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Denitrification within riverine systems of North-East England 

A thesis submitted by Sarah Pattinson for the degree of Doctor of Philosophy in the 

University of Durham, England, May 1999 

ABSTRACT 

This study was undertaken to investigate denitrification and nitrous oxide 

production in sediments and the key environmental factors influencing these within 

selected river systems of the LOIS (Land-Ocean Interaction Study) area in North-East 

England and southern Scotland. 

Seasonal and spatial trends were evident in both environmental and 

denitrification data measured monthly for 1.5 years along the Swale-Ouse system from 

source to tidal limits. Denitrification, measured in sediment cores using acetylene 

inhibition and expressed by unit area of sediment, increased with distance from source 

down to freshwater tidal limits. Results from a supplementary survey of the freshwater 

tidal reaches of the Yorkshire Ouse showed a decrease from the tidalliinits. 

Denitrification activity showed a spring (March to May) peak, particularly in the 

lowland sites. The highest rate (883±134 Jlmol N m·2 h" 1
) was measured on the River 

Wiske, a highly eutrophic lowland tributary to the Swale. A high degree of colinearity 

was evident between environmental variables, although a significant relationship 

between denitrification, nitrate and temperature was found through multiple regression. 

For comparison, measurements were made in the les~ populated Tweed river 

system. The seasonal and spatial trends evident in boLJ the environmental and 

denitrification data from the River Tweed, under a more limited sampling programme, 

were generally consistent with those observed in the Swale-Ouse system. 

An intensive field investigation of 50 river sites showed that both potential 

denitrification rate and N20 production in sediment slurries were positively correlated 

with nitrate water concentration, sediment water content and percentage of fine 

( <100 Jlm) sediment particles. 

An experimental study investigating the kinetic parameters for denitrification, 

found that sediment cores taken along the Swale-Ouse exhibited a saturation type curve 

with added nitrate. Apparent affinity and estimates of apparent maximum velocity for 

mixed populations of denitrifying bacteria showed an increase on moving downstream 

and were highest on the Wiske. 
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1.1 General comments 

CHAPTER 1 

INTRODUCTION 

Inputs of nitrate to surface waters have increased steadily during recent decades 

(Meybeck et al., 1989) as a result of a number of factors, including increased fertiliser 

application. Rivers may, therefore, be a major source of eutrophication in estuarine and 

coastal ecosystems. However, although there is no lack of information on the origin, 

cause and magnitude of nitrogen loading, there is a gap in current knowledge with 

respect to the effects and retention of increased nitrogen loading in aquatic systems. 

As recipients of nitrogen, rivers can subsequently act as regulators of the flux of 

nitrogenous compounds from N-fertilised terrestrial ecosystems to estuarine and coastal 

marine environments. Denitrification is one potential pathway for removal of nitrate, 

and rates are sometimes high enough to be taken into account when preparing an overall 

nitrogen budget for a river (Kaushik & Robinson, 1976; Hill, 1981; Cooper, 1990). 

However, despite this importance Seitzinger (1988) commented that few studies on 

denitrification in streams and rivers had been made. Although a number of studies have 

been made since then, denitrification data for rivers appear to be still largely lacking 

when compared to the estuarine and marine environments. 

This study was undertaken to investigate denitrification and nitrous oxide 

production in sediments and the key environmental factors influencing these within 

selected river systems of the LOIS (Land-Ocean Interaction Study) study area in North­

East England and southern Scotland (see Appendix 1). This would ultimately 

contribute to the assessment of the significance of denitrification in these river systems. 

1.11 Significance of nitrogen 

Nitrogen and phosphorus are the two nutrients most likely to limit primary 

production in freshwaters and perform a major role in eutrophication of both freshwater 

and marine ecosystems (Wetzel, 1983). In estuaries and coastal areas, an increase in 

nitrogen loading will result in increased primary production that can subsequently result 

in oxygen deficits and even fish kills (Kessler & Jansson, 1994). For example, all these 

phenomena occur regularly along the coasts of Southern Sweden and Denmark as a 

consequence of an unnaturally high nitrogen flux (Jansson et al., 1994). As recipients of 
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run-off from terrestrial ecosystems, rivers may be a major source of nutrients to the 

estuarine and coastal ecosystems, resulting in such deleterious environmental effects. 

There is currently a steady increase in nitrogen loading in the freshwater 

environment (Torre et al., 1992), resulting in high land-to-sea fluxes. This is the result 

of a number of factors, such as increased nitrogen fertiliser application, changes in land 

use, increased recycling of domestic wastewater and atmospheric deposition (Wilkinson 

& Greene, 1982; Heathwaite et al., 1994). For example, on a global scale, Meybeck 

(1982) suggested that the average concentration of nitrogen for world rivers in a 

'pristine state' is 0.015 mg L-1 NJ4-N, 0.001 mg L-1 N02-N and 0.1 mg L-1 N03-N. A 

report published jointly by the United Nations Environment Programme (UNEP) and the 

World Health Organisation (WHO) in 1988 found in some regions of the world, 

particularly Europe, less than 10% of rivers could be classified as pristine on this basis. 

This not only has implications for human health, for example methaemoglobinaemia 

and stomach cancer, but also for the environment, resulting in EC Directives such as the 

Drinking Water Directive (COM 801788), the Nitrates Directive (COM 911676), and the 

Urban Wastewater Treatment Directive (91127/EEC). These Directives are concerned 

with the control of nitrate in receiving waters and encourage the adoption of practices 

compatible with environmental protection. Thus, as stated above, there is abundant 

information relating to the origin, cause and magnitude of nitrogen loading, but a gap in 

current knowledge with respect to the effects and retention of increased nitrogen loading 

in aquatic systems. Without data to illustrate the fate of excessive nitrogen in limnetic 

systems, difficulties in introducing nitrogen transport reduction measures would arise. 

It is evident from a number of reports that mechanisms for the reduction of 

nitrogen loading should be put in place; for example, Postma (1985) reported that the 

load of combined nitrogen transported by rivers to the North Sea had increased seven­

fold in the last 50 years. It has also been estimated that, on a global basis, rivers 

transport 24 Tg y" 1 N to the ocean, 80% of which is estimated to be the result of human 

activity (Wollast, 1983). This riverine flux of nitrogen to the oceans is 60% higher 

than the total annual contribution of benthic nitrogen fixation (Capone, 1983). Thus, 

any mechanisms that reduce riverine nitrogen load will reduce nitrogen inputs to the 

oceans, therefore alleviating eutrophication problems. It is hence becoming 

increasingly important to understand the processes that lead to the removal of nitrate 

from aquatic systems. 
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There has been much study into the processes involved in the nitrogen cycle and 

the relationship between nitrogen and phosphorus (e.g. Schindler et al., 1973; Lund, 

1981; Schindler, 1988). Additionally, there has also been substantial research into 

mechanisms to reduce phosphorus concentrations in streams and waterways, for 

example through the introduction of tertiary treatment in many sewage-treatment plants. 

However, despite its potential deleterious environmental effects, there has been little 

research with regard to reduction of nitrogen. 

1.12 Aquatic nitrogen cycle 

Nitrogen (N) in freshwater is found in several forms, the dynamic 

interrelationships of which can be described as the aquatic nitrogen cycle. The 

dominant forms of combined N in waters (excluding molecular N2) are dissolved 

inorganic N (~ +, N02-, N03 +), dissolved organic N, and particulate N, which is 

usually organic but can contain inorganic N. The transport of nitrogen through these 

different forms, processes and reservoirs during the nitrogen cycle ultimately regulates 

the cycle of organic matter, as nitrogen is an essential component of all living 

organisms. There are five processes within the nitrogen cycle: fixation, assimilation, 

ammonification, nitrification and nitrate reduction (Fig. 1.1). Nitrate reduction includes 

both dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. 

1.2 Denitrification 

Denitrification performs a significant function within the nitrogen cycle, as it is 

the only biologically-mediated process that terminates in the production of gaseous 

forms of nitrogen. It effectively works in opposition to the process of nitrogen fixation, 

where Nz is microbially converted to organic nitrogen. By removing nitrogen 

completely from the aquatic system, denitrification reduces the flux of nitrogen from 

land to coastal waters. This makes denitrification an important natural process in 

reducing the potential problems generated by eutrophication as discussed above (see 

Section 1.11). 

Denitrification is a microbially-mediated process that results in the reduction of 

one or both of the ionic nitrogen oxides (nitrate or nitrite) to two of the gaseous oxides 

(nitric oxide and nitrous oxide). These gaseous oxides may in tum be further reduced to 
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N2. This pathway was first suggested by Payne (1973) and is summarised below in 

Equation (1). 

nitrate 

reductase 

nitrite 

reductase 

nitric 

oxide 

reductase 

nitrous 

oxide 

reductase 

Denitrification is carried out by facultatively anaerobic bacteria that are both 

biochemically and taxonomically very diverse. Denitrifiers are heterotrophs that use the 

nitrogen oxides as terminal electron acceptors to generate energy (ATP) through 

anaerobic respiration under low oxygen conditions, using specific enzymes as catalysts 

(Knowles, 1982; Rysgaard et al., 1994). Synthesis of these denitrifying enzymes is 

controlled by ambient oxygen levels, and the oxidised nitrogen form available for 

reduction (Komer & Zumft, 1989). Most of these bacteria possess all of the reductases 

necessary to reduce N03- to N2, although some lack nitrate reductase and are therefore 

classified as N02- dependent. Others lack nitrous oxide reductase and can only produce 

nitrous oxide (N20) as a final product. The most commonly isolated denitrifying 

bacteria from both plants and soils belong to the genus Pseudomonas (Heitzer & Ottow, 

1976; Gamble et al., 1977) and it is assumed that these are the most active denitrifiers 

in natural environments. 

Due to the fact that reduced oxygen conditions, even anoxic conditions, are 

required for the reduction of N03- to N2 through the above steps, denitrification in the 

aquatic environment is restricted to zones of reduced oxygen status, particularly 

sediments (Seitzinger, 1988). Sediments represent the main site for decomposition of 

organic matter that leads to the release of~+. The ~ + becomes available for 

nitrification, which in tum generates N03- for denitrification (Fig. 1.1). Based on 

evidence from concentration profiles, Hillen & Vanderborght (1978) suggested that the 

reduction processes of various electron acceptors are separated from each other in 

individual sediment layers. Electron acceptors are used preferentially according to their 

free energy and are therefore consumed in the sequence shown below (Kerner, 1993). 

02 => N03- or Mn (IV)=> Fe (Ill)=> S04-
2 =>fermentation 
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Thus, the surface layer of sediment can be considered to be a zone of aerobic 

respiration and nitrification. According to Revsbech et al.(l988), the thickness of this 

layer, or 'oxic zone', depends on: 

• The concentration of oxygen in the overlying water column. 

• The level of aerobic respiration. 

• The photosynthetic rate, that in tum depends on algal biomass, light and nutrient 

supply. 

It has been suggested that denitrification in sediments is usually restricted to a well­

defined thin anoxic layer immediately below the oxic zone (Christensen et al., 1990; 

Nielsen et al., 1990). This denitrification zone is restricted at its upper limit by the 

oxic-anoxic interface and by depths of N03- penetration at the lower limit, as well as by 

rate of N03- consumption. Christensen et al. (1989) found that the thickness of this 

zone ranged between 0.7 mm at low concentrations of water column N03- (110 tJM) to 

4 mm at high N03- concentrations (1250 fJM). The less energetically-favoured electron 

acceptors would then be used for anaerobic respiration at greater sediment depths where 

nitrate does not penetrate or nitrification occur. 

There are two potential sources of nitrate for denitrification in sediments, by 

diffusion either down a concentration gradient from overlying water or from the surface 

aerobic layer where it is produced by nitrification (Fig. 1.2). These two distinct 

pathways are known as uncoupled and coupled denitrification respectively (Nielsen, 

1992). The relative importance of these pathways mainly depends on the availability of 

nitrate and oxygen (Rysgaard et al., 1994; Risgaard-Petersen et al., 1994). 

1.21 Factors affecting denitrification 

A number of environmental factors affect the rate and end products of 

denitrification. These include: concentrations of nitrate, oxygen and organic carbon, as 

well as temperature, microbial numbers, pH and the presence of macrofauna. 

Laboratory studies have established that the most important of these are: nitrate 

availability, oxygen concentration, organic carbon availability and temperature (van 

Kessel, 1977a,b; Knowles, 1982; Groffman, 1991). These factors are generally the 

main determinants of the balance between denitrification, DNRA and ammonification, 

as well as the gaseous end-products of denitrification. 
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Nitrate 

As previously discussed, denitrifying bacteria require a ready supply of nitrate to 

act as an electron acceptor for respiration of organic matter in anaerobic environments. 

Therefore, the rate at which nitrate is supplied, either from the water column or from 

nitrification in aerobic areas, will affect denitrification. Bowman & Focht (1974) 

reported that denitrification rate was affected at low ambient concentrations of nitrate, 

following first order kinetics, but became independent, following zero-order kinetics, at 

higher concentrations, possibly when other factors started to limit the rate. The 

diffusion rate of nitrate across the sediment-water interface is a function of the 

concentration gradient across the interface (Nedwell, 1982); thus the concentration of 

nitrate in the overlying sediment controls movement into the denitrification zone, 

thereby affecting denitrification. Furthermore, nitrate availability may even affect the 

growth rate of denitrifiers (King & Nedwell, 1987). 

As well as affecting denitrification directly as a substrate, nitrate may also have a 

secondary influence on denitrification. Stimulation or inhibition of certain enzymes in 

the denitrification pathway will result in the accumulation of intermediates, thus 

changing the product ratio. For example, Payne (1973) describes the accumulation of 

N02- in the presence of high levels of nitrate due to the inhibition of nitrite reductase, 

possibly through an indirect effect of nitrate on Eh. Nitrate has also been identified as 

an inhibitor of nitrous oxide reductase, resulting in nitrous oxide accumulation 

(Blackmer & Bremner, 1978; Tiedje et al., 1981; Stewart, 1993), although some 

workers suggest that the NO£ produced may in fact be the inhibitor (Firestone et al., 

1979). 

Oxygen 

Many authors have reported that oxygen represses the rate of denitrification in 

soils and sediments by both direct and indirect mechanisms (Andersen, 1977; van 

Kessel, 1977a,b; Kaspar, 1982; Nakajima et al., 1984; Dalsgaard & Revsbech, 1992). 

Direct mechanisms include the restriction of nitrate transport across the cytoplasmic 

membrane by direct inhibition of the nitrate transport proteins (Ferguson, 1988), the 

inhibition and repression of denitrifying enzymes (Payne, 1973), or simply by oxygen 

acting as the electron acceptor instead of nitrate. The supply of oxygen to the surface 

layer of sediment will affect the rate of nitrification, thus indirectly affecting the rate of 
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nitrate provision to the denitrification zone beneath (Knowles, 1982). For example, 

Jenkins & Kemp (1984) observed a summer decrease in coupled denitrification rates 

compared to spring rates, possibly resulting from reduced oxygen penetration to the 

sediments leading to decreased nitrification. 

Christensen et al. (1990) constructed a model which demonstrated that 

denitrification activity was controlled mainly by the thickness of the surface oxic layer 

that served as a diffusion barrier for nitrate transport to the denitrification zone from the 

water column. Rysgaard et al. (1994) concluded that in waters with low nitrate, oxygen 

caused an increase in denitrification as a result of increased nitrification, yet in waters 

with high nitrate concentrations, increased oxygen resulted in a decrease in 

denitrification as a result of the increase in diffusion path for intrusive nitrate down to 

the anaerobic denitrification zone. 

Some authors have postulated that denitrification could be active in some oxic 

water columns (Gundersen, 1981), possibly as a result of the existence of anoxic 

microzones and oxygen microgradients in suspended particulate matter (Alldredge & 

Cohen, 1987). Jenkins & Kemp (1984) also suggested that denitrification in the upper 

oxic layer of sediments may be possible as a result of coupling with nitrification in 

sediment microparticles. More recently, it has been suggested that some bacteria are 

capable of aerobic denitrification. These 'aerobic denitrifiers' are capable of 

simultaneously using oxygen and nitrate as terminal electron acceptors (Robertson & 

Kuenen, 1984; Lloyd et al., 1987; Carteret al., 1995). 
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Similarly to nitrate, oxygen has been shown to affect the balance of gaseous end 

products. For example, in anoxic soil, nitrate and nitrite reductases undergo 

derepression before the nitrous oxide reductase enzyme; so N20 becomes the major 

product. Nitrous oxide reductase then becomes derepressed and N2 again becomes the 

dominant product (Firestone & Tiedje, 1979; Smith & Tiedje, 1979). Firestone et al. 

(1979) found that adding a small amount of oxygen to soil slurries greatly decreased 

denitrification activity, while increasing the N20:N2 ratio in the products. 

Organic carbon 

As most denitrifying bacteria are chemo-organotrophic, the reducing power of 

organic carbon compounds is one of the most important factors controlling their activity. 

The carbon supply influences denitrification directly by supplying the necessary 



substrate for growth, and indirectly through the consumption of oxygen by other micro­

organisms in soil and sediment (Rolston, 1981). 

Denitrifying activity has been shown to be related to organic C contents in both 

sediments and soils (Knowles, 1982). Van Kessel (1978) found good correlation 

between denitrification and organic matter availability in two sediment-water systems. 

Various studies have also shown that slow rates of denitrification resulted directly from 

organic C limitation (McCarty & Bremner, 1992; Ambus, 1993). Caffrey et al. (1993) 

added organic matter to marine sediment mesocosms and found that high nitrate and 

organic C concentrations resulted in increased rates of denitrification. However, low 

nitrate concentrations with organic C additions resulted in a decrease in denitrification, 

possibly as a result of a decrease in depth of oxygen penetration resulting in a decrease 

in nitrate supply from nitrification. 

Macrophytes can also affect denitrification rates (Christensen & SI1Srensen, 1986; 

Blackburn et al., 1994; Nedwell et al., 1994); this is presumably because their roots 

exude organic compounds that can be oxidised by denitrifiers. 

Temperature 

Temperature can directly affect denitrifying bacteria by increasing their enzyme 

activity and hence rate of denitrification. Indirectly, it can influence the depth of the 

oxidised layer in which nitrification can occur (Billen, 1982). Oxygen solubility 

increases with decreasing temperature, thus at lower temperatures the oxic layer will be 

pushed deeper (Horrigan & Capone, 1985). This may in tum increase nitrate 

production by increasing the area available for nitrification, yet it might also decrease 

denitrification rate by introducing a longer diffusion path for intrusive nitrate. 

Temperature may also lead to the selection of different microbial communities (Kaplan 

et al., 1977; King & Nedwell, 1984). 

Temperature also affects the balance of gaseous end products of denitrification; 

for example observations of an increased mole fraction of NzO in gaseous products of 

denitrification with increased temperature have been made (Knowles, 1982). 

Other factors 

Denitrification is most rapid in neutral to slightly alkaline conditions between 

pH 7 to 8 (Knowles, 1982). Sprent (1987) observed that denitrification is actually 

suppressed below pH 3.5. The final products are also affected by pH: between 
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pH 3.5 and 7 accumulation of nitrogen oxides may occur as denitrification may stop at 

NO or N20 as a consequence of inhibition of the reductases (Bryan, 1981; Knowles, 

1982). There may also be differences in species of denitrifiers at low pH (Focht & 

Verstraete, 1977). 

Denitrification might also be affected by sediment infauna that may alter the rate 

of supply of nitrate, oxygen and organic matter to the denitrification zone through their 

burrowing activity (Christensen et al., 1987). 

S~rensen et al. (1980) found that sulphide caused partial inhibition of NO 

reduction and strong inhibition of nitrous oxide reductase, thus causing accumulation of 

nitrogen oxides. Marine sediments in particular may exhibit high N20 production 

because they often contain high concentrations of sulphide as a result of bacteria using 

sulphate as a terminal electron acceptor. 
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1.22 Denitrification in riverine systems 

As the first aquatic systems to receive nitrogen from N-fertilised terrestrial 

ecosystems, rivers can act as regulators of the flux of nitrogenous compounds to the 

estuarine and coastal marine environments. However, despite this potentially important 

role, relatively few studies have been made on denitrification in streams and rivers when 

compared to the marine environment (Seitzinger, 1988). 

It is also clear from mass balance calculations that net nitrogen losses do occur 

within riverine systems (Kaushik & Robinson, 1976; Hill, 1981; Cooper, 1990). 

However, studies on sediment denitrification in lotic systems have focussed on 

relatively short stretches of stream or river, such as agriculturally-influenced streams 

(Cooke & White, 1987; Jansson et al., 1994), a nitrate-limited stream (Holmes et al., 

1996) and a nitrate-enriched river (Pfenning & McMahon, 1996). None of these studies 

dealt with possible changes in denitrification on passing down a complete river system; 

this is surprising in view of the interest in downstream changes in ecological processes 

stimulated by the river continuum concept of Vannote et al. (1980). 

According to the river continuum concept, the physical and chemical variables 

of water and sediments should present a gradient from headwaters to estuary that should 

in tum elicit a biological response, for example within the denitrifying bacterial 

population. As previously mentioned (Section 1.21), laboratory studies have 

established that optimal conditions for denitrification include: high nitrate supply, 



sufficient amounts of reducible organic substances, low oxygen concentration and high 

temperatures (van Kessel, 1977a, b; Knowles, 1982). In the complex riverine 

environment, denitrification conditions can change from near optimal to very unsuitable 

in short distances of space and time. This is because although the nitrate supply is 

usually continuous, reduced organogenic sediments are less frequent because of their 

enhanced oxygenation by water turbulence. Additionally, sedimentation of organic 

material is highly variable depending on runoff conditions and the shape of the river 

(Jansson et al., 1994). 

All the environmental influencing factors are likely to change, sometimes 

markedly, from the headwaters on passing downstream; thus not only may 

denitrification be expected to change spatially down a river continuum, but also 

seasonally, with changes in these factors. 

1.3 Nitrous oxide 

In addition to its potentially ameliorative effects regarding eutrophication, 

denitrification can also have potential deleterious effects through its contribution of 

nitrous oxide (N20) to the atmosphere. Nitrous oxide has a long decay time in the 

atmosphere (150 years to reach 37% of the original level) and contributes a large 

radiative forcing effect per molecule, about 200 times that of C02 (Rodhe, 1990). 

Nitrous oxide is therefore considered to be a major 'greenhouse gas' (lPCC, 1996). In 

addition, it participates, through its oxidation to NO, in the stratospheric destruction of 

the ozone layer (Cicerone, 1987). 

Atmospheric N20 concentration has increased from about 275 ppbv in pre­

industrial times to about 311 ppbv in 1992, with an annual increase during the 1980s of 

0.8 ppbv, perhaps falling slightly to about 0.5 ppbv y" 1 in 1993 (lPCC, 1996). Despite 

the difficulty in quantifying its sources (Knowles, 1982), it is estimated that natural (and 

semi-natural) sources of N20 are probably twice as large those directly linked to 

anthropogenic origins; furthermore, terrestrial sites have generally received more 

attention. Three major biological sources that may yield NzO have been identified. As 

previously discussed, N20 can be an intermediate or an end-product of denitrification 

(Payne, 1981) or a by-product of nitrification (Gareau et al., 1980). It can also result 

from the dissimilatory reduction of N03- to~+ (DNRA), where N20 may be 

produced as a by-product (Smith & Zimmerman, 1981). Denitrification and 
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nitrification appear to be the dominant sources of N20 in most natural systems and 

denitrification is also generally recognised as the only significant means of biological 

removal of NzO. 

As previously discussed (see Section 1.11), the massive use of nitrogen-based 

fertiliser, increases in wastewater and atmospheric deposition have all increased the 

combined inorganic nitrogen in many rivers. Consequently, this may accelerate the 

production of N20. Based on supersaturation levels of NzO in water, McElroy et al. 

(1978) and Kaplan et al. (1978) concluded that rivers may represent a significant source 

for NzO, yet data for non-tidal rivers are largely lacking. 
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There has been a considerable number of studies made on the influence of 

environmental factors on denitrification (Seitzinger, 1988; Firestone & Davidson, 1989), 

but fewer on N20 production. Firestone et al. (1979) reported that an increase in 

nutrient loading in soils increased N20 production and this was confirmed for N20 

fluxes in marine sediments by Seitzinger et al. (1983). The latter authors reported that, 

during the summer, benthic N20 fluxes in Narragansett Bay, USA, were 

1.48 J.lmol N20 m-2 h-1 for the eutrophic upper bay and 0.24 and 

0.078 J.lffiOl N20 m-2 h- 1
, respectively, for the relatively unpolluted mid and lower bay 

sediments. Furthermore, Law et al. (1991) found that incubation of sediment from the 

River Tamar estuary, S-W. England, with various concentrations of N03- in the 

overlying water (300-1500 J.I.M), resulted in a proportional increase in N20 production 

from the sediment. 

1.4 Aims 

Background 

With the increase in nitrogen loading in surface waters in recent decades, studies 

have shown the potential environmental problems that can arise as a consequence of 

excessive nitrate in aquatic systems. To alleviate such problems, it is therefore 

important to understand the processes that lead to the reduction of nitrate in aquatic 

systems. 

Denitrification is a significant biological process that can remove nitrate from an 

aquatic system as a gaseous product and not merely transfer it to another part of the 

system, for example, via macrophytic uptake. However, as observed by Seitzinger 

(1988), relatively few studies have been made of this process in streams and rivers 



compared to the marine environment. In addition, despite the fact that McElroy et al. 

(1978) and Kaplan et al. (1978) suggested that rivers may be a significant source of 

nitrous oxide, data on this for non-tidal rivers appear, once again, to be largely lacking. 

Hypotheses 

As discussed above, denitrification is affected by various environmental factors 

and, according to the river continuum concept, rivers show a gradient of such factors. 

The present investigation was planned in order to test the following hypotheses: 
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1) That a gradient of physical and chemical variables along a river continuum will elicit 

a graded, spatial response from denitrifying bacterial populations. 

2) That physical and chemical variables along a river continuum will vary with season 

and will, therefore, elicit a seasonal response from denitrifying bacterial populations. 

3) That certain environmental variables may exert a greater influence on denitrification 

rate than others. 

Objectives 

In order to test these hypotheses, the following objectives were devised: 

1) To quantify the distribution of nitrogen compounds and other key environmental 

factors along a river continuum, in order to assess their relative importance spatially, 

and to repeat these measurements at different times so as to assess any seasonal 

variation in their relative importance. 

2) To elucidate directly, the quantities of aquatic nitrogen being removed to the 

atmosphere by denitrification in sediments along a full river continuum and 

determine the extent of any seasonal and spatial variations in the rates of 

denitrification and nitrous oxide production. 

3) To investigate the regulating or limiting factors, and their relative effects on 

denitrification and nitrous oxide production in riverine sediments. 



Some studies have shown that denitrification may remove up to 53 % of nitrogen 

entering lake systems (Chan & Campbell, 1980; Jensen et al., 1992). Therefore, by 

using the data collected in the present investigation it should be possible to perform a 

similar calculation in order to assess the significance of denitrification within a riverine 

environment. The data may, therefore, also help to provide a better understanding of 

nitrogen dynamics within a river system, and hence possibly contribute towards a more 

accurate model of N flux. 

The objectives of the present study were addressed through both field and 

experimental investigations that focused on the Swale-Ouse system, together with a few 

comparative measurements on the River Tweed. The Swale-Ouse and Tweed river 

systems were chosen partly because they are the focus of a number of investigations in 

the LOIS programme (see Appendix 1) and partly because they are known to show 

consistent changes in a range of environmental variables on passing downstream 

(Holmes & Whitton, 1977; Robson et al. 1996). This, therefore, rendered them ideal 

for the purposes of the present study. 
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CHAPTER2 

STUDY AREAS AND SAMPLING PROGRAMME 

2.1 Swale-Ouse river system 

The Swale-Ouse system was chosen by the LOIS RACS (R) committee (see 

Appendix 1) for intensive study, because it is a largely unregulated system with 

progressive changes on passing downstream rather than a single striking change. 

Additionally, it is part of the Humber system, the main study area of LOIS, RACS 

(Fig. 2.1). The Humber system was selected for this purpose because it provides the 

largest contribution of freshwater to the North Sea of all British rivers. It drains over 

one-fifth of the land area of England (24,000 km2
), covering an area of wide diversity in 

terms of natural environment and land use, approximately 20% of the UK population 

live in this catchment area. 

The River Swale (Fig. 2.2) rises on the North Pennines (N-E England) in the 

Yorkshire Dales National Park, running for 117 km from the confluence of Birkdale 

Beck and Whitsundale Beck to its confluence with the River Ure, east of 

Boroughbridge, after which it becomes the River Ouse. The entire Swale-Ouse system 

drains a catchment area of 3,200 km2
• The river changes from a neutral-acidic, 

oligotrophic, upland beck to a slow flowing, meso-eutrophic, lowland river. 

The upper section of the Swale is steep, draining high ground, much of it 

Carboniferous Limestone, although Millstone Grit also occurs. The valley itself is 

narrow and steep-sided, so only allowing for rough grazing and resulting in the flashy 

nature of the river (Fig. 2.3). The river channel remains almost completely natural in 

formation until it reaches Richmond (the first main centre of population the river 

encounters); below this point significant stretches have been straightened and flood 

banks constructed. The river then meanders widely through the predominantly non­

calcareous Vale of York, where three main tributaries join it, Bedale Beck, the River 

Wiske and Cod Beck, before joining the Ure. From this point the river becomes the 

River Ouse and flows south through the City of York to Nabum Weir, below which the 

river becomes tidal. The freshwater tidal reaches of the Ouse extend to downstream of 

Selby. The main tributaries of the Ouse are the Rivers Kyle and Foss, as well as the 

Nidd, Wharfe, Derwent and Aire. Other main centres of population located on this 

system are Catterick Garrison, Northallerton and Thirsk, although the main flood plain 

land use is agricultural. The rainfall for the catchment shows a wide range because the 

area is so large and topographically varied. At Selby the average annual rainfall is 
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Figure 2.1 The Humber catchment 
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600 mm, whereas at the head of the catchment it is 2000 mm. A more detailed 

description of the geography and geology of the study area are provided by Jarvie et al. 

(1997) and Law et al. (1997). 
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Figure 2.3 Upper Swaledale, looking down the valley (June 1996) 

The chemical water quality of the Swale and its tributaries is very good (lA) on 

its upper and middle reaches, on its lower reaches and along the Ouse it is good (lB), 

although the Wiske is notable in its poor (3) quality. The downgrading of the Wiske 

water quality is caused by diffuse and point source pollution from rural land use, and 

discharges from Northallerton and Romanby sewage treatment works (Environment 

Agency, 1997). The water quality downstream of York and in the tidal reaches is fair 

or poor, this is due to the impact of urban drainage, combined sewer overflows, the 

River Foss and Nabum sewage treatment works. Further sewage and trade effluent 

discharges occur at Selby. An important source of metals in particulate form in this 

system is from the erosion of spoil heaps of abandoned lead-zinc mines in the Pennines 

(Neal et al., 1997). 

The biological water quality of the upper and middle reaches of the Swale is 

very good (BlA) and good (BIB) in the lower reaches (NRA, 1994). Biological 

sampling, however, highlights tributaries of fair (B2) quality, such as Whitsundale and 

Birkdale, which have faunas indicative of acid conditions. The Ouse to Nabum Weir 

varies between good and fair (NRA, 1994). There are healthy fisheries located in this 

system. The fish populations of the upper Swale consist mainly of native brown trout. 
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Coarse fish do not occur in great numbers until below Richmond (Environment Agency, 

1997). A more detailed description of the biology of the study area is provided by 

Whitton & Lucas (1997). 

2.11 Study sites 

For the purposes of the main study, five sites were selected along the Swale­

Ouse system from its upper reaches to its tidal limits to illustrate the continuum 

(Fig. 2.2). A sixth site on the river Wiske, a eutrophic tributary to the Swale, was 

added to provide the full range of trophic conditions. The sites (Table 2.1) are 

characterised by their river distance from the start of the main river (km 0.0), using the 

km distances given by Holmes & Whitton (1977); sites on tributaries are characterised 

by their distance upstream from the main river (indicated by a negative number). The 

most upstream site (km -2.5, 0.0) was located up Whitsundale Beck, one of the two 

tributaries which form the main river. The most downstream site (km 145.0) was 

located at the tidal limits at Nabum Weir. They were chosen for their compatibility 

with other collaborative studies involved in LOIS, such as IFE (Wareham), and the core 

sampling programme, as well as ease of access. Two additional sample sites for a 

supplementary study were located on the freshwater tidal zone downstream of Nabum 

Weir to Selby (Fig. 2.4 ). Brief descriptions of these sites are also available in Table 

2.1. Additionally, to gain an impression of the varying nature of the river from 

upstream to downstream, photographs of some of the sites are provided (Figs. 2.5 to 

2.10). 

Figure 2.5 Ravenseat (km -2.5, 0.0) looking upstream (June 1994) 
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Table 2.1 Descriptive characteristics of the study sites in the Swale-Ouse system. Distance from the source shown in km (negative numbers indicate distance up a tributary from 

the confluence with the main river, see Section 2.11). 

Site name Distance Grid ref. River/ Elevation Width 

(km) Tributary (m) (m) Description 

Ravenseat -2.5, 0.0 NY863032 Whitsundale 400 5 Boulders, cobbles, some sand, no trees 

Beck 

lvelet Bridge 10.9 SD933977 Swale 230 10 Boulders, cobbles, interstitial sand + banks, marginal shade 

Catterick Bridge (•) 49.9 SE227994 Swale 180 20 Boulders, cobbles, sand bar, little marginal shade 

Thornton Manor ( •) 107.9 SE433715 Swale 5 15 Boulders, cobbles, sand bank 

Nabum Weir (•) 145.0 SE594445 Ouse 5 30 Sand banks, > wading depth 

Castle Farm -1.7, 86.1 SE376847 Wiske 5 4 Sand, silt, clay, marginal shade 

Cawood 210 SE575378 Ouse <5 30 Sand, silt, > wading depth, tidal 

Selby 230 SE627329 Ouse <5 30 Sand, silt, > wading depth, tidal 

( • indicates a core LOIS site) 

w 
00 
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Figure 2.6 lvelet Bridge (km 10.9) looking upstream (June 1996) 

Figure 2.7 Catterick Bridge (km 49.9) looking downstream (June 1996) 
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Figure 2.8 Thornton Manor (km 107.9) looking downstream (July 1995) 

Figure 2.9 Naburn Weir (km 145.0) looking upstream from the weir (June 1995) 



Figure 2.10 River Wiske (km -1.7, 86.1) looking upstream (January 1996) 

2.12 Sampling programme 

Water samples were taken monthly from January 1995 to December 1996 

(except for km -2.5 and km 10.9 in February 1996), but with a bias introduced by the 

sediment sampling programme. In contrast, the LOIS core sampling was undertaken 

every week and also during flood events. 

Sediment samples for denitrification assays were taken monthly from August 

1995 to December 1996, with the exception of February 1996 when spate conditions 

prevented access to the main river throughout the month. Sampling at other times 

mostly took place in the middle of the month, with the exact date determined by flow 

conditions. Because of the practical difficulties in removing a core, sampling was not 

carried out under high flow conditions. It took two separate days to sample (and 

subsequently study) all sites. The dates for sampling the headwater and two most 

upstream sites were: 1995, 16/8; 12/9, 17/10, 14/11, 18112; 1996, 15/1, 15/3, 18/4, 16/5, 
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20/6, 1517, 16/8, 17/9, 15110 22/11, 12/12. The remaining sites were in each case 

sampled two days later. 

The first five months were used to develop methods and to establish that 

denitrification rates were easily detectable in the relatively oxic River Swale sediments. 

A year long study during 1996 then followed. 

During the summer of 1996, from June to October inclusive, two additional 

sample sites were included in the monthly sampling programme, these were located on 

the freshwater tidal reaches of the Ouse at Cawood and Selby. Water and sediment 

samples were collected forNabum Weir, Cawood and Selby on 4 July 1996, 20 August 

1996 and 1 October 1996. The first sampling was carried out near low tide to provide 

conditions at Selby which might be expected to favour denitrification (if present) in the 

water column, but all the others were carried out near high tide; samples were taken on 

each date moving from downstream to upstream. 
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2.2 Tweed river system 

The River Tweed was selected as a secondary study catchment, offering 

contrasting geomorphology and water quality characteristics to the Swale-Ouse. The 

Tweed is an important component of LOIS because it is one of the major UK rivers 

entering the North Sea. It has a large, predominantly rural, sparsely populated 

catchment area ( 4,400 km2
), draining the eastern slopes of the Scottish Southern 

Uplands. The whole of the Tweed and parts of some of its tributaries are notified Sites 

of Special Scientific Interest (SSSI). 

The Tweed rises on the slopes of Broad Law and Hart Fell and flows for over 

160 km to its estuary at Berwick-upon-Tweed located on the Northumbrian Coast 

(Fig. 2.11 ). There is a high proportion of upland ground within this catchment with 

elevations ranging from over 800 m down to sea-level. The climate is cool and 

temperate with an average rainfall for the catchment of 969 mm year·1
, ranging from 

2200 in the headwaters to less than 650 mm year·1 in the lowlands of Berwickshire (Fox 

& Johnson, 1997). The geology of the upland catchment includes a large proportion of 

Ordovician and Silurian greywackes, shales and mudstones overlain by peats and 

podzols. There are Old Red Sandstones in the lowlands, moving to Carboniferous 

sedimentary rocks near the coast in northern England. The upland areas comprise 

mainly of moorland and rough pasture and are used for hill sheep farming, whereas 

cereal crops can be grown in the lowlands (MLURI, 1988). Compared to the rest of the 

UK, industrial activity in the Tweed catchment is low and limited to a few small towns, 

such as Hawick, Galashiels, Selkirk and Jedburgh. Most industrial effluent is 

discharged to sewage for treatment or land based soakaway as opposed to direct 

discharges to the Tweed rivers. 

The Tweed and its tributaries are mainly clean and unpolluted, supporting a 

diverse biology and providing an important fishing resource. Less than 1 % waters in 

the Tweed catchment are below class 1 status, i.e. polluted (Scottish chemical 

classification system; Scottish Office, 1990). Any water quality problems are relatively 

restricted. Eutrophication problems, such as algal blooms, occasionally arise in some 

of the lowland water courses draining arable areas, mainly as a result of excessive 

phosphorus inputs, but sometimes nitrate concentrations can also be high. Further 

details on the biology of the Tweed may be found in Clayton (1997) and further 

comments on the nature and water quality of the catchment may be found in 

Robson et al. (1996) and Robson & Neil (1997). 
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Figure 2.11 Catchment of the River Tweed 
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2.21 Study sites 

Three study sites were selected on the main river downstream of Galashiels, a 

fourth site was located on the River Teviot. These sites were chosen because of their 

compatibility with the LOIS core programme and other Special Topic studies. No 

study sites were selected upstream of Galashiels because of the lack of sediment 

suitable for sampling for denitrification assays. The most downstream site was located 

in the upper freshwater tidal zone of the Tweed just upstream of Berwick-upon-Tweed. 

Table 2.2 provides further details on these sites. 

Table 2.2 Descriptive characteristics of the study sites in the Tweed catchment. Distance from the 

source shown in km (negative numbers indicate distance up a tributary from the confluence with the 

main river; see Section 2.11). 

Site name Distance Grid ref. River/ Elevation Width 

(km) Tributary (m) (m) Description 

Boleside (*) 73.1 NT498335 Tweed 110 25 Boulders, cobbles, 

some sand 

Norham (*) 138.3 NT899477 Tweed 10 30 Boulders, cobbles, 

some sand 

East Ord 150.5 NT977518 Tweed <10 100 Sand and some 

cobbles, tidal, > 

wading depth 

Ormiston -9.0, 108.5 NT705278 Teviot 50 20 Boulders, cobbles, 

Mill(*) some sand 

( * indicates a core LOIS site) 

2.22 Sampling programme 

The four sites in the Tweed catchment were sampled seasonally (every three 

months) for one year from July 1996 to April1997. The dates for sampling were: 

25/6/96; 7110/96; 3/2/97; 1/4/97. Similarly to the Swale-Ouse study, samples were 

collected for water chemistry and sediment denitrification when the river flows were in 

the lower 50 percentile and never under high flow conditions. 
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3.1 Water analysis 

CHAPTER3 

MATERIALS AND METHODS 

3.11 Collection and storage of water 

Water was collected and filtered through 0.45-j.lm membrane filters using a 

Swinnex filter system. This was done in the field in order to minimise adsorption or 

exchange reactions that may occur with particulate material. The filtered water was 

transferred on ice back to the laboratory in acid washed 250-mL polyethylene screw-cap 

bottles and stored at 4°C in the dark and analysed within 24 h. If analysis did not occur 

within 24 h from collection, the filtered sample was frozen ( -20°C) until analysis 

(Parsons et al., 1984 ). 

3.12 Physical variables 

Variables measured on each sampling occasion were: conductivity, temperature, 

dissolved oxygen, pH, alkalinity, current speed and water. Observations of weather 

conditions were also made. 

Water conductivity and temperature were measured using a Wissenschaftliche­

Technische Werkstatten (WTW) meter (model FC 910). Dissolved oxygen was 

measured using a WTW meter (model OXI 91). The electrode required a steady water 

current of 15 em s·1 past the membrane, so the electrode was stirred in the water. 

A WTW meter (model pH91) was used to measure water pH, this was calibrated 

using standard buffers and adjusted for temperature before use. Total alkalinity was 

measured by titrating 50 mL of settled water sample with 0.02 M HCl until pH 4.2 was 

reached. The following equation according to Golterman et al. (1978) was used for the 

calculation: 

Total alkalinity (meq L"1
) = v x N x 50000 x 0.001639 IV (1) 

Where v is the volume of acid used, N is the normality of acid and V is the volume of 

sample. 

Current speed was measured using a calibrated Ott meter. This was placed 

perpendicular to the direction of the fastest river flow. The impeller was placed 1
/ 3 the 

depth of the water and revolutions per minute were recorded and converted tom s·1 
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(Patterson, 1983). Water colour was determined by absorbance at 320nm (Edwards & 

Cresser, 1987). 

3.13 Standard laboratory techniques 

All glassware, pipette tips and other materials used for analysis were washed in 

10% sulphuric acid for no less than 20 minutes and rinsed 3 times in deionised water to 

ensure complete removal of all trace nutrients. Glassware was dried at 105 °C and 

plastics ·at 40 °C. 

Stock solutions were made up using AnalaR chemicals weighed on a Sartorius 

1474 balance, and dissolved in MilliQ water. All blanks and standards for nutrient 

analysis were made up in MilliQ water using BDH stock standards and treated in the 

same way as the samples. 

3.14 Nitrite 

Nitrite was analysed using a manual method involving its reaction under 

acidified conditions with sulphanilamide (aromatic amine) to form a diazonium salt. 

This quantitatively couples with N-1-naphthylethylenediarnine dihydrochloride which 

produces a pink azo dye, this is then spectrophotometrically measured at 543 nm 

(Strickland & Parsons, 1967). The absorbance of this dye is proportional to the amount 

of nitrite in the sample, obeying Beer's Law up to about 500 1-1g L-1 N. The detection 

limit was 1flg L-1 N (Stainton et al., 1977). 

3.15 Nitrate 

Total oxidised inorganic nitrogen (TON) was analysed as nitrite after reduction 

by passing through a column of copperised cadmium filings (Strickland & Parsons, 

1967). Nitrate could then be calculated by subtracting nitrite from TON. 

3.16 Ammonium 

Ammonium was analysed manually after Solorzano (1969). Phenol and 

hypochlorite reacted with ammonium under alkaline conditions to form indophenol 

blue. Nitroprusside was used as a catalyst to facilitate colour development at room 

temperature. The colour intensity, measured at 640 nm, was proportional to the 

ammonium concentration. The detection limit was 21-lg L-1 N. 
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3.17 Verification of N fraction analysis 

Inter-laboratory calibration 

An inter-laboratory calibration of nitrogen fractions was carried out between the 

present study, Institute of Freshwater Ecology (IFE, Wareham) and National Rivers 

Authority (NRA) laboratories. Water samples for analysis were collected from 13 spot 

sample sites located in the Swale catchment in September 1994. Measurements of 

N03-, N02- and~+ analysed separately by the IFE, NRA and this study are highly 

comparable (Figs. 3.1, 3.2, 3.3). There is only one major anomaly (site E2, NRA data). 

Use of LOIS data 

Data for nitrogen fraction determinants collected as part of the LOIS core 

programme were downloaded from the WIS database at the Institute of Hydrology, 

Wallingford. These data were used to compare with results for sites also included in 

the study for January 1995 to December 1996. A key reason for this was to establish 

how much the flow-biased sampling programme for sediments (Section 3.21) might 

have influenced the water chemistry results. ANOV A was used to compare log 

transformed nitrogen fraction data from the core programme with the data from the 

present study. 

Nitrogen fraction data, collected during the present study and the LOIS core 

programme between January 1995 and December 1996, were compared at three sites: 

Catterick Bridge, Thornton Manor and Nahum Weir. Results of ANOV A between data 

sets are presented in Table 3.1. Generally there is good agreement between the two 

data sets. There were no significant differences between the nitrite data at the three 

sites. However, there were significant differences between the data sets for nitrate at 

Thornton Manor and ammonium was significantly different at Thornton Manor and 

Nahum Weir. The small differences found at these sites could be attributed to the 

differences in the sampling strategies behind each data set. The LOIS core sampling 

programme was undertaken every week and during flood events, whereas in the present 

study sampling was on a monthly basis and was biased to lower flow conditions 

(Section 2.12). 
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Figure 3.1 Nitmte concentration of water collected in the Swaie-Ouse catchment (2812/95). 

Inter-laboratory calibration of samples analysed by this study, IFE and NRA. 
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Figure 3.2 Nitrite concentration of water collected in the SwaicH>use catchment (2812/9S). 

Inter-laboratory calibration of samples analysed by this study, IFE and NRA. 
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Figure 3.3 Ammoniwn concentration of water collected in the Swale-Ouse catchment (2812/95). 

Inter-laboratory calibration of samples analysed by this study, IFE and NRA. 
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Table 3.1 Results of ANOV A comparing log transformed water nitrogen fraction data from the present 

study (monthly) and LOIS core (weekly) data. January 1995 to December 1996 (see Section 3.12 for 

sampling dates). (IfF value< 3.92 or u-value > 0.05, then no significance difference between data sets). 

Nitrogen fraction Catterick Bridge Thornton Manor Naburn Weir 

F value p value F value p value F value p value 

N03-N 2.88 0.094 7.97 0.006 0.60 0.449 

N01·N 0.05 0.829 3.24 0.068 1.36 0.246 

NRJ-N 1.29 0.258 5.67 0.019 4.40 0.038 

3.18 Phosphorus 

Phosphorus fractions were analysed on the day of collection. The molybdenum 

blue technique (Murphy & Riley, 1962) was used as modified by Eisenreich et al. 

(1975). 

TFP (Total Filtrable Phosphorus) was analysed after digestion with potassium 

persulphate. FRP (Filtrable Reactive Phosphorus) was measured similarly but without 

the digestion step. The blue coloured complex that formed on analysis had an optical 

density of 882 nm which was proportional to the total phosphorus present. The 

difference between TFP and FRP was taken to be filtrable organic phosphorus (FOP). 

This method is applicable in a range of 1 to 500 Jlg L-1 P. 

3.2 Sediment analysis 

3.21 Collection and storage of sediment 

Intact sediment cores were taken by hand at positions in the river typically with 

a water depth of <1 m in defined 2 m2 areas of sediment accumulation. The cores were 

collected in Plexiglas cylinders (3.5 em inner diameter, 25 em height) and the cylinders 

were sealed with a rubber bung and carefully removed from the river bed. The bottom 

of the cores was sealed with an additional rubber bung. Care was taken to preserve 

sediment structure during sampling and transport. Because of the practical difficulties 

in removing a core, sampling was carried out as far as possible when flow conditions 

were such that flows were in the lower 50 percentile and never under very high flows. 

Twelve cores were taken from each site on each sampling occasion. Three sets 

of three cores were collected for the denitrification assay, while an additional three 

cores were taken for analysis of particle size, total carbon and nitrogen in the top 
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centimetre. For potential denitrification rate assays, the top 5 em of sediment was 

collected using a core and well mixed. 

The denitrification assay was initiated immediately on return to the lab within 

5 h of sampling (Section 3.3). The three remaining cores from each site were stored on 

ice in a cool box before sectioning in to 1 em slices after the initiation of the 

denitrification assay. These sections were then frozen at -20 °C for storage before 

further analysis. 

3.22 Water content 

A known amount of wet sediment was dried in a crucible for 24 h at 105 °C. 

The sediment samples were removed from the oven and allowed to cool in a desiccator 

before weighing. The percentage by weight of water present in the sediment could then 

be calculated from the difference between wet and dried sediment. 

3.23 Particle size 

Particle size was determined by dry sieving. A series of five sieves was used of 

mesh size: 2 mm, 600 J.lm, 250 J.lm, 150 J.lm, 100 J.lm. 

Approximately 20 g of dried sediment was placed on the largest sieve (2mm) of 

the stack. The stack of sieves was then shaken to enable the sediment to pass through 

the respective mesh sizes according to particle size. The percentage by weight that 

each fraction contributed to the whole was then calculated. 

3.24 Total carbon and nitrogen analysis 

Total carbon and nitrogen of dried sediment particles less than 100 J.lm were 

analysed using a CHN analyser (CARLO-ERBA EA 1108). Total carbon and nitrogen 

were then corrected by the percentage of particles less than 100 J.lm and expressed in 

terms of percentage weights. 

Acetanilide was used as a working standard and background blanks were also 

run. 

3.25 Nutrient extraction 

The N fractions of the sediment were extracted with KCl and then determined as 

for water column N fractions. Approximately 3 g of moist sediment was placed in an 

Erlenmeyer flask with 25 mL of 1 M KCl, capped and shaken for 2 h. The samples 
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were then centrifuged and the supernatant was analysed for nitrate and ammonium as 

above using KCl as a blank. 

3.3 Denitrification rate measurements 

3.31 Review of methodology 

There are several possible methods for assessing denitrification activity: mass 

balance (Kaushik et al., 1981; Hill, 1981); NQ3- consumption (Andersen, 1977); 15N 

tracer techniques (Jenkins & Kemp, 1984); direct N2 production (Seitzinger et al., 1980; 

Gardner et al., 1987); acetylene (C2H2) inhibition (S~rensen, 1978a). All of these 

methods have their advantages and disadvantages, in particular with respect to their 

detection limits (Table 3.2). 

Table 3.2 Detection limits in seawater of various denitrification rate measurement methodologies 

(Koike, 1990) 

Method 

Colorimetric measures of No3• decrease 

N2 increase after degassing 
15N tracer methods 

C2H2 inhibition 

Optical emission spectrometer 

Mass spectrometer with dual inlet 

Headspace method with direct injection 

Cold trap concentration of N20 

Detection Umit (nmol N L" ) 

- 100 

- 1000 

- 400 

- 10 

1.5 

0.5 

Measuring N03 · consumption is the most simple means of measuring 

denitrification, however, it can not be certain that the N03. has been denitrified and not 

just assimilated or reduced to NIL.+. Direct measures of N2 production require lengthy 

(10 days) pre-incubation, this would mean that the measured rates can not truly 

represent in situ denitrification (Rudolph et al., 1991). In addition, the slightest 

contamination from atmospheric N2 will result in inaccurate measures. This method 

also has very high detection limits. 
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From Koike (1990), acetylene inhibition has the highest sensitivity of all the 

methods and requires no nitrate additions. It is also relatively simple and inexpensive 

to perform (Klemedtsson et al., 1990). The basic theory behind the method is that 

acetylene inhibits nitrous oxide reductase and the resulting accumulation of N20 can be 

used as a measure of denitrification activity. Knowles (1990) observed that there are 

two main disadvantages of acetylene inhibition. Acetylene is also an inhibitor of 

nitrification (Hynes & Knowles, 1978), thus coupled denitrification may be 

underestimated. Kaspar (1982) observed that inhibition of N20 reductase by acetylene 

may not be complete, especially if nitrate concentration is low. Both of these 

observations may be more of a problem in marine environments than freshwater 

environments. Seitzinger et al. (1993) suggested that acetylene inhibition 

underestimated uncoupled denitrification in lakes due to incomplete inhibition of 

nitrous oxide reductase by acetylene. However, as Ogilvie et al. (1997) observed, 

acetylene was only added to the overlying water and not also injected into the sediment, 

so inhibition of denitrification may indeed have been incomplete. Injection of 

acetylene-saturated water directly into sediment cores has been found to give realistic 

rates of uncoupled denitrification (Koike & S~rensen, 1988; Knowles, 1990; Raymond 

et al., 1992). Ogilvie et al. (1997) also reported that acetylene inhibition was effective 

in their study of river Colne sediments by accounting for the N03- removed by 

measured NfLJ + and N20 accumulation, as it was in a similar study by King & Nedwell 

(1987). Joye et al. (1996) also found good correlation between the acetylene inhibition 

method and stoichometric flux estimates of denitrification in sediments. Goulding et 

al. (1993) found no significant differences between acetylene-inhibition and 15N tracer 

methods for denitrification estimates in soils, as did Ryden et al. (1979) and Mosier et 

al. (1986). 

Although 15N tracer methods do not have potential nitrification inhibition 

problems, they are not as sensitive as acetylene-inhibition. Adding 15N03 to the system 

enhances the nitrate pool, therefore kinetically stimulating the rates of nitrate uptake by 

denitrification and potentially resulting in overestimates. This method is also 

expensive and requires complicated analytical procedures (Koike, 1990). Tiedje et al. 

(1989) observed that, "Since both methods [15N and acetylene techniques] are sound, it 

is more important to move forward and investigate underlying principles of the 

denitrification process than to dwell on denitrification methodology". Provided the 

limitations of the methods are given due consideration, these are powerful tools for 

53 



quantifying the production of N2 and N20 from various microbial processes 

(Klemedtsson et al., 1990). 

3.32 Denitrification and nitrous oxide production 

Sediment collected in the field was returned to the lab as quickly as possible for 

simultaneous denitrification and N20 production rate measurements. The acetylene 

blockage technique (SS?)rensen, 1978a) was used to measure denitrification to compare 

with N20 production rates. 

3.321 Acetylene blockage technique 

As explained in the above (Section 3.31), acetylene (C2H2) blocks the final 

reduction of N20 to N2 by inhibiting the enzyme nitrous oxide reductase, the 

consequent rate of N20 accumulation is used as a measure of denitrification activity as 

it stoichometrically builds up in the place of nitrogen. 

In situ measurements 

This assay was initiated immediately on return to the laboratory, which was 

always within 5 h of sampling. Of the three triplicate sets of cores collected, the first 

set was used as a time zero (to) indication of initial N20 concentration. The second set 

was used to measure N20 production rates, and the third set was used to assess the rate 

of denitrification (N20 + N2) by adding acetylene to provide a final concentration of 

10 %, as required to effectively inhibit denitrification and determined by SS?)rensen 

(1978a). 

Water overlying all the cores was replaced with fresh site water which had been 

transported back to the laboratory on ice, care was taken not to disturb the surface 

sediment. For denitrification rate assessment cores, acetylene-saturated site water was 

then added to this fresh site water to obtain the required 10% final concentration. 

Acetylene-saturated site water was prepared by bubbling with acetylene for 20 minutes. 

To eliminate any potential gaseous ammonium contamination, the acetylene was first 

passed through 0.1 N phosphoric acid (Sloth et al., 1992). Acetylene-saturated site 

water was also injected into the sediment through silicon sealed septa at 1 em intervals 

to achieve a 10% saturation in the pore water as well. All cores were sealed with 

rubber bungs with no headspace and incubated for 4 hours (except for to cores) in the 

dark at ambient river water temperature. 
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Following incubation (or immediately on sealing for to cores), the cores were 

shaken, to equilibrate the N20 in the sediment and water phases, and a 5 mL sample of 

slurry removed by syringe. This was gently transferred into a gas container, fixed with 

formalin (1 % v/v) and frozen at- 20°C until N20 analysis. 

After shaking the gas container for 1 minute to equilibrate gas in the headspace 

and sediment, 2 mL of the headspace was removed, using a gas tight syringe, for N20 

measurement. Nitrous oxide was analysed using a gas chromatograph (Perkin-Elmer 

2000) equipped with a 63Ni electron capture detector (ECD). Chromatographic 

separation was on a 4m x 1/8 inch i.d. stainless steel column packed with Porapak Q 

(80-100 mesh) in an oven at 60°C. Nitrogen (BOC Ltd.) was used as a carrier gas with 

a flow rate of 20 mL min-1 and the ECD temperature was 350°C. Water vapour, C02 

and C2H2 all interfere with N20 analysis using an ECD. Carbon dioxide has the same 

molecular weight as N20, so tending to coelute with N20 and interfere with its signal 

(Mosier & Mack, 1980), whereas H20 may affect chromatography by collecting in the 

column, and C2H2 reacts with the hot ECD. Quarter inch stainless steel tubes were 

fitted between the injection port and the column filled with 2 cm3 Mg(Cl04h and 2 cm3 

14-22 mesh carbosorb to remove H20 and C02 respectively. To prevent interference 

from C2H2 which eluted after N20, a 4-port switching valve (Valco Instruments Ltd.) 

was employed to vent the column elutent after the N20 peak was resolved, a carrier gas 

flow was maintained over the ECD whilst the valve was switched to vent. Typical 

elution times for N20 and C2H2 were 6 and 8 minutes, respectively. The gas 

chromatograph was calibrated linearly using standards made from purified N20 

(BOC Ltd.) ranging from 3.52 to 88.03 ppm. Quality control standards of7.04 ppm 

were used to confirm the calibration of the gas chromatograph with every 10 sample 

injections. 

Chromatography results were output through a Spectra-Physics SP4290 

Integrator. N20 concentrations in the cores were back-calculated from the measured 

headspace concentration in the gas container holding the sediment slurries using 

Henry's Law. The production ofN20 and denitrification rate were calculated after 

subtracting the initial N20 (to) concentration and taking into account the incubation 

period and the area of the core. The N20 production data are expressed as 

1-1mol N20-N m·2 h"1
, i.e. jlmol N as N20, not N20. This format is used in order to 

permit direct comparison with results for denitrification CN20 plus N2), which are 

expressed in terms ofN (again, not N2) as jlmol N m·2 h-1
• 
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Potential measurements 

Potential denitrification was measured similarly to in situ rate assessments with 

the exception that sediment slunies in sealed 30 mL jars were used as opposed to cores. 

Smith et al. (1978) and Limmer & Steele (1982) performed similar assays using 

sediment slurries. Slunies were made by adding between 6-12 g of well mixed wet 

sediment into jars, enough to reach a depth of 1 em, they were also sealed with no 

headspace following the addition of the overlying water phase. On occasions when site 

water was not employed as the overlying phase (for example substrate addition 

experiments) artificial freshwater medium without Nand P was used. This was based 

on Chu 10 medium (Chu, 1942), a multi-purpose laboratory medium, but modified as 

shown in Table 3.2 (Gibson & Whitton, 1987; Grainger et al., 1989). 0.25 mL L" 1 of 

AC microelement stock (Kratz & Myers, 1955) (Table 3.3) was also added to the 

medium and buffered with HEPES (0.6 g L"1
) to natural pH. 

Table 3.3 Artificial freshwater medium, based on Chu 10 (Chu, 1942), a multi-purpose laboratory 

medium, as modified by Gibson & Whitton (1987) with AC micro element addition (Kratz & Meyers, 

1955). 

Chemical mgL" p.aM Element mgL" p.aM 

CaCh.2H20 35.83 243.7 Cl 20.43 576.3 

MgS04.7H20 25.00 101.4 Ca 9.77 243.7 

NaHC03 15.85 188.6 Na 4.74 198.1 

KCl 4.28 57.4 s 3.26 101.7 

Na2EDT A.2H20 1.67 4.20 Mg 2.46 101.4 

FeCh.6H20 1.21 4.50 K 2.24 57.3 

Fe 0.25 4.5 

A C micro elements 

H3B03 0.715 11.56 B 0.124 11.50 

ZnS04.7H20 0.056 0.190 Zn 0.013 0.190 

MnCh.4H20 0.045 2.280 Mn 0.012 0.218 

NiS04.7H20 0.038 0.135 Ni 0.008 0.030 

CuS04.SH20 0.020 0.078 Cu 0.005 0.078 

CoS04.7H20 0.010 0.035 Mo 0.003 0.013 

Na2Mo04.2H20 0.007 0.028 Co 0.002 0.037 
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On occasions when specific concentrations of nitrate were required in the 

medium, KCl was replaced by the required concentration of KN03-N. Although 

previous studies have apparently assessed the effects of nitrate concentration on 

denitrification rate by adding a range of KN03, an experiment was performed in order 

to establish that K+ had no detectable influence. This was done by adding extra K+ as 

KCl (0.5 g L- 1
) to the lowest and highest nitrate concentrations assayed. Then 

denitrification was compared with those without extra K+. No significant differences 

(p<O.Ol) were found when adding KCI. 

N20 production (slurry without C2H2) and denitrification rate (amended C2H2 

slurry) were calculated after subtracting the initial N20 concentration and the result 

expressed as nmol N20-N g-1 d.wt h-1 for the former and as nmol N g-1 d.wt h-1 for the 

latter. 

3.322 Verification of denitrification methodology 

A series of experiments were performed to confirm the reliability of the above 

methodology. 

Time course 

Time course experiments were performed to confirm linearity of N20 

accumulation in sediment cores over the 4-h incubation period. 

Regression lines plotted on Figures 3.4 to 3.6 confirm linear production of N20 

over 5 h periods at: Thornton Manor (30/8/96); Catterick Bridge (27/8/96); River 

Browney (22/8/96). All the lines describe over 97 % (p<O.OOl) of the total variation in 

the data which is accounted for by the regression, as indicated by the coefficient of 

determination (R2 values). 

Sediment depth incubations 

Incubations of Wiske sediment slurries taken from 0-7 em depth at 1 em 

intervals were made (217/96) to confirm that denitrification activity was located in the 

upper 3 em as demonstrated by J!lSrgensen & S!lSrensen (1988). This was to ensure that 

where C2H2 was injected into the pore water, denitrification should be inhibited. 

Figure 3.7 shows that the greatest denitrification activity is located in the upper 

3 em where C2H2 was injected. 
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C2H2 injection 

A series of incubations of cores was made to confirm that injection of C2H2 into 

the sediment was necessary to inhibit reduction of N20 to N2 in the sediment. Three 

sets of three cores were treated as described above. However, one set received no C2H2 

in the overlying water or by sediment injection (control), a second set received C2H2 in 

the overlying water only, and C2H2 was injected into both the sediment and overlying 

water of the third set. 

Figure 3.8 shows that the measured denitrification rate is approximately three 

times greater with C2H2 injection into the sediment than without injection. 

C2H2 percentage additions 

Experiments were performed to confirm that 10 % C2H2 was sufficient to 

completely block the further reduction of N20, as determined by S~rensen (1978a) in 

marine sediments. Additions of C2H2, ranging from 0 to 20 %, were made in sediment 

slurries. 

Figure 3.9 shows that there is little difference in the amount of N20 produced in 

sediment slurries with C2H2 percentage saturations ranging from 3.3 to 20 %. 

However, there is markedly less N20 produced in slurries with no C2H2 addition. 

Stirring of overlying water 

An experiment was performed to ensure that stirring of the overlying water of 

cores was not necessary for short incubation periods of 4 h. A series of cores of 

sediment from the Wiske (3/6/96) were incubated as above with and without stirring. 

A glass stirring flea was-suspended by fishing line attached to the bung; the cores were 

then placed in a shaking water bath which caused the flea to circulate the overlying 

water. Initial tests using a dye had confirmed that the fleas stirred the water 

sufficiently. 

No differences in denitrification rates were found between stirred and unstirred 

cores during the 4-h incubation period (Fig 3.10). 

3.323 15N-gas production 

An adaptation of 15N-gas flux methodology (Goering & Dugdale, 1966) as 

further modified by Koike (1990) was employed to verify the acetylene block 

methodology by comparison of the two methods. 15N-gas flux methodology involves 
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the introduction of a spike of 15N-labelled nitrogen as nitrate and the subsequent 

production of 15N-labe1led nitrogen can then be used to calculate the rate of 

denitrification. 

Sediment cores from the Wiske were sampled as for the acetylene block assay 

(317/96). After replacement of the overlying water with site water, four cores were 

spiked (in the overlying water) with 15N03- (40 atom%). These cores and four 

reference cores with no spike were then incubated with no headspace for 4 h, as for the 

acetylene blocked cores. Following incubation, the cores were then shaken and 50 mL 

of slurry from the core was withdrawn and shaken in a gas tight syringe with 50 mL of 

air for 2 min to equilibrate the gas and aqueous phases. The gas from the syringe 

headspace was transferred to an evacuated gas sampling tube prior to analysis. 
15N in the headspace gas was analysed using a Europa Scientific 

ANCA-NT 20-20 Stable Isotope Analyser (at Belfast) interfaced to a Europa Scientific 

Trace Gas Preparation System. Details of the equations used and performance 

characteristics of the IRMS have been described by Stevens et al. (1993). The amount 

of 15N-labelled nitrogen produced was calculated as described by Mosier & Schimel 

(1993) taking into account Henry's Law. 

Figure 3.11 shows that in a comparison of the two methodologies using 

sediment from the Wiske in July 1996, the calculated average rates are very similar. 

3.4 Microbiological analysis 

3.41 MPN counts 

Enumeration of denitrifying bacteria was performed using a modification of the 

Most Probable Number (MPN) method of Focht & Joseph (1973) as adapted by Tiedje 

(1982) and described by Martin et al. (1988). 

Sterile test tubes with butyl rubber stoppers containing 10 mL of 5 mM KN03 in 

nutrient broth were inoculated with dilutions of sediment. These dilutions were 

prepared by vigorously shaking 10 g of moist sediment in 95 mL of 0.85 % saline 

solution with 1 drop of Tween 80 (BDH Ltd) to help the dispersion of the sediment and 

bacteria. A series of 10-fold dilutions from 10-3 to 10"7 was then used to inoculate five 

tubes with 0.1 mL for each dilution level. These tubes were then anaerobically 

incubated in the dark at 30°C for 14 days. After incubation, tubes with denitrifiers 

were identified by depletion of both N03- and N02- using the diphenylamine negative 

spot test. This involved the dropwise addition of up to 6 drops of diphenylamine 
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reagent to about 0.5 mL of medium from the tubes. A blue colour indicated the 

presence of N03- and N02-; a colourless response was taken as indicative of denitrifying 

activity. Estimates of denitrifying populations were made using an MPN table 

(Cochran, 1950). Denitrification was confirmed by analysing 0.5 mL of headspace 

from tubes aseptically injected with 1 mL of C2H2 following the addition of sediment 

dilutions for the production of N20 using gas chromatography, as described above. 

3.5 Storage of data 

All the data produced from this study have been transferred to the LOIS 

database maintained at the Institute of Hydrology, Wallingford, for inclusion in the 

LOIS CD-ROM. 

3.6 Computing and statistics 

A pentium PC was used for the computing. MS Word97 was used for all word 

processing and Corel Draw was used for creating diagrams and maps. MS Excel 97 

was used as a spreadsheet for data manipulation and storage, although MS Access 97 

was also used for raw data storage, recovery and transfer to the LOIS database. 

Mini tab, Release 11, for Windows was used for statistical assessments of the data and 

Excel 97 and Sigma Plot for Windows were both used for constructing graphs. 
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4.1 Introduction 

CHAPTER4 

SWALE-OUSE FIELD STUDY 

The aim of the study on the Swale-Ouse was to provide data to substantiate the 

hypothesis that a gradient of physical and chemical variables along a river continuum 

will elicit a graded response from denitrifying bacterial populations, not only spatially, 

but seasonally as well (Section 1.4). To achieve this, it was necessary to initiate a long­

term sampling programme (August 1995- December 1996; see Section 2.1) to collect 

denitrification and environmental data along the Swale-Ouse river system. 

In particular, the seasonal and spatial trends of denitrification and N20 

production in the sediments of this system, together with relevant environmental factors, 

are quantified in this study. The seasonal and spatial differences in these 

environmental factors serve to show the changes in the nature of the system on moving 

downstream, from an oligotrophic upland beck to a meso-eutrophic lowland river. 

Thus, providing the necessary graded environment to also allow an assessment of the 

effects of environmental factors on denitrification. This investigation was further 

enhanced by a study into small-scale spatial heterogeneity, to assess the differences in 

rate within a site. 

In order to further assess the effects of varying environmental factors on 

denitrification, from March to October 1996 a supplementary study extended the long­

term sampling programme of the Swale-Ouse into the freshwater tidal part of the Ouse 

from Nahum Weir (km 145.0) down to Selby (km 230). Results from this investigation 

for basic environmental data and rates of denitrification measured in this reach are 

assessed. 

4.2 Environment 

4.21 Physical variables 

Water temperature and flow were negatively correlated (p<0.05) for all the 

downstream sites and showed a seasonal bias (Fig. 4.1). Flow increased with distance 

downstream and exhibited a winter peak, decreasing in early spring through to a 

summer low. Flow for the tributary, River Wiske (km -1.7, 86.1,) was less than for the 

main river, although the same seasonality was exhibited. The temperature at the 

upstream sites was always lower than for the downstream sites due to their elevation. 
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Seasonally, the rate of temperature increase was greatest through the spring months 

(March to May) reaching a summer high at all sites. 

Conductivity, alkalinity and pH all increased with distance from the source 

(Table 4.1). The most upstream site, Ravenseat (km -2.5, 0.0), had relatively low 

concentrations of ions as estimated by conductivity, which never exceeded 130 11S cm-1
, 

whereas at the tidal limits at Nabum Weir it averaged 590 11S cm- 1
• The highest 

conductivity values were always recorded on the Wiske, ranging from 1120 to 

1557 11S cm-1 in 1996. There was no clear seasonality evident within the conductivity 

data. Alkalinity mirrored conductivity, with the lowest recorded measurements at 

Ravenseat, where it averaged 0.4 meq L-1
. 

The lowest pH values were recorded at Ravenseat; the mean was 5.9, ranging 

from a minimum of 4.6 in December 1996 to a maximum of7.1 in July 1996. Ivelet 

Bridge (km 10.9) also had a tendency to become weakly acidic in the winter months, 

with, for example, values of 5.9 in November 1996 and 7.9 in July 1996. The pH 

remained relatively stable throughout the year at around 7.5 at the lowland sites. This 

is a reflection of an increase in the buffering capacity of the river downstream of 

Richmond, due to the influence of limestone in this part of the catchment as well as the 

first major anthropogenic inputs from Richmond STW. Figure 4.2 highlights the strong 

seasonal trend in pH data at the upstream sites, Ravenseat, lvelet Bridge and Catterick 

Bridge (km 49.9). A winter decrease in pH at these sites is probably indicative of the 

effect of increased run off from the upland acidic peat soil. 

Absorbance at 320 nm has been taken as an indication of total organic carbon in 

the water originating from soil organic matter dissolution as water percolates through 

organic-rich soil horizons such as peat (Edwards & Cresser, 1987). The absorbance 

was greatest at the upstream sites decreasing downstream due to dilution of the colour 

(Table 4.1 ). Generally most sites showed high oxygen saturation throughout the year 

(Table 4.1), the Wiske was an exception with summer lows down to 46 % being 

recorded in July 1996. Nabum Weir also dropped below 100% saturation in July 1996 

to 75%. 

4.22 Water chemistry variables 

Nitrogen fractions 

Nitrate concentration in the river water gradually increase.d from source to tidal 

limits (Fig. 4.3). In the upper reaches of the catchment, concentrations rarely exceeded 
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Table 4.1 Means and ranges of physical water variables measured from January to December 1996 (excluding February). Abs. =Absorbance, Cond. =Conductivity; 

Alk. =Total alkalinity. 

RS IB CB TM NW w 
km Distance 0, -2.5 10.9 49.9 107.9 145 86.1, -1.7 

min. max. min. max. min. max. min. max. min. max. min. 

Abs. (320 nm) 0.28 0.13 0.48 0.19 0.09 0.36 0.13 0.07 0.20 0.10 0.04 0.14 0.09 0.04 0.16 0.07 0.05 

Cond. (J.IS cm-1
) 90 56 127 192 100 402 328 180 402 581 411 686 590 384 1340 1390 ll20 

02(%) 117 107 130 112 99 127 112 101 124 106 95 115 95 75 ll2 69 46 

02 (mgL-1
) 13.7 10.8 16.4 13.0 10.6 16.4 12.7 10.2 14.6 12.0 9.6 14.5 10.7 7.2 13.9 7.7 4.7 

pH 5.9 4.6 7.1 7.0 5.9 7.9 7.7 6.5 8.6 7.7 7.0 8.4 7.5 6.9 7.9 7.4 6.9 

Alk. (meq L"1
) 0.4 0.1 0.7 1.5 0.5 2.4 2.1 1.3 3.3 3.1 1.9 4.6 2.6 1.8 2.9 4.7 2.8 

Table 4.2 Means and ranges of phosphorus fractions measured from January to December 1996 (excluding February). FRP =Filterable reactive phosphate; 

FTP =Filterable total phosphate; TP =Total phosphate. 

RS IB CB TM NW w 
km Distance 0, -2.5 10.9 49.9 107.9 145 86.1, -1.7 

min. max. min. max. min. max. min. max. min. max. min. 

FRP (J.Ig L"1
) 7 1 21 7 1 22 142 40 271 396 128 848 518 156 997 2160 904 

FTP (Jlg L"1
) 12 7 20 11 5 23 158 48 284 424 130 983 562 183 1116 2316 1028 

TP (J.Ig L"1
) 14 8 23 14 6 25 190 56 491 453 149 1032 606 194 1175 2389 1043 

max. 

0.08 

1557 

106 

14.1 

7.7 

9.0 

max. 

6316 

6155 

6380 

-....] 

0 



L . 

9 

8 

7 -

6 

5 

Raven seat 

4+-~~~~~~~~--~~~~~~~~~~,~~ 

9 

8 

7 

6 

5 

9' 

8 :( 
II 

7:1 
I' 

6• :i 
'5 ·. 

lvelet Bridge 

"T"' 4 I - -, -

...L.· 

o.:. 9 -· 'ihorr:tton :Manor 
·a~. 
7 -

6 

5 

4' ~-,---.---,--.---,----,---,---..----.------.------r---,r---r---~~~,.--,..----
9 

8 

7 

6 

5 

Nabt;~rn We iii 
~ 

4+-----.-------r~r--~-,---.--~--~~~~--~~~~--~~~ 

9 

8 
Wiske 
.~ _..___ 

7 ·; - --- ~- -

6: 

5 

4+=---.---=~r---r------r---.-----,--~~-r~~~~-r~~r=--.----

I Figure 4.2 Values of pH within the Swale~Ouse•system (August •1~995 to December •1!996) 



-2 
:l.. -z 

I ....,. 
:c z 
ces 
z 

I 

"' 0 
z 

15 50 
Raven seat 

10 

5 

ol-~~~~~~_;~~~~~~~=~~~o 
15 100 

lvelet Bridge 
10 r·. 

50 
5 

o+-!=~~~~~~~~~~~~~~=t=~~~o 
w 2~ 

Catterick Bridge 
200 / I 

I' .. ~:) ~~~ 
20 

10 

------ 50 

oL-~~~~~~~~~~~~~~~~~~~Lo 
60 1000 
5o Thornton Manor 

~~ " r0 . ::: 
20 "'\-:-~~) '""' ~)-··o-c.__.· ...-.....~. 250 
1

~t-~~~~~~~~~~;;~~~~~~~~L_Lo 
60 1000 
50 Naburn Weir 
40 750 

30 500 
20 
10 250 

0 0 

60 2500 
5o Wiske 2ooo 
40 1500 
30 
~ 1~ 

10 500 

0 0 

.. A S 0 N £1~~ F M A M J J A S 0 N D 
I 1995 I 1996 •I 

Figure 4.3 N03-N (open circle), N02-N (triangle) and NH4-N (full circle) water concentrations obtained 

monthly from August 1995 to December 1996. Note the different scales between sitt:s and variables. 

72 

-::?! 
:l.. -z 
I 
("') 

0 
z 



36 11M N03-N, once downstream of Richmond (the first main centre of population) 

levels in the range of 250 to 750 11M were frequently recorded at Catterick Bridge, 

Thornton Manor (km 107.9) and Nabum Weir. The Wiske had maximum 

concentrations on every sample date. Nitrate showed a very clear seasonal trend at all 

sites, with the highest values being measured during the winter and early spring. For 

example, on the Wiske, a maximum of 2276JlM N03-N was measured in January 1996. 

Nitrite and ammonium showed no clear seasonal trends (Figure 4.3); however, 

spatially they did increase in concentration, again on moving downstream. At the three 

most upstream sites, nitrite was negligible throughout the sampling programme, often 

close to detection limits and never exceeding 1.0 JlM N02-N at Ravenseat and lvelet 

Bridge and rarely exceeding 1.5 11M N02-N at Catterick Bridge. The highest values for 

nitrite were usually measured on the Wiske; a maximum of 22 11M N02-N was recorded 

in December 1996. Similarly the highest ammonium values were mainly recorded on 

the Wiske and Nabum Weir, although values recorded at the upstream sites were often 

relatively high when compared to the lowland sites. 

Phosphorus fractions 

Phosphorus concentrations at Ravenseat were relatively low; both organic and 

inorganic dissolved forms being undetectable at certain times of the year (Table 4.2). 

At lvelet Bridge phosphorus concentrations were frequently lower than at Ravenseat 

due to dilution effects, however, once downstream of Richmond a similar increasing 

trend to the nitrogen fractions was evident due to anthropogenic inputs. Once again the 

highest concentrations were measured on the Wiske. 

4.23 Sediment variables 

Clear seasonal trends for all sites were not so evident for the sediment variables. 

However, generally total nitrogen and carbon (taken to be an indication of reducible 

organic substances) in particles less than 100 Jlm were low in winter and increased in 

summer (July) and autumn (October) months, for example at Catterick and on the 

Wiske (Table 4.3). 

The sediment data showed a greater trend spatially. The greatest proportion of 

coarse material (>600 Jlm) was found at the upstream sites (mean of 43% at 

Ravenseat). The percentage silt (<100 Jlm) gradually increased downstream from 
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Table4.3 Sediment variables (means and ranges)., measured from January to December !996 in the Swale..()use system. 

R:wenseat h·tiN Dridae 
1996 I 1996 

I Jnn A~r Jul Oct Mean I Mean min. max. Jan A or Jul Oct Mean i\ 1('30 min. max 
% P:u1id e Si:'t:e (~m) 

<100 6.t 1~.9 8.0 4.2 8.3 11.0 12.8 9.3 11.9 11.2 
100· 150 0.9 2.0 0.8 0.9 1.1 2.1 0.8 0.5 2.6 1.5 
150·250 6.5 21.7 8.0 7.7 ! 1.0 15.3 24.7 7.6 19.8 16.9 
250·600 31.0 44.6 27.2 41.5 36.1 55. 1 54.3 37.9 55.0 50.6 

>600 55.5 16.9 56.0 45.7 ~3.5 165 7.5 44.7 10.7 1?.? 
%Efcmcnt 

%C 0.200 0.200 0.310 0.130 0.210 0.174 0.064 0.309 0 280 0.490 0.420 0.300 0.373 0.435 0.208 0.803 
%N 0 .010 0.009 0.019 0.009 0.012 0.009 0.003 0.019 0.013 0.045 0.023 0.017 0.025 0.037 0.0 11 0.089 
C:N 19.89 2150 16.36 13.77 17.88 19.50 13.77 24.35 21.24 10.94 17.73 17.62 16.88 1~.83 2.71 21.24 

Catttdck Oridg<' Tllomton M:~nor 

I 1?96 I 1996 

I Jan Aer Jul Oct Mean Mean min. max. Jan A or Jul Oct I\ lean Melin min. max. 
% Panicle Size (J!m) 

<100 28.0 54.0 2.J 9.6 23.4 50.8 10.5 26.8 38.8 31.7 
100·150 2.9 4.0 0. 1 2.5 .2.4 5.5 1.4 4.3 5.2 u 
150·250 25.3 32.2 7.1 12.9 19,4 27.> 25.4 32.3 255 27.6 
250-600 37.3 9.3 65.0 53.3 4!.3 16.1 60.3 355 28.3 35.0 

>600 6.4 0.5 25.7 21.6 13.6 0.3 25 1.2 2.2 1.6 
o/o Element 

o/.C 0.440 0.377 0.620 1.010 o.6!2 0.559 0.205 1.020 0.370 0.240 0.110 0.260 0.2451 0.262 0.091 0.513 
%N 0.022 0.020 O.o38 0.065 0.036 0.034 0.0 11 0.071 0,028 0.0 11 0.006 0.023 0.017 0.0!7 0.004 0.034 

C:N 19.89 18.50 !6.25 15.56 17.55 !7.39 14.46 19.89 13.26 21.17 18.95 10.97 16.o9 17.61 10.98 24 .08 

Naburn \Veir \Visk(' 

I 1996 I 1996 

I Jan AE:r Jut Oct Mean Mean mill. ma;.;, Jon A or Jul Oct t'vltan Mean min. max. 
% Particle Siz.e (!ull) 

<100 35.2 28.0 42.2 47.0 38.1 9.4 9.2 10.6 10.0 9.8 
100-150 4.2 7.9 5.2 9. 1 6.6 2.1 3.2 1.2 0.4 1.7 
150-250 48.5 48.7 41.0 36.1 ~3.6 16.5 21.5 12.6 12 .2 15.7 

250-600 11.8 14.7 I Ll 7.1 11.2 63.7 S6.0 57.0 58.0 58.7 

>600 0.2 0.8 0.5 0.8 Q.6 8.3 10.1 18.6 19.4 H . I 

% Elemeot 
%C 0.960 0.290 0.430 0.420 0.525 0.517 0.227 0.958 0.280 0.210 0.470 0.570 0.383 0.390 0.214 0.748 

%N 0.069 0.0 13 0.024 0.029 0.034 0.034 0.012 0.069 0.023 0.016 0.039 0.044 0.031 0.031 0.016 0.065 

C:N 13.89 23.03 18.18 14.25 17.3~ 16.79 11.39 23.03 12.18 13.47 12.37 13.22 12.81 12.53 11.5 I 13.57 

-.1 ... 



8.3 %at Ravenseat to 38.1 %at Nabum Weir (tidal limit). Total carbon was mainly 

lower upstream (mean of 0.174 % C at Ravenseat) than downstream (mean of 

0.517% Cat Nabum Weir). 

Nitrate and ammonium profiles 

The profiles of extracted nitrate from sediments at each site from January to 

December 1996 mirror the trends in nitrate concentration evident within the water 

column (Figs. 4.4 & 4.5). The concentration of nitrate in the sediment increases again 

on moving from upland to lowland sites. For example in November 1996 the 

concentrations of nitrate measured in the upper centimetre at Ravenseat, Nabum Weir 

and the Wiske were 7 jlg N g-1
, 13 jlg N g-1 and 18 jlg N g-1 by dry weight of sediment 

respectively. Again the highest concentrations were always extracted from Wiske 

sediment. Additionally, similarly to the water column, the concentration of nitrate in 

the sediment varies seasonally, a summer minimum and a winter maximum is evident 

for all sites. A trend is also depicted through the sediment profiles, generally the 

concentrations of nitrate were higher in the upper centimetres than in the deeper 

sediment, particularly in the winter months, for example in November and December at 

Catterick Bridge (Fig. 4.4 )-

The profiles for extracted ammonium (Figs. 4.6 & 4.7) again show a tendency to 

increase in concentration moving from upland to lowland sites. The highest 

concentrations were extracted from Wiske sediment, a maximum 9f 50 jlg N g-1 dry wt. 

being recorded for this site. Similarly to ammonium concentration in the water 

column, there is not as strong a seasonal trend as with the nitrate data. A trend that is 

more apparent in the sediment cores is for an increase in concentration with depth, 

particularly for Catterick Bridge (Fig. 4.6), Thornton Manor and the Wiske (Fig.4.7). 

Microbial numbers 

Most Probable Number (MPN) counts for denitrifiers generally increased with 

distance from source in sediments collected in October 1996 (Table 4.4 ). 
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Table 4.4 Most Probable Number estimates for denitrifiers in Swale-Ouse sediments (16/10/96) 

Site MPN 
(g"1 dry weight sediment) 

Ravenseat 24 

lvelet Bridge 9885 

Catterick Bridge 2200 

Thornton Manor 1400 

Naburn Weir 90523 

Wiske 27375 

4.3 Sediment denitrification 

, For comparison with the above environmentally controlling factors, the variation 

between sites and seasons in denitrification rates, measured using intact sediment cores, 

along the Swale-Ouse continuum is shown in Figure 4.8. 

Spatial trend 

A consistent increase (up to 30 times) in sediment denitrification rate on moving 

downstream was found (Fig. 4.8). The lowest rates (rarely exceeding 

20 J..lmol N m·2 h-1
) were found at the two upstream sites, Ravenseat and Ivelet Bridge. 

Similarly to nitrate concentrations, the rates showed a gradual increase downstream, the 

highest rates (883 ±134 J..lmol N m-2 h" 1
) were recorded on the Wiske. 

Seasonal trend 

A seasonal trend in denitrification is also evident from Figure 4.8. The lowland 

sites all showed a peak in activity in the spring months (March to May), for example at 

Catterick Bridge a rate of 279±56 J..lmol N m-2 h-1 was recorded in April1996 compared 

to 48.95±9.81 J..lmol N m·2 h-1 the previous January. During the summer months there 

was a general decrease in activity, rates at Catterick had dropped to 

87±21 J..lmol N m-2 h-1 by August, through to the winter months. Similarly, Nahum 

Weir had a peak denitrification rate of 659±187 J..lmol N m-2 h-1 in May 1996, dropping 

to 40±15 J..lmol N m-2 h-1 by July 1996, a winter low of 21±15 J..lmol N m-2 h-1 was 

recorded in December 1995. The two upland sites showed no marked seasonality. 
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Principal Components Analysis 

In order to assess and illustrate the seasonal and spatial trends evident within the 

data set for the Swale-Ouse system from January to December 1996, a principal 

components analysis (PCA) was performed. Before analysis, the data (except for pH) 

were normalised using log transformation. 

This analysis served to place each attribute on constructed axes (components) so 

that its geometrical position relative to other attributes reflected similarities between 

them. Only the first two components were considered as they described 79 % of the 

data between them. The first component represented 64 % and the second described 

14 %. It is evident from the correlations of the environmental variables with the first 

two components that the first axis is analogous to the spatial variation in these variables 

(Fig. 4.9). The nutrient fractions, denitrification and pH are all strongly negatively 

correlated with Principal Component 1 (PC 1), suggesting that as this axis becomes 

more negative, so the distance from source is greater. All of these variables increase 

with distance from source. PC 2 describes much less of the data, however, the 

positioning of the environmental variables along it might suggest that it represents a 

seasonal trend within the data set. pH is strongly negatively correlated with this axis 

and, as previously discussed, exhibits seasonality particularly at the upstream sites 

(Fig. 4.2) where it decreases within winter months. The nutrient fractions are more 

positively correlated with this axis, nitrate in particular exhibits strong seasonality, 

increasing in the winter months (Fig. 4.3). The positioning of denitrification on this 

axis falls between pH and nitrate, this exhibits a peak in activity in the spring (Fig. 4.8). 

Thus, the relationship of these particular variables to PC 2 might suggest that the 

negative end of the scale represents summer months and the positive end, winter 

months. 

Plotting the individual samples using their component scores reinforces the 

interpretation that PC 1 represents a spatial trend and PC 2 represents a seasonal trend 

(Fig. 4.10). The samples are orientated along the first component ranging from the 

most upstream site, Ravenseat, down to Naburn Weir, the most downstream site on the 

main river. The Wiske is located at the most negative end of the scale, as previously 

shown it generally exhibited the highest nutrient concentrations, conductivity and 

denitrification activity. The second component would appear to separate winter months 

from summer months. The winter samples are generally located at the more positive 

end of the site groupings, whereas the summer samples are at the more negative end of 

the scale. The strong influence of pH on this axis could lead to the greater spread of 
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samples at the more upstream sites where pH is more variable seasonally than further 

downstream. 

In analysing these data using PCA multivariate analysis, it must be noted that 

this approach is inductive and non-experimental in order to highlight patterns in the 

data, as opposed to the deductive approach of most other statistical analysis which seek 

a mathematical relationship between variables. 

Correlation 

In an attempt to deduce the relative influence of the measured in situ 

environmental variables on denitrification activity for each site through the year, 

correlation analysis was performed on the data, normalised by log transformation. No 

significant correlations (p<0.05) between denitrification and any of the in situ 

environmental variables were found at any site. However, when these data for all sites 

were pooled to investigate effectively the relationships between variables from upstream 

to downstream, as opposed to seasonal relationships which the single site correlation 

assessed, significant relationships (p<O.OOl) were found (Table 4.5). 

Table 4.5 Pearson correlation matrix of all Swale-Ouse log-transformed data (August 1995 to 

December 1996) Shading indicates p<O.OOl. Denit =Denitrification; Cond =Conductivity; 

TP =Total Phosphate; Temp= Temperature; Alk =Alkalinity. 
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Denit Cond o/oC N03·N N(h- NRa- TP pH Temp o/o(h Alk o/oN 

N N 

Cond 0.822 

%C 0.422 0.360 

NOJ-N 0.760 0.832 0.409 

N(h-N 0.618 0.751 NS 0.738 

N~-N 0.424 0.482 NS 0.524 0.568 

TP 0.716 0.850 0.306 0.813 0.884 0.476 

pH 0.606 0.597 0.384 0.429 0.340 NS 0.419 

Temp 0.305 0.283 NS NS NS NS 0.271 0;501 

o/o(h -0.376 -0.599 NS -0.405 -0.478 NS -0.519 NS NS 
Alk 0.756 0.762 0.427 0.665 0.555 0.298 0.654 0.562 0.364 -0.366 

%N 0.401 0.357 0.902 0;395 NS NS NS 0.296 NS NS 0.371 

C:N NS NS NS NS NS NS NS NS NS NS NS -0.594 



Particularly strong correlations were found between denitrification and nitrate, 

nitrite, conductivity, phosphate, pH and alkalinity (Table 4.5). This highlights the fact 

that these data exhibit a high degree of collinearity. Conductivity, nitrate, nitrite and 

phosphate are closely related {p<O.OOl) as they all increase with greater anthropogenic 

input downstream. Additionally, as previously discussed, pH, alkalinity and 

conductivity are all interrelated, hence the strong correlations {p<O.OOl). Temperature 

is not so significantly correlated because this correlation assesses the changes from 

upstream to downstream as opposed to seasonal effects. 

Regression 

A best subsets regression of all water and sediment variables analysed in the 

17 month survey was used to assess which variables exerted the greatest combined 

influence on denitrification in the Swale-Ouse. Taking into account the strong 

collinearity evident within this data set, water nitrate and temperature explained 68 % of 

the total variance in the data. Multiple regression analysis was then applied to these 

field data to assess the relationship between denitrification and the controlling variables 

nitrate and temperature. Equation 1 describes the relationship of the log-transformed 

variables. 

4.31 Spatial heterogeneity in sediment denitrification 

Two sets of three replicate cores were taken from different positions in a 10m 

reach on the Wiske at Castle Farm on 2 April 1996, and denitrification rate and N20 

production determined. The positions were chosen to represent each of the following: 

A) coarse sand; B) sand and gravel; C) fine sand over compacted clay; D, E, F) fine 

sand and silt covered with plant debris. The cores were incubated for 4 hat l5°C in the 

dark. 

The results of this heterogeneity study are summarised in Table 4.6. 

Comparison of different types of substrate at one site showed a four-fold difference 

between the lowest value of 99 ~ol N m-2 h-1 in fine sand over compacted clay to 

382 ~ol N m-2 h-1 in the fine sand plus silt covered by plant debris. 
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Table 4.6 Denitrification rate and N20 production in different types of sediment in the Wiske 

(km -1.7, 86.1) on 4 April 1996 (mean± SD; n = 3). 

Site Characteristics of the sediment Denitrification rate N20 production 

(f.Lmol N m"2 h"1
) (f.LMOI N10-N m·1 h"1

) 

A Coarse sand 140 ± 28.1 24.7 ± 21 

B Sand and gravel 134 ± 60.5 -6± 8.3 

C Fine sand over compacted clay 99 ± 5.04 113.6 ± 27 

D Fine sand and silt with plant debris 360 ± 23.7 27.7 ± 54.6 

E Fine sand and silt with plant debris 261 ± 107 3.8 ± 24.3 

F Fine sand and silt with plant debris 382 ± 51.0 30.4 ± 29.3 

4.4 Nitrous oxide (N20) production 

The study showed that changes in N20 production (intact sediment cores 

without acetylene) during the assays ranged from a slight net uptake to marked release 

(Table 4.7). Low or slightly negative values were sometimes recorded at all sites, but 

there was a marked tendency for maximum values to increase on passing downstream. 

For example, at Ivelet Bridge, the values ranged from -18.5 J.Lmol N20-N m·2 h-1 (i.e. net 

uptake) to 14.0 J.Lmol N20-N m·2 h"1 (i.e. net release). Downstream at Nabum Weir 

values ranged from 1.4 to 100 J.Lmol N20-N m·2 h" 1 and for the Wiske, values ranged 

from 0.13 to 497 J.Lmol N20-N m-2 h-1
• 

Table4.7 N20 production in the sediments in the Swale-Ouse and Wiske rivers during 1996. Samples 

were collected monthly, apart from February for the main river sites. 

River Site Distance N10 production 
(km) (Jimol N10-N m"1 h"1

) 

min mean max 
Swale 

Ravenseat -2.5, 0.0 -1.2 0.8 2.8 
Ivelet Bridge 10.9 -18.5 0.1 14.0 
Catterick Bridge 49.9 -0.4 43.8 96.4 
Thornton Manor 107.9 3.1 32.5 65.7 
Nabum Weir 145 1.4 30.8 100.0 

Wiske 
Wiske -1.7, 86.1 0.1 161.0 497.0 

No clear seasonal trend was evident at Ravenseat or Ivelet Bridge, but the 

downstream sites showed some tendency for seasonal changes (Figs. 4.11 and 4.12). A 

winter low is evident for all sites, however, values tended to be lower in the latter part 
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of 1995 than in the same months of 1996. This effect was even more clear for the 

Wiske. There is an increase in NzO production in spring, this is particularly apparent at 

Catterick Bridge (Fig. 4.11) and the Wiske (Fig. 4.12), peaking in the summer months. 

The highest production rate of NzO at 497±184 ~mol N20-N m-2 h- 1 was measured on 

the Wiske in July 1996. 

The proportion of NzO release related to the total gases released during 

denitrification (NzO + Nz from intact sediment cores with acetylene) showed great 

variation (minimum 0, maximum 100 %) as indicated by the bars on Figs. 4.11 and 

4.12. Again there was a general seasonal trend towards higher proportions within the 

summer months compared to the winter months. The greatest proportions of N20 were 

released from Wiske sediments, a maximum of 100% was measured in July 1996. 

The variability (coefficient of variation, CV) of measurements for N20 

production at a particular site on any one day tended to decrease on passing downstream 

(Table 4.8). Data on variability in denitrification rate at the same time are included in 

this table; these show that the annual mean for the CV of N20 production was more 

than twice that for denitrification rate at all the sites. 

Table 4.8 Comparison of variability of results for N20 production and denitrification during 1996, as 

shown by the mean annual values for the coefficients of variation of the two processes. 

River Site Distance Coefficient of variation 
(km) 

NzO production Denitrification 
(J.UDol NzO-N m-2 h-1

) (J.UDOI N m-2 h'1) 

Swale 

Ravenseat -2.5, 0.0 116 37.5 
Ivelet Bridge 10.9 61.2 22.2 
Catterick Bridge 49.9 109.5 24.4 
Thornton Manor 107.9 89.9 21.6 
Nahum Weir 145.0 49.0 22.2 

Wiske 
Wiske -1.7, 86.1 35.7 17.0 

In an attempt to assess the relative influence of the environmental variables 

(temperature, N03-N, ~-N, P04-P) and denitrification on N20 production, correlation 

analysis was performed on the data (normalised by logarithmic transformation) for each 

site through the year. There was no significant correlation (p <0 .05) between N20 

production and any environmental variable. However, when the relationship between 

NzO production and environmental variables was assessed for the data from all six sites 
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on any one day, there was a significant positive correlation (p < 0.05) with N03-N 

concentration on 7 of the 11 days during 1996 (11 of 16 during whole study) (Table 

4.9). The annual mean value for N20 production at any one site also showed a 

significant positive relationship (p < 0.05) with the annual mean value for N03-N 

concentration at the same site (Fig. 4.13). 

Table 4.9 Relationship between N20 production and nitrate in the water column at particular dates for 

all the sites. R2 indicates the coefficient of determination for the curves. Slope indicates the increase in 

N20 production (J..lmol N20-N m'2 h'1) for each J.LM nitrate increase in the water column. 

Sampling date 

1995 
16 August 
12 September 
17 October 
14 November 
18 December 
1996 
15 January 
15 March 
18 April 
16May 
20 June 
15 July 
16 August 
17September 
15 October 
22 November 
12 December 

4.5 Tidal reaches 

Rz 

0.84 
0.32 
0.80 
0.01 
0.16 

0.85 
0.60 
0.40 
O.Ql 
0.66 
0.88 
0.82 
0.70 
0.92 
0.73 
0.77 

Slope 

0.58 

0.10 

7.66 

0.63 
0.65 
1.47 
0.24 
8.41 
0.10 
0.03 

Physical and chemical variables, water temperature, conductivity, oxygen, pH 

and nitrate were recorded from March to early October 1996, and denitrification rate 

was determined monthly from July to October within the 21-km freshwater tidal stretch 

of the Yorkshire Ouse. 

Three sites were sampled routinely in this supplementary survey. These 

included the upstream tidal limit (immediately downstream of Nahum Weir), an 

intermediate site (Cawood) and the downstream freshwater limit (Selby). These sites 

were sampled without the use of a boat. The Nahum Weir site was reached from the 

shore, while the Cawood and Selby sites were sampled from jetties. 

Samples and measurements were taken approximately 1 m from the jetty or 

other position of the sampler and at approximately 10 em below the surface. One 
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sample was also taken (Selby, 4 July 1996) to test whether denitrification was 

detectable in the water column. Sediment cores were taken from positions close to 

where the water was sampled. The greatest depth of overlying water at the position 

sampled was 4 mat Selby (although the maximum river depth here is several metres 

deeper). The cores were collected using a 'Mackereth' sediment corer (Freshwater 

Biological Association, Cumbria), which includes a 50 em deep and 5.5 em internal 

diameter plastic cylinder. The sediment sample was typically about 10 em deep, with 

the rest of the cylinder being filled with water. A sub-sample of this core was taken at 

the site by means of one of the narrower plastic cylinders (25 em height, 3.5 em internal 

diameter) used for the studies on the non-tidal river. (This was done because of the 

need to transfer each individual sample of sediment to the laboratory in its own 

cylinder.) The narrower cylinder was placed vertically over the centre of the broader 

cylinder and plunged into the core. It proved possible to do this with minimum 

disturbance to the core; as there was little sign of particles being disturbed from the 

surface in the narrower cylinders. 

The narrower cylinder was sealed with a rubber bung and removed carefully 

from the broader cylinder. The bottom of the core was sealed with an additional rubber 

bung. The cores were transported to the laboratory in an ice box. Three triplicate sets 

of three cores were collected for denitrification and N20 production assays. An 

additional set of cores was collected on 1 October 1996 at the three main sample sites to 

determine the water content, total carbon and nitrogen and particle size composition of 

the sediment. 

Some environmental features of the tidal sites are summarised in Figure 4.14. 

Temperature increased rapidly through the spring months to peak in August at all sites 

(Fig. 4.14a). Conductivity remained relatively constant with the highest levels 

generally recorded at Selby (km 230), similarly, pH remained stable throughout the 

sampling period (Fig. 4.14b & d). The water column oxygen concentrations were 

always over 87 % at Naburn Weir, however, an oxygen sag was evident in the summer 

months downstream at Cawood (km 210) and Selby where concentrations dropped to 

43 and 22% respectively in August (Fig. 4.14c). There was no difference in nitrate 

concentrations between sites, although concentrations decreased from March through to 

October when a minimum of 137 J.1M was found at Cawood (Fig. 4.14e). 

The cores were always some shade of brown; even at Selby, there was no 

evidence of a black anoxic layer. The sediment characteristics measured on one day 

show (Table 4.10) that the proportion of fine particles(< 100 J..lm) in the sediment at 
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Nahum Weir was less than one sixth of that at Cawood or Selby (95.1 %). More than 

50% particles in the sediment were fine sand for Nahum Weir, but only 6.1 and 3.2% 

for Cawood and Selby, respectively. The composition of the particles< 100 f.lffi also 

changed on passing downstream: C and Nat Nabum Weir were both more than ten 

times lower than at Cawood or Selby. There was a progressive increase in the C : N 

ratio of these particles on passing downstream (19.5 to 48.4: Table 4.10) 

Table 4.10 Sediment variables in the freshwater tidal reaches of the Yorkshire Ouse (1/10/96). 

Sediment variable Naburn Cawood Selby 

Weir 

% Particle Size (fJm) 

< 100 13.7 90.6 95.1 

100-250 61.5 6.1 3.2 

>250 23.6 2.3 0.5 

%Element 

%C 0.12 3.37 2.07 

%N 0.006 0.088 0.042 

C:N 19.5 38.0 48.4 

Sediment denitrification rates ranged from below detection limits in early 

October at Selby to 378±21 flmol N m-2 h-1 at Cawood in August (Fig. 4.15). The 

denitrification rate decreased from June to October 1996 at Nahum Weir, but no trend 

was apparent at Cawood or Selby. Spatially, generally denitrification decreased from 

the tidal limits at Nahum Weir to Selby. 

Denitrification was not detected in the water column at Selby by either acetylene 

block or 15N techniques, despite the very low dissolved oxygen concentrations. 
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Figure 4.15 Sediment denitrification measured in sediment cores from the freshwater tidal reaches of 

the River Ouse (July to October 1996). 

4. 7 Discussion 

The results of this chapter show that seasonal and spatial trends are evident in 

both the environmental and denitrification data along the Swale-Ouse system. This 

therefore suggests that the hypotheses (Section 1.4), that a gradient of physical and 

chemical variables will elicit a graded response from denitrifying bacterial populations 

and that seasonal variations in these variables will also elicit a response, can be 

accepted. 

PCA and statistical analyses (Section 4.3) have helped to illustrate and provide 

an explanation to these findings, by assessing the spatial and seasonal trends evident 

within the data and by deducing the relative influence of measured in situ environmental 

variables on denitrification activity. A high degree of colinearity is evident between 

environmental variables; for example, alkalinity was strongly positively correlated with 

conductivity (p<O.OOl) due to the fact that conductivity increases with increased ions in 

the water column, such ions would include carbonates, thus resulting in the 

simultaneous increase in alkalinity and hence the buffering capacity of the water. 

Despite the colinearity within the data set, a significant relationship between 

denitrification, nitrate and temperature was found through multiple regression (Section 

4.3). 

Conductivity, alkalinity, pH and nutrient fractions all increased with distance 

from source, mostly exhibiting a peak on the eutrophic Wiske. This is probably due to 

the fact that urban and agricultural activities are greatly increased in the lowland 
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reaches. Seasonal fluctuations were observed in flow, temperature, pH and nitrate. 

Flow and nitrate showed a peak in winter months, probably as a result of increased run­

off, whereas temperature and pH (particularly at the upstream sites) peaked in the 

summer months. Extracted nitrate and ammonium fractions from sediments mirrored 

the trends of these fractions in the water column, although not to such a great extent, 

possibly as a result of utilisation by bacterial populations. The proportion of sediment 

carbon and silt generally increased with distance downstream, again with a maximum 

measured on the Wiske. This increase in sedimentation is possibly indicative of the 

surface run-off from the agricultural lowland catchment area, as well as decreases in 

current velocity; furthermore, this increase has direct consequences on the 

environmental conditions within these sediments. For example, at Ravenseat there was 

a low C %, yet a high percentage of sand and gravel, therefore it would be expected that 

the sediments would be well aerated, in addition there would be little surface area for 

microbial attachment. Further downstream, the C % increase is mirrored by the 

percentage of silt, which whilst potentially decreasing the penetration of oxygen, would 

result in an increasing surface area for microbial attachment. These findings have been 

reflected by the MPN counts for denitrifiers, which increased with distance from source. 

In conjunction with these findings, denitrification mostly increased with distance 

from source, although results from the supplementary survey of the freshwater tidal 

reaches of the Ouse showed a decrease from the tidal limits at Nabum Weir. In order 

to help explain these findings, a summary of some of the main spatial trends apparent 

within these data for August 1996 is presented in Figure 4.16. The lowest rates of 

denitrification were measured at Ravenseat where, as described above, the lowest water 

nitrate concentrations were measured (these rarely exceeded 36J.1M N03-N upstream of 

Richmond). In contrast, the highest rates of denitrification were always measured on 

the Wiske (concentrations as high as 2276J.1M N03-N were recorded in January 1996). 

Since denitrifying bacteria require a ready supply of nitrate, as discussed previously 

(Section 1.21), it is probable that nitrate is a key influencing factor on denitrification in 

the Swale-Ouse system, furthermore the results of the statistical analyses also serve to 

verify this. 

From the findings of the study, it would also seem apparent that sediment is 

potentially a key variable affecting denitrification rate, since it also varies greatly from 

upstream to downstream as discussed above. The rate of denitrification was found to 

increase as the percentages of silt and carbon increase. As previously suggested, this 

increase in rate could be a result of increased amounts of denitrifying bacteria due to the 
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increased smface area, furthermore decreased oxygen penetration would also provide 

more favourable conditions for denitrification (see Section 1.21). Subsequently, 

instability in the upper sediment due to high flow conditions could explain the decrease 

in denitrification in the freshwater tidal reaches downstream of Naburn Weir 

(Section 4.5), since this would prevent the development of microbial communities and 

possibly result in the greater penetration of dissolved oxygen. 

The study of spatial heterogeneity also serves to reiterate the importance of 

sediment type on rate of denitrification, since denitrification rate showed a four-fold 

difference in rate between different types of sediment substrate from one site (Section 

4.31). In fact, the highest rates of denitrification in this heterogeneity study were found 

in areas with overlying plant debris (Table 4.6) and silt. This again suggests that a 

higher surface area for microbial attachment, as well as potentially an increased amount 

of organic C content, has resulted in the higher rates of denitrification. 

Denitrification also showed a seasonal trend in activity, with a peak in rate being 

found in the spring months for all the downstream sites. It could be hypothesised that 

this spring peak can be largely explained by two environmental factors, nitrate 

concentration in the water column and temperature. This is because the results of the 

best subsets regression of all water and sediment variables analysed over the long-term 

study period found that water nitrate and temperature explained 68 % of the total 

variance in the data. As discussed above, there are very marked seasonal trends evident 

in water column nitrate concentrations and temperature. The winter peak in nitrate 

could be explained by increased run off, whereas the summer low could be the result of 

increased macrophytic uptake and decreased run off, obviously there is a summer peak 

in temperature. From these observations it might appear probable that denitrification is 

affected by the varying importance of nitrate and temperature at different times of year. 

During the winter months, despite the high nitrate availability, denitrification may be 

expected to be limited by low temperatures, whereas during the summer months it could 

become limited by nitrate availability. During the spring, however, denitrification is 

favoured by rapidly rising temperatures whilst nitrate availability is still relatively high, 

thereby resulting in the observed spring peak in activity. 

Similarly to denitrification, the study on N20 production showed obvious spatial 

changes, increasing in production with distance from source and again exhibiting a peak 

on the Wiske (Section 4.4 ). It would also seem probable that increasing nitrate with 

distance from source is again a key factor influencing the tendency for this increase in 

N20 production (Table 4.9 and Figure 4.13). 
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Nitrous oxide production showed a less obvious seasonal trend than 

denitrification, although there was a tendency toward higher values of N20 production 

in the late spring and summer months rather than in the winter for the downstream sites, 

similarly to denitrification. Once again, it seems probable that higher temperatures in 

the summer are responsible for the generally higher rates of N20 production then, 

despite the relatively low nitrate concentrations. In addition to the direct influence of 

higher temperature on microbial processes, a rise in temperature may enhance N20 

production by reducing oxygen concentration in the sediments, which in tum would 

lead to a reduction in nitrification (another source of N20, as well as a source of nitrate 

for denitrification; see Section 1.2). The decrease in N20 production in the winter 

months despite the high concentrations of nitrate could be explained by low 

temperatures which limit denitrification. Furthermore, the instability of sediments 

during frequent high winter flows may also result in a decrease in denitrification and 

nitrification, and hence NzO production. 

The proportion of N20 release related to the total gases released during 

denitrification showed great variation, again there was a seasonal trend towards higher 

proportions in summer months compared to winter months. This may be due to the fact 

that other factors, such as dissolved oxygen and organic C, content may also have 

important influences on NzO production. 

This discussion has provided a review of the key findings of the investigation on 

the Swale-Ouse system, which are further discussed in Chapter 7. However, these 

results do serve to support the need for further investigations into the relationship 

between denitrification and environmental variables. 
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CHAPTERS 

RIVER TWEED FIELD STUDY 

5.1 Introduction 

As discussed in Section 2.2, the Tweed has a rural, sparsely populated catchment 

with low levels of agricultural and industrial activities, resulting in low pollutant loads. 

For this reason, the Tweed was selected as a secondary sampling catchment to provide 

an 'unpolluted' contrast to the Swale-Ouse system in order to further investigate the 

effect of environmental variables on denitrification. Furthermore, since the Tweed was 

known to show consistent changes in a range of environmental variables on passing 

downstream (Robson et al., 1996), it was hypothesised that the data collected could 

serve to verify the spatial and seasonal trends already observed in the Swale-Ouse 

system. 

In order to achieve these objectives, a seasonal study from June 1996 to April 

1997 was undertaken. Denitrification and environmental variable measurements at the 

Tweed sample sites were taken on only four occasions within the year (Section 2.22), 

so, there are insufficient data to allow meaningful statistical analyses. However, as 

these data were collected on a seasonal basis, it is still possible to utilise them to provide 

an inductive comparison with the main trends observed in the Swale-Ouse long-term 

study, even without statistical analysis. 

5.2 Environment 

To illustrate the environment of the Tweed during the period of the study and to 

help provide a better understanding of the trends evident in the denitrification data, 

environmental data from the LOIS core programme from August 1994 to February 1997 

are presented below. 

5.21 Physical variables 

Temperature and flow both showed a clear seasonal bias (Fig.5.1). Flow 

increased with distance downstream, exhibiting a winter peak at the most upstream site 

at Bolside (km 73.1) and on the River Teviot at Ormiston Mill (km -9.0, 108.5). Flow 

on the tributary, River Teviot, was less than the main river sites, although the same 

seasonality was exhibited. 
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Conductivity showed a slight increase with distance downstream (Table 5.1), 

although the highest values were recorded on the Teviot at Ormiston Mill, ranging from 

156 to 636 flS cm- 1
• There was no clear seasonality evident within the data. 

Alkalinity reflected the conductivity, with the highest value 

(196.4 mg L 1 HC03) recorded on the Teviot at Ormiston Mill, and the lowest mean 

value (54.2 mg L-1 HC03) being calculated for the most upstream site at Bolside (Table 

5.1). 

The average pH values between sites on the Tweed were not greatly different 

(e.g. 8.2 at Ormiston Mill, Table 5.1). However, the data at Norham showed much 

greater variation than the other sites, often becoming highly alkaline in the summer 

months and more acid in the winter months (Fig. 5.2). 

Table 5.1 Means and ranges of water variables in the Tweed river system (measured on day of sediment 

sampling) from August 1995 to August 1996. Cond. =Conductivity; Alk. =Total alkalinity. 

Bolside 
km distance 73.1 

mean min. max. 

Cond. (J.IS cm-1
) 213 117 407 

pH 8.6 6.7 10.0 

Alk. (mg L" 1 HC03) 54.2 15.7 192.8 

5.22 Water chemistry variables 

Nitrogen fractions 

Ormiston Mill Nor ham 
-9.0, 108.5 138.3 
mean min. max. mean min. max. 

339 156 636 265 155 539 

8.2 7.0 9.4 8.4 6.9 10.5 

137.6 10.7 196.4 85.0 4.9 190.7 

Nitrate concentration in water showed a slight increase with distance 

downstream (Figure 5.3). Ormiston Mill on the Teviot generally had maximum 

concentrations. A very clear seasonal trend was evident in the nitrate data for all sites, 

with the highest values being measured in the winter and early spring. 

Nitrite and ammonium showed no clear seasonal trends (Figure 5.4). Nitrite 

rarely exceeded 1.5 JlM in the Tweed system, although the highest values were usually 

measured at Ormiston Mill, where a maximum of 11 J.1M was recorded in September 

1996. Ammonium concentrations on the Tweed were usually below 10 f.1M, often with 

higher measurements on the upstream site at Bolside, possibly due to input from a 

sewage treatment works just upstream. 
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Phosphorus fractions 

Average aqueous phosphorus concentrations were low (Table 5.2), both organic 

and inorganic forms were close to detection limits at certain times of year. The highest 

mean concentrations for all fractions were measured at Ormiston Mill. 

Table 5.2 Means and ranges of phosphorus fractions in the Tweed river system (measured on day of 

sediment sampling) from August 1995 to August 1996. FRP =Filtrable reactive phosphorus; 

FTP = Filtrable total phosphate; TP = Total phosphate. 

Bolside Ormiston Mill Nor ham 
km Distance 73.1 -9.0, 108.5 138.3 

mean min. max. mean min. max. mean min. 

FRP (J.lg L"1 P) 38 4 272 35 4 128 30 5 

FTP (J.lg L"1 P) 62 9 330 91 3 1188 81 10 

TP (J.lgL"1 P) 110 22 1937 123 15 1224 118 22 

5.3 Sediment denitrification 

max. 

77 

966 

989 

Denitrification rates measured using intact sediment cores in the lower Tweed 

are shown in Figure 5.5 to allow comparison with the background environmental data. 

Spatial trend 

The levels of denitrification activity for each site mirrored the levels of nitrate 

measured in the overlying water (Fig. 5.6), phosphorus and conductivity. The lowest 

rates (below 20 J.lmol N m·2 h" 1
) were recorded at Bolside, the most upstream site, which 

always had the lowest nitrate measurements on day of sampling (Fig. 5.6). The highest 

rates (242 J.lmol N m·2 h" 1
) were consistently found on the more polluted tributary at 

Ormiston Mill, which, in contrast to Bolside, always had the highest nitrate 

measurements on the day of sediment sampling (Fig. 5.6). Denitrification rates 

measured at the most downstream site (East Ord, km 150.5), in the freshwater intertidal 

zone of the Tweed, were always slightly lower than Norham (just upstream of the tidal 

limit), despite the fact levels of nitrate were very similar. 
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Seasonal trend 

A spring peak in denitrification activity was found on the Tweed (Fig. 5.5), 

which suggests a seasonal trend. For example, at Bolside a rate of 213 flmol N m-2 h- 1 

was recorded in April 1997 compared to 17 11mol N m-2 h- 1 the previous January. 

Denitrification in the summer months at all sites was generally a little lower than in 

spring, the level of activity then troughed during the autumn and winter months. 

5.4 Nitrous oxide (N20) production 

Spatial trend 

Nitrous oxide production during the assays (intact sediment cores without 

acetylene) ranged from a slight net uptake to a notable release (Table 5.3). Low or 

slightly negative values were recorded at all sites, although there was a tendency for 

maximum values to increase on moving downstream, with the highest values recorded 

on the Teviot, the lowland tributary. For example at Bolside, the values ranged from 

-45.0 f1mol N20-N m-2 h- 1 (i.e. net uptake) to 33.7 J.lmol N20-N m-2 h-1 (i.e. net release) . 

. Downstream at East Ord, values ranged from -0.2 to 60.8 J.lmol N20-N m-2 h-1 and for 

the Teviot, values ranged from -9.6 to 185.6 J.lmol N20-N m-2 h-1
• 

Table 5.3 N20 production in the sediments in the Tweed system from summer 1996 to spring 1997. 

Samples were collected seasonally. 

River Site Distance NzO production 
(km) (pmol NzO-N m-2 h-1

) 

min. mean max. 
Tweed 

Bolside 73.1 -45.0 -5.8 33.7 
Norham 138.3 4.2 26.2 56.3 
East Ord 150.5 -0.2 29.2 60.8 

Teviot 
Ormiston Mill -9.0, 108.5 -9.6 51.4 185.6 

Seasonal trend 
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All sites showed a tendency toward seasonal changes in nitrous oxide production 

(Figs. 5.7 & 5.8). An autumn/winter low was generally evident at all sites leading to a 

spring/summer peak, this is particularly evident at Bolside and Ormiston Mill (Fig. 5.7). 

The highest nitrous oxide production rate of 186 f1mol N20-N m-2 h-1 was measured on 

the Teviot at Ormiston Mill on 25th June 1996. 
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system from 1996 to 1997. 
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The proportion of nitrous oxide release related to the total gases released during 

denitrification (N20 + N2 from intact sediment cores with acetylene) showed great 

variation (minimum 0, maximum 77 %) as indicated by the bars on Figures 5.7 and 5.8. 

However, there was again a general trend towards higher proportions of nitrous oxide 

release in the spring/summer months compared to the autumn/winter months. The 

greatest proportion of nitrous oxide released was from sediments at Ormiston Mill on 

the Teviot; a maximum of 77% was measured on 25m June 1996. 

5.5 Discussion 

The environmental measurements taken on the Tweed were of a similar order of 

magnitude to those on the Swale at Catterick Bridge (see Tables 4.1 & 4.2) in the upper 

reaches of the Swale-Ouse system, upstream of any significant organic inputs. This 

serves to confirm the low pollutant loading of the Tweed. 
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As previously observed in the Swale-Ouse system, seasonal and spatial trends in 

various environmental factors were also evident on the Tweed. Conductivity, 

alkalinity, pH and nutrient fractions generally increased on moving downstream, with a 

peak being found on the tributary, the River Teviot, probably as a result of a decreased 

dilution effect and inputs from its relatively lowland catchment. Flow, temperature, pH 

and nitrate concentration all showed seasonal fluctuations. Flow and nitrate 

concentration generally exhibited a winter peak, whereas temperature and pH peaked in 

the summer months. The summer high alkalinities, in the mid to lower reaches in 

particular, may be explained by biochemical processes resulting from the presence of 

mass algal growths (Tweed River Purification Board, 1957). 

Although only four seasonal measurements of denitrification were performed at 

each site, they still serve to verify the spring peak in denitrification that was observed in 

the Swale-Ouse system (see Section 4.3). This would again potentially relate to 

increasing temperature and availability of nitrate. This is backed up by the fact that the 

rates' of denitrification measured in the Tweed were of a similar order of magnitude to 

those measured in the middle reaches of the Swale at Catterick Bridge, which, as 

previously observed, also had similar levels of nitrate (see Sections 4.22 & 4.3). In 

addition, once again the levels of denitrification activity mirrored the levels of nitrate on 

moving downstream, except for the freshwater tidal site at East Ord where there was a 

decrease in rate, similarly to Selby on the Ouse (see Section 4.5). Furthermore, the 

maximum rates of denitrification were consistently recorded at Ormiston Mill on the 



Teviot, the tributary on which the highest concentrations of nitrate were measured. 

This would again suggest the strong relationship between denitrification and 

environmental nitrate availability, except where other environmental factors, such as 

sediment stability, exerted an influence. 
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Nitrous oxide production generally mirrored denitrification, showing a tendency 

toward an increase in nitrous oxide production on moving downstream, with the 

maximum values being recorded on the Teviot, the tributary. It seems probable that 

increasing nitrate concentration in the water is an important factor influencing this 

trend. The minimum in nitrous oxide production during the autumn/winter months for 

all sites and a peak in production during the spring/summer months, is probably a result 

of increased ambient temperatures. This trend was also observed in the Swale-Ouse 

study (see Section 4.4). Furthermore, the proportion of nitrous oxide production 

related to the total gases released during denitrification also showed a trend towards 

higher proportions in the summer months compared to winter months. 

It would appear that the findings from this study on the Tweed can confirm the 

hypothesis that a gradient of physical and environmental variables along a river 

continuum can elicit a graded response from the denitrifying bacterial populations 

(see Section 1.4). It has also been suggested by this study that as these environmental 

factors vary seasonally, so does the rate of denitrification. The relative influence of 

these regulating environmental factors is further explored in the next chapter. 
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CHAPTER6 

FACTORS AFFECTING DENITRIFICATION 

6.1 Introduction 

The previous chapters (Chapters 4 & 5) have demonstrated that the physical and 

chemical variables of water and sediment present a gradient from the headwaters to the 

estuary, which has, in tum, elicited a response from the denitrifying bacterial population. 

These observations serve to verify the river continuum concept of Vannote et al. (1980); 

for example, in the Swale-Ouse a consistent increase (up to 30 times) in denitrification 

rate of sediment cores has been recorded on passing downstream. In addition to this, 

the seasonal variation in the influencing environmental factors has also elicited a 

response in denitrifying bacteria, therefore resulting in the seasonal trends observed in 

denitrification rate in both the Swale-Ouse and Tweed river systems. 

Thus, through these long-term studies presented in the previous chapters, it has 

been established that denitrification is affected, both seasonally and spatially, by a 

variety of environmental parameters, thereby confirming the first two original 

hypotheses (Section 1.4). Therefore, it can be hypothesised that some environmental 

parameters may exert a greater influence on denitrification than others, thereby resulting 

in the observed seasonal and spatial trends (Section 1.4 ). In order to achieve this, it was 

decided to further investigate the relationship between denitrification rate in sediments 

and the chemical and physical characteristics of water and sediments through intensive 

field and laboratory short-term investigations. 

6.2 Field investigation 

6.21 Introduction 

The aim of this study was to examine the relationship between potential 

denitrification rate and N20 production in sediments and the chemical and physical 

characteristics of water and sediments for a large number of rivers during one season 

and, as far as possible, one set of climatic conditions. This would then help to establish 

which environmental parameters affected denitrification to the greatest extent 

throughout a series of river systems rather than just one, as in the previous chapters. 

Therefore, this may help to confirm the findings of the long-term studies. 

To achieve this, 50 sites were selected from 30 rivers inN-E. England 



(Table 6.1); all sites on any one river were separated by at least a 5 krn river distance. 

The rivers ranged from small second-order tributaries to moderately large sixth-order 

rivers, and the width from about 1 to 30m. The study was carried out after several 

months of relatively low river flows and the water depth was usually< 1 mat the time 

of sampling. Many of the sites had been the subject of previous studies and were 

selected to show a wide range of physical and chemical properties (Table 6.2). 

Sediment samples (0-5 em depth) were collected over a 3-week period in September 

1996. 

Table 6.1 Location of the sampling sites for the 50 river sites survey (September 1996), including the 
grid reference. 

River grid ref. River grid ref. River grid ref. 

Swale NY863032 Derwent SE706512 Seven SE745854 

SD934977 Foss SE622592 East Allen NY846558 

SE226994 Nidd SE483562 South Tyne NZ844644 

SE434715 Cod Beck SE411761 North Tyne NZ919705 

Ouse SE558551 Gaunless NZ184266 Browney NZ221455 

SE598456 Skeme NZ287125 NZ225453 

SE575370 Wharfe NZ455094 Wiske SE376845 

SE626329 North Bum NZ453269 Deemess NZ226422 

Tees NY853312 Pont NZ168743 Deemess NZ226422 

NY996233 Blyth NZ190777 

NZ168160 Coquet NU185004 

NZ331102 Font NZ172860 

NZ449162 Wansbeck NZ195864 

Tyne NZ989643 Derwent NZ077502 

NZ095622 NZ198624 

Wear NY888382 Ure SE333703 

NZ074368 Rye SE615836 

NZ288411 SE796753 

NZ285523 Hodge Beck SE680850 

SE524401 Dove SE790863 
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Table 6.2 Pertinent sample statistics for the various water and sediment variables from the 50 river sites 

survey (September 1996). From 0 to 5 em depth 

Variables Units Max. Min. Mean 

Water 

N03-N !Jg L·l 8174 3.4 1935 

NOz-N !Jg L-1 344 0 64.6 

NH4-N !Jg L-1 4277 14.3 243 

P04-P !Jg L-1 4658 21.6 870 

Conductivity !JS cm·1 1557 116 531 

Sediment 

C (<100 J.lm) % 7.3 <0.01 1.11 

N (<100 J.lm) % 0.51 <0.001 0.06 

C/N ratio 48.4 11.2 18.6 

Water content % 86.6 16 38.4 

Particle sizes 

<lOOJ.Im % 95.1 0.10 26.8 

100-150 J.lm % 20.8 0.25 6.68 

150-250 J.lm % 50.3 0.30 20 

250-600 J.lm % 73.1 0.05 26.1 

>600 Jim % 93.9 0.03 19.5 

6.22 Results 

Environmental features of the water and sediments are shown in Fig. 6.1. 

Nitrate concentration ranged from 0.24 to 584 fJM with 36 % of samples less than 

50 fJM (Fig. 6.2). Water content of the sediments was distributed normally and ranged 

from 16 to 86 %. The percentage of was low in upland sites and usually increased on 

passing downstream, the highest values (up to 95 %) occurring at a tidal (freshwater) 

site on the Ouse at Selby. 52% of samples showed values under 

20% particles < 100 fJm. 

The initial N20 concentration in sediment ranged from 0.005 to 

19.7 nmol N20-N g·1 d. wt (R. Gaunless), although 90 % of river sediments were below 

2 nmol N20-N g·1 d. wt (Fig. 6.4a). N20 concentration showed a highly skewed 

distribution, with many low values and a few high values. The accumulation of N20 in 

the samples with no added acetylene ranged from negative values (indicating net 
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Figure 6.2 Nitrate concentration in water of the investigated riven for the SO river sites SlllVeY 

(September 1996). 
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Figure 6.3 Potential denitrification measured in sediment from the investigated rivers of the SO river sites 

swvey (September 1996). 
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consumption of N20 during the assay) to 13.1 nmol N20-N g·1 d. wt h-1 (Fig. 6.4b). 

90% of samples showed rates less than 4 nmol N20-N g· 1 d. wt h- 1
. 
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The denitrification rate (N2 + N20 production) in the various sediments is shown 

in Figures 6.3 and 6.4c. The rate ranged from below the detection limit at Ravenseat 

(tributary of R. Swale) to 260 ± 11 nmol N g·1 d. wt h- 1 in R. Deemess near Durham. 

90% of the sediments analysed had a rate lower than 40 nmol N g·1 d. wt h- 1
• Only 

sediment from the Deemess, Gaunless, Kexby and Wiske showed rates above this value. 

Denitrification rates on passing down a particular river showed increasing values 

(Fig. 6.3). For instance, the rates increased from below detection limit to 12.5 ± 1.4 

(R. Swale), 0.5 ± 0.04 to 5.6 ± 0.8 (R. Tees) and 1.5 ± 0.15 to 

14.7 ± 1.7 nmol N g·1 d. wt h-1 (R. Wear). 

The proportion of N20 related to total gases (N20 + Nz) ranged from 0.1 to 

115 %, and 38 %of these samples produced over 20% NzO to total gases, Fig. 6.4d. 

Correlation analysis 

In order to help deduce the relative influence of each environmental variable on 

potential denitrification rate and nitrous oxide production, a correlation analysis was 

performed on the data. 

The log transfo~ed concentration of N20 in the sediments was significantly 

and positively correlated (p<0.001) with the water content of the sediment and 

percentage values for total C and N in the sediment. No significant negative correlation 

was calculated (Table 6.3). The production of N20 in those samples without acetylene 

was positively correlated, although weakly, with conductivity, nitrate and phosphate in 

the river water (Table 6.4). Denitrification rate showed a strong positive correlation 

with water content of the sediments and percentage values for sediment C and N and 

percentages of particles smaller than 100 J..lm (Table 6.3). When correlated with water 

variables, denitrification rate also showed strong positive correlation with conductivity, 

alkalinity, nitrate and phosphate (Table 6.4). Denitrification rate did not show a 

significant negative correlation with any variable. 

Many of the sediment variables analysed showed strong interrelationships. 

Thus, water content was strongly positively correlated with C and N content and more 

weakly with the proportion of particles smaller than 100 J..lm (Table 6.3). In the case of 



the water variables, nitrate was strongly positively correlated with conductivity and 

phosphate and weakly with alkalinity and nitrite (Table 6.4) 
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Table 6.3 Pearson correlation coefficients for N20 concentration in the sediment (N20 init.), N20 

production (N20 prod.), potential denitrification (DR) and determinant sediment variables for the 50 river 

sites survey (September 1996). Only values over 0.44 (p<0.001) are shown. All variables were log 

transformed except for water content and C:N ratio. N20 production was log (x+1) transformed. Pl, P2, 

P3, P4 and P5 correspond to the percentage of particles smaller than 100 1.1m, between 100-150, 150-250, 

250-600 and> 600 11m respectively. 

Variable %Hz0 %C 

%Hz0 

% c 0.69 

%N 

C:N 

Pl (%) 

P2 (%) 

P3(%) 

P4(%) 

PS (%) 

NzO init. 

NzO prod. 

DR 

0.79 

0.44 

0.64 

0.49 

0.96 

0.89 

0.47 

0.50 

%N C:N Pl P2 P3 P4 PS 

0.78 

0.83 

-0.47 

-0.54 0.55 

0.49 

0.51 0.44 
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Table 6.4 Pearson correlation coefficients for N20 concentration in the sediment (N20 init.), N20 

production (N20 prod.) and potential denitrification (DR) and determinant water variables for the 50 river 

sites survey (September 1996). Only values over 0.44 (p<0.001) are shown. All variables were log 

transformed except for nitrous oxide production (log (x+1) was applied). 

Variables 

N03-N 

N02-N 

NH4-N 

P04-P 

Conductivity 

Alkalinity 

N20 init. 

N20 prod. 

DR 

N03-N 

0.57 

0.72 

0.66 

0.50 

0.73 

N02-N 

0.46 

0.62 

0.61 

0.51 

0.46 

Multiple regression analysis 

NH4-N P04-P Cond. Alk. 

0.74 

0.50 0.89 

0.58 0.64 0.56 

A multiple regression analysis was performed in order to establish which water 

and sediment variables exerted the greatest combined influence on potential 

denitrification rate and nitrous oxide production. 

In order to obtain normality for the variables, values for all except water content 

and the ratio for sediment C:N were transformed. Transformation involved log (x) 

application, except for N20 production, which showed several negative values, thus a 

log (x+ 1) transformation was applied. When all the variables analysed were computed, 

the multiple regression analysis explained 77 % of all the variation in the denitrification 

data (P < 0.001), Table 6.5. 

Table 6.5 Multiple regression model of potential denitrification rate (log transformed) versus sediment 

and water variables in 50 river sites survey (September 1996) analysis. 

Variables 

Water column nitrate (fJM) 

Sediment water content (H20 %) 

All variables 

Significance 

P<O.OOl 

P<O.OOl 

P<O.OOI 

0.53 

0.64 

0.77 

Cumulative proportion of variation in denitrification rate that can be accounted for by each variable and all preceding variables 
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However, some of these variables may be unrelated or only weakly related to 

denitrification rate or contain information already provided by other predictors. A 

model with many predictors can also be cumbersome to use and difficult to interpret and 

reduce the number of degrees of freedom, leading to a deterioration in the degree of 

precision. In order to reduce the number of variables, a stepwise statistical procedure 

was used. It was calculated that with two variables, nitrate in the water and water 

content of sediments, 64 % of all variation in the values for denitrification rate could be 

explained (p<O.OOl) (Table 6.5). The relationship between nitrate in the water column 

and water content of sediments is described in Equation 1. 

Log (Nz+NzO)-N evolved= 0.93.1og (N03-) + 0.023l.(Hz0 %) (1) 

Figure 6.5 shows the agreement between observed and calculated denitrification 

rates using the multiple regression model. In addition, the descriptors of both log­

normal distributions (mean and standard deviations) were not significantly (p<0.05) 

different (Figure 6.6). 

No significant regression was obtained for the production of N20 in the samples 

without acetylene. 

6.3 Laboratory investigations 

A series of experiments were performed within the laboratory to further 

investigate t~e effects of environmental parameters on the denitrification rate in 

sediment of the Swale-Ouse system. 

6.31 Temperature 

During the seasonal investigation of denitrification along the Swale-Ouse, cores 

were incubated at ambient temperature at the time of sampling. However, on any 

particular sampling day, water and air temperature will vary according to the time of 

day. Thus, the aim of this study was to investigate the effect of temperature on 

denitrification rate on a seasonal basis within the possible ambient yearly temperature 

range. 
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Comparative seasonal temperature curves were made at an upstream and a 

lowland site (lvelet Bridge, km 10.9, and Wiske, km -1.7, 86.1). Denitrification rates 

were measured in intact cores from the Wiske, collected from the sites on four dates 

(18 March 1996, 2 July 1996, 1 November 1996,31 January 1997). For practical 

reasons Ivelet Bridge was sampled on different dates (10 July 1996, 30 October 1996, 

5 February 1997, 8 April 997). Laboratory incubation was started within 3 h of 

collection and the assay commenced after 30 min of acclimation to the assay 

temperature. Denitrification rates for both sites were assayed at temperature intervals 

of 3°C between 3 and 30°C, thereby covering more than the range of water temperature 

recorded at the site. Three replicate cores were incubated with C2H2 at each 

temperature; in addition, three cores were used to determine the initial N20 

concentration. Cores were incubated for 4 h in the dark in a series of water baths. 
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Denitrification rate using intact sediment cores generally increased linearly with 

the temperature for the studies in the Wiske (Fig. 6.7a) and at Ivelet Bridge (Fig. 6.7b), 

although in January in the Wiske and in February at Ivelet Bridge they-intercept values 

were negative suggesting a relationship resembling more that of an exponential curve. 

The slopes and intercepts were different on the different occasions. The slopes were 

higher in January and March than July for the Wiske (Table 6.6) and highest in February 

for the Swale (Table 6.6). 
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Table 6.6 Relationship between denitrification rate and temperature in sediment cores (n = 3) on four 

dates in the rivers Wiske and Swale. Slope indicates the increase in denitrification rate per 0 C. 

y-intercept is the expected denitrification rate at 0° C; R2 is the coefficient of determination for the 

relationship. 

date 

Wiske 

18 Mar 1996 

2 Jul1996 

1 Nov 1996 

31 Jan 1997 

Ivelet 

10 Jul1996 

30 Oct 1996 

5 Feb 1997 

8 Apr 1997 

6.32 Nitrate 

6.321 Introduction 

slope 

(Jlmol N m"2 h"1 0 C"1
) 

22.1 

13.0 

39.1 

0.89 

1.80 

11.6 

0.76 

y-intercept 

(Jlltlol N m"2 h"1
) 

224 

8.7 

-5.1 

6.64 

2.51 

-76.3 

2.72 

R 

0.85 

0.68 

0.81 

0.67 

0.71 

0.90 

0.78 

From the results of the present study and from previous investigations (see 

Section 1.21) nitrate is known to be a key environmental factor influencing 

denitrification rate. In addition to this, the present study has established that as nitrate 

increases on passing downstream, so does denitrification rate. However, there have 

apparently been no studies undertaken to determine the apparent affinity and capacity 

for nitrate utilisation of denitrifying bacteria down a whole river; although, this is 

important for clarifying the relationship between nitrate availability in the environment 

and nitrate use by denitrifying bacteria. 

Previous attempts to measure the kinetics of nitrate utilisation in soils and 

sediments have been hampered by a number of problems. The earliest studies on 

nitrate utilisation employed slurry techniques (Oren & Blackburn, 1979~ 

Hordijk et al., 1987; Murray et al., 1989), where the structure of the sediment is 

destroyed and hence the in situ oxygen and nitrate gradients. The measures of affinity 

and capacity for nitrate utilisation obtained with this method are only meaningful under 

conditions of no limitation, and cannot be incorporated into integrating models to 
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predict biological features of lotic systems. Other researchers have used intact 

sediment cores to study the kinetics of nitrate reduction through measuring the decrease 

in nitrate concentration in the overlying water (Andersen, 1977). The long incubation 

period used, possible errors in measuring the nitrate concentrations, especially at low 

concentration, and the unknown fate of the depleted nitrate, make uncertain the 

significance of the reported kinetic parameters. 

The aim of this study was to investigate the effect of increasing the nitrate 

concentration on denitrification rate and N20 production in intact sediment cores taken 

from the five sites along the Swale-Ouse river and one on the Wiske. It should be 

noted that kinetic constants determined from this study reflect community activity 

(representing a mixture of enzymes) in a complex ecosystem, therefore they should be 

considered as "apparent". The term Km (representing affinity) can only be applied to a 

pure enzyme, therefore, this study uses the term Ks to represent the apparent half 

saturation concentration or concentration of nitrate to obtain half of the apparent 

maximal velocity (V max). Nevertheless, this method is still useful for characterising a 

group of enzymes for comparison between sites. 

6.322 Additional methodology 

Intact sediment cores were collected from the five Swale-Ouse sites and the 

Wiske site between 18- 24 April 1997, with repeat sampling at two sites, upstream at 

Ivelet Bridge and the Wiske, on 18 June. 
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In order to establish the required nitrate concentration during experimental 

studies, it was necessary to remove nitrate and nitrite from the sediment. This was done 

using natural denitrification activity, as adapted from Murray et al. (1989), with river 

water being substituted by freshwater Chu medium lacking Nor P (see Section 3.311). 

All samples were then incubated in the dark for 24 hat 15°C. 

Following incubation to remove environmental nitrate and nitrite, the 

supernatant water was drained off and replaced with freshwater medium of the required 

nitrate concentration supplied as KN03. Nitrate concentrations used in the assays were 

modified to reflect the expected denitrification rate and ranged from 0 to: 140 J.1M for 

the upstream sites; 357 J.1M for downstream sites; 11,428 J.1M for the Wiske. Two 

triplicate sets of cores incubated at 15 oc were used for each nitrate concentration 

assayed at each site to measure both net N20 production and denitrification. In 



addition, another two sets of three cores were used to determine denitrification and N20 

production using natural river water from each site. 
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The apparent kinetic parameters for denitrification were computed using a 

similar procedure to that used in Michaelis-Menten kinetics calculations by the 

Lineweaver-Burk transformation (1/V vs liS) of the Michaelis-Menten equation. "V'' is 

the denitrification rate while "S" is the concentration of nitrate. 

6.323 Results 

Nitrate depletion. The denitrification rate and NzO production in the cores 

following incubation for 24 h to remove sediment nitrate and nitrite are shown in Table 

6.7. Denitrification was still detectable, though rates were low: the rates were 

5 11mol N m·2 h"1 at Ravenseat and 31.4!lmol N m·2 h" 1 in the Wiske. These values 

represent, respectively, 16% and 3% of the maximum rates found during assays with 

the saturation level of nitrate (see below). N20 production was very low in the Wiske 

(2.7 11mol N20-N m·2 h" 1
) and lower or negative (net consumption of N20) at the other 

sites (Table 6.7). 

Table 6.7 Net N20 production (N20 prod.) and denitrification rate (DR) in sediment cores (n = 3) 

from the Swale-Ouse system with no nitrate after 24 hours at 15 oc with N-free freshwater medium. 

River Site Distance NzO prod. ± SD DR±SD 

km IJmol NzO-N m'2 h"1 IJmol N m"2 h"1 

Swale 

Ravenseat -2.5, 0 0.74 ± 0.62 5.0±4.0 

lvelet Bridge (April) 10.9 -1.42 ± 0.93 5.5 ±0.6 

(June) -2.34 ± 0.71 3.5 ±0.7 

Catterick Bridge 49.9 0.25 ± 0.61 13.4 ± 1.6 

Thornton Manor 107.9 1.23 ± 0.56 12.2 ± 3.4 

Naburn Weir 145 0.83 ± 0.86 9.2 ± 0.36 

Wiske 

Wiske (April) -1.7, 86.1 2.72 ± 2.52 23.1 ± 9.4 

(June) -1.57 ± 0.13 31.4 ± 3.8 

Kinetics for denitrification and N20 production. Nitrate addition in the 

overlying water resulted in an increase in denitrification rate (Fig. 6.8). The response of 



-~ I .s=. 
N 

I 

E 
z 
0 
E 
:::t -c:: 
0 

+=i a:s 
0 

\i= 
"i:: 
~ 
c:: 
Q) 
c 

132 

100 
Raven seat 

100 
lvelet Bridge 

75 75 

50 50 

25 25 1 

0 0 
0 50 100 150 200 0 50 100 150 200 

300 
Catterick Bridge Wiske 

1000 

200 

• 500 
100 • 

0 0 
0 100 200 300 400 0 3000 6000 9000 12000 

300 Thornton Manor 300 Naburn Weir 

200 200 

100 100 

0~----~----~----~----~ 0~----~----~----~--~ 
0 100 200 300 400 0 100 200 300 400 

Nitrate (J..LM) 

Figure 6.8 Response of denitrification rate to nitrate additions in sediment cores from the Swale-Ouse 

system in Aprill997 (full circles). For Ivelet Bridge (km 10.9) and Wiske (km -1.7, 86.1) the assay 

was repeated in June 1997 (empty circles). Bars denote standard deviations of three replicates. Note 

the different scales for denitrification rate and nitrate concentrations. 



denitrification to nitrate at all sites could be fitted successfully (minimum regression 

coefficient of 0.9) to a saturation type curve (Fig. 6.8 and Table 6.8), showing the 

apparent nitrate affinity (Ks) for mixed populations of denitrifying bacteria at each site. 

During the April survey of all sites (Table 6.8), apparent maximum activity (Vmax) 

increased on passing down river from 35.8 ~mol N m·2 h-1 in the headwaters at 

Ravenseat (km -2.5, 0) to 324.1 ~mol N m·2 h- 1 at the tidal limits at Naburn Weir 

(Ian 145.0), but was highest on the Wiske (758 ~mol N m·2 h"1
). Apparent half­

saturation (Ks) constants increased in April on passing down the main river from 

13.1 ~M nitrate at Ravenseat to 90.4 ~Mat Naburn Weir (Table 6.8). The overall 

highest value forKs (460 ~M) was for the Wiske in June. Where repeat measurements 

were made (lvelet Bridge and Wiske), values for Vmax and Ks were similar in April and 

June, Table 6.8. 

Table 6.8 Kinetics parameters for denitrification rate from sediment cores (n = 3) from the Swale-Ouse 

system estimated according to calculations following a similar procedure to the Lineweaver-Burk 

transformation of the Michaelis-Menten equation. 

River Site Distance Vmax K, R2a 

km pmol N m"1 b"1 pM 

Swale -2.5, 0 

Ravenseat 10.9 35 13 0.95 

lvelet Bridge (April) 52 21 0.98 

(June) 51 23 0.98 

Catterick Bridge 49.9 144 18 0.90 

Thornton Manor 107.9 197 29 0.98 

Nabum Weir 145 324 90 0.99 

Wiske 

Wiske (April) -1.7, 86.1 758 351 0.99 

(June) 860 460 0.99 

• coefficient of determination 

The production of N20 in the cores without C2H2 could only be fitted to a 

saturation curve for three sites (Catterick Bridge, Naburn Weir and Wiske: Fig. 6.9). 

At the two upstream sites (Ravenseat and Ivelet Bridge), N20 production was less than 
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Figure 6.9 Dependence of the N,O production upon nitrnte in sedimem cores from the Swale-Ouse 

system in April 1997 (full circles). For lvclct Bridge (km 10.9) and Wiske (km - I. 7, 86.1) the assay 

11':15 repeated in June 1997 (empty circles). Bars denote standard deviations of three replicates. Note 

the different scales for N:O production and rtitrate concemrations. 



15 J.lmol N20-N m-2 h- 1 and without any clear trend with increasing nitrate 

concentration. Apparent maximum values for N20 production were 70.2, 15.5 and 
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570 J.lmol N20-N m-2 h- 1 in April for Catterick Bridge, Nahum and the Wiske, 

respectively, and 626 J.lmol N20-N rn-2 h- 1 in June for the Wiske (Table 6.9). Ks values 

were 517, 138 and 542 11M nitrate in April for the same sites and 532 11M nitrate in June 

for the Wiske (Table 6.9). The nitrate concentration to reach half of the apparent 

maximum velocity for N20 production for these sites was higher than the Ks for 

denitrification rate, while Vmax values were lower. 

Table 6.9 Calculated kinetic parameters for N20 production from sediment cores (n = 3) from the 

Swale-Ouse system estimated according to calculations following a similar procedure to the Lineweaver-

Burk transformation of the Michaelis Menten equation. 

River Site Distance Vmax K, R2a 

km pmol NzO-N m"2 h"1 pM 

Swale 

Ravenseat -2.5, 0 

lvelet Bridge (April) 10.9 

(June) 

Catterick Bridge 49.9 70.2 517.4 0.98 

Thornton Manor 107.9 

Nabum Weir 145 15.5 138.6 0.93 

Wiske 

Wiske (April) -1.7,86.1 570.5 542.8 0.97 

(June) 626.6 532.1 0.98 

• coefficient of determination. 

The proportion of N20 related to total N gases (N20 + N2) ranged between 

2.4 to 38% and 2 to 12% at Ravenseat and lvelet Bridge, respectively (Table 6.10), but 

without any clear trend with increasing nitrate concentration. The values ranged from 1 

to 17 % at Catterick Bridge, 3 to 14 % at Thornton Manor (km 107 .9) and 0 to 11 % at 

Nahum Weir (Table 6.10). The values increased on addition of nitrate at Catterick and 

Thornton Manor, but not Nahum Weir. In the Wiske values exceeded 50% at all the 

nitrate concentrations in April and June (Table 6.10). 



When river water (with its natural nitrate concentration) was used instead of 

medium, the denitrification rate was similar at all but one site to the rate predicted from 

the saturation curve for the nitrate concentration in the river, Fig. 6.10. At Ravenseat 

the denitrification rate was significantly (p<0.05) higher when using river water rather 

than medium. This suggests that differences between the artificial medium and the 

river water had in general a negligible effect on denitrification, at least during the 

incubation period of three to five hours. In the case of the headwater site, where the 

rate was higher, the most likely explanation is the presence of organic carbon substrate 

in natural stream water. 
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Table 6.10 Percentage of N20 related to total N gases evolved (N20+N2) from sediment cores (n = 3) in 

the Swale-Ouse system for the nitrate concentration assayed. 

Nitrate Ravenseat Ivelet Bridge Catterick Thornton Naburn R. Wiske 

(p.aM) April June Bridge Manor Weir April June 

17.8 21 6 7.5 4.3 

37.7 38 2 3.4 1.0 3.0 0.0 

53.6 19 3 6.4 

71.4 6.0 5.1 6.0 

107.1 2.3 5.3 

142.8 4 12 17 10 6.4 

214.3 15 14 3.2 

357.1 17 11 50 68 

714.3 65 80 

1428 71 62 

2857 76 73 

5714 68 73 

11429 72 75 

Ecological significance The Ks values calculated in this study for each site 

were compared (Fig. 6.11) with the nitrate data available for 1995-6 from other sources 

(Environment Agency and LOIS database). For the upland sites Ks values were higher 

than nitrate in the river, however, Ks values for all sites on the main river and the Wiske 

were lower than nitrate concentration for most of the year (except sometimes during 

summer). 
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6.33 Nitrate and temperature 

In the field study investigating the relationship of multiple environmental factors 

with denitrification at 50 sites in N-E England, temperature was not assessed as one of 

the multiple variables, this is because it did not vary notably over the three week study 

period. To investigate the combined effects of temperature and nitrate on 

denitrification, highlighted in the seasonal study on the Swale-Ouse (Section 4.7), a 

laboratory study using intact sediment cores taken from the Wiske (km 86.1, -1,7) and 

Ivelet Bridge (km 10.9) was undertaken on 5 and 14 March 1997 respectively. A series 

of triplicate cores were incubated at four different concentrations of nitrate 

{0, 714, 1428, 2143 and 0, 36, 72, 143 ~M N as KN03 for the Wiske and Ivelet Bridge 

respectively) under three different temperature regimes (5, 10, 20°C). Before starting 

the assay, natural denitrification was used to deplete the in situ nitrate, as adapted from 

Murray et al. (1989). 

The relationship between temperature and nitrate with denitrification at the 

Wiske and Ivelet Bridge is illustrated in Figs. 6.12 and 6.13. Denitrification increases 

in response to increases in temperature and nitrate at both sites. Regression analysis 

shows a highly significant relationship between denitrification and these two variables. 

The nitrate-temperature curve for Ivelet Bridge can be described by Equation 2: 

(N2+Nz0)-N evolved= 1.93 + 6.52.(N03-) + 0.699.(temperature) (2) 

The proportion of variation in denitrification rate that can be accounted for by each 

variable in this equation is 78.6% (p< 0.001). Equation 3 describes the relationship 

between nitrate, temperature and denitrification in Wiske sediment. 

(N2+Nz0)-N evolved= -91.0 + 22.3.(NOJ-) + 30.3.(temperature) (3) 

This equation describes 91.4% (p< 0.001) of the variation in the denitrification 

data. Additionally, nitrate describes a greater proportion of the variability than 

temperature at each site; 60% and 63% at Ivelet Bridge and the Wiske respectively. 

6.34 Carbon 

Organic carbon (C) is another factor known to potentially affect denitrification 

rate. The influence of carbon source on denitrification rate was investigated on 
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15 November 1996 using the slurry technique to measure potential denitrification in the 

top 5 em. Jars were filled with dilute inorganic medium (modified version of No. 10 

medium of Chu, 1942) enriched with 20 mg r 1 N03-N (as KN03) and 100 mg r 1 C of 

the organic carbon source under test. The carbon sources tested were methanol, 

glucose, ethanol and sodium acetate, together with a control lacking organic carbon. 

Jars were sealed, without any head space and incubated statically for 4 h in the dark at 

15oc. Following incubation and gas analysis, potential denitrification was calculated 

as described in Section 3.311. 

In spite of the high concentration of carbon sources tested, none led to a 

significant (p<0.05) increase in denitrification rate (Table 6.11 and Fig. 6.14) compared 

with the control. However, the production of N20 in the control was significantly 

higher (p<0.05) than in the C treatments and accounted for 22 % N gas produced, 

compared with the maximum of 4% (for sodium acetate) when C was added 

(Table 6.11). 

Table 6.11 Influence of various organic carbon sources (100 mg L' 1 C of methanol, glucose, ethanol 

or sodium acetate) on potential denitrification rate, N20 production and composition ofN-gases 

(mean± SD; n = 3) from river Wiske sediments (15/11/96). 

Carbon source Denitrification N20 production Composition of the N 

(J.Imol N m"2 b"1
) (J.Imol N20·N m"2 b"1

) gases produced (%) 

N2 N20 

Glucose 258 (15.9) 4.4 (1.5) 98.3 1.7 

Methanol 237 (26.4) 7.9 (2.4) 96.7 3.3 

Ethanol 233 (11.6) 5.9 (0.4) 97.5 2.5 

Acetate 245 (26.1) 10.6 (1.6) 95.7 4.3 

Control 299 (50.4) 67.5 (2.9) 77.4 22.5 

6.35 Oxygen 
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A limited investigation into the possible effects of 0 2 concentration on 

denitrification was performed on sediment collected from Nabum Weir, Cawood and 

Selby on 17 July 1997. This was done by comparing potential denitrification assays in 

river water which had been bubbled for 5 min with air versus ones with water which had 

been bubbled for 5 min with N2• The jars were sealed without any gas space and 
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incubated statically for 4 h in the dark at l5°C. The standard procedure was used for 

analysis of N20. 

Purging the water with N2 to reduce the 0 2 concentration had no effect on 

denitrification at Cawood and Selby, although the rate at Nahum Weir was slightly 

higher in jars with reduced 0 2 (Fig. 6.15). 

6.4 Discussion 

Data presented in this chapter clarifies the relationship between denitrification 

rate and the chemical and physical characteristics of water and sediments through both 

intensive field and laboratory investigations. This means that the hypothesis that 

certain environmental factors exert a greater influence on denitrification than others can 

be confirmed (Section 1.4). 

The studies in the Swale-Ouse and Tweed had already highlighted some key 

influencing factors on denitrification, such as nitrate concentration, sediment and 

temperature, however, this was just within one system. To substantiate the hypothesis 

posed, it was therefore considered necessary to clarify the relationships between rates of 

denitrification and N20 production and environmental factors likely to influence these 

processes. To achieve this it was decided to investigate a large number of rivers, 

chosen to represent a wide range of conditions. Furthermore, to ensure that statistical 

comparisons were valid, it was attempted as far as possible to sample under one set of 

climatic conditions. For these reasons the survey of denitrification and N20 production 

in river sediments at 50 sites inN-E. England in late summer was undertaken. 

With the exception of the headwater site in the Swale catchment (Ravenseat), 

denitrification was detected at all sites; ranging from 

< 0.005 to 260 nmol N g-1 d. wt h-1
• The absence of detectable denitrification at 

Ravenseat was probably due to the low concentration of aqueous nitrate (0.24 J.!M) and 

sediment total C (91 J.lg g-1 d. wt), making it difficult to support the process. The 

highest denitrification rates were always found in the organically polluted lowland 

rivers, such as the River Wiske, where sediments tended to be covered by decomposing 

algal or other organic debris. 

Where more than one sample was taken within a particular river system 

(e.g. Tyne, Wear, Tees and Swale) denitrification rate tended to increase on passing 

downstream. A combination of environmental factors appear to explain this trend. 

There were strong interrelationships evident within the environmental variables 
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measured; for example, sediment water content was correlated with C and N content, as 

well as fine particles of sediment. However, the key influencing environmental 

variables are probably aqueous nitrate and sediment variables, since denitrification 

correlated positively with nitrate concentration of the water column, water content of the 

sediments and percentage of fine ( < 100 J..tm) particles in the sediment. This may be 

due to the fact that as sediments become finer, so there is a greater potential for anoxic 

environments and microbial attachment. Furthermore, there is an increase in contents 

of C and N; all of these factors would result in more favourable conditions for 

populations of denitrifying bacteria. 

The multiple regression analysis established that the variability of denitrification 

rates could be satisfactorily explained (77%) by the full range of sediment and water 

characteristics from this study. Mean estimates of rate obtained from the multiple 

regression model calculated from the data acquired from the 50 sites did not differ 

significantly from the measured rates (see Fig. 6.5). In addition, the model accurately 

described the variability (shape of the histograms, see Fig. 6.6) exhibited by natural 

denitrification rate estimates. As suggested above, aqueous nitrate and sediment water 

content explained the greatest amount of variation (64 %) in the denitrification data 

between them; aqueous nitrate in fact explained the most (53 % ). This would suggest 

that nitrate is the key influencing factor on denitrification within these river sites. As 

discussed above, sediment water content was highly correlated with sediment 

percentage of fine particles, C and N contents, so it may be for this reason that sediment 

water content explains so much of the variation in denitrification data. 

Nitrous oxide production ranged from negative values (net consumption) to 

13 nmol NzO-N g·1 d. wt h-1 and accounted for 0 to 115% of theN gases produced. 

Similarly to denitrification rate, N20 concentrations in the sediment correlated 

positively with nitrate concentration of the water column, water content of the sediments 

and percentage of fine(< 100 J..tm) particles in the sediment. However, following 

statistical analyses, no simple or multiple relationship was found for N20 production. 

This is possibly because NzO accumulation depends not only on its synthesis, but also 

on the extent of its reduction to N2 by reductase enzymes (Section 1.2), which could 

therefore result in a complex combination of influencing factors. 

The comparative seasonal temperature curves were made on intact sediment 

cores from the Wiske and Ivelet Bridge (Section 6.31). Denitrification generally 

increased linearly with temperature showing a clear response to a rise in temperature, 
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however, the slopes and intercepts were different on the different occasions. This could 

be as a consequence of denitrifying bacteria populations varying with season. A further 

laboratory study investigated the combined effects of temperature and nitrate on 

denitrification using intact sediment cores from the Wiske and Ivelet Bridge (Section 

6.33). This showed a highly significant relationship between denitrification and both 

variables (R2 = 0.91, p<0.001 and R2 = 0.79, p<O.OOl for the Wiske and Ivelet Bridge 

respectively), where an increase in both temperature and nitrate results in an increase in 

denitrification. This experiment also shows that nitrate affects denitrification at both 

sites, furthermore from the different scales (Figs. 6.12 & 6.13) it can be seen that the 

affinity for nitrate at both sites is very different. 

Having established from the previous studies the fact that nitrate is a key 

influencing factor on denitrification, it is possible that affinity for nitrate of denitrifying 

bacteria may vary depending on their environment. Therefore, it was decided to clarify 

the relationship between nitrate availability in the environment and nitrate use by 

denitrifying bacteria. In order to achieve this, kinetic parameters for nitrate reduction 

were calculated along the Swale-Ouse river system by using the acetylene blockage 

method with intact sediment cores (Section 6.32). 

The denitrification rate in sediment containing added nitrate exhibited a 

saturation type curve (Michaelis-Menten) which meant that the mixed denitrifying 

bacterial populations within the sediment were responding to the nitrate additions. 

Furthermore, repeat measurements on different dates at Ravenseat and on the Wiske 

showed only moderate differences in curves (Figure 6.8). Estimates of apparent 

maximum velocity (Vmax) ranged from between 35.8 and 324 J.Lmol N m-2 h-1 in the 

Swale-Ouse (increasing upstream to downstream) and was highest in the Wiske 

(1194 J.Lmol N m-2 h-1
). This can be related to the increase in nitrate with distance from 

the source, however, it is also possible that other environmental factors may also 

influence the bacterial populations. These factors could include for example, numbers 

of denitrifying bacteria, particle size of sediment and available organic C. 

Apparent affinity (Ks) for nitrate by the mixed populations of denitrifying 

bacteria increased on passing downstream (high Ks to low Ks) from 13.1 to 90.4 J.LM in 

the main river, but was highest (640 J.LM) in the Wiske, therefore mirroring the trend in 

nitrate concentrations. This would suggest that the upstream mixed bacterial 

populations, where substrate (nitrate) is low, can actually utilise the substrate more 

efficiently, therefore showing a greater affinity for nitrate than bacterial populations 



further downstream where there are greater concentrations of nitrate. When the Ks 

values calculated in this study for each site were compared with the nitrate data 

available for 1995-6 from other sources (see Fig. 6.11) it became apparent that the Ks 

values generally fitted into the range of nitrate concentrations recorded for each site. 

This would suggest that the mixed populations of denitrifiers at each site are well 

adapted to the usual levels of nitrate. 

The study of the kinetics of nitrous oxide (N20) production showed that 

although net N20 production occurred at all sites, there was not always an increase with 

increasing nitrate concentration at all sites (see Fig. 6.9). It is difficult to explain this 

since N20 is an intermediate product of at least three processes within the nitrogen cycle 

(Section 1.3). However, it is possible that once again nitrate is a key influencing factor 

since rates ranged from below the detection limit (0.05 Jlmol N20-N m-2 h-1
) at 

Ravenseat (with lowest nitrate concentration) and 15.5 J.tmol N20-N m-2 h-1 at Naburn 

Weir (with highest nitrate concentration in the main river). In the Wiske (with the 

overall highest nitrate concentration), the rate was up to 570 Jlmol N20-N m-2 h-1
, and 

accounting for up to 76 % of total N gas production. 

Addition of organic substrates had no detectable effect on denitrification rate in 

intact sediment cores from the Wiske, although it did lead to a significant decrease in 

the proportion of nitrous oxide produced as a result of nitrate reduction (Section 6.34). 

This might suggest that C was not a limiting factor for denitrification at this particular 

site, at least in November when the investigation was performed. The added C would, 

however, also be expected to affect respiration of the microbial population as a whole 

and thus reduce the ambient oxygen which may be the reason for a decrease in 

percentage N20 with C addition. 

Finally, there was little or no effect on the potential rate of denitrification 

observed when sediment slurries from the freshwater tidal reaches of the Ouse were 

incubated with reduced oxygen (Section 6.35). This may be indicative of the fact that 

the general instability of the sediments in the tidal reaches of the Ouse may have had a 

greater influence on the denitrifying bacterial populations than the lack of oxygen. This 

is potentially confirmed by the fact that there is a greater increase in potential 

denitrification with no oxygen at Nahum Weir at the tidal limits than at Cawood or 

Selby. 

This discussion has provided a review of the key findings of the field and 

laboratory investigations intended to clarify the relationship between denitrification rate 
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and the chemical and physical characteristics 0f water and sediments; these findings .are 

further discussed in Chapter 7. 

148 



7.1 Introduction 

CHAPTER 7 
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In order to assess the trends and influences of denitrification in sediments in 

river systems, as laid out in the original hypotheses and consequent objectives (Section 

1.4), this chapter will first consider the seasonal and spatial variation evident in the 

denitrification, physical and chemical data (Section 7.2) and then discuss the extent by 

which it is regulated by environmental factors (Section 7.3), before finally assessing the 

potential significance of denitrification in the removal of nitrate from the upper reaches 

of the Swale-Ouse (Section 7.4). 

7.2 Seasonal and spatial trends 

Denitrification 

Denitrification rates measured in Swale-Ouse, Wiske and Tweed sediments were 

mostly of a similar order of magnitude to those reported for other rivers in temperate 

climates. For example, Torre et al. (1992) found an annual mean of 458 Jlmol N m-2 h-1 

in the R. Charente, west central France using an in situ chamber to measure gas 

production. Rates from 364 to 2121 Jlmol N m-2 h-1 were found for an agricultural 

stream basin in New Zealand (Cooper & Cooke, 1984) and 41 to 375 Jlmol N m-2 h-1 in 

a lowland stream in Denmark (Christensen & S!iSrensen, 1988), both using acetylene 

inhibition. 

Swale-Ouse system 

Denitrification, like many other river processes (Vannote et al., 1980), showed a 

gradient of change on passing downstream, with rates typically increasing by about two 

orders of magnitude from the headwater site (Ravenseat) to the tidal limit (Nahum 

Weir). As mentioned in the Introduction (Section 1.21), denitrification may be 

influenced by a variety of factors, such as nitrate, reducible organic substances, oxygen 

concentration and temperature. The increasing rate of denitrification on passing 

downstream is matched by increasing aquatic nitrate concentrations resulting from 

increased urban and agricultural activities in the lowland reaches (House et al., 1997), 

with the concentrations at upper and lower limits typically differing by rather less than 

one order of magnitude. The fact that nitrate in the sediment did not match that in 



water by increasing to such a great extent may reflect the utilisation of nitrate by 

denitrification. 

Sediment type also varies from upstream to downstream. For example, at the 

headwater site, there was a high percentage of coarse sand and gravel, and a low 

percentage of total carbon and hence probably low amounts of reducible organic 

substances. On passing downstream there was a consistent increase in percentages of 

silt and total carbon. The differences in the sediments may also be expected to lead to 

differences in denitrification due to the increased surface area available for microbial 

attachment on passing downstream. The survey of river sediment to enumerate 

denitrifying bacteria (Most Probable Number; Tiedje, 1982) in the top 5 em showed 

values ranging from 2.4 x 10 to 9.0 x 105 g d. wf1 on passing downstream 

(see Table 4.4). However, caution is needed in interpreting these values because of the 

uncertainty of the suitability of the method for sediments of widely differing types. 

Although no data on oxygen concentrations in the sediments are available, 

decreased porewater flushing in fine sediments will result in less exposure to oxygen 

than in the coarser sediments upstream (Thompson et al., 1995) and hence presumably 

favour denitrification. The water temperature difference between the upstream and 

downstream seldom exceeded 3°C and is therefore unlikely to be an important factor 

influencing denitrification rates down the river on any one day. 

Despite the unfavourable conditions (low nitrate, probably low reducible carbon 

substrates, saturated oxygen concentration in the overlying water) for denitrifying 

bacteria at the headwater site, denitrification was still detectable (see Fig. 4.8). This 

suggests that denitrifying bacteria are more versatile than previously thought and that 

aerobic denitrification and/or microaerobic sites under aerobic conditions exist 

(Lloyd, 1993). 

The seasonal bias towards a spring (April -May) peak in the denitrification rate 

has been observed in other riverine sediments (Christensen & S!3rensen, 1988; S13rensen 

& Revsbech, 1990; Pinay et al., 1993). The laboratory study showing the importance 

of nitrate concentration and temperature on denitrification in sediment from lvelet 

Bridge and the Wiske (see Section 6.33) suggests that this peak may be due to the 

varying importance of nitrate and temperature at different times of year. Despite the 

high nitrate availability in December to February, denitrification may be expected to be 

limited by low temperatures. During spring, denitrification is increasingly favoured by 

rapidly rising temperatures whilst nitrate availability is still relatively high, but towards 
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the end of this period nitrate concentration starts to decrease, perhaps due to decreased 

run off and increased macrophytic uptake (Howard-Williams et al., 1982; 

Cooper, 1990). Nitrate concentration typically remains low until early autumn. In 

summer, denitrification is therefore probably nitrate-limited for much of the time. 

In spite of the strong positive relationship (R2 = 0.91) between nitrate, 

temperature and denitrification found in the laboratory study (see Section 6.33), the 

relationship was not so evident for any particular site when using field nitrate and 

temperature to predict denitrification (see Section 4.3). This could be due to the 

combined influence of other environmental variables throughout the year, resulting in 

the lack of significant correlations with denitrification. The kinetic studies 

(see Section 6.32) also support the strong relationship of denitrification with nitrate 

availability from overlying water within the Swale-Ouse system, these will be discussed 

below. 

Instability in the upper sediment leading to decreased denitrification may be an 

important factor under conditions of high flow that could enhance or complicate the 

seasonal trend and regulation of denitrification. Unfortunately, the difficulty of 

sampling under such conditions means that relevant data were not obtained. High 

flows in winter and early spring can result in a great deal of sediment erosion and 

downstream transportation. This could potentially remove carbon from the surface 

layers (Jansson et al., 1994), as well as leading to sediment instability, preventing the 

development of microbial communities and perhaps a greater penetration of dissolved 

oxygen. Such factors could also explain the decrease in denitrification rate from 

Cawood downstream to Selby in the freshwater tidal reaches. 

The freshwater tidal part of the Ouse is a highly complex system and difficult to 

sample. In addition to the frequent changes in flow and direction of water movement, 

the sediment contains a relatively high component of fine particles, whose upper layer is 

continually being resuspended and redistributed, thus limiting the stability of the 

sediment and the formation of stable gradients in nutrients and processes. The decrease 

in denitrification at Selby is in striking contrast to all other measurements from the 

headwaters at Ravenseat to Cawood, where there was a progressive increase in 

denitrification rate at each successive site downstream (see Fig. 4.16). Nevertheless, 

the sediments are apparently responsible for the denitrification occurring at this site, as 

there was no evidence of denitrification in the water column in July under conditions 

which might have been expected to be optimal for denitrification to occur. The water 

column study was made at a time of year when oxygen concentrations may be expected 
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to be at their lowest and temperature highest. The value of 24 %dissolved 0 2 recorded 

for the day of the study in the water column is similar to the average values (25-30 %) 

of saturation recorded for this site in summer by Gameson (1982a). In addition, the 

study was carried out at low tide, when suspended particle concentrations tend to be 

highest (Gameson, 1982b). In general, the rate of denitrification in sediments of the 

freshwater tidal part of the Swale-Ouse is quite similar to that in the lower part of the 

non-tidal part of the river. However, the rates are much more variable at any particular 

site due to the instability of the sediments resulting in the lack of clear seasonal trends 

in this reach. 

Nitrous oxide (N20) production 
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Nitrous oxide production in the Swale-Ouse showed obvious spatial changes and 

slightly less obvious seasonal changes (see Section 4.4). Similarly to denitrification, it 

seems probable that the increasing nitrate concentration in the water on passing 

downstream is an important factor influencing the tendency for N20 production to also 

increase. Higher temperatures in summer are probably responsible for the general 

seasonal trend toward higher N20 production then. 

The increase in N20 production with increasing nitrate on passing down river on 

individual days would fit with experimental studies on marine sediments, such as those 

of Law et al. (1991) who found a proportional increase in N20 production with 

increased nitrate in the overlying water (see Section 1.3). However, other factors such 

as the dissolved oxygen and organic contents of the sediment may also have important 

influences on N20 production and it would require experimental studies to determine 

their contributions, since the concentrations of nitrate in the water column and these 

three sediment variables are markedly inter-correlated. Aqueous phosphate also 

increases on passing downstream. Aquatic mosses growing in upstream tributaries of 

the Swale and the uppermost main river site (km 10.9) show evidence of phosphorus 

limitation (Christmas & Whitton, 1998a, b), so the possible influence of sediment 

phosphate at some sites needs to be considered. Differences between bacterial 

communities between sites may be another factor influencing N20 production. A wide 

variety of bacteria are known to carry out denitrification (see Section 1.2) and N20 can 

sometimes be the terminal product instead of N2 (e.g. some pseudomonads, Greenberg 

& Becker, 1977). 

The response of N20 production to increase in nitrate and the significant 

relationship between N20 production and denitrification suggests that denitrification is 



the process responsible for most of the observed production of NzO. However, the 

effect of nitrate concentration on N20 production is probably not a simple substrate­

product relationship, since high nitrate concentration is known to partially inhibit 

nitrous oxide reductase in soils (Blackmer & Bremner, 1978; Letey et al., 1981) and 

sediments (Terry & Tate, 1980) with a subsequent increase in the N20 pool. The fact 

that N20 production shows greater variability than denitrification at any particular site 

(see Table 4.8) suggests that the relative effect of environmental factors influencing 

N20 removal may differ from that on the initial steps in denitrification 

(i.e. N03- => NzO). In addition to nitrate, it seems likely that small differences in 

oxygen or dissolved organic matter concentration may be especially important in the 

N20 reduction step. However, it must be noted that care is needed when considering 

the production of N20: while total NzO produced in the presence of C2H2 may be a 

good indicator of total denitrification (N2 + N20), the production of N20 in the absence 

of C2H2 may not be due solely to denitrification, but may also result from nitrification 

and dissimilatory nitrate reduction to ammonium (see Section 1.3 ). 

Tweed 

Data obtained from the Tweed support the seasonal and spatial trends found in 

the Swale-Ouse system. Although only four seasonal measurements of denitrification 

were performed at each site, they still serve to verify the spring peak in denitrification 

that was observed in the Swale-Ouse system, which would again potentially relate to 

increasing temperature and availability of nitrate. As with the Swale-Ouse, a 

spring/summer maximum in N20 production was also found in this system. 

Like the Swale-Ouse, spatial trends in various factors were also evident on the 

Tweed. The rates of denitrification measured in the Tweed were of a similar order of 

magnitude to those measured in the middle reaches of the Swale, which also had similar 

levels of nitrate. Once again the levels of denitrification activity mirrored the levels of 

nitrate on moving downstream, except for the freshwater tidal site at East Ord where 

there was a decrease in rate, similarly to Selby on the Ouse. This would again suggest 

the strong relationship between denitrification and environmental nitrate availability, 

except where other environmental factors such as sediment stability exerted an 

influence. 

From the long-term field studies on both the Swale-Ouse and Tweed river 

systems, the hypothesis that a gradient of physical and chemical variables along a river 

contnuum can elicit a graded response from denitrifying bacterial populations 
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(Section 1.4) can be confirmed. Furthermore, the hypothesis that these physical and 

chemical variables will vary with season and will, therefore, elicit a seasonal response 

from the denitrifying bacterial populations can also be confirmed. 

7.3 Factors affecting denitrification 
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Having confirmed the first two hypotheses (Section 1.4) and established the fact 

that a gradient of physical and environmental variables along a river continuum has 

indeed elicited a graded response from the denitrifying bacterial populations, seasonally 

as well as spatially, the relative influence of these regulating environmental factors can 

now be considered in order to substantiate the third hypothesis (Section 1.4). 

Field Investigation 

Results of the intensive field study of 50 river sites (see Section 6.2) showed that 

with the exception of the headwater site in the Swale catchment (Ravenseat), where 

nitrate and organic C availability were low, denitrification was detected at all sites; 

suggesting that denitrifying bacteria are widely distributed. The occurrence of 

denitrification everywhere else was surprising in view of the fact that many of the 

samples had supersaturated dissolved oxygen in the water at the time of sampling and a 

high proportion of particles in the sediment greater than 600 ~m and therefore a very 

low total carbon content. This once again suggests the occurrence of aerobic 

denitrification or the existence of anoxic micro-environments in generally aerobic 

conditions (Lloyd, 1993). The highest denitrification rates were always found in 

organically polluted lowland rivers, similar to the Wiske, where sediments tended to be 

covered by decomposing algal or other organic debris. 

As with the seasonal studies on the Swale-Ouse and Tweed systems, 

denitrification rates increased on passing from upstream to downstream in the Tyne, 

Wear, Tees and Swale. Once again, this trend can be explained by a combination of 

inter-correlated factors. Moving downstream, current velocity decreases (leading to 

greater sedimentation) and aqueous nitrate and phosphate increase. In general, 

sediments become finer (perhaps increasing sites for anoxic environments and microbial 

attachment) with increased contents of water, C and N. 

The rates of denitrification found (<0.005 to 260 nmol N g·1 d. wt h-1
) are again 

in the range of values reported for other ecosystems: sandy loam soils, 

c. 20 nmol N g-1 d. wt h-1 (Drury et al., 1992); fine-silty soil with values up to 



170 nmol N g- 1 d. wt h- 1 (Parsons et al., 1991); 24 soils in Northern Ireland with a wide 

range of physical and chemical properties, 2.5 and 88 nmol N g-1 d. wt h- 1 (Watson et 

a/.,1994). Bradley et al. (1995) found in an effluent-dominated river values up to 

58 nmol N g-1 d. wt h- 1
. In rivers, lakes and estuaries denitrification rates expressed as 

nitrogen produced per unit weight of sediment are scarce, making comparison difficult. 

As previously discussed (Section 1.2), N20 accumulation depends not only on its 

synthesis, but also on the extent of its reduction to N2 by reductase enzymes. 18% of 

samples showed negative values for N20 accumulation, which suggests a net 

consumption of the N20 produced, rather than production by denitrification. However, 

the two other processes that may form N20, nitrification and dissimilatory nitrate 

reduction to ammonia (DNRA) (see Section 1.3), make interpretation of these data 

difficult. Thus, it is not surprising that in some cases the production of N20 without 

acetylene exceeded that with acetylene, should nitrification or DNRA be contributing 

differentially to the N20 pool (Firestone & Davidson, 1989; Arah & Smith, 1990). The 

processes may be expected often to occur simultaneously, though presumably separated 

spatially and influenced differently by particular environmental factors. Thus, it is not 

surprising that there was no significant multiple regression between N20 production and 

any of the variables. 

Estimates of the ratio of N20 evolved to N2 evolved gave values up to 115 %. 

The average was 18 %, with 38% of samples being over this value. This figure 

contrasts with other investigations, most previous reports giving values less than 5 % 

(Seitzinger et. al., 1984; Seitzinger 1988). The generally high proportion found in this 

study could be due to an incomplete inhibition of nitrous oxide reductase by acetylene 

and/or inhibition of this enzyme by other factors such as oxygen. The former seems 

unlikely because the amount of acetylene added was sufficient to achieve complete 

inhibition (see Section 3.322) and the slurry technique used in this investigation 

guarantees complete contact between acetylene and the sites of denitrification. In 

addition, high N20 production was found in samples with both high and low water 

content and therefore high and low apparent density. It is probably more likely that 

oxygen could be an influencing factor, as nitrous oxide reductase is the most oxygen 

sensitive of all enzymes involved in denitrification (Firestone & Davidson, 1989), and 

slurries were made with natural river water, which was always over 62% oxygen 

saturation. Why samples with otherwise similar characteristics may lead to an increase 

or decrease in proportions of N20 remains unclear: no simple or multiple relationship of 

the N20: N2 ratio with any of the analysed variables was found. A full explanation 
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requires further experimental studies on the influence of individual variables that 

control the N20: N2 ratio. 

In contrast, the variations of denitrification rate in the wide range of sediment and 

water charactenstics presented by ·the 50-sites· was satisfactorily explained (77 %) by 

multiple regression analysis (see Section 6.22). The application of other models 

showed similar or lower significance (Table 7.1). Watson et al. (1994) found that bulk 

density and exchangeable Mg 2+ explained (by stepwise multiple linear regression) 

81.4 % of variation for 24 soils collected in Northern Ireland. A boundary-line 

approach model applied for Saskatchewan chernozemic soils explained 50 % of the 

variability using field and literature data (Elliot & de Jong, 1993). However, 

Bergstrom & Beauchamp (1993) were unable to obtain accurate predictions of 

denitrification rate using the same approach, when considering the air-filled porosity, 

respiration rate and mineralisable-C content. 

Aqueous nitrate and sediment water content explained the greatest amount of 

variation in the denitrification data from the present study (64 % ). A saturation curve 

relationship between nitrate and denitrification has been reported not only in this study 

(see Section 6.32), but also in a number of studies on cultures (Koike & Hattori 1975; 

Oren & Blackburn, 1979), slurries assayed in the laboratory (van Kessel, 1977b) and 

field data (Andersen, 1977); as nitrate is a substrate for denitrification, this is not 

surprising. It is less clear to what extent sediment water content was a factor directly 

influencing the present results. The influence of water content in soils on 

denitrification rate has been reported in the literature. The addition of water to soil can 

show a significant increase in denitrification rate (Weier et al. 1993): the water content 

in soils may inhibit oxygen diffusion to soil microorganisms, thus creating an 

environment favourable for denitrification. As both fineness of soil texture and water 

content increased, total denitrification also increased. Groffman & Tiedje (1989) 

suggest that smaller average pore size in finer textured soils may lead to greater soil 

water retention and greater opportunity to create anaerobiosis. However, it is known 

that the availability of electrons from organic carbon is in general one of the most 

important controlling factors in denitrification (Knowles, 1982). In this field 

investigation, sediment water content was highly correlated (P<0.001) with sediment 

percentage fine particles, C and N contents (see Table 6.3). 

The results from this field investigation and the seasonal study suggest that 

conditions for denitrification probably exist in most streams and rivers with at least 

some pockets of fine sediments. Further, more controlled, laboratory investigations 
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into the relationships between physical and chemical features of the environment on 

denitrification were performed in an attempt to clarify the causal and indirect 

interdependent relationships. 

Table 7.1 Proportion of variability in denitrification rate accounted for by various models. 

AFP = air-filled porosity; DEA = denitrifying enzyme activity; MPN =most-probable-number 

Counts of denitrifiers; WFP =water-filled porosity; E. Mg2
+ =exchangeable Mg2

+. 

Model Type of Variables R Reference 
sediment 

Stochastic Soils DEA p>O.I Parkin & Robinson 
C02 production (1989) 

Boundary Soils Air porosity 0.50 Elliot & de Jong 
Organic carbon (1993) 
Max. air Temp. 
Nitrate 
WFP 

Soils AFP 0.60 Bergstrom & 
Respiration rate Beauchamp (1993) 
Mineralisable C 
Nitrate 

Simple regression Stream Water soluble C 0.67-0.79 Hill & Sanmugadas 
sediment (1985) 

Multiple regression Soil C02 All data set Parsons et al. ( 1991) 
Moisture 0.11-0.27 
Nitrate Mean value 
Temp 0.73-0.91 
MPN 
DEA 

Soil E. Mg2+ 0.81 Watson et al. (1994) 
Bulk density 

Streams Water content 0.64 This study 
& Nitrate 

Rivers 

Laboratory investigations 

Nitrate in particular was investigated because of its significant relationship with 

denitrification found in both the seasonal and 50 site field investigation. Denitrification 

rate in intact sediment cores responded strongly to the nitrate addition and followed a 

Michaelis-Menten type kinetic curve (see Section 6.32), as found by other authors for 

freshwater (Andersen, 1977) and estuarine sediments (Koike et al., 1978; Oren & 
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Blackburn, 1979; Oremland et al., 1984). The maximum values for denitrification rate 

in this study involving nitrate enrichment were mostly similar to the maximum rates 

found in the seasonal study under field conditions. However, comparisons with other 

studies are complicated by the fact these have been made at a range of temperatures. 

Ideally, results would be presented for both the field temperature and also standardised 

to one particular temperature. In the case of the Swale-Ouse, values are comparable 

because the temperature at the time of the maximum was always within 5 ac of the 

15 °C used in the present study. 

Apparent maximum velocity showed a marked increase coincident with 

increasing nitrate concentration on passing down river and it seems almost certain that 

nitrate concentration is the key factor. Furthermore, these rates were mostly similar to 

those found in the long-term study on the Swale-Ouse (Section 4.3). However, other 

factors other than nitrate must be considered when assessing the results, such as number 

of denitrifying bacteria, their genetic and physiological properties and the optimal 

conditions of the process. As already discussed, downstream sediment particles were 

finer, presumably decreasing oxygen penetration and the carbon content of the upper 

2 em of sediment was higher, as already established, all of these variables are likely to 

favour denitrification. 

Apparent half saturation (K,) concentrations increased on passing downstream 

and were maximum in the Wiske. This trend agrees with the increasing gradient of 

nitrate concentration on passing downstream observed in this study and the previous 

long-term study on the Swale-Ouse (Section 4.22). This would suggest that upstream, 

where substrate (nitrate) is low, mixed bacterial populations would show the greatest 

apparent affinity to nitrate (low Ks). At sites with high substrate concentrations, such 

as on the Wiske, a higher Ks would suggest less efficient reduction of nitrate by 

denitrifying bacteria. From the results of this study it can be concluded that the mixed 

populations of denitrifiers at each site are well adapted to the usual levels of nitrate. 

It would appear that all previous kinetic studies published refer to experiments 

with slurries and not intact sediment cores, so caution is needed in comparison of data 

from this study with previous data. However, the values for maximum velocity at the 

headwater site and the main river (35.8 to 324 ~mol N m·2 h'1) (see Fig. 6.8) are well in 

the range of denitrification rates measured at near ambient conditions for rivers 

(0- 345 ~mol N m·2 h-1
, Seitzinger, 1988) and coastal marine sediments 

(0- 888 ~mol N m·2 h-1
, Seitzinger, 1988), though denitrification was always detectable 

in the present study. The uppermost value on the Wiske (860 ~mol N m·2 h'1 in June) 
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fell within this range. Ks concentrations ranged from 13.1 to 90.4 f.!M nitrate for the 

headwater site and the main river, but to 460 f.!M nitrate for the Wiske; these values may 

be compared with the lower (8 11M) and upper (344 f.!M) values in previous studies by 

authors (Koike et al., 1978; Oren & Blackburn, 1979; Oremland et al., 1984; 

Murray et al., 1989) using the slurry technique. 

Another problem in assessing results is the fact that denitrification in the 

sediment has been related to the nitrate concentration in the overlying water, as 

previously discussed. Although transport of nitrate into the sediment is likely to be 

rapid, the lower and variable nitrate concentration in the sediment means that the Ks for 

the mixed denitrification enzymes has inevitably been overestimated in slurries. 

However, by using cores the measurements of kinetic parameters obtained from this 

study should be more realistic, a future step should be to make detailed measurements 

during the experiment of changes in the nitrate gradient in the sediment. 

Net N20 production occurred at all sites, however, there was not always an 

increase with increasing nitrate concentration at all sites. In comparison with the 

literature, the proportions of N20 related to total N gases CN2 + N20) for the highest 

nitrate concentrations were surprisingly high, reaching 75 % in the Wiske in June 

(see Table 6.10). The published values for N20 in aquatic sediments have been 

obtained from pore water profiles (S~rensen, 1978b) and direct N20 flux measurements 

from cores (Nishio et al., 1983; Seitzinger et al., 1984); net N20 flux is generally less 

than 2 11mol N20-N m·2 h-1 and less than 5% of N2 production (Seitzinger, 1988). 

Once again, as N20 production is an intermediate product in at least three processes in 

the nitrogen cycle, each influenced by a range of environmental factors, it is difficult to 

explain the high values found here. However, eutrophication is one factor reported to 

lead to increased N20 production, as shown in Narragansett Bay 

(Seitzinger et al., 1983), where N20 fluxes increased around 10-fold from the relatively 

unpolluted lower and midbay to the eutrophic upper bay sediments. Another marine 

study (Seitzinger & Nixon, 1985) showed in a mesocosm that N20 flux from sediment 

and the N20: N2 ratio increased markedly in relation to nitrate input. In addition, in a 

study into the use of wetlands for water quality amelioration, Freeman et al.(1997) 

found a 95 % decrease in N20 emissions, compared to a control wetland, as a result of 

decreased nitrate on diverting water inflows for a 20-week period. 

The significant positive relationship between nitrate and denitrification in the 

seasonal and field study and the fact that all sites showed a marked increase in 

denitrification following the addition of nitrate in the kinetics study shows that any 



limitation in denitrification due to some other factor, such as concentration of suitable 

carbon substrates or phosphate, could be relatively unimportant. However, there 

should be further studies made to assess the effects of such variables. 

Results from the best subsets regression of environmental data with 

denitrification data from all sites from the Swale-Ouse seasonal study (see Section 4.4) 

showed that nitrate and temperature explained 68 % of the total variance in this data, 

thus denitrification may be expected to show a seasonal periodicity based on 

temperature. The seasonal temperature study (see Section 6.31) showed a general 

linear response of denitrification rate to a rise in temperature (see Figure 6.7), however, 

the differing results between assays at different times indicate that more data are 

required before temperature can be included in satisfactory models to predict 

denitrification rate. Denitrifying bacteria are known to be a heterogeneous group of 

organisms (Knowles, 1982), so differences in composition may be expected between 

sites and seasons, potentially resulting in the differences in slopes. There are 

apparently no values in the literature with which direct comparisons (over the 3 to 30 oc 
range of this study) may be made, but sediment cores taken in winter from Duffin 

Creek, Ontario, showed a four-fold increase in nitrate uptake over the range 0 to 20 °C 

(Hill, 1983). Two accounts in the literature using slurries report the denitrification rate 

to increase exponentially as a function of the temperature. This was observed over the 

range 14 to 35.5 °C in Lake Okeechobee, southern USA (Messer & Brezonik, 1983) and 

5 to 18 °C for the marine Narragansett Bay (Seitzinger et al., 1984). One study on an 

estuary (Koch et al., 1992) reported no changes in denitrification rate over the 

temperature range 0 - 30 °C, but these studies were carried out over a 24 h period, so 

may possibly have been influenced by substrate limitation at the higher temperatures. 

In spite of the strong relationship (R2 = 0.91) between nitrate, temperature and 

denitrification found in the laboratory study (see Section 6.33), as already explained, the 

relationship was not so evident for any particular site when using field nitrate and 

temperature to predict denitrification, this would suggest that other environmental 

variables could be exerting an influence. 

The organic carbon addition study on the Wiske showed that, at least in 

November 1996, the rate with slurries showed no response (see Section 6.34). This 

suggests that suitable C substrates were not limiting for denitrification. The total 

organic C content of the sediment at this site is relatively high C (0.3- 0.7 %) with the 

highest values in late summer and autumn. November is the time of year when there is 

likely to be the greatest input of organic material from breakdown of submerged 
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macrophytes, so similar assays should be made at other seasons. Other results indicate 

that organic carbon could at times be an important factor influencing denitrification rate. 

The study of sediment heterogeneity on the Wiske (see Section 4.41) made in 

April 1996 showed the highest rates of denitrification for an area with overlying plant 

debris. Cooke & White (1987) found in an 800 m stretch of the River Dorn, England, 

that denitrification rate showed a three-fold range according to the amount of 

mineralisable carbon in the sediment; the highest values were associated with 

fine-grained sediments. Hill & Sanmugadas (1985) reported a strong relationship 

between nitrate loss from laboratory incubated sediment cores and the water soluble 

carbon content in the top 5 em of sediment. As previously discussed, the 50 site survey 

also showed that denitrification rate was related first to nitrate and second with water 

content of the sediment; although, the water content showed a high positive correlation 

with both the C content of the sediment and the content of particles less than 100 !J.m, 

suggesting a potential influence from these other factors. 

The limited study on oxygen in the freshwater tidal reaches of the Swale-Ouse 

(see Section 6.35) served to indicate that further studies are necessary in order to 

produce strong conclusions. The fact that there was a slight increase in denitrification 

at Naburn Weir and none at Cawood or Selby would suggest the instability of the 

sediments has a greater affect on the formation of bacterial populations, as previously 

discussed. A study on oxygen depletion in a more stable environment may produce 

very different results; for example Andersen (1977) found that denitrification rates in 

lake sediments were always higher in anaerobic cores. 

7.4 Significance of denitrification in the Swale-Ouse 

A simple calculation demonstrated by Cooke & White (1987) has been used to 

estimate nitrate removal by denitrification in order to assess the significance of 

denitrification in part of the Swale-Ouse system. The estimates were based on data for 

Catterick Bridge for October 1995- September 1996. A stretch of 36.2 km (from 

Catterick Bridge to the confluence with the Wiske, see Fig. 2.2) was considered for the 

calculation. The assumptions were the average width was 20m, 70 %of river bed was 

suitable for denitrification and denitrification and nitrate concentration were uniform. 

Estimates of denitrification for each month were based on the single in situ rates, while 

nitrate concentration was based on the mean values from the LOIS core data and 

monthly measurements from this study (minimum of 5 values). The total 



denitrification rate for the stretch was then estimated for each month. The amount of 

nitrate removed by denitrification was calculated and expressed as a percentage of the 

amount that would be exported in the absence of denitrification. 

162 

Within the winter months nitrogen loss through denitrification in the mid-Swale 

was negligible compared with the nitrogen transported down the river because of high 

flow and low denitrification. However, in late spring and summer, denitrification could 

remove approximately 5% (or 0.14% km"1
) of the total amount of nitrogen transported 

(a peak of 9.0% removal was calculated for June). This value is in the lower range of 

values given for various rivers (review by Seitzinger, 1988). Cooke & White (1987) 

reported a value of 20% for a 35-km stretch of the R. Dom, UK, and Christensen & 

S~rensen (1986) 10% for a 1 km stretches of two lowland Danish streams, both studies 

being made in summer using acetylene inhibition. 

Although a lot of assumptions have been made in this calculation, it serves to 

show that removal of nitrate via denitrification under low summer flows is a component 

of the total nitrogen budget of the Swale-Ouse that should be considered. Particularly 

in view of the fact that this calculation is for the upper section of the river; an increase 

in percentage nitrate removal would be expected further downstream due to higher 

denitrification rates and increased riverbed area suitable for denitrification. 

7.5 Concluding remarks 

The present study has shown that there are very clear seasonal and spatial trends 

in denitrification and nitrous oxide production in the Swale-Ouse and Tweed river 

systems as a result of the influence of key environmental variables. These trends are a 

result of the differential influence of these key environmental variables on denitrifying 

bacterial populations. It can therefore be concluded that all of the original hypotheses 

(Section 1.4) can be confirmed. Furthermore, it seems that denitrification is potentially 

a significant component of the total nitrogen budget of the freshwater systems assessed 

in this study, even in the fast-flowing, meso-oligotrophic reaches of the upper Swale­

Ouse system and River Tweed. 

In addition, the data gained in the present study will be incorporated into the 

LOIS data set. This will be utilised to predict and model the implications of inland 

activities on events in the adjacent estuarine and coastal zone in order to aid in the 

future policy formulation for the management of the coastal zone (NERC 1994). 



SUMMARY 

1) This study investigated the trends evident in denitrification and nitrous oxide 

production in sediments and the key influencing environmental factors within 

selected river systems of North-East England in the LOIS (Land-Ocean Interaction 

Study) area of study. 

2) Seasonal and spatial trends were evident in both the environmental and 

denitrification data measured monthly for 1.5 years (August 1995 to December 

1996) along the Swale-Ouse system from source in the Yorkshire Dales National 

Park to tidal limits, south of York. 

3) Conductivity, alkalinity, pH and phosphorus and nitrogen fractions all increased 

with distance from source, mostly exhibiting a peak in the River Wiske, a highly 

eutrophic tributary of the River Swale. 

4) Seasonal fluctuations were observed in flow, temperature, pH and nitrate. Flow 

and nitrate showed a peak in winter months, whereas temperature and pH 

(particularly at the upstream sites) peaked in the summer months. 

5) Extracted nitrate and ammonium fractions from sediments mirrored the trends of 

these fractions in the water column. The proportion of sediment carbon and silt 

generally increased with distance downstream, again with maximum measurements 

on the Wiske. 

6) Denitrification was measured in sediment cores using acetylene inhibition and 

expressed by unit area of sediment. The N20 production data were expressed as 

~mol N20-N m-2 h-1
, i.e. ~mol N as N20, not N20. This format was used in order 

to permit direct comparison with results for denitrification (N20 plus N2), which 

were expressed in terms of N (not N2) as ~mol N m-2 h -1• 
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7) Denitrification mostly increased with distance from source, rarely exceeding 

20 Jlmol N m-2 h-1 at the headwater site; although results from a supplementary 

survey of the freshwater tidal reaches of the Ouse showed a decrease from the tidal 

limits at Nabum Weir. 

8) Denitrification showed a spring (March to May) peak in activity, particularly in 

the lowland sites, downstream of Richmond, with the highest rates of denitrification 

measured on the Wiske (883 ± 134 Jlmol N m-2 h-1 in May 1996). 

9) A high degree of colinearity was evident between environmental variables, 

although a significant relationship between denitrification, nitrate and temperature 

was found through multiple regression. 

10) A study of spatial heterogeneity of denitrification at one site showed a four-fold 

difference in rate between different types of sediment substrate. 

11) A peak in nitrous oxide production was found in the summer months for the 

downstream sites with a minimum in winter, similarly to denitrification. The highest 

production was found on the Wiske (497±184 Jlmol N20-N m-2 h- 1
) in July 1996. 

12) The proportion of nitrous oxide release related to the total gases released during 

denitrification showed great variation; there was a seasonal trend towards higher 

proportions in summer months compared to winter months. 

13) The seasonal and spatial trends evident in both the environmental and 

denitrification data in the Tweed river system, under a more limited sampling 

programme, were consistent with those observed in the Swale-Ouse system. 
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14) The environmental and denitrification data from the Tweed were of a similar 

order of magnitude to those measured in the meso-oligotrophic, middle reaches of 

the River Swale. 

15) Intensive field and laboratory investigations were carried out in order to clarify 

the relationships observed in the long-term study between denitrification rate and the 

chemical and physical characteristics of water and sediments. 

16) A survey was made of potential denitrification and NzO production in sediment 

slurries at 50 river sites inN-E. England in late summer to investigate the 

relationship between rates and environmental factors likely to influence these 

processes. 

17) In the 50-site study, denitrification rate ranged from< 0.005 to 

260 nmol N g-1 d. wt h-1
, tending to increase on passing downstream. 

18) NzO production in the 50 site study ranged from negative values (net 

consumption) to 13 nmol N20-N g-1 d. wt h"1 and accounted for 0 to 115% of theN 

gases produced. 

19) Both denitrification rate and N20 concentration in the sediments of the 50 sites 

were correlated positively with nitrate concentration of the water column, water 

content of the sediments and percentage of fine ( < 100 llfi) particles in the sediment. 

20) An experimental study investigating the kinetic parameters for denitrification, 

found that sediment cores taken along the Swale-Ouse exhibited a saturation type 

curve with added nitrate. 

21) Apparent affinity (Ks) for nitrate by the mixed populations of denitrifying 

bacteria increased on passing downstream from 13.1 to 90.4 JlM in the main river, 

but was highest (640 J.1M) in the Wiske. 
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22) Estimates of apparent maximum velocity (Vmax) for denitrification ranged 

between 35.8 and 324 Jlmol N m-2 h- 1 in the Swale-Ouse (increasing from upstream 

to downstream) and was highest in the Wiske (1194 Jlmol N m-2 h-1
). 

23) N20 production with added nitrate showed that rates ranged from below the 

detection limit (0.05 Jlmol N m-2 h- 1
) at the headwater site (with lowest nitrate 

concentration) and 27 Jlmol N m-2 h- 1 at the downstream site (with highest nitrate 

concentration in the main river). 

24) Comparative seasonal temperature curves were made on intact sediment cores 

from the Wiske and Ivelet Bridge. Denitrification activity per unit are of sediment 

generally increased linearly with temperature, although the slopes and intercepts 

were different on the different occasions. 

25) A laboratory investigation of the combined effects of temperature and nitrate on 

denitrification using intact sediment cores from the Wiske and Ivelet Bridge showed 

a highly significant relationship between denitrification and both variables 

(R2 = 0.91, p<O.OOl and R2 = 0.79, p<O.OOl for the Wiske and Ivelet Bridge 

respectively). 

26) Addition of organic substrates had no detectable effect on denitrification rate in 

intact sediment cores from the Wiske, although it did lead to a significant decrease 

in the proportion of nitrous oxide produced as a result of nitrate reduction. 

27) Little or no effect on the potential rate of denitrification was observed when 

sediment slurries from the freshwater tidal reaches of the Ouse were incubated with 

reduced oxygen. 
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APPENDIX 1 

Land-Ocean Interaction Study (LOIS) 

LOIS is a collaborative Community Research Project, the aim of which is to 

gain an understanding of the passage of materials from land to ocean and ultimately 

model and predict their impact on the coastal zone of the UK. The information 

gained from LOIS will aid in future policy formulation for the management of the 

coastal zone (NERC, 1994). 

Due to the multidisciplinary nature of LOIS, it has been divided into four main 

elements: River-Atmosphere-Coast Study (RACS), North Sea Modelling Study 

(NORMS), Shelf Edge Study (SES) and Land-Ocean Evolution Perspective Study 

(LOEPS). 

RACS is the largest element of LOIS and forms a combined study into land­

sea interactions in the coastal zone and the major fluxes of materials (nutrients, 

sediments, contaminants) from rivers, estuaries and the atmosphere along the east 

coast of the UK from Berwick-upon-Tweed to Great Yarmouth. The present study is 

part of this element. 
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