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Abstract 

Abstract 

The mannose-binding lectin from snowdrop (Galanthus nivalis agglutinin; GNA) was 

produced in Escherichia coli and purified as a functional protein after 

denturation/renaturation. Incorporation of the four extra C-terminal residues recendy 

revealed from X-ray crystallographic data demonstrated that these residues increase 

binding to the glycoprotein carboxypeptidase Y. However, no differences in activities 

were observed in haemagglutination assays when compared to native GNA and 

toxicity towards rice brown planthopper {Nilaparvata lugens', BPH) in artificial diet 

bioassays was unaltered. Site-directed mutagenesis of the carbohydrate-binding site 

of GNA provided evidence of a direct correlation between the binding potential of 

GNA to BPH gut glycoprotein 'receptors' and the toxicity levels of GNA towards 

BPH nymphs. 

Functional recombinant plant lectins GNA and PHA (Phaseolus vulgaris agglutinin) 

were expressed in Pichia pastoris using native signal peptides or the Saccharomyces 

a-factor prepro-sequence to direct secretion. The a-factor prepro-sequence was 

inefficiently processed unless Glu-Ala repeats were added at the C-terminal end. In 

the latter case, removal of the Glu-Ala repeats was itself inefficient leading to 

recombinant lectins with heterogenous N-termini. In contrast, PHA expressed with 

the native signal peptide was secreted, correcdy processed and fully functional. No 

expression of GNA from a construct containing the native GNA signal peptide was 

observed. The PHA-E signal peptide directed correct processing and secretion of both 

GNA and green fluorescent protein (GFP) when used in expression constructs in 

Pichia. 



Abstract 

A fusion protein containing both GNA and GFP (GNA-GFP) was expressed in Pichia 

pastoris. Simultaneous dual activities (i.e. carbohydrate binding and fluorescence) of 

recombinant GNA-GFP were demonstrated. Partial cleavage in the linker region 

resulted in co-purification of GNA which increased the binding activity of the fusion 

protein. Selective binding of GNA-GFP to haemocytes in the haemolymph of 

Lacanobia oleracea was observed, both in vitro and when the protein was fed to 

insects in diet. 
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Chapter 1 
Plant Lectins - Introduction 

1.1 Lectins - Terminology 

Lectins are carbohydrate-binding proteins of non-immune origin that bind reversibly 

to mono- or oligosaccharides. They are widely distributed in nature, being found in 

viruses, micro-organisms, plants and animals. Because of their binding specificity, 

lectins may serve as recognition molecules within a cell, between cells, or between 

organisms (Sharon, 1993). 

A l l too often, the term lectin implies that it is synonymous with agglutinin 

(agglutinating lectin). However, not all lectins are able to agglutinate cells or 

precipitate glycoconjugates. Some lectins consist exclusively of a single 

carbohydrate-binding domain and due to their monovalent nature, these lectins, or 

merolectins (Van Damme et al, 1998a), cannot agglutinate cells or precipitate 

glycoconjugates. For example, the chitin-binding hevein from the latex of the rubber 

tree (Van Parijs et al., 1991), and the mannose-binding proteins from orchids (Van 

Damme et al, 1994) do not show agglutinating activity. Also, others, such as the so-

called type 2 ribosome-inactivating proteins ricin and abrin, agglutinate very poorly, 

even though they contain lectinic subunits (Kocourek & Horejsi, 1983). 

The emphasis on non-immune origin is necessary to distinguish lectins from anti-

carbohydrate antibodies which also bind reversibly to carbohydrates. However, only 
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the lectins are found in plants and bacteria. In addition, antibodies are structurally 
similar to each other, whereas lectins are structurally diverse. 

Lectins are also distinguished from many carbohydrate-binding proteins in that they 

do not alter the covalent structure of recognized glycosyl ligands. However, 

sometimes what is perceived to be an enzyme is actually, per definition, a lectin. For 

example, Class I chitinases are lectins that consist of a chitin-binding domain linked 

through a hinge region to a catalytic domain (Collinge et al, 1993). Similarly, ricin 

and abrin, are fusion proteins of an N-terminal toxic A-chain with //-glycosidase 

activity and a C-terminal carbohydrate-binding domain (Barbieri et ai, 1993). 

1.2 Occurrence and Distribution of Plant Lectins 

Plant lectins are ubiquitous in the plant kingdom, being found in both dicotyledons 

and monocotyledons, with, for example, Class I chitinases seeming to be present in 

all plant species (Collinge et al, 1993). However, when only the agglutinating lectins 

(agglutinins) are taken into consideration then the occurrence of these in plants is the 

exception rather than the rule (Van Damme et al, 1998a). 

Lectins can be found in seeds, and in virtually all kinds of vegetative tissues such as 

leaves, stems, bark, bulbs, tubers, corms, rhizomes, roots, fruits, flowers, ovaries, 

phloem sap and nectar (Peumans & Van Damme, 1995). There are striking 

differences in the location and relative abundance of seed and non-seed lectins in 

plants (Etzler, 1986). For instance, seed lectins are located in the cotyledons (e.g. in 

legumes), the endosperm (e.g. castor bean) or embryo (e.g. wheat). Typically, lectins 
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usually account for 0.1 - 5 % of the total seed protein. However, some seed lectins are 
predominant proteins representing up to 50 % of the total protein (e.g. in some 
Phaseolus species). Non-seed lectins also account for 0.1 - 5 % of the total protein 
content of the tissue in which they occur. However, there are instances of lectins 
accounting for greater than 50 % of the total protein content in vegetative storage 
tissues, for example, in garlic {Allium sativum) cloves (Smeets et al., 1997) and 
ground elder {Aegopodium podagraria) rhizomes (Peumans et al., 1985). Others 
occur in very small quantities that are hardly detectable (e.g. in leaves of the leek 
{Allium porrum) (Van Damme et al., 1993)). Non-seed lectins may occur in different 
tissues of the same plant. For example, the snowdrop {Galanthus nivalis) and daffodil 
{Narcissus pseudonarcissus) lectins have been found in virtually all vegetative 
tissues, although the lectin is most abundant in the bulbs (Van Damme & Peumans, 
1990). The potato {Solanum tuberosum) lectin occurs in tubers, stems, leaves and 
fruits (Kilpatrick, 1980). However, there are some exceptions. For instance, the 
ground elder lectin is confined to the rhizome (Peumans et al., 1985). Lectins from 
tulips {Tulipa) are present in the bulbs but are almost undetectable in the stems and 
leaves (Van Damme & Peumans, 1989). There are also a few examples of lectins 
which occur both in seed and in vegetative tissues. For example, some legume lectins 
are found in seeds as well in bark tissue. However, these lectins are not identical and 
are encoded by different though highly homologous genes (Van Damme et al., 
1995a). 

On the subcellular scale, most lectins are secretory proteins, meaning that they enter 

the secretory system and subsequently accumulate either in vacuoles or in the cell 

wall and intercellular spaces (Chrispeels & Raikhel, 1991). Vacuolar lectins from 
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legume seeds, such as phytohaemagglutinin, concanavalin A, soybean agglutinin, pea 
lectin and favin, are primarily located in protein bodies of the cotyledons (Etzler, 
1986). In the thorn apple Datura stramonium the seed lectin is not only present in 
protein bodies (Kilpatrick et al., 1979) but some of the lectin is also associated with 
cell walls (Broekaert et al., 1988). The structurally related potato tuber lectin is also 
found associated with the cell walls (Casaloungue & Lezica, 1985). Similarly, a cell 
wall lectin has been found in mung bean {Phaseolus aureus) hypocotyls (Kauss & 
Glaser, 1974; Haasz etal, 1981). 

1.3 Physiological Role - Plant Defense 

Since lectins are found in many different species and many different tissues and 

organs, it is assumed that they play fundamental biological roles in plants. Lectins 

have been implicated in a wide spectrum of roles including seed 

maturation/germination (Howard et al., 1972), maintenance of seed dormancy 

(Peumans et al., 1983), cell wall extension (Kauss & Glaser, 1974), cell-cell 

recognition (Knox et al., 1976), growth regulation (Howard et al., 1972) and 

carbohydrate transport (Boyd, 1963). A number of lectins have been found to be 

mitogens for lymphocytes (Goldstein & Hayes, 1978) ((Lis & Sharon, 1977;1981), 

although they have been found to have little (Howard et al., 1977; Del Campillo et 

fl/., 1981) or no (Nagl, 1972; Vasil & Hubbell, 1977) mitogenic effects on plant cells 

of the same species from which these lectins have been obtained. Surprisingly, there 

are a number of lectins that have a hydrophobic-binding site which bind to adenine 

and adenine derivatives with cytokinin activity (Roberts & Goldstein, 1983) as well 

as indoleacetic acid (Edelman & Wang, 1978). Legume root lectins may be involved 
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in the specific recognition of bacteria {Rhizobium and Bradyrhizobium species) for 
the purpose of establishing symbiosis (Bohlool & Schmidt, 1974). However, the 
actual species-species recognition appears to be mediated by small fatty acylated and 
sulfated tetrasaccharides generated by the bacteria (Lerouge et al., 1990), not by the 
lectins themselves. Instead, their role may be to accumulate by agglutination large 
numbers of bacteria to the root hair surface. 

Plant lectins are thought to be important in plant defense. Many plant lectins are 

capable of recognizing and binding with high affinity glycoconjugates not common or 

absent in plants, but present on the surfaces of micro-organisms (i.e. bacteria and 

fungi), and intestinal tracts of insects or mammalian predators. Most lectins maintain 

their integrity under unfavourable conditions; they are stable over a wide pH range, 

are able to withstand heat, and are resistant to animal, including insect, proteases. The 

whole plant is continually exposed to pathogens and pests, and inevitably some vital 

tissues and organs, such as storage organs and seeds, require extra protection. 

Preferential accumulation of lectins in these metabolic inactive resting organs could 

thus be advantageous for protecting theplant. 

There is indirect evidence that some plant lectins are involved in defence against 

bacteria. Ayouba et al. (1994) demonstrated that several legume lectins were able to 

bind to specific bacterial cell wall peptidogycan components, such as muramic acid, 

A/^-acetylmuramic acid, and muramyl dipeptide. Broekaert and Peumans (1986) 

showed that the presence of thorn apple {Datura stramonium) seed lectin (GlcNAc-

specific) resulted in the loss of movement of motile bacteria at the air-water interface. 

Lectins that bind chitin have been found to affect the growth and development of 
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organisms that contain chitin (i.e. fungi and insects). For example, UDA, a lectin 
from the stinging nettle, has been shown to have strong antifungal properties against 
several chitin-producing fungi (Broekaert et al., 1989). Also, it was observed that a 
preparation of chitin affinity-purified wheat germ agglutinin (WGA) inhibited spore 
germination and hyphal growth of Trichoderma viride (Mirelman et al., 1975). 
However, these effects were due to contaminating chitinases, rather than WGA, since 
Schlumbaum et al. (1986) demonstrated that in vitro, chitinase-free preparations of 
WGA do not inhibit fungal growth, whereas chitinase does inhibit fungal growth. The 
exact mechanism of the nettle lectin is not known but it appears that only the cell wall 
synthesis is affected as a result of disturbed chitin synthesis (Van Parijs et al., 1992). 
Since the lectin is not able to kill germinating spores or mycelium, unlike Class I 
chitinases which are considered fungicidal, there is doubt as to whether they actually 
take part in plant defensive roles. Some authors believe that the nettle lectin, naturally 
found in rhizomes and seeds, is involved in the control of the colonization of 
rhizomes by endomycorrhiza (Peumans & Van Damme, 1995). 

There are many clear examples of lectins providing a protective role in plants against 

insects (Czapla & Lang, 1990; Gatehouse et al., 1995). Although the mode of action 

is still unknown, the toxicity of the lectins is most probably based on their specific 

binding to glycoconjugates on the luminal side of the gut. Four types of interactions 

are possible: (i) binding of lectins to carbohydrate structures in the peri trophic 

membrane (chitin for chitin-binding lectins) (Harper et al., 1998), (ii) binding of 

lectins to carbohydrate structures on the epithelial cells along the digestive tract 

(Pusztai & Bardocz, 1996), (iii) binding of lectins to glycosylated digestive enzymes, 

and (iv) binding to glycosylated proteins from the host plant preventing the protein's 
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digestion. Screening of hundreds of purified plant lectins through feeding 
experiments utilizing artificial diets were focussed on economically important crop 
pests and have resulted in promising candidates towards the development of 
transgenic crops (Czapla & Lang, 1990; Gatehouse et al., 1995). The first report on 
the lethal effects of a purified lectin sample from the bean Phaseolus vulgaris towards 
the cowpea weevil {Callosobruchus maculatus) larvae (Janzen et al., 1976) were 
wrongly attributed to the lectin PHA - the active material was actually the 
contaminating a-amylase inhibitor (Huesing et al., 1991), thus emphasizing on the 
purity of the lectin preparations. Since then, a number of plant lectins were identified 
for their effectiveness against the cowpea weevil (Murdoch et al., 1990; Huesing et 
al., 1991; Gatehouse et al., 1992), European com borer {Ostrinia nubilalis) (Czapla & 
Lang, 1990), com rootworm {Diabrotica species) (Czapla & Lang, 1990), legume 
pod borer {Maruca vitrata) (Machuka et al., 1999), rice brown planthopper 
{Nilaparvata lugens) (Powell et al., 1993; 1995a; 1995b), potato leafhopper 
{Empoasca fabae) (Habibi et al., 1993), pea aphid {Acyrthosiphon pisum) (Rahbe & 
Febvay, 1993; Rahbe et al., 1995), peach-potato aphid {Myzus persicae) (Sauvion et 
al., 1996), blowfly {Lucilia cuprina) (Eisemann et al., 1994), and tomato moth 
{Lacanobia oleracea) (Fitches et al., 1997). Clear evidence emerging from these 
results show that there is no direct correlation between lectin-carbohydrate specificity 
and toxicity. Two examples illustrate this point, (i) although the sialic acid-binding 
lectins from elderberry {Sambucus nigra; SNA-I) (Shibuya et al, 1987) and Maackia 
amurensis (Knibbs et al, 1991) exhibit similar specificity (i.e. bind to 2,6-
neuraminyl-gal/GalA^^Ac, a sugar that is absent in plants but a major carbohydrate 
component of animal glycoproteins), SNA-I was found to be extremely toxic to C. 
maculatus, whereas the other lectin was relatively innocuous to the same insect, (ii) 
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the toxicity of GlcA^Ac-specific lectins may be attributed to binding of these lectins to 
the chitin-containing peritrophic membrane. However, such a mechanism neither 
explains the toxicity of lectins such as the mannose-specific GNA (Galanthus nivalis 
agglutinin) and LOA (Listera ovata agglutinin), nor the lack of toxicity of GlcNAc-
specific WGA (wheat germ agglutinin) towards Maruca-pod borer (Machuka et al., 
1999). It is speculated that since the peritrophic membrane contains other 
carbohydrate moieties besides chitin, lectins with different specificities may cause 
membrane blockage by binding to the different glycoproteins. Also, GNA has been 
shown to pass through the insect midgut epithelium and enter into the haemolymph of 
the rice brown planthopper, thus exerting its toxic effects systemically (Powell et al., 
1998). 

Since plant viruses do not contain carbohydrate moieties on their surfaces, it is logical 

to assume that plant lectins cannot directly exert anti-viral activity. However, 

insecticidal lectins may reduce or prevent the spread of insect-transmitted viral 

diseases. 

The digestive tract in higher animals has a wide spectrum of glycoconjugates exposed 

in the luminal side presenting a myriad of targets for lectin binding. Unlike with 

insects, the mechanisms by which the lectins exert their toxicity is well understood 

because of studies assessing the possible health risk of lectins present in plants used 

in food and feed production. For example, PHA, the lectin from the kidney bean 

Phaseolus vulgaris, has an extraordinarily high resistance to gut proteolysis. Once 

ingested, it binds to complex glycoconjugates in the brush border cell membrane of 

the small intestine, where it is rapidly endocytosed. Once in the cell, the lectin sets off 
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an enhanced metabolical activity that eventually leads to hyperplasia and hypertrophy 
of the small intestine culminating in severe discomfort of the animal (Pusztai et al., 
1990). Other common features of the anti-nutritive effects in lectin-gut interaction 
include damage to the microvillus membrane, shedding of cells, reduction in the 
absorptive capacity of the small intestine, interference with the immune system, 
hypersensitivity reactions, interference with the microbial ecology of the gut, 
selective overgrowth, and effects (i.e. hormones) on systemic metabolism. Well 
documented deleterious effects of other lectins on cells of the small intestine include 
soybean (Glycine max) agglutinin, concanavalin A (from jack bean, Canavalia 
ensiformis), other lectins from Phaseolus genus, and wheat germ (Triticum aestivum) 
agglutinin (Pusztai, 1991). However, there is no evidence for GNA toxicity towards 
higher animals (Pusztai et al., 1990) so this protein would be suitable for 
incorporation into a transgenic crop. 

1.4 Structure - Function Relationship of Plant Lectins 

1.4.1 Classification 

Plant lectins form a very large and heterogenous group of proteins. They may be 

grouped in three different ways: (i) according to their overall structure, (ii) according 

to their carbohydrate-specificities, or (iii) according to their evolutionary and 

structural relatedness. 

There are four main types of plant lectins based on the overall structure of the lectin 

subunits. These are the mero-, holo-, chimero-, and super-lectins. Merolectins are 

monovalent lectins that are exclusively built of only one carbohydate-binding motif. 
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Thus, they are not able to agglutinate cells or precipitate glycoconjugates. Examples 

include the monomeric mannose-specific proteins from orchids {Listera ovata and 

Epipactis helleborine) (Van Damme et al, 1994) and the chitin-binding hevein 

{Hevea brasiliensis) (Van Parijs et al, 1991). Hololectins contain two or more 

carbohydrate-binding sites. This is realised by consisting of (i) only one monomer 

containing two or more binding sites (e.g. Urtica dioica agglutinin) (Peumans et al, 

1984), (ii) di - oligomer containing only one site per subunit (e.g. dimer Pisum 

sativum agglutinin, and tetramer phytohaemagglutinin PHA) (Rini et al, 1993; 

Hamelryck et al, 1996) or (iii) di - oligomer containing two or more sites per subunit 

(e.g. tetramer with three sites per subunit Galanthus nivalis agglutinin) (Hester et al, 

1995). Because of their subunit multivalency, the hololectins have agglutination 

properties. Chimerolectins are proteins with a carbohydrate-binding domain fused to 

a completely unrelated domain. Chimerolectins may act as (i) merolectins, for 

example. Class I plant chitinases which consist of only one N-terminal chitin-binding 

site per molecule linked to a catalytic domain (Collinge et al, 1993), or (ii) 

hololectins, for example, Type 2 ribosome-inactivating proteins, such as the dimeric 

ricin, that possess an N-terminal catalytic domain connected to a C-terminal 

carbohydrate-binding chain consisiting of two sites (Barbieri et al, 1993). 

Superlectins are chimerolectins that consist of two structurally different carbohydrate-

binding domains with unrelated sugar specificities. For example, a lectin from tulip 

{Tulipa) bulbs, TxLC-I, consists of an N-terminal mannose-binding domain fused to a 

GalNAc-binding domain (Cammue et al, 1986; Van Damme et al, 1996a). 

Plant lectins may also be divided into groups according to their preferential binding to 

sugars. To date, at least eight carbohydrate specificity groups have been 
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distinguished, namely, mannose, mannose/glucose, mannose/maltose, fucose, 
GlcNAc, Gal/GalNAc, sialic acid, and complex glycan groups (Van Damme et al., 
1998a). 

In general, the most common type of secondary structure of vacuolar plant proteins is 

the p-sheet fold (Efimov, 1994) interconnected with a number of loops, with the 

conspicuous absence of the a-helix motif. However, recently, two related lectins 

isolated from Dolichos biflorus also contain a small C-terminal a helix for quaternary 

association and adenine/hormone binding (Hamelryck et al., 1999). Plant lectins 

exhibit considerable diversity in their structure, yet they may be classed into at least 

seven subgroups of structurally and evolutionarily related families (Van Damme et 

al., 1998b). The legume lectins, the Type 2 ribosome-inactivating proteins (RIPs), the 

chitin-binding lectins and the monocot mannose-binding lectins are considered large 

families, whereas the jacalin-related lectins, the amaranthins, and the Cucurbitaceae 

phloem lectins are considered small families. 

1.4.1.1 The Legume Lectins 

Legume lectins occur exclusively within the plant family Leguminoseae. Over a 100 

legume lectins have been characterised in detail. All share a common polypeptide fold 

known as the p-sandwich (or jelly-roll motif). They are the only group of plant lectins 

that actually utilize divalent cations in their carbohydrate-binding specificity; the 

lectins exhibit markedly conserved Câ "̂  and Mn^^ binding sites. Although they are 

built of protomers with high sequence similarities and 3D structures, legume lectins 

differ strongly in their sugar-specificities (Sharon & Lis, 1990). The majority of 

lectins are mannose/glucose-binding lectins (e.g. Canavalia ensiformis lectin, Pisum 
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sativum lectin) and Gal/GalNAc-binding lectins (e.g. Arachis hypogaea lectin, 
Sophora japonica lectin). Others are specific for L-fucose (e.g. Ulex europaeus 
lectin), Neu5Aca(2,3)Gal/GalNAc (e.g. Maackia amurensis lectin) or for more 
complex oligosaccharides (e.g. Phaseolus vulgaris lectin) (Van Damme et al, 
1998a). This difference in specificity is a result of mutational events in the combining 
site (Sharma & Surolia, 1997), whereby the length and orientation of loop regions 
that provide the framework of the carbohydrate-binding site is altered. 

Surprisingly, the 3-sandwich structure is also shared by some animal lectins, such as 

galectins, pentraxins and some other unrelated proteins from animal and microbial 

sources (Srinivasan et al., 1996). The amino acid sequences are unrelated and the 

sugar-binding sites lie on different parts of the structure, suggesting that this 

similarity arises as a result of convergence to a stable structural motif rather than from 

a common evolutionary ancestor (Emsley et ai, 1994). 

1.4.1.2 The Chitin-Binding Lectins with Hevein Domains 

Chitin-binding lectins composed of hevein domains are widespread throughout the 

plant kingdom, occurring in taxonomically unrelated plant families such as 

Gramineae, Urticaceae, Solanaceae, Papaveraceae, Euphorbiaceae, Phytolaccaceae 

(Raikhel et al, 1993) and Viscaceae (Feumans et al, 1996). These lectins are built up 

of one, two, three, four or seven hevein domains. The name of the domain is derived 

from hevein, a small chitin-binding protein from the latex of the rubber tree (Hevea 

brasiliensis). Several structurally unrelated chitin-binding lectins do not possess a 

hevein domain, e.g. GlcNAc-binding legume lectins and the chitin-binding phloem 

lectins of Cucurbitaceae, and thus do not belong to this category. 
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The hevein sequence contains only 43 amino acids and is very rich in cysteine and 
glycine. The chitin-binding lectins have evolved by gene duplication of an ancestral 
disulfide-rich domain (Wright et al, 1991). The domain is predominantly free of any 
regular secondary structure. Structure determination of the dimeric WGA have shown 
that each subunit consists of four independently folded and helically assembled 
hevein domains with each domain stabilised by four disulphide bridges at identical 
positions (Wright, 1989). Both the amino acid sequences and three-dimensional 
structures of the hevein domains are markedly conserved, explaining why all chitin-
binding lectins have similar carbohydrate-binding specificities. 

1.4.1.3 The Type 2 Ribosome-Inactivating Proteins 

Type 2 RIPs are a superfamily of structurally related lectins found in members of 

taxonomically unrelated plant families. Well-known examples of this family are ricin 

(from the seeds of Ricinus communis) and abrin (from the seeds of Abrus 

precatorius). Type 2 RIPs differ from Type 1 RIPs in their molecular structure. Type 

1 RIPs are monomeric proteins consisting of a singly catalytically active subunit 

(approx. 30 kDa), whereas Type 2 RIPs are composed of one (ricin), two (SNA-V) 

(from bark of Sambucus nigra or elderberry) (Van Damme et al, 1996b) or four 

(SNA-I) (from bark of Sambucus nigra or elderberry) (Van Damme et ai, 1996c) 

identical units with each unit consisting of an A and B chain covalently linked 

through a disulphide bridge. The A chain possesses N-glycosidase activity and 

exhibits sequence homology to the Type 1 RIP, whereas the B chain is composed of a 

carbohydrate-binding domain. As is the case with the chitin-binding WGA, the ricin 

B chain is stabilised through multiple disulphide bonds. 
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Like legume lectins. Type 2 RIPs differ from each other in their sugar specificities 
even though they are structurally similar. Most Type 2 RIPs are specific for galactose 
or GalNAc, however, SNA-I recognizes NeuAca(2,6)Gal/GalNAc (Van Damme et 
al, 1996c). 

1.4.1.4 The Monocot Mannose-Binding Lectins 

The monocot mannose-binding lectins are an extended superfamily of structurally and 

evolutionarily related proteins which have been isolated from species of the 

Alliaceae, Amaryllidaceae, Araceae, Bromeliaceae, Iridaceae, Liliaceae, and 

Orchidaceae (Van Damme et al, 1998b). These lectins show exclusive specificity 

towards mannose which makes them different from the mannose/glucose-binding 

lectins isolated from leguminous species (Goldstein & Poretz, 1986). The subunit 

structure, as exemplified by the known three-dimensional structures of the snowdrop 

(Hester et al, 1995) and amaryllis (Chantalat et al, 1996) lectins , represents a highly 

conserved novel lectin fold, namely, the p-barrel (p-prism II). This fold consists of 

three four-stranded antiparallel p-sheets arranged to form a triangular shaped prism. 

The monocot mannose-binding lectins exhibit a marked structural diversity both in 

terms of number and overall structure of the protomers. Most of the lectins are 

composed of two or four identical protomers of approx. 12 kDa, which are 

synthesised as separate proteins. There are also several types of heteromeric forms: (i) 

built up of two different, but highly homologous, subunits derived from separate 

precursors (e.g. dimeric Allium ursinum lectin I) (Smeets et al, 1994); (ii) built up of 

two different subunits derived from a single precursor with two tandemly arrayed 

mannose-binding domains which share high homology (e.g. dimeric Allium sativum 
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lectin I ) (Van Damme et al, 1992) or low homology (e.g. tetrameric Arum 
maculatum lectin) (Van Damme et al., 1995b); (iii) built up of two unrelated 
tandemly arrayed domains derived from a single precursor (e.g. tetrameric tulip lectin 
TxLC-I with each protomer consisting of a mannose-binding domain and GalNac-
binding domain which is partly processed giving rise to both cleaved and uncleaved 
protomers) (Van Damme et al., 1996a). 

1.4.1.5 Jacalin and Related Lectins 

A novel mode of carbohydrate recognition was discovered in jacalin, a Moraceae 

plant lectin derived from the jackfruit (Artocarpus integrifolia) with a p-prism I fold 

(Sankaranarayanan et al., 1996). This involves three Greek-key p sheets with the 

strands running parallel to the threefold axis (in comparison to the snowdrop lectin 

with a p-prism I I fold with three four-stranded p sheets that are nearly perpendicular 

to the threefold axis). It is worth mentioning that this fold has striking similarity to the 

P-prism fold that occurs in domain I I of the insecticidal Bacillus thuringiensis 5-

endotoxin (Li etal, 1991). 

Jacalin is a glycosylated tetramer with each subunit composed of an a (133 residues) 

chain and a short p (20 residues) chain as a result of complex post-translational 

processing of a single precursor. The presence of different isoforms is due to 

expression by different genes of a lectin gene family and also to differences in post-

translational modifications (Young et al., 1995). The jacalin fold has one galactose-

binding site per subunit located at the loop region at one end of the p-prism fold and 

involving the N-terminus (Sankaranarayanan et al., 1996). Jacalin binds to the T-

antigen disaccharide (Gal-Pl,3-GalNAc) with high specificity (Kabir & Daar, 1994). 
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This observation is ratified by the crystal structure determination of another member 
of the jacalin family, Madura pomifera agglutinin (MPA), in complex with the 
disaccharide. Another lectin from the jacalin family, KM+, isolated from the 
jackfruit, is mannose-specific (Rosa et al, 1999). Unlike the other lectins, KM+ does 
not undergo proteolysis into a and p chains. 

1.4.1.6 Lectins from Amaranthus Species 

Amaranthin (ACA) is a dimeric Gal-specific plant lectin isolated from the seeds of 

Amaranthus caudatus (Rinderle et al, 1990). Like jacalin, amaranthin is T-antigen-

specific. However, the protein utilizes the p-trefoil fold, a protein motif first observed 

in the soybean trypsin inhibitor (Murzin et al, 1992) and also found in the B-chains 

of the Type 2 RIPs ricin and abrin (Rutenber & Robertus, 1991; Tahirov et al, 1995). 

Despite structural similarity, there is no sequence similarity to other p-trefoil proteins, 

and the (QxW)3 peptide, reminiscent in many sugar-binding proteins (Hazes, 1996), is 

absent. Other Amaranthus species contain closely related seed lectins similar in 

sequence to ACA (e.g. lectin isolated from Amaranthus leucocarpus) (Raina & Datta, 

1992). 

1.4.1.7 Cucurbitaceae Phloem Lectins 

Cucurbitaceae phloem lectins are a small group of chitin-binding proteins confined to 

the phloem sap of a few genera of the Cucurbitaceae family. A dimeric lectin was 

isolated from a Cucurbita species and characterized (Sabnis & Hart, 1978). Despite 

its carbohydrate-binding properties, the pumpkin lectin does not share any sequence 
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homology with the chitin-binding hevein domain containing lectins (Wang et ai, 
1994). 

1.4.2 Strategies for Generation of Carbohydrate Binding and Specificities of 

Plant Lectins 

Although many examples of lectin-carbohydrate interactions are covered in the 

literature, only those pertaining to plant lectins will be discussed here. Animal and 

viral lectins were reviewed recently (Weis, 1997; Drickamer, 1999; Rini & Lobsanov, 

1999). 

How do lectins interact with sugar ligands? In recent years, an upsurge of lectin-sugar 

complex analyses by a variety of biophysical techniques, including X-ray 

crystallography and nuclear magnetic resonance, has led to a better understanding of 

the molecular basis of this interaction. More than 100 three-dimensional structures of 

plant lectins and their complexes are currently available on the 3D Lectin Data Bank 

on the World Wide Web (URL: http://www.cermav.cnrs.fr/databank/lectine). From 

these data, it is apparent that different strategies exist for lectins to recognize sugar 

structures. As was discussed above, plant lectins could be organised into a small 

number of groups according to their tertiary folds. Lectins with different folds are 

able to recognize structurally similar ligands (e.g. the monocot mannose-specific 

lectins and the mannose/glucose-specific legume lectins). Also, lectins with similar 

folds are able to distinguish different sugar structures (e.g. legume lectins). 

Carbohydrate-binding sites may be found on completely different frameworks 

altogether, as exemplified by the legume lectins with their large p-structures and low 
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cysteine content and the cereal WGA with its high cysteine content and absence of 
known regular secondary structure. 

The basic principles that allow different lectins to bind selected saccharide ligands 

through hydrogen bonds in cooperation with van der Waals and hydrophobic 

interactions with appropriate affinity will be discussed. 

Hydrogen bonds 

The monosaccharide, usually a hexose, presents a number of hydroxyl groups that can 

serve as both hydrogen bond donors and acceptors in lectin-carbohydrate interactions. 

The oxygen atom of each hydroxyl group is sp̂  hybridised; the oxygen atom has two 

lone electron pairs, and is bound to a hydrogen and carbon atom in tetrahedral 

geometry. Thus, the OH group can accept two and donate one hydrogen bond. The 

ring oxygen atom is also sp̂  hybridised and harbours two lone electron pairs; it can 

only accept hydrogen in hydrogen bonds. Different protein side-chain (carboxyl, 

hydroxyl and amide groups) and main-chain (carbonyl and amide groups) groups can 

participate in this hydrogen bonding. In general, an amide group acts as hydrogen 

bond donor and the carbonyl group as acceptor ((NH)ior2 -> OH -> 0=C) (Weis & 

Drickamer, 1996). Less frequently, protein OHs, such as tyrosine, threonine and 

serine, can also take part in hydrogen bonding (Elgavish & Shaanan, 1997). 

The legume lectins are widely used as a model system for studying protein-

carbohydrate interactions. Hydroxyl groups of a particular sugar that mediate 

hydrogen binding in lectin-saccharide interactions determine the specific recognition 

of the lectin for the saccharide. The legume lectins Con A (Naismith et al, 1994), pea 
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Figure 1.1 (A) Schematic diagram of an example of hydrogen binding in lectin-
monosaccharide interactions: binding of mannose/glucose and galactose to 
concanavalin A and EcorL, respectively (modified from Loris et al. (1998)); 
dashed lines represent hydrogen bonds. (B) Conformations of three hexoses. 
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lectin (Rini et al., 1993) and L O L l (Bourne et al., 1990) all bind the C2 epimers 
mannose and glucose. They form hydrogen bonds with the 3-, 4- and 6-OHs of the 
sugars, but not the 2-OH, so that discrimination of the two monosaccharides by the 
lectins is not possible. In contrast, the snowdrop lectin, GNA, is subjected to 
hydrogen bonding at the 2-OH as well as the other OHs so that only mannose is 
recognized; this axial hydroxyl group is conformationally constrained by two 
hydrogen bonds (Hester et al., 1995). GNA completely lacks specificity towards 
glucose (Shibuya et al., 1988); hydrogen bonding with an equatorial OH would be 
much less favourable. 

The lectins from the legumes Lathyrus ochrus (LOLl) and Erythrina corallodendron 

(EcorL) differ in their specificities, the former, as already mentioned, being Man/Glc-

specific and the latter Gal/GalNAc-specific. Man/Glc and Gal are C4 epimers; both 

mannose and glucose have an equatorial 4-OH, whereas galactose has an axial 4-OH. 

These lectins have quite similar sugar-binding domains and are part superimposable 

(Sharon, 1993). The amino acid residues that participate in hydrogen bonding (Asp, 

Asn and usually Gly or Arg) are highly conserved and participate in four key 

hydrogen bonds with the monosaccharide. Also, the sugar molecule is stabilised by 

stacking interactions with a hydrophobic residue, Phe, Tyr, Trp, or Leu (see further). 

Al l of these residues have an identical spatial disposition which is attributable to the 

constraints imposed by the indispensable divalent cations. The same core of residues 

in legume lectins provides the infrastructure to fit a diverse array of monosaccharides. 

In the mannose/glucose specific legume lectins (e.g. L O L l , ConA, PSL, favin and 

LenL), the hydrogen bonding occurs mainly with the C4 and C6 hydroxyl groups of 
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the hexose. However, in EcorL, PNA, DBL or SBA that bind galactose or N-
acetylgalactosamine, these interactions are mainly with the C3 and C4 of the sugar 
(Figure 1.1). In other words, the binding site is designed to allow an equatorial OH 
(C4-0H in mannose and glucose, C3-0H in galactose or GalNAc) to establish contact 
with three conserved binding residues (Asp in loop A, Gly or Arg in loop B, and Asn 
in loop C) and an axial OH (C6-0H in mannose and glucose, C4-0H in galactose or 
GalNAc) hydrogen bond with Asp in loop A (Sharma & SuroHa, 1997). These 
limitations in sugar orientation are not sufficient to discriminate the different 
monosaccharide specificities. Specificity arises by additional variation (in sequence 
and in size) in the loops. Difference in primary specificity is dictated by the 
conformation of loop D (Shaanan et al, 1991). Alignment of 26 legume lectins 
showed a direct correlation with the length of loop D and the monosaccharide 
specificity of the lectins (Sharma & Surolia, 1997). Binding of EcorL exclusively to 
galactose shows that the carbohydrate ring has rotated in the binding site so that more 
bonds are focussed on the C3 and C4 hydroxyls. The residues in EcorL involved in 
hydrogen bonding with C4-0H are located in an entirely different loop (loop D) as 
those found in L O L l (loop C). The variable residues adjacent to the conserved ones 
are thought to be the reason why the orientation of the pyrannose ring with respect to 
the framework for ligand binding differs (Elgavish & Shaanan, 1997). 

Mutational analysis of pea lectin indicated that replacement of Asn 125 by a 

conservative Asp (Van Eijsden et al, 1992) or non-conservative Ala (Van Eijsden et 

al, 1994) completely abolished mannose/glucose binding. Surprisingly, this 

demonstrates that the presence of other conserved amino acid residues involved in 

sugar binding (haemagglutination) is insufficient for sugar binding. Similar results 
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residue (Tyr73), with the sugar ring (Tyr66) and with the glycerol tail (Tyr64) of 
sialic acid (Wright, 1990), underlining the importance of the contribution made by 
non-polar contacts in stabilising the lectin-sugar complex. WGA also recognizes 
GlcNAc. The essential specificity determinant for the two monosaccharides is the N-
acetyl group and the adjacent 4-OH, which provide a cluster of three spatially close 
hydrogen bonds and a hydrophobic contact (acetamido-CH3 with the aromatic ring of 
Tyr73) in the least exposed part of the binding cavity, where the conformation of the 
protein is most stable (Sharon, 1993). 

Extended Sites and Secondary Sites 

Monosaccharide interactions with lectins are very weak, with dissociation constants 

in the 0.1-1.0 mM range. The selectivity towards a particular target is augmented by 

several orders of magnitude (in the fiM range) through additional binding in extended 

and secondary sites, often referred to as subsite multivalency (Rini, 1995). 

Some lectins bind to single saccharide residues only, whether they are in free form or 

exist at the terminal end of an oligosaccharide. The X-ray crystal structure of the 

EcorL-lactose (lactose is Galpl,4Glc) complex shows that binding is mediated 

exclusively through the galactose moiety (Shaanan et al, 1991). This observation is 

further supported by Elgavish and Shaanan (1998) who reported that binding of 

disaccharides (lactose and N-acetyllactosamine) by EcorL is carried out by the same 

set of residues that are involved in binding monosaccharides at the primary site. This 

feature is also shared by the PNA-lactose complex (Banerjee et al, 1996). 
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Other lectins are capable of interacting with the additional monosaccharide residues 
along the carbohydrate chain, even though they may not recognize the second sugar 
as a monosaccharide. These lectins have extended sites allowing for increased 
interaction and therefore increased affinity and consequently increased selectivity. 
PNA has a 20-fold higher binding affinity to the T-antigen disaccharide (Galpl-3-
GalNAc) compared to lactose (Ravishankar et al., 1997). This specificity is entirely 
due to additional water-mediated protein-carbohydrate interactions; the amount of 
direct protein-carbohydrate hydrogen bonds and non-polar contacts being identical 
(Loris et al., 1998). The mannose/glucose-specific ConA and the Vicieae lectins 
LOLl , pea and lentil lectins all bind mannose and glucose in essentially the same 
way. However, ConA has a high affinity for the trimannosyl core Manal-3[Manal-
6]Man found in N-glycans (Debray et al, 1981), whereas no significantly enhanced 
affinity for the trimannose core over a-D-mannopyranoside is observed with the 
Vicieae lectins (Kornfeld et al., 1981). The reason is that the latter lectins lack two 
residues that in ConA are responsible for its specificity for the trimannose core; 
Tyr l2 and TyrlOO in ConA are substituted by Phel23|3 and Glu31a in LOL, 
respectively, which result in a difference in orientation of the saccharide leading to 
interaction reduction (Naismith & Field, 1996). Notwithstanding, the Vicieae lectins 
display higher affinity for N-linked oligosaccharides containing a(l,6)-linked Fuc 
than for those lacking Fuc, whereas ConA does not (Debray et al., 1981; Komfeld et 
al., 1981). Crystal structures of LOL complexed with fragment N2 of human 
lactotransferrin and with an isolated biantennary glycopeptide showed that the fucose 
residue interacts with the subsite residues Phe and Glu (Bourne et al., 1994; Loris et 
al., 1998). 
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Some lectins show little or no measurable affinity for monosaccharides, but instead 
bind specifically to larger oligosaccharides. The Grijfonia simplicifolia lectin (GS4) 
recognizes galactose, not on its own, but only when it is part of a saccharide complex, 
as found on the Lewis b blood group substance (Delbaere et al, 1993). In this case, 
the typical legume lectin loop D structure, which is important for monosaccharide 
binding (cfr. EcorL-galactose complex), is truncated so as to completely eliminate 
this side of the binding site. The a(l,4)-linked fucose moiety of the bound saccharide 
occupies the space provided and is stabilised by hydrogen-bond and van der Waals 
interactions. Clearly, specificity towards carbohydrates requires extended sites. 

Lectins possessing two or more separate and independent carbohydrate-binding sites 

(secondary sites) per protomer may increase their binding affinity towards complex 

sugars, especially multivalent ligands. The dimeric WGA has a hierarchy of binding 

sites (4 sites per protomer), but despite contributions from helper domains located on 

the other protomer, the carbohydrate-binding sites can only recognize terminal sialic 

acid or N-acetylglucosamine (Rini, 1995). Thus, carbohydrate specificity is based on 

the difference in monosaccharide affinities and on the multitude of carbohydrate-

binding sites. GNA, too, has multiple binding (3) sites per protomer. All sites 

recognize mannose monosaccharides (Hester et al, 1995), however, one of the sites is 

also an extended binding region complementary to a-1,3 linked mannosides (Hester 

& Wright, 1996), giving this plant lectin the ability to bind to complex oligo-mannan 

receptors. 
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Quaternary Associations 

As described above, binding of an individual lectin site (monovalent binding) to 

monosaccharides is very weak, with dissociation constants (K^,) typically in the 0.1 -

1.0 mM range (Rini, 1995; 1996). Many lectins achieve much higher affinities (in the 

nM range) by clustering several similar or identical binding sites by formation of 

oligomers i.e. quaternary structures. The free energy of binding to a multivalent 

ligand to multiple sites on an oligomeric lectin can be as large as the sum of the free 

energies of the individual binding interactions. However, in reality, considerations in 

geometry in oligosaccharide recognition have to also be taken into account (Weis & 

Drickamer, 1996). Clustering so that the spacing and orientation of the binding sites 

are in a particular order, i.e. projection in one direction, and location at opposite ends 

(Drickamer, 1995) can have important effects on the selectivity with which 

multivalent ligands are recognized. 

Proteins in which the sugar binding sites project in one direction are able to recognize 

multivalent sugar-bearing surfaces as the optimal ligand for these multivalent lectins. 

Many animal and viral lectins are known to recognize and bind avidly to host cell-

surface glyconjugates (Weis, 1997; Drickamer, 1999; Rini & Lobsanov, 1999). On 

the other hand, only a few plant lectins to date show this geometrical feature e.g. the 

plant toxin ricin (Drickamer, 1995). 

Many plant lectins which are dimeric harbour binding sites at opposite ends of the 

dimer. This allows linear assemblies of lectin (e.g. ConA) and carbohydrate. 

Additional numbers of binding sites on an oligomeric lectin, such as the tetrameric 

SB A, allow for 3D lattices with a synthetic pentasaccharide (Dessen et al., 1995). The 
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bridging function between plant lectins and cell-surface glycoproteins has become a 
widely exploited property, for instance, in in vitro agglutination assays. 

Several plant lectins display more complex arrangements of multiple binding sites. 

GNA (Hester et al, 1995) and WGA (Wright & Jaeger, 1993) molecules are 

practically studded with binding sites, with the GNA tetramer representing the highest 

density lectin characterised to date. Tetrameric GNA contains 12 sites (3 sites per 

subunit) all over its surface, whereas dimeric WGA has a total of 8 sites. Both GNA 

(Wright & Hester, 1996) and WGA (Wright, 1992) have a hierarchy of binding sites, 

with some of the sites dominating the interaction with complex ligands. Availability 

of such a large number of sites allows formation of a wide range of multi-dimensional 

lattices with a high degree of specificity. 

Quaternary association and multivalency that results as a consequence are important 

for the functional properties of proteins. The much studied legume lectins, whose 

individual subunits each fold in essentially the same manner, are known to exhibit a 

number of different quaternary structures. Thus, large variations in quaternary 

structure is possible due to small alterations in essentially the same tertiary structure. 

Rapid evolution in quaternary structure may be necessary to circumvent the problem 

of high affinity binding of carbohydrate-binding proteins to the intrinsic flexible 

carbohydrates. 

Oligomerisation in all legume lectins basically involves interactions of the six-

stranded back p-sheet. In the formation of a dimer, two p-sheet arrangements are 

found: (i) side-by-side, where the two sheets form a contiguous 12-stranded p-sheet, 
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and (ii) back-to-back, where the two sheets may form a handshake mode. The side-
by-side arrangement is often known as the canonical mode of legume lectin 
dimerisation. ConA, pea lectin, lentil lectin and Lathyrus lectin all assume this 
structure. E. corallodendron lectin cannot form the canonical dimer mode due to 
sterical hindrance from a carbohydrate covalently bound to Asn 17 at the interface 
(Shaanan et al., 1991). GS4 cannot assume the standard dimeric mode due to 
carbohydrate interference and burial of a charged residue (Glu58) in the subunit 
interface (Delbaere et al., 1993). WBAI is homologous in sequence to EcorL, but the 
glycosylation sites in W B A I are far from the monomer-monomer interface in a 
canonical dimer. Nevertheless, in WBAI a canonical dimer is not formed (Prabu et 
al., 1998). It seems more likely that the mode of dimerisation is primarily dictated by 
factors intrinsic to the protein itself (Prabu et al., 1998). 

Dimer-dimer associations also differ within the legume lectin family. The tetrameric 

formation of ConA, SBA and PHA-L can be described as the back-to-back 

arrangement of the canonical dimers. PNA formation, however, involves the 

association of two back-to-back dimers resulting in the only known tetrameric protein 

that does not contain 4-fold or 222 symmetry (Banerjee et al., 1996). 

Novel quaternary structures of legume lectins have been reviewed recently by 

Bouckaert et al. (1999). Lectins from Dolichos biflorus exhibit a surprising 

quaternary structure involving an a helix sandwiched between two p-sheets. This 

unusual interface hosts the binding site for adenine and plant hormones (Hamelryck et 

al., 1999). The tetrameric structure of a chitobiose-specific lectin from Ulex 
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europeaus (UEA-II) (Dao-Thi et al, 1998), resembling that of PHA-L and SB A, is 
stabilised by inter-protomer disulfide bridges. 

High-affinity interactions between oligomeric lectins and multivalent ligands may be 

the result of the combined effects of subsite and subunit multivalency, or as a 

consequence of subunit multivalency alone. GSl exists as a heterotetramer composed 

of subunits A and B in the five possible combinations, giving isolectins A 4 , A3B, 

A2B2, AB3, and B 4 . The first four are tetravalent for human type A erythrocytes. 

Knibbs et al. (1998) showed that the association constant of the GSl isolectins for 

human type A blood cells increased with increasing valency of the isolectin. This 

increase was solely dependent on subunit multivalency, not on an extended site. 

Specificity generation for different complex carbohydrate systems by oligomerisation 

of sugar-binding proteins is exemplified by the monocot mannose-specific lectin 

family. The snowdrop (Hester 1995), daffodil (Sauerbom et al, 1999), and 

bluebell (Wood et ai, 1999) lectins are all tetramers, whereas the garlic lectin 

(Chandra et ai, 1999) is a dimer. Although the mannose-binding sites and structure 

are similar in the subunits of these lectins, their specificities to complex glycoproteins 

such as GP120, the major surface glycoprotein of the human immunodeficiency virus, 

vary considerably (Balzarini et al, 1991); the tetramers bind GP120 with a high 

degree of affinity, whereas the dimeric garlic lectin does not. Comparison of the 

snowdrop lectin with the garlic lectin elucidates the binding affinity differences. Two 

distinct modes for branched mannopentaose binding exist for snowdrop lectin 

(Wright & Hester, 1996), one cross-hnks the two monomers in the dimer, and the 

other cross-links the two dimers in the tetramer. The latter mode is consistent with the 
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specificity of the snowdrop lectin for a-1,3 linkages (Hester & Wright, 1996) and is 
therefore considered to be the biologically relevant mode. The dimeric garlic lectin 
cannot bind the mannopentose in the same fashion and this appears to be a possible 
cause of the loss of its antiretroviral activity (Vijayan & Chandra, 1999). Also, by 
virtue of this multivalency, the snowdrop lectin is a more potent insecticidal lectin 
than garlic lectin (Powell et al, 1995b). 

1.5 The Snowdrop Lectin 

The snowdrop lectin ( Galanthus nivalis agglutinin; GNA) is an unglycosylated 

homotetrameric (50 kDa) protein that belongs to the monocot mannose-specific lectin 

family. GNA specifically recognizes mannose structures and has a high affinity for a-

1,3 linked mannosides (Shibuya et ai, 1988). However, unlike the less discriminating 

mannose/glucose-specific legume lectins, GNA completely lacks specificity for 

glucose (Kaku & Goldstein, 1989). Binding affinities for GNA were much weaker 

than for legume lectins; GNA has an association constant of between 1 and 5 mM, 

whereas a 100-fold higher association constant is found with Con A (Kaku & 

Goldstein, 1992; Chervenak & Toone, 1995). 

GNA is a robust molecule resisting heat (it withstands heating at 70 °C for 10 

minutes) and acid/alkali denaturation (it is stable within the pH range of between 3 

and 12) (Van Damme et al, 1987). The GNA lectin is present in almost all snowdrop 

tissues, but found mainly in the bulbs (Van Damme & Peumans, 1990). Six different 
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Figure 1.2 Three-dimensional representation of the tetrameric GNA structure 
(Hester et al.. 1995). Each subunit is represented by a different colour: A, green; 
B, orange; C, yellow; D, purple. Methyl-mannose is shown interacting with one 
(site I) of its three binding domains. C-terminal strand exchange involves residues 
99-109. 
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isolectins have been identified (five have been published; (Van Damme et al, 1991a)) 
showing sequence variability in the region of the C-terminus. 

Sequence analysis of a cDNA clone revealed that GNA is synthesized as a prepro-

protein, a polypeptide precursor of 157 amino acid residues composed of a 23-residue 

N-terminal signal sequence and a 29-residue carboxy-terminal extension, which is 

post-translationally cleaved to yield a mature 105 amino acid residue protein (Van 

Damme etai, 1991b). 

X-ray crystallographic studies of GNA in complex with methyl a-D-mannose (Fig. 

1.2) revealed a novel tertiary fold exhibiting local threefold symmetry generated by 

three antiparallel four-stranded p sheets (Hester et al., 1995). However, the 

polypeptide can accomodate four extra residues at the C-terminal end yielding a total 

length of 109 amino acids. The independently folded p sheets each harbour a 

conserved carbohydrate-binding site (site I , I I , and III) . The tetramer consists of two 

tightly associated dimers (A-D and B-C), which are stabilized through C-terminal 

strand exchange and p sheet association. The interfaces between these two dimers (A-

B and C-D) consist of hydrophobic contacts between loops. 

Further crystallographic studies of GNA in complex with a monomannoside (methyl 

a-D-mannoside), a dimannoside (Man-al,3-D-Man-0Me) and a branched 3,6 core 

mannopentaose (Manal,6-(al,3-Man)Man-al,6-(al,3-Man)Man) revealed that the 

snowdrop lectin exhibits two binding modes (Hester & Wright, 1996; Wright & 

Hester, 1996). Binding of the monosaccharide or terminal mannose was observed in 

each independent subunit at all three of the conserved monosaccharide binding sites 
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(12 sites/tetramer), although site I had highest occupancy since the residue bound in 
the specificity pocket is further stabilised through numerous van der Waals contacts 
from the C-terminal arm of the contacting subunit (Hester & Wright, 1996). 
Substitutions of residues of the C-terminal arm may explain the stronger binding 
affinity of daffodil (Narcissus pseudonarcissus, a member of the Amaryllidaceae 
family) lectin (NPA) to methyl-mannose when compared to GNA; there is more 
extensive stacking contact with His83 & TyrlOV relative to GNA where these 
residues are Asn & His (Wright & Hester, 1996). Both terminal mannoses of the 3,6 
tri-Man arm of the branched mannoside cross-linked the two-fold related GNA 
dimers utilizing the conserved monosaccharide pocket of site I (Hester & Wright, 
1996; Wright & Hester, 1996). Site I I I is the only site with an extended binding 
region complementary to a-1,3 linked mannosides. Both the disaccharide and 
trimannoside of the mannopentaose filled into the binding pocket with interactions of 
the same residues, including the same subsidiary contacts from a second subunit, but 
the latter saccharide had extra contacts from within the same subunit (Hester & 
Wright, 1996; Wright & Hester, 1996). 

Mannose-containing glycoconjugates are abundant on cell surfaces in higher 

organisms and viruses, and thus present numerous possible targets for GNA binding. 

GNA binds to the GPI20 glycoprotein of retroviruses and as a consequence has the 

ability to inhibit retroviral activity (Balzarini et al, 1991). In agriculture, GNA has 

been shown to be toxic towards sucking and chewing insects when transgenically 

expressed (Hilder et al, 1995). 
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1.6 Phytohaemagglutinin 

Phytohaemagglutinin (PHA) is a tetrameric glycosylated lectin found in the seeds of 

the common bean {Phaseolus vulgaris). Two tandemly linked genes died and died 

encode two different (>80 % homologous) polypeptides, namely, PHA-E and PHA-L, 

respectively. The PHA tetramer is built up of these two forms in all possible 

combinations (i.e. E 4 , E 3 L , E2L2, E L 3 , and L 4 ) . Both subunit types are glycosylated; 

PHA-E contains 3 glycosylation sites, whereas PHA-L has two (Hoffman & 

Donaldson, 1985). PHA-L is N-glycosylated at two different sites with consensus 

sequence Asn-X-Ser/Thr: (i) high mannose type glycan at Asnl2, and (ii) a complex 

type glycan at Asn60 (Sturm & Chrispeels, 1986). PHA-E has an extra glycosylation 

site at AsnSO. PHA-E confers erythroagglutinating activity and PHA-L confers 

leucoagglutinating and mitogenic activity (Miller et al, 1975). 

The PHA-E precursor contains a 21-residue hydrophobic signal peptide and a 254 

amino acid mature protein, whereas the PHA-L precursor consists of a 20-residue 

signal peptide and a 252-residue mature lectin (Hoffman & Donaldson, 1985). The 

observed difference in migration pattern on an SDS-polyacrylamide gel system may 

be due to the difference in the number of covalently bound carbohydrate side chains. 

PHA binds to complex sugars; PHA-L binds with high affinity to the pentasaccharide 

Gaipi,4GlcNAcpi,2(Gaipi,4GlcNAcpi,6)Man (Hammarstrom a/., 1982). Two 

bound metal ions (Câ ^ and Mn̂ "̂ ) present in the vicinity of the sugar-binding sites are 

vital for the sugar binding capabilities. 
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Crystallographic structure determination of the PHA-L tetramer revealed that it 
consists of two canonical dimers packed together through the formation of a close 
contact between the two outmost strands, creating a large channel in the middle of the 
tetramer (Hamelryck et al., 1996). This channel is mainly lined with Ser, Thr, and 
small, apolar residues (Val, Ala, He, and Leu) creating a hydrophobic site which 
recognizes adenine and certain adenine-related cytokinins (Hamelryck et al., 1996). 

1.7 Secretory Pathways in Plants and Yeast (Pichia pastoris) 

The eukaryotic secretory pathway is a complex multi-organelle system which 

provides for the folding, assembly, post-translational modifications, and transport of 

newly translated polypeptides. The major compartments of the system are the 

endoplasmatic reticulum (ER), the Golgi apparatus and the vacuoles, although 

intermediate compartments exist as well. Figure 1.3 shows a general representation of 

the secretory pathway in yeast. A hydrophobic signal peptide at the amino-terminus 

of newly synthesized secretory proteins is necessary for targeting of the polypeptide 

to the ER; this peptide is removed co-translationally by a signal peptidase as the 

secretory protein is translocated across the endoplasmatic reticulum membrane (von 

Heijne, 1994). In the ER, the polypeptides fold, assemble and may undergo additional 

processing. As this environment contains very high concentrations of unfolded 

polypeptides, chaperones, foldases, and other enzymes are necessary to assist folding 

and limit aggregation of the polypeptide (Gething & Sambrook, 1992). In addition to 

folding and assembly, polypeptides may be subject to other post-translational 

modifications in the ER, including the addition of carbohydrate groups. 
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Figure 1.3 Yeast secretory pathway. Arrows indicate the routes taken by the 
secretory proteins from the ER to the vacuole or plasmamembrane (Romanos et al., 
1992). N : nucleus; R: ribosomes; ER: endoplasmatic reticulum; G: Golgi 
apparatus; Vac: vacuole; V: secretory vesicles; PM: plasmamembrane; CW: cell 
wall. 
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In all eukaryotes, N-glycosylation begins in the ER with the transfer of a lipid-linked 
oligosaccharide unit, Glc3Man9GlcNAc2, to Asn in the sequenceAsn-X-Ser/Thr, 
where X can be any residue except proline. This oligosaccharide is then trimmed to 
Man8GlcNAc2. A t this point, glycosylation patterns of lower and higher eukaryotes 
begin to differ. In plants, as the glycoprotein is transported in the secretory pathway 
f rom the ER to the Golgi apparatus, the precursor oligosaccharide is processed into 
high-mannose-type, paucimannosidic-type, hybrid-type and/or complex-type Â -
glycans (Lerouge et ah, 1998). These sugar moieties are necessary for efficient 
secretion of plant glycoproteins and have no specific function in the transport of the 
glycoproteins into the plant vacuole (Lerouge et al, 1998). 

The carbohydrate structures added to secreted proteins in the yeast Saccharomyces 

cerevisiae and Pichia pastoris differ f rom those of plants; the structures are of the 

high-mannose type only. Comparison of invertase secreted by both yeasts has 

revealed that although the oligosaccharide chains are of the high-mannose type, the 

length of the chains of P. pastoris-socrQted invertase is much shorter than those from 

S. cerevisiae (Man8.9GlcNAc2 as opposed to Man5o.i5oGlcNAc2, respectively; 

(Tschopp et al., 1987); (Grinna & Tschopp, 1989)). Also, glycans on P. pastoris-

secreted invertase do not have the terminal al,3-linked mannose residues that are 

characteristic of S. cerevisiae core oligosaccharides (Cregg et al, 1993); S. cerevisiae 

glycans are responsible for the highly antigenic nature of their glycoproteins and 

make their recombinant proteins unsuitable for human pharmaceutical use (Romanos 

et al., 1992). Other foreign proteins secreted f rom Pichia pastoris are not subjected to 
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the extensive mannosylation (hyperglycosylation) that commonly occurs in proteins 
secreted from S. cerevisiae (Montesino et al, 1998). 

In Pichia pastoris, 0-linked oligosaccharides, solely composed of mannose residues, 

are added at specific Ser and Thr residues which are not necessarily the same as found 

in the native host (Higgins & Cregg, 1998). In plants, 0-linked glycosylation of 

secretory proteins is much more complex. For example, 0-linked glycans of the 

precursor of the sweet potato sporamin contained galactose and arabinose as major 

sugar components (Matsuoka et al., 1995). 

The pathways for secretion and transport of proteins to the vacuole diverge at the 

Golgi apparatus, with secretion being the default pathway for soluble proteins. A 

targeting signal within the protein is required for further transport to the vacuole. 

With plants, three independent signals that direct protein to plant vacuoles exist: N-

terminal pro-peptides, e.g. sweet potato sporamin (Neuhaus & Rogers, 1998); C-

terminal pro-peptides, e.g. barley lectin (Neuhaus & Rogers, 1998); regions within 

mature proteins, e.g. castor bean ricin (Frigerio et al., 1998). There is no homology 

between these sorting signals, which appear to be unique to plants, and a distinct 

receptor is implicated in the recognition of each signal (Vitale & Raikhel, 1999). 

Sequence comparison and mutagenesis analysis of the C-terminal pro-peptide of 

barley lectin (Dombrowski et al, 1993) and tobacco chitinase A (Neuhaus et al, 

1994) suggest a common physicochemical property, rather than a primary sequence, 

provides the vacuolar targeting determinant for these proteins. In contrast, the N-

terminal pro-peptides of sweet potato sporamin (Matsuoka & Nakamura, 1991) and 

barley aleurain (Holwerda et al, 1992) contain a conserved amino acid sequence, 

NPIR (Nakamura & Matsuoka, 1993). 
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As with plants, targeting signals of yeast vacuolar proteins also reside in distinct 
protein domains (Rothman et al., 1989). For example, vacuolar precursor proteins of 
carboxypeptidase Y (Vails et al, 1987) and proteinase A (Ammerer et al., 1986) 
contain distinct N-terminal pro-peptide domains which are cleaved upon delivery to 
the vacuole. However, plant and yeast vacuolar sorting machineries appear to be 
different since plant precursor proteins expressed in yeast are targeted correctly to the 
yeast secretory pathway, but fail to be transported to the yeast vacuole and are 
secreted (Nagahora et al., 1992; Chao & Etzler, 1994). On the other hand, PHA-L 
expressed in Saccharomyces cerevisiae accumulates mainly in the vacuole (Tague & 
Chrispeels, 1987) due to the presence of 'cryptic' vacuolar targeting determinants 
(Von Schauwen & Chrispeels, 1993). 

In Pichia pastoris, secretion of recombinant protein is favoured over intracellular 

expression because this yeast secretes only low levels of endogenous proteins which 

makes purification easier. An extensive list of heterologous proteins expressed in P. 

pastoris is given by Cereghino & Cregg (2000). Several different secretion signal 

sequences have been used successfully to target recombinant proteins to the secretory 

pathway, including the native secretion signal present on someplant proteins, e.g. 

barley a-amylase (Juge et al, 1996) and maize cytokinin oxidase (Morris et al., 

1999). the P. pastoris acid phosphotase (PHOl) and S. cerevisiae invertase (SUC2) 

signals have also been used to direct heterologous proteins for secretion. However, 

the most frequently used signal sequence in recombinant protein expression in Pichia 

pastoris is the a-factor prepro-peptide from S.accharomyces cerevisiae (Cereghino & 

Cregg, 2000). This sequence consists of a hydrophobic 19-amino acid pre-sequence 

followed by a 66-residue pro-sequence containing three consensus A^-linked 
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glycosylation sites (Kurjan & Herskowitz, 1982). In some cases, these pro-peptide Â -
linked oligosaccharides are believed to facilitate secretion in S. cerevisiae (Kjeldsen 
et al, 1998). Processing of the a-factor prepro-peptide involves three steps: removal 
of the pre-signal by siganl peptidase in the ER; cleavage of the pro-peptide by the 
dibasic Kex2 endopeptidase on the carboxyl side of Lys-Arg in the Golgi apparatus; 
removal of the remaining N-terminal Glu-Ala repeats by the Stel3 dipeptidyl 
aminopeptidase also in the Golgi apparatus (Brake et al, 1984). 

1.8 Research Objectives 

The previous sections described plant lectins and the various strategies these proteins 

employed to specifically recognize and interact with carbohydrates. Also, the 

importance of plant lectins pertaining to their exploitable properties such as insect 

resistance was underlined. At the Department of Biological Sciences, University of 

Durham, different experiments are being carried out in exploiting the plant lectin 

insecticidal properties. Studies are being carried out in order to elucidate the mode of 

action of these lectins. This is done by analysing the effects of plant lectins (and 

chimeras) on insects fed on artificial diet and transgenic crops, by performing binding 

studies with immunogold labelled lectins, by identifying gut receptors (glycoprotein), 

and by carrying out mutagenesis on the carbohydrate-binding sites of the proteins. 

The main objective of this thesis is to provide efficient heterologous expression 

systems for recombinant functional plant lectin production in order to complement 

the on-going mode of action studies. Many plant lectins occur as heterogenous 

mixtures of isoforms in planta. The difficulty of separating multiple lectin isoforms 

by conventional techniques has led to functional properties and biologial activities 
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being defined for protein mixtures. Sometimes differences in sequence between 
isoforms cause significant effects on the biological activity of the molecule (e.g. 
PHA-E and PHA-L). Thus, there is a need to develop a system to produce a single, 
well-defined lectin species. In addition, such a system is a prerequisite for site-
directed mutagenesis and creation of lectin chimeras. 

Therefore, the specific objectives of this work are: 

(i) to produce functional snowdrop lectin (GNA) in Escherichia coli and to carry out 

mutagenesis of the sugar-binding site utilizing this system; 

(ii) to produce functional snowdrop lectin (GNA) and phytohaemagglutinin (PHA) in 

Pichia pastoris utilizing commercial and novel constructs; 

(iii) to produce a functional GNA-GFP chimeric protein in Pichia pastoris. 
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Chapter 2 
Materials & Methods 

2.1 Microorganisms 

Plasmid DNAs were propagated in the following Escherichia coli strains: DH5a 

(genotype: F" (j)80d/acZAM15, ^{lacZYA-argV)m69, rechi, endAl, gyrA96, thi-i, 

hsdRll(rK, mK+), supE44, X-, relAl, deoR, phoA), TOPIOF' (genotype: F[lacl% 

TnlO{tet^)], mcrA, Aimcr-hsdRMS-mcrBC), (l)80/acZAM15, MacXli, deoR, recAl, 

araDl39, A(ara-leu)1691, galU, galK, rpsL(str^), endAi, nupG), and GM119 

(genotype: V-,fhuA2, lacYl, tsx-l, gluV44(AS), gallll, galK2{0c), LAM", dcm-6, 

dam-3, mtlAl, metBl, thi-l). DH5a, TOPIOF,' and GM119 were obtained from 

Gibco BRL, Invitrogen, and Department of Biological Sciences (Durham), 

respectively. 

The Escherichia coli strain BL21(DE3)pLysS (genotype: F", ompT, hsdS^ivB', ^B'), 

dcm, gal, X{DE3), pLysS(cmf^)) from Stratagene was used for expression of wild-type 

GNA and the GNA variants. Pichia pastoris strains GS115 (genotype: his4) and 

KM71 (genotype: arg4, his4, aoxl::ARG4) from Invitrogen were used for expression 

of wild-type GNA, GFP, GNA-GFP fusions, and wild-type PHA (E and L forms) 

after stable integration of the expression construct into the AOXl locus. 
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2.2 Chemicals and Reagents 

All general chemicals and reagents of analytical grade were obtained from BDH or 

Sigma Chemical Company (Poole, Dorset, UK), unless otherwise stated. 

2.3 Standard Molecular Techniques 

All basic molecular techniques employed were standard practice at the Biological 

Sciences Department, University of Durham, and were based on protocols in 

Molecular Cloning: A Laboratory Manual (Sambrook et al, 1989). 

2.3.1 Bacterial Culture 

For routine work, liquid bacterial cultures were grown in Luria-Bertani (LB; 10 g 

peptone (Becton Dickinson, Cowley, Oxon, UK), 10 g NaCl, 5 g yeast extract 

(Umpath Ltd., Basingstoke, Hampshire, UK) per litre) broth from a single colony 

picked from a fresh agar plate. Liquid cultures were grown at 37 °C on a rotary shaker 

(200rpm). For bacterial cultures on agar, a base of 1.5 % bacteriological agar in LB 

broth was used and inoculated plates were incubated at 37 °C. Where appropriate, 

antibiotics for selection were added to culture media. Where Zeocin (Invitrogen) was 

used, bacterial cultures were grown in low salt LB broth (as above, but containing 5 g 

NaCl per litre) at pH 7.0 - 7.5. 

2.3.2 Competent Cells 

Competent cells of Escherichia coli used for plasmid transformation were 

commercially obtained as follows: DH5a (Gibco-BRL), ToplOF' (Invitrogen), and 
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BL21(DE3)pLysS (Stratagene). 

Competent GM119 was prepared by the one-step preparation method of Chung et al. 

(1988). Briefly, E. coli GM119 cells were grown in liquid LB broth to exponential 

phase (ODeoonm = 0-6) and pelleted by centrifugation at 1000 g for 10 minutes at 4 

°C. The cell pellet was resuspended at one-tenth the original culture volume in ice-

cold transformation and storage solution (LB with 10 % (w/v) PEG 8000, 5 % (v/v) 

dimethylsulfoxide (DMSO), and 25 mM MgCl2; final pH 6.5). A 0.1 ml aliquot of 

cells was used for transformation. 

2.3.3 Transformation of E. coli 

Transformation of DNA into E coli chemically competent cells was performed using 

standard procedures (Sambrook et al., 1989). Tubes containing competent cells were 

removed from -80 °C and thawed on ice. DNA for transformation (1 - 5 jLil) was added 

to the cells and the tubes mixed very gently. After leaving the cells on ice for 30 

minutes, the cells were heat-shocked by placing the tubes in a 42 °C water bath for 90 

seconds. The tubes were then placed back on ice for 1 - 2 minutes. To each tube, LB 

broth (0.5 ml) was added, and the tubes were incubated at 37 °C for 45 minutes to 1 

hour. The resulting cell suspension was selected for transformants by plating out 

aliquots (usually 100 and 400 ix\) of the suspension on LB-agar plates containing the 

appropriate antibiotic. When transforming cells with plasmids allowing blue-white 

colour selection, 40 /xg/ml 5-bromo-4-chloro-3-indolyl-P-D-galactoside (X-Gal) and 

0.1 mM isopropyl-|3-D-thiogalactoside (IPTG) were added to the agar plates. Plates 

were incubated at 37 °C for 16 hours. 
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2.3.4 Plasmid DNA Isolation 

The method for recombinant plasmid DNA isolation was based on the alkaline lysis 

procedure (Birnboim & Doly, 1979). Single colonies of bacteria containing the 

appropriate plasmid were cultured overnight under the appropriate antibiotic selection 

in 5 ml (miniprep) or 50 ml (midiprep) of LB broth. The Wizard™ Plus SV 

Minipreps DNA Purification System (Promega) was used for the minipreps, and when 

the plasmid was needed in greater quantity for Pichia transformation, the QIAfilter 

Plasmid Midi Kit (QIAGEN) was used for the midipreps. Protocols supplied by the 

manafacturers were followed. 

2.3.5 DNA Concentration Determination 

The concentration of purified plasmid DNA was determined spectrophotometrically 

by optical density measurement at 260 nm using a Beckmann D U 7500 

Spectrophotometer (assuming OD260 nm = 1 corresponds to a concentration of double 

stranded DNA = 50 jUg/ml). 

2.3.6 DNA Digestion with Restriction Enzymes 

Restriction enzyme digests were performed using commercially available enzymes 

and buffers (Promega, New England Biolabs, Boehringer-Mannheim, M B I 

Fermentas). Typically, digests were performed using 0.5 - 2.0 /ig of plasmid DNA 

and 2 - 10 units (where 1 unit will completely digest 1 /xg of DNA in a total volume of 

50 jLil in 1 hour under optimal conditions) of each restriction enzyme. Digests were 
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incubated at 37 °C for 1 - 3 hours before separation of fragments by agarose gel 
electrophoresis. 

2.3.7 Phenol Extraction and Ethanol Precipitation of DNA 

Extraction of DNA was carried out by adding an equal volume of 

phenol:chloroform:isoamylalcohol (25:24:1) to the DNA solution, vortexing for 1 

minute and centrifuging at 13000 g for 5 minutes. The upper aqueous phase was 

transferred to a fresh tube and an equal volume of chloroform:isoamylalcohol (24:1) 

added. The sample was vortexed for 30 seconds, and centrifuged at 13000 g for 2 

minutes. After transferring the upper aqueous phase to a fresh tube, the DNA was then 

precipitated by adding 0.1 volume of 3 M sodium acetate pH 5.2 and 2 volumes of 

100 % ethanol. The sample was stored at -20 °C for 1 hour and then centrifuged at 

13000 g at 4 °C for 10 minutes. The supernatant was removed and 200 fi\ of 70 % 

ethanol added. After centrifugation at 13000 g at 4 °C for 5 minutes, the supernatant 

was then discarded and the DNA pellet dried briefly in a vacuum dessicator. The 

DNA was dissolved in 50 [i\ H2O. 

2.3.8 DNA Ligation 

Ligation of DNA fragments were usually performed in 10 /xl reactions, using 

commercially available T4 DNA ligase and appropriate buffers (Boehringer-

Mannheim). Digested, purified vector and insert(s) were added in an approximate 

ratio of 1:3, and the reaction was made up to 10 / i l with distilled water. Ligations were 

incubated at 14 °C for 16 hours prior to transformation into E. coli. 
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2.3.9 Oligonucleotides 

Oligonucleotide primers were synthesized by either Perkin-Elmer or MWG Biotech 

(Ebersberg, Germany; URL: 

http://www.mwgdna.com/services/orders/order ohgo/index.htm). 

2.3.10 Standard DNA Amplification using PGR (Polymerase Chain Reaction) 

PGR was performed using standard conditions. Each reaction (25 - 100 jLt l ) contained 

reaction buffer consisting of 2.5 mM MgC^, 0.2 mM each of dATP, dCTP, dGTP and 

dTTP, 2 oligonucleotide primers (each 1 iiM), DNA template (50 - 80 ng) and 1 unit 

of Pfu (Stratgene) or Tli DNA polymerase (for expression constructs) or Tag DNA 

polymerase (for PCR-screening; colony PGR), where 1 unit catalyses the 

incorporation of 10 nmol of dNTP into acid-insoluble form in 30 minutes at 74 °G. 

Typically, for amplification using plasmid templates, PGR ampHfications consisted of 

a denaturation at 94 °G for 5 minutes, 30 cycles of the conditions: denaturation at 94 

°G for 30 seconds, annealing at 55 °G for 1 minute, extension at 72 °G for 1 minute, 

and a further extension at 72 °G for 9 minutes. Reactions were carried out using a 

Perkin Elmer 2400 thermal cycler. 

2.3.11 Colony PGR 

A rapid method to identify recombinant plasmids in E. coli was by PGR-screening of 

ten to twenty colony transformants. From a selected colony, bacterial cells were 

picked and added to 50 jLil of colony lysis buffer (20 mM Tris-HGl at pH 8.3, 2 mM 

EDTA, 1 % Triton X-100) in a 0.5 ml microcentrifuge tube. The cell suspension was 
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mixed by vigorous vortexing for 30 seconds and then incubated at 94 °C for 15 
minutes. After centrifugation, 5 fi\ of the supernatant was used in a standard PGR. 

2.3.12 Agarose Gel Electrophoresis of DNA 

The separation of DNA by electrophoresis in agarose gel was carried out as described 

by Sambrook et al. (1989). Briefly, DNA was size-fractionated in gels containing 0.7 

- 1.0 % (w/v) agarose (Gibco BRL) in TAB buffer (40 mM Tris-acetic acid at pH 7.7, 

1 mM EDTA) containing 0.5 /xg/ml ethidium bromide for visualisation of DNA under 

UV light. Electrophoresis was carried out in a Pharmacia GNA-100 mini-gel system 

or in a NBL medium-size gel apparatus. One-fifth of sample volume of 6 x gel 

loading dye mix (10 mM Tris-HGl at pH 8.0, 10 mM EDTA, 30 % (w/v) glycerol, 0.1 

% (v/v) fast orange G) was added to the DNA samples prior to loading. The gels were 

run horizontally at 50 - 100 V at room temperature in TAE buffer containing 0.5 

jLtg/ml ethidium bromide. Hindlll-, Pstl- or c o47I-digested lambda DNA 

(Northumbria Biochemicals Ltd., Cramlington, Northumberland, UK) was used as a 

molecular size marker. Gels were photographed under UV illumination and recorded 

using a red-orange filter (Kodak 23A Wratten) and Polaroid Film type 667-3000. 

2.3.13 DNA Purification from Agarose Gel 

DNA fragments were isolated from low melt agarose gels using silica fines (Sigma, 

0.5 - 1.0 fim particle size). The DNA band of interest was excised from the gel in as 

small a volume of gel as possible and transferred to a 1.5 ml polypropylene tube. To 

the tube, 1 ml of I M Nal was added and the sample incubated at 70 °C for 10 

minutes. Twenty fi\ of silica fines was added and after incubation at room temperature 
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for 20 minutes with occasional shaking, the bound DNA was pelleted by spinning for 
1 minute in a benchtop microcentrifuge. The pellet was washed with 1 ml of 70 % 
(v/v) ethanol and air-dried. The DNA was eluted by incubating the pellet in 20 jLil of 
sterile water for 5 minutes at room temperature. After centrifugation to remove the 
sihca, the supernatant containing the DNA was recovered and stored at -20 °C. 

2.3.14 DNA Sequencing 

Sequencing of plasmid template DNAs was carried out by a modification of the 

dideoxy chain termination method (Sanger et al., 1977) using fluorescent-labelled dye 

terminators and an AmpliTaq cycle sequencing kit (Perkin-Elmer Applied 

Biosystems, Warrington, Cheshire, UK). Reaction products were analysed on a 

Perkin-Elmer A B I 373 stretch or 377 DNA sequencer provided by the DNA 

sequencing services at the Department of Biological Sciences, University of Durham, 

Durham, UK. Al l final constructs described were sequenced using standard vector 

primers, or primers used for creating the constructs, or a combination of the two, to 

verify that no base misincorporations had occurred during PGR amplification steps. 

2.3.15 Glycerol Stocks 

Single colonies of E. coli or P. pastoris harbouring the desired recombinant DNA 

were inoculated into the appropriate liquid growth medium (LB for E. coli and YPD 

for P. pastoris) containing the appropriate antibiotic (ampicillin, chloramphenicol, 

and/or Zeocin) and grown overnight at 37 °G. An equal volume of liquid culture was 

added to 500 / i l of sterile 80 % (v/v) glycerol in 1 ml glass vials (BDH), resuspended 

by vortexing, and stored at -80 °G. 
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2.4 Standard Protein Analysis 
2.4.1 SDS-PAGE 

Protein samples were analysed by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) on a 12.5 % or 15 % resolving gel (12.5 % or 15 % 

(w/v) acrylamide, 0.333 % or 0.4 % (w/v) bisacrylamide, 0.375 M Tris/HCl (pH 8.8), 

0.1 % (w/v) SDS, 0.075 % (w/v) ammonium persulphate, 0.05 % (v/v) NJ^J^,]^-

tetramethylethylenediamine) and 2.5 % stacking gel (2.5 % acrylamide, 0.1 % (w/v) 

bisacrylamide, 0.125 M Tris/HCl (pH 6.8), 0.1 % (w/v) SDS, 0.1 % (w/v) ammonium 

persulphate, 0.075 % (v/v) A^,A^,A^,A^'-tetramethylethylenediamine) according to 

Laemmli (1970). Minigels (8 x 10 cm) were prepared as described by Hames and 

Rickwood (1990) and run in electrophoresis buffer (0.025 M Tris/HCl, 0.192 M 

glycine, 0.1 % (w/v) SDS; pH 8.3) at constant voltage (100 - 150 V) using an ATTO 

AE-6450 gel tank apparatus (Genetic Research Instrumentation Ltd., Dunmow, 

Essex, UK). The samples were prepared by adding an equal volume of 2 x SDS 

sample buffer (0.2 M Tris/HCl, 20 % (v/v) glycerol, 2 % (w/v) SDS, 0.002 % (w/v) 

bromophenol blue; pH 6.8), treated with 10 % P-mercaptoethanol and heated in 

boiling water for 10 minutes before loading onto gel. Protein bands were visualized 

by either Kenacid Blue staining (0.05 % (w/v) Kenacid Blue, 40 % methanol, 7 % 

glacial acetic acid) or silver staining (BioRad). A molecular weight marker (SDS7; 

Sigma) was used to calibrate the gels. This marker set contained bovine albumin (66 

kDa), ovalbumin (45 kDa), glyceraldehyde-3-phosphate dehydrogenase (36 kDa), 

carbonic anhydrase (29 kDa), trypsinogen (bovine pancreas; 24 kDa), trypsin 

inhibitor (soybean; 20 kDa), a-lactalbumin (14.2 kDa). 
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2.4.2 Immunoblotting 

Electrophoretic transfer of proteins from the protein gel to the nitrocellulose 

membrane (grade BA85, Schleicher and Schuell Inc., Anderman & Go. Ltd., 

Kingston-upon-Thames, Surrey, UK) was carried out by the semi-dry blotting 

technique of Khyse-Andersen (1974). The membrane and 3MM paper (Whatman 

Ltd., Maidstone, Kent, UK) were cut to the same size as the gel. After 

electrophoresis, the gel was assembled onto the ATTO blotting apparatus (Genetic 

Research Instrumentation Ltd., Dunmow, Essex, UK) in the following order: 

ANODE; 2 sheets of 3MM paper soaked in anode buffer 1 (0.3 M Tris/HGl, 20 % 

(v/v) methanol; pH 10.4); 1 sheet of 3MM paper soaked in anode buffer 2 (0.025 M 

Tris/HCl, 20 % (v/v) methanol; pH 10.4); 1 sheet of nitrocellulose membrane soaked 

in distilled water; the gel; 3 sheets of 3MM paper soaked in cathode buffer (0.025 M 

Tris/HGl, 40 mM 6-aminohexanoicacid, 20 % (v/v) methanol; pH 9.4); CATHODE. 

Electroblotting was conducted at constant current at between 125 - 150 mA (~ 2.5 

mA/cm^) for 45 minutes. The nitrocellulose membrane was stored between 3MM 

paper at 4 °C. 

For immunodetection, the membrane was incubated in phosphate buffered saline 

(PBS: 8 g NaCl, 0.2 g KGl, 1.15 g Na2HP04, 0.2 g KH2PO4 per litre) pH 7.4, contain­

ing 5 % nonfat milk powder (Marvel) and 1 % Tween 20 at room temperature for 1 

hour with gentle shaking. Polyclonal rabbit anti-GNA antiserum (produced by Drs 

R.R.D. Croy and L.N. Gatehouse, Department of Biological Sciences, University of 

Durham), rabbit anti-PHA antiserum (Vector Laboratories) or mouse anti-GFP 

antiserum (Glontech) were diluted (1:10,000, 1:20,000 or 1:10,000, respectively) with 

PBS containing 5 % nonfat milk powder and 0.1 % Tween 20. The membrane was 
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incubated in primary antibody solution at room temperature for 1.5 hours with gentle 
shaking. The membrane was then washed in antibody dilution buffer for 3 x 5 minutes 
at room temperature. Goat anti-rabbit or -mouse (for anti-GFP detection) IgG 
horseradish peroxidase conjugate (BioRad) was used as secondary antibody (1:10,000 
dilution, as above) to treat the membrane at room temperature for 1.5 hours followed 
by 3 X 5 minutes wash in antibody dilution buffer and a rinse in distilled water. 
Enhanced chemiluminescence (ECL) reagents (Amersham) were used to detect the 
specifically bound secondary antibody as instructed by the manafacturer, and bands 
were visualised by exposure to X-ray f i lm (Fuji-RX; Fuji Photo Film Ltd., London, 
UK). Autoradiographs were developed either manually or with an automatic developer 
(X-ograph Imaging Systems Compact X4, Malmesbury, Wiltshire, UK). 

2.4.3 Electroblotting of Proteins to PVDF Membranes 

Prior to running samples on an SDS-PAGE gel, thioglycollic acid (2 jLiM) was added 

to the electrophoresis anode buffer and the gel pre-run for 30 minutes to remove any 

chemicals which could potentially N-terminally block polypeptides. Proteins 

separated by SDS-PAGE were electrophoretically transferred from gels to 

polyvinylidene fluoride (PVDF; ProBlott; Applied Biosystems) membranes according 

to LeGendre and Matsudaira (1988) using the ATTO semi-dry electroblotting 

apparatus. The PVDF membrane was briefly prewetted in 100% methanol, rinsed 

with distilled water and equilibrated in transfer buffer (CAPS; 10 mM 3-

(cyclohexylamino)-l-propanesulfonic acid, 10 % methanol; pH 11) for a minimum of 

15 minutes. The blotting assembly was set up as described above (see section 2.4.2), 

except that the gel was rinsed in the transfer buffer for 5 minutes and all sheets of 

3MM paper were soaked in the same buffer prior to electroblotting. After blotting, to 
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check for successful transfer, the ProBlott membrane was rinsed in distilled water, 
stained for 1 minute in staining solution (0.1 % Kenacid Blue, 50 % methanol), 
destained with several changes of destaining solution (50 % methanol, 10 % acetic 
acid), rinsed again with several changes of distilled water and air-dried. The bands of 
interest were excised from the membrane and used for protein sequencing. 

2.4.4 N-Terminal Sequencing 

N-terminal sequencing was carried out on affinity-purified proteins or protein bands 

blotted onto Problott PVDF membrane after separation by SDS-PAGE, as described in 

section 2.4.3, using an Applied Biosystems model 477 amino acid sequencer. A 

standard procedure for identifying N-terminal sequences was followed, where the 

machine was run for 6 cycles and the resulting sequence data was analysed for 

agreement with the amino acid sequences predicted by the nucleotide sequences of the 

expression constructs. Any ambiguities were resolved by extending the number of 

sequencing cycles. 

2.4.5 Gel Filtration 

The state of oligomerisation of the recombinant lectin was analysed by gel filtration 

using a Superose 12 10/30 column (Pharmacia). The running buffer used was PBS 

containing 0.2 M mannose at a flow rate of 0.3 ml/min. 

2.4.6 Deglycosylation of Protein 

Recombinant N-glycosidase F (PGNase-F; Boehringer-Mannheim) hydrolyses all 

types of asparagine-bound N-glycan chains from glycoproteins provided that the 

amino and carboxyl group of the asparagine are present in peptide linkages. Protein 
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samples were denatured by boiling for 10 min in the presence of 1 % (w/v) SDS and 
8 % P-mercaptoethanol. Samples were diluted to 0.1 % SDS, 0.8 % P-
mercaptoethanol, 20 mM sodium phosphate (pH 7.4), 25 mM EDTA and 2 % Triton 
X-100. PGNase-F (0.6 units) was added and samples were incubated overnight at 37 
°C. Control reactions omitted the enzyme. Following SDS-PAGE, samples were 
analysed by immunoblotting (see section 2.4.2). 

2.4.7 Protein Concentration Determination 

Protein content of solutions was determined using a commercial dye-binding assay 

(BioRad) based on the Bradford (1976) assay, using bovine serum albumin as a 

protein standard. For determining the concentration of recombinant GNA-GFP nGNA 

was used as standard. Dilutions of BSA (or nGNA) were prepared in the same buffer 

as that used for sample preparation. In a microtitre plate, protein samples were diluted 

to a volume of 160 /xl with distilled water. Forty /xl of the Bradford reagent was added 

to each sample-containing well. The plate was shaken briefly at 900 rpm for 15 

seconds on a microtitre plate shaker and the samples measured at 570 nm using a 

Dynatech MT 5000 microtitre plate reader. Empty wells were used as blanks. 

The concentration of the rGNA was estimated by spectrophotometric analysis using a 

Beckmann DU 7500 Spectrophotometer. The extinction coefficient for GNA of A28O 

1 mg/ml = 2.05 was determined empirically. 

2.5 Construction of Expression Vectors 

Different strategies were employed to create the expression constructs. These are 

described below. The inserts of all expression vectors were sequenced on both strands 
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(5' -> 3' and 3' -> 5') to confirm that no unexpected mutations had been generated 
during oligonucleoide synthesis, PGR amplification or DNA cloning. 

2.5.1 Expression Constructs for GNA in Escherichia coli 

Plasmid pGNAH2, containing the complete cDNA sequence encoding LECGNA2 

(GenBank/EMBL Data Library accession number M55556), one of several GNA 

isoforms (Van Damme et ai, 1991a), has been described previously (Shi et ai, 1994). 

Two expression vectors were constructed. To produce mature LECGNA2 

polypeptides containing 105 amino acids, sense (5' GGA TGG ATG GAG AAT ATT 

TTG TAG TGG GG 3') and antisense (5* ATT AGG ATG GTG ATG GAG TAG GGG 

AAC G 3') oligonucleotides were synthesized to generate a Ncol site in the start 

codon of the open reading frame and a stop codon after corresponding amino acid 105 

of GNA followed by a BarnHL site, respectively. For the second construct, the same 

sense but a different antisense primer (5' ATT AGG ATG GTG ATG CGG TGT GAG 

TTG GAG 3') was used to generate a longer fragment that encodes the four extra G-

terminal amino acids (residues 106 - 109; Thr-His-Thr-Gly). The corresponding 

region from GNA was amplified by PGR from plasmid pGNAH2. The fragments 

obtained were subcloned into pETl ld (Novagen) previously digested with A^col and 

BamHl, resulting in plasmid pGNA105 or pGNA109, depending on the length of the 

sequence. 

2.5.2 Site-Directed Mutagenesis 

Site-directed mutagenesis was performed on plasmid pGNA105 as template using the 

QuikChange™ Site-Directed Mutagenesis Kit (Stratagene) using protocols supplied 

by the manafacturer. In creating the mutation Tyvg-j to Phegv (Y97F), two mutagenic 
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oligonucleotide primers, each complementary to opposite strands of the GNA DNA 
insert, were synthesized as follows: sense (5' GTT GTG ATC TTC GGA ACT GAT 
3') and antisense (5' ATC AGT TCC GAA GAT CAC AAC 3') with the nucleotide 
change shown in bold. The primers were extended during temperature cycling by Pfu 
DNA polymerase generating a mutated plasmid containing staggered nicks. After 
temperature cycling, the product was digested with Dpnl to remove the dam-
methylated parental DNA template. The nicked vector DNA incorporating the desired 
mutation was then transformed directly into E. coli. 

2.5.3 Expression Constructs for GNA in Pichia pastoris 

Construct GNA:GNA was created for the expression of the leader and mature GNA 

polypeptide (Table 1.1; Figure 2.1). PGR primers were developed based on the 

LECGNA2 cDNA (in pGNAH2) and corresponded to the first five N-terminal codons 

of the GNA signal peptide sequence, including a consensus ATG initiation codon 

(ANNAIGG; (Kozak, 1987;1990)), and the last six codons of the mature coding 

sequence, including the stop codon. The amplified product, flanked by Xhol and Xbal 

restriction sites, was inserted into the multiple cloning site of pPICZB (Invitrogen). 

Construct GNA:GNA(2) was created for the expression of the leader, mature, and C-

terminal extension of GNA (Table 1.1; Figure 2.1). The same protocol was used as 

for construct GNA:GNA (see above) with the exception that the C-terminal primer 

corresponds to the last six codons of the GNA C-terminal extension sequence, 

including the stop codon. 

The mature coding sequence of GNA, which was PCR-amplified using the 

appropriate primers (Table 1.1; Figure 2.1), was cloned in frame and downstream of 



Table 1.1 Oligonucleotide sequences of primers used to prepare Pichia expression constructs. The PHA-E:GNA and PHA-E:GFP 
constructs were produced by a two-step process; the product of amplification of the first pair of primers was used as a 'Megaprimer' in the 
second amplification step. M13RP1 = M13 reverse sequencing primer 1 (5' CACACAGGAAACAGCTATGAC 3'); 5' AOXl = Pichia 
alcohol oxidase promoter primer (5' GACTGGTTCCAATTGACAAGC 3'). 

Construct PGR Primers: N-terminal (5' - 3') 
C-terminal (5' - 3') 

Vector Cloning 
sites 

Coding sequence(s) 

PHA-E:PHA-E GCGAATTCACCATGGCrTCCTCCAACITACTC 
M13RP1 

pPICZ B Eco RI / 
Xba I 

PHA-E signal peptide : 
Mature PHA-E 

PHA-L:PHA-L GCGAATTCACCATGGCTTCCTCCAAGTTCTTC 
M13RP1 

pPICZ B Eco RI / 
Xba\ 

PHA-L signal peptide : 
Mature PHA-L 

a:PHA-E GCCTCGAGAAAAGAGCCAGCCAAACCTCCTTCAGC 
M13RP1 

pPICZa A Xhol/ 
Xba I 

a-factor prepro-: 
Mature PHA-E 

a:PHA-L GCCTCGAGAAAAGAAGCAACGATATCTACTTCAAC 
M13RP1 

pPICZa A Xhol/ 
Xba I 

a-factor prepro-: 
Mature PHA-L 

GNA:GNA ATTACTCGAGAAAATGGCTAAGGCAAGTC 
TAATrCTAGATTACTTTGCCGTCACAAGC 

pPlCZ B Xhol/ 
Xba I 

GNA signal peptide : 
Mature GNA 

GNA:GNA(2) ATTACTCGAGAAAATGGCTAAGGCAAGTC 
TAATTCTAGATTACnTGCCGTCACAAGC 

pPICZ B Xho 1/ 
Xba I 

GNA signal peptide : 
Mature GNA plus C-terminal 
extension 

a:GNA ATTACrCGAGAAAAGAGACAATATnTGTAC 
TAATTCTAGATCATCCGGTGTGAGTTCC 

pPICZa A Xhol/ 
Xba I 

a-factor prepro-: 
Mature GNA 

aEA:GNA ATTACrCGAGAAAAGAGAGGCTGAAGCTGACAATATTTTGTACTCC 
TAATTCTAGATCATCCGGTGTGAGTTCC 

pPICZa A Xhol/ 
Xba I 

a-factor prepro- / EAEA repeats 
: Mature GNA 

PHA-E:GNA 1. 5'AOXl 
GGAGTACAAAATATTGTCTGAGTTTGCGTGGGTGAG 

2. Megaprimer from above 
TAATTCTAGATCATCCGGTGTGAGTTCC 

pPICZ B Eco RI / 
Xba I 

PHA-E signal peptide : 
Mature GNA 

a E A : G F P ATTACTGCAGCAAGTAAAGGAGAAGAACrnrC 
TAATrCTAGAATrCATTATrrGTAGAGCTCATC 

pPICZa B Pstl/ 
Xba I 

a-factor prepro- / EAEA repeats 
: GFP 

PHA-E:GFP 1. 5' AOXl 
CCAGTGAAAAGTTCTrCTCCnTACTrGAGTTTGCGTGGGTGAG 

2. Megaprimer from above 
TAATTCTAGAATTCATTATTTGTAGAGCTCATC 

pPICZ B Eco RI / 
Xba I 

PHA-E signal peptide : 
GFP 
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Galanthus nivalis GNA Gene 

X/iol W.0I 

pGNAH2 

I PGR 

^ ^ ^ ^ ^ 

pPICZB 

GNA:GNA 

clone 

pPICZaA 

a:GNA or aEA:GNA 

pPICZB 

GNA:GNA(2) 

Figure 2.1 Development of expression constructs for GNA. The GNA coding 
sequence, with or without the leader sequence and/or the C-terminal extension, was 
amplified by PGR from pGNAH2 and cloned into pPICZB or pPICZaA expression 
vector, casa: GNA leader sequence; GNA mature coding sequence; 
GNA C-terminal extension sequence; czz]; a-factor prepro sequence; ^ \ primer 
(see Table 1.1 for details). 
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5 'AOXl primer 

PHA-E:PHA-E 

PGR 

[ A D X T 

\ 

\ 

i ^ ^ ^ megapnmer 

< V 

pGNAH2 

I PGR 

^ clone 

pPICZB 

PHA-E:GNA 

Figure 2.2 Development of expression constructs for GNA continued. The 
PHA-E leader sequence was amplified by PGR from the PHA-E:PHA-E construct. 
The PGR product was subsequently used as a (mega)primer for the amplification 
of the mature GNA coding sequence from pGNAH2 and cloned into pPICZB 
expression vector. E D : PHA-E leader sequence; i = i : PHA-E mature coding 
sequence; Esa: GNA leader sequence; ^ ^ : GNA mature coding sequence; 
c ^ : GNA C-terminal extension sequence; : primer (see Table 1.1 for details). 
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the a-factor prepro—sequence flush with the Kex2 protease cleavage site to yield 
construct a:GNA. The initiation codon ATG in the a-factor signal sequence in 
pPICZaA corresponded to the native initiation codon of the AOXl gene. A second a-
factor construct (aEA:GNA) contained two Glu-Ala repeats (EAEA) between the 
Kex2 protease cleavage site and mature GNA. 

For construct PHA-E:GNA, mature GNA fused to the PHA-E signal sequence was 

created by the megaprimer method (Sarkar & Sommer, 1990) using two sequential 

polymerase chain reactions. Firstly, the PHA-E:PHA-E construct (in pPICZB; see 

below) was used as template for amplification of the PHA-E native leader sequence 

using the 5' AOXl primer (Invitrogen) and a C-terminal primer which introduced the 

first six codons of the mature coding sequence of GNA (omitting the methionine 

initiation codon) immediately after the last six codons of the PHA-E signal peptide 

coding sequence. The PCR parameters were as follows: 94 °C for 5 minutes; 30 

cycles of 94 °C for 30 seconds, 50 °C for 30 seconds, 74 °C for 30 seconds; 74 °C for 

5 minutes. The resulting PCR product was purified and used as a megaprimer in 

combination with a GNA C-terminal primer to produce the PHA-E:GNA fusion using 

the LECGNA2 cDNA (in pGNAH2) sequence as template. The reaction parameters 

were: 94 °C for 5 minutes; 30 cycles of 94 °C for 30 seconds, 45 °C for 30 seconds, 

74 °C for 30 seconds; 74 °C for 5 minutes. In all cases above, PCR products were 

cloned directly into the appropriate pPIC vector (Table 1.1; Figure 2.2). 

2.5.4 Expression Constructs for PHA-E and PHA-L in Pichia pastoris 

Genomic DNA isolated from Phaseolus vulgaris cv. Tendergreen was used as 

template for the PCR amplification of PHA coding sequences. Primer sequences were 
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Phaseolus vulgaris PHA (-E or -L) Gene 

I PGR 

blunt-end clone 

&0RI X/iol 

pUG18 

PGR 

subclone 

-IZZZZI 

pPIGZB pPIGZaA 

PHA-E:PHA-E or PHA-L:PHA-L a:PHA-E or a:PHA-L 

Figure 2.3 Development of expression constructs for PHA-E and PHA-L. The 
full-length PHA coding sequence was amplified by PGR from whole genomic 
Phaseolus vulgaris cv. Tendergreen DNA and cloned into pUG18. The PHA gene, 
with or without its native leader sequence, was amplified by PGR and cloned into 
pGR-Script (not shown) before subcloned into pPIGZB or pPIGZaA expression 
vector, respectively, I E H ; PHA (-E or -L) leader sequence; PHA (-E or -L) 
mature coding sequence; czzi: a-factor prepro sequence; : primer (see Table 
1.1 for details). 
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designed using the published sequences of PHA-E and PHA-L (GeneBank/EMBL 
Data Library accession numbers X02408 and X02409, respectively; (Hoffman & 
Donaldson, 1985)). PGR primers corresponded to the first six N-terminal codons of 
the PHA signal peptide sequence and the last six codons (including the stop codon) of 
the mature coding sequence and a further 5 bp of the 3' UTR. A BamHI site was 
included at the 5' end of each primer. Primer sequences were: PHA-E N-terminal 
primer, 5' COG ATC CAT GGC TTG GTG CAA CTT AC 3'; PHA-E C-terminal 
primer, 5' CGG ATC CTG GAG TCT AGA GGA TTT GGT TGA G 3'; PHA-L N-
terminal primer, 5' CGG ATC CCA TGG CTT CCT CCA AGT TC 3'; PHA-E C-
terminal primer, 5' CGG ATC CTG GAG TCT AGA GGA TTT TGT TGA G 3'. 

After amplification, PGR products were blunt-end cloned into pUClS. 

To produce Pichia expression constructs (see Table L i ; Figure 2.3), modified N-

terminal oligonucleotides were used to amplify PHA template DNA, in combination 

with a generic M l 3 sequencing primer (which amplifies across the Xba I site 

containing a stop codon in the PHA coding sequence). Primers for expression using 

the native signal peptide sequence contained a consensus ATG initiation codon. 

Primers for expression using the a-factor prepro—sequence needed no initiation 

codon and the mature coding sequence was fused flush to the Kex2 protease cleavage 

site. PGR products were cloned into pCR-Script (Stratagene) and subsequently 

subcloned into the respective pPIC plasmid vector using restriction sites incorporated 

into the primer sequences (Table 1.1). 
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2.5.5 Expression Constructs for GFP in Pichia pastoris 

Primers used for the construction of GFP expression constructs are shown in Table 

1.1. For construct aEA:GFP (fusion of GFP to a-factor containing Glu-Ala repeats) a 

modified GFP coding sequence was amplified by PGR from pGFPuv (Glontech) 

(Figure 2.4). Construct PHA-E:GFP (fusion of PHA-E signal peptide to GFP) was 

constructed by the megaprimer method (Figure 2.5). The first round of amplification 

used PHA-E:PHA-E in pPIGZB as template with the 5'AOXl vector primer and a 

primer corresponding to the last six residues of the PHA-E signal peptide and the first 

six residues of GFP (omitting the methionine initiation codon). The second 

amplification involved pGFPuv as template, the purified megaprimer obtained above 

and the GFP G-terminal primer. The parameters used in the two sequential PGRs 

were the same as described above. 

2.5.6 Expression Constructs for GNA-GFP in Pichia pastoris 

For construct a:GNA-GFP, the PstUXbal-restncted PGR product, resulting from the 

amplification of GNA from plasmid pGNAH2 with N-terminal primer, 5' ATT ACT 

GGA GAG AAT ATT TTG TAG TGG GGT 3', and G-terminal primer, 5' TAA TTG 

TAG AGT TGC GGT GTG AGT TGG AGT 3', was fused to purified, XbaVEcoRl-

restricted GFP (from pGFPuv) and P5/I/£coRI-restricted pPIGZaB, simultaneously, 

in a triple Hgation reaction (see section 2.3.8). For construct PHA-E:GNA-GFP, the 

megaprimer PGR method was employed. Here, in a first PGR, the PHA-E native 

signal sequence was amplified from construct PHA-E:PHA-E to produce the 

megaprimer (see section 2.5.4) using the same primers and conditions described for 

construct PHA-E:GNA (see section 2.5.3). In a second PGR, GNA was amplified 
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Green Fluorescent Protein GFP Gene 

pGFPuv 

I PGR 

^ clone 

-EZZZZ 

pPICZaB 

aEA:GFP 

Figure 2.4 Development of expression constructs for GFP. A modified GFP 
(GFPuv) coding sequence without its leader sequence was amplified by PGR from 
pGFPuv (Clontech) and cloned into pPICZaB expression vector. GFPuv 
leader sequence; 1 = ^ : GFPuv mature coding sequence; E::Z3: a-factor prepro 
sequence; : primer (see Table 1.1 for details). 
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from pGNAH2 using the megaprimer and the C-terminal primer used for the 
construct a:GNA-GFP. After restriction digest with EcoRl and Xbal, the product was 
then fused in a triple ligation reaction to XbaVEcoRl-Tesivicied GFP and EcoRl-
restricted pPICZB. 

2.6 Expression of Recombinant Protein in E. coli and P. pastoris 

2.6.1 Induction of Expression of Recombinant GNA in Escherichia coli 

The bacterial strain Escherichia coli BL21(DE3)pLysS (Studier & Moffatt, 1986) was 

used for the expression of recombinant GNA. This strain is a lysogen containing a 

single T7 RNA polymerase gene under control of the lacUV5 promoter, which is 

inducible by isopropyl-p-D-thiogalactopyranoside (IPTG). Plasmid pLysS codes for 

T7 lysozyme, a natural inhibitor of T7 RNA polymerase for minimal background 

expression levels. The bacteria containing the recombinant plasmid were grown at 37 

°C with shaking in 50 ml LB medium containing 100 /xg/ml ampicillin until mid-log 

phase (ODeoonm = 0-6), then induced by the addition of IPTG to a final concentration 

of 1 mM and by continuing the incubation at 37 °C for another 3 hours. Aliquots (1 

ml) of bacterial culture were removed after pre-determined periods of induction. The 

cells were collected by centrifugation and suspended in 50 jitl H2O and 50 jul of 2 x 

SDS-PAGE sample buffer (0.2 M Tris-HCl, pH 6.8, 2 % sodium dodecyl sulphate, 20 

% glycerol and 0.002 % bromophenol blue). After SDS-PAGE, detection of the 

proteins in the bacterial lysates was done by staining with Coomassie Brilliant Blue 

R250, and the presence of recombinant GNA was confirmed by immunoblotting (see 

section 2.4.2). 
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pGNAH2 pGFPuv 

PGR I 

^ ^ ^ ^ ^ 

clone 

pPICZaB 

a:GNA-GFP 

Figure 2.6 Development of expression constructs for GNA-GFP. The GNA 
and GFP coding sequences were amplified by PGR from pGNAH2 and pGFPuv, 
respectively, and cloned into pPIGZaB expression vector. E33: GNA leader 
sequence; GNA mature coding sequence; GNA G-terminal extension 
sequence; czẑ : GFPuv mature coding sequence; a-factor prepro 
sequence; • " ^ : primer (see Section 2.5.6 for details). 
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5 'AOXl 
primer 

PHA-E:PHA-E 

PGR 

l A O x i k . [^^^^ megaprimer 

\ / 

\ 

pGNAH2 pGFPuv 

PGR 

XimI 

clone 

pPIGZB 

PHA-E:GNA-GFP 

Figure 2.7 Development of expression constructs for GNA-GFP continued. The 
PHA-E leader sequence was amplified by PGR from the PHA-E:PHA-E construct. 
The PGR product was subsequently used as a (mega)primer for the amplification 
of the mature GNA coding sequence from pGNAH2. The GFP coding sequence 
was amplified by PGR from pGFPuv. The PGR products were cloned into pPIGZB 
expression vector. Esa: GNA leader sequence; GNA mature coding 
sequence; GNA G-terminal extension sequence; ' — - - i : GFPuv mature coding 
sequence; PHA-E leader sequence; PHA-E mature coding sequence; 

: primer (see Section 2.5.6 for details). 
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To obtain larger amounts of recombinant GNA, 2 1 LB medium was inoculated with a 
20 ml culture and incubated at 37 °C with shaking until the ODgoonm reached 0.6. 
This culture was then induced with IPTG and further incubated overnight. Cells were 
collected by centrifugation and suspended in 200 ml of TE buffer (50 mM Tris-HCl, 
2 mM EDTA, pH 8.0) containing 20 /xg/ml DNAse I . Lysis of the bacterial cells was 
performed on a cell disruption apparatus (Constant Systems Ltd., UK) at 25000 psi at 
4 °C and repeated twice. The insoluble material was then collected by centrifugation 
at 18000 g at 4 °C for 25 minutes and stored at -20 °C until used for solubilization. 
The inclusion bodies obtained from the 2 1 bacterial culture containing recombinant 
GNA were solubilized in 100 ml 6M urea and 0.1% B-mercaptoethanol and 
subsequently heated in boiling water for 10 minutes. The denatured solution was then 
clarified by centrifugation at 18000 g for 30 minutes. Refolding was done by 
dialysing against 4 1 of 50 mM Tris-HCl pH 8.0 at room temperature for at least 1.5 
hours. This last step was repeated before storage of the lectin solution at 4 °C. 

2.6.2 Transformation of Pichia 

Transformation of P. pastoris was based on a modified version of the procedure 

described for Saccharomyces cerevisiae (Gietz & Schiestl, 1995). Briefly, 50 ml of an 

overnight culture of P. pastoris in rich medium (YPD; 1 % yeast extract, 2 % peptone, 

2 % glucose was centrifuged at 1500 g at room temperature for 10 minutes. After 

washing the cells once with sterile distilled water, the cells were resuspended in 1 ml 

of 100 mM LiCl (in contrast to S. cerevisiae, lithium acetate does not work for P. 

pastoris), harvested by centrifugation at 13000 g for 15 seconds, resuspended in 400 

/xl of 100 mM LiCl and then dispensed in 50 ii\ aliquots in 1.5 ml microcentrifuge 
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tubes. Per transformation, an aliquot was centrifuged and to the pelleted cells, 240 /xl 
of 50 % PEG-3350, 36 /xl of 1 M LiCl, 25 pd of 2 mg/ml single stranded salmon sperm 
carrier DNA and 30 fig of BstX I-restricted transformation plasmid in 50 /xl sterile 
water were added in this order followed by vigorous vortexing. After incubating the 
mixture at 30 °G for 30 minutes, 35 /xl of dimethylsulfoxide was added. The mixture 
was heat shocked in a water bath at 42 °C for 25 minutes. The cells were then 
harvested by centrifugation at 6000 g and resuspended in 1 ml of YPD. The cell 
suspension was incubated at 30 °C for 3 - 4 hours. Selection of transformants was 
done by spreading 200 and 800 /xl aliquots on YPD plates (YPD, 1.5% agar) 
containing 100 /xg/ml Zeocin and incubating at 30 °G for 2 - 3 days. Transformed 
colonies were transferred to fresh selection medium. 

2.6.3 Induction of Expression of Recombinant Proteins in Pichia pastoris 

Single colonies of transformed Pichia were grown overnight in 10 ml BMGY medium 

(1 % yeast extract, 2 % peptone, 100 mM potassium phosphate, pH 6.0, 1.34 % yeast 

nitrogen base (Invitrogen), 1 % glycerol, 4 x 10-̂  % biotin, 0.004 % L-histidine), 

centrifuged, resuspended in 1.0 ml sterile distilled water and inoculated into 50 ml of 

fresh BMMY medium (BMGY, but glycerol was replaced by methanol). Cultures 

were shaken at 300 rpm and fresh methanol was added daily for 6 - 7 days to 0.5 % 

(v/v) at 9 am and 6 pm during the course of induction. In scaling up the production of 

recombinant protein the same procedure was used as described above except that an 

50 ml BMGY culture was used to inoculate 500 ml of BMMY medium in a 2 1 baffled 

flask. 
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2.6.4 Preparation of Protein Extracts from Pichia Cells 

The contents of cells harvested after growth and induction of expression were 

analysed for the presence of recombinant protein. The method of cell disruption was 

based on mechanical breakage of cells by vortexing in the presence of glass beads and 

was based on a modified procedure described by Ausubel et al. (1993). Briefly, 

transformed Pichia cells, harvested from a 50 ml culture, were suspended in 500 jLtl 

ice-chilled disruption buffer (20 mM Tris-HCl, pH 7.5, 0.1 mM EDTA, 10 % glycerol, 

100 mM KCl, 1 mM dithiothreitol, 0.1 /xg/ml chymostatin, 1.0 /xg/ml pepstatin A, 7.2 

jLtg/ml E-64, 0.5 jUg/ml leupeptin, 1 mM phenylmethylsulfonylfluoride). An equal 

volume of chilled, acid-washed glass beads (0.45 - 0.55 mm) was added to the 

suspension. The cell suspension and beads were vortexed vigorously at 4 °C until the 

amount of cell breakage, visually checked under a microscope, represented more than 

75 % of the original cell population. After centrifugation, the supernatant was stored at 

-20 °C until further required for immunoblotting analysis. 

2.7 Purification of Recombinant Lectin 

2.7.1 Purification of Recombinant Wild-Type GNA from E. coli by Affinity 

Chromatography 

Solid (NH4)2S04was added to 10 ml of refolded protein solution to a final 

concentration of 1 M . The pH of the solution was lowered to 4.5 by the addition of 1 

M HCl. The precipitate formed was removed by centrifugation and the supernatant 

loaded onto a column (1.6 cm diameter) containing 10 ml of D-mannose immobilized 

onto 4 % beaded agarose (Sigma). The column was washed with 1 M (NH4)2S04 to 
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remove any unbound proteins until the absorbance reached background level. The 
bound fraction was subsequently eluted isocratically with 20 mM diaminopropane 
(DAP) at a flow rate of 0.5 ml/min. Proteins were monitored by online measurement 
of absorbance at 280 nm. Fractions of 1.5 ml were collected and analysed by SDS-
PAGE. Those containing recombinant GNA, as deduced from SDS-PAGE, were 
pooled and analysed spectrophotometrically. 

2.7.2 Purification of Recombinant Wild-Type and Altered GNA from E. coU by 

Anion-Exchange Chromatography 

The denatured/refolded recombinant GNA was dialysed overnight against 20 mM 

diaminopropane-HCl (DAP-HCl) buffer pH 9.0 and then passed over an anion-

exchange chromatography column (30 ml, Q-Sepharose Fast Flow; Pharmacia) 

equilibrated in 20 mM DAP-HCl pH 9.0. The bound fraction was eluted with a 180 

ml linear gradient of 0 - 1 M NaCl in DAP-HCl. Fractions containing the desired 

recombinant lectin were identified by immunoblotting (see section 2.4.2). 

2.7.3 Affinity-Purification of PHA and GNA from Pichia Culture Supernatant. 

Recombinant PHA isoforms expressed in Pichia were affinity-purified on 

thyroglobulin-agarose essentially as described (Osbom et al, 1984). Briefly, proteins 

from Pichia culture supematants (50 ml) were precipitated by the addition of solid 

(NH4)2S04 to 80 % saturation and incubated overnight at 4 °C. Precipitates were 

collected by centrifugation at 3000 g for 40 minutes, resuspended in 2 ml PBS and 

dialysed against 4 1 PBS overnight at 4 °C. Dialysed samples were loaded onto a 

thyroglobulin-agarose column (5 ml) followed by washing in PBS until all non-bound 

material had been removed. The column was then washed with non-buffered saline (1 
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column volume), and eluted in 0.5 M NaCl, 50 mM glycine (pH 3.0). The pH of 
eluted samples was brought to 7.4 by the addition of Tris-HCl to 0.1 M and samples 
were dialysed against PBS overnight at 4 °C. 

Recombinant GNA was purified from Pichia cultures (50 ml) by binding to a mannan-

agarose (Sigma) affinity column. Briefly, proteins from culture supematants were 

precipitated with (NH4)2S04 as described for the PHA purification. After 

resuspending precipitates in PBS, the soluble fraction was loaded directly onto a 

column (10 ml) containing mannan-agarose (Sigma). The column was washed with 

PBS to remove any unbound proteins until the absorbance reached background level. 

The bound fraction was subsequently eluted isocratically with 20 mM DAP and eluted 

proteins were monitored by online measurement of absorbance at 280 nm. Fractions 

containing recombinant GNA were pooled, dialysed against NH4HCO3, lyophilised 

and dissolved in PBS. 

Routinely, the ammonium sulphate method was not used. An alternative and more 

preferred method for the affinity purification of recombinant GNA involved loading 

the culture supernatant directly onto the column. This step eliminated the inefficient 

redissoving of the pellet after ammonium sulphate precipitation. The column was 

washed with PBS and the bound fraction eluted with DAP as described above. 

2.8 Recombinant Protein Functional Assays 

2.8.1 Plant Lectins and Green Fluorescent Protein 

Native snowdrop lectin (GNA) was obtained from the laboratory of Professor W. 

Peumans of the Catholic University of Leuven, Belgium, and from Vector 
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Laboratories (Peterborough, Cambridgeshire, UK). Native PHA-E and PHA-L were 
purchased from Calbiochem (Novabiochem, Nottingham, UK). 

Standard E. co/Z-expressed recombinant green fluorescent protein (rGFP) was 

obtained from Clontech (Basingstoke, Hampshire, UK). 

2.8.2 Hemagglutination Assays 

Hemagglutination assays were carried out in roundbottomed microtitre plates. A total 

volume of 100 fx\ was used in each well: 50 /Lil aliquots of serial twofold dilutions of 

the lectin in PBS and 50 /xl of a 2 % rabbit erythrocyte suspension in PBS. 

Agglutination assays were incubated at room temperature for 1 hour. The lowest 

concentration of lectin required to completely agglutinate the red blood cells was 

determined visually. The effects of mannose, methyl-a-D-mannoside and glucose on 

the hemagglutination by the lectin were studied by the addition of serial dilutions of 

these saccharides to the hemagglutination assay mixture containing the lectin at a final 

concentration of 15 /xg/ml. The inhibitory activity was expressed as the minimum 

concentration of the hapten that completely inhibited the activity of the lectin. All 

hemagglutination assays were carried out in duplicate. 

2.8.3 GNA-Carboxypeptidase-Y-Binding Assay 

Each well of an immunoplate (Immulon 4, Dynatech) was coated with 50 /xl of 

carboxypeptidase Y (2 /xg/ml in PBS) at room temperature for 2 hours with gentle 

shaking. The solution was discarded and the wells washed two times with PBST (PBS 

containing 0.01 % Tween20). The wells were then completely filled with 5 % (w/v) 

non-fat dry milk containing 0.1 % Tween20 in PBS and the plate was incubated at 
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room temperature for 2 hours with gentle shaking. The wells of the plate were washed 
three times with PBST. The GNA test sample (final concentration 20 jitg/ml) with 
serial twofold dilutions of methyl-a-D-mannoside (initial final concentration 500 
mM) were then added to a final volume of 50 /xl. After incubation at room 
temperature for 1 hour, each well was emptied and washed three times, then 50 fil of 
antiGNA polyclonal antibodies (1:10,000 dilution) was added. The reaction was 
allowed to proceed at room temperature for 1 hour with gentle shaking. The plate was 
washed three times and 50 jil of horseradish peroxidase-labelled goat anti-rabbit 
antibodies (1:10,000 dilution) was added to each well. The reaction proceeded at 
room temperature for 1 hour with gentle shaking, then the wells were washed three 
times with PBST. Fifty /xl of an equal volume of ABTS Peroxidase Substrate and 
Peroxidase Substrate Solution B (Kirkegaard and Perry Laboratories Inc.) was added 
to each well and incubation proceeded at room temperature for approximately ten 
minutes. Optical density measurements were taken with a Dynatech MR5000 mi-
croplate reader (Dynatech Laboratories Ltd., West Sussex, UK) at a wavelength of 
405 nm. For each optical density reading, the negative control value with PBS in 
place of lectin solution was subtracted. All readings were taken in duplicate. 

2.8.4 Direct E L I S A of GNA Variants 

Wells of a microtitre plate were coated with 50 fx\ of a serial twofold dilution of lectin 

(initial concentration of 10 /xg/ml). Procedure for the detection of native and 

recombinant GNAs by anti-GNA antibodies was followed as described in section 

2.8.3. 
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2.8,5 Probing of BPH Total Gut Protein Extract with Recombinant GNA and 
Detection by Immunoblotting 

A stock culture of Nilaparvata lugens (rice brown planthopper, BPH) was reared as 

previously described (Powell et al, 1993). Fifty brown planthopper adult female guts 

were isolated with the aid of a light microscope and dissolved in 100 /xl of 1 x SDS 

sample buffer. After incubation with shaking for 30 minutes the insoluble material 

was removed by centrifugation. The sample was treated with P-mercaptoethanol (5 

%) and heated in a boiling water bath for 10 minutes. Ten /xl of the total gut extract 

was then loaded onto an SDS-PAGE (12.5 %) gel. CarboxypeptidaseY (3 /xg) was 

used as positive control. The proteins were blotted onto PVDF membrane 

(Boehringer-Mannheim) and the membrane blocked for 30 minutes at room 

tempeature in 0.5 % (w/v) blocking reagent (Boehringer-Mannheim) in TBS (0.05 M 

TrisHCl, 0.15 M NaCl, pH 7.5). The membrane was washed 2 x in TBS for 10 

minutes each, equilibrated in lectin probe buffer (TBS containing 1 mM MgCh, 1 

mM MnCl2, 1 mM CaCh, pH 7.5) for 5 minutes, and incubated with rGNA105 or 

rGNA105(Y97F) in 20 ml probe buffer at a concentration of 1 /xg/ml for 1 hour at 

room temperature. After two washes in TBS for 10 minutes each, the membrane was 

incubated in PBS blocking buffer containing 5 % nonfat milk powder and 0.1 % 

Tween20 for 1 hour at room temperature. Bound lectins were then detected by 

treatment with anti-lectin antibodies followed by ECL detection as described in 

section 2.4.2. 
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2.8.6 BPH Bioassays 

Bioassays of BPH using artificial diets containing 0.05 % (w/v) GNA were carried out 

as previously described (Powell et al, 1993). The corrected mortality values (Abbot, 

1925) were based on the time taken for complete mortality of planthoppers exposed to 

a "no diet" treatment (6 days after start of trial) and was calculated as follows: [(a-

b)/a] X 100 %, where a = number of surviving insects fed on diet only and b = number 

of insects fed on diet plus lectin. Survival curves for BPH in different treatments were 

compared by Survival Analysis using the Statview software package (Abacus 

Concepts Ltd., California, USA) on Apple Macintosh computers. Differences were 

assessed for significance using a logrank test. 

2.8.7 Extraction of Haemolymph from Lacanobia oleracea 

Lacanobia oleracea larvae were reared and maintained on potato leaf based artificial 

diet, as previously described (Fitches & Gatehouse, 1998). The larvae were chilled on 

ice for 10 minutes, the cuticle was swabbed with ethanol, dried and pierced with a 

sterile 21 gauge needle. Droplets of extruded haemolymph was collected using a 

sterile glass microcapillary tube and placed into a pre-chilled 0.5 ml eppendorfs 

dusted with phenylthiocarbamide-phenol oxidase inhibitor (PPG). Fifteen to 50 /xl 

haemolymph was extractable using this technique. 

2.8.8 Preparation of Haemocyte Monolayers 

The haemolymph from 6th instar Lacanobia oleracea larvae was diluted 1 in 8 in ice 

cold Tris buffered saline (TBS: 0.05 M Tris-HCl, pH 7.4, NaCl to osmolarity 309 

mosmol/kg) in an Eppendorf tube and then applied to 8 mm diameter wells on a 
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microscopic slide (eight well slides, Hendly, Essex, UK). A l l incubations were 
performed in a moist chamber at room temperature. After 20 minutes, the monolayers 
were washed gently six times with TBS using a Pasteur pipette to remove plasma 
components. The haemocytes were then incubated with TBS for 10 minutes to attain 
a rounded configuration. The cells were overlaid with 50 /xl of TBS alone or 
containing 5 fig/ml of recombinant GNA-GFP or GFP for 1 hour, washed six times 
with TBS and viewed by confocal microscopy. 

2.8.9 Fluorescence Microscopy 

A Nikon episcopic fluorescence microscope (OPTIPHOT-2) was used to detect GFP 

fluorescence in a suspension of Pichia cells or mannan-agarose beads. Cells taken 

directly from the culture were immobilised on a microscopic slide in 0.5 % (w/v) 

agarose. The light source was powered by a Nikon Super High Pressure Mercury 

Lamp Power Supply HB-10101 AF. The filter system used was as follows: a BV-2A 

filter (excitation wavelength 400 - 440 nm), a dichroic mirror D M 455 and a barrier 

filter BA 470. Exposure time of fluorescence to a Fujichrome (ASA 400) diafilm in a 

Nikon FX-35 camera was controlled by a Nikon AFX Photomicrographic attachment. 

2.8.10 Confocal Microscopy 

Haemocytes were viewed under epifluorescent illumination (excitation at 488 nm; 

emission filter HQ 518/40) with a Nikon Diaphot microscope using a BioRad 

MicroRadiance Confocal (MRC-1024) Scanning System. Images were captured on 

computer, and assembled using the manafacturer's LaserSharp imaging software. 
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2.8.11 Fluorometric Assays 

Recombinant GFP fusion with GNA was used in fluorometric assays to confirm and 

measure GFP fluorescence. Fluorescence was measured using a Fluoroskan Ascent 

microtitre plate fluorimeter (Labsystems, Life Sciences International Ltd., 

Basingstoke, Hampshire, UK). An excitation filter of 355 nm and an emission filter of 

538 nm were used. Quantitation of recombinant GNA-GFP levels was made possible 

by comparing the fluorescence intensity of the affinity-purified sample to that of a 

serial two-fold dilution of standard recombinant GFPuv. 
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Chapter 3 

Expression of Functional GNA in E. coli 

3.1 Introduction 

As described earlier, plant lectins have been proposed to play a role in the defence of 

plants against insect pests, and a number of plant lectins have been shown to exhibit 

antimetabolic or insecticidal effects on insects when fed in artificial diets. One of 

these lectins, the snowdrop lectin (GNA), has the added advantage of being non-toxic 

towards mammals (Pusztai et al, 1990). Much interest has, therefore, been directed 

on utilizing GNA as a tool to promote insect resistance of crop plants. 

The GNA gene used for plant transformation was derived from LECGNA2 cDNA, 

one of six isolectin clones obtained from a cDNA library constructed from total 

poly(A)-i-RNA isolated from snowdrop ovaries (Van Damme et al, 1991b). Since 

GNA exists as a mixture of isoforms in its natural state, it is important to ensure that 

the isoform selected for transfer and expression in a genetically engineered plant is 

one which imparts the anticipated antimetabolic activity. 

In this chapter, the expression, production, isolation and purification of recombinant 

GNA in E. coli using a coding sequence derived from LECGNA2 is described. 

Although the snowdrop lectin has previously been expressed in bacteria with several 

extra C-terminal His residues for purification purposes (Longstaff et al, 1998), only 

the mature part of GNA was chosen to be expressed and a different purification 

strategy, that based on its inherent carbohydrate binding property, was employed. 
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There are conflicting reports in the literature concerning the actual length of the 
mature polypeptide. Van Damme et al. (1991b), using protein sequencing, determined 
the sequence of GNA isolated from the snowdrop bulbs as comprising of 105 amino 
acids. However, on the basis of X-ray structure determination on GNA also isolated 
from the snodrop bulbs, Hester et al. (1995) suggested that the GNA polypeptide 
contains four extra C-terminal amino acid residues. To clarify the importance of this 
difference, both types of recombinant GNAs were produced in the current study. 
Various functional assays were employed to demonstrate the similarities and 
differences in activities of recombinantly expressed wild-type GNAs when compared 
to that of native GNA. 

A correlation between binding of lectins to the gut, and toxicity towards insects, has 

been assumed since the initial reports of lectin toxicity. However, binding in itself is 

not sufficient to cause toxicity, since screening a number of different lectins for 

binding to insect guts showed that not all lectins which bound were toxic (Harper et 

al, 1995). A dependence of toxicity on binding has recently been demonstrated for 

the lectin isolated from the leaves of Griffonia simplicifolia towards the cowpea 

bruchid Callosohruchus maculatus, since mutation of the sugar binding sites of the 

lectin to abolish binding resulted in loss of insecticidal activity (Zhu et al, 1996; Zhu-

Salzmanetai, 1998). 

As part of a programme to elucidate the mode of action of GNA as a toxin towards 

the rice brown planthopper (Nilaparvata lugens), the structure-activity relationship of 

the lectin was analysed by site-directed mutagenesis of the high-affinity mannose-

binding site (site I) . Based on the crystal structure of GNA (Hester et al, 1995), the 

conserved tyrosine (residue 97) in binding site I was altered to phenylalanine, thus 
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removing its potential to form a hydrogen bond with sugar residues in the binding 
site. Also, aspartic acid and asparagine (residues 91 and 93, respectively) were 
substituted by leucine. The effect of these changes on the activity of the lectin was 
studied using independent assay systems in vitro, as well as in insect bioassays. 

3.2 Results 

3.2.1 Design of GNA Constructs 

Two types of mutations were designed. In the first type, GNA was produced with or 

without the four extra C-terminal residues predicted by the X-ray structure, but absent 

from the published sequence for the protein (rGNA109 and rGNA105, respectively; 

Fig. 3.1). The rGNA109 variant would show whether the extra four amino acids had 

any effect on the functional properties of the protein. 

The second type mutations in GNA were designed to investigate the relationship 

between the carbohydrate-binding activity of GNA and its biological activity. The 

conserved residues of one of the mannose-binding sites, site I , of each subunit interact 

with methyl-a-D-mannoside by hydrogen bonding between the OH-groups of the 

sugar and the OH- or NH2-groups of the amino acid residue side chains and also by 

hydrophobic contacts with the carbon ring atoms of the saccharide (Hester et al., 

1995); Fig. 3.2). The hydroxyl group of tyrosine at position 97 makes a hydrogen 

bond interaction with the OH-group of 4C of the saccharide. To abolish this specific 

interaction, tyrosine-97 was replaced by phenylalanine, which lacks the OH-group 

and thus cannot form an H-bond, to produce the mutant rGNA105(Y97F). Both 

aspartic acid and asparagine at positions 91 and 93, respectively, interact with the C2-

OH group of methyl-a-D-mannoside by hydrogen bond formation. Leucine was 
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chosen as candidate to replace these two residues individually or simultaneously to 
give constructs rGNA105(D91L), rGNA105(N93L) and rGNA105(D91L/N93L). The 
rationale for choosing leucine was its hydrophobicity and similarity in molecular mass 
to their respective substituted amino acid residues so as to ensure minimal structural 
constraints within the GNA molecule, but at the same time not permitting hydrogen 
bond formation with the sugar. 

3.2.2 Expression of Recombinant GNA 

The recombinant vectors pGNA105 and pGNA109 were based on pET-lld, one of 

several pET-based expression vectors commercially available (Novagen). The pET 

vector is under control of strong T7 bacteriophage transcription signals when 

introduced in E. coli host strain BL21(DE3)pLysS; expression of the system is 

repressed unless induced by IPTG. A time course analysis of expression of rGNA105 

from pGNA105 transformed into this host strain was carried out. SDS-PAGE of total 

bacterial protein extract revealed a prominent band migrating slightly faster than that 

of the native GNA monomer, which was apparent within 1 hour of IPTG induction 

(Fig. 3.3 (A)). Immunoblotting with polyclonal rabbit anti-nGNA antiserum 

confirmed the presence of recombinant GNA (Fig. 3.3 (B)). Background binding (less 

specificity of the primary antibody) did occur but this was similar for all samples. No 

basal expression (i.e. under non-inducing conditions) of rGNA105 in 

BL21(DE3)pLysS strain was observed. A strict control on expression was preferred 

so as to allow, with a degree of certainty, the bacterial culture to reach the desired 

optical density prior to induction. Leaky expression of rGNA105 was observed when 

a less stringent E. coli strain, namely BL21(DE3), was used. However, no difference 

in the amount of recombinant GNA expressed was observed between the two strains. 
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Figure 3.1 Amino acid sequence of the mature GNA polypeptide. Residues underlined, extra 4 C-terminal residues shown by X-ray 
structure; residue in italics, initiation methionine; residues underlined and in italics, substituted in site-directed mutagenesis. 
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in site-directed mutagenesis are shown in bold. Hydrogen bonds are indicated by 
dashed lines. (Figure modified from Hester et al, 1995.) 
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Figure 3.3 (A) SDS-PAGE analysis (12.5 % gel) by Coomassie staining of total 
(soluble -I- insoluble) protein extracts of pGNA105 (pET-lld + GNA DNA insert)-
containing E. coli BL21(DE3)pLysS after induction. Lanes A - D: 0, 1, 2 and 3 
hours, respectively, after addition of IPTG; lanes E and F: native GNA. All 
samples, except native GNA in lane F, were subjected to 10 % 2-mercaptoethanol 
and heat treatment in boiling water for 10 minutes. (* band represents rGNA105.) 
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Figure 3.3 (B) Immunoblot analysis using polyclonal anti-nGNA antiserum of 
total (soluble + insoluble) protein extracts of pGNA105 (pET-lld + GNA DNA 
insert)- containing E. coli BL21(DE3)pLysS after induction. Lanes A - D: 0, 1, 2 
and 3 hours, respectively, after addition of IPTG; lanes E and F: native GNA. All 
samples, except native GNA in lane F, were subjected to 10 % 2-mercaptoethanol 
and heat treatment in boiling water for 10 minutes. (* band represents rGNA105.) 
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As indicated by Figure 3.3 (B), subjecting native GNA to prolonged heat treatment 
(boiling > 10 minutes) in the presence of p-mercaptoethanol was necessary to 
completely resolve the high molecular weight bands observed in both native and 
recombinant GNA to the monomeric form. However, as shown in Figure 3.3 (A), i f 
exhaustive denaturation and reduction was not carried out, the high molecular weight 
bands were not resolved into the monomeric form. 

GNA has been expressed previously using the pET-21c expression vector in E. coli 

strain HMS174(DE3) as a His6-tagged fusion protein ( r G N A l l ; (Longstaff et al., 

1998)) and was found to occur predominantly as insoluble inclusion bodies. 

Recombinant GNA 11 was also expressed in this work for comparative purposes. 

Similar observations were obtained for all the forms of rGNA where almost all the 

protein was present in the inclusion body fraction. Omission of the His6-tag thus does 

not lead to soluble GNA being produced in E. coli. A time course on r G N A l l 

expression revealed a band migrating slower than that of the native GNA monomer, 

as confirmed by immunoblotting with polyclonal rabbit anti-nGNA antiserum (Fig. 

3.4 (A) and (B)). Surprisingly, no "leaky" expression (i.e. low level expression when 

not induced) was noticeable when the non-stringent strain HMS174(DE3) was used. 

3.2.3 Purification of Recombinant GNA 

The inclusion bodies were released from the bacteria after cell disruption and 

collected by centrifugation. To isolate soluble and functional recombinant GNA forms 

rGNA105, rGNA109, and r G N A l l , the aggregates were solubilized by treatment with 

6 M urea / 0.1 % p-mercaptoethanol and heating in a boiling water bath for 5 minutes. 
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Figure 3.4 (A) SDS-PAGE analysis (12.5 % gel) by Coomassie staining of total 
(soluble + insoluble) protein extracts of pGNAll (pET-21c + GNA DNA insert)-
containing E. coli HMS174(DE3) after induction. Lanes A - D: 0, 1, 2 and 3 
hours, respectively, after addition of IPTG; lanes E and F: native GNA. All 
samples, except native GNA in lane F, were subjected to 10 % 2-mercaptoethanol 
and heat treatment in boiling water for 10 minutes. (* band represents rGNAll.) 
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GNẐ  mancmer 

Figure 3.4 (B) Immunoblot analysis using polyclonal anti-nGNA antiserum of 
total (soluble + insoluble) protein extracts of pGNAll (pET-21c + GNA DNA 
insert)- containing E. coli HMS174(DE3) after induction. Lanes A - D: 0,1, 2 and 
3 hours, respectively, after addition of IPTG; lane E: native GNA. All samples 
were subjected to 10 % 2-mercaptoethanol and heat treatment in boiling water for 
10 minutes. (* band represents rGNAll.) 
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The heating was necessary to dissolve further the aggregates. Any remaining 
insoluble material was removed by centrifugation. Refolding of the recombinant 
lectin was allowed under very specific circumstances. The denaturant was removed 
by dialysis under slightly alkaline conditions (pH 8.0) at room temperature. Altering 
the temperature or the pH of the solution resulted in aggregate formation (results not 
shown) which decreased the yield substantially. The protein preparations were 
analysed by SDS-PAGE (Fig. 3.5(A)) which showed that recombinant GNA 
accounted for at least 65 % of the total protein content of the inclusion bodies. Losses 
due to protein aggregation during the transition from denaturing to renaturing 
conditions were kept to a minimum. Western blotting analysis (Fig. 3.5(B)) revealed 
that for rGNA105 only one band was present, with a molecular weight slightly lower 
than that for native GNA monomer (cf time course analysis shown above), whereas 
for r G N A l l , two bands were noticeable, one major band with a molecular weight 
slightly larger than the native monomer and one minor band with an even larger 
molecular weight but smaller than 20 kDa. 

The refolded protein was affinity-purified on a mannose-agarose column to isolate 

functional lectin. SDS-PAGE analysis of the fractions of rGNA105 collected after 

washing the affinity column with ammonium sulphate and eluting with 1,3-

diaminopropane showed that the eluted fractions contained only rGNA105, whereas 

no detectable traces of the recombinant lectin were found in the unbound fractions 

(Fig. 3.6). rGNA109 produced similar results (data not shown). In the case of 

r G N A l l , however, a band (14 kDa < Mw < 20 kDa) co-eluted with the major band 

(Fig. 3.7). Fractions eluted later after applying the elution buffer were consistently 

observed to contain more GNA, suggesting that the recombinant GNA was binding 
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Figure 3.5 (A) SDS-PAGE analysis (15 % gel) by Coomassie staining of 
denatured/renatured rGNAl l and rGNA105. Solubilisation of insoluble pellets 
from 10 ml induced culture was carried out in 1 ml 6 M urea / 0.1 % 2-
mercaptoethanol; lanes A and B, respectively. Refolding was done by dialysis 
against 50 mM Tris-HCl pH 8; lanes C and D, respectively. Lanes E and F: native 
GNA. All samples, except native GNA in lane F, were subjected to 10 % 2-
mercaptoethanol and heat treatment in boiling water for 10 minutes. 
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Figure 3.5 (B) Immunoblot analysis using polyclonal anti-nGNA antiserum of 
denatured/refolded rGNAl 1 and rGNA105. Solubilisation of insoluble pellets from 
10 ml induced culture was carried out in 1 ml 6 M urea / 0.1 % 2-mercaptoethanol; 
lanes A and B, respectively. Refolding was done by dialysis against 50 mM Tris-
HCl pH 8; lanes C and D, respectively. Lane E: native GNA. All samples were 
subjected to 10 % 2-mercaptoethanol and heat treatment in boiling water for 10 
minutes. 
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Strongly to the affinity column. Analysis of the samples of rGNA105 which bound to 
the mannose column revealed a single band. The yield of purified rGNA 105 was 4 - 6 
mg per litre culture, representing 10 - 20 % of total recombinant GNA in the inclusion 
body fraction. 

The mutants were expressed as for recombinant GNAs rGNA 105 and rGNA 109, and 

were purified from inclusion bodies after denaturation-renaturation as described 

above. However, since the carbohydrate-binding site of these mutants had been 

manipulated, binding to the mannose-agarose column was found to be decreased, 

preventing affinity purification being used. Anion-exchange chromatography was thus 

employed as an alternative purification method (Fig. 3.8). Although anion-exchange 

chromatography did not provide an affinity separation, it was possible to purify the 

recombinant wild-types rGNA105 and rGNA109 and mutants rGNA105(Y97F) and 

rGNA109(Y97F) from other proteins to a purity of > 85 %, as assessed by SDS-

PAGE (Fig. 3.10 and 3.11). Purification of the other mutants rGNA105(D91L), 

rGNA105(N93L) and rGNA105(D91L/N93L)) using the same method resulted in a 

much lower yield (i.e. < 50 %) as shown by the Coomassie stained gels (Fig. 3.11). 

Immunoblotting with anti-nGNA confirmed the presence of the recombinant lectin in 

all cases. However, the double mutant rGNA105(D91L/N93L) appeared less antigenic 

since SDS-PAGE gels showed the presence of equal amounts of the protein in 

question. 
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Figure 3.6 Purification of rGNA105 by affinity chromatography on a mannose-
agarose column. Elution profile and SDS-PAGE (15 %) andysis by silver staining 
of unbound and eluted fractions. Lane numbers of gel correspond to fraction 
numbers of profile. Lanes A and B: native GNA. 
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Figure 3.7 Purification of rGNAll by affinity chromatography on a mannose-
agarose column. Elution profile and SDS-PAGE (15 %) analysis by silver staining 
of unbound and eluted fractions. Lane numbers of gel correspond to fraction 
numbers of profile. Lanes A and B: native GNA. 
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Figure 3.8 Anion-exchange chromatography of rGNA105 and rGNA109. 
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Figure 3.8 continued. Anion-exchange chromatography of rGNA105(Y97F) and 
rGNA109(Y97F). 
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Figure 3.8 continued. Anion-exchange chromatography of rGNA105(D91L) and 
rGNA105(N93L). 
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Figure 3.8 continued. Anion-exchange chromatography of rGNA105(D91L/N93L). 
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Figure 3.9 SDS-PAGE analysis (12.5 % gel) by Coomassie staining of l E C -
purified rGNA109(Y97F). Lane A: Peak 1 fraction; lane B: Peak 2 fraction; lane 
C: native GNA monomer; lane D: SDS7 molecular weight marker. 
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Figure 3.10 (A) SDS-PAGE analysis (15 % gel) by Coomassie staining of purified 
recombinant wild-type and mutant GNA by anion-exchange chromatography. Lane 
A: rGNA105; lane B: rGNA105(Y97F); lane C: rGNA109; lane D: native GNA 
monomer; lane E : SDS7 molecular weight marker. Dashed line indicates 
differences in migration distances of samples. 

B 

Figure 3.10 (B) Immunoblotting using poly anti-nGNA antiserum of purified 
recombinant wild-type and mutant GNA by anion-exchange chromatography. Lane 
A: rGNA105; lane B: rGNA105(Y97F); lane C: rGNA109; lane D: native GNA 
monomer. Dashed line indicates differences in migration distances of samples. 
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Figure 3.11 (A) SDS-PAGE analysis (12.5 % gel) by Coomassie staining of lEC-
purified recombinant GNA variants. Lane A: rGNA105; lane B: iGNA105(D91L); 
lane C: rGNA105(N93L); lane D: rGNA105(D91L/N93L); lane E : rGNA109; lane 
F: rGNA109(Y97F); lane G: nGNA; lane H: SDS7 molecular weight markers. 
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Figure 3.11 (B) Immunoblot analysis using polyclonal anti-nGNA antiserum of 
lEC-purified recombinant GNA variants. Lane A: rGNA105; lane B: 
rGNA105(D91L); lane C: rGNA105(N93L); lane D: rGNA105(D91L/N93L); lane 
E: rGNA109; lane F: rGNA109(Y97F); lane G: nGNA. 
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3.2.4 Characterisation of rGNA Variants Expressed in E. coli 

SDS-PAGE of the purified forms of rGNA (Fig, 3.10), after extensive reduction with 

(3-mercaptoethanol, showed that each gave a single band on gel electrophoresis, 

indicated mol. wt. approx. 12,000 kDa. rGNA105 and rGNA105(Y97F) gave bands 

migrating slightly faster than that of native GNA monomer, whereas rGNA 109 gave a 

band with mobility very similar to that of native GNA, suggesting that native GNA 

does indeed contain the extra four amino acids present in rGNA109 (Fig. 3.10). All 

the forms of rGNA were recognized by polyclonal anti-GNA antiserum raised against 

protein purified from snowdrop (native GNA) on Western blots, showing that the 

major epitopes recognised by the antibodies are present in the rGNAs. N-terminal 

sequencing of rGNA 105 showed that an extra methionine residue, added in the 

expression construct in order to provide a start codon, was present in the rGNA when 

compared to the native GNA, but that the N-terminal sequence was otherwise 

identical to the published sequence (data not presented; Fig. 3.1). 

The lectin preparations were analysed by gel filtration on a Superose-12 column to 

determine whether tetrameric molecules similar to native GNA were formed by 

recombinant GNA forms. Recombinant GNA105, rGNA109 and rGNA105(Y97F) all 

gave similar gel filtration profiles, with a major protein peak at the same elution 

volume as that given by a sample of native GNA, corresponding to tetrameric GNA 

molecules (indicated Mr ~35kDa). Only data for rGNA105 is presented in Figure 

3.13. It was concluded that correct assembly of GNA subunits into tetrameric 

molecules had occurred. 
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Figure 3.12 (A) Haemagglutination assays of recombinant wild-type and mutant 
GNA in a microtitre plate. All samples were dialysed against PBS before testing. A 
two-fold serial dilution of each lectin (initial concentration 100 /xg/ml) was done in 
the presence of 1 % rabbit erythrocyte suspension. In the absence of lectin, no 
agglutination occurs when the erythrocytes precipitate on the bottom of the well. 
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Figure 3.12 (B) Haemagglutination inhibition assays of rGNA105, 
rGNA105(Y97F) and native GNA. A final lectin concentration of 15 /ig/ml was 
used in each well. Methyl-a-D-mannoside was serially diluted starting from a 
concentration of 250 mM. 
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Figure 3.13 Resolution of lEC-purified rGNA105 and rGNA105(Y97F) by gel 
filtration. Retention time of Peak 1 of rGNA105(Y97F) corresponds to major peak 
of rGNA105. In top figure, arrows indicate relative elution volumes of standard 
proteins for calibration of gel filtration column. B: bovine serum albumin (66 kDa); 
O: ovalbumin (45 kDa); CA: chicken albumin (29 kDa), CC: cytochrome C (12.4 
kDa). 
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Figure 3.13 continued SDS-PAGE analysis (15 % gel) by Coomassie staining of 
lEC- and lEC/GF-purified rGNA 105 and rGNA105(Y97F). Lane A: lEC-purified 
rGNA105; lane B: lEC-purified rGNA105(Y97F); lane C: lEC/GF-purified 
rGNA105; lane D: lEC/GF-purified rGNA105(Y97F) Peak 1; lane E: lEC/GF-
purified rGNA105(Y97F) Peak 2; lane F: native GNA monomer; lane G: SDS7 
molecular weight markers. ( lEC: anion-exchange chromatography; GF: gel 
filtration.) 
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exhibit a similar effect. Pooled fractions corresponding to Peak 1 of lEC-purified 

rGNA109(Y97F) agglutinated cells at a concentration of 1 /xg/ml. 

3.2.6 GNA-Carboxypeptidase-Y-Binding Assay with rGNA Variants 

The snowdrop lectin interacts with the mannose oligosaccharides present on the 

surface of carboxypeptidase-Y (CpY). This recognition feature forms the basis of a 

further functional assay which gives a quantitative estimate of GNA binding. GNA, 

present in excess, is allowed to bind to immobilised CpY, and, after washing, the 

amount of GNA bound is detected by anti-GNA antibodies in a standard ELISA 

protocol. In the presence of low concentrations of mannose, the two recombinant 

wild-type GNA variants differ clearly in their binding activity (Fig. 3.15(A)). 

Recombinant rGNA 109, with the four extra amino acids at the C-terminal end of the 

mature protein, bound almost twice as well to CpY as recombinant rGNA105, and 

bound nearly as well as native GNA. rGNA105(Y97F) bound very poorly to CpY, 

with a final absorbance at almost a third of its rGNA 105 counterpart. Direct ELISA 

was used to show that the differences in binding to CpY between the rGNA forms 

was not due to differing reactivities with the anti-GNA antibody used. However, the 

recognition level of rGNA105(Y97F) by the antibodies was lower than that of 

rGNA105, even under saturating conditions (Fig. 3.16). 

In a separate experiment, CpY-binding of rGNA 109 was compared to that of 

rGNA109(Y97F) (Fig. 3.17(A)). Here, a similar result was obtained as for 

rGNA105(Y97F); the mutant bound considerably less readily (approximately a three­

fold reduction) than its native counterpart at low mannose concentrations. No direct 
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Figure 3.14 Haemagglutination assays of lEC-purified recombinant wild-type and 
mutant GNA. A two-fold serial dilution of each lectin (initial concentration 125 
jLtg/ml) was done in the presence of 1 % rabbit erythrocyte suspension (CSL, York). 
rGNA109(Y97F)-l: Peak 1 fraction (see Fig. 3.8). lEC: anion-exchange chromato­
graphy. 
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Figure 3.15 (A) Binding of GNA variants to CpY in the presence of varying 
amounts of mannose, as detected by polyclonal anti-nGNA antibodies. 
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Figure 3.15 (B) Inhibition of binding of GNA variants to CpY by mannose. 
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Figure 3.16 Recognition of GNA variants by polyclonal anti-nGNA antibodies by 
direct ELISA. 
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ELISA of rGNA109(Y97F) was carried out, but a high purity of the fraction (Peak 1) 
was demonstrated by SDS-PAGE analysis (Fig. 3.9). 

Increase in the mannose concentration present in this assay resulted in a decrease in 

binding activity for all the GNA forms, as expected, with binding being essentially 

unaffected below a limiting concentration of mannose (10 - 20 mM mannose) and 

essentially reduced to a constant minimum above a limiting concentration of mannose 

(100 - 200 mM mannose). The mannose concentration required to reduce binding 

activity to 50 % of maximum [I50] was significantly lower for rGNA105(Y97F) than 

that for native GNA (approximately five-fold; Fig. 3.15(B). For recombinant 

rGNA105, the mannose [I50] was similar to that of native GNA, but the mannose [I50] 

for rGNA109 was lower (by a factor of approx. 2; Fig. 3.15(B)). 

In Figure 3.17(B), the mannose concentration required to halve the maximum binding 

activity for rGNA109(Y97F) was approximately three-fold less than that for native 

GNA. The mannose concentration [I50] for rGNA109 was two-fold greater when 

compared to the [I50] of the mutant. 

3.2.7 Binding of rGNA Forms to Polypeptides Extracted from BPH Gut 

Polypeptides extracted from dissected guts of brown planthopper (BPH) were 

separated by SDS-PAGE, blotted onto nitrocellulose, and polypeptides binding GNA 

were detected by reaction with an excess in concentration of rGNA variants, followed 

by detection of bound GNA using anti-GNA antibodies. The binding activities and 

specificities of rGNA 105 and rGNA105(Y97F) were compared by probing duphcate 
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Figure 3.17 (A) Binding of rGNA109 and rGNA109(Y97F) to CpY in the 
presence of varying amounts of mannose, as detected by polyclonal anti-nGNA 
antibodies. 
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Figure 3.17 (B) Inhibition of binding of rGNA109 and rGNA109(Y97F) to CpY by 
methyl-a-D-mannoside. 
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Figure 3.18 Immunoblot analysis of BPH gut glycoproteins probed with rONalOS 
or rGNA105(Y97F) by polyclonal anti-nGNA antibodies. CpY was used as 
control. BPH: Brown Planthopper; CpY: Carboxypeptidase-Y 
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blots with the two GNA variants. Results are shown in Fig. 3.18. rGNA105 was 
found to bind to at least 6 BPH gut polypeptides, giving a band pattern similar to that 
given by probing with native GNA (results not presented); it also bound to 
carboxypeptidase Y. The molecular weights of glycosylated polypeptides detected by 
rGNA105 (and native GNA) ranged from 17 to 75 kDa, with three major bands at 32 
kDa, 50 kDa and 75 kDa. In contrast, rGNA105(Y97F) only bound detectably to 2 
BPH gut polypeptides; it bound to the 50 kDa polypeptide detected by rGNA105, but 
much more weakly, and also bound to the 17 kDa polypeptide, at an intensity 
comparable to rGNA105. As expected, binding of rGNA105(Y97F) to 
carboxypeptidase Y was also observed, although binding was weaker than that shown 
by rGNA105. 

3.2.8 Bioassays of rGNA Variants Against BPH 

Native GNA, rGNA105 and rGNA105(Y97F), at added protein levels of 0.05 % (w/v; 

approx. 10 \xM) were tested for toxicity towards third instar BPH nymphs in an 

artificial diet bioassay (Fig. 3.19). The concentrations of the recombinant lectins were 

checked by spectrophotometrical analysis before incorporation into the diet to ensure 

similar amounts of protein were added. As expected, native GNA showed a 

significant reduction in nymph numbers when compared to control diet (Powell et ai, 

1993). Recombinant GNA105 showed a similar survival curve as for native GNA; the 

two GNA preparations had corrected mortality values (Abbot, 1925) of 84 % and 90 

% for native GNA and rGNA105, respectively, indicating a substantial toxic effect. 

rGNA 109 was also assayed for effects on BPH, and gave survival curves not 

significantly different from those given by native GNA and rGNA105 (Fig. 3.19). On 
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Figure 3.19 Effects of recombinant wild-type and altered GNA to BPH survival. 
Each treatment consists of 7 replicates with 5 third instar nymphs per replicate. 
BPH: Brown Planthopper. 
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the other hand, rGNA105(Y97F) had much less effect on BPH survival, with a 
corrected mortality value at 30 %. Statistical analysis of the survival curves showed 
that the curves for all three lectins differed significantly from control (logrank test, p 
< 0.05), but that curves for native GNA and rGNA105 did not differ significantly. The 
curve for rGNA105(Y97F) differed significantly from both the control and the curves 
for native GNA and rGNA105. 

3.3 Discussion 

Expression of both rGNAlOS and rGNA109 in E. coli has shown that the native GNA 

purified from snowdrop has a molecular weight on SDS-PAGE that resembled the 

molecular weight of rGNA109 more closely than that of rGNA105. This lectin is not 

glycosylated in planta, since it does not contain a potential glycosylation site, and thus 

the molecular weight determined on SDS-PAGE must reflect the polypeptide only. It 

is noteworthy that the band on SDS-PAGE produced by native GNA is rather broad 

and diffuse, suggesting the presence of different molecular species; this is consistent 

with reports in the literature that the lectin exists as multiple isoforms in snowdrop, 

and is encoded by a multigene family (Van Damme et al, 1991a). 

The four C-terminal residues, (ThrioeHisiovThriogGlyiog), clearly are not required for 

GNA to show binding activity to both complex and simple carbohydrates, since both 

the rGNA105 and rGNA109 forms produced in this work bound to a mannose-

agarose column, and agglutinated red blood cells to the same dilution of lectin. The 

previous expression construct for GNA also lacked these residues, substituting a his-

tag sequence (Leu-Glu-Hise), and also gave rise to functional lectin protein. Although 

serial dilution assays are necessarily inaccurate, and results vary over a tenfold range 
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when using blood from different rabbits (Longstaff et al, 1998), we reproducibly 
observed that the rGNA proteins would agglutinate erythrocytes at one serial dilution 
(2-fold lower concentration) than native GNA. This suggests that the native GNA 
contains isoforms of the protein which are less active as haemagglutinins than the 
isoform represented by the cDNA used to produce the expression constructs. 
Differences in sensitivity to mannose in inhibition of haemagglutination were not 
observed between native GNA, rGNA 105 and rGNA 109. When the lectins were 
assayed for binding to carboxypeptidase Y, however, differences in binding between 
rGNA 105 and rGNA 109 were observed, with rGNA 109 binding more to the 
glycoprotein, and resembling native GNA in its binding activity. Direct ELISA 
experiments demonstrated that quantitative detection of rGNA 105 and rGNA 109 by 
anti-GNA antibodies was virtually the same, and thus the observed differences in 
binding to carboxypeptidase Y were not a result of epitope differences between these 
two lectins. These results suggest that the four extra C-terminal amino acid residues 
do play a significant role in high affinity mannose binding, at least in certain cases, 
since more lectin must have bound per molecule of carboxypeptidase Y for rGNA 109 
than for rGNA 105. Possibly the additional amino acids allow lectin binding to take 
place at low-affinity sites at which the "truncated" rGNA 105 variant is unable to bind. 
Examination of the published GNA structure shows that residues at positions 106 -
109 are in a suitable location to influence binding. In the subunit pairs A-D and B-C, 
residues 99-109 of the C-terminal arm from one subunit interact with their 
complementary subunit forming a tight dimer, and creating at the interface mannose-
binding site I , where these residues contribute to subsidiary interactions with the 
saccharide through polar and nonpolar van der Waals bonding. Interestingly, the 
rGNA109 variant of GNA was more sensitive to mannose inhibition in this 
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carboxypeptidase Y binding assay than either rGNA105 or native GNA, suggesting 
that residues 106-109 also have subtle effects on the specificity of the lectin towards 
complex carbohydrates vs. simple sugars. Although the four C-terminal residues are 
involved in interactions between subunits, their removal does not affect the ability of 
the protein to form tetramers, since similar results were given on gel filtration by 
rGNA105 and rGNA109 proteins. 

When attempting to alter the carbohydrate binding properties of GNA, we chose 

binding site I as the target for mutation. This site is utilized for binding mannose 

monosaccharides or terminal mannose with high occupancy (Hester & Wright, 1996). 

The resulting protein did not have gross alterations in structure, since the gel filtration 

profile showed that the Y97F mutant was able to comigrate with authentic nGNA. 

The antibodies raised against native GNA also detected rGNA105(Y97F). The 

quantitative estimates of antibody binding showed that the curve of antibody binding 

against lectin concentration had a similar value for 50% of maximum binding, but a 

lower saturation level, indicating that the amount of antibody bound to the 

rGNA(Y97F) mutant was approximately 85 % of that bound to the non-mutated 

rGNA105. This correlates well with the yield estimate (approximately 85 - 90 %) of 

purified mutant after anion exchange chromatography as observed from Coomassie-

stained SDS PAGE gel (Fig. 3.10 (A)). 

The functional properties of the Y97F mutant clearly indicate that the alteration to 

binding site I has altered carbohydrate binding properties. The failure of the protein to 

be retained on a mannose-agarose column contrasts with the binding of the non-

mutated recombinant GNA variants. However, the mutated lectin has not lost 

carbohydrate binding ability, since it is still active as a haemagglutinin, although four 
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times the concentration of mutant rGNA105(Y97F) was required to achieve complete 
agglutination when compared to rGNA 105. The mutant was also more sensitive to 
inhibition by mannose, with approximately four-fold lower mannose concentrations 
being required to inhibit agglutination of erythrocytes. Binding to the mannose 
residues on the surface of the red blood cells is most likely to be mediated through 
participation by all three binding sites per GNA subunit (twelve per tetramer). In the 
case of the mutant, hemagglutination was not as effective as rGNA105 since the 
binding activity of site I had been reduced or abolished. Therefore, complete 
agglutination by rGNA105(Y97F) was only possible in the presence of a lower 
concentration of free mannose allowing a greater availability of the sites to 
carbohydrate binding. Similar increased sensitivity to mannose inhibition are 
observed in the assay comparing binding of the rGNA105(Y97F) mutant and 
rGNA 105 to carboxypeptidase Y. More significantly, however, the mutant showed 
greatly reduced absolute levels of binding to carboxypeptidase Y in the CpY binding 
assay, which suggests that binding site I in GNA is much more significant in binding 
to carboxypeptidase than in interactions with glycoproteins on the surface of red 
blood cells. This conclusion is supported by the observation of reduced binding to 
CpY for rGNA105 compared to rGNA109, but similar haemagglutination properties; 
since the C-terminal residues are near binding site I in the GNA structure, they can 
influence binding at this site. 

The monocot mannose-binding lectins interact most specifically with high mannose 

glyconjugates that possess a-1,3 linkages (Shibuya et al., 1988; Kaku et al, 1991). 

However, fine differences in the sugar recognition properties of these lectins exist and 

it may be that the degree of binding affinity to mannose-containing oligosaccharides 
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is a factor which contributes to the observed differences in antimetabolic effect of 
these related lectins towards BPH (Powell et al., 1995a;1995b). It is now clear that in 
the rice brown planthopper, GNA binds to the surface of cells lining the gut wall 
(Powell et ai, 1998) and can interact with glycoproteins extracted from midgut 
tissues, as has been suggested for other lectins and insects (Gatehouse et al., 1984; 
Eisemann et al., 1994). Western blotting analysis of total BPH gut protein probed 
with rGNA105 revealed a limited number of glycosylated proteins containing 
mannose residues, that span over a wide molecular weight range with differing band 
intensities (Fig. 3.18). The pattern is similar to that given when native GNA is used as 
a probe on a similar gut protein preparation. The differences in band intensities may 
be attributable to either the abundance or binding affinity of the GNA "receptors". 
The reduced binding ability of the mutant rGNA(Y97F) was clearly shown in this 
assay, by a very much reduced level of binding to BPH gut polypeptides, so that only 
two bands were detectable. Although one of these bands was detected as high 
intensity by rGNAI05, the mutant bound only at low intensity. However, the band at 
17 kDa was detected with similar intensity by both rGNAI05 and rGNA105(Y97F), 
showing that the specificity of binding to different glycoproteins had been affected by 
the mutation made to rGNA(Y97F). This change in specificity may be due to binding 
site I no longer playing a major role in binding, so that the activities of binding sites I I 
and I I I become predominant. Mutant rGNA105(Y97F) also bound to 
carboxypeptidase Y on blots much less readily than rGNA105, further supporting the 
results obtained from the carboxypeptidase-Y-binding assays (see above). However, 
the level of binding may only be used qualitatively, not quantitatively, since the 
protein samples in the blots were denatured for SDS-PAGE. 
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The results of the insect bioassay show that native GNA, rGNA 105 and rGNA 109 are 
indistinguishable in their effects on BPH survival, in agreement with previous results 
for rGNA expressed as a his-tagged fusion protein (Longstaff et ai, 1998) (Fig. 3.19). 
However, the present data show that mutant rGNA105(Y97F) was significantly less 
toxic than native GNA, or rGNA 105, but the level of toxicity was not completely 
abolished. These observations are in agreement with the hypothesis that binding of the 
lectin to "receptors" in the insect gut is necessary for toxicity, since binding of the 
rGNA(Y97F) mutant to BPH gut glycoproteins was very much reduced, compared to 
rGNA105, but was still possible, as shown by the blots of BPH gut proteins probed 
with rGNA variants. The reduced toxicity of rGNA(Y97F) could be due to the lower 
levels of overall binding shown by the mutant, or its increased specificity towards 
certain glycopolypeptides. In particular, the glycosylated polypeptides of 17 and 50 
kDa may play a significant role in establishing the link between GNA binding and its 
toxicity towards brown planthoppers, since these are the only bands detected by 
rGNA(Y97F) on gut protein blots. 



Chapter 4 Expression of Functional PHA & GNA in P. pastoris 145 

Chapter 4 

Expression of Functional PHA & GNA in P. pastoris 

4.1 Introduction 

In the previous chapter, it was shown that functional GNA was expressed in the 

insoluble form in Escherichia coli. This lectin must be solubilised by denaturation-

renaturation in order to recover its proper native conformation and activity, a step 

which proves cumbersome and inefficient. 

Many plant lectins (not GNA) are also glycosylated and E. coli is incapable of 

glycosylating eukaryotic proteins expressed in this host. The presence or absence of 

the carbohydrate side chains can have significant effects on the functional and/or 

physical properties of the recombinant proteins. For example, concanavalin A is 

activated by deglycosylation in planta (Mm et al., 1992; Sheldon & Bowles, 1992) 

and nonglycosylated PHA-L expressed in transgenic plants gave poor quality crystals 

under conditions where glycosylated PHA-L was crystallized successfully (Dao-Thi 

etai, 1996). 

Alternative heterologous expression systems were looked into. Attempts to express 

plant lectins in the yeast Saccharomyces cerevisiae have met with mixed success. 

However, associated problems exist, too. PHA-L expressed in Saccharomyces 

accumulates mainly in the vacuole (Tague & Chrispeels, 1987), due to the presence of 

'cryptic' vacuolar targeting determinants (Von Schauwen & Chrispeels, 1993), and 
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only about 1 % is secreted. In addition, a significant proportion of PHA-L expressed 
in this host was not correctly processed, approximately half of the PHA-L 
accumulating in the vacuole appeared to contain the uncleaved signal peptide, and all 
of the secreted PHA-L was in this unprocessed form (Tague & Chrispeels, 1987). A 
second related lectin, from Dolichos biflorus, could be directed into a secretory 
pathway when expressed at low levels, but accumulated in the cells (not in the 
vacuole) when expressed at high levels (Chao & Etzler, 1994). In both cases, the 
functional properties of the recombinant lectin were not reported. The only report of 
the correct processing and secretion of a plant lectin in Saccharomyces cerevisiae is 
that of wheat germ agglutinin which was secreted and exhibited sugar binding 
activity. However, yields of protein were relatively low, of the order of 200 \xg 11 
(Nagahora et al., 1992). Thus it would appear that Saccharomyces is not a satisfactory, 
host for lectin expression. 

The development of relatively facile expression methodologies for the methylotrophic 

yeast Pichia pastoris, especially for the secretion of recombinant proteins, offers an 

alternative for expressing plant lectins (Cregg et al., 1993; Sreekrishna et al., 1997). 

In this chapter, two plant lectins were selected for expression in Pichia, Phaseolus 

vulgaris agglutinin (PHA; both the E- and L-forms) and Galanthus nivalis agglutinin 

(GNA). The rationale for this selection was (i) PHA-L is incorrectly processed and 

accumulates in the vacuole of Saccharomyces and (ii) GNA accumulates in inclusion 

bodies when expressed in E. coli. In addition, PHA and GNA are members of two 

very different lectin families, the legume lectins and the monocot mannose-specific 

lectins, respectively. These families are unrelated in sequence and we would therefore 
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predict that, i f these lectins could be expressed, then Pichia may become a useful 
system for the expression of a wider range of plant lectins. 

In this chapter, expression of functional PHA and GNA and secretion into the culture 

medium is demonstrated. Also, it is shown that the PHA-E signal peptide directed the 

secretion of proteins - two plant lectins, PHA-E and GNA, and a protein which is not 

a lectin and not derived fom a plant, GFP - which are correctly processed at the 

amino-termini, whereas these proteins secreted under the control of the 

Saccharomyces prepro- a-factor sequence have heterogenous N-terminal extensions. 

This suggests that the PHA-E signal peptide may have a wider utility in the 

production of recombinant proteins in Pichia. 

4.2 Results 

4.2.1 Expression of Active PHA and GNA in P. pastoris 

Initially, two sets of constructs for the expression of PHA (E and L forms) and GNA 

were prepared. In the first, the lectin coding sequence contained the 'native' signal 

peptide sequence and in the second, the signal peptide sequence was replaced by the 

Saccharomyces a-factor prepro—sequence (extending as far as the processing site of 

the Kex2 protease, i.e. omitting the 'Glu-Ala' repeats). All construct designations and 

corresponding sequences are shown in Table 1.1 and Figure 4.4. Coding sequences 

were placed under the control of the methanol-inducible AOXl promoter present in 

the pPICZ series of Pichia expression vectors (Invitrogen). Constructs were 

transformed into Pichia strains GS115 or KM71 and the supematants from methanol-

induced cultures were analysed for the presence of the corresponding lectin. 
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Figures 4.1 (PHA) and 4.2 (GNA) summarise results for the expression and 
purification studies of lectins in Pichia pastoris. Proteins which reacted with the 
appropriate anti-lectin antibody were present in supematants of induced cultures for 
all the PHA expression constructs, both with the native signal peptide (PHA-E:PHA-
E and PHA-L:PHA-L) and the a-factor prepro-sequence (a:PHA-E and a:PHA-L) 
(Figure 4.1 (A), lanes 3 and 7). Results for E- and L-forms of PHA were essentially 
the same and a representative analysis of PHA-E is shown. In contrast to PHA, eight 
independent transformants containing the leader and mature GNA coding sequence 
(GNA:GNA) failed to produce GNA. Even a construct containing the full length 
GNA coding sequence, including its C-terminal pro-extension, (GNA:GNA(2)), 
showed that no expression could be detected by dot-blot screening (results not 
shown). However, GNA expression could be detected readily in Pichia clones 
containing the construct where the native GNA signal peptide was replaced by the a-
factor prepro—sequence (a:GNA) (Figure 4.2, lane 1). Transformation into either 
strain GSI15 or KM71 did not produce any significant differences in levels of lectin 
secretion (results not shown). Time course analyses revealed that maximum 
expression levels were achieved 5 days (PHA) and 7 days (GNA) after methanol 
induction (results not shown). 

Analysis by SDS-PAGE and Western blotting showed that polypeptides of similar 

molecular weights to appropriate lectin standards, recognised by anti-PHA or anti-

GNA antibodies, were present. However, the polypeptide profiles of the bands 

recognised by anti-lectin antibodies after Western blotting differed from the 'native' 
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Figure 4.1 (A) Summary of expression and purification of PHA in Pichia, and (B) 
silver stained gel showing the affinity purification of recombinant PHA-L on a 
thyroglobulin-agarose column, expressed with the native signal peptide. (A) Data 
for PHA-E but PHA-L gave essentially identical results. Western analysis of PHA-
E in culture supematants (s) or affinity-purified (p) samples expressed using either 
the native signal peptide or the a-factor prepro sequence. Samples were treated (±) 
with N-glycosidase F to resolve differences in glycosylated forms. The 
conspicuous 'smear' present in the a-factor supernatant is resolved to a single 
deglycosylated higher molecular mass form of PHA-E (asterisk) not present in the 
affinity-purified sample. (B) Lane C: anmionium sulphate precipitate of induced 
culture supernatant; lane E : eluted fractions from thyroglobulin column; lane F: 
column flowthrough; lane S: PHA standard; lane M: molecular weight markers. 
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lectins. In the case of PHA, the bands recognised by anti-PHA antibodies also 
differed between constructs, depending on whether the a-factor prepro-sequence or 
native signal peptide sequence was used. The differences in the polypeptide profiles 
derived from different constructs are due to differences in processing between native 
signal peptides and the a-factor prepro-sequence, and are described in more detail in 
the following section. Levels of PHA and GNA in the culture supematants were 
estimated from Western blots as being in the range 0.4 - 1.0 and 1 - 2 mg / 1, 
respectively. For PHA, estimates of the relative amounts of protein in the cells and 
supernatant suggested that at least 50 % of the protein was secreted (results not 
shown). The proportion of GNA inside cells could not be estimated as GNA also 
binds to cell wall mannose residues. 

Both PHA and GNA were purified from culture supernatants by affinity 

chromatography, using the functional activity of the lectins, on thyroglobulin- and 

mannan-agarose columns, respectively. Al l four forms of PHA (from the PHA-

E:PHA-E, a:PHA-E, PHA-L:PHA-L, and a:PHA-L constructs) and GNA (from the 

a:GNA construct) bound to, and could be eluted from, the corresponding affinity 

column to yield proteins free of contaminants. A representative purification of PHA-

L, expressed using the native signal peptide sequence, is shown in Figure 4.1 (B), 

indicating the protein is essentially pure as judged by silver staining. Similar results 

were obtained for the other PHA constructs. Recombinant PHA-E (from both the 

PHA-E:PHA-E and a:PHA-E constructs) and GNA agglutinated rabbit erythrocytes 

at concentrations similar to those of native lectins assayed under the same conditions 
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(Table 4.1), and which are consistent with concentrations reported for the 
corresponding commercially available plant-derived lectins. Sugar inhibition of 
haemagglutination was also consistent with the results for native lectins (results not 
shown). PHA-L does not agglutinate erythrocytes at these concentrations, and thus 
was not assayed. The data from haemagglutination assays and affinity purification 
shows that the lectins produced in Pichia are functional proteins. 

4.2.2 Processing of Proteins Expressed Using the a-Factor Prepro-Sequence 

Although the constructs in which the a-factor prepro—sequence was used as a signal 

peptide led to the secretion of functional lectins from Pichia, analysis of polypeptides 

present in culture supematants showed that each construct gave rise to multiple bands 

detected by anti-lectin antibodies, suggesting that processing was not occurring 

correctly. For both PHA and GNA, although a band of similar mobility to the 'native' 

protein was present in the culture supemantant, diffuse bands or smears at higher 

molecular weights were also present (Figure 4.1 (A), lane 7; Figure 4.2, lanes 1 and 

3). The diffuse bands were absent from a:PHA constructs after purification by 

affinity chromatography, showing that these polypeptides do not bind to the affinity 

column (compare lanes 7 and 9 of Figure 4.1 (A)). For GNA, diffuse higher molecular 

weight bands were present both before and after purification, although a smear of 

immunoreactive material of very low mobility on SDS-PAGE was not present in the 

eluted fraction after affinity chromatography, but was present in the flow-through 

fraction. The diffuse bands on SDS-PAGE are diagnostic of protein glycosylation. 

PHA (both E- and L-forms) contains potential endogenous N-linked glycosylation 
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Figure 4.2 Summary of expression and purification of GNA in Pichia expressed 
using the a-factor prepro sequence. Immunoblot analysis of GNA in culture 
supematants (C), column flowthrough (F), affinity-purified GNA (a:GNA) and 
standard native GNA (S). Affinity-purified GNA was treated (±) with with N-
glycosidase F to resolve differences in glycosylated forms. An asterisk indicates 
the higher molecular weight form of GNA containing 56 residues of a-factor pro 
sequence. 
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sites, and is glycosylated in planta (Sturm & Chrispeels, 1986); the diffuse bands 
could thus reflect hyperglycosylation occurring in Pichia. However, mature GNA is 
non-glycosylated, and does not contain any potential N-linked glycosylation sites. The 
diffuse bands in this case therefore cannot be due to glycosylation of the mature GNA 
sequence. 

To resolve differences in apparent molecular weight on SDS-PAGE, polypeptides 

were deglycosylated by treatment with N-glycosidase F. Prior to deglycosylation, 

affinity-purified GNA, produced by the a:GNA construct, contains a major 

polypeptide band at a molecular weight slightly larger than 'native' GNA, and a series 

of diffuse bands at higher molecular weight (Figure 4.2, lane 3). In the deglycosylated 

protein, the mobility of the major polypeptide band is unchanged (Figure 4.2, lane 4). 

However, after deglycosylation the higher molecular weight diffuse bands resolve to a 

single polypeptide of molecular weight approximately 6 kDa greater than native GNA 

(Figure 4.2, lane 4, asterisk). The higher molecular weight diffuse bands must thus 

represent glycosylated GNA, and since the glycosylation cannot be taking place on 

residues present within mature GNA, it must be occurring on incompletely processed 

a-factor pro-sequence. In agreement with this conclusion, GNA contained two 

distinct N-terminal sequences (Figure 4.4) with extensions of 9 and 56 amino acids 

corresponding to part of the a-factor pro-sequence. The 56-amino acid N-terminal 

extension on the larger poypeptide contains two of three potential N-glycosylation 

sites present in the a-factor pro-sequence. Taken together, this demonstrates that 

GNA expressed using the a-factor prepro-sequence is incompletely processed and 

highly glycosylated on the partially cleaved a-factor pro-sequence. 
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Analysis of the results obtained for PHA expressed from constructs containing the a-
factor prepro—sequence produced similar results to GNA. Deglycosylation decreases 
the indicated molecular weight of native, glycosylated PHA (Figure 4.1, lanes 1 and 
2) due to the removal of the N-linked carbohydrate side chain from the protein, 
although both before and after N-glycosidase treatment the native protein (E- and L-
form) gives a single band after SDS-PAGE and Western blotting. For PHA expressed 
from the construct containing the a-factor prepro-sequence, culture supematants 
contain a major polypeptide detected by anti-PHA antibodies at a similar molecular 
weight to glycosylated native PHA (Figure 4.1, lanes 7 and 1), and a series of diffuse 
bands at higher molecular weight. A faint band at slightly lower molecular weight is 
also present. N-glycosidase treatment of culture supematants results in three bands 
being observed on Western blots (Figure 4.1, lane 8). Two bands form a close 
doublet, of similar molecular weight to deglycosylated native PHA. N-glycosidase 
treatment removes the high molecular weight diffuse bands observed in the culture 
supernatant on SDS-PAGE, which resolve to a single band, of higher indicated 
molecular weight (approximately 6 kDa) than deglycosylated native PHA (Figure 4.1, 
lane 8, asterisk). This band is not observed in aiPHA samples after purification and 
deglycosylation (compare lanes 8 and 10 of Figure 4.1), showing that it must have 
come from the glycopolypeptides which produce the diffuse bands on SDS-PAGE, 
since these do not bind to the affinity column (see above). N-terminal sequencing of 
PHA expressed from the a:PHA constructs after affinity purification (i.e. 
corresponding to Figure 4.1, lane 10) gave two N-terminal sequences, corresponding 
to the two closely spaced polypeptides observed in the deglycosylated recombinant 
protein. The lower molecular weight band of the doublet had the same N-terminal 
sequence as the mature, native PHA produced in planta, thus showing that some 
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correct processing had taken place. However, the higher molecular weight band of the 
doublet had a sequence consistent with an N-terminal extension of 9 amino acid 
residues derived from the C-terminal region of the a-factor pro-sequence (Figure 4.4). 
Thus, this polypeptide (present in comparable amount to the correctly processed form) 
was incompletely processed, as observed for the equivalent GNA construct described 
above. By analogy with the results obtained for GNA (see above) the highly 
glycosylated forms of PHA most probably contain the 56 amino acid N-terminal 
extension derived from the a-factor pro-sequence. In contrast to GNA, this 
incompletely processed form does not bind to carbohydrates. 

4.2.3 Processing of Proteins Expressed from Constructs Containing a Modified 

a-Factor Prepro—Sequence Containing Glu-AIa Repeats 

As the goal of this work was to produce functional, correctly processed, recombinant 

lectins, a second GNA construct with the addition of Glu-Ala repeats between the a-

factor prepro-sequence and the GNA mature N-terminus (aEA:GNA; Figure 4.4) was 

prepared. The Glu-Ala repeats have been used to enhance the processing of secreted 

proteins when the a-factor pro-sequence is used, improving the efficiency of cleavage 

by the Kex2 protease; the Glu-Ala repeats are then cleaved by the Stel3 protease 

(Brake, 1989; Sreekrishna et al, 1997). This construct produced functional GNA in 

the culture supernatant, which on examination by SDS-PAGE and Western blotting, 

proved to contain a homogeneous polypeptide of molecular weight slightly larger than 

'native' GNA (Figure 4.3 (A), lanes 1 and 5). No evidence for the presence of GNA 

polypeptides with large N-terminal extensions was observed, nor was the protein 

glycosylated as judged by the lack of shift in mobility after N-glycosidase F treatment 
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(Figure 4.3 (A), lanes 1 and 2). However, although the inclusion of the Glu-Ala 
repeats clearly improved processing of the a-factor prepro-sequence, the protein still 
contained a four amino acid residue extension, EAEA, to the correct GNA N-
terminus, showing that processing of the Glu-Ala repeats themselves was inefficient. 

Similar results were obtained with a construct in which the a-factor prepro-sequence 

plus Glu-Ala repeats was fused to the green fluorescent protein (GFP) coding 

sequence (aEAiGFP). Expression in Pichia resulted in the production of functional 

protein, which was secreted into the culture supernatant. Analysis of the secreted 

protein by SDS-PAGE and Western blotting showed that it contained several 

polypeptides showing a slight size heterogeneity (Figure 4.3 (B), lane 1). In 

agreement with the results of gel electrophoresis, the protein had a heterogenous N-

terminal sequence. The sequence data were consistent with most of the polypeptides 

containing either a 4 or 6 amino acid N-terminal extension (EAAA or EAEAAA, 

respectively), although a minor fraction of the protein did show evidence of correct 

processing (Figure 4.4). Thus, although the use of a modified a-factor prepro-

sequence including the Glu-Ala repeats can improve processing efficiency in Pichia, 

it can be concluded that in the case of the proteins studied here the Saccharomyces a-

factor prepro-sequence is not optimal for obtaining correctly processed protein. 
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Figure 4.3 GNA and GFP expression. (A) GNA expressed in Pichia with Glu-Ala 
repeats between the a-factor prepro sequence (aEA:GNA) or using the PHA-E 
signal peptide (PHA-E:GNA). Inmiunoblot analysis of culture supematants treated 
(±) with N-glycosidase F. (S) standard native GNA. (B) GFP expressed in Pichia 
using the a-factor prepro sequence with the Glu-Ala repeats (oEAiGFP) or using 
the PHA-E signal peptide (PHA-E:GFP). (S) standard recombinant GFP (rOFPuv). 
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Figure 4.4 Summary of processing and N-terminal sequences of lectin and GFP constructs expressed in Pichia pastoris. Construct 
designations are as for Table 1.1. A colon (:) denotes the start of mature protein coding sequences. Full arrows show the sites of processing 
determined by N-terminal sequencing and the residues determined are underlined. For aEA:GFP, the grey arrow denotes a minor component 
for which the first residue (in grey) could not be determined. Consensus N-linked glycosylation sites are shown on a grey background. A 
dashed grey line shows the site of cleavage of the signal peptide of the Saccharomyces a-factor prepro sequence. For a:PHA-E, the arrow 
with an asterisk (*) denotes processing by analogy with a:GNA as an N-terminal sequence was not obtained. 
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4.2.4 Correctly Processed Heterologous Proteins Using the PHA Signal Peptide 

Since PHA could be successfully expressed in Pichia from constructs containing the 

protein's native signal peptide sequence, the processing of the protein was examined 

in more detail (Figure 4.1 (A)). PHA expressed from constructs containing the native 

signal peptide (both E- and L-forms) gave one major band and one minor band on 

SDS-PAGE both before, and after affinity purification; the major band was of a 

similar molecular weight to native PHA (compare lanes 1, 3 and 5 of Figure 4.1 (A)). 

When the recombinant protein was treated with N-glycosidase F, the two bands were 

resolved to a single deglycosylated polypeptide which migrated at a rate equivalent to 

deglycosylated native PHA (compare lanes 2, 4 and 6 of Figure 4.1 (A)). Finally, the 

N-terminal sequence of affinity purified recombinant PHA (both E- and L-forms) was 

determined. A single, homogeneous N-terminal sequence was present, which 

corresponded exactly to the N-terminal sequence of mature native PHA as purified 

from plant sources (Figure 4.4). The PHA isoforms expressed in Pichia from 

constructs containing the native signal peptides are thus correctly processed. 

PHA expressed from the constructs containing the native signal peptides did not 

contain diffuse bands at a high molecular weight on SDS-PAGE, although the protein 

was glycosylated. In this case, the glycosylation that took place in Pichia resulted in 

carbohydrate side chains comparable in size to those observed when the protein is 

synthesized in planta. However, the composition of the carbohydrate side chains on 

PHA synthesized in Pichia is likely to differ from that of native PHA, due to 

differences in the respective glycosylation systems (Cregg et al, 1993). PHA 
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synthesized in Pichia contains a-1,3 or 1,6-linked mannose residues, since GNA 
(specific for mannose residues) binds to recombinant PHA (result not shown). 

The correct processing of PHA expressed from constructs containing the complete 

prepro-tein suggested that this signal sequence might be useful for expression of 

secreted proteins in Pichia. In the absence of a readily available alternative, the PHA 

signal peptide was tested to (i) obtain correctly processed GNA and (ii) direct the 

secretion and correct processing of an unrelated protein, in this case, green fluorescent 

protein (GFP). The corresponding expression constructs were (i) PHA (E-form) signal 

peptide fused to mature coding sequences of GNA (PHA-E:GNA) and (ii) PHA-E 

signal peptide fused to GFP (PHA-E:GFP) (Table 1.1 / Figure 4.4). 

Expression of the PHA-E:GNA construct in Pichia resulted in the presence of soluble 

non-glycosylated protein, reactive with anti-nGNA antibodies, in the culture 

supernatant (Figure 4.3 (A), lanes 3 and 4). This contrasts with attempts to express 

GNA from constructs containing the native GNA signal peptide, where no expression 

could be detected. GNA produced from the PHA-E:GNA construct was functional, as 

shown by affinity purification through binding to a mannan-agarose column, and by 

haemagglutination assays of the purified protein (Table 4.1). The purified 

recombinant GNA contained a single N-terminal sequence, identical to the N-terminal 

sequence of native GNA (Figure 4.4), showing correct processing of the signal 

peptide. 

Similar results were obtained with the PHA-E:GFP construct, where soluble 

functional GFP accumulated in the culture supernatant. The culture supernatant, after 
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concentration by ultrafiltration, was fluorescent (with no fluorescence observed in a 
control supernatant), and analysis by SDS-PAGE and Western blotting with anti-GFP 
antibodies showed a single polypeptide migrating at a rate equivalent to a GFP 
standard (Figure 4.3 (B), lane 2). The GFP protein band was blotted and the N-
terminal sequence corresponded to the N-terminal sequence of mature GFP (Figure 
4.4), again demonstrating correct processing of the heterologous signal peptide. These 
results demonstrate that the PHA-E signal peptide is correctly processed from two 
heterologous proteins which are directed to a secretory pathway. 

4.2.5 Choice of Culture Medium in GNA Binding 

It was reported earlier that highly branched mannans obtained from Pichia pastoris 

(and from Saccharomyces cerevisiae) reacted strongly with GNA in quantitative 

precipitation studies (Shibuya et al., 1988). Figure 4.5 shows clearly that Pichia cells 

agglutinated in the presence of native GNA. This suggests that expression of 

recombinant GNA using Pichia would inevitably lead to binding of some of the lectin 

to the cell surface. 

The extracellular medium into which recombinant GNA is secreted plays a significant 

role in sensitive functional assays such as CpY-binding assay (see section 2.8.3). One 

of the constituents of the buffered growth/induction medium of the Pichia cell culture 

(i.e. BMGY and BMMY, see section 2.6.3) is yeast extract. Yeast extract is the water 

soluble portion of autolysed yeast and inevitably contains mannans. These mannans 

contributed to partial binding inhibition of recombinant GNA in CpY-binding assays. 

Even purification of the recombinant lectin does not seem to remove the mannans. 
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Figure 4.5 Agglutination of 10 /xl Pichia cell suspension (7 x 10^ cells / ml) in the 
presence (A) and absence (B) of 20 /xg of native GNA. Cells were studied under a 
Nikon Type 104 light microscope at x 40 magnification and the image captured by 
JVC TK-1281 video camera. 
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Figure 4.6 shows that, under low concentrations of the hapten methyl-a-D-
mannoside, PHA-E:GNA, affinity-purified from culture supernatant in BMMY 
medium, bound less readily (almost by a half) to carboxypeptidase-Y when compared 
to native GNA dissolved in PBS. Substituting anti-nGNA antibodies with anti-rGNA 
antibodies gave similar results (result not shown). BMMY culture medium containing 
Pichia spiked with native GNA prevented the lectin from binding to CpY (Fig. 4.7). 
Native GNA in a 1 % solution of yeast extract virtually did not bind to 
carboxypeptidase. Replacing yeast with beef extract resulted in a slightly better 
binding, but the difference was not significant; beef extract also contains interfering 
mannose structures. In the presence of YNB, there was no difference in binding of 
native GNA when compared to binding of the lectin in PBS (Fig. 4.8). 

Thus, for sensitive assays, such as those based on ELISAs, which include GNA 

lectin, care must be taken to avoid contaminating mannans. However, for more robust 

assays, such as haemagglutination assays (see earlier), no differences in recombinant 

GNA activity were observed. 

The presence of yeast extract in the culture medium also created problems when 

trying to ammonium sulphate precipitate in an effort to concentrate recombinant 

GNA. After the addition of salt, the lectin-sugar binding complex created a 'sticky' 

precipitate which was difficult to recover by centrifugation. Redissolving the pellet 

also proved difficult which resulted in a low yield of recovery. Adding 20 - 50 mM 

diaminopropane to the pellet was needed here to release the recombinant lectin from 

the sugar complex (results not shown). 
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Figure 4.6 Binding of affinity-purified P/c/z/a-expressed PHA-E:GNA (from 
BMMY medium) to carboxypeptidase-Y in the presence of varying amounts of 
mannose, as detected by polyclonal anti-nGNA antibodies. Native GNA (nGNA) 
was dissolved in PBS. 
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Figure 4.7 Binding to carboxypeptidase-Y of varying concentrations of native 
GNA dissolved in Pichia BMMY culture medium (nGNA/CM) or in PBS alone 
(nGNA/PBS). 
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Figure 4.8 Binding to carboxypeptidase-Y of native GNA dissolved in PBS 
(nGNA/PBS), 1 % yeast extract (nGNA/YE), 1 % beef extract (nGNA/BE) and 
1.34 % yeast nitrogen base supplement (nGNA/YNB). 
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An attempt to remove and separate the soluble mannans of the yeast extract from the 
GNA molecules by a two-step dialysis procedure (against excess (i) diaminopropane 
(final concentration 50 mM; pH 10 - 11) and (ii) PBS (pH 7.0)) proved futile. To 
circumvent this GNA-intrinsic problem, BMGY/BMMY medium can be replaced by 
another medium (BMGH/BMMH) lacking yeast extract supplement thus eliminating 
contaminating mannans. However, histidine is required as supplement since the 
Pichia strains used for expression are auxotrophic for this residue. 

4.3 Discussion 

To date, this is the first description of the use of Pichia pastoris to produce secreted, 

functional plant lectins which can be succesfully purified from culture supematants 

by one-step affinity chromatography. However, there are particular problems in 

expressing a mannose-specific lectin like GNA in Pichia pastoris, due to the presence 

of high-mannose carbohydrates on the surface of the cells and secreted in the medium 

and also due to the soluble yeast extract component of the buffered medium. As is 

suggested by the gel blot shown in Figure 4.2, significant amounts of GNA may be 

present as complexes with soluble carbohydrates in the culture supematants. These 

complexes give rise to the intense smear at, and near, the origin on SDS-PAGE gels, 

due to incomplete denaturation, and are not retained on mannan-agarose affinity 

columns. GNA-carbohydrate complexes can be precipitated from the culture medium 

by increasing the pH, but the protein cannot be recovered from the precipitate without 

denaturation (result not presented). Thus, although GNA can be purified from culture 

supernatants, further research will be necessary to optimise the recovery of active 

GNA from Pichia. Interestingly, a:GNA species containing most of the pro-
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sequence were present in the protein after affinity purification on the mannan-agarose 
column, showing that GNA was still functional even with a highly glycosylated N-
terminal extension. In contrast, PHA molecules containing the glycosylated N-
terminal extension derived from the a-factor pro-sequence were not retained on an 
affinity column. This may be due to the carbohydrate side chains interfering with the 
sugar-binding site in PHA, or altering the structure of the molecule to abolish its 
activity, or blocking access to the binding site. 

N-linked oligosaccharide side chains produced on glycoproteins expressed in Pichia 

have been shown to be mainly of the 'high-mannose' type, where a core structure of 

NAcGlu-(Man)2 is modified by the addition of (mannose)n branches to the terminal 

mannose residues. However, the vast majority of these oligosaccharides in Pichia 

contain 8 - 14 mannose reisdues, and thus would be expected to increase the 

molecular weight of a glycoprotein by approximately 2 kDa (Cregg et al, 1993). The 

decrease in molecular weight observed when PHA expressed in Pichia from the 

PHA-E:PHA-E construct is deglycosylated is consistent with the molecule containing 

1 or 2 carbohydrate side chains of this type, and it was also observed that GNA binds 

strongly to PHA expressed in Pichia (result not shown). The mature PHA-E sequence 

contains three potential N-linked glycosylation sites, although only two of these are 

utilised in planta (Sturm & Chrispeels, 1986). The glycosylation that is present on 

both PHA and GNA expressed in Pichia from constructs containing the a-factor 

prepro-sequence (a:PHA-E and a:GNA) is different in nature, and appears to 

involve long carbohydrate side chains resulting from glycosylation on the uncleaved 

a-factor pro-sequence. This is likely to be a result of inefficient processing which has 
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previously been shown to result in the secretion of hyperglycosylated unprocessed 
proteins in Saccharomyces ((Kjeldsen et ai, 1998) and references therein). 

While the yields of lectins obtained from Pichia cultures in this work were fairly low, 

no attempt was made to optimise yields by selection of clones with multiple inserts 

(Clare et al., 1991), or to optimise culture conditions. Consequently, the potential 

yields of recombinant lectins produced in Pichia are likely to be at least an order of 

magnitude greater than those reported here as, after optimisation, yields of > 1 g /1 

for HIV-1 gpl20 (Scorer et al, 1993) and > 10 g / 1 for a tetanus toxin fragment 

(Clare et al., 1991) have been reported. 

Many heterologous signal peptides do not function in yeast, either to direct protein 

secretion or to generate the 'natural' N-terminus of the protein (reviewed in (Tuite, 

1991)). Early reports (eg. (Zsebo et al., 1986)) demonstrated the secretion and correct 

processing of proteins when fused to the a-factor prepro—sequence. As a 

consequence, the a-factor prepro—sequence has been widely used in the synthesis of 

recombinant proteins in Saccharomyces and in Pichia, where, as with 

Saccharomyces, it has been shown to direct secretion and correct N-terminal 

processing in a number of examples (Hoffman & Donaldson, 1985). Processing of the 

a-factor prepro—sequence in Saccharomyces involves several distinct proteolytic 

cleavage steps, carried out by different enzymes. The 19 amino acid signal peptide 

(pre-sequence) is removed by a signal peptidase system; further processing of the pro-

sequence then involves the action of an endopeptidase encoded by KEX2 gene, which 

cleaves C-terminally to a specific Lys-Arg sequence, and a dipeptidyl aminopeptidase 

encoded by the STE13 gene, which removes N-terminal Glu-Ala repeats (Brake, 
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1989). The presence of the Glu-Ala repeats enhances the activity of the Kex2 
protease, but subsequent processing of these repeats by the Stel3 aminopeptidase has 
been found to be inefficient in many cases (Tuite, 1991). 

The correct processing of the a-factor prepro—sequence is very much case-dependent 

and numerous examples have been reported in both Sac charomyces and Pichia where 

proteins have failed to give correct processing to yield mature N-termini (Sreekrishna 

et al, 1997). In Pichia, the pro-peptide is not removed from protein disulphide 

isomerase and remains, hyperglycosylated, on a proportion of recombinant protein 

(Vuorela et ai, 1997); the propeptide is only partially processed from human 

procarboxypeptidase A2, resulting in heterogeneity (Reverter et al, 1998); expression 

of influenza neuraminadase (in Sac char omyces), or the (3 subunit of bovine follicle-

stimulating hormone, gave products where the Glu-Ala repeats were not removed 

(Martinet et al, 1997; Samaddar et al., 1997). The results obtained in this chapter 

agree with and extend these previous observations. Both PHA and GNA show 

inefficient processing by the Pichia equivalent of the Kex2 protease. Addition of Glu-

Ala repeats to the a:GNA construct resulted in efficient cleavage by this enzyme but 

the products of both the aEA:GNA and aEA:GFP constructs are inefficiently 

processed by the Pichia equivalent of the Stel3 aminopeptidase, resulting in proteins 

with N-terminal extensions. 

Given the problems sometimes associated with the a-factor prepro-sequence, efforts 

have been made to develop alternative signal peptides for use in Pichia (Sreekrishna 

et al., 1997); for example, the Pichia acid phosphatase PHOl signal peptide. This 

signal peptide fused to mature protein sequences can lead to secretion of either 
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correctly processed protein (Weiss et al., 1995), or protein containing N-terminal 
heterogeneity (O'Donohue et al., 1996), again showing case-dependency. A hybrid 
PHOl signal peptide, containing a Kex2 cleavage site to improve processing 
efficiency, has also been used (Laroche et al., 1994). Some prepro-teins expressed in 
Pichia produce secreted and correctly processed protein (Juge et al., 1996; Ferrari et 
al., 1997; Sreekrishna et al., 1997), but it is not known i f the corresponding signal 
peptides can confer correct processing on heterologous proteins. This work describes 
such an analysis and demonstrates the secretion and correct N-terminal processing of 
two unrelated proteins (GNA and GFP) using the PHA-E signal peptide. This is 
unexpected in view of the failure of this signal peptide to function correcdy in 
Saccharomyces (Tague & Chrispeels, 1987), whether this reflects a difference in 
signal peptide recognition between Saccharomyces and Pichia or some other factor(s) 
remains to be determined. The amount of protein accumulating in the culture 
supernatant appears to be slightly less with constructs using the PHA-E signal peptide 
compared to equivalent constructs using the a-factor prepro--sequence (unpublished 
observations). Notwithstanding, these results suggest the PHA-E signal peptide could 
be used for proteins where secretion and processing using other signal peptides has 
proven problematic. 
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Chapter 5 

Use of P, pastoris to Express Functional GNA-GFP Fusion Protein 

5.1 Introduction 

An important application of some plant lectins in biotechnology is the expression of 

lectin genes to confer insect resistance in transgenic crop plants. One prime example 

of such an insecticidal lectin is the snowdrop lectin GNA. This lectin consists only of 

mannose-binding domains, so its toxicity towards insects may be dependent upon the 

recognition of and binding to mannose-containing structures (Powell et al., 1995a, 

1995b; Du et al.,2000). 

Chimerolectins, i.e. chimeras which are built up of a carbohydrate-binding domain 

arrayed in tandem with an independent unrelated domain, for example a catalytic 

domain, already exist in nature. For example. Class I plant chitinases are composed of 

an N-terminal chitin binding domain linked to a catalytic domain (Collinge et al., 

1993). However, since this protein only has one binding domain it does not have the 

ability to agglutinate cells. Type 2 ribosome-inactivating proteins (RIPs), such as 

ricin and abrin, are fusion proteins of an N-terminal toxic A chain, which has the N-

glycosidase activity characterisitic of all RIP, and a C-terminal carbohydrate-binding 

B-chain (Barbieri et al., 1993). Type2 RIPs have two binding sites on each B-chain 

and therefore agglutinate cells. 
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In this work, the fluorescent GFP was fused to GNA so as to allow direct 
visualisation of lectin binding. The previous chapter (Chapter 4) described the 
development of an heterologous expression system based on Pichia pastoris for the 
expression of functional and correctly processed plant lectins and the green 
fluorescent protein GFP. Utilising this system, expression of functional chimera 
GNA-GFP and secretion into the culture medium is demonstrated. Also, the dual 
activities of the lectin and reporter moieties are demonstrated in independent assays. 
To complement on-going studies on the mode of action of GNA, the binding of the 
GNA-GFP chimera to cells in the haemolymph of the tomato moth {Lacanobia 
oleraced) was investigated in vitro as well as in vivo by confocal microscopy. 

This is the first report of a functional recombinant GNA chimera consisting of 

another unrelated protein. The chimera is a prerequisite to creating more practical 

fusion proteins in which the GFP protein may be substituted by other insecticidal 

domains, for example, Bt Cry domains. In this way, the chimera may be more 

effective towards controlling certain insect pests when expressed from transgenic 

plants. 

5.2 Results 

5.2.1 Expression of GNA-GFP in P. pastoris 

Initially, two constructs were prepared, a:GNA-GFP and PHA-E:GNA-GFP, in a 

triple ligation reaction as described in Materials and Methods (Chapter 2.5.6). 

Constructs containing GFP alone (i.e. a:GFP and PHA-E:GFP; see Chapter 2.5.5) 

were used for comparative purposes. For each construct, 50 Pichia strain GS115 
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transformants were randomly selected, picked and transferred to a gridded plate 
containing minimal media MMH. After three to four days of methanol induction, 
Pichia colonies expressing GFP held under a UV transilluminator were shown to 
fluoresce at different intensities, with some colonies not fluorescing at all (results not 
shown). Generally, those that expressed GFP alone were brighter than those that 
expressed the GNA-GFP chimera. In both cases, the colonies that contained the PHA-
E leader constructs had a higher proportion of fluorescent colonies than those that 
contained the construct with the a-factor prepro—sequence (12 % a:GFP and 28 % 
PHA-E:GFP; 8 % a:GNA-GFP and 16 % PHA-E:GNA-GFP). 

At the cellular level, location of expressed recombinant GNA-GFP and GFP in the 

Pichia cell was observed to be similar: accumulation occurred in isolated area(s) 

within the cytoplasm, presumably the vacuole (Fig. 5.1). Generally, the localised 

fluorescence of rGFP was more intense than that of the fusion. However, upon closer 

inspection of the yeast cell, it appeared that in those cells that contained the GNA-

GFP constructs (i.e. a:GNA-GFP (Fig. 5.1(D)) and PHA-E:GNA-GFP (Fig. 5.1(H))) 

a significantly higher degree of fluorescence on the periphery of the cells was shown 

than in those cells that only harboured the GFP constructs (i.e. a:GFP (Fig. 5.1(B)) 

and PHA-E:GFP (Fig. 5.1(F))). This finding is most likely the first indication of dual 

functionality of the GNA-GFP fusion: binding of the GNA moiety to mannan 

structures in the cell wall and simultaneous fluorescence of the GFP moiety. 

Pichia containing constructs a:GNA-GFP and PHA-E:GNA-GFP were grown and 

induced in BMGH/BMMH culture medium. This medium, which was free of the 

yeast extract component found as an ingredient in BMGY/BMMY medium, 
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circumvented the problem of undesired GNA binding to the soluble mannans (see 
Chapter 4.2.5). The supematants and cell extracts from methanol-induced cultures 
were analysed for the presence of the chimeric product. 

Figures 5.2 & 5.3 summarise the results for the expression of GNA-GFP in Pichia 

pastoris. Proteins which reacted with anti-GNA and/or anti-GFP antibodies were 

present in supematants and cell extracts of induced cultures for the GNA-GFP 

constructs, both with the a-factor prepro-sequence (a:GNA-GFP) and the PHA-E 

signal peptide (PHA-E:GNA-GFP). 

For both constructs, analysis by SDS-PAGE and Western blotting of the supematants 

using both anti-GNA and -GFP antibodies showed several polypeptides, including the 

expected polypeptide representing the GNA-GFP fusion product of molecular weight 

approximately 40 kDa. Anti-GNA antibodies revealed the presence of two extra low 

molecular weight bands slightly larger (between 14 and 20 kDa) than the native GNA 

monomer (lanes C & E, Fig. 5.2 (A)). Apart from the fusion product band, anti-GFP 

antibodies also picked out a second band of similar mobility to that of standard 

rGFPuv (lanes C & E, Fig. 5.2 (B)) and recombinant GFP (lanes B & D, Fig. 5.2 (B)). 

These results suggest that the GNA-GFP chimera had been partially cleaved 

presumably in the linker region or at the immediate flanking regions during the 

synthesis and secretion process since the truncated bands detected on the anti-GNA 

blot were not repeated on the anti-GFP blot. An attempt to reduce proteolysis by 

mutation of a suspected lysine basic residue (possible cleavage point for trypsin-like 

enzymes) to threonine in the linker region (Thr-Leu-Glu-Asp-Pro-Arg-Val-Pro-Val-
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Figure 5.1 Distribution of rGFP and GNA-GFP in Pichia GS115 cells. The cells 
were first grown in BMGY medium overnight and then induced in BMMY 
medium for 24 hours. The cells were studied by light microscopy and 
photographed through Normasky optics (A, C, E, G) and fluorescent microscopy 
(B, D, F, H). (A,B) a:GFP, (C,D) a:GNA-GFP, (E,F) PHA-E:GFP (G,H) PHA-
E:GNA-GFP. 
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Figure 5.1 continued. 
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Figure 5.1 continued. 



180 

(G) 

(H) 

Figure 5.1 continued. 
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Glu-Lys-Met) did not produce any convincing positive changes in the polypeptide 
pattems (results not shown). Also, the addition of yeast extract did not prevent partial 
proteolytic cutting (result not shown). 

Surprisingly, the polypeptide band profiles on the Westem blots of supematants for 

both a:GNA-GFP and PHA-E:GNA-GFP were quite similar. However, there were 

differences in the relative amounts of fusion protein and cleaved polypeptides 

between the two constructs. For construct a:GNA-GFP, the fusion protein was 

slightly more abundant than the individual cleaved products, although the difference 

was not great. In the case of PHA-E:GNA-GFP, there was less fusion product than its 

truncated products, as shown clearly in lane E of Figure 5.2 (B). 

Analysis by SDS-PAGE and immunoblotting of Pichia cell extracts for both 

constructs showed that the number of bands recognised by anti-GNA and -GFP 

antibodies was greater than that obtained from blots of culture supematant (Fig. 5.3). 

A repertoire of bands ranging between 14 and 45 kDa, as indicated by the molecular 

weight markers, could be detected by anti-GNA antibodies (lanes C & E, Fig. 5.3 

(A)). For both constructs, the presence of the GNA-GFP chimera was verified by the 

two antibodies. Some of the bands recognised by anti-GNA antibodies overlapped 

with those that were detected by anti-GFP antibodies. There were no bands with a 

molecular weight lower than or similar to that of 'native' GNA monomer that could be 

detected by the anti-lectin antibodies. This suggests that proteolytic cleavage occurred 

not only within the linker but also within the amino terminal of the GFP moiety. 

Polypeptide bands with a much higher molecular weight than the fusion protein band 

(lane E, Fig. 5.3 (B)) are indicative of the presence of lectin and fusion products 
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complexed with mannose-containing components from Pichia pastoris. The 
prominent band found between the 45 and 66 kDa molecular weight markers in lane 
C of both blots (Fig. 5.3 (A) & (B)) could be due to incorrect amino terminal 
processing of the a-factor prepro- leader sequence. Recombinant GFP produced from 
construct a:GFP (lane B, Fig. 5.3 (B)) resulted in a number of bands some of which 
correspond to the standard rGFPuv (lane F, Fig. 5.3 (B)). This result is due to 
incomplete processing of the a-factor prepro- leader sequence with glycosylation as a 
result (see Chapter 4). Recombinant GFP from construct PHA-E:GFP produced a 
band profile similar to that of standard rGFPuv. Judging from the blots, the 
concentration ratios of GNA-GFP fusion product to its cleaved products for both 
constructs were the opposite from, and more pronounced than, those observed for the 
culture supernatant. Anti-GNA and -GFP antibodies revealed that for construct PHA-
E:GNA-GFP the fusion protein was much more abundant than the cleavage proteins 
(75 % and 25 %, respectively) (lane E, Fig. 5.3 (A) & (B)). For construct a:GNA-
GFP, more than 50 % of heterologous expressed product that was estimated to be 
formed resulted in the individual GNA and GFP cleavage products (lane C, Fig. 5.3 
(A) & (B)). 

Estimating the concentration of heterologous protein synthesized and secreted into the 

culture supernatant or directed to cell compartments was carried out by comparing the 

band intensity corresponding to the fusion protein with those of the GNA and GFP 

standards. The densities of the cell cultures were normalised. For construct aiGNA-

GFP, the cells harboured 0.02 mg of fusion protein per litre culture as opposed to 0.1 

mg / 1 culture of the protein found in the supernatant. For construct PHA-E:GNA-

GFP, 0.2 mg of GNA-GFP per litre culture was found in the cells, whereas only 0.01 
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Figure 5.3 Immunoblot analysis using polyclonal anti-GNA antiserum (A) or 
monoclonal anti-GFP antibodies (B) of Pichia cell extracts containing GFP and 
GNA-GFP. (A) Lane A: control (pPICZB); lane B: a:GFP; lane C: a:GNA-GFP; 
lane D: PHA-E:GFP; lane E: PHA-E:GNA-GFP; lane F: 10 ng standard native 
GNA. (B) same as (A) except for lane F: standard rGFPuv. All samples were 
adjusted by volume to maintain equal cell densities as determined by OD 
measurements at 600nm. One ml of cell culture was centrifuged and the cells 
resuspended in 130 /il of cell lysis buffer before cell disruption. Samples a:GFP 
and PHA-E:GFP were diluted by a factor of 5. Ten /il of sample plus an equal 
volume of 2x SDS sample buffer was subjected to 10 % p-mercaptoethanol and 
boiling for 10 minutes prior to loading onto a 15 % SDS-PAGE. 
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mg / 1 culture of the product was all that could be detected in the supernatant. 
Inevitably, the fusion protein concentration in the cell extract takes into account the 
GNA-GFP which bound to the cell wall. 

Recombinant GFP expressed from construct a:GFP was secreted into the culture 

supernatant at a concentration of 5 mg / 1 culture, whereas the remainder of the 

protein was kept in the cell at a concentration of 15 mg / 1 culture. As for rGFP 

expressed from PHA-E:GFP, only 0.5 mg /1 was secreted and 5 mg /1 was detected 

in the cell. 

5.2.2 Purification of GNA-GFP 

PHA-E:GNA-GFP was purified from culture (grown and induced in BMGH/BMMH 

medium) supernatant by affinity chromatography using a mannan-agarose column. 

The proteins in the culture supernatant were precipitated by (NH4)2S04 at 80 % 

saturation and redissolved in PBS prior to loading the column. Figure 5.4 shows the 

SDS-PAGE and Western blot analysis of the load, wash and eluted fractions using 

both anti-GNA and -GFP antibodies. GNA-GFP bound to and could be eluted from 

the affinity column. However, as shown in lane D of Figure 5.4 (A), anti-GNA 

antibodies also detected in the eluted fraction the two main smaller bands that were 

the products of proteolytic cleavage. These bands, which were not detected by anti-

GFP antibodies (lane D, Fig. 5.4 (B)), represent GNA with an extended C-terminal 

region encompassing part or whole of the 'linker' region. The blot showing the wash 

fraction (lane C, Fig. 5.4 (B)) contained a single band with a similar mobility as 

rGFPuv standard and which was only recognised by anti-GFP. Both the wash and the 
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eluted fractions fluoresced green under UV light (result not shown). Thus, the fraction 
containing the GNA-GFP in elution buffer 50 mM DAP with a pH value of approx. 
11 did not seem to have a detrimental effect on GFP fluorescence activity. The yield 
of purified GNA-GFP chimeric product was < 0.5 mg /1 culture. 

As these results show, it is clear that the co-purification of the GNA moieties with 

GNA-GFP did not hamper the binding of the fusion protein to the affinity column. In 

fact, the presence of GNA monomers may instead prove to be beneficial in relation to 

the functional activity of GNA-GFP since formation of tetramers seems more 

sterically plausible with a mixture of small and large molecules than with large 

molecules alone. Immunoblot analysis of samples from Pichia culture supematants 

containing secreted GNA-GFP that were not subjected to heat treatment and addition 

of P-mercaptoethanol prior to loading onto an SDS-PAGE gel (Fig. 5.5) showed a 

reduction in the amounts of GNA and GNA-GFP monomers and the appearance of 

high molecular weight (> 45 kDa) fusion complexes possibly due to oligomer 

assembly (lane B). This pattern clearly differs from that of the treated samples as 

shown in lane A. 

5.2.3 Functional Activities of Recombinant GNA-GFP 

The ability of GNA-GFP to bind to and elute off the mannan column, albeit in the 

presence of cleaved GNA products, is evidence of GNA's functional carbohydrate-

binding role of the fusion protein. In turn, the GFP moiety of GNA-GFP was shown 

to fluoresce, but only once eluted; because GNA-GFP was not concentrated enough 

fluorescence could not be detected under UV light while still bound to the column 

matrix. A hint of synchronous activities of the GNA and GFP moieties was shown by 



187 

(A) 
kDei 

H 66 

45 
36 

29 
24 
20 

14 

(B) 
kca 

Figure 5.4 Immunoblot analysis using polyclonal anti-GNA antiserum (A) or 
monoclonal anti-GFP antibodies (B) of affinity-purified rGNA-GFP. (A) Lane A: 
25 ng standard native GNA ; lane B: load fraction; lane C: wash fraction; lane D: 
eluted fraction. (B) Lane A: 25 ng of standard rGFPuv; lanes B-D: same as in (A). 
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the fluorescence of bound GNA-GFP to the surface of Pichia cells expressing the 
chimera from constructs containing either the a-factor prepro—sequence or the PHA-
E leader sequence (Fig. 5.1). However, these results alone were not sufficiently 
convincing, and, therefore, more independent functional assays were carried out to 
further characterise the binding activity of GNA-GFP fusion protein more fully. 

Sufficient GNA-GFP fusion protein for the assays was purified from a 2 1 Pichia 

culture supernatant. The elution peak profile together with the concentration ratios of 

GNA-GFP to GNA in the eluted fractions (2-6) are shown in Figure 5.6. The 

concentrations were determined by Bradford assay (GNA-GFP plus GNA) and by 

fluorometric measurement (GNA-GFP only). For the latter, it was assumed that the 

fluorescence of the GFP moiety of the fusion protein resembled that of the rGFPuv 

standard. 

5.2.3.1 Haemagglutination Activity of Recombinant GNA-GFP 

Both fractions 4 and 5 of affinity-purified recombinant GNA-GFP completely 

agglutinated untreated rabbit erythrocytes obtained from CSL (York) at a minimum 

concentration of 20 /xg / ml (Fig. 5.7). At this concentration, fraction 3 did not 

agglutinate whereas fractions 2 and 6 showed signs of incomplete haemagglutination. 

Native GNA and rGNA109 required a minimum of 2.5 and 1.25 jUg / ml, respectively, 

for complete agglutination to occur. GNA will agglutinate cells most effectively when 

present as tetrameric molecules. The low agglutination activity of the GNA-GFP 

fusion protein may be a result of an inability to form homogenous tetramers, because 

steric hinderance by the GFP moieties would prevent this from happening. I f so, 

either 1 or 2 GNA-GFP molecules could associate with 3 or 2 GNA molecules. 
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Figure 5.5 Immunoblot analysis of culture supernatant containing secreted GNA-
GFP using polyclonal anti-GNA antiserum (A) or monoclonal anti-GFP antibodies 
(B) of treated (10 % p-mercaptoethanol and boiling for 10 minutes) and untreated 
(no reduction and no heat) GNA-GFP. (A) Lane A: treated GNA-GFP; lane B: 
untreated GNA-GFP; lane C and D: 10 ng treated and untreated standard native 
GNA, respectively. (B) Lanes A and B: same as in (A); lanes C and D: 10 ng 
standard rGFPuv treated and untreated, respectively. 
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respectively. I f the former holds, then 13 pig I ml ([12.5 kDa x 4 GNAs] / [(12.5 kDa 
X 4 GNAs) + (27 kDa x 1 GFP)] x 20 /xg / ml), and i f the latter holds, then 10 jug / ml 
([12.5 kDa X 4 GNAs] / [(12.5 kDa x 4 GNAs) + (27 kDa x 2 GFPs)] x 20 /xg / ml), 
would be the molar agglutination concentrations predicted for haemagglutination 
activity. These are not similar to the minimum agglutination concentrations of native 
and recombinant lectin. 

5.2.3.2 Binding of Recombinant GNA-GFP to Mannan-Agarose Beads 

A simple experiment to verify the dual activities of GNA-GFP fusion protein was to 

mix an equal volume of mannan-agarose bead suspension (also used for affinity 

purification) to 50 /xg / ml of purified GNA-GFP (fraction 4). With the aid of a 

fluorescent microscope, it was observed that the beads were fluorescing brightly (Fig. 

5.8). This was indicative of GFP's activity while, at the same time, GNA was holding 

the chimera to the mannan structures. In the presence of rGFPuv standard alone and at 

the same concentration, the beads were not bright green. Instead, the buffer 

surrounding the cells was found to be fluorescing slightly. A similar result was 

observed when mannose was added at a final concentration of 250 mM to the mannan 

beads in the presence of GNA-GFP. 

5.2.3.3 Binding of Recombinant GNA-GFP to Haemocytes in vitro 

In vitro analysis by confocal microscopy of GNA-GFP binding to Lacanobia 

oleracea cells was investigated using two approaches. The first approach involved 

direct incubation of GNA-GFP with fresh haemolymph, whereas the second, more 

controlled approach involved probing of prepared immobile cell monolayers with 
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Figure 5.6 Elution peak profile of GNA-GFP during affinity purification (A) and 
concentration ratios of GNA-GFP to GNA in eluted fractions (2-6) collected (B). 
[GNA-GFP plus free GNA] was determined by Bradford assay using nGNA as 
standard; [GFP moiety] was determined by fluorimetry assay. 
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GNA-GFP, including a wash step to remove non-specific binding or any undesired 
contaminants. 

When an equal volume of purified GNA-GFP fusion protein (fraction 4; initial 

concentration 120 /ig / ml, as determined by Bradford assay or 60 /xg / ml of GFP 

moiety, as determined by fluorimetric measurements) was added to haemolymph 

extracted from 6th instar L. oleracea, fluorescence under UV light of some, but not 

all, cells was observed at low power magnification (x 20 objective lens) (Fig. 5.9(A)). 

When the haemolymph was directly incubated with rGFPuv standard protein (initial 

concentration 60 /xg / ml) no fluorescence at all was detected on the cells (Fig. 

5.9(C)). Also, in the presence of PBS (no GNA-GFP, no GFP), no fluorescence was 

observed (result not shown). Under a higher power of magnification (x 40 objective 

lens), fluorescent staining of certain cell-types provided further evidence that this 

observation was a consequence of GNA-GFP chimera binding (Fig. 5.9(B)). 

To confirm that the interaction of the GNA-GFP fusion protein was through the lectin 

moiety and not through a non-specific binding of GFP, GNA-GFP (final 

concentration 5 /xg / ml) binding to haemocytes was investigated by overlaying cell 

monolayers with the fusion protein, as described in Chapter 2 (section 2.8.8). Again, 

as shown by Figure 5.10(A), fluorescence was restricted to certain cell-types. In the 

presence of GFP (rGFPuv protein; final concentration 5 /xg / ml) alone, no 

fluorescence was detected (Fig. 5.10(B)). When overlaying the monolayer with TBS, 

no fluorescence was observed (result not shown). Thus, fluorescence was not a 

consequence of non-specific interactions of GFP with haemocytes or of endogenous 

haemocyte fluorescence. 
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Figure 5.7 Haemagglutination assays of affinity-purified recombinant GNA-GFP. 
A two-fold serial dilution of each eluted fraction (see Fig. 7) with initial 
concentration 20 jUg/ml was done in the presence of 1 % rabbit erythrocyte 
suspension (CSL, York). 
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Figure 5.8 Binding of affinity-purified recombinant GNA-GFP to mannan-agarose 
beads. An equal volume of 50 |Lig/ml of GNA-GFP (A) or standard rGFPuv (B) 
was added to a mannan-agarose bead suspension and incubated at room 
temperature for 1 hour. The beads were studied by light microscopy (x 20 
objective lens) and photographed through Normasky optics (above) and fluorescent 
microscopy (below). 
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Figure 5.8 continued. 
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5.2.3.4 Binding of Recombinant GNA-GFP to Haemocytes in vivo 

Five 4th instar Lacanobia oleracea caterpillars were fed for 24 hours on artificial diet 

alone or containing either PHA-E:GNA-GFP, rGFPuv or rGNA109. An average of 52 

% of 0.5 g of diet, with or without the test protein, was consumed. Thus, it was 

estimated that 12 /xg of PHA-E:GNA-GFP (fraction 4), 6 /xg of rGFPuv and 12 /xg 

rGNA109 were ingested. Confocal microscopic studies of haemolymph extracted 

with meticulous care from caterpillars showed results that were consistent with those 

obtained in the in vitro work (section 5.2.3.3). Of the five caterpillars that were tested 

on GNA-GFP, only one showed no evidence of fluorescence. For the other four, 

although the fluorescence was not as abundant or bright as was clearly shown in vitro, 

a very limited number of cells was detected which showed either a faint overall or 

sharp localised GNA-GFP binding (Fig. 5.11). These observations could be 

accounted for by the low concentration of GNA-GFP that was taken through the gut 

into the haemolymph. The haemolymph of all caterpillars fed on artificial diet alone 

or on diet containing GFP or GNA revealed no evidence of fluorescence due to non­

specific interactions of cells to GFP or autofluorescence. 

Figures 5.12 (A) & (B) reveal the results of immunoblotting analysis of pooled 

haemolymph for each protein tested. The presence of the GNA-GFP fusion protein in 

the haemolymph was confirmed by both anti-GNA and anti-GFP antibodies (lane C, 

Fig. 5.12 (A) & (B)). However, further proteolytic cleavage had occurred since anti-

GFP antibodies picked out a second band with molecular weight similar to that of the 

GFP standard, and anti-GNA antibodies had detected a number of bands with 

molecular weights between that of native GNA monomer and of the chimeric product. 
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Figure 5.9 Binding of affinity-purified recombinant GNA-GFP to 6 th instar 
Lacanobia oleracea haemocytes in vitro - crude technique. Three ,̂1 of 
haemolymph was added to 3 ^il of GNA-GFP (fraction 4) to a final concentration 
of 60 uglml (A & B) or to standard rGFPuv to a final concentration of 30 |Ag/ml 
(C) and the suspension incubated at room temperature for 5 minutes. The 
haemocytes were studied by confocal microscopy (x 20 objective lens for A & C; x 
40 objective lens for B). 
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Figure 5.9 continued. 
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A degree of non-specific binding had also occurred since several bands appeared in 
the control lanes of the anti-GNA antibody blot (lane E, Fig. 5.12 (A)). Anti-GNA 
antibodies also detected recombinant GNA109 in the haemolymph; lane B of Figure 
5.12 (A) shows a band that migrated as far as the native GNA monomer. Surprisingly, 
the more specific anti-GFP antibodies detected rGFPuv in the haemolymph (lane D, 
Fig. 5.12 (B)), too. No proteolytic cleavage of GFP seemed to have taken place since 
its molecular weight remained unchanged at 27 kDa. 

5.3 Discussion 

The goal of this study was to determine whether GNA and GFP could be linked into a 

chimeric molecule that combined the functional properties of the individual proteins. 

The results above clearly demonstrate that the lectin-based chimeric protein, GNA-

GFP, consisting of GNA isolectin 2 fused to the GFPuv protein through a vector-

derived linker, was expressed succesfully in Pichia pastoris exhibiting dual activity. 

Although GFPuv was optimised for bacterial expression (Crameri et al, 1996), it 

fluoresced very efficiently in Pichia. In contrast, human optimised EGFP (Clontech) 

did not express at all in Pichia pastoris (results not shown) and is generally not 

efficiently expressed in yeast (Cormack et al, 1997). 

The expressed fusion protein (and rGFP), using either leader (a-factor prepro- or 

PHA-E leader) construct, was not only secreted into the culture supernatant, but was 

also directed to intracellular organelles in the yeast cell. Presumably these organelles 

were vacuoles. The GFP fluorescence was displayed in large structures which stood 

out brightly from the dim fluorescent cytoplasm. Form and size of vacuoles may 
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Figure 5.10 Binding of affinity-purified recombinant GNA-GFP to 6 th instar 
Lacanobia oleracea haemocytes in vitro - monolayer techniqu e. The cell 
monolayer was incubated in TBS with adjusted osmolarity containing 5 pig/ml 
GNA-GFP (A) or 5 ^ig/ml standard rGFPuv (B). The haemocytes were studied by 
confocal microscopy. 
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Figure 5.11 Binding of affinity-purified recombinant GNA-GFP to 4th instar 
Lacanobia oleracea haemocytes in vivo. Haemolymph extracted from different 
caterpillars fed on artificial diet containing GNA-GFP was studied by confocal 
microscopy. 
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Figure 5.12 Immunoblot analysis using polyclonal anti-GNA antiserum (A) or 
monoclonal anti-GFP antibodies (B) of pooled haemolymph extracted from 4 th 
instar Lacanobia oleracea. The caterpillars were fed on artificial diet containing 
recombinant GNA109 (lane B), affinity-purified recombinant GNA-GFP (lane C), 
standard rGFPuv (lane D), and casein (lane E) . Lanes A and F: 25 and 50 ng, 
respectively, of native GNA (A) or standard rGFPuv (B). For all samples, 10 ii\ of 
haemolymph was loaded. 
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change considerably during the yeast cell cycle (Tuite, 1991), which could account 
for observations of fluorescent subcellular structures of different sizes in different 
cells. Western blots confirmed the presence of the fusion product both in the 
supernatant and in the cell. However, the band profiles were not the same. From the 
blots of cell extracts, more bands were noticeable suggesting that this was most 
probably due to proteolytic cleavage from the abundant proteases contained within 
the vacuoles (Martinoia et al, 1979). Also, in order to estimate the relative 
concentrations of proteins from the blots differences in sensitivity of the two 
antibodies had to be taken into consideration. The polyclonal anti-nGNA antibodies 
were not as specific as the mix of monoclonal anti-GFP antibodies which were raised 
against both GFP alone and a GFP fusion product (Boehringer-Mannheim). 

The first evidence of dual activities of the lectin and GFP moieties of the fusion 

product was observed at the cellular level when, for both fusion constructs, the Pichia 

cell wall fluoresced strongly at the GFP wavelength. The outer surface of the yeast 

cell wall contains highly immunogenic mannoproteins which consist of large numbers 

of mannose groups covalently bound to N-acetylglucosamine groups that in turn are 

attached to specific amino acid side groups of a number of cell wall-specific 

polypeptide chains. These mannose structures are recognised and bound to by GNA 

as previously observed, and the fluorescence is most likely due to bound GNA-GFP 

fusion. Furthermore, this hypothesis is supported by the finding that GNA 

agglutinated Pichia pastoris cells (see Chapter 4.2.5), through mediation of the lectin 

with mannose structures on the cell surface. 
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Interestingly, 95 % of the fusion product expressed from construct PHA-E:GNA-GFP 
was confined within the cells, whereas 83 % of total GNA-GFP expressed from 
construct a:GNA-GFP was secreted into the culture supernatant. These results do not 
reflect directly the observations made on the fluorescent cells (Fig. 5.1), since the 
fluorescence was not only contributed by the fusion product, but also by the cleaved 
GFP. In contrast, recombinant GFP was found mostly in Pichia cells when expressed 
from a:GFP or PHA-E:GFP (75 % and 91 % of total GFP protein, respectively). 
These results are surprising since it was expected that most of the heterologous 
protein (with the exception of a:GNA-GFP) would be secreted when directed by the 
leader sequences. These foreign proteins may contain positive sorting information 
within their polypeptide chains which may explain their diversion from the 'default' 
secretory route (Stevens et al, 1986). 

Despite the slight differences in band profiles as conveyed by the immunoblots shown 

in Figure 5.2, expression from either construct a:GNA-GFP or PHA-E:GNA-GFP 

could potentially be chosen for functional analysis. However, since the results of the 

previous chapter (Chapter 4) indicated that constructs containing the PHA-E leader 

sequence expressed in Pichia pastoris produced heterologous proteins that were 

correctly processed and that no N-terminal sequencing was carried out here, further 

work focussed mainly on construct PHA-E:GNA-GFP. 

Purifying GNA-GFP from culture supernatant using mannan-agarose proved much 

less cumbersome than purifying the chimera from cell extract (result not shown); 

breaking the Pichia cells open with glass beads was a tedious and inefficient process 

resulting in low yields. Binding of GNA-GFP to the mannan-agarose column matrix 
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was most probably mediated by the oligomeric association of the fusion protein with 
cleaved GNA; tetrameric formation of homogenous GNA-GFPs was sterically 
unlikely. In fact, evidence of oligomerisation was shown by immunoblotting of 
samples that were not subjected to heat treatment or P-mercaptoethanol addition (Fig. 
5.5). Thus, partial proteolysis of the fusion product and co-purification of GNA were 
an advantage, not an interference, to binding activity. A theoretical relationship 
between the number of molecules of free GNA with the number of molecules of 
GNA-GFP in the collected eluted fractions of affinity-purified recombinant GNA-
GFP sample is presented in the Appendix. 

The agglutination activity of rabbit erythrocytes was caused by the concerted 

activities of both GNA-GFP and GNA. Agglutination solely by homogenous GNA 

tetramers was potentially possible because sufficent levels of free GNA were present 

in the purified fractions (4 and 5). Fraction 2 did not contain any GFP fluorescence 

and hence no GNA-GFP, only free GNA. However, complete haemagglutination 

using this fraction was not achieved at a concentration of 20 /ig / ml. This is evidence 

that the lectin activity of co-purified cleaved GNA was reduced because the C-

terminal linker residues may have obstructed proper binding of the lectins to the 

sugars on the outer surface of the red blood cells. The activity was expected to be the 

same as that of rGNA109 since Longstaff et al. (1998) showed that recombinant 

GNA with a C-terminal hexa-hisidine tail was as active as native GNA. 

However, when GNA-GFP binding to mannan-agarose beads was observed under UV 

light, it was apparent that, without doubt, the binding involved the fusion product 
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since the beads were fluorescing. This finding clearly suggests that the fusion protein 
is able to take part in lectin binding activity. 

The ability of recombinant GNA-GFP to bind in vitro and in vivo to haemocytes from 

haemolymph samples extracted from larvae of the lepidopteran Lacanobia oleracea 

was demonstrated. That only certain cell types were fluorescing indicates that binding 

of the fusion protein was specific; of the haemocytes that were identifiable (Ribeiro et 

al., 1996), GNA-GFP fluorescence was observed on either plasmatocytes or 

granulocytes, whereas no fluorescence was observed on spherular cells. This is in 

strong contrast to the observation made when FITC-labelled GNA was found to bind 

to haemocytes non-selectively (Fitches, 1998). Since FITC in itself showed signs of 

binding to the cells, the distinction between selectively and non-selectively bound 

GNA-FITC proved difficult. In this work, it was observed that GFP alone does not 

stick to cells, even at relatively high concentrations (30 jUg / ml). Fitches (1998) 

demonstrated that GNA could be detected in the haemolymph of Lacanobia oleracea 

when fed on artificial diet containing the plant lectin. Demonstration of in vivo 

binding of GNA-GFP to haemocytes extracted from lectin-fed larvae showed that the 

GNA-GFP fusion was also taken up into the haemolymph, presumably through the 

functional GNA part of the fusion mediating uptake through binding to the insect gut 

surface, as observed previously for GNA. It was shown, by immunoblotting, that the 

fusion protein was present in the haemolymph, and although its concentration was 

low, fluorescence by the GFP moiety was detectable as a result of specific binding to 

specific cells in the haemolymph. Interestingly, cleaved GFP as a result of partial 

proteolysis (most probably by gut proteases at the linker region of the fusion protein) 

was also detected in the haemolymph. In addition, immunoblotting of blood samples 
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extracted from the caterpillars fed on artificial diet containing GFP alone showed that 
GFP had managed to traverse the midgut barriers into the haemolymph at low 
efficiency, but did not show binding to cells in the haemolymph. As expected, 
cleaved GNA and GNA used as control were found in the haemolymph, too. 
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Chapter 6 

General Discussion & Future Prospects 

This work has as its aim the development of microbial expression systems based on 

Escherichia coli and Pichia pastoris to produce functional recombinant plant lectins. 

Towards this aim, two unrelated plant lectins were chosen: (i) the lectin from the 

snowdrop plant {Galanthus nivalis agglutinin, or GNA), a member of the 

Amaryllidaceae family, and (ii) the lectin from the French bean Phaseolus vulgaris 

(phytohaemagglutinin, or PHA), a member of the Leguminoseae family. These lectins 

are members of two distinct families of proteins. Much interest has focussed on the 

snowdrop lectin as candidate for genetic engineering of crops since it has established 

insecticidal effects towards a wide range of insects including homopterans (e.g. 

Nilaparvata lugens, or rice brown planthopper, BPH) and lepidopterans (e.g. 

Lacanobia oleracea, or tomato moth), and no evidence of toxicity towards mammals. 

PHA, on the other hand, is toxic to higher animals but is of limited toxicity to insects. 

Following the succesful production of correctly processed plant lectins, the 

heterologous expression systems were used as a basis for carrying out site-directed 

mutagenesis on one of the carbohydrate-binding sites of GNA and for the creation of 

a functional GNA-GFP chimaera in order to complement on-going studies on the 

mode of action of the snowdrop lectin with respect to insect toxicity. 

Like most plant lectins, snowdrop lectin and phytohaemagglutinin exist as a mixture 

of multiple isoforms in nature. GNA isolectins only vary slightly in amino acid 

residue sequence, most noticeably in the C-terminal region (Van Damme et al.. 
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1991a) and this variation is not thought to affect the specificity of carbohydrate 
binding. It was important to ensure that the isoform previously selected for expression 
in a transgenic plant showed the anticipated antimetabolic effects. Whether expressed 
in E. coli or P. pastoris, recombinant GNA isoform 2 consistently imparts a two-fold 
higher haemagglutination activity than native snowdrop lectin. This consistent 
difference is significant even though such a difference in an individual assay would 
not be. Also, the native GNA was shown to have a slightly more pronounced binding 
to carboxypeptidase Y in the ELISA assays than bacterially expressed GNA. 
However, no difference in toxicity between recombinant and native snowdrop lectin 
was established in the brown planthopper bioassay. Therefore, it may be assumed that 
the difference in activity is the consequence of the slight changes in amino acid 
residue content of the different GNA isoforms, and that GNA isoform 2 represents a 
"high activity" lectin sequence compared to other isoforms present in the mixed 
native GNA preparation. 

Almost all recombinant plant lectins to date expressed in bacteria are from the legume 

family. Most of them accumulate as insoluble inclusion bodies in the bacteria. 

Although GNA comes from a different protein family than the legume lectins, and no 

homology is present between the monocot lectins represented by GNA and legume 

lectins, expression of the snowdrop lectin in E. coli was no exception. In this system, 

expression of GNA was driven by an inducible T7 promoter in a pET plasmid vector. 

The construct was engineered so that the protein was expressed without the N-

terminal leader sequence. A procedure to resolubilise denatured recombinant GNA 

was optimised so that most of the lectin was refolded into a functionally active state. 

Denaturation and refolding procedures are case-to-case dependent, but typically do 
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not give high yields. For example, Arango et al. (1992) showed that only a very small 
percentage (1 - 4 %) of insoluble EcorL, a lectin from the legume Erythrina 
corallodendron, was recovered into an active form. 

The four extra C-terminal residues of the recombinant GNA 109 polypeptide 

manifested themselves in the ELISA assays where rGNA109 bound more strongly to 

carboxypeptidase Y than rGNA105. No difference in activities between the two 

recombinants was observed in other functional assays. It is probable that these 

residues do contribute significantly in GNA's activity since they participate in the C-

terminal strand exchange which is important for (i) stabilisation of the dimers, and (ii) 

binding of terminal mannose monosaccharides at site I . The strand cross-over to form 

hybrid beta sheets do exist in other proteins, however, this is rare (Bennett et al., 

1995). For example, the monomer-monomer association of the panicum mosaic virus 

is stabilized by strand insertion (Ban & McPherson, 1995). 

Despite the refolding problem, the E. coli expression system does provide sufficient 

recombinant GNA for allowing alterations of individual amino acids in the binding 

sites to study their effect on the sugar specificity of the protein and consequendy on 

their toxicity towards the rice brown planthopper. By altering Tyr97 to Phe97, the 

hydrogen bond between the amino acid side chain phenyl OH and the mannose 40H 

group was deleted. However, this did not abolish the biological activity of rGNA105. 

Instead, the mutant, rGNA105(Y97F) was less active (and less toxic) than its wild-

type counterpart. In contrast, rGNA109(Y97F) showed no difference in 

haemagglutination activity when compared to wild-type rGNA109. This finding 

further supports the important role the 4 extra C-terminal residues play in sugar 



Chapter 6 General Discussion & Future Prospects 211 

binding. The importance of the contribution of aromatic amino acid residues can be 
reflected in other cases. Nishiguchi et al. (1997) revealed that the aromatic ring of 
Phel30 of the Robinia pseudoacacia bark lectin is essential for carbohydrate binding. 
The lectin still had haemagglutinating activity when Phe was replaced by tyrosine, 
however, when Phe was substituted for Ala or Leu, the bark lectin's activity was 
completely abolished. Substitution of Tyrl34 of Grijfonia simplicifolia lectin (GSII) 
to aspartic acid or glycine eliminated carbohydrate-binding and biological activity 
(Zhu-Salzman et al, 1998). However, Tyrl34 replaced with Phel34, in which the 
aromatic ring was preserved, did not change the binding or insecticidal activity. 
Similarly, loss of activity was shown when Phel31 of EcorL was subjected to 
mutations (Adar & Sharon, 1996). 

The two different isoforms which constitute PHA (E and L forms), are also very 

similar in residue content (> 80 % homologous) (Hoffman and Donaldson, 1985). In 

contrast to GNA, the activities of both isoforms are different: only PHA-E is 

erythroagglutinating, whereas only PHA-L confers both leucoagglutinating and 

mitogenic activity. Isolation of pure native E 4 or L 4 forms by conventional techniques 

is difficult due to the similar physicochemical properties of both E and L types. 

Therefore, contamination with tetramers containing either subunit type would be 

inevitable. In an attempt to obtain a pure PHA isoform, Hoffman and Donaldson 

(1987) expressed soluble PHA-L in E. coli, but only a low yield (75 />ig/l culture) of 

affinity-purified lectin was attainable. Although the plant signal peptide was 

recognized by the bacterial proteases, the recombinant protein was incorrectly 

processed. Interestingly, the absence of N-linked carbohydrates in bacterially 

expressed PHA-L did not abolish biological activity confirming the report by Bollini 
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et al. (1985) that unglycosylated PHA from bean cotyledons treated with tunicamycin 
had mitogenic and erythroagglutinating activities similar to those of glycosylated 
PHA. 

When expressed in Saccharomyces cerevisiae, part of the recombinant PHA 

molecules had their N-terminal signal peptide still attached to the mature 

polypeptides, most probably due to failure of recognition of the plant signal peptide 

by the yeast proteases (Tague & Chrispeels, 1987). Most of the protein was directed 

to the vacuole with a small percentage of the protein containing the leader peptide 

secreted. Surprisingly, in this work, it was shown that expression of PHA in Pichia 

pastoris resulted in complete removal of the signal peptide. Furthermore, the lectin 

was correctly processed and a higher percentage was secreted into the yeast culture 

medium. It would be of interest to determine the factors causing the unexpected 

difference in signal peptide recognition between Saccharomyces and Pichia. 

Expression of GFP and GNA-GFP in Pichia pastoris resulted in intracellular 

fluorescence indicating that not all of the recombinant proteins were secreted. It 

would be desirable to more accurately locahse the recombinant proteins produced in 

these cells by, for instance, immunogold labelhng, in order to verify localisation to 

vacuoles. Stevens et al. (1986) hypothesized that secretion is the default pathway 

taken by proteins with no specific vacuolar targetting signals. In the event of 

saturation of the sorting or modifying machinery after overexpression may result in 

secretion. However, Chao and Etzler (1994) suggested that yeast and plants utilize 

different vacuolar targetting signals after observing that Dolichos biflorus lectins, 

naturally confined to the plant vacuoles, were secreted into the yeast medium even at 
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low expression levels. Furthermore, these lectins did accumulate in the cells, but not 
in the vacuoles. The natural tendency for the lectin subunits to aggregate may have 
resulted in the retention of the protein in the endoplasmic reticulum (Chao & Etzler, 
1994). 

Although expressing PHA using the commercially available alpha prepro- leader 

sequence generally led to higher yields, incorrect processing by the yeast proteases 

resulted in the formation of different polypeptide species, a feature not uncommon in 

other reported cases (Sreekrishna et al., 1997). Furthermore, since these proteins 

contained additional glycosylated N-terminal segments of the alpha-factor pro-region, 

the biological function of PHA was abolished probably due to the interfering N-

linked carbohydrate side chains. However, this phenomena was not shared by alpha 

GNA since both species bound to and eluted from the affinity column. 

GNA and an independent nonlectin, GFP, were both correctly processed in Pichia 

and secreted in culture medium when expressed from a construct containing the PHA-

E leader sequence. It is assumed from these results that the PHA-E signal peptide 

could be used for proteins where secretion and processing using other signal peptides 

has proven problematic. This is important when considering the use of plant lectins 

for drug development or crop genetic engineering where it is imperative to maintain 

strict control on the quality of the recombinant protein. For instance, in order to 

produce an identical plant lectin to the one expressed in a transgenic crop, an efficient 

heterologous expression system, such as the one developed in this work, is highly 

desirable. 
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Expression of recombinant GNA-GFP in Pichia with a linker joining the two proteins 
which is sensitive to proteolysis is not necessarily disadvantageous. In nature, the 
snowdrop lectin exists as a homotetramer (Van Damme et al, 1987) and although the 
GNA monomer has the potential to bind mannose monosaccharides in its three 
binding sites, sugar binding of more complex structures containing mannose residues, 
as those found on cell surface glycoproteins, is much stronger due to cooperation of 
the neighbouring subunits of the tetramer (Hester et al., 1995; Hester & Wright, 1996; 
Wright & Hester, 1996). Thus, quaternary association of GNA-GFP into tetramers 
seemed to be facilitated by the presence of GNA, proteolytically cleaved from GNA-
GFP fusion polypeptides. I f the linker peptide was resistant to protease attack by 
Pichia, formation of a GNA-GFP tetramer might be disfavoured due to steric 
interference of the large GFP moiety(ies). In this case, in order to permit proper 
carbohydrate binding, supplementing the uncleaved GNA-GFP sample with free 
GNA molecules would probably be required to allow heterotetrameric formation. It 
would be interesting to carry out further experiments on quaternary association to 
verify the number of subunits that the chimaeric GNA-GFP contains. 

The tomato moth (Lacanobia oleracea) was chosen for functional testing of the 

recombinant GNA chimaera due to its importance as a pest in agriculture and the 

facile handling of the caterpillars. GNA was shown to have a detrimental effect upon 

larval development, growth and consumption, with little effect on survival (Fitches & 

Gatehouse, 1998). It seems that the toxic effects attributable to the GNA lectin are 

ascribed to several factors. Binding to glycosylated gut receptors recognized by the 

GNA moiety would probably cause inhibition of mutrient absorption and/or midgut 

cell disruption in the insect (Pusztai, 1991). Incidently, lectin toxicity towards 
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mammals depends largely on the binding of lectins to suitably glycosylated targets in 
the intestinal brush border membranes (Pusztai, 1991). In contrast to PHA, GNA 
lacks toxicity to mammals due to the relative scarcity of mannose-containing brush 
border glycans (Pusztai et aL, 1990). In the haemolymph of Lacanobia, Fitches et al. 
(1998) showed that G N A has the ability to bind to and reduce the number of 
haemocytes, which may have an effect on the immune system of the insect. This work 
complements the mode of action study on GNA's toxicity towards Lacanobia by 
showing that the GNA-GFP hybrid protein bound selectively to specific haemolymph 
cell-types. Binding of the GNA moiety to mannosylated gut receptors is presumed to 
be responsible for the init ial stages of uptake by endocytosis of the chimaeric 
molecule on its way to the haemolymph. 

Bacterially expressed rGNA105 and rGNA105(Y97F) were shown to bind 

differentially to the same specific BPH gut glycoprotein receptors in vitro. This 

difference in binding resulted in a decrease in toxicity of GNA towards BPH in vivo. 

This work complements earlier work by Powell et al. (1998) who reported GNA 

binding to the B P H gut tract. Thus, i t would be desirable to further characterise the 

specific glycoprotein receptors concerned. Du et al. (2000) have characterised one 

such receptor, a ferritin, in detail. 

In conclusion, the ini t ial objectives of this research project have largely been 

achieved, i.e. the development of microbial heterologous expression systems to 

produce adequate functional plant lectins by (i) expressing snowdrop lectin in E. coli 

and carrying out site-directed mutagenesis of the carbohydrate-binding site, ( i i) 

expressing snowdrop lectin and phytohaemagglutinin in P. pastoris, and ( i i i ) 
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expressing a chimaeric GNA-GFP for functional studies. The expression of plant 
lectins in Pichia is preferred over E. coli due to the inefficient inherent bacterial 
problem of refolding/activation of insoluble protein f rom inclusion bodies. Also, the 
proteins expressed using the Pichia system developed throughout the project were 
'clean cut ' , whereas those expressed by E. coli did not remove the initiation 
methionine although this did not compromise the activity of bacterial expressed 
snowdrop lectin. Yet, an expression system based on Pichia has now been developed 
to allow the production of a recombinant plant lectin (or protein), or protein derived 
therefrom (e.g. chimaeras), with the desired sequence. 
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Chapter 7 
Appendix 

A relationship between the no. of molecules of free GNA with the no. of molecules of 

GNA-GFP in the collected eluted fractions of affinity-purified recombinant GNA-

GFP can be roughly estimated as follows: 

variables 

a = estimated total mass of GNA-GFP plus free GNA 
b = estimated total mass of GFP 
n = no. of molecules of GFP moiety and GNA-GFP 
m = no. of molecules of free GNA 
gna = mass of free GNA molecule 
gfp = mass of GFP molecule 
gnagfp = mass of GNA-GFP molecule 

equations 

(1) a = n . gnagfp + m . gna 
(2) b = n . g f p 
(3) gnagfp = gna + gfp 

(2) -> (3) 

(4) n . gnagfp = n . gna + b 

(4) -> (1) 

a = n . gna -h b -i- m . gna 
(5) a - b = gna (n -i- m) 

(6) (27/40). gnagfp = gfp 
(7) (14/40). gnagfp = gna 

(6) -> (7) 
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(8) (14/27). gfp = gna 
(2) -> (8) 

(9) (14/27)(b/n) = gna 

(9) -> (5) 

(10) a - b = (14b/27n)(m + n) 
(27n/14b)(a - b) = m + n 

nrr27/14bKa-b)- 11 = m 

thus, there exists a simple linear relationship between the no. of molecules of free 

GNA (m) with the no. of molecules of GNA-GFP (n). 

e.g. for affinity-purified GNA-GFP fraction 4, a = 120 and b = 60, m = n; for fraction 

5, a = 82 and b = 24, m = 4n. 
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nctional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin 
NA) expressed in Pichia pastoris 
rrect N-terminal processing and secretion of heterologous proteins expressed using the 
A-E signal peptide 

naan J. M. Raemaekers, Laura de Muro*, John A. Gatehouse and Anthony P. Fordham-Skelton 

irtment of Biological Sciences, University of Durham, South Road, Durham, DHl 3LE, UK 

Phytohemagglutinin {Phaseolus vulgaris agglutinin; PHA; E- and L-forms) and snowdrop lectin {Galanthus 
nivalis agglutinin; GNA) were expressed in Pichia pastoris using native signal peptides, or the Saccharomyces 
a-factor preprosequence, to direct proteins into the secretory pathway. PHA and GNA were present as soluble, 
functional proteins in culture supernatants when expressed from constructs containing the a-factor 
preprosequence. The recombinant lectins, purified by affinity chromatography, agglutinated rabbit erythrocytes 
at concentrations similar to the respective native lectins. However, incomplete processing of the signal sequence 
resulted in PHA-E, PHA-L and GNA with heterogenous N-termini, with the majority of the protein 
containing N-terminal extensions derived from the a-factor prosequence. Polypeptides in which most of the 
a-factor prosequence was present were also glycosylated. Inclusion of Glu-Ala repeats at the C-terminal end of 
the a-factor preprosequence led to efficient processing N-terminal to the Glu-Ala sequence, but inefficient 
removal of the repeats themselves, resulting in polypeptides with heterogenous N-termini still containing N-terminal 
extensions. In contrast, PHA expressed with the native signal peptide was secreted, correctly processed, and also fully 
functional. No expression of GNA from a construct containing the native GNA signal peptide was observed. The 
PHA-E signal peptide directed correct processing and secretion of both GNA and green fluorescent protein (GPP) 
when used in expression constructs, and is suggested to have general utility for synthesis of correctly processed 
proteins in Pichia. 

Keywords: Pichia; lectin; signal peptide; processing; glycosylation; GFP 

iled study of the properties of many plant lectins has been 
jred by their occurrence as heterogenous mixtures of 
rms in planta (reviewed in [1]) as, for example, the lectins 
jbinia pseudoacacia [2]. These isoforms occur as a result 

number of factors. Firstly, in some cases imprecise 
ning of the C-termini of mature polypeptides can give rise 
eterogeneity in lectin sequences ([3], and references 
in). Secondly, most lectins are encoded by multigene 
ies, members of which can be expressed in the same 
I, or differentially expressed in different tissues and/or 
opmental stages. Thirdly, alleUc variation in lectin 
jnces between plant lines is well-estabUshed, and can 
ibute further to the heterogeneity of lectin preparations 
e the source material is not genetically defined or uniform 
rhe difficulty of separating multiple lectin isoforms by 
intional techniques has led to functional properties and 
gical activities being defined for protein mixtures, and 
; many of the naturally occurring lectin variants probably 
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differ little in functional properties, in other cases the 
differences in sequence between isoforms causes significant 
effects on the biological activity of the molecule. For example, 
two of the isoforms of the Phaseolus vulgaris lectin family, 
PHA-E and PHA-L, differ in their agglutination activity on 
human blood cells; at low concentrations the former aggluti­
nates erythrocytes whereas the latter agglutinates, and is 
mitogenic towards, leucocytes [4-6]. 

Expression of plant lectins in heterologous systems offers a 
means of producing proteins of defined amino acid sequence, 
and allows sequence-function relationships in lectins to be 
explored through site-directed mutagenesis. However, attempts 
to express plant lectins in bacterial and yeast hosts have met 
with mixed success and is very much case-dependent. Whilst 
some plant lectins can be produced as functional proteins in 
Escherichia coli, albeit nonglycosylated [7-9], many form 
insoluble inclusion bodies, for example; snowdrop lectin 
(GNA) [10], Erynhrina lectin (ECorL) [11] and soybean 
agglutinin [12]. In these cases, lectins must be solubilized by 
denaturation-renaturation steps, and recovery of active lectin is 
often poor, and the possibility that the lectin does not fully 
recover its proper native conformation cannot be ruled out. 
E. coli is also incapable of glycosylating eukaryotic proteins 
expressed in this host. Many lectins are glycosylated, and the 
presence or absence of the carbohydrate side chains can have 
significant effects on the functional and/or physical properties 
of the recombinant proteins. For example, concanavalin A 
is activated by deglycosylation in planta [13,14] and 
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Fig. 1. (a) Summary of expression and purification of PHA in Pichia, 
and (b) Silver stained gel showing the affinity purification of 
recombinant PHA-L on a thyroblobulin-agarose column, expressed 
with the native signal peptide, (a) Data for PHA-E are shown but PHA-L 
gave essentially identical results. Western analysis of PHA-E in culture 
supematants (s) or affinity purifed (p) samples expressed using either the 
native signal peptide or the prepro a-factor sequence. Samples were treated 
( ± ) with N-glycosidase F to resolve differences in glycosylated forms. The 
conspicuous 'smear' present in the a-factor supernatant is resolved to a 
single deglycosylated higher molecular mass form of PHA-E (asterisk) 
not present in the affinity purified sample, (b) Silver stained gel, with: 
(C) ammonium sulphate precipitate of induced culture supernatant; (E) eluted 
fractions; (F) column flowthrough; (S) PHA standard. Molecular mass 
markers were SDS-7 (BioRad). 

PHA, estimates of the relative amounts of protein in the cells 
and supernatant suggested that at least 50% of the protein was 
secreted (not shown). The proportion of GNA inside cells could 
not be estimated as GNA also binds to cell wall mannose 
residues. 

Both PHA and GNA were purified from culture supematants 
by affinity chromatography, using the functional activity of the 
lectins, on thyroglobulin- and mannan-agarose columns, 
respectively. All four forms of PHA (from the PHA-E: 
PHA-E, a:PHA-E, PHA-L:PHA-L and a:PHA-L constructs) 
and GNA (from the a:GNA construct) bound to, and could be 
eluted from, the corresponding affinity column to yield proteins 
free of contaminants. A representative purification of PHA-L, 
expressed using the nadve signal peptide sequence, is shown in 
Fig. lb, indicating the protein is essentially pure as judged by 
silver staining. Similar results were obtained for the other PHA 
constructs. Recombinant PHA-E (from both the PHA-E:PHA-E 
and a:PHA-E constructs) and GNA agglutinated rabbit 
erythrocytes at concentrations similar to those of native lectins 

assayed under the same conditions (Table 2), and which 
consistent with concentrations reported for the correspon 
commercially available plant-derived lectins. Sugar inhib 
of haemagglutination was also consistent with the result; 
native lectins (data not presented). PHA-L does not aggluti 
erythrocytes at these concentrations, and thus was not assa 
The data from haemagglutination assays and affinity pi 
cation shows that the lectins produced in Pichia are functi 
proteins. 

Processing of proteins expressed using the a-factor 
preprosequence 

Although the constructs in which the a-factor preprosequ 
was used as a signal peptide led to the secretion of functi 
lectins from Pichia, analysis of polypeptides present in cu 
supematants showed that each construct gave rise to mul 
bands detected by antilectin antibodies, suggesting 
processing was not occurring correctly. For both PHA 
GNA, although a band of similar mobility to the 'na 
protein was present in the culture supernatant, diffuse ban( 
smears at higher molecular masses were also present (Fig 
lane 7; Fig. 2, lanes 1 and 3). The diffuse bands were al 
from a:PHA constmcts after purification by affinity chron 
graph, showing that these polypeptides does not bind t( 
affinity column (compare lanes 7 and 9 of Fig. la). For C 
diffuse higher molecular mass bands were present both b 
and after purification, although a smear of immunorea 
material of very low mobility on SDS/PAGE was not prese 
the eluted fraction after affinity chromatography, but 
present in the flow-through fraction. The diffiise band 

N-glycosidase F 
Fig. 2. Summary of expression and purification of GNA in 
expressed using the a-factor preprosequence. Western analysis of ( 
culture supematants (C), column flowthrough (F), affinity purifie< 
(a:GNA) and standard native GNA (S). Affinity purified GNA was 
( ± ) with N-glycosidase F to resolve differences in glycosylated for 
asterisk indicates the higher molecular mass form of GNA contaii 
residues of a-factor pro sequence. 
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it lectins, standard proteins and haemagglutination 
lys 

ve lectins purified from plant sources were obtained from 
)iochem (PHA E/L) and W. Peumans (GNA; University of 
vain, Belgium). Standard recombinant GFP expressed in 
oli was obtained from Clontech. Native and recombinant 
ein concentrations were estimated by measuring absorbance 
80 nm. 
emagglutination assays were carried out in round-bottomed 
•otitre plates. A total volume of 100 (xL was used in each 
: 50 |xL aliquots of serial twofold dilutions of the lectin in 
!1/Pi and 50 fxL of 2% erythrocyte suspension in NaCl/Pj. 
microtitre plate with the 100 |jlL erythrocyte suspension 
aining the serial double dilutions of the sample lectin was 
bated for 1 h at room temperature. The lowest concen-
an required to completely agglutinate the red blood cells 
determined visually. 

lity-purification of PHA and GNA 

imbinant PHA isoforms expressed in Pichia were affinity-
''ied on thyroglobulin-agarose essentially as described [28]. 
fly, proteins from Pichia culture supematants (50 mL) 
; precipitated by the addition of solid (NH4)2S04 to 80% 
[ation and incubated overnight at 4 °C. Precipitates were 
;cted by centrifugation at 3000 g for 40 min, resuspended 
0 mL NaCl/Pi and dialysed against 4 L NaCl/Pi overnight 
°C. Dialysed samples were loaded onto a thyroglobulin-
3se column (Sigma; 5-mL volume), followed by washing in 
l/Pj until all nonbound material had eluted. The column 
then washed with nonbuffered saline (1 column volume), 
fluted in 0.5 m NaCl, 50 mM glycine (pH 3.0). The pH of 
d samples was brought to 7.4 by the addition of Tris/HCl 
1 M and samples were dialysed against NaCl/Pi overnight 

combinant GNA was purified from Pichia cultures 
nL) by binding to a mannan-agarose (Sigma) affinity 
nn. Briefly, proteins from culture supematants were 
pitated with (NH4)2S04 as described for the PHA 
cation. After resuspending precipitates in NaCl/Pi, the 
lie fraction was loaded directly onto a column (10 mL) 
fining mannan-agarose (Sigma). The column was washed 

NaCl/Pi to remove any unbound proteins until the 
bance reached background level. The bound fraction 
subsequently eluted isocratically with 20 mM diamino-
ne and eluted proteins were monitored by online 
urement of absorbance at 280 nm. Fractions containing 
ibinant GNA were pooled, dialysed against NH4HCO3, 
ilized and dissolved in NaCl/Pj. 

cosylation of protein with N-glycosidase F 

n samples were denatured by boiling for 10 min in the 
ice of 1.0% (w/v) SDS and 8.0% 2-mercaptoethanol. 
les were diluted to 0.1% SDS, 0.8% 2-mercaptoethanol, 
A sodium phosphate (pH 7.4), 25 mM EDTA and 2% 
X-100. Recombinant N-glycosidase F (Boehringer) (0.6 
was added and samples were incubated overnight at 

. Control reactions omitted the enzyme. Following 
^AGE, samples were analysed by Western blotting as 
Ibed above. 

N-terminal sequencing 

N-terminal sequencing was carried out on affinity purified 
proteins or protein bands blotted onto Problot poly(vinylidene 
difluoride) (PVDF) membrane after separation by SDS/PAGE, 
as described (http://www.bio.cam.ac.uk/proj/adr/PNAC/blotguide. 
html), using an Applied Biosystems model 477 amino acid 
sequencer. A standard procedure for identifying N-terminal 
sequences was followed, where the machine was run for six 
cycles and the resulting sequence data was analysed for 
agreement with the amino acid sequences predicted by the 
nucleotide sequences of the expression constructs. Any 
ambiguities were resolved by carrrying out further sequencing. 

R E S U L T S 

PHA and GNA expressed in Pichia are functional secreted 
proteins 

Initially, two sets of constructs for the expression of PHA 
(E- and L-forms) and GNA were prepared; in the first, the lectin 
coding sequence contained the 'native' signal peptide sequence 
and in the second, the signal peptide sequence was replaced by 
the Saccharomyces a-factor preprosequence (extending as far 
as the processing site of the Kex2p protease, i.e. omitting the 
'Glu-Ala' repeats). Al l construct designations and corres­
ponding sequences are shown in Table 1 and Fig. 4. Coding 
sequences were placed under the control of the methanol-
inducible AOXl promoter present in the the pPICZ series of 
Pichia expression vectors (Invitrogen). Constructs were trans­
formed into Pichia strains GS115 or KM71 and the super­
natants from methanol-induced cultures were analysed for the 
presence of the corresponding lectin. 

Figures 1 (PHA) and 2 (GNA) summarize results for the 
expression and purification studies of lectins in Pichia. Proteins 
which reacted with the appropriate antilectin antibody were 
present in supematants of induced cultures for all the PHA 
expression constmcts, both with the native signal peptide 
(PHA-E:PHA-E and PHA-L:PHA-L;) and the a-factor prepro­
sequence (a:PHA-E and a:PHA-L) (Fig. la, lanes 3 and 7). 
Results for E- and L-forms of PHA were essentially the same 
and a representative analysis of PHA-E is shown. In contrast to 
PHA, 8 independent transformants containing the complete 
GNA coding sequence (GNA:GNA) failed to produce GNA, 
although GNA expression could be detected readily in Pichia 
clones containing the constmct where the native GNA signal 
peptide was replaced by the a-factor preprosequence (a:GNA) 
(Fig. 2, lane 1). Transformation into either strain GS115 or 
KM71 did not produce any significant differences in levels of 
lectin secretion (not shown). 

Analysis by SDS/PAGE and Western blotting showed that 
polypeptides of similar molecular masses to appropriate lectin 
standards, recognized by anti-PHA or anti-GNA antibodies, 
were present. However, the polypeptide profiles of the bands 
recognized by antilectin antibodies after Western blotting 
differed from the 'native' lectins. In the case of PHA, the 
bands recognized by anti-PHA antibodies also differed between 
constructs, depending on whether the a-factor preprosequence 
or native signal peptide sequence was used. The differences in 
the polypeptide profiles derived from different constructs are 
due to differences in processing between native signal peptides 
and the a-factor preprosequence, and are described in more 
detail in the following section. Levels of PHA and GNA in the 
culture supematants were estimated from Western blots as 
being in the range 0.4-1.0 and 1-2 mg L ~ \ respectively. For 



396 R. J. M. Raemaekers et al. (Eur. J. Biochem. 265) FEBS 

Table 1 Oligonucleotide sequences of primers used to prepare Pichia expression constructs. The PHA-E:GNA and PHA-E:GFP constructs 
produced by a two-step process; the product of amplification of the first pair of primers was used as a 'Megaprimer' in the second ampl.fic 
step. M13RP1 = M13 reverse sequencing primer 1 (5'-CACACAGGAAACAGCTATGAC-3'); 5' AOXl = Pichia alcohol oxidase promoter p. 
(5'-GACTGGTTCCAATTGACAAGC-3') 

Construct 

PGR Primers: N-terminal (5 ' -3 ' ) 
C-terminal (5 ' -3 ' ) 

PHA-E:PHA-E GCGAATTCACCATGGCTTCCTCCAACTTACTC 
M13RP1 

PHA-L:PHA-L GCGAATTCACCATGGCTTCCTCCAAGTTCTTC 
M13RP1 

a:PHA-E GCCTCGAGAAAAGAGCCAGCCAAACCTCCTTCAGC 
M13RP1 

a:PHA-L GCCTCGAGAAAAGAAGCAACGATATCTACTTCAAC 
M13RP1 

GNA:GNA ATTACTCGAGAAAATGGCTAAGGCAAGTC 
TAATTCTAGATTACTTTGCCGTCACAAGC 

a:GNA ATTACTCGAGAAAAGAGACAATATTTTGTAC 
TAATTCTAGATCATCCGGTGTGAGTTCC 

aEA:GNA ATTACTCGAGAAAAGAGAGGCTGAAGCTGACAATATTTT 
GTACTCCTAATTCTAGATCATCCGGTGTGAGTTCC 

PHA-E:GNA 1. 5' AOXl 
GGAGTACAAAATATTGTCTGAGTTTGCGTGGGTGAG 
2. Megaprimer from above 
TAATTCTAGATCATCCGGTGTGAGTTCC 

aEA:GFP ATTACTGCAGCAAGTAAAGGAGAAGAACTTTTC 
TAATTCTAGAATTCATTATTTGTAGAGCTCATC 

PHA-E:GFP 1. 5 ' A O X l 
CCAGTGAAAAGTTCTTCTCCTTTACTTGAGTTTGCGTGGGTGAG 
2. Megaprimer from above 
TAATTCTAGAATTCATTATTTGTAGAGCTCATC 

Vector Cloning sites Coding sequence(s) 

pPICZ B £ c o R I / PHA-E signal pepti pPICZ B 
Xbal Mature PHA-E 

pPICZ B EcoRl/ PHA-L signal pepti pPICZ B 
Xbal Mature PHA-L 

pPICZa A Xholl a-factor prepro- : 

Xbal Mature PHA-E 

pPICZa A Xholl a-factor prepro- : 

Xbal Mature PHA-L 

pPICZ B Xhol 1 GNA signal peptide pPICZ B 
Xbal Mature GNA 

pPICZa A Xhol 1 a-factor prepro- : 

Xbal Mature GNA 

pPICZa A Xhol 1 a-factor prepro- / E 

Xbal repeats : Mature G] 

pPICZ B £coRI / PHA-E signal pepti pPICZ B 
Xbal Mature GNA 

pPICZa B Pstl 1 a-factor prepro- / 

Xbal EAEA repeats : GF 

pPICZ B EcoRI / PHA-E signal pepti 

Xbal GFP 

Glu-Ala repeats of pPICZa B, resulting in an extra two alanine 
residues between the Glu-Ala repeats and the N-terminus of 
GFP (methionine initiation codon omitted). Constmct PHA-E: 
GFP (fusion of PHA-E signal peptide to GFP) was constmcted 
by the 'Megaprimer' method. The first round of amplification 
used PHA-E:PHA-E in pPICZ B as template with the 5' AOXl 
vector primer and a primer corresponding to the last six 
residues of the PHA-E signal peptide and the first six residues 
of GFP (omitting the methionine initiation codon). The second 
amplification used pGFPuv as template, the purified mega­
primer obtained above and the GFP C-terminal primer. 

Pichia transformation and induction of expression of 
recombinant lectins 

Plasmids, linearized by restriction with BstXl, were trans­
formed into Pichia strains GS115 or KM71 by electroporation 
or using the 'EasyComp' chemical transformation method as 
described in the Invitrogen users manual. Transformants were 
selected on YPD-sorbitol plates containing 100 |jLg mL"^ 
Zeocin (Invitrogen) incubated at 30 °C. Single colonies were 
grown overnight in 10 mL BMGY medium, spun down, 
resuspended in 1.0 mL distilled water and innoculated into 
fresh BMMY medium (50 mL). Cultures were shaken at 
300 r.p.m. and fresh methanol was added daily to 0.5% (v/v) at 
9 am and 6 pm during the course of induction (7 days). 

SDS/PAGE and Western analysis 

Samples were analysed using denaturing SDS/PAGE with 
15% gels run under reducing conditions. The bands were 

visuaHzed by either Coomassie Brilliant Blue R250 or i 
staining. Samples were treated with 10% 2-mercaptoetl 
and heated in boiling water for 10 min before loading 
gel. Molecular mass markers (SDS7; Sigma) were us( 
caUbrate the gels. 

Electrophoretic transfer of proteins from gels to nitro( 
lose membranes (Schleicher and Schuell, BA85) was ci 
out by the semi dry blotting technique [27], and was follow 
immunodetection. The membrane was incubated in phos 
buffered saline (NaCl/Pj; 8 g NaCl, 0.2 g KCI, 1 
Na2HP04, 0.2 g KH2PO4 per Utre, pH 7.4) containing 
(w/v) nonfat milk powder (Marvel) and 1% Tween 20 for 
room temperature with gentie shaking. Polyclonal rabbit 
GNA serum (produced by R. R. D. Croy and L. N. Gateh 
University of Durham), rabbit anti-PHA serum (Vector La 
mouse anti-GFP serum (Clontech) were diluted (1 : IC 
1 : 20 000 or 1 : 1000, respectively) with NaCl/Pj conU 
5% nonfat milk powder and 0.1% Tween 20. Membranes 
incubated in primary antibody solution at room tempe 
for 1.5 h with gentie shaking. These were then wash 
antibody dilution buffer for 3 x 5 min at room tempet 
Secondary antibodies were IgG horesradish pero) 
conjugates (BioRad) diluted 1 : 10 000, as above, 
incubation was for 1.5 h at room temperature followi 
3 x 5 minute washes in antibody dilution buffer and a 
in distilled water. Enhanced chemiluminescence I 
reagents (Amersham) were used to detect specil 
bound secondary antibodies as instructed by the mai 
turer, and bands were visualized by exposure to Fuji 
film. 
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glycosylated PHA-L expressed in transgenic plants gave 
r quality crystals under conditions where glycosylated 
\ - L was crystallized successfully [15]. 
ti a similar manner, the expression of lectins in Sac-
romyces cerevisiae also has associated problems. PHA-L 
ressed in Saccharomyces accumulates mainly in the vacuole 
I, due to the presence of 'cryptic' vacuolar targetting 
;rminants [17], and only about 1% is secreted. In addition, a 
lificant proportion of PHA-L expressed in this host was not 
ectly processed, approximately half of the PHA-L accumu-
ig in the vacuole appeared to contain the uncleaved signal 
:ide, and all of the secreted PHA-L was in this unprocessed 
1 [16]. A second related lectin, from Dolichos biflorus, 
A be directed into a secretory pathway when expressed at 
levels, but accumulated in the cells (not in the vacuole) 

n expressed at high levels [18]. In both cases, the functional 
)erties of the recombinant lectin were not reported. The 
' report of the correct processing and secretion of a plant 
n in Saccharomyces is that of wheat germ agglutinin 
:h was secreted and exhibited sugar binding activity, 
ever, yields of protein were relatively low, of the order of 
|xg-L~^ [19]. Thus it would appear that Saccharomyces 
5t a satisfactory host for lectin expression, 
he development of relatively facile expression methodo-
;s for the methylotrophic yeast Pichia pastoris, especially 
he secretion of recombinant proteins, offers an alternative 
expressing plant lectins [20,21]. In this study, two plant 
ns were selected for expression in Pichia, Phaseolus 
aris agglutinin (PHA; both the E- and L-forms) and 
k'drop lectin (GNA). The rationale for this selection was 
PHA-L is incorrectly processed and accumulates in the 
ole of Saccharomyces and (b) GNA accumulates in 
ision bodies when expressed in E. coli. In addition, PHA 
GNA are members of two very different lectin families, the 
me lectins and the monocot. mannose-specific lectins, 
actively. These families are unrelated in sequence and we 
id therefore predict that, i f these lectins could be expressed, 
Pichia may become a useful system for the expression of a 
r range of plant lectins. In this paper we demonstrate that 
ia expresses functional PHA and GNA, which are secreted 
the culture medium. We also show that the PHA-E signal 
de directed the secretion of proteins which are correctly 
essed at the N-termini, whereas proteins secreted under the 
ol of the Saccharomyces prepro a-factor sequence have 
ogenous N-terminal extensions, and suggest that the 
-E signal peptide may have a wider utility in the 
action of recombinant proteins in Pichia. 

• E R I M E N T A L P R O C E D U R E S 

sequence analysis 

nid template DNAs were sequenced using fluorescently 
led dye terminators and an AmpliTaq cycle sequencing kit 
\ B I , Warrington, Cheshire, UK). Reaction products were 
sed on a PE ABI 373 stretch or 377 DNA sequencer. All 
constmcts described were sequenced to verify that no 
corporation occurred during PCR amplification. 

isslon constructs for PHA-E and PHA-L 

mic DNA isolated from Phaseolus vulgaris cv. Tender-
was used as a template for PCR amplification of PHA 

g sequences. Primer sequences were designed using the 
shed sequences of PHA-E (EMBL X02408) and PHA-L 

(EMBL X02409) [22]. PCR primers corresponded to the first 
six N-terminal codons of the PHA signal peptide sequence and 
the last six codons (including the stop codon) of the mature 
coding sequence and a further 5 bp of the 3' UTR. A 5amHI 
site was included at the 5' end of each primer. Primer sequences 
were: 

PHA-E N-terminal primer: 5'-CGGATCCATGGCTTCCTC-
CAACTTAC-3'; 

PHA-E C-terminal primer: 5'-CGGATCCTGGAGTCTAGA-
GGATTTGGTTG AG-3'; 

PHA-L N-terminal primer: 5'-CGGATCCCATGGCTTCCT-
CCAAGTTC-3'; 

PHA-E C-terminal primer: 5'-CGGATCCTGGAGTCTAGA-
GGATTTTGTTGAG-3'. 

After amplification, PCR products were blunt-end cloned 
into pUC18 and sequenced to check for absence of PCR errors. 
To produce Pichia expression constructs (see Table 1), 
modified N-terminal oligonucleotides were used to amplify 
PHA template DNA, in combination with a generic 1VI13 
sequencing primer (which amplifies across the Xba I site 
containing a stop codon in the PHA coding sequence), using 
Pfu polymerase (Stratagene). Primers for expression using the 
native signal peptide sequence contained a consensus ATG 
initiation codon (ANNATGG; [23,24]). Primers for expression 
using the a-factor preprosequence needed no initiation codon 
and the mature coding sequence was fused flush to the Kex2p 
protease cleavage site (..EKR; ). PCR products were cloned 
into pCR-Script (Stratagene) and subsequently cloned into 
the respective pPIC plasmid vector using restriction sites 
incorporated into the primer sequences (Invitrogen; Table 1). 

GNA expression constructs 

A cDNA sequence encoding LECGNA2 in pUC19, one of 
several GNA isoforms [25], was used as a template for the 
amplification of the mature GNA coding sequence (109 
residues) to yield the constmcts described below and sum­
marized in Table 1. The constmct for the expression of GNA 
using the native signal peptide sequence (GNA:GNA) con­
tained a consensus ATG initiation codon. GNA was fused to the 
a-factor preprosequence flush with the Kex2p protease 
cleavage site to yield constmct a:GNA. A second a-factor 
constmct contained two Glu-Ala repeats (EAEA) between the 
Kex2p protease cleavage site and mature GNA. 

Mature GNA fused to the PHA-E signal sequence was 
created by the megaprimer method [26] using two sequential 
polymerase chain reactions. Firstly, the PHA-E:PHA-E con­
struct (in pPICZ B) was used as a template for amplification of 
the PHA-E native leader sequence using the 5' AOXl primer 
(Invitrogen) and a C-terminal primer which introduces the first 
six residues of mature GNA (omitting the methionine initiation 
codon) immediately after the last six residues of the PHA-E 
signal peptide. The resulting PCR product was purified and 
used as a 'megaprimer' in combination with a GNA C-terminal 
primer to produce the PHA-E:GNA fusion using the LECGNA2 
cDNA sequence as a template. In all cases above, PCR products 
were cloned directly into the appropriate pPIC vector. 

Green fluorescent protein (GFP) expression constructs 

Primers used for the construction of GFP expression constmcts 
are shown in Table 1. For construct aEA:GFP (fusion of GFP 
to a-factor containing Glu-Ala repeats) a modified GFP coding 
sequence was amplified by PCR from pGFPuv (Clontech) 
introducing a Pst\ restriction site for 'in-frame-cloning' to the 
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le 2. Haemaglutination activity of rabbit erythrocytes by recombi-
t P H A - E and GNA; lowest concentrations of lectins to give 
nagglutination are given. 

in Concentration (fjug niL"') 

L Standard 0.49 
.-E:PHA-E 0.41 
l A - E 0.38 
I standard 6.3 
>̂ A 3.1 
-E:GNA 3.1 

•/PAGE are diagnostic of protein glycosylation. PHA (both 
and L-forms) contains potential endogenous N-linked 
osylation sites, and is glycosylated in planta [29]; the 
ise bands could thus reflect hyperglycosylation occurring in 
\ia. However, mature GNA is nonglycosylated, and does not 
ain any potential N-linked glycosylation sites. The diffuse 
Is in this case therefore cannot be due to glycosylation of 
mature GNA sequence. 
) resolve differences in apparent molecular mass on 
/PAGE polypeptides were deglycosylated by treatment 
N-glycosidase F. Prior to deglycosylation, affinity-purified 

^ produced by the a:GNA construct contains a major 
peptide band at a molecular mass slightly larger than 
ve' GNA, and a series of diffuse bands at higher molecular 
5 (Fig. 2, lane 3). In the deglycosylated protein, the 
ility of the major polypeptide band is unchanged (Fig. 2, 
4). However, after deglycosylation the higher molecular 

; diffuse bands resolve to a single polypeptide, of molecular 
i approximately 6 kDa greater than native GNA (Fig. 2, 
4, asterisk). The higher molecular mass diffuse bands must 
represent glycosylated GNA, and as the glycosylation 

ot be taking place on residues present within mature GNA, 
lust be occurring on incompletely processed a-factor 
jquence. In agreement with this conclusion, GNA con-
d two distinct N-terminal sequences (Fig. 4) with exten-
; of 9 and 56 amino acids corresponding to part of the 
;tor prosequence. The 56 amino acid N-terminal 

extension on the larger polypeptide contains two of the three 
potential N-glycosylation sites present in the a-factor pro-
sequence. Taken together, this demonstrates that GNA 
expressed using the a-factor preprosequence is incompletely 
processed and highly glycosylated on the partially cleaved 
a-factor prosequence. 

Analysis of the results obtained for PHA expressed from 
constructs containing the a-factor preprosequence produced 
similar results to GNA. Deglycosylation decreases the indicated 
molecular mass of 'native', glycosylated PHA (Fig. 1, lanes 1 
and 2) due to the removal of the N-linked carbohydrate side 
chains from the protein, although both before and after 
N-glycosidase treatment the native protein (E- or L-form) gives 
a single band after SDS/PAGE and Western blotting. For PHA 
expressed from the construct containing the a-factor prepro­
sequence, culture supematants contain a major polypeptide 
detected by anti-PHA antibodies at a similar molecular mass to 
glycosylated native PHA (Fig. 1, lanes 7 and 1), and a series of 
diffuse bands at higher molecular mass. A faint band at sUghtiy 
lower molecular mass is also present. N-glycosidase treatment 
of culture supematants results in three bands being observed in 
culture supematants on Westem blots (Fig. 1, lane 8). Two 
bands form a close doublet, of similar molecular mass to 
deglycosylated 'native' PHA. N-glycosidase treatment removes 
the high molecular mass diffuse bands observed in the culture 
supematant on SDS/PAGE, which resolve to a single band of 
higher indicated molecular mass (approx. 6 kDa) than deglyco­
sylated 'native' PHA (Fig. 1, lane 8, asterisk). This band is not 
observed in a:PHA samples after purification and deglyco­
sylation (compare lanes 8 and 10 of Fig. 1), showing that it 
must have come from the glycopolypeptides which produce the 
diffuse bands on SDS/PAGE, as these do not bind to the affinity 
colunm (see above). N-terminal sequencing of PHA expressed 
from the a:PHA constructs after affinity purification (i.e. 
corresponding to Fig. 1, lane 10) gave two N-terminal 
sequences, corresponding to the two closely spaced poly­
peptides observed in the deglycosylated recombinant protein. 
The lower molecular mass band of the doublet had the same 
N-terminal sequence as mature, native PHA produced in planta, 
thus showing that some correct processing had taken place. 
However, the higher molecular mass band of the doublet had a 

. G N A / G F P expression, (a) GNA 
ised in Pichia with Glu Ala repeats between 
factor preprosequence (aEA:GNA) or 
the PHA-E signal peptide (PHA-E:GNA). 
m analysis of culture supematants treated 
ith N-glycosidase F. (S) is standard native 
(b) GFP expressed in Pichia using the 
ar preprosequence with Glu-Ala repeats 
GFP) or with the PHA-E signal peptide 
E:GFP). Westem analysis of GFP in 
! supematants (S) is standard recombinant 
btained from Clontech. 

aEA:GNA PHA-E;GNA 



400 R. J. M. Raemaekers et at. {Eur. J. Biochem. 265) F E B S 1 

MRFPSIFTAVLFAASSALAlAPVBBTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSiB^NGLLF^^ : ASQISE • • « « P H A - E 

PHI 

MASSNLLSLALFLVLLTHANS:ASOTSF.. P H A - E J P H A - E 

^mFPSIFTAVLFAASSALJ^PVH•^EDEIaQImE^VIGYSDLEX3DFDVAVLPF^H^^ : DNILYS . . ajCMA 

mFPSIFTAVLFAASSALAlAPVHKTEDETAQIPAEAVIGYSDLEGDFDVAVLPF^HPWGLLFlBB^ • • OEAiONA 
cau 

MASSNLLSLALFLVLLTHANS:DNILYS. . P H A - E t(SXA 

I I I 
MRFPSIFTAVLFAASSALA;APVHBrEDETAQIPAEAVIGYSDLEGDFDVAVI .PF^HpNGLLFlHB^ • O E A j O F P 

OFl 

MASSNLLSLALFLVLLTHANS:SKSBEIt. . P H A - E tOFP 

Fig. 4. Summary of processing and N-terminal sequences of lectin and G F P constructs expressed in Pichia. Construct designations are as for Table 
colon (:) denotes the start of mature protein coding sequences. Full arrows show the sites of processing determined by N-terminal sequencing and the res 
determined are underlined. For aEA:GFP, the grey arrow denotes a minor component for which the first residue (in grey) could not be determined. Cons( 
N-Unked glycosylation sites are shown on a grey background. A dashed grey line shows the site of cleavage of the signal peptide of the Saccharomyc 
factor preprosequence. For a:PHA-E, the arrow with an asterisk (*) denotes processing by analogy with a:GNA as an N-terminal sequence was not obta 

sequence consistent with an N-terminal extension of 9 amino 
acid residues derived from the C-terminal region of the a-factor 
prosequence (Fig. 4). Thus this polypeptide (present in com­
parable amount to the correctly processed form) was incom­
pletely processed, as observed for the equivalent GNA constmct 
described above. By analogy with the results obtained for GNA 
(see above) the highly glycosylated forms of PHA most 
probably contain the 56 amino acid N-terminal extension 
derived from the a-factor prosequence. In contrast to GNA, this 
incompletely processed form does not bind to carbohydrates. 

Processing of proteins expressed from constructs containing 
a modified a-factor preprosequence containing Glu-Ala 
repeats 

As the goal of this work was to produce functional, correctly 
processed, recombinant lectins, a second GNA constmct with 
the addition of Glu-Ala repeats between the a-factor prepro­
sequence and the GNA mature N-terminus (aEA:GNA; Fig. 4) 
was prepared. The Glu-Ala repeats have been used to enhance 
the processing of secreted proteins when the a-factor 
prosequence is used, improving the efficiency of cleavage by 
the Kex2p protease; the Glu-Ala repeats are then cleaved by the 
Stel3p protease [21,30]. This constmct produced functional 
GNA in the culture supernatant, which on examination by 
SDS/PAGE and Westem blotting, proved to contain a homo­
geneous polypeptide of molecular mass slightly larger than 
'native' GNA (Fig. 3a, lanes 1 and 5). No evidence for the 
presence of GNA polypeptides with large N-terminal exten­
sions was observed, nor was the protein glycosylated as judged 
by the lack of a shift in mobility after N-glycosidase F 
treatment (Fig. 3a, lanes 1 and 2). However, although the 
inclusion of the Glu-Ala repeats clearly improved processing 
of the a-factor preprosequence, the protein still contained a 

four amino acid residue extension, E A E A , to the co 
GNA N-terminus, showing that processing of the Glu 
repeats themselves was inefficient. 

Similar results were obtained with a constmct in whicl 
a-factor preprosequence plus Glu-Ala repeats was fused t( 
GFP coding sequence (aEA:GFP). Expression in Pi 
resulted in the production of functional protein, which 
secreted into the culture supernatant. Analysis of the seci 
protein by SDS/PAGE and Westem blotting showed th 
contained several polypeptides, showing a slight size he 
geneity (Fig. 3b, lane 1). In agreement with the results o; 
electrophoresis, the protein had a heterogenous N-tera 
sequence. The sequence data were consistent with most o 
polypeptides containing either a 4 or 6 amino acid N-tem 
extension ( E A A A or E A E A A A , respectively), although a n 
fraction of the protein did show evidence of correct proce; 
(Fig. 4). Thus, although the use of a modified a-f; 
preprosequence including the Glu-Ala repeats can imp 
processing efficiency in Pichia, we conclude that in the ca 
the proteins studied here the Saccharomyces a-factor pn 
sequence is not optimal for obtaining correctly proce 
protein. 

The PHA signal peptide sequence can be used to produ 
correctly processed heterologous proteins 

As PHA could be successfully expressed in Pichia 
constmcts containing the protein's 'native' signal pe 
sequence, the processing of the protein was examine 
more detail (Fig. la). PHA expressed from constmcts 
taining the native signal peptide (both E - and L-forms) gav( 
major band and one minor band on SDS/PAGE both be 
and after affinity purification; the major band was 
similar molecular mass to native PHA (compare lanes 
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5 of Fig. la). When the recombinant protein was treated 
I N-glycosidase F, the two bands were resolved to a single 
ycosylated polypeptide which migrated at a rate equivalent 
leglycosylated native PHA (compare lanes 2, 4 and 6 of 
la). Finally, the N-terminal sequence of affinity purified 

imbinant PHA (both E- and L-forms) was determined. A 
le, homogeneous N-terminal sequence was present, which 
esponded exactly to the N-terminal sequence of mature 
/e PHA as purified from plant sources (Fig. 4). The PHA 
jrms expressed in Pichia from constmcts containing the 
ve' signal peptides are thus correctiy processed. 
HA expressed from the constmcts containing the native 
al peptides did not contain diffuse bands at a high 
jcular mass on SDS/PAGE, although the protein was 
osylated. In this case, the glycosylation that took place in 
ia resulted in carbohydrate side chains comparable in size 
lose observed when the protein is synthesized in planta. 
ever, the composition of the carbohydrate side chains on 
I synthesized in Pichia is is likely to differ from that of 
'e PHA, due to differences in the respective glycosylation 
;ms [20]. PHA synthesized in Pichia contains a-1,3 or 1,6 
!d mannose residues, as GNA (specific for mannose 
ues) binds to recombinant PHA (result not shown), 
le correct processing of PHA expressed from constmcts 
lining the complete preprotein suggested that this signal 
ence might be useful for expression of secreted proteins in 
ia. In the absence of a readily available altemative, we 
d i f the PHA signal peptide could be used to (a) obtain 
;ctiy processed GNA and (b) direct the secretion and 
;ct processing of an unrelated protein, in this case GFP. 
corresponding expression constmcts were (a) PHA (E-
) signal peptide fused to mature coding sequences of GNA 
^-E:GNA) and (b) PHA-E signal peptide fused to GFP 
^-E:GNA) (Table 1/Fig. 4). 

:pression of the PHA-E.GNA construct in Pichia resulted 
e presence of soluble nonglycosylated protein, reactive 
anti-GNA antibodies, in the culture supematant (Fig. 3a, 
3 and 4). This contrasts with attempts to express GNA 
constmcts containing the native GNA signal peptide, 

e no expression could be detected. GNA produced from 
HA-E:GNA construct was functional, as shown by affinity 
Lcation through binding to a mannan-agarose column, and 
lemagglutination assays using a purified protein (Table 2). 
3urified recombinant GNA contained a single N-terminal 
;nce, identical to the N-terminal sequence of native GNA 
4), showing correct processing of the signal peptide, 
nilar results were obtained with the PHA-E:GFP con-
:, where soluble functional GFP accumulated in the culture 
natant. The culture supematant, after concentration by 
iltration, was fluorescent (with no fluorescence observed 
control supematant), and analysis by SDS/PAGE and 
;m blotting with anti-GFP antibodies showed a single 
leptide migrating at a rate equivalent to a GFP standard 
3b, lane 2). The GFP protein band was blotted and the 
minal sequence corresponded to the N-terminal sequence 
iture GFP (Fig. 4), again demonstrating correct processing 
1 heterologous signal peptide. These results demonstrate 
tie PHA-E signal peptide is correctly processed from two 
)logous proteins which are directed to a secretory 
'ay. 

C U S S I O N 

ir knowledge, this is the first description of the use of 
2 pastoris to produce secreted, functional plant lectins 

which can be easily purifed from culture supematants by one-
step affinity chromatography. However, there are particular 
problems in expressing a mannose-specific lectin like GNA in 
Pichia pastoris, due to the presence of high-mannose 
carbohydrates on the surface of the cells, and secreted in the 
medium. As is suggested by the gel blot shown in Fig. 2, 
significant amounts of GNA may be present as complexes with 
soluble carbohydrates in the culture supematants. These 
complexes give rise to the intense smear at, and near, the 
origin on SDS/PAGE gels, due to incomplete denaturation, 
and are not retained on mannan-agarose affinity columns. 
GNA-carbohydrate complexes can be precipitated from the 
culture"medium by increasing the pH, but the protein cannot be 
recovered from the precipitate without denaturation (result 
not presented). Thus, although GNA can be purified from 
culture supematants, further research will be necessary to 
optimize the recovery of active GNA from Pichia. Interest­
ingly, a:GNA species containing most of the prosequence 
were present in the protein after affinity purification on the 
mannan-agarose column, showing that GNA was still 
functional even with a highly glycosylated N-terminal 
extension. In contrast, PHA molecules containing the 
glycosylated N-terminal extension derived from the a-factor 
prosequence were not retained on an affinity column. This 
may be due to the carbohydrate side chains interfering with 
the sugar-binding site in PHA, or altering the stmcture of the 
molecule to abohsh its activity, or blocking access to the 
binding site. 

N-linked oligosaccharide side chains produced on glyco­
proteins expressed in Pichia have been shown to be mainly of 
the 'high-mannose' type, where a core stmcture of NAcglu-
(man)2 is modified by the addition of (mannose),, branches to 
the terminal mannose residue. However, the vast majority of 
these oligosaccharides in Pichia contain 8-14 mannose 
residues, and thus would be expected to increase the molecular 
mass of a glycoprotein by approximately 2 kDa [20]. The 
decrease in molecular mass observed when PHA expressed in 
Pichia from the PHA-E:PHA-E constmct is deglycosylated is 
consistent with the molecule containing 1 or 2 carbohydrate 
side chains of this type, and we have observed that GNA binds 
strongly to PHA expressed in Pichia (result not shown). The 
mature PHA-E sequence contains three potential N-linked 
glycosylation sites, although only two of these are utilized in 
planta [29]. The glycosylation that is present on both PHA 
and GNA expressed in Pichia from constmcts containing the 
a-factor preprosequence (a:PHA-E and a:GNA) is different 
in nature, and appears to involve long carbohydrate side chains 
resulting from glycosylation on the uncleaved a-factor 
prosequence. This is likely to be a result of inefficient 
processing which has previously been shown to result in the 
secretion of hyperglycosylated unprocessed proteins in 
Saccharomyces ([31] and references therein). 

While the yield of lectins obtained from Pichia cultures in 
the present work were fairly low, no attempt was made to 
optimize yields by selection of clones with multiple inserts 
[32], or to optimize culture conditions. Consequendy, the 
potential yields of recombinant lectins produced in Pichia are 
likely to be at least an order of magnitude greater than those 
reported here as, after optimization, yields of > 1 g L~^ for 
HIV-1 gpl20 [33] and > 10 g L ~ ' for a tetanus toxin fragment 
[32] have been reported. 

Many heterologous signal peptides do not function in yeast, 
either to direct protein secretion or to generate the 'natural' 
N-terminus of the protein (reviewed in [34]). Early reports (e.g. 
[35]). demonstrated the secretion and correct processing of 
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proteins when fused to the a-factor preprosequence. As a 
consequence, the a-factor preprosequence has been widely 
used in the synthesis of recombinant proteins in Saccharomyces 
and in Pichia, where, as with Saccharomyces, it has been shown 
to direct secretion and correct N-terminal processing in a 
number of examples [21]. Processing of the a-factor prepro­
sequence in Saccharomyces involves several distinct proteolytic 
cleavage steps, carried out by different enzymes. The 19 amino 
acid signal peptide (presequence) is removed by a signal 
peptidase system; further processing of the prosequence then 
involves the action of an endopeptidase encoded by the KEX2 
gene, which cleaves C-terminally to a specific Lys-Arg 
sequence, and a dipeptidyl aminopeptidase encoded by the 
STE13 gene, which removes N-terminal Glu-Ala repeats [30]. 
The presence of the Glu-Ala repeats enhances the activity of the 
Kex2 protease, but subsequent processing of these repeats by 
the Stel3 aminopeptidase has been found to be inefficient in 
many cases [34]. 

The correct processing of the a-factor preprosequence is very 
much case-dependent and numerous examples have been 
reported in both Saccharomyces and Pichia where proteins 
have failed to give correct processing to yield the mature 
N-terminus [21]. In Pichia, the propeptide is not removed from 
protein disulphide isomerase and remains, hyperglycosylated, 
on a proportion of recombinant protein [36]; the pro-peptide is 
only partially processed from human procarboxypeptidase A2, 
resulting in heterogeneity [37]; expression of influenza 
neuraminidase (in Saccharomyces), or the b subunit of bovine 
follicle-stimulating hormone, gave products where the Glu-Ala 
repeats were not removed [38,39]. The results obtained in the 
present paper agree with and extend these previous obser­
vations. Both PHA and GNA show inefficient processing by the 
Pichia equivalent of the Kex2 protease. Addition of Glu-Ala 
repeats to the a:GNA construct resulted in efficient cleavage by 
this enzyme but the products of both the aEA:GNA and 
aEA:GFP constmcts are inefficiently processed by the Pichia 
equivalent of the Stel3 aminopeptidase, resulting in proteins 
with N-terminal extensions. 

Given the problems sometimes associated with the a-factor 
preprosequence, efforts have been made to develop alternative 
signal peptides for use in Pichia [21]; for example, the Pichia 
acid phosphatase PHOl signal peptide. This signal peptide 
fused to mature protein sequences can lead to secretion of 
either correctly processed protein [40], or protein containing 
N-terminal heterogeneity [41], again showing case-dependency. 
A hybrid PHOl signal peptide, containing a Kex2p cleavage 
site to improve processing efficiency, has also been used [42]. 
Some preproteins expressed in Pichia produce secreted and 
correctly processed protein [21,43,44], but it is not known if the 
corresponding signal peptides can confer correct processing on 
heterologous proteins. This paper describes such an analysis 
and demonstrates the secretion and correct N-terminal pro­
cessing of two unrelated proteins (GNA and GFP) using the 
PHA-E signal peptide. This is unexpected in view of the failure 
of this signal peptide to function correctly in Saccharomyces 
[16], whether this reflects a difference in signal peptide 
recognition between Saccharomyces and Pichia or some other 
factor(s) remains to be determined. The amount of protein 
accumulating in the culture supernatant appears to be slightly 
less with constructs using the PHA-E signal peptide compared 
to equivalent constructs using the a-factor preprosequence 
(unpublished observations). Notwithstanding, these results 
suggest the PHA-E signal peptide could be used for proteins 
where secretion and processing using other signal peptides has 
proven problematic. 
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