
Durham E-Theses

Di�raction and database analyses of photoactive

biphenyl compounds and novel carbaborane structures

Mackinnon, Angus

How to cite:

Mackinnon, Angus (1999) Di�raction and database analyses of photoactive biphenyl compounds and

novel carbaborane structures, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/4594/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4594/
 http://etheses.dur.ac.uk/4594/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


DIFFRACTION AND DATABASE ANALYSES OF 
PHOTOACTIVE BIPHENYL COMPOUNDS AND NOVEL 

CARBABORANE STRUCTURES. 

Angus MacKinnon 

Thesis submitted in part fulfilment o f the requirements for the degree of 

Doctor o f Philosophy 
at the 

University o f Durham 

Department o f Chemistry 
September 1999. 

The copyright of this thesis rests 
witli tlie autlior. No quotation 
from it should be published 
witliout the written consent of the 
author and infomiation derived 
from it should be acknowledged. 



The work described in this thesis was carried out in the Department of Chemistry at the 

University of Durham between October 1995 and September 1998, under the supervision of 

Prof Judith A. K. Howard. A l l the work is my own, unless otherwise stated, and has not 

been submitted previously for a degree at this, or any other University. 

Angus MacKinnon 

The copyright of this thesis rests with the author. No quotation from it should be published 

without his prior written consent and information derived from it should be acknowledged 



ABSTRACT. 

The research involved in this thesis is mainly concerned with crystallography and the 

analysis using crystallographic techniques and methods. 

The work in this thesis is centered mainly on two types of chemical compounds, photoactive 

compounds and carbaboranes. 

The first is the photoactive compounds of biphenyl, its derivatives and similar compounds; 

these compounds have been studied by diffraction and database analysis. The 

photochemistry and subsequent structural analysis of biphenyls has been studied in 

coUaboratibn with Professor Peter Wan at the University of Victoria, Canada. In this study 

Professor Wan and his group conducted all synthesis and spectroscopic analysis, including 

the photochemical analysis. 

In a similar study although not with biphenyls, the a-azidocinnamates were investigated in 

collaboration with Professor Meth-Cohn of the University of Sunderland. Professor Meth-

Cohn and his group conducted all synthesis and spectroscopic analysis. 

The biphenyl type compounds have also been studied using database analysis to examine the 

bond lengths, torsion angles, inter-/intra-molecular interactions and general packing 

conformations and interactions within these structures and this analysis was used to study 

several conformational anomalies that exist in biphenyl derivative compounds. 

The second chemical type is carbaboranes; these compounds have been examined in 

collaboration with Professor Wade's group at the University of Durham. The analysis of 

carbaboranes centers mainly on hydrogen bonding however also expands into several novel 

carbaborane structures. Professor Wade and his group carried out the synthesis and 

spectroscopic analysis. 
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C H A P T E R 1 

1.1 I N T R O D U C T I O N . 

The topics within this thesis are concentrated on structural analysis using a variety of 

methods. Their methods all involve diffraction either by X-rays or neutrons. For any of the 

work in this thesis to have taken place the discovery, use and experimentation of X-rays has 

had to be conducted and advanced. This is an ongoing process with great advancements been 

made and this has been the case for ahnost a century. 

The discovery of X-rays and their diffraction led to the major advancement in science 

(medicme, physics, chemistry and many many more), most importantly to this thesis these 

advancements have fundamentally affected the field of chemistry. I f it was not for the 

developments of diffraction techniques and subsequently the emergence of crystallography 

then we would still have distinct problems in structural analysis. The development of 

techniques including NMR and spectroscopy is largely dependent on validation using 

crystallographic data. Stereochemical knowledge of optically active compounds owe much to 

crystallography. It was Bijvoet using anomalous scattering of X-rays to demonstrate the 

absolute structure of ± glyceraldehyde that confirmed the structure that Fischer had 

previously assigned to it. In essence, most structural analysis of the modem era owes a great 

deal to the scientists who pioneered and advanced the field of crystallography. 

The use of X-rays and their diffraction is relatively modem. The first ever Nobel Prize in 

Physics was awarded to Wilhelm Conrad Rontgen in 1901 for his discovery and 

characterization of what were then called "Rontgenrays". The results of Conrad Rontgen's 

first experiments to determine the properties of this new radiation were initially described in 

his paper on the 28* December, 1895 (Rontgen, 1895). Rontgen called these new 'rays' "X-

rays" to distinguish them from other types of 'rays'. Initially Rontgen could find little to link 

these new rays to the properties of visible light, despite some obvious similarities. Many of 

these differences (i.e. diffraction and refraction) were due to the small wavelength. However, 

he did find evidence of interference and became convinced of 'longitudinal vibrations' 

(Rontgen, 1895). The discovery of these new X-rays/R6ntgenrays created a lot of public 

interest as well as in the scientific community (M*^Clure's Magazine, 1896). The nature of 

these rays were largely a mystery until Max Theodor Felix von Laue began to discover the 

properties of these X-rays/Rontgenrays. In 1914 Max Theodor Felix von Laue became a 

Nobel Laureate for his discovery of the diffraction of these "Rontgenrays" by a crystal. The 

significance of this work was twofold; it confirmed that X-rays/Rontgenrays displayed wave 

character and that a crystal is a symmetrical three-dimensional array of atoms that can act as 

a diffraction grating. This work was greeted with great interest and even before von Laue had 

received his Nobel Prize, work was aheady ongoing to use the diffraction phenomenon in the 
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elucidation of crystal structure. Debye was prominent in his assertion that the X-rays were 

being scattered by electrons. Debye and Scherrer attempted to determine the ionic charges in 

LiF (Debye and Scherrer, 1918), followed by a similar study by Bragg, on NaCl (Bragg et al, 

1922). Bragg also endeavored to use diffraction data to obtain an experimental description of 

the covalent bonding in diamond by calculating the diffracted intensities, which would result 

from the localized two-electron bonds in accord with the Lewis model (Bragg et al, 1921). 

It is thus apparent that, right from the start, X-ray diffraction was recognized not only as a 

tool for the molecular structure determination in the sense of definite atomic positions, but 

also for the determination of the electronic structure, and therefore it would be of huge benefit 

for not only chemistry, but for all science. 

In the modem laboratory the use of diffraction with X-rays has distinct advantages over other 

analytical techniques, mcluding that of neutron diffraction. X-rays are easily produced in 

large quantities by relatively inexpensive equipment that is becoming increasingly easier to 

use. The diffractometers used can be adapted to include high pressure cells, laser excitation 

equipment and ultra low cooling devices, etcetera. The chemical samples used can be 

relatively small, a crystal for X-ray diffraction can be 100 times smaller than that used for 

neutron diffraction work and the crystal may be of much lower quality. The main advantage 

of X-ray analysis over other analytical techniques is that from a sample of a single crystal, 

where little is known about the structure, the result will be a definitive crystal structure where 

little is open to mterpretation. Another advantage is that the sample can easily be recovered, 

unless it is air sensitive (where the recovery is much more difficult) or susceptible to X-ray 

damage (where the crystal will be destroyed). 

In this body of research the majority of the analysis has been with X-ray diffraction data or 

the analysis of previous work done by X-ray diffraction. There has been some neutron 

diffraction work to compliment the X-ray data and also other analytical techniques have been 

conducted so as to obtain additional information, again to corroborate the X-ray diffraction. 

For the structure and synthetic work of the photochemicals and the carboranes in this thesis, 

the defining part of the study has been with the use of X-ray diffraction. In the database 

study, the analysis takes a slightly different form, with the Cambridge Structural Database 

(CSD) being used to examine a collection of structures that have been found previously with 

X-ray or neutron analysis. The majority are X-ray studies since structure solving by this 

technique is much more common than that of neutron analysis. 

The work in this thesis can be divided into several parts; although these parts are not strictly 

separate and some overlap (considerably), there are definite sections in this work, with 

photochemistry, biphenyls and carboranes. 



Firstly the photochemical analysis of simple organic compounds, which is collaborative work 

that relies on several analytical techniques including the X-ray and neutron diffraction 

analysis to give definitive answers on the stmctural implications of the photochemical 

reaction involved. This work has been done in collaboration with Prof Peter Wan and his 

group in the University of Victoria, Victoria, British Columbia, Canada, with the study of the 

photochemistry of a-Azidocinnamates in collaboration with Prof Otto Meth-Cohn and Dr 

Nicola Williams of the University of Sunderland, UK. The second part is the database work 

done with the CSD. This section was inspired by the work in the fu-st section on biphenyl and 

derivative compounds, although the database study became more involved and encompassed 

many more aspects than were associated initially with the photochemical analysis. The third 

part is independent from the first two parts and involves the structural determination of 

carborane cage structures, with specific reference to their hydrogen bonding. 
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C H A P T E R ! 

DIFFRACTION, X-RAYS, NEUTRONS AND S T R U C T U R E DETERMINATION 

2.1 S I N G L E C R Y S T A L DIFFRACTION 

This chapter is designed to give a brief introduction to the theory of X-ray diffraction and 

procedure, with specific attention paid to details that are relevant to experiments and procedures 

contained in this thesis. Specific reference will be made to instrumentation and equipment used. 

Soon after von Laue's initial experiment to show that a single crystal could diffract X-rays, the 

Braggs discovered that the angular distribution of the X-radiation scattered by a single crystal 

was predictable. Bragg showed that all diffracted beams produced by an appropriate orientation 

of a crystal in an X-ray beam could be regarded geometrically as i f they were being reflected 

from sets of parallel planes passing through lattice points. This diffraction can be compared to 

reflection of light by a mirror, with the angles of incidence and reflection being equal and that the 

incoming and outgoing X-ray beams and the normal to the reflecting planes must themselves all 

lie in one plane (see Figure 2.1). The reflection by adjacent planes in the set gives interference 

effects, to define a plane three mtegers need to be specified to give its orientation with respect to 

the three-unit cell edges, these are the Miller indices h, k, and /. The spacing between the 

successive planes is determined by the lattice geometry, and thus is a function of the unit cell 

parameters. For reflection by two adjacent parallel planes, the path difference can be denoted by 

Equation 2.1; 

Path Difference =nA, = Idhki sin 6 Equation 2.1 

This was developed by W. L. Bragg soon after he had demonstrated that X-rays could be 

diffracted and is commonly referred as the Bragg equation. In practice the value of n can always 

be set to one by considering planes with smaller spacing, (i.e. n=2 for the planes hkl is equivalent 

to n=\ for 2h, 2k, 21). So Equation 2.1 can now be represented in the form. Equation 2.2; 

X = Idhu sin 0 Equation 2.2 



It is in this form that the Bragg equation is usually represented. The Bragg equation allows each 

observed reflection (diffracted beam) to be labeled uniquely with its three indices and for its net 

scattering angle, (20), to be calculated from the unit cell geometry, of which each dm spacing is a 

fimction. The distance of each spot from the centre of an X-ray diffraction pattem is proportional 

to sin^ and hence to l/dhw for some set of lattice planes. The reciprocal nature of the geometrical 

relationship between a crystal lattice and its diffraction pattern, is seen in Figure 2.1. 

As seen with the analogy between X-ray diffraction and optical reflection, it is possible to 

compare the X-ray diffraction to optical phenomena, and this can be taken fiirther for optical 

microscopes and telescopes. Enlargement of images is by collecting and recombining the visible 

radiation scattered by the objects using a series of magnifying lenses or/and mirrors. The 

resolution of the microscopes is limited to the wavelength of visible light (6 x 10"̂  m). To look at 

objects smaller than this it is necessary to use radiation that has a shorter wavelength. High-

energy electrons are used in electron microscopes to view atoms and X-rays are used to determine 

the structures of the molecules that make up crystals (10"^-10'^° m). X-radiation is not found to 

naturally occur in the quantities needed for X-ray diffraction analysis, although some atoms will 

radiate X-radiation. This is in contrast to light in the visible spectrum, where there is enough 

radiation available to facilitate optical microscopy. So X-rays have to be manufactured by 

artificial means for use. X-rays are produced when a beam of high-energy electrons strikes a 

metal target. Two types of radiation are emitted; a continuous X-ray spectrum and sharp emission 

lines with wavelengths characteristic of the metal from which the target is made (Figure 2.2). It is 

the emission lines that are employed in X-ray diffraction experiments. They are produced because 

some of the electrons that strike the target have sufficient energy to eject electrons from the inner 

shells of the metal atoms. Electrons from higher energy shells drop down to occupy the vacated 

inner shells. These electrons must lose the energy difference between the two energy levels and so 

there is an emission of a specific energy, which is the difference between the outer and inner 

shells, in the form of X-rays giving rise to the sharp peaks observed in the X-ray spectrum. The 

continuous X-ray spectrum is made up of white radiation. This white radiation occurs due to 

electrons being slowed down or stopped by collisions. Some of the lost energy is converted to 

electromagnetic radiation. The intensity is the relative number of photons produced and is directly 

related to the number of high energy electrons striking the metal target. 
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Figure 2.1 The Bragg dififraction for 3-Dimeiisioiial space 

Figure 2.2 The spectrum of wavelengths against intensity of a typical X-ray tube 



2.2 X - R A Y DIFFRACTION EXPERIMENTATION, EQUIPMENT AND 

TECHNIQUES. 

To determine the molecular stmctures from single crystals using X-ray diffraction data is a 

reasonably complicated process, which involves several steps. The following text will give a brief 

overview, m general terms, the steps to obtain the structural results described in this thesis (with 

particular reference to the instrumentation used). More comprehensive accounts of stmcture 

solution and the theory behind it can be found in any of the standard crystallography texts (see 

Crystal Structural Analysis: A Primer, Glusker and Tnieblood, 1985). 

The two instruments used in the collection of X-ray data reported in this thesis are a Siemens 

SMART CCD diffractometer and a Rigaku four circle diffractometer. A schematic representation 

of an Eulerian four circle dififractometer like the RIGAKU AFC6S is shown in Figure 2.3, which 

illustrates the four circles. The 4-circle diffractometer consists of a radiation source; a computer 

controlled goniostat that consists of four concentric circles and a detector. Three of the circles (<|), 

X and (o) are used to orientate the crystal in space. For the SMART CCD the x circle is fixed. 

The fourth {20) is used to move the detector. Al l datasets were obtained using a Molybdenum K a 

X-radiation source and low temperature data collections were performed using an Oxford 

Cryosystems nitrogen Cryostream device (Cosier and Glazer, 1986) attached to the 

diffractometer. The area detector is similar but has the x circle replaced by an area detection unit. 

Moaaled 

Figure 2.3 Simple schematic representation of a 4-circle diffinctometer 



2.2.1 Crystal Selection and Mounting 

The first step in the experimental procedure is always to examine the crystals, since i f the crystals 

are unusable then the experiment cannot proceed further. A polarizing microscope is the best way 

of examination. Crystals, which do not have straight edges, which have large numbers of smaller 

crystals (or crystallites) attached to them, or which have re-entrant angles, are generally 

disregarded. Ideal samples are, therefore, have clear and well defined faces and, i f possible, 

approximately equal dimensions (i.e. not needles or plates) in order to minimize differential 

absorption effects. This is ideal, but in practice the quality of obtainable crystals are often not of 

such a standard and so quite often crystals that are not ideal are selected. 

The overall sizes, as well as the relative dimensions, of the crystals are also important. The 

scattering power of a crystal depends on its volume as well as on contents. However, as crystal 

size increases so does the amount of absorption and these two effects had to be balanced. In 

practice, an upper limit on crystal size is imposed by the diameter of the X-ray beam produced by 

the instrument being used. Usually the sample is picked to have linear dimensions of between 0.1 

mm and 0.5 mm. 

The specific way in which the compounds are mounted depends on whether the sample is air 

and/or moisture sensitive. Air stable compounds are usually glued to the end of a fine glass 

filament usmg small amounts of a fast setting epoxy resin. The filament is then inserted into a 

brass pip and usually secured with wax. The pip is fitted into a well in the top of a goniometer 

head and held in place using a grub screw. The goniometer head is then located on its mount on 

the (|) circle of the diffractometer and screwed firmly into place. However, air and moisture 

sensitive crystals have to be kept in a suitable environment during the experiment. The way this 

was done with such samples in this thesis is using the oil drop method (Stalke and Kottke, 1993). 

This involves coating the crystals in a highly viscous perfluoropolyether oil whilst they were still 

in a nitrogen environment. The oil forms a thin film around the crystals allowing them to be 

removed from the nitrogen atmosphere and attached to glass filaments. The viscosity of the oil is 

such that no additional adhesive is required to do this The oil forms a barrier around the crystal 

from the au- and moisture thereby keeping the sample crystalline so as to diffract. The mounted 

sample is then put onto the diffractometer and rapidly cooled, causing the oil to harden and form 

a rigid barrier around the crystal which protects the sample from the atmosphere. The oil is 

amorphous and so will increase the amount of diffuse scattering from the sample, especially since 



it covers the whole crystal, and consequently detracts from the quality of the data, so the method 

involving glue (epoxy resin) is preferred when possible. Although the resin is also amorphous it is 

preferred to the oil, for air/moisture sensitive materials because when it is used, the amount used 

can be kept to a minimum. The epoxy resin method is preferred because the crystal sample can be 

cooled at a much slower rate, rather than the flash freezing necessary for the oil method and 

therefore minimises damage on cooling. 

Finally, the mounted crystal is optically centered in the X-ray beam. A crystal which is correctly 

centered will remain in the path of the X-ray beam when the ^ and % axes of the diffractometer 

are rotated. 

2.2.2 Cooling Devices 

Collecting the data at reduced temperatures helps to increase the number of observable data and 

increases the precision of all the measured reflections, it also reduces the amount of atomic 

motion. The type of cooling device used for both the SMART CCD and the RIGAKU AFC6S 

uses a cold inert gas flow. Cryostream nitrogen gas-stream cryostats (Cosier and Glazer, 1986) 

were used for all the X-ray diffraction data reported herein. These cryostats are designed to have 

a working range that is stable over the temperature range from approximately 100 K to room 

temperature. The diffractometers in this thesis are both fitted with these types of cryostats. 

Liquid nitrogen is drawn up from an unpressurised Dewar vessel through a vacuum insulated 

supply line and into an evaporation coil by a diaphram pump. Most of the liquid is evaporated to 

gaseous nitrogen at its boiling point (77.4 K), passed through a heat exchanger to bring it to just 

below room temperature and then passed through the diaphram pump. The nitrogen gas is then 

pumped back through the heat exchanger at a constant flow rate, controlled by the pump and a 

flow regulating valve. The gas then passes from the cold end of the heat exchanger over a heater, 

which allows the temperature to be controlled, and on to the sample. A temperature sensor is 

situated at the tip of the delivery nozzle. There is usually some temperature gradient between the 

position of this sensor and the crystal so the device needs to be calibrated. The original calibration 

was carried out by observing the phase transition between the tetragonal and orthorhombic phases 

of KDP (KH2PO4) which occurs at 122 K (Nehnes et al., 1987). The particular feature of this 

gas flow cryostat is the positioning of the pump, between the liquid supply and the gas output. 

The heat exchanger is required as the pump operates at room temperature. Generally flow rate is 



set at around 0.5 lhr"\ which is reasonably economical and ensures a stable temperature. To 

reduce the problem of frosting the cold gas the stream is surrounded by a flow of dry air. 
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2.3 T H E R I G A K U AFC6S 

For the Rigaku AFC6S diffractometer the X-ray source is a copper X-radiation tube (A-Ka= 

1.5418 A) this is useful for measuring samples that are weakly diffracting and to determine 

absolute configurations in light atom structures by anomalous dispersion studies. To 

monochromate the beam a (111) graphite crystal plane is used with a (0.2mm, 0.5mm or 0.8mm 

check) lead collimator. The sample is mounted onto a goniometer head, which is screwed onto the 

())-shaft and the crystal is centered using the instrument's in-buih microscope. The crystal is now 

ready to be centered in the X-ray beam and once this is done the sample is ready for X-ray 

diffraction analysis. 

For safety a lead glass-panelled interlocking door prevents the user accessing the instrument and 

allows the X-ray beam shutter to open i f the door becomes opened then the X-ray shutter will be 

automatically closed. Computer controlled software is then used to move the circles in order to 

search for diffraction from the sample. To avoid damage to the detector by non-diffracted X-rays 

a lead beam-stop is situated in the direct-line of the incident beam in between the sample and the 

detector. The Oxford Cryosystems Cryostream cooling device (Cosier & Glazer, 1986) as 

described previously is positioned diagonally above the sample such that collision with the x 

circle of the Eulerian cradle is avoided. The diffracted X-ray beams themselves are detected using 

a KBr scintillation counter. The Rigaku AFC6S diffractometer uses MSC/AFC Diffractometer 

Control Software (Molecular Structure Corporation, 1991). 

2.3.1 Searching and Indexing the diffracted beams 

To proceed with the diffraction expermient the Rigaku AFC6S diffractometer needs to find the 

correct orientation of the crystal. To obtain a reliable preliminary orientation matrix for a given 

crystalline sample in an X-ray experiment, betweeii 10 and 20 suitable reflections are usually 

required. The diffractometer is set to search for 20 suitable reflections by systematically 

'zigzagging' through reciprocal space. These 20 reflections are indexed together or, i f initial 

indexing fails, in smaller groups. I f fewer than 20 reflections are found then the software can 

attempt indexing with the number that have been found, but because the indexing is less precise 

with fewer reflections, usually any less than 12 reflections would be considered too few. I f the 

indexing procedure fails, it is possible to select the peaks to be indexed manually using given 
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criteria (e.g. good profiles or high intensity). The 'auto-indexing' or 'real space method' strategy 

((Clegg, 1984), (Sparks, 1976 and 1982)) is used to determine the orientation matrix and cell 

parameters of a given crystal. This method does not work in reciprocal space but in real space. 

The three shortest non coplanar vectors are arbitrarily assigned the indices 100, 010 and 001 such 

that a preliminary orientation matrix and unit cell can be generated. Although this unit cell (a', b', 

c') will probably not be the 'true' cell, it must be a sub-cell, since all vectors in the true lattice are 

also vectors in a lattice described by a sub-cell. The program then tests the cell by generating 

vectors, (t ^ ua' + vb' +wc', where u,v,w are integral values) up to a specified maximum length 

and calculating the product, t.n for each of the 3n vectors, where n is an integer. I f t.x is an 

integral (within a small tolerance) for all reflections in the given list, then this x vector will be a 

true lattice vector. Otherwise, it is not a lattice vector and a new x vector must be chosen and the 

whole procedure repeats until 3 x vectors are found which satisfy this condition. 

I f the indexing is successfiil then the deduced cell parameters are refined and checked to make 

sure that the given cell is not a sub-cell of the true cell and to determine which Bravais lattice type 

and Laue class the crystal structure probably belongs. Collecting symmetry equivalents is 

advantageous since it improves statistics on merging, reduces systematic errors, improves 

precision and gives an indication of internal consistency of data and the absolute configuration 

and improves the matrix. It is always good practice to collect symmetry equivalents and Friedel 

equivalents although there are inherent limits in angular range by collision limits. Once the crystal 

symmetry has been satisfactorily ascertained a data collection can be undertaken. I f the symmetry 

is in any doubt whatsoever, a data collection suitable for a triclinic crystal should be performed, 

since with this all quadrants of reciprocal space will be measured, and therefore all unique data 

collected (within a giyen 20 range and machine limits) regardless of its symmetry. So for this 

reason it can prove advantageous to collect a triclinic cell, even i f the symmetry is ultimately 

much higher than triclinic. I f collection time were not a factor, then the data collection suitable for 

triclinic crystals would always be performed, so that one always had more data than needed, but 

this takes much more time and data storage takes up more room, so symmetry considerations are 

used to reduce the collection time and data storage space. 
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2.3.2 Data Collection Strategies 

Since measured precision is proportional to the square root of the time of measurement and one 

can mcrease this precision by either collecting scans more slowly or repeatedly. Since weak 

reflections tend to have particularly poor precision, the level of precision tends to be often very 

disparate. Each control software package therefore attempts to scan reflections to at least a given 

minimum level of precision and to make the overall precision more uniform. The RIGAKU 

AFC6S diffractometer tries to ensure this by first scanning a given reflection and in the process 

determining the measurement's precision. I f this precision falls below the minimum precision 

threshold then the reflection is rescaimed until either this threshold has been reached or the 

maximum number of rescans permitted, as specified by the user, is reached. The actual time per 

scan remains constant throughout the experiment. The types of scan available are 20/co scans, 

0/(0 and co scans. The 20/(o type of scan involves the concurrent rotation of both the detector and 

sample whereas in the latter type of scan only the sample is rotated. It is common practice for 

26/(0 scans to be used instead of co-scans unless the scans are very broad or one or more of the 

cell axes is large, since in such cases peaks are close in 0 and so may overlap the next reflection. 

0/(0 scans may also be taken and these are a compromise of reciprocal space of (o and 20/(o scans. 

The scan width can be either fixed or varied. The width should be defmed to include only where 

the X-radiation amplitude is greater than the background level. In cases where the variable width 

is used, two constant parameters, A and B, from the fiinction ((o°) = A +Btan0 must be evaluated. 

Parameter A is determined experimentally from high angle data and parameter B is fixed at a 

value based on the difference between Kai and Ka2 wavelengths. The fijnction itself allows one 

to account for peak broadening at increasmgly higher 20 values due to increased wavelength 

dispersion. The quantity and frequency of reflections must be measured. It is usefiil to be able to 

detect any problem occurring during data collection, and to do this there should be a periodic 

survey over as large an area of reciprocal space as possible. This is done by choosing three 

reflections of intermecliate strength, each with one alternately large Miller index and are measured 

every 150 or 100 reflections detected on the Rigaku AFC6S diffractometer. 
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2.3.3 Data Reduction 

Once there is data obtained from the diffractometer it needs to be reduced. For the Rigaku 

AFC6S dififractometer this is done using the TEX SAN software (Molecular Structure 

Corporation, 1991). The collected intensities are converted into structure factors via a Lorentz 

and polarization corrections. The Lorentz correction is a geometric correction and is determined 

by the time taken for a given reflection (defined for this purpose as a reciprocal lattice point with 

finite size) to pass through the surface of the sphere of reflection. It takes the form of Equation 

2.3; • 

L=(sin2e)'' Equation 2.3 

The polarization correction (which is geometric) accounts for the partial polarization of both the 

incident X-ray beam by the graphite monochromator and that invoked during diffraction within 

the sample. The amount of polarization is dependent on the value of 28 and is given by Equation 

2.4 

P = (1 + coŝ 2e) / 2 Equation 2.4 
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2.4 THE SIEMENS SMART-CCD DIFFRACTOMETER 

The Seimens SMART-CCD is different to the Rigaku AFC6S diffractometer in that it is not a 4-

circle instrument. This instrument employs an area detection device to efifectively be a 3-circle 

diffractometer. The SMART CCD has only three Eulerian circles since the value of % is fixed at 

54.74 The sample is mounted onto the (j)-shaft, positioned at the centre of these circles and 

centered using the in-built microscope. A 512 x 512 pixel scintillation area detector, which 

employs a charge coupled-device (CCD) to amplify the output, measures the diffraction. The 

diffraction data is collected on a series of frames and each frame covers an area (hence the term 

area detector) in contrast to the standard 4-circle diffractometers which collect data over a series 

of single points. The area detector records the diffracted intensity information over a large area of 

2-dimensional space which is then stored digitally as a 'frame' of diffracted intensity information. 

The actual area covered by the detector per frame is dependent on the distance of the detector 

from the sample. The detector itself has a 90 mm radius circular fiberoptic taper bonded to a one 

inch CCD chip. Since the area covered usually records more than one reflection at a time (per 

frame) then this dramatically speeds up data collection. The instrument employs (111) graphite 

monochromated molybdenum Ka X-radiation that is coUimated using a 0.2mm, 0.5mm or 0.8mm 

lead aperture. A lead beam-stop is fixed in the direct line of the incident X-ray beam and a glass-

paneled interlock prevents user intervention when the X-ray shutter is open, in much the same 

manner as with the Rigaku AFC6S diffractometer. The Oxford Cryosystems Cryostream cooling 

device (Cosier & Glazer, 1986) is positioned diagonally above the sample in a similar manner to 

the other diffractometer previously described 

2.4.1 Data searching and indexing. 

These procedures are carried out using the computer control software, SMART (Seimens 

SMART, 1995). Since this instrument has a two-dimensional detector, it covers a large area of 

reciprocal space in the measurement of each frame of data. This feature allows for the 

determination of the X-ray quality of the crystal via an 'electronic' rotation photograph very 

quickly. I f the X-ray quality looks satisfactory, one continues by searching for reflections. A 

certain number of frames of data (typically 10-20) are measured at a given X-ray exposure time 
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(typically 5-20 seconds) over three different regions of reciprocal space two of which are 

mutually orthogonal. Reflections appearmg in these frames are then selected by a 'thresholding' 

procedure which puts into a list all reflections which exceed a minimum I/a value which is 

specified by the user. An attempt is then made to index these reflections. Usually, a minimum of 

about 20 reflections is necessary for successful mdexing, although the number of reflections for 

good to reasonable diffracting crystals is generally larger (usually 40-100+). The algorithm used 

for this procedure is similar to that described previously (Sparks, 1976 and 1982). I f initial 

indexing fails, one can try sorting this list of reflections with respect to a given parameter, e.g. 

mean intensity, 20 range, etc and then selecting reflections at one end of this scale e.g. of the 

highest intensity, smallest 20 range, etc, for re-indexing. Alternatively, one can either simply 

collect more frames of data and index on a greater number of reflections or remove all of the 

existing reflections in the list and select reflections manually from the frames. This would be done 

on the basis of good sharp peak profiles and moderate intensities and then, this subset would be 

attempted to be re-indexed, or ahernatively recollecting the data with a greater exposure time per 

frame, which will expose the weaker peaks more from the background. 

2.4.2 Data Collection Procedures 

When indexing has proved successful, a least-squares procedure is used to refme the orientation 

matrix, this updates the cell parameters and crystal offsets. Higher symmetry can also checked 

for at this point using the 'Bravais' option. It is then necessary to set up a data collection routine. 

Since it is an area detector, data collection strategies on the Seimens SMART-CCD 

diffractometer are much simpler than those required for the Rigaku AFC6S and four-circle 

diffractometers in general. An co-scan is sufficient and a scan width need not be employed 

because such a large area of reciprocal space is covered in each frame, although a step size must 

be selected. For routine data collections (with Mo Ka X-radiation) typically this value is set to 

0.3 in (0. Although this value can be reduced to a smaller magnitude if the reflections are 

obviously sharper than the average or i f a greater accuracy is required. In these circumstances, 

the number of scans should be increased to collect the same amount of space. Standard 

reflections, like those collected on the Rigaku, cannot be collected on an area detector system, but 
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this does not really matter since data collection on the Seimens SMART-CCD is so fast (typically 

8-20 hours, and often nearer to 8 when the crystal diffracts well) crystal decay usually proves not 

to be a significant factor, A full hemisphere of reciprocal space is surveyed by collecting frames 

of data, in batches at predetermined angular settings, to a maximum value of 20. This value 

(often 50°) depends on the distance between the crystal and the detector (which is typically 6 cm). 

The user selects the length of time in which each frame is collected and this decision is governed 

by the diffracting capability of the sample. The poorer the diffraction of the sample the longer 

each frame needs and the precision of the collection is directly related to this. For a standard data 

collection, this time is typically set to 10-40 seconds depending on the apparent diffracting 

strength of the sample. 

Once the data collection is complete, the user uses parameters that were used initially to index the 

cell and collects reflections over all areas of reciprocal space, to a maximum of 512 permitted by 

the software. This array of reflections is used to determine the unit cell parameters more 

accurately. 

2.4.3 Reduction of the Data 

The collected frames do not directly contain reflections ready for analysis, the frames contain 

data of the reflections and this must be processed into a form of individual reflection data. This 

process is conducted using the program SAINT (Seimens SAINT, 1995). Each three-dimensional 

peak profile is placed in a three-dimensional box of a given size, as specified by the user, where 

the box comprises a grid of 9 x 9 x 9 points. Analyzing a variety of reflections, prior to the data 

reduction allows the box size to be chosen. These reflections are analyzed in terms of their width 

in the x and y directions and the full-width-half-maximum of the co-rocking curve width (the z-

direction). The largest widths in each direction are taken as the dimensions of the box and this is 

constant for each data set. The integration proceeds in two stages. 

The first stage, only the strong reflections (as determined by a specified I/(0)(I) threshold) are 

considered. For each profile, the most intense point in the three-dimensional box is determined in 

order to calculate the background which is assumed to be lower than 2% of this maximum 

intensity. The points that are above this 2% threshold are considered as a signal and are 

normalized. The profiles of all of the strong reflections are stored in a temporary file. 
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The second stage of integration is then performed, in which all weak reflections are considered. 

The profile of each of these reflections is approximated to that of the nearest strong reflection 

profile stored. The weak reflection is then normalized in accordance to this profile. After 

integration, a Lorentz correction is applied (see previous section) before conversion of the 

resulting intensities to structure factor amplitudes. 

The level of decay is then analyzed by comparing reflection intensities with the same hkl indices 

and the same ())-values from the beginning and the end of the data collection. A linear decay 

correction is applied when decay of a measurable value has occurred during the course of the 

experiment. 



2.5 THE ABSORPTION CORRECTION 

In general all datasets collected with copper or molybdenum radiation that have heavier atoms 
than silicon should have an absorption correction applied. The absorption correction compensates 
for attenuation of the X-ray beam as it passes through the crystal. Reflection mtensity is reduced 
by absorption and this is directly related to the volume of the crystal (V). The linear absorption 
coefficient (^i) is based on unit cell contents and the types of atoms present in the unit cell. The 
correction factor (A) is the reciprocal of this value and is represented by Equation 2.4, where t is 
the path length; 

A=yje-''dV Equation 2.5 

This is a simple absorption correction and only directly applies to solids such as spheres and 

cylinders. More complex shapes use either numerical or empirical absorption correction. 

Numerical corrections involve determining the Miller indices of the bounding faces of the crystal 

and their precise dimensions. A mathematical representation of the crystal can be constructed 

from this information, which is then divided up into a Gaussian grid. The contributions made by 

each of the grid points to the total absorption are evaluated and summed so that they approximate 

the integral above. 

Also common are the empirical absorption corrections. In this thesis the semi-empirical correction 

involving \\f scans is often used. In this type of absorption correction the correction works by 

scanning reflections that have x values close to 90° as the crystal is rotated about the diffraction 

vector, \\f. For reflections with % values close to 90° this is achieved ahnost exclusively by 

rotatmg the ^ axis of the diffractometer. Since the path length of the X-ray beam throî gh the 

crystal varies with i j / , the measured intensity of the reflection at different v|; angles will be 

different due to absorption. The numerical and semi-empirical \\f scan absorption corrections have 

been used for datasets in this thesis. The magnitude and any relevant details of the correction 

applied are given in the relevant experimental sections. 
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2.6 T H E D E C A Y C O R R E C T I O N 

When there are variations in the intensities of reflections over time caused by radiation damage or 
other deterioration of the crystal, the 'decay' correction is used to compensate for this. The 
correction is based on changes in the intensities of the standard reflections, which are re-measured 
at regular intervals throughout the data collection. Simple decay corrections use straight line 
functions to describe this variation. The general assumption of isotropic decay is mostly valid but 
may be checked by examining the variation in the individual standards. The purpose of a decay 
correction is to place intensity measurements taken at different stages of the data collection on the 
same basis: for example, if the standards have fallen to half their initial value by the end of the 
data collection and a linear correction is applied, the last reflection would be multiplied by a 
factor double that for the first one. 
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2.7 THE EXTINCTION CORRECTION 

Extinction modifies the beam as it passes through a single block of the crystal, the effect of this is 
that it reduces the intensity of strong reflections at low 20 angles and is especially pronounced in 
the more perfect crystals. There are two types of extinction, primary and secondary. Primary 
extinction occurs when a portion of the diffracted beam is diffracted a second time by the same 
set of Miller planes, causing a phase lag. This introduced lag, a 'double' diffraction causes 
destructive interference and can reduce or increase the intensity of the diffracted beam (see Figure 
2.4a). 

Secondary extinction occurs when separate mosaic blocks within a crystal are aligned identically 

with respect to the incident X-ray beam. The mosaic blocks close to the surface of the crystal 

diffract a portion of the incident beam. The remainder penetrates deeper into the crystal and is 

diffracted by other identically aligned mosaic blocks (see Figure 2.4b). This leads to the blocks 

deeper within the crystal contributing less diffracted intensity because they are shielded from the 

already diffracted incident intensity. 

The quantities that dictate the magnitude of extinction effects, the mosaic spread and the domain 

radius, are usually unknown and empirical extinction corrections are often applied during 

structure refinement. 

Mosaic Block 
Boundaries 

Figure 2.4 Extinction: (a) Primary and (b) Secondary 
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2.8 SPACE GROUP DETERMINATION 

The space group symmetry of the crystal needs to be found. Currently it is with the use of 

computer software that space groups are determined using criteria, (including the Laue symmetry, 

the Bravais lattice type, the cell parameters and the systematic absences). 

To distinguish whether the space group is centrosymmetric or non-centrosymmetric, the 

normalized structure factors are calculated (Wilson, 1942 and 1949). Normalized structure 

factors are corrected for diffracted mtensities that decrease as sin0/A increases. Their derivation is 

from Equation 2.6; 

Fhki 
Ehki = - Equation 2.6 

Where |F|ehki is the mean value of all structure factors that have a scattering angle of Ohid- Since 

|Ehki| values are independent of scattering angle the underlying intensity distributions present 

within datasets become apparent when they are analyzed. Since theoretical probability 

distributions of the |Fhki| and |Ehki| are different where the structure is centric or acentric, 

comparison of the mean of the experimental |Ehki | with the theoretical values for centric and 

acentric structures may determine whether an inversion center is present. Software typically uses 

|Ehki|-l since it has been found that for a centric distribution the value of this function calculated 

using all data is close to 0.97 while for an acentric distribution the value is closer to 0.74. I f the 

experimental value is closer to 0.97 then it is probably centric and closer to 0.74 indicates 

acentric. In some cases with heavy atoms in the structure the presence of the heavy atom may 

distort the statistics of intensity distribution and so the |Ehki|-l value may be misleading 

All the space group determinations described in this thesis were carried out using the XPREP 

program within the SHELXTL program (Sheldrick, 1991). 
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2.9 SOLVING THE STRUCTURE 

Once the correct space group of a crystal has been determined, the full structural solution is 

sought. This is not as simple as may be initially thought, since one measures the intensity of data, 

i.e. amplitude, one can easily deduce structure factor amplitudes from the observed data (i.e. I = 

F^). However one has no idea of the relative phases of these amplitudes because it is |F |̂ rather 

than |F| being deduced. Since there is no knowledge of the phases, the data are rendered useless 

since the structure factors can only be converted into an electron density distribution via a Fourier 

transform, which can only be solved i f one knows the phases involved. This is the so-called 

'phase-problem'; The phase problem has not been solved, but this does not matter since there 

have been methods developed to get around the problem and allow for the solution of crystal 

structures. The two main methods, Patterson methods and Direct Methods are used routinely in 

the solving of a structure by X-ray analysis ((Giacovazzo et al, 1992) and (Sayre, 1952)). 

2.9.1 Patterson methods 

The Patterson method was the first way the phase problem was overcome and is the oldest 

structure solving method. 

Patterson methods are used to determine the phases of the structure factor amplitudes. A 

Patterson function is the Fourier Transform of the square of the modulus of the structure factors. 

Patterson fimctions can be calculated without any phase information. However, the peaks in a 

Patterson map do not correspond directly to atomic positions. Instead, they represent inter-atomic 

vectors. The height of each Patterson peak corresponds to the product of the atomic numbers of 

the atoms linked by the vector. Patterson methods are therefore particularly effective when just a 

few heavy atoms are present. In these situations the heavy atoms usually dominate the scattering 

and the Patterson peaks which represent the vectors between them are the most prominent 

features in the Patterson map. Once the peaks representing the vectors between the heavy atoms 

have been identified, it is possible to determine the positions of the heavy atoms. This information 

is used to derive a set of 'heavy atom' phases, which are combined with the structure amplitudes 

and converted into an electron density distribution. These electron density maps are then used to 
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determme the positions of other atoms within the crystallographic unit cell and so the process can 

be repeated until all the non-hydrogen atoms are located. 

Unfortunately, Patterson methods cannot normally be used to solve 'light atom only' structures 

because there is very little texture in the Patterson maps derived from such compounds. In the 

beginning heavy atom substitution was the only way to overcome these difficuhies and so the 

large range of organic molecules with no heavy atoms present were rarely solved, and for these 

compounds the direct phasing methods, which do not rely on heavy atoms, are important. 

2.9.2 Direct Methods 

In 1985 Herb Hauptman and Jerome Karle won the Nobel Prize for their work on the "Direct 

Method" (Karle, et al, 1958). These methods have surpassed the Patterson method as the most 

frequently used approaches for structure determination, at the present point in time. 

This method relies on the fact that structure factor magnitudes and phases are correlated through 

a prior partial knowledge of the nature of the electron density distribution (Sayre, 1952). 

The convolution of the structure factor magnitudes and phases give the complete structure factor. 

We inherently possess some information about the electron density, e.g. p(x) > 0, p (̂x)dV must 

equal a maximum, and many of the atoms in a given structure may be very similar (this applies 

especially to organic compounds). Such information is expressed as mathematical constraints on 

the function, p(x), and since p(x) is related to the structure factor |F(h)|, corresponding structure 

factor constraints are formulated. Since the structure factor magnitudes are aĥ eady known, these 

constraints apply mainly to the phases. 

A given number of strong reflections are arbitrarily assigned phases and the constraints are 

applied such that, in favorable cases, all phases may then be determined. Obviously the more 

constraints available the easier the determination of the un-assigned phases. 

Since the initial partial assignment of phases is completely arbitrary, the procedure will seldom 

give the correct solution. Moreover, it is not instinctively obvious which is the correct solution. 

Hence, this procedure is repeated, typically 30-200 times and for each solution a combined figure 

of merit (CFOM) is calculated in order to identify the best solution. Once a good solution has 

been found the phases of this are used to generate an electron density map. From this electron 

density map many atomic positions can be determined; this acts as a starting model. The phases 

that are known are used to approximate the unknown phases. Using difference Fourier synthesis 

and least squares refinement, leads to a new electron density map and the assignment of 
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undetermined atomic positions, this is then repeated until all the atoms have been found and the 

model is chemically correct. This method has the advantage that it does not necessitate the 

presence of heavy atoms. 

2.10 REFINEMENT 

The refinement of structures in this thesis is done using computer software, specifically the 

SHELXL-93 software (Sheldrick, 1993). This software uses a model of the structure and by 

performing a least squares calculation brings the calculated structure factors closer to the 

observed data. The least square method of refinement is a statistical method that obtams the best 

fit from the data. It minimizes the sum of the squares of the deviations of the experimentally 

observed values from their respective ones. When refining the data for a crystal structure the 

atomic coordinates and other parameters are made to fit the observed intensities. 
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2.11 NEUTRON DIFFRACTION 

Neutron diffraction is an experimental method which provides accurate positional data for 
hydrogen atoms in molecular crystals and it is for this reason that it is widely used in the 
determination of the geometries of hydrogen bonding interactions. This is despite the relatively 
large costs involved in obtaining neutrons, in comparison to other analytical techniques and X-ray 
diffraction. In recent times there has been a great deal of interest in the so called hydrogen 
bonding, in particular the "weak" hydrogen bonds, such as C-H--0, 0-H--71, 0-H---F, etc. The 
weak hydrogen bond has generated quite a lot of controversy, with the boundaries of what is and 
what is not a hydrogen bond, but this controversy has also generated an increased interest in 
neutron diffraction experiments. 

2.11.1 Neutrons and their characteristics 

Neutrons are an unique probe of condensed matter and the information obtained from neutron 

scattering experiments is crucial to an understanding of a system, either on its own or in 

combination with other physical measurements. 

Neutrons allow the simultaneous measurement of structure and dynamics. This results from the 

fact that thermal neutrons naturally have appropriate properties for each type of measurement. 

For example, thermal neutrons have wavelengths similar to atomic spacing, typically in the range 

0.5-10 A or so. This allows thermal neutron scattering techniques to examine structural features 

in the range 0.1-1000 A. At the same time thermal neutrons have energies similar to the energies 

of atomic movements, in the meV to eV range. This allows the probing of quantum tunnelling 

effects, molecular translations and rotations, molecular vibrations, lattice vibrations and 

electronic transitions within atoms. There are methods of measuring dynamical properties during 

a structural experiment (or vice versa) using other forms of radiation, for example, by performing 

Raman scattering on a sample in an X-ray beam. Such measurements, however, require the 

provision of two sources, in this case an X-ray source and a laser, whereas the corresponding 

measurement with neutrons could be done with just one source (but with two slightly different 

methods of examining the scattered neutrons)., 

Neutrons interact weakly with matter and are therefore non-destructive, even to complex or 

delicate materials and this gives a distinct advantage for X-ray sensitive materials. Accordingly, 

neutrons are a bulk probe, allowing the interior of materials to be probed, not merely the surface 
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layers probed by techniques such as X-rays, electron microscopy or optical methods. Neutrons 

have a magnetic moment, allowing magnetic structure (the distribution of magnetic moments 

within a material) and magnetic dynamics (how these moments interact with each other) to be 

studied in a way not possible with other forms of radiation. Neutrons scatter from materials via 

interaction with the nucleus rather than the electron cloud. This means that the scattering power 

of an atom is not strongly related to its atomic number, unlike with X-rays and electron 

scattering. This has three advantages: 

(i) it is easier to sense light atoms, such as hydrogen, in the presence of heavier ones, which is of 

relevance to this thesis. 

(ii) neighboring elements in the periodic table generally have substantially different scattering 

cross sections; for elements that have a similar atomic number, and hence similar number of 

electrons, this method is extremely useful in distinguishing the separate elements. 

(iii) the nuclear dependence of scattering allows isotopes of the same element to have 

substantially different scattering lengths for neutrons, thus allowing the technique of isotopic 

substitution to be used to yield structural and dynamical details. The use of contrast variation 

where the scattering density of a mixture is matched to part of the system is particularly powerful 

and has been a key to many successful applications of the technique of neutron scattering in 

chemistry and biology. 

2.11.2 Neutron Production 

The development of single crystal neutron diffraction has been developed within the constraints 

set by the nature of the radiation itself and no neutron diffraction experiment could be carried out 

before 1932 (Wilson), when the existence of the neutron was merely suspected with its properties 

and means of production not understood. Diffraction techniques had ab"eady been developed and 

were equally applicable to both neutron and X-ray radiation. The early diffraction theory 

pioneered by workers such as Laue were also valid for neutron diffraction. Neutron diffraction 

therefore came into being with considerable theoretical and experunental advances already in 

existence. 
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2.11.3 The development of reactor sources 

Techniques of neutron diffraction had to wait for the advent of nuclear reactors in which neutron 

flux would be much increased. In recent times the availability of reactors has become widespread 

and an increasing range of science devised for using the neutron beams produced. Traditionally 

neutron beams were extracted from multi-purpose reactors whose design spanned many uses. In 

order to achieve the desired neutron flux it was necessary to consider the construction of nuclear 

reactors solely for the production of beams for neutron scattering. In 1965 the High Flux Beam 

Reactor at Brookhaven National Laboratory, USA was the first of this type. Also a similarly high 

flux reactor was built at the Oak Ridge National Laboratory, at the same time, which was not 

dedicated to neutron production but also encompassed isotope production. In 1972 at Grenoble, 

France, a specially designed reactor was commissioned solely for neutron scattering and to 

support the work at this reactor a completely new institute was created. The Institut Max von 

Laue-Paul Langevin (ILL) was the world's fu-st purpose-built neutron scattering centre. The ILL 

was unique in another way, in that the reactor was built as an mtemational collaboration between 

France and Germany, with the UK joining the Institute as a full-1/3 partner soon afterwards, in 

1973. The flux available has increased by a factor of some 103 between the early general 

purpose reactors and today's best research reactors. In order to attain increasing neutron fluxes it 

is necessary to turn to alternative technology to that of reactor design and construction. 

Fortunately, there is an ahemative means of production of neutron beams based on accelerators 

rather than reactors. By their nature, accelerator-based sources can be pulsed, opening up a new 

type of scattering experiment. 

2.11.4 Spallation sources 

The characteristics of a pulsed spallation source are very different to those of a reactor neutron 

source. The production mechanism itself is a dynamic process, being based on an accelerator 

rather than a steady state reactor. The term "spallation" comes from a mining term meaning to 

chip. Massive particles are accelerated to high velocities (energies) in the accelerator before 

impacting on a heavy metal target (at ISIS H' ions are accelerated, see section 2.11.5). These 

impacts produce neutrons (typically tens of neutrons for each incident accelerated particle). The 

neutrons produced have energies typically of the order of MeV, this is much too high to be of use 
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in condensed matter studies. In order to perform diffraction and other scattering experiments 

using these neutrons they must first be slowed down. This deceleration is achieved by passing the 

fast neutrons through moderators, which exploit the large collision cross-section for neutrons 

associated with the hydrogen atom. 

The good fortune for neutron scattering is that hydrogen is the most abundant element around and 

for the purposes of moderation, does not have to be in elemental form. This means that neutron 

moderators can be constructed from common materials such as water, hydrocarbons or from 

hydrogen itself 

When a beam of fast neutrons is passed mto a moderator, the neutrons undergo collisions with the 

hydrogen in the moderating material, in the manner of a random walk. Since the fast neutrons 

have a much higher temperature than the molecules in the moderator, they tend to lose more 

energy than they gain in such collisions - and are thus slowed down. The extent to which these 

neutrons are slowed down depends on two factors - the temperature and the size and shape of the 

moderator. Obviously the higher the temperature of the moderator, the higher the energy of the 

"thermalised" neutrons. Very large moderators can slow down the majority of the fast neutrons, 

whereas a small moderator tends to allow more fast neutrons to escape before becoming 

thermalised, and so a spectrum of slowed neutrons is produced. The characteristics of each of 

these moderators are exploited in the various types of neutron source. "Full" moderation using 

large moderators tends to be used at reactors or steady state sources, whereas "under" moderation 

is of particular value at a pulsed source. 

2.11.5 The ISIS pulsed spallation neutron source 

The ISIS source, at the Rutherford Appleton Laboratory in Oxfordshire, UK, is the world's most 

intense pulsed neutron source and its neutron production mechanism is similar to that used in all 

such sources. The production of particles energetic enough to produce efficient spallation at ISIS 

involves three stages. First, an ion source produces hydrogen ions (H"), which are accelerated in a 

pre-injector column to 665 keV. In the linear accelerator, the second stage, the hydrogen ions pass 

through four accelerating cavities to reach an energy of 70 MeV. At injection into the third 

acceleration stage, the synchrotron, the electrons are stripped from the hydrogen ions by a very 

thin alumina foil, producing a circulating beam of protons. The proton synchrotron, of 52m 

diameter, accelerates 2.5 x 10̂  protons per pulse to 800 MeV, before they are extracted and sent 
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to the target station. This happens 50 times a second. The spallation target is made from a heavy 

metal such as depleted uranium or tantalum. The highly energetic protons produce neutrons by 

chipping nuclear fragments from the heavy metal nucleus. For an 800 MeV proton beam some 25 

neutrons are typically produced by each proton hitting the uranium target. 

Around the target there is an array of small hydrogenous moderators to slow down the neutrons to 

thermal or close to thermal energies, as described above. The characteristics of the pulsed 

neutrons produced by a pulsed spallation source such as ISIS are different from those produced 

at a reactor, leading to different ways of carrying out neutron scattering experiments. The pulsed 

nature of the source makes it mandatory to exploit time-of-flight techniques on white neutron 

beams. The production time can be precisely defined when the proton beam hits the target, by 

recording the arrival time of each neutron at the detector, providing the flight path is known. 

The use of white beams, sorted using the time-of-flight technique, allows fixed scattering 

geometries to be adopted which greatly simplifies the use of complex and extreme sample 

environments. In the particular case of single crystal diffraction, the wavelength-sorted white 

beam has particular benefits in many types of measurement. The measurements of scattering on a 

pulsed source cover a wide spectral range in both energy and momentum transfer. Access to data 

over as wide a dynamic range as possible facilitates the study of increasingly complex systems. 

2.11.6 Neutron detection 

The characteristics that lend neutrons their advantageous properties for the probing of matter also 

give some of the problems associated with neutron scattering experiments. Neutrons are 

penetrative into niatter because their interactions are relatively weak. This is related to the fact 

that neutrons are uncharged and therefore interact with the nucleus through the strong nuclear 

force rather than with the electrons via electrostatic interactions. They also interact with the 

electrons via the magnetic moment of the neutron, but this interaction is generally not so strong as 

that between electromagnetic radiation (photons) and the electrons. The principle of efficient 

detection is that the incoming particle must interact with the detecting medium in as short a 

distance as possible, yielding a clear and unambiguous signal to indicate that it has in fact been 

detected. The subsequent electronic coding, if any, of this signal must be accomplished in as 

short a time as possible and the detection system placed in a state of readiness for detection of the 

next event. The situation for neutron scattering experiments is frequently complicated by the fact 
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that a single detection element (an isolated 'detector') may not be adequate for the particular 

experiment. This is frequently the case in single crystal studies when the use of a position-

sensitive two-dimensional area detector may be desirable. 

Two main methods, gas and scintillator detectors detect neutrons. Gas 4etectors use a volume of 

gas, typically ^He and BF3, for detection. The scintillator detector uses a medium, typically solid, 

containing ^Li or GD. 

2.11.7 Summary of single crystal neutron diffraction 

Single crystal neutron diffraction is an extremely powerfiil technique for accurate chemical 

crystallography. Good neutron single crystal data will: yield high precision atomic and vibrational 

parameters, including higher order thermal effects; permit detailed analysis of conformations, 

molecular energetics etc. It is clear that there are several high profile areas in which such neutron 

structure determination can have an impact, for example; pharmaceuticals, where many drug 

molecules are in the accessible cell range. Detailed neutron data can be vital to the understanding 

of molecular conformation, especially with regard to the often very small energy differences 

between active and inactive polymorphs. Neutrons also sample the bulk of such materials, again 

vital in the study of polymorphism in relation to production processes. Organometallic materials, 

frequently have important hydrogen atoms located close to a heavy metal atom, rendermg neutron 

diffraction an incredibly useful way of adequately determining the structure. Organic structures, 

where neutrons have a vital role to play in the study of basic bonding, charge density studies, 

hydrogen bonding and in non-destructive phase transitions, particularly those involving hydrogen 

atom shifts. 
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C H A P T E R S : 

T H E C A M B R I D G E S T R U C T U R A L DATABASE: AN INTRODUCTION. 

3.1 INTRODUCTION 

In recent years the solving of a crystal structure by diffraction analyses has become a 

reasonably quick and uncomplicated procedure but, for the first half of this century, the 

solving of the molecular structure of a compound by crystallographic means was a 

complicated and time-consuming business. To solve a structure was extremely laborious and 

involved tedious manual methods to collect, solve and then finally refine the diffraction data 

and it was not uncommon for a single structure determination to take several years to 

complete. As a consequence of this there were only a few new crystal structures being 

published each year. This relatively low number of published structures made it possible for 

individual researchers to examine the whole of the primary crystallographic literature and 

perform systematic analyses of related and similar structures by hand. There were a large 

number of studies conducted during the 1950's and 60's dealing with topics such as bond 

lengths, molecular conformations (Sutton, 1963) and hydrogen bonding (Pimental, 1960). 

As improvements were made in diffractometer design and manufacture and the levels of 

automation increased, more researchers were able to collect diffraction data in less time and 

so the number of crystal structure determinations being reported annually increased steadily 

from the late 1950's onwards. Because of the ever increasing number of structures it became 

increasingly difficult for individuals to conduct comprehensive searches of the primary 

literature and secondary publication. 

A major advancement in crystallography came in the form of computation. By the 1960's 

affordable computer technolo^ was becoming more and more powerful. This then led onto 

fully automated data collections with the collections being able to be conducted 24 hours a 

day with the use of computer controlled diffractometers. The speed of computers meant that 

the large number of repetitive mathematical procedures associated with structure solution and 

refinement were able to be performed many times faster than previously possible. 

Even more structures were able to be solved when the new direct phasing methods (Sayre, 

1952) for solving crystal structures were developed. These new direct methods were good at 

solving small organic compounds, which were a huge range of structures that had hitherto 

been unsolvable. 
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With these advancements the number of crystal structures being reported each year naturally 

increased quite considerably (from 224 in 1960 to 1258 in 1970). This meant that manual 

systematic analyses of the crystallographic data became impossible and with this a great deal 

of the chemical information that was contained therein was in danger of becoming 

increasingly underexploited. Ironically the computational methods that they themselves had 

been largely responsible for had to be used to overcome this problem. The structural data 

began to be compiled into computerized databases that could be searched systematically 

using software developed specifically for that purpose. 

There are currently five fiilly retrospective computerized crystallographic databases in use 

today, in order of size these are; 

1) Cambridge Structural Database (CSD, >200,000 entries), for organic and organometallic 

structures. 

2) Inorganic Crystal Structure Database (ICSD, 55,000 entries), 

3) Metals Data File (CRYSTMET, 45,000 entries), 

4 Protein Data Bank (PDB, 6,500 entries), 

5) Nucleic Acids Data Bank (NDB, 731 entries) 

Al l of the database analyses conducted in this thesis have been conducted with organic 

molecules, as a result of this the CSD has been used in these analyses and in general much 

more than the other four databases. So the databases 2-5, will not be further explained and 

the CSD will be detailed for relevance to this thesis. 
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3.2 T H E C A M B R I D G E S T R U C T U R A L DATABASE S Y S T E M (CSDS) 

The Cambridge Structural Database system CSDS (Allen, 1991) is easily the largest of the 

current databases and will be so for the foreseeable fiiture. The database that is run by the 

CCDC was initially set up in 1965 and at present it contains the crystallographic structures 

of over 200,000 organic and organometallic compounds. Although the CSDS is a database 

for organic structures, the CSDS definitions of what structures are acceptable to be included 

is broad: it contains structures i f they contain at least one C-C or C-H bond, within whatever 

collection of atoms and bonds entered as the structure (i.e. carboranes, all the examples of 

which are in this thesis are considered to be organic molecules by the CSDS) the result of this 

is that the CSD contains structural information on a huge range of different structures, from 

large metal clusters to simple alkanes, and everything in between. 

These data are accessed using CSDS search and retrieval software, which is being developed 

and updated constantly. There are four new versions of the CSDS annually and this allows 

researchers to keep reasonably up to date with the new structures being developed. These 

improvements to the CSD is changing the way in which the database is being used, there is an 

increasing number of non-crystallographers using it for increasingly more complex structural 

analyses, and the days of a synthetic chemist getting a crystallographer to search a reference 

on the CSD are thankfiilly becoming a thing of the past. 

Structural data is recorded in the CSD in three ways. These three can be categorized easily in 

terms of their "dimensionality" (CSDS Manuals 1994 & 1995). 

3.2.1 One dimensional 

One-dimensional data contains bibliographic and chemical text: typically information 

contained are compound name(s), molecular formula(e), literature citation and cell 

parameters. Basically this is all the information that can be kept in simple text format. 

3.2.2 Two Dimensional 

Two-dimensional data contains chemical connectivity representation. This information is 

encoded in the form of two connectivity tables. The first of these stores atom properties and 

the second stores bond properties. 
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3.2.3 Three Dimensional 

Three-dimensional data consists of atomic coordinates, cell dimensions, space group and 

symmetry operators for each entry. This information is used to establish a crystallographic 

connectivity using standard covalent radii. The chemical and crystallographic connectivities 

are then mapped onto one another so that atom and bond properties can be matched to the 

three dimensional structure. 

Al l of the dimensional data is extracted from the primary literature. Over 500 journals are 

currently represented in the CSD. To maintain data quality each is subjected to a series of 

computerized checks to ensure that the information contained in the database is consistent 

and accurate. 
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3.3 SOFTWARE 

The CSD uses several software packages to access and analyse the data it stores, details 

follow of these programmes. 

3.3.1 QUEST3D 

QUEST3D is the main program of the CSDS; all subsequent uses and programs require the 

files outputted from QUEST3D: simply put, QUEST3D is the starting point for searching the 

CSDS. The use of QUEST3D is to define and execute text, numeric and two dimensional 

chemical fragment searches. More complicated composite searches can be performed by 

linking these definitions together using the Boolean logical operators AND, OR and NOT. 

Probably the most common use and certainly for the work conducted in this thesis is the 

search using a two dimensional model of the chemical fragment. This includes drawing the 

molecular fragment with the drawing facilities of the QUEST3D program, often specific 

parts (angles, bonds, etc) are selected on the fragment to obtain a numerical parameter for 

those parts of the molecule. The fragment is then defined and the search conducted, over the 

whole of the CCDC. Entries that satisfy the input search criteria are displayed on the screen. 

The user can visually manipulate this output (e.g. rotate, translate and magnify) and can view 

it in a one, two, two/three and three dunensional display before decidmg on whether to keep 

or reject the specific entry. The saved entries have their information stored in the form of 

several files, which can be read using complementary CSDS programs. Some of the stored 

files are saved only optionally and the user determines which of these files they wish to keep 

before running the search. The files saved are dependent on the subsequent CSDS programs 

the user wants to use with the search results. Features of the CSDS include filters, to filter 

out data that does not fit crystal or chemical parameters, i.e. one can choose to search only in 

organometallic compounds or can search for structures with an R-factor lower than a 

specified value. Also a fragment can be drawn and the NOT logical operator will filter out 

any crystal structures containing this fragment. It is also possible to select a cap on the 

number of structures found rather than search the whole database. An example of a QUEST 

search is seen in Figure 3.1. 
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Figure 3.1 The drawing stage of a fragment in QUEST3D (here showing a biphenyl 

fragment) 

3.3.2 VISTA 

This is a program which reads the geometrical table(s) generated by the QUEST3D program 

and provides the user(s) with facilities for the graphical representation of the data, in the form 

of histograms, scattergrams, polar plots, etc. An important feature of VISTA is statistical 

analyses of the numerical data; this allows the user to "play" with the figures and to mould 

the data to their specific needs. Vista has been used extensively m the database chapters of 

this thesis and has proved invaluable in analysing the structures fi-om the searches conducted. 

An example of analysis types is given in Figure 3.2. 
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a) b) c) 

Figure 3.2 Various graphical outputs of the VISTA program: a) histogram, b) radial 

scatterplot and c) combined radial histogram and scatterplot 

3.3.3 P L U T O 

This is a crystallographic graphics program that can be used to visualize saved entries in 

several ways. Molecular structures can be rotated, translated and magnified to obtain the 

desired view. The structure can then be saved as a PostScript file in a variety of ways. 

PLUTO is a useful way of examining the structures m the CSDS and is commonly used for 

the exploration of crystal packing and the non-bonded interactions. This is a useful way of 

examining these features in the crystal structure, an example of PLUTO is given in Figure 

3.3. 
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Figure 3.3 P L U T O screen (showing the inter-molecular interactions in the structure 

with the Refcode BPHCOYIO) 
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3.4 R E S E A R C H APPLICATIONS O F T H E CSDS 

The CSDS has a worldwide distribution and many chemists and crystallographers use it as a 

tool to compare the cell parameters of an unknown material with those of compounds that 

have already been crystallographically characterized. It is also commonly used to search the 

CSD for fragments of compounds they are interested in and obtain bibliographic and 

structural information on them. However, the CSDS has many other applications. 

3.4.1 Crystallographic Studies 

The CSDS can be used to study crystallographic systematics. The reliability of the estimates 

of precision (Estimated Standard Deviation, ESD) used by crystallographers was attempted 

to be determined using data abstracted from the CSDS (Kennard and Taylor, 1986), while 

others have used the CSDS to compile space group frequency tables (Mighell, Himes and 

Rodgers, 1983) and attempted to rationalize the results (Wilson, 1988, 1990, 1991 and 1993) 

and (Brock and Dunitz, 1994). 

3.4.2 Mean Molecular Dimensions 

There have been several studies of the CSDS in an effort to determine the mean lengths of a 

large number of different types of chemical bonds. The derivation of simple descriptive 

statistics for standard geometrical parameters is a relatively straightforward application of 

the CSDS. As an aid to structural chemists and modelers, two major compilations of bond 

lengths were produced for both organic (Allen et al., 1987) and organometallic (Orpen et. al., 

1989) compounds. A study of inter-molecular bond angles and conformation in peptides has 

also been performed (Ashida et al, 1987). 

3.4.3 The Structure Correlation Method 

The structure correlation method is based on the assumption that observed structures tend to 

lie mainly in regions of low potential energy. I f a range of independent parameters describing 

a structure of a fragment in different environments can be correlated then the correlated 

functions map a minimum energy path. 
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The CSDS has been used extensively to analyze molecular conformation. Conformational 

preferences can be detected using the structure correlation method. The conformations of 

five, six, seven and eight membered carbocycles have akeady been extensively examined 

((Allen, Doyle and Taylor, 1991) (Allen, Doyle and Auf der Heyde, 1991), (Allen, Howard 

and Pitchford, 1993), (Allen, Howard, Pitchford and Vinter, 1994), (Allen, Gamer, Howard 

and Pitchford, 1994) & (Brock and Minton, 1989)). Other studies have examined the 

conformations of certain bioorganic (Murray-Rust and Motherwell, 1978 and Murray-Rust 

and Bland, 1978) and organometallic fragments. Biphenyl compounds are six membered 

rings and these are of particular interest in this thesis, see chapters 5 and 10-13. 

The structure correlation method and how it relates to this thesis is discussed in more detail in 

chapter 11. 

3.4.4 Non-bonded Interactions 

There has been and is a great deal of interest in hydrogen bonding and all inter/intra 

molecular interactions in general and so a large number of non-bonded interactions have been 

studied usmg the CSDS. These mvestigations typically involve analyses of non-bonded 

contact frequencies, distances and angles in relevant fragments. The CSDS is well structured 

for the study of non-bonded interactions, and caters for these types of studies. Notable studies 

include an investigation of C-H...0 hydrogen bonding using neutron derived structural data 

(Taylor and Kennard, 1982), a comprehensive survey of interactions between halogens and 

nucleophiles (Lommerse et. al, 1996) and database studies of C-H--O, X -02N and C-F - H 

interactions (V.J.Hoy, 1997). 

3.4.5 Knowledge based Libraries 

Many of the analyses of the CSDS have followed similar paths and for ease and to allow the 

non-experienced database searcher more access, the CCDC began to explore associated 

software, in 1995. The initial topic picked for this venture was that of intermolecular 

interactions, this was called IsoStar and was released with the 1997 October Unix edition of 

the CSD. There is a similar type of library with the PDB, molecular scene analyses and 

torsional distributions have been studied in both the CSDS and the PDB for modeling 

protein-ligand docking. 
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3.5 T H E S E A R C H E S CONDUCTED ON T H E CSDS (EXPERIMENTAL SECTION) 

3.5.1 General 

In Chapters 10, 11 and 12 there are database studies using the CSDS. These have 

concentrated mainly on the torsion angle distribution of biphenyls and similar compounds. In 

the following section the details of these searches will be described with specific focus on the 

non-routine parts of these searches. 

First of all the one thing that most searches have in common is the biphenyl or biphenyl type 

fragments, see Figure 3.4 and this structure is input into the QUEST3D software by drawing 

the fragment as seen in Figure 3.4. 

Figure 3.4 An example of the biphenyl fragment for the CSDS 

The bond lengths C1-C6 and C8-C9 and the dihedral angle C1-C6-C9-C8, as indicated in 

Figure 3.4 are specified to be used as data for analyses with the VISTA and PLUTO 

programs. Since the number of structures found in these searches is often relatively low, 

structures that are disordered, are not screened out, but included since the torsion angle 

should be roughly the same regardless of some disorder, as long as the rings themselves are 

not disordered which is checked with all structures. This may create some anomalies when 

defining specific position with hydrogen atoms, since often disordered structures lack 

hydrogen atoms. The subset may not contain the disordered structure because there is a lack 

of hydrogen atoms located at that position, this has the consequence that the total number of 
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structures in the parent set may be greater than the sum of the subsets. The searches were 

conducted with the rings being unconnected from each other, other than the C-C linkage 

between the two rings. So connections between the rings other than the C-C bond were 

screened out. Figure 3.5 shows such type structures. 

// \ 

Figure 3.5 Problematic searching fragments 

As a result of structures like those seen in Figure 3.5 the data was viewed and assessed 

individually. This can prove to laborious, but attempts to screen out all unwanted structures 

resulted in good structures being rejected. 

3.5.2 <>-<?'-biphenyls 

Here there were many structures that had to be rejected because of connections other than the 

single C-C linkage bond between the rings. The search conducted of the o,o'-biphenyl 

fragment. Figure 3.5, with any atom attached to 2 and 2' and with 6 and 6' being hydrogen 

substituted. This created the overall o,o'-biphenyl set in which all separate subsets were 

searched. The structural data were then edited to discard any structures that had the same 
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dihedral angle counted more than once. Structures with more than one biphenyl in the 

asymmetric unit were deemed to have each biphenyl counted as a separate entity so all the 

dihedral angles are counted in the statistical analyses even when both the angles are of very 

similar values, see Figure 3.6. 

O' O 

H H 

Figure 3.6 The o,<7'-substituted biphenyl fragment 

3.5.3 ^on-ortho substituted biphenyls 

Here the fragment drawn of biphenyl has hydrogen atoms at the ortho positions, 2, 2', 6, and 

6', see Figure 3.7. Since there are no ortho substituents this means that there are fewer 

structures than the comparative studies in chapters 11 and 12. 

H - H 

Figure 3.7 The non ortho-svibsi\i\Aed biphenyl fragment 

45 



3.5.4 Heteroaromatic biphenyl type structures 

Here the difference in the searches is to the fragment drawn in QUEST3D. Instead of 

specifying carbon atoms in the rings the search allows for any atoms to be present, with the 

added criterion that at least one atom present in the ring must be a noh carbon atom, see 

Figure 3.8. In addition the structure is not allowed to be the biphenyl fragment. Figure 3.9. 

A A A A A A A A 

AA AA AA AA 

Figure 3.8 The Heteroaromatic fragment, where AA refers to any atom 

3.5.5 Biphenyls 

With searching for all biphenyl structures in the database a fragment of biphenyl is drawn, 

see Figure 3.9, there is no stipulation of groups on any of the carbon atoms, therefore all 

positions on the fragment may have any substituent present. 

The search followed that described in the manner of 3.5.2, except all positions were allowed 

to be occupied 

Figure 3.9 The biphenyl fragment 
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3.5.6 X - X Interaction 

This database study was different from the others described here. This search was designed to 

find o,6>-biphenyls with halogen atoms at the ortho positions, similar to section 3.5.2., the 

difference in this case is that any halogen is specified at the ortho positions and the distance 

between these substituents is measured. 

3.5.7 Bond Distances 

Here the bond distances rather than the dihedral angle was specified to be searched for. The 

relevant figures in Chapter 13 show the specific fragments with their ortho, meta, and para 

labels. In the searches themselves the o, m and p labels were searched for with the AA (any 

atom) group. 
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C H A P T E R 4: 

AN INTRODUCTION T O ASPECTS O F PHOTOCHEMISTRY 

4.1 INTRODUCTION 

This chapter gives a brief introduction to aspects of photochemistry, so they may be understood 

to a greater extent in the relevant chapters. This chapter is by no means a comprehensive guide 

to photochemistry but merely an introduction to terms and concepts that are referred to and used 

in this thesis. For a proper introduction to photochemistry, there are specialised texts, which 

should be referred to (Wayne and Wayne, 1996). 

When a chemical reaction is being considering there are two paths by which the reaction can 

proceed, either via thermal excitation, or alternatively via photo excitation (i.e. the absorption of 

photons). When the reaction is thermal, it is the absorption of heat that increases the 

translational, rotational and vibrational energies of the reactant that initiates the reactions. It is 

the collisions between molecules at certain orientations with a thermal energy higher than the 

necessary activation energy that are able to distort the electronic structure of the molecules and 

lead to electronic reorganization, namely a chemical reaction, and create the product. This of 

course this can also be simulated by increasing the kinetic motion of the solution (i.e. by 

shaking the mixture). Photochemical reactions involve a completely different pathway and are 

initiated by the absorption of a photon by a molecule. This promotes an electron from the 

highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO), and so the chemical reaction occurs via the direct disturbance of the electronic 

structure of the molecule. 

Since both these types of reaction have different processes involved, the thermal and the 

photochemical reactivities for the same molecule are generally quite different. An example is 

seen with the 1,3-butadiene molecule, the heating of 1,3-butadiene in cyclohexane to 500 - 600 

K the resuh gives predominately the Diels-Alder cycloaddition product. However, irradiation of 

the molecule with 254 nm ultraviolet (UV) light gives the intra-molecular ring-closure product 

efficiently. Thus a molecule in the excited state wil l behave as a different species from the same 

molecule under thermal conditions in the ground state. The fact that many compounds react 

differently in the excited state can be attributed to the difference in the electronic structure and 

the extremely high energy of the electronically excited state. Generally the same excitement of 

the structure cannot be obtained thermally. For example, 1,3-butadiene in the excited S i state 

has energy corresponding to 473 kJ/mol ', to achieve the same energy thermally, the molecules 

need to be heated to a temperature of approximately 104° C and in practice, this temperature 
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usually destroys the molecular structure. Another distinct difference between the two types of 

reaction is that reactions with AG > 0 can sometimes be accomplished photochemically whereas 

their reactions are thermodynamically impossible. 

An understanding of structure-reactivity relationships from mechanistic studies enables 

photochemists to deduce the electronic structures of excited states ((Calver and Pitts, 1966) and 

(Kagan, 1993)). The ground state electronic configuration of organic molecules consists of 

bonding molecular orbitals (MOs) each with a pair of electrons and unoccupied anti-bonding 

MOs. Electronically excited molecules are short lived and will dissipate the excess energy to go 

back to the ground state. This dissipation process can be either radiative, by the ejection of 

photons or non radiative or chemical reactions with either another molecule (excited or not 

excited) or with itself In the following chapters on photochemistry it will be the excited state CT-

bond cleavage reactions that will be the main theme and so here a brief introduction to their 

mechanistic possibilities will be detailed. Three of the most common types of the bond 

fragmentation process are; 

1. Homolysis, where the bonding electron pair is equally apportioned between two departing 

fragments. 

2. Heterolysis, where the bonding electron pair remains with one fragment. 

3. Mesolytic cleavage, which involves the fragmentation of radical ions, formed from electron 

transfer. 

The particular pathway of a reaction is determined by a number of factors including solvent, 

leaving group and the excited state in which the reaction takes place (singlet versus triplet). 

Since most intermediates of these reactions are short lived there are several time resolved 

techniques that have been utilised for study, these include laser flash photolysis (LFP) and pulse 

radiolysis (PR). Data from these techniques has given a great help in the elucidation of many 

photochemical reaction mechanisms 

4.1.1 The Redistribution of Electron Density 

The change in charge distribution of an aromatic molecule in the excited state can be to a first 

approximation understood using simple Hiickel Molecular Orbital (HMO) theory. According to 

this theory, the s-electron density qr on the r* carbon is given by; 

2 
= I^i IliCir Equation 4.1 
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where nj is the number of electron(s) occupying the i'*" orbital and C ir is the orbital coefficient of 

the i**' orbital at the r* carbon atom. Since CHOMO, r is normally different from CLUMO. r the excited 

state charge distribution is normally different from the ground state. It was noticed that the 

basicity of aromatic hydrocarbons in the singlet and triplet excited states is higher, by many 

orders of magnitude, than when it is in the ground state (So) (Kuz'min et al, 1967). It was shown 

by deuterium-hydrogen exchange experiments that the basicity of the weto-position of mono-

substituted benzenes bearing electron donating groups (e.g. methoxy, hydroxy and methoxy) 

increases dramatically upon electronic excitation ((Spillane, 1975) and (Lodder and Havinga, 

1972)). The charge distribution and the localization energy for electrophilic attack of a proton to 

phenol in the first excited singlet state (Si) has been calculated. (Bie and Havinga, 1972). The 

result of this calculation indicated that the meta and orr//o-positions of the molecule have higher 

electron density and lower localization energy than the para-i^os\X\on. Thus the prediction from 

these results is that the meta and or//io-positions should be more reactive than the para-ipos\i\on 

towards excited state protonation, which is consistent with the experimental observations. 

It has been shown that poly-substituted benzenes are photochemically protonated at position(s) 

that are different from those expected under thermal conditions ((Smith, 1969) and (Zhang et al, 

1994)). It has been found that simple HMO calculation can also be used to rationalize the 

regioselectivity for photoprotonation of these molecules (Wan and Wu, 1990). Generally, it is 

believed that these reactions occur in Si, although it has been known for both triplet and singlet 

states to be involved in some cases. When the aromatic compound possesses a high intersystem 

crossing yield, the reaction proceeds primarily via the triplet state (George, 1971). 

When some positions in a neutral molecule become electron rich in Si other positions become 

electron deficient (more electrophilic). This enhanced electrophilicity in the Si state can 

sometimes change the reactivity of the aromatic rings dramatically. This can be observed in 

many aromatic molecules such as naphthalene (1), biphenyl (2). and many of their derivatives, 

which are of great interest in this thesis, are immune to nucleophilic attack in the ground state. 

However they can undergo nucleophilic substitutions with normal nucleophiles in Si ((Letsinger 

and Steller, 1969), (Gunst and Havinga, 1973) and (Griffiths and Hawkins, 1973)). Another 

result of this charge redistribution is that the polarity of the molecule in the excited state is 

different from that of the ground state. It has been shown that naphthalene (1) is polarized along 

the long axis in Si ((Stevens and Strickler, 1973) and (Klevens and Piatt, 1949)). Similarly, 

biphenyl (2) has also been shown to polarize longitudinally in Si (Berlman, 1970). More 

recently, it was shown (Shi and Wan, 1995) that biphenyls (3) and (4) are also highly polarized 

in Si with most of the negative charge residing in the benzene ring not bearing the substituent, 

see Figure 4.1. 
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(1) (2) ( 3 ) : ^ 
(4):It<H3 

Figure 4.1 Representation of structures (1), (2), (3) and (4) 

4.1.2 Stokes Shift 

Stokes Shift is the difference in wavelength between absorbed and emitted quanta, in 

wavelength shifters or scintillators. The emitted wavelength is always longer ( if single photons 

are absorbed) or equal to the incident wavelength, due to energy conservation; the difference is 

absorbed as heat in the atomic lattice of the material. Generally i f a molecule experiences large 

conformational and/or polarity changes upon electronic excitation, a large loss of energy will 

occur and vice versa. Stokes was the first person to realize this phenomenon. 

4.1.3 The Forster Cycle 

Forster related the acid-base dissociation of the ground state to that of the excited state for a 

general acid-base pair by a four-state cycle. 

The Forster cycle is a thermodynamic determination of pK and thus provides no direct 

information about the kinetics of Excited State Proton Transfer (ESPT). However m conjunction 

with certain theoretical models of proton transfer (PT), such as the Marcus theory (Marcus, 

1968 and 1975) and the Eigen model (Eigen, 1964), the thermodynamic property shows some 

correlation with the rate of proton transfer. Early studies made extensive use of Forster cycle 

and fluorescence titration methods. 

Recent instrumental advances in time-resolved spectroscopy have made direct kinetic 

measurements of ESPT possible. By using pico- and femto-second laser systems, some ultra-

fast rates can been measured directly and thus the dynamic determination of pK becomes 

possible. 
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4.1,4 The Franck-Condon Principle 

The Franck-Condon principle states that a molecule preserves the nuclear conformation of its 

initial state during any electronic transition. So the initial state obtained directly after excitation 

of a molecule has the ground state geometry ((Franck, 1925) and (Condon, 1928)). 
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4.2 ACID BASE P R O P E R T I E S 

4.2.1 Change the Acid-Base Property 

An effect brought about by excited state charge redistribution is the change of charge density on 

the substituents. It is well established that electronic excitation makes the ArOH protons more 

acidic and the carbonyl group conjugated to an aromatic ring more basic. For example, the pKa 

of phenol is 10 in So and 4 in Si, while the pKa of benzoic acid is ~ 4.2 in So and 6 - 10 in Si 

(Wehry and Rogers, 1966). The stronger acidity observed for phenols and naphthols in Si is due 

to the greater electron-donating effect of the oxygen atom making the proton more acidic. 

Carbonyl groups become more electron withdrawing upon excitation and as a result, carbonyl 

groups are generally more basic in Si (Martynov et al, 1977). The same type of acid-base 

property change is also observed for other non-oxygen acids and bases such as the sulphur and 

nitrogen substituted analogs. It has been reported that the acidity of some carbon acids had a 

dramatic increase upon excitation, enough to allow the benzylic C-H protons to be deprotonated 

by H2O. It was found that the rate of protonation of some fiznctional groups could be increased 

by 11 - 14 orders of magnitude in Si (Wan et al, 1982). And when irradiated in a solvent these 

molecules can undergo excited state proton transfer (ESPT). 

4.2.2 Excited State Acid-Base Property 

The acid-base property of a molecule is used to measure the dissociation constant Kg. The 

determination of these constants can be easily determined for the ground state by a variety of 

readily available techniques. In the excited state, the traditional methods used for ground state 

measurement are not valid. The difficulties in measuring excited state dissociation constants 

come from the fact that the concentration of the excited state is much lower than the ground 

state and the lifetime of the excited state is usually extremely short. Thus the direct 

determination of the acid-base property of Si requires both an ultra-fast experimental technique 

and a highly sensitive detection technology to work on the same time scale and so the most 

modern equipment is desired. Due to these technical problems, the excited state dissociation 

constants (Kg*) reported in the early days were all determined via direct methods. These direct 

methods are extremely powerfiil tools and even with the modern equipment available for direct 

determination of the excited state proton transfer rates, these traditional methods are still often 

used. One well-known method is the Forster cycle, see section 4.1.3. 
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4.3 PROTON TRANSFERS 

4.3.1 Excited State Proton Transfer (ESPT) 

The first example of ESPT was discovered in 1931 (Weber, 1931). It was observed that both the 

absorption and fluorescence spectra of l-naphthylamine-4-sulphonate were dependent on the pH, 

viz., the spectra shift considerably at certain pHs. It took twenty years to realize that this 

phenomenon is the result of an excited state intermolecular proton transfer (ESIerPT). The first 

example of excited state intra-molecular proton transfer (ESIraPT) was reported in 1995 

(Weller, 1955), and it was found that the fluorescence emission of methyl salicylate showed a 

large Stokes shift. When the acidic phenolic proton was substituted by a methyl group, this 

unusually large Stokes shift disappeared and the fluorescence emission showed the expected 

mirror image relationship with the absorption spectrum. This suggested that the fluorescence 

pmission observed for methyl salicylate is due to an excited state isomer formed via ESIraPT. 

Since then extensive studies have been carried out in the field of excited state proton transfer, 

especially for intra-molecular types, due to the important potential application for this class of 

photoreaction. 

4.3.2 Intra-molecular Proton Transfer (ESIraPT) 

The term ESIraPT applies when both the proton donor and proton acceptor reside at the same 

molecule. Such reactions typically involve transferring an acidic proton from an oxygen atom to 

a more basic oxygen or nitrogen acceptor, to give the tautomer of the substrate. In this respect 

ESfraPT is a tautomerization reaction in the Si state. ESfraPT reactions have been classified into 

four distinct classes according to the mechanism of reaction; 

1. the intrinsic intra-molecular transfer 

2. concerted biprotonic transfer 

3. static and dynamic catalysis of proton transfer 

4. proton-relay tautomerization. 

) 

Details of the specifics of these reactions wil l not be further elucidated here, however they are 

detailed within the relevant texts such as Kasha (Kasha, 1986). 
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4.3.3 Inter-molecular Proton Transfer (ESIerPT) 

ESIerPT usually involves transferring a proton from the substrate to a proton acceptor, in the 

excited state this is generally the solvent molecule. Therefore the rate of proton transfer depends 

both on the acidity of the substrate and the basicity of the acceptor. The more basic the acceptor 

and the more acidic the proton of the substrate, the faster is the observed proton transfer rate. 

ESIerPT in polar solvents is slightly different and proceeds via the charge transfer type of 

transition state, the products found are solvated ions. Therefore the ESIerPT rate may also affect 

the rearrangement of the solvent molecules in the solvent shell. In slower reactions the rate can 

be as low as 10^ s'\ and it is limited by the reorientation time of the polar solvent molecules. 

Faster reactions, however, can have a rate constant as large as 10"s"', which is limited by 

difftision. The general observation is that most ESIerPT proceeds adiabatically in the relaxed 

excited singlet state. 
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4.4 M O L E C U L A R G E O M E T R Y , F L U O R E S C E N C E EMISSION SPECTRA AND 

SPECTROSCOPIC BEHAVIOUR 

Fluorescence emission concerns a transition from Si to SQ. According to the Franck-Condon 

principle the emitting species should also conserve its excited state nuclear conformation 

immediately after emitting a photon. So the emission spectra should reflect some conformation 

information regarding the Si state. In biphenyl type structures the fluorescence emission 

spectrum is affected by the Si twist angle i , which is the dihedral angle between the two rings. 

The twist angle in the ground state also influences the absorption spectrum. The smaller the Si 

twist angle the more red shifted the emission spectrum and vice versa. For many biphenyl type 

molecules the spectroscopic properties have been summarised into five distinctive categories; 

1. Planar in both Si and So- These molecules have rigid and planar geometry. Simple aromatic 

and o, o -bridged biphenyl systems are examples of this. These molecules Will show a small 

Stokes shift as well as narrow, highly structured and red shifted absorption and fluorescence 

spectra. 

2. Nonplanar in both Si and So. This occurs when the energy barrier for rotation is restricted 

such that Srplanarization is seriously inhibited. An example of this type is 9,10-diphenyl 

anthracene. The absorption and fluorescence spectra are narrow and slightly structured, blue 

and red shifted respectively. 

3. Nonplanar in So, planar in Si, These molecules have large geometry changes upon excitation 

and have a relatively rigid Si. Examples of these are non solid state biphenyl and many 

derivative compounds. The absorption spectra are usually blue shifted and diffuse with the 

fluorescence spectra red shifted, structured and narrow. 

4. Nonplanar in So, more nonplanar in Si. These molecules become more twisted upon 

excitation. An example is 1,1-diphenylethylene. The absorption spectra are slightly 

structured and blue shifted with the fluorescence spectra diffuse and red shifted. 

5. Planar in So, non-planar m Si. These twist to non planarity upon excitation. An example is 

trans-sXiVoQm (Saltiel, 1967). Absorption spectra are narrow with fluorescence spectra broad 

both are red shifted. 
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4.5 A L T E R I N G M O L E C U L A R G E O M E T R Y O F BIPHENYLS 

A family of molecules that undergo significant geometry change in the excited state are 

biphenyls. It is well known and assumed that these molecules are generally twisted in the 

ground state but planar (or more planar) in the excited state. This is a sweeping generalization 

and chapters 10-12 give a more comprehensive picture. There are many cases where biphenyls 

in the ground state have a planar (or near planar) geometry, but photo excitation is known to 

increase the planarity of the twisted biphenyls. The effect of photo excitation on biphenyls with 

planar geometry has not been thoroughly examined: it is assumed that there will be very little 

change to the dihedral angle but this assumption may prove erroneoiis. In all cases encountered 

in the work conducted for this thesis, the starting materials have been twisted and the molecules 

tend towards planarity upon photo excitation. Generally, data related to the ground state 

molecular conformation may be obtained from X-ray analysis, UV-Vis spectrophotometry and 

NMR spectroscopy and molecular mechanics calculations. Crystallographic analysis is limited 

to the solid crystalline state with reasonable size crystals needed to be grown, but in terms of 

quantitative resuhs it is the best and most definitive way to obtain structural information. 

However, methods to determine the geometry of Si are limited due to the difficulty of probing 

very short-lived species. A method of observing the excited state using X-ray diffraction is to 

"hold" the excited state by creating a reaction that proceeds in the excited state. I f this reaction 

holds the structure in a particular orientation then the structure must stay in the excited state 

geometry because of the stereochemistry, an example of this being the closed ring product (see 

chapter 6). These reactions can be made to happen in solid, liquid or gas phases, but of course 

the gases and liquids have to be crystallized to analyze the results by X-ray diffraction analysis. 

Stokes shift data provide a qualitative measurement of the molecular geometry change between 

So and Si. It is a simple but powerfiil tool to probe for geometry changes upon electronic 

excitation. 
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C H A P T E R S : 

B I F H E N Y L AND D E R I V A T I V E COMPOUNDS 

5.1 INTRODUCTION 

In forthcoming chapters in this thesis biphenyl compounds and derivatives are examined 

either by photochemical means. X-ray and neutron diffraction analysis or using a database 

(which mainly contain X-ray diffraction data). In this chapter an overview is given of these 

structures, which shows their history, properties and applications, before examining more 

specialized aspects and examining biphenyl itself and several derivative compounds. 

Biphenyl is a simple aromatic organic compound, the structure consisting of two phenyl 

(benzene) rings jomed together by a single bond between two of the carbon atoms in either 

ring, (see Figure 5.1). Although it is reasonably unreactive and as a solid is stable in air and 

to moisture under standard temperature and pressure, biphenyl is reactive enough that it will 

undergo reactions under appropriate conditions and it is commonly used as a reagent. 

Biphenyl is a white crystalline solid, insoluble in water, has a flash point of 113° C, an auto-

ignition temperature of 540°C, a boilmg point of 254°C and melts at 69°C. Biphenyl is also 

classed as a mild irritant. 

The compound biphenyl itself was first synthesized by Rudolph Fittig in 1862 (Fittig, 1862), 

and since then it has become of interest to scientists in several ways. In chemistry biphenyl is 

used as a reagent by organic and inorganic chemists. Studies involving biphenyl include those 

utilizing the biological properties and many papers are pubUshed each year involving 

biphenyl derivatives (e.g. Puente et al, 1998). Biphenyl also has applications in the polymer 

field (Madheswari, 1992). It became of more interest in the second half of the 20th century 

with the development of modern analytical techniques (crystallographic, IR, photolysis 

techniques, etc), that can measure the biological, chemical and structural properties of this 

compound in various states ((Bastiansen, 1950) and (Roberts, 1985)). In 1960 biphenyl was 

structurally determined using X-ray diffraction analysis for the first time (Trotter, 1960) and 

again in 1962 (Hargreaves & Rizvi, 1962). Due to the absence of heavy atoms in the 

structure, biphenyl itself was much more difficult to solve than heavy atom derivatives, many 

of which had aheady been reported by that time ((Fowweather & Hargreaves, 1949) and 

(Merrit & Schroeder, 1956)). These commonly had bromine, chlorine and iodine atoms 

present and were solved using the Patterson method (Fowweather & Hargreaves, 1949). 
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H- •H 

Figure 5.1. The chemical structure of the biphenyl molecule 

The X-ray diffraction analyses in the early 1960's showed that there was no structural 

twisting about the C-C linkage bond away from the planar structure. This was in stark 

contrast to other analysis previously carried out that used electron diffraction with gaseous 

biphenyl which found a twisted geometry with a dihedral angle of 45°(Bastiansen, 1950). 

Later optical studies showed a twist of 15-30°, whilst in solution the angle has been found to 

be 25° (Takei et al, 1988). Studies on substituted biphenyls by both X-ray diffraction 

analysis ((Romming et al, 1974), (Reboul et al, 1993) and (Lesser et al, 1975)) and in the 

gas phase (Bastiansen, 1950) have found the rings to be twisted about the C-C bond. The 

only structural study that produced a planar structure was the X-ray diffraction analysis of 

unsubstituted biphenyl. Recently however several substituted biphenyls have also had planar 

or near planar structures ((Yakushi et al, 1974), (Brock and Haller, 1984), (M'̂ Cinney and 

Singh, 1988) and (Maguire et al, 1996)). The early X-ray diffraction structural findings on 

biphenyl were superseded in 1976 and 1977 using superior equipment and analytical 

procedures (Charbonneau & Delugeard, 1976 & 1977): X-ray diffraction studies at 110 K 

and 293 K indicated that the structure of biphenyl is not truly planar, with the rings slightly 

deviating from the plane. Although not planar the twist is small (<1°) and the structure is still 

considered to have a near planar geometry. Later findings suggested that an X-ray diffraction 

study conducted on biphenyl somewhere below 75 K would show the two individual 

enantiomers. The structure was analyzed using neutron diffraction and a phase change, to an 

mcommensurate phase, was discovered (Cailleau & Badour, 1979). In this incommensurate 
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phase biphenyl exists as a super cell with the separate cpnformations of biphenyls existing 

within this super cell. Upon investigation by typical X-ray diffraction analysis as conducted 

in this thesis (see chapter 2), the structure given will be an average of the structure in the 

super cell, creating a smaller cell with more diffuse electron density. 

Probably the most commercially important aspect of biphenyl derivative compounds are the 

biological applications (Puente et al, 1998), An important factor in terms of its chemical 

reactions, and thus all subsequent applications, are the properties of and surrounding, the C-

C bond between the two rings. This twisting about this bond affects the chemical reactivity of 

the structure, inter- and intra-molecular interactions and the overall macromolecular 

structure. For these types of compound the C-C bond has a tendency to be partially 

conjugated due to the aromatic phenyl rings on either side pushing electrons through the C-C 

bond and creating a fully conjugated/aromatic system. This leads to a slight shortening of the 

ring separation, although not as short as a truly aromatic system. Theoretically the 

conjugation will be at a maxunum when the system is flat or very near planar allowing 

maximum electron movement in the system. Although the system is less aromatic than 

benzene, it does have the obvious similarities in the two phenyl rings. However, the flat 

conformation results in the ortho substituents on substituted biphenyl derivatives becoming 

sterically congested (Figure 5.2). This occurs particularly when the ortho substituents are 

non hydrogen atoms, leading to a tendency to twist from the plane to avoid the steric 

repulsion. Since twisting from the plane lessens the amount of conjugation, there is a trade off" 

between the amount of conjugation about the C-C bond and twisting due to ortho 

substitution. When there are large ortho substituent groups the C-C bond is often twisted to 

greater than 60°, this greatly limits the amount of conjugation. When the positions meta and 

para are substituted then there is very little steric interaction between these substituents. It 

has been noted (Brock & Minton, 1989) that the twisting of the biphenyl and the bond length 

of the ring joining bond (which is directly related to conjugation, i.e. shorter bond length = 

greater conjugation) are not linked and one has no discemable effect on the other. See chapter 

11 for more details. 

In 1950 Otto Bastiansen published a paper called "The molecular structure of Biphenyl and 

some of its derivatives"(Bastiansen, 1950) which used electron diffraction techniques to 

analyze both non-ortho and ortho substituted biphenyls in the gas phase. His fmdings showed 

that for three o,o'-biphenyls (dichloro, dibromo and diiodo), the twisting of the rings was 

closer to that of the cis conformation than that of the trans. This agreed with the earlier 

findings (Fowweather & Hargreaves, 1950), which studied several similar structures in the 
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solid state using X-ray dififraction techniques. These findings initiated the speculation that 

there may be a possible halogen-halogen attractive interaction involved for halo 0,0'-
substituted biphenyls. This results in the preference for the cis conformation for these types 

of systems (Bastiansen et al, 1979) and to what has been termed an ortho effect. This ortho 

effect is a general occurrence that happens for all 0,0'-substituted biphenyls and is not 

exclusive to the halo substituted biphenyls. The effect and consequences are more fully 

examined in chapters 10, 11 and 12 and these will be further explained therein. 

Biphenyl compounds have been found to be of much interest photochemically (Shi et al., 

1998) and it has been on this topic that interest in biphenyls in this thesis was initiated. As 

previous studies have shown ((Brock & Minton, 1989), (Wright et al, 1982), (Bowen Jones 

& Brown, 1982), (Leser & Rabinovitch, 1978) and (Chen et al, 1996)) the o-o'-biphenyl has 

the tendency to be twisted. The extent of this twisting is due to the particular o-o'-substituents 

and how they mteract with one another and the rings, via inter-Zintra-moleciilar interactions 

or on the basic stereochemistry. Not surprisingly, large bulky groups give larger dihedral 

angles, although this can be greatly affected by the inter-Zintra-molecular interactions present. 

When the biphenyl becomes photoexcited it tends towards planarity ((Huang et al, 1991) and 

(Shi & Wan, 1995)), and this can be very interesting, especially when ortho substituents are 

present. It is possible for the ortho substituents to use the twist to become involved in an 

interaction. Ring closure reactions are one specific type of chemical reaction that can utilize 

the inherent twisting motion generated when biphenyl compounds are photoexcited (Shi et al, 

1998). The degree of twisting also has notable effects on the electronic spectra of biphenyls, 

with large dihedral angles along the C-C linkage bond eliminating conjugation transmission 

of electron density so that the resulting UV spectra is similar to an isolated ring structure 

(Roberts, 1985). 

Figure 5.2 Showing the steric crowding of the ortho substituents on planar biphenyls 
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5.2 T H E U L T R A V I O L E T SPECTRA O F BIPHENYL T Y P E COMPOUNDS 

The UV spectra of such a systems have been shown to resemble that of an isolated ring 

structure (Roberts, 1985). The conformation and twisting of biphenyls can be studied in this 

way. ^̂ C NMR can also be used to study the twist, with '̂ C shifts being used to estimate 

inter-planar angles (Roberts, 1985). 

There are two energy types that determine the conformation of biphenyls: these are the 

repulsion energy, Ej, due to the steric interference, and the delocalization energy, E^, due to 

the 7c-electron delocalization from conjugation. The repulsive energy is positive and the n-

electron delocalization energy is negative. For calculations the total potential energy, ET , is 

taken as the sum of these two contributions; 

E T = Es + En Equation 5.1 

The equilibrium twist is taken to be when E T is at a minimum and thus the geometry of the 

structure is determined by the relative magnitudes of Ej and E^. 

In all phases but the low temperature solid, biphenyl shows structureless electronic spectra 

due to vibrational and rotational congestion, which gives no precise information on the 

structure of the molecule. It has been suggested that biphenyl may have a coplanar 

conformation in the excited electronic state (Takei et al., 1988). 

Biphenyls tend to be relatively unreactive because of the aromatic properties they possess and 

there are no electron donating or withdrawing groups present in the system. When there is a 

substituent present (obviously this may have resulted fi-om a reaction of unsubstituted 

biphenyl) then the substituent will tend to have an effect on the reactivity of the system. The 

manner in which the substituent effects the system is dependent on the type of substituent 

involved and to which position it is attached. In this respect the biphenyl type molecule is 

similar to other aromatic systems and each ring can be viewed in the same way as a phenyl 

ring with a phenyl group attached (substituted benzene), a phenyl benzene. 
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5.3 P H O T O C H E M I C A L A S P E C T S O F B I P H E N Y L AND D E R I V A T I V E S 

Biphenyl has a very intense and structureless conjugation band, called the A band, with Â nax 

= 253nm in the crystalline state. In the gas phase this is at 238nm and solution it is 247nm 

(Suzuki, 1967). This band is so strong and broad for biphenyl that any weaker band in this 

region is hidden (Pickett et al, 1963). The broad and structureless features of this band 

indicate that the conformation of biphenyl is not rigid and the dihedral angle only reflects the 

most probable equilibrium conformation this agrees with the studies described in 5.1. 

The introduction of substituents into the 2,2',6, and 6' positions is expected to increase the 

steric interference between the two benzene rings and thus increases the dihedral angle. 

I f one can force the two benzene rings to a planar conformation, the molecule will have 

maximal conjugation. This was observed experimentally in o,o'-bridged biphenyls when the 

ultra violet spectra of 9,10-dihydrophenanthrene and 4,5-methylene-9,10-

dihydrophenanthrene were compared to biphenyl. It was found that the spectra of these 

compounds have similar intensity as biphenyl but are red-shifted due to a more planar 

geometry and better conjugation. It is well known that introdiiction of methyl groups onto 

benzene will also lead to a spectral red shift, however the methylene groups in these 

molecules alone cannot account for such a large shift. Therefore, geometric changes must be 

involved (Jones, 1941). 

The spectra of a series of -bridged biphenyls have been compared (Suzuki, 1967). It was 

found that as the number of the bridging carbon atoms increases, the geometry of the 

biphenyl moiety is gradually forced away from the planar geometry, which results in a 

progressive blue spectral shift. 
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5.4 T H E X - R A Y D I F F R A C T I O N S T R U C T U R E O F B I P H E N Y L AND 

D E R I V A T I V E C O M P O U N D S 

5.4.1 The Low temperature X-ray diffraction structure of Biphenyl (1) 

As mentioned earlier in this chapter, the X-ray and neutron structure of biphenyl has been 

investigated several times, and the structure is known in reasonably fme detail. But as 

laboratory apparatus has improved it is possible to study the structure of biphenyl in a new 

way. Here the crystals are examined with X-radiation at extremely low temperature and since 

a phase transition has been discovered to occur at 37 K (Charbonoaues, 1983) it was decided 

to examine the structure of biphenyl with a temperature as low as possible yet above the 

phase transition temperature. This examined the bond lengths and angles of the system to 

more accurately image the true structure. The temperature was set to 40 ± 2 K and using an 

ultra low temperature cooling system mounted on the SMART CCD and the relevant 

procedure carried out, as described in chapter 2. 

The space group used in the original solution, P2\la, was found to be inadequate for this low 

temperature structure and it had to be solved and refined in Pc. The structure has pseudo 

symmetry and initially appears to be m the space group P2\la but even once the solution was 

found using a full sphere and the structure refined the structure would not convert to the 

P2i/a space group. So the space group at 40(2) K is Pc. This pseudo symmetry is interesting 

and can only be found at the extremely low temperature. A space group determination was 

conducted on the same crystal at 80(2) K and the P2\la cell was easily determined. 

This structure showed a small dihedral angle but as seen in the previous study 

(Charbonoaues, 1977), there is some residual twisting in the structure. In this examination 

the dihedral angle is 0.55(25)°. The structure itself refines well in the Pc space group and all 

parameters are within acceptable values (see Table 5.2 for full details). In the ellipsoid plot at 

50% probability the atoms are small, as to be expected at this very low temperature. The 

bond lengths examined with this study have a reasonably large variance with the C-C linkage 

bond 1.499(2) A and the ring distances ranging fi-om 1.379(6) to 1.428(6) A. This is large 

and is presumably due to packing effects or an effect of the structure being close to the phase 

transition. Given the study of the bond lengths of biphenyl later in this thesis (Chapter 13), 

these values are useful for comparison, see Table 5.1. 

In the refinement the hydrogen atoms were easily determined fi-om a residual electron density 

map and the refmement remained stable with all the hydrogen atoms freely refming. However, 
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since the magnitude of the electron density of the hydrogen atoms is low and therefore their 

positions cannot be determined with a great deal of accuracy the atoms are fixed to the 

carbons for the final model described here. 

The dihedral angle of biphenyl is near planar, although with a slight deviance from the plane 

with an average dihedral angle of 0.55(25)°. The bond lengths of biphenyl are of the 

approximately expected values, with the lengths approxunately uniform throughout the 

system for the bond lengths other than C(l)-C(r), which is not a fiilly aromatic bond. This 

demonstrates that the rings themselves are frilly aromatic and that the attachment of the other 

ring does not have any noticeable effect on the bond lengths. The packing diagram of 

biphenyl (see Figures 5.5a, 5.5b and 5.5c) shows that there are no inter-molecular 

interactions and this includes an absence of any n interaction in the form of Ti-stacking. The 

inter-planar distance is approximately 5.58 A. 

Figure 5.3 Thermal ellipsoid plot of biphenyl at 40 K , showing 50% probability 
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Figure 5.4 The space filled view of the X-ray diffraction structure of biphenyl (1) 

^ ' ^ j ^ ^ ' ^ ^ ^ ^ ^ 

Figure 5.5a The packing structure of biphenyl (1), showing the layered structure. 
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Figure 5.5b Packing structure of biphenyl (1), viewed perpendicular to the plane of the 

rings 

r 

Figure 5.5c Packing of biphenyl (1), showing the relative orientation of the ring planes. 

Bond Distance (A) Bond Distance (A) 

C(1)^C(1') 1.499(2) C(l')-C(2') 1.428(6) 

C(l)-C(2) 1.401(7) C(2')-C(3') 1.372(6) 

C(2)-C(3) 1.379(6) C(3')-C(4') 1.404(7) 

C(3)-C(4) 1.394(7) C(4')-C(5') 1.392(7) 

C(4)-C(5) 1.390(7) C(5')-C(6') 1.403(6) 

C(5)-C(6) 1.411(6) C(6')-C(r) 1.413(6) 

C(6)-C(l) 1.386(7) 

Table 5.1 the bond distances of biphenyl at 40 ± 2 K 
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5.4.2 The structure and bonding of 4, 4'-bipyridyl (2) 

In an effort to study the effects of inter-molecular interaction of the para groups in biphenyls, 

it was decided to study common hydrogen bonding motifs and their effect. 

This structure is an analogue of biphenyl and it would be expected to be similar in 

conformation. For this analysis the crystals generated have water included. This is not 

surprising since the nitrogen atoms on the rings are susceptible to forming interactions with 

hydrogen bonding donors and H2O interacts well. The H2O forms hydrogen bonds with the 

nitrogen atoms and the structure forms a series of hydrogen bonded layers, see Figure 5.7. In 

this case there is possible weak 71-stacking present and the crystallized state adopts this 

layered structure with the inter-planar distance of approximately 3.73 A. This distance is 

larger than that for graphite (3.4 A) and generally anything larger than 3.4 A is not 

considered significant. Over all the presence of the H2O is undesired and a bipyridyl structure 

without solvent present would have been preferred, unfortunately suitable crystals without the 

water could not be obtained. There is no ring distortion caused by the nitrogen atoms in the 

ring. The torsion angles are greater than biphenyl (1), being 41.5(3)° and 40.8(4)° with the 

C-C bond lengths 1.528(8) A and 1.465(8) A respectively. It is interesting that this structure 

has a smaller inter planar distance than biphenyl yet with no significant 71-stacking present. 

This is probably due to the packing allowing closer inter-planar distance with the twisted 

structure, however there may be a weak interaction present. 

Since this study was conducted a 4, 4'-bipyridyl with no solvent within the unit cell has been 

determined (Boag et al,.l999). This reported structure has smaller dihedral angles 

(approximately 34° and 19°) and packs in an hydrogen bonded sheet structure. Although not 

as twisted as the structure reported in this thesis, it still has a relatively large twist away from 

the plane. 
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i \ 
Figure 5.6 The structure of 4,4'-bipyridyl (2), with disordered H2O present 

1 

Figure 5.7 The packiiig of 4,4'-bipyridyl/H20, showing the inter-molecuhir interactioD 

between the water and bipyridyl nitrogens. 
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5.4.3 The structure and bonding of 4-Biphenylcarboxylic acid (3) 

In this case a single carboxylic acid group was chosen on the para position with no other 

substituents present on the ring, see Figure 5.8, Initially it was expected that this structure 

would have been studied and the results deposited in the Cambridge Structural Database. 

However, even though the compound is readily available from manufacturers upon inspection 

was not found in the CSD. As a consequence of this the structure was deemed mteresting 

enough to do a diffraction analysis on and thus the crude compound was obtained and 

crystallized. The crystallization was achieved using evaporation of the solvent, acetone. The 

crystals formed readily although did not grow to be very large from acetone, and did not form 

readily in toluene, methanol or ethanol. The crystals formed were colourless and needle like. 

O H 

Figure 5.8 The represented structure of 4-biphenylcarboxyUc acid (3) 

A diffraction experiment was conducted using the SMART CCD area detector, at 150(2) K. 

The crystals diffracted well (considering their size and molecular structure) and the 

diffraction experiment proceeded without problems. 

The subsequent analysis of (3) found the unusually high 12 cell formula units, 4 sets of 3 

molecules in the asymmetric unit, see Figure 5.9. 

As expected the carboxylic acid groups form hydrogen bonds in a relatively simple motif, 

with both the COH and CO parts involved in hydrogen bonding to the same acid group on 

another structure. Two of the structures in the asymmetric unit are inter-molecularly 

hydrogen bonded to each other while the other is hydrogen bonded to an equivalent structure 

m another asymmetric unit in all three molecules in the asymmetric unit have different 

amounts of twisting, and each molecule is truly an independent species. It is interesting that 

there is such variation in the torsion angles, since all the molecules have crystallized in the 

one asymmetric unit under the same conditions. Although the variance in the amount of 

twisting is not large there is a definite difference in the dihedral angles. A major distinction in 
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the separate molecules is the difference in the carbon-oxygen distances. For the stracture not 

bonded to the other two in the unit cell then the C-0 distances are 1.264(2) A and 1.286(2) A 

(Figure 5.10). These lengths are similar, although different enough to distinguish between the 

separate C=0 and C-O-H parts of the acid group. When examining the C=0 distances in the 

two structures linked together in the asymmetric unit the distances are similar to each other, 

with CI5-06 and CI5-08 at 1.277(2) A and 1.269(2) A respectively (see Figure 5.9 and 

5.10) and C27 to 02 and 03 at 1.274(2) A for both distances. The reason for this similarity 

is probably due to an averaging of the two sites in the crystal, with the C-0 and C=0 

positions of the acid group swappmg positions on independent structures within the crystal 

structure. The event of independent molecules in the crystal flipping between the two sites 

seems extremely unlikely given the spherical shape of the thermal ellipsoids. Another possible 

explanation is the occurrence of proton transfer between the two molecules and thus the 

averaging of the two CO distances within the acid group. The similarity of the C-0/C=0 

bond distances is an interesting feature of this structures, the exact nature of the C-C bond 

and consequently the nature of the hydrogen bonding in the structure would be better 

determined by an analysis of ultra low temperature diffraction. Figure 5.10 shows the 

expanded hydrogen bonding with the symmetry equivalent structures, with a 0 -H- O bond 

distance of 1.604(3) A. There is no 7i-bonding present, see Figure 5.11. The inter-planar 

distance is approximately 7.4 A, Since there are three independent molecules there are three 

dihedral angles, these are 27.9(6)°, 34.3(4)° and 32.2(5)°. Since there is no 7i-stacking and/or 

ortho or meta intra/inter-molecular interactions, the rings should be free to adopt any 

conformation. A twist is observed which indicates that this may be a preferred biphenyl ring 

conformation of a biphenyl derivative without the influence of the 7i-stacking. 

Figure 5.9 The thermal ellipsoid plot at 50% probability of the independent units of 4-

biphenylcarboxylic acid (3) 
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Figure 5.10 The expanded structure of 4-biphenylcarboxylic acid (3) showing aU the 

hydrogen bonding present in the structure 

5.11 The packing structure of 4-biphenylcarboxylic acid (3) 
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5.4.4 The structure of 4,4'-dihydroxybiphenyI (4) 

Similar to 4,4'-bipyridyl (2) and to 4-biphenyl carboxylic acid (3), this structure has obvious 

hydrogen bonding groups attached at the para position and as with the previous cases the structure 

utilises these for hydrogen bonding. The structure itself is more similar to that of 4,4'-bypyridyl in 

that there is a near planar dihedral angle of 0.15 °. The inter planar distance of 5.34 A is similar to 

that of biphenyl (1) (5.58 A). 

There is hydrogen bonding present in the form of OH—O bonds. This bonding is singular and 

create chains in the structure. These hydrogen bcmds have a laigth of 1.956(5) A. The structure 

itself is completely symmetrical with an inversion point at the mid point betweai C5 and C5 A, with 

respect to the intCT/intra-molecular interacticms. This structure is that vAivAi would be expected, as 

the hydrogen bonding is from the sole hydrogen bond donor/acceptor OH group presrat. It is 

interesting that the structure with a small dihedral angle, akin to biphoiyl has an into- planar 

distance similar although not identical to biphenyl. 

CX1A} 

Figure 5.12 The structure of 4,4'-dihydroxybiphenyl (4), with 50% thermal ellipsoids. 
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5.13 The packing of 4,4'-^ihydroxybiphenyl, showing the layered stmcture. 

5.14 The Hydrogen bonding structure of 4,4'-dihydroxybiphenyl (4) 
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5.4.5 The structure of 2-hydroxyniethyl-3'-hydroxybiphenyl (5) 

The crystal of the compound (5) was mounted on a glass fiber and was cooled to 150(2) K 

with a stream of dry N2. The data were collected on a Siemens SMART CCD diffractometer 

employing graphite monochromated Mo-Ka radiation X= 0.71073 A. 

The structure of (5) in the solid state is connected through a series of hydrogen bonds. The 

OH groups are good both donor and acceptor groups for hydrogen bondmg. The hydrogen 

bonds in the structure are positioned to form a 3-dimensional network of such bonds. The 

structure has a somewhat layered structure with an inter-planar distance of approximately 

3.56 A. This is longer than generally accepted as an interaction (c.f. graphite at 3.4 A) and 

although a weak interaction is possible it is not be considered to be an interaction but simply 

the way phenyl groups have orientated in the lattice. 

The structure is moderately twisted with a dihedral angle of 58.8(7)°, as anticipated with the 

ortho substituents present. The conformation of the structure is the trans conformation, 

which is the less common isomer (see chapter 10), crystallographic data is detailed in Table 

5.2. 

1 

u era 

V 
0X81 

Figure 5.15 The Thermal Ellipsoid plot of 2-methoxy-3'-hydroxybiphenyl (5), with 50% 

probability 
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Figure 5.16 The pacldi^ of structure of (5), looking down through on the byered 

structure 

79 



Biphenyl (1) (2)* (3) (4) (5) 
Formula C12H10 C10N2H8 C13H12O2 C12H12O2 C13H12O2 

Formula Weight 154.20 156.2 200.23 188.22 200.23 
Crystal Colour Colourless Colourless Colourless Colourless Colourless 
Temperature (K) 150 150 150 150 150 
Wavelength (A) 0.71073 0.71073 0.71073 0.71073 0.71073 
Crystal System Pc P2(l)/c P2(l)/c P2(l)/c P2i2i2i 
Space group Monoclinic Monoclinic Monoclinic Monoclinic Orthorhomhic 

a=(A) 
b=(A) 
c=(A) 

a=n 

Y=n 

9.47170(10) 
5.5768(2) 
7.8156(2) 
90 
93.901(2) 
90 

9.170(2) 
7.450(2) 
14.740(3) 
90.000 
100.96(3) 
90.000 

7.4031(15) 
26.744(5) 
15.685(3) 
90 
103.24(3) 
90 

10.560(2) 
5.3400(11) 
7.8900(16) 
90 
95.25(3) 
90 

7.379(2) 
8.039(2) 
17.762(4) 
90 
90 
90 

Volume (A') 411.877(19) 988.6(3) 1053.6(4) 443.06(16) 1053.6(4) 
Z 2 4 12 2 4 
Calculated 
Density (Mg/m^) 

1.243 1.288 1.320 1.411 1.262 

Absorption 
Coefficient (mm'^) 

0.070 0.092 0.088 0.095 . 0.084 

F (000) 164 406 1272 200 424 
9 Range for 
Collection (°) 

.4.24 to 27.36 1.41 to 27.52. 1.52 to 27.44 1.94 to 27.48 2.29 to 27.49 

Index Ranges -ll<=/z<=10, 
-6<=A:<=5, -
9<=/<=9 

-ll<=/z<=7 
.9<=k<^9 
-16<=/<=19 

-9<=h<=9, 
-33<^k<=34, 
-19<=/<=20 

-U<=h<=l3, 
-6<=k<=6, 
-10<=/<=9 

-9<=h<=5, 
-9<=k<=10, 
-21<=1<=19 

Reflections 
collected 

2188 6574 21353 2822 4382 

Independent 
reflections 

1286 4307 6896 1018 2083 

Data/restraints/ 
parameters 

1286/2/ 
110 

4307 / 1 / 
254 

6887/0/ 
497 

1018/0/80 2083/0/ 
164 

Goodness-of-fit 
onF ' 

L180 0.997 1.064 2.131 1.044 

Final R indices 
[I>2sigma(I)] 

0.0475 0.0831 0.0465 0.0850 0.0369 

R indices (all 
data) 

0.1420 0.2509 0.1165 0.3165 0.1005 

Extinction 
coefficient 

0.052(18) 0.015(4) 0.0022(4) 0.00(2) .030(5) 

Largest difF. Peak 
and hole. (e.A^) 

0.204 and -
0.258 

0.487 and 
-0.339 

0.243 and 
-0.424 

0.437 and 
-0.295 

0.115 and 
-.122 

Table 5.2 The Crystallographic data for structures (l)-(5) :* is without the disordered 

solvent 
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5.4.6 Summary of Diffraction of biphienyl and derivatives 

Biphenyl (1) itself is almost planar and there is no discemable 7i-stacking present this is 

similar to that of (4) and in terms of geometry these two structures are similar, however, (4) 

has hydrogen bonding that is not present in (1). The structures (2), (3) and (5) are all twisted 

and have greater inter-planar spacing and in these respects have similar structures. Structure 

(4) has para groups present and these groups on the structure do not result in a twisted 

geometry, which is the case of (2), (3) and (5). The reasons behind this are dealt with in more 

detail in chapter 13. Structure (2) although having different groups at the para position still 

has the twisted geometry, it appears that biphenyl is stereochemically different from most of 

the substituted analogues as illustrated in chapters 10-13. 

It is interesting to note that in all these structures there is a lack of 7i-stacking, since the inter-

planar distances are too long. This is shghtly surprising given the obvious availability of the 

phenyl rings to be involved m such interactions, especially m the case of biphenyl (1) which 

has no other inter-/intra-molecular interactions. 
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C H A P T E R 6; 

SOLID S T A T E AND SOLUTION PHASE P H O T O C Y C L I Z A T I O N O F a,a-DIPHENYL-

2-(2'-HYDROXYPHENYL) B E N Z Y L A L C O H O L 

6.1 INTRODUCTION 

X-ray diffiaction analysis has shown the structure of a,a-diphenyl-2-(2'-hydroxphenyl)benzyl 

alcohol (5) (see Figure 6.1,) and that it is highly twisted (dihedral angle between of the biphenyl 

ring system is approximately 80°). It photocyclizes efficiently in CH3CN solution as well as in 

the crystalline state, to give the much more planar a,a-diphenyldibenzo[b,f|pyran (7). The 

analogue of a,a-diphenyldibenzo[b,f|pyran, (1) (Figure 6.2), has also been characterized by X-

ray analysis. The mechanism of reaction in CH3CN solution is believed to involve initial excited 

state intramolecular proton transfer from the phenol OH to the benzylic CPh20H. The reaction 

in the solid crystalline state is proposed to involve an excited state inter-molecular proton 

transfer. The compound crystallizes as hydrogen bonded dimers in a unit cell consisting of eight 

molecules in which the phenol OH is hydrogen bonded to the oxygen atom of the benzylic 

CPh20H group. 

In this chapter the compounds will be referred to by their corresponding numbers as shown in 

Figures 6.1 and 6.2. 

hv 

H 2 O - C H 3 C N 

(1) (2) 

twist 

(2) (4) 

Figure 6.1 Scheme 1 representing the photoreaction of (1) to (4) 
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(8) 

Figure 6.2 Structural representation of (5), (6), (7) and (8) 

The starting material (5) has been fully characterized by both X-ray and neutron diffraction, 

determining the hydrogen bonding character. The product (7) has also been characterized as 

well as the analogue (1). 

The study of photochemical reactions in the solid state has been of intense interest now for 

many years (Hollingsworth, 1990). Recently, organic photochemists have utilized such 

reactions for controlling stereoselectivity (Ramamurthy, 1987) and regioselectivity (Schefifer, 

1991) with promising results, as well as exploring the mechanism of solid state photoreactions 

requiring large torsional motions (Leibovitch, 1997) and photosolvolysis in the solid state (with 

co-crystallized solvent molecules) (Sakamoto, 1996). Here it has been chosen to study the solid 

state photocyclization of the a,a-diphenyl-substituted biphenyl derivative (5) (a,a-diphenyl-2-

(2'-hydroxyphenyl)benzyl alcohol) due to the ease in which crystals suitable for X-ray 

crystallography can be grown, it was also chosen to study the expected large dihedral angle of 

the biphenyl ring system, and the potential of using laser flash photolysis (in solution) to 

monitor for the formation of the corresponding o-biphenyl quinone methide (6), which might be 

sufficiently long-lived for its detection due to the greater conjugation expected in the additional 

benzene rings at the a-position. It can be seen that (5) photocyclizes efficiently in solution as 

well as in the solid state, to give the expected pyran (7). The X-ray crystallographic analysis 

shows the structure and an absence of any included water in the unit cell of the crystal, with the 

0-H protons exhibiting both intra and inter-molecular hydrogen-bonding. Photocyclization 
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mechanisms involving initial excited state intra and inter-molecular proton transfer are 

presented and discussed. 
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6.2 BACKGROUND 

In 1991 a new type of photocyclization reaction involving o,o'disubstituted biphenyls was 

reported by Wan and coworkers (Huang, et al. 1991), the parent reaction of which converted 2-

(2'-hydroxyphenyl)benzyl alcohol (1), see Figure 6.2, to 6H-dibenzo[b,dipyran (2) in high 

chemical yield, with quantum yields as large as 0.5 in basic aqueous CH3CN solution. The 

reaction was also observed in neat CH3CN, but with lower quantum efficiency (0 = 0.12). The 

X-ray diffraction analysis of the structure of (1) (Huang, et al. 1991) shows a highly twisted 

biphenyl ring system (dihedral angle of 68 °) where the two ortho benzene ring substituents (OH 

and CH2OH) are in a cw-arrangement. This is most likely due to intra-molecular hydrogen 

bonding between the two ortho hydroxy 1 groups, but as seen in chapters 10-13 the reason for 

biphenyl twistings are often much more complex. Since product (2) has a much smaller dihedral 

angle of 24° from a molecular mechanics (Alchemy I I I (Tripos Associates, 1995)) calculation, 

the overall photoreaction requires a significant twisting motion to planarity along with 

substantial charge redistribution in the excited singlet state to effect the cyclization, with an 

overall loss of H2O. 

A mechanism of the reaction was proposed (Scheme 1, Figure 6.2) in aqueous CH3CN solution 

which requires the phenol moiety to ionize, in solvent, to give the electronically excited 

phenolate ion (3). Twisting motion at this stage allows conjugation of the two benzene rings 

which, due to the enhanced electron donating effect of the phenolate ion in the excited state, 

causes the hydroxide ion from the benzylic position to be ejected. This gives rise to a relatively 

planar o-biphenyl quinone methide (4) which undergoes electrocyclic ring closure to give the 

observed product (2). The observation that the photocyclization also proceeds in neat CH3CN 

suggests the mechanisms involve intra-molecular proton transfer. More recently, it has been 

found that exploratory photolysis of crystalHne samples of (1) also gave (2) (Scheffer, 1987). 

This implies that a polar solvent is not required for the reaction although the efficiency may be 

enhanced when a polar solvent is used, probably via a change in reaction mechanism. These 

results led to in more detailed exploration of the photocyclization of these compound types in 

the solid state, which is reported herein. 
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6.3 E X P E R I M E N T A L D E T A I L S 

6.3.1 Experimentation and Equipment 

The ' H N M R spectra were taken on Bruker AC300 or AM360 spectrometers in C D C I 3 or 

acetone-d6. Mass spectra were obtained on a Kratos Concept H (EI) instrument. UV-Vis spectra 

were measured on a Cary 5 instrument. Preparative photolyses were carried out using a Rayonet 

RPR 100 photochemical reactor using 254 or 300 nm lamps. Reaction mixtures for these 

photolyses were contained in 100 or 200 ml quartz tubes, which were cooled to 15° C using a 

cold finger (tap water) and purged continuously during photolysis using a stream of argon via a 

stainless steel syringe needle. The X-ray and neutron diffraction experimental details are given 

in the relevant sections of this chapter, see chapter 2. 

6.3.2 Materials 

Anhydrous CH3CN used for fluorescence studies was distilled over CaH2 and used immediately. 

Preparative thin layer chromatography (TLC) was carried out on 20 cm^ silica gel Uniplates 

(Analtech). 2'-Hydroxybiphenyl-2-carboxylic acid lactone (8) required for the synthesis of (5) 

was prepared using a previously described method (Shi and Wan, 1995 and 1997). 

Lactone (8), 5.0 g (25 mmol), was dissolved in 250 ml of dry THF, and 160 mL of 1.8 M phenyl 

lithium was added with stirring over 2 hours. The mixture was then refluxed for 4 hours. After 

reaction, the solution was quenched with a mixture of ice and saturated NH4OAC and extracted 

three times with CH2CI2. A colourless oil was obtained after the solvent was abstracted. This 

crude oil was washed several times with hexanes after which it solidified on standing for several 

days. This solid was first recrystallized from toluene-hexanes and then from a mixture of 

hexanes, CH2CI2, and CH3COCH3, to give good quality crystals (suitable for X-ray diffraction 

experimentation) of pure (5) (1.75 g, 20%), m.p. 103°C, 5.72% H; found 85.16 C, 5.71% H. 

Due to the efficient loss of water in the mass spectrometer, no attempts were made to obtain an 

exact mass, since the X-ray crystal structure provided complete characterization of the structure. 



6.3.3 Product studies 

6.3.3.a Photolysis of (5) in 100% CH3CN and 1:1 H2O-CH3CN 

A solution of (5) (147 mg) in CH3CN (200 mL) was photolyzed (254 nm) in a quartz tube for 30 

minutes using the general procedure. The solvent was then removed by rotary evaporation. The 

residue (60% conversion to pyran (7) by ' H N M R ) was chromatographed on preparative thin 

layer chromatography (silica; 2:1 hexanes-CH2Cl2). The first band was collected to give a white 

solid, which was recrystallized from CH3CN to give pure (7), m.p. 137-139 ° C. 

When photolyzed in 1:1 H2O-CH3CN, the conversion to (7) was about 50% higher (by UV-Vis 

and ' H N M R ) indicating a more efficient reaction when water is present. In addition, at very 

high conversions, minor side products were observable in runs in 100% CH3CN whereas they 

were absent in 1:1 H2O-CH3CN. 

6.3.3.b Photolysis of (7) in 1:1 H2O-CH3CN and 1:1 CH3OH-CH3CN 

A solution of (7) (1.4 x 10^ M , in 1:1 H2O-CH3CN or 1:1 CH3OH-CH3CN) was placed in a 

curette (3.0 mL) and irradiated at 254 or 300 nm. No changes were detected by UV-Vis 

spectrophotometry even on prolonged irradiation indicating the lack of any conversion to the 

ring-opened product ((5) in 1:1 H2O-CH3CN, and the corresponding methyl ether in 1:1 

CH3OH-CH3CN). This was confirmed by ^H NMR spectra of preparatory runs (more 

concentrated solutions; 60 minute photolysis), which showed only (7). 

6.3.3.C Photolysis of crystalline samples of (5) 

A small amount of (5) (4 mg) was crushed into a fme powder in a mortar and then irradiated (in 

the mortar, opened to air) at 254 nm for 150 min. The sample was then dissolved in (CD3)2CO 

and ^H NMR showed 25% conversion to pyran (7). No detectable side products were observed 

with NMR analysis. The cell was then irradiated at 300 nm for five hours. Analysis of the 

sample (^H NMR) showed 10% conversion to (7). 

As an ahernate method for studying the solid state photolysis, a sohd film of (5) (4 mg) was cast 

between two quartz plates using CH2CI2 and the solvent removed on a vacuum pump (residual 

5-8% CH2CI2 by NMR). This method allowed the progress of the photoreaction to be directly 

monitored by UV-Vis spectrophotometry, which showed clean conversion to (7) on photolysis, 

similar to that observed in runs in 1:1 H2O-CH3CN. With prolonged photolysis the highest 

conversion achievable was 50% and there was an absence of detectable side products. 
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6.3.3d Photolysis of (1) 

Photolysis of (1) in aqueous CH3CN gave a strong and broad transient absorption spectrum with 

the major band at ~ 600 nm. The transient spectrum was broad (450-800 nm) with the identical 

decay rates at all wavelengths. This suggests that the spectrum is due to the same species. The 

m̂ax is red shifted as the solvent polarity increases which suggests that the species is highly 

polar. The photolysis of (1) is independent of pH although the decay rate showed high 

dependence on pH and solvent, but is not affected by O2. Photolysis of (1) in 1:1 H2O-CH3OH 

resulted in a clean conversion to the corresponding methyl ether (10) (Figure 6.3). 

H2O-CH3OH \ 
— O H \ oMe 

(1) (10) 

Figure 6.3 The scheme for the photolysis of (1) to (10). 

6.3.4 Laser flash photolysis 

Laser flash photolysis (LFP) experiments were carried out by Professor Peter Wan at the 

University of Victoria LFP Facility. A Spectra-Physics OCR 12 YAG laser at 266 nm (< 30 mj) 

was used for excitation and signals were digitized with a Tektronix TDS 520 recorder. Samples 

were prepared in quartz cells in a flow system to avoid photolysis of the photoproduct, which is 

formed efficiently. Purging was carried out using iSf2 or O2 prior to photolysis. 

6.3.5 Quantum yields 

Quantum yields for photocyclization of (5) to (7) were measured using UV-Vis 

spectrophotometry to follow the progress of the reaction. Experiments were carried out on an 

optical bench equipped with an Oriel 200 W Hg arc lamp and a monochromator set at 280 nm 

(slits = 10 nm). Generally, a quartz cuvette containing a 3.00 mL solution of the substrate was 

purged with argon for 5 min. and then irradiated for a set time period on the optical bench. The 
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extent of conversion to (7) was followed at Xmax = 308 nm (of the second absorption band of 

(7)), with £ = 6384 mof' L cm'\ The light intensity was measured by potassium ferrioxalate 

actinometry (Shin, 1996). The initial concentration of the substrate was adjusted such the 

absorbance at 280 nm was > 2. The following quantum yields for photocyclization of (5) to (7) 

were measured: O = 0.18 ± 0.02 (100% CH3CN); 0.26 ± 0.03 (1:9 H2O-CH3CN); 0.27 ± 0.03 

(1:1 H2O-CH3CN); 0.15 ± 0.02 (100% CH3OH); 0.19 ± 0.02 (100% THF). No attempts were 

made to measure O for the solid state photolyses although qualitatively, the conversions were 

equally as efficient when compared to similar runs carried out in solution. 
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6.4. R E S U L T S AND DISCUSSION 

6.4.1 Product studies in solution 

UV-Vis traces of a sample of (5) in 1:1 H2O-CH3CN photolyzed at 254 nm shows large changes 

consistent with transformation to the ring-closed product (7), which is more intensely absorbing 

due to the improved conjugation of the more planar biphenyl ring system. Conversions can be 

taken to be essentially 100% since the final spectrum obtained is that of pure (7). A similar trace 

taken in 100% CH3CN is less clean as absorption > 340 nm increases significantly at higher 

conversion. These results are confirmed by preparatory photolyses in which the yield of (7) is 

essentially quantitative when photolyzed in 1:1 H2O-CH3CN whereas in 100% CH3CN, yields 

of 80-90% were observed. 

In product studies of the parent system 1, photolysis in 1:1 H2O-CH3CN gave a photostationary 

ratio of circa. 98% of (2) and a residual 2% of (1) on exhaustive photolysis, implying that the 

photochemical reaction is reversible. This was confirmed by photolysis of Q) in 1:1 H2O-

CH3CN, which gave a 2% yield of (1) on extended irradiation. That is, o-biphenyl quinone 

methide (4) undergoes electrocyclic ring closure to form (2) much faster than it is attacked by 

H2O to form (1). In the present case of (5), it would appear that the corresponding o-quinone 

methide (6) is not attacked by H2O but reacts only via electrocyclic ring closure. This is 

confirmed by photolysis of (7) in 1:1 H2O-CH3CN or 1:1 CH3OH-CH3CN, which resuhed in no 

observable reaction (to give (5) or the corresponding methyl ether) even on extended photolysis. 

A reasonable explanation for the lack of any nucleophilic trapping products of (6) is the 

increased steric hindrance of the a-benzylic position (with two phenyl groups) which should 

retard nucleophilic attack at this site. 

In the study of the mechanism of photocyclization of (1), it was found that the photocyclization 

quantum yield was about twice as high in aqueous CH3CN than in neat CH3CN. This was 

rationalized as being due to the greater ability of water to solvate the phenolic proton, which is 

liberated on photoexcitation. A plot of quantum yield against pH (in aqueous solution) showed a 

titration curves at approximately pH 1 and 10, corresponding to the singlet excited state and 

ground state of the phenol moiety, respectively. These resuhs support a mechanism in which the 

excited state phenolate ion is on the reaction pathway in the photocyclization mechanism in 

solution. Quantum yield measurements for photocyclization of (5) in a variety of solvents (vide 

supra) are consistent with this mechanism. Indeed, the quantum yields measured for (5) are very 

similar to those observed for (1) indicating that the presence of the two phenyl groups has very 

little effect on the photocyclization quantum yield. The photocyclization quantum yields for (5) 

are marginally higher, 0.27 compared to 0.21 for (1) in 1:1 H2O-CH3CN and 0.18 compared to 
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6.12 for (1) in 100% C H 3 C N . This may be a reflection of the lack of nucleophilic trapping of (5) 

by H2O generated in situ or from the solvent (which leads back to starting material and hence 

reduce the observed > quantum yield for photocyclization). 

6.4.2 X-ray Crystallography and Product Studies in the Solid State 

6.4.2.a The structure of a,a-diphenyl-2-(2'-hydroxyphenyl)benzyl alcohol (5) 

The crystal of the compound (5) was mounted on a glass fibre and was cooled to 150(2) K with 

a stream of dry N2. The data were collected on a Siemens SMART CCD diflfractometer 

employing graphite monochromated Mo-Ka radiation A= 0.71073 A. The data were then 

integrated with the Seimens SAfNT program. There was no absorption correction appUed. The 

crystal structure data for (5) is given in Table 6.1. 

In the X-ray diffraction analysis it was found that (5) crystallizes in space group C2/c with eight 

molecules in the unit cell, water molecules were also found in the crystal. The eight molecules 

are arranged into four inter-molecularly hydrogen bonded dimers (see Figures 6.4 and 6.5), 

(phenol OH hydrogen bonded with the benzylic O; 01-H2A/01A-H2) distance is 1.86(3) A, 

where atom X(A) is related to atom X by an inversion operation, these dimers are held together 

by both inter and intra molecular hydrogen bonding. The inter/intra molecular bonding forms an 

eight membered ring involving four hydrogen and four oxygen atoms, with two inter and two 

intra molecular hydrogen bonds. 

The hydrogens in the structure were fixed except those hydrogen atoms that were attached to the 

oxygen atoms (the hydrogen atoms likely to be involved in hydrogen bonding), these particular 

atoms were found freely in the structure solution and freely refined. The fact that these 

hydrogen atoms were found in the structure solution and the lack of disorder present for these 

atoms indicates that the hydrogen atoms are strongly located in the one area of the asymmetric 

unit and so gives greater credit to their involvement in some form of inter/intra molecular 

interaction. Each dimer is also intra-molecularly hydrogen bonded (benzylic OH hydrogen 

bonded with phenol O; 02-H1/02A-H1A) with a distance of 1.88(3) A. The dimer units are 

separated by distances within the normal van der Waals distances and the geometry of the 

monomer shows no exceptional or unusual features. 

This conformation of this structure is showing the cis arrangement of the two substituents on the 

biphenyl (the phenol OH and benzylic moiety), which is the optimal arrangement for 

photocyclization. This arrangement (cis) is in contrast to that of (1), which was of the trans 

configuration. 
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a,a-diphenyl-2-(2'-hydroxy- The pyran product (7) 

phenyl)benzyl alcohol (5) 

Formula C25H20O2 C25H18O 
Formula Weight 352.41 334.39 
(g/mol) 
Crystal Colour Colourless Colourless 
Crystal Description Block Plates 

a=(A) 22.929(4) 9.520(2) 
b=(A) 13.038(2) 14.990(3) 
c= (A) 12.446(3) 36.810(7) 

90 90 

p=o 93.3780(10) 91.74(3) 
90 90 

Temperature (K) 150°(2) 150°(2) 
Wavelength (A) 0.71073 0.71073 
Crystal System Monoclinic Monoclinic 
Space group C2/C P2(l)/c 
Volume 3698(1) 5250.5(18) 
Z 8 12 
Number of 1488 2349 
Reflections Used 
Calculated Density 1.266 1.269 
Absorption 0.79 0.076 
Coefficient (mm'^) 
F (000) 1488 2112 
9 Range for 1.79 to 25.53 1.11 to 17.53 
Collection (°) 
Index Ranges -13<=h<=27, -13<=k<=14, -8<=h<=8, -12<=k<=12, 

-14<=1<=14 -31<=1<=31 
Reflections collected 7728 13408 
Independent 3039 3337 
reflections 
Data/restraints/parame 2999/0/305 3331 / 0/704 
ters 
Goodness-of-fit on F"̂  1.207 1.080 
Final R i indices 0.0491 0.0365 
[I>2sigma(I)] 
WR2 indices (all data) 0.1455 0.0680 
Extinction coefficient 0.0030(2) 0.0015(2) 
Largest diff. Peak and 0.185 and -0.201 e.A ' 0.139 and-0.155 e.A ' 
hole. 

Table 6.1 X-ray crystal data for structures (5) and (7) 
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Figure 6.4 The thermal ellipsoid plot of (5), with 50% probability 

rf2A J 

1 

Figure 6.5 The hydrogen bonded structure of (5) 
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6.4.2.b The structure of the pyran product (7) 

Suitable crystals of (7) for X-ray analysis were not available directly from the solid state 

reaction but upon recrystallisation from toluene, which took several months to obtain, decent 

crystals were produced. Thus Alchemy I I I (Tripos, 1995) was first used to generate an 

optimized geometry for (7), the result giving a much less twisted biphenyl ring structure than for 

(5), with a dihedral angle of 26° which is only slightly more twisted than the parent pyran (2) 

(24° by Alchemy III) . However, it is clear that a substantial twisting to planarity is required for 

(5) to give rise to (7) on photolysis. The X-ray analysis of (7) showed that the structure obtained 

in the solid state was close to that predicted by the Alchemy IE program but there were distinct 

differences within the structure, see Figure 6.6. In the structure there are three molecules of (7) 

in the asymmetric unit. A l l three of these molecules have different dihedral angles thus partially 

explains why the crystals that were obtained directly from the solid state reaction were not 

suitable for complex X-ray analysis. The large amount of twisting and the nature of the 

interaction between the separate molecules that was mvolved in the solid state reaction (in order 

to generate the three structures in the asymmetric unit) almost certainly destroys much of the 

crystalline nature of the solid. The solid produced was probably a conglomerate of separate 

repeating units, making the solution of the structure of this solid directly from the 

photochemical reaction of (5) to (7) impossible with single crystal X-ray diffraction analysis. 

The crystal in this case would behave very much like a twinned crystal. Needless to say, the 

photoreaction does indeed produce the product, (7), in the solid state but the complexity and 

dynamics of this reaction also create enough disturbance at the molecular level to destroy the 

measurable crystallinity. 

Product studies of crystalline samples of (5) as well as samples cast as a solid film show an 

efficient and clean photoconversion to (7). The crystal environment does not impart any 

substantial impediment to this photocyclization requiring substantial torsional motion. Since 

water is not included in the crystal lattice, the mechanism of photocyclization cannot involve 

water-assisted ionization of the phenol moiety, as proposed in aqueous solution. 

The manner in which (5) crystallizes (as dimers) offers an intriguing mechanism for 

photocyclization in the solid state. It is proposed that the mechanism for photocyclization of 

(13) involves initial inter-molecular proton transfer from the phenol OH to the oxygen of the 

benzyl moiety of the hydrogen bonded partner (2), to generate a "zwitterionic dimer" (9). Loss 

of hydroxide ion from (9) gives rise to (6) and presumably a molecule of (5) still hydrogen 

bonded to a hydroxide ion and a proton, which on proton reshuffling regenerates (5) and a water 

molecule. Electrocyclic ring closure of (6) gives the expected (7), see Figure 6.7. This 

mechanism implies that the maximum conversion of (7) is 50%, and this is consistent with 
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experimental observations. The overall mechanism involves the hydrogen bonded partner 

mediating the proton transfer and stabilizing the incipient charge separation. This apparently 

cannot be accomplished with a single water molecule, as (5) (monomeric form) does not react 

further. Figure 6.7 gives a proposed possible mechanism, which results in the loss of H2O. 

However, loss of OH' and H^ is also possible. 

Figure 6.6 The thermal ellipsoid plot of (7), with 50% probability 

97 



proton transferAwisiting 

O H H — 

(HO-) 

Figure 6.7 Scheme 2, possible mechanism representing (5) to (7) 

6.4.3 Laser Flash Photolysis (LFP) 

LFP studies of (5) were carried out as an attempt to directly show the involvement of o-biphenyl 

quinone methide (6) in the reaction mechanism in solution. It has been shown that 

photogenerated biphenyl quinone methides that cannot undergo electrocyclic ring closure are 

readily observable by LFP, with lifetimes in the 0 . 4 - 7 0 |j,s range in aqueous solution with long-

wavelength maxima ( 5 0 0 - 5 7 5 nm) (Shi et al., 1 9 9 5 ) . Although (6) does undergo electrocyclic 

ring closure, it was anticipated that the added phenyl groups might provide sufficient additional 

conjugation to decrease its reactivity. Previous nanosecond LFP studies of (1) gave no 

observable transients assignable to (4) supporting the notion that o-biphenyl quinone methides 

of the type (4) are very short lived. 

Laser flash photolysis of (5) in 1:1 CH3CN-H2O gave only a weak transient in the 3 4 0 - 5 0 0 nm 

region (Amax = 4 2 0 nm). This transient was not affected by added ethanolamine and O2. This 

transient decays with a fast rate ( 6 . 7 x 10^ s"̂ ) which suggests there is more than one species 
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involved. Since known biphenyl quinone methides absorb at much longer wavelength (500-575 

nm) and are efficiently quenched by added ethanolamine, the transient observed for (5) is most 

likely due to a side reaction of (5). Thus it is clear that even (6) is too short lived for detection 

by nanosecond LFP. The possibility that (6) might be longer lived in the solid state and hence 

detectable using the present apparatus is a subject for further investigation. 
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6.5 NEUTRON D I F F R A C T I O N STUDY 

6.5.1 Introduction 

The X-ray study of the compound shows that the conformation was of the near cis type, which 

fits with the general trend for o-o'-biphenyls ((Brock & Minton, 1989) and (Roberts, 1985)). It is 

believed that this can be attributed to an 0-H -O interaction, rather than preference for the cis 

conformation. Unfortunately, since the electron density hydrogen is so small, often peaks that 

appear as bond deformations are simply spurious peaks. So X-ray diffraction studies cannot give 

an accurate picture of any deformation present in the hydrogen bonding. Both the inter- and 

intra-molecular hydrogen bonds (determined by X-ray analysis) are within the approximately 

average range of the main body of hydrogen bond lengths, at 1.86(3) and 1.88(3) A 

respectively, (see Figure 6.5). The range of hydrogen bonds, for CO-H--Q-C type systems, can 

be taken as 1.4 A to 2.75 A (the length of the 2 van der Waals radii), with a large proportion of 

these at 1.4 A to 2.2 A (see Figure 6.5). With both the mter and intra distances approximately 

equal, this indicates that the intra-molecular interaction is of an optimum length. To determine 

the positions of protons in this compound accurately, the thermal motion of the hydrogen atoms 

involved in the hydrogen bonding and the twisting of the rings relative to each other, and hence 

to establish the role of the hydrogen bonding and inherent twisting of the C-C bond between the 

rings in the structure, the neutron diffraction study was conducted. Since neutrons are scattered 

by the atom nucleus rather than the electron density, the atomic position of the hydrogen can be 

determined with the same degree of accuracy as for carbon and oxygen atoms in the structure 

and so the length of the hydrogen bond determined extremely accurately. 

6.5.2 Results and discussion 

Structure refinement was carried out on F^ using the previously determined X-ray parameters as 

a starting model. In the final refinement, position and anisotropic thermal parameters were 

refined for all atoms, mcluding hydrogen atoms. The refinement converged satisfactorily to R l 

= 0.0824, wR2 =̂  0.1248 using this model. The resuUing model is shown in Figure 6.8, with the 

refinement parameters summarized in Table 6.2. 

As aheady determined by the X-ray analysis in this chapter, the conformation of a,a-diphenyl-

2-(2'-hydroxyphenyl) benzyl alcohol is nearer the cis geometry than the trans, this is in 

agreement with the general trend of these compounds, although there are some notable 

exceptions to this ((Singh and McKinney, 1987), (Itoh et al, 1989) and (Howard et al, 1976)). 

The dihedral angle in o-o'-biphenyls is usually between 50 and 80° (Brock and Minton, 1989), 
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and in this compound it is relatively large at 80° but this is as expected with the large sterically 

demanding [C(Ph)20H] group present (see Figure 6.8). The compound crystallizes as hydrogen 

bonded dimers in the solid state, with both inter and intra molecular hydrogen bonding present 

enabling a direct comparison within the eight-membered ring which binds the two molecules 

together. The unit cell consists of four dimers (see Figure 6.9). Since 0-H groups in general 

readily form hydrogen bonds and so have a relatively strong attraction to each other, then there 

is a reasonable probability that hydrogen bonding would be favoured here and thus be the 

reason this compound prefers to adopt the near cis arrangement. I f there is intra-molecular 

hydrogen bonding then the rings will have to be positioned so as to aUgn in the near cis 

conformation to allow for interaction. A conformational preference that is strong for a specific 

dihedral angle may show up with this hydrogen bond either shortened or lengthened. This case 

is interesting and useful since there is inter as well as intra-molecular hydrogen bonding 

allowing us to characterize both types of hydrogen bond lengths in one structure. It also allows 

us to ascertain whether the intra-molecular hydrogen bonding is significantly shorter, longer or 

more distorted than the inter, as to be a consequence of the twisting of the phenyl rings or 

whether the hydrogen bonding is the main factor in the twisting. There is some flexibility in the 

C(Ph)20H group in the monomeric state, but the phenyl groups are sterically hindering enough, 

so as to keep the oxygen position fixed relative to the twist when in the dimer. 

Intra-molecular hydrogen bonding is the major influence for this preference. The two H "O 

distances in the 0-H -O interactions are 1.788(8) A and 1.820(7) A for the intra- (02-H1/02A-

H I A ) and inter-molecular bonds (01A-H2/01-H2A) respectively, see Figure 6.8. This is close 

to the average length in the main peak of 1.821 A for these structures in the Cambridge 

Structural Database (CSD). Although the magnitude of the intra-molecular bond is slightly 

smaller than for inter, it is not significantly so and it is not suggested that the difference arises 

from the twisting of the rings, and the twist definitely does not give rise to exceptionally short or 

long hydrogen bonds. This structure seems to fit into the mostly cis conformational trend of o-

o'-biphenyl compounds and the reason is that, it is the hydrogen bonding in the dimer which 

determines the conformation in the solid state. Certainly the eight-atom hydrogen bonded ring 

only exists in the cis arrangement but this dimeric form seems to be stable enough to be the 

controlling factor in the conformation of the structure. The observation here is that the intra­

molecular hydrogen bonds determine the conformational configuration of this compound and it 

is not a consequence of the cis conformational preference that prevails in these types of 

compounds. 

There are a number of OH o-o'-substituted biphenyls in the CSD, and given the identification of 

intra-molecular hydrogen bonding in this compound that determines the stereochemistry, it is 

possible that the cis conformation of many of these structures is due to intra-molecular hydrogen 
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bonding. Obviously a detailed neutron structure cannot be possible for all similar type 

compounds, but it is feU that this study is representative and informative. 

Figure 6.8 The thermal ellipsoid plot of (5), with neutron data, 50% probability 

Figure 6.9 The dimers of (5) plotted with neutron diffraction data 
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6.5.3 Experimental 

The crystal was fixed to an aluminium pin using thin strips of aluminium tape and mounted in a 

Displex cryostat on a two-circle chi, phi goniometer. The sample was cooled to 150 K for the 

data collection, the same temperature as for the X-ray analysis. Data were collected on the SXD 

instrument at the ISIS spallation neutron source, using the time-of-flight Laue diffraction 

method (Wilson, 1997). Basically this method uses a wavelength-sorted white neutron beam, 

together with large area position-sensitive detectors, to allow a large volume of reciprocal space 

to be measured in a single crystal setting (a "frame"). The full data collection comprises a series 

of such frames, each collected with a stationary crystal-detector arrangement. 

The data collection parameters are summarized in Table 6.2. A total of 42 frames, each 

containing information from two detectors, was collected, with an exposure time for each frame 

of around six hours. The precise exposure time depended on the neutron flux/hr, with the crystal 

exposed to the same total neutron flux in each frame. 

The distance from sample to detector, L2, is 204 mm and 143 mm for the low and high angles to 

the centre of the detector, 26c, respectively. The intensities were extracted and reduced to 

structure factors using standard SXD procedures. A total of 14963 intensities were integrated, 

reducing to a unique set of 3129 observed structure factors [I>2sigma(I)] on merging 

(Rmt=0.07). 

Table 6.2 The Neutron diffraction data for (5) 

Formula C25H20O2 Volume 3697.6(13) A' 
F (000) 1016 Z 8 
Crystal Colour Colourless Temperature (K) 150(2) 
Crystal Description Wedge Calculated Density 1.265 Mg/m' 
Independent 
reflections 

3129 Absorption 
Coefficient 

0 

Crystal Dimensions 
(mm) 

1.6x1.2x0.8 Formula Weight 
(g/mol) 

352.41 

Space group C2/C Crystal System Monoclinic 
0 Range for 
Collection (°) 

4.59 to 42.71 Index Ranges 0<=h<=42, 
0<=k<=23, 
-22<=1<=22 

a=(A) 
b=(A) 
c=(A) 

22.929(4) 
13.038(2) 
12.446(3) 

a=n 
(3=(°) 

90 
96.3780(10) 
90 

Data/restraints/parame 
ters 

3129/0/425 Final R* index 
[I>2sigma(I)] 

0.0816 

Reflections collected 3131 WR2 index (all data) 0.1248 
Extinction coefficient 0.0036(4) 
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6.6 SUMMARY 

This study has shown that the photocyclization of a,a-diphenyl-2-(2'hydroxphenyl)benzyl 

alcohol (5) to the corresponding pyran (7) is not inhibited in the solid state although the reaction 

requires significant torsional motion. It is believed the dimeric structure of (5) observed in the 

solid state offers a unique mechanism for the reaction involving both inter and intra-molecular 

proton transfers and explains why the maximal yield in the solid state is 50%. 

The conformation of (5) is governed by the hydrogen bonding present, which gives the cis-

conformation. This cis orientation facilitates the solid state.ring closure reaction to form (7). 

There is a tendency for biphenyl compounds to adopt this cis conformation but not all biphenyls 

adopt this geometry. So a factor in choosing a structure with suitable geometry is important for 

such chemistry, chapters 10-13 deal with these geometric factors for biphenyls and give factors 

for the cis versus trans conformation. 
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C H A P T E R 7; 

A STUDY O F F H O T O R E A C T I V E B I A R Y L M O L E C U L E S 

7.1 AN INTRODUCTION T O B I A R Y L METHANOLS W I T H NAPHTHALENE RING 

This chapter focuses on the biaryl systems, with specific reference to their photochemistry and 

how X-ray diffraction analysis can be used to study such reactions. This chapter will give details 

on the synthesis, the photochemistry and some relevant chemistry as well as the diffraction data 

analysis of the photoactive compounds (1), (2) and (3), see Figure 7.1. 

Biaryl methanols (l)-(3) were synthesized from the corresponding lactones by reduction with 

LiAlH4, Figure 7.2 shows the synthesis of (1). These lactones were synthesized using 

palladium-catalyzed intra-molecular aryl coupling reactions in the manner of a previously 

described method (Bringmann et al., 1992 & 1993). 

,0H 

ÔH 

(1) (2) (3) 

Figure 7.1 The Biaryl molecules 

(1) 2-[2'-(Hydroxymethyl)-l'-Naphthal]phenol, 

(2) 2-Hydroxy-2'-hydroxymethyl-l,l'-Binaphthyl and 

(3) l-[2'(Hydroxymethyl)phenyl]-2-naphthol 
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(4) 

NBS/CCl 

SOCI 2/toluene 

COCI 

Phenol/CH2Cl2 

Pd(AcO)2/PPh3/DMA 

(6) Br 

H20/(CH3)2CO 

KMnO, 

COOH 

LiAlH4/THF 

(10) (11) (1) 

Figure 7.2 The reaction scheme to produce compound (1) 
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7.2 P H O T O C Y C L I Z A T I O N IN T H E SOLID STATE. 

Since molecular motion in solids is highly restricted, these reactions have been extremely useful 

in the control of both stereoselectivity (Shin et al., 1996) and regioselectivity (Robinson and 

Robinson, 1986). As demonstrated in chapter 6 with the structure a,a-diphenyl-2-(2'-

hydroxyphenyl)benzyl alcohol, biphenyls can photocyclize quite efficiently in the solid state. 

Similarly the binaphthyl compound (2) can also undergo photocyclization in the solid state 

although due to steric restrictions the efficiency of the reaction is much lower (Figure 7.3). In 

the solid state samples of (1) do not show any reactivity when subjected to the same conditions 

as the biphenyl molecules. However, since the solid state reaction requires large torsional 

motion (to reach the planar form), it is expected that the density of the solid state will also 

effect this torsional motion and thus the efficiency of cyclization. 
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Pd(AcO)2/PPh3/DMA 

(12) (13) 

LiAlH4/THF/reflux 

(2) 

Figure 7.3 The reaction scheme to produce compound (2) 
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7.3 2-[2'-(HYDROXY]VlETHYL)-l'-NAPHTHYL]PHENOL (1) 

7.3.1 Synthesis and analysis of 2-[2'-(Hydroxymethyl)-!'-NaphthyI] phenol (1) 

A sample of 2-methylnaphthalene (4) was brominated at the 1-position to give l-bromo-2-

methylnaphthalene (5) with 90% yield. A second bromine was then introduced by bromination 

at the methyl group, following a known procedure, (Newman and Kosak, 1949) this gave 

structure (6) in 90% yield. This dibromide (6) was converted to (l-bromo-2-naphthyl)methanol 

(7) almost quantitatively by reflux in 1:1 (CH3)2CO-H20 overnight. The l-bromo-2-naphthoic 

acid (8) was obtained in -80% yield from oxidation of (7) with KMn04. Acid (8) was then 

converted to the acid chloride (9) by reflux with SOCI2. Treatment of (9) with phenol gave ester 

(10) in 90% yield. Intra-molecular aryl-aryl coupling with Pd(0Ac)2 gave (11) in 70% yield 

(Bringman et al, 1992). Reduction of (11) with LiAlH4 gave (1) in essentially quantitative yield. 

The overall yield of (1) is 20 - 30%. 

Compounds (5)-(8), (10) and (11) were identified using NMR (90 MHz, CDCI3), with (7), 

(8) , (10) and (11) additionally using Mass Spectroscopic analysis. 

7.3.2 X-ray analysis of 2-[2'-(Hydroxymethyl)-r-Naphthyl]phenol (1) 

X-ray diffraction analysis shows that (1) is in the cis conformation in the crystalline state, but 

the dihedral angle is much larger, 87.7(7)°, nearly perpendicular, see Figure 7.4 than the parent 

compound (approximately 68.4°). There are inter-molecular hydrogen bonds (between 01 of 

one molecule and H2 of another), see Figure 7.4. The length of this hydrogen bond is short 

(1.72 (4) A). The hydrogen bonds in this structure probably account for the cis orientation. 

However, it is possible that it is this cis conformational preference results in the short hydrogen 

bonds. 
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Figure 7.4 The structure of 2-[2'-(hydroxymethyl) I'-naphthyl] phenol (1), with 50% 

thermal ellipsoid plot 

7.3.3 Analysis of(l) 

There is a decrease in quantum yield of cyclization for (1) on addition of H 2 O . A possible 

explanation for the decrease in quantum yield of cyclization observed is that QM (16) isomer 

can be trapped by H 2 O more efficiently (to reproduce (1)), than electrocyclic ring closure to 

give (15). The fact that the photostationary state contains 40% of (1) is consistent with this 

explanation. Prolonged photolysis, gives rise to a small amount (~10 %) of unidentified side 

products which were probably the secondary photodecomposition of methyl ether (17) (see 

Figure 7.5). Photolysis of chromene (15) (see Figure 7.6) in neat CH3OH gave a photostationary 

state ratio of 21:79 (15:17) and this indicates a reversibility of the reaction. In the UV 

absorption spectrum of chromene (15) shows a red-shifted strong absorption band in the region 

320 - 340 nm, where the starting material (1) does not absorb. The 'H NMR of (15) showed a 

sharp singlet, which was assigned to the two methylene protons. The sharp singlet indicates that 

the two methylene protons are chemically equivalent (or rapidly exchangeable) which suggests 

that (15) has an essentially planar conformation. It has been shown that (15) is achiral in the 

NMR time scale (Bringmann et al, 1992). 
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OMe 

Figure 7.5 The probable side product (17) 

Smce (15) is almost planar it therefore attains better conjugation of the aromatic rings. By 

monitoring the growth of this band at 337 nm this reaction can be more conveniently 

followed by UV spectrophotometry. Photolysis of a sample (8.8 x 10̂  M) of (1) in CH3CN 

results in the progressive growth of this band at 337 nm which is due to formation of 

chromene (15). After a photolysis time of two minutes, the UV spectrum recorded was the 

same as that of a known sample of (15). Therefore (1) can be quantitatively converted to (15). 

The ^H NMR shows a closely spaced AB quartet, which suggests that the rotation of the 

methylene group is restricted at room temperature, this is probably due to steric reasons and/or 

inter-molecular hydrogen bonds. An absence of OH peaks in neat CD3CN suggests that the 

alcoholic and phenolic OH protons are exchanging fast thus broadening the peaks. As the NMR 

solvent used was reasonably dry and the substrate concentration was higher than any possible 

protic impurity in the solvent, this is most likely due to proton exchange via the intra-molecular 

hydrogen bonds. 
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h v 

CH3CN (neat or aqueous) 

(1) (15) 

7.6 The photocyclization reaction of (1) to (15) 

7.3.4 Photolysis of 2-[2'-hydroxymethyI)-r-naphthyl]phenol (1) 

Photolysis (254 nm) of a 2.2 x 10̂  M solution of 2-[2'-(hydroxymethyl)-l-naphthyl]phenol (1) 

in CH3CN led to formation of the cyclization product (15). The ^H NMR of (15) showed a sharp 

singlet at 6 5.14 ppm, which was assigned, to the two methylene protons. The chemical shift for 

the methylene protons of the product is shifted downfield by 0.58 ppm, compared to the starting 

material (1), this is consistent with the structural transformation. This sharp singlet also 

indicates that the two methylene protons of (15) are chemically equivalent or rapidly 

exchangeable. This suggests that chromene (15) has an essentially planar conformation, ft has 

also indicated that (15) is achiral in the NMR time scale (Bringmann et al., 1992). The aromatic 

protons of (15) are also shifted significantly downfield. On prolonged photolysis (1) can be 

quantitatively converted to (15) in this solvent. No side products were detectable by G C or ' H 

NMR. This was fiirther confirmed by photolysis of an authentic sample of (15) under the same 

conditions where no product was detectable and an excellent material balance was observed by 

G C after photolysis for 30 min, indicating the absence of a photoreaction. Prolonged photolysis 

did not change this product/starting material ratio. 
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7.4 2-HYDROXY-2' -HYDROXYMETHYL-l , l ' -BINAPHTHYL (2) 

7.4.1 Synthesis of 2-Hydroxy-2'-Hydroxymethyl-l,l'-Binaphthyl (2) 

Binaphthyl methanol (2) can be made using the same procedure outlined in Figure 7.2, resuhing 

in two isomers 4H-benzo[f|naphtho[2,l-c]chromen-4-one (13) and 7H-benzo[g]naphtho[2,l-

c]chromen-7-one (14). It has previously been reported that these two isomers were formed in 

approximately 2:1 (13:14) ratio (total yield of the two isomers = 60%) under the same 

conditions as previously used for synthesis of (11) (Bringmann ai, 1992). This reported that 

the reaction conditions were modified to successfiilly raise this ratio to 9:1 without a decrease in 

the total yield of the two isomers. Pure (13) was obtained after simple recrystallization from a 

mixed solvent consisting of C H 2 C I 2 , toluene, and hexanes. Reduction with LiAlUt in THF 

converted (13) to alcohol (2) quantitatively. 

7.4.2 Structural characterization of 2-Hydroxy-2'-Hydroxymethyl-l,r-Binaphth (2) 

The ^H NMR gave a highly resolved AB quartet corresponding to the two methylene protons, 

and therefore suggesting the rotation of the methylene group is restricted. This is expected due 

to the greater steric hindrance for rotation in this molecule. Similar to (1) and (3), OH peaks are 

absent in CD3CN. 

7.4.3 X-ray difTraction analysis of 2-Hydroxy-2'-Hydroxymethyl-l,r-Binaphthyl (2) 

The crystalline state of the molecule has inter-molecular hydrogen bonds (between 012/012B 

and HOIB, bond length at approximately 1.9 A) (see Figure. 7.7). As expected, the molecule is 

highly twisted, dihedral angle = 80°, and has the cis conformation, with respect to OH and 

C H 2 O H groups. However, the methylene oxygen is disordered in a way that 75% is 012, and 

the other 25% is 012B. The disorder may be symptomatic of the lack of inter-/intra- molecular 

interactions for this group. 
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0(13) 

0(123} 0(121 

Figure 7.7 The structure of 2-hydroxy-2'-hydroxymethyH,l'-binaphthyl (2), with 50% 

thermal ellipsoids, showing the disordered 012 and 012B 

7.4.4 Photolysis of 2-Hydroxy-2'-Hydroxymethyl-l,r-Binaphthyl (2) 

The binaphthyl compound (2) is the most sterically hindered of all compounds studied. 

Surprisingly, it also photocyclizes to produce 4H-ben2o[fl naphtho [2,1 - c]chromene (24) 

almost quantitatively, see Figure 7.8. As expected, the UV spectrum of (24) is red shifted (by 20 

nm) compared to the starting material (2) due to the much less twisted geometry of (24). The 

chemical shifts of the methylene protons are shifted downfield and appear as two suggesting 

that the compound is highly twisted out of planarity. Although (2) is much more sterically 

congested than (3), the quantum efficiency for cyclization is higher. No side product was 

detectable b y N M R . 
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hv 

THF, 
CH3CN(neat or aqueous) 

(2) (24) 

Figure 7.8 The photocyclization reaction from (2) to (24) 
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7.5 l-[2'-(HYDROXYMETHYL)PHENYL]-2-NAPHTHOL (3) 

7.5.1 Synthesis of l-[2'-(Hydroxymethyl)phenyl]-2-naphthol (3) 

The synthesis started with the commercially available 2-bromobenzoic acid (18). After 

converting (18) to acid chloride (19) using the above method followed by reacting with 2-

naphthol (7), ester (20) was obtained in high yield (90%). Ester (20) was subjected to a 

palladium-catalyzed intra-molecular aryl coupling to give two isomers, 5H-

dibenzo[c,fjchromen-5-one (21) and 5H-dibenzo[c,g]chromen-5-one (22), in an approximately 

3:1 ratio (21 : 22) corresponding to the coupling of the bromide to the a and the p positions of 

the naphthalene moiety, respectively. The final yield of (21) was quite low at 20-30%. l-[2'-

(hydroxymethyl)phenyl]-2-naphthol (3) was obtained by reduction of (21) with LiAlH4. The ' H 

NMR (360 MHz (CD3)2CO, D 2 O exchanged) of (3) also shows an AB which suggested that 

methylene rotation is hindered, ft was found that lactone (21) can also be synthesized 

photochemically in one step. Irradiation of a mixture of 2-bromobenzoic acid (18) and 2-

naphthol (7) in CH3CN gave (21) in 10 - 20% yield. The shorter synthetic route and high 

regioselectivity are the major advantages of this photochemical method. The byproduct of this 

reaction, benzoic acid, can be easily removed by flash chromatography. However, scaling-up 

photochemical reactions is an intrinsic problem which prevented this route to be usefiil for 

preparing large scale and amounts of (21), see Figure 7.9. 
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COOH 

(COCl) 

(18) 

COCl 

(19) 

2-naphthol 

(20) 

(3) 

LiAlH4 

THF 

Pd(AcO)2/PPh3 
DMA/125°C, 12h 

(21) 

Figure 7.9 The reaction scheme to product (3) 

7.5.2 X-r^y diffraction analysis of l-[2'-(Hydroxymethyl)phenyl]-2-naphthol (3) 

This structure has two independent molecules in the asymmetric unit, see Figure 7.10. There is 

twinning within the crystal and the diffraction analysis was unable to give an accurate model for 

this compound, despite several attempts, ft exists in the extremely common (for organics) space 

group P2i/c. There is no evidence of any inter-molecular interaction (i.e. hydrogen bonding or 

7i-stacking). There is also no evidence for intra-molecular interaction as might have been 

conjectured as existing with the ortho groups present. Unlike many of the o,o'-biphenyl 

compounds (see chapters 10-12) the structure is of the trans configuration with respect to the 

hydroxy and methoxy groups with a high degree of twisting (dihedral angles of 99.1(5)° and 

101.4(4)° for the two independent species) (see Figure 7.10). This of course makes the intra­

molecular interaction between the oxygen containing groups extremely unlikely, ahhough with 

the inherent errors resuhing from the twinning this cannot be determined accurately. 
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Figure 7.10 The two independent molecules of l-[2'-(hydroxymethyl)phenyl]-2-naphthol 

(3), with 50% thermal ellipsoids 

7.5.3 Photolysis of l-[2'-(Hydroxymethyl)phenyl]-2-Naphthol (3) 

Irradiation of alcohol (3) in a variety of solvents (THF, CH3CN or aqueous CH3CN) gave the 

expected product (23) as the only product. The ^H NMR of (3) showed an AB, which 

progressively decayed upon photolysis. With exhaustive photolysis, the 'H NMR spectrum of 

the residue was identical to that of a sample (23). When compared to the photolysis of its isomer 

(1) under identical conditions, the reaction proceeded slower (smaller quantum yield). For 

example, photolysis of 2x10"^ M of (3) in 1:1 CH3CN-H2O under the conditions took more than 

ten hours to reach the photostationary state ratio of 95:5 (23:3), see Figure 7.11. 
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hv 

THF, 
CH3CN(neat or aqueous) 

(3) (23) 

Figure 7.11 The photocyclization reaction of (3) to (23) 
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7.6 SUMMARY AND DISCUSSION 

The excited state planarization is the crucial step for this photocychzation reaction, since the 

elimination of OH" requires the charge transfer (from the ArOH moiety), whereas this excited 

state charge transfer requires a more planar Si. The reactions can proceed via initial twisting 

followed by adiabatic deprotonation from the planar Si, depending on the relative rates of ESPT 

( L H ) and twisting (kt). When the steric hindrance for the twisting is small enough k.H « kt, then 

initial twisting followed by deprotonation dominates (Shi, 1997). 

Biaryl methanols ((1) - (3)) are intra-molecularly hydrogen bonded in aprotic solvent (such as 

neat CH3CN) in the ground state, and CH3CN is not capable of deprotonating the ArOH protons, 

it is concluded that the photocyclization in this solvent proceeds via the ESLraPT mechanism, 

the ArOH proton is initially transferred to the ArCH20H oxygen via an intra-molecular 

hydrogen bond followed by elimination of a molecule of H2O to give the corresponding QM 

intermediate. The efficiency of the reaction will depend on, to a significant extent, the ESfraPT 

rate (ICH), or the acidity of the phenolic proton in Si. This can be seen from a comparison 

between (1), (2), and (3), in which (1) has the highest k.H and the highest quantum yield. 

Structures (l)-(3) do not show a large Stokes shift because of the presence of the naphthalene 

rings. 

7.6.1 Naphthyl compounds (1) and (2) 

The fluorescence study suggests that the excited Si state of the neutral molecule is twisted while 

the deprotonated form is more planar. In other words, these molecules twisted to the planar 

forms only after the adiabatic deprotonation in Si . The mechanism for cyclization involves 

adiabatic deprotonation of the twisted Si followed by twisting to the planar form which then 

eliminates the hydroxide ion from the arylmethyl position to give the required QM 

intermediates. 

7.6.2 Naphthyl Compound (3) 

Unlike (1) and (2), both the neutral and deprotonated forms of (3) stay twisted upon excitation. 

The Stokes shift and the spectral width of this molecule are essentially the same as those of 2-

naphthol, which suggests the lack of enough driving force for the Si planarization and of strong 

electronic interaction between the two chromophores. In other words, the two chromophores 
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within the molecule are essentially independent in both So and Si. As an approximation, the two 

chromophores of the molecule can be treated independently without introducing substantial 

error. Based on this approximation, absorption of a photon by the molecule can initially lead to 

two different excited states. (3a) where the photon was absorbed by the naphthol moiety and 

(3b) where the photon enters the benzyl alcohol moiety. The cyclization reaction requires the 

electronic interaction of the excited chromophore and the unexcited chromophore to give a more 

planar (thus more conjugated) Si. It is expected that (3a) can also give (3b) efficiently via 

energy transfer. Furthermore, the naphthol moiety has much larger extinction coefficient than 

the benzyl alcohol moiety at the excitation wavelength (280 nm). The mechanism requires the 

transfer of enough negative charge on the naphtholate ion moiety to the benzyl alcohol moiety 

in order to activate the elimination of the OH group. 
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(1) (2) (3) 
Formula C17H14O2 C21H15O2 C17H14O2 

Formula Weight 250.28 299.33 250.28 

Temperature (K) 150(2) 150(2) 293(2) 

Crystal System Orthorhombic Monoclinic MonocUnic 

Space group P2(l)2(l)2(l) P2(iyc P2(l)/c 

a=(A) 7.219(3) 12.44 (2) 22.73 (5) 

b= (A) 12.322(2) 9.28 (3) 7.51 (10) 

c=(A) 14.209(2) 14.80 (1) 15.24(11) 

a = ( ° ) 90 90.000 90.000 

13= (°) 90 112.40(3) 90.026(10) 

y=n 90 90.000 90.000 

Volume (A') 1264.0(3) 1579.6(6) 2602.39(3) 

Calculated Density 1.315 1.259 1.426 

(Mg/m') 

Absorption 0.09 0.080 mm"̂  0.13 mm"' 

Coefficient (mm'^) 

F (000) 528 628 1155.0 

Index Ranges -9=<h=< 8, -7<=h<=16, -29=<h=<28, 

-13=<k=<15, -ll<=k<=12. -9=<k=<8, 

-18=<1=<17 -19<=1<=18 -19=<1=<19, 

Reflections collected 9219 10071 19162 

Data/restraints/ 2903/0/214 3579/0/251 5918/0/368 

Parameters 

Goodness-of-fit on F^ 1.208 1.188 4.579 

Final R indices 0.0801 0.0707 0.2611 

[I>2sigma(I)] 

R indices (all data) 0.2175 0.1981 0.6265 

Extinction coefficient None 0.006(2) 0.254 (2) 

Largest diff. Peak and 0.31 and 0.200 and 1.01 and 

hole (e.A-^) -0.35 -.153 -0.98 

Table 7.1 X-ray Diffraction data for (1), (2) and (3) 
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C H A P T E R S ; 

QUINONE METHIDES 

8.1 INTRODUCTION 

It has been suggested that there is an efficient formation of an ortho-quinonQ methide (o-QM) 

from the photolysis of or^/jo-hydroxybenzyl alcohol (3) in aqueous solution which explains the 

facile photolysis of this compound observed in 1:1 MeOH-H20 (formation of the corresponding 

methyl ether) (Wan et al, 1986, 1987 and 1989). A further investigation of the possibility of o-

QM formation from various hydroxybenzyl alcohols as a general photochemical process 

examined the photochemistry of a number of hydroxybenzyl alcohols including (1) and (3) 

(Yang, 1994). This research found strong evidence for the efficient generation of o-QMs from 

photolysis of (1), (2) and (3), see Figure 8.1. 

OH 
, , X OMe 
hv, 254nm 

\ ^ / \ I : l H 2 0 / M e O H 

R 

OH 

(1) or (3) 

Figure 8.1 Photolysis reaction of (1) R=Ph and (3) R=H. 

This chapter focuses on the investigation of the photochemistry of a variety of hydroxybenzyl 

alcohols in aqueous solution with the view to examine the possibility that there is a general way 

for quinone methides to be prepared from simple hydroxybenzyl alcohols. The detection of 

these and other QM intermediates by transient spectroscopy will prove their existence. This 

chapter focuses on the photochemistry and structure of structure (1),(2),(3) and (4), see Figures 

8.1 and 8.2. 
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\ // 
OH 

— P h 

Ph 

OH 

(2) (4) 

Figure 8.2 The structures of (2) and (4) 
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8.2 PHOTOGENERATION O F QUDVONE METHIDES F R O M H Y D R O X Y B E N Z Y L 

A L C O H O L S 

Studies on the parent o-hydroxybenzyl alcohol (3) and the d-pheriyl substituted analogue (1) 

have shown evidence for the photogenerated intermediate (Yang, 1994). Both of these structures 

reacted via efficient photolysis in aqueous methanol resulting in the formation of the 

corresponding methyl ether in high yields (e.g. 65-70% for 10 minutes photolysis at 254 nm), 

see Figure 8.1. Photolysis of these two compounds in the presence of electron-rich dienophiles 

such as ethyl vinyl ether gave the regioselective [4+2] Diels-Alder adducts, see Figure 8.3. 

/ = \ ^ 
hv, 254nm ^ ^ 

\ \ H20/CH3CN/C2H30Et \ 
^ ' OH \ 

O — 
OH 

OEt 

(1) (5) 

Figure 8.3 [4+2] Diels-AIder photoreaction of (1) to (5) 
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8.3 H Y D R O X Y B E N Z Y L DIPHENYL A L C O H O L (2) 

Laser Flash Photolysis of (2) produced a strongly absorbing transient in either acetonitrile or 1:1 

H2O-CH3CN with no appreciable decay within 2 ms. The transient spectrum for (2) is almost 

identical to that of (1). This indicated that for both have a similar transient being generated and 

the additional phenyl substitution on benzylic carbon has little effect on absorption 

characteristics. The relative quantum yield for the formation of transient (2) was shown, at 360 

nm as a fimction of water content (in CH3CN). It has been reported that the (p-

methoxyphenyl)diphenylmethyl cation has a lifetime of 0.71 ms in 2:1 1 H2O-CH3CN and this is 

much shorter than the transient observed for (2) (McClelland et al, 1989). 
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8.4 SYNTHESIS AND ANALYSIS O F T H E STRUCTURES O F (1), (2), (3) AND (4) 

The o-hydroxybenzhydrol (1) was made by the addition of phenylmagnesium bromide or 

phenyllithium to salicylaldehyde and o-hydroxybenzhydrol. Structure (2) was made by the 

addition of phenylmagnesium bromide or phenyllithium to methyl salicylate. Hydroxybenzyl 

alcohol (3) is a commercially available product. 

Alcohol (4) was synthesized from the commercially available 4'-hydroxy-4-biphenylcarboxylic 

acid (6) via the standard route with Grignard reagents shown in Figure 8.4 

(5) 

C H 3 Q H 

H C l HO 

OMe 

PhMgBr 

(4) 

NH.OAC 

OMgBr 

OMgBr 

Figure 8.4 The synthesis of (4) 

The NMR spectra of (1) and (3) showed no readily assignable peak(s) for either hydroxyl 

proton. In the expanded spectra, hidden under other peaks, were one or two very broad bands, 

which were D 2 O exchangeable. The NMR spectra of (2) showed two broad peaks, which 

were assignable to the two hydroxyl protons. Photolysis was studied using UV-Vis 

specrophotometry in aqueous CH3CN to gain initial insight into whether the corresponding 

proposed quinone methides were observable without the need for laser flash photolysis. 

Photolysis of (1) in acetonitrile resulted in the formation of a yellow solution, which turned to 

orange red and then deep red brown in colour. UV-Vis spectra was recorded before and after the 

photolysis, before photolysis the material absorbed at < 300nm where upon photolysis there was 

new absorption bands at 222 and 423 nm, which indicated a new species. The transient decayed 

slowly in neat CH3CN, although the yellow colour remained. The red shift of Xmax on changing 

to more polar solvents indicate that these transitions are n, n* in character. The UV-Vis analysis 
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shows that the transients are photogenerated from benzhydrol (1). Laser flash photolysis gave 

strong signals with no observable decay within the millisecond range. A significant amount of 

transient was also formed on photolysis in neat CH3CN (under N 2 or O2) , although the 

absorption bands were significantly blue shifted with the bands 455 and 345 nm shifted to 410 

and 330 nm respectively. The transient spectra from (1) was also taken with different pH (1-2 

and 11-12) and the results consistent with a mechanism for formation of the QM via an excited 

phenolate state. 
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8.5 S T R U C T U R A L X - R A Y DIFFRACTION ANALYSIS 

8.5.1 X-ray difTractioii analysis of a-phenyI-<?-hydroxybenzyl alcohol 

The X-ray structure analysis of a-phenyl-o-hydroxybenzyl alcohol (1) shows that there is 

extensive inter-molecular hydrogen bonds. The two benzene rings are almost perpendicular to 

each other. Each phenol proton is pointed away from the benzylic carbon and hydrogen bonded 

with the benzylic oxygen atom in a second molecule, which is hydrogen bonded similarly to a 

third one, see Figure 8.5. There are two independent structures in the asymmetric unit The C2-

01 and C2'-0r bonds are 1.355(10) A and 1.366(10)A respectively with the ph^yl-oi^gen 

bond lengths 1.409(10) A and 1.437(11) A. There is a lot of thermal motion in tbe cryM as can 

be seen in the relatively large thermal ellipsoids. There is no evidence of any inter- or intra­

molecular interactions within the crystal structure. 

' CCIO'S 

Figure 8.5 The structure of a-phenyl-o-hydroxybenzyl alcohol (1), with 50% thermal 

ellipsoids. 
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8.5.2 X-ray diffraction analysis of (2) 

There is intra-molecular hydrogen bonding in the structure. The three adjacent benzene rings are 

positioned in a propeller type orientation, see Figure 8.6. The X-ray structure analysis shows 

that the molecule exists as an inter- and intra-molecularly hydrogen bonded dimer. There is 

intra-molecular hydrogen bonding, the O "H-O hydrogen bonds are short at 1.747(8) A, (see 

Figure 8.6). The structure exists in the solid state as dimers, (see Figure 8.7), with the inter-

molecular bonds a distance of 1.950(7)A. 

Figure 8.6 The structure of (2), showing the intra-molecular interaction, with 50% 

thermal ellipsoids 
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Figure 8.7 The dimeric structure of (2) 

8.5.3 X-ray diffraction analysis of (4) 

The synthesis of (4) produced yellow crystals. The X-ray diffractiwi structure diows that three phenyl 

rings attached to the carbon in a propeller geometry similar to that of (2) (see Figure 8.8). There is intra­

molecular hydrogen bonding the proton on 02 with the Ol of another molecule, the O-H-O hydrogen 

bonds are short at 1.863(4) A (see Figure 8.8). The biphenyl molecule has a dihedral angle of 31.8(7)°, 

which is relatively large considering the there are no ortho substituents present, although it fits the pattoTi 

of many of these types of structures (see chapter 5). There is no intra-molecularly hydrogen bonding in 

the structure. The main difference between this structure and (2) is the difference in intra-and inter-

molecular hydrogen bonding. Whereas in (2) there is a dimer formed, in (4) this does not occur and the 

result is chains. This is presumably due to the length of this structure packing better with this into"-

molecular hydrogen bonding. 
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Figure 8.8 The structure of (4), with 50% thermal ellipsoid plots 
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8.6 PHOTOLYSIS IN AQUEOUS METHANOL 

Photolysis of o-hydroxybenzhydrol (1) in 1:1 H20/MeOH gave the corresponding methyl ether 

(7%). The ' H NMR of the reaction mixture showed the characteristic methoxy singlet of the 

methyl ether product. Prolonged photolysis of (1) (> 20 minutes) in 1:1 H20/MeOH gave 

increasing yields of the methyl ether and also a secondary photoproduct, o-benzylphenol. 

Studies of the similar (3) showed that the secondary product involved was produced exclusively 

from the secondary photolysis of the primary methyl ether product (Yang, 1994). Photolysis 

(254 nm) of a solution of (4) in MeOH-H20 for 2.5 minutes led to the clean conversion (16%) to 

the corresponding methyl ether (8). The same QM mechanism for (1) also applies to (4). ' H 

NMR and high resolution MS analysis of the product (8) was consistent with the formation of 

the methyl ether product (8) of the reaction. 
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8.7 PROPOSED MECHANISM FOR (1) T O (6) 

UV-Vis studies have shown the formation of o-QM (6) from (1) in neat organic solvents. The 

yield of (6) decreases with the addition of water but the fluorescence lifetime (x) shortens with 

increasing water content. This indicates that (1) remains extensively inter-molecular hydrogen 

bonded in the neat organic solvents, this hydrogen bonding would weaken the 0-H strength and 

facilitate deprotonation on excitation. The resulting excited phenolate ion has the benzylic 

oxygen hydrogen bonded to a phenol proton which allows it to react with the loss of H 2 O to 

form o-QM (6), see Figure 8.9, however an alternative is an inter-molecular proton transfer 

mechanism. 
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Ph OH vv 
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Figure 8.9 The reaction of (1) to (6) 
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8.8 PROPOSED MECHANISM F O R (4) T O (8) 

When irradiated, the excited biphenyl alcohol (4) twists into a more planar geometry. A deprotonation 
proceeds due to the enhanced acidity of the phenol in excited state to give an excited phenolate ion, this 
ion undergoes an intra-molecular charge transfer reaction followed by a nucleophilic attack to give the 
photoproduct. If H 2 O is introduced then the QM reacts in a way that generates the starting material (4) see 
Figure 8.10 

(4) 

hv 

MeOWH.O 

NHjOAc 

OMe 

(8) 

Figure 8.10 The mechanism for (4) to (8) 
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8.9 PROPOSED MECHANISM FOR (2) T O (7) 

The photolysis of triphenyl alcohol (2) also generates the o-QM (7) in neat organic solvents. X-
ray diffraction analysis shows that there is intra-molecular and inter-molecular hydrogen 
bonding present. Upon photolysis there is an intra-molecular proton transfer, with adiabatic 
deprotonation of singlet (2) generates an excited state phenolate ion, which then loses water to 
form the o-QM (7) and (2) hydrogen bonded to a water molecule. The fluorescence quantum 
yield of (2) increases slightly at low water content, this indicates that addition of water 
introduces a "water-assisted" mechanism for generation of (7), this competes effectively with 
the intra-molecular proton transfer mechanism. 

Ph Ph 

O' 

O H 

Ph' Ph 

hv 

H O 

Ph Ph 

^ , / H O O H / 
,0 + 

Ph Ph 

(2) 

(7) 

Ph Ph 

O — H / 

Figure 8.11 The proposed mechanism of (2) to (7) 
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C H A P T E R 9: 

A R E I N V E S T I G A T I O N O F T H E PHOTOCHEMISTRY O F a-AZIDOCINNAMATES 

9.1 INTRODUCTION 

Previously studies conducted on a-azidocinnamates reported that it gave rise to one 

diastereomer of a trimer in a stepwise and efficient manner by photolysis with the use of quartz 

equipment. Crystallographic and spectral methods were used to characterize both dimers, and 

they oxidized to give imidazoledicarboxylic esters, while the action of base on both dimer 

diastereomers leads to one rearranged dimer, a 1,2-dihydropyrimidine. It was slightly surprising 

that only a mixture of both diastereomeric dimers wil l give the trimer on fiirther photolysis. 

The photolysis of a-azidoalkenes (e.g. (1), see Figure 9.1) were thoroughly examined and they 

have been shown to yield azirines (2). In the case of a-azidocinnamates (1), the reaction has 

been studied and this has shown that the reaction efficiently leads by way of dimers (3) to one 

diastereomer of the trimers (4) (Hickey et al, 1986). 

The photolysis was conducted in quartz equipment in a four-bulb Rayonet apparatus and the 

process was corroborated (although not the yields) in several cases. The key steps are: 

(1) Azide (1) conversion into azirine (2), a well documented reaction (Hickey et al., 1986); 

(2) photo-activated azirine ring-opening by C-C bond cleavage to give an azomethine ylide, 

also well documented; 

(3) [4+2] cycloaddition of this 1,3-dipole to another molecule of azirine to give the non-isolated 

dimers (3); 

(4) photo-ring-opening of the aziridine ring of the dimer to give another 1,3-dipole. 

(5) cycloaddition of a second molecule of azirine to this new dipole to yield the trimer (4). 
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Figure 9.1 Scheme 1, representing the photoreaction mechanism from (1) to (4) 
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9.2 R E S U L T S AND DISCUSSION 

In reviewing the previous results, it was decided to conduct a re-examination of photolysis of 

various a-azidocirmamates in acetone solution with a view to observing alternative chemistry, 

mediated by radical pathways. The observation that thermolysis of o-tolyl azidocinnamates in 

the presence of iodine (a 'heavy-atom' singlet-to-triplet nitrene converter) gave isoquinolines, 

presumably by triplet nitrene 'insertion' into the tolyl methyl group (Hickey et al, 1986), see 

Figure 9.6 and later text. 

Surprisingly the result was rapid and clean, giving a mixture of two isomeric dimers, and 

generally a good yield. The dimers shown in this chapter were shown conclusively to be the 

intermediates (3) that were predicted by the previous study (Casey et al, 1985). More 

surprisingly, the same products formed when a non-sensitised photolysis was conducted in 

Pyrex equipment, either using the Rayonet reactor or more effectively using our novel simple, 

cheap and efficient reactors. Indeed even in quartz apparatus, the dimers (3) were easily isolated 

and only slowly transformed into the trimers (4) (see Table 9.1). 

The dimers were always isolated as a pair of separable diastereomers (3A) and (3B), usually 

formed in similar amounts, the structures of which were easily assigned by n.o.e., showing the 

two aliphatic C-H's interactmg in (3A) but not in (3B). Furthermore, their classification was 

easily recognized since the lower field CH-resonance in (3A) was always in the range of 6.1-6.3 

ppm while that of 3B was at 6.8-7.1 ppm. 

Entry Cp 
d 

Solvent Filter Tim 
e(h) 

Temp 
r c ) 

(3A) (3B) (4) (7) (2) 

1 la P Py 1 13 30 35 5 - -

2 la A Py 1 21 34 28 - - -

3 la P Py 5.5 28 28 42 5 - -

4 la P Q 1 29 20 27 27 - -

5 la A Q 0.5 28 43 26 IT 6 -

6 la P/A-12:l Q 1 30 34 41 19 - -

7 la P/A-12:l Q 2 30 30 30 30 - -

8 la P/A-12:l Q 3 30 25 13 50 - -

9 la P/A-12:l Q 4 30 20 0 60 - -
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10 lb P Py 1.25 20 32 54 5 - -

11 lb A Py .125 20 51 36 - - -

12 lb P Q 0.6 45 21 42 21 - -

13 lb P/A-12:l Q 1 30 25 38 36 - -

14 lb P/A-12:l Q 2 30 11 21 62 - -

15 lb P/A-12:l Q 3 30 - 1 87 - -

16 lb P/A-12:l Q 4 30 - 87 - - -

17 Ic A Py 0.5 20 24 48 4 - -

18 Id P Py 1.5 20 25 14 - - -

19 Id A Py 5.6 20 38 19 - - -

20 le P Py 1.5 20 - 37 - - 42 

21 I f A Py 1 27 - - - - 99 

Table 9.1 Products from the photolysis of azidocinnamates, P =Light petroleum, A = 

Acetone, Py = Pyrex and Q = Quartz. 

In one case (3Aa) X-ray diffraction analysis (see Figure 9.2) gave a quantum structural 

assignment. 

This led to several questions, 

(1) What is the role of the solvent and the quartz/Pyrex glassware? 

(2) Can we learn anything from the subsequent chemistry of the dkners? 

(3) Why is only one stereomer of the trimer isolated, often in good yield, on quartz mediated 

photolysis, despite two dimers being precursors? 

(4) How and why do both dimers give the one trimer? 

The answer to the first question is relatively simple. It is evident that ring opening of an azirine 

occurs with lower energy (longer wavelength) light than that required for aziridine ring opening. 

This latter process therefore does not occur when acetone or Pyrex filters are used in the 

photolysis. The fact that the azirine ring-opening may involve radical species in the sensitised 

cases does not alter the reaction pathway of subsequent cycloadditions . 
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0(531 C(5» 

Figure 9.2 X-ray Structure of compound (^Aa), with thermal ellipsoid probability 50% 

The dimers show several novel aspects of further chemistiy. They are not indefinitely stable but 

slowly change in solution even in the dark, the methyl esters reacting fiister than the ethyl The 

rate of this process is dramatically increased by added base, but not by acid, this suggests that 

the basicity of the dimers cause autocatalytic rearrangement. Although the mixture of 

diastereomers gave one rearranged isomer fix>m this action, which proved to be the 

dihydropyrimidine (5), see Figure 9.5. The rearrangement mechanism of (3) to (5) is shown in 

Figure 9.3, Scheme 2. 

This is a new type of rearrangement of such bicyclic systems and the structure of the rearranged 

dimer (5) produced crystals that were easily studied by X-ray ciystallography. The oxidative 

treatment of the isolated dimers (3A) and (3B) or the mixture of both diastereomers were also 

studied. With DDQ, conv^ion to a mixture of an aiyl aldehyde and the imidazole (6) was 

observed. The structure of the imidazoles was confirmed by an alternative literature4>ased 

synthesis from tartaric acid, see Figure 9.4, Scheme 3. 
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Figure 9.3 Scheme 2, the mechanism for (3) to (5) 
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Figure 9.4 Scheme 3 
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0152) 
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Figure 9.5 X-ray structure of compound (5), with thermal ellipsoid probability of 50% 

In order to clarify further the mechanism of the photoreactions several experiments were 

conducted. Photolysis of various substituted a-azidocinnamates, (1), proved instructive. 

Substituents in the phenyl ring which cause a bathochromic shift of the aryl UV absorption tend 

to allow the photolysis of the azide to be intercepted at the azirine stage. Thus the 3,4,5-

trimethoxy derivative (If) gave solely the postulated intermediary azirine (2f) (Table 9.1, entry 

21). Furthermore the 2,6-dichloro-derivative (le) could be takai through the whole process in a 

stepwise manner. Short photolysis in Pyrex gave the azirine (2e) while longo" reaction time 

gave just one of the corresponding dimers (3Be). Clearly, in cases where the aryl chromophore 

absorbs most of the irradiation, chemistry at the azirine centre slows or stops. As stated 

previously, when an ethyl or methyl azidocmnamate is photolysed in quartz equipment and 

monitored continually by NMR spectroscopy, firstly both dimers (3) are formed, to be slowly 

and totally replaced by the one trimer, (4). When the mixture of dimers (3A) is further 
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photolysed using quartz equipment a slow conversion into the trimer (4a) is observed. The ratio 

of the two dimers and trimer [3Aa:3Ba:4a] after 1, 2, 3 and 4 hours changes from 34:41:19 to 

30:30:30, 25:13:50 and finally to 20:0:60 (Table 9.1, entries 6-9). Again, only one stereomer of 

the trimer forms. Indeed, irradiation of either pure dimer gives no trimer, but slowly leads to 

decomposition of the dimer. Only a mixture of both dimers gives the trimer. A similar process is 

observed with the ethyl ester (lb), which after 3 hours of irradiation is essentially completely 

converted to trimer (4b) in 87% yield (Table 9.1, entries 13-16). While both dimers will be in 

photoequilibrium with the parent azirine (2) it appears that one of the dimers ring-opens 

considerably more readily than the other, and that the other (or both) are a source of the azirine 

(2) (Scheme 4, see Figure 9.6). The stereochemistry of the resulting trimer indicates that the 

least congested dimer (3A) ring opens to give the new 1,3-dipole that is trapped by the 

regenerated azirine (2). 

The 2-methylphenyl-derivative (Ic) gave solely the expected dimers (3c) with no sign of triplet 

nitrene attack of the methyl group which would give an isoquinoline, a reaction observed during 

the thermolysis of the same azide in the presence of iodine, a 'heavy-atom-triplet' forming 

system. This suggests that the acetone used as the solvent in our photolyses is acting more as a 

filter of short wavelength light than as a triplet sensistiser/radical mediator and that an ionic 

pathway is followed in the subsequent cycloaddition chemistry. 

Ar 

\ \ / > ! A r 

RO2C tOzR 

(3A) 

hv 

RO,C 
- A r 

Ar, H 

hv 
itlAr 

RO2C CO2R 

Figure 9.6 Scheme 4, the reaction of (3A) to (3B) and to (4) 
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In conclusion it is observed that a wavelength dependent photolysis of a-azidocinnamates (1) is 

independent of the solvent. Al l wavelengths transform the azides into the azirines (2) which 

form dimers (3) at any wavelength of irradiation. These dimers are in photo-equilibrium with 

the precursor azirines (2) and when low wavelength light is utilized the aziridine ring of the 

dimers (3) ring opens by C-C bond breakage. One isomer, probably (3A), ring opens faster than 

the other and the resultant 1,3-dipole cyclo-adds to the azirine (2) uniquely to give one trimer 

(4), see Figure 9.7. An alternative and less satisfactory explanation suggests that of the various 

alternatives, the trimer (4) is formed such as to minimize steric interactions. This scenario would 

suggest that some minor amounts of other isomers should have been detected. 

^COOEt 'COOEt 

dimers o f (3), see Scheme 4, Figure 9.6 

Figure 9.7 Scheme 5 
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9.3 E X P E R I M E N T A L 

X-ray diffraction analysis was carried out on the SMART CCD diffractometer, see chapter 2. 

The solving and refinement of the structure was conducted using the SHELX programs as 

detailed in chapter 2. 

The melting point were determined using a Reichert Kofler hot-stage apparatus. Infrared spectra 

were obtained on a Unicam Research Series 1 FTIR instrument as KBr discs or liquid films. 

NMR spectra were recorded in CDCI3 as internal standard on a JEOL spectrometer. Chemical 

shifts are reported in ppm while the coupling constant J values are in Hz. Mass spectra were 

measured on a Kratos MS80RF mass spectrometer and microanalyses were carried out at 

Newcastle University. Thin layer chromatography (TLC) was performed with Merck silica 

6OF254 plates and Janssen silica (35-70 |Lim) was used for flash chromatography. Petrol refers to 

light petroleum of boiling point of 60-80 °C. Azidocinnamates were made according to 

literature methods (Hickey et ai, 1986). Photolyses were conducted under nitrogen using either 

the 'flathead' flask with water cooUng or in a Rayonet apparatus as described by Rees and co­

workers (Hickey et al., 1986). In both cases TLC monitored the progress of the reaction. 
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9.4 G E N E R A L METHOD F O R T H E PHOTOLYSES O F a-AZIDOCINNAMATES 

The photolyses were performed iinder conditions of solvent, time, temperature and wavelength 

as shown in Table 9.1 and the solvent then removed on a rotary evaporator. The yellow oil 

remaining was examined by NMR spectroscopy and i f necessary, purified by flash 

chromatography, to give the products. 

Crystals of dimethyl 2-phenylimidazole-4,5-dicarb6xylate (6a), diethyl 2-phenylimidazole-4,5-

dicarboxylate (6b), diethyl 2-(4-chlorophenyl)imidazole-4,5-dicarboxylate (6d) were all 

obtained via solvent evaporation (Meth-Cohn, et al, 1998). 

9.4.1 The synthesis of dimethyl and diethyl 2-phenylimidazole-4,5-dicarboxylate (6a) 

The literature method for the synthesis of 2-phenylimidazole-4,5-dicarboxylic acid from tartaric 

acid was followed (Anderson et al, 1989). A solution of this acid (0.5 g) in methanol or ethanol 

(20 cm^) was treated with a few drops of sulphuric acid (98%) and heated under reflux for 4 

hours. The bulk of the solvent was removed, water and dichloromethane added and the organic 

layer washed once with aqueous sodium bicarbonate and dried (MgS04). Evaporation gave the 

required ester which was recrystallised from aqueous ethanol, giving a product identical (m.p., 

mixed m.p. and infrared spectrum) to those described above. 
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Compound 3Aa Compound (5) 
Formula C,9N02H„ Ci9N02H„/H20 
Formula Weight 350.36 368.38 
Crystal Colour Colourless Colourless 
Crystal Description Block Block 
Crystal Dimensions 0.3x0.3x0.25 0.4x0.4x0.3 
(mm) 
Temperature (K) 150(2) 150(3) 
Crystal System Monoclinic Monoclinic 
Space group P2(iyc Cc 

a=(A) 9.5450(19) 13.892 (3) 
b=(A) 18.187(2) 17.649(4) 
c=(A) 10.449(4) 8.2270(16) 

90.00 90 
p = o 105.93(3) 115.21(3) 

90.00 90 
Volume 1744.2(7) 1825.1(6) 
Z 4 4 
Calculated Density 1.334 1.341 
(Mg/m^^ 
Absorption 0.094 0.097 
Coefficient (mm"^) 
F (000) 736 776 
0 Range for 2.22 to 28.32 1.99 to 25.36 
Collection (°) 
Index Ranges -12<=h<=12, -12<=h<=16, 

-24<=k<=23, -21<=k<=21, 
-13<=1<=13 -9<=1<=9 

Reflections collected 13309 5564 
Independent 4323 2451 
reflections 
Data/restraints/ 4323 /0/243 2451 / 2/277 
parameters 
Goodness-of-fit on F^ 1.107 1.070 
Final Ri indices 0.0712 0.0445 
[I>2sigma(I)] 
WR2 indices (all data) 0.1902 0.1296 
Extinction coefficient 0.0042(17) 0.0033(16) 
Largest difif. Peak and 0.376 and -0.354 0.192 and-0.175 
hole. (eA ' ) 

Table 9.2 Diffraction data for compounds (3A) and (5) 
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C H A P T E R 10; 

T H E TWISTING O F ORTHO, ORTHO'-BWBENYL COMPOUNDS, AN ANALYSIS 

USING T H E CSD 

10.1 INTRODUCTION 

Biphenyl was first synthesized in 1862 by Rudolph Fittig (Fittig, 1862). However, it was not 

until better analytical techniques were developed that the dihedral angle between the rings became 

measurable and since that time there has been considerable interest in the twist of the phenyl rings 

relative to each other. The dihedral angle and conformation of biphenyl derivatives and o-o'-

substituted biphenyls, have attracted interest and caused confusion since several early X-ray 

diffraction studies were conducted in the solid state (Fowweather and Hargreaves, 1950 & 

Smare, 1948). Subsequently Otto Bastiansen carried out a series of studies into both the ortho 

and non or//zo-substituted biphenyls in the gaseous phase (Bastiansen, 1950), where the rings 

were found to be twisted relative to each other. When the rings are free to rotate around the 

linking C-C bond then they will theoretically adopt the lowest energy conformation. Molecular 

mechanics (MM) calculations on these systems show that this energy minimum tends to be at 30-

45° in the trans conformation (Shi et al,. 1998). The work carried out on biphenyl type structures 

has led to the discovery of what has been termed an ''ortho effect" involving o-o'-biphenyls. 

However, the ortho effect has not been well defined and hence this phenomenon was considered 

to be worth investigating further. 

When the only ortho substituents present are at the 2 and 2' positions (see Figure 10.1) there are 

three possible conformations that the ortho substituents on the rings can adopt relative to each 

other. When the torsion angle, x, generatd by the twisting of the rings and between 2, 1, 1', 2' 

(See Figure 10.1) is from 0-90 ° then this is the cis (or syn) conformation and when x is 90-180° 

then this is the trans (or anti) conformation. 
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3' 2' 2 3 

Figure 10.1 The positions of biphenyl, l=ipso, l=^=ortho, 3=5=meta, 4=para. 

The T angles 180-360 ° are a mirror of 0-180 °, reflected in 180 ° (180-270° trans and 270-360° 

cis). A third conformer where x =90° is possible and although some structures have T close to 90° 

in practice exactly 90 ° never occurs, therefore the conformers can be categorized as either cis/syn 

or translanti (see Figure 10.2). Stereochemically speaking the trans conformer would be the more 

preferred, because the o-o' substituents will repel each other and this would be the driving force 

for this conformation. Bastiansen found that this was not the case and in the gas phase 2,2'-

dichloro/dibromo/diiodo were in the cis conformation (Bastiansen, 1950). Subsequent studies in 

both the gas phase and the solid state, mainly using X-ray diffraction, have shown the generally 

preferred conformer is of the near cis type. The predominance of this conformation is a general 

trend for all -substituted biphenyls and occurs independently of substituent ((Brock and 

Minton, 1989), (Bastiansen, 1979) and (Roberts, 1985)). The magnitude of the dihedral angle of 

-substituted biphenyl is dependent largely on the size of the substituents attached at the ortho 

positions. In general i f there is a bulky group at the ortho position then x will be greater than 

when a smaller substituent is present. This is a simple steric factor: however it may prove to be 

more complicated i f there are intra-molecular interactions between the ortho substituents or i f 

there are packing forces preferring a smaller or larger x in the solid state. Often the exact value of 

X depends on the specific ortho substituent(s) and frequently the dihedral angle would seem to 

depend on a combination of these factors. This predominance of the cis conformation is not what 

would be expected initially. Since steric congestion would be thought to be a major factor the 

conformation would favour the trans conformer to minimize steric crowding. I f there were a 

''trans effect" then the reason would simply be due to the steric congestion between the two ortho 

substituents. The fact that steric congestion appears to have little to no effect on the system is 

quite peculiar, and leads to conclusion that the ''ortho effect" is indeed more influential to the 

system than the simple steric factors. 
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CislSyn Trans/Anti 

Figure 10.2 The cis and trans conformations of <7,o'-substituted biphenyls, looking down the 

C - C bond linking the rings. X and H represent the substituted side and non-substituted 

sides respectively. 

This cis conformational trend is not exclusive and indeed there are many structures that adopt a 

more nearly trans conformation, (e.g. 2,2',5,5'-tetrachlorobiphenyl (Chen et al,. 1996) and 2,2'-

bis(acetamide)biphenyl (Reboul et al,. 1993). The trend appears to be independent of the type of 

ortho substituent present (Dyenes et al,. 1985). Evidence has been produced for there being an 

attraction between halogen atoms in halogen -substituted biphenyls in the gas phase ((Dyenes 

et al,. 1985) & (Bastiansen, 1985)). This factor may also play a part in the solid state but they 

must be part of a greater picture that includes all o,o'-substituted biphenyls preferring the cis 

conformer and not just ortho halogenated biphenyls. 

An unusual degree of intra-molecular interaction may account for the conformational preference. 

However, this is unlikely since there is a wide range of ortho substituent types and this would not 

normally give a specifically high degree of preference for intra-molecular interaction even with 

specific groups that are prone to interaction. There is no reason that any specific compound 

would prefer intra-molecular interaction rather than inter- or vice versa. Although there are 

several factors that can influence and determine this, e.g. the bulk (if the group was large enough) 

of the substituted group at the meta as well as the ortho position. However, this would then 

influence the conformation towards the trans configuration. It is worth noting that the para active 

sites and interactions cannot have a steric effect on the dihedral angle since the para group faces 
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away from the rest of the structure. Unless there is interaction between it and ortho or meta 

substituents directly then the para substituent should not effect the dihedral angle. This 

conformational trend can be described and indeed from now on will be referred to as an "ortho 

effect". The reason for this effect has yet to be frilly explained and to this end an extensive 

database search was carried out, using the Cambridge Structural Database (CSD). This is 

designed to investigate all o,o'-substituted-biphenyl compounds and to examine this "ortho 

effect" further, with a view to determining finally what factors are involved for this observed cis 

conformational preference, which substituents give the most pronounced "ortho effect" and 

hopefully to discover possible reasons and explanations into why this "ortho effect" occurs at all. 
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10.2 R E S U L T S AND DISCUSSION USING T H E CSD 

10.2.1 The 0,0^-suhsiituted biphenyls 

Initially a search was conducted using the CSD on all o-o'-substituted-biphenyl compounds 

where the rings were unconnected to one another apart from the C-C linkage between them (see 

chapter 5). This set is designed to be separated into discrete subsets, and examined further. What 

was expected in this set was a possible tendency towards the cis conformer, because the intra­

molecular interaction will be a factor that will be notable and of course it is known that there is 

an "ortho effect". Ahhough alternatively there could be a general tendency for inter-molecular 

interaction and that this could demand a specific conformation, but is thought to be unlikely, 

given the knowledge that there is a cis conformational preference. Nonetheless, because of the 

large range of ortho substituents, it is not expected that the inter-/intra-molecular interactions 

factor will have a large impact on the result. Any observable anomalies in the overall picture are 

not expected to account for the whole "ortho effect", although any observable effect would be 

examined to determine its significance. The search gives resulting data with a x range -180° to 

180° and for the 0-0'-substituted biphenyls the region 0 to -180° is equivalent to 0 to 180°, so the 

root mean square (R.M.S) is taken so x for all angles so that they are positive. The resultant data 

are shown in Figure 10.3. There are a total of 91 observations for the 0-0'-substituted biphenyl 

search, all x are measured once. Of the 91 observations 52 (57.1%) are nearer cis, x = 0-90, with 

the remaining 39 (42.9 %) nearer trans, x = 90-180°. For the range 0 < x < 90, the mean value 

for X is 69.0° and for 90 < x <180° the mean is 112.67°. For this initial search, there is a large 

sharp peak at approximately 70°, with 22 observations (24.5%) lying between 67-76°, the 

equivalent peak does not occur in the 90 < x < 180° range of data. This peak does not consist of 

any specific 0,0'-substituents and this indicates that there is a preferred x value for cis 0,0'-

substituted biphenyls. The resuh shows a distinct tendency towards the cis conformation, which is 

what has been expected from a previous knowledge of the "ortho effect". This tendency however 

is not overly prominent and although the percentages that are cis are significant they do not 

dominate the picture as would be expected by a very strong effect. This then led to the 

speculation that the overall trend was not a trend that affected all o,o'-substituted-biphenyl 

compounds, but that it was the result of the influence of several separate factors, that would 

appear as subsets within the overall set. Inspection of the overall set showed that steric congestion 

has little to no effect on the conformational preference on all but the most extreme cases. This is 

also not expected, because it was thought that steric factors would at least have a significant role 

159 



in the "ortho effect". To this end the overall set was separated into several separate subsets; these 

subsets are not independent of each other and some of them overlap. The subsets were separated 

and examined to show the nature of any other factors influencing the conformational twisting of 

the 0,0'-substituted biphenyls. Initially the separate subsets were determined based on where the 

substitutions occurred upon the rings, see Figure 10.3. 

o,o'-biphenvls 

* 10 

Mln = 48.9 
Max 148.9 

Mean= 88.14 
MeanSE = 2.6 

Sample SD = 24.7 
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Figure 10.3 Dihedral angle distribution of all o-o'-biphenyls 

10.2.2 Different Positional Substituents 

10.2.2.a The effect ofortho substitution at 2 and 2' positions 

In this subset there are 42 observations, of which 19 (45.0 %) are in the near cis region, and 23 

(55.0 %) in the near trans (Figure 10.4). It is worth noting that in an initial analysis carried out 

with the previous version of the database (June 97 release), 29 observations were found, with a 
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ratio approximately 50:50. The trend here (with the April 1998 version) that more have been 

observed in the trans state, but the figures are inconclusive and i f judged on the previous version 

of the CSD then the indication would be for no deviation away from a purely equal ratio. I f a 

trend is present in the purely ortho set, it is not strong enough to show up conclusively and the 

observed trend in the newer version of the database can be put down to being a statistical 

anomaly. What can be seen here is that this set, however inconclusive, approximately mirrors the 

overall set of o-o'-substituted biphenyls. There is a strong peak at 68-70°, with 6 ( 20 %) 

observations, the nearest observation to this peak is at 59.8° and 76.9°, and this indicates a strong 

conformational preference for this specific region. The lack of any conformational preference in 

this set is unexpected because this now indicates that the "ortho effect" is independent of the 

ortho substituents and that these substituents have almost no bearing on the preferred 

conformation of either cis or trans. That ortho substituents have little bearing on the twisting is 

unexpected since it would be expected that the ortho substituents would have a great influence on 

the conformation of the rings relative to each other. 
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Figure 10.4 Biphenyls that contain ortho substituents only 

10.2.2.b Purely ortholmeta set 

This set consists of all o-o'-substituted biphenyls with 1 to 4 meta substituents present and 

hydrogen atoms at both para positions (Figure 10.5). To split the set into the individual subsets 

containing 1, 2, 3 and 4 reduces the data in each subset to sparse numbers and thus to an 

statistically unreliable extent. The alternative is to look at the larger set containing 1 to 4 meta 

substituents and attempt to make general deductions from this. This set is designed to examine the 

effect of meta substituents on the conformation. It can be reasoned that i f the ortho substituents 

have no effect, then meta are the next most obvious candidate to examine. In this set there are 

only 12 observations and thus this set is statistically meaningless, but the results show a 50:50 

ratio, which indicates that there is no distinct trend at least in this small number of data. The 

mean value for x, 93.9°, is that which might be expected from initial ideas involving steric 

factors. The meta and ortho substituents have little to no effect on the system and this again is 

unexpected. It would be thought that given the lack of effect in the purely ortho set, that the meta 

would be influential even i f this influence were small, due to possible stereochemical interaction. 
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Figure 10.5 Biphenyls containing ortho and meta substituents 

10.2.2.C The o^o'-biphenyls with meta and para substituents 

This set consists of data comprising of at least one meta and one para substituent within the 

structure. This subset consists of only 21 observations, but shows a marked tendency towards the 

cis conformation, with a cisitrans ratio of 16:5 (76.2 %) (Figure 10.6). 

This can be due to the effect of a series of one type of structures dominating the set, which can 

happen in the smaller sets. As it turns out, after examining the structures there is not a specific 

series of structures influencing this data set. The trend here is pronounced enough to indicate this 

is a true trend, strong enough to show up in the overall set and to account for a large proportion 

of the overall cis conformational preference. This leads to the conclusion that there is a 

conformational influence of para substituents for o,o'-substituted biphenyls. It is remarkable that 

the effect of the para substituents is observable, despite no distinction between separate ortho 

groups. 

Para substitution has not been considered to be of very much influence in these systems in terms 

of the conformation, particularly the twisting conformation, due to the distance from the ortho 
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position and the C-C linkage bond. However, it is apparent that they do have an influence in the 

twisting of these systems. The substituents that are attached to the biphenyls at the para position 

are varied and there is not one specific type that shows up in this set and gives a conformational 

preference and indeed the substituents give a preference for the cis conformation, see Table 10.1. 

= 48.88 
sample SD 
= 24.591 
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Figure 10.6 The dihedral angle range of o,<>'-biphenyls with meta and para substituents 

10.2.2.d The c .̂̂ '-biphenyls with para but no meta substituents 

There are three structures that fit this criterion, not enough data for any real conclusions to be 

drawn. This is unfortunate since this data set would be extremely useful to examine and compare 

to the paralmeta containing subset. 

It would be expected, given the results found from the paralmeta set that i f there were more data 

in this group then it would show that there would be a large trend towards the cis conformer. 

What little data are present here have a strong preference towards the cis conformation (100%). 
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10.2.3 Different types of substituent on the ortho position 

To examine the effect fiirther the individual substituents and groups must be examined. Looking 
at both the ortho and para substituents enables this be done. The main problem with this set is 
the lack of structures with the required groups at the specific positions, which are needed to see 
any trend or effect that these structures exhibit. The effect will have to be very strong with a large 
percentage of the structures existing in these sets. 

The next part of the overall set to examine is the individual substitutions, i.e., the structures with 

specific groups attached to the ortho positions of the biphenyls. 

10.2.3.a Carbon at the ortho position 

This set contains all structures with at least one carbon atom at the ortho position. There are 58 

structures in this set (Figure 10.7). The conformation of the structures is 32 (55.2%) in the cis 

conformation. There is no apparent strong preference for the cis conformation. 
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Figure 10.7 Carbon atoiii(s) at the ortho position(s) of o^o'-biphenyb 

10.23.b C O O substituent group at the ortho position 

This set looks at COOR and COOH groups attached to the ortho position. Cases where there is a 

charge on the group, COO' are also included m this examination. The -C=0 are extremely likely 

to interact inter-/intra- molecularly with the correct orientation. In the case of -COOH there are 

many cases where the -C=0 of one group forms hydrogen bonds with the -C-O-H group of 

another, a similar case is observed with 4-biphenylcarboxyUc acid in chapter 5. Tho-e are a total 

of eight observations and of these five are the cis conformation. Again there is no clear preference 

for the cis conformation in this set. 
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10.2.3.C C O R substituent group at the ortho position 

In this set the -COR group is relatively unreactive and not be a source for intra-/inter- molecular 
interaction. However since the R group is not defmed in the search criteria then atoms in the R 
groups may interact intra-/inter- molecularly. 

Only 8 structures are present in this set and 7 are in the trans conformation. It is worth noting 

that none of these structures have para substituents. 

10.2.3.d C=0 substituent group at the ortho position 

This set contains COR or COH groups at the ortho position, there is no distinction between these 

because in both cases the lone pair on the oxygen C=0 should be available for interaction. 

There are 11 observations, 5 of these are in the cis conformation. There is only one para 

substituted compound and in this case the conformation is trans, despite the strong possibilities of 

inter-/intra- molecular interaction, there is no apparent tendency for either. 

10.2.3.e Oxygen at the ortho position 

In this examination this set contains either - 0 - H or -0-R groups (Figure 10.8). 

I f there is an oxygen atom at the ortho position then what is seen is that out of a total of 23 

observations, 16 (69.6%), are of the cis conformation. This is a large percentage and even though 

there is some overlap between this set and the para containing set (7 structures overlap, of which 

5 are cis and 2 trans), the conformational preference for cis is independent of the presence of 

para substituents. These data show that with oxygen at the ortho positions there is a greater 

likelihood for the structure to adopt the cis conformation. 
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Figure 10.8 Oxygen atoni(s) at the ortho position(s) of o,o'-substituted biphenyls 

10.2.3.f O-H substituent group at the ortho position 

In terms of hydrogen bonding O-H groups are susceptible to interaction, but would this make the 

cis conformer more preferable? The likelihood of the structure being intra-molecularly bonded 

depends on the other ortho substituent, but inter-molecular interaction is just as likely. The intra­

molecular forms dominate and the cis conformer dominates, 10 of the 13 present are of the cis 

conformation. The ease by which these structures can intra-molecularly interact, when the two 

ortho positions have oxygen atoms, appears to be the reason for this. Only 3 of these structures 

have para substituents, 2 of which are trans. It would appear that when there are OH groups at 

the ortho position, then there is a distinct trend for the structures to adopt a cis configuration, and 

even when taking into consideration the para substituted structures, the two results (oxygen 

atoms at ortho and para groups present) are independent of each other. 
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10.2.3.g The X substituent group at the ortho position 

Here the X group refers to any halogen atom and this examination is designed as a crude way to 
determine any effects halogen atoms have on 0,0'-substituted biphenyls. In this set there are 9 
hits, 6 cis (the structure with the CSD reference code RABREN (Jones et al., 1996) accounts for 
2 cis structures) and 3 trans (with the CSD reference codes DUXRAP and DUXRAPOl (Singh et 
al., 1986) are essentially the same structure). I f these are counted as one structure, then there are 
7 structures, and 5 out of 7 are cis. Although the amount of data limits the accuracy, the result is 
similar to that which Bastiansen found. It is worth noting that of the four structures with chlorine 
at both ortho positions, only two are cis. The distances of the Cl—Cl for these structures is 3.33 
to 3.50 which indicates probable Cl -Cl interactions {c.f. sum of vdw radii = 3.70 A). 
Complications to this result are shown when considering the para substitution of these structures. 
Of the 7 structures, 5 have para groups attached and of these 5, 4 are in the cis conformation. 
This then is similar to the para substitution effect. It could be argued that it is the presence of 
para substituents that effect the conformation, rather than the halogen atoms. To see how the 
halogen atoms are affecting the group in detail, it is best to look at the halogen-halogen atom 
distances. 
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10.3 SUMMARY 

There are several very interesting conclusions that can be drawn from the data available. There is 

indeed an overall tendency for the o-o'-biphenyls-type compounds to adopt the cis conformer 

rather than the trans, but fiirther investigation reveals that the overall picture is clouded and 

influenced by separate subsets present in the overall set of all a,o'-biphenyls. Looking at o-o'-

biphenyls with no para substituents it is found that there is in fact no discemable preference for 

either cis or trans. This includes ortho substituents alone and ortho with meta substituted and the 

likelihood of producing either conformer with no para substitution present in the solid state, will 

depend on that specific structure itself, the ortho substituent present and the inter-Zintra-

molecular interactions of these substituents. When para substituents are present however, there is 

a definite tendency towards the cis conformation, although with the available data, it is not 

conclusive as to whether the para substitution without any meta substitution present will also 

have this tendency. This does seem extremely likely, since meta on its own does not produce a 

specific conformational preference and the set with para substituents present, regardless of 

whether meta substituents are present or not, although limited in terms of different data, supports 

the trend. When describing this trend it is worth noting the structure of Secalonic acid (with the 

CSD code SEC ALA (Howard et al., 1976)). This structure has both meta and para substituents 

and also has oxygen atoms at the ortho position, but this is not cis and fiirther has an extremely 

large dihedral angle in the trans formation. When trying to find trends, including those in later 

chapters (chapters 11 and 12), this structure does not follow any of these trends. There is a large 

degree of hydrogen bonding, which accounts for the unusual stereochemical properties it has 

(Uov/ard et al., 1976). 

When all the different positions are substituted on each ring there is a greater tendency towards 

the cis, and i f Secalonic acid A is suppressed, which seems reasonable given its unusual twisting, 

then there are 100% cis. However, the lack of data on the exact tendency towards the cis 

conformer for these smaller subsets remain inconclusive. 

It was thought possible that the effect of adding para substituents to biphenyl systems might lead 

to a change in the physical characteristics of the C-C bond between the rings, i.e. conjugation and 

bond length and the best way to investigate this is to look at the bond length, and to see whether it 

changes as a result of para substitution or twisting. The result showed that para substitution had 

no effect on the conjugation of the C-C bond (see chapter 13 for more detail). Whether the para 

substituent affects the ortho substituent and i f this in turn determines whether the system becomes 
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near cis or trans is difficult to determine since the amount of ortho and para substituted 

biphenyls without meta substituents remains small. 

One plausible explanation why the cis conformation is preferred with para substitution is that the 

para substituent itself will be likely to be involved in inter-molecular interactions and therefore 

creating long H-bonded chains. The intra-molecular interaction process necessitates the 

substituents being close enough to interact and this needs the conformation of the biphenyl to be 

nearer the cis conformation. 

Bastiansen (Bastiansen, 1979) has indicated that there is a preference for the cis conformation in 

halogen ortho substituted biphenyls. His fmdmg showed that in the gas phase, this is definitely 

true. In the search carried out on all 0,0'-biphenyls in the CSD, there were only seven hits found 

for halo ortho substituted o,o'-biphenyls. Analysis does indeed indicate a possible preference for 

the cis conformation, but out of the seven, five have para substituents. Although this small 

selection of data cannot show much detail, it is interesting that they do follow the general trend 

found so far for the para substituted biphenyls. 

Another structure that is purely an 0-0'-halo substituted biphenyl (CSD with the reference code 

DCLBIP, (R0mming et al., 1974)) is of the near cis conformation. In looking at the data for the 

solid state rather than the gas phase, as studied by Bastiansen, we find no specific evidence to 

support halogen-halogen interaction in the solid state. In 2,2'-dichlorobiphenyl (DCLBIP) the 

Cl - Cl distance is 3.418 A, which is short and well within the vdw radii (3.70 A) but the CI- H 

inter-molecular distances are 2.879 and 2.952 A, which are also well within the vdw radii 

(3.05A), see Figure 10.9. 

2.95 2.88 A 

3.42 A 

Figure 10.9 Representation of//i/ra-molecular distances in 2,2'-dichlorobiphenyl 
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This suggests that there is an intra-mohcular interaction between chlorine atoms and this is 

governing the twisting of the structure (Romming et al, 1974), see Figure 10.9. This structure 

was the only one found in the CSD that has chlorine atoms at the 2 and 2' positions and has both 

CI--CI and Cl - H intra-molecular interactions possible. The packing of the cis conformation is 

favourable here, because the molecules can fit more neatly together. The main factors that govern 

these types of halogen-halogen distances are, possible halogen-halogen attractive forces, halogen-

hydrogen hydrogen bonding and packing forces. In this study there is a lack of data to fully 

investigate this halogen attraction and so more is needed to investigate further, especially the 

CI "CI attraction forces, in the solid state. 

To complicate the overall picture further, the presence of oxygen atoms at the ortho position also 

has a strong conformational effect, due to intra-molecular interaction. This effect is independent 

of the para substitutional effect and indeed when both oxygen ortho and para substituents are 

present there is no specific tendency towards cis. The presence of a conformational effect with 

oxygen atoms is not wholly unexpected, although interesting, but it is the para substitutional 

conformational effect that is of most interest. No specific para atom substitution is responsible 

(as no ortho atom substitution is either) when examining the interactions involved, so the reason 

must be more subtle. A fuller investigation into the effect of para, ortho, and meta substitutions 

is given in chapter 12. Tables 10.1 and 10.2 give a summary of subsets detailed m this chapter. 

Section Number ortho meta para Conformation (%age) 

10.2.1 91 Yes In 

Some 

In 

Some 

Cis (58.2) 

10.2.2(a) 39 Yes No No Trans (55.0) 

10.2.2(b) 26 Yes Yes No Trans (59.1) 

10.2.2(c) 22 Yes Yes Yes Cz.s(71.4) 

10.2.2(d) 3 Yes No Yes Cis (100) 

Table 10.1 Summary of Biphenyl conformations with positional variation of substituents 
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Section Substituent Conformation Cis'.Trans ratio 

10.2.3(a) C Cis 32:26 

10.2.3(b) COO Cis 5:3 

10.2.3(c) COR Trans 7:1 

10.2.3(d) C=0 Trans 5:6 

10.2.3(e) 0 Cis 16:7 

10.2.3(f) 0-H Cis 10:3 

10.2.3(g) Halogen Cis 5:2 

Table 10.2 Summary of Biphenyl conformations with substitutional variation 
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C H A P T E R 11: 

T H E TWISTING O F B I P H E N Y L COMPOUNDS W I T H HYDROGEN ATOMS AT 

T H E ORTHO POSITION 

11.1 INTRODUCTION. 

This section is primarily based on work that was done previously by Brock and Minton 

(Brock & Minton, 1989). In this paper the authors tried to fit the energy distribution curve of 

the dihedral twisting angle of solid state biphenyl compounds with hydrogen at all four ortho 

positions to a Boltzman distribution. This was done by analysing structures in the CSD, and 

plotting the torsion angle against the number of angles found. This was in an attempt to see i f 

this distribution of data could be explained by the structure correlation method, which 

predicts the distribution of data should be given by the expression exp(-E/RT). 
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11.2 T H E S T R U C T U R E C O R R E L A T I O N METHOD 

The structure correlation method has been a useful tool in terms of a prediction of a 

structure's energy distribution and the details of the method have been described in numerous 

places, but none so completely as in the two volumes edited by H. D. Burgi and J. D, Dunitz 

called "Structure Correlation" (Burgi & Dunitz, 1994). For this study it is not necessary to 

dwell on the fine detail of the method or to have an in-depth knowledge of all it entails, but 

rather just have an idea of how this method then pertains to the ortho unsubstituted biphenyls 

systems examined here. The structure correlation method is well described and summed up, 

although briefly, in the following short passage by J. D. Dunitz in his notes to the 27th course 

of the International School of Crystallography in Erice, Sicily, 1998. (Howard, Allen and 

Shields, 1999, In Press). 

""With the establishment of "standard" bond lengths and angles functional groups used to 

be characterized as having a more or less fixed structure. Gradually, it was recognized that 

this is not the case. For many groupings, structural changes occur in different crystals and 

molecular environments, and, moreover, the changes in individual structural parameters 

are often correlated in ways characteristic of the grouping itself. The connection with 

chemistry comes with the assumption that observed structures tend to concentrate in low 

lying regions of the potential energy surface, leading to what has been called the Principle 

of Structure Correlation: 

If a correlation is found between two or more independent parameters describing the 

structure of a given fragment in a variety of environments, then the correlation function 

maps a minimum energy path in the corresponding parameter space. 

This approach thus provides a link between the "statics " of crystals and the "dynamics " of 

reacting chemical systems and has been applied to map reaction paths for several types of 

prototypical chemical reactions." 

So how does the structure correlation method relate to the work conducted in this thesis? I f a 

particular chemical substructure is specified as a query fragment to the CSDS then what it 

will retrieve depends largely on the type of fragment being investigated, but the number can 

amount to thousands of fragments and dozens of environments. Each fragment found 

represents a static three-dimensional snapshot of the fragment, all of which are under slightly 

different conditions. I f there are n geometrical parameters to describe i examples, then a 

geometrical matrix G(i, n) is obtained; this matrix can then be examined for regularities, and 

for correlations involving some or all of the geometrical parameters, or between geometrical 

parameters and other chemical, physical and/or biological properties. This is the basic 
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fiindamental principle of the structure correlation method. This method lends itself to the 

analysis of the twisting conformations of biphenyls. 
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11.3 NON ORTHO SUBSTITUTED BIPHENYLS AND T H E STRUCTURE 

C O R R E L A T I O N METHOD 

The structure correlation method can be used in the case of non ortho substituted biphenyls, 

that is biphenyl compounds that have hydrogen atoms on all 4 ortho positions, see Figure 

11.1, to study the energy of the twisting of the biphenyl rings about the single C-C bond. In 

this case this utilizes the Cambridge Structural Database to obtain data on these 

conformational twisting of all the non-ortho substituted biphenyls present in the CSD. In 

essence the structure correlation method relies upon the system in question following a path 

of the lowest energy. In the case of biphenyls with hydrogen atoms at the ortho positions, the 

theory would suggest that the twisting of the two rings relative to each other about the 

adjoining C-C bond would follow a Boltzman distribution from 0-90° with a maximum 

believed to be approximately 35° (Eaton & Steele, 1973), although the distribution is likely to 

be slightly distorted due the various temperatures that are sampled, for structures existing in 

the CSD. In comparison the gas phase maximum is shown to have an average torsional angle 

of 45° (Alminningen et ai, 1989) and the solid state phase of biphenyl, having a twist of less 

than 1° ((Charbonneau & Delugeard, 1976 & 1977) and Chapter 5). There are known to be 

differences between the solid state and gas and liquid phases of these compounds and 

biphenyl itself has been noted to have conformational differences between the gas and liquid 

compared to the solid phases. This leads to the speculation that biphenyl compounds may 

favour the planar conformations in the solid state and that the theoretical values based on gas 

and liquid phase information, which includes all the calculated predictions of biphenyls, can 

prove not to be transferable to the solid state. This is surprising but is an indication as to the 

different forces involved in the slid state. 

What is seen in the case of non ortho substituted biphenyls is these systems do not fit in with 

the structure correlation method (Brock & Minton, 1989) and this has been used as a 

demonstration that the structure correlation method, ahhough extremely useful, does have 

limits on its use. The study, by Brock and Minton, was conducted using a database analysis 

with the CSD. It was shown that the distribution of energy for these biphenyls is not a 

Boltzman distribution but a muhi peaked distribution, with 2 or possibly 3 minima in energy 

from 0 to 90° of torsional motion. The main energy minima exists at; 

1) approximately 30-40°, which is where the greatest number of structures are located 

2) between 0-5°, the sharpest peak, 

3) a third possible minimum is located at 15-20°. 

Brock and Minton's study of this phenomenon came to three possible conclusions that could 

be derived fi-om these findings. The explanation favoured most by the authors was that "the 
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solid state systematically favours nearly planar biphenyl fragments because they pack better", 

but it was also suggested "substitution in the meta or para positions have a much greater 

effect than expected on the preferred conformation". Since it has been shown that the para 

and meta substitution can be of influence in the 0,0'-substituted biphenyl conformations 

(Chapter 10), it was considered worth investigating the effect that the para substitution, and 

indeed possibly meta substitution had on this similar type system. To this end, the original 

work was repeated with the latest available version of the CSD (April 1998). This was 

examined further with a view to discover any influence the para and meta substitution has on 

this type of system. Since the CSD has more than doubled since the previous work was 

carried out then any substitutional effects should be much clearer than in the original study 

and therefore they should be more prominent and easier to decipher. 

H H 

B-

H H 

Figure 11.1. The non-ortho substituted biphenyl, A, B, C , D, E and F are any atoms 

(including hydrogen). 
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11.4 DATABASE STUDY O F NOIS-ORTHO SUBSTITUTED BIPHENYLS 

While the original study produced a total of 101 torsion angles, there are now 268 observed 

torsion angles in the April 1998 version of the CSD. These angles being referred to are the 

same as defined in chapter 10 (i.e. the dihedral angle between the rings). 

The overall histogram using this version, see Figure 11.2 is similar to the initial histogram by 

Brock and Minton, the difference being mainly the lack of the third independent peak that was 

seen between 15-20°. Here the main peak is a lot broader and starts at approximately 20°, 

therefore the peak observed previously has now been absorbed into the main broad peak at 

20-45°, which resembles the Boltzman distribution, as would be expected i f the structure 

correlation method were used to predict the outcome and the second peak which is much 

narrower and exists principally between 0-8°. The sharp peak is the highest with over 50 hits 

at between 0-5°, although this is the highest peak, when the data are segmented into sections 

of reasonable definition, two thirds of the torsion angles are situated in the larger, broader 

range (20-45°). 

In an attempt to see what effect the substitutions at the separate positions have on the rings, 

the overall set of torsion angles was split into separate subsets. However, some of these 

subsets overlap, so are not entirely independent of each other. 
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Figure 11.2 All non-ortho substituted biphenyls. 
Mean = 23.52 and Sample SD = 18.68 

11.4.1 Para Substituted Biphenyls 

This set contains all non-ortho substituted biphenyls with one or both para positions 

substituted by any non-hydrogen atom. There are a total of 245 observed dihedral angles. In 

this case the effect of the meta substituents is not taken into account. 

The para containing set is very similar to the overall set. The sharp peak at 0-5° is 

pronounced, containing 65 observed torsion angles. The peak at 20-45° contains a 

comparatively large percentage of data, with 144 observations, see Figure 11.2. This shows 

that the group containing para substituents has a greater tendency towards the ring co-planar 

structure. This could be that when para groups are present the likelihood of adopting an 

arrangement that these structures pack better. This is in keeping with the original studies of 

these types of structures (Brock & Minton, 1989), which thought that the herringbone pattern 

in biphenyls may be a strong factor for the conformational anomalies. 
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This para containing set can be split further into those biphenyls that have one or two para 

substituents and then these can be divided further into one and two para substituents with 

either meta or no meta substituents. 

T o t a I 
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Figure 11.3 The distribution of torsion angles for 0,1 and 2 para substituted biplienyls 

11.4.1.a Biphenyls with two para substituents. 

Figure 11.4 B\-Para substituted Biphenyl, where P may equal P' 

In this case the para containmg group is split further into the biphenyls that have both para 

positions substituted, see Figure 11.4. The specific substituents on the para positions are 

varied, and no discemable pattern, regarding substitution type, was observed in the overall 

data. There are 106 observed dihedral angles, in the range 0-5°, giving a much more 

pronounced peak containing 45 structures and consequently the 20-45° peak becomes much 

less evident, see Figure 11.5, although this latter peak still exists and accounts for a large 

proportion of the torsion angles encountered. I f trying to predict the conformation of a 

biphenyl with no ortho but two para substituents and based on the data in this chapter, then 

the conclusion would be an equal chance of either near 0° or twisted to 20-45°. Consequently, 
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i f all that was known was that no para group was attached, the likely conformation should be 

20-45°. The data from this set do fit approximately with the structure correlation method and 

are much closer to the predicted values than has been seen for structures that contain para 

substituents. 

Total = 106, Range = 49 J9 
Mean ̂  18.56. Mean SE = 1.70. Sample SD = 17.50. Median =15.04 

Figure 11.5 Biphenyls containing two para substituents. 

11.4.1.a(i) Biphenyls with two para and no meta substituents 

There are a total of 91 observed dihedral angles for this set. The distribution of the torsion 

angles is slightly higher in the 0-5° range than in the set with two para (with no distinction of 

meta substitution). There are 41 (45.1%) of the torsion angles existing in the 0 to 5°, and 

45° (49.5%) in the 0-10° region, however there are slightly more in the 20-50° region. The 

torsion angles that lie outside the 0-5° region are extremely broadly distributed with no 

discernible peak in the distribution other than 28 (28.3%) structures in the 35-43° region, see 

Figure 11.6. 
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30.0 

Total = 91, Range = 51.27 
Mean = 17.52, Mean S E = 51.27, Sample SD= 17.63, Median = 11.04 

Figure 11.6 Biphenyls with two para but no meta 
substituents 

11.4.1.a(ii) Biphenyls with two para and some meta substituents. 

There are 15 observations in this set. When there are two para and no meta substituents 

present then there is a distinct trend for planar conformations. A peak at near 0° contains four 

structural torsion angles. The other structures are distributed over a wide range of torsion 

angles, in the 25-45° range. 

11.4.1.b Biphenyls containing one para substituent. 

There are a total of 139 observations. The region at 0-5° contains 20 torsion angles, which is 

much lower than for the two para substituted set and the 20-45° region has 95 observed data, 

see Figure 11.3 

These results indicate that although there is an effect with the para substitution, it is not as 

strong as when there are two para substituents present. 

The effect of para substitution would seemingly be to increase the chance of planarity in the 

structure. However, this effect is relatively weak and is often outweighed by other factors and 

this is why there are non-planar structures in the para containing sets. Biphenyls with one 

para substituent can be divided further with no meta and meta either on the same ring as the 

para substituent or on the other ring. 
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11.4.1.b(i) Biphenyls containing one para and no rtteta substituents 

This set is to investigate the effect of having no meta on a one para substituted structure. 

There are a total of 97 data present in this set. There are fewer structures adopting the 0-10° 

torsion angle range. The most noticeable feature here is the decrease in the number of 

structures in the 0-5° region. Consequently there is a relative increase in the distribution at 

20-45°, with 48 structures in this region in a broad Boltzman type distribution. This shows 

that the introduction of para substitution causes structures to tend towards planarity and 

meta substitution seems to have the opposite effect. Whereas in the two para set, there is a 

broader distribution in this range with a much less pronounced peak, see Figure 11.7. 

Total = 97, Range = 62.78 
Mean = 22.38. Mean SE = 1.72. Sample SD = 16.89, Median = 24.98 

Figure 11.7 Biphenyls with one para and no meta substituents 
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11.4.1.b(ii) Biphenyls containing one Para with meta substituents on the same ring 

The number of data in this set is 41. There are a distinct lack of near planar structures. The 

data are distributed over a range of torsion angles from 16-51°. This gives the impression that 

meta substituents on the same ring are influential in a contrary manner to the effect of para, 

see Figure 11.8. 

ao no lao IKO axo asio zxo SILO 4OO 4ao sao sso eoo 
TRNOe 

Total = 97, Range = 62.78 
Mean = 34.22. Mean SE = 1.13, Sample SD = 7.23, Median = 34.29 

Figure 11.8 Biphenyls with one para substituent with meta 
substituents on the same ring 

11.4.1.b(iii) Biphenyls with one para and meta substituent, but occurring on different 

rings. 

There are only 11 observations in this set. The data range from 28-52°, with the majority of 

structures between 21 and 36°. Again the most notable point is the lack of structures in the 

near planar region of the torsion angle distribution. 
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11.4.1.C The affect of para and meia substituents on biphenyl 

Biphenyls with para substitution have a greater tendency to adopt a near planar 

conformation. What is seen is that structures with two para substituents have a greater 

tendency towards planarity than those with only one para substituent. 

So the tendency for planarity can be represented as 2 para > \para > non-para. 

11.4.2 Biphenyls containing meta substituents 

This group consists of non-ortho substituted biphenyls with some form of meta substitution 

present. There are five possible orientations of the meta substituents in this group, these are 

the substituents A, AA' , ABA', AA'BB' , see Figure 11.9. Unfortunately because of the lack 

of structures/data, division into the separate subsets can cause great inaccuracy. This group 

overlaps with those structures also containing para substituents and thus contains a great 

number of para containing structures. It would initially be expected that the para containing 

structures would have the same affmity to adopt a planar conformation unless the meta 

substituents are conformationally influential. What is seen is that there is a great tendency for 

these structures not to be planar. Of 86 torsion angles only 5 are in the 0-5° range, with 75 in 

the 20-45° region giving an adequate fit of the BoUzman distribution. This indicates that there 

is a distinctive effect that is caused by the addition of meta substituents, see Figure 11.10 

Figure 11.9 The meta substitution positions of biphenyl 
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Figure 11.10 The distribution of torsion angles for biphenyls containing meta 

substituents 

11.4.2.a Biphenyls with no para substituents; Biphenyls containing meta substituents 

only 

There are 20 torsion angles present but eight of these angles come from the one structure 

(with the CCDC structure code HAXRED (Rabideau et al, 1993)). 18 of the 20 are in the 

20-45° range while one is in the 0-5° range at 1.55°. This near planar structure is 2-Methyl-

5-dimethylamino-8-(3,r, 5, 1 "-terphenyl)-quinolinium picrate ((Manabe et al., 1993) and 

has two biphenyl fragments and so two dihedral angles with the other more twisted at 36.57°. 

This structure has a great deal of steric crowding and this is the reason why one of the 

biphenyl fragments of the structure is forced into the near planar geometry. 

It would appear that the addition of two para substituents (and to a lesser extent one para 

substituent) leads biphenyl type compounds to favour a planar conformation. This would 

appear to be a major factor in the overall picture of these compounds not adhering to the 

structure correlation method. However, when all purely meta substituted biphenyls are 

investigated there is a definite similarity of the resultant data to the expected results of the 

structure correlation method. It appears the lack of meta substitutions causes the deviation of 

certain biphenyls from the theoretically predicted values. 

When there are meta substituents and two para substituents present then the result is similar 

to that expected with adherence to the structure correlation method, thus meta substitution 

outweighs the effect of para substitution. The readon behind this is unclear and may be a 
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result of packing factors. Meta substituents are more likely to exhibit steric factors and with 

no ortho substituents present they are the only group able to sterically influence the dihedral 

angle of the rings. I f one were trying to produce a non-ortho substituted biphenyl with a large 

twist out of the plane, then the addition of meta substitution would be a useful factor. 

11.4.2.b Biphenyls with one meta substituent 

There are 18 observed angles in this set; none have a torsion angle less than 23°, and all exist 

m the 22-41° region. The distribution could be a "Boltzman" form, but the data are too 

spread out to draw any useful conclusions. 

11.4.2.C Biphenyls with two meta substituents on the same ring. 

There are 54 structures in this subset with only two of them showing angles less than 20°, the 

rest are in the 20-52° region. This distribution is approximately a Boltzman type distribution, 

although over the large range involved the distribution is slightly sparse. The limited data is 

spread over too wide a range to give a conclusive picture. 

11.4.2.d Biphenyls with two meta substituents on different rings 

There are eight structures in this set with one in the near planar conformation. This is a 

binaphthal structure (with the CCDC reference code JAKROC (Chen Minqin et al, 1987)) 

with different electronic properties to that of biphenyl which may explain why it adopts this 

conformation. The other seven torsion angles are in the 27-40° region. 

11.4.2.e Biphenyls with three meta substituents 

There are no structures with three meta but no ortho substituents. 

11.4.2.f Biphenyls with four meta substituents 

There are six data present. This set is different from the other meta containing sets, in that 

even though there are so few torsion angles present three of them are in the near planar range. 

This can be somewhat rationalized in terms of the para substitution: of the six structures five 

have two para substituents, the exception (CSD reference code WEPSAL (Guther et al, 

1994)), has a torsion angle of 16.8°. 
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11.5 SUMMARY O F NOf^-ORTHO SUBSTITUTED BIPHENYLS 

It is worth noting that generally the more meta substituents the more para substituents, this is 

not surprising because, the meta position is less likely to undergo an addition or substitution 

than the para and ortho positions. Given this, there is a lack of structures with one meta 

substituent in the near planar conformation. With two meta substituehts on the same ring and 

none on the other ring, then often the other ring is purely a phenyl group. The situation is 

different when there are four meta substituents, when often both rings have para substituents. 

Those that are meta substituted, have a greater likelihood of not adopting the planar 

configuration. The influence of meta substitution is undoubtedly linked to that of para 

substitution and it is difficult to separate these two. It can be determined that para substituted 

structures tend to have a percentage of structures favouring planarity, but this can be 

somewhat diminished when there are also meta substituents present. Thus para and meta 

substituents both effect the twisting conformation. The distribution of torsion angles are given 

inTables 11.1 and 11.2. 

What can be deduced however is that these non-ortho substituted biphenyls do not conform 

to the structure correlation expected distribution, primarily due to the effect of the para 

substitutions. 

When para substituted structures have no meta groups attached the percentage of planar 

structures remains approximately the same as when there are meta substituents present. 

However, when two para substituents are attached there are more planar structures. 

Para substitution affects many of these structures, with two having a greater effect than one. 

The conclusion of this study is that the para substituted structures that do not adhere to the 

theory of the structure correlation method. 

Why does para substitution affect these structures in this manner? There are several possible 

reasons; 

(i) when packing, i f there are para groups present then the crystal will form a planar 

configuration better. This could be a result of a tendency for para groups to interact 

with other para groups and form chains, which pack better when planar. Or possibly 

para substituted biphenyls simply fit together better when they are flat. 

(ii) the para groups affect the electronic structure of the biphenyl in a way that the 

database analysis cannot determine. It is possible that para substituents give a 

greater delocalisation and/or conjugation (see chapter 13). To date no analysis has 

pointed to an electronic difference between para and non-para substituted structures, 

but since there has not been a large amount of study in this area then this is not 

surprising. Analysis of the structures does not show any specific type of para 

substitution occurring with specific stereochemisrty. Therefore an electronic effect is 

not obvious using this statistical database analysis. 
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(iii) biphenyls in the solid state prefer to be flat, c.f. biphenyl's differing x^onfiguration in 

both the sohd and gaseous states. It is the presence of meta substituents that have a 

non-planar configuration effect. 

This third possibility seems unlikely, although possible, and it could possibly be related to (i) 

or/and (ii) above. 

To fiilly determine the difference between the various substituted biphenyls more analysis is 

needed. In chapters 12 and 13 an attempt to rationalize the biphenyls with database analysis 

and diffraction analysis has been conducted {c.f. chapters 12 and 13). 

Table 11.1 The dihedral angle distribution of para substituted non-ortho 
biphenyls 

Type Total 0-5" 5-20° 20-45° 45°+ 
Al l non-ortho 
biphenyls 

268 69 23 162 14 

All Para 245 65 20 145 
2 para 106 45 10 48 3 
2 para & no meta 91 41 10 38 2 
2 para with meta 15 4 0 11 0 
1 para 139 20 10 95 12 
Ipara & no meta 97 20 11 48 8 
1 para with meta on 41 0 1 37 3 
same ring 
1 para with meta on 
different ring 

11 0 0 10 1 

No para 
substituents. 

23 4 1 18 0 

Table 11.2 The dihedral angle distribution of meta substituted non-ortho 

substituted biphenyls. 

Meta 
Type Total 0-5° 5-20° 20-45° 45°+ 
Al l meta 86 5 2 75 4 

1 meta 18 0 0 18 0 
2 meta on different 8 1 0 7 0 
rings 
2 meta on the same 54 1 1 48 4 
ring 
3 Meta 0 0 0 0 0 
4 Meta 6 3 1 2 0 
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C H A P T E R 12; 

T H E O V E R A L L E F F E C T O F PARA AND META SUBSTITUTION ON 

BIPHElNfYLS. 

12.1 INTRODUCTION 

In terms of the twisting of biphenyls the presence of meta and para substituents have not 

generally been considered to have much influence. Given the resuUs seen from database 

studies ah-eady examined in this thesis, for these types of systems it is clear these 

substitutions may play a greater role in ĥe overall stereochemistry than previously thought. 

Results from chapters 10 and 11 have shown that substitution is significant in conformational 

preferences. In general, it is difficult to determine the effects of these substitutions since there 

are a number of ways in which a biphenyl type structure can be substituted; i.e. it can have 

any combination of 0-4 ortho or/and meta substituents and/or 0-2 para. So when trying to 

analyze specific cases of substituted structure the number of structures of each type tends to 

be quite small and so it is often necessary to look for the more general features and trends. 

Initially, the specific atom type of ortho substitutions are generally only taken as a side issue, 

in order to determine what trends, i f any, are purely due to the presence of para and meta 

substitutions. 

In theory it is the ortho substituents that have the conformational effects and are generally 

thought to determine the amount of twisting that is involved in the system. The effect of meta 

and para substitution must in theory be of a much smaller magnitude in comparison. To 

determine the validity of these assumptions and for an investigation into the overall structural 

effect of para and meta substituents on the twisting of biphenylSj a database search was 

conducted using the CSD. This involved the complete search of biphenyls and only those 

structures where the rings were completely independent of each other (apart from the C-C 

ring linkage) were accepted, in the same manner as chapters 10 and 11. This set was split 

into subsets consisting of substituents at each position {ortho, meta and para) and the types 

of substituent atoms and/or groups at these positions. 

The initial set includes all possible ortho substituted positions (0, 1, 2, 3, and 4). The effect 

of para and meta substitution here should be obscured by the effect of ortho substituted 

structures. The effect of havmg all the separate subsets of ortho substitution present in the 

one set is so dominating that the other smaller effects (such as meta or para substitution) are 

undetectable. In this set there are a number of structures with dihedral angles between 0-5° 

and relatively few between 5-25°. The number of structures rises for dihedral angles greater 

than 25°. This is somewhat expected and is due to the effect seen in chapter 11 concerning 
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biphenyls with para but no ortho substituents. From 25-90° the numb^ of structures 

increases in an approximately linear fashion towards 90°; this is expected since this is the 

effect of progressive ortho substitution onto the rings and the subsequent effects of steric 

interaction. 

This set is split into zero, 1 and 2 para substituents, and will subsequently be further divided 

into para substituted biphenyls with meta or ortho substituents. The subdivision into 0,1 and 

2 para substituents will show i f their effect is strong enough to be visible even in data 

containing all ortho substituents and i f so, then how strong and how much of an effect the 

para substituents have on the biphenyls. Figure 12.1 shows the distribution of torsion angles 

for 0, 1 and 2 substituted biphenyls. 

(0 
o 
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• 2Para 

Figure 12.1 Biphenyls with para substituents 
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12.2 BIPHENYLS W I T H NO PARA SUBSTITUENTS PRESENT ON T H E RINGS 

This set is used to examine the effect of having no para substituents present on the rings. It 

will also show the effect that para substituents have on the rings since it is a good 

comparison between itself and those sets that have para substituents present, see Figure 12.1. 

For para substituted biphenyls the set is further divided up to examine the effects of other 

positional substitution.. 

12.2.1.a Biphenyls with 0,1,2,3 or 4 ortho positions occupied, no para substituents 

There are a total of 151 observed torsion angles. There is one near planar structures and then 

no structure until 20°, from where is a gradual increase in the number of structures for 

increasing torsion angles, similar to that seen for the set that contains all para substituted 

structures. There are only a few structures that have a torsion angle less than 25°, and a 

relatively large number of structures with an angle near 90°. The lack of structures with a 

torsion angle between 0-5° is an early indication that para substitution may have a 

considerable stereo-chemical effect. However, even without para substituents a small 

percentage of the structures are still planar. This shows that the effect of para substitutions 

on biphenyls is not exclusive, see Figure 12.2. 

Z 40 

0 

No Para Substituents 

J 
0-5 5-20 20-40 40-90 

Torsion Angle Range 
(Degrees) 

• No Meta 
• With Meta 

Figure 12.2 No para substituted biphenyls with and without meta substituents. 
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12.2.2 Non para substituted biphenyls with no meta substitution. 

This set contains 71 structures and is used to study how much of an effect meta substitution 

has on the dihedral angle distribution of all biphenyls, see Figure 12.2. The main body of 

these data exists in the 40-90° region and there are distinctive peaks at 54° and 65°; this is in 

contrast to the overall non-para substituted set which has a gradual rise in the number of 

structures with increasing torsion angle up to 90°. This indicates that either without meta 

substituent present the biphenyls have a slight tendency towards the planar configuration, or 

meta substituents give a preference for non planarity 

12.2.3 Non para, meta substituted biphenyls with ortho substituents 

The purpose of this set is to examine the effect that meta and ortho substituents have on the 

non-para substituted biphenyls, the set is split further into the separate subsets that depend 

solely on the number of ortho substituents. This gives an indication of how strong the steric 

effects of the ortho positions are and the relative magnitude of the dihedral angle that the 

substitutions demand. 

12.2.3.a Non para, meta substituted biphenyls, no ortho substituents: 

This set comprises the parent biphenyl compound, the twisting angle has been measured 

several times as approximately 0°, A number of the biphenyl structures are present in the 

data, for further details see chapter 5. 

12.2.3.b Non para, meta substituted biphenyls, 1 ortho substituents, 

There are 28 observations are present in this set, see Figure 12.3. The range is broad from 

37.9-85.7°, with a mean at 57.9°. There are no structures that are close to planar. 
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Figure 12.3 Non para and meta biphenyls with one ortho substituent 

Mean = 57.95°, Max = 85.65°, Min = 37.98° and Sample SD = 10.11. 

12.2.3.C Non para, meta substituted biphenyls, 2 ortho substituents 

There are 35 structures in total, but these can be separated mto two distinct parts, those with 

the ortho substituents on the same ring and those with the two on separate rings. 

12.2.3.c(i) Non para, meta substituted biphenyls, two ortho substituents on the same ring 

There are five structures with the ortho substituents on the same ring. These structures exist 

in the range 58-76°. 

12.2.3.c(ii) Non para, meta substituted biphenyls, one ortho substituents on each ring 

For the structures with one ortho substituent on each ring (Figure 12.4) there are 30 

structures. This gives a more acceptable level for analysis and these structures are present m 

the range of 41.4 to 89.8°, with a mean of 67.62°. Agam there are no structures with a 

dihedral angle -0° . 
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Figure 12.4 Non para substituted biphenyls with two ortho substituents on different 

rings. Mean = 67.62°, Max = 89.79°, Min = 41.43° and 

Sample SD = 13.64. 

12.2.3.d Non para, meta substituted biphenyls, three ortho substituents 

There are no structures without para or meta substituents but with three ortho substituents. 

This is not surprising considering the possible difficulties in synthesizing a structure with 

three rather than four substituents. 

12.2.3.e Non para, meta substituted biphenyls, four ortho substituents 

There are only seven structures here, so no real conclusions can be determined from this set. 

Six of the seven structures have dihedral angles in the 81-90° range, one is lower at 50.8°, 

which is due to intra-molecular interactions. Once again there are no structures with a near 

planar configuration, although in this case it is not surprising with the large steric hindrance 

present in these particular structures. 

12.2.4 Non para substituted biphenyls with meta substitution 

This set contains most of the data in the non-para substituted structures and therefore is 

similar to that set. It is evident that there is decrease in the near 0° angles and this again 
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indicates that both ortho and meta substituents can have an effect in the conformation. The 

presence of meta has the tendency for the conformation to be non-planar, see Figure 12.1 

12.2.4.a Non para substituted biphenyls with meta substitution, no ortho substituents 

There are 32 observations all of but one exist in the region of 25-43.3° dihedral angle, the one 

exception being almost planar with a 1.5° dihedral angle. The near planar structure here is 

the one structure present in the meta, but no para substituent, set that has a near planar 

structure. See Figure 12.5. 

0-10 10-20 20-30 30-40 40-50 50-60 60-70 
ToisionAngle Range (Degrees) 

70-80 80-90 

Figure 12.5 Biphenyls with meta but no ortho or para substituents 

Mean = 41.69°, Max = 43.24° , Min = 1.55° and Sample SD = 6.99. 

12.2.4.b Non para substituted biphenyls with meta substitution and one ortho substituent 

There are 51 observations present and they lie in the range of 40-90°, 45 of these structures 

have dihedral angle in the 40-65° range, two structures are close to 90°, and four are in the 

70-77° range. None of these distributions of dihedral angles resemble a Boltzman 

distribution, with the 40-65° range of structures, in what resembles a block of structures. It is 
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possible that with more observations this range of data would resemble a steep/narrow 

Boltzman distribution, smce it has the general shape, but this is conjecture, see Figure 12.6. 
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Figure 12.6 Biphenyls with meta, one ortho, and no para substituents 

Mean = 55.39°, Max = 89.45° , Min = 40.76° and Sample SD = 11.71. 
> 

12.2.4.C Non para substituted biphenyls with meta substitution, two ortho substituents: 

With 26 observations present, there are few structures in this set. These are split into the 

structures with substituents on the same ring and those with the substituents on different 

rings, as described previously. Those structures that have substituents on different rings 

number 11 observations, 9 of these are between 44.4-63°, and the other two exist at 76 and 

90°. For the structures with ortho substituents on the same ring (15 observations) there are 

two distinct regions of conformation, 53-72° and 82-90°. These two different types of 

structures exhibit the same magnitude and range of twisting, but they differ in the exact 

pattern that they adopt. 
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12.2.4.d Three and Four ortho substituents 

For the compounds with three or four ortho substituents present there are only three 

structures, one with three and two with four. All the structures had a large amount of twisting 

(> 40°). Although there is not enough data in these sets to analyse, it would be expected that 

the effect of the ortho substituents would create large dihedral angles. 

12.2.4.e Summary of non para with meta biphenyls 

Since ortho substitution has a steric factor on the conformation of the rings, the more a 

structure is ortho substituted the more influence the ortho substituents have on the twisting of 

the biphenyl. When structures are grouped in terms of the number of ortho substitutions 

present then they tend to group into discrete regions. The effect of ortho substitution on non 

para substituted biphenyls is the main influencing factor on the dihedral angle. Meta 

substituted structures show a tendency towards non-planarity, ahhough this effect is weak. 
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12.3 BIPHENYLS W I T H OIVE PARA SUBSTITUENT 

This group shows the effect of having para substituents present as opposed to having none 

and examines the effect of para substitution in terms of one para substituent. The one para 

substituted case will fall into one of three separate outcomes; 

1, It will be similar to the structures with no para, indicating the anomalies are due mostly to 

structures with two para groups present. 

2, It will be more like the structures with both para positions occupied, indicating the 

presence of para is a factor to produce the anomalies. 

3, The result will show the structures to be somewhere between zero and two substituents. 

Indicating that there is a trend present where one para has an effect that gets compounded 

when there are two para groups present, see Figure 12.7. 

This group has a total of 352 observations. This group shows a distinct difference to the no 

para substituted set since here there are a number of structures that are near planar, with 39 

structures being 0-5°. The area 20-90° is a large broad peak containing over three hundred 

structures, this peak follows an approximate Boltzman distribution. However it is probably 

several separate peaks amalgamated into the one large broad peak. Also noticeable is the lack 

of structures that have a torsion angle very close to 90°, 8/352 compared to 26/151 for the 

non-para substituted structures. The percentage of near planar structures is low, but when 

considering the large range of ortho position substitutions covered which should favour non-

planar structures, it is still a noteworthy feature, see Figure 12.7. 
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Figure 12.7 Biphenyls with one para substituent 

12.3.1 One para substituent with no meta substituents 

There are 132 observed data in this set. There is a large proportion of structures with a 0-5° 

torsion angle (-30%). The other features are the peaks at 30-45°, 48-50° and 60-70°, with 

that at 30-45° the most populated. There is an absence of structures after 55° excq>t for a 

slight peak at 60-70°, with eight structures, see Figure 12.6. 

12.3.1.a One para substituent with no meta substituents, no ortho substituents 

There are 104 observations present ranging from almost planar to 60°. There are two distinct 

peaks present, the first from 0-6° contains 37 structures, the rest, from 9-60° follow an 

approximate Boltzman distribution, with the range between 32-42° also having 37 data. As 

this set contains 104 of the total 122 observations in the set with one para and no meta 
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substituents, it dominates this set. The peak at 0-6° is prominent and contains 36 % of the 

structures. 

12.3.1.b One para substituent with no meta substituents, one ortho substituent 

There are 24 observations here, the range is from 36-69.5° and follows an approximate broad 

Boltzman distribution. Although it can also be interpreted to consist of two narrow peaks 

(with, apexes at 45° and 52° respectively), it is notable that there are no structures in the near 

planar region. 

12.3.1.C One para substituent with no meta substituents and two, three and four ortho 

substituents: 

Both three and four ortho substituted biphenyls with one para and no meta substituents 

produced no hits. There is one structure with two ortho substituents and this is a structure 

that contains four dihedral angles in the range of 58.9° to 64.6°. For no meta and one para 

substituted structures there is a distinct tendency for these structures not to have two, three or 

four ortho substituents. This is presumably due to difficulties in making structures with 

highly substituted ortho positions but with limited substitution at the other positions. 

12.3.2 Biphenyls with meta and one para substituent 

For one para and meta there are 220 structures, with two distinct peaks at 45-90° and 28-

45°. To decipher the trends in this set it is necessary to look at the effect that meta 

substituents have with an increasing number of ortho substituents. 
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12.3.2.aOne para with meta substituents, no ortho substituents 

There are 53 observations p r e ^ hare and of these, 52 exist in the main bod|y of data widi 

dihedral angles in the 21-52° range and this groiq> forms an approximate ^eep Boitzman 

distribution. One obsaration A ^ h is not part o f to data is tint with a 0.084^ dledral 

angle. As ah-eaify seen with the overal) set (Figiffe 12.1), there are often structures that fie 

outside the general trend, see Figure 12.8. 

30-40 40-50 50-60 
T o r s i o n A n g l e R a n g e ( D e g r e e s ) 

Figure 12.8 Biphenyls with one para and meta , but no ortho^ substituents 

Mean = 35.72°, Max = 51.59° , Min = 0.08° and Sample SD = 8.16. 

12.3.2.b One para with meta substituents, one ortho substituent 

There are 57 observations present in this Set, 52 have dihedral angles in ̂  n u ^ 35^75^ 

The excqytions with these data are one observation at 89.45°, two structures at -0° and two 

in the 8-12° range, see Figure 12.9. 
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Figure 12.9 Biphenyls with one ortho substituent containing meta and one para. 
Mean = 51.32°, Max = 89.45° , Min - 0 ^ • and Sample m » 

12.3.2.C One para with meta substituents and two ortho substituents. 

There are 92 observations present, 91 of which exist in ̂  mam body of the histognm, m the 

range 53-90° in an approximate Boltzznan distribution. The doe obser^tion that is not in this 

r^ioD £s at 42.6°. In th^ set, the higher degree oi t^i^sth^ and tiw lack of structures with a 

lower dihedral angle is noticable, see Figure 12.10. 
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Figure 12.10 Mono para substituted biphenyl with meta and two ortho substituents 

Mean = 71.02°, Max = 89.93° , Min = 42.62 ° and Sample SD « 

12.3.2.d Three ortho substituents: 

There are 18 obsairati(»s in tiie range 58-90°. The limited data are spread out over too large 

a range to distinguish traids. 

N.B. no striictures have meta, 4 ortho and 1 para stil^tituents. 

12.3.3 Summary of one para substituted biphenyls; 

It is observed that there is an effect of meta substitution on the structures with one para but 

no ortho substituents. The effect is manifest in that wsk meta substituents present there is a 

lack of structures with a close to planar configuratioQ. This is in contrast with noo-meisa 

substituted structures when there is a krge percent^ d structures, although by no means 

dominant, that have a dihedral angle close to 0°. 
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12.4 m-PARA SUBSTITUTION ON BIPHENYLS 

This set is to examine the eflfect of both the para positions being substituted. This set should 

be the most informative since it will show just how strong the effect of para substitution is. It 

will also show how the "two para" relates to "one para'' dataset, see Figure 12.1 

12.4.1 Biphenyls with 0,1,2,3 or 4 ortho positioiis occupied witli two para positions 

occupied. 

There are 199 observed torsion angles m this set. The most prominent peak is the sharp one 

at 0-5°, this contains 43 structures. In this set there are three peaks, the first is the 0-5° peak, 

the next a peak at 25-50° and the 3rd peak is fi-om 60-90°, the number of structures gradually 

increases fi-om 60-90°, which is similar to the pattern seen with previous sets. This second 

group contains the largest number of structures but the distribution is over a larger area and 

hence broader and does not have the same height as the 0-5° peak. Another similarity is the 

lack of structures observed between 10° and 20°, see Figure 12.11. 
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Figure 12.11 Two para substituted biphenyk 
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12.4.2 Two para positions occupied without meta substitution 

In this set there is a peak at 0-5° containing 40% of the structures. This non-planar region 

dominates here more than any of the other sets. The peak at 35-40° is sharp. There is also a 

slight peak at 80-90°, and ahhough it is small, this is in stark contrast to the set containing 

one para and no meta substituents that contained no structures in this region at all. 

12.4.3 The effect of ortho substitution with two para and no meta 

This set is used to examine the effect that para substitution has without any meta positions 

occupied, with increasing ortho substitution. 

12.4.3.a B\-para substituted biphenyls with no meta and no ortho substituents. 

In this set the majority o f structures. 92 of the 101 observations, have no ortho substituents. 

there are no data that have a dihedral angle greater than 50.42°. see Figure 12.12. 

30-40 40-50 50-60 
Torsion Angle Range (Degrees) 

Figure 12.12 Two para substituted biphenyls with no ortho or meta substituents 

Mean = 18.99°, Max = 50.42° , Min = 0.03° and Sample SD = 17.69. 
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12.4.3.b B\-para substituted biphenyls with no meta and one ortho substituent: 

A single observation was found in this category with a dihedral angle 53°. 

12.4.3.C Bi-para substituted biphenyls with no meta and two ortho substituents: 

There are seven observations present, six with a range of dihedral angles of 78-90° and the 

other observation has an angle of 59.07°. The range here is larger than that with one para 

and no para substituents. There are no structures in the near planar configuration. 

12.4.3.d Bi-para substituted biphenyls with no meta and three ortho substituents: 

No observations present in this set. 

12.4.3. e Bi-para substituted biphenyls with no meta and four ortho substituents: 

There are only six observations, occupying two regions, two data at 48-52° and four at 82-

90°. These are not enough observed data to determine i f there are two distinct regions present 

or not. 

12.4.4 Two para positions occupied with meta substitution 

Here there are 93 data and their spread is very different to the set without meta substitution 

with a lack of data at the near planar range of torsion angles. There are several peaks, at 

approximately 10°, 30-40° and 45-90° (possibly consisting of two or three separate peaks). 

This resuh indicates that an effect of meta substituents on structures with two para 

substituted biphenyls is to stop the biphenyls is adopting smaller torsion angles. 

12.4.4. a Bi-para substituted biphenyls with meta and no ortho substituents 

There are 16 observations only, 15 of which lie in the range from 31-49° and one in the near 

planar conformation at 0.36°. 
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12.4.4. b Bi-para substituted biphenyls with meta and one ortho substituent 

There are 11 observations in this set, all of which exist in the large range between 35.6-75.4°, 

there are too few observations spread out over too large a range to see any pattern that the 

distribution takes, but the lack of structures that are non planar is noticeable. 

Unfortunately comparison between this set and the non-meta equivalent set is not possible 

because of the lack of data in the non-meta substituted set. 

12.4.4.C Bi-para substituted biphenyls with meta and two ortho substituents: 

With the ortho substituents on the different rings there are nine observations only, ranging 

from 31.6-83.1°, there are too few observations over too large a range to come to any 

conclusions. 

With the ortho substituents on the same ring there are 14 observations, 12 of these are in the 

55-90° range with 2 at 40-42° range. 

12.4.4.d Bi-para substituted biphenyls with meta, three ortho substituents: 

Only four observations, all of these have large dihedral angles, with a range from 70.83-

81.80°. 

12.4.4.e Bi-para substituted biphenyls with meta, four ortho substituents 

With 39 observations present, this group has a more usefiil number of observations. The 

main body of observations, 35, occur in the region 50-90°. The structures that are outside 

this region are four observations, three of which at approximately 10° and one observation in 

the near planar configuration with 0.923°, see Figure 12.13. 
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Figure 12.13 Bi-para biphenyls with meta substituents, with all four ortho positions 

occupied. 

Mean = 68.76°, Max = 89.64° , Min = 0.92° and Sample SD = 23.38. 

12.4.5 Summary of two para substituted cases 

The occlusion from the two para substituted biphengrls is that as with ooe para substituted 

biphenyls, th^e i& an effect from the meta substituoits, compared to those with no meta. In 

the mm ortho substituted case there are v « y few stractures with a zero dihedral an^e. There 

are a much greater number of such structures when there are no meta substituents present. As 

expected when ortho substitueats are added the average dihedral angle increases, excq>t in 

the four ortho substituted case when compared to the three, which is due to the greater ability 

of four to int^/intra-molecularly interact. The effect of meta and para substituents is 

relatively strong in mm-ortho and singefy o/tAo^ubstituted biphenyls when more are added 

but the effect of para and meta substituents is greatly reduced. 
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12.5 Affî TM SUBSTITUTED BIPHENYLS 

The meta position can be substituted (1 to 4), regardless of the ortho and para substitution. 

I f there is no meta substitution effect then the resulting histogram from three data should 

resemble approximately the set with all biphenyls present, since the ortho and para 

substitutional effects would obscure any meta effect present. What are seen though are 

certain slight differences. There is a lower percentage of structures at the near planar 

configuration, and also relatively fewer at the near 90° twist, with the distribution mainly at 

25-90°, and peaks at 65°, 78° and 35°. In this histogram there are apparent muhiple peaks, 

which is expected from the effects of the different number of ortho substituted structures 

present in this sample, ahhough this may be a resuh of how many meta positions are 

substituted. Hence, this set needs to be divided further, to ascertain the effects that the 

different number of meta substituents has on the conformation. 

12.5.1 Biphenyls with one meta substituent 

In this set there are 85 observations. The most noticeable part of the resultant histogram is 

the broad general peak that exists at 30-90°. There is a narrow peak of nine structures that 

lies at 50-52° with a broad distribution, see Figure 12.14. 

30-40 40-50 50-60 60-70 
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Figure 12.14 Biphenyls with one meta substituent 

Mean = 53.77°, Max = 89.91° , Min = 0.69° and Sample SD = 20.85. 
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12.5.2 Biphenyl with two meta substituents 

There are a total of 146 dihedral angles in this set Thel^togram has similar peaks to that of 

the one meta substituted case, although the peaks at 60-70° and 75-90° appear to have been 

amalgamated into the one peak. There are also relatively more structures close to 90° 

there is only one dihedral angle close to 0°, see Figure 12.15. 
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Figure 12.15 Biphenyls with two meta substituents 

Mean = 53.77°, Max = 89.91° , Min = 0.69° and Sample SD = 20.85. 

12.5.3 Biphenyls with three meta substituents. 

There are a total of three dihedral angles in this set There are relativ^ few structures 

probably because of tiie difficuhy in syntfiesiziiig these con̂ XNmds rather than compounds 

with dtfaer two or four substituents. T̂ iose that are in tins group are found in the range from 

40-90*. 
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12.5.4 Biphenyls with four meta substituents. 

There are a total of thirty dihedral angles in this set. There are 3 distinct peaks, 0-12°, 50-

65° and 70-90°. 

12.5.5) Summary of meta substitution 

In examining the meta substitution, there is no distinction made between the para substituted 

cases. The expected result is that with a para substituent present then there would be a 

distinct separation from the no para case. However, it is observed that in the one, two and 

four cases of meta substitution that are examinable most observations occur in the 20-90° 

range rather than the planar structures that may be expected with the para substituents 

present. This shows that meta substituents have an effect that is strong enough to be 

dominant when purely meta substituted biphenyls are examined. All the separate groups of 

meta substituted structures have more non planar structures and there is no trend for less 

planar structures with increasing meta substitution. So it appears that the presence of meta 

substitution causes a conformational effect, see Figure 12.16. 

• 2]Vfcta 

• 4]Vfeta 
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Range of Toraon a n ^ (DlÊ rees) 

Figure 12.16 The percentage of biphenyls with 1-4 meta substituents within given ranges 

of torsion angles. 
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12.6 SUMMARY O F ORTHO, META AND PARA SUBSTITUTION ON 

B I F H E N Y L S 

This chapter has concentrated on analyzing the three para substituted sets (zero, one and two 

para substituents) and the subsets with differing meta and ortho substituents. It is seen that 

the effect of para substitution is strong enough that even i f the amount of ortho substitution 

is disregarded there are definite effects. The addition of para substituents influence biphenyl 

torsion angles towards a lower twisting angle and indeed planarity. When there are no para 

substituents then the torsion angle, tends to be greater than 30° and often greater than 70°, 

with a large percentage very close to 90°. With the addition of one para substituent, the 

profile changes and the near planar structures become more common, ahhough only a small 

number of structures compared to the complete set including non-planar structures. The 

structures at close to 90° become less common, the peak in structural torsion angles is shifted 

towards 30-80°, with the main peak bemg at 50-60°. When a second para substituent is 

added the trend continues with approximately 20% of structures in the near planar region (0-

5°). There are almost twice as many structures close to 0° with two para substituents than 

there are with one para substituent. The amount o f structures with a torsion angle near 90° 

does not change fi-om one para to two para substituents and the 85-90° region is 

approxunately equal in these two sets. The effect of para substitution affects the range of 

torsion angles in the non-planar region of angles, the main body of dihedral angles moves to 

lower angles i.e. non-para 85-90°, one para 30-80° and two para 20-50°. In the substitution 

of ortho positions with no para attached the most common position substituted is the one 

ortho. For one para it is the non-ortho substituted structures that are the most common. The 

two para substituted structures have the largest percentage of structures as the non-ortho 

substituted region (see Table 12.1). Thus in the distribution of the non-planar region of 

torsion angles, the angles are controlled more by the amount of ortho substituents than by the 

para substitution. In both the cases of para substituted biphenyls, the effect of also having 

meta substituents present is to increase the torsion angles and to give a distinct tendency to 

move away fi-om the near planar structures. What appears to happen is that when para 

substituents are added there is a tendency for them to adopt two conformations, one at near 

planar and another closer to 40°. However, when a meta substituent is also present structures 

with no twist become less prominent. In the case of all biphenyls, regardless of ortho 

substitution, there is an effect that is prominent and can be seen even though it would be 

expected to be masked by the different effects of the 0, 1, 2, 3 and 4 ortho substituted 

positions of the biphenyl. Para substituents have a great effect on the conformation but the 

effect of the para substituents is altered by the subsequent meta substituents. When 

considering these sets and subsets, it is worth noting the hugely dominating effect this 
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substitution has when the individual cases of ortho substitution are investigated and what is 

seen is the strength of the effect of ortho substitution. When there are ortho substituents 

present, then the steric effect of the groups at these positions comes into effect and the 

fraction of structures with dihedral angles close to the planar becomes much less. The 

addition of one or more ortho substituent dramatically decreases the likelihood of the 

structures being planar, regardless of other substituents. It is concluded that the para effect 

on the conformation is small when considering all biphenyls. In general the planarity effect of 

para substitution on biphenyls is only really evident when there are no ortho or meta 

substituents. 

Meta substituents have an effect, which is that they counteract the effect of the para 

substitution, but this is less dramatic than the para substitution effect. Para substitution 

influences the biphenyls in the twisting conformation they adopt, and in many situations the 

theoretically ideal conformation is not adopted. Tables 12.1 and 12.2 give a summary of the 

spread of dihedral angles with respect to substitution. 

SET SUBSET DIHEDl ̂ AL ANGLE (°) 
Meta Total 0-5 5-20 20-40 40-90 

1 Meta 85 2 2 20 61 

2 Meta 146 1 0 34 111 

3 Meta 3 0 0 0 3 

4 Meta 30 2 3 1 24 

Table 12.1 The distribution of meta substituted biphenyls 
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SET SUBSET DIHEDRAL ANGLE (°) 
Total 0-5 5-20 20-40 40-90 

No Para 151 1 0 32 98 
No Meta 71 1 0 2 68 

0 Ortho 1 1 0 0 0 
1 Ortho 28 0 0 2 26 
2 5 0 0 0 5 
(on the same ring) 
2 Ortho 30 0 0 0 30 
(on different rings) 
3 Ortho 0 - - - -
4 7 0 0 0 7 

With at least 1 80 0 0 30 50 
meta 

O (9r//zo 32 0 0 30 2 
1 Ortho 51 0 0 0 51 
2 Or̂ /?o 15 0 0 0 15 
(on the same ring) 
2 Orr/zo 11 0 0 0 11 
(on different rings) 
3 Ortho 1 0 0 0 1 
4 Ortho 2 0 0 0 2 

1 Para 352 39 12 87 215 
No Meta 132 36 9 47 41 

0 104 36 9 45 14 
1 Ortho 24 0 0 2 22 
2 Or//zo 4 4 

With at least 1 220 3 2 40 175 
meta 

0 Or^Ao 53 1 0 39 13 
\ Ortho 57 2 2 1 52 
2 Orr/zo 92 0 0 0 92 
3 Orr/zo 18 0 0 0 18 
4 (9r̂ /zo 0 0 0 0 0 

2 Para 199 41 10 51 97 
No Meta 106 39 7 37 23 

0 92 39 7 37 9 
1 Ortho 1 0 0 0 1 
2 Or//20 7 0 0 0 7 
3 Orr/zo 0 0 0 0 0 
4 (9r̂ /?o 6 0 0 0 6 

With at least 1 93 2 2 14 74 
meta 

0 16 1 0 12 3 
1 Ortho 11 0 0 1 10 
2 Orr/zo 14 0 0 0 14 
(on the same ring) 
2 (9rr/zo 9 0 0 1 8 
(on different rings) 
3 Ortho 4 0 0 0 4 
4 Ortho 39 1 3 0 35 

Table 12.2 The distribution of ortho substituted biphenyls 
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C H A P T E R 13; 

T H E I N T R A - M O L E C U L A R BOND LENGTHS O F SUBSTITUTED BIPHENYLS 

13.1 INTRODUCTION 

In this thesis it has been shown that the addition of substituents to the ortho, meta and para 

positions of the rings of biphenyls has effects on the conformational effect on the rings 

relative to each other, especially in the para substituted case, see chapters 10,11 and 12. 

A database analysis of the dihedral angles does not give a f l i l l explanation. When examining 

the substituent types there is no pattern observed between different substituent types and the 

dihedral angle. Therefore the conformational preference may be as a result of positional 

substitution. To understand why para, ortho and meta substitution have this conformational 

effect, it is necessary to examine all the parts of the system affected by the addition of the 

para and/or meta and/or ortho substituents. Measurable parameters that are affected apart 

from the dihedral angles, should be the bond lengths. The initial expectation is that the most 

important bond length in the biphenyl system, in terms of the conformational twisting, is the 

carbon-carbon ring linkage bond, see Figure 13.1. Both the rings have influence on this 

bond and it is about this bond that the important relative orientation occurs. Since 

substitution effects the twisting, then it is a reasonable assumption that it may effect this C-

C bond in some manner. 

The C-C Linkage Bond 

Figure 13.1 Biphenyl with the bond between the two rings illustrated 

The linkage bond is known to be slightly conjugated and this is manifested in the length, 

which at approximately 1.49 A is shorter than the 1.46 A of the standard Csp -̂Csp^ 

(conjugated C=C-C=C) single bond. It is longer than the standard double C=C bond (1.33 

A), and aromatic bonds (1.39 A) (Handbook of Chemistry and Physics, 1995), see chapter 5 

for more detail on the biphenyl molecule. The linkage bond distance approximates the 
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single bond distance rather than the aromatic bond distance, this shows that the conjugation 

in the bond is limited. Since the C-C link has conjugation present it can be considered an 

integral part of the aromatic system. Further evidence of conjugation in this bond is shown 

in IR and UV studies of the biphenyl type compounds (Roberts, 1985). It has been noted 

(Brock & Minton, 1989) that the conjugation about the C-C bond is not affected by the 

relative magnitude of the twisting of the rings. This was concluded because the C-C linkage 

bond generally has the same magnitude regardless of torsion angle. This is surprising since 

it would be expected that with an increase in the dihedral angle, would lead to a decrease in 

the conjugation. As with most aromatic structures a divergence from planarity greatly limits 

conjugation and they tend to remain planar. In the case of biphenyls the conjugation appears 

to be unaffected by this deviation from planarity (Brock & Minton, 1989), the reason for 

this is still unexplained. 

220 



13.2 T H E C - C L I N K A G E BOND 

In this study the C-C ring linkage bond is inspected by analysis with the CSD (see chapter 5 

for details) to investigate how it is affected by the addition of para, meta and ortho 

substitution. Initially, it might be expected that ortho substituents would show a 

stereochemical effect, by forcing the rings further apart therefore increasing the length of 

the C-C linkage bond. The substituents may also have an electronic effect, according to in 

which position the substituents are located and on the relative electron donating and 

withdrawing properties of these substituents. However, when comparing the C-C bond 

length with the position of the substituents, the electron donating and withdrawing groups 

effects should cancel, unless there are a large number of structures with specific substituents 

either electron donating or withdrawing. This will have a particular electronic effect and 

occupy very specific substitutional locations (i.e. the data are influenced by a series of 

similar structures), any disordered structures found in the search were screened out 

The first set of data investigated the effect of the para substituents, since it is the para 

substitution that has the most notable effect. The biphenyl compounds were separated into 

three groups dependent on how the biphenyl was para substituted and these are; 

(1) non-para substituted biphenyls, 

(2) biphenyls with one para substituent and 

(3) biphenyls with two para substituents. 

These groups were then compared and the resultant figures were similar with C-C distances 

1.48(2), 1.49(2) and 1.48(2) A for non-para, one para and two para substituted biphenyls 

respectively. Some deviation occurs between the sets in terms of the outlying data in the 

histogram, for the non para set these are in the range of 1.446 to 1.532 A. The outlying 

values for one para substituted structures range from 1.427 to 1.573 A, this can be 

explained by the greater number of structures in this group compared to the "non pard' set. 

When considering the case of "two para'' the range is greater still, from 1.386 to 1.591 A, 

this increase is due to increasing substitution on the system (i.e. the more para substituents 

generally the more ortho substitution) and so a greater steric effect on the C-C link, this is 

substantiated when the outlying structures are examined. In general there is no overall 

change in the nature of this bond with the addition of para substituents. 
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13.3 T H E INTRA RING BOND DISTANCES 

Although the C-C rmg linkage bond is extremely important the other bonds within the rings 

will also be affected by the type and position of substituents. An electron withdrawing 

group on the meta position affects the reactivity of aromatic systems differently from an 

electron withdrawing group in the ortho and para positions and further an electron donating 

group is different than electron donating. 

In the case of conformations of biphenyls the effect of para substitution on the systems is 

independent of the nature of the substituent. Also, as far as can be determined, there is a 

tendency for planarity in these systems and this is regardless of whether there are electron 

donating or withdrawing groups at the para position. This substitution may however have 

an effect on the bond lengths within the ring, and this subsequently affects the electronic 

structure of the aromaticity of the system. This may in turn also have a bearing on the ability 

of the compound to pack and therefore change the conformation of the compound. With a 

view to examining this further, a database search of all the significant bond lengths in a 

variety of substituted cases was conducted. 

The search initially concentrated on the effect of para substitution on the bonds within the 

ring, since this appears to have a noticeable effect on the dihedral angle and twisting 

conformation of these systems. The bond lengths of the parent compound, biphenyl, were 

used for a comparison. Since there are several examples of biphenyl it is possible to get an 

average of the different bond lengths reported for biphenyl as well as for individual cases, 

and these can also be compared with the biphenyl results already studied, in relation to this 

thesis. 
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13.4 T H E BOND DISTANCES O F BIPHENYL 

Initially a search was conducted on biphenyl compounds that exist in the CSD. The result 

shows the C-C bond linkage in biphenyl is approximately equal that for the C-C bond 

linkages for all biphenyl type systems (Hargreaves & Rivzi, 1962 and Trotter 1961). This is 

as expected, although the C-C linkage may have been expected to be more conjugated due 

to lack of substitution. This conjugation was initially thought to have a bearing on the 

system, despite the results reported previously in this thesis (chapter 10 and 11) that 

disagree with this assumption. Despite the aromaticity of the compound, the bond lengths 

are slightly different, with the ipso-ortho length being at 1.40(2) A, ortho-meta at 1.39(2) A 

and the meta-para being even shorter at 1.38(2) A, however, these differences are not 

significantly different. Obviously here the C-C bond distorts the ring from having identical 

bond lengths. This is not unexpected and the additions of substituents are well known to 

have an effect on the aromaticity of the ring. There is clearly a difference between the bond 

distances in the rings and this may have some bearing on the subsequent packing and 

twisting of the biphenyl and similar systems. In the analysis conducted on biphenyl in this 

thesis (see chapter 5), it was found that there was a large range of bond lengths present in 

the system. The C-C linkage bond was found to be long, with a database average of 

1.499(2) A, although this is shorter than the single C-C bond. 

The study on biphenyl at low temperature shows that the ortho-meta bond is larger than 

meta-para. The ortho-meta distance varied from 1.372(6) to 1.411(6) A and the reason for 

the large range is unclear although the closeness of the phase change and crystal packing 

may well be factors. The variation is large and is a lot greater than expected. Packing forces 

would not normally produce such a variation, so the probable reason for this larger than 

expected range of bond lengths is due to the structure beings so close to the phase change. 
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13.5 T H E E F F E C T O F PARA SUBSTITUTION ON T H E INTRA RING 

DISTANCES O F BIPHENYLS 

From hereafter the inter-ring bond distances of the bonds of ipso-ortho, ortho-meta and 

meta-para wil l be referred to as a, p, and y respectively (see Figure 13.2). I f initially the 

meta and ortho substituents are not taken into consideration then the para substituted 

biphenyls can be grouped into three sets, these contain no-para, one para and two para 

substituents. When the biphenyl has none or two para substituents then the system is 

symmetrical in terms of para substituents. So the relevant bond lengths are the a , p and y 

bond lengths. I f there is just one para substituent then the symmetry is lost and there are 

now the ortho, meta and para intra ring bond lengths on both the ring with the para 

substituent and the ring with just an hydrogen atom at the para position. With the 

unsymmetrical case (the mono para substituted biphenyl) the a, P and y represent the para 

substituted ring while the a', P' and y' represents the non-para substituted rings lengths 

(Figure 13.2). The C-C bond that is between the two rings is referred to as C-C. 

Figure 13.2 Biphenyl intra bond distances, when X=Y; a=a' , p=p' and y=y' 

The substituents labeled X and Y were allowed to be identical and any non-metallic group. 

No distinct pattern was observed in the data regarding the para substituents. So no specific 

type of substituent was overly common in the analysis. 

It can be seen from the search is that there are small but significant differences in the bond 

lengths, (see Table 13.1). In general the a and p bond distance is reasonably consistent, 

although the X = H, Y :ifc H, (H represents an hydrogen atom) case is noticeable different 

from the X H and Y =̂  H and X = Y = H cases. The biggest observed differences are in the 

y bond length as the para substituted rings have a larger y bond length than the non-para 

substituted ring. This is seen especially with the X = H and Y =̂  H, where the y' bond 

lengths are noticeably shorter than the y. Also in X = H and Y ^ H the y distance is very 
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similar to the other intra ring distances. So when the biphenyl is doubly para substituted the 

bond lengths in the phenyl rings are more equal. 

There are some anomalies in the bond lengths, firstly the bond lengths of the non-para ring 

for X = H and Y ^ H is greater than the X = Y = H case. This is because in the X = H and Y 

^ H case there are other substituents present in many of the structures. With the mono para 

substituted case the ring with no para substituent is quite often a phenyl group with no other 

substituents attached. I f a group is attached to a six-member aromatic ring then it is a 

biphenyl and it wi l l be searched for and found in this analysis. This seems obvious but it is 

worth noting because it accounts for many biphenyls with one ring substituted and the other 

completely unsubstituted. 

A similar case also occurs with the two para substituted case, X H, Y ^ H, where the 

distances are shorter than the mono para substituted ring. This is due to the di-substituted 

para structures having a larger number of ortho and meta substituents compared to the 

mono para substituted case. A representation of the bond lengths of substituted biphenyls is 

given in Table 13.1 and Figures 13.3a, 13.3b, and 13.3c. 

Intra Ring bond 0 para 

X = Y = H 

1 para,X = n + Y 2 para, 

X ^ H ; t Y 

Intra Ring bond 0 para 

X = Y = H Ring with no para Ring with para 

2 para, 

X ^ H ; t Y 

a 1.392(18) 1.388(18) (a') 1.396(24) 1.394(18) 

P 1.395(23) 1.388(18) (p') 1.396(22) 1.388(21) 

7 1.376(19) 1.372(20) (y') 1.395(23) 1.389(20) 

C-C 1.489(17) 1.491(17) 1.490(18) 

Table 13.1 Mean bond lengths of para substituted biphenyls (All figures in A). 
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1.395 
1 . 3 7 6 / ^ ^ 1 . 3 9 2 

Figure 13.3a Representation of the mean values for non-para substituted biphenyls 

(All figures are in A) 

1.388 1.396 
1 . 3 7 2 / = \ 1 . 3 8 8 1 .396 /=^1 .395 

H ^ )> 1491 ^ X 

Figure 13.3b Representing the mean values for mono para substituted biphenyls (All 

figures in A ) , where X ̂ ^H 

1.388 
1.394/ \ 1.389 

P" 
1.490 

Figure 13.3c Representing the mean values for doubly para substituted biphenyls (All 

figures in A ) , where X =̂  H and X' * H (Note X may equal X'). 
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13.6 T H E E F F E C T O F META SUBSTITUTION ON T H E INTER RING 

DISTANCES O F BIPHENYLS 

There are five possible ways in which meta substitution can occur on the biphenyl rings, 

either there can be no substitution, one, two, three, or four substitutions. Where there are 

two meta substituents, the substituents can be either on the same ring or one on each of the 

two rings. In the data search the presence of additional ortho and para substituents are not 

considered. 

13.6.1 No meta substituents present 

The average bond lengths when there are no meta substituents are very similar to that of 

biphenyl itself, although they are slightly shorter, this is a resuh of the different substitution 

patterns occurring, although they are not taken into account here, see Figure 13.4. 

V // \ / 

Figure 13.4 Representing the mean values for non-meta substituted biphenyls (All 

figures in A) 

13.6.2 One meta substituent present 

When there is one meta substituent present there are 10 independent bond lengths, (see 

Figure 13.5). It would be possible to measure 13 bond lengths by taking account of the 

stereochemistry of the non substituted ring (cis or trans), however, in this analysis the 

relative stereochemistry of non-substituted rings are not considered. It can be seen that in 

the distribution of bond lengths on the ring with one meta substituents the bond lengths are 

similar to when there are no meta substituents present on the compound, with both the o-m 

and m-p bond lengths slightly longer. For the ring that contains the meta substituents the 

bond distances on the side opposite the meta substituent are similar to the non-meta 
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substituted ring, although the intra ring para distance is longer (1.397 A compared to 1.379 

A). On the substituted meta side, the bond lengths are significantly longer. This is due to the 

meta substitution and so it is seen that the effect of one meta substituent is an increase in the 

bond lengths of the adjacent bonds, although it must be considered that for many of the 

structures studied the presence of one meta substituent means that the adjacent position may 

also be occupied. 

1.387 

1.489 

1.409 

1.379/ V -3^^ 1 -397 \ 1.397 

1.400 

Figure 13.5 Representing the mean values for mQno-meta substituted biphenyls (All 

figures in A) 

13.6.3 Two meta substituents present 

As indicated earlier the di-meta substituted biphenyls fall into two categories, those with the 

substituents on the same ring and those on different rings, see Figures 13.6 and 13.7, with M 

representing the substituent. 

The bond lengths in the two meta substituted case with substituents on different rings is 

similar to those of the substituted ring in the one meta substituted case, see 13.6.2. The bond 

lengths on the meta substituted side are slightly longer. So there appear to be a pattern. 

When there are two meta substituents on the same ring then the bonds on the meta-

substituted ring are affected in a similar manner. Thus the pattern seen that with a meta 

substituent then a, p and y bond lengths increase to a similar value, although with the two 

meta substituents on the same ring the value is slightly larger, presumably because of the 

double effect of the meta substituents. It is interesting that the bond lengths on the non-meta 

substituted ring are shorter than the completely non-meta substituted compounds. 
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1.37L 
1.385 1.411 

1.384 1.402 

1.498 

1.400 

Figure 13.6 Representing the mean values for hi-meta substituted biphenyls, with the 

meta substituents on the same ring (All figures in A) 

1.401 

1.405 1.385 

1.486 

1.385 

Figure 13.7 Representing the mean values for hv-meta substituted biphenyls, with the 

meta substituents on different ring (All figures in A) 

13.6.4 Three meta substituents present 

I f the observed pattern of the meta substituents is the same in this case, the doubly 

substituted ring wil l have a wl .40 A, p « 1.40 A and y « 1.39 A. 

With three meta substituents the mono we/a-substituted ring is similar to the one-substituted 

rings seen previously, although the value of the y parameter at 1.369 A is much shorter than 

would be expected, see Figure 13.8. The two-substituted ring is very similar to that of the 

two meta on the same ring substituted type and in general, the predicted values occur. 
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M'. M 
/ 

1.409 1.408 

1.405 1.41 ^ 1.400 

1.496 

1.380 

1.402 

1.369 

1.394 

Figure 13.8 Representing the mean values for tri-meta substituted biphenyls (All 

figures in A) 

13.6.5 Four meta substituents present 

There is a similar pattern to that already seen but there is a subtle difference; the P bond 

tends to be longer and the y and a lengths tend to be shorter than the average with two meta 

substituents. There are a large number of structures with four meta substituents and no 

others, this could be a reason for this bond length pattern. This difference is slight and in 

general these values are as expected. 

1.414 

1.395. 1.392 

1.494 

Figure 13.9 Representing the mean values for tetra-meia substituted biphenyls (All 

figures in A) 
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13.6.6 Summary of structures with meta substituents present 

The C-C bond lengths in all these cases are very similar although there are slight difference 

between them, and the C-C bond length tends to increase slightly as there are more meta 

substituents. This is probably due to the fact that an increase in the meta substitution of a 

structure tends to increase the ortho substituents present. The lengths of the bonds increase 

when there are meta substituents present. This lengthening occurs on the side where the 

substitution occurs and when there is one meta on each side this tends to make the length on 

each side of the ring longer. Thus meta substituents have an effect on the system and it is 

possible to predict these bond lengths. This is in contrast to that which occurs when para 

substituents are present. Tables 13.2 and 13.3 give the list of biphenyls with meta 

substituents bond lengths with standard deviation. 

Bond Lengths (A) 

Ipso-ortho Ortho-meta Meta-para 

Biphenyl with no 

meta substituents 

1.393(14) 1.383(16) 1.378(18) 

Biphenyl with four 

meta substituents 

1.395(24) 1.414(30) 1.392(23) 

Table 13.2 The average bond lengths of the symmetrically substituted meta biphenyls 

with zero and four substituents. 
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Meta 

substituted 

biphenyls 

ring with 0 meta 

substituents 

ring with 1 meta substituent 

on the same side as the 

substituent 

ring with 1 meta substituent 

on the opposite side as the 

substituent 

i-o o-m m-p i-o o-m m-p i-o o-m m-p 

1 meta 1.394 

(14) 

1.387 

(14) 

1.379 

(14) 

1.409 

(20) 

1.406 

(20) 

1.400 

(19) 

1.392 

(17) 

1.387 

(17) 

1.397 

(21) 

2 meta 

(on different 
ring) 

1.405 

(17) 

1.401 

(20) 

1.385 

(19) 

1.392 

(15) 

1.385 

(19) 

1.378 

(20) 

ring with 2 meta 

substituents 

2 meta 

(on same ring) 

1.384 

(14) 

1.385 

(16) 

1.371 

(22) 

1.402 

(24) 

1.411 

(26) 

1.400 

(26) 

ring with 2 meta 

substituents 

ring with 1 meta substituent 

on the same side as the 

substituent 

ring with 1 meta substituent 

on the opposite side as the 

substituent 

3 meta 1.405 

(25) 

1.409 

(19) 

1.400 

(23) 

1.410 

(21) 

1.408 

(23) 

1.402 

(18) 

1.380 

(14) 

1.394 

(14) 

1.369 

(19) 

Table 13.3 The average bond lengths of the asymmetrically substituted biphenyls. 
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13.7 T H E E F F E C T O F ORTHO SUBSTITUTION ON T H E INTRA BOND 

L E N G T H S O F BIPHENYLS 

The permutation in which ortho substituents bond to biphenyl is similar to that of the meta 

substituents, so there are five possible ways in which the ortho substituents can bond. The 

main difference is the closer proximity of the ortho substituents to one another: i f more than 

one is present, this creates a scenario where there can be a steric interaction between the 

ortho substituents. The steric effects of the substituents, intra-molecularly, may affect the 

subsequent bond distances of the biphenyl rings, especially the C-C link and the intra ring 

a bond. 

What is seen by the analysis is that the average for the C-C link does indeed increase when 

ortho substituents are added, although this increase is relatively small, and ranges fi"om 

1.486 A for no ortho substituents to 1.495 A for three. The bonds for the di-ortho-

substituted biphenyls are an anomaly. The two substituents on the same ring result in an 

average C-C bond distance of 1.498 A, which is the largest of all the cases investigated so 

far and the C-C bond distance for substituents on the different rings may be as low as the 

non-ortho substituted case at 1.486 A. What is happening here is that with two substituents 

on the same ring there is a distinct lack of any intra molecular interaction between ortho 

substituents. For the case when substituents are on the opposite rings there is a large number 

of these structures involved in intra molecular ortho interaction it will generally be between 

only two in the three ortho substituted case and therefore the other ortho substituent will 

tend to repel the other ring. For the same reason the lengths of the three substituents are 

slightly greater than that for the four substituents For four substitutions there is a likelihood 

that all four will be involved in intra-molecular interaction. 

For the other bonds within the ring there is a similar pattern to that which is seen when 

adding the meta substituents. The lengths of all the bonds on the same side increases, 

although the y bond is not affected as much as with the meta case because of the distance 

separating the bonds. 
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13.8 O T H E R RING SUBSTITUTION 

Often where one ring is more substituted the comparison between the lengths with the non 

para substituted ring is useful as it shows how often the lengths are the same. Comparing 

the results here to the case when there are ortho, meta and para substituents on the ring, 

shows just how much the addition of substituents affects the bond distances in the ring. The 

bond lengths in the substituted case are all greater by approximately 0.03 A, this is a small 

but significant difference. In comparison the linkage bond does not greatly change in any 

cases. 

The addition of just one substituent onto the ring shows just how much an effect these 

substituents. It can be seen in the ortho and meta cases there is an increase in the adjacent 

bond lengths, and in both cases the p bond on the opposite side to the substituent decreases 

in length to a value lower than that of the hydrogen only case. A meta substituent affects the 

adjacent bonds resuking in an increase in length, but the adjacent y bond length increases to 

more than the para substituted case with 1.398 A compared to 1.383 A respectively. This 

means that the addition of the meta substituent has a substantial effect, the ring becomes 

distorted and the bond lengths differ to a greater extent. The para substituent has an effect 

on the a bond, with the length increasing from 1.382 A in the non bonded ring, to 1.391 A. 

This is interesting given the para effect on the o-o'-substituted biphenyls, since the increase 

in the a bond length will lower the energy barrier between the two conformations without 

adding any steric hindrance and increase the chances of the conformation being able to 

adopt an energy minimum via rotation. 

To see the combined effect of substitution on the rings, a search was carried out on the 

combinations of two substituents per ring. The results are as expected, i.e. with the addition 

of substituents there is an increase on the adjacent bond lengths within the ring. It is 

noticeable in the paralortho and paralmeta cases that the ring distances are much more 

similar with 0.009 and 0.006 A difference between the bond lengths, respectively. The 

similarity in these bond distances wil l make the system within the ring more aromatic, 

although the C-C bond distances are similar it is only a small increase in aromaticity within 

the system. It is noticeable that when the para substituent is present there would seem to be 

an effect on the ring in a way that equalizes the bond distances and so therefore must 

increase the aromaticity of the ring itself 
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13.9 SUMMARY AND CONCLUSION 

From this study of bond lengths, it is observed that much of the phenomena are directly 

related to para substitution and to the related effects, which are to; 

a) even up the intra-honA lengths and therefore make the system more aromatic, 

b) generally increasing the intra-Ying ipso-ortho bond length, a, and lower the barrier to 

rotation. 

This may be due to the para substituents allowing more electron movement in the system, 

i.e. with the addition of para substituents the ring, and the structure, become more aromatic 

and consequently become planar. Vara substitution has an effect on the bond lengths, albeit 

not a great one and this can explain why para substituted biphenyls often act 

conformationally in the same manner as the parent biphenyl compound. How this effects the 

packing of the 0,0'-substituted biphenyls needs to be investigated. The barrier to rotation 

wil l be smaller with para substituents. I f an effect of the para substituent is to increase the 

length of the a bond, then when the compound is crystallizing, the structure will be able to 

adopt a more suitable conformation for packing and any slight attractive or repulsive forces 

will then have an influence on the crystal structure of the compound. This does not fully 

explain why cis is preferred to trans but it does give an explanation as to why the 

conformation in the solid state can differ from the gas phase. 

It is believed that the effect of para substitution on the bond lengths of biphenyls gives an 

indication as to why o,o'-biphenyls have the predominantly cis conformation (Chapter 10) 

and show non-adherence to the "Structure Correlation Method" (Chapter 11) as well as 

general conformational anomalies of biphenyl (chapter 12). 

Meta substitution tends to have the effect of make the rings more distorted. The effect of 

meta substitution is also an important, although less dramatic, factor. The meta substituents 

act almost in an opposite manner to the addition of p^ra substitution, i.e. they have little 

effect on the a bond and they make the bond lengths unequal and therefore decrease the 

aromaticity of the ring. This can be seen in seen chapters 10, 11 and 12. 

The reason for the effect of para and meta substitution twisting effect is not entirely clear, 

but one explanation relates to the symmetry of the substitution. The phenyl ring has a 

substituent in the form of the other phenyl ring which distorts both of the rings slightly, but 

when there is a para substituent this has the same effect on the opposite side of the ring. 

Since this is symmetrical it has the effect of equalising the bond distances of the ring and 

therefore increasing the aromaticity of the rings. In the same manner meta has an 

unsymmetrical effect on the ring of the substituted phenyl group. This does not explain why 

235 



the average a bond length also increases with para substitution but this may be due to the 

types of groups associated with the para position. A group attached to the para position 

effects the meta-para bond lengths, but the extent depends on the type of substituent, and it 

will have a greater effect on these bond lengths compared to a phenyl group. The ipso-ortho 

bonds may compensate for this and increase slightly in length to retain a level of aromaticity 

and symmetry. 

Since this analysis is using the database and is therefore statistical, initially no account was 

taken for different types of substititional groups {i.e. electron withdrawing/donating groups, 

charged groups, steric factors, etc) at the meta and para positions. Closer inspection of the 

types of groups involved shows that no specific type predominates any specific 

stereochemistry, and indeed the distribution for different stereochemistries has a large range 

of substitutional types attached. So any electronic effect effecting the data is not obvious 

and must therefore be more subtle than substitutional effects. 

Studies into Non Linear Optics and Liquid Crystals often use biphenyl structures and these 

studies often investigate the electronic properties. These structures and properties that may 

have a bearing on the structures analysed in this study. 

In conclusion, in this chapter it has been shown that para substitution affects the ring 

differently from meta, which manifests itself in the effects seen in chapters 10-12. A 

possible explanation of the conformational effect of these substituents in terms of effecting 

the bond lengths has also been given. 
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C H A P T E R 14: 

A N I N T R O D U C T I O N T O C A R B A B O R A N E S 

14.1 INTRODUCTION 

Borane hydrides and carbaboranes, which are commonly referred to as carboranes, are classified 

as being cluster compounds. The use of the term cluster compounds covers a variety of different 

types of compounds. Other cluster compounds range from homonuclear charged or uncharged 

species such as Buckminsterfullerenes (e.g. Ceo), to the heteroatomic species like the boron 

hydrides (e.g. BeHê "). These boron hydrides where there is a central core of boron atoms 

surrounded by bound hydrogen atoms are the types of compounds that are discussed in this and 

subsequent chapters. A large number of cluster compounds are electron deficient species and the 

bonding is different to the valency model and popular convention. Study of these types of 

compounds has increased the knowledge and general understanding of bonding in such 

compounds and their use has created many novel and unusual molecular architectures. 

In this thesis the study of these types of compounds has concentrated on the icosahedral 

carboranes, C2B10H12, and derivative compounds. The following chapter will give an introduction 

and overview of the interesting peculiarities of this group of compounds, discussing their history 

and what has led to the development of the field of study, and the understanding of their 

structures and bonding. Their properties and many applications are also reviewed, in section 

14.5. This chapter will give an overview of this class of compounds to show the vast applications 

but will not thoroughly examine the chemistry or give fine detail of the theory involved. 
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14.2 T H E BONDING O F BORON HYDRTOE C L U S T E R S 

The first synthesis of these types of compounds was between 1912 and 1936 by A. Stock. He 

made and isolated many different boron hydrides, including those of formulae B2H6, B4H10, B5H9, 

B5H11, BfiHio and B I Q H H , ((Stock, 1933) & (Cross, 1993)), see Equation 14.1. 

MgBj + H C I ^ B 4 H j o , B g H 9 , B 5 H j j , B ^ H j o , B , ^ H j 4 

3NaBH4 +4BF3.0Et2 -^2B,R, +3NaBF, 
Equation 14.1 

Stock knew the molecular formulae of these compounds but did not know much about the 

structures, since the then current bonding theories would not give reasonable models based on the 

formulae. The structure of diborane was later deduced by Longuet-Higgins (Longuet-Higgins, 

1949) and through the concept of three-centre-two-electron (3c2e) bonds and the extension of this 

idea from Lipscomb, the bonding of diborane, B2H6, could be rationalised. In understanding the 

bonding of these compounds the use of (3c2e) bonds has to be accepted and this rationalises the 

bonding in dicarba-c/o50-dodecaborane, with an electron pair being shared between three atoms. 

The cluster structure permits the maximum use of 3c2e bonds, and so gives the most efficient 

distribution of electron pairs. Thus when examining the atoms contained in these cages, it is 

worth remembering that the edges of the carborane polyhedra shown in this thesis do not 

represent formal bonds. They merely represent connectivities, with the two distance between the 

two atoms being smaller than the combined van der Waals radii of the two atoms. 

The simplest such compound, and easiest to describe, is diborane, B2H6. Each boron atom 

donates two of its three electrons to form a-bonds with two terminal protons. This leaves each 

boron atom with two orbitals and one electron. The two boron atoms and two bridging hydrogen 

atoms use four electrons (one from each boron, one from each hydrogen) and six orbitals (two 

from each boron atom, one from each hydrogen) to form two bonds (see Figure 14.1). 
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Figure 14.1 The bonding in diborane 

The electron density in these boron hydrides and similar types of structures is delocalised, so they 

can be portrayed in terms of molecular orbitals. Each cage boron atom is attached to one 

hydrogen atom by an exo bond radially outwards. Each boron atom is sp hybridised, with one sp 

hybrid orbital used in bonding to a hydrogen atom and the other sp hybrid, along with the two 

unhybridised p orbitals involved in cluster bonding (Cotton and Wilkinson, 1988). Thus each 

boron uses one electron in exo bonding to the hydrogen atoms, and contributes the other two to 

cluster bonding. 

The structures of these polyhedral compounds are determined by the number of electrons involved 

in cluster bonding. The number of vertices of the polyhedron (each occupied by a cluster atom) 

will be one less than the number of electron pairs participating in cluster bonding (Wade, 1976). 

This arrangement resuks in all the molecular orbital bonding levels being filled within the 

structure. The delocalised nature of the bonding in these clusters causes them to behave, in many 

respects, like organic aromatic compounds, and they are often considered to have 3-dimensional 

'pseudo-aromatic' character. 

With the removal of a BH unit from the cluster, whilst its cluster bonding electrons remain 

behind, i.e. it is removed as a B t f ^ fragment, then the resuhant new cluster will have the same 

electronic structure as the original but will have one vertex missing (see Figure 14.2). 

-BH 2+ 

Figure 14.2 The removal of a Brf^ vertex 
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The term 'carborane' is used to describe mixed hydrides of boron and carbon where the 

polyhedral boron skeleton contains at least one carbon atom. There is a large variety of different 

carboranes and many have well documented derivative chemistries (Grimes, 1970). Unmarked 

carborane cage vertices represent BH units, see Figures 14.2 to 14.4. The CH fragments are 

identified. I i i this thesis it is carboranes rather than pure boron hydrides that are examined. 

A structure in which every vertex is occupied is known as closo (meaning 'cage-like'), with a 

single vertex unoccupied known as nido ('nest-like'), and one with two unoccupied vertices this is 

known as arachno ('web-like'). A vertex atom may be replaced by another atom, whilst retaining 

the cluster structure, providing that the number of atomic orbitals and cluster-bonding electrons 

remain the same. A BH unit may be replaced by an isoelectronic CH (or CR) unit, giving rise to 

families of structurally similar, isoelectronic clusters (Figure 14.3) When carbon atoms are 

contained within the cage the structure is called a carbaborane, which is commonly referred to as 

a carborane. 

a 

Figure 14.3 The isomers of B10C2H12. a = ortho, b = meta and c =para 

Boron hydrides (and carboranes) are deltahedral fragments, originating from a closed 

deltahedron, i.e. all the faces are triangular. For example, the arachno species, decaborane, 

BioHi4^", can be viewed as a fragment of wzV/o-BnHo', which is in turn a fragment of the parent 

deltahedral icosahedron dodecaborane, closo- B12H12. 
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14.3 T H E E L E C T R O N I C DISTRIBUTION 

When the polyhedral structures are closed, the electrons occupy the skeletal bonding orbitals, this 

effectively forms a pseudo-spherical distribution of electron density over the atoms which are 

relatively evenly spread over the deltahedral surfaces defining the twelve vertex icosahedron (see 

Figure 14.3). However when heteroatoms, such as carbon, are incorporated into the cage 

structure, the electron distribution is necessarily altered. 

The hydrogen atoms attached to the carbon sites of the carborane are more electropositive 

(acidic) than the boron-attached hydrogen atoms. It is for this reason that when a metallating 

reagent is introduced to the parent carborane compound, C2B10H12, the protons of the carbon 

atoms, being the most acidic, are metallated preferentially. Following this reasoning, the boron 

atom of the BH vertex most highly connected to a CR (R=H, alkyl or aryl) vertex is the most 

electropositive boron, and this explains its preferential removal by a strong nucleophile during 

deboronation reactions. The twelve vertex "B12" icosahedron has maximum symmetry (Ij,), but as 

the icosahedron is altered to incorporate heteroatoms, two carbons in the case of the icosahedral 

carboranes, C2B10H12, the cage symmetry is reduced. The differing electronegativities of the 

cluster atoms leads to distortions in the cage geometry and as a result to a redistribution of 

electron density. As the carbon atoms are further substituted, the distortions increase, the nature 

of which is dependent upon the specific substituent. Modem X-ray diffraction analysis allows 

these distortions to be quantified. Using diffraction data it is possible to get all the B-B and B-C 

distances and angles in the cage, as well as to define accurately the substituents present. It is only 

with diffraction data that inter and intra-molecular interactions can be completely determined. 
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14.4 N O M E N C L A T U R E 

A standard nomenclature concerning carboranes is important since there can be a reasonably 

large number of atoms in the structures and the three dimensional cage geometry can be rather 

confusing. 

When discussing these systems in this thesis, it is in reference to the 12-vertex-c/o5'o, 11-vertex-

nido and lO-arachno (11-vertex nido with the 11* vertex missing) species. The nomenclature for 

these systems is different for each type of cage. The amount by which the cage is opened is 

described by a prefix cioso, nido, arachno or hypho as in Table 14.1. In the borane and 

carborane structures, an apical atom is labeled atom 1. Successive belts of cage atoms are 

numbered in a clockwise manner, with carbon atoms having a numbering priority over boron 

vertices (see Figure 14.4) 

Structure Type Number of Skeletal Electron Pairs 

Closo (Cage-Like) n+1 

Nido (Nest-Like) n+2 

Arachno (Web-Like) n+3 

Hypho (Net-Like) n+4 

Table 14.1 The cage structure types and related number of skeletal electron pairs 

a 

Figure 14.4 The numbering scheme of boron hydride cages, with a = the closo cage and b = 

nido. 
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14.5 P R O P E R T I E S O F CARBORANES 

Neutral carboranes containing two carbon atoms are derived from the polyhedral boron hydride 

species, BnHn^', and have the general formula C2BnH(n+2) (n=5-12). The carborane of interest in 

this thesis is dicarbadodecaborane, C2B10H12, and derivatives thereof, which exists as an 

icosahedron with twenty deltahedral faces. The connectivities which would illustrate a two-centre 

two-electron bond in a "normal" compound herein are not indicative of a formal bond. They 

simply illustrate the shape and connectivities within the cluster for visual convenience. 

During the 1960's boron hydrides were investigated as potential rocket fiiels, due to their being 

pyrophoric and then having a very high heat of combustion (the B=0 bond is extremely strong). 

Decaborane, B10H14, was produced on a multi-ton scale for the investigation into this and the 

icosahedral carboranes C2B10H12 are readily accessible from decaborane. Boron hydrides proved 

to be unusable for rocket fuels and research in this area was abandoned relatively quickly 

although an interest in the chemistry was retained. The carboranes can undergo substitution 

reactions at cage carbon and boron sites without cage degradation occurring. The predominant 

feature of carboranes is that they have remarkable chemical and thermal stability: orthocarboranQ 

is stable up to 400°C and retains its structure in the presence of oxidising agents, alcohols and 

strong acids. However, above 400°C isomerisation can occur to the meta and then the para-

isomer. The ortho to meta transformation is quantitative at 460°C and at 620°C isomerisation to 

paracsLrboranc occurs, but this has a tendency to be inefficient. Various mechanisms have been 

postulated for the rearrangement ((Wu and Jones, 1989), (Edvenson and Gaines, 1990), (Wales, 

1993) and (Johnson and Roberts, 1993; 1994)) including diamond square-diamond, rotation of a 

triangular face and rotation of two pentagonal faces. The driving force for the isomerisation is 

proposed to be the reduction in the overall dipole of the carborane upon increased separation of 

the carbon atoms. 

The reverse isomerisation from meta to ortho-carboranQ has also been achieved and this is done 

by isomerisation of the meta-cdrboranyl dianion, followed by oxidation of the or^/jo-carborane 

dianion to the neutral close species (Zakharkin et al, 1967). The carborane cage has strong 

electron withdrawing effects and tends to "pull" any available electron density into its delocalised 

electronic system. This electron-withdrawing effect decreases as the isomers are progressed from 

ortho through to para, in both the closo and nido species. 

Pyrolysis of carborane (or boron hydrides) containing polymers often leads to the formation of 

thermally stable coatings (Packerisamy et al., 995) and ceramic materials ((Bucca and Keller, 

1997) and (Sneddon et al., 1991)). As carborane compounds contain essential elements for the 
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formation of thin boron carbide films, they have potential as source materials for chemical vapour 

deposition technique (Hitchcock et al., 1997). 

Boron compounds have found application in the field of medicine as a treatment for tumours. 

Boron Neutron Capture Therapy relies upon the decay of the '̂ sB nucleus when bombarded with 

a neutron, to give an in situ dose of radiation to the tumour. Compounds with a high boron 

content which are stable under physiological conditions and which have tumour targeting 

selectivity are required for this treatment, and much effort is being expended in this field (e.g. 

Dahlhoff et al., 1993). The synthesis of compounds which have a large difference between the 

ground and excited state dipole moments, which are not highly coloured, and which crystallise in 

a non-centrosymmetric space group leads to materials which are of interest in the field of non­

linear optics. Derivatives of or//?o-carborane and other carborane isomers have been investigated 

as potential non-linear optical materials (Murphy et al., 1993). 

Unlike many salts of organic and inorganic acids, salts of polyborates dissolve readily in organic 

solvents. This allows their extraction from the aqueous to the organic phase. Using this principle, 

metallacarboranes of the type [(C2B9Hii)2-3-M^")]' have been used to aid the extraction of metals 

including radionuclides from spent nuclear fiiels (Chetcuti et al., 1995). 
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14.6 CARBORANE SYNTHESIS 

Ortho-carbomnQ (1,2-dicarbadodecaborane) can be prepared by the reaction of ethyne with 

Lewis base adducts of decaborane. The' meta and para isomers are usually prepared by thermal 

, isomerisation of orthocarbomnQ at 460° C and 620° C respectively (Grafstein and Dvorak, 1963) 

and (Papetti and Keying, 1964)). This isomerisation occurs because the most thermodynamically 

stable isomer is the para (relative thermodynamic stability is para > meta > ortho), which has 

been attributed to the minimisation of the dipole moment brought about by separation of the 

carbon atoms (Olah et al., 1991). The problem with isomerising carboranes possessing organic 

substituents is that it generally results in decomposition of these substituents (Grafstein and 

Dvorak, 1963) and (Papetti and Keying, 1964)). Substituted orthocarbomnQS may be prepared by 

reaction of the appropriately substituted ethyne with BioH^ in the presence of a suitable Lewis 

base. 

Substituents can be attached to both the carbon and boron atoms of the cage by several different 

methods. In this thesis substituents on the boron atom are not encountered and so will not be 

detailed fiarther. However, typical reactions include chlorination, alkylation, mercuration, 

oxidation and metallation, and these reactions usually proceed via a photochemically induced 

radical mechanism, or by attack by electrophilic reagents. There has been a considerable amount 

of study into carbon-substituted clusters, and a huge number derivatives are known. The most 

common method of preparing these compounds is via C-lithiated intermediates. The hydrogens on 

the cluster carbon atoms are acidic, and so can participate in C-H- -X hydrogen bonding. 

Nido species can be prepared by selective removal of a BH^^ unit from a closo-ortho or 

me/acarborane, by a process commonly called 'deboronation' (this is also possible for 

/>aracarborane, but the conditions are very forcing and little studied). The most widely used 

reagent for deboronation is KOH dissolved in either MeOH or EtOH, giving the appropriate 

alkoxide ion. 
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14.7 APPLICATIONS O F CARBORANES 

There has been a lot of interest in icosahedral carboranes concerning their application to polymers 

and there are a large range of carborane-containing polymers already known, e.g. polyesters 

(Lebedev et al., 191 A), polyazomethines (Rabilloud et al., 1990) and polysiloxanes (Heying et 

al., 1968) known under the trade name 'Dexsil'. 

The incorporation of carborane units (usually ortho or meta) into the silicone polymers greatly 

increases their thermal stability (Finch, 1970), particularly at high temperatures (450° C), and 

lead to a large reduction in loss of mass through degradation at high temperatures. Hydrogen 

elimination from carborane BH bonds, at high temperature, can lead to the formation of 

crosslinking bonds (Stanko et al., 1977) which gives the prospect of high-performance ceramic 

materials (Kabachi and Valetskii, 1990). Carborane polymers are used in such diverse 

applications as high temperature fittings, oils, adhesives and fire retardants. 

Carborane derivatives have a potential application in the use of metallacarboranes as catalysts. 

Metallacarboranes, have been the subject of intense study since the 1960's (Zakharkin et al, 

1965; 1967; 1972; 1973). 
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14.8 CARBORANES IN Tff lS THESIS 

As already mentioned in this chapter, the carboranes in this thesis are mostly of the closo type. 

Carboranes, or at least those in this thesis, do not tend to form regular crystals, with multiple 

twinning a common occurrence, and often the X-ray diffraction experiment involves the laborious 

task of sampling many possible candidate crystals until an adequate one has been found. Often 

the carboranes are air or moisture sensitive and so data collection and preparation are conducted 

using the appropriate equipment and procedures, see chapter 2. 

The carboranes in this thesis have varied applications and properties but are linked via their 

association with hydrogen bonding and inter- and/or intra-molecular interactions, with the 

exception of those in chapter 17, which are examined because of their non hydrogen bonding 

properties. 
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C H A P T E R 15: 

D E F E V I T I V E C R Y S T A L STRUCTURES O F ORTHO, META AND PARA 

CARBORANES: SUPRAMOLECULAR STRUCTURES D I R E C T E D S O L E L Y B Y C-

H O H Y D R O G E N BONDING. 

15.1 INTRODUCTION 

This study involves the analysis of three similar carborane cages with an interaction between the 

C-H units and an hexamethylphosphoramide (HMPA) molecule. The study relies mostly on X-

ray diffraction analysis for fiiU characterization but also incorporates the use of some other 

analytical techniques, (e.g. NMR, IR, etcetera). The co-crystallisation of ortho, meta and para 

carboranes with HMPA results m the isolation of 1:1 carborane: HMPA adducts which provide 

the first definitive X-ray diffraction analysis of the unsubstituted carboranes as part of three very 

different C-H--O hydrogen-bonded supramolecular structures. 

The study of the supramolecular structure of solids is currently undergoing a great deal of 

intensive research (Desiraju, 1995) in general chemistry and not just in the crystallographic 

world (although crystallography has a particular association because of its ability to give 

defining structural analyses). Primarily it is hoped and expected to be able to predict and control 

the supramolecular structure of a large number of organic solids (Aakeroy and Seddon, 1993) 

by consideration of the molecular units employed, this is commonly referred to as crystal 

engineering, and this will provide an ingredient into the designing of optically and electronically 

active organic solids. The major factor that drives the assembly of a particular supramolecular 

structure in organic compounds is commonly inter-molecular interaction and in particular that of 

"hydrogen bonding" has been shown to be extremely influential. A strategy that has been 

employed to elucidate the molecular factors that govern supramolecular structure is to co-

crystallise two or more components that possess potential hydrogen-bonding fiinctional groups 

and to compare structures in which the orientation of these groups has been systematically 

varied at the molecular level (Etter and Reutzel, 1991). 

While this approach has been successfiil for a number of the "strong" hydrogen-bonded systems 

e.g. X -H-Y (X, Y = N , O), its application to weaker C-H--X interactions has been far more 

limited, mainly because they are weak. In recognizing the high C-H acidity of carboranes 

((Grimes, 1970) & (Onak, 1995)) and therefore their potential for hydrogen bonding (Leites, 

1992), and the ready availability of ortho, meta and para derivatives, which possess C-H groups 

in well defined but differing orientations within the same pseudo-spherical molecular frame­

work, it was speculated that the C2B10H12 cluster may be a good molecular unit with which to 
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apply this strategy to a system containing only C-H" X hydrogen bonds as directors of 

supramolecular structure. The molecular rigidity and topological versatility of carboranes has 

ah-eady been exploited in other molecular design contexts ((Clegg et al., 1993), (Hawthorne and 

Mortimer, 1996) & (Armspatch et al., 1996)), a feature of this work was to use the hydrogen 

bond acceptor to fix the carborane cage in the crystal. It is common for carboranes to have 

disorder in the cages particularly when the cage has the "freedom" to move or rotate. The C-H 

units of the structure can easily become disordered with the B-H units, this could be caused by a 

number of rotations of the cage about the adjacent carbon atom twist (i.e. 180°, 90°, 62°, 

etcetera.) or the cage can be completely disordered at all atom positions. The similarity in 

electron density between the carbon and boron atoms can be problematic when trying to locate 

the carbon atoms in the cage, particularly when the C-B and C-C bond distances have become 

distorted or non-characterisable, usually due to disorder, but also can be due to electronic effects 

that alter the C-C, C-B and/or B-B distances). 

A feature of great importance in this study is that despite having been studied extensively for 

over 30 years the precise bond lengths and angles for the parent carboranes remain unknown. 

This is due to disorder of the carborane icosahedron that has been aheady mentioned. 

Previous attempts to get around this problem by substituting the hydrogen atoms the boron or 

carbon atoms for any R groups have only been partially successful, due to the electron-

withdrawing and highly delocalised nature of the cages. This ahers the electron density within 

the cluster and thus all the bond lengths and angles. Gas-phase electron diffraction studies of the 

three carborane isomers did give individual bond length^ond angle values but the errors on the 

values were notably larger than typical X-ray diffraction errors, particularly for ortho- and meta-

carborane. It was hoped that the relatively weak C-H • O interactions predicted for 

carborane/HMPA co-crystals would locate the cluster carbon atoms without the perturbation of 

the cage, which occurs upon substitution (Davidson et al, 1996). 

252 



15.2 C H A R A C T E R I S A T I O N 

15.2.1 Introduction 

In this study it was hoped that the HMPA structure would hydrogen bond to the C-H units of the 

cage and so fixes the cage into a rigid non-disordered structure. This was done by co-

crystallising carboranes with hexamethylphosphoramide (HMPA). Slow evaporation of these 

solutions yielded crystalline solids which were shown by ^H NMR to contain carborane and 

HMPA in a 1:1 stoichiometry (the presence of an excess of HMPA in solution was found not to 

affect the stoichiometry of the solids isolated). 

15.2.2 Crystallographic Experiments 

For the three carborane adducts studied in this chapter, all the data sets were collected at 150(2) 

K using the SMART CCD (see Chapter 2), with Mo-Ka radiation (X = 0.71073 A ) . 
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15.3 P R E L I M I N A R Y CHARACTERISATION 

15.3.1 Oilhocarhorane IHMPA co-crystallisation 

The slow evaporation of the solvent over a period of three days gave a crop of colourless 

crystals, of or^/?ocarborane and HMPA. 

15.3.1.a Infra Red Spectroscopy 

The solid state IR spectrum of these crystals showed that they contained both or/Z/ocarborane 

and HMPA. However, the C-H stretching frequency of the orr/jocarborane had either 

disappeared or shifted to below 3000 cm"', and thus been subsumed by the C-H absorptions 

(compared to Vmax = 3073 cm"' for pure or^/zocarborane). 

15.3.1.bNMR 

' H NMR spectroscopy of the crystals in CeDe showed a mixture of or//2ocarborane and HMPA 

signals (unshifted - the hydrogen bonding is not evidenced in solution), the integrals of which 

suggested a 1:1 ratio of or//?ocarborane to HMPA. This 1:1 ratio was confirmed by elemental 

analysis. Subsequent repetition of this reaction using a 2:1 ratio of HMPA to or?/2ocarborane 

gave an identical product (plus unchanged HMPA). 

15.3.2 Afe/flcarborane/HMPA co-crystallisation 

Slow evaporation of the solution, toluene, over a period of 1 8 hours gave a crop of colourless 

crystals. 

15.3.2.a Infra Red Spectroscopy 

The solid state IR spectrum of these crystals showed that they contained both we/^jcarborane 

and HMPA, and again the C-H stretching frequency of the we/̂ zcarborane was absent, with no 

peaks being present above 3 0 0 0 cm'' (compared to Vn,ax(CH) = 3062 cm"' for pure 

wetocarborane), indicating the presence of hydrogen bonding. 
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15.3.2. bNMR 

The NMR spectrum of the crystals in C^De showed a mixture of unshifted wetocarborane 

and HMPA signals, again integrating to a 1:1 ratio of we/acarborane to HMPA, which was 

confirmed by elemental analysis. Repetition of this reaction using a 2:1 ratio of HMPA to 

metacarhorane gave an identical product (plus unchanged HMPA). This preliminary 

characterisation of we/acarborane suggested close similarity to the orthocarhomnQ analogue. 

15.3.3 Pflz-flcarborane / HMPA co-ciystallisation 

Addition of one equivalent of HMPA to one millimole of paracarboranQ partially dissolved in 

toluene, caused complete dissolution of the paracarhorane. Slow evaporation of the toluene 

solution over a period of 18 hours gave a crop of colourless crystals. 

15.3.3. a Infra red Spectroscopy 

The solid state IR spectrum showed that they contained both paracarborane and HMPA, and the 

C-H stretching frequency of the paracarhoranQ had either disappeared or shifted to below 3000 

cm'^, and thus been subsumed by the C-H absorptions (compared to Vmax = 3053 cm ' for pure 

paracarborano), indicating the presence of hydrogen bonding. 

15.3.3.bNMR 

The I H NMR spectrum of the crystals in C^De showed a mixture of unshifted paracarborane 

and HMPA signals. 
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15.4 T H E X - R A Y DIFFRACTION ANALYSIS O F T H E ORTHO, META AND PARA 

CARBORANE M O L E C U L E S W I T H HMPA. 

15.4.1 0/f/r<7carborane 

X-ray diffraction studies of the colourless crystals showed a dimeric structure, with C-H • O 

hydrogen bonds linking the HMPA molecules to two similar but crystallographically distinct 

or///ocarborane units (see Figure 15.1). The C-C bond length in or//zocarborane (av. 1.63 A) is 

shorter than for structurally characterised substituted or^Aocarboranes, thus providing a 

quantitative benchmark for the study of the effects of substitution on the structure of carboranes. 

The packing of this structure is illustrated in Figure 15.2,, 

m C(51) 
a52) 

C(41) 

Figure 15.1 Molecular structure of the dimer unit of orTAocarborane^HMPA, with 50% 

thermal ellipsoid probability 
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Figurel5.2 The packing of orf/rocarborane/HMPA 

15.4.2 M^tocarborane 

X-ray diffraction studies of the colourless crystals showed a very new form. In contrast to the discrete 

dimers of the ortho system, possesses a one-dimensional polymeric structure (see Figure 15.2), with the 

w^^acarborane and HMPA units arranged in parallel 'tramlines'. All the wetocarboranes are equivalent, 

each contributing to one near linear and one more bent C-H- 0 hydrogen bond. 

The polymeric nature is explained by the greater separation of the C-H units, favouring the formation of a 

polymer over an oligomer. It is interesting to note that /wetocarborane precipitates from toluene solution 

appreciably faster than or///ocarborane, presumably due to the much greater mass of the polymeric unit. 

This feature has the potential for exploitation as a means of separating the ortho and meta isomers of the 

carborane. The packing of the structure is illusfrated in Figure 15.4. 
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C(32) 

C(12] 

CI22) 

Figure 15.3 Molecular structure ofmeta carborane^HMPA, 50% thermal ellipsoid plot 

Figure 15.4 The polymeric structures ofmeta carborane with HMPA. 
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15.4.3 Paracarborane 

The X-ray analysis of the co-crystal adduct paracarborane (see Figure 15.5) showed a 

polymeric structure, but one substantially different from that of the me/ocarborane. The 

polymeric chains in /7ar<arcarborane adopt a zigzag formation in which the HMPA molecules 

alternate on each side along the chain. As in metacarbomnQ, each HMPA takes part in one near-

linear and one more acute hydrogen bond, but unlike w^mcarborane there are two inequivalent 

carborane molecules: one involved solely in near-linear C-H--O interactions, the other only 

forming more acute C-H - 0 hydrogen bonds (see Table 15.1) 

Though crystallographically inequivalent, these two independent paracsLrhoranQ molecules in 

the asymmetric unit have identical bond lengths and angles. The packing is illustrated in Figure 

15.6. and a summary of crystallographic data for ortho, meta and para carboranes is given in 

Table 15.2. 

C<21) 

a22i 

'Ml 
Figure 15.5 X-ray structure ofparacarborane/HMPA, 50% thermal ellipsoid plot 
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Figure 15.6 The polymeric structures of para carborane with HMPA. 

H-bond Distances, (A) Angle, n 

Metocarborane/HMPA C ( 3 ) - 0 ( l ) 3.328(6) -

C ( 6 ) - 0 ( l ) 3.234(5) -

C(3)-H(3)-0(l) - 175(4) 

C(6)-H(6)-0(l) - 164(4) 

Paracarborane/HMPA C( l ) -0 (1 ) 3.132(4) -

C ( 2 ) - 0 ( l ) 3.378(4) -

C(l)-H(21)"0( l ) - 173(2) 

C(2)-H(22)-0(l) - 152(3) 

carboranes/HMPA. 
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Orthocarborand 

HMPA 

Me^acarborane/ 

HMPA 

Paracarborane/ * 

HMPA 

Formula C8H30B10N3OP C8H30B10N3OP C8H30B10N3OP 

Formula Weight 323.42 323.42 323.42 
Crystal Colour Colourless Colourless Colourless 
Crystal Description Block Block Block 
Crystal Dimensions 
(mm) 

0.2x0.3x0.3 0.3x0.4x0.5 0.4 X 0.4 X 0.4 

Crystal System Triclinic Monochnic Monoclinic 
Space group P-1 Cc P2i/c 
Unit Cell 
a = (A) 
b = (A) . 
c = (A) 
oi=n 
(3 = (°) 
y=n 

10.662(2) 
10.890(2) 
17.078(3) 
90.59 (3) 
91.97(3) 
92.23 (3) 

12.86(4) 
14.713(8) 
I I . 100(2) 
90 
I I I . 41(3) 
90 

10.234 (2) 
14.338 (3) 
13.531 (3) 
90 
102.81 (3) 
90 

Volume (A') 1980.1 (6) 1956.24 (6) 1936.1 (7) 
z 4 4 4 
Calculated Density 1.085 1.10 1.11 

Absorption 
Coefficient (mm'*) 

1.37 1.39 1.40 

F(000) 860 688 688 
6 Range for 
Collection (°) 

1.19-25.53 2.19-26.22 2.04 - 25.64 

Reflections Collected 9691 4632 8235 
Independent 
reflections 

6413 2682 3294 

———2— 
Goodness-of-fit on F 

1.22 1.20 1.08 
Final R indices 
ri>2sigma(I)l 

0.077 0.051 0.060 

wR indices (all data) 0.188 0.135 0.139 
Extinction coefficient 0.0019(4) 0.0014(4) 0.0032(6) 
Largest diff. Peak and 
hole. 

0.375 & -0.401 0.198 &-0.200 0.262 &-0.251 

Table 15.2 Summary of crystallographic data of the three datasets 
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15.5 CONCLUSION 

The structures of these adducts represent the first observations of the unsubstituted parent 

carboranes in a crystal lattice (search of October 1995 version of the CSD). The C-H -0 

hydrogen bonds lock the clusters in specific orientations and so allow unambiguous location of 

the two carbon atoms within the C2B10 clusters. Their location via weak inter-molecular 

interactions, rather than by substitution of the carborane at either a boron or carbon atom, causes 

minimum electronic perturbation of the cluster and one can assume, therefore, that the structural 

parameters derived from the adducts provide a very close approximation to those of the 

carboranes themselves. As such, these structures provide a usefril benchmark from which to 

judge the effect of substitution on bonding within the cluster. For example, the C-C distances of 

[ortho carborane:HMPA)]„, 1.630(6), 1.629(6) A for C(3)-C(9). 

The effect due to electron-donating carbon substituents, all structurally characterised examples 

of which exhibit longer cage carbon bond distances than are found in (orr/2ocarborane-HMPA)n 

(Coult, 1992). Similarly, the cross polyhedral (antipodal) C-C distances in 

(/7aracarborane:HMPA)oon 3.052(7), 3.059(8) A for C(l) C(la), C(2)-C(2a), respectively may be 

compared with intra-cage distances ranging between 3.01 (3) and 3.22 (1) A for a series of 

boron-iodo derivatives of (/7aracarborane:HMPA)n (Jiang, 1995). 
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C H A P T E R 16: 

H Y D R O G E N BONDING IN H E T E R O A R O M A T I C CARBORANES 

16.1 INTRODUCTION 

A non-bonding interaction involving inter and/or intra-molecular interaction with a central 

hydrogen atom involved is generally referred to as an hydrogen bond. The idea of the 'hydrogen 

bond' has been a concept that has been around now for a considerable time, but exactly what are 

and what are not hydrogen bonds has never been completely singularly defined and is often 

defined by the researcher. For clarity the bonding of the carborane structures in this thesis will 

be given a definition. This definition will detail what is meant by the term hydrogen bond 

purely in terms for the carboranes in this thesis, it must be stressed that this is not a definition of 

hydrogen bonding outside of carboranes in this thesis. So this definition of hydrogen bonding, is 

defined as a bonding interaction between an electropositive hydrogen atom and one (or more) 

electronegative atoms with which it does not form a 2-centre-2-electron bond. Some of these 

bonds are of the "weak" variety (10-65 kJmol'^ for the neutral species (Zeegers-Huyskens, 

1991) but despite the term weak these interactions are still much stronger than van der Waals 

forces and often influence the solid state, both in conformation and packing. 

Infrared spectroscopy is an extremely valuable tool in the elucidation of hydrogen bonding 

interactions. In the solid state, the molecules cannot move as much as when in solution, so by 

recording one sample in the solid state (KBr disc) and another in solution (CCI4) the type of 

hydrogen bonding interaction can be deduced. I f the bonding-mode is inter-molecular, the N--H 

interaction wil l be removed in solution and changes the stretching frequency of the C-H bond. I f 

it is intra-molecular, the carboranyl C-H stretching frequency will remain the same in both the 

solid and solution state. The best way to observe hydrogen bonding is to use diffraction 

analysis, as with this method any debate over the bond is resolved in all but the more extreme 

cases, where the length and strength of the interactions is in the debatable range. There can be 

complications when the hydrogen bonding is close to the limits of what would be considered the 

norm, and in such circumstances there is often a debate over whether there is an interaction or 

not. However in the majority of structures, crystallographic means identify the possible 

existence of hydrogen bonds. 

This study was conducted to investigate the inter- and intra-molecular hydrogen bonding, i f any, 

present in carborane systems and to establish how the molecules pack, with a view to studying 

how the 7i-systems are involved with each other especially in the form of 7t-stacking. I f these 
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structures are of predictable orientation then these structures may be used as an aid in crystal 

engineering. 
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16.2 T H E S T R U C T U R E O F l - ( 2 - P Y R I D Y L ) - 0 ^ r ^ 0 C A R B 0 R A N E 

The compound l-(2-pyridyl)-or//?ocarborane (see Figure 16.1) appeared worthy of further 

investigation. 

Figure 16.1 The structure of l-(2-pyridyI)-or//r£)carborane (for clarity hydrogen atoms not 

shown) 

In principle the structure may adopt either inter- or intra-molecular hydrogen bonding, but it 

was envisaged that it would make use of the suitable stereochemistry and would become intra-

molecularly bonded, via the cage C-H and the nitrogen of the pyridyl. Synthesis via the reaction 

of decaborane with (2-pyridyl)ethyne proved only partially successful with the reaction low-

yielding and requiring a tedious and very time-consuming work-up (Yang et al, 1992). This is 

believed to be due to the pyridyl moiety interaction with the open face of the decaborane, and 

this deters any reaction with the acetylenic triple bond. Attempts to prepare l-(2- pyridyl)-

or//7ocarborane yielded only the disubstituted product (l,2-bis-(2-pyridyl)-or//zocarborane) and 

unchanged orthocarborawQ. This disubstitution is believed to arise from activation of the second 

carboranyl C-H hydrogen atom by the newly-added pyridyl group (in the form of a C-H - N 

hydrogen bond), thus transferring the copper moiety to the unsubstituted carboranyl carbon and 

facilitating further attack by pyridyl halide (Miiller et al, 1992). 

Using X-ray diffraction analysis this compound was shown to exhibit intra-molecular activity 

(see Figure 16.2). It is assumed that the conformation being intra- rather than inter-molecularly 

bonded is at least partially due to the added ability of the structure to pack with 7i-stacking in the 

intra-molecular bonded conformer, the distance between the rings is 3.47(1) A at the closest, see 

Figure 16.2. The interaction of the C-H - N is manifest in a slight bending of the C(2)-C(l)-

C(12) and C(l)-C(12)-N(l) angles between the ring and the cage, the angles are 116.0(2)° and 

115.1(2)° respectively. The atoms C(l ) and C(2) He in the same plane as the pyridyl ring. It is 

the combination of the intra-molecular interaction and the Ti-stacking that gives this 

conformational preference. The bulk of the carborane cage hinders the ability of the structure to 
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be involved in 7c-stacking with inter-molecular interactions (see Figure 16.3). A similar packing 

arrangement has also been noted in a related structure (Alekseyeva et al). 

Given the importance of the hydrogen bonding in determining solid state structures, and the 

possibility of preparing new carboranyl ligands possessing pendant Lewis bases (and thus 

potential chelation sites), it was decided to prepare novel carboranyl derivatives containing 

Lewis basic groups, themselves capable of participation in C-H "X hydrogen bonds. 

Figure 16.2 The crystal structure of l-(2-pyridyl>^rrA<>carborane, with 50% probability 

ellipsoids) 

Figure 16.3 Packing diagram of l-(2-pyridyl)-orrA<Harborane 
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16.3 T H E S T R U C T U R E O F l-(3'-PYRroYL)-OJ?roO-CARBORANE. 

For this structure, the possibility for intra-molecular hydrogen bonding is greatly reduced to the 

point of being almost impossible due to the positioning of the nitrogen atom in the pyridyl ring 

(see Figure 16.4). As a consequence of this the structure should be forced to adopt an inter-

molecular contact, assuming interaction is present. 

N 

Figure 16.4 The structure of l-(3'-pyridyl)-<>/-//K?-carborane (hydrogen atoms not shown) 

The crystals used for the diffraction experiment were grown from ethanol/water. [l-(3'-pyridyl)-

or^Ao-carborane] is different than the 2'-pyridyl analogue, aheady seen in section 16.2 and 

Figure 16.1, the X-ray diffraction structure intra-molecularly hydrogen bonds to give the dimer 

in the solid state, see Figures 16.5 and 16.6. In this structure there is hydrogen bonding present 

but as predicted, and unlike the 2' analogue, here the hydrogen bonding is in the form of intra­

molecular C - H - N hydrogen bonds, with a distance of 2.544 A. This is of similar magnitude to 

the 2'-pyridyl analogue. This intra-molecular hydrogen bonding creates a dimer. The inter-

molecular C-H - N bond is impossible without creating a huge bending of the C-C bond or 

massive ring distortion. Atom C(10) does not lie on the plane of the aromatic ring, due to the 

twisting necessary to form the hydrogen bond. The bending caused by the intra molecular 

interaction in the 2'-pyridyl analogue is also not present in this structure with the C(l)-C(2)-

C(3) and C(7)-C(2)-C(3) angles being 121.1(1)° and 121.0(1)° respectively, see Figure 16.5. 

Another difference between the two structures is that with the 2' pyridyl analogue there is n-

stacking present in the crystal lattice, but this is absent in the 3' pyridyl analogue. This is 

probably due to the bulk of the dimer preventing the rings becoming proximal enough to allow 

them to be involved in 7r-stacking, with a minimum distance between the rings of 7.8A, see 

Figure 16.6. 

X-ray diffraction analysis has been used to observe the hydrogen bonding in l-(3'-pyridyl)-OA'//2o 

-carborane, but although the IR spectroscopy determines the existence of the hydrogen bond it 

does not tell us anything about the character of the interaction. The same type of inter-molecular 

hydrogen bond characteristics in the IR are also present in the meta- isomer, although the 
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crystallographic structure has not been studied. The reason for this is due to the difficulties in 

obtaining suitable crystalline specimens for diffraction analysis. 

Figure 16.5 The structure of l-(3'-pyridyl)-«rrAa-carboranc 

Figure 16.6 The packing of l-(3'-pyridyl)-«fr*o-carboraiie 
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16.4 THE STRUCTURE OF l-(2'-TinOPHENYL)-OJ?mO-CARBORANE. 

This compound has a similar structure to the 2'-pyridyl analogue and was envisaged to have 

similar interactions, with the sulphur atom undergoing the same form of hydrogen bonding with 

the cage C-H as the nitrogen atom, albeit possibly not as strongly, see Figure 16.7. 

Figure 16.7 The structure of l-(2'-thiophenyI)-£>rr/K?-carborane (hydrogen atoms not 

shown) 

For l-(2'-thiophenyl)-or^/2o-carborane an intra-molecular hydrogen bonding interaction was 

anticipated, in a similar maimer to that seen in the 2'-pyridyl system. Although an alternative 

possibility of an inter-molecular interaction was postulated for the meta-isomer, in which both 

compounds should display inter-molecular hydrogen bonds, see Figure 16.8. Crystals of l-(2'-

thiophenyl)-or?/7o-carborane were grown from chloroform as clear colourless square platelets. 

(a) (b) 

Figure 16.8 The envisaged hydrogen bonding of l-(2'-thiophenyI)-or//r£?-carborane 

(a) intra-molecular and (b) inter-molecular hydrogen bonding 
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The resultant model created from the diffracted data shows that in the packing model of this 

compound, there are no interactions between the carbon and sulphur atoms at the S(l)/S(2) or 

C(l Y)/C(2Y) and the hydrogen atoms attached to C(3), see Figure 16.9. 

Figure 16.9 The structure of l-(2'-thiophenyl)-0/tA0-carborane 

Like the 3-pyridyl analogue of this compound, no Ti-stacking can be seen in the crystal lattice 

between thiophenyl rings, see Figure 16.10. This would suggest that, contrary to IR 

spectroscopic evidence, no int^-molecular interactions are present in this compound. However, 

the structure is highly disordered and inter-molecular interactions have been postulated as likely 

hydrogen bonding possibilities (see Figure 16.8). This presents a slight conundrum, on one hand 

the presence of hydrogen bonding would generally create a non-disordered structure because the 

H-bonds would reduce the motion, but on the other hand i f disorder were present then it would 

disguise much of the hydrogen bonding interaction. So, given that the IR information points 

towards the presence of hydrogen bonding, then it must be assumed that the hydrogen bonding 

is present, but this interaction must be weak, and must be a resultant of another force, otherwise 

the conformation would be fixed by this interaction. There is also the possibility of intra­

molecular interactions competmg against the inter-molecular and so causing this. The crystal 

has probable twinning with both conformers existing within the twinned crystal. The intra­

molecular interaction has a similar magnitude to the inter-molecular interaction with a length of 

2.79(5) A. This gives a disordered result when solving the structure with the X-ray diffraction 

data. Therefore it can be speculated that there is both inter- and intra-molecular hydrogen 
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bonding present. The position of each sulphur atom corresponds to the opposite side of the ring 

and so the interaction involving the sulphur atoms are mutually exclusive and the structure is 

disordered at both the sulphur sites. 

The hydrogen bond lengths present in the structure of are 2.81(4)A and 2.79(5)A for the intra-

and inter-molecular hydrogen bonds respectively and this is indicative of strong hydrogen 

bonding interaction, in both these scenarios. For the modeled compound, a cage C-C distance of 

1.65(4) A is measured since this distance is the shortest of the cage bonds, it indicates that it is 

the C-C cage bond. This is greater than a single C-C distance but is within the limits for cage 

bond bonds, see chapter 14. It can be seen that there is some disorder in the cage itself, but this 

disorder is not large and the carbon atoms within the cage can be distinguished because of the 

shorter bond length. This means that the C-H part of the cage is not disordered and is fixed, this 

concurs with the envisaged inter-molecular interaction, see Figure 16.8, where both inter and 

intra-molecular interactions occur with the cage in the same relative geometry. 

16.10 The packing structure ofl-(2'-thiopheny\)-oriho-csLrborane viewed down tlie rings 
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16.11 The packing structure of l-(2'-thiophenyl)-orrA<M»rborane, viewed with rings side 

on 

It is concluded that the structure is twiimed and contains two separate conformers, with both 

inter- and intra-molecular interactions. This creates a disordered result when solving the X-ray 

diffraction data. Since this does not occur in the pyridyl analogues, it indicates the relative 

strengths of the C-H - N in comparison to the C-H- S hydrogen bonds, i.e. the strength of the C-

H - N bond ensures no ambiguity for hydrogen bonding. However it must be noted that the 

assumption that both the structures will undergo intra-molecular interaction, is based on the 

similarity of the thiophenyl to the pyridyl. However the exact analogue of the 2'-pyridyl 

structure would be a 2'-thiozine structure. Unfortunately the 2'-thiozine structure was not 

determined in the course of this thesis. 
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16.5 T H E S T R U C T U R E O F l-(2-PYRroYL)-2-(TRIMETHYLSTANNYL) 

O i ? m O C A R B O R A N E /SnMcs 

This structure is similar to the 2'-pyridyl compound, see section 16.1, in that is has both the 

carborane cage and the pyridyl ring in the same orientation. However there is a large difference 

between the structures, with the C-H group of the pyridyl in section 16.1 being replaced with the 

large bulky group SnMes (see Figure 16.12). 

Me Me 

S n — M e 

Figure 16,12 the structure of l-(2-pyridyI)-2-(trimethyIstannyI) orthocarhorme /SnMca 

This compound does not contain the C-H part of the cage with which to form hydrogen bonds 

and it is envisaged that the structure may have a N--Sn intra-molecular interaction. 

1- (2-pyridyl)-2-lithio-orthacarborane was initially prepared from n-BuLi and l-(2-pyridyl)-

orthocsLrhoranQ under a dry nitrogen atmosphere. This l-(2-pyridyl)-2-lithio-orthocarborane was 

then allowed to react in situ with McsSnCl in Et20. Filtration, by purification gave I-(2-pyridyl)-

2- (trimethylstannyl)-or//2ocarborane in 74% yield. The product had some structural aspects 

characterised by IR, NMR and elemental analyses. The characterization found no appreciable 

inter-molecular interaction. NMR spectroscopy was the next step wto try to identify a lithiated 

carborane derivative which contained a pendant pyridyl group. 

Large, colourless crystals were grown from Et20 and X-ray diffraction revealed a monomeric 

structure (see Figure 16.13). The structure appears to be a weak intra-molecular N -Sn 

interaction present (although the distance is long at 3.2 A, given the combined Van der Waals 

radius for tin and hydrogen is approximately 3.4 A). 
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Figure 16.13 The X-ray diffraction structure of l-(2-pyridyl)-2-(trimethyIstannyl) 

orthocurhornne /SnMca, with a probability of 50%. 

Extra credence is given to the intra-molecular interaction because the pyridyl ring is positioned 

so that it minimises this distance. There is also a slight angling of the Ccage-Sn and Ccagc-Cnng 

bonds toward each other. The bending in this structure is not large with the angles of C(21)-

C(2)-C(l) and C(2)-C(l)-Sn(l) being 117.4(3)° and 123.9(2)° respectively. The interaction is 

difficult to determine since the orientation of the ring and the SnMcs group would adopt a 

similar conformation because of the steric strain. As expected there is no 7i-stacking in the 

crystal so the ring does not adopt this conformation for 7c-stacking reasons, see Figure 16.14. 

The IR indicates a possible intra-molecular bond but is inconclusive in this respect. It is 

concluded that although the structure does have an intra-molecular interaction this is due to the 

forced conformation due to steric factors and it is therefore relatively weak. There is no 

evidence for a strong inter-molecular interaction i f there is an interaction then this is somewhat 

forced. The definition of the methyl groups is interesting, these groups are well defined and free 

of disorder. This indicates how sterically hindered the group is, both in the monomeric and 

packing senses (see Figures 16.13 and 16.14). 
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Figure 16.14 The packing structure of l-(2-pyridyl)-2-(trimethylstannyl) o/tAocarborane 

/SnMe3 
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16.6 SUMMARY 

In this study several similar structures were investigated to study the inter- and intra-molecular 

hydrogen bonding, it is seen that there is a great variety amongst these structures with 

reasonably slight alterations to the molecular structure. Given the dissimilarity in the hydrogen 

bonding it is not reasonable to use these structures to determine the exact arrangement of similar 

type systems, and problems may occur when trying to predict definite hydrogen bonding motifs. 

However in terms of simple prediction the results are encouraging and it would be reasonable to 

use these inter-molecular interactions to assist in the prediction of structures and so help in the 

scope of crystal engineering. This was illustrated in sections 16.1 and 16.2 with the 2'- and 3'-

pyridyl structures respectively, where the hydrogen bonding characteristics were correctly 

predicted before structural determination. 

Al l the structures seen exhibit hydrogen bonding characteristics to some extent, although with 

the Sn---H-N structure this appears to be minor. However the range, strengths and nature of 

these bonds are varied. Infrared spectroscopy gave an indication of the or//2£>-derivative l-(3'-

pyridyiyorthd, and the X-ray structure analysis found the inter-molecular C-H - N contact of 

2.11(3) A. Their IR spectra suggested that l-(2'-thiophenyl)-orr/io and we^^z-carboranes should 

both have inter-molecular hydrogen bonds, although an intra-molecular interaction would have 

been expected from the ortho case. The X-ray analysis shows a possible C-H - S intra-molecular 

interaction at 2.79(10) A. However, this interaction is long and not determinable by I.R.. It is 

speculated that this disorder is caused by a form of twinning, however attempts to model this 

twinning have been unsuccessftil. Overall the prediction of hydrogen bonding characteristics in 

these structures have only been somewhat successful. The presence of the carborane cage has a 

relatively large steric factor and this has an influence on the hydrogen bonding motifs. The 

steric effects of the carborane cages are predictable. 
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Me. Me 
Sn-Me 

Formula C7H15B10N C7H15B10N C6H14B10S C7Hi4BioNSn(Me)3 

Formula Weight 221.30 221.30 214.32 384.08 
Crystal Colour COLOURLESS COLOURLESS COLOURLESS COLOURLESS 
Crystal Description Needle Wedge Needle Block 

Temperature (K°) 150(2) 150(2) 150(2) 150(2) 

Wavelength (A) 1.54184 0.71073 0.71073 0.71073 

Crystal System Monoclinic Triclinic Monoclinic MonocUnic 

Space group F2(l)/n P-1 P2(l)/c P2(l)/c 

a=(A) 
b=(A) 
c=(A) 
a=n 
(3=(°) 
Y = n 

7.0570(10) 
18.029(4) 
9.899(2) 
90 
92.54 (3) 
90 

7.238(1) 
7.699(1) 
11.197(2) 
100.053(1) 
92.303(1) 
90.572(1) 

7.172(2) 
9.014(2) 
18.635(4) 
90 
93.122(30) 
90 

10.0093(2) 
13.5441(3) 
13.5157(2) 
90 
107.2800(10) 
90 

Volume (A') 1258.2(4) 613.94(2) 1203.0(4) 1749.58(6) 

Z 4 2 4 4 
Calculated Density 
(Mg/m^) 

1.168 1.197 1.183 1.458 

Absorption 
Coefficient (mm"^) 

0.390 0.057 0.221 1.446 

F (000) 456 228 440 760 

0 Range for 
Collection 

4.91 to 73.65 1.85 to 27.48 2.19 to 27.42 2.13 to 27.89 

Index Ranges 0<=h<=7, 
0<=k<=22, 
-12<=1<=12 

-9<=h<=9, 
-9<=k<=8, 
_14<=1<=14 

-9<=h<=9, 
-4<=k<=ll, 
-24<=1<=22 

-12<=h<=ll, 
-15<=k<=16, 
-15<=1<=17 

Reflections 
collected 

1985 4529 7641 8410 

Independent 
reflections 

1781 2783 2728 3149 

Data/restraints/para 
mets 

1781/0/168 2782/0/208 2728/0/167 3149/0/217 

Goodness-of-fit on 
F^ 

1.034 1.039 1.201 1.090 

Final R indices 
[I>2sigma(I)] 

0.0472 0.0454 0.0780 0.0310 

WR^ indices (all 
data) 

0.1433 0.1315 0.2210 0.0715 

Extinction 
coefficient 

0.0055(7) None None None 

Largest d i f f Peak 
and hole. (eA"̂ ) 

0.206^ 
-0.179 

0.284 
-0.241 

0.336 
-0.370 

0.408 
-0.613 

Table 16.1 Crystallographic data for the structures in this chapter 
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C H A P T E R 17; 

NON H Y D R O G E N BONDING CARBORANES. 

17.1 INTRODUCTION 

In the previous chapters the carboranes studied have all been concerned with hydrogen bonding 

and the subsequent possibilities of crystal engineering. For these studies the structures have had 

groups incorporated into them that greatly increase the likelihood of inter/intra molecular 

interaction and in particular hydrogen bonding. Of course not all carboranes contain such groups 

and many do not contain groups that would be considered likely to be involved in any hydrogen 

bonding. However as seen in chapter 15 the carborane units within a structure may be involved 

in hydrogen bonding without having any normal hydrogen bonding groups attached. 

The following chapter gives examples of structures that do not contain hydrogen-bonding 

groups and are not candidates for inter-molecular interactions. 

280 



17.2 T H E DEBORANATION O F O^OTO-CARBORANE B Y AN 

IMEVOPHOSPHORANE: A N O V E L CARBORANE AND T H E BORENIUM ADDUCT. 

17.2.1 Introduction 

The conversion of closo-l,2-C2Biollu into the nido-1 ,S-C2B9}lu anion by bases is a well-

known reaction. In this study X-ray diffraction analysis has for the first time structurally 

determined the carborane intermediate in this reaction. 

The c/o5o-icosahedral carboranes of the structure C2B10H12 have an extensive three dimensional 

aromatic chemistry, they are of interest in neutron scattering, metal extraction, supra-molecular 

chemistry and catalysis. They are usefiil for materials thermally stable or conducting or 

otherwise electronegative oligomers and polymers (Plesek, 1992). They are also extremely 

resilient to both high temperature and oxidizing agents. It has been shown that these structures 

have an important degradation reaction, being susceptible to nucleophilic attack by a select few 

powerful Lewis bases (e.g. fluorine amines) (Hawthorne et al, 1965). These can remove one of 

their BH units and become nido-shaped C2B9Hii^' (or C2B9H]2") anionic residues, see Figure 

17.1, these can bind metal ions strongly to the open C2B3 faces. However, although these base 

deboration reactions have been known for 35 years the mechanistic details have until now 

remained elusive. The X-ray diffraction studies of an adduct, C2BioHi2HNP(NMe2)3 formed in 

the nucleophilic attack by the novel deboronating base HNP(NMe2)3 on ortho carborane, 1,2-

C2B10H12, and of the novel dication, [(Me2N)3PNHBNP(NMe2)3]20^^, (which is an unexpected 

product when there are traces of water present) shown here have been used to shed more light 

on the mechanism. 

17.2.2 Experimental and Results 

For the conversion of the carborane anion nido-7,S-C2Bg}li2' from C/050-C2B10H12, imino-

tris(dimethylamino)phosphorane (HNP(NMe2)3 has proven to be effective, see Figure 17.2. For 

this reaction the NMR ( ' H , ' ' B and ^^B) spectra of the product revealed that it was present as a 

1:1 mixture of salts. These mixtures contained the expected H2NP(NMe2)3^ as well as the novel 

protonated tris(imino)borane B[(NP(NMe2)3)2(HNP(NMe2)3)]^ cations. The protonated 

tris(imino)borane is probably generated via the bis(imino)borane HBp»fP(NMe2)3]2 which is 

observed to occur, briefly, as a doublet in the '^B NMR. 

With the addition of dry HNP(NMe2)3 in toluene to the resultant product, a single crystal was 

formed. X-ray structure of this crystal was investigated by X-ray diffraction analysis and was 

found to be the novel carborane adduct C2BioHi2.HNP(NMe2)3. 
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H 

(1) (2) 

Figure 17.1 Scheme 1, The reaction of (1) to (2) 

NHP(NMe^)3 

HNP(NMe2)3 

(1) 

HNP(NMe2)3 

(3) 

HNP(NMe2)i 

-HB[NPMe2)3]: 

H2NP(NMe2)3 

(4) 

+ 

(Me2N)3PNH. 

2x 
H20/-HNP(NMe2). 

+ 

(Me2N)3PNH 

B HNP(NMe2)3 

(Me2N)3PNH^ HNP(NMe2)3 

(Me2N)3PNH HNP(NMe2)3 

(5) (6) 

Figure 17.2 Scheme 2, The reaction scheme from structure (1) to (3), (4), (5) and (6) 
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17.2.3 The X-ray Diffraction analysis of (3) 

The X-ray diffraction model is in good agreement with the intermediate observed in the NMR-

scale reactions and so this leads to the conclusion that this adduct is indeed the first structurally 

characterized intermediate in the conversion of the carborane anion nido-7,S-C2B9U.u' from 

C/050-C2B10H12. With the diffraction analysis it can be seen that the first step in the closo to nido 

reaction is when the base becomes attached to the most positively charged boron atom near the 

two neighboring carbon atoms. This cleaves the two B-C bonds and subsequently the length of 

the two B-B bonds to B(9) and B( l 1) is increased. 

Diffraction data for (3), were obtained on the Seimens SMART CCD diffractometer under a 

nitrogen atmosphere, see chapter 2 for details. The crystals produced were not of good quality 

and much time was spent on finding crystals suitable. The resultant diffraction and subsequent 

model from the diffraction analysis is of a reasonable high quality when considering how poorly 

the crystals appeared to diffract. It is seen from the model that the structure of (3), is the 

combination of HNP(NMe2)3 and B10C2H12. The representation of (3) in Figures 17.2 and 17.3 

has atom B12 with 5 bonds (3 boron, 1 carbon and 1 hydrogen), this however is not simple with 

only B12-B10 being within the normal B-B distance range. The other represented B-B bonds, 

B12-B9 and B12-B11, are 2.099 A and 2.091 A respectively. Perhaps a more correct 

representation would be for B12-B9 and B12-B11 to be considered as non-bonded interactions. 

The other B-B bond lengths are within the standard range of such bonds, see Table 17.1. There 

are no inter-molecular interactions present in the packing of this structure ( i f not considering the 

possible non-bonding interaction between B9 and B12), this is not unexpected since there is no 

ideal hydrogen donor groups. 

Bond Length (A) Bond Length (A) 

N(l)-B(12) 1.50 (1) B12-B9 2.099(6) 

B12-B10 1.761(4) B12-B11 2.091(6) 

C8-C7 1.529(7) P l - N l 1.650(4) 

P1-N2 1.630(4) P1-N3 1.623(4) 

P1-N4 1.623(4) 

Table 17.1 Selected bond lengths of (3) 
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Figure 17.3 X-ray diffraction structure of (3), with 50% probability 

17.2.4 The structure of the two carborane anions and the dication (6) 

In a similar way to the structure of (3), the crystals of (6) could not be produced of a high 

quality and degraded in an, but the subsequent diffraction analysis yielded data that, i f not of the 

highest quality, gave an accurate representation of the structure. 

The diffraction model of (6) is dominated by the dication [(Me2N)3PNHBNP(NMe2)3]20^''. As 

well as pure size of the dication, the dication contains much heavier and therefore higher 

electron density atoms than the two anions. There are no inter-molecular interactions in this 

structure and the cage carbon atoms could be distinguished and identified with relative ease. 
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Figure 17.4 the X-ray structure of (6), with 50% probability ellipsoids 
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17.3 CARBORANES W I T H NO E V T E R - M O L E C U L A R INTERACTIONS PRESENT. 

17.3.1 The structure of l,2-bis({l,2-diphenyl})<>r//r<>carborane (7) 

To a suspension of l,2-dilithioor//2ocarborane in Et20 at -78°C was added, under dry nitrogen 

atmospheric conditions, two equivalents of benzyl chloride. Swift, exothermic reaction 

followed, precipitating LiCl, which was removed by filtration. Removal of or//20carborane by 

vacuum sublimation, followed by fiirther purification gave l,2-bis-((l,2-

diphenyl)ethyl)or//2ocarborane (7) (See Figure 17.5), in 39% yield. The reason why (7) is 

obtained rather than l,2-dibenzylor//zocarborane is believed to be analogous to that for (8) (See 

Figure 17.5). Crystals of (7) suitable for X-ray diffraction were grown from a toluene solution. 

The crystal structure is shown in Figure 17.6 and 17.7. The structure of (7), does not contain any 

inter-molecular interactions, this is despite the presence of phenyl rings, which can be envisaged 

to 7r-interact. The lack of intermolecular interaction is due to the lack of suitable groups and the 

steric bulk of the units hinders any Ti-interaction fi-om the rings. 

(7) (8) 

Figure 17.5 l,2-bis({l^-diphenyl})ortAocarborane (7) and l>bis({l>di-2'-

picolyl}ethyl)ortAocarborane (8) 
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Figure 17.6 The asymmetric unit of (7) 

Figure 17.7 The structure of (7) 
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17.3.2 The structure of l,4-di(phenyl<?/-//rocarboranyl)benzene (9) 

l,4-di(phenylor^/2ocarboranyl)benzene (9), see Figure 17.8, was prepared by the reaction of two 

equivalents of B 1 0 H 1 2 with l,4-di(phenylethynyl)benzene in toluene. The reaction required two 

days at 90 °C (yield was 77%). Crystals suitable for X-ray diffraction were grown from 

cyclohexane. The bond lengths and angles in (9), see Figure 17.9 and 1,3,5-

tris(phenylorr/2ocarboranyl)benzene are similar. In both cases the carboranyl C-C distance is 

appreciably longer than that in orthocarhoranQ (1.630(6) A) (Davidson et al., 1996); this is 

believed to be due to the steric repulsion of the phenyl/phenylene rings. The bond lengths and 

angles in (9) correlate well with those found in the X-ray structures of the related compounds, 

i.e. l,4-bis-I-(2-methybr//20carboranyl)benzene (Henly et al, 1992). There are no inter-

molecular interactions in this structure. The lack of hydrogen bonding in this structure is not 

surprising since there are no groups within this structure that have typical hydrogen bonding 

groups. There is a centre of inversion in the middle of the joining phenyl ring in the solid state. 

This means that the ortho bonded rings are at 180° to each other. 

(9) 

Figure 17.8 The structure of l,4-di(phenybr//focarboranyI)benzene (9) 
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Figure 17.9 The X-ray diffraction structure of (9) 

17.3.3 The structure of 1,2-d\pheny\orthocsa'bonne (10) 

Two independent conformations of (10) exist as the structure. Both of these conformers are 

extremely similar with small differences in the bond lengths and slight deviations in the phenyl 

ring twisting. This structure does contain phenyl rings and these rings can be envisaged to be 

involved in 7c-stacking type interactions and therefor influence the packing. Given that there are 

two independent conformers, these may be as a result of this 7c-stacking. What is seen is that 

there is the closest link between two rings is quite long at 4.679 A. The long distance and lack 

of 7i-interaction may be due to the steric bulk of the carborane cage, as can be seen from Figure 

17.10 the cage would limit how close the rings can be to each other. There are no other inter-

molecular interactions. 

Figure 17.10 The X-ray structure of (10) 
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17.4 SUMMARY 

This shows that the structures in the previous chapters, which have used these groups to 

facilitate hydrogen bonding within the structures, are necessary in many cases to create 

hydrogen bonding within the structure. As expected the interaction between the structures is 

minimal with no sign of any TC-interactions occurring. The relative orientation of these structures 

within the solid state is determined by crystal packing forces and as a result are not as 

predictable as i f there were hydrogen bonding groups were present to direct inter-molecular 

interactions. 
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C H A P T E R 18; 

AN INVESTIGATION INTO S Y M M E T R I C A L TRIAZINES 

18.1 INTRODUCTION 

This chapter investigates triazine compounds with carborane cages attached. The principal multi-

carboranyl system that will be discussed is the tri-carboranyl triazine assembly. These are 

compounds which have three nitrogen and three carbon atoms joined together to form a six 

membered aromatic ring. In this study there are carborane cages attached to the carbons on the 

ring. There are three possible types of triazine systems possible, illustrated in Figure 18.1. 

Considering the bulk of the carborane unit, the 1,3,5-triazine isomer was chosen as the most 

suitable of the three isomers. It is also the most readily available, the most stable and the most 

readily derivatised (Boyd, 1997). 

There are many applications of triazines, and 1,3,5-triazines are commonly used as resins, 

herbicides and as constituents of dyestuflfs. Certain derivatives have explosive properties, whilst 

others are fire retardants (Boulton and M^i l l op , 1984). Some substituted triazines have also 

shown clathrate behavior ((Jessiman et al, 1990) and (Henderson et aL, 1995)) to be exhibited in 

forming a Piedfort-based host lattice to small molecules like 1,4-dioxane and isopropanol. The 

aromatic rings (1,3,5-triazines) lie above each other and play host to a small solvent molecule. 

.N .N 

N 

.N 

N N 

a) 1,2,3-triazine b) 1,2,4-triazine c) 1,3,5-triazine 

Figure 18.1: The three triazine isomers, a) 1,2,3-triazine, b) 1,2,4-triazine and c) 1,3,5-

triazine 
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Structures in the solid state with nitrogen heterocyclic chemistry often have hydrogen bonded 

lattices and with triazine chemistry this is also the case. This property has been shown to be 

usefiil in the field of crystal-engineering as a stabilizer in polymers which would otherwise be 

degraded by ultraviolet radiation (Keck et al., 1996). 

Certain 1,3,5-triazines have terpyridine-like ligands (Chan et al., 1995) and have been used to 

create luminescent complexes (Yang et al., 1996). 

As with icosahedral carboranes, 1,3,5-triazine derivatives have been shown to have second 

harmonic generation properties (Yonehara et al., 1994). The tri-carboranyl benzenes have been 

studied previously (Schoberl et al., 1997)), and it was of interest to make a comparison in 

reactivity, structure and electronic properties. The family of 1,3,5-triazines, are often referred to 

as s-triazines, and they can be synthesized by a variety of methods depending on which moieties 

are required in the ultimate triazine. 
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18.2 SYMMETRICALLY SUBSTITUTED TRIA2aNES 

18.2.1 Synthesis 

The chosen starting material was chosen to be cyanuric chloride C3N3CI3, since this was the most 

obvious and convenient material from which to begin the derivatisation of the triazine ring. Cyanuric 

chloride is relatively inexpensive, and the chlorine atoms can be substituted without much difiBculty, 

since the carbon atoms are activated by the adjacent nitrogen atoms. The same activation is observed for 

all six-membered nitrogen heterocyclic rings as all the carbons at positions ortho- and/or para- to the 

nitrogen atom are activated. This activation is ascribed to a lowering of the energies in the /7-orbitals that 

form the heterocycle and the energy becomes lower each time the nitrogen atoms are incorporated into 

the six-membered ring. Consequently nucleophilic attack on the carbons is much easier. Cyanuric 

chloride will readily lose its chlorine substituents, by nucleophilic substitution, to another substituent 

that may or may not help to stabilize the aromatic C3N3 ring. The final structure of the triazine formed is 

dependent upon the nature of the substituent introduced. Where the proposed substituent, R, is electron 

donating, mono substitution is favoured as electron density is pushed into the ring, stabilizing the 

aromatic system and subsequently reducing the ability of the other chlorines to react further. Alternately 

i f R is electron withdrawing, the reverse is true and trisubstitution is favoured. 

18.2.2 THE ASSEMBLY OF VARI-SUBSTITUTED TRIAZINES 

When the substituents are the same on tri-substituted, 1,3,5-triazines, cyanuric chloride then it is 

the perfect starting material, particularly when the R group is electron withdrawing. However, in 

order to synthesize mono- or di-functionalised triazines with either reactive sites for further 

substitution, or afready usefully functionaUsed remaining carbons, the triazine needs to be built. 

There are various ways in which this can be done, e.g. by reduction (i.e. LiAJKi) to remove 

unwanted chlorines (Smolin and Rapoport, 1959). 

The process involved to synthesis tri-carboranyl benzenes has afready been generally discussed, 

however, in ahering the chemistry of the central moiety from a carbocycle to a heterocycle, it is 

worth reviewing the synthetic strategies to such multi-carboranyl systems. Substitution of 1,3,5-

triazines is very much dependent on the nature of the introduced substituent, with tri-substitution 

being favoured with electron withdrawing moieties. Carboranes are strong electron-withdrawing 

groups, with or^/jo-carborane having the greatest electron withdrawing potential, followed by 

meta then para. It is possible to use the substitution of cyanuric chloride by R groups to slow 

294 



down and subsequently to control or tailor the degree of substitution, to give for example, a 

mono-substituted product. When the R functionality is a carborane, however, tri-substituted 

triazine was found to be the only multi-carboranyl product in the reaction between lithio-

carborane and cyanuric chloride. This was independent of the ratio of reagents, solvent, 

temperature, reaction time and whether the lithio-carborane was added to the cyanuric chloride or 

vice versa. The reaction itself was immediate, even when the reaction was conducted at -78°C. 

Although para-carhorsinQ is significantly less electron withdrawing than or//?o-carborane for all 

three isomers, either substituted or containing a carboranyl C-H fiinctionality, trisubstituted 

triazme was the only new carboranyl product. Any unreacted carborane was reclaimed 

unchanged, and unreacted cyanuric chloride was converted into cyanuric acid, which is in 

equilibrium with its keto tautomer, in the aqueous work-up (Horribin, 1963). 

Solid State NMR spectroscopy has been a very usefiil technique in the characterization of these 

products from the reactions between Mthio-meta- and lithio-p^zra-carborane and cyanuric chloride 

when the reactants were in the ratios 1:1, 2:1 and 3.1. The subsequent NMR studies (' 'B, '̂ C and 

' H ) on these insoluble products showed that this was indeed the case. I f mono- and di-substituted 

carboranes were formed then more than one nitrogen environment would be present. However it 

was seen was that only one signal was detected in each attempt, indicating that only one 

carboranyl-triazine product to be formed. Conversely, when a two-fold excess of cyanuric 

chloride was added to di\it\uo-ortho', meta- or para-carhoranQ it resulted in an msoluble pale 

yellow solid whose composition could not be determined. 
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18.3 P R O P E R T I E S O F TRIAZINE COMPOUNDS 

18.3.1 Degradation of multi-carboranyl triazines 

In the chemistry of classical 1,3,5-triazines, the heterocyclic ring is often susceptible to attack by 

various compounds, including hydrazines, (Grundmann and Kreutzberger, 1957) which bring 

about either ring-degradation or ring-opening reactions. With the reaction of s-triazine with N,N-

dimethylhydrazine the ring is cleaved forming l-formyl-2,2-dimethylhydrazine 2',2'-

dimethylhydrazone (Grundman, 1963). 

I f this were a viable synthetic alternative, the chemistry of these compounds could have been 

investigated more eagerly and, given their nature, may have usefiiUy led to novel polymeric and 

non-linear optical materials. There was an alternative possible outcome to the reaction between 

the tricarboranyl triazines and the hydrazine group of compounds, this reaction involves 

deboronation of the carborane cage. Hydrazine is electron-rich so there was always the possibility 

that the carborane cage, particularly ortho- although to a lesser extent me^<3-carborane, would be 

attacked and deboronated as a resuh of the basicity associated with the hydrazine fiinctionality. 

The predominant result of reactions between carboranyl triazines and hydrazine derivatives is 

deboronation. 

18.3.2 Thermal Stability of tri-carboranyl triazines 

Carboranes are reasonably thermally stable but they have been shown to undergo thermal 

rearrangenient to higher isomers, and reverse isomerisation from para to meta. (Zakharkin et al, 

1967). Unsubstituted carboranes have been shown to transform to higher isomers at 723 K and 

893 K for the ortho to meta and the meta to para conversions, respectively. The first of these is 

quantitative, but the meta to para rearrangement is relatively inefficient, and there a large amount 

of cage degradation also occurs. 

Para-caxhovanyX derivatives cannot be converted to a higher isomer, and are known to be 

thermally stable. To investigate its thermal stability, l,3,5-tri-(p«m-carboranyl)-benzene , which 

has been shown to pack in sheets, was heated in a fiirnace to 1473 K under a flow of argon, to 

give a clear, colourless hard fihn on the surface of the quartz sheet used to support the sample. 

On exposure to air over prolonged periods of time (3 days or more), this fihn became opaque, 

white and began to flake. 
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X-ray photoelectron spectroscopy (X.P.S.) conducted on the fihn produced after heating to 1473 

K, as a clear, colourless film on quartz and on tape had observed peaks attributable to oxygen Is, 

carbon 1 s, boron 1 s and silicon 2p. Unfortunately the elemental analysis of the product could not 

be calculated accurately, as it was unknown what percentage of the oxygen was attributable to 

the silica of the quartz plate or tape from which the measurement was recorded. The presence of 

carbon suggested that boron oxide was not the unique product. The carbon trace showed a 

"hump", indicative of bound carbon, possibly to boron. Boron was represented by a small peak. 

In XPS, the peak heights are not indicative of the quantity of each element present, as different 

nuclei have varying sensitivities. The elemental composition of a sample can be obtained by the 

multiplication of peak area by the relative sensitivity. 

Two experiments were also conducted on 2,4,6-tri-(para-carboranyl)-l,3,5-triazine at elevated 

temperature and pressure. The first raised the temperature of the autoclave to 623 K and a 

pressure of 70 bar for 12 hours, the second to 673 K and 63 bar for 15 hours. (The meking point 

of the compound was 649 K.) No change in the compound was observed on either occasion. 

Graphite, which has a similar layered sheets structure is converted to diamond at 1000 K and 104 

bar. 
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18.4 D I F F R A C T I O N STUDIES O F TRIAZINES 

18.4.1 X-ray structure of 2.4.6-tris-(2'-Phenyl-orrA<?-carboranyl)- 1.3.5-triazine 

I f the orientation of the R group itself is not taken into account then there are two possible 

isomers of this compound in the solid state, one in which two phenyl groups are directed upwards 

and the other down relative to the plane, and one in which all three phenyl groups face upwards, 

see Figure 18.2. In this case consideration of the phenyl groups twisting or the degree at which 

they are directed up or down is not taken into account, i f it were there would be an infinite 

number of possibilities. The isomer with "three up" is the structure that has been seen. This 

isomer has been solved previously for the benzene analogue, l,3,5-tri-(2'-phenyl-o/'^/zo-

carboranyl)-! ,3,5 benzene (II), of this compound (Herbertson, 1995). 

Figure 18.2 The two possible isomers of trisubstituted 1,3, 5-triazines 

This compound crystallizes in the space group R-3, which is the same as its benzene analogue. 

The unit itself is shown in Figure 18.3, and the three-fold symmetry is easily seen in the structure 

(see Figure 18.4). Al l three phenyl groups face upwards, lying above and leaning in towards the 

plane of the central triazine ring. 
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5>3 

Figure 18.3 The asymmetric unit of 2,4,6-tris-(2'-diphenyl-ort/K)-carboranyl)- 1^,5-triazine, 

with thermal ellipsoid probability of 50 % 

Figure 18.4 The structure of 2,4,6-tris-(2'-diphenyl-orr/ro-carboranyl)- 1^,5-triazine 

expanded for the whole molecule, clearly showing the three fold symmetry. 
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Since the electron withdrawing influence of the carborane cage is the same on each carbon of the 

triazine ring, no C3N3 ring distortion was expected or observed. The (C-N) bond lengths within 

this ring were found to be standard for any symmetrically substituted 1,3,5-triazine in the range 

of 1.336(2) A and 1.340(2) A. The C-N-C internal ring angle was smaller than the N-C-N ring 

angle due to the external lone pair on the ring nitrogen. It is clear that the ring is not uniform in 

the distribution of bond lengths and angles and as a resuh some of the aromaticity must 

subsequently be lost. Due to the steric bulk of the carborane groups, the triazine ring distances 

and angles could quite easily be distorted,. What is seen is that the angles observed were typical 

of symmetrically substituted 1,3,5-triazines, where the internal ring angles C-N-C and N-C-N are 

usually within the ranges 112-117° and 123-128° respectively ((Belitskus et al., 1965), (BuUen et 

al., 1972) and (Brown, et al., 1976)). 

The carboranyl cage carbon to triazine ring bond length showed no deviation, at 1.510(2) A, from 

the cage carbon to central benzene ring, (1.509(3) A). The cage carbon to phenyl ring distance 

typically varies only slightly with a second substituent on phenyl-(?r//2o-carboranyl derivatives, 

with the second substituent having very little influence on the exo cage C-phenyl bond length, (see 

table 18.1, for a summary of the bond lengths and angles). 

Bond Length (A) 

C1-C2 1.686(2) 

C1-C15 1.511(2) 

C2-C13 1.510(2) 

C13-N14 1.336(2); 1.340(2) 

Torsion Angles n 

N14,C13,C2,C1 63.8 

C13,C2,C1,C15 0.2 

Table 18.1 Summary of selected bond lengths and torsion angles 

As discussed previously the cage carbon-carbon distances can indicate of the amount of electron 

density available for cage bonding. Typically, i f the cage is electron rich, the cage C-C distance 

will lengthen and the cage will become more open. I f electron density is drawn out of the cage by 

an exo substituent, the opposite is true. In the crystal structure the cage C-C distance for the 

triazine derivative was 1.686(2) A. This is in contrast to diphQuyUortho- carborane where the 

cage C-C bond was lengthened as a result of steric repulsions between the two phenyl groups 

(Lewis and Welch, 1993), the tri-(phenyl-orr/2o-carboranyl)-benzene and triazine derivatives were 
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twisted and so these types of repulsions were kept to a minimum. However, comparison with 1-

phenyl-or^/^o-carborane, where the cage C-C bond was 1.640(5) A (Brain et al., 1996) showed 

there was possibly a degree of steric repulsion present which could break bonds and open the 

cage. Within the cage itself, the only bond found to be reduced with respect to diphenyl-or^/jo-

carborane is the cage C-C distance. Although, the distances from the triazine substituted carbon 

to the upper CB4 face layer were more or less the same as those of the diphenyl-or//zo-carborane, 

every other cage connectivity was longer. This gave a larger cage size and was consistent with the 

VSEPR bonding principle of less electron density forming a longer, weaker bond. Generally, 

there is less electron density available for cage bonding, although the electronic distribution may 

have the most density focused on the cage carbons and the least on the antipodal atoms, resulting 

in very slight cage distortion. 

Within the crystal lattice, the molecules packed in pairs with the C3N3 rings lymg in parallel 

planes and with the phenyl groups of one molecule all oriented upwards, whilst those of the 

second molecule face down. Layers of these pairs formed stacks with the C3N3 rings forming a 

channel surrounded by phenyl-carboranyl groups. 

18.4.2 X-ray structure of 2,4,6-tris-(2'-phenyl-/7arfl-carboranyl)-1,3,5-triazine. 

This compound was expected to follow previous examples akeady discussed and crystallize from 

CDCI3 as solvent, with three fold, R-3 space group as might have been expected. However this is 

not the case and it crystallized in the P-1 space group where one of the three phenyl groups was 

twisted at 90° to the other two, which lie in the plane of the C3N3 central ring. This configuration 

is common with molecules with a Csv symmetry. The main reason for the lack of symmetry in the 

structure is due to the presence of disordered solvent molecules in the unit cell. These are situated 

in such a position that all potential space group symmetry of the triazine molecule is lost. 

All of the B-B and C-B connectivities were within accepted ranges, from 1.75(2)-1.82(2) A and 

1.686(13)-l.749(13) A, respectively. Perturbations were not observed in the phenyl groups. 

There are no significant differences observed between the bond lengths of the three cages. 

The structure of 2,4,6-tri-/7ar<2-carboranyl-l,3,5-triazine has been shown, by means of X-ray 

powder diffraction, to pack in sheets. The phenyl-para-carboranyl derivative also packs in sheets, 

with the perpendicular phenyl group slotted m between the other two phenyl-pora-carboranyl 

groups of the next molecule in a head-to-tail manner, the layers above and below running in the 

opposite direction, (see Figure 18.5) 
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The dissimilar electron withdrawing potentials of the two carborane isomers are manifested in 

the crystal structures of the two tri-(carboranyl)-triazines studied. Comparison of this structure 

with that of the ortho-isomQT showed virtually no difference in the bond lengths and angles of the 

central C3N3 ring. Since the triazine was symmetrically substituted in each example, this was 

perhaps not surprising. 

Figure 18.5 The structure of 2,4,6-tris-(2'-phei^fl-para-carboryl)-l^^triazine with 50% 

thermal ellipsoids. Disordered solvent is not shown. 
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18.5 fflGH PRESSURE EXPERIMENTS 

Two experiments were carried out under the supervision of Mr. D. Hunter of Durham University, 

with 2,4,6-tri-para-carboranyl)-l ,3,5-triazine. In both the sample was placed inside a glass sleeve 

inside an autoclave under a positive nitrogen pressure. The sample (0.1079g) was taken to a 

maximum pressure of 70 bar at 623 K for 15 hours. The fmal product was slightly yellow 

compared to the white starting material, but no change in the compound was noted. 

The run was repeated with a pressure of 63 bar and a temperature of 673 K. Again, no change 

was observed. 
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18.6 SUMMARY 

The synthesis, properties and structures of a novel group of compounds, the mono-, di- and tri-

(carboranyl)-l,3,5-triazines, have been investigated in this chapter. 

The synthesis of 2,4,6-tri-(carboranyl)-l,3,5-triazines has been shown to be facile, this being the 

unique multi-carboranyl product from the reaction of \ithio-ortho-, meta- or para- substituted or 

unsubstituted carborane with cyanuric chloride. Their synthesis has been shown to be far simpler 

and higher yielding than the analogous benzene derivatives, where the products are obtained from 

reaction of a decaborane adduct with an acetylene, or through copper- or palladium-catalyzed 

coupling reactions. Carboranyl triazines were synthesized by first derivatising the triazine, and 

mono-carboranyl triazines often were , formed from reaction of a triazinyl-acetylene with a 

decaborane adduct. In these compounds, the presence of inter-molecular hydrogen bonding 

interactions was postulated. A structural mvestigation of these insoluble compounds, namely 

2,4,6-tn-{meta' and /7ar«-carboranyl)-l,3,5-triazines, has shown them to pack in planes. The 

same layers were observed for l,3,5-tri-(/?arra-carboranyl)-benzene, which has no potential to 

hydrogen bond. This suggested it was the size and shape of the molecules, and not the hydrogen 

bonding interactions, which directed the packing arrangement. 

An X-ray diffraction study of 2,4,6-tri-(2'-phenyl-or//;o-carboranyl)-l,3,5-triazine has shown the 

crystal structure to be of the same nature as the benzene analogue. Crystals of the para-isomex 

reveal it to pack as interlocking molecules in a layer arrangement. 

The tri-carboranyl triazines were stable compounds, both thermally and chemically. The triazine 

ring remained intact when the compound was reacted with hydrazine derivatives. Similar 

conditions were known to cleave the C3N3 ring in organic systems. The transformation of 1,3,5-

triazine to the meta isomer occurs at 673 K. The para isomer has disordered solvent present in 

the X-ray structure and therefore has high experimental error. The absorption coefficient is much 

greater for the para isomer and this is due to the presence of the solvent and the solvent 

dramatically decreases the quality of data, this is seen when comparing to the ortho isomer. The 

crystallographic data is summarised in Table 18.2. However the structure is of high enough 

resolution to compare it with the analogous structures in this chapter. 
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2.4.6-trisn{2^-tnpheny\-ortho- 2,4,6-tris-(l, 2'-phenyl-/;ara-
carboranyl)- 1.3.5-triazine - (I) carboranyl)-! ,3,5-triazine 

Formula C27H45B30N3 C31 Hi3 B30 N3O2 

Formula Weight 735.96 783.64 
Crystal Dimensions 0.4x0.35x0.35 0.4x0.2x0.1 
(mm) 
Temperature (K°) 150(2) 293(2) 

Wavelength (A) 0.71073 0.71073 
Crystal System Trigonal Triclinic 
Space group R-3 P-1 
a=(A) 19.815(1) 7.24(14) 
b=(A) 19.815(1) 15.95(3) 
c=(A) 18.159(1) 20.93(4) 

a=n 90 78.06(3) 

(3= n 90 80.50(3) 

y=n 120 81.55(3) 
Volume (A^) 6175.2(7) 2319.1(8) 
Z 6 2 
Calculated Density 1.187 1.223 
(Mg/m^) 
Absorption Coefficient 0.058 0.720 
(mm-̂ ) 
F (000) 2268 838 
0 Range for Collection 

n 
1.63 to 27.47 1.00 to 30.51 

Index Ranges -17<=h<=25, -10<=h<=10, Index Ranges 
-25<=k<=23, -22<=k<=21, 
-22<=1<=23 -29<=1<=16 

Reflections collected 14445 19334 
Independent 3147 12364 
reflections 
Data/restraints/ 3107/0/241 12364/0/588 
Parameters 
Goodness-of-fit on F̂  1.143 1.570 
Final R indices 0.0433 0.2257 
[I>2sigma(I)l 
R indices (all data) 0.1411 0.4475 
Largest diff. Peak and 0.241 and-.246 1.423 and-0.500 
hole (e.A-̂ ) 

Table 18.2 X-ray dififraction data 
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POST GRADUATE COLLOOUIA, LECTURES AND SEMINARS FROM INVITED 

SPEAKERS 

1995 

October 11 Prof P. Luger, Frei Univ Berlin, Germany 

Low Temperature Crystallography 

October 13 Prof R. Schmutzler, Univ Braunschweig, Germany. 

Calixarene-Phosphorus Chemistry: A New Dimension in Phosphorus 

Chemistry 

October 18 Prof A. Alexakis, Univ. Pierre et Marie Curie, Paris, 

Synthetic and Analytical Uses of Chiral Diamines 

October 25 Dr.D.Martin Davies, University of Northumbria 

Chemical reactions in organised systems. 

November 1 Prof W. Motherwell, UCL. 

New Reactions for Organic Synthesis 

November 3 Dr B. Langlois, University Claude Bernard-Lyon 

Radical Anionic and Psuedo Cationic Trifluoromethylation 

November 8 Dr. D. Craig, Imperial College, London 

New Stategies for the Assembly of Heterocyclic Systems 

November 15 Dr Andrea Sella, UCL, London 

Chemistry of Lanthanides with Polypyrazoylborate Ligands 

November 17 Prof David Bergbreiter, Texas A&M, USA 

Design of Smart Catalysts, Substrates and Surfaces fi-om Simple Polymers 

November 22 Prof. I Soutar, Lancaster University 

A Water of Glass? Luminescence Studies of Water-Soluble Polymers. 

November 29 Prof Dennis Tuck, University of Windsor, Ontario, Canada 

New Indium Coordination Chemistry 
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December 8 Professor M.T. Reetz, Max Planck Institut, Mulheim 

Perkin Regional Meeting 

1996 

January 10 Dr Bill Henderson, Waikato University, NZ 

Electrospray Mass Spectrometry - a new sporting technique 

January 17 Prof J. W. Emsley , Southampton University 

Liquid Crystals: More than Meets the Eye 

January 24 Dr Alan Armstrong, Nottingham Univesity 

Alkene Oxidation and Natural Product Synthesis 

January 31 Dr J. Penfold, Rutherford Appleton Laboratory, 

Soft Soap and Surfaces 

February 7 Dr R.B. Moody, Exeter University 

Nitrosations, Nitrations and Oxidations with Nitrous Acid 

February 12 Dr Paul Pringle, University of Bristol 

Catalytic Self-Replication of Phosphines on Platinum(0) 

February 14 Dr J. Rohr, Univ Gottingen, Germany 

Goals and Aspects of Biosynthetic Studies on Low Molecular Weight 

Natural Products 

February 21 Dr C R Pulham, Univ. Edinburgh 

Heavy Metal Hydrides - an exploration of the chemistry of stannanes and 

plumbanes 

February 28 Prof E. W. Randall, Queen Mary & Westfield College 

New Perspectives in NMR Imaging 

March 6 Dr Richard Whitby, Univ of Southampton 

New approaches to chiral catalysts: Induction of planar and metal centred 

asymmetry 
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March 7 Dr D.S. Wright, University of Cambridge 

Synthetic Applications of Me2N-p-Block Metal Reagents 

March 12 RSC Endowed Lecture - Prof V. Balzani, Univ of Bologna 

Supramolecular Photochemistry 

March 13 Prof Dave Garner, Manchester University 

Mushrooming in Chemistry 

April 30 Dr L.D.Pettit, Chakman, lUPAC Commission of Equilibrium Data 

pH-metric studies using very small quantities of uncertain purity 

1996 

October 9 Professor G. Bowmaker, University of Auckland, NZ 

Coordination and Materials Chemistry of the Group 11 and Group 12 

Metals : Some Recent Vibrational and Solid State NMR Studies 

October 14 Professor A. R. Katritzky, University of Gainesville,University of Florida, 

USA 
Recent Advances in Benzotriazole Mediated Synthetic Methodology 

October 16 Professor Ojima, Guggenheim Fellow, State University of New York at 

Stony Brook 

Silylformylation and Silylcarbocyclisations in Organic Synthesis 

October 22 Professor Lutz Gade, Univ. Wurzburg, Germany 

Organic transformations with Early-Late Heterobimetallics: Synergism and 

Selectivity 

October 22 Professor B. J. Tighe, Department of Molecular Sciences and Chemistry, 

University of Aston 

Making Polymers for Biomedical Application - can we meet Nature's 

Challenge? 
Joint lecture with the Institute of Materials 

309 



October 23 Professor H. Ringsdorf (Perkin Centenary Lecture), Johannes Gutenberg-

Universitat, Mainz, Germany 

Function Based on Organisation 

October 29 Professor D. M. Knight, Department of Philosophy, University of Durham. 

The Purpose of Experiment - A Look at Davy and Faraday 

October 30 Dr Philip Mountford, Nottingham University 

Recent Developments in Group IV Imido Chemistry 

November 6 Dr Melinda Duer, Chemistry Department, Cambridge 

Solid-state NMR Studies of Organic Solid to Liquid-crystalline Phase 

Transitions 

November 12 Professor R. J. Young, Manchester Materials Centre, UMIST 

New Materials - Fact or Fantasy? 

Joint Lecture with Zeneca & RSC 

November 13 Dr G. Resnati, Milan 

Perfluorinated Oxaziridines: Mild Yet Powerful Oxidising Agents 

November 18 Professor G. A. Olah, University of Southern California, USA 

Crossing Conventional Lines in my Chemistry of the Elements 

November 19 Professor R. E. Grigg, University of Leeds 

Assembly of Complex Molecules by Palladium-Catalysed Queueing 

Processes 

November 20 Professor J. Earnshaw, Deptartment of Physics, Belfast 

Surface Light Scattering: Ripples and Relaxation 

November 27 Dr Richard Templer, Imperial College, London 

Molecular Tubes and Sponges 

December 3 Professor D. Phillips, Imperial College, London 

"A Little Light Relief-
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December 4 Professor K. Muller-Dethlefs, York University 

Chemical Applications of Very High Resolution ZEKE Photoelectron 

Spectroscopy 

December 11 Dr Chris Richards, Cardiff University 

Sterochemical Games with Metallocenes 

1997 

January 15 Dr V. K. Aggarwal, University of Sheffield 

Sulfur Mediated Asymmetric Synthesis 

January 16 Dr Sally Brooker, University of Otago, NZ 

Macrocycles: Exciting yet Controlled Thiolate Coordination Chemistry 

January 21 Mr D. Rudge, Zeneca Pharmaceuticals 

High Speed Automation of Chemical Reactions 

January 22 Dr Neil Cooley, BP Chemicals, Sunbury 

Synthesis and Properties of Alternating Polyketones 

January 29 Dr Julian Clarke, UMIST 

What can we learn about polymers and biopolymers from computer-

generated nanosecond movie-clips? 

February 4 Dr A. J. Banister, University of Durham 

From Runways to Non-metallic Metals - A New Chemistry Based on 

Sulphur 

February 5 Dr A. Haynes, University of Sheffield 

Mechanism in Homogeneous Catalytic Carbonylation 

February 12 Dr Geert-Jan Boons, University of Birmingham 

New Developments in Carbohydrate Chemistry 

February 18 Professor Sir James Black, Foundation/King's College London 

My Dialogues with Medicinal Chemists 
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February 19 Professor Brian Hayden, University of Southampton 
The Dynamics of Dissociation at Surfaces and Fuel Cell Catalysts 

February 25 Professor A. G. Sykes, University of Newcastle 

The Synthesis, Structures and Properties of Blue Copper Proteins 

February 26 Dr Tony Ryan, UMIST 

Making Hairpins from Rings and Chains 

March 4 Professor C. W. Rees, Imperial College 

Some Very Heterocyclic Chemistry 

March 5 Dr J. Staunton FRS, Cambridge University 

Tinkering with biosynthesis: towards a new generation of antibiotics 

March 11 Dr A. D. Taylor, ISIS Facility, Rutherford Appleton Laboratory 

Expanding the Frontiers of Neutron Scattering 

March 19 Dr Katharine Reid, University of Nottingham 

Probing Dynamical Processes with Photbelectrons 

1997 

October 8 Prof E. Atkins, Department of Physics, University of Bristol 

Advances in the control of architecture for poly amides: from nylons to 

genetically engineered silks to monodisperse oligoamides 

October 15 Dr. R. Mark Ormerod, Department of Chemistry, Keele University 

Studying catalysts in action 

October 21 Prof. A. F. Johnson, IRC, Leeds 
Reactive processing of polymers: science and technology 

October 22 Prof. R.J. Puddephatt (RSC Endowed Lecture), University of Western 

Ontario 

Organoplatinum chemistry and catalysis 
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October 23 Prof M.R. Bryce, University of Durham, Inaugural Lecture 
New Tetrathiafiilvalene Derivatives in Molecular, Supramolecular and 

Macromoleculai" 
Chemistry: controlling the electronic properties of organic solids 

October 29 Prof Bob Peacock, University of Glasgow 

Probing chirality with circular dichroism 

October 28 Prof A P de Silva, The Queen's University, Belfast 

Luminescent signalling systems 

November 5 Dr Mimi Hii, Oxford University 

Studies of the Heck reaction 

November 11 Prof V Gibson, Imperial College, London 

Metallocene polymerisation 

November 12 Dr Jeremy Frey, Department of Chemistry, Southampton University 

Spectroscopy of liquid interfaces: from bio-organic chemistry to atmospheric 

chemistry 

November 19 Dr Gareth Morris, Department of Chemistry, Manchester Univ. 

Pulsed field gradient NMR techniques: Good news for the Lazy and DOSY 

November 20 Dr Leone Spiccia, Mpnash University, Melbourne, Australia 

Polynuclear metal complexes 

November 25 Dr R. Withnall, University of Greenwich 

Illuminated molecules and manuscripts 

November 26 Prof R.W. Richards, University of Durham, Inaugural Lecture 

A random walk in polymer science 

December 2 Dr C.J. Ludman, University of Durham 

Explosions 

December 3 Prof A.P. Davis, Department, of Chemistry, Trinity College Dublin. 

Steroid-based frameworks for supramolecular chemistry 
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December 10 Sir Gordon Higginson, former Professor of Engineering in Durham and 

retired Vice-Chancellor of Southampton Univ. 

1981 and all that. 

December 10 Prof Mike Page, Department of Chemistry, University of Huddersfield 

The mechanism and inhibition of beta-lactamases 

1998 

January 14 Prof David Andrews, University of East Anglia 

Energy transfer and optical harmonics in molecular systems 

January 20 Prof J. Brooke, University of Lancaster 

What's in a formula? Some chemical controversies of the 19th century 

January 21 Prof David Cardin, University of Reading 

January 27 Prof Richard Jordan, Dept. of Chemistry, Univ. of Iowa, USA. 

Cationic transition metal and main group metal alkyl complexes in olefm 

polymerisation 

January 28 Dr Steve Rannard, Courtaulds Coatings (Coventry) 

The synthesis of dendrimers using highly selective chemical reactions 

February 3 Dr J, Beacham, ICI Technology 

The chemical industry in the 21st century 

February 4 Prof P. Fowler, Department of Chemistry, Exeter University 

Classical and non-classical fiillerenes 

February 17 Dr S. Topham, ICI Chemicals and Polymers 

Perception of environmental risk; The River Tees, two different rivers 

February 18 Prof. Gus Hancock, Oxford University 

Surprises m the photochemistry of tropospheric ozone 
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February 24 Prof R. Ramage, University of Edinburgh 

The synthesis and folding of proteins 

February 25 Dr C. Jones, Swansea University 

Low coordination arsenic and antimony chemistry 

March 4 Prof T.C.B. McLeish, IRC of Polymer Science Technology, Leeds 

University 

The polymer physics of pyjama bottoms (or the novel rheological 

characterisation of long branching in entangled macromolecules) 

March 11 Prof M.J. Cook, Dept of Chemistry, UEA 

How to make phthalocyanine films and what to do with them. 

March 17 Prof V. Rotello, University of Massachusetts, Amherst 

The interplay of recognition & redox processes - from flavoenzymes to 

devices 

March 18 Dr John Evans, Oxford University 

Materials which contract on heating (from shrinking ceramics to bullet proof 

vests) 
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