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Abstract

The second-order initial value problem

y' = flz,y), y(zo) =0, ¥'(z0) =2

which does not contain the first derivative explicitly and where the solutionyis oscil-
latory has been of great interest for many years. Our aim is to construct numerical
methods which are tuned to act efficiently on strongly oscillating functions. The
frequencies involved determine the oscillatory character of the function and as the
frequencies approach zero, the classical methods are obtained. The exponential-
fitting tool has become increasingly popular as it is specially tailored for oscillating
functions. Many classes of methods have been used with exponential-fitting and this
will be discussed in more detail in the thesis.

Collocation methods are considered for which the basis functions are combinations
of polynomial and trigonometric terms. The resulting methods can be regarded as
Runge-Kutta-Nystrom methods with steplength dependent coefficients. We show
how order conditions may be obtained, investigate the stability and other properties
of particular methods and present some numerical results. |
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Chapter 1

Introduction

Over recent years there has been considerable interest in solving initial-va],{ue prob-
lems of the form '

i

Yy = f(:E;y)’ y(x(l) = Yo, y,(xO) =20 (]‘1)
for the special class of second-order ordinary differential equations in which the first
derivative does not appear explicitly and where f(z,y) is as smooth as we please.

Equations of the type (1.1) are called special differential equations [35] and occur
frequently. The radial Schrodinger equation

/@) = {5 W) - £ v

is an example of this type of differential equation (1.1) where ! is a non-negative
integer, W(z) is a potential function and F is a constant. Other examples include

the twenty-seven equations describing the motion of the nine planets of our solar
system.

As the emphasis in this thesis is on problems which have oscillatory solutions, we
consider using a basis of functions other than polynomials. When one considers
initial-value problems where the solution is oscillatory, it is advantageous to use
information about the ordinary differential equation. One incentive for using a
basis of functions other than polynomials is the fact that as every oscillation has to
be followed when integrating a highly oscillatory ordinary differential equation, then

a large amount of computer time is required and the rounding error accumulates
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for small step sizes. Methods based on polynomial functions are not so reliable in
that case. The following work is related to collocation based Runge-Kutta-Nystrom
methods with steplength dependent coefficients. An important property of the new
formulae is that they reduce to the classical methods when the involved frequencies
tend to zero. Collocation simplifies the order conditions and stability analysis for
Runge-Kutta-Nystrom methods.

In chapter 2, the three main classes of numerical methods are discussed, one-step
methods, linear multistep methods and hybrid methods. There has been a vast
amount of work on polynomial based methods and how they have been adapted to
problem (1.1) to take into account the oscillatory solution. A survey of this work is
given and also a description of order, stability and concepts such as dispersion and
periodicity.

I
In chapter 3 numerical methods are considered which have been fitted to exponential

functions. Gautschi [28] appears to have been the first to use a basis of functions
other than polynomials and introduced the idea of trigonometric order for linear

multistep methods. Again, a survey on exponentially-fitted methods is given along
with stability and order conditions.

Gautschi [28] used only trigonometric functions in his work but we consider a basis
of both polynomial and trigonometric functions for the mixed collocation methods
in chapter 4. The derivation of the mixed collocation methods is described and

also the order conditions with the requirements on the collocation points for the
maximum possible order.

In chapter 5 the stability of the mixed collocation methods is discussed, and plots of
the stability regions are included for different values of the collocation points. We
also show why we require the collocation points to be symmetric. Two new mixed
collocation methods are described in chapter 6, the first is exact for a combination

of the product of polynomial and trigonometric functions, and the second method

is exact for two frequencies.

Chapter 7 is devoted to numerical results and is divided into one-dimensional and
two-dimensional problems, all of which have oscillatory solutions and results are
presented from other authors work for a comparison with the mixed collocation

methods. Conclusions and further areas of research are given in chapter 8.



Chapter 2

Polynomial Based Numerical
Methods

I
There has been an increasing development of numerical integration formulae for
solving the initial-value problem (1.1) which has an oscillatory solution. The two
main classes of numerical methods for solving problems of the form (1.1) are one-
step methods and linear multistep methods. Also included are the most recent class
of numerical methods known as hybrid methods which combine features of both
one-step and multistep methods. We discuss order and stability of these methods

and also the influence of concepts such as periodicity, P-stability and dispersion.

2.1 Linear Multistep Methods

Over the years many multistep methods have been produced which work without
the first derivatives to integrate problems of the form (1.1). As we are not interested

in the values of the first derivatives, we consider direct methods instead of producing
systems of first-order.

A one-step method is a method which in each step uses information from a single
step, namely the beginning of the step. We define y,, as the approximation to the
value of the exact solution y(z,) at the grid point z,. One main question is the size
of the quantity e, = y(z,) — v, which is called the discretization error. The value
of yn+1 can be found only if the value of y,, is known and we do not need to know
information from the previous steps ¥,_1,Yn—2,.... A multistep method uses values
from more than one preceding step, so the explicit knowledge of y,, is required as well

as Yn—1,Yn—o2, ... For a k-step method, we require the values of y,, ¥n_1,- -, Yns1-%
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to evaluate yn41-

To derive a class of linear multistep methods for second-order differential equations,
we start at the identity

z+vh
y(z + vh) — y(z) = vhy'(z) + /z (z +yh —r)f(r,y(r)) dr

which may also be regarded as a form of Taylor’s formula with a remainder term.

Replace v by —7v,

@ —h) = y(z) = ~vh/@) + [ (o~ 2k~ r)fry() dr

and add together to eliminate the first derivative y'(z)

z+vh

ya+vh)—2y(e)+y—vh) = [ @+rh=r)f(ry(r) dr

z—7vh
+/; (z —vh = 1) f(t,y(t)) dt.

Replace ¢t with 2z — 7 in the second integral on the right hand side of the equation
to give

z—7h z+vh
/:B (:L‘—'yh—t)f(t,y(t))dtz—/; (—z—vh+71)f(2z —T)dr

and thus

z+yh

y(z +vh) = 2y(z) + y(z — vh) = / (z+vh=71)f(r) + f2z —7)] dr (2.1)

T

where the second argument of f has been temporarily suppressed.

Different multistep methods are now obtained by choosing appropriate values of
r and v, and by replacing f(r,y(r)) and f(2z — r,y(2z — r)) by a polynomial
interpolating at previous step points. The Stérmer-Cowell family of linear multistep

methods was developed by applying finite difference quadrature formulae to equation
(2.1).

Stormer’s explicit multistep methods are given by

q
Yn+1 — 2yn t+Yno1 = h'2 Z Umvmfn (22)

m=0
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where VIt f, = VI f, — VI f,_, are the backward differences and

(_1)’" Tntl -5 S T —In
Om = e /zn (1n+1—a:){(m>+(m)}dx, s= h
= (—1)’"/01(1—3){<—3)+(;)}ds

and Cowell’s methods by

q
Yn— 2Yna + Yn2a=h2 Y on V™ fr (2.3)

m=0

where

and fn = f(-rnayn)-

In 1907, Stérmer’s method (2.2) was used for extensive numerical calculations con-
cerning the Aurora Borealis [32]. For ¢ = 0 and ¢ = 1, (2.2) reduces to the simple
explicit method

Yny1 — Zyn + Yn—1 = h2fn (24)

and the left hand side of this equation can be regarded as a second-order difference
approximation for f(z,y(z)).

In 1910, Cowell and Crommelin studied the motion of Halley’s Comet. For ¢ = 1,
Cowell’s method (2.3) reduces to the explicit method (2.4) and for ¢ =2 and ¢ = 3,
(2.3) reduces to the frequently used implicit method

h?
Ynyr — 2yn +yn~1 = E {fn+l + 10fn + fn—l}

which is attributed to Numerov. Cowell’s methods are implicit for ¢ > 2.
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The general form of a linear k-step method for the problem (1.1) is written as

k k
Y Ynsi = h* Y fifars (2.5)
i=0 i=0

where fnip = f(Znp, Yntp) With , = 5o +nh, y, denotes the numerical approxima-
tion to the exact solution of the differential equation being considered at the point
Zn, and h is the steplength.

The a; and §; of (2.5) are constants subject to the conditions
ay =1 and laol + Iﬁol > 0.

The first arises from the fact that both sides of the linear multistep method could be
multiplied by the same constant and we want to try and avoid this arbitrariness. The

second condition prevents both og and f, both being zero. For example, consider
the 2-step method

Yn+2 = Yn+1 + QolYn = h(fn+1 + ,BOfn)-
If oy = 0 and fy = 0, then the method is a 1-step method and not 2-step as required.

If B =0, then the method (2.5) is explicit and implicit if 8 # 0.

Definition 2.1 The shift operator E is defined by Eu, = u,y, for any sequence

{un}.
The linear multistep method (2.5) can be written in terms of the shift operator £

p(E)yn = h*o(E) fr (2.6)

where the first and second characteristic polynomials are given respectively by

k k
p(€) = D i€ and o(€) =D B
i=0 =0

We shall refer to the linear multistep method as (p, o).

The linear multistep methods remain popular and have been extensively used over
the years. Many authors have derived linear multistep methods by choosing the

coeflicients «; and fJ; by satisfying certain order and stability criteria which will be
discussed in a later section.
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2.2 One-Step Methods

In this section we consider Runge-Kutta methods for first-order differential equa-
tions, and Runge-Kutta-Nystrom, polynomial collocation and hybrid methods for
second-order differential equations.

2.2.1 Runge-Kutta Methods

An s-stage Runge-Kutta method for the first-order initial value problem

¥ = f(z,y), y(wo) =0

is defined by
S 8 r
Un+1 :yn+hzdikia IC,' = f ($n+cih,yn+hZQ,—jkj) , 1= 1,...,s, (27)
=1 i=1

where z, = zo + nh and y, is an approximation for y(z,). We shall always assume
that the following (the row-sum condition) holds:

s
ci=ZQij) i:1,2,...,8.

J=1

The constant coeflicients ¢;, d; and Q;; can be displayed in the following form, known
as a Butcher Array

c| Q

dT

where ¢ and d are s-dimensional column vectors and Q is an s X s matrix where
__ T _ T _
C—[C],Cg,...,CS] y d-—[dl,dz,...,ds] and Q_[QU]

The method is ezplicit if the matrix Q is strictly lower triangular. If Q;; = 0 for
1 < 7 and at least one element on the diagonal is not zero, i.e. @;; # 0, then we have
a diagonally implicit Runge-Kutta method (DIRK). If Q;; = 0 for < < 5 and all the
diagonal elements are equal, then the method is singly diagonally implicit (SDIRK).
For any other case, the method is tmplicit.
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We define the local truncation error 7y, of (2.7) at z,,, to be the residual when
Yn+1 is replaced by y(zn4+1) and y, by y(z,); that is,

Totr = Y(Tny1) — y(Ta) — hzdif (mn + cih, y(zn) + hZQiJ'kJ')
i=1

j=1
and

ki = f(zn + cih,y(za) + h Y Quik;), 1=1,...,s.

Jj=1

Definition 2.2 If p is the largest integer such that T,,; = O(hP*!), we say that the
Runge-Kutta method has order p.

A necessary and sufficient condition for a general Runge-Kutta method to be con-
sistent [46] is r.

Zdi =1
=1

and this is assumed throughout the thesis. The idea behind the process of embedding
is to derive explicit Runge-Kutta methods of orders p and p + 1 such that they
have the same set of function values k;. Then the formulae contains the numerical

approximation y,4;, and a second approximation ¢, 4;. In terms of the Butcher
array,

cl Q

ET

this means that the method defined by ¢, Q and d has order p, and the method
defined by ¢, Q and d has order p+ 1. An estimate of the local truncation error
is the difference between the numerical approximation y,, generated by the first
method and the second approximation ¢, by the latter method. The vector ET =
[E), Eqy ..., Ey] is dT — dT and so the error estimate is given by h35_, Eiki;. One
advantage of embedded methods is that the error estimate can be used as a basis

for monitoring steplength. These types of methods will not be considered in this
thesis.
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2.2.2 Runge-Kutta-Nystrom Methods

The second-order initial value problem

y” = f(:c,y(z),y'(x)), 'y(:L‘o) = Yo, yl(mo) =20

can be split into a pair of coupled first-order equations

( Z ) - ( f(z y(;) 2(z)) ) , y(Zo) = Yo, 2(z0) = 20. (2.8)

If we apply an s-stage Runge-Kutta method for first-order differential equations to
this problem, we obtain

8 s
Ynt1 = Yn + hzdiKi, Zptl = 2p + hzdiLi,

i=1 i=1

I{i =2, + h Z Qi]'Lj,

i=1

§ S
Li=f (xn+Cih’ayn+h’ZQijI<j7zn+h'ZQiij)a 1=1,...,s,
ji=1

i=1

where y, is an approximation for y(z,) and z, is an approximation for y'(z,). Be-
cause of the interest in problem (1.1) in which the first derivative does not appear
explicitly, then (2.8) becomes

y ,— “ Tp) = z(zo) = 2
(z) _(f(a;,y(x))>’ y(zo) = yo, 2(20) 0 (2.9)

and applying the Runge-Kutta method to (2.9), we obtain

5 s
Yn+1 = Yn + hzdil(i’ Zpyl = 2 T+ hzdiLi,

i=1 1=1

7=1 j=1

Ki:zn'l"hZQiij: Li:f($n+ci/lay11+hZQinj)a 1=1,...,s.

Inserting K; into the rest of the formulae, we can eliminate K; to find the s-stage
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Runge-Kutta-Nystrom formulae

Yn1 = yn+h2n+h'22biLi, W

i=1

a1 = 2+ hY L, L (2.10)

i=1

L, = f(:cn+c,-h,yn+cihzn+hzZaiij>, i=1,...,s

i=1

where the constants b; and a;; are given by
by =) dkQui, 0 =) QuQj. (2.11)
k=1 k=1 )

The Butcher Array for a Runge-Kutta-Nystrém method (2.10) with coefficiehts given
by (2.11) is

c| Q?

dTQ
dT

Nystrom was the first to consider methods of the form (2.10) for the problem (1.1)
in which the coefficients do not necessarily satisfy (2.11) and do not involve the
reduction to a system of first-order equations. These are known as direct methods
compared to the indirect approach of applying a Runge-Kutta method to a system

of first-order equations. The Butcher Array for a RungeQKutté—Nystrijm method
with A = [aij] is

bT
dT
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If we eliminate L; from (2.10) we obtain the general s-stage Runge-Kutta-Nystrom
method

Ynt1 = Yn+ hzn + h? Z bif(mn + Cih'a Yz);
i=1
Zng1 = zn+h)_dif(z. +ch, Vi), L (2.12)

i=1

s
Y, = yn+cihzn+h22a,-]—f(zn+cjh,Yj), i=1,...,s.
=1

where y,, is an approximation for y(z,) and z, approximates y'(z,).

When the generating Runge-Kutta method has s implicit stages and is of order p,
(c.f. Definition 2.2), then the Runge-Kutta-Nystrom method (2.12) also does. Also,
the Runge-Kutta-Nystrom method is explicit if the s x s matrix A is strictly lower
triangular. A diegonally implicit Runge-Kutta-Nystrom method (DIRKN) is where
the matrix A is lower triangular and at least one diagonal element is non-zero,
whilst for a singly diagonally implicit method (SDIRKN), all the diagonal elements
are equal. For any other case the method is implicit.

2.2.3 Polynomial Collocation Methods

A one-step collocation method for the initial-value problem (1.1) proceeds by ap-
proximating the solution on the interval [z, Zn+1] by a polynomial which satisfies
the differential equation at a number of specified collocation points ;. ., = 2 + ¢;h
for : = 1,...,s. We define {¢;}$_, to be a set of distinct real numbers which are
typically taken to be on the interval [0,1]. Let u(z) be the polynomial of degree
s + 1 defined by

'U'(-'En) = yn; u,(zn) = Zn,

u"(z, + cih) = f(zn + chyu(zy + ch)), 1=1,...,s.

Van der Houwen et al [79] considered both indirect and direct approaches for poly-
nomial based collocation methods and the theory for collocation methods for first-
order equations can be applied to indirect collocation methods. We consider an
indirect collocation method which is generated by applying a Runge-Kutta collo-
cation method to the first-order system of differential equations (2.9). Following

Van der Houwen et al [79], if we let the Runge-Kutta method (2.7) be a collocation
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method based on the s distinct collocation points z,, + ¢;h, ¢ = 1,...,s then

Ci 1
Qi=[ L d, di=[ LB)dt 1j=1,.s
0 0

where [;(t) are the Lagrange polynomials

T =) s
lj(t)—!;élj(cj_(:k), j=1,...,s.

With frie := f(zn + cih, Ynte,), then we may write

IIJn + th Zl fn+c.

and integrating twice with respect to ¢t and substituting the initial conditions we
obtain

(T + B) = 20 + h:ZI {/01 L(£) dt } Frsens

w(z, + h) =y, + bz, + h2 {/ / t) dt dé } Frae;
and

w(Tn + k) = Yn + Cihzn + h2 { / / t) dt de } fate,

for 1=1,...,s.

Therefore the coefficients for the Runge-Kutta-Nystrom method are given by

—// £) dt d¢ = // £) d¢ dt = /OCi(c,-—t)lj(t)dt,
b_// t) dt dé = // t) de dt = /1(1—t)lj(t)dt,

for 1,7=1,...,s

A direct way of deriving the polynomial collocation method is to consider approx-

imating the solution y(z) of problem (1.1) on the interval [z,, Z 4] by a function
u(z) of the form
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If we use a collocation method based on the s distinct collocation points
Tnte, =Tn+ch for 1=1,...5s
where 0 < ¢; < ¢ < ... < ¢; <1 then the collocation conditions are

u(zn + c;h) = f(zn + cih,u(z, + ch)), 1=1,...,s.

Differentiate the function u(z) twice with respect to z

s+1 3

uwz) = Y ri(z —z)

=0
s+1

u'(z) = Ziri(a:—a;n)i"l
R

u'(z) = Y (i — Dri(z — z,) 7%

i=0 J

(2.13)

Then the initial conditions are

‘U,(.'En) = Yn = To, ul(mn) =2Zp =T,

where y,, and z,, are approximations for y(z,) and y'(z,) respectively, and from the
collocation conditions

s+1 )
f(@n + cihyu(zn 4+ cih)) =2ro + ) (5 — Drj(ch)’ ™2, i=1,...,s.
i=3

If we take Yn+1) Znt1 and Ynte; A8 apprOXimat’ionS for y(mn+1)) y’($n+1) and y(xn+ci)
respectively, then substituting = z, + h into u(z) and v'(z), and = = z,, + ¢;h into

u(z) from (2.13) with the initial and collocation conditions, we obtain the formulae

s+1 ) 3
Ynsl = Yn+ hza + D TR,
s+1 r.——2
Zng1 = Zn + Zirihf_l, b (2.14)
=2 s+1 )
Ynte;, = Yn Tt cha, + Z 'I‘j(Cih,)], t=1,...,s.
j=2
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Example 1 - One collocation point (s = 1)
For convenience, let foi. = f(zn + ch, u(z, + ch)). Then,

u"(zn + ch) = 213 = fase,

and substituting r, = 1 fai.c into (2.14) with s =1 we obtain the formulae

h2 )
yﬂ.+1 - yn + hzn + T2h2 == yn + h:zn + ?fn,—}-c,

Zngl = Zn+2roh = 24 + hfnye, L (2.15)

212
ch
Ynte = Yn+chzy +712(ch)? =y, + chz, + Tfn+c- )

Example 2 - Two collocation points (s = 2)

Define foye, = f(@n + cth,u(z, + c1h)) and frye, = f(Zn + c2h, u(z, + c2h)). The
collocation conditions give

'U,”(ZE,,_ + Clh) = fn+c1 = 27‘2 + 67'361}1
U"(il)n + Czh) = fn+cz =279 + 67"3th
from which

- C2fn+c1 - CIfn+Cz - fn+62 - fn+C1
2 2c—c1) 07 Bhlca—c)

The formulae for the polynomial collocation method with two_collocation points
T, + c1h and z,, + ch are

2 3\
Ynt1 = Yo+ hzy + 6 {(302 - 1)fn+<:1 + (1 - 3Cl)fn+4:2} )

(2 —c1)

h
n = n a7/ N 2 -1 n 1-2 n+eca oy
Zn+1 2+ 2Ae2—a) {(2c2 — 1) fate, +( c1) fates }

(2.16)
c2h?®
yn+c| = Yn + Cthn + : {(3‘:2 - cl)fn+cl - 201fn+m} )
(ca—c)
c2h?
Yntez = Yn + Cohz, + {202fn+c1 + (CQ - 3C1)fn+cz} .

6(c2 — 1)
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With ¢; =0 and ¢ =1,

h?.
Yny1 = yrl+hzn+€{2fn+fn+l})

h
Znyl = Zn+§{fn+fn+l}'

Example 3 - Three collocation points (s = 3)
Again let fn+c1 = f(xn + c1h, ’U,(In + clh)), fn-i-cz = f(xn + cah, u(mn + CZh’)) and
Frtes = f(@n + csh,u(zy, + c3h)).

The formulae for the polynomial collocation method with three collocation points

Zn + c1h, T, + coh and z,, + c3h are
I.

Yny1i = Ynt hz, + h? {blfn+c1 + b?fn+cz + b3fn+ca} )
Zngt = 2t h {dlfn+c, + d?fn+62 + d3fﬂ+ca} )
L (2.17)
yn+c; = Un + Cih'zn + h2 {ailfn+c1 + ai2fn+cz + ai3fn+C3}
fort=1,2,3 )
where
b — 1—262—2C3+60203 b, = 1—263—261+66361
' 12BA SR 12AC !
b — 1 —2¢; — 2¢9 + 610 g = 2 — 3¢y — 3c3 + 6¢oc3
5 12BC T 6BA ’
2 — 3C3 - 361 + 60361 2 — 301 - 362 + 60162
d'l = 3 d3 = - )
6.AC 6BC
ay = Cf(C% — 2C3C] + 60203 — 26162) ys = C?(4C3 — Cl) ags = ——C'?(4Cg — Cl)
12BA ’ 12AC 12BC ’
oy = c3(4cy — ¢) 0y = c3(6cyey — 2¢16p + €2 — 2¢q¢3) e — —c3(4cy — ¢3)
1284 % 12.AC > 12BC
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= c3(dey — c3) e — c3(4cy — ¢3) = —c3(6cicy — 2¢3cy + €3 — 2¢o03)
31 ) 32 12AC ) 33 123C

12BA
and A=cy—c¢;, B=¢c3—c¢;and C = ¢c3 — ¢3.

In the case of multiple collocation points, i.e. points that are equivalent, this leads
to multiderivative methods. Let D be a partition of [0, 1] given by

DZOSCISCQS...SC_.;SL

and let ¢; for 1 < ¢ < s be non-negative integers. Define M = s+ }3}_, ¢;. The

collocation solution of (1.1) is a polynomial, u(z), of degree at most M + 1 defined
by y
wW(Ty) = Yn, U(Tn) = 2n, '
u*i(z, + ¢jh) = &' f(zn + c"Z;(x” Fh) i1 s 0<i< g.
Kramarz [45] showed that if we use symmetric collocation points, that is ¢;+cs41-; =
1, 7=1,2,...,N, where N = s/2 for even s and N = (s + 1)/2 for odd s, then
the method has an interval of periodicity, (c.f. Definition 2.11). Also, as we shall
show in chapter 5, when symmetric collocation nodes are used in the one, two and
three-point mixed collocation methods, the criteria are satisfied for the methods to
have an interval of periodicity. Distinct collocation points only will be considered

throughout the rest of this thesis.

The Panovsky-Richardson methods [52] are derived in a similar way to the Stormer-

Cowell methods. From equation (2.1), a new variable ¢ is introduced by the relation

h
r=$n+§(1+t)

and setting z = z, forn =0,1,2, .., then (2.1) becomes
h? r2v-1
vz +7h) = 2y(@) +yle —yn) = o [ (v = 1= ) [f(an) + flza)] dt
where

flzne) = f <mn + g(l +t),y (mn + g(l +t))) .

The Panovsky-Richardson methods are then found by replacing f by interpolating
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polynomials based on off-step points which are the extrema of a Chebyshev polyno-

mial [21]. Coleman and Booth showed that the methods are equivalent to collocation
based Runge-Kutta-Nystrom methods.

2.3 Hybrid methods

Hybrid methods have become a popular class of numerical methods due to the fact
that desirable properties such as P-stability and unconditional stability (terms to
be defined later in this chapter) restrict the algebraic order (or order of accuracy) of
linear multistep methods to at most two. Many authors have shown that if off-step
points or higher-order derivatives are used to modify a linear multistep method, then
higher algebraic order can be achieved. Concepts such as P-stability and periodicity
can then be used to modify the methods so that they sometimes solve problems of

the form (1.1) more accurately than other classical linear multistep methods such
as the family of Stormer-Cowell methods.

In 1955, an explicit method was introduced by De Vogelaere which was one-step but
also used off-step values and became a popular alternative to Numerov’s method.
This method became known as a hybrid method and a new class of numerical meth-
ods was created. One reason for the interest in using linear multistep methods with
off-step points for the problem y” = f(z,y) is because there is no need to refer to
y' in these methods. An example of a hybrid method is the linear 2-step implicit
formulae of Cash (3]

k
Yn41 — zyn +Yn-1 = h? Z 51' {fn+a.- + fn—a.-} + hz,an (218)
i=0

where ap = 1, foia; = f(Tn £ @jh, Ynta;) and the quantities ypi+q, are approxi-
mated by an expression involving the values y,.1, ¥y, and y,_; only. Cash’s family
of methods has been used by many authors for various values of k, and with £k =1
we obtain the popular form

Ynt1 — 2Yn + Yn_y = h? {60(fn+1 + fn—l) +vfu + (51(fﬂ.+lll + fn—m)} (2-19)

where

Ynta, = A:i:yrH—l + Bd:yn + C:tyn—l + h'2 (Szf:fn—H + tifn + 7-I':i:fn—l) .
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An alternative approach to deriving hybrid methods is by replacing one or more of
the function values with an implicit or explicit stage in a linear multistep method.
We will discuss hybrid methods in more detail in section 2.5.4.

2.4 Order

2.4.1 Linear Multistep Methods

To find the order conditions for the linear multistep methods (2.5), we first define
the linear functional

k k
Lly(z);h] = aiy(z + k) — h* D Biy"(z + ih). : (2.20)
i=0 i=0
I,
Assuming that y(z) is as differentiable as we choose, we form a Taylor expansion

about a suitable value of z and express the residual as a power series in h. Thus,

Clu(elitl = - {u(a) + 30/ (@) + e + S0 + 0+
—hQZm{ 2)+ihy (@) + Ty o )+...}
k k k ’i20!‘
- ;)aiy(a:)+hgiaiy'(x)+h2§{ 2!1 -}y”(z)

k 3 k 4 i2'
+h~*z{’3, } ()+h4§{7’4°!“—2—f’}y(4>(z)+...

= CO y(T) + C] h,y’(m) + C‘2 h2 yll(x) + C3 h3 y(3)($)
FCh Yy (@) + Gy () +

with .
CQZZCY-L':,O(I), C1 :Z'Ilal:p,(l)
: 1=0

and

k 44 ,l;q—'Z
quZ{—ai——),ﬁz}, 7=23,. .

q! (g —2)!
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The following definition is taken from Hairer et al [32].

Definition 2.3 A linear multistep method (2.5) and the associated linear operator
(2.20) are said to be of order p if Co=Cy = ... =Cpy1 =0 and Cpyp # 0.
The error constant is given by

— Cp+2
Bo+ P+ ...+ B

C

and the principle local truncation error at the point z,, is

PLTE = Cppy P29+ (g,).

I.
If we require the method to be consistent, that is of at least order 1, then Cy, C; and

C, must all be equal to zero, and in terms of the characteristic polynomials we have

p(1) =0, p'(1) =0 and p"(1) =20(1).

2.4.2 Runge-Kutta-Nystrom Methods

The local truncation error of a Runge-Kutta-Nystrom method is the extent to which
the exact solution fails to satisfy the difference equations which define the method.

The following definition is taken from Van der Houwen et al [79]

Definition 2.4 Let Y; denote the vector with components y(x, + c;h) with y the

locally ezact solution of (1.1) satisfying y(z,) = yn and y'(z,) = 2z,, and suppose
that the local errors are given by

Trs1 = Y(Zns1) = Y = O(RPYY), To i = ¥ (Tn41) — Zags = O(RPPHY),

Y — yn — cihzn — B* ) aij f(za + ¢;h, Y;) = O(WF),

j=t

then the order p and the stage order r are respectively defined by

p=min{p\,p2}, 7 = min{p;,p2, p3}
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From the Runge-Kutta-Nystr6m method (2.12),
Ynte; = Un + cihzn + h2 Z aijf(xn + th,yn+c,~) =~ y(xn + czh)a 1= 17 sy S
ji=1

and

Znyl = 2n+h Z dif(Tn + Cihy Ynse;) = Y (zn + h).
i=1

Using the exact values of the solution and its derivative at z,
8
Y(Tn + cih) — y(2,) — cihy'(zn) — B2 Y aij f(zn + ¢jh, Y))
i=1

= {——Zau} (zn) + O(h3)

and
y'(zn+h) -9 thf (zp +ch, Y;) = {1—Zd} (z,) + O(h?).
i=1

Therefore, if we require that the method is consistent, i.e. has order at least one,
then

Yodi=1
i=1

and we assume the row-sum condition,

w|..w

Z Qij =

The maximum attainable order of an s-stage Runge-Kutta-Nystrém method is 2s.

To find the order conditions for a Runge-Kutta or Runge-Kutta-Nystrom method,
the work soon becomes complicated using a bare-hands Taylor series expansion
because f(z,y) is evaluated at off-step points and so we have to obtain the series
expansion of a function of two variables. Butcher’s tree theory is a very useful
approach for finding the order conditions and greatly reduces the amount of work.
Lambert [46] and Hairer et al [32] describe how the order conditions for Runge-Kutta
methods can be found by using Butcher’s tree approach. The work was extended to
Nystrém methods by Hairer and Wanner [33] and Hairer [29]. The order conditions
for the Runge-Kutta-Nystrom method were obtained from the work by Hairer and
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Wanner {34] and will be adapted for methods with steplength dependent coeflicients
in section 3.4.2.

2.4.3 Polynomial Collocation Methods

Collocation based Runge-Kutta-Nystrom methods are very useful because they have
a high stage order. Van der Houwen et al [79] showed that an s-stage polynomial
collocation method given by (2.14) has order at least s for all sets of distinct collo-
cation nodes ¢;. They showed that the order can be raised to as much as 2s for a
suitable choice of the collocation parameters (known as superconvergence). Using

the Alexseev-Grobner Theorem, an s-stage polynomial collocation method can have
order s + q if

/Olgj—ln(g_ci)df_—_o, for 7=1,...,q.
=1

The following table shows the order and the maximum attainable order with the

collocation nodes for the one, two and three-point polynomial collocation methods.

Method | Stages | Default Order | Maximum Order : Collocation Nodes
(2.15) 1 1 2 :

(2.16) | 2 2 4 ;328 apd 343
(217) | 3 3 6 . 5=VIs 1 apq $4Y15

Since the polynomial collocation methods may be written as Runge-Kutta-Nystrom
methods, then the theory for the algebraic order of Runge-Kutta-Nystrom methods
may be applied to polynomial collocation.

2.5 Stability, Periodicity and Dispersion

If we are interested in solving orbit problems, it is natural to ask how a particular
numerical method would behave in the very simple case of uniform motion in a
circular orbit, described by the test equation y" = —w?y, i.e. we want the numerical

solutions to mimic the behaviour of the solutions of the test equation.
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2.5.1 Linear Multistep Methods

On applying the linear multistep method (2.5) to the test equation 3" = —w?y, we
obtain the difference equation

k
Z {aj + uzﬁj} Yntj = 0, v =wh

=0

and the solution is determined by the roots £;, assumed distinct, of the stability or
characteristic equation

Qv =% {aj + uzﬁj} & = p(&) + Vo (€) = 0. (2.21)

j=0

Two of the roots, & and &,, say, tend to 1 as v — 0 and are known as the 6rincipal
roots of Q(¢, v?), and &, for s > 3, if any, are the spurious roots.

A popular way of analysing the stability of linear multistep methods is by using the

Routh-Hurwitz criterion [46]. The transformation £ — z where £,z € C is made
where

1+2
&= 1-2
with z # 1 and the roots z; and z of the stability equation (2.21) now lie in the
left-half plane (the unit circle |£| = 1 is mapped onto the imaginary axis Rez = 0

and the unit disc |£] < 1 is mapped onto the left half-plane Rez < 0). Let the
polynomial P(z) be defined by

1+2
1-2

P(z) := (1 - 2)* xQ( ,1/2) =apz" + a2+ 4 a. (2.22)
For the linear multistep method to be absolutely stable, we require the roots &, of
the stability polynomial (£, v2) to have modulus less or equal to 1. Therefore, with
k = 2 for example, we have || < 1 if ag, a; and a, are positive. For k > 3, extra
conditions are required to satisfy the criteria (c.f. Lambert [46]).

The following definition is taken from Hairer et al {32].

Definition 2.5 The linear multistep method (p, o) given by the characteristic poly-
nomials (2.21) is said to be zero-stable if all the roots of p(€) lie on or within the

unit disc {z € C : |z| < 1}, and any roots that lie on the unit circle {z € C : |z| = 1}
have multiplicify at most 2.



CHAPTER 2. POLYNOMIAL BASED NUMERICAL METHODS 23

If a linear multistep method (p, o),

(i) has no common factors in p(§) and o (£),

(ii) is consistent, i.e. the order is at least one and

(iii) the method (p, o) is zero-stable,
then the linear multistep method is convergent and the polynomial p(£) has two
roots & = & = 1, c.f. [35, 47).

Definition 2.6 A linear multistep method (2.5) is absolutely stable for a given
value of v if, for that v, all the roots & of equation (2.21) satisfy |€s| < 1, and any
roots on the unit circle are simple. If the method is absolutely stable for all v > 0,
then the method is called unconditionally stable [25]. |

Dahlquist {25] showed that the order of an unconditionally stable linear multistep
method cannot exceed 2 and that it must be implicit. For a second-order implicit
linear multistep method to be unconditionally stable, then all the solutions of the
characteristic equation (2.21) must be bounded when applied to the test equation

"o__ _

y" = —w?y for any value of the steplength h, or alternatively, the roots &, of (€, v?)
must not be outside the unit circle for any real v.

Lambert and Watson [47] found that when Numerov’s method was applied to the
test equation y” = —w?y, for relatively small steplengths h, the numerical solution
stays on the orbit, taking into account the accumulation of rounding error. When
a Stormer-Cowell method with stepnumber greater than two was applied, then the
computed numerical solution spiralled inwards. This phenomenon was called “or-
bital instability” by Stiefel and Bettis [67]. Ideally, we would want the numerical
solution of an integration method to remain periodic for all z with a period close to

the true one. Lambert and Watson [47] appear to be the first to introduce the idea
of an interval of periodicity.

The following definitions are taken from their work [47].

Definition 2.7 A method has an interval of periodicity (0, v3) if, for all v* € (0, v3),
the roots & of (2.21) satisfy

&L =exp {16(v)}, & =exp{—ib(v)}, |&] <1, §>3

where 8(v) is real.
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Many authors have used the notation (0, 12) for an interval of periodicity and this
form shall be used for the polynomial based methods in this thesis.

Definition 2.8 A method is said to be P-stable if its interval of periodicity is
(0, ).

Many numerical methods, when applied to the test equation y" = —w?y, give a
characteristic equation of the form

£2 — 2Rpm(V¥)E+1 =0 (2.23)

where v is real and R,,(v?) is a rational function with numerator, of degree n
and denominator of degree m in v2. R,,,(v?) is called the stability function of the
numerical method. Thus, the primary interval of periodicity of a methdd which
has a stability equation (2.23) is the largest interval (0, 5%) such that |R,m(v?)| <
1 for 0 < v? < A% 1If when § is finite, |Rnn(v?)] < 1 also for 42 < v? < &2
where 42 > 42, then the interval (y2,6?) is a secondary interval of periodicity.
If |[Rum(v?)| < 1 for all v* > 0, then the linear 2-step method is P-stable and
the stability function R, (v?) is said to be P-acceptable, [17]. P-stability implies
unconditional stability but not the other way around because P-stability requires
that the principal roots of the stability polynomial Q(£,2?) lie on the unit circle
whilst for unconditional stability they can lie in the unit disc. For linear multistep

methods, the stability equation (2.23) is only obtained when we have 2 steps, that
is k = 2.

Lambert and Watson [47] showed that a symmetric linear multistep method (p, o)
which has no double roots on the unit circle other than the principal roots, has a
non vanishing interval of periodicity. They gave examples of 2, 4 and 6-step meth-
ods which contained intervals of periodicity and also a 2-step P-stable second-order
linear multistep method. Lambert and Watson showed by numerical results that a
symmetric 4-step 6th order method which has an interval of periodicity is far supe-
rior to a 5-step 6th order Stormer-Cowell method when solving oscillatory problems.
Jeltsch [44] studied the stability and criteria for a linear multistep method to have
an interval of periodicity. Chawla [8] considered modifying Numerov’s method by
making the method explicit and found that the resulting method has a larger in-
terval of periodicity. Ixaru and Rizea [38] developed a family of 4-step 6th order

methods to integrate problems such as (1.1) and they considered the stability and
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implementation of the methods.

The two-step implicit method of Cowell (Numerov’s method)

h2
Yntr — 2yn + Yn—1 = ﬁ (fn+1 + 1Ofn + fn—l)

where fri; = f(Zn+j,Yn+j), has stability function

12 — 512
Ry(V*) = ——-
() = T3,
when applied to the test equation y” = —w?y and an interval of periodicity (0, 6).

Therefore Cowell’s method is not P-stable as it has a finite interval of periodicity.
Stormer-Cowell methods with stepnumber greater than two do not have an interval
of periodicity. The main purpose of the paper by Stiefel and Bettis [67] was'to adapt
the coeflicients of Cowell’s method so that the numerical solution remained on the

circular orbit. This was one motivation for fitting functions other than polynomials.

When the numerical solution of the test equation y” = —w?y remains on the circular
orbit, the difference between the numerical solution and the exact solution is called

the dispersion. It is also known as the phase difference, phase-lag error or frequency
distortion.

Definition 2.9 For any method corresponding to the characteristic equation (2.23),
the quantity

(v) = v = cos™ [Rpm(v?)]

is called the dispersion. If ¢(v) = O(19*') as v — 0, the order of dispersion is
q.

We can rewrite the above equation for ¢(v) as
cosv — Rnym(V?) = e + O (")

and thus the order of dispersion can be seen as the order of accuracy of R,,(v?)
as an approximation for cosv. Coleman [18] has shown that for linear multistep
methods, the order of dispersion is equal to the algebraic order and for Runge-
Kutta-Nystrom methods and hybrid methods, the order of dispersion is greater or
equal to the algebraic order.
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Methods which have more than two steps have also been proposed (76, 43| and
when they are applied to the test equation y” = —w?y, a characteristic polynomial of
degree k is obtained and the coefficients depend on 2. Jain et al [43] used the Routh-
Hurwitz transformation to modify the coefficients of the 6th order implicit method
of Lambert and Watson [47] and produced a 4-step 6th order P-stable method. Van
der Houwen and Sommeijer [76] constructed 4th and 6th order predictor-corrector
methods with phase errors up to order 10.

2.5.2 Runge-Kutta-Nystrom Methods
The Runge-Kutta-Nystrom method (2.12) in vector form is given by

Yntl = Yn + hzn + h'2be(e$n + Ch’) Yn+c)
Zny1 = 2zn +hdTf(ez, + ch, ynic)
yn+c = eyn + Chzn + h2Af(e-73n + Ch’ yn+c)

where e is an s—dimensional vector with unit entries. Applying this method to the
test equation y" = —w?y with v = wh gives

Yn+l = Yn+ hz, — VZbTYn+c
Zn4l = Zn — h'w2dTyn+c

Yoate = €Yp + chz, — V2Ayn+c.

Then rearranging the last equation,
Ynie = (I + V2 A) " ey, + chz,)
and substituting y,,c into y,4 gives

Yntt = Yn+ hzy — DT (L + V2A) ey, + chz,)
= {1 —v*bT(I + UQA)_le} Yn + {1 — b (I + I/ZA)_IC} hz,.

Similarly substituting y,,c into hz,,, gives

hzniy = hzy —v2dT (I + 2 A) " (eyn + chz,)
= =T+ 2 A) ey, + {1 = 2dT(T +124) e} ha,.
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We can write this in matrix form as
Yn+1 _ M(l/2) UYn
hzniy hz,

vy = (1B A e 1T )
14 = .
—2dT(I +v2A) e 1-—024dT(1 + v2A)

where

(2.24)

The eigenvalues £(v) of the amplification matrix M (v?) are the roots of the charac-
teristic equation [79]

€2 — 2Ry (V)€ + P(1*) = 0, ' (2:25)
where . I
Rom(V?) = 5trace M(v?*) and P(v?) = det M(v?)
are rational functions of v2.

Definition 2.10 A Runge-Kutta-Nystrom method (2.12) is absolutely stable for
a given value of v if, for that v, the roots & of equation (2.25) satisfy || < 1,

s = 1,2. If the method is absolutely stable for all v > 0, then the method is called
unconditionally stable.

Hairer {30] showed that an implicit s-stage Runge-Kutta-Nystrom method found by
applying an implicit Runge-Kutta method based on Gauss-quadrature (c.f. Lambert
[46]) to the first order differential system (2.9), has order 2s and is unconditionally
stable. He also developed a tenth order explicit Runge-Kutta-Nystrom method [31]
in which only 11 stages are required. If the problem (1.1) is transformed into a
system of first-order differential equations and then, for example, a Runge-Kutta
method is applied, a minimum of 17 stages are needed. Chawla and Sharma [16]

studied the stability properties of explicit Nystrom methods and specifically 4th
order explicit methods with 4 stages.

Definition 2.11 A Runge-Kutta-Nystrém method has an interval of periodicity
(0,12) 4f, for all v? € (0,12), the roots & of (2.25) satisfy

& =exp{if(v)} and & =exp {—i6(v)},

where O(v) is real.
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If & = exp {if} and &, = exp {—i6}, then

(E-&)E—&) = - ¢l + &) +&& =6 —2c0s0& + 1.

Thus, for an interval of periodicity we require P(v?) = 1.

When the characteristic equation is of the form (2.25), the following definition by
Van der Houwen and Sommeijer (78] may be applied:

Definition 2.12 The phase-error or dispersion of an RKN method with s-stages
is defined by

Rnm (V%)

P(v?)

¢(v) =v —cos™*

assuming that M (v?) has complez conjugate eigenvalues for sufficiently small values

of v. Then, a Runge-Kutta-Nystrom method has order of dispersion g if ¢(v) =
O(htt!) asv — 0.

Simos et al [65] derived a 4-stage 4th order Runge-Kutta-Nystrom method with
phase-lag of order 8 and found that the method is more accurate than conven-
tional Runge-Kutta-Nystrom methods when applied to problems with oscillatory
solutions. Van der Houwen and Sommeijer [78| considered modifying diagonally im-
plicit Runge-Kutta-Nystrom methods because of the fact that they are self-starting
and are easier to implement than fully implicit Runge-Kutta-Nystrom methods.
They created 2-stage and 3-stage methods with phase-lag of order up to 10 but with
relatively low algebraic orders. When the methods were tested on linear problems
with oscillatory solutions, they found that the results were considerably better than
conventional DIRKN methods. For nonlinear problems and large stepsizes, the low
algebraic order affects the accuracy of the methods despite the high dispersive order
and the methods are comparable only to the standard DIRKN methods. Sharp et

al [59] further investigated the work of [78] and studied families of DIRKN methods
with algebraic orders 3 and 4.

Sideridis and Simos [60] studied the phase-lag of embedded Runge-Kutta methods
where they derived a 3rd order explicit Runge-Kutta method with order of dispersion
6, and a 4th order method with order of dispersion 4. They showed that it is not
possible to have a 53-stage 4th order explicit Runge-Kutta method with order of

dispersion 6 because the coefficients have to be complex in order to satisfy all the
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requirements. Dormand et al [27] considered families of embedded explicit Runge-
Kutta-Nystrom formulae for problem (1.1).

2.5.3 Polynomial Collocation

One reason for the interest in polynomial collocation methods is because when
the method is applied to the test equation y” = —w?y, we obtain a characteris-
tic equation of the form (2.23) when symmetric collocation points are used. As
mentioned earlier, Kramarz [45] showed that a symmetric collocation method has
an interval of periodicity but was unable to find any P-stable collocation meth-
ods. Coleman [19] was able to prove that no symmetric collocation method can be
P-stable. Because the polynomial collocation methods may be regarded as Runge-
Kutta-Nystrom methods, the stability theory for section 2.5.2 can be a?plied to
polynomial collocation methods. ‘

Stability for one collocation point

When we substitute the coefficients b, = 1/2, d; = 1 and a;; = ¢%/2 for the one-

point polynomial collocation method (2.15) into the amplification matrix M (v?),
equation (2.24), we obtain

M _2+c21/2—1/2 M 2+t -
U o ey 27 ey

Mo — 202 24 c2v? — 2c1?
u= "o g Me= S

Therefore the characteristic equation is given by

£2— 2R, (V)E+ PR =10 (2.26)
where the stability function is

4+ (2¢® —2c — 1)1?

2y
Bu(v’) = 2(2 + c2?)

and
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For an interval of periodicity, we require P(v?) = 1, and thus

2+ (c— 1)%? 1

2y _ _ =
P(v?) = 5+ =1 = c=73.

Example : ¢ =1/2

With the collocation point ¢ = 1/2, the characteristic equation is given by

8 — 312
§2—2{8+V2 }§+1:0.

The one-point polynomial collocation method (2.15) is stable if | Ry; (v¢)| < 1. Thus,

8 — 312
8+ 12 r.
from which
8-3?2<8+12 =12 >0
and

—84+32 <84+ = 12<8,

Therefore the one-point polynomial collocation method has an interval of periodicity
(0,8). Also, the order of dispersion of the method is 2 as

3
¢(v) = v —cos™! [Ru(VQ)] = :_8 - onus + 0.

Example : ¢c=0

With the collocation point ¢ = 0, the characteristic equation (2.26) is given by

52_2{4—u2}£+2+u2:0.

4 2

Because (2+1%)/2 > 1 except when v = 0, then the one-point polynomial collocation
method with ¢ = 0 is stable when v = 0 and unstable everywhere else. (We require
the modulus of the roots € of the characteristic equation to be less or equal to 1. As

P(v?) is the product of the roots, at least one of the roots is greater than 1 in this
case).
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Example: c=1

The characteristic equation (2.26) with the collocation point ¢ =1 is
4 —v? 2
2
- =0
¢ {2+V2}£+2+V2

44— v+t — 1612
- 2[2 + v2] ‘

The roots are given by

£+

Using the Routh-Hurwitz approach, substituting £ = (1+2)/(1 — z) into the charac-

teristic equation, multiplying by (1 —2)? and collecting in terms of z, the polynomial
P(z) becomes

822 2022 202 .

P(2)=agz’ + a2+ a, = + + .
(2) = a0 T o T a2 T 2402

As the coeflicients ag, a; and a, are positive for all v, then the modulus of the roots

& and &, of the characteristic equation are less or equal to 1 and the method is
unconditionally stable.

Stability for two collocation points

The characteristic equation for the two-point polynomial collocation method (2.16)
when applied to the test equation 3" = —w?y is given by

52 — 2R22(U2)§ + P(l/2) =0
where the stability function is

2 4
9y _ Qo + ol + v
R?Z(V ) - 1+,6lu2 +ﬁ21/4

with .
Qg = 1, oy = E(C% + Cg - 26102 — 3)

1

Cl-gzﬁ

2 2 2
(—c5 +2¢ic3 — 2¢165 + 2¢162 + €1 + ¢ — 2cicr — )

1 . 1
,Bl = 6(01 - C?)za B2 = 562103
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and 2 q
P =2 Rl LA 0 g
146,02 + 804
with 1
Y=1 m= 6(61 — )’
1 1 1
1 =la-Da-1% h=gla-w)f b=j5de

When P(v?) = 1, the criteria for the polynomial collocation method to have an
interval of periodicity are satisfied. Thus,

P@)=1 = (-1)+*(n—-8)+v(r—=38)=0
and as v = 1 and vy, = 4;, then we look for values of ¢, and ¢, such that v, r62 =0,
= A(1-2¢)-20(1-c)*+(1-c)?=0

which is satisfied when

or 1 —¢.

When ¢; = 1/2, then the first expression is undefined and the second gives ¢, = 1/2.
As we are only interested in distinct collocation nodes, we take the symmetric points

cs = 1 — ¢y, and the requirements are satisfied for the method to have an interval of
periodicity.

Example : ¢, =0 and ¢; = 1.

The characteristic equation is given by

6 — 2v°
52—2{6+V2}5+1:0

and the method has an interval of periodicity (0, 12). The order of dispersion of the
method is 2 as
v 3

¢(v) = v —cos™! [Ru(l/?)] =91 640U5 + 0.
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Example : ¢; = (3 - /3)/6 and c; = (3 + V/3)/6.
The characteristic equation is given by

432 — 19202 + 7!
2
¢ { 432 + 2402 + 14 }£+

33

and the method has a primary interval of periodicity (0,9) and a secondary interval

of periodicity (12,36). The order of dispersion of the method is 4 as

o v’

- _ 9
= 320 51432 TOW)

¢(v) = v —cos™! [RQQ(U2)]

Stability for three collocation points

The characteristic equation for the three-point polynomial collocation methéd (2.17)

when applied to the test equation y" = —w?y is given by

€ — 2Ry (V) + P(V?) =0

where
R (Uz) O + 011/2 =+ CYZV4 + a3y6
BT U+ Bt + Bt + Bt
with
ay=1, o = E[C% — (c2 +c3)er — cac3 + Cg + C% — 6],
1 P
ay = m[2(c§ + ¢ — 3 = 2cyc3)c + 4(1 — cac; — cies + 3eacs)e
+3 + dcy + dez + 2¢3ch — 65 — 6c3),
1 9 2 2
oy = e {1265 — 1= 2¢3) + (1 + 203 — 2)e2 — es(es = Dlew(er = 1)
—ce3(es — 1)(e2 — 1)},
1
B = ﬁ[cf — (o + c3)ey + ¢+ 2 — cacs),
1 2 92 2.2 L 522
By = = (c2 — €3)°ct — 2cac3(co + ca)er + ¢3¢3), O = 1a4 1626
and

Yo + 11v? + yavt + 310
P=
1+ 611/2 -+ 521/4 + (531/6
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where .
Y=1, = E(C% + Cg + Cg — a3 — CaC1 — €1C3),

1

N =0 (ca — ¢3)%c? + (=6c3 + 12¢o¢3 + 4 — 6y — 2¢3c3 — 2c2¢3)
—6cyc3 + 4(cy + c3) + cack — 3],
10 = trzes = DAe = e =17,
6 = 12(01 + ¢+ ci — cc3 — Cacy — C1C3),
§ = 1 (ca — c3)%c — 2cacs(cy + c3)ey + cac], 03 = chc%cg
72 144

It is easily checked that the three-point polynomial collocation method has an in-
terval of periodicity when symmetric collocation points are chosen, i.e. ¢, - C3
and ¢; = 1.

Example: ¢, =0, ¢c; =1/2 and ¢3 = 1.

The stability function is a rational function with numerator and denominator of

degree 2 in v2. The characteristic equation is given by

288 — 12612 + 404

2

— 1=
¢ {288+18u2+u4 }“ 0

and the method has two intervals of periodicity (0,48/5) and (12, 48). The order of
dispersion of the method is 4 as

1 51
1920 387072

#(v) =v —cos™! [R22(V2)] = v + 0.

Example : ¢; = (5 — v/15)/10, ¢; = 1/2 and ¢3 = (5 + V/15)/10.
The stability function is of the form R33(?), that is the numerator and denominator

are cubics in 2. The characteristic equation is given by

£ o 57600 — 266400* + 13680 — 131/° £41=0
57600 + 216002 + 48u* + 1/ B

and the method has a primary interval of periodicity (0,240/7) and a secondary
interval of periodicity (60,2(27 + +/489)). The order of dispersion of the method is
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Hib

a

Figure 2.1: Periodicity intervals for the polynomial collocation methods

#(v) = v — cos™ [Ras ()]

-

= 806400 ~ 16588800

V400,

In figure 2.1, the intervals of periodicity are given. Method Sy is Numerov’s 4th

order method whilst the polynomial collocation methods are listed below:

Method | Stage | Algebraic Collocation Parameters
Number | Order
Ib 1 2 1/2
Ia 2 2 0 and 1
ITb 2 4 (3 —+/3)/6 and (3 + v/3)/6
IIa 3 4 0,1/2and 1
IIIb 3 6 (5 — V/15)/10, 1/2 and (5 + v/15)/10

2.5.4 Hybrid Methods

As mentioned in section 2.3, the interest in hybrid methods came about as an

answer to the order-barrier problem that a P-stable or unconditionally stable linear
multistep method can have at most algebraic order 2, [25]. Cash [3] derived families
of hybrid methods with properties such as P-stability and periodicity and imposed
symmetry conditions on his methods. He constructed a 2-step 4th order implicit

P-stable symmetric method and two 6th order methods, one P-stable and the other
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with an interval of periodicity (0,26). The main problem with the methods of Cash
is the high cost to implement them; the 6th order P-stable method needs 5 function
evaluations per iteration at each step.

All of the 2-step hybrid methods have a characteristic equation of the form
€2~ 2Rpm(V)E+1=0

and so the stability theory of the two previous sections can be applied. Coleman
[17] showed that the hybrid method (2.18) of Cash [3] and Chawla [6] with k£ = 1
has a stability function of the form

14+ a? + avt

2y
R22(V ) - 1+ ,Bll/2 + ,321/4

I
where the coefficients o4, a,, §) and [, are determined by the coefficients of (2.18).

Coleman also considered stability functions of the form Rj3(v?).

There has been a lot of literature on hybrid methods and the desire to modify them
so they are suitable for solving (1.1) when the solution is oscillatory (2, 4, 7, 9,
11, 12, 13, 14, 15, 24, 43]. Chawla (6] noted that if a general 2p-step (algebraic
order 2p) symmetric method is unconditionally stable, then it is also P-stable. He
also describes a family of 4th order 2-step methods which possess a non vanishing
interval of periodicity. Costabile and Costabile [24] derived a symmetric 2-step 4th
order P-stable method which only needs 2 function evaluations per step and which
is a special case of Cash’s method. Authors who took the approach of modifying the
free parameters in the hybrid method by Cash (2.19) include [4, 6, 24, 14, 68, 69].

Chawla [9] developed an explicit hybrid method which was a modification of Nu-
merov’s method. The main aim of the paper by Chawla and Neta [11] was to reduce
the amount of work needed to implement Cash’s hybrid methods (2.18) and they
began a characterisation of the family of 4th order P-stable hybrid methods which
was completed by Coleman [17]. Chawla et al [10] considered 2-step hybrid methods
and derived a family of 4th and 6th order P-stable methods. They showed that the
methods are efficient. By this they mean that the number of function-evaluations
per step is reduced due to a choice of the free parameters of the method. Cash [4],
Chawla and Neta [11], and Thomas [69, 70] considered efficient methods.

Some authors have modified their hybrid methods to use the idea of phase-lag to
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improve their methods as well as insuring that they are P-stable or that they have
as large an interval of periodicity as possible [3, 13, 15, 68]. Chawla et al [15] started
with a modification of Numerov’s method

h? =
Ynt1 — 2Yn + Yn-1 = D {fn+1 +10f, + fn—l}

where
Un = Yn — ah?(fn-H - 2fn + fn—l); fn = f(tny:’;_/n)
= o = B0 (fars = 2fa + fa1)s Fa = fltn, )

and the parameters a and [ are free to be chosen to suit the phase-lag requirements.
For an interval of periodicity, the modulus of the roots of the stability polynomial
are of the form &, o = exp {£i0(v)} where 6(v) is real. Then, the phase-lag P(v), is
the leading coefficient in the expansion of |{#(v) — v} /v|. Chawla et al fouhd that

for
1 1 (13 (1331
a+f =g and af < —15ers {E“L 1620}’

the modified Numerov method was P-stable, of algebraic order 4 and phase-lag order
6. Anantha Krishnaiah [2] used the Maclaurin series of tan~! z to find an expression
for the phase-lag and obtained a family of 2-step P-stable methods of order 2 and
a 6th order 2-step P-stable method with phase-lag of order 6. Twizell and Khaliq
{74] and Twizell [73] investigated multiderivative methods, the latter using the same
technique as Krishnaiah to find the expression for the phase-lag. This proves to be
a clumsy way to do it and most authors use the expansion of |{8(v) — v} /v| to find
the phase-lag P(v). The methods of Chawla and Rao [14] were based on Cash’s
methods with particular choices of the parameters and they developed an explicit
2-step 6th order method with phase-lag of order 8. Thomas [68, 70| considered the
phase-lag of 4th and 6th order P-stable hybrid methods and in the latter paper,

reduced the number of function evaluations per iteration for a 6th order P-stable
hybrid method to three.



Chapter 3

Exponentially-fitted Methods

In this chapter, we consider exponentially-fitted methods, that is numerical methods
for the problem (1.1) which are exact for the particular differential equation y" =
—k?y with initial conditions y(zo) = yo and y'(z¢) = zp, and which reproduce the
exponentials exp(+ikz) exactly, taking into account the accumulation of rounding
error.

The term ‘mixed interpolation’ appears to have been first introduced by De Meyer
et al [49]. Polynomial interpolation is widely used, for example, to derive multistep
methods or collocation methods for ordinary differential equations. Because of the
interest in solving problems with oscillatory solutions, De Meyer et al adapted the in-
terpolation approach to include functions other than polynomials. They considered

approximating a function f(z) by a combination of trigonometric and polynomial
functions, i.e.

n—1
fa(z) = acos(kz) + bsin(kz) + > ¢iz?, n>2
i=0
and required the function f,(z) to interpolate f(x) at n + 1 equally spaced points.
Then, there exists unique coefficients a, b and ¢;, 1 = 0,...,n — 1 although the

function is undefined for certain values of k. The theory was developed in a more
general way by the authors Chakrabarti and Hamsapriye [5]. The trigonometric
functions cos(kz) and sin(kz) are replaced by the two functions U, (kz) and Us(kz)
which represent two linearly independent solutions of a general second-order linear
ordinary differential equation for some k& > 0.

Coleman [20] also considered the general approach of approximating f(z) by the

38
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function

fa(z) = aC(z) + bS(z) + T_Scizi,

and considered existence and uniqueness of the function when f,(z;) = f(z;) for
j =0,1,...,n where z; are arbitrarily chosen distinct nodes. Coleman derived La-
grangian and Newtonian formulae for the interpolant and he used the first approach

to find the mixed collocation methods [22] whilst the latter approach is used in this
thesis.

3.1 Linear Multistep Methods

Consider the linear k-step method

k k
Y Uy = h? ) Bi¥Yn+s
=0 =0
where «; and f§; are constants. The linear operator L is defined by

k k
Lly(z); h] = Z%ajy(w +jh) — h® Zoﬁjy"(fc + jh).

j= j=
For polynomial based multistep methods, we would find «; and B;, 7 = 0,1,..,k
such that the operator L integrates exactly polynomials up to a sufficient order. If
the coefficients «; and §; are allowed to depend upon the steplength h, then they
can be obtained such that the operator L integrates exactly functions of the form
exp(tpuz), as well as polynomials. This approach is known as ezponential-fitting. If
i is real, the method is suited, for example, to integrate the Schrodinger equation
which has an exponentially decaying solution. If u is imaginary, i.e. p = i¢, then
the method is suited to solving problems with oscillatory solutions and the methods

are exact for cos(¢z) and sin(¢z). Our interest lies in the latter case.

Gautschi [28] first derived the concept of trigonometric order for linear multistep
methods.

Definition 3.1 A functional L is of trigonometric order p, relative to period T,

if it annihilates all trigonometric polynomials of order < p with period T'.

A suitable value for the period T has to be chosen to implement the methods.
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Gautschi’s methods are exact if the solution of the differential equation is oscilla-
tory with constant period (or frequency). He only considered using trigonometric
functions but since then, there has been considerable interest in combinations of
polynomial and trigonometric functions. Stiefel and Bettis [67] considered both
types of functions and modified Cowell’s equations. Jain [41] modified the Stiefel-
Bettis method so it could be applied to nonlinear problems where 3" = f(z,v,v').
Lyche [48] developed the work of Gautschi and considered steplength dependent
coefficients for linear multistep methods. He derived a 4th order 2-step method
and as the frequencies approach zero, Simpson’s method is recovered. Lyche also
developed consistency and stability requirements for exponentially-fitted multistep
methods but as mentioned in Ixaru and Rizea [37], the stability theory only applies

to multistep methods which have steplength dependent coefficients for' 8; but with

o constant. I

Before the introduction of exponentially-fitted methods, one of the most popular
methods for solving problems with oscillatory solutions was Numerov’s method be-
cause of its large interval of periodicity. Many authors including (37, 56, 72| take
the approach of modifying Numerov’s method so that it is exact for polynomial and
trigonometric functions. As the fitted frequencies tend to zero, then the methods
reduce to Numerov's method. Raptis and Allison [56] found that their methods were
more efficient than Numerov’s method for solving the Schrodinger equation and they
also had the advantage that it integrates exactly exp(+uz). The authors [37, 54
derived methods which are exact for certain combinations of products of polynomial
and trigonometric functions, i.e. z™sin(kz), ™ cos(kz). Ixaru and Rizea showed
that their methods gave more accurate results for the Schrédinger equation using a
combination of the functions. They developed stability theory for multistep methods
with steplength dependent coefficients.

Many 2-step and 4-step exponentially-fitted methods have been produced, some
specifically for the solution of the Schrodinger equation {36, 37, 54, 55, 56, 57, 61,

63, 64, 66, 72]. Simos [63] derived a family of 4-step exponentially-fitted methods
starting from the formulae of Henrici [35]

Ynt2 + @ Ynt1 + Yno1) + Yn2 = h° (Bo(Ynra + Yn_a) + Br(Unsr + Yn_1) + Boy),

and obtained the coefficients so that the method is exact for a combination of poly-

nomial and trigonometric functions. As for other exponentially-fitted methods, an
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estimate of the frequency parameter is required. In a later paper by Simos [64], he
derived a family of 4-step exponentially-fitted predictor-corrector methods. Thomas
et al [72] produced 2-step predictor-corrector methods but they required the meth-
ods to integrate as many combinations of polynomial and trigonometric functions
as possible. They also looked at the stability of the methods but only when the
fitted frequency of the method is the same as the frequency of the test equation.
This does not give an accurate analysis of the stability of the methods because the
stability definitions they used were designed for methods with constant coefficients.
This was also the case by the authors Jain et al [42]. They concluded that their
method is P-stable, but this is only when the test frequency and the fitted frequency
are the same. Coleman and Ixaru [23] investigated the stability of multistep and
hybrid methods with steplength dependent coefficients. Whilst they ‘were mainly
concerned with 2-step methods, Ixaru et al [39] considered the stability analysis for
4-step exponentially-fitted methods. The authors Raptis and Cash {57] considered
fitting Bessel and Neumann functions to 2-step and 4-step methods respectively.

The only drawback of the methods is that the coefficients must be calculated at
every step.

3.2 One-step Methods

So far, most of the exponentially-fitted methods that have been produced are linear
multistep methods or hybrid methods. The mixed collocation methods that shall
be derived in chapter 4 will be exponentially-fitted and also can be written as a
Runge-Kutta-Nystrom method with steplength dependent coefficients.

3.2.1 Trigonometric Order

Paternoster [53] and Ozawa [51] both adapted the definition for trigonometric order

for linear multistep methods and applied it to Runge-Kutta-Nystrém methods.
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Definition 3.2 An s-stage Runge-Kutta-Nystrom method is said to be of trigono-
metric order r relative to the frequency k, if the linear operators given by

3

Ly = y(@+h) - y(@) - hy'(@) — K23 bif(a + ah, YY)

Lofy] = (@ +h)—y() b dif (& + cih, Yi)

i=1

Llyl = y(z+ch) —y(z) - chy'(z) = h* Y ayf(z +c;h, Y5),
Jj=1
where Y, = y(z)+ chy'(z) + h*Y_ aijf(z + c;h, Yj)
i=1

for i=1,...,s

7

annihilate the functions y(z) = cos(pkz) and y(z) = sin(pkz) forp=1,.7.,7r and
are not annthilated by y(x) = cos[(r + 1)kz] or y(z) = sin[(r + 1)kz].

Thus, if we require the Runge-Kutta-Nystrom method to be of trigonometric order
r,forp=1,...,r then

5 L—cos(ph) <~ o pf — sin(ph)
izzl bi COS(pQCi) = pzT, Z:I bi Sln(p9ci) = T?
> dicos(pbe;) = sin(pf) S d;sin(pfc;) = 1 — cos(pd)

=1 pe i=1 pe
and 1 o)
; — cos(pfc; \
]; a;; cos(plc;) = —
$ fOI"I;:l’_‘-’Sl
y - pfc; — sin(pbc;
Z aij Sln(ngj) = p202( )
i=1 J

We will show in chapter 4 that for arbitrary ¢, and ¢y, the 2-stage Runge-Kutta-
Nystrom method of trigonometric order 1 (which we shall denote as TRKN1) is the
2-point mixed collocation method. The method derived by Paternoster [53] is a 2nd

order TRKN1 method or the two-point mixed collocation method with ¢; = 1/4
and ¢y = 3/4.
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Theorem 1 For s > 2, an s-stage Runge-Kutta- Nystrom method of trigonometric
order 1 has s? — 4 free parameters.

Proof: For the coeflicients b; and d; there are 2 equations in s unknowns respectively,
thus each leaving s — 2 free parameters. For the coefficients a;; where ¢ =1,...,s
there are again 2 equations in s unknowns for each 7 and so there are s x (s — 2)
free parameters remaining. Thus, we have

(s —2)+ (5 —2) +5x (s — 2) = s* — 4 free parameters. 4

The method constructed by Ozawa [51] is a 4-stage 4th order implicit TRKN1
method and depending on the choice of the coefficient by, the method has order
of dispersion 4 or 6. Ozawa showed the improved accuracy of the method with
the higher order of dispersion especially when only an estimate of the frequency is
available. Ozawa stated that in order to construct an implicit 4th order Runge-
Kutta-Nystrom method of trigonometric order 1, then it is necessary to have a
minimum of 4 stages because of his choice of conditions on the coefficients. In
fact, for 2 stages with the coefficients b;, d; and a;; above, 7 = 1, and the points
¢ = (3~ +3)/6 and ¢, = (3 + /3)/6, we have a TRKN1 method with algebraic
order 4. In Appendix A, the coeflicients for a 4th order 3-stage TRKN1 method are
presented which satisfy Ozawa’s order conditions.

3.3 Hybrid Methods

Simos [64] and Thomas et al [72] considered modifying predictor-corrector meth-
ods so that they are exponentially-fitted, the former looked at 4-step methods
and the latter, Numerov-type methods. This lead to the work by Thomas and
Simos [71] in which they included off-step points for the 2-step predictor-corrector
methods and developed five methods which integrate exactly functions of the form
(1,z,..,2™, exp(tikz), ..., 27 exp(tikz)] withm =9 and p =0, m = 7 and p = 1,
m=2>and p =2, m =3 and p = 3, and m = 1 and p = 4. They showed
that because their methods integrate exactly more exponential functions than the
authors [64] and {72} and other exponentially-fitted Numerov-type methods, their
methods are more accurate when solving the Schrodinger equation. Again, the sta-
bility analysis is based on the fact that the fitted frequency of the method and the

test equation are the same, i.e. they applied the stability theory for methods with
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constant coefficients. The authors did study the stability for a range of values for
the fitted frequency and deduced that the methods are almost P-stable.

3.4 Order
3.4.1 Linear Multistep Methods
We define the linear functional for the multistep method by

Lly(z); h] = Z a;(h)y(z + jh) — h? Z_: Bi(h)y"(z + jh) (3.2)

where we assume y(z) is as differentiable as we please and the coefficients ; and f;
depend on the steplength h. Let T

a; = al(-o) + hagl) + hQa,(z) + ...
B = B4 g 42D 4

Then
Lly(z);h) =ChH+ Cih+Coh* + ...+ CLR™ + ...
where . \
¢y =3 V() ¢ =3 {Vy(z) +iay'(2)},
i=0 i=0
and forr =2,3,.. ., ‘
k r [ r=0) r [,i-2 gr=3)
Cr=)Y_ agr)y(a:) +3° ! af' vy (z)| - iry(J)(I) _
=0 j=1 J: j=2 (] - 2)

Definition 3.3 A linear multistep method (2.5) and the associated linear operator
(3.2) with coefficients a; and f; dependent on the steplength h, are said to be of
order pifCy=C =..=C,,, =0andC,,, #0.

p+2

Therefore, for order 1 we require

k
=0 = Yo =0,

1=0
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and

3.4.2 Runge-Kutta-Nystrom Methods

First, we expand the coefficients of the Runge-Kutta-Nystrom method about h = 0
and let

bi(h) = b0 + oY + n2P 4+
di(h) = d¥ + hd" + r2d® + ...
ai;(h) = aff +hal) + h%a) + ... r

The difference operators for the Runge-Kutta-Nystrom method are defined by

‘C[y] = y(mn + czh‘) - y(mn) - cihy'(mn) - h’2 Z aijf(xn + th7 YJ))

j=1

‘cl[y] = y(l:n + h’) - y(zn) - h'y,(a:n) - h2 2‘9: bif(mn + Cihs }/1)

i=1

Loly] = ¥'(zn+h) —y'(z,) — hidif(a:n +¢;h, Y;).

i=1

Here, a bare-hands Taylor series approach is used to expand the difference operators
Lily], L2]y] and L[y] but the work soon becomes very complicated if higher powers of
the steplength h are required, even though we are only dealing with a single equation.

A different technique for finding the higher order conditions will be studied later on
in this section.

First, expand

Lly] = ylzn +ch) - Y;
= y(zn + cih) — y(zn) — cihy'(z,) — h? Z ai; f(2n + ¢ih, Y))
i=1
c; 21 c} 3..(3) cf 4, (4) 2o
= 511 Y (z,) + Eh y N (z,) + Q_ih y(z,) = h Z aij f(xn + cjh, Y;) + ..

=1

= h,2 (Si
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where §; is finite as h — 0, and so

Y; = y(zn + cih) — L[y) = y(za + cih) — h?6;.

If we substitute Yj into f(z,+c;h,Y;) and expand about =, +c;h, then L[y] becomes

3

E[y] h2 (_ - Z a'l]) :Cn + h3 (—6' - za’t]cj> J(S)(xn)

¢ SLaycd
{5 - £ 252 ot
=1

+ Z Gij ( Z aJk) (zn) fy(@n + cih, y(Tn + th'))} + O(hs)-,

Using the expansion for a;; and setting f,(zn + ¢;h, y(z, + c;h)) = fy(c;), then

¢z < e
=S oo (2 z) o - £ oo |
j j=1

7=1
¢ ade s
+h 52 B Z ]2 ’ y(4)($") - ZG’U y Za’u ch
i=1 ji=1
c2
+ Z ag?) (EJ - Z ag?) y' (-Tn)fy(cj)} + O(hs) h?é;
j=1 k=1
Therefore
2 s
f(zatch,Y;) = y"(za) +cihy” (z,) +h? { ; yW(z,) - (5’ a(0)> (zn fy(cl)}
2 o

Cl3 C? > H
+h3 {_ (:1;,1) fJ cl [(E Zagj) ) (3) Zagjl)y (’En ]}

6

+h,4 {24 (6)(113”) fy(C1) [(24 — 2

W3 S 0% <
_Zaij ij( )(g;n)-i- aj; (—2'-7-—20. ) n)fJ(C])

=1 i=1
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j=t

2
1(c?
+§ (El Z (0)) Juy(ci )y (z n)z} +O(h’5)'
We need to expand fy(z, + c;h, y(zn +c;h)). With F(h) = f,(z, + cih, y(z, + cih)),

F(h) = F(0) + hF'(0) + %23?"(0) + O(h%)

where

f(O) = fy(xmy(xn))a '7:,(0) =G {yl(xn)fyy(mnay(xn)) + fyz(zmy(mn))} )
F"(0) = & { fyza(@n, Y(2n)) + 2 (n) fyya(Tn, y(2n))
+y"($n)fyy($m y(za)) + y’(mn)zfyyy(mm y(:cn))} .

0 f(Tn,y(zn))

For convenience in notation, let f = f(z,,y(z,)), fy = By

, etc., then

Lly] = #? (% - ib,“”) y' (@)

i=1

{( wa) ) Oz Zba) " In}

< e o fd S o 2L 0) (1)
25 Y (:E")—'—Z b; 5T 2% sz ai;’ | ¥ (zn) fy
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+Zb‘°) ( Za.] c,> ICIERTA S (C— Za ) e
i=L

i=1

S 2 s
+ 300, (51 S al ) (zn) ”(xn)fyy}+0(h6)
i=1
and

Loy]

(l
=
N
—
RS
=
~—
te\
W
:
+
=
[\~
—N—
A
&A
3
\_/

o) - ;Z;dﬁ“y"m)}

3 1 s d0¢ 4 >\ (@) (. ..3
+ B le - Y (za) = 3 di”y" (zn) Zd ey (z
i=1

1 s dEO)C? 2 " :
. { (ﬁ "2 ) Yy (za) = 3 dy" (2a) = 3 dP ey (z0)
i=1
* dVe? ) NP - ) gD
_zTy (za) + 3 |d} 5 Za Zd y"(za) fy

1=1

s C? s
+ ngm (E - Z agg)cj y(3)($n)fy

s 2 S
+ Z dEO)ci (%l B Z ag?) y”(xn) [yl(mn)fyy + fxy]}

h5 1 5 dgo) C;.l (G) i d(4 ) d(3) (3) ( )
- . Y (Tn E : i GY T (Tn
120 & 24 s

s 2 PO
_ i Yl (4) o i v, (3)
; 2 (:E"-) P 6 y ("L‘n)
3l (G S 0@ |~ 3 a0 Zdn W | y(z0)
1 [ z Y
i=1 2 j=1 ’ j=1
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P (5 e - S| 0
s o ol s a(O)CQ
+ X d” | g X | vOe

i=1

s 8 2 3
+22d$0)a$) (% ZaJ ) (zn) f3

+Za[ (% £a> Zd“” } za) [y (2n) fyy + f]

S 3 s
+yd%, (E'-Z d ) (CSIICRTARY S R
i=1 j=1

+ 5 de) : (_i Za ) (Zn [fyzz + 2y’ (zn)fyyz +y (3311) fyyy]} + O(hﬁ)-
From Definition 2.4 the order conditions are as follows: (The order 6 conditions

were obtained using Butcher’s tree approach which is described at the end of this
section).

The Order Conditions

Order 1: ,
1) d” =1
i=1
Order 2: ] ) ) .
2)3 d%¢ = =, 3)Zd§‘ Zb(")
=1 2 i=1 2
Order 3:

> 1 s s
5)2d¢ =3, 6)  dVa=0, )} d” =0,
=1 i=1 =

8)3° 3 dVa = Z 0% = 5 Z Y = 0.

=1 j=1
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Order 4:
S 3 s s
11.) ngo)cf Zdil)cf =0, 13) ngz)ci =0, 14.) ng?’) =0
i=1 =1 i1 =

15) 3" {dPa® +d0} =0, 16) 3y d%ac, = o,

i=1j=1 i=1j=1

szm)a’t] ¢ = Zb(o) 2 _ -

i=1j=1

me_o 20. Zbﬁl)q_o 21)3° 3 5% (0’:21—4. I

=1 i=1j=1

Order 5:

8o
0O
~
]
£
=
o

-9

|

| =

i=1 =1 =1 i=1

2. ) Zd(4) =0, 27. ) Z Z {d(z) (0) d(l) (1) + d(o) (2)} 0,

i=1 i=1j=1

8 5.8 1
28) 3> {da +dPai b ej =0, 20)3° 3 dPaf)S =

i=1j=1 =1 j=1

S

i=

2
S s S S
(0)_(0) 1 (0 o) _ 1
IJX:MZ:[d a;; ajk = 155" 31')§d’ (Zal] ) =55
32.)22{&1 "+ dPaP =0, 33) 3> d% eie; = %

1=1j=1 i=1j=1

34.) S 5" dPal) e = i, 35.) b0} = 1 36.) Yot =0,

S s S
= 23)5 dVe =0, 24)3S dP2 =0, 25)3 d¥ =0,

50
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s S
Zb(zc,—o 38. Zb(S)__O 39)22{b51)a(0)+b(0) (1)} 0,

=1 i=1 i=1j=1

; 0O, ! © 1
ZZ() 5% = To5 ZZb a1]c1_40

i=1 j=1 i=1j=1
Order 6:

5 1 S S
42) 3" d0¢ = 5 43)Y dVet =0, 44)3dPe =0,

i=1 i=1 i=1

S s s
15)YdP2 =0, 46)) dc =0, 47.) 3 d® =0,

i=1 i=1 =1

18) Y {00 + dPa + da® + d¥a®} =,

i=1j=1

49_)25323:{(152) O 4 406l + d®a) ¢; = 0,

1=1j=1

50.)i2{d‘2> O +dVaf) +dPaP} ¢, =0,

i=1j=1

s

Zi{d(l 5+ i ()}C =0,

i=1j=1

L)

52) > > {d"al +da} 2 =0, 53)3 Z {dPa + d®a®} cic; =0,

1

54. sz(ﬂ)a(o) 3 _ ZZZdO) (0) kcl_ o

11_71 i=1lj=1k=1
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56)5° 3 Y d%®a®c = L, 57) 353 d®a®al0c; =
1. k= _’ )
i=1j=1k=1 k 72 i=1j=1k=1 ]k ’ 240

1

(0) <o 2© 1 ©) (0) & =
;f:,czld Uk %k = 790" ,Z;led %5 % = Top°

ZZd(O)aU C;c ZZd(O)a(O)cch = 316
i=1j=1 i=1j5=1
2
8
Zd(% (Za ) - Zz{d(l) (a 53)) +2daa (o>} 0,
i=1 i=1j=1

8

S s
64) 33" 3 {dPa®a® + d¥aPa + daPaP} =0,

i=1j=1k=1

s

S 1 S $
65.)Zb§°)c;‘=%, 66.) 3 ot =0, 67. Zbﬁ” 2=0, 68)5 6% =0,

i=1 i=1 i=1

60.) 3 5 =, 70)22{1@ + b)) + 50} =0,

=1 i=1j=1

71) 305 {8af) + 670} ¢ = 0, 72)22{1)9)0,5;’)+b§°’a§})}cj:0,

i=1j=1 i=1j=1
Z Z b 0) 2= Z Z b(O)a(O)CIC] 1
i=1j=1 i=1j=1 180

2
002 = 1 0= @) _ 1
ZZb G €5 = 3e0 76.) > b, (Zaij) = 135"

i=1j=1 i=1 Jj=1
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) 1
AR WA

i=1j=1k=1 720

The order conditions can be applied to any Runge-Kutta-Nystrom method with
steplength dependent coefficients and they reduce to those for the Runge-Kutta-
Nystrom method with constant coefficients if we retain b( ) d(o) and a( ) and set the
rest of the coefficients to zero.

Butcher’s tree approach

It is possible to identify the order conditions for methods with relatively few stages
using a bare-hands Taylor series approach. As we have seen, the work soon becomes
difficult and this approach is unsuitable for most methods due to the complgxity and
number of the computations involved. The order conditions for order 6 were found
using Butcher’s tree based approach [46, 32, 34] which although usually used for
Runge-Kutta and Runge-Kutta-Nystrom methods with constant coefficients, is eas-

ily extended to apply to Runge-Kutta-Nystrom methods with steplength dependent
coefficients.

The Runge-Kutta-Nystrom method with constant coefficients is of at least order 1
when

Zdi = 1)
i=1

and for order 2, in addition to the above we require
S 1 S

Zdici = — and sz =
i=1 2 =1

First, let the coefficients depend on the steplength and define

bi(h) = b9+ nblY 4+ 23 +
di(h) = d +hrd + r%d® +
ai(h) = a3 + hal} +h2a§§)+...

Following Coleman [22] and using the notation of Dormand et al [27], an alternative
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way of writing the local truncation error of a Runge-Kutta-Nystrom method is
() )
bt = Y(Tng1) = Yni1 = 0| DTV EY | 4 O(hN*h)
=2 j=1

where we make the usual localising assumption. The terms 7 are made up of com-
binations of the coefficients b;, d; and a;;, and each of the expressions F ® is an
elementary differential. A similar expression can be found for the error in the ap-

proximation for the first derivative,

N LR
trpr =V (Tnp1) = Zng1 = Zhl_l (Z 7-]() Fj( )) + O(hN*h.

=2 j=1

When we consider steplength dependent coefficients for a Runge-Kutta-Nystrom
method, all that is required is to expand the T expressions in terms of the steplength
h. As the Fj(i) are independent then the appropriate expressions can be collected in
terms of the steplength. The method is then of order at least p if t,,, = O(hP*!)
and t,,, = O(hP*h).

Thus, the order conditions for a Runge-Kutta-Nystrom method with steplength
dependent coefficients are,

for order at least 1,
L)

> -1

i=1

and for order at least 2 along with the above condition,
= ) ~0, _ 1 0 _ 1
Zdi = 0, Zd'l C; = — a.nd Zbl = —-.
i=1 i=1 2 i=1 2

The conditions involving only coefficients which have a superscript 0 are the order

conditions for the Runge-Kutta-Nystrom method with constant coefficients.

3.5 Stability Analysis

Stability analysis becomes more complicated for exponential-fitted methods as there
are now three parameters h, £ and w to consider. The stability analysis is based
on the test equation y’ = —w?y for problems which have oscillatory solutions. As

before, k£ is the fitted frequency of the mixed collocation method and specifies a
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pair of functions exp(#+ikz) which the numerical method will integrate exactly. The

steplength is h, and w, which is real, determines the relevant frequency in the test
equation y" = —w?y.

For many numerical methods and the mixed collocation methods of this thesis, when

they are applied to the test equation y” = —w?y, the characteristic equation is of
the form

€2 — 2R, (V3 )€+ P(1%0) =0
where § = kh and v = wh. When P(v?;0) = 1, the question posed by Coleman and
Ixaru 23] is:

For a given method (i.e. a given k), what restriction, if any, must be placed on
the steplength h to ensure that the condition |R,,(v?;0)| < 1 is satisfied?

The following definition is taken from the work by Coleman and Ixaru [23]:-

Definition 3.4 A region of stability is a region of the v — 6 plane, throughout

which |Rpm(v?;0)| < 1. Any closed curve defined by |Rnm(v?;0)| = 1 is a stability
boundary.

Definition 3.5 For an ezponential-fitting method with the stability function given
by Rnm(v?;0), where v = wh and 8 = kh, and w and k are given, the primary
interval of periodicity is the largest interval (0, hg) such that |Rnym(v%;6)| < 1 for
all steplengths h € (0, ho). If, when hq is finite, |R,m(v?;6)| < 1 also fory < h <6,
where v > hy, then the interval (v, 6) is a secondary interval of periodicity [23].

Alternatively, an exponential-fitting method with the stability function R, (v?;6)
has an interval of periodicity (0, 8%) if the roots &; of

€ = 2R (V% 0)E+1 =0 (3.3)

satisfy
& =exp{if(v)}, & =exp{—18(v)}.

When |R.,(v%6)] < 1, the roots of the equation (3.3) are distinct and lie on the
unit circle.

When |R,m(v%8)] > 1, the method is unstable since the corresponding difference
equation has an unbounded solution.
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Note that for a polynomial based method the notation for an interval of period-
icity used by many authors is (0,4) (c.f. Definitions (2.7) and (2.11)), whilst for
exponentially-fitted methods it is (0, hg). As & — 0, the periodicity interval for
the corresponding polynomial based method is easily found from the interval of
periodicity for the exponentially-fitted method.

Definition 3.6 A family of exponential-fitting methods with the stability function
given by Rnm(v%; 0) is P-stable if, for each value of k, the inequality | Rnm (V% 0)| <
1 holds for all values of w and for all steplengths h, except possibly for a discrete set
of ezceptional values of h determined by the chosen value of k.

As an example, Coleman and Ixaru [23] developed a P-stable method satisfying
Definition 3.6. The 2-step exponentially-fitted method is
r.

Yn+1 — 2yn + Yn—1 = h'2[,31(fn.+1 + fn—l) - 2a1fn]
where

1 — cos @ + y6?
= = —_ >

and it is undefined when 6 = (2n — 1), but Ry, (v%0) - 1 as § = (2n — 1)7.

A method corresponding to a given value of the parameter k must solve the test
equation y”’ = —w?y exactly, in the absence of rounding error, when k = w, i.e.
6 = v. Since all solutions of the test equation satisfy

Y(Tnt2) — 2(cos V)y(Tns1) +y(2s) = 0,

the stability function may be regarded as a rational approximation for cosv.




Chapter 4

The Mixed Collocation Method

In this chapter, we derive the mixed collocation methods which are exact; for the
problem '

H _

y" = —k%y, y(zo) = %0, ¥'(z0) =2

where £ is a constant. It will be shown that the mixed collocation methods may be
regarded as Runge-Kutta-Nystrom methods with steplength dependent coefficients
and a study of the order conditions is given.

Consider approximating the solution y(z) on the interval [z,,Z,41] by a function
u(zx) of the form

s—1

u(z) = acos k(x — z,) + bsin k(x — z,) + Y ri(z — T)".
i=0

The choice of the functions cos k(z — z,) and sin k(z — z,,) is that they are the two
linearly independent solutions of the second-order differential operator

d2
L=— +k
dz?
If we use a collocation method based on the s distinct collocation points
Tate; = Tn + th'a .7 = 1) N

where 0 < ¢, < ¢y < ... < ¢y <1 then the collocation conditions are

w'(xn +cjh) = f(z, + cjh,u(za + c5h)), 7=1,...,s.

o7
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Differentiating the collocating function u(z) with respect to z,

s—1 3
uw(z) = acos kt+bsin kt + > r;t’
i=0
s—1
w(z) = —aksin kt+bkcos kt+) argt Y ) (4.1)
=0
s—1
u"(z) = —ak?cos kt — bk?sin kt + > i(i — 1)rt0=2
1=0 /

where t = z — ,, and applying the initial and collocation conditions we obtain

wzn) =y =  Ya=a+rg )
V(o) =m = {Z":bk’ =1 |
2n=0bk+r, s$>2 > (4.2)
u'(zn +cjh) = —ak’cos(fc;) — bk*sin(fc;) + s—zl i(1 — 1)ry(c;h) 2
j=1,...,s8 = )
with 8 = kh.

4.1 Construction

4.1.1 One Collocation Point

Consider the function
u(z) = acoslk(z — z,)] + bsin(k(z — z,)] + ro.

A one-point mixed collocation method is defined by

Yny1 = acosf+bsind + g
Zny1 = —aksin@ + bkcosf
Ynte = acos(fc)+ bsin(fc) + rg

where § = kh, and y,41, zn41 and vy, are approximations for the exact solutions
yY(zn + h), ¥'(z, + h) and y(z, + ch) respectively.
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From the initial and collocation conditions (4.2) for s = 1,
To = Yn — @, b= 2,/k, —ak?®cos(fc) — bk*sin(c) = f(zn + ch, u(z, + ch)).

The latter equation can be easily solved to give

— _p2 f(zn + ch,u(z, + ch)) + 2,k sin(fc)
=T { 62 cos(fc)

which is undefined if § = 0 or cos(fc) = 0. Thus the formulae for a one-point mixed

collocation method with collocation node z, + ch are

sind , f(zn +ch,Y) + 2,k sin(fc)
= i 1-—
Yn+1 Un + h’zn 9 + h ( Cos 9) { 02 COS(GC) )
. . f(zn + ch,Y) + 2,k sin(fc) -
Zn41l = 2pcosf + hsinf { 8 cos(80) ,

sin(fc)
6

Y = y.+ hz,

+ h*(1 — cos(fc)) {f(mn + ch,Y) + znksin(6c) }

62 cos(fc)
where Y = ¢, c.

This can be rewritten as

Ynsl = Yn + hzn {Sln[6(1 _ C)] + Sin(eC) } n h,?m )

6 cos(fc) 62 cos(fc) Jver

cos[f(1 — ¢)] sin 6
cos(fc) + h0 cos(fc) faves

Zn+1

sin(fc) 2 (1 — cos(fc))

Y =
Yn + han 6 cos(fc) 62 cos(fc) Juee

where fn.. = f(z, +ch,Y).

Note that when §cos(fc) = 0 the method is undefined. Also, the coefficients of
method (4.3) are even functions of 6.

As k — 0 the mixed collocation method (4.3) reduces to

h2
Yn+t1 = Yn+ hzn + 3f11+ca

Zn+t = Zn_*_h'frw-(:a
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cth?
Y = yn+Chzn+_2_fn+ca

which is the one-point polynomial collocation method (2.15). The mixed collocation
method (4.3) cannot be written as a Runge-Kutta-Nystrom method except in the
limit as k — 0. We will see that this is only the case for the one-point mixed
collocation method.

Example : ¢=0
Substituting ¢ = 0 into (4.3)

sin @ h2(1 — cosf)

Yny1 = Yn + h/zn 0 + 02 f(mnl yﬂ)) (44)
Zntl = 2n cosf + h#f(xm yn)‘ (45)

I

For convenience in notation let foy; = f(Zn4j,Yn+;). Then from (4.4) with the

subscript increased by 1, we may write y, 2 as

sin & 1 — cosf
Yn+2 = Yn41 + hzn+1 9 + h'g( 92 )fn+1a

and if we substitute (4.5) into y,42 then

in@ iné 1 — /7]
Yniz = yn+1+h‘°i{zncose+hs‘ifn}+h2(—ﬂs—)fn+1,

0 0 62
sin @ cos 6 sin® 6 1 —cos@
?/n+1+h'_0—211’*"h‘2 92 fn+h?{T}fn+l-
Substituting for z, from (4.4) gives
1 —cosf sin? @ 1 —cosé
Yn+2 = Yn+1 +COSH {yn+l = Yn — hQ(——gr—lfn} + lz?e—an + hg(—ﬁ——)ﬂm

and this can be rewritten in two-step form as

1—cosé
Yny2 — (1 + cos g)yn—H + C059y11 = hQ(—T—) {fn+1 + fn} .
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Example : ¢=1
Substituting ¢ = 1 into (4.3) gives

sin @ 5 (1 —cos®)
Hcosﬁ+ 62 cos 6 St

Zn sm0 f
cosf Hco g’

Yn+r = yn+hzn

2n+1

which can be written in two-step form as

B2 (1 — cos )

€08 0 Yni2 — (1 + cos @) Y1 + Y = {fas1 + fns2}-

Example : ¢ =1/2
Substituting ¢ = 1/2 into (4.3) gives

2sin & +h2(1 cos )

= + hz ,
Yn+1 Yn ng cos% 92 cos g fav12
sin f
Zn4l = 2nt hmfn-{-l/%
0
sin ¢ ,(1—cos?)
Yntl = Yn Tt hzn‘9 s Q + 02 cos fn+1/2

2

4.1.2 Two or More Collocation Points

First we define F(c;) = f(zn + cjh,u(z, +¢c;h)) for y=1,...,s

For s > 2, from the initial and collocation conditions (4.2), we obtain a system of
s + 2 equations in s + 2 unknowns of the form Ax = b where- '

1 0 1 0 O 0o ... 0
0 k 0 1 0 0o ... 0
4o —k%cos(fc,) —kZsin(fc;) 0 O 2 6ch ... g(s)(cih)s?
—k%cos(fcy) —k*sin(Bcy) O 0 2 6eh ... g(s)(ch)*® |’
—k%cos(fc;) —k%sin(fc;) 0 0 2 6ch ... g(s)(csh)*3




CHAPTER 4. THE MIXED COLLOCATION METHOD

a Un

b Zn
X = ro and b = Fle)
T1 F(CQ)
Ts—1 F(Cs)

62

where 8 = kh and we define g(s) = (s — 1)(s — 2). If the matrix A is non-singular,

then it is possible to find a, b and {r;},i=0,...,s - 1.

First, reduce the determinant of A to an sxs determinant:

—k?cos(fc;) —k®sin(fc;) 2 6ah ... (s—1)(s—2 -3
det A — —k?cos(fcy) —k?sin(fcy) 2 6coh ... (s—1)(s—2) 3
—k?cos(fc;) —k?sin(fc;) 2 6csh ... (s—1)(s—2)(csh)*3

= k*.2.6h.12h%.20R% ... (s —1).(s —2).h*% x (det B)

= k' (s—1)!(s—2)lh.h2. K. h*% x (det B)
= k'(s—1)!(s — 2)I Als=DE=3/2 « (det B)

where
cos(fc;) sin(fc,) 1 ¢ & ... 7?
B cos(fcy) sin(fc;) 1 ¢co ¢ ... &7
cos(fcs) sin(fc;) 1 ¢; 2 ... 73

(4.6)

The determinant of B is evaluated using the technique applied to the Vandermonde
determinant. First, multiply the third column of det B by the leading terms of the
first and second columns and subtract the modified column from columns one and

two respectively. For columns 4 to s, multiply each preceding column by the leading

term of column 4 and subtract this from the columns respectively from which the
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determinant of B is given by

0 0 1 0 0 - 0
cos(fcy) — cos(fc,) sin(fcy) —sin(fc,) 1 Wiy coWay ... ™ 'Wa,
cos(fcs) — cos(fcy) sin(fcs) —sin(fey) 1 Wiy esWer ... ¢S74W,

where W, = ¢, — ¢;.

The determinant of B can be reduced to an (s — 1) x (s — 1) determinant and we
divide the i-th row by (¢; — ¢;), thus we have

cos(fcy) — cos(fcy)  sin(fcy) — sin(fcy) 1 c... &
(Cg - Cl) (C2 - Cl)
(02—01)...(63‘*61) RS A,
cos(fc,) — cos(fcy)  sin(fc,) — sin(fc1) 1 ¢ ... c™*
(e —cn) (e =) S

Definition 4.1 Let R(c;) be a function evaluated at g distinct points {c;}{_,. Then,
we define the divided differences R[c;,cs,...,¢5], 7 =1,2,...,q recursively by

R Y] i, Ci
Rlcj] := R(c;), Rlci,cay...,¢4) = len o, ’CJ]C. _}1[161’62’ = 1]'
g

If we define p(z) = cos(z), §(z) = sin(fz) and F(c¢;) = f(2n + cjh, u(z, +c;h)) for
j=1,2,...,s then

ﬁ[cl,CQ, . ,Cj] — p[c'2)637 P ,Cj] — p[61,62, [P ’Cj—l],
¢ —C1
(7[61,02, .. ,c]-] — q[02’63’ e ’cj] - Q[Cl, Cyyont ,Cj—l] ,
C;—C
F ¢l = F L Ci
Fley,e9,...,¢5] = [ca, ¢35 - ) [c1,c2,. -5 ¢5 1].
c;—C
Thus
Tj[Cl)CQ] Q[Cl,CQ] 1 Ca ... 03—4
s g g 1o .. o
det B = [J(ci — 1) plei, ca]  gler, sl cs s
1=2

p[clu Cs] Q[Cl, Cs] 1 Cs ... ¢
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Repeating the above process, the determinant of B is

s ] s =
p[ch" Cs—2,Cs— 1] [C]_,...,CS_Q,CS_l]
C;—C - (32 ; — C 2 _
I=I 1]‘:[3 ,zl:‘[l ° pler, - cs—a,¢s)  qler, - Cs—2, €
As
ﬁ[cl’ <oy G52, Cs—l] ‘I[Cla <oy Cs2, Cs—-l]
ﬁ[cll S . ) CS] Q[ch RN S7 I Cs]
— (C_q _ Cs_l) 15[_01; «v3Cs—9, Cs—l] Q[_Ch c ey Cs—2, Cs—l]
p[cla"')cs—lacs] Q[Cl,---:cs—lacs]

then the determinant of B is

det B = H ci —cg) x D (4.7)

i>k r.
where
D = pler, ..., ¢s-2,65-1)qler, - - -y Cs—1,Cs) — Blery - -+, C5—1, Cs] Gler, - - -y Cs—a, Cs—1]-
(4.8)

An alternative way of writing the determinant is by using the formula

q —
_ c
p[cs—q,cs+1—qv---,Cs—lacs] :Z q GE J) y¢=0,1,...
—0,i#]
and so substituting into det B for p(z) and §(z)
s §—15-2 = =
det B = H(Ci _ Ck) x Z Z — 1q(cs J)p(cs 1- I) p(cs J)Q(cs—l—l)
>k 7010 II Cs—j — Cs—q) II Cs—1-1 — Cs—1-p)

q=0,9#j p=0,p#!

As

G(ca)p(cy) — B(ca)Glcy) = sin(fc,) cos(fc,) — cos(fc,) sin(fcy) = sin[f(c, — cb)],
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then,

ot B f[(q R S sin[f(c;—; s—_205-1—t)] . (4.9)
i>k j=01=0 I (es—j — cozg) H (Cs—1-1 — Cs—1-p)

q=0,9#j p=0,p#!

Thus the determinant of A is given by

det A = k* (s — 1)! (s — 2)! A(s~D(=3/2 H — )

i>k

s—1s5-2 3
sin[@(co—j — Cs—1-1)]
>3 — for s>2. (4.10)
== H (Cs—j - Cs—q) H (Co—1-1— cs—l—p)
9=0,0#j p=0,p#l

In particular, with s = 2, this gives
det A = k*sinf(cy; — ¢;)

and A is singular if (co —¢,) = nw, where n is integer. Therefore distinct collocation
points do not guarantee a unique solution.

We now require the coefficients a, b and r;, 1 = 0,...,8 — 1. As ry and r; can be
found from the initial conditions, we only need to find a, band r;, 1 =2,...,s — 1.

Therefore, the system of equations Ax = b may be written as an s X s system of
equations T'x’ = t' where

—k%cos(fc;) —k%sin(fc;) 2 6ch ... (s—1)(s —2)(cih)*3
—k%cos(fcy) —k%sin(fcy) 2 6coh ... (s —1)(s — 2)(ceh)*™3
T' = | —k?cos(fc3) —k?sin(fc;) 2 Gcsh ... (s—1)(s—2)(czh)*™® |,

—k?cos(fcs) —k?sin(fc;) 2 6Gesh ... (s—1)(s — 2)(ch)*3
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a F(Cl)
b F(Cg)
x'=| 71 |and t'=| F(c)
K Tg—1 F(CS)
Define pis,.; = Plen,cay -5, Gua,.; = Gler,ca, ..., ¢;] and similarly Fip ; =

Fley, e, .. ,¢j).
We use linear combinations of the rows with the formula

row k — row j

rowk > ——— j=1,...,s—1, k=j5+1,...,8 71
Cr — Cj '
and divided differences to find the coefficients a, b and r;, i = 2,...,s — 1. For
J=1
ow k—row 1
rowk—)u, k=2,...,s8
Cp — C1

and therefore the matrix 7" is replaced by

—k*p(c;) —k%q(c1) 2 6ch 12¢2h? . g(s)(c h)s3

s—3 _ s-3

“kzﬁl,z —kgql,z 0 6h 12h%(c,+c) ... g(s)hs‘3 (Cz(cz Zl) )
—C

25 2= 9 _3 (C‘;—3 — C‘I_ )

k13 —k*@a 0 6h 12h*(ci4c3) ... g(s)h reT.
3 — C

2= 2 2 (e - )
~k*ys  —k'qs 0 6h 12h%*(ci+cs) ... g(s)h® o=
s — L1

where g(s) = (s — 1)(s — 2) and the column vector t’ is replaced by

[F(c1), Fler, o), Fler, el - - - F[cl,cs]]T.

Let B;(z) = 7. If we repeat the above process a new system of equations Tx' =t
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is obtained where the matrix T is

—k%p, —k%q 2 6ch 12c2h? e g(s)(cyh)*~3
—k%*p12 —k2q1 2 0 6h 12h%(cy +c2) ... g(s)h*3B,_3lci,ca)
—k*p1,2,3 —k*q123 0 0 12h? ... g(s)h*3B,_3c1, ¢z, c3]
—k¥pr1a,. s—2 —k*@i2,.s-2 0 O g9(s)h*—3
~k%p19, 5.1 —k*@1a,.s-1 0 O 0
—k’pra,.s  —kKqa.s 0 0 0
with
a F
b Fi2
T2 F1,2 3
x =1 ... and t = r.
Ts-3 Fio, s-2
Ts—2 Fio, . s—1
Ts—1 Fia, s

The determinant of T is
det T'=2.6h.12h%.. (s—1).(s—2). A3 k*x D = k' (s—1)! (s—2)t As=D=3/2 D

where D is given by (4.8).

Let T, be the minor of the element in the (p, k) position in the coefficient matrix
T and using Cramer’s Rule

0@ = = Tg(—np-l:r,,w[cl, el (4.11)
- deiT’;(q)PTp,gp[Cl,...,cp], (4.12)

and . ) |
= T 1DX::I(—1)"+’-1T,,,1+i19‘[c1, g, 1=2,.0,8— 1. (4.13)

Alternatively, if we leave the matrix A (given at the start of section 4.1.2) as an

(s +2) x (s+ 2) matrix and use the same technique to find the coefficients, then we
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obtain the coefficients ¢ and b in the form

. 1 {F[CI,C2,...,Cs_llq_[ChCQ, ...,¢s] = Flei, ¢, .-, cs)qler, ca, - - -,03—1]}
k2 | Bler,ca,- -, Comildler, c2, - - cs) — Blen, ca, . - c)@lens co, -y €5
1 _
= _k2_D {F[claCQ) v -103—1]6[611627 v ,Cs] - F[CI,CQ) v ;Cs]Q[ClaC% O )CS—I]}
and
b - _i {F[CI)C'Z)' . .,CS]ﬁ[Cl,CQ,.- ‘)cs—l] - F[ClaCQa' . ')cs—l]ﬁ[clac27' ..,Cs]}
k2 ﬁ[clac2’ DI 1cs—1]q[cl)c2, - -:cs] - ﬁ[chc?) e )cs]q[clac% - -1cs—1]

1 _
= D {Flei,cay. .., cslpler, cay- oy cs-1] — Flex, e2, ..oy es-1)Bler, €2, ..y 6]}

Therefore, substituting the conditions (4.2) and the coefficients (4.11), (4.12) and

(4.13) into u(z), equation (4.1), we have r.
s—1 )
u(z) = acos k(z —z,)+bsin k(z — z,) + Y _ri(z — zp)*
i=0
s—1 .
= acos k(z — z,) + bsin k(z — z,) + 1o + (z — z)r1 + )iz — Tn)
i=2
1 o _
= Yo+ (T —Tp)2m + o T > {(—1)" YTy 1[cos k(z — z,) — 1]+

p=1

s—1 ) )

(1) Tpofsin k(z — z,) — k(z — z0)] + D _(-1)PH ' T, 14i(z — :cn)l} Fley, ... ¢l
i=2
Thus, the last equation may be written as
1 S

= — — e 4.14
w(z) = yn + (T — Tp)2a + det T ’;Tp(m)F[Ch » Cp) ( )

where T,(z) is the determinant obtained by replacing the p*" row of det T by

[cos k(z —z,) — 1, sin k(z — z,) — k(z —2,), (z—z0)% ..., (x — a:n)s‘l] :
Similarly,
s—1 )
W(z) = —aksin k(z — 3,) + bk cos k(z — z,) + D iri{z — )"

i=0
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s—1
= —aksin k(z — z,) + bkcos k(z — ) + 1 + D iri(z — zn)"
1=2
1 .
- 1 e . .
BT szl{ (=1)P7 Tpaksin k(z — za)+

s—1

(—1)? kT, 2[cos k(z — z,) — 1] + i(—l)’”’i_1 Tpi+it(z — mn)i_l} Fley, ..., 6).

i=2
Therefore
! _ 1 : /
u'(z) =z, + T {’;Tp(m)F[cl, e cp]} (4.15)
where T;(z) is the determinant obtained by replacing the p'P row of det T' by
[—k sin k(x — ), kcos k(z — z,) — k, 2(z — z,), ..., (s—1)(z — :z:n)’“z] :
Example
With s = 2,
1
w(z) = yn + (T — Tp)2n + et T {Ti(z) Flei) + Ta(z) Fler, c2) }

where

cos k(r —z,)—1 sink(z—2z,) — k(e -z,
r = |k (5= ) — bl =)

~k*plcy, ca —k*qler, ¢
k2
= { } {sin [k(z — z,) — Oco] — sin [k(z — ) — Ocy)
Cy — Cy
—k(z — z,,)[cos(fcy) — cos(fcy)] + sin(fcz) — sin(fci)}
and
—~k?*p(c —k%q(c
Ty(z) plcr) . q(c1)
cos k{z — xz,) — 1 sin k(z — z,) — k(z — z,)

= k*{-sin[k(z — z,) — Oc;] + k(z — ,,) cos(fc,) — sin(fcy)}

with

k'sin[f(c; — ¢))]
Cyr — C) .

det T =
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Therefore,

h2

u(®) = yn + (2 — 2a)20 + §2sin(f(c; — c1)]

{PlF(Cl) - PQF(Cz)}

where
P, = sin[k(z — z,) — Ocz] + sin(fcg) — k(z — z,,) cos(fcz),
Py =sin[k(z — z,) — 0¢1) + sin(fc,) — k(z — ) cos(fcy).
Let Yn+1, Zns1 and ynie, be approximations for y(z, + h), ¥'(z, + k) and y(z, + c;h)
respectively, then
sin[f(1 — ¢p)] + sin(fcy) — 0 cos(fcy) fora
82 sin[f(cs — ¢1)] e

_[sinf0(1 — ¢1)] + sin(fci) — 6 cos(fc) } .
[ 62 sin[()(c2 - cl)] ] f"+C2

Zn4l =

o[l

[ ] v

1 _ ' o [ [sin[@(c; — c2)] + sin(fcy) — O¢; cos(fca)
Ynte; = Ynt+ cihz, + h { [ 92 sin[9(02 — Cl)] n+cy

sin[f(c; — ¢1)] + sin(fc;) — Oc; cos(fc) o
_ [ B2 sin0(cs — o)) } fnm} ,i=1,2

where frie, = f(Tniterr Ynte) a0d frie, = f(Tntcrs Ynrer)-

Thus, the two-point mixed collocation method may be written as a Runge-Kutta-
Nystrom method with steplength dependent coefficients. In general, the s-point
mixed collocation method is given by
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s A
1
Yntl = Yn+ hzg + Tt T {ZTP(:E" +h)F[c1,c2,...,cp]}

p=1

1 L
PR zn+m{;Tp(mn+h)F[Cl:C2)-"’CP]} L (4.16)

1 S
Ynte; = Un + cjh’zn + m—] {;Tp(mn + th)F[Cl, Coy - - 1Cp]}

for j=1,...,s

where T;,(z, + h), T;(z, + h) and T,(z, + c;h) are the determinants obt?ined by
replacing the p-th row of det T" by '

[cos@ — 1,sinf — 6,R%,... K571,

[—ksin @, k(cos@ — 1),2h,...,(s — 1)h*"?]

and
[cos(fc;) — 1,sin(fc;) — bc;, (c;h)?, ..., (c;h)* ]

respectively, where 6 = kh.

An alternative approach

Because the coefficients a, b and r;, equations (4.11), (4.12) and (4.13) respectively,
are in terms of divided differences for f(z,y) at the collocation points, it is difficult
to see whether the mixed collocation methods can be written as a Runge-Kutta-
Nystrom method (2.12) for arbitrary s. Coleman [20] considered interpolation meth-
ods using a function of the form aC(z) + bS(z) + 7 a;z?, where C and S are
given functions for arbitrarily chosen distinct nodes and he derived both Lagrangian
and Newtonian formulae. Coleman showed in [22] that it is possible to write the
mixed collocation methods as a Runge-Kutta-Nystrém method with steplength de-
pendent coefficients. The following is a brief description of his work in deriving the
coefficients of the mixed collocation method.
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Consider approximating the solution y(z) by a function u(z) of the form

s—1
u(z) = acos k(z — z,) + bsin k(z — zn) + Y_ri(z — z,)’
i=0

but introduce a new variable ¢t = (z — z,,)/h. The function u(z) becomes

s—1
u(zn + th) = acosft + bsinft + > _ r;h't.
1=0
Observe that u”(z) is a function which combines a polynomial of degree s—3 and two
trigonometric functions. Also «"(z) interpolates the s data points [z, + ¢;h, v (2, +
cih)], for i = 1,2,..,s. Therefore in terms of ¢, for two or more collocation points
(i.e. s > 2), the approximation for the second derivative can be expressed as
I.

"(zn + th) = ZL ) frteis (4.17)
where fni, = f(Zn + cih,u(z, + ¢;h)) and the canonical function L;(t) is given by

s—3 N
Li(t) = AD cos(0t) + BV sin(0t) + YRV, i=1,2,...,s.
§=0

The canonical function L;(t) satisfies the interpolation conditions
Li(Cj) = 61-3-, for ’l,,] = 1,2, .
Substituting the collocation points into L;(t), a system of s x s equations is obtained

which we denote Bx = 1. Matrix B is given by (4.6) and x and 1 are s-dimensional
column vectors given by

A Li(c1)
B(l) Li(Cg)
'R(l) ;

X = ?i) and 1= Liles) ,
Rl Li(C4)
’R,gil;; Li(Cs)

i.e. 1is the unit vector with 1 as its i-th component and zero everywhere else.
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Using Cramer’s Rule to find the coefficients A®, B®) and ’Rg-i), the canonical function
L;(t) may be written as
Bi(t)
Li t) =
t) det B

where B;(t) is the determinant obtained when the ¢-th row of det B is replaced by

[cos(t),sin(Bt),1,¢,...,t°72).
Returning to (4.17), integrate with respect to ¢
8§
U (Tn + th) = 20 + h Y 0i(t) fare (4.18)
i=1
where ,
a;(t) :—-/ Li(t) dr.
0
Integrating (4.18) with respect to t, we obtain
8
u(zy + th) = y, + hz, + h? Z Bi(t) faters
=1
where , , ,
Gi(t) = / o;(7) dr = / / Li(o) do dr = / (t — 7)Li(T) dr.
0 0 Jo 0

Thus, the mixed collocation method may be written as an implicit s-stage Runge-
Kutta-Nystrom method (2.12) with coefficients

bi = Bi(1), di = ci(1) and ay; = B;(ci).

As only one row of det B depends on ¢, then we can integrate to give

B () B (¢)
a(t) = qop ad Bl =355

where Bfl)(t) and Bi(Q)(t) are the determinants obtained when the i-th row of det B
is replaced by

sin(ft) 1 — cos(6t) , t2 52
6 0 T2 s -2
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and

gz T 8 26 ' (s-1)(s—2)

respectively.

Coleman showed that by replacing 8 by —0 in det B, B;(t), BY(t) and Bf2)(t), then
the determinants are multiplied by (—1) and thus the quotients o;(t) and f;(t) are

even functions of @ and so the coefficients of the mixed collocation method are even
functions of 6.

4.1.3 Mixed Collocation Method for s =2 and s =3

Two Collocation Points (s = 2)

Define fnic, = f(zn+cih,Y;) fori=1,...,s. The formulae for the two-poipt mixed
collocation method with collocation nodes z, + cih and z,, + coh are

sin[f(cy — 1)] + 0 cos(fcz) — sin(fcy) )
62 sin[f(c; — ¢7)] fute
sin[f(c; — 1)] + 0 cos(fc,) — sin(fc,)
- 62 sin(f(c; — c2)] fn+c?} ’
cos(fcy) — cos[f(c2 — 1)]
fsin[(c; — c2)) Jte
cos[f(c; — 1)] — cos(fey)
@ sin(f(c; — co)] Juver [ L
sin[f(ca — ¢1)] + Oc; cos(fcy) — sin(fc,)
2 sin[f(c, — c2)] frver
sin(fc;) — fc; cos(fcy)
92sin[f(c; — cp)] "2
B¢, cos(fcy) — sin(Ocs)
Fsinlf(cr —c)] e
sin[f(c1 — ¢2)] + Oca cos(fcy) — sin(fey)
- 6%sin[f(c; — ¢2)] f"+c2} )

yn+1 = yn + th + h:2

Cngl = Zn+h{

Y, = yntcihz, +h?

Yg = Yp+ CQth + h?

(4.19)
where 6%sin[f(c; — ¢3)] # 0.

As k — 0 the formulae become

h?
YUn+1 = Yn + hzn + —— {(362 - 1)f71+cl + (1 - Scl)fn-i-cz} 3
6(c; — c1)

h {(262 - 1)f71+c\ + (1 - 261)f11+c-3} )

Zngl = 2yt ————
n4-1 Zn 2(62—61)
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2 3

ct(3co — 1) B cs }
6(02 — Cl) fn+c| 3(02 — C])fn—‘.c2 ’

3 2(c — 3cy)
Y, = u, hz, + h? __CQ__nC 62_2_-1'_nc ,
2 Yn + Cohzn + {3(c2—cl)f+‘+ 6(cs — 1) frtes

Y, = yn+clhzn+h,2{

which is the polynomial collocation method (2.16) for two collocation points.

Example: ¢; =0, ¢ =1

Substituting ¢; =0, ¢, = 1 in (4.19) gives

sin@ — @cosd 6 —sinf
Yn+1r = yn+hzn+h2 { 2 o }fn+{ }fn+1 y
6% sin 8

82 sin
1—cosf

Znti = Znt+h (W) {fo+ fos1}
and from (4.10)
det A = k*sing
which is non-zero for 6 # nm, n integer. Thus the method is undefined when 8 = nx.

In the limit as k — 0, the mixed collocation method for ¢; = 0 and ¢; = 1 reduces
to

h2
Ynt1t = UYUn + th + '6_ {2fn + fn+1} )
h
Znyl = Zn + 5 {fn =+ fn+]} .
If we compare the two-point collocation method (4.19) with the Runge-Kutta-
Nystrom method (2.12), then the coefficients are )
b sin[f(1 — ¢g)] — 6 cos(fcy) + sin(fcy)
1

62sin[f(c, — c1)] ’
_sin[f(1 — ¢;)] = Ocos(fcr) + sinffcr)

b = 02sin[f(c, — c1)) ’
4 — cos(fcy) + cos[f(cz — 1)]
! fsin[f(co — ¢;)] ’
d —cos[f(c; — 1)} + cos(fey)
: @ sin[f(cy — ;)] ’
W = sin[f(c; — cp)] — by cos(fcy) + sin(fco)

62 sin[0(c; — ¢ )] ’
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_sin(fc;) — fey cos(ber)

2 02sin[f(c; — ¢1)] '
" —fc, cos(fcs) + sin(fcs)
A 62 sin[0(c, — c1)]
a4y = _sin[0(c2 —¢1)] = ¢z cos(Bcy) + sin(fcy) ‘

62 Sin[0(62 - Cl)]

It is easily verified that these coefficients are even functions of 6.

Three Collocation Points (s = 3)

The general formula for the three-point mixed collocation method is

Untr = Un + th + h2 {blfn+c1 =+ b2fn+cz + b3fn+ca} 3 ‘

Zn4l = Zp+ h {dlfn+(:1 + d2fn+c2 + d3fn+ca} )
and
Y= Un + cihzn + h? {ailfn+c1 + ai?fn+cz + ai3fn+ca}
for 1=1,2,3
where

; 62 sin[f(c3 — ¢2)] + 2Qlcz — 1,3 — 1] — 2Q|cs, ca] + 20P]cs, o]
1 — )

202 &

92 sin[B(cl e 63)] + QQ[Cl - 1, C3 — 1] - QQ[Cl, Cg] + 20?[01, C3]

b2 = )
202 €&

62 sin[(co — ¢1)] + 2Q[ca — 1,¢1 — 1] — 2Q]ca, ¢1] + 26P[ca, ¢i1]

b = 262 € ’

sin(@(cs — c2)] — Ples — 1,¢2 — 1) + Ples, ¢2)

b= o€ ’
Osin[f(c, — c3)] — Pler — 1,¢3 — 1] + Pley, c3)

d? = 0E )
4 = @sin[f(co — ¢1)] — Plea — 1,¢1 — 1] + Pleg, ¢4
3 - )

&
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and
. c20% sin[0(c3 — ¢2)] + 2Q|ez — i, ¢ — ;] — 2Q|cs, c2] + 26¢; Plcs, ¢
il — )
202 €
c20?sin[0(c; — c3)] + 2Q|c1 — i, 3 — ;] — 2Q]cy, ¢3) + 20¢; Pley, ¢3)
Aipa = 202 £ )
c20%sin[0(cy — ¢;1)] + 2Q|cz — ¢, 1 — i) — 2Qc2, ¢1] + 20¢; Plca, ]
s = 202 € !
with
Plz,y] = cos(6z) — cos(fy), Qlz,y] = sin(fz) — sin(dy),
and

E = sinlf(c; — cz—)] + sinff(c, — c3)_] + sin(f(cy — cl)]_ I,
= 4sin [9( 3 5 2)] sin [9( : 5 3)] sin [9 (%)]

where we require £ # 0. As k — 0, the three-point mixed collocation method
reduces to the polynomial collocation method (2.17).

Example
With ¢y =0, =1/2and ¢3 =1

Ynt1 = Yn+ hz, + R {blfn + bafnyr2 + b3fn+1} )
Zngl = 2Zpt+h {dlfn +dofnir2 + d3fn+1} ;

and

h
Ynt+1/2 = Yn T+ 5211 + h? {G'?lfn + asfoyij2 + a23fn+l}

where
_ 6%sin(6/2) + 4sin(6/2) — 2sin 6 + 26 cos § — 26 cos(6/2)

b= 262{25in(8/2) — sin 6} ’

_ 2—0sinf —2cos?

~ 20{2sin(0/2) — sin 6}’

62 sin(0/2) + 2sinf — 4sin(9/2) + 260 cos(#/2) — 20
202{2sin(6/2) — sin 6} ’

ba

1)3 =

_ 0sin(0/2) 4 cosf — 1 _ 2-0sinf —2cosb
T 0{2sin(0/2) —sin6} " 0{2sin(6/2) — sin 6}’

ay
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_ 0sin(0/2) + cosf — 1

d = 9{2sin(6/2) — sin 6}’

and
(6% + 16) sin(#/2) — 8sin @ + 46 cos @ — 46 cos(6/2)
862{2sin(6/2) — sin 6} ’

62 sin @ + 16sin(6/2) — 8sinf — 40 + 46 cos b
802{2sin(#/2) — sin 6} ’

_ Bsin(6/2) + 4cos(0/2) — 4

92 = T 89(25in(6/2) — sinf)

ag1 =

Qg2 = —

The determinant of A is"

det A = 4k*sin(0/2) — 2k*sin 6 = 4k*sin(6/2) {1 — cos(6/2)}

I
which is zero when 8 = 2nm, where n is a non-negative integer. So the method is

undefined when ¢ = 2nr.
Row-sum condition for the mixed collocation method
From the Runge-Kutta-Nystrom method, (2.12)
S
YiRKN = yp + cihz, + h? Za,-]-f(m,, +c;h,Y;) = ylzn +ch), 1=1,...,s.
Jj=1

The row-sum condition is a customary condition to impose on Runge-Kutta-Nystrom
methods and ensures that the stage order is at least 2. Therefore we set y" =

f(z,y) =1 and thus f(z, +c;h,Y;) =1, fori=1,...,s. Using the exact values of
the solution and its first derivative at xz,,,

YN = y(z,) + cihy/ (za) + B2 D ay5. (4.20)

5=1

For the mixed collocation method (4.14)

1 S
w(z) = yn + (z — zn)zn + et T {ZTP(IE)F[Cl,Cg, o ,cp]} .

p=1
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Substituting © = z, + ¢;h, where u(z, + c;h) = Y; = yYnie; = y(Zn + cih), then

1 S
YMC =y, + cihzn + et T {Z Tp(zn + cih)Fle, . . ., cp]} ~ y(z, + ¢h) (4.21)

p=1
for 1=1,...,s.
Using exact values,
1 S
}/iMC — y(xn) + c,hy'(:L‘n) + d_. Z Tp(mn —+ C.,'h,)F[Cl, . ,Cp] . (422)
et T =1 _

We want to compare Y;MC (4.22) with the expression for Y;2XN (4.20) for the Runge-
Kutta-Nystrom method. As f(z,y) = y" = 1, then F[¢;] = f(zn+cih, u(zpFcih)) =
1fori=1,...,s, and expanding the divided differences we obtain

Fle)] - Fles] _

Fle]=1 for i=1,...,s, Flei, )= P
1—C2

0

and hence Flcy,...,¢) =0, for p=2,...,s. Therefore (4.22) becomes

Ty (zn, + cih)
YMC = y(z,) + cihy' (zp) + 221 4.23
HC o) + by (an) + LS (4.3
Now, Ti(z, + c;h) is given by
cos(fc;) — 1 sin(fc;) — fc; c2h® cihd ... (c;h)*!
—k?zﬁlﬂ _qul,Z 0 6h ... g(S)hs_SBS_‘g[Cl,CQ]
—k*Pr23 —k%G1 0 0 0 ... g(s)h**Bs_slc1, co,c3)
—k*pra, s—2 —k'qra,.5—2 O 0o ... g(s)hs3
*kQZ_’l,?,..,s—l —kQCﬁ,z,_,,s_l 0 0o ... 0
—k*Pr o, —k*q1a, s 0 0 ... 0
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where g(s) = (s — 1)(s — 2). For s > 3, the determinant may be reduced to
—k*py 2 kG 6h ... g(s)h**B,_s[c1, ]
—k*P1 23 —k*q123 0 ... g(s)h*3B,s_3lc1, ¢, c3)
Cih, )
—k*Pra,..s—2 —K’GQra.6—2 0 ... g(s)h*~?
—k*Pra,. 501 —K*Qi2,. 5.1 0 ... 0
—k*pro,.s —K@e.s 0 ... 0
and this can be reduced again until we obtain
Ty(zp +cih) = k'.c2h? . 6h.12h% (s —1).(s —2). R x D
2p2
= % k' (s — 1) (s — 2)I Als=DE=3/2 5 p 7
where D is given by
D= ﬁ[cla <y G52, cs—l] ‘7[01, cee3 G5, Cs] - ﬁ[ch <oy Cs1, Cs] q_[cl) -e 3 G52, Cs—l]'

80

As T\ (z, + ¢;h) can not be written in the above form for s = 1 or 2, we will look at

these cases separately.

So, for 3 or more collocation points, i.e. s > 3, we have

cth? 4 (s—2)(s—-3)/2
Tl(x,L—i—cih):Tk (s=D'(s—2)h x D

where
det T = k* (s — 1)! (s — 2)1 R=DE=9/2 D

and from equation (4.23)

2
YiMC = y(z,) + c;hy'(z,) + %’hz.

When this equation is compared to (4.20), we obtain the row-sum condition

=N

0|

s 2
Za‘ij: , izl,...,S, 823
=1
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For the one-point mixed collocation method (4.3), the equation for Y is

sin(fc) o | 1 —cos(fc)
}/ - n A N en 0 . /nN n+c
v +hﬁcos(00)z +h { 62 cos(fc) fut

and clearly does not satisfy the row-sum condition, but in the limit as k — 0,

2h2
Y — yn +chz, + chn+c

and so the corresponding polynomial collocation method satisfies the row-sum con-
dition.

R

For the two-point mixed collocation method (4.19),

Ti(zn +cih) 2 {[cos(Bcg) — cos(fey)][sin(fc;) — Oci) T
det T - 62 sin[f(c; — c1)]
_ [cos(fci) — 1][sin(fc,) — sin(9c1)]}
62 sin[f(co — ¢1)]

ch?

7 5

Ci=1,2.

Therefore, for two collocation points, the mixed collocation method does not satisfy
the row-sum condition. Again, as k — 0,

c?h?
Yi—)yn+cihzn+’T, for 1=1,2

and so the row-sum condition is satisfied for the corresponding two-point polynomial
collocation method (2.16). '

We conclude that the row-sum condition applies only to 3 or more collocation points
(s > 3) for the mixed collocation method (4.16). When the row-sum condition is

imposed, the stage-order is at least two and the number of steplength dependent
order conditions is reduced.

Trigonometric Order

Following Definition 3.2 in Chapter 3, for a mixed collocation method to be of
trigonometric order 1, we require that the linear operators of the method are anni-
hilated by the functions y(z) = cos(kz) and sin(kz). The collocating function is of
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the form

s—1
u(z) = acos k(z — z,) + bsin k(z — z,) + ZTi(fE - 33n)i- (4.24)
i=0

It is only necessary to see that if the collocating function satisfies (3.1), i.e.
u(z, + cjh) = cos k(z, +c;h) for j=1,...,s when y(z) = cos(kz),

and similarly
u(z, + cjh) = sin k(z, +¢;h) for j=1,...,s when y(z) = sin(kz),
then the mixed collocation methods are of trigonometric order 1.

I
Let y(z) = cos(kz), then f(z,y) = ¥"(z) = —k®y(r) where the general solution is

y(z) = Acos(kz) + Bsin(kz).

Also the initial conditions and collocation conditions are u(z,) = ¥n, ¥ (Tn) = 2n
and

u'(z, + c;h) = —k*u(z, +cjh), 1=1,.,5s.

As the collocating function is of the form (4.24), then the coefficients a, b and r;
can be found so that u(z) = y(z). Similar results are found when substituting
y(z) = sin(kz). Also, by the straight substitution of y(z) = cos(kz) and sin(kz)
into the formulae for the mixed collocation methods, it is easily verified that the
methods are of trigonometric order 1.

Theorem 2 Every 2-stage Runge-Kutta- Nystrom method which is of trigonometric
order 1 1s a 2-stage mized collocation method.

Proof: From Definition 3.2, for a 2-stage Runge-Kutta-Nystrom method to be of
trigonometric order 1, we have two equations in two unknowns for the coefficients
b; and d; respectively, and for the coefficients a;;, there are four equations in four

unknowns and the coefficients are precisely those of the 2-stage mixed collocation
method (4.19).
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4.2 Order
4.2.1 One Collocation Point

To find the order for a one-point mixed collocation method, we introduce the idea
of using the residual as a measure of the accuracy of the method. We form a Taylor

expansion about some suitable value of  and express the residual as a power series
in h.

Using the exact values y(z, + h), y'(z, + h) and y(z, + ch) the difference operators
for the one-point mixed collocation method (4.3) are defined by

L) = et o) ylon) = b/ { o | e {\m 0O 1

sin[f(1 — ¢)] + sin(Bc)}
6 cos(fc)

1 —cosé
P 2 ——
h {02 cos(fc) } free

Ll = Yo 1) o) { S I

Lilyl = y(za+h) —y(zs) — hy'(za) {

where foy. = f(zn, + ch,Y) and

sin(fc) L2 {1 —cos(fc)}

Y = n ' n
y(zn) + hy' (@ )Hcos(ec) Y cos(fc)

f(zp +ch,Y).

Expand the trigonometric functions about h = 0 to give

Lly) = ylzn + ch) — y(z,) — hy'(zy,) {c + -6—330;2 +.. }

— {? + .. } f(xn +chY)

2p2 A3
= = {y"(zn) = f(@n +ch,Y)} + - {y(:‘)(xn) - 2k2y'(:nn)} + O(hY)
= K23

where 3 is finite as h — 0.
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Therefore
Y = y(xn + Ch‘) - L[y] = y(mn + Ch) - hzﬂa

from which

f(@n+ch,Y) = f(z,+ch,y(zn + ch) — h?PB)
= f(zn + ch,y(zn + ch)) — B?*Bf,(zn + ch, y(z, + ch)) + O(R?)
= y"(za + ch) — h*Bfy(zn + ch,y(zn + ch)) + O(hY).

We need to expand f,(z, +ch, y(zn +ch)). Let F(h) = fy(zn+ch, y(zn +ch)), then
using a Taylor expansion about h =0

F(h) = F(0) + hF'(0) + O(h?)
where
F(0) = fy(xnay(xn))w -7:,(0) = c{yl(mn)fyy(xnay(xn)) + jym(xmy(l'n))}-
Substituting back into f(z, + ch,Y),
c2h?
f(@n +ch,Y) =y"(zn) + chy® (z,) + Ty(“)(:cn)

+£36i {y(S)(xn) + zfy(mmy(.'lin)) ['y(3) (:L‘n) + kzy'(zn)]} + O(h4).

The functional L;[y] is given by

Luly] = y(@n + h) — y(on) — hy'(5a) — {’“—(3(: S } (@)

h? 4,2 c? 1 " (3) c*h? (4)
—{?+hk (Z_ﬂ + ... 28y (zn) + chy (:L‘n)+~2—y (Tn) + ...

= %(1 = 3¢) {y(za) + K%' (2) } + M1 -6 (YD () + K2y (2.) } + O(K°),

and similarly for L,[y]

Lolyl = v'(zn + h) — {1 + k*h? (c - l) + .. } Y (zn)
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2
— {h+k2113 (% — %) + } f(zn +ch,Y)

= = (1-2) {v(@a) + K2 ()} + %3(1 - 3¢%) {y () + k%" (n) } + O(hY).

Thus
if ¢ # %, Lily] = O(k?) or higher,
Lyly] = O(h*) = Order 1.
te=2, LBl = O(),
Lyy] = O(h*) = Order 2

And so the highest possible order for the one-point mixed collocation met’hod is 2

when ¢ = %

4.2.2 Two or More Collocation Points

It was shown in section 4.1.2 that every mixed collocation method (4.16) for two or
more collocation points can be written as a Runge-Kutta-Nystrom method (2.12)
where the coefficients b;, d; and a;; are functions of the steplength h and the fitted
frequency k. We expand the coefficients about h = 0 and define

bi(h) = b + b + n%P 4.
di(h) = d +hd +r2dP + ..
aij(h) = ag-)) + hag;) + hza.g) + ...

Then we can apply the order conditions in section 3.4.2. Because the coefficients
of the mixed collocation method are even functions of #, then any conditions which
contain a coefficient with an odd integer for the superscript can be eliminated. Up
to and including order 6, there are 50 order conditions for the mixed collocation
method for two or more collocation nodes. When the row-sum condition is imposed

for s > 3, a further 18 conditions are eliminated leaving 32 conditions to be satisfied
for orders 1-6.
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Order Conditions for Mixed Collocation Methods with s > 2

Order 1: .
1) dY =1.
im1
Order 2: 3
Z d(o)c, - z bfo
Order 3:

)3 a0 =1 1) =0, 8) S a0 =L 0)y 0L

i=1 i=1 i=1j=1 =1
I,
Order 4: , ) .
11) S d0E = n 13) Y dP¢, =0,
i=1 i=1
d(o @, = = dm) O,
S
18.) Zlbgo)cf — zb@ —0, 21) zlzlbm 14
i= 1=19=
Order 5:

d 1 s s
2) Y d% = 1 20) 3 a®e =0, 26) Y d" = 0
=1 i=1 =1

27)22{d(2 oy +d%al} =0, 29, ZZd(O) 02 1

bl
i=1j=1 i=1j=1 60

s $§ S 1

2
5 s 1

i=1j=1k=1 im1 =
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b

Z Zd(o a(o)c,cj Z Z d%q! 0)02 = 110, 35.) Zbgo)cf = %,

i=1j=1 i=1j=1 i=1

1
37 )mecl—O 40.) ZZb aPe; = ﬁ 41) ZZbo)afgq—ZO

i=1j=1 i=1 j=1
Order 6:
42.) Zd(") 5 — de” =0, 46.)% d"¢, =0,
i=1 =1 i=1 '
T,
S ] 5 8
49)3> 3 {0 + d"a@} e =0, 50) 33 {dPaf) +daf} ¢; =0,
=1 j=1 i=1j=1
Z Z d(O)a(O) 3 Z Z Z d(O Jk Cz L,
i=1j5=1 i=1j=1k=1 144
S L} s
0400 ) 1
56) 23 3 ol ;;’;d alle; = =,
©, 1 0403 = 1
;le,czld lajiler = 720’ 59);;‘1 120’
60.) Z Z d&‘”aﬁg)qc? Z Z d(0 a(o)cgcJ L
i=1j=1 i=1j=1 36

2
62.) S d"¢; (Za52)> = Zbﬁ")j 0 67.) S b2 =0,
i=1 j=1
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me =0, 70) 3 {60 + 0@} = 0, 73. ZZb“” @2 _ 1

’
=1 j=1 i=1 j=1 60

$ S
)3 Y 00 = =, 75) 33 6000 =

i=1j=1 180 i=1j=1 360,

2
w5 () - g MEL LA -

i=1 j=1 i=1 j=1k=1 720

For one collocation point, we require ¢ # 1 for order 1 and ¢ = 3 for orddr. 2, the
highest possible order. Therefore, from the order conditions for order 1, we require
d{” =1 and for order 2 we require d{"c = 3 and B =1

Thus, when ¢ # %,
1
d® =1 but d% # 5

and so order 2 is not satisfied. When ¢ = %

1

1
d” =1 = order1, d® =5 and B0 = =

b

so we have order 2. In conclusion, the order conditions in section 4.2.2 are valid

for one collocation point for the mixed collocation method.

We know that as the frequency &£ — 0, the mixed collocation methods reduce to the
corresponding polynomial collocation methods. As the set of order conditions for
the polynomial collocation methods are included in those for the mixed collocation

methods, then we have the following property [22]:

Property 2 The order of an s-point mized collocation method does not exceed that of

the corresponding polynomial collocation method, and in particular, does not exceed
2s.

The evidence so far suggests that the order of a mixed collocation method is the

same as the corresponding polynomial collocation method but we have not yet found
a proof.
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4.2.3 Examples
Order Conditions for Two Collocation Points

Using the order conditions of section 4.2.2 it is possible to find the values of the
collocation nodes so that the highest attainable order is reached for the mixed col-
location method. As b;, d; and a;; are even functions, when the expressions are
expanded about h = 0, the coefficients of the odd powers of h are zero. Maple was
used to carry out the expansions.

b= b0 +h2P +ntl +
3¢y — 1 2R 20c3 — 15¢3 + 3 + 30cyc? + 20c¢icy — 60c;c2 — 10c? N
6(c2 — c1) 360(co — ¢1)
by = b9 +h%Y 4+ ntY +
_ 1-3a B2 20c1 15¢; + 3 + 30¢,c3 + 20ci ¢z — 60cyc? — 1({02
6(62 - Cl) 360(62 — Cl)

d = d” +h2dP + il
2, — 1 2 4¢3 — 4cg + 1 + deac? + deyey — 8eyc3 — 263 N
2(62 — Cl) 24(62 — Cl)
dy = dY +h%dP + hidd) +
o 1=2¢ p2g? {40% —4c) + 1+ 4eycd + 4eycp — 8coc? — 2(:%} N

2(C2 - Cl) 24(C2 - C1)
a; = au) -+ h2 (2) + h‘la11
B 6(c2 - cl) 360(c; — c1)
ar = a9+ hr2%a? + rtalY) + ..
3(ca — ¢1) 90(cs — 1)
Qg = (0) -+ h2a21 + h4“21
3 2¢2 — 10c, ¢y + 5¢2
— 12k2 2 162 1
3(cq — cl) Mk { 90(c2 — ¢1) +
Qyy = a§2 + h? a22 —+ h‘a({; +.
(e — 3ey) T 4Oc1 — 35¢,¢p + Tc2
B G(CQ - Cl) 360(C2 - C])

where we assume distinct collocation nodes.
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For order > 1 we require

2c5 — 1 1-2¢
1) d+d0 =1 = 2 + L=
) ! 2 2(62 - Cl) 2((32 —_ C1)

which is satisfied automatically.

For order > 2,

2co — 1 1-2¢ —c1+c
N 2 n L, = 1 2

1 1
2) d¥%, +d®%, = 1 e —c) 3
) 1 0 2 C2 D) 2(62 — cl)cl 2(62 - Cl) 2 2(62 - cl) 2

3cp — 1 1-3c 1
4. b(o) b(o) — - 2 1 _ -
e + 2 2 6(62 - Cl) + 6(62 - Cl) 2

and again all the order conditions are satisfied automatically.

For order > 3,

2c9— 1
= 2 c +

1 1-— 201 2 C1 +Cp — 20162 1
3 2c—c1) " 2 — )

Cy = = —

5. d(o) 2 d(o) 2
) +dycy = 5 3

and so we require
= 3¢y + 3¢y — 6160 = 2,

therefore

2 — 302

3 — 662,

1
C = 5

cy #

The rest of the conditions are

7y d? 4 = 8@ =) — 4o —a) - 12a6(0 o)
24(cy — 1)
kJZ 3(62 -+ Cl) -2 60162
12

B k2{3{c2+(§ ggz)}—2—6(%§)62}

)

12

20 — 1)+ 3(1 — 2¢1)
8) d” (¢l +a{D) +dP (a0 + a2} = ci(2c 2
) ( 1 12) (21 22) d(cs — 1)

c) + Cy — 20162
4
(=) +e—2(5=8) @
4
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_ 2 — 462 N l
4(3 — 6¢c;) 6’
1 362 -1 1-— 3C]_ 1
9.) 8% +bt0¢c, == = + _—
) 1a 2 @ 6 6(62 b Cl)c1 6(62 - 61)02 6
2-3
which are satisfied when ¢, = .
3 - 662
. — 3¢y
Thus, with ¢; = 36 we have order greater or equal to 3.
— bey
For order > 4 we require,
1
11.) d9 +dPck = I
where I
262 -1 1- 261
dO3 4+ O3 — 3 3
16 2 Gy 2(02 _ C[)cl 2(62 '_Cl) 2
20—+ & — 2¢163
2(cy — 1)
_ 2c0(c2 — ) + (e — ) (S + crca + )
2(62 — Cl)
_ 2cc(cite) i tact+d 1
B 2 4

= —dcica(e +¢) + 20% + 2c169 + 20% = 1.

Therefore substituting ¢; = (2 — 3¢2)/(3 — 6¢2) into the above equation gives

23 +6c-2) _,
9 2C2—1 o

>

3 —
6

3+3

= ¢ = and ¢, = which are the Gauss nodes.

The order conditions 13.), 16.), 18.) and 19.) are satisfied when ¢, = (3 — v/3)/6 and

ca = (34 V/3)/6 and so the two-point mixed collocation method is of order at least
4.
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For order > 5 we require,

1
22.) d9¢ +dcd = 5

2co — 1 1—12c
but d(o)c4+d(0) 4 _ 2 4 1 4
1 Y1 2 Gy (02—61) 1 (02—61)
_ 1(3-v3\' 1(3+3 !
‘2 6 2 6
7 1
= %75

Thus, for the particular values ¢; = (3 — v/3)/6 and c; = (3 + v/3)/6, the order
conditions are satisfied for order 4 but not for order 5. Therefore the two-point
mixed collocation method has order 3 when ¢; = (2—3c¢;)/(3—6c,), (c2 # 1/2), and

order 4 when ¢; and ¢, are the Gauss nodes. Otherwise the method has order 2.

When the collocation points are symmetric, i.e. ¢; + c; = 1, then the order is at

least 2 and the nodes ¢, = (3 — v/3)/6 and ¢, = (3 + v/3)/6 give the highest order
of 4.

Order Conditions for Three Collocation Points

As the three-point mixed collocation method may be written as a Runge-Kutta-
Nystrom method, the order conditions of section 4.2.2 can be applied. Using Maple,
the conditions for orders 1,2 and 3 are satisfied for all values of ¢, ¢ and c3.

For order 4, all the conditions are satisfied iff

2

o = l 6C2€3 — 4(C2 + Cg) +3
' 66263 - 3(02 + Cg) + 2 ’

For order 5, all the conditions are satisfied iff

o == 66263—‘—1(CQ+03)+3
' 6cacs — 3(co +c3) +2)°

and
303 — 32¢; + 6 % 1/(300c} — 600c} + 384} — 84c; + 6)
60cZ — 60cs + 10 '

Cop =
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For order 6, we require

_5-V15 1 5415
AT T 2T ®T T

If the symmetric collocation points, ¢; + ¢3 = 1 and ¢; = 1/2 are substituted into
the order conditions, we have order at least 4, which is one order more than the
default. order. The highest order of 6 is obtained when ¢i = (5 — /15)/10, ¢ = 1/2
and ¢ = (5 + v/15)/10.



Chapter 5

Stability Analysis

In this chapter, we consider the stability of the one, two and three-point mixed collo-
cation methods. Coleman and Ixaru [23] were concerned with the stability Ianalysis
of exponentially-fitted multistep methods, but the theory can be easily applied to the
mixed collocation methods which we shall regard as Runge-Kutta-Nystréom methods
with steplength dependent coefficients. The definitions for stability and for concepts
such as periodicity for exponentially-fitted methods are presented in chapter 3.

5.1 Stability Concepts

When the mixed collocation method (4.16) is applied to the test equation 3’ = —w?y
we obtain the recurrence relation

Ynt2 — S(V2; 9)yn+1 + P(VQ; 0)1‘/11 = 0.
We look for solutions of the characteristic equation
€2 — 2Ry (V% 0)6 + P(1%0) = 0

where R, is a rational function of v? expressible as

ag + Zaku“
an(’/'ZQG) = fnzl (5.1)
14 Z lBkl/Qk

k=1

94
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where v = wh, and the coeflicients a; and Si are dependent on the steplength h.

Ram(v%;8) is called the stability function of a corresponding mixed collocation
method. Note that the subscript n for the stability function and in the recurrence
relation are not the same.

If the characteristic equation is of the form

2 — 2R (V% 0)€+1 =0
then we can apply Definition 3.4.

Example: n=m =1
Assuming P(v?;8) = 1, from Definition 3.4, the stability boundary for Ry;(v?;6) is
given by I

ag + a V2
|R11(V2;9)|= b L e? Ll

1+ ﬂle

For R, (v?;0) = 1 we have ag + a;v? = 1 + f11/? from which

{ }l/
vV =
03] ﬁl

= 1.

or
ay—1=0 and a3 — f; =0.
For R;,(v?%;8) = —1 we obtain og + ayv* = —1 — B1v? from which
1/2
-1 -
- {_ao}

ay + B

or

ap+1=0 and oy + 3, = 0.

Thus the stability boundaries are

v = vs(6) = {— (j"fﬂl)}ﬂ (5.2)

and the lines corresponding to any values of 8 for which

ao(8) £1=0=a(0) £ 5,(0). (5.3)
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We also need to consider any values of 6 for which the coefficients o; and §; are
undefined.

5.1.1 One Collocation Point
The formulae for the one-point mixed collocation method is
UYnt1 = Yn+hA12, + h2A2fn+c

Zny1 = Aszn + hAsfate
Yntc = Yn+ hAszy + h?Asfnie

where

sin{@(1 — ¢)] + sin(fc) A — 1 —cosf _cos[f(1 - c)]
6 cos(fc) » 2T gcos(Bc)’ T cos(Bc) T

A1:

siné _ sin(fc) _ 1 —cos(fc)

"7 Bcos(fc) 70T Beos(Bc)’ T @2cos(de)
and 8 = kh. The method is undefined when 6 = 0 or cos(fc) = 0.

Applying the method to the test equation y” = —w?y and setting v = wh gives
Yns1 = Ynt+hA1z, — V2A2yn+c>
h’zn+1 = AShzn - V2A4yn+c;

Ynte = Ynt+ hAsz, — V2A6yn+c

and we make vy, . the subject of the last equation

yn + h:ASZn
Ynte= 75—

1+V2A6 '

Substituting y,c into y,; and rearranging gives

N 1+ UQ(AG - A‘Z) + hz A1 + VQ(AIAG - A2A5)
Yner = Yn 1+ I/zAs " 1+ V2A6

= Diyn + Dyhz,.
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Similarly substituting y,4. into hz,4,,
A -3 PRYSY Lt L R
= Dy, + Dyhz,.
Therefore,
Yn+1 = Diyn +hDoz, (5.4)
hzpe1 = Dsyn + hDyz,. T (5.5)

Rewrite (5.4) as
YUny2 = Dlyn+1 + hD22n+1 I.

and substitute (5.5) for z,,; into the last equation to give

Yntz = Diynyr + DoDayn + DaDshzy
= Dlyn—H + D2D3yn + D4(yn+1 - Dlyn)-

Therefore the recurrence relation is
Yn+2 — (D1 + Da)yns1 + (D1D4g — Do D3)y, = 0.
We look for the solution of the characteristic equation
£ — (D1 + D4)€ + (D\Dy — Dy D3) = 0.

Substituting the values for D; and A; and rearranging gives

8%(cos(fc) + cos[6(1 — c)]) + (2 cos § — cos(Bc) — cos[f(1 — ¢)})

D+ Dy =
L+ P 62 cos(fc) + v2(1 — cos(fc))

and

62 cos[8(1 — ¢)] + v*(1 — cos[6(1 — ¢)])
62 cos(6c) + v2(1 — cos(fc)) '

Thus the characteristic equation for the one-point mixed collocation method is

D1D4 - D2D3 ==

¢ _ {92(co§(9c) + cos[f(1 — ¢)]) + v*(2 cos 6 — cos(fc) — cos[f(1 — ¢)}) }{

62 cos(fc) + v2(1 — cos(6¢c))
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62 cos[f(1 — ¢)] + v*(1 — cos[é(1 — ¢)])
62 cos(fc) + v2[1 — cos(fc))

=O (5.6)

For an interval of periodicity we require

62 cos[A(1 — ¢)] + v*(1 — cos[f(1 — c)])

P(W%0) = 62 cos(fc) + v2[1 — cos(fc)]

=1

= 0% cos[f(1 — ¢)] + v*(1 —cos[f(1 — ¢)]) = 6?cos(fc) + v*[1 — cos(fc)]
= 1%(cos(fc) — cos[f(1 — ¢)]) = 6*(cos(fc) — cos[d(1 — ¢)))
from which either v? = §2 = v = 6 or cos(fc) — cos[f(1 — ¢)] = 0. Thus as

I

cos(0c) — cos[f(1 — c)] = 2sin (g) sin (2(1 _ 20))

then the most suitable value for which cos(fc) — cos[@(1 — ¢)] is zero is when ¢ = 1/2
and checking, this value of the collocation point satisfies P(v?;6) = 1.

Therefore, when ¢ = 1/2, the characteristic equation (5.6) is
52 - 2R11(I/2;0)§ +1= 0
where R),(v%;0) is the stability function given by

62 cos(0/2) + v*{cos 6 — cos(8/2)}

Rn(V2§ 0) = 62 cos(8/2) + v2{1 — cos(6/2)}

For 62 cos(8/2) # 0 = 6 # (2n + 1)m where n is a non-negative integer, we can
rewrite Ri,(v?;0) as

, | cosf — cos(8/2)
R (U2' 0) _ ! v { 02 COS(H/Q) }
A 1+V2{1—cos(9/2)}

6% cos(8/2)
where the coefficients of the stability function are

cos 6 — cos(6/2) 1 —cos(8/2)

=5 6% cos(6/2) A 62 cos(0/2)
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The stability boundary is given by |R;;(v?;8)| = 1 by definition and so from (5.2)
the stability curves are

141 , 12
v=velf) = {_ (cos& —cos(f/2) £ (1 — cos(0/2))) 6 COS(H/Z)} '

Therefore

) 0g? cos(0/2) 1/2 ~ 02 1/2
v (6) = {2cos(9/2) — 2c052(9/2)} - {I—LW}

v_(6) = 0.

and

Also, as ap = 1, we look at the stability boundaries given by the lines corregponding
to any values of @ for which a; — #; = 0. Thus from (5.3),

cosf —1

—1=1-1= d g = BT
o 1-1=0 and oy -/ 7 cos(0)2)’

and a; — ; = 0 when cos§ =1 = 6 = 2nm, where n is a non-negative integer.

The curves
02 1/2
v+(8) = {1 - cos(f)/?)}

are undefined when 1—cos(6/2) =0 = @ = 4nm, where n is a non-negative integer.

Summarising, the stability boundaries for the one-point mixed collocation method
with ¢ = 1/2 are the axis v_(6) = 0, the curves

0
ve(6) =
) V(1 = cos(6/2))

and the lines § = 2n7m where n is a non-negative integer. The method is undefined
when 6 = (2n + 1), i.e. any odd multiples of 7.

Since all solutions of the test equation y" = —w?y satisfy

Y(Zni2) — 2(cos ) y(Zns1) + y(zn) = 0,

the stability function R, (~?%;6) can be regarded as a rational approximation for
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cosv. Therefore, when 0 = v,

v?cos(v/2) + v¥{cosv — cos(v/2)}

Ru(v*v) = V2 cos(v/2) + v2{1 — cos(v/2)}

= COs V.

In the limit as § — nw, for positive integers n,

n?n? cos(nm/2) + v2{(-=1)" — cos(nm/2)}

Ry (v¥nm) — n2m? cos(nm/2) + v2{1 — cos(nn/2)}

and for n odd, where the coefficients «; and f; are undefined, the stability function
is

0+v3{-1-0}
0+v2{1 -0}

and for n even, 7

Ru(l/z;nﬂ) — -1

?

n?m? cos(nw/2) + v*{1 — cos(nm/2)}

Ru(v*nm) — n?w2cos(nm/2) + v?{1 — cos(nm/2)}

= 1.

One ratio which is very important in the stability analysis of mixed collocation
methods is the quantity r = /v = k/w. For any given value of r, intervals of
periodicity correspond to the values of the steplength h for which the line § = rv
lies in a stability region of the v — 6 plane. When r = 1 then k = w, and so the
exponentially-fitted method solves the test equation exactly and the method must

be stable. Therefore the line r = 1 can only pass through stable regions.

Substituting # = rv into the stability function,

R (2 0) = 0% cos(0/2) + v*{cos O — cos(8/2)}  (r* —1)cos(0/2) + cosf
u(v56) = 02 cos(8/2) + v2{1 —cos(A/2)} ~  (r2—1)cos(6/2) +1

Here and in subsequent figures, the stability region is shaded and the line r =1
is shown. The stability region for one collocation point with ¢ = 1/2 is given in
figure 5.1. The curves v = v, (f) are asymptotic to lines of constant § corresponding
to the zeros of oy + B, which are § = 4nn for non-negative integers n. Since
limg_o vy(f) = 2v/2, the interval of periodicity for » < 1 is (0, hg), where hg
increases from 2v/2/w when 7 = 0, (corresponding to the interval of periodicity for
the polynomial collocation method in section 2.5.3), to #/w when r = 1, for fixed

w. For r > 1, the primary interval of periodicity is (0, 7/k).
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Ry, (+2,60) is undefined meet the stability curves v, (8) when

62 cos(0/2) 62
cos(0/2) =1 \|1 — cos(8/2)

= cos(0/2)+1=0

i.e. when 6 = 2(2n + 1)7 which agrees with the figure.

We now investigate what happens as § — nw. For n even, the lines are the stability
boundaries, and for n odd, the coeflicients of the method are undefined. Let 8 =
nm + €, where € is small. For n even, let n = 2m, and for n odd, let n = 2m +'1

where m and n are non-negative integers.

Case i.) n even

Forn =2m, 8 = 2mm + ¢ and as

2
cos = cos(2mm + €) =cose and cos(8/2) = cos (%ﬂ) = (—1)™cos(e/2),

then

(r? — 1)(=1)™cos(e/2) + cose
(r2 = 1)(=1)mcos(e/2) + 1

{(1‘2 - 1(-1)™ {1 - %} +1- §+ ]

[1 +(r2-1)(-1m™ {1 - % + H

2
- 1-% ! O(e

2D - D +1]

Ru(l/lz; 9)

Ase— 0, R (v%0) — 1.

For even m, i.e. 8 = 4m,87,127,... we have

2
2.9\ ¢ 1
Ru(l/ ,9) =1- ﬁ +O(6 )
and |Ry1(v%0)| < 1 for small ¢, i.e. we have a stable region either side of the line

¢ = 2m7 and these do not affect the stability regions.
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For odd m, i.e. § = 2x,6m, 107, ... we have

62

2. 1 _
Ru(V 19) =1 2(2 IR TQ)

+ O(eY).

Since 2(2—115 is negative when r > /2, then |Ry;(v%;8)| > 1 for small values of ¢ and

we have an unstable region. For 7 < v/2, |R,(v%8)] < 1 and therefore we have a
stable region.

Case ii.) n odd

For n =2m + 1, we have § = (2m + 1)7 + ¢ and as

cos @ = cos((2m + 1)7 + €) = — cose,

I
cos(6/2) = cos (Qm—zl)—”i—ﬂ = (=1)™sin(e/2),
then
2 (P =1)(=1)™*sin(e/2) — cose
Bulv50) = (r2 = 1)(-1)m*!sin(e/2) + 1

(r? = 1)(=1)m+! {% + 0(62)} 1
1+ (r2 = 1)(=1)mH {§ + 0(8)}

= -1+ 507 1)(—1)m+1] [1 - L= (=) + o)
= —14(r* = 1)(=1)"*e 4 O(e?).

So, R;;(v%0) — —1 as € = 0.

For m even, i.e. 8§ = 7,57,97, ... we have
Rn(v%0) = -1 — (12 = De + O(Y)

and as € increases from negative to positive values, |R;;(v?; 8)| increases or decreases

through 1 for  greater than or less than 1 respectively.

For m odd, i.e. § = 3w, 7n, 117, ..., we have

Ry (1% 0) = 14 (r? — 1)e + O(e?)
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and as € increases from negative to positive values, | Ry, (v?; #)| increases or decreases

through 1 for r less than or greater than 1 respectively.

We know that as £ — 0, the mixed collocation methods reduce to the classical poly-
nomial collocation methods described in section 2.2.3. As mentioned previously,
the interval of periodicity for the polynomial collocation methods is given by (0, 3),
Definition 2.11, whilst for exponentially-fitted methods, it is of the form (0, hg), Def-

inition 3.5. From section 2.5.3, the stability function for the polynomial collocation
method with ¢ =1/2 is

RI°(v*) =

For the one-point mixed collocation method with ¢ = 1/2, the stability function is

62 cos(8/2) + v?(cos 6 — cos(6/2)) I
62 cos(0/2) + v2(1 — cos(0/2))

RYC(v*%6) =

As k — 0,
1-3,2/8 8- 3,7

MCy, 2.
B~ (v50) = 1+0v2/8 842

as required.

Stability for one collocation point ¢ =0
If we substitute ¢ = 0 into (5.6), the stability equation is

0.

5 [0%[1 + cosb] + vicos§ — 1] 6% cos 0 + v2[1 — cos ]
& - 92 ¢+ 92 -

As P(v?;0) # 1, except for the exact case when v = 8, we look for where the roots &;
of the stability equation satisfy |€;| < 1, and any roots on the unit circle are simple.
Thus, if the modulus of the roots are less than or equal to 1, then the modulus of
the product of the roots must be less than or equal to 1, i.e. |£;.£2]| < 1. Therefore,

2 2[7 _
6 cos@-l—z;?[l cos 4 <1

= 0cosf+ vl —cosf] <O = L2<6 ie v<4b

b

and

2
s 6%[cos 0 + 1]

—60*cosf — v2[1 —cosf] < H° = >
cosf — 1

for 8 # 2nw.
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As the right hand side of the latter inequality is less than zero for all 4, then the
inequality is satisfied for all . Thus, the method is unstable when v > 8,i.e. w > k.

When v = 8, the stability equation becomes
€2 —2cosfE+1=0

and as the modulus of the roots £+ are equal to 1, then the method is stable.

We now use the Routh-Hurwitz approach. Substituting £ = 1££ (z # 1) into the

characteristic equation and multiplying by (1 — 2)?, we have
ao2* +a1z+a, =0

where I

2 _ 2 1 — g
ag = 2(cosf + 1), a1:2(0 v1){1 — cosf) and a; =

2(1 — cos f)v?
6? .

92

The method is stable if the coefficients ag, a; and a; are greater or equal to 0. Thus,

ag >0 = cosf+12>0,
a; >0 = 1—cosf>0andv <4, (5.7)
as >0 = 1—cosf >0.

As 1 —cosf@ > 0 and cosf + 1 > 0 for all 4, then the one-point mixed collocation
method with ¢ = 0 is stable if v < 6.

Stability for one collocation point ¢ =1
Substituting ¢ = 1 into (5.6), the stability equation is given by

e _ 021 + cos 0] + v2[cos 6 — 1] 6* _o
62 cos 0 + 121 — cos 6] 62 cosf 4+ v2[1 — cosd]

The roots of the stability equation are

i

1 (cosf —1)v® + 6%(cos b + 1)
2 [{cos@ — 1) — 62 cos 6]

N \/(cos(9 — D)[(cos @ — 1)(6* + v*) + 26%(cos 0 + 3)v?) }

[(cos @ — 1) — 62 cos 8]
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Figure 5.2: Stability regions for the one-point mixed collocation method : ¢ =1

Again, as P(v%;0) # 1, except for the exact case when v = 0, we look for where the
modulus of the product of the roots are less than or equal to 1. Thus,,

6° .
<1
62 cos 6 + v2[1 — cosf]| —

= 60*cosf+ vl —cosf] >60° = 6*<1? ie O<y,
and )
2> 6°[cos 0 + 1]
~ cosf—1
and as the last inequality is satisfied because the right hand side is less than zero
for all 4, then the method is unstable when v < 6, i.e. w < k.

0% cosf + v*[1 — cosf] > —6* =

Again, when v =0,

2 _phenZp
£, = 6 cosﬂ:tg2 64 sin* @ — cosf L ising.

Therefore, the modulus of the roots &4 are equal to 1 and so the method is stable
when v = 6.

For v > 0, one approach is to substitute particular values for v and 4 into the stability
equation above and solve for £ to see whether the method is stable (|| < 1). In
figure 5.2, a dot is a stable point for where both |£,| and |£_] are less or equal to 1
for particular values of v and 6.

As we can see from figure 5.2, all the points satisfy v > 6 and so the one-point mixed
collocation method with ¢ = 1 is stable when v > 8.
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Two or more collocation points (s > 2)

If we apply the mixed collocation methods to the test equation y” = —w?y and

rearrange, we obtain
Yn+1 _ M(l/2;0) Yn
hzn+l hz,

1 —-2BT (I +v2A)"le 1-1v2bT(I +0v2A) e
(5.8)
A dT(I +v?A) e 1-02dT(J] +v?A)" ¢

where
M2 0) = (

and the coefficients b;, d; and a;; depend on the steplength A.

A characteristic equation of the form r.
£ — 2R, m(V%0)6 + P(v%0) =0
is obtained where
Ram (V% 6) = %trace M(v?;8) and P(v%8) = det M(v%;6)
and we can apply the stability theory for exponentially-fitted methods in chapter 3.
5.1.2 Two Collocation Points
Using Maple, the characteristic equation for two collocation points is
£2 — 2Ry (V% 0)E + P(1%;0) =0
where the stability function is

Qg + a1u2 + azl/4

2_0 —
Raa(v76) 1+ Biv? + Byt

(5.9)
with

a(]:l,

a; = {0[Pcos(fcy) — Qcos(fey) + ¢z cos(0P) — ¢y cos(0Q)]
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+ sin(fcy) — sin(fc,) — sin(0Q) + sin(9P) — 4E} /(26°%E),
az = {8lc;cos(0Q) — cycos(8P) + Qcos(be,) — P cos(fcz) + 2{c2 — ¢1) cos b

+2€ +5in(6Q) — sin(8P) + sin(fc,) — sin(fcy) } /(20%8),

sin(fcy) — sin(fc;) + O[ca cos(fcy) — ¢y cos(fcy)] — 2€
sin(fc;) — sin(fcy) + Ofcz — ¢4 + ¢; cos(fcz) — ¢z cos(fc;)] + €

and P(v?;0) is given by

2 4
P(2;0) = Lot PVt pav (5.10)

14 oyv2 + o9t

with
I
po = 1,
—sin(0Q) + sin(0P) + 0[P cos(8Q) — Q cos(OP)] — 2€
= 02€ )
’ —sin(0P) + sin(6Q) + Olca — ¢1 + Qcos(8P) — P cos(0Q)] + €
2 = )
g4&
sin(fce) — sin(fcy) + O[co cos(bcy) — ¢y cos(fcz)] — 2€
o= 62E !
sin(fc;) — sin{fcy) + O[ca — ¢1 + ¢y cos(Bcz) — cpcos(fcy)] + &
d0q =
i€
where

E=sinlf(cc—¢))], P=1-¢ and @=1-c,.

As the collocation nodes are distinct, we require f(c; — ¢;) # nm where n is a
non-negative integer, for Roy(v?%;6) and P(v?%;6) to be defined.

For an interval of periodicity we require P(v?;8) = 1. The series expansion of
P(v?%0) about h =0 is

1
P(%0) =1+ ﬁ(cz + ¢, — 1)(2¢1¢0 — ¢ — o + 1)(k? — wH)w?h?

1
+7—20(Cz +c — 1)(};2 _ w2)(14/€20‘?c2 — 7k26? + 19:’520%02 _ 40/€263c%

+3k%c? 4 14k%c,c3 + 8k%c) — 34k%c ey + 19k%c,c2 + 8k%c, — 4k* — Tk c)
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+3k%cE 4 40w ek — 20wPcicy + 10wed — 20w?c,cd + 10w?c — 10w?c)

—10w?c;c + 20w’ cy — 10w?c? — 10w?ciey)w*h® + O(R7).

If we take the collocation nodes to be symmetric, i.e. ¢; + ¢ = 1, then substituting
the nodes back into the exact form for P(v?;8), we obtain P(v?;#) = 1. Therefore,
for example, if we set ¢; = 0 and ¢; = 1, then P(v%;8) = 1 and the stability function
is of the form R;,(v%; ), that is the numerator and denominator are linear in 2. The
mixed collocation method has order 2 for these particular values of the collocation
nodes.

When ¢, = (3 - v/3)/6 and c; = (3 + v/3)/6, then P(v%0) = 1 and we als;) obtain
the highest possible algebraic order 4. Therefore, the pattern emerging appears to
be that for a mixed collocation method to have an interval of periodicity, we require

the collocation nodes to be symmetric. As yet, we have been unable to prove this
for the general case.

Example: ¢ =0and ¢, =1

For ¢; = 0 and ¢, = 1, the characteristic equation is £2 — 2R,;(v2;6)€ +1 = 0 where

L4+ 02 fcosf —sind
>sinf + v?*(fcos§ —sinf) 62 sin 6
6% sin 6 + v2(@ — sin 0) 142 9—§in0
62sin 6

R“(VZ;Q) = 9

for 62sin 6 # 0.
The coefficients in (5.1) are

@cos8@ —sinf f —siné

=1 - _ 7= sy
o Y #?sing ' A 02 sin 6

and a; and 3, are undefined when 6%sind = 0, that is when 8 = nm where n is a

non-negative integer.

The stability boundaries are given by (5.2) and so

1+1 12
= 9 — — 2 . 0
v=vil) { (Gcosﬂ—sinﬁi(()—sinﬁ))g o }
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which are rearranged to give

260%sin @
2sinf — @(cosf + 1

ve(0) = { )}1/2 and v_(6) = 0.

From (5.3), as oy = 1, we need to find values of # for which a; — 8; = 0. From the
coefficients o, and £y,
(cosf — 1) —25in*(6/2) _ —tan(6/2)

a - =10 @2sind _ 20sin (6/2) cos (8/2) 0 )

and so oy — 3 = 0 when § = 2n7 where n is a non-negative integer.

When 6 = v,

. . I
2 2(vcosv — sinv ‘
Ru(uz;l/)zy smz./+1/(1/ l/'Sl )=COSU.
vZsinv + v2(v — sinv)
For 6 = nmx,
2.2 2 e
Ry (v% ) = nemw sm(n@ + v¥{nm cos(mr)‘ sin(nm)} — cos(nm) = (=1)",
n?n?sin(nn) + v?{nr — sin(nn)}
so for n even, Ry (v?;nm) =1 and for n odd, Ry (v?;nr) = —1.

In figure 5.3, the stability region is shaded. The curves v = v, (6) are asymptotic to
# = 8.9868 and 6 = 15.4505 which are the zeros of a; + 8;. When r < 1, the length
of the primary interval of periodicity is (0, ho) where hq decreases from 2v/3/w when
r=0ton/w as T — 1, for fixed w. There is a succession of secondary intervals for
r > 1given by (2n7/k, (2n+1)7/k), where n is a non-negative integer. The stability
function has unit modulus when @ = 2n7 and these lines do not affect the stability
boundaries. We check that the value of the stability function on the stability curves
v4(0) agrees with the value on the lines § = (2n + 1) when the lines and curves

touch. Along the curves v, (), R;1(v2;6) = —1 and as R (v% (2n + 1)7) = -1,
then this is satisfied.

With 8 = rv,
(r? — 1) sin6 + G cos

Ry (v%0) =
n (v 0) (r2 —1)sin6 + 6

To investigate what happens as § — nw, the values for which the method is unde-
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through 1 for r greater than or less than 1 respectively. For n even,

2 3(p2 1
Ry (v%0) =1~ 6—-i—i—)

4
2 2nm t O(C )

and as € increases from negative to positive values, |R;,(v?;6)| < 1 for all 7.

We again check that the mixed collocation method for s = 2 reduces to the classical
polynomial collocation method. For s = 2 with ¢; = 0 and ¢; = 1, the stability

function for the polynomial collocation method is given by

6 — 202

PCy, 2y _
Ry~ (v%) = 6402

For the mixed collocation method, the stability function is

62 sin 6 + v2(f cos @ — sin 6)
62 sin 6 + 12(0 — sin §)

RY{C(v*0) =
forc, =0and ¢y =1 and as kK — 0,

1-1%/3  6—2,°
1+0v2/6 6402

RMC(v%6) -

Stability function Ry (v?;0)

With the choice of the end-points of the interval for the two-point mixed collocation
method, the stability function is reduced to the form

ag + a v?

2, —
Ru(l/ ,0) = _——1 —{—1611/2 .

When, for example, ¢, = (3 — v/3)/6 and ¢, = (3 + v/3)/6, the stability function is
of the form (5.9), a quotient of quadratics in v2. Assuming symmetric nodes have

been chosen, the characteristic equation is given by

€2 — 2Ry (V% 0)E+1=0.

Then, from Definition 3.4, the stability boundaries of Ry (v?;80) are

g + v’ 4 oprt|
1 + ﬂ]l/.2 + ,6'21/4

|Raa (V% 0)] =
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For Ryy(v%;0) =1, we have

ag + v + avt =1+ G + Bt
from which

2 = —(al - ﬁl) + {(0’1 - ﬂl)z - 4(a2 - ﬂ2)(a0 _ 1)}1/2
2(&2 — ﬁ2)

for ay # [B; or
010—1:0, al—ﬁle and 012‘—,52:0.

For Ryy(v?0) = —1,
ap + aqv? + ot = —1 - Giv? — Bt I

from which we obtain

2 _ —len + Br) £ {{en + B1)? — 4(0n + Bo) (g + 1)}?
- 2(aa + fo)

for ag # —f35 or
ap+1=0, ay+6 =0 and ay + B, =0.

As we are taking v(6) to be non-negative the stability boundaries are

v (0) = \J —(en = B) £ {(a1 — B1)? — 4(as — Ba)(ag — 1)}/?

2(02 — B2) (5:11)
and
L@ gy — —(en + B) £ {{a + B)? — 4 + ) (ag + 1)}
2 (0) = \’ s ¥ 70) . (5.12)

Therefore the stability boundaries are the curves described by the equations u(il)(f)),

uf)(G) and the lines corresponding to any values of § for which

apt1=0, a8, =0anday =08, =0.
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We also consider any values of # for which the method is undefined.

Example: ¢; = (3 — /3)/6 and ¢, = (3 + v/3)/6
As mentioned earlier, with ¢; = (3—/3)/6 and ¢, = (3+v/3)/6, the highest possible
order of 4 is obtained for two collocation points. The stability function is given by

ag + av? + ot

1+ ﬂll/2 + ﬂgl/4

R22(l/2; 9) =

where
Qp = 1,
_ cos(0/2){6A+/30B} — 30.Asin(6/2) — 12.A8
B 602.A8 o
_cos(8/2){6A + V30B} — 30.Asin(0/2) — 6AB — /30 cos f y
60*.AB a

5, cos(8/2){6.A + v/30B} + 36 Asin(0/2) — 12.48

b 662.A8 ’
_cos(6/2){6.A + V/30B} + 30Asin(6/2) — 6.AB — V36

69*.AB

03]

Qg =

P =

and we define

A =sin(0v/3/6) and B = cos(v/3/6).
The coefficients are undefined when 8 = v/3nm where n is a non-negative integer.

Substitute ap = 1 into (5.11) and (5.12) to find

A(0) =0, vM6) = H (5.13)

and

(2)(9) _ \] —(a1 + Br) £ {(ar + 51)? — 8(ap + ﬁ?)}l/Z. (5.14)

2(0!2 + ,32)

Substituting o, ag, 0, and [, into (5.13) and (5.14), the stability curves are given
by

Mgy =0 Vg = 36°A ]/2
vy (6) =0, v (9)_{3A_\/§sin(0/2)}
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and

0 = {#3(0/2)}/ 0 e }1/2 |

We also consider any values of 6 for which

00—1:0, al—,@1=0 and 012‘—'13220.

From the coefficients,

—sin(f/2
Qy — ﬁl = %/)'a
6.Asin(0/2) + v/3cosf — /3
o2~ P = 60° AB I

and a; — ; = 0 when 6 = 2nm where n is a non-negative integer. Also ap — 8, =0
when 6 = 0, 2, 11.7159, 4r, 67, 20.3578, . . ..

When 6 = v,
14+ av? 4+ ot

Rap(v%:v) =
22( ) 1+ ﬂll/2 +ﬂ21/4

where the numerator of Ry (v?;v) is

1

1- GAB {— cos(v/2)(6.A 4 V3uvB) + 3vAsin(v/2) + 12AB}

{cos(u/2)(6A + VBuB) — 3w Asin(/2) — 6AB — Vivcosv) = YL

1
" 6AB 6.A8

and the denominator is

L= = { -~ cos(v/2)(6A + V3uB) - 3vAsin(v/2) + 12AB)

1 . V3u
~6AB {cos(u/Z)(GA +V3uB) + 3vAsin(v/2) — 648 — \/51/} = 6AB'
Therefore, Roy(v?;v) = cosv.

When 8 = 2nmw,

cos(0/2) = cos(nw) = (—1)", sin(f/2) =sin(nw) =0 and cosf =1,
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SO
o = B = o {~(~1)"(6A + V305) + 1248}
and
ap=fo= ﬁ {(-1)"(6A+ V36B) — 6.AB — V/30} .

2 1
Therefore, Ry (v?;2nm) = Qo+’ + b’

1+ w2 + Byt

+ I

Figure 5.4: v — @ plot for two collocation points : ¢ = 3'6—‘/5 and %

The stability regions are shown in figures 5.4 - 5.7. In figure 5.4, the curves v! (6) are
given by (+), v2(8) by (.) and »?(0) by (*). Figures 5.6 and 5.7 are enlargements
of sections of figure 5.5. The curves v = u(f)(O) are asymptotic to lines of constant 6
corresponding to the zeros of ay + S5 of which the first five are § = 0, 7.9668, 9.6709,
15.9335, 16.1400, ... The curves v = V(_l)(ﬁ) are asymptotic to § = 11.7159 and
6 = 20.3578, which are the zeros of aig— 5. Since limg_,g u(_l)(ﬁ) = 6, limg_,o uf)(é) =
2v/3 and limg_,o u(_Q)(F)) = 3, the primary interval of periodicity is (0, hg) where hyg
increases from 3/w when r = 0 to 7/w when r = 1, for fixed w. There is a
secondary interval of periodicity given by (2v/3/w,6/w) when r = 0 and the length
of the interval increases to (7/w, 2w /w) as r — 1, for fixed w.

A number of ‘apparent’ inconsistencies take place in figure 5.5. Along the curves

v = u(_l)(ﬁ) and the lines @ = 2w, 47 and 67, the value of the stability function is
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and
1
S = sin(% 0v3), Sy= sin(%()\/i), S = sin(39),

1
Ci= COS(%e‘/g), Cy = COS(%Q\/I;), C; = cos(—2— 6).

The coefficients a1, as, f1 and B, are undefined when 6 = +/3nm and we investigate
what happens to the stability function for § = v/37, 2v/37 and 3v/37.

For 8 = /3,

(2A — V/37B)(r? — 1) + 7 cos(v/37)

Ra(v30) = QA+ V3rB)(r2 — 1) +

where

A = cos(V37/2) and B = sin(v/37/2). I

In figure 5.5, the line § = /37 crosses the curves 1/(1)(9) and u(_z)(é’) at v = 6.2249

and v = 3.488 from which r = 0.8741 and r = 1.5600 respectively.

For 0 < 7 < 0.8741, |Ryg(v?; V3m)| > 1, for 0.8741 < 7 < 1.5600, |Raa(v?; v/3m)| < 1
and for r > 1.5600, |Ry3(v2; v/37)| > 1 which satisfies the stability regions.

For 6 = 2+/3m,

— cos(v/3m)(r? — 1) + cos(2v/37)

Rnv0) = —— cos(v/3m)(r2 — 1) + 1

and the line § = 21/37 crosses the curves uf)(ﬁ) at v = 8.4311 from which r =
1.2908.

For 0 < 7 < 1.2908, |Ryy(v?2v/37)| < 1 and for 7 > 1.2908, |Ryy(v?;2V/37)| > 1
which satisfies the stability regions.

For § = 3/3,
(7 6) = [(2A(3 - 442) + 3vV3rB(4A? — 1)] (r2 — 1) + 6m A2 (442 — 3)% — 3n
= [2A(3 - 447) — 3/3nB(A42 — 1)] (2 — 1) + 3
where

A = cos(V3r/2) and B = sin(v/3r/2).

The line & = 3v/37 crosses the curves 1/(_1)(9) at v = 13.1112 from which we obtain
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r = 1.2451.

For 0 < r < 1.2451, |Ry2(v?;3v37)| < 1 and for r > 1.2451, |Rye(v?;3V/37)| > 1
which again satisfies the stability regions in figure 5.5.

Therefore, the lines § = v/3n7, n = 1,2 and 3 do not need to be included in figure
5.5 as they satisfy the stability regions.

To investigate what happens as 8 — 2nm, let § = 2nm + e. We consider separately,
0 =2r+e¢ =41+ ¢ and 6 = 67 + €.

With v = 6/r and 6 = 2nm + ¢

3Qn(~1)"*nm(r? — 1)e 4 0(&)

B30 = 1= {0, (7 — 1) + 1)(/Bum + 3(-1)7 (% — 1]

T
where '

Q, = sin(nw/v/3) and P, = cos(nm/V3).
Case i) 6 = 27 + ¢

When 0 = 27 + ¢ is substituted into the stability function Ray(v?;6) then

3Qm(r? — 1)e 2
[Pi(r? — 1) = 1][3Qy(r? — 1) — V/37] +olE).

RQQ(VQ;H) =14+

As e — 0, RQQ(V2;9) — 1.
We look for the values of r for which the coefficient of € is undefined. Therefore,

2

= v/-3.15596

Pi(r?-1)-1=0 = r:{P1+1}

P
and

1/2
3P 1) = V3r =0 = 1= {gl;_j\/_ﬂ} = 1.69372.
1

For ¢ small, as ¢ increases from negative to positive values,
i) for r < 1, |Rya(v?%; 0)| decreases through 1,
i) for 1 < r < 1.69372, |Ryy(v?; 0)| increases through 1,

iii) for 7 > 1.69372, | Ry (v?; 0)| decreases through 1.
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Case ii) § =47 + ¢

When 6 = 47 + € is substituted into the stability function Ryy(v?;6),

6Qqm(r? — 1)e

Ryp(v™50) =1 - [Pa(r? — 1) + 1][2\/_3'” +3Qa(r? — 1))

+ O(€%).

As e — 0, RQQ(Vz;H) — 1.

Again we look for the values of r for which the coefficient of € is undefined. Therefore,

_ 112
Pa(r?—1)+1=0 = rz{PQP } = 1.45978
2
and 12
- 2V3
2V31 +3Q(rP - 1) =0 = r:{ig"’gg—f”} = 2.96078. T
2

For € small, as € increases from negative to positive values,
i) for r < 1, |Raz(v?; 0)| decreases through 1,
ii) for 1 < r < 1.45978, |Rgo(v?; 0)| increases through 1,
iii) for 1.45978 < r < 2.96078, | Ryp(v?; 0)| decreases through 1,

iv) for r > 2.96078, | Ry (r?; 0)| increases through 1.

Case iii) § = 67 + .
Finally, substituting @ = 67 + ¢ into the stability function Rgy(v?;8),

9T Q;(r? — 1)e

Bl ) = I e T Ba(e - 1)~ avan]

O(€?).

As e — 0, Ry (v%0) — 1.
The coefficient of € is undefined when

Py +1

Ps(r?=1)-1=0 = 7‘:{ P,

1/2
} = 1.58152

and

1/2
3Q3(r* = 1) -3V3r=0 = r= {B—Q%Qﬁ} — /—6.29571.
3
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For € small, as € increases from negative to positive values,
i) for 7 < 1, |Rya(v?;6)| increases through 1,
i) for 1 < 7 < 1.58152, |Ryy(v/?; 8)| decreases through 1,
iii) for r > 1.58152, | Raa(v?; 0)| increases through 1.

We check that the mixed collocation method for s = 2 reduces to the classical
polynomial collocation method. For two collocation points with the values ¢; =

(3—+/3)/6 and ¢, = (34+/3)/6, the stability function for the polynomial collocation

method is ) .
PC(I/Q) _ 432 - 1921/ + 71/

2 432 4 2402 + vt

For the mixed collocation method, as k — 0,

7 1 1

—1 — 4 — G, — By —
27 y 1 y Q2 1 18’ 2 432

9 432’
and the stability function reduces to

1— gv2 4 vt 432 - 19207 + 7!

1+ %81/2 + Z‘:lﬁu“ T 432 + 2412 + 14

Ry (v*0) —

as required.

5.1.3 Three Collocation Points

As for the one-point and two-point mixed collocation methods, we require P(1v?;0) =
1 for the method to have an interval of periodicity. This is satisfied if symmetric
nodes are chosen. i.e. if ¢; + ¢3 =1 and ¢, = 1/2.

It is possible to obtain a stability function which is a quotient of two cubics in v2.
For example, if ¢; = (5 ~ V/15)/10, ¢, = 1/2 and ¢3 = (5 + V/15)/10, then the
stability function is of the form R 3(1v?; ) but the algebra is complicated. The best
way to see whether the method is stable for a particular problem is to substitute
a range of values of v and 6 into the amplification matrix (5.8) and check to see
whether the modulus of the roots of the characteristic equation are less or equal
to 1. For the rest of this section we consider the stability of the method when the
collocation nodes are the end-points ¢, =0, co = 1/2 and ¢3 = 1.
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Example

Substituting ¢; = 0, ¢; = 1/2 and ¢3 = 1 into the formulae for M (v?;0), (5.8), the
characteristic equation is

€2 — 2Rp(V%0)6+1=0.

The stability function is given by

ag + oy v? + agv?

2, —
Bn(v50) = T3 B2 + Byt

(5.15)

where

ap =1 .
_ cos?(0/2)(16 + 36) + 6% cos(6/2) + 20sin 8 — 26> — 16
B 862 sin%(4/2)
_ sinf(36% + 8) + 86 cos(6/2) — 4sin(0/2)(6% + 4) + 63 — 20 cos?(6/2)(6? + 4)
B 166% sin(6/2)(cos(6/2) — 1)

r.

a

67)]

_ cos?(0/2)(16 — 62) + 6 cos(6/2) + 20sin 6 + 26° — 16
B 862sin%(6/2)

A

__sinf(6* — 8) + 80 cos(d/2)(cos(8/2) — 1) + 4sin(8/2)(4 — 6?) + 63
b= —1664sin(6/2)(cos(8/2) — 1)

and the coefficients «ay, B, ay and B, are undefined when @ = 2nm where n is a

non-negative integer. The stability function Ryy(v?;6) may also be written as

2Asin(8/2) [2B — C cos(6/2)] + 2026 cos(8/2) [B cos(6/2) — 4.4] — 146
—2Asin(0/2) 2D — £ cos(0/2)] + 8v26.Acos(0/2) [cos(8/2) — 1] + v463

(5.16)

with
AWE0) = (2 — %), B(450) = (126 + 4v® — 46,

C(v;6) = (3v°0° +8,° — 86%), D(v*;0) = (*6* — 4v” + 46°),

E(W0) = (V0% — 8% + 86?).
As o = 1, after some simplification

1
,51—041257
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cos?(0/2) [0? + 16] + 20sin 0 + 62 cos(6/2) — 16
402 sin*(6/2) ’

4sin(6/2) — 6[1 + cos(6/2)]
862 sin(6/2) ’

80 cos(6/2) [1 — cos(6/2)] + sin @ (0% + 8] — 16sin(8/2) — 63 cos?(6/2)
86%sin(0/2) [cos(8/2) — 1] '

Therefore, the stability boundaries given by (5.13) and (5.14) are

a+ B =

Qy — ,32 =

ay+ By =

462 sin(6/2)
6/2) — 61 + cos(6/2)]

Mgy = gy —
vy’ (@) =0, v'(0) = J Zsin

and

2y \1/2 a2
o -{Z81, o - {25

T~

where, if we define p = cos(6/2) and g = sin(8/2), then
X =(p-1) {16(p2 — 1)+ 6*p(p+ 1) + 20sin 6 + 6% (p* — 1)\/W} :

X = (p— 1) {~16(p* = 1) - 0°p(p + 1) — 20sin 0 + %(p* — YVW},

X = {8(p— 1)+ 0%} {20* - 1) + Opq}

and

W = cos?(9/2) {cos(¢9/2)(t92 —16) + 16 + 6% — 86 sin(9/2)}

6%(cos(0/2) — 1)(cos?(6/2) — 1)

When 6 = v, we have A =0, B=1v*,C =3v*, D =v?and £ = 4, and from (5.16),
the stability function is

7 a2 7
R22(V2;V) = - {2V cos (1//2) v } = COS V.

7

When 0 = 2n,
Rzz(llz;g) =1.

In figures 5.9 - 5.12, the stability regions are shaded for ¢, =0, ¢ = 1/2 and ¢3 = 1.
In figure 5.8, the stability curves 1/(_1)(0) are given by (+), uf)(O) by (*) and 2 (6)
by (.). Figures 5.10 - 5.12 are enlargements of sections of 5.9. The curves v = u(l)(ﬂ)

are asymptotic to lines of constant § = 17.9736, ..., corresponding to the zeros of
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Qg — (3. Also the curves v = uf’(e) are asymptotic to the lines # which are the zeros
of ay + B> and a; + B;. The first three zeros of a; + 32 are 8 = 0,9.5851, 15.4505, ...
and for o + Bi, we have 8 = 0,9.8254,15.6076,.... As 8 — 0, v0(8) — 43,
uf) (8) = 2v/3 and v®(9) — \/48/5. For r < 1, the primary interval of periodicity
is (0, hg) where hy = i@ when 7 = 0 and increases to m/w as r — 1, for fixed
w. There is a second interval of periodicity given by (2v/3/w,4v/3/w) when r =0
which increases to (w/w,2m/w) as r — 1. The stability function has unit modulus

when 8 = 4n7 and these lines do not affect the stability boundaries.

20
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Figure 5.8: v — 8 plot for three collocation points : ¢ =0, 1/2 and 1

Again, a few ‘apparent’ inconsistencies occur in figure 5.9. There are a number of
points where a curve on which the stability function has value 1 intersects another
curve or line on which the stability function has value -1. The curves v = () given
by (+) in figure 5.9 are where Rgo(v?;6) is undefined and these curves touch all the
points where the inconsistencies occur.

To investigate what happens as § — 2n, the values for which the method is unde-
fined, let v = 8/r, § = 2nw + e¢. The following calculations were done using Maple.
After some simplification, the stability function is

R(6*/r%,2nm + €) = Ro + Rie + Rae® + O(€°)












Chapter 6

Extension of the Mixed
Collocation Methods

6.1 Method 1

The trigonometric functions cos kx, sin kz and the monomials z*,2 = 1,...,5—1 are
the basis functions for the mixed collocation methods. In this section, we study an
extension of the mixed collocation methods where the functions z cos kx and z sin kx
are included in the basis. Ixaru and Rizea [37] showed that when a combination of
products of polynomial and trigonometric functions were used in their methods,
they obtained more accurate results for the solution of the Schrodinger equation.
Another motivation behind doing this is so that we have a method which is exact
for problems such as the almost periodic problem studied by Stiefel and Bettis [67]

2" = —2+0.001e%, 2(0) =1, 2/(0)=0.9995, 2 € C
which has exact solution
z(z) = e*(1 — 0.00054z).

If we set 2z = y; + 1y5, then the differential problem can be written in the equivalent
form

y! =~y +0001cosz, y(0)=1, ¥4(0)=0

Yy = —yz + 0.001sinz, 3(0) =0, y5(0) = 0.9995

129
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with the exact solution given by

y1(z) = cosz + 0.0005zsinz and yo(r) = sinz — 0.0005z cos .

Therefore, consider approximating the solution y(z) of problem (1.1) on the interval

[Zn, Zns1] by a function of the form

u(z) = [ag + a1t] cos(kt) + [bp + by t] sin(kt) + 37}fr,-ti (6.1)
i=0
where t = ¢ — z,,.
Using a collocation method based on the s distinct collocation points .
Tnte; = TntCihy, J=1,...,8
where 0 < ¢; < ¢y < ... < ¢ <1, then we have the initial and collocation conditions
U(Tn) = Yn, uw(zn) = zn

and

u"'(zn + cjh) = f(zn + cjh,u(zn, +¢jh)), j=1,...,s.
Differentiate (6.1) with respect to z twice to give
s—3

w'(z) = a1+ kbo + kbit] cos(kt) + [by — kao — kait]sin(kt) + > irit*™!

=1

s—3
’U,H(.’E) = k)[2b1 - kag - kalt] COS(kt) — k[2a1 + kbo + /Cblt] sm(kt) + Z 'L('L - 1)7‘it1—2
i=2
where t = 2 — z,,.
Thus, the initial and collocation conditions are
g, s =2, ay) + bo:li), s =2 and 3,
Yn = Zn =
ag + 19, 52> 3, ay + bok +ry, s> 4.

and

F(C]‘) =k {2b1 — kao — alﬂcj} COS(@CJ')
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5—3
—k {2a) + kb + byfc;}sin(fc;). + > i(i — V)ri(ch) ™%, j=1,..,s
1=2
where F'(c;) = f(zn + ¢cjh,u(z, +cjh)) for j =1,...,s and 0 = kh.
For s > 4, the system of equations can be written in matrix form A'x’ = b’ where
x' and b’ are s + 2 dimensional column vectors given by

! T
X = [a'Oaa’l)bO:bl)TO)Tl; e ’Ts—3] )

b’ = [yn, 20, F(c1), F(c2), - - -, F(cs)]"

and A’ is an (s + 2) x (s + 2) matrix given by

1 0 0 0 1 0 o\,
0 1 k 0 0 1 0
./4/ _ 3,1 3,2 3,3 l3,4 0 0 ’3,s+‘2
- ' ' ' ! 0 0 '
4,1 42 4,3 44 4,542
st21 Aspaz Aspes Asppg 00 0 0 Al o
where for j =1,...,s

ivan = —k? cos(fc;), Ajyg, = —kfc; cos(fc;) — 2k sin(fc;),

ivas = —k7sin(0c;), Aj,,, = —kfc; sin(fc;) + 2k cos(fc;)

and
o2 = =31 =) (c;h)'™%, j=1,...,5 [=3,...,s

One can see that the matrix A’ is slightly more complicated than the matrix A in
section 4.1.2. The first four columns involve trigonometric functions and a lot of
work is needed to obtain general formulae for this problem when looking at more
than two collocation points. The following work is based on a 2-stage method (s = 2)
and a study of order conditions and stability follows.
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Two collocation points s =2

For s = 2, we obtain the system of equations A’x’ = b’ where

1 0 0 0

0 1 k 0
Alzr Alzp Alsz Az
Agy Alge Alys Ay

A =

x' = [ag, a1, bo,bl]T and b’ = [y, 24, F(c1), F(c2)]".

Rewriting the initial conditions, the system can be easily solved to find

Zn — Qq
= bn =
Qo Un, 0 Lk )
I,
Vi
ay = zyn + Voz, + hVBfn+c1 =+ hvﬁlfn-ko;
W)
bl = —Yn+ W'Zzﬂ + hW3fn+61 + h’W4fn+cz

h
with

2| Qsin(8P) + Psin(0Q) _ [ 0P[cos(8Q) — cos(6P)] — 4sin(6P)
= G o G |

_ o | Bcasin(fcy) — 2 cos(fcy) _ o | ersin(fc,) — 2 cos(fcy)
B [l e

and

[ 2sin(0P) + 0P[cos(8P) + cos(0Q)) _ [ Psin(0Q) — Qsin(6P)
Wl_e{ > } m_e{ . }

W, = 2 {sin(@cz) +0€ch cos(fcy) } W= 2 {sin(@cl) +0g:1 cos(@cl)}

where P =cy — ¢, Q=¢34+ ¢, 8 = kh and
G = 2[2 + 8%c,cy) sin(8P) + 30P cos(8P) + 0P cos(HQ)

where G # 0.

Let Yn+1, zne1 and ynie, for § = 1,2 be approximations for the exact solutions
y(zn + h), y'(zy + h) and y(z, + cjh) respectively. Then the two-point collocation
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method which fits the functions [sin kz, cos kz, z sin kz, z cos kx| exactly, is given by

3

Yn+1 = [ao + ayh]cosf + [by + byh]sind

Zny1 = |a1 + k(bo + byh)] cos8 + [by — k(ag + ayh)]sind » (6.2)

Ynic; = [ag + aicsh]cos(fc;) + [bo + bicjh]sin(bc;).

The coefficients ag, a1, by and b; can then be substituted into (6.2) to give the
formulae for the two-point method. The method can be written in the form

Ynt1 = Arn + Ashzn + Ash? frie, + Ash? frie, |

B .
Zntl = 'h_lyn + Byz, + B3hfn+cx -+ B4hffn+c2
> (6.3)
Yntey, = Piyn + Pohz, + P3h2fn+c1 + P4h2fn+Cz

yn+62 = Qlyn + Qthn + Q3h'2fn+c1 + Q4h2fn+02 y

where fryc; = f(Zn+cjh, Ynie;) and A;, B;, P; and Q; are given in Appendix B.2 for
arbitrary c¢; and c;. Also in Appendix B.2 is a Maple program to find the extended
mixed collocation method for s collocation points. We have successfully found the
methods for up to 3 stages.

Example: ¢y =0and ¢; =1

The formulae for the two-point extended mixed collocation method with points
¢ = 0 and ¢; = 1 can be written in the form (6.3) with P, =1, P, =P3 =P, =0
and Q; = A; for i = 1,...,4. The coefficients are given along with the series
expansions about 8 = 0.

8 + cos@sin b g4 2sin?4 764

— ZTOSYSINT T = =14 =t
A 5 Tt A= e =145
A_Q—cos@sin9_1+202+ .A_si119—l9cos€_l+7_02jL
T 02¢€ 345 “ 928 T 6 180

81:93—Hsin29_94 82_0+sin0c030:1+ﬂ+”.

26 St - £ 24
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3_92+sin20 1+92+ B_sin@_l
Y'Y 2 " 12 YT TE T 2712

where 8 = kh and £ = sinf + fcos 6.

The method is undefined when # = 0 or sinf + fcosf = 0. Substituting the
expressions for the expansions of the coeflicients back into the method we obtain

the following approximations for y,,.1 and 2,41,

" 76" L1 262 1 762
Ynt1 = {1+24}yn+h{1+ﬁ}zn+h’ {g }fn {6+180 fn+1

64 6 1 6 1 6
n ~ =7 Un n a 10 n hs- n '
il 1opY {1+24}z +h’{2+12}f+ {2+12}f“
and as k — 0, the mixed collocation method reduces to the corresponding ﬁolyno-

mial collocation method for 2 collocation points (2.16) with ¢; = 0 and ¢, = 1.

Example : ¢, = (3 —1/3)/6 and ¢, = (3 + v/3)/6

The formulae for the two-point mixed collocation method with collocation nodes
¢ = (3 —v/3)/6 and ¢; = (3 + v/3)/6 are given by (6.3) and the coefficients A4;, B;,
P; and Q; are listed in Appendix B.2. The coefficients are very complex even for
2-stages when the collocation points are the Gauss nodes.

Using Maple to find the series expansions of the coeflicients about 8 = 0 the coeffi-

cients reduce to

3 3 3—+vV3
.Al-—)l, .Az—)l, .A3—)+—\/—, .A4—) \/_,
12 12
1 1
Bl—)O, BQ—>1, 33—)5, B4—)§,
3-V3 1 5-3V3
Pr—=1, Py 5 ,733—)3—6, 734—>T,
3+V3 54+ 3V3 1
A —1, Q- 5 , Q3 — 36 ,Q4—>£,

and we obtain the polynomial collocation method (2.16) with Gauss points for the

collocation parameters as k — 0.
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6.1.1 Order Conditions

Using the idea of the residual with the exact values of the solution and its first
derivative at x,, the difference operators for the mixed collocation method I with
two collocation points (6.3) are given by

Lilyl = y(zn+ k) — Aiy(zn) — A2hy'(zn)
—h A3 f(Tq + c1h, Y1) + Agf(Tn + coh, V3)]
B
L2[y] = y’(xn + h) - le(mn) - B2y,($n)
—h{Bsf(zn + c1h, Y1) + Baf(zn + c2h, Y2)]

where
!

Yl = Ply(zn) + Pthl(mn) + ,P3h'2f(xn + Clh> Yl) + ,P4h'2.f($n + C2h'a )/2)v
Yy = Qyy(z,) + Qohy'(z,) + Qsh?f(zn + c1h, Y1) + Quh*f(z, + c2h, Y2).

Substituting the coeflicients A;, B;, P; and @Q; into the difference operators above

and using a Taylor expansion in powers of the steplength h we obtain

Rt / /
Liy] = ﬂll —2¢; — 2c2 + 6¢109) {f_.,,.I + 2fey + fulY' )P+ fuf + 2k + k"y}

hs
+%[3 — 10¢? — 10¢% — 10c1¢5 + 30cica(cy + ¢3)] {fIJEJE +3faf + f;y' + fulv')?

+3 fayyU']* + 3yt + fyfa + 3fu fV + 262 (ff + f2) + Ky} + O(R)

and

h’s ' 1
LQ[y] = 1_2[2 - 361 - 362 + 66102] {fz:z + 2f:ryy + fyy[y ]2 + fyf + 2k2f + k4y}

h4 ! / 1
+ﬂ[1 —2¢% —2¢3—2c)cy+4cico(c +¢9)) {f:zz +3fayf + [2Y' + fuwly 1P+ 3 fe V)

3 famgt + fyfa + 30 fy + 202y + f2) + k'y'} + O(h°)

where yl = yl(mn); f = f(i‘n,y(l'n)), fz = f:r:(znvy(”:n))a fy = fy(-'ll'n;y(fvn)) etc.
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For algebraic order 3, we require

362—2
662 - 3’

2—3c; —3c+6cico =0 = ¢ =

(c2 #1/2)

and for order 4, we require

-2
012362 and 1 — 2¢; — 2¢p + 6¢1c =0
662—3
from which /3
3+ V3
6 —6c,+1=0 = = e

Therefore, as L[y] = O(h*) and L,[y] = O(h®) for arbitrary ¢; and ¢z, we have a
default order of 2. When the collocation points are the Gauss nodes, then L;[y] =
O(h%) and Lsy[y] = O(k®), and the highest possible order of 4 is obtained.

6.1.2 Stability

Example: ¢; =0and ¢; =1
Applying the method (6.3) to the test equation y" = —w?y with P, =1, Py = P3 =
Py=0and Q; = A; fori=1,...,4 we obtain

Ynt1 = Aiyn + Aghz, — A3V2’yn - -A4V2yn+1 (6.4)
hznit = Biyn + Bahzn — B3v?yn — Bav’yns (6.5)

where v = wh.

Rewrite equation (6.4) as
Yns2 = A1Yns1 + A2hzni) — Asv®yni1 — AP ynss
and then substitute (6.5) for z,,,. We can eliminate z, using (6.4) to obtain

{1 + 1/2«44} Ynya — {Ax + By — V(A3 + AyBy — A4Bz)} Ynl
+ {A[BQ — A.B; + l/2(.A233 - A;;BQ)} Yn = 0.

Therefore the stability equation is given by

£2 - 2R, (v*0)6 + P(v%0) =0
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where .
R (1/2' 9) _ -Al + By - V2(-A3 + Ay — A4Bg)
1 ’ 2[1 + I/2A4]
and By — AsBy + v2(AyBy — AsBy)
9. o A1B2 — A1 + v (A203 — A3D9
P(v50) = 1+ 024, '
Substituting the values for 4; and B;, for 1 = 1,...,4 and after some simplification
2 . 2/ _
Ry, (v:0) = 6%(0 + sin @ cos 8) + v*(sin O cos § — 6) and P(v%0) = 1.

62(sin 6 + 6 cos @) + v2(sinf — 6 cos 0)

Thus the requirement for the method to have an interval of periodicity is satisfied.
The stability function Ry;(v?;6) may be written as

ag + a;v?

Ry(v%0) = ——— I
11(1/) ) 1+,61V2
where
N 6 +sinfcosf sinfcosf — @ and f sinf — @ cos 8
= — ) = Il = .
7 sinf+0cosf’ ' 6%(sinf + fcosb) Y7 62(sin 6 + O cos 6)
When 8 = v,
R (1) = v +v?sinvcosv + v¥sinvcosv — 1 — cosy

visinv + vicosv 4+ v?siny — v3cosv

and when 8 = nm,

oy (mPar+0) 42 0—nm)
Ry (v n) (nm)2(0 + na(—=1)*) + v2(0 — nw(=1)") (=1)™.

Following Definition 3.4 in chapter 3, the stability boundaries are the curves

vy (0) = g+l 1/2_9 0 +sing)
BTl e+ 4 16 —sinb ’

v_(6) = _ao—l 1/2—0 0 — sin@ /2
B ar — B 10 +sind
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20

1 1 ¢ 1 1 1 L
o 2 4 6 8 10 12 14 16 18 20
nu

Figure 6.1: v — f plot for extended mixed collocation method I : ¢ =0 and 1

and the lines corresponding to any values of 6 for which
0&0:‘:].:0:0{1:*:,61.

Thus,

(6 + sin 6)(1 + cos 6) _ 0 and (sinf — #)(1 + cosh) _0

sinf + f cos 0 62(sin 6 + 6 cos 6)

ap+l=0=a,+0;

and both of these equations are satisfied when 6 = (2n + 1) where n is a non-
negative integer. Also
(6 — sin#)(1 — cos ) (sinf + 8)(1 — cos9)

—-1=0= — = -
o O=0i=h = sinf — 6 cos @ 0 and 62(sin @ + 6 cos 6) 0

and these two equations are satisfied when 6 = 2nx.

Therefore the stability boundaries are given by the curves

: 1/2 o 1/2
1/+(0)=0{0+8m9} and u_(a)ze{g—S‘—ng} .

@ —sind @ + sin @

The lines # = nm where n is a non-negative integer are also possible boundaries.
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The stability regions are shown in figure 6.1. The equations v,.(8) and v_(8) define
two continuous oscillating curves which cross at multiples of 7 and enclose the
stability regions between them. When 8 = nr, the modulus of the stability function
is 1 but these lines do not act as stability boundaries. There is an interval of
periodicity (0, hy) where hqy decreases from v/12/w when 7 = 0 to 7/w when r =1
for fixed w. When r > 1, the periodicity interval decreases from 7 /k (with k fixed)
when r = 1 and tends to 0 as r increases. We note that the stability regions are
very similar to those of the exponentially-fitted multistep method S3 which is exact
for [exp(+ikz), z exp(+ikz), 2% exp(Likz)], (c.f. [23]).

The stability function for the mixed collocation method for s = 2 with fitted trigono-

metric functions [cos kz, sin kz, x cos kz, z sin kz] is given by

62(8 + sin 6 cos §) + v*(sin 6 cos § — 6) I

. pMC 2.0\ = .
B (5 0) 62(sin @ + 6 cos f) + v2(sin 6 — 0 cos §)

Ask —0

2-22/3 627

240123 6+ 12

and this agrees with the stability function for the polynomial collocation method in
section 2.5.3 with ¢y =0 and ¢; = 1.

RYC(v%6) —

Example : ¢; = (3 ~/3)/6 and ¢, = (3 + V/3)/6
If we apply the method (6.3) to the test equation y” = —w?y, we obtain

Yn+1 = Al Yn + Ay hzn - -A3 V2 Un+e; — A4 V2 Yntco

h'zn+1 = B Yn + By hz, — Bs V2 Unte, — B, V2 Yn+cy
Untey = Pl Yn + PQ h Zn — P3 V2 Ynter — P4 Vz Yn+ca
Unter, — Ql Yn + Q2 h Zn — Q3 V2 Yntey — Q4 V2 Yntc

where v = wh. The coeflicients are given in Appendix B.2 for arbitrary ¢, and c,.
The method is undefined when either 8 = 0 or

— {%02 + 4} sin (?0) — 0v/3cos <§0> - ?9 cosf =0

= 6 =0,4.1607,10.2989,15.6182, . ..

to 4 decimal places. After some simplification, the characteristic equation is given
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by
€2 — 2Ry (v 0)6 + P(1*,60) = 0

where the stability function is

ag + ay V2 + ay V!

2, _
Rn(v7;6) = 1+ By v2 + Bp v/t
with .
a0=§{82+A1}
1
Otl:§{A194—Aa'Pl—P233+A1P3+Q432—A4Q1+32P3-34Q2}
] B, Bs By A Az Ay
=74 P2 P3s Py |+|P1 Pz P4 I
Qy Q3 Q4 Q Qs Q4
Bi=Q4+Ps, Po=P3Q4—PsQs
and ) .
P(U2;0)2p0+pll/ +,02’/
1+0'1U2+(721/4
with

po = By Ay — Ay By

A A, A A

A Ay Al A A A borees e
=B, B, B, |+|B, B, B _| B B B B
P = Pl P2 Pa Q1 Qz QA. y P2 = P, P, Py Py
R oo Q) Q Q3

o1=Q4+P;, 09 =P3Q4 —PyQs.

As we can see, the expressions are already complicated before the coefficients of the
method are substituted. As a result, we were unable to find a general formula for
the characteristic equation as there was not enough memory using Maple. Instead,
in figure 6.2 a method of trial and error was used to find the stable regions. For each
value of v and @ that was substituted, P(v%;6) = 1 and so we are only concerned

with whether the absolute value of the stability function is less than or equal to 1
to have a stable region.















CHAPTER 6. EXTENSION OF THE MIXED COLLOCATION METHODS 145

Example : s=2
With s = 2, u(z) is of the form

u(z) = agcos ki (z — z,) + by cos ka(z — ) + ay sinki(z — xz,) + by sinky(z — )
and from the initial and collocation conditions, we have

ap + 0o = yn, ar1ky +biks = 2z,

and
frve, = —aoki cos(Bic;) — boks cos(fz¢;) — ark? sin(fyc;) — b1k5 sin(fqac;), 7 =1,2
where 6, = kih, 0y = kyh and foic; = f(Tn + Cjh, Ynie;)- r

(Note that for s = 3, the initial conditions give
ag +bo+ 10 =yn, arky +biky = 2y,
and for s > 4, the initial conditions are

ag + by + 710 = Yn, arky +bika+r =2,.)

A system of equations is obtained which is easily solved to give

Zn — b1k2

ap =Yn — by, a1 = A
1

bp = S UYn + h Sy z, + h«Z [53 fn+c1 + S, fn+cz]

where
Sl = 9% {928i11(9161 + 62(52) + 291Sin[01 (Cl — CQ)] — 028in(0201 + 0162)

—Hgsin(chl — 9162) - 025iﬂ(01C1 - 0‘2C2)} /G,
SQ = ——9192 {—COS(92 c, + 9162) — cos(0101 - 0262)

+cos(Bicy + 0z c2) + cos(bpey — Bic2)} /G,
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53 — _9 {Olsin(ﬁlcg) (—;Hgsin(ﬁzcg) } , 54 —9 {01Sin(6161) ;HQSin(chl) } ’

G = 263sin[0,(c; — c3)] — 0363sin(0 ¢ — Gacy) — 626,5in(f2¢1 — 01¢2)
+ 020,sin(0)¢; + Oyc0) — 036,5in(01¢; — Oac) + 056015in(fac) + O;c))
+ 2038“1[62(01 - 02)] - Hgﬁlsin(t?lcl + 9262) - B%QQSin(GQCl + 01C2)

- 0%028'”1(0261 - 9102)
with G # 0 and b, is given by

bl = T]_ yn + hT2 Zn + h2 [T3 fn+c1 + T4 fn+c2]

!
where ) ) ‘
T —cos(0,¢2)0%S, + cos(Bac3)02S, + cos(8,c3)6?
L 02[018“1(0102) - HQSin(HQCQ)] ’
T 01sin(01ca) + cos(fac2)02S, — cos(8,¢2)02 5,
2 =

Gg[Glsin(BICQ) - 928in(0262)] ’

_ S3fcos(02¢2)035 — cos(b1c2)67]

N 62[91Sin(9102) - GQSin(QQCQ)] ’

T _ 1 + cos(fac9)02S, — cos(0¢2)02 S,
4 02[918111(0162) — 928“1(9262)]

for 02[61sin(6,cp) — O3sin(facs)] # 0.

T3

Let Yni1, Znt1 and ynye; for j = 1,2 be approximations for the exact solutions
Y(zn + h), y'(zn + h) and y(z, + c;h) respectively. Then the two-point collocation
method which fits the functions [sin k,z, cos k) z, sin kqz, cos koz] exactly is given by

Yn+1 = GocC0sB; + bgcosby + aysinb; + by sin by,
Zny1 = —agkysinfy — bgkosin @y + a1k cosy + biko cos s
and
Ynie, = —aoks cos(Bic;) — bok3 cos(fac;) — aiki sin(fcj) — biks sin(facj), 7= 1,2
where 8, = ki h and 0y = kyh. The coefficients ag, a;, by and b, can then be

substituted to find the general form for the two-point mixed collocation method
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with two frequencies.

Example : ¢, =0 and ¢, =1

The two-point two-frequency mixed collocation method is given by

Yn1 = Aryn + Ashz, + Ash®frn + Adh® frop

5 (6.6)
Zny1 = —hlyn + Bazp + B3hfn + Bah frii
where
6, cos 8, sin @, — 6, sin 8; cos B sin 6, sin 6,(62 — 6?]
Al - ) A? = y
5 91028 '
A = 1 cos B, sin @, — By sin B, cos O, A, — fysinf; — 6, sinf, T
3T 010, SR 010, ’
B — 0.0 6? sin 0, sin 63 + 02 sin 6, sin 6, — 26,0, + 26,0 cos 0, cos b,
o (0% - 6%1€ ’
B, — 0, cosf,sinfd, — 8, sin b, cos b,
2 5 )
Bew — 67 cos 6 cos Oy + 02 cos 0, cos By — 62 — 02 + 26,0, sin 8, sin 6,
T 6% — 671¢ !
- 0
B, = cos 8, - cos 0,

with € = 0,sinf0; — 6, sin@, # 0, and 8, = k,h and 8, = kyh where &, and k, are
the fitted angular frequencies.

The method is undefined when 6, = 65, which implies k; = k3, or when #, and 6,
are multiples of 7. As kK, — 0 and ky; — 0, we obtain the polynomial collocation
method given by (2.16) with ¢; =0 and ¢, = 1. As k; — ko, then we obtain method
I in the previous section for the collocation points ¢; = 0 and ¢, = 1.

There is a Maple program in Appendix B.3 to find the two-frequency method for s
collocation points.
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6.2.1 Order Conditions

Example : ¢ =0and ¢; =1
Using the exact values for the solution and its derivative at z,, the linear difference
operators are defined by

El [y] = y(zn + h) - Aly(zn) - Ath,(zn) - A3h2y”(zn) - -A4h2f(zn + h: Y)
and
' Bl ! n
Laly) = y'(an + h) = -y (@a) = Bay'(@n) = Bahy" () — Bahf(zn + h,Y)

where
Y = Aly(zn) + Athl(ilIn) + -A3h2y"($n) + A4h2f(1;n + h) Y) I

The series expansions in powers of the steplength h of the coefficients in method
(6.6) are

k2k2 Tk2k2
= 1 —1—2'h4 [N = 1 2h4
.Al + 24 + ) A2 + 360
1 1
Ai=g 360(k2 + k2)h? + m(311c4 + 80kTkS + 31k3)h* +
luzk% k2k2
5= B gt

L,
By =5+ (k2 + k2)h* + —(3k4 + 13k2k2 + 3K3)h* +

24 720

1 1
B — kZ 2\ L2 4 2[{22 4 4
1= 24( + k3)h +———720(3k + 8k1k; + 3ky)h" +

Substituting the coefficients into the difference operators and expanding about h =
0, we obtain

ht , ,
Lily] = Toa {f:u: + Sy + 2 ny + fyy[y]2 + (kT + k) f + k%k%y} +O0(h?)
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and
h3 ! !
Laly] = 12 {fm + ffy+ 2 oy + fuly'T + (B + k3)f + kfk%y} +O(h?)

where y = y(zn)’ f= f(mmy(zn))’ etc.

Therefore, as Li{y] = O(h*) and Ly[y] = O(h®), then the two-frequency mixed
collocation method (6.6) with collocation points ¢; = 0 and ¢y =1 is of order 2.

6.2.2 Stability

The stability analysis of exponentially-fitted methods with more than one frequency
is complicated. One approach is to relate the frequencies in a simple way. For
example, for two frequencies ky and ks, one could set k;, = mk; and apply the

stability theory of chapter 3. First, we derive the characteristic equation for the
two-frequency method with ¢; = 0 and ¢, = 1.

Following the work of section 6.1.2 the characteristic equation for the two-frequency
method (6.6) is

£ — 2R11(V2;91, 62)€ + P(VZ; 61,60,) =0

where

Ai+ By — V3 (As + Ay By — AyBy)
2, =t 2 2 2= =
Ry (v 61,0,) = 2(1 + 244

and

— 2 _
P(I/2; 61, 92) _ ALB2 AQB;- :Z2E;‘:233 Ang)

Substituting the coefficients .A; and B; (6.6) and simplifying, the stability function
R (V% 6,,0,) is given by

610,[0, cos 0, sin 6, — 0, sin 6, cos ;] + v2[03 cos B, sin ) — B, cos b, sin B,]
6105[02 sin 8, — 6, sin 6,] + v2[0; sin 8, — 6, sin 6,

and
P(v%6,,0,) = 1.

Thus, the criteria for the method to have an interval of periodicity are satisfied. The
method is stable if |R),(v?;8,,0,)] < 1 and for the numerical examples in chapter
7, this is easily checked by substituting in the particular values of 6,, 6; and v.

As mentioned earlier, we can set one frequency as a multiple of the other, i.e. let
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f; = m#, and with 6, = 6 the stability function becomes

Ru (12 6) = (m — 1) sin(@(m + 1))[v® + m#?] — (m + 1) sin(8(m — 1))[v? — mf?]
s = 2m@?[m sin(m0) — sin 0] + 2v%[(msin @ — sin(mb)] '
Example : m =2

The stability function is given by

Ry (V% 0) = sin(30)(v? + 26%] — 3sin O[v?® — 262
nWHY) = 4g2(25in(26) — sinf] + 2022 sin 6 — sin(20)]

_ 0%[1 + 2cos? 6] + v2[cos? 6 — 1]
~ 6%[dcosf — 1]+ v2[1 —cosf] .

This may be rewritten as

4
o + a1 ,
Ry (v 0) = 2ot
11( ) 1+ﬂ11/2
where
2cos?6 +1 cos?f — 1 1 —cosd
g = ————, o B
4cosf —1

- 62[4 cosf — 1]’ - 624 cosf — 1]

The coefficients ag, @; and f; are undefined when cosé =1/4 or § = 0.

Following Definition 3.4, the stability boundaries are the curves

2+ cosf) )" 1-cosf\ )"
— 2 = 2 P EEE——
v+(0) = {29 <1 - cos@)} and v.(6) {29 (2+cos€)}

and the lines corresponding to any values of § for which

2(cos@ — 1)? 2 cos f(cos 0 + 2)
_ 1 - @ = — — =
o dcosf — 1 0, c1=h 4cosf—1 0
and 2.cos6(cos 8 + 2) 8(cos 0 — 1)
cost/(cosl + cosfcost —
]_ = = =
% + dcosf — 1 0, v +fi dcosf — 1
We have

ag—1=0 when ¢=2nnr
oy —fi=0;+1=0 when 6=02n+1)

a;+ =0 when 6= (2n+1)

T
2
% and € = 2nw

where n is a non-negative integer. Also method (6.6) is undefined when cos8 = 1/4.
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then this must be checked also.
As in earlier work, we find where the stability function is undefined. Thus, the

denominator of the stability function set to zero gives

6*[4cos® — 1] + v*[1 — cosf] =0

S ope 021 — 4cos]) /?
B 1—cosé

and the curves (9) are plotted '+’ in figure 6.10. The curves pass through all the
places where the inconsistencies occur.

6.3 Steplength dependent collocation poi.ntsr

The motivation behind steplength dependent collocation nodes is to see whether we

can improve the order or the stability of the mixed collocation methods of chapter
4.

6.3.1 Order conditions for one collocation point

First, let
c=c? +cWh 4 Ph2 4+ Op3 4

where ¢ for i = 0,1,2,... are constants.

Then, from section 4.2.1, after some simplification, the linear difference operators
become .

3
Lyl = %(1 —3¢9) {y®(zn) + K%' (z0) } +
% {11 = 6y () + k2" (2)] — 120y (2) + K2y ()]} + O(R)
and

Lfy) = %(1 —2¢) {y(z,) + K%' (2) } +

o= BV @) + Ky @) - 6Oy ) + K (50]) + O(RY).
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Thus
if (0 £ %, Li[y] = O(h®) or higher,
Lo[y) = O(R?) = Order 1.
O =2 Ly = O(W)
Lyly] = O(h*) = Order 2.
Thus, the highest attainable order is 2 when ¢® = 1, and so it is not possible

to improve the order for the one-point mixed collocation method with the nodes
dependent on the steplength.

6.3.2 Stability for one collocation point
T
The characteristic equation for the one-point mixed collocation method is given by

(5.6). For the method to have an interval of periodicity we require P(v?;8) = 1 from
which v = 0 or cos(fc) — cos8(1 — ¢) = 0. From section 5.1.1 the latter equation is
satisfied when ¢ = 1/2 and so it is easily verified that when ¢ = ¢(® +c(Vh +c@h? +
A3 4+ ..., then P(v?6) = 1if

1
9 = 5 and ¢™ =0 where n=1,2,...

Once again, no improvement has been made for the one-point mixed collocation
method and so we shall turn our attention to the two-point method.

6.3.3 Order conditions for two or more collocation points

First of all, let
c = cEO) + cgl)h + cgz)h2 + cg‘o’)h3 +..., fori=1,...,s. (6.7)

As with the one-point mixed collocation method, the order conditions may be found
by substituting the above expansion for the collocation nodes into the linear differ-
ence operators (c.f. section 3.4.2) and then collect in terms of h.
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The Order Conditions for the Mixed Collocation methods for s > 2
(With steplength dependent coefficients and collocation nodes)

For order 1,

1) Sd¥ =1
i=1

For order 2,

For order 3,

i=1 i=1
I

s 1

d% 8) b =,

i=1j=1 =1 6

For order 4,
© ~ (40, @ O _

9);d (L ;{d +d7c”} =0,
) 33 da@ = L 1) 3340 0,0 - L
i=1j=1 ' v 2 i=1j=1 J 8’

—t

§ §
3.) 3 d0PcM =0, 14) 6Oy = oL
i=1 i=1

5.) Y0 = me_o 17) o0 = o
i=1

i=1j=1 4

For order 5,

1]

u 1
8) 2 d(q”) =2, 19) 3 {dP ™) + d (") + 2P} = o,

i=1
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s 8§ s
20.) Y di¥ =0, 21) 3 dO(?)2 =0, 22) 3 {dP +dPc{V} = o,
1=1

=1 i=1

23) 5 {d%a) + d¥a®} = o, 2) 3 dPalP(d) = o

i=1j5=1 i=1j=1
s 2
Z Z Z d(O) (0) (0) Z d(O - 1
i=1j=1k=1 ]:1 20
ZZ 40004 - Z 40 a0 ()2 _ L
i=1j=1 i=173=1 ' 10’
Z Zd(o) (0) =0 30 Z Z d(o) (1) (0) =0
i=1j=1 I J 1=1j=1
S 1 §
31) Yo () = g5, 32) 3o {6+l } =0, 33) Zb(") OV =,
i=1 1=1
8 8 1 1
34 b0 = L a5 B0 =
) ZZ 1 al] cJ 120 ZZ C 40

=1 j=1
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Example: s =2
When the collocation nodes are given by
= c(lo) + c(ll)h + 0(12)h2 + c(Ls)ir,3 + ...
e =" + S+ h? + hd 4
then the method has default order 2.

For order 3, we require

@ 1[3 -2 o 1 M
A=z om_( dai=-3 ©) (©)
312" -1 3 4(er")? = dey’ +1]

# 1/2, and the maximum order of 4 is obtained when, in additian to the
above, we have

with cgo)

0(20) = giﬁig and cgl) =0,

that is

3—V3 3+ V3
€ = T\/— + cgz)h2 + c§3’h3 +... and ¢ = 6\/_ + cg2)h2 + cg3)h3 + ...

Once again, we cannot improve on the order conditions for two collocation points.

For an s-stage mixed collocation method

It we set to zero any coefficients of ¢; which have a superscript greater than 0, then
the above conditions reduce to those for the mixed collocation methods of section
4.2.2 where the collocation nodes do not depend on the steplength h. As these
original conditions still have to be satisfied plus the extra ones obtained in this
section, it is not possible to improve on the algebraic order for an s-stage mixed
collocation method by making ¢; depend on the steplength.

6.3.4 Stability for two collocation points

When the expressions for the expansions of the collocation nodes are substituted

into P(v?;0), equation (5.10), for the two-point mixed collocation method, and we
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Figure 6.12: Stability curves for a = 2 x 1072 r.

2 F) € s . 7 s ) L)
~

Figure 6.13: Stability curves for a = 4 x 1072



Chapter 7

Numerical Results

In this chapter, numerical results are given for the mixed collocation meth70ds. All
the results in this chapter were generated using Matlab Version 4.2b. '

The Mixed Collocation Methods

Method | Stage number | Collocation points (¢;,¢ = 1..s) | Algebraic order
Ia 1 0 1
Ib 1 1/2 2
Ic 1 1 1
Ila 2 0,1 2
ITb 2 (3—+3)/6, (3+V3)/6 4

Illa 3 0, 1/2, 1 4
IITb 3 (5 —15)/10, 1/2, (5 + v/15)/10 |~ 6
IVa* 2 0, 1 p
IV 2 (3—3)/6, (3+V3)/6 4
| % 2 0,1 2

Methods I refers to methods Ia, Ib and Ic; methods IT are methods I1a and I1b,
methods II] are methods I/Ia and [/1b, and similarly, methods IV* refers to
methods IVa* and IVD*.

In methods I, /T and I1I, we approximate the solution y(z) of problem (1.1) on
the interval [z, z,41] by a function u(z) of the form

u(z) = a cos[k(z — x,)| +bsin[k(z — 2,)] + 52_: ri(z — 3,)"

=1

159
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In methods JV* we approximate y(z) by

u(z) = [ag + a1t] cos(kt) + [bo + b1t] sin(kt) + griti

i=1
and in method V*, y(z) is approximated by

s—3
u(z) = ap cos(kit) + a; cos(kat) + bo sin(kit) + by sin(kat) + > rit’

=1

where t =z — z,,.

In some of the following numerical examples, we also include results from Numerov’s

4th order method and three 4th order exponentially-fitted multistep methods used

by Coleman and Ixaru [18]. ’
The multistep methods are of the form

Yn+1 — 26YO Un + Yn—1 = hz[ﬂl(fn+l + fn—l) - 2al fn]

Method Sy is Numerov’s method with coefficients given by

5 1
ap =1, o=-1 and ﬂ1=1—2.

Method S; is the Stiefel-Bettis method which is exact for [1,z,z?, 23, exp(Likz)]
with steplength dependent coefficients given by

62 — 2(1 — cos 6)
26%(1 — cos9)

1
oy =1, 01=ﬁ1—§ and fy =

As k — 0, we obtain Numerov’s method S.

Method S; is exact for [1,z, exp(+ikz), z exp(Likz)] with coeflicients

2tan(0/2) cosd — 0 2tan(8/2) — 0

a=1, o= 0 and () = B

and finally method Sy is exact for [exp(+ikz), z exp(+ikz), 22 exp(Likz)] with

_ 20 +cosf (3sinf — fcosh) N _ cosf(sinf +Ocosf) — 20
B 3sinf + @ cosd » 71T (3sinf + 6cos 6)0?

Qg
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sinfd — fcos @
(3sin6 + fcos)6?’

Again, as k — 0, both methods Sy and S3 reduce to Numerov’s method Sp.

and G, =

For each example unless otherwise stated, a tolerance of 10~ is set and for each
step, we require this to be satisfied within a maximum of 10 iterations. Many authors
tend to look only at the absolute errors at the end point of the interval [a,b]. For
some problems though, the maximum absolute error over the interval is much larger
than the absolute error at the end-point of the interval. In the following results, the
absolute errors at certain step points are presented but the main result that we are
interested in is the maximum absolute error over the interval [a, b).
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7.1 One-dimensional problems

Example 1.1

For our first linear test problem, consider the scalar equation

y'=-y, y(0)=1, ¥'(0)=0

where the exact solution is y(z) = cosz. The methods which are exact for this
problem are the mixed collocation methods I — IV, and the exponentially-fitted
multistep methods S; — 53, all with fitted frequency k£ = 1.

In table 7.1, the maximum absolute errors are given over the interval [0,407] for
four different values of the steplength h. The top values are found using the mixed
collocation methods with fitted angular frequency k£ = 1, and for compar}son, the
bottom values are found using the classical polynomial collocation method, that is
k = 0. In table 7.2, results are given for the extended method IV* with k£ = 1 and
the two frequency method V* with various values of the frequencies k; and k,. For
method V", we let k, =1 and k; = 0.1, for method V¥, k; = 1 and k; = 0.01, and
for method V3, k; =1 and k3 = 0.001. Finally, in table 7.3, the maximum absolute
errors are given for Sy (Numerov’s method) and the exponentially-fitted 4th order

multistep methods Sy, S; and S3 of Coleman and Ixaru [23] with angular frequency
k=1
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h

Ia Ib Ic Ila
n/4 | k=1]|124x 1077 [9.76 x 107 [ 9.25 x 107 | 1.75 x 107!
k=0| 1.49 x 10*° 1.3465 1.0025 1.9926
/8 | k=1[1.08x10"17]1.04 x 107 [9.88x 10" | 2.11 x 10~
k=01 1.30x10*> | 3.82 x 107! 1.0000 7.66 x 107!
/16 [ k=1]955x10""[124 x 1077 | 1.06 x 1077 | 7.02 x 10~
k=0]395x10%2 | 9.90 x 1072 | 9.98 x 10! | 1.98 x 10~!
n/32 [ k=1]510x10""[270x 1071 | 1.02 x 1071* [ 5,54 x 1075
k=0 2.06x 10" | 249 x 1072 | 9.54 x 107! | 4.98 x 1072
h ITb IIla ITTb
/4 [k=1]245x10"17[437x 10719 | 1.74 x 10~
k=0| 104x1072 | 2.38 x 1072 | 3.50 x 1075
/8 |k=1[128x10""]397x 107" | 542 x 1075
k=0]|675x10"% | 1.52x 1073 | 5.60 x 107
/16 [ k=1]577x 107 | 1.59 x 10712 | 4.15 x 10712
k=0]| 426x107% | 9.59 x 10~° | 8.80 x 107?
/32 | k=1]6.89x 1071 |762x 10712 {1.92x 1077
k=0]267x107° | 6.00x 1075 | 1.38 x 10710

163

Table 7.1: Ex 1.1 - Mixed Collocation and Polynomial Collocation Methods I — I11

IVa*

1vb*

| %

‘/2*

V:';

/4

2.54 x 1071

9.51 x 1071

2.79 x 1071

3.39 x 10~

4.13 x 107

/8

1.17 x 10714

2.29 x 1077

6.39 x 10714

1.92 x 1014

2.98 x 10~H

/16

4.10 x 1071

1.12 x 10714

9.10 x 10715

4,70 x 1071

1.24 x 10718

/32

2.66 x 107+

1.10 x 10711

2.50 x 10713

211 x 1071

727 x 10713

Table 7.2: Ex 1.1 - Mixed Collocation Methods /V* and V*
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h So S S, S3
/4 [1.00x 1077 [ 9.79 x 10- [ 9.79 x 10~ [ 2.17 x 1071
/8 [6.17x107°[1.24 x 107 [ 6.79 x 10~ [ 9.77 x 10°1®
7/16 [ 3.84 x 107* [ 4.01 x 10717 ] 1.43 x 107 [ 1.46 x 10°F
732240 x 1075 [ 543 x 107 [ 479 x 1077 | 2.28 x 1071

Table 7.3: Ex 1.1 - Multistep methods Sy, Sy, S; and S3

Conclusions

From the stability theory for the mixed collocation methods I — V* in chapter 5
and sections 6.1.2 and 6.2.2, all the results in tables 7.1 and 7.2 are stable for the
frequency k£ = 1 and for the particular values of v and 8. As the mixed collocation
methods I — I11, IV* and the multistep methods S; — S; are exact when solving the
test problem with & = 1, then if the calculations are performed exactly, we would
expect the numerical results to be zero. Because of the errors in evaluating the
coefficients of the methods using double precision, then we must take into account

the accumulation of rounding error over the interval and so the results are very close
to zero.

The polynomial collocation methods struggle for low order methods but start to
show signs of improvement when the 4th and 6th order methods I71b, I11a and I11b
are used with small steplengths. The 4th order methods I7b and IIla are more
accurate than the 4th order method S,.
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Example 1.2
Next, consider the harmonic oscillator as in Example 1.1 but with a higher frequency
so the solution contains a more rapidly oscillating function. The differential equation
1s

y' =-25y, y(0)=1, y'(0)=0

with the exact solution y(z) = cos(5z).

In tables 7.4 - 7.7, the maximum absolute error over the interval {0, 407] is given. In
table 7.4 we have Numerov’s method Sy, and for the multistep methods S; — S; in
table 7.5, the angular frequency is K = 5 and k = 4. In table 7.6, k = 5 for methods
IVa* and IVb*, for method V;* we take k; = 5 and &y = 0.1, for method Vi, k; = 5
and k; = 0.01, and for method V3, k; = 5 and k; = 0.001. Three differént values for
k are considered in table 7.7, k = 5 and k = 4 for the mixed collocation methods,
and k£ = 0 which is the polynomial collocation method. Also included in tables 7.5
and 7.7 is whether the methods are stable (S) or unstable (U) and this was found
from the work of Coleman and Ixaru [23] for methods S; — S3 and the stability
analysis of chapter 5 for the mixed collocation methods.

Where ‘Undefined’ occurs in table 7.7, this means that the steplength dependent

coefficients of the mixed collocation method are undefined for those particular values
of 8 = kh.

h=m/4 h=7/8 [ h=n/16 h=m/32
So | 409 x 10™ U [1.9995 S [1.1627 S| 758 x 1072 §

Table 7.4: Ex 1.2 - Multistep Method Sy
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166
h Tk Sy S, S3
/4 | 5743 %1071 S]1863x107" S|719x107" S
4 x! U %2 U *3 U
/8 [ 5] 167x10°° S{947x107" S[677x107" S
4 2.0004 S 1.9990 S 1.4153 S
/16 | 5986 x 1071 S[9.61x107* S|1.66x10"8 S
4]460x10"! S| 1.70x10"t! S| 629x107%2 S
/325 ]1.07x10°% S[130x10°® S[303x10°8® S
41 275x107% S| 999x10° S|362x103 S
Table 7.5: Ex 1.2 - Multistep Methods S| — 53
h IVa* Vb v Vy VA
/4 | 6.44 x 1071 [ 8.62 x 1072 [ 1.79 x 10713 [ 1.09 x 10~13 | 8.27 x 10~
/8 (259 x 1071 | 811 x 107 [ 6.73 x 107 ] 9.92 x 10717 [ 9.16 x'10~
/16 | 1.33 x 10783 [ 191 x 1072 [ 152 x 107P [ 1.12 x 1078 [ 1.27 x 1075
/32195 x 1078 | 1.78 x 1072 [9.74 x 107 [ 1.17x 107 [ 1.42 x 1078

Table 7.6: Ex 1.2 - Mixed Collocation Methods IV* and V*

For *!, at the 9th step the tolerance was not satisfied within 10 iterations and the

method was interrupted. The maximum absolute error at this point is 2.02 x 1072,
At *?, after 154 steps, the maximum absolute error is 4.45 x 10*! and at *3, after
58 steps, the maximum absolute error is 1.64 x 10*!. This agrees with the stability
analysis and figures from the paper by Coleman and Ixaru [23] that their methods
are unstable for the particular values of 6 and v.
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la

Ib

Ic

IIg

ENEIR S

759 x 10~ H
2.38 x 10+52
2.36 x 10*7°

143 x 10713
Undefined

x4

¥))

9.36 x 10~ 1
1.0490°
1.0009

6.79 x 10~ 4
Undefined

%9

tn

ol

9.5l x 10~
8.74 x 10130
5.05 x 10+7

1.33 x 1071
1.9992
1.9471

1.35 x 10~ 13
Undefined
1.0488

Uhn »nn

712 x 10714
1.9998
2.0000

1.17 x 10~
1.45 x 10+21
4.63 x 10+54

8.30 x 10714
1.9997
2.0000

939 x 107
1.0025
1.0019

1.24 x 1071
1.9974
1.9808

O OO W O = OO = Y X

9.70 x 10~ 11
4.20 x 10*11
3.96 x 10+3!

T T T T YT T LT TN

1.12x 10713
1.0607
1.9963

NN U»Wnnn &\

8.49 x 10~
1.0000
1.0001

L ninhhhn njin

1.43 x 1073
1.7971
1.9975

N Wninnhin \HT

Table 7.7:

I1b

Illa

I11b

) Q-

1.08 x 1071
1.9999
1.9999

1.10 x 10713
1.9974
1.9986

9.92 x 10~
9.92 x 101
1.2163

(3

825 x 10~ 1
8.14 x 10!
1.3064

1.33 x 10713
1.3606
1.9996

1.26 x 10713
2.32 x 102
3.58 x 1072

=

1.17 x 10~ 13
6.09 x 10~2
1.23 x 10~!

237x 10713
1.04 x 10°1
2.82 x 107!

438 x 10713
3.96 x 10~
6.57 x 1074

[e)

OO R O OO e AR

3.83x10° 1
3.95 x 1073
823 x 1073

nhhhhhthhln \”yythh t1n »n

S

1.29 x 10~ 12
6.73 x 10-3
1.86 x 102

NN Whh N ”h \ith nn

6.88 x 10~ 13
6.35 x 106
1.07 x 103

N LK KWK

Ex 1.2 - Mixed Collocation and Polynomial Collocation Methods I — ITT

At x*, the method exceeded the maximum number of iterations but 6 steps were
reached and the maximum absolute error at this point was 3.14 x 10%2, therefore

agreeing with the stability analysis that the method is unstable for these values of

f and v.

At +°, 38 steps were reached and the maximum absolute error at this point was
8.06 x 1078, again unstable.
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Conclusions

For k = 5, the mixed collocation methods are exact, except for rounding error
and this agrees with the stability theory and the fact that we have used the same
frequency as the test equation w = k = 5. For k = 4, the results appear to be very
similar to the classical polynomial collocation methods.

The multistep methods S;, S; and S3 give very similar results to the mixed col-
location methods and all the methods show how varied the results can be when
choosing different values for the fitted angular frequency. Comparing the 4th order
methods /76 and 11 with the multistep methods S; — S3 when k = 4, the mixed
collocation methods are more accurate for large steplengths but we can see that
the S; method shows signs of improvement when h = 7/32. The 6th. order mixed

collocation method I11b is the most accurate for k = 4. ,

Again, the 4th order polynomial collocation methods I1b and I/]a are superior to
Numerov’s method Sy, especially for small steplengths. The 6th order polynomial
collocation I1Ib is the most accurate for k = 0.
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Example 1.3

For the next example we solve the differential equation
y'=-100y +2, y(0)=3, ¥ (0)=0

where the exact solution is y(z) = 2.98 cos 10z + 0.02.

In tables 7.8 - 7.11, the absolute errors at © = w,77/4,27 and 11w /4 are given,
and in the final column, MAX, we give the maximum absolute error on the interval
[0,117/4]. Two steplengths are taken for comparison, h = 7/24 and h = 7/48 and
the fitted angular frequency is k = 10 for methods I — IV* and S; — S3. For the
two frequency mixed collocation method Vi, k; = 10 and k; = 1 and for method
Vs, ky = 10 and k, = 0.001.

In table 7.12 the maximum absolute error on the interval [0, 117/4] is giveh for the
polynomial collocation methods I7b, II1a and II17h and Numerov’s method Sq.

In table 7.13, numerical results obtained from a 2-step 4th order P-stable hybrid
method with phase-lag of order 6 by Chawla et al [15] are presented. The absolute

errors only are given at z = 7, 7w /4,27 and 117/4 for this method.

T=m T="Tn/4 T =2r z=1ln/4 MAX
Ta [933x107P [1.23x 107|151 x10°™ [ 212x 10" | 3.60 x 10~
Ib [133x10°5[169x107[1.78x107P [ 9.67x 1071 [ 4.33 x 10~
Ic [533x107B[561x107™[355x107™ [7.15x 10" [ 9.88 x 107~ 1*
ITa [222x 1075 [1.27x 107 14.00x 1077 | 1.89 x 10715 | 3.62 x 10~
ITh 1115 x 107 [2.96 x 10715 [ 2.13 x 1071 [ 1.50 x 10~ | 3.60 x 10~
IITa [ 4.00 x 107 [ 1.01 x 107 [ 8.88 x 107 | 2.55 x 107™° [ 3.53 x 10~
IITh [3.06 x 10718 [ 152 x 1071 [5.82x 10" [ 7.00 x 10-1° | 8.84 x 10~
IVa* [6.23x 107 [ 355 x 1079 [ 8.00 x 1075 | 3.55 x 1073 | 7.10 x 1073
IV 191 x 10777 [ 1.03x 1077 [ 3.83x 1072 | 1.03 x 10~* | 2.06 x 10~*
Ve [266x107" [ 295x107° [ 888 x 10710 [ 2.95x 10~ | 5.89 x 107°
Vy [444x 107 [294x10°TT[7.99x 107 [2.94 x 10717 | 5.88 x 10~

Table 7.8: Ex 1.3 - Mixed Collocation Methods I — V*: h=7w/24
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z=m Tz =T[4 T =27 z=11n/4 MAX
Ta |799x 1077 [1.41 x 107 [ 1.55 x 107 | 4.06 x 10715 [ 4.37 x 10~ 1*
Ib [577x 1075 [6.20x 107 [9.77 x 1077 [ 9.40 x 10715 | 2.95 x 10712
Te (178 %107 [1.65x 1071 [4.00 x 1075 [ 6.11 x 1071 [ 4.20 x 107
Ila [4.00x 107 [3.02x 107 [9.33 x 1075 [ 2.90 x 1071 | 6.35 x 10~
IThb [799x 107 [219x 107 | 1.60 x 1071 | 1.68 x 10717 [ 5.46 x 10~
ITIa [ 542 x 107" [ 748 x 107 [ 1.12 x 107 [ 1.04 x 10713 | 1.88 x 10713
ITTb 14.09 x 107" [ 3.20 x 10718 [ 8.39 x 107 [ 4.85 x 10713 [ 4.85 x 10713
IVa* [1.02x 107" | 751 x 1077 [2.00 x 107 | 7.51 x 10~% | 1.50 x 1073
IVh* [1.22x 1078 ] 6.06 x 107° | 2.40 x 1073 | 6.06 x 107% | 1.21 x 10~°
V' (888 x107® ] 7.19x107% [1.78 x 1075 | 719 x 107% | 1.44 x 107°
Vy [888x 1071 [717x10712[222%x 1070 [7.17x 1072 [1.44 x 1071
Table 7.9: Ex 1.3 - Mixed Collocation Methods I — V* : h = 7/48
I,
r=m z="Tn/4 T =27 z = 1lw/4 MAX
S) | 444 %1071 {296 x 107 | 1.78 x 1075 | 1.40 x 10~ | 2.70 x 10~ *
Sy [1.33x 107 [ 638 x 1077 [ 8.88 x 1071 [9.43 x 10T | 2.69 x 10~ 7
S3133x 1071 | 540 x 10°* [ 1.33 x 107 | 540 x 10~ | 6.87 x 1071
Table 7.10: Ex 1.3 - Multistep Methods S} — S3 : h = n/24
T=7 r="Tn/4 T =27 x=1lw/4 MAX
S;{1.78x 10715 [ 320 x 1071 [ 8.88 x 10716 [ 3.25 x 107 | 6.31 x 10~
S, 0 295 x 1071 [ 888 x 107|269 x10°19 ] 587 x 101
S3 178 x 10715 | 216 x 107> [ 1.33 x 107 | 2.16 x 10~° | 3.31 x 107°

Table 7.11: Ex 1.3 - Multistep Methods S, — S3

: h=mn/48
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h=n/24 | h=wn/48
ITb [1.50 x 1077 [ 1.06 x 1072
IITa {3.56 x 1071 | 2.40 x 1072
IITh [ 147 x 1073 [ 2.46 x 10~°
So 1.6128 9.95 x 1072

Table 7.12: Ex 1.3 - Methods [1b, IIla, [IIband Sp: k=0

T=m z="Tn/4 T =2 r=1lr/4
h=mn/24]568x107°{3.29x 107 | 2.38 x 10~* | 5.21 x 102
h=n/48 | 1.71 x 1078 [ 5.63 x 10~* [ 6.98 x 108 | 8.89 x 10~%

Table 7.13: Ex 1.3 - Hybrid Method of Chawla, Rao and Ne'ta

Conclusions

When k = 10, the mixed collocation methods I — /1] are exact, except for the accu-
mulation of rounding errors and are far superior to the numerical results by Chawla
et al [15). For methods I'Va* and IVb*, the reason why the results are poor at
z = 7w /4 and 117 /4 is because the method is only exact for the trigonometric func-
tions [sin kz, cos kz, z sin kz, z cos kz]. Method IVb* is more accurate than the 4th
order method S;. Also for method V., when k; is closer to zero, the results improve
compared to V{* because the basis of functions are [sin k;z, cos k, z, sin kaz, cos ko z]
and thus cos k;x becomes a close approximation for the constant term in the theo-
retical solution. This is also the case for the multistep method S3 which has only
trigonometric functions, or products of trigonometric functions and powers in the
basis, whilst methods S; and S, are exact for this problem and are comparable to
the mixed collocation methods I — II1.

Again, the 4th order polynomial collocation methods are superior to Sy but the
6th order method [[Ib is more accurate than the 4th order hybrid methods of
Chawla et al [15] as the maximum absolute errors over the interval [0,117/4] for
both steplengths are smaller than the last errors for the hybrid method.
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Example 1.4

We now consider a highly oscillatory problem where the solution to the differential
equation involves two frequencies. The differential equation is

y" = -100y + 99sinz, y(0) =1, y'(0) =11

with exact solution y(z) = cos(10z) + sin(10z) + sin z.

The results for the mixed collocation methods in table 7.14 are given for £ = 10,
k =1 and k& = 0, the polynomial collocation methods. In table 7.15, the maximum
absolute error over the interval [0, 207] is given for the two frequency method V*
with various values for the fitted angular frequencies k; and k. For comparison,
results are presented for the exponentially-fitted multistep methods $; — S in table
7.16. The top values in tables 7.14 and 7.16 are the maximum absolute ertors over
the interval [0, 207] and the bottom values are the absolute errors at z = 207. The

steplength is h = 7/40.

The method used by Paternoster [53] is a 2-stage Runge-Kutta-Nystrom method of
trigonometric order 1 and algebraic order 2. It has been shown in chapter 4 that
this method is also the 2-point mixed collocation method with nodes ¢; = 1/4 and

¢z = 3/4. Over the interval [0, 207], the method gave a maximum absolute error of
6.42 x 107°.

Also in table 7.17 are sd-values for the interval [0,100] with £ = 10 where

50mar = — loglo(ma‘x |y(xn) - ynl)

is the number of correct digits for the maximum absolute error over the interval

[0,100]. The results in table 7.18 are the sd-values obtained by Simos et al [65] from
the methods shown below:

Method \ Description Algebraic order | Dispersive order
1 Runge-Kutta-Nystrom-Fehlberg 4 8
2 Runge-Kutta-Nystrom 2 8
3 Runge-Kutta-Nystrom 4 10
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k=10 k=1 Polynomial
Ta | 7.85 x 1077 | 2.40 x 10"%® [ 5.89 x 10*%®
1.37 x 1071 [ 2.40 x 1076 | 5.89 x 10+6
Ib | 541 x 1073 2.8009 2.8008
2.20 x 10~ 1.3893 1.4798
Ic [ 785 %1077 1.4170 1.4174
3.00 x 10~ | - 1.0000 1.0004
ITa | 563 x 1071 2.8466 2.8473
1.33 x 1013 2.4315 2.4070
ITb | 543 x 1075 | 743 x 1072 | 7.46 x 1072
1.27 x 10718 | 537 x 1072 | 5.40 x 1072
IlTa | 572 x 1077 | 1.68 x 107" | 1.69 x 10~ 1
950x 1071 | 1.26 x 107! | 1.27 x 107!
IITb | 241 x 1077 | 249 x 10~% | 2.49 x 1071
1.03x 1078 | 1.77 x 107* | 1.77 x 1074
IVa* | 5.94 x 1072 2.8471 2.8473
8.92 x 101 2.4263 2.4070
IVh* | 642 x 1077 | 739 x 1072 | 7.46 x 1072
5.83 x 10712 | 5.35 x 1072 | 5.40 x 102

Table 7.14: Ex 1.4 - Methods I — IV*, h = 7/40

173

This problem highlights the fact that when one looks at the absolute error at the

end-point of the interval, the value can differ greatly from the absolute maximum

error over the whole interval and so this information may be misleading. This is
seen especially for £ = 10 in table 7.14 where the error at the end-point is very
close to zero but the maximum absolute error is much larger. Note that as k — 0,
methods IV a* and IVb* reduce to the polynomial collocation methods I7a and I7b
respectively and this can be seen in the results for k = 1.

kgzl kgzl kgzl k2:10'5
V* 1188 x107" [ 438 x 107" [4.34 x 10~! [ 5.63 x 10~*

Table 7.15: Ex 1.4 - Mixed Collocation Method V*
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[LX1

Figure 7.2: Ex 1.4 - Varying the frequency &k, with k; = 10

In figures 7.1 and 7.2, the maximum absolute errors are given for the two-frequency
method V* with one frequency fixed and varying the other to show how the errors
behave. When k; = 10 and k; = 1, the maximum error is 1.79 x 10~3. From the
figures, when the lower frequency &, is varied but the high frequency is kept fixed,
then the results are comparable to the lower order mixed collocation methods. If

we vary the high frequency then the results are very poor.
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k=10 k=1
Si 1 1.79x1077 [ 6.86 x 107!
9.46 x 1074 | 3.60 x 107!
Sy | 1.81 x 107 [ 6.80 x 10~
6.25 x 10714 | 3.58 x 107!
S3 | 1.84 x 107 | 6.74 x 107!
1.57 x 10713 | 3.56 x 1071

Table 7.16: Ex 1.4 - Multistep Methods S; — S3

h=0.05|h=0.025

Ia 1.3 1.6

Ib 2.7 3.3

Ic 1.3 1.6

Ila 3.6 4.2 .
IIb 6.1 7.3
Illa 7.0 8.2
IITb 9.8 11.5

Table 7.17: Ex 1.4 - Mixed Collocation Methods I — III : k=10

h=0.05 | h =0.025
1 2.8 4.3
2 1.1 0.0
3 1.7 2.3

Table 7.18: Ex 1.4 - Methods of Simos et al

Conclusions

With k£ = 10, the numerical results for the mixed collocation methods are poor for
the lower stage methods but the higher stage methods show some improvement.
Comparing the mixed collocation methods with the multistep methods S, — S3, we
see that the method S, is more accurate compared to the 4th order mixed collocation
methods I1b and I1Ia for kK = 10 but not for £ = 1.

The 2nd order two frequency method V* is exact except for rounding error when
k; =10 and k; = 1 but if one of the frequencies is changed by a small amount, then
we can obtain poor results. The results do show the advantage of having a method
with two [requencies. Comparing method I7b with the result given by Paternoster’s

TRKN1 method, both methods have 2 stages but the higher order method I1b is
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more accurate. With & = 1, the results are not so good and they are very similar to
the polynomial collocation results. Comparing the results of table 7.18 with table
7.17, the mixed collocation methods of algebraic order greater or equal to four are
more accurate than methods 1-3 and the 2nd order method I/a is comparable to
method 1 which is a 4th order method.

By the stability work in chapter 5 and section 6.1.2, methods Ib, Ic, II, III and
IV* are stable for Kk =10, k =1 and £ = 0 in table 7.14 and method Ia is unstable
for k =0 and k£ = 1, and stable for kK = 10. This agrees with the results found.
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Example 1.5

Again, we look at a highly oscillatory problem which involves two frequencies as
suggested by Krishnaiah [1]

995
y" = =100y + 100sinz, y(0) =0, ¢'(0) = 59
C 100 . 1.
where the exact solution is y(z) = 35 Sine + —sin(10z).

The numerical values in tables 7.19 - 7.21 are the maximum absolute errors on the
interval [0,100] for k£ = 1, 0 and 10 respectively. For the method V* in table 7.21,
the frequencies are k; = 10 and k; = 1. Also given in tables 7.19 and 7.20 are
whether the methods are stable (S) or unstable (). When (-) appears in the table
then the iterative process breaks down and the method only managed to reach a

certain number of steps. The methods in table 7.21 are all stable for the pﬁrticular
values of v and 6.

In table 7.22, the numerical solutions given are the absolute errors at x = 100. The
2-step methods used by Krishnaiah [1] are

Method Description of method Trigonometric | Algebraic
order order
Explicit involving f"(z,y) 1 4
Implicit involving f"(z,v) 1 6
Implicit involving f”(z,y) (Hairer) 0 4

In table 7.23, the maximum absolute errors over the interval [0,100] and the end-
point errors at x = 100 are calculated using methods 1-3. Krishnaiah states that

method 3 is P-stable but using our definition for stability, the method has an interval
of stability given by (0,12).
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h=1/2 h=1/4 R=1/8 | h=1/16
Ia 1.87 x 10718 U 754 x10t?1 U123 x10™ U [1.15x 1071 [
Ib - Ul 733x10°T S[939x100" S[98x10T S
Ic 6.62x 1077 S| 520x10°" S| 500x10"' S{500x10T S
Ila — U 1.2144 S 1.0352 S 1.0057 S
ITY 717 x 1071 S 1.0673 S| 241 x107" S| 164x1072 §
IIla 1.3694 S| 947x10°Y S[531x100" S|369x1072% S
ITTb | 8.05x107F S| 990x1072> S|[211x102% S|349x10>° S
IVa* — U 1.2175 S 1.0333 S 1.0053 S
JVE | 718 x 1071 S 1.0654 S|1240x107! S| 163x10°% S
S — U — U986 x10"1 S| 158x10"! S
S — U — U|983x10! S|157x1071 S
S3 - U - U[979x10"" S| 155x10"! S

Table 7.19: Ex 1.5 - Methods ] —IV*and S; — S3: k=1

.

h=1/2 h=1/1 h=1/8 h=1/16
Ta [237x10"°0 U585 x10"%2 U [742x 10t U475 x 10" U
Ib — Ul 732x100Y §1935x10°Y S| 987x10°T S
Ic 6.62x 107! S| 521x107T S[501x10" S|500x10"T S
Ila - U 1.2178 S 1.0358 S 1.0060 S
11 715%x 107 S 1.0686 S|242x1077 S| 165x107% S
Illa 1.3750 S| 946x107! S]535x107! S| 372x10°% S
ITIb| 762x 107" S| 987x1072 S|210x10° S| 349x10° S
So — U — U]l 989x10" S|160x10°! S

Table 7.20: Ex 1.5 - Methods I — IIT and Sy : k=0
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h=1/2 h=1/4 h=1/8 h=1/16
Ta [ 872x107" [ 265x 107" | 1.28 x 1071 | 6.33 x 1072
Ib 6.57x 107! | 593 x 1072 | 1.40 x 1072 | 3.45 x 103
Ic 879 x 1071 | 265 x 107T | 1.28 x 107" | 6.33 x 10~
ITa |1 637%x107% | 6.15x 1073 | 1.46 x 1073 | 3.59 x 1071
ITh | 3.62x107% | 6.49x 1077 | 359 x 10~ | 2.20 x 10~®
IlTa | 352x 1077 | 6.57x107° | 3.77x 107®% | 2.31 x 1077
IITh | 7451071 [ 3.03 x 10°® | 4.03 x 107% [ 6.14 x 10~1¥
IVa* 5.6780 1.6435 1.71 x 1071 [ 3.70 x 1072
vy * 872 x 1077 | 4.34 x 1073 | 2.58 x 1072
V* 1229%x1071 [1.04x 1072 153 x 1078 [1.39 x 107
S1 255x 1073 | 3.04 x10™° | 1.23 x107% | 7.15 x 1078
Sy 1.0414 393x107° | 1.29x 107* | 7.19 x 10°°
S3 6.5864 6.99x 107! | 1.38 x 107 | 7.23 x 10~*
Table 7.21: Ex 1.5 - Methods T —V*and S, — S3: k=10

Method | h=1/2 | h=1/4
1 [221x10%| 147 =105
2 | 189x10° 152 x 10
3 | 283x10°T|1.73 x 10"

Table 7.22: Ex 1.5 - Results of Krishnaiah

179
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Method | h=1/2 h=1/4 h=1/8 h=1/16
1 355 x 1073240 x 1075 852 x 1077 | 4.81 x 1078
2.22x 1074 [ 1.45x 1075 | 4.68 x 10°7 | 2.61 x 1078
2 252x107° [ 1.14 x 1077 [ 8.79 x 1070 [ 1.15 x 10~ M
1.57x 107% | 6.90 x 1078 | 4.82 x 1071° | 6.24 x 1012
3 1.1487 9.46 x 1071 [ 9.97 x 107! | 1.00 x 1071
2.83x 107! [ 1.33x 107! | 8.44 x 107! | 6.66 x 102

Table 7.23: Ex 1.5 - Our results using methods 1-3

Conclusions

As expected, the numerical results for the 2nd order two frequency method V* are
exact except for rounding error. The higher order mixed collocation methods show
an improvement when the steplength is decreased and with £ = 10, method IIIb
is comparable to methods 1 and 2. For k£ = 10, the 4th order multistep me{thod S
gives slightly better results than the 4th order mixed collocation methods I7b and
II]a whilst methods Sy and S; are less accurate.

* Note that for method IVb* with steplength A = 1/2, the iterative process breaks
down when the tolerance is 107!, If we use a less stringent tolerance of 10713, then
the error is given by 18.967 and as the steplength is halved, the ratio between the
errors become closer to 16.

For £ = 1, the results were very poor and it appears from this problem and the
previous example that we obtain more accurate results when the higher frequency is
chosen. The polynomial collocation methods gave very similar results to the mixed
collocation methods with £ = 1 and all of the multistep methods S; — S; were
unstable for h =1/2 and h = 1/4.

If we compare the end-point errors of method 2 in table 7.22 to those in 7.23,
they are relatively close for h = 1/2 but very different for h = 1/4. The ratios
between the errors in table 7.23 are satisfied but not by Krishnaiah’s results. Possible
explanations are that Krishnaiah used only single precision in his calculations or it
could be a typing error.
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Example 1.6
Consider the popular almost periodic problem introduced by Stiefel and Bettis [67]

2" = —z +0.001e", z(0) =1, 2'(0) =0.9995i, z¢€C (7.1)

where the exact solution is z(x) = e*(1 — 0.0005:¢z). If we set z = y; + y,, then the
differential problem can be written in the equivalent form

y{ = —y +0.001cosz, 3:(0) =1, y(0) =0

with the exact solution

1
y1(z) = cosz + 0.0005z sinz and yy(z) = sinz — 0.0005z cos z.

In table 7.24, results are presented for the real part of the differential problem (7.1)
Yy = —y; +0.00lcosz, 1,(0) =1, ¥, (0)=0
and in table 7.25, the imaginary part of the differential problem (7.1)
Yy = —yo +0.001sinz, y2(0) =0, y5(0) = 0.9995.

For methods I — IV* and S; — S3 in tables 7.24 and 7.25, the top values are the
maximum absolute error on [0,40x], and the bottom values are the absolute errors

at x = 407. For the angular frequency, k£ = 1.
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h=m=/4 h=mn/8 h=n/16

Ja [ 234x107%2 [ 1.22x107%2 [ 6.15x 1073
234x107% | 1.22x107% | 6.15x 1073

Ib 1.58 x 1072 | 3.98 x 107% | 9.96 x 107°
1.89 x 1075 | 444 x 1076 | 6.33 x 10~1°

Ic 1234x1077{122x10"2 [ 6.15 x 1073
2.34x 1072 | 1.22x 1072 | 6.15 x 1073

ITa | 312x 1073 [ 793 x10~* | 1.99 x 1077
9.55 x 10715 | 1.00 x 10~15 | 5.55 x 1016

ITh 1 162x 10> | 1.02x107% | 6.40 x 1078
1.00 x 10715 | 6.81 x 10714 | 2.63 x 10714

IITa | 242 x107° | 1.53 x 107% | 9.60 x 1078
245 %1074 | 1.23 x 10713 | 7.61 x 10714

ITIb | 714 x 1078 | 1.13 x 1077 [ 2.18 x 10T
1.72 x 10714 { 1.34 x 10713 | 4.49 x 10~13

IVa* [2.66x10717 | 1.80 x 107 [ 413 x 10714
1.22 x 10715 | 9.21 x 10715 | 3.87 x 10~ ™

TVh 950 x 1003 [ 226 x 1078 [ 1.12 x 10~ 12
9.59 x 10713 | 4.21 x 10~ | 1.12 x 1072

S, |1 1.03x10°%]620%x10°°% | 3.85x 10~7
1.67 x 10713 | 2.22 x 10716 | 3.66 x 10~1®

S, [1.01x107¥[742x10°%[1.34x 10753
777 %1076 1333 x 10716 [ 1.22 x 10713

Sy [228x107 1921 x10°5[1.43%x 1071
2.44 x 10715 | 3.66 x 10715 | 5.44 x 10~15

Table 7.24: Ex 1.6 - Methods I — IV* and S, — S3

. (Real)

182



CHAPTER 7. NUMERICAL RESULTS

h=m/4 h=mn/8 h=n/16

Ta | 231x1072[1.20x10"% | 6.07 x 1073
6.26 x 107® | 1.60 x 10~% | 4.03 x 10~*

Ib [ 160x1073 [ 403 x107% | 1.01 x 10712
1.60 x 1073 | 4.03 x 10~ | 1.01 x 10~*

Ic 231 x107% | 1.20x 1072 | 6.07 x 1073
6.26 x 1073 | 1.60 x 10~3 | 4.03 x 10~*

ITa | 316x1073 [ 803x107% | 2.02x 1072
3.16 x 1073 | 8.03 x 10~* | 2.02 x 10~*

IIb | 164x107° [ 1.03x10°% | 6.48 x 1078
1.64 x 107% | 1.03x 107% | 6.48 x 1078

IITa | 245 x107° | 1.55 x 1075 | 9.72 x 1078
2.45 % 107% | 1.55x 107¢ | 9.72 x 108

ITTh [ 723 x 1078 | 1.14x 1077 [ 221 x 10711
7.23x 1078 | 1.14 x 107° | 2.21 x 10~11

IVa* [263x107M[1.67x107™ [4.03 x 1071
221 x 107 | 7.49 x 10715 | 1.09 x 1014

IVh* 1951 x 107 232 x 1078 [ 1.11 x 10712
1.70 x 10783 [ 2.32 x 10713 | 3.80 x 10714

S: | 1.05x 107 | 6.30 x 107% | 3.90 x 1077
1.05 x 107* | 6.30 x 1078 | 3.90 x 1077

Sy [127x107M[789 %107 143 x 107
6.34 x 10715 | 751 x 10714 | 1.43 x 10~13

Sy |214x 1071 [8.26 x 10715 | 1.46 x 1071%
1.76 x 10714 { 430 x 10716 | 1.44 x 1013

Table 7.25: Ex 1.6 - Methods I — IV* and S} — S; : (Imag.)

Conclusions (i)
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This problem again highlights the fact that the absolute error at the end-point of the

interval can differ greatly from the maximum absolute error as we can see in table

7.24, but in table 7.25, the errors at the end-point are very close or equivalent to

the maximum absolute errors for the imaginary part of problem (7.1). The methods
IV*, S5 and Sj are exact except for rounding error. The 4th order methods I7b and
IIla are more accurate than S|, and the mixed collocation methods with the Gauss

points show better results than others of the same order.
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We now follow the approach taken by Raptis and Simos [58]. First define

—J+d),

where y; and y, are the approximations for y;(x) and y(z) respectively at the step
z, and

7(z) = [y} (z) + y3(2)]"/* = [1 + (0.0005z)?]"/

is the distance of the point z(z) from the centre of the orbit at time z. In tables 7.26
and 7.27, the top entry in each box is the value of max {|Z(z)|} over the interval
[0,407] and the bottom values are the absolute errors at the end-point given by

|2(407)|. When only one value appears, the maximum absolute error and the end-
point error are the same. '

In tables 7.28 and 7.29, the top entry is the value max {Q2(z)} over the' interval
[0, 407] where we define

Q(z) = |2(z) - 2| = i (2) — 01]? + [v2(z) — va]?,

and the bottom entry is 2(407). Again, if there is only one entry, then the end-point
error is the same as the maximum absolute error for 2.

For comparison, results are given for the polynomial collocation methods I1b, I1]la
and II1b and Numerov’s method Sy in tables 7.27 and 7.29. In table 7.30, the
errors are |X(40m)| for the 4-step methods 1-4 used by Raptis and Simos [58], and
our results for methods 5-7 are the values max {|£(z)|} over the interval {0, 407] for
the 2-step methods used by Krishnaiah [1]. The methods are listed below:

Method Description Algebraic | Trigonometric
order order
1 Classical - [35] 6 0
2 P-stable hybrid - [43] 6 0
3 3-stage Predictor-Corrector - [76] 6 0
4 Hybrid - [58] 6 0
5 Explicit involving f"(z,y) 4 1
6 Implicit involving f"(z,y) 6 1
7 Implicit involving f"(z,y) (Hairer) 4 0
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Table 7.26: Ex 1.6 - Methods I/ — IV* and 5} — S5, k=1 : Error in &

Table 7.27: Ex 1.6 - Methods I1b, [11a, IIIb and Sy, k =0 : Error in &

NUMERICAL RESULTS

Method | h=n/4 h=n/8 h=m/16
Ia 238x%x 1072 [ 1.23x 107 | 6.16 x 1077
I 992 x10° [ 252x%x107° | 6.32 x10°°
Ic 230x1072 | 1.21 x 10~ | 6.11 x 10~°
IIa 216 x107% [ 553 x107° | 1.39 x 10~°

1.93x107* | 5.01 x 10~° | 1.26 x 1073

ITh 153 x10°% | 941 x10°% | 5.86 x 10~°
1.03x107% | 6.49 x 108 | 4.06 x 10~°

IITea | 154%x107% | 9.72x 1078 | 6.09 x 107°
IIIb | 453 x107° [ 7.16 x 1071 [9.35 x 10~
IVa* (466 x 107" [1.00x 1071 [3.95 x 10~
2.44 x 10715 | 8.66 x 10715 | 3.82 x 10~ 14

TVh 1946 x 1078 273 x 107 [ 1.12 x 1072
S, 715x 1078 [ 435 x 107" | 2.70 x 1078
6.58 x 1078 | 3.95 x 1077 | 2.45 x 1078

Sy 888 x 107 [ 444 x 107 | 5.77 x 1071
4.44 x 1076 | 4.44 x 1071 | 2.89 x 10~1®

Sy 1.11 x 107 [ 311 x 107 [ 6.44 x 107 1°
1.55 x 10~15 | 4.00 x 10715 | 8.44 x 10™!5

Method | h=n/4 h=mn/8 h=mn/16

ITb [7.92x107%[4.88x10~° | 3.04 x 10~°
330 x 1071 | 2.14 x 107% | 1.35 x 10~¢

ITIa |748x107% 481 x107°| 3.03 x 10°°
ITIb [221x10°% (324 x108]499x10°"°
1.10 x 1076 | 1.77 x 1078 | 2.77 x 1010

So 3.79%107° 239 x1071 | 149 x 107°
3.15x 1073 | 1.95 x 10~* | 1.22 x 1073
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Method | h=n/4 h=m/8 h=mn/16
Ia 243 x 1077 | 123 x 1072 | 6.16 x 10~°
Ib 1.60 x 1073 | 403 x10°% | 1.01 x 1077
Ic 243 %1077 1123 x107%2 | 6.16 x 1073
Ila 3.16 x 1073 | 8.03x 10~% | 2.02 x 10~*
ITb 1.65x10™° | 1.04 x 107 | 6.54 x 10~?

1.64 x 107% | 1.03 x 1076 | 6.48 x 1078

ITTa | 245%x107° | 1.55x107% | 9.72 x 107
ITTy | 723x 1078 [ 1.14 x 107° [ 2.21 x 107!
IVa* |25 x 1077 [1.82x 107" [ 413 x 10714
2921 %107 | 1.19x 107 | 3.89 x 10714

IV [974x10718 236 %107 [ 1.12 x 1072
S 1.05x 107 [ 6.30 x10°® | 3.90 x 10~
Sy 127x 107" [ 818 x 107 [ 1.46 x 107 1°
6.39 x 10715 | 7.51 x 10714 | 1.42 x 10713

Ss 232 x 1071935 x 100 [ 1.48 x 10713
1.78 x 107 | 3.54 x 10715 | 1.41 x 10713

Table 7.28: Ex 1.6 - Methods I — IV* and S; — S3, k = 1 : Error in 2

Method | h=n/4 h=m/8 h=m/16
ITb [1.07x1072[6.93x107%]4.37x107°
1.05 x 1072 | 6.84 x 10™* | 4.31 x 107°
IITa [240x1072]1.54 x 1073 [9.69 x 107°
ITTb [3.58 x107° {572 x 1077 | 8.98 x 10~°
3.54 x 1075 | 5.65 x 107 | 8.88 x 107°
So 1.02x10°7]16.25x1073[3.89 x 10~*

Table 7.29:

FEx 1.6 - Methods IIb, IIla, I1Ib and Sy, £ = 0 : Error in

186
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Method | h=n/4 h=m/8 h=m/16
1 101 x 1073123 x10°%] 1.80 x 107
2 3.14x10° [ 5.07x 1077 | 823 x 10~°
3 219 x 1075|245 x 1078 [ 1.70 x 10710
4 1.00x 1075134 x 1078 [ 2.00 x 10~ 10
5 492 x107% 293 x 1077 | 1.80 x 1078
6 1.85x 1077 {270 x 1077 | 4.15 x 10~ 1T
7 2.38x 1072 | 1.57x107* | 9.92 x 1075

Table 7.30: Ex 1.6 - Methods 1-4, |£(407)| : Methods 5-7, max |3

Conclusions (ii) ,

As expected, methods IV*, Sy and S; are exact except for rounding error because
the methods are exact for problems which have the trigonometric functions cos kz,
sin kz, x cos kz and z sin kz in the solution. The errors in ¥ by the 6th ordér mixed
collocation method I71b are smaller than those of method 4 by approximately a
factor of 200 and those of method 6 by approximately a factor of 40 which shows
the superiority of the method. Even when k& = 0, the polynomial collocation method
I1Tb is comparable to methods 3 and 4 of Raptis and Simos, more accurate than
method 5, and the errors in ¥ are larger by a factor of approximately 6 than the
errors of method 6. The errors in both ¥ and € by the two 4th order mixed
collocation methods I7b and II1a are smaller than those of the exponentially-fitted
multistep method Sy by a factor of 6 and 4 respectively. Methods 3 and 4 of Raptis
and Simos are comparable to the higher order mixed collocation methods and as we
can see from the results, for tables 7.26 - 7.29, the absolute error at the end-point

is pretty close to the maximum absolute error over the interval [0, 407].
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Example 1.7

We now consider the nonlinear problem [51]
y" = —(140.01y%)y +0.01cos’z, y(0) =1, ¢'(0)=0

where the exact solution is y(z) = cosz.

Presented in table 7.31 are the results obtained by Ozawa with two 4th order implicit
Runge-Kutta-Nystrom methods of trigonometric order 1 with orders of dispersion 4
and 6 respectively. Ozawa’s results are the absolute end-point errors at z = 8.257.
In Ozawa’s paper [51], he does not give the value of the frequency for the results
in table 7.31 for this particular problem but with & = 0.1 our results are very close
to those in table 7.31. The values in tables 7.32 - 7.36 are the maximum absolute
errors over the interval [0,8.257). Polynomial collocation is used in table 7:32, and
the angular frequency for methods I — IV* and S; — S3 is kK = 1 in tables 7.33 and
7.34, and k£ = 0.1 in tables 7.35 and 7.36. For the two frequency method V|*, we
take k; = 1 and k; = 0.1, and for method V5, k; = 1 and &k, = 0.01.

In tables 7.34 and 7.36, the maximum absolute errors are presented for the mixed
collocation methods IIb, II11a and I1Ib where the coeflicients have been written
as series expansions in terms of 8. This is because, for small 6, the exact form
of the coefficients of the mixed collocation method are inaccurate because of the
accumulation of rounding error resulting from the loss of significant digits, whilst

the power series expansions are more accurate.

Dispersive | h =7/4 h=m/8 h==/16 h =m/32 h = /64
order
4 1.87x107%2 | 154 x 1073 [ 1.07 x 107 | 7.01 x 107% | 4.47 x 1077
6 1.07 x 1072 [ 3.15x 10~7 [ 7.86 x 107® | 1.46 x 10" | 1.05 x 107°
Table 7.31: Ex 1.7 - Methods by Ozawa
h=mr/4 h=mn/8 h=m/16 h=m/32 h=mn/64
ITh 1208 x107%|1.35x 1077|848 x 1075 | 531 x 107 | 3.32 x 107
ITTa [ 448 x 1073 [287x 1077 [1.81x 10> [ 1.31 x 107% | 7.08 x 10~®
11T 1 6.57 x 107 [ 1.06 x 1077 [ 1.66 x 107° | 2.60 x 10~'" | 4.06 x 10~ "

Table 7.32: Ex 1.7 - Methods IIb,IIIa and I11b: k=0
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h=n/4 h=rn/8 h=n/16 | h=x/32 | h=nr/64
Ta [323x107° 366 %1075 |[355x10° .| 1.10x 10~ | 8.99 x 10"
Ib [265x 1077 [2.77x 107 [ 2.80 x 10 | 6.99 x 10-B [ 3.18 x 10~
Ic |200x10° P [218x 107 | 2.83x 10" | 2.66 x 10~ | 1.44 x 10!
Ila [392x 1075 [558x10° 0 [ 148 x 10 | 1.04x 1007 | 1.20 x 10~
IIb | 578 x 107 [2.46 x 1077 | 110 x 10- 7 | 1.34 x 10~ | 1.42 x 10!
IITa {944 x 107 [769x 107 [ 3.04 x 10- 7 | 1.44 x 10-12 [ 4.71 x 10~1
ITTb [ 355 x 1077 | 9.94 x 1071 | 7.88 x 10~ [ 3.64 x 101 | 6.00 x 10~
IVa* | 495 x 107" [ 3.95 x 10715 [ 9.10 x 10715 | 5.31 x 10~ 1% | 4.35 x 10~ !
TV [187x 10 F [490x 107 [ 221 x 10° 1 | 2.12 x 10- 2 [ 3.98 x 10"
VP [428x 100|127 x 107 ™ [2.55 x 10 [ 4.91 x 10~ 1% | 8.45 x 10-"
Vo 16.70x 107" [ 433 x 107 [9.21 x 107 | 4.06 x 10~ 1% | 5.36 x 10 ¢
Si [326x107 [334x 10 |1.23x 10 @ [ 1.06 x 10- | 1.27 x 10~
Sz [214x107 P [161 x10°7 | 257 x10- 7 | 8.70 x 10 | 2.25 x 1013
Ss [5.25x107° [ 2.06 x 107 [ 3.05 x 1012 [ 4.22 x 10- B | 1.52 x 10~
Table 7.33: Ex 1.7 - Methods I — V* and S; — Sy (Exact form): k =t
h=m/4 h=mn/8 h=m/16 h=m/32 h=m/64
ITb 191 x 107 [435 x 107 [4.19 x 1070 | 2.75 x 10~ | 2.66 x 10~
ITTa [512%x 10 7 [355x 107 | 2564 x 10-™ | 3.07 x 10~ ™ | 3.22 x 10"
ITIh [ 886 x 1077 [1.72x 10717 [ 338 x 10- 1 [ 2.24 x 10- [ 3.32 x 10T

Table 7.34: Ex 1.7 - Methods I1b, ITIa and II11b (Series expansions): k = 1
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h=mx/4 h=mn/8 h=m/16 h=mx/32 h =mn/64
Ib 273 x1071[730x1072[1.85x10° 2] 465 x107% | 1.16 x 1073
ITa [537x1071{1.46x 1077 [3.71 x107%2] 9.30 x 1072 | 2.33 x 1073
ITh [207x1073[1.34x 1077844 x107%] 528 x 107 | 3.30 x 1078
ITIa [443 x 1071285 x1077[1.79x107° | 1.12x 107% | 7.04 x 1078
ITIb [ 658 x1078 [ 1.06 x 1077 [ 1.60 x 1077 [ 1.47 x 10°1% | 7.37 x 10~
IVa* | 533 %1071 [1.45x 1077 [367x1072| 9.21 x10™° | 2.30 x 1073
IVh [206x1073[133x1077[839x10°%| 526 x 1077 | 3.32x 1078
S, [183x1072[114x103[713x107° | 4.47x10°% | 2.78 x 10~7
S, (181 x1072]1.13x1073[7.06 x10° | 442x107% | 2.77 x 1077
S; [1.79%x1072[1.11x10°]6.99x 107> | 4.38 x107° | 2.74 x 107

Table 7.35: Ex 1.7 - Methods I — IV* and S; — S; (Exact form): £ = 0.1

h=mn/4

h=mn/8

h=m/16

h =m/32

h = m 64

IITh

6.58 x 107°

1.06 x 1077

1.66 x 10~°

2.60 x 10711

4.05 x 10713

Table 7.36: Ex 1.7 - Method IIIb (Series expansions): & = 0.1

Conclusions

The mixed collocation methods and the multistep methods S; — S3 are exact except
for the accumulation of rounding error when k = 1. For our own results for Ozawa’s
method and the 3-stage TRKN1 method in Appendix A, we found that thev are
also exact when k& = 1 except for rounding error. Comparing methods //b, II1a and
I1Ib in tables 7.33 and 7.34, we see the difference in using the series expansion for
the coefficients especially for small steplengths. For large steplengths, the results in
table 7.34 are quite poor but as the steplength decreases, they are superior to those
in table 7.33. For h = n /64, the errors in table 7.33 for the methods /b, II1a and

II1b are larger than those in table 7.34 by a factor of approximately 533, 1462 and
1807 respectively.

For k = 0.1, comparing the 4th order methods with Ozawa’s methods, we see that
the most accurate method appears to be Ozawa’s TRKN41 method with order
of dispersion 6 when the steplength is decreased. Although he presented only the
absolute end-point error, the maximum absolute error is slightly smaller than that of
method 77b. The polynomial collocation method I17b is considerably more accurate

than Ozawa’s methods and all the mixed collocation methods of order 4 or less when
k=20.1.
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Example 1.8

Consider the initial value problem

2= —[l+y+y6e |z +ye 22

7

2(0)=1+46, Z/(0)=i(1—-46), v>0,0<46<1

where <y is a nonlinearity parameter, § is a distortion parameter and the exact
solution is an ellipse given by

z(z) = e + e ™.

We take the approach of Jain et al [43] and set z = y; + y9, then,

. . !
¥ = —[L+7+76cos(2z)]y1 + 251 y2 7 sinz — ¥, 6 sin(2z) + v (v} — 43) cosz
¥y = —[l+v+78 cos(2z)]ya + 2y1 92y cosz + y, 8y sin(2x) — v (y? — y2) sinz
where

and the exact solution is
n(z) = (1+9d)cosz and yo(z) = (1 — J)sinz.

We define \
z) = |2(z) - 2l = {[ni(z) = w2 + [v2(o) — w22}

and the entries in tables 7.37 and 7.38 are the values max {£2(z)} over the interval

[0,107]. In table 7.39 the value Q(107) is given for the methods used by Jain et al
[43].

The steplength is h = /12, the nonlinearity parameter is v = 1/10 and the fitted
angular frequency is kK = 1 for the exponentially-fitted methods. For the distortion

parameter, we take five different values for 4. The methods used by Jain et al [43]
are as follows:
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Method Description P-stable | Algebraic order
1 5-step classical : Stormer-Cowell No 6
2 4-step implicit : Lambert & Watson No 6
3 2-step hybrid : Cash Yes 6
4 4-step hybrid : Jain et al Yes 6
=0 6=0.1 =02 60=0.3 6=04
To [3.26x107P [369x10°%[290x 107 375 x10°5[2.70 x 1077
Ib [520x 107 [ 3.87 x 1071° | 3.66 x 1071 | 4.88 x 10~ | 3.54 x 107"
Ic [9.48x107"° |872x 107 [7.83 x 107 [8.12x 107 [ 9.72 x 107"° |
ITa 956 x107® [1.03 x 107 [1.12x 107 [ 1.20 x 10~1* [ 1.33 x 10~**
ITb | 587 x 1071 [599x 107 [6.22x 10712 [ 6.46 x 1071 [ 6.72 x 10714
I11a [ 3.71 x 107 [ 3.73 x 107° [ 3.89 x 107 [ 4.06 x 10=™° | 4.23 x 10~
ITTb [3.34x 1077 [3.34 x 10713 [ 3.46 x 1071 [ 3.59 x 1013 | 3.73 x'10~%
IVa* [1.32x107™ [1.37 x 107 [ 1.93 x 107 | 1.40 x 10~ | 2.36 x 10~ ™
IV 1889 x1071[1.00x107® [ 1.10x 107 [1.31 x 1077 | 1.40 x 10713
S; [942x10°P [9.70 x 107 [ 8.77x 107 [ 8.91 x 10~ | 1.01 x 10~ 1%
Sy [475x107™ [ 453 x 107|530 x10°M [5.17 x 1071 | 5.64 x 10~
Sy [535x107M [ 727 x 107 [ 512 x 1071 [ 6.17 x 1071 | 6.68 x 10~

Table 7.37: Ex 1.8 - Methods ] — IV and S|, — S3: k=1

6=0

0 =0.1

0=02

6=10.3

6=04

I1b

2.75 x 1075

2.57 x 107°

2.49 x 107

2.61 x 10~°

2.73 x 107°

Illa

6.91 x 10~°

7.35 x 107

7.80 x 107>

8.25 x 10~°

8.70 x 107

I1Th

1.16 x 1078

1.22 x 1078

1.29 x 1078

1.35 x 1078

1.42 x 1078

So

2.80 x 104

2.92 x 1074

3.11 x 107¢

3.30 x 10°¢

3.49 x 1071

Table 7.38: Ex 1.8 - Methods I1b, Illa, IIlband Sy : k=0
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Method =0 0=0.1 60 =0.2 6=0.3 60=04

1 1.54 x 1075 [ 1.65 x 107° [ 1.66 x 107° | 1.67 x 107> | 1.68 x 10>

2 551 x 1075[5.24 x 107% | 497 x 10751 4.73 x 1076 4.51 x 10~°

3 1.30x 1077|124 x 1077 {118 x 1077 | 1.12x 107 | 1.06 x 10~7

4 715x 1077 [7.25x 1077 [ 7.38 x 1077 | 7.55 x 10~7 [ 7.75 x 1077

Table 7.39: Ex 1.8 - Methods of Jain, Kambo and Goel

Conclusions

The mixed collocation methods I — I'V* and exponentially-fitted methods Sy — S3

are exact for this problem except for the accumulation of rounding error and are

far superior to the 6th order methods used by Jain et al. The 4th order polynomial

collocation methods IIb and IIla are superior to Numerov’s method Sy and method

II1b is the most accurate of the polynomial based methods and superior t(; the 6th

order methods 1-4.
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Example 1.9

For our next example, consider the nonlinear Duffing’s equation

n

y"' = —y —y* + Acos(ox)

where A = 0.002, 0 = 1.01, the initial conditions are

4
y(0) = 3~ Asir1 = 2.00426728067 x 107!, ¢'(0) =0

1=0

where the coefficients

Ay = 0.200179477536, Az = 0.246946143 x 1073,

As = 0.304014 x 1075, A; = 0.374 x 10™°, Ag = 0.0 r.

are computed by Galerkin’s approximation method with a precision of 10712, see
Van Dooren [75] and the solution is given by

y(z) = A, cosoz + Az cos 3oz + Ascos 5oz + A7 cosToz + Agcos 9oz.

The interval for z is [0,40x]. In tables 7.40 and 7.41, the absolute maximum errors

are given on the interval [0,407]. The angular frequency is k = 1.01 for table 7.40
and k = 0 for table 7.41.

For comparison we look at three 4th order polynomial based methods used by

Chawla and Neta [11] and the results in table 7.42 for methods 1-3 are the ab-
solute errors at z = 407,

In table 7.43, we present our results for the 2-step Stormer extrapolation and inter-
polation methods 4-7 by Gautschi [28]. The results are the maximum absolute errors
over the interval [0,407]. These methods are of Stérmer type but the coefficients
are chosen so that the linear functional of the method annihilates all trigonometric
polynomials of order p (c.f. Definition 3.1). The fitted angular frequency is £ = 1.01.
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Method Description of method
1 2-step P-stable hybrid method by Chawla [7)
2 2-step P-stable hybrid method by Cash [4]
3 2-step P-stable hybrid method by Costabile & Costabile [24]
Method Description Algebraic | Trigonometric
of method order order
4 2-step extrapolation 2 1
5 2-step extrapolation 3 2
6 2-step interpolation 1 1
7 2-step interpolation 4 2
h=m/5 h=x/10 h=m/20 h = /40
Ta | 1.06x1073[519%x107%| 2.49x107* | 1.21 x 107?
Ib | 146 x107%]2.69x107° | 6.18 x 10~° | 1.51 x 10~°
Ic |890x107*[453x107%] 232 x107% | 1.17 x 10~*
Ila | 1.50 x 107 [ 4.58 x 10™° | 1.19 x 10~ | 3.00 x 107°
ITb [873x107°]481x1077| 293 x 1078 | 1.82x 107°
IITa |1.11x107° | 5.82x 107" | 3.47x 1078 | 2.14 x 107°
TTTb [ 1.17x 1077 [ 1.43 x 107° [ 1.46 x 10711 | 8.39 x 1072
Sy [542x 107 [260x107%] 1.44 x 1077 | 8.67 x 107°
Sy [490x10™°[232x107%[ 1.28x 1077 | 7.71 x 107°
Sy 443 x10™[2.07x107%| 1.14 x 10~ | 6.86 x 1077

Table 7.40: Ex 1.9

Methods I — IV* and S; — S3: k£ =1.01

h=m/5 h=m/10 h =7/20 h =m/40
Ib [130x10°1[3.46x107%2] 870 x 1073 | 2.18 x 1073
Ic |2.00x10°T[202x10°T| 206 x 10T | 2.10 x 1071
ITa [2.75x 1071 [6.96 x 1072 | 1.75 x 1072 | 4.36 x 1073
ITh | 717x 1077457 x107° | 2.87 x 10°° | 1.80 x 1077
IITa [ 1.36 x 1073 | 869 x 107° | 3.46 x 10°% | 3.43 x 10~
IITh {126 x 107% [ 2.05 x 1073 [ 3.32 x 10710} 1.28 x 10~ "
So [ 567x107°[351x107%]219%x107° | 1.37 x 107

Table 7.41: Ex 1.9 - Methods I, II, II]T and Sy : k=0
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Method | h=m/5 h=mn/10 h=m/20 h =x/40
1 450 x 1073285 x 1077179 x107° [ 1.12 x 10~°®
2 454 x 10771288 x1077{1.81x107°|1.13 x 107°
3 310 x 1072 [ 205 x 10731130 x 107% | 8.15 x 107°

Table 7.42: Ex 1.9 - Methods 1-3

Method | h=mn/5 h=n/10 | h=7/20 | h=m/40
4 3.10x 107*[5.76 x 107° | 1.27 x 107> | 3.05 x 107
5 218 x107% [ 3.39x 107° [ 5.13 x 107° | 6.41 x 10~°
6 837 x 1074756 x10"%]435x107*]2.30x107*?
7 323x10°[148x10°%[806x1078[4.84 x1077

Table 7.43: Ex 1.9 - Our results using Methods 4-7 of Gautschi

Conclusions

For k = 1.01, the mixed collocation methods with Gauss points are more accurate
than other mixed collocation methods of the same algebraic order. The 4th order
methods ITb and I11a and method 7 by Gautschi give slightly better results than the
multistep methods S; — S3. Also, the mixed collocation methods are more accurate

than the methods 4-7 by Gautschi when we look at those of the same algebraic
order.

Note that for h = 7/40 for the mixed collocation and polynomial collocation meth-
ods IIIb, the ratios of the error to the previous error for h = 7/20 are 1.7 and 26
respectively, instead of 26 = 64. We take into consideration that the solution of the
problem is not exact because the coefficients Ag;yy, for i = 0,...,4 are calculated
with a precision of 107! and so this effects the error each time it is calculated. When
the coeflicients are written as series expansions in terms of # for the mixed colloca-
tion method I1Ib, we obtain the errors 1.51 x 10~'! for A = 7/20 and 7.74 x 10~'2
for h = m/40. The ratio is 1.95 but as we require the ratio to be 64, this again shows
the effects of the accumulation of rounding error.
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Example 1.10

For the next problem, we follow Coleman [18]. The differential equation is

, | '
y' = - {16 - 2y, w(0) =1, y(0) = —3

with exact solution

y(z) = e~%/% cos (47 €%).

The interval is [Zo, Tnaz] Where o = 0 and Zpa; = o + Nh = log (209/8) is the
hundredth positive zero of y(z). The sd-values are computed for the maximum
absolute error over the interval where we define

Sdma:c = - logm[max(|y(mn) - ynl)]

r.
as the number of significant digits for the maximum absolute error over the interval

[Z0, Tmaz) In the approximate solution. Also

sdiast = — 1080 (|Y(Tmaz) — Yn1)

is the absolute error at the end-point z,,,; in the approximate solution. The sd,q,
value is the top value in each box of table 7.44 and the bottom value is the sdj,s
value. In table 7.44, the angular frequency is K = 1. The polynomial collocation
methods I1b, I11a and I11b are used in table 7.45, and in table 7.46 the frequency
parameter is k = y/1672e%* — 1/4 where the sdp., values have been given for both

tables 7.45 and 7.46. The steplength is h = 4038’"%2"1, where m = 1,2, 3 and 4.

In table 7.47, results are shown for various methods used by Coleman [18] which are
listed below. The sd;.s values only are given.
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Method | Step/Stage Description of Algebraic | Order of
number method order dispersion
1 2-step Explicit 4 4
2 2-step Singly-implicit 4 6
3 2-step Diagonally implicit 4 6
4 2-step Implicit 4 8
5 2-stage DIRKN 2 6
6 3-stage DIRKN 2 8
Method [ m=1|{m=2|m=3|m=4
Ia -19.1 | -10.5 | -5.16 | -2.24
-19.1 | -10.5 | -5.16 | -1.84
Ib 0.41 0.74 1.31 1.91 T,
1.14 0.79 1.31 1.91
Ic 0.41 0.49 0.56 0.64
14.7 12.1 6.60 4.19
Ila 0.35 0.50 1.02 1.61
0.82 0.76 1.03 1.61
I1Ib 2.07 3.23 443 5.62
2.07 3.23 443 5.62
Ila 1.70 2.88 4.08 5.41
1.70 2.89 4.08 5.65
IlTh 4.22 6.00 7.80 9.60
4.22 6.00 7.80 9.60
IVa* 0.36 0.50 1.02 1.61
0.82 0.76 1.03 1.61
IvVb* 2.07 3.23 4.43 5.65
2.07 3.23 4.43 5.65
S 1.04 2.26 3.35 4.15
1.04 2.26 3.35 4.15
S 1.04 2.26 3.47 4.68
1.04 2.26 3.47 4.68
S3 1.04 2.26 3.47 4.68
1.04 2.26 3.47 4.68

Table 7.44: Ex 1.10 - Methods I — IV* and S, — S35 : k=1

198



CHAPTER 7. NUMERICAL RESULTS 199

Method | m=1|m=2|m=3|m=4
11 2.07 3.23 4.43 5.63
Illa 1.70 2.88 4.08 5.28
IITb 4.22 6.00 7.80 9.60

So 1.04 2.26 3.47 4.68

Table 7.45: Ex 1.10 - Methods IIb,II1a and IIIb and Sy: k=0

Method  m=1|m=2|m=3|m=4
lIa 0.92 1.21 1.50 1.80
Ib 3.97 4.62 5.23 5.84
Ic 0.91 1.20 1.50 1.80
I1a 1.58 2.15 2.75 3.34
IIb 3.85 5.06 6.26 7.46

Illa 3.38 4.58 5.78 6.98 I.
IITb 5.67 7.47 9.28 11.10
1Va* 1.56 2.15 2.74 3.35
IVb* 3.55 4.76 5.95 7.16
S1 2.54 3.78 5.00 6.20
Sy 2.84 4.09 5.30 6.50
S3 4.23 5.55 6.78 7.98

Table 7.46: Ex 1.10 - Methods I/ — IV* and S| — S3: k = \/1672e?® — 1/4
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Method | m=1|{m=2|m=3|m=14
1 1.1 2.4 3.6 4.9
2.7 4.4 6.0 7.5
2.8 44 6.0 7.5
3.1 4.6 6.1 7.5
3.2 5.1 7.1 7.5
5.1 5.6 6.6 7.5

| L | Wi DD

Table 7.47: Ex 1.10 - Methods of Coleman, sdj,, values

Conclusions

For the mixed collocation methods with k£ = 1, the results are poor for the lower
order methods but they improve for the higher order methods and the 6th order
mixed collocation method I17b is superior to all the other methods in this example.
The multistep methods S; — S3 are not as good as the 4th order mixed coﬁl'ocation
methods I1b, I1]a and IVb*. Note that methods IV a* and IVb* give similar results
to the methods I7a and I7b respectively.

When the polynomial collocation method is used for I7b, I11a and II11b, the results
are similar to the mixed collocation methods. Also, the results of the polynomial
based method Sy are the same as those of the exponentially-fitted methods S, and S;.
This is perhaps because none of the methods are exact for this problem and so the
polynomial based methods approximate the solution as well as the exponentially-
fitted methods. Also, the choice of kK = 1 for the angular frequency may not be
a good approximation for the problem, and as we have seen in earlier problems,
the results for the polynomial collocation methods can be similar to the mixed

collocation methods for certain values of the frequency parameter k.

When k = /1672e2® — 1/4, the results are greatly improved for the exponentially-
fitted methods. The superiority of the mixed collocation methods with Gauss nodes
can be seen compared to other methods of the same algebraic order. Once again,
the mixed collocation method 771b is the most accurate method.
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Example 1.11

Our final one-dimensional problem is,

Jo(10)

J = — {100 + Zi‘i} v, (1) = Jy(10), ¥'(1) = — 10J,(10)

with exact solution y(z) = /z Jo(10z) where Jy is the Bessel function of the first
kind of order 0. The interval of z is {1, 10].

In tables 7.48 - 7.50, the maximum absolute error over the interval [1,10] is given.
In table 7.48 the angular frequency is kK = 10. In table 7.49 we use the polynomial
collocation method, i.e. £ =0, and in table 7.50, £ = /100 + 1/(4z?).

Method [ A =0.09 h=0.045 [ h=0.0225 | A =0.01125
Ia 1.23x 1073 | 6.30 x 107* | 3.15 x 10~% | 1.58 x 10~ %]
Ib 935x 107" ] 2.36 x107° [ 591 x 10°% | 1.48 x 10°°
Ic 129 x 1079 6.3 x 1077 | 3.16 x 10~% | 1.58 x 10~¢
ITa |[1.88x107%] 475 x 107> | 1.19 x 107> | 2.99 x 10~°
IIb 126 x 107° | 799 x 1078 | 5.10 x 1077 [ 3.19 x 1010

ITTa 159 x107%[ 1.23x1077 | 7.86 x 1077 | 4.92 x 107!
ITIb 831 x107°[1.290x 10710208 x 102 [ 1.24 x 10712
IVa* [4.25x107> | 1.02x107° | 2.57 x 107® | 6.42 x 1077
IV [368x1077] 226x107% | 1.41 x 1077 | 8.75 x 10~ 11
S, 7.00x 107 | 430 x 1077 | 278 x 10 % | 1.74 x 107°
S, 1.95x 107 | 1.15x 1077 | 7.14 x 1077 [ 4.48 x 10~ 10
Sy 6.13 x 1077 | 3.97 x 1078 | 2.59 x 1079 | 1.66 x 10~ 10

Table 7.48: Ex 1.11 - Methods ] —IV* and S; — S3: k=10
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Method [ =009 | A=0.045 | h=0.0225 | h = 0.01125
Jo. [ 4.25x 107 [ 3.83 x 10" | 3.42 x 1971 | 2.7337
Ib 307 x10° 1 [0.19x 102236 x 102 | 592 x 10-3
Ic [252x1071[252%x10°T|251x 1071 | 2.31 x 107!
ITa |482x10°'[182x101[475%x10°2| 1.20 x 1077
ITh [ 317x1073 [210%x 107%[1.35 x 10-° | 8.49 x 10~7
IITa [718x 10731466 x 1077 [3.00x 10> [ 1.88 x 107%
TITb [1.37x 1075 | 222x 107 | 3.58 x 1077 | 5.60 x 10~ 1

Table 7.49: Ex 1.11 - Polynomial Collocation Methods I — II] : k=0

Method | h = 0.09 h=0.045 | h=0.0225 | h = 0.01125
Ia 148 x 1077 737x107° | 3.72x 107° | 1.86 x 10~
Ib 745x107%] 1.85x 107 | 462 x 107 | 1.16 x 107
Ic 145%x 10771 729%x107% [ 3.70x 107° | 1.85 x 10°° 1
ITa [378x10°]985x10°% ] 252x107% | 6.37 x 10~7
ITb 208%x 1077 ] 1.26 x 1078 [ 7.96 x 10719 [ 5.02 x 10~11

IITa [597x1077 | 376 x10°% | 235 x 1077 | 1.47 x 10~10
ITTh 1259 %1077 [3.89x 10711 [6.08%x10°13]5.35x%x 10714
IVa* [425%x107° [ 1.02x10™° | 258 x 107% | 6.43 x 10~
IVL* [370x1077] 2.27x107% | 1.41 x 1077 [ 8.75 x 10~ 1%
S\ 330x107%] 205%x 1077 | 1.31 x 1078 | 828 x 10~
Sy 1.95%x 107 % | 1.15 x 1077 | 7.15 x 1079 | 4.48 x 10°10
Sy 6.13x1077 | 396 x 1078 | 250 x 1077 | 1.66 x 10~10

Table 7.50: Ex 1.11 - Mixed Collocation Methods I — IV : k = /100 + 1/(4z?)

Conclusions (i)

The most accurate method is the 6th order mixed collocation method I/1b for k =
10,0 and /100 + 1/(4z2). Method IVb* which is exact for the functions cos(kz),
sin(kz), z cos(kz) and zsin(kz) is the best 4th order method for £ = 10 whilst
method IIb improves when & = /100 + 1/(422). The mixed collocation methods
with Gauss nodes for the collocation points are more accurate than the other mixed
collocation methods of the same order. The polynomial collocation methods are not
so good for this problem although method I77b improves and is comparable to the
4th order methods I7b, I11a, IVb* and Sy — S3 with k = 1 and & = /100 + 1/(4z?)
for small steplengths.

Note that the ratios of the maximum absolute errors for A = 0.0225 and h = 0.01125

for method /1) in tables 7.48 and 7.50 do not agree with the required value of
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26 = 64. For h = 0.01125, when the coefficients are evaluated as series expansions
in terms of # we obtain the error 3.45 x 107! for k£ = 10, and 1.16 x 10~ for
k = /100 + 1/(42?) for method IIJb. The ratios between these and the previous
errors at h = 0.0225 are 60 and 52 respectively which are closer to 64. We must also
take into account any rounding error incurred by Matlab from the evaluation of the

Bessel function for the starting values and each time the exact solution is evaluated.

Results are also given for the 2-step methods used by Jain et al [42] and the 2-
step Stormer extrapolation and interpolation methods by Gautschi [28] which are
listed below. The methods by Gautschi are described in Example 1.9. In table 7.51
we present our results for the maximum absolute errors over the interval [1, 10] for
methods 1-8. Methods 2 and 3 are of the form

Ynt1 = 2Un + Yoot = B A fagr + (L= 2X) fu + Maca), 1o (72)
where
A=t (# _ i) |
4 \sin?(6/2) 62
Method Description Algebraic | Stability
of method order Interval
1 Lambert-Watson method 2 P-stable
2 Method (7.2) with 6 = 7/2 2 (0,7%/4)
3 Method (7.2) with 8 =« 2 (0, 7?%)
4 Numerov (Sp) 4 (0, 6)
Method Description Algebraic | Trigonometric
of method order order
) 2-step extrapolation 2 1
6 2-step extrapolation 3 2
7 2-step interpolation 1 1
8 2-step interpolation 4 2

Jain et al [42] describe a method which is of the form (7.2) with frequency & = 10.
This method is equivalent to the Stiefel-Bettis method S, with & = 10 but the
coefficients still depend on the steplength h. The definition used by Jain et al for
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an interval of periodicity differs from Definition 3.5 in that they consider the sta-
bility of exponentially-fitted methods when the angular frequency of the problem is
the same as the frequency of the test equation. They applied Lambert and Wat-
son’s definition of P-stability which is concerned with constant coeflicients and not
steplength-dependent coefficients. Because 6 is fixed in methods 2 and 3, then the
coefficients are independent of the steplength and Definitions 2.6 and 2.7 of chapter
2 can be applied.

Method h =0.09 h=0.045 | h=0.0225 | h = 0.01125
1 497 x 1071 [5.04 x10°T[222x10°T | 5.95 x 102
2 712x1072[236x1072[6.40 x 1077 | 1.63 x 1073
3 425 x 1077 [ 144 x 1071 [ 3.72x 10721 9.37 x 1079
4 304x1072]191x103[121 x107*| 757 x 10"
5 1.88 x 1074|465 x 10™° | 1.17 x 10~° | 2.96 x 10~°
6 441 x107% [ 6.16 x 107 | 7.98 x 107® | 1.00 x 10~
7 247 x 10731126 x107°[6.32 x 107* | 3.17 x 107*
8 2.63x 107|149 x107%[9.23 x 107 | 5.82 x 10~°

Table 7.51: Ex 1.11 - Methods 1-8

Conclusions (ii)

Comparing the 2nd order methods 1, 2 and 3 with methods Ib and I/a, the latter
methods are far superior and even the lst order methods Ia and Ic¢ are more accu-
rate. The 4th order polynomial methods /7b and IIla are better than Numerov's
method and finally comparing methods 5-8 with the mixed collocation methods of

the same algebraic order in tables 7.48 and 7.50, the mixed collocation methods are
the most accurate.
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7.1.1 Comparisons of two-point mixed collocation methods

In this section, we study the effects of varying the collocation point ¢; for the sym-
metric two-point mixed collocation method (4.19). Because the collocation nodes

are symmetric, i.e. ¢ = 1 — ¢y, then we shall only consider values of ¢, in the region
0<e < 1/2

In figures 7.3 - 7.12, a dot (.) represents the maximum absolute error for a number of
problems selected from section 7.1 using the 2nd-order two-point mixed collocation
method (4.19). When ¢; = 0 and ¢, = 1, the method is the second-order mixed
collocation method I7a. The point marked by a circle (o) is the maximum absolute
error obtained when the collocation points ¢, and ¢, are the Gauss nodes, that is
the 4th-order method I7b.

The following examples are labelled according to the particular problems of section
7.1.
Example 1.4

Figure 7.3 is the plot of the maximum absolute error for Problem 1.4 for various
values of ¢; with fitted parameter k¥ = 10 and steplength h = 7/40.

210”

L o .
[ (X3} 0. [XH) 02 028 03 035 64 045
Vanymg c(1}

Figure 7.3: Problem 1.4 with £ = 10 and h = 7 /40

Conclusions
As the value of ¢; approaches the Gauss node (3 — v/3)/6, then the maximum
absolute error decreases and as ¢, approaches 1/2 from the Gauss node, then the

error increases. Thus, the 4th order method /b gives the more accurate results.
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Example 1.5

Figures 7.4, 7.5 and 7.6 are the plots of the maximum absolute error for Problem
1.5. The fitted frequency is 10 and the steplength is given by h =1/2, 1/4 and 1/8
respectively.

008 o1 0,18 02 025 03 038  ‘0s 04s o8
Vering 1)

Figure 7.4: Problem 1.5 with k& = 10-and h = 1/2

‘o,

o 005 01 oas 021 025 03 035 (04 045 os
Varyog e1);

Figure 7.5: Problem 1.5 with k = 10 and h = 1/4
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Max, A, Brror

o - .
° 008 a1 0.5 02 025 03 (X o4 0.45 os
Varying (1)

Figure 7.6: Problem 1.5 with K =10 and h = 1/8

Conclusions

For h = 1/2, as ¢; — 1/2, the maximum absolute error decreases but we canfimprove
on the Gauss nodes and the 4th order method does not give the best results. As the
steplength decreases, then method /76 improves (with the Gauss nodes) but there

are still values of ¢; for which the results are more accurate.
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Example 1.6

The figures 7.7 and 7.8 are the plots of the maximum absolute error for Problem
1.6, the Stiefel-Bettis problem.

wio”

. it .
® 008 01 045 02 023 03 0% 04 045
Veyng et}

Figure 7.7: Problem 1.6 with k =1 and h = 7/4 I.

° 005 [X] 01s 0.2 0z [X] (X o4 045 os
L BV

Figure 7.8: Problem 1.6 with K =1 and h = /8

Conclusions

It is easily seen that the most accurate method is the 4th order mixed collocation
method ITb with the Gauss nodes.
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Example 1.9
The figures 7.9 and 7.10 are the plots of the maximum absolute error for Problem

1.9. The fitted frequency is k = 1.01 and the steplengths are 7 /5 and w/10.

x10”

Max, Abe, Ervor

.o

° 005 [X] 018 02 025 0.3 055 [ 045
Varyng dlt)

Figure 7.9: Problem 1.9 with £ =1.01 and h = 7/5 I.

ia a4
3 985 o4 o1 02 625 03 035 0¢ 045 0S5
Varyrg (1)

Figure 7.10: Problem 1.9 with & = 1.01 and A = /10

Conclusions
For h = 7/5, we can improve on the results of the 4th order method I7b but as h

decreases, then the results for method I7b improve.
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Example 1.11

The figures 7.11 and 7.12 are the plots of the maximum absolute error for Problem
1.11.

sl}
i
;Ol
Figure 7.11: Problem 1.11 with k£ = 10 and A = 0.09 I
3
i
i,

° LYY 018 02 025 03 033 04 0 0%
Vayig 1}

Figure 7.12: Problem 1.11 with £ = 10 and h = 0.045

Conclusions

Again, as with example 1.6, the 4th order method I7b with the Gauss nodes for
collocation points give the best results.

General Conclusions

Generally for small steplengths, the 4th-order mixed collocation method 17} gave
the most accurate results. For large steplengths, it is sometimes possible to improve
on the results with a lower order method.
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7.2 Two-dimensional problems

Example 2.1

For our first two-dimensional example consider Kramarz’ test problem [45]
Yy = 2498y; + 4998ys, 3:1(0) =2, 1(0) =0

Yy = —2499y; — 4999y,, 12(0) = —1, y5(0) =0
where the exact solution is y;(z) = 2cosz and y,(z) = — cosz.

The error is given by the maximum of the 1-norm, i.e.

Error = max{|yi(z,) — v1| + ly2(zn) — 2|}

I
where y; and y; are the numerical approximations to y;(z,) and ys(z,) respectively.

The steplength is h = 0.01. Because a small steplength is used throughout this
problem, the difference is shown in the numerical solution when the coefficients of

the methods are written as power series expansions in terms of # compared to the
exact form.

The maximum absolute errors over the interval [0, 80] are given in tables 7.52 - 7.54.
For the exponentially-fitted methods in tables 7.52, 7.53 and 7.55, the top entries are
the numerical solutions when the coefficients b;, d; and a;; of the mixed collocation
methods are in exact form. The bottom entries are the coefficients written as power
series expansions. The fitted angular frequency is £ = 1 and for the two frequency
method V", we take k; = 1 and k; = 0.1 and for V', k; = 1 and k; = 50. In table

7.56, results are presented for the polynomial collocation methods I7b, IIla and
IITb, and Numerov’s method Sg.

The methods used by Coleman and Booth [21] in table 7.54 are a 6th order Panovsky-
Richardson method which we will denote by (PR4), and the equivalent 6th order
Runge-Kutta-Nystrom method given by (RKNG6).
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Ia

Ib

Ic

Ila

1.40 x 10753
1.56 x 1013

1.07 x 1071
6.86 x 10~

1.65 x 10°@
1.47 x 10713

3.75 x 10°1
1.91 x 1074

4923 x 10~ 11
4.88 x 10~11

226 x 1071
1.27 x 1013

537 x 10~ 1
1.63 x 10°13

7.73 x 10~
3.76 x 10~14

2.44 x 1073
1.88 x 103

2.98 x 10713
3.74 x 10713

9.20 x 10~M
2.77x 10713

2.12 x 10712
4.50 x 10~14

1.24 x 107
1.44 x 10+10

3.23 x 10~
3.74 x 10718

1.25 x 10713
277 x 10718

3.40 x 1012
3.08 x 10°13

4.70 x 107
5.31 x 10*3

4.35 x 10~18
5.60 x 1013

492 x 10~ 13
4.26 x 10713

8.07 x 1012
5.02 x 10~13

6.77 x 1078
5.92 x 10186

4.35 x 10713
7.94 x 10713

815 x 10713
1.05 x 10712

1.73 x 10~ 11
6.69 x 10-13

1.40 x 10¥189
1.12 x 10+189

7.82x 10713
1.33 x 10~!2

1.97 x 10712
2.04 x 10712

341 x 10711
7.53 x 10-13

I17b

Illa

IITh

1.13 x 10712
2.18 x 10714

5.00 x 10~12
1.13 x 10718

2.75 x 10~
9.90 x 10714

242 x 107
218 x 107

1.10 x 10~
1.33 x 1013

6.00 x 10~
1.71 x 10713

6.17 x 10~ 12
9.67 x 10~

2.96 x 10°11
3.45 x 10°13

1.59 x 10°10
2.23 x 10713

1.01 x 1011
2.31 x 1013

4.88 x 10711
3.45 x 10~13

2.61 x 10710
2.24 x 10713

2.33 x 10~ 1
2.67 x 1013

1.13 x 1071
6.64 x 10713

5.99 x 10710
3.50 x 10°13

4.96 x 10~ 11
9.55 x 1013

243 x 10°10
6.78 x 10~13

1.29 x 1077
4.20 x 10~13

z = 80
.

1.01 x 10-T0
9.55 x 10~13

491 x 10710
6.78 x 10713

2.61 x 10~
6.26 x 10~13

Table 7.52: Ex 2.1 - Mixed Collocation Methods { — /] : k=1

212
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IVa* IV vy vy
z=1 {282x 107186 x 1072 [ 557 x 107 [ 457 x 10~ M
1.25 x 10713 | 3.86 x 1074 | 6.16 x 10714 | 6.86 x 10712
t=2 [1.70x 100 [6.01 x 1002 [1.30 x 1072 [ 7.68 x 10~
2.61 x 10713 | 421 x 10~ [ 1.03 x 10713 | 1.50 x 10~!!
z=25 [211x10" 158 x 107" [ 3.20 x 10°? [ 8.29 x 10~ !4
3.33x 1071 | 1.17x 10713 [ 1.06 x 10713 | 3.97 x 10~
z=10]446x 100 [2.63x 1071 [ 5.35 x 10712 | 2.40 x 10~ 13
5.96 x 10713 [ 1.17 x 1073 | 1.06 x 10713 | 6.54 x 10~!!
z=20[102x1072[572x10"11 [1.24 x 1071 [ 420 x 1075
814 x 10713 [ 3.75 x 10713 | 2.55 x 10713 [ 1.50 x 10~10
z=40]1.96x 1072 {130 x 1070|273 x 1071 [ 6.89 x 10713
1.82 x 10712 | 4.06 x 1013 | 4.74 x 1073 | 3.25 x 10710
=280]4.62x 10717254 x 10710 | 5.47 x 10717 [ 1.28 x 1071
3.55 x 10712 | 421 x 10713 [ 6.90 x 1013 | 6.56 x 10710

Table 7.53: Ex 2.1 - Mixed Collocation Methods IVa*, TVb* and V*"

PR4 RIKNG6
z=1 [68x10"1"[1.1x107"
z=2 [10x 1078 |19 x 107"
r=5 |22x1078]22x%x10°P
z=10[22x107" |58 x 107 1°
z=20[46x1078|1.4x10"1
x=40164%x107P |23 x 1071
£=28090x10"P[43x 1071

Table 7.54: Ex 2.1 - Booth’s Methods

213
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S S, Ss

z=1[127x10"7[950x 10" |3.84 x 1072

6.16 x 10713 | 7.85 x 10713 | 7.47 x 10713

z=2 [323x10"2[2.09%x 10" |8.55 x 10~ 2

1.17 x 10712 | 1.49 x 10~'2 | 2.00 x 1012

=5 [863x10"7[507x10"2[2.32x 10!

1.98 x 10712 | 4.55 x 1072 | 5.66 x 1072

z=10[147x 1071 [ 7.72 x 10712 [ 3.86 x 10~

4.66 x 10712 | 8.15 x 10712 | 9.55 x 10712

r=20(332x10"1"]1.44x 10T [855x 10~

112 x 107" | 1.84 x 107 | 2.06 x 107"

£=40[713x 107" [3.56 x 10711 | 1.87 x 107™°

2.20 x 1071 | 3.91 x 107! | 4.38 x 10~

z=80 141 x 10710 [710x 107 [ 3.77 x 10~10

4.80 x 1071 | 7.67 x 107! | 8.80 x 10!

Table 7.55: Ex 2.1 - Multistep Methods 5, — S3 : k=1
So ITb IITa IITh

z=1 [358x1071T]6.02x1072[1.32x 107" [9.30 x 1074
z=2 [781 x1071[1.29x 10711 [ 284 x 10711 [ 1.30 x 1073
z=>5 [206x10"[337x 10" | 752x 1011 [1.30 x 10713
z=10[340x10"19[552x 10711 [1.24 x 10 [ 2.07 x 10713
z=20[784x10"19]127x10"19]2.86x 10°1% [ 2.07 x 10713
z=40] 1.69x107° [ 273 x 1079 [6.14 x 10°1° | 2.07 x 10713
z=80[ 341 %1077 [552x107 0] 124x1079 [475x 1073

Table 7.56: Ex 2.1 - Methods Sy, I1b, IIla and IIIb: k=0

214
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Conclusions

In tables 7.52 and 7.53, the results are generally more accurate when the coefficients
of the steplength dependent methods are power series expansions. For method
II1b, when the exact form for the coefficients is used, the maximum absolute errors
over the interval are poor compared to the one and two-point mixed collocation
methods and this is because of the accumulation of rounding errors in calculating the
coeflicients which are more complicated. The results greatly improve using the series
expansions. The exponentially-fitted multistep methods S; — S3 give similar results
to the mixed collocation methods and show an improvement when the coefficients
are written as series expansions with the exception of method S, towards the end of

the interval. The mixed collocation methods are superior when the series expansions
are used.

When k& = 0, the 6th order method IIIb is one of the most accurate methods whilst
the method RKNG6 is the best method. The polynomial collocation method I71b
gives slightly better results than the corresponding mixed collocation method when

the coefficients are in the exact form because of the accumulation of rounding error
in the latter method.
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Example 2.2

For our next example, consider the problem,
yi = =Ty +3y2, 1(0) =1,(0) =0,

Yo = 2y1 — 6y, 32(0) = yo(0) = L.

where the theoretical solution is

1
n(z) = gcos(2a:). —g cos(3z) + 1%sin(%) — sin(3z),

3 2 3 . 2 .
yafz) = : cos(2z) + R cos(3z) + m sin(2z) + 5 sin(3z).

The errors in tables 7.57 - 7.60 are given by the 2-norm which we define by’ Qz) =
\/ [y1(z) — 11)? + [y2(z) — yo]? where y; and y, are the numerical approximations to
y1(z) and ys(z) respectively at the step z. In tables 7.57 - 7.60, the top value is
the maximum absolute error over the interval [0,10] and the bottom value is the
end-point error given by §2(10). If only one entry appears then the end-point error
is the same as the maximum absolute error. In tables 7.57, 7.59 and 7.60, three
different values for the frequency parameter k are given, k = 2, k =3 and k =0
respectively. In table 7.58, the two frequencies are given by &y = 2 and k; = 3.

Method | h=0.1 h =0.05 h =0.025

Ia 1.6915 6.09 x 10T | 2.60 x 107!
578 x 1071 | 1.34 x 10~ | 4.58 x 1072

Ib 224 x 1072 | 566 x 1073 | 1.42 x 10—°
Ic 526 x 1077 ] 338 x 107" | 1.94 x 10-T
485 x 1072 | 3.54 x 1072 | 2.32 x 1072

ITa [468x107%2| 1.18 x 1072 | 2.96 x 1073
ITb  [298x107° [ 1.87x107% | 1.17 x 107
ITTa [516x107°| 323 x10°% | 2.02 x 10~7
IITh [1.53x 1078242 x10°10 [ 853 x 10~ 12
IVa* 261 x107%] 6.57x10% | 1.64 x 1073
IV [195%x1075|122x10% | 7.63x 1078
S\ 212 x 1077 1.33 x 10> | 8.30 x 10~
So 118 x 1077 | 737 x 1075 | 4.61 x 1077
S 6.57 x 107° | 4.10 x 107 | 2.56 x 10~

Table 7.57: Ex 2.2 - Methods I — IV* and S, — S3 : k=2
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Method h=01 h =0.05 h =0.025
1% 531 x 10714 1235 x 10719 [ 5.090 x 10713
463 x 107 | 2.04 x 10713 { 5.09 x 10713

Table 7.58: Ex 2.2 - Mixed Collocation Method V* : k; =2 and k, =3

Method | A =0.1 h=0.05 h =0.025
Ia 6.58 x 10°T | 423 x 10T | 243 x 107!
518 x 1071 | 3.32x 107! | 1.89 x 10!

Ib 1.65x 1077 | 4.11x 107% | 1.03 x 1073
1.15x 1072 | 2.84 x 103 | 7.08 x 1074

Ic 2.1510 7.65 x 107! | 3.26 x 1071
1.5737 5.80 x 1071 | 2.50 x 10~1

ITa [359%x107%] 897x107% | 2.24 x 1073
2.66 x 1072 | 6.51 x 1073 | 1.62 x 1073

ITh 1.77 x 107° | 1.10 x 107% | 6.89 x 10~¢
1.30 x 107% | 8.09 x 10~7 | 5.05 x 10~

ITTa [1.69x107°| 1.06 x10°® | 6.61 x 10°3
1.19 x 1075 | 7.41 x 1077 | 4.63 x 10~8
ITTh | 5.06 x 10779 | 7.95 x 10°T | 4.06 x 10~ 12
3.49 x 1077 | 5.48 x 107! | 4.05 x 10~!2

IVa* [456x107%2| 1.13 x107% | 2.81 x 1073
3.17x 1072 | 8.05x 1073 | 2.02 x 1073

IVh* [334x107°] 2.08x107% | 1.30 x 10~
2.43 x 1075 | 1.52 x 107 | 9.48 x 108

S\ 715 x 1070 | 447 x10°° | 2.80 x 1077
513 x 1075 | 3.22 x 1076 | 2.02 x 1077

Sy 897 x 10" | 5.60 x 10°% | 3.50 x 10~7
6.44 x 107% | 4.03 x 106 | 2.52 x 1077

S, 1.13x 107 [ 7.00 x 1075 | 4.47 x 10~
8.08 x107%| 5.04 x 10°¢ | 3.15 x 10~7

Table 7.59: Ex 2.2 - Methods I — IV*and S, — S3: k=3
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Method | h=0.1 h = 0.05 h = 0.025

Ia 5.8687 1.6342 . 6.28 x 1071

3.0168 6.37 x 107! | 2.39 x 107!

Ib 428 x 10721 1.08 x 1072 | 2.72 x 10°°
Ic 1 step 1 step 1 step

2.23 x 107° 1 1.06 x 10114 | 4.02 x 10*18

ITa [896x107%] 228 x10"%2 | 5.72 x 1073

ITb | 454x107°] 285 x 1075 | 1.78 x 1077

IITa [950x107°]| 596 x 10°% | 3.73 x 107

ITTb 189 x 1078 [2.96 x 107 [ 4.63 x 10712

So 263 x 1077 1.64x10™° | 1.02 x 10°°

Table 7.60: Ex 2.2 - Methods I — IIT and Sy : £ =0

Conclusions ,

On comparing the results, for all the methods except IVa*, IVb* and S3, they are
more accurate for the higher frequency k& = 3. Once again, the 4th order methods
I1Ib and I1la are superior to the multistep methods S, — S; for all values of the
fitted frequency k. For k = 2, the 4th order method I'V'b* is superior to all the other
4th order methods but for £ = 3, methods IIb and I Ia are more accurate. The two
frequency method V* is exact except for rounding error and the 6th order method
II1b is the second best method. If we look at the ratios of the methods as the
steplength is halved, then we should obtain 27 where p is the order of the method.
For the mixed collocation method I17b, when h = 0.025, the ratio is approximately
28 and 20 for k = 2 and k = 3 respectively. This is because of the effects of rounding
error from evaluating the coefficients. When we use the series expansion in terms
of @ for the coefficients, the errors are 3.77 x 10712 and 1.24 x 10~'? for £ = 2 and
k = 3 respectively when h = 0.025.

The polynomial collocation method I11b gives very similar results to the correspond-
ing mixed collocation method. Therefore the polynomial collocation method I11b is

very useful because the coefficients are independent of the steplength and so there

is less rounding error.
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Example 2.3
Consider the problem

ylll — _/\‘2y1 + 0.00256(—0.051) + /\26(—0.051:)

Yy = =A%y + 0.0025¢(~007) 4 \Ze(~005)

with initial conditions

y1(0) =a+1, 3;(0)=-0.05
12(0) = 1, y5(0) = Aa — 0.05

and whose theoretical solution is

y1(z) = acos(Az) + e(70%2) 4, () = asin(A\z) + e(0052),

It was pointed out by Lambert and Watson [47] that this problem is intended to
illustrate numerically the property of P-stability. With the choice of parameter
a = 0, the 2-dimensional problem corresponds to the high frequency oscillations not
being present. The results for the mixed collocation methods and exponentially-
fitted methods S) — S; with fitted angular frequency k = X are presented in table
7.61, and the polynomial collocation methods and Numerov’s method Sy in table
7.62 with £ = 0. The errors in tables 7.61 and 7.62 are given by the maximum of
|X(z)| over the interval [0, 207] where

(z) =9(z) — Vyi +42  and

\/yl )+ vz \/a2 + 2ae(=0-052)[cos(Az) + sin(Az)] + 2e(-01).

The absolute error in the radius /y? + y2 at z = 207 for a = 0 is given in table 7.63
for methods 1-6 used by Cash [3] and Jain et al [43] which are listed below. In tables
7.64 and 7.66, results are presented for the mixed collocation methods I — II1 and
multistep methods S; — S3 with @ = 0.1 and 0.2 respectively, and in tables 7.65 and
7.67, the polynomial based methods I — I/] and Sy are used with ¢ = 0.1 and 0.2
respectively. The steplength is i = /32 throughout this example.
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Method Description Algebraic
of method order
1 2-step P-stable [3] 2
2 2-step P-stable hybrid [3] 4
3 2-step P-stable hybrid [3] 6
4 5-step Stormer-Cowell [43] 6
5 4-step symmetric [43] 6
6 4-step P-stable hybrid [43] 6
A=5 A=10 A=15 A=20
Iao [ 676 x1073 [ 6.74x1073 | 6.78 x 1073 | 7.07 x 107
Ib | 286 x107% | 5.78 x107% | 885 x 1077 | 1.22 x 10~°
Ic [683x103 [693x103[701x10°% | 6.95x10°
ITa | 557x107% | 568 x 10°® | 5.81 x 10~® | 5.96 x 10~°
IIb | 224 x1078 [ 918 x 1078 [ 213 x 1077 | 3.94 x 1077
IITa | 115 x 107 ] 2.34 x 107 [ 3.61 x 107 | 5.03 x 10~*°
IITh | 8.04 x 10713 [ 1.61 x 107 | 5.64 x 10~ | 1.41 x 107
IVa* | 571 x 1072 | 251 x 107" | 6.69 x 107! 1.5607
IVh* | 263 x107% | 4.38x 1073 | 2.35 x 1072 | 8.07 x 10~*
Sy |6.88x 107 | 7.39 x 10712 | 859 x 107 | 1.11 x 10~ 1
Ss 6.95x 1078 | 3.07x 1077 | 844 x 107 | 2.08 x 107"
Sy [ 7.02x107% | 1.28x 1077 | 849 x 1077 | 4.25 x 107}

Table 7.61: Ex 2.3 - Methods I — IV* and S, — S3

:a=0and k= A
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A=5 A=10 A=15 A =20
Ta | 1.89 x 107% | 3.71 x 107% [ 3.01 x 107 | 3.05 x 10+
Ib | 281 x107% [ 1.33x10°% | 809 x 1077 | 5.11 x 107°
Ic | 228x107° |38 x10"° | 1.70 x 10~ | 2.02x 107°
ITa [553x10°10]11.30x 1070 [6.17 x 10~ | 347 x 10~ 1!
ITb 186 x 10721187 x 10777 [1.87x1077 | 1.86 x 10712
ITTa [ 118 x 107 [ 711 x 107 [ 4.40 x 107 | 864 x 107 1°
ITTh {133 x 1070 [ 241 x 107 [ 245 x 10715 | 2.28 x 107
So [165x10°P 141 x107[220x 10" ] 2.20 x 10~P

Table 7.62: Ex 2.3 - Methods I — II]T and Sp: a=0and k=0

A=9D

A=10

A=15

A =20

6.35 x 10717

6.00 x 10~

7.21 x 1071

361 x 10-11

4.39 x 1071

0.42 x 10~

2.83 x 1077

7.22 x 1070

4.40 x 107*°

3.21 x 107

493 x 10713

1.40 x 10712

3.74 x 1071°

2.24 x 10716

6.94 x 10718

2.08 x 10°1©

5.42 x 10~

2.03x 1071

1.35 x 10~

2.56 x 10~1°

OO O ] WO DO =

418 x 1071

1.51 x 10°13

215 x 10712

1.79 x 10T

Table 7.63: Ex 2.3 - Methods 1-6 : a =0

Conclusions (i)

For the exponentially-fitted methods I — IV* and S| — S3, the methods that give
the best results are those of algebraic order 4 or 6 and which have a high polynomial
order. By this we mean the methods which have the highest degree of polynomial in
the basis of functions. Comparing the 4th order methods, S, fits polynomials up to
degree 3, method I1]a up to degree 2, methods I7b and S, up to degree 1, and Sj is
not exact for polynomials. From table 7.61, S gives the best results for the 4th order
methods followed by I/]a. The 6th order method I17b is again the most accurate
when £ = A. For k = 0, the methods with the higher algebraic and polynomial order
do well and methods I17b and Sy are superior to the exponentially-fitted methods.
They are also comparable to methods 2, 4 and 5 although only the absolute error
at the end-point is given in table 7.63.
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a=0.1and k=)

A=5H A=10

Ia | 6.76x1073 | 6.73 x 10~°
Ib 2.86x 107* | 5.77 x 10~

Ic 6.81 x 1072 | 6.92 x 1073
IIa | 556 x 107% | 5.67 x 107®
IIb | 2.24%x10°% | 9.16 x 1078
IITa | 1.15x 10719 [ 2.34 x 1010
IITh {196 x 1077 | 1.61 x 1012
S, 1688x1071%]7.39 x 10~12
Sy | 6.95x107% | 3.07 x 10~7
S; | 7.02x 107 | 1.28 x 10~
Table 7.64: Ex 2.3 - Methods I — II] and S; — S5 :

A=DH A=10
Ia ]6.36 x 107 [ 5.12 x 10+33
Ib 1.16 x 107! | 1.97 x 107!

Ic 1 step 1 step
6.36 x 10714 | 2.40 x 107!
Ila | 1.90x 1071 | 2.01 x 107!
IIb | 341 x107% | 1.04 x 1072
IITa | 7.78 x 10~* | 2.40 x 1072
ITTh | 453 x 1077 | 5.60 x 10~°
So | 2.17x 1073 | 7.56 x 1072

Table 7.65: Ex 2.3 - Methods I — II] and S; :

a=0land k=0

The polynomial collocation method Ic was unable to satisfy the tolerance within a

suitable number of iterations in tables 7.65 and 7.67.
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a=02and k=X

A=5 A=10
Ia | 6.74x 1073 | 6.72 x 1073
Ib | 2.83x107% | 5.74 x 101
Ic | 6.77x107°% | 6.87 x 1077
ITa | 552 x107% | 5.63 x 10~°
ITb | 2.22x107% | 9.11 x 1078
IITa {114 x 1071 [ 2.32 x 10~ 10
IITh 195 x 10719 | 1.60 x 10712
S, 16.86x10°12[7.38 x 10~ 12
S, [693x10°% ] 3.07x1077
Ss [ 7.00x107% | 1.28 x 1072
Table 7.66: Ex 2.3 - Methods I — II] and S; — S5 :

=5 A =10
Ia |1.27 x 105 [ 1.02 x 10+%*
Ib | 1.82x 107! | 3.94 x 1071

Ic 1 step 1 step
1.74 x 10*6 | 4.81 x 10*!
ITa | 324x10°T | 4.03 x 107!
ITb | 5.00 x 10~ | 1.53 x 102
ITTa | 1.15x 107° | 3.52 x 1072
ITTb | 664 x 1077 | 833 x 107°
So | 319x107% | 1.13 x 107!

Table 7.67: Ex 2.3 - Methods I — I'I] and S :

Conclusions (ii)

a=02and k=0
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For k = ), again the methods with the higher polynomial order are more accurate

than others of the same algebraic order.

When &£ = 0, the polynomial colloca-

tion methods with the Gauss points are superior to other polynomial collocation

methods of the same order and the results are not as good as when a = 0 because

trigonometric terms appear in the exact solution. The results for the mixed col-

location methods I — III are similar when the parameter ¢ = 0.1 and a = 0.2

The exponentially-fitted methods show a slight improvement in the results as a is

increased whilst the results for the polynomial based methods are slightly worse.
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Example 2.4

For our final example, we study the two-body problem

" -y
=2 O =1-¢ 3(0)=0

" —Y2 ' l+e
2 = —5 12000 =0, 1»(0)=4/7—

Vy? +y5. The exact solution is y(z) = cos(u) — € and y(z) =
V1 — e?sin(u) where u = z + esin(u). Because we are interested in problems with
oscillatory solutions we take € < 1.

where r =

The method derived by Ozawa [51] is a four-stage 4th order implicit Runge-Kutta-
Nystrom method of trigonometric order 1 with order of dispersion 4, and we shall
denote the method by TRKN1(4). The top entries in tables 7.68 - 7.79 are the
maximum absolute errors on the interval [0, 20] with the coefficients b;, d; and a;; in
their exact form, whilst the bottom entries are the maximum absolute errors with
the coefficients as power series expansions. If only one value appears, then the same

result is obtained. The angular frequency is k = 1.

The error is given by

Error = max{|y1(z,) — v1] + |y2(zn) — 2|}

where y; and y, are the numerical approximations to y;(z,) and y2(z,) respectively.

€ h=0.2 h=0.1 h = 0.05
1.35x 107171261 x 107 | 562 x 10713
1.35 x 1071 | 1.38 x 10713 | 2.94 x 10713
0.01] 216 x 10°T [ 6.71 x 1072 | 2.47 x 102
0.1 4.4084 1.5880 6.62 x 1071
0.5 5.0812 12.447 4.8388

Table 7.68: Ex 2.4 - Mixed Collocation Method Ia
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€ h=0.2 h=0.1 h =0.05
0 [255%x10°M]536x10"1]5.87x1071
1.81x 107131494 x 107 | 1.17 x 10°¢
0.01] 207x10°% [ 5.08 x10~% | 1.26 x 10~*
0.1 | 3.02x107° | 7.48x 1073 | 1.86 x 1073
0.5 1.9016 6.19 x 1071 | 1.60 x 10T

Table 7.69: Ex 2.4 - Mixed Collocation Method Ib

€ h=0.2 h=01 h =0.05

0 [856x10"11][1.28x 107 ]244x 10712
0.01 *1 6.01 x 10~! | 3.60 x 102
0.1 *2 x5 1.5709
0.5 4 *° *°

Table 7.70: Ex 2.4 - Mixed Collocation Method Ic¢

In table 7.70, the maximum number of iterations were exceeded for *.

Steps taken | |[Max Error|

*1 58 1.5013

%2 32 1.2276

3 128 1.9312

#4 12 1.7654

*5 34 1.7965

%0 116 2.2376

€ h =02 h=0.1 h = 0.05

0 [9.88x1071[567x 1071 [1.57x 107
1.80 x 10713 | 423 x 10~ | 3.65 x 10~
001 ] 214x107% | 516 x 1073 | 1.28 x 1073
0.1 |284x10T |68 x107% | 1.70 x 1072
0.5 3.0993 2.3480 7.66 x 1071

Table 7.71: Ex 2.4 - Mixed Collocation Method IIa
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€ h=0.2 h=01 h =0.05
0 [227x1070 (428 x10°[3.72x 10712
1.12x 107 | 1.64 x 1074 | 4.40 x 10~
0.01 | 765x10°° [ 481 x 107 | 3.01 x 1078
0.1 | 861x107° | 539x107% | 3.37 x 1077
05 [ 217x1072 | 1.09 x 1073 | 6.52 x 10~°

Table 7.72: Ex 2.4 - Mixed Collocation Method ITb

€ h =02 h=0.1 h =0.05
0 [375x10°2[312x10°2[1.92x10° 2
1.65x 10714 [ 1.31 x 107 | 3.74 x 10~
001] 189 x10™° [ 1.18 x 10°% | 7.40 x 1078
0.1 [ 228x107% [ 1.43x10~° | 8.94 x 1077
05 [ 566x107% | 7.10 x 10~* | 4.90 x 1073

Table 7.73: Ex 2.4 - Mixed Collocation Method I11a

€ h=0.2 h =01 h =0.05
0 [259%x1072 (220 1072 {142 x 107 T
3.23x 107|596 x 10714 | 8.83 x 1014
0.01] 560x10~° [ 8.59 x 10~ [ 1.57 x 10~
01 [ 5.02x10°8 [790x 10" [2.80x%x 10~ I
05 | 3.68x107% | 421 x1075 | 6.24 x 1078

Table 7.74: Ex 2.4 - Mixed Collocation Method II17b
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€ h=0.2 h=0.1 h=0.05
0 [409x107M]880x10°[1.22x 102
1.69 x 107° | 4.94 x 10713 | 2.20 x 10712
001 1.66x107% [ 1.04 x 10~ | 6.53 x 10~7
0.1 [ 290x107° | 1.84x10~* | 1.15x 10™°
0.5 | 765x 10T | 6.74 x 1072 | 4.55 x 1073

Table 7.75: Ex 2.4 - Multistep Method S,

€ h=0.2 h=0.1 h =0.05
0 [5090x10 7 [1.26%x10°2 231 x10° 2
1.26 x 10713 1 2.94 x 10~13 [ 3.35 x 1013
0.01] 1.26 x10°* | 7.89 x 107% | 4.94 x 1077
0.1 | 237x107% | 1.50x 10* | 9.42 x 1075
05 | 746 x 1071 | 6.59 x 1072 | 4.46 x 1073

Table 7.76: Ex 2.4 - Multistep Method S,

€ h=0.2 h=01 h = 0.05
0 [7.20x 107" [2.00x 107" | 5,57 x 1071
3.69 x 1071 | 6.85 x 1073 | 6.49 x 10~'?
0.01] 814x107° [ 510x 107° | 3.19 x 1077
01 | 1.79x107° | 1.14x 107* | 715 x 10°°
05| 728x107" | 6.45x107% | 4.36 x 107°

Table 7.77: Ex 2.4 - Multistep Method S3
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€ h=0.2 h=0.1 h=10.05
0 [121x10°™{464x10° ¥ ]217x10°8
0.01] 967 x107° | 6.21 x10°° | 3.92 x 1077
0.1 [ 765x107% [ 6.03x107° | 4.15 x 10°%
05 | 300x 1071 | 6.45x107% | 1.49 x 1072

Table 7.78: Ex 2.4 - Ozawa’s Method TRKN1(4)

€ h=102 h=0.1 h =0.05

0 [584x107*]3.66x107°]2.29 x 10~°
0.01]5.94x107* [ 3.62x 10~ | 2.27 x 10~°
0.1 |835x107*[524x107°|3.28 x10°°
0.5 [2.12x 1072 [ 1.49 x 1073 | 9.55 x 10~°

Table 7.79: Ex 2.4 - 2-stage Gauss Runge-Kutta Method

Conclusions

For ¢ = 0, the exponentially-fitted methods give very good results and when the
coefficients are power series expansions, then the results do show improvement. The
4th order methods IIb and Illa are more accurate for ¢ # 0 compared to the
methods S; — S3, Ozawa’s TRKN1(4) method and the 2-stage Gauss Runge-Kutta
method. The mixed collocation methods with the Gauss nodes are superior to other
mixed collocation methods of the same algebraic order with the exception of methods
IIb and I1la in tables 7.72 and 7.73 when ¢ = 0.5. For method IIIb in table 7.74,
with € = 0.01 and ¢ = 0.1, the ratios of the errors are not satisfied for h = 0.05.
Again, this is due to rounding error accumulated from the error in calculating the
coefficients. When we use the series expansions for the coefﬁcients, the errors are

1.35 x 107! and 1.24 x 107! for ¢ = 0.01 and € = 0.1 respectively, and the ratios
are close to 64 as required.
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CONCLUSIONS

By far the most accurate method out of all those used in the examples is the 6th
order 3-stage mixed collocation method I1Ib with Gauss points for the coilocation
parameters. The only disadvantage of this method is the complexity of the coeffi-
cients and the time it took the program to run for small steplengths, especially for
problems where the angular frequency k is dependent on the steplength. To avoid
significant losses in evaluating the coefficients, writing the coefficients as power series

expansions generally gave more accurate results.

For problems which involve two frequencies or combinations of products of trigono-
metric and polynomial functions, the extended methods IV* and V* are very useful
and give good results whilst higher order methods struggle to come close. The mixed
collocation methods of order 4 are comparable to the exponentially-fitted r?ultistep
methods of Coleman and Ixaru [23] and more often than not are more accurate. The
high order mixed collocation methods are comparable or superior to other methods

tested such as the polynomial based hybrid methods or exponentially-fitted multi-
step methods.

When the theoretical solution of the problem is included in the basis of function for
the methods, then the results are exact, taking into the account the accumulation of
rounding error. Generally, the mixed collocation methods with the Gauss points are
slightly more accurate than those of the same algebraic order with the exception of
examples 1.4, 1.5 and 2.2. The theoretical solutions in examples 1.4 and 1.5 contains
two frequencies and the methods with the higher polynomial order are more accurate
for particular values of the frequency parameter k.

In conclusion, the mixed collocation methods are a useful family of methods for
solving problems which have oscillatory solutions. The high algebraic order methods
can be quite accurate when the fitted frequency k& is suitably chosen. For k = 0, the

6th order polynomial collocation method gave good results for certain problems.
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Conclusions

It was shown that the mixed collocation methods developed in chapi;er 4 for the
initial value problem (1.1) may be regarded as Runge-Kutta-Nystrom methbds with
steplength dependent coefficients and the order conditions up to and including or-
der 6 are given. When the collocation points are the Gauss nodes, the maximum
order is obtained and the criteria for the methods to have an interval of periodic-
ity are satisfied. We have shown that every 2-stage Runge-Kutta-Nystrom method
of trigonometric order 1 is a 2-stage mixed collocation method. A general theory
for the stability of exponentially-fitted methods was described and we analysed the
stability of the one, two and three-point mixed collocation methods. As the fit-
ted angular frequency approaches zero, the mixed collocation methods reduce to
the corresponding polynomial collocation methods. Although it is true for up to 3
stages, we have still to prove that the order of an s-stage mixed collocation method
is the same as that of the corresponding polynomial collocation method, and that an

s-stage mixed collocation method has an interval of periodicity when the collocation
nodes are symmetric.

Two other types of mixed collocation methods were also developed. The first in-
volves combinations of products of polynomial and trigonometric functions, and the
second method is exact for two frequencies. Although we only considered methods
with low algebraic orders, the methods generally produced good results. It is clear
how to obtain methods with more than two frequencies but the coefficients become
complicated. For the two-frequency method, the stability analysis could only be
done by setting one frequency as a multiple of the other and so a possible further

area of research is the stability analysis of methods with more than one frequency.
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Although the derivation of the mixed collocation methods becomes complicated
because of the length of the formulae for 3 or more stages, the numerical results
show that the 2-stage and 3-stage methods of order 4 or higher are very powerful
methods. More often than not, they are more accurate for problems with oscillatory

solutions than other exponentially-fitted methods or higher order polynomial based
methods.

In section 6.3, the two-point symmetric mixed collocation method was adapted so
that the collocation nodes depended on the steplength h. Although this does not
improve the order of the method, for ¢; = af? and c; = 1 — ¢; it was shown that the

method is always defined when a > 2/(27n%x?), where n is a non-negative integer.

One area not considered in this thesis is error estimation for the mixed collocation
methods. Because the methods are exponentially-fitted, the techniques Iused for
polynomial based methods cannot be applied here. As there is little literature on

this subject then this is a possible area of research for future work.



Appendix A

Coeflicients for the 3-stage
TRKN1 method

r.

(From section 3.2). For a 3-stage Runge-Kutta-Nystrom method to have trigonomet-
ric order 1 and algebraic order 4, we require the collocation nodes to be symmetric,

that is ¢ = 1 — ¢; and ¢ = 1/2, and the coefficients of the method are given by

_19 f32+2(33—82)94—27‘[3—2./434-2./42—2%2

b

2 02 F
y _ L0 Fia+2(Bi - By)6+2H = 2Hs —2 A +2 Ay
273 P E
b L0 Fu+2(B - Bi)6+2H, —2H +24 — 24
379 9> E
0 Fz— K3+ By + Ky — By OF s —Ki+K3—Bs+ B,
= 0E y = 0E ’
d :9f21+/C1—Bl—’C2+32
3 HE )
_02a1f32—06132—f21+./42 _92a1f13+819C1—A1
an = Ty, 0° y Q12 = Ty, 0 )
_920'2.7:32—96282'1—./42 _9 a2f13+81002—.7:21—.A1
az1 = Ty, 02 y Q2 = Ty 02
_02a3}'32—90332+]:32+A2 62 03f13+31963+.7‘—13*./41
as = Ty, 07 y Q32 = Ty, 02
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and a3 = ay, a3 = ay and a3z = a3 where for j from 1 to 3,
Aj =sin(fc¢;), Bj =cos(fc¢j), H; =sin(d(c; — 1)), K; =cos(d(c; — 1))

with

.7:21 = Sin(0 (Cg - Cl)), .7:32 = sin(O (C3 - Cg)), flg = sin(@ (Cl - 63))
and
FE =sin(f (c; — ¢3)) +sin(8 (c3 — ¢2)) + sin(8 (c2 — ¢1))-

The method has default order 4. When the off-step points are the Gauss nodes

_5-V15 1 _5+V15
- —27 3 — 10 ) ,

and

then the method has order at least 5, and the maximum possible order of 6 is
obtained when

As k — 0, the coefficients of the TRKN1 method with algebraic order 6 reduce to

those for the polynomial based 3-stage Runge-Kutta-Nystrom method of order 6,
ie.

5—+/15 N 9 — 2¢/15 — 18003 18 — 515 + 180a3
10 3 90 180
1/2 9 + 2v/15 — 180a; 5 9 — 2/15 — 180a;
144 g% 144
5415 | 18 + 5v/15 + 180a; 9 + 2v/15 — 18004
10 180 90 s
(5+15)/36 2/9 (5 - V15)/36

5/18 4/9 5/18



Appendix B

The Mixed Collocation Methods

In this section, the Maple programs for the derivation of the mixed collocation meth-
ods of Chapter 4 and the extended mixed collocation methods I and II of Chapter 6
are given. Maple V Release 5 was used. For the extended mixed collocation methods
I and II, values of the collocation points have to be substituted for s > 3 to avoid
Maple running out of memory.

B.1 The Mixed Collocation Methods : s > 1

Example

The two-point mixed collocation method (4.19) with nodes ¢; = 0 and ¢; = 1.

> restart,

Enter number of collocation points:

> 8:=2;

If known, substitute the values of the collocation points:
> ¢[1]1:=0; c[2]:=1;

Consider a function of the form:

> U:=al0]*cos(k*x(x-X[n]))+b[0]*sin(k* (x-X[n]))+sum(r[i]*(x-X[n]) "1,
i=0..s-1);

> UU:=diff (U,x);

> UUU:=diff (UU,x);

Apply the initial and collocation conditions and solve:
> x:=X[n];
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> y[nl=U; al0]:=solve(",a[0]);

> z[n)=0U; b[0]:=s0lve(",b[0]);

> for j from 1 to s do x:=X[nl+c[jl*h;
f(n+c[jll=combine (simplify (UUU) ,trig);
r{j-1] :=simplify(solve(",r[j-11)); od;

Substitute the coefficients back into u(x) and u’(x) to obtain the

Mixed Collocation formulae:

> k:=theta/h;

> x:=X[n]+h;

> y[n+1] :=collect(combine(simplify(U),trig),
{y[n],z[n],f(n+c(1]],f(n+c[2]],f(n+c[3]]}, factor);

> z[n+1] :=collect(combine (simplify(UU),trig),
{y[nl,z[n],fln+c(11],f[n+c[2]],f[n+c[3]11},factor);

> for j from 1 to s do x:=X[nl+c(jl*h;
Y(j]:=collect(combine(simplify(U),trig),
{y[nl,z[n],fln+c[1]1],f[n+c[2]],f[n+c[3]11},factor); od;

B.2 Mixed Collocation Method 1 : s> 2

Example

The extended two-point mixed collocation method I (6.3) with nodes ¢; = 0 and
Cyr = 1.

> restart;

Enter number of collocation points:

> 5:=2;

If known, substitute the values of the collocation points:
> ¢[1]:=0; c(2]:=1;

Consider a function of the form:

> U:=(al0]+a[1]*(x-X[n]))*cos (k*(x-X[nl))
+(b[0]+b[1]*(x-X[n1))*sin(k*(x-X[n]))
+sum{(r{il*(x-X[n])"1,i=0..8-3);

> UU:=diff(U,x);

> UUU:=diff (UU,x);
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Apply the initial and collocation conditions and solve:

> x:=X[n];

> y[nl=U; a(0]:=solve(",al0]);

> z[n]=UU; al[1]:=solve(",al1]);

> for j from 2 by -1 to 1 do x:=X[n]l+c[jl*h;
f[n+c[jl]=combine(simplify(UUU) ,trig); blj-1]:=solve(",b[j-11); od;

> for j from 3 to s do x:=X[nJ+c[jl*h;
f[n+c[jl]=combine(simplify(UUU) ,trig); r[j-3]:=solve(",r[j-3]1); od;

Substitute coefficients back into function u(x) and u’(x) to obtain

the mixed collocation formulae:

> k:=theta/h;

> x:=X[n]+h;

> y[n+1]:=collect(combine(simplify(U) ,trig),
{y[nl,z[n) ,f[n+c[1]],f[n+c[2]],f[n+c[3]]1},factor);

> z{n+1} :=collect(combine (simplify(UU),trig),
{y[n],zn],f[n+c(1]],f[n+c[2]1],f(n+c[3]]},factor);

> for j from 1 to s do x:=X[n]l+c[jl*h;
y[n+c[jl]:=collect(combine(simplify(U),trig),
{y[nl),z[n),f[n+c(1]],f[n+c[2]],f[n+c(3]1},factor); od;

We list the coefficients for the two-point method (6.3) with arbitrary collocation
points ¢; and ¢,. First, define

S, =sin(@c¢,), C),=cos(fc)), Sz =sin(fc), Co = cos(fcy),

Sy =sin(0(cy — ¢2)), Ca =cos(f(cy — c2)), Sq=sin(0(cy + c2)),
Cy = cos(f (c1 +¢)), Ss=sin(@(L+ec)), Cs=cos(d(l+cy)),
Sg =sin(0(—=1+c¢,)), Cs=cos(d(=1+c)), Sy=sin(0(1+ ca)),
C7 =cos(8(1+¢3)), Sg=sin(f(—1+cy)), Cs=cos(d(—1+c)),
Se = sin(f (—cs + 2¢1)), Cg = cos(0(—cz +2¢1)), Sio=sin(f(2cs — 1)),

Cro =cos(0(2ca —¢1)), Suu=sin(@(ca—1+c)), C =cos(f(ca —1+¢y)),
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512 = sin(@(—cz -1+ Cl)), Clg = COS(G (—'C2 -1+ Cl)),
Siz=sin(d(—c2 +1+¢;)), Ciz=cos(0(—co+1+cy)),

then the coefficients are given by

Ay =-— {[(Cl —c2) S+ Sz (1= c) + ¢Sz (1 — )] 6

+[(ca — 1) Cri + Craca —2¢1 — 1) + Cy3(2¢ca — 1 + 1)]0 — 2513 — 2512} /€,
A = {[(Cl —¢) Cii+1Crafca = 1) + ¢2Ci3 (1 — ¢1)) 62

+2[512 ((32 —C — 1)+513 (C[ — Cy — 1)]9+4012 —4013} /(98),
_ 2625802+[C7(Cg— 1) —Cg(CQ+3)]9+QS7 —253'

As £ 62 ,
2615692+[C5(Cl—1)—Cﬁ(Cl+3)]9+255—2SG .
A== £6? !

Bl = -0 {[(CQ - Cl) Cu + Clz (Cg - 1) + Co 013 (1 - Cl)] 92

+[Sia(ca— €1 — 1) + Siz(cr — c2 — 1)] 8 + Cp — Ch3} /€,
32 = {[(cl - C2) Sll +c SIZ (C‘z - 1) + Cy 513 (C]_ — 1)] 02

+[(C1 —CQ)C11+012(61 —'262+2)+013(261 — (o — 2)]9+2512+2S13}/£,
—2C20892+[(62—1)S7+Sg(3—62)]0+08‘07

B = 0E
2610502+[(Cl _1)85+Sﬁ(3_C1)]0+Cﬁ_05
B4: )
&
P, = _9 (CZCQ—2CICQ+CQCQ)0+SQ—SQ
1 (‘: 3
(232(31 _SQCQ_SQC2)0+QC‘2“2CQ
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0E
. 292CQC153+[(C‘2+361)C;}+((,'1—62)04]0—253—284
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and
Q, = 2 (2¢0C) =1 Cy — ¢ C10) 0 = Sy + Sho
1 = g )
Q _2(Slcl—2SICQ+51061)9—201+2010
2 = 0& )
. SQCQ-—962
Q3_4 502 )
Q __292620153+[(Cl—02)04—(Cl+362)03]0—253+254
T £ 02
where

£ = 292626183 - (3C3 + 04)(62 - 61)9 + 4S5;.

B.3 Mixed Collocation Method II : s > 2

Example

The two-point mixed collocation method with two frequencies (6.6) with nodes ¢; =
0 and ¢ = 1.

> restart;

Enter number of collocation points:

> 5:=2;

If known, substitute the values of the collocation points:
> cl1]:=0; c[2]):=1;

Consider a function of the form:

> U:=a[0]*cos(k[1]1*(x~X[n]))+b[0)*cos (k[2]*(x-X[n]))+
al1l*sin(k[1]*(x-X[n]))+b[1]*sin(k[2]*(x-X[n]))
+sum(r[i]*(x-X{n])"1,i=0..s8-3);

> UU:=diff (U,x);

> UUU:=diff (UU,x);

Apply the initial and collocation conditions and solve:

> x:=X[n];

> y[nJ=U; al0]:=solve(",al[0]);

> z[n]=UU; al1]:=solve(",al1]);

> for j from 2 by -1 to 1 do x:=X[nl+c[j]*h;
fln+c[jl]=combine(simplify(UUU),trig); bl[j-1):=solve(",b[j-11); od;
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> for j from 3 to s do x:=X[n]+c[j]l*h;
f[n+c[jll=combine (simplify(UUU) ,trig); r[j-3]:=solve(",r[j-3]1); od;

Substitute coefficients back into function u(x) and u’(x) to obtain

two-frequency mixed collocation formulae:

> k[1):=thetal1]/h; k[2]:=theta[2]/h;

> x:=X[n]+h;

> y[n+1} :=collect(simplify(U),
{y[n],z[n),f(n+c[1]],f[n+c(2]],f[n+c[3]1]},factor);

> x:=X[n]+h;

> z[n+1] :=collect (simplify (UU),
{y([nl,z[n},fn+c[1]1],f[n+c[2])],f[n+c(3]]1},factor);

> for j from 1 to s do x:=X[nl+c[j]l*h; I
y[n+c[jl]:=collect(simplify(U),
{y[nl,z[n],f(n+c(1]],f[n+c(2]],f[n+c(3]]},factor); od;
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