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Abstract 
Iceland has long been thought to be underlain by a thermal upwelling, or plume, 

rising from deep within the mantle. This study tests this hypothesis, by 

a) seeking evidence for a plume in the lower mantle in azimuth anomalies at the NORSAR 

array and 

b) mapping the three-dimensional structure of the mantle beneath Iceland using teleseismic 

tomography and data from an Iceland-wide broadband seismometer network. 

A temporary network of 30 digital broadband, three-component seismographs was 

deployed 1996-1998 to complement the existing, permanent seismic network on Iceland. 

This created a dense, well-distributed network. 3159 P-wave and 1338 S-wave arrival times 

were measured and inverted for velocity structure using the ACH method of teleseismic 

tomography. 

The preferred models are well-resolved down to -400 km, and reveal a low-velocity 

body with anomaly up to -2.9% in vP and -4.9% in vs beneath central Iceland. This persists 

throughout the entire model depth range. The amplitudes of the anomalies imply an excess 

temperature of 200-300 K relative to the surrounding mantle. 

The morphology of the anomaly changes from cylindrical to tabular at 250-300 km 

depth, a feature that resolution tests suggest is real. This is consistent with the predictions of 

some convection models and suggests that the plume is restricted to the upper mantle. 

Anomalies in vP and vs provide evidence for lateral flow of material beneath the 

Reykjanes Ridge to the southeast in the depth range 50-200 km. Similar anomalies are 

present beneath the Kolbeinsey Ridge to the north only beneath 160 km. This shows that 

flow outwards beneath the Kolbeinsey Ridge is blocked by the Tjornes Fracture Zone above 

160 km. 

Azimuthal anomalies detected on the NORSAR array for rays travelling beneath 

Iceland at 1,500 km depth are consistent with a plume beneath Iceland at this lower-mantle 

depth with a Gaussian radius of 125 km and a strength of 1.5%. The observations do not 

serve as proof for such an anomaly because the solution is not unique. 

vp/vs ratios are 1% high throughout most of the plume, and up to 3.2% high at depths 

of 100-300 km beneath central and east-central Iceland. This suggests that up to a few 

percent of melt pervades the entire plume. 
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Chapter 1 Hotspots and mantle plumes 

1. HOTSPOTS AND PLUMES 

1.1 INTRODUCTION: HOTSPOTS AND PLUMES 

1.1.1 The plume hypothesis 

The bathymetry of the world's oceans is shown in Figure 1.1, which reveals 

several areas of elevated sea floor, such as seamounts and plateaux. These are not 

immediately explained in terms of the simple idea of rigid plates moving slowly over 

the Earth's surface. 

i 
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Figure 1.1 Global seafloor topography. Image from NOAA/Walter H. Smith/David T. SandweU. 
Deep ocean floor is blue; mid-ocean ridges show as green and yellow; plateaux and continental 
shelves show as pink. 

In addition, the excessive volcanism in the middle of some plates, such as at 

Hawaii and Yellowstone and at the mid-ocean ridge at Iceland, requires an 

explanation that involves some additional sub-lithospheric heat source. These areas 

have been termed "hotspots" (Wilson, 1963; Wilson, 1965; Morgan, 1971; Morgan, 

1981). Up-welling convection currents in the mantle, or plumes, are thought to be the 

most likely cause. It was also proposed that plumes were the major driving force in 

plate motions (Morgan, 1971). 

Alternative hypotheses involving stress and giant propagating cracks in the 

lithosphere have been discussed (Sleep, 1984), but the most widely favoured model 

involves relatively stationary, narrow plumes of hot material rising from the mantle 
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(Morgan, 1971; Morgan, 1972). Although their existence has been widely accepted 

with little supporting observational evidence, their depth of origin, physical 

properties and dimensions have remained the subject of considerable debate over the 

past three decades. It is only recently that significant advances have been made in 

providing observational evidence to support or reject the hypothesis. 

1.1.2 Hotspot volcanism 

The dating of lavas taken from islands in oceanic swells and seamount-chains 

reveals not only that these features are considerably younger than the oceanic 

lithosphere on which they reside, but that the ages of islands in such chains increase 

progressively, with distance from the present-day, or most recent, centre of volcanic 

activity. This is explained as resulting from the motion of a rigid plate over a heat 

source or "hotspot". Convective up-welling dynamically uplifts the overlying 

oceanic lithosphere, and produces melt which penetrates through the crust. A given 

site continues to be volcanically active until the motion of the plate has carried it 

away from the heat source, when it becomes extinct, cools and subsides. A new 

island then begins to form above the heat source. A chain of islands, atolls and 

seamounts remains as evidence of the passage of the plate over the hotspot. Many 

such hotspot tracks, consisting of linear chains of progressively older volcanic 

islands, have been identified worldwide, and their chronological and geometrical 

relationships have been used to determine the relative and absolute motions of the 

plates (e.g., Gripp & Gordon, 1990). 

Hotspots are not confined to the centres of plates and their general proximity 

to constructive plate boundaries and especially mid-ocean ridges has been recognised 

(Morgan, 1971). Some examples of such oceanic hotspots are Tristan, Easter Island, 

Azores and Reunion. If the hotspot coincides with a spreading ridge, excessive 

igneous activity results in the formation of an oceanic plateau, such as that 

surrounding Iceland. 

The interaction of hotspots with continental crust and rift zones is more 

complex, since continental crust usually has a more complex thermal, compositional 

and tectonic history than oceanic crust. Examples are the East African Plateau (Birt 

et ai, 1997), and the Yellowstone hotspot in Wyoming, USA, which is the cause of 

the Snake River Plain flood basalts. 
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1.1.3 Surface anomalies associated with hotspots 

Hotspots are characterised by a several surface anomalies. These can extend 

up to 1000-2000 km from the centre of the hotspot, but are normally most 

pronounced directly over the presumed centre of the ascending plume. The large 

extent of the affected area has been attributed to a mushroom-shaped head of a 

thermal plume rising in the mantle which is deflected laterally. This raises the 

temperature of a vast area as it spreads out at the base of the lithosphere (White & 

McKenzie, 1989). Direct observational evidence for such "mushroom-heads" is 

lacking and in some cases, the distant effects attributable to plumes are quite 

localised. This implies active channelling of plume material along the base of plates, 

especially towards regions undergoing lower crustal extension (Kent, 1995). 

Increased heat flow: Measurements at oceanic hotspots have revealed considerable 

increases in heat flow relative to surrounding lithosphere of equivalent age, for 

example 25% at the centre of the Cape Verde swell (Courtney & White, 1986). 

Hotspot areas are often characterised by hydrothermal activity, such as the geysers 

and hot springs that are found on Iceland and at Yellowstone. 

Elevated bathymetry & topography: Hotspots are often characterised by broad 

uplift of the seafloor of up to 1000-2000 metres (White & McKenzie, 1989). 

Depending on the local tectonic regime and the thickness of the lithosphere, 

shallowing of the sea can sometimes be augmented by thickened crustal production 

at a rifted margin (e.g. Iceland), or a thick volcanic pile erupted directly over the 

centre of the hotspot (e.g. Hawaii, Figure 1.2). In the case of Hawaii, the volcanic 

pile acts as a load on the long-wavelength regional uplift, causing shorter-wavelength 

down-warping of the lithosphere. 

B A T H Y M E T R Y 
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Figure 1.2 Bathymetry of the Hawaiian swell near Oahu (Watts, 1976; Crough, 1983; Sleep, 
1992). The parabola has a halfwidth of 750 km and a height of 1.4 km, and a cross-sectional area 
of 1400 km 2. 
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Geoid & gravity anomalies: Small, positive anomalies in free-air gravity and geoid 

height occur over hotspots, because deflection of the surface of the seabed, and the 

presence of erupted lavas or thickened crust are a mass excess. However, the 

Bouguer anomaly is negative since the effect of the shallow mass excess is removed 

by reducing measurements to the same datum. A negative Bouguer anomaly 

indicates a mass deficit, which is due to hot, less dense material rising in the mantle 

below. 

Geochemical anomalies: The flood basalts associated with hotspots are 

expected to contain a substantial proportion of upper and perhaps lower mantle 

material, and thus to be associated with a suite of trace element and isotopic 

geochemical anomalies. A summary is given by Saunders et al. (1992). The picture 

is not simple, however, especially as plumes may erupt through diverse types of 

lithosphere, including continental and oceanic plateau lithospheres and along 

spreading plate boundaries. Contamination from the lithosphere may thus occur and 

obscure geochemical patterns. Some flood basalts are even reported to show no 

geochemical plume signature (e.g., Karoo tholeiites), which may also indicate the 

difficulty of recognising such components. 

Geochemical signatures suggested to be diagnostic of plume or 

asthenospheric components include low 8 7Sr/8 6Sr, high e-Nd and mantle-normalised 

Th/Nb, Rb/NB and Ba/Nb ratios less than one. Examples of basalt provinces that 

have such characteristics are the Deccan lavas, Madagascar and eastern Greenland. 

However, other element ratios such as K/Nb are highly variable between plumes and 

flood basalts, and difficult to explain. The K/Nb ratios that characterise basalts from 

Greenland, Iceland, Reunion and Madagascar range from 333 to as low as 50. The 

very low K content is difficult to explain with plume models. The much greater range 

of isotopic and trace element compositions in continental flood basalts compared 

with oceanic plateaux may be explained by strong contamination when the plume 

passes through the continental lithosphere, but nonetheless hinders the search for a 

reliable geochemical plume diagnostic. 

The two geochemical features that are probably least ambiguous are (R.N. 

Thompson & D.G. Pearson, pers. comms.): 
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1. Helium isotopes. Helium 3 is enriched in magmas from plumes that are thought 

to have been generated from the lower mantle e.g., the Hawaiian plume. 

2. In oceanic settings, radiogenic 1 8 7 0s/ 1 8 8 0s appears to be associated with plume 

basalts. This does not hold for continental plume basalts, however. Initial work on 

may be indicative of the involvement of the outer core in some plumes 

(e.g. Hawaii, Brandon etal, 1998), but more work is needed to substantiate this. 

1.1.4 Existence and origin of plumes 

Hotspots are thought to be the surface expression of convective plumes 

rising from within the mantle (Morgan, 1971; Morgan, 1972). The question of 

whether these plumes originate in the lower mantle, as he proposed, are purely 

upper-mantle phenomena, or have some other explanation, remains yet to be resolved 

satisfactorily. 

Relevant facts are: 

• Hotspots move only very slowly compared with each other. Plate motions are 

often stated relative to a fixed "hotspot reference frame". 

• Hotspots are long-lived and typically last for periods of the order of 100 Ma. 

• Hotspots are often located at or near constructive plate boundaries (Morgan, 

1971; Anderson et ai, 1992), but sometimes occur at other locations within 

plates. Their distribution is generally anticorrelated with destructive plate 

boundaries. 

In order for hotspots to remain both active and relatively stationary with 

respect to each other for prolonged periods of time, there must be some significant, 

persistent thermal feature which tends to be located away from cooler regions of 

downwelling slabs in the mantle. But whether a plume originates from deep in the 

mantle, possibly at the core-mantle boundary, or is a purely upper-mantle convective 

feature, or some coupled lower- and upper-mantle phenomenon, remains unresolved. 

The formation of plumes may require a thermal boundary layer heated from below 

(Lay et al, 1998). In this case, the two most plausible locations for this are at the 

670-km discontinuity and the core-mantle boundary (CMB). 
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Arguments in favour of a core-mantle boundary origin: The theoretical 

temperature excess required to initiate a plume from a thermal boundary layer has 

been estimated to be 1000 K (Williams & Jeanloz, 1990; Boehler, 1993; Lay et al., 

1998). However, seismological modelling of temperature variations in the lower 

mantle (Nataf & Vandecar, 1993) and penological modelling of plumes in the upper 

mantle (Watson & McKenzie, 1991) predict plume excess temperatures of less than 

300 K. This is a major discrepancy, but one which can be overcome by invoking a 

chemical boundary at the base of the lowermost mantle in which densities are 

increased by 5-10 % compared with the overlying mantle (Farnetani, 1997). This 

reduces the required temperature excess to about 300 K. 

D " is the layer in the lowermost mantle immediately above the core. It is 

thought to act as a thermal boundary layer between the outer core and the mantle, 

and to have properties that differ significantly from the rest of the lower mantle. 

Kendall and Silver (Kendall & Silver, 1996) detected a high degree of seismic 

anisotropy within this layer, with vertically-polarised wave speeds reduced by 

several percent compared with those of horizontally-polarised waves. This may be 

caused by horizontal layering of oceanic slab remnants which form layers of partial 

melt there (Wysession, 1996). 

Recent global tomography results show large-scale features interpreted as 

indicating mantle-wide convection. Linear regions, a few hundred kilometres wide 

and tens of thousands of kilometres long with seismic P-wave velocities elevated by 

about 0.5%, extend deep into the lower mantle as tabular features beneath several 

(though not all) regions where subduction has occurred in the last 180 Ma (van der 

Hilst et al., 1997). Also, regions at the core-mantle boundary with ultra-low seismic 

velocities (Helmberger et al., 1998; Wen & Helmberger, 1998) have a positive 

correlation with surface hotspots (Williams et al., 1998). Some geochemical 

anomalies are thought to require a CMB source. Picritic lavas from Hawaii contain 

Osmium isotope characteristics for which the most viable explanation is the mixing 

of lowermost mantle material with that from the outermost core and the subsequent 

transport of this material to the surface (Brandon et al, 1998). In terms of plume 

origin, this would strongly imply a lower-mantle source. 
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Arguments in favour of a 670-km discontinuity origin: Wide, low-velocity areas 

in the upper mantle modelled using high-resolution global seismic tomography have 

been interpreted as "vast domains of high temperature" (Anderson et al., 1992). 

These have been termed "hot cells", and are consistent with geochemically 

anomalous domains of similar scale rather than point sources associated with thin, 

chimney-like plumes (Anderson, 1998). Hotspot swells are on a scale characteristic 

of the upper mantle (spherical harmonic degree 1=6), rather than deep mantle 

convection, which corresponds to the scale of 1=2 harmonics (Anderson et al., 1992). 

It has also been argued that there is still no geophysical evidence that demands deep 

thermal perturbations beneath hotspots (Anderson etal., 1992). 

Geochemistry shows mixed evidence. Some surface rocks exhibit features 

which are explained by considerable input from upper-mantle material (Fitton et al., 

1997) and other evidence is thought to require the transport of lowermost mantle 

material to the surface (Brandon et al., 1998). 

Alternative theories: Theories which have competed strongly with those of Wilson 

(1963) and Morgan (1971) include mechanisms such as whole-Earth contraction by 

cooling, compaction and the extrusion of lavas. Others involve volcanoes erupting at 

the ends of giant propagating rifts (Sleep, 1984). A strong argument against that 

theory is that hotspot tracks have been observed to cross ridge axes in the Atlantic 

and Indian Oceans, which is not in agreement with the crack model, since giant 

propagating cracks would be expected to stop when they reached a free edge (Sleep, 

1990). There are still problems with "conventional" plume theory, whether these 

plumes are considered to originate at the CMB or the 670-km discontinuity. Perhaps 

plumes do not all have the same origin. The simplistic age-distance relationships 

often quoted for hotspot oceanic islands do not always hold true (McNutt et al., 

1997). Contrary to the idea of plates drifting passively over a "blowtorch" plume, a 

"fossil" plume head, severed from its "tail", has been reported beneath the Brazilian 

shield (Vandecar et al., 1995). The head of this plume appears to have remained 

fixed to the overlying lithospheric plate despite thousands of kilometres of plate 

motion from the still-active plume which now feeds the Tristan hotspot. This 

supports the theory that the regions where plumes originate do not move along with 

the overlying plate. 
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1.2 DETECTION & OBSERVATION OF PLUMES 

Measurable, near-surface parameters that may cast light on the nature of 

plumes include bathymetric and topographic anomalies, heat flow, gravity and geoid 

anomalies. Models constructed from such measurements are non-unique, however 

and it has been argued that plumes are not required to explain the observations 

(Anderson et ai, 1992). Other, indirect methods of detecting plumes include 

modelling the effect of the thermal regime of the plume on sediments in surrounding 

regions, and seismic imaging of seaward-dipping reflector series thought to be 

associated with rifting in the presence of a plume. However, most plume models are 

based on geochemical and direct seismological evidence. 

1.2.1 Geochemistry 

Observations of age relationships along oceanic island chains can be made by 

comparing isotopic ratios in surface rocks. Islands and submerged seamounts were 

originally dated using palaeomagnetic measurements, and these observations formed 

a major part of hotspot theory. The surface extent of hotspots (and therefore the 

influence of the inferred plume) can be measured by mapping the spatial distribution 

of anomalies in isotope and trace element ratios in erupted basalts. Material in mantle 

plumes is isotopically distinct from that in the asthenosphere, which normally feeds 

mid-ocean ridges (Schilling, 1991), so the geochemical relationships in such 

anomalies provide evidence for the existence of plumes. 

Normal mid-ocean ridge basalt (MORB) is generally depleted in large-ion 

lithophile elements (LILs), which have been removed by some prior stage of melt 

extraction. MORB has low isotopic ratios such as 8 7Sr/ 8 6Sr (Anderson et ai, 1992). 

Hotspot basalts, and those erupted at early stages of lithospheric break-up, are 

generally less depleted than MORB, implying an origin in, or at least mixing with, 

relatively "enriched" mantle with high LIL concentrations and high 8 7Sr/ 8 6Sr ratios. 

The range of values for these ratios is much greater than for MORB, which suggests 

a primitive, heterogeneous source. The implication is that enriched material from 

deep within the mantle is brought to the surface by plumes which penetrate through 

the relatively depleted asthenosphere. Time-variance of plume activity can be 

investigated by comparing isotope ratios in surface geology along with 

independently determined age relationships. 
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1.2.2 Seismology 

A seismological observation of a plume "tail" in the deep mantle has been 

made by Nataf and Vandecar (1993), who measured travel time delays across the 

region containing the Bowie hotspot, west of Canada. These delays were attributed to 

a low-velocity region at -700 km depth, which was inferred to represent a 

temperature excess of -300 K. 

However, there exist earlier studies which document significant velocity 

anomalies in the mantle, detected by measurements of delay times in regions which 

we now recognise as being plume sites (Tryggvason, 1964; Long & Mitchell, 1970). 

Core-reflected shear waves, identifying an ultra-low velocity zone and anisotropic 

fabric, suggest flow at the core-mantle boundary beneath Hawaii (Russell et al., 

1998). Corroborating evidence for anisotropy indicating flow and layering beneath 

areas of large-scale downwelling add weight to this argument (Kendall & Silver, 

1996). 

The relatively narrow expected tail of a plume in the mantle, and the low-

magnitude of the velocity anomaly expected to characterise it, pose a problem for the 

resolution of global seismic tomography, which is of the order of 500-1000 km. This 

may explain why, despite significant, recent improvements in the method, it has not 

provided much evidence for plume-like features. Large-scale seismic tomography 

has revealed low compressional- and shear-wave velocities beneath both mid-ocean 

ridges and hotspots. Whereas those beneath ridges appear to be confined to the upper 

100 km of the mantle, those beneath hotspots extend to several hundred kilometres 

depth (Zhang & Tanimoto, 1991), although the resolution of such features is low 

compared to smaller-scale regional studies. Recent global tomography results show 

some large-scale structures consistent with mantle-wide convection. Direct evidence 

of upwelling is less clear. 

A problem for the seismological detection of plumes is the frequency-

dependent wavefront-healing effect, whereby a time delay produced by the passage 

of a ray through a low-velocity region is counteracted by rays diffracted around the 

edge of the slow region which can arrive before the Fermat ray. The effect was 

shown to be small for the case of relatively small and smooth variations in velocity 

(Nataf & Vandecar, 1993), although a reduction in travel time delay of up to 40% has 
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been observed for S-waves passing through strong, narrow, low-velocity structures, 

by comparison with a model constructed using frequency-dependent amplitude 

variations (Allen et al., 1999). 

Regional, restricted-array tomography techniques, in which the receiver array 

is located directly over a "target volume" have the advantage that raypaths sample 

much of the target volume with sub-vertical trajectories, making maximum use of the 

low-velocity anomaly to produce larger integrated time delays which are easier to 

detect. This type of experiment has been shown to be successful in detecting and 

imaging low-velocity anomalies beneath a number of known hotspots. Teleseismic 

P-wave tomography has been applied to the Yellowstone (Iyer et al., 1981) and 

Hawaii hotspots (Ellsworth, 1977; Ellsworth & Koyanagi, 1977). Beneath 

Yellowstone, a low-velocity anomaly was detected, interpreted as a body of up to 9% 

partial melt along the Snake River Plain, extending to a depth of 175-200 km. 

Beneath Hawaii little lateral inhomogeneity was detected. The small size of the 

network aperture meant that the structure was only resolved down to around 165 km. 

The results suggest that magma is supplied to the Hawaiian volcanoes by very 

narrow conduits and that the main seismic signature of the hotspot is below 75 km. 

Similar methods have been used in plume imaging experiments using teleseismic 

tomography, for example at the Rio Grande Rift (Slack et al., 1996) and the French 

Massif Central (Granet et al., 1995). 

Ji and Nataf (1998) applied two-dimensional waveform tomography to 

scattered, long-period P waves in a search for vertical cylindrical structures in the 

lowest 1,000 km of the mantle beneath Hawaii. They observed a double feature 200 

km north-west of Hawaii, which may indicate two plumes. However, the strength of 

this feature is 30 to 60 times greater than the expected effect of a 600 K thermal 

anomaly (which would give a vp anomaly of -1.5%), so the physical interpretation of 

this result is problematical. Another method uses a synthetic model of P- and S-

wave scattering caused by a vertical cylinder to predict waveform features which 

could be used in future observational experiments (Tilmann et al., 1998). These 

include ray focussing effects and the excitation of secondary phases including a 25% 

increase in the amplitude of the transverse component relative to the radial 

component. 
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Indirect observation using the method of receiver function analysis has been 

applied to the upper mantle transition zone (Shen et al., 1998). The excess 

temperature associated with a plume is predicted to displace the depths of the phase 

transitions at the 670- and 410-km seismic discontinuities upwards and downwards 

respectively, resulting in a small region where the transition zone is thinner by some 

20 km relative to the surrounding mantle. 

13 T H E ICELAND PLUME : SUMMARY OF CURRENT KNOWLEDGE 

1.3. J Regional setting 

Iceland straddles the mid-Atlantic ridge, the constructive boundary between 

the Eurasian and North American lithospheric plates at -65 °N. The mid-Atlantic 

ridge is a slow-spreading ridge, with an average ful l spreading rate of 18 mm a"1 

(DeMets et al., 1994). While the island of mainland Iceland is about 500 x 300 km in 

size, the large bathymetric plateau around Iceland is over 1000 km wide. The 

topographic anomaly rises to 3 km above the level of normal sea floor of this age and 

influences the spreading ridge as far south as the Charlie Gibbs fracture zone 

(CGFZ), some 1000 km away. 
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Figure 1.3 E T O P 0 5 Bathymetry and topography of the Iceland region. C G F Z = Charlie Gibbs 
fracture zone. 

The thermal anomaly beneath Iceland is thought to have been present at least 

since the opening of the north Atlantic ocean some 55 Ma ago, and may have 

initiated the process (Morgan, 1981). The continued influence of the plume has been 

felt in the region ever since, implying a long-lived feature in the mantle. Some 

evidence points to time-dependent variations in the strength of the plume. Outward-

propagating, V-shaped topography and gravity anomalies along the Reykjanes Ridge 

suggest temperature variations of around 30°C with a period of 5-10 Ma (White et 

al., 1995), and along-axis variations in Pb isotopes support the idea of material from 

a pulsating plume interacting with the flow of asthenospheric mantle related to the 

spreading plate boundary (Hanan & Schilling, 1997). 
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1.3.2 The Iceland ridge-centred hotspot 

Iceland is regarded as the type example of a ridge-centred hotspot, and 

evidence for the interaction of the Iceland hotspot with the spreading ridge is 

apparent from several observations. The apparent influence of the hotspot along the 

Reykjanes Ridge suggests lateral outward flow of plume-fed material beneath the 

ridge axis , and would explain the geochemical patterns such as decreases in Fe:Mg, 

Na:Ca ratios and incompatible trace element concentrations along the ridge away 

from Iceland (Schilling, 1973). Interestingly, the Kolbeinsey ridge north of Iceland 

does not appear to be influenced to such an extent, and it is possible that the Tjomes 

fracture zone in the north of Iceland acts as a barrier to the lateral flow of material 

from beneath Iceland. The Greenland-Iceland and Faroe-Iceland ridges are evidence 

that the thermal anomaly has been active beneath Iceland for a considerable time as 

the plates have spread apart. These ridges represent the track of the Iceland hotspot 

on either side of the spreading ridge. 

The axis of the spreading ridge emerges on land at the Reykjanes peninsula in 

the south-west and continues east-north-eastwards as the Western Volcanic Zone 

(WVZ, Figure 1.4), one of three such rift zones which comprise rifts, fissure swarms 

and central volcanoes. The South Iceland Seismic Zone offsets the WVZ from the 

Eastern Volcanic Zone (EVZ), which includes the increasingly active volcanic 

centres of Grimsfjall and BarSabunga beneath the Vatnajokull glacier, the site of a 

sub-glacial eruption and jokulhlaup (glacial melt-water outburst) in 1996. The Krafla 

central volcano lies in the centre of the Northern Volcanic Zone to the north, which 

is itself terminated by the Tjornes fracture zone (TFZ), a transform zone which 

connects the rift axis on land to the Kolbeinsey ridge, the continuation of the mid-

Atlantic ridge north of Iceland. 

There is evidence that the active spreading centre has shifted eastwards on the 

surface of Iceland over time (Saemundsson, 1979; Helgason, 1984; Eysteinsson & 

Hermance, 1985; Helgason, 1985; Hardarson et al., 1997). The ridge is thought to 

have initially jumped eastwards to the Snaefelsnes zone at around 16 Ma 

(Saemundsson, 1979). A second jump moved the spreading centre to the Hunafloi-
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Figure 1.4 Relief map of Iceland showing major tectonic and volcanic features. R R = Reykjanes 
ridge, K R = Kolbeinsey ridge, T F Z = Tjornes fracture zone, W,E & NVZ = Western, Eastern 
and Northern Volcanic Zones, SISZ = South Iceland Seismic Zone, SZ = Snaefelsnes Zone, 
HSVZ = Hunafloi-Skagi Volcanic Zone. Vatnajokull and other glaciers are shown in blue. 

Skagi Volcanic Zone in north-western Iceland and a third jump at 7-6 Ma moved the 

spreading centre to the NVZ (Helgason, 1984; Helgason, 1985). The centre of the 

hotspot is currently thought to be beneath east-central Iceland and to be moving 

eastwards with respect to the North American plate at about 1-2 cm a"1 (Nunns, 1983; 

Vogt, 1983). The location of the ridge is probably controlled by the underlying 

plume, and follows it as the plume migrates eastwards. This is also suggested by the 

large eastwards embayment which the ridge axis forms between the Reykjanes and 

the Kolbeinsey ridges (Figure 1.4). 

1.3.3 Icelandic crust 

Lively debate has been in progress for some time over two different models 

for the Icelandic crust. One model involves a thin, hot crust of around 10-15 km 

thickness, underlain by anomalously hot mantle with a significant percentage (-15%) 
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of partial melt (Palmason, 1973; P£lmason & Saemundsson, 1974; Gebrande et al., 

1980). That model was supported by the original interpretation of the RRISP 

refraction profile (Reykjanes Ridge Iceland Seismic Profile) results (Angenheister et 

al., 1980). Magnetotelluric measurements of the conductivity structure with depth 

(Beblo & Bjornsson, 1980; Beblo et al., 1983; Hersir et al, 1984; Eysteinsson & 

Hermance, 1985), map a widespread, high-conductivity layer beneath most of 

Iceland. Interpreted as a thin layer of partially molten basalt at around 1,000-

1,100°C, this layer was found at 10 km depth below the spreading ridge axis and at 

20-30 km beneath older crust further away. An alternative explanation is that the low 

resistivity is due to zeolite minerals as observed in extrusives in the rift zones, rather 

than to large accumulations of melt (Smallwood et al., 1998). High temperature 

gradients measured in boreholes support the hot-crust model, suggesting, by 

extrapolation, molten material at between 10 and 30 km depth. 

Recent, high-resolution seismic work points to a thicker (20-35 km) and 

cooler crust (Zverev et al., 1976; Bjarnason et al., 1993; Staples et al., 1997; 

Smallwood et al., 1998), with melt present only in small, shallow, crustal magma 

chambers (Brandsd6ttir & Menke, 1992; Menke & Levin, 1994; Menke & Sparks, 

1995; Brandsd6ttir et al., 1997). Crucial to this debate are arguments over the 

existence and depth of a Moho beneath Iceland, and estimates of the temperatures of 

the lower and upper crust with respect to the basalt and gabbro solidi. 

The RRISP seismic profiles across Iceland and the Reykjanes Ridge were 

originally interpreted as showing low shear-wave velocities and quality factors in the 

10-15 km depth range, implying a thin crust underlain by partially molten material 

(Angenheister et al., 1980). A subsequent re-interpretation suggested that the Moho 

is present at 35 km depth, and that the high attenuation observed was associated with 

shallow volcanism (Menke et al., 1996). This implies that the crust beneath Iceland 

is both thick (30-35 km) and generally below the solidus temperature. This 

hypothesis was supported by reports of a Moho in other refraction seismic results 

(Brandsd6ttir & Menke, 1992; Bjarnason et al, 1993; Staples et al., 1997) and from 

receiver function analysis, for example in the NVZ (Darbyshire et al., 1997). There, 

a gradational Moho is observed, though considerable variation in crustal thickness is 

noted within northern Iceland. Evidence for a ubiquitous, sharp Moho is not found in 

16 



Chapter 1 Hotspots and mantle plumes 

the Western Fjords area, where analysis of receiver functions and regional surface 

wave phase velocities revealed a zone of enhanced velocity gradient beneath only 

some of the stations, while others showed a velocity gradient increasing smoothly 

with depth (Du & Foulger, 1999). At the time of writing, the best available results 

from surface wave and receiver function work suggest that the depth to the 

vp=7.8 km s"1 horizon varies from -24 km to -40 km over Iceland (G.R. Foulger, 

pers. comm.). 

1.3.4 Gravity field 

A map of the Bouguer gravity field of Iceland is given in Figure 1.5 and 

shows a negative anomaly of 20-40 mGal centred on the interior highlands, 

increasing to zero in the neovolcanic zones and to +20-40 mGal at the coasts 

(Thorbergsson et al., 1990). This low appears at least roughly to coincide with the 

presumed centre of the hotspot. When compared to the Atlantic ocean basin as a 

whole, the Bouguer gravity field of Iceland is negative by approximately 350 mGal, 

and by approximately 150 mGal relative to the neighbouring Faroe-Iceland Ridge 

(Hermance, 1981). The anomaly can be divided into contributions from crustal and 

subcrustal effects. Comparisons with crustal structures and densities obtained from 

regional seismic studies suggested a significant component (—430 mGal) of isostatic 

compensation from subcrustal material beneath the neovolcanic zone (Hermance, 

1981). 

1.3.5 Seismic phenomena 

The mantle beneath Iceland has long been noted to cause significant time 

delays in teleseismic body waves (Tryggvason, 1964; Long & Mitchell, 1970; 

Bjarnason et al., 1996), implying that wave speeds are lower beneath Iceland than in 

the surrounding mantle. These delays may even be greater than can be observed due 

to wavefront healing effects (Allen et al., 1999). Shear-wave splitting can also 

contribute to these time delays, although only a limited number of observations from 

Iceland exist. The fast direction of splitting, thought to be associated with preferred 

orientation of upper mantle minerals such as olivine, was found to be between 

N20°W and N45°W (Bjarnason et al., 1996), which does not correlate with likely 

flow patterns associated with a plume. However, the size of the time delays 
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Figure 1.5 A Bouguer gravity map of Iceland (model CBA1, Fig 3.11 of Field (1994), using the 
dataset of Thorbergsson et al. (1990). 
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between the fast and slow S-waves (0.7-1.7 s) suggest a cause associated with mantle 

anisotropy, rather than crustal anisotropy which causes a much smaller degree of 

splitting (0.1-0.3 s) in the NVZ (Menke et al, 1994). The splitting in the mantle is 

probably linked to the large-scale mantle flow field of the north Atlantic. 

The first seismic image of the mantle beneath Iceland made using teleseismic 

tomography (Tryggvason, 1981; Tryggvason et al., 1983) revealed a maximum 

anomaly of -3.9% P-wave velocity perturbation. The shape of the anomaly in the 

uppermost layer was found to correlate strongly with the southwest-northeast trend 

of the neovolcanic zone. The anomaly was strongest in the uppermost and lowermost 

layers, but weaker in the depth range 75-275 km, where the peak anomaly was 

around -1.6%. 

More recently, Wolfe et al. (1997) provided the first S-wave model of the 

Iceland plume using teleseismic tomography. This model showed an anomaly shaped 

like a truncated cone, with maximum magnitudes of -2.1% for the P velocity 

perturbation, and -4.2% for S. In horizontal section at 300 km depth, the anomaly 

shape is best described by a radial Gaussian velocity function of radius 150-200 km. 

The anomaly was found to broaden with depth and to be persistent down to at least 

400 km. These anomalies in P- and S-wave velocity suggest excess temperatures 

between 200-300 K, which support the idea of a hot, narrow plume rather than the 

broader, cooler structure predicted by some numerical models (Ribe et al, 1995; Ito 

et al, 1997). Support for the thin, hot plume model is also provided by frequency-

dependent amplitude variations of teleseismic waves in the mantle beneath Iceland 

(Allen et al, 1999). In this case, the model was optimised by a maximum S-wave 

velocity perturbation of -12% and Gaussian radius of 100 km. 

Further discussion of the teleseismic tomography models of Tryggvason 

(1983) and Wolfe et al. (1997) is given in Chapter 6. There, their models are 

reproduced and compared with the results of this thesis. 

The whole-mantle plume observed by Bijwaard & Spakman (1999) is slightly 

wider, having a radius of up to 250 km in the mantle, but supports the temperature 

contrast of between 200 and 300 K in the upper mantle Figure 1.6. This model 

provides evidence for extensive spreading of the plume head, which is inferred from 

a region 1200 km in diameter with P-wave velocities reduced by up to 2%. The 
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anomaly is much weaker (less than 0.5%) in the lower mantle. Those results also 

show considerable deviation of the plume conduit from the hypothesised vertical 

cylinder, and lateral branching which may indicate that the surface hotspot may not 

be stationary over time. Very recent, high-resolution global tomography work, 

published in December 1999, largely agrees with the results of Bijwaard & Spakman 

(1999) but suggests that the lower mantle structure is insignificant (Megnin & 

Romanowicz, 1999; Ritsema <?f a/., 1999). 
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Figure 1.6 P-wave tomographic model of a whole mantle plume beneath Iceland (Bijwaard & 
Spakman, 1999). (a) shows observed results, (b) shows results from synthetic tests. 
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The thickness of crust predicted to be produced by a hot, narrow plume 

model over-estimates actual crustal thickness and the temperature contrast between 

Iceland and the rest of the spreading ridge (Wolfe et al., 1997). Models have been 

reconciled with observed parameters by including the effects of dehydration (Ito et 

al., 1999). The extraction of water from the mantle by partial melting beneath the 

spreading ridge leaves a residuum with a much higher viscosity, preventing active 

(buoyant) upwelling of material, and allowing only passive upwelling in response to 

plate spreading. This implies lower rates of melt production, which are more in line 

with observed values of crustal thickness. 

1.3.6 Geochemistry 

Iceland exerts considerable influence on the geochemistry of lavas produced 

along a 1000-km long section of the mid-Atlantic ridge. That such lavas are derived 

at least partly from primitive material from deep within the Earth is suggested by 

several geochemical parameters. 

Lavas dredged from an axial profile along the Reykjanes Ridge show marked 

and regular decreases in K2O, TiC>2, P2O5, La and other LIL concentrations with 

increasing distance south-west along the Reykjanes ridge (Schilling, 1973) (Figure 

1.7), i.e., basalts on Iceland are relatively enriched, or less depleted, than MORB. 
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Figure 1.7 Geochemical trends along the Reykjanes ridge (Schilling, 1973). 
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There is considerable variation in these concentrations within basalts on 

Iceland, however (Sigvaldason et al., 1974), suggesting that some mixing occurs 

between the primitive material and MORB-source mantle. Evidence for such mixing 

comes from isotopic ratios such as 8 7Sr/8 6Sr, which decrease outwards along the ridge 

as the plume signature is "diluted" by mixing with Atlantic MORB asthenosphere 

(Hart et al., 1973). Pb isotopic variations of lavas on Iceland suggests some grouping 

of lavas in space and time (Welke et al., 1968) implying that there is temporal 

variation in the activity of the plume, perhaps involving pulsating activity (Hanan & 

Schilling, 1997). The outward-propagating V-shaped topographic and gravity 

anomalies along the Reykjanes Ridge have been explained in terms of temperature 

and flow-rate fluctuations of material flowing laterally away from the core of the 

plume (White et al., 1995), again, consistent with pulsating plume activity. 

The variations in Icelandic rock types from picrite to tholeiite to alkali basalt 

have been explained by the existence of two distinct source regions and mixing 

between them, or melts derived from them (Hards et al., 1995). Other workers have 

suggested distinct zoning of the Icelandic plume head (Fitton et al., 1997), with an 

axial zone of "Icelandic" mantle (i.e. primitive plume material) encapsulated in a 

shell of anomalously hot, but compositionally normal, MORB-source mantle. This 

last study has difficulty reconciling observations with the hypothesis of a plume 

originating solely from the lower mantle and instead suggests that at least part of the 

plume originated at the thermal boundary layer at the base of the upper mantle. This 

could be caused by a lower mantle plume which "stalls" at the 670 km discontinuity 

and initiates an upper-mantle plume. Alternatively, a plume that originates at the 

basally-heated boundary layer at the base of the upper mantle could entrain some 

lower-mantle in the plume conduit. There is strong evidence that at least some lower-

mantle material is brought to the surface (Brandon et al., 1998) and this is difficult to 

ignore in the light of supporting seismological evidence of CMB anomalies beneath 

plumes. 

The lateral branching of the plume observed in the whole-mantle 

tomographic image of the Iceland plume of Bijwaard & Spakman (1999) may also be 

supported by geochemical evidence. Picrites (high MgO-content lavas) of early 

Tertiary age, representing "Iceland-like" plume material have been reported from 
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west Greenland, 4-5 Ma older than the onset of volcanism in east Greenland, 

normally associated with the beginning of Icelandic plume activity. Picrites are 

thought to be restricted to the region above the hot axial conduit of a plume, and 

therefore it is unlikely that these lavas are erupted merely in the (hypothetical) broad 

"mushroom-head" of the plume. This suggests that a lateral branch of the plume may 

have been focussed in this area. It is argued that the plume centre could not have 

migrated fast enough from west Greenland to its known position beneath east 

Greenland at the start of the main plume activity. This would have required a 

migration rate -20 times that of the next 58 Ma. 

These observations may also support the idea of a lower-mantle "mega-

plume" which spawns major and minor "sub-plumes" in the upper mantle. Numerical 

modelling of lower-mantle mega-plumes has demonstrated that smaller, more 

localised plumes can form in the upper mantle, allowing hotspots to vary in plume 

flux whilst being fed from a relatively stable thermal boundary layer at the CMB 

(Thompson & Tackley, 1998). 

1.4 QUESTIONS T O B E ANSWERED 

Several questions regarding the role of plumes in mantle convection and 

surface tectonics and volcanism remain. Some of these may be summarised as 

follows: 

What is a plume, in terms of measurable physical parameters? What is the 

observational evidence that plumes fi t theoretical models of axisymmetric, 

cylindrical thermal currents rising from some source in the mantle? Can we infer 

physical properties such as excess temperature, width, depth extent and up-welling 

rate from physical observations? 

Are plumes required by surface observations? Can surface observations be 

explained by models other than plumes? How reliable and realistic are the models we 

construct? 

What is the role of plumes in plate-driving forces? Do plumes actively pull plates 

apart (explaining their proximity to many constructive plate margins), or is plate 

separation above plumes merely a passive process in response other forces? The 

latter would suggest some independence of surface tectonics from mande convection. 
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What is the depth of origin of plumes? Do plumes originate at the core-mantle 

boundary, or some other thermal boundary layer such as the 670-km seismic 

discontinuity? Are convection currents in the lower and upper mantle connected, or 

does the transition zone act as a barrier, restricting convection to lower and upper 

"compartments"? 

Does plume activity vary with time? Observations of surface morphology and 

geochemistry seem to suggest some variability with time. Is there any evidence for 

this from direct observations of plumes in the mantle? 

1.5 A I M S O F Tins STUDY 

The primary aim of this study is to test the hypothesis that Iceland is underlain by a 

plume, and to determine its extent and seismic structure. The approach used is: 

• To investigate the signature of a possible plume in the lower mantle at around 

1,500 km depth from seismic ray paths which pass beneath Iceland to Norway 

and Scotland and to use these observations to place constraints on the size and 

strength of any such plume at this depth, 

• To record and analyse seismic body waves arriving in Iceland and measure 

relative arrival times to identify seismic waves which may been slowed down by 

travelling through anomalously hot and/or partially molten material, 

• To map the seismic P- and S-wave structure of the mantle beneath Iceland with 

the highest resolution of studies to date, using teleseismic travel-time 

tomography, and to interpret the results along with information about quality and 

reliability in terms of temperature variation and convective state, 

• To compare these results with other previous studies and to test the quality of 

those results. 
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2. AZIMUTH ANOMALY STUDY 

2.1 B A C K G R O U N D 

Teleseismic P waves passing near convective plumes in the mantle are 

refracted horizontally, causing anomalies in their propagation directions that can be 

measured by wide seismometer arrays. Waves from seismically active areas in the 

eastern Pacific and western north America to an array in Norway (NORSAR) and a 

seismic network in Scotland pass beneath Iceland at depths of about 1,200 to 1,900 

km. The arrival azimuths of seismic waves at NORSAR can thus place upper bounds 

on a plume in the mid-mantle beneath the Iceland region. The signal is weak, a result 

that is not dissimilar from those of other studies that seek evidence for the Iceland 

plume in the lower mantle. However, this is a novel approach and the results add to 

the sparse information available about the lower mantle beneath Iceland. 

2.2 T H E N O R S A R S E I S M I C ARRAY 

The 100-km aperture Norwegian Seismic Array (NORSAR) in southern 

Norway was operated from the 1960s to the 1980s to conduct research on detecting 

and identifying nuclear explosions. NORSAR and other, similar arrays enabled 

seismologists to improve signal-to-noise ratios, by summing signals from sensors 

that were spaced widely enough so that the noise was largely incoherent. These 

arrays had another capability of greater scientific importance: the relative arrival 

times at different sensors could give direct measurements of the arrival directions 

(slowness vectors) of seismic waves. Such measurements were found to differ 

substantially from the directions predicted by standard tables, because of the effects 

of lateral variations in Earth structure. Although it is not possible to invert observed 

slowness anomalies from a single array to determine three-dimensional structure 

uniquely, it is possible to draw some general conclusions. At NORSAR, P waves 

from earthquakes throughout the world had observed slowness vectors that were 

systematically displaced eastward by about 1 s/°, an effect that could be attributable 

to lateral variations in the crust and/or upper mantle directly beneath the array, which 

affect waves from all directions similarly. On the other hand, the slowness anomalies 

sometimes changed rapidly with the locations of the earthquakes. Such anomalies 

must arise much further from the array, although the location cannot be determined 

with any precision using a single array. 
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The most rapidly varying slowness vector anomaly at NORSAR occurred for 

earthquakes in middle America, whose waves approach NORSAR from the WNW 

(Sheppard, 1973). This anomaly was originally attributed to structure in the upper 

mantle beneath the earthquakes. However, these waves also pass beneath Iceland at a 

distance of about 1,500 km from NORSAR, raising the intriguing possibility the 

anomaly might be related to structure beneath Iceland, in the depth range 1,600-

1,900 km. If seismic rays pass near a low-velocity plume, the first arrivals wil l be 

refracted horizontally so that they pass to either side of it, and the range of azimuths 

measured by the array will be greater than the range of great-circle azimuths to the 

epicentres. Just such an effect was seen in the NORSAR data by Sheppard (1973). 

Data from a single array can provide information about the direction of an 

anomalous structure. Here, data from a network in southern Scotland is used in an 

attempt to improve spatial constraints. I f an anomaly could be detected from two 

directions, then its location could be determined by triangulation. 

2.3 D A T A 

2.3.1 Experiment geometry 

The data used in this study consist of teleseismic P-wave arrival times 

measured from vertical-component seismograms recorded on the NORSAR array 

and a collection of stations of the UK seismic network in southern Scotland. The 

experiment geometry is shown in Figure 2.1. Both arrays are located within 15° of 

Iceland. Body waves from teleseisms at epicentral distances of between 70° (e.g., 

earthquakes in Alaska observed in Scotland) and 85° (e.g., earthquakes in middle 

America observed at NORSAR) pass through the mantle beneath Iceland at depths of 

approximately 1,200-1,700 km and 1,600-1,900 km, respectively. The ray paths 

cross, providing an experimental geometry capable of locating the position of an 

anomaly, i f one exists. 

2.3.2 Data from NORSAR 

The NORSAR dataset comprises teleseisms from the central America region 

(array-to-event azimuth range 260°-320°) that were recorded during the years 1973-

1976 (Figure 2.2). During this period, NORSAR consisted of 22 six-station 

subarrays, had an aperture of about 100 km, and could resolve slowness within about 
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0.06 s/°, or 0.6° in azimuth. Al l stations had identical, vertical, short-period, Hall-

Sears HS-10-1/ARPA seismometers (Bungum et al, 1971). Data were digitised at 

each subarray at a sampling rate of 20 sps and transmitted to the main data 

processing centre by telephone line. 

I extracted seismograms from a selection of the largest events (Table 2.1) 

from the archive of digital data on magnetic tape at the NORSAR data processing 

centre. I digitally filtered these (passband 0.5-2.0 Hz) and measured P-phase arrival-

time differences at different sensors by visual correlation of coherent peaks or 

troughs relative to the first cycle. Only the clearest of these relative arrivals were 

measured. Where possible, an arrival was picked from at least one sensor in each 

subarray for each event. Typically, about 20 of the 22 subarrays provided reliable 

picks for each event. 

Table 2.1 Events recorded at NORSAR (data from ISC Bulletin) 

Lat Lon d/kni Date Origin Mb A(°) Region 
5.23°N 75.82°W 110 1973/04/24 18:42:31.5 5.3 83.8 COLOMBIA 
19.97°N 73.05°W 24 1973/08/03 15:44:25.5 5.2 69.7 HAITI REGION 
18.26°N 96.58°W 75 1973/08/28 09:50:39.1 6.6 82.2 V E R A CRUZ, M E X I C O 
5.27°N 78.08°W 30 1973/09/16 08:21:37.9 5.3 84.9 SOUTH O F PANAMA 
19.42°N 104.98°W 56 1973/10/18 10:49:39.3 6.0 84.8 NEAR COAST O F JALISCO, MEXICO 
9.51°N 83.95°W 34 1974/02/28 20:20:10.4 5.8 84.0 C O S T A R I C A 
14.52°N 91.64°W 106 1974/04/10 22:43:00.5 5.4 83.3 GUATEMALA 
15.61°N 95.26°W 33 1974/06/25 05:01:01.2 5.2 84.0 NEAR COAST O F OAXACA, MEXICO 
15.54°N 95.33°W 23 1974/06/25 08:44:45.3 5.4 84.1 NEAR COAST O F OAXACA, MEXICO 
7.51°N 77.50°W 54 1974/07/13 02:20:24.6 5.5 82.6 PANAMA-COLOMBIA BORDER REGION 
7.24°N 77.55°W 23 1974/07/13 23:08:42.6 5.3 82.9 PANAMA-COLOMBIA BORDER REGION 
17.06°N 98.42°W 63 1974/07/18 19:21:26.3 5.5 84.1 G U E R R E R O , MEXICO 
4.32°N 76.84°W 91 1974/08/24 02:47:31.1 5.7 85.1 COLOMBIA 
2.72°N 7t.37°W 44 1974/09/27 04:09:01.6 5.5 83.8 COLOMBIA 
7.18°N 77.76-W 40 1975/01/25 02:08:41.8 6.0 83.1 PANAMA-COLOMBIA BORDER REGION 
15.68°N 91.72°W 226 1975/02/03 01:03:26.6 5.3 82.3 M E X I C O - G U A T E M A L A B O R D E R REGION 
16.47°N 98.86°W 17 1975/04/23 11:14:49.3 5.9 84.8 NEAR COAST O F G U E R R E R O , MEXICO 
29.49°N 113.40°W 30 1975/07/08 09:37:28.9 5.6 79.0 G U L F OF CALIFORNIA 
16.24°N 94.07-W 79 1975/08/19 14:57:11.6 5.6 82.9 OAXACA, MEXICO 
14.65°N 93.48°W 15 1975/08/22 23:08:14.2 5.2 84.0 NEAR COAST O F CHIAPAS, MEXICO 
6.96°N 77.67°W 27 1975/08/25 03:57:18.1 5.2 83.2 NEAR WEST COAST OF COLOMBIA 
7.55°N 77.50°W 0 1975/11/21 01:14:55.6 5.8 82.6 PANAMA-COLOMBIA B O R D E R REGION 
14.70°N 90.63°W 27 1976/02/06 18:19:21.4 5.6 82.7 GUATEMALA 
21.63°N 106.60°W 43 1976/02/09 21:29:57.0 5.6 83.5 OFF COAST OF C E N T R A L MEXICO 
17.45°N 100.65°W 48 1976/06/07 14:26:39.9 6.0 84.7 GUERRERO, M E X I C O 
7.41°N 78.04°W 3 1976/07/11 20:41:47.9 6.1 83.0 PANAMA 
7.06°N 78.15-W 37 1976/07/11 20:58:24.3 5.4 83.3 PANAMA 
7.24°N 78.29°W 15 1976/07/12 14:43:08.6 5.4 83.3 PANAMA 
7.42°N 78.02°W 16 1976/07/13 01:26:07.3 5.2 83.0 PANAMA 
7.41°N 78.01°W 27 1976/07/14 01:32:34.6 5.4 83.0 PANAMA 
7.41-N 78.11°W 43 1976/07/15 00:35:33.6 5.3 83.0 PANAMA 
19.35°N 104.67°W 69 1976/07/17 09:02:14.7 5.2 84.8 NEAR COAST O F JALISCO, MEXICO 
4.93°N 82.59°W 33 1976/07/24 10:43:22.5 5.4 87.4 SOUTH OF PANAMA 
18.81°N 101.06°W 93 1976/09/05 20:11:39.2 5.3 83.7 GUERRERO, MEXICO 
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Figure 2.1 Map showing the NORSAR array and network of seismic stations in Scotland used in 
this study. Triangles on insets show locations of seismic stations (Scotland) and subarray centres 
(NORSAR). Lines show great circles along which waves approach the arrays, with numbers 
indicating the depths, in km, of rays from typical epicentral distances (70° for the Scottish 
stations; 85° for NORSAR). 
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Figure 2.2 Map showing events used in this study, recorded at NORSAR between 1973 and 
1976. Lines shown bound the array-to-event azimuth range 260°-320°. Typical epicentral 
distance is 85°. 
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2.3.3 Data from the Scottish network 

An array of the aperture of NORSAR is not available in the UK, the 

Eskdalemuir, Scotland array being only 20 x 20 km in size. Such an array is too 

small to assess azimuth anomalies accurately. Thus a subset of the seismic network 

operated by the British Geological Survey (BGS) in the UK was used as an array 

(Figure 2.1). 

Stations of the Scottish network have vertical, short-period Wilmore Mk II/HI 

seismometers, and data are relayed by FM analogue telemetry to Edinburgh. BGS 

personnel regularly measure P-wave arrival times from paper playouts (D. Galloway, 

BGS, pers. comm.) and report them to the International Seismological Centre (ISC), 

which publishes them in monthly Bulletins and distributes them in computer-

readable form. A group of stations was selected for this analysis which covers an 

area similar to that of NORSAR, and P arrival times were extracted from the ISC 

CD-ROMs for the period 1984-1994. The teleseisms used were in the region from 

Vancouver Island through Alaska to the Aleutian Islands (array-to-event azimuth 

range 300°-36O°) (Figure 2.3, Table 2.2) 
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Figure 2.3 Map showing events used in this study, recorded at Scottish seismic stations between 
1984 and 1994. Lines shown bound the array-to-event azimuth range 300°-360°. Typical 
epicentral distance is 70°. 
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Table 2.2 Events recorded in Scotland (data from ISC Bulletin) 

Lat Lon d/km Date Origin Mb Region 
66.22°N 149.98-W 12 1985/03/09 14:08:04 5.8 55.4 A L A S K A 
43.50°N 127.62°W 10 1985/03/13 19:34:57 5.9 70.1 OFF COAST O F OREGON 
62.19°N 124.27°W 6 1985/12/23 05:16:03 6.2 53.3 NORTHWEST TERRITORIES, CANADA 
51.42°N 174.84°W 5 1986/05/07 20:43:28 5.9 72.5 ANDREANOF ISLANDS, A L E U T I A N IS. 
56.39°N 152.86°W 17 1986/06/19 09:09:10 5.9 65.1 KODIAK ISLAND REGION 

56.19°N 153.40°W 31 1986/09/12 23:57:15 6.0 65.3 KODIAK ISLAND REGION 

61.45°N 150.85°W 60 1987/04/18 02:01:37 5.7 59.9 SOUTHERN A L A S K A 

51.26°N 179.88-W 26 1987/05/06 04:06:15 6.1 72.9 ANDREANOF ISLANDS, ALEUTIAN IS. 
54.20°N 162.66°W 33 1987/06/21 05:46:10 6.0 68.6 A L A S K A PENINSULA 

56.19°N 153.69°W 33 1987/07/24 05:25:11 5.5 65.4 KODIAK ISLAND REGION 

57.74-N 142.94°W 10 1988/03/06 23:14:36 6.1 61.8 G U L F O F A L A S K A 

54.29-N 165.58-W 104 1989/05/19 02:21:56 5.9 68.9 FOX ISLANDS, A L E U T I A N ISLANDS 

57.80°N 154.29°W 43 1989/06/16 10:51:17 5.6 64.0 KODIAK ISLAND REGION 

58.85°N 156.83°W 210 1990/05/01 16:12:21 6.0 63.3 A L A S K A PENINSULA 
59.34°N 136.67°W 10 1990/07/11 15:14:03 5.7 59.0 SOUTHEASTERN A L A S K A 

54.59°N 161.59°W 28 1991/05/30 13:17:43 6.2 68.1 A L A S K A PENINSULA 

42.19°N 125.65°W 11 1991/07/13 02:50:14 6.1 70.5 OFF COAST O F OREGON 

50.65°N 130.06°W 10 1992/04/06 13:54:40 5.9 64.7 VANCOUVER ISLAND REGION 

40.36°N 124.05°W 15 1992/04/25 18:06:04 6.2 71.5 NEAR COAST O F NORTHERN CALIFORNIA 

40.51°N 124.25°W 20 1992/04/26 07:41:41 5.8 71.4 NEAR COAST O F NORTHERN CALIFORNIA 

40.47°N 124.36°W 22 1992/04/26 11:18:26 6.4 71.5 NEAR COAST O F NORTHERN CALIFORNIA 
34.25°N 116.48°W 1 1992/06/28 11:57:35 6.1 73.5 SOUTHERN CALIFORNIA 
50.46-N 174.93°W 10 1992/08/19 00:57:40 6.0 73.5 ANDREANOF ISLANDS, A L E U T I A N IS. 

43.94°N 128.33°W 20 1992/08/21 01:02:18 5.5 69.9 OFF COAST O F OREGON 

59.66°N 152.97°W 108 1993/03/19 12:20:50 5.1 62.0 SOUTHERN A L A S K A 

56.26°N 155.01°W 25 1993/04/16 04:09:19 5.2 65.5 A L A S K A PENINSULA 

55.00°N 160.39°W 32 1993/05/13 11:59:47 6.3 67.6 A L A S K A PENINSULA 

55.01 °N 160.56°W 30 1993/05/25 23:16:42 6.2 67.6 A L A S K A PENINSULA 

50.18°N 177.45-W 3 1993/11/11 00:28:31 6.2 73.9 ANDREANOF ISLANDS, ALEUTIAN IS. 
60.17°N 153.11°W 124 1993/11/20 19:24:51 5.6 61.5 SOUTHERN A L A S K A 

40.44°N 125.69°W 10 1994/09/01 15:15:53 6.5 72.0 OFF COAST O F NORTHERN CALIFORNIA 

Table 2.3 Dataset statistics 

NORSAR Scotland 
No. of events used 34 31 
Average no. of picks per event 19.9 6.9 
Total no. of picks 678 214 
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2.3.4 Analysis of arrival times 

Arrival times for each event were examined and outliers removed. Where the 

relative observed arrival time (arrival time - mean arrival time for the event) differed 

by more than an emprically-selected threshold (0.78 s) from the value predicted by a 

computer program using the tau-p method of Buland & Chapman (1983) and the 

IASP91 Earth model (Kennett & Engdahl, 1991), the datum was rejected. Events 

with fewer than 4 reliable arrival times were also rejected, because this is the 

minimum number that provides redundancy in a plane-wave fi t . Table 3 gives 

statistics for the assembled data. 

Plane waves were fitted by least-squares to the relative arrival times for each 

event to obtain the horizontal slowness vector p. Because different subsets of stations 

were used for different events, it is possible for near-array structure to introduce 

noise into these results (Berteussen, 1975). Experiments using different sets of 

stations indicated that this effect is small (around ±0.75°). In order to reduce it still 

further, station corrections were applied to the observed times before fitting plane 

waves. The correction for each station was computed by averaging the misfit 

between the predicted and observed times over all events. 

2.4 R E S U L T S 

2.4. J NORSAR 

Figure 2.4 shows the NORSAR results plotted in slowness space. It is similar 

to the corresponding part of Figure LI-9 of Sheppard (1973). Waves from events due 

west of NORSAR arrive nearly from the expected great-circle azimuth, whereas 

waves from the northwest arrive from directions about 7° too far to the northwest. 

Figure 2.5 shows the same data, plotted in the form of azimuth anomalies as a 

function of azimuth. This representation is appropriate because the primary effect of 

a vertical plume is to change the azimuthal component of the slowness vectors, while 

leaving the radial component relatively unaffected. Error bars show the approximate 

accuracy of the measurements, assuming an aperture of 100 km and timing 

uncertainties of 0.05s. Also shown is the theoretical azimuth anomaly for a plume of 

velocity contrast of -1.5% and Gaussian diameter 250 km, with a "DC shift" applied 

to achieve the best fit to the observations. 
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azimuth 320° 

260° 

Figure 2.4 Slowness vectors observed at NORSAR for P phases from earthquakes in middle 
America, as measured in this study. Dots are slownesses predicted from ISC hypocentres and 
the tau-p computer programs of Buland & Chapman (1983), which use the IASP91 Earth model 
(Kennett & Engdahl, 1991). Lines join these values to the observed slownesses. These results 
are similar to those of Sheppard (1973). 

+ + +- * f •+ 

* * * Ul 

. . . i 
l . i • ++ * + + ••)- + +-

{ 

i 

1 1 1 

I 
i 

! f' 1 

260 270 280 290 300 310 320 
Array-to-event azimuth, £ (deg) 

Figure 2.5 f-phase azimuth anomalies (dots, with error bars) observed at NORSAR for 
earthquakes in middle America (same data as shown in Fig. 4). Positive values indicate waves 
arriving from greater (more northerly) azimuths than the great circle to the epicentre. Crosses 
indicate anomalies predicted using a synthetic plume model. 
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The dominant features are the increase in arrival azimuth anomaly with 

event-to-station azimuth and the rapid change in these azimuth anomalies for event-

to-station azimuths between 265° and 300°. The azimuthal range covered by this 

feature, 30° or more, is much too large to be caused by a plume beneath Iceland. If it 

is caused by a structure 1,600 km from NORSAR (the approximate distance to 

Iceland), then the structure is at least 800 km in diameter, which is far greater than 

expected, e.g. Wolfe et al. (1997); Ji & Nataf (1998); Shen et al. (1998); Allen et al. 

(1999). It is possible that this feature could be associated with the large free-air 

gravity anomaly present in the north Atlantic region. The great width of this anomaly 

could be explained as a deeper source than those associated with the near-surface 

effects of the Reykjanes Ridge. It is also possible that this strong effect could have 

some contribution from azimuthally-varying lateral inhomogeneities beneath the 

array. 

A second-order feature of the azimuth anomalies occurs for azimuths 

between about 287° and 300°, and, as discussed below, has approximately the shape 

expected for the effect of a plume. Because of observational error and the larger-

scale azimuth anomaly discussed above, and because of the non-unique nature of the 

problem, it is not possible to associate this feature with a plume with certainty, or to 

infer the properties of any possible plume very accurately. Indeed, similar, rapid 

variations in slowness vectors could be caused by velocity structures other than a 

plume and in the data of Sheppard (1973), there were such rapid variations in 

directions from NORSAR not associated with known hotspots. It is possible, 

however, to use these observations to place a bound on the strength (wave-speed 

perturbation) and diameter of a plume, i f one exists in the mid-mantle beneath the 

Iceland region. 

It might be appropriate to remove a trend (linear, for example) from the 

azimuth anomalies of Figure 2.5 before interpreting them. Doing this will reduce the 

amplitude of the anomaly in the range 287°-300°, and thus the magnitude of the 

wave-speed perturbation in the hypothetical causative plume, without affecting its 

position significantly. However, because an upper bound is sought for the wave-

speed anomaly in the plume, no such trend is removed here. 
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azimuth 360° 
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Figure 2.6 Slowness vectors observed in Scotland for P phases from earthquakes in the 
Vancouver Island, Alaska and the Aleutian Islands regions. Plotting conventions are the same as 
used in Figure 2.4. 
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Figure 2.7 P-phase azimuth anomalies observed in Scotland (same data as shown in Figure 2.6) 
overlain with a theoretical curve for a plume of 1.5% velocity contrast and Gaussian diameter 
250 km. Plotting conventions are the same as used in Figure 2.5. 

2.4.2 Scotland 

Figures 2.6 and 2.7, which are similar to Figures 2.4 and 2.5 respectively, 

show the observations from Scotland in slowness space and in the form of azimuth 

anomalies as a function of great-circle azimuth. The scatter in these data is larger 
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than for the NORSAR data, because of the poorer quality of the arrival time 

measurements from the Scottish network. 

2.5 INTERPRETATION 

2.5.1 Plume model 

It is instructive to compare the observed anomalies with the expected effect 

of a plume. The compressional-wave speed vp near a vertical plume could be 

approximated by the analytical function: 

v = v 0 - Sv exp(-r 2/a 2) 

where r is distance from the plume axis, vo is the wave speed far from the plume, 8v 

is the maximum wave-speed perturbation, and a, the Gaussian radius, is the distance 

at which the perturbation falls to 5v/e. No vertical variation is included. The 

horizontal wave-speed gradient near the plume refracts rays horizontally, causing 

them to arrive from azimuths different from those of the great circles to the 

epicentres. If the radius of the plume, a, is small compared to the epicentral distance 

and i f bv « v0 (so that the total deviation of the ray is much less than a radian), then 

the azimuth anomaly caused by the plume is 

where A is the (angular) epicentral distance, AP is the distance from the array to the 

plume, £ is the great-circle azimuth from the array to the epicentre, C,p is the azimuth 

from the array to the centre of the plume, Re is the radius of the Earth, and / is a 

function that depends on the form of the wave-speed anomaly. In other words, the 

azimuth anomaly, as a function of azimuth, has a characteristic shape, with an 

amplitude proportional to the fractional wave-speed perturbation associated with the 

plume, and to the fraction of the path length that lies between the epicentre and the 

plume, and a width proportional to the angle subtended by the plume at the array. 

From symmetry considerations,/is an odd function. Figure 2.8 shows the shape o f / 

for the Gaussian anomaly of equation 2.1, which was determined by numerical ray-

tracing using the bending method (Julian & Gubbins, 1977). 

(2.1) 

SC~ 1 
a (2.2) 
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Figure 2.8 Theoretical azimuth anomalies for vertical plumes with Gaussian wave-speed 
perturbations of equation 2.1, plotted in dimensionless form. The abscissa is the dimensionless 
difference between the great-circle azimuth to the epicentre and the azimuth to the plume. The 
ordinate is the dimensionless azimuth anomaly caused by the plume. 

2.5.2 Comparison with data 

A theoretical azimuth-anomaly curve like that of Figure 2.8 is shown 

superimposed on the NORSAR data in Figure 2.5. The position of the anomaly has 

been placed in the Iceland region (A/>=1,500 km) and width of the anomaly has been 

chosen to fi t the data. The magnitude of the anomaly has been made as large as 

possible, while remaining consistent with the data. As discussed above, removing a 

large-scale trend from the data would result in a weaker anomaly, so the curve shown 

gives an upper bound on the magnitude of the anomaly. The anomaly is centred at an 

azimuth of 295°, and has a width of about 20° and an amplitude of about 4°. These 

values correspond to a relative wave-speed perturbation, bv/v0, in the plume of 1.5% 

and a plume Gaussian diameter, 2a, of about 250 km. This diameter is consistent 

with the results of other seismological studies of plumes. 

Figure 2.7 shows a similar curve superimposed on the Scottish data. The 

diameter and magnitude of the theoretical curve are the same as those used for Figure 
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2.5. The centre of the anomaly is placed at an azimuth of 342°, where there is 

marginal evidence for a signal of the expected shape and strength. It is clear, 

however, that the data are too noisy and sparse to enable the expected signal to be 

either confidently located or ruled out. The geographical context of these results is 

shown in Figure 2.9. 

Figure 2.9 Map showing surface projections of array-to-event azimuths of the best estimate of 
the centre of the anomaly, deduced from modelling of the NORSAR and Scotland data. A 
possible, but poorly constrained estimate for the centre of the plume is beneath the point at 
which the lines cross. Depth annotations in km as used in Figure 2.1. 

2.6 DISCUSSION AND CONCLUSIONS 

For a simple, vertical, cylindrical plume in the mid-mantle beneath Iceland, 

anomalies in the arrival directions of teleseismic P waves recorded at NORSAR 

place an upper bound of 250 km on the Gaussian diameter at a depth of ~ 1,500 km 

and an upper bound of 1.5% on the wave speed contrast. Data from a network of 

stations in Scotland are of poor quality and add little to this result. Without further 

constraints, it is difficult to constrain the location of the surface projection of the 

possible plume. A possible location may be at approximately 63.5°N, 9°W, -300 km 

southeast of the coast of Iceland. A wider plume would produce a broader anomaly at 

NORSAR, and a stronger plume would produce a greater anomaly amplitude. 
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It must be emphasised that the fit to the data is not unique. The source of the 

anomaly could be more distant than the Iceland region. Parameter space was 

searched by modelling a suite of plumes of various strengths and widths and at 

various distances, that could cause an anomaly of the size observed at NORSAR. 

Bodies with realistic velocity contrasts of up to a few percent would have to be wider 

and deeper i f more distant from NORSAR, reaching a diameter of 600 km at 3,000 

km distance (i.e. beneath Greenland) and 800 km at 4,000 km distance (i.e. beneath 

Newfoundland). 

Global tomography has the potential to identify such alternative bodies. 

Recent global tomography work (Bijwaard et at, 1998; Bijwaard & Spakman, 1999) 

provides an image of the large-scale velocity structure beneath Iceland, Greenland 

and Newfoundland. In the lowermost mantle, velocities beneath Newfoundland are 

generally high. At mid-mantle depths a plume-like anomaly is resolved beneath the 

area southeast of Iceland in the depth range 600-1,500 km. This anomaly appears to 

broaden with depth to the west where it extends beneath Greenland in the depth 

range 2,000 - 2,500 km. These results strongly suggest that the plume model used 

here is a simplification, but they also suggest that the approach in modelling a low 

wave-speed body in the mid-mantle beneath the Iceland region is reasonable. A 

tentative location for this plume, southeast of Iceland at mid-mantle depths, is 

consistent with those global tomography results, which further suggest that, i f all or 

part of the anomaly found in the NORSAR data is caused by a low-velocity body 

further away than Iceland, beneath the Greenland region, then such a body is 

continuous with the Iceland plume. 

2.7 SUMMARY 

• Azimuth anomalies of teleseismic P waves arriving at the NORSAR array in 

Norway show features which can be modelled by a plume at a depth of 1,500 km, 

southeast of Iceland. 

• If the anomaly is due to a vertical, cylindrical plume, upper limits of 125 km for 

the Gaussian radius and 1.5% for the velocity reduction can be placed by the 

data. The solution is not unique and bodies at other distances and with other 

strengths would also fit the data. 
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» ISC bulletin data from a seismic network in Scotland are of too poor quality to 

enable confident identification of a similar anomaly, i f one exists, or triangulation 

on the causative body. 
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3. THE ICELAND HOTSPOT PROJECT: DATA ACQUISITION 

3.1 T E L E S E I S M I C TOMOGRAPHY E X P E R I M E N T G E O M E T R Y 

Teleseismic tomography enables a three-dimensional image of the subsurface 

to be made using relative delay times of teleseismic waves recorded at instruments 

placed vertically above the volume of interest. In order to sample the volume of 

interest sufficiently, rays from a broad range of directions and slownesses are 

required, as is a dense network of stations. Regular station spacing is desirable for all 

methods of teleseismic tomography, as it improves the homogeneity of ray sampling 

(Evans & Achauer, 1993). In this case, stations from two complementary seismic 

networks were used: a permanent network operated by the Icelandic Meteorological 

Office (Vedurstofa Islands), and the temporary Hotspot network, deployed as part of 

the Iceland Hotspot Project. An average station spacing of approximately 50-75 km 

was achieved, which provides the best station coverage to date for an experiment of 

this type in Iceland. 

3.1.1 SIL network 

3.1.1.1 History & Layout 

The South Iceland Lowlands (SIL) project was initiated in 1988 to provide 

facilities for earthquake prediction research in the South Iceland Seismic Zone 

(SISZ). The SIL seismic network has been collecting data since 1990, and a nearly 

complete record exists of all earthquakes in the Iceland region down to magnitude 0 

(Stefansson era/., 1993). 

The current SIL network now extends beyond the original SISZ area in the 

south-west of Iceland, and was recently extended by the addition of a group of five 

stations (GRA, GRI, GRS, GIL, REN) in the north (Figure 3.1). Broadband sensors 

for these stations were provided by the University of Cambridge, using funding from 

the Natural Environment Research Council (NERC). Even with these additional 

stations, the SIL stations cover only a small part of Iceland. Details of those stations 

used in the tomography experiment are given in Appendix 1. 

3.1.1.2 Instrumentation 

The present SIL network has increased in size considerably since the original 
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Figure 3.1 The SIL network. 
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Figure 3.2 Frequency response of SIL sensors (Rognvaldsson, 1997). 3T, 3T PASSCAL and 
3ESP are Guralp instruments, L E I and LE5 are Lennartz 1 Hz and 5 Hz instruments, STS2 is 
Streckeisein STS-2. 
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8 stations, which were equipped with short-period seismometers. The network now 

consists of a mixture of sensor types. Short-period sensors at six SIL stations (ASB, 

HVE, KRO, SIG, SKR & VOG) were temporarily replaced by broadband sensors as 

part of the Hotspot project. The frequency response curves for instruments of the SIL 

network are shown in Figure 3.2. 

For this study, only data recorded at the SIL broadband stations were used, 

since sensors at these stations are mostly of the same type as those used by the 

Hotspot network, namely Guralp CMG-3T and CMG-3ESP. One station (ASB) has a 

Streckeisen STS-2 sensor, which has a response curve of similar shape over a 

common range of frequencies (0.03-30 Hz). The resulting network of over 40 

broadband stations provided excellent coverage for tomography purposes. 

Al l sensors are 3-component. Each station is equipped with an acquisition 

system consisting of a 16-bit gain-ranging digitiser, a Global Positioning System 

(GPS) synchronised clock, and a 32-bit UNIX computer connected by X25 telephone 

link to VeSurstofa headquarters in Reykjavik. Data are initially sampled at 400 

samples/s and then filtered and resampled at 100 or 20 samples/s as required. A 

typical SIL seismic station is shown in Figure 3.3. 

Figure 3.3 SIL seismic station SKR, showing the station hut with telemetry equipment. Stations 
are run by the Icelandic Meteorological Office and relay meteorological as well as seismic data 
to the headquarters in Reykjavik. 
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The SIL network was designed primarily for detecting and recording local 

earthquakes. This has determined the layout of the network, but the established 

event-detection system, the recent installation of broadband instruments at several 

stations, as well as the existing subset of instruments of 5 s period, make the network 

a useful source of regional and teleseismic data. 

As part of the Hotspot project, a system for saving teleseisms was developed 

and implemented. Notification of a teleseismic event is received from the U.S. 

National Earthquake Information Center (NEIC) by e-mail, the relevant portions of 

data are extracted from a ring buffer (Stefansson et al, 1993), resampled to 20 sps 

and stored online as "AH"-format seismogram files. Each file contains the 

seismograms for the vertical (Z), north-south (N) and east-west (E) components, and 

is given a filename which includes the station name and the data time. An extensive 

dataset now exists and is freely available on the internet from Vedurstofa Islands at 

http://www.vedur.is/. 

3.1.1.3 Timing 

The internal clocks of the recording system computers are kept synchronous 

by the GPS receiver attached to each system. Clock corrections are applied 

automatically by the SIL system, so seismogram timings are kept accurate to within 

0.5 ms. 

3.1.1.4 Data collection 

Each station records data continuously, and performs on-line phase detection 

based on simple signal-to-noise ratio characteristics. The detected signal is then 

scanned to obtain the exact onset time of the detected phases, and a "phase log" entry 

is written, containing information such as maximum amplitude, azimuth and spectral 

parameters. Phase logs are relayed by telephone line to Veflurstofa Islands 

headquarters in Reykjavik, where event association is made automatically, using the 

multi-station information. Relevant sections of waveform data are then requested 

from each station. 

Since the main function of the SIL network is to record local earthquake data, 

which is of higher dominant frequency than teleseismic data, the main data stream is 
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recorded at 100 sps. For teleseismic work, however, where dominant frequencies are 

lower, 20 sps is adequate, and conserves storage space. 

Earthquakes recorded on the STL network are listed in a catalogue file 

t e i e v e n t s . i i b (Appendix 2), stored in the directory /eq/YYYY/teieseism/ 

(YYYY=year) on the computer network at Vedurstofa Islands. This file gives the 

directory structure in which the relevant seismogram files can be found. Files are 

grouped by event, and for this study, only the 20 sps data for broadband stations were 

extracted. 

3.1.2 The Hotspot network 

3.1.2.1 Introduction 

The Hotspot network was deployed as part of this study during the summer of 

1996, and is, to date, the largest temporary broadband seismic network that has ever 

been operated in Iceland (Figure 3.4). The whole project was funded by the UK 

Natural Environment Research Council (NERC) and the US National Science 

Foundation (NSF). The network was designed to complement the permanent SIL 

network, by filling in gaps in the existing station coverage. Large areas of the 

country in the north-west, east, and the interior had little or no coverage by SIL 

stations. In some cases, notably the Snaefelsnes peninsula, the installation of the 

Hotspot network was the first time that earthquake recording equipment had been 

deployed for any length of time. 

A station worthy of particular mention is that at Grfmsfjall (station HOT23), 

on a nunatak on the Vatnajokull glacier. This station provided much-needed data to 

f i l l in the large gap in station coverage made by Europe's largest glacier. The 

logistics of siting and maintaining stations in the hostile environment of the interior 

of Iceland have meant that, in the past, sites such as this have not been possible. 

However, the station proved to be very useful and, within a month of being installed, 

recorded the seismic activity associated with the September 1996 eruption of the 

Gjalp subglacial volcano. Other stations sited in the uninhabited interior of Iceland 

(stations HOT24, 25, 26, 27 and 28) provided unprecedented data coverage in these 

areas, and were, on the whole, remarkably reliable considering the harsh 

environmental conditions. 
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A team of workers from the University of Durham (UK), Princeton 

University, NJ (USA), the US Geological Survey, VeSurstofa islands and technical 

staff from the IRIS -PASSCAL (Program for Array Seismic Studies of the 

Continental Lithosphere) group at the Lamont-Doherty Earth Observatory, New 

York, USA, took part in a 4-month fieldwork project in the summer of 1996 to install 

the stations in Iceland (Table 3.1). The stations recorded for two years, so careful 

planning was needed to ensure that the equipment would survive the notorious 

Icelandic climate and require the minimum of service visits, which, in some cases, 

meant driving for several days across glaciers and snow in specialist vehicles with 

professional guides. 

Table 3.1 Personnel involved with network deployment fieldwork in 1996. 

Name Affiliation 

Matt Pritchard University of Durham 

Gillian Foulger University of Durham 

Bruce Julian U.S. Geological Survey 

Guust Nolet Princeton University 

W. Jason Morgan Princeton University 

Richard Allen Princeton University 

Kristin Vogfjord Princeton University 

Palmi Erlendsson Vedurstofa islands 

Sturla Ragnarsson Vedurstofa Islands 

Paul Friberg IRIS-PASSCAL 
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Figure 3.4 Map of seismic stations in Iceland. Coloured symbols show temporary Hotspot 
stations deployed during this experiment. Different colours denote logistic groups (see text for 
details). Black symbols represent SIL and University of Iceland (Raunvi'sindastofnun 
Haskolans) stations (stations a-f). 
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3.1.2.2 Instrumentation 

Field equipment was supplied by the IRIS-PASSCAL consortium, based at 

the time at Lamont-Doherty Earth Observatory, New York. REFTEK Data Analysis 

Systems (DASs) were used to record to 0.66 - 1.2 Gbyte disks. GPS clocks provided 

timing. 

Al l sensors were Guralp, 3-component, broadband digital seismometers, of 

three types: CMG-3T, CMG-40T and CMG-3ESP. The three types of sensors differ 

slightly in their response to low frequencies. CMG-3T sensors have a fairly flat (i.e. 

constant) response for periods of up to 100 s, while CMG-40T and CMG-3ESP 

sensors are flat to 50 s. The instruments also differ slightly in their susceptibility to 

higher frequency noise. Because of this, the CMG-3T sensors were deployed, where 

possible, at stations where there was particularly good acoustic coupling, or at least 

low noise levels, such as station HOT13 (Sulur), where the equipment was deployed 

in the WWSSN (World-Wide Standardised Seismic Network) vault. The CMG-40T 

sensors are slightly more susceptible to noise than the CMG-3ESP sensors, but are 

more compact instruments, and were thus best suited to sites where a pit had to be 

dug to bedrock, or where there was little space for the sensor. 

3.1.2.3 Network layout and installation 

Initially, the task was to choose locations on the basis of optimal station 

coverage, maintaining an even station spacing and avoiding large gaps in the 

coverage. Having identified a potential site area, we then assessed it in terms of 

several logistical factors, namely: 

• Availability of mains electricity 

• Accessibility (winter and summer) 

• Geology (availability of surface bedrock) 

• Cultural and natural noise sources (e.g., proximity to roads, generators, 

rivers etc.) 

Harsh weather conditions in Iceland, particularly in winter, mean a hostile 

environment for electronic equipment and make outdoor fieldwork difficult. 
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Consequently, as many stations as possible were installed in farm out-buildings or in 

the cellars of buildings, where there was access to continuous mains power. 60-Amp 

hr lead-acid battery packs were provided as backup in case of power failure. In many 

cases, sites were available which enabled sensors to be placed either directly on 

bedrock, or on concrete floors underlain by bedrock. 

In order to maintain coverage in the central part of Iceland, however, several 

stations had to be sited in the uninhabited, interior wilderness where access is 

considerably more difficult and where mains electricity is not available. In many 

areas, the only buildings are wooden mountain huts. For these stations, power was 

provided by sets of 30-Watt solar panels, connected to large banks of eight 150-amp 

hr lead-acid batteries. Details of the 30 Hotspot stations and their locations are given 

in Appendix 3. 

Once the necessary equipment had been shipped to Iceland, it was first 

"huddle tested" to ensure correct operation. This involved setting up and running 

several acquisition systems side-by-side indoors. Faulty equipment could be easily 

identified by comparing the recordings. Correctly functioning equipment was 

distributed in lorry consignments to locations around the island, ready to be collected 

by the field parties, who drove out in smaller service vehicles, and taken to 

individual stations. 

An installation timetable was drawn up by G. R. Foulger, which allowed 

approximately 2 days per station, and time for driving between Reykjavik and the 

station groups. Icelandic roads are mostly gravel outside of the Reykjavik area, and 

driving conditions can be hazardous, even in good weather (Figure 3.5). The large 

distances and poor road conditions involved meant that journeys were often very 

lengthy. 

After installing the stations, each field party revisited the site after around 7-

10 days to check that equipment was operating correctly and to obtain sample data 

which could be quality-controlled. In some cases, problems such as excessive local 

noise were identified on examination of this first set of data, and remedial steps 

taken. For example, the sensor at station HOT05 (Bru) was moved to a quieter 

location once it was discovered that a nearby generator was swamping the data with 

noise. A list of the equipment used at a typical station is given in Appendix 4. 
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Figure 3.5 Fording a river en route to station HOT28 (Leppistungur). The road is marked out 
by yellow stakes leading up the hill. These mark the location of the road when it is snow-
covered. This type of obstacle is typical for roads in the uninhabited interior of Iceland. 

3.1.2.4 Station setup instructions 

In order to ensure that stations were set up in a standard and consistent 

manner, they were set up according to the instruction sheet given in Appendix 5. A 

typical station was set up as follows: 

1) Pit preparation. Many stations had good facilities for housing the sensor indoors 

on a concrete floor set on bedrock. However, i f the sensor had to be installed 

outdoors, it was important to ensure that the pit was adequately drained. I f possible, 

the pit was dug on a slope, ideally with a depth of about 0.75 m to bedrock. A cement 

pad was laid in the bottom of the pit, a ceramic tile embedded level in it and marked 

with the direction of local magnetic north. A drainpipe was installed, draining 

downhill to the surface (Figure 3.6). Two large inverted buckets were used as the 

vault walls. A hole was cut in the rims of these to allow the seismometer cable to run 

out. A layer of loft insulation, placed between the two buckets, served to slow 

temperature changes which affect the response of the instruments. 

2 ) Power. The power supply was first connected to the "battery" terminal strip on the 

power board. Next, the battery was connected to the same terminal on the power 

board, in parallel with the power supply. The DAS power cable (2 m, grey) was then 

connected to the "station" strip on the power board. The 5 m double grey cable was 
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then attached to the "station" strip on the power board, and the plug connected to the 

mains. 

3) Seismometer. The seismometer was positioned on the tile or floor with the brass 

pointer oriented towards magnetic north (Figure 3.6). The seismometer feet were 

then unlocked by turning the brass screws anticlockwise. The seismometer could 

then be levelled by adjusting the three feet and checking the levelling bubble on the 

top surface of the instrument. Once levelled, the feet were locked in position and the 

north orientation checked once more. 

The single cable was then connected to the seismometer, and fastened to the 

handle with a cable tie so that a sharp pull would not move the seismometer. The 

levels were then re-checked, and the protective covers (screws and rubber "O-rings") 

were removed from the locking control holes and the masses unlocked using a 

special six-sided tool. The covers were then replaced. At this point, the other end of 

the single cable was plugged into the "sensor" port of the breakout box. 

! 

Figure 3.6 (Left) Seismometer pit after initial preparation, showing base of concrete poured 
onto bedrock, surrounded by boulders and with a ceramic tile mounted as a flat base for the 
sensor. The black drainage pipe prevents the pit from flooding. (Right) Guralp CMG-40T 
seismometer positioned on ceramic tile in base of pit. 
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4) Data Acquisition System (DAS) The grey power cable was connected from 

either power port on the DAS to the disk, and the black SCSI cable was used to make 

the data connection to either SCSI port. At this point, the GPS antenna was erected in 

a place with a clear view of the sky (Figure 3.7). The antenna was mounted on a 

metal bracket designed to fi t on the side of a roof as shown. The fitting had to be 

sturdy enough to withstand high winds, and the cable had to be fixed securely in 

place. 

Figure 3.7 Installing the GPS antenna on the roof of a building at station HOT19 (Fell). 

The antenna was connected to the "COMM" port on the DAS using the grey 

GPS cable. The single grey cable that was attached to the power board in step 2c 

(Appendix 5) was then connected to a free power port on the DAS. The black data 

connection cable was connected into the "CH4-6" port on the DAS. 

5) Parameter loading/setup Parameters from the table given in Appendix 6 were 

loaded into the DAS using the Epson Hand Terminal (EHT) or, i f preloaded, checked 
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against values in the table to make sure that all stations were set up correctly and 

consistently. 

Figure 3.8 Epson E H T being used to load parameters into the DAS (upper left grey unit) at 
station HOT08 (Olafsvi'ti). Also visible is the connected field disk and breakout box (next to 
DAS), battery and spare field disk on floor. The Seismometer is beneath the insulation on the 
right 

A "stomp test" was carried, which is a coarse test to check that each of the 3 

sensor components is recording. A member of the field party provided a small 

"seismic" source by jumping, and the resulting signal output is examined on the 

screen of the EHT. Once this had been performed, a station setup report was 

completed.. 

3.1.2.5 Recording parameters for seismic data 

The REFTEK instruments were set up to record three data streams, each 

consisting of three channels: vertical (4), north-south (5) and east-west (6). The 

north-south sensor was orientated to local magnetic north. This was done because the 

magnetic declination varies significantly over Iceland, and making the correction at 
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the data processing stage is less prone to error than attempting to do it in the field. 

The declination for each station is given in Appendix 3. 

Each data stream had an associated set of parameters which were loaded into 

the REFTEK DAS from the EHT at the time of installation. Parameters for the three 

data streams are given in Appendix 6. 

Data stream 3, which recorded at 100 sps, was an event-triggered data stream 

designed for the detection and recording of local events. Data stream 2 recorded 

continuously at 1 sps and was intended to provide a means of scanning the dataset by 

days at a time to search for events with good-quality surface waves, work which is 

ongoing at Princeton University. Data stream 1 recorded continuously at 20 sps, and 

is the data stream from which teleseismic events for this study were later extracted. 

3.1.2.6 Timing 

Accurate timing is essential to any seismograph system, particularly when the 

data of interest consist of relative measurements of seismic wave arrival times, as is 

the case with teleseismic delay-time tomography. The internal clocks of the 

REFTEK DASs are relatively primitive and drift strongly. They need to be corrected 

at regular intervals to ensure a sufficiently accurate, synchronised time base for the 

seismic network. GPS provides a suitable solution. 

Each DAS had a GPS antenna which was mounted where it was well exposed 

to the sky. The distribution of the -30 GPS satellites around the Earth ensures that at 

least 4 satellites are above the horizon at any point on the Earth's surface at any time. 

The primary function of the system is to provide navigation for military vehicles and 

personnel. In addition to positional data, each satellite broadcasts the time, which 

could be received by an antenna connected to the DAS. The primary and secondary 

functions of the GPS system are thus reversed when used for seismology in this way, 

since a useful by-product of using the GPS system is that accurate station locations 

are obtained. The DASs were set up to attempt to obtain a time estimate from the 

GPS system every hour ("locking on"). I f this was achieved, the DAS clock was re-

synchronised to GPS time by skewing the clock rate (in the case where the correction 

was small) or applying a time "jerk". In most cases, lock was achieved, but there 

were times when a considerable time passed during which no lock could be obtained. 
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This can occur, for example, when the antenna becomes obscured by snow, and in 

this case the gradual drift of the internal clock was unchecked until the next "lock". 

Al l system operations of the DAS are automatically kept in a log file, so that 

the behaviour of the recording system can be examined once the disk has been 

retrieved from the field. The log file lists the time of every clock lock, along with the 

value of the jerks applied to the REFTEK internal clock. In this way, corrections can 

be made to time measurements from seismograms, in the period covered by the 

logfile, by interpolating between the two clock locks before and after the pick time. 

Typical clock corrections applied were of the order of 500-1000 |isec, though 

occasionally, problems with GPS clocks meant that time clocks received no 

synchronising lock from the satellites for long periods. Diagrams showing 

performance of station GPS clocks are given in Appendix 7. 

3.1.2.7 Maintenance procedure 

Stations were divided into logistic groups in particular areas of Iceland that 

could be visited in one 3- or 4-day trip from the project headquarters at Vedurstofa 

Islands. The coloured symbols in Figure 3.4 denote the following groups: 

• SW Iceland Pink 

• Western Fjords Green 

• North Iceland Cyan 

• SE Iceland Yellow 

• E Iceland Red 

• Interior (Highlands) Orange 

Stations were visited at regular intervals during the two-year deployment by 

staff from Vedurstofa Islands (funded by NERC grant GST/02/1238) or by other 

Hotspot project members on fieldwork in Iceland. The frequency with which each 

station was visited depended on the type of station and its accessibility. This also 

governed the size of disk deployed at a particular station. Larger disks (1,020 or 

1,200 Mb) were left at stations which were difficult and/or expensive to reach, while 
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smaller disks (540 Mb) were used at stations that could be visited easily and 

frequently. A station typically recorded around 10 Mb per day, so a 540 Mb disk 

would typically last -50 days, while a 1,200 Mb disk would last ~120 days. The 

timetable for servicing the stations took account of the sizes of disks at particular 

stations. The stations in the uninhabited interior were generally visited at least once 

every three months with a generator, because the batteries often needed charging. 

Lack of power was the most serious cause of data loss at those stations. 

Service visits involved swapping the field disk with an empty one, as well as 

carrying out a set of tests to check that the recording system was in working order. 

Any problems that could be fixed on the spot were attended to, and any equipment 

known or found to be malfunctioning was swapped with spares carried by the service 

party and returned to Reykjavik for repair and/or return to the equipment supplier. 

3.1.2.8 Data extraction 

Data on disks brought back from the field were extracted and archived at the 

project headquarters in Reykjavik. This was done using computer hardware supplied 

by the 1RIS-PASSCAL equipment pool and installed on the local area network at 

Veflurstofa Islands. It included two Sun workstations, three, 9 Gbyte disks and four 

4-mm DAT drives. 

Each batch of field disks was first dumped to DAT tape and converted from 

the data blocks written by the DAS into miniseed format using the program 

ref2mseed. These files were then written to workstation disk and sample files 

inspected visually to detect problems. The program ref2mseed also generated the 

DAS log files, which were then written to tape, grouped by day. On a monthly basis, 

time windows corresponding to events of interest were extracted and stored on-line 

by means of a set of shell scripts written by B.R. Julian. The list of events of interest 

was constructed by consulting the global earthquake catalogue produced by the U.S. 

Geological Survey. Potentially interesting events were defined using the criteria 

given in Table 3.2, applied to the "ehdr" list of the National Earthquake Information 

Center. Data for selected events were then extracted for a time window starting 200 

seconds before the predicted arrival time. 
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Table 3.2 Epicentral distance and magnitude thresholds used as criteria for initial data 
extraction. 

Epicentral 
distance (°) 

Minimum magnitude 
above which events 
were extracted 

30 5 

20 4 

10 3 

Files for the extracted events were cut and spliced by a program called 

qmerge, (Doug Neuhauser, U.C. Berkeley, pers. comm.). qmerge deals with data 

gaps, overlaps, clock rates, etc., and the final output is the set of seismogram files for 

all three components for the appropriate time period. The file is labelled with the 

station number and channel name, e.g. H O T 2 4 . 4 . m . A l l the files for an event were 

then written to DAT tape and distributed to the co-operating research groups 

(Durham, Princeton, and the U.S.G.S.). The events used in the tomography study are 

a subset of the saved events and are described in Chapter 4 

3.2 SUMMARY 

• The network used for the teleseismic tomography study experiment comprised 

stations from two networks, the permanent SIL network operated by the Icelandic 

Meteorological Office and a temporary network of 30 stations deployed for two 

years as part of this study. The final distribution of stations used is shown in 

Figure 3.9. 

• The temporary network returned 86% of the targeted data for the two-year period 

1996-1998. It delivered -200 Gbytes of high-quality broadband data including 

over 2,400 events with M > 5.0 and 730 events at distances less than 20° with M 

> 3.0. Station performance statistics are shown in Appendix 21. 
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Figure 3.9 Configuration of seismic stations used in tomography study. 
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4. P R O C E S S I N G O F SBL & H O T S P O T T E L E S E I S M I C D A T A 

4.1 DATA PREPARATION 

4.1.1 Extraction of data from archive 

4.1.1.1 Data from the S I L network. 

Data from the SIL network were available on 4 mm DAT tape at Durham, 

and by internet connection via FTP (File Transfer Protocol) from the computer 

network at Vedurstofa Islands. 

Seismograms are stored there by event in the directory structure, and the file 

t e l e v e n t s . l i b (Appendix 2) lists the directory location for each event. Once events 

of interest had been identified, the corresponding data files were copied to the same 

directory as the corresponding Hotspot data in Durham. 

Only data recorded at 20 sps were used. Sometimes it was not possible to 

obtain SIL data for a particular event, for one of several reasons. Occasionally, data 

had simply not been stored. The SIL system only archives data from its ring-buffer i f 

it matches particular criteria of magnitude, epicentral distance and other parameters. 

For unknown reasons, it was sometimes the case that only 100 sps data were 

available, covering only the first part of the seismogram immediately following the 

first P arrival. These data were not used for the sake of consistency, and because it 

was considered more efficient to devote time to extracting event datasets where 

complete seismograms were available, enabling both P and S arrival times to be 

measured. 

4.1.1.2 Data from the Hotspot network. 

Archived Hotspot seismograms were available via FTP from the IRIS-

PASSCAL field computers, which were housed at Vedurstofa Islands and connected 

to the internet via that computer network. These data were periodically archived to 4 

mm DAT "event tapes" which contained data grouped by event for several weeks at 

a time, and were sent to Durham by post. 

Event tapes contained incomplete data for particular events, as they were 

invariably created before data from the entire network had been collected from the 

field for every event. The event data occupied little space compared with the 
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continuous data, however, and was therefore all kept on disk for most of the two-year 

monitoring period. Extraction of a particular event from the event tapes was time-

consuming as the data were often spread over two or three tapes. In the summer of 

1998, the event data were therefore re-written to "mother event tapes" which 

contained all the data for each event on the same tape, and thus provided a much 

more convenient archive of all events. 

Until the arrival of the mother event tapes (by which time, a large amount of 

the data for this study had already been extracted and processed), the most efficient 

way of extracting data associated with events of interest was as follows. A table of 

contents ( t o c f i l e ) was created for each event tape, which listed all the files on the 

tape. These t o c f i l e s were stored together in a single directory and were read by the 

script tocsearch.pl (Appendix 8) which listed the directory and data files 

associated with a particular event. The directory name (defined at the time of 

construction of the data archive) was normally obvious from the list of available 

directories for that day, but could be found by adding the predicted travel time for the 

first P arrival to the listed origin time. For example, data for an event at origin time 

12:24:26 on day 123 of 1997, with a P travel time of 724 seconds might be stored in 

directory 

E1997.123/123630/Mseed/ 

The command 

t o c s e a r c h . p l E1997.123 123630 

would list all the relevant files on any tape, along with the number of the event tape 

on which each file was to be found. Individual tape lists could then be created, for a 

set of events, to drive tape jobs that extracted the required files. 

Data were copied to disk in a directory structure similar to that used on 

Hotspot data tapes, i.e. 

( u s e r ' s path)/EYYYY.DDD/HHMMSS/Mseed/ 
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4.1.2 File format conversion 

It was decided to adopt the widely-used Ad-Hoc (AH) format for processing 

the data, since there exist many useful tools for manipulating data in this format. The 

SIL data were already available in AH format, with each file containing all 3 

seismogram components (Z, N and E). The picking program used, dbpick (Harvey 

& Quinlan, 1996), requires that each seismogram be contained in a separate file, so 

the AH program ahsplit was used to split the SIL files into three. The vertical, 

north-south and east-west component files were then identified by the suffixes BHZ, 

BHN and BHE respectively. 

Hotspot data were stored on the archive tapes in miniseed format, with each 

component in a separate file. The program ms2ah (D. Neuhauser, pers. comm.) was 

used to translate these to A H format. This program also added station location 

information from the file h o t s t n s .dat to the AH file headers. 

The resulting A H files were then stored, along with the corresponding SIL 

data, into the directories with the naming convention: 

( u s e r ' s path)/EYYYY.DDD/HHMMSS/ 

4.1.3 Database creation 

In order to use the picking program dbpick (Harvey & Quinlan, 1996), it is 

first necessary to create a database for each event, using the program ah2db (Harvey 

& Quinlan, 1996), which produces a set of files, each with the prefix dbname, where 

dbname is a user-defined name. In this case, I used the SIL event prefix, or some 

appropriate time label of the form HH:MM:SS, which would distinguish events 

sharing the same day. The file dbname.wfdisc lists the seismogram files and their 

locations for the event, along with other information such as the start and end time of 

the trace, sample rate, and component. The files dbname.site, dbname.sitechan 

and dbname.instrument list the station locations, components used at each station 

and sensor information, respectively. These files were created in a different 

directory, one per day, in an area of disk space which was backed up regularly. The 

convention used for naming these directories was: 

/usr/local/seismic/hotspot/pritchard/hotspot/db/YYYY/HOT/DDD/ 
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The original seismogram files were stored in an un-backed-up area as backup 

resources were limited and these data could easily be restored in the event of an 

irretrievable disk crash. 

Lists of station locations and channel names were produced from individual 

database files, (which did not usually include all the stations), and stored in the files 

HOTSPOT.site and HOTSPOT.sitechan. These files contained information for all 

stations in the network, including SIL stations. 

4.1.4 Event matching 

A ful l list of hypocentre locations was collected during the course of the 

experiment from the U.S. Geological Survey QED (Quick Epicenter Determination) 

lists. I made these into yearly origin table database files (named Y Y Y Y . o r i g i n ) using 

the program qed2origin (Harvey & Quinlan, 1996). For each event database (i.e. 

collection of files named dbname. *), a symbolic link was made to the Y Y Y Y . o r i g i n 

file. This was named dbname. o r i g i n , and stored with the other dbname. * files, 

enabling hypocentre coordinates and origin time to be incorporated into the database 

of information for each event. Individual events are listed in the Y Y Y Y . o r i g i n file 

with a unique origin identifier ( o r i d ) , of the form YYDDDEEE, for example, 

97123002, which is the second event listed for day number 123 of year 1997. Each 

event used in this study was allocated such an o r i d , which was then used to refer to 

the event and obtain hypocentre information at any stage. In a handful of cases, 

events were included whose details were not included in the QED listing. Additional 

records were added manually for these events, using hypocentre information from 

the U.S.G.S. Preliminary Determination of Epicenters (PDE) list. 

4.1.5 Rotation of seismograms 

The hypocentre information in the files Y Y Y Y . o r i g i n was used to rotate the 3 

recorded components, namely the vertical [Z or 4], north-south [N or 5], and east-

west [E or 6], into the source-related components vertical [Z or 4], radial [R] and 

transverse [T]. This was performed using the program a h r o t a t e (B.R. Julian, pers. 

comm.). 

First, corrections had to be applied for the fact that HOTSPOT sensors were 

aligned to local magnetic north. The script dbrot.pl (Appendix 9), for each station 
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in turn (listed in the file dbname.wfdisc), constructed the ahrotate command lines 

with the appropriate options, using hypocentre information appropriate to each o r i d , 

and sensor orientations in the file HOTSPOT.sitechan. Rotated seismograms were 

thus produced using the correct sensor orientations. The radial and transverse 

component files were stored in the same directory as the other seismogram files, and 

the program ah2db was run again to add their details to the corresponding event 

database. 

4.2 DELAY TIME MEASUREMENT 

4.2.1 Filtering 

Teleseisms recorded at stations in Iceland are polluted by high levels of 

oceanic microseismic noise. This noise is most prominent at frequencies of around 

0.3 Hz. Other sources of noise, such as wind, also degrade the signal. High 

attenuation beneath Iceland reduces the signal-to-noise ratio further, with the effect 

that only relatively large or deep teleseisms produce clear seismograms in Iceland. 

However, during the 2-year deployment of the HOTSPOT seismic network, 

sufficient earthquakes of suitable signal quality occurred worldwide to enable a large 

dataset of arrival times to be assembled. 

In previous work, it has been noted that teleseismic arrivals in Iceland display 

little energy above 1 Hz for P waves and 0.2 Hz for S waves (Wolfe et ai, 1997). 

Here, it was found that first P arrivals are often clear when filtered in the frequency 

range 0.5 - 2.0 Hz, while later arrivals tend to be swamped by noise in this frequency 

range. In many cases, even the first arrival is obscured at this relatively high 

frequency band, only to be clear at the much lower frequency range of (typically) 

0.05-0.1 Hz. Since resolution is limited to signal wavelength, it is necessary to pick 

at frequencies as high as possible. Typical P waves propagating through the mantle 

beneath Iceland would have a velocity of -8.5 km/sec. The wavelength of such 

waves would be -8.5 km at around -1 Hz, -17 km at around -0.5 Hz, but -113 km 

at -0.075 Hz. Thus, picking at such low frequencies would considerably reduce the 

structural detail obtainable. 

S arrivals could rarely be seen at frequencies as high as 0.1-1.0 Hz, so the 

majority of S picks were made in the lower frequency band of around 0.05-0.1 Hz. 
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One disadvantage of manually picking arrivals in frequency ranges as low as this is 

that the arrivals are more emergent and thus picking errors are larger. Picks made in 

these frequency ranges therefore have a larger uncertainty than those at higher 

frequencies. This effect, rather than poor correlation between individual waveforms, 

was the dominant factor in determining overall pick uncertainty, so a set of picks for 

a particular phase, picked at a particular frequency was assigned the same uncertainty 

value. 

Picks were made using the program dbpick. Filtering was applied on-screen, 

at the time of picking, using a set of user-defined filters available within dbpick. 

These were listed in a file . dbpickrc, which is stored in the same directory as the 

database files, or in the user's home directory. From this set, at least one filter could 

usually be found to reveal clear waveforms. I f necessary, further filters could be 

defined by using the seismogram viewer pqi, which allows filters to be constructed 

interactively, with visual reference to the frequency spectrum, and the parameters 

transferred to .dbpickrc for use with dbpick. 

4.2.2 Phase identification 

dbpick enables phases to be identified on-screen. Seismograms for the event 

are loaded, and the user can choose to display traces for a particular channel, e.g. 

vertical channel 4 (Figure 4.1). The user selects an event by reference to its or i d 
number, dbpick then retrieves the relevant hypocentre coordinates from the 

dbname.origin file, and the station coordinates from the dbname.site file (created 

by ah2db). Traces can then be sorted according to epicentral distance, which is 

helpful in identifying phases as they propagate across the network of stations (Figure 

4.2). 

Arrival times for common phases can be estimated within dbpick using a 

specified standard Earth model. In this case, the IASP91 model (Kennett & Engdahl, 

1991) was used (Appendix 10) with the "tau-p" travel time algorithms (Buland & 

Chapman, 1983). Traces can then be time-shifted to align the predicted first P arrival, 

which is helpful for matching waveform shape between stations. Markers for other 

phases can also be displayed (Figure 4.3). 
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Figure 4.1 Vertical seismograms for a teleseismic event displayed using dbpick. Markers show 
predicted arrival time based on the IASP91 Earth model (Appendix 10). 
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Figure 4.2 Seismograms sorted in order of epicentral distance, using hypocentre information 
from the U.S.G.S. Q E D earthquake listing. 
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Figure 43 Seismograms aligned according to the arrival time for the first P wave, predicted 
using the IASP91 model. Markers for later phases pP, PcP and PP are also displayed. 

The use of on-screen markers for predicted phase arrival times was found to 

be very useful, as it is a quick and reliable way of making sure that the set of 

observed arrivals has the correct phase slowness. Such phase identifications can also 

be verified by f i t t ing a plane wave to the arrivals and calculating the slowness. 

4.2.3 Picking 

A l l picks were made by hand using dbpick, on one channel only for a 

particular phase. P arrivals were picked on the vertical channel (4 or Z) , while S 

arrivals were picked on whichever component provided the clearest waveforms. This 

was usually R or T but occasionally the N-S (5 or N) or E-W (6 or E) components, 

depending on the phase of interest. For example, SKS is not present in the transverse 

component (T) in an isotropic Earth. 

Picks were made by visually correlating, on screen, the best and earliest 

representative peak or trough across the network. An initial pick was made, at a low 

magnification, so that several traces could be seen at a time, to avoid cycle-skipping 

(Figure 4.4). 
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Figure 4.4 Traces filtered using pre-defined filter 6 (0.1-1.0 Hz), and initial picks made at low 
magnification labelled with the identifier P6. The right-hand edge of the arrival flag indicates 
the pick position. 
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Figure 4.5 Final picks made at high magnification. 
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Once the correct peak or trough had been selected, i t was magnified to enable 

the correct position on the peak or trough to be fine tuned (Figure 4.5). Wi th the 

traces arranged in order o f epicentral distance and aligned by first P arrival, gross 

outliers (e.g. f rom misidentifying the correct cycle) could be identified by their 

anomalous position with respect to other picks. Clock corrections had not yet been 

applied at this stage, so i t is possible that some outliers may yet have remained. 

As each pick was made, dbpick displayed a flag indicating its position. The 

user can annotate this wi th a text label. The pick was automatically recorded in the 

file dbname.arrival as a record with fields for the station name, channel name and 

pick time, stored as the number of seconds since 00:00:00 on 1 s t January 1970. This 

file is updated instantly with subsequent adjustments to the pick time, and picks can 

be deleted and re-made at w i l l . 

4.2.4 Clock corrections 

Clock corrections were applied to individual pick times after the picking 

process. This was more accurate than adjusting the start times of whole traces in the 

seismogram file header. The main reason for this is that a correction is obtained for 

the instantaneous error at the pick time, rather than at the start time of the 

seismogram file. It is also better seismological practice to store uncorrected 

seismogram files, since future improvements in knowledge of the clock errors can 

then be applied. 

Log files produced by the Hotspot DAS recorders list each instance of the 

GPS receiver obtaining a clock lock. A typical sample of a log file is shown in 

Appendix 11. The entry for each clock lock is accompanied by the value and sign of 

the clock correction which was applied to the recorder's internal clock to synchronise 

it with GPS time. The script getcron.awk (Appendix 12) was used to extract these 

clock locks f rom individual log files, which typically covered several weeks. These 

were written to a single file for each station which thus documented all clock locks 

and corrections for the entire duration of the deployment of that station. These are 

shown graphically in Appendix 7. 

It can be seen that the performance of the GPS clocks varied considerably 

between stations, and that while clocks at some stations required little correction, 
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clocks at other stations show much more erratic behaviour, requiring corrections up 

to ±50 ms. 

The peri script ciockcor.pl was used to run the clock correction routine 

hotciock (Appendix 13) on each event database. This program is called with the 

time of the pick, and returns the clock correction to be applied. This is done by 

searching for the two times nearest to the pick time among the available, listed clock 

lock times and interpolating between the two corresponding corrections. The clock 

correction was added to the pick time to obtain the corrected time. This was then 

written to the f i le dbname.picks, produced by copying the file dbname. a r r i v a l but 

replacing the pick time with the corrected time. 

4.2.5 Calculation of relative delay times 

Teleseismic tomography models variations in travel time about some average 

Earth model. In this case, the IASP91 model was used as a reference Earth model. 

For source j and receiver i = l , . . . / ; - the travel time residuals are (Evans & Achauer, 

1993) 

rii=tObslj-tCalcij ( 4 > 1 ) 

where tobs^ is the observed arrival time and tCalCjj is the corresponding predicted 

arrival time according to the IASP91 travel time tables for the identified phase. 

These "absolute" travel time residuals contain contributions f rom errors in 

hypocentre location and origin time, as well as differences between the reference 

Earth model and the actual. Errors f rom the first two sources are nearly constant 

across the receiver network i f this is small compared to the raypath length. They can 

be removed by forming relative residuals rr^ either by subtracting some reference 

residual, r ^ j , or, as was done in this study, the weighted mean of the residuals for 

that source: 

or 
rr Ref.j U 

w rr 

(4.2) 

(4.3) 
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where vv/, is a weighting term derived f rom the pick uncertainty. The mathematical 

development of the A C H method is described in Chapter 5. 

The procedure described above was implemented using the perl script 

ach.pl (Appendix 14), which produces as output the relative residuals in the format 

required by the A C H program. An example of the output of ach.pl is given in 

Appendix 15. In order to obtain the predicted travel time and phase slowness, which 

are required by the A C H input program for the basic, 1-dimensional raytracing, 

ach.pl calls the programs taup_time and taup_siow(Appendix 16), which use the 

tau-p method (Buland & Chapman, 1983). This method relies on a parameterised 

version of a standard Earth model to produce phase arrival times and slowness 

estimates for an event at a given epicentral distance and source depth. The slowness 

and travel time estimates produced by this program at this stage were used only as 

preliminary values, since they relied on epicentre locations f rom the U.S.G.S. QED 

listing, which is less accurate than Preliminary Determination of Epicentres (PDE) 

list. This is also f rom the U.S.G.S., but is released several months later as more data 

become available to provide better-constrained hypocentre locations. Errors in 

relative travel time and slowness caused by the difference in these two estimates w i l l 

be small, because subtracting a reference or mean residual f rom each time almost 

removes the effect of error in the hypocentre location. 

The QED values were later replaced with PDE values and travel times and 

slownesses re-calculated to ensure that the most reliable data were used in 

calculating the actual relative delay times used in the inversion. In order to do this, 

the data f i le produced by ach.pl was passed to another script, 

pickdb_azbin_data.pl (Appendix 17) which reformatted the data into a tabular 

form which could be used for subsequent data quality control procedures. A t a later 

stage in this study, more flexible travel-time and slowness prediction programs 

became available (Crotwell et al., 1999). These rely on the same method (Buland & 

Chapman, 1983) but are easier to use and are able to predict times and slownesses for 

a greater range of phases. Using the final PDE list of hypocentres, the script 

tpred_unix.pl (Appendix 18) called these programs and appended the relevant data 

to the tables. These could then be re-formatted for input to the A C H programs by the 

scriptremake_ach.pl (Appendix 19). 
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4.3 DATA QUALITY CONTROL 

Tomographic inversion requires input data o f high quality, so after the 

compilation of the initial dataset of relative arrival times, a number of steps were 

taken to identify and eliminate outliers. 

A commonly-used method of checking for outliers in the data is to group 

delay times by station, and plot the delays at that station in azimuth-slowness space. 

The aim of this method is to identify outliers by noting data points which are very 

different f rom neighbouring points. For example, i f a delay time at a particular 

slowness and azimuth point is positive, yet lies within a group of negative delays, 

then it is identified as suspicious, checked and deleted i f found to be a blunder. One 

serious problem with this method is that i t is very di f f icul t to apply objective criteria 

to the identification of outliers, and the removal of data points re-adjusts the entire 

data set, requiring many iterations of the procedure. It was found to be relatively 

ineffective at identifying outliers in this study. 

I designed a different method of outlier identification, which was more 

effective. The set of delay times was first divided into "bins" in azimuth-slowness 

space. (Figures 4.6 and 4.7). For each bin, relative residuals were then be plotted 

relative to some datum. The A C H program makes delays relative to the mean delay 

for each event, but this is not useful as a comparison in this case, since we need to 

compare delays for all stations, for each bin and for all events. Thus, delays should 

be made relative to one of two other values, either the mean residual for that 

aziumuth-slowness bin, or the mean residual for each station, for that azimuth-

slowness bin. Initially, the former was used to plot graphs of delay times, wi th the 

intention of eliminating data which exceeded the mean value by some empirically-

determined threshold which represented the maximum reasonable delay time. 

However, the "signal" contained in the data in the form of delays at some stations 

relative to others, is not properly treated when using this datum as the reference. A 

better datum is the mean for each station for that azimuth-slowness bin. Better still is 

the median, since i t is less sensitive to large outliers than the mean. "Spidergrams" 

were plotted for each azimuth slowness bin and data fall ing outside the threshold 

values were labelled. 
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Figure 4.6 Events in the P dataset divided into "bins" in azimuth-slowness space. 
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Figure 4.7 As for Figure 4.6 but for the S dataset. 
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Figure 4.8 Example of a spidergram used to define outliers. Each circular dot represents one 
pick, numbered by event, and grouped by station along the horizontal axis. Outliers defined in 
this way are ringed in red. 

Windows of median-value ±0.6s for P and ±1.5s for S were selected 

empirically the limits of the central "core" of picks at each station within each bin. 

Picks falling outside these windows were then identified and eliminated. The scripts 

piot_azbin_delays_ [ps]_stnmed (Appendix 20) were used to plot successive sets 

of such spidergrams which, after two iterations, had filtered out the worst outliers 

from the dataset while leaving the form of the delay variation between stations intact. 

4.4 SUMMARY 

• Seismograms of suitable events recorded at the SIL and Hotspot networks were 

extracted from archive media, converted to a common file format, and organised 

in to event databases. 

• These seismograms were rotated, bandpass filtered and relative phase arrival 

times picked by hand using an interactive picking program. Subsequent data 

quality control eliminated outliers from the set of arrival times. 
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• The final dataset used for tomographic inversion comprised 3,159 P-wave 

arrivals from 113 events (160 phases), and 1,338 S-wave arrivals from 66 events 

(73 phases) (Figure 4.9), (Appendix 22). 

/ 

\ 
/ 

• 

i 

\ i 

\ 

/ 
/ I 

o 0 / 
f 

o o o o O O O 
M=55 6.0 6.5 7.0 7.5 8.0 8.5 

Depth (km) 

Figure 4.9 Events used for the tomographic inversion. Dots show location of epicentre, with the 
size proportional to magnitude and the colour representing the depth. 
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5. M E T H O D A N D R E S U L T S 

5.1 METHOD 

5.1.1 Background to the A CH method of teleseismic tomography 

The A C H damped least-squares inverse method (Ak i et al., 1977) is one of 

the most widely-used methods of teleseismic tomography, and is named after those 

who formulated it while working at the NORSAR seismic array in Norway in the 

1970s. Despite its age and simplicity, it is still widely used as it is both robust and 

reliable. Its primary use has been for velocity tomography, but derivatives of the 

method have been applied to attenuation and anisotropy (Ward & Young, 1980; 

Young & Ward, 1980). A comprehensive description and guide for use, along with a 

discussion of the capabilities and limitations of the method is given by Evans & 

Achauer (1993). A brief summary only is given here. 

The earliest A C H inversions were carried out during investigations of the 

lithosphere beneath NORSAR (Aki et al., 1977) and other seismic arrays ( A k i et al., 

1976; Husebye et al., 1976). Other early studies such as magma chamber imaging 

experiments at Yellowstone (Zandt, 1978; Iyer et al., 1981) and Hawaii (Ellsworth, 

1977; Ellsworth & Koyanagi, 1977) demonstrated the potential of teleseismic data 

for subsurface imaging and revealed the presence of small-scale heterogeneities 

whilst, particularly in the case of the latter study, furthering understanding of the 

stability o f the inversion scheme. An early tomographic study of Iceland 

(Tryggvason, 1981; Tryggvason et al., 1983) confirmed the presence of a low-

velocity anomaly beneath the island. Many other studies have made use of the 

method and contributed to the wealth of literature on its use. Some examples are the 

studies of the Kenya Rif t (Achauer et al., 1994; Kaspar & Ritter, 1997), the Rio 

Grande Rif t (Slack et al., 1996) and the French Massif Central (Granet et al., 1995; 

Granet et al., 1995). 

5.1.2 Principles & assumptions 

In common with many tomography schemes, the A C H method is based on a 

number of simplifying assumptions that reduce the physical problem down to a 

manageable system of linear equations. A C H is a "restricted array" method, that is, 

the network of seismic recorders does not span the entire distance f rom source to 
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receiver (as with local earthquake tomography), so only part of the raypath is 

contained in the target volume. Consequently, only this final portion of the raypath 

can be modelled, with a standard 1-dimensional Earth model used to represent 

everywhere outside the target volume. 

Seismometer network 

ACH initial model 

Slandard Earth model (1ASP91) 

Incoming raypath 

LayerJL.v„ 

Layer 2: v„ 

Layer 3: v„ 

Layer 4: v„ 

Layer 5: v„ 

Figure 5.1 ACH experiment geometry. Receiver stations at the surface are shown by solid black 
triangles above the target volume. The top layer of the model is treated differently, with each 
receiver assigned a separate "block" (open triangles). Grey blocks denote those "hit" by an 
incoming teleseismic ray. 

Layers of constant velocity are divided into regularly-shaped blocks, for each 

of which a velocity perturbation is found relative to the initial velocity for that layer, 

using teleseismic travel time residuals recorded at the seismometer network above 

the target volume. The top layer is treated differently, wi th each receiver assigned a 

separate "block". Blocks in the first layer represent the conical volume enclosed by 

the final portions of the raypaths approaching a receiver f rom below. 

One of the key assumptions of the A C H method is that the time residuals 

generated outside the target volume, i.e. between the seismic source and the point of 

entry of a ray into the target volume, which result f rom errors in seismic source 

parameters and anomalous structure outside the target volume, are approximately 

constant for all stations in the network. The validity of this assumption has been 

questioned (Masson & Trampert, 1997), and indeed, heterogeneities placed just 

outside the target volume in synthetic studies are shown to introduce spurious 

anomalies into the result at the edges of the model (Evans & Achauer, 1993). These 

shortcomings merely serve to highlight the dangers, common to all tomographic 

methods, of over-interpretation of the resulting model, especially at its extremities of 
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depth and lateral extent, where sampling and resolution is poor. Despite its known 

limitations, A C H is a reliable and robust inversion method which is relatively 

efficient in terms of computing resources, whose behaviour is well-documented and 

understood, and which is known to produce geologically reasonable results when 

used correctly. 

5.1.3 Correction of an error 

The implementation of the method used in this study is that developed by 

Evans & Achauer (1993), and is the result of continual incremental improvements 

over the years in the light of experience by many workers. An error in the treatment 

of azimuths was found in the program during the course of this study, and a 

correction was made to the program. In its original form, the A C H method computes 

ray paths using the same station-to-epicentre azimuth, in local coordinates, for all 

stations observing a particular earthquake. This is equivalent to approximating the 

wavefront on the ground to a straight line in the local coordinate system. The variant 

of A C H used here (Evans & Achauer, 1993), attempts some improvement on this 

approximation by using the true spherical azimuth at each station. Because of the 

convergence o f meridians, this practice introduces into each azimuth an error equal 

to the difference between the local grid direction and the true azimuth which, at high 

latitudes (e.g., -65 °N in the case of Iceland) can greatly exceed the errors related to 

wavefront curvature that motivated the modification. A corrected version of the 

program was used in this study (Julian et al. 1999, see enclosure). 

h 4 4 6 

t t f 

Figure 5.2 Relation between global (spherical) and local (Cartesian) coordinates, at a northern latitude. 
Black arrows show directions of approach of seismic waves from earthquakes at epicentral distances of 90° 
to the north and south. White arrows show artificial distortion of wavefronts that occurs if directions in the 
local rectangular grid are identified with directions specified in the spherical grid. From Julian et al (1999) 
(see enclosure). 
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5.1.4 Mathematical formulation 

The mathematical principles are described by many authors (e.g. Evans & 

Achauer, 1993) and summarised here. The travel time perturbation St resulting f rom 

a fractional velocity variation 5V about a starting model Vo along the section of 

raypath ds is given by 

8t = - \ d.v 
J V V 

"°y 0 0 (5.1) 

In the implementation of A C H used here, refraction due to 5V is disregarded. This 

approximation is appropriate in the case o f relatively small 5V ( A k i , 1993) which is 

the case expected for the structure beneath Iceland. Previous studies have found the 

magnitude of SV to be less than 5% (Tryggvason et ai, 1983; Wolfe et al, 1997). In 

cases where larger velocity perturbations are expected, the resulting refraction is 

significant and so the system becomes non-linear, requiring more sophisticated 

raytracing (Steck & Prothero, 1991). 

First, we parameterise the target volume by dividing i t into layers of constant 

velocity, and then further divide these layers into blocks, each assigned the quantity 

, SV . 
Vo (5.2) 

where Sink represents a slowness perturbation for block k, and the Dirac delta 

function d\(l inside the block; 0 outside) restricts the spatial scope of this parameter 

to the block in question. Thus, we have 

St c 1 SV 
ds 

Ray 0 * ( 5 J ) 

for a total of K blocks (with the capital letter representing the maximum of the 

index). Similarly, the input travel time residuals are, for a given source j=\,...J and 

receiver / = 1 , . . . , / , 

K ( receiver! j \ 

r„=dOJ+Y\- I 777-^-dv S » 4 + e , 
M \ bau V0 ) (5.4) 

where ey is an error term, and the source term dOj has been introduced because 

absolute velocity and other unresolvable terms may be present in the data. We 
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abbreviate the parenthesised part to a,jk, the partial derivatives. It can be shown that 

aijk is also the unperturbed travel time of ray ij inside block k. We now drop the error 

term, making the relation approximate, and introduce weighting by the estimated 

error of r,y, (called oy, and normalised by the mean error a ): 

— h,= X—<* i j k &n t +—dOj. 
(5.5) 

Premultiplied by (<x/ovja,.,., . . . aiJK i f , summed over /, and expanded, this 

becomes 

wuru "fa 

V5m, ^ 

WijaUKaUK WijaijK dmf 

dO. 
IJ A 1 ) (5.6) 

where wjj=a l o i r 

Here, we introduce the dummy block index, /, and make the contractions: 

7i = X % ' V = X w u a uk a n d = E%• ( s u m m i n g f r o m i = l to / y ) 

We obtain 

7=7 w 7 (5.7) 

Separation of the dOs parameter is completed by substituting (5.7) back into the klh 

equation 5.6, giving 

= 1 1 
i=l 1=1 (5.8) 

for each source. We now sum over all J sources and note that the sum over / is a 

matrix multiplication. This yields the familiar form of the least-squares problem 

GOT = b (5.9) 

where m = (&nl,...,dml(J. The kA element of b is the left hand part of (5.8) in 

square brackets, and the klih element of G is the right hand part in square brackets, 

each summed over i and j. Equation 5.9 is solved by damped least squares, using the 

damping constant 
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m = {G+d2lTb. ( f U 0 ) 

We now represent G and b in terms of d, a vector of N0hs = ^ / ; observed 

residuals nj, A, (the N0bs x K matrix of aijk terms) and (W-P), a weighting and 

parameter separation matrix. The A C H inverse is thus represented as 

m = [A7"(W-P)A + 0 2 l ] " 1 A r ( W - P y ( S U ) 

where W is a diagonal matrix of w-,j weights and P is the symmetric block matrix 

whose / h block is given by 

\ 

w l j j W l j ••• w l j j W l j . (5.12) 

Equation 5.11 is equivalent to the familiar solution (5.10) to the damped 

least-squares problem and is the solution of 

Am = d (5.13) 

with parameter separation and weighting described by (5.7). 

The relationship between the inversion result m and the representation of the 

"real" Earth in m is described by the resolution matrix, R 

m = Rm (5.14) 

which is given by 

R = [AT (W - P)A + 62lY A T (W - P)A. ( 5 < 1 5 ) 

We may also attempt to quantify the significance of the inversion result by 

computing the standard errors associated with the modelled velocity perturbations 

m . These are the square root of the diagonal elements of the covariance matrix C, 

where 

C = a) [ A T ( W - P)A+ 6>21]"' R. (5.16) 

and or is the data variance remaining after inversion. 

5.1.5 Creation of initial model 

The choice of initial model is an important step, since it is the approximation 

of the real Earth to which we are comparing the result of our observations. Without 

84 



Chapter 5 Method and results 

further analysis (such as detailed raytracing through the resulting model) measures of 

quality such as variance reduction only compare the output model to the initial 

model, so it is important that it is an acceptable approximation of reality. 

Several parameters are involved in defining the initial model for an ACH 

inversion, the most important of which are discussed below. Other parameters can 

also be set and are described in the documentation for the program thrd (J.R. Evans, 

pers. comm.) 

Model centre 

The location of the model centre, specified in latitude and longitude, defines 

the centre of the coordinate system in which the target volume is parameterised. 

Suitable choices are the centre of the seismometer array or the coordinates of the 

station nearest the centre. Since the grid of blocks is defined in kilometres north, 

south, east and west from this point, a position in the resulting output model should 

be interpreted as angular position from the model centre. 

Number of layers & thickness of each layer 

These define a) the depth extent and b) the coarseness of the parameterisation 

of the target volume. The absolute restriction on depth extent is that all rays must 

enter the target volume through the base and not through the sides. Thus the model 

cannot extend deeper than the turning points of the shallowest rays in the dataset, i.e. 

rays from the nearest seismic sources. In practice, however, the limit below which 

structure cannot be retrieved is the depth at which the ray bundles begin to diverge 

and cross-firing of rays is not achieved. Below this level, blocks are sampled only 

from restricted directions, and the sources of velocity perturbations cannot be 

unambiguously located. It is a requirement of the method that blocks are sampled 

well from the best possible distribution of directions in azimuth-slowness space. 

The layer thicknesses are governed by the need to achieve good ray density 

within the layers and the need for rays to spend as much time as possible "sampling" 

each block, but the model should not be over-simplified by having layers that are too 

thick. Evans & Achauer (1993) recommend the following: 

1. A good starting thickness is 1.5 times the block width. A suitable block width is 

approximately the average station spacing. 
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2. Layer boundaries should be perturbed so that the travel time of a vertical ray 

through each layer is approximately equal. 

3. Layer boundaries should be placed at the known major discontinuities in velocity 

structure. 

Initial layer velocities 

The initial velocities for all blocks in a layer should be obtained from a 

standard Earth model. Some average value should be used for the depth range of the 

layer. 

Role of the top layer 

The first (topmost) layer is treated differently, assigning one block to each 

receiver (Ellsworth, 1977). This is appropriate where the receiver spacing is not 

entirely regular. In such a case, rays overlap insufficiently between receivers in the 

first layer, so a grid of "normal" blocks would leave many blocks without crossing 

rays. The top layer serves to absorb strong heterogeneities in near-surface velocity, 

which may be due to factors such as weathering, faults and fractures, igneous 

intrusions, shallow crustal magma chambers, and other features which would 

contaminate the deeper structure. 

Variations in elevation across the seismic network can be accommodated by 

setting options in the ACH model file. These define whether or not to correct 

residuals for station elevation and whether rays should be traced to the true elevation. 

Block dimensions & number of blocks along north and east axes 

The block size should be chosen as the best compromise between several 

factors such as the scale of anomalies in the target volume, the density of rays, 

computational constraints, receiver spacing and signal wavelength. The block size 

should not be smaller than the shortest wavelength of signals in the input data, since 

anomalous structures on a scale much shorter than a wavelength will behave as an 

equivalent homogeneous body with some average properties (Aki et ai, 1977). A 

sensible starting block width near the surface is the mean receiver spacing (Evans & 

Achauer, 1993). The lateral extent of each layer must be set so that all rays enter the 

model from the base, and that rays are contained within the model from there 

upwards. The resulting shape is a wide, downward-broadening "Mayan pyramid" 

block structure (Figure 5.3). 
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Figure 5.3 Typical 3-dimensional ACH initial model showing the downward-broadening 
"Mayan pyramid" structure necessary to enclose the ray bundle from teleseismic events. This 
example has blocks 75 km wide and layers of -100 km thickness, perturbed to produce roughly 
equal vertical travel times between layers. The 10-km thick "special first layer" is shown, with 
one block assigned to each receiver. 

Care should be taken to "trim" unnecessary additional blocks from the edge 

of the model, since there is a finite (compiler- and memory-dependent) limit to the 

total number of blocks that can be used in a model. This is best achieved by trial and 

error using the hitcount map (i.e. the number of rays sampling each block) that is 

included in the output of thrd, the ACH program. This is particularly important for 

the wide, lower layers of models if they have small block sizes and thin layers, since 

many thousands of blocks are then required to fill the study volume. 

Damping parameter 

The damping parameter (0\ equation 5.10) is selected empirically, by finding 

that which results in the optimum trade-off between squared model length and 

residual variance (Evans & Achauer, 1993). This is combined with examination of a 

set of output models using different damping to determine which are persistent 

features and which disappear at high damping values. A damping parameter is sought 

which neither over-damps real anomalies nor over-fits noise in the data set. 

The damping parameter is scaled appropriately when treating layer-thinned 

models. Damping multiplies (increases) the model length, as does the greater number 

of blocks associated with thinned models. Thus, the damping parameter must be 

scaled down for thinner models by approximately the same factor by which the 
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number of modelled blocks is increased. The effect of damping is to cause model 

length and data misfit to be minimised in the least-squares sense in the same step in 

the inversion. 

5.1.6 Layer thinning and horizontal smoothing 

For vertical smoothing, the layer-thinning approach of Evans & Achauer, 

(1993) is followed, whereby a first model of relatively thick layers is compared to 

models of equal depth extent but successively thinned layers in order to investigate 

vertical smoothing. This enables "smoother" initial models to be used, since the 

greater number of layers allows closer matching of the standard Earth model being 

used. 

Horizontal smoothing requires a different approach, since we have already 

seen that there is a lower limit on horizontal block size: horizontal "block narrowing" 

is not analogous to vertical layer-thinning. Instead, an offset-and-averaging scheme 

is employed, whereby an original output model is offset by l/n times the block size 

along each axis and recomputed in each of these n2 "offset-models". The average of 

these is known as the "pseudo-model" and is usually seen to improve the model 

significantly. One effect is to mitigate the "disappearing anomaly" artifact noted by 

Ellsworth (1977), whereby a small anomaly of approximately the size of one block 

may disappear if it is divided over adjacent blocks in the same layer. Offset-and-

averaging may, however, reduce the magnitude of spatially small anomalies (Evans 

& Achauer, 1993), so it is important to compare the original model with the offset-

and-averaged result. 

5.1.7 Model quality measures 

The resolution matrix of the inversion result describes how clearly we have 

"seen" the Earth, but only as parameterised in our starting model. However, merely 

to strive for large, positive diagonal elements of R does not necessarily lead to the 

best result, since the diagonals are largest and most positive for wide blocks. Coarse 

parameterisation may not be the best representation of the Earth that can be gained 

from the inversion, and may lead to artifacts which are not represented in R. In fact, 

a better representation of the true Earth may be gained from using a damped model 

with thinner layers. In the case of ACH, damping smears anomalies vertically since 

most of the rays are subvertical, so splitting the model into thinner layers, while 
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producing a more realistic result, will reduce the magnitude of the diagonal elements 

of R. If the same pattern of values is maintained, however, this implies that the 

resolution kernels are well behaved. The "volume metric" method of Evans & 

Achauer (1993) gives a useful interpretation of the resolution matrix of layer-thinned 

models. This is a way of representing the information in R other than the diagonal 

element that is relevant to a particular block. It is a measure of the shape and size of 

the 3-dimensional volume over which damping has smeared the anomaly, and can be 

used to verify that the layer-thinned model has preserved the equivalent R-diagonal 

value of a particular volume of space in the model. The method is normally applied 

to a handful of locations in a model which are representative of the range of expected 

resolution qualities, to give insight into the overall model quality. 

The volume metric for block k is computed by sorting elements in the klh 

column of the resolution matrix (of which the element in the k?h row is the diagonal 

element for that block) in descending order of magnitude, and summing elements 

until some predefined value is reached. Those elements that contribute to the sum 

indicate blocks over which the anomaly in block k has been smeared. For example, if 

the first few elements of column 336 (the column which contains resolution 

information for block 336) are, in descending order, are 0.58, 0.20, 0.14, 0.02 and the 

corresponding row numbers are 336, 168, 504, 672 respectively, and we wish to find 

the volume metric at the equivalent diagonal element value of 0.8, we sum the 

elements until the value of 0.8 is reached. In this case, blocks 336, 168 and 504 

represent the volume metric. Plotting these blocks in three-dimensional view reveals 

their spatial relationship, and gives, in effect, the "impulse response" of the system at 

the location in question. 
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5.2 R E S U L T S 

5.2.1 Naming convention for A CH models 

A suite of models was used in this experiment to compare the effects of initial 

parameterisation on the resulting tomographic image. The models were named 

according to a system which identifies the block configuration as well as the 

damping parameter used. Models were stored on disk in directories named according 

to the block configuration, described in Table 5.1. After selection of the damping 

parameter (section 5.2.4), the actual model name was constructed according to the 

convention in Table 5.2. The model configuration prefix is made up of three parts, 

for example p_10_75a, which denotes a P-wave model with a "special first layer" of 

10 km thickness, and blocks 75 km wide. This was stored in directory p_10_75a, 

where the "a" suffix denotes a thick-layered configuration, "at" a thinned 

configuration with half-thickness layers, and "at3" a thinned configuration with one-

third-thickness layers. The actual model name, for example p_10_75_400 includes 

the value of the damping parameter used, in this case, 400. 

Table 5.1 Naming conventions for ACH block configurations (directory names) 

P-wave models 50-km models 75-km blocks 100-km blocks 
Full thickness layers p_IO_50a p_IO_75a p_10_IOOa 
1/2 thickness layers p_10_50at p_IO_75ai p_IO_100at 
1/3 thickness layers p_10_50at3 P_10_75at3 p_10J00at3 

S-wave models 
Full thickness layers s_10_50a s_10_75a s_IO_IOOa 
112 thickness layers s_10_50at s_IO_75at s_10_IOOat 
1/3 thickness layers s_10_50al3 s_IO_75at3 s_10_IOOal3 

Table 5.2 Naming conventions for ACH models used. 

P-wave models 50-km models 75-km blocks 100-km blocks 
Full thickness layers P_IO_50_400 pJ0_75_400 p_10_100_400 
1/2 thickness layers p_IO_50_225 p_10_75_225 p_10_l00_225 
1/3 thickness layers p_10_50_161 p_10_75_16l p_10_IOO_161 

S-wave models 
Full thickness layers s_10_50_400 s_10_75_4OO s_IO_100_400 
1/2 thickness layers s_IO_50_225 s_IO_75_225 s_IO_100_225 
1 n thickness layers s_10_50_!6l s_IO_75_225 s_10_l00_16l 
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5.2.2 Initial models used 

The block structures for the initial models used in the inversions are shown in 

Figure 5.4, Figure 5.5 and Figure 5.6. The names used here represent the model 

configuration before selection of the damping parameter. For both P- and S-wave 

inversions, initial models were created with 50-, 75- and 100-km width blocks, using 

a common 7-layer structure for the initial "thick-layer" models. These models all had 

a 10-km thick "special" first layer, in which each receiver was assigned its own 

block. 
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Figure 5.4 West-east cross sections of block structures for ACH initial models with 7, full-
thickness (100 km) layers. Velocity profiles are shown on the right, plotted in the same colour as 
the model filename, and are overlain on the velocity profile of the IASP91 model (Kennett & 
Engdahl, 1991) from which they were derived. 

These models represent the coarsest parameterisation of the true Earth used in 

the study, but serve as adequate starting models to which subsequent layer-thinned 

models can be compared. An example of a model file is given in Appendix 23. No 

velocity information other than the IASP91 model is used in these starting models, 

since it is the variation from this standard model that we seek. For the purposes of 

raytracing within the inversion, the models were designed so that the upper-mantle 

discontinuity at -410 km coincides with a layer boundary. It was found in this study 
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that the recommendation of ensuring roughly equal vertical travel time between 

layers should override that of attempting to place layer boundaries at major velocity 

discontinuities in the Earth. Significant instability resulted from attempting to place a 

boundary at the Moho by placing a thinner (~30-km) layer between a thin "special 

first layer" and a stack of ~100-km layers. Removal of the thin layer immediately 

remedied the instability. 

The velocity for each layer in the initial model was defined as the velocity in 

the standard Earth model at the midpoint of the depth range of the layer. At crustal 

levels, the velocity profiles in Figure 5.4 deviate most substantially from the IASP91 

profile, because crustal variations occur on a smaller vertical scale than can be 

accommodated in this thick-layered starting model. Trial runs suggested that the 

ACH tomography result is largely insensitive to the absolute value of velocities used 

in the initial model, which are less important for coherency between models than 

maintaining constancy of vertical travel time between layers. Nevertheless, it is 

logical to attempt to parameterise the Earth as accurately as possible. Figures 5.5 and 

5.6 show the improvement in smoothing the of velocity profile that is gained by 

using thinner layers, along with the significant increase in number of blocks and 

hence computational demand. 

5.2.3 Geographical distribution of delay times 

The input data used for the ACH inversion is the set of relative travel time delays 

(equation 5.4). If an upcoming ray encounters a region of lower-than-average seismic 

velocity, compared to a ray which travels via an adjacent path which is unaffected, 

the travel time for the affected ray will increase, and its arrival time on the surface 

will be correspondingly late at the receiver station, relative to the unaffected ray. The 

reverse is true for a region of increased seismic velocity. In this study, we ignore 

resulting refraction effects. If we map the distribution of delays across the network of 

receivers, we obtain a first indication as to the nature of anomalies within the target 

volume. This is done by dividing the ray set into station-to-event azimuth (or 

backazimuth) "bins" and obtaining an average delay for each station, for each arrival 

direction. The results for the P and S datasets are shown in Figures 5.7 and 5.8. 
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Figure 5.5 As for Figure 5.4 except for half-thickness-layer (-50 km) models. 
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Figure 5.6 As for Figure 5.4 except for one-third-thickness-layer (-33 km) models. 
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Figure 5.7 "Shadow" plots of delays from backazimuth ranges in the P-wave dataset. Yellow 
and red areas denote areas where average arrival times for a particular station are later than 
predicted, relative to other stations, while blue areas indicate relatively early arrivals. Black 
triangles indicate station locations and have a size proportional to the number of data at that 
receiver. 
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Figure 5.8 Same as Figure 5.7 except for the S-wave dataset. The colour scale has been 
multiplied by a factor of 3.2. 
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These plots illustrate the significant time delay associated with rays passing 

beneath Iceland, for rays from all azimuths. This confirms earlier observations of 

teleseismic delay times beneath Iceland (e.g. Long & Mitchell, 1970). The lack of 

rays from south-eastern backazimuths may contribute to the slightly weaker anomaly 

from that direction, but the result from other directions is strikingly consistent 

between P and S. Late arrivals are consistently found on the opposite side of Iceland 

from the arrival direction, e.g. rays from the south-west produce late arrivals at 

stations in the north-east. This suggests that the source of the anomalies is of limited 

lateral extent, located centrally beneath Iceland and exhibits some symmetry. This 

late-arrival "shadow" is likely to have been "cast" by a central region of low 

velocity. 

The peak magnitude of these mean relative delay times is around 1 second for 

P and around 3 seconds for S. Some of this delay may well be attributable to 

differences in elevation between stations in the network, since these delay times are 

not corrected for station elevation at this stage. Stations in the highland interior of 

Iceland have elevations up to 1,760 m (at Grfmsfjall, station HOT23). The elevation 

correction is performed later by the ACH inversion program. However, the result 

remains significant when we consider that low-lying stations e.g. those close to the 

coast, also have large residuals for rays from appropriate backazimuths. We may thus 

infer that these delays result from a low-velocity feature beneath the surface. 

5.2.4 Damping parameter selection 

The damping parameter has to be set for each initial model. This parameter is 

important, since it determines how much we require the final solution to fit to the 

data. Ideally, we wish to preserve the "real" features of the result, while avoiding 

over-fitting the model to noise in the data. This can be achieved by producing a set of 

models from a common initial model, varying only the damping parameter, and 

selecting a value which provides the best trade-off between residual variance (i.e. the 

fit of the resulting model to the data) and the squared length of the model vector m . 
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Table 5.3 Comparison of 7-layer models for damping parameter selection. 
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p_/0_50_ 
(50 km blocks) 

50 0.18 0.25 0.03 88.97 s_10_S0_ 
(50 km blocks) 

50 1.03 13.27 0.92 93.04 p_/0_50_ 
(50 km blocks) 

100 0.12 0.25 0.03 87.90 

s_10_S0_ 
(50 km blocks) 

100 0.66 13.27 1.07 91.91 

p_/0_50_ 
(50 km blocks) 

200 0.08 0.25 0.03 86.48 

s_10_S0_ 
(50 km blocks) 

200 0.43 13.27 1.26 90.48 

p_/0_50_ 
(50 km blocks) 

300 0.06 0.25 0.04 85.47 

s_10_S0_ 
(50 km blocks) 

300 0.33 13.27 1.40 89.47 

p_/0_50_ 
(50 km blocks) 

400 0.05 0.25 0.04 84.66 

s_10_S0_ 
(50 km blocks) 

400 0.28 13.27 1.51 88.65 

p_/0_50_ 
(50 km blocks) 

600 0.04 0.25 0.04 83.38 

s_10_S0_ 
(50 km blocks) 

600 0.22 13.27 1.68 87.34 

p_/0_50_ 
(50 km blocks) 

800 0.03 0.25 0.04 82.34 

s_10_S0_ 
(50 km blocks) 

800 0.18 13.27 1.82 86.29 

pJ0_75_ 
(75 km blocks) 

50 0.15 0.18 0.03 84.56 s_IOJS_ 
(75 km blocks) 

50 0.77 3.51 0.41 88.43 pJ0_75_ 
(75 km blocks) 

100 0.10 0.18 0.03 83.73 

s_IOJS_ 
(75 km blocks) 

100 0.50 3.51 0.44 87.60 

pJ0_75_ 
(75 km blocks) 

200 0.06 0.18 0.03 82.54 

s_IOJS_ 
(75 km blocks) 

200 0.31 3.51 0.47 86.49 

pJ0_75_ 
(75 km blocks) 

300 0.05 0.18 0.03 81.65 

s_IOJS_ 
(75 km blocks) 

300 0.24 3.51 0.50 85.69 

pJ0_75_ 
(75 km blocks) 

400 0.04 0.18 0.03 80.93 

s_IOJS_ 
(75 km blocks) 

400 0.20 3.51 0.52 85.06 

pJ0_75_ 
(75 km blocks) 

600 0.03 0.18 0.04 79.79 

s_IOJS_ 
(75 km blocks) 

600 0.15 3.51 0.56 84.06 

pJ0_75_ 
(75 km blocks) 

800 0.02 0.18 0.04 78.89 

s_IOJS_ 
(75 km blocks) 

800 0.12 3.51 0.59 83.28 

p_10_I00_ 
(100 km blocks) 

50 0.15 0.16 0.03 80.23 s_10_100_ 
(100 km blocks) 

50 0.68 2.69 0.42 84.35 p_10_I00_ 
(100 km blocks) 

100 0.10 0.16 0.03 79.27 

s_10_100_ 
(100 km blocks) 

100 0.41 2.69 0.44 83.53 

p_10_I00_ 
(100 km blocks) 

200 0.06 0.16 0.04 77.96 

s_10_100_ 
(100 km blocks) 

200 0.24 2.69 0.47 82.51 

p_10_I00_ 
(100 km blocks) 

300 0.04 0.16 0.04 77.02 

s_10_100_ 
(100 km blocks) 

300 0.18 2.69 0.49 81.83 

p_10_I00_ 
(100 km blocks) 

400 0.03 0.16 0.04 76.27 

s_10_100_ 
(100 km blocks) 

400 0.14 2.69 0.50 81.30 

p_10_I00_ 
(100 km blocks) 

600 0.02 0.16 0.04 75.15 

s_10_100_ 
(100 km blocks) 

600 0.11 2.69 0.52 80.52 

p_10_I00_ 
(100 km blocks) 

800 0.02 0.16 0.04 74.31 

s_10_100_ 
(100 km blocks) 

800 0.09 2.69 0.54 79.93 

Table 5.3 shows output from thick-layered (7-layer) models for the three 

block sizes using a suite of damping values. Choosing the optimum trade-off is 

subjective. Damping trade-off curves for these models are shown in Figures 5.9 and 

5.10. 
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Figure 5.9 Damping trade-off curves for 7-layer P wave models. 
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Figure 5.10 Damping trade-off curves for 7-layer S-wave models. 

1.2 

A reasonable trade-off is achieved for all the models with a damping 

parameter of 400 s2/%2, although this is subjective and depends to some extent on the 

plotting axes used for comparing models of different block size. The suitability of 

this value was later verified by checking that it did not distort significant features, i.e. 

those which persist between models using stronger damping. In this manner, 400 was 

found to be reasonable value to use for all the 7-layer initial models. 
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When selecting damping values for layer-thinned models, it must be 

appreciated that the damping parameter multiplies the length of the model, while the 

greater number of blocks also increases model length. A sensible approach is 

therefore to divide the damping parameter by approximately the same factor by 

which the number of modelled blocks has increased. For example, the number of 

modelled blocks in the 75-km block width, 7-layer model is 728, while this increases 

to 1,281 for the 13-layer model (50-km thick layers) and to 1,814 for the 19-layer 

model (33-km thick layers), giving damping parameters for these thinned models of 

225 and 161 respectively. The numbers of blocks in the 50- and 100-km block width 

models increase in the same way, so that the damping parameters for these models 

must also be scaled by the appropriate factors. The damping parameters used were 

therefore 400 s2/%2 for the 7-layer 100-km layer models, 225 s2/%2 for 13-layer, 50-

km layer models and 161 s2/%2 for 19-layer, 33-km layer models. 

The S-wave model s_10_50a exhibits unusual behaviour in that the residual 

variance remains very high compared to the other models. This may indicate that the 

lower limit of horizontal resolution is above the block size of 50 km used for this 

model. 

5.2.5 The best result 

The rest of this chapter describes a suite of inversions performed with 

different block widths and layer thicknesses, with and without offset-and-averaging. 

The preferred final model is the best compromise between too coarse a spatial 

parameterisation of the study volume, which under-uses the data, and too fine a 

parameterisation, resulting in a noisy result. The best results were offset-and-

averaged models using 75-km wide blocks and layers 50 km thick (models 

p_10_75_225_av and s_10_75_225_av). 

5.2.6 Thick-layered models 

Figures 5.11 - 5.13 show horizontal sections through P-wave models 

p_10_100a, p_10_75a and p_10_50a, which represent models with 100-, 75- and 

100-km block widths respectively, and which share the same initial thick-layered 

vertical structure. Figures 5.14 - 5.16 show the vertical cross sections through these 

models to a depth of 600 km. Figures 5.17 - 5.22 show the equivalent results for S-

wave models s_10_100a, s_10_75a and s_10_50a. 
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Figure 5.11 Horizontal sections through model p_10_100_400, showing the percent velocity 
perturbation of the modelled blocks relative to the initial velocity for each layer. The maps are 
plotted in azimuthal equidistant projection, thus preserving the angular and distance 
relationships between block centres (defined in kilometres east or north from a reference point) 
and the geographical location of the model centre. White areas of the maps represent regions 
with too few hits per block (<5) to be modelled. Perturbations for the "special first layer" are 
shown as circles at each station. 
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Figure 5.13 As for Figure 5.11 except for model p_10_50_400. 
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Figure 5.14 Vertical sections through model p 10 100 400 taken along profiles at 30° intervals. 
The elevation profile along the line of each section is given above the section plot and the 
locations of the lines of section are shown in the maps in the centre column. 
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Figure 5.15 As for Figure 5.14 except for model p_10_75_400. 
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Figure 5.16 As for Figure 5.14 except for model p_10_50_400. 
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Figure 5.17 As for Figure 5.11 except for model s_10_100_400. 
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Figure 5.18 As for Figure 5.11 except for model s_10_75_400. 

107 



Chapter 5 Method and results 

• V 

1 
S velocity perturbation (%) 

L1 (special) v n =3 36 kms"' d: 0-10 km 

• 

L2 v„*4.48 torn ' d: 10-107 km 

L3 v=4.51 k m s 1 d: 107-204 km 

L4 v„«4.80 k m s ' d: 204-306 km 

ISvjU'.Tiileitis'1 d: 306-412 km 

Lfi v p * 5 20 k m s ' d: 412-527 km 

L7 v„=5 44 k m s ' d: 527-646 km 

Figure 5.19 As for Figure 5.11 except for model s_10_50_400. 
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Figure 5.20 As for Figure 5.14 except for model s_10_100_400. 
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Figure 5.21 As for Figure 5.14 except for model s_10_75_400. 
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Figure 5.22 As for Figure 5.14 except for model s_10_50_400. 

The most striking, first-order feature of these models is a prominent negative 

velocity perturbation of up to 2.7 % for P and up to 4.9 % for S, centred on east-
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central Iceland and present, though showing some variation in amplitude, down to at 

least layer 6 (412-527 km depth). The roughly axially-symmetric core of this feature 

is around 100-130 km wide, although the symmetry of the overall anomaly changes 

from axial to planar with increasing depth. The presence of the anomaly in layer 7 

(527-646 km) is strong evidence that it persists even at these great depths, but the 

divergent nature of the ray set at this depth means that this result is less reliable and 

any interpretation of such deep features must be treated with caution. 

A secondary feature is the linear extension of the negative velocity anomaly 

to the south-west in layer 3 (107-204 km). Although there may be some evidence for 

a continuation of this feature in layer 4 (e.g., model s_10_75_400, Figure 5.18), it is 

not continuous with depth and appears as a branch-like horizontal feature in the 

vertical cross sections, best exposed in section C C of the 75-km block-width models 

p_10_75_400 (Figure 5.15) and s_10_75_400 (Figure 5.21). 

A low-velocity feature present in both P and S models extends northwards 

from northern Iceland. This feature begins in layer 2 and is more persistent with 

depth. When viewed in cross section (e.g. section AA' of model p_10_75_400, 

Figure 5.15), it can be seen to extend some 550 km in the north-south direction. The 

overall shape of the anomaly is therefore different in west-east and north-south 

profile (e.g., sections AA' and DD' of model p_10_75_400, Figure 5.15). The 

central, columnar anomaly does not widen significantly with depth other than in the 

north-south direction, particularly when considering the central (red) core of the 

feature, which is most significant. In layer 7, this north-south-trending anomaly 

develops into an arcuate feature, although at this depth it is unlikely that blocks have 

been sampled well enough for this feature to be significant. The blank areas of the S-

wave layer sections at this depth, especially at the 50- and 75-km block sizes 

(Figures 5.18 and 5.19), reveal significant gaps in the ray bundle, which contribute to 

the dispersed anomaly pattern which is common to all models in this lowest layer. 

The reason for including this layer in the inversion is to demonstrate the practical 

limit on the depth to which the results should be interpreted. 

The strong velocity anomalies which saturate the velocity scale in the 

"special first layer" indicate strong heterogeneity in the crust. In nearly all the plots 

presented here, e.g. Figures 5.12 and 5.18, for both P and S, certain stations 
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consistently have strong anomalies in the special first layer, in particular stations 

HOT27 and HVE (Figures 3.1 and 3.4). Consistently, station HOT27 shows a strong 

low-velocity perturbation, which changes to high beneath HVE and, in S models 

such as s_10_75_400 (Figure 5.18), back to low for station HOT28 to the south. This 

was also noticed at a seismic station located near to HOT27 by workers in a previous 

study (I. Bjarnason, pers. comm.) 

5.2.7 Thick-layered models with horizontal smoothing 

Figure 5.24 to Figure 5.35 show these thick-layered models with horizontal 

smoothing applied using an offset-and-average method (Evans & Achauer, 1993). 

The original assemblage of blocks was offset by half a block in each direction along 

each axis. Inversions were performed for each assemblage and the resulting "pseudo-

model", consisting of 4 small blocks for each original large one, has velocity 

perturbations which are the average of the 4 values corresponding to each small 

block. 

Positions of centre 
block in offset models 

Original blocks 

Figure 5.23 Offset-and-averaging procedure. An original model (centre block shaded) was offset 
by half a block width in each direction. The dashed squares represent the positions of the centre 
square in each of the offset models. 
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Figure 5.24 As for Figure 5.11 except for model p_10_100_400_av. 
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Figure 5.25 As for Figure 5.11 except for model p_10_75_400_av. 
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Figure 5.26 As for Figure 5.11 except for model p_10_50_400_av. 
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Figure 5.27 As for Figure 5.14 except for model p_10_100_400_av. 
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Figure 5.28 As for Figure 5.14 except for model p_10_75_400_av. 
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Figure 5.29 As for Figure 5.14 except for model p_10_50_400_av. 
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Figure 5.30 As for Figure 5.11 except for model s_10_100_400_av. 
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Figure 5.31 As for Figure 5.11 except for model s_10_75_400_av. 
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Figure 5.32 As for Figure 5.11 except for model s_10_50_400_av. 
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Figure 5.33 As for Figure 5.14 except for model s_10_100_400_av. 
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Figure 5.34 As for Figure 5.14 except for model s_10_75_400_av. 
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Figure 5.35 As for Figure 5.14 except for model s_10_50_400_av. 

An example of how such averaging mitigates the "disappearing anomaly" 

effect (Ellsworth, 1977) is seen by comparing Figures 5.11 and 5.24. The offset-and-
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averaged model p_10_100_400_av shows a northerly extension to the central Iceland 

anomaly in layer 3 (107-204), which is not seen in model p_10_100_400, suggesting 

that this particular anomaly had previously been concealed by being divided over and 

"absorbed" by the surrounding, relatively large (100-km) blocks. Also, the central 

anomaly in layer 2 has increased in amplitude as a result of this process. The high-

amplitude, central anomaly in layer 4 is weakened, while the opposite occurs in layer 

5 and layer 6. Averaging has the greatest effect on models with blocks 100-km wide, 

suggesting that this is too coarse a parameterisation for this experiment. 

Comparison of the 75-km block-width models p_10_75_400 and 

p_10_75_400_av in horizontal map section (Figures 5.12 and 5.25) reveals relatively 

little change in magnitude or shape of the central anomaly. Peripheral features such 

as the narrow, linear features to the south-west and north in layers 3 and 4 change 

slightly in appearance, with some increase in the magnitude of the high-velocity 

features to the east in layer 3. The model with 50 km blocks is also stable with 

respect to averaging. 

In the S models s_10_100_400 and s_10_100_400_av (Figure 5.17 and 

Figure 5.30), the central anomaly has been strengthened by averaging and, in layer 3, 

peripheral features such as the lows to the north and east have increased in spatial 

extent. The overall distribution of low-velocity features in Layer 4 is relatively 

unchanged, although the eastward and south-western extensions of the anomaly 

appears to have weakened. In layer 5, the western portion of the central anomaly is 

weakened by smoothing, leaving a north-south trending feature which is even more 

developed in layer 6. This persists to layer 7, although averaging produces a noisier 

result there, suggesting that the structure at this depth is poorly constrained. 

Compared in vertical cross-section (Figures 5.20 - 5.22 and Figures 5.33 -

5.35), the main effect of averaging seems to has been to homogenise some of the 

detail, smoothing out some of the spatially small, strong anomalies and producing a 

central anomaly which is more uniform. This effect is strongest in the 100-km block 

model. 

A common feature of the west-east vertical sections C C and DD' is a 

narrowing of the central, columnar, low-velocity feature with depth (e.g. Figure 
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5.34). This is not the case for sections AA' and F F \ which sample the northward 

elongation of the feature at depth. 

5.2.8 Layer-thinned models (vertical "smoothing ") 

Results for the half- and one-third-thickness "layer-thinned" models are 

presented in Figures 5.36 - 5.47 and Figures 5.48 - 5.59 respectively. The horizontal 

map views show that the overall results are similar to the thick-layered models. The 

vertical sections, however, reveal strong amplitude fluctuations between vertically 

adjacent layers which appear as horizontal streaks. Comparison of equivalent 

models, e.g. Figures 5.15 and 5.40 reveals, nevertheless, that the basic shape of the 

anomaly is generally consistent. Consistency between models of different layer 

thickness is best for those with block widths of 50 and 75 km and worst for those 

with 100-km wide blocks. 
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Figure 536 As for Figure 5,11 except for model p_10_100_225 
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Figure 5.37 As for Figure 5.11 except for model p_10_75_225. 
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Figure 5.38 As for Figure 5.11 except for model p_10_50_225. 
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Figure 5.39 As for Figure 5.14 except for model p_10_100_225. 
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Figure 5.40 As for Figure 5.14 except for model p_10_75_225. 
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Figure 5.41 As for Figure 5.14 except for model p_10_50_225. 
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Figure 5.42 As for Figure 5.11 except for model s_10_100_225. 
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Figure 5.43 As for Figure 5.11 except for model s_10_75_225. 
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Figure 5.44 As for Figure 5.11 except for model s_10_50_225. 
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Figure 5.45 As for Figure 5.14 except for model s_10_100_225. 
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Figure 5.46 As for Figure 5.14 except for model s_10_75_225. 
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Figure 5.47 As for Figure 5.14 except for model s_10_50_225. 
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Figure 5.48 As for Figure 5.11 except for model p_l<)_100_161. 

140 



Chapter 5 Method and results 

-: 

1 

• 
P velocity perturbation (%) 

I 
L I (special) v p=5.8 tons ' d: 0-10 km 

m m 
L2 v.=6 5 kms ' d: 10-42 km L8 v„=8.34 kms 1 d: 205-239 km L14 v,=9.43 k m s 1 d: 412-450 km m 1C if _ n EC Lf#vm-1 r4 J AO J- n L3 v„=8 04 kms 1 d: 42-74 km L9 v n=B .47 kms 1 d:239-273 km LI S v P=9 56 k m s ' d: 450-468 km m 

L4 v„=6 05 k m s ' d: 74-106 km L10 V-=8 59 kms 1 d: 273-307 km L16 v„=969 kms ' d: 468-526 km 

' m i 
L5 V . . 6 . 0 6 kms • d: 106-139 km L11 v c=6.72 k m s ' d: 307-342 km L17 v„=9.82 k m s ' & 526-566 km 

L6 v.=8 15 kms ' d: 139-172 km L12 V„a8.84 kms ' d: 342-377 km L I 6 v„=9 9 5 kms < d: 566-606 km 

\ 
L7 v.=8 24 kms ' d: 172-205 km L13 v„=8 97 kms " d: 377-412 km L I 9 v . , .1009 kms ' d 606-646 km 

v igure 5.49 As for Figure 5.11 except for mode) p_10_75_161. 
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Figure 5.50 As for Figure 5.11 except for model p_10_50_161. 
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Figure 5.51 As for Figure 5.14 except for model p_10_100_161. 
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Figure 5.52 As for Figure 5.14 except for model p_10_75_161. 
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Figure 5.53 As for Figure 5.14 except for model p_10_50_161. 
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Figure 5.54 As for Figure 5.11 except for model s_10_100_161. 

146 



Chapter 5 Method and results 

• 

S velocity perturbation (%) 

LI (special) v p=3.36 k m s ' d: 0-10 km 

\ 

! 

12 v,=3.75 tans'd: 10-42 km L8 v,=4.54 fcms1 d" 205-239 km L14 v.=5.11 kms ' d: 412-450 km 

! 

13 v,=4 4 8 k m s 1 cl 42-74 km La v.=4.60 kms-' d: 239-273 km L15 v ,=520 k m s ' d: 450-488 km 

: 

i 
L4 v , * 4 49 k m s ' d: 74-106 km L10 V,«4 66 k m s ' d: 273-307 km L16 v,=5-28 tons' d: 488-526 km 

L5 v,=4.50 kms ' d: 106-139 km L11 v,=4.72 tons' d: 307-342 km L17 * .»S.36 tons' d: 526-566 km 

• 

4.51 k m s ' d : 139-172 km L12 v.=4.78 k m s ' d: 342-377 km L I B V . .S .44 k m s ' d: 566-606 km 

L7 v,=4.51 kms ' d: 172-205 km L13 v,=4.84 kms ' d: 377-412 km L19 v . r f . 5 3 tons' d: 606-646 km 

Figure 5.55 As for Figure 5.11 except for model s_10J75_161. 
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Figure 5.56 As for Figure 5.11 except for model s_10_50_161. 
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Figure 5.57 As for Figure 5.14 except for model s_10_100_I61. 
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Figure 5.58 As for Figure 5.14 except for model s_10_75_161. 
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Figure 5.59 As for Figure 5.14 except for model s_10_50_161. 
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5.2.9 Horizontally-smoothed thin-layered models 

It is apparent from Figures 5.36 - 5.59 that thinning the layers in the model 

makes the result noisier. It is intuitive that increasing the damping would counteract 

this, but it was found to have surprisingly little effect on the inter-layer anomaly 

amplitude fluctuations in the thinned models. The problem is remedied to some 

extent with the application of the offset-and-averaging procedure, as shown in 

Figures 5.60 - 5.81, at least in the case of the 50- and 75-km block width models. It 

was not possible to apply the offset-and-averaging procedure to model p_10_50_161 

because of difficulties running the inversion with the Very large number of blocks 

involved. 
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Figure 5.60 As for Figure 5.11 except for model p_10_100_225_av. 
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Figure 5.61 As for Figure 5.11 except for model p_10_75_225__av. 
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Figure 5.62 As for Figure 5.11 except for model p_10_50_225_av. 
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Figure 5.63 As for Figure 5.14 except for model p_10_100_225_av. 
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Figure 5.64 As for Figure 5.14 except for model p_10_75_225_av. 
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Figure 5.65 As for Figure 5.14 except for model p_10_50_225_av. 

158 



Chapter 5 Method and results 

-1 (special) v. =3.36 kms 1 d 0-10 km 

- 3 - 2 - 1 0 1 2 3 4 

S velocity perturbation (%) 

L2 v,=3.75 kms' d: 10-68 km L8 vt=4 74 kms 1 &. 306^359km 

L3 v =4 49 kms' d: 58-106 km L9 v,=4.83 kms' d: 359-412 km 

1 
L4 v,=4 SO kms 1 d: i 06-155 km 1.10 vs=5 14 kms' d: 412-469 km 

; 

! 

L5 v 1 =4 .51 kms'd: 155-204 km L11 v,«5 26 kms' d: 469-526 km 

: 

L6 v,=4 56 kms ' d: 204-255 km LI 2 v,=5.38 kms 1 d: 526-586 km 

rm 
; 

L7 v,=4.65 kms' d: 255-306 km L13v,=5.51 kms ' d: 586-646 km 

Figure 5.66 As for Figure 5.11 except for model s_10_100_225_av. 

159 



Chapter 5 Method and results 

Ll (special) v,=3 36 kms d : 0-1 Ohm 

L2 ».«3.75 unr'd: 10-58 km 

L3 v.=4.46 kms-' °- 58-106 km 

L4 v.=4.50 kms1 a 106-155 km 

L5 v,»4.51 kms 1 d: 155-204 km 

L6 V.=4 56 kms ' d: 204-255 km 

•3 -3 - 1 0 1 2 3 4 

S velocity perturbation (%) 

L8 Vss4.74 kms' d: 306-359 km 

L9 v,=4-83 kms"' d: 359-412 km 

L10v.=5.14 tons'd: 412-469 km 

Ll 1 v.=5 26 kms' d: 469-526 km 

L12 v,»5.38 kms' d: 526-586 km 

L7 v,=4.65 kms 1 d: 255-306 km L13 v4=5-51 kms' d: 586-646 km 

Figure 5.67 As for Figure 5.11 except for model s_10_75_225_av. 
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Figure 5.68 As for Figure 5.11 except for model s_10_50_225_av. 
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Figure 5.69 As for Figure 5.14 except for model s_10_100_225_av. 
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Figure 5.70 As for Figure 5.14 except for model s_10_75_225_av. 
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Figure 5.71 As for Figure 5.14 except for model s_10_50_225_av. 
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Figure 5.72 As for Figure 5.11 except for model p_10_100_161_av. 
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Figure 5.73 As for Figure 5.11 except for model p_10_75_161_av. 
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Figure 5.74 As for Figure 5.14 except for model p_10_100_161_av. 
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Figure 5.75 As for Figure 5.14 except for model p_10_75_161_av. 
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Figure 5.76 As for Figure 5.11 except for model s_10_100_161_av. 
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Figure 5.77 As for Figure 5.11 except for model s_10_75_161_av. 

170 



Chapter 5 Method and results 

• : 
S velocity perturbation (%) 

Ll [special) v„=3 36 kms ' d 0-10 km 

m _ 
12 vt=3.75 kms ' d: 10-42 km L8 v.=4 54 kms * d: 205-239 km L14 v.=5 11 kms 1 d: 412-450 km 

• 

L3 v.=4 48 kms ' d: 42-74 km L9 v,=4 60 kms ' d 239-273 km L15v,=5 20 kms ' d 450-488 km 

L4 v.=4 49 kms ' d 74-106 km L10 v.=4 66 kms 1 d 273-307 km L16 v,=5 28 kms ' d: 488-526 km 

L5 v,=4 50 kms 1 d: 106-139 km L11 v,=4 72 kms 1 d; 307-342 km L17 v«=5.36 kms ' d 526-566 km 

L6 v,=4 51 kms 'd 139-172 km L12 V.=4 78 kms ' d: 342-377 km L18 v =5 44 kms 1 d; 566-606 km 

1 
L7 v,=4.51 kms' d 172-205 km L13 v,=4 84 kms' d 377-412 km L19 v.=5 53 kms 1 d 606-646 km 

Figure 5.78 As for Figure 5.11 except for model s_10_50_161_av. 
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Figure 5.79 As for Figure 5.14 except for model s_10_100_161_av. 
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Figure 5.80 As for Figure 5.14 except for model s_10_75_161_av. 
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Figure 5.81 As for Figure 5.14 except for model s_10_50_161_av. 

The fluctuation in anomaly amplitude with depth is most prominent in the 

cases of models where the horizontal block dimensions exceed their vertical 
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dimensions. For example, the offset-and-averaged model p_10_100_161_av (Figure 

5.74), which has blocks 100 km wide and -30 km thick is very noisy in vertical 

section. In contrast, the offset-and-averaged model s_10_50_161_av (Figure 5.81), 

with blocks 50 km wide and -30 km thick, is relatively smooth in vertical section. 

5.2.10 Model quality measures 

Not all regions in the target volume are sampled equally and thus the 

reliability of the resulting velocity perturbations is variable. In order for a particular 

block to be modelled adequately, it is necessary that it is sampled by a minimum 

number of rays, well-distributed in azimuth and slowness space. In practice, 

limitations are placed on such a teleseismic experiment by the natural distribution of 

seismic sources around the globe, noise conditions and the time period during which 

data were gathered. The inversion program keeps track of how many rays sample 

each block and it is useful to examine this distribution of rays within the model. 

Figures 5.82 - 5.85 show the "hitcount", or number of hits per block for models 

p_10_75_400 and s_10_75_400. 

The central regions of the model have good ray coverage from many 

directions, with good cross-sampling of rays, whereas those in the peripheral areas 

are poorer not only in number of rays but in azimuthal distribution. For example, 

there is a rich supply of rays from the northeast, which result in a high hit count for 

blocks in the northeast of the models, even for deeper layers. However, although 

blocks in this region are well-sampled in terms of the number of rays, only rays from 

this one direction are present in the ray bundle. It is not geometrically possible for 

rays from any other direction to sample these blocks since there are no seismic 

stations out at sea. Thus the results for the lower layers of the model are produced 

from intrinsically less well sampled blocks than the upper layers, where rays from 

many different directions sample the blocks. 
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Figure 5.82 Horizontal sections showing the hitcount for model p_10_75_400. 
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Figure 5.83 Vertical sections showing the hitcount for model p_10_75_400. 
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Figure 5.84 As for Figure 5.82 except for model s_10_75_400. 
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Figure 5.85 As for Figure 5.83 except for model s_10_75_400. 
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Figures 5.86 - 5.89 show the diagonal of the resolution matrix (diagR) for 

models p_10_75_400 and s_10_75_400. In both these models, DiagR forms a similar 

pattern and is highest (0.8 or greater) in a central region, which has the shape of an 

inverted cone, in the upper 300-400 km. The central region of low velocity can 

therefore be regarded as reliably resolved down to 350-400 km. This includes the 

north-south elongation of the anomaly, evidence for which is first seen in layer 3 

(107-204 km), well within the "reliable" volume. The region directly beneath central 

Iceland below 500 km depth exhibits very low resolution, as expected from the ray 

distribution. The regions either side of this show DiagR values around 0.75-0.8 in 

sections BB' and C C , and it is tempting to regard these as reliable also. However, it 

is clear from consideration of the ray geometry that these regions have only been 

"monochromatically" sampled by rays from a limited range of directions. 

The magnitude of DiagR alone is not enough to determine how reliable a 

feature is. The volume metric method is required for this, since it examines the shape 

of individual columns of R and in effect shows the "impulse response" of the model 

to a given velocity perturbation. This must be incorporated into any interpretation by 

decreasing the significance placed on features that are heavily smeared, even though 

they may have high values of DiagR. In particular, the northward and south-westerly 

extensions to the central anomaly below around 150-200 km are probably not as 

reliably resolved as the central low-velocity feature itself. 
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Figure 5.86 Horizontal sections showing diagonal of resolution matrix for model p_10_75_400. 
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Figure 5.87 Vertical sections showing diagonal of resolution matrix for model p_10_75_400. 
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Figure 5.88 As for Figure 5.86 except for model s_10_75_400. 
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Figure 5.89 As for Figure 5.87 except for model s_10_75_400. 

The effect of layer-thinning can be seen in Figures 5.90 - 5.97 which show 

hitcount and resolution for the 1/2-thickness-layer models p_10_75_225 and 
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s_10_75_225. The effect of thinning the layers is to decrease the number of hits in 

each block, as the (predominantly sub-vertical) ray bundle is then divided over more 

blocks. The diagonals of the resolution matrix are reduced because a given ray 

spends less time in a thinner block and thus the degree to which that block is sampled 

is reduced. However, although the diagonals of the resolution matrix for individual 

blocks are reduced, the equivalent value of DiagR for a particular volume in space, 

whether divided into one, two or three vertical "compartments" remains similar for 

blocks in well-resolved parts of the models, as is shown below using the volume 

metric method (Evans & Achauer, 1993). 

Representative blocks were chosen for volume metric computation (Figures 

5.98 and 5.99). Here, five blocks are investigated from each of the models 

p_10_75_225 and s_10_75_225, both having 75-km blocks but representing the P-

and S-wave 1/2-thickness models respectively. 
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Figure 5.90 As for Figure 5.82 except for model p_10_75_225. 
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Figure 5.91 As for Figure 5.83 except for model p_10_75_225. 
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Figure 5.92 As for Figure 5.82 except for model s_10_75_225. 
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Figure 5.93 As for Figure 5.83 except for model s_10_75_225. 
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Figure 5.94 As for Figure 5.86 except for model p_10_75_225. 
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Figure 5.95 As for Figure 5.87 except for model p_10_75_225. 
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Figure 5.96 As for Figure 5.86 except for model s_10_75_225. 
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Figure 5.97 As for Figure 5.87 except for model s_10_75_225. 
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Figure 5.98 Volume metrics for an equivalent diagonal element value of 0.95 for a selection of 
blocks from model p 10_75 225. Top panel shows spatial relationship of 5 blocks in layer 7. 
Each three-dimensional box represents the entire model volume, viewed from above and from 
the south-west, The numbered block is shown in the colour corresponding to its position (from 
top panel), while other blocks which contribute to the volume metric are shown in blue. 
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Figure 5.99 As for Figure 5.98 except for model s„10 75_225. 

195 



Chapter 5 Method and results 

Figures 5.98 and 5.99 show the volume metrics for five blocks in these 

models at an equivalent diagonal element value of 0.95 in layer 7 (255-306 km 

depth). It can be seen from both of these that the blocks in the central part of the 

models are well-resolved in that the volume over which the anomaly has been 

smeared is small and constrained to a small group of vertically adjacent blocks. At 

the north, south, east and west edges of the models, there is some smearing in a radial 

direction. The volume metric plotted is that at the relatively high level of 0.95, which 

is an extreme test. The contributing blocks indicate that in these regions, the 

anomalies have been smeared along raypaths and resolution is lower in quality as 

well as quantity. This is as expected, since only rays from one direction are available 

to sample blocks in some regions. However, the important feature is that the radial 

smearing on the northern side of the models (block 755) is no greater than, say on the 

west (block 798) or east sides (block 807). If a less extreme value of DiagR had been 

used, more compact volume metrics would have resulted for all these cases, but an 

extreme value was chosen here to demonstrate clearly the smearing characteristics of 

these models. This analysis shows that the most reliable part of the model lies in an 

inverted cone, as illustrated by the resolution cross-sections shown in Figures 5.91 

and 5.93 and that smearing is symmetric throughout the model, moderate down to 

depths of 300-400 km, and generally radially downwards and outwards. 

5.2.11 vp/vs ratio perturbation 

Because the ratio vp/vs changes significantly with depth in the IASP91 

starting model (Figure 5.100), the fractional changes in vp/vs with respect to each 

layer i.e., the percentage vp/vs perturbation, is displayed here. Figures 5.101 and 

5.102 show vp/vs perturbations computed from models p_10_75_400_av and 

s_10_75_400_av. Since the ACH method inverts for perturbations relative to initial 

layer velocities, and using different starting models has little effect on the final 

results, derived vp/vs ratios must be treated with caution. In addition, the errors in 

vp/vs are a function of the errors in both vp and vj and thus subject to greater 

uncertainty than either: 

- J / V ; ( J V , « ) = < / V ; (5.17) 
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where a 2 , 2 is the error in vp/Vc and c,, and <J„ are the errors in vP and v.s 

respectively. The pattern of variations in vp/Vy throughput the model are, however, 

little affected by the velocity values used in the starting model. 
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Figure 5.100 Variation of Vp/vs with depth in the IASP91 model (Kennett & Engdahl, 1991). 
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Figure 5.101 Horizontal sections of Vp/vs perturbation calculated using models p_10_75_400 and 
s_10_75_400. 
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Figure 5.102 Vertical sections through Vp/vs perturbations. 

The vp/vs perturbation is positive and around 1% throughout most of the 

velocity anomaly, i.e. the anomaly magnitude is greater for shear waves than 
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compression^ waves. In certain regions, such as beneath the Reykjanes Ridge in the 

depth range 100-200 km, the perturbation exceeds 2%. Beneath central Iceland in the 

depth range 100-300 km, the perturbation is up to 3.2% 

5.3 SUMMARY OF RESULTS 

• A large suite of ACH teleseismic tomography inversions were performed, using a 

variety of block widths and layer thicknesses. The best results are offset-and-

averaged models using block widths of 75 km and layer thicknesses of 50 km 

(models p_10_75_225_av and s_10_75_225_av, Figures 5.61, 5.64, 5.67 and 

5.70) 

• The tomography has revealed that a region beneath central and east-central 

Iceland is characterised by P-wave velocities that are reduced by up to 2.9%, and 

S-wave velocities reduced by up to 4.9% relative to a parameterised IASP91 

model. 

• This is the main, first-order feature present in all models obtained. Volume 

metrics indicate that in the central part of model, smearing is of limited extent 

and is vertical. In peripheral areas, smearing is subvertical and oriented radially 

outwards. The anomaly has roughly cylindrical shape, broadening northwards to 

more planar symmetry in lower layers while remaining relatively narrow in its 

west-east dimension. 

• The north-south elongation of the anomaly at depth represents a change from 

cylindrical to planar symmetry at around 250-300 km depth. This feature is 

persistent across models with different block widths and layer thicknesses, and is 

present in both the P- and S-wave models, which were determined independently. 

Analysis of the resolution and volume metrics revealed that, although there is 

more peripheral than central smearing, it is no stronger in the north-south 

direction than any other. This suggests that the shape of the velocity anomaly is 

real. 

• A south-westerly trending extension of the central anomaly in the depth range 

50-200 km beneath the Reykjanes Ridge, is much stronger in vs (-2%) than vP (-

0.5%). Low velocities are present only below 160 km to the north of Iceland, 

beneath the Kolbeinsey Ridge. These regions are both at the periphery of the 
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volume of good resolution, so are less reliable than features closer to the centre of 

the study volume. 

* vp/vs is 1% high throughout most of the central part of the model, and' is up to 

3.2% high beneath central' Iceland between 100 and 200 km, and beneath east-

central Iceland between 200 and 300 km depth. 
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6. INTERPRETATION & DISCUSSION 

6.1 T H E AZIMUTH ANOMALY STUDY 

The study of azimuth anomalies for P-wave raypaths passing beneath Iceland, 

described in Chapter 2, places constraints on the dimensions and strength of a 

possible plume in the lower mantle beneath Iceland, if one exists there. Raytracing 

through a suite of synthetic 3-dimensional plume models revealed azimuth anomaly 

patterns which best match those of the NORSAR data if a low-velocity anomaly 

underlies Iceland region at -1500 km depth, with a maximum velocity contrast of 

1.5% and a Gaussian radius of 125 km. This result alone cannot constrain the 

anomaly location along the best-fitting backazimuth because bodies with various 

sizes and strengths at different distances all fit the observations. Also, the deepest-

travelling rays in the NORSAR dataset have turning points at around 370 km above 

the core-mantle boundary, only just above the top of the heterogeneous D'' layer, so 

the possibility of some other cause for the observed anomaly cannot be ruled out. 

Nevertheless, a search of parameter space using a suite of models with reasonable 

velocity contrasts indicated that the causal feature would need to be both wider and 

deeper if further away from Iceland. As such, they would be evident in global 

seismic tomographic images. 

An attempt was made to extend the study to investigate whether similar 

features were observable in rays arriving at a Scottish network. No suitable array 

exists in Scotland and so the arrival azimuths were calculated from bulletin data 

reported from various sources. These are less reliable than observations made by one 

person using a consistently processed set of seismograms, as in the case of the 

NORSAR data. The azimuth anomalies in the Scottish data have a very poor signal-

to-noise ratio and do not present clear evidence of a plume-like velocity anomaly to 

the north. The geometrical quality of the experiment would have been further 

improved by additional data recorded in Greenland. Unfortunately, no suitable data 

are currently available. 

6.2 T H E PREFERRED A C H RESULT 

The initial models used for the ACH inversion represent a wide range of 

spatial parameterisations of the Earth. Despite some variations, the persistence of the 
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broad features imaged across this range of models is convincing evidence of real, 

physical features in the mantle beneath Iceland. Details of the inversion results are 

dependent on the parameterisation used and for this reason several different models 

are presented in Chapter 5. The preferred model should be a compromise which 

shows a level of detail which is reasonably reliable but does not show excessive 

"checkerboard" noise. 

The selection of initial models was made in the light of the results of many 

test inversions using a suite of models with a range of block structures and damping 

parameters. The optimal combination of block structure and damping parameter was 

selected for each of the three block sizes used. Models with blocks 100 km wide 

appear to be too coarsely parameterised and yield unreasonable results when the 

layers are thinned, when the blocks become significantly wider than they are tall. The 

offset-and-averaging procedure causes large changes to these models, especially 

when viewed in vertical section, suggesting that anomalies are divided over 

neighbouring blocks, not imaged reliably, and real detail is lost. 

S-wave models with 50-km wide blocks exhibit unusual behaviour in that the 

residual variance remains unexpectedly high and strong checkerboard noise is 

present in layer-thinned models (e.g. model s_10_50_161, Figure 5.56). This may be 

because this block size is smaller than the dominant wavelength (50-75 km) of 

teleseismic S-waves in Iceland. Checkerboard noise is present to a lesser extent in 

the 50-km block width P-wave models. In summary, models with 75-km wide blocks 

represent the best compromise between excessive smoothing and excessive 

checkerboard noise in the model. 

The overall shape and magnitude of the main low-velocity feature in the 

offset-and-averaged models p_10_75_400_av (thick-layered, Figure 5.28), 

P_10_75_225_av (1/2-thickness layers, Figure 5.64) and p_10_75_161_av (1/3-

thickness layers, Figure 5.75) remains remarkably stable throughout the layer-

thinning process. It is evident from the vertical sections of layer-thinned models, 

however, that although the repeatability of features between models of successively 

thinner layers is, on the whole, good, the 1/3-thickness suffer excessively from 

checkerboard noise and exhibit physically unreasonable, oscillatory anomaly 

patterns. The preferred models are therefore the offset-and-averaged results of a 
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configuration with blocks 75 km wide and layers -50 km thick, models 

p_10_75_225_av (Figures 5.61 and 5.64) and s_10_75_225_av (Figures 5.67 and 

5.70). 

6.3 T H E MAIN RESULTS AND THEIR RELIABILITY 

The ACH results described here reveal a velocity anomaly in both vP and vs 

beneath Iceland which persists throughout all resolvable depths in the mantle. 

Second-order features are also resolved. A central, roughly cylindrical, low-velocity 

anomaly is imaged in the shallowest ~250 km, and below this it changes shape to 

adopt a north-south-striking tabular form. Low-velocity anomalies in both vp and, 

more strongly, in v$ extend beneath the Reykjanes ridge to the southwest in the depth 

range 50-200 km. Beneath the Kolbeinsey ridge to the north, low vp and vs anomalies 

are imaged below 160 km. The anomaly in vs is, in most respects, similar in shape to 

that in vP, but stronger, with vP/vs at least 1% high throughout most of the resolved 

volume, and as high as 3.2% in places. 

The best-resolved region of the target volume is a region shaped like an 

inverted cone shape with its base at -40 km depth, roughly underlying the Icelandic 

coastline, and its apex beneath the centre of the seismic network at around 400 km 

depth. Blocks within this conical region have DiagR values of 0.65 or greater in the 

1/2-thickness P model, or 0.8 in the thick-layered model. S models exhibit similar 

values and distribution, which suggests that it is the distribution, rather than the 

absolute values, of DiagR that are important in determining reliability. Peripheral 

regions begin to lose the quality of resolution that central regions have because much 

less crossing of rays occurs towards the edges of the ray bundle. Gaps in the station 

distribution also serve to degrade resolution in places, for example in southwest 

Iceland. Northern Iceland is well resolved, in comparison, especially since the station 

on the island of Grfmsey extends the network offshore by -50 km, and improves the 

ray coverage and resolution envelope there. 

Resolution is low in the top 30-40 km of the study volume, where rays travel 

subvertically towards receiver stations and do not cross one another. The 10-km thick 

"special" first layer is treated in a different way from other layers to accommodate 

this, since the distribution of rays leaves large, unsampled gaps between stations and 

would not support a grid of regular blocks. Instead, a block is assigned to each 
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station. The variation in velocity perturbations in this top layer is much greater than 

in lower layers, and reveals high-amplitude, short-wavelength fluctuations of the 

order of ±5.5% in vp and ±8.5% for vs. The Icelandic crust is known to contain lava 

flows, igneous intrusions, fissure swarms, faults, magma chambers, hydrothermal 

systems, and hyaloclastite deposits, and to vary in thickness laterally. These all 

contribute to a crust with a very complex velocity structure on the scale of a few 

hundred metres to several km. This is small compared with the horizontal resolution 

of the ACH models which is on the scale of the station spacing, i.e. 50-75 km. 

In the depth range 30-250 km the central, low-velocity anomaly forms a 

vertical, approximately cylindrical feature with a Gaussian radius of 100-130 km. 

The anomaly in vP is particularly strong (up to -2.7%) in layer 2, but this may be an 

artifact due in part to the lower resolution towards the top of this layer and also to 

contamination from the heterogeneous crust. This is evident when comparing the 

layer-thinning sequence of models with 100, 50 and 33 km layer thicknesses (models 

P_10_75_400_av, Figure 5.28, p_10_75_225_av, Figure 5.64, and p_10_75_161_av, 

Figure 5.75). The strong anomaly appears to be contained within the second layer, 

whatever its thickness. This behaviour is less extreme in the S-wave models but the 

strongest part of the anomaly is similarly located beneath east-central Iceland. This 

suggests that the existence and location of the anomaly is reliable, if not the exact 

amplitude. Most models exhibit high velocities to the northeast and east of Iceland in 

layer 2. 

The cylindrical anomaly beneath layer 2 is fit by a Gaussian cylinder with a 

radius of 100-130 km and peak amplitude around 1.6% for vF and 4.6% for vs, 

although there is some variation in the amplitude with depth. It can be seen from the 

velocity maps and sections in Figures 5.61, 5.64, 5.67 and 5.70 that this simplified 

model does not hold in places and local maxima of 2.9% vP and 4.9% vs occur. 

There is some variation in magnitude of the central anomaly with depth, even 

in the thick-layered models p_10_75_400_av and s_10_75_400_av (Figures 5.28 and 

5.34). This is best seen by comparing vertical sections from a thick layered model 

with the same sections on progressively thinner-layered models. Where there is a 

slight vertical change in anomaly amplitude in the thick-layered model, this is often 

present in the thinner-layered models, but with a higher amplitude. This suggests that 
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a localised, real feature is being absorbed into too coarse a block model in the thick-

layered model. 

North-south elongation of the central, low-velocity anomaly begins at around 

250-300 km depth which is still within the envelope of good resolution. It persists 

from there to the lowest layer where it develops into an arcuate feature bending to the 

northwest in the P-wave model (Figure 5.61), while the S-wave anomaly breaks up 

into checkerboard noise. Some semblance of the arcuate feature is nonetheless still 

evident. I make no attempt to interpret anomalies deeper than 500 km, as the 

resolution below this depth is low in both magnitude and "quality" - rays are 

unevenly distributed and the "hitcount" is low. It is clear from the horizontal map 

views of sections through DiagR (Figures 5.94 and 5.96), that the volume of good 

resolution in the upper layers is elongated east-west. This is primarily due to the 

distribution of seismic stations, the lateral extent of which is dictated by the shape of 

the Iceland. However, the high-hitcount envelope also extends to the southwest and 

northeast in the deeper layers, i.e., the greatest concentration of rays are from these 

directions. The volume metric analysis (Figures 5.98 and 5.99) shows that damping 

smears velocity anomalies no more in the north-south direction than in any other, 

implying that the elongation is adequately resolved. 

The low-velocity anomaly extends beneath the Reykjanes ridge in the depth 

range 50-200 km and, in this region, is much stronger in vs (-2.4%) than vp (-0.5%). 

This feature is not as reliable as the central, low-velocity anomaly as it is at the edge 

of the envelope of "good" resolution, but it is a persistent feature in models of 

different spatial parameterisation, which adds confidence. An anomaly of this kind is 

found beneath the Kolbeinsey Ridge to the north but only below around 160 km. 

Above this depth, the absence of such an anomaly is well resolved (e.g. Figure 5.61). 

vp/vs is at its highest beneath central Iceland in the depth range 100-300 km. 

It is only reliable for the thick-layered model since vp/vj is much less well 

constrained than either the perturbation in vP or v$. This is because the uncertainty in 

vp/vs combines the uncertainties in both v/> and vs. 

6.4 SEISMIC WAVE-SPEED VARIATIONS BENEATH HOTSPOTS 

Seismic wave speeds are sensitive to several physical and chemical 

phenomena that are expected in the mantle beneath a ridge-centred hotspot such as 
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Iceland. The excess temperature of the mantle beneath Iceland has been estimated at 

263 K (Schilling, 1991), but the effect of temperature alone goes only some way to 

explain the observed wave speed reductions of over 2% in vP and over 4% in vs. vp 

is reduced by about 0.5 % per 100 K increase in temperature, vs by 1.2 to 1.6 times 

as much (Ito et al., 1996). An excess temperature of this order would account for 

-50% of the observed anomaly in vP and ~40% of that observed in vs. 

In addition to the effect of the temperature of the rock matrix, the presence of 

melt is known to cause a significant decrease in seismic velocity and electrical 

resistivity, as the rock is made mechanically sorter (Mavko, 1980). Temperature 

dependence of velocity is affected by both anharmonicity and anelasticity (Karato, 

1993) (Figure 6.1). The velocity decrease due to anharmonicity is an effect due only 

to the temperature of the rock. The presence of melt, however, causes an anelastic 

effect which is much stronger for shear waves than for compressional waves. 
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Figure 6.1 Temperature derivatives of seismic wave speeds for P and S waves in the mantle. 
From (Karato, 1993). 

In addition to the proportion of melt present, the geometrical distribution of 

the melt is also important when considering the effect on waves passing through the 

medium. As melt is formed, it accumulates between grains of the solid matrix in 

inclusions ranging in shape from fibre-like tubules at grain triple-junctions to oblate, 

"penny-shaped" inclusions or thin films. The reduction of P-wave velocity in olivine 

basalt has been shown to be nearly twice as great for melt distributed as penny-

shaped inclusions than for the same proportion of melt distributed only in triple-

junction tubules (Faul et al., 1994). Table 6.1 shows the reduction in seismic velocity 
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per percent melt fraction for these two melt distribution geometries. Chemical 

depletion of mantle material, on the other hand, increases vP by 0.1% for each 1% 

increase in compositional depletion. 

Table 6.1 Reduction in wave velocity per percent melt fraction (Faul et al, 1994). 

Phase Triple-junction 
tubules 

Penny-shaped 
inclusions 

vp 1.0% 1.8% 

vs 
2.3% 3.3% 

Other factors may also affect the measured delay times, such as wavefront 

healing, which has been shown to decrease the size of time delays by up to 40%, e.g. 

Allen et al. (1999). This would have a corresponding effect on the magnitude of 

velocity anomalies. No analysis of shear-wave splitting has been made. This has 

been shown to contribute substantially to the size of S-wave delays across Iceland 

(Bjarnason et al., 1996) and could influence the difference between the P- and S-

wave models. Anisotropy from the alignment of the olivine crystallographic a [100] 

axis would be expected to increase the S-wave velocity parallel to the flow direction 

of the plume, and thus might work to reduce the observed S-wave delays. 

6.5 INTERPRETATION 

The results presented here are consistent with the hypothesis of a plume-like 

convective upwelling beneath Iceland. The maximum amplitudes of the anomaly in 

the relatively well-resolved centre of the target volume are approximately -1.6% for 

vP and -4.6% for vs. Values of 2% and 4% were used by Wolfe et al (1997) to 

determine the excess temperature of the plume relative to the surrounding mantle as 

300 K according to the P-wave model and 600 K according to the S-wave model. 

This was based on the effect of temperature alone. However, correction for anelastic 

effects (Karato, 1993) reduces these estimates to 200 and 300 K respectively, which 

is more in line with values predicted by modelling (e.g., Schilling, 1991). The fact 

that the v$ anomaly is much greater than the vP anomaly is also predicted by the 

anelastic effect, since the presence of even a small amount of melt has a much larger 

effect on shear waves than compressional waves. A specific example of this is seen 

beneath the Reykjanes ridge at 50-200 km depth, where the vs anomaly (-2.4%) 
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greatly exceeds the Vp anomaly (-0.5%). This is interpreted as evidence of melt, and 

implies the transport of material from the main plume outwards beneath the ridge. 

That the Kolbeinsey ridge only reliably shows low velocities below -160 km 

suggests that the Tjornes fracture zone acts as a barrier to lateral flow of material in 

that direction. 

The variation in strength of the low-velocity anomaly with depth is a 

significant feature, particularly in terms of the variation in vP/Vs. If this variation is 

real, it represents an interesting second-order feature of the velocity field which is 

consistent with models of a plume whose excess temperature at a given point varies 

with time. A time-variant, pulsating convective nature has been proposed to explain 

surface features such as the V-shaped, outward-propagating ridges along the 

Reykjanes ridge (e.g., White et al, 1995). These features appear to represent 

variations in magma supply rate on a time scale of 10 Ma, however. Assuming an 

ascent rate of 20 cm/a in the plume, material would rise 500 km in 2.5 Ma. The 

variations imaged here, therefore, cannot directly explain the V-shaped ridges on the 

Reykjanes ridge. Radiogenic Pb isotope concentration maxima are known to 

correlate with lava production rates between during the period 15-3 Ma (Hanan & 

Schilling, 1997). The fact that vP/vs is over 1% high throughout most of the plume 

indicates that temperatures in the mantle must be elevated to such a degree that up to 

a few percent of partial melt is present. 

Perhaps the most remarkable feature of the results is the north-south 

elongation of the central low-velocity anomaly which begins at 250-300 km depths 

and continues throughout all deeper layers. Numerical models of basally-heated 

convection predict a change in the shape of a hot upwelling from tabular to 

cylindrical in the middle of the convecting layer (Houseman, 1990) similar to that 

observed here. If the Iceland plume is a continuous convective upwelling originating 

in the lower mantle, then it should have achieved cylindrical form before it 

penetrated the upper mantle. Thus, from these results, it appears that the Iceland 

plume must originate not far from the bottom of our image. 

These results therefore suggest that the plume beneath Iceland spans a 

convection cell which is restricted to the upper mantle, challenging the model of a 

whole-mantle plume (Bijwaard & Spakman, 1999). There are many problems with 
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models that involve plumes penetrating unaffected through the endothermic 

transition at 670 km, since this would provide a significant impediment to 

convection. Indeed, Bijwaard & Spakman (1999) add to their interpretation the 

caveat that, "with the present resolution we cannot distinguish between a continuous 

upwelling from the CMB to the surface, or an upwelling from the upper-to-lower 

mantle discontinuity, induced by an upwelling from the CMB." The latter is 

supported by other numerical modelling of a lower mantle with temperature- and 

pressure-dependent rheology (Steinbach & Yuen, 1997). This would suggest that, 

when plumes from the lower mantle impinge on the 670 km boundary, the 

development of secondary plumes in the upper mantle is induced, where vigorous but 

time-dependent convection occurs. It is also true that the velocity anomaly in the 

whole-mantle plume model (Bijwaard & Spakman, 1999) is weak (mostly less than 

0.5%) in the lower mantle and weaker (0.3%) near the CMB, which is surprising in 

the light of the very low velocities reported in that region (Helmberger et al., 1998). 

Only above the 670-km discontinuity does it attain amplitudes greater than or equal 

to 0.5%, suggesting that the lower-mantle part of the model may not be very 

significant. Recendy, other large-scale tomography work has revealed a shear-wave 

speed anomaly of -2.5% beneath Iceland which is confined to the upper mantle 

(Megnin et al., 1999; Ritsema et al., 1999). 

The zone of ultra-low velocities (-10% vF and -30% vs) at the CMB beneath 

the Iceland region (Helmberger et al., 1998) and evidence of flow-like structures in 

the same region beneath Hawaii (Russell et al., 1998) cannot be ignored, however, 

since these are important evidence for the root of an upwelling feature in the lower 

mantle. The most likely interpretation, in the light of the results of this study, is that 

these are systematically related to, yet not necessarily continuous with, upper-mande 

plumes. This still leaves the question of a transport mechanism which would explain 

signatures of lowermost-mantle and even traces of outer-core geochemistry in 

surface rocks, e.g. Brandon et al. (1998). This might be explained by interaction 

between the upper- and lower-mantle convective systems whereby small amounts of 

lower-mantle material are entrained in the core of the upper-mantle plume, while 

maintaining a "sheath" of upper-mantle-type material around this, e.g. Fitton et al. 

(1997). The variation of anomaly magnitude with depth, which may indicate time-

variant plume strength, a process also suggested by Pb-isotope geochemistry (Hanan 
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& Schilling, 1997), might also be evident in the amounts of such lower-mantle 

material entrained into the upper-mantle plume, although this would be difficult to 

distinguish from variations in overall plume flux. 

6.6 SHORTCOMINGS O F T H E A C H STUDY 

That broadly similar images have emerged from two independently-processed 

datasets (P- and S-wave arrival times), strengthens confidence in the final results. 

However, both the methodology and the data suffer from shortcomings, which are 

discussed here, along with suggestions for improvements as part of future work. 

The A C H method. The ACH method is a robust and reliable, i f 

unsophisticated method of teleseismic tomography. It has been tested in many 

different experiments and its behaviour is well understood and documented, making 

it a reliable tool with which to tackle an inversion problem. 

The ACH approach used here (Evans & Achauer, 1993) is a single-step, non-

iterative inversion scheme, and as such makes no attempt to correct for refraction due 

to modelled velocity perturbations. In reality, rays are bent by the velocity 

perturbations that we model, with the curvature of ray path dependent on the 

fractional velocity anomaly. For the relatively small velocity anomalies involved 

here (<5%), the effect is small, but in some geometrical circumstances it could result 

in a ray being assigned to the wrong block in the model. This is another reason why 

the block size of 50 km may be too small for the experiment geometry used here. 

Three-dimensional raytracing through a preliminary model could be used to refine 

subsequent models in this respect. 

The coordinate system of the ACH method is cartesian, whereas spherical 

geometry is more appropriate for experiments with a seismic network of several 

hundred km. An error in the treatment of local grid north values was discovered and 

corrected during the course of this study (Appendix 24), but the method still relies on 

a mixture of cartesian and geographical coordinates in defining the block structure, 

which is adequate when the depth extent is not great, but may well affect the validity 

of the block structure when the depth becomes a significant fraction of the Earth's 

radius. The target volume in this case extends to 646 km, or OA Re, SO the effect is 

small, but the ACH programs would benefit from being re-written in spherical 

coordinates at some stage. 
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Data. The data used here represent a large proportion of the clearest seismic 

events recorded during the experiment, but the resulting ray set is limited by the 

natural distribution of seismic sources, and by the high level of microseismic noise 

and attenuation in Iceland. However, the dataset is the largest to date which has been 

used to image the Icelandic mantle (Table 6.2), and has the best distribution in 

azimuth and angles of approach. 

The arrival times were measured by hand, which is labour-intensive and 

prone to systematic and random errors. Systematic errors are minimised if, as was the 

case here, all picks are made by the same analyst, but there were still many outliers 

which had to be eliminated at the data quality control stage (Section 4.3). Low 

signal-to-noise ratios, caused by microseismic noise and attenuation, prevented many 

seismograms from being used. Pick errors were estimated to be around 1 sample 

(0.05 s for P picks and 0.1 s for S picks). These might be improved by numerical 

cross-correlation (VanDecar & Crosson, 1990). Numerical cross-correlation is not 

straightforward, however. It is prone to cycle-skipping and other systematic errors 

which require that each individual pick is reviewed manually, increasing the time 

needed to compile a dataset of several thousand picks. In order to avoid cycle-

skipping, a manual estimate pick has first to be made, then a suitable cross-

correlation time window chosen, followed by a manual check to make sure that the 

output value is reasonable. However with careful use, it can improve pick accuracies 

by 10-15 %, so development of a suitable method may well prove useful in refining 

the current dataset, picks from which could be used as starting values. 

Teleseismic tomography relies on the natural distribution of seismic sources 

to provide sampling of the target volume from all directions. In reality, certain 

directions have fewer natural sources than others, with the result that the dataset is 

rich in data from some directions, such as the northeast and southwest, and poor from 

other directions such as the southeast. In the search for data from event-poor regions, 

it was often the case that poor quality events only were found. However, a detailed 

search of such regions for the best data would improve the ray distribution of the 

current dataset. Also, the current dataset could be improved by adding more picks 

from core phases, which approach the target volume at near-vertical angles and 

213 



Chapter 6 Interpretation & Discussion 

would fill gaps left in the present ray distribution which, as it stands, is dominated by 

rays at epicentral distances of 30-90°. 

No synthetic modelling of anomalies was attempted. However, this is a 

valuable method by which an inversion model can be evaluated. Future modelling of 

this kind is recommended. 

Starting model. A priori seismic structure of Iceland has been largely 

ignored in this study, mainly because it is the perturbations relative to a standard 

Earth model that are of first-order importance. The ACH method as it stands does not 

enable heterogeneous initial models to be specified. This would be a major 

improvement which would allow account to be made of variations in the Icelandic 

crust, the thickness of which has been shown to vary from 25 km in the northwest to 

nearly 40 km beneath southern central Iceland (e.g., Darbyshire et al., 1998; Allen et 

al., 1999; Du & Foulger, 1999). Assuming crustal and mantle velocities of, say, 7.2 

and 7.8 km s"1 respectively, this could cause a relative difference in travel time across 

Iceland of up to 0.16 s. Crustal models derived from refraction profiles or receiver 

function analysis could be used to apply time corrections to measured time delays, in 

effect stripping away the influence of the crust. 

6.7 COMPARISON W I T H PREVIOUS STUDIES 

Two previous studies have mapped the mantle beneath Iceland using regional 

teleseismic velocity tomography (Tryggvason et al., 1983; Wolfe et al., 1997) (Table 

6.2). 

Table 6.2 Comparison of datasets 

Tryggvason et aL (1983) Wolfe et al. (1997) My Study 
No. of stations 39 16 42 

Data type Analogue, short-period 
instruments, paper record 

seismograms, vertical 
component only 

Broadband, digital 
instruments, 3-component 

Broadband, digital 
instruments, 3-component 

P-wave models 
No. of events 61 86 113 (160 phases) 

No. of arrival times 714 601 3159 

S-wave models 
No. of events N/A 78 66 (73 phases) 

No. of arrival times N/A 560 1338 
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The first study used only P-wave arrival times, which were measured from 

paper records made by short-period (4 Hz) analogue instruments. 39 stations were 

used, but the distribution was poor, since the study made use of seismic stations 

installed to monitor local seismicity. These were grouped in clusters in the 

southwest, south and northeast of Iceland, leaving large gaps in areas such as the 

Western Fjords in the northwest, and Vatnajokull glacier in the southeast. The 

velocity anomalies imaged are shown in Figure 6.2. 
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Figure 6.2 P-wave velocity anomalies of Tryggvason et aL (1983), redrawn using the same 
plotting conventions and colour scale as figures for P-wave models in Chapter 5. 

The study imaged a significant low-velocity anomaly, centred on Iceland, 

which varied considerably in amplitude between the top layer (0-75 km, up to -3.9%) 

and layer 3 (175-275 km, up to -1.1%). The anomaly strength increased again in the 

bottom layer (275-375 km, up to -3.4%). The anomaly in the top layer was roughly 

parallel to the active rift zone, while in lower layers, the low-velocity feature shifts 

significantly southeastward, with high velocities (up to 1.2%) present beneath the 

215 



Chapter 6 Interpretation & Discussion 

first-layer low-velocities in west-central Iceland, showing as a significant gap in the 

low-velocity column in the vertical sections. One of the main differences between 

my results and those of Tryggvason et al. (1983) is the prominent correlation of the 

anomaly in the first layer with the neovolcanic zone and its continuation north of 

Iceland below the Kolbeinsey ridge. An equivalent anomaly beneath the Kolbeinsey 

Ridge is absent in my results to a high degree of confidence. Also, the anomalies of 

Tryggvason et al. (1983) are relatively weak and narrow in the depth range 75-275 

km, compared with anomalies of significant size and amplitude in layers 4, 5 and 6 

of model p_10_75_225_av (Figure 5.61). The vPlvs perturbation at these depths 

indicate that the vp anomaly is much weaker than v$, however. In the deepest layer of 

Tryggvason et al. (1983), the anomaly is strong (-3.4%) and centred on east-central 

Iceland, but does not show the north-south elongation which initiates at this depth the 

model from my study. Strong, low-velocities are found to the north at this depth in 

the model of Tryggvason et al. (1983), leaving a roughly circular central anomaly. 

The south-westerly extension of the low-velocity anomaly is shared by both models, 

though stronger in the model of Tryggvason et al. (1983). 

The overall impression is that, in the results of Tryggvason et al. (1983), most 

of the signal has been forced into layers 1 and 4, while leaving layers 2 and 3 with 

relatively small anomalies, and strong, high-velocity "side-lobes". Tryggvason et al. 

(1983) also used a version of the ACH method, but with a relatively coarse 

parameterisation comprising 4 layers with thicknesses of 75 or 100 km, and blocks of 

around 100 km width. 

The P- and S-wave models of Wolfe et al. (1997) are shown in Figure 6.3. 

Wolfe et al. (1997) used a sparse network of 16 broadband, digital seismometers that 

covered Iceland more uniformly than that of Tryggvason et al. (1983), but with a 

much lower station density than the present study, which used a total of 42 

broadband stations. Arrival times for P and S waves were measured by numerical 

cross-correlation at similar frequency bands to this study, but fewer earthquakes and 

picks were used (Table 6.2). 

The P- and S-wave models of Wolfe et al. (1997) (Figure 6.3) are similar to 

each other in general form but the anomaly in vs (-4%) is stronger than in vP (-2%). 
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Figure 6.3 P- and S-wave models of Wolfe et al. (1997). 

Their results are similar to mine in that the feature is persistent through all 

depths in both models. In horizontal cross-section at 300 km, the P- and S-wave 

models are fit by a radial velocity function of Gaussian radius 150-200 km. Both P 

and S models show a progressive widening of the anomaly with depth. At 125 km 

depth, the anomalies underlie the neovolcanic zone. Low velocities are also imaged 
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below the Western Fjords, especially in vs. Comparing the results at this depth with 

an equivalent depth range in the model of Tryggvason et al. (1983) (Figure 6.2) 

reveals significant differences, since the rift-parallel features in that model are much 

shallower, being in the depth-range 0-75 km. 

The inversion method used for the study of Wolfe et al. (1997) was non

linear and inverted for three-dimensional velocity structure, earthquake relocations 

and station terms together, using a method which minimised spatial gradients and 

roughness. This may explain the relatively smooth nature of the velocity anomalies. 

The spacing of velocity nodes in their model was 25 km in depth, 0.5° in longitude 

(-25 km at the latitude of Iceland) and 0.25° in latitude (~25 km), which is a 

remarkably dense network of nodes considering the 100-150 km station spacing and 

relatively low ray density compared with the that of the present study. Wolfe et al. 

(1997) report that resolution tests indicate that the structures imaged are well 

resolved. Questions have been raised about the surprising uniformity of the plume of 

Wolfe et al. (1997), particularly in view of the fact that the anomaly is conical, 

widens with depth, and appears to mimic the ray bundle. Independent resolution tests 

(Keller et al., 1997) suggest the data used could equally well be explained by a body 

that extends no deeper than 200 km and that the deeper parts of the body could be 

simply vertical smearing. 

Interestingly, the model of Wolfe et al. (1997) also displays some broadening 

of the P- and S-wave anomalies in the north-south direction in the horizontal section 

at 300 km depth. This is seen, for example in the - 1 % vP or -2% vs "contours" 

towards the edge of the horizontal sections in Figure 6.3. However, without 

additional sections, it is not possible to say whether or not the tabular structure I 

image below 250 km is also imaged in the results of Wolfe et al. (1997). 

6.8 DISCUSSION IN REGIONAL CONTEXT 

This study provides evidence to support the hypothesis of a plume beneath 

Iceland, which satisfies the requirements of many geochemical models which require 

a source for Icelandic basalts distinct from that of MORB. The plume is imaged here 

down to over 400 km depth and is consistent with a thin, hot plume model (e.g., 

Allen et al., 1999). There is no apparent evidence for upward broadening of the 
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plume head as suggested by theoretical models (e.g., White & McKenzie, 1989) and 

global tomography (Bijwaard & Spakman, 1999; Ritsema et al., 1999). Global 

tomography suggests a plume head of 1200 km diameter above 400 km depth. 

However, the geometry of those experiments does not allow resolution of features on 

a scale smaller than ~500 km (J. Ritsema, pers. comm.). Low velocities are, however, 

generally confined to the volume vertically beneath Iceland in my model, and this is 

consistent with many other geophysical data, such as the gravity and geoid 

anomalies, which suggest that the plume centre underlies east-central Iceland. A 

more extensive network, for example using sea-floor sensors around Iceland, would 

be necessary to investigate the volume beyond the limits of the current ray bundle. 

I find little evidence for rift-parallel low-velocities in the top 100 km 

compared with the models of Wolfe et al. (1997) and Tryggvason et al. (1983). 

Elongation of the low-velocity anomalies beneath the Reykjanes ridge between 50 

and 200 km depth is imaged, however, and this is evidence for the channelling of 

melt along that part of the plate boundary. This is consistent with geochemical 

profiles of the Reykjanes ridge which suggest the mixing of "normal" asthenospheric 

and plume material in decreasing proportions outward along the ridge. Indeed, 

dehydration of the mantle due to this process has been proposed to reconcile the 

over-thick crust predicted by the thin, hot plume model with observed values along 

the Reykjanes ridge (Wolfe et al., 1997; Ito et al., 1999). 

6.9 DISCUSSION IN G L O B A L CONTEXT 

There is currently a resurgence of interest in mapping the depth extent and 

structure of currently active plumes, and understanding their role in plate tectonics. 

This is a result of the fast development of suitable geophysical tools. Over the last 

few years there has been rapid progress in the development of seismic 

instrumentation, and an upsurge in the availability of large quantities of broadband 

instruments, both permanent installations and for temporary deployments. The 

massive increase in available computing power has also facilitated a surge in the 

development of computer methods such as teleseismic waveform tomography. The 

experiment described in this thesis represents what is probably one of the first of a 

new era of advanced plume studies. 
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Because of this, comparable studies of other plumes are few, and deployed 

inferior instrumentation and data processing techniques. It is nonetheless interesting 

to compare the results. The Yellowstone hotspot was studied by Iyer et al. (1981) 

who deployed stations in an array over 800 km broad, centred on the Yellowstone 

caldera. A low-velocity body with P-wave anomaly up to -4% was detected beneath 

Yellowstone, but its base was clearly imaged at 150 - 200 km depth. It appears from 

this that the seismic signature of the Yellowstone "plume" extends to just below the 

lithosphere but no deeper. The Hawaii hotspot was studied by Ellsworth & Koyanagi 

(1977) whose data were limited to recordings from land stations on Hawaii, whose 

maximum aperture, being only 150 km, greatly restricts the depth extent to which 

structural imaging is possible. Little lateral inhomogeneity was detected in the upper 

75 km, and very small low-velocity anomalies from 75 to 160 km. The Hawaii case 

thus appears to be the reverse of Yellowstone, though it must be taken into account 

that the island of Hawaii is so small that possibly only the tip of the plume was 

studied. Both the Yellowstone and the Hawaii studies reveal very different results 

from those described in this thesis, for the Iceland plume, which has a strong low-

velocity signature from the surface down to at least 400 km depth, and whose 

morphological variations suggest an origin in the mantle transition zone. 

Global tomography images seismic anomalies on a much larger scale than 

local experiments, and resolution is generally no better than on a scale of 500 km, 

and often only 1,000 km. Global tomography results are emerging from the early era, 

however, when agreement between models tended to be poor, and now there is 

considerable agreement between models derived independently and using different 

techniques (e.g. Megnin et al., 1999; Ritsema et al., 1999). The results of global 

tomography strongly support the conclusions of this thesis, i.e., a model of an Iceland 

plume confined to the upper mantle, with much weaker seismic anomalies beneath, 

in the lower mantle. In other parts of the world, however, there is much stronger 

evidence for whole-mantle structures. For example, Ritsema et al. (1999) detect a 

major, low-velocity body arising from the base of the lower mantle beneath the south 

Atlantic and rising to the northeast to reach the surface beneath the east African rift. 

The present global picture of plumes is thus one that suggests tremendous 

variability. Examples may be quoted of plumes that appear to arise from the CMB 
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(e.g., the south Atlantic-east Africa plume), the mantle transition zone (e.g., Iceland), 

the topmost asthenosphere (e.g., Yellowstone) and to have very little seismic 

anomaly at all in the upper 150 km (e.g., Hawaii). As yet there are insufficient case 

histories to support a generic model to explain this variability, and the next one or 

two decades may well produce some very exciting results in this field. 

6.10 CONCLUSIONS 

1. Teleseismic P-wave azimuthal anomalies detected at an array in Norway can be 

modelled as the effect of a plume in the lower mantle beneath Iceland. A 

Gaussian velocity anomaly of 125 km radius at -1500 km depth with an 

amplitude of 1.5% is a candidate model that fits the observations. 

2. Iceland is underlain by a coherent low-velocity body in which seismic wave 

speeds are reduced by up to 2.9% in v/> and 4.9% in v$. The low-velocity body 

persists throughout the whole of the well-resolved depth range, from around 30 

km to at least 400 km. 

3. The low-velocity body can be approximated by a Gaussian, cylindrical velocity 

function of radius 100-130 km in the upper 300 km of the model. This is 

interpreted as a mantle plume with an excess temperature of the order of 

200-300 K. 

4. There is a change from axisymmetric to north-south-orientated planar symmetry 

at around 250-300 km depth. This tabular root is present in both P- and S-wave 

models and persists from 250-300 km to the bottom of the well-resolved volume 

at -400 km, and below. This change in morphology is expected towards the base 

of a basally-heated convection cell and implies that the Iceland plume arises from 

the mantle transition zone. 

5. Beneath the Reykjanes ridge, in the depth range 50-200 km, vs is reduced by up 

to 2% in places where vP is only 0.5% low. This is interpreted as the presence of, 

and possible channelling of, melt beneath the ridge axis. The Kolbeinsey ridge 

shows low velocities only below 160 km. This is interpreted as the Tjomes 

fracture zone acting as a barrier to lateral flow of melt away from the plume in 

this direction. 
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6. The vp/vs ratio is over 1% high throughout most of the plume, with the strongest 

anomalies of up to 3.2% occurring beneath central Iceland from 100 to 200 km 

and beneath east-central Iceland from 200 to 300 km. This implies that small but 

variable amounts of partial melt (up to a few percent) are present throughout the 

plume. 

6.11 SUGGESTED FUTURE WORK 

• The teleseismic dataset should be extended to include more core phases and 

events from regions with few seismic sources. 

• Data from sea-floor sensors should be acquired and added to the dataset. This 

could be achieved by a long-term ocean-bottom seismometer deployment. 

• Apply numerical cross-correlation to refine the pick qualities. 

• Correct the arrival times to account for crustal thickness and velocity structure 

across Iceland obtained from receiver function and surface wave work currendy 

in progress. 

• Investigate the effect of anisotropy on the velocity models and vP/vs estimates. 

• Investigate wavefront healing, and apply corrections to the velocity amplitudes as 

appropriate. 

• Refine the ACH program code, or apply another tomography method which 

enables 

a) Operation in spherical geometry, 

b) the use of laterally heterogeneous starting models, and 

c) iteration and raytracing through a preliminary model, to account for ray 

refraction. 

• Synthetic modelling of velocity anomalies, in particular to explore more fully the 

effect of smearing and the reliability of the results of the present work. 
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Appendix 1. SIL SEISMIC STATIONS USED IN THIS STUDY. 

Station Name Latitude 
(° N) 

Longitude 
(° E) 

Elevation 
(m) 

Comments Sensor type 

ASB Asbjamastadir 64.749 -21.326 110 STS-2 
OIL Gilhagi 66.077 -16.351 141 CMG-3T 
GRA Granastaflir 65.918 -17.578 25 CMG-3T 
GRI Grfmsey 66.542 -18.010 36 CMG-3T 
GRS Grfmssladir 65.638 -16.124 390 CMG-3T 
HVE Hveravcllir 64.871 -19.559 641 CMG-3T 
KRA* Krafla 65.695 -16.778 437 * removed 1/11/96 CMG-3T 
KRO Krokur 64.098 -21.120 139 CMG-3T 
REN* Reynihlid 65.647 -16.915 344 * installed 

15/11/96 
CMG-3T 

SIG Siglufjordur 66.132 -18.915 16 CMG-3T 
SKR Skrokkalda 64.560 -18.386 812 CMG-3ESP 
VOG Vogar 

Appendix 2. E X T R A C T O F F I L E teievents. l i b 

The earthquake catalogue file t e i e v e n t s . l i b is produced at Veflurstofa 

Islands and stored in the d i r e c t o r y/eq / Y Y Y Y/teieseism/ f o r the year Y Y Y Y . It 

lists major teleseisms saved and their location in the directory structure. A small 

sample of the file is reproduced here: 

T E L E S E I S M I C EVENTS 1996 ( i r o n August 14th) 

sav : a u t o m a t i c a l l y s a v e d 
c r t : n o t s a v e d b e c a u s e of c r i t e r i a 
o l d : not s a v e d b e c a u s e too o l d 
man : m a n u a l l y s a v e d 

yyyymoda hhromss s l a t i t u d e l o n g i t u d e depth M rat e p i c d rem pa t h p r e f i x d Region 

19960815 0-73350 3 -13 2556 166 5339 33 0 6 0 Ms 126 6 sa v /1996/aug/15/07 49 00 07 49 00 0 VANUATU ISLANDS 
19960819 041915 6 51 4311 -178 4464 33 0 5 7 Mb 61 1 s a v /1996/aug/19/04 29 00 04 29 10 0 ANDREANOF I S L , ALEUTEAN I S 
19960819 062411 1 -41 4896 80 2335 10 0 5 9 MB 129 6 c r t X X 9 MID-INDIAN RIDGE 
19960820 001102 3 77 9402 7 5805 21 2 5 5 Mb 13 5 s a v /1996/aug/20/00 14 00 00 14 00 0 SVALBARD REGION 
19960822 053541 8 -7 0634 123 2153 589 8 5 5 Mb 114 6 c r t X X 9 BANDA SEA 
19960822 014455 53 14 -35 31 10 0 4 7 Mb 12 7 nan /1996/aug/22/0l 47 00 01 47 50 0 NORTH ATLANTIC OCEAN 
19960823 215605 1 -4 2036 -104 3136 10 0 5 5 Ms 90 4 sa v /1996/aug/23/22 08 00 22 08 50 0 CENTRAL EAST P A C I F I C R I S E 
19960827 105050 0 -36 8726 78 0973 10 0 5 9 MS 124 8 c r t X X 9 MID-INDIAN RIDGE 
19960828 160145 6 -10 5377 161 2646 33 0 5 5 Mb 124 0 c r t X X 9 SOLOMON ISI.ANDS 
19960B28 063050 1 04 -28 18 10 0 4 9 Mb 62 8 man /1996/aug/28/06 40 00 06 40 00 0 CENTRAL MID-ATLANTIC RIDGE 
19960829 062207 73 52 5 68 10 0 4 6 Mb 10 5 man /1996/aug/29/06 24 00 06 24 00 0 GREENLAND SEA 
19960831 204722 9 51 4122 -178 2263 62 6 5 8 Mb 61 1 s a v /1996/aug/31/20 57 00 20 57 20 0 ANDREANOF I S L . ALEUTEAN I S 
19960901 064541 3 -11 8277 166 5654 186 3 5 5 Mb 125 2 c r t X X 9 SANTA CRUZ ISLANDS 
19960902 204153 2 12 5500 143 7100 33 0 5 7 Ms 99 7 s a v /1996/sep/02/20 55 00 20 55 20 0 SOUTH OF MARIANA ISLANDS 
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Appendix 3. HOTSPOT NETWORK STATIONS 

Station Name Lat 
(°N) 

Lon 
(°E) 

Elev 
(m) 

Nmpg 

(°) 
Comments Sensor 

type 
Power 
source 

HOTOI Reykir 64.494 -21.168 205 340 Sensor on concrete floor of 
unused barn at abandoned 
farm. Possibly gravel 
between floor and bedrock. 

CMG-3ESP Mains 

HOT02 Asbrtin 64.746 -22.232 40 339 Sensor in shallow hole, on 
bedrock, behind a farmhouse. 
DAS in basement/garage. 

CMG-3ESP Mains 

HOT03 ingjaldsh(MI 64.908 -23.853 35 338 Sensor & DAS in mortuary 
near to church on hill . 

CMG-40T Mains 

HOT04 Ormsstaoir 65.181 -22.423 40 339 Sensor & DAS in old milk 
dairy. 

CMG-3ESP Mains 

HOT05 Bnj 65.110 -21.096 35 340 Sensor & DAS in basement 
of apartment block. Possible 
sources of noise nearby 
(road, generator, gas station, 
river). 

CMG3-ESP Mains 

HOT06 H6lmavfk 65.705 -21.678 25 339 Sensor & DAS in basement 
of house. Base of cement on 
bedrock. 

CMG-3ESP Mains 

HOT07 Eyri 65.598 -22.510 40 338 Sensor on bedrock in 
unfinished basement of 
summerhouse. 

CMG-3ESP Mains 

HOT08 Olafsviti 65.610 -24.161 8 337 Sensor on cement floor in 
lighthouse, directly on lop of 
bedrock. 

CMG-3ESP Mains 

HOT09 t>ingeyri 65.874 -23.486 50 338 Sensor on bedrock in 
unfinished basement of 
family house. 

CMG-3ESP Mains 

HOT 10 Reykjanesskoli 65.927 -22.428 7 338 Sensor on bedrock in small 
concrete shed, in hole in 
concrete floor. 

CMG-3ESP Mains 

HOT 11 BoAvarsholar 65.423 -20.722 108 340 Sensor on concrete floor of 
abandoned mink house, now 
used as workshop. Floor is 
concreted onto fractured 
basalt. 

CMG-3T Mains 

HOT 12 Havfk 65.671 -19.600 38 340 Sensor on concrete floor of 
garage of summerhouse. 
Rock beneath was dynamited 
to build garage; layer of 
gravel is beneath the cement. 

CMG-3T Mains 

HOT 13 Sulur 65.686 -18.100 24 341 Sensor on isolated cement 
pillar constructed for 
WWSSN seismometer 
station, in basement of police 
station. 

CMG-3T Mains 

HOT 14 HolsgerSi 65.303 -18.257 245 341 Sensor on cement floor of 
basement of deserted 
farmhouse. House built on 
massive landslide of huge 
boulders. No bedrock in this 
valley. 

CMG-3ESP Mains 

HOT 15 Finnafjordur 66.121 -15.172 20 343 Sensor on concrete floor of 
family house, on spot where 
concrete was poured directly 
on bedrock or v. large 
boulder. Little bedrock in 
this area. 

CMG-3ESP Mains 
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HOT 16 Borgarfjordur-
eystri 

65.541 -13.754 5 344 Sensor on concrete floor in 
wooden shack at harbour. 
Floor was poured directly 
onto bedrock without gravel 
layer in between. 

CMG-3ESP Mains 

HOT 17 Setberg 65.255 -14.504 80 343 Sensor on bedrock exposed 
in basement of family house. 

CMG-3ESP Mains 

HOT 18 Grund 65.166 -15.309 342 343 Sensor on concrete floor in 
basement of uninhabited 
farmhouse. No bedrock in 
valley. 

CMG-3ESP Mains 

HOT 19 Fell 64.812 -14.100 50 344 Sensor in pit cemented onto 
bedrock, behind abandoned 
mink shed. 

CMG-3ESP Mains 

HOT 20 Hagi 64.288 -15.139 15 344 Sensor on exposed bedrock 
in basement of farmhouse. 

CMG-3ESP Mains 

HOT 21 Fagurh6lsmyri 63.877 -16.641 20 343 Sensor on bedrock in 
corrugated iron lean-to built 
up against a basalt cliff . DAS 
in disused store nearby. 

CMG-3ESP Mains 

HOT 22 Hunkubakkar 63.770 -18.131 65 342 Sensor on bedrock in large 
bam in farmyard. 

CMG-3ESP Mains 

HOT23 Grimsfjall 64.407 -17.266 1730 342 Sensor standing on cement 
pad poured onto tuff just 
outside mountain refuge hut. 
8 solar panels installed, 6 
connected. DAS inside hut. 

CMG-3ESP Solar panels, 
12V batteries 

HOT 24 Snajfell 64.887 -15.354 600 343 Sensor on bedrock in pit dug 
down to bedrock in outcrop 
by river. DAS in mountain 
refuge hut nearby. 6 solar 
panels installed. 

CMG-3ESP Solar panels, 
12V batteries 

HOT 25 Askja 65.054 -16.652 920 343 Sensor on cement pad on 
hard tuff 50 m from Dyngja 
hut. Softer tuff cut away to 
harder tuff below. 

CMG-40T Solar panels, 
12V batteries 

HOT 26 Laugafell 65.029 -18.332 740 342 Sensor on concrete pad 
poured onto tuff layer about 
1 m deep behind new house 
at Laugafell. DAS in attic. 

CMG-3ESP Solar panels. 
12V batteries 

HOT 27 Blonduldn 65.200 -19.590 450 341 Sensor on lowest floor of 
concrete building containing 
control equipment for 
emergency overspill dam of 
Bliindulon. Building was 
cemented to massive bedrock 
for dam engineering 
purposes. 

CMG-3ESP Mains 

HOT 28 Leppislungur 64.532 -19.484 600 341 Sensor in pit dug down to 
bedrock behind refuge hut. 6 
solar panels installed. 

CMG-40T Solar panels. 
12V batteries 

HOT 29 Vatnsdalsgerdi 65.728 -14.838 60 341 Sensor on concrete floor of 
turf potato store. Floor was 
poured onto bedrock in 
corner where sensor is 
placed. 

CMG-40T Mains 

HOT 30 Veflurslofa 64.130 -21.900 50 340 Sensor in seismometer vault 
in basement of Vedurstofa 
Islands building. 

CMG-3ESP Mains 
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Appendix 4. EQUIPMENT LIST FOR HOTSPOT STATIONS 

"Standard" Station Tiles 
Seismometer (Guralp CMG-3ESP, CMG-3T or CMG-40T) Plastic sheet 
Seismometer cable (coloured, 5 m) Small bucket 
DAS 24-bit data logger (REFTEK Data: Acqu isi lion System) Insulation jacket _ 
DAS; power cable (grey, 2 m) Breakout box enclosure 
DASicable (grey twin, 5 m) Battery clamps 
Power supply Drainpipe 
60'Amp hr lead-acid battery Insulating tape . 
Power board Mains plug 
2 battery cables(grey, 1 m) 
Disk Additional equipment for "highland" station: 
SCSI cable (black, 0.5 m); 6 30 Watt solar panels & associated cables 
Disk power cable (grey,d5 rn) Bank of 8 150 Amp hr lead-acid batteries 
GPS clock Woodenicralefor batteries 
GPS cable (grey, 6 m) Insulation for batteries 
Breakout box with 3mm Allen wrench. 
Large bucket 
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Appendix 5. STATION SETUP INSTRUCTIONS 

1. Vault 
a) Dig pit on a slope about 0.75 m deep to bedrock. 
b) Pour cement pad, smooth it, draw magnetic north line and affix tile. 
c) Install drain pipe downhill lo surface. 
d) Install vault wall (large bucket). Run blue seismometer cable out (through hole in wall of bucket). Fill around outside of 

wall with dirt. 

2. Power 
a) Connect power supply to "BATTERY" terminal strip on power board. 

Both black & white wires lo board's white wire. 
Both red wires to board's red wire. 

b) Connect battery lo same terminal on power board, in parallel with power supply. 
Black wire to board's white wire. 
Red wire to board's red wire. 

c) Connect DAS power cable (2m grey) to "STATION" strip on power board. 
Black wire to board's brown wire. 
Red wire to board's orange wire. 

d) Attach 5 m double grey cable to "STATION" strip o power board. 
Black wire to board's brown wire. 
White wire to board's orange wire. 

e) Plug power supply into mains. 

3. Seismometer 
a) Position seismometer on rile with brass pointer oriented to magnetic north. 
b) Unlock seismometer feet by turning brass screws anticlockwise. Level the seismometer. Lock the adjustable feet. Check 

north orientation again. 
c) Connect single cable (blue, yellow or grey) to seismometer. Fasten cable so a pull won't move seismometer. Rechcck 

seismometer level. 
d) Unlock masses. Replace Q-rings and plugs. 
e) Plug other end of single (blue) cable into "SENSOR" port on breakout box. 
f) Plug double grey cable into "RECORDER" port on breakout box. 
g) Plug double grey cable into "POWER" port on breakout box. 
h) Connect breakout box "CONTROL" port to Guralp control box using control box cable. 
i) Centre seismometers for each channel using knob and switch on control box. 

Set left-hand knob in turn to V. N/S and E/W and flick "MASS CNTR" switch. 
j ) Disconnect control box from breakout box. Close "CONTROL" port on breakout box with spare connector on double grey 

cable. 
k) Fasten insulation to small bucket, invert and place over sensor. 
I) Close vault. 
m) Shelter breakout box in plastic enclosure with drainage. 

4. DAS 
a) Using grey cable, connect power from DAS (either power port) to disk. 
b) Using black SCSI cable, make data connection between DAS and disk (cither SCSI port). 
c) Situate GPS clock/antenna for clear view of sky and connect to "COMM" port on DAS using grey GPS cable. 
d) Connect single grey cable that was attached to power board lo free power port on DAS. 
e) Attach black connector on double grey cable into "CH. 4-6" socket on DAS. 

5. Loading parameters into DAS and acquisition startup 
a) Load parameters from, or check pre-set parameters in EHT terminal against, those on printed sheet. 
b) Plug in EHT to DAS and perform the following operations: 
COMMNCTNS/SEND PRMS/YES 
UTILITIES/NEXT MENU/FRMT SCSI/DISK/YES 
NEXT MENU/CLEAR RAM/YES 
PREV MENU/SYS RESET/YES 
TIME check time is correct 
MONITOR/2/|4|5|6) stomp test 
COMMNCTNS/START ACQ/0/0/YES 
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Appendix 6. STANDARD EHT P A R A M E T E R S FOR H O T S P O T P R O J E C T 

Station 
Experiment name HOTSPOT 
Station number number from coloured map 
Station name farm or place name 
Operation mode C P & S C 

Channel 1 2 3 4 5 6 

Channel name Deactivated Z N E 
Azimuth 0 0 90 
Inclination 90 0 0 
Preamp 1 1 1 
Sensor model 3ESP or 40T or 3T (see top of seismometer) 
Sensor serial no. Serial number from top of seismometer 
Data Stream 1 2 3 

Stream name 20sps lsps trglOOsps 
Channel #s 4,5 & 6 4,5 & 6 4,5 & 6 
Sample rate 20 1 100 
Data form CO CO CO 
Trigger type CON CON EVT 
Trigger parameters 
Trigger channel(s) 4 
Pre-trigger length 5 
Record length 1200 28800 30 
Sta Ingth 0.2 
Lta Ingth 30 
Mean removal 10 
Trigger rate 8 
Lta hold Active 

Calibration 
Stan time I996<ret>next day ending in 0 or 5 <ret> 

07<ret>30<ret>00<ret> 
Rep interval 5 days 
# of calibrations 0 (means infinite) 
Record length 5 
Step function 
Step On 
Interval 90 
Step size 91 
Amplitude 0.1 
Out COIL 
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Appendix 7. C L O C K C O R R E C T I O N S 

HOTOLckx* 1996 

! 

I 
i 

t 

HOTOl.dOCK 1997 

HOTOLclOCk 1998 

HOT02.dOCk 1996 I H
IT

 

! — 

i-E 

HOT02.dock 1997 

1= 
t -
i E 

w> M w 

HOT02.clock 1998 

j | 
t - r 

HOTOLdOCk 1996 

HOT01 clock 1997 

HOTOLdock 1998 

Clock corrections for stations HOT01, HOT02 & HOT03. Graphs show the "time jerk" applied 
to the internal clock of the DAS computer to re-synchronise it with that of the GPS system. 
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HOT04.ctock 1996 

HOTCM.clock 1997 

HOTM.dock 1998 

HOTOS.dock 1996 

I f " 'I *" 

HOT05.dock 1997 

s 

HOTOS Clock 1998 

HOT06.clock 1996 

HOT06:dock 1997 

HOT06.clock.1998 

s 

Clock corrections for stations HOT04, HOT05 & HOT06 
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HOT07.dock 1996 

HOT07.dock 199/ 

IHOT07.dock 1998 

1 

HOTOS.CIock 1996 

I 

HOToa.dock 1997 

1 

HOT08.dock 19981 

HOT09 dock 1996 

HOT09.dock 1997 

!HOT09.dock 1998 

Clock corrections for stations HOT07, HOT08 & HOT09 
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HOT 10 clock 1996 

HOT10.clock.1997 

1 

HOT 10 dock 199S 

HOT11 clock 1996 

1 — 

HOTH.ctock 1997 

I 

HOT11.clock 1998 

| ins 
; 

i 

HOTI2.dock 1996; 

•1-

HOT12.ctock 1997 

l = 
«'= 

HOT 12.6l6ck 1998 

Clock corrections for stations HOT10, HOT11 & HOT12 
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HOT13.clock 1996 

litilL 
1 

HOT 13 clock 1997 

1~ 4wM-|v-4-t. 
1 

HOT13.ck)Ck1998 

HOT14.clock 1996 

HOT14dOCk 1997 

-ft H •++•+• 

HOT14xlock 1998 

J 

HOT15.clock 1996 

i 

HOT15.clock 1997 

HOT15.clock 1998 

4 I: , ! , i . 4 I: T N 

Clock corrections for stations HOT13, HGT14 & HOT15 
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HOT16.cl6ck1998 

• I I I 

HOT16;olock 1997 

1 | mat 

*~ 

HOT 16 clock 1998 

j l j l 1 

j a m 

-

HOT17 Clock 1996 

HOT 17.Ctock 1997 

3 

HOT17.dock 1998 

3 

HOT IS.clock 1996 

1 -

1= 

HOTie.clock 1997 

i = 

HOT18.clock 1998 

,}S i - I 
' 1 

Clock corrections for stations HOT16, HOT17 & HOT18 
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H0T19.clock 1996 

i= ... .. j . j j l j i . li 
V -

HOT19clock 1997 

i s 
I 

HOT 19ckxk 1998 

HOT20.clock 1996 

HOTZO.clock 1997 

HOT20.clock 1998 

HOT21.clock 1996; 

-.i-r. 

HOT21 dock 1997 

= 
r 

~ U ••„,-——-—u4~M 

. - -
HOT21.clock 1998 

-

IE 
Mil , i k i w ^ _ . 

Clock corrections for stations HOT19, HGT20 & HOT21 
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HOT22.clock 1996 

1 = 
s-
3* 

HOT22.clock 1997 

1 * 

HOT22.clock 1998 

HOT23.Clock 1996 

HOT23.clock 1997 

HOT23.clock 1998 

HOT24.clock 1996 

HOT24.ck)Ck 1997 

H0T24.cl0Ck 1998 

Clock corrections for stations HOT22, HOT23 & HOT24 

245 



Appendices 

HOT25.clOCk 1998 

H0T25 clock 1997 

HOT25.clock 1998 

HOT26.clock 1996 

HOT26.clock 1997 

-Mi 

HOT26.ctack 1998 

HOT27 clock 1996-

1 

HOT27.Cl0Ck 1997 

J 

HOT27 clock 1998 

Clock corrections for stations HOT25, HOT26 & HOT27 
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HOT28.clock 1996 

i 

HOTSS.clock 1997 

HOT28.dock1998 

HOT29.cl6ck,1998 

H0T29.clwk 1997 

HOT29 clock 1998 

HOT30.dock 1996 

HOT30.doc* 1997 

HOT30.dock 1998 

Clock corrections for stations HOT28, HOT29 & HOT30 
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Appendix 8. P E R L SCRIPT tocsaarch. pi 

This script was used to create lists of files to be extracted from tape using the 

table-of-contents file at the start of each HOTSPOT event tape. 

# ! / u s r / l o c a l / p e r l / b i n / p e r l 
((Written by Matt P r i t c h a r d 
#Check f o r 2 command l i n e arguments: 
((day i n EYYYY.DDD 

ittime ( d i r e c t o r y ) i n HHMMSS format, 

i f (@ARGV < 2 ) { 
d i e "Usage: $0 EYYYY.DDD HHMMSSSn"; 
} 
$syearday=$ARGV[0] ; 
$Stime=$ARGV[l]; 
$tocno=0; 
$n=0; 
$ i = 0; 

((Array c o n t a i n i n g names of HOTSPOT s t a t i o n s 
S m f i l e s = ( 'HOT01','HOT02','HOT03','HOT04','HOT05','HOT06', 

•HOT07','HOT08','HOT09','HOT10','HOTll','HOT12', 
'HOT13','HOT14','HOT15','HOT16','HOT17','HOT18', 
'HOT19','HOT20','HOT21','HOT22','HOT23',•HOT24', 
'HOT25 ' , 'HOT26', 'HOT27', 'HOT28 ' , 'HOT29', 'HOT30 ' 
) ; 

# I n i t i a l i s e f l a g l a b e l l i n g m i s s i n g f i l e s 
f o r e a c h ( @ m f i l e s ) ( 
$ m i s s i n g ( $ _ ) = l ; 
} 

((Open & r e a d i n l i n e s of f i l e " t o c l i s t " 
( ( c o n t a i n i n g names of tape toe f i l e s , 
open(TOCLIST,"EVENT_TAPES\/toclist") ; 
@tOClist=<TOCLIST>; 
c l o s e ( T O C L I S T ) ; 

# F i n d r e l e v a n t toe f i l e s to s e a r c h : 
# F i l e d a y l i s t c o n t a i n s f i l e n a m e s , one per l i n e 
#of "day" f i l e s , which l i s t 
lone per l i n e , the days c o v e r e d by t h a t tape, 
open(DAYLIST,"EVENT_TAPES\/daylist"); 
while(<DAYLIST>) { 
chop ; 
$ d a y f i l e = $ _ ; 
open(DAYFILE,"EVENT_TAPES\/$dayfile" ) ; 
while(<DAYFILE>) ( 

$dayline=$_; 
@ d a y f i e l d s = s p l i t ( / : / , $ d a y l i n e ) ; 
$dyear=$dayf i e l d s [ 0 ] ,-
$dd a y = $ d a y f i e l d s [ 1 1 ; 
chop($dday); 
i f ( s u b s t r ( $ s y e a r d a y , 1 , 4 ) == $dyear && s u b s t r ( $ s y e a r d a y , 6 , 3 ) == 

$dday) ( 
p u s h ( @ u s e l i s t , $ t o e l i s t [ $ i ] ) ; 
push(@usenos,$i+l); 

} 
$n++; 

} 
$ i + + ; 
} 

((Match yearday & time; p r i n t matching f i l e s 
$i=0; 
f o r e a c h ( @ u s e l i s t ) t 
chop ; 
$ t o c f i l e = $ _ ; 
S p r i n t " $ t o c n o \ t $ t o c f i l e \ t $ s y e a r d a y \ t $ s t i m e \ n " ; 
open(TOCFILE,"EVENT_TAPES\/$tocfile"); 
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while(<TOCFILE>) { 
i f (/$syearday/ && /$stime/) { 

$l i n e = $ _ ; 
@ f i e l d s = s p l i t ( / \ / / , $ l i n e ) ; 
i f ( $ f i e l d s [ l ] == $stime && I/H0T31/) { 

$ f i l e = s u b s t r ( $ f i e l d s [ 3 ] , 0 , 5 ) ; 
$ m i s s i n g { $ f i l e ) = 0 ; 
p r i n t STDERR 

" $ u s e n o s [ $ t o c n o ] \ t $ t o c f i l e \ t $ f i l e \ t $ m i s s i n g { $ f i l e ) \ t $ l i n e " ; 
p r i n t STDOUT " $ u s e n o s [ $ t o c n o ] \ t $ l i n e " ; 

} 
} 

} 
c l o s e ( T O C F I L E ) ; 
$tocno++; 
) 

fo r e a c h ( @ m f i l e s ) { 
i f ( $ m i s s i n g { $ _ ) ) { 

p r i n t STDERR "Missing $_\n"; 
p r i n t STDOUT "Missing $_\n"; 

} 
) 

Appendix 9. P E R L SCRIPT abrot .pi 

This script constructed commands for ahrotate, using sensor orientation 

information stored in the files dbname.sensor and dbname.instrument to ensure 

that seismograms were rotated using the appropriate correction for local magnetic 

north. 

# ! / u s r / l o c a l / p e r l / b i n / p e r l 
ftdbrot.pl 
# R o t a t e seismograms from s t a t i o n (zne) to s o u r c e ( z r t ) c o o r d i n a t e s 
(fusing f i l e l i s t i n g i n dbname. wf d i s c , e p i c e n t r e i n f o i n dbname . or i g i n 

i f (@ARGV < 3 ) { 
d i e "Usage: $0 dbname o r i d s i l p r e f \ n " ; ttMust have 3 

arguments: dbname o r i d and S I L p r e f i x 
} 

((Arguments: 
$dbname = $ARGV[0]; Sdatabase name 
$ o r i d = $ARGV[1); ( ( o r i g i n i d ( f o r lookup i n dbname.origin) 
$ s i l p r e f = $ARGV[21; t p r e f i x of S I L data f i l e n a m e s ( p r e v e n t s unwanted 

f i l e s g e t t i n g r o t a t e d ) 

#Get EQ o r i g i n from dbname.origin 

open(ORIGIN,"$dbname.origin"); 
w h i l e (<ORIGIN>) ( 

S o f i e l d s = s p l i t ; 
i f ( $ o f i e l d s [ 4 ) == $ o r i d ) ( # S p l i t o r i g i n l i n e i n t o 

f i e l d s 
$ o l a t = $ o f i e l d s ( O ) ; 
Solon = $ o f i e l d s [ 1 ] ; 

} 
} 
c l o s e ( O R I G I N ) ; 

open(SITE,"$dbname.site"); 
w h i l e (<SITE>) { 
@ s f i e l d s = s p l i t ; 
$ s t a = $ s f i e l d s [ 0 ] ; 

((Decide whether the s t a t i o n i s a hotspot o r S I L s t a t i o n : 

i f ( $ s t a =- /HOT/ ) { 
$H0T = 1; 
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S S I L = 0; 
) e l s e ( 

$HOT = 0; 
$ S I L = 1; 

} 

((For HOTSPOT s t a t i o n s , NS s e n s o r i s a l i g n e d w i t h Nmag, so look up 
d e c l i n a t i o n 

(ffor each s t n i n $DIR_HOT/HOTSPOT. s i t e c h a n , channel 5 (N) : 

if(SHOT) { 
open(SITECHAN, 

" / u s r / l o c a l / s e i s m i c / h o t s p o t / p r i t c h a r d / h o t s p o t / H O T S P O T . s i t e c h a n " ) ,-
w h i l e (<SITECHAN>) ( 

@ s i t e c h a n f i e l d s = s p l i t ; 
i f (/$sta/ S s i t e c h a n f i e l d s [ 1 ] == 5) { 

$hang{$sta) = S s i t e c h a n f i e l d s [ 7 ] ; 
} 

} 
c l o s e (SITECHAN); 

) e l s e { 
$hang($sta) = 0.0; 

) 

#Get c h a n n e l s , d i r & f i l e n a m e s from w f d i s c 

open(WFDISC,"Sdbname.wfdisc"); 
w h i l e (<WFDISC>) { 

i f (/$sta/) { 
©wffields = s p l i t ; 
$chan = Swff i e l d s [ l ] ,-
$ d i r = $ w f f i e l d s [ 1 5 1 ; 
$ d f i l e = $ w f f i e l d s [ 1 6 ] ; 
i f ( $ S I L && $ d f i l e = ~ / $ s i l p r e f / || $HOT) { 

i f ($chan == 4 || $chan eq "Z") { 
S z f i l e = $ d f i l e ; 

} e l s i f ($chan ==5 || $chan eq "N") { 
$ n f i l e = $ d f i l e ; 

} e l s i f ($chan ==6 || $chan eq "E") { 
$ e f i l e = $ d f i l e ; 

} 
) 

} 
} 

if($HOT) { 
$zchan = 4; 
$nchan = 5; 
Sechan = 6; 

) e l s e ( 
$zchan = "Z"; 
$nchan = "N"; 
$echan = "E"; 

) 

p r i n t " c a t $ d i r / $ z f i l e $ d i r / $ n f i l e $ d i r / $ e f i l e | a h o r i e n t -chan $zchan 
$nchan Sechan -north $hang{$sta} -verbose | 
/ h o m e / a l i c e / j u l i a n / b i n / s u n 4 / a h r o t a t e -ep $ o l a t $olon -verbose -outchan ZRT > 
$ d i r / $ s t a . r o t \ n " ; 

p r i n t " s p l i t z r t S d i r / $ s t a . r o t \ n " ; 
p r i n t "Wrm $ d i r / $ s t a . r o t $ d i r / $ s t a . r o t . Z\n\n" ; 
} 
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Appendix 10. 1ASP91 ' E A R T H / M O D E L 

P- and S-wave velocities in the IASP91 standard Earth model (Kennet & 

Engdahl, 1991) are shown below to a depth of 700 km: 

velocity (km/s) 
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700 M 1 1 1 1 1 1 1 1 1 1 1 1 1 i i i i i i n i i i ii i i 11 • • 
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Appendix 11. T Y P I C A L L O G F I L E ENTRY 

The following extract of clock-related entries in a log file lists the times at 

which the GPS clock was locked, and the associated clock "jumps" which were then 

applied to the internal clock of the DAS recording instrument. 

S t a t e of H e a l t h 96:171:23:47 :39:197 ST: 0472 
171: ;23: :47: :39 INTERNAL CLOCK PHASE ERROR OF 198 USECONDS 
171: :23: :47: :39 POSITION: : N64:29:34.56 W021 :10 :07 .20 
171: :23 : :52; ;09 EXTERNAL CLOCK I S UNLOCKED 
171: :23 : :52: :20 NO EXTERNAL CLOCK INPUT 
172; :00: 40: :04 EXTERNAL CLOCK I S UNLOCKED 
172 :00: :41: :22 EXTERNAL CLOCK I S LOCKED 
172 :00: :41; :22 INTERNAL CLOCK PHASE ERROR OF 148 USECONDS 
172: :00: :41; :22 POSITION: : N64:29:40.80 W021 :09 :59 .14 
172: :00: 42 : ; 12 EXTERNAL CLOCK I S UNLOCKED 
172: :00: :44 : :00 EXTERNAL CLOCK I S LOCKED 
172 :00: :44: :00 INTERNAL CLOCK PHASE ERROR OF -15 USECONDS 
172 :00: :45; :28 EXTERNAL CLOCK I S UNLOCKED 
172 :00: :48: :27 EXTERNAL CLOCK I S LOCKED 
172 :00: :48: :27 INTERNAL CLOCK PHASE ERROR OF 14 USECONDS 
172 :00: :52: :57 EXTERNAL CLOCK I S UNLOCKED 
172 :00 :53 :08 NO EXTERNAL CLOCK INPUT 
172 :01: :40 :04 EXTERNAL CLOCK I S UNLOCKED 
172 :01: :41 :38 EXTERNAL CLOCK I S LOCKED 
172 :01: :41 :38 INTERNAL CLOCK PHASE ERROR OF 143 USECONDS 
172 :01: :41: :38 POSITION: : N64:29:41.54 W021 :09 :58 .55 
172 :01 :46 :08 EXTERNAL CLOCK I S UNLOCKED 
172 :01 :46 :20 NO EXTERNAL CLOCK INPUT 

Appendix 12. AWK SCRIPT getcron. aw* 

This script takes the name of a log file as an argument, and extracts the lines 

containing clock lock information, to construct a file containing the clock corrections 

to be applied at specified times. 

nawk ' 
BEGIN { 

TRUE = 1; FALSE = 0 ; 
s igmal = 50.0; 
sigma2 = 500.0; 
l o c k e d = FALSE; 

} 
/DSP CLOCK SET/ { 
ye a r = 1900+substr($6,5,2) 
} 
/EXTERNAL CLOCK I S LOCKED/ { 

l o c k e d = TRUE; 
} 
/CLOCK PHASE ERROR OF/ { 

i f ($8 == "MSECONDS") 
p r i n t f "%4d%s %10d % s \ n " , y e a r , " : " $ l , $7*1000, 500.0; 

i f ($8 == "USECONDS") 
p r i n t f "%4d%s %10d % s \ n " , y e a r , " : " $ l , $7, s i g m a l ; 

) 
/EXTERNAL CLOCK I S UNLOCKED/ { 

i f ( l ocked) 
p r i n t f "%4d%s %10d %s\n " , y e a r , " : " $ l , 0, sigma2; 

l o c k e d = FALSE; 
) ' $1 

252 



Appendices 

The output of getcron.awk, when run with the log file extract given in 

Appendix XX would be as follows (1s t column = time, 2 n d = correction in ms, 3 r d = 

uncertainty in correction in ms): 

1996:171:23:47:39 198 50 
1996:172:00:41:22 148 50 
1996:172:00:42:12 0 500 
1996:172:00:44:00 -15 50 
1996:172:00:45:28 0 500 
1996:172:00:48:27 14 50 
1996:172:00:52:57 0 500 
1996:172:01:41:38 143 50 
1996:172:01:46:08 0 500 

This is in the format required for input by the C program hotciock 

(Appendix XX), which added or subtracted the appropriate correction to picks, after 

interpolation between the nearest two identified clock locks. 

Appendix 13. C PROGRAM hotciock 

The C program hotciock is an adaptation of the program clockcor (B.R. 

Julian, pers. comm.) and is listed below, hotciock caclculates clock corrections by 

interpolation and applies them to picks. 

# i f n d e f l i n t 
s t a t i c c h a r r c s i d N = "$Header: 

/ w e / c r h e t / j u l i a n / s r c / c m d / c a l i b / R C S / c a l i b . c , v 1.13 1997/10/30 00:32:16 j u l i a n 
Exp $"; 

(tendif l i n t 
/* h o t c l o c k . c ... Some changes by Matt P r i t c h a r d to an o r i g i n a l program 

w r i t t e n by B.R. J u l i a n (USGS)*/ 
* Determine c l o c k c o r r e c t i o n s a t s p e c i f i e d time. 
*/ 

(•include <stdio.h> 
((include " l o c a l . h " 
((include "cmd_opt.h" 
((include "date_time.h" 
((include " l i b q . h " 

((define SIGMA_Y 1.0e-10 

v o i d c l k c o r l ) ; /* c l k c o r . c */ 
PRIVATE v o i d d o _ f i l e ( ) ; /* Defined below */ 
v o i d f b s e a r c h ( ) ; /* f b s e a r c h . c */ 
v o i d i n t e r p 2 ( ) ; /* i n t e r p . c */ 

i n t e r r n o ; 
PRIVATE c h a r " c l k f i l e ; /* C l o c k h i s t o r y f i l e */ 
double sigma_y; /* Std. dev. ( A l l a n ) of c l o c k */ 

/* C O M M A N D - L I N E A R G U M E N T P R O C E S S I N G 
*/ 

((define OPT_FUNCT(name) s t a t i c v o i d name (void) 
OPT_FUNCT(qhelp){ i f (eargc>2) p r t _ h e l p ( ) ; e l s e p r t _ d o c ( " [ f i l e . . . ] " ) ; } 
OP T _ F U N C T ( q c l k f i l e ) { c l k f i l e = a a r g O ; } 
OPT_FUNCT(qsig_y)( sigma_y = n a r g l ) ; ) 

s t r u c t command cmd[] = { 
qhelp , "-help" , " ( o p t . . . ] " , " P r i n t documentation", 
q c l k f i l e , " - c l o c k f i l e " , " f i le_name", "Clock h i s t o r y f i l e " , 
q s i g _ y , " - a l l a n d e v " , "value" , "Clock's s t d . dev. ( A l l a n ) 

( d e f a u l t l e - 1 0 ) " , 
}; 

253 



Appendices 

main(argc, argv) 
i n t a rgc; 
c h a r * a r g v [ ] ; 
t 
F I L E * f i n ; 

/* P r o c e s s command-line o p t i o n s */ 
c l k f i l e = NULL; 
sigma_y = SIGMA_Y; 
CMD_OPTS; 
i f ( c l k f i l e == NULL ) 

er r o r ( " N o c l o c k h i s t o r y f i l e s p e c i f i e d . " ) ; 

/* P r o c e s s named f i l e s ( s t a n d a r d input d e f a u l t ) */ 
i f ( i a r g >= argc) { 

d o _ f i l e ( s t d i n , s t d o u t ) ; 
} 
e l s e 

f o r (; i a r g o r g c ; iarg++) { 
f i n = e f o p e n ( a r g v [ i a r g ] , " r " ) ; 
d o _ f i l e ( f i n , s t d o u t ) ; 
f c l o s e ( f i n ) ; 

} 
} 
/* 
* P r o c e s s one input f i l e 
*/ 

s t a t i c v o i d 
d o _ f i l e ( f i n , fout) 
F I L E * f i n , * f o u t ; 
( 
i n t d; /* Day of y e a r */ 
F I L E * f c l k ; /* C l o c k - h i s t o r y f i l e */ 
i n t h; /* Hour */ 
i n t m; /* Minute */ 
double s; /* Second */ 
i n t y; /* Year */ 
double c; /* C l o c k c o r r e c t i o n */ 
double sigma_t; /* U n c e r t a i n t y i n c l o c k c o r r e c t i o n */ 

/* Open h i s t o r y f i l e s */ 
i f ( c l k f i l e != NULL) f c l k = e f o p e n ( c l k f i l e , " r " ) ; 

/* Loop, r e a d i n g times, computing and p r i n t i n g c o r r e c t i o n s */ 
w h i l e ( f s c a n f ( f i n , "%d%d%d%d%lf", &y, &d, &h, &m, &s) == 5) { 

i f ( c l k f i l e != NULL) { 
c l k c o r ( f c l k , y, d, h, m, s, fcc, &signia_t) ; 
f p r i n t f ( f o u t , "%g\t%g", c, s i g m a _ t ) ; 

} 
f p r i n t f ( f o u t , " \ n " ) ; 

} 

/* C l o s e h i s t o r y f i l e s */ 
i f ( c l k f i l e != NULL) f c l o s e ( f c l k ) ; 
} 

Appendix 14. P E R L SCRIPT ach.pi 

This program takes text files produced by dbpick and extracts pick 

measurements from them, and calls programs which predict the travel time and 

slowness for each arrival. 

# ! / u s r / l o c a l / p e r l / b i n / p e r l 
#Written by Matt P r i t c h a r d 
i f (@ARGV < 4 ) ( 
d i e "Usage: $0 dbname o r i d phase rphase [ f ] \ n " ; 
) 

KP e r l s c r i p t to produce model.dat f i l e f o r A k i - C h r i s t o f f e r s s o n - H u s e b y e 
(ACH) 
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((tomographic i n v e r s i o n program t h r d (J.R.Evans, USGS) 

((Searches f o r g i v e n o r i g i n i d i n dbname.origin 
f* & r e t u r n s event parameters a f t e r c o n v e r t i n g epoch 
# to human time. 

ftThen opens dbname. s i t e & g e t s c o o r d i n a t e s of s t a t i o n s 

#Then opens dbname.picks & looks up g i v e n phase a r r i v a l 
#again c o n v e r t i n g p i c k t i m e s to from epoch to human 

( ( C a l c u l a t e s e p i c e n t r a l d i s t a n c e & baz to event f o r each s t a t i o n 
((using program a c h d i s t a z 

(tthen p r e d i c t s t r a v e l time f o r t h a t a r r i v a l & outputs l i n e w i t h 
ftqSTA D e l t a baz . . . predtime p i c k t i m e r e l t i m e s lowness 

#Arguments: 
$dbname = $ARGV[0]; ((database name 
$ o r i d = $ARGV[1]; ( ( o r i g i n i d ( f o r lookup i n dbname.origin) 
$phase = $ARGV[2]; ( ( a r r i v a l t a b l e phase name ..might be P3 
Srphase = $ARGV[3]; (treal phase name eg P 
$qual = $ARGV[4J; #pick q u a l i t y a,b,c,x 
# $ARGV[4] #f : f i r s t e v ent: don't p r i n t "NEWEVENT" 

a t s t a r t of output 

i f ($ARGV[5) eq " f " ) ( 
p r i n t " I c e l a n d Hotspot T e s t ResidualsNn"; 
) e l s e { 
p r i n t "NEWEVENTXn"; 
} 

+ /-

open(ORIGIN,"$dbname.origin"); #Open o r i g i n t a b l e 
w h i l e (<ORIGIN>) { 
©fields = s p l i t ; 
i f ( $ f i e l d s [ 4 ) == $ o r i d ) { t f S p l i t o r i g i n l i n e i n t o f i e l d s 

S o l a t = $ f i e l d s [ 0 ] ; 
$olon = $ f i e l d s [ 1 ] ; 
$odep = $ f i e l d s [ 2 ) ; 
$N = "N"; 
$E = "E"; 
i f (Solon < 0) { ((Need l e t t e r f o r hemisphere r a t h e r than 

$E = "W"; 
Suolon = -Solon; 

) e l s e { 
Suolon = Solon; 

) 
i f ( S o l a t < 0) { 

$N = "S"; 
Su o l a t = - S o l a t ; 

) e l s e f 
Su o l a t = S o l a t ; 

} 
Setime = $ f i e l d s [ 3 ] ; 

((Convert epoch time to human 
open(ORTIME, "e2h -ymdHMS $etime|") || d i e "Can't c o n v e r t epoch 

time\n" ; 
Sortime = <ORTIME>; 
@orf i e l d s = s p l i t ! / /, S o r t i m e ) ; ( ( S p l i t r e t u r n e d 

human time to f i e l d s 
Syear = $ o r f i e l d s ( 0 ] ; 
Smonth = $ o r f i e l d s [ 1 J ; 
Sday = $ o r f i e l d s [ 2 ] ; 
Shour = $ o r f i e l d s [ 3 ] ; 
Smin = $ o r f i e l d s [ 4 ] ; 
Ssec = $ o r f i e l d s [ 5 ] ; 

p r i n t f ( " % s % s % 0 2 d % s % 0 2 d % s % 4 d % s \ t % 0 2 d % s % 0 2 d % s % 5 . 0 3 f \ t % 5 . 0 3 f % s \ t % 5 . 0 3 f % s \ t % 5 . 0 3 f \ 
n" , " 
*$orid","Sphase(",Sday,"/",Smonth,"/",Syear,"\)",Shour,":",Smin,":",Ssec,Suola 
t,$N,Suolon,$E,Sodep); 

) 
) 
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C l o s e (ORIGIN); 

o p e n ( S I T E , " / u s r / l o c a l / s e i s m i c / h o t s p o t / p r i t c h a r d / h o t s p o t / H O T S P O T . s i t e " ) ; 
S r e l c o u n t = 1; 
$mintime = 0; 
w h i l e (<SITE>) { 
@ s i t e f i e l d s = s p l i t ; 
$ s t a = $ s i t e f i e l d s [ 0 ] ; 
S l a t { $ s t a } = $ s i t e f i e l d s [ 3 ] ; #Use a s s o c . a r r a y s f o r s i t e coords 
$ l o n { $ s t a ) = $ s i t e f i e l d s [ 4 ] ; 

# Read i n p i c k s from dbname.picks f i l e : 
# (change t h i s to . a r r i v a l f o r n o n - c l o c k - c o r r e c t e d p i c k s ) 
open(PICKS,"Sdbname.picks"); 
w h i l e (<PICKS>) { 

©arrfields = s p l i t ; 
i f ( ( $ a r r f i e l d s [ 7 ] eq Sphase) && ( $ a r r f i e l d s [ 0 ] eq $ s t a ) ) { 

$ g o t a r r { $ s t a } = 1; 

F i n d d e l t a , azimuth, backazimuth of event from 

open(DISTAZ, " a c h d i s t a z $ o l a t Solon $ l a t { $ s t a ) 
Can't c a l c u l a t e d i s t a z \ n " ; 
S d i s t a z = <DISTAZ>; 
chop S d i s t a z ; 
e d i s t a z f i e l d s = s p l i t ( / \ s + / , S d i s t a z ) ; 
$ d e l t a { $ s t a ) = S d i s t a z f i e l d s [ 1 ] ; 
S a z i { $ s t a ) = S d i s t a z f i e l d s [ 2 ] ; 
$ b a z { $ s t a ) = S d i s t a z f i e l d s [ 3 ] ; 

$ p r e d t i m e { S s t a } = ~taup_time Srphase $ d e l t a { $ s t a } 

$ o b s _ a r r _ t i m e { $ s t a ) = S a r r f i e l d s [ 1 ] - S e t i m e ; 

$ r e l t i m e ( $ s t a } = $ o b s _ a r r _ t i m e { S s t a } - $ p r e d t i m e { S s t a } ; 
i f ( $ r e l t i m e { $ s t a ) < Smintime | S r e l c o u n t == 1) ( 

Smintime = $ r e l t i m e { S s t a } ; 
} 
Srelsum += $ r e l t i m e { S s t a ) ; 
$relcount++ ,-

S s l o w n e s s { $ s t a } = 'taup_slow Srphase $ d e l t a { $ s t a ) 

i f ( s u b s t r ( $ s l o w n e s s { S s t a } , 0 , 9 ) = = " t a u p _ s l o w " ) { 
p r i n t STDERR "Need manual phase time / slowness 

f o r $ s t a \ t $ p h a s e \ t $ d e l t a { $ s t a ) \ t $ o d e p \ n " ; 
$ s l o w n e s s { $ s t a ) = 99.999; 

} 
} 

} 
c l o s e (PICKS); 
} 

#0utput r e s u l t s , making d e l a y times r e l a t i v e to t h e i r mean 

S r e l a v = Srelsum / S r e l c o u n t ; 
f o r e a c h ( s o r t keys % r e l t i m e ) { 
i f ( l e n g t h ( $ _ ) > 3) { 

S p s t a = s u b s t r ( $ _ , 2 , 3 ) ; 
) e l s e { 

S p s t a = $_; 
} 
$q = $qual; 

p r i n t f ( " % s % 3 s % 1 1 . 0 3 f % 1 0 . 0 3 f % 1 5 . 0 3 f % 1 0 . 3 f % 1 0 . 3 f % 1 0 . 3 f % 1 0 . 3 f \ n " , $ q , $ p s t a 
, $ d e l t a ( $ _ } , $ b a z { $ _ } , 0 . 0 , $ o b s _ a r r _ t i m e { $ _ } , $ p r e d t i m e { $ _ ) , S r e l t i m e ( $ _ } -
S r e l a v , $ s l o w n e s s { $ _ } ) ; 

} 

I t P r i n t newline to s i g n i f y end of event: 
p r i n t "\n"; 

s t a 

$ l o n { $ s t a } |") || d i e 

Sodep"; 

Sodep', 
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Appendix 15. O U T P U T F R O M a c h . p l 

The following extract shows sample output from the script ach.pl. The 

command used to produce the following output was: 

cd / u s r / l o c a l / s e i s m i c / h o t s p o t / p r itchard/hot spot/dh/1996/dec/22 

ach.pl 15:03:00 96357004 Pll P a 

NEWEVENT 
'96357004P11(22/12/1996) 14:53:27.600 43 .208N 138.915E 226.000 

aTOl 71 165 15 209 0 000 659 995 654 136 0 575 5 992 
aT02 71 038 14 421 0 000 658 910 653 376 0 250 6 001 
aT03 71 046 13 197 0 000 658 432 653 421 -0 272 6 000 
aT04 70 638 14 312 0 000 656 391 650 964 0 143 6 030 
aT05 70 563 15 320 0 000 656 040 650 517 0 240 6 035 
aT06 70 052 14 931 0 000 653 211 647 420 0 507 6 072 
aT07 70 241 14 283 0 000 653 903 648 570 0 050 6 059 
aT08 70 391 13 017 0 000 654 537 649 477 -0 224 6 048 
aT09 70 070 13 557 0 000 652 503 647 534 -0 315 6 071 
aT10 69 915 14 375 0 000 652 154 646 589 0 281 6 082 
aT12 69 853 16 520 0 000 651 797 646 211 0 303 6 087 
aT13 69 657 17 671 0 000 650 657 645 015 0 359 6 101 
aT14 70 042 17 509 0 000 653 130 647 358 0 489 6 073 
aT15 68 859 19 969 0 000 645 305 640 128 -0 107 6 159 
aT16 69 200 20 977 0 000 647 048 642 220 -0 456 6 134 
aT17 69 578 20 366 0 000 649 699 644 532 -0 116 6 107 
aT18 69 777 19 742 0 000 650 993 645 747 -0 037 6 092 
aT19 69 933 20 616 0 000 652 020 646 697 0 040 6 081 
aT21 71 183 18 581 0 000 659 950 654 240 0 426 5 990 
aT22 71 488 17 444 0 000 662 375 656 064 1 027 5 968 
aT24 70 047 19 673 0 000 652 663 647 388 -0 009 6 073 
aT25 70 069 18 705 0 000 653 071 647 523 0 264 6 071 
aT26 70 312 17 422 0 000 655 124 649 000 0 840 6 054 
aT27 70 303 16 480 0 000 655 072 648 944 0 845 6 054 
aT29 69 182 20 173 0 000 647 173 642 110 -0 221 6 135 
aT30 71 599 14 621 0 000 662 414 656 727 0 403 5 960 

Further documentation for thrd and other programs used in the ACH method 

is available from their author (J.R. Evans, pers. comm.) on request from 

ftp://andreas.wr.usgs.gov/pub/outgoing/evans/ 

Appendix 16. C PROGRAMS taup_t±me AND taup_slow 

These programs called routines included in the DSAP package (Harvey & 

Quinlan, 1996) to calculate travel times and slownesses assuming a specified Earth 

model (Buland & Chapman, 1983). 

taup_time: 

I* taup_time.c */ 
/* Matt P r i t c h a r d */ 
/* 24/3/97 */ 
/* Uses JSPC l i b r a r y r o u t i n e "phasetime" to r e t u r n phase t r a v e l 

t ime */ 
/* g i v e n d e l t a & s o u r c e depth */ 
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ttinclude <stdio.h> 
tf i n c l u d e 

°/usr/local/geodata/hotspot/pritchard/jspc/3.2/solaris/include/tttaup.h" 
# i n c l u d e 

" / u s r / l o c a l / g e o d a t a / h o t s p o t / p r i t c h a r d / j s p c / 3 . 2 / s o l a r i s / i n c l u d e / s t o c k . h" 

main (argc, argv) 

i n t a r g c ; 
char **argv; 
{ 
ch a r *phases; 
double d e l t a , depth; 
char modname[256]; 

i f ( a r g c != 4 && ar g c !=5 ) { 
f p r i n t f ( s t d e r r , "Usage: taup_time phase d e l t a depth\n"); 
e x i t ( 1 ) ; 

} 

phases = a r g v [ U ; 
d e l t a = a t o f ( a r g v [ 2 ) ) ; 
depth = a t o f ( a r g v [ 3 ) ) ; 

i f (argc == 5) ( 
t t _ t a u p _ s e t _ t a b l e ( a r g v [ 4 ] ) i 

i f ( ! t t _ t a u p _ s e t _ p h a s e s ( p h a s e s ) ) { 
f p r i n t f ( s t d e r r , "taup_time: E r r o r r e t u r n from 

t t _ t a u p _ s e t _ p h a s e s \ n " ) ; 
e x i t ( 1 ) ; 

} 

i f ( ! t t _ t a u p _ s e t _ e v e n t _ d e p t h (depth)) ( 
f p r i n t f ( s t d e r r , "taup_tiine: E r r o r r e t u r n from 

t t _ t a u p _ s e t _ e v e n t _ d e p t h \ n " ) ; 
e x i t ( 1 ) ; 

} 

/* tt_taup_get_modnarae (modname); */ 

/* p r i n t f ("Travel time f o r % s \ n " , modname); */ 
/* p r i n t f ("depth d e l t a T r a v e l t i m e ( s e c ) \ n " ) ; */ 

i f ( p h a s e t i m e ( p h a s e s , d e l t a , depth) != -1.0 ) { 
p r i n t f ( " % 6 . 0 3 f \ n " , p h a s e t i m e (phases, d e l t a , d e p t h ) ) ; 

} e l s e ( 
f p r i n t f ( s t d e r r , "taup_slow: E r r o r - no time found f o r 

g i v e n p h a s e / d e l t a / d e p t h S n " ) ; 
e x i t ( 1 ) ; 

} 

e x i t ( 0 ) ; 

} 

taup_slow: 

I* taup_slow.c */ 
/* Matt P r i t c h a r d */ 
/* 24/3/97 */ 

/* Uses JSPC l i b r a r y r o u t i n e "slowness" to r e t u r n phase slowness 

/* g i v e n d e l t a & sourc e depth */ 
(•include <stdio.h> 
ttinclude 

" / u s r / l o c a l / g e o d a t a / h o t s p o t / p r i t c h a r d / j s p c / 3 . 2 / s o l a r i s / i n c l u d e / t t t a u p . h " 
ftinclude 

" / u s r / l o c a l / g e o d a t a / h o t s p o t / p r i t c h a r d / j s p c / 3 . 2 / s o l a r i s / i n c l u d e / s t o c k . h " 
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main (argc, argv) 

i n t a r g c ; 
c h a r **argv; 
{ 
char *phases; 
double d e l t a , depth; 
char modname(256]; 

i f ( a r g c != 4 && ar g c !=5 ) { 
f p r i n t f ( s t d e r r , "Usage: taup_slow phase d e l t a depth 

[model]\n"); 
e x i t ( 1 ) ; 

) 
phases = a r g v [ 1 ) ; 
d e l t a = a t o f ( a r g v [ 2 ] ) ,-
depth = a t o f ( a r g v [ 3 ] ) ; 

i f ( a r g c == 5) { 
t t _ t a u p _ s e t _ t a b l e ( a r g v [ 4 ) ) ; 

} 

i f ( ! t t _ t a u p _ s e t _ p h a s e s ( p h a s e s ) ) ( 
f p r i n t f ( s t d e r r , "taup_slow: E r r o r r e t u r n from 

t t _ t a u p _ s e t _ p h a s e s \ n " ) ; 
e x i t ( 1 ) ; 

) 

i f ( ! t t _ t a u p _ s e t _ e v e n t _ d e p t h (depth)) ( 
f p r i n t f ( s t d e r r , "taup_slow: E r r o r r e t u r n from 

t t _ t a u p _ s e t _ e v e n t _ d e p t h \ n " ) ; 
e x i t ( 1 ) ; 

) 

i f ( p h a s e _ s l o w n e s s (phases, d e l t a , depth) != -1.0 ) ( 
printf{°%6.03f\n",phase_slowness (phases, d e l t a , d e p t h ) ) ; 

} e l s e ( 
f p r i n t f ( s t d e r r , "taup_slow: E r r o r - no slowness found f o r g i v e n 

p h a s e / d e l t a / d e p t h \ n " ) ; 
e x i t ( 1 ) ; 

) 
e x i t ( 0 ) ; 
} 

Appendix 17. PERL SCRIPT picAdb_azJbiji_data.pl 

# I p e r l 

# p i c k d b _ a z b i n _ d a t a . p i 
((Written by Matt P r i t c h a r d 

#Read i n p i c k s from ACH .dat f i l e s i n t o hashes indexed by event i d fc 
s t a t i o n . 

((Assign azimuth-slowness b i n number 

@ARGV == 2 or d i e "usage: $0 d a t f i l e data_type\n"; 

open(DAT, $ARGV[0)); 
$data_type = $ARGV11); 
i f ($data_type eq "p") { 
d e f i n e _ p _ b i n s (\@pbin_min_az, \@pbin_max_az, \@pbin_min_slow, 

\@pbin_max_slow); 
} e l s i f ( $data_type eq " s " ) { 
d e f i n e _ s _ b i n s (\@sbin_min_az, \@sbin_max_az, \@sbin_min_slow, 

\@sbin_max_slow); 
) e l s e { 
d i e " S p e c i f y d a t a type: p or s\n"; 
) 
((Read l i n e s g i v i n g event i d & o t h e r i n f o ; count e v e n t s . 
@lines = <DAT>; # s l u r p i n whole f i l e & c l o s e i t 
c l o s e (DAT); 
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$lineno=0; 
$event=0; 
f o r e a c h (@lines) ( 
i f (/\*9/) { 

@ h e a d f i e l d s = s p l i t ; 
$ e v i d [ $ e v e n t ] = $ h e a d f i e l d s [ 0 ] ; 
S e v e n t s t a r t [ $ e v e n t ) = $ l i n e n o + l ; 
$nevents=$event; 

} 
i f ( s u b s t r ( $ l i n e s [ $ l i n e n o ] ,0,2) =- /\n/) { 

$ e v e n t s t o p [ $ e v e n t ] = $ l i n e n o - l ; 
$event++; 

} 
$lineno++; 
} 
$nevents++; 

p r i n t STDERR "$nevents event/phase d a t a s e t s \ n " ; 

#Get s t a t i o n l a t I o n s : 
open (DISTAZ, "/work/tomo/gmt/HOTSPOT. d i s t a z •) ,-
open(DELAYS,">delinfo.dat"); 
while(<DISTAZ>) ( 
@ s i t e f i e l d s = s p l i t 
$ s t a = $ s i t e f i e l d s [ 0 ] ; 
$ l a t { $ s t a } = $ s i t e f i e l d s [ l ] ; 
$ l o n { $ s t a } = $ s i t e f i e l d s [ 2 ] ; 
$ d n o r t h { $ s t a } = $ s i t e f i e l d s [ 5 ] ; 
$ d e a s t { $ s t a ) = $ s i t e f i e l d s [ 4 ) ; 
$ d i s t { $ s t a } = s q r t 

( $ d n o r t h { $ s t a } * $ d n o r t h ( $ s t a } + $ d e a s t { $ s t a } * $ d e a s t { $ s t a ) ) ; 
} 

#Deal w i t h d a t a l i n e s 

$k=0; 
f o r ($i=0; $i<$nevents; $i++) { 
f o r ( $ j = $ e v e n t s t a r t [ $ i ] ; $ j < = $ e v e n t s t o p [ $ i ] ; $j++) { 

S e v f i e l d s = s p l i t ( / \ s + / , $ l i n e s [ $ e v e n t s t a r t [ $ i ] - 1 ] ) ; 

#Append s i g n of event l a t , Ion depending on hemisphere 
#(denoted by (NSEW) i n dat f i l e . 

u n l e s s (chop ( $ e v f i e l d s [ 3 ] ) eq N) ( 
$ e v f i e l d s [ 3 ] = - $ e v f i e l d s [ 3 ] ; 

} 
u n l e s s (chop ( $ e v f i e l d s [ 4 ] ) eq E) ( 

$ e v f i e l d s [ 4 ) = - $ e v f i e l d s [ 4 ] ; 
} 

# I f a HOTSPOT s t a t i o n , make name 5 c h a r s long. 
$ s t n [ $ k ) = s u b s t r ( $ l i n e s [ $ j ] , 1 , 3 ) ; 
i f ( s u b s t r ( $ s t n ( $ k j , 0 , 1 ) eq "T") ( 

@chars = s p l i t ( / / , $ s t n [ $ k ] ) ; 
@newchars = s p l i t ( / / , " H O T " ) ; 
s p l i c e ( @ c h a r s , 0 , 1 , O n e w c h a r s ) ; 
$ s t n [ $ k ] = join('',©chars); 

$ t o b s { $ e v i d , $ s t n } = s u b s t r ( $ l i n e s ( $ j J , 4 2 , 8 ) ; 
} 

((Assign each f i e l d to a hash element, u n i q u e l y i d ' d by 
ft the e v i d & s t a t i o n . 

@ d a t a f i e l d s = s p l i t ( A s + / , $ l i n e s [ $ j ] ) ; 
$ q u a l { $ e v i d [ $ i ] , $ s t n ( $ k ] } = s u b s t r ( $ l i n e s [ $ j ] , 0 , 1 ) ,• 

$ d e l t a { $ e v i d [ $ i ] , $ s t n [ $ k ] } = $ d a t a f i e l d s [ 1 J ,• 
# s u b s t r ( $ l i n e s [ $ j , 8 , 7 ) ; 

$ b a z ( $ e v i d [ $ i ] , $ s t n [ $ k ] } = $ d a t a f i e l d s [ 2 ] ; 
# s u b s t r ( $ l i n e s [ $ j ] , 1 8 , 7 ) ; 

$ t o b s ( $ e v i d [ $ i ] , $ s t n [ $ k ] ) = $ d a t a f i e l d s [ 4 ] ; 
$ t p r e d { $ e v i d [ $ i ] , $ s t n [ $ k ] } = $ d a t a f i e l d s [ 5 ] ; 

# s u b s t r ( $ l i n e s [ $ j ] , 5 2 , 8 ) ; 
$ d e l a y { $ e v i d [ $ i ] , $ s t n [ $ k ] } = $ d a t a f i e l d s [ 6 ] ; 

# s u b s t r { $ l i n e s ( $ j ] , 6 4 , 6 ) ; 
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$ s l o w ( $ e v i d [ $ i ] , $ s t n [ $ k ] } = $dataf i e l d s [7] ,-
ft subs t r ( $ l i n e s [ $ j ] , 74,6) ; 

ttAddtional computed f i e l d s : 

#Azimuth-slowness b i n 

i f ($data_type eq "p") ( 
$ a z b i n ( $ e v i d [ $ i ] , $ s t n [ $ k ] ) = 

g e t _ p _ b i n ( $ b a z { $ e v i d [ $ i ] , $ s t n [ $ k ] } , $ s l o w { $ e v i d [ $ i ] , $ s c n [ $ k ] ) ) ; 
} e l s i f ($data_type eq "s") { 

$ a z b i n f $ e v i d [ $ i ] , $ s t n [ $ k ] ) = 
g e t _ s _ b i n ( $ b a z { $ e v i d [ $ i ] , $ s t n [ $ k ] ) , $ s l o w { $ e v i d [ $ i ] , $ s t n [ $ k ] ] ) ; 

} 
$k++; 

} 
} 

#Now any o p e r a t i o n can be preformed on the s e t of a r r i v a l s . 
((Looping by event i s done by 
ttfor ($i=0; $i<$nevents; $n++) 
(tor 
ttforeach $event ( s o r t S e v i d s ) 
tf 
ttLooping over s t a t i o n s ( i n number or d e r ) can be done by 
(tforeach $ s t a t i o n ( s o r t keys n u m e r i c a l l y %station_number) 
tt 
ttLoop over azimuth slowness b i n s : 
# f o r ( $ i = 0 ; $i<=$no_of_p_bins; $i++) 

((Output data f o r r e s i d u a l p l o t s , grouped by azimuth-slowness b i n . 
# F i r s t need to f i n d : 
tt d e l a y times r e l a t i v e to gi v e n datum (median or time from 1 

s t a t i o n ? ) 
# median of d e l a y times f o r each event/phase s u b s e t 
# d e v i a t i o n s of each d e l a y time from median 
tf median of the s e d e v i a t i o n s 
# n _ t i m e s _ d e v i a t i o n f o r each d a t a p o i n t . 

#Loop over event i d s 
fo r e a c h $event (@evid) { 
p r i n t ">\n"; 

#Loop over s t a t i o n s l i s t e d f o r t h i s event: 
@subset=(); ttreset a r r a y 
f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 

i f ( e x i s t s ( $ t o b s ( $ e v e n t , $ s t n a m e [ $ i ] } ) ) ( 
$ d i f f t i m e { $ e v e n t , $ s t n a m e [ $ i ] ) = 

$ t o b s { $ e v e n t , $ s t n a m e [ $ i ) ) - $ t p r e d { $ e v e n t , $ s t n a m e [ $ i ] ) ; 
push(©subset,$di fftimet$event,$stname t $ i ] ) ) ; 

} 
) 
$med_difftime = median(©subset); 

# i f ( e x i s t s ( $ t o b s ( $ e v e n t , " H 0 T 1 7 " ) ) ) { 
tl $ r e l _ t o _ s t n = $station_number{"H0T17"}; 
ft ) e l s i f ( e x i s t s ( $ t o b s { $ e v e n t , " H O T 2 8 " } ) ) { 
tl $ r e l _ t o _ s t n = $station_number {"HOT28") ; 
tt ) e l s e { 

$ r e l _ t o _ s t n = -1; ttft## Leave t h i s l i n e uncommented ##t)tt 
tt ) 
@devs=(); 
f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 

i f ( e x i s t s ( $ t o b s { $ e v e n t , $ s t n a m e ( $ i ] } ) ) { 
i f ( $ r e l _ t o _ s t n >= 0 ) { 

$ r e l d e l a y { $ e v e n t , $ s t n a m e ( $ i ) } = 
$ d i f f t i m e { $ e v e n t , $ s t n a m e [ $ i ] } - $ d i f f t i m e { $ e v e n t , S s t n a m e [ $ r e l _ t o _ s t n ] ) ; 

p r i n t STDERR "made r e l a t i v e to 
$ s t n a m e [ $ r e l _ t o _ s t n ] \ n " ; 

) e l s e ( 
$ r e l d e l a y { $ e v e n t , $ s t n a m e [ $ i ] ) 

$ d i f f t i m e { $ e v e n t , S s t n a m e [ $ i ] } - $med_difftime; 
p r i n t STDERR "made r e l a t i v e to median\n"; 
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) 
$ d e v i a t i o n ( $ e v e n t , $ s t n a m e [ $ i ] ) = 

a b s ( $ r e l d e l a y < $ e v e n t , S s t n a m e [ $ i ] } ) ; 
p u s h ( @ d e v s , S d e v i a t i o n ( $ e v e n t , $ s t n a m e [ $ i ] ) ) ; 

) 
) 
$med_dev = median(@devs); 

f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) ( 
i f ( e x i s t s ( $ t o b s ( $ e v e n t , $ s t n a m e [ $ i ] } ) ) 1 

i f ($med_dev != 0) { 
$ n _ t i m e s _ d e v ( $ e v e n t , $ s t n a m e [ $ i ] } = 

$ d e v i a t i o n { $ e v e n t , S s t n a m e [ $ i ] ) ; 
) e l s e 1 

$ n _ t i m e s _ d e v { $ e v e n t , $ s t n a m e [ $ i ] ) = 999.9; 
I 

} 
} 

f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 
i f ( e x i s t s ( $ t o b s ( $ e v e n t , $ s t n a m e [ $ i ] } ) ) 1 

p r i n t f STDOUT ("%d % s %d % s %9.5f %9.5f %9.5f %9.5f\n", 
$ a z b i n ( $ e v e n t , $ s t n a m e [ $ i ] } / $event, $ s t a t i o n _ n u m b e r { $ s t n a m e [ $ i ] } , $ s t n a m e [ $ i ] , 
$ b a z ( $ e v e n t , $ s t n a m e [ $ i ] } , $ s l o w ( $ e v e n t , $ s t n a m e [ $ i ] ) , 
$ r e l d e l a y { $ e v e n t , $ s t n a m e [ $ i ] ) , $ n _ t i m e s _ d e v { $ e v e n t , ? s t n a m e [ $ i ] ( ) ; 

} 
) 
} 

sub median ( 

my gval u e s = s o r t n u m e r i c a l l y @_; 

my $n = s c a l a r ( 8 v a l u e s ) ; 

i f ($n % 2) ( 
#odd number of elements 
r e t u r n $ v a l u e s [ ( $ n - l ) / 2 ] ; 

) e l s e ( 
•even number of elements 
r e t u r n ( $ v a l u e s [ ( $ n + l ) / 2 ] + $ v a l u e s [ ( $ n - l ) / 2 ] ) 1 2 ; 

) 
} 
sub n u m e r i c a l l y { 

$a <=> $b; 
} 

sub g e t _ p _ b i n ( 
my ($myaz, $myslow) = @_; 
my $mybin; 
my $ j ; 
f o r ($j=0; $j<=$no_of_p_bins; $j++) { 

i f (($myaz >= $ p b i n _ m i n _ a z [ $ j ) && $myaz < $ p b i n _ m a x _ a z [ $ j ] ) && 
($myslow >= $pbin_min_slow[$j] && $myslow < $ p b i n _ m a x _ s l o w [ $ j ] ) ) ( 

$mybin=$j; 
) 

) 
r e t u r n $mybin; 
} 

sub g e t _ s _ b i n { 
my ($myaz, $myslow) = @_; 
my $mybin; 
my $ j ; 
f o r ($j=0; $j<=$no_of_s_bins; $j++) { 

i f (($myaz >= $ s b i n _ m i n _ a z [ $ j ] && $myaz < $ s b i n _ m a x _ a z [ $ j ] ) && 
(5myslow >= $ s b i n _ m i n _ s l o w [ $ j ] SS $myslow < $ s b i n _ m a x _ s l o w [ $ j ] ) ) ( 

$mybin=$j; 
) 

) 
r e t u r n $mybin; 
) 

sub d e f i n e _ p _ b i n s (\@pbin_min_az, \@pbin_max_az, \@pbin_min_slow. 
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sub d e f i n e _ p _ b i n s (\@pbin_min_az, \@pbin_max_az, \@pbin_min_slow, 
\@pbin_max_slow) { 

$no_of_p_bins = 10; 

ftpbin 0 
$pbin_no = 0; 
$pbin_min_az[$pbin_no] = 0; 
$pbin_max_az($pbin_no] = 360; 
$pbin_min_slow[$pbin_nol = 0; 
$pbin_max_slowl$pbin_no] = 4; 

#pbin 1 
$pbin_no = 1; 
$pbin_min_az[$pbin_no] = 0; 
$pbin_max_az[$pbin_no] = 50; 
$pbin_min_slow[$pbin_no] = 4; 
$pbin_max_slow[$pbin_no] = 6.5; 

ftpbin 2 
$pbin_no = 2; 
$pbin_min_az[$pbin_no] = 0; 
$pbin_max_az[$pbin_no] = 50; 
$pbin_min_slow[$pbin_no] = 6.5; 
$pbin_max_slow[$pbin_no] = 12; 

#pbin 3 
$pbin_no = 3 ,-
$pbin_min_az[$pbin_no] = 50; 
$pbin_max_az[$pbin_no] = 90; 
$pbin_min_slow[$pbin_no) = 4; 
$pbin_max_slow[$pbin_no] = 12; 

#pbin 4 
$pbin_no = 4; 
$pbin_min_az[$pbin_no] = 90; 
$pbin_max_az[$pbin_no] = 150; 
$pbin_min_slow[$pbin_no] = 4; 
$pbin_max_slowl$pbin_no] = 12; 

#bin 5 
$pbin_no = 5; 
$pbin_min_az[$pbin_no] = 135; 
$pbin_max_az[$pbin_no] = 205; 
$pbin_min_slow[$pbin_no] = 4; 
$pbin_max_slow[$pbin_no] = 12; 

#pbin 6 
Spbin_no = 6; 
$pbin_min_az[$pbin_no) = 205; 
$pbin_max_az [$pbin_no] ;= 300; 
$pbin_min_slow[$pbin_no] = 3.5; 
$pbin_raax_slow[$pbin_no] = 5.8; 

#pbin 7 
$pbin_no = 7; 
$pbin_min_az[$pbin_no] = 205; 
$pbin_max_az[$pbin_no] = 240; 
$pbin_min_slow[$pbin_no] = 5.5; 
$pbin_max_slow[$pbin_no] = 12; 

#bin 8 
$pbin_no = 8; 
$pbin_min_az[$pbin_no] = 240; 
$pbin_max_az[$pbin_no] = 300; 
$pbin_min_slow[$pbin_no] = 5.5; 
$pbin_max_slow[$pbin_no] = 12; 

#bin 9 
$pbin_no = 9 ; 
$pbin_min_az[$pbin_no] = 300; 
$pbin_max_az[$pbin_no] = 360; 
$pbin_min_slow[$pbin_no] = 4; 
$pbin_max_slow[$pbin_no] = 12; 
} 
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sub d e f i n e _ s _ b i n s (\@sbin_min_az, \@sbin_max_az, \@sbin_min_slow, 
\@sbin_max_slow) { 

$n o _ o f _ s _ b i n s = 9; 

# s b i n 0 
$ sbin_.no = 0; 
$sb i n _ m i n _ a z [ $ s b i n _ n o ) = 0; 
$sbin_max_az[$sbin_no] = 360; 
$sbin_min_slow[$sbin_no] = 0; 
$sbin_max_slow[$sbin_no) = 8; 

ttbin 1 
$sbin_no = 1; 
$sb i n _ m i n _ a z [ $ s b i n _ n o ] = 0; 
$sbin_max_az[$sbin_no] = 50; 
$sbin_min_slow[$sbin_no] = 8; 
$sbin_max_slow[$sbin_no] = 20; 

#sb i n 2 
$ sbin_.no = 2; 
$sb i n _ m i n _ a z [ $ s b i n _ n o ] = 50; 
$sbin_max_az[$sbin_no] = 80; 
$sbi n _ m i n _ s l o w [ $ s b i n _ n o ] = 8; 
$sbin_max_slow[$sbin_no] = 20; 

#bin 3 
$sbin_no = 3; 
$s b i n _ m i n _ a z [ $ s b i n _ n o ] = 80; 
$sbin_max_az($sbin_no] = 170; 
$sbin_min_slow[$sbin_no) = 8; 
$sbin_max_slow[$sbin_no] = 20; 

#sb i n 4 
$sbin_no = 4; 
$s b i n _ m i n _ a z [ $ s b i n _ n o ] = 170; 
$sbin_max_az[$sbin_no) = 215; 
$sbin_min_slow[$sbin_no) = 8; 
$sbin_max_slow[$sbin_no] = 20; 

ftsbin 5 
$sbin_no = 5; 
$sb i n _ m i n _ a z [ $ s b i n _ n o ] = 210; 
$sbin_max_az($sbin_no] = 245; 
$sbin_min_slow[$sbin_no] = 4; 
$sbin_max_slow[$sbin_no] = 12; 

#sb i n 6 
$ sbin_.no = 6; 
$s b i n _ m i n _ a z [ $ s b i n _ n o ] = 210; 
$sbin_max_az[$sbin_no] = 245; 
$sbin_min_slow[$sbin_noJ = 12; 
$sbin_max_slow($sbin_no] = 20; 

#s b i n 7 
$sbin_no = 7; 
$s b i n _ m i n _ a z [ $ s b i n _ n o ] = 245; 
$sbin_max_az($sbin_no] = 280; 
$sbin_min_slow[$sbin_no] = 8; 
$sbin_max_slow[$sbin_no] = 20; 

(tsbin 8 
$sbin_no = 8; 
$s b i n _ m i n _ a z [ $ s b i n _ n o ] = 280; 
$sbin_max_az[$sbin_no] = 360; 
$sbi n _ m i n _ s l o w [ $ s b i n _ n o ] = 8; 
$sbin_max_slow[$sbin_no] = 20; 
} 

BEGIN { 
%station_number = ( 
HOT01 => 11, 
HOT02 => 8, 
HOT03 => 7, 
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HOT 04 = > 5, 
HOT05 = > 10, 
HOT06 = > 4, 
HOT07 = > 3, 
HOT08 = > 0, 
HOT09 = > 1, 
HOT10 > 2, 
HOT 11 = > 6, 
HOT 12 22, 
HOT 13 - > 21, 
HOT 14 = > 20, 
HOT 15 = > 29, 
HOT 16 = > 32, 
HOT 17 = > 33, 
HOT 18 = > 34, 
HOT 19 - > 37, 
HOT20 > 39, 
HOT21 = > 40, 
HOT22 = > 41, 
HOT23 => 38, 
HOT24 = > 35, 
HOT25 = > 36, 
HOT26 => 18, 
HOT27 = > 19, 
HOT28 = > 15, 
HOT29 > 30, 
HOT30 > 12, 
ASB = > 9, 
G I L = > 28, 
GRA - > 25, 
GRI = > 24, 
GRS = > 31, 
HVE > 16, 
KRA > 27, 
KRO 14 , 
REN = > 26, 
SIG = > 23, 
SKR : > 17, 
VOG > 13 

HMake a r r a y of s t a t i o n NAMES (note: a r r a y index s t a r t s a t 1, not 0) 
f o r e a c h $item ( s o r t keys %station_number) ( it loop by NAME 

Sstname[$station_number($item)] = $item; 
) 
} 

Appendix 18. P E R L SCRIPT tpred_waix.pi 

# I p e r l 

S p i c k d b _ a z b i n _ d a t a . p i 
#Written by Matt P r i t c h a r d 

ffRead i n p i c k s from ACH .dat f i l e s i n t o hashes indexed by event i d & 
s t a t i o n . 

((Assign azimuth-slowness b i n number 

SARGV == 2 or d i e "usage: $0 d a t f i l e d a ta_type\n"; 

open(DAT, $ARGV[0]); 
$data_type = $ARGV(1); 
i f ( $data_type eq "p") ( 
d e f i n e _ p _ b i n s (\@pbin_min_az, \@pbin_max_az, \@pbin_min_slow, 

\@pbin_max_slow); 
} e l s i f ($data_type eq "s") ( 
d e f i n e _ s _ b i n s (\@sbin_min_az, \@sbin_max_az, \@sbin_min_slow, 

\@sbin_max_slow); 
} e l s e ( 
d i e " S p e c i f y data type: p or s\n"; 
} 
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ftRead l i n e s g i v i n g event i d & ot h e r i n f o ; count e v e n t s , 
©lines = <DAT>; (tslurp i n whole f i l e & c l o s e i t 
c l o s e (DAT); 
$lineno=0; 
$event=0; 
f o r e a c h (@lines) { 
i f (/\*9/) { 

@ h e a d f i e l d s = s p l i t; 
$ e v i d [ $ e v e n t ] = $ h e a d f i e l d s [ 0 ] ; 
$ e v e n t s t a r t [ $ e v e n t ] = $ l i n e n o + l ; 
$nevents=$event; 

) 
i f ( s u b s t r ( $ l i n e s [ $ l i n e n o ) , 0 , 2 ) =~ /\n/) ( 

S e v e n t s t o p [ $ e v e n t ] = $ l i n e n o - l ; 
$event++; 

} 
$lineno++; 
) 
$nevents++; 

p r i n t STDERR "$nevents event/phase d a t a s e t s \ n " ; 

#Get s t a t i o n l a t I o n s : 
open(DISTAZ,"/work/tomo/gmt/HOTSPOT.distaz"); 
open(DELAYS,">delinfo.dat"); 
while(<DISTAZ>) ( 
@s i t e f i e l d s = s p l i t ,-
$ s t a = $ s i t e f i e l d s [ 0 ] ; 
S l a t { $ s t a } = $ s i t e f i e l d s [ l ] ; 
$ l o n { $ s t a } = $ s i t e f i e l d s [ 2 ] ; 
$ d n o r t h { $ s t a ) = $ s i t e f i e l d s [ 5 ] ; 
$ d e a s t ( $ s t a ) = S s i t e f i e l d s [ 4 ] ; 
$ d i s t ( $ s t a ) = s q r t 

( $ d n o r t h { $ s t a ) * $ d n o r t h { $ s t a ) + S d e a s t { $ s t a } * $ d e a s t ( $ s t a ] ) ; 
} 

#Deal w i t h d a t a l i n e s 

Sk=0; 
f o r ($i=0; $i<$nevents; $i++) { 
for ( $ j = $ e v e n t s t a r t [ $ i ] ; $ j < = $ e v e n t s t o p ( $ i ] ; $j++) { 

O e v f i e l d s = s p l i t ( A s + / , S l i n e s [ $ e v e n t s t a r t [ $ i ) - 1 ) ) ; 

#Append s i g n o£ event l a t , Ion depending on hemisphere 
#(denoted by [NSEW] i n dat f i l e . 

u n l e s s (chop ( $ e v f i e l d s [ 3 ] ) eq N) { 
$ e v f i e l d s [ 3 ] = - $ e v f i e l d s [ 3 ] ; 

} 
u n l e s s (chop ( $ e v f i e l d s [ 4 ] ) eq E) { 

$ e v f i e l d s ( 4 ] = - $ e v f i e l d s [ 4 ] ; 
) 

# I f a HOTSPOT s t a t i o n , make name 5 c h a r s long. 
$ s t n [ $ k ] = s u b s t r ( $ l i n e s [ $ j ] , 1 , 3 ) ; 
i f ( s u b s t r ( $ s t n [ $ k ] , 0 , 1 ) eq "T") { 

©chars = s p l i t ( / / , $ s t n [ $ k ] ) ; 
Snewchars = s p l i t ( / / , " H O T " ) ; 
s p l i c e ( S c h a r s , 0 , 1 , @ n e w c h a r s ) ; 
$ s t n [ $ k ] = j o i n ( ' ' , @ c h a r s ) ; 

$ t o b s { $ e v i d , $ s t n ) = s u b s t r ( $ l i n e s [ $ j ] , 4 2 , 8 ) ; 
) 

#Assign each f i e l d to a hash element, u n i q u e l y i d ' d by 
ft the e v i d & s t a t i o n . 

@ d a t a f i e l d s = s p l i t ( / \ s + / , $ l i n e s [ $ j ) ) ; 
$ q u a l { $ e v i d [ $ i ] , $ s t n [ $ k ] ) = s u b s t r ( $ l i n e s [ $ j ] , 0 , 1 ) ; 

$ d e l t a { $ e v i d [ $ i ] , $ s t n [ $ k ] } = $ d a t a f i e l d s [ 1 J ; 
it s u b s t r ( S l i n e s [$ j ,8,7) ; 

$ b a z ( $ e v i d [ $ i ] , $ s t n [ $ k ] ) = $ d a t a f i e l d s [ 2 ] ; 
# s u b s t r ( $ l i n e s [ $ j ] , 1 8 , 7 ) ; 

$ t o b s { $ e v i d [ $ i ] , $ s t n ( $ k ] } = $ d a t a f i e l d s [ 4 ] ; 
$ t p r e d { $ e v i d [ $ i ] , $ s t n [ $ k ] ) = $ d a t a f i e l d s [ 5 ] ; 
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ttsubstr ( $ l i n e s [ $ j ) ,52,8) ; 
$ d e l a y { $ e v i d [ $ i ] , S s t n [ $ k l } = $ d a t a f i e l d s [61 ; 

H s u b s t r ( $ l i n e s [ $ j ] , 6 4 , 6 ) ; 
$ s l o w { $ e v i d [ $ i ] , $ s t n [ $ k ) ) = S d a t a f i e l d s [ 7 ] ; 

t t s u b s t r ( $ l i n e s [ $ j ] , 7 4 , 6 ) ; 

#Addtional computed f i e l d s : 

ttAzimuth-slowness b i n 

i f ($data_type eq "p") { 
$ a z b i n { $ e v i d [ $ i ] , $ s t n [ $ k ] ) = 

g e t _ p _ b i n ( $ b a z { $ e v i d [ $ i ) , $ s t n [ $ k ] ) , $ s l o w ( $ e v i d [ $ i ] , $ s t n [ $ k ] ) ) ; 
) e l s i f ($data_type eq " s " ) ( 

$ a z b i n { $ e v i d [ $ i ] , $ s t n [ $ k ] } = 
g e t _ s _ b i n ( $ b a z { $ e v i d [ $ i ) , $ s t n [ $ k ] ) , $ s l o w { $ e v i d [ $ i ] , $ s t n l $ k ] ) ) ; 

) 
$k+ + ; 

) 
} 

#Now any o p e r a t i o n can be preformed on the s e t of a r r i v a l s . 
#Looping by event i s done by 
ftfor ($i=0; $i<$nevents; $n++) 
ftor 
# f o r e a c h $event ( s o r t @evids) 
# 
ttLooping over s t a t i o n s ( i n number order) can be done by 
ttforeach $ s t a t i o n ( s o r t keys n u m e r i c a l l y %station_number) 
ft 
#Loop over azimuth slowness b i n s : 
ft f o r ( $ i = 0 ; $i<=$no_of_p_bins; $i++) 

#Loop over event i d s 
f o r e a c h $event (@evid) { 
p r i n t ">\n"; 

ft Loop over s t a t i o n s l i s t e d f o r t h i s event: 
@subset=(); tfreset a r r a y 
f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) ( 

i f ( e x i s t s ( $ t o b s ( $ e v e n t , $ s t n a m e [ $ i ] } ) ) ( 
S d i f f t i m e { $ e v e n t , S s t n a m e [ $ i ] ) = 

$ t o b s { $ e v e n t , $ s t n a m e [ $ i ] } - $ t p r e d ( S e v e n t , S s t n a m e [ $ i ] } ; 
p u s h ( S s u b s e t , $ d i f f t i m e t S e v e n t , $ s t n a m e [ $ i ] } ) ; 

} 
} 
$med_dif f time = median O s u b s e t ) ; 

ft i f ( e x i s t s ( $ t o b s { $ e v e n t , "H0T17"}) ) { 
ft $ r e l _ t o _ s t n = $station_number {" H0T17 "} ; 
ft ) e l s i f ( e x i s t s ( $ t o b s { $ e v e n t , "HOT28")) ) { 
# $ r e l _ t o _ s t n = $station_number{"HOT28"}; 
ft ) e l s e ( 

$ r e l _ t o _ s t n = -1; tttt#tt Leave t h i s l i n e uncommented f)##ft 
tf } 
@devs=(); 
f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 

i f ( e x i s t s ( $ t o b s ( S e v e n t , $ s t n a m e [ $ i ] } ) ) { 
i f ( $ r e l _ t o _ s t n >= 0 ) { 

$ r e l d e l a y ( $ e v e n t , S s t n a m e [ $ i ) } = 
S d i f f t i m e ( S e v e n t , S s t n a m e ( $ i ] } - $ d i f f t i m e { S e v e n t , S s t n a m e [ $ r e l _ t o _ s t n ) ) ; 

p r i n t STDERR "made r e l a t i v e to 
S s t n a m e [ $ r e l _ t o _ s t n ] \ n " ; 

} e l s e { 
S r e l d e l a y ( S e v e n t , S s t n a m e [ S i ] } 

S d i f f t i m e { $ e v e n t , $ s t n a m e ( $ i ] } - $med_difftime; 
p r i n t STDERR "made r e l a t i v e to median\n"; 

) 
$ d e v i a t i o n { S e v e n t , S s t n a m e [ S i 1} = 

a b s ( S r e l d e l a y { S e v e n t , S s t n a m e ( $ i 1 } ) ; 
p u s h ( S d e v s , $ d e v i a t i o n { S e v e n t , S s t n a m e ( $ i ] } ) ; 

) 
} 
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$med_dev = median(@devs); 

f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) ( 
i f ( e x i s t s ( $ t o b s { $ e v e n t , $ s t n a m e ( $ i ] } ) ) ( 

i f ($med_dev != 0) { 
$n _ t i m e s _ d e v { $ e v e n t , S s t n a m e [ $ i ] } = 

$ d e v i a t i o n { $ e v e n t , $ s t n a m e [ $ i ] } / $med_dev; 
} e l s e { 

$n_times_dev{$event, $stname [ $ i ) } = 2; ((Change 
t h i s ! ! 

} 
} 

} 

fo r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 
i f ( e x i s t s ( $ t o b s { $ e v e n t , $ s t n a m e [ $ i ] ) ) ) { 

p r i n t f STDOUT ("%d % s %d % s %9.5f %9.5f %9.5f %9.5f\n", 
$ a z b i n { $ e v e n t , $ s t n a m e [ $ i l } , $event, $ s t a t i o n _ n u m b e r ( $ s t n a m e [ $ i ] } , $ s t n a m e ( $ i ] , 
$ b a z { S e v e n t , $ s t n a m e [ $ i ] } , $ s l o w ( $ e v e n t , $ s t n a m e [ $ i ) ) , 
$ r e l d e l a y { $ e v e n t , $ s t n a m e [ $ i ] } , $ n _ t i m e s _ d e v ( $ e v e n t , $ s t n a m e [ $ i ) } ) ; 

} 
) 
} 

The following subroutines are omitted here but are the same as in 

pickdb_azbin_data.pl (Appendix 17). 

sub median { 
} 

sub n u m e r i c a l l y (; 
) 

sub g e t _ p _ b i n { 
} 

sub g e t _ s _ b i n ( 
} 

sub d e f i n e _ p _ b i n s (\@pbin_min_az, \@pbin_max_az, \@pbin_min_slow, 
\@pbin_max_slow) { 

) 

sub d e f i n e _ s _ b i n s (\@sbin_min_az, \@sbin_max_az, \@sbin_min_slow, 
\@sbin_max_slow) ( 

) 

Appendix 19. PERL SCRIPT ramake_ach. pi 

# ! p e r l 

# p i c k d b _ a z b i n _ d a t a . p i 
((Written by Matt P r i t c h a r d 

((Read i n p i c k s from ACH .dat f i l e s i n t o hashes indexed by event i d & 
s t a t i o n . 

((Assign azimuth-slowness b i n number 

@ARGV == 2 or d i e "usage: $0 d a t f i l e data_type\n"; 

Open(DAT, $ARGV[0]); 
$data_type = $ARGV[1]; 
i f ($data_type eq "p") ( 
d e f i n e _ p _ b i n s (\@pbin_min_az, \9pbin_max_az, \@pbin_min_slow, 

\@pbin_max_slow); 

268 

http://pickdb_azbin_data.pl
file:///9pbin_max_az


Appendices 

} e l s i f ( $data_type eq "s") ( 
d e f i n e _ s _ b i n s (\@sbin_min_az, \@sbin_max_az, \@sbin_min_slow, 

\@sbin_max_slow) 
) e l s e ( 
d i e " S p e c i f y d a ta type: p or s\n"; 
} 

((Read l i n e s g i v i n g event i d & other i n f o ; count e v e n t s . 
@lines = <DAT>; ((slurp i n whole f i l e _ c l o s e i t 
c l o s e (DAT); 
$lineno=0; 
$event=0; 
f o r e a c h (@lines) { 
i f ( A * 9 / ) ( 

@ h e a d f i e l d s = s p l i t ; 
$ e v i d [ $ e v e n t ] = $ h e a d f i e l d s [ 0 ] ; 
$ e v e n t s t a r t [ $ e v e n t ] = $ l i n e n o + l ; 
$nevents=$event; 

} 
i f ( s u b s t r ( $ l i n e s [ $ l i n e n o ] ,0,2) =- / W ) { 

$ e v e n t s t o p [ $ e v e n t ] = $ l i n e n o - l ; 
$event++; 

} 
$lineno++; 
} 
$nevents++; 

p r i n t STDERR "$nevents event/phase d a t a s e t s \ n " ; 

#Get s t a t i o n l a t I o n s : 
open(DISTAZ,"/work/tomo/gmt/HOTSPOT.distaz") ; 
open(DELAYS,">delinfo.dat"); 
while(<DISTAZ>) ( 
@ s i t e f i e l d s = s p l i t ; 
$ s t a = $ s i t e f i e l d s [ 0 ) ; 
$ l a t ( $ s t a } = $ s i t e f i e l d s [ l ) ; 
$ l o n { $ s t a ) = $ s i t e f i e l d s [ 2 ) ; 
$ d n o r t h { $ s t a ) = $ s i t e f i e l d s [ 5 ] ; 
$ d e a s t { $ s t a } = $ s i t e f i e l d s [ 4 ] ; 
$ d i s t { $ s t a ) = s q r t 

( $ d n o r t h { $ s t a } * $ d n o r t h ( $ s t a ) + $ d e a s t { $ s t a ) * $ d e a s t { $ s t a ) ) ; 
) 

#Deal w i t h data l i n e s 

$k=0; 
f o r ($i=0; $i<$nevents; $i++) { 
for ( $ j = $ e v e n t s t a r t [ $ i ] ; $ j < = $ e v e n t s t o p [ $ i ) ; $j++) { 

@e v f i e l d s = s p l i t ( / \ s + / , S l i n e s { $ e v e n t s t a r t t $ i ] - 1 ] ) ; 

#Append s i g n of event l a t . Ion depending on hemisphere 
(((denoted by [NSEW] i n dat f i l e . 

u n l e s s (chop ($ev£ields[3]) eq N) { 
$ e v f i e l d s [ 3 ] = - $ e v f i e l d s [ 3 ] ; 

) 
u n l e s s (chop ( $ e v f i e l d s [ 4 ] ) eq E) ( 

$ e v f i e l d s [ 4 ] = - $ e v f i e l d s [ 4 ] ; 
} 

ttlf a HOTSPOT s t a t i o n , make name 5 c h a r s long. 
$ s t n [ $ k ] = s u b s t r ( $ l i n e s [ $ j ] , 1 , 3 ) ; 
i f ( s u b s t r ( $ s t n [ $ k ] , 0 , 1 ) eq "T") { 

@chars = s p l i t ( / / , $ s t n [ $ k ] ) ; 
Snewchars = s p l i t ( / / , " H O T " ) ; 
s p l i c e ( S c h a r s , 0 , 1 , S n e w c h a r s ) ; 
$ s t n [ $ k ] = j o i n ( ' ' , O c h a r s ) ; 

$ t o b s { $ e v i d , $ s t n ) = s u b s t r ( $ l i n e s [ $ j ] , 4 2 , 8 ) ; 
) 

((Assign each f i e l d to a hash element, u n i q u e l y i d ' d by 
tt the e v i d & s t a t i o n . 

@ d a t a f i e l d s = s p l i t ( / \ s + / , $ l i n e s [ $ j ) ) ; 
$ q u a l { $ e v i d [ $ i ] , $ s t n ( $ k ] } = s u b s t r ( $ l i n e s [ $ j ) , 0 , 1 ) ; 
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$ d e l t a { $ e v i d [ $ i ] , $ s t n [ $ k ] } 
# s u b s t r ( $ l i n e s [ $ j , 8 , 7 ) ; 

$ b a z ( $ e v i d [ $ i ] , $ s t n [ $ k ] } 
f t s u b s c r ( $ l i n e s [ $ j ] ,18,7) ; 

$ t o b s { $ e v i d [ $ i ] , $ s t n [ $ k ) ) 
$ t p r e d { $ e v i d [ $ i ] , $ s t n [ $ k ] ) 

t t s u b s t r ( $ l i n e s [ $ j ] , 5 2 , 8 ) ; 
$ d e l a y { $ e v i d [ $ i ] , $ s t n [ $ k ] } 

t t s u b s t r ( $ l i n e s [ $ j ] ,64,6) ; 
$ s l o w { $ e v i d [ $ i l , $ s t n ( $ k l ) 

ftsubstr ( $ l i n e s [ $ j ] ,74,6) ; 

(tAddtional computed f i e l d s 

ttAzimuth-slowness b i n 

i f ($data_type eq "p") { 
$ a z b i n { $ e v i d [ $ i ) , $ s t n [ $ k ) } = 

g e t _ p _ b i n ( $ b a z { $ e v i d [ $ i ] , $ s t n [ $ k ) ) , $ s l o w { $ e v i d [ $ i ] , $ s t n [ $ k l ) ) ; 
) e l s i f ($data_type eq " s ' l ( 

$ a z b i n { $ e v i d [ $ i ] , $ s t n t $ k ) ) = 
g e t _ s _ b i n ( $ b a z { $ e v i d [ $ i ] , $ s t n [ $ k ] } , $ s l o w { $ e v i d [ $ i ] , $ s t n [ $ k ] } ) ,-

} 
$k++; 

} 
) 

#Now any o p e r a t i o n can be preformed on the s e t of a r r i v a l s . 
((Looping by event i s done by 
t f o r ($i=0; $i<$nevents; $n++) 
#or 
ttforeach $event ( s o r t @evids) 
ft 
#Looping over s t a t i o n s ( i n number or d e r ) can be done by 
# f o r e a c h $ s t a t i o n ( s o r t keys n u m e r i c a l l y %station_number) 
ft 
tILoop over azimuth slowness b i n s : 
ttfor($i=0; $i<=$no_of_p_bins; $i++) 

((Output data f o r r e s i d u a l p l o t s , grouped by azimuth-slowness b i n . 
( ( F i r s t need to f i n d : 
(t d e l a y times r e l a t i v e to g i v e n datum (median or time from 1 

s t a t i o n ? ) 
# median of d e l a y times f o r each event/phase s u b s e t 
ft d e v i a t i o n s of each d e l a y time from median 
tl median of these d e v i a t i o n s 
tl n _ t i m e s _ d e v i a t i o n f o r each d a t a p o i n t . 

((Loop over event i d s 
f o r e a c h Sevent (@evid) ( 
p r i n t ">\n"; 

((Loop over s t a t i o n s l i s t e d f o r t h i s event: 
@subset=(); ((r e s e t a r r a y 
f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 

i f ( e x i s t s ( $ t o b s { $ e v e n t , $ s t n a m e [ $ i ] } ) ) { 
$ d i f f t i m e { $ e v e n t , $ s t n a m e [ $ i ] } = 

$ t o b s ( $ e v e n t , $ s t n a m e [ $ i ] ) - $ t p r e d { $ e v e n t , $ s t n a m e [ $ i ] ) ; 
p u s h ( 8 s u b s e t , $ d i f f t i m e { $ e v e n t , $ s t n a m e [ $ i ] } ) ; 

} 
} 
$med_difftime = median(©subset); 

ft i f ( e x i s t s ( $tobs{$event, "H0T17"}) ) { 
(t $ r e l _ t o _ s t n = $station_number {"H0T17 ") ; 
(t } e l s i f ( e x i s t s ( $tobs{$event, "HOT28"}) ) { 
(f $ r e l _ t o _ s t n = $station_number {"HOT28 "} ; 
ff } e l s e ( 

$ r e l _ t o _ s t n = -1; ()##« Leave t h i s l i n e unconsented *t(t#ft 
ft ) 
@devs=(); 
f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) ( 

= $ d a t a f i e l d s ( 1 ] ; 

= $ d a t a f i e l d s [ 2 ] ; 

= $ d a t a f i e l d s [ 4 ) ; 
= $ d a t a f i e l d s [ 5 ) ; 

= $ d a t a f i e l d s [ 6 ] ; 

= $ d a t a f i e l d s [ 7 1 ; 
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i f ( e x i s t s ( $ t o b s { $ e v e n t , S s t n a m e [ $ i ) } ) ) { 
i f ( $ r e l _ t o _ s t n >= 0 ) ( 

$ r e l d e l a y { $ e v e n t , $ s t n a m e [ $ i ] } 
$ d i f f t i r a e { $ e v e n t , S s t n a m e [ $ i ] } - $ d i f f t i m e { $ e v e n t , $ s t n a m e [ $ r e l _ t o _ s t n ] ) ; 

p r i n t STDERR "made r e l a t i v e to 
$ s t n a m e [ $ r e l _ t o _ s t n ) \ n " ; 

} e l s e ( 
S r e l d e l a y f S e v e n t , Sstnajne [ $ i ] } = 

$ d i f f t i m e { $ e v e n t , $ s t n a m e [ $ i ] } - $med_difftime; 
p r i n t STDERR "made r e l a t i v e to median\n"; 

} 
$ d e v i a t i o n { $ e v e n t , $ s t n a m e ( $ i ] } = 

a b s ( $ r e l d e l a y ( S e v e n t , S s t n a m e [ $ i ) ) ) ; 
p u s h ( @ d e v s , $ d e v i a t i o n { $ e v e n t , $ s t n a m e [ $ i ) } ) ; 

) 
} 
$med_dev = median O d e v s ) ; 

fo r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 
i f ( e x i s t s ( $ t o b s { $ e v e n t , $ s t n a m e [ $ i ] } ) ) ( 

i f ($med_dev != 0) { 
$n _ t i m e s _ d e v ( S e v e n t , S s t n a m e ( $ i ] } = 

$ d e v i a t i o n { $ e v e n t , $ s t n a m e l $ i ] } / $med_dev; 
} e l s e { 

$n _ t i m e s _ d e v { $ e v e n t , S s t n a m e [ $ i ] } = 2; ((Change 
t h i s ! ! 

} 
} 

> 

f o r e a c h $ i ( s o r t n u m e r i c a l l y v a l u e s %station_number) { 
i f ( e x i s t s ( $ t o b s { S e v e n t , S s t n a m e [ S i ] ) ) ) { 

p r i n t f STDOUT ("%d % s %d % s %9.5f %9.5f %9.5f %9.5f\n", 
$azbin($event,SstnameI S i ] } , $event, $ s t a t i o n _ n u m b e r { $ s t n a m e ( $ i ] } , $ s t n a m e [ $ i ] , 
$ b a z ( $ e v e n t , $ s t n a m e [ $ i ] } , $ s l o w { $ e v e n t , $ s t n a m e [ $ i ] } , 
$ r e l d e l a y { $ e v e n t , $ s t n a m e [ $ i ] } , $ n _ t i m e s _ d e v { S e v e n t , S s t n a m e [ $ i ] } ) ; 

} 
) 
} 

The following subroutines are omitted here but are the same as in 

pickdb_azbin_data.pl (Appendix 17) 

sub median { 
} 

sub n u m e r i c a l l y ( 
) 

sub g e t _ p _ b i n { 
} 

sub g e t _ s _ b i n { 
} 

sub d e f i n e _ p _ b i n s (\@pbin_min_az, \@pbin_max_az, \@pbin_min_slow, 
\@pbin_max_slow) ( 

} 

sub d e f i n e _ s _ b i n s (\@sbin_min_az, \@sbin_max_az, \@sbin_min_slow, 
\@sbin_max_slow) { 

} 

Appendix 20. SCRIPT plot_eizbin_aelayB_p_Btnmed 

#!bash 

# p l o t _ a z b i n _ d e l a y s _ p _ s t n m e d 
((Written by Matt P r i t c h a r d 
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tfplot s t a t i o n v s r e s i d u a l f o r a s e t of data produced by 
# a z b i n _ d i v i d e _ p . p i 
( ( S u b s t i t u t e ' s ' f o r P i n f i l e n a m e s f o r S-wave v e r s i o n , & change 
((cutoff v a l u e to 1.5 s e c . 
rm .gmt* 

i f t e s t "$1" == 0 
then 
rm e v e n t _ k e y s _ p . t x t 
echo "bin evno e v i d " > e v e n t _ k e y s _ p . t x t 
f i 

gmtset MEASURE_UNIT cm 
gmtset PAPER_MEDIA A4+ 
gmtset LABEL_FONT_SIZE lOp 
gmtset HEADER_FONT_SIZE 15p 
gmtset DEGREE_FORMAT 5 
gmtset BASEMAP_TYPE PLAIN 
gmtset PAGE_ORIENTATION LANDSCAPE 
gmtset GRID_PEN 0.01 

c a t /work/tomo/gmt/pagemap_landscape.ps 
psbasemap -R-1/42/-2/2 -JX25c/14c -X2c -Y2.5c -0 -K -

B f l g l / a l f I g O . I t : " R e l a t i v e r e s i d u a l ( s ) " : W s e n : . " R e s i d u a l s f o r azimuth-slowness 
b i n $1": 

(tplot l i n e s 
awk -v b i n = $ l ' 
BEGIN { 

l a s t _ e v i d = " b l a n k " 
l a s t _ s t a t i o n = 0 
event=0 

} 
NF>3 &£• $ l = =bin { 

i f ($2 != l a s t _ e v i d || l a s t _ s t a t i o n + l != $3) { 
p r i n t ">" 
event++ 

} 
p r i n t $3,$7 
l a s t _ e v i d = $2 
l a s t _ s t a t i o n = $3 

} ' $2 | 
psxy -R -JX -K -O -A -WO.01 -M 

((plot dots 
awk -v b i n = $ l 1 

BEGIN ( 
l a s t _ e v i d = " b l a n k " 
event=0 

) 
NF>3 && $l==bin { 

i f ($2 != l a s t _ e v i d ) { 
event++ 

} 
p r i n t $3,$7,event 
l a s t _ e v i d = $ 2 

) ' $2 | 
psxy -R -JX -K -0 -A -Cevents.cpt -Sc0.3 -GO 

(tplot number l a b e l i n middle of each dot 
awk -v b i n = $ l 1 

BEGIN ( 
i=0 
l a s t _ e v i d = " b l a n k " 
event=0 

} 
NF>3 && $l==bin ( 

i f ($2 != l a s t _ e v i d ) ( 
event++ 

} 
p r i n t $3,$7,8,0,1,"CM",event 
l a s t _ e v i d = $2 

} ' $2 | 
p s t e x t -R -JX -K -O -SO.01/0/0/0 -G255 

272 



Appendices 

awk -v b i n - $ l ' 
BEGIN { 

i=0 
l a s t _ e v i d = " b l a n k " 
event=0 

) 
NF>3 && $ l - - b i n { 

i f ($2 != i a s t _ e v i d ) { 
event++ 
p r i n t bin,event,$2 

l a s t _ e v i d - $2: 
) ' $2 >> e v e n t _ k e y s _ p ; t x t 

ftRirig i n r e d those data t h a t have $h_times_dev g r e a t e r than 0. 6sec 
awk -v b i h = $ i " 
NF>3 && $l==bin. ;{: 

i f ($8: > 0 . 6) ( 
p r i n t $3,$7 

} 
! ' $2 | 
psxy, -R -JX -0 -K TSc0.45 -WO. 01/255/0/0 

awk ' 
BEGIN •{' 

y=-2.2 
size=10 
angle=90 
fontno -0 
justify="MR" 

} 
NF>3 { 

stnarr.e [$3) $4 
sthum[$3i] =$3 

} 
END { 

f o r ( : -C; i<42; i;++) { 
p r i n t stnum [.i] , y, s i z e , angle, fontho, j u s t i f y , stname.[i] 

} 
} ' $2 | 
p s t e x t -R -JX -N -0 
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Appendix 21. STATION PERFORMANCE CHART 

Stat ion rel iabi l i ty statistics 
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1 Rejkir 788 725 2 hi 63 92.0 0.3 7.7 8.0 

2 Asbrun 785 71W 2 N 81 89.7 (1.3 III 1 10.3 

3 IngjaldshcUl 781 627 2 152 154 80 3 0.3 19.5 19.7 

4 OrmsKtaOir 784 583 2 199 201 74.4 0 ! 25.4 25.6 

5 Brii 7SI 710 2 69 71 90.9 0.3 8 8 9.1 

6 Holmavfk 793 756 2 35 37 95.3 0.3 4.4 4.7 

7 Eyri 786 564 2 220 222 71.8 0.3 28.0 28.2 

X Olafsviti 788 696 : 90 92 88.3 0.3 11.4 11.7 

9 Pingeyri 791 694 2 95 97 87.7 OJ 12 (1 12.3 

II) Revkjancsskoli 795 665 2 126 128 83.9 0 3 15.9 16.1 

11 BoOvarsholar 780 759 19 21 97.3 (1.3 2.4 2.7 

12 HSvfk 7KI 735 : 44 46 94.1 0.3 5.6 5.9 

13 Slilur 782 752 2 28 30 96 2 11.3 3.6 3.8 

14 Holsserfti 7KI 711 : 68 7(1 91.0 0.3 8.7 9.0 

15 r;tnna(10riUir •'(.ii 539 2 219 221 70.9 i l l 28.8 29.1 

16 Borgarf|orour-eystri 76(1 748 2 10 12 98 l i i 3 1.3 1.6 

17 Setters 764 762 2 0 2 99 - 0.3 0.0 11.3 

1* Grunil 767 765 : 1) 2 99 7 (1.3 0.0 11.3 

19 Fell 767 516 2 249 251 67.3 11.3 32.5 32.7 

2(1 Hagi 768 702 2 64 66 91.4 1)3 8.3 8.6 

21 Faiuirlirilsmyn 768 699 i 67 69 ' ) ! I I II 1 8.7 9.0 

22 Hunkubakkar 766 702 : 62 64 91.6 11.3 8.1 8.4 

2.1 Griinvfiall 747 454 2 291 293 60 H 11.3 39.0 39.2 

24 Sna'lrll 758 753 i 4 5 99.3 0.1 0.5 0.7 

25 Askja 757 438 : 317 319 57.i) 0.3 41.9 42.1 

26 1 auple l ] 746 458 2 286 288 61.4 0.3 38 < 18.6 

27 Blitndulrtn 74(1 715 2 23 25 •)6 6 0.3 < i ; 4 

28 Leppislunjiur 760 758 : 0 2 99.7 0.3 0.0 0.3 

29 Valnsdalsyeroi 752 538 212 214 71.5 i) i 28.2 28.5 

i l l Veourstolii 756 579 II 177 177 76.6 n i l 23.4 23.4 

100 

• U p (no problems) 
•Down (fatal problem) 
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Appendix 22. E V E N T S USED IN T H E TOMOGRAPHIC INVERSION 

This table lists the phase sets picked from events in the final dataset prepared 

for the tomographic inversion. Events are identified by the "orid" (see section 4.1.4). 

In many cases, more than one phase was picked per event. 

Orid Dale hh mm ss Lai Lon Delia Baz Dep (km) Mag Picked Region 

96204014 22/07/1996 14 19 35.77 0.8507 120.15 108.00 43.13 33 6.9 Pdiff M1NAHASSA PENINSULA 

96204014 22/07/1996 14 19 35.77 0.8507 120.15 108.00 43.13 33 6.9 PP MINAHASSA PENINSULA 

96218016 05/08/1996 21 39 16.25 -1.8598 -80.80 80.04 243.11 33 5.9 P NEAR C O A S T O F ECUADOR 

96218016 05/08/19% 21 39 16.25 -1.8598 -80.80 80.04 243.11 33 5.9 PP NEAR C O A S T O F ECUADOR 

96218016 05/08/1996 21 39 16.25 -1.8598 -80.80 80.04 243.11 33 5.9 S NEAR C O A S T O F ECUADOR 

96223013 10/08/1996 18 12 17.35 38.8816 140.57 75.04 16.1) 33 6 P HONSHU, JAPAN 

96223013 10/08/1996 18 12 17.35 38.8816 140.57 75.04 16.11 33 6 PP HONSHU. JAPAN 

9622.1013 10/08/1996 18 12 17.35 38.8816 140.57 75.04 16.11 33 6 S HONSHU, JAPAN 

96223014 10/08/1996 18 54 11.07 38.9232 140.56 74.99 16.11 33 5.7 P HONSHU, JAPAN 

96232007 19/08/1996 4 19 16.18 51.4311 -178.45 62.57 345.52 33 5.7 P A N D R E A N O F I S L , A L E U T E A N IS. 

96248002 04/09/1996 3 37 53.25 30.364 130.15 81.81 26.31 33 5.5 P K Y U S H U . JAPAN 

96248020 04/09/1996 19 6 49.81 9.376 -84.26 71.05 250.94 33 5.9 P COSTA RICA 

96249001 05/09/1996 8 14 14.48 -22.2607 -113.41 111.79 26378 10 7.1 Pdiff E A S T E R ISLAND REGION 

96249001 05/09/1996 8 14 14.48 -22.2607 -113.41 111.79 263.78 10 7.1 PP EASTER ISLAND REGION 

96249010 05/09/1996 20 44 9.29 42.8545 17.91 30.27 118.44 10 5.9 P ADRIATIC S E A 

96249010 05/09/1996 20 44 9.29 42.8545 17.91 30.27 118.44 10 5.9 S ADRIATIC S E A 

96249013 05/09/1996 23 42 6.15 21.9838 121.37 88.02 36.03 33 6.6 P TAIWAN REGION 

96249013 05/09/1996 23 42 6.15 21.9838 121.37 88.02 36.03 33 6.6 P TAIWAN REGION 

96249013 05/09/1996 23 42 6.15 21.9838 121.37 88.02 3603 33 6.6 S TAIWAN REGION 

96255003 11/09/1996 2 37 14.99 35.5212 140.93 78.40 1633 70.3 5.9 P NEAR E C O A S T O F HONSHU. 
JAPAN 

96255003 11/09/1996 2 37 14.99 35.5212 140.93 78.40 1633 70.3 5.9 S NEAR E C O A S T O F HONSHU, 
JAPAN 

96258011 14/09/1996 13 10 53.97 -10.8442 165.83 125.84 353.79 65.9 6 PKIKP SANTA C R U Z ISLANDS 

96258011 14/09/1996 13 10 53.97 -10.8442 165.83 125.84 353.79 65.9 6 PP SANTA C R U Z ISLANDS 

96264001 20/09/1996 0 3 18.37 95792 126.37 101.24 34.54 33 6.2 Pdiff MINDANAO. PHILIPPINE ISLANDS 

96264001 20/09/1996 0 3 18.37 9.5792 126.37 101.24 34.54 33 6.2 PP MINDANAO, PHILIPPINE ISLANDS 

96264001 20/09/1996 0 3 18.37 9.5792 126.37 101.24 34.54 33 6.2 SKS MINDANAO. PHILIPPINE ISLANDS 

96264003 20/09/1996 4 10 27.68 9.46 126.24 101.32 34.70 33 6.4 Pdiff MINDANAO. PHILIPPINE ISLANDS 

96264003 20/09/1996 4 10 27.68 9.46 126.24 101.32 34.70 33 6.4 PP MINDANAO. PHILIPPINE ISLANDS 

96264009 20/09/1996 12 24 42.12 9.3593 127.28 101.67 33 71 33 6 PP PHILIPPINE ISLANDS REGION 

96264017 20/09/1996 19 24 57.3 9.5558 126.71 101.34 34.22 33 5.5 PP MINDANAO, PHILIPPINE ISLANDS 

96268001 24/09/1996 II 42 18.87 15.206 -61.41 57.23 230.33 147.5 5.6 P L E E W A R D ISLANDS 

96268001 24/09/1996 11 42 18.87 15.206 -61.41 57.23 230.33 147.5 5.6 PcP L E E W A R D ISLANDS 

96276015 02/10/1996 9 48 1.56 11.6848 125.58 99.01 34.78 33 6.4 PP SAMAR. PHILIPPINE ISLANDS 

96276015 02/10/1996 9 48 1.56 11.6848 125.58 99.01 34.78 33 6.4 S SAMAR, PHILIPPINE ISLANDS 

96276021 02/10/1996 11 24 48.42 44.8406 151.13 70.02 7.21 33 5.9 P E A S T O F K U R I L ISLANDS. RUSSIA 

96283014 09/10/19% 13 10 52.13 34.4923 32.12 43.03 109.26 33 6.8 P C Y P R U S REGION 

96283014 09/10/19% 13 10 52.13 34.4923 32.12 43.03 109.26 33 6.8 S C Y P R U S REGION 

96292009 18/10/1996 10 50 20.86 30.6302 131.06 81.72 25.47 33 6.6 P K Y U S H U . JAPAN 

96292009 18/10/19% 10 50 20.86 30.6302 131.06 81.72 25.47 33 6.6 P K Y U S H U . JAPAN 

96293014 19/10/19% 14 44 40.79 31 9166 131.42 80.53 24.90 33 6.7 P K Y U S H U . JAPAN 

96293014 19/10/1996 14 44 40.79 31.9166 131.42 80.53 24.90 33 6.7 S K Y U S H U . JAPAN 

96293015 19/10/1996 14 53 48.78 -20.294 -178.87 133.40 333.22 583.1 6 PKIKP FIJI ISLANDS REGION 

96309042 04/11/1996 17 24 57.43 7.2141 -77.55 70.41 243.57 33 6.1 P PANAMA-COLOMBIA BORDER 
REGION 

96309042 04/11/19% 17 24 57.43 7.2141 -77.55 70.41 243.57 33 6.1 S PANAMA-COLOMBIA BORDER 
REGION 
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96310015 05/11/1996 9 41 34.77 -31.1276 179% 144.20 331.15 369 6 PP KERMADEC ISLANDS REGION 

96311016 06/11/1996 20 0 58.85 28.0739 143.74 86.10 14.96 33 6.6 P BON IN ISLANDS REGION 

96324016 19/11/1996 10 44 46.06 35.2285 78.25 90.26 233.42 33 7.1 S NEAR COAST OF PERU 

96324016 19/11/1996 10 44 46.06 35.2285 78.25 61.52 67.11 33 7.1 P EASTERN KASHMIR 

96324016 19/11/1996 10 44 46.06 35.2285 78.25 61.52 67.11 33 7.1 s EASTERN KASHMIR 

96337021 02/12/1996 22 17 59.24 31.797 131.22 80.61 25.09 33 6.7 p KYUSHU, JAPAN 

96338020 03/12/1996 12 56 56.92 -18.2716 -172.48 130.06 325.97 33 6 PKIKP TONGA ISLANDS REGION 

96344022 09/12/1996 11 28 48.61 29.9496 ^2.60 37.84 213.98 10 6.2 P NORTHERN M I D - A T L A N T I C 
RIDGE 

96345008 10/12/1996 8 36 18.7 0.7812 -29.98 64.57 191.85 10 6.2 S CENTRAL M I D - A T L A N T I C RIDGE 

96357004 22/12/1996 14 53 27.62 43.1898 138.94 70.59 16.66 226.6 6 P EASTERN SEA OF JAPAN 

96357004 22/12/1996 14 53 27.62 43.1898 138.94 70.59 16.66 226.6 6 PP EASTERN SEA OF JAPAN 

96357004 22/12/1996 14 53 27.62 43.1898 138.94 70.59 16.66 226.6 6 S EASTERN SEA OF JAPAN 

96357004 22/12/1996 14 53 27.62 43.1898 138.94 70.59 16.66 226.6 6 sS EASTERN SEA OF JAPAN 

97011009 11/01/1997 20 28 26.02 18.2465 -102.80 70.79 272.17 33 6.8 P M I C H O A C A N . MEXICO 

97011009 11/01/1997 20 28 26.02 18.2465 -102.80 70.79 272.17 33 6.8 s MICHOACAN. MEXICO 

97013013 13/01/1997 10 19 26.11 34.2321 32.33 43.35 109.22 33 5.5 s CYPRUS REGION 

97017006 17/01/1997 15 53 1343 28.826 129.98 83.28 26.79 33 6.1 s R Y U K Y U ISLANDS 

97022012 22/01/1997 17 57 18.7 36.2426 36.01 43.10 103.96 33 5.5 s JORDAN - SYRIA REGION 

97023003 23/01/1997 2 15 22.97 -22.101 -65.74 94.00 222.31 276.2 6.4 p JUJUY PROVINCE. ARGENTINA 

97023003 23/01/1997 2 15 22.97 -22.101 -65.74 94.00 222.31 276.2 6 4 s JUJUY PROVINCE. ARGENTINA 

97035015 04/02/1997 10 37 47.14 37.394 57.35 51.11 83.24 33 6.9 p IRAN-USSR BORDER REGION 

97035015 04/02/1997 10 37 47.14 37.394 57.35 51.11 83.24 33 6.9 s IRAN-USSR BORDER REGION 

97052016 21/02/1997 23 40 24.14 43.8894 149.16 70.85 8.79 33 6.1 p KURIL ISLANDS REGION 

97058009 27/02/1997 21 8 2.36 29.8999 68.11 62.09 78.52 33 7.3 p PAKISTAN 

97058011 27/02/1997 21 30 36.57 30.022 67.90 61.90 78.63 33 6.3 p PAKISTAN 

97058011 27/02/1997 21 30 36.57 30022 67.90 61.90 78.63 33 6.3 pp PAKISTAN 

97059010 28/02/1997 I I 32 18.98 43.994 147.88 70.66 9.75 33 5.5 p KURIL ISLANDS 

97059011 28/02/1997 12 57 18.64 38.1038 47.79 46.47 91.23 33 6.1 p NORTHWESTERN IRAN 

97070030 11/03/1997 19 22 0.13 7.7897 127.42 103.22 33.96 33 6.7 PP PHILIPPINE ISLANDS REGION 

97070030 11/03/1997 19 22 0.13 7.7897 127.42 103.22 33.96 33 6.7 SP PHILIPPINE ISLANDS REGION 

97085003 26/03/1997 2 8 57.27 51.2631 179.58 62.93 346.86 33 6.4 p RAT ISLANDS. A L E U T I A N 
ISLANDS 

97091021 01/04/1997 18 33 32.2 -18.0228 -69.26 91.18 226.74 114 6 p NORTHERN CHILE 

97091021 01/04/1997 18 33 32.2 -18.0228 -69.26 91.18 226.74 114 6 pp NORTHERN CHILE 

97091021 01/04/1997 18 33 32.2 -18.0228 -69.26 91.18 226.74 114 6 s NORTHERN CHILE 

97091021 01/04/1997 18 33 32.2 -18.0228 -69.26 91.18 226.74 114 6 sS NORTHERN CHILE 

97091022 01/04/1997 18 42 14.06 -17.9688 -68.96 91.04 226.49 115 5.7 p BOLIVIA 

97091022 01/04/1997 18 42 1406 -17.9688 -68.96 91.04 226.49 115 5.7 s BOLIVIA 

97091022 01/04/1997 18 42 14.06 -17.9688 -68.96 91.04 226.49 115 5.7 sS BOLIVIA 

97I0IOO7 11/04/1997 5 34 42.78 39.5042 76.97 57.30 65.70 23.5 6.1 p SOUTHERN XINJIANG. CHINA 

97IOI0O7 11/04/1997 5 34 42.78 39.5042 76.97 57.30 65.70 23.5 6.1 s SOUTHERN XINJIANG, CHINA 

97101007 11/04/1997 5 34 42.78 39.5042 76.97 57.30 65.70 23.5 6.1 sP SOUTHERN XINJIANG. CHINA 

97101007 11/04/1997 5 34 42.78 39.5042 76.97 57.30 65.70 23.5 6.1 SS SOUTHERN XINJIANG, CHINA 

97109005 19/04/1997 15 26 33.48 78.508 126.03 35.14 11.36 10 5.9 P EASTOFSEVERNAYA Z E M L Y A 

97111007 21/04/1997 12 2 26.43 -12.4711 166.21 127.45 353.23 33 7.9 PKIKP SANTA CRUZ ISLANDS 

97111007 21/04/1997 12 2 26.43 -12.4711 166.21 127.45 353.23 33 7.9 PP SANTA CRUZ ISLANDS 

97111008 21/04/1997 12 I I 27.86 -13.1065 166.24 128.08 353.15 33 6.1 PKIKP V A N U A T U ISLANDS 

97112020 22/04/1997 9 31 23.25 10.9683 -61.17 61.15 228.43 33 6 5 P TRINIDAD 

97112020 22AM/1997 9 31 23.25 10.9683 -61.17 61.15 228.43 33 6.5 S TRINIDAD 

97121009 01/05/1997 I I 37 36.15 18.8687 -107.26 72.12 276.45 33 6.7 S OFF COAST OF JALISCO, MEXICO 

97I230O9 03/05/1997 16 46 2.02 -31.6549 -179.56 144.61 330.25 106.6 6.5 PP KERMADEC ISLANDS REGION 

97128001 08/05/1997 2 53 14.73 25.0668 92.19 75.94 60.33 33.5 5.7 P INDIA-BANGLADESH BORDER 
REGION 

97128001 08/05/1997 2 53 14.73 25.0668 92.19 75.94 60.33 33.5 5.7 s INDIA-BANGIJVDESH BORDER 
REGION 

97130003 10/05/1997 7 57 29.72 33.6542 59.74 55.32 83.59 33 7.3 p IRAN 
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97130003 10/05/1997 7 57 29.72 33.6542 59.74 55.32 83.59 33 7.3 PP IRAN 

97130003 10/05/1997 7 57 29.72 33.6542 59.74 55.32 83.59 33 7.3 S IRAN 

97133004 13/05/1997 14 13 45.74 36.5343 71.00 57.50 72.31 196.2 6.1 P HINDU KUSH REGION 

97133004 13/05/1997 14 13 45.74 36.5343 71.00 57.50 72.31 196.2 6.1 PP HINDU KUSH REGION 

97133004 13/05/1997 14 13 45.74 36.5343 71.00 57.50 72 31 196.2 6.1 S HINDU KUSH REGION 

97141028 21/05/1997 22 51 28.73 23.075 80.02 73.04 71.65 36 6 P INDIA 

97141028 21/05/1997 22 51 28.73 23.075 80.02 73.04 71.65 36 6 PP INDIA 

97141028 21/05/1997 22 51 28.73 23.075 80.02 73.04 71.65 36 6 PP INDIA 

97141028 21/05/1997 22 51 28.73 23.075 80.02 73.04 71.65 36 6 s INDIA 

97142004 22/05/1997 7 50 53.52 18.618 -101.54 69.92 271.21 70 5.9 p GUERRERO. MEXICO 

97142004 22/05/1997 7 50 53.52 18.618 -101.54 69.92 271.21 70 5.9 PP GUERRERO, MEXICO 

97142004 22/05/1997 7 50 53.52 18.618 -101.54 69.92 271.21 70 5.9 s GUERRERO. MEXICO 

97161029 10/06/1997 21 53 55.02 -35.7156 -108.03 121 40 251.99 10 6.1 PP EASTER ISLAND CORDILLERA 

97161029 10/06/1997 21 53 55.02 -35.7156 -108.03 121.40 251.99 10 6.1 s s EASTER ISLAND CORDILLERA 

97168015 17/06/1997 21 3 40.26 51.3205 -179.35 62.77 346.13 33 6.6 p ANDREANOF ISLANDS. 
A L E U T I A N IS. 

97168015 17/06/1997 21 3 40.26 51.3205 -179.35 62.77 346.13 33 6.6 p ANDREANOF ISLANDS, 
A L E U T I A N IS. 

97168015 17/06/1997 21 3 40.26 51.3205 -179.35 62.77 346 13 33 6.6 s ANDREANOF ISLANDS. 
A L E U T I A N IS. 

97175042 24/06/1997 23 4 53.14 -1.7852 127.83 112 61 36.00 33 6.1 Pdiff H A L M A H E R A 

97175042 24/06/1997 23 4 53.14 -1.7852 127.83 112.61 36.00 33 6.1 Sdiff H A L M A H E R A 

97189004 08/07/1997 2 24 7.32 23.9494 142.70 90.07 16.41 33 5.9 P VOLCANO ISLANDS REGION 

97189004 08/07/1997 2 24 7.32 23.9494 142.70 90.07 16.41 33 5.9 PP VOLCANO ISLANDS REGION 

97189015 08/07/1997 12 11 15 51.34 -178.84 62.70 345.78 33 5.6 P ANDREANOF ISLANDS, 
A L E U T I A N IS. 

97190009 09/07/1997 19 24 13.17 10.4281 -63.49 62.41 230.67 10 6.8 P NEAR COAST OF VENEZUELA 

97190009 09/07/1997 19 24 13.17 10.4281 -63.49 62.41 230.67 10 6.8 S NEAR COAST OF VENEZUELA 

97196006 15/07/1997 11 5 31.34 24.7873 122.24 85.53 34.50 104.9 5.8 P T A I W A N REGION 

97196006 15/07/1997 11 5 31.34 24.7873 122.24 85.53 34.50 104.9 5.8 s T A I W A N REGION 

97200005 19/07/1997 14 22 8.75 15.8399 -98.19 70.99 266.86 33 6.2 p OFF COAST OF GUERRERO, 
MEXICO 

97200005 19/07/1997 14 22 8.75 15.8399 -98.19 70.99 266.86 33 6.2 s OFF COAST OF GUERRERO, 
MEXICO 

97201014 20/07/1997 10 14 22.8 -22.6888 -66.02 94.64 222.38 256.5 6 p JUJUY PROVINCE. ARGENTINA 

97201014 20/07/1997 10 14 22.8 -22.6888 -66.02 94.64 222.38 256.5 6 s JUJUY PROVINCE, ARGENTINA 

97201014 20/07/1997 10 14 22.8 -22.6888 -66.02 94.64 222.38 256.5 6 SP JUJUY PROVINCE, ARGENTINA 

97203036 22/07/1997 19 10 35.09 4.62 -32.69 61.02 195.31 10 5.4 P CENTRAL M I D - A T L A N T I C RIDGE 

97203036 22/07/1997 19 10 35.09 4.62 -32.69 61.02 195.31 10 5.4 pp CENTRAL M I D - A T L A N T I C RIDGE 

97203036 22/07/1997 19 10 35.09 4.62 -32.69 61.02 19531 10 5.4 s CENTRAL M I D - A T L A N T I C RIDGE 

97208014 27/07/1997 10 7 52.55 35.512 21.12 37.91 120.80 10 5.7 p MEDITERRANEAN SEA 

97208014 27/07/1997 10 7 52.55 35.512 21.12 37.91 120.80 10 5.7 PcP MEDITERRANEAN SEA 

97208014 27/07/1997 10 7 52.55 35.512 21.12 37.91 120.80 10 5.7 s MEDITERRANEAN SEA 

97216013 04/08/1997 18 53 58.94 -15 0609 -175.43 127.59 330.46 33 6 s s TONGA ISLANDS 

97217006 05/08/1997 2 48 43.46 28.38 -43.73 39.62 214.81 10 5.3 p NORTH A T L A N T I C RIDGE 

97217006 05/08/1997 2 48 43.46 28.38 -43.73 39.62 214.81 10 5.3 s NORTH A T L A N T I C RIDGE 

97220015 08/08/1997 22 27 19.85 -15.4789 -179.40 128.77 335.12 33 6.6 PKIKP FIJI ISLANDS REGION 

97220015 08/08/1997 22 27 19.85 -15.4789 -179.40 128.77 335.12 33 6.6 PP FIJI ISLANDS REGION 

97222003 10/08/1997 9 20 30.98 -16.5171 123.58 125.58 45.36 33 6 PP WESTERN AUSTRALIA 

97222003 10/08/1997 9 20 30.98 -16.5171 123.58 125.58 45.36 33 6 SP WESTERN AUSTRALIA 

97222003 10/08/1997 9 20 30.98 -16.5171 123.58 125.58 45.36 33 6 SS WESTERN AUSTRALIA 

97232008 20/08/1997 13 51 16.62 -41.5432 80.19 130.76 102.95 10 6.4 SS M I D - I N D I A N RISE 

97241004 29/08/1997 6 54 0.24 -15.592 -175.53 128.13 330.44 33 6.3 PP TONGA ISLANDS 

97241004 29/08/1997 6 54 0.24 -15.592 -175.53 128.13 330.44 33 6.3 SS TONGA ISLANDS 

97241005 29/08/1997 8 14 9.97 -3.436 144.35 117.44 18.46 33 6.7 PP NEAR N COAST OF PAPUA NEW 
GUINEA 

97241005 29/08/1997 8 14 9.97 -3.436 144.35 117.44 18 46 33 6.7 SdilT NEAR N COAST OF PAPUA NEW 
GUINEA 

97245012 02/09/1997 12 13 22.92 3.82 -75.74 72.88 240.47 231.6 6.4 P COLOMBIA 

97245012 02/09/1997 12 13 22.92 3.82 -75.74 72.88 240.47 231.6 6.4 S COLOMBIA 
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97245012 02/09/1997 12 13 22.92 3.82 -75.74 72.88 240.47 231.6 6.4 SS COLOMBIA 

97245012 02/09/1997 12 13 22.92 3.82 -75.74 72.88 240.47 231.6 6.4 SS COLOMBIA 

97246004 03/09/1997 6 22 44.28 -55.1188 -128.75 145.45 251.96 10 6 SS SOUTH PACIFIC CORDILLERA 

97247003 04/09/1997 4 23 37.03 -26.4855 178.25 140.00 335.19 619.4 6.1 PKIKP SOUTH OP FIJI ISLANDS 

97247003 04/09/1997 4 23 37.03 -26.4855 178.25 140.00 335.19 619.4 6.1 PP SOUTH OF FIJI ISLANDS 

97253002 10/09/1997 12 57 7.07 -21.3223 -174.31 133.44 327.19 33 6.1 PP TONGA ISLANDS 

97253002 10/09/1997 12 57 7.07 -21.3223 -174.31 133.44 327.19 33 6.1 SS TONGA ISLANDS 

97263010 20/09/1997 16 11 32.15 -28.7022 -177.63 141.34 328.78 33 6.9 PKIKP KERMADEC ISLANDS REGION 

97263010 20/09/1997 16 I I 32.15 -28.7022 -177.63 141.34 328.78 33 6.9 PP KERMADEC ISLANDS REGION 

97263010 20/09/1997 16 I I 32.15 -28.7022 -177.63 141.34 328.78 33 6.9 SS KERMADEC ISLANDS REGION 

97277019 04/10/1997 15 29 46.28 16.01 -46.75 52.29 214.07 10 5.6 P NORTHERN M I D - A T L A N T I C 
RIDGE 

97277019 04/10/1997 15 29 46.28 16.01 -46.75 52.29 214.07 10 5.6 S NORTHERN M I D - A T L A N T I C 
RIDGE 

97278015 05/10/1997 18 4 30 -59.7029 -29.24 124.82 186.09 270.5 6.1 PKIKP SOUTH SANDWICH ISLANDS 
REGION 

97286013 13/10/1997 13 39 37.49 36.3372 22.11 37.54 119.02 10 6.6 P SOUTHERN GREECE 

97286013 13/10/1997 13 39 37.49 36.3372 22.11 37.54 119.02 10 6.6 S SOUTHERN GREECE 

97287008 14/10/1997 9 53 18.15 -21.9524 -176.92 134.63 330.27 166.2 6.5 PP FIJI ISLANDS REGION 

97287008 14/10/1997 9 53 18.15 -21.9524 -176.92 134.63 330.27 166.2 6.5 SS FIJI ISLANDS REGION 

97288001 15/10/1997 1 3 33.46 -30.9324 -71.01 103.88 223.91 33 6.8 Pdiff NEAR COAST OF CENTRAL CHILE 

97288001 15/10/1997 1 3 33.46 -30.9324 -71.01 103.88 223.91 33 6.8 PP NEAR COAST O F C E N T R A L C H I L E 

97288001 15/10/1997 1 3 33.46 -30.9324 -71.01 103.88 223.91 33 6.8 Sdiff NEAR COAST OF CENTRAL CHILE 

97301007 28/10/1997 6 15 17.33 -4.3189 -76.63 80.78 238.26 124.5 6.5 P NORTHERN PERU 

97301007 28/10/1997 6 15 17.33 -4.3189 -76.63 80.78 238.26 124.5 6.5 PP NORTHERN PERU 

97312006 08/11/1997 10 2 52.61 35.0443 87.31 65.12 59.86 10 7.9 P TIBET 

97312006 08/11/1997 10 2 52.61 35.0443 87.31 65.12 59.86 10 7.9 S TIBET 

97313010 09/11/1997 22 56 42.75 13.6488 -88.96 69.09 257.28 190.8 5.7 P EL SALVADOR 

97313010 09/11/1997 22 56 42.75 13.6488 -88.96 69.09 257.28 190.8 5.7 pP EL SALVADOR 

97313010 09/11/1997 22 56 42.75 13.6488 -88.96 69.09 257.28 190.8 5.7 s EL SALVADOR 

97313010 09/11/1997 22 56 42.75 13.6488 -88.96 69.09 257.28 190.8 5.7 sS EL SALVADOR 

97319007 15/11/1997 7 5 16.64 43.9092 144.94 70.51 11.98 160.9 5.7 P HOKKAIDO, JAPAN REGION 

97319014 15/11/1997 18 59 24.3 -15.1498 167.33 130.06 351.64 123.2 6.6 PKIKP V A N U A T U ISLANDS 

97322017 18/11/1997 13 7 41.73 37.618 20.64 35.86 119.78 33 6.4 P IONIAN SEA 

97322017 18/11/1997 13 7 41.73 37.618 20.64 35.86 119.78 33 6.4 PP IONIAN SEA 

97322017 18/11/1997 13 7 41.73 37.618 20.64 35.86 119.78 33 6.4 S IONIAN SEA 

97322018 18/11/1997 13 13 46.16 37.296 20.85 36.22 119.78 33 5.3 P IONIAN SEA 

97325003 21/11/1997 I I 23 6.31 22.2137 92.83 78.79 60.97 56.9 6 P INDIA-BANGLADESH BORDER 
REGION 

97325003 21/11/1997 I I 23 6.31 22.2137 92.83 78.79 60.97 56.9 6 pP INDIA-BANGLADESH BORDER 
REGION 

97327006 23/11/1997 3 51 0.44 40.1475 138.76 73.57 17.33 33 5.8 P EASTERN SEA OF JAPAN 

97332013 28/11/1997 22 53 41.53 -13.4425 -68.78 86.70 227.79 585.6 6.3 P PERU-BOLIVIA BORDER REGION 

97332013 28/11/1997 22 53 41.53 -13.4425 -68.78 86.70 227.79 585.6 6.3 PP PERU-BOLIVIA BORDER REGION 

97332013 28/11/1997 22 53 41.53 -13.4425 -68.78 86.70 227.79 585.6 6.3 PP PERU-BOLIVIA BORDER REGION 

97332013 28/11/1997 22 53 41.53 -13.4425 -68.78 86.70 227.79 585.6 6.3 s PERU-BOLIVIA BORDER REGION 

97339010 05/12/1997 I I 26 54.69 54.9695 161.91 60.14 359.20 33 7.7 p NEAR EAST COAST OF 
K A M C H A T K A 

97339010 05/12/1997 I I 26 54.69 54.9695 161.91 60.14 359.20 33 7.7 pP NEAR EAST COAST OF 
K A M C H A T K A 

97339011 05/12/1997 I I 35 19.58 53.894 161.58 61.22 359.41 33 6 p OFF EASP COAST OF 
K A M C H A T K A 

97339011 05/12/1997 I I 35 19.58 53.894 161.58 61.22 359.41 33 6 pP OFF EAST COAST OF 
K A M C H A T K A 

97339012 05/12/1997 11 37 9.32 54.376 162.34 60.73 358.91 33 5.7 p NEAR EAST COAST OF 
K A M C H A T K A 

97339013 05/12/1997 11 48 40.% 54.439 162.53 60.67 358.79 33 5.8 p NEAR EAST COAST OF 
K A M C H A T K A 

97339014 05/12/1997 I I 51 10.39 54.133 161.56 60.98 359.43 33 5.4 p NEAR EAS T COAST OF 
K A M C H A T K A 

97339048 05/12/1997 18 48 22.79 53.9124 161.45 61.20 359.50 33 6.5 p OFF EAST COAST OF 
K A M C H A T K A 

97339048 05/12/1997 18 48 22.79 53.9124 161.45 61.20 359.50 33 6.5 pP OFF EAST COAST OF 
K A M C H A T K A 
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973.19048 05/12/1997 18 48 22.79 53.9124 161.45 61.20 359.50 33 6.5 S O R 7 CAST COAST OF 
K A M C H A T K A 

97339051 05/12/1997 19 4 6.7 53.767 161.65 61.34 359.37 33 5.6 OFF BAST COAST OF 
K A M C H A T K A 

97345012 11/12/1997 7 56 28.85 3.9174 -75.72 72.78 240.49 150 5.8 P COLOMBIA 

97345012 11/12/1997 7 56 28.85 3.9174 -75.72 72.78 240.49 150 5.8 S COLOMBIA 

97351004 17/12/1997 4 38 51.46 51.2991 178.85 62.97 347.37 33 6.5 P RAT ISI.ANDS, A L E U T I A N 
ISLANDS 

97351007 17/12/1997 5 51 29.22 36.3392 70.79 57.58 72.60 201.6 5.6 P HINDU RUSH REGION 

97351007 17/12/1997 5 51 29.22 36.3392 70.79 57.58 72.60 201.6 5.6 sP HINDU KUSH REGION 

97352010 18/12/1997 15 2 0.32 13.5546 -88.97 69.17 257.25 179.4 5.7 P GL SALVADOR 

97352010 18/12/1997 15 2 0.32 13.5546 -88.97 69.17 257.25 179.4 5.7 PP EL SALVADOR 

97356004 22/12/1997 2 5 50.08 -5.5428 147.77 119.94 14.90 179.7 6.7 PK1KP EAST PAPUA NEW GUINEA 
REGION 

97356004 22/12/1997 2 5 50.08 -5.5428 147.77 119.94 14.90 179.7 6.7 PP EAST PAPUA NEW GUINEA 
REGION 

97356012 22/12/1997 10 3 45.18 13.6019 -90.32 69.69 258.54 33 5.5 P NEAR COAST O F G U A T E M A L A 

98001009 01/01/1998 6 11 22.64 23.995 141.99 89.94 17.04 33 6.7 P VOLCANO ISLANDS REGION 

98080018 21/03/1998 18 22 28.46 36.407 70.15 57.27 73.08 223.1 6 P HINDU KUSH REGION 

98088008 29/03/1998 7 14 58.98 -0.327 -17.88 65.33 178.77 10 5.5 P NORTH OF ASCENSION ISLAND 

98088008 29/03/1998 7 14 58.98 -0.327 -17.88 65.33 178.77 10 5.5 S NORTH OF ASCENSION ISLAND 

98088020 29/03/1998 19 48 16.21 -17.4152 -179.24 130.65 334.46 539 6.4 PKIKP FIJI ISLANDS REGION 

98088020 29/03/1998 19 48 16.21 -17.4152 -179.24 130.65 334.46 539 6.4 PP FIJI ISLANDS REGION 

98088020 29/03/1998 19 48 16.21 -17.4152 -179.24 130.65 334.46 539 6.4 pPKIKP FUl ISLANDS REGION 

98088020 29/03/1998 19 48 16.21 -17.4152 -179.24 130.65 334.46 539 6.4 SS FIJI ISLANDS REGION 

98091012 01/04/1998 17 56 23.36 -0.5056 99.38 102.22 63.86 33 6.8 SS SOUTHERN SUMATERA 

98093022 03/04/1998 3 19 57.87 -8.1884 -74.22 83.54 234.61 164.5 6 P PERU-BRAZIL BORDER REGION 

98093022 03/04/1998 3 19 57.87 -8.1884 -74.22 83.54 234.61 164.5 6 PP PERU-BRAZIL BORDER REGION 

98093022 03/04/1998 3 19 57.87 -8.1884 -74.22 83.54 234.61 164.5 6 S PERU-BRAZIL BORDER REGION 

98100013 10/04/1998 15 0 53.14 32.5466 60.01 56.39 84.03 33 5.7 P IRAN 

98105013 15/04/1998 15 23 6.92 58.5105 164.60 56.57 357.57 33 5.5 P K A M C H A T K A 

98105013 15/04/1998 15 23 6.92 58.5105 164.60 56.57 357.57 33 5.5 s K A M C H A T K A 

98116037 26/04/1998 14 16 52.2 0.852 17.40 69.29 140.63 10 5.5 p CONGO 

98119003 29/04/1998 3 30 39.34 36.178 21.92 37.56 119.84 33 5.3 p GREECE 

98119003 29/04/1998 3 30 39.34 36.178 21.92 37.56 119.84 33 5.3 s GREECE 

98138013 18/05/1998 17 19 4.82 39.232 15.14 32.42 125.82 297 5.3 p SOUTHERN I T A L Y 

98138013 18/05/1998 17 19 4.82 39.232 15.14 32.42 125.82 297 5.3 s SOUTHERN I T A L Y 

98148001 28/05/1998 18 33 28.1 31.3723 27.67 43.99 116.59 10 5 p ARAB REPUBLIC OF EGYFI" 

98148001 28/05/1998 18 33 28.1 31.3723 27.67 43.99 116.59 \0 5 s ARAB REPUBLIC OF EGYPT 
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Appendix 23. E X A M P L E O F AN A C H M O D E L F I L E 

The following example of an ACH model file is for model p_10_75_225. The 

reader is referred to the ACH documentation for full details of the input format 

required by the ACH program thrd. 

HOTSPOT P_10_75_225 
64N53.26 019W17.57 00.0 

225.0 5 10 0 a 0.0500 b 0.1000 c 0.2000 x 9.9999 y 9.9999 
z 99.9999 

0 1 0 0 1 0 0 1 0 
5 80000 10 00000 1 10 00000 42 10 00000 0 000 0 000 
8 04000 48 00000 8 75 00000 10 75 00000 0 000 0 000 
8 04550 48 00000 10 75 00000 12 75 00000 0 000 0 000 
8 08060 49 00000 12 75 00000 12 75 00000 0 000 0 000 
8 21670 49 00000 12 75 00000 12 75 00000 0 000 0 000 
8 37300 51 00000 12 75 00000 14 75 00000 0 000 0 000 
8 55910 51 00000 14 75 00000 16 75 00000 0 000 0 000 
8 74890 53 00000 16 75 00000 16 75 00000 0 000 0 000 
8 94240 53 00000 16 75 00000 18 75 00000 0 000 0 000 
9 46420 57 00000 20 75 00000 20 75 00000 0 000 0 000 
9 65570 57 00000 22 75 00000 22 75 00000 0 000 0 000 
9 85060 60 00000 26 75 00000 26 75 00000 0 000 0 000 

10 05550 60 00000 34 75 00000 34 75 00000 0 000 0 000 

ASB 6444 92N02119 92W 110 
G I L 6604 64N01621 64W 141 
GRA 6555 06N01734 06W 25 
GRI 6632 49N01800 49W 36 
GRS 6538 29N01607 29W 390 
HVE 6452 29N01933 29W 641 
KRA 6541 68N01646 68W 437 
KRO 6405 89N02107 89W 139 
REN 6538 82N01654 82W 345 
SIG 6607 94N01854 94W 16 
SKR 6433 62N01823 62W 812 
T01 6429 65N02110 65W 205 
T02 6444 75N02213 75W 40 
TO 3 6454 46N02351 46W 35 
T04 6510 83N02225 83W 40 
TO 5 6506 58N02105 58W 35 
T06 6542 30N02140 30W 25 
T07 6535 90N02230 90W 40 
T08 6536 59N02409 59W 8 
T09 6552 43N02329 43W 50 
T10 6555 60N02225 60W 7 
T i l 6525 34N02043 34W 108 
T12 6540 24N01935 24W 38 
T13 6541 16N01805 16W 24 
T14 6518 17N01815 17W 245 
T15 6607 26N01510 26W 20 
T16 6532 45N01345 45W 5 
T17 6515 30N01430 30W 80 
T18 6509 96N01518 96W 342 
T19 6448 72N01405 72W 50 
T20 6417 27N01508 27W 15 
T21 6352 61N01638 61W 20 
T22 6346 19N01807 19W 65 
T23 6424 40N01715 40W1730 
T24 6453 18N01521 18W 600 
T25 6503 24N01639 24W 920 
T26 6501 74N01819 74W 740 
T27 6512 00N01935 OOW 450 
T28 6431 93N01929 93W 600 
T29 6543 68N01450 68W 60 
T30 6407 80N02153 80W 50 
VOG 6358 11N02223 34W 12 


