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Abstrac t 

This thesis is pr imari ly concerned wi th the reflection factors of affine Toda field 

theories on the half-line x < 0. First, we consider the classical background config

urations of low rank affine Toda theories w i t h a boundary, constructed by the 

analytic-continuation of soliton solutions of the corresponding imaginary-coupling 

theories. We show that only a small subset of such solutions provide acceptable 

vacuum configurations. These are classified according to the integrable boundary 

conditions they obey and their classical reflection factors are considered. 

We next consider the quantum theories, where we aim to provide evidence for or 

against exact reflection factors proposed in the literature. We do this by explicit 

calculation of the low-order coupling dependence of the reflection factors via per

turbation theory. Two particular examples are considered in detail. The first is 

the 0(/32) calculation for affine Toda field theory wi th the boundary 

condition. This w i l l be a good example to study since i t is the subject of many 

conjectured exact reflection factors and also demonstrates the renormalisation of 

the boundary potential required to retain quantum integrability. 

The second example w i l l be the 0(/? 4 ) calculation for sinh-Gordon theory. In light of 

the added complexity of the higher-order calculation we consider only the Neumann 

boundary condition. Finally we look at the renormalisation of sinh-Gordon theory 

and its duality properties. 
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Chapter 1 

Introduction 

1.1 Integrable models 

Integrable systems are of great interest to field theorists since, in contrast to the 

Standard Model, they ought to be completely solvable without recourse to pertur

bation theory. Whils t at present the integrable models under study are far f rom 

describing these real-world interactions, i t is hoped that the techniques developed in 

their study wi l l perhaps one day aid the understanding of non-perturbative physics 

[3]. 

Moreover, in the short term the study of these integrable models can be of use in the 

modelling of physical systems, in areas ranging f rom solid state physics (in particular 

the Kondo model [4], which aims to describe the effect of impurities on the resistivity 

of a metal) to the study of monopoles [5]. In particular, integrable systems wi th one 

or more boundaries are of interest since many of these physical systems contain such 

boundaries. This thesis aims to extend the knowledge of these models by studying 

the affine Toda field theories, a large class of integrable systems in (l-l-l)-dimensions, 

restricted to the half-line x < 0. Affine Toda field theories have generated much 

interest since they are fair ly general examples of relativistically invariant integrable 

models. 

Before proceeding to the case of field theory, let us first recall what is meant by 

an integrable system in classical Hamiltonian mechanics. Such a system has the 

9 
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property that i t is completely solvable; we can uniquely determine its trajectory in 

some, say 2iV-dimensional, phase-space. In order that this can be done, the system 

must satisfy some integrability conditions. These can be shown to be fulf i l led when 

there exist N conserved charges Ki} which obey certain criteria: they must be 

functionally independent and be in involution — that is their Poisson bracket must 

be zero 

{ K u K j } P B = Q. (1.1) 

For the purposes of the present work, we shall provide the following definition for the 

integrability of a field theory. Since a field theory has an infini te number of degrees 

of freedom, then we assume that an infinite number of such conserved charges, all in 

involution, are required. In fact, such a definition turns out to be sufficient to give 

many desirable consequences. Two fundamental properties of such integrable field 

theories in (1+1)-dimensions are that (i) there is no particle production and (ii) the 

5-matr ix is factorisable. 

In order to show that these two properties hold i t is necessary to consider the con

served charges of the system. The basic argument is that by using a conserved 

charge of spin s > 1 as a generator, we can shift the position of a particle by an 

amount dependent on the momentum of that particle. More precisely, a conserved 

charge Ps of Lorentz spin s transforms under a Lorentz transformation like s copies 

of the momentum k. Hence using such a conserved charge as a generator for trans

formations we can shift a particle at position a; to a new position x' — x + ask3'1. 

I 

Particle production can shown to be disallowed by considering the conservation of 

these charges directly [6]; however an heuristic physical argument can also be given. 

Consider a process in which m particles collide and n particles are produced. Then 

the abil i ty to shift particles w i th different momenta by differing amounts allows us 

to change f rom an acceptable situation, as demonstrated for a 2 —• 3 particle process 

Consider a wavepacket, of the form ip(x) = dke~a2(k~ko)2 etkl>x~Xo\ Now look 
at the effect of a transformation e~taP'; i.e. a transformation which uses one of the 
conserved charges Ps as a generator. This multiplies the wavepacket by an overall factor 
e~'ak'. Since the integral is heavily weighted around k = ho, then a Taylor expansion 
around this point quickly yields a shift in position of Q S A J Q - 1 . 
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a 

Figure 1.1: Particle production via a 2 —> 3 process. 

on the LHS of f ig . 1.1, to an unacceptable one, shown schematically on the RHS. The 

RHS is not physically realistic as causality implies that the trajectories of the two 

incoming particles must not meet after the crossing of trajectories of an incoming 

and outgoing particle. In fact, the only case where i t is not possible to perform this 

trick is when n = m and the momenta of the incoming and outgoing particles are 

equal, as in this case the incoming and outgoing particles w i l l be translated by the 

same amount. Therefore there is no particle production but an m —> m particle 

process allowed. 

The factorisability of the S-matrix follows by a similar argument. We can again 

use momentum-dependent translations to convert the 3 —» 3 particle process on the 

RHS of fig. 1.2 to that on the LHS. This tells us that the three-particle S-matrix is 

the product of three two-particle 5-matrices: 

ndef _ ob'c' c" ' / ode / i n\ 
°abc — °bc ° a c , 0 o ' 6 ' - K1-*) 

Indeed this argument follows regardless of the number of particles present — all 

m —> m particle 5-matrices of the theory can be expressed as the products of 

two-particle S-matrices. This is a useful result since i t w i l l therefore suffice to 

determine only the two-particle scattering properties of the theory in order to obtain 

all scattering data. 
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/ f 

Figure 1.2: The factorisability of the 5-matr ix . 

1.2 Affine Toda field theories 

The affine Toda field theories are a class of integrable models in ( l+l)-dimensions, 

buil t around some Lie algebra g of rank r , consisting of r real scalar fields (j)a (which 

we write succinctly as the vector <j>). 2 We take the Lagrangian density (which we 

shall call £ 0 ) to be 

C0 = ^dtl(f>-d^-V (1.3) 

w i t h the potential 

V = ^ t ^ - * , (1-4) 
P i=0 

where the a^, for 1 < i < r, are the simple roots of g, and ao is given by 

r 

This extra (or affine) root corresponds to the extra spot present in the Dynkin 

diagram of the affine Lie algebra g (examples of such Dynkin diagrams are given in 

figs. 1.3 and 1.4 for ar and its associated affine algebra a^) . A good review of 

Lie algebras can be found in [10] whilst their affine extensions are covered by [11]. 

The 7ij are the 'marks' — characteristic integers for each algebra g — and we take 

conventionally n0 = 1. The parameter m gives a mass-scale to the theory, which, 

for simplicity, i t is usual to set to one. 

2Good reviews of the ideas in this section can be found in [7-9]. 
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OOO CK) 
1 2 3 r-1 r 

Figure 1.3: The Dynkin diagram for the Lie algebra aT. 

For the special case of the series of affine Toda field theories (which have rank 

r ) , the marks = 1 Mi so we have the Lagrangian 

U ^ - d ^ - d ^ - ^ e ^ t (1.6) 

The equations of motion corresponding to (1.3) and (1.6) are 

P i=0 

and 

" i=0 

respectively. 

We shall use (1.6) and (1.8) extensively later. However, for the moment let us retain 

the general forms (1.3) and (1.7). 

Notice that i f we rescale the field <j> —> | then these equations become independent 

of the coupling constant (3. Hence classically (5 is unimportant; in fact i t shall 

frequently be convenient to set /? = 1 for simplicity. Moreover, since the action 5 is 

given by 

S = ^ j dxdtC (1.9) 

then such a rescaling introduces a (32 term into the denominator of the prefactor. 

So the classical l im i t can be found by taking the l i m i t (5 —> 0 (which essentially 

then corresponds to the usual classical l im i t h —> 0). We shall use this later when 

determining the classical l imits of the exact quantum reflection factors. 

Let us look at how to prove the classical integrability of this model, or in other 

words how to find an infini te set of conserved charges. We shall follow the Lax pair 

argument of [12], although the integrability was in i t ia l ly studied in [13-17]. We 



] Introduction 14 

0 

o 
1 r-1 

Figure 1.4: The Dynkin diagram for the affine Lie algebra a 

define the Lax pair to be a potential in this case given by 

1 i=0 A 

H.dt<f> 
Oi + £ Vm(*Eai + \ E ^ Q i ) e a ^ 2 . (1.10) 

2 ~b A 

Here, H is a Cartan subalgebra of # and Eai, £ L Q j are the root vectors (sometimes 

called the step-operators) corresponding to the simple roots of the affine Lie algebra 

g. 3 We define the raj by 
n i a i i n 77^ = — , (1.11) 

where we use af as a shorthand for | or̂  | 2 . I t is easy to show that the equations 

of motion for the affine Toda field theory can be reproduced by the zero curvature 

condition 

[dt + a0, dx + a x ] = dtai - dxa0 + [a 0 , ai] = 0, (1-12) 

for any value of the arbitrary parameter A, using the Lie algebra relations (again 

see [10]) 

[H,E±at] = ±aiE±ai and [Eai,E.a.] = ^V^. (1.13) 

How does this help w i t h the construction of an infinite set of conserved quantities? 

Let us define the path-ordered exponential 

U{x1,x2;X) = P e ^ a i d x . (1.14) 

'Suppose that X\ is a basis for g, with the commutation relations = /,*AT/t. 
Then we can also define a set of matrices, T,, by [7j]J = f?b which must then satisfy 
[Ti, Tj) = ffjTk by the Jacobi identity. Then for any X = a}Xi € g we write aA(X) = a'Tj 
and &&(X)Y — [X,Y]. A Cartan subalgebra H is defined to be the algebra spanned by 
a maximal set of linearly independent commuting elements, hi, in g — there are in fact 
r such elements in this set. We can then complete the basis for g by including the root 
vectors Eai; the eigenvectors of ad (hi) with eigenvalue a,-: a,d(hi)Eai = [hi,Eai] = otiEai. 
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This satisfies the relation 

di 
U(xi,x2;X) = U(xi,x2;\)aQ(x2) - a0(x1)U(xi,x2; A) (1.15) 

and so i f we define 

Q{\) = t r £ / ( - o o , o o ; A) (1.16) 

then, under the conditions dx4> —> 0 as X\ —>• ± o o and 0(oo) = </>(—co) (which 

together imply that ao(oo) = oo(—oo)), Q(X) is conserved for all A. Therefore an 

infinite number of conserved quantities can be constructed by the Taylor expansion of 

Q(X) around A = 0, since all the coefficients of this power series must be themselves 

conserved. 

Of course, we must also prove that these charges are in involution. This is more 

diff icul t and the argument shall not be reproduced here. I t can be found in [16]. 

We shall just briefly note here that the conserved charges can be put in a more 

convenient form by performing a gauge transformation on the potential aM. This 

can be done to obtain the potential Oi in the form 

(see [9]) where we define E±\ = Yli=orr^iE±ar These E±\ lie in a Cartan subalgebra 

of g, spanned by Hi. The spin s takes values modulo h, the Coxeter number of 

the Lie algebra, defined by h — E [ = o n i - ^ n f a c t > D o t n components of the potential 

now lie in the Cartan subalgebra (and hence commute), and so the zero curvature 

condition simply reads 

Then the integral of di over the whole-line must be conserved, and thus we can see 

that so are 

These are the classical conserved charges of spin s. In a similar way we can obtain 

the conserved charges of the opposite spin, — s. 4 

4Whilst what we have discussed here relates to the classical theory, it is expected that 
integrability also extends to the quantum case. However, conservation of charges in the 
quantum theory is more involved [18,19]. 

(1.17) 

dtd\ = dxdQ. (1.18) 

oo 
dxl 0 

oo 
(1.19) 
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1.3 Affine Toda field theory on the whole-line 

In this section we consider in more detail the properties of affine Toda field theory 

on the whole-line, —oo < x < oo. In particular, we shall look at the particle masses, 

three-point couplings and bulk 5-matrices of the theory. 

Let us consider the masses and three-point couplings of the theories first. These can 

easily be found by expanding the potential — they are given by the coefficients of 

the quadratic and cubic terms in the fields. Expanding (1.4) gives 

V = — £ rn j / t a i • <t> + y ( ^ • <t>)2 + y (<* • <t>? + O(04) 

= \(M2)ab4>a<Pb + Cabc<f)a<f>b<i>c + 0(P2) (1.20) 

where the linear term in (j> disappears since Z)[=o n i a i — 0 a n d we define the mass 

matr ix M and three-point couplings Cabc by 

(M2y» = m ^ n ^ a * (1.21) 
i=0 

Cabc = ^ p j ^ n ^ a l . (1.22) 

For consistency wi th later chapters, we use an alternative definit ion of the three-

point coupling Cabc to much of the literature, which differs f rom ours by a factor of 

six. Note also that (1.21) can be wri t ten more succinctly as 

r 
M2 = m2Y/niai®ai. (1.23) 

i=0 

The masses can then be found by diagonalising this matr ix . Let us see how this is 

done in the special case of theory, w i th which most of this thesis is concerned. 

We shall follow the argument given in [8]. 

Let us first of all define the Cartan matrix C of the Lie algebra g. I t is given by 

Ct] = (1.24) 
a j 

and encodes the structure of the Dynkin diagram of g. For theory, we can easily 

compute the Cartan matr ix f rom the results 

a2 = 2 and a< • a i + l = - 1 V i . (1.25) 
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Next, we need to f ind a suitable basis for the a^s. Consider taking 

tf = u>aj (1.26) 

for j = 0, . . . , r and a = 1, . . . , r , and where u = e^+i. Then i t is not hard to show 

that 

7 ? - 7 i = (r + l ) 5 y - l . (1-27) 

Hence we can take a complex basis for the simple roots to be 

<*i = - 7 = ( j i + i ~ 7.)*; (1-28) 
Vr + 1 

i f we use the inner product 

(a,b)=a*-b (1.29) 

then these obey the properties required to reproduce the Dynkin diagram in f ig . 1.4. 

In addition, i f we take a complex basis for </> in which we have the relation (4>a)* = 

(f>r+l~a (in fact we show an example of how to construct such a basis explicitly in 

chapter 3), then i t is not hard to show that we can wri te the Lagrangian as 

1 m 2 r 

£ 0 = k ^ - ^ - ^ £ e ^ . (1.30) 
1 P t=0 

Since (ce* • 0)* = (a* • <j>) then we can write the mass term as 

l-m2 a f r j , , . (1.31) 
1 i=0 

Indeed, i t is handy to rename M as 

( M 2 ) o b = m 2 ^ K ) ^ i , (1-32) 
t=0 

and simply computing this mass squared matrix, we find that 

m2 T 

(M 2 ) o b = ^ - £ ( 7 ^ ! - 7*)a(7 l +i - 7i)6 

T 1 1=0 

f 0 for a ^ t 
~ ( 4 m 2 s in 2 (^j) for a = b • ( L 3 3 ) 

So the mass squared matr ix M 2 is diagonal and <f)*a = </v+i-a is the field associated 

wi th the conjugate particle to a. In fact, this is the form we expect the mass term 

to take, and hence the classical masses of the particles can be read off: 

ma = 2m sin ( ^ ) . (1-34) 
\ r + 1 / 
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Let us consider the vector whose elements are the particle masses: 

m = ( m i , m 2 , . . . , m r ) . (1.35) 

I f we order these masses correctly then we can obtain an eigenvector of the Cartan 

matr ix associated wi th the Lie algebra g [8,20,21] (at least in the simply laced cases) 

so that 

C m = 4 sin 2 m . (1.36) 

The existence of this eigenvector makes i t easy to unambiguously identify the various 

particles in the theory wi th spots on the associated (non-extended) Dynkin diagram. 

In the case of theory, the particles of types a and r + 1 — a are conjugates to 

each other and have the same mass. 

There also exists a relationship between the three-point couplings Cabc and the 

masses. Since we now have 

^ o 6 c = ^ E K ) > i ) > i T 
6

 ! = 0 

f 0 for a + i + c ^ O mod r + 1 
= | $ f c { u a - l ) { u b - l ) ( u ; c - 1) for a + b + c = 0 mod r + 1 ( L 3 7 ) 

then this can be easily rewritten as 

^ - - t $ h ( ^ H ^ ) ) (i-38) 

when a + b + c = 0 mod r + 1. This is proportional to the area of a triangle wi th 

sides m a , m\, and mc [22-24], The internal angles of the triangle are 6°ab and cyclic 

permutations of its indices, where we have defined 

0 = T T - 0 . (1.39) 

I t is useful to use 9 to represent the rapidity of a particle. We put the momentum 

ka and energy u>a of a particle a to be 

ka = T^a sinh(0), ua = ma cosh(0). (1-40) 

I n fact, i6°ab gives the relative rapidity required for the fusing processes a + b —» c, 

and shall be used extensively later. I t can be shown that [8] 

e _ f T+t* f o r a + 6 + c = r + l 
9 a b ~ \ ( 2 - g f ) 7 r for a + b + c = 2{r + l ) ' ( L 4 1 ) 
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Note that this fusing occurs at an imaginary rapidity difference since the integrability 

of the model tells us that there is no particle production. 

I t is possible to continue to look at higher order couplings of the theory. Indeed, 

where such non-zero couplings exist has been studied and is known as Dorey's rule 

[22,23]. 

As noted previously, all scattering data can be found once we know the two-particle 

5-matrices of the theories. These were conjectured on the basis of knowledge of the 

properties which they must obey (which we shall see shortly) by various authors 

[8,25-27]. 5 The conjectures were then checked using perturbative techniques. In 

fact, a parallel can be drawn between computation of the S-matrices and what is 

presently being done for the reflection factors (introduced in section 1.5). 

Let us briefly review the arguments which lead to the conjectured exact S-matrices 

in [8]. The first property expected of the 5-matrices is that they collapse to unity in 

the classical l i m i t (3 —> 0. We also require that the S-matrices satisfy the constraints 

of uni tar i ty 

Sab(6)Sab(-9) = 1 (1.42) 

and crossing symmetry 

Sab{™ - 0 ) = Sbs(B). (1.43) 

Notice that these two conditions taken together imply that the S-matrix is 2m 

periodic. I t is helpful to set up some notation to aid w i t h the determination of the 

5-matrices. We define the blocks 

sinh(f + | f ) 

s i n h ( f - t ) ' 

These clearly obey (1.42) and have the desired periodicity. 

Another property required of the iS-matrices is that they obey the bootstrap equa

tion. This is shown diagrammatically in fig. 1.5, and can be wr i t ten algebraically 

as 

S<rc(0) = Sda(9 - i t c ) S d b ( 9 + iTbc). (1.45) 

5Some new identities satisfied by the S-matrices have recently been discovered [28]. 
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a 

Figure 1.5: The bootstrap equation. 

We also need to consider the pole structure of the 5-matrices. There must be a 

pole to represent any possible fusing a + b —> c; i.e. at 9 = i9c

ab. This enables us to 

conjecture a minimal S-matrix for the theory. 

Let us consider here only the case of affine Toda field theory: the other simply-

laced cases can be found in [8] i f required. We could guess the minimal 5-matr ix to 

be 

Sn = (2) (1.46) 

but this does not have a classical l im i t of unity. We must at this stage guess the 

dependence of the theory on the coupling constant /?. Taking 

s " = m § ^ B ) ( L 4 7 ) 

where B is a function of /? obeying B —> 0 as (3 —> 0, we satisfy all the requirements 

(1.42), (1.43) and (1.45). In this thesis we shall frequently concern ourselves wi th 

the notion of strong/weak coupling duality. A duality transformation is one where 

we send 
47T 

P -> J - (1.48) 

I f we assume that the 5-matrices remain unchanged under such a duality transfor

mation (i.e. they are self-dual), we can suggest a possible fo rm of B{(5) to be (this 

approach is backed up by [25,29]): 

B = ^—sr. (1.49) 
2*(l + g) 
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Postulates for all the S-matrices of affine Toda field theory were constructed. 

These can be wri t ten succinctly i f we define a new block 

1XX - (* + l ) ( * ~ l ) f l 5 Q ) 
{X>~ (x + l - B ) ( x - l + BY 1 j 

Then the result is 
a+6-1 

sab= n M - (i-5i) 
p=\a-b\ + l 

step 2 

A t this stage, the S-matrices are only conjectures based upon some desired prop

erties. Low-order perturbation theory [30-34] and numerical techniques [35] were 

then used to check these results. 

I t is useful before moving on to quickly note some of the properties of the block 

notation introduced. We have 

<-x)"Wv ( h + I » = ( ^ ) <lja> 

and, consequently, 

{-«}={£}. + = J j ^ T y (1-83) 

In addition, for the purposes of checking agreement w i t h the reflection bootstrap 

equations later, i t is useful to note that 

(x)g+iy(x)e-iy = (x - hy)(x + hy) (1.54) 

and 

{x}(29) = 2 J y \ , 2 J V Vt^ M x / 1 Ur- (1-55) 

1.4 AfRne Toda field theory on the half-line 

We discussed above the properties of affine Toda field theory defined on the whole 

line R . But what would happen i f we were to restrict the theory to some interval? 

This question was first addressed by Cherednik [36] and Sklyanin [37]; more recent 

reviews of the implications for affine Toda field theory can be found in [38-40]. The 

simplest case we can consider is when this interval is taken to be the half-line x < 0, 
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or (—00,0]. We shall be primari ly considering in this thesis the af 1 ) series of afRne 

Toda field theories defined on this interval. 

The Lagrangian density (1.3) is now defined on the the half-line, and in addition we 

may have some boundary potential B defined at x = 0: 

£ = Co{<l>)0(-x) - B{(j))S{x). (1.56) 

Far f rom the boundary we have the usual bulk Lagrangian and hence the particle 

masses, three-point couplings and bulk S'-matrices are the same as the whole-line 

case discussed in the previous section. 

Varying the Lagrangian (1.56) we see that this is equivalent to usual equations of 

motion (though now of course for x < 0 ) and the boundary condition 

dx<j>\x=o = (1-57) 

However, not all boundary conditions w i l l retain the classical integrability of the the

ory. In this section, we shall review the arguments used to determine the boundary 

conditions which may be imposed whilst keeping the theory integrable. 

A proof of the form of the boundary conditions which are consistent wi th integra

bi l i ty uses a Lax pair argument like that in section 1.2 but adapted for use on the 

half-line. This can be found in [12,41]; however, i t is considerably more involved 

than the whole-line argument and we shall not discuss i t here. We shall, however, 

note the results, which give the possible integrable boundary conditions to be 

dx<J>\x=0 = ± ± A i a i < [ ^ e ^ . (1.58) 
p its V a t 

The parameters At are severely restricted in the values they can take. Full details 

are given in [12]; however i t is useful to note that in the simply-laced cases we are 

only allowed to take either \Ai\ = 1 Vz, or the Neumann boundary condition 

a^ |x=o = 0. (1.59) 

I t is easy to refer to the former boundary conditions by list ing the signs of the Ai 

in turn; e.g. Ai = 1 Vi shall be referred to as + + + . . . + . Our notation here is at 



1 Introduction 23 

odds wi th some of the literature on the subject, which takes the opposite sign or a 

factor of two compared to our A{. 

The exception to this is the sinh-Gordon case, i.e. theory. This is the only 

simply-laced case for which the integrable boundary conditions have continuous 

degrees of freedom. For any oq and cri, the boundary condition 

0 
retains the integrability of sinh-Gordon theory [42-44]. 

dxcj>\x=0 = ~ ( a i e ^ - a 0 e ~ ^ ) (1.60) 

A n argument supporting the integrability of the boundary conditions (1.58) and 

(1.59) can be constructed by considering the boundary conditions necessary to con

serve the various spin charges on the half-line. Since we have now lost translational 

invariance, there is no chance of conserving momentum on the half-line. However, 

i t may be possible to conserve combinations of spin ± 2 , ± 3 charges and so on. Let 

us consider how to conserve a combination of the spin ± 2 charges, closely following 

[45]. 

A n ansatz for the densities corresponding to these on the whole-line is given by 

T±3 = ^Aabcd±(j)ad±(})bd±(f)c + Babd^.(j)ad±4>b (1.61) 

where we use light-cone coordinates x± = ^ ( t ± x). In addition, Aabc is taken to 

be completely symmetric whilst Bab is anti-symmetric. To construct the conserved 

quantities, we need the relation 

d T r ± z = a ± e ± 1 ( i .62) 

to reproduce the equations of motion (1.7). We therefore take 

6 ± i = -l-Babd±<l>aVb (1.63) 

wi th the constraint 

AabcVa + BabVac + BacVab = 0. (1.64) 

Here V is as usual the bulk potential and its subscripts imply differentiation wi th 

Mul t ip ly ing this by ofyi respect to <fr wi th that subscript, e.g. Vb = Mul t ip ly ing this by cAac

k and put t ing 

in the form of V tells us that 

1 
Aijk + B^dk + BikCij = 0 (1.65) 
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where Aijk = Aabca?ab

jaik

:, B{j - B^o^o^ and Qj = al • ctj. 

Back in terms of the Minkowski coordinates x and t, (1.62) is 

dt(T+3 - e_! ± (T_ 3 - e_x)) = dx{T+3 + e + 1 T (T_ 3 + e_x)) (1.66) 

so the quantity 

[ ° da;(T+3 + e + 1 - r _ 3 - 0 _ 1 ) - E 2 (1.67) 
J—oo 

wi l l be conserved on the half-line i f 

T + 3 + 0 + 1 - T _ 3 - e_x = 5 t S 2 (1.68) 

at the point x = 0. In order to achieve (1.68), we can show that we require the 

constraints 

AabcBa + 2BabBac + 2BacBab = 0 (1.69) 

and 
l-AabcBaBbBc + 2BabVaBb = 0. (1.70) 

We now only need make a comparison between the first of these constraints and 

(1.64) to see that the boundary term must be of the form 

B = ^ £ 2 A i e ^ . (1.71) 
P i=0 

The second constraint is slightly harder to analyse. We eliminate Aabc using the 

condition (1.65). Then, wr i t ing e, = e ^ ' ^ 2 and using our result (1.71) allows 

(1.70) to be wri t ten 

^ Y^iBijdk + Bikd^AiAjAkeiCjek = ^ BijAjefe. (1.72) 
ijk ij 

Comparing coefficients of the exponentials on either side reveals that the Ai take 

the values 

either ^ = 0 V i or A\ = 1 V i (1.73) 

In fact, these conclusions have been checked for the conservation of higher spin 

charges ( ± 3 and ± 4 ) and lead to the same conditions (1.71) and (1.73), as implied 

by the Lax pair argument on the half-line. 

What has been discussed above only relates to the classical integrability of the 

theory. Integrability of the quantum theory is an on-going area for study and in fact 

we shall see in later chapters that i t leads to some additional subtleties. 
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1.5 Reflection factors 

Suppose that we have determined the static background solution <f)vac and consider 

now a small, time-dependent, perturbation around that solution. We put 

(j)(x, t) = (j)vac(x) + e{x, t). (1.74) 

This perturbation must then obey the equation of motion ( f rom (1.7)) 

r 

d2e{x, t) + m2 riiOtiiai • e{x, t))epai ^ a c = 0. (1.75) 
i=0 

I f we consider the l im i t of this equation asymptotically far f rom the boundary, then 

<t>vac —> 0 and so the asymptotic l im i t of e(x, t) must obey 

d2e(x)t) + M2e{x,t) = 0. (1.76) 

A useful solution to this is, for example 

e{x,t) = paIaelk°x-™°1 (1.77) 

where pa is an eigenvector of the mass-squared matrix (1.23). In fact, this is of 

the form of a right-moving particle of mass ma, albeit asymptotically far f rom the 

boundary, and the energy ua and momentum ka obey u2

a — A;̂  = m2. 

What wi l l happen when this particle collides wi th the boundary? I t is reasonable 

to assume that some particle, say of type b, w i l l be elastically reflected. In fact, 

integrability tells us that we can only obtain rearrangements among mass-degenerate 

particles — for example between a particle and its conjugate. Moreover, for the 

theories we shall be considering, we expect that the particle type w i l l be conserved. 

This is a consequence of the ability to f ind spin-even charges which are preserved (see 

section 1.4) as i t is these which distinguish between particles and their conjugates 

[46]. We shall, however, ini t ia l ly keep our discussion to the general case where the 

two particles, although mass-degenerate, need not be the same. So a f u l l scattering 

solution on the half-line has the asymptotic form as x —> —oo 

e{x, t) = I a ( p a e i h x + pbKb

ae-xkx)e-^\ (1.78) 
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K(0) 
a 

Figure 1.6: Reflection of a particle f rom the boundary. 

where of course a>2 — k2 — m2. The reflection factor associated wi th an incoming 

particle of type a and outgoing particle of type b is therefore given by Kb. This 

process is depicted in f ig . 1.6. 

Applying a l i t t l e thought to the physical processes occurring in the theory (remem

bering of course the existence of the conserved charges which allow momentum-

dependent translations) gives us several additional algebraic constraints which must 

be satisfied by the reflection factors Kb

a{9). The first of these is the boundary Yang-

Baxter equation. This tells us that the scattering of two particles f rom the boundary 

is not dependent on the time at which they scatter f rom each other. This is shown 

diagrammatically in fig. 1.7. We write the condition algebraically as 

Yl K a (^a)S^' {9a + QbjKy (9b)Sc/d,{9b - 6a) 
b>,d,d'4" 

= £ S^\9b-da)K^(9b)S^(ea + 9b)KdA9a). (1-79) 
o',a",b',c' 

This equation places constraints on the forms of the reflection matrices Kb(9). How

ever, i f we take the 5-matrices and reflection factors to be diagonal (i.e. conservation 

of particle type at the boundary), then this relation is satisfied automatically. 

Another condition which must be considered is that of boundary unitarity. We 

simply require 

Kl{9)Kb

c{-9) = 5b. (1.80) 

Finally, another important constraint is the boundary bootstrap equation, which 

for diagonal scattering is shown diagrammatically 6 in fig. 1.8. This can be wri t ten 

6 A n interesting alternative argument that the classical reflection factors must satisfy 

/ 
/ 
/ 
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/ 

/ / 
/ 

a 

/ 

a 

Figure 1.7: The boundary Yang-Baxter equation, 

algebraically as 

Kc{9) = Ka(9 + itac)Sab{29 + itac - C9a

bc)Kb{6 - < ) . (1.81) 

In the following section we shall see that this is a very useful condition. 

We shall now proceed to examine some of the techniques used to give insight into 

the possible exact reflection factors of affine Toda field theory. However, i t is not 

the purpose of this section to provide a f u l l discussion of the work in this area, and 

i t shall be necessary to restrict ourselves to looking at only a small proportion of 

the literature on the subject. Other examples of techniques used to make headway 

in this diff icul t area can be found in [47,48]. 

1.5.1 Reflection factors from the boundary bootstrap equa
tion 

This section w i l l look at some examples of work which have attempted to solve the 

reflection bootstrap equation algebraically. Fring and Koberle [49, 50] have carried 

out much work in this area. However, here we shall instead take a brief look at the 

this equation is given in [41]. 
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a 
/ 

Figure 1.8: The boundary bootstrap equation 

work of Sasaki [51] and K i m et al. [52]. 

Sasaki considered the solution of the reflection bootstrap equations on a case by case 

basis. His methodology was to write down the various reflection bootstrap equations 

corresponding to the fusings of the theory, before rearranging these (making use of 

the 5-matr ix bootstrap equation (1.45)), to obtain an equation in only one Ka. A 

solution to this could then be found. Using this result, the process was continued 

to find formulae for all the reflection factors of the theory. 

I t should be noted that many of the postulates given by Sasaki give different reflec

tion factors corresponding to a particle and its conjugate. We w i l l consider only the 

charge conjugation even solutions. In particular, for the case a£\ he finds two such 

possible reflection factors; 

K l = K i = ( f ) ( i - f K i + ) f ) C 2 - f ) ( L 8 2 ) 

K l = K 2 = -~-*T : J 2 " (1-83) 
and 

(l + f ) (2- f ) (2 + f ) ( 3 - f ) 
(1)(2) 2 

I t is not diff icul t to verify that these do indeed obey the reflection bootstrap equation 

using the relations given in section 1.3. 
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K i m et al. [52] also considered the construction of solutions to the boundary boot

strap equation using a different method. Here, the substitution 

Ja(0) = 
Ka{0) _ Ka{6) ( 1 8 4 ) 

K(™ + °) yJSaa(26) 

was made to simplify the bootstrap equation. Solutions using this technique were 

given for the simply-laced series of affine Toda field theories. Looking again at 

theory, K i m finds the results 

K ' = K 2 = ( f ) ( l - f ) 0 + f ) ( 2 - f ) ( 1 ' 8 5 ) 

which is the same as the result (1.82) above. 

There are various ambiguities in the solution of the reflection bootstrap equation. 

In other words, multiplicative factors exist which allow consistent reflection factors 

to be created f rom previous solutions. These are known as the CDD factors. One 

such ambiguity noticed by Sasaki is that of multiplication of Ka by a factor Yll=\ Sab-

Using the 5-matr ix bootstrap equation, i t is not hard to check that this also yields 

a result which obeys the reflection bootstrap. 

Other authors have found additional ambiguities. Taking the result f rom Fring and 

Koberle [50] for the specific case of a 2^ theory, there is a factor of the form 

( 2 " ^ 2 ^ 2 2)^2"^" 2 ^ 2 2 ) 

(|)(1) 2(|) 
(1.86) 

Again we can check that a solution constructed in such a way w i l l obey the con

straints. 

We have seen, therefore, that various possible reflection factors can be constructed. 

However, i t should be noted that these results do not give us the reflection factor 

(2 + f ) 

( f ) ( 2 ) 
Kx = K2 = (1.87) 

which also obeys the bootstrap equation and has a classical l im i t of unity. We shall 

see later that this is one of the most likely contenders for an exact reflection of 

the theory w i t h Neumann boundary condition. In fact, all the reflection factors 

considered by Fring, Koberle, Sasaki and K i m are self-dual whilst (1.87) is not. 
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Another drawback to these analyses is that they assume a classical l im i t of unity. 

Since the only boundary condition (as we shall see in section 2.5) for which this 

is true is the Neumann condition dx<t> = 0, then these particular solutions give no 

insight into the possible exact reflection factors corresponding to the other boundary 

conditions. 

1.5.2 Reflection factors from minimality 

Other criteria have also been used to suggest possible exact reflection factors. One 

example we shall look at is found in [46]. 

The principal used here is simply minimality — that is containing as few poles as 

possible in the physical strip 0 < Im(9) < 7r — coupled wi th an analysis of which 

poles, i f any, are expected to be present. Such poles correspond to boundary bound 

states of the theory. We shall summarise the argument used to suggest reflection 

factors for various boundary conditions of affine Toda field theory. 

Consider the boundary condition Ai = 1 Vi first. The classical reflection factor here 

is 

K1=K2 = -(l)(2) (1.88) 

as we shall see in section 2.5. Now we expect the quantum factor to contain a fixed 

pole (i.e. not dependent on the coupling (3) at 9 = y corresponding to a boundary 

bound state. Hence we can guess 

(D(2 + f ) 
(!) 

This obeys the bootstrap equation and has the correct classical l im i t and pole struc

ture. 

Moving on to the boundary condition Ai — — 1, we now have the classical reflection 

factor 

*- - K> = ~my (1'90) 

The quantum reflection factor suggested now is 

* = *• = ( f e i ) ( 1 ' 9 1 ) 

K, = K, = - ^ 7 v r ^ - . (1.89) 
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(there are now no poles in the physical strip corresponding to bound states). Once 

more this satisfies the bootstrap equation along with having the correct classical 

limit. 

The asymmetric boundary condition A\ = - 1 , A0 = A 2 = 1 is more difficult to 

analyse. The classical reflection factor in this case is 

k>=k>=1Wt- ( l 9 2 ) 

In [46] this is found by performing a linear expansion of the field around the back

ground configuration. In fact, the technique employed there shall be followed closely 

in section 2.5 when we consider the case of the Ai = 1, A0 = Ai = —1 boundary 

condition; therefore we shall not repeat it here. 

Given the classical limit (1.92) we need to suggest a quantum reflection factor. The 

simplest possible solution would be 

however other consistent reflection factors exist. 

1.5.3 Reflection factors from breather reflection matrices 

Another technique which has been used to try to determine the exact reflection 

factors is the analytic-continuation of breather reflection factors from the imaginary-

coupling theory. We shall discuss the approach taken by Gandenberger in [53] for 

the a^1 theory. 

Imaginary-coupling Toda theory, which is obtained by putting (3 —> i/3 in our real-

coupling equations, has been extensively studied and has differing properties to that 

of the real-coupling theory. In this case the Hamiltonian is complex, so we do not in 

general expect to have real energies and momenta. In addition, the theory contains 

degenerate vacua since if we make the transformation 

</>->0-MA, (1.94) 

where A • a, = 27r«j, /c, G Z, then one vacuum solution is transformed into another. 

This implies the existence of soliton solutions, which interpolate between the differ-
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ent vacua. Indeed, i t has been shown that these do exist; a large class of these has 

been written down in a particularly useful form by Hollowood [54,55] and by other 

authors [56-61]. Moreover, i t turns out that the energy of these soliton solutions is 

real. 7 A good review of these properties can be found in [62]. In fact, these solitonic 

solutions shall be of considerable use in section 2, and we shall defer a more detailed 

discussion until then. Let us, however, reveal a few of their properties here. 

The integrable boundary conditions for the imaginary-coupling theory are the same 

as those of the real-coupling theory. Their treatment, however, is somewhat different; 

different signs of the parameters Aj are easily related by transformations of the field 

of the type (1.94). 

I t is a well known fact that in general when a soliton of type a (again, we refer 

the reader to section 2) is reflected from a boundary of type (1.58), it returns as 

a soliton of type a. 8 This initially appears therefore to have little relevance to 

the real-coupling theory. However, it is possible to construct a breather solution, 

consisting of a bound state of solitons of types a and a, which can be reflected 

from the boundary. I t is clear that this must be unchanged by reflection. I t has 

been suggested that there is a correspondence between these breather solutions in 

the imaginary-coupling theory and the particles of the real-coupling theory [67,68]. 

In particular, i t was shown [69] that the S-matrices corresponding to the lowest 

breathers in imaginary-coupling theory and the particles in real-coupling theory are 

indeed the same. 

In addition, it turns out to be easier to calculate the reflection factors of these 

breather solutions. Gandenberger's method was therefore to propose the analytically-

continued breather reflection matrices as the reflection factors for particles in the 

real-coupling theory. 

The calculation of the breather reflection factors is involved and we shall not repeat 

it here. However, for the discussions in sections 2 and 3 i t is useful to note the 
7Some problems may arise in certain cases; issues of stability have been discussed in 

[63-65]. 
8 A new class of boundary conditions which reflect a soliton back to itself has recently 

been discovered by Delius [66]. 
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results. For a2^ theory, the proposed reflection factors are (with, as usual, the 

reflection factors for the two particles being equal) 

(2 + f ) (1.95) B ( 2 ) ( f ) 
B ( l ) ( 3 - f ) N,2 (1.96) K B ( 1 - f ) 

( 3 - f ) 1.97 K B (2)(1 " f ) 

The factors KN'1 and KN'2 are so labelled as they have a classical limit of 1, cor

responding to the Neumann boundary condition. Kd is dual to the KN'1 reflection 

factor. In fact, the analysis has been extended in [70] to cover the whole a j^ series 

of affine Toda field theories. Moreover, an additional reflection factor, corre

sponding to the + H— boundary condition, is found there. I t is 

Of course, these exact reflection factors assume that analytic-continuation of breather 

reflection factors is indeed a valid technique for obtaining the reflection factors of 

real-coupling theory. I t shall be the purpose of section 3, where perturbation theory 

is used to calculate the one-loop order quantum correction to the classical reflection 

factor, to provide a partial check on all these results. 

( ++ K 
f ) ( | - f ) ( l + f ) ( § + f ) ( 3 - f ) 

( l - f ) ( 2 ) 
(1.98) 



Chapter 2 

Background field configurations 
and classical reflection factors 

2.1 Introduction 

In this section we shall look at several aspects of the classical theory. First we shall 

give a Bogomol'nyi argument which restricts the maximum values of the boundary 

parameters Ai, introduced in section 1.4. For values of A{ greater than these limits 

the theory will not have energies bounded below and hence will not be stable. This 

argument shall be presented in a general form which is applicable to any affine 

Toda field theory. We shall then restrict our attention to the series. The 

classical background solutions of these theories corresponding to different boundary 

conditions will be calculated before proceeding to determine the associated classical 

reflection factors. 

Let us begin with a little background work. It will be useful to consider the solitonic 

solutions of the imaginary-coupling theories, and to see how these relate to the 

background solutions of real-coupling Toda theory. To do this, we need to translate 

the equations of motion (1.7) into the language of tau functions. This is effected by 

making the transformation 

^ - t ^ H n ) . (2.1) 

I t is worth noting a few consequences of this formula. First, it is clear that equa-

34 
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tion (2.1) cannot completely specify the r + 1 tau functions, since there are only r 

components of <p; indeed we can send 

r i - » r i ( / ( a ; , t ) P (2.2) 

where 

£ m * - T = °. ( 2 - 3 ) 
«=0 Q t 

without affecting (2.1). We can partially remove this ambiguity by fixing a particular 

form of the resulting equations of motion for the tau functions. (1.7) becomes in 

the tau function language 

t ( [* - r* - r f + + "-f {[ r M = 0 (2.4) 
j=0 {^i 'i L j=0 ) 

where = 2oj • ctj/a? is the extended Cartan matrix (i.e. defined for 0 < i, j < r). 

Let us define here the fundamental weights associated with g; these obey the relations 

A, • a>j = Sij (2.5) 

for 1 < i,j < r. Hence taking the inner product of (2.4) with the fundamental 

weight A{, we obtain, multiplying through by 

J r . 2 ,2 , „1 , "Otto A 2 * O J - * < H I n / « c \ 

| [ r 0 - r 0 T 0 - r 0 + r 0 T 0 j + ^ T J r . ' J = 0 (2.6) 

where now 1 < i < r. To fix a particular form of these equations of motion, we 

simply take f ( x , t) to insist that 

r 0 - T0T0 - r 0 + r 0 r 0 + — — [ [ r,- = r 0 — — (2.7) 

so that we have the equations of motion (now for all 0 < i < r) 

nf, - t? - T,T>; + r? = (n - i f ) ^ (2-8) 

It is not hard to show that we are still free to do a transformation of the form (2.2) 

for any / that satisfies d^d1* ln( / ) = 0. For time independent solutions this implies 

that 

/ = eax+b (2.9) 
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and we can complete the 'gauge fixing' by demanding that Tj —> 1 as x —> -co . With 

this choice of tau functions all the static solutions to the real Toda equations can be 

described in terms of r parameters, one real parameter for each node on the (non-

extended) Dynkin diagram corresponding to a real fundamental representation, and 

one complex parameter for each pair of complex conjugate nodes. We shall see this 

explicitly when we come to look at the solitonic solutions of the imaginary-coupling 

theory. 

For the theory defined on the whole line the bulk energy, corresponding to the 

Lagrangian (1.3), is obviously 

E = / ~ ^ ^ W ) 2 + ^ ) 2 + £ n i ( e a ' - * - l ) j . (2.10) 

Since flLoe n i C*'"* = 1 then £ [ = 0 n i ( e a i <l'-l) > 0 and so the bulk-energy is manifestly 

positive for real-coupling constant. However we must modify this formula if we wish 

to consider the theory on the half-line, by restricting the above integral to the 

physical region x < 0 and adding the boundary potential term. In other words, the 

energy for the theory on the half-line is given by 

E = dx (±(dt<f>)2 + ^(d^)2 + X > ( e ^ - 1)) + #(</>)U=o- (2.11) 

Remember that i t was shown in section 1.4 that to preserve the integrability of the 

theory we must take the boundary potential to have the form 

B W ^ ^ j Z A i M e ^ ' 2 (2.12) 
i=0 V ai 

where the constants Ai are severely restricted in the values they may take. However, 

an important point is that Ai can be positive as well as negative, and so whilst the 

theory in the bulk has positive energy, it is not clear whether the boundary potential 

term can destabilise the theory. To get a large negative boundary contribution to the 

energy we need a;-</> to become large, which in turn produces a positive contribution 

to the gradient terms in the energy. Which of these two competing factors wins is 

determined by the value of A^ Hence we want to determine the maximum value of 

Ai for the positive bulk energy to win out and for the theory to have energy bounded 

below. 
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To find this result we shall use an approach based on generalising the stability argu

ment for the sinh-Gordon model given in [46] which uses the idea of a Bogomol'nyi-

like bound. This argument shall be reviewed in the following section before explicitly 

extending it to the case of We can then finally extend the analysis to cover all 

other affine Toda field theories. 

2.2 The stability of sinh-Gordon and ckp affine 
Toda field theory on the half-line 

For the sinh-Gordon model the parameters Oi appearing in the boundary potential 

(1.60) are known to be unconstrained by integrability. However, if we would like the 

Hamiltonian describing the theory on the half-line (2.11) to have energies bounded 

from below, we must have that Oi < 1 as shown in [46]. This result relied on 

being able to write the energy for the sinh-Gordon theory in a Bogomol'nyi form. 

Explicitly we have that the energy 

E = / _ ° T O d x ( i ( ^ ) 2 + ^ a ^ ) 2 + ( e ^ + e - ^ - 2 ) ) 

- ( 2 a i e ^ + 2 a 0 e - ^ ) U o (2.13) 

can be rewritten as 

E = | ° ^ x Q ( d t 0 ) 2 + ^ -

- ( 2 f f i e * ^ + 2a 0 e-*/^) | x = o (2.14) 

= dx (±(dtJ>)2 + \{dx4> - V2e^ + V 2 e - ^ ) 2 ) 

- (2 (a x - l ) e ^ 2 + 2(a0 - l ) e - * ^ ) | x = 0 . (2.15) 

The integral is non-negative, as is the boundary term if < 1. Furthermore we can 

show that this condition is necessary for stability by taking the field to be of the 

form 

6<A/N/2 =

 1 + d e 2 x

 ( 2 1 6 ) 
I-de2*' 

where d is a constant which must be taken to be less than one for the solution to 

be non-singular in the region x < 0. This is the analytic-continuation of the sine-
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Gordon kink to the real-coupling theory, and it satisfies the Bogomol'nyi equation 

dx<f> - y/2e+/y/i + v ^ e " * / ^ = 0 (2.17) 

so that the only contributions to the energy come from the boundary terms at x = 0 

in (2.15). By choosing the constant d to be close to one, we can take the field at 

the boundary, (f>(Q,t), to be as large as we like, and hence take the energy to be as 

negative as we like if (<JI - 1) > 0. Similarly we can show that a0 < 1 is necessary 

for stability by considering the solution obtained by taking <j> —> —(f) in the above. 

The aim is now to generalise this result to affine Toda field theories based on other 

algebras by finding a Bogomol'nyi-like form 

E = f ^ d x Q W i ) 2 + i ( d s & - Wif + d x W ( ^ + B{<tn) (2.18) 

for the energy in these cases too. Comparing this to (2.13), we see that we can write 

the energy in this form provided that 

E ^ a = V = 5 > ( e ° ' * - l ) (2.19) 

and 

dxW = £ Widx<j>i. (2.20) 
»=i 

Prom the second equation (2.20) we deduce that 

w< = w t

 ( 2 2 1 ) 

so that the Wi must satisfy the integrability condition 

dWi _ dWj 
d<f>j d(j>i 

(2.22) 

As usual, a solution of the Bogomol'nyi equations dx<pi = Wi will automatically be 

a (static) solution to the Toda field equations. In fact, these are the equations for 

the (1 + 0)-dimensional Toda molecule: 

- ^ + ^ t ^ = 0- ( 2 - 2 3 ) 

The integrability of the Toda molecule can be used to show that any solution to 

these r second order equations must also satisfy r first order equations. The Toda 
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molecule consists of r degrees of freedom, and integrability can be taken in the strict 

Liouville sense; that there exist r conserved quantities which Poisson-commute with 

each other. Note that now x plays the role of time in this system. By using the 

equation of motion (2.23) to eliminate higher derivatives, the conserved quantities 

(which we label Hi) can be written as functions of <j>i and the momenta pi = dx4>i. 

Thus we have 

Hi(<t>i,Pi)=yi. (2.24) 

We shall be interested in solutions for which <j>i,Pi —» 0 as the 'time' x —> —oo, since 

these are the solutions which will have finite energy in the (1 + l)-dimensional affine 

Toda field theory. For such solutions the constant ji — Hi(0,0). An example of one 

of the conserved charges is the energy of the (1 + 0)-dimensional system 

# i = E \P1 - V = t \ f i - X > ( ^ - 1) = 0. (2.25) 
i=l 6 i=l z i=0 

This, together with the other r — 1 equations from conserved charges, gives us r 

equations which can be used to solve for pi in terms of the 0j . Let us write these 

solutions as 

pi = dx<l>i = Wi{<t>). (2.26) 

For these equations to satisfy the criteria to be Bogomol'nyi equations for the Toda 

system we need to show that the conditions (2.19) and (2.22) hold. The first condi

tion follows immediately from (2.25) and (2.26). The second condition follows from 

a result in classical mechanics that any expressions derived from Poisson commuting 

quantities must also be Poisson commuting (see for instance [71]). Thus we must 

have that 
dW dW 

ta-*,ft-»0>„ = ( 2 . 2 7 ) 

In fact, this procedure can be explicitly performed in the case of the affine Toda 

theory based on the algebra a^. For this case it is convenient to use variables 

Ui = e V 0 (2.28) 

7Ti = Xi-dx(f>. (2.29) 

The fundamental weights for are 

Ax = i ( 2 a i + a 2 ) (2.30) 
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A2 = ^(c*i + 2a 2); (2.31) 

these relations can be inverted to find the a^s in terms of the weights if desired. 

In terms of these new variables ux and K2 the two conserved quantities (Hi is the 

energy as defined in (2.25)) can be written 

Hx = ^ + ^ - ^ ^ - ^ - ^ - — + 3 = 0 (2.32) 
U2 Mi U\U2 

o n ul 1i? 7To 7Ti , 
H2 = TTiTT2 - 7r27T2 - + -±7T2 — + = 0 2.33 

Ml U 2 U\U2 U\U2 

which can be obtained by using the Lax pair which describes the theory. 

Using the first of these equations to give us an expression for 7r|, we can solve the 

second equation for 7r2. We find 

7r2 = ^ 3 Y { ( 3 + 7 r 2 ) n 1 t i 2 - ( 2 + u?)} (2.34) 

which can then be substituted back into the first equation to find 7Ti. This gives us 

several possible solutions for ir\; however using the fact that the momenta must be 

real (since 4> is real), we see that the relevant solutions for 7Ti and 7r2 are 

„ = + (2.35) 
V uxu2 

„ 2 = ( „ , - ! ) / 1 +

( 2 . 3 6 ) 
V U\U2 

Using appropriate changes of basis we know that W is defined by the equations 

= 2TT! - TT2 (2.37) 

dW 
u2 = 27T2 - 7Ti (2.38) du 

which are satisfied by 

W = 2 / ( l + " l + " 2 ) a

- ( 2 39) 
V UyU2 

From the Bogomol'nyi argument it now follows that the energy of any field config

uration on the half-line is bounded below by 

E > [W]°oo + *l*=o (2.40) 

= -6V3 + 2 / i i ± ^ ± 3 ! _ 2 A * _ 2 A 2 J ^ _ 2 A q 1 ( 2 . 4 i ) 
V ^ i ^ 2 0 Z T v / u i ^ 
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= -6\ /3 + 2 

- 2 ( ^ 1 - 1) 
« 2 

2(A> - 1) 2 Mo - 1 
•JU2 

1 (2.42) 

where we use u\ and u 2 to mean their values at x = 0. For real 0, Uj > 0 and i t is 

easy to show that the second term is bounded below in this region. On the other 

hand, the last terms are also non-negative for 

These conditions ensure classical stability. Indeed it can be shown that these con

ditions are also necessary. 

2.3 Bogomol'nyi equations and stability for other 
affine Toda field theories on the half-line 

Let us proceed now to the case of a general affine Toda field theory. In principle we 

could follow the same steps as for a2^ and but in practice we are unable to invert 

the conserved quantities to find explicit relations between for the momenta in terms 

of the fields cj>. However, we can use our knowledge of (analytically-continued) static 

solutions of the imaginary-coupling Toda equations to circumvent this difficulty. Any 

static solution must necessarily obey the conservation laws for the Toda molecule, 

and so in turn must satisfy the Bogomol'nyi equations (2.26), and saturate the 

Bogomol'nyi bound. It therefore follows that the energy density for such a solution 

can be written as a total derivative of some function W. But i t has been known for 

some time in the context of imaginary-coupling Toda theories that this is indeed the 

case, and the explicit formula for W is given in terms of tau functions as 

One can now consider the map between the parameters in the tau functions and 

the value of the corresponding static soliton r-component field </> on the boundary 

which is obtained by putting x = 0 in (2.1). We shall simply assume that imposing 

Ai < 1. (2.43) 

T 2 T-

a 2 r-' 
(2.44) 
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the condition that the field is free of singularities in the physical region and tends to 

zero as x —> - co renders this map invertible so that we can write the parameters in 

terms of the values of the fields of the corresponding solitons at x = 0. In this way 

we can view W as a function of 4> as we did for a2^ and With this in mind, it 

is possible to write the energy on the half-line of any field configuration in the form 

(2.18) so that the energy is bounded below by 

E > E b o u n d = W{<j>)\x=0 - W(0) | I = -oo + #(0)|x=o (2.45) 

i.e. the energy of the static soliton configuration with a value of <f> that coincides 

with that of our arbitrary solution at x = 0, —oo at some point in time. 

To prove stability of affine Toda field theory on the half-line, we must show that the 

right hand side of (2.45) is bounded from below. This can be written 

E b o u n d = - 2 j 2 
i=o ^"t 'i V "t j=o 

where we have used the fact that H^(0)|a;=-oo vanishes since T[{X) —> 0 as x —> 

-co. I f the energy is not bounded below, we can tune the parameters defining the 

tau functions to make Ebound arbitrarily negative. Naively this can occur in two 

ways: either one of the tau functions becomes very large, or else becomes zero in 

the denominator. In fact the first possibility never arises, since if one tunes the 

parameters to make the tau function large, the quotients appearing in Ebound tend 

to a finite limit. So if the energy is unbounded below we must have a soliton solution 

with one or more tau functions vanishing at the boundary, and giving Eb0und = —oo. 

Our approach is therefore to consider the function E^und for such soliton solutions 

with singularities at the boundary, and determine whether the residue of the pole 

in x is positive (corresponding to infinite positive energy) or negative. If the residue 

is always positive (or zero) then E b o u n d must be bounded below. To analyse the 

behaviour near the origin we write 

n = a i x y i + 0(xyi+1) (2.47) 

with of course yi > 0 and aj ^ 0 for all i. Let S C 0,1, ...r be the set of i for which 

Hi > 0, i.e. for which the corresponding tau function Tj vanishes at x — 0. For 

-Ki (2.46) 
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i G S the equation of motion (2.8) contains a term of the form x2yi 2 ; comparing its 

coefficients we find that 

K n ^ = ^ ( 2 - 4 8 ) 

and 

Y , K i j V j = 2. (2.49) 

Note that the second equation implies that not all the tau functions can vanish 

simultaneously, or in other words S ^ {0 ,1 , . . . r} since then we could write 

0 = E ™ t — = E niKijVj = 2 £ n* = 2/i (2.50) 

which is clearly not true. Also from both equations we see that for i € S, then for 

x close to 0, 

e«+ = ft T f K " ~ n ( ^ w ) - ^ = (2-51) 
j = 0 j = 0 ( t j U j J . 

Thus the poles in Eb0Und at a; = 0 have the form 

Eb0Und - - - E m ~ Ai^f) + 0(1) (2.52) 

where we have used that eQ i > 0 and x < 0 to identify the correct sign for the last 

term. We shall see equation (2.49) again later; however here it is sufficient to note 

that we can always arrange for yi — 1 by arranging that only Tj vanishes. Then we 

see that i^ound will be bounded below if and only if 

Ai < 1, (2.53) 

generalising the result we found explicitly for and to all other affine algebras. 

This result is interesting since it tells us that all the simply-laced theories with 

integrable boundary conditions are stable. However, we only have marginal stability 

when any of the boundary parameters Ai = 1. 

2.4 Vacuum soliton solutions to the Toda field 
equations 

In this section we elaborate on the results of [46,72] looking for static solutions to 

the Toda equations which satisfy the integrable boundary equations. This work 
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is heavily dependent on the techniques developed in [72], so let us first of all recall 

some of the notation used there. In the language of the tau functions introduced 

in section 2.1, the boundary conditions can be conveniently written (specialising to 

the af1) series of affine Toda field theory where rij = 1 and of — 2) 

II + Aieai^2 = C (2.54) 

where 

C = + 4 0 e a ° ^ . (2.55) 

These conditions can be easily obtained from (1.57) and (2.12) by taking the inner 

products with the fundamental weights A* defined earlier. Using this definition of 

C, the equations of motion imply at the boundary x = 0 (substituting (2.54) into 

the equations of motion) 

n - — - rl' + 1CT[ - (C2 - l)ri\x=0 = 0 (2.56) 
Ti 

which simplifies to 

T'I - 2Cr' + (C 2 - 1)7-^=0 = 0 (2.57) 

in the static case. Notice, however, that to obtain this equation we have squared 

all the coefficients Ai and so we no longer know which boundary conditions a given 

solution of this will obey. We will show that it is possible to recover this information 

later. 

The parameter C turns out to be proportional to the energy of the field. Since the 

energy 

E = EMk + Eboundary = + Aie*^2) (2.58) 
i=0 \Ti 

then 

E = - 2 £ n%C = -2hC. (2.59) 
i=0 

We shall therefore refer to C as the 'energy parameter'. 

We wish to find the lowest energy (i.e. highest C) static background solutions to 

these equations. These will depend, in general, on the boundary conditions imposed. 

As noted in section 1.5, for the imaginary-coupling theory a large set of solutions 
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was found by Hollowood [54]; these were subsequently used for the background so

lutions of real-coupling theory by Bowcock [72]. These solutions typically involved 

pairs of analytically-continued solitons. However, the analysis could not determine 

whether solutions (beyond those containing a single pair of solitons) had any sin

gularities in the physical region x < 0. Such singularities in the physical region 

have infinite energy and are hence unacceptable. Nor was it clear whether there 

were other solutions to the equations, potentially with lower energy and therefore 

the 'true' vacuum solutions. Here we carry the analysis a little further, utilising 

the singularity analysis of the previous section. In fact, extensive numerical work 

indicates that generally the vacuum solutions of [72] with more than one pair of 

constituent solitons do contain singularities in the physical region. Moreover, we 

shall see that even for critical values of the soliton parameters where it is possible 

to place all such singularities on the boundary, we cannot obtain acceptable vacuum 

solutions. However, a number of what we shall call 'exceptional' solutions are found 

which contain multiple solitons yet which provide acceptable vacuum solutions for 

the o.W theories up to r = 5. 

Let us first of all review Hollowood's work here. He uses the Hirota method to find 

the multi-soliton solutions of the imaginary-coupling theory. To do this we first of 

all define the field in terms of the tau functions just discussed. The Hirota method 

tells us to expand the tau functions in terms of some arbitrary parameter, e. We 

take 

a > N. We then need to solve the equation of motion (2.8) at each order in e 

to obtain the multi-soliton solutions. Consider as an example the single soliton 

solution. Putting 

i) 2_(2 (2.60 1 + er)' + e'rr + 
(a) This series can be truncated for an iV soliton solution by setting r j 0 for all 

(i) (2.61) 

for we obtain the equations 

(i i i) wa+ 2rm 3-1 (2.62) 

and 
(i) _ ( i 

r j - i ' j + i (2.63) 
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We can solve these by taking 

where as usual u = e^+t, and we have the relation CT2(1 — v2) = TO2. 

The same idea can be followed to obtain the higher order soliton solutions. In fact, 

it was shown [54] that the tau functions for an iV-soliton solution can be written as: 

T j ( x t t ) = E ••• E e x P ( E M $ P + i ™ a p J ) + E / W H ^ ) I (2.65) 

where $ p = ap(x — vpt) + £ p . Again we have the mass-shell condition for each 

soliton cr 2(l — vp) = m 2

p , which in the static case implies a = map since we require 

asymptotically T,; —> 1 as x —> -co . We shall see later that i t is also useful to set 

£ p = In (dp) + ixP, where dp is referred to as the position of the soliton p. 

The interaction between solitons ap and aq is given by the interaction constant 

A i a p a q ) = (aP ~ ° l ) 2 ~ (aPVP - ° 1 V l ) 2 ~ 4 S i " 2 ^T l ( Q P ~ a i ) Q gg) 

[pp + oq)2 - (apvp + <Jqvq)2 - 4 sin 2 (ap + aq)' 

From this we note that when we interact one soliton with another of the same type 

and velocity, we find that the interaction constant A^apa^ vanishes. Thus adding 

two solitons of the same type into a static solution is merely equivalent to having 

a single soliton of this type at a different position. Hence we need only consider 

background solutions which contain at most one of each type of soliton. 

It is convenient to make the change of basis 

r j = : £ r ^ (2.67) 
k 

which splits the tau functions up into 'charge sectors' TV This gives us a similar 

equation to before but now for 7^: 

T£ - 2CT'k + (C2 - l )T f c = 0 (2.68) 

at x — 0. We now have a simpler set of equations: a soliton of type a resides in Ta 

while its interaction with another soliton b resides in T a + b and so on. 

I t is required that the field <j) be real everywhere on the interval (—oo,0]. Thus the 

tau functions must be real and non-negative on this interval. Reality imposes the 
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condition that each soliton must appear wi th its conjugate, i.e. type a wi th type 

r + 1 - a; the only exception to this being where we have what we call a single 

'middle' soliton. The middle soliton has a = ^ when r is odd, and hence i f we 

take x — 0,7T we obtain a real tau function. However the restriction imposed by 

insisting that the tau function be non-negative on the interval is more subtle and 

w i l l be considered case by case below, where we look at the candidate background 

configurations in turn. 

2.4.1 Flat background 

Looking at the boundary conditions (2.54) and remembering (1.5), i t is clear that 

the flat background solution <f> = 0 is only valid when 

r 
0 = y£Aiai. (2.69) 

i=0 

This is only true when all of the Ai are the same sign. In addition the value of C is 

found to be ± 1 for the ± ± . .± boundary conditions. 

2.4.2 Single Middle Soliton 

As we noted above, in the case r = odd there is a self-conjugate soliton associated 

wi th the central spot of the Dynkin diagram, i.e. of type a = I f we consider a 

background configuration consisting only of such a static soliton, we find; 

TJ = 1 + {-l)jde2x (2.70) 

where we have taken x — 0 for simplicity (the other option x = n merely swaps the 

role of the odd and even tau functions). I t is apparent f rom this equation that we 

must take d < 1 in order that none of the tau functions are negative in the physical 

region. In fact, this is the analytic-continuation of the sine-Gordon kink which was 

used in section 2.2. 

Let us consider the restrictions imposed by the equations of motion and boundary 

conditions. Using (2.68) for the ^ charge sector gives us 

demx(4-4C + C2 - 1 ) | I = 0 = 0, (2.71) 
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which implies that C can be 1 or 3. The zero charge sector tells us that C2 = 1 so 

the only consistent solution is C = 1. However, we have no further restrictions on 

the parameter d. 

Since 

ea<-* = (2.72) 
77 

then the boundary conditions imply that 

1 - ( - l ) J ' d 1 ~ ( - l ) ' c * = , 
l + ( - l ) * d * J 

(2.73) 
1 + (-1)3 d 

util ising the value of C found above. For d < 1, the modulus sign is irrelevant and 

we obtain the result that all the Ai must be positive. In the special case d = 1, all 

the odd tau functions vanish at the boundary. Consider a vanishing tau function, 

Tj. Since we can write the j — 1 and j + 1 boundary conditions as 

3 = 1 - A -

and 

C - - ^ = A J -_ 1 ^ f J f — 2 (2.74) 

C - ^ - = A j + l ^ - y / 7 y f ^ (2.75) 

respectively, then clearly in this case we can take Aj_i and Aj+\ to be of arbitrary 

sign. This gives us a variety of consistent boundary conditions. I t is worth noting 

also that since r j < 0 and Tj > 0 for x near to but below 0, then the boundary 

condition Aieai'(t'^2 = C — ^ > 0 for a; —> 0 and hence i f r , vanishes at x = 0 then 

Aj = 1. Hence when d = 1, we can f i t boundary conditions of the form a+a+a+a+.. 

where "a" denotes an arbitrary choice of sign. Taking instead x = ^ allows us to f i t 

the boundary conditions of the form + a + a + a + ... 

2.4.3 Two soliton solutions 

The single middle soliton was very much a special case: let us now consider the case 

where we have a soliton, type a, and its conjugate, type a = r + 1 — a. Then the 

tau functions become; 

Tj•. = 1 + 2dcos ( x + emaX + A ^ d 2 e 2 m a X . (2.76) 
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Let us again look at what the charge sector equations of motion (2.68) tell us. 

Consider first charge sector a. This gives us (in an exactly analogous way to the 

single soliton case of the previous section) 

C± = m ± l . (2.77) 

Now consider the equations for charge sector zero. Substituting in these values of 

C, we f ind 

d2 (l - [Ami - 4 m a ( m a ± 1) + (m2

a ± 2ma)} + (m2

a ± 2 m a ) = 0 (2.78) 

which tells us that 

d= — r . (2.79) 

since d must be positive. So this time there are two possible solutions corresponding 

to two different energies C±. I t is easy to show that these two solutions are parity 

inverses of each other and in fact the lower energy solution C+ has singularities in 

the physical region. Thus in this case i t is the C_ solution that we require. 

Working wi th the boundary conditions (2.54) as before i t can be shown that the 

coefficients Aj are given by 

Note that a shift of the parameter x by 2n/(r + 1) merely cyclically permutes the 

boundary conditions obeyed. However, by choosing x so that cos(* + f ^ ) = 0 we 

can ensure that r,- —> 0 as x —» 0. So as before this allows us to take the signs of 

Aj_i and Aj+l to be arbitrary. Therefore there are a number of boundary conditions 

consistent wi th a two-soliton solution which is singular at the boundary. 

2.4.4 Multi-soliton solutions 

We first consider the case developed in [72] where we assume that there is no 'wrap

around' or 'overlap' of the charge sectors, by which we mean the highest occupied 

charge sector Q m a x = S p a p < r y ! - . In other words, the interaction between all the 

solitons (not including conjugates) always resides alone in the Qmax charge sector. 
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Consider the case where we have an even number of constituent solitons first, i.e. 

the middle soliton ^ is not present. Then an analogous calculation to the two 

soliton case leads to the expressions for C and dp: 

N 
C± = £ m a p ± l (2.81) 

p=0 

r ^ p \"1O,T " i a . p \ "'•ap 

For the case where we have 2N + 1 solitons, the calculation is similar excepting that 

we only obtain one possible solution [72], where 

N 
C = £ m a p + 1. (2.83) 

p=0 

The soliton positions are the same as (2.82) (wi th the product now running over 

all solitons including the middle one) excepting for the middle soliton itself whose 

position is unconstrained. 

Extensive numerical work wi th 3, 4, and 5 soliton solutions suggests that, under this 

regime, the only solutions which are non-zero in the region (—oo, 0) occur when a 

maximal number of tau functions vanish at the boundary x — 0. However, solutions 

in these cases appear to have problems. Consider a solution which contains at least 

two consecutive tau functions which are singular at the origin. I n the language of 

section 2.3, this means that the set S contains at least two neighbouring nodes. But 

look at (2.49) for a j ^ ; i t gives 

2yi - yi+i - yi-i = 2 (2.84) 

and f rom this i t is straightforward to show that the order of zero of Tj at x = 0 

must be greater than one. However for i € 5, both sides of the boundary condition 

(2.54) 

c ~ i=Atv^F ( 2 - 8 5 ) 

go as 1/x as x —> 0. Hence, since C is finite, the coefficients of these leading order 

terms must match. This requires (using (2.48)) 

V% = AVy~i (2.86) 
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which cannot be satisfied for > 1. This tells us that only non-consecutive tau 

functions tending to zero at the origin are allowed. This result is important since nu

merical investigation suggests that, under the non-overlapping charge sector regime, 

i t is not possible to find multi-soliton solutions which are both regular in the physical 

region and contain only non-consecutive tau functions which vanish at the origin. 

However, i t seems that this is a diff icul t hypothesis to prove. 

Let us show that i t is true in the very simplest case of a soliton / conjugate pair, of 

mass m, together wi th the middle soliton in affine Toda field theory. In this case 

we only have two free parameters in the tau functions. The angle Xi takes values 

in the range — it < X i < ^ whilst the position of the middle soliton, d 2 , can take 

any real value (negative values of d 2 correspond to positive ones wi th X2 shifted by 

7r). We have only one possible solution for the energy, w i th C — m + 1. I t is not 

diff icul t to show that in order to keep the values of the tau functions non-negative 

at the origin we must restrict d 2 to be in the range 

2 + m , 2 + m ,„ 
<d2< (2.87) 

2 - m - 2-m v ' 

(the even tau functions give the lower bound, the odd tau functions the upper). 

Now consider the bulk energy, which is as noted previously given by 

n o 

Ebulk — - 2 
Ti 

(2.88) 

We expect —2^ ' / ^ to be a monotonically increasing function of x. In addition, its 

value at x = —oo is zero. Hence we know that there must be a singularity in the 

physical region x < 0 i f we f ind that its value at the boundary is negative. A graph 

of an energy density which demonstrates this point, is given in f ig . (2.1). Let us 

reparametrise the position of the middle soliton by put t ing d 2 = / ^ f r ^ ( s o that // is 

restricted to lie in the range — 1 < \i < 1). Put t ing r = 3 and so on into the bulk 

energy (2.88), we obtain 

- 2 ( ( 1 - n)2 + 2 cos2 x i s in 2

 X i (>/2( l - /x 2) - 2 / i 2 ) + 4// cos2

 X i ) ,0 aQ* 

cos^ X i s i n X i ( l — A* ) 

In fact, i t is not too hard to show that this function is non-positive for all values of 

Xi and fj,. So there must always be a singularity somewhere in the physical region 
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10 E 

Figure 2.1: The energy density of an unacceptable background solution, 

showing singularities in the physical region. 

(—oo,0]. The best we can hope to do is to place this singularity at the boundary 

x = 0. In fact, this creates an acceptable solution energy-wise since in this case 

the infinite parts of the bulk and boundary energies exactly cancel. Let us choose 

parameters so that r 0 vanishes at the boundary. Since 

T- I / ) ( l + c o s x i ) ( l + /^) , v 
To U=o = 4 (2.90) 

2 — m 

then we can make this vanish by put t ing either / i = — 1 or cosx i = — 1- The former 

makes all even tau functions vanish. However, comparing the resulting derivatives 

TQ and T'2 at the boundary, we f ind 

• o U = 4 ^ 2 L | I ( 2 . 9 1 ) 

2cosx i , 9 Q 9 , 
0 = 2 - y/2' 

In order that there are no singularities in the physical region i t is necessary that 

both of these are non-positive. Hence the only acceptable solution here is to put 

X\ — | . But since 
( l + c o s ( f + X l ) ) ( l - p ) 

n U=o = 4 7: (2.93) 
2 — m 
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then this is exactly the choice of x i which makes T\ vanish. Hence three consecutive 

tau functions now vanish — To, Ti and r 2 . 

Consider now what happens when we choose to make To vanish by put t ing cos^i — 

— 1 . Then look at the derivative 

r J | a = o = - 2 m 2 (2.94) 

Again we need this to be non-positive which implies that (JL > 1. But this lower 

bound of fi is exactly the value which makes all odd tau functions vanish (so again 

for this value we have consecutive tau functions vanishing — this time T3, r 0 and 

Ti), whilst for any / i greater than this value the odd tau functions become negative 

at the origin. 

This proof is of course specific to the r — 3 case w i t h three solitons; however, i t is 

expected that the results w i l l hold in general although proofs of this sort rapidly 

become extremely diff icul t . 

2.4.5 Overlapping charge sectors 

I t is however sometimes possible to obtain acceptable multi-soli ton solutions in cases 

where the charge sectors overlap, i.e. when Qmax > The first case where this 

can be done is r = 4. Consider a solution containing all the solitons of the theory. 

Then look at the charge sectors: 

Charge sector Soliton combinations 
-2 2 211 12 
-1 1 122 12 _ _ 
0 0 11 22 1122 
1 1122 12 
2 2 211 12 

Now as usual we must apply the charge-sector equations (2.68). We have seen in 

the non-overlapping case that the highest occupied charge sector yields an equation 

solely in C. Here, however, we obtain an equation in d\ and C which must be solved 

simultaneously wi th the other charge sector equations. The three equations are: 

C 2 - l + d2AlJ[{C - 2 m 0 2 - 1] + d\A2\C - 2 m 2 ) 2 - 1] 

+ d \ d l { A l 2 A l l ) 2 A l X A 2 \ c - 2 ( m x + m 2 ) ) 2 - 1] = 0 (2.95) 
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[ C - m t f - l + d2

2A12A12A22[(C - { m i + 2 m 2 ) ) 2 - 1] 

+ d2ei{x*-2xi)A12[(C - ( m l + m 2 ) ) 2 - 1] = 0 (2.96) 

and 

( C - m 2 ) 2 - l + d\Al2AX2Al\c - ( m 2 + 2 m 1 ) ) 2 - 1] 

+ d i e - i { x i + 2 x 2 ) A n [ ( C - ( m i + m 2 ) ) 2 - 1] = 0. (2.97) 

I f we allow e 1 ^ 2 - 2 * 1 ) and e~^Xl+2x2^ to take any complex values then the solutions 

to these equations are as before. However, consider the case where we choose x i a ° d 

X2 so that these exponentials are real. Then there may exist other real solutions to 

the equations. We shall call these the 'exceptional' solutions. 

To f ind them, we must solve the three equations simultaneously for d\, d2 and C, 

wi th the restriction that d\ and d2 are positive. 1 The latter two equations are 

quadratic in d2 and d\ respectively and so the positions of the solitons can be found 

easily in terms of C. We can then determine the parameter C f rom the remaining 

equation. The only solution consistent w i t h all these criteria (the symbolic algebra 

package MAPLE V was invaluable in finding this) gives 

C = mi + m2 — y/b 

di = - ( 9 7 5 + 25)7711 + 22 + 1 4 ^ 

d2 = - ( l l 5 + 51\/5) ( r a 2 - m i ) + 82 + 38\/5 (2.98) 

when we take e^ X J _ 2 x i ^ = 1 and e - * ( X l + 2 x 2 ) = — 1. The energy parameter C ~ 0.8416, 

which lies between the energies of the IT and 22 two-soliton vacuum configurations. 

We can once again determine the boundary condition which this solution obeys. 

What is remarkable is that in this case, this exceptional solution is regular in the 

physical region, has non-consecutive zeroes of the tau functions at x = 0, and fits 

exactly those boundary conditions not covered by the non-exceptional solutions. 

Specifically, we f ind that the boundary conditions covered are of the form + a + a a 

in the usual notation, w i th cyclic permutations again being allowed by the shifts 

Xi "> X i + ¥ a n d X2 - > X2 + f • 
1 An acceptable solution can be found from one where one or more of the positions are 

negative by considering different values of xi and X2-
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We can also use this technique for the case r = 5, where greater difficulties wi th 

finding solutions to the four simultaneous equations are encountered. Simplifications 

can be made by a rescaling of the position parameters of the three types of soliton. 

We do this so that a parity inversion is effected by a simple mapping dp —> j- for 

each position. We can achieve this by defining 

dp = d p ] \ Apq (2.99) 

where the product is over all solitons and their conjugates. Af te r doing this and a 

great deal of manipulation using MAPLE V, we obtain some interesting results. A 

single acceptable solution, obeying the criteria developed above and corresponding 

to boundary conditions not covered by the non-exceptional solutions is again found. 

In this case, we shall only quote the energy of the solution, which is 

C = y/3 + 2 - \ /2(2 1 /3 + 2V3 + 2) ~ 0.6184; (2.100) 

i t lies between the 11 and 22 two-soliton solutions of the a i ^ theory. 

2.4.6 Vacuum Solution Results 

Before presenting our results for the static background solutions of the series of 

affine Toda field theories up to r = 5 below, let us quickly recap the allowed back

ground solutions. Of the non-exceptional solutions, there are few permitted back

ground configurations. In the cases r = even, the only acceptable background solu

tions contain either no solitons or a soliton/conjugate soliton pair. When r = odd we 

are also allowed the case of a single middle soliton. In any of these cases, the singu

larity may reside at the boundary x = 0, allowing additional choices in the boundary 

conditions obeyed. However, when r > 4, these configurations do not span all the 

possible boundary conditions. To f ind the vacuum solutions for these remaining 

boundary conditions, i t is necessary to consider the 'exceptional' solutions. In the 

cases considered these exceptional solutions completely cover the boundary condi

tions not covered by the non-exceptional configurations. I t is expected that similar 

results w i l l extend beyond r = 5 although a proof is lacking. 
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I t should be noted that, in many cases, more than one possible background config

uration fits w i t h a particular boundary condition. When this occurs, the vacuum 

solution is of course that background configuration which has lowest energy. 

Our results up to r = 5 are tabulated in table 2.1. They are ordered wi th in each 

theory wi th decreasing C, or equivalently, increasing energy. 

2.5 Classical Scattering Solutions 

We now turn to the next stage of the procedure: the evaluation of the classical 

reflection factors Ka associated wi th each integrable boundary condition. We recall 

that Ka is the factor which encodes the reflection of a particle f rom the boundary 

x = 0 (we assume for the time being that a particle a is reflected back to i tself) . We 

can determine this factor using the soliton solutions of this chapter; this approach 

was developed in [72]. Recall f rom section 1.5 that a diagonal scattering solution 

e(x,t) has the form, asymptotically far f rom the boundary, 

e(x, t) -> pae~™\eikx + Kae~ikx), (2.101) 

consisting of the superposition of incoming and outgoing states. Solutions of this 

form which obey the boundary conditions can be generated by considering non-static 

two soliton solutions, where now 

§(x,t) = o{x - vt) (2.102) 

is defined by 

a = ±ik (2.103) 

and 

av = iu. (2.104) 

Hence we must add two solitons, both of type a, to the background configuration 

and determine Ka by insisting that the resulting tau functions satisfy 

n - r'l + 2CT[ - {C2 - 1 ) T ; | x = 0 = 0 (2.105) 
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Boundary Condition Solitons C Singular at x = 0 
+ + + none 1 no 
- + + 
- - + 

IT y/3-1 
no 
yes 

none -1 no 

r = 2 

Boundary Condition Solitons C Singular at x = 0 
+ + ++ none 1 no 
- + ++ 
- + - + 

2 1 
yes 
yes 

++ 
+ 

IT A / 2 - 1 
no 
yes 

none -1 no 

r = 3 

Boundary Condition Solitons C Singular at x = 0 
+ + + + + none 1 no 
- + + + + 
- + - + + 22 7 2 \ / 5 + V 5 - l 

no 
yes 

+ + + 
+ - + 1T22 ^5 + 2y/5 - \/5 

yes 
yes 

h + 
+ IT no 

yes 
none -1 no 

T = 4 

Boundary Condition Solitons C Singular at x — 0 
+ + + + ++ none 1 no 
- + + + + + 
- + - + + + 3 1 

yes 
yes 

- + - + - + yes 
- + + - + + no 
- - + + + + 
- - + + - + 
- - + - + + 

22 
yes 
yes 
yes 

- - + - - + yes 
+ ++ 
+ —t-

1T223 N/3 + 2 - v /2 (2 1 /3 + 2 2 / 3 + 2) 
yes 
yes 

++ 
+ 

IT 0 
no 
yes 

none -1 no 

r = 5 

Table 2.1: Constituent solitons and energy parameters C for the vacuum so

lutions of ap) affine Toda field theory on a half-line w i t h integrable boundary 

conditions, given up to r = 5. 
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or of course equivalently, f rom the charge sector point of view, 

fi - Tl' + 2CT[ - ( C 2 - 1)7;Uo = 0. (2.106) 

I t is then very simple to determine the values of Ka corresponding to different 

boundary conditions. 

Although they have already been set out in [72], let us briefly restate the results 

for the classical reflection factors in the cases which have non-exceptional vacuum 

solutions. Solving the equation for the highest occupied charge sector reveals that 

K a 2 i k - m l } } l A ^ { - k ) { Z A l ) n 

where a is the particle being scattered and bj are the solitons present in the back

ground. N as usual refers to the number of soliton species (not including conjugates) 

present in the background. The only exception to this is the f lat background case 

+ + . . . + , where 

I t has been checked [72] that these reflection factors obey the classical reflection 

bootstrap equation. We shall show an explicit example of how this works in section 

2.5.1. 

In fact, we shall see that this is not the f u l l story; there is a l i t t l e more subtlety 

involved when we consider the cases where one or more of the background tau 

functions vanish at x = 0. Now i t is not so clear that a linear perturbation in the 

field <f> —> (f> + e and in the tau functions Tj —» T{ + are equivalent. However, w i th 

certain restrictions on the Cj (namely that i f r* —> 0 as x —» 0 then Ci —> 0 as x —> 0 

as quickly or faster in order to result in a finite perturbation e) we can achieve the 

same results. Look again at the boundary conditions 

C - ^ = A i ] j ^ ^ . (2.109) 

Now i f we take % so that r i + i goes to zero whilst T ; _ I and r< do not, then clearly 

we require the term linear in e in Tj+i to go to zero at x = 0. In fact, this is 

almost the same restriction as the requirement that the perturbation e is finite. 
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This requirement gives us another equation which must be satisfied by the reflection 

factor K. 

I t is also useful to consider the case where we take the parameters elx to be real, so 

that the vacuum solution tau functions are symmetric about r 0 (i.e. Tj = r r + 1 _ j ) . 

In other words, we look at a particular example of the set of boundary conditions 

which are related by a cyclic permutation. Let us illustrate our point by considering 

the case of a 2 ^ for the boundary conditions H or + + —, which contain two static 

solitons in the background solution. Here, let us take x = * s o t n a t the r 0 —> 0 as 

x —¥ 0 and r x = r 2 in the vacuum solution. Hence at 0(e) the right-hand sides of 

the two boundary conditions 

and 

c-r-k=Am ( 2 . m ) 

(both evaluated at x = 0) must be equal up to a possible sign difference between A\ 

and A2. Hence we expect 

AX^ = A2— (2.112) 

up to 0 (e ) . In actual fact, for A\ = —A2, this equation is satisfied identically for 

all K and hence the same scattering data as we found before for the non-singular 

background also obeys this boundary condition. However, for A\ — A2 we require 

both sides of the equation to vanish. Imposing this condition leads to a somewhat 

unaesthetic non-diagonal scattering solution. 

As we saw in section 1.5, diagonal scattering is expected in as the conservation of 

spin even charges (which distinguish between particles and their conjugates) implies 

that a particle should be reflected back into itself. Moreover, this is implied by the 

f u l l reflection bootstrap equation given in [42]. We can see this by the following 

argument. Look again at the reflection bootstrap equation depicted in fig. 1.8, and 

consider the non-diagonal case. Suppose that c = 1. Then the LHS implies that c 

can be reflected as a particle of type 1 or 2. This particle wi l l then decompose into 

two particles a and b, either of type 1 or 2, but in any case w i t h a = b. However, 

the RHS implies that c wi l l split first into two particles of type 2, which are then 
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each reflected as types 1 or 2. In this case there is no requirement that a = b. 

This tells us that the scattering must be either diagonal (as generally believed for 

real-coupling affine Toda field theory) or completely off-diagonal. Hence we rule out 

the unaesthetic non-diagonal scattering solution for the case A\ = A2 as expected. 

These rather unsatisfying results have been backed up using a direct method used 

by Corrigan et al. [46]. This shall be summarised below. Let us introduce an ansatz 

for the background solution </>(-1) to the — + - case (cyclic permutations ensure that 

this w i l l have the same reflection factor solutions as the H case). We take 

0(-1) = a 1 p (2.113) 

— a choice which is consistent w i th the symmetry of the boundary conditions. Then 

the equations of motion (1.7) and the boundary condition (1.58) become: 

p" = e 2 p - e - p x < o (2.114) 

p' = e

p + e~p/2 x = 0. (2.115) 

(2.114) is the equation of motion for Bullough-Dodd theory, a2

2\ for which the 

solution is well-known. Integrating this equation w i t h p —> 0 as x —>• —oo yields 

(p ' ) 2 = e

2 p + 2e-" - 3. (2.116) 

and using this result at x — 0 along wi th the boundary condition (2.115) gives an 

equation which can be solved for epl2 . We find that at x = 0 we need 

e P l 2 = - 1 , J,orp-> oo. (2.117) 

To obtain this result we have again squared out the sign contained in the boundary 

condition. We therefore need to check which of these solutions corresponds to our 

case — I — . The first solution is invalid anyway since i t implies a complex field 

p. Consider the second possibility. The appropriate solution to the Bullough-Dodd 

equation is 

e~p = l + -j-^B ^ . (2.118) 

s i n h 2 ( f ( x - x 0 ) ) 

Now we need to impose the boundary condition (2.115) along w i t h epl2 — ^. I t 

is not hard to show that to do this we require x0 < 0. However, this means that 
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there is a singularity at x — x0, i.e. in the physical region x < 0, which is of course 

unacceptable. 

Now look at the th i rd case, e p l 2 —> oo. The necessary Bullough-Dodd solution is 

now 

6 " = 1 ~ cosh 2 ( f ( Z - x0)) ' ( 2 ' 1 1 9 ) 

We can check that we have agreement w i t h (2.115) 

4-e~p = - 1 (2.120) 
dx 

and no singularities in the physical region i f we take x0 to be defined by 

eV3x0 = 2 + \/3. (2.121) 

I t is thus this solution that we require. In fact, this is exactly the solution we 

obtained in section 2.4 f rom the two-soliton background. 

We now want to linearise the field around the background solution; we expand i t in 

powers of (5 to obtain (f> = + (f>^ + O(fi). Taking a real basis for the roots of 

<4̂  to be 

a i = ( ) ' a 2 = ( ) a n d a ° = ~ a i ~ a 2 = ( _y| ) ( 2- 1 2 2 ) 

we find the equations of motion for ^ 

and boundary conditions at x = 0 

We can solve the first order equations for both the first and second channels using 

the same methods as [46]. The second channel (which we call (j>^) is the easier of 
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the two so i t shall be considered first. Substituting in the value of p at the boundary 

gives the boundary condition 

dx<f>2

0) = 0. (2.125) 

In addition, the equation of motion f rom (2.119) and (2.123) becomes, where we 

define 02

o) = e~iuit^2

Q) 

^ - ( - 2 + 3 - 2 c o s h M ^ - . ) ) ) ^ ' ^ 

Further defining z = and A 2 = | ( w 2 — 3) allows us to wri te this as 

^ 0 ) = ( - A 2 - S i i ^ ) ) * ™ « 2 1 2 7 ' 
where of course ZQ = ^XQ. In fact, the solution to this equation (which is the case 

of a reflectionless potential (e.g. [73])) is given by 

$2°) = a ^ — 2 tanh(z — ZQ) j ^ — tanh(z — ZQ^J e l X z + complex conjugate. 

(2.128) 

The reflection factor for this channel can be found by taking the ratios of the left 

and right-moving waves, in the asymptotic l im i t x —> —oo. We therefore obtain 

_ q » ( « A - 2 ) ( i A - l ) 
K m 2 ~ a(iA + 2)(iA + l ) ( 2 1 2 9 ) 

since as z —> — oo, t a n h ^ — z0) —> — 1. I t only remains to determine the ratio a*/a 

f rom the boundary condition (2.125). Substituting in (2.128) quickly gives 

a* 3zA3 + 3\ /3A 2 + QiX + 4v/3 

a 3 iA 3 - 3\/3A 2 + 6zA - 4 \ /3 ' 

Finally we put A = -^k and we can see that our result is 

(2.130) 

(k + i^)(k + iy/3)(2ik3 + 3k2 + 3ik + 3) 
channel 2 — 75 ^ • ( 2 . 1 3 1 J 

(k — i^)(k — i\/3)(2ik3 — 3k2 + 3ik — 3) V ' 

This does not appear to be a good reflection factor: we normally expect poles in the 

momentum k to occur at purely imaginary values. Moreover, this reflection factor 

cannot be wri t ten in terms of the blocks (x). 
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What happens in the first channel? This is more difficult to analyse. Again, the 

techniques used are analogous to those in [46]. First, we note that the boundary 

condition (2.124) this time gives 

a i 0 (

1

o ) = e " 4 o ) . (2.132) 

The difference here is that since p —> oo as x —» 0 then we must consider the 

asymptotics of this boundary condition. 

The equation of motion is 

d2<fiP = -{2e2p + e-')<rf 0 ) (2.133) 

which, by making the same definitions as for the second channel, we can write as 

^ * i 0 ) = ( - A 2 + ^ $ { 0 ) . (2.134) 

Here, r and q are functions of E = e 2 ^ - z ° ) given by 

r = 6E(E4+ 4E3-6E2+ 4E+ 1) (2.135) 

q = (E + 1)(E2 -4E + 1). (2.136) 

The solution is of the form 

$ ( ° ) _ ? e i A 2 + c o m p i e x conjugate (2.137) 
Q 

where p, a function of E, must be determined. By substitution into (2.134) we can 

find that 

p = a({i\-l)(i\-2)E3-3{i\ + \)(i\-2)E2-3(i\-l)(i\ + 2)E + (i\ + l)(i\ + 2)). 

(2.138) 

Once again we require the boundary condition (2.132) to deduce the ratio a*/a. We 

must be careful as both sides of the boundary condition contain a singularity at 

x = 0; comparing the asymptotic behaviour on each side, we eventually obtain 

a- = (2.139) 
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Finally, it only remains for us to notice that E = e2(~z 2°) —• 0 as x —>• — oo so the 

reflection factor is given by 

Notice that this is the same as the reflection factor associated with the boundary 

condition H h However the reflection data for the second channel was different. 

In fact, the scattering data found in this way is exactly the same as that found using 

the tau function techniques and the condition (2.112). This can be seen by rewriting 

the scattering data in a basis corresponding to the particle eigenstates. Hence we 

find that there is no consistent classical scattering data for the boundary condition 

+ . 

I t is not difficult to extend the argument to include all boundary conditions in 

affine Toda field theory which require singular vacuum solutions consisting of two 

static solitons. When the singularity is placed at the boundary it can be shown that, 

for any i G S, we obtain an analogous equation to (2.112), involving the boundary 

parameters j4j_i and Ai+i. This relation is only solved for diagonal scattering if we 

takes these two parameters to be opposite. This rules out consistent scattering data 

for a large subset of the integrable boundary conditions. 

Whilst it would appear that there is no problem with singular background solutions 

containing only one static middle soliton (here, the signs of the (say) odd i boundary 

parameters remain arbitrary since the 0(e) term of r , ' / r i vanishes), we also find 

that the 'exceptional' solutions of and have problems. Consider the 

exceptional case. Taking Xi — Xz = 0 we again obtain tau functions such that 

Tj = r r + i _ i . In this case, it is T\ and T4 which vanish at the origin. Hence the same 

argument as before tells us that we must choose K so that the linear perturbations 

of these two tau functions must also vanish at the origin. I t is however not too 

difficult to check that since the incoming and outgoing parts of these tau functions 

are not complex conjugates of each other, then the reflection factor K which results 

is non-unitary. In addition, the conditions resulting from these two criteria do not 

channel 1 
(ik- f ) ( i k - >/3)(tfc + f ) 

(ik + &)(ik + y/3)(ik - |) 

( ^ ) ( | ) 2 ( | ) 
(1)(2)(3) ' 

(2.140) 
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yield the same reflection factor. Hence in these cases it seems that no diagonal 

scattering solutions are possible which go as pa as x -» —oo. We expect, of course, 

that non-diagonal scattering solutions may exist, although as before these cannot 

obey the reflection bootstrap equation. 

This analysis suggests that not all of the boundary conditions allowed by integrabil-

ity are consistent with classical scattering. The ones that do obey certain criteria. 

These boundary conditions are the ones which contain either none, one or two static 

solitons in their background configurations, and, in the latter case, where a singu

larity is present at the boundary, the signs of the boundary parameters on either 

side of a vanishing tau function must be opposite. 

2.5.1 Classical Scattering Results 

The results for the reflection factors for r up to 5 are given in table 2.2. 

As noted previously, it was shown in [72] that all reflection factors of the form 

(2.107) obey the classical reflection bootstrap equation. Instead of reproducing that 

argument, we shall give here an explicit example of how this works. Since, in the 

classical case, the S-matrix is unity then (1.81) becomes 

Ke(0e) = Ka(6c + i9b

ac)Kb(ec - C ) (2-141) 

where 6b

ac are the fusing angles given by the relation (1.41). 

Consider the data for r = 4 for the h + boundary condition. Look at the 
—1 ( 5 ) 2 

coupling 11 —• 2. Then the angle 0 1 3 = | . Since Kx = ~ (l)(i)(4)(&) t n e n ^ * s e a s v 

to check that 

* ,<» + * ! , ) * . < « - * ! , > = ( _ 1 ) ( | ) ( 0 ) P ) ( ( 3 ) ( 5 ) ( J ) ( ¥ ) 

(2.142) (* ) (§ ) (§ ) (§ ) 
(2)(3) 

using the block relationships given in section 1.3. So this example does indeed satisfy 

the relation (2.141). 

Before we finally leave this section, let us quickly review what happens in the sinh-

Gordon case. This theory will be the subject of section 3.3 and chapter 4 and 
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Boundary Condition Ki, Kj 
+ + + "(1)(2) 
- + + ( m m ) 

(1)(2) 
- - + not diagonal 

(1)(2) 
r = 2 

Boundary Condition K2 

+ + ++ 
- + ++ 
- + - + 

"(1)(3) -(2)(2) 

- - ++ (2)* 
(1)(3) (2)2 

+ not diagonal not diagonal 
l 

(1X3) 
i 

(2)2 r = 3 

Boundary Condition KUKT K2,K~ 
+ + + + + -(2)(3) 
- + + + + - + + + + (1X4) (2)(3) 
- + - + + not diagonal not diagonal 
- - + + + 
- - + - + 

not diagonal not diagonal 

+ + (*>s (mum) + + axi)(4)(D (2)(3) 
+ not diagonal not diagonal 

(D(4) (2X3) 
r = 4 

Boundary Condition K2, Kj K3 + + + + ++ - + + + ++ -+-+++ - + - + -+ 
"(1)(5) "(2)(4) - ( 3 ) 2 

- + + -++ -- + + ++ (2)(4) 
(1)(5) 

(D(3)2(5) 
(2)(4) 

(2)2(f)2 

(3)2 

+ + -+ -- + -++ -- + --+ not diagonal not diagonal not diagonal 

+ ++ 
+ -+ 

not diagonal not diagonal not diagonal 

++ (3)' 
(1)2(5)2 1 (i)'-W 

(3)2 

+ not diagonal not diagonal not diagonal 
(1X5) (2X4) l 

(3)2 

r = 5 

Table 2.2: Classical reflection factors for affine Toda field theory with 
integrable boundary conditions, given up to r = 5. 
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we will need to know the associated classical reflection factor; this has not been 
covered in the present analysis. Restricting ourselves to the case where the two 
boundary parameters cr0 and ct\ in (1.60) are equal, the theory has a flat background 
solution. It is easy to solve the equations of motion together with the boundary 
conditions in this case; we obtain a classical reflection factor dependent on the 
boundary parameter o: 

There is, in this case, no reflection bootstrap equation to obey since there are no 

fusings of the sinh-Gordon particle. 

2.6 Conclusions 

In this chapter we have presented a Bogomol'nyi argument for restrictions on the 

boundary parameters of affine Toda field theory on a half-line. This extends what 

has previously been achieved for the special case of sinh-Gordon theory. We found 

that, in the simply-laced cases, all the integrable boundary conditions lead to stable 

theories; however, where A{ = 1 we are only on the boundary of stability. 

We have also considered the vacuum solutions for low rank affine Toda field 

theories in order to attempt to shed some light on what happens in general. We 

have found many unusual characteristics of these theories. Firstly, these vacuum 

configurations were found to be unexpected in their complexity. Indeed, there is 

scope for further work to see if a more enlightening argument leading to the back

ground solutions relating to various boundary conditions can be found. In addition, 

it was found that although acceptable vacuum solutions can be found for all the 

integrable boundary conditions, not all of these appear to admit classical scattering 

data consistent with the reflection bootstrap equation. I t would be interesting to 

see if other methods back up these results. 



Chapter 3 

The quantum reflection factor of 
c$ afRne Toda field theory to 
0(P2) 

3.1 Introduction 

We saw in chapter 1 that there are many conjectured exact reflection factors for 

the affine Toda field theories on a half-line. This chapter aims to use perturbation 

theory to give supporting evidence for one or more of these for the particular case of 

affine Toda field theory (discussed in the subsections of 1.5). We shall do this by 

the perturbative calculation of terms in the expansion of the exact reflection factor 

as a power series in /?. Essentially this amounts to the calculation of contributions 

to the two-point function arising at the order under consideration. We shall see 

shortly how this works explicitly. 

Kim [74-76] has used such techniques for the simply-laced affine Toda field theories 

in the case of the Neumann boundary condition dx(j)\x=o — 0. Perturbative work on 

sinh-Gordon theory for more general boundary conditions has also been performed 

by Corrigan [77]. In the following two sections we shall briefly review these two 

areas of work. These will form much of the basis for chapter 4, which will study 

sinh-Gordon theory with the Neumann boundary condition at two-loop order, or 

0(P4). We shall then move on to discuss the reflection factor of affine Toda 

68 
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b 

Figure 3.1: Types I , I I and I I I diagrams respectively. 

field theory with the boundary condition, which shall be calculated to 0({32). 

This was chosen as it has a flat background 0 = 0 and would seem to be the next 

simplest case after the sinh-Gordon case of [77]. 

3.2 The Neumann boundary condition 

Kim considers the case of Neumann boundary condition for the simply-laced series 

of affine Toda field theories. We shall see that the Neumann case allows considerable 

simplifications to be made in the calculations, stemming from the fact that it has 

no boundary potential (i.e. B = 0) as well as a classical reflection factor of unity. 

Let us consider only the cases since they are of primary interest here. 

Throughout the reconstruction of Kim's argument we shall use our own notation 

where relevant. Kim uses the Green's function for the half-line case which comes 

from the sum of two whole-line Green's functions, the second of which can be con

sidered as coming from the image point reflected in the boundary. The whole-line 

Green's function is, for some particle of type a, 

G a ( z , t ; * ' , f ) = / f p

 2 \ e - ^ ' - V * ( ° ' - « > (3.1) 

where we use the usual shorthand notation d2p = dwdk and p 2 = UJ2 — k2. So we 
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take the Green's function for the theory on the half-line to be 

Ga{x,t-x\t') = I L _ c - M f - t ) ( e < * ( ^ - . ) + e-«(*+x')). (3.2) 
J {2-ny pl — m-i + it 

In fact, a more rigorous argument supporting this form of the Green's function is 

given in [77]. 

We expect the two-point Green's function to be, to all orders in p, 

Ga(x,t-x',t') = 1-^-2-2 V — e - ^ t l - t \ e i k ^ ^ + K'>{k)e-ik^) 

= j ^ ^ e - M ^ - t ) ^ k ( x ' - x ) + K q ^ e - i k ( x + x ' ) y (3.3) 

Hence by calculating the 0 ( f i 2 ) contribution to the two-point function and reading 

off the coefficient of e ~ l h ( - x + x ' ^ we find the O{02) term in the quantum reflection 

factor K". 

There are three possible diagrams, shown in fig. 3.1, which can contribute to this 

correction. 1 However, diagram I I in fact gives no contribution since the relevant 

vertex factors in with a flat background are zero. In addition, since we have 

zero boundary potential then all vertices must be located in the bulk region x < 0. 

Let us look at the diagram I case first. The incoming and outgoing particles are of 

type a whilst the loop particle is of some type b. So the amplitude associated with 

this diagram is 

-iSaa-b-bCaabb d x j dt1Ga(x,t\xl,tl)Gb(x1,t1'tx1,t1)Ga{xut1-tx',t') (3.4) 
J —oo J—oo 

where is the associated symmetry factor and Caabb is the vertex factor for the 

four-point coupling. Substituting in the Green's functions this becomes 

0 J f°° J f dPpdtp'dtpi i i 
• ^ 7 : - > / : - - / ^ (27r) 6 p2 — ml + ie p f 2 - ma + ie 

e-iu(ti-t)e-iu'(t'-ti)^eik(xi-x) _|_ e-ik(x+xi)j 

p\-m2 + ie 
( ei*'(*'-x,) + g - i / c V + z . ) ) ^ + e - * * i * i ) . (3.5) 

1 Recall that we generate such Feynman diagrams and their associated symmetry factors 
from Wick contractions stemming from the expansion of < p'|T {exp (^ JdxdtCi)} \p >, 
where £ / is the interaction Lagrangian. A full discussion of this can be found in any 
quantum field theory text, e.g. [78]. 
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The last bracket contains a divergence. We remove this by an infinite renormalisation 

of the bulk potential (i.e. addition of some infinite counter-term I2(32<f>2 to the bulk 

potential), effectively removing the " 1 " from this bracket. We shall see more of 

this procedure later. The t\ integral produces a delta function which sets the two 

external energies ui and u>' equal. In addition, we can extend the range of the X\ 

integration (the integrand remains unchanged under the transformation X\ —>• — %\ 

so the integral over the half-line is half that over the full-line) and hence this integral 

too yields a delta function. Hence we obtain 

• <j_ raabb f <Ppdk' i i -iu,(t'-t) 

d2pi i / i*x + e-ifcx) ( eifc'x' + -ifc'x'j f ± F l * + k ' + 2^). (3.6) 
v n ' J 2TT pi - m\ + xe K 

Now defining ka = yju>2 - m2 the final k and k' integrations yield (choosing the 

direction for closure of the complex contours appropriately) 

•C _raabbJ_ ( 1 , J _ 1 / / J _ p - i u ( t ' - t ) -ik~a(x+x')\ (n 7 ) 

Now let us consider the type I I I diagram. The contribution is 

/

0 roo 
dxxdx2 l dt1dt2Ga(x,t;xuti)Gb(xut1;x2,t2) 

-oo J —oo 

Gc(xi,U\X2, t2)Ga(x2, t2\x', t') (3.8) 

where a + b + c = 0 mod(r 4- 1). The Sai,c is now the symmetry factor associated 

with diagram I I I and as usual Cabc are the relevant vertex factors. Substituting in 

the Green's functions gives 

d2pd2p'd2pid2p2 i i 
/

0 poo r 

dxxdx2\ dt,dt2 

-oo J-oo J 
-oo J-oo J (27r) 8 p2 - ml + iep'2 - m2 + ie 

1 1

 r-iw(ti-t) r-iu'(t'-h) r-i«Ji(t2-ti) „-iu2(t2-ti) 

Pi ~ m b + it Pi ~ m c + *e 

^eik(xi-x) e-ik(x+X!)^eik''(x'-x2) _j_ &-ik'{x' +xi)^eiki{xi-x\) _|_ g-ifci(n+x2)^ 

^eik2(x2-xi) _|_ e - i f c 2 ( i i + X 2 ) ^ 3 

Again we integrate over t\ and t2 to give delta functions in the energies (i.e. the u>'s) 

and by extending the range of the x\ and x2 integrations we can similarly obtain 
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delta functions in the momenta (the A's). So we obtain 

1 q (r*abc\2 f d2pdk' i i -iv{t'-t) ( Jkx , a - i k x \ 

4 7 (27r)3 p2 - m2 + u>2 - A;'2 - m 2 + %e 
r.ik'x' , p-ik'x'\ f d2Pidk2 % 1 , 
( e + e n 2vr p? - m 2 + ie (a, - a;,)2 - *2

2 - ™ 2 + + fcl + * a ) 

(<$(*:' + ^1 + A:2) + 5(A:' + A* - fc2) + <$(*' - kx + k2) + S(k' - kx - k2)) (3.10) 

or, since we can change the sign of k', 

— (rmbc\2 f d2pdk' i i -iw{?-t) ( ikx , -ikx\ 

2 a b c { > J (2TT)3 p2-m2 + ieuj2-k'2-m2

a + ie 1 ; 

( e ^ ' + e - i * ' * ' ) f d*Pidk* * 1 
J 2TT p\ — m \ + ie (u> — u > i ) 2 — k 2 — m 2 + ie 

S(k + kx + k2){5{k' + kx + k2) + 8{k' + ki- k2)). (3.11) 

Carrying out the k2 integral yields 
_ l q (fiabc\2 f d2pdk' i I -iw{t'-t)( ikx, -ikx\ 

2 a b c { ' J ( 2 T T ) 3

 p2-ml + ieu2-k>2-m2 + ie [ + ' 
/ e i * v , e-ik'x-, f d2Pr i i 
K 'J 2TT p2 - m2

b + ie {u - OJ,)2 - (kx - k')2 - m2

c + ie 
(5{k + k') + 5{k -k' + 2ki)). (3.12) 

Notice that the first delta function inside the last bracket implies the existence of 

a double pole in the external propagator. This must be removed by the addition 

of a finite mass counter-term. Such renormalisations shall be considered in greater 

detail later; however here we shall introduce a useful argument which allows us to 

quickly see the effect of such a renormalisation. 

I f we consider the two-point function on the whole-line, then we want this to be 

given to all orders in @ by (3.1). But diagram I I I for the whole-line theory gives a 

contribution 

cPpdk' 
q ( r a b c ^ f d P d k L_ 

~*abc[U } J (2TT)3 p2 - m2 + ieu2 — k'2 — m2 + ie 
g-iw(t'-t) gikx gik1x' 

/ 2n p\-m2 + ie (u - ux)2 - (kx - k')2 - m2 + ie^ + *')- ( 3 ' 1 3 ) 

Hence we need to introduce counter-terms which will remove this term on the whole-

line. If we assume that this can be done, then it is not hard to see that the same 

counter-terms will , for the theory on the half-line, remove the equivalent terms to 
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(3.13) in (3.12). Hence we shall assume that i t is possible to do this. Let us then 
look at the second delta function. The normal techniques of complex integration 
give us the final type I I I result 

- S a b c { C a b c ) 2 ^ (— l — , + 1 1 

S k a yTTic _|_ m j 2 _ £ o — m 2 m * (u — m b ) 2 — k a — m 2 

1 

\Jka + m2 (u + \ J k a

2 + m2)2 - ml \Jka + m2

b (u - \ J k a

2 + m2

b)2 - m\ 

^ _ J _ e - i w ( t ' - t ) -ik'a(x+x')\ ( 3 U ) 

2n 2k, 
a 

The correction to the reflection factor now consists of the sum of the contributions 

from (3.7) and (3.14). We obtain 

+ Sabc{Cabc)2 ( 5— 9 h 

+ 

mc m2

a-\-m2 — m2 + 2mcu> mb m\ + m2 — m2 — 2mbuj 
1 1 

sj ka

2 + m2 2u(u + \J ka

2 + m2) + m2-m2

a~m\ 

+ h 2 / - 2 1 W- ( 3 ' 1 5 ) 
V k a +ml2u(u - yka + mj) + ml - m2

a - m2

cJ 

In particular, let us briefly state the results for sinh-Gordon ( a ^ theory) and a2^ 

theory. The former has only one particle (type 1) with mass m\ = 2. The vertex 

factors are CU1 — 0 and C n n = /?2/3, and the symmetry factor S n i l = 12. So 

For the case of a2

l\ as we shall see repeated in the results of section 3.3, we have 

two particles (conjugate to each other), and 

m, = m„ = y/lt C 1 1 1 = £ C 1 1 2 2 = ^ . (3.17) 

The symmetry factors this time are 

Sin = 18 and S 1 1 2 2 = 4. (3.18) 
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Hence we obtain 

4A;(2u; + v ^ ) 
This result shall be considered in section 3.7. 

3.3 Sinh-Gordon theory 

Let us now review the calculations of Corrigan in [77]. These consider the O{01) 

quantum correction to the classical reflection factor of sinh-Gordon theory. However, 

the difference between these calculations and those of Kim comes from the boundary 

conditions considered. As discussed in section 1.4, sinh-Gordon theory permits 

a large class of integrable boundary conditions, parametrised by two continuous 

degrees of freedom. However, only those where O~Q = 0\ allow the flat background 

solution <fi = 0. I t was this class of boundary conditions that were considered in [77]. 

Let us write down the sinh-Gordon Lagrangian (as usual found from (1.3)): 

£ = i c V S ' V - ^ ( e ^ + e " ^ * ) . (3.20) 

For the flat background case we must take the boundary potential to be 

B =

 2j. ( e » / ^ + e - W W ) . (3.21) 

It is useful for perturbation theory (in order to read off the vertex factors) to expand 

the bulk and boundary potentials as power series in the coupling constant (5. We 

write them as 

V = 2<f + / ? 2 ^ 4 + / ? 4 ^ 6 + O Q 3 6 ) (3.22) 

and 

3 = a ( ? + ^ h f + ^ A ^ A / + ° { P 6 )
 ( 3 , 2 3 ) 

respectively. 

Now we must write down the Green's function to be used. This was derived in [77] 

to be 

G(x, t; x't') = [ , f P „ 0 \ -e-Mt>-t)(eik(x>-x) + K(k)e-W*+*')). (3.24) 
J (2'KY v — 4 + ie 
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K(k) is the reflection factor of the classical theory, determined in section 2.5.1 and 

given in (2.143). The mass of the sinh-Gordon particle is of course 2 giving the 4 in 

the propagator. 

Sinh-Gordon theory on a flat background contains no cubic terms in the Lagrangian. 

Hence the only diagram which must be considered here is that of type I in fig. 3.1. 

However, it is now necessary to calculate terms arising from the boundary potential 

— in this case a diagram of type I but with the vertex located at x — 0. Let us 

consider this latter (and simpler) diagram first. The integral is 

ioQ2 f°° 
£- / dtiG{x,t\0,ti)G%ti\Q,ti)G(Q,ti\x',l!) (3.25) 
2 J-oo 

(now explicitly including the vertex and symmetry factors associated with this dia

gram) and this is equivalent to 
_io(P y o o r d2pd2p'd2

Pl i i % Mu-t) 
2 7-oo lJ ( 2 T T ) 6 p2-4 + iep'2-4 + iep2-4 + ie 

e - iu/(t '-t i)( e - ifc* + R e - i k x ^ e i k ' x ' + K'e'ik'x'^ + (3 2 6 ) 

Throughout this chapter and chapter 4 we shall be using the convenient notation 

where K' = K(k'), K\ = K(k\), K = K(k) and so on, except where explicitly 

stated otherwise. 

Look at the last bracket of the above integral. I t is clear that this again contains 

a divergence. We can remove this by an infinite renormalisation of the boundary 

potential, i.e. since 1 + KY = 2+ then we add a counter-term I ^ p t f where 

rbndry _ _°_ f # P l i ( , 
h - 4 I (2n)2 p2 - 4 + it' 

This is exactly right to cancel off the entirety of the divergent part. 

Hence we now wish to compute the integral 

od^p'cppi i 
( 2 T T ) 6 p2 - 4 + itp'2 - 4 + itp\ - 4 + it 

i°P2 f°° d t f (PpcPrfcPpx i i % -iufa-t) 

2 i - o o
 1J ( 2 T T ) 6 v2 - 4 +itp'2

 - 4 + itv2 - 4 +it6 

e-iu/{t'-ti)^e-ikx + K e - i k x ^ e i k ' x ' + K ' e - i k ' x ' ^ _ _ ^ _ — ^ 3 i 2 8 j 

Integrating over i x to produce a delta function and then over u>' gives 

_iof_ r d2pdk' i i -Mt'-t) -ikx-ik'x'(1 + K ) ( 1 + R l ) 

2 J ( 2 T T ) 3 p2-4 + itu2-k»-4 + it U + ^ J U + ^ i 
r d ? p L _ _ i _ _ 4 o _ 

J {2n)2p2-4 + ieikl-2o' K } 
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2il 
X pole 

-2i 

Branch Cut 

Figure 3.2: Integrating around the branch cut in the upper half-plane. 

Let us look now at the p\ integral alone. Integrating over ut yields 

dki 1 4cr / 2 7 r 2\]k\ + 4 i k i ~ 2(7' 
(3.30) 

However, this still leaves us with the task of computing the k^ integral. To do this, 

i t is easiest (particularly in the cases of later calculations) to perform a contour 

integration closed in the upper half-plane. In doing this we need to negotiate the 

branch cut, which runs from 2i to ioo, as shown in fig. 3.2. Then in general we 

obtain two contributions to the result — one from any poles lying within the contour, 

and one from the integral around the branch cut. Consider the latter contribution 

first. This is (noting the factor of two which arises from integrating over both sides 

of the branch cut) 

f 
io° dki 1 4cr 

2 7 r 2\]k\ + l i k \ ' 2(7 

I f we now make the change of variables k\ = iy then we obtain 

r°° dy 1 4a 
s: 12 2TT 2 y/y'1 - 4 y + 2o 

which can be calculated using the result 

1 / 
Jm 

dy 
1 1 7T 

y/y2 -m2y + m ( my/1 - C2 \ 2 tan - l 

(3.31) 

(3.32) 

(3.33) 
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to give 
2 ° < ' t a n - C ^ W l V (3.34) 

The last thing we need to do is to perform the k and k' integrations. Both of these 

give multiplicative factors of i ( l + K), where k = y/u>2 — 4. However, it is clear 

from (3.3) that one of the factors i is absorbed into the propagator. So finally, 

with a little manipulation, the contribution to the reflection factor can be written 

as 
z / ? W ( a 7 r ) a ( i + i ? ) 2 ^ 

4/csin(a7r) 
where, as in [77] we have used a more convenient boundary parameter a defined by 

0 — cos(a7r). This is taken to lie in the range 0 < a < 1. 

In addition, a pole may be present in the upper half-plane. This pole resides at 

k\ = —2io and so only need be included if o < 0; when present i t yields an additional 

contribution 

_ ^ W M ( I + ^ ) 2 ( 3 3 6 ) 

4k sin(a7r) 

Hence we obtain the results 

4fcsin(a7r) 4/csin(a7r) 

for a in the ranges 0 < a < | and | < a < 1 respectively. We can check that 

these results are related correctly by looking at the integrand. Putting a —> —a in 

(3.30) and making the transformation ki —» — ki leaves the integrand unchanged; 

including the vertex factors, which are dependent on cr, means that we expect the 

total result to be odd in a. Similarly the results in (3.37) are opposite for a and 

1 — a respectively. 

We shall now consider the type I diagram in the bulk. The integral this time is 

dxi / dtxG{x,t\xuti)G{xl,tuxutl)G{xuti\x',t') (3.38) 
-oo J—oo 

or 

4 ^ i - o o ' J - o o
 lJ (2TT)6 p 2 - 4 + iep>2-4 + iep2-4 + iee 

e-iu'(t'-ti)^eik(xi-x) _j_ j^e-ik(x+xi)^eik'{x'-xi) + j^'e-ik'(xi+x')^^ _|_ j^^e~2ikixj y (3 39) 
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Again a divergence is present in the above integral. This time an infinite mass 

renormalisation on the bulk is required: i.e. addition of a counter-term of the form 

/2/?2</>2 to the bulk potential. The value is 

^ = " 2 / l ^ ^ 4 - - (3-40) J (27T)2 pf - 4 + it 

This once more has the effect of removing the " 1 " from the final bracket. Performing 

the t\ and u>' integrals in the usual way allows us to write (3.39) as 

/ f , f t ' 2 \ • 2 J A • e - ^ ' - V + Ke-ikx)(eik'x' + K'e^x') J (27r)3 p2 - 4 + ie u2 - k'2 - 4 + it v v ' 

J-oo J ( 2 T T ) 2 V h 'p\ - 4 + ieih - 2a K ' 

We now need to integrate over x\. No range extension method can be used this time 

since putting x\ —> — xx does not leave the integrand invariant. Hence we must use 

another trick. We know that 

[° d x i e ( - i X + p ) x i = (3.42) 
J-oo A + ip 

i f p is a small positive constant. So let us introduce such a p into our integrand in 

order to enable us to perform the integration; we can then take the limit as p —> 0 

at the end of the calculation. So, looking at the xx and p\ integrals alone, we have 

f d x i f p L { - 4 i 0 i ) 2 \ ^ V ~ . ( ^ + 2 > , t . , ) 
J-oo J (27r)2V p\ - 4 + ieikx - 2a 

= f f P L ( ^ ) I «*i + 2 ( 7 t (343) 

7 ( 2 T T ) 2 V P , p 2

l - 4 + ieik1-2ak + k'+ 2k!+ip' K ' 

We can now do the a>i integral to leave 

r dk\ . 2 . 1 i/ci + 2a i 

J 2 T T ^ _ 2^jk] + $iki-2ak +k' + 2fci + ip' ^ ' ' 
Now we just need to carry out the k\ integral in the same way as before. We must 

first split the integrand into partial fractions, before considering the branch cut and 

pole pieces in turn. Let us write (3.44) in the form 

/ ^l(-4iB2) l- t f 4 a + W + k')-4a \ 
J 2 7 r 2 ^ k j n i ( k

 + k ' ) + i a \ k i + 2 i a 2k1 + k + k' + ipj' v ' ' 
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Then the branch cut contributions this time are 

-4ip2 

i(k + k') + 4a 

cos(d7r)a i(k + k') — 4a 
sin(a?r) 2^4 + (k + k')2 

( 

— — tan - l 
,-fc+fc' 

,/\2 
4 + ( * ± * ) 

(3.46) 

Let us call the result above / . 

The k and k' integrations this time give four terms. These consist merely of giving 

the values of k and k' at their poles at ±k, i.e. 

(3.47) 

Any other poles in A; and /c' yield exponentially decreasing terms as we take the 

limits x,x' —> —oo. So we finally have the result, with a little manipulation, 

iP2K ( k2a 1 1 
- T + 

ifc lsin(a7r)(fc 2 + 4<72) 4 2 w 
(3.48) 

for the branch cut integral. 

Again the only possible pole is at ki = —Ho. When it occurs, it yields a contribution 

to the k\ integral of 
rr\alnirl —An (-ft 

(3.49) 
cos(a7r) —Aifi2 

sin(a7r) i(k + k') + 4a 

which, using the pole values of k and k' again gives a total contribution 

ip2kK 
(3.50) 

sin(an)(k2 + 4a2) 

Adding all these results together, and with a little more manipulation, we find an 

0(p2) contribution to the sinh-Gordon reflection factor of 

iP2K \ k2asm(a-K) l l 
k I k2 + 4a2 4 + 2w 

(3.51) 

for the range 0 < a < \ and 

iP2K (k2{a- l)sin(oTr) l _l_ 
k \ k2 + 4a2 4 2u 

(3.52) 

for the range \ < a < l . 
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3.4 aK

2 affine Toda field theory 

Let us now proceed to repeat this calculation for the case of affine Toda field 

theory. As we saw, this has been done in the case of the Neumann boundary 

condition by Kim; however, no perturbative results for any of the other integrable 

boundary conditions are known. The bulk Lagrangian is 

£ = l ^ . ^ - ^ £ e ^ . (3.53) 
1 P i=0 

We shall be considering the boundary condition A{ = — 1, i.e. 

dx(f>\x=0 = - \ j : a i e ^ 2 . (3.54) 
P i=0 

Since this allows a flat background solution $ — 0, the vertex factors are not depen

dent on the vertex position x and hence the calculation is significantly simpler than 

the case of asymmetric boundary conditions. 2 

We shall take the real basis for the ctj's given in (2.122). In order to calculate the 

vertex factors for affine Toda field theory, we need to expand the bulk and 

boundary potentials in terms of the coupling constant (3. To do this, it is first 

useful to write the field <f> in the basis given by the mass eigenvectors, pi and P2, 

corresponding to the two particles. We can do this by looking at the asymptotic 

form of the tau function solutions given in chapter 2, whence; 

( h = f fa \ = - L ( ( - i + * V 3 ) $ - ( i + n/3)j> 
V \ f a ) 2V2 \ - ( \ / 3 + i )$ + ( -v / 3 + i ) $ 

where $ and $ are the fields corresponding to the particle (type 1) and its conjugate 

(type 2) respectively. In fact, this is exactly the complex basis which we used to 

determine the masses in section 1.3. We then find the bulk and boundary potentials 

respectively; 

V = 3$$ + ^ ( $ 3 + $ 3 ) + j j / ? 2 $ 2 $ 2 + 0(/3 3) (3.56) 

and from (3.54) 

B = + l(3($3 + $ 3 ) + J r / ? 2 * 2 * 2 + ( 3 - 5 7 ) 2 o 32 
2 A calculation for a non-trivial background is currently being undertaken by 

Chenaghlou et al. for the case of sinh-Gordon theory. 

(3.55) 
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The Green's function for the a2^ case is exactly analogous to that used in the 

previous section: 

G(x,t;x',t') = [ l - - e - ^ - O ^ - * ) + K ( k ) e - i k ^ ) (3.58) 
J {2iry — m2 + ic 

where K{k) is of course now the classical reflection factor associated with this bound

ary condition of affine Toda field theory. From the previous chapter, we know 

this to be 

The masses of the two particles in are both m = \/3; we shall in general leave 

the calculations in terms of m rather than substituting in these values. 

Note that we obtain different contributions to the quantum reflection factor from 

diagrams where none, one or both of the vertices are located on the boundary x = 0. 

There are thus five different diagrams, two of type I and three of type I I I , which 

contribute to the two-point function and hence to the quantum correction to the 

reflection factor. 

3.5 The Calculations 

Let us now proceed to the calculations used to determine the one-loop contribution 

to the two-point function. We shall consider the two types of Feynman diagram 

separately in the two following subsections. 

3.5.1 Type I diagrams 

There are two possible type I diagrams: one where the vertex is in the bulk region 

x < 0, and one where the vertex is situated on the boundary x = 0 itself. Let us 

consider the latter first. We are required to compute the integral: 

3 f°° 
Undry = ~ ^ / *5 °> *l)G(°> ^ I °> ' l)G(0, *1! 0 • (3-60) O J —oo 

Included here are the vertex and combinatorial factors arising in the four point 

interaction. 
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After integrating over ti, which generates a delta function, and using this delta 

function to integrate over u', we find 

// = 3 2rd?pdk' i i - f a r f f - t ) 

^ %lfJ J ( 2 T T ) 3 p2 - m 2 + ie u;2 - fc'2 - m 2 + ie 

e — - ' ( 1 + J0(1 + JT) { / | ^ - f - i 7 T - ( l + / T 0 } - (3.6D 

Notice that the p\ integral separates from the others and is divergent due to the 

(1 + Ki) term. This can be removed by an infinite renormalisation of the boundary 

potential. In fact, in a similar way to before, we put 

2m 2 

1 + ^ = 2 + — 2> ( 3 - 6 2 ) 
2iki - ml 

so we can perform a minimal subtraction of the divergent part to leave 2ik^m2 ^ v 

adding a suitable counter term. Then by integrating over u)\ using a contour integral 

(closing the contour into the lower half-plane), we pick up a pole at 

yjkl + w? (3.63) 

which leaves us with the task of finding the integral 

r°° dki 1 2m 2 

J —{ 
(3.64) 

-oo 27r 2o?i 2ik\ — m2 

As before, this can be achieved by performing a contour integral closed in the upper 

half plane, negotiating the branch cuts which now run from im to zoo. Again we 

obtain in general two parts to the integral: branch cut integrals, which can be 

evaluated using the result (3.33), and residues coming from poles enclosed by the 

contour. 

Consider the integral we need to compute. There are no poles in the upper half-

plane so we only need consider the branch cut contribution. Making the change 

ki = iy we obtain 

dy 1 m 2 m I ir -I I ^ W 171 

f 
Jm vr c j 1 - 2 ( 2 / + m ( f ) ) 2 7 r v / T ^ f v 2 \ v / r ^ f yy 6 

(3.65) 

where in the last step we use the value of the mass m = y/3. Finally, integrating 

over the remaining k and k' integrals picks up poles at k = k' = k = \/u)2 — m2 and 
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we obtain the result 

J ' - [ — J _ P - < * ( * + * ' ) - i u ( t ' - t ) n , 
hndry ~ g P J U + ^ g 

= ^ / ^ i e - ^ ) e - M M ) ^ ! L , (3.66) 
J 2ix2k 2(2ik-3)2 

Now let us consider the case where the vertex is located in the bulk section. The 

contribution this time is 

*Lk = -MP d x d dtlG{x,t,xutl)G{xutuxl,tl)G{xl,t1;x',t'). (3.67) 
J—OO J — OO 

Again we have a divergence similar to that in (3.5) and after an infinite mass renor-

malisation (which again simply removes the " 1 " from the bracket (1 + K\e~2tklXl)), 

and integration using the delta function in u', this becomes 

M P J-oo 'J (2TT)3 p2-m2 + ieuj2-k'2-m2 + iee [ B + K e } 

(eik'*' + K'e-ik'x') [ [ ^ L K l e - ^ k + k ' + 2 ^ - 2 V ~ 1 • (3-68) 

[J {2n)z p( — m' + ie) 

We can use the same trick as in section 3.3 — the introduction of a small positive 

number p into the exponential — to perform the X\ integral. Consider only the 

integrations over internal momenta and energies. We need to find 
f d2Pi i

 K * r o f i cn 
J ( 2 T T ) 2 pi - m2 + it l(k + k' + 2kl) + ip' { } 

As usual, integration over ui picks up the pole at cJi and we can complete the 

integration over ki by decomposing into partial fractions and using the usual contour 

integration method. We must then perform the k and k' integrations. This is done 

as before by integrating along a complex contour closed in such a direction that the 

exponential factors of each term decay to zero on the complex part of the contour. 

As we noted previously, the only poles we pick up are simply ±k since it can be 

checked that all other poles have a finite imaginary part and hence the exponentials 

decay to zero if we take the limits x, x' —» —oo. 

I t turns out to be simpler if, knowing this fact, we simplify the integrand of the k\ 

integral by substituting in the poles of the k and k' integration first, i.e. if we define 

the previous integrand to be / , then the new integrand is 

- L e - ^ ' ) ( / | t : = _ . ki=_. + ki\k=_kk,=k + ki\k=k>k,=_k + k 2 i \ k = k > k l = k ) . (3.70) 
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We can then restrict our attention to that part of the integrand which is even in 

k\ (since the k\ integral runs from — oo to co), and by making the substitutions 

OJ = mcosh(#) and ee = y the integrand can be made simpler still. This is necessary 

as i t permits some cancellations in the integrand, without which the calculation is 

too large to be practicable. 

The answer then consists of a sum of contributions from integrals along branch 

cuts, residues arising from poles with finite imaginary part, and residues from poles 

which are only infinitesimally shifted from the real axis. In the first two cases, the 

infinitesimals present in the integrand are insignificant to the calculation. We can 

therefore reduce the calculation to a manageable size by setting all infinitesimals to 

zero, and simplifying the integrand, before calculation of these two contributions. 

However, in the case of poles with infinitesimal imaginary part, no such simplification 

can be made. 

Hence the integration over the branch cuts and poles with finite imaginary part 

becomes 

dw [dkx 1 _ _ M t , _ t ) f > _ i k { x + x l ) \ 54i02{y2 - 1) ^ 7 l ^ r aw r 
J 2n J 2TT 2k (2ik - 3)2(2kl + M)(2kl - 3z)\/% 

We integrate using the same method as before, but this time we encounter a pole at 

ki = | i and hence must include the contribution arising from its residue. Summing 

the contributions gives a term in the quantum reflection factor of 

(3.72) 
{2ik - 3)2y 

The integral over the poles which have been shifted off the real axis by an infinites

imal amount involves considering the residues of poles in the upper half-plane of 

9^3(3 - 8kfy2 + 3y2 - \2ikiy

2 + 3y4)(2fe! - 3i)(y2 - 1) 
2y2(3y2 -3 + 2y/3kxy + is/3py)(3y2 - 3 - 2y/3kxy - iV3py)(2kl + ip)(2ki + 3i) 

+ -> -h) (3.73) 

which yield a reflection factor contribution 

3ip2 (y2 + y + l ) ( y 2 - y + l ) ( y - l ) 
(3.74) 

The reason for leaving the factor - l

 2 in terms of k rather than y will become 

4 (2ik-3)2y(y2 + l)(y + l) 

)r leaving tf 

clear shortly. 
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3.5.2 Type III diagrams 

In the case of the type I I I diagrams, there are three possible configurations - we can 

have none, one, or both of the vertices located on the boundary. The simplest of 

these is the last — the boundary-boundary case; 

9 f°° 
CLy-bndry = J dtX<tt2G{x, t\ 0, ^ ( O , * l 5 0, t 2)G(0, 0, t 2)G(0, t2\ x\ t'). 

(3.75) 

Let us consider this case in detail since it is instructive for performing the later 

integrals, which are more tedious. Putting in the form of the Green's function, we 

obtain 

9 2 f°° f d2pd2p'd2pxd2p2 i i i 
(27r) 8 p2 — m2 + ie p'2 — m2 + iep\ — m2 + ie 

e-iu(ti-t)-iwi{t2-h)-uj2(t2-h)-iuj'(t'-t2)e-ikx-ik'x' ^ _|_ J£^{\ _^ 

p2 — mA + xe 
{l + Kl){l + K2). (3.76) 

As before, integrating over the t\ and t2 gives us delta functions which enable inte

gration over u>' and LO2. However, this means that we must not only set u>' = u as 

before but we also have u2 = u> — u)\. Substituting in the form of Kx and K2, we 

find that we must perform the integral 

__9_ 2 r d2pdk' i i iu{t-t,)„-ikx-ik'xl/•, , ^ / i , Ki\ 
32P J (2irY p2-m2 + ieu2-k'2-m2 + ie 1 + J i + J 

r d2pidk2 i i 4ikx 4ik2 

J ( 2TT) 3 U>\ - k2 - m2 + ie (u - UJx)2 - k\ - m2 + ie 2ikx - m2 2ik2 - m2' [ ' 

Consider the second integral — the one over the internal momenta. Integrating over 

ui\ (again closing the contour downwards) we pick up two poles, at \Jk2 + m2 and 

\Jk2+m2 + u. Hence we obtain 

r dk\dk2 —16kxk2 1 1 i 

J ( 2TT) 2 (2ikx - m2){2ik2 - m2) \2jk2

x+m2 (w - Jk2

x + m2)2 - k2

2 - m2 + ie 

, 1 , * V (3.78) 
2y/k% + m2 {to + y/h% + m2)2 - k \ - m 2 + ie) 

Notice however that we can simply exchange the indices 1 and 2 on the second term 

giving us; 

fdkxdk2 1 t -\Qkxk2 . , , . 
J ( 2TT) 2 2UJX ( W - u)x)2 - k 2 - m 2 + ie (2ikx - m2){2ik2 - m2) [ U U ) 1 ' 
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where as before cJi = <Jk2 + m2. 

Now integrating this over k2 (closed in the upper half-plane) gives a residue due to 

the pole at k\ = \J{u> — UJ\)2 — m2. So we are left with the integral 

dki 1 —4/ci , , ,„ 
+ (w -> - w ) . (3.80) 2TT cJi (2ik1 - m2){2ik2 - m2) 

This can be easily decomposed into two pieces: that which contains odd powers of 

k2 and that which does not. Moreover, if we again throw away all terms which are 

odd in hi, we are left with 

f dkx 1 I -%im2k\ \Qk\k2 \ . . .„ Q 1 . 
/ ir-— A + ~h +(w ~* ~u)- ( 3 - 8 1 ) 

J 2TT UX \(Ak2 + mA)(Ak2 + m 4 ) (4k2 + m4)(4k2 +m4)J 

The first term in the above can be handled as before. The second term, however, is 

difficult to deal with since i t generates elliptic integrals [79,80]. 

At this stage it is worth doing a little analysis of the properties expected of the 

results. Unitarity implies that the quantum reflection factor, Kq is a pure phase, 

i.e. of the form elx. Suppose that the classical reflection factor is K = elXo. Then 

the quantum reflection factor, to order (32, is given by the expansion of e^xo+02xi^ 

(Xo and Xi some functions of k). So we obtain 

Kc = ei(xo+Pxi) = e ixo(! + ip2Xl + 0 ( / 3 4 ) ) — K + iKxiP2 + 0(/? 4). (3.82) 

Hence we are looking for a /?2 correction which is what we shall term "completely 

imaginary with respect to the phase of the classical reflection factor K", i.e. its 

argument is arg K + | . Notice that the phase of (1 + K)2 is the same as that of K, 

and this is exactly the prefactor we obtain from the A: and k' integrals. So there is 

good physical justification for assuming that all the completely real parts (which in 

every case are the "elliptic" parts) of the integrals will eventually, though perhaps 

only after summation of terms from all diagrams, vanish. This assumption shall 

make the job of calculating these integrals significantly simpler. 

Hence ignoring the real part of this integral, and using the expression for k2, we 

obtain 

f dki 1 -8im2k2 , . ,„ 

J 2TT UI (ik2 + m*)(4k2 +m4) 
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_ [dkil -16ifc 2m 2(4u; 2 + 4fc2 + m 4 ) 

~ J 2TF(J[ (4k2 + m 4)((4u; 2 + Ak\ + m 4 ) 2 - 64u2(k2 + m 2 ) ) ' ( ' 

This integral can be computed as before and is found to contribute t a n h - 1 terms to 

the 0(p2) correction. These are unexpected since they cannot be obtained from the 

expansion of any K composed of blocks of the type (x). However, they are found 

to exactly cancel with equivalent terms from the other two type I I I diagrams. 

The other two type I I I contributions are 

g rO roo 
= - T / ? 2 / dxi dtidt2G(x,t;xl,ti)G(xi,ti;0,t2) 

4 J—oo J—oo 
G{xl,tuO,h)G(0,t2;x',t') (3.85) 

Till 
bulk—bndry 

and 

Q /-o jiu _ _ _ ~9 1 

bulk—bulk 2 /

U roo 
dx\dx2 I dtidt2G(x,t;xi,t\)G(xi,ti;x2,t2) 

-oo J —oo 

G(xi,t±; x2, t2)G(x2, t2-x', t'). (3.86) 

In a similar way to before, we find the necessary h\ integrals corresponding to these 

to be 

jin _ 9 n2 I dk\ 1 Aik\ 
bulk-bndry ~ J ^ ^ ^ + ^ + ^ + . ^ . ^ _ ^ 2 ) ( 2 *Jb 2 - W 2 ) + ^ ^ 

(3.87) 

and 

/ 1 Tin 
bulk—bulk 

_9 2 f d h | _ 1 1 
2 J 2TT \4aJifc2 A;! + fc2 H + k + ip \k' — k\ — k2 + ip 

+ K i ^ - + K2-. - + K1K2- 1 

ki — k2 + k' + ip k2 — k\ + k' + ip ki + k2 + k' + ip/ 

1 1 1 
+ 2^ (w - cJO2 - (k1 - kx)2 -m2k + k' + ip 

2a?! 1 (w - uix)2 - (fci + A;')2 - m2 2kx + k + k' + ip J 
+ (w -> - w ) (3.88) 

before separation of the real and imaginary parts relative to the phase. The ubiqui

tous k and k' integrations take the same form as in (3.68). 

Let us consider the f if th term of the integral (3.88), whose analysis is quite subtle. 

I t is clear that this term contains a double pole in the external momentum k and 
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hence we need to perform some finite mass renormalisation [81,82]. In fact, we 

could use an argument of the type used in section 3.2 to discount this term but 

instead it is perhaps more enlightening to show how this works explicitly. A finite 

mass renormalisation is equivalent to adding a term of the form a$$, where a is a 

constant, to the original Lagrangian in order to cancel out this double pole. The 

contribution arising from such a counter-term is 

/

0 roo 
dxi / dtiG(x, t\xi, ti)G(xi, t\, x', t') (3.89) 

-oo J—oo 

which can be manipulated to give 

J (27r) 3 U2 — k2 — m2 + it u)2 — k'2 — m2 + ie k + k' + ip 

(eikx + Ke~ikx) (eik'x' + K'e-ik'x'). (3.90) 

Now look at the double pole term in our integral. This has broadly the above form, 

but instead of the constant a, we have a function, F(u,k') = J dk\f(ki,k',cj) say, 

of u and k'. Looking at its precise form in (3.88), and discarding all odd terms in 

k\, we can see that / is also even in k'. Hence by substituting ui2 = k2 + m2 into 

this function and Taylor expanding the result around k'2 — k2 we obtain 

f ( k u k',u) = f0(kuk) + h(kuk)(k12 - k2) + 0((k'2 - k2)2). (3.91) 

In fact, integrating over the k\, the first term in the above expansion gives a constant 

independent of A;. So we can indeed cancel this contribution by adding in an equiv

alent finite mass renormalisation term. Computing the value of the renormalisation 

required we find that 

* = / £ / • < * > . * > ( 3 - 9 2 ) 

which is exactly the same mass renormalisation as that obtained in the full-line case 

[81], as we would of course expect. 

The second term in the expansion (3.91) is more interesting. This gives us 

/ 2 u2 i 2 • , n • + Ke-lkx)(elk'x' + K'e-^'Wk) J (27r)3 u>2 - k2 - m2 + ie k + k' + ip JK ' K ' 
(3.93) 

where Fi(k) = /dk\fi(ki,k). By integrating over k' first and then k we obtain 

/ f^-LiFAk)^'-^ + k e - i k { x + x , ) ) . (3.94) 
J 2w 2k 
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The value of Fi(k) can be calculated and it is found that, as must be the case, it is 

simply a number, not dependent on k. The value is 

F l = ( " ^ - i s ) ^ ( 3 9 5 ) 

Notice that this term has changed our coefficient of e

l k ( x ' - x ) . We must perform a 

wavefunction renormalisation in order to return the coefficient of this term to unity, 

or in other words to cancel out the first term in (3.94). This can be done by rescaling 

$ and $ by 

-> (1 - F i ) $ $ . (3.96) 

This rescales the propagator by the same amount, cancelling the entirety of (3.94). 

I t can thus be seen that renormalisation allows us to completely discard the fifth 

term of (3.88). Notice also that the rescaling (3.96) changes the boundary potential, 

so we must add in an equivalent term to cancel out this contribution. 

The calculations from here are tedious and it is worth noting that as before, con

siderable simplifications can be made by using the values of k and k' given by their 

poles and simplifying the integrand. By adding all type I I I integrands, discarding 

the elliptic parts (which it can be checked are always completely real with respect 

to the phase of K), and considering only those parts even in h\, we finally obtain 

o2 f duc_iu)U,_t)c_ikx+xl) 1 -z(2y 2 + y + 2)(y 2 + 3y + l ) ( y - l ) 
J 2TT 2k (2ik - 3) 24y(y 2 + l ) (y + 1) 

Adding this result to those of the type I integrals yields a total contribution 

t_ 

(2ik - 3) 24y(y + 1) 

and hence the naive (52 correction to the reflection factor is 

02 [ ^c-Mt'-t)c-ik^) 1 + 5y + 4)(y - 1) 
J 2TT 2k (2ik - 3)24w(y + 1) 

KP = -W + 5y + 4 ) ( y - i y 
{2ik - 3) 24y(y + 1) 

In the next section we shall show that it is necessary to carry out a further finite 

renormalisation in order to make sense of this result. 
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3.6 Interpretation 

We now wish to test whether our answer obeys the reflection bootstrap equation 

(1.81). At 0(/? 2), this can be written for affine Toda field theory (taking K\ = 

KA + Kf + 0(/? 4) and SAB = 1 + SjJ + 0(/? 4)): 

K?(6) = Kr(0 + il)Kl(e-il)+K1(e + i l ) K r ( e - i l ) 

+ ^(d + i ^ s f i & e ^ f e - i ^ y (3.100) 

Here, we use subscripts to denote particle type. 

Let us assume that the quantum reflection factors for particles 1 and 2 are equal 

(and hence that i f f = K^2), as would seem sensible since they have equal classical 

limits and identical calculations for the 0((32) correction. Then it is found that 

the 0((32) correction (3.99) calculated above does not obey the reflection bootstrap 

equation. This would appear to be a very severe problem, since it would imply 

that the theory is not quantum integrable. However, let us consider adding a finite 

counter term of the form a/? 2$$, where a is some coefficient, into the boundary 

potential. I t can quickly be shown that this yields a contribution 

_ m P

2 / ^ e - M ' - O e - « & ( « + « ' ) 4 4 V / 3 V \ ~ l , (3.101) 
J 2TT 2k y(2ik-3)2 

Notice that this does not change the form of the propagator, but merely adds another 

contribution to the O{02) correction to K. Hence we have a freedom to add in such 

a counter term and change our 0((32) result by the according amount; 

v2 — 1 
iVSia—K 02. (3.102) 

y{2ik - 3) 2 V ; 

Suppose that we call our result (3.99) of the perturbative calculation / , and the 

correction (3.102) above ag. Now suppose that / + ag obeys the bootstrap. Then 

we can find a by rearranging (3.100), i.e. 

_ f(e)-K(e+q)f(9-z^-K(e-q)f(e+q)-K(9+ii)sfl(2e)K(e-q) 
a K(0 + i\)g{6 - i f ) - K{6 - q)g(e + i f ) - g{9) 

(3.103) 

If this gives a as a number (as opposed to a function of y) then we know that we 

can satisfy the reflection bootstrap equation in this way. Moreover, it is clear that 
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at most one such a exists, and thus we cannot obtain more than one consistent 

reflection factor by means of different boundary renormalisations. In fact, using our 

P2 correction (3.99), we find a = which gives our total 0(P2) correction (i.e. 

/ + ag) as 

" 3 < ^ - 1 ) -p2. (3.104) 
4y(y + l)(2ik-3)2 

This correction satisfies the reflection bootstrap equations (3.100) to second order 

in /?, and is the main result of this section. 

The idea that a finite renormalisation of the boundary parameters Ai is necessary to 

retain integrability of affine Toda field theory is not new. Penati et al. [83,84] 

have discussed the renormalisation of a2^ and their results agree qualitatively with 

those presented here. 

We can now move on to considering the possible candidates for the exact form of 

the reflection factor. A possible exact reflection factor (postulated in [46] for the 

boundary condition being considered here) which has the correct classical limit, 

obeys the reflection bootstrap equation (1.81), and appears to be minimal, is 

( 3 - f ) 
(1 - f )(2) 

with B(P) as defined in (1.49). 

Kq = — g 2 J _ (3.105) 

In fact, as we saw in section 1.5.3, further evidence that this is indeed the cor

rect reflection factor was provided by Gandenberger [53] using a method based on 

analytically-continued breather reflection matrices in the imaginary-coupling the

ory. Moreover, we find that expanding (3.105) in powers of P gives the same 0(p2) 

correction as (3.104) above. Thus our perturbative answer is in agreement with the 

exact reflection factor (3.105) found by other methods and is a highly non-trivial 

check of these results. 

There are of course other exact reflection factors which obey the bootstrap, have 

the correct classical limit, and the same 0(P2) quantum correction. These can be 

obtained by multiplying the minimal K matrix by CDD factors. We saw examples of 

such factors in section 1.5, but they will be examined in greater detail here. Similar 

ambiguities occur for the bulk S-matrix, where they have been resolved by a careful 
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consideration of the poles on the physical strip that extra factors would introduce. 

Such an analysis applied to the reflection factors is beyond the scope of the present 

work. Instead, we will analyse the possible forms of such ambiguities and discuss 

their duality properties in the following section. 

We shall consider additional factors of the form 

( 1 - C ) ( 1 + C ) ( 2 - C ) ( 2 + C) 
F c ' D - (1 - D)(l + D)(2 - D)(2 + D) ( 3 - 1 0 6 ) 

where C and D are two functions of /3 which tend to the same limit as j3 -> 0. This 

has classical limit 

l i m F c z > = l (3.107) 

and satisfies 

FC,D(0) = FC,D (e - t | ) FC,D (e + i | ) (3.108) 

so that a new candidate reflection factor, formed by multiplying any previous solu

tion by FC>D, will also be a solution to the reflection bootstrap equation. By choosing 

the functions C and D carefully we can ensure that the 0((3) term vanishes (needed 

in order to fit with perturbation theory which predicts that there be no 0(0) term). 

The necessary condition is 

> = > <M»> 
We can also make the 0((32) term disappear. For the case where C and D -» 0 as 

P —> 0, (3.109) is a sufficient condition. 

For simplicity, let us consider only cases where C and D take the form | ± f where 

n is an integer. Whilst there are of course many other possible forms for C and D, 

it is blocks of the type ( | ± - | ) which are most commonly postulated to make up the 

exact reflection factors. For these cases we have ^-(0) = ^ ( 0 ) = 0 and find that 

there are four fundamental factors from which all others can be generated. These 

are given in table 3.1. 

Hence we are free to multiply our previous solution (3.105) by any prefactor consist

ing of powers of F 1 ? F 2 , F 3 or F4, in order to give us a new solution to the reflection 

bootstrap equations (1.81). Moreover, if the prefactor consists only of powers of f \ 

and F3 then this new solution will not be distinguishable from our previous solution 
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Factor Form 0(/3 2) term 
Classical limit 

of dual 

* i = F ( f , 0 ) ( l - f ) ( l + f ) ( 2 - f ) ( 2 + f ) 0 UW2) 
F _ m .o) ( f ) ( l - f ) ( l + # ) i ( 2 - f ) ^ ( 2 + S ) ( 3 - f ) 1 

2 F(2+f,2) 2(y«-l) 1 

F - Flt + 4.1)' 
( * - f ) ( * + f ) ( i - f 0 ^ - F&+%3) 0 

F 4 = F ( § + f , | ) (*)(!)*(§) -iy(l,'J-l)x/3 i F 4 = F ( § + f , | ) 
(* + #)(*-?)(? + * ) (* -*) 6 ( ^ - y 2 + l) i 

Table 3.1: Factors with which to generate new solutions to the reflection 
bootstrap equations. 

by its O{02) correction. The differences between these solutions leads us naturally 

into the question of duality. 

3.7 Duality 

As we saw in section 1.3, the affine Toda theories possess a non-perturbative weak-

strong coupling duality, whereby the bulk 5-matrix is left invariant under /3 —> in/(3. 

I t is plausible that the theory with a boundary shares this symmetry. One way that 

this could be realised is if K itself is self-dual; we saw in section 1.5.1 that this was 

advocated by Kim [74]. It is also possible however that the symmetry is realised in a 

more subtle manner, and that under duality a theory with one boundary condition 

is mapped to a theory with a second boundary condition. 

Let us suppose that the correct exact reflection factor is that given by (3.105). The 

dual of this minimal reflection factor is 

( 3 ' n o ) 

First, note that this obeys the reflection bootstrap equation, as i t clearly must as 

the scattering matrix S is self-dual. We can now ask whether this corresponds to 

any known reflection factor. Since the classical limit is unity, this cannot correspond 

to the reflection factor associated with any of the boundary conditions (1.58), but 

i t could correspond to the reflection factor associated with the Neumann bound

ary condition. Kim's perturbative calculation for the Neumann boundary condition 

which we reviewed in section 3.2 determined an 0(/? 2) correction to the classical 



3 The quantum reflection factor of a2^ affine Toda field theory to 0((32) 94 

reflection factor (3.19) which is in agreement with (3.110). Kim, however, concen

trates on the assumption that the reflection factor must be self-dual, and hence 

proposes a different exact form from the above. However, it is interesting to note 

that these results are consistent with the and Neumann boundary conditions 

being related by a duality transformation. 

How would this conclusion be changed if we were to consider a non-minimal reflection 

factor? Suppose we multiply the minimal solution (3.105) by F l f F f 1 and F\F3, 

leading to the reflection factors 

(l + f ) ( 2 - f ) ( 2 + f ) ( 3 - f ) 
(1 )2 (2 )3 

(1)2(2)(3- f ) 
( l - f ) 2 ( l + f ) ( 2 - f ) ( 2 + f ) ' 

and 
( | ) 2 ( | ) 4 ( l ) 2 ( l + f ) ( 2 - f ) ( 2 + f ) ( 3 - f ) 

(3.111) 

(3.112) 

(3.113) 
a - m+!)(§ - f ) 2 ( i + f ) 2 (§ - ! x § + f ) ( i ) 2 (2 ) 3 -

respectively. These cannot be distinguished from each other and from (3.105) by 

the 0(/32) term alone. 

Look first at (3.111). I t is easy to see that this is self-dual. On the other hand, 

(3.112) transforms into 

mw±3i (3,14) ( f ) a ( l + f ) ( 2 - f ) ( 3 - f ) 

which in the classical limit becomes 

(1)(2)(3). (3.115) 

This is the classical reflection factor associated with the boundary condition where 

all the Ai = 1 i.e. + + + . Finally, taking the classical limit of the dual to (3.113) 

we obtain 

(2H2) (2) (<\U6) 
(1)(2)(3) ( 3 - U 6 ) 

which is the classical reflection factor associated with the — h + boundary condition 

and its cyclical permutations, as we saw in the previous chapter. Moreover, consis

tent reflection factors can be constructed whose duals do not correspond to any of 
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the integrable boundary conditions. So even given the 0 ( /? 2 ) correction to the clas

sical reflection factor, we still cannot conclusively determine the duality properties 

of the exact quantum reflection factors. 

We saw above that it is possible to suppose that the boundary conditions are related 

in pairs by a duality transformation. On the other hand, it may be that the reflec

tion factors are self-dual, or have no duality symmetries. Indeed, even if we knew all 

the 0(P2) corrections for all different boundary conditions, and could postulate con

sistent reflection factors which related these in pairs under duality transformations, 

it would still always be possible to generate self-dual reflection factors by use of F j 

and i*3 which would be equally valid. From another perspective, however, it seems 

that if we knew both the 0(P2) correction and the mappings between the various 

boundary conditions under duality transformations, we should be able to pin down 

the exact quantum reflection factor of the theory. 

What we have not considered is the use of more general C and D functions. By 

multiplying the minimal reflection factor by some FC,D with appropriate choices of 

C and D it may be possible to create more factors which fit with the perturbative 

answer. However we shall leave this possibility for future analysis. 

3.8 Conclusions 

The perturbative result above has been useful in that it has provided further strong 

evidence in support of the exact quantum reflection factor (3.105). This (and indeed 

the result found by Kim for the Neumann boundary condition [74]) is in agreement 

with the hypothesis that the and Neumann boundary conditions are related 

by a duality transformation. However, it should not be ignored that there exist 

other exact reflection factors, albeit non-minimal, which are also in agreement with 

our perturbative result, and have vastly different duality properties. 

In order to place further bounds on the form of the exact reflection factor one could 

consider extending the perturbative calculations to 0(f5A) or higher; indeed, this 

shall be attempted in the following chapter for the case of sinh-Gordon theory with 
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the Neumann boundary condition. It is expected that for this could involve 
prohibitively laborious computations. However, this would be expected to place 
strong constraints on the exact reflection factor since the ambiguities F\ and F3 
contain non-zero 0( /? 4 ) terms. Alternatively, it may also be possible to restrict 
possibilities for the reflection factors by considering the associated boundary bound 
states [85] and pole structures present, and this would be an interesting; possibility 
for future work. 



Chapter 4 

The 0(/34) calculation for 
sinh-Gordon theory 

4.1 Introduction 

In the previous chapter we saw that the calculation of the 0(/3 2) term in the quantum 

reflection factor of affine Toda field theory with the boundary condition 

still left questions unanswered regarding its exact form. In this chapter we aim 

to consider the next order calculation to see if this sheds further light on the non-

perturbative conjectures. Whilst it might have been interesting to continue with the 

calculation for theory, it would seem wise to first of all consider the simplest case 

to first of all get a feel for the techniques required. Indeed, it is found that the two-

loop calculation is considerably more difficult than the one-loop case. Therefore in 

order to try to render the calculation tractable we will consider here quantum sinh-

Gordon theory with the Neumann boundary condition. In this case perturbation 

theory is relatively simple for a number of reasons. Firstly, we still have a flat 

background solution (since CTQ = o\ = 0 in (1.60)) and thus again have no vertices 

of odd-order to consider. In addition, the Green's function takes the simple form 

(3.2), as the classical reflection factor is unity. Also, since the boundary potential 

5 = 0, then all vertices are located in the bulk region. 

However, this calculation is an interesting one to consider in its own right. It allows 

us to provide a check on the formula for the reflection factors suggested by Ghoshal 

97 
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[86]. There, the reflection factors of breathers present in sine-Gordon theory were 
determined. These can be analytically-continued to give a formula for the reflection 
factors of the sinh-Gordon particle. The result is 

K - M P - I X ' + f ) (41) 

where the functions E and F depend (in a way which has yet to be fully determined) 

on the boundary parameters. Furthermore, an analysis of the values of E and F 

was carried out in the specific case of the Neumann boundary condition. It was 

expected that in this case the reflection factor takes the simple form 

*=Wf (4-2) 

corresponding to E = 1 - f and F = 0. 

The calculation in section 3.3 (performed originally by Corrigan [77]) provided a 

perturbative check on these results to 0(f32). We extend this analysis to the next 

order to see if this gives us any further insight. 

4.2 The Calculations 

We saw in section 3.3 how this calculation was performed up to one-loop order. 

Hence we have already seen the Lagrangian (3.20) and the necessary expansion of 

the bulk potential as a power series in ft, given in (3.22). So we can now start the 

0 ( /? 4 ) calculation. There are four diagrams which contribute at this order; they are 

given in fig. 4.1. 

Before moving on to the calculations, let us write down the prefactors associated 

with each of these diagrams. These come from the combinatorial factors (which are 

calculated as usual by considering the Wick contractions) and the various vertex 

factors. We thus find that the prefactors for the four diagrams are -16, -16, — y and 

—2i respectively. 
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Figure 4.1: Types I, I I , I I I and IV diagrams respectively. 

4.2.1 The type I diagram 

Writing down the integrals in the usual way, we see that for the type I diagram we 

need to calculate 

/

0 roo 
dx\dxi \ dtidt2G(x,t;xi,ti)G(xi,ti]Xi,ti)G(xi,ti;x2,t2) 

-00 J — OO 
G{x2,t2;x2,t2)G{x2,t2;x',t'). (4.3) 

Substituting in the propagators (3.24), this becomes; 

r° r°° r d2pd2p'd2pid2p2d2p3 i i 
dxYdx2 \ dtxdt2 \ 

-oo J—oo J (27T) 10 p2 — 4 + it p'2 — 4 + ie 

_e-iw(ti-t)e-iw2(t2-ti)e-iw'(t'-t2) 
p2 — 4 + ie p\ — 4 + ie p2 - 4 + ie" 

^ik(xx-x) _j_ e - i f e ( i+n)^g i fe ' ( i ' - i 2 ) _|_ e-ik'(x'+xi)^eik2(x2-xi) _|_ g-iA:2(a:i +12)^ 

( l + e - 2 i * i a , 1 ) ( l + e- 2 < * s a i 2 ) . (4.4) 

As we would expect (since it is a tadpole type diagram) this integral contains di

vergences. To remove these we need to perform an infinite mass renormalisation. 

In fact, it is not too difficult to see that the counter-term required to remove these 

divergent parts is exactly that already included to regularise the 0 ( p 2 ) correction. 

In other words, if we denote the counter-term interaction (coming from the term 

I2(32<t>2, with I2 defined in (3.40)) by a cross, then the divergent parts in (4.4) are 

cancelled by contributions arising from replacing either, or both, of the bubbles on 
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diagram I by this cross. Since 

T d Z i d X o f ^P1^3 * 1 (l + e-KkiXi)(1 , e-2ik3x2) 

= f° d x i d x 2 f d Y , T 2 \ . 2 : • { e - ^ e - ^ - 1 
J-oo J (27r)4 p\-4 + iepl~ 4 + ie 1 

+ ( 1 + e -2 i* ,« . ) + ^ + e-2ifc 3x 2 ) j (4 5 ) 

then it is not hard to see that the last three terms on the RHS are removed by these 

contributions, and hence we are simply left with the finite part 

(27r)4 p\ - 4 + if.pl - 4 + ie' 

We are now merely left with the task of computing this integral. We use the same 

techniques as in section 3.2. By extending the range of the x\ and x2 integrals to 

the whole line we are able to generate delta functions in the momenta. We can then 

continue as normal to give 

Jj^L { f ±e-Mt'-t)e-ik(x>+x)\ fdki 1 

f° d x , d x 2 [ d y / P * \ , \ , e - « * , » , e - 2 t t , „ . ( 4 . 6 ) 
7-oo J (2TVY p2 - 4 + i e p i - 4 + ie 

1 1 
+ (4.7) 

/̂fc? + 4 ) / ( i f c 1 - f c ) 2 + 4 fci+4

( 

with the usual k = \Ju2 — 4. The first term in the second bracket generates elliptic 

integrals as well as pole pieces. We shall for the moment ignore such terms; they 

shall be treated separately in section 4.2.5. The second term can be computed using 

the usual contour integral, giving a contribution to the reflection factor of 

- T ^ i f i ( ^ 2 + 8 ) + ' V ( 4 - 8 ) 16a;2 \2k2 kJ 

4.2.2 The type II diagram 

The required integral for this diagram is 

/

0 rOO 
dxidx2 / dtidt2G(x,t;xi,ti)G(xi,tl;X2,t2)G(xi,ti;x2,t2) 

-oo J —oo 

G(x2,h;x2,t2)G(xut1]x',t'). (4.9) 

This integral contains an infinite piece which is again removed by the 0 ( f i 2 ) infinite 

mass counter term, this time by replacing the bubble by a cross. 

http://if.pl
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Using the normal integration techniques again, we can obtain; 

f d k i _ J - i f 1 1 1 

Notice that this equation appears to contain a double pole in the external propa

gators. We can see this if we simply substitute in the poles k = —k' = ±k in the 

second integral. We therefore expect to remove this double pole with a finite mass 

renormalisation. We saw in the previous chapter that such a renormalisation adds 

a term of the form 

„. f cPpdk' 
-2ia / . - -

J ( 2 T T ) 3 p 
-tw(t'-t) 

>2 - 4 + it u)2 - k'2 — 4 + ie k + k' + ie 

(eikx + e-ikx)(eik'x' + e"Mx') (4.11) 

or, equivalently, 

r d2pdk' i i , - iw(t'-t) 
~ % 0 l l (2TT)2 p2 - 4 + ie u2 - k'2 - 4 + it ( + } e 

(eikx+ e-ikx)(eih'x'+e-ik'x') (4.12) 

to the 0(P4) correction. Note that (4.11) is very similar to our case above — we 

must simply take 

1 rdki 1 1 f l 1 1 
2 I 2TT JkJ^lh + i t \ 2 + fiT^l] 

to cancel off the double pole in (4.10). 

In actual fact, the a given above can be calculated and is found to give zero; no 

finite mass renormalisation is in fact required. This is exactly as we expect since 

such a term is not required by the renormalisation for the whole-line. However, for 

the purposes of our calculation it is easier to add in such a (zero) counter term to 

permit some cancellations in the integrand. 

We can now substitute in the values of k and k' at their poles. The cases A; = k' = ±k 

give 
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J P _ f [ 1 c-iu(t'-t)r-ik(x'+x)\ f dk\ 
2k2 [J lit 2k J J 2TT ^ - k + ie 

+ r-„ / r = ) • (4-14) 
uyJkl + 4 sjkl + ^ i h - k ) 2 + 4) ' 

Note that the second term in the second bracket again generates elliptic integrals, 

whilst the first term is a branch cut integral — these shall both be discussed later. 

However, we will look here at the poles in ki present in the latter. In fact, we will 

see in section 4.2.6 that in order to calculate the branch cut integrals it is easiest to 

make the integrand even in k\. So the first term becomes 

f ^ _ L e - M f - t ) e - i * ( x ' + x ) l f d k l 1 

4k2 \J IK 2k )J ^ u j ^ + l \ k x - k + ie kx + k - i e ) 
(4.15) 

which gives a pole contribution of 

P 4 

4uj2k2 
(4.16) 

We can find the contribution coming from the cases k = — k' = ±k by Taylor 

expanding about k = —k'. This yields; 

>±L I f^Le-Mt'-t)e-ik(x'+x)\ f d h 
4^ V 2vr 2A; J J 2TT \ Jk* + i f a + ip) 

1 (4.17) 
(kf + Qfa + ip)2 {k2 + 4)2{h + ip)2 j ' 

The first term in the above contains a branch cut integral. This can be worked out 

in the usual way, giving 

' P > (4.18) 
16irk 

The other terms only contain pole contributions. These give 

64A;' 
(4.19) 

Indeed, we can back up this technique by considering the k = ±k' terms from the 

start and performing the calculation with no renormalisation or Taylor expansions. 

This of course yields the same results, as we would expect. 
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4.2.3 The type I I I diagram 

The integral corresponding to diagram III is 

32/?4 r° r°° 
— / dxxdx2 / dtidt2G(xtt]Xi,t1)G(xi,ti;x2,t2)G(xl,tl;x2,t2) 
O J — OO J — OO 

G(xi, tu x2, t2)G(x2, t2\x', t'). (4.20) 

This diagram does not contain any tadpole type parts, and no infinite renormalisa-

tion is required this time. We proceed as normal until getting two terms: 

_ 1 6 ^ 4 f d2Pdk' i I p-Mt'-t) (Jkx, -ikx)( ik'x', -ik'x' \ 

3 J ( 2 T T ) 2 p 2 - 4 + i e u 2 - k ' 2 - 4 + ie K K } 

d2pid2p2d2p3 i i i 
(2?r)4 p\ - 4 + iepl - 4 + %tp\ - 4 + ie 

6(ki + k2 + k 3 - k')5(ui + oj2 + UJ3 - u) (4.21) 

8{k + k') j 

and 

J (2TT)3 p2-4 + iep2

2-4 + iepl-4 + i e d [ k i + k 2 fc3 * } 

6 (hi + k2 + k3 + k)5(ui + U 2 + U J 3 - U ) . (4.22) 

The first term clearly appears to contain a double pole in the external propagator. 

To cope with this, we should expand 

( 2 T T ) 4 p2-4 + iepl-4 + iepl-4 + ie v 

S(ui + UJ2 + u)3 — u) (4.23) 

/ 
around k'2 = k2 (the integral is even in k') as we did for the type I I I diagram of a 2 ^ 

theory. The zeroth order term in this expansion will then, assuming it turns out 

to be independent of k, be cancelled by a finite mass renormalisation (like (4.12)) 

whilst the first order will be removed by a wavefunction renormalisation. Higher 

order terms in the expansion are irrelevant since they integrate to zero. We have 

yet to explicitly show that these two integrals are indeed independent of A:, but 

this is expected to be the case. As considered in section 3.2, we can argue this 

by considering the renormalisation which keeps the correct form of the whole-line 
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propagator. In this case it is easy to show that the whole-line contribution to the 

internal integrals of diagram II I is exactly double that of expression (4.21) and 

thus the counter-terms required to renormalise the half-line theory are exactly those 

required by the theory on the whole-line. 

Now let us consider the second integral (4.22). Continuing in the normal way, we 

obtain 

d2pdk' 
J (27r) 3 p2 - 4 + ie u2 - k'2 - 4 + it K M 

/ dki f 1 i 2 
+ 27T [UIUJ2 (UJ — UJ\ — UJ-I)2 —u)2+i6 U\CJ (OJJ - Co — OJ)2 — ( J 2 + ^ 

+ _ 1 i 1 
UJ\U (tJi + CJ + u)2 — Q2 + 16) 

where for convenience we have used the notation 

l(k + k')2 

v = \jv" ' 4 " ' + 4, ux = yjk\ + 4 and u2 = ^(^ 2

 k - k^j +4 . (4.25) 

The first term in the above is in part elliptic. We need to separate this part from 

the normal branch cut parts in an analogous manner to the previous chapter. 

The other terms contain branch cut integrals and pole contributions. We must be 

particularly careful in looking at the poles in the integrand in order to determine 

on which side of the real line they lie. Doing this we find the contributions coming 

from poles at k\ = ±.k and k\ = 0 to be 

- J p < 2 W > < 4 - 2 6 > 

whilst there is also an extra contribution, arising from a pole at k\ = 2i in the first 

term of (4.24) when k = k' = ±k, which gives 

i/34 

Su2k 

In addition, this term also contains the integral 

i/34 rdh 1 

(4.27) 

2ukJ 2TT (fc2 + 4)§ 

which (by putting k\ = 2sinh?7) gives the result 

iP4 

f dk\ l , 
/*F«rnir (4-28) 

(4.29) 
Snuk 



4 The 0(/34) calculation for sinh-Gordon theory 105 

4.2.4 The type IV diagram 

The required integral here is 

/

0 poo 
dxx / dtiG(x,t\xi,ti)G(xi,ti]Xi,t{)G(xi,ti;xi,ti) 

-oo J — oo 
G(xi,ti,x',t') (4.30) 

which becomes 

r° f°° J f d2pd2p'd2pid?p2 i i 
/

U fOO r 

dxx \ dh / 
-oo J—OO J 

oo 7-00 J (27r) 8 p2 - 4 + iep'2 - 4 + it 

e-iu{ti-t)e~iw'(?-ti) ^eik(xi-x) _|_ e~ik(x+n)^ I % 
Pi — 4 + it p\ - 4 + it 

^'(z'-ari) _|_ e-ifc'(x'+xi)^ _|_ e-2ifcia;i^j _j_ e-2ifc 2H) (4-31) 

when the form of the propagator is used. 

To cancel the divergences we must add in two extra infinite renormalisations, this 

time at 0 ( / ? 4 ) . In a similar way to section 4.2.1, let us write; 

r° r d2p\d2p2 i i 
7-oo J ( 2 T T ) 4 p\-4 + i t p \ - 4 + it l v / v J } 

= f° d x , f ^P^P2 1 * (c-2ikrxic-2ik^ 1 

J-co J (2?r)4 p\ -4 + itp2

2 - 4 + ie <• 

+ (1 + e ~ 2 i k l X l ) + (1 + e ~ 2 i k 2 X l ) } . (4.32) 

The last two terms on the RHS integrate to the same value, and are cancelled by a 

renormalisation of the </>4 coefficient, say I^cf)4. In fact, the coefficient is 

1 f d?pi i 
{2n)2p2 -4 +it' 

It is interesting that 

3 / (2n)2p2-4 + it { ' 

h = \h- (4.34) 
b 

so that these coefficients of 4>2 and </>4 are in the same ratio as those in bulk sinh-

Gordon potential 

V = 4 ( e ^ + e _ / V ** - 2). (4.35) 

The other renormalisation required (to remove the second term of the RHS of (4.32)) 

is one of the <j)2 coefficient. This time we must add a counter-term J 2 / ? V 2 , say, where 

J, = I ' * . , (4.36) 
J (27r) 4 p\- 4 + i t p l - 4 +it y ' 
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Then standard techniques give us: 

foLe-Mt-t)e-ikV+x)\ f *h i 
8k \J 2?r 2A; U 2TT 

1 1 
+ 1 > 

_ yjk\ + 4yJ(h - A;)2 + 4 fc? + 4 ^ ' 
(4.37) 

Again the first term is elliptic, and will be discussed in section 4.2.5. The second 

term is simple to analyse, giving a contribution to K of 

i/34 

32k 
(4.38) 

4.2.5 Elliptic Parts 

Consider a k\ integral of type 

/ ^ - A r / ( * i ) (4-39) 
J 2lT U)\U>2 

where the function f(ki) only contains poles in k\, and we use the notation 

ux = \fkl + 4 and o?2 = \J(k^ - k ) 2 A . (4.40) 

Putting ki —> iy in the above allows this to be written as the sum of elliptic integrals 

along the two branch cuts, and pole parts from f(ki). The contour used is shown in 

fig. 4.2. In addition, any infinitesimal parts present in the poles of f(k\) (at least in 

the cases we shall be considering) will be irrelevant to the calculation of the elliptic 

branch cut integrals. Using this, we show below that the elliptic integrals from the 

four diagrams all cancel. 

From the first diagram, we have 

z/?4 rdki 1 1 

k J k J 2?r UIU2 u2 - {k- 2fci)2 - 4 + ie 

Writing this as partial fractions and shifting one of the /ci integrals, we obtain 

i/34 rdkxJL 1 

2k2 J 27r ujiu2 ki-k-ie 

This gives a pole contribution (integrating around the upper half-plane) of 

Aukz 

'Z[d±J^ 1 . (4.41) 
2k2 J 2TT - k - i e 
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X pole 

Branch Cuts 

Figure 4.2: Integrating around the two branch cuts in the upper half-plane. 

Similarly from the second diagram, we have 

^ / g ^ L [ , (4.43) 

4k2 J 27r uito2 ki- k + ie 

which gives a zero pole contribution. Putting the infinitesimals in the above inte

grands to zero it is clear that these two elliptic parts exactly cancel. 

Diagram II I is more difficult to analyse. We must split off the elliptic part from 

the normal branch cut parts. It can then be shown that the elliptic part, ignoring 

infinitesimals, becomes 

% I (4.44) 

This exactly cancels with the elliptic part from diagram I V , which is minus the 

above. These integrals contain no pole parts to consider. 

4.2.6 Branch Cut integrals 

These appear from diagrams II and I I I . To find them we separate off the parts which 

are odd in u>i (in the case of the first term of (4.24) we require the terms which are 

odd in either u\ or u2\ we can perform a change of variables which switches the 



4 The 0(P4) calculation for sinh-Gordon theory 108 

labels 1 and 2) and make all integrals even in k\. With a little manipulation, we 

find a total from all diagrams of 

r dk, _ 1 J _̂ M aM 

^ 2 7 r 0 ^ + 4 (*i -*)(ifci + fc) l2wA; 8k) 

which integrates along the branch cut to 

tfV+W, (4.46) 
4o;2/c2 

This does not appear to be a very satisfactory result. It is not periodic in 9 and 

hence is not a desirable term to remain in the 0(/34) correction. 

4.3 Results 

Let us now proceed to sum the above contributions to the 0((34) correction. The 

contributions to K fall into three distinct parts. Firstly, there is the real part. 

Contributions to this term come from (4.8), (4.16), (4.26) and (4.42) to give 

t—r- (25u2 + 8u + 60). (4.47) 
32w2fc2 

This real part causes us problems, as we shall shortly see. 

Secondly, there is the imaginary part which contains n in the denominator. There 

are two contributions to this term, given in (4.18) and (4.29). These add up to give 

i(2 + uj) 
(4.48) 

Finally, the third distinct part of the answer is that which is imaginary but has no 

7T denominator. Adding the terms from (4.8), (4.19), (4.27) and (4.38), gives 

2l__jPL + iP_^ ( 4 4 9 ) 

8u2k 16uj2k 64k 32k 

which becomes 

In addition, we recall that there is also the undesirable 8 contribution (4.46) to this 

part. 
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We can write the total answer therefore (adding all the contributions (4.47), (4.48) 

and (4.50)), plus the non-periodic piece (4.46) as a total 0(/34) correction of 

Let us consider the properties we expect the result to have. As in the previous 

chapter, unitary implies that the reflection factor be a pure phase, e t x , where x is a 

function of /? 2 . So putting 

X = Xo + P2X2 + P\A + 0(P6) (4.52) 

we expand 

e* = e*»(l + i(32

X2 + PiiXA ~ \ x l ) + 0 ( /? 6 ) ) . (4.53) 

Comparison with the classical result tells us eXo — 1 whilst the 0( /? 2 ) result from 

the previous chapter, (3.51), says 

X2 = - ^ - (4-54) 

Hence we expect that the real part of the 0 ( /? 4 ) term be given by 

/?4 {u + 2 ) 2 

2 16w2fc2 

which is the real part in the first bracket of (4.51). Hence the extra real contribution, 

found in the second bracket of (4.51), causes problems as it spoils this property of 

the result. 

Let us consider Ghoshal's postulated reflection factor (4.2). Expanding this as a 

power series in @ we find that this proposed exact reflection factor has exactly 

the same 0((3A) correction as that part of our perturbative result (4.51) contained 

within the first set of brackets. We may note here that the imaginary parts (both 

with and without the IT denominator) of our perturbative answer and Ghoshal's 

exact reflection factor are equal, modulo the non-periodic piece proportional to 6. 

(4.55) 

4.4 Renormalisation 

We saw above that our result is not in agreement with the postulated exact reflec

tion factor. In section 3 we obtained a superficially similar result, yet we were able, 
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by means of a finite renormalisation of the boundary potential, to obtain an answer 

which satisfied the boundary bootstrap equation and fitted with one of the postu

lated exact reflection factors. In the present case, there is no boundary bootstrap 

equation to help us but it worth looking at the possible renormalisations which can 

be undertaken and their effect on the perturbative answer. 

Let us briefly summarise the renormalisations we have used so far. Infinite mass 

renormalisations have been used to control the divergences in the integrals. These 

have turned out to be of just the forms we would expect. In section 4.2.2 it initially 

seemed as if some extra finite mass renormalisation was required — however, this 

turned out to have zero coefficient. In addition, some finite mass and wavefunction 

renormalisation seem to be required in the computation of the type I I I integral. The 

coefficients of these have not been determined as they are the same as the whole-line 

case. 

However, we have not considered any renormalisations of the boundary potential. It 

is plausible that, as in section 3.4, these could have an important part to play. We 

will examine here what would happen in the present case if such a renormalisation 

were included. 

Let us consider a renormalisation of the two boundary parameters, <r0 and o\. In 

fact, it is simplest to look here at the effects of a renormalisation which retains 

the equality of these two parameters. We shall calculate the contributory terms 

from such a renormalisation using a method suggested by Bowcock. Clearly the 

physical meaning of a reflection factor must be independent of the renormalisation 

scheme used. In other words, two reflection factors — one with and one without 

renormalisation — can be viewed as the same assuming that the former contains 

the "true" coupling constants of the theory while the latter contains the "bare" 

coupling constants. So if we write the "bare" reflection factor as Kbare{o) then the 

renormalised reflection factor, KTen(o), is given by 

Kren{o) = K 6 o r e(a + /i/32 + C/34 + 0(/3 6)) 

= KbU°) + ^ W 2 + CP4) + \^PSP4
 + O(0«) (4.56) 

assuming of course that Kbare (and the boundary parameter a) is a function of ft2. 
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Hence we can easily find the extra contributions to the reflection factor given by 

such counter-terms if we know the dependence of the reflection factor on a at lower 

orders. From section 3.3 we know that, up to O(02) (and with the condition that 

a > 0 ) ; 

r . / \ ik + 2a iik + 2a f A;2asin(a7r) 1 1 ] , . 
KbaTe(a) = — - — I — -—- + — )B2. (4.57) 

V 1 ik-2a kik-2a\ k2 + 4a 2 4 2u> J V ; 

So the 0(f32) counter-term contribution to sinh-Gordon theory with the Neumann 

boundary condition is given by 

CT=0 oa ik - 2a da 
„0 d ik + 2a 

»P = »P2 = - t ^ 2 . (4.58) 
<T=0 ^ 

Similarly the 0(/? 4) term can be found from (4.56) and is 

+ - 5 ^ } ^ . (4.59) 

These terms could equally well have been calculated explicitly by adding in appro

priate boundary counter-terms and considering their associated Feynman diagrams. 

However this approach lets us calculate all possible renormalisations in a simple and 

succinct way. 

The real part of (4.59) is 

-^T^-h2^ (4-60) 
w r k* 

whilst by adding in such a renormalisation the 0(/32) term of the reflection factor 

has become 

Auk k 

Hence if the non-renormalised solution obeyed the unitarity condition then (4.60) 

is exactly the extra real part we require to maintain unitarity, for any value of fi. 

Conversely, we cannot obtain a solution which obeys unitarity from one that does 

not by means of such a renormalisation. 

I t would be interesting to consider possible renormalisations which do not retain the 

equality Co = o\. However, in this case we do not know the general form of the 

reflection factor up to the 0{j32) correction, so this possibility is not one which can 

be addressed at present. 
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4.5 Discussion 

The result found above was not in agreement with several expected properties of 

the 0{PA) correction. Firstly, the real part was not of the correct form to agree with 

unitarity. Secondly, the correction contained a term proportional to 6. This does 

not obey the required periodicity property of the reflection factor. Whilst a similar 

term exists in the reflection factor of supersymmetric sinh-Gordon theory [88], it is 

the opinion of the author that in the present case we can only conclude that some 

subtlety has been missed by our calculation. At present the reason for this is not 

known. 

Some possible, i f unaesthetic, explanations may be given. The discrepancy may 

arise if some extra renormalisation of the theory needs to be undertaken. One idea 

might be a renormalisation of the boundary potential using derivative counter-terms, 

which give momentum dependence, although these seem both difficult to justify and 

unlikely to generate the required contributions. We also noted in the previous section 

that we have not considered renormalisations which do not retain the equality of 

the two boundary parameters OQ and U\. This would imply some breaking of the 

TL-i symmetry by the quantum theory. If this were to occur, it would not only imply 

the existence of boundary counter-terms of odd-order in the field, but may also 

mean that the vacuum field configuration undergoes some small perturbation near 

the boundary. This could cause the existence of position dependent bulk counter-

terms. A more detailed analysis would be required to see if this could indeed occur. 

Although these ideas may not seem attractive, they do at least give some areas for 

future study. 

We noted before that the imaginary part of our perturbative answer was the same 

(disregarding the piece proportional to 6) as that of Ghoshal's exact reflection factor. 

This may hint that the full perturbative answer is in agreement with Ghoshal's 

result, though this is of course far from conclusive. 

I t is perhaps interesting to know, however, what we could deduce had a feasible 

0((34) correction been produced by the calculation. Hence for the purposes of the 

remaining discussion, we shall consider what a perturbative result in agreement with 
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GhoshaPs factor (4.2) would have told us. However, we should not forget that we 

have not (perhaps as yet) obtained such a correction. 

Consider (4.1). Putting 

E = eo + eit+e2(ty + o^) and F = /o + h g + / 2 ) ' + 0(/3 6) (4.62) 

and looking at the classical limit shows us that in the Neumann case we must 

have e0 = 1 and /o = 0. In fact, it is expected [87] that, for the flat background 

case, F = 0 to all orders; however we shall here leave F unconstrained. Then our 

perturbative result for the 0(f32) order contribution tells us that 

! f c ^ + i e i = _M_l?/1 (4.63) 
Auik 2k Auk k 

or 

e i = _ 1 _ 8/x. (4.64) 

So we proceed to the next order. The real part of course satisfies the equations 

automatically so no constraints are placed on the coefficients of E and F. Let us 

consider then the imaginary part. This is found to be 

%k -{2fl - 1) + - ^ H 2 e 2 - 1) + 2). (4.65) 
64w 2 V IGnuk 

Comparing this with the contribution which agrees with Ghoshal, plus the renor-

malisation pieces 
ik Ai ^ i(2+u) i ,A 

- t < + —„—r + -tV ( 4 - 6 6 ) 

yields the results 
64w2 k 16nuk irk 

„2 128a;2C , , 
/ , 2 = ^ and e2 = 1 + 8fi. (4.67) 

k2 

No information is given about / 2 by this order in perturbation theory. Note that the 

first expression gives fi as a function of 9. This is not an attractive possibility as 

we would prefer all 9 dependence to reside implicitly in the block forms (x). Hence 

we assume that the only acceptable solution is to take £ = 0. 

Note that the values for e\ and e2 are consistent with E of the form 

£ = l - ( l + 8 / i ) - . (4.68) 
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The interesting point to note here is that we cannot distinguish between the pos

sibilities for the boundary renormalisation fj,. Whilst fx = 0 is the most attractive 

option, and corresponds to the postulated exact Neumann reflection factor (4.2), 

there would be no reason from the perturbative point of view (at least to 0(/? 4)) to 

choose this result. 

4.6 Duality 

We now turn to discuss in this section how the various reflection factors present in 

the theory might be related under a duality transformation. This was considered at 

length in [77] but no solution in which these boundary conditions were related was 

found. In particular we aim to draw attention to the possibilities provided by the 

boundary renormalisations and their effect on duality properties. 

The dual of the Neumann reflection factor (4.2) (given by sending B —> 2 - B as 

before) is 
lo _ 

^ - (4.69) ( 2 - f ) 
( l - f ) ( l ) 

which, as shown in [77], has the same classical limit as the reflection factor belonging 

to the cr = l boundary condition. But how are the other values of o related under 

a duality transformation? Remember that in section 3.3 we determined the O{02) 

corrections (3.51) and (3.52) to the sinh-Gordon reflection factor. Consider also 

the extra contribution which appears if we include some finite renormalisation of 

the boundary potential. From (4.56) we know that the contribution from such at 

counter-term at 0(/? 2) is 

9 i U 2 V = . (4.70) 
do ik - 2CT (ik - 2a)2 

Addition of this term to (3.51) (i.e. the case a > 0) yields 

1 i \ k2 (a + .Jf , ) sin(a7r) 
— — - - ) + — ^ — } . (4.71) 

As we did in the previous section we can use (4.71) to find the expansions of E and 
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F in (4.1). To 0(/? 2), F — 0 but we can show that 

E — 2a- (a + - ^ - ) f + 0(/? 4). (4.72) 
\ sin(a7r) J 2ir 

If we assume that p only appears as part of the function B then we can guess 

J5 = 2 a - ( 2 a + - ^ — ) ^ . (4.73) 
\ sin(a7r) / 2 

Of course, // can be a function of a so let us write 

E = 2a - (2a + 2a(a)) — (4.74) 

where a(a) = . Y ,. 
\ 1 sin(a7r) 

This gives us added scope for trying to work out how boundary conditions can be 

related under duality transformations. Let us first assume that Ghoshal's formula for 

the reflection factor for the Neumann boundary condition is correct, or equivalently 

that a ( | ) = 0. Moreover, we expect that if we perform two duality transformations, 

we return to the first reflection factor. The first dual (denoted by a star) gives 

E* — 2a- (2a + 2a(a)) (l - = - (2a{a) - (2a + 2a ( a ) )y ) (4.75) 

whilst the second clearly returns this to its original form. Now let us suppose that 

(4.75) is of the same form as (4.74). Clearly for this to be true we require 

a(a(a)) = a; (4.76) 

a function which is its own inverse. One example of a simple function which obeys 

these criteria is 

a(a) = \~a. (4.77) 

This would give 

E = 2a - y and E* = - ((1 - 2a) - (4.78) 

and hence the boundary condition dual to a would be a* = ^ — a. This duality is 

shown in the region 0 < a < \ in fig. 4.3. 

Similarly, for the cases a < 0, we can obtain 

£ = 2 a - ( 2 a - 2 + 2a(a))— (4.79) 
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i a 
0 1/2 1 

Figure 4.3: One example of how the boundary renormalisation allows us 

to relate the integrable boundary conditions of sinh-Gordon theory under a 

duality transformation. 

with the dual 

E* = - (2a{a) - 2 - (2a - 2 + 2 a ( a ) ) . (4.80) 

Now we require the condition 

a{a(a) - 1) = a + 1. (4.81) 

Possible examples here would be 

a(a) = a + l , (4.82) 

which makes all these boundary conditions self-dual, or 

a(a) = - a + £ (4.83) 

which gives the duality structure as a* = £ — 1 — a where £ is some constant. It 

might seem sensible to put £ = | so that the function a(a) is continuous across 

the Neumann boundary condition. This would mean that a* = — | — a = § — a. 

Such duality is shown in fig. 4.3. However, the duality properties of the a = — 1 

boundary condition remain unexplained as this would imply it to be dual to the 

Neumann case, which is already dual to a — 0. There are of course many other 

possible ways in which the duality relations could hold; we only mention one here 

as an example. 

I t is beyond the scope of this discussion to consider whether any of these dual

ity structures is consistent with the physical properties and other known facts of 

sinh-Gordon theory. However, it would be particularly interesting to compare the 

possibilities suggested by this section with the recent work of Corrigan and Delius 
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[87], who use a different method to give insight into the renormalisation and duality 

properties of sinh-Gordon theory. Their work suggests that 

under duality transformations. In addition, the classical limit of every dual is — ̂ > 

which is the classical reflection factor associated with the a = 1 boundary condition. 

In this chapter we have tried to conduct a check of the validity of the exact reflec

tion factor for the Neumann boundary condition of sinh-Gordon theory proposed 

by Ghoshal. However, we were unable to determine an 0(/3 4) correction which was 

consistent with the physical properties expected. I t would therefore be of great 

interest to know why this is the case. In addition, an analysis of the possible renor

malisations and their effects on the duality properties of the theories was conducted. 

This generated some interesting possibilities which may warrant further investiga

tion, particularly in the light of new investigations into sinh-Gordon theory and its 

duality. 

B 
E = 2a 1 (4.84) 

and hence the dual is E* = 2a-|. Therefore the boundary conditions are not related 

4.7 Conclusions 



Chapter 5 

Conclusions and further work 

This thesis has been concerned with various aspects of the reflection factors of 

a\}) affine Toda field theory. A systematic methodology has been used; first the 

vacuum solutions of the theories with various boundary conditions were found, before 

considering the classical reflection factors and finally the quantum reflection factors. 

For the study of the latter, the approach taken has been to use perturbation theory 

to calculate the low-order coupling dependence of the reflection factors. This allows 

us to provide some kind of a check on work proposing exact reflection factors based 

upon more sophisticated yet conjectured principles. 

Many interesting results have been thrown up by the present work. Firstly the vac

uum solutions found in chapter 2 were unexpected in their complexity yet precisely 

covered all the integrable boundary conditions. I t would be interesting to see if 

other techniques generate the same background solutions and if the 'exceptional' 

solutions can be understood in a simple way. We also saw that the non-existence of 

classical scattering solutions for certain boundary conditions was predicted. 

In addition, the necessity for a renormalisation of the boundary potential in chapter 

3 to preserve the integrability of theory with the boundary condition 

was in agreement with the work of Penati et al. For sinh-Gordon theory, studied 

in chapter 4, such renormalisations may have the scope to change the duality prop

erties of the theories. The work there also suggests that looking at higher orders 

in perturbation theory may not pin this ambiguity down, though this would be an 

118 
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interesting area for further work. Indeed it would also be interesting to consider the 

renormalisation of sinh-Gordon theory with general symmetric boundary conditions, 

and any restrictions imposed by higher-order calculations. There have been recent 

conjectures concerning the dependence of the reflection factor on the boundary pa

rameters which could be checked by perturbation theory. This is a matter for future 

work. 

Another area for further study would be the duality structure of general theories. 

For i t is expected that under a duality transformation the various boundary 

conditions are related but as yet this structure has not been conclusively determined. 

Proceeding to the next order in perturbation theory would be expected to shed 

further light on this. However, work by Corrigan and Delius seems to suggest that 

for sinh-Gordon theory, the integrable boundary conditions are not related by duality 

transformations. Again perhaps work on higher order perturbation theory might add 

weight to this result. 

We also saw in chapter 4 that perturbation theory did not predict an 0(/? 4) term in 

the quantum reflection factor which was in agreement with the physical properties 

expected. Suggestions were given there as to how this problem could be tackled. 

I t would seem that there is much scope for further work in all these areas before 

we can fully determine these subtle properties of affine Toda field theories on the 

half-line. 
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