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Abstract 

This thesis is devoted to studying two important aspects of braneworld physics: 

their cosmology and their holography. We examine the Einstein equations induced 

on a general (n — 2)-brane of arbitrary tension, embedded in some n-dimensional 

bulk. The brane energy-momentum tensor enters these equations both linearly 

and quadratically. From the point of view of a homogeneous and isotropic brane 

we see quadratic deviations from the FRW equations of the standard cosmology. 

There is also a contribution from a bulk Weyl tensor. We study this in detail when 

the bulk is AdS-Schwarzschild or Reissner-Nordstrom AdS. This contribution can 

be understood holographically. For the AdS-Schwarzschild case, we show that the 

geometry on a brane near the AdS boundary is just that of a radiation dominated 

FRW universe. The radiation comes from a field theory that is dual to the AdS bulk. 

We also develop a new approach which allows us to consider branes that are not 

near the AdS boundary. This time the dual field theory contributes quadratic energy 

density/pressure terms to the FRW equations. Remarkably, these take exactly the 

same form as for additional matter placed on the brane by hand, with no bulk Weyl 

tensor. 

We also derive the general equations of motion for a braneworld containing a 

domain wall. For the critical brane, the induced geometry is identical to that of a 

vacuum domain wall in (n—l)-dimensional Einstein gravity. We develop the tools to 

construct a nested Randall-Sundrum scenario whereby we have a "critical" domain 

wall living on an anti-de Sitter brane. We also show how to construct instantons on 

the brane, and calculate the probability of false vacuum decay. 
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Chapter 1 

Introduction 

1.1 Prom three to four dimensions 

For centuries, physicists and philosophers have puzzled over the dimension of our 

universe. Why is i t we only experience three spatial dimensions? Kepler [5] rea­

soned that the threefold nature of the Holy Trinity [6] was responsible. The advent of 

Special Relativity [7] and Maxwell's theory of electromagnetism led to Minkowski's 

suggestion [8] that we should understand physics geometrically in four-dimensional 

spacetime rather three-dimensional space. As observers, we only notice the "mixing" 

of space and time at very high speeds, through phenomena such as length contrac­

tion and time dilation. Ever since Minkowski's breakthrough, physicists have been 

tempted to play with the dimensionality of our universe, either to find new expla­

nations to old problems, or to "tidy up" existing theories. A particularly important 

example of this was Kaluza-Klein theory [9-11]. For a nice introduction to higher 

dimensions, see [12]. 

1.2 Kaluza-Klein theory 

Kaluza's [9] aim was to unify gravity and electrodynamics. Gravity is well described 

at a classical level by the General Theory of Relativity [13]. This states that matter 

causes the universe to curve, with particles moving along geodesies in this curved 

geometry. I f matter is described by the four-dimensional energy-momentum tensor, 
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T^v, and G is Newton's constant, then 

~ = STTGT^ (1.1) 

where g^w, R and are the metric, Ricci scalar and Ricci tensor of our universe. 

The Einstein equations (1.1) can be derived from the Einstein-Hilbert action 

^ J d4x JgR (1.2) 

where g = det and 
5S„ 

Meanwhile, the Maxwell equations for a gauge potential, A^, coupled to a source 

of electromagnetic current, j^, are given by 

V M F " " = - f i 0 f , (1.4) 

where = d^Ay — d^A^. Equation (1.4) can be derived from the following action 

SEM — SM 

4//, 
- / d*x jgF2 (1.5) 
Mo J 

where 

I f we add together the actions (1.2) and (1.5) we get Einstein-Maxwell theory for 

gravity coupled to an electromagnetic field. Kaluza's idea was to consider pure 

gravity in five dimensions. Ignoring matter terms, the five-dimensional action is 

simply 

S = J d4xdz^R (1.7) 

where g^B 1S the fiye dimensional metric, and R is the corresponding Ricci scalar. 

Note that we have the original four dimensions labelled with coordinates x1* where 

/ i = 0,1,2,3. The fifth dimension is compactified on a circle and is labelled by the 

coordinate 0 < z < L. 

Now we can expand the metric as a Fourier series of the form 

g A B & z ) ^ ^ ' ^ ) ^ 1 - (1-8) 
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We find that we get an infinite number of fields in four dimensions. Modes with 

n ^ 0 correspond to massive fields with mass \n\/L. The zero mode corresponds to 

a massless field. As we take L to be smaller and smaller we see that the mass of the 

first massive field becomes very large. This means that i f we compactify on a small 

enough circle we can truncate to massless modes in the four-dimensional theory. We 

can only see the extra dimension by exciting massive modes which are at energies 

beyond our reach. 

Let us now focus on the zero mode, QAB{X). We could define g^, and gzz 

to be the four-dimensional fields g^, and </>. In order that our results are more 

transparent we wil l actually define the components of the metric in the following 

way: 

V = ^ + ^ , 5 ^ = ^ , fo = eW. (1.9) 

where a = l /2 \ /3 and ft = —l/y/3. Since we have truncated to the massless fields, 

we can integrate out the z part of the action (1.7). We find that the four-dimensional 

effective action is given by 

S e f f = L J d'xjg (R - \{d<j>f - J e - ^ F 2 ) (1.10) 

Although we had set out to obtain Einstein-Maxwell theory, we have ended up with 

an additional coupling to the scalar field <f>. I t turns out we cannot consistently set 

this field to zero. This was a worry to the original authors but today we are more 

comfortable with the idea that scalar fields might exist, such as the Higgs. Here, (f> 

is known as the dilaton. 

Kaluza-Klein type compactifications can be more complicated than simply com-

pactifying on a circle. The important thing is that the extra dimension is small so 

that we do not excite massive modes. We can truncate to massless modes and read 

off the effective theory in four dimensions. 

We need not restrict ourselves to just one extra dimension either. In fact, higher 

dimensions have become very fashionable in the last twenty years, mainly due to the 

success of string theory as a possible quantum theory of gravity. At the quantum 

level, bosonic string theory is only consistent1 in twenty-six (!) dimensions, although 

1 Actually, bosonic string theory contains a tachyon, but we will ignore that here. 
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this figure is reduced to ten when we introduce supersymmetry. Furthermore, there 

are five distinct string theories which can be viewed as different elements of an 

embracing new theory, M-theory [14-16]. M-theory lives in eleven dimensions and 

has eleven-dimensional supergravity as its low energy limit. 

Traditionally we achieve the reduction down to four dimensions using Kaluza-

Klein techniques. I f we start with a (4 + n)-dimensional theory, we compactify on a 

small n-dimensional manifold. Different manifolds generally give different effective 

theories in four dimensions. The one thing all of these manifolds have in common 

is that they are very small, and compact. 

There is, however, an alternative to Kaluza-Klein compactification. This is the 

idea that we live on something called a braneworld, where the extra dimension can 

be infinite. 

1.3 Introduction to braneworlds 

The idea is that our four-dimensional world is nothing more than an infinitesimally 

thin 3-brane, embedded in a (4 + n)-dimensional spacetime [17,18]. A l l Standard 

Model fields are bound to the brane, although gravity may propagate into the extra 

dimensions. 

Of particular interest to us here are the Randall-Sundrum braneworlds [19,20]. 

There are in fact two models. The Randall-Sundrum I model [19] is introduced in 

detail in section 2.1. Here we have two 3-branes of equal and opposite tension sep­

arated by some five-dimensional anti-de Sitter bulk. In order to preserve Poincare 

invariance on the branes, we fine tune the brane tensions against the bulk cosmo-

logical constant. 

The most important quality of the Randall-Sundrum I model is that i t provides 

an ingenious approach to the hierarchy problem. We will describe what this is 

in more detail at the beginning of section 2.1. For now, we note that i t is the 

problem of the Planck scale being so much larger than the weak scale. Braneworld 

models avoid this by stating that the fundamental Planck scale is of similar size 

to the fundamental weak scale. I t is only when we examine the effective theory 
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on the brane that we see the hierarchy between scales emerge. Unfortunately, the 

simplest braneworld models simply transfer the problem by requiring that the extra 

dimensions be very large. The Randall-Sundrum I model, however, is more subtle 

than this. By having anti-de Sitter space between the branes we get an exponential 

warp factor in the metric. This ensures that the effective four-dimensional Planck 

scale is much larger than the weak scale, even when there is no hierarchy in the 

fundamental five-dimensional theory. Crucially, this is achieved without the need 

for the extra dimension to be very large. 

Despite this success of RSI, there are still some physical problems with the 

model, such as how one should stabilise the extra dimension. For this reason, we 

wil l focus on its successor, the Randall-Sundrum I I model [20], which we discuss in 

detail in section 2.2. This time there is only one brane and an infinitely large anti-de 

Sitter bulk. The brane tension is positive and is once again fine tuned against the 

bulk cosmological constant to ensure Poincare invariance on the brane. The warp 

factor in the bulk metric does not play the role of solving the hierarchy problem like 

in RSI. Here i t ensures that gravity is localised on the brane. 

Recall that standard Kaluza-Klein compactifications ensure that gravity looks 

four-dimensional by stating that the extra dimensions should be small. In Randall-

Sundrum I I , the extra dimension is infinite! Gravity is allowed to propagate into the 

extra dimension so we would expect i t to look five-dimensional even to an observer 

on the brane. However, the warp factor causes metric perturbations to be damped 

as they move away from the brane. This has the effect that gravity looks four-

dimensional, at least perturbatively, to a braneworld observer. Randall-Sundrum I I 

offers an interesting "alternative to compactification". 

RS2 branes are often referred to as critical because the brane tension is fine 

tuned to a critical value. This ensures that the metric induced on the brane is 

Minkowski. I f we relax this fine tuning we obtain non-critical branes, which are 

discussed in section 2.2.3. Branes whose tension exceed the critical value have a de 

Sitter induced metric. Those with a tension smaller than the critical value have an 

anti-de Sitter induced metric. The de Sitter brane in particular is important because 

our universe may have a small positive cosmological constant [21,22]. 
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1.4 Braneworld cosmology 

The initial success of RS2, from a gravitational point of view, sparked off a lot 

of interest, especially amongst cosmologists. In particular, Shiromizu et al [23] 

calculated the Einstein equations induced on the brane. In chapter 3, we generalise 

their work to arbitrary dimensions. By this we mean considering the geometry 

induced on an (n — 2)-brane in an n-dimensional bulk. We start by writing the 

energy-momentum tensor for the brane in the following way: 

Sab = ~ohab + Tab 

where a is the brane tension, hob the brane metric and Tab the energy-momentum 

of additional matter on the brane. In the linearised analysis of chapter 2, we take 

Tab to be small and ignore quadratic contributions. However, from a cosmological 

point of view, i t is important to consider situations where Tab is not small. In this 

instance, we use the Gauss-Codazzi formalism to derive the Einstein tensor on the 

brane. Leaving the details until chapter 3, we wil l give a rough version of the result. 

I f Rob and R are the Ricci tensor and scalar on the (n — 2)-brane, then 

Rab ~ \Rhab = -K-lhab + ^Gn-XTab + T^f ~ Eab- (1.12) 

The first two terms on the right hand side are what we would have expected from 

Einstein gravity in (n — 1) dimensions: a cosmological constant term and a linear 

matter term. The brane cosmological constant depends on a and the bulk cosmo­

logical constant. As we stated at the end of the last section, i t vanishes for critical 

branes, but not for non-critical branes. The Newton's constant on the brane, (?„_i, 

turns out to be proportional to the bulk Newton's constant, Gn, and the brane ten­

sion. This dependence on the brane tension is often ignored although i t turns out 

to be very important when we study braneworld holography on non-critical branes 

in chapter 5. 

The last two terms on the right hand side of equation (1.12) are the most in­

teresting. The Eab term is often referred to as the electric part of the bulk Weyl 

tensor. I t vanishes for a pure anti-de Sitter bulk, but can be non-zero if (say) we 

have a bulk black hole. This term is best understood from a holographic point of 

view so we will postpone its discussion until the next section. 
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The i f f term is actually quite complicated. The important thing is that i t 

is quadratic in Tab- In section 3.2.1, we consider a Friedmann-Robertson-Walker 

brane. The T$ terms show up in the FRW equations as quadratic terms in energy 

density and pressure. I f these quantities are small, we can neglect the quadratic 

contribution. However, this might not be the case in the early universe so the 

terms could be important. 

Braneworld cosmology deviates slightly from pure Einstein gravity in (n — 1) 

dimensions. In chapter 4, we consider non-perturbative gravity on the brane in a 

different way. We investigate what happens when we have a strongly gravitating 

object such as a domain wall on the brane [1,2]. We can think of this as a domain 

wall within a domain wall. I t turns out that the equations of motion for this kind 

of configuration are completely integrable. 

The most interesting solutions are the following: the domain wall living on a 

critical RS brane, the nested Randall-Sundrum scenario, and the Coleman-De Luccia 

instantons. The first of these yields a remarkable result. I t turns out that the 

geometry induced on the (n — 2)-brane agrees exactly with what we would have 

expected from (n — 1)-dimensional Einstein gravity. Let us make this a little clearer: 

suppose we have a domain wall of tension, T, sitting in (n—l)-dimensional flat space. 

If we do Einstein gravity in (n — l)-dimensions we find that our flat spacetime has a 

certain geometry. This geometry is exactly the same as the geometry on an (n — 2)-

brane containing a nested domain wall, also of tension, T. We see that we have 

exact Einstein gravity on the brane, even at a non-perturbative level. 

Although the original motivation was to look at strong gravity on the brane, we 

have developed tools that enable us to construct other interesting configurations. 

The nested Randall-Sundrum scenario has a "critical" nested domain wall living on 

an anti-de Sitter brane. The geometry induced on the brane is the traditional RS2 

geometry, in (n — 1) dimensions. 

Staying with the cosmological theme, in section 4.4 we show how to construct 

gravitational instantons on the brane. These are the braneworld analogue of the 

Coleman-De Luccia instantons [24]. In this paper, the authors calculate the proba­

bility of (say) a flat bubble spacetime nucleating in a de Sitter false vacuum. This 
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kind of instanton describes a first order phase transition in the early universe. We 

show how to patch together our solutions so as to create these instantons on a brane. 

We do the same probability calculations and find that they agree with [24], at least 

in certain limits. 

1.5 Braneworld holography 

Having examined brane cosmology and strong brane gravity, we change direction 

in chapter 5, and discuss braneworld holography. We begin by reviewing the holo­

graphic principle. For now, all we need to say is that this involves projecting all 

the degrees of freedom in some volume on to its boundary surface. The AdS/CFT 

correspondence [25-27] is the first concrete example of this principle in action. We 

find that a gravity theory on AdS5 x S 5 is dual to a conformal field theory on 

the boundary. Braneworld holography is slightly different to AdS/CFT. The bulk 

gravity theory is conjectured to be dual to a field theory on the brane. This field 

theory is cut-off in the ultra-violet, and unlike in the AdS/CFT correspondence, i t 

is coupled to gravity on the brane. 

The difficulty with braneworld holography is that we do not know the precise 

nature of the dual field theory. We can, however, make use of the coupling to gravity. 

If we place a black hole in the bulk, the Hawking radiation causes the brane to heat 

up. Any dual field theory that lives on the brane should absorb energy which we 

can try to calculate. 

This procedure was first carried out for critical branes [28], and is reviewed in 

detail in section 5.4. To summarise, we place a black hole of mass, M, in an n-

dimensional bulk, and consider a critical FRW brane near the boundary of AdS. M 

is measured by an observer using the bulk time coordinate, t. This should translate 

into the energy of the dual field theory [29]. However, the field theory lives on 

the brane, so we should use the brane time coordinate, T. TO find its energy, we 

need to scale the black hole mass with some red-shift factor, i, where dot denotes 

differentiation with respect to r . By using conservation of energy, we can also 

calculate the pressure on the brane. 
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Given that we have a FRW brane, we can write down FEW equations for its 

cosmological evolution. I f Z(r) is the scale factor, and H = Z/Z is the Hubble 

parameter, then 

* = + ^ < L 1 3 a ) 

H = * ( r L z T i - i - ( i . i3b) 

Z2 \ 2 J Zn~l v ' 

where c is proportional to M. This black hole mass term comes from the non-trivial 

bulk Weyl tensor, Eab. Using the ideas just described, we can calculate the energy 

density, p, and the pressure, p, of the dual field theory, in terms of M, or equivalently, 

c. We find that we can rewrite the FRW equations entirely in terms of field theory 

quantities: 

* = h - ^ o > + * ( 1 1 4 b ) 

These are the FRW equations of the standard cosmology in (n — 1) dimensions. We 

see that we do indeed have a holographic description. On the one hand the brane 

cosmology is driven by the bulk black hole. On the other hand i t is driven by the 

energy-momentum of a dual field theory. I t turns out that for an uncharged black 

hole in the bulk, this field theory behaves like radiation. 

In section 5.5, we attempt to extend these ideas to de Sitter and anti-de Sitter 

branes [3]. This is not as straightforward as we might have thought. We have to be 

more careful than to say that the bulk energy is given by the black hole mass. Our 

calculation of the bulk energy is affected by cutting the spacetime off at the brane. 

We use Euclidean quantum gravity techniques to calculate the bulk energy from 

first principles, and then multiply by a red-shift factor to get the energy of the field 

theory. I t turns out that various factors combine to give us a similar holographic 

description to before. The only difference is that the FRW equations now contain 

a cosmological constant term corresponding to the de Sitter or anti-de Sitter brane, 

as appropriate. 

The main problem with all the analysis of chapter 5 is that its relies on a number 

of approximations. In particular, we assume that the brane is near the AdS bound-
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ary. This has two implications. The first is that i t enables us to get a reasonable 

approximation for the bulk energy. The second is that i t means the cut-off in the 

field theory is fairly insignificant. The dual field theory is nearly conformal, which is 

consistent with i t behaving like radiation. However, a general brane trajectory does 

not need to go near the AdS boundary. In chapter 6, we take a completely different 

approach to braneworld holography [4]. We modify the Hamiltonian technique of 

Hawking and Horowitz [30] to calculate the energy of the dual field theory exactly, 

with no assumptions made about the position of the brane. As a result, we can 

also get an exact expression for the pressure. We end up with a highly non-trivial 

equation of state that simplifies to radiation only as the brane gets nearer to the 

AdS boundary. The really interesting result, however, lies in the effect on the FRW 

equations. When we express these equations using the exact braneworld quantities, 

we find that they take the following form: 

where where we have included the possibility of a brane cosmological constant in 

the a term, and an = 4irGn/(n — 2). Although these equations do not correspond to 

the FRW equations for the standard cosmology, they have exactly the same form as 

the unconventional braneworld cosmology we discussed in the last section, complete 

with quadratic energy-momentum terms. When these equations are encountered in 

chapter 3, they correspond to a brane moving in a pure anti-de Sitter bulk, with 

additional matter placed on the brane by hand. In chapter 6, they have a very 

different origin. There is no additional matter on the brane although we now have a 

black hole in the bulk. When we derive properties for the dual field theory from the 

black hole, we find that the field theory behaves exactly as i f i t had been placed on 

the brane by hand. This means that the dual descriptions of chapter 5 are merely 

an approximation of this larger relationship. 

We conclude this thesis in chapter 7 with some general thoughts and discussion. 

The main results are stated and interpreted as we go along. 

87TG„<T 4TTG n H + P + a Z2 n-2 n-2 
(1.15a) 

H = — 
ATXG 

n °n(p + p) - {n-2) pip + p) 1.15b AirG 
n n-2 



Chapter 2 

Randall-Sundrum Braneworlds 

2.1 Randall-Sundrum I (RSI) 

In a four-dimensional world there are at least two fundamental energy scales: the 

weak scale, TUEW ~ 103 GeV and the Planck scale, mpi ~ 10 1 9 GeV. Physics is well 

described by the Standard Model at least up to 100 GeV or so. At the Planck scale, 

gravity becomes as strong as the SM interactions and a quantum theory of gravity is 

required. Why is there such a vast difference between the two scales? This question 

is the essence of the hierarchy problem. Consider the Higgs boson whose physical 

mass, mH ~ rriEw- Now suppose our theory is cut-off at some large scale A, where 

run <CA. When we calculate the one loop correction for the Higgs mass we find that 

5m2

H ~ A 2 . The bare mass must then be of order - A 2 to give a renormalised mass 

near the weak scale. I f we believe that our fundamental theory contains scales as 

high as the Planck scale, then the cancellation just described is disturbingly precise, 

given the huge numbers involved. What is more, this bizarre precision is required 

again at all subsequent orders of perturbation theory. 

Traditionally, i t is thought that this vast desert between the weak and the Planck 

scales must be populated with new theories, such as supersymmetry. Above the 

scale of supersymmetry breaking, the problems with radiative corrections to the 

Higgs mass are solved, although we may still ask why the desert exists at all. There 

is, however, another solution to the hierarchy problem that is radically different to 

supersymmetry. We assume that there is only one fundamental energy scale, the 

11 
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weak scale. The large (effective) Planck scale comes from extra dimensions, beyond 

the traditional four. As observers, we are bound to a braneworld embedded in a 

(4 4- n)-dimensional spacetime. The (4 4- n)-dimensional Planck scale, M, is now 

the fundamental scale of gravity, and is taken to be of order the weak scale. The 

extra dimensions are given by an n-dimensional compact space of volume Vn. In the 

simplest cases [31-33], our effective four-dimensional Planck scale is given by 

By taking Vn to be sufficiently large we can recover mpi ~ 10 1 9 GeV. However, in 

some sense the hierarchy problem has not gone away. There is now a new hierarchy 

between the weak scale and the compactification scale, \/Vnn <C mEW. Fortu­

nately, the Randall-Sundrum I (RSI) model [19] is an extension of these ideas that 

does not appear to transfer the problem in this way 1. 

In RSI, we have two 3-branes embedded in a five dimensional anti-de Sitter bulk 

spacetime. We define x^ to be the familiar four-dimensional coordinates while 0 < 

z < zc is the coordinate for the extra dimension. Since our spacetime clearly fails to 

fill out all of the five dimensions we need to specify boundary conditions: identify 

(rr^z) with (x*1, —z) and take z to be periodic with period 2zc. The orbifold fixed 

points at z = 0, zc are the positions of the two branes, which we will take to 

have tension a0, ac respectively. These fixed points may also be thought of as the 

boundaries of the five-dimensional spacetime so that the action describing this model 

is given by 

S = M3 dAx dz^g(R - 2A) - a0 cPxy/ho - ac dAxyfhc . (2.2) 

where g is the bulk metric and h0, hc are the metrics on the branes at z = 0, zc 

respectively. M is of course the five-dimensional Planck scale. We now require the 

ml, = Mn+2Vn. (2.1) 

2.1.1 The model 

2=0 

1 Actually, the hierarchy problem remains if we consider fluctuations in the "radion" field. We 

will comment on this later. 
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z = 0 

z 

Figure 2.1: The behaviour of the warp factor in the RSI model 

3-branes to exhibit four-dimensional Poincare invariance and choose the metric to 

take the following form 

ds2 = a2{z)r]llvdxixdxu + dz2 (2.3) 

The bulk equations of motion with orbifold boundary conditions impose a fine tuning 

of the brane tensions against the bulk cosmological constant 

<70 = -ac = 12M3fc, A = -6k2 (2.4) 

We are also free to set a(0) = 1 so that we arrive at the following solution for the 

metric 

ds2 = e~2k^r]^dxtldxu + dz2 for - zc < z < zc. (2.5) 

The Z 2 symmetry about z = 0 is explicit whereas the other boundary conditions 

should be understood. We also note that the constant z slicings exhibit Poincare 

invariance as required. The metric (2.5) contains an exponential warp factor which 

is seen graphically in figure 2.1. Notice the peak in the warp factor at the positive 

tension brane and the trough at the negative tension brane. At this point we should 

emphasize that RSI is really only a toy model. I t is, however, possible to construct 

string theory/supergravity models that have similar properties [34-37]. 

2.1.2 Tackling the hierarchy problem 

In order to tackle the hierarchy problem, we will need to derive the (effective) four-

dimensional Planck scale, mpi in terms of the five-dimensional scales M, k, zc. We 
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do this by identifying the four-dimensional low energy effective theory. This comes 

from massless graviton fluctuations. In principle, we should also include massless 

fluctuations in the brane separation [38], often referred to as the radion field. This 

does not affect the calculation of mpi directly [39] so we will ignore the radion in 

this section and assume the brane separation is stabilised at zc. The gravitational 

zero modes now take the form 

ds2 = e~2k^g^(x)dx>idx1' + dz2 where = + h^x) (2.6) 

and we interpret as the physical graviton in the four-dimensional effective theory. 

We now substitute equation (2.6) into the action (2.2) to derive the effective action. 

Focusing on the curvature term we find that 

S e f f = M3 J d4x y/TjR j C dz e~2 f c | z | + . . . (2.7) 

where R is the Ricci scalar built out of g^ (x). We now perform the z-integral to 

obtain 

m2

pl = ^ [1 - e" 2 f e -] . (2.8) 

This tells us that mpi depends weakly on zc in the limit of large kzc. We will see 

that this is not the case for the physical masses in the SM. 

Suppose we live on the negative tension brane at z = zc. Consider a fundamental 

Higgs field bound to this brane. I f i t has a five-dimensional mass parameter, mo, 

then the matter part of the action near the brane is given by 

Sc= [ d'x^g-Jg^V^V.H-XilH^-m2)2] (2.9) 
J z=zc

 L J 

where V M is the covariant derivative corresponding to gc. The metric at z = zc is 

9ctiu = e'^g^ so that 

Sc= f d4Xy/§e~4kZc \e2kz^vV VH - A ( | # | 2 - m 2 , ) 2 ] (2.10) 
J Z=ZC 

We now renormalise the Higgs wavefunction, H —> ekZcH, to derive the following 

part of the effective action 

S e f f = [ d4x^Tg \sTV^VvH - A {\H\2 - e ^ m 2 ) 2 ] + . . . (2.11) 
J z=zc 
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An observer on the brane will therefore measure the physical mass of the Higgs to 

be 

mH --- e-kZcm0. (2.12) 

This result generalises to any mass parameter on the negative tension brane. 

We shall now address the hierarchy problem directly. Assume that the bare Higgs 

mass, ra0, and the fundamental Planck mass, M , are both around 10 1 9 GeV, thereby 

eliminating any hierarchy between the two scales in the five-dimensional theory. The 

physical masses in the effective theory are given by equations (2.8) and (2.12). To 

ensure that mn ~ 103 GeV and mpi ~ 10 1 9 GeV we require that ekZc ~ 10 1 5. The 

presence of the exponential here is crucial because all we really need is kzc ~ 50. 

We see that we have solved the hierarchy problem without introducing a second 

hierarchy involving the compactification scale, l / z c or the AdS length, 1/k. We 

should emphasize here that this is only true i f the radion is stabilised. I f not, its 

fluctuations appear in the exponential, spoiling the solution to the problem. 

At this point we should note that we have set the fundamental mass scale to be 

around 10 1 9 GeV. We could easily have chosen the fundamental scale to be as low as 

a few TeV because what really matters is the ratio between the physical masses, as 

this is a dimensionless quantity. We can see this explicitly i f we change coordinates 

xn _^ ekzcxn warp factor at z = zc is unity, whereas at z = 0 i t is exponentially 

large, e2kZc. This time, the Higgs mass does not get rescaled, m# ~ ra0, unlike the 

Planck mass which behaves like m2

pl ~ e 2 k Z c ^ . I f both M and mo are around a 

few TeV, we again only need kzc ~ 50 to recover the correct physical masses in the 

effective theory. 

To summarise, even though all scales in the fundamental theory are near the weak 

scale, the extra dimension ensures that mpi is close to the large value we observe in 

Nature. What is more, this is achieved without the need for the extra dimension 

to be disturbingly large. From a phenomenological point of view this is particularly 

exciting. I f the fundamental scale of gravity is indeed as low as a few TeV then we 

would expect quantum gravity effects to start showing up in forthcoming collider 

experiments. The path to a "theory of everything" could be dictated by experiment 

rather than the imagination. 
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2.2 Randall-Sundrum II (RS2) 

When we introduced braneworlds at the start of this chapter we stated that the 

Standard Model fields are localised on the brane [17,18] in contrast to gravity which 

can propagate into the fifth dimension. This should worry a braneworld observer 

because Newton's 1/r 2 law for gravitational force is a property of four-dimensional 

gravity and is experimentally verified as low as r ~ 0.2 mm. The problem is solved 

if the extra dimension is small and compact owing to the large mass gap between 

the graviton zero mode and the first heavy Kaluza-Klein mode. This ensures that 

gravity behaves four dimensionally, except at very high energies near the heavy mode 

masses. In braneworld models we have seen how the extra dimension can be of order 

one or larger so we would naively expect gravity to look five dimensional even at 

fairly low energies. This would violate Newton's law and be unacceptable. The RS2 

model is more subtle than this. Even though i t has an infinite extra dimension i t 

still manages to reproduce Newton's law on the brane. This is because we have 

a negative cosmological constant in the bulk. RS2 does not solve the hierarchy 

problem in the way that RSI does, and is of interest from a purely gravitational 

point of view. 

2.2.1 The model 

To arrive at the RS2 model we start with RSI, and extend the brane separation to 

infinity so that we are left with a single brane of positive tension. The old negative 

tension brane will act as a regulator in the subsequent analysis. The geometry of 

this new set-up is again described by the metric (2.5) with zc —» oo. We can see the 

behaviour of the warp factor in figure 2.2. I t has a peak at z = 0 indicating that 

the brane there has positive tension. Note also the Z 2 symmetry about z = 0 which 

is, of course, explicit in the metric. 

2.2.2 Localisation of gravity 

In the absence of any additional matter, we have a single brane with tension a = 

12M3k embedded in five-dimensional anti-de Sitter space with cosmological constant 
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brane 

z 

Figure 2.2: The behaviour of the warp factor in the RS2 model 

A = —6A;2. In order to investigate whether gravity is localised on the brane, we will 

consider small gravitational perturbations about the background metric 

ds2 = gabdxadxb = e'^^dx^dx" + dz2 (2.13) 

This may be achieved by placing a point mass on the brane, and solving the relevant 

perturbation equations. In the event of gravity localisation we would hope to see 

the graviton zero mode dominating at large enough distances. This would repro­

duce observed phenomena such as Newton's inverse square law and gravitational 

light bending. In the remainder of this section we wil l adopt Garriga and Tanaka's 

delightful approach to gravity in the Randall-Sundrum model [40]. 

2.2.2.1 The Newtonian potential on the brane 

We begin by deriving the Newtonian potential due to a point mass, m 0 , bound to the 

brane. I f we denote the perturbed metric by gab = gab + hab, the Randall-Sundrum 

gauge [20] is given by 

h„ = hlu=0, W = 0> h% = 0. (2.14) 

Since we have no additional matter in the bulk, the bulk equations of motion for 

hab are given by 

0 = SRab = ~ A L h a b (2.15) 
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where Ax is the Lichnerowiez operator2. We are free to take the RS gauge (2.14) 

everywhere in the bulk [20] so that equation (2.15) is reduced to 

[ e 2 * l * l n ( 4 ) + d 2 - 4 f c 2 ] V = 0- (2.16) 

Boundary conditions for this equation are given by the jump conditions at the 

brane. However, i f we take the RS gauge in the bulk then additional matter causes 

the brane to bend and we can no longer say that i t lies at z = 0. For this reason, 

we will temporarily relax our choice of gauge and work in Gaussian normal (GN) 

coordinates, denoted by (x^, z). By definition, we now have hzz = = 0 and can 

set the brane to be located at z = 0. By using the Israel junction conditions [41] we 

can relate the jump in extrinsic curvature3, AKai,, across the brane to the energy-

momentum tensor, Sab on the brane. 

AKab = - 8 T T G 5 (sab - ^Sgoab^j • (2 .17) 

Here, g0ab = gab{z — 0) is the induced metric on the brane and G 5 = l /167rM 3 is 

the five-dimensional Newton's constant. Note that the energy momentum tensor 

is dominated by the brane tension, o with a small additional contribution coming 

from the point mass, Tab• Explicitly 

Sab = -OQOab + Tab- ( 2 - 1 8 ) 

By imposing Z 2 symmetry across the brane we arrive at 

( d z + 2k) V = - 8 T T G 5 ( % u - W r , ^ ) (2 .19) 
z=0+ \ O J 

where we have used the fine-tuning conditions (2 .4) and have ignored all terms non­

linear in and T^. Note that there are no \iz or zz components of equation 

(2 .17) because we chose a GN coordinate system. We wil l now attempt to construct 

2The Lichnerowicz operator is defined by Ai/i 0(, = Ohab — 2V( a V| c | / i^ — 2Rc^ah^ + 2Racf>4hcd 

where hab = /i0f> — \h>9ab and the covariant derivative and Riemann tensor are constructed out of 

the unperturbed metric gab-
3AKab = K+b-K~b where K~b = g0

c

ag0

d

b'^\c

nd) n° is the unit normal to the brane pointing 

in the direction of increasing z, and goab is the induced metric on the brane. 
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the junction condition (2.19) in the RS gauge. The most general transformation 

between GN and RS gauge is given by 

e = f ( x p ) , e = - ^ e 2 * 1 V " & / + F^x") (2.20) 

where / and F11 are independent of z. The perturbation in the RS gauge, h^, is 

related to its GN counterpart by 

V = V " \f#» - 2ke~2k\%uf + e-2k\%(vF\v), (2.21) 

Inserting this back into (2.19) we derive the junction condition in the RS gauge 

(dz + 2k) V = - E ^ (2.22) 
z=0+ 

where 

E M l / = 8ITG5 (r^ - ITV^ + 2/,M„. (2.23) 

Equations (2.16) and (2.22) fully define the bulk equations of motion with boundary 

conditions at the brane. Given that a solution must be Z 2 symmetric about z = 0, 

we see that dzh^ must be discontinuous there. Both (2.16) and (2.22) can be 

contained in a single equation if we include delta functions at the discontinuity. 

[ c2fc |«lD(4) + d2_ Ak2 + 4 J W ^ ] h ^ = _2S(Z)EI1V (2.24) 

Before we can solve equation (2.24) we need to identify f ( x ) . Nevertheless, we 

shall proceed blindly and define GR(X,Z;X',Z') to be the five-dimensional retarded 

Green's function satisfying 

[ e2fc |*l D(4) + d 2 _ 4k2 + 4 k S ( z ^ Q R ( X t z . x ' ) ^ = SW(X _ x ' ^ z _ z ' y (2.25) 

The solution to the perturbation equation (2.24) is then given by 

V ( * , Z ) = ~ 2 J d4x'GR(x, z; x', Q ^ i x ' ) (2.26) 

where we have integrated across the surface z' = 0. Since we are in the RS gauge, 

h£ = 0 and so 

££ = 0 a W f = ^ p - T . (2.27) 
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f ( x ) represents the brane position in RS gauge and in principle we can calculate 

i t by solving equation (2.27). Here we see explicitly that the brane is bent by the 

presence of additional matter because T acts as a source for f(x). 

In order to evaluate the fu l l Green's function we wil l use techniques from Sturm 

Liouville theory. We will simply state the result here although a detailed derivation 

can be found in appendix A . l . 

c-2*(|z|+|*'|)jfc roo Vm(Z)vm(z') 
am UR(x,z,x,z) j ^ e p 2 _ ( u + . £ ) 2 m 2 + p 2

 — (w + ie)2 

(2.28) " 

where 

. . y/m~/2k [Jx{mlk)Y2{m^\'\/k) - Y^m/k^me^/k)} 
vm(z) = . = -. (2.29) 

and Jn, Y n are Bessel's functions of integer order n. 

If we return to GN coordinates, we can define the stationary point mass m 0 to 

be located at (t, x, z) = (t, 0,0) so that its energy momentum tensor on the brane 

is given by 

TAB = m 0 5 ( 3 ) (x)diag(l, 0,0,0,0) (2.30) 

Combining equation (2.21) with equation (2.26) we obtain an expression for the 

gravitational perturbation in this gauge. 

M * , *) = h f f + h$ + \ f ^ v + 2 f c e - 2 f c l V / " e - W ^ F " ^ , (2.31) 

where the matter part and the brane bending part are given by 

h$> = -167rG 5 J d4x' GR(x, Z; X', 0) (T^ - \TT>^ (2.32) 

ftjj = - 4 J d V GR(x, z\ x', 0 ) / , ^ (2.33) 

Since we are only interested in the perturbation on the brane, we set z = 0, and can 

choose appropriately so that 

V ( x , 0) = 2fcty„/ - 167rG5 J d4x' GR{x, 0; x', 0) (T^ - \TV^ (2.34) 

To evaluate f(x), we solve equation (2.27) with T = m 0<^ 3)(x). Note that our 

source is stationary so we look for time independent solutions. With this ansatz, 
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the differential operator in equation (2.27) is reduced to the Laplacian so that 

G 5 m 0 

3r 
(2.35) 

where r = |x|. We now evaluate the matter part of the perturbation hfy\x, 0) when 

we insert the energy momentum tensor (2.30). 

h{™\x,0) = - 1 6 ^ 5 m ° d i a g ( 2 , l , l , l ) Jdt' x,0;tf , 0,0) (2.36) 

where 

/

k f°° p-mr 

dt'GR(t,yL,0;t',O,0) = - — - J ^ dm — [vm(0)}2 (2.37) 
The integration over m is exponentially suppressed for ra > 1/r. For small ra, 

K ( 0 ) ] 2 = ^ + 0{m/kf (2.38) 

where we have used the fact that 

1 
J n ( m / k ) ~ - ( m / 2 k ) n , Yn(m/k) 

( n - 1 ) 
n! ' . . . w 

in this limit. The matter part of the perturbation is therefore given by 

(m/2k)~n (2.39) 

^ ( x , 0 ) = ^ ^ d i a g ( 2 , 1 , 1 , 1 ) (2.40) 

Inserting the solution (2.35) for / into equation (2.34) yields the ful l metric pertur­

bation 

/^ (z .O) = 
2G*,kmQ 

diag(l, 1,1,1) + -—diag (2 ,1 ,1 ,1 ) + 0 ( l / r 3 ) 
3k2r 

(2.41) 

We are ready to read off the Newtonian potential, 4>{r), measured by a braneworld 

observer distance r away from the source. This is given by 

2 11 Gbkm0 

n r ) = 2h°° = —~— 1 + 3A;2r5 
(2.42) 

This is the Newtonian potential of four-dimensional gravity, with Yukawa type cor­

rections at short distances (r < l/k). Note that the four-dimensional Newton's 

constant on the brane, G4 = G^k. We conclude that this model does not contra­

dict experimental tests of Newton's inverse square law for the force of gravitational 

attraction. 
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2.2.2.2 The graviton propagator 

In the previous section we were careful to include the scalar field / corresponding 

to brane bending. This appeared because additional matter on the brane acted 

as a source for the field. However, consider what would have happened had we 

naively ignored i t and worked in the RS gauge throughout, with the brane at a fixed 

position. The Newtonian potential would still have behaved like 1/r to leading 

order. We would have been conned into thinking we had derived four-dimensional 

gravity. 

However, the Newtonian potential is not the only property of four-dimensional 

gravity that we can consider. There is also the form of the massless graviton prop­

agator. In a five-dimensional theory, there is an extra polarization state that alters 

the tensor structure of the propagator. This extra degree of freedom must be re­

moved from the effective theory so that the massless propagator on the brane looks 

four-dimensional. I f this didn't happen, the bending of light, for example, would be 

| of the value accurately predicted by General Relativity [42]. 

In RS2 we also have massive K K gravitons. Even in the small mass limit the 

tensor structure of their propagator is five dimensional [42-45]. Since these are only 

important at high energies we will ignore them in our effective theory and focus on 

the massless graviton bound state. 

From equation (2.32), the matter part of the metric perturbation on the brane 

is given by 

h$ = -16TTG 5 J d*x' GR(x, 0; x\ 0) (T^ - 1 T r / ^ (2.43) 

I f we ignore the massive modes then the Green's function takes the following trun­

cated form 

GR(x,0;x',0) = - ^ m (2.44) 

where 
d4p e^**"-*"*) 

• (4) 
1 [ d4p e*™*"-*"' 

](*) ~ J (2TT)4 p 2 - (w + ief { ' 

is the massless scalar Green's function for four-dimensional Minkowski space [46,47]. 

I f we insert the truncated Green's function (2.44) into equation (2.43) we see that 
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we do not have the usual propagator for a massless four-dimensional graviton. We 

need the factor of | to be replaced by | . This task is carried out by the brane 

bending term as we shall now demonstrate. 

The full metric perturbation (2.34) contains a term proportional to / . We can 

express / in terms of the four-dimensional Green's function using equation (2.27) 

/(*) = ^ j < M ~^T. (2.46) 

When this is introduced into equation (2.34) we find that the (massless) metric 

perturbation is given by 

V = ~l^Gbk j dAx' (%„ - \ r v ^ (2.47) 

This has the correct tensor structure for a four-dimensional massless graviton. The 

extra degree of freedom in the five-dimensional propagator has been compensated 

for by the brane bending scalar field / . 

The two results derived in this section are good evidence that braneworld gravity 

agrees with General Relativity, at least for small perturbations about the background 

metric. The warped geometry of the bulk causes these perturbations to be damped 

away from the brane, so that gravity is localised. The fact that the brane has 

positive tension is crucial as the warp factor is a maximum there. In RSI, we chose 

to live on the negative tension brane which is at a minimum of the warp factor. We 

would not therefore expect gravity to be localised on this type of braneworld, which 

makes its solution to the hierarchy problem a little pointless. However, the ideas 

of both models can be combined such they solve the hierarchy problem and exhibit 

localisation of gravity [48]. In this case there are two positive tension branes, the 

Planck brane and the TeV brane. The Planck brane has a much larger tension than 

the TeV brane, which in some sense is regarded as a probe. The hierarchy problem 

is solved in exactly the same way as in RSI provided we live on the TeV brane. In 

a similar way to RS2, we find that gravity looks four-dimensional at least up to a 

few TeV on both branes. 
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2.2.3 Non-critical brane worlds 

Although the RS2 model agrees with Newton's Law and other properties of four-

dimensional gravity, i t certainly contradicts one recent experimental observation. 

The study of supernovae suggest that the universe contains a small positive cosmo­

logical constant [21,22]. In RS2, we have Minkowski space on the brane which has 

a vanishing cosmological constant. In this section we shall show how to extend the 

model to allow for de Sitter or anti-de Sitter braneworlds. 

Recall that we have so far demanded that our braneworlds should exhibit four-

dimensional Poincare invariance. This led to the ansatz (2.3) which has Minkowski 

spacetime induced on the brane. We found that we then had to fine tune the brane 

tension, a against the bulk cosmological constant, A, in the following way 

^ = k, A = -6A; 2 (2.48) 

This is the criticality condition and as such the flat braneworlds that satisfy i t are 

known as critical. We now generalise the ansatz (2.3) to allow for dS and AdS 

branes. 

ds2 = a2(z)gllvdxlldxu + dz2 (2.49) 

where g^ can be Minkowski, de Sitter or anti-de Sitter. The solutions to the bulk 

equations of motion with appropriate boundary conditions are derived in [49-51] 

although a review may be found in appendix A.2. In this section we will proceed as 

in [52] and simply quote the results. 

de Sitter : a(z) = ^ ^ ^ s i n h ( c - k\z\) k = yj^sinhc, (2.50) 

Minkowski: a(z) = e~*|z|, (2.51) 

anti-de Sitter : a(z) — ~^ cosh(c - k\z\), k — ^ - ^ c o s h c , (2.52) 

where the cosmological constant on the brane is given by 

A = 3(a 2 - i t 2 ) , a = (2.53) 

When a takes its critical value we have a = k, and the cosmological constant on 

the brane vanishes. For de Sitter branes, a exceeds its critical value (a > k) where 
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as the opposite is true for anti-de Sitter branes; For this reason we refer to dS and 

AdS branes as supercritical and subcritical branes respectively. 

In section 2.2.2 we saw how gravity was localised on critical braneworlds. This 

was due to the behaviour of the warp factor, which damped gravitational perturba­

tions as they went further into the bulk. We can ask whether the same is true for 

supercritical and subcritical braneworlds. Without performing a detailed analysis 

we can see the behaviour of the warp factors in figures 2.3 and 2.4. In each case, 

brane 

Figure 2.3: The behaviour of the warp factor around a supercritical (ie de Sitter) 

brane. 

brane 

c/k 

Figure 2.4: The behaviour of the warp factor around a subcritical (ie anti-de Sitter) 

brane. 

there is a turnaround in the warp factor. For the de Sitter brane this corresponds to 

the de Sitter horizon where the warp factor vanishes altogether, and the spacetime 
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ends. I t is clear that de Sitter branes are even more likely to exhibit four-dimensional 

gravity than flat branes, because the damping is greater. This is argued in [52] and 

proven in [53,54]. Unlike in RS2, there is a mass gap between the zero mode and 

the heavy modes in the metric perturbations. We further note that the Newton's 

constant on the brane is found to be proportional to the brane tension, a, as opposed 

to the bulk quantity k. 

The situation for the anti-de Sitter brane is less clear. Near the brane the 

fluctuations in the metric behave in the same way as for de Sitter and flat branes. 

However, the warp factor does not vanish at the turnaround point, and beyond this 

the metric perturbations start to grow. I f we assume that this point lies far from the 

brane we might yet believe that gravity is localised at low enough energies. At finite 

temperature we could even hide the point behind a black hole horizon. Despite the 

absence of a normalisable zero mode the case for localisation is presented in [52]. 

Finally, in this section we have seen how braneworld models can exhibit four-

dimensional gravity in line with experimental observations. They also provide an 

unusual resolution of the hierarchy problem, without the need for an unacceptably 

large (but finite) extra dimension. Given our extension to non-critical branes, we 

could also rephrase the cosmological constant problem. This is now a question 

of balancing the tension and other matter fields on the brane against the bulk 

cosmological constant [55,56]. 



Chapter 3 

Brane Cosmology 

3.1 Introduction 

We have seen how Randall-Sundrum braneworlds provide a radical new way of 

thinking about our universe and the extra dimensions that might exist. I f this extra 

dimension is warped anti-de Sitter space then i t can be infinitely large and still 

exhibit localisation of gravity on the brane. We have also seen how to generalise the 

RS2 model to include super/subcritical braneworlds which have a positive/negative 

cosmological constant in four dimensions. 

To better understand these models we can and should generalise further. We 

note that in the last section we always assumed a five-dimensional bulk which was 

Z 2 symmetric about a brane of codimension one. In this section we will consider 

bulk spacetimes which are n-dimensional and in some cases relax the Z2 symmetry. 

We will not generalise to branes of higher codimension although they have been 

studied (see for example [57-59]). 

Another very important assumption of the last section was the fact that pertur­

bations about the background spacetime were small: the energy-momentum due to 

additional matter on the brane was far less than the brane tension. 

Too < a (3.1) 

Unfortunately, life is not so easy as to be fully described by perturbative physics. 

We will begin a study of non-perturbative physics on the brane by examining their 

27 
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cosmology. There are two main approaches: the brane based approach and the bulk 

based approach, although we will show that these are in fact equivalent. Each ap­

proach has its advantages and disadvantages. For example, if we wished to examine 

non-Z 2 symmetric theories it would be much easier to use the latter. However, 

we begin with a review of the brane based approach of Shiromizu et al [23], and 

although we will retain Z 2 symmetry we wil l generalise their work to n-dimensions. 

3.2 Brane based braneworld cosmology 

Consider a timelike (n — 2)-brane, (M,hab), in an rc-dimensional bulk spacetime 

(V, gai,). The induced metric on M is given by 

hab = 9ab - nanb 
(3.2) 

where na is the unit normal to M (see figure 3.1). By using the Gauss-Codazzi 

B U L K S P A C E T I M E 

(V,gab) 

B R A N E (M,hab) 

Figure 3.1: (n — 2)-brane embedded in an n-dimensional bulk. 

equations [60] we can relate the (n — l)-dimensional geometry on M to its extrinsic 
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curvature Kab = hahbV(cnd) in V and the bulk geometry. I f we label curvature 

tensors with an n or (n — 1) depending on whether they correspond to the bulk or 

the brane respectively, we have 

^ Robed = in)RpqrsKhlhr

chs

d + K a c K b d - K a d K b c (3.3a) 

Db(Kb

a-Khb

a) = WRcirfhi (3.3b) 

-2^Gabnanb = ( n _ 1 ) i 2 - K2 + KabKab (3.3c) 

where Da is the covariant derivative made out of hat,. When there is no Z 2 symmetry, 

we label the "left hand" bulk with a " - " and the "right hand" bulk with a " + " . 

There is a version of equations (3.3a) to (3.3c) for both "+" and "—", so in principle 

we should label each of the bulk quantities {^Rabcd and Kab) with the appropriate 

sign. However, for now we shall assume Z 2 symmetry so we drop the labels. 

From equation (3.3a) we are able to construct the Einstein tensor on the brane 

^Gab = ^Gcdhlht-^^grsn^hlht + ^Ran^ha, 
1 
2 

+KKab - Kc

aKbc - \hab (K2 - K^Krf) (3.4) 

We now use the bulk equations of motion 

^Gab = ^Rab - ^n)Rgab = -Angab + &*GnTab (3.5) 

where A„ is the bulk cosmological constant, Gn is the Newton's constant in n-

dimensions, and Tab is the energy-momentum tensor due to any additional bulk 

fields. We can also express the bulk Riemann tensor in terms of the Weyl and Ricci 

tensors. 

^Rabcd = ^Cabc4 H — - (^Rac9bd ~ ^Rad9bc + ^Rbd9ac ~ ^Rbc9ad) 
71/ £i 

- ( n _ 1 ) 1 ( n _ 2 ) ( " ) f i ( 9 a c 9 b d ~ 9 a d 9 b c ^ ^ 

Inserting equations (3.5) and (3.6) into equation (3.4) we find 

{n~l)Gab = - A n hab - Eab + KKab - Kc

aKbc - l-hab (K2 - K^Ka) (3.7) 

where 

' n — 3 
Eab - Cpqrsnpnrhq

ahs

b 

n 
hc

ahd

b + ncndhab - ——g^hab 
7~l x 

87rG nT c d (3.8) 
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This term is often described as the "electric" part of the Weyl tensor although this 

is only the case when there are no extra bulk fields and Tab = 0. We can make sense 

of the extrinsic curvature terms by using the Israel equations [41] at the brane 

AKab = -8irGn ( s a b - ^^Shab^j (3.9) 

where the energy-momentum tensor for the brane is given by 

Sab = ~crhab + Tab (3.10) 

with TabTib — 0. Here we understand a to correspond to brane tension and Tab to 

additional matter, although i t not obvious that we should do this. In section 2.2.2.1 

we assumed the additional matter Tab was much smaller than the brane tension. 

This meant that the split between tension and extra matter in equation (3.10) was 

natural. However, we are now allowing for larger values of Tab which makes the split 

an arbitrary one. I t is not clear why we should have tension a rather than (say) a/2 

because we could always redefine Tab to absorb the left over terms. However, we 

shall see in chapter 6 some evidence that we are in fact interpreting equation (3.10) 

in the right way. 

At this stage we are assuming Z 2 symmetry across the brane so we have AKab = 

2Kab. Using the Israel equation (3.9) we can replace the extrinsic curvature terms 

in equation (3.7) with terms involving a and Tab-

{ n ' l ) G a b = -An-ihab + MGn-XTab + ( 4 7 r G n ) 2 n a 6 - £ a 6 (3.11) 

where 

A„_i = ^ ( n - 2 ) ( n - 3 ) 
a " + ( n - l ) ( n - 2 ) A n 

(3.12) 

and 

^ = Gnan(n-3) ^ 

n a 6 = -VTbc + : ^ T T a b + l T c d T c d h a b - ^ ^ T 2 h a b (3.14) 

an = — y (3.15) 

The most striking feature of equation (3.11) is the presence of the quadratic matter 

terms contained in n a6. We will discuss these in more detail later on. Meanwhile, we 
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see that we should interpret A n _ i and Gn- \ as the braneworld cosmoiogical constant 

and Newton's constant respectively. As we hinted at the end of section 2.2.3, G„_i 

is proportional to the brane tension, rather than ^/ |A„| . This is highly relevant to 

non-critical branes, although i t is often ignored. 

The other term in equation (3.11) is of course the "Weyl tensor" term, Ea\,. I t 

contains information about the bulk but is constrained by the matter on the brane. 

We might hope to fully determine Eai, from knowledge of this matter, but this turns 

out not to be the case. In general we need to solve the bulk equations of motion to 

derive Eab and then insert i t into the braneworld Einstein equation. We will discuss 

this mysterious term from a holographic point of view in chapters 5 and 6. 

3.2.1 A Friedmann-Robertson-Walker brane 

We will now simplify the discussion further by assuming that the bulk spacetime 

has negative cosmoiogical constant with no additional fields, that is 

An = ~{n-l)(n-2)k2

n, Tab = 0 (3.16) 

where kn is the inverse AdS length in n-dimensions. The cosmoiogical constant on 

the brane is now given by 

An-l = ±(n-2)(n-3)[o*-k*] (3.17) 

Note that equations (3.15) and (3.17) are the n-dimensional analogue of equation 

(2.53). Critical branes are now denned as those satisfying the n-dimensional crit-

icality condition an = kn. Super/subcritical branes now have an > kn/an < kn 

respectively. For a study of cosmology i t is important to examine the behaviour of a 

homogeneous and isotropic braneworld described by a Friedmann-Robertson-Walker 

(FRW) metric. 

rfs2_i = habdxadxb = -dr2 + Z2{T)dx2

K (3.18) 
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where chef, is the metric on an (n — 2)-dimensional Euclidean space, X of constant 

curvature, K = 0, ± 1 . 

Sn~2 for K = 1 

X = I Rn~2 for AC = 0 (3-19) 

HN~2 for K = - 1 

where Sn~2,Rn_2, HN~2 are the unit sphere, plane, and hyperboloid respectively. 

Z(T) represents the scale factor for our braneworld. We wil l assume the matter on 

the brane is given by a homogeneous perfect fluid of density p(r) and pressure p(r) 

so that 

%b = PTaU + p(hab + TaTb) (3.20) 

where r a are the components of Finally, we avoid difficulties with Eab by setting 

i t to zero, which corresponds to pure anti-de Sitter space in the bulk. We now 

use the braneworld Einstein equation (3.11) to derive the FRW equations for the 

cosmological evolution of the brane. Defining the Hubble parameter, H = Z/Z, 

where dot denotes differentiation with respect to r , we find 

H = a - Y 2 + ( n - 2 ) ( n - 3 ) P + { ^ 2 ) P ^ 

i (p + p) - (n - 2) ( j ^ j 2 p(p + p) (3.21b) H - — _ 8 7 R G N 

Z2 (n - 3) 

where a = a2 — k2. These are not the standard FRW equations because they 

contain terms quadratic in p and p. Braneworld cosmology is therefore different to 

the standard cosmology. This unconventional behaviour was first discovered in five 

dimensions by Binetruy et al [61]. Notice that we recover the standard cosmology 

for large values of the scale factor, because we can ignore the non-linear density 

terms. 

3.3 Bulk based braneworld cosmology 

In the last section we saw a number of the limitations of the brane based approach 

to braneworld cosmology. We chose to impose Z 2 symmetry across the brane and 

ignored the possibility of non-zero Weyl terms. These were difficult to get a handle 
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on because we were working with a static brane in a dynamic bulk. The bulk based 

approach turns everything around by having a dynamic brane in a static bulk. This 

allows us to include non-Z 2 symmetric branes and non-vanishing Weyl terms. The 

disadvantage now is that we will only be considering FRW branes, and will not have 

the generalisation provided by equation (3.11). 

3.3.1 Generalised Birkhoff's Theorem 

Since the bulk based approach works on the premise of there being a static bulk 

spacetime, we immediately think of Birkhoff's Theorem [62,63]. This states that if 

the geometry of a given region of spacetime is spherically symmetric and a solution to 

the vacuum Einstein equations, then it is necessarily a piece of the Schwarzschild ge­

ometry. In order to bridge the gap between the brane based approach to braneworld 

cosmology and the bulk based approach, we will prove a generalised version of this 

theorem. This was first shown by Bowcock et al [64] in five dimensions, but once 

again we wil l extend the ideas to n-dimensions. 

We start by assuming that our spacetime contains a codimension two Euclidean 

surface of constant curvature. This wil l ultimately provide us with spatial homo­

geneity on our braneworld. The most general metric admitting this symmetry is 

given by [1,2] 

ds2 = A^dx2

K + e2vA~^){-dt2 + dz2) (3.22) 

where A and v are functions of t and z to be determined by the bulk Einstein 

equations, as well as the jump conditions across the brane. Again, dx2

K represents 

the metric on the Euclidean surface of constant curvature, K = 0, ± 1 . Here we have 

used the fact that the rest of the metric is two dimensional and therefore conformally 

flat. Without loss of generality, we can say that the brane sits at z = 0 1. 

We wil l assume that the bulk spacetime contains no additional matter (Tat, = 0). 

When we insert our metric ansatz into the bulk Einstein equations (3.5) we arrive 

1 I f the brane sits at z' = C(t') we use the conformal transformation t' ± z' = t ± z ± ((t ± z) to 

shift the wall back to z = 0 without spoiling the form of the metric (3.22) [64]. 
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at the following set of differential equations 

Att-A,ZZ = [2ANA^> - ( n - 2)(n- Z)KA~^ 

v,tt -v,Zz = 

A,TT+A,ZZ = 2u,z A,Z+2u,t A,T 

A,TZ = u,z A,T +u,t A,Z 

3.V 

^—A U - a J + KA U - a J 
n - 2 2 

2v 

I t is convenient to change to lightcone coordinates 

u = 
t - z 
I T ' 

t + z 
V 

so that we now have 

A, 2A. nA^2 - ( N _ 2 ) ( N - 3 ) K A - ^ ] e 2 l / 

—?—A U - a j + K j 4 U - a j 
n - 2 2 

2f ,u A,u - A,u [ ln (A, u ) ] , u 

[ln(A,„)] ,„ 

We can easily integrate equations (3.25c) and (3.25d) to give 

Case I : A is constant 

Case I I : A = A(u), 

Case I I I : A = A(v), 

Case IV : A — A(u, v), 

„2v 

(3.23a) 

(3.23b) 

(3.23c) 

(3.23d) 

(3.24) 

(3.25a) 

(3.25b) 

(3.25c) 

(3.25d) 

e2v = A'(u)V'(v) 

A'(v)U'(u) 

e2v = V'(v)A,u=U'(u)A,v 

where U'(u) and V'(v) are arbitrary non-zero functions of u and v respectively. 

Note that prime denotes differentiation with respect to the unique argument of the 

function. Cases I to I I I imply that A n = « = 0, which is not relevant here (see [64,65] 

for some discussion). We will focus on case IV, for which i t is easy to see that 

A = A(U(u) + V{v)), 

so that equation (3.25a) is reduced to an ODE 

3

2" = A'U'V (3.26) 

A" - 2ANA^ - ( n - 2 ) ( n - 3 ) / c 4 - ^ ] A' = 0 (3.27) 

A' - 2 { ^ z j j A N A ^ ) + (n - 2)2KA^) = (n - 2)2c (3.28) 
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where c is a constant of integration. Notice that equation (3.25b) just gives the 

derivative of the ODE, and is satisfied automatically. We are now ready to impose 

the jump conditions on the brane. Once again we will assume that the matter on 

the brane is homogeneous and isotropic so that 

Sab = -Ohab + Tab, %Jb = PTaTb + p{hab + TaTb) 

where r a is the unit timelike vector parallel to J .̂ When there is Z 2 symmetry across 

the brane at z = 0, the Israel equations (3.9) give 

4yrG n(a + p) = -e^A'^^A,, = V^H( ; r^ ) [ [ / ' _ V']A' 

4TTG„ 
n — 3 
n - 2 

(a + p) — a + p -dz [ e - M K ^ f ) ] 

(3.30) 

(3.31) 

Note that we could use equation (3.28) to eliminate A' and A". I f we make the 

following coordinate transformation 

u -> f(u), v f(v) (3.32) 

then the boundary conditions at the brane are unchanged2. This symmetry is related 

to the conformal symmetry on the t — z plane. To eliminate this unphysical gauge 

freedom we choose / = V , thereby setting V = v. We are now left with only one 

physical degree of freedom, U(u). Setting 

Z = A^, T={n-2){v-U) (3.33) 

we see that the bulk metric can locally be written in the explicitly static form 

dZ2 

dsi -h(Z)dT2 + 

where 

h(Z) = 
Z' = A'A-(&) 

n-2~ (n - 2) 2 

(3.34) 

(3.35) 

2 This is seen if we note that the brane is given by u = v, where the coordinate change gives 

U' f'{u)U', V -> f'(u)V and e~v = 1/VA'U'V -> e-"/f'{u). A' and A" are unchanged 
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From equation (3.28) 

For c > 0, the metric (3.34) clearly takes the form of the Schwarzschild black hole in 

de Sitter, flat or anti-de Sitter space, depending on the value of A n . Given that our 

starting point was that our braneworld contained spatial geometry of constant cur­

vature, we conclude that we have indeed proved a generalised version of Birkhoff's 

theorem. In this work we assumed our bulk physics was described by pure Ein­

stein gravity with a cosmological constant. Similar proofs have been carried out for 

Einstein-Maxwell gravity [66] and Gauss-Bonnet gravity [67]. 

Although this generalisation of Birkhoff's Theorem is of interest from a mathe­

matical point of view, our focus is on braneworld physics. We have shown that we 

can express the bulk geometry in the static form given by equation (3.34), although 

in doing so we can no longer say that we have a static brane sitting quietly at z = 0. 

On the contrary, we now have a dynamic brane, whose trajectory in the new coor­

dinates is far more complicated. Braneworld cosmology from this perspective was 

first studied by Ida [68], although moving branes in a static anti-de Sitter bulk were 

considered earlier by Kraus [69]. 

3.3.2 A dynamic brane in a static bulk 

Having bridged the gap from the brane based approach to braneworld cosmology 

we are ready to give a generalisation of Ida's bulk based approach. We will see that 

by transferring the dynamics of the system from the bulk to the brane we allow 

ourselves more flexibility regarding the structure of the bulk spacetime. We will no 

longer assume Z 2 symmetry across the brane and will even allow the cosmological 

constant on either side to differ. 

We start by taking the general static solution (3.34) to the Einstein equations 

with cosmological constant, A n . To construct the brane solution, we treat the brane 

as the boundary 

Xa = (^,t(r),Z(r)) (3.37) 

of the bulk (3.34). We now patch this bulk spacetime (labelled with a"—") onto 
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another appropriate bulk (labelled with a "+") with the same boundary value Z(r). 

Note that we have reintroduced the "±" notation to indicate which side of the brane 

a given quantity resides3. We set the parameter r to correspond to the proper time 

with respect to an observer comoving with the brane. This imposes the conditions 

-hH\ + p = - 1 (3-38) 

so that whichever side of the brane you look from, the induced metric on the brane 

takes the standard FRW form 

d s 2 _ 1 = habdxadxb = -dr2 + Z2(r)dx2

K (3.39) 

and Z(T) is understood to be the scale factor of the brane universe. I t is clear that 

the bulk metric is continuous across the brane because both r and Z(T) agree there. 

Note that t can be discontinuous at the brane, because neither gab nor hob depend 

on i t explicitly. 

In order to produce the type of brane required, i t is important we patch together 

the two bulk spacetimes in such a way that the Israel equations (3.9) are satisfied. 

We take the energy momentum tensor of the brane to be given by a tension a and 

a perfect fluid of energy density p and pressure p (that is, equation (3.10) with Tab 

given by (3.20)). In defining the extrinsic curvature of the brane on either side, we 

need some knowledge of the outward normal. 

= e ± ( 0 , - Z ( r ) , 4 ( r ) ) (3.40) 

where e± = ± 1 depending on which part of the spacetime is kept 4. Wi th reference 

to appendix A.3, the Israel equations now yield the following 

|M=^(^ + P) (3-41) 

= [* ~ (n - 3)p - (n - 2)p\ (3.42) 

3 For example, g+b and A+ are the bulk metric and cosmological constant on the "+" side of the 

brane. 
4 I f we wished to keep (say) Z < Z(T) on the "-" side we would choose e_ = 1, assuming of 

course that t_ > 0. 

Z + \h' 
ehi 
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where Q = for a given quantity Q. Note that while K~b = hpifV^n^, the 

process of gluing together spacetimes causes the " + " side to flip orientation so that 

we must define = — h^hfV^n^y We now refer back to the third Gauss-Codazzi 

equation (3.3c), with the understanding that i t is valid on both sides of the brane, 

and G^b = —A^g^. I f we now take the difference between the " + " equation and the 

"—" equation we find that 

- A A n = KAK - KabAK{ ab (3.43) 

Inserting the values of the extrinsic curvature found in appendix A.3 we obtain 

A[eht] 
-AAn = 4irGn{n -2)(a-p)- + 4irGn{a + p)A 

ehi 
(3.44) 

After careful and tedious manipulations of equations (3.41), (3.42) and (3.44) we 

arrive at the following expressions for derivatives of the scale factor 

Z2 = -h + 
47rG, 

n 
+ 

(n - 2)Ah ' 
_16irGn(a + p)Z 

(3.45) 

and 

= -\ht - (^ri) 2 (" + P) l (« - 3)P + (n - 2)p -a]Z 
+ 

+ 

( {n-2 
Vl67rG„(cr 

-2)Ah 
+ P)Z 

(n - 3)p +{n-2)p-u 
(a + p)Z 

AhAti. (3.46) 
16nGn(a + p)Z t 

Note that for equations (3.45) and (3.46) to be consistent, we require that the 

conservation of energy equation holds on the brane 

p=-(n-2)-(p + p). (3.47) 

Here we have seen the beauty of the bulk based approach to braneworld cosmol­

ogy. We have found the cosmological evolutions equations (3.45) and (3.46) for the 

brane without assuming Z 2 symmetry. This is particularly important when studying 

braneworld models that have differing cosmological constants on either side of the 

brane (eg. [48,70]). Furthermore, by considering general values of h, we have allowed 

the bulk Weyl tensor on either side to be non-zero. Recall that in the brane based 

approach the Weyl tensor contribution was just hidden away behind the mysterious 

Eab term, without any real understanding of its effects. That is not the case here. 
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3.3.2.1 A Z 2 symmetric brane in AdS-Schwarzschild 

As a consistency check, we will now examine the evolution equations when we do 

indeed have Z 2 symmetry across the brane. This has the effect that for a given 

quantity Q, Q -» Q and AQ —»• 0. We will also assume that the bulk cosmological 

constant is negative, and set 

An =-l(n - l)(n - 2)k2

n. (3.48) 

Our bulk solution is therefore given by equation (3.34) with 

h{Z) = k2

nZ2 + K - ^ - 3 (3.49) 

Note that the integration constant c gives the Weyl tensor contribution. For c = 0, 

(3.34) represents pure AdS space with the appropriate slicing (depending on K). For 

c > 0 we have the AdS-Schwarzschild metric, with its horizon at the point where h 

vanishes. In the spirit of Randall-Sundrum, we wil l construct the brane by cutting 

away the AdS boundary in each bulk, and then gluing together. This imposes the 

choice e — 1. Again, defining H — ZjZ, we find that the cosmological evolution 

equations now simplify somewhat 

ht 47rG„. x .„ . 
(a + p) (3.50a) 

H = 

Z n - 2 

/ 4 7 r ^ _ i \ 2 

Z2 ' Z " - 1 ' ( n - 2 ) ( n - 3 ) r ' \ n - 2 J 

K (n — 1 \ c %-nGn-

TT2 k , c 167rGn_i , / - * " ^ n - l \ 2 /o rnu\ 
H = ° - "55 + " ^ T + 7 T — 7 W 7 — ^ P + „ o P ( 3 - 5 0 b ) 

^ ( p + P ) - ( n - 2 ) p(p + p) (3.50c) 
Z2 V 2 J Zn~l (n 

where we recall that a — cr2 — k2 represents the cosmological constant on the brane, 

and an is defined by equation (3.15). We have also used the relationship (3.13) to 

include the (n — l)-dimensional Newton's constant. Notice that equations (3.50b) 

and (3.50c) agree with equations (3.21a) and (3.21b) derived using the brane based 

approach. However we have now been able to explicitly include the the bulk Weyl 

term, which we were not able to do previously. 

Although we have come a long way using the bulk based approach, this is as far 

as we can go. The main limitation is that we can only consider FRW branes, but 
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that is fine i f we wish to examine cosmologieal branes. The brane based approach 

had the advantage that we can generalise to more complicated brane geometries. 

To conclude this section, we reiterate two interesting features to arise in brane 

cosmology. The first is the quadratic energy-momentum terms. One can generally 

ignore these if the densities are small (for example, when the scale factor is very 

large), although not otherwise. The second feature is the effect of the bulk Weyl 

tensor on these cosmologies. We will see in chapters 5 and 6 how this can be 

understood from the point of view of AdS/CFT. 



Chapter 4 

Bubbles and ribbons on the brane 

4.1 Introduction 

In chapter 2, we saw why the RS2 model was so compelling, and why it has been 

taken as a viable toy model for our universe. The key feature is that gravity on the 

brane is precisely Einstein gravity at low energies, i.e., 

Rab - \Rgab = ^GTab (4.1) 

This result is of course perturbative [20,40], and does not include the effect of the 

short-range K K corrections. Strictly speaking it is only valid for a single brane uni­

verse - the presence of a second wall, as in RSI [19], introduces a radion, representing 

the distance between the branes and modifying the Einstein gravity to Brans-Dicke 

gravity [38,40,46,71]. Non-perturbative results however, particularly understanding 

the effect of the K K modes, are somewhat sparse. In chapter 3, we began a study 

of non-perturbative braneworld gravity by examining their cosmology. The most 

notable effect was the deviation from the standard four-dimensional cosmology via 

quadratic energy density and pressure terms in the FRW equations. The most ob­

vious example of strong brane gravity would be a black hole bound to the brane. 

Although this has been well understood for a 2-brane in four dimensions [72], we 

know very little about the higher dimensional analogue. 

In this chapter we will investigate non-perturbative gravity by considering the 

effect of a domain wall living entirely on the brane [1,2]. Recall that braneworld 

41 
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universes are really only domain walls themselves [17], so the codimension 2 objects 

(or vortices) we are considering can be regarded as nested domain walls (see fig­

ure 4.1) These kind of objects can arise naturally from domain wall configurations. 

V O R T E X 

BRANE 

BULK 

Figure 4.1: A nested domain wall, or vortex on an (n — l)-brane. 

For example, suppose we have a A0 4 kink interacting with an additional scalar, a, 

via a potential of the form 

Vfaa) = \{c? - r , 2 ) 2 + + (0 2 - m > 2 . (4.2) 

In the true vacuum, (</>) = ±n, the state {a) = 0 is energetically favoured. However, 

this is not the case in the core of the wall. For example, when ((j>) = 0, the potential 

is minimised when (a) — ±.m\j2j\. We see, then, that we can generate a kink in the 

a field within the core of the domain wall. Such a configuration is quite well studied 

in the context of nested topological defects in field theory [73-77], although gravity 

is absent. This particular configuration is known as a domain ribbon [73,74]. In 

this chapter we will show that we can fully derive the gravitational field associated 

with these nested defects. This will not only give us an insight into strong gravity 
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on the brane, it will also enable us to construct a whole class of new configurations, 

including nested braneworlds and the braneworld analogue of the Coleman-De Luccia 

instantons [24]. 

4.2 Equations of motion for the domain ribbon 

Consider the gravitational field generated by a domain ribbon source. In general, 

it will depend on only two spacetime coordinates, r and z say, with z roughly 

representing the direction orthogonal to the brane and r, the direction orthogonal 

to the domain ribbon (or vortex) within our brane universe. Schematically, the 

energy-momentum tensor of this source will have the following form: 

S(z) S(z)5(r) 
lab = -ohab—— - fj,jab — (4.3) 

y/9zz \J9ZZ9TT 

where hat, is the induced metric on the brane universe, and 7„f, the induced metric on 

the vortex. The symmetries of this energy-momentum tensor mean that we can treat 

the vortex as a constant curvature spacetime. The most general metric consistent 

with these symmetries can, in n dimensions, be reduced to the form 

ds2

n = A^dx2

K + e 2 "A-(^t) (dr2 + dz2) (4.4) 

where dx.2 represents the 'unit' metric on an (n — 2)-dimensional spacetime of con­

stant curvature (K = 0 corresponds to a Minkowski spacetime, K = ± 1 to de-Sitter 

and anti-de Sitter spacetimes). A and v are functions of r and z to be determined 

by the equations of motion. Here, the brane universe sits at z = 0 with the vortex 

at r = z = 0. This is basically an analytic continuation of the cosmological metric 

(3.22) in section 3.3, where it is the time translation symmetry dt which is broken, 

rather than dr. The key result of that section of relevance here was to show that 

the conformal symmetry of the t, z plane meant that the gravity equations were 

completely integrable in the bulk, and the brane universe was simply a boundary 

(xM, t(r), Z(r)) of that bulk (identified with another boundary of another general 

bulk). The dynamical equations of the boundary reduced to pseudo-cosmological 

equations for Z{j). We now briefly review this argument in the context of the 

current problem. 

file:///J9zz9tt


4.2. Equations of motion for the domain ribbon 44 

First of all, transform the (r, z) coordinates to complex coordinates (u, a) where 

u = z + ir, ut = z — ir, in which the bulk equations of motion reduce to: 

ddA = -±AnA^e2v + ( n ~ 2 ) ( n ~ 3 W ^ e 2 t / (4.5a) 
2 4 

d£V = - *_ 2 ) A n A - ( ^ t ) e 2 t - - H Z * ^ - ^ ) ^ (4.5b) 

&4d[in&4] = 2^&4 (4.5c) 

&4d[ln&4] = 2dvdA (4.5d) 

where 5 and d denote partial differentiation with respect to CJ and Co respectively. For 

non-zero A„ or K, equations (4.5c) and (4.5d) can be integrated to give e 2 l / = A'f'g', 

where A = A(f(u>) + g(ti)) with / and g being arbitrary functions of the complex 

variables. The remaining equation (4.5a) for A becomes an ODE. 

Were the brane not present, we could use the fact that the metric depends only 

on the combination / + g to make a coordinate transformation in the bulk which 

would give the metric in the familiar simple canonical form 

dsl = Z 2 rfx 2 + h(Z)dR2 + ^ (4.6) 

where dx 2 is now a constant curvature Lorentzian spacetime, and in general the 

function h is 

The addition of the brane, however, requires that the Israel conditions be satisfied 

at z = 0 in the original coordinates. These turn out to have a scaling symmetry 

u —> W(u), ui —t W(ui), so we are free to choose / or g (but not both) as we wish. 

The net result is that our brane becomes some boundary of the bulk (4.6) identified 

with the boundary of some other general bulk. The vortex (or ribbon), in these 

coordinates, becomes a kink on this boundary as we shall see. Introducing the affine 

parameter C which parametrizes geodesies on the brane normal to the vortex, the 

brane is now given by the section (x'*, R(Q, Z((,)) of the general bulk metric. Note 

that we now have the condition 

7' 2 

hR'2 + = 1 (4.8) 
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In an exactly analogous procedure to section 3.3, we consider the Israel equations for 

the jump in extrinsic curvature across the brane, as well as the normal component 

of the Einstein equations, and thus obtain the equations of motion for the source: 

(4a„Z) 2 2a„ 
ehR' = anZ (4.9c) 

The brane and vortex tensions now appear in an and /zn respectively. These are 

defined as follows 

an = nn = MGnfJL. (4.10) 
n — I 

As in section 3.3, the quantity e in (4.9c) is related to the sign of the the outward 

normal to the boundary of the bulk spacetime, the boundary of course being the 

brane. In particular, it is given by 

n± = e±(0,-Z',R'±) (4.11) 

where e± = ± 1 , depending on which part of the spacetime is kept. Recall that we 

should define the extrinsic curvature on the "+" with an extra minus sign. This is 

to account for reversing its orientation when we glue it onto the "—" spacetime. 

For simplicity, we will now assume our brane universe is Z 2 symmetric. This has 

the effect that for any intrinsic bulk quantity Q, Q —> Q and AQ —> 0. We also 

assume that the integration constant, c, vanishes and that the bulk cosmological 

constant is given by 

A n = - i ( n - l ) ( n - 2 ) A £ (4.12) 

This definition is aimed at studying an anti-de Sitter bulk, which is of course what we 

find in RS models. However, we can easily extend to a Minkowski/de Sitter bulk by 

allowing kn to vanish/take imaginary values, as required. Rewriting equation (4.9) 
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for the trajectory of the source we obtain the Z 2 symmetric equations of motion: 

Z'2(0 = (k*-o*)# + K (4.13a) 

Z"(C) = (k2

n-*l)Z-^anZ6(0 (4.13b) 

* ® = « f e ( 4 1 3 C ) 

Note that we have chosen e = 1. This ensures that the brane has positive tension 

and that in the spirit of Randall-Sundrum, we retain the Z < Z(Q part of the bulk. 

In fact, the Randall-Sundrum brane (in n dimensions) is given by setting K = // = 0 

(flat, no vortex) and on = kn. The bulk metric is then 

dsl = Z\-dt2 + dx\ + kldR2) + ^ (4.14) 

with the brane given by Z = Z0 a constant, and kR = C/^o- Letting ZQ = 1, and 

Z = e~knZ gives the usual RS coordinates. 

Before turning to the instanton solutions, we will remark on a few straightforward 

domain ribbon solutions in order to gain an understanding of the geometrical effect 

of the ribbon. In particular, we will discuss the gravity of nested domain walls from 

the point of view of observers on the brane. 

4.3 Domain ribbon solutions 

In this section we examine the solutions to (4.13), exploring their qualitative features 

as well as some useful illustrative special cases. We begin by integrating the Z-

equation (4.13a) away from the vortex: 

^5 cos [±y/a(C - Co)] o > 0, « = 1 only 

Z = { Z 0 ± < a = 0, K = 0,1 (4.15) 

e±v/W«-<o) _ ^v^l(C-Co)j a < o, K = 0, ± 1 

where a = o\ — k\. Recall that a — 0 for a critical brane, whereas a > 0 (a < 0) for a 

super (sub) critical brane respectively. In the absence of the vortex, a critical brane 

has a Minkowski induced metric and corresponds to the original RS scenario [19,20]. 

A supercritical brane has a de-Sitter induced metric, and can be regarded as an 
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inflating cosmology [49,69,78,79], whereas the subcritical brane has an AdS induced 

metric (see [52,80,81] for discussion of its phenomenology). Staying away from the 

vortex, we can use (4.13c) and the square root of (4.13a) to obtain an ODE for 

R(Z): 

K + ftZ2 
(4.16) 

This is easily integrated to give 

2kn(R-Ro) = ± < 

\n{l + k2

nZ2) 

In 

2<T, 

knVl—aZ2—an 

knVl-aZ2+cr„ 

K = 1, a = 0 

K = 1, a / 0 

« = 0, a < 0 
(4.17) 

kny/\a~\Z 

2 tan"1 (4aa£=s2i) « = - 1 , a < 0. 

where the choice of signs refers to the sign of Z'(Q. Note that these trajectories are 

invariant under Euclideanization of the metric, therefore instanton trajectories will 

also have this form. 

In order to see how these trajectories embed into the bulk AdS spacetime, it 

is useful to transform into conformal coordinates, (i, x, u) in which the metric is 

conformally flat: 

" klv? 
[-dP + dx2 + du2] (4.18) 

For the K = 1 spacetimes needed to construct the braneworld instantons, this re­

quires the bulk coordinate transformation 

knu = eknRI'^TThJZ2 

(t, x) = knuZ (sinht, cosh£n n _ 2 ) 

(4.19a) 

(4.19b) 

where n n _ 2 is the unit vector in (n — 2) dimensions. Under such a transformation 

the trajectories R{Z) in (4.17) generally take the form 

(u T « o ) 2 + x2 - t2 = u\ 

for a =̂  0, where 
_ On _°n eknRo 

(4.20) 

(4.21) 
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This means that braneworlds (4.20) have the form of hyperboloids (or spheres in 

the Euclidean section) in the conformal metric (4.18). In particular, for subcritical 

branes (a < 0), we have u0 < tti, and both branches of the hyperboloid (4.20) are 

allowed, each intersecting the AdS boundary (see figures 4.2(a) and 4.2(b)). An 

analysis of the normals to the braneworld shows that for a positive tension Z 2 -

symmetric braneworld, the upper root Z' > 0 corresponds to keeping the interior 

of the hyperboloid, whereas for Z' < 0 the exterior is kept. Supercritical branes 

(a > 0) on the other hand have only the upper root for u0, and as u0 > U\ in 

a Euclidean signature they represent spheres which are entirely contained within 

the AdS spacetime. For a supercritical brane of positive tension the interior of the 

hyperboloid (or sphere) is kept (see figure 4.2(d)). For a critical brane, (a = 0) 

there are once again two possible trajectories, one having the form of (4.20) but 

with uQ = u\ = eknRo/2kn (figure 4.2(c)), and the other having u = const. - the RS 

braneworld. 

To put a vortex on the braneworld, we require solutions with non-zero /xn, and 

hence a discontinuity in Z'. To achieve this, we simply patch together different 

branches of the solutions (4.15) for £ > 0 and C < 0. We immediately see that 

critical and supercritical branes can only support a vortex if K = 1, that is, if the 

induced metric on the vortex itself is a de-Sitter universe. A subcritical brane on the 

other hand can support all induced geometries on the vortex. Defining k\_x = \a\, 

these trajectories are 

2k, 
_ L _ |-ea-fcn_i|ci _ K e fc„_ i | c | -a j s ubcritical brane 

Z= < Zo - ICI 

^ c o s f o - i l C I + jS) 

where 
4fcn-l [e^ a +K 

On 

4 
knZo 

ikn-
0n 

i t a n ^ 

critical brane (K = 1 only) (4.22) 

supercritical brane (K = 1 only) 

subcritical brane 

critical brane (4-23) 

supercritical brane 

respectively. 
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B U L K 

\C<o 

i u 

/ 
f B U L K 

o<c 

B U L K 

B U L K 

(a) Subcritical brane cen­

tred on —u0 

(b) Subcritical brane cen­

tred on +u0 

0<C 

B U L K 

B U L K 

0<C 

B U L K 

B U L K 

(c) Critical brane (d) Supercritical brane 

Figure 4.2: Braneworld trajectories given by equation 4.20, in Euclidean signature. 

In each case the location of the bulk spacetime is indicated. In addition we have the 

simple critical brane trajectory given by u = const. Here the bulk lies to the right 

of the brane. 
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4.3.1 The domain ribbon in a vacuum bulk 

In order to examine the geometry of the ribbon it is useful to consider a vacuum 

bulk spacetime. This will obviously represent a vortex living on a supercritical 

braneworld. There is no warping of the bulk due to the cosmological constant so we 

can clearly compare the ribbon spacetime to that of an isolated vortex {on = 0) or a 

pure de-Sitter domain wall (/j,n = 0). Since the bulk cosmological constant vanishes, 

we have 

kn = 0 =» = an (4.24) 

Note that the pure domain wall universe is a hyperboloid in Minkowski space-

time [82,83]. Specifically it is an accelerating bubble of proper radius cr"1, with 

K = 1. Meanwhile, we also note that the pure 5-function isolated vortex solution 

has a conical deficit metric 

ds2

n = -dt2 + dx2 + dp2 + (1 - ^ V p2d02 (4.25) 

where AO ~ \in for small fin [84]. 

We can read off the domain ribbon trajectory from equations (4.22) and (4.23). 

In (R, Z) space, this gives 

Z = 7 = = ^ [4 cos(crnC) - /^sin(<r n |C | ) ] (4.26a) 

R = 1 [4 sin(a nC) ± //n[cos(<rnC) - 1]] (4.26b) 
<r n V a6 + 

where we preserve the region Z < Z{Q of the bulk: 

ds2

n = Z2 [-dt2 + cosh2* dQ,2

n_3] + dZ2 + dR2 (4.27) 

where df i 2 _ 3 is the metric on a unit (n — 3)-sphere. This is of course simply a 

coordinate transformation of Minkowski spacetime, with the appropriate limit of 

(4.19) being (t, x) = (Zsinhi, Zncosht). Transforming into Minkowski coordinates, 

we find that the vacuum braneworld domain ribbon is given by two copies of the 

interior of the sliced hyperboloid 

*>-P+(\R\+ ) =JL (4.28) 
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I f fin = 0 this is clearly the standard domain wall hyperboloid. However, when 

Hn > 0, this represents a hyperboloid which has had a slice of width 2jj,n/on ^/l6 + |J^ 

removed from it (see figure 4.3). This corresponds rather well with the intuitive 

notion that walls are obtained by slicing and gluing spacetimes. 

V. 

/ . 

Figure 4.3: Constructing a domain ribbon on a vacuum domain wall. The hy­

perboloid interior has a slice of thickness 2jinjon^lQ + /4 removed from i t , and 

is re-identified. The ful l spacetime consists of a second copy identified across the 

hyperboloid. 

Looking at a constant time slice (figure 4.4) we also see how the domain ribbon 

looks like a vortex, with the identifications giving rise to a conical deficit angle in 

terms of the overall n-dimensional spacetime. We find that 

A0 = 4 t a n - 1 ^ „ / 4 (4.29) 

Note that for small n we have A0 ~ yu„, which agrees with the case of the isolated 

vortex. A crucial difference however, appears to be that for the ribbon spacetime, 
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I d e n t i f y 

Figure 4.4: Taking a constant time slice through the vacuum domain wall plus vortex 

spacetime shows how the deficit angle is built up. 

the vortex can have an arbitrarily large energy per unit length, as we simply cut 

out more and more of the hyperboloid. Indeed, the deficit angle approaches 2TT 

only as //„ approaches infinity! Contrast this with the spacetime of a pure vortex, 

(4.25), in which the deficit angle approaches 2-K as fin ~ 1 [85]. The ribbon is clearly 

not behaving as a vortex for large /i. On the other hand, a domain wall has the 

effect of compactifying its spatial sections (the interior of the hyperboloid) and the 

transverse dimension only shrinks to zero size as the tension of the wall becomes 

infinite. Therefore in this sense, the ribbon spacetime really does behave as a domain 

wall. 

Finally, we note that the induced metric on the brane is given by 

This is the metric of an (n — 2)-dimensional domain wall in an (n — l)-dimensional 

de-Sitter universe of tension, /JL. We see this by examining the Israel equations in 

(n — 1) dimensions, at £ = 0. For a wall of tension T, 

as n-l 
[4cQS(7nC ~ Hn sin<7n|C|]2 

o2(16 + ^ ) 
[-dt2 + cosh2 tdQ,l _3] + dC2 (4.30) 

&Kab = 
8nGn-iT 

n — 3 Jab (4.31) 
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Meanwhile, from (4.30), the jump in extrinsic curvature at C = 0 is given by 

AKab = - ^ J a b (4.32) 

With the identification (3.13) we conclude that T' = \x. In this sense the geometry 

of the braneworld seems to know nothing about the extra dimension. Gravity on 

the brane appears (n — 1)-dimensional even in this non-perturbative regime. 

4.3.2 The domain ribbon on a critical RS brane 

Having constructed this symmetric vacuum domain ribbon spacetime, we now see 

the general principle involved in having a domain ribbon. Whereas a braneworld 

without a vortex consists of two segments of AdS (or vacuum/dS) spacetime glued 

across a boundary, the domain ribbon consists of two copies of an AdS spacetime 

with a kinked boundary identified together. The kink itself could be viewed as two 

copies of an AdS bulk glued together across a tensionless boundary. Recall that our 

original motivation was to investigate the behaviour of domain walls on branes, and 

in particular the critical RS brane. With our current insight, we would expect a 

domain ribbon on a critical RS brane, in conformal coordinates, to be the critical 

hyperboloid sliced by a critical flat RS wall (see figure 4.5). We will investigate this 

presently. 

The tension of the critical RS brane satisfies the relation an = kn. Here we have 

pure AdS space in the bulk so kn > 0. Since a = 0, a domain ribbon on this brane 

must have K = 1, that is 'spherical' spatial geometry. In (R,Z) space, the brane 

trajectory is given by 

Z = -4r-|Cl (4.33a) 

R = ^ 
+ (4 - knnn\t\y 

/4 + 16 

For the full spacetime we keep the region Z < Z(C) of the bulk: 

(4.33b) 

r)72 

ds2

n = Z2 [-dt2 + cosh2* dn2

n_3] + 2 + (k2

nZ2 + \)dR2 (4.34) 
knZ + 1 

At first sight neither the trajectory nor bulk looks like the original RS scenario, 
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1 

i 

Figure 4.5: A representation of the domain ribbon on a critical RS brane. 

however, the coordinate transformation 

knu = ek"R/y/l + klZ2 (4.35a) 

(t, x) = A; nttZ(sinh£,cosht n n _ 2 ) (4.35b) 

(where n n _ 2 is the unit vector in (n — 2) dimensions) gives 

ds2

n = — [-? + dx2 + du2] (4.36) 

This is the familiar planar AdS metric in conformal coordinates. The trajectory 

(4.33) now becomes 

C < 0 : u = u0 (4.37a) 

1 ^ 2 
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where 

u° = h / r h ^ ( 4 - 3 8 ) 

The change of coordinates means that the trajectory is no longer manifestly Z 2 

symmetric. However, the £ < 0 branch now becomes a subset of the RS planar 

domain wall, specifically, the interior of the hyperboloid 

v 2 — t2 1 fi 

- i m = m • | 2 * G - i " r 2 ( 4 3 9 ) 

where we have used equation (3.13) with on = kn. Recall that the global spacetime 

structure of a vacuum domain wall is that of two identified copies of the interior of 

a hyperboloid in Minkowski spacetime, with proper radius l/2irGn-ifj,, [82,83,86]. 

We conclude that (4.39) corresponds identically with what we would expect from 

(n — 1)-dimensional Einstein gravity. 

Meanwhile, the C > 0 branch is a hyperboloid in the bulk centered on u = 

l/2fc2

l«o with comoving radius l/2k2uo. As \x increases, more and more of the 

hyperboloid is removed, with the spacetime 'disappearing' only as \i —> oo. This is 

the same behaviour as we found in section 4.3.1 for the domain ribbon in a vacuum 

bulk. As before, this is normal behaviour for a domain wall, but very different to 

what one would expect from a vortex. 

In order to examine the geometry on the brane more carefully, we note that the 

induced metric on the brane is given by 

2 

rfsLl = ( 1 _ ^ ) _ r f ? + (_±_) c r f (^)^_ 3 
+ d(2 (4.40) 

where i = 4t/nnkn. This is precisely the metric of a self-gravitating domain wall of 

tension [i in (n — l)-dimensional Einstein gravity [84,86]. Again, this is best seen 

by examining the Israel equations (at C = 0) in ( n — 1) dimensions. The jump in 

extrinsic curvature across a wall of tension T is given by equation (4.31). However, 

from the metric (4.40), the jump in extrinsic curvature at C = 0 is given by 

AKab = - k - ^ l a b (4.41) 

If we once again use equation (3.13) with an = kn, we can conclude T = //. This 

proves that the geometry on the brane is indeed behaving in an (n — l)-dimensional 
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way, just as it did for the vacuum bulk in section 4.3.1. We have shown that even in 

this non-perturbative case, the RS model exhibits exact (n — 1)-dimensional Einstein 

gravity on the brane, even though the model is manifestly n-dimensional. 

4.3.3 Nested braneworlds 

We now have the tools to construct nested Randall-Sundrum type configurations, 

that is, a flat (K = 0) ribbon on an AdS brane with an AdS bulk. Fortunately, 

we see from (4.22) that a subcritical (AdS) brane can sustain a flat ribbon. From 

equations (4.17), (4.22) and (4.23), the brane trajectory is given by 

Z = Z0e-k»-^, knR = ±-^- (Z-1 - Zo"1) (4.42) 
kn\Xn 

with [i = 4kn-i/an. Transforming to conformal coordinates (u, v) = (l/knZ,knR), 

the brane trajectories become 

4 
v = ±—(u-u0) (4.43) 

Each branch of this trajectory is a subcritical brane, which, if it were not for the 

vortex at (UQ,0) would reach the AdS boundary at v = ^onua/kn-\. 

Notice that the induced metric on the braneworld 

dsn^ = Z2e~2k^[-dt2 + dx2} + d(2 (4.44) 

is indeed that of a RS universe in (n — 1) dimensions. We would expect there to be 

an analogue of the criticality condition for flat branes. Again this arises from the 

Israel equations at C = 0. As expected, we find that 

K-i = (4.45) 

where we have used the condition (3.13). This is precisely the RS criticality condition 

an = 4irGne/(n — 2) = kn adjusted for one dimension less. 

We conclude this section by emphasizing its main result. In each of the examples 

we have looked at, the geometry on the brane has been in exact agreement with the 

geometry predicted by (n — 1)-dimensional Einstein gravity, without any knowledge 

of the bulk. This is a remarkable result because it means that, at least in this highly 
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symmetric set up, RS braneworld models exhibit localisation of gravity on the brane, 

even in the non-perturbative regime. 

We have had the added bonus that we have seen how to construct nested 

braneworld configurations. In the next section we will use the same tools to con­

struct braneworld instantons. 

4.4 Instantons and tunneling on the brane 

Traditionally, instantons correspond to classical Euclidean solutions to the equations 

of motion. In many cases, they represent a quantum tunneling from a metastable 

false vacuum to a true vacuum. In [24], Coleman and de Luccia discussed the 

effect of gravity on these decays. Such processes, of course have direct relevance for 

cosmology, as they correspond to a first order phase transition, and hence a dramatic 

change in the structure of our universe. 

In [24], the authors evaluated the probability of nucleation of a true vacuum 

bubble in a false vacuum background. They focussed on two particular configu­

rations: a flat bubble spacetime in a de Sitter false vacuum; and an AdS bubble 

spacetime in a flat false vacuum. This was before the idea of large extra dimensions 

was fashionable, so the analysis was done in just the usual four dimensions. 

We now have the tools to develop these ideas in a braneworld set up. To replicate 

the configurations of [24], we just have to patch together our brane trajectories in 

the right way. Recall that these trajectories are given by equation (4.20), along with 

the critical brane solution, u = const. In Euclidean signature, the former are shaped 

like spheres and were illustrated in figures 4.2(a) to 4.2(d). However, when patching 

these solutions together, we should be aware of a slight subtlety. In equation (4.13b), 

the nn(Tn5(Q term does not make sense if we have branes of different type either 

side of the vortex. Suppose we have a brane of tension a+ in £ > 0, and a~ in £ < 0, 

we must then modify equation (4.13b) by replacing an with a n , where 

» . = (4-46) 

It is easy to see that this is the right thing to do. Regard the vortex as a thin wall 

limit of some even energy distribution. Mathematically, this corresponds to //„#(C) 
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being the limit of some even function /x„/(C). The weight of the distribution is the 

same on either side of C = 0, so we pick up the average of the brane tensions. 

We are now in a position to reproduce the work of [24] in our higher dimensional 

environment. Let us consider first the decay of a de Sitter false vacuum, and the 

nucleation of a flat bubble spacetime. 

4.4.1 Nucleation of a flat bubble spacetime in a de Sitter 

false vacuum 

We now describe the braneworld analogue of the nucleation of a flat bubble spacetime 

in a de Sitter false vacuum. The de Sitter false vacuum is given by a supercritical 

brane of tension aff > kn with no vortex (see figure 4.2(d)). This metastable state 

decays into a "bounce" configuration given by a critical brane (tension a^lat = kn) 

patched on to a supercritical brane (tension a*s > kn). If we are to avoid generating 

an unphysical negative tension vortex we must patch together trajectories in the 

following way: 

where (/c^i) 2 = (c^ 5 ) 2 — k„. The vortex tension /x, is related to the constant Co in 

the following way: 

It is useful to have a geometrical picture of this bounce solution. We just patch to­

gether the u = const, critical brane trajectory and the supercritical brane trajectory 

given by figure 4.2(d) to get figure 4.6. Note that we have two copies of the bulk 

spacetime because we imposed Z2-symmetry across the branes. 

It is natural to calculate the probability, V, that this flat bubble spacetime does 

indeed nucleate on the de Sitter brane. 

( f c f iC-Co) C > o cos 
n - l 

1 cosC C < o o 133 
n - l 

(4.47) 

= sec Co — tan Co (4.48) 
2kis 

n - l 

V oc e -B (4.49) 

where B is the difference between the Euclidean actions of the bounce solution and 
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Figure 4.6: An example of a critical-supercritical brane "bounce" solution. This 

looks like a flat bubble spacetime has nucleated on a de Sitter brane. 

the false vacuum solution, that is: 

B = Sbounce — S f a i s e (4.50) 

Given our geometrical picture it is straightforward to write down an expression for 

the bounce action: 

Sbounce — Sbulk + Sflat + SdS + SVOrtex (4-51) 

where the contribution from the bulk, critical brane (flat), supercritical brane (de 

Sitter), and vortex are as follows 

Sbuik = I <rxJg(R-2kn) (4.52a) 
107rG n Jbulk 

S m = [ dn-1xVh(-2AK-4(n-2)a!l

lat) (4.52b) 
l07TG n J f l a t 

SdS = -T^yr ( dn-1xVh(-2AK-4(n-2)af) (4.52c) 
167rG„ J d S 

Svortex = l i t dn-2X^y= -J^JT \ CT~2 Xy/^(-2fln) (4.52d) 
J vortex lOTV\jrn J vortex 
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Note that AK. the jump in the trace of the extrinsic curvature across the brane, 

contains the Gibbons-Hawking boundary term [87] for each side of the brane, and 

hab, Jab are the induced metrics on the brane and vortex respectively. We should 

point out that due to the presence of the vortex, there is a delta function in the ex­

trinsic curvature that exactly cancels off the contribution of SV0Ttex- The expression 

for S f a i s e is similar except that there is no flat brane or vortex contribution, and no 

delta function in the extrinsic curvature. After some calculation (see appendix A.4), 

we find that our probability term, B is given by: 

where f2„_2 is the volume of an (n — 2) sphere and the integral /„ is given by: 

/•tic 

w 
Jun—i 

du 

where 

u o — U l 

U0 

UX = 

U0 

rdS 

{P(u)r-s ip(u)} n - l 

U n - l U 

{o*s + kn sin Co K 
( * £ i ) 2 

kn 

TdS u0 

p(U) = \Ju\-{u- u0y 

(4.54) 

(4.55a) 

(4.55b) 

(4.55c) 

Note that uc is an arbitrary constant so we are free to choose it as we please (think 

of the flat brane as being at u = uc). This integral is non-trivial and although 

we can in principle solve it for any integer n it would not be instructive to do so. 

Instead, we will restrict our attention to the case where n = 5. This means that our 

braneworld is four dimensional, so comparisons with [24] are more natural. Given 

that = 27T2, we find that: 

167TG, 

raf + kb sin Co 
log 

TdS + k5 

cos Co 
kf 

k5ads 

+ ( f c f ^ ( 1 ~ s i n C ° ) (4.56) 

Equation (4.48) in five dimensions enables us to replace the trigonometric functions 

using: 

2A 
cos Co 

sin Co = 

1 + A2 

1 - A 2 

1 + A2 

(4.57a) 

(4.57b) 
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where 

A = i f <4-58> 

This leads to a complicated expression. It is perhaps more instructive to examine 

the behaviour for small /i i.e., in the regime where we have a vortex with a low 

energy density. In this regime we find that: 

B = ^ ( ^ s ) V + C V ) = ^ ( G 4 ) V + O(^) (4.59) 

where G4 is the average of the four dimensional Newton's constants on the flat brane 

and the de Sitter brane. The presence of this average as opposed to a single four 

dimensional Newton's constant is due to the difference in brane tension on either 

side of the vortex. From equation (3.13) we see that this induces a difference in the 

Newton's constants on each brane. 

We now compare this to the result we would have got had we assumed no extra 

dimensions. The analogous probability term, B', is calculated in [24]. When the 

energy density of the bubble wall, //, is small, we now find that1: 

# = ^ ( G 4 ) V + 0(/* 8) (4-60) 

If we associate G\ in equation (4.60) with G4 in equation (4.59) we see that the 

approach of [24], where no extra dimensions are present, yields exactly the same 

result to the braneworld setup, at least for small 

Before we move on to discuss alternative instanton solutions we should note that 

in the above analysis we have assumed | > Co > 0. The bounce solution presented is 

therefore really only valid if we have A < 1. However, the extension to regions where 

A > 1 corresponds to allowing Co to take negative values and everything holds. 

1 In order to reproduce equation (4.60) using separating a flat bubble spacetime and a de Sitter 

spacetime whose radius of curvature is Then substitute into the relevant equations and take /i 

to be small. 
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4.4.2 Nucleation of an AdS bubble spacetime in a flat false 

vacuum 

We now turn our attention to the decay of a flat false vacuum, and the nucleation 

of an AdS bubble spacetime. The braneworld analogue of the flat false vacuum is 

given by a critical brane of tension o£at = kn with no vortex (u = const). This 

decays into a new "bounce" configuration given by a subcritical brane (tension 

aAds < patched onto a critical brane (tension a^lat = kn). Again, in order to 

avoid generating an unphysical vortex, we must patch together trajectories in the 

following way: 

C + ^ s i n h C o C > 0 
Z = t v n - l (4.61) 

p^sinh(A^fC + Co) C < 0 
V Kn-1 

where (k£*f)2 = k„ — {(?ndS)2- The vortex tension \i is related to the constant Co in 

the following way: 
^p£s = cothCo - cosechCo (4.62) 

By patching together u = const, and figure 4.2(a) we again obtain a geometrical 

picture of our bounce solution (see figure 4.7). 

As before we now consider the probability term, B, given by the difference be­

tween the Euclidean actions of the bounce and the false vacuum. We shall not go 

into great detail here as the calculation is very similar to that in the previous sec­

tion. We should emphasize, however, that the bounce action will include as before an 

Einstein-Hilbert action with negative cosmological constant in the bulk, a Gibbons 

Hawking surface term on each brane, and tension contributions from each brane 

and the vortex. Again we find that the delta function in the extrinsic curvature of 

the brane exactly cancels off the contribution from the vortex tension. The false 

vacuum action omits the AdS brane and vortex contributions, and contains no delta 

functions from extrinsic curvature. Recall that in each case we have two copies of 

the bulk spacetime because of Z2-symmetry across the brane. 

This time, we find that our probability term, B, is given by: 

* - ^ M ^ ) ( * g T ) (463) 
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Figure 4.7: An example of a subcritical-critical brane "bounce" solution. This looks 

like an AdS bubble spacetime has nucleated on a flat brane. 

where the integral In is now given by: 

Tn= I du (u0 

[p(M)f- 3 , [p(u)} n-1 

U n-1 + (4.64) 
- U O + U l 

where uc is an arbitrary constant corresponding to the position of the flat brane, 

and 

w 0 

Ml = 

TAdS 
n („dS (<t„ + kn cosh Co)«c 

kn 

TAdS U0 

p(u) = yju\-{u + U0y 

(4.65) 

(4.66) 

(4.67) 

Again, although we could in principle solve this integral for any positive integer n, 

we shall restrict our attention to n = 5. In this case we now find that: 

16irG5 

- log 
aAdS + £ s C Q S n ^ 

TAdS + 2 { H ^ ) + ( ^ ( 1 - C O s h ^ 
(4.68) 
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We can now replace the hyperbolic functions using equation (4.62): 

2A 
sinhCo = 1 _ A 2 (4.69a) 

cosh Co = (4.69b) 1 — AJ 

where 

A = 0 h (4-70) 

This is again an ugly expression. It is more interesting to examine the behaviour at 

small fx: 

B - (Pj5(Gs* 5)V + C V ) = (PJ;(G<)V + O t f ) (4.71) 

This is very similar to what we had for the nucleation of a flat bubble spacetime 

in a de Sitter false vacuum with 64 now representing the average of the Newton's 

constants on the AdS brane and the flat brane. Again we compare this to the 

result from [24] where we have no extra dimensions. When the energy density of 

the bubble wall is small, the expression for the probability term is again given by 

equation (4.60), where ^ now corresponds to the radius of curvature of the AdS 

spacetime. Once again we see that the braneworld result agrees exactly with [24] in 

the small fi limit, provided we associate G4 with (54. 

Note that again we have assumed Co > 0 and therefore, the bounce solution 

given here is only valid for A < 1. The extension to A > 1 is more complicated 

than for the nucleation of the flat bubble in the previous section. We now have 

to patch together figure 4.2(b) and figure 4.2(c). However, in [24], the analogue of 

A > 1 violates conservation of energy as one tunnels from the false vacuum to the 

new configuration. In the braneworld set up we should examine what happens as A 

approaches unity from below. In this limit, Co becomes infinite, and the AdS bubble 

encompasses the entire brane. The probability, V, of this happening is zero and so 

there is no vacuum decay. Beyond this, in analogy with [24], we would suspect that 

the energy of the false vacuum is insufficient to allow the nucleation of a bubble 

with a large wall energy density. This is indeed the case. When we calculate the 

probability term, B, for the AdS bubble in a flat, spherical false vacuum, we find that 

it is divergent and the probability of bubble nucleation vanishes. This divergence 
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comes from the fact that the false vacuum touches the AdS boundary whereas the 

bounce solution does not. 

Finally, we could also have created an AdS bubble in a flat spacetime using a 

K = 0 vortex. However, it is of no interest since the probability of bubble nucleation 

is exponentially suppressed by the vortex volume. 

4.4.3 Ekpyrotic Instantons 

The notion of the Ekpyrotic universe [88] proposes that the Hot Big Bang came 

about as the result of a collision between two braneworlds. The model claims to solve 

many of the problems facing cosmology without the need for inflation. Although the 

authors work mainly in the context of heterotic M theory, they acknowledge that 

an intuitive understanding can be gained by considering Randall-Sundrum type 

braneworlds. In this context, we regard the pre-Big Bang era in the following way. 

We start off with two branes of equal and opposite tension: the hidden brane of 

positive tension, a, and the visible brane of negative tension, —a. A bulk brane with 

a small positive tension, | , then "peels off' the hidden brane causing its tension to 

fall to a — e. The bulk brane is then drawn towards our universe, the visible brane, 

until it collides with us, giving rise to the Hot Big Bang. 

The process of "peeling off" is not really considered in great detail in [88]. They 

suggest that the hidden brane undergoes a small instanton transition with the nu­

cleation of a bubble containing a new hidden brane with decreased tension, and 

the bulk brane. The walls of this bubble then expand at the speed of light until 

it envelopes all of the old hidden brane. Given that all the branes in this model 

are critical we can illustrate the instanton solution in the simplified RS set-up by 

using a suitable combination of critical brane solutions. In conformal coordinates, 

critical branes look like planes (u = const) or spheres (see figure 4.2(c)). In describ­

ing the Ekpyrotic instanton we present the visible and hidden branes (old and new) 

as planes. The bulk brane is given by a sphere that intersects the hidden brane, 

separating the old and new branches (see figure 4.8). 

Given this geometrical picture we can calculate the probability of tunneling to 

this configuration from the initial two brane state. We proceed much as we did in 
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Figure 4.8: The Ekpyrotic Instanton 

the previous section, and obtain the following expression for the probability term: 

where A; is related to the cosmological constant in the bulk of the initial state (A = 

—6fc2), and ZQ is a free parameter related to the "size" of the bubble: the larger the 

value of Z0, the larger the bubble. We should not be worried by this freedom in Z 0 , 

as we are working with Randall-Sundrum braneworlds which are much simpler than 

the M5 branes of heterotic M theory. When we return to the M theory context, 

we lose a number of degrees of freedom and one might expect the value of ZQ to be 

fixed. However, since we are dealing with a "small" instanton, we might expect Z0 

itself to be small, and the probability term approximates to the following: 

B = ^eZ4

0+O(e2,Z6

0) (4.73) 

We should once again stress however, that this is an extremely simple and naive 

calculation that ignores any dynamics of the additional scalars, or other fields, that 
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result from a five-dimensional heterotic M-theory compactification [89]. Another 

point to note is that while we can have a small brane peel off from the positive tension 

braneworld, we cannot have one peel off from the negative tension braneworld, as a 

quick glance at figure 4.8 shows. Such a brane, being critical, must have the form 

of a sphere grazing the AdS boundary, which therefore necessarily would intersect 

the positive tension brane as well. 

Recall that at the end of section 4.2 we set the integration constant, c, to zero. Now 

consider what happens when we allow for non-zero values. We will assume that we 

have a negative cosmological constant in the bulk given by equation (4.12). The 

bulk spacetime is now described by the metric (4.6) with 

For c < 0, the metric becomes singular at the AdS horizon, Z = 0. Of greater 

interest is the case c > 0, when the metric takes the form of the AdS soliton [90]. 

This is the double analytic continuation of the AdS-Schwarzschild metric (3.34). 

For this reason the (R, Z) plane behaves like a Euclidean AdS black hole, with a 

horizon at Z# where h(Zjj) = 0. In order to avoid a conical singularity at ZH, we 

cut the spacetime off there, and identify R as a angular coordinate with periodicity 

Ai? = Aiffh^Zn)- The geometry (up to an AdS warp factor) is therefore the familiar 

cigar shape with a smooth tip at Z = Z^. 

We can clearly try to play the same game as before and investigate branes and 

vortices in the AdS soliton background. The equations of motion (4.9) for a Z 2 -

symmetric brane become: 

4.5 The AdS soliton 

h(Z) = k2

nZ2 + K- c (4.74) Zn-3 

Z'2 = -aZ2 
K 7 n - 3 

aZ + 
Zn-2 

(4.75a) 

Z" = - 47rGnJ2^nZ5{C-Q (4.75b) 

R! = 
anZ 

(4.75c) 
k f l Z 2 + K gn-3 
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where a = a\ — k\ as before, and (4.75b) now allows for a multitude of vortices of 

tension ^ located at Q. 

Although we will explicitly solve these equations for n = 5, we will simply 

describe the qualitative behaviour of solutions for arbitrary values of n. The generic 

trajectory (which must be periodic in R) will consist of two segments of Z(Q of 

opposite gradient. These patch together at a positive tension vortex at R = 0, say, 

and a negative tension vortex at R = AR/2. This is exactly analogous to the usual 

situation with a domain wall spacetime when we need both positive and negative 

tension walls to form a compact extra dimension. However, we see that with the bulk 

"mass" term, c, there are now also other possibilities. This is because (4.75a) now 

has at least one root for Z > ZH, and for supercritical branes (a > 0) there are two 

roots. These roots correspond to zeros of Z', and enable a smooth transition from 

the positive branch of Z' to the negative branch. We can therefore form a trajectory 

which loops symmetrically around the cigar, and has only one kink - which we 

can fix to be a positive tension vortex. Of course, the tension of this vortex will 

be determined by the other parameters of the set-up: the bulk mass, cosmological 

constant and the braneworld tension, but this is no worse a fine tuning than is 

already present in conventional RS models. Note that this is now distinct from a 

domain wall on a compact extra dimension, as we can construct a domain ribbon 

spacetime with only a single positive tension vortex on asymptotically de Sitter, flat 

and anti-de Sitter branes. In addition, for a supercritical brane (asymptotically de 

Sitter) we have the possibility of dispensing with the ribbon altogether. In this case 

we have a smooth trajectory with two roots of Z', where the brane smoothly wraps 

the cigar, although a fine tuned mass term is required 

In all cases the induced geometry on the brane has the form 

as n-l Z 2(C)dx 2

K + dC 2 (4.76) 

(where of course £ has a finite range). The energy momentum tensor of this space-
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time is 

Z" ( n - 3 ) n - 4 ) 
( n - 3 — + 

n - 4 ) ( Z ' 2 - / Q 1 
Z2 J 

n - 3 
(n - 2)o 

7 n - l 
^ + / W ( C ) ] ^ (4.77a) 

( n - 2 ) ( n - 3 ) (Z' 2 - «) 
2 Z 2 

( n - 2 ( n - 3 ) 
a + 7 n - l 

(4.77b) 

which has three distinct components. There is a cosmological constant (the a-term) 

which reflects the lack of criticality of the braneworld when it is non-vanishing. The 

domain ribbon terms (fi{) when present indicate the presence of a nested (n — 3)-

brane - note the normalisation is precisely correct for the induced (n—l)-dimensional 

Newton's constant. Finally, the c-term corresponds to a negative stress-energy ten­

sor and can be directly associated to the Casimir energy of field theory living in the 

braneworld. We will discuss holographic interpretations like this in more detail in 

chapters 5 and 6. 

4.5.1 The AdS soliton in five dimensions 

We will now present explicit solutions to equations (4.75a) and (4.75c) when we 

specialise to n = 5. We also restrict attention to the case where K = 1, which in 

any case is the only possibility for supercritical and critical branes. So as not to be 

littered with confusing suffices let us adopt the notation of chapter 2 and replace k$ 

and (T5 with k and a respectively. The set of equations we wish to solve are therefore 

just: 

aZ' + l 
Z 2 

aZ 

(4.78) 

(4.79) 
k2Z2 + 1 - 4 
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where a — cr — k. We can easily solve (4.78) to obtain Z((). The solutions are: 

2\a\ 

z(02 = I (4.80) 

-1 + y/\ - 4accosh(2y/|o|(C - Co)) a < 0 

c + ( C - C o ) 2 a = 0 

i [1 + V I -4accos(2v^(C - Co))] a > 0 

where Co is just a constant of integration. Notice that the solution for the supercrit­

ical wall is only valid when c < ^ . As a consistency check we observe that (4.80) 

gives (4.15) when c = 0. In order to construct branes containing domain ribbons we 

patch together solutions with the opposite sign in Z'. This corresponds to taking 

the opposite sign in the square root of (4.80). 

We now tackle the more interesting problem of expressing R in terms of Z. The 

governing equation is given by: 

dR 
= ±-

aZ 
dZ k2Z2 + 1 - y/-aZ2 + 1 -

Consider first critical branes with a = 0. Define: 

(4.81) 

x± 

n± = l 

2k2 

2x± 

v± = -J±x±(c - x±) 
c 

Given that for critical branes, a = k, the solution is: 

(4.82) 

(4.83) 

(4.84) 

R(Z) = Ro±-

+ 

cosh 

c — x+ 

V l + 4Jfe2c 

c ~ x - ' - L W u(Z) + n- — v 

where 

u(Z) = exp 2 cosh 

(4.85) 

(4.86) 

and R0 is an integration constant. When we consider the non critical branes we 

find that equation (4.81) gives an elliptic integral. The best we can do is express 

the solution in terms of canonical forms for elliptic integrals. We will require the 
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incomplete elliptic integrals of the first and the third kind. They are defined below 

for 0 < x < 1 [91]: 

F(x\t) 

U(n;x\t) 

dz 
^ ( l - z 2 ) ( l - t z 2 ) 

r * i 
Jo J ( l - z 2 ) ( l - t z 2 ) \ l - n z 2 ) 

where 0 < t < 1. We will also need to define the following 

1 ± V I - 4ac 

n± 

m± 

2a 
A + - A _ 
A + - x± 

x± 
x± — A_ 
A + - A _ 

A + 

Consider now the supercritical branes with a > 0. The solution is: 

R(Z) = i?oT a F(v(Z)\q) 
k2y/a\+ 

M ^ ) n K ; " ( z ) i 9 ) 

where 

v(Z) = 
Z2 

A+ - A_ 

For subcritical branes, with a < 0, the solution is: 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

R(Z) Ro± 
CTA_ 

fcV|a|(A_-A+)(l+4A:2c) 
c — x+ 

x+ V A— — 
Il{m+-MZ)\q-l 

c — X-

£_ V A_ — X-
X[{m_-w{Z)\q-1) 

where 

w(Z) = 
Z2 - A. 

Z2 

(4.95) 

(4.96) 

file:///l-nz2
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Figure 4.9: A plot of T{c) for 0 < c < l /4a when a = 1.25 and k = 1. Note that 

there is no solution to ^(c) = 0. 

As a mathematical exercise, the derivation of these solutions has been of some 

use. However, do we gain any further understanding of braneworld physics? We 

suggested earlier that for the supercritical brane, we might be able to place a brane 

on this compact soliton background, without any need for a vortex. This is because 

the supercritical brane solution is periodic, so we can have a smooth brane trajectory 

wrapping the soliton cigar. We are now in a position to investigate this more closely. 

If such a configuration does exist, then the following would be true: 

2N[R(Zmax) - R(Zmin)\ = AR (4.97) 

where N = 1,2,3..., and Zmax = y/X^, Z m i n -- are the maximum and min­

imum values of Z respectively. This amounts to the fine tuning conditon on the 

mass term. In particular, the value of c that satisfies 

T(c) = 2[R(Zmax) - R(Zmin)\ -AR = 0 (4.98) 

gives us the fine tuned valued for N = 1. It is not obvious that (4.98) has a solution 

in the allowed range, 0 < c < l/4a. However, we can choose a and k and then 

hope to solve T{c) = 0 numerically. For example, in figure 4.9, we see that there is 
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no solution-for a = 1.25 and k = 1. Whether or not this behaviour is true for all 

choices of a and k is unclear and would require a detailed analytic investigation. 



Chapter 5 

Braneworld holography 

We will now change direction in our study of braneworlds, and focus on how they fit 

into the realms of holography. We will discover that the brane cosmology described 

in chapter 3 can be understood from a "holographic" point of view, by adjusting 

the properties of the bulk geometry. Before describing this in detail, i t is important 

we review some of the fundamental ideas behind the holographic principle [92,93] as 

well as its most celebrated example, the AdS/CFT correspondence [25-27]. 

5.1 The holographic principle 

The holographic principle is a radical idea that rose from attempts to understand 

gravity and quantum field theory simultaneously. The natural tool with which to 

do this is the black hole. As we move close enough to the black hole singularity, 

the curvature of spacetime becomes of order the Planck scale. At this point the 

gravitational interactions become as strong as the weak interactions, and the classical 

description of gravity is inadequate. The time has come to apply quantum physics. 

There are two very important results that arise from a quantum description of 

black holes. The first concerns the black hole entropy, which rather surprisingly 

turns out to be [94-97] 

where A is the area of the black hole horizon. The second result is due to Hawk­

ing [98] who noticed that black holes are not as black as they seem. They emit 

74 
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thermal radiation (Hawking radiation!) and can eventually evaporate. 

Now consider a spherical region, T, of volume V, in an asymptotically flat space-

time. We will place no restrictions on the matter contained within, and will only 

state that the boundary, 8T has area A. We begin by using local quantum field 

theory to calculate the maximum entropy, S m a x , of the quantum mechanical system 

contained in T. By definition, 

l n [ i V s t o t e s ] (5.2) 

where Natate3 is the total number of possible states of T. We can think of the 

maximum entropy as counting the total number of degrees of freedom. Locality 

tells us that there is at least one degree of freedom at each spatial point, so we 

conclude that Smax = oo. Even if we say that T is not continuous but discrete we 

still find that Smax ocV, as we wil l now explain. Suppose that T is really a lattice 

with lattice spacing a. The number of cells is approximately V/an~1, where n is the 

spacetime dimension. We assume that each cell has m possible states, and deduce 

that 

N s t a t e s = m ^ - 1 (5.3) 

The maximum entropy is then 

a , T A T T Vlnm T r 

Smax = l n [ i V s t a t e 4 ] = t oc V (5.4) 

We now use our knowledge of gravity and black holes to calculate the maximal 

entropy. First consider how much mass can be contained in T. We cannot continue 

to add mass to T indefinitely because eventually we wil l start to form a black hole. 

As we wish to avoid gravitational collapse we have an upper bound on the mass. I t 

corresponds to the mass, M of the black hole that just fits inside T, with its horizon 

coinciding exactly with the boundary 5T. Such a black hole has entropy given by 

equation (5.1). I f the mass is smaller than M we can avoid gravitational collapse. 

I f i t is M or larger, gravitational collapse is inevitable. 

Now suppose that V starts of with mass, E and entropy S. We must have E < M 

to ensure that gravitational collapse has not already taken place. Now consider a 

spherically symmetric shell of matter with entropy S'. The combined system has 
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initial entropy 

^initial — S + S' (5-5) 

We now assume that the shell is collapsing to form a black hole inside T. I f the 

shell has mass M — E, then we might expect that the final state wil l be the black 

hole described in the last paragraph. The final entropy of the combined system is 

therefore given by 

Sfinal = (5.6) 

However, the second law of thermodynamics tells us that the entropy of a thermody-

namical system cannot decrease. This means that SinUiai < Sfinal, and since 5" > 0 

we conclude that 

S < - £ - » S m „ = ^ . (5.7) 

The gravitational approach and the QFT approach are clearly at odds with one 

another. Gravity predicts S m a x oc A whereas QFT predicts 5 m a i on V. I t turns 

out that its the QFT approach that is wrong because i t badly over-estimates the 

number of degrees of freedom. Each cell of the lattice described earlier has volume 

Vceii — a" - 1 - How much mass, Eceu, can be contained in a particular cell without 

the threat of gravitational collapse? Again, we can have no more than the mass of 

the largest black hole that can fit into the cell. The mass of a black hole is given by 

its radius, so we see that Eceu < a. This implies that the total mass contained in 

T, is no greater than 
V V 

E™* = = -n^2 ( 5 - 8 ) 

However, the mass, M of the largest black hole that can f i t inside V is given by the 

radius of T, so that 

M ~ V 1 / " - 1 (5.9) 

We require E m a x < M which gives V < a" - 1 . So the upper mass limit E m a x is only 

valid i f T is the size of a single cell. The lattice approach permits total energies that 

exceed the mass, M of the largest black hole. This means that although black holes 

will not form in each individual cell, they will form on larger scales. 

We could of course reject the gravitational approach if we accept the possibility 

of gravitational collapse. Let us suppose that the number of possible states of V is 
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indeed given by equation (5.3). I f T contains total mass M, the matter within will 

collapse to form a black hole. After collapse, the number of possible states is given 

by eAlAGn. This violates unitarity because the number of initial states is greater 

than the number of final states. Hawking argued that unitarity broke down in black 

holes [99]. I f we accept that the maximum entropy of a spatial region is proportional 

to the area of its boundary, rather than its volume, then we can retain unitarity in 

black holes. This is how the holographic principle was first formulated. 

Note that we have made various assumptions so far, such as spherical volumes 

and asymptotic flatness. We might think that the maximum entropy of a spatial 

region is still given by A/4Gn, even when we drop these assumptions. This is known 

as the spacelike entropy bound, but i t is clearly not valid. Suppose we have a 

contracting universe. Entropy does not decrease but the boundary area of a given 

region does. As we shrink smaller and smaller the entropy will eventually exceed 

the boundary area. 

We can however form the covariant entropy bound [93,100] using light sheets 

and the focusing theorem of General Relativity (for a nice review see [101] or [102]). 

Briefly this states that given a (codimension 2) boundary surface, 5T, of area A, the 

entropy on any light sheet of 6T cannot exceed A/AGn. A light sheet is made up of 

the light rays passing through ST, as long as they are not expanding. Note that a 

light sheet is a null surface whereas T is a spacelike surface. 

Depending on the structure of the spacetime, we can use the covariant entropy 

bound to place bounds on spacelike surfaces. Consider anti-de Sitter space (see 

figure 5.1). Since light sheets are not allowed to expand, the warped geometry of 

AdS means that light sheets point away from the AdS boundary towards the AdS 

horizon. Now take a static (codimension 2) surface, 5T, near the AdS boundary and 

consider the region V bounded by ST, including the AdS horizon. Since the future 

light sheet of 8T points towards the horizon, matter contained in T wil l eventually 

pass through i t . Suppose the entropy contained in T is S. When the matter in T 

passes through the light sheet its entropy is S' > S, in accordance with the second 

law of thermodynamics. By the covariant entropy bound we have S' < A/4Gn, and 
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i i i i i i 

CO matter 8r 

CO 9 

Figure 5.1: In AdS space, matter contained within T crosses the future light sheet 

of the boundary ST. 

therefore 

s * w . ( 5 1 0 ) 

This is an important property of AdS space. There is a timelike Killing vector (so 

we can define static surfaces like ST) and the entire geometry can be foliated by 

spacelike surfaces satisfying the holographic bound. This means that we have the 

counterintuitive result: the total number of physical degrees of freedom in a region, 

T of AdS is proportional to the area of the boundary, 6F, rather than the volume. 

Note that we can take ST to be as close to the AdS boundary as we wish, so in this 

sense the holographic principle applies to the whole of AdS. Wi th all this in mind, 
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it is no surprise that the first concrete example of holography involves anti-de Sitter 

space. This is the AdS/CFT correspondence [25-27], which we will now describe, 

albeit very briefly. 

5.2 The A d S / C F T correspondence 

Consider type I IB string theory on 10 dimensional Minkowski space. The funda­

mental dimensionful parameter of the theory is the string tension, T oc l~2, where ls 

is a stringy length scale. We define gs to be the string coupling, which we wil l hold 

fixed. I IB string theory contains objects known as Dp-branes [103]. A Dp-brane is 

a timelike brane of p dimensions where the ends of open strings can terminate. Its 

world volume is therefore (p + 1)-dimensional. The low energy physics of a single 

brane is described by a [7(1) gauge theory. For N distinct branes we naturally have 

a U(1)N, although N coincident branes are described by an SU(N), where we ne­

glect an overall centre of mass degree of freedom. Furthermore, we can think of a 

D-brane as a source of energy momentum in the bulk spacetime as well as a source 

of other supergravity fields. I t couples to the bulk by absorbing and emitting closed 

strings. 

Now consider N coincident D3-branes and take the following low energy super-

gravity limit, 

I, -> 0, u = r/l2

s = fixed. (5.11) 

Here u represents a typical energy scale corresponding to an open string stretched 

by an amount r. In this limit, the closed string physics in the bulk can be shown to 

decouple from the open string physics on the brane [25]. The open string physics is 

described by M = 4 SU(N) super Yang Mills on Minkowski space in 3+1 dimensions. 

As we stated earlier we can think of D-branes as sources of 10-dimensional su­

pergravity fields, in this case the metric, dilaton and 4-form potential, C(4), with 

field strength F(5) = dC^. The extremal black D3-brane solution is given by [104] 

ds2

10 = H-1/2{r)V^dxfidx1' + Hl'2{r) [dr2 + r2dtt2] (5.12) 
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where the dilaton is constant and 

H(r) = l + 4irg,N(jj . (5.13) 

dtll is the metric on S 5 and x^, for fj, = 0,1,2,3, are the D-brane coordinates. The D-

brane stack is located at r = 0, which also corresponds to the horizon in the extremal 

case. Finally, we note that the 5-form flux through the 5-sphere surrounding the 

D-brane source is integer valued, 

/ F { 5 ) = N. (5.14) 

As before we define u = r/l2. In the low energy supergravity limit we have / s —> 0, 

so holding u fixed corresponds to taking the near horizon limit. The limiting form 

of the metric is just AdS$ x S5, 

-du2 u2 

y/4TrgsN— + n^dxTdx" + y/4irgsNdti& 
ul ^4irgsN 

Note that the AdS5 and the S5 both have the same radius given by 

(5.15) 

l2 = l2

sy/4ng^N. (5.16) 

and that we still have integer 5-form flux across the S5. Can we really trust this 

supergravity description? We can if the curvature is small compared to the string 

scale. This means 

l>h => 9SN^>1 (5.17) 

For classical supergravity we also wish to suppress stringy loop corrections so we 

assume gs < 1. This means we really need N 1. 

The preliminary conjecture is that I IB supergravity on AdS5 x S5 describes the 

same physics as a large Yang Mills theory. However, when N is not large, we can 

no longer trust the supergravity description and need to go to the ful l string theory. 

We now formally state the Maldacena conjecture: 

The following theories are equivalent 

• Type IIB string theory on AdS$ x S5 where both the AdS5 and the 

have the same radius, and the 5-form has integer flux, N, across 

the S5. 
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• M = 4 super Yang Mills on 3+1 dimensional Minkowski space, with 

gauge group SU(N). 

Naturally, i f we are to make sense of the correspondence we ought to provide a 

dictionary that translates the gauge theory language into the gravity language, and 

vice-versa. Two important entries are 

where gYM is the Yang Mills coupling constant. The quantity gYM^ is known as 

the ' t Hooft coupling. This is the natural loop counting parameter and we note from 

(5.17) that i t should be large. I t was 't Hooft who initiated the study of large N 

gauge theories in an attempt to understand their behaviour at strong coupling [105]. 

The boundary of AdS5 x 5 5 is given by Minkowski space in 3+1 dimensions, and 

is invariant under conformal transformations of the metric. M = 4 super Yang Mills 

is also conformally invariant and we think of i t as living on this boundary. I t is 

decoupled from gravity in the bulk. This means that the correspondence is indeed 

holographic, as all the degrees of freedom of the bulk gravity theory are projected 

on to the boundary. 

As we will see later on, from the point of view of braneworlds, the most important 

feature of the AdS/CFT correspondence is the UV/IR connection [106]. This states 

that the ultra-violet degrees of freedom in the CFT correspond to the infra-red in 

the bulk theory. How can we see this? Consider a string stretched from a D-brane 

probe in the AdS bulk all the way to the boundary. From the CFT perspective the 

string looks like a point charge. The mass of the string is proportional to its proper 

length, which is divergent near the boundary. On the CFT side this corresponds to 

the divergent self-energy of the point charge. In order to regularize the divergence 

in the bulk the string is only allowed to approach to within some finite distance of 

the boundary. This is a long distance, or infra-red cut-off in the length of the string. 

In the CFT, this turns out to be equivalent to cutting out a shell of small radius 

around the point charge. This time we have a short distance, or ultra-violet cut-off. 

9s 9YM 

^9YMN 

(5.18) 

(5.19) 
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5.2.1 AdS-Schwarzschild/Finite temperature C F T 

We will now change the picture slightly by relaxing the condition that the D branes 

should be extremal. Instead we will consider near extremal D branes. The super-

gravity solution for a non-extremal black brane is given by 

ds2

10 = H-l'2{r) [-f(r)dt2 + Sijdx'dx*] + # 1 / 2 ( r ) [ / _ 1 ( r ) d r 2 + r2d£l2} (5.20) 

where 

H(r) = l + f y \ / ( r ) = i _ ( ^ ) 4 (5.21) 

and the constants r 0 and I are related to the overall brane tension and Ramond-

Ramond charge. Again the brane is located at r = 0, although this time i t is hidden 

behind a horizon at r = TQ. For a near extremal brane we take r0 <C I and the near 

horizon limit corresponds to taking r 0 < r <C l- This gives 

dr2 

(IT / T \ * 
ds2

0 = -h(r)dt2 + j^-j + ( y j Sijdx'dx*' + l2dtt2 (5.22) 

where 

(5.23) ^ ( 7 ) 2 H ? ) 1 
This is Schwarzschild-ArfS's x SB. When we rotate to Euclidean signature we get a 

conical singularity at the horizon, r 0 . In order to avoid this we cut the spacetime 

off at the horizon, and identify time t with time t + /3, where 

47T irl2 . n i . 
P = T77-T = — • 5.24 h'(r0) rQ 

This black hole is at temperature T = 1/(3, and its entropy is given by the area of 

the horizon 

SBH = ^ (5.25) 

where 

. 4 = ( y ) V 3 . £ V 5 ~ ^ T 3 (5.26) 

and V3 — J R 3 dx1dx2dx3. 

Staying in Euclidean signature, the boundary of this black hole spacetime has 

topology E 3 x S1, where the SL has radius /3/27T. A gauge theory living on this 

boundary would be heated to a finite temperature, T, due to Hawking radiation 
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from the bulk blaek hole. A large T we would expect the entropy of the gauge 

theory to scale like the spatial volume, ie S ~ V3. In the case of M = 4 super 

Yang Mills we started out with a conformal field theory, and although conformal 

invariance is broken at finite temperature, the only scale we have introduced in T. 

On dimensional grounds we conclude then that 

SYM ~ V3T 3 (5.27) 

which is in agreement with the black hole entropy (5.25). 

Here we have only given an intuitive argument but more precise calculations of 

the CFT entropy have been carried out [107,108]. To sum up, we find that when 

we switch on a finite temperature, we can associate the temperature, entropy and 

indeed the energy of the CFT with the corresponding black hole quantities in the 

bulk [26,29]. 

So vast is the subject, we have not been able to present the AdS/CFT corre­

spondence in all its glory 1. The hope is that we now have a feeling for AdS/CFT 

and can embark on a study of holography in the context of braneworlds. 

5.3 Braneworld holography 

We can think of the RS2 braneworld model as two identical copies of AdS space 

patched together in such a way as to form a brane of given tension. Consider one 

of these copies of AdS. Notice that we have cut the spacetime off before reaching 

the AdS boundary. From the point of view of AdS/CFT this corresponds to a long 

distance, or infra-red cut-off in the bulk. We learnt from the U V / I R connection that 

an infra-red cut-off in the bulk corresponds to an ultra-violet cut-off in the CFT. 

Therefore when studying braneworlds we might expect some version of AdS/CFT 

whereby the gravity theory in the bulk is dual to a CFT with a UV cut-off [111]. 

At this point we note that our language is rather misleading. The notion of a 

conformal field theory with a momentum cut-off is paradoxical. What we really have 

is a broken conformal field theory. By chopping off part of AdS near the boundary, 

1See [109] or [110] for a more extensive review. 
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we broke translational invariance in the "radial" direction. Since we have introduced 

a scale, this corresponds to breaking conformal invariance in the dual field theory. 

There is, however, a twist in the tale. Recall that in the traditional picture of 

AdS/CFT, the CFT on the boundary is decoupled from gravity in the bulk. We can 

understand this in the following way. Consider a bulk graviton propagating towards 

the boundary. I t cannot reach the boundary because the background AdS metric 

blows up there. Gravity is therefore decoupled from the boundary theory. 

The situation for braneworlds, meanwhile, is slightly different. The metric at 

the brane does not blow up. This time, the bulk graviton can reach the brane, and 

gravity is coupled to the field theory there. 

Braneworld holography can be summed up in the following statement: 

Randall-Sundrum braneworld gravity is dual to a CFT with a UV cut-off, 

coupled to gravity on the brane. 

This is nothing more than a conjecture, and is far from proven. One of the difficulties 

in studying this type of holography is our lack of knowledge regarding the dual field 

theory. I t is some abstract field theory which we know very little about. 

However, consider what happens when we switch on a finite temperature. We 

have seen how this corresponds to creating a black hole in the bulk, where we now 

have a non-zero Weyl tensor. Casting our mind back to the Einstein equations on the 

brane (3.11), we see that the presence of the bulk Weyl tensor affects the geometry 

on the brane. The hope is that we can understand this effect from a holographic 

perspective. Intuitively we might think that Hawking radiation from the bulk black 

hole heats up the brane, giving energy to the dual field theory. We can then examine 

how this energy enters (say) the cosmological equations on the brane, and compare 

this to what happens when there is no bulk black hole and we put mass on the brane 

by hand. I f we find the same behaviour we have evidence for braneworld holography. 

The remainder of this thesis will be devoted to this problem. 
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5.4 CFTs on critical branes 

Consider two n-dimensional spacetimes with negative cosmological constant 

K = -\(n-l)(n-2)k2

n (5.28) 

and glue them together across an (n — l)-dimensional brane of tension a. We saw in 

section 3.3 that a generalised Birkhoff's theorem admits the following solution for 

the bulk metric 

dsl = -h(Z)dt2 + ^ + Z2dn2

n_2 (5.29) 

where 

h(Z) = k2

nZ2 + 1 - ^ 3 - (5-30) 

Here we have taken the K = 1 slicing, with dCl2

l_2 giving the metric on a unit 

(n — 2)-sphere. Recall that c = 0 corresponds to pure AdS in the bulk, whereas 

c > 0 corresponds to AdS-Schwarzschild. We wish to see the effect when there is a 

non-vanishing Weyl tensor, so we will consider the latter. 

As in section 3.3, we parametrise the brane using the affine parameter T . The 

brane is then given by the section ( x / 1 , t ( r ) , Z(T)) of the bulk metric. Since r cor­

responds to the proper time of an observer comoving with the brane, we have the 

condition 
Z2 

-hi2 + — = - 1 (5.31) 

where dot denotes d/dr. This condition ensures that the induced metric on the 

brane takes the standard FRW form (3.39). Again, we treat Z(T) as the scale factor 

of our brane universe, and construct the Hubble parameter H = Z/Z. 

Now suppose that we have a critical brane, ie 

= = * . (5.32) 
n — I 

so that the induced cosmological constant, A n_x = 0. We further assume that there 

is no additional matter on the brane so that the brane energy-momentum consists 

only of brane tension. We can read off the cosmological evolution equations from 

equations (3.50a) to (3.50c) by setting AC = 1, a — a2 — k2 = 0 and p = p = 0. The 
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brane evolution is therefore given by 

t = ^ (5.33) 
h 

H2 = -h+z^ ^ 
H = 1 ( n ~ 1 \ c 

Z2 V 2 J Zn~l 
(5.35) 

This cosmology is very similar to the standard K = 1 cosmology of closed FRW 

universes. We start off with a Big Bang at Z = 0 and experience a period of 

cosmological expansion, crossing the black hole horizon2. Eventually, the rate of 

expansion slows down and we reach a maximum value of Z. After this, the brane 

starts to contract until Armageddon, when we disappear with a Big Crunch. The 

shape of the brane trajectory is shown in figure 5.2. 

Brane 

Figure 5.2: The Penrose diagram showing the trajectory of a critical brane in an 

AdS-Schwarzschild bulk. We have two copies of the bulk glued together at the brane. 

We have only shown one of those copies here. 

2Recall that the horizon of the bulk black holes is given by Z = ZH, where h(Zu) = 0. 
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I t is clear from equations (5.34) and (5.35) that the brane cosmology is driven 

by the terms like c/Zn~l. These come from the mass of the bulk black holes. 

How should we understand them from a braneworld perspective? Motivated by 

braneworld holography, we might expect them to correspond to the energy density 

and pressure of a dual field theory. Given that they go like 1 / Z n _ 1 , this field 

theory will probably look like radiation. However, the conformal nature of radiation 

suggests that this will only be the case when there is only a small UV cut-off, and 

the brane is near the AdS boundary. 

5.4.1 Energy density and pressure of the dual C F T 

We will now attempt to calculate the energy density/pressure of the dual field theory, 

at least when the brane is near the boundary of AdS [28]. We can think of these as 

being the energy density/pressure measured by a braneworld observer. 

If we use the bulk time, t as our time coordinate, we would measure the total 

energy to be given by the sum of the black hole masses, that is 

E = 2M (5.36) 

where the mass of an AdS black hole is given by the standard formula [112]: 

M . f e z ^ S ( , 3 7 ) 

and f2„_2 is the volume of the unit (n — 2)-sphere. However, an observer on the 

brane uses the CFT time, r as his time coordinate, and will therefore measure the 

energy differently. To arrive at the CFT energy, ECFT, we need to scale E by i. We 

have assumed we are near the AdS boundary. This means that Z is large and we 

can say that i « l/knZ. The CFT energy is therefore given by 

^ r ^ K ( l l _ ^ ( _ L ) ( , 3S ) 

In order to calculate the energy density we must first evaluate the spatial volume of 

the CFT, which is just the spatial volume of the brane, 

VCFT = O n _ 2 Z n - 2 (5.39) 
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The CFT energy density is given by the ratio of energy to volume3, 

ECFT (n - 2) / c 
PCFT = 

VCFT SnG^ 

To calculate the pressure of the CFT, we use the standard formula from thermody­

namics4 

PCFT = - ( ^ ) - P C F T (5.41) 

Using the expression (5.40) in (5.41) we see that the equation of state for the CFT 

is indeed that of radiation. 

5.4.2 The cosmological evolution equations 

Now that we know the CFT energy density and pressure in terms of c, we can 

substitute back into (5.34) and (5.35) and examine the brane cosmology in terms of 

CFT quantities. Before we do this, we recall that for a critical brane, the induced 

Newton's constant is given by 

G„_, = 9 ^ z A (5.43) 

We now obtain a more useful expression for PCFT, 

( n - 2 ) ( n - 3 ) / c \ 

Substituting this and equation (5.42) into (5.34) and (5.35) gives the cosmological 

evolution equations for the brane. 

ZJ2 1 , 167rGn_i , 
H = - ^ + ( n - 2 ) ( n - 3 ) ^ ( 5 " 4 5 ) 

H = ^ - ^ ^ " g ) 1 (PCFT + PCFT) (5.46) 

These are the standard FRW equations in (n — 1) dimensions. They correspond 

to a spatially spherical universe, with no cosmological constant. The braneworld 

3Since we are concerned with this ratio, the extension of these ideas to K ^ 1 is presumably 

trivial. 
4 This expression is easily derived from p = —dE/dV, using E = pV and V ~ Zn~2. 
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observer sees the normal cosmologicat expansion driven by the dual CFT. The CFT 

behaves like radiation in this instance. 

We should emphasise that we now have two very different ways of interpret­

ing this cosmology. On the "gravity" side, we think of the cosmological expan­

sion/contraction as being driven by the bulk black holes. On the "field theory" side 

we think of i t being driven by the dual CFT, in the standard way. 

5.5 CFTs on non-critical branes 

We will now attempt to generalise the above analysis to de Sitter and anti-de Sitter 

branes. This corresponds to relaxing the criticality condition so that 

an # kn. (5.47) 

We proceed exactly as before, except this time we allow for a = a2 — k2 ^ 0. 

Equations (5.33) to (5.35) generalise to 

* = °4- (5-48) h 

Z2 ' Z " - 1 H2 = a - ^ + ^ T (5-49) 

H = 1 ( n ~ l \ c 

Z2 \ 2 J Z " " 1 
(5.50) 

For a < 0, we have subcritical branes, which are asymptotically anti-de Sitter. In 

this case the brane evolves in much the same way as for critical branes. We start off 

with a Big Bang and expand to some maximum value of Z, and then contract back 

to the Big Crunch. As before, the brane crosses black hole horizon. The Penrose 

diagram for this trajectory is more or less the same as the critical brane trajectory 

given in figure 5.2. 

For a > 0, we have supercritical branes, which are asymptotically de Sitter. 

This time there are four different possible trajectories for the brane depending on 

the various parameters. This is summarised in the following table, 

where 2 

( n — 3 \ / 2 \ "-3 



5.5. C F T s on non-critical branes 90 

Case Trajectory Conditions 

a Z runs from 0 to oo. a > da-it, Z starts out 

small. 

b Z runs from oo to 0. a > Ucrit, Z starts out 

large. 

c Z runs from 0 up to a maximum, and 

then down to 0. 

a < da-it, Z starts out 

small. 

d Z runs from oo down to a minimum, 

and then up to oo. 

a < acrit, Z starts out 

large. 

For cases (a) to (c) the brane crosses the black hole horizon. Case (d) is some­

times known as the "bounce" solution, and in this case the brane does not cross the 

horizon. Each of these possible trajectories are shown in figures 5.3(a) to 5.3(d). 

Notice that i f a = acru, we can have either cases (a) and (c), or (b) and (d), 

depending on how Z starts out. We can also have Z = const, although this solution 

is presumably very unstable. 

Once again, our goal is to understand the terms like c/Zn~l in the evolution 

equations (5.49) and (5.50), from the point of view of AdS/CFT. Can we think of 

this cosmology as being driven by a dual field theory? We will start by blindly 

adopting the approach of [28], as described in the last section. We will run into 

problems, but i t is nevertheless illustrative to see how things go wrong. We will 

then give a correct approach which agrees with [28] for critical branes, but not for 

non-critical branes. 

5.5.1 C F T energy density/pressure: naive approach 

As in section 5.4, we assume that the energy of bulk spacetime is given by 

E = 2M (5.52) 

In order to calculate the energy of the CFT, we should once again scale E by i so 

that i t is measured with respect to the CFT time, r , rather than the bulk time, t. 
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Brane 

(a) Z starts out small, 

a > aCrit-

(b) Z starts out large, 

a > a c ri(. 

Brane 

(c) Z starts out small, 

o < acrit. 

(d) Z starts out large, 

a < acrit. 

Figure 5.3: Penrose diagrams showing possible trajectories for supercritical (de Sit­

ter) branes in an AdS-Schwarzschild bulk. 
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However, for large Z, we have from equation (5.48), 

' " + 1- ^ * WZ ( 5 - 5 3 ) 

The energy of the CFT is then 

ECFT = Ei*2M (j^j (5.54) 

Since the spatial volume of the CFT is just VCFT = &n-2Zn~2, we have the following 

expression for the energy density of the CFT. 

2M f a n \ ( n - 2 ) / c \ (a2

n\ ,E _ . 

where we have used equation (5.37). 

At this stage we note an important feature of non-critical branes: the induced 

Newton's constant on the brane is proportional to the brane tension. More precisely, 

from (3.13), 

G _ , = G " ' T " (

2 " - 3 ) (5.56) 

We can insert this back into (5.55) to give 

Now consider what happens when we express the evolution equations in terms of 

PCFT- In particular, equation (5.49) now reads 

(I) ""-Z + l^wtT)""*^) ( " B ) 
Note that for critical branes the factor of k2/a2 disappears and we recover the 

standard Friedmann equation. However, for non-critical branes, k^/a2 ^ 1. This 

means that equation (5.58) does not resemble the standard FRW cosmology. Either 

holography has failed, or we have tackled the problem in the wrong way. We shall 

now see that it is the latter. 

5.5.2 C F T energy density/pressure: better approach 

Unlike in flat space, when one derives the mass of an AdS black hole (5.37), the 

leading order contribution comes from the bulk [112]. Furthermore, this derivation 
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includes contributions from the AdS-Schwarzschild spacetime all the way up to the 

AdS boundary. In our case, we have a brane that has cut off our bulk spacetime 

before i t was able to reach the boundary. We should not therefore include contri­

butions from "beyond" the brane and must go back to first principles in order to 

calculate the energy of the bulk [3]. 

We will begin by Wick rotating to Euclidean signature. 

t —> = it, T —> TE = ir 

This analytic continuation is well defined for the subcritical brane, critical brane 

and for the supercritical brane, cases (c) and (d). For cases (a) and (b) we find that 

Z(TE) is not a real function, so they are excluded from this analysis. 

Our bulk metric is now given by 

ds2

n = h(Z)dt% + + Z2dQ2

n_2 (5.60) 

As discussed in section 5.2.1, we wish to avoid a conical singularity at the horizon, 

Z = ZH- In order to do this we cut the spacetime off at the horizon and associate 

ts with t# + /3 where /? = 47r/h'(Zj/). The brane is now given by the section 

(x*1, tE( r E ) , Z ( T E ) ) of the Euclidean bulk. The new equations of motion of the brane 

are the following: 

dtE aNZ 

\dTEJ 

djE h 
2 

(5.61) 

= -aZ2 + l - — (5.62) 

(PZ _ f n - 3 \ c . „. _ = _ o Z + ( _ j _ (5.63) 

I t is not difficult to see that for both critical and non-critical branes, Z(TE) has a 

minimum value. In contrast to Lorentzian signature, in Euclidean signature none 

of these branes cross the black hole horizon. The supercritical branes have a max­

imum value of Z, whilst the critical and subcritical branes may stretch to the AdS 

boundary. This will not be a problem because the integrand in our overall action 

will remain finite, as we shall see. 

In calculating the energy we could go ahead and evaluate the Euclidean action of 

this solution and then differentiate with respect to fl. We must however, remember 
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to take off the contribution from a reference spacetime [30] . In this context, the most 

natural choice of the reference spacetime would be pure AdS cut off at a surface, E 

whose geometry is the same as our braneworld. 

The bulk metric of pure AdS is given by the following: 

ds2

n = h0(Z)dT2 + + Z2dQ2

n_2 (5.64) 

where 

ho{Z) = k2

nZ2 + 1 (5.65) 

As we said earlier, the cut-off surface, E, should have the same geometry as our 

braneworld. The induced metric on this surface is therefore 

K - i = dr2

E + Z(rE)2dtfn_2 (5.66) 

To achieve this, we must regard our cut-off surface as a section (x^, T ( r E ) , Z ( T E ) ) , 

where 
dT\2 1 f d Z x 2 

Ms; J = 1 ( 5 6 7 ) 

Let us now evaluate the difference AI between the Euclidean action of our AdS-

Schwarzschild bulk, IBH and that of our reference background, lAds-

IBH = -T^rr [ dnx^{R-2Kn)--±— [ dn-1xVh2K (5.68) 
107TCt„ Jfate 87TGr n Jbrane 

I Ads = - T T T V f <rXy/g(R- 2 A „ ) - - 4 r - / dT^xy/h 2K0(b.69) 

where K and KQ are the trace of the extrinsic curvature of the brane and £ respec­

tively. Now recall that we have the Einstein equations in the bulk 

Rab - \Rgab = -Kgab (5.70) 

and the (Z2-symmetric) Israel equations across the brane 

Kab = <?nhab- (5.71) 

Given that A n = — | ( n — l ) ( n — 2)k2, we can immediately read off the following: 

R-2An = - 2 ( n - l ) A £ (5.72) 

2K = 2 ( n - l ) < 7 „ (5.73) 
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The unit normal to the cut-off surface, E is given by na = (0, — ^ ) . We use 

this to find 

2K0 = (n - 1) — . (5.74) 

We will also need the correct form of the measures and the limits in each case. I f 

we say that — | < t E < §, then we obtain the following (see appendix A.5 for a 

detailed derivation): 

Z{TET-' - Zn

H~l 

[ dTx^/g (R - 2A„) = 2 f i n _ 2 / ' dtE^^——^— (R - 2A„) (5.75) 
J bulk J-l n - \ 

[ dTx^g (R - 2A„) = 2Q„_ 2 f 2 dtE (^) Z{je)\ * (R - 2A n ) (5.76) 
Jref.bulk n - 1 

f cT-'Vh 2K = fin_2 [ 2 dtE ( - i - | Z(TE)N-2 2K (5.77) 
J brane J-$ J 

ctr-'Vh 2K0 = f 2 n _ 2 j2^ dtE ^ j Z(rE)n-2 2K0 (5.78) 

The factor of two in equations (5.75) and (5.76) just comes from the fact that we 

have two copies of the bulk spacetime in each case. Notice that the expressions 

for the integrals over the brane and the cut-off surface E are the same. This is a 

consequence of the two surfaces having the same geometry. Also using equations 

(5.61) and (5.67), we put everything together and arrive at the following expression 

for the difference in the Euclidean action: 

AI = 
47rG n . 

.2 
2 

^ * , („ - l)h(Z)Z"-° 1 - i ( l + i ( l + 

2 

To proceed further, we are going to have to make things a little bit simpler. In 

the spirit of AdS/CFT, we want the brane to be close to the AdS boundary. This 

corresponds to taking c to be large, so our bulk is at a very high temperature. By 

considering this regime we guarantee that we focus on the "holographic" energy den­

sity, and can ignore contributions from matter on the brane. We have not included 



5.5. C F T s on non-critical branes 96 

any such contributions in our analysis so i t is appropriate for us to assume that we 

are indeed working at large c. To leading order: 

Z„ « ( £ ) " " ' (5.80) 

' * J^WATT <"» 

For supercritical and critical branes we can assume Z(TE) c™ *̂. For subcritical 

branes this is true provided |o| <C 1 (see appendix A.6). Given this scenario, we 

now evaluate AI to leading order in c. 

(5.82) 

The entire leading order contribution comes from the bulk rather than the brane, 

which is consistent with [112]. We can now determine the energy of our bulk space-

time. 

E ^ ^ - ^ ( S ) (5.83) 
d/3 87rGn \ a l ) y J 

Notice that in this large c limit, E w 2M (jfi^j» so for critical branes the choice 

E = 2M would indeed have worked. Our aim was to calculate the energy of the 

dual CFT, rather than the bulk AdS-Schwarzschild. We must therefore scale E, by 

t, so that i t is measured with respect to the CFT time r . Recall that when Z is 

large, i « an/k^Z and the energy of the CFT is given by: 

We divide this by the spatial volume of the CFT, VCFT — ®>n-iZn~2 to find the 

CFT energy density. 

ECFT {n — 2) 
PCFT = 

VCFT STTG^ 

To calculate the pressure of the CFT, we just use equation (5.41). This yields an 

expression that is consistent with the CFT corresponding to radiation: 
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5.5.3 The cosmological evolution equations 

As before, we want to understand the cosmological equations (5.49) and (5.50) 

for the brane in terms of braneworld quantities only. This means making use of 

the correct expression for the induced Newton's constant (3.13). The CFT energy 

density is now given by 

( n - 2 ) ( n - 3 ) 
PCFT 

™ ~ V ( C \ / r o 7 N 

We are now ready to insert this and equation (5.86) into equations (5.49) and (5.50) 

to derive the cosmological evolution equations for our braneworld. 

EJ2 1 , 167rGn_i 
= Q - * + ( n - 2 ) ( n - 3 ) ^ ( 5 - 8 8 ) 

H = J 2 ~ -"3") ( p C F T + P c F T ) ( 5 " 8 9 ) 

As in section 5.4.2, these are the standard FRW equations in (n — 1) dimensions, 

although this time we have a cosmological constant term a. As was the case for flat 

branes, we can think of the cosmology as being driven by a dual CFT corresponding 

to radiation. Alternatively, from a "gravity" perspective, the brane cosmology is 

driven by the bulk black holes. 

The important thing about this analysis was that went beyond the work of [28], 

which concentrated only on flat braneworlds. Recent observations that we may live 

in a universe with a small positive cosmological constant [21,22] suggest that i t is 

important that we extend the discussion at least to de Sitter braneworlds. We have 

considered de Sitter branes satisfying a < dc-i*. In the large c limit, acrit < 1, so 

we actually have o < l . Our analysis also applies to anti-de Sitter branes satisfying 

\a\ < 1. 

Given the mounting evidence for holography in the literature, we are not really 

surprised by our result. What is interesting is the way in which we were forced 

to prove i t . The proof offered by [113] is unacceptable because it relies on the 

assumption that: 
^ = C M n - 3 ) ( M 0 ) 

This is true for critical branes, but one should replace kn in the above expression 

with cr„ when one considers non-critical branes. We also see in section 5.5.1 that i f 
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we had applied the approach of [28] to non-critical branes, a factor of k\jo^ would 

have appeared in front of the CFT terms in equations (5.88) and (5.89). This comes 

from assuming that the bulk energy is just given by the sum of the black hole masses. 

As we stated in section 3, this involves an over-counting because i t includes energy 

contributions from "beyond" the brane. The correct calculation of the bulk energy 

given in this paper ensures that the undesirable factor of k2/a2 does not appear. 

Finally, we end with a note of caution. In the spirit of AdS/CFT we have 

consistently assumed large Z, and for various reasons, large c. This means that 

our results are only approximate. We suspect that one could find corrections to 

higher orders in 1/Z and 1/c. Clearly we should be more careful, and seek an 

alternative approach that gives us exact results, even at finite values of Z and c. 

Furthermore, because of the limitations imposed by Wick rotation, we were not able 

to say anything about cases (a) and (b) for supercritical branes. In the next chapter 

we will adopt a new approach to braneworld holography that does not suffer from 

any of these limitations or approximations. 



Chapter 6 

Exact braneworld holography 

6.1 Introduction 

In the last section, we tried to interpret the Weyl tensor contribution to the Ein­

stein equation induced on a brane. Specifically, we embedded the brane in a AdS-

Schwarzschild spacetime so that the non-trivial Weyl tensor manifested itself as a 

"radiation" term in the FRW equations for the brane universe. Using the ideas of 

AdS/CFT, we could interpret this term in two ways: (i) i t came from the mass of 

the bulk black holes or (ii) i t came from the energy-momentum tensor of some dual 

conformal field theory. 

However, our analysis was based on the assumption that the brane probed deep 

into AdS, near to the boundary. This allowed us to assume that the energy density 

of the braneworld was small, and the true holographic description of an (n — 1) 

dimensional braneworld in an n dimensional bulk was understood. Unfortunately, 

these results were all approximations in the sense that for a general brane evolution 

it is not necessary for the brane to remain close to the boundary. In this chapter, 

we will undertake a new study in which we calculate the energy of the field theory 

on the brane exactly, regardless of the brane's position in the bulk [4]. 

In order to emphasize the ful l generality of these results, we will allow the bulk 

black holes to couple to an electromagnetic field. We are therefore generalising from 

AdS-Schwarzschild in the bulk, to Reissner-Nordstrom AdS. We will also allow the 

brane tension to be arbitrary, thereby including both critical and non-critical branes. 
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6,2 Branes in a charge black hole background 

Consider an (n — 1) dimensional brane of tension a sandwiched in between two n 

dimensional black holes. Although our brane will be uncharged, we will allow the 

black holes to be charged. Since this means that lines of flux must not converge to 

or diverge from the brane, we must have black holes of equal but opposite charge. 

In this case, the flux lines will pass through the brane since one black hole will act 

as a source for the charge whilst the other acts as a sink. I t should be noted that 

although we do not have Z 2 symmetry across the brane for the electromagnetic field, 

the geometry is %i symmetric. 

We denote our two spacetimes by M+ and M~ for the positively and negatively 

charged black holes respectively. Their boundaries, dM+ and dM~, both coincide 

with the brane. This scenario is described by the following action: 

S = 7 7 r V / d n x y f i ( R - 2 A n - F 2 ) + -l— [ dTlxVhK 
107TLr n JM++M- 07T(_rn JdM + +dM~ 

+-r^T [ cT-1xVhFabnaAi + a [ (P^xVh, (6.1) 
47rG„ JdM++8M- Jbrane 

where gaf, is the bulk metric and hoi, is the induced metric on the brane. K is the 

trace of the extrinsic curvature of the brane, and n 0 is the unit normal to the brane 

pointing from M+ to M~'. Notice the presence of the Hawking-Ross term in the 

action (6.1) which is necessary for black holes with a fixed charge [114]. 

The bulk equations of motion which result from this action are given by 

Rab-^RQab = -K9ab + 2FacFb

c -^gabF2 (6.2) 

da{V9~Fab) = 0 (6.3) 

These admit the following 2 parameter family of electrically charged black hole 

solutions for the bulk metric 

dsn

2 = -h(Z)dt2 + + Z2d^2

n_2, (6.4) 

in which 

h(Z) = kn

2Z2 + l - ^ + ^ , (6.5) 

and the electromagnetic field strength 

F = dA where A = [ - - - £ - + $] dt and K = J2^W ^ . (6.6) 
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Recall that d£t\_2

 l s t n e metric on a unit (n — 2) sphere. kn is related to the bulk 

cosmological constant by A n = — | (n — l)(n — 2)k\, whereas c and q are constants 

of integration. If q is set to zero in this solution, we regain the AdS-Schwarzschild 

solution discussed in the last chapter, where c introduces a black hole mass. The 

presence of q introduces black hole charge for which $ is an electrostatic potential 

difference. In this general metric, h(Z) has two zeros, the larger of which, Z+, 

represents the event horizon of the black hole. 

Here, charge is a localised quantity. It can be evaluated from a surface integral 

on any closed shell wrapping the black hole (Gauss' Law). In /A± the total charge 

is 

Q = ±

( " - % n " " - \ (6.7) 

The mass of each black hole, meanwhile, is same as for the uncharged case [112]. 

Let us now consider the dynamics of our brane embedded in this background 

of charged black holes. Once again, we use the affine parameter, r to parametrise 

the brane so that it is given by the section (x^, £(r), Z(T)) of the bulk metric. The 

Israel equations for the jump in extrinsic curvature across the brane give the brane's 

equations of motion. One might suspect that the presence of the Hawking-Ross 

term in the action will affect the form of these equations. However, since the charge 

on the black holes is fixed, the flux across the brane does not vary and the Israel 

equations take their usual form 

Kab = &nhab, (6.9) 

where 

KAB = hc

ahd

bV{cnd) and na = {0,-Z,t). (6.10) 

As in the uncharged case, we also have the condition 

+ W ) = ' 1 ( 6 U ) 

This ensures that the induced metric on the brane once again takes the standard 

FRW form (3.39). Again we think of Z(T) as the scale factor on the brane, and H = 
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Z / Z , is the Hubble parameter. We find that the cosmological evolution equations 

are given by 

' = m 2

 ( 6 ' 1 2 a ) 

Let us examine these equations in more detail. Equation (6.12b) contains the cos­

mological constant term a = a2 — k2. For subcritical and critical branes, Z has a 

maximum and minimum value. For supercritical branes, we have two possibilities: 

either Z is bounded above and below or i t is only bounded below and may stretch 

out to infinity. Al l trajectories cross the horizon, except the unbounded supercritical 

one. 

Our real interest in equations (6.12b) and (6.12c), lies in understanding the c 

and q2 terms. If we take the brane to be close to the AdS boundary, we have already 

seen how the c term behaves like radiation from a dual CFT. I f we make the same 

approximations, we find that the q2 term behaves like stiff matter 1 [115]. In the 

next section we will not make any of these approximations. We wil l modify the 

Hamiltonian approach of [30] to calculate the energy density and pressure of the 

field theory on the brane exactly. 

6.3 Energy density on the brane 

Consider an observer living on the brane. He measures time using the braneworld 

coordinate, T , rather than the bulk time coordinate, t. We saw in the last chapter 

how this can affect his measurement of the energy density. Since we are trying to 

understand physics on the brane, we will calculate the energy with respect to r . 

We begin by focusing on the contribution from the positively charged black hole 

spacetime, M.+ and its boundary, dM.+. This boundary of course coincides with 

the brane. Consider the timelike vector field defined on dM+ 

Stiff matter has the equation of state PCFT KPCFT-
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ra = {0,i,Z). (6.13) 

This maps the boundary/brane onto itself, and satisfies r a V a r = 1. In principle we 

can extend the definition of r a into the bulk, stating only that i t approaches the 

form given by equation (6.13) as i t nears the brane. We now introduce a family 

of spacelike surfaces, E T , labelled by r that are always normal to r ° . This family 

provide a slicing of the spacetime, M+ and each slice meets the brane orthogonally. 

As usual we decompose ra into the lapse function and shift vector, r " = Nra + Na, 

where ra is the unit normal to E T . However, when we lie on the brane, r " is the unit 

normal to E T , because there we have the condition (6.11). Therefore, on dM.+, the 

lapse function, N = 1 and the shift vector, Na = 0. Before we consider whether or 

not we need to subtract off a background energy, let us first state that the relevant 

part of the action at this stage of our analysis is the following: 

16nGn S M + n + &irGn fdM+ + 47rG„ IdM+ ^ ^ 

As stated earlier, we do not include any contribution from M~ or dM~, nor do 

we include the term involving the brane tension. This is because we want to calculate 

the gravitational Hamiltonian, without the extra contribution of a source. The brane 

tension has already been included in the analysis as a cosmological constant term, 

and i t would be wrong to double count. 

Given the slicing E r , the Hamiltonian that we derive from I+ is given by 

H+ = — ^ - I NV. + Na/Ha - 2NATVaEa 

o7rGn ySr 

- ^ r [ iV6 + Napabnb - 2NATnaEa + 2NFabnaAb (6.15) 
° 7 T k n J S T 

where % and Ha are the Hamiltonian and momentum constraints respectively [30]. 

pab is the canonical momentum conjugate to the induced metric on E T and Ea is the 

momentum conjugate to Aa. The surface ST is the intersection of E x and the brane, 

while 0 is the trace of the extrinsic curvature of ST in E T (see figure 6.1). 
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M+ 

'x+dx 

Ex 

5 M + 

r 

J : 

Figure 6.1: Foliation of M.+ into spacelike surfaces S T . These surfaces meet the 

brane orthogonally as shown. 

Note that the momentum Ea = FaT. In particular, ET = 0 and we regard AT 

as an ignorable coordinate. We will now evaluate this Hamiltonian for the RNAdS 

spacetime described by equations (6.4), (6.5) and (6.6). Each of the constraints 

vanish because this is a solution to the equations of motion. 

H = Ha = VaEa = 0. (6.16) 

The last constraint is of course Gauss' Law. When evaluated on the surface ST, 

the potential, A = ( ~ ~z( r)n-3 + $j i dr. The important thing here is that i t only 

has components in the r direction. This ensures that the last two terms in the 

Hamiltonian cancel one another. Since N — 1 and Na = 0 on ST, it only remains to 

evaluate the extrinsic curvature ©. I f 7a6 is the induced metric on ST, i t is easy to 
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show that 

6 = 6 a 6 7

a 6 = K a b l

a h = (n - 2 ) ^ . (6.17) 

The energy is then evaluated as 

We wil l now address the issue of background energy. This is usually necessary to 

cancel divergences in the Hamiltonian. In our case, the brane cuts off the spacetime. 

I f the brane does not stretch to the AdS boundary there wil l not be any divergences 

that need to be cancelled. However i t is important to define a zero energy solution. 

In this work we will choose pure AdS space. This is because the FRW equations for 

a brane embedded in pure AdS space would include all but the holographic terms 

that appear in equations (6.12b) and (6.12c). These are the terms we are trying to 

interpret with this analysis. 

We wil l denote the background spacetime by Mo. We have chosen this to be 

pure AdS space cut off at a surface d/Ao whose geometry is the same as our brane. 

As is described in section 5.5.2, this means we have the bulk metric given by 

dZ2 

ds2 = -hAdS(Z)dT2 + —- + Z2dtln_2, (6.19) 
"•AdsyZ) 

in which 

hAds{Z) = K2Z2 + 1. (6.20) 

There is of course no electromagnetic field. The surface dAi0 is described by the 

section ( x , 1 , T ( r ) , Z ( r ) ) of the bulk spacetime. In order that this surface has the 

same geometry as our brane we impose the condition 

- h A d S ( z ) f 2 + j ^ ^ j = - 1 ( 6 - 2 1 ) 

which is analogous to the condition given in equation (6.11). 

We now repeat the above evaluation of the Hamiltonian for the background 

spacetime. This gives the following value for the background energy 
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Making use of equations (6.12a), (6.12b) and (6.21) we find that the energy of M+ 

above the background MQ is given by 

where 

Ah = h{Z) - hAdS(Z) = + (6.24) 

In this relation Ah is negative everywhere outside of the black hole horizon and so 

it is clear that E+ is positive. We now turn our attention to the contribution to the 

energy from Mr. Since the derivation of E+ saw the cancellation of the last two 

terms in the Hamiltonian (6.15) we note that the result is purely geometrical. Even 

though M+ and M~ have opposite charge, they have the same geometry and so 

E+ = E-. We deduce then that the total energy 

t-^-tsgiH1^-* <"»> 
Since the spatial volume of the braneworld V = Js = fin-2^n_2, we arrive at the 

exact expression for the energy density measured by an observer living on the brane 

where we have pulled out a factor of an. 

6.4 Pressure on the brane and equation of state 

Using equation (5.41), we can derive the pressure, p, measured on the brane: 

" ( n - l ) c 2 ( n - 2 ) g 2 1 / A / i \ ! 

Zn-i z2n~4 (6.27) 
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This is not very illuminating as i t stands. I f we take Ah/a^Z2 <C 1, we recover the 

approximate results for when the brane is near the AdS boundary: 

_ ^ ( n - 2 ) / c q2 - 2 ) / c 
?„<7„ V ^ " - 1 

(6.28a) 

Here we can clearly see how the pressure is made up of a "radiation" and a "stiff 

matter" contribution: 

p ~ _ ^ L + P s t j f f (6.29) 
n — 2 

However, the equation of state in our exact analysis is far more complicated. In the 

simpler case when q2 = 0, we can express the equation of state in the following way: 

(n - 1)<T„ 
P= ~P + (6.30) 

87rG n [ V + ( n - 2 ) a n

P ) \ L + ( n - 2 ) a n

P ) 

This simplifies to the radiation state p = ^ when p < 1. The c/Zn~l term 

that appears in the FRW equations is often referred to as the radiation term. We 

have shown that this is only true when p is small, and the brane is near to the AdS 

boundary. More generally, the equation of state is not as simple as that of radiation, 

and nor should we expect i t to be. By introducing a significant UV cut-off in our 

field theory on the brane, we have completely lost the conformal properties of the 

theory, and therefore its resemblance to radiation. 

When we consider non-zero values of q2 i t is even harder to write down an 

expression like (6.30). In the l imit of small p, we have shown that the equation of 

state simplifies to (6.29), but we cannot say much more. 

6.5 The cosmological evolution equations 

We shall now insert our expressions for the braneworld energy density (6.26) and 

pressure (6.27) into the cosmological evolution equations (6.12b) and (6.12c). We 

find 

H = a - Y 2 + - ^ 2 - p + { - ^ 2 ) P ( 6 " 3 1 a ) 

H = - A7rGnan(p + p) - (n - 2) p{p + p) (6.31b) 
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These are clearly not the standard Friedmann equations for an (n — 1) dimensional 

universe with energy density p and pressure p. This should come as no surprise. We 

have not made any approximations in arriving at these results so i t is possible that 

we would see non-linear terms. What is exciting is that the quadratic terms we see 

here have exactly the same form as the unconventional terms that we discussed in 

section 3.3.2.1. In that case, one places extra matter on the brane to discover this 

unconventional cosmology. We have no extra matter on the brane but by including 

a bulk black hole, we get exactly the same type of cosmology. Clearly there is an 

alternative description. 

We also note that in section 3.3.2.1, the energy momentum tensor on the brane 

is split between tension and additional matter in an arbitrary way. In the analysis 

we have just carried out, the tension is the only explicit source of energy momentum 

on the brane so there is no split required. With this in mind we are able to interpret 

each term in the FRW equations more confidently, in particular, the cosmological 

constant term. Furthermore, we have not yet made any assumptions on the form of 

the braneworld Newton's constant. 

Finally, we see that for small p and p, we can neglect the p2 and pp terms and 

recover the standard Friedmann equations for an (n — 1) dimensional universe: 

H = a - — + — — p (6.32) 
Z1 (n — 2)(n — 3) 

where we have taken the induced Newton's constant on the brane to be given by 

(3.13). We see, then, how the relationships noticed in sections 5.4 and 5.5 are just 

an approximation of the relationship described here. 



Chapter 7 

Discussion 

Having been on a long, and sometimes difficult journey through the braneworld, 

we might wonder whether or not such objects really exist in Nature. Moreover, 

do we actually live on a brane? I t is highly unlikely that the Randall-Sundrum 

models [19,20] accurately describe the structure of our universe. As we emphasized in 

chapter 2, these are merely toy models. Nature, meanwhile, is far more complicated 

than this. In particular, neither RSI nor RS2 includes any supersymmetry, which, 

although yet to be discovered, is commonly thought to exist. Furthermore, if we 

believe that something like M-theory represents a "theory of everything" we have to 

accept that we might have more than just five dimensions. However, despite their 

simplicity, the RS models have contributed in at least two very important ways: 

• they provide a viable "alternative to compactification". 

• they give us new tools with which to study holography and its applications. 

We will now discuss each point in turn, with emphasis on the relevance to this thesis. 

7.1 An alternative to compactification 

In chapter 1, we noted that to be consistent at a quantum level, superstring theory 

and M-theory need to live in 10 and 11 dimensions respectively. We have generally 

believed that the reason we do not see more than four dimensions is that the extra 

dimensions are very small, and we require very high energies to probe them. In 
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RS2, we have seen that generieally this need not be the case. In RS2, the extra 

dimension is infinite, and yet preliminary results suggest that an observer on the 

brane would see four-dimensional physics up to at least a few TeV. This is achieved 

in the following way: standard model fields are bound to a domain wall, or brane, 

although gravity can propagate into the bulk. The bulk geometry is warped, and 

this warp factor ensures that gravitational perturbations are damped as they move 

away from the brane. This is known as localisation of gravity. 

In this thesis, we began a study of gravity localisation at a non-perturbative 

level. In chapter 3 we discussed cosmology on the brane. The most interesting 

feature of this was the quadratic energy-momentum terms that appeared in the 

FRW equations [23,61,116]. We can neglect the effect of these terms at low density. 

However, if the universe was very small at some time, these terms become important. 

This does not disagree with the idea that extra dimensions might show up in the 

very early universe. 

We should mention at this stage that some braneworld cosmologies do not possess 

a Big Bang singularity. In chapters 5 and 6 we saw that there exist brane trajectories 

that do not pass through Z = 0, where Z is the scale factor of the brane universe. 

These "bounce" solutions are made possible by modifying the structure of the bulk 

space-time. By introducing a non-trivial Weyl tensor in the bulk we obtain "dark 

matter" terms in the FRW equations that prevent the brane from shrinking to zero 

size. We will discuss "dark matter" terms more in the section on holography. 

In chapter 4 we attacked the issue of non-perturbative gravity in a very differ­

ent way. Our approach was to place a strongly gravitating object on the brane 

and examine how that affected the geometry there. When we think of a strongly 

gravitating object, we immediately think of a black hole. However, finding a solu­

tion for a black hole bound to the brane is an outstanding problem. Instead, we 

chose to study a domain wall on the brane. This is a codimension two object living 

entirely on the brane. For this reason, we refer to i t as a vortex. Because there 

are only two dimensions transverse to the vortex, the transverse part of the bulk 

metric is conformally flat. This conformal flatness ensures that our equations of 

motion are completely integrable and we can find an exact solution for the bulk 
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geometry. Remarkably, when we examine the geometry induced on the brane we 

find that it behaves as i f there were no extra dimensions. This is one of the main 

results of this thesis: the geometry on a brane containing a vortex of tension T is 

the same as the geometry that arises from a domain wall of the same tension in 

(n — l)-dimensional Einstein gravity. In this non-perturbative example, gravity is 

localised on the brane exactly. This exactness is probably due to the high degree 

of symmetry in the problem. Nevertheless, the result has added to the claims that 

(n — 1)-dimensional gravity can be reproduced even when a large n-th dimension is 

present. 

Finally, the techniques used in this analysis opened up a number of possibilities. 

Firstly, we were able to construct nested Randall-Sundrum scenarios where the ge­

ometry on the brane is the traditional RS geometry (in (n — 1)-dimensions) and we 

live on the vortex. We could try and play the whole Randall-Sundrum game again 

and see if "an alternative to compactification" can work with two large extra di­

mensions. We might also consider the implications this has for holography although 

more on that later. We also have the tools to construct braneworld instantons. This 

means we can discuss first order phase transitions whereby a true vacuum bubble 

nucleates in a false vacuum, and then grows. In particular we have shown how one 

could start off with a de Sitter false vacuum which corresponds to an inflationary 

era. We have calculated the probability that a flat bubble universe nucleates in this 

background. The result seems to agree with [24], where we have no extra dimensions. 

7.2 A tool for holography 

We have seen how the presence of the AdS warp factor in the bulk ensures that 

gravity is localised on a braneworld. In chapter 5, we came across another important 

property of AdS space: i t can be foliated by a family of spacelike surfaces, each 

of which satisfy the holographic entropy bound. This makes AdS space a prime 

candidate for a holographic description. The first concrete example of this is the 

AdS/CFT correspondence, where we have a duality relating gravity in the bulk to 

a conformal field theory on the boundary. Specifically, type I IB superstring theory 
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on AdSs x S5 is dual to M — 4 super Yang Mills on the boundary. 

Braneworld holography is not so precise. We have Einstein gravity with a nega­

tive cosmological constant in the bulk. This is thought to be dual to a field theory 

on the brane that is cut-off in the ultra-violet. We do not know what the field theory 

is. However, whereas in the original Maldacena conjecture, gravity decouples from 

the CFT, this is not the case for the braneworld theory. Although we know very 

little about this field theory, we can use its coupling to gravity to derive some of its 

properties. To study braneworld holography we usually require two things: a FRW 

brane and a black hole in the bulk. 

The intuition is as follows: the bulk black hole emits Hawking radiation that 

heats the brane to a finite temperature. I f the braneworld theory exists, i t should 

be hot, and have a non-zero energy density and pressure. In the original work of 

Verlinde and Savonije [28], they found that we could interpret the brane cosmology 

in two different ways. Either i t is driven by the bulk black hole or i t is driven 

by a dual field theory. In the latter case, the FRW equations are those of the 

standard cosmology. I f the bulk black hole is uncharged, the field theory behaves 

like radiation. 

In chapter 5, we saw that the extension of these ideas to de Sitter and anti-de 

Sitter branes was non-trivial. We need to be careful when using our AdS/CFT 

dictionary. The method of Verlinde and Savonije was to take the black hole mass 

and calculate the energy of the dual CFT by scaling with some appropriate red-

shift. Although this method works for flat braneworlds, i t does not quite work for 

dS and AdS branes. The AdS/CFT dictionary should really state that bulk energy, 

rather than black hole mass, translates into the energy of the field theory. Since 

we have a brane present, the bulk space-time is cut-off before i t reaches the AdS 

boundary. The presence of the bulk cosmological constant ensures that this can 

affect the calculation of the bulk energy. In chapter 5, we use Euclidean quantum 

gravity techniques to calculate the bulk energy properly. We find that the bulk 

energy differs from the black hole mass in just the right way. The dual description 

described at the end of the last paragraph for flat branes carries over to de Sitter 

and anti-de Sitter branes. 
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From a phenomenological point of view, a study of the de Sitter brane is im­

portant as recent observations suggest our universe has a small positive cosmolog­

ical constant [21, 22]. However, from a holographic point of view, we might be 

more interested in the anti-de Sitter brane. We have already discussed the nested 

Randall-Sundrum scenario described in chapter 4. Perhaps in this case we could do 

holography twice and project all degrees of freedom on to the vortex. 

We could criticise this kind of braneworld holography for being too imprecise. 

However, in chapter 6 we saw that we can actually do much more exact calculations. 

In the approximate braneworld holography of chapter 5, we assumed that the brane 

was close to the AdS boundary. We can relax this assumption if we use a hamiltonian 

approach to calculate the energy on the brane. By allowing the brane trajectory to 

move far away from the boundary, we can see the effect of the UV cut-off in the dual 

field theory. Although the field theory is nowhere near being conformal, braneworld 

holography survives. This is another very important result of this thesis. I t enables 

us to make the following exact statement: 

The cosmological evolution equations on the brane have the same form whether 

we have 

(i) a black hole in the bulk with no additional matter on the brane. 

or (ii) no bulk black hole with additional matter placed on the brane by hand. 

For case (ii), we saw in chapter 3 how the evolution equations contain quadratic 

energy density/pressure terms. When we calculate the energy density/pressure of 

the dual field theory in (i) we find that they contribute to the evolution equations in 

exactly the same way. A braneworld observer cannot tell whether the energy that 

drives his cosmology comes from additional brane matter or a bulk black hole. In 

this way, the bulk black hole behaves like "dark matter" on the brane: you cannot 

see i t , but you can tell i t is there. 



Bibliography 

[1] R. Gregory and A. Padilla, "Nested braneworlds and strong brane gravity," 

Phys. Rev. D65 (2002) 084013, hep-th/0104262. 

[2] R. Gregory and A. Padilla, "Braneworld instantons," Class. Quant. Grav. 19 

(2002) 279-302, hep-th/0107108. 

[3] A. Padilla, "CFTs on non-critical braneworlds," Phys. Lett. B528 (2002) 

274-282, hep-th/0111247. 

[4] J. P. Gregory and A. Padilla, "Exact braneworld cosmology induced from 

bulk black holes," Class. Quant. Grav. 19 (2002) 4071-4083, 

hep-th/0204218. 

[5] J. Kepler, "Mysterium Cosmographium (The Secret of the Universe),", 

trans. A, M . Duncan, (Abaris Books, New York, 1981), ch. 2. 

[6] God, "The Bible," Dead Sea Scrolls (circa. 50 A.D). 

[7] A. Einstein, "On the electrodynamics of moving bodies," Annalen Phys. 17 

(1905) 891-921. 

[8] H. Minkowski, "Raum und Zeit," Physik. Zeits. (Leipzig) 10 (1909) 104. 

[9] T. Kaluza, "On the problem of unity in physics," Sitzungsber. Preuss. Akad. 

Wiss. Berlin (Math. Phys. ) K l (1921) 966-972. 

[10] O. Klein, "Quantentheorie und funfdimensionale Relativitatstheorie," Zeits. 

Phys. 37 (1926) 895. 

114 



Bibliography 115 

[11] O. Klein, "The atomicity of electricity as a quantum theory law," Nature 

118 (1926) 516. 

[12] J. M . Overduin and P. S. Wesson, "Kaluza-Klein gravity," Phys. Rept. 283 

(1997) 303-380, gr-qc/9805018. 

[13] A. Einstein, "The Foundation of the General Theory of Relativity," Annalen 

Phys. 49 (1916) 769-822. 

[14] E. Witten, "String theory dynamics in various dimensions," Nucl. Phys. 

B443 (1995) 85-126, hep-th/9503124. 

[15] J. H. Schwarz, "The power of M theory," Phys. Lett. B367 (1996) 97-103, 

hep-th/9510086. 

[16] M. J. Duff, " M theory (the theory formerly known as strings)," Int. J. Mod. 

Phys. A l l (1996) 5623-5642, hep-th/9608117. 

[17] V. A. Rubakov and M. E. Shaposhnikov, "Do we live inside a domain wall?," 

Phys. Lett. B125 (1983) 136-138. 

[18] K. Akama, "An early proposal of 'brane world'," Lect. Notes Phys. 176 

(1982) 267-271, hep-th/0001113. 

[19] L. Randall and R. Sundrum, "A large mass hierarchy from a small extra 

dimension," Phys. Rev. Lett. 83 (1999) 3370-3373, hep-ph/9905221. 

[20] L. Randall and R. Sundrum, "An alternative to compactification," Phys. 

Rev. Lett. 83 (1999) 4690-4693, hep-th/9906064. 

[21] Supernova Cosmology Project Collaboration, S. Perlmutter et. al., 

"Measurements of omega and lambda from 42 high-redshift supernovae," 

Astrophys. J. 517 (1999) 565-586, astro-ph/9812133. 

[22] Supernova Search Team Collaboration, A. G. Riess et. al., "Observational 

evidence from supernovae for an accelerating universe and a cosmological 

constant," Astron. J. 116 (1998) 1009-1038, astro-ph/9805201. 



Bibliography 116 

[23] T. Shiromizu, K.- i . Maeda, and M . Sasaki, "The Einstein equations on the 

3-brane world," Phys. Rev. D62 (2000) 024012, gr-qc/9910076. 

[24] S. R. Coleman and F. De Luccia, "Gravitational effects on and of vacuum 

decay," Phys. Rev. D21 (1980) 3305. 

[25] J. Maldacena, "The large N l imit of superconformal field theories and 

supergravity," Adv. Theor. Math. Phys. 2 (1998) 231-252, hep-th/9711200. 

[26] E. Witten, "Anti-de sitter space and holography," Adv. Theor. Math. Phys. 

2 (1998) 253-291, hep-th/9802150. 

[27] S. S. Gubser, I . R. Klebanov, and A. M . Polyakov, "Gauge theory correlators 

from non-critical string theory," Phys. Lett. B428 (1998) 105-114, 

hep-th/9802109. 

[28] I . Savonije and E. Verlinde, "CFT and entropy on the brane," Phys. Lett. 

B507 (2001) 305-311, hep-th/0102042. 

[29] E. Witten, "Anti-de Sitter space, thermal phase transition, and confinement 

in gauge theories," Adv. Theor. Math. Phys. 2 (1998) 505-532, 

hep-th/9803131. 

[30] S. W. Hawking and G. T. Horowitz, "The Gravitational Hamiltonian, action, 

entropy and surface terms," Class. Quant. Grav. 13 (1996) 1487-1498, 

gr-qc/9501014. 

[31] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, "The hierarchy problem 

and new dimensions at a millimeter," Phys. Lett. B429 (1998) 263-272, 

hep-ph/9803315. 

[32] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, "Phenomenology, 

astrophysics and cosmology of theories with sub-millimeter dimensions and 

TeV scale quantum gravity," Phys. Rev. D59 (1999) 086004, 

hep-ph/9807344. 



Bibliography 117 

[33] I . Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, "New 

dimensions at a millimeter to a fermi and superstrings at a TeV," Phys. Lett. 

B436 (1998) 257-263, hep-ph/9804398. 

[34] P. Horava and E. Witten, "Heterotic and type I string dynamics from eleven 

dimensions," Nucl. Phys. B460 (1996) 506-524, hep-th/9510209. 

[35] P. Horava and E. Witten, "Eleven-dimensional supergravity on a manifold 

with boundary," Nucl. Phys. B475 (1996) 94-114, hep-th/9603142. 

[36] A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, "The universe as a 

domain wall," Phys. Rev. D59 (1999) 086001, hep-th/9803235. 

[37] M . J. Duff, J. T. Liu, and K. S. Stelle, "A supersymmetric type I IB 

Randall-Sundrum realization," J. Math. Phys. 42 (2001) 3027-3047, 

hep-th/0007120. 

[38] C. Charmousis, R. Gregory, and V. A. Rubakov, "Wave function of the 

radion in a brane world," Phys. Rev. D62 (2000) 067505, hep-th/9912160. 

[39] L. Pilo, R. Rattazzi, and A. Zaffaroni, "The fate of the radion in models 

with metastable graviton," JHEP 07 (2000) 056, hep-th/0004028. 

[40] J. Garriga and T. Tanaka, "Gravity in the brane-world," Phys. Rev. Lett. 84 

(2000) 2778-2781, hep-th/9911055. 

[41] W. Israel, "Singular hypersurfaces and thin shells in general relativity," 

Nuovo Cim. B44S10 (1966) 1. 

[42] G. R. Dvali, G. Gabadadze, and M. Porrati, "Metastable gravitons and 

infinite volume extra dimensions," Phys. Lett. B484 (2000) 112-118, 

hep-th/0002190. 

[43] H. van Dam and M. J. G. Veltman, "Massive and massless yang-mills and 

gravitational fields," Nucl. Phys. B22 (1970) 397-411. 

[44] V. I . Zakharov JETP Lett. 12 (1970) 312. 



Bibliography 118 

[45] G. R. Dvali, G. Gabadadze, and M . Porrati, "A comment on brane bending 

and ghosts in theories with infinite extra dimensions," Phys. Lett. B484 

(2000) 129-132, hep-th/0003054. 

[46] S. B. Giddings, E. Katz, and L. Randall, "Linearized gravity in brane 

backgrounds," JHEP 03 (2000) 023, hep-th/0002091. 

[47] C. Csaki, J. Erlich, and T. J. Hollowood, "Graviton propagators, brane 

bending and bending of light in theories with quasi-localized gravity," Phys. 

Lett. B481 (2000) 107-113, hep-th/0003020. 

[48] J. Lykken and L. Randall, "The shape of gravity," JHEP 06 (2000) 014, 

hep-th/9908076. 

[49] N. Kaloper, "Bent domain walls as braneworlds," Phys. Rev. D60 (1999) 

123506, hep-th/9905210. 

[50] H. B. Kim and H. D. Kim, "Inflation and gauge hierarchy in randall-sundrum 

compactification," Phys. Rev. D61 (2000) 064003, hep-th/9909053. 

[51] T. Nihei, "Inflation in the five-dimensional universe with an orbifold extra 

dimension," Phys. Lett. B465 (1999) 81-85, hep-ph/9905487. 

[52] A. Karch and L. Randall, "Locally localized gravity," JHEP 05 (2001) 008, 

hep-th/0011156. 

[53] U. Gen and M. Sasaki, "Radion on the de Sitter brane," Prog. Theor. Phys. 

105 (2001) 591-606, gr-qc/0011078. 

[54] I . Brevik, K. Ghoroku, S. D. Odintsov, and M. Yahiro, "Localization of 

gravity on brane embedded in AdS(5) and dS(5)," hep-th/0204066. 

[55] C. Csaki, J. Erlich, and C. Grojean, "Gravitational lorentz violations and 

adjustment of the cosmological constant in asymmetrically warped 

spacetimes," Nucl. Phys. B604 (2001) 312-342, hep-th/0012143. 



Bibliography 119 

[56] C. Csaki, J. Erlich, and C. Grojean, "Essay on gravitation: The cosmological 

constant problem in brane-worlds and gravitational lorentz violations," Gen. 

Rel. Grav. 33 (2001) 1921-1928, gr-qc/0105114. 

[57] T. Gherghetta and M. E. Shaposhnikov, "Localizing gravity on a string-like 

defect in six dimensions," Phys. Rev. Lett. 85 (2000) 240-243, 

hep-th/0004014. 

[58] T. Gherghetta, E. Roessl, and M. E. Shaposhnikov, "Living inside a 

hedgehog: Higher-dimensional solutions that localize gravity," Phys. Lett. 

B491 (2000) 353-361, hep-th/0006251. 

[59] E. Ponton and E. Poppitz, "Gravity localization on string-like defects in 

codimension two and the AdS/CFT correspondence," JHEP 02 (2001) 042, 

hep-th/0012033. 

[60] R. M. Wald, "General Relativity," The University of Chicago Press (1984) 

ch. 10. 

[61] P. Binetruy, C. Deffayet, and D. Langlois, "Non-conventional cosmology 

from a brane-universe," Nucl. Phys. B565 (2000) 269-287, hep-th/9905012. 

[62] G. D. Birkhoff, "Relativity and Modern Physics," Harvard University Press 

(1923). 

[63] K. A. Bronnikov and V. N. Melnikov, "The Birkhoff theorem in 

multidimensional gravity," Gen. Rel. Grav. 27 (1995) 465-474, 

gr-qc/9403063. 

[64] P. Bowcock, C. Charmousis, and R. Gregory, "General brane cosmologies 

and their global spacetime structure," Class. Quant. Grav. 17 (2000) 

4745-4764, hep-th/0007177. 

[65] A. H. Taub, "Empty space-times admitting a three parameter group of 

motions," Annals Math. 53 (1951) 472-490. 



Bibliography 120 

[66] R.-G. Cai and K.-S. Son, "Topological black holes in the dimensionally 

continued gravity," Phys. Rev. D59 (1999) 044013, gr-qc/9808067. 

[67] C. Charmousis and J.-F. Dufaux, "General Gauss-Bonnet brane cosmology," 

hep-th/0202107. 

[68] D. Ida, "Brane-world cosmology," JHEP 09 (2000) 014, gr-qc/9912002. 

[69] P. Kraus, "Dynamics of anti-de sitter domain walls," JHEP 12 (1999) 011, 

hep-th/9910149. 

[70] R. Gregory, V. A. Rubakov, and S. M. Sibiryakov, "Opening up extra 

dimensions at ultra-large scales," Phys. Rev. Lett. 84 (2000) 5928-5931, 

hep-th/0002072. 

[71] T. Chiba, "Scalar-tensor gravity in two 3-brane system," Phys. Rev. D62 

(2000) 021502, gr-qc/0001029. 

[72] R. Emparan, G. T. Horowitz, and R. C. Myers, "Exact description of black 

holes on branes," JHEP 01 (2000) 007, hep-th/9911043. 

[73] J. R. Morris, "Nested domain defects," Int. J. Mod. Phys. A13 (1998) 

1115-1128, hep-ph/9707519. 

[74] J. R. Morris, "Domain defects in strings and walls," Phys. Rev. D51 (1995) 

697-702. 

[75] D. Bazeia, R. F. Ribeiro, and M. M. Santos, "Topological defects inside 

domain walls," Phys. Rev. D54 (1996) 1852-1855. 

[76] D. Bazeia, H. Boschi-Filho, and F. A. Brito, "Domain defects in systems of 

two real scalar fields," JHEP 04 (1999) 028, hep-th/9811084. 

[77] J. D. Edelstein, M. L. Trobo, F. A. Brito, and D. Bazeia, "Kinks inside 

supersymmetric domain ribbons," Phys. Rev. D57 (1998) 7561-7569, 

hep-th/9707016. 



Bibliography 121 

[78] H. A. Chamblin and H. S. Reall, "Dynamic dilatonic domain walls," Nucl. 

Phys. B562 (1999) 133-157, hep-th/9903225. 

[79] J. Khoury, P. J. Steinhardt, and D. Waldram, "Inflationary solutions in the 

brane world and their geometrical interpretation," Phys. Rev. D63 (2001) 

103505, hep-th/0006069. 

[80] I . I . Kogan, S. Mouslopoulos, and A. Papazoglou, "A new bigravity model 

with exclusively positive branes," Phys. Lett. B501 (2001) 140-149, 

hep-th/0011141. 

[81] M. D. Schwartz, "The emergence of localized gravity," Phys. Lett. B502 

(2001) 223-228, hep-th/0011177. 

[82] G. W. Gibbons, "Global structure of supergravity domain wall space-times," 

Nucl. Phys. B394 (1993) 3-20. 

[83] M. Cvetic, S. Griffies, and H. H. Soleng, "Local and global gravitational 

aspects of domain wall space-times," Phys. Rev. D48 (1993) 2613-2634, 

gr-qc/9306005. 

[84] A. Vilenkin, "Gravitational field of vacuum domain walls and strings," Phys. 

Rev. D23 (1981) 852-857. 

[85] P. Laguna and D. Garfinkle, "Space-time of supermassive U( l ) gauge cosmic 

strings," Phys. Rev. D40 (1989) 1011-1016. 

[86] J. Ipser and P. Sikivie, "The gravitationally repulsive domain wall," Phys. 

Rev. D30 (1984) 712. 

[87] G. W. Gibbons and S. W. Hawking, "Action integrals and partition 

functions in quantum gravity," Phys. Rev. D15 (1977) 2752-2756. 

[88] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, "The ekpyrotic 

universe: Colliding branes and the origin of the hot big bang," Phys. Rev. 

D64 (2001) 123522, hep-th/0103239. 



Bibliography 122 

[89] A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, "Heterotic M-theory 

in five dimensions," Nucl. Phys. B552 (1999) 246-290, hep-th/9806051. 

[90] G. T. Horowitz and R. C. Myers, "The AdS/CFT correspondence and a new 

positive energy conjecture for general relativity," Phys. Rev. D59 (1999) 

026005, hep-th/9808079. 

[91] M . Abramowitz and I . A. Stegun, "Handbook of mathematical functions," 

Dover (1972) ch. 17. 

[92] G. ' t Hooft, "Dimensional reduction in quantum gravity," gr-qc/9310026. 

[93] L. Susskind, "The world as a hologram," J. Math. Phys. 36 (1995) 

6377-6396, hep-th/9409089. 

[94] J. D. Bekenstein, "Black holes and the second law," Nuovo Cim. Lett. 4 

(1972) 737-740. 

[95] J. D. Bekenstein, "Black holes and entropy," Phys. Rev. D7 (1973) 

2333-2346. 

[96] J. D. Bekenstein, "Generalized second law of thermodynamics in black hole 

physics," Phys. Rev. D9 (1974) 3292-3300. 

[97] S. W. Hawking, "Black hole explosions," Nature 248 (1974) 30-31. 

[98] S. W. Hawking, "Particle creation by black holes," Commun. Math. Phys. 

43 (1975) 199-220. 

[99] S. W. Hawking, "Breakdown of predictability in gravitational collapse," 

Phys. Rev. D14 (1976) 2460-2473. 

[100] R. Bousso, "Holography in general space-times," JHEP 06 (1999) 028, 

hep-th/9906022. 

[101] D. Bigatti and L. Susskind, "TASI lectures on the holographic principle," 

hep-th/0002044. 

[102] R. Bousso, "The holographic principle," hep-th/0203101. 



Bibliography 123 

[103] C. V. Johnson, "D-brane primer," http://arXiv .org/abs/hep-th/0007170. 

[104] G. T. Horowitz and A. Strominger, "Black strings and P-branes," Nucl. 

Phys. B360 (1991) 197-209. 

[105] G. 't Hooft, "A planar diagram theory for strong interactions," Nucl. Phys. 

B72 (1974) 461. 

[106] L. Susskind and E. Witten, "The holographic bound in anti-de Sitter space," 

hep-th/9805114. 

[107] S. S. Gubser, I . R. Klebanov, and A. W. Peet, "Entropy and temperature of 

black 3-branes," Phys. Rev. D54 (1996) 3915-3919, hep-th/9602135. 

[108] S. S. Gubser, I . R. Klebanov, and A. A. Tseytlin, "Coupling constant 

dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills 

theory," Nucl. Phys. B534 (1998) 202-222, hep-th/9805156. 

[109] E. D'Hoker and D. Z. Freedman, "Supersymmetric gauge theories and the 

AdS/CFT correspondence," hep-th/0201253. 

[110] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, "Large N 

field theories, string theory and gravity," Phys. Rept. 323 (2000) 183-386, 

hep-th/9905111. 

[ I l l ] S. S. Gubser, "AdS/CFT and gravity," Phys. Rev. D63 (2001) 084017, 

hep-th/9912001. 

[112] S. W. Hawking and D. N. Page, "Thermodynamics of black holes in anti-de 

Sitter space," Commun. Math. Phys. 87 (1983) 577. 

[113] B. Wang, E. Abdalla, and R.-K. Su, "Friedmann equation and cardy formula 

correspondence in brane universes," hep-th/0106086. 

[114] S. W. Hawking and S. F. Ross, "Duality between electric and magnetic black 

holes," Phys. Rev. D52 (1995) 5865-5876, hep-th/9504019. 

http://arXiv.org/abs/hep-th/0007170


Bibliography 124 

[115] A. K. Biswas and S. Mukherji, "Holography and stiff-matter on the brane," 

JHEP 03 (2001) 046, hep-th/0102138. 

[116] P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, "Brane cosmological 

evolution in a bulk with cosmological constant," Phys. Lett. B477 (2000) 

285-291, hep-th/9910219. 

[117] M . Abramowitz and I . A. Stegun, "Handbook of mathematical functions," 

Dover (1972) ch. 9. 



Appendix A 

Detailed Calculations 

A . l Green's function in RS2 

In order to construct the ful l Green's function in the RS2 model, we will use Sturm 

Liouville theory techniques. We begin by reintroducing the negative tension brane 

at z = zc so that i t acts as a regulator, and an additional boundary condition is 

imposed 

(dz + 2k) _ V = ° (A.1.1) 
z=zc 

This places new constraints on the (regulated) Green's function so we modify equa­

tion (2.25) appropriately 

(A.1.2) 

We now take Fourier transforms with respect to x^, 

[-e 2 f c | V + d2

z- 4k2 + 4kS(z) - 4k5(z - zc)] GR(p; z, z') = 6(z - z') (A. 1.3) 

where 

GR(p; z, z') = J d'xe-^-^Gnix, z; x', z'). (A.1.4) 

For z ^ z\ the Green's function satisfies the following Sturm Liouville equation 

(d2

z - 4k2) GR = p2e2k^GR (A.1.5) 

with boundary conditions 

{dz + 2k) GR = 0, (dz + 2k) GR = 0 (A.1.6) 
Z=0+ Z = Z C 
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We wish to find eigenstates, um(z), for this problem, with eigenvalues p2 — —m2. 

The zero mode eigenstate is trivially given by 

u0(z) = N0e~2kW (A.1.7) 

where N0 is some normalisation constant. Note that we have inserted the Z 2 sym­

metry about z = 0 explicitly. In order to determine the massive eigenstates we 

will change variables to y = mek^/k, so that equation (A.1.5) is transformed into 

Bessel's equation with n = 2 [117] 

[y2d2

y+ydy + (y2-4)]GR = 0 (A.1.8) 

with boundary conditions 

(ydy + 2) GR = 0, (ydy + 2) GR = 0 (A.1.9) 
y=m/k y=yc 

where yc = mekz°/k. Equation (A.1.8) has solutions J2(y) and Y2(y) which satisfy 

the following recurrence relations [117] 

(ydv + 2) J2(y) = yJx{y), (ydy + 2) Y2(y) = yY^y) (A.1.10) 

We deduce then that the massive eigenstates are given by 

um(z) = Nm [Mm/kWy) - Y^m/k) J2(y)} ( A . l . l l ) 

where Nm is the normalisation constant. Note that the boundary condition at 

y = yc (z — zc) is only satisfied for quantised values of m satisfying the following 

condition 

^ ( m / ^ y ^ m e ^ / f c ) - Y^m/k) J^me^/k) = 0 (A.1.12) 

For large z, the asymptotic behaviour of Bessel's functions is given by 

T / kzn\ 2ke~kz (mekz nir ir\ 
Jn(meKz k) ~ \ cos — 

v ' ' V nm \ k 2 A) 

„ r / fcz/,x l2ke~kz . (mekz w r 7r\ / 4 , „ „ , 

As we send the regulator brane towards infinity (zc —>• oo), equations (A.1.12) and 

(A. 1.13) imply that m is quantised in units of irke~kZc. The normalisation constants, 

meanwhile, are determined by the following normalisation condition 

C dz e2k^um(z)un(z) = 5mn. (A.1.14) 
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For the zero mode, i t is easy to see that this gives 

A^ = j f e ( l - e - 2 * * c ) _ 1 (A.l.15) 

The normalisation for the heavy modes is less obvious. However, we note that for 

large zc, the dominant contribution to the integral (A.1.14) lies near \z\ = zc. Using 

the asymptotic behaviour (A. 1.13) we find that 

jV 2 = ^ e - * * c [Jxim/kf + Yiim/k)2]-1 + 0 (e" 2 f c Z c ) (A.1.16) 

The (Fourier transformed) Green's function satisfies 

(a 2 - 4A;2 - p2e2kW) GR = 6{z - z') (A.1.17) 

and can be expressed in terms of the complete set of eigenstates, { u m ( z ) } . 

G R ( P I J ) = ^ J A ^ l _ y ; (A.i.is) 

m 

where we ensure p2 ^ —m2 by adding a small imaginary part in the "time" direction, 

ie. p* = (co + ie, p). We now remove the regulator brane completely by sending 

zc —̂  oo. The quantisation in m disappears and we go to a continuum limit, replacing 

the sum in equation (A. 1.18) with the following integral 

£ u ^ u - [ z n > _ > T d m l im — V ( u ^ u - [ z ' ) ) ( A . L 1 9 ) 

ml + p1 J0 z c ^ o o *Kke~KZc \ ml +pr J 

The extra term appearing in the integral is just a "density of states" factor that 

will cancel the vanishing part of the normalisation constant. Inverting the Fourier 

transform (A. 1.4), we find that the full Green's function is given by 

e-2k(\z\+W\)k ,00 V m { z ) v m { Z ' ) 
GR(x,z;x',z') = - / jTT^e'W x > —— . - 2 + dm 

J (2TT) 4 p 2 - (u + it)2 J0 m2 + p2
 — (u + ie)2 

(A.1.20) 

where 

Jm~j2h [Jx{mlk)Y2{mek^/k) - Yl(m/k)J2(mek^/k)] 
vm{z) = . = - . (A.1.21) 

Finally we should note that we did not include eigenstates satisfying p2 = m 2 > 0. 

These would be linear combinations of "modified" Bessel's functions, but would not 

be normalisable and are therefore omitted. 
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A.2 Warp factor around non-critical branes 

Given the ansatz (2.49) we need to solve the bulk equations of motion with cosmo-

logical constant, A = —6A;2. Our solution must then satisfy the boundary conditions 

imposed at the brane of (positive) tension a, sitting at z = 0. 

The bulk equations of motion are just given by the Einstein equations with the 

appropriate cosmological constant. 

Rab - \R9ab = -A9ab (A.2.22) 

I f we define A to be the cosmological constant on the brane, this gives 

A / o' \ 2 a" 
liv equation : ——31 — ) = -4k2, (A.2.23) 

a2 \ a ) a 
a" 

zz equation: - 4 — = -4k2. (A.2.24) 
a 

where 'prime' denotes differentiation with respect to z. These equations have three 

classes of solutions, depending on whether A is positive, negative or zero. 

A > 0 : a(z) = ^yj^sinh(±kz + c) (A.2.25) 

A = 0 : a(z) = e ± k z + c (A.2.26) 

A < 0 : a(z) = ~ cosh{±kz + c) (A.2.27) 

where c is a constant of integration. 

The boundary conditions are given by the Israel junction conditions [41] at the 

brane. 

AKab = - ^ a g 0 a b (A.2.28) 

where g0ab is the induced metric on the brane. Given our ansatz (2.49) and the fact 

that we have Z 2 symmetry across the brane, we find that 

4 T T G S a i7i 
a z=o+ 3 

Since we are assuming a > 0 we find that we are left with 

A > 0 : a{z) 
1 

~ ifc 
y^s inh(- fc |z | + c) 

A = 0 : a(z) = e~ •k\z\+c 

A < 0 : a{z) 
_ 1 
~ k 

y-^cosh(-fc|2| + c) 

(A.2.29) 

(A.2.30) 

(A.2.31) 

(A.2.32) 

file:///R9ab
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with the following conditions 

A > 0 : <r = A;cothc>fc (A.2.33) 

A = 0 : a = k (A.2.34) 

A < 0 : cr = k tanh c < k (A.2.35) 

where a = 47TG!5<T/3. We are also free to set a(0) = 1 in each case giving 

A > 0 : fc = y^sinhc (A.2.36) 

A = 0 : c = 0 (A.2.37) 

A < 0 : k= y-^coshc (A.2.38) 

Equations (A.2.33) to (A.2.38) fix the cosmological constant on the brane to be 

A = 3(a 2 - k2) (A.2.39) 

with the final solutions given by equations (2.50),(2.51) and (2.52). 

A.3 Extrinsic curvature of a dynamic brane 

Suppose we have a bulk spacetime whose metric is given by 

rl72 

ds2

n = -h(Z)2dt2 + + Z2dx2

K (A.3.40) 
h{Z) 

cut off at a brane given by the section 

X a = (x",t(T),Z(T)) (A.3.41) 

where r is the proper time for an observer comoving with the brane. This gives the 

condition 
Z2 

-hi2 + — = -l (A.3.42) 

so that the induced metric on the brane is given by equation (3.39). Now suppose 

the normal to the brane is defined as 

n, a = = e ( 0 , - Z ( r ) , t ( r ) ) (A.3.43) 
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and define the extrinsic curvature of the brane to be Kab 

find that 

The components of d/dr are given by 

hc

ahd

bV{cnd). We first 

(A.3.44) 

(A.3.45) 

which is normal to na. The last non-zero component of the extrinsic curvature is 

then 

KTT = TaTbVanb = - T a n b V a T b = -nc(ic + rc

abTaTb) b _ 

= eZ t + - t z 
h 

- et 

ehi 

where we have used equation (A.3.42). 

(A.3.46) 

A.4 Probability of bubble nucleation on the brane 

In section 4.4 we calculated the probability of bubble nucleation in a number of 

braneworld situations. The details of these calculations are remarkably similar for 

both the flat bubble and the AdS bubble. In this section we shall present the 

calculation for the flat bubble spacetime forming in a de Sitter false vacuum. 

Consider now equations (4.52a-d). Our solution satisfies the equations of motion 

both in the bulk and on the brane. The bulk equations of motion are just the 

Einstein equations (in Euclidean signature) with a negative cosmological constant: 

1 
Rab ~ yRdab = — A„pa6 

from which we can quickly obtain 

R - 2A n = 4A n 

n - 2 
- 2 ( n - l)kl 

(A.4.47) 

(A.4.48) 

where we have used the relation (4.12). The brane equations of motion are just the 

Israel equations given that we have a brane tension and a nested domain wall: 

AKab - AKhab = 8irGnahab + 8TrGnfJ,S(Q'yab (A.4.49) 
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where a is a ! l a t and a48 on the flat and de Sitter branes respectively. We can 

therefore read off the following expression: 

AK = -2 (n - I K - M ( C ) (A.4.50) 

where we have also used (3.15) and nn — &irGnp,. We are now ready to calculate 

the action. Inserting (A.4.48) and (A.4.50) in (4.52), we immediately see that the 

contribution from the vortex is cancelled off by the delta function in the extrinsic 

curvature and we are left with 

I fiat 
^bounce — 16nG n Jbulk l O ^ n J / i a t l07TG„ J d s 

(A.4.51) 

The expression for 5 / a / s e is similar except that there is of course no flat brane 

contribution and the limits for the bulk and de Sitter brane integrals run over the 

whole of the de Sitter sphere interior and surface respectively. 

Working in Euclidean conformal coordinates {i.e., the metric (4.18) rotated to 

Euclidean signature) the bulk measure is simply 

nn-2 
-dudpd£ln-2 (A.4.52) 

{knu)n 

where df2n_2 is the measure on a unit n — 2 sphere. From (4.20) and (4.55), the de 

Sitter brane is given by 

(u - UQ)2 + (? -u\ 

so the induced metric on this brane is given by: 

2 

(A.4.53) 

1 
k1u2 

( knu0 V 
\afp(u)J 

du2 + p(u)2dQl_2 (A.4.54) 

where p(u) is given in (4.55c). As we did for the bulk, we can now read off the de 

Sitter brane measure: 

Vhdn~lx = m / , v \ , durff i n _2 . 
[knu)n-1 

(A.4.55) 

Now consider the flat brane. This is given by u = uc where uc is given by (4.55a), 

and the measure can be easily seen to be 

r.n-2 
VhcT-'x = 9 . , dpdnn-2. {knuc)n-1 

(A.4.56) 
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Now we are ready to evaluate the probability term B = Sbounce ' Sfalse- Given 

each of the measures we have just calculated and taking care to get the limits of 

integration right for both the bounce action and the false vacuum action, we arrive 

at the following expression: 

167rGn 7 U o _ U l Jo {knu)n 

4aflat pn~2 AadS fUc p ( u ) n _ 3 

" l e f e ^ - 2 X d p J k ^ + Te£rn

Qn-2 i u o _ u l
 d u U l V ^ 

(A.4.57) 

We should note that we have a factor of two in the bulk part of the above equation 

arising from the fact that we have two copies of the bulk spacetime. I f we use the 

fact that: 

p(uc) = 7 ^ cos Co (A.4.58) 

along with o£at = kn and equation (4.55b), we can simplify (A.4.57) to arrive at 

equation (4.53). 

A.5 Limits and measures for action integrals 

Let us consider in more detail each contribution to the action integrals given in 

equations (5.68) and (5.69). We will start by looking at the bulk integral for the 

black hole action: 

f = f dnXy/g{R-2Kn) (A.5.59) 
J bulk J bulk 

From equation (5.72), we see that R — 2An is constant and so does not cause us any 

problems. Given that the AdS-Schwarzschild bulk is cut off at the brane, Z(TE), 

and the horizon, Z#, we find that: 

r /*§ PZ(TE) />§ 7 ( T \n—l _ yn—\ 

\ = 2 f i n _ 2 / dtE / dZ Zn-2(R-2An) = 2 f i n _ 2 / —H-(R-2Kn) 
Jbuik J-§ J z H J - \ n - 1 

(A.5.60) 
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which is just equation (5.75). The factor of two comes in because we have two copies 

of AdS-Schwarzschild. The factor of f 2 n _ 2 just comes from integrating out / df2 n _ 2 . 

We now turn our attention to the bulk integral for the reference action: 

f = I dnxy/g{R-2Kn) (A.5.61) 
J ref. bulk J ref. bulk 

Again, R — 2A n is constant and does not worry us. This time the AdS bulk is cut 

off at S (given by Z = Z(TE)), and at Z = 0. The periodicity of the T coordinate 

is P' rather than /?. The bulk integral for the reference action is then: 

\ = 2 f t n _ 2 dT dZ Zn-2(R-2Kn) = 2 f t n _ 2 / V m ( f l - 2 A n ) 
Jref.bulk J-SL Jo J-SL n - 1 

(A.5.62) 

(3' is fixed by the condition that the geometry of £ and the brane should be the 

same. This just amounts to saying that T - 1 ( ± ^ - ) = ± T m a x = ^ 1 ( ± | ) where 

—Tmax < T~E < T m a x on both E and the brane. As illustrated below by changing 

coordinates to TE and then we arrive at equation (5.76): 

J ref. bulk J - r m a x

 A T E Tl - I 

= 2 f i n _ 2 d t E

d ^ ^ ^ ^ { R - 2 K ) (A.5.63) 
J-l dtE drE n-1 

Consider now the brane integral: 

/ = j dn~xxVh2K (A.5.64) 
J brane J brane 

We wil l use the coordinate TE to begin with and then change to t E , thus arriving at 

equation (5.77): 

f = nn_2 [ T m a Z drE Z(rE)n~2 2K = 0 „ _ 2 [* d t E ^ Z ( r E ) n - 2 2K (A.5.65) 
J brane J - T M A X J - \ M E 

The procedure for arriving at equation (5.78) is exactly the same, owing to the fact 

that E and the brane have the same geometry. 
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A.6 Justifying Z(TE) ^> c^r in large c limit 

Let us consider the claim made in section 5.5.2 that for most brane solutions, 

Z(TE) ~> c ^ i in the large c limit. The governing equation for the branes in Eu­

clidean AdS-Schwarzschild is given by equation (5.62): 

(0 = - f l Z 2 + 1 - z ^ ™ 
Now in each case, Z > Zmin where Z m i n is the minimum value of Z on the brane. I t 

is sufficient to show that Z m i n » c » = i . At Z = Z m i n , = 0. For a = 0, we have: 

^min = C ^ 5 > C ^ T (A.6.67) 

For a > 0, we have: 

Zmin > > (A.6.68) 

We see that our claim holds for supercritical and critical branes. For subcritical 

branes with a < 0 we need to be more careful. Zmin satisfies: 

3£?tt + W ^ u J = c (A.6.69) 

I f Z2

min < H - 1 then Z m i n « c ^ a . I f Z m i „ ~ |a|- x then (1 + | a | ^ J ~ c° and 

therefore Z m i n ~ c ^ a . In each case we have Zmin » c ^ . Finally, when Z^in » 

H"1: 

( H ) 
n - 1 

(A.6.70) 

Provided \a\ «C 1 we can say: 

Zmin > (A.6.71) 

We see, therefore that the claim made in section 5.5.2 was indeed valid: Z(TE) ^> 

c^ r for subcritical branes with \a\ <C 1 and all supercritical and critical branes. 


