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ABSTRACT 

Many studies have reported deficient or intermittent patterns of natural 

regeneration in temperate deciduous woodland. The present study aimed to assess the 

relative impact of herbivore-mediated plant mortality on the natural regeneration 

dynamics of representative tree species (Acer pseudoplatanus, Betula pendula, 

Fraxinus excelsior, Ilex aquifolium, Sorbus aucuparia, Taxus baccata and Ulmus 

glabra) in representative temperate deciduous woodland (Shipley Wood and Derwent 

Gorge, County Durham). Sapling density and the density, spatial association and size 

distribution of adult tree populations varied significantly between tree species and 

study sites, reflecting contrasting patterns of current and historical regeneration. 

Rates of post-dispersal seed predation and seedling herbivory were quantified 

using field-based 'cafeteria' trials. Rodents were the principal agents responsible for 

seed predation, whereas seedling herbivory was attributable to a mixed suite of 

herbivores including invertebrates, rodents and larger mammals. Rates of seed 

predation and seedling herbivory varied significantly between tree species, most likely 

reflecting individualistic, trade-off responses to chemical and physical attributes. 

Fine-scale spatial variation most likely reflected the preferential foraging of rodents 

beneath protective vegetation cover. There was no consistent evidence to support the 

hypothesis that dispersed seeds may escape disproportionately high offspring 

mortality beneath parent plants resulting from increased herbivore activity. 

Natural seedling density varied significantly between years and between tree 

species, according to the abundance of viable seeds produced by conspecific adult 

trees. Although seedling survivorship varied significantly between species, the 

survivorship of each species was similar between years and between cohorts of the 

same year. Canopy cover, field layer cover or correlated factors were significant 

determinants of seed germination and seedling emergence, establishment and survival, 

according to age- and species-specific tolerances. 

In relative terms, patterns of natural regeneration were primarily herbivore-

limited (Acer and Taxus), microsite-limited (Betula, Fraxinus, Ilex and Ulmus) or 

limited by herbivores and microsites (Sorbus). The availabihty of viable seeds may 

have also limited the recruitment of Ilex, Sorbus, Taxus and Ulmus. Vegetative 

expansion, mast seeding, seed bank regeneration and repeated, prolonged 

reproduction may have reduced the actual impact of herbivory on natural 

regeneration, such that long-lived iteroparous tree species were unlikely to have been 

critically dependent on current recruitment. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 GLOBAL VEGETATION PATTERNS 

It is well established that large-scale, geographic patterns of global vegetation 

are determined by climatic variables, particularly the seasonality of temperature and 

precipitation, that may be incorporated into classification schemes and predictive 

models to describe the physiognomy and distribution of plant formations, or 'biomes' 

(Holdridge, 1947; Guetter & Kutzbach, 1990; Prentice et al, 1992). 

Forest ecosystems account for more than fifty per cent of total biosphere net 

primary productivity and more than eighty-five per cent of total biosphere biomass 

(Ricklefs, 1990; Whittaker & Likens, 1975). In a global biome model, Prentice et al. 

(1992) distinguished seven dominant tree types and ten unique combinations of 

dominant tree types that were constrained by the primary driving variables of annual 

accumulated temperature over 5"C, mean coldest month temperature and an index of 

drought incorporating the available water capacity of soil and the seasonality of 

precipitation (Tables 1.1 and 1.2). Tropical rain forest, dominated by tropical 

evergreens, was predicted to occur only in the wettest regions of the tropics 

(precipitation >95% of evaporative demand), where the mean temperature of the 

coldest month was greater than 15.5^C. In contrast, boreal evergreen and 

summergreen dominated taiga was predicted to occur where winters were cold (-19 to 

-3 5*̂ 0) and precipitation met over 75% of demand. Temperate summergreen trees, 

cool-temperate conifers and boreal summergreen trees dominated in temperate 

deciduous forest, that was predicted for climates with cool winters (-2 to S^'C) and 

65% of precipitation demand , and those with colder winters (down to -15°C) where 

precipitation was insufficient (<75% of demand) for boreal evergreen conifers. 

At a local scale, the unique interactions of climate, vegetation, topography and 

parent materials determine the characteristics of soils and the biological systems they 

support (Archibold, 1995). Intraspecific and interspecific competition for resources 

within plant communities and the loss of photosynthetic and reproductive material to 

herbivores may also influence plant recruitment and community composition. 



Table 1.1. Dominant tree types and corresponding environmental constraints (Tc, 
mean temperature of coldest month; GDDmin, growing degree-days over 5°C; a, 
Priestley-Taylor coefficient of annual moisture availability) described by Prentice et 
al. (1992). 

Tree type Tc GDDmin a 
Min max min Max 

Tropical evergreen 15.5 0.80 
Tropical raingreen 15.5 0.45 0.95 
Warm-temperate evergreen 5 0.65 
Temperate summergreen -15 15.5 1200 0.65 
Cool-temperate conifer -19 5 900 0.65 
Boreal evergreen conifer -35 -2 350 0.75 
Boreal summergreen 5 350 0.65 

Table 1.2. Combinations of dominant tree types constituting forest biomes described 
by Prentice etal. (1992). 

Forest biome Dominant tree types 

Tropical rain forest Tropical evergreen 

Tropical seasonal forest Tropical evergreen, Tropical raingreen 

Tropical dry forest/savanna Tropical raingreen 

Broad-leaved evergreen/ warm Warm-temperate evergreen 
mixed forest 

Temperate deciduous forest Temperate summergreen. Cool-temperate conifer, 
Boreal summergreen 

Cool mixed forest Temperate summergreen. Cool-temperate conifer, 
Boreal evergreen conifer, Boreal summergreen 

Cool conifer forest Cool-temperate conifer. Boreal evergreen conifer, 
Boreal summergreen 

Taiga Boreal evergreen conifer, Boreal summergreen 

Cold mixed forest Cool-temperate conifer. Boreal summergreen 

Cold deciduous forest Boreal summergreen 

1.1.1. Characteristics of temperate deciduous forest 

Climatic conditions in temperate forest regions alternate between warm, moist 

summers and mild winters. Seasonality is determined more by temperature than by 

precipitation, according to latitude and continentality. Seasonal variation has favoured 



the widespread development of deciduous broad-leaf forests in the northem 

hemisphere (western and central Europe, eastern Asia and eastern North America) 

(Archibold, 1995). In the southern hemisphere, temperate deciduous forests are 

restricted to the drier parts of the southern Andes. Deciduous tree species are replaced 

by conifers on higher slopes and broad-leaved evergreens in more southerly locations 

(Eyre, 1968), reflecting gradients of temperature and drought, respectively. 

Although most of lowland Europe receives between 500 and 750mm annual 

precipitation, climatic conditions become progressively drier eastwards towards the 

continental interior (Archibold, 1995). In maritime locations, including the British 

Isles, temperatures t3^ically average 3-5''C in the winter and 15-17''C in the summer, 

rarely exceeding 30*'C. In contrast, average summer temperature increases to 

approximately 22''C eastwards through the temperate deciduous forest region of 

central Russia and average winter temperatures decrease from -4 to -15'̂ C. 

The vegetation dynamics of temperate deciduous forest reflect the 

physiological responses of plants to seasonal variation in climate (Archibold, 1995). 

Tree growth resumes in the spring in response to longer day lengths and increasing 

temperatures. Incident radiation penetrating to the forest floor decreases from 50-70% 

when trees are leafless, to less than 10% when leaves are fully expanded (Tasker & 

Smith, 1977). Consequently, many shade-intolerant herbaceous species flower in the 

early spring to precede the maximum cover of the canopy. These are replaced by more 

shade-tolerant species as the canopy develops and by evergreen species in autumn and 

winter. Tree species also vary in light requirements, reflecting competitive ability and 

successional status. Leaf senescence marks the end of the growing period, when trees 

enter leafless winter dormancy in response to shorter days and cooler temperatures. 

Deep innate dormancy is typically broken by exposure to low temperatures for more 

than one month, until chilling requirements have been satisfied. Long, warm spring 

days then stimulate bud break and the growth of new buds and twigs. 

In mature temperate deciduous forest, net primary productivity averages 10 

tonnes per hectare per year and plant biomass typically ranges from 120 to 300 tonnes 

per hectare above ground and 30 to 80 tonnes per hectare as roots (DeAngelis et al, 

1981, cited in Archibold, 1995). In European mixed oak forest, Duvigneaud & 

Denaeyer-De Smet (1970) estimated the partitioning of total aerial production each 



year between new woody growth (50%), new foliage (26%) and fruits, flowers and 

other materials returned as litter (17%)). Shrub and herbaceous field layer species 

contributed a further two and five per cent of total annual production, respectively. 

Excluding large trunks, litterfall in deciduous forest ranges from 324 to 624 grams per 

square metre per year, with leaves contributing 53 to 88 per cent of total litterfall 

(DeAngelis et a/., 1981, cited in Archibold, 1995). 

Soils of the European deciduous forest region are characterised by abundant 

biological activity, high nutrient content and a deep, rich humus layer. These 'brown 

earths' are slightly acidic, typically ranging from pH 5.5-6.5. 'Podsols' may develop 

beneath dense deciduous woodland where cool humid conditions, canopy shade or an 

accumulation of acid litter slow decomposition (Mackney, 1961). 

Regeneration within established temperate woodland is largely confined to 

openings in the canopy, or 'gaps', created by disturbances (Peterken, 1996). 

Accordingly, gap-phase regeneration is spatially and temporally irregular; its timing 

and composition depending on gap size, the coincidence of mast seeding and gap 

formation, and the response of individual species to the dynamics of canopy structure 

and ground conditions. Small canopy gaps, formed by the loss of individual trees or 

small groups, are more typical of temperate woodland than large canopy gaps, created 

by catastrophic disturbances. In Britain, wind is the principal source of canopy 

disturbance, although fire, drought, pathogenic fungi, herbivory, flood damage, snow 

and ice may occasionally cause substantial damage to natural woodland. 

Five unique responses to gap-formation have been recognised (Bazzaz, 1983, 

cited in Peterken, 1996); 1) Crown expansion - canopy gaps closed by lateral growth 

of canopy, subcanopy and understorey trees and shrubs; 2) Sprouting from mature 

trees - sprouts arising from snags, prostrate trunks and layered branches, often of 

individuals damaged in disturbance event; 3) Advance regeneration - anticipatory 

regeneration of shade-tolerant species from seedlings and saplings established beneath 

undisturbed canopy; 4) Seedling regeneration - regeneration of seedlings established 

after disturbance from dormant or recently dispersed seeds derived from a local 

source; 5) Regeneration from immigrant seed - regeneration of seedlings established 

after disturbance from seeds derived from a distant source. The significance of each 

regeneration response depends on the species involved and the scale, severity and 



duration of the disturbance event. Seedling regeneration and vegetative regrowth most 

likely constitute a mixed response to mild, small-scale disturbances of short duration. 

1.1.2. Status of temperate deciduous forest 

Although temperate deciduous trees are widely distributed throughout Europe, 

much of the continuous forest cover has been historically removed for agriculture, and 

that which remains is predominantly secondary growth that has recolonised 

abandoned farmland and logged sites (Archibold, 1995). Invariably, these semi-

natural woodlands are fragmented in their distribution, representing 'island' 

communities within an agricultural and urban landscape, and are subject to varying 

degrees of human disturbance. 

A fragmented woodland system may be far from stable, since there is a 

minimum critical island size necessary to perpetuate natural forest conditions and the 

survival of native plant and animal species. Forest edges have higher tree density and 

species richness than forest interiors, and are dominated by shade-intolerant species 

that are dependent on side lighting and the drying effects of wind (Ranney et al., 

1981). Since the proportion of edge per unit area of forest increases progressively 

with decreasing island size, forest fragmentation would favour edge species (shade-

intolerant) over interior species (shade tolerant), depending on the frequency and size 

of existing canopy gaps (Levenson, 1981). 

Changes in forest structure and distribution following clearance may also 

influence the composition of fauna. Although many species have been able to adapt to 

the changed conditions, becoming more widely distributed, others have disappeared 

from forest island communities. Whitcomb et al. (1981, cited in Archibold, 1995) 

found that forest island size was negatively correlated with bird density and positively 

correlated with the diversity of species associated with the forest interior, according to 

species-dependent minimal area requirements. The number of 'edge' species also 

increased in smaller forest islands (consistent with Hoffrneyer & Hansson (1974) for 

Apodemus spp.), whereas generalist species that occupied a variety of habitats 

occurred at a similar frequency in all sizes of forest island. 

1.2. REGULATION OF PLANT POPULATIONS AND COMMUNITIES 

An understanding of the principal factors underlying plant demography and 

community structure is clearly fundamental to the conservation of existing temperate 



deciduous woodland. Many interacting biotic and abiotic factors have been found to 

influence plant survival and reproduction, according to physiological, morphological 

and phenological plant traits (Crawley, 1997). Environmental determinants of plant 

performance include fire, drought, waterlogging, shade, disturbance, low nutrient 

availability, soil acidity, heavy metals, atmospheric pollutants, wind exposure and 

extremes of temperature. For example, large seeds of Castanea mollissima and 

Quercus rubra produce vigorous seedlings beneath dense shade, whereas small-

seeded light-demanding species, including Betula lenta and B. populifolia, grow 

poorly beneath shade (Grime & Jeffrey, 1965). Ring porous woods, including 

Quercus spp., are particularly sensitive to xylem breakage during freeze-thaw cycles, 

while diffuse porous woods, including Betula spp., are able to maintain hydraulic 

conductance (Sperry et al., 1994). Drought desiccation (Watt, 1919) and low 

temperature (Jones, 1959) may also limit the germination of Quercus spp. seeds. 

Many deciduous trees, including Betula spp. and Populus spp., regenerate after fire by 

sprouting from surviving stems or root stocks (Crawley, 1997) and certain wind-

dispersed species, including Acer spp. or Fraxinus spp., are able to persist in habitats 

subject to erratic, large-scale disturbance (Grime, 1979). In oak woodland, Goldberg 

(1985) found that Lysiloma divaricata only survived on acid soil i f soil pH was 

artificially increased, whereas Quercus albocincta showed no significant response to 

increased soil pH. 

Biotic interactions influencing plant demography and community structure 

include disease, parasitism, intra-specific competition and inter-speciflc competition. 

For example, competition with herbs may significantly reduce the growth of tree and 

shrub seedlings, including Acer rubrum (red maple) and Cornus racemosa (gray 

dogwood) (Gill & Marks, 1991). In deciduous forest, Goldberg (1985) found that the 

removal of field-layer vegetation was necessary to prevent the competitive exclusion 

of L. divaricata and Q. albocincta seedlings. Streng et al. (1989) reported that 

damping-off disease and proximity to conspecific adults were significant factors 

limiting the recruitment of tree species, including Acer rubrum and Ulmus 

americanum (american elm). Many investigations have also found 'herbivory', the 

consumption of living plant material by animals, to be a critical factor influencing 

plant performance and demography (Crawley, 1988). 



L3. IMPACT OF HERBIVORES ON PLANT PERFORMANCE 

The diversity of herbivores is reflected in the diversity of feeding habits and 

plant tissues consumed (Table 1.3). Relative to decomposers, herbivores consume a 

relatively low proportion of net primary productivity, averaging ten per cent in most 

natural ecosystems (Crawley, 1983). It is the timing, specificity and intensity of 

herbivory that determine the impact of herbivores on plant performance. For example, 

nectar drinking, bud removal and wood felling (Table 1.3) are likely to have markedly 

different influences on plant survival and reproduction. 

Herbivores may have either direct or indirect effects on plant communities. 

Indirect effects include defoliation that influences habitat structure and the 

microclimate (including temperature, relative light intensity and airflow) experienced 

by other plant species. Herbivory may also influence nutrient cycling, through the 

input of readily available nutrients, including faeces and carrion (Duffey et al, 1974; 

Owen, 1980), the outflow of nutrients following severe defoliation (Swank et al., 

1981) or the increase of light penetration, soil temperature and organic decomposition 

(Collins, 1961). Large herbivores may also alter soil structure by compaction and 

puddling, influencing plant community composition (Duffey et al., 1974). 

1.3.1. Impact on plant survival 

Under certain circumstances, rates of herbivory may be sufficient to directly 

influence plant survival. For example, at a peak density of over one hundred per 

hectare, populations of Lepus americanus (snowshoe hare) stripped and decapitated 

more than one million young Pinus banksiana (jack pine), leaving only forty 

undamaged trees within an area of ten hectares (Rowan, 1954). Populations of 

Loxodonta africana (African elephant) may also destroy vast numbers of trees when 

elevated above local carrying capacity (Kortland, 1984), such as in Terminalia 

glaucescens woodland when herbivore-mediated tree mortality increased from 

twenty-four to ninety-six per cent over a nine year period (Laws et al., 1975). 

Peterken (1966) also recorded severe herbivore-mediated tree mortality following 

winter browsing by rodents and deer. After five years, the survival of Ilex aquifolium 

(holly) was only 7.3%) under open pines and 0.008% under deep conspecific shade. 

Edenius (1993) simulated the winter browsing of Pinus sylvestris (scots pine) by 

Aloes aloes (moose) and found that tree mortaHty often occurred two or more years 



Table 1.3. Plant tissues and the herbivores that feed on them (Reproduced from 
Crawley, 1983). 

Tissue Mode of feeding Examples of feeders 

Leaves Clipping 
Skeletonizing 
Holing 
Rolling 
Spinning 
Mining 
Rasping 
Sucking 

Ungulates, slugs, sawflies, butterflies, etc. 
Beetles, sawflies, capsid bugs 
Moths, weevils, pigeons, slugs, etc. 
Microlepidoptera, aphids 
Lepidoptera, sawflies 
Microlepidoptera, Diptera 
Slugs, snails 
Aphids, psyllids, hoppers, whitefly, mites, etc. 

Buds Removal 
Boring 
Deforming 

Finches, browsing ungulates 
Hymenoptera, Lepidoptera, Diptera 
Aphids, moths 

Herbaceous 
stems 

Removal 
Boring 
Sucking 

Ungulates, sawflies, etc. 
Weevils, flies, moths 
Aphids, scales, cochineals, bugs 

Bark Tunnelling 
Stripping 
Sucking 

Beetles, wasps 
Squirrels, deer, goats, voles 
Scales, bark lice 

Wood Felling 
Tunnelling 
Chewing 

Beavers, large ungulates 
Beetles, wasps 
Termites 

Flowers Nectar drinking 
Pollen eating 
Receptacle eating 
Spinning 

Bats, humming-birds, butterflies, etc. 
Bees, butterflies, mice 
Diptera, microlepidoptera, thrips 
Microlepidoptera 

Fruits Beneficial 
Destructive 

Monkey, thrushes, ungulates, elephants 
Wasps, moths, rodents, finches, flies, etc. 

Seeds Predation 
Boring 
Sucking 

Deer, squirrels, mice, finches, pigeons 
Weevils, moths, bruchids 
Lygaeid bugs 

Sap Phloem 
Xylem 
Cell contents 

Aphids, whitefly, hoppers 
Spittlebugs, cicadas 
Bugs, hoppers, mites, tardigrades, etc. 

Roots Clipping 
Tunnelling 
Sucking 

Beetles, flies, rodents, ungulates, etc. 
Nematodes, flies 
Aphids, cicadas, nematodes, etc. 

Galls Leaves 
Fruits 
Stems 
Roots 

Hymenoptera, Diptera, aphids, mites 
Hymenoptera 
Hymenoptera, Diptera 
Aphids, weevils, H3mienoptera 



after severe browsing. 

Although mature perennial plants with submerged perennating organs 

adequately survive a single defoliation, repeated successive defoliations may deplete 

resources sufficiently to reduce survival rates. For example, defoliation by 

Malacosoma disstria (forest tent caterpillar) did not significantly influence the 

mortality of Populus tremuloides (quaking aspen) unless trees were subject to three 

successive heavy defoliafions (Churchill et al., 1964). Similarly, Stephens (1971, 

cited in Crawley, 1983) found that three successive heavy defoliations of Quercus sp. 

by Lymantria dispar (gypsy moth) resulted in mortality rates of up to eighty per cent, 

compared to only five per cent mortality following a single defoliafion, consistent 

with natural rates of survival. However, mortality rates were significantly greater 

following single defoliations of Pinus strobus (white pine, 28%) and Tsuga 

canadensis (hemlock, 68%). 

In many cases, the impact of herbivory is disproportionately greater than the 

extent of tissue removal. For example, ring-barking and bark-stripping by vertebrate 

herbivores, including Rodentia, Lagomorpha and Artiodactyla, has the effect of 

separating phloem and cambial tissue from woody xylem and breaking the 

carbohydrate link between leaves and roots, often resulting in tree mortality (Gill, 

1992). Similarly, slugs may severely damage newly established plant populations by 

felling young shoots at ground level (Harper, 1977). Plants are effectively destroyed 

despite the consumption of relatively little tissue. 

Disproportionate mortality may also follow herbivory by insects that directly 

attack phloem and cambial layers or indirectly act as vectors for plant pathogens. 

Species of elm bark beetle (Scolytus spp. and Hylurgopinus rufipes), for example, are 

responsible for the transmission of the Dutch elm disease fungus, Ceratostomella 

ulmi, which causes mortality by blocking phloem (Strobel & Lanier, 1981). Dixon 

(1971) found that the removal of phloem sap from saplings of Tilia vulgaris (common 

lime) by Eucallipterus tiliae (lime aphid) had the effect of suppressing root growth, 

which subsequently restricted total mass increase to eight per cent that of uninfested 

saplings. 



1.3.2. Impact on plant growth 

Herbivores may directly reduce plant growth by reducing photosynthetic area 

and rates of assimilation (leaf damage), interfering with water uptake, nutrient uptake 

and carbohydrate flow (stem and root damage) and weakening the physical structure 

of the plant (stem damage) (Crawley, 1983). Increased susceptibility to pathogens and 

the diversion of production to wound repair are also likely to suppress plant growth 

and reproduction. In Pinus-Sorbus forest, Dinesman (1967) recorded a reduction of 

forage biomass from 181 to 109 kg ha'̂  following browsing by Alces alces. Of this 

biomass reduction, only 3.5 kg ha"' resulted directly from consumpfion, with the 

remaining 68.5 kg ha"' resulting from the reduced growth of damaged trees. Mclnnes 

et al. (1992) also found that browsing by 4̂. alces significantly decreased tree biomass 

(from 230 to 150 trees ha"'), preventing the recruitment of preferred saplings and 

reducing canopy tree diversity. Bergstrom & Danell (1995) artificially stripped the 

long-shoot leaves of Betula pendula to simulate browsing by A. alces and recorded 

reduced shoot height growth and leaf biomass in the year following damage. Xylem-

feeding by Magicicada septendecim (cicada) was effective in reducing ring width in 

the wood of Quercus ilicifolia (scrub oak) by up to thirty per cent, without influencing 

fecundity (Karban, 1980). 

The timing of defoliation is critical when leaves are produced synchronously. 

For example, when adults of Quercus spp. were defoliated by seventy-five per cent 

early in the growing season, wood production was reduced by fifty per cent, whereas 

subsequent removal at a similar intensity had a negligible effect on growth (Franklin, 

1970; Rafes, 1970). Plants are particularly tolerant of grazing when the confinuous 

production of new leaves is able to compensate for the loss of young leaves. 

Herbivores may also influence plant shape by browsing leading shoots and 

terminal leaf buds, promoting lateral growth and branching, or browsing lower foliage 

leaving high inaccessible crowns (Crawley, 1997). Galling insects may also generate 

distinctive plant morphologies. Plant size distribution may depend on herbivore 

preferences, according to plant susceptibility (Crawley, 1983). 

1.3.3. Impact on plant fecundity 

Reduced photosynthetic area and carbohydrate assimilation following 

significant defoliafion may also reduce plant fecundity. For example, when Rockwood 

(1973) subjected six Costa Rican tree species to two artificial defoliafions in the same 
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year, eighty per cent of the defoliated trees failed to fi^it, while only thirty per cent of 

the intact trees lacked fruit. Stickler & Pauli (1961) found that the removal of young 

upper leaves, as often occurred during browsing, was much more significant in 

reducing fecundity than removing older leaves. As seed production is typically 

carbohydrate-limited, defoliation is most likely to influence fecundity when plants are 

competing for resources, including light (Crawley, 1983). Root-feeding herbivores 

that reduce water uptake, nutrient uptake and carbohydrate flow may also reduce plant 

fecundity and lead to increased herbivory by leaf-feeding insects (Crawley, 1997). 

Herbivores reduce plant fecundity directly by destroying flowers on the plant. 

In forests of Pinus radiata (Monterey pine) in New Zealand, for example, Trichosurus 

vulpecula (common bushtail possum) consume large quantities of pollen prior to 

anthesis and female strobili between pollination and fertilisation, which may combine 

to reduce seed production by up to forty per cent (Crawley, 1983). At the same time, 

Fringilla coelebs (chaffinch) may also destroy up to fifty per cent of developing 

female strobili. In southern England, the gall wasp Andrious quercus-caliois infests 

acorns of Quercus robur (pedunculate oak), which responds by shedding the entire 

peduncle (Darlington, 1974). The total loss of infested and uninfested acorns may 

exceed ninety per cent. 

Herbivory may delay plant flowering, as a result of either flower bud damage 

or a reduction in protein and carbohydrate supply (Crawley, 1983). This may be 

particularly detrimental to plant fecundity i f exposure to frost damage is increased late 

in the season or rates of encounter with pollinators are reduced. In general, the impact 

of herbivory on plant fecundity depends on the timing of defoliation and the potential 

for compensation. Early defoliation following synchronous leaf production may 

reduce or completely inhibit flowering, whereas defoliation may have little effect on 

the fecundity of plants with continuous leaf production (Crawley, 1983). Seed 

production is particularly sensifive to herbivory, with a reduction in seed size or seed 

production typically following defoliation subsequent to flowering. Fruiting trees of 

Quercus robur from which all herbivorous insects had been removed consistently 

produced 2.5 to 4.5 times more seeds than fruiting trees from which insect herbivores 

had removed 8-12% leaf area (Crawley, 1985). 
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1.3.4. Anti-herbivore defence 

Herbivores may influence plant growth and fecundity indirectly, when plants 

are required to redirect producfion toward wound repair, defensive structures and 

inducible toxins that afford some degree of protection against herbivore attack. 

In many plants, defence mechanisms are induced as a direct response to 

herbivory. Pinus sylvestris, for example, modifies phenol metabolism to produce 

novel defensive chemicals following damage by Neodiprion sertifer (european pine 

sawfly) (Thiegles, 1968). Defensive compounds are produced secondary to principal 

biochemical processes and include enzyme inhibitors, haemagglutinins and 

cyanogenic glucosides (Freeland & Janzen, 1974). 

'Rapidly-inducible' chemical defences, typically protease inhibitors, may 

significantly reduce subsequent herbivore damage. For example, Bryant & Kuropat 

(1980) found that leaves of Betula papyrifera ssp. humilis (Alaska paper birch) that 

had regenerated after severe defoliation were significantly more resistant to attack 

from Lepus americanus (snowshoe hare). Similarly, the defoliation of Larix decidua 

(European larch) by Zeiraphera diniana (larch budmoth) resulted in delayed leaf 

producfion, lower nitrogen levels, higher fibre and .resin concentration, and tougher 

leaves, which in turn suppressed the survival and adult fecundity of moths over the 

subsequent four to five years (Bahensweiler et al., 1977). Fowler & Lawton (1985), 

however, found only limited evidence to support the effectiveness of rapidly-inducible 

plant defences against insect herbivores. West (1985) provided unequivocal evidence 

that plant defensive responses may directly influence the dynamics of a herbivore 

population. When twenty-five per cent leaf area was artificially removed from adult 

Quercus robur, deaths of lepidopterous leaf-mining larvae (Phyllonorycter spp.) from 

unknown causes were fifty to one hundred per cent greater than controls. 

Plants may be distinguished according to the probability that they will be 

encountered by animal grazers (Feeny, 1976). Species that are 'apparent' to herbivores 

tend to occur conspicuously in specific habitats, depending on non-selective, dose-

dependent defence mechanisms to reduce grazing intensity. The distribution of 

'unapparent' species tends to be patchy and unpredictable, incorporafing a number of 

habitat types and secondary defences, which provide further protection from specific 

herbivores. 
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1.3.5. Plant compensation 

Plants exhibit a variety of mechanisms that may partially or fully compensate 

for the effects of herbivory. Plant compensation was reported by Nielsen & Ejlerson 

(1977) investigating the defoliation of Fagus sylvatica (beech) by the weevil 

Phyllobius argentatus. The consumption of lower shaded leaves, with low rates of 

photosynthesis and normal rates of respiration, had little effect on tree productivity by 

improving the overall balance between photos3mthesis and respiration. Alternatively, 

the removal of upper leaves from a plant may increase light penetration and the rate of 

photosynthesis of previously shaded lower leaves. 

Many plants compensate for herbivory by the mobilisation of stored 

carbohydrates. Kigel (1980) found that plants with greater carbohydrate reserves had 

higher initial rates of leaf regrowth following complete defoliation. Seedling-like 

plants of Quercus robur continued to regenerate one-year-old shoots after as much as 

twenty years of repeated browsing to ground level by rabbits {Oryctolagus cuniculus) 

(Crawley & Long, 1995). 

Plants may also shift the distribution of photosynthate following herbivory in 

order to maintain a balanced shoot/root ratio. Typically, when roots are damaged, an 

increased proportion of net production is directed towards root growth, and when 

shoots are defoliated, the shift is towards shoot growth (Crawley, 1983). 

Alternatively, plant defoliation may increase the photosynthetic rate per unit area of 

surviving leaf ('unit leaf rate', ULR), stimulate the development of buds that would 

otherwise remain dormant or increase the subsequent survival of remaining plant 

parts. When leading shoots of Pinus sylvestris were artificially defoliated to simulate 

herbivory, the growth of new shoots below the damage was increased (Honkanen et 

al., 1994). Damage to buds also had a positive effect on growth. Plant competition 

may significantly influence the compensation response of herbivore-damaged plants. 

Betula pendula showed reduced growth following defoliation, irrespective of 

intraspecific competition, whereas browsed plants showed enhanced growth only 

when intra-specific competition was low (Hjalten et al., 1993). 

Alternatively, compensation may operate at a population level, when 

herbivore-mediated plant mortality has the effect of ameliorating intraspecific 

competition (Crawley, 1983). Reduced plant density and competition are compensated 

for by an increase in the net recruitment or net productivity of surviving plants. 
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Overall, moderate herbivory may replace natural rates of self-thinning, having little 

effect on equilibrium plant population density. 

1.3.6. Plant benefits from herbivore activity 

Although herbivores generally have a destmcfive influence on plant growth, 

fecundity and survival, there are many cases where plants benefit from the activity of 

herbivores. Such interactions, including the inadvertent transfer of pollen between 

flowering plants by animals consuming pollen and nectar, are more appropriately 

described as 'mutualistic'. 

For many plant species, animals are necessary agents of primary and/or 

secondary seed dispersal (Murray, 1986; Chambers & MacMahon, 1994). 

Mechanisms of animal-dispersal include 'endozoochory', via the consumption and 

subsequent regurgitation or egestion of seeds, 'ectozoochory', the transport of seeds 

attached externally to animals and 'synzoochory', from the failed predation of cached 

seeds. 

Seeds dispersed by ectozoochory become attached to the dispersal agent by 

either chemical (viscid exudates or mucilage) or physical (hooks or spines) adhesion. 

Whereas ectozoochory relies on the characteristics of diaspores, synzoochory is a 

function of the general behaviour of hoarding granivores. Caching is a means of 

hoarding food against subsequent periods of deprivation and concealing resources 

from intraspecific and interspecific competitors (Price & Jenkins, 1986). Seed 

germination and seedling establishment may follow i f the cache remains undisturbed. 

Dispersal by endozoochory (including Aquifoliaceae, Comaceae and 

Rosaceae) may be deliberate or accidental, i f animals feeding on foliage consume 

seeds not specifically adapted for dispersal. Alternatively, plants may invest in 

rewards, typically in the form of a fleshy fruit, to attract seed consumption. To prevent 

premature consumption, unripe fruit often contain toxic secondary compounds that are 

subsequently broken down during ripening. This is usually advertised by a colour 

change to which specialist frugivores, with colour vision, are likely to be sensitive. In 

temperate woodlands, birds are particularly important dispersers of seed by 

endozoochory (Snow & Snow, 1988) while carnivore species, including Meles meles 

(badger), Martes foina (stone marten), Vulpes vulpes (red fox) and Ursus arctos 

(brown bear) may be seasonally important (Herrera, 1989; Giannakos, 1997). 
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The dispersal of nut fruits by synzoochory (including Corylaceae, Fagaceae 

and Hippocastanaceae) is particularly effective in temperate regions where a 

seasonally severe climate favours the widespread hibernation of mammals and the 

accumulation of nut caches as winter food stores. However, seed production must be 

sufficient to compensate for the loss of dispersed seed to herbivores and unfavourable 

microhabitats. As a result of seed caching by Eutamias amoenus (Klamath 

chipmunk), E. townsendii (Townsend's chipmunk) and Citellus lateralis (golden-

mantled ground squirrel), up to ninety per cent of Purshia tridentata (bitterbrush) 

seedlings emerged in clusters, consisting an average of twelve seedlings (West, 1968). 

Herbivores were deterred by the infestation of Crataegus monogyna 

(hawthorn) fruits by insects (Courtney & Manzur, 1985) and Apodemus sylvaticus 

(woodmice) rejected acorns of Quercus robur that contained larvae of the weevil 

Curculio glandium (Crawley & Long, 1995). Since invertebrates are less likely to 

contribute to seed dispersal than vertebrates and partial damage may reduce seed 

palatability to vertebrates, the impact of invertebrates on plant processes is more 

likely destructive than beneficial. Although animal dispersal predominates in 

temperate deciduous woodland, the seeds of many trees (including Aceraceae, 

Betulaceae, Oleaceae and Ulmaceae) are dispersed by wind and invariably germinate 

in the spring following a period of dormancy (Grime et al., 1988). 

1.4. IMPACT OF HERBIVORES ON PLANT DEMOGRAPHY 

The impact of herbivory on plant performance does not necessarily imply that 

herbivores significantly influence plant population dynamics. In fact, the precise 

mechanisms that regulate natural plant populations are poorly understood. In extreme 

cases, herbivory may directly cause the mortality of mature, established plants. More 

typically, however, mature plants compensate or defend against herbivore attack such 

that herbivory may only influence plant growth and fecundity or increase the 

susceptibility of mature plants to alternative mortality factors, such as water-logging, 

drought and air pollution (Crawley, 1988). Herbivores most often increase plant 

susceptibility to inter- and intra-specific competition (Whittaker, 1979, Crawley, 

1988). Herbivory that has a negligible impact on plant mortality rate may be more 

appropriately considered as 'parasitism'. 
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Seedlings are particularly vulnerable to defoliation or suppression during early 

establishment when seed reserves have been depleted, growth and survival first 

depend on the products of photosynthesis and compensatory ability is least developed 

(Crawley, 1983). The destruction of seeds by herbivores is likely to have an even 

more predictably adverse effect on individual plants, when compensation is limited 

and a single attack may be sufficient to destroy the plant. Seeds and seedlings are also 

highly preferred by many herbivore species. The nutritional value of vegetation 

differs according to the content of lignin and other indigestible materials. Herbivores 

may assimilate only 15% of the energy in wood, relative to 30-40% in shrubby 

material, 60-70%) in young vegetation and as much as 80%o in seeds (Archibold, 

1995). 

Despite the extensive literature detailing the impact of herbivores on plant 

performance, relatively few studies have attempted to describe the complex 

interactions between herbivory and plant population dynamics (Crawley, 1988; 

Hulme, 1996b). Dramatic changes in plant communities following herbivore 

exclusion (Ross et al., 1970; Linhart & Whelan, 1980) are more likely to support the 

regulation of plant populations by herbivory than the influence of herbivores on plant 

performance. Since herbivores principally influence the mortality of individual plants 

at seed and seedling stages, it is by the destruction of seeds and seedlings during plant 

recruitment that herbivores are most likely to regulate plant populafion dynamics via 

mortality. 

1.4.1. Impact on natural regeneration 

Evans (1988) broadly defines natural regenerafion as "raising high forest from 

seed directly from parent trees...without resorting to planting, direct sowing or 

coppicing". Recruitment from seed follows a continuous multi-step sequence of 

events, including seed production, dispersal and germination, and seedling emergence, 

establishment and survival. 

For the majority of plant species investigated in the field, the consumption of 

seeds prior to and following dispersal from the parent accounted for a significant 

proportion of plant mortality (Crawley, 1988). I f the term 'predafion' is used broadly 

to describe the behaviour of an animal that hunts, kills and consumes a food item of a 
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lower trophic level, such patterns of consumption may be referred to as 'pre-dispersal 

seed predation' and 'post-dispersal seed predation', respectively. 

1.4.1.1. Pre-dispersal seed predation 

For several consecutive years, pre-dispersal seed predators, including Andricus 

quercuscalicis (gall wasp) and Curculio glandium (seed weevil), were found to 

remove the entire seed crop of Quercus robur (Crawley, 1987b, cited in Crawley, 

1988). Gardner (1977) recorded up to seventy-five percent pre-dispersal loss of 

Fraxinus excelsior seeds attributable to infestation by the moth, Pseudargyrotoza 

conwagana. Although invertebrates are more often responsible for pre-dispersal seed 

predation (Sheppard et al, 1994; Clark, 1992), birds (Galetti, 1993) and mammals 

(Janzen, 1971; Peres, 1991; Gumell, 1993) may also significantly contribute to early 

seed loss. Sciurus variegatoides (common variegated squirrel), for example, 

consumed up to eighty per cent of Pinus flexilis (limber pine) cones prior to opening 

(Benkman et al., 1984). In the absence of pre-dispersal seed predation, seventy per 

cent of cones opened on trees. 

Since most unripe fruit contain toxic and anti-nutritional compounds that are 

distasteful and unpalatable to herbivores (Mabberley, 1992) and the majority of tree 

canopy fruit are inaccessible to ground-dwelling herbivores, greater proportions of 

seeds are consumed after ripening and dispersal. Pre-dispersal seed predation is less 

widespread in temperate woodland than in tropical forests, where specialist herbivores 

detoxify secondary compounds and account for considerable pre-dispersal losses 

(Mabberley, 1992). 

1.4.1.2. Post-dispersal seed predation 

Previous studies have frequently reported high rates of post-dispersal seed 

predation attributable to vertebrates and invertebrates (Chapter 3). Although post-

dispersal seed predators often depleted the entire seed supply, seed loss typically 

varied according to plant, predator and habitat characteristics, including seed density, 

plant species, seed burial, vegetation cover, predator density and the availability of 

alternative food items (Hulme, 1993). On a theoretical basis, seed loss may have a 

significant impact on an even-aged, isolated population of semelparous plants without 

a seed bank, whereas a mixed-age population of long-lived iteroparous plants with a 

seed bank may be less critically dependent on current reproduction (Crawley, 1983). 
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1.4.1.3. Seedling herbivory 

Seeds that survive pre- and post-dispersal predation may be subject to 

alternative mortality factors, may persist in a bank of dormant seeds or may 

germinate, assuming favourable conditions. It has long been recognised that seedlings 

are particularly vulnerable to herbivory, which may devastate emerging populations. 

'\..on a piece of ground three feet long and two wide, dug and cleared, and where 

there could be no choking from other plants, I marked all the seedlings of our native 

weeds as they came up, and out of the 357 no less than 295 were destroyed, chiefly by 

slugs and insects'' Darwin (1859, cited in Begon et al, 1990). 

Vertebrate herbivores may be up to one hundred per cent effective in 

destroying plant seedlings (Chapter 5), which may result in species loss i f herbivores 

are sufficiently selective and seedlings sufficiently scarce (Crawley, 1988). Consistent 

with seed predation, rates of seedling herbivory may vary significantly according to 

plant, predator and habitat characteristics. 

1.5. STUDY AIMS 

The natural regeneration of many temperate woodland species has been found 

to be limited in many areas (Watt, 1919, 1923; Bramble & Goddard, 1942; Linhart & 

Whelan, 1980) or may have occurred only intermittently in the past (Peterken, 1966; 

Peterken & Tubbs, 1965; Ross et al., 1970). However, the precise mechanisms that 

regulate plant recruitment, and ultimately plant distribution, community composition 

and species diversity, are poorly understood. 

Extensive investigation has established that herbivores significantly influence 

plant performance, herbivores are most likely to bring about plant mortality at seed 

and seedling stages and herbivores often consume large quantities of seeds and 

seedlings. It is also recognised, however, that herbivores are unlikely to influence 

plant demography when plants regenerate by vegetative expansion or satiate seed 

predators with mast seed crops (Jensen, 1982), when banks of dormant seeds or the 

repeated, prolonged reproduction of long-lived iteroparous species compensate for 

seed and seedling loss to herbivores (Crawley, 1983), or when plant recruitment is 

microsite-limited rather than seed- or herbivore-limited (Hulme, 1996a). 



Therefore, previous studies that quantify rates of seed or seedling predation do 

not alone constitute evidence that herbivores influence plant demography. The impact 

of herbivores on plant recruitment, and ultimately plant distribution, community 

composition and species diversity, can only be assessed i f patterns of seed and 

seedling predation are considered in the broader context of the regeneration sequence 

(Shaw, 1968a,b). Such an investigation should also consider natural patterns of seed 

production, viability, dispersal and germination, and seedling emergence, 

establishment and survival. 

The present study aimed to assess the relative impact of post-dispersal seed 

predation, seedling herbivory and regeneration microsite on the natural regeneration 

dynamics of tree species in temperate deciduous woodland. This aim was addressed 

through research that had the following more specific aims. These were to: 

1. Describe the composition and spatial association of representative tree species 

in representative temperate deciduous woodland and assess patterns of past 

regeneration. 

Chapter 2 includes general descriptions of study sites and study species. Detailed 

descriptions of tree populations were based on systematic sampling methods to 

determine the identity, density, dispersion and size distribution of saplings and adults 

of each tree species. 

2. Quantify post-dispersal seed predation and identify primary sources of 

variation. 

Chapter 3 describes field-based predation trials in which seeds of each species were 

presented at feeding depots with controlled predator access. Variation in seed removal 

according to tree species, predator group, microhabitat and site, and the association 

between rates of removal and seed characteristics, were assessed. 

3. Examine the relationship between seed dispersal and post-dispersal seed 

predation. 

Chapter 4 describes field-based predation trials designed to test the hypothesis that 

dispersed seeds may escape disproportionately high offspring mortality beneath parent 

plants resulting from increased herbivore activity. Variation in seed removal 
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according to seed density, distance from the parent, tree species and predator group 

was assessed. 

4. Quantify seedling lierbivory and identify primary sources of variation. 

Chapter 5 describes field-based predation trials in which seedlings of each species 

were presented at feeding depots with controlled predator access. Variation in 

seedling herbivory according to tree species, predator group and microhabitat, and the 

association between rates of herbivory and seedling characteristics, were assessed. 

5. Quantify viable seed output and natural seedling dynamics to assess the extent 

of current regeneration. 

Chapter 6 describes vegetation surveys in which natural seed production, seedling 

density, seedling survival, and ground layer cover were estimated. Variation between 

tree species and the association between seedling recruitment and habitat 

characteristics was assessed. 
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CHAPTER 2 

STUDY SITES AND STUDY SPECIES 

2.1 GENERAL DESCRIPTION OF STUDY SITES 

The fieldwork and experiments described in this thesis were conducted 

between May 1995 and December 1997 in two semi-natural deciduous woodlands in 

County Durham, Northeast England. Sites with the greatest species and habitat 

diversity, least human disturbance and active management, and fewest colonised and 

introduced species, were selected to best represent intact temperate deciduous 

woodland. These woodlands were acknowledged as an integral part of the British 

woodland system (Ratcliffe, 1977) and recognised as Sites of Special Scientific 

Interest (SSSI) under the Wildlife and Countryside Act of 1981. Vegetation 

communities have been described by the Nature Conservancy Council and categorised 

by Graham (1988). National Vegetation Classification (NVC) (Rodwell, 1991) coding 

and nomenclature was used when known, otherwise local code numbers and names 

were used. Throughout, plant species nomenclature follows Clapham et al. (1987). 

2.1.1 Shipley Wood 

Shipley Wood is the most southern region of the Shipley and Great Woods 

SSSI, situated in the district of Teesdale, County Durham (Figures 2.1 and 2.2, Plate 

2.1) and ranging in altitude from 170 to 230m a.s.l. The site was first notified in 1975 

under the National Parks and Access to the Countryside Act (1949). Lining the steep 

sandstone, limestone and gritstone banks of the River Tees, the site supports one of 

the most extensive (63.35 ha), diverse and pristine deciduous woodlands in Northeast 

England. The biological diversity and structure of the site are most indicative of 

ancient woodland, although additional species are represented. 

On base-rich soils, Acer pseudoplatanus (sycamore), Fraxinus excelsior (ash) 

and Ulmus glabra (wych elm) dominate mature 'mixed deciduous canopies' (W0C6), 

overlying a discontinuous understorey containing Crataegus monogyna (hawthorn), 

Ilex aquifolium (holly), Prunus padus (bird cherry) and coppiced Corylus avellana 

(hazel). The field layer contains a rich assemblage of woodland species, characteristic 

of a Fraxinus-Acer campestre-Mercurialis woodland' of the 'Ranunculus ficaria-

Anemone sub-community' (W06 / NVC8b). Common herb species include 
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Figure 2.2. Schematic diagram of Shipley Wood, showing 
position of upper (U), middle (M) and lower (L) transects. 

River Tees 

Plate 2.1. North-westward view over Shipley Wood, from position marked ^ in Figure 2.2 
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Mercurialis perennis (dog's mercury), R. ficaria (lesser celandine), Filipendula 

ulmaria (meadowsweet), Geum urbanum (wood avens), Galium aparine (cleavers), 

Oxalis acetosella (wood-sorrel) and Circaea lutetiana (enchanter's-nightshade). 

Alnus glutinosa (alder) dominates locally on flushed soils, with Allium 

ursinum (ramsons) and Chrysosplenium oppositifolium (opposite-leaved golden-

saxifrage) in the field layer. On dry acidic soils, Quercus petraea (sessile oak) and 

Betula pendula (silver birch) dominate over a field layer containing Deschampsia 

flexuosa (wavy hair-grass), Luzula sylvatica (great wood-rush) and Melampyrum 

pratense (common cow-wheat). Taxus baccata (yew) occurs sporadically throughout 

the site, often restricted to steep slopes and wooded outcrops. Fern species, including 

Dryopteris filix-mas (male fern) and Pteridium aquilinum (bracken), dominate locally 

beneath open canopies. 

Shipley and Great Woods also support over one hundred moss and liverwort 

species, and the richest assemblage of epiphytic lichens in Northeast England, 

including many nationally and regionally rare species and the first definite British 

record of Baccidia affinis (Ratcliffe, 1977). Other relict ancient woodland species 

include Lobaria pulmonaria, L. laetevirens, Pachyphiale cornea, Catillaria 

sphaeroides and Bacidia epixanthoides. 

Human disturbance was minimal due to the private ownership, remoteness, 

restricted public access and limited management of the site. English Nature was not 

involved in any active management of the site during the study period. However, the 

site was occasionally used for game shooting, annually between September and 

January, and consequently contained a small number of grain feeders. Adjacent land 

was principally used as grazing pasture for sheep and cattle. 

2.1.2 Derwent Gorge 

Derwent Gorge is the most northern region of the extensive (93.75 ha) 

Derwent Gorge and Horsleyhope Ravine SSSI, situated in the district of Derwentside, 

County Durham (Figures 2.1 and 2.3, Plate 2.2) and ranging in altitude from 175 to 

245m a.s.l. The site was first notified in 1976 under the National Parks and Access to 

the Countryside Act (1949). Situated on the steep slopes and crags of a ravine cut by 

the River Derwent, the site supports a diversity of primary and ancient woodland 

species. 
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Figure 2.3. Schematic diagram of Derwent Gorge, showing 
location of upper (U), middle (M) and lower (L) transects. 

River Derwent 

Plate 2.2. Northward view over Derwent Gorge, from position marked 1̂  in Figure 2.3 
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Dry, acidic soils support an 'oak/birch canopy' (WOCl, W0C2) of Q. petraea 

and B. pendula, overlying an understorey of Sorbus aucuparia (rowan) and /. 

aquifolium. The rich ground flora is characteristic of a 'Q. petraea-Betula pubescens-

Dicranum majus woodland' of the 'Anthoxanthum-Agrostis capillaris sub-community' 

(W025 / NVC17C, W027 / NVC17c). L. sylvatica, D. flexuosa, O. acetosella and 

Vaccinium myrtillus (bilberry) dominate the field layer, while Anthoxanthum 

odoratum (sweet vernal-grass), P. aquilinum, M. pratense, Viola riviniana (common 

dog-violet) and Potentilla erecta (tormentil) are frequent. 

Moist, base-rich soils support 'alder/willow carr and damp woodland canopies' 

(W0C9). On drier slopes, A. pseudoplatanus, F. excelsior, Q. petraea and U. glabra 

compose the mixed canopies, overlying a discontinuous understorey containing C. 

avellana and P. padus, with Fagus sylvatica (beech) locally dominant. M perennis, 

Urtica dioica (common nettle), C. lutetiana, Ajuga reptans (bugle), F. ulmaria, G. 

urbanum, G. aparine and Veronica montana (wood speedwell) are common in the 

field layer. On flushed riverbank soils, mixed canopies grade to stands of A. glutinosa, 

with A. ursinum, C. oppositifolium. Ranunculus repens (creeping buttercup), Juncus 

effusus (soft rush) and Veronica beccabunga (brooklime) in the field layer. T. baccata 

occurs sporadically throughout the site, almost entirely restricted to severe slopes and 

wooded crags. 

Derwent Gorge and Horsleyhope Ravine also support a rich assemblage of 

more than sixty epiphytic woodland lichens, including regionally rare species 

(Cyphelium inquinans) and species indicative of long established woodland 

{Pachyphiale cornea and Thelotrema lepadinum). 

Human disturbance was minimal due to the private ownership, remoteness, 

restricted public access and limited management of the site. The activities of English 

Nature were principally concerned with the control of A. pseudoplatanus and F. 

sylvatica. The site was occasionally used for game shooting, annually between 

September and January, and consequently contained a small number of anti-predator 

snares. Adjacent land was principally used for cultivation and grazing pasture for 

sheep and cattle. 

26 



2.2 GENERAL DESCRIPTION OF STUDY SPECIES 

A range of tree species was selected to best represent the diversity of natural 

regeneration in temperate deciduous woodland, according to the following criteria. 

1. Species were characteristic of mixed temperate deciduous woodland and present 

in both study sites. 

2. Species represented canopy and understorey tree populations that differed in 

density within and between study sites. 

3. Species differed in regenerative and dispersal characteristics, and the timing of 

flowering, seed set and germination. 

The study principally investigated the regeneration of the native, established 

tree species B. pendula, F. excelsior, I. aquifolium, S. aucuparia, T. baccata and U. 

glabra. It was subsequently necessary to modify the experimental design to include 

the colonising species, A. pseudoplatanus. 

The study species were particularly common of mixed woodland sites, 

representing a diversity of ecological attributes, as summarised in Table 2.1. Acer, 

Betula, Fraxinus, Sorbus and Ulmus are deciduous trees, whereas. Ilex and Taxus are 

evergreen. In both study sites, Acer, Betula and Fraxinus were components of high 

canopy, whereas Ilex, Sorbus, Taxus and Ulmus were components of low canopy or 

understorey vegetation. Established strategies include competitors {Fraxinus and 

Ulmus), stress-tolerant competitors (Ilex and Sorbus) and intermediates between 

competitors and stress-tolerant competitors (Acer and Betula) (Grime et al., 1988). 

Al l taxa principally regenerate by seed, either with an abundance of wind-

dispersed seed {Acer, Betula, Fraxinus and Ulmus) or by seasonal regeneration into 

vegetation gaps from animal dispersed seed {Ilex, Sorbus and Taxus) (Grime et al., 

1988). There is some evidence that Ilex achieves vegetative expansion when leafy 

stems detached by herbivores root when covered by moist litter (Peterken & Lloyd, 

1967). Although vegetative spread may be locally important in colonising canopy 

gaps, along with regeneration involving a bank of persistent seedlings, it is ineffective 

as a mechanism of dispersal. 

Flowering and fhiiting periods also varied between tree species. For example, 

Ulmus may flower as early as February and fruit as early as May, for immediate 

germination and summer growth. In contrast. Ilex may flower as late as August and 

fruit as late as the following March. Whereas seeds of Acer, Betula and Sorbus 
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usually germinate in the spring following seed set, seeds of Fraxinus, Ilex and Taxus 

delay germination until the second or third spring. With the exception of Ulmus, seed 

germination requires a period of chilling, while the germination of Ilex and Taxus 

seeds is improved by scarification. 

The study species also differ in their environmental requirements and 

tolerances. Although all taxa are widely distributed on a variety of soil types and 

substrates, Acer, Fraxinus, Taxus and Ulmus are prevalent on more basic soils, 

whereas Betula, Ilex and Sorbus are prevalent on more acidic soils. Betula and Taxus 

have particularly broad pH tolerances, the latter having been recorded on acidic mor 

humus soils down to pH 3.4 (Webb & Glanville, 1962) and basic limestone soils up to 

pH 8.4 (Tansley, 1939). Acer, Ilex, Sorbus and Taxus are highly shade tolerant, 

whereas Betula, Fraxinus and Ulmus are either sensitive or intolerant of shade. 

Although differences in shade- and pH-tolerance account for some degree of niche 

partitioning between study species (Figure 2.4), alternative factors are likely to 

explain further dispersion, particularly between taxa that share similar shade- and pH-

tolerances (Acer-Sorbus, Ilex-Taxus and Fraxinus-Ulmus). 

Figure 2.4. The dispersion of study species according to shade- and pH-tolerance 
(Table 2.1). Taxa include Acer (Ap), Betula (Bp), Fraxinus (Fe), Ilex (la), Sorbus 
(Sa), Taxus (Tb) and Ulmus (Ug). pH tolerances are represented as ranges. 

Shade tolerance 

Very High 

High 

Sensitive 

Intolerant 

Sa 

Tb 

Mp 

10 12 14 
pH tolerance 

The species for which data are available also exhibit varying degrees of 

sensitivity to waterlogging, drought stress, competition and cold stress. Once 
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established, the life spans of adult trees differ markedly between species. Adults of 

Betula may survive for only 60-70 years, whereas adults of Taxus may survive for 

more than one thousand years. Alternative regeneration processes most likely support 

contrasting population dynamics. 

2.3 DETAILED DESCRIPTION OF TREE POPULATIONS 

2.3.1 Materials and methods 

Each site was surveyed systematically using three equidistant linear transects 

traversing upper, middle and lower regions of the site, each with fifteen survey points 

at twenty metre intervals (Figures 2.2 and 2.3). At each survey point, the composition, 

density and canopy area of adult trees (height > 3m, basal girth > 10cm) were 

estimated using the 'point-centred quarter' method (Cottam et al., 1953). 

The density of saplings (30cm<height<3m, lcm<basal girth<10cm) of each 

study species within a 1 Om x 1 Om quadrat at each point, was recorded. The density of 

adult Ilex within quadrats was also recorded for population estimates, since sparse 

individuals of this species were not encountered during point-centred quarter 

sampling. In addition, the size distribution and spatial association of adult populations 

were determined from the basal girth and distance to nearest conspecific adult of 

thirty individuals of each species. Spatial associations were interpreted according to 

the Clark & Evans (1954) index; 

R = W /rE 
where rA is the observed mean nearest neighbour distance from a random individual, 

and rE is the expected mean distance, assuming a random distribution. 

1 

24d 
where d is the population density. I f individuals are randomly distributed the 

expectation is unity, whereas aggregation is indicated by low values of R and 

regularity by high values. Values range from zero, with maximum aggregation, to 

2.1491 when the distribution is perfectly regular. The significance of the departure of 

rA from rn can be determined using the formula; 

rA - rE 
c 
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where c is the standard variate of the normal curve. ar£ is the standard error of the 

mean distance to the nearest neighbour in a randomly distributed population of the 

same density as that of the observed population. The value of orE for a population 

density of d is; 

0.26136 
orE = —, 

^JNd 

where N is the number of measurements of distance made. The c values of 1.96 and 

2.58 represent the 5% and 1% levels of significance, respectively, for a two-tailed test. 

Five replicate soil samples were taken at intervals from each transect (upper, 

middle and lower) of each study site for the determination of soil pH. For each 

sample, lOg of sieved (2mm mesh) soil was stirred into 25ml of distilled water and 

allowed to stand for thirty minutes. A pH measurement was then taken using an 

electrode calibrated at pH 4.0 and pH 7.0. Since pH was equal to the negative 

logarithm of the concentration of hydrogen ions, pH measurements were converted to 

hydrogen ion concentrations for analysis. Variation in soil pH between transects and 

sites was determined statistically using analysis of variance. 

2.3.2 Results 

2.3.2.1 Composition, density and canopy basal area of adult tree populations 

With the exception of Fagus sylvatica, which was absent from Shipley Wood, 

the same tree species were represented in both study sites (Table 2.2). Mean canopy 

basal area was also similar between Shipley Wood and Derwent Gorge, with 

consistent patterns of increasing basal area from upper to lower slopes. The density 

and distribution of adult trees did vary between species, between sites and within 

sites. The total density of all tree species was more than twice as great in Shipley 

Wood than in Derwent Gorge. In both sites, Acer, Fraxinus and Corylus were at a 

high relative density and Ilex, Prunus, Salix, Sambucus, Taxus and Ulmus were at a 

low relative density. Alnus, Betula and Crataegus were more characteristic of Shipley 

Wood, whereas Fagus, Quercus and Sorbus were more characteristic of Derwent 

Gorge. 

In Shipley Wood, total tree density increased markedly from upper to lower 

slopes, as did the density of Acer, Alnus, Betula, Corylus, Fraxinus, Ilex, Prunus, 

Quercus and Ulmus. In contrast, Sorbus was restricted to middle slopes, Sambucus 

and Taxus were restricted to upper slopes, Salix was predominant on upper and lower 
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slopes and Crataegus occurred at a similar density throughout the site. In Derwent 

Gorge, total tree density was greatest on middle slopes, as were the densities of Acer, 

Betula, Crataegus, Fraxinus and Quercus. Consistent with Shipley Wood, Sambucus 

and Taxus were restricted to upper slopes, Sorbus was predominant on middle slopes, 

and Alnus and Ilex were predominant on lower slopes. Prunus, Salix, and Ulmus were 

also most abundant on upper slopes, with Fagus predominant on lower slopes and 

Corylus at a similar density throughout the site. 

In general, the upper freely draining slopes of Shipley Wood supported a 

canopy dominated by Acer and Betula, with Crataegus and Sambucus in the 

understorey. Damper middle and lower slopes supported a mixed canopy dominated 

by Acer, Alnus, Betula and Fraxinus, with Crataegus and Corylus in the understorey. 

Dry upper slopes of Derwent Gorge supported a canopy dominated by Acer, Fraxinus 

and Quercus, with Corylus and Sorbus in the understorey, whereas damper lower 

slopes supported a mixed canopy dominated by Acer, Alnus, Fagus and Fraxinus, 

with Corylus in the understorey. 

2.3.2.2 Spatial association of adult tree populations 

The spatial association of adult tree populations varied between tree species 

and study sites (Table 2.3). In Shipley Wood and Derwent Gorge, adult trees of 

Betula, Sorbus, Taxus and Ulmus were spatially aggregated, whereas adults of 

Fraxinus were randomly distributed. Adult trees of Acer and Ilex were aggregated in 

Shipley Wood, but randomly distributed in Derwent Gorge. 
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Table 2.3. The spatial distribution of adult trees of each study species in Shipley 
Wood and Derwent Gorge, according to the Clark & Evans (1954) index. R reflects 
the departure of the observed mean nearest neighbour distance (rA) from the expected 
mean nearest neighbour distance (rE), whilep is the probability of a greater difference 
between rA and rs. TTA is the mean nearest neighbour distance for each tree species 
across both sites, and SrA is the mean nearest neighbour distance for each site across 
all species. Significance levels (p) were <0.01 ( ^ 4c) and >0.05 (n.s., not significant). 

Shipley Wood Derwent Gorge 
Taxon R rA 

(m) 
Distribution 

(P) 
R rA 

(m) 
Distribution 

(P) 
TrA 
(m) 

Acer 0.667 4.00 AGGREGATED 
( ^ ^ ) 

0.994 6.06 RANDOM 
(n.S.) 

5.03 

Betula 0.387 2.05 AGGREGATED 
( ^ ^ ) 

0.270 4.27 AGGREGATED 
( ^ ^ ) 

3.16 

Fraxinus 1.050 5.50 RANDOM 
(n.S.) 

0.973 6.94 RANDOM 
(n.S.) 

6.22 

Ilex 0.316 10.65 AGGREGATED 
( ^ % ) 

0.974 32.84 RANDOM 
(n.S.) 

19.0 

Sorbus 0.205 7.06 AGGREGATED 
( ^ ^ ) 

0.694 8.52 AGGREGATED 
( ^ ^ ) 

7.79 

Taxus 0.447 12.49 AGGREGATED 
( ^ ^ ) 

0.128 5.67 AGGREGATED 
( ^ ^ ) 

9.08 

Ulmus 0.691 

SrA (m) 

6.45 

6.24 

AGGREGATED 
( ^ ^ ) 

0.466 

SrA (m) 

8.20 

8.55 

AGGREGATED 
( ^ ^ ) 

7.33 

2.3.2.3 Sapling recruitment and the size distribution of adult tree populations 

The absolute density of saplings and the relative density, expressed as the ratio 

of sapling density to adult density, varied between tree species and study sites (Table 

2.4). Total sapling recruitment was greater in Shipley Wood than in Derwent Gorge, 

both in absolute (944.4 and 117.7 saplings ha'\ respectively) and relative terms (3.3 

and 0.8 saplings adult"', respectively). In Shipley Wood and Derwent Gorge, saplings 

of Acer, Fraxinus and Ulmus were of the greatest absolute density, whereas saplings 

of Betula, Ilex and Sorbus were infrequent. No saplings of Taxus were encountered in 

either site during the study period. The relative recruitment of Fraxinus, Sorbus and 

Ulmus saplings was considerably greater in Shipley Wood than in Derwent Gorge, 

whereas the relative recruitment of Betula saplings was greater in Derwent Gorge than 

in Shipley Wood. Adults and saplings of Acer and Ilex were at a similar density in 

both study sites. 

35 



Table 2.4. Adult density, absolute sapling density and relative sapling density for each 
study species in Shipley Wood and Derwent Gorge. 

Shipley Wood Derwent Gorg e 
Taxon Adult Sapling density Adult Sapling density 

density Absolute Relative density Absolute Relative 
(ha-'> (ha-̂ ) (adult"') (ha"'> (ha"') (adult"') 

Acer 69.6 80.0 1.15 67.2 66.7 0.99 
Betula 88.6 2.2 0.02 10.0 4.4 0.44 
Fraxinus 91.6 775.6 8.47 49.1 33.3 0.68 
Ilex 2.2 2.2 1.00 2.2 2.2 1.00 
Sorbus 2.1 13.3 6.33 16.6 0.0 0.00 
Taxus 3.2 0 0.00 1.3 0.0 0.00 
Ulmus 28.7 71.1 2.48 8.1 11.1 1.37 

Total 286.0 944.4 3.30 154.5 117.7 0.76 

The mean basal girths of adult Acer, Betula, Sorbus and Ulmus were similar 

between sites, whereas the mean girths of adult Fraxinus and Ilex were greater in 

Derwent Gorge than in Shipley Wood and the mean girth of adult Taxus was greater 

in Shipley Wood than in Derwent Gorge (Table 2.5). The size distribution of adult 

tree populations also varied between tree species and study sites (Figures 2.5-2.11). 

For the majority of tree populations, the density of saplings and adults of low girth 

was greater than or similar to the density of adults of high girth. Such patterns were 

consistent with current regeneration and a continuum of past regeneration. However, 

saplings of Sorbus and Taxus in Derwent Gorge and Betula in Shipley Wood were 

either absent or infrequent, and adults of lowest girth were proportionally less 

abundant than those of intermediate girth. Limited recent regeneration was most 

pronounced for Taxus in Shipley Wood, where saplings and adults of lowest girth 

were absent and populations consisted entirely of high girth adults. Hulme (1996a) 

recorded similar unimodal age-distribution patterns within Fraxinus-Acer woodlands 

in County Durham, with peak regeneration occurring between 150 and 200 years ago, 

reflecting microsite- and herbivore-limited current recruitment. High girth adults of 

Ilex and Ulmus were absent in Shipley Wood, where populations consisted entirely of 

saplings and low girth adults. Such patterns reflected either limited past regeneration 

or restricted maximum adult girth, as determined by the habitat characteristics of each 

study site. 
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Table 2.5. Mean basal girth (cm) of each study species in Shipley Wood and Derwent 
Gorge. Standard errors and results of t-tests for variation between sites, are included. 

Shipley Wood Derwent Gorge 
df P Taxon Mean S.E. Mean S.E. t df P 

Acer 92.1 12.6 88.9 8.8 0.209 52 n.s. 
Betula 90.5 6.8 80.6 10.3 -0.801 50 n.s. 
Fraxinus 64.7 9.0 161.4 15.4 5.423 47 3̂  3̂  3̂  
Ilex 42.3 3.5 104.6 12.7 4.714 28 jf: jf: 4: 
Sorbus 56.5 7.3 67.5 5.9 -1.179 58 n.s. 
Taxus 222.3 9.2 116.6 11.0 -7.376 58 ^ ^ 3f: 
Ulmus 46.2 4.0 66.6 10.5 1.817 37 n.s. 
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Figure 2.5. The log density (± 1 S.E.) of Acer saplings (basal girth<10cm) and the size 
distribution of adult tree populations in Shipley Wood and Derwent Gorge. 
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Figure 2.6. The log density (± 1 S.E.) of Betula saplings (basal girth<10cm) and the 
size distribution of adult tree populations in Shipley Wood and Derwent Gorge. 
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Figure 2.7. The log density (± 1 S.E.) of Fraxinus saphngs (basal girth<10cm) and the 
size distribution of aduh tree populations in Shipley Wood and Derwent Gorge. 
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Figure 2.8. The log density (± 1 S.E.) of Ilex saplings (basal girth<10cm) and the size 
distribution of adult tree populations in Shipley Wood and Derwent Gorge. 
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Figure 2.9. The log density (± 1 S.E.) of Sorbus saplings (basal girth<10cm) and the 
size distribution of adult tree populations in Shipley Wood and Derwent Gorge. 
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Figure 2.10. The log density (± 1 S.E.) of Taxus saplings (basal girth<10cm) and the 
size distribution of adult tree populations in Shipley Wood and Derwent Gorge. 
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Figure 2.11. The log density (± 1 S.E.) of Ulmus saplings (basal girth<10cm) and the 
size distribution of adult tree populations in Shipley Wood and Derwent Gorge. 
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All study species were widely distributed on soils that included the pH ranges 

measured at Shipley Wood and Derwent Gorge (Table 2.1, Figure 2.4). Soil pH was 

significantly lower in Derwent Gorge than in Shipley Wood (Table 2.6). Although 

statistically significant, variation between sites was minimal relative to the wide pH 

tolerances of the study species and was, therefore, unlikely to have been ecologically 

significant. Across both sites, soil pH was similar between upper, middle and lower 
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transects and there was no significant interaction between site and transect (Table 

2.6). 

Table 2.6. Mean and range of soil pH at upper, middle and lower transects of Shipley 
Wood and Derwent Gorge. Results of analysis of variance for differences between 
sites and transects are included. Significance levels {p) were >0.05 (n.s., not 
significant) and <0.05 ( ^ ) . 

Shipley Wood Derwent Gorge 
Transect Mean Range Mean Range 

Upper 5.53 5.23-6.19 4.57 4.09-5.42 
Middle 5.61 5.37-6.58 4.61 4.34-6.66 
Lower 5.07 4.79-5.6 4.47 3.96-6.09 

Total 5.33 4.79-6.58 4.55 3.96-6.66 

Source df SS MS F P 

Site (si) 1 4.3x10"^ 4.3x10"^ 6.795 
Transect (tr) 2 3.5x10"'̂  1.7x10"'̂  0.279 n.S. 

si X tr 2 1.7x10"" 8.3x10"'̂  0.013 n.S. 

Residual 24 1.5x10"̂  6.3x10"'^ 
Total 29 2.0x10"^ 6.8x10"'^ 

Differences between tree species and study sites in sapling recruitment and 

adult density, spacing and size distribution most likely reflected contrasting patterns 

of seed dispersal, survival and germination, and seedling growth, establishment and 

survival (Clark & Clark, 1984; Morgan, 1987; Goldberg, 1985; Schupp & Fuentes, 

1995; Kollmann & Schill, 1996; Ohveira, et al, 1996; Akashi, 1997; Okuda et al, 

1997). Differences within and between sites were not accounted for by variation in 

soil pH. The impact of herbivory on natural regeneration dynamics, relative to 

alternative biotic and abiotic factors, will be discussed in the chapters that follow. 
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CHAPTER 3 

POST-DISPERSAL SEED PREDATION 

3.1 INTRODUCTION 

3.1.1 Studies of post-dispersal seed predation 

For many plant species, the production of seeds and their subsequent dispersal 

and survival are fundamental components of natural regeneration. Numerous studies, 

across a wide range of habitats, have investigated the many biotic and abiotic factors 

limiting plant seed survival. The consumption of nutrient rich seeds by herbivores 

(seed predators) has often been found to be the most significant source of post-

dispersal seed loss (reviewed in Crawley, 1992; Hulme, 1993; Hulme, 1998). 

Studies of tree seed predation in temperate deciduous woodland, across a 

range of countries, are reviewed in Table 3.1. High, variable rates of seed predation 

were consistently observed. In twenty-two of the twenty-four studies reviewed, 

including those which directly quantified the relative impact of different predator 

groups, rodents were found to be the principal agents responsible for seed loss. Ants 

were the most significant invertebrate group, although in general, invertebrates, birds 

and larger mammals were of minor importance. While birds do consume seeds, they 

have a more significant role in frugivory and seed dispersal of fleshy-fruited species 

(Snow & Snow, 1988). More than half of the studies of seed survival considered only 

a single plant species, with less than twenty per cent including five or more species. 

Al l studies followed the survival of native woodland tree seeds, whether 

artificially presented or naturally dispersed. Trials that have presented non-native or 

commercial seeds may have recorded unnaturally high or low rates of predation, i f 

seeds were especially attractive or avoided as a result of their unfamiliarity (Partridge, 

1981). Studies most often incorporated either a seed tray or a cage exclosure. Seed 

trays could be accessed by all granivores, with seeds presented on the surface of a 

contained depot. This technique was most effective when the habitat contained only a 

single category of seed predator or seed loss to other groups had been shown to be 

negligible. When necessary, seed trays were modified using a lid or a 

pesticide/adhesive treatment to exclude vertebrates and invertebrates, respectively 

(treatment modifications represented as ' M ' in Table 3.1). 
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The most common method of studying seed survival restricts access to the 

seed supply using cage exclosures, often in combination with a pesticide/adhesive 

treatment or an elevated seed dish. A combination of all treatments can also be used to 

quantify levels of background seed loss. This is a particularly effective means of 

quantifying the relative impact of different animal groups in a habitat containing a 

mixed suite of seed predators. Animal groups may differ markedly in their relative 

impact as seed predators and seed dispersers, the quantity of seeds they consume or 

disperse, the temporal and spatial scales at which they forage and their species and 

microhabitat preferences. Distinguishing their effects is necessary to assess their 

relative impacts on plant recruitment. 

Alternative techniques include monitoring the survival of seeds (often tagged) 

broadcast over a larger, defined area (seed plot), or of individual seeds secured to the 

substrate. The application of pesticide or fencing at the perimeter of a seed plot is an 

effective means of restricting access to the seed supply. Rather than presenting an 

experimentally manipulated seed supply, the survival of naturally dispersed seed may 

also be followed as an effective means of quantifying seed predation. Seed damage is 

often sufficiently characteristic that the relative importance of different predator 

groups can be quantified. 

Although there was often complete predation of the seed supply, the majority 

of studies recorded extreme variation in rates of seed loss according to parameters 

associated with the environment, the food supply and the predator. Spatial variation, 

between microhabitats and geographically discrete sites, temporal variation (seasonal 

and annual) and variation between tree species have been most frequently studied. 

Variation between microhabitats was found to be significant in all of the 

studies in which it was investigated, reflecting the foraging activity and microhabitat 

preferences of the major seed predators (Table 3.1). The spatial heterogeneity of seed 

loss was most often related to small-scale vegetation structure. In the majority of 

studies, predator avoidance was a significant constraint on rodent foraging behaviour, 

with a close spatial association between rates of seed predation, the abundance and 

activity of rodents and the distribution of protective vegetation cover (Ashby, 1967; 

Gardner, 1977; Jensen, 1985; Webb & Willson, 1985; Wada & Uemura, 1994; Boman 

& Casper, 1995; Hulme, 1996a). However, this association was not always consistent 

among rodent species. For example, the foraging activity of C. glareolus is more 
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closely associated with vegetation cover than that of A. sylvaticus (Ashby, 1967; 

Wada & Uemura, 1994). In addition to the greater structural complexity of 

regenerating vegetation in gaps, relative to intact forest, Boman and Casper (1995) 

attributed high seed predation and rodent abundance to the greater seasonal 

availability of seeds. Webb & Wilson (1985) found that rates of seed predation were 

greatest directly beneath adult trees, although the relative influence of vegetation 

cover and seed supply were not distinguished. In contrast, Whelan et al. (1991) 

observed that removal rates were greater in the open forest than at the base of trees 

and adjacent to logs, and Willson and Whelan (1990) found that preferences for 

wooded and open field microhabitats were consistently reversed between years. 

Ashby (1967) also observed that rates of seed loss were greatest fi-om depots in close 

proximity to rodent burrows. 

Differences in predation intensity between geographically discrete sites were 

found to be significant in nine of the ten studies in which it was investigated (Table 

3.1). This spatial heterogeneity was most often attributed to differences in rodent 

activity (Goldberg, 1985; Webb & Willson, 1985), species (Kollmann et al, 1998) or 

density (Watt, 1923; Jensen, 1982; Stapanian & Smith, 1984; Goldberg, 1985; 

Telleria et al., 1991; Kollmann et al., 1998). Consistent with variafion between 

microhabitats, differences in rodent activity were correlated with the availability of 

protective vegetation cover. Differences in rodent density were related to forest size 

(Telleria et al., 1991), seed crop size (Watt, 1923) and variation in the cover and 

composition of forest ground flora (Jensen, 1982; Kollmann et al., 1998). Willson & 

Whelan (1990) found that the direction of variation between sites differed between 

years. 

Temporal variation in predation intensity was observed in all of the studies in 

which it was investigated (Table 3.1). Seasonal and annual variation was most often 

correlated with the natural abundance of conspecific seeds (Watt, 1923; Shaw, 1968b; 

Gardner, 1977; Jensen, 1982; Stapanian & Smith, 1984; Kollmann et al., 1998) or 

seeds of other preferred species (Tanaka, 1995), and the population density of rodents 

(Ashby, 1967; Whelan et al., 1991; Kollmann et al., 1998). With the exception of 

Kollmann et al. (1998), the survival of experimentally supplied seed was enhanced 

when natural seed availability was high. The seasonal accumulation of leaf litter was 

also found to reduce rates of seed predation (Boman & Casper, 1995). 
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Al l studies investigating more than one plant species found significant 

variation between species in rates of seed predation (Table 3.1). In general, rodents 

preferred large, energy rich seeds (Ashby, 1967; Stapanian & Smith, 1984; Jensen, 

1985; Willson & Whelan, 1990; Boman & Casper, 1995), although Kollmann et al. 

(1998) found no association between seed size and rates of predafion. Other physical 

and chemical characterisfics, including nitrogen content (Jensen, 1985), viability 

(Kollmann et al., 1998), toxicity (Kollmann et al., 1998), handhng time (Stapanian & 

Smith, 1984), odour content (Stapanian & Smith, 1984) and the percentage of water in 

the embryo plus endosperm fraction (Kollmann et al., 1998), have also been found to 

account for rodent seed preferences. 

Fewer studies have directly invesfigated the influence of seed burial, seed 

density and seed frequency on rates of seed predation in temperate deciduous 

woodlands. Seed burial was found to be significant in all of the studies in which it 

was investigated (Table 3.1). Seed survival increased after burial under leaf litter and 

was further enhanced with increasing depth of burial under soil. Variation with seed 

density was significant in five of the seven studies in which it was investigated (Table 

3.1), although the direction of this response was not consistent. Rates of seed 

predation were found to either increase with increasing seed density (Stapanian & 

Smith, 1984; Jensen, 1985), or decrease as a result of predator satiation (Jensen, 1982; 

Anderson, 1987; Willson & Whelan, 1990). The significance of seed frequency, 

relative to the availability of alternative food items, also differed between studies. 

Stapanian & Smith (1984) found that seed survival decreased with the presentation of 

higher quality food items in mixed grids, whereas Boman & Casper (1995) and 

Hulme & Hunt (1999) found no effect of seed fi-equency. 

As a result of extreme variation in rates of seed loss, it is difficult to reach 

general conclusions regarding the impact of seed predation on patterns of plant 

recruitment. For any particular species, seed survival is likely to depend on the 

microhabitat to which it is dispersed, the potential for seed burial, the population 

density and activity of resident seed predators, the density of conspecific seeds and 

the availability of alternative food items, according to seasonal and annual variation. 

This may generate quite different patterns of plant recruitment, population dispersion 

and community composifion between similar sites of close proximity. Ultimately, 
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seed predation may be sufficient to exert selective pressure on seed and plant dispersal 

characteristics that may reduce the vulnerability of seeds to granivores. Significant 

impacts on plant demography and evolution are less likely, however, i f patterns of 

seed predation are as variable and unpredictable as previous studies would suggest. 

For any site of particular scientific and conservation value, it is clearly fundamental to 

appreciate patterns of post-dispersal seed predation and the potential for spatial and 

temporal escape, to ensure the regeneration and persistence of species that contribute 

to their conservation value. 

3.1.2 Study aims 

As part of the broader investigation of herbivory and natural regeneration in 

temperate deciduous woodland, the principal aim of this study was to quantify the 

component of post-dispersal seed predation and examine primary sources of variation, 

the possibility of seed escape and the potential impact on plant population dynamics. 

The specific aims, for a range of native tree species, were to; 

1. Quantify the relative impact of vertebrate and invertebrate seed predators on the 

post-dispersal survival of tree seeds in temperate deciduous woodland. 

2. Determine whether seed predation varied significantly between plant species and 

examine the association between rates of removal and seed attributes (physical and 

chemical). 

3. Assess whether seed predation varied spatially, both within and between sites, 

across a range of microhabitats. 

4. Examine whether vertebrate and invertebrate seed predators differ in their species 

preferences and microhabitat use. 

5. Examine the consistency of species and microhabitat preferences between sites, and 

the consistency of species preferences between microhabitats. 
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3.2 MATERIALS AND METHODS 

3.2.1 Design of field trials 

Rates of seed loss were quantified using 'cafeteria' trials (Culver & Beatfie, 

1978) in which food items were presented in feeding depots consisting of a petri-dish 

(9cm diameter, 1cm depth) buried flush with the ground surface and secured by a 

central nail. Sampling points comprised three depot types (Table 3.2, Plates 3.1-3.3), 

using selective exclosure and pesticide treatments to restrict access to specific 

predator groups: 1) 'Invertebrate' depots incorporated a one centimetre gauge mesh 

exclosure to permit access to invertebrates only; 2) 'Rodent' depots used a three 

centimetre gauge mesh exclosure and a molluscicide to permit access to rodents only; 

3) 'Open' depots permitted access to all categories of seed predator. Depots were 

placed at least one metre apart within each sampling point to ensure independence. A 

mollusc-specific metaldehyde-based pesticide was used at 'Rodent' depots since 

molluscs were the principal invertebrate seed predators seen feeding at dishes. In 

laboratory trials, small mammals had no aversion to foraging in the presence of 

molluscicide or to entering three centimetre mesh exclosures (Hulme 1994a). 

Molluscicide was replenished at two-week intervals during seed predation trials. 

Table 3.2. Depot treatments comprising each sampling point. 

Treatment Exclosure Molluscicide Major predators 
with access 

INVERTEBRATE 

RODENT 

OPEN 

1cm gauge mesh 
(14cm X 14cm x 14cm) 

3cm gauge mesh 
(13cm diameter x 38cm) 

None 

None 

Metaldehyde 
(Shower-proof Bioslug) 

None 

Invertebrates 

Rodents 

All 

Seed predation trials were conducted simultaneously at Shipley Wood and 

Derwent Gorge. Five replicate sampling points were placed in each of nine 

representative microhabitats, spaced evenly throughout each study site and at least ten 

metres apart to ensure independence. Sampling points were placed within one metre 

of the base of adult Betula, Fraxinus, Ilex, Sorbus, Taxus and Ulmus, beneath 

coppiced adults of Corylus avellana (Shrub) and beneath the dense cover of Pteridium 

aquilinum (High Vegetafion). Replicates were placed beneath adult trees of a similar 
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size. Open microhabitats were also sampled, typically consisting of a mixture of low 

lying grasses, herbs, moss and litter, providing minimal cover of less than five 

centimetres in height. 

Seed predation trials were conducted for each of the study species, which 

differed in seed size, finiting time, dispersal mechanism and adult density (Table 3.3). 

Seeds presented during trials were collected from adults of each study species at the 

time of fhiit maturation and seed dispersal. Samaras of Fraxinus and Ulmus were 

collected directly from friiiting adults. Strobiles of Betula were stripped and shattered 

to separate the samara from bracts. Arillate seeds of Taxus and berries of Ilex and 

Sorbus were collected and macerated with water to extract seeds. Seeds of all species 

were sorted to discard those which were damaged or infertile, and kept in dry storage 

at room temperature. 

Table 3.3. Fruiting characterisfics of each study species. Seed masses (mg dry weight 
per seed) were exclusive of dispersal structures. Dispersal periods and agents were 
taken from ^ Gardner (1977), ^ Grime et al. (1988) and ^ Snow & Snow (1988). Adult 
densities (trees per hectare) in Shipley Wood and Derwent Gorge were estimated 
using the point-centred quarter method (Chapter 2). 

Taxon Dispersal Dispersal Seed mass Adult density (trees ha'') 
period agent (mg dwt seed"') Shipley Wood Derwent Gorge 

Fraxinus Spring ' Wind^ 51.70 91.6 49.1 
Ulmus Spring ^ Wind^ 9.80 28.7 8.1 
Sorbus Summer ^ Birds ^ 3.80 2.1 16.6 
Taxus Summer Birds ^ 48.20 3.2 1.3 
Betula Autumn Wind^ 0.20 88.6 10.0 
Ilex Autumn Birds ^ 20.35 2.2 2.2 

Seed predation trials commenced on November 26th, 1995 and were 

terminated on March 28th, 1996. Ten seeds of each species were presented at each 

sampling point in a unique randomised order. Depots within each sampling point 

received the same species of seed during each trial. Trials extended for three days to 

allow the resources to be fully exploited. At the end of each trial, the number of seeds 

remaining intact was recorded, giving a measure of seed predation. Seed removal was 

assumed to result in seed death, through either consumption away from the depot or 

dispersal to unfavourable germination microsites. Seed remains were then cleared 

from each depot and the seed supply replenished. Trials continued until every 

sampling point had received seed of each species. 
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3.2.2 Analysis of seed characteristics 

Selected physical and chemical characteristics of each species were measured. 

Dispersal structures (wings or fleshy pulp) were removed from forty seeds of each 

species. Seeds were dried in a vacuum oven for forty-eight hours at forty degrees 

centigrade and the dry masses of whole seeds and their endosperm/embryo component 

measured. Testa mass and the ratio of testa mass to total mass were also calculated for 

each species. For seeds of Betula, Fraxinus, Taxus and Ulmus, energy values for the 

endosperm plus embryo fraction were taken from Jensen (1985) and Smal & Fairley 

(1980). Equivalent energy values for Ilex and Sorbus were determined using a 

Gallenkamp ballistic bomb-calorimeter (Grodzinski & Sawicka-Kapusta, 1970). 

Samples were prepared in the form of a pellet, with a dry weight of 0.3-0.4g. Calorific 

determinations were made using five samples of each species, from which mean 

energy values were calculated. 

A colorimetric test was used to determine the viability of ten seeds collected 

from each of ten fruiting adults of each species. Seeds were secfioned and incubated at 

fifty degrees centigrade in a solution of 0.5% tetrazolium blue chloride for two to four 

hours. Metabohsing cells were identified by a positive pink colour change, from 

which seed viability was determined. 

3.2.3 Statistical analysis 

Seed predation data were analysed according to Hulme (1994a), distinguishing 

seed 'encounter', the probability of at least one seed being predated from a depot 

(binary variable; encountered or not encountered), from seed 'exploitation', the 

proportion of seeds predated once encountered. Distinction could not be made 

between seeds never located by seed predators and seeds located, but subsequently 

ignored, although both were equivalent from the plant's perspective since neither 

influenced seed mortality (Hulme & Hunt, 1999). The experimental design combined 

both fixed effect (microhabitat, treatment and species) and random effect (site) factors 

(Zar, 1984). As such, seed encounter and exploitation were most appropriately 

analysed using a 'mixed model' or 'Model I I I ' factorial analysis of variance in GLIM, 

assuming a binomial error distribufion (NAG, 1985). 

The spatial associations between rates of seed encounter and exploitation at 

Rodent and Open depots were invesfigated. Bivariate categorical data for seed 

encounter were analysed using a two-way frequency table, with a Yates corrected 
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Chi-squared statistic for continuity. The association for bivariate numerical seed 

exploitation data was determined using the Pearson sample correlation coefficient, for 

the arcsine transformed proportion of seeds exploited. 

For each treatment, Pearson sample correlations were used to examine the 

association between seed characteristics (total seed dry mass, endosperm plus embryo 

dry mass, testa dry mass, testa mass:total mass ratio, energy content and seed 

viability) and the arcsine transformed proportion of seeds encountered and exploited. 
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3.3 RESULTS 

3.3.1 Seed Encounter 

3.3.1.1 Variation between treatments 

Rates of seed encounter varied significantly between treatments, and variation 

between treatments was similar between sites (Table 3.4, Figure 3.1). Seed encounter 

was low at Invertebrate depots (<10%) relative to the other treatments. At Rodent and 

Open depots, rates of encounter were of a similar magnitude (t]078=l-661,/7>0.05) and 

were highly spafially associated (x^i=145.998,/><0.001). 

Table 3.4. Total variation in seed encounter (across all treatments) partitioned 
between the main effects (site, microhabitat, species and treatment) and their higher 
order interacfions. Significance levels {p) were >0.05 (n.s., not significant), <0.05 
( ^ ) , <0.01 ( ^ ^ ) and <0.001 ( ^ ^ ^ ) . 

Source df SS MS F P 
Site (si) 1 1.23 1.23 1.43 n.s. 
Microhabitat (mh) 8 37.90 4.74 1.08 n.s. 
Species (sp) 5 184.50 36.90 15.64 
Treatment (tr) 2 467.80 233.90 137.59 
si.mh 8 34.94 4.37 5.07 3f 3f 3^ 

si.sp 5 11.81 2.36 2.74 
si.tr 2 3.39 1.70 1.97 n.s. 
mh.sp 40 64.62 1.62 1.31 n.s. 
mh.tr 16 48.21 3.01 3.46 
sp.tr 10 27.25 2.73 1.73 n.s. 
si.mh.sp 40 49.44 1.24 1.44 n.s. 
si.mh.tr 16 13.90 0.87 1.01 n.s. 
si.sp.tr 10 15.80 1.58 1.83 n.s. 
mh.sp.tr 80 96.98 1.21 3.56 ^ ^ ^ 
si.mh.sp.tr 80 26.90 0.34 0.39 n.s. 

Residual 1294 1114.4 0.8612 
Total 1617 2199.1 
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3.3.1.2 Spatial variation 

Patterns of microhabitat use varied significantly between sites (Table 3.4, 

Figure 3.2). The majority of microhabitats were of similar importance in both sites, 

with seed encounter lowest in open microhabitats. Sites differed principally in the use 

of Fraxinus and High Vegetafion microhabitats (ti78=2.798, /7<0.01 and ti78=3.547, 

/><0.001, respecfively). Seed encounter beneath adults of Fraxinus was proportionally 

greater in Shipley Wood, whereas, encounter beneath High Vegetation was 

proportionally greater in Derwent Gorge. 

Contrasting microhabitat use by different predator groups was evident from 

the interaction between treatment and microhabitat (Table 3.4, Figure 3.3), with 

similar patterns found in both sites. At Open depots, seed encounter was greatest 

beneath adults of Ilex and decreased progressively from Shrub to High Vegetation and 

Open microhabitats. Rates of encounter were similar at Rodent depots, differing 

principally in the use of Ilex and Taxus microhabitats (tii8=2.517, /7<0.05 and 

tn8=3.100,/?<0.01, respecfively). Across all microhabitats, rates of seed encounter at 

Rodent and Open depots were highly spafially associated (x^i=145.998, /><0.001). 

Invertebrate encounter was low across all microhabitats, and was only greater than 

fifteen percent beneath High vegetation. Consistent with Rodent and Open treatments, 

invertebrate encounter was lowest in the open. At both sites, variation between 

treatments in patterns of microhabitat use was species dependent (Table 3.4). 
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Figure 3.2. Mean percentage seed encounter (± 1 S.E.) for each site, across all 
microhabitats {Betula [Bp], Fraxinus [Fe], Ilex [la], Sorbus [Sa], Taxus [Tb], Ulmus 
[Ug], Shrub [SH], High vegetafion [HV] and Open [OP]). 

Shipley Wood • Derwent Gorge 

B 60 
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Microhabitat 

Figure 3.3. Mean percentage seed encounter (± 1 S.E.) for each treatment, across all 
microhabitats {Betula [Bp], Fraxinus [Fe], Ilex [la], Sorbus [Sa], Taxus [Tb], Ulmus 
[Ug], Shrub [SH], High vegetafion [HV] and Open [OP]). 
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3.3.1.3 Variation between species 

Rates of encounter varied significantly between species (Table 3.4), ranging 

from 13% to 58%. In both sites, taxa were ranked in the same order of preference, 

although rates of Betula seed encounter were proportionally greater in Derwent Gorge 

than in Shipley Wood (t268=2.401,/7<0.05, Table 3.4, Figure 3.4). Seeds oi Taxus and 

Sorbus were most frequently encountered, and seeds of Fraxinus and Betula least 
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encountered. At both sites, variation across species was similar between treatments 

and between microhabitats (Table 3.4). There was no evidence to support the 

preferential encounter of conspecific seeds beneath adult trees, and there was no 

combined interaction between site, microhabitat, species and treatment (Table 3.4). 

Figure 3.4. Mean percentage seed encounter (± 1 S.E.) for each species, at both sites. 

Shipley Wood • Derwent Gorge 
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3.3.2 Seed exploitation 

As a result of variation in the proportion of seeds encountered, the available 

data for seed exploitation was highly heterogenous. The resulting constraints between 

factors compromised their independence such that the data could not be analysed in 

their entirety using GLIM. To minimise this heterogeneity, it was necessary to 

exclude those variables for which seed exploitation data were sparse, with encounter 

rates averaging less than twenty percent. The exploitation of Betula seeds and all 

removal from Invertebrate depots was, therefore, omitted for more reliable analysis of 

the remaining variables. 

3.3.2.1 Variation between treatments 

Rates of seed exploitation did not vary significantly between Rodent and Open 

depots (83.8 and 79.6%, respectively), nor between Shipley Wood and Derwent 

Gorge (82.5 and 80.6%, respectively), and there was no significant interaction 

between site and treatment (Table 3.5). Rates of encounter at Rodent and Open depots 

were also highly spatially correlated (r243=0.544,/?<0.001). 
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Table 3.5. Total variation in seed exploitation (across Rodent and Open treatments, 
excluding Betula) partitioned between the main effects (site, microhabitat, species and 
treatment) and their higher order interactions. Probabilities were >0.05 (n.s., not 
significant), <0.05 ( ^ ) , <0.01 ( ^ ^ ) and <0.001 ( ^ ^ 

Source df SS MS F P 
Site (si) 1 3.62 3.62 0.81 n.s. 
Microhabitat (mh) 8 205.20 25.65 1.78 n.s. 
Species (sp) 4 723.50 180.88 46.03 
Treatment (tr) 1 3.75 3.75 11.36 n.s. 
si.mh 8 115.40 14.43 3.21 
si.sp 4 15.70 3.93 0.87 n.s. 
si.tr 1 0.33 0.33 0.07 n.s. 
mh.sp 32 250.70 7.83 1.79 n.s. 
mh.tr 8 25.28 3.16 0.43 n.s. 
sp.tr 4 37.24 9.31 2.61 n.s. 
si.mh.sp 32 139.90 4.37 0.97 n.s. 
si.mh.tr 8 58.38 7.30 1.62 n.s. 
si.sp.tr 4 14.29 3.57 0.79 n.s. 
mh.sp.tr 31 179.20 5.78 2.32 
si.mh.sp.tr 28 69.61 2.49 0.55 n.s. 

Residual 424 1908.00 4.50 
Total 598 3749.90 

3.3.2.2 Spatial variation 

Patterns of microhabitat use varied significantly between sites (Table 3.5, 

Figure 3.5). The sites differed principally in the use of Fraxinus (t65=2.3 08,/7<0.05), 

Ilex (t83=2.408, /7<0.05) and Taxus (168=2.114, ;?<0.05) microhabitats. Seed 

exploitation beneath adults of Ilex and Fraxinus was proportionally greater in Shipley 

Wood, whereas, exploitation beneath Taxus was proportionally greater in Derwent 

Gorge. Treatments did not differ significantly in patterns of microhabitat use, in either 

site, although variation was species dependent (Table 3.5). 
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Figure 3.5. Mean percentage seed exploitation (± 1 S.E.) for each site, across all 
microhabitats {Betula [Bp], Fraxinus [Fe], Ilex [la], Sorbus [Sa], Taxus [Tb], Ulmus 
[Ug], Shrub [SH], High vegetafion [HV] and Open [OP]). 

n Shipley Wood • Derwent Gorge 
100 : 

S 60 

Bp Fe la Sa Tb Ug 

Microhabitat 
SH HV OP 

3.3.2.3 Variation between species 

Rates of exploitafion differed significantly between species (Figure 3.6), and 

variation between species was similar between sites, microhabitats and treatments 

(Table 3.5). With the exception of Fraxinus, once encountered the majority of seeds 

of each taxon were exploited (>75%). There was no evidence to support the 

preferential exploitation of conspecific seeds beneath adult trees, and there was no 

interaction between site, microhabitat, species and treatment (Table 3.5). 

Across all species for which both seed encounter and seed exploitation data 

were available, rates of encounter were correlated with rates of exploitation at rodent 

and open depots (r=0.912, df=3, /7<0.05 and r=0.896, df=3, /7<0.05, respecfively). 

Species which were most frequently encountered were also most frequently exploited. 
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3.3.3 Variation with respect to seed characteristics 

Rates of seed encounter and exploitation at Invertebrate, Rodent and Open 

depots were not significantly associated with any of the physical or nutritional 

parameters measured (Tables 3.6 and 3.7). Total seed mass, endosperm plus embryo 

mass, testa mass, testa mass:total mass ratio, energy content and seed viability were, 

therefore, poor predictors of seed encounter and exploitafion. 

Table 3.6. Characteristics of tree seeds for each study species. Al l seeds were 
analysed without dispersal structures. Energy values taken from 'Jensen (1985) and 
^Smal & Fairley (1980) or ^measured using bomb calorimetry, are shown in calories 
per mg dry weight (cal/mg dwt) and calories per seed (cal/seed). Mass values are 
shown in mg dry weight per seed (mg dwt/seed). 

Taxon Total mass Endosperm Testa mass Testa mass/ Energy content of Seed 
plus embryo Total mass endosperm plus viability 

mass embryo 
mg dwt/seed mg dwt/seed mg dwt/seed cal/mg dwt cal/seed (%) 

Betula 0.20 0.05 0.15 0.75 '6.06 0.30 13 
Fraxinus 51.70 34.75 16.95 0.33 '6.28 218.23 89 
Ilex 20.35 5.85 14.50 0.71 ^7.73 45.22 58 
Sorbus 3.80 1.80 2.00 0.53 ^6.46 11.63 94 
Taxus 48.20 21.25 26.95 0.56 ^8.41 178.71 100 
Ulmus 9.80 8.85 0.95 0.10 '6.40 56.64 38 
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Table 3.7. Results of Pearson sample correlations between seed characteristics and the 
proportion of seeds encountered and exploited. Pearson (r) correlation coefficients and 
degrees of freedom (df) are included for each treatment. Significance levels (p) were 
>0.05 (n.s., not significant). 

Invertebrate Rodent Open 
Encounter r df P r df P r df P 
Endosperm plus 

embryo mass -0.670 4 n.s. -0.022 4 n.s. 0.174 4 n.s. 
Testa mass -0.457 4 n.s. -0.099 4 n.s. 0.155 4 n.s. 
Total mass -0.622 4 n.s. -0.062 4 n.s. 0.180 4 n.s. 
Testa /Total mass 0.710 4 n.s. 0.612 4 n.s. 0.635 4 n.s. 
Energy/mg dwt -0.241 4 n.s. -0.356 4 n.s. -0.170 4 n.s. 
Energy/seed -0.685 4 n.s. -0.106 4 n.s. 0.119 4 n.s. 
Seed viability -0.731 4 n.s. -0.130 4 n.s. 0.041 4 n.s. 
Exploitation r df P r df P r df P 
Endosperm plus 
embryo mass — — — -0.422 3 n.s. -0.737 3 n.s. 

Testa mass 0.056 3 n.s. -0.309 3 n.s. 
Total mass -0.231 3 n.s. -0.604 3 n.s. 
Testa /Total mass 0.036 3 n.s. 0.022 3 n.s. 
Energy/mg dwt ,• 0.531 3 n.s. 0.302 3 n.s. 
Energy/seed — — — -0.252 3 n.s. -0.616 3 n.s. 
Seed viability — — — 0.228 3 n.s. -0.021 3 n.s. 

3.3.4 Impact of predator groups 

In addition to the use of exclosure techniques, the consumption of seeds by 

rodents and invertebrates 'm situ' was easily distinguished from seed remains. The 

presence of faeces and mucus was also characteristic of each group. Molluscs 

(including Arion spp. and Agriolimax spp.) were the only invertebrates and rodents 

(including Clethrionomys glareolus) the only mammals seen feeding at dishes. Birds 

were frequently seen consuming fruit of Ilex, Taxus and Sorbus from fruiting adults, 

but were not observed foraging on seeds at dishes on the woodland floor. 
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3.4 DISCUSSION 

3.4.1 Impact of predator groups 

Rates of encounter and exploitation were not significantly different between 

Rodent depots and those open to all categories of seed predator (Figure 3.1, Table 

3.5). Patterns of species variation and microhabitat use were also similar between 

Rodent and Open depots (Figure 3.3, Table 3.5), where rates of seed loss were highly 

spatially correlated. In addition, the relative proportion of exploited seeds consumed 

in situ and removed from depots were similar between Rodent (40.6 and 59.4%, 

respectively) and Open (36.9 and 66.1%, respectively) treatments. Rodents were, 

therefore, likely to be the principal agents responsible for seed encounter and 

exploitation. This was confirmed by the presence of rodent faeces and characteristic 

seed remains at open depots, and was consistent with other studies of tree seed 

survival in temperate deciduous woodland (Table 3.1). Background seed loss and that 

attributable to invertebrates and other categories of seed predator was of minor 

importance. 

3.4.2 Rodent foraging behaviour 

In order to interpret patterns of species and microhabitat variation, it is 

necessary to appreciate the behavioural, morphological and physiological mechanisms 

involved in rodent foraging. According to Hulme (1993), rodent seed predation can be 

considered as a number of sequential steps. Appetitive behaviour, driven by hunger, 

involves the detection, identification, procurement and handling of the food item, 

which culminates in consumption. 

It has been well documented that rodents primarily use olfactory, rather than 

visual, cues in detecting and identifying seed as food (Howard et al, 1968; Lockard & 

Lockard, 1971; Jennings, 1976). The probabihty of seeds being encountered depends 

on a number of factors, principally the olfactory acuity (Price, 1978) and foraging 

efficiency (Colher & Colher, 1981; Armstrong et al., 1987; Baum, 1987) of the 

rodent, as well as the olfactory conspicuousness of the seed (Reichman, 1981). This is 

thought to be generated by the emission of volatile chemicals fi"om the seed, where the 

odour concentration provides cues as to the identity, location and density of the seed 

supply. Seed burial, seed size, seed density and testa thickness may all influence 

odour concentration and the detection of seeds, although in the present study seed size 

and testa thickness were not associated with rates of encounter. 
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Once encountered, the decision to exploit the resource depends on the 

perceived quality of the food item (nutritional value, toxicity) fi-om olfactory cues, its 

familiarity and the availability of ahemative foods. The cost of procuring seeds is 

negligible when on the soil surface, generally increasing with depth of burial 

according to the substrate type (soil particle size, compactness and water content) and 

the excavation efficiency of the forager. Acquired seed may then be harvested (husked 

and consumed), stored in a cache for later consumption, or rejected and searching 

continued. The probability that a seed is harvested once encountered depends on its 

suitability as a food source, the ease with which it can be harvested and the 

availability of altemafive foods. 

In general, foraging is governed by various 'decision rules' which attempt to 

minimise the constraints on an animal's performance (e.g. energy expenditure) and 

maximise its benefits (e.g. dietary intake). 'Opfimal foraging theory' states that given 

a range of food items, the forager will select those which optimise the goal being 

pursued (Emlen & Emlen, 1975; Pulham, 1975a,b; Colher & Colher, 1981; Ollason, 

1987). The maximisafion of energy intake is a common goal (Pulliam, 1975a; 

Reichman, 1977; Kelrick et al., 1986; Frank, 1988; Kerley & Erasmus, 1991), which 

has been investigated with respect to seed size (Ashby, 1967; Boman & Casper, 1995; 

Henderson, 1990; Jensen, 1985; Price, 1983; Stapanian & Smith, 1984; Willson & 

Whelan, 1990), seed density (Greenwood, 1985; Jensen, 1985; Lacher et al., 1982; 

Stapanian & Smith, 1984) and lipid content (Smith & Follmer, 1972; Hansson, 1973; 

Price, 1983; Keriey & Erasmus, 1991). 

Plants possess a number of traits that afford some degree of protection against 

predators, including the synthesis of toxic, anti-nutritional secondary metabolites. The 

presence of these compounds, which include enzyme inhibitors, haemagglutinins and 

cyanogenic glucosides, is likely to be an important seed characteristic influencing 

rodent selectivity (Janzen, 1971; Kollmann et al., 1998). The physical characteristics 

of a seed, such as seed size or thickness of the seed coat, may impose handling time 

constraints which influence rates of predation (Stapanian & Smith, 1984). A thick and 

impermeable testa may also reduce the emission of volatile chemicals, thus reducing 

their olfactory conspicuousness and detecfion (Stapanian & Smith, 1984). Seed size 

influences handling time in a relationship which is likely to be U-shaped, with an 

optimum range of seed sizes for a particular species of rodent. Handling times would 
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increase for seeds larger and smaller than this range. The nitrogen content (Jensen, 

1985) and viability (Kollmann et al., 1998) of seeds, and the percentage of water in 

the embryo plus endosperm fraction (Kollmann et al., 1998), have also been found to 

account for rodent seed preferences. 

3.4.3 Variation between species 

In the present study, rates of seed encounter and exploitation varied 

significantly between species (Tables 3.4 and 3.5, Figures 3.4 and 3.6), indicating that 

seed predators were making selective, rather than random, foraging decisions. Since 

rodents were the principal agents responsible for seed encounter and exploitation, the 

overall rank order of species reflected rodent seed 'preferences'. This ranking was the 

same in both sites, demonstrating the consistency with which rodents select food 

items, and was similar between encounter and exploitation. Species which were most 

frequently encountered were also most frequently exploited. 

Rodent encounter and exploitation were greatest for seeds of Sorbus, Taxus 

and Ulmus, with seeds of Ilex slightly less exploited, and least for seeds of Fraxinus 

and Betula. Smal & Fairley (1980) found broad support for these seed preferences in a 

laboratory study investigating the food of Apodemus sylvaticus (wood mouse) and 

Clethrionomys glareolus (bank vole), although they also found differences between 

rodent species. Seeds of Taxus were highly preferred by both A. sylvaticus and C. 

glareolus, which principally consumed endosperm. Ripe seeds of Ilex were readily 

consumed by A. sylvaticus, but were less palatable to C. glareolus. When an 

alternative food supply (coconut) was available, C. glareolus did not select Ilex seeds. 

Seeds of Fraxinus were largely rejected by A. sylvaticus, particularly when an 

alternative food supply was available, whereas C. glareolus consumed them readily. 

Seeds of Sorbus were also found to be readily consumed by C. glareolus during 

feeding trials (Drozdz, 1966). 

The rejection of Fraxinus seeds by A. sylvaticus was supported in the field by 

Ashby (1967), whereas other studies found a mixed reaction by C. glareolus to seeds 

of Fraxinus, which were either preferred (Flowerdew & Gardner, 1978, field) or 

rejected (Ashby, 1967, field; Zemanek, 1972, laboratory). Wardle (1959) also 

recorded high rates of Fraxinus seed predation by rodents, whereas Watts (1968) 

found that Fraxinus seeds were only eaten sparingly at a time when the availability of 

alternative seed was low (spring/early summer). In the present study, intermediate 
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rates of Fraxinus seed encounter and exploitadon at Rodent depots (31.1 and 57.5 %, 

respectively), rather than preference or complete rejection, may reflect either the 

combined, mixed reaction of different rodent species or the low natural availability of 

alternative seed. 

Seed preferences were not correlated with any of the physical (total seed mass, 

endosperm plus embryo mass, testa mass, testa mass:total mass ratio or seed viability) 

or nutritional (energy content per gram or per seed) parameters measured (Table 3.6 

and 3.7). Studies investigating tree seed survival in temperate deciduous woodland 

(Table 3.1) most often found that rodents preferred large, energy rich seeds (Ashby, 

1967; Boman & Casper, 1995; Jensen, 1985; Stapanian & Smith, 1984; Willson & 

Whelan, 1990), with similar preferences observed in laboratory trials (Grodzinsky & 

Sawicka-Kapusta, 1970; Jensen, 1985). Kollmann et al. (\99S), however, found no 

association between seed size and rates of predation, consistent with the present study, 

and found that predation rates were lowest for toxic species and species with woody 

endocarps. 

It is likely that toxicity was a significant factor in the consumption of Fraxinus 

seeds, which had a high endosperm mass and energy content, and a relatively thin 

testa (Table 3.6), yet were of low preference to rodents. The mixed reaction to Ilex 

may also reflect some degree of toxicity. Smal & Fairley (1980) found that Taxus had 

a calorific value that exceeded that of any other plant taxon recorded at the time of 

their investigation. Preference for this species would suggest that such a high energy 

content was not significantly outweighed by an intolerable degree of toxicity. In 

laboratory feeding trials, A. sylvaticus and C. glareolus survived on an exclusive diet 

of Taxus seeds (Smal & Fairley, 1980). In contrast, individuals of A. sylvaticus died 

on an exclusive diet of Fraxinus and unripe Ilex seeds after only three and two days, 

respectively, and individuals of C. glareolus died on an exclusive diet of ripe and 

unripe Ilex seeds after only two days. Such acute mortality would support differences 

in toxicity. 

Although there was no overall association between seed mass and rates of 

encounter, seeds of Betula may have remained largely undiscovered as a result their 

small size (0.20mg dwt seed"'), relative to alternative taxa. In addition, the time and 

energy necessary to manipulate and consume such small seeds may have been 

considerably greater relative to the energy gains available. Jensen (1985) found that of 

ten deciduous tree taxa, seeds of Betula were the smallest and had the lowest removal 
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rates in the field (<25%) after 12 days). In fact, rodents were found to show 'little 

interest in seeds of Betula\ with the disappearance of seeds mainly attributed to 

accidental loss and digging. Laboratory trials also supported low preference ratings 

for taxa with small seeds, including Betula. Although large seeds tend to be predated 

more than small seeds (Jensen, 1985; Willson & Whelan, 1990), seed size is rarely the 

exclusive factor accounting for variation in seed loss (Jennings, 1976). In grassland, 

Hulme (1994a) recorded similar, high rates of encounter and exploitafion for small 

(<lmg; 60.00% and 76.01%, respectively) and large (>lmg; 50.91% and 71.43%, 

respectively) surface seeds at high density (10 seeds). 

Although there was no overall association between seed viability and rates of 

seed encounter and exploitation in the present study, the very low viability of Betula 

seeds (13%)) most likely contributed to the infi-equent encounter of this taxon, 

particularly i f rodents possessed the olfactory acuity to make such disfincfions prior to 

seed acquisition. 

It is clearly difficult to draw general conclusions regarding the parameters that 

determine seed preferences in temperate deciduous woodlands. For the majority of 

species, it is likely that seed preferences are individualisfic responses, ultimately 

governed by trade-offs between handling time, nutrifional content ('nutrient 

hypothesis') according to dietary requirements, the avoidance of noxious plant 

chemical defences ('secondary chemicals' hypothesis) (Schmitz et al., 1992; 

Sherbrooke, 1976) and the availability of alternative resources. The theoretical work 

of Emlen (1966) and MacArthur & Pianka (1966) also led to the prediction that 

resource selection by an animal should tend towards generalisation when food is 

scarce and towards specialisation when it is plendful (Lacher et al., 1982). An animal 

which is foraging optimally and ranking its food items in order of preference 

(Pulliam, 1975a) may 'switch' to less preferred species when the availability of highly 

preferred species becomes limiting (Murdoch, 1969). 

The relative proportions of exploited seeds consumed in situ and removed 

from depots varied between seed species. The majority of Sorbus and Ulmus seeds 

were consumed in situ (66.5 and 60.1%), respectively), whereas the majority of Betula, 

Fraxinus Ilex and Taxus seeds were removed from depots (83.3, 83.2, 83.3 and 

87.7%), respectively). With the exception of Betula, for which rates of seed encounter 

70 



averaged less than fifteen percent, small seeds with a low testa mass and energy 

content {Sorbus and Ulmus; Table 3.6) were consumed in situ, whereas large seeds 

with a high testa mass and energy content {Fraxinus, Ilex and Taxus; Table 3.6) were 

removed. Ashby (1967) also found that large seeds were more often removed from 

depots and small seeds more often consumed in situ. Such foraging decisions may 

reflect the relative handling times of different seed types, with respect to maximising 

rates energy intake and minimising predator exposure and energy expenditure. 

Rates of encounter were proportionally greater for seeds of Ulmus in Shipley 

Wood and Betula in Derwent Gorge (Figure 3.4). As seeds presented in both sites 

were selected randomly from the same source, they were unlikely to have differed 

significantly in their physical and chemical characteristics. However, the relative 

value of these species at each site may have been influenced by their familiarity 

(Partridge, 1981), the dietary requirements of resident seed predators and the 

availability of alternative food resources. Seed encounter may have been 

disproportionately high i f the seeds presented were either common or rare, relative to 

the natural availability of conspecific seeds, according to pro-apostatic or anti-

apostatic selection, respectively (Soane & Clarke, 1973; Greenwood et al., 1984a,b; 

Allen, 1988; Hulme & Hunt, 1999). Although the densities of adult Betula and Ulmus 

were greater in Shipley Wood (88.6 and 28.7 trees ha"', respectively) than in Derwent 

Gorge (10.0 and 8.1 trees ha"', respectively), the relative availabiHty and familiarity of 

each taxon cannot be assessed without quantifying relative seed production in each 

study site. 

Apostatic selection may also influence spatial patterns of seed predation. 

Beneath a fruiting adult tree, the predation of conspecific seeds may be either 

disproportionately high or low as a function of their relative frequency, assuming the 

appropriate search image can be formed. In tropical forests, close associations 

between plant species and host-specific seed predators, t3q)ically invertebrates, have 

been frequently recorded (Connell, 1971: Clark & Clark, 1984), with marked 

selection for conspecific seeds beneath fruiting adult trees. However, rodents are more 

often generalist foragers, particularly when the food supply is temporally or spatially 

unpredictable, consuming seeds opportunistically according to preference and 

availability (Drozdz, 1966; Murdoch, 1969). In the present study, there was no 
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evidence to support the selection or avoidance of conspecific seeds beneath adult 

trees, relative to seeds of other species. This may have resulted from the natural 

availability of seed beneath a fruifing adult being insufficient to invoke a predator 

search image for or against conspecific seeds. Altemafively, familiarity or apostatic 

selection of any kind may not be significant to rodents foraging under field 

conditions. The present study was not specifically designed to investigate patterns of 

frequency-dependent predation, rendering the drawing of any conclusions difficult. 

3.4.4 Variation between microhabitats 

Microhabitat variation has been consistently observed in studies of tree seed 

survival in temperate deciduous woodland (Table 3.1), with intense seed predation 

often separated by only a few metres from areas where seed loss was negligible 

(Webb & Willson, 1985; Willson & Whelan, 1990; Whelan et al., 1991; Boman & 

Casper, 1995). This fine-scale spatial heterogeneity typically reflected patterns of 

rodent foraging in response to microhabitat characteristics, particularly the 

distribution of protective vegetation cover (Ashby, 1967; Gardner, 1977; Jensen, 

1985; Webb & Willson, 1985; Wada & Uemura, 1994; Boman & Casper, 1995; 

Hulme, 1996a) and the abundance of seeds (Boman and Casper, 1995). Variation 

between sites has also attributed to differences in the availability of seeds (Watt, 

1923) and vegetation cover (Jensen, 1982; Goldberg, 1985; Webb & Willson, 1985; 

Kollmann 1998). 

The extent of vegetation cover may vary spatially and temporally according to 

the species of established plant. The dispersion of temperate forest plants has been 

principally attributed to physical habitat factors, such as soil quality, light intensity, 

microtopography and the depth of leaf litter (Bratton, 1976; Sydes & Grime, 1981; 

Crozier & Boemer, 1984). The availability of seeds in a microhabitat depends on the 

magnitude of seed input and the size of the seed bank. Factors influencing seed input 

include the distance from the seed supply, the size of the seed crop, the intensity of 

pre-dispersal predation and the efficiency of dispersal. Dispersal is likely to vary 

within and between sites according to wind exposure, patterns of water flow and the 

movements of animal dispersers. The size of the seed bank would depend on previous 

seed input and the survival of seeds in the soil. The quality of seeds arriving in a 

microhabitat would depend on the abundance of tree species with highly preferred 

seed within dispersal range. 
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In an attempt to maximise the benefits (e.g. dietary intake) and minimise the 

constraints (e.g. energy expenditure) on an animal's performance, optimal foraging 

theory would predict that foragers would select protected microhabitats with the 

greatest abundance of high quality food items. Vegetation cover and food availability 

are often correlated, although conflicts may arise between minimising predator 

exposure and energy expenditure, and maximising rates of energy intake (Lima et al., 

1985). Rodents may forage in open areas, of high predafion risk, i f they contain 

highly preferred food items (O'Dowd & Hay, 1980). 

In the present study, patterns of microhabitat use varied significantly between 

treatments (Table 3.4, Figure 3.3) and sites (Tables 3.4 and 3.5, Figures 3.2 and 3.5). 

Rather than foraging randomly, seed predators made selective decisions regarding 

habitat suitability. In both sites, rodents and invertebrates showed similar patterns of 

seed exploitation across microhabitats, but distinct patterns of seed encounter (Figure 

3.3). Invertebrate encounter was low across all microhabitats, particularly in the open, 

and was only greater than fifteen percent beneath High Vegetation. 

Rodents foraged broadly across all microhabitats, although rates of encounter 

did vary significantly between them. The decrease in encounter from Shrub to High 

Vegetation and Open microhabitats was likely to reflect patterns of foraging in 

response to vegetation cover and food availability. The availability of highly preferred 

seeds beneath adults of Corylus avellana (Gumell, 1993; Kollmann & Schill, 1996; 

Smal & Fairley, 1980; Jensen, 1985; Grodzinski & Sawicka-Kapusta, 1970) and the 

provision of low lying vegetation cover was likely to account for high rates of 

foraging in this microhabitat. Seeds of Corylus with characteristic rodent damage 

were frequently observed beneath fruiting adults, although seed production and 

predation were not quantified for this taxon. In contrast. Open microhabitats provided 

minimal cover and were some distance from any seed source. This may account for 

proportionally lower rates of seed encounter in open microhabitats, consistent with 

other studies of tree seed survival in temperate deciduous woodland (Table 3.1). 

Intermediate rates of encounter were observed in High Vegetation microhabitats, 

which were highly favourable in terms of vegetation cover, although were some 

distance from any seed source. 

Rodent encounter was of a similar, high magnitude beneath adults of all study 

species (Figure 3.3). Rates of encounter were greatest beneath adults of Ilex, where 
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the provision of low lying vegetation cover and proximity to an exploitable seed 

supply would have been favourable. Wada and Uemura (1994) found that almost all 

seeds presented beneath shrub vegetation dominated by Ilex crenata var. paludosa 

were consumed in situ, where rodents were most active. It is important to note that 

despite showing well defined microhabitat preferences, rodents foraged over a broad 

range of microhabitat types. Even in less preferred microhabitats, rates of seed 

encounter and exploitation were often intense. 

Patterns of microhabitat use varied significantly between sites (Figures 3.2 and 

3.5). Seed encounter beneath adults of Fraxinus and exploitation beneath Fraxinus 

and Ilex, were proportionally greater in Shipley Wood. In contrast, seed encounter 

beneath High vegetation and exploitation beneath Taxus were proportionally greater 

in Derwent Gorge. Consistent with variation within sites, differences between sites 

were most likely a function of habitat suitability. Populations of Fraxinus differed 

between Shipley Wood and Derwent Gorge, both in the density and spatial 

distribution of adult trees. The density of adult Fraxinus was almost twice as great in 

Shipley Wood as in Derwent Gorge (91.6 and 49.1 trees ha"', respectively), with adult 

trees more associated with the lower regions of Shipley Wood and the middle regions 

of Derwent Gorge (Chapter 2). These differences, particularly in the density of adults, 

may account for variation in the relative value of Fraxinus microhabitats within each 

site. In addition, differences in canopy density, fruit production, seed dispersal and 

plant associations may have influenced relative habitat suitability, leading to 

differential foraging between sites. 

Variation in these factors was also likely to account for the differential use of 

Ilex, Taxus and High Vegetation microhabitats. In both sites, patches of High 

Vegetation {Pteridium aquilinum) were associated with openings in the canopy, 

assuming soil suitability. In Derwent Gorge, patch size was generally smaller than in 

Shipley Wood. Depots placed in the centre of each patch would, therefore, be closer 

to adjacent adult trees at the perimeter of the patch. I f the number of seeds of a given 

species arriving at any point in the woodland declined exponentially with increasing 

distance fi-om the parent plant, seed input at depots beneath High Vegetation in 

Derwent Gorge may have been higher than in Shipley Wood, resulting in 

proportionally greater microhabitat use. The significance of this effect, however, 

would depend on the spatial scale of seed dispersal and rodent foraging, the 
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distribution of fruiting adult trees with respect to patches of High Vegetation and the 

size of their respective seed crops. Since patterns of seed rain in High Vegetation 

microhabitats were not quantified, such an effect can only be hypothesised. 

Alternatively, variation between sites may have resulted from differences in the 

availability of High Vegetation microhabitats. The extent of High Vegetation cover 

was greater in Derwent Gorge than in Shipley Wood, both at the beginning 

(percentage cover averaging 11-25% and <4%, respectively) and at the end of the 

experiment after dying back (percentage cover averaging <4% and 0%, respectively). 

This may account for the proportionally greater value of High Vegetation 

microhabitats in Derwent Gorge. 

In Shipley Wood, the mean basal girth of adult Ilex was significantly lower 

than in Derwent Gorge (42.3 and 104.6cm, respectively; t28 = 4.1l,p<0.00l; Chapter 

2). The shorter, shrubbier individuals of Ilex in Shipley Wood would have provided 

foraging rodents with improved low-lying vegetation cover, which may have led to 

proportionally greater use of this microhabitat. This may also account for greater rates 

of exploitation beneath adults of Taxus in Derwent Gorge, where the mean basal girth 

of individuals was significantly lower than in Shipley Wood (116.6 and 222.3cm, 

respectively; tsg = 7.38, p<0.00l; Chapter 2). Differences in fruit production, seed 

dispersal and plant associations may have also contributed to variation between sites. 

The absolute factors contributing to differential microhabitat use between sites 

are not easily distinguished, although variation most likely resulted from differences 

in the intrinsic quality of microhabitats in terms of food supply and vegetation cover. 

Secondary to influencing patterns of microhabitat use, predation risk may have 

also constrained alternative foraging decisions. For example, handling time may have 

been of greater significance in the open than beneath protective vegetation cover, 

potentially reducing the number of seeds exploited 'in situ\ This may favour seed 

removal to lower risk microhabitats, or may result in a shift in dietary preference 

towards food items with reduced handling requirements (Lima & Valone, 1986). 

Consequently, the maximisation of energy intake may be compromised in an attempt 

to minimise exposure to predators. 

Across all microhabitats, an average of 37.8% of exploited seeds were 

consumed in situ and 62.2% were removed from depots. The relative proportion of 

seeds consumed in situ and removed was similar in the open (40.5 and 59.5%, 
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respectively) and variation between species in rates of encounter and exploitation was 

consistent between microhabitats. There was no marked shift in seed preferences in 

the open, despite increased predator exposure and handling time constraints. It is 

likely that rather than favouring seed removal over consumption in situ, or shifting 

seed preferences to species with reduced handling times, rodents responded to Open 

microhabitats with a lower intensity of foraging. This was reflected in rates of seed 

encounter averaging less than fifteen percent. 

3.4.5 Impact of seed predation on plant demography 

Consistent with previous studies of temperate deciduous woodland (Table 3.1), 

rates of post-dispersal seed predation recorded in the present study were extremely 

variable. This further demonstrates the difficulty in reaching general conclusions 

regarding the impact of seed predation on plant demography and evolution, which 

ultimately depends on the magnitude and consistency at which predation pressure is 

exerted and the ability of plants to compensate for losses or invest in anti-predator 

defence. 

Although differential seed predation over a species' seed shadow has been found 

to influence spatial patterns of seedling emergence (Anderson, 1987; Harmon & 

Stamp, 1992), alternative factors including heterogenous patterns of seed rain 

(Herrera et al., 1994), environmental requirements of seed germination, seedling 

estabhshment and plant survival (Callaway, 1992; Herrera et al., 1994; Hulme 1996a) 

and spatio-temporal conflicts between seeds and seedlings (Houle, 1992; Schupp, 

1995; Kollmann & Schill, 1996) may be of greater significance to ultimate patterns of 

plant recruitment and community composition. 
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CHAPTER 4 

DISTANCE- AND DENSITY-DEPENDENT 
POST-DISPERSAL SEED PREDATION 

4.1 INTRODUCTION 

4.1.1 Studies of distance- and density-dependent post-dispersal seed predation 

Plants that regenerate from seed have a limited potential for independent 

movement. The dispersal of propagules away from the parent is, therefore, a 

significant component of the regeneration sequence. Local seed dispersal has a 

number of demographic benefits (Howe & Smallwood, 1982), particularly as a means 

of a) expanding the geographic range of a population ('Colonisation Hypothesis'); b) 

locating favourable microhabitats which enhance seedling establishment and survival 

('Directed Dispersal Hypothesis'); and c) escaping the detrimental effects of being 

close to the parent, which may include parental suppression, the association of disease 

vectors (Fox, 1977; DeSteven & Putz, 1984) or sibling competition where offspring 

density is at its highest (West, 1968) ('Escape Hypothesis'). Parental suppression may 

include shading (Horn, 1971; Clark & Clark, 1984), allelopathy (Tubbs, 1973, 1976; 

Horsely, 1977) and resource depletion (Zinke, 1962). 

Janzen (1970) and Connell (1971) independently proposed that there may be 

disproportionately high offspring mortality beneath a parent plant resulting from the 

increased activity of herbivores. In this 'Herbivore Escape Hypothesis' (Figure 4.1), 

where offspring density (I) follows the primary seed dispersal curve, the probability of 

offspring survival (P) is lowest beneath the parent. Janzen (1970) and Connell (1971) 

proposed that this pattern may be generated by either 'Density-dependent' predators, 

responding to the high density of offspring beneath the parent, or 'Distance-dependent' 

predators, responding directly to the distance between the offspring and the parent 

plant, independent of density. It was hypothesised that vertebrates were more likely to 

be density-dependent, and invertebrates more likely distance-dependent. They also 

proposed that complete offspring mortality within some 'Minimum Critical Distance' 

(MCD) would generate a 'Population Recruitment Curve' (PRC) some distance from 

the parent (Figure 4.1). This would have a spacing effect, opening up the habitat for 

colonisation by other species, and has been hypothesised as a significant factor 

maintaining the high tree species diversity of tropical forests. 
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Figure 4.1. Graphical model of the 'Herbivore Escape Hypothesis', after Janzen 
(1970). The 'population recruitment curve' (PRC) peaks beyond some 'minimum 
critical distance' (MCD) from the adult, as a product of offspring density (I) and the 
probability of offspring survival (P). 

Distance trom parenf 

Many studies evaluating the Janzen-Connell model have monitored the long-

term survival of seedlings and saplings (reviewed in Clark & Clark, 1984). 

Alternatively, spacing mechanisms have been deduced from the spatial distribution of 

adult trees (Hubbell, 1979; Fanghang et al, 1997; Itoh et al., 1997). This may be 

inappropriate, however, since low offspring survival beneath the parent may be 

equally generated by sibling competition or parental suppression acting on seedlings 

and saplings. Such an investigation should, therefore, consider the post-dispersal 

survival of seeds, thus isolating the mechanisms of the herbivore escape hypothesis 

before these alternative processes come into effect. 

Studies of density- and distance-dependent post-dispersal tree seed predation, 

across a range of tropical and temperate forest ecosystems, are reviewed in Table 4.1. 

Rodents were the major post-dispersal seed predator group in temperate deciduous 

woodland. In tropical forest, mammals and invertebrates, particularly insects, were the 

major post-dispersal seed predators in a similar number of studies (twelve and ten, 

respectively). Density-dependent predation has been directly investigated as 

frequently in temperate deciduous woodland as in tropical forest, whereas distance-

dependent predation has been principally investigated in tropical forest. The range 
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over which distance- and density-dependence were observed, varied between studies. 

O f the thirteen studies investigating patterns o f distance-dependence, five sampled to 

distances o f ten metres from the adult or less, and only three sampled to distances 

greater than f i f t y metres. Density ranges also considered responses at a small, local 

scale and at a broader, population scale. 

Evidence for density- and distance-dependent seed predation is summarised in 

Table 4.2. Positive density-dependence, consistent with the herbivore escape 

hypothesis, was observed in only ten o f a total o f twenty-two cases. In a further six 

cases, predation intensity declined wi th increasing seed density. Negative distance-

dependence, consistent with the herbivore escape hypothesis, was observed in only 

nine o f the total twenty-two cases. In only a single case was distance-dependent seed 

predation sufficient to generate a clear minimum critical distance. A n increase in 

predation intensity with distance from the parent was infrequent. 

Table 4.2. Summary o f evidence for density- and distance-dependent post-dispersal 
seed predation. The number o f individual cases o f significant positive (+) or negative 
( - ) dependence, and the number cases where seed predation did not vary significantly 
(n.s.) wi th either density or distance, are shown. Positive and negative evidence for a 
minimum critical distance are also summarised. Parentheses include studies with 
partial evidence. Patterns o f seed predation in temperate and tropical woodlands, and 
by invertebrate and mammalian seed predators, are distinguished. 

Density-dependence Distance-dependence M C D 
+ - n.s. + - n.s. + n.s. 

TOTAL 9(10) 6 6 1 9 12 1(2) 20 

Temperate 4(5) 1 2 0 1 1 0 2 

Tropical 5 5 4 1 8 11 1(2) 18 

Invertebrate 1 2 1 0 4 3 1(2) 5 

Mammal 7(8) 4 2 0 3 6 0 9 

There was some evidence that patterns o f density- and distance-dependence 

differed between temperate deciduous woodland and tropical forest. In temperate 

woodland, positive density-dependence, consistent with the herbivore escape 

hypothesis, was observed in the majority o f cases, whereas in tropical forest, there 

were as many cases in which seed predation was either negatively or not significantly 



density-dependent. Negative distance-dependence, consistent with the herbivore 

escape hypothesis, was more characteristic o f seed predation in tropical forests, 

although at least as many observations found no significant variation with distance 

fi^om the adult. Patterns o f distance-dependence in temperate woodland cannot be 

distinguished from the limited number o f observations to date. 

Howe (1993), Terborgh et al. (1993) and Cintra (1997) directly distinguished 

patterns o f density- and distance- dependence by alternative predator groups. 

Mammals were positively density-dependent and not significantly distance-

dependent, whereas invertebrates were both negatively density and distance-

dependent. Across all studies (Table 4.2), mammals more often showed positive 

density-dependence than any alternative, whereas invertebrates more often showed 

negative distance dependence and were responsible for both cases o f 'minimum 

critical distance'. Although there were cases o f negative distance dependence by 

mammals and positive density dependence by invertebrates, there is some evidence to 

support the hypothesis that vertebrates are more likely to be density-dependent and 

invertebrates more likely distance-dependent (Connell, 1971). 

The majority o f studies investigated the predation o f only a single seed 

species. O f the five studies including more than one species, Terborgh et al. (1993), 

Notman et al. (1996) and Cintra (1997) found variation between species in patterns of 

density- and distance-dependence. Stapanian & Smith (1984) found that although the 

survival o f black walnuts (Juglans nigra), bur oak acorns (Quercus macrocarpa) and 

chinquapin oak acorns {Q. muehlenbergii) decreased with increasing nut density, 

lower densities o f walnuts were more easily distinguished by rodents, as a result of 

their greater odour concentration. 

Wilson & Janzen (1972), Boucher (1981) and Schupp (1992) found that at low 

seed densities, seed predation was positively density-dependent, consistent with the 

herbivore escape hypothesis. However, at a population level, high seed densities 

safiated seed predators and increased seed survival. Jensen (1982) and Burkey (1994) 

also found that seed predation was negatively and linearly related to total seed 

production. Scale was also significant to distance-dependence. Peres et al. (1997) and 

Wright (1983) found that at a local scale, seed removal did not vary significantly with 

distance fi-om the adult. However, at a population scale, there was a marked decline in 

82 



seed removal at distances greater than three hundred and one hundred metres, 

respectively. In contrast, Webb & Willson (1985) found that predation risk was 

markedly reduced beyond a distance o f only two metres fi-om the adult. 

From investigations to date, it is difficult to conclusively support the herbivore 

escape hypothesis, with patterns o f distance- and density-dependence inconsistent 

between plant species and predator groups, across a range of forest ecosystems. In 

addition patterns were often scale-dependent, with processes at the level o f an 

individual tree not necessarily representative o f processes at the populafion level. 

Hubbell (1980) questioned the validity o f distance- and density-dependence on 

theoretical grounds alone, recognising the paradox between the intense post-dispersal 

seed predation recorded beneath parent trees and the spatial aggregation of adult 

populations in tropical forest. The discrepancy was believed to lie in the scaling of 

axes in Janzen's (1970) original graphical model (Figure 4.1). The omission of 

numerical axes failed to consider that offspring density (I) was unbounded, whereas 

the probability o f offspring survival (P) was confined to the range between zero and 

one. Hubbell (1980) concluded that maximum offspring density and population 

recruitment would occur at the parent, even though relative offspring survival may 

increase wi th distance the tree. 

It is clearly diff icult to make general predictions regarding the benefits of seed 

dispersal and the impact o f density- and distance-dependent seed predators on spatial 

patterns o f plant recruitment and species diversity. 

4.1.2 Study aims 

The majority o f studies reviewed in Table 4.1, investigated either the density-

or distance-dependent predation o f a single seed species by a single predator group. 

The principle aim o f this study was to examine both density- and distance-dependent 

seed predation, for a range o f native tree species and predator groups. The potential 

impact o f seed predation on spatial patterns o f plant recruitment and species diversity 

w i l l be discussed. 

The specific aims o f the study were to; 

1. Determine whether seed predators respond to seed density (density-dependent 

predation). 
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2. Assess variation in seed survival with distance from the parent (distance-dependent 

predation). 

3. Examine whether patterns o f density- and distance-dependence differ significantly 

between tree species, and between vertebrate and invertebrate seed predators. 
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4.2 M A T E R I A L S A N D M E T H O D S 

4.2.1 Design of field trials 

Patterns o f distance- and density-dependent seed predation were investigated 

in Shipley Wood. The study species included taxa that differed in seed size, fi-uiting 

time, dispersal mechanism and adult density (Table 3.3); Fraxinus, Ilex, Sorbus, 

Taxus and Ulmus. Seeds were presented at sampling points comprising 'Invertebrate', 

'Rodent' and 'Open' treatment types, as described in Chapter 3. Sampling points were 

placed at distances o f 1, 3, 6, 10 and 15 metres from the base o f ten replicate adult 

trees o f each study species. Trees o f a similar size were selected from across the site, 

at least ten metres f rom the nearest conspecific adult to minimise interference. 

Sampling points were positioned along one o f five transects projecting from each 

replicate tree at 0, 72, 144, 216 and 288 degrees north (Figure 4.2). This allocation 

was random where possible, although constrained to ensure that sampling points were 

always at a greater distance from the nearest conspecific adult than from the replicate 

adult. The orientation o f different distance sampling points varied between replicate 

adult trees. 

Seed predation trials were conducted during the natural fruiting period of each 

taxon; Fraxinus (22"^ Apr i l - l ' ^ May, 1996), Ulmus (21'*-30''^ June, 1996), Taxus (28'^ 

September-7^'' October, 1996), Sorbus (10"'-19''' November, 1996), Ilex (27th January-

5th February, 1997). Trials were repeated for Fraxinus the following year (4th-13th 

March, 1997), when there was an abundance of fruit production. Trials were not 

conducted for Betula, since background depletion o f the seed supply to wind and rain 

was excessively high during the fruiting period. The vast number o f naturally 

dispersed seeds falling beneath fruiting adults also made it impossible and unrealistic 

to monitor the survival o f single seeds presented during trials. 

Seeds presented during trials were collected from adult trees at the time of 

fruit maturation and seed dispersal (Chapter 3). For each tree species, conspecific 

seeds were presented at each dish at a randomly selected density o f 1, 5 or 10 seeds. 

Within each sampling point, treatments received the same density o f seeds during 

each trial. After three days, the number o f seeds remaining intact was recorded, giving 

a measure o f seed predation. Seed removal was assumed to result in seed death, 

through either consumption away from the depot or dispersal to unfavourable 

germination microsites. Seed remains were then cleared from each depot and the seed 
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supply replenished with that o f an alternative density. Trials continued until every 

sampling point had received seed at each density. 

Figure 4.2. Schematic diagram showing the arrangement o f sampling points ( A ) 
along experimental transects projecting from each replicate adult tree, as constrained 
by the locality o f the nearest conspecific adult ( • ) . Transects were orientated in 
degrees north (N) and sampling points were positioned at distance intervals from one 
to fifteen metres. 

288N-^'l0m VA 72N 

216N 'NEAREST ® 
CONSPECIFIC 

ADULT 
144N 

4.2.2 Statistical analysis 

Seed predation data were analysed following Hulme (1994a), distinguishing 

seed encounter f rom seed exploitation, as described in Chapter 3. Since distance, seed 

density, exclosure treatment and seed species were all fixed effects, seed encounter 

and exploitation data were most appropriately analysed using a 'fixed model' or 

'Model r factorial analysis o f variance in G L I M , assuming a binomial error 

distribution (Zar, 1984; N A G , 1985). 

Analysis was undertaken simultaneously on data f rom all species, to identify 

overall patterns o f variation according to treatment, seed species, seed density and 

distance fi-om a conspecific adult. Seeds at density one were omitted from the analysis 

o f exploitation data, as single seeds would not have permitted intermediate rates o f 

86 



exploitation once encountered. Factorial analysis o f variance (Model I) was also 

conducted separately for each study species in order to distinguish individualistic 

patterns o f distance- and density-dependence. 

The spafial association between rates o f seed encounter and exploitation at 

Rodent and Open depots was determined from the Yates corrected Chi-squared 

statistic for seed encounter and the Pearson sample correlation coefficient for seed 

exploitation (Chapter 3), on the arcsine transformed proportion o f seeds exploited. 
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4.3 RESULTS 

4.3.1 Seed encounter 

4.3.1.1 Variation between treatments and species 

Rates o f seed encounter varied significantly between treatments, between 

species and within taxa for Fraxinus in two years, and variation between species was 

treatment dependent (Table 4.3, Figure 4.3). Rates o f encounter at Rodent and Open 

depots were highly spatially correlated {y^ =294.24, d f = l , /?<0.001) and variafion 

between species was broadly similar. Seed encounter was greater than sixty-five per 

cent for all taxa except Fraxinus in 1997, with seeds o f Taxus most frequently 

encountered. The encounter o f Fraxinus seeds was significantly greater in 1996 than 

in 1997 (1296=15.487, j9<0.001 and t296=7.712, ;?<0.001, for Rodent and Open 

treatments, respectively). In contrast. Invertebrate encounter was only greater than 

twenty percent for seeds o f Ulmus and Sorbus. Fraxinus seed encounter was low in 

both 1996 and 1997, and the encounter o f Taxus and Ilex was proportionately lower 

than at Rodent and Open depots. 

Table 4.3. Total variation in seed encounter partitioned between the main effects 
(species, treatment, distance and density) and their higher order interactions. 
Significance levels {p) were >0.05 (n.s., not significant), <0.05 ( ^ ) , <0.01 ( ^ ^ ) and 
< 0 . 0 0 1 ( ^ ^ ^ ) . 

Source d f SS MS F P 
Species (sp) 5 375.10 75.02 81.76 
Treatment (tr) 2 695.50 347.75 378.99 
Distance (di) 4 7.10 1.77 1.93 n.s. 
Density (de) 2 53.99 26.99 29.42 4f ^ ^ 
sp.tr 10 117.80 11.78 12.84 
sp.di 20 61.92 3.10 3.37 4: ̂  ^ 
sp.de 10 21.52 2.15 2.35 
tr.di 8 9.63 1.20 1.31 n.s. 
tr.de 4 4.13 1.03 1.13 n.s. 
di.de 8 4.27 0.53 0.58 n.s. 
sp.tr.di 40 47.18 1.18 1.29 n.s. 
sp.tr.de 20 18.71 0.94 1.02 n.s. 
sp.di.de 40 27.59 0.69 0.75 n.s. 
tr.di.de 16 7.93 0.50 0.54 n.s. 
sp.tr.di.de 80 51.14 0.64 0.70 n.s. 
Residual 2412 2213.20 0.92 
Total 2681 3716.80 1.39 



Figure 4.3. Mean percentage seed encounter (± 1 S.E.) o f each species, for each 
treatment. 

H Invertebrate • Rodent • Open 

^ 70 

Taxus Ulmus Sorbus Fraxinus96 

Taxon 
Ilex Fraxinus97 

4.3.1.2 Density-dependent seed encounter 

Rates o f seed encounter varied significantly with seed density (Table 4.3). 

Patterns o f density-dependence were similar between treatments and between 

distances, but differed significantly between species (Table 4.3, Figure 4.4). Analysis 

was conducted separately for each species in order to distinguish patterns of density-

dependence (Table 4.4). Single seeds o f Taxus, Sorbus and Fraxinus in 1997 were 

encountered significantly less frequently than seeds at greater densities, consistent 

wi th the herbivore escape hypothesis. The encounter o f Ulmus, Ilex and Fraxinus 

seeds in 1996 was not density-dependent. 

The density dependent encounter o f Sorbus was similar in all three treatments 

(F4,399 = 0.889, /7>0.05), wi th open depots reflecting patterns o f rodent and 

invertebrate encounter. In contrast, there was a significant interaction between 

treatment and density for the encounter o f Taxus (F4,402 = 5.5 1 3, /7<0.001). Seed 

encounter at rodent depots increased significantly with seed density (Figure 4.5), 

consistent with the herbivore escape hypothesis. However, this pattern was not 

reflected in overall rates o f seed encounter at Open depots, and even at density one, 

seed encounter approached ninety percent. Invertebrate encounter varied significantly, 

although there was no clear trend with seed density. Although there was no significant 

interaction between density and treatment (F4,402 = 0.3 8 8, /7>0.05), the encounter o f 

Fraxinus seeds by invertebrates in 1997 was not density dependent, with rates o f 

encounter consistently less than 10% (Figure 4.6). 
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Figure 4.4. Mean percentage seed encounter (± 1 S.E.) o f each species, at each 
density. 

Density 1 g Density 5 • Density 10 100 

^ 70 

60 

Taxus Ulmus Sorbus Fraxinus96 
Taxon 

Ilex Fraxinus 9 7 

Table 4.4. Patterns o f density- and distance-dependent seed encounter for each study 
species. Results o f factorial analysis o f variance include the significance and direction 
o f each association (+, positive relationship; - negative relationship; n.s., no 
significant variafion). 

Taxon Density-dependence Distance-dependence 

Fraxinus96 n.s. F2,40i=0.770 
p > 0.05 

n.s. F4,4oi=2.776 
/7>0.05 

Fraxinus91 + F2,402=8.492 
p <0.001 

n.s. F4,402=2.414 
p > 0.05 

Ilex n.s. F2,403=1.784 
p > 0.05 

- F4,403=5.076 
p < 0.01 

Sorbus + F2,399=21.113 
p<0.001 

n.s. F4,399=0.600 
p > 0.05 

Taxus + F2,402—7.173 
p <0.01 

+ F4,402=l 3.622 
p < 0.001 

Ulmus n.s. F2,405=2.7 1 7 
p > 0.05 

n.s. F4,405=0.449 
p > 0.05 
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Figure 4.5. Mean percentage encounter (± 1 S.E.) o f Taxus seeds at each density, for 
each treatment. 
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Figure 4.6. Mean percentage encounter (± 1 S.E.) o f Fraxinus seeds at each density, 
for each treatment in 1997. 
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4.3.1.3 Distance-dependent seed encounter 

Patterns o f distance-dependent seed encounter were similar between 

treatments, but varied significantly between species (Table 4.3). Analysis was 

conducted separately for each species in order to distinguish these patterns. The 

encounter o f Sorbus, Ulmus and Fraxinus in both years, did not vary significantly 

with distance from the adult, for any o f the treatments (Table 4.4). Ilex and Taxus seed 
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encounter were distance-dependent, according to treatment (F8,403 = 2.299, p<0.05. 

Figure 4.7 and F8,402 = 3.240,p<0.0\, Figure 4.8, respectively). 

The encounter o f Ilex seeds at Open depots declined significantly with 

increasing distance from the adult. This trend was consistent with the herbivore 

escape hypothesis and was supported by negatively distance-dependent encounter at 

Rodent depots. However, the negative distance-response at Open depots was only 

significant at a small spatial scale, where seed encounter was significantly greater 

directly beneath the aduh than at three metres (ti78=2.187, p<0.05) and beyond. 

Invertebrate encounter generally increased with distance, although was at a 

sufficiently low magnitude not to influence the overall response. At both rodent and 

invertebrate depots, Taxus seed encounter increased significantly with distance from 

the parent, opposite to that predicted by the herbivore escape hypothesis. However, 

these patterns were not reflected in overall rates o f seed encounter at Open depots, 

which were consistently greater than ninety percent. There were no higher order 

interactions between species, treatment, distance and density (Table 4.3). 

Figure 4.7. Mean percentage encounter (± 1 S.E.) of Ilex seeds at each distance from 
the parent. 
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.8. Mean percentage encounter (± 1 S.E.) o f Taxus seeds at each distance 
parent. 
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4.3.2 Seed exploitation 

4.3.2.1 Variation between treatments and species 

Rates o f seed exploitation varied significantly between treatments, between 

species and within taxa for Fraxinus in two years, and variation between species was 

treatment dependent (Table 4.5, Figure 4.9). Rates o f exploitation at Rodent and Open 

depots were highly spatially correlated (r363=0.542, p<O.Ol), variation between 

species was similar and the rank order o f species was the same. With the exception of 

Fraxinus in 1997, once encountered, the majority (>60%) of seeds of each taxon was 

exploited. Seeds o f Taxus were most frequently exploited and Fraxinus seed 

exploitation was significantly greater in 1996 than in 1997 (t9o=6.041,/><0.001 and 

t97=8.172,/7<0.001, for Rodent and Open treatments, respectively). 

Invertebrate exploitation was substantial relative to rates o f invertebrate 

encounter, although it was only greater than thirty-five percent for seeds o f Taxus and 

Ulmus. Exploitation was proportionally higher for Taxus and Ulmus, and lower for 

Ilex, relative to the other two treatments. The exploitation of Fraxinus seeds by 

invertebrates was o f a similar low magnitude in both years (t898=1.274,/?>0.05). 

93 



Table 4.5. Total variafion in seed exploitation partiUoned between the main effects 
(species, treatment, distance and density) and their higher order interactions. 
Significance levels were >0.05 (n.s., not significant), <0.05 ( ^ ) , <0.01 ( ^ ^ ) and 
<0.001 ( ^ ^ ^ ) . 

Source df SS MS F P 
Species (sp) 5 1178 235.6 88.491 
Treatment (tr) 2 623.0 311.5 116.999 
Distance (di) 4 13.42 3.355 1.260 n.s. 
Density (de) 1 0.832 0.832 0.312 n.s. 
sp.tr 10 162.1 16.21 6.088 ^ ^ ^ 
sp.di 20 111.8 5.59 2.100 
sp.de 5 13.28 2.656 0.998 n.s. 
tr.di 8 35.58 4.4475 1.670 n.s. 
tr.de 2 3.791 1.8955 0.712 n.s. 
di.de 4 19.88 4.97 1.867 n.s. 
sp.tr.di 36 101.0 2.8056 1.054 n.s. 
sp.tr.de 10 7.785 0.7785 0.292 n.s. 
sp.di.de 20 88.5 4.425 1.662 n.s. 
tr.di.de 8 11.00 1.375 0.516 n.s. 
sp.tr.di.de 31 42.51 1.37129 0.515 n.s. 
Residual 817 2175.2 2.662 
Total 983 4587.9 

Figure 4.9. Mean percentage seed exploitation (± 1 S.E.) o f each species, for each 
treatment. 
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4.3.2.2 Density-dependent seed exploitation 

Seed exploitation was not density-dependent, for any o f the species, treatments 

or distances investigated. 
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4.3.2.3 Distance-dependent seed exploitation 

Patterns o f distance-dependent seed exploitation were similar between 

treatments, but varied significantly between species (Table 4.5). Analysis was 

conducted separately for each species in order to distinguish these patterns. The 

exploitation o f Ilex, Sorbus, Ulmus and Fraxinus in both years, did not vary 

significantly wi th distance from the adult, for any o f the treatments (Table 4.6). Taxus 

seed exploitafion was distance-dependent, according to treatment (Fyj85=3.287, 

/7<0.01; Figure 4.10). At Rodent and Open depots, Taxus seed exploitation was 

consistently greater than ninety-six per cent, whereas invertebrate exploitation varied 

markedly. There was no clear relationship between rates o f exploitation and distance 

from the adult, for any o f the treatments. There were no higher order interactions 

between species, treatment, distance and density (Table 4.5). 

Table 4.6. Patterns o f distance-responsive seed exploitation for each study species. 
Results o f factorial analysis o f variance include the significance of each associafion 
( ^ , significant variation, no relationship; n.s., no significant variation). 

Taxon Distance-dependence 

Fraxinus96 n.s. F4,i30=2.006 
p >0.05 

Fraxinus91 n.s. F4,3o=0.280 
p >0.05 

Ilex n.s. F4,128=l-851 
p >0.05 

Sorbus n.s. F4,i60=l-225 
p >0.05 

Taxus F4,,85=8.910 
p <0.001 

Ulmus n.s. F4,i 84=2.336 
p >0.05 

A t rodent and open depots, the rates o f encounter o f each species were 

positively correlated with the rates o f exploitation (r=0.954, df=4, j!7<0.01 and 

r=0.913, df=4, jr?<0.01, respecfively). Species that were most frequently encountered 

were also most frequently exploited. A t invertebrate depots, rates o f encounter and 

exploitation were not significantly correlated (r=0.786, df=4,/>=n.s.). 
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Figure 4.10. Mean percentage exploitation (± 1 S.E.) of Taxus seeds at each distance 
from the parent, for each treatment. 
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4.3.3 Impact of predator groups 

Consistent wi th the previous study o f seed predation (Chapter 3), molluscs 

(including Arion spp. and Agiolimax spp.) were the only invertebrates and rodents 

(including Clethrionomys glareolus) the only mammals seen feeding at dishes. This 

was supported by the presence o f faeces, mucus and seed remains at dishes which 

were characteristic o f each group. Birds were seen consuming fi-uit f rom canopies o f 

Ilex, Taxus and Sorbus, but were not observed foraging on seeds at experimental 

depots. 
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4.4 DISCUSSION 

4.4.1 Impact of predator groups 

Rates of encounter and exploitation were of a similar high magnitude at 

Rodent and Open depots, where seed species were ranked in a similar order (Figures 

4.3 and 4.9). In addition, patterns of encounter and exploitation at Rodent and Open 

depots were highly spatially correlated. Background seed loss and that attributable to 

invertebrates were significantly lower than the other two treatments. Rodents were, 

therefore, considered to be the principal agents responsible for seed encounter and 

exploitation, with patterns of distance- and density-dependence largely reflecting 

rodent foraging behaviour. 

4.4.2 Variation between tree species 

Rates of encounter and exploitation varied significantly between species and 

within species, according to treatment (Figures 4.3 and 4.9). Species that were most 

frequently encountered by rodents (at rodent and open depots) were also most 

frequently exploited. Rates of encounter and exploitation were greatest for seeds of 

Taxus, Ulmus and Ilex, least for seeds of Fraxinus in 1997 and intermediate for seeds 

of Sorbus and Fraxinus in 1996. 

As described in Chapter 3, variation between tree species most likely reflected 

the olfactory conspicuousness, handling time and nutritional value of each seed 

species, according to rodent seed preferences and the availability of protective 

vegetation cover beneath conspecific adult trees. Natural seed availability and the 

population density of rodents at the time of each experiment would have also varied 

between study species, as may have the level of activity of rodents. 

Variation between species was generally consistent with patterns identified in 

Chapter 3. Variable rates of Fraxinus seed encounter and exploitation by rodents most 

likely reflected the natural abundance of Fraxinus seeds. In 1997, low rates of 

encounter and exploitation coincided with abundant fruit production averaging over 

1.1 million Fraxinus seeds per hectare. Encounter and exploitation were significantly 

greater in 1996, when the natural availability oi Fraxinus seeds was low. This would 

support 'masting' as a mechanism of satiating rodent seed predators and increasing 

the probability of conspecific seed survival (Boucher, 1981; Jensen, 1982; Schupp, 

1992). Invertebrate seed predators did not respond to variation in the natural 
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abundance of Fraxinus seeds. The relative influence of rodent density and the 

availability of vegetation cover could not be assessed in the absence of survey data. 

4.4.3 Variation with seed density 

Seed density influenced the probability of encounter (Stapanian & Smith, 

1984), rather than exploitation, although variation in seed survival with seed density 

was species dependent (Cintra, 1997). Density-dependent encounter, consistent with 

the herbivore escape hypothesis, was principally supported by Sorbus and Fraxinus in 

1997 (Figure 4.4, Table 4.4). Density-dependent seed exploitation was not 

substantially supported by any of the seed species or treatments. 

Rodents were the principal agents responsible for the density-dependent 

encounter of Fraxinus seeds. Patterns of density-dependence varied according to 

spatial scale (Wilson & Janzen, 1972; Boucher, 1981; Schupp, 1992) and local food 

abundance (Willson & Whelan, 1990). When the natural availability of Fraxinus 

seeds was low in 1996, seed encounter at a local scale did not vary significantly with 

seed density, for any of the treatments (Figure 4.4, Table 4.4). In 1997, coinciding 

with an abundance of fruit production, the encounter of Fraxinus seeds was positively 

density-dependent, consistent with the herbivore escape hypothesis. This was likely to 

reflect a shift from generalist foraging when seed availability was low, to more 

selective foraging when seeds were abundant (Emlen, 1966; MacArthur & Pianka, 

1966; Lacher et al., 1982). At a population level, rodents were satiated by mast 

seeding (Jensen, 1982; Burkey, 1994), resulting in proportionally greater seed 

survival and negative density-dependence. Contrasting local (positive) and population 

level (negative) density-dependence was consistent with Boucher (1981) and Schupp 

(1992). 

Single seeds of Sorbus were encountered significantly less frequently than 

seeds at higher densities. Rates of encounter and exploitation were similar at densities 

five and ten. Rodents and invertebrates showed similar patterns of density-

dependence. Density-dependent seed survival may be influenced by seed size 

(Mittelbach & Gross, 1984). Hulme (1993) suggested that predation on small seeds 

was more likely to be density-dependent than predation on large seeds. Of the taxa 

investigated in the present study, seeds of Sorbus were of the lowest mass (Table 3.3) 

and rates of encounter were most consistently density-dependent. However, it was 

difficult to disassociate the influence of seed size from alternative habitat parameters, 
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including the availability of protective vegetation cover and alternative food, 

including conspecific seeds, and the population density of seed predators competing 

for resources at the time of each experiment. 

It is significant that negative evidence only disproved density-dependent 

encounter and exploitation for the density range considered in the investigation. 

Across alternative density ranges, Wilson & Janzen (1972) found contrasting density-

dependence (Table 4.1). Across a low density range, seed predation increased with 

seed density, whereas, across a high density range, seed predation decreased with seed 

density as predators became satiated. The encounter of Fraxinus seeds in the present 

study supported such contrasting local and population scale responses to seed density. 

Considering scale-dependence, general conclusions regarding patterns of density-

dependence should be made with some caution. 

4.4.4 Variation with distance from the adult 

Distance from the adult influenced the probability of seed encounter 

(Stapanian & Smith, 1984), rather than exploitation, although variation in seed 

survival with distance from the adult was species dependent (Terborgh et ai, 1993; 

Notman et al, 1996; Cintra, 1997). Distance-dependent encounter, consistent with the 

herbivore escape hypothesis, was principally supported by Ilex (Figure 4.7, Table 

4.4). Distance-dependent seed exploitation was not substantially supported by any of 

the seed species or treatments (Table 4.6). 

The encounter of Ilex seeds was significantly greater directly beneath 

conspecific adult trees than at greater distances (Figure 4.7). Rodents were the 

principal agents responsible for this trend. Preferential foraging beneath adults of Ilex 

was consistent with patterns of seed predation recorded in Chapter 3. Ilex 

microhabitats were considered most beneficial in terms of protective vegetation cover 

and food supply. Although this distance response was consistent with the basic 

principle of the herbivore escape hypothesis, it occurred over such a small spatial 

scale that it was not meaningful in terms of the spacing mechanisms hypothesised by 

the Janzen-Connell model. However, short-term seed survival would have been 

enhanced by dispersal of only a few metres from the parent (Webb & Willson, 1985) 

although even at a distance of fifteen metres, rodent encounter exceeded fifty percent. 

As with density-dependent effects, negative evidence only disproved distance-

dependent encounter and exploitation at the spatial scale considered. Across 
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alternative distance ranges, Wright (1983) and Peres et al. (1997) found contrasting 

distance-dependence. In both cases, seed predation did not vary significantly with 

distance at a local scale (0-16 and 5-35 metres, respectively), but decreased 

significantly with distance at a population scale (>100 and >300 metres, respectively). 

Again, considering scale dependence, general conclusions regarding patterns of 

distance-dependence should be reached with some caution. 

In the present study, there was no evidence for any species that seed survival 

increased significantly beyond some 'minimum critical distance', at least over the 

distance range investigated. However, an average of 98 and 99 per cent of all 

artificially supplied Taxus seeds were encountered and exploited, respectively, after 

only three days of exposure to all categories of seed predator. In addition, not a single 

naturally dispersed Taxus seed was found to have escaped predation beneath the 

fhiiting adults investigated. Although there was no evidence that Taxus seed survival 

increased at distances beyond those sampled, it was clear that at least local 

recmitment was likely to have been significantly limited by post-dispersal seed 

predation, particularly by rodents. In the study described in Chapter 3, seeds of Taxus 

were most preferred of all the taxa and rates of seed loss were high in all 

microhabitats sampled. In addition, seedlings of Taxus were encountered very 

infrequently during surveys of Shipley Wood (Chapter 6). A dramatic increase in seed 

survival beyond some minimum critical distance from the parent was, therefore, 

unlikely. Lack of evidence for any of the study species was consistent with the 

majority of woodland studies investigating distance-dependent tree seed predation 

(Table 4.1). 

4.4.5 Variation within tree species 

Rates of Fraxinus seed encounter and variation with seed density differed 

significantly according to the natural availability of conspecific seeds. In fact, 

variation within species was greater than variation between species. Other tree species 

may show equal temporal dynamics in total rates of seed encounter and exploitation, 

and in patterns of distance- and density-dependence. In Shipley Wood, fruiting adults 

of Fraxinus were at a high density and seed production varied dramatically between 

years. In addition, the encounter and exploitation of Fraxinus seeds were low when 

seeds of more preferred taxa were available (Chapter 3). Only in the spring of 1996, 
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when the natural availability of seeds of all taxa was low, were seeds of Fraxinus 

encountered and exploited at high rates. Although seed production was not formally 

quantified over the study period, it was apparent that fi-uiting adults of the other 

species were of low abundance and produced smaller, more regular crops of preferred 

seed. Under such conditions, the potential for predator satiation is limited (Boucher, 

1981) and temporal variation in patterns of distance- and density-dependence, 

according to the availability of conspecific seeds, are likely to be less extreme. 

4.4.6 Variation between predator groups 

Studies which directly distinguished patterns of density- and distance-

dependence by alternative predator groups, found that mammals were positively 

density-dependent, whereas invertebrates were both negatively density and distance-

dependent (Howe, 1993; Terborgh et al., 1993; Cintra, 1997). Across all studies of 

density- and distance-dependent post-dispersal seed survival (Table 4.2), mammals 

more often showed positive density-dependence than any alternative, whereas 

invertebrates more often showed negative distance-dependence. 

In the present study, mammalian and invertebrate seed encounter were 

positively density-dependent for two and one of the five species investigated, 

respectively. Mammalian and invertebrate seed encounter was negatively distance-

dependent for one and none of the five species investigated, respectively. Seed 

exploitation was not density- or distance-dependent for any of the treatments. There 

was no evidence to support the hypothesis that vertebrates were more likely to be 

density-dependent and invertebrates more likely distance-dependent (Connell, 1971). 

4.4.7 Evaluation of the 'Herbivore Escape Hypothesis' 

The variability of post-dispersal seed predation has been a consistent factor in 

all of the studies in which it has been investigated. Variation in space, between sites 

and microhabitats, in time, between seasons and years, and according to seed burial, 

seed fi-equency, seed species and predator group are described in Chapter 3. In the 

present study, the effects of seed density and distance from the adult on post-dispersal 

seed survival, varied significantly between and within tree species. Mixed support 

was consistent with other studies of density- and distance-dependent seed survival, 

across a range of continents, habitats, plant species and predator groups, (Table 4.1). 

In all studies, negative evidence only disproved density- or distance-dependent 



predation for the size-age class considered in the investigation, across the density or 

distance range sampled. 

Patterns of density- and distance-dependent seed survival are largely 

unpredictable and can not be generalised temporally or spatially for alternative plant 

species and predator groups. For many plant species, seed dispersal may be an 

effective and necessary means of escaping disproportionately high seed predation 

beneath the parent, which may ultimately influence spatial patterns of recruitment and 

species diversity. Alternatively, seed dispersal may be a necessary means of escaping 

seedling herbivory, parental suppression or sibling competition beneath the parent. 

For other species, seed dispersal may be more significant in terms of colonisation and 

directed dispersal, where the impact of seed predation may be secondary to spatio-

temporal conflicts between seeds and seedlings (Houle, 1992; Schupp, 1995; 

Kollmann & Schill, 1996) and the environmental requirements of seed germination, 

seedling estabhshment and plant survival (Callaway, 1992; Herrera et al., 1994; 

Hulme, 1996a). In the absence of spacing mechanisms hypothesised by the Janzen-

Connell model, species diversity may be maintained by the suppression of single 

species dominance by opportunistic, frequency-dependent seed predators (Murdoch, 

1969;Connell, 1971). 

In the present study, there was marginal support for the hypothesis that seed 

predation was more likely to be density-dependent in temperate woodland and 

distance-dependent in tropical forest. Density-dependent seed survival was supported 

by two of five tree species, whereas distance-dependent survival was not supported by 

any species at a spatial scale consistent with the herbivore escape hypothesis. Rodents 

were the principal seed predators, foraging throughout the woodland and consuming a 

mixed diet, including seeds of numerous tree species (Chapter 3). In the absence of 

host specificity, generalist and opportunistic post-dispersal seed predators are unlikely 

to respond directly to distance from the adult, independent of seed density. Distance-

dependent predation is more likely to depend on the host-specificity of seed predators 

in tropical forest (Janzen, 1970). 

Under theoretical conditions, disproportionately high offspring mortality 

beneath the parent may be sufficient to generate a spacing effect (Figure 4.1). 

However, in natural populations, with overlapping seed shadows, mortality-mediated 

spacing is much less predictable. For example, an increase in the distance to which 
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seeds were dispersed would result in a flattening of the seed shadow curve, assuming 

seed crop size remained constant. I f seed densities were low throughout the dispersal 

range, close to the minimum threshold for predator search, the probability of seed 

survival may be equal at any distance from the parent, leading to random spacing in 

adult populations. In the present study, adults of Fraxinus were randomly distributed 

in both sites and adults of Acer and Ilex were randomly distributed in Derwent Gorge 

(Table 2.3). A l l other aduk populations of the study species were spatially aggregated 

in the study sites, supporting the absence of predictable spacing mechanisms mediated 

by distance- and density-dependent seed predation. 

Variation in seed crop size, the population density of seed predators and 

dispersers, and the availability of alternative food are also likely to generate a 

temporally dynamic association between post-dispersal seed predation and tree 

spacing (Hubbell, 1980). Alternative microhabitat characteristics, such as the 

availability of protective vegetation cover (Ashby, 1967; Gardner, 1977; Jensen, 

1985; Webb & Willson, 1985; Wada & Uemura, 1994; Boman & Casper, 1995; 

Hulme, 1996a), may be ultimately more significant to patterns of rodent foraging than 

either seed density or distance from the parent. 
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CHAPTER 5 

SEEDLE^G HERBIVORY 

5.1 INTRODUCTION 

5.1.1 Studies of seedling herb ivory 

Tree seedlings are particularly vulnerable following germination, when seed 

reserves have been depleted and seedlings first rely on the products of their 

photosynthesis for growth and survival. Studies of seedling survival have typically 

documented the many abiotic factors limiting post-germination survival, including 

desiccation, frost heaving, shade and litterfall, unfavourable seedbed conditions, 

flooding, fire and disturbance (Bramble & Goddard, 1942; Streng et al., 1989; Gill & 

Marks, 1991; Reader, 1993; Jones et al., 1994). Biotic factors limiting seedling 

growth and survival include competition (Goldberg, 1985; Gill & Marks, 1991), 

fungal attack (Streng et al., 1989; Augspurger, 1984) and herbivory (Table 5.1). 

Relative to the vast literature detailing patterns of predator-mediated seed mortality, 

few studies have directly quantified the consumption of seedlings by herbivores, and 

the majority of these have been observational rather than experimental. 

Studies of tree seedling herbivory in temperate deciduous woodland, across a 

range of countries, are reviewed in Table 5.1. The majority of studies followed the 

survival of naturally dispersed native tree seedlings (seedling survey, N). When 

mortality factors were not readily distinguished and the habitat contained a mixed 

suite of seedling herbivores, the experimental design was modified (M) to selectively 

restrict access to seedlings. Wire mesh exclosures, of appropriate gauge, were 

typically incorporated to quantify the relative impact of alternative herbivore groups. 

These groups may differ markedly in rates of herbivory, temporal and spatial scales of 

foraging, species and microhabitat preferences and their relative impact on plant 

recruitment. Alternatively, trials monitored the survival of transplanted nursery 

seedlings (T) or field germinated seedlings (F), derived from artificially planted seeds 

within 'experimental plots'. Sixty per cent of the studies considered only a single 

plant species, with less than fifteen per cent including more than three species. 

High, variable rates of seedling herbivory were consistently observed. Of the 

eighteen studies reviewed, rodents and invertebrates were the principal seedling 

herbivores in eight and seven studies, respectively, and were of minor importance in a 
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further three and one studies, respectively. Insects and molluscs were the most 

significant invertebrate groups. Rabbits, birds, deer and sheep were the principal 

seedling herbivores in fewer studies, although rates of herbivory were similar in terms 

of magnitude and variability. A number of studies directly quantified the relative 

impact of alternative herbivore groups, which were found to vary significantly in rates 

of seedling herbivory. 

Although herbivores often destroyed all available seedlings, the majority of 

studies recorded extreme variation in rates of seedling herbivory relative to 

parameters associated with the environment, the resources and the herbivore guild. 

Al l studies investigating more than one plant species found significant 

variation between species in rates of seedling herbivory, although such variation has 

rarely been accounted for. Wood (1938) found that herbivory varied between species 

according to the time of germination. Since most seedling damage occurred in winter, 

species that germinated in spring were able to escape herbivory. Herbivore resistance 

may also reflect investment in physical or chemical defence. In an investigation of the 

growth and resistance to hares (Lepus timidus) of Betula spp. seedlings, Rousi et al. 

(1996) found that highly resistant species contained high concentrations of phenohcs, 

papyriferic acid and other related terpenoids. 

Spatial variation in seedling herbivory was significant in a number of studies, 

where microhabitat variation reflected the behaviour of seedling herbivores. 

Consistent with spatial patterns of seed predation (Chapter 3), the survival of 

unprotected seedlings was greater in open microhabitats than in woodland or beneath 

dense vegetation, owing particularly to the reduced activity of small mammals 

(Bramble & Goddard, 1942; Peterken, 1966). Other studies recorded greater herbivory 

beneath a conspecific canopy than beneath adults of other species, reflecting some 

degree of host specificity (Paterson et al., 1996; Humphrey & Swaine, 1997b; Maeto 

&Fukuyama. 1997). 

Variation in seedling herbivory between sites may also reflect the activity and 

population density of seedling herbivores. Pigott (1985) found that differences 

between sites were correlated with rodent density, as determined by characteristics of 

the vegetation. Watt (1919) recorded significantly lower rates of seedling herbivory 

on clay (18.9%) than on sandy soil (28.6%), when seedlings were unprotected. 
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Rabbits were thought to prefer sandy soil to clay soil, which was considered an 

unsuitable substrate for colonisation and breeding. Humphrey & Swaine (1997b) also 

found that differences between sites in the defoliation of Quercus seedlings were 

positively correlated with the degree of infestation by lepidopteran larvae. 

Density-dependent seedling herbivory has been infrequently investigated. 

Pigott (1985) found that seedling herbivory was negatively correlated with density, 

reflecting the satiation of rodent herbivores. In contrast, Akashi (1997) found a 

positive density-response, although seedling mortality patterns varied according to the 

spatial and temporal scale. Nakashizuka et al. (1995) found that the herbivory of 

Carpinus tschonoskii seedlings was not significantly density-dependent. 

Distance-dependent seedling herbivory has also been observed (Nakashizuka 

et al., 1995). Maeto & Fukuyama (1997) found that the herbivory of Acer mono 

seedlings by invertebrates decreased with distance from the parent, consistent with the 

'herbivore escape hypothesis' (Chapter 4). In contrast, Akashi (1997) found that the 

herbivory of Fagus crenata seedlings by mammals was not significantly distance-

dependent. 

Paterson et al. (1996) found that the intensity of seedling herbivory was 

greater for seedlings that germinated later in the study. This may have resulted from 

increased slug activity, following a seasonal temperature rise, or a preference for 

younger, more palatable seedlings containing reduced levels of tannins. Insect damage 

may also vary seasonally, such that species germinating when most damage occurs are 

less likely to escape herbivory than species germinating at other times (Wood, 1938). 

The loss of seedlings to herbivores is likely to limit the reproductive potential 

of many plant species. In addition, light herbivory may reduce the growth and 

competitive ability of seedlings (Hendrix, 1988). Extreme variation in rates of 

herbivory, according to plant and herbivore species, time, space and seedling density, 

have been inadequately accounted for, making general conclusions difficult regarding 

the impact of seedling herbivores on patterns of plant recruitment. The influence of 

variable and unpredictable patterns of seedling herbivory on plant demography and 

the evolution of anti-herbivore defence is also difficult to assess from current 

knowledge. To ensure the regeneration and persistence of plant species, it is clearly 
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fundamental to appreciate patterns of seedling herbivory and the potential for spatial 

and temporal escape, across a range of plant species and microhabitats. 

5.1.2 Study aims 

Following an initial investigation of post-dispersal seed predation, the 

principal aim of this study was to quantify the herbivory of recently germinated 

seedlings and examine variability with respect to plant community composition, 

spatial patterns of plant recruitment and the natural regeneration of temperate 

deciduous woodland. 

The specific aims, for a range of native tree species, were to; 

1. Quantify the relative impact of vertebrate and invertebrate herbivores on the 

survival of tree seedlings in temperate deciduous woodland. 

2. Determine whether seedling herbivory varied significantly between species and 

examine the association between species preferences and seedling attributes. 

3. Determine whether seedling herbivory varied spatially, across a range of 

microhabitats. 

4. Examine whether vertebrate and invertebrate seedling herbivores differ in their 

species preferences and microhabitat use. 

5. Examine the consistency of species preferences between microhabitats. 
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5.2 MATERIALS AND METHODS 

Seedling herbivory was investigated in Shipley Wood, where the d3aiamics of 

natural seedling abundance had been monitored in a concurrent survey (Chapter 6). 

The study species included taxa that differed in seedling size, time of germination, 

adult density and patterns of seed predation: Acer, Betula, Fraxinus, Ilex, Sorbus, 

Taxus and Ulmus. 

5.2.1 Nursery practice 

Seedlings presented during trials were established from seeds collected from 

the study site. Seeds were collected from adult trees of each species at the time of fruit 

maturation and seed dispersal (Chapter 3). Pre-germination treatments, including 

scarification, soaking and stratification, were used to enhance germination success 

(Schopmeyer, 1974). The hard endocarps of Ilex and Taxus seeds were mechanically 

scarified using a Waring® Blender, until endocarps were visibly scarred. Al l seeds 

were then soaked in water for forty-eight hours prior to sowing and rinsed thoroughly 

of any germination inhibitors. Seeds were sown in mulched beds at a density and 

depth consistent with Schopmeyer (1974)(Table 5.2). The total number of seeds 

necessary to yield sufficient seedlings for the experimental design, varied between 

species according to seed viability (Table 5.2; Chapter 3). 

To account for delayed germination, seeds were planted in each of the two 

years (November 1995 and 1996) prior to field trials in spring/summer 1997. Seed 

trays were placed outside for winter stratification, open to the environment and raised 

sufficiently above the ground to prevent access to rodent seed predators. Following 

germination, seedlings were watered regularly until the time of field presentafion. 

Table 5.2. Sowing depth, sowing density and seed viability of each species 
germinated. Nursery practice recommended by Schopmeyer (1974) is highlighted. 

Taxon Sowing depth (in.) Sowing density (ft"^) Seed viability (%) 

Betula 1/16-3/16 25-45 13 
Fraxinus 1/4-3/4 10-15 89 
Ilex 1/8-1/2 15-25 58 
Sorbus 1/16 15-25 94 
Taxus 3/8-1/2 15-25 100 
Ulmus 1/4-1/2 15-25 38 
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5.2.2 Design of field trials 

Seedlings were presented at sampling points comprising 'Invertebrate', 

'Rodent' and 'Open' treatment types, as described in Chapter 3. Five replicate 

sampling points were placed in each of the nine representative microhabitats sampled 

during seed predation trials; beneath adult Betula, Fraxinus, Ilex, Sorbus, Taxus and 

Ulmus, beneath Shrub (Corylus avellana) and High Vegetation (Pteridium aquilinum) 

and in the Open. 

As a result of unpredictable seed germination, it was necessary to modify the 

experimental design. Seedlings of Sorbus and Taxus were entirely omitted from 

predation trials, following poor germination, and seedlings of Acer subsequently 

included. Acer seedlings were carefully harvested from a natural source and 

transplanted to seed trays until field presentation. The yield of Ilex seedlings was also 

insufficient for the complete experimental design, such that seedlings could only be 

presented in eight of the nine microhabitats sampled. Ilex seedlings were not 

presented beneath adults of Taxus, since Taxus had been entirely omitted from 

predation trials following poor germination. 

Field presentation of seedlings followed the natural emergence of conspecific 

seedlings in Shipley Wood; Acer (19 '̂' April-1'^ May), Fraxinus (28*̂  May-9"' June), 

Betula (10'''-22"^ June), Ilex {25'^ June-7''' July), Ulmus {9'''-2\'' July). At the fime of 

presentation, all seedlings were less than one month old, with cotyledons and their 

first pair of true leaves. Intact seedlings of a similar size were carefully transplanted 

from seed trays in the field. Single seedlings of each species were presented at each 

experimental depot. After three days, the number of seedlings remaining intact was 

recorded. Seedling damage was categorised according to the proportion of seedling 

remaining. Five categories represented progressively greater seedling damage; (1)91-

99% remaining, (2) 76-90% remaining, (3) 51-75% remaining, (4) 26-50% remaining, 

(5) 1-25% remaining, (6) complete consumption of the seedling. 

Since the encounter and damage of all species was low after three days of 

exposure, trials were extended to permit greater exploitation of the resources. Rates of 

seedling encounter and damage were recorded at further three-day intervals until trials 

were terminated after twelve days of exposure. This period coincided with the earliest 

occurrence of wilting, to which seedlings of Acer were most sensitive. Seedling 
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remains were then removed from each depot and replaced by an alternative species. 

Trials continued until every sampling point had received each species of seedling. 

5.2.3 Analysis of seedling characteristics 

Growth, allocation and leaf characteristics of each species were determined. 

Saturated masses of total plants, total true leaves, total cotyledons, epicotyls, 

hypocotyls and roots were measured from ten seedlings of each species prior to field 

presentation, from which average masses per seedling were determined. Total leaf dry 

mass, total plant dry mass and total leaf plus cotyledon dry mass were then calculated 

from leaf saturated mass to dry mass ratios, leaf mass fractions (total leaf dry 

mass/total plant dry mass) and leaf plus cotyledon mass fractions (total leaf plus 

cotyledon dry mass/total plant dry mass) taken from Comelissen et al. (1996). Mean 

relative growth rates for seedlings of each species {sensu stricto, excluding cotyledons 

from plant weight) were also taken from Comelissen et al. (1996). 

5.2.4 Statistical analysis 

Data analysis considered two alternative components of seedling herbivory: 

seedling encounter (the probability of seedling herbivory) and seedling damage (the 

extent of seedling herbivory, once encountered). Seedling encounter was a binary 

variable, where seedlings were either encountered or not encountered. Microhabitat, 

treatment and species were all fixed effects, thus seedling encounter was most 

appropriately analysed using a 'fixed model' or 'Model I ' factorial analysis of 

variance in GLIM, assuming a binomial error distribution (Zar, 1984; NAG, 1985). 

Variation in categorical seedling damage data was analysed using chi-squared 

analysis, according to microhabitat, treatment and species. Damage categories were 

pooled when necessary to fulf i l the conditions of analysis regarding unity and the 

lower limit of expected frequencies. The inclusion of incomplete data from Taxus 

microhabitats did not significantly influence patterns of variation in seedling 

encounter and damage, between species, microhabitats and treatments. 

For each treatment, seedling characteristics (total seedling dry mass, total leaf 

plus cotyledon dry mass, leaf saturated mass:dry mass ratio, leaf plus coyledon mass 

fraction and mean relative growth rate) were examined in relation to the mean 

proportion of seedlings encountered, using Pearson sample correlations, and the 

median severity of seedling damage, using Spearman rank correlations. 
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The spatial association between rates of seedling encounter and damage at 

Invertebrate, Rodent and Open treatments was determined from the Yates corrected 

Chi-squared statistic for seedling encounter and the Spearman Rank Correlation 

Coefficient for seedling damage. 
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5.3 RESULTS 

5.3.1 Seedling encounter 

After three days of exposure at Open depots, seedlings of all species were 

encountered at rates of less than thirty percent (Figure 5.1). The encounter of all 

species increased until trials were terminated after twelve days of exposure, at the 

earliest occurrence of wilting. The encounter of Acer and Ulmus was consistently 

greater than the encounter of Betula, Fraxinus and Ilex, and this was accentuated over 

the trial period. Further analysis wil l , therefore, consider patterns of seedling 

encounter and damage at the termination of each trial, reflecting a maximum period of 

exposure prior to wilting. 

Figure 5.1. Cumulative percentage seedling encounter at Open depots, for each 
species over the trial period. 

Acer -m-Betula Fraxinus ...^Ilex Ulmus 

12 
Time (days) 

After twelve days of exposure, rates of seedling encounter varied significantly 

between treatments and between species, and variation between species was treatment 

dependent (Table 5.3, Figure 5.2). At Invertebrate, Rodent and Open depots, seedlings 

of Acer and Ulmus were more fi-equently encountered than seedlings of Ilex, Betula 

and Fraxinus. Treatments differed principally in the encounter of Acer, Ulmus and 

Fraxinus seedlings, which was proportionally higher at Open depots, and the 

encounter of Ilex seedlings, which was proportionally lower at Invertebrate depots. 

Seedlings of Betula were infirequently encountered (<20%) at all treatments. Seedling 

encounter at Open depots was highly spatially associated with rates of encounter at 
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Invertebrate (x\orr=l0.233, d f= l , p<0.01) and Rodent (x^orr=7.388, df= l , p<0.0\) 

depots. There was no spatial association between rates of seedling encounter at 

Invertebrate and Rodent depots (x\orr=0.804, df=\,p>0.05). 

Table 5.3. Total variation in seed encounter (across all treatments) partitioned 
between the main effects (species, microhabitat and treatment) and their higher order 
interactions. Significance levels (p) were >0.05 (n.s., not significant), <0.05 (^) , 
<0.01 ( ^ ^ ) and <0.001 (^ ^ ^ ) . 

Source df SS MS F P 
Species (sp) 4 98.15 24.538 30.531 
Microhabitat (mh) 8 16.16 2.02 2.513 
Treatment (tr) 2 49.42 24.710 30.746 
Sp.mh 31 44.99 1.451 1.806 
Sp.tr 8 19.94 2.493 3.101 
Mh.tr 16 20.15 1.259 1.567 n.s. 
Sp.mh.tr 62 69.14 1.115 1.388 n.s. 
Residual 528 424.35 0.8037 
Total 659 742.28 

Figure 5.2. Mean percentage seedling encounter (± 1 S.E.) for each species, at each 

g Invertebrate • Rodent • Open 
treatment 

&o 40 

V. 30 

Acer Ulmus Ilex 
Taxon 

Betula Fraxinus 

Rates of seedling encounter varied significantly between microhabitats (Table 

5.3, Figure 5.3). Encounter was significantly greater beneath adults of Fraxinus than 

beneath adults of other taxa, and was significantly lower in Open microhabitats than 

beneath Shrub and High Vegetation, where rates of encounter were similar. Variation 

between microhabitats was similar between treatments (Table 5.3). 
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Figure 5.3. Mean percentage seedling encounter (± 1 S.E.) for each microhabitat 
{Betula [Bp], Fraxinus [Fe], Ilex [la], Sorbus [Sa], Taxus [Tb], Ulmus [Ug], Shrub 
[SH], High vegetation [HV] and Open [OP]). 

y 50 
&o 40 

30 ' 
^ 20 : 

Fe Bp Tb la Sa Ug 
Microhabitat 

SH HV OP 

Variation between species was also microhabitat dependent (Table 5.3, Figure 

5.4). In the majority of microhabitats, seedlings of Acer were more frequently 

encountered than seedlings of any other taxon. Beneath Ulmus and High Vegetation, 

Ulmus seedlings were most encountered and in Open microhabitats, Acer and Ulmus 

seedlings were encountered at similar rates. Only beneath adults of Ulmus were 

conspecific seedlings encountered more frequently than seedlings of any other taxon. 

Beneath Ilex, conspecific seedlings were encountered less frequently than any other 

taxon. There was no interaction between species, microhabitat and treatment (Table 

5.3). 
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Figure 5.4. Encounter of each species as a proportion of total seedling encounter in 
each microhabitat. 

3 0.7 

c 0.4 
^ 0.3 
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5.3.2 Seedling damage 

The severity of seedling damage, once encountered, was similar between 

microhabitats (x^=l 0.741, df=8,/>>0.05) and varied significantly between treatments 

(X^=17.133, df=8, /7<0.05, Figure 5.5). This variation was principally between 

Invertebrate and the other treatments, smce patterns of seedlmg damage at Rodent and 

Open depots were sunilar (x^=4.233, df=5, /7>0.05). The majority of invertebrate 

damage was of minor severity, having a low modal damage category (91-99% 

remaining), and no seedling damage occurred at the highest damage categories (0-

25% remaining). Sixty-seven percent of invertebrate damaged seedlings had more 

than seventy-five percent of their tissue remaining after herbivory. 

At Rodent and Open depots, a greater proportion of seedlings was subject to 

high category damage, with eleven and seventeen percent of seedlings, respectively, 

either completely consumed or less than 25 % intact. Both treatments had high modal 

damage categories (26-50% remaining) and relative to invertebrate damage, fewer 

seedlings were subject to minor damage. At Rodent and Open depots, less than thirty-

five and forty percent of seedlings, respectively, had more than seventy-five percent 

of their tissue remaming after herbivory. 

There was no spatial association between levels of seedling damage at 

Invertebrate and Rodent treatments (rs=0.225, df=7, /7>0.05), Invertebrate and Open 
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treatments (rs=0.128, df=20, p>0.05) or Rodent and Open treatments (rs=0.222, 

d^24,/?>0.05). 

Figure 5.5. Proportion of total seedling damage within categories reflecting the 
percentage of seedling remaining after herbivory, for each treatment. 
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The severity of seedlmg damage, once encountered, varied significantly 

between tree species (% =17.133, df=8, p<0.05. Figure 5.6). In fact, patterns of 

seedling damage were similar for Acer, Betula, Fraxinus and Ulmus (x^=8.175, df=6, 

p>0.05). Ilex was distinct in the fi"equency of low category seedling damage, with 

eighty percent of damaged seedlings having more than seventy-five percent of their 

tissue remaining after herbivory. Once encountered, seedlings of other species were 

more likely subject to higher category seedling damage (0-75% remaining). 

Data were insufficient to investigate the significance of higher order 

interactions between treatment, species and microhabitat. The conditions of chi-

squared analysis, regarding the lower limit of expected frequencies, could not be 

fulfilled even after pooling damage categories. 
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Figure 5.6. Proportion of total seedlmg damage within categories reflecting the 
percentage of seedling remaining after herbivory, for each tree species. 
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5.3.3 Variation with respect to seedling characteristics 

Rates of seedling encounter and damage at Invertebrate, Rodent and Open 

depots were not significantly associated with any of the growth, allocation or leaf 

parameters measured (Tables 5.4 and 5.5). Although the median severity of seedling 

damage at Open depots was correlated with the leaf plus cotyledon mass fraction and 

mean relative growth rate of seedlings, such associations were likely to be unreliable 

since marginal significance was lost with the omission of outlying data {Ilex seedling 

damage). Total seedling mass, leaf plus cotyledon mass, saturated leaf mass:dry leaf 

mass ratio, leaf plus cotyledon mass fraction and mean relative growth rate were, 

therefore, poor predictors of seedling encounter and damage. 

Table 5.4. Characteristics of tree seedlings of each study species; total seedling dry 
mass (mg dm/sdlg, mg dry mass per seedling), total leaf plus cotyledon (L+C) dry 
mass, saturated leaf (SL) mass:dry leaf (DL) mass ratio, leaf plus cotyledon mass 
fraction and mean relative growth rate (RGR)(ss d ' \ growth rate per day, excludmg 
cotyledons). A l l parameters were taken or calculated from values in Comelissen et al. 
(1996). 

Taxon Total mass L+C mass SL mass/ L+C mass Mean RGR 
(mg dm/sdlg) (mg dm/sdlg) DL mass fraction SS (d-') 

Acer 44.3 24.7 3.63 0.558 0.081 
Betula 0.6 0.4 3.57 0.719 0.128 
Fraxinus 25.3 14.3 3.98 0.566 0.102 
Ilex 12.1 4.8 3.87 0.401 0.014 
Ulmus 2.9 1.8 3.61 0.621 0.12 
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Table 5.5. Results of Pearson sample correlations between seedling characteristics and 
the proportion of seedlings encountered and Spearman rank correlations between 
seedling characteristics and the median severity of seedling damage. Pearson (r) and 
Spearman (rs) correlation coefficients and degrees of fi-eedom (df) are included for 
each treatment. Significance levels (p) included; >0.05, (n.s., not significant) and 
<0.05 ( ^ ) . 

Invertebrate Rodent Open 

Encounter r df P r df P r df P 
Total mass 0.526 3 n.s. 0.317 3 n.s. 0.435 3 n.s. 
L+C mass 0.550 3 n.s. 0.318 3 n.s. 0.469 3 n.s. 
SL mass/DL mass -0.649 3 n.s. -0.574 3 n.s. -0.437 3 n.s. 
L+C mass fraction 0.169 3 n.s. -0.095 3 n.s. 0.102 3 n.s. 
Mean RGR 0.169 3 n.s. -0.069 3 n.s. 0.243 3 n.s. 

Damage rs df P df P rs df P 
Total mass 0.053 3 n.s. -0.564 3 n.s. -0.447 3 n.s. 
L+C mass 0.053 3 n.s. -0.564 3 n.s. -0.447 3 n.s. 
SL mass/DL mass -0.527 3 n.s. -0.872 3 n.s. -0.335 3 n.s. 
L+C mass fraction 0.000 3 n.s. 0.718 3 n.s. 0.894 3 
Mean RGR 0.000 3 n.s. 0.718 3 n.s. 0.894 3 * 
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5.4 DISCUSSION 

5.4.1 Impact of predator groups 

Rates of invertebrate seedling encounter were low (15.0%, Figure 5.2) and 

once encountered, the majority of seedlings were subject to relatively light seedling 

damage (Figure 5.5). Rodent seedling encounter was also relatively low (20.0%, 

Figure 5.2), although once encountered, a greater proportion of seedlings were subject 

to high level damage (Figure 5.5). Although rates of encounter were similar, patterns 

of encounter and damage at Invertebrate and Rodent treatments were not spatially 

correlated. Variation between species was broadly similar between Invertebrate and 

Rodent treatments (consistent with Hulme (1994b) in grassland), with the exception 

of Ilex seedlings that were infrequently encountered by invertebrates (Figure 5.2). 

At Open depots, rates of seedling encounter were twice the magnitude of the 

other treatments (40.0%, Figure 5.2) and once encountered, a high proportion of 

seedlings were severely damaged (<25% remaining. Figure 5.5). Rates of seedling 

encounter at Open depots were spatially correlated with rates of encounter at 

Invertebrate and Rodent depots. The encounter of Acer, Ulmus and Fraxinus seedlings 

at Open depots was proportionally greater than at Invertebrate and Rodent depots 

(Figure 5.2). 

Consistent with studies of tree seedling survival in temperate deciduous 

woodland (Table 5.1), seedling damage was attributable to a mixed suite of seedling 

herbivores. Patterns of rodent and invertebrate encounter were similar, although the 

characteristics of seedling damage were distinct (Hulme, 1994b). High rates of 

Fraxinus seedling encounter at Open depots were not accounted for by invertebrate or 

rodent herbivory and were likely to reflect the activity of an additional herbivore 

group. Deer and rabbits were fi-equently observed foraging on the forest floor and 

were the most likely altemafive seedling herbivores (Wood, 1938; Peterken, 1966; 

Rousi etal, 1996; Akashi, 1997). 

Comparable invesfigafions of tree seedling herbivory (Table 5.1) support the 

observation that seedling damage characteristics were distinctive between herbivore 

groups. Molluscs have been typically found to graze cotyledons and, less fi-equently, 

primary leaves and growing points, leaving the vascular system largely intact 

(Southwood et al, 1988; Humphrey & Swaine, 1997b). In contrast, lepidopteran 

larvae take large chunks from leaves, leaving only a portion of the midrib (Humphrey 
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& Swaine, 1997b). Molluscs, lepidopteran larvae and beetles also kill seedlings by 

severing their hypocotyl and radicle (Watt, 1923; Southwood et al., 1988). Although 

seedlings may be totally defoliated by insects, leaf damage is more often slight, with 

only a small part of the leaf consumed (Wood, 1938). Beetle larvae also consume tap 

roots, often resulting in seedling death (Wood, 1938). 

Rodents consume cotyledons and sever seedlings at or below the hypocotyl, 

and in experiments with captive bank voles (Clethrionomys glareolus), the pattern of 

damage to small saplings was characteristic of each tree species (Pigott, 1985). 

Rodent attack often closely resembles that of invertebrates, although removal of the 

pericarp and radicle was more characteristic of rodent damage (Watt, 1923). Shoots 

severed by rodents are often cut into short lengths or left intact on the soil (Watt, 

1919; Pigott, 1985). In contrast, rabbits and deer typically tear off cotyledons and 

primary leaves or sever seedlings close to the ground, consuming them in their 

entirety (Watt, 1919; Watt, 1923; Rousi et al, 1996; Akashi, 1997). In the present 

study, the light grazing of seedlings at Open depots was most likely attributable to 

invertebrate and rodent herbivory. 

5.4.2 Variation between species 

At Invertebrate, Rodent and Open treatments, seedlings of Acer and Ulmus 

were more frequently encountered than seedlings of Ilex, Betula and Fraxinus (Figure 

5.2). The encounter of Acer, Ulmus and Fraxinus seedlings was proportionally higher 

at Open treatments, the encounter of Ilex seedlings was proportionally lower at 

Invertebrate treatments and seedlings of Betula were infi-equently encountered 

(<20%) at all treatments. Once encountered, seedlings of Ilex were subject to a 

significantly lower intensity of damage than seedlings of other taxa (Figure 5.6). 

Seedling herbivores were clearly making selective, rather than random, 

foraging decisions. Field studies of tree seedling herbivory in temperate deciduous 

woodland (Table 5.1) support the extensive herbivory of Acer and Ulmus, the 

moderate herbivory of Fraxinus and the infi-equent herbivory of Betula seedlings 

(Sviridenko, 1940, cited in Golley et al, 1975; Rotschild & Krivosheyev, 1957, cited 

in Pigott, 1985; Wardle, 1959; Linhart & Whelan, 1980; Pigott, 1985). Pigott (1985) 

also found that six to twenty-one month old saplings oiAcer were significantly more 

susceptible to herbivory by captive bank voles {Clethrionomys glareolus), than 

saplings of Fraxinus and Betula. 
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In an investigation of Acer seedling mortahty in mixed deciduous woodland, 

Paterson et al (1996) found that molluscs were responsible for ninety per cent of 

seedling deaths, while rodents were of minor importance. In the present study, 

however, invertebrates and rodents encountered a similar proportion of Acer seedlings 

(40.0 and 37.8%, respectively) and once encountered, rodents damaged seedlings to a 

greater extent than invertebrates (median damage categories 26-50% and 1-25% 

remaining, respectively). Although low rates of Ilex seedling encounter and damage 

were recorded in the present study, Peterken (1966) found that seedlings of Ilex were 

abundant in a woodland enclosure fi-om which roe and fallow deer were excluded, but 

were absent from a similar, adjacent enclosure containing deer. 

In a study of seedling herbivory in grassland, Hulme (1994b) found that both 

molluscs and rodents encountered species with small seedlings (<lmg dry mass) less 

fi-equently than species with large seedlings. Although more frequently encountered 

by molluscs, large seedlings were damaged to a lesser extent than smaller seedlings. 

Seedlings which were most frequently encountered by rodents were also most 

severely damaged. These feeding patterns were thought to reflect the coincidence of 

cyanogenic ability and large seedling size, and differences in the susceptibility of 

molluscs and rodents to cyanogenesis. 

A number of studies have found that species of seedling with high resistance 

to mammalian herbivory contain high concentrations of defensive secondary 

compounds (phenolics, papyriferic acid and related low molecular weight terpenoids) 

and have much higher phenotypic plasticity than low resistance species (Helle et al, 

1986; Tahvanainen et al, 1991; Taipale et al, 1994 - all cited in Rousi et al, 1996; 

Reichardt et al, 1984). Avoidance of seedling damage may also occur temporally, i f 

germination is delayed to coincide with a period of low herbivore activity (Wood, 

1938). 

In an investigation of optimal foraging by snowshoe hares {Lepus 

americanus), Schmitz et al. (1992) found that the selection of food items was not 

based exclusively on the maximisation of nutrient intake (including protein and 

energy) or the avoidance of toxic secondary compounds. Rather, dietary preferences 

were dependent on the relative chemical and physical attributes of available browse 

123 



species. Foraging decisions by rodent seed predators have been found to have a 

similar basis (Chapter 3). 

Jennings & Barkham (1975) support the selective feeding habits of molluscs. 

The consumption of fresh plant leaves was influenced by the presence of epidermal 

hairs, and only those glabrous leaves with a soft epidermis were consumed. Leaves 

with hard exteriors were largely unpalatable, although the largest species studied, 

Arion ater, was less selective. Robertson (1991) also found that leaf chemistry and 

toughness significantly influenced the severity of leaf damage by insect herbivores. In 

the present study, low rates of Ilex seedling encounter and damage by invertebrates 

may reflect the low palatability of leathery and waxy leaves. 

Wittich (1953, cited in Jennings & Barkham, 1975) found that leaves of Acer 

and Ulmus had a high protein content, which may have contributed to their high 

palatability. Alternatively, apparent preference for protein-rich foods may have 

resulted from the coincidence of high nitrogen and high sugar content, to which 

molluscs were found to be sensitive. Jennings & Barkham (1975) also reported the 

total consumption of individual seedlings of Acer, Fraxinus and Ulmus by molluscs. 

In the present study, molluscs encountered no seedlings of Fraxinus and seedlings of 

other taxa were only partially damaged. 

In the present study, rates of seedling encounter and damage at Invertebrate, 

Rodent and Open depots were not significantly associated with any one of the 

physical attributes measured (total seedling mass, leaf plus cotyledon mass, saturated 

leaf mass:dry leaf mass ratio, leaf plus cotyledon mass fraction and mean relative 

growth rate; Tables 5.4 and 5.5). High rates of Acer and Ulmus seedling encounter 

and low rates of Betula seedling encounter were consistent between herbivore groups. 

In contrast, the encounter of Ilex seedlings by invertebrates was proportionally lower 

than that of the other herbivore groups, and the encounter of Fraxinus seedlings by 

large mammals proportionally higher. Herbivore groups were making unique foraging 

decisions, although the parameters that determined rates of seedling encounter and 

damage were not easily distinguished. 

For the majority of species, preferences were most likely individualistic, trade­

off responses (Schmitz et al., 1992) to physical (seedling size, Hulme, 1994b; leaf 

toughness, Jennings & Barkham, 1975; Robertson, 1991) and chemical (nutritional 

value and toxicity, Rousi, 1996; Reichardt et al., 1984) seedling attributes, according 
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to dietary requirements and tolerance of plant defence mechanisms. Seedling 

preferences may have also been confounded by temporal variation in the availability 

of vegetation cover and alternative food resources, and the population density of 

seedling herbivores at the time of seedling presentation. 

5.4.3 Variation between microhabitats 

Rates of seedling encounter varied significantly between microhabitats (Figure 

5.3). Rather than foraging randomly, seedling herbivores made selective decisions 

regarding habitat suitability. Seedling encounter was significantly greater beneath 

adult trees of Fraxinus than beneath adults of other tree taxa, and was significantly 

lower in Open microhabitats than beneath Shrub and High Vegetation. Once 

encountered, however, the intensity of seedling damage was similar between 

microhabitats. Greater survival of seedlings in open microhabitats was consistent with 

the findings of Bramble & Goddard (1942) and Peterken (1966) and followed pattems 

of seed predation (Chapter 3), reflecting the reduced foraging activity of seedling 

herbivores. Preferential foraging beneath protective vegetation cover has been 

observed for both molluscs and rodents (Elton, 1942; Price, 1978; Godan, 1983), 

although the criteria for optimum cover are likely to differ between groups. In 

contrast, Morgan (1991) found that scrub understorey provided a nursery for shade 

tolerant seedlings until branches were sufficiently high to escape browsing animals. 

Similar recruitment of Quercus, Taxus and other hardwood trees has been observed 

beneath the spiny branches of Crataegus monogyna, Ilex aquifolium and Prunus 

spinosa (Watt, 1919; Peterken & Tubbs, 1965; Hulme, 1996a). 

The availability of vegetation cover may also account for preferential foraging 

beneath adult trees of Fraxinus, although plant associations and the extent of field 

layer and canopy vegetation cover beneath adults of each taxon were not quantified. 

The density of molluscs beneath adult trees may also vary between tree species 

according to the depth of conspecific leaf litter (Paterson et al, 1996). The encounter 

of Fraxinus seeds by rodents was positively density-dependent following abundant 

fi-uit production in 1997 (Chapter 4). Increased rodent activity beneath fruiting adults 

of Fraxinus may have accounted for proportionally higher rates of seedling encounter. 

This was unlikely, however, as seeds of Fraxinus were of low preference to rodents 

(Chapter 3), no significant distance response was observed within fifteen metres of 

conspecific adult trees (Chapter 4), rodents were satiated by high densities of 
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Fraxinus seed at a population level and rodents were not the most important seedling 

herbivores. Although rates of seedling encounter were significantly greater beneath 

adults of Fraxinus than beneath adults of other taxa, the characteristics that 

determined habitat suitability were not easily distinguished. 

Humphrey & Swaine (1997b) recorded greater herbivory of Quercus spp. 

seedlings beneath a conspecific canopy than beneath Betula spp. Similarly, Maeto & 

Fukuyama (1997) found that Acer seedling mortality was greater beneath canopies 

containing conspecific adults than beneath canopies from which they were absent. 

These patterns reflected some degree of host specificity, with insects defoliating the 

canopy and falling beneath adults to consume seedlings. Paterson et al. (1996) also 

recorded greater herbivory of Acer pseudoplatanus seedlings beneath conspecific 

adults, where the thick leaf litter provided an ideal habitat for molluscs (Philipson, 

1983). In the present study, seedlings of Ulmus were more frequently encountered 

beneath conspecific adults than beneath adults of other tree taxa. This may have 

occurred as a chance effect, however, and there was no overall trend that rates of 

seedling encounter were greater beneath conspecific adults. An absence of host-

specificity would have also been consistent with observed patterns of seed predation 

(Chapter 3), more likely reflecting opportunistic foraging by generalist seedling 

herbivores. 

5.4.4 Seedling growth and survival 

Although herbivore damage may not have resulted in the mortality of 

seedlings, which have a limited potential for recovery, the probability of survival was 

likely to have declined with increasing damage. Pigott (1985) found that the only tree 

seedlings (<20cm high, without cotyledons) that failed to recover from herbivory, 

were those that had been severed at the hypocotyl. The younger seedlings presented in 

the present study (<1 month old, with cotyledons and first true leaves) were likely to 

have been more sensitive to herbivory, during the early stages of growth and 

establishment. Seedlings were more likely to have recovered from light invertebrate 

damage than more severe damage inflicted by mammalian herbivores. There is also 

some evidence that large seed size may be an advantage to herbivore tolerance 

through resprouting (Harms & Dalling, 1997), although seedlings which do survive 

herbivory may be limited in growth and competitive ability (Hendrix, 1988). In 
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addition, defoliation may delay leafing time and alter carbohydrate relations in the 

roots (Raitio et al, 1994). 

5 .4.5 Impact of seedling herbivory on plant demography 

Mammals encountered seedlings more frequently than invertebrates, and once 

encountered, inflicted a greater severity of damage, for which seedlings had a lower 

probability of recovery. Mammals were, therefore, likely to have had a greater impact 

on plant regeneration than invertebrates. Although seedling herbivores foraged 

broadly across all microhabitats, proportionally lower seedling encounter in the open 

may have influenced spatial pattems of recruitment. In addition, variation between 

plant species may have been significant to community composition. Ultimately, the 

impact of seedling herbivory on plant recruitment is likely to depend on the natural 

density of seedlings, the environmental requirements of seedling establishment and 

plant survival (Callaway, 1992; Herrera et al, 1994; Hulme, 1996a) and the 

magnitude of alternative biotic and abiotic mortality factors (Bramble & Goddard, 

1942; Augspurger, 1984; Goldberg, 1985; Streng et al, 1989; Gill & Marks, 1991; 

Reader, 1993; Jones et al, 1994). 
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CHAPTER 6 

NATURAL SEEDLING DYNAMICS 

6.1 INTRODUCTION 

6.1.1 Studies of seedling recruitment 

Woodland regeneration is critically dependent on the successful recruitment of 

tree seedlings, although patterns of seedling demography may be highly variable in 

both time and space (Watt, 1919, 1923; Shaw, 1968 a, b; Linhart & Whelan, 1980; 

Hulme, 1996a). Studies of the regenerative phase of temperate deciduous woodland 

have principally considered the post-dispersal survival and germination of tree seeds 

and the establishment, growth and survival of tree seedlings. Spatial and temporal 

patterns of seedling recruitment were typically non-random (Linhart & Whelan, 1980; 

Morgan 1991) and often varied significantly between tree species (Pigott, 1983; 

Evans, 1988; Rarmer et al., 1997). 

Although seed and seedling predation have been identified as principal 

components of the regeneration environment (Chapters 3, 4, 5), seed germination and 

seedling development and survival may be significantly influenced by alternative 

biotic and abiotic factors. A complexity of such factors may ultimately determine the 

abundance and spatial distribution of seedling recruitment, and potentially limit the 

natural regeneration of temperate deciduous woodland. 

6.1.2 Seed germination 

Tree seeds are particularly vulnerable to critical water loss, which may be 

sufficient to limit germination. Rapid desiccation to a lethal level may follow 

exposure on a dry soil surface to an atmosphere of low relative humidity and rainfall 

(Watt, 1919, 1923; Shaw, 1968b). The cover provided by soil, leaf litter, branches, 

moss, shrubs and ferns has been found to increase rates of germination by depressing 

water loss from the seed (Watt, 1919, 1923; Wood, 1938; Shaw, 1968b; Pigott, 1983). 

At the same time, such cover may limit the germination of light-demanding species, 

such as Betula pendula (Watt, 1919; Pigott, 1983; Goldberg, 1985) and may be 

impenetrable to emerging seedlings with insufficient resources. Dense vegetation 

cover may support seeds and prevent them from reaching the soil, leading to exposure 

to desiccation (Watt, 1919). Conversely, burial at greater depths beneath compact soil 

and litter layers may prevent penetration to the surface (Watt, 1923, Wood, 1938). 
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Direct access to liquid water was found to be essential for the germination of 

Fagus sylvatica (Watt, 1923) and Quercus petraea (Shaw, 1968b). A film of water in 

contact with the seed was necessary to maintain the level of water uptake above the 

level of water loss for long enough to induce germination. The absence of a film of 

water was not compensated for by high relative humidity, although this was 

advantageous in reducing desiccation. Full immersion in acidic, poorly oxygenated, 

waterlogged soil, however, dramatically reduced seed germination and survival, and 

subsequently increased the exposure of seedlings to fungal disease (Tapper, 1992). 

Tapper (1992) found that an unusually cold winter followed by late snow melt 

and a cold and wet spring, was sufficient to reduce the germination of Fraxinus 

excelsior to six per cent of that expected. Wood (1938) recorded greater stability of 

soil surface temperature beneath leaf litter, which may account for the higher rates of 

germination recorded. Canopy cover may also favour tree seed germination by 

providing protection from extremes of wind, precipitation and sunlight, as well 

supplying a protective covering of leaves (Wood, 1938; Goldberg, 1985). 

The germination of Ilex aquifolium, as indicated by emergence above ground, 

was found to be greatest beneath conspecific adult trees, reflecting the inefficiency of 

seed dispersal (Peterken, 1966). Melzack & Watts (1982) found that seeds of Taxus 

haccata often germinated beneath a scrub cover of Crataegus monogyna or Juniperus 

communis. This would support evidence that the regeneration of T. baccata was 

dependent on the availability of such microsites (Hulme, 1996a). 

6.1.3 Seedling growth and development 

Vegetation cover may also influence the biomass, morphology and physiology 

of seedlings as a result of the interception of light and precipitation, and the removal 

of moisture and nutrients from the soil. Seedling growth may be significantly reduced 

or completely restricted beneath dense field layer (Watt, 1923; Peterken, 1966; 

Tapper, 1992) or canopy cover (Pigott, 1983; Emborg, 1998). Smothering by the 

dying fronds of Pteridium aquilinum (Humphrey & Swaine, 1997a), excessive soil 

acidity or alkalinity (Wood, 1938) and the lack of appropriate mycorrhizal associates 

(Goldberg, 1985), have also been found to locally restrict seedling growth and 

development. 

Low relative light intensity may also decrease seedling vigour (Peterken, 

1966), increase specific leaf area and leaf area ratios, and decrease root:shoot ratios 
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(Humphrey & Swaine, 1997a). Lei & Lechowicz (1998) recorded the complex 

physiological responses of tree seedlings to woodland gap formation. Increased hght 

intensity resulted in greater stomatal conductance, chlorophyll a:b ratios, leaf nitrogen 

concentrations and maximum photosynthetic rates, and lower leaf internal carbon-

dioxide concentrations. It is significant that seedlings which are suppressed by low 

light intensity are less resistant towards additional deleterious factors, such as drought 

and fungal disease, which may coact to further limit seedling growth and survival 

(Watt, 1919, 1923; Peterken, 1966). Interspecific competition between seedlings at 

high density, particularly beneath shade, may also result in etiolated growth (Evans, 

1988) and high rates of mortality (Taylor & Aarssen, 1989; Tapper, 1992; 

Nakashizuka et al, 1995). 

6.1.4 Seedling establishment and survival 

Light stress may directly inhibit the survival of light-demanding species 

beneath dense field layer (Linhart & Whelan, 1980; Evans, 1988) or canopy cover 

(Peterken, 1966; Pigott, 1983; Boemer & Brinkman, 1996), such that successful 

regeneration would depend on partial or full removal of the field layer (Goldberg, 

1985; Tapper, 1992) or the opening of the canopy (Morgan, 1991). Marquis et al. 

(1975, cited in Harmer et al., 1997) found that the natural regenerafion of hardwood 

stands in the USA was unlikely where the cover of grasses, sedges and pteridophytes 

exceeded thirty per cent. Additional mortality factors associated with vegetation 

cover, include the removal of moisture and nutrients from the soil (Evans, 1988), the 

accumulation of leaf litter (Peterken, 1966; Linhart & Whelan, 1980) and the 

smothering and toxic action of decaying plant material overlying seedlings (Watt, 

1919). Field layer cover may also harbour rodent seed and seedling predators 

(Chapters 3 & 5), whereas scrub understorey may protect seedlings fi-om larger 

herbivores (Morgan, 1991). 

Seedling establishment and survival may be greater beneath dense canopy 

cover i f the vigour and abundance of herb growth is negatively associated with the 

extent of the canopy (Harmer et al., 1997). Wardle (1959) found that the survival of 

F. excelsior seedlings was greater beneath the closed canopy of F. sylvatica than 

beneath the open canopy of F. excelsior, since the former shaded out a dense layer of 

Mercurialis perennis which would otherwise limit seedling recruitment (Wardle, 

1959). Watt (1923) also observed that the increased density of ungrazed shrub and 
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herbaceous vegetation following canopy gap formation was sufficient to exclude 

seedlings of F. sylvatica unless partially suppressed. The fronds of P. aquilinum may 

also shade the soil sufficiently to reduce the growth of herbs and prevent soil 

desiccation, supporting the regeneration of /. aquilinum seedlings which are able to 

withstand the condifions of shade and smothering (Peterken, 1966). Similarly, species 

including F. excelsior may regenerate successfully on relatively poor, dry and 

unstable soils, i f such conditions favour seedlings over the field layer (Wardle, 1959, 

1961; Harmer etal, 1997). 

Canopy cover may also increase seedling survival by ameliorating extremes of 

temperature, although seedling growth and development is compromised by low light 

intensity (Wood, 1938). Evans (1988) proposed optimal semi-shade conditions for the 

natural regeneration of broadleaves, where intermediate levels of light, moisture and 

leaf litter would favour seedling germination and establishment while suppressing 

vigorous herb growth, fungal attack and fi-ost damage. Preference for semi-shade 

conditions was supported by Pelfier et al. (1997), recording the germination and 

establishment of F.sylvatica and F.excelsior seedlings. Low recruitment in canopy 

gaps was also attributed to poor soil conditions. 

Seedling estabhshment and survival may be either positively (Houle, 1995; 

Clark et al., 1998) or negafively (Nakashizuka et al., 1995) associated with spafial 

patterns of seed rain, often reflecting the density and location of the source. Seed crop 

size may also account for annual variation in seedling recruitment (Tapper, 1992), 

with peaks in seedling density often following mast seeding (Shaw, 1968a; Evans, 

1988; Boemer & Brinkman, 1996). Goldberg (1985), however, found no associafion 

between the recruitment of Quercus albocincta seedlings and the abundant production 

of seeds. Nakashizuka et al. (1995) recorded a negative association between seedling 

survival and the number of seeds produced per fruiting individual, reflecting a strong 

negative correlation between seed crop size and seed size, and a positive correlation 

between seed size and seedling survival. Seed production may also account for 

variation in regeneration between sites. In natural woodlands of T. baccata, Hulme 

(1994c) recorded the greatest density of seedlings at the site with the highest 

production of seed, although overall recruitment per tree differed little between sites. 

The response of seedlings to environmental factors was often age dependent. 

Peterken (1966) observed that younger seedlings had greater mortality rates than older 
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seedlings. Rather than being subject to a greater variety of mortality factors, young 

seedlings were subject to greater intensities of the same factors. For example, young 

seedlings may be more susceptible to damping-off disease (Tapper, 1992) and drought 

stress (Peterken, 1966), as a result of being more shallow rooted. 

Seedling responses to limiting factors may also vary significantly between tree 

species. Pigott (1983) recorded the rapid mortality of B. pendula seedlings beneath the 

dense canopy of Acer pseudoplatanus. Seedlings of Q. petraea and Sorbus aucuparia 

survived to the following year, although only seedlings of S. aucuparia increased 

significantly in biomass. The development of canopy and field layer cover may, 

consequently, result in a succession of recruitment as conditions favour or 

disadvantage alternative species. Evans (1988) observed that an increase in canopy 

cover was sufficient to eliminate B. pendula and favour the regeneration of A. 

pseudoplatanus over F. excelsior, while having little effect on the recruitment of F. 

sylvatica. Linhart & Whelan (1980) also recorded the replacement of light-demanding 

species by shade tolerant species, following an increase in field layer cover. Variable 

tolerances to environmental factors may also influence the germination behaviour of 

tree species, with a potential trade-off between late germination to avoid frost damage 

(Evans, 1988) and early germination to precede summer drought (Hett & Loucks, 

1971) and the maximum cover of the field layer (Tapper, 1992). Overall, the intensity 

of limiting factors and the rates of seedling mortality are most likely greater in the 

summer than in the winter (Tapper, 1992). 

6.1.5 Study aims 

Although the complexity of biotic and abiotic factors influencing spatial and 

temporal patterns of seedling recruitment have been recognised, few studies have 

investigated the combined effect of such factors (Morgan, 1991; Peltier et al, 1997). 

To address this, the present study adopts a multivariate approach to investigate the 

relationships between habitat characteristics and seedling demographic patterns, 

which may contribute to natural regeneration processes in temperate deciduous 

woodland. 
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The specific aims of the study were to: 

1. Quantify the spatial and temporal distribution patterns of seedling establishment 

and survival, forest architecture and ground layer cover in temperate deciduous 

woodland. 

2. Determine whether the natural abundance, survivorship and spatial distribution of 

seedlings varied significantly between tree species and seedling cohorts. 

3. Examine the relationships between seedling recruitment and habitat characteristics. 
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6.2 M E T H O D S 

6.2.1 Seedling surveys 

The dynamics of natural seedling abundance were monitored in Shipley 

Wood, where patterns of seedling herbivory had been quantified in a concurrent 

investigation (Chapter 5). The study area was surveyed systematically using three 

equidistant linear transects traversing upper, middle and lower regions of the site 

(Figure 2.2), each with fifteen Im x Im permanent quadrats (Jones et al, 1994; 

Nakashizuka et al., 1995) at twenty metre intervals. Surveys were conducted at 

intervals of twenty-eight to forty days between 9̂*̂  May 1996 and 9̂*̂  December 1997. 

During each survey, the number of seedlings of each study species within each 

quadrat, was recorded. Seedling taxa included Acer, Betula, Fraxinus, Ilex, Sorbus, 

Taxus and Ulmus. In addition, the percentage cover of leaf litter, bare ground and the 

principal ground vegetation components (broad-leaved herbs, ferns, graminoids, shrub 

and moss) were estimated using the domin scale (Dahl & Hadac, 1941, cited in 

Rodwell, 1991). Al l seedlings were marked using tape flags attatched to the hypocotyl 

(Herrera et al., 1994; Jones et al., 1994). Unique colour markings were used to 

distinguish "Persistent" seedlings, recorded at the beginning of the survey after at least 

one year of survival, and subsequent cohorts of "Germinant" seedlings that emerged 

during the surveys which followed. 

Between 16'̂  April and 9̂ ^ December 1997, the experimental design was 

modified to determine the impact of mollusc herbivory on seedling density. Molluscs 

were eliminated from a randomly selected half of each quadrat using a metaldehyde 

molluscicide (Shower-proof Bioslug®), applied at a density of approximately 20g m'^ 

and replenished at two week intervals. Surveys of vegetation cover and seedling 

dynamics continued, as described, until 9̂*̂  December 1997. 

6.2.2 Habitat and tree species characteristics 

At the end of the survey period, additional habitat parameters were measured. 

The basal area of adult trees in the vicinity of each quadrat was estimated using the 

'point-centred quarter method' (Cottam et al., 1953). In addition, the distance and 

basal girth of the nearest adult neighbours of Acer, Betula and Fraxinus were 

measured. 
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Seed output from each taxon was estimated in 1997, at the time of maximum 

fruit producfion; Betula (15̂ ^ August), Fraxinus (20 '̂' February), Ilex (21'^ October), 

Sorbus {15^^ August), Taxus {?>'^ October), Ulmus {26'^ May). The number of finit 

produced by thirty randomly selected adult trees of each species was estimated and 

the mean number of fruit per tree calculated. The mean number of seeds contained 

within multi-seeded fruit of Ilex and Sorbus, and the strobiles of Betula, were 

determined fi-om ten fruit/strobiles collected from each of ten fruiting adult trees of 

each taxon. The total viable seed output of each study species in Shipley Wood was 

calculated as a function of adult tree density (Chapter 2), seed viability (Chapter 3) 

and mean seed production per tree, based on 1997 estimates. 

6.2.3 Statistical analysis 

A Wilcoxon paired-sample test was used to investigate variation in seedling 

density between half quadrats with and without the application of molluscicide. 

Variation between tree species in the number of "Persistent" and "Germinant" 

seedlings, and the total number of seedlings per quadrat, was investigated using a 

Kruskall-Wallis test. Variation between years in the number "Germinant" seedlings of 

each species, was investigated using a Mann-Whitney test, corrected for fies. The 

association between the density of seedlings of each species and parameters including 

adult tree density, seed mass (Chapter 3), seedling mass (Chapter 5) and viable seed 

output, was determined using Pearson sample correlations. 

Kaplan-Meier survival analysis was used to determine the median survival 

time of "Germinant" seedlings of each species. The survival time of each seedling was 

taken as the time between the first and last recording of the seedling. Seedlings still 

surviving at the end of the survey period were 'censored' by the analysis and 

compensated for in calculations of median survival time. Since mortality may have 

occurred at any time between the last recording of the seedling and the following 

survey, a period of between twenty-eight and forty days, survival times were likely to 

underestimate absolute survivorship. The Log Rank test statistic was used to 

determine the equality of survival distributions between seedlings of each species, 

each cohort and each year. 

The association between seedling density and the observed environmental 

variables was investigated using the multivariate ordination technique of Canonical 

Correspondence Analysis (CCA) (Ter Braak, 1988, 1995). Seedling data were 
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categorised in order to distinguish patterns of abundance and survival between tree 

species and between seedlings of different ages. At each survey, marked seedlings 

were distinguished as germinating that survey (New germinants), the previous survey 

(Last survey), before the previous survey, but within the same season (This season) 

and prior to that season (Previous season+). For each age category, the number of 

seedlings of each species per quadrat and the survival of seedlings, as the total 

proportion surviving since marking, were calculated. Surveys were defined as state 

variables to examine the association between survey date and the pattern of variation 

in seedling data. Full descriptions of dependent and independent variables are 

included in Tables 6.1 and 6.2, respectively. 

A Monte Carlo test, with nine hundred and ninety-nine random permutations, 

was incorporated to determine the statistical significance of the first canonical axis 

and the overall species-environment association. The significance of individual 

environmental and state variables was determined by regression with each canonical 

axes and graphical ordination of biplot scores, represented by vectors in the direction 

of maximum change. The length of vectors reflected the importance of each 

environmental variable, and the direction, their association with the ordination axes 

and patterns of seedling data. The overall association between patterns of seedling 

data and the principal environmental and state variables, for cohorts of each tree 

species, was assessed from the species-environment biplot. 
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Table 6.1. Description of dependent variables used in CCA. 

Abbreviation Taxon Parameter Age category 

ApNN Acer Number of seedlings New germinants 
ApNL Acer Number of seedlings Last survey 
ApNT Acer Number of seedlings This season 
ApNP Acer Number of seedlings Previous season+ 
ApSL Acer Survival of seedlings Last survey 
ApST Acer Survival of seedlings This season 
ApSP Acer Survival of seedlings Previous season+ 

BpNN Betula Number of seedlings New germinants 
BpNL Betula Number of seedlings Last survey 
BpNT Betula Number of seedlings This season 
BpNP Betula Number of seedlings Previous season+ 
BpSL Betula Survival of seedlings Last survey 
BpST Betula Survival of seedlings This season 
BpSP Betula Survival of seedlings Previous seasons-

FeNN Fraxinus Number of seedlings New germinants 
FeNL Fraxinus Number of seedlings Last survey 
FeNT Fraxinus Number of seedlings This season 
FeNP Fraxinus Number of seedlings Previous season+ 
FeSL Fraxinus Survival of seedlings Last survey 
FeST Fraxinus Survival of seedlings This season 
FeSP Fraxinus Survival of seedlings Previous season+ 
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Table 6.2. Description of independent variables used in CCA. 

Abbreviation Description 

SI Survey 1 May 12*^-13^ 1996 
S2 Survey 2 June lO^'^-ll^ 1996 
S3 Survey 3 July 12^^-13^ 1996 
S4 Survey 4 August n'^-\9''', 1996 
S5 Survey 5 September 20"'-21'', 1996 
S6 Survey 6 October 21''-22"^ 1996 
S7 Survey 7 November 23'•^-24'̂  1996 
S8 Survey 8 January 2"''-3''^ 1997 
S9 Survey 9 February 10*''-ll'\ 1997 
SIO Survey 10 March 17'̂ -18*\ 1997 
S l l Survey 11 April 20'''-21^ 1997 
S12 Survey 12 May 22"^-23''̂  1997 
S13 Survey 13 June le'^^-lf^, 1997 
S14 Survey 14 July30'''-31^ 1997 
S15 Survey 15 September 4''^-5'\ 1997 
S16 Survey 16 October 2"^-3''̂  1997 
S17 Survey 17 November 6'* -̂7'\ 1997 
S18 Survey 18 December 9'^-10^ 1997 

BLHerb Percentage cover of broad-leaved herbs 
Fern Percentage cover of ferns 
Gram Percentage cover of graminoids 
Litter Percentage cover of leaf litter 
Shrub Percentage cover of shrub (principally Rubus spp.) 
Moss Percentage cover of moss 
Bare Percentage cover of bare ground 
BA Basal area of adult trees (tree hectare "') 
ApD Distance to nearest adult neighbour of Acer (m) 
ApG Girth of nearest adult neig hbour of Acer (cm) 
BpD Distance to nearest adult neighbour of Betula (m) 
BpG Girth of nearest adult neighbour of Betula (cm) 
FeD Distance to nearest adult neighbour of Fraxinus (m) 
FeG Girth of nearest adult neighbour of Fraxinus (cm) 
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6.3 RESULTS 

6.3.1 Impact of molluscs 

Total seedling density and the density of seedhngs of each study species did 

not differ significantly between half quadrats with and without the application of 

molluscicide (Table 6.3). Since molluscicide had no significant impact on seedling 

density, further analysis will consider whole quadrats over the entire study period. 

Table 6.3. Results of Wilcoxon paired-sample tests for variadon in seedling density 
between half quadrats with and without the application of molluscicide. Values 
include mean seedling density m'^, standard error (s.e.), Wilcoxon Z-statistic and 
sample size (n). Significance levels (p) were > 0.05 (n.s., not significant). 

Molluscicide No Molluscicide 
Taxon mean s.e. mean s.e. Z statistic n P 

Acer 0.222 0.114 0.134 0.076 -1.342 45 n.s. 
Betula 3.600 0.730 4.222 0.882 -0.519 45 n.s. 
Fraxinus 1.200 0.338 1.244 0.476 -0.251 45 n.s. 
Sorbus 0.044 0.044 0.000 0.000 -1.000 45 n.s. 

Total 5.156 0.884 5.688 1.066 -0.539 45 n.s. 

6.3.2 Natural seedling densities 

The total number of seedlings per quadrat varied significantly between tree 

species over the survey period (Table 6.4). Seedlings of Betula were most frequently 

encountered, whereas, seedlings of Ilex, Sorbus and Taxus were encountered rarely. 

No seedlings of Ulmus were encountered during the survey period. The number of 

"Persistent" seedlings and the number of "Germinant" seedlings in 1996 and 1997, 

also varied significantly between species (Table 6.4). "Germinant" seedlings of Betula 

were most abundant, occurring at densities of up to 28 m" ,̂ although "Persistent" 

seedlings of this taxon were not encountered. In contrast, the density of "Persistent" 

Fraxinus seedlings was greater than the density of "Germinant" seedlings in both 

years of the survey. The majority of Acer seedlings germinated in 1996, at densities of 

up to 11 m'^, although mean densities were relatively low. 

The densities of "Germinant" Acer and Fraxinus seedlings were significantly 

greater in 1996 than in 1997 (Table 6.4; Mann-Whitney test, corrected for fies Z45,45=-

2.24S,p<0.05 and Z45,45=-2.222,/?<0.05, respectively), whereas, the mean densities of 

"Germinant" Betula and Sorbus seedlings were similar between years (Z45,45=-0.111, 

/>=n.s. and Z45,45=-0.597,/?=n.s.). 
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Variation between tree species in mean "Germinant" (1996 and 1997) and total 

seedling density was positively correlated with the abundance of viable seeds 

produced by conspecific adult trees (Table 6.5). When Betula was excluded fi-om the 

analysis as a potential outlier, the associations between viable seed output and mean 

"Germinant" (1996 and 1997) and total seedling density were maintained (r=0.999, 

df=3, ;?<0.01; r=0.997, df=3, p<0.01 and r=0.999, df=3, p<0.01, respectively). The 

production of vast numbers of viable seed accounted for the high density of Betula 

and Fraxinus seedlings, relative to the low viable seed output and seedling density of 

Ilex, Sorbus, Taxus and Ulmus. The density of "Persistent" seedlings was not 

correlated with the production of viable seed. Adult tree density, seed mass and 

seedling mass were poor predictors of seedhng density. 

Table 6.4. Mean "Persistent", "Germinant" (1996 and 1997) and Total seedling 
density m" ,̂ for each study species. Included are standard errors (s.e.), range values 
and results of Kruskall-Wallis analysis for variation between tree species in the 
number of seedlings per quadrat. Significance levels {p) were <0.001 ( ^ ^ ^ ) . 

"Persistent" "Germinant"96 "Germinant"97 Total 

Taxon mean s.e. range mean s.e. range mean s.e. range mean s.e. range 

Acer 0.07 0.04 0-1 0.58 0.29 0-11 0.02 0.02 0-1 0.67 0.30 0-11 

Betula 0.00 6.07 1.25 0-28 3.89 0.67 0-21 9.96 1.66 0-49 

Fraxinus 0.78 0.28 0-10 0.69 0.17 0-6 0.33 0.12 0-4 1.80 0.44 0-14 

Ilex 0.00 0.04 0.03 0-1 0.00 0.04 0.03 0-1 

Sorbus 0.00 0.07 0.05 0-2 0.02 0.02 0-1 0.09 0.05 0-2 

Taxus 0.02 0.02 0-1 0.07 0.05 0-2 0.00 0.09 0.07 0-3 

Ulmus 0.00 0.00 0.00 0.00 

K-W 

df p df P df P df P 

K-W 60.5 6 ^ ^ ^ 111.1 6 ^ ^ 3 ^ 177.9 6 163.4 6 
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Table 6.5. Characteristics of study species; adult tree density (trees per hectare. 
Chapter 2), total seed mass (mg dry weight per seed, Chapter 3), total seedling mass 
(mg dry mass per seedling, Chapter 5) and viable seed production (seeds per hectare). 
Results of Pearson sample correlations, for the association between species 
characteristics and mean "Persistent", "Germinant" (1996 and 1997) and total seedling 
density m" (Table 6.4) are included. Significance levels (p) were >0.05 (n.s., not 
significant) and <0.01 (^ ^ ) . 

Taxon Adult density Seed mass Seedling mass Viable seed producdon 
(trees ha"̂ ) (mg dwt) (mg dwt) (seeds ha"' xlO^) 

Acer 69.6 44.30 
Betula 88.6 0.20 0.60 • 14922.8 
Fraxinus 91.6 51.70 25.30 991.9 
Ilex 2.2 20.35 12.10 0.6 
Sorbus 2.1 3.80 0.3 
Taxus 3.2 48.20 37.4 
Ulmus 28.7 9.80 Z90 1.0 

"Persistent" r 0.568 0.658 0.338 -0.142 
df 5 4 3 4 
P n.s. n.s. n.s. n.s. 

"Germinant"96 r 0.608 -0.418 -0.420 0.999 
df 5 4 3 4 
P n.s. n.s. n.s. 

"Germinant"97 r 0.562 -0.437 -0.492 1.000 
df 5 4 3 4 
P n.s. n.s. n.s. 

Total r 0.638 -0.375 -0.427 0.994 
df 5 4 3 4 
P n.s. n.s. n.s. 

6.3.3 Patterns of seedling survival 

The survivorship of "Germinant" seedlings varied significantly between tree 

species (Table 6.6). Seedlings of Betula, Ilex, Sorbus and Taxus had median survival 

times of 0 days, since the majority of seedlings did not survive until the survey 

following their first encounter, and maximum survival times of 195, 97, 37 and 0 

days, respectively. None of the seedlings of these taxa germinating in spring and 

summer 1996 survived beyond November of that year and none of the Betula and 

Sorbus seedlings germinating the following spring survived beyond July 1997 (Figure 

6.1). The survivorship of Acer and Fraxinus seedlings was significantly greater, with 

median survival times of 29 and 101 days, respectively, and maximum survival times 

exceeding the 576 days of the survey and including a period of over-winter survival. 
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Table 6.6. Results of Kaplan-Meier analysis of seedling survival. Seedlings 
'censored' by the analysis were those still surviving at the end of the survey period. 
Included are standard errors (S.E.), range values and results of Log rank tests for the 
equality of survival distributions between species (degrees of freedom, df; 
significance level,/?). 

Taxon Total Number of Median S.E. Range 
number of seedlings survival time (days) 
seedlings 'censored' (days) 

Acer 24 3 29 — 0-576+ 
Betula 448 0 0 — 0-195 
Fraxinus 46 12 101 29 0-576+ 
Ilex 2 0 0 0-97 
Sorbus 7 0 0 ~ 0-37 
Taxus 3 0 0 — 0 

Log rank test statistic=123.21 df=5 /?<0.001 

Figure 6.1. The log number of "Persistent" and "Germinant" seedlings oiAcer, Betula, 
Fraxinus, Ilex, Sorbus and Taxus, recorded over the survey period (May, 1996-
December, 1997). Individual cohorts of "Germinant" seedlings in 1996 (96(1), 96(2) 
and 96(3)) and 1997 (97(1), 97(2) and 97(3)) are distinguished. 
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Seedlings of Acer, Betula, Fraxinus and Sorbus germinated in both years of 

the survey. Although the density of seedlings (Table 6.4) and the timing of 

germination (Acer, May-June, 1996 and March, 1997; Betula, June-July, 1996 and 

March-April, 1997; Fraxinus, May-July, 1996 and April-June, 1997; Sorbus, June-

July, 1996 and April, 1997; Figure 6.1) varied between 1996 and 1997, the survival 

distributions of each taxon were not significantly different between years (Table 6.7). 

Seedlings of all study species germinated in successive cohorts in 1996 (Figure 6.1), 

although the survival distributions of each species were not significantly different 

between cohorts (Table 6.8). Similarly, the survival distribufions of cohorts of 

Fraxinus seedlings germinating in 1997, were not significantly different. Although the 

median survival time of Betula seedlings was the same between cohorts germinating 
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in 1997, the survival distributions of cohorts were significantly different. A greater 

proportion of seedlings of cohort 97(2), than seedlings of cohort 97(1), had survival 

times of 0 days (94 and 68%, respectively). In addition, survival times of cohort 97(2) 

seedlings were no greater than 32 days, whereas, seedlings of cohort 97(1) had 

survival times of up to 101 days. Although seedlings that germinated later generally 

had shorter survivorship, seedlings of neither cohort survived beyond July of that 

year. As such, time of germination had no influence on ultimate survivorship patterns. 

Table 6.7. Results of Kaplan-Meier analysis of seedling survival and Log rank tests 
for the equality of survival distributions between years, for each species. Significance 
levels (p) were >0.05 (n.s., not significant). 

Taxon Year Total number 
of seedlings 

Number of 
seedlings 
'censored' 

Median 
survival time 

(days) 

S.E. (days) 

Acer 1996 23 3 29 23 
1997 1 0 0 — 

Log rank test statistic=1.18 df=l p=n.s. 

Betula 1996 273 0 0 — 

1997 175 0 0 — 

Log rank test statistic=0.36 df-1 p=n.s. 

Fraxinus 1996 31 8 195 116 
1997 15 4 69 44 

Log rank test statistic=2.48 df=l p=n.s. 

Sorbus 1996 6 0 0 — 

1997 1 0 0 — 

Log rank test statistic=0.75 df=l p^.s. 
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Table 6.8. Results of Kaplan-Meier analysis of seedling survival and Log rank tests 
for the equality of survival distributions between cohorts of each species (96(1), 
Cohort 1, 1996; 96(2), Cohort 2, 1996; 96(3), Cohort 3, 1996; 97(1), Cohort 1, 1997; 
97(2), Cohort 2, 1997; 97(3), Cohort 3, 1997). Significance levels (p) include >0.05 
(n.s., not significant). 

Taxon Cohort Total Number of 
number of seedlings 
seedlings 'censored' 

Median 
survival time 

(days) 

S.E. (days) 

Acer 96(1) 15 1 0 — 

96(2) 8 2 32 15 
Log rank test statistic=2.07 df=l p=n.s. 

Betula 96(1) 185 0 0 — 
96(2) 83 0 0 -
96(3) 5 0 0 -

Log rank test statistic=2.85 df=2 /7=n.s. 

97(1) 125 0 0 — 
97(2) 50 0 0 -

Log rank test statistic=21.31 df=l ;?<0.001 

Fraxinus 96(1) 12 4 343 19 
96(2) 14 3 102 60 
96(3) 5 1 37 20 

Log rank test statistic=L63 df=2 p=n.s. 

97(1) 5 2 137 39 
97(2) 6 1 35 28 
97(3) 4 1 0 ~ 

Log rank test statistic=].47 df=2 ;?=n.s. 

Ilex 96(1) 1 0 0 
96(2) 1 0 97 

Log rank test statistic=LOO df=l /?=n.s. 

Sorbus 96(1) 1 0 29 
96(2) 2 0 0 — 
96(3) 3 0 0 -

Log rank test statistic=0.13 df=2 /7=n.s. 

Taxus 96(1) 1 0 0 
96(2) 2 0 0 

Log rank test statistic= — df^2 ;7=n.s. 

6.3.4 Dynamics of principal field layer components 

Although the cover and composition of the field layer was extremely dynamic 

over the survey period (Figure 6.2), there were seasonal patterns that were broadly 

similar between years. Between April and June, the cover of broad-leaved herbs was 

at its greatest, while the cover of fern, shrub and leaf litter was low. Between July and 
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October, the cover of broad-leaved herbs declined, the cover of leaf litter increased 

and the cover of fern and shrub reached its maximum. Between November and March, 

the cover of leaf litter was at its greatest, while the cover of broad-leaved herbs, fem 

and shrub was low. The median cover of graminoids was stable throughout the survey 

period. The cover of mosses was also relatively stable, although was at its lowest 

when the cover of broad-leaved herbs was at its highest. Throughout the survey, bare 

ground was a minor component of the field layer, having a median domin cover score 

of zero. Overall, the field layer could be described as broad-leaved herb dominated in 

the spring, leaf litter dominated in the winter and of mixed composition in the summer 

and autumn. 

The cover of broad-leaved herbs, leaf litter and moss was more evenly 

distributed across the site than the cover of ferns, shrub, graminoids and bare ground, 

as reflected by interquartile ranges. Differences between quadrats also varied 

seasonally for leaf litter, which was more evenly distributed in winter at peak cover, 

and graminoids, which were more evenly distributed in spring/summer, even though 

median cover was stable throughout the year. 

Figure 6.2. The ground cover (median domin score ± interquartile range) of broad-
leaved herbs, ferns, shrub, leaf litter, moss, graminoids and bare ground, recorded 
over the study period (May, 1996-December, 1997). 
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6.3.5 Environmental correlates of seedling distribution 

As a result of sample size constraints, meaningful analysis of seedling 

distribution was limited to Acer, Betula and Fraxinus. Canonical Correspondence 

Analysis (CCA) resulted in the maximum dispersion of seedling data along axes 

representing linear combinations of the environmental variables. The first, second, 

third and fourth canonical axes generated eigen values of 0.481, 0.299, 0.223 and 

0.192, respectively, accounting for 30.0, 18.7, 14.0 and 11.9 per cent of the variance 

in seedling data, respectively. A Monte Carlo permutation test confirmed the 

statistical significance of the first canonical axis {p< 0.001) and the overall species-

environment association {p< 0.001). Since the first and second axes accounted for 

nearly fifty per cent of the variance in species data, and the third and fourth axes only 

contributed a further twenty-six per cent of variance, subsequent analysis will 

principally consider the first two axes. 

The dispersion of seedling scores, environmental variable scores and state 

variable scores were examined by graphical ordination with respect to the primary and 

secondary canonical axes. The dispersion of scores representing the number of 

seedlings per quadrat was broadly similar to the dispersion of scores representing the 

proportion of the original cohort surviving (Figure 6.3). 

CCA distinguished cohorts of tree seedlings on the first axis (Figure 6.3). 

'Young' seedlings (New germinants and Last survey seedlings) had posifive scores on 

axis 1, whereas 'Old' seedlings (This season and Previous season+ seedlings) had 

negative scores. The second canonical axis distinguished species of tree seedling. 

Acer seedlings had high positive scores on axis 2, Fraxinus seedlings had negative 

scores and Betula seedlings had intermediate positive scores. 

Biplot scores of environmental variables were represented by vectors in the 

direction of maximum change of each variable (Figure 6.4). Vector length reflected 

the rate of change of each environmental variable in that direction, and the strength of 

correlation with the ordination axes and patterns of seedling data. CCA distinguished 

groups of state variables on both primary and secondary canonical axes (Figure 6.5). 

State variables S2, S3, S l l and S12 had high positive scores on axis 1, whereas SI, 

S4-S9, SIO and SI3-17 had negative scores. State variables S1-S9 had positive scores 

on axis 2, whereas S10-S17 had negafive scores. 
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Figure 6.3. CCA ordination of seedling scores 
(Value labels on page 137, Table 6.1). 
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Figure 6.4. CCA ordination of environmental variable scores 
(Value labels on page 138, Table 6.2). 
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The contribution of each environmental and state variable was determined by 

regression with each canonical axis (Table 6.9). Of the available variables, FeG was 

correlated with axis 1 only, S4, S5, S6, S13, S14, BA, FeD, Fern and Gram with axis 

2 only and SI , S2, S3, SI 1, S12, BpD, BpG, BLHerb and Moss with both axes. Figure 

6.6 shows the combined ordination of statistically significant environmental and state 

variables, and seedling scores for cohorts of each species. BpG, FeD, BLHerb, Moss, 

bA and Gram were the principal environmental variables correlated with patterns of 

seedling data. 

Young seedlings of all species were principally associated with high broad-

leaved herb cover and low moss cover in June (S2) and July (S3), 1996, and April 

( S l l ) and May (S12), 1997 (Figures 6.2 and 6.6). In contrast. Old seedlings were 

principally associated with low broad-leaved herb cover and high moss cover in May 

(SI), August (S4), September (S5) and October (S6), 1996, and June (SI3) and July 

(SI4), 1997. The negafive association between broad-leaved herb and moss cover, 

was confirmed by statistical correlation (r= -0.343, df=808, p<0.0\). The cover of 

graminoids also influenced patterns of seedling data (Figure 6.6). Seedlings of Acer 

were most associated with high graminoid cover, whereas. Old seedlings of Fraxinus 

were most associated with low graminoid cover. Betula seedlings and Young 

seedlings of Fraxinus were either less influenced by graminoids, or were associated 

with intermediate cover. Such associations were most likely spatial, rather than 

temporal, since the cover of graminoids was similar throughout the survey period 

(Figure 6.2). 

Distance to the nearest adult of Fraxinus was negatively correlated with 

distance to the nearest adult of Betula (r= -0.143, df=808, p<O.Ol) and positively 

correlated with the girth of the nearest adult of Betula (r=0.609, df^808, ;?<0.01) 

(Figure 6.6). Seedlings of Acer were associated with large adults of Betula (high 

BpG) and distant adults of Fraxinus (high FeD). In contrast, seedlings of Fraxinus 

were associated with small adults of Betula (low BpG) and proximate adults of 

Fraxinus (low FeD). Betula seedlings were either unaffected by conspecific girth and 

distance to Fraxinus, or were associated with intermediate measures. 
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Table 6.9. Regression/canonical coefficients (C) for the association between 
independent variables and the first two canonical axes. T-values (T) and significance 
levels (p) are included; p >0.05 (n.s., not significant), p<0.05 ( ^ ) . Al l values are 
absolute, having taken account of CCA multipliers. 

Axis 1 Axis 2 
Variable C T P C T P 

SI 1.05 3.2 0.91 2.9 
S2 6.79 13.7 1.55 3.3 
S3 4.73 10.2 1.51 3.5 
S4 0.58 1.5 n.s. 1.21 3.4 
S5 -0.37 -1.1 n.s. 1.03 3.2 
S6 -0.41 -1.3 n.s. 0.67 2.3 
S7 -0.6 -2 n.s. 0.14 0.5 n.s. 
S8 -0.47 -1.6 n.s. 0.02 0.1 n.s. 
S9 -0.18 -0.6 n.s. 0.09 0.3 n.s. 
SIO 0.27 0.9 n.s. 0.23 0.8 n.s. 
S l l 5.01 12.3 0.96 2.5 
S12 3.45 8.4 1.15 3 
S13 0.38 1.1 n.s. 0.9 2.7 
S14 0.12 0.4 n.s. 0.69 2.3 
S15 0.15 0.5 n.s. 0.59 2 n.s. 
S16 0.06 0.2 n.s. 0.4 1.5 n.s. 
S17 -0.16 -0.6 n.s. 0 0 n.s. 
BA -0.08 -0.3 n.s. 0.94 3.8 
A p D 0.23 0.8 n.s. -0.01 0 n.s. 
BpD -0.8 -2.8 0.68 2.6 
FeD 0.36 1.1 n.s. 3.63 11.5 
A p G -0.31 -1.2 n.s. -0.29 -1.2 n.s. 
BpG -1.79 -5 2.74 8.1 
FeG 0.85 3.6 0.31 1.4 n.s. 
BL Herb -0.85 -2.3 -2.39 -6.9 
Shrub -0.48 -1.5 n.s. -0.15 -0.5 n.s. 
Fem 0.2 0.7 n.s. -1.46 -5.2 
Gram -0.31 -1 n.s. 0.67 2.4 
Moss -2.95 -8.1 -0.97 -2.8 
Litter -0.08 -0.2 n.s. 0.12 0.3 n.s. 
Bare 0.21 0.7 n.s. -0.53 -1.9 n.s. 
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Figure 6.6. Combined CCA ordination of seedling scores and 
statistically significant environmental and state variables 

(Value labels on page 137, Table 6.1 and page 138, Table 6.2). 
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The local density of adult trees, taken as basal area (BA), also influenced 

patterns of seedling data. Young seedlings of Betula and Fraxinus were most 

associated with low basal area, whereas, Acer seedlings and Old Betula seedlings 

were most associated with high basal area. Old Fraxinus seedlings were either 

unaffected by local tree density, or were associated with intermediate basal area. 

Basal area was negatively correlated with Fern cover (r= -0.318, df=808,/><0.01) and 

positively correlated with the cover of graminoids (p=0.098, df=808, /7<0.01) and 

moss (r=0.347, df=808, /?<0.01). Broad-leaved herb cover was not significantly 

associated with canopy basal area (r= -0.058, df=808 , /7= n.s.). 

Variation between years in seasonal patterns of field layer cover (Figure 6.2) 

and the frequency and timing of seedling germination (Table 6.4, Figure 6.1), were 

reflected in the dispersion of state variables on the second canonical axis (Figure 6.6). 

May to October 1996 (S1-S6) had positive scores on axis 2, whereas, April to July, 

1997 (SI 1-SI4) had negative scores. 
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6.4 D I S C U S S I O N 

6.4.1 Patterns of seedling regeneration 

Seedhng regeneration involves a continuous multi-step sequence of events, 

including seed production, dispersal, survival and germination, and seedhng 

emergence, growth, survival and establishment. In the present study, variation 

between tree species in natural seedling density represented differences in one or 

more aspects of this sequence. 

Variation between species in the density of "Germinant" seedlings, which 

made up the vast proportion of the total per quadrat, was correlated with the 

abundance of viable seed produced in 1997 (Table 6.5). Differences in seed dispersal, 

seed survival and seedling germination were not sufficient to influence the association 

between viable seed output and seedling emergence. Since the density of "Persistent" 

seedlings, of at least one year old, was not correlated with viable seed production, 

seedling density subsequent to emergence was most likely determined by alternative 

factors. 

The survivorship of "Germinant" seedlings varied significantly between taxa, 

although it was similar between cohorts of each taxon and between years for Acer, 

Betula, Fraxinus and Sorbus (Table 6.6), reflecting the consistency of survival 

characteristics of each taxon. 

The regeneration characteristics of each tree species, as summarised in Table 

6.10, can be distinguished in terms of viable seed output, seedling survivorship and 

the abundance of "Germinant" and "Persistent" seedlings, Betula produced vast 

numbers of viable seeds and "Germinant" seedlings, although seedling survivorship 

was low and no "Persistent" seedlings were encountered. Acer and Fraxinus produced 

fewer viable seeds and "Germinant" seedlings, although seedling survivorship and the 

abundance of "Persistent" seedlings were much greater. Nakashizuka et al. (1995) 

also recorded a negative association between seedling survival and the abundance of 

seeds produced, reflecting a strong negative correlation between seed crop size and 

seed size, and a positive correlation between seed size and seedling survival. Melzack 

& Watts (1982) found that seed size was positively associated with germination rates 

and seedling size. Ilex, Sorbus, Taxus and Ulmus, however, produced few viable seeds 

and "Germinant" seedlings, which were of low survivorship, and few "Persistent" 

seedlings. 
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Table 6.10. Summary of the regeneration characteristics of each study species 
recorded in the present study. 

Taxon Viable seed 
production 

"Germinant" 
1996 

seedlings 
1997 

Seedling 
survivorship 

"Persistent" 
seedlings 

Acer Occasional Rare High Rare 
Betula Very high Numerous Numerous Low Absent 
Fraxinus High Occasional Rare Very high Occasional 
Ilex Low Rare Absent Low Absent 
Sorbus Low Rare Rare Low Absent 
Taxus Low Rare Absent Low Rare 
Ulmus Low Absent Absent Absent 

Consistent with variation between tree species, differences between years in 

the density of "Germinant" seedlings was most likely associated with variation in 

viable seed output. Mast seeding is common amongst temperate tree species (Sharp & 

Sprague, 1967; Gardner, 1977; Harper, 1977; Jensen, 1982) and involves intermittent 

years of high, synchronous seed production within a population, separated by long 

periods when few seeds, i f any, are set. Punctuated seedling recruitment typically 

follows masting behaviour (Evans, 1988). Unfortunately, estimates of seed crops fi-om 

which "Germinant" seedlings emerged in 1996 and 1997, were not available for 

comparison. 

Annual variation in the density of "Germinant" seedlings may have also 

resulted from differences in seed dispersal, seed survival or seedling germination 

between viable seed production and seedling emergence. For example. Tapper (1992) 

found that an unusually cold winter followed by late snow melt and a cold and wet 

spring, was sufficient to reduce the germination of Fraxinus excelsior to six per cent 

of that expected. 

Viable seed output in 1997 was correlated with the density of "Germinant" 

seedlings, which germinated from seeds produced at least one year prior to their 

emergence in 1996 and 1997. Relative differences between species in viable seed 

output and seedling emergence were, therefore, broadly similar between years. The 

production of viable seeds and emergence of seedlings of Betula would have been 

consistently greater than that of Acer and Fraxinus. Viable seeds and emergent 

seedlings of Ilex, Sorbus, Taxus and Ulmus would have been consistently sparse. 

Although not formally quantified, observations made during the study period would 

support such patterns. Tapper (1992) found that the absolute density of Fraxinus 
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seedlings emerging was positively correlated with total seed production two years 

previously. 

6.4.2 Environmental correlates of seedling distribution 

Although viable seed output determined overall rates of seed germination and 

seedling emergence, alternative factors influenced the subsequent survival and 

establishment of seedlings. Spatial associations between seedling recruitment and a 

number of habitat characteristics were identified following the analysis of seedling 

distribution using CCA, as summarised in Table 6.11. The dispersion of scores 

representing the number of seedlings per quadrat was broadly similar to the dispersion 

of scores representing the relative survival of seedlings (Figure 6.3). The spatial 

distribution of seedling density was, therefore, associated with the spatial distribution 

of seedling survival. 

Table 6.11. Summary of associations between seedling recruitment and habitat 
characteristics, including girth of nearest adult neighbour of Betula (BpG), distance to 
nearest adult neighbour of Fraxinus (FeD), total basal area of adult trees in vicinity of 
quadrat (BA) and the cover of graminoids (Gram), Moss and broad-leaved herbs 
(BLHerbs). 

Taxon Seedling age BpG FeD BA Gram BLHerb Moss 

Acer Young High High High High High Low 
Old High High High High Low High 

Betula Young Medium Medium Low Medium High Low 
Old Medium Medium High Medium Low High 

Fraxinus Young Low Low Low Medium High Low 
Old Low Low Medium Low Low High 

Patterns of seedling recruitment recorded in the present study were generally 

consistent with the regeneration characteristics of each species in temperate deciduous 

woodland (Table 2.1). High rates of mortahty followed seed germination and seedling 

emergence in the spring, when shallow rooted seedlings were particularly susceptible 

to mortality factors during active growth (Peterken, 1966). Seedlings surviving until 

winter, when mortality rates were reduced, had a greater expectancy of life (Tapper, 

1992). 

Rather than occurring randomly, seedling regeneration was associated with 

specific habitat characteristics. The distribution of Young seedlings was distinct from 
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that of Old seedlings, indicating that seed germination, seedling emergence and early 

seedling survival occurred in habitats that were unsuitable for subsequent 

establishment and survival. 

Young seedlings of Acer, Betula and Fraxinus were associated with high 

broad-leaved herb cover and low moss cover. Since tree seeds are particularly 

vulnerable to desiccation, the cover provided by broad-leaved herbs may have 

increased rates of seed germination by depressing critical water loss (Watt, 1919, 

1923; Wood, 1938; Shaw, 1968b; Pigott, 1983). Broad-leaved herb cover was not 

sufficiently dense to limit the germination of light-demanding taxa, including Betula 

(Watt, 1919; Pigott, 1983; Goldberg, 1985), or prevent seeds from reaching the soil 

(Watt, 1919). Greater stability of soil surface temperature may also account for higher 

rates of seed germination, seedling emergence and early seedling survival beneath 

broad-leaved herb cover (Wood, 1938). 

Old seedlings of Acer, Betula and Fraxinus were associated with low broad-

leaved herb cover and high moss cover. The shading effect of the herb layer may have 

directly inhibited seedling development, establishment and survival (Tapper, 1992). 

Betula is a shade intolerant pioneer tree which regenerates most profusely on open 

mineral soil of moderate phosphate status (Evans, 1988), often with continuous moss 

cover or a thin layer of tree litter (Grime et al, 1988). Fraxinus seedlings are also 

intolerant of dense field layer shade (Wardle, 1961), establishing most typically on 

relatively open, moist, well drained, base-rich sites with thin litter layers (Grime et al., 

1988; Peltier et al., 1997). Broad-leaved herbs may also limit recruitment by the 

interception of precipitation (Linhart & Whelan, 1980), the removal of moisture and 

nutrients from the soil (Evans, 1988), the smothering and toxic action of decaying 

plant material overlying seedlings (Watt, 1919) and the harbouring of seed and 

seedling predators (Chapters 3 & 5). Field layer shade may also suppress the growth 

and development of Fraxinus seedlings and increase susceptibility to inter-seedling 

competition (Tapper, 1992). Fraxinus often regenerates where soil instabihty, soil 

dryness, canopy cover or excessive wetness restrict the herb layer and allow seedlings 

to become established (Wardle, 1959, 1961). 

Seedlings of Acer are widely distributed on bare or lightly shaded, basic, low 

disturbance soils of adequate phosphate, moisture and depth (Evans, 1988; Grime et 

al., 1988). Although Acer regenerates profusely beneath moderately deep shade in 

association with shade herb species, seedlings are intolerant of competition and may 
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be readily suppressed by field layer vegetation (Jones, 1945). Acer seedlings typically 

establish beneath a thin and discontinuous layer of herbaceous species and litter, often 

accompanied by mosses and seedlings of Sambucus nigra, suggesting that Acer is 

nitrophilous (Jones, 1945; Grime et al, 1988). Seasonal regeneration oiAcer, Betula, 

and Fraxinus most likely benefits from early germination in vegetation gaps, 

preceding the maximum cover of broad-leaved herbs. 

Seedling distribution also varied between tree species, reflecting contrasting 

associations between seedling recruitment and habitat characteristics. Canopy cover, 

or a correlated factor, strongly influenced patterns of seed germination and seedling 

emergence, establishment and survival. The girth of adult Betula, distance to adult 

Fraxinus and total basal area were significant attributes of canopy cover and 

associations between seedling recruitment and canopy cover differed according to 

seedling age and species. 

Although seedlings of Acer have been found to germinate profusely beneath 

dense canopy shade, prolonged growth and survival is improved in thin irregular 

stands of moderate shade (Jones, 1945). Acer is more shade tolerant than Fraxinus 

and often appears as advance regeneration beneath light crowned taxa, including 

Fraxinus (Evans, 1988). In the present study. Young and Old seedlings of Acer were 

associated with high graminoid cover and closed tree canopies containing large adults 

of Betula and distant adults of Fraxinus. Such canopies most likely generated 

moderate to deep shade that was suitable for the germination, establishment and 

survival of shade tolerant Acer, while sufficient to limit herb competition and exclude 

seedlings of Betula and Fraxinus. Jones (1945) found that proximity to the seed 

source was essential to the profuse regeneration of Acer, often recording circles of 

recruitment around fhiiting adults. In the present study, the abundance and survival of 

Acer seedlings was not associated with either the girth or distance of conspecific 

adults, although patterns of fruit production and dispersal were not recorded. 

Although banks of Fraxinus seedlings are often released by canopy gap 

formation (Wardle, 1959, 1961; Emborg, 1998), recruitment is most prolific under 

semi-shade conditions (Peltier et al, 1997). Seedlings of Fraxinus may establish 

beneath considerable canopy cover, despite an intolerance of field layer cover 

(Tapper, 1992). Fraxinus typically regenerates where canopy shade is sufficient to 

restrict dense layers of herbaceous vegetation that would otherwise exclude Fraxinus 
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seedlings (Wardle, 1959, 1961). Harmer et al. (1997) also found that the abundance 

and vigour of herb growth was inversely related to the extent of the canopy. 

In the present study, broad-leaved herb cover was not significantly associated 

with canopy basal area. However, grass and moss cover were positively associated 

with basal area and fern cover was negatively associated with basal area. Seedlings of 

Fraxinus were associated with tree canopies containing small adults of Betula and 

proximate adults of Fraxinus, reflecting a direct association between seedling density 

and proximity to the seed source. Such canopies were unlikely to represent pure 

stands of Fraxinus, the cover of which would have been sufficiently thin to favour a 

dense field layer and the elimination of Fraxinus seedlings (Wardle, 1959). 

Young seedlings of Fraxinus were associated with open canopies, whereas the 

distribution of Old seedlings was either independent of canopy cover or was 

associated with intermediate cover. Such patterns reflected the direct and indirect 

influence of canopy shade on tree seedlings and field layer vegetation (Wardle, 1959, 

1961; Harmer et al., 1997). Seed germination, seedling emergence and early seedling 

survival were associated with open canopies, low grass and moss cover, and high 

overlying fern cover, providing conditions of greater moisture and stability of soil 

surface temperature. Subsequent seedling establishment and survival were either 

independent of canopy cover, and most likely determined by field layer cover, or were 

associated with intermediate canopy cover. Wardle (1959, 1961) supports the profuse 

regeneration of Fraxinus under semi-shade conditions which favour Fraxinus 

seedlings over the field layer. Sites which favoured the regeneration of Fraxinus were 

unsuitable for the regeneration of Acer and Betula, most likely resulting from 

intolerance of herb competition (Jones, 1945) and shade (Pigott, 1983), respectively, 

beneath intermediate canopy and field layer cover. Although Fraxinus seedlings are 

moderately shade tolerant during early survival, within three or four years seedlings 

become increasingly dependent on full overhead light for subsequent growth and 

development (Evans, 1988). 

Although the distributions of Acer and Fraxinus are often closely associated, 

Acer has greater vigour and persistence in the shade (Jones, 1945; Evans, 1988). 

Consequently, relative light intensity determines which species eventually dominates. 

Linhart & Whelan (1980) recorded a profusion of Rubus fruticosus following 

protection from browsing pressure. Acer regeneration subsequently replaced Fraxinus 
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regeneration as a result increased field layer cover. In the present study, there was no 

association between seedling distribution and the cover of Rubus fruticosus, the 

principal component of Shrub vegetation. 

Light demanding seedlings of Betula typically establish beneath openings in 

both main and understorey canopies (Morgan, 1991), showing a marked dissociation 

from ungrazed field layers and heavily shaded sites, including canopies of Acer 

(Pigott, 1983). In the present study, the distribution of Betula seedlings was either 

independent of the girth of adult Betula and the proximity of adult Fraxinus, or was 

associated with intermediate measures. Specific canopy characteristics may have been 

less significant to the regeneration of Betula than the indirect influence of canopy 

shade on field layer cover, to which seedlings were particularly sensitive. In addition, 

any spatial association between seedlings and the seed source may have been 

obscured by the long distance dispersal of vast quantities of seed. 

Young seedlings were associated with low canopy basal area, whereas Old 

seedlings were associated with high canopy basal area. As with the regeneration of 

Fraxinus, seed germination, seedling emergence and early seedling survival were 

associated with open canopies, low grass and moss cover, and high overlying fern 

cover, providing conditions of greater moisture and stability of soil surface 

temperature. Evans (1988) also reported the emergence of Betula seedlings amongst 

ferns. Subsequent seedling establishment and survival were associated with closed 

canopies, which favoured light-demanding Betula seedlings over the field layer. Cold 

stress may have been sufficient to exclude seedlings of Acer and Fraxinus from open 

sites that were suitable for the recruitment of cold-tolerant Betula seedlings (Table 

2.1), assuming the abundance and vigour of field layer growth was inversely related to 

the extent of the canopy (Harmer et al, 1997). Greater tolerance of herb competition 

may have also accounted for the survival of Betula seedlings in sites that were 

unsuitable for the regeneration of Acer and Fraxinus (Table 2.1). 

Although shade tolerance {Acer>Fraxinus>Betula), competition tolerance 

{Betula>Fraxinus>Acer) and cold tolerance (Betula>Acer>Fraxinus) were likely to 

have been significant determinants of seedling distribution, alternative habitat 

characteristics may have also contributed to patterns of seedling recruitment. Acer, for 

example, fails to regenerate on heavy, wet clay soils where Fraxinus regenerates 
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freely (Jones, 1945). Fraxinus, however, has less tolerance of soil acidity than Acer 

and Betula, failing to regenerate on soils of less than pH 4.2. Species may have also 

differed in susceptibility to drought stress (Peterken, 1966), soil disturbance (Evans, 

1988), damping-off disease (Wardle, 1959; Tapper, 1992), inadequate soil nutrients 

and mycorrhizal associates (Goldberg, 1985) and the smothering and toxic action of 

decaying plant material overlying seedlings (Watt, 1919). A complexity of such 

factors most likely accounted for variation between tree species in patterns of seed 

germination and seedling emergence, establishment and survival. 

As a result of sample size constraints, it was not possible to determine the 

equivalent environmental correlates of Ilex, Sorbus, Taxus and Ulmus seedling 

distribution. However, previous studies of regeneration in temperate deciduous 

woodland have identified unique regeneration characteristics for each species (Table 

2.1). Seedlings of Ilex are highly shade tolerant (Pigott, 1983) and often widespread in 

the understorey (Peterken & Lloyd, 1967). In fact, seedlings are sufficiently robust to 

withstand the smothering and shade of P. aquilinum, the cover of which suppresses 

competitive herb growth and prevents desiccation (Peterken, 1966). Very heavy shade 

and litterfall beneath dense canopy cover may be sufficient to limit seedling growth, 

development and survival (Peterken, 1966). Ilex is also intolerant of drought and 

prolonged waterlogging (Peterken & Lloyd, 1967). Although vegetative spread may 

be significant for establishment in canopy gaps, it is ineffective as a mechanism of 

dispersal and spread (Peterken & Lloyd, 1967). 

Although Evans (1988) describes Sorbus as a 'light demanding pioneer', 

seedlings of this taxon are highly shade tolerant and able to grow and survive beneath 

deep understorey and canopy cover (Pigott, 1983). Taxus is also highly tolerant of 

cover, although shade may limit seedling growth. Melzack & Watts (1982) found that 

seeds often germinated beneath the scrub cover of Crataegus monogyna and 

Juniperus communis when there was little sign of Taxus regeneration beneath canopy 

cover or gaps. This was consistent with the microsite-limited regeneration of Taxus 

reported by Hulme (1996a) in sites where patterns of seedling distribution were not 

obscured by the intensity of seed predation. Ulmus regenerates most profusely on 

moist, relatively fertile, basic soils with moderate exposures of bare soil and tree litter 

(Grime et al, 1988). Seedlings are sensitive to drought and shade, which may limit 

recruitment. 
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It was apparent that the occurrence of early regeneration, even i f profuse, was 

no indication of subsequent establishment. The spatial distribution of seedling 

recruitment was ultimately determined by mortality factors acting on seed survival 

and germination, and seedling emergence, growth and survival. There was strong 

evidence that habitat characteristics, including canopy and field layer cover, were 

significant determinants of seedling distribution, according to age- and species-

specific tolerances. Seedlings were most likely susceptible to a greater intensity of 

mortality factors with decreasing age and depth of rooting (Peterken, 1966; Tapper, 

1992). Supporting previous studies of natural seedling regeneration in temperate 

deciduous woodland, field layer cover, or a correlated factor, was the most significant 

habitat characteristic influencing spatial patterns of seedling recruitment. Free from 

the constraints of the field layer, seedlings had a much greater probability of 

persistence beneath the canopy (Gardner, 1977). 

Variation between species in viable seed production, seed germination and 

seedling emergence, growth and survival reflect the diversity of established strategies 

and regeneration characteristics of temperate deciduous woodland trees. Differences 

were reflected in the dynamics of natural seedling regeneration and exemplified in the 

production of vast numbers of small, widely dispersed seeds and short-lived seedlings 

of Betula, relative to the production of fewer, large seeds and long-lived seedlings of 

Acer and Fraxinus. 
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CHAPTER 7 

GENERAL DISCUSSION 

7.1. POST-DISPERSAL SEED PREDATION AND SEEDLING HERBIVORY 

Rodents were the principal agents responsible for post-dispersal seed 

predation, whereas background seed loss and that attributable to invertebrates and 

other categories of seed predator was of minor importance (Chapters 3 and 4). 

Seedling herbivory was attributable to a mixed suite of herbivores including 

invertebrates, rodents and larger mammals (Chapter 5). Mammals encountered 

seedlings more frequently than invertebrates, and once encountered, inflicted a greater 

severity of damage. 

Variation in post-dispersal seed predation and seedling herbivory has been a 

consistent factor in all of the studies in which it has been investigated (Tables 3.1, 4.1 

and 5.1). In the present study, rates of seed predation and seedling herbivory varied 

significantly between tree species (Chapters 3 and 5), reflecting selective, rather than 

random, foraging decisions. The consistency of such decisions was demonstrated in 

seed predation trials, when tree species were ranked in the same order in both study 

sites. Variation in seed predation and seedling herbivory between tree species most 

likely reflected individualistic, trade-off responses to the chemical (olfactory 

conspicuousness, nutritional value, toxicity) and physical (size, toughness, handling 

time) attributes of seeds and seedlings, according to dietary requirements, familiarity, 

tolerance of plant defence mechanisms and the availability of alternative resources. I f 

rates of seed predation and seedling herbivory were sufficiently high to limit plant 

recruitment, variation between tree species may have been a significant factor 

regulating woodland community composition. 

Seed predation and seedling herbivory also varied significantly between 

microhabitats (Chapters 3 and 5). Fine-scale spatial heterogeneity reflected patterns of 

rodent foraging in response to microhabitat characteristics, particularly the 

distribution of protective vegetation cover and the availability of food. Schupp (1995) 

considered patterns of differential patch-suitability across the landscape at seed and 

seedlings stages and described a continuum ranging from full concordance to full 

discordance. In the present study, patterns of seed and seedling survival were broadly 
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concordant, with rates of seed predation and seedling herbivory greater beneath 

protective vegetation cover than in open microhabitats. Differential foraging and 

offspring survival over a species' seed shadow may have a significant impact on 

spatial patterns of plant recruitment (Anderson, 1987; Harmon & Stamp, 1992) and 

may account for the spatial dissociation between natural seedling survival and field 

layer cover (Chapter 6). 

Variation in seed predation according to seed density and distance from the 

parent was species-dependent (Chapter 4). Density-dependent seed survival was 

supported by two of five tree species, whereas distance-dependent survival was not 

supported by any species at a spatial scale consistent with the 'herbivore-escape 

hypothesis'. Overall, patterns of density- and distance-dependent seed survival were 

unpredictable and could not be generalised temporally or spatially for alternative plant 

species and predator groups. In natural populations with overlapping seed shadows, 

variation in seed production, seed dispersal and predator density are likely to generate 

a temporally dynamic association between post-dispersal seed predation and 

mortality-mediated tree spacing (Hubbell, 1980). In the present study, adult 

populations of each study species were either randomly distributed or spatially 

aggregated (Table 2.3), supporting the absence of predictable spacing mechanisms 

mediated by distance- and density-dependent predation. 

7.2. RELATIVE IMPACT OF HERBIVORES ON NATURAL REGENERATION 

High rates of seed predation and seedling herbivory do not alone constitute 

evidence that herbivores influence plant regeneration dynamics. An assessment of the 

impact herbivores have on natural tree regeneration must consider the broader context 

of the regeneration sequence, including seed production, seed viability, seedling 

emergence and seedling survival. The natural regeneration dynamics of each study 

species are summarised in Table 7.1 and represented schematically in Figure 7.1, 

based on estimates of total seed production (1997, Chapter 6), seed viability (1997, 

Chapter 3), seed predation (1995-1996, Chapter 3), natural seedling emergence (1996, 

Chapter 6), seedling herbivory (1997, Chapter 5) and natural seedling survival (1997, 

Chapter 6) in Shipley Wood. Greater than ten per cent seedling damage was assumed 

to result in seedling mortality. Since all parameters were likely to have varied 

spatially and temporally and no attempt was made to assess the herbivore tolerance or 

168 



^ • > ^ 

C>0 w 

"5 ^ 

O 00 

a O o ^ n 

O (D 

(D O . 

i o 
^ CL, o a> o ^ 
(D 

-a 
00 

o 

(D 
OH 

o 
00 

^ 3 

ID 
C/3 

o 
I—I <—' 
o 

2 
(D 
CD 

00 

00 

^ ^ ^ 
OX) 

I s o o o 

> 

o 
S-H O 
CD > ^ 

CO o 
H-l 

^ f f i J J J 

> 

^ ^ ^ 
(DO bO tJ) g ̂  -as s s 

O O • i - ( 

^ ^ ^ ^ 
(U (U (D 

> > > 

o 
H-1 O 

O 

H-1 
CD 

O 

(D ^ 

4^ ,13 
_W) to to 
ffi ffi ffi s ^ ̂  ^ 
<D (D (D 

> > > 

^ ^ S S ffi s 

X I X I hfn 4:3 

<D 

> 

CD (D 

> > ^ 
CD (D 

> > 

X 
CO 

> 
o 

H-1 

^ Qq 00 ^ o 

(D 

(D 
00 
<D 

O 

1/5 

§ 
T 3 

(D 

00 

I 
00 

O 

00 

00 

(D 

(D 
<D 

(D 
00 ^ 

O 

(D 

(D 

O 

c5 
•a 
00 g 
(D 
(D 

C O 

O 

CD 

CD 
•(—> 

3̂ 
O 

o 
(D T3 ^ 
00 ^ 
G <D 

T3 O 
(D 
00 

W W C/D CO Jf^ 
- t V 

o o 
(D (D 

^3 
CD (D 

-(—> -I—> 

u u u u .5 .5 o 
H-1 H-1 

o 8 

O 

g g ^ ^ 
o <̂  

OH o a> D , 

CD . « T 3 (D 

§•-•5 
u .5 o ;:3 o .5 -̂ j 

H-1 H-1 ' 
<D 

^ ^ ^ ^ ^ ^ 
•r-r O O O O O 

ffi H-1 O H-1 H-1 H-1 H-1 

ffi ffi a J J H J H J 

.-§>l| I i i I 

X 
00 

.§1 . 0 0 

^H-1 H-1 
(D 

> 

X 
00 

o 
H-1 

00 
X 

o w 

B B B d ^ d ^ ^ ^ ^ > 
(D CD CD 2̂  

-^3 9 
O O O H-1 

^ s s 
(D 

^3 
O 

-SHJ I HJ 

> > 

X 
00 

^ Qq Co o 

169 



c/0 
'o 

D 
P . 

00 
>^ 
:3 

o 
CD 

O 

O 

o 

bX) 

c3 

-»—> 

PH 

o 
. 1—4 

B 

o 

4! 

o 
o 
o 
o 
o 
o 
o 
o 
o 

~1~ 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 

o o 
o o 
o o 
O r - H 

o o 
O - H 

o 

o 03 

.a s 

C/) 

1/3 

CD 

> 

C/3 

o 
H 

a 

o 

170 



recovery potential of seedlings, such data can only approximate general patterns and 

can by no means represent a continuous regeneration sequence. It would be 

particularly inappropriate to directly associate the post-dispersal survival of seeds 

from a known source with the natural emergence of seedlings from an unknown 

source to infer rates of seed germination. However, schematic representation may 

distinguish the general regeneration dynamics of each tree species and the relative 

impact of seed predation and seedling herbivory. The following discussion of natural 

regeneration dynamics is based on data summarised in Table 7.1 and Figure 7.1. 

7.2.1. Natural regeneration dynamics of Acer 

Although the production, viability and predation of Acer seeds were not 

quantified in the present study, Jensen (1985) recorded rates of Acer seed removal 

after three days that were more than twice as great as rates of Betula, Fraxinus and 

Ulmus seed removal. The emergence and survivorship of Acer seedlings was high. 

Moderate rates of seedling herbivory reduced seedling density by fifty-eight per cent. 

Alternative mortality factors accounted for the loss of a further twenty-three per cent 

over the following year. Although seedlings were numerous after one year and sapling 

density was high, the density of seedlings greater than one year old was low. Seed 

predation and seedling herbivory were likely to have been more limiting to the natural 

regeneration of Acer than first-year seedling mortality arising from alternative biotic 

and abiotic factors. 

Seedlings of Acer are widely distributed on bare or lightly shaded, basic, low 

disturbance soils of adequate phosphate, moisture and depth (Evans, 1988; Grime et 

al., 1988). Although Acer regenerates profusely beneath moderately deep canopy and 

field layer cover, in association with shade herb species, seedlings are intolerant of 

competition and may be readily suppressed by field layer vegetation (Jones, 1945). 

Acer seedlings typically establish beneath a thin and discontinuous layer of 

herbaceous species and litter (Jones, 1945), reflected in the negative association 

between seedling survival and field layer cover (Chapter 6). The interception of 

precipitation (Linhart & Whelan, 1980), removal of soil moisture and nutrients 

(Evans, 1988), smothering and toxic action of field layer vegetation (Watt, 1919) may 

have also limited recruitment. Overall, the natural regeneration of Acer (to first year 

seedlings) was more likely to have been herbivore-limited than microsite-limited in 

the present study, although no mortality factor was sufficient to completely restrict 
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recent regeneration in either study site (Figure 2.5). Herbivory may also account for 

the spatial dissociation between natural seedling survival and field layer cover 

(Chapter 6). Data were not available to assess the extent of seed-limitation. 

7.2.2. Natural regeneration dynamics of Betula 

Although total seed production by adult trees of Betula was very high, very 

low viability reduced seed density by eighty-seven per cent. Very low rates of seed 

predation reduced seed density by only a further half of one per cent. Although the 

emergence of Betula seedlings was very high, seedling survivorship was low. Very 

low rates of seedling herbivory reduced seedling density by thirteen per cent. 

Alternative mortality factors accounted for the loss of the remaining eighty-seven per 

cent of seedlings over the following year. No seedlings greater than one year old and 

few saplings of Betula were recorded. Seed production, seed predation and seedling 

herbivory were likely to have been less limiting to the natural regeneration of Betula 

than seed viability and first-year seedling mortality arising from alternative biotic and 

abiotic factors. 

Betula regenerates most profusely on open mineral soil of moderate phosphate 

status (Evans, 1988), often with continuous moss cover or a thin layer of tree litter 

(Grime et al., 1988). Seedlings of Betula are cold resistant and have some degree of 

competition tolerance, although are intolerant of shade and drought (Table 2.1). Light-

demanding seedlings of Betula typically establish beneath openings in both main and 

understorey canopies (Morgan, 1991), showing a marked dissociation from ungrazed 

field layers and heavily shaded sites (Chapter 6). The interception of precipitation 

(Linhart & Whelan, 1980), removal of soil moisture and nutrients (Evans, 1988), 

smothering and toxic action of field layer vegetation (Watt, 1919) may have also 

limited recruitment. Overall, the natural regeneration of Betula (to first year seedlings) 

was more likely to have been microsite-limited than seed- or herbivore-limited in the 

present study. Absence of suitable regeneration microsites may account for limited 

recent regeneration in Shipley Wood (Figure 2.6). 

7.2.3. Natural regeneration dynamics of Fraxinus 

The total production of Fraxinus seeds was high and very high seed viability 

reduced seed density by only eleven per cent. Low rates of seed predation reduced 

seed density by a further twenty-two per cent. The emergence of Fraxinus seedlings 
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was high and seedling survivorship was very high. Low rates of seedling herbivory 

reduced seedling density by twenty-two per cent. Alternative mortality factors 

accounted for the loss of a further fifty-two per cent of seedlings over the following 

year. Seedlings were numerous after one year, as were seedlings greater than one year 

old and saplings. Seed production, seed viability, seed predation and seedling 

herbivory were likely to have been less limiting to the natural regeneration of 

Fraxinus than first-year seedling mortality arising fi-om alternative biotic and abiotic 

factors. 

Fraxinus regenerates most profusely on relatively open, moist, well drained, 

base-rich sites with thin litter layers (Grime et al., 1988; Peltier et al., 1997). 

Seedlings of Fraxinus are sensitive to drought, competition and late frost (Table 2.1) 

and intolerant of dense shade (Wardle, 1961), reflected in the negative association 

between seedling survival and field layer cover (Chapter 6). The interception of 

precipitation (Linhart & Whelan, 1980), removal of soil moisture and nutrients 

(Evans, 1988), smothering and toxic action of field layer vegetation (Watt, 1919) may 

have also limited recruitment. Overall, the natural regeneration of Fraxinus (to first 

year seedlings) was more likely to have been microsite-limited than seed- or herbivore 

limited in the present study, although no mortality factor was sufficient to completely 

restrict recent regeneration in either study site (Figure 2.7). 

7.2.4. Natural regeneration dynamics of Ilex 

The total production of Ilex seeds was low and moderate seed viability 

reduced seed density by forty-two per cent. Moderate rates of seed predation reduced 

seed density by a further twenty-seven per cent. The few seedlings of Ilex that did 

emerge had low rates of survivorship and no seedlings survived after one year. Very 

low rates of seedling herbivory reduced seedling density by fifteen per cent. 

Alternative mortality factors accounted for the loss of the remaining eighty-five per 

cent of seedlings over the following year. No seedlings greater than one year old and 

few saplings of Ilex were recorded. Seed predation and seedling herbivory were likely 

to have been less limiting to the natural regeneration of Ilex than seed production, 

seed viability and first-year seedling mortality arising from alternative biotic and 

abiotic factors. 

Seedlings of Ilex are sensitive to late frost and intolerant of drought and 

prolonged waterlogging (Peterken & Lloyd, 1967; Table 2.1). Although Ilex seedlings 

173 



are highly shade tolerant (Pigott, 1983) and often widespread in the understorey 

(Peterken & Lloyd, 1967), very heavy shade and litterfall beneath dense canopy cover 

may be sufficient to limit seedling growth, development and survival (Peterken, 

1966). Overall, the natural regeneration of Ilex (to first year seedlings) was more 

likely to have been microsite-and seed-limited than herbivore-limited in the present 

study, although no mortality factor was sufficient to completely restrict recent 

regeneration in either study site (Figure 2.8). 

7.2.5. Natural regeneration dynamics ofSorbus 

Although the total production of Sorbus seeds was low, seed viability was 

very high, reducing seed density by only six per cent. However, subsequent seed 

predation was high, reducing seed density by a further sixty-five per cent. The few 

seedlings of Sorbus that did emerge had low rates of survivorship and no seedlings 

survived after one year. Although the herbivory of Sorbus seedlings was not 

quantified in the present study, Sviridenko (1940, cited in Golley et al., 1975) 

recorded rates of Sorbus seedling herbivory that were similar to rates of Fraxinus 

seedling herbivory and significantly lower than rates of Acer and Ulmus seedling 

herbivory. No seedlings greater than one year old and few saplings of Sorbus were 

recorded. Seed producfion, seed predafion and first-year seedling mortality arising 

from alternative biotic and abiotic factors were likely to have been more limiting to 

the natural regeneration ofSorbus than seed viability and seedling herbivory. 

Although Evans (1988) describes Sorbus as a 'light demanding pioneer', 

Sorbus seedlings are highly shade tolerant and able to grow and survive beneath deep 

understorey and canopy cover (Pigott, 1983; Table 2.1). Overall, the natural 

regeneration of Sorbus (to first year seedlings) was likely to have been seed-, 

herbivore- and microsite-limited in the present study, which may account for limited 

recent regeneration in Derwent Gorge (Figure 2.9). 

7.2.6. Natural regeneration dynamics of Taxus 

Although the viability of Taxus seeds was very high, total seed production was 

low. High rates of seed predation reduced seed density by a further seventy-seven per 

cent. The few seedlings of Taxus that did emerge had low rates of survivorship and no 

seedlings survived after one year. Seedlings greater than one year old were rare and 

no saplings of Taxus were recorded. Although seedling herbivory could not be 
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distinguished from first-year seedling mortality arising from alternative biotic and 

abiotic factors, seed production and seed predation were likely to have been more 

limiting to the natural regeneration of Taxus than seed viability. 

Seedlings of Taxus are highly shade tolerant, although sensitive to cold stress 

(Table 2.1). Overall, the natural regeneration of Taxus (to first year seedlings) was 

more likely to have been seed- and herbivore-limited than microsite-limited in the 

present study. Herbivory and low viable seed production may account for limited 

recent regeneration in Shipley Wood and Derwent Gorge (Figure 2.10). Recruitment 

may be associated with scrub cover (microsite-limited) when patterns of seedling 

distribution are not obscured by the intensity of herbivory (Melzack & Watts, 1982; 

Hulme, 1996a). 

7.2.7. Natural regeneration dynamics of Ulmus 

The total production of Ulmus seeds was low and low seed viability reduced 

seed density by sixty-two per cent. High rates of seed predation reduced seed density 

by a further twenty-six per cent. Although naturally emerged seedlings of Ulmus were 

not recorded, rates of herbivory of artificially supplied seedlings were moderate. 

Seedlings greater than one year old were also absent, whereas the density of Ulmus 

saplings was high. Although seedling herbivory could not be distinguished from first-

year seedling mortality arising from alternative biotic and abiotic factors, seed 

production and seed viability were likely to have been more limiting to the natural 

regeneration of Ulmus than seed predation. 

Ulmus regenerates most profusely on moist, relatively fertile, basic soils with 

moderate exposures of bare soil and tree litter (Grime et al., 1988). Seedlings of 

Ulmus are sensitive to shade and intolerant of drought (Table 2.1). Overall, the natural 

regeneration of Ulmus (to first year seedlings) was more likely to have been seed- and 

microsite-limited than herbivore-limited in the present study, although no mortality 

factor was sufficient to completely restrict recent regeneration in either study site 

(Figure 2.11). 

7.3. ACTUAL IMPACT OF HERBIVORES ON NATURAL REGENERATION 

Although seed predation and seedling herbivory may be relatively important to 

the natural regeneration of certain tree taxa, particularly Acer, Sorbus and Taxus, the 

actual impact of herbivores may be less significant. Herbivore-mediated plant 
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mortality may have only replaced mortality that would have otherwise occurred 

during natural self-thinning, having little overall effect on plant regeneration 

dynamics. Alternatively, herbivore-mediated mortality may have ameliorated 

intraspecific competition between plants by reducing density and increasing overall 

rates of survival. 

In addition to when plant recruitment is microsite-limited rather than seed- or 

herbivore-limited (Hulme, 1996a), herbivores are unlikely to influence natural 

regeneration dynamics when plants regenerate by vegetative expansion or satiate seed 

predators with mast seed crops (Jensen, 1982) or when banks of dormant seeds or the 

repeated, prolonged reproduction of long-lived iteroparous species compensate for 

seed and seedling loss to herbivores (Crawley, 1983). 

The natural regeneration of Acer (to first year seedlings) was more likely to 

have been herbivore-limited than microsite-limited. Although Acer does not achieve 

vegetative expansion or regenerate from a persistent seed bank, adults do produce vast 

numbers of seeds in mast years, typically every one to three years (Evans, 1988). With 

repeated, prolonged reproduction over a Hfe span of 400-600 years, Acer is unlikely to 

be critically dependent on current regeneration. 

The natural regeneration of Betula (to first year seedlings) was more likely to 

have been microsite-and seed-limited than herbivore-limited. Although Betula does 

not achieve vegetative expansion, adults do produce vast numbers of small seeds in 

mast years, typically every one to three years (Evans, 1988), which may have limited 

persistence on or near the soil surface. Betula depends on opportunistic, gap-phase 

regeneration, supported by repeated, prolonged reproduction and consistent with 

microsite-limited recruitment. Adults of Betula are relafively short-lived (c.60-70 

years) and are soon out-competed by successional taxa. 

The natural regeneration of Fraxinus (to first year seedlings) was more likely 

to have been microsite-limited than seed- or herbivore limited. Although Fraxinus 

does not achieve vegetative expansion, adults do produce vast numbers of seeds in 

mast years, typically every two to five years (Wardle, 1961; Evans, 1988), which has 

the effect of satiating rodent seed predators (Chapter 4). The persistence of viable 

seeds on the soil surface for up to six years may also facilitate gap-phase regeneration. 

With repeated, prolonged reproduction over a life span of approximately 180 years 
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(>300 years i f coppiced), Fraxinus is unlikely to be critically dependent on current 

regeneration. 

The natural regeneration o f Ilex (to first year seedlings) was more likely to 

have been microsite-and seed-limited than herbivore-hmited. There is also some 

evidence that Ilex achieves vegetative expansion when leafy stems detached by 

herbivores root when covered by moist litter (Peterken & Lloyd, 1967). Although 

vegetative spread may be locally important in colonising canopy gaps, along with 

regeneration involving a bank o f persistent seedlings, it is ineffective as a mechanism 

of dispersal. Wi th repeated, prolonged reproduction over a life span of 250-300 years, 

Ilex is unlikely to be critically dependent on current regeneration. Good fruit years 

correlate with July radiance and air temperature o f the previous year and the absence 

o f severe late spring frost (Peterken & Lloyd, 1967). 

The natural regeneration o f Sorbus (to first year seedlings) was likely to have 

been seed-, herbivore- and microsite-limited. Although Sorbus does not achieve 

vegetative expansion, seeds may have considerable longevity in the soil (Hi l l , 1979). 

Wi th repeated, prolonged reproduction over a life span of up to 150 years, Sorbus is 

unlikely to be critically dependent on current regeneration. 

The natural regeneration o f Taxus (to first year seedlings) was more likely to 

have been seed- and herbivore-limited than microsite-limited. Taxus does not achieve 

vegetative expansion or regenerate from a persistent seed bank. However, with 

repeated, prolonged reproduction over a life span that may exceed 1000 years, Taxus 

is unlikely to be critically dependent on current regeneration. 

The natural regeneration o f Ulmus (to first year seedlings) was more likely to 

have been seed- and microsite-limited than herbivore-limited. U. glabra does not 

achieve vegetative expansion or regenerate from a persistent seed bank. However, 

wi th repeated, prolonged reproduction over a life span of more than 200 years, Ulmus 

is unlikely to be critically dependent on current regeneration. 

Even very low rates o f regeneration occurring intermittently over the long life 

span o f tree species may be sufficient to maintain mixed-age populations. Rates of 

seed predation and seedling herbivory would have to be at a sufficiently high intensity 

over a sufficiently long period, relative to the life span o f the species, for herbivores to 

have a real impact on natural regeneration, plant distribution and community 

composition in temperate deciduous woodland. Even when overall rates of seed 
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predation and seedling herbivory are intense, differential foraging and offspring 

survival over a species' seed shadow may be sufficient to maintain plant recruitment 

and population density. Recruitment may be restricted to open microhabitats, for 

example, where rates o f seed and seedling survival are proportionally higher than 

akemative microhabitats (Chapters 3, 5 and 6). The burial o f seeds beneath litter or 

soil may also be an effective means o f escaping seed detection and predation (Hulme, 

1993), as well as reducing desiccation (Watt, 1919) and increasing seedling yields 

(Shaw, 1968b). Foraging mammals may have an important role in burrowing and 

trampling seeds in to the soil (Shaw, 1968b; Evans, 1988). The ability of plants to 

compensate for losses or invest in anti-predator defence is an important factor 

influencing the impact o f herbivores on plant regeneration and evolution. 

Limited current regeneration was most pronounced for Taxus, which was also 

the most likely o f the study taxa to be herbivore-limited. Hulme (1996a) recorded 

similar unimodal age-distribution patterns and high rates o f seed predation within 

Fraxinus-Acer woodlands in County Durham, with peak regeneration occurring 

between 150 and 200 years ago. While it is possible to quantify herbivory and identify 

patterns o f variation from short-term studies, problems arise when results are 

extrapolated to make generalisations regarding the impact o f herbivores on the natural 

regeneration dynamics o f long-lived tree species. Although it may be difficult to 

identify herbivory as the principal factor regulating natural regeneration dynamics in 

temperate deciduous woodland, it was apparent that for a number o f tree species, 

herbivores accounted for a significant proportion o f plant mortality. The coaction of 

herbivory and alternative biotic and abiotic mortality factors is more likely to 

determine patterns o f natural regeneration. The relative impact o f each factor can only 

be distinguished by integrating historical patterns o f regeneration with long-term field 

investigations conducted at a temporal scale more appropriate to life span of the 

species under investigation. 

7.4. FURTHER CONSIDERATIONS 

Short-term trials investigating the predation o f experimentally supplied seeds 

and seedlings were likely to have over- or under-estimated natural rates o f predation, 

making general conclusions regarding the actual impact o f herbivores on natural 

regeneration more difficult . Alternative studies have followed the long-term survival 
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of naturally dispersed seeds and seedlings as an effective means of quantifying 

herbivore-mediated plant mortality (Table 3.1). However, predation trials allowed the 

experimental manipulation necessary to investigate relative variation in seed predation 

and seedling herbivory according to tree species, predator group, site, microhabitat, 

seed density and distance f rom the parent. 

The elimination o f herbivory using large, selective exclosure treatments may 

have been a more effective means o f demonstrating the long-term effects of 

herbivores on natural regeneration, community composition and plant distribution. 

However, subsequent changes in recruitment dynamics would not have elucidated the 

relative impact o f herbivores at each stage of the regeneration sequence, as was the 

aim o f detailed field-based investigations comprising the present study. In addition, 

herbivore exclusion would not distinguish the indirect effect of herbivores on field 

layer vegetation from the direct effect o f herbivores on seed and seedling survival. 

However, indirect effects are an important aspect o f regeneration dynamics, and a 

long-term exclosure-based investigation would undoubtedly provide important 

information regarding the overall impact o f herbivores on natural regeneration. 

7.5. WOODLAND MANAGEMENT 

Although it was diff icult to make generalisations regarding the impact of 

herbivores on natural regeneration dynamics, relative to seed- and microsite-

limitations, it was recognised that the current regeneration o f a number o f tree species 

was limited. With populations declining throughout most o f its European range, the 

restricted current regeneration o f Taxus in Shipley Wood, Derwent Gorge and 

elsewhere in County Durham (Hulme, 1996a) was of particular concern. 

Shaw (1968b) proposed that high rates o f herbivore-mediated plant mortality 

may be alleviated by; 1) a reduction in the population o f seed and seedhng predators, 

particularly small mammals, 2) the exclusion o f domestic grazing animals and 3) the 

disturbance o f surface layers o f the soil and an increase in the retention and even 

distribution o f tree litter to enhance seed burial, seed survival and seed germination. 

Although fencing may afford protection from large mammals, tree shelters have 

become the most effective means o f protecting young regeneration from small and 

large mammals (Evans, 1988). 

Further preparatory measures that improve the success o f natural regenerafion 

include the provision o f a plentiful seed supply and ground conditions that favour 
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seed germination and seedling survival (Evans, 1988). Bare, moist soils that are not 

eroding or compacted are favoured. Although light, discontinuous field layer 

vegetation improves litter retention and soil activity, dense cover may limit 

recruitment by the interception o f light and precipitation, the removal of moisture and 

nutrients f rom the soil and the smothering and toxic action o f decaying plant material 

overlying seedlings (Watt, 1919). Field layer vegetation may also harbour rodent seed 

and seedling predators (Chapters 3 & 5), whereas scrub understorey may protect 

seedlings f rom larger herbivores (Morgan, 1991). The availability o f scrub cover, 

including Crataegus monogyna and Juniperus communis, may be particularly 

important to the natural regeneration o f Taxus baccata (Melzack & Watts, 1982; 

Hulme, 1996a). 

Successful regeneration management would require partial or fu l l removal of 

the field layer (Goldberg, 1985; Tapper, 1992). Light grazing and the manipulation of 

shade cast by the overstorey canopy are both effective means o f controlling field layer 

vegetation, and grazing animals may also turn over the soil and tread in seeds as a 

further aid to natural regeneration (Shaw, 1968b; Evans, 1988). Although grazing, 

browsing and trampling by large animals reduce seedling establishment and sapling 

survival, such activities may be necessary to suppress the dominance of Rubus 

fruticosus (bramble) that would otherwise shade the soil almost entirely and limit the 

establishment o f woody and herbaceous species (Linhart & Whelan, 1980). The 

historical practice o f pannage, where pigs rooting for fungi and mast turn over the 

soil, tread in seeds and expose the seed bank, may also have a significant role in 

natural regeneration management. The disturbance o f vegetation and top soil by Sus 

scrofa (wi ld boar) may also increase local plant species richness (Milton et al., 1997), 

although Bruinderink & Hazebroek (1996) found no effect o f rooting on the 

regeneration o f coniferous and deciduous tree species, including Betula pendula, 

Sorbus aucuparia and Ilex aquifolium. 

The control o f f ield layer vegetation and the exposure o f loosened, mulched, 

mineral seedbeds should be achieved in the autumn of a good seed year to maximise 

regenerative success. Subsequent management may include the removal o f unwanted 

woody growth that may threaten regeneration, combined with respacing of young 

trees where dense regeneration becomes self-limiting (Evans, 1988). 
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The present study supports the principles that woodland conservation and 

management is critically dependent on an understanding o f tree population dynamics 

(Peterken, 1993), that natural regeneration has a central role in plant demography 

(Watt, 1919, 1923; Peterken & Tubbs, 1965; Grubb, 1977) and that the reasons for 

inadequate regeneration are many and complex. Investigating the magnitude and 

variability o f seed production, seed survival and seedling survival has further 

elucidated the impact o f seed-, microsite- and herbivore-limitations on the natural 

regeneration o f tree species that form the framework o f these communities (Hulme, 

1996a). Since natural regeneration is known to be severely deficient or absent in many 

temperate deciduous woodlands (Watt, 1919, 1923; Peterken & Tubbs, 1965; Shaw, 

1968a,b; Linhart & Whelan, 1980; Evans, 1988; Hulme, 1996a), factors contributing 

to plant mortality at seed and seedling stages should be carefully considered in 

woodland management plans aiming to conserve native woodlands and the remainder 

of a diverse flora and fauna once typical o f much of the country (Linhart & Whelan, 

1980). 

The Bialowieza Forest, Poland, contains the most extensive stands of primeval 

temperate woodland in Europe (Mitchell & Cole, 1998). Surviving fragments of old-

growth forest may provide an important model for understanding the dynamics of 

forest communities and ecosystems. In Bialowieza, large herbivores, including Bison 

bonasus (European bison), Alces alces (moose), Cervus elaphus (red deer), Capreolus 

capreolus (roe deer) and Sus scrofa (wild boar), and their natural predators, including 

Cants lupus (wolf) and Lynx lynx (lynx), are recognised as having a central role in 

temperate forest dynamics (Falinski, 1988; Okarma et ai, 1995). The extinction of 

herbivore species and the current imbalance between herbivore populations and their 

natural enemies may significantly contribute to the recent deficiency of natural 

regeneration in many semi-natural temperate deciduous woodlands. Since natural 

regeneration is at least partially regulated by plant-herbivore interactions, the potential 

benefit o f reintroducing extinct herbivore species that provide the ground conditions 

necessary for regeneration and reinstating the natural regulation o f herbivore 

populations, should be carefully considered. A long-term, mixed management strategy 

that recognises the beneficial and detrimental impacts o f herbivores on natural 

regeneration dynamics is likely to be the most effective means o f supporting the 

conservation o f seed-, microsite- and herbivore-limited tree species in temperate 

deciduous woodland. 
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