semi-classical Fermi's Golden 

Rule approximation, but high fields and high phonon scattering rates at the energies 

at which impact ionisation is typically of interest reduce the applicability of this ap-
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proximation. An important extension of this work would be to incorporate a fuller 

treatment of these effects into the rate calculation. Both the intracollisional effect (ap

plicable at high fields) and collision broadening (applicable at high scattering rates) 

have the effect of relaxing the requirement for energy conservation, leading to a soft

ening of the threshold behaviour of the rates and an increase in anisotropy I 6 9 - 7 2 ! . In 

fact, under conditions of non-energy conservation, the concept of a threshold becomes 

inapplicable, and ionisation can be initiated by carriers well below the semi-classical 

minimum energy. 

The number of materials studied here is limited, due to considerations of available 

time and computer resources. To fully explore the differences noted between the direct 

and indirect materials studied here, and to fully investigate other trends in material 

properties, other semiconductors must be considered. In particular, Allam I 6 7 l has 

argued that the semiconductors Si (which has similar band structure to Sio.5Ge0.5), 

GaAs, InAs and Ino.53Gao.47As are similar in that they have similar values of {Eind) 

(defined in Eq. (7.5) of Chapter 7). Different behaviour may be seen in InP for example, 

which has a higher value of {Eind). I t would also be desirable to include the effects 

of strain in the calculations, and to apply them to semiconductors of the wurtzite 

structure such as GaN. 

Ultimately, to gain most insight into the role of impact ionisation in devices, the 

results of the rate calculations performed here must be incorporated into a ful l band 

transport simulation, for which the Monte Carlo method is a suitable technique. Un

fortunately, the computational effort required for numerical modelling of this sort is 

very great, both in terms of the development and running of the software. 

http://Ino.53Gao.47As


Appendix A 

Wavefunctions and Basis Sets 

An electron in band b with wave vector k, is described by the wavefunction 

^ ( r , k ) = e i k r u 6 ( r , k ) (A. l ) 

where u&(r,k) is the Bloch periodic part, and is expressed in terms of an expansion of 

plane waves as 

Ub(v,k) = ^ = Y l a ^ k y G i ' r ( A - 2 ) 
* i 

where Q is the crystal volume and the coefficient abii is in general a complex number. 

The Bloch periodic part u&(r, k) may also be expressed as an expansion in terms of 

another basis set — the zone centre wavefunctions — consisting of orthonormal-normal 

functions 4>j(r): 

ub(r,k) = J£pb>j(k)<f>j(T) (A.3) 

3 

where (j>j(r) is the wavefunction evaluated at k = 0 for the jth band, and the coefficient 

Pb,j is a complex number. 

If the zone centre wavefunctions ^ (r) are themselves expressed as an expansion in 

242 
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terms of plane waves: 

where again 7^ is a complex coefficient, then we can convert Ub(r, k) from an expansion 

in terms of plane waves, as in Eq. (A.2), to an expansion in terms of zone centre 

wavefunctions, as in Eq. (A.3), and vice-versa. 

A . l Plane Wave to Zone Centre Conversion 

Suppose we have a Bloch function expanded as in Eq. (A.2) and we would like it 

expanded as in Eq. (A.3). In other words, we know the set of coefficients a^i and 

would like to know the set (3bj. 

Multiplying both sides of Eq. (A.3) with (/>*(r) and integrating with respect to r 

over the volume of the crystal, we get 

/ 4>;(r) ub(r,k) dr = A, p (k) . 
Jn 

(A.5) 

Using Eq. (A.2) and Eq. (A.4) to replace the expressions on the left-hand-side of 

Eq. (A.5), we get 

f i f a [ E ^ G f c ' r ] [ X M k K G < r ] dr = / U k ) . (A-6) 

Doing the integral gives 

(A.7) 

Thus, to convert a plane wave expansion of the wavefunction for an electron at k in 

band b to a zone centre expansion, it is necessary to perform the summation Eq. (A.7) 

for each of the zone centre coefficients Pb,P in the expansion. 
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A. 2 Zone Centre to Plane Wave Conversion 

The opposite process to that discussed in §A.l is to convert a zone centre expansion to 

a plane wave expansion — that is, to convert the set of coefficients f3bj to the set a^. 

Using Eq. (A.4) to replace the 4>j{v) in Eq. (A.3), we get 

v*(r,k) = £>,,-oo - ^ E ^ G * ' r (A-8) 
3 k 

which can be re-arranged to give 

<Mr,k) = ^ £ [EM^HJ] EIGKR- (A.9) 
k j 

Comparing the term in square brackets with a&,i(k) in Eq. (A.2) we can see that 

(A.IO) 

A.3 The Zone Centre Wavefunctions Themselves 

Conversion between the zone centre and plane wave representations of the wavefunc-

tion, using the boxed equations Eq. (A.7) and Eq. (A.IO), requires a knowledge of the 

set of coefficients 7 ^ used to expand the zone centre wavefunctions in Eq. (A.4). 

The pseudopotential method is used to generate the wavefunctions at the zone 

centre, in just the same way as it is used at general k-points throughout the Brillouin 

zone. However, at the T-point, all the bands are at least doubly-degenerate and so the 

corresponding wavefunctions will be output in an arbitrary linear combination which 

in general is not symmetrised as in Figs. 3.12 and 3.13, for example. The symmetry 

operations listed in Table 3.2 are most easily applied to symmetrised wavefunctions, 

and so the 7 ^ obtained for sets of degenerate bands are linearly recombined so as to 

ensure that the new zone centre wavefunctions have the required symmetry. When this 

is done, the set of 7 ^ is stored for use in performing the conversion between basis sets. 



Appendix B 

Matrix Element with Spin and 

Exchange 

In this appendix, the expression for the matrix element summation including spin and 

exchange terms is set out in detail. 

The effect of including spin in the calculation of the direct matrix element Md is 

discussed in §4.2.5. The expression for the ful l matrix element M { f , including direct 

and exchange parts, is given by 

Mif = M d - M e (B.l) 

where 

M 

+ V i M r i ) V 2 M r 2 ) V W r i ) ^ 2 * ( r 2 ) 

+ V M r i ) ^ ( r 2 ) ^ ( r O V 2 * ( r 2 ) d 3 M 3 (B.2) 

245 
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and 

-I V M r 1 ) t # ( r 2 ) W t ( r 1 ) T ^ ( r 2 ) 

+ ^ 2 * , ( r 1 ) r ^ ( r 2)T / V i * ( r i ) ^ 2 * ( r 2 ) 

+ ^2< (n) V I ' ( r 2 ) ( r x ) V 2* ( r 2 ) d*vxdh2 (B-3) 

Eq. (4.16) gives an expression for the direct part of the matrix element, calculated 

without spin. Here the expression is generalised to included spin and exchange. 

Each wavefunction is a linear combination of spin-up and spin-down parts, with 

each of these parts being represented as a sum of plane waves: 

1 
4>a | | ) ^ t 4 Q ( G Q ) e ^ + G " ) - r + | j ) £ M Q ( G a ) e ^ + G ° ) - r 

G Q G„ 

(B.4) 

This form of the wavefunction is substituted into Eqs. (B.2) and (B.3). Using the 

expression for V given by Eq. (4.12) and the result of Eq. (4.15), we get 

e2 5t 

G i , G 2 , G j / , G 2 / 

- , G i + G 2 - G 1 / - G 2 / + k i + k 2 - k 1 / - k 2 ; 

ft e0e(qd,ud) \qd\2 

MMGiO !4*,(G2,) %(G1) !4 2 (G 2 ) 

+ WV(GV) lA*2,(G2>) ^ ( d ) M 2 ( G 2 ) 

+ WV(GV) t4*,(G 20 ^ ( d ) t4 2 (G 2 ) 

+ WV{GV) t4*,(G 20 ^ ( d ) M 2 ( G 2 ) (B.5) 

where 

q d = G i - Gv + kx - kv 

hwd = E{kl)-E{kv) 

(B.6) 

(B.7) 
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and 

MP = X 
e2 A G i + G 2 - G 1 ( - G 2 , + k i + k 2 - k 1 / - k 2 / 

X 

Gi,G2,G1/,G2i 

where 

Q e0e(qe,u;e) | q e | 2 

MMGiO t4J,(G 20 ^ ( d ) tt2(G2) 

+ W2,(GV) WV(GV) ^ ( d ) M 2 ( G 2 ) 

+ M 2 , ( G r ) ^ , ( G 2 0 ^ ( d ) t4 2 (G 2 ) 

+ lA*2l(Gy) %,{G2,) lAi(Gi) t4 2 (G 2 ) (B.8) 

q e = G : - Gv + k i - k2> 

fiu;c = £(kx) - E ( k y ) 

(B.9) 

(B.IO) 

The factorisation of the direct matrix element without spin is discussed in §4.2.4. 

Here the factorisation of the general expression for the matrix element, including ex

change and spin terms, is given. 

If the matrix element is written 

2 2 
Mif =Md-Me = -^S = ± ^ ( S d - S e ) ( B . l l ) 

then Sd and Se, which can be obtained by factorisation of Eq. (B.5) and Eq. (B.8), are 
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given by 

S« = E { [ E M i ' ( G i " G * ) 'MGi)] [ ^ M * , ( G 2 0 ! 4 2 ( G 2 , - G A + G „ ) 
G i G 2 / 

+ [J2tA*v(Gi - G A ) tti(Gx)] [ J ] ^ ( G 2 0 i 4 2 ( G 2 , - G A + G U ) 
G i G 2 / 

+ [ J > M G X - G A ) ^(d)] [ ^ t 4 ; , ( G 2 0 M 2 ( G 2 , - G A + G u ) 
G i G 2 / 

[ 5 > J , ( G ! - G A ) ^(d)] [ ^ M J ( G y ) i 4 2 ( G 2 , - G A + G„) 

} " e(qd,ud)\qd\2 

(B.12) 

X 

and 

5 e = E { [ E t A 2 ' ( G i - G A ) ^(d)] [ ^ t ^ G y ) t4 2 (G 2 , - G A + G t t ) 
G ^ G I G 2 / 

+ [ ^ ^ ' ( G i - G A ) Mi (GO] [ ^ M ; , ( G 2 , ) M 2 ( G 2 , - G A + G u ) 
G i G 2 / 

+ [X)MJ(Gi - G A ) iAi(Gi) ] [ ^ M ^ G * ) t4 2 (G 2 , - G A + G„) 
G i G 2 / 

+ [ ^ ^ ( d - G A ) ^(d)] [ ^ t 4 ? , ( G 2 , ) t 4 2 ( G y - G A + G u ) 
G j G 2 / 

} e(q e ,u; e ) |q e | 2 

(B.13) 
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