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Abstract 

Synaptic inhibition in the vertebrate central nervous system is largely 

mediated by type A G A B A receptors ( G A B A A R ) . The clustering of G A B A A R 

at discrete and functionally significant domains on the nerve cell surface is an 

important determinant in the integration of synaptic inputs. To discern the role 

that specific G A B A A R subunits play in determining the receptor's cell surface 

topography and mobility, recombinant G A B A A R s , comprising different 

G A B A A R subunit combinations, were transiently expressed in C O S 7 , H E K 2 9 3 

and PC 12 cells. In addition, a series of domain swapping experiments were 

performed in order to elucidate which regions of the protein are important in 

mobility/anchoring of receptors. The cellular localization and lateral mobility 

of the recombinantly expressed G A B A A R S were determined by 

immunocytochemistry and Fluorescence Photobleach Recovery (FPR), 

respectively. 

The results presented in this thesis show that G A B A A R otl subunits are 

recruited by the (33 subunits from an internally sequestered pool and assembled 

into a population of G A B A A R S that are spatially segregated into clusters and 

also immobilised on the cell surface. FPR experiments on recombinant 

G A B A A R containing a l - a 6 subunits expressed in C O S 7 cells showed 

restricted mobilities consistent with mobility constants determined for native 

G A B A A R S expressed on cerebellar granule cells. Furthermore, the intracellular 

loop domain M 3 / M 4 of the a l subunits was found to be required for anchoring 

recombinantly expressed G A B A A R S in COS 7 and cerebellar granule cells in 

culture, but not for G A B A A R clustering at the cell surface. 
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Chapter 1 Introduction 

Chapter one 

Introduction 

1.1. GABA receptors 

The mammalian central nervous system (CNS) is a highly complex integrative 

centre, processing a vast number of positive and negative inputs. Proper 

functioning o f the brain depends on a delicate interplay between excitatory and 

inhibitory neurotransmission between neurons. The major inhibitory 

neurotransmitter in the vertebrate brain is gamma-aminobutyric acid (GABA) . 

G A B A was originally identified as the principal agent in brain extracts capable 

o f inhibiting crayfish stretch-receptor neurons, an effect mediated by an increase 

in the membrane permeability to CI". This was followed by studies into the 

inhibitory role o f this amino acid in Crustacea, in vertebrate, and finally in the 

mammalian CNS, where it may function at up to 40% o f the synapses in brain, 

(for review see Bennett and Balcar, 1999). 

G A B A mediates its inhibitory effect through its interaction with a variety o f 

receptors in all areas o f the central nervous system. Two major types o f G A B A 

receptors have been well described: Type A G A B A receptor ( G A B A A R ) and type 

B G A B A receptor ( G A B A B R , H i l l and Bowery, 1981). These receptors are quite 

different, not only from a pharmacological point o f view but also structurally and 

functionally. 

G A B A A R S are bicuculline-sensitive, ligand-gated CI* channels. Following the 

binding o f G A B A to the G A B A A R , a conformational change results in the 

opening o f an intrinsic CI ' pore which, in most cases, results in the 

hyperpolarisation o f the recipient neuronal cell leading to stabilisation o f the 
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resting membrane potential (Olsen and Venter, 1986; Stephenson, 1988; Farrant 

etai, 1990). 

G A B A B R S bind baclofen, are bicuculline-insensitive (Sivilotti and Nistri , 

1988), and their mode o f action is metabotropic. G A B A B R S mediate their effects 

through potassium and calcium channels via a guanine-nucleotide-binding (G) 

protein (Bowery, 1993). Both G A B A A R and G A B A B R have inhibitory roles in 

the CNS, although the activation o f G A B A A R induces fast inhibitory 

postsynaptic potentials (IPSP) in contrast wi th the slow EPSP induced by 

G A B A B R activation (Nakayasu et al., 1995). 

In addition, a third type o f G A B A receptor, which are exclusively composed o f 

p( l -3) subunits, has recently been identified in retina, type C G A B A receptor 

( G A B A C R , Lukasiewicz, 1994). GABAcRs are also ligand-gated CI" channels, 

however, there are differences in the pharmacological characteristics o f G A B A A R 

and GABAcR that allow them to be discriminated in a separate type o f G A B A 

receptor (Johnston, 1986), although discrepancies have emerged (discussed in 

Barnard et al., 1998). GABAcRs are not sensitive to bicuculline blockade and not 

modulated by barbiturates, benzodiazepines or neuroactive steroids. These 

receptors are activated at lower concentrations o f G A B A and their mean channel 

open times in response to G A B A are greater (Johnston, 1996; Chembini and 

Strata, 1997). 

The studies carried out in this thesis have focussed on G A B A A R . 

- 2 -
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1.2. GABAARpharmacology 

The G A B A A R is important not only because o f its fundamental role in the 

regulation o f brain excitability but also by the fact that its function is 

allosterically regulated by pharmaceutically significant drugs (Turner and 

Whittle, 1983; Olsen, 1987). The G A B A A R response is positively modulated by 

benzodiazepine agonists such as flunitrazepam and clonazepam (anxiolytics) or 

negatively modulated by inverse agonists, such as the P-carboline, methyl-4-

ethyl-6,7-dimethoxy-p-carboline-3-carboxylate (anxiogenic). G A B A A R s also 

have binding sites for a variety o f other clinically important substances, including 

barbiturates (anti-convulsant), certain neuroactive steroids, in either a positive or 

a negative manner (Majewska et al., 1986, 1990) and picrotoxin (convulsant 

agents). Although both barbiturates and benzodiazepine agonists potentiate the 

effect o f G A B A , they do so by different mechanisms. Barbiturates prolong the 

mean open time o f the channel while benzodiazepine agonists increase the 

frequency o f channel opening (McDonald and Olsen, 1994). 

These mentioned compounds, in most cases, do not interact directly with the 

G A B A binding site but exert their action by binding to allosterically-coupled 

sites on the G A B A A receptors. Thus, binding o f these agents induce 

conformational changes in the G A B A A receptor that may influence its binding 

properties and modulate G A B A - i n d u c e d chloride ion flux (Sieghart, 1992). 

G A B A A R S are believed to have at least five different binding sites: the G A B A , 

the picrotoxin/convulsant, the benzodiazepine, the barbiturate and the steroid 

binding sites. From binding studies using specific radioligands only three o f these 

different binding sites have been fu l ly characterized, the picrotoxin/convulsant 

site (Ticku et al., 1978; Squires et al., 1983), the benzodiazepine site (Squires and 
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Braestrup, 1977) and the G A B A binding site (Zukin et al, 1974). However, all 

the other compounds that interact wi th G A B A A R S are either not available as 

radioligands or their potency for modulating G A B A A R S is too low to allow direct 

binding studies. Thus, their site(s) o f action has been investigated by studying 

their interaction with the three well-characterized binding sites on G A B A A R S 

previously described. 

A schematic model o f a mammalian G A B A A R showing the chloride channel 

and the five proposed distinct functional binding domains for various ligands and 

modulators that act on the receptor complex is shown in Figure 1.1. 

GABA A Receptor 

/ 
BARBITURATE atto 

Exc&tntt? 

BENZODIAZEPINE tt» 

I T O M 4001 

STEROtDty 
nfa 111» ft J ' • 

PfCROTOMMNi 

Oton$urttf 

Figure 1.1. Structural model of the GABA ^benzodiazepine receptor-chloride ionophore 

complex. The cut-away view demonstrates targets for a variety of compounds that influence the 

receptor complex. (From: DeLorey and Olsen, 1994) 
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1.2.1. The GABA binding site. 

G A B A , by binding to G A B A A R S , opens channels that are selectively 

permeable to CI". Depending on the prevailing electrochemical membrane 

potential for CI", the effect o f G A B A can be excitatory or inhibitory. In 

developing, immature neurons, activation o f G A B A A R results in an efflux o f CI" 

that causes a membrane depolarisation (Cherubini et ah, 1 9 9 1 ) . In terminally 

differentiated neurons, the CI" electrochemical membrane potential is such that 

fol lowing G A B A A R s activation CI" flows into the cell and induces a slight 

hyperpolarisation o f the membrane and a reduced neuronal excitability o f the 

cells. 

The affini ty o f G A B A to G A B A A R S is very low, micromolar concentrations o f 

G A B A being required to activate the chloride ion channel in electrophysiological 

experiments (Segal and Barker, 1 9 8 4 ) . I t has been suggested f rom 

electrophysiological experiments that at least two molecules o f G A B A must bind 

to the receptor to induce f u l l activation o f channel activity (Sakmann et al., 

1 9 8 3 ) . Sieghart ( 1 9 9 5 ) discuss the apparent existence o f several distinct G A B A 

binding sites on a single G A B A A R . This sites show high, low and very low 

affinity for G A B A and its agonist.. Up to five G A B A binding sites might be 

present on a single G A B A A R . These binding sites in the unoccupied state might 

have a similar high affini ty for G A B A agonist. On increasing occupation these 

sites wi th G A B A , the affini ty o f the remaining unoccupied sites might 

allosterically become reduced. The high and possibly the low aff ini ty G A B A sites 

probably are constantly occupied under the physiological G A B A concentration 

present in the synaptic cleft. Occupation o f these sites does not cause an opening 

of the chloride channels. Thus, the existence of the remaining binding site with 

- 5 -
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very low aff ini ty ensures that GABA-activated chloride channels can only be 

opened under conditions o f synaptic transmission where a large amount o f 

G A B A is released into the synaptic cleft. 

1.2.2. The benzodiazepine binding site 

Benzodiazepines, such as diazepam or flunitrazepam, enhance GABAergic 

function by increasing the frequency o f CI ' channel opening wi th little effect on 

the channel open time or G A B A A R affinity (Edgar and Schwartz, 1992). 

Benzodiazepines, however, are not able to open directly the G A B A A R chloride 

channel in the absence o f G A B A (Study and Barker, 1981). 

1.2.3. The picrotoxin/convulsant binding site 

Picrotoxin and cage convulsants are allosteric inhibitors o f G A B A A R activity 

by directly binding to the G A B A A R chloride pore and hence, blockade o f the 

channel (Inoue and Akaike, 1988). These substances do not displace 

benzodiazepines f rom their high affini ty binding sites (Olsen, 1982), but 

allosterically modulate benzodiazepine receptor binding (Karobath et al., 1981). 

1.2.4. Barbiturate interaction with GABAAR 

Barbiturates can exert two different effects on G A B A A R that are differentially 

dose dependent. Electrophysiological studies revealed that these substances 

enhance the actions o f G A B A by increasing the mean channel open duration and 

not altering receptor conductance or opening frequency (Study and Barker, 1981). 

At higher concentrations (>50uM) barbiturates are able to open directly the 

G A B A A R chloride channel in the absence o f G A B A (Bormann, 1988). 

- 6 -
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1.2.5 Steroids interaction with GABAAR 

Several steroids, at low concentrations (30 to 300 nM) , enhance G A B A -

stimulated chloride conductance (Majewska, 1992; Kokate et al., 1994) and at 

higher concentrations ( l u M ) produce a direct opening o f the CI" channel that is 

inhibited by the G A B A A R antagonist bicuculline (Majewska, 1992). 

1.3. GABAAR gene diversity 

Since the initial cloning in 1987 of cDNAs encoding two different subunits o f 

the G A B A A R from bovine brain (Schofield et al., 1987), the molecular biology o f 

this receptor has become increasingly complex. The ligand-gated ion channel is 

proposed to be an hetero-oligomer composed o f five subunits (Nayeem et al., 

1994). G A B A A R subunits are classified, with respect to their amino acid 

sequence homology and designated as a, P, y , 5, 8, and n (Whiting et al., 1997; 

reviewed in Mehta and Ticku, 1999). Recently, a novel G A B A A R subunit, named 

as 0 , has been found in rat brain (Chadha et al., 1999). The a, p, and y subunits 

contain multiple members or isoforms that arise f rom separate genes that have 

diversified f rom an evolutionary origin, so that there are, c d - a 6 , P1-P3 and 

y l - y 3 (reviewed in McDonald and Olsen, 1994 and Mehta and Ticku, 1999). The 

existence o f this wide range o f subunits and subunit variants implies a vast 

diversity o f potential G A B A A R subtypes. Further heterogeneity is introduced by 

the existence of alternative splice variants for mammalian G A B A A R a6, P2 and 

y2 subunit genes (McKernan and Whiting, 1996). The y2 subunit, for instance 

exists in two forms, y2 short (y2s) and y2 long (y21). The latter contains an extra 8 

amino acids in its intracellular loop domain (Whiting et al., 1990; K o f u j i et al., 

- 7 -
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1 9 9 1 ; Glencorse et al., 1 9 9 2 ) , which has been shown to be a target for protein 

kinase C-mediated phosphorylation and for reported differences in receptor 

pharmacology (Whiting et at., 1 9 9 0 ; Wafford et al., 1 9 9 1 ) . 

Figure 1.2. illustrates the six different G A B A A R subunits and their relationship in 

terms o f amino acid sequence homology. 

a l 
a Z 
a3 
a5 

a4 
a6 

y l 
yZs 
y21i 
Y3 
s 
pi 
02s 
P21 
p3 
P4 
5 

Figure 1.2. The human GABAA receptor polypeptide family. The dendrogram to the left of the 

figure indicates the homologies between the deduced amino acid sequences! of each subunit; the 

length of the line separating the subunits represents the distance between their sequences. y2 s /y2 L 

and P2<j/p2i. are the alternative splice isoforms of these subunits. (Modified from: McKernan and 

Whiting, 1996, and Barnard et al., 1998). 



Chapter I Introduction 

1.4. Structural model of GABAAR 

G A B A A R is proposed to be a heteropentameric glycoprotein o f about 275 kDa, 

composed o f combinations o f multiple subunits, polypeptides o f about 50 kDa. 

(Figure 1.3.). The subunits form a quasi-symmetric structure around the ion 

channel. Each G A B A A R subunit is predicted to have four hydrophobic 

membrane-spanning domains, designated M1-M4. These putative hydrophobic 

domains are predicted to span the membrane and form the integral chloride ion 

channel. I t is postulated that the M 2 domain contributes to the inner wall o f the 

channel (Schofield et al., 1987, DeLorey and Olsen, 1992). The N-terminal, 

hydrophilic domain, o f each subunit protein is predicted to be located 

extracellulary. This region contains several potential sites for N-linked 

glycosylation, thus, in vivo carbohydrate attachment would account for the 

differences between the observed and predicted molecular weights o f the natural 

and cDNA-deduced G A B A A R subunit masses, respectively (Schofield et al., 

1987). A sequence of 15 amino acids, highly conserved across all the members o f 

the ligand-gated ion channel superfamily receptor, is found in this N-terminal 

region. This sequence is predicted to form a Cys-Cys P loop. The C-terminal end 

o f the protein follows the M 4 domain and, as with the N-terminus, is thought to 

be extracellular. 

The transmembrane-spanning domains (M1-M4) and defined regions within 

the N-terminus are highly conserved among different subunit types. In contrast, 

sequence identity is poorly conserved in the cytoplasmic loop region, which 

connects M3 and M4. This domain, designated the M3/M4 cytoplasmic loop, is 

hydrophilic and contains consensus sequences for phosphorylation by various 

kinases. Figure 1.3. represents the predicted structural model o f the G A B A A R . 
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Figure 1.3. Model of the structure of the GABAAR. Each subunit has four membrane-spanning 

domains (cylinders numbered 1-4). Taken from DeLorey and Olsen, 1992. 
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1.5. GABAAR heterogeneity 

The variety o f genes discovered to encode the different subunits and subunit 

isoforms o f the G A B A A R and the assumption o f a pentameric stoichiometry 

(Nayeem et al., 1994), imply a tremendous heterogeneity o f G A B A A R subunit 

composition. Permutation analysis predicted that there were 151887 possible 

different receptor combinations (Burt and Kamatchi, 1991), new subunits have 

been discovered since then enhancing this number. This theoretical heterogeneity 

of G A B A A R s has not been experimentally observed, in fact only a restricted 

number o f G A B A A R s have been shown to be functionally expressed (reviewed in 

Barnard et al., 1998). This raises the question as to why there is such a structural 

diversity o f G A B A A R subunits and why this exceeds the currently known 

functional diversity o f GABA-mediated currents in neurons. Furthermore, why 

has such G A B A A R structural diversity been created and maintained during 

evolution? 

It is conceivable that G A B A A R heterogeneity has evolved so as to meet the 

specific requirements o f distinct neuronal cells. Evidence has emerged that the 

expression o f different G A B A A R genes differ in distinct areas o f the CNS 

(Levitan et al., 1988; Wisden et al., 1992), during development (Kill isch et al., 

1991; Laurie et al., 1992) and within individual neurons (Meinecke et al., 1989). 

1.6. Stoichiometry of GABAAR 

Immunoaffinity purification and immunoblotting approaches have been used to 

identify which o f the subunits co-assemble to form native receptors, however 

different groups have obtained contradictory results. A n example of these 

discrepancies are the arguments both in favour and against whether more than 
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one different a subunit can exist within the same receptor complex. Duggan et al. 

(1991) showed, by western blotting o f immimoaffinity-purified G A B A A R S f rom 

detergent-solubilised bovine cerebral cortex, that subpopulations o f G A B A A R S 

contained both al:ot2, a2:a3 and a l : a 3 subunits in the same receptor complex. 

McKernan et al. (1991), also reported that a subpopulation o f rat G A B A A R S 

contained both a l and a3 subunits. Immunoprecipitation studies on detergent-

solubilised rat cerebellar G A B A A R S showed that in a subpopulation o f receptors, 

both a l and a6 subunits coexist within the same G A B A A R complex (Pollard et 

al., 1995; Khan et al., 1996 and Jechlinger et al., 1998). However, Quirk et al. 

(1994) reported that the a6 subunit was not co-assembled with any other a 

subunit. In addition, double-immunolabelling o f clustered receptors expressed on 

the surface o f cultured cerebellar granule cells suggested that a l and a6 subunits 

do not co-localise in the same receptor complex (Caruncho et ah, 1993). A 

similar discrepancy has arisen regarding the y subunit. Quirk et al. (1994), have 

reported the co-purification, f rom rat brain, o f G A B A A R s that contain both y2 and 

y3 subunits. Togel et al. (1994), however, found no evidence for association o f y2 

with y3 subunits. 

These contrasting results obtained f rom different laboratories may be explained 

by the sensitivity o f detection o f the antibodies used. Although the conclusions 

are confusing most o f the G A B A A R S appear to contain at least one a, one p and 

either one y or one 5 subunit, but receptor stoichiometry has not been 

unambiguously established. Comparisons o f conductances o f wild-type and 

mutated cloned receptors predicted a polypeptide stoichiometry o f ( a l )2 (p i ) (y2)2 

as more likely than others (Backus et al., 1993), in agreement wi th the data o f 
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Khan et al. (1994), that predicted receptors with two a, one P and two y. 

Although, once again conflicting data have emerged with reports f rom several 

laboratories predicting that the majority o f receptors have a subunit stoichiometry 

of (a) 2(p) 2(Y2)i (Chang et al., 1996; Tretter et al., 1997). Thus, perhaps native 

G A B A A R do not have an unique subunit stoichiometry. Rather, subunit assembly 

may be characteristic o f individual neuronal cells, and may be governed by the 

specific demands made upon that neuron to produce an appropriate inhibitory 

response to external or internal stimuli. 

/ . 7. Brain distribution of GABAARs 

G A B A A R S are widely distributed throughout the CNS. By in-situ hybridisation 

studies, several groups have attempted to elucidate the localisation o f the 

different G A B A A R subunit mRNAs through out the brain. These studies have 

revealed a pattern o f expression o f G A B A A R mRNAs in the adult brain that are 

summarised in Table 1.1. (taken f rom Darlinson and Albrecht, 1995). The highest 

levels o f G A B A A R mRNAs found in the brain encode a l , a2, a3, P2, P3 and y2 

subunits, a l being the most abundant and wide distributed. Since the presence of 

a mRNA transcript within a cell is not proof that a translated product is actually 

expressed, a fundamental question that remains to be answered is what is the 

subtype composition that actually exists in neurons. 

- 1 3 -



Chapter 1 Introduction 

Table 1.1. Some mammalian GABAAR subunit associations and their locations 

(Taken from Darlinson and Albrecht, 1995) 

Subunits Prominent brain region 
al andy2 Cerebral cortex and cerebellum 
a3 and y2 Cerebral cortex and brainstem 
a l and P3 Cerebral cortex 
a2 and P3 Cerebral cortex, amygdala and hypothalamus 
a3 and 03 Cerebral cortex 
a2 and yl Cerebellum (Bergmann glia) 
a4 and 8 Forebrain and certain thalamic nuclei 
a5 and pi Hippocampus 
a6 and y2 Cerebellum 
a6 and 5 Cerebellum 
a l , pi and y2 Olfactory bulb (mitral cells), hippocampus and dentate gyrus 
al,p2 and y2 Olfactory bulb (mitral cells) and cerebellum 
al,p2/p3 andy2 Olfactory bulb (mitral cells), forebrain, brainstem and cerebellum 
a2,p3 and y2 Spinal cord (motor neurons) 
a3, P2/P3 and y2 Olfactory bulb (granule cells) 

1.8. Why GABAAR heterogeneity? 

The existence of different subunit isoforms that have unique but overlapping 

distributions throughout the mammalian brain, may endow a diversity o f 

physiological properties. From recombinant studies it has been shown that there 

are slight functional differences between receptors containing distinct subunit 

isoforms (Verdoorn et al., 1990). Levitan and co-workers suggested differences 

in receptor sensitivity to G A B A depending on the a subunit included in the 

recombinant receptor when expressed in Xenopus oocytes (Levitan et al., 1988a, 

1988b). In addition, on the basis o f receptor binding and electrophysiological 

studies, it has been suggested that recombinant G A B A A R S o f defined subunit 

composition have differential sensitivity to allosteric modulation by endogenous 

molecules found in the brain which include neurosteroids (Puia et al., 1990), and 

Z n 2 + (Draguhn et al., 1990). 

From the pharmacological point o f view, differential expression o f the receptor 

subunit genes generates a great diversity o f G A B A A R responses to some 
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psychoactive drugs. While G A B A , bicuculline, and barbiturates act on receptors 

formed f rom only a or P subunits (Pritchett et al., 1988; Levitan et al., 1988b), 

the co-expression o f these subunits with the y subunit is required for the positive 

or negative allosteric modulation o f GABA-evoked CI" currents through the 

GABAA/benzodiazepine receptor (Pritchett et al., 1989a). Furthermore, the type 

of a or y subunit expressed imparts distinct benzodiazepine pharmacology on the 

receptors o f which they are a part (Pritchett et al., 1989a, 1989b; Pritchett and 

Seeburg, 1990; Herb etal, 1992). 

In addition to physiological and pharmacological differences, the composition 

of the receptor might determine its distribution and maintenance on the nerve cell 

surface. In the CNS G A B A A R s are distributed on cell bodies, dendrites, and in 

some cells at axon hillocks, at both synaptic and extrasynaptic sites (Somogyi et 

al., 1989; Baude et al., 1993; Craig et al., 1993, Nusser et al., 1996). The 

segregation o f G A B A A R to strategic locations on the nerve cell surface is an 

important determinant in the integration o f synaptic inputs (Vu and Krasne, 

1992). Therefore, knowledge o f the precise localisation o f G A B A A R at the 

cellular and subcellular level may provide insight into inhibitory mechanisms, 

drug, and perhaps disease states involving GABAergic pathways in the CNS. 

Numerous studies have centred on localising the sites on cells and processes at 

which these receptors occur with the aid o f autoradiographic techniques in which 

radiolabeled molecules such as G A B A , benzodiazepines, and others wi th high 

aff ini ty for the G A B A A R are used as markers (Kuhar et al., 1986). While 

autoradiographic techniques have proved highly useful for the analysis o f 

regional distributions o f GABA A Rs , the cellular and subcellular localisation o f 

the receptors demand higher resolution techniques. The post-synaptic localisation 
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o f G A B A A R has been confirmed using subunit-specific antibodies (Baude et al., 

1992). In addition, extra-synaptic labelling has also been detected using 

monoclonal antibodies which are specific for antigenic sites on both the a (bd24) 

and p (bdl7) subunits (Baude et al., 1992; Nusser et al., 1995). 

Previous studies employing fluorescently labelled GABA/benzodiazepine 

receptors on cultured neurons have shown that while G A B A A R S are localised in 

clusters o f high density on the cell body and in patches on dendrites, more than 

85% o f the G A B A A R on processes and 70% on cell bodies are immobile 

(Velazquez et al., 1989). The results suggest that even in the absence o f synaptic 

contact, there are specific mechanisms that segregate and immobilise 

GABA/benzodiazepine receptors on the cell body and dendrites. 

The relation between G A B A A R subunit composition and the lateral mobility o f 

the complex on the membrane has not yet been determined. Receptors containing 

different subunit complements may have different rates o f motion. This property 

would provide a neuron with a new type o f synaptic plasticity, that is, the ability 

to route specific complexes to different neuronal domains according to their 

subunit composition. 

1.9. Plasma membrane dynamics 

Plasma membrane proteins are not totally free to drif t randomly on the " l ip id 

sea" were they are embedded, but instead are subjected to restraining influences 

that restricts their mobility. Three non excluded models have been proposed for 

the transient confinement o f membrane proteins (reviewed in Sheets et al., 1995), 

briefly: 
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a) The membrane-skeleton fence model 

In this model the membrane spectrin and ankyrin based cytoskeleton 

compartmentalise the membrane into small domains (0.1-1 um ) providing a 

barrier to the free diffusion of membrane proteins. The cytoplasmic domains of 

membrane proteins interact sterically with the cytoskeletal network beneath the 

cell surface, thus membrane proteins with large cytoplasmic domains will 

experience more restrictions in their mobility than proteins with small 

cytoplasmic regions. The membrane proteins can escape from one domain and 

move to adjacent compartments as a result of dynamic properties of the 

cytoskeleton. 

b) High localised concentration of proteins 

High local concentrations of proteins, directly or indirectly bound to the 

cytoskeleton, can act as obstacles to the free diffusion of membrane proteins. 

Here, the diffusing proteins interact with other proteins either sterically or 

specifically through direct chemical interactions. The protein obstacles may form 

large networks via cis interactions forming a physical barrier for diffusion. Such a 

mechanism may explain the transient confinement of GPI-anchored proteins 

(GPI: glycosylphosphatidyllinositol) which can not interact directly with the 

cytoskeletal meshwork. 

c) Localised lipid domains 

Local differences in the lipid composition of the bilayer, forming highly 

viscous microdomains, may also account for protein confinement. 
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1.10. Protein anchoring 

In addition to the restriction in mobility of membrane proteins due to domain 

confinement, as described above, more specific mechanisms are needed to ensure 

the total anchoring or immobilisation of some proteins. The clustering of 

membrane proteins into discrete and functionally significant domains is an 

2+ 

important feature of neuronal cell biology. The placement of Ca channels at 

dendritic spines for amplification and at nerve endings for neurotransmitter 

release (Cohen et al., 1991), and the sequestration of AMPA and NMDA 

receptors at dendritic spines (Baude et al., 1995) are striking examples of how 

cell surface components are localised and maintained in discrete membrane 

domains of the neuron. 

Neurotransmitter receptors rely on varied complex mechanisms to regulate 

their surface distribution. Although some neurotransmitter receptors, such as 

glycine receptors (GlyR) and glutamate receptors (AMPAR and NMDAR), 

require activation for cluster formation at postsynaptic sites, G A B A A R do not 

(reviewed in Kirsch, 1999). 

Inhibitory GlyR are clustered opposite the presynaptic terminal by interaction 

with the anchoring protein gephyrin. The subsynaptic aggregation of gephyrin is 

induced by calcium influx (Kirsch and Betz, 1998). Gephyrin has been shown to 

interact with polymerising tubulin in vitro (Kirsch et al., 1991), and the 

postsynaptic localisation of gephyrin/GlyR clusters seems to be mediated by 

microtubules and microfilaments (discussed by Kirsch, 1999). 

The p subunit of the GlyRs has been proven to mediate the binding to 

gephyrin via its cytoplasmic loop region. In overlay and transfection experiments 

this binding was shown to involve a motif of 33 amino acids in the central region 
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of the M3-M4 cytoplasmic loop of GlyRs P subunit, with an 18- amino acid core 

sequence harbouring the dominant binding determinants (Meyer et al., 1995). 

Recently, site-directed mutagenesis studies of this binding motif have revealed 

that the gephyrin binding activity of the GlyRs (3 subunit can be assigned to 

hydrophobic amino acid residues located on one side of a potentially imperfect 

amphipathic helix. (Kneussel et al., 1999). 

The ionotropic glutamate receptors NMDAR and AMPAR, and the 

metabotropic glutamate receptor, mGluR, are clustered on the postsynaptic side 

of an excitatory synapse by PDZ (or functionally PDZ-like) protein-interaction 

domains, (PDZ is named after the proteins in which these domains were first 

identified: PSD-95, discs large and ZO-1). PDZ domains are motifs of about 90 

amino acids that mediate protein-protein interactions by interacting with the C-

termini of proteins (Dong et al., 1997). 

Different anchoring proteins have been shown to interact with each of the three 

different glutamate receptors. NMDARs are concentrated at specific domains by 

interaction with PSD-95 proteins (discussed in Sheng, 1997), AMPAR bind the 

synaptic protein GRIP (glutamate receptor interacting protein), Dong et al., 

(1997) and mGluR are clustered via interaction with a protein named Homer 

(Brakeman et al., 1997). 

The interaction between the glutamate receptors and the anchoring proteins seems 

to be mediated by the intracellular domains of some of the subunits that form the 

receptor complex. In fact, some specific amino acid sequences contained in the 

intracellular region of NMDA and AMPA receptors have been implicated in the 

spatially distinctive clustering of the complex (Ehlers et al., 1995; Kornau et al., 

1995; Dong et al., 1997). Ehlers et al. (1995) have identified a sequence of amino 
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acids contained in the C-terminal domain of the NR1 subunit (proposed to be 

intracellular), that is responsible for the targeting or anchoring of the NR1 to 

structures associated with the plasma membrane. They determined that the 37-

amino acid CI exon cassette (found in some of the four different NR1 splice 

variants) was necessary for the formation of NR1-enriched domains. Thus, 

alternative splicing can regulate the subcellular distribution of the NR1 subunits. 

In addition, the use of the two-hybrid system has shown that a tSXV motif 

(where S is serine, X is any amino acid and V is valine) contained in the C-

terminal of the NR2 subunit and certain NR1 splice forms interact with the P D Z 

domain of the PDS-95 protein (Kornau et al., 1995). Additional studies have 

shown that the NMDAR NR1 subunit interacts directly with the 68 kDa 

neurofilament subunit in a manner regulated by alternative splicing. This interaction 

occurs between the cytoplasmic C-terminal domain of NR1 and the rod domain of 

the neurofilament and requires the presence of the alternatively spliced CI exon 

cassette in the NR1 subunit (Ehlers et al, 1998). 

Moreover, interactions between A M P A and GRIP are mediated by the 

association of the C-terminal motif SVKI* (*denotes a stop codon) of GluR2, 

GluR3 and possibly GluR4c (Dong et al., 1997). 

The association of glutamate receptors with intracellular proteins is widely 

reviewed in Dingledine et al. (1999). 

The machinery employed to anchor G A B A A R at postsynaptic specific domains 

of the membrane is less clear. Gephyrin has been shown to indirectly interact 

with y2 subunit-containing G A B A A R complexes (Essrich et al., 1998). 

Furthermore, a GABAAR-associated protein ( G A B A R A P ) has recently been 

identified that interacts selectively with y2 subunits and colocalises with 
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GABA A R in cultured cortical neurons (Wang et al., 1999). Sequence analysis of 

this protein reveals that is similar to light chain 3 (LC-3) of microtubule-

associated proteins MAP-1A and MAP-IB. Interestingly, the heavy chain of 

MAP-IB has been shown to interact with the GABA C R (Hanley et al., 1999). 

Several groups are involved in the study of how receptors are anchored and 

maintained at specific membrane domains. Approaches such as chemical cross-

linking (Burden et al., 1983); immunofluorescent labelling (Phillips et al., 1991); 

Triton X-100 solubilisation and immunoblotting (Phillips et al, 1993); and the use 

of the yeast two-hybrid system (Wang et al, 1999) have been used to identify 

cytoskeletal protein candidates that mediate neurotransmitter receptor anchoring. 

Each of these approaches, however, depends on an in vitro or biochemical 

reconstitution of the system and does not reveal whether these associations 

contribute to the functional anchoring of the receptor complexes. In addition, it is 

known that the interaction of membrane proteins with the cytoskeleton is 

complex and can involve interactions or mechanisms of restriction or 

compartmentalisation that are above interactions at the secondary or tertiary 

structural levels that are not commonly revealed in reconstituted systems. 

The study carried out in this thesis has approached the problem of receptor 

anchoring and identification of the molecular interactions in a different manner. 

Thus, attention was focused on the membrane dynamics of the receptor, 

measuring its lateral mobility by using the Fluorescence Photobleach Recovery 

(FPR) method. Although this approach has not been used to identify receptor 

anchoring mechanisms or the cytoskeletal associations, FPR has been used to 

investigate which subunits may be involved in receptor anchoring, and their 
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function in restricting receptor mobility in reconstituted systems. This technique 

allows measurement of the lateral mobility of membrane components. Direct 

measurement of the rates of protein lateral diffusion help to characterise the 

physical forces and interactions between cell surface components and other 

cellular structures 
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Aims and Objectives 

The overall objective of this thesis was to elucidate whether nerve cells use the 

structural diversity of G A B A A R subunits to regulate receptor mobility and 

location on the cell surface. Fluorescence Photobleach Recovery (FPR) was used 

to measure the lateral mobility of G A B A A R in transfected cells and cultured 

neurons. Concurrently, immunocytochemistry was used to determine the cellular 

localisation of these G A B A A R S . 

The following hypothesis were tested: 

1) The segregation and lateral mobility of G A B A A R s is determined by the 

subunit composition of the receptor. 

2) The inclusion of a 03 subunit in a G A B A A R is required for transport of the 

complex to the cell surface. 

The sorting properties of the a l , P3 and y2s G A B A A R subunits were studied. 

The final localisation of G A B A A R s composed of specific subunits was 

determined by immunocytochemistry in transfected COS7, HEK293 and PC 12 

cells. The role of the a l subunit in controlling lateral mobility of G A B A A R was 

tested by FPR. 

3) G A B A A R s lateral mobility is determined by the a subunit included in the 

complex. Different a subunit isoforms imply differences in receptor mobility. 
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The lateral mobility of recombinant G A B A A R complexes containing different 

a subunits expressed in COS7, HEK293 cells and native a subunit-containing 

G A B A ARs expressed in primary cultured neurons was measured by FPR. 

4) The M3/M4 cytoplasmic loop of the a l subunit controls G A B A A R s 

mobility. 

The lateral mobility of receptors containing a l subunits in which the M3/M4 

domain was deleted (alcn>) and chimeras of the a l subunit (aTen) where the 

cytoplasmic loop domain was replaced by that found in the a2, a3 and a6 

subunits, was measured by FPR in transfected COS7 and HER293 cells. These 

experiments were repeated for alcn and alcD-containing receptors expressed in 

cultured cerebellar granule neurons. 

This study provides important information on how this family of ligand-gated 

receptors might be distributed and maintained1 on nerves in the CNS. 
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Chapter two 

Materials and Methods 

2.1. Material 

Cell culture consumables were purchased from GIBCO BRL, (Paisley, 

Scotland). 

A l l chemicals were obtained from Sigma Chemical Company (St. Louis, MO, 

USA). 

Mammalian expression vectors were obtained from the following sources: 

pSVK3 Pharmacia, Herts, U.K. 

pCDM8 Invitrogen, San Diego, USA 

pcDNA I/Amp Invitrogen, San Diego, USA 

Wizard Maxipreps and DNA related products were purchased from Promega 

(Madinson, USA). 

Transfection reagents: Lipofectamine was obtained from GIBCO BRL, 

(Paisley, Scotland); ESCORT was obtained from the Sigma Chemical Company 

(St. Louis, MO, USA); TfxTM-50 Reagent was from Promega (Madinson, USA); 

The Electro Cell Manipulator was purchased from BIO RAD (California, USA). 

The antibodies used throughout this investigation, monoclonal anti-cd (bd24) 

and anti-(32/3 (bdl7) were obtained from Boehringer, (Germany); TRITC-

conjugated goat anti-mouse and FITC-conjugated goat anti-rabbit were from 
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Calbiochem, (Nottingham, U.K.); Cascade blue-conjugated goat anti-mouse 

antibody was purchased from Molecular Probes, (Leiden, The Nertherlands). 

Fluorescent compounds for FPR, Bodipy-Ro-1986, were purchased1 from 

Molecular Probes, (Leiden, The Netherlands). 

Molecular mass standards were obtained from the Sigma Chemical Company 

(St. Louis, MO, USA). 

Bio-Rad microradiance confocal microscope was purchased from BIO RAD 

(California, USA). 

Gel Doc 1000 imaging system was from BIO RAD (California, USA). 
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2.2. Methods 

2.2.1. Cell culture procedures 

2.2.1.1. Initiating cultures from frozen stocks 

An aliquot of frozen cells (see 2.2.1.5) was thawed with gentle agitation in a 

37°C water bath. The vial was rinsed with 70% ethanol and the cells transferred 

to a sterile tube and resuspended in 10 ml of complete growth medium. The cells 

were then pelleted at 600g for 5 minutes and subsequently seeded into a culture 

flask containing the appropriate amount of culture medium (1-2 x 106 cells/ml). 

2.2.1.2. Maintenance and propagation of cells 

Al l cells were maintained at 37°C in a 5% C O 2 incubator for a up to 4 months 

of continuous culture, after which a fresh culture from frozen stocks was initiated. 

HEK293 cells were cultured in Modified Eagle Medium (MEM) supplemented 

with 10% foetal bovine serum (FBS). Cells were subcultured at a 1:10 split ratio 

(1 x 106 cells/ml) following trypsinisation for 1 minute at room temperature 

(described below in section 2.2.1.3). 

COS7 cells were grown in Dulbecco's MEM (high glucose) supplemented with 

10% FBS. The culture was trypsinised for 5 minutes at 37°C and subcultured at a 

1:10 split ratio (1 x 106 cells/ml). 

PC 12 cells were cultured in RPMI medium supplemented with 10% horse 

serum and 5% FBS. Differentiation was induced by the addition of 50 ng/ml 

nerve growth factor (NGF, 7S form) and l u M dibutyryl cyclicAMP for 7 days. 

Undifferentiated cells were subcultured as described below in 2.2.1.3. 
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Cerebellar granule cells were derived from the cerebella of 10 days old rats 

(Pio). The cerebella were washed with MEM once and trypsinised for 25 minutes 

at 37°C, with continuous shaking. The tissue was then triturated 20 times and 

centrifuged at lOOg for 5 minutes to pelleted the cells. The supernatant was 

carefully removed, fresh media was added to the pellet and trituration was 

repeated a further 60 times. Dissociated cells (250 x 103 cells/cm2) were plated 

onto 35 mm poly-lysine coated dishes. The cells were maintained in MEM 

supplemented with 10% FBS, 20mM glutamine and 0.04 M KC1. 

2.2.1.3. Subculturing cells 

Adherent cells: When cells reached 70-80% confluence they were subcultured. 

Cells were detached from culture flasks by enzymatic treatment with 0.25% 

trypsin. Culture medium was removed and the cells were washed once with 

phosphate-buffered saline (PBS, 8g NaCl, 2.9g Na 2HP0 4-12H 20, 0.2g KH 2 P0 4 , 

0.2g KC1, 12g sucrose per litre, pH 8.0). For a 25 cm 2 culture flask, 2ml trypsin 

(0.25g per 100 ml of PBS) was added and incubated 1-5 minutes at 25-37°C 

depending on the cell type. 10 ml of culture medium was then added and the cells 

transferred to a sterile tube. Cells were pelleted by centrifugation at 500g for 5 

minutes. The cell pellet was resuspended in 1ml of culture medium by gently 

pipetting further 9 ml of culture medium was then added. For a 1:10 split ratio, 

lml of the cell suspension (1 x 106 cells/ml) was seeded in a 25 cm 2 flask with 9 

ml of culture medium. 

Suspension Cells: Cells were pelleted by centrifugation at 500g for 5 minutes 

and resuspended in 1 ml of culture medium by gentle pipetting. 9 ml of culture 

medium was then added and for a 1:10 split ratio, lml of this cell suspension (1 x 
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10° cells/ml) was seeded in a 25 cm flask with 9 ml of culture medium. 

2.2.1.4. Counting cells 

100 \il of cell suspensions were diluted with 100 ul of 6% trypan blue vital dye 

and counted on a Neubaumer haemocytometer using a Nikon TMS inverted 

microscope. 

2.2.1.5. Freezing cells 

Cells from a healthy log-phase culture were harvested as described above in 

2.2.1.3. and resuspended in a minimal volume of culture medium. Cells were 

counted and diluted to lx lO 6 cells/ml in culture medium with 10% DMSO and 

40% FBS. 1ml aliquots of cells were dispensed into pre-labelled 2ml cryovials 

and then frozen in liquid nitrogen. The frozen aliquots were transferred to liquid 

nitrogen for long term storage. 

2.2.2. Molecular biological procedures 

RNA was removed from DNA solutions by the addition of RNase A to a final 

concentration of 20(j.g/ml. 

2.2.2.1. Subcloning GABAAR CDNAS into expression vectors 

G A B A A R cDNAs were donated by Pr. P. Seeburg, Dr. H . Luddens, Dr. D. 

Burt, and Dr. R. Joho. Bovine a l , rat 03 and 02 and murine y2s G A B A A R 

subunit cDNAs were obtained cloned into the mammalian expression vector 

pCDM8, an expression vector under the control of the constitutive 

cytomegalovirus (CMV) promoter and SV40 intron/ Poly A tail sequence, thus, 
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were used with no further modification. On the other hand, rat G A B A A R a2-6 

and p i subunit cDNAs were obtained cloned into the non-expression vector 

pBluescript SK- and were subsequently recloned into the mammalian expression 

vectors, pCDNA I/Amp for rat G A B A A R a2-6 subunits and pSVK3 for p i 

subunit. Briefly: approximately 5ug of DNA (cDNA in non-expression vector) 

was digested with the appropriate restriction enzymes (see Table 2.1 below and 

2.2.2.9.) to liberate the required cDNA fragment. cDNA fragments were gel 

purified (2.2.2.3.), ligated into digested pcDNA I/Amp vector (2.2.2.4.) and 

transformed into competent bacteria (2.2.2.6.). Positive colonies were selected 

and DNA mini/midi-preps made (2.2.2.7.). Orientation and sequence of 

constructs were verified by restriction digests and DNA sequencing. Figure 2.1., 

2.2., 2.3., 2.4, 2.5. and 2.6. show the subcloning strategy and representative 

agarose gels for the a2, a3, a4, a5, a6 and p i subunit cDNAs respectively. 

Table 2.1. Subcloning GABAAR cDNAs into Mammalian Expression Vectors 

G A B A A R subunit cDNA subclone Vector Preparation 

Rata2 1.6kbHind I I I - EagI 
fragment 

Hind I I I - NotI cut 
pcDNAIAmp 

Rat a3 2.7kb Xhol fragment Xhol cut pcDNAlamp 

Rat cx4 2.3kb BamHI- Bspl20I 

fragment 

BamHI-NotI cut 
pcDNAIAmp 

Rat a5 l.5kb Hindlll-BamHI 
fragment 

Hindll l - BamHI cut 
pcDNAIAmp 

Rat cc6 1.7kb BamHI- Xhol 
fragment 

BamHI-XhoI cut 
pcDNAIAmp 

Rat (31 3.0kb Xhol fragment Xhol cut pSVK3 
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Figure 2.1. a2 cDNA subcloning strategy 

The entire coding region of GABA A R al subunit 
cDNA (1.6kb) was excised (X ) from pSK" using 
HinD I I I (H) and Eag I (E) and ligated into H and E 
double digested pCDNAI Amp. The location of 
restriction enzymes recognition sequences {EcoR I (RI) 
and Sph I (S)) used to characterise the construct 
and the size of digestion products are shown. 

1.6 kbp 

1.6 kbp 

II R I 

al cDNA 

CMV 

pCDNA I Ampl (4 
D D PCDNAI Ampl 
' (4.8 kbp) 

Table 2.1.1. Restriction enzymes used to characterise GABAAR a2 subunit cDNA 
subcloned into pCDNA I Amp. 
The location of sites (within the vector or insert) and the expected size of digestion products are given. 
The result of digestions are also shown (also see Fig. 2.1.1.) 

GABA A R Restriction Sites in Fragments (kbp) Notes Lane 
subunit endonuclease vector insert expected result 

al / / / / + uncut 1 
al Eco RI 0 1 6.4 + linearised 2 
o2 HinD I I I cloning 

site 
6.4 + 3 

al Sph I 1 0 6.4 + 4 
al EcoR I + Sph I 4.9+ 1.5 + orientation 

of insert 
5 

Figure 2.1.1. Characterisation of subcloned GABAAR CC2 subunit cDNA 
Restriction digestions were separated on 0.7% TAE buffered agarose gels and visualised with ethidium 
bromide. M : l.Oug Pst I digested X. DNA (fragments in kbp); Lanes 1-5: l.Oug of al GABA A R 
pCDNA I Amp cut with 1: no enzyme; 2: EcoR I ; 3: HinD I I I ; 4: Sph\\ 5: EcoR I and Sph I . 

M l 2 3 4 5 

11.5 

5.07 

2.8 

.7 
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Figure 2.2. a3 cDNA subcloning strategy 

The entire coding region of GABA A R a3 subunit 
cDNA (2.7kbp) was excised (X) from pSK" using 
Xho I (X) and ligated into X digested pCDNAI Amp. 
The location of restriction enzymes recognition 
sequences (EcoRV (RV)) used to characterise 
the construct and the size of digestion products 
are shown. 

CMV: 

2.7 kbp 

O.^kbp 
< • 

X R V 

i i i 
a3 cDNA R V 

4 

PCDNAI Ampl 
(4.8 kbp) 

Table 2.2.1. Restriction enzymes used to characterise GABAAR a3 subunit cDNA 
subcloned into pCDNA I Amp. 
The location of sites (within the vector or insert) and the expected size of digestion products are given. 
The result of digestions are also shown (also see Fig. 2.2.1.) 

GABA A R Restriction Sites in Fragments (kbp) Notes Lane 
subunit endonuclease vector insert expected result 

a3 / / / / + uncut 1 

a3 £ c o R V 1 1 7.0 + 0.5 + orientation 
of insert 

2 

Figure 2.2.1. Characterisation of subcloned GABAAR a3 subunit cDNA 
Restriction digestions were separated on 0.7% TAE buffered agarose gels and visualised with ethidium 
bromide. M : l.Oug Pst I digested X DNA; : Lane: I , l.Oug of uncut a3 GABA A R pCDNA I Amp; 2, 
1 .Oug of Eco RV cut a3 GABA A R pCDNA I Amp 

11.5 
1 
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Figure 2.3. a4 cDNA subcloning strategy/ 

The entire coding region of GABA A R a4 subunit 
cDNA (2.3kbp) was excised ( X ) from pSK'using 
Bam HI (B) and Bsp 1201 (Bs) ligated into B and 
Not I (N) double digested pCDNAI Amp. The 
location of restriction enzymes recognition 
sequences (Xba I (Xb) and EcoRV (RV)) used to 
characterise the construct and the size of digestion 
products are shown. 

^ 2.3 kbp 

„ 1.3 kbn 

B R V Xb N/Bs 

H i V 
ot4 cDNA 

CMV 

PCDNAIAmpl 
(4.8 kbp) 

Table 2.3.1. Restriction enzymes used to characterise GABAAR a4 subunit cDNA 
subcloned into pCDNA I Amp. 
The location of sites (within the vector or insert) and the expected size of digestion products are given. 
The result of digestions are also shown (also see Fig. 2.3.1.) 

GABA A R Restriction Sites in Fragments (kbp) Notes Lane 
subunit endonuclease vector insert expected result 

a4 / / / / + uncut 1 
a4 Xba I 1 1 5.8 + 1.3 + orientation 

of insert 
2 

a4 EcoRV 0 1 7.1 + linearised 3 

Figure 2.3.1. Characterisation of subcloned GABAAR &4 subunit cDNA 
Restriction digestions were separated on 0.7% TAE buffered agarose gels and visualised with ethidium 
bromide. M : 1.0|ig Pst I digested X DNA; : Lanes 1-5: l.Ongof a4 GABA A R pCDNA I Amp cut with 
1: no enzyme; 2: Xba I ; 3: EcoRV. 

M 
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Figure 2.4. aScDNA subcloning strategy 

The entire coding region of GABA A R a5 subunit 
cDNA (1.5kbp) was excised ) from pSK" using 
Hind I I I (H) and Bam HI (B) and ligated into H 
and B double digested pCDNAI Amp. The location 
of restriction enzymes recognition sequences 
(EcoR I (RI)) used to characterise the construct 
and the size of digestion products are shown. 

1.5 kbp 

a5 cDNA 

CMV 

PCDNAIAmpl 
(4.8 kbp) 

Table 2.4.1. Restriction enzymes used to characterise GABAAR GC5 subunit cDNA 
subcloned into pCDNA I Amp. 
The location of sites (within the vector or insert) and the expected size of digestion products are given. 
The result of digestions are also shown (also see Fig. 2.4.1.) 

GABA A R Restriction Sites in Fragments (kbp) Notes Lane 
subunit endonuclease vector insert expected result 

a5 / / / / + uncut 1 
a5 Eco RI 1 1 5.8 + 0.5 + orientation 

of insert 
2 

Figure 2.4.1. Characterisation of subcloned GABAAR a5 subunit cDNA 
Restriction digestions were separated on 0.7% TAE buffered agarose gels and visualised with ethidium 
bromide. M : l.Oug Pst I digested X DNA; : Lanes 1-5: 1.0p.g of a5 GABA A R pCDNA I Amp cut with 
1: no enzyme; 2: EcoR I . 

M 1 2 
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Figure 2.5. a6 cDNA subcloning strategy 

The entire coding region of GABA A R a6 
subunit cDNA (1.7kbp) was excised (X ) from 

pSK" using I Bam HI (B) and Xho I (X) figated 
into B and X double digested pCDNAI Amp. 
The location of restriction enzymes recognition 
sequences {Bam HI (B) and Pvu I I (P)) used 
to characterise the construct and the size of 
digestion products are shown. 

1.7 kbp 

2.2 kbp 

o.6 cDNA 

CMV 

PCDNAIAmpl 
(4.8 kbp) 

Table 2.5.1. Restriction enzymes used to characterise GABAAR OC6 subunit cDNA 
subcloned into pCDNA I Amp. 
The location of sites (within the vector or insert) and the expected size of digestion products are given. 
The result of digestions are also shown (also see Fig. 2.5.1.) 

GABA A R Restriction Sites in Fragments (kbp) Notes Lane 
Subunit endonuclease vector insert expected result 

a6 / / / / + uncut 1 
ct6 Bam HI cloning 

site 
6.5 + linearised 2 

a6 Pvu I I 1 1 4.3 + 2.2 + 3 

Figure 2.5.1. Characterisation of subcloned GABAAR a6 subunit cDNA 
Restriction digestions were separated on 0.7% TAE buffered agarose gels and visualised with ethidium 
bromide. M : 1.0>g Pst I digested X DNA; : Lanes 1-5: l.Owg of a5 GABA A R pCDNA I Amp cut with 
1: no enzyme; 2: Bam H I ; 3: Pvu I I . 

M 1 2 3 

11.5 

4.5 

2.8 

1.7 
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Figure 2.6. (51 cDNA subcloning strategy 

The entire coding region of GABA A R p 1 subunit 
cDNA (1.5 kb) was excised {X ) from pSK" using 
Xho 1 (X) and ligated into X digested pSVK3. 
The location of restriction enzymes recognition sequences 
(Pst I (P) and Xho I (X)) used to characterise the construct 
and the size of digestion products are shown. 

4 1 5 k b • 
Uh 

x p x 

pi cDNA 

SV40 

pSVK.3 (3.9 kb) 

Table 2.6.1. Restriction enzymes used to characterise GABAAR (51 subunit cDNA 
subcloned into pSVK3. 
The location of sites (within the vector or insert) and the expected size of digestion products are given. 
The result of digestions are also shown (also see fig 2.6.1.) 

GABBAR Restriction Sites in Fragments (kbp) Notes Lane 
Subunit endonuclease vector insert expected result 

PI / / / < + uncut 1 

PI Xho I cloning 
site 

0 3.9+1.5 + excision 
of insert 

2 

PI Pst\ 1 1 4.6 + 0.7 + orientation 3 PI 
of insert 

Figure 2.6.1. Characterisation of subcloned GABAAR (51 subunit cDNA 
Restriction digestions were separated on 0.7% TAE buffered agarose gels and visualised with ethidium 
bromide. M : 1.0u.g Pst I digested X DNA; Lanes 1-3: l.Opg of a2 GABA A RpSVK3 cut with 1: no 
enzyme; 2: Pst I ; 3: Xho I . 

M 1 2 3 

5.07 , 
4.5 

2.84 

1.7 

1.16 
1.09' 
0.8 
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2.2.2.2. Agarose gel electrophoresis 

Gel electrophoresis of DNA samples was carried out as described by Sambrook 

et al. (1989). Briefly, samples were electrophoretically separated in lx TAE 

buffered gels (50x stock- 242 g Tris, 100 ml EDTA pH 8.0, 57.1 ml glacial acetic 

acid per litre) at 5-10 V.crrr 1 using Pharmacia GNA-100 electrophoresis tanks. 

The concentration of agarose within a gel was varied depending on the size of 

DNA to be separated, but usually 0.7% agarose (separation of 10-0.8kb linear 

DNA) was used. Ethidium bromide was added to a final concentration of 0.2 

|ug/ml. Pstl or HindUl digested A.-DNA were used as molecular weight markers. 

DNA fragments were visualised using a trans-illuminator (UVP Inc.) or Gel 

Doc 1000 imaging system. 

2.2.2.3. DNA fragment isolation 

DNA to be recovered following electrophoresis was removed in the smallest 

volume of agarose possible and isolated by the following protocol. 

Qiaex I I Agarose Gel Extraction 

The Qiagen Gel Extraction kit was used following the manufacturers 

guidelines. Briefly, 3 volumes of buffer QX 1 was added to 1 volume of agarose. 

This was incubated at 50°C for 10 minutes with 10 u,l of Qiaex I I particles. The 

sample was centrifuged for 30 seconds and the supernatant removed. The pellet 

was resuspended in 500 uJ of buffer QX1 and spun for 30 seconds at top speed in 

the bench top microfuge. The pellet was then washed twice in buffer PE and 

allowed to air dry for 10-15 minutes. The pellet was then resuspended in 20 ul of 
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TE (10 mM Tris; ImM EDTA) spun for 30 seconds and the DNA solution 

removed to a clean eppendorf. This was repeated to ensure maximum recovery of 

DNA. 

2.2.2.4. Ligation 

Gel purified vector and restriction fragments were ligated using bacteriophage 

T4 DNA ligase according to the manufacturers instructions. Briefly 1 ul of lOx 

ligase buffer (200 mM Tris-Cl (pH 7.6), 50 mM MgCl 2 , 50 mM dithiothreitol and 

500 ij.g/ml bovine serum albumin) was added to a sterile microfuge tube. 

Equimolar amounts of insert and vector DNA, to a total concentration of 100 ng 

DNA were added. ddt^O was added to 9 ul followed by 1 u,l (1 U) of 

bacteriophage T4 DNA ligase. The reactions were incubated overnight at 4°C. 

Controls that contained the plasmid vector and insert DNA alone were performed 

in tandem. 1-2 ul of each of the ligation reactions were used to transform 

competent E.coli as described in 2.2.2.6. 

2.2.2.5. Preparation of competent cells 

5 ml of L M broth (10 g Bacto triptone, 5 g Bacto yeast extract and 10 g NaCl 

per litre ) was inoculated with a single bacterial colony, grown overnight at 37°C, 

with appropriate antibiotics and subcultured 1:100 into fresh L M broth. The cells 

were grown to an OD600 of 0.3-0.35, chilled for 5 minutes on ice then harvested 

at 4000g, 4°C for 7 minutes. Cell pellets were resuspended in 2/$ of the original 

culture volume in solution A (30 mM K-acetate, 100 mM RbCl3, 10 mM CaCl2, 
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50 mM MnCb and 15% glycerol). The solution was adjusted to pH 5.8 with 0.2 

M acetic acid and incubated on ice for 5 minutes. Centrifugation was repeated 

and the pellets resuspended in V 2 5 of the original culture volume of solution B 

(10 mM MOPS, 75 mM CaCl 2, 10 mM RbCl 2 and 15% glycerol). The pH was 

adjusted to pH 6.5 with KOH and incubated on ice for 15 minutes, after which 

200 ul aliquots were transferred to cryovials and snap frozen in liquid nitrogen 

and stored at -80°C. 

2.2.2.6. Transformation of competent bacteria 

An aliquot of cells was thawed on ice for 10 minutes. DNA was added and 

incubation continued for 45-60 minutes. The cells were heat shocked at 43.5°C 

for 45 seconds, held on ice for 3 minutes and then 800 ul of pre-warmed (to 

37°C) L M broth (10 g Bacto triptone, 5 g Bacto yeast extract and 10 g NaCl per 

litre )was added. The tube was incubated for 1 hour at 37°C, with occasional 

shaking. Finally 100-200 ul aliquots of the tubes contents were spread onto 

selective agar plates. 

2.2.2.7. Extraction and purification ofplasmid DNA 

a) Mini Preparation: 

A single colony of transformed bacteria was grown overnight in 5 ml of LB 

with appropriate antibiotic selection. 1.5 ml of the overnight culture was taken 

and the cells harvested by centrifugation at 12,000g for 1 minute. The supernatant 

was discarded and the cells resuspended in 200 ul of resuspension solution 1 (50 

mM Tris-HCl pH 7.5, 10 mM EDTA, 100 ug/ml RNase A). 200 ul of lysis buffer 
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2 (0.2 M NaOH, 1% SDS) was then added and the solutions mixed by inversion 

until the suspension became viscous indicating cell lysis. 200 ul of neutralising 

solution 3 (1.32 M K-acetate pH 4) was added and mixed by gentle vortexing. 

The sample was centrifuged at top speed in a microfuge for 1 minute to pellet 

bacterial debris. The supernatant was transferred to a clean eppendorf and an 

equal volume of phenol xhloro form :isoamyl alcohol (25:24:1) added. Following 

centrifugation at 14,000g for 10 minutes the aqueous phase was removed and 

DNA precipitated by the addition of 2 volumes of 100% ethanol and 0.1 volume 

of 3 M K-acetate. 

Alternatively 500 ul of Promega Magic Mini-Prep DNA purification resin was 

added to the supernatant removed after the addition of solution 3. This was 

incubated at room temperature for 5 minutes with occasional inversion. The 

solution was then pipetted into a syringe barrel attached to a Magic Mini-Prep 

column. The solution was injected into the column then washed with 4 ml of 

column wash solution 4 (final concentrations of 80 m M K-acetate, 8.3mM Tris-

HC1 pH 7.5, 40 uM EDTA were initially made up in a volume of 125 ml. 170 ml 

of 95% ethanol were then added to a final volume of 295 ml). The column was 

removed to a clean eppendorf and centrifuged for 1 minute at 12,000g and then 

air dried for 5 minutes. The DNA was eluted with 100 ul sterile milli Q water 

pre-heated to 70°C. This was added to the column and incubated for 5 minutes 

prior to elution by centrifugation at 12,000g for 1 minute. 

b) Midi preparation: DNA was purified using the Wizard Midipreps kit 

(Promega) according to the manufacturers instructions. The method utilises a 

modified alkaline lysis protocol and anionic purification resin. 
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Briefly: A single colony of transformed bacteria was grown overnight in 5ml of 

LB (10 g Bacto triptone, 5 g Bacto yeast extract and 10 g NaCl per litre ) with 

appropriate antibiotic selection. The overnight culture was subcultured into 250 

ml fresh LB and grown overnight with appropriate antibiotic selection. Cells were 

harvested by centrifugation at 5,000g for 10 minutes at 22-25°C. The cell pellet 

was resuspended in 25 ml of solution 1 (50 mM glucose; 25 mM TrisCl (pH 8); 

10 mM EDTA (pH 8) and gently lysed by inversion in 15 ml of solution 2 (0.2 N 

NaOH in an equal volume of 1% SDS). The lysed cells were neutralised by 

adding 15 ml of solution 3 (60 ml of 5M K-acetate; 11.5 ml of glacial acetic acid; 

28.5 ml of double distilled H 2 O ) and inverting several times. The bacterial lysate 

was then centrifuged at 20,000g for 15 minutes at 4°C and the supernatant 

transferred to a fresh centrifuge tube following filtration through sterile Miacloth, 

0.5 sample volume of isopropanol was added and centrifuged at 14,000g for 15 

min at 4°C, to precipitate the DNA. The DNA pellet was resuspended in 2ml of 

TE (10 m M Tris; I m M EDTA), 10ml of Wizard resin was added and the solution 

transferred to a column and washed twice with solution 4 (125ml of ddHaO, 80 

mM K-acetate; 8.3 mM Tris (pH 7.5); and 40 M EDTA followed by the addition 

of 170 ml of 95% ethanol), then once with 5 ml of 80% ethanol. The resin was 

centrifuged to dryness at 1300g for 5 minutes and DNA eluted in 1.5 ml of 

preheated 60°C TE after centrifugation at 1300g for 5 minutes. 

2.2.2.8. Ethanol precipitation of DNA. 

DNA was precipitated by the addition of 0.1 sample volume of 3 MNaOAc pH 

4.8 and 2.5 sample volume of 100% ethanol. The sample was mixed and 

incubated at -20°C for 1 hour. DNA was recovered by centrifugation at 13,000g 
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for 5 minutes. The DNA pellet was washed twice with 70% ethanol, with 5 

minute centrifugation at 12,000 g in between each wash. The pellet was air dried 

and subsequently resuspended in TE (10 mM Tris-HCl, 1 mM EDTA pH 8.0). 

2.2.2.9. Restriction Endonuclease Digestion 

Plasmid DNA was digested at concentrations of 10-100 ng/ul in a total volume 

of 10-50 ul with 5 units of restriction endonuclease, 0.1 volume of the supplied 

lOx enzyme buffer and made up to volume with sterile water. The reaction was 

incubated at the recommended temperature for most restriction enzymes this is 

37°C, for one hour. 

For further analysis by gel electrophoresis the digest was subsequently 

concentrated by ethanol precipitation as described in 2.2.2.8. and resuspended in 

a volume of 40 ul T.E. 

2.2.2.10. Construction of chimeric GABAAR alsubunits 

The following truncated a l subunits were constructed and kindly donated by 

Dr. H T . Hooper: 

a) A chimera a l subunit (CCICH) composed of the 5' end of the bovine a l 

subunit cDNA and the 3' end of the rat a l subunit cDNA. This was done for 

several reasons. First, the monoclonal antibody, bd24, recognises a stretch of 

three amino acids located at the N-terminus of the bovine and human a l 

subunits, that is not faithfully conserved in the rat a l sequence. Therefore bd24 

does not recognise the rat a l subunit (Ewert et al., 1990). The remaining 

bovine/human and rat a l subunit amino acid sequences are identical. The 
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chimeric a l subunit was engineered such that the rat a l subunit cDNA, used in 

the previous studies, now consisted of the 5' end of the bovine a l subunit cDNA 

ligated to the 3' end of the rat a l subunit cDNA. This construct results in a 

translated a l subunit that has an amino acid sequence that is identical to that of 

the wild-type rat a l subunit with the sole exception of a single amino acid at the 

N-terminus that is an essential component of the epitope for the monoclonal 

antibody bd 24. 

Secondly, the rat a l nucleotide sequence had restriction sites that allowed the 

construction of the other truncated a l subunits. 

b) A chimera a l subunit lacking the M3/M4 cytoplasmic loop (alco)- The 

bovine/rat chimera a l subunit was treated with restriction enzymes to delete the 

M3/M4 cytoplasmic loop. Thus, the construct a lcD is an a l subunit with the 

cytoplasmic loop M3/M4 deleted that contained the monoclonal antibody, bd 24, 

epitope. 

c) Series of truncated a l subunits where the cytoplasmic loop of the a l 

subunit was replaced with the cytoplasmic loops of a2, a3 and a6 subunits (acn-

ax(x=2,3,6))- These domain swap chimeras bear the distinguishing "bovine/human" 

N-terminal epitope. 
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Figure 2.7. Subcloning strategy in the production of GABAAR OCCH, OCCD cind 

GABAAR OCCH-OX 

In order to investigate the role of the cytoplasmic domain (CD) lying between transmembraneous 

domains M3 and M4 of GABA A R a|. 6 subunits on receptor mobility, a series of GABA A R oci 

clones were constructed: 

1) the CD was deleted to give G A B A A R O C D 

2) the CDs from G A B A A R a 2^ were individually inserted into GABA A R O C D (ie: 

to create a GABA A R a, in which the cytoplasmic domain was swapped to give 

GABA A R OcH-a(2-6)- Al l constructs were verified with restriction digests and DNA 

sequencing. 

In order to maintain the epitope bd24, but facilitate subcloning, the first step was to make a 

GABA A R a! chimera: G A B A A R O C H (panels A-D). A 0.9kb BspUOl - EcoUl 5' restriction 

fragment (encoding the N ' terminal bd24 epitope) of the bovine GABA A R a! (panel A) was 

ligated to a 0.6kb 3' EcoNl- £coRI restriction fragment of the rat (panel B) into the mammalian 

expression vector pCDNAIamp (panel C). 

The 3' end of rat GABA A R ct| was amplified from codon 414 (in effect deleting codons 362-413) 

using an universal reverse primer (sp6) and a forward primer (5' 

aggatcctctctcgagcgtcagcaaaatcgaccg 3') which encodes two unique restriction sites for BamHl (in 

bold) and Xhol (underlined) at its 5' end. The 3' end of GABA A R O C H was removed by digestion 

with BamHl and £coRI (panel D) and replaced with the BamHl - EcoRI double digested rat PCR 

product (panel F) to create GABA A R O C D . 

GABA A R cicrj was double digested with BamHl and Xhdl (panel G). The CDs from GABA A R a2. 

6 were individually amplified using forward primers encoding a BamHl restriction site and reverse 

primers encoding a Xhol restriction site (See table 2.7.1. for primer sequences). Amplified CDs 

were double digested with BamHl and Xhol (panel H) and individually ligated into BamHl and 

Xhol digested GABA A R a C D to create GABA A R acH-a(2-6) (panel I) . 

Table 2.7.1. Primers used to amplify CDs from GABAAR 0:2-6 

GABA A R a x PCR Primer Sequences 5' - 3' GABA A R a x 

Forward (BamHl in bold) Reverse (Xhol underlined) 
a 2 agga tccaggctccgtcatgata gctcgagttgaaagttttcttgg 
a 3 aggatccagcagcccaaccaa gctcgagttgtaggtcttggtct 
a 4 aggatcctcctccagaagttcc gctcgaggatccagaaggtggtg 
a 5 aggatcctgaactcatactaaa gctcgagttgtaggcttttttac 

ae aggatccgtcccagaaagccga gctcgagccaatggctggtaae 
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a l cDNA bovine 

0.9kb 

BspUOl EcoNI 

it 1 
/ \ B d 2 4 

Start of e p l , ° P e 

T S C N 

a l cDNA rat 

^ 0.6kb ^ 

pCDM8 pSK 

JfcoRl 
£7?oNI . 

I «op 

Cytoplasmic 
domain (CD) 

A : Double digest G A B A A R 
a l cDNA (bov)with 
Bsp\20 I and£coNI. Isolate 
5' fragment containing bd24 
epitope 

C : Ligate both fragments into pcDNA 
lamp to create GAB A A R a 1 chimera 

(OIICH) 

B: Double digest 
G A B A A R a l cDNA (rat) 
with £coNI and £coRI. 
Isolate 3' fragment 
containing CD. 

a l C H 

BamHl EcoW 

1 i CMV Poly A O 

pCDNAIamp 

D:Double digest GABA E : PCR 3' end of 
alcH with BamHl and G A B A A R alcH (minus CD) 
£coRl with forward primer 
Isolate 5' fragment. containing BamHl and 

Xhol sites and universal 
reverse primer 

BamHl EcoM 

CMV Xho\ BamH\ EcoRl 

1 + Poly A 

pCDNAI amp 

F : Ligate to create G A B A A R a l minus 
CD: a l deletion (alco) 

a l C D 

BamHX EcofU 

Poly A CMV o I 

pCDNAI amp 
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a l C D 

BamHl f > ' o i

 E c o R i 

CMV, 

pCDNAI amp 

G : Double digest 
G A B A A R a l c D with 
5aH)HIandA7iol 

H : Individually P C R tlie cytoplasmic 
domains of G A B A A R a l 2 ^ with a forward 
primer containing BamH\ site and a reverse 
primer containing Xlw\ site. Double digest 
P C R products with BamH\ mAXhol. 
Isolate each fragment. 

i 
BamHl Xfw\ BamHl 

pCDNAI amp 
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2.2.3. Transfections 

Controls were performed transferring the cells with the vector only (mock 
transfections) and each transfection was performed in duplicate. 

2.2.3.1. Liposome mediated transfections 

Lipofectamine: 

Lipofectamine is a liposome-mediated transfection reagent, with a formulation 

of 3:1 (w/w) of the polycationic lipid DOSPA and the neutral lipid DOPE in 

membrane filtered water. This reagent was used to transiently transfect G A B A A R 

subunit cDNAs into C O S 7 , HEK293 and cerebellar granule cells using the 

manufactures guidelines. C O S 7 and HEK293 cells were plated at 50% 

confluency on poly-lysine coated glass cover-slips or onto poly-lysine coated 

dishes, so that on the day of the transfection cells were approximately 70% 

confluent. Dissociated granule cells (250 x 10 cells/cm ) were plated onto 35 

mm poly-lysine coated dishes. For each transfection two 12 x 75 mm sterile tubes 

containing the following were prepared: Tube 1: 1-2 fxg DNA was diluted in 100 

ul of serum-free growth medium. Tube 2: 5 ul (10 ug) of Lipofectamine (GIBCO 

B R L ) diluted into 100 ul of serum-free growth medium. The two solutions were 

combined, gently mixed and incubated at room temperature for 45 minutes to 

allow DNA-liposome complexes to form after which 800 ul of serum-free 

medium was added. Cells were washed once with 2 ml serum-free medium and 

the DNA-liposome mixture was then dropwise. The cells were incubated for 3-5 

hours at 37°C in a 5 % C O 2 incubator. Cells were then washed once with 

complete growth medium and incubated for 12-24 hours with serum-complete 

medium. 
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ESCORT- Transfection reagent: 

ESCORT is a liposome formulation comprising the cationic lipid DOTAP and 

DOPE at a ratio of 1:1 (w/w). 

This reagent was employed as described for lipofectamine, with the sole 

exception that the incubation time for forming the DNA-liposome complex was 

15 minutes. 

TfxTM-50 Reagent: 

TfxTM-50 Reagent is a mixture of a synthetic cationic lipid molecule and 

DOPE supplied as dried lipid films. Upon rehydration with water, these lipids 

form multilamellar vesicles that associate with nucleic acids. 

TfxTM-50 Reagent was used to transfect cerebellar granule cells maintained in 

culture or after dispersion. The procedure was as recommended by the 

manufacturer with some modifications, briefly: 

The day before the transfection a vial of TfxTM-50 Reagent was warmed to 

37°C, reconstituted with 400 ul of nuclease-free water and vigorously vortexed 

for 10 seconds to resuspended the lipid film. The vial was then placed in a 65°C 

water bath for 1 minute, vortexed again and stored at -20°C overnight. 2 ug of the 

cDNA was added to 200 ul of serum-free medium. 9 ul of TfxTM-50 Reagent 

was then added to the tube. The mixtures were vortexed and placed at room 

temperature for 45 minutes to allow the lipid and DNA to associate. Cerebellar 

granule cell cultures were washed twice with 2 ml of serum-free medium. Most 

of the final wash medium was removed from the cultures. 800 ul of serum-free 

medium was added to the lipid/DNA. The diluted lipid/DNA mixture was then 
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applied to each dish of cells. Cells and lipid/DNA mixtures were incubated at 

37°C for 2 hours. The cells were then gently overlaid with 2-3 ml of complete 

medium and returned to the incubator for 48 hours, thereafter the cells were used 

in the experiments described. 

2.2.3.2. Electroporation 

Electroporation was used to transfect COS7, HEK293, PC 12 cells and primary 

cultures of cerebellar granule cells just after dissociation. 

Electroporation of COS7 and HEK293 cells: 

Cells were harvested by trypsination, counted and maintained in serum-free 

medium at room temperature. 20 ug of cDNA was placed into an ice cold cuvette 

to which 400 ul of cells (1-5 xlO 7) were added. The cuvette was then replaced on 

ice for 3-5 minutes. Just prior to electroporation cells were resuspended with a 

sterile Pasteur pipette. Following electroporation at 260 V in a Electro Cell 

Manipulator the cells were incubated again on ice for 1-2 minutes and a further 

400 ul of serum-free medium was added. Cells were plated at a density of 100-

150 cells/cm and incubated for 2-4 hours after which the media was replaced for 

complete medium. Cells were maintained in the 5% CO2 incubator for 48 hours 

prior to the experimentation. 

Electroporation of cerebellar granule cells 

Cerebellar granule cells were transfected by the electroporation technique, just 

after dissociation, as described above for HEK293 and COS7 cells. 
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2.2.3.3. Transfection of PC 12 cells 

PC 12 cells were "Primed" by treatment with 50 ng/ml NGF (nerve growth 

factor) for one week (as described in section 2.2.1.2.). Cells were harvested from 

the culture flasks and transfected by electroporation as above in section 2.2.3.2. 

Once the cells had adhered to the culture dish (4 hours), the medium was 

removed and replaced with complete medium supplemented with NGF (50 

ng/ml) and dibutyryl cyclic AMP ( luM) . The transfected "primed" cells extended 

processes to acquire a polarised phenotype which were then used for fluorescence 

microscopy and FPR. 

2.2.3.4. Calcium phosphate precipitation 

Calcium phosphate precipitation was used to transfect cerebellar granule cells 

just after they were dissociated or following maintenance in primary culture, as 

described below: 

For each transfection two tubes with the following solutions were prepared: 

tube 1: 5 ug of DNA diluted in 50 ul of sterile O.lx TE to which 169 ^tl of 

ddFkO, 5 uJ of CaCl2 (2 M) was added and mixed by pipetting up and down 

twice. Tube 2: 250 ul of 2x HBS. Solution I was dropwise to solution I I with 

gentle agitation, and then incubated for 20-30 minutes at room temperature to 

allow the calcium phosphate:cDNA precipitate to form. The precipitate was then 

dropwise to the medium covering the cells. The cells were then returned to the 

incubator and incubated overnight. Cells were then washed with complete 

medium and incubated for a further 24 hours prior to experimentation. 
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2.2.4. Immunocytochemistry 

Immunocytochemistry was performed on both fixed and live cells. The 

antibodies used for immuntocytochemical experiments are detailed in Table 2.2. 

together with the working dilutions. 

2.2.4.1. Fixed andpermeabilised cells 

Cells to be fixed and immunolabelled were cultured on coated glass coverslips 

(coverslips were coated with poly-D-lysine when studying COS 7, HEK293 and 

cerebellar granule cells and collagen/poly-D-lysine when studying PC 12 cells). 

The cellular morphology of the cultured cells was sufficiently retained following 

paraformaldehyde fixation to permit identification of intracellular compartments. 

Briefly: 24-48 hours post-transfection, cells were washed twice with PBS and 

fixed with 4% paraformaldehyde in PBS for 15 minutes. Cells were washed again 

twice with PBS, incubated for 20 minutes in 0.34% L-lysine: 0.05% Na-m-

periodate and then washed twice in PBS. Cells were then blocked with 200 ul of 

10% heat-inactivated goat serum (HIGS) for 15 minutes. Cell-coated coverslips 

were then incubated for 1-24 hours in primary antibody, diluted in antibody 

dilution buffer (PBS containing: 1 ug/ul of bovine serum albumin, 10% heat-

inactivated goat serum and 0.5% Triton X-100), as detail in Table 2.2. After 

incubation with primary antibody, cell-coated coverslips were washed three times 

for 5 minutes in PBS and then incubated for 30 minutes with secondary antibody 

diluted in antibody dilution buffer, as detailed in Table 2.2. Cell-coated coverslips 

were then washed three times for 5 minutes in PBS and mounted with mowiol on 

glass slips. 
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2.2.4.2. Labelling of live cells 

Cells which were to be viewed live were plated in coverslip-bottom chambers 

after transfection. Cells were washed twice in PBS then incubated at 4°C in 

primary antibody for 45 minutes and secondary antibody for 20 minutes, both 

antibodies were diluted in PBS. 

Table 2.2. Summary of the antibodies used for immunocytochemistry, their 

specificity, working concentrations and some specifications. 

Antibody name Specificity Working 

concentration 

Specifications 

bd24 al-subunit of G A B A A R 
from bovine and man 

2 fig/ml Mouse Monoclonal 
Antibody 

bdl7 |32/3-subunit of 
G A B A A R from bovine, 
rat and man 

2 ug/ml Mouse Monoclonal 
Antibody 

P (102/103)* pi/2/3-subunitof 
G A B A A R 

5 ng/ml Rabbit Polyclonal 
Antibody 

anti-spectrin Spectrin 10 ug/ml Rabbit Polyclonal 
Antibody 

m-TRJTC 

r-TRITC 

Mouse Ig (L+H) 

Rabbit Ig (L+H) 

1 \ig/mi Goat Polyclonal 
Antibody 

m-FITC 

r-FITC 

Mouse Ig (L+H) 

Rabbit Ig (L+H) 

1 ng/ml Goat Polyclonal 
Antibody 

CascadeBlue Mouse Ig (L+H) 1 ug/ml Goat Polyclonal 
Antibody 

* (3-antibody (102/103), prepared against the N-terminal sequence of the rat 03 sequence 

(amino acids QSVNDPGNMSFVKET). This antibody was characterized by immunoblot analysis 

and immunocytochemistry of transfected cells. This antibody recognises all three p subunit 

isoforms as determined by recombinant expression of the P subunit isoforms followed by 

immunocytochemical analysis. The P-antibody (102/103) was a gift from Dr. Ramiro Salas. 
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2.2.4.3. Control analyses 

Control analyses included cells that were incubated with secondary antibodies 

alone, and mock transfected cells (cells transfected only with the vector) that 

were analysed as above to ensure immunofluorescence was a result of a specific 

interaction of the primary antibody with the antigen. These control tests were 

carried out routinely before each experiment. Al l results were negative, i.e. no 

fluorescence was detected, as illustrated in Figure 2.8. 

Figure 2.8. Representative immunocytochemical control experiments. Panel A: mock 

transfected HEK293 cells. Cells were labelled live with the monoclonal bd24 antibody specific 

for the a l subunit and visualised with TRITC-conjugated anti-mouse specific antibody. Panel B: 

a 1-transfected HEK293 cells labelled live only with the secondary antibody TRITC-conjugated 

anti-mouse. 

Immunocytochemical controls with cerebellar granule cells 

Due to the difficulties in transfecting cerebellar granule cells no control 

analyses with mock transfected cells could be carried out. The low efficiency of 

transfection meant that only a few cells per dish expressed the transfected CCICH 

and a l c D subunits, and in some experiments no immunoreactivity could be 
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detected in any of the cells. For this reason the lack of fluorescence staining in 

mock transfected cell could be due to problems with the transfection itself and 

not to the specificity of the antibody. To control the specificity of the antibody 

non transfected cerebellar granule cells were labelled with the fluorescently 

labelled Fab' fragments of the GABA A R od subunit specific-antibody (see 2.2.5.-

6) and no fluorescence was detected (Figure 2.9, Panel A). In addition, the 

immunoreactive cells found were also a proof of the specificity of the antibody, 

as these few positive cells exhibited a high fluorescence that contrasted with the 

black background of non transfected cerebellar granule cells (Figure 2.9, Panel 

B). 

Figure 2.9. Immunocytochemical controls with cerebellar granule cells. Cerebellar granule 

cells labelled live with the fluorescent-Fab' fragments of the GABA A R a l subunit specific-

antibody. Panel A: non transfected cells. Panel B: a l CD subunit transfected cells, three positive 

cells are shown against the background. Scale bar: 20 urn. 
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2.2.4.4. Photography 

Images were obtained through a lOOx, 1.3 numerical aperture (NA), 63x, 1.2 

NA, water immersion objective or 40x, 1.3 NA objective on a Nikon UFX-II 

microscope. The imagine was captured through a Nikon camera FX-35A, or with 

a confocal microscope (BIORAD). 

2.2.5. Generation of Fab' fragments of the GABAAR a J subunit specific-

antibody 

Fab' fragments of the GABA A R a l subunit specific-antibody were generated 

by papain digestion of the bd24 antibody, as described by Hallow and Lane, 

(1988). Digestion of the mouse monoclonal bd24 antibody was proved to be 

difficult. Preliminary tests to assess the optimum protocol were carried out with 

purified mouse IgGl monoclonal antibody (Chemicom). Different times of 

digestion and different amounts of papain were tested. The products of every 

digestion were run on an electrophoresis gel, under reducing and non reducing 

conditions, to determine the amount of IgGl digested. After these experiments 

the following protocol was accepted as the optimal one. 

Briefly : 10 u.g of the bd24 antibody was digested with 1 ug of papain in 990 ul 

Na-acetate (0.2 mM, pH 5), 5 ul cysteine (1 M) and 5 ul EDTA (20 mM), for 15 

hours at 37°C. Iodoacetamide at a final concentration of 75 mM, was added and 

incubated at room temperature for 30 minutes. The Fab' fragments were purified 

from any remaining intact antibodies by chromatography on a protein A column. 

Final Fab' fragments concentration was approximately of 0.01 u.g/ul in a volume 
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of 500(4.1. Fragment purity was determined using gel electrophoresis and silver 

stain (Figure 2.10.). One sample was run with dithiothreitol and one without. 

Under reducing conditions Fab' fragments yield a doublet of bands at about 

25,000 daltons (Figure 2.10., Line 1). Nonreduced Fab' fragments migrate at 

aproximately 50,000 daltons (Figure 2.10., Line 2). 

-11 

M 

48,000 daltons 
Fumarase 

29,000 daltons 
Carbonyc Anhydrase 

Figure 2.10. Electrophoresis gel of bd24-Fab'fragments stainined with silver. Samples 

were run under reducing (1) and non-reducing (2) conditions,. M= Molecular weight 

standard mixtures (Sigma). 

2.2.6. Fluorescent labelling ofal and a6 Fab' fragments. 

Both a l (bd24) and a6 Fab' fragments (gift from Professor F.A. Stephenson) 

were labelled with Bodipy. For direct labelling of the Fab' fragments with 

Bodipy fluorescent groups, the a l and a6 Fab' fragments were diluted in 900 ul 

of sodium carbonate (0.1 M , pH 9.2). To this was added 50 ul of Bodipy 
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succinimidyl ester (1 mg/ml) in 5 ul aliquots, with gentle but continuous stirring. 

The reaction was incubated in the dark for 8 hours at 4 °C. Unbound dye was 

separated from Bodipy conjugated Fab' fragments by passing the mixture through 

a G-10 column. 

2.2.7. Fluorescence Photobleach Recovery 

FPR is based on measuring the concentration of specific, fluorescently-tagged 

molecules in a restricted membrane domain as a function of time. To do this, 

living cells are first labelled by linkage to a fluorescent dye, membrane proteins 

can be labelled using specific probes, such as a fragment of a fluorescently-

tagged antibody. Once labelled, the cells are placed under the microscope, a small 

area of the cell surface, about 1 -4 um 2, is briefly exposed to an intense laser pulse 

which bleaches, irreversibly, the fluorescent molecules in its path, leaving a 

circular spot, on the surface of the cell that is devoid of fluorescence. I f the 

labelled proteins in the membrane are mobile, then the random movements of 

these molecules produce a gradual reappearance of fluorescence in the irradiated 

circle (see Figure 2.11.). 

The microscope optics are arranged so that the fluorescence emission from the 

bleached area is monitored at subsequent times by a photomultiplier tube using 

the laser, now attenuated, for excitation. The rate of fluorescence recovery 

provides a direct measure of the rate of diffusion (expressed as a diffusion 

coefficient) of the mobile molecules. It is the half-time for recovery that is 

measured from which the diffusion coefficient can be calculated. The extent of 

fluorescence recovery (expressed as a percentage of the original intensity) 
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provides a measure of the percentage of the labelled molecules that are free to 

diffuse. I f the fluorescence fails to recover to the same intensity observed before 

bleaching this can be attributed to a fraction of fluorophores that are immobile on 

the time-scale of the experiment. 

Label proteins with 
fluorescent dye 

i(p) 

© • Photobleach spot 
W with laser beam 

I(o) 

q ^ Recovery 

Figure 2.11. Representative illustration of a FPR experiment. After labelling the cell with the 

molecule of interest initial levels of fluorescence I(p) are measured. The target area is then 

bleached I(o) and the recovery of the fluorescence is measured over time 1(c) 
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FPR was used to measure the lateral mobility of recombinant GABAARs 

transiently expressed in COS7, HEK293, PC 12 and cultured cerebellar granule 

cells. In addition native GABAARs expressed by cerebellar granule cells were 

analysed. 

2.2.7.1. Labelling of recombinant GABAARs for FPR analysis 

G A B A A R S expressed on living cells were labelled with either the fluorescent 

benzodiazepine Bodipy-Ro-1986 (Velazquez et al., 1989), or with fluorescently 

labelled Fab* fragments prepared from subunit-specific antibodies as described in 

2.2.6. 

Labelling with the fluorescent benzodiazepine, Bodipy-Ro-1986 

All experiments using Bodipy-Ro-1986 were performed on cells expressing 

native GABA A R or recombinant GABA A R with subunit combinations of 

axp3y2s, where ax represents a l , a2, a3, a4, a5, a6 and the truncated a l 

subunits alcH, OCICD and alcH -ciX(X=2,3,6)- Because every combination tested 

included the y2 subunit all of them acquired benzodiazepine binding. Cells were 

labelled with Bodipy-Ro-1986 at 40 nM or 100 nM in PBS-sucrose. Although at 

these concentrations not all receptors are labelled, these concentrations were 

chosen based upon the Kd of the fluorescent benzodiazepine to help minimise 

any non-specific binding or lipid partitioning of the fluorescent probe. The signal 

from the unbound fluorophore is negligible because the fluorescence of the 

Bodipy conjugates are enhanced upon binding to the receptor. Non-specific 

binding of Bodipy-Ro-1986 was determined by including chlorazepate (1 mM) in 
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the FPR assay. The non-specific labelling, based upon photon counts obtained 

under identical experimental conditions, was found to be less than 10% of total. 

Labelling with jluorescently tagged Fab 'fragments 

To label a(33y2s receptors containing the a l or a6 subunits, cells were labelled 

with the Bodipy-fluorescent Fab' fragment of the monoclonal antibody bd24, 

which recognises the a l or with Bodipy-labelled Fab' fragment of a polyclonal 

G A B A A R ct6 subunit-specific antibody, respectively. The a l subunit-specific 

Fab' fragments were also used to label recombinant receptors containing the 

truncated a l subunit, a lcH and alcD in COS7, HEK293 and cerebellar granule 

cells. A l l labelling procedures were performed at room temperature for 20 

minutes. Cells were then washed three times with PBS-sucrose. 

2.2.7.2. Photobleach recovery 

Transfected cells expressing recombinant receptors were identified based on 

fluorescence labelling as visualised through a Zeiss Photomicroscope I I I , using a 

63x, 1.2 NA water immersion objective (placed directly into the dish containing 

the cells) with a beam radius of 1.2 urn. The microscope used for FPR 

experiment is illustrated in Figure 2.12. 

The experimental procedure is briefly explained as follows: 

From the laser source the appropriate wavelength was chosen, the laser beam 

was directed using a mirror (M) and passed though the beam shutter (Sri), which 

was always open during the experiment. A second mirror (M) drove the laser 

beam to a diaphragm (Dl ) which was adjusted to let pass the beam. Then, the 
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beam went though the first beam splitter (BS1), which split the laser beam into 

two, one with a high laser power (the "bleacher beam") and the other with an 

attenuated power. 

Proton Counting 
Electronics 

IBM PC 

PMT 

Sample 

Laser 4 - ^ 
ND 

TOP VIEW 

BS2 BS1 

t 
Sr2 

SIDE VIEW 

M 

«Sr 1 

M 
D1 

Figure 2.12. Schematic figure of the optical apparatus used for fluorescence photobleach 

recovery. ND: neutral density filter; M: mirrors; Sri: beam shutter, Sr2: bleach shutter; D: 

diaphragms; BS: beam splitters; L: lens; BF: barrier filter. 

The attenuated laser beam passed the second beam splitter (BS2), and was 

focused by a second diaphragm (D2) and a 90/10 mirror (SM) through the 

microscope to hit the cell preparation with a beam radius of 1.2 um. Before the 

bleaching, cells were localised under bright field optics and positive cells were 

selected using a fluorescence lamp. Cells expressing the recombinant receptors 

produced a large fluorescence signal, and selection of cells for photobleaching 

was made on the basis of this fluorescence intensity. Only one measurement was 

made for each cell. The illuminated region was then bleached by a brief laser 
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pulse (5 mW), bleaching around 75% of the fluorescence. To do this, the bleach 

shutter (Sr2), which controls the pass of the "bleacher beam", opened for a period 

of milliseconds (10-200) to allow the intense laser pulse to bleach the cell. After 

the bleached pulse the attenuated laser beam continued to excite the sample 

promoting fluorescence emission, which travelled up to a photomultiplier tube 

where the signal was monitored. The excited electrons were translated to the IBM 

monitor as counts, which were displayed graphically on the screen as a function 

of time (Figure 2.13.). 

Bleach 

100-i 
80-

„ ». I* * t H ' i 
•> ',' .V *, i v ^ i 

60-
> 

40-
^ 1 

20- R e s u l t s 
t/2= 13s Rec= 87 % 

D=6.46 E-010 
0-

Experiment 
C e l l type: HEK 293 
Treatment: alf}3y2S 

Bleach 
Base l i n e = 
Tlme= 100. 

C h a r a c t e r i s t i c s 
17003+/- 5% 
4 MS Bleach=81 % 

Figure 2.13. Recovery curve for mobile species. The arrow shows the point of 

photobleaching; y-axis, light intensity as a percentage of normalised pre-bleach levels; x-

axis, time. 

Once the experiment was completed and the recovery curve stored the data 

were analysed. The data program enters the multiple curvilinear regression 

routine, the count curve is fitted and the parameters of diffusion coefficient and 

percentage of recovery are obtained. Lateral diffusion coefficients (Dc) and 
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mobile fractions (F, % Recovery) of fluorescently labelled receptors were 

measured by the spot photobleaching technique deduced by Axelrod et al. (1976). 

Dc=w2/4T 

Where w is the e"2 radius of the beam and T is the halftime for recovery of the 

fluorescent signal. The e" radius of the beam is used because the intensity of the 

laser light across the circular bleached region is not homogeneous, the laser light 

is more intense in the middle of the spot than it is toward the edges. For the 63x 

water immersion objective used in these experiments with a 1.2 u.m beam radius 

the bleached area corresponded to ~2um2. 

The fraction of the labelled molecules that are mobile, F, may be calculated 

from the recovery curve: 

F= Ic- Io/ Ip- Io 

Where Ip, Io and Ic are the fluorescence intensities at the pre-bleach, post-

bleach and steady state levels respectively, see Figure 2.11. 

FPR experiments performed with the same recombinant receptor combinations 

were repeated on different days and little variation in the parameters were found. 

The standard mean deviations presented here are the result of repeated 

measurements on these cultures. The number of recordings made for each cell 

preparation were in the range 10-30. 

2.2.7.3. FPR limitations 

The relative size of the bleach spot to the diffusion domain of the fluorescently 

marked protein dramatically limits the resolution of the FPR experiments. I f the 

bleached area is larger than the domain in which the labelled molecule can freely 
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diffuse, that molecule will always appear immobile by FPR, even if it is actually 

diffusing freely in a small confined domain. 

The diffusion coefficient is calculated by fitting the recovery curve obtained 

from every FPR measurement. When the receptors are immobile on the cell 

surface the recovery curves are almost flat. The curve fitting procedure under 

these circumstances is difficult and inaccurate. Estimated mobile fractions or 

percentage recovery in the order of 20% is considered to represent total 

immobility of all the labelled receptors due to background light and a 

contribution to fluorescence by unlabelled molecules of the fluorescent dye used 

to label the cells. Following this rationale, the coefficient of diffusion data 

obtained from non-recovery curves have to be considered with caution. The small 

recovery (<25%) measured for some receptors can be considered to be 

background noise due to these experimental limitations. Thus, receptors which 

show little recovery are considered to be linked to mobility restricting elements. 

These receptors are regarded as totally immobile with no rate of motion and 

diffusion coefficients of zero. 

2.2.8. Statistical analysis 

Statistical analyses were routinely performed using the statistical package 

Minitab version 11. A Kolmogorov-Smirnov test of normality was performed and 

the significance of the difference between data was tested using a Student's t-test. 

Data are presented throughout the study as mean +/- standard deviation of the 

mean. In all cases, a probability of less than 0.05 was regarded as statistically 

significant. 
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2.2.9. Analysis of predicted secondary structures 

Analysis and comparison of predicted secondary structures was done using the 

network protein sequence @nalysis at IBCP, France: servise@bchs.uh.edu. 
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Chapter three 

Lateral mobility and cellular localisation of recombinant 

GABAA receptors expressed in C0S7, HEK293 and PCI2 

cells 

3.1. Introduction 

Of all the classes of G A B A A R subunit isoforms, it is the a subunits that exhibit 

the greatest diversity both in terms of the unique kinetic and pharmacological 

properties that they confer upon their receptors, as well as their cellular 

distribution (Wisden et al., 1992). The p subunits have also been shown to be 

essential for channel function, they have an influence on receptor physiology and 

pharmacology, as noted for recombinant receptors containing different P subunits 

(Sigel et al., 1990; Hadingham et al., 1993) though not as dramatically as for the 

different a subunit isoforms. Inclusion of the y subunit into the pentameric 

complex confers benzodiazepine sensitivity to the receptor with some differences 

noted between alternatively spliced forms of the y2 subunit (Wafford et al., 

1991). The relatively limited number of distinct GABA-mediated currents 

recorded in neurons suggests that the observed structural diversity of G A B A A R 

subunits may have evolved to satisfy other cellular requirements other than to 

provide functional versatility (McKernan and Whiting, 1996). Differential 

receptor sorting could represent one such role. The subunit composition of 

G A B A A receptors has been reported to regulate their sorting and cell surface 

distribution (Velazquez and Angelides, 1993; Connolly et al., 1996b), with 

receptors of different subunit composition selectively clustered and sequestered 

in different domains (Nusser et al., 1996). 
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The aim of the work described in this chapter was to gain insight into the role 

that individual subunits play in receptor clustering and immobilisation and to 

elucidate the mechanisms by which these occur. Thus, recombinant G A B A A R 

subunits were expressed in COS7, HEK293 and PC 12 cells and their cellular 

localisation and mobility were determined by immunocytochemistry and by 

fluorescence photobleach recovery (FPR), respectively. HEK293 and COS7 cells 

were used because they can be transfected with high efficiency and their internal 

compartments easily visualised by light microscopy. PC 12 cells were used as a 

model to examine whether compartmentalisation of the receptor occurred 

following neurite extension and the acquisition of its polarised morphology. 
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3.2. Results 

C 0 S 7 , HEK293 and PC 12 cells were transfected with cDNA of various 

G A B A A R s subunits in different combinations as described in methods (2.2.3.)- m 

order to define the final cellular localisation of the recombinant G A B A A R S 

expressed, immunocytochemistry, using subunit-specific antibodies, was 

performed on both live and fixed cells as described in methods (2.2.4.). 

Experiments performed on live cells showed the receptors expressed on the cell 

surface, while fixed and permeabilised cells were used to identify the receptors 

expressed in intracellular domains. Controls were routinely carried out with mock 

transfections and with non transfected cells. After labelling the control cells with 

a l , and 03 specific antibodies no immunostaining was detectected. 

3.2.1. Expression of GABAAR a, (3, and ysubunits in COS7 cells 

COS7 cells singly transfected with G A B A A R a l subunit cDNA were fixed and 

permeabilised 48 h post transfection and analysed for G A B A A R a l subunit 

expression by immunocytochemistry using a G A B A A R a l subunit-specific 

antibody. Using this approach it was found that the G A B A A R a l subunit protein 

was retained in an intracellular compartment that had the morphological 

characteristics of the endoplasmic reticulum (ER) (Figure 3.1. Panel A). The fiat 

morphology of COS7 cells helped to clearly highlight retention of the a l subunit 

in the E R , a pattern which is identical to cells stained with the E R markers 

DiOC6 and BiP (Terasaki and Reese, 1992). The G A B A A R a l subunit-specific 

antibody, bd24, recognises an N-terminal sequence of the G A B A A R a l subunit 

(Ewert et al., 1990), which when expressed at the cell surface is proposed to be 
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extracellular. When C 0 S 7 cells singly transfected with G A B A A R oil subunit 

cDNA were labelled live, no fluorescence was detected on the cell surface. The 

absence of labelling on live cells confirms that homomeric G A B A A R a l 

complexes are not transported to, or inserted into, the cell surface plasma 

membrane (Figure 3.1. Panel B). In contrast to the intracellular retention of the 

expressed G A B A A R a l subunits, when COS7 cells were transfected with 

G A B A A R pi subunit cDNA or G A B A A R p3 subunit cDNA, the resulting 

homomeric complexes were found to be sorted to the cell surface (Figure 3.1. 

Panels C and D) and distributed in clusters. The pattern of cell surface 

distribution and clustering of the expressed G A B A A R pi subunit (Panels C) was 

similar to the P3 subunit (Panel D). 

When the a l subunit was co-transfected with the P3 subunit, the a l subunit 

was re-routed from its intracellular location, transported to the cell surface, and 

localised in clusters with the P subunit on the cell surface. Both subunits are 

clearly expressed on the surface as shown by labelling of live cells (Figure 3.1. 

Panels E and F) . Cotransfection of the y2s subunit with the a l subunit followed 

by staining of live cells using the monoclonal antibody bd24, did not reveal any 

fluorescent signal on the cell surface (Figures 3.1. Panel G ) , only after fixation 

and permeabilisation to allow access to the intracellular compartment was the a l 

subunit detected (Figures 3.1. Panel FT), suggesting that unlike the p subunits, the 

y2s subunit was not capable of rescuing t h e a l subunit from its intracellular 

location. When the y2s subunit was cotranfected with both the a l and the P3 

subunits the cell surface expression and clustering of a ip3 complexes was not 

altered. Figure 3.1. shows a live cell labelled with the monoclonal antibody bd24 
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(Panel 1) and with the fluorescent benzodiazepine Bodipy-Ro-1986 (Panel J). A 
clear pattern of clustered receptors is shown on the cell surface. 
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Figure 3.1. Localisation of GABAAR subunits expressed in COS7 cells. 

Panels A and B: C0S7 cells transfected with the GABA A R a l subunit cDNA. Panel A: Fixed 

and permeabilised cells were immune-stained with the GABA A R a l subunit-specific monoclonal 

antibody, bd24, and visualised with FITC-conjugated anti-mouse IgG specific-antibody. Panel B: 

live cells were immunolabelled with GABA A R a l subunit-specific monoclonal antibody, bd24 

and visualised with FITC-conjugated anti-mouse IgG specific-antibody. 

Panel C: COS7 cells transfected with the GABA A R p i subunit cDNA and stained live with the 

rabbit polyclonal GABA A R P (102/103) subunit-specific antibody which recognises all three 

GABA A R P subunit isoforms, GABA A R p i , P2 and P3 subunits, and visualised with TRITC-

conjugated anti-rabbit IgG specific-antibody. 

Panel D: COS7 cells transfected with the GABA A R P3 subunit cDNA, were immunostained, 

live, with the GABA A R P3 subunit-specific monoclonal antibody, bd-17, and visualised with 

TRITC-conjugated anti-mouse IgG specific-antibody. 

Panels E and F: Cell surface expression of GABA A R aip3 complexes immunolabelled with 

the GABA A R a l subunit-specific monoclonal antibody, bd24, and with the GABA A R p subunit-

specific polyclonal antibody for the P3 subunit. Panel E : COS7 cells cotransfected with 

GABA A R a l and P3 subunits were immunostained live for GABA A R a l subunit and visualised 

with cascade blue conjugated anti-mouse secondary antibody; Panel F , same cell as Panel E 

stained live for the P3 subunit and visualised with TRITC-conjugated anti-rabbit secondary 

antibody. 

Panels G and H: Localisation of recombinantly expressed GABA A R aly2s receptors in COS7 

cells. Cells were immunostained live (Panel G) and fixed-permeabilised (Panel H) with the 

GABA A R a l subunit-specific monoclonal antibody, bd24, and visualised with TRITC-conjugated 

anti-mouse IgG specific-antibody. 

Panels I and J : Live COS7 cells cotransfected with GABA A R a l , P3, and y2s subunit cDNAs, 

were immunolabelled for the a l subunit with the GABA A R a l subunit-specific monoclonal 

antibody, bd24, and visualised with TRITC-conjugated anti-mouse IgG specific-antibody (Panel 

I) and with Bodipy-Ro-1986 for the aip3y2s complex (Panel J). 

Scale bars for all panels: 20um. 
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Figure 3.1. Localisation of GAB A AR subunits expressed in C0S7 cells 
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3.2.2. Expression of GABAAR a, B, and ysubunits in HEK293 cells 

Live HEK293 cells, transfected with the G A B A A R a l subunit alone, were 

immunostained with the G A B A A R a l subunit-specific monoclonal antibody, 

bd24. As with COS7 cells, no surface immunostaining was detected (Figure 3.2. 

Panel B) . When the cells were fixed and permeabilised, an intracellular staining 

pattern that matched the morphology of the E R was observed (Figure 3.2. Panel 

A). On the other hand, when HEK293 cells were transfected with the G A B A A R 

pi or P3 subunit cDNAs alone and subsequently immunostained live, G A B A A R 

pi or P3 subunits were found expressed, in clusters, at the cell surface as shown 

in Figure 3.2. Panels C and D. 

Experiments performed on cells cotransfected with both the G A B A A R a l and 

the p3 subunit cDNAs showed that now both the G A B A A R P3 and a l subunits 

were found expressed at the cell surface. Cells were double labelled in order to 

determine the distribution of each subunit. G A B A A R a l and p3 subunits were 

colocalised in the same clusters on the cell surface (Figure 3.2. Panel E and F). 

Experiments were then performed in order to determine whether the G A B A A R 

y subunit played a role in receptor targeting. Following coexpression of G A B A A R 

a l and y2s subunits, cells were immunostained live with the G A B A A R a l 

subunit-specific antibody, bd24. No G A B A A R a l subunit immunoreactivity was 

detected at the cell surface (Figure 3.2. Panel G). G A B A A R a l subunit 

immunoreactivity was detected only when the transfected cells were fixed and 

permeabilised (Figure 3.2. Panel H). The G A B A A R a l subunit was only targeted 

to the cell surface when the cells were cotransfected with the G A B A A R P3 

subunit cDNA. HEK293 cells transfected with G A B A A R a l , P3, and y2s subunit 

- 7 3 -



Chapter 3 Lateral mobility and cellular localisation of recombinant GABAARs 

cDNAs were probed live with both the G A B A A R otl subunit-specific antibody, 

bd24 (Figure 3.2. Panel I) and with the fluorescent benzodiazepine receptor 

ligand, Bodipy-Ro-1986 (Figure 3.2. Panel J). 
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Figure 3.2. Localisation of GABAAR subunits expressed in HEK293 cells. 

Panels A and B: HEK293 cells transfected with the GABA A R a l subunit cDNA. Panel A: 

Fixed and permeabilised cells were immune-stained with the GABA A R a l subunit-specific 

monoclonal antibody, bd24, and visualised with the TRITC -conjugated anti-mouse IgG specific-

antibody. Panel B: live cells were immunolabelled with GABA A R a l subunit-specific 

monoclonal antibody, bd24, and visualised with TRITC-conjugated anti-mouse IgG specific-

antibody. 

Panel C: HEK293 cells transfected with the GABA A R (31 subunit cDNA and immunostained, 

live, with the rabbit polyclonal GABA A R (3 subunit-specific antibody, anti-p-102/103, which 

recognises all three GABA A R p subunit isoforms, GABA A R p i , P2 and P3 subunits, and 

visualised with TRITC-conjugated anti-rabbit IgG specific-antibody. 

Panel D: HEK293 cells transfected with the GABA A R P3 subunit cDNA, were 

immunostained, live, with the GABA A R p3 subunit-specific monoclonal antibody, bd-17, and 

visualised with TRITC-conjugated anti-mouse IgG specific-antibody. 

Panels E and F : Cell surface expression of GABA A R aip3 subunit complexes 

immunolabelled with the GABA A R a l subunit-specific monoclonal antibody, bd24, and with the 

rabbit polyclonal GABA A R p subunit-specific antibody, anti-P-102/103, for the P3 subunit. Panel 

E : GABA A R aip3 cotransfected HEK293 cells immunostained, live, for GABA A R a l subunit 

and visualised with cascade blue conjugated anti-mouse IgG specific-antibody; Panel F : same 

cell as Panel E but immunostained, live, for the GABA A R p3 subunit and visualised with TRITC-

conjugated anti-rabbit IgG specific-antibody. 

Panels G and H: Localisation of GABA A R aly2s receptors expressed in HEK293 cells. Cells 

were immunostained, live (Panel G), and fixed-permeabilised (Panel H), with the GABA A R a l 

subunit-specific monoclonal antibody, bd24, and visualised with TRITC-conjugated anti-mouse 

IgG specific-antibody. 

Panels I and J : HEK293 cells cotransfected with GABA A R a l , P3, and y2s subunit cDNAs, 

immunolabelled live for the GABA A R a l subunit with the antibody bd24 and visualised with 

TRITC-conjugated anti-mouse IgG specific-antibody (Panel I) and with Bodipy-Ro-1986 for the 

GABA A R aip3y2s complex (Panel J). 

Scale bars for all panels: lOum. 
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Figure 3.2. Localisation of GAB A AR submit is expressed in HEK293 cells 
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3.2.3. Expression of GABAAR subunits in PC 12 cells 

The PC 12 cell-line was derived from the neural crest. It is a well-characterized 

neuronal model system, expressing many of the cytoskeletal proteins found in 

neurons (Greene and Carpenter, 1982; Kelly and Grote, 1993; Smith et al., 1995). 

PC 12 cells were differentiated by treatment with N G F as described in methods 

(2.2.1.2.). NGF-promoted differentiation of PC12 cells results in neurite 

extension and is accompanied by the expression of microtubules, MAP-2, actin, 

a- and (3-spectrin, ankyrin, and neurofilaments in the neurite and B-50/GAP on 

the neuronal growth cone (San Erajt et al., 1995). PC 12 cells were used, therefore 

to explore whether the acquisition of its polarized morphology and the formation 

of different membrane domains (neuronal differentiation) led to the confinement 

of G A B A A receptors to cell bodies and/or neurites and/or to restriction in receptor 

mobility. Neuronal-like cells are notoriously difficult to transfect. Transfection 

efficiency using lipofectin or calcium phosphate precipitation methods were very 

low. However, electroporation (methods, 2.2.3.3.) of G A B A A R subunits cDNA 

into PC 12 cells was significantly more efficient (around 20%). Therefore, this 

was the method of transfection used throughout this study. 

Irnmunocytochemical analysis of differentiated, G A B A A R a l subunit cDNA-

transfected, PC 12 cells showed that the G A B A A R a l subunit was localised 

intracellulary within the cell body (Figure 3.3. Panel A). When G A B A A R a l 

subunit expression was examined on live cells no immunostaining was observed 

(Figure 3.3. Panel B) . 

In contrast, when the G A B A A R (33 subunit was transiently expressed in PC 12 

cells it was observed that the G A B A A R (33 subunit was sorted to the plasma 
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membrane (Figure 3.3. Panel C) . The G A B A A R p3 subunit was distributed on the 

cell body and along the entire length of the neurites in a punctate rather than a 

homogeneous pattern indicating that, as in the other cells, the G A B A A R (33 

subunit alone forms clusters. Double immunolabelling with an anti-spectrin 

antibody highlights the highly differentiated morphology of the transfected PC 12 

cells (Figure 3.3. Panel D). The same clustered pattern was also observed in live 

cells (Figure 3.3. Panel E ) confirming that the observed expression pattern was 

not a consequence of the process of either fixation or permeabilisation. PC 12 cell 

differentiation and process extension are not a prerequisite for sorting of the 

G A B A A R (33 to the plasma membrane since undifferentiated P C I 2 cells also 

expressed the G A B A A R P3 subunit at the cell surface with a similar distribution 

pattern (Figure 3.3. Panel F and G ) . Panel G shows a higher magnification image 

of the clustered distribution of p3-complexes expressed in the cell shown in Panel 

F . 

Co-transfection of PC 12 cells with the G A B A A R a l and G A B A A R P3 subunits 

showed that when co-expressed with the G A B A A R P3 subunit, the G A B A A R a l 

subunit was also sorted to the cell surface where the G A B A A R a l subunit also 

assumed a clustered distribution on both the cell soma and neurites in a pattern 

similar to G A B A A R P3 subunit itself. G A B A A R a lp3 subunit complexes were 

double immunolabelled on live cells using fluorescently-tagged subunit-specific 

antibodies (Figure 3.3. Panels H and I, clusters indicated by arrows). Both 

subunits are clearly co-localise on the surface. Co-expression of the G A B A A R y2s 

subunit with G A B A A R a l and P3 subunits neither altered the relative cell surface 
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distribution of the receptor complex (e.g. cell bodies vs. neurites) nor the pattern 
of cell surface clustering (Figure 3.3. Panels J and K). 
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Figure 3.3. Localisation of GABAAR subunits expressed in PCI2 cells. 

Panels A and B: Localisation of the recombinant GABA A R oil subunit homo-oligomeric 

complexes expressed in differentiated PCI2 cells. Panel B: live cells immunolabelled with the 

GABA A R a l subunit-specific monoclonal antibody, bd24, and visualised with TRITC-conjugated 

anti-mouse IgG specific-antibody. Panel A: Fixed and permeabilised cells visualised with the 

GABA A R a l subunit-specific monoclonal antibody, bd24, and visualised with TRITC-conjugated 

anti-mouse IgG specific-antibody. 

Panels C and D: Differentiated PCI2 cells transfected with the GABA A R (33 subunit cDNA. 

Panel C: Fixed and permeabilised cells were immunolabelled with the GABA A R (33 subunit-

specific monoclonal antibody, bd-17, and visualised with TRITC-conjugated anti-mouse IgG 

specific-antibody. Panel D: same cell as in Panel C except cells were immunolabelled with anti-

spectrin antibody and visualised with FITC-conjugated anti-rabbit IgG specific-antibody. 

Panels E, F and G: PCI2 cells transfected with the GABA A R (33 subunit cDNA and 

immunostained live with the GABA A R P3 subunit-specific monoclonal antibody, bd-17, and 

visualised with TRITC-conjugated anti-mouse IgG specific-antibody. Panel E shows a 

differentiated cell while Panel F shows an undifferentiated PC 12 cell, Panel G shows an 

enhanced section of the cell shown in Panel F. 

Panels H and I : Cell surface expression of GABA A R a l (33 complexes immunolabelled with 

the GABA A R a l subunit-specific monoclonal antibody, bd24, and with the rabbit polyclonal 

GABA A R (3 subunit-specific antibody, anti-(3-102/103, which recognises all three GABA A R (3 

subunit isoforms, GABA A R p i , p2 and (33 subunits, for the P3 subunit. Panel H : GABA A R aip3 

receptors expressed in PC 12 cells immunostained, live, for the GABA A R a l subunit and 

visualised with TRITC-conjugated anti-mouse IgG specific-antibody. Panel I , same cell as Panel 

F except cells were immunostained, live, for the GABA A R p3 subunit and visualised with FITC-

conjugated anti-rabbit IgG specific-antibody. 

Panels J and K : Differentiated PC12 cells coexpressing recombinant GABA A R a l , P3, and 

y2s subunits, immunolabelled live for the GABA A R a l subunit with the antibody, bd24, and 

visualised with TRITC-conjugated anti-mouse IgG specific-antibody (Panel J) and with Bodipy-

Ro-1986 for the GABA A R aip3y2s complex (Panel K) . 

Scale bars for all panels: lOum except Panel G: 2um. 
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Figure 3.3.Localisation ofCiABAjR subunits expressed in PC 12 cells 
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3.2.4. Rescue of al from the endoplasmic reticulum by f3 submits anchors 

receptors on the cell surface 

To gain insight into the mechanisms that might govern G A B A A R distribution, 

the lateral mobility of receptors expressed on the cell surface of transfected 

COS7, HEK293 and PC 12 cells was measured by FPR as described in methods 

(2.2.7.)- Table 3.1., shows the results of experiments performed to calculate the 

average fraction of recombinant G A B A A R S that were mobile on the time scale of 

the experiment (% Recovery). Representative FPR recovery curves are shown in 

Figure 3.4. 

Table 3.1. A summary of the measured lateral mobilities of recombinant 

GABAARS expressed in PC 12, COS7, and HEK293 cells. 

GABAAR-subunits 

transfected 

Cell type Mobile Fraction 

(% Recovery) 

n 

ctip3y2s COS7 17+/-4 24 

aip3y2s HEK293 74+/-12 10 

al(33y2s PC12 27+/-11 13 

FPR analysis of recombinant GABAAaip3y2s subunit-containing receptors 

transiently expressed in three different types of cells, revealed that the rates of 

receptor lateral mobility were not the same for each cell line. In COS7 and PC 12 

cells almost 80% of expressed GABA Aaip3y2s receptors had a restricted 

mobility, however, when the lateral mobilities of GABA A aip3y2s receptors 

expressed in HEK293 cells were examined, receptors had free and unrestricted 

mobility, as defined by the 74 ± 12% recovery of fluorescence following 

photobleach. 
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Figure 3.4. Typical FPR recovery curves obtained from al(33y2s recombinant GABA A R 

expressed in COS7 cells (A), PC 12 cells (B) and HEK293 cells (D) 
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3.3. Discussion 

This study demonstrates that when the G A B A A R a l subunit is expressed alone 

in HEK293, COS7, and PC12 cells it is retained in an intracellular compartment, 

unable to be ferried to the cell surface. This retention is consistent with the 

abundance of intracellular G A B A A R a l subunits seen in cerebellar granule 

neurons (Somogyi et al., 1989). However, it has been reported that G A B A A R 

subunits have the potential to assemble as both homo- and heteromeric receptors 

(Blair et al., 1988; Pritchett et al., 1988 and 1989; Verdoorn et al., 1990). 

Although, homomeric expression of receptor subunit has proven controversial. In 

the case of pi and P3 subunit functional CI* channel have been reported on 

expression in a range of heterologous systems (Sigel et al., 1989; Connolly et al., 

1996b; Krishek et al., 1996), in agreement with the cell surface expression of 

homomeric pi and P3 subunit receptors presented in this chapter. In contrast, 

homomeric expression of the a l or P2 subunits produces functional expression in 

some cases (Blair et al., 1988) but not others (Sigel et al., 1990; Connolly et al., 

1996b). The reasons for these discrepancies remain unclear, differences in the 

species of cDNA used may be of significance. Another explanation is that some 

expression systems may produce trace levels of G A B A A R subunits, which may 

complicate the interpretation of homomeric expression. 

In this chapter a typical E R distribution of recombinantly expressed G A B A A R 

a l subunit is shown in all cells tested, suggesting that the G A B A A R a l subunit 

does not acquire the necessary structural conformation required to exit the E R . 

Intracellular retention of the G A B A A R otl subunit in neurons and in transfected 

cells have been reported also by Connolly et al. (1996a) and Gorrie et al. (1997), 
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and likely reflects a mechanism that ensures that G A B A A R a l subunit homomers 

are not expressed on the cell surface. One possible explanation for these results is 

that G A B A A R a l subunit could have a specific E R retention signal. However, 

inspection of the G A B A A R a l subunit sequence shows no classical C-terminal 

K D E L E R retention signal (Pelham, 1990). Presumably single G A B A A R a l 

subunits are retained in the ER via the interaction with chaperone proteins such as 

calnexin and BiP (Connolly et al., 1996a). 

The results obtained with transfected COS7, HEK293 and PC 12 cells show that 

the G A B A A R P3 subunit is able to transport the G A B A A R a l subunit from its 

intracellular localisation to the cell surface. How does the G A B A A R (33 subunit 

aid in cell surface expression of the G A B A A R a 1 subunit? One possibility is that 

assembly of G A B A A R P3 subunits with G A B A A R a l subunits masks an ER 

retention signal on the G A B A A R a l subunits, thus permitting its exit from the ER 

and allowing it to be transported to the cell surface using the cell surface transport 

signal of the G A B A A R P3 subunit. Alternatively, a conformational change 

induced by the coassembly of both subunits might expose a targeting signal 

present in the G A B A A R a l subunit sequence allowing it to exit from the ER. 

Chaperone-like effects of channel subunits have been reported for K + channels 

(Shi et al., 1996). Further, despite the potential of all subunits to assemble, it is 

possible that neurons have an additional level of control that architecturally edit 

certain G A B A A R complexes prior to their exit from the E R (Klausner, 1989) 

and/or Golgi. This interpretation is consistent with the results obtained in this 

chapter, and with recent experiments showing that, despite consistently high 

GABA A R a l subunit mRNA levels, GABA A R a l subunit polypeptide is only 
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expressed on the cerebellar granule cell surface late in development, coincident 

with the expression of both GABA A R p2/p3 and y2 subunit mRNAs and proteins 

(Nadler et al., 1996). 

The role of P subunit in targeting G A B A A R S has been previously reported. The 

pi subunits were proven to re-route the a l subunits from the basolateral to the 

apical membrane of transfected MDCK cells (Velazquez and Angelides, 1993). 

Similar experiments using again MDCK cells drew the same conclusions 

(although with some divergences regarding a l subunit localisation) that the P 

subunit is the one which controls the subcellular distribution of G A B A A R S , and 

that P subunit can selectively target G A B A A R s to distinct cellular locations 

(Connolly et al., 1996b). Connor et al. (1998) also proposed that a p subunit was 

necessary for G A B A receptor assembly and expression on the cell surface. 

Following the injection of a G A B A A R a l subunit tagged at the C-terminus with a 

green fluorescent protein into Xenopus oocytes either alone, or in combination 

with other subunits, they observed that the fluorescence was associated with the 

plasmalemma only when the p2 subunit was co-injected with the a l . 

Recently, Taylor et al. (1999), using a chimeric approach, have identified four 

amino acids in the N-terminal domain of the P3 subunit that mediate subunit 

homo-oligomerization and cell surface expression. Presumably this assembly 

signal within the p3 subunit will interact in concert with other as yet undefined 

assembly signals to ensure the fidelity of G A B A A R assembly. 

In COS7, HEK293 and PC 12 cells, G A B A A R P3, aip3 and alp3y2s 

complexes are clustered on the cell surface. The clustering of recombinant 
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G A B A A R S in non-neuronal cells suggests that clustering might be encoded, in 

part, by the subunits contained within the receptor complex. Homo-oligomeric 

G A B A A R PI and P3 subunit-containing receptors demonstrate clustering, 

suggesting that the information orchestrating receptor clustering is encoded in the 

G A B A A R P subunit sequence. However, G A B A A R P3 subunits do not appear to 

specify cell surface distribution, because no differences were observed between 

the expression patterns of G A B A A R P3 subunit on cell bodies versus neurites in 

PC 12 cells, despite their highly differentiated morphology. 

In addition, the G A B A A R y2s subunit was not able to transport the G A B A A R 

a l subunit to the cell surface. These data are in agreement with the observations 

of Connolly et al. (1996a) and Gorrie et al. (1997) and indicate that the G A B A A R 

y2s subunit is not required for translocation of functional G A B A A R S to the cell 

membrane. 

Despite their ability to direct G A B A A R surface expression and receptor 

clustering, G A B A A R P3 subunit homo-oligomeric complexes remain mobile 

either over the cell surface shown by FPR or within a 1.4-2.0 um2 domain as 

revealed by Single Particle Tracking (SPT) (Peran et al., submitted). Anchoring 

of receptors appears to be a property that is endowed by the G A B A A R a l 

subunit, since its inclusion in the receptor complex confers immobility at least in 

COS7 and PC 12 cells (Peran et al., submitted). This suggestion is consistent with 

the finding that G A B A A R S are clustered and immobile on hippocampal and 

cortical neurons (Velazquez et al., 1989). Furthermore, the immobility of the 

G A B A A R aip3y2 complex is also consistent with "Type I" receptors, to which 

both G A B A A R otipiy2 and alp3y2 belong (Lo et al., 1982), which by 
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"operational" criteria have been found in Triton X-100 insoluble fractions 

associated with the cytoskeleton. 

The molecular elements, however, that interact with the G A B A A R otl subunit 

and mediate clustering and restrict receptor lateral mobility are not known. The 

precise intermediate subplasmallemal element(s) that interact with G A B A A R 

complexes are likely to be unique because, while other ion channels and receptors 

interact with the ankyrin-based cytoskeleton, G A B A A R S do not (Srinivasan et ai, 

1988). FPR experiments on COS7 and PC 12 cells suggest that a cytoskeletal 

linking protein other than ankyrin, found within both COS7 and PC 12 cells, 

serves to link G A B A A R s . Furthermore, the finding that receptors are freely 

mobile in HEK293 cells demonstrates that these cells likely lack those proteins. 

Another possible explanation for the differences in mobility found between 

expressed G A B A A R S in COS7, PC 12 and HEK293 cells could be different levels 

of expression between these expression systems. A large expression level of 

G A B A A R subunits transfected in HEK293 cells in comparison with COS7 and 

PC 12 cells could determine the unrestricted mobility found in these cells. If the 

number of expressed receptors exceed the number of native possible anchoring 

proteins, then the transfected receptors will not "find enough proteins" to bind 

and consequently these receptors will diffuse freely. But differences in expression 

levels, based on differences in fluorescence emission of the transfected cells 

labelled with specific antibodies, were not detected. This result was not 

unexpected taking into account that the expression of the transfected subunit, in 

every expression system used, was under the control of the eukaryotic 

cytomegalovirus (CMV) promoter. Thus, the expression of foreign proteins was 
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in every case much enhanced in comparison with expression of endogenous 

proteins. 

In addition, the free mobility of recombinantly expressed GABA A R aip3y2s 

receptors found in HEK293 cells and their clustered distribution, suggest that 

clustering per se, is not the mechanism by which receptors are immobilized. 

This study shows that constraints on the cell surface lateral mobility of 

G A B A A R s are specified by the G A B A A R a l subunit. G A B A A R a l subunits are, 

however, sequestered in an internal cellular compartment prior to their 

coassembly with G A B A A R P subunits. This is a novel function for a G A B A A R 

subunit and shows that in addition to their role in specifying receptor function, a 

subunit codes for receptor anchoring. In analogy with other ion channels 

concentrated at distinct neuronal membranes domains, cytoskeleton associated 

proteins may anchor G A B A A R s by linking to specific receptor subunits. In fact, 

the interaction of the G A B A A R a l subunit with two main cytoskeletal 

components, tubulin and actin, has been proven by Kannenberg et al. (1997). 

They used the specific a l subunit monoclonal antibody bd24, (Ewert et al., 1990) 

to isolate proteins associated with G A B A A R s via coprecipitation with the 

receptors from solubilised calf brain membranes. In addition to the above 

mentioned proteins, tubulin and actin, at least three other intracellular G A B A A R S 

associated proteins were found. 

There is emerging evidence that in spite of the high levels of specific G A B A A R 

subunit mRNAs expressed by individual neurons at specific times during 

development, the corresponding G A B A A R subunit polypeptide is not always 

expressed on the cell surface (Killisch et al., 1991; Jones et al., 1997). The 
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intracellular rescuing and sorting of the G A B A A R a 1 subunit by the G A B A A R P 

subunits suggest that the ability of neurons to control assembly and incorporate 

specific subunits from an internally sequestered pool might give rise to a 

population of G A B A A R S that are spatially segregated and immobilized on the cell 

surface. ThUs,: the composition and location of G A B A A R S expressed on the cell 

surface during development or plasticity-induced changes might depend on the 

temporal availability of a specific subunit required for assembly and may be 

controlled at the level of translation and/or subunit assembly, rather than at the 

transcriptional level. Indeed, studies have shown that cerebellar granule cells are 

able to modulate their expression of G A B A A R otl and ct6 subunit-containing 

receptors in response to cAMP-mcdiated signalling (Thompson et al., 1996). The 

recruitment of specific subunits into complexes and their immobilisation at 

specific domains provides a mechanism by which receptors can be anchored at 

discrete sites on the neuron's cell-surface. 
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Chapter Four 

Anchoring of GABAA receptors: subunit specificity 

4.1. Introduction 

The vast array of G A B A A R a, p, and y subunit isoforms, the biochemical 

identification of receptor subunit composition (McKernan and Whiting, 1996), 

allied with differential distribution of the G A B A A R ccl (Zimprich et al., 1991), 

ct3 (Turner et al., 1993), a5 (Richards et al., 1987), and p2/3 subunits (Nusser et 

al., 1996; Richards et al., 1987; Houser et al., 1988) has raised the question of 

whether, in addition to creating physiological and pharmacological differences, 

the composition of the receptor might determine its distribution and maintenance 

on the nerve cell surface. Recent studies on cerebellar granule cells have shown 

that G A B A A R a6 and a l subunit-containing receptors are co-localized at many 

GABAergic Golgi synapses (Somogyi et al., 1989; Baude, et al., 1992). However 

oc6-, but not a 1-containing receptors, are concentrated at glutamatergic mossy 

fiber synapses (Nusser et al., 1996). These studies suggest that G A B A A R 

subunits can be differentially targeted to specific domains on the surface of the 

same neuron. In addition to differential targeting, G A B A A R S are also found to 

form clusters. As described in Chapter 3, recombinant G A B A A R S expressed in 

COS7, HEK293 and PC 12 cells are found clustered at the cell surface. Likewise, 

G A B A A R S are found in clusters on cultured neurons, even in regions with no 

apparent synaptic contact (Caruncho et al., 1993; Craig et al., 1994). The 

clustering of recombinant G A B A A R S in non-neuronal cells suggests that this 

property might be encoded by the subunit composition. 
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It was shown in Chapter 3 that when a l homo-ologomeric recombinant 

G A B A A R S were expressed in COS7, HEK293 or PC 12 cells they were retained 

in the endoplasmic reticulum. G A B A A R pi and P3 subunits, however, were 

sorted to the plasma membrane where they formed clusters. When G A B A A R ctl 

and P3 subunits were co-expressed in these cells, the p3 subunit rescued the 

intracellularly restrained G A B A A R oil subunits allowing the transport of the 

G A B A A R aip3 complex to the cell surface where they formed co-localized 

clusters. Inclusion of a l in p3 or p3y2s complexes, however, dramatically 

reduces the receptor's lateral mobility and anchors G A B A A R S on the cell surface 

suggesting the formation of a direct link to a component of the cytoskeleton 

(Peran et al., submitted). These results imply that the differences in mobility 

might be related to the G A B A A R ' S composition possibly encoded by the a-

subunit included in the complex. And raise the question as to whether the p3 

subunit might serve to cluster or aggregate receptors while a" subunits provide 

those links for anchoring. 

The work described in this chapter aimed to address these issues. Thus, a range 

of recombinant G A B A A R s of the form axP3y2s, where x = 1,2, 3, 4, 5 or 6, were 

expressed in COS7 and HEK293 cells. The lateral mobilities of these 

recombinant receptors were subsequently analysed by FPR. In addition, the 

lateral mobility of endogenous G A B A A R S was measured in cultured rat cerebellar 

granule cells. These studies enabled a direct comparison between defined 

recombinant receptors in transfected cells and native receptors in neurons, to 

reveal whether differences in mobility of the receptor are linked to its subunit 
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composition and whether the neuron imposes additional restraints on their 
mobility. 
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4.2. Results 

In order to examine the role that each of the G A B A A R a subunits plays in 

G A B A A R receptor dynamics, the lateral mobility of recombinant GABAARS, in 

which each of the six different G A B A A R a subunits were co-expressed with 

G A B A A R p3 and y2s subunits in HEK293 and COS7 cells was measured by FPR 

(methods, 2.2.7.). For cell transfection see methods 2.2.3. Experiments performed 

on recombinant receptors expressed in non-neuronal cells were followed by 

studies on native G A B A A R a l and a6 subunit-containing receptors expressed in 

rat cerebellar granule cells. Ten to twenty recordings were made on each cell 

preparation. Furthermore, experiments were repeated at different days post-

transfection with little variation in the receptor mobility as shown in the 

following figures. Results presented in Figure 4.1. are for HEK293 cells, in 

Figure 4.2. for COS7 cells and in Figure 4.3. for cerebellar granule cells. 
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Figure 4.1. The mobile fraction (% Recovery) of recombinant GABA A a(l-6)P3y2s receptors 

expressed in HEK293 cells was determined, at different days, by FPR as described in methods, 

2.2.7. The boundaries of the boxes closest to, and furthest from, zero indicate the 25th and 75th 

percentiles. The thin and thick lines with the box mark the median and mean of the data, 

respectively. Bars above and below the box indicate the 90th and 10th percentiles. Outlying points 

are also indicated. 
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Figure 4.2. The mobile fraction (% Recovery) of recombinant GABA A a(l-6)(53y2s receptors 

expressed in COS7 cells was determined, at different days, by FPR as described in methods, 

2.2.7. The boundaries of the boxes closest to, and furthest from, zero indicate the 25th and 75th 

percentiles. The thin and thick lines with the box mark the median and mean of the data, 

respectively. Bars above and below the box indicate the 90th and 10th percentiles. Outlying points 

are also indicated. 
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Figure 4.3. The mobile fraction (% Recovery) of native GABA A R a l subunit-containing and 

GABA A R a6 subunit-containing receptors expressed in primary cultured rat cerebellar granule 

cells was measured by FPR as described in methods, 2.2.7. Four different cultures of cerebellar 

granule cells assayed at 7-9 days in vitro are presented. 10-20 cells were analysed per culture. The 

boundaries of the boxes closest to, and furthest from zero indicate the 25th and 75th percentiles. 

The thin and thick lines with the box mark the median and mean of the data, respectively. Bars 

above and below the box indicate the 90th and 10th percentiles. Outlying points are also 

indicated. 
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4.2.1. Lateral mobility of recombinant GABAAR complexes containing different 

a subunits expressed in COS7 and HEK293 

The lateral mobility coefficients of recombinant GABAARS, of the form of 

ocxP3y2s, where x = 1, 2, 3, 4, 5 or 6, expressed in HEK293 cells and COS7 cells 

were determined by FPR. The results are summarised in Tables 4.1. and 4.2. 

respectively. Recombinant G A B A A receptors comprising the a( l , 2, 3 or 5)(33y2s 

combinations are benzodiazepine agonist sensitive and therefore were amenable 

to labelling with the fluorescent benzodiazepine-derivative, Bodipy-Ro-1986. 

G A B A A receptor a6 subunit-containing receptors, which are insensitive to 

benzodiazepine-agonists, were labelled with Bodipy-Fab' fragments of the a6 

subunit-specific antibody (methods 2.2.6.). In addition, G A B A A receptor a l 

subunit-containing receptors were also studied with Fab' fragments of the a l 

subunit-specific antibody, the monoclonal antibody, bd24. This antibody which 

specifically recognizes the bovine and human G A B A A R a l subunit was digested 

with papain generating the Fab' fragments (methods 2.2.5). This was required to 

avoid crosslinking of a l subunit-containing receptors by the bifunctional, intact 

antibody, in the FPR experiments. The principal sites of papain cleavage are 

found on the amino-terrninal side of the disulfide bonds that hold the two heavy 

chains of the antibody molecule together. Therefore, digestion with papain 

releases two antigen binding domains and one Fc fragment. 

The results obtained when G A B A A receptors were expressed in HEK293 cells 

(Table 4.1.), showed that all G A B A A receptor complexes, irrespective of the a 

subunit isoform that was transiently co-expressed with P3 and y2s subunits, were 

mobile and encountered little, i f any, restriction to their cell surface mobility. The 
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recovery curves obtained for every cell preparation analysed demonstrated that 

approximately 80% of the labelled receptors were diffusely distributed and freely 

mobile with diffusion coefficients of the order of 10"10 cm2/s. 

Table 4.1. FPR measurements of recombinant GABAARS expressed in HEK293 

cells 

GABAAR-
subunits 

transfected 

Label Mobile 
Fraction 

(%) 

Diffusion Coef. 
(xl<r"'cm2/sec) 

n 

<xip3y2s Bodipy-Ro-1986 74+/-15 2.6+/-0.9 15 

al(J3y2s Fab'-al 74+/-12 2.6+/-0.5 11 

a2p3y2s Bodipy-Ro-1986 79+A-6 5+/-1.5 15 

a3|33y2s Bodipy-Ro-1986 82+/-10 5.84+/-1.9 14 

a4p3y2s Bodipy-Ro-1986 88+/-6 5+/-1 17 

a5p3y2s Bodipy-Ro-1986 84+/-8 4+/-1.8 14 

a6p3y2s Fab'-a6 67+/-12 0.8+/-0.2 14 

However, when G A B A A receptors were expressed in COS7 cells, they showed 

differential lateral mobilities depending upon which G A B A A R a subunit isoform 

was expressed in the complex (Table 4.2.). Approximately 80% of both a l and 

a6 subunit-containing receptors were immobile in COS7 cells. In contrast, al, 

a3, a4 and ct5 subunit-containing receptors were relatively mobile. The lateral 

mobility coefficients of these receptors paralleled those found when they were 

expressed in HEK293 cells. The relative immobility of G A B A A R a l subunit-

containing receptors in COS7 cells was confirmed by labelling with Fab' 

fragments of the G A B A A R oil subunit-specific antibody. 
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Table 4.2. FPR measurements of recombinant GABA^Rs expressed in COS7 cells 

GABAAR-
subuntis 

transfected 

Label Mobile 
Fraction 

(%) 

Diffusion Coef. 
(xHr'°cm3/sec) 

n 

aip3y2s Bodipy-Ro-1986 17+/-4 0 24 

aip3y2s Fab'-al 17+/-5 0 10 

a2p3y2s Bodipy-Ro-1986 67+/-10 1.4+/-0.9 13 

a3p3y2s Bodipy-Ro-1986 49+/-10 1+/-0.6 16 

<X4P3Y2S Bodipy-Ro-1986 60+/-7 0.5+/-0.1 10 

a5p3y2s Bodipy-Ro-1986 63+/-9 0.6+/-0.2 16 

a6p3y2s Fab'-a6 18+/-11 0 19 

Mobile fractions or percentage of recovery of the order of 20% can be 

considered to reflect total receptor immobility, see rationale in Methods 

(2.2.7.3.). 

The lateral mobility coefficients of G A B A A R ct2, oc3, a4 and a5 subunit-

containing receptors are typical of most membrane glycoproteins, which have 

diffusion coefficients in the range of 10-1 0- 1 0 n cm2/s but is different from the 

free and rapid mobility of membrane lipids (xlO"9 cm2/s). The reduced rate of 

lateral movement of the a4 and aS subunit-containing receptors (in the range of 

10'11 cm2/s) relative to other a subunit-containing receptors, might be a 

consequence of the long cytoplasmic loops between transmembrane domains 3 

and 4 of the a4 and a5 subunits, that might encounter cytoplasmic barriers 

limiting the rate of diffusion. 

To illustrate the differences between the membrane dynamics of the 

recombinantly expressed receptors in HEK293 and COS7 cells, the mobile 

fraction (% Recovery) of expressed receptors are compared (Figure 4.4.). It is 
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clear that in every experiment performed the fraction of expressed receptor able 

to move in HEK293 was always higher than in COS7 cells. 
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Figure 4.4. Histogram comparing the mobile fraction (% Recovery) of recombinant GABAARs 

in HEK293 and COS7 cells. 
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4.2.2. Mobility of native GABAARs 

FPR measurements of recombinant GABAA receptors expressed in both 

HEK293 and COS7 cells provide insights into the mechanisms, intrinsic to the a 

subunit isoform introduced into the receptor complex, that contribute to the 

modulation of the receptor's cell surface dynamics. However, in addition to the 

intrinsic dynamic properties that are endowed by the subunit's amino-acid 

sequence, revealed by expressing different a subunit-containing receptors in non-

neuronal cells, additional neuron specific mechanisms that exploit the molecular 

differences between the subunits are likely. Measurements of the lateral mobility 

of native GABAA al and a6 subunit-containing receptors expressed in cultured 

cerebellar granule cells showed that nearly all of these receptors were immobile 

(see rationale 2.2.7.3.) (Table 4.3.). Cerebellar granule cells express al, a6, and 

ala6 subunit-containing receptors (Pollard et al., 1995; Khan et al., 1996, 

Jechlinger et al., 1998). The use of Bodipy-Ro-1986 to label the cells do not 

report the individual contributions of the al or a6 subunits to the receptor 

mobilities. A recent report based upon the direct binding of flunitrazepam to 

recombinant al and a6 subunit-containing receptors showed that both receptor 

types bind flunitrazepam (a benzodiazepine full-agonist) with similar affinity 

(Hauser et al., 1997). At the concentration of the fluorescent benzodiazepine 

probe, Bodipy-Ro-1986, used (20 nM) in these experiments, it would be expected 

that the mobilities of both al and a6 subunit-containing receptors in cerebellar 

granule cells were measured. To learn more about the contribution of each of 

these subunits to the mobility of the complexes, the mobility of a6 subunit-

containing receptors was examined further, using a6 subunit-specific antibody 
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Fab' fragments. The results of these FPR experiments showed no recovery of the 

fluorescence following photobleach (Table 4.3.), indicating that a6 subunit-

containing receptors are immobile in cerebellar granule cells. Studies have 

reported that 45% of GABAARS in cerebellar extracts contain a6 subunits 

(Jechlinger et al., 1998) in agreement with Pollard et al. (1995), Khan et al. 

(1996) and Jones et al. (1997). Thus, by using a6 subunit-specific Fab' fragments 

as a probe, almost half of the total number of GABAARS expressed by the 

cerebellar granule cells were tested and these receptors were immobile on the cell 

surface. By inference from the results obtained when cells were labelled with 

Bodipy-Ro-1986, a l subunit-containing receptors expressed by cerebellar 

granule cells must be also immobile. 

Table 4.3. FPR measurements of native GABAARS in cerebellar granule cells 

Label Mobile Fraction (%) it 
Bodipy-Ro-1986 18+/-4 13 

Fab'-a6 23+/-3 13 

4.2.3. Is receptor clustering responsible for differences in receptor dynamics? 

It was considered that the reported differences in the lateral mobilities of 

GABAARS comprising different a subunits might be a result of varying degrees 

of receptor clustering. A Pearson's correlation analysis (2.2.8.) was carried out to 

study the relationship between the fluorescent intensity (number of counts 

recorded) immediately prior to the bleach (PC) with the mobile fraction (MF) and 

diffusion coefficients (DC) for each experiments. No significant correlation 

(a=0.05) was found for any of the measurements performed on cerebellar granule 
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cells (Table 4.4.), HEK293 cells (Table 4.5.) nor for COS7 cells (Table 4.6.). 

Therefore the above possibility was rejected. 

Table 4.4. Pearson's correlation analysis for FPR measurements of GABAA 

receptors expressed in cultured cerebellar granule cells 

Native GABAAR 
labelling 

PC/MF PC/DC if 

Bodipy-Ro-1986 0.045 — 24 
Fab'-<x6 -0.48 - 19 

Table 4.5. Pearson's correlation analysis for FPR measurements in recombinant 

GABAA receptors expressed in HEK293 cells 

GABAAR-subunit 
transfected 

PC/MF PC/DC n 

aip3y2s 0.045 -0.25 24 
a2P3y2s 0.38 -0.18 13 
a3P3y2s -0.004 -0.2 16 
a4P3y2s -0.1 -0.15 10 
a5P3y2s -0.25 -0.42 16 
a6P3y2s -0.48 -0.38 19 

Table 4.6. Pearson rs correlation analysis for FPR measurements in recombinant 

GABAA receptors expressed in COS7 cells 

GABAAR-subunti 
transfected 

PC/MF PC/DC n 

<xiP3y2s -0.07 — 24 
<x2P3y2s -0.31 -0.23 13 
a3P3y2s -0.37 -0.07 16 
a4P3y2s 0.03 -0.5 10 
a5p3y2s -0.4 -0.58 16 
o6P3y2s -0.53 - 19 
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4.2.4. Comparison of the predicted secondary structures 

Network protein sequence @nalysis at IBCP, France (methods 2,2.9 ), was 

used to compare the predicted secondary structures of the cytoplasmic domains of 

a l , a2, a3, a4, a5 and a6 subunits. No common feature attributable to a l and 

a6 subunits that discriminated them from the a2, a3, a4, a5 subunits was found. 

Each of the cytoplasmic domains are characterised by short regions of a-helical 

structure as the cytoplasmic loop emerges from M3 and a high degree of coil 

structure toward the C-terminal region of the domain as it enters into M4. 

i 

i 
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4.3. Discussion 

The FPR results presented here on recombinant and native G A B A A receptors 

reveal that G A B A A R mobility at the cell surface is partly an intrinsic property of 

the oc-subunit isoform expressed in the receptor complex. While the global and 

cellular distribution of a subunit-containing receptors have been reported 

(reviewed in Stephenson, 1995; Darlinson and Albrecht, 1995), little information 

has emerged regarding the mechanisms that contribute to the differential 

localisation of a subunit-containing receptors on neurons. It is known that some 

neurons express several a subunit isoforms which in some cases co-exist within 

the same receptor complex, e.g. ala6 subunit-containing receptors in the 

cerebellar granule cells (Pollard et al., 1995; Khan et al., 1996 and Jechlinger et 

al., 1998 also reviewed in Darlinson and Albrecht, 1995). Furthermore, when 

p3y2s subunit-containing complexes were coexpressed with the al subunit in 

COS7 and PC 12 cells, the receptors were immobile (see Chapter 3). In this 

chapter, it has been shown that the ct6 subunit also confers receptor immobility 

when expressed with 03y2 subunits in COS7 and when analysed in primary 

cultured cerebellar granule cells. In contrast, recombinant G A B A A receptors 

comprising a2-5 subunits expressed with P3 and y2s subunits in COS7 cells were 

shown to be freely mobile on the cell surface. These results suggest that the 03 

subunit serves to cluster or aggregate receptors while in recombinant receptors 

expressed in COS7 cells and native receptors in cerebellar granule cells, the al 

and a6 subunits provide links, presumably to cytoskeletal elements, to anchor the 

receptors. HEK293 cells, on the other hand, seem to lack the essential elements 

required to immobilize G A B A A R al or a6 subunit-containing receptors, even 
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though the al and a6 subunit-containing receptors still form clusters on the cell 

surface (see Chapter 3 for al-containing receptors). Although certain subunit-

combinations are freely mobile when expressed in HEK293 and COS 7 cells this 

is not proof positive that these subunits are mobile when they are expressed in 

specific neurons. However, what these results do indicate is that the mechanism 

by which the al and a6 subunit-containing receptors are immobilised is distinct 

from that which might regulate the cell surface dynamics of a2-a5 subunit-

containing GABAAR, and extends to those neurons, cerebellar granule cells, 

which express al and a6 subunit-containing receptors. 

The immobility of recombinant aip3y2s (Type I) receptors and the relative 

mobility of a(2-5)P3y2s (Type JJ) receptors in these experiments correlates with 

the reported differences in Triton-X-100 extractability of Type I and Type I I 

benzodiazepine receptors (Lo et al., 1982). The a subunit variants provide the 

structural basis for Type I and Type U benzodiazepine receptors (Caruncho et al., 

1993; Pritchett et al., 1989b). Type JJ receptors, to which o2p(l/2/3)y2, 

a3P(l/2/3>/2, and a5p(l/2/3)y2 belong (Pritchett et al., 1989b; Hadingham et al., 

1993), are Triton X-100-soluble and are thought, on this basis, not to be attached 

to the underlying cytoskeleton. It is conceivable that mechanisms other than 

direct coupling to cytoskeletal elements, such as a subplasmalemal cytoskeletal 

barrier, may serve to compartmentalize a2-a5 subunit-containing receptors. On 

the other hand, Type I receptors, to which aip(l/2/3)y2 belongs are found in 

Triton X-100 insoluble fractions suggesting that they are associated with the 

cytoskeleton, which are often insoluble in nondenaturing detergents. 
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One of the striking features of G A B A A R a subunit isoforms is their high level 

of primary amino acid sequence homology. What features of the a-subunit, 

therefore, might contribute to their differential mobilities when measured by 

FPR? Is it possible to extract any information about the putative mechanisms by 

which the a l and a6 subunit-containing receptors might be anchored based upon 

similarities and differences between a-subunit sequences? Comparison of the 

primary amino acid sequence of the receptor subunits shows that they are highly 

homologous in the transmembrane and N- and C-terminal regions but differ most 

in the cytoplasmic loop between transmembrane domains 3 and 4, or M3/M4. 

Comparison of the primary sequences in this region of the sequence of the a 1 and 

a6 subunits, did not reveal any common element that might be responsible for 

receptor tethering at the cell surface. Similarly, there are no distinguishing 

features that differentiate the a l or a6 subunit cytoplasmic loop domains from 

those of the a2, a3, a4 or a5 subunits, other than the obvious differences in 

length and charge. The primary sequence, however, is unlikely to reveal subunit-

specific elements that might link receptors to the cytoskeleton. Interactions with 

the cytoskeleton have been shown to be complex (Sheets et al., 1995; Kusumi 

and Sako, 1996) and involve several interactions between regions of defined 

secondary, tertiary, or even quaternary structure. Again, comparison of the 

predicted secondary structures showed no common feature attributable to a l and 

a6 subunits that discriminated them from the a2, a3, a4, a5 subunits that might 

account for their differential mobilities. The failure to find any common motif in 

the secondary structure, however, is not unexpected since it is known that the 

binding of cytoskeletal proteins to membrane proteins involves interactions 
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between many specific motifs, for instance the binding of dystrophin to the 

dystrophin related glycoproteins (Suzuki et al., 1994, Suzuki et al., 1995), rapsyn 

to the AchR through the Zn + 2 finger domains (Scotland et al., 1993), gephryin to 

the glycine receptor (Kirsch et al., 1991; Kirsch and Betz, 1993) and the 

concentration of voltage-gated K + channels by the PSD-95 family of membrane-

associated putative guanylate kinases (Kim et al., 1995). Each of these protein-

protein interactions involves several regions of the protein. The G A B A A receptor 

is probably not an exception, interaction of the a 1 subunit, for instance, with its 

associating protein(s) is likely to be conferred by the acquisition of both tertiary 

structure and quaternary structure following assembly with p and/or y subunits. It 

is not known whether, for those receptors that contain more than one type of a 

subunit, one of the a subunits dominates in determining the mechanism of 

compartmentalisation of the receptor. In large part the immobilisation of a 

receptor is likely to be determined by those cytoskeletal structures that are found 

in different parts of the neuron as well as the specific subunit composition of the 

receptor. In this sense the differential localisation of the a l and a6 subunit-

containing receptors in cerebellar granule cells might result from the differential 

targeting of specific cytoskeletal elements that dictates the placement of the 

subunit rather than differential targeting of the subunit itself. 

In neurons that express two or more a subunits, are the same or different 

mechanisms used to cluster and segregate receptors? Immunocytochemistry of 

cerebellar granule cells, in situ, shows that the G A B A A R a l and a6 subunits can 

be found at the same synapse (Nusser et al., 1996). In cerebellar granule cells in 

vitro the clustered a l and a6 subunit-containing receptors are co-localized in the 
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same domain at synaptophysin positive sites (Gao and Fritschy, 1995). There is 

biochemical evidence from immunoprecipitation studies that support and argue 

against the coassembly of both a l and a6 subunits within the same G A B A A R 

complex (Quirk et al., 1994, Pollard et ah, 1995; Khan et al., 1996 and Jechlinger 

et al., 1998). Double-immunolabelling studies of clustered receptors on cultured 

cerebellar granule cell surfaces suggests that these subunits do not co-assemble in 

the same receptor complex (Caruncho et al., 1994). In this chapter, it has been 

shown, that these different receptors containing either the a l or a6 subunits have 

no lateral mobility when meassured by FPR. 

There has been considerable interest in trying to identify those cytoskeletal 

proteins that interact with GABA receptors and specify their localisation in 

neurons. Gephyrin has been reported to be involved in the clustering and 

postsynaptic positioning of GABAARs (Koulen et al., 1996), with the y subunit 

specifying gephryin-induced clustering (Essrich et al., 1998). Recently, Rapsyn, 

the 43kD protein associated with the nicotinic acetylcholine receptor, has been 

reported to anchor recombinant G A B A A R S that are composed of a l , p i , and y2s 

subunits in transfected cells (Yang et ah, 1997). However, it is known that these 

proteins, like all cytoskeletal proteins, associate non-specifically. It is therefore 

not known whether these proteins, although associating, contribute to the 

immobilisation of the a subunit-containing receptors in vivo. It was reported that 

erythrocyte ankyrin did not bind to purified GABAARs (Srinivasan et al., 1988). 

Although there are several ankyrin genes and spliced isoforms each of which 

have different membrane protein specificity. Thus, it is possible that there are 

ankyrin isoforms, ankyrin-like proteins, or new undiscovered proteins that 

associate with G A B A A R S with specific subunit compositions. Recently, a new 
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cellular protein has been identified, the GABA A receptor-associated protein 

(GABARAP) which interact with the y2 subunit of the GABA A R and links the 

complex to the cytoskeleton (Wang etal., 1999) 

The studies reported here reveal important differences in the dynamic 

behaviour of a l and ci6 subunit-containing receptors in non-neuronal and 

neuronal cells. Examination of the mobilities of recombinant receptors by FPR is 

important because, in contrast to in vitro reconstitution methods that report on the 

association of proteins but do not establish that these interactions contribute to the 

cellular localisation of the receptor, FPR allow the direct reconstitution of the 

cellular function by measuring the immobilisation of the receptor when the 

specific subunit containing receptors are expressed in neuronal cells or when co-

expressed with specific cytoskeletal elements 
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Chapter Five 

The M3/M4 cytoplasmic loop of al subunits are linked to 

immobilisation of GABAARS 

5.1. Introduction 

Receptors to glycine, acetylcholine, y-aminobutyric acid (GABA) and 

glutamate have all been shown to be clustered on neuronal postsynaptic 

membranes, although they are also present at extrasynaptic plasma membrane 

sites (Triller et al., 1985; Somogyi et al., 1989; Petralia and Wenthold, 1992; 

Baude et al., 1993; Craig et al., 1993). Their precise targetting to domains 

opposing appropriate presynaptic terminals implies a great degree of organisation 

and specificity. It remains to be established whether the neurotransmitter 

receptors are edited and routed to their final postsynaptic domains or whether a 

freely mobile pool of receptors is maintained on the cell surface that is recruited 

to a specific locality in response to neuronal demands. 

The previous chapters have provided evidence that there are differences in the 

lateral mobilities of GABAARs containing specific a subunit isoforms. The 

mobilities of recombinant a l and a6 subunit-containing ap3y2 receptors differ 

from those comprising a2, a3, a4 or a5 subunit-containing a£3y2 receptors 

when expressed in COS7 cells. The signals that specify mobility might be 

encoded in the primary sequence of the a subunit, although comparison of the 

primary sequences reveals no common motif in the a l and a6 subunits that 

would account for their relative immobility. Recently, the intracellular domains of 

some of the subunits of glycine and NMDA receptors have been implicated in the 

spatially distinct clustering of the complex (Kirsch et ah, 1993; Kornau et al., 1995; 
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Meyer et al., 1995; Ehlers et al., 1996). Because the major amino acid sequence 
divergence between a subunit isoforms is found in the M3/M4 cytoplasmic 
domain, it was hypothesised that this region might potentially mediate a-subunit 
specific associations with the cytoskeleton and/or confine receptors to specific 
neuronal domains. Furthermore, the M3/M4 cytoplasmic loop of the a 1 subunit 
might be responsible for the retention of recombinant a l subunit homo-oligomers 
in an intracellular compartment of HEK293 and COS7 cells, as reported in 
Chapter 3. 

In this chapter the role that the M3/M4 cytoplasmic loop of the a subunit plays 

in controlling receptor mobility, assembly and localisation has been explored. To 

do so a series of chimeric a l subunits were constructed. 

The first approach to determine whether the M3/M4 cytoplasmic loop of the 

a l subunit regulates receptor mobility was to transiently express a l subunits, 

which had been engineered such that the M3/M4 loop was deleted (alcD, see 

methods 2.2.2.10.), together with the p3 and y2s subunits in COS7 cells. The 

lateral mobility of these alcoP3y2s receptors was determined by FPR (2.2.7.), 

and compared to the lateral mobility coefficient of aip3y2s receptors. 

Furthermore, the mobilities of recombinant receptors containing p3y2s subunits 

coexpressed with chimeric a l subunits, where the M3/M4 cytoplasmic loop was 

replaced or exchanged with the M3/M4 cytoplasmic loops of a2, a3 and a6 

subunits (OCH-<XX(X=2,3,6)» see methods 2.2.2.10.) were also analysed. The lateral 

mobilities of these recombinant constructs would reveal whether the a subunit-

specific M3/M4 cytoplasmic loops were involved in the conferring of their 

unique differential mobilities to what were otherwise essentially aip3y2s 
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receptors. The final aim of this chapter was to attempt to gain insight into the role 

that the a subunit M3/M4 cytoplasmic loop domain plays in the process of 

receptor trafficking. Thus, chimeric a 1 subunits were transiently transfected into 

COS7 and HEK293 cells. The final localisation of the expressed receptors was 

subsequently determined by convential immunocytochemical approaches 

(methods, 2.2.4.) 
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5.2. Results 

5.2.1. Removal of the M3/M4 cytoplasmic domain of the a J subunit releases 

the lateral constraints imposed on GABAAR mobility 

In the previous chapter recombinant ocip3y2s and a6p3y2s receptors were 

transiently expressed in COS7 cells and using Bodipy-Ro-1989 as an FPR probe, 

shown to have restricted lateral mobilities relative to those receptors comprising 

the combinations a2, a3, a4 or a5p3y2s. I f the M3/M4 cytoplasmic loop of the 

a l subunit played a part in the interaction of the subunit with a component of the 

cytoskeleton, then expression of an a 1 subunit in which this domain had been 

excised might be expected to be freely mobile in the membrane. To examine the 

role that the M3/M4 cytoplasmic loop of the a l subunit plays in controlling 

receptor tethering, the rate of mobility of receptors comprising the truncated a l 

subunits, that lacked the M3/M4 loop domain, alcD> was measured and compared 

with normal and also chimeric a l subunit, alcH-containing receptors. The 

chimeric a l subunit was engineered such that the rat a l subunit cDNA, used in 

the previous studies, now consisted of the 5' end of the bovine a l subunit cDNA 

ligated to the 3' end of the rat a l subunit cDNA. This construct results in a 

translated a l subunit that has an amino acid sequence that is identical to that of 

the wild-type rat a l subunit with the sole exception of a single amino acid at the 

N-terminus that is an essential component of the epitope for the monoclonal 

antibody bd 24 (Ewert et al., 1990, see 2.2.2.10.). This enabled analysis of a l 

subunit-mobility by FPR using the Bodipy-labelled anti-al subunit-specific 

antibody (2.2.5. and 2.2.6.). A l l subsequent experiments were performed using 

this construct. The a lcH was also used to construct the excision construct, alcD 
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and the cytopasmic loop domain exchange constructs, acH-ax(x=2,3,6)- (2.2.2.10.). 
COS7 and HEK293 cells were transfected (methods, 2.2.3.) with 03 and y2s 
subunit cDNAs together with either the chimeric alcH subunit cDNA construct 
or the truncated CCICD subunit construct. The mobility of the expressed receptors 
was measured by FPR (see methods 2.2.7.). Transfected cells were labelled live 
with the fluorescent benzodiazepine Bodipy-Ro-1986 (Figure 5.1.) and with a 
Bodipy-labelled Fab' fragment of the monoclonal antibody, bd24 (Figure 5.2.). 
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Figure 5.1. Histogram showing the relative mobile fraction (% Recovery) of recombinant 

GABAAR <X1CHP3Y2S and alCDP3y2s expressed in HEK293 and COS7 cells. Receptors were 

probed with Bodipy-Ro-1986. Recombinant GABAA receptors, ctlCHP3y2s ( C H ) and alCDP3y2s 

( C D ) were transiently expressed in HEK293 and COS7 cells and subsequently labelled with 

Bodipy-Ro-1986 (40 nM). The mobile fraction (% Recovery) was determined by FPR as 

described in methods (2.2.7.) (n=15-20) 
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Figure 5.2. Histogram showing the relative mobile fraction (% Recovery) of recombinant 

GABAAR alcHP3y2s and cclcDp3y2s expressed in HEK293 and COS7 cells. Receptors were 

probed with Bodipy-Fab'-bd24. Recombinant GABAA receptors, alCHP3y2s ( C H ) and CC1CDP3Y2S 

( C D ) were transiently expressed in HEK293 and COS7 cells and subsequently labelled with 

Bodipy-tagged Fab' fragments of the monoclonal antibody, bd24. The mobile fraction (% 

Recovery) was determined by FPR as described in methods (2.2.7.)(n=15-20) 

Recombinant GABA A Rs, alCHP3y2s (CH, control) and alCDp3y2s (CD, a l 

subunit with the M3/M4 cytoplasmic loop excised) were expressed in HEK293 

cells and analysed by FPR following labelling with either Bodipy-Rol989 (labels 

assembled receptors, Figure 5.1.) or Bodipy-Fab1 bd 24 (labels a l subunit, Figure 

5.2.). No statistically significant difference in the mobile fraction (% Recovery) 

of control (CH) and truncated (CD) receptors was observed using either probes 

(2.2.8.). Using Bodipy-Rol989, the mobile fraction for CH was 55 (± 14)% and 

for CD 67 (± 7)%, when these receptors were probed with Bodipy-Fab' bd24 

these values were 50 (± 14)% for CH and 55 (± 8)% for CD (Figure 5.1.). 

These values are similar to those obtained with the wild type a l subunit (see 

Chapter 3 and 4). 
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In contrast, when the same receptors where expressed in C0S7 cells, a 

statistically significant difference in the mobilities of CH and CD were observed 

(2.2.8.). Using the 'assembled receptor' probe, Bodipy-Rol989, only 29 (± 8)% of 

CH receptors were freely mobile, whilst 75 (± 10)% of CD receptors were 

untethered (Fig. 5.1.). These values were 35 (± 10)% and 55(± 19)% when 

probed with Bodipy-Fab' bd24 (Fig. 5.2.). 

In addition to the FPR measurements, the cellular distribution of recombinant 

ctlcHP3y2s and alcoP3y2s receptors was studied by immunocytochemistry 

(2.2.4.) using the Bodipy-Fab' bd24 antibody ( a l ) and bdl7 antibody (p3) in 

HEK293 cells (Figure 5.3) and COS7 cells (Figure 5.4.). The figures show that 

both alcHp3y2s (Panels A, a l and B, P3) and alcoP3y2s (Panels C, a l and D, 

P3) were expressed in clusters on the surface of live HEK293 and COS7 cells. 

Despite the clear difference in the percentage of relative mobile fractions of 

alcHP3y2s and alcoP3y2s receptors expressed in COS7 cells, both receptor types 

are clustered at the cell surface. This implies that receptor aggregation does not 

govern receptor mobility. 
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Figure 5.3. Cell surface expression of alcHf53y2s and aJcD03y2s GABAARS in 

HEK293 cells. 

Panels A and B: HEK293 cells were cotransfected with the OCICH chimera 

cDNA, together with p3 and y2s subunit cDNAs. Cells were labelled live for the 

alcH subunit with Bodipy-labelled-Fab' fragments of the antibody bd24 (Panel 

A) and for the p3 subunit with the P2/3 subunit-specific monoclonal antibody 

(bd-17) and visualised with TRITC-conjugated anti-mouse secondary antibody 

(Panel B). 

Panels C and D: HEK293 cells were cotransfected with cDNA encoding the 

a l subunit lacking the cytoplasmic loop, alcD. together with p3 and y2s subunit 

cDNAs. Cells were labelled live for the alcD subunit with Bodipy-labelled-Fab' 

fragments of the antibody bd24 (Panel C) and for the P3 subunit with the P2/3 

subunit-specific monoclonal antibody (bd-17) and visualised with TRITC-

conjugated anti-mouse secondary antibody (Panel D). 

Scale bars for all panels: lOum. 
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Figure 5.3. Cell surface expression of alchiP3y2s and alrop3y2s GABAARs in 

HEK293 cells. 
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Figure 5.4. Cell surface expression of aicH§3y2s and alcoP3y2s GABAARS 

expressed in COS7 cells. 

Panels A and B: C0S7 cells cotransfected with the chimeric a l subunit, alcH, 

together with P3 and y2s subunits. Live cells were labelled for the alcH subunit 

with Bodipy-labelled-Fab' fragments of the antibody bd24 (Panel A) and for the 

P3 subunit with the specific monoclonal antibody (bd-17) visualised with 

TRITC-conjugated anti-mouse secondary antibody (Panel B). 

Panels C and D: COS7 cells were cotransfected with the cDNA encoding the 

a l subunit lacking the cytoplasmic loop, alcD, together with p3 and y2s subunit 

cDNAs. Cells were labelled live for the alcD subunit with Bodipy labelled-Fab' 

fragments of the a l subunit-specific antibody bd24 (Panel C) and for the p3 

subunit with the P2/3 subunit-specific monoclonal antibody (bd-17) and 

visualised with TRITC-conjugated anti-mouse secondary antibody (Panel D), 

Scale bars for all panels: 20um. 
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Figure 5.4. Cell surface expression of alcup3y2s and alcnp3y2s (JABAARS 

xpressed in COS7 cells 
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5.2.2. Comparative mobility of recombinant GABAA alj33/2 receptors: Effects 
of transposing the cytoplasmic loop domain of the al subunit with that of the a2 
(alcH-ca), cc3 (alCH-a3 ) and a6(alcH-a6) subunits 

I f a unique segment of the a l subunit is required for controlling lateral 

mobility of the receptors, then replacing it by a corresponding segment from 

another a subunit might be expected to change the mobility pattern of the 

receptors. To test this hypothesis, the M3/M4 cytoplasmic loop of the a 1 subunit 

was replaced by the loops of the a2 subunit (alcH-a2), the a3 subunit (alcH-a3) 

and the a6 subunits (alcH-a6)- Since the primary sequences of these loop domains 

are poorly conserved between GABA A receptor a subunits the changes made by 

the exchange were, in each case, significant (see methods 2.2.2.10.). 

COS7 and HEK293 cells were transfected with p3 and y2s subunit cDNAs 

together with each of the a 1 chimeras, alcH-a2, alcH-a3 and alcH-a6, and the 

mobility of the expressed receptors was measured by FPR (2.2.7.) and compared 

to unmodified alcHP3y2s receptors. Transfected cells were labelled live with the 

fluorescent benzodiazepine Bodipy-Ro-1986. 

Table 5.1. and Table 5.2. show the differential mobility patterns of the 

G A B A A R receptors expressed in HEK293 and COS7 cells, respectively. 

With HEK293 cells (Table 5.1.) the results obtained are concordant with 

previous studies (Chapter 3 and 4). These cells seems to lack those elements 

necessary to anchor G A B A A R S since the receptors were mobile whichever 

subunit combination was expressed. The mobile fraction of receptors comprising 

the a l subunit chimeras ranged from 55-71%. 
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Table 5.1. FPR measurements of recombinant GABAARS expressed in HEK293 cells 

GABAAR-
subunits 

transfected 

Mobile Fraction 
(%Recovery) 

Diffusion Coef. 
(xl(T10cm2/sec) 

n 

(X1CHP3Y2S 55+/-14 3+/-1 17 

alcH-o2P3y2s 69+/-13 2.8+/-1.1 13 

CI1CH-«3P3Y2S 71+/-11 2.3+/-0.6 14 

alcH-o6P3y2s 65+/-14 2.3+/-0.6 19 

Table 5.2. FPR measurements of recombinant GABAARS expressed in COS7 cells 

GABAAR-
subunas 

transfected 

Mobile Fraction 
("ARecovery) 

Diffusion Coef. 
(xl(r'0cm1/sec) 

n 

alcHP3y2s 29+/-8 4+/-2 12 

alcH-a2P3y2s 66+7-12 2+/-0.1 16 

alCH-o3P3y2s 61+/-14 2+/-1.015 18 

alCH^P3y2s 53+/-14 1.81+/-0.49 15 

For COS7 cells (Table 5.2.) the recovery of the fluorescence signal was 66 (± 

12) % for alcH-a2P3y2s and 61 (± 14)% for cdcH-a3P3y2s receptors, compared to 

29 (± 8) % for alcHP3y2s. These results suggest that exchanging the cytoplasmic 

loop of the a 1 subunit with the corresponding domain of the a2 or a3 subunits 

released the receptor complex from the constraints that tethered the receptor on 

the cell surface. Thus, although alcH-a2 and alcH-a3 chimeras have an a l subunit 

amino-acid backbone the replacement of the cytoplasmic loop transformed the 

mobility pattern of wild type a l subunits. 

The observation that 53 (± 14)% of receptors comprising the chimeric a l with 

the loop of the a6 subunit, alcH-a6, were mobile was unexpected. This contrasts 
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with the observation that only 18 (± 11)% of a6p3y2s receptors expressed in 
COS7 cells were mobile (Table 4.2). 

The rate of movement of alcH-a2, alcH-a3 and alcH-a6-containing receptors 

was typical of most membrane glycoproteins with diffusion coefficients of the 

range of 10"l0cm2/s. 

5.2.3. Localisation of the al submit chimeras in transfected COS7 and 

HEK293 cells 

Chapter 3 provides evidence that a l subunit homo-oligomers expressed in 

HEK293 or COS7 cells are not directed to the cell surface but remain 

intracellular, unable to exit the ER. To test whether an ER-retention signal is 

contained within the M3/M4 cytoplasmic loop the truncated a l subunit construct 

lacking this domain, alcD, was transiently transfected into COS7 and HEK293 

cells. Immunocytochemistry was performed to determine where in these cells this 

subunit was expressed and compared with the distribution of the wild type a l 

subunit (Chapter 3), and with the bovine/rat chimera, alcH- When COS7 and 

HEK293 cells transiently transfected with the alcD subunit were stained live with 

the monoclonal antibody bd24, no surface fluorescence was observed. The same 

results were obtained with the chimeric subunit, alcH and with the wild type 

subunit (see Chapter 3). Immunoreactive product was only visible i f the cells 

were fixed and permeabilised. Hence, alcH and alcD> were retained in an 

intracellular compartment. Figure 5.5., Panel A shows that the intracellular 

distribution of alcH-containing receptors in HEK293 cells, is similar to the 

pattern shown by alcD-containing receptors (Panel B) and to the one obtained for 
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a l subunit homo-oligomers (see Chapter 3). Matching results were obtained in 
transfected COS7 cells (Figure 5.5.), the intracellular retention of expressed CCICH 
and a 1 CD-containing receptors are shown in Panel D and Panel E, respectively. 

To test whether the M3/M4 cytoplasmic loops of a2, a.3 or a6 subunits could 

direct a l subunit homo-oligomers to the cell surface, the distribution of 

transiently expressed alcH-o2> alcH-a3 and alcH-a6 subunit constructs, in which 

the cytoplasmic loops of the ot2, cc3 and oc6 subunits replaced the loop domain of 

the a l subunit, were analysed by immunocytochemistry. All the a l subunit 

constructs were found retained intracellularly as shown in Figure 5.5. Panels F, G 

and H, for COS7 cells. In HEK293 cells only alcH-a6 subunit homo-oligomers 

were tested (Figure 5.5. Panel C). 
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Figure 5.5. Intracellular localisation of the a I subunits chimeras expressed in 

HEK293 and COS! cells. 

HEK293 cells were transfected with cDNAs encoding the panel of a l subunit 

chimeras: OCICH (Panel A ) , alco (Panel B) and alcH-a6 (Panel C ) . Cells were 

fixed and permeabilised in order to visualise the intracellulary expressed homo-

oligomers. Cells were labelled with the anti-al subunit-specific monoclonal 

antibody (bd24) and visualised with TRITC-conj ugated anti-mouse secondary 

antibody 

COS? cells were transfected with the cDNAs encoding the a l subunit 

chimeras: alcH (Panel D), alcD (Panel E), alcH-a2 (Panel F), alcH-o3 (Panel 

G) and a lcH-06 (Panel; H). Cells were fixed and permeabilised in order to 

visualise the intracellular homo-oligomers. Cells were labelled with the anti-al 

subunit-specific monoclonal antibody (bd24) and visualised with TRITC-

conjugated anti-mouse secondary antibody. 

Scale bars for panels A, B and C: 1 Oum. 

Scale bars for panels D, E, F, G and H: 20um. 
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Figure 5.5. Intracellular localisation of the a I sitbtimls chimeras expressed m 

HKK293 and C 'OS7 cells 
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5.2.4. 03 subunits re-route al subunits chimeras to the cell surface 

It was shown in Chapter 3 that the P3 subunits rescued a l subunits from their 

intracellular retention site and re-routed them to the cell surface. To determine i f 

the M3/M4 cytoplasmic loop is necessary for al-P3 subunits assembly, the a l 

subunit constructs used in the previous section were transfected into COS7 cells 

together with the 03 subunit. The lack of a cytoplasmic loop (alco) did not 

prevent a l subunits from been rescued by p3 subunits. When alcD subunit 

cDNA and p3 subunit cDNA were cotransfected into COS7 cells (Figure 5.6. 

Panel C and D), these subunits were found clustered at the cell surface in a 

pattern that paralleled that found for aip3 (Chapter 3) and alcHP3 (Figure 5.6. 

Panels A and B) complexes expressed in these cells. Identical results were 

obtained with the a l subunit constructs alcH-a2, alcH-a3 and alcH-a6 when they 

were cotransfected into COS7 cells with the P3 subunit (Figure 5.6. Panels E-F; 

G-H and I-J, respectively). 

Together these results demonstrate that the a l subunit constructs (alcD, alcH-

ai, alcH-a3 and alcH-ctf) are restricted to the ER when expressed alone as for the 

wild-type a l subunit. Only when these subunits are co-expressed with the p3 

subunit, did the alcH-axP3 combinations acquire the signal to leave the ER and 

form co-localised clusters on the cell membrane. Thus, the M3/M4 cytoplasmic 

loop of the a 1 subunit appears not to be involved in subunit targeting to the cell 

surface, subunit-subunit assembly nor receptor aggregation. 
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Figure 5.6. Cell surface expression of a 1CH-XP3receptors in COS7 cells 

COS7 cells were cotransfected with cDNAs of the a l subunit chimeras 

together with the p3 subunit cDNA. alcH-xp3 complexes were labelled live with 

the a l subunit-specific monoclonal antibody, bd24 and visualised with cascade 

blue conjugated anti-mouse secondary antibody and with the polyclonal antibody 

anti-(3102/103 for the P3 subunit and visualised with TRITC-conjugated anti-

rabbit secondary antibody. Panel A and B: alctiP3 complexes, Panel C and D: 

alcDp3 complexes, Panel E and F: alcH-a2p3 complexes; Panel G and H: alcH-

a3p3 complexes and Panel I and J: alcH-a6P3 complexes. 

Scale bars for all panels: 20um. 
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Figure 5.6. Cell surface expression of a leu xf33 receptors in COS? cells 
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5.3. Discussion 

A crucial problem in neurobiology is how a neurone maintains its mosaic of 

membrane proteins. G A B A A receptors are routed and localised in specific 

neuronal domains (Velazquez et al., 1989) possibly taking advantage of the 

diversity of subunit isoforms that form the receptor complexes. In Chapter 4 it 

was demonstrated that recombinant GABAA receptors expressed in COS7 or 

PC 12 cells had different surface lateral mobilities that were a subunit dependent. 

Thus, axP3y2s receptors were generally immobile when the alpha subunit was 

either a l or a6 subunits. In contrast G A B A A axp3y2s receptors which comprised 

a2, a3, a4 or a5 subunits were generally mobile. The primary amino-acid 

sequence of the intracellular M3/M4 loop of a subunit isoforms is poorly 

conserved and might be a determining factor in these differences in receptor 

anchoring. In this chapter new insights have been presented into the possible role 

that the a l subunit M3/M4 cytoplasmic loop plays in controlling lateral mobility 

of the receptor. 

The experimental approach described in this chapter was based on the 

hypothesis that the intracellular M3/M4 loop of a l and a6 subunits may interact 

with some region of the cytoskeleton or a protein that restricts the mobility of the 

whole complex. Thus, removal or alteration of these sequences would be 

expected to prevent the formation of links with the cytoskeletal elements that 

tether the receptors at the cell surface. Under these conditions it was anticipated 

that the G A B A A R would be freely mobile. To test this hypothesis, a panel of a l 

subunit chimeras were engineered. Alpha 1 subunits that lacked the M3/M4 loop 

(alcD ) or had the intracellular loop domain of the a 1 subunit exchanged for the 
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loops of a2, a3 and ct6 subunits (alcH-a2, alcH-a3 m^ alcH-a6)> could then be 
transiently expressed. 

Based upon the FPR analyses on receptors containing these mutated a l 

subunits described here, it can be concluded that the M3/M4 domain of the a l 

subunit does effect the mobility of G A B A A R complexes. Removal of the 

cytoplasmic loop from the a l subunit transformed aip3y2s receptors from being 

essentially immobile to being freely mobile when expressed in COS7 cells. In 

addition, when either the cytoplasmic loops of a2 and a3 subunits were inserted 

into a l c D (<xlcH-a2 and alcH-a3)> the receptors containing the modified a l subunit 

showed an increased mobility that was comparable with the mobility found in 

receptors containing the intact a2 and a3 subunits (Chapter 4). These results 

imply that the cytoplasmic loop region of the a l subunit, but not the M3/M4 

loops of the a2 and a3 subunits, might interact with some cellular element that 

restricts the mobility of the complex. The final configuration of the ct2 and a3 

M3/M4 cytoplasmic loops do not demonstrate obvious structural motifs that are 

known to bind cytoskeletal elements nor do they show homologies with other 

membrane proteins whose cytoskeletal binding domains have been mapped 

(Srinivasan et al., 1993; Srinivasan et al., 1988; Lambert and Bennett, 1993). On 

the other hand, the results obtained with the alcH-a6 chimera, in which the 

intracellular loop domain of the a6 subunit replaced that for the a l subunit were 

unexpected. In contrast to previous studies (Chapter 4) these receptors were 

freely mobile and did not show the restriction in mobility found for a6(J3y2s or 

aip3y2s receptors. The cytoplasmic loop of the a6 subunit seems not to be 

uniquely responsible for the restricted mobility of GABAA a6p3y2s receptors. It 
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is possible that interaction with a restricting element requires more than a single 
domain of the a6 subunit protein to anchor these complexes. Furthermore, the 
inclusion of the a6 loop into the a l subunit seems to have masked an effect over 
the restriction of receptor mobility that the a l subunit confers. 

In addition to estimates of receptor dynamics using FPR, the steady-state 

cellular distribution of receptors containing the a l subunit chimeras was also 

analysed. It was found that homo-oligomers of GAB A AR a l subunits lacking the 

M3/M4 cytoplasmic domain were retained in the ER and only expressed at the 

cell surface i f coexpressed with the P3 subunit. Similar results were obtained with 

the wild-type a l subunit (Chapter 3) and with the other a l subunit chimeras, 

alcH, alcH-a2 and alcH-a6- It appears that this region of the protein does not 

contain the information that dictates whether the subunit is retained or 

programmed to leave the ER. In addition, expressed receptors containing all the 

a l subunit chimeras described, together with the P3 subunits, were visualised on 

the cell surface in a clustered pattern. Thus, the cytoplasmic loop of the a l 

subunit is not required for receptor clustering. The information contained in the 

M3/M4 domains of the a2, a3 and a6 subunits also failed to modify the ability 

of receptors to aggregate. 
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Chapter Six 

Cell surface immobilisation of GABAAR al subunits in 

cultured rat cerebellar granule cells depends on the M3/M4 

cytoplasmic loop 

6.1. Introduction 

In the previous chapters the localisation and relative mobilities of recombinant 

GABA A Rs were studied in HEK293, COS7 and the neuronal model system, NGF-

treated PC 12 cells. It was concluded from observations on COS7 that the M 3 / M 4 

cytoplasmic domain of the a 1 subunit contributes to the restricted mobility of the 

receptor complex. The information acquired through these approaches can be useful 

to elucidate the molecular mechanisms underlying neurotransmitter receptor 

anchoring. While these experiments are indicative, it is necessary to extend the 

study to cells of the central nervous system to have a more realistic understanding of 

the processes involved in directing the distribution and cell surface maintenance of 

G A B A A R in neurons. In this chapter the mobility of recombinantly expressed 

GABAARS were analysed in cultured rat cerebellar granule cells. The a l subunit 

constructs, alcH (bovine/rat chimera) and alcD (CIICH with the M 3 / M 4 cytoplasmic 

loop excised) were transfected into cultured rat cerebellar granule cells to 

investigate the role the cytoplasmic loop domain plays in receptor tethering in a 

well-characterised neuronal preparation, in vitro. 
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6.2. Results 

6.2.1. Efficiency of transfecting cultured rat cerebellar granule cells with 

GABAAR subunit cDNAs 

Transfecting neurons is known to be notoriously difficult. Traditional methods of 

transfecting cells were tested in rat cerebellar granule cells immediately following 

dissociation of these cells from the cerebellum of neonatal rats ('After dispersion', 

Table 6.1.), and in cells seeded in culture media ('In culture', Table 6.1.). Several 

traditional transfection procedures were employed such as calcium phosphate 

precipitation (CPP), electroporation (E.poration), lipofectamine (Lp) and TfxTM-50 

Reagent (as described in methods, 2.2.3.). The efficiency of transfection for each of 

these methods was estimated by counting the number of transfection positive cells 

by immunocytochemistry using the ocl-subunit specific monoclonal antibody, bd24. 

Table 6.1. A summary of the gene transfer efficiencies obtained. 

After dispersion In culture 

CPP 0% 0% 

E.poration 0.1% Not tested 

Lp 0.01% 0.2% 

TrxTM-50 Not tested 2% 

The efficiency of the methods tested was low compared to transfection 

efficiencies obtained with HEK293 (-30%) and COS7 (-30%) cells. However, the 

transfection efficiency was deemed sufficient for the experiments to be performed. 

Because the transfection efficiency was higher in granule cells in culture than in 

cells just after the dispersion, FPR measurements and immunocytochemical 

analyses were conducted in cells cultured for 4-5 days in vitro (4-5 DIV). The 

transfection strategies involving lipofectamine and TfxTM-50 were adopted 
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hereafter since these were the most efficient systems in cultured granule cells (Table 

6.1.) 

6.2.2. Immunochemical localisation of the recombinant al subunits, alcHCind 

oilCD, in cultured rat cerebellar granule cells 

The GABAAR a l subunit chimeras, a l c H (control) and a l c D (in which the 

M3/M4 cytoplasmic loop had been deleted), were constructed using as the "parent" 

the 5' end of the bovine a l subunit cDNA and the 3' end of the rat a l subunit 

cDNA. In this way, the monoclonal antibody bd24, that is specific for three amino 

acids located at the extracellular N-terminus of the bovine and human a l sequences 

(Ewert et al., 1990) but not for the rat a l N-terminal sequence, could be used to 

specifically label these constructs, see methods 2.2.2.10. This enabled the chimera 

transfected a l subunits to be distinguished from the native rat a l subunits that are 

expressed in these neurons (Thompson and Stephenson, 1994). 

The extracellular and/or intracellular distribution of recombinantly expressed 

GABAAR a l subunits (homo-oligomers) and a l subunit-containing receptors 

(aip3y2) was investigated previously in recombinant HEK293 and COS7 cells 

(Chapter 3). In this chapter the same approaches were performed in cultured 

cerebellar granule cells. The first aim was to determine whether the recombinant a l 

subunit constructs, a l c H and a l c D , transfected into these neurons were edited, 

assembled and expressed at the neuronal cell surface. Cultured cerebellar granule 

cells were transfected with either the a l c H or the a l c D constructs (methods 2.2.3.) 

and labelled with Bodipy-Fab' fragments of the a 1 subunit-specific antibody, bd24 

(2.2.4.). The fluorescence patterns obtained revealed that both a l c H and a l c D 
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subunit proteins were expressed in clusters on the cell surface. In previous chapters 

it was shown that homo-oligomers of both wild-type a l and a l subunit chimeras 

were retained in an intracellular compartment (Chapters 3 and 5). The cell surface 

fluorescence pattern observed in cerebellar granule cells transfected with a l subunit 

cDNA alone is strong evidence that the 'foreign' protein had been properly edited 

and assembled with native subunits into receptors. The complexes formed were 

routed and localized on the cell surface in a clustered pattern. Differences between 

the localisation of GABAARS containing the a l c H subunits and the alcD subunits 

were noted. alcH subunit-containing receptors were found located at the soma, 

dendrites and axon of cultured cerebellar granule cells (Fig. 6.1. Panel C). On the 

other hand, receptors containing the alcD subunit, which lacked the M 3 / M 4 

cytoplasmic loop were expressed mainly at the cell somas (Fig. 6.1. Panels A and 

B). 
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Figure 6.1. Cell surface localisation of the CCICH and CLICD subunits expressed in 

cultured cerebellar granule cells 

Cerebellar granule cells were transfected with the cDNAs encoding a l c H and the 

a l c D constructs. Cells Were labelled live with the anti-al subunit-specific 

monoclonal antibody, bd24. Expressed receptors containing the a l c D subunit were 

distributed in a clustered pattern (Panel A), and mainly retained at the cell soma 

(Panel B). Expressed receptors containing the alcH subunit were also distributed in 

clusters but over the entire cell surface (Panel C). 

Scale bar: Panel A: 10 um; Panel B: 5 um; Panel C: 20 um 
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i 

Figure 6.1 Cell surface localisation of the alCH and aJCD subunits expressed in 
cultured cerebellar granule cells 
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6.2.3. Comparative mobility of GABAAR containing the CCICH or the OLICD 

submits 

In Chapter 3, native G A B A A receptors in cerebellar granule cells were shown 

to have restricted lateral mobilities. In non-neuronal cells, the M3/M4 

cytoplasmic loop of recombinantly expressed a 1 subunit was shown to play a 

role in the immobilizing of receptors, presumably by providing a substrate for 

interactions with components) of the cytoskeleton (Chapter 5). To gain a better 

understanding of the properties of this a l subunit domain in neurons, and its 

possible role in controlling the lateral mobility of native receptors, cerebellar 

granule cells were transfected with CCICH and OIICD, see methods (2.2.3.). The lateral 

mobility of receptors containing the a l subunits lacking the M3/M4 cytoplasmic 

loop (alcp) was measured by FPR, see methods (2.2.7.) and compared with the 

lateral mobility of receptors containing the 'parent' a l subunit (alcH). FPR 

measurements showed marked differences in the lateral mobilities of these receptors 

when expressed in cerebellar granule cells (Figure 6.2.). The recombinant receptors 

were selectively labelled with the Bodipy-Fab' fragment of the a l subunit-specific 

antibody, bd24 since the antibody directed against the bovine and human G A B A A R 

N-terminal sequence fails to recognize or label those endogenous a l subunits 

present in the rat cerebellar granule cells. 
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4 i 30 

Figure 6.2. Histogram showing the relative mobile fraction (% 

Recovery) of recombinant GABAAR alCHP3y2s (CH) and alCDP3y2s (CD) 

expressed in cerebellar granule cells. Cells were probed with Bodipy-Fab' 

fragments of the antibody, bd24. 
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Because of the low efficiency of the transfection, only a few positive cells of 
each cell set were localized and subsequently examined by FPR. The term 'cell set' 
refers to a cerebellar granule cell-coated dish that has been transfected with the a l 
subunit constructs. Cells transfected with the alcH subunits or with the alcD 
subunits were tested and the FPR experiments were repeated in four different cell 
preparations (named as first, second, third and fourth set in Tables 6.2 and 6.3.). 
Tables 6.2. and 6.3. show the mobile fraction (% Recovery) of receptors measured 
for every positive cell analysed. 

Receptors containing the chimeric a l subunit (OI1CH) were used as control. 

These receptors were generally immobile on the time scale of the experiments, 

recovery from photobleach ranged from 3-20%. Due to the limitations of the FPR 

detection system photobleached receptors that show percentage recoveries below 

20% are considered to be totally immobile (see rationale in methods, 2.2.7.3.). 

When the cytoplasmic loop of the a 1 subunit was deleted the mobility patterns of 

the expressed receptors containing this truncated a l subunit changed 

dramatically. Generally, these receptors were converted from being immobile or 

tethered to being mobile. Close inspection of the data in Table 6.2. however, 

reveals that two populations of cells can be clearly distinguished (Figure 6.3.). 

One population (Population I) whose receptors appear to be freely mobile and 

another (Population H) in which the receptors have a more restricted mobility but 

never the less are more mobile than in control cells (a lad- Seven cells 

(Population I) were found to express receptors which were freely mobile on the 

cell surface, recoveries ranged from 63 to 93% with a mean grouping of 75-85 % 

recovery. The excision of the cytoplasmic loop from the a l subunit appears to 
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have released these receptors from interactions with the mobility restraining 

elements e.g. cytoskeleton. The receptors expressed in the remainder of the 

immunopositive cells (Population II) had mobile fractions (% Recovery) that 

centered around the 30-39% recovery grouping 

Table 6.2. Mobile fraction (% Recovery) of alcH-containing GABAARS 
expressed in cerebellar granule cells 

First set Second set Third set Fourth set 

17% 20% 14% 4% 

16% 13% 4% 4% 

6% 10% 10% 10% 

19% 8% 4% 

18% 3% 5% 

13% 

Table 6.3. Mobile fraction (% Recovery) a 1 co-containing GABAARS expressed 
in cerebellar granule cells 

First set Second set Third set Fourth set 

37% 44% 48% 25% 

34% 48% 45% 45% 

93% 47% 48% 38% 

65% 83% 63% 39% 

87% 70% 77% 36% 

46% 

30% 
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CH 
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% Recovery 

Figure 6.3. Histogram showing the frequency of the relative mobile fractions ,(% 

Recovery) measured in recombinant GABAAR alCHp3y2s (CH) and alcDP3y2s (CD) 

expressed in cerebellar granule cells. Cells were probed with Bodipy-Fab' fragments: of the 

antibody, bd24. 
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6.3. Discussion 

Several models have been advanced to describe the mechanisms by which 

receptors are tethered to specific domains of the plasma membrane. The forces 

that restrict G A B A A R mobility and regulate distribution could arise from several 

possible kinds of interactions. It is possible that an impermeable barrier, like a 

corral, that defines domains within the cell could prevent movement between 

these compartments. Second, the receptor may be linked to specialised 

cytoskeletal elements (Kannenberg et al., 1997). The identification of a series of 

associating proteins or "anchoring proteins" have recently been described (Wang 

et al., 1999). The consensus of opinion suggest that association of the 

neurotransmitter receptor to its specific anchoring protein is critical to receptor 

immobilisation/ targetting (Philip et al., 1991). It has been demonstrated that the 

interaction between these anchoring proteins and the receptors is achieved by the 

binding of some domains of the proteins that couple the receptor complexes with 

the anchoring protein. For example gephyrin binds to the cytoplasmic loop 

between transmembrane segments M3 and M4 of the |3 subunit of glycine 

receptors (Meyer et al., 1995). 

In the previous chapter, it was tested whether the a l subunit cytoplasmic loop, 

M3/M4, played a role in controlling recombinant G A B A A R lateral mobility in 

transfected COS7 cells. The results indicated that this domain may play a role in 

receptor anchoring. In this chapter the same experiments were performed in 

cerebellar granule cells and the results obtained are in agreement with those 

described in Chapter 5. 
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FPR experiments described in this chapter demonstrate that recombinant 

complexes containing an a l subunit lacking the cytoplasmic loop M3/M4 (OCICD) 

are freely mobile in comparison to complexes that contain an intact a l subunit 

(OIICH)- The FPR results imply that the elimination of this domain prevents the 

formation of a link between the receptor and an anchoring protein or indeed, the 

cytoskeleton itself. In addition, because both alcH and alcD were detected at the 

cell surface it implies that they were able to assemble with native GABA A R 

subunits that are required for transport of the a l subunit to the cell surface (see 

Chapter 3). 

Interestingly, close inspection of the FPR data from cells expressing complexes 

containing the alcD subunit revealed that there were two distinct cell populations, in 

terms of the lateral mobilities of receptor complexes, that were both distinct from 

the complexes that contained the alcH subunit. One population in which the 

receptors were freely mobile (Population I) and another (Population II) with 

complexes displaying an intermediate mobility. One possible explanation might be 

that depending on the transfection efficiency, some cells would express complexes 

that contained only truncated alcD subunits whereas other cells, which had 

incorporated less foreign alco cDNA, would express complexes containing a 

combination of the native type a l with the foreign alcD- Receptors containing two 

a subunits have been previously described (Backs et al., 1993; Khan et al., 1994; 

Pollard et al., 1995). Expressed complexes containing only the truncated alco 

subunit (with no cytoplasmic loop) would be predicted to be freely mobile in 

contrast, complexes containing the native or "wild type" a l subunit and the 

-147-



Chapter 6 Cell surface immobilisation of GABAARs In cerebellar granule cells 

foreign type alcD subunit would be tethered by the intact cytoplasmic loop M3/M4 
of the wild a l subunit included in the complex. 

Immunocytochemical localisation of the expressed receptors containing the 

truncated a l subunits showed a differential distribution pattern. When the a lcD 

expressing cells were analysed, the fluorescence was found to be restricted mainly 

to the cell soma. It seemed that the receptors were not able to leave this central 

location and migrate to the dendrites, although they still formed large receptor 

clusters. On the other hand, control receptors (alcH-containing), were distributed 

clustered along both the soma and the dendrites of the neuronal cell. These results 

indicate that the deletion of the intracellular loop of the a 1 subunit dictates that the 

receptor is retained in the soma, but none-the-less is freely mobile. The a l a r 

containing receptors that are representative of native receptors are anchored 

throughout the entire cell surface. Cerebellar granule cells show a relatively simple 

synaptic organisation, they are activated by glutaminergic mossy fibers and receive 

GAB A from local Golgi cells only on their distal dendrites (Ottersen et al., 1988), 

thus the data presented here may indicate that receptors containing the truncated 

alcD subunit are "in some way" not allowed to reach a synaptic location but are 

retained in the cell soma. 

The constructs used in this chapter represent a first attempt to elucidate, in vivo, 

the functional importance of the a l M3/M4 cytoplasmic loop in cytoskeletal 

anchoring and G A B A A R clustering. The present results indicate an involvement of 

this domain in controlling receptor lateral mobility. Although the information 

obtained is novel and of relative significance, it will be necessary to determine 

which are the cytoskeletal proteins involved. 
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Recently, Wang et al. (1999) reported the identification of a novel protein, 

GABARAP, which has sequence similarity with the light chain-3 of microtubule-

associated proteins 1A and IB (MAP-1A, MAP-IB), and interacts with the y 

subunit of the GABA AR. In addition, it has been reported that a ubiquitin-like 

protein interacts with the intracellular loop domain of G A B A A R a l and a2 subunits 

(Bedford et al., 1998), based on studies using the yeast two-hybrid screen system. 

While these proteins may interact with the receptor subunits, only in the case of the 

MAP-IB protein has a functional study been performed. Here, the MAP-IB protein 

was shown to be able to induce clustering of GAB Ac receptors (Hanley et al., 

1999). However, it is not clear whether the clustering in the transfected cells is 

related to their immobilisation. The work presented in this thesis has clearly 

demonstrated the clustering of receptors in HEK293 cells without any cell surface 

immobilisation providing strong evidence that the two processes are mutually 

exclusive. The function of these "interacting" proteins in segregating and 

immobilising the receptors can only be ascertained by direct observation of the 

mobility of the receptors by techniques such as FPR or SPT. 

Rapsyn and gephyrin have been identified as the proteins responsible for 

anchoring of other important neurotransmitter receptors, such as nicotinic 

acetycholine and glycine receptors, respectively (Froehner, 1989; Kirsch et al., 

1991; Kirsch and Betz, 1995). This led to the hypothesis that these proteins may be 

involved in the anchoring of G A B A A R S . Although recent studies support the 

hypothesis that gephyrin (Graig et al., 1996) and rapsyn (Yang et al., 1997) might 

be involved in postsynaptic positioning of GABAAR, there is as yet no clear "z'n 

vivo" evidence. Acetylcholine, glycine and glutamate receptors interact with 

submembraneous molecules which have no common peptide sequence. This 

-149-



Chapter 6 Celt surface immobilisation of GABAARs in cerebellar granule cells 

molecular heterogeneity of the postsynaptic somato-dendritic membrane agrees with 
the idea that the G A B A A R anchoring proteins may not have been identified yet. 

-150-



Summary arts Significance 

Summary and Significance 

The main objective of the study presented here was to gain a better understanding 

of how neurons are able to maintain neurotransmitter receptors at specific 

membrane domains. The large structural heterogeneity of G A B A A R led to the 

hypothesis that there could be a link between G A B A A R gene diversity and the 

targeting properties of the receptor complex. To investigate the mechanisms 

responsible for the localisation of G A B A A R , immunocytochemical approaches and 

FPR experiments were carried out in cells expressing recombinant G A B A A R S . The 

results obtained showed that the subunit composition of the receptors determines not 

only different targeting characteristics but also differences in the lateral mobility of 

the complexes. Thus, the different ways in which these receptors are routed to 

specific synaptic locations could be determined by the types of subunit isoform that 

compose the protein complex, which represents a form of synaptic plasticity. To 

elucidate which domain of the subunit proteins was responsible for the receptor 

anchoring, a series of truncated a l subunits were engineered. 

Some important conclusions were drawn as a result of the expression of these 

constructs in non-neuronal and neuronal cells, and the consecutive experiments 

performed in order to measure the lateral mobility and the final localisation of the 

expressed complexes containing the array of a l subunit constructs. Receptor 

clustering does not imply receptor immobility. The M3/M4 cytoplasmic domain of 

the a l subunit restricts the mobility of the receptor complexes but is not necessary 

for the aggregation between receptors. Finally, the inclusion of at least one a l 

subunit, with an intact cytoplasmic loop, in the receptor complex seems to be 

necessary for immobilisation of the G A B A A receptors. 
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