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Abstract 

Visual images from the two eyes are transmitted to the brain. Because the eyes are 

horizontally separated, there is a horizontal disparity between the two images. The 

amount of disparity between the images of a given point depends on the distance of that 

point from the viewer's point of fixation. A natural visual environment contains 

surfaces at many different depths. Therefore, the brain must process a spatial 

distribution of disparities. 

How are these disparities spatially put together? Brief (about 200 msec) static 

cyclopean random-dot stereograms were used as stimuli for vergence and depth 

discrimination to answer this question. The results indicated a large averaging region 

for vergence, and a smaller pooling region for depth discrimination. Vergence 

responded to the mean disparity of two transparent planes. When a disparate target was 

present in a fixation plane surround, vergence improved as target size was increased, 

with a saturation at 3-6 degrees. Depth discrimination thresholds improved with target 

size, reaching a minimum at 1-3 degrees, but increased for larger targets. Depth 

discrimination showed a dependence on the extent of a disparity pedestal surrounding 

the target, consistent with vergence facilitation. Vergence might, therefore, implement 

a coarse-to-fme reduction in binocular matching noise. Interocular decorrelation can be 

considered as multiple chance matches at different disparities. The spatial pooling 

limits found for disparity were replicated when interocular decorrelation was 

discriminated. The disparity of the random dots also influenced the apparent horizontal . 

alignment of neighbouring monocular lines. This fmding suggests that disparity 

averaging takes place at an early stage of visual processing. 

The following possible explanations were considered: 1) Disparities are detected in 

different spatial frequency channels (Marr and Poggio, 1979). 2) Second-order 

luminance patterns are matched between the two eyes using non-linear channels. 3) 

Secondary disparity filters process disparities extracted from linear filters. 
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0 Introduction 

How the brain sees with two eyes 

0.0 Summary and objectives 

The aim of this PhD. thesis is to determine how horizontal binocular disparities are 

spatially averaged in static cyclopean random-dot stereograms to stimulate horizontal 

vergence eye-movements and depth perception. Mathematically, averaging and 

integration are closely related. The average of a functionf(x) in the interval from a to b 

is equal to its integral from a to b, divided by the size of the interval (b-a); i.e. the 

average is proportional to the integral. Although disparity integration for stereopsis has 

been studied (e.g. Rogers and Graham, 1982), little is known about the way in which 

disparities are normally integrated to control vergence. A further objective of this 

research is to describe the relationship between vergence angle and perceived depth in 

these visual images, in an attempt to determine whether and how they interact. Eye 

movements such as vergence constrain our visual perceptions, and also provide a 

measure ofthe underlying visual processing (Findlay and Kapoula, 1991). 

The small vergence eye-movements stimulated by the stereograms investigated in 

this research would be difficult to measure objectively, by tracking the positions of the 

two eyes. Therefore, vergence has been estimated where possible using the technique of · 

subjective dichoptic nonius alignment. The accuracy of this technique, in comparison 

with objective vergence measurement, is examined in section 5.2. The psychophysical 

techniques used to estimate both nonius/vemier alignment (Chs. 1 ,2,4,5) and 

stereoacuity/detection thresholds (Chs. 3 and 4) were adapted from the method of 

constant stimuli (Falmagne, 1985). 



A. V. Popple Disparity Averaging Introduction 

I decided to focus on responses stimulated visually, with minimal attentional 

mediation. Therefore, on the whole, I measured initial vergence and perceived depth, 

using brief (usually about 200 ms) stimulus intervals. Previous research (e.g. Semmlow 

and Carpenter, 1996) has indicated that this schedule corresponds roughly to the first 

burst of disparity vergence, prior to the initiation of further eye-movements. 

Subsequent vergence is more likely to be under voluntary influence, and might also 

affect the viewers' perceptions and encoding of the stereo grams. 

In this introduction I will give a brief account of human image processing, and the 

geometry of binocular disparity, highlighting theoretical issues which provide the 

necessary background for my thesis. The literature relating to vergence and depth 

perception from static cyclopean random-dot stereograms will be reviewed. 

This thesis sheds new light on very old problems. Berkeley ( 1709) was concerned 

with the philosophical conundrum of how we are able to see depth, when the distance of 

an object cannot be inferred from its projection on the retina. In his own words: "For 

distance being a line directed end-wise to the eye, it projects only one point in the fund 

of the eye, which point remains invariably the same, whether the distance be longer or 

shorter." In solving this apparent contradiction between the geometry of vision and 

visual experience, Berkeley was determined to avoid what he saw as the errors of the 

"mathematicians" such as Descartes (Atherton, 1990). Descartes, in his Dioptrics (in 

Berkeley, 1709}, had described how we might compute distance from the geometry of 

binocular vision, a theory which will be described in the first section of this introduction 

(0.1). Berkeley, while not denying this underlying geometry, was determined that we 

are able to perceive depth only from sensible qualities such as muscle strain resulting 

from eye-movements, with no need for geometrical computation. Vergence, the 
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physical orientation of the two eyes in depth, will be discussed in the second section 

(0.2). Berkeley held that the apparent immediacy of depth perception is, like the 

inevitability of assigning meaning to words heard in the mother tongue, a learnt 

phenomenon. Stereopsis, the perception of depth from binocular disparity, is reviewed 

in section 0.3. The fourth section (0.4) reviews the literature on visual direction. The 

main motivation behind Berkeley's 'New Theory of Vision' was, according to Atherton 

( 1990), to dispense with the need to invoke an abstract cross-modal internal 

representation of external space. "If the visible figure and extension be not the same 

with the tangible figure and extension, we are not to infer that one and the same thing 

has divers extensions. The true consequence is that the objects of sight and touch are 

two distinct things." (Berkeley, 'New Theory of Vision', 49). In section 0.5 the 

neurophysiological background of binocular vision is summarised. In the sixth and final 

section (0.6), this notion is discussed in relation to more recent theories of vision and 

ideas on how sensory information from the two eyes is combined to result in what we 

see. 

0.1 The geometry of binocular vision 

Many mammals, e.g. rabbits, have laterally placed eyes, giving them panoramic vision. 

Such an arrangement is common in animals liable to predation. Primates, however, 

have frontally placed eyes with a large degree of binocular overlap. A human eye has a 

field of view of about 150° (Bruce and Green, 1990). As well as ensuring that little 

field loss would result from damage to one eye, this arrangement gives the advantages 

of binocular vision. 

3 
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vv 

Figure 1. Schematic diagram of the degree of binocular overlap in a) a rabbit and b) a human. 

Descartes ( l71
h C; in Atherton, 1990) described how the angle an object subtends 

between the two eyes can be used to calculate the distance of that object from the 

viewer, given the distance between the eyes. He used the example of a blind man 

holding two sticks in front of him, to feel the distance of an object by the angle at which 

the sticks cross at the object. This passage iranslated from Descartes is quoted in an 

appendix to Berkeley's 'New Theory of Vision': 

"We apprehend distance, moreover, through a sort of joint activity of the eyes. 

For in the same way as our blind man, holding two sticks of indeterminate length, 

AE and CE, and knowing only the distance between his hands, A and C, together 

with the size of the angles ACE and CAE, can thence determine the position of E by 

a sort of innate geometrical knowledge shared by all men, so, when both our eyes, 

RST and rst, are focused on X, the length of the line Ss and the size of the angles 

XSs and XsS let us know the position of the point X. We can also discover that 

position by means of either one of our eyes alone, by changing its location. If we 

keep the eye fixed on X and hold it first at the point S and then immediately 

afterwards at the point s, that will be enough for the length of the line Ss and the size 

of the angles XSs and XsS to be present together in the imagination and thus to 

4 
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inform us of the distance of the point X. They do so in virtue of an act of the mind 

which, while it may seem to be a simple judgment, nevertheless involves a kind of 

complicated reasoning process like that by which geometers calculate inaccessible 

positions from two separate given points." (From Descartes' Dioptrics VI 13). 

B 

Figure 2. Des cartes' analogy of a blind man with sticks 

s 

1\ 
X 

The ancient Greeks estimated the distance of astronomical objects such as the 

moon, using the principle of calculating distance by triangulation based on Euclidean 

geometry. This is the quality of physical space that underlies our ability to utilise 

binocular overlap in perceiving depth. Descartes did not, however, specify how we gain 

knowledge of the necessary visual angles. Berkeley supposed our depth perception 

relied on feedback from the muscles supporting the eyes, in a direct analogy to the blind 

man feeling the position of his hands as he directs the sticks to a target location. 

Vergence eye-movements, which do exactly that, do not, however, provide good 

depth perception. Collewijn and Erkelens ( 1990), in a review of psychophysical studies 

addressing this question, were generally disparaging. Foley (1978) found that observers 

were able to correctly order separately presented small vergence targets according to 

depth, but tended to underestimate the absolute distance of the targets. It appears that 

vergence, or absolute horizontal disparity alone, is a poor depth cue. This conclusion 

5 
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reflects the results of Erkelens and Collewijn' s ( 1985ab) experiments. Using a large (30 

0
) field of random dots, the images in the left and right eye were shifted in opposite 

directions following a temporal sinusoid. In this condition, vergence was imperfect but 

neither the vergence eye-movements nor the residual disparity led to any perception of 

motion in depth. (When only one eye's image was viewed monocularly, the shifting 

dots were seen in lateral motion). 

The vergence angle is not, however, the only source of geometrical information 

which could be used to compute depth. It is easily apparent, by covering first one eye 

and then the other, that the view from the two eyes is slightly different. Euclid (4th C. 

BC; in Howard and Rogers, 1995) discussed the differing views of an object obtained 

by the two eyes. Alhazen (11th C; in Ho ward and Rogers, 1995) was the first to 

formulate rules for binocular visual direction. The precise rules that govern the apparent 

direction of objects under monocular and binocular viewing conditions were later 

delineated by Wells (1792; cited in Ono, 1991) and Hering (187911942; cited in Ono, 

1991) (see section 0.4). 

Leonardo da Vinci (16th C; in Ho ward and Rogers, 1995) noted that this difference 

between the two eyes' views gave a sensation of depth absent from monocular viewing. 

In other words, it could be used as a source of information about depth. The depth of an 

object relative to the plane of fixation, where the two eyes are pointing, can be specified 

by the disparity between its images in the two eyes' views. Imagine a point P some 

distance in front of the point of binocular fixation, 0. The images of an object at 0 will 

fall on the centre of the fovea in both eyes (OL and OJ. P L and PR denote the images of 

P at the two retinae. If the left and right retinae were overlaid, with the points OL and 

OR on corresponding locations, the points PL and PR would fall on slightly different 

6 
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locations. This distance between PL and PR is the horizontal retinal disparity ofP. This 

disparity can be expressed as a visual angle, as shown in figure 3. 

0 

Figure 3. Retinal disparity (see text for details). 

The disparity described above can be termed 'absolute' horizontal disparity 

(Collewijn et al., 1991). It specifies absolute depth, given the distance of the fixation 

plane. 'Relative' horizontal disparity is the difference in disparity between two points, 

neither of which necessarily lies in the plane of fixation. In the example above, imagine 

that OL and OR did not fall on corresponding points on the two retinae. By shifting the 

retinae until OL and OR were in line, the distance between P L and PR would then give the 

relative horizontal disparity of points 0 and P. Relative horizontal disparity remains 

unchanged during changes in fixation, and therefore provides information about the 

relative depths in the environment which is invariant under a variety of eye movements 

(Van Ee and Erkelens, 1996). 
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Figure 4. Vieth-Miiller circles, or isophores denoting points of equal absolute horizontal disparity, and 

Hil/ebrand hyperbolae, or isotropes, marking points of equal mean binocular visual direction 

(after Carpenter, 1988 after Lunenberg, 1948). 

All the points subtending the same horizontal disparity must geometrically lie on a 

circle including the fundus points of the two eyes. These Vieth-Miiller circles are 

illustrated in figure 4. Also shown are Hillebrand hyperbolae, or lines of equal mean 

binocular visual direction. The circles are the orthogonal cross-section of cylinders that 

describe surfaces of equal horizontal disparity in three-dimensional space. In fact, 

however, points above or below the horizontal plane, and which are not in the vertical 

plane midway between the two eyes and orthogonal to their axis, will have vertical as 

well as horizontal binocular disparity. 

Vertical disparities arise because of the different perspective of the two eyes. 

Imagine looking directly at a large chessboard. The right-hand edge of the chessboard 

will be closer to the right eye than the left-hand edge of the chessboard, and hence it will 

subtend a larger visual angle. Likewise, the left-hand edge will be closer to the left eye, 

and this will subtend a larger visual angle in the left eye as a result. These distortions in 

the two eyes' images of the board are shown in figure 5. Figure 5 also shows the 

disparity vector field, first described mathematically by Koenderink and van Doom 
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(1976). The pattern of vertical disparities alone can, in principle, be used to gauge 

fixation distance (Helmholz, 1866; in Tyler, 1991). More recently, Mayhew and 

Longuet-Higgins (1982) showed that the vector disparity difference between a small 

number of points is sufficient to specify absolute depth differences. 

Figure 5. The pattern of vertical and horizontal disparities created by an object extending beyond the 

plane of the horizon. The chessboard is projected differently onto each retina. To obtain the 

disparity vector field, imagine overlaying the two monocular images. Heavy arrows are drawn 

between left and right image points arising from the same physical intersection. After van Ee 

(1995) . 

The geometrical horopter is the point or points where disparity is zero relative to 

the point of fixation. The form of the horopter depends on its geometrical definition 

(Tyler, 1991). Zero horizontal disparity occurs on the surface of a cylinder orthogonal 

to the Vieth-Miiller circle, which is its cross-section. On the other hand, zero horizontal 

and vertical disparity only occur where this cylinder intersects the vertical plane midway 

between the two eyes, and where it intersects the horizontal plane containing the two 

eyes (that is along the Vieth-Miiller circle). This is the case when gaze is directed 

toward points where vertical disparity is zero, i.e. points that lie in the plane of the 

horizon or in the vertical plane between the two eyes. When looking at a general point 
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which has vertical as well as horizontal disparity, the horopter forms a single line which 

loops along the cylinder of equal horizontal disparity. The line deviates from the 

vertical midline to include the point of fixation, then goes along the Vieth-Milller circle 

through the eyes. It includes the reflection of the fixation point in the opposite quadrant 

(lower left for top right, and vice versa) and then curves back towards the vertical 

midline. Helmholtz ( 1866; in Tyler, 1991) mathematically described the shape of the 

horopter with oblique gaze, that is with both horizontal and vertical version. Tyler 

( 1991) and Ho ward and Rogers ( 1995) give detailed descriptions of the horopter. 

The empirical horopter, where visual stimuli appear to be at equal disparity, differs 

somewhat from the geometrical horopter. The main difference, as shown in figure 6, is 

that the empirical vertical midline tips back about the longitudinal horopter. The 

longitudinal horopter also differs slightly from the Vieth-MUller circle. This small 

difference, known as the Hering-Hillebrand deviation, can be described as the addition 

of a fixed angular disparity as the fixation distance is varied (Hering, 1864; Hillebrand, 

1893; cited in Tyler, 1991 ). Ogle (1932, 1950) showed that the empirical horopter in 

the visual plane is always one of the conic sections (circle, ellipse, straight line, parabola 

or hyperbola). The form of this horopter is consistent with nasal eccentricity being 

larger than temporal eccentricity for each pair of corresponding points, such that this 

difference increases with eccentricity. In addition, when gaze is elevated from the 

horizontal plane, some degree of cyclovergence occurs. Cyclovergence is the difference 

between the torsional movements of the two eyes. Torsion is rotation about some axis 

between the pupil and the retina. As a result of cyclovergence, the shape of the horopte~ 

is distorted. 

10 
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Helmholz 
shear of the 
vertical 
meridian 

Hering
Hillebrand 
deviation 

Figure 6. Deviation of empirical from geometrical horopters 

Introduction 

The geometry of binocular vision provides a number of different sources of 

information about depth. However, these 'binocular' depth cues are not essential for 

perceiving the third dimension. This can be readily observed by occluding one eye. The 

three dimensionality of the visual world is essentially unchanged. Depth can also be 

computed from blur, given the focal distance of accommodation of the lens. 

Accommodation, and its interaction with vergence, will be discussed in the next section 

(0.2). Other, so-called 'monocular' depth cues allow us to recognise the 3D world in 

two dimensional images such as paintings, photographs and film. These monocular 

depth cues arise from the projective geometry of image formation. A number of recent 

theories have addressed the issue of how these monocular depth cues are combined with 

depth derived from stereopsis (e.g. Bulthoffand Mallot, 1988; Young et al., 1993). The 

remaining sections of the introduction (0.2-0.4) concentrate, however, on how the 

geometry of binocular vision is utilised in practice to control vergence eye-movements, 

stimulate depth perception, and determine visual direction. 

11 
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0.2 Vergence 

Vergence eye movements are movements of the two eyes in depth. The vergence angle 

is the angle between the lines of gaze of the two eyes. Convergence onto a nearby point 

makes this angle larger, divergence onto a distant point makes it smaller (see figure 7). 

A change in vergence is the difference between the angular deviations of the two eyes, a 

convergent change is positive (making the vergence angle larger) and a divergent 

change is negative (making the angle smaller). 

Figure 7. Convergence and divergence 

Although vergence could be achieved if each eye were able to target the object of 

vision independently, this is in practice not the case with the human visual system (for 

exceptions, see Enright, 1996b ). Hering ( 1868; cited in Alp em, 1962) observed that the 

movements of the two eyes are normally yoked together, because corresponding 

muscles of each eye receive equal innervation (Alpem, 1962). Version eye-movements 

or saccades are conjugate, the two eyes move equally in the same direction. Hering's 

'principle of equal innervation' has been taken to mean that version and vergence 

eye-movements are effected independently (e.g. Carpenter, 1988). Thus, any possible 

eye-movement can be said to have a (conjugate) versional component, which is the 

mean of the movements made by the two eyes, and a vergence (disjunctive) component, 

12 
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which is the difference between the movements made by the two eyes. Alp em ( 1957) 

demonstrated that a yoked saccade occurred when a prism wa introduced in front of 

one eye (see figure 8). The base-out prism in front of the right eye caused the image of 

the target to shift laterally in that eye. Although only movement of the right eye was 

required to correct for this shift, both eyes began a symmetrical vergence movement. 

This was followed by a saccade to the left before the completion of the vergence 

movement. It is not clear whether the origin of such saccades is near the effector site, as 

would be implied by Hering's observation. The probability of such saccades depends 

on the stimulus layout (Ono and Nakamizo, 1978) and the saccades themselves are often 

asymmetrical (Enright, 1984; 1986). The weight of the evidence suggests a partial 

interaction between version and vergence requirements in the ongoing computation of 

eye-movements (for review see Ono, 1983). Neural mechanisms of saccade-vergence 

interaction have been proposed (Zee et al., 1992; Mays and Gamlin, 1995). 

Figure 8. Alpern 's (1957) demonstration of a yoked saccade. The position of an object (filled dot) has 

been shifted suddenly by introducing a base-out prism in front of the right eye. Both eyes 

saccade to the left, before a slow vergence movement is undertaken. Adapted from Alpern 

(1962). 
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Figure 9. Alpern and E/len 's (1956) reproduction of Miiller's (1826) experiment. A lens introduced in 

front of the left eye, causes the occluded right eye to perform a vergence movement. 

The main reason for believing that versional saccades and vergence are controlled 

separately is that the dynamics of the two kinds of eye-movements differ. Whereas 

saccades are rapid, vergence (although it has a shorter latency) is slow and can take up 

to a second to reach completion (Carpenter, 1988). 

What, then, is the stimulus for vergence eye-movements? Maddox (1893; cited in 

Stark, 1983) attempted to quantify the component causes of the deviation of vergence 

angle from zero. The four components discussed by Maddox were tonic vergence, 

accommodative vergence, voluntary or proximal vergence, and reflex fusional vergence 

(Stark, 1983). Tonic vergence is the angle at which the eyes are held in the absence of 

visual stimulation, an angle that normally deviates in the convergent direction from 

parallel lines of gaze. Tonic vergence varies with adaptation to different optical 

apparatus (e.g. prisms) and task, but normally relaxes to an average of about 3°? 

equivalent to a distance of about 120 cm (Owens and Leibowitz, 1980). 
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The largest component of vergence was, according to Maddox, accommodative. 

The human eye contains a lens which serves to focus incoming light on the retina. In 

individuals under the age of about 55, the thickness of this lens can be varied by the 

ciliary muscles to vary the focal distance (Aipem, 1962). The direct stimulus for 

accommodation is blur. Blur and accommodative focus give an indication of viewing 

distance, which can be used to direct vergence eye-movements. Muller ( 182611842; 

cited in Alpem, 1962) showed that an accommodative stimulus alone can cause 

vergence change. Alpem and Ellen ( 1956) reproduced his experiment. With one eye 

occluded, a lens was introduced in front of the other eye. The target in the viewing eye 

would then be blurred. A convergent movement of the occluded eye was the result. 

(See figure 9). 

Maddox termed the fourth component of vergence 'reflex' or fusional. This is what 

we now refer to as disparity vergence. Accepting that the eyes move together rather 

than independently, the difference in target location between the two eyes can be used to 

determine their relative motion. Absolute or retinal disparity (see figure 3) and vergence 

form part of a closed feedback loop, in the same way as accommodation compensates 

for image blur. The interaction between the two systems is summarised in figure 10 

(Carpenter, 1988). For a target subtending a given angle between the two eyes, reflex 

vergence is a function of retinal disparity. Retinal disparity is the difference between 

target angle and vergence angle. The new vergence angle is fed back in the 

re-registration of retinal disparity. Retinal disparity cross-links with accommodation, 

which in turn feeds back in the registration of blur and vice versa. These two systems 

also interact with the pupillary reflex, forming the 'near triad' of automatic responses to 

visual stimuli (e.g. Semmlow and Jaegar, 1972; cited in Semrnlow and Hung, 1983). 
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Figure 10. The interaction of vergence and accommodation systems, adapted from Cmpenter (1 988). 

Target focus (S), and visual angle (U) are compared with accommodative focus (R) and 

vergence angle (V). 

R = a( s - R) + o( u - v) I 
V=P(U-V)+y(S-R) 

accommodative blur 
stimulus S --t()--(S-R) 

target disparity disparity 
U ---+0---(U-V) 

The exact way in which disparity determines vergence has been studied under open 

loop conditions. With the image in each eye stabilised to the position of that eye, 

Rash bass and Westheimer (1961) found that vergence velocity is proportional to the 

magnitude of disparity, for disparities up to about 4°. When a step disparity is applied 

under open loop conditions, after a 160 ms latency vergence increases at a constant rate. 

This suggests the signal is being integrated with respect to time in the control of 

vergence, as with smooth pursuit eye-movements (Carpenter, 1988). Under normal 

conditions, when feedback is available, an integrator would slow doW!l and stop the 

response when target vergence had been attained. The dynamics of vergence are 

suggestive of a linear system, however even under open loop conditions there is some 

evidence of predictive behaviour, for example to a temporal ramp-step combinatio~ 

(Rashbass and Westheimer, 1961). A step disparity of under 1 o was followed by a slow 

ramp lasting about I second, concluding with a step return to the starting disparity. In 
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this case, vergence velocity reached zero before the ramp crossed the zero disparity 

point. Under normal, closed-loop conditions, similar anticipatory vergence responses 

occur following repeated stimulation. Vergence is also markedly non-linear under 

normal viewing conditions; convergence is faster than divergence (Zuber and Stark, 

1968). A dual-mode model of vergence was proposed (Hung et al., 1986; Semmlow et 

al., 1994) which distinguished between a delayed slow component driven with 

continuous feedback, and a fast component incorporating a disparity predictor based on 

sampling target velocity. 

Little attention has been given to the spatial constraints operating in the control of 

vergence. In a natural viewing environment, objects are seen at many different depths, 

and we are able to shift vergence between them effectively (Erkelens and Collewijn, 

1989). The way in which the disparities of two transparent planes are integrated in the 

control of initial, stimulus driven vergence was determined by Mallot et al. (1996), 

replicated in chapter 1. Further discussion of this topic is in chapter 2, which looks at 

the spatial parameters of disparity integration in the control of initial vergence. 

Vergence is thought to be directed by attention (Collewijn and Erkelens, 1990). Indeed, 

trained observers are able to gate between targets at different disparities voluntarily 

(Erkelens and Collewijn, 1995) even when these are presented parafoveally, and in 

competition with a stabilized fovea! target (Collewijn and Erkelens, 1991 ). However, 

inexperienced subjects are likely to respond automatically to a step change in disparity, 

even when trying to maintain fixation on a target (Stevenson et al. 1997). 

Although vergence is of little direct relevance in the perception of depth (0.1 ), it is 

used to scale the retinal image. Conversely, the apparent size of objects can determine 

Maddox's third component of vergence, proximal vergence (Ittleson and Ames, 1950; 
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McLin et al., 1988). Wheatstone (1852; cited in Howard and Rogers, 1995) first noted 

that increased convergence leads to a decrease in perceived size. Heinemann et al. 

( 1959) confirmed that this effect was due to vergence, and not the accompanying 

accommodative and pupillary reflexes. It may be this tendency to scale images 

according to vergence, in the direction of size constancy, such that nearer objects of the 

same size appear smaller, which accounts for the difficulty in estimating depth explicitly 

from vergence. Here is an analogy to explain the way we use vergence to indicate depth. 

Patients with cerebral achromatopsia are able to segment objects from colour 

boundaries, without being able to see the different colours themselves (Heywood et al., 

1991). In the same way, we may be able to scale objects from vergence, while not being 

able to perceive the vergence distance itself. 

Others have demonstrated, however, that vergence and/or absolute disparity can be 

used to give an accurate, direct estimate of relative depth - sometimes as good as 

stereoacuity. Enright ( 1996a) found viewers were able to perform 'sequential 

stereopsis' to determine the relative depth of peripheral patches of sandpaper, which 

could not be resolved simultaneously. Frisby et al. (1997) replicated this result using 

filtered textures, although they found the depth thresholds obtained depended on spatial 

frequency, and were poorer for high-frequency images. This may have been because the 

high frequencies could not be resolved in the periphery, or because they were less 

effective in driving vergence or the underlying disparity coding. 

In a natural image, size constancy functions along the z-axis as well as in the 

fronto-parallel plane. This is why stereograms containing a fixed horizontal disparity 

appear to contain a greater depth interval the further away they are from the viewer. 

Vergence scaling results in poor size constancy along this dimension, a finding which 
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has been attributed to our poor ability to estimate depth from vergence (Foley, 1980; 

Tyler, 1983). However, under certain stimulus conditions, when the target is relatively 

small (I 0°), vergence can give good disparity scaling (Bradshaw et al., 1996). Scaling, 

rather than direct depth perception, appears to be the primary function of distance 

estimates based on absolute disparity or vergence. 

0.3 Stereopsis 

When two 2D images depicting the view of an object or scene from the vantage points 

of the two eyes are observed, each by its own eye, a profound sensation of depth is 

experienced. Binocular stereopsis is the perception of depth from binocular disparities. 

The mirror stereoscope, a device which directs each half of a stereogram to the 

appropriate eye, was first invented by Wheatstone in 1832 (Wheatstone, 1838; in 

Howard and Rogers, 1995). At around the same time, Wheatstone devised the prism 

stereoscope which uses different optical apparatus to perform the same function. 

Brewster (1849; in Howard and Rogers, 1995) later publicised the prism stereoscope 

and initiated its commercial production. There followed a fashion for stereoscopic 

photographs, or stereographs. These were generated using the techniques of early 

photography, by a special camera which simultaneously registered images from two 

different vantage points, equivalent to the positions of the two eyes. 

To obtain such an impression of depth, the images of each component must be 

matched in the two eyes' views. Early speculation about matching elements favoured 

considerable pre-processing of each image, such that edges or even whole, recognised 

objects were matched (Wheatstone, 1838). However, in 1960 Julesz invented the 

random-dot stereogram, a stereogram in which sharp depth contours emerged, despite 
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the uniformity of the two monocular half-images (figure 11) (Julesz, 1960; 1971). The 

original random dot stereogram was generated using two identical copies of a random 

dot pattern. A square cut from the centre of the right copy was shifted to the left, to give 

the impression of a raised square when viewed binocularly. The gap created by shifting 

the square was filled with more random dots, to eliminate any monocular contours. 

Depth in such random-dot stereograms is termed cyclopean, because it can only be seen 

by combining the images from the two eyes. The allusion to the one-eyed giant from 

Odysseus' travels refers to an imaginary central eye, where the images from the two 

eyes are combined to give the singular visual world we perceive. For further discussion 

of this topic, see section 0.4. Random-dot stereograms indicated that the visual system 

was able to use primitive matching elements to achieve stereopsis. Binocular 

combination can occur early in the visual processing stream, before objects or even 

edges have been identified. 

Figure JJ. Random-dot stereogram after Julesz (1960; 197 1). 

Early computational models of stereopsis were mainly concerned with addressing 

the correspondence problem, the problem of dealing with false matches, which occurs 

with random dot stereograms. Two main strategies were used to address this problem. 

The first strategy used constraints on the possible outcome (Marr and Poggio, 1976; 
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Pollard, Mayhew and Frisby, 1985), implemented by cooperation between neighbouring 

units. This is termed a cooperative algorithm. The first of these algorithms (Marr and 

Poggio, 1976) was among the earliest examples of a neural network, as it employed 

parallel processing. Figure 12 shows the possible matches between four elements. Each 

point in this cross correlation matrix is represented by a single unit. The constraints 

used by Marr and Poggio were those of uniqueness and continuity. Uniqueness implies 

that each point in the right eye is matched with only one point in the left. This is 

achieved by inhibitory connections along the solid lines. Continuity comes from the 

relative smoothness of objects. Sharp disparity boundaries are present only at corners 

and edges, which form a small part of the image area. The algorithm was designed to 

solve simple random-dot stereograms such as figure 11. In this case, continuity could be 

equated with excitatory connections across fronto-parallel planes, as shown by the 

dotted lines in figure 12. The second model of this sort (Pollard, Mayhew and Frisby, 

1985) was able to deal with more complex depth profiles, including natural images after 

edges had been extracted. In this case, the continuity or 'smoothness' constraint was 

expressed by a limit on the disparity gradient rather than a preference for flat planes. 

Figure 12. Marr and Poggio ( 1976) Filled circles show stimuli and 'true' matches, unfilled circles show 

'false' matches. The white arrows represent axes of interaction between units. 
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The second approach to the correspondence problem has been to limit false 

matches by constraining the input, rather than the output. Marr and Poggio ( 1979) used 

this approach, taking as a starting point Richards' ( 1971) suggestion concerning the 

existence of two 'pools' of neurons representing large and near-zero disparities. This 

suggestion was based on work with stereoanomalous subjects, whose impairments in 

stereoacuity were often restricted to one or another of these pools (Richards, 1970, 

1971). In Marr and Poggio's (1979) theory, three pools (near, far and zero) are 

represented at a number of different spatial frequencies or filter sizes. For each spatial 

frequency (rate of luminance modulation) only three disparity bands are considered, 

making the correspondence problem almost irrelevant. The difficulty with this 

approach is that fine disparities can only be represented near the plane of current 

fixation. This gives vergence an important role in scanning the range of depths present 

in the visual scene, driven entirely by low spatial frequency channels as only these can 

register sufficiently large disparities. The role of vergence in determining stereoacuity, 

and the consequent influence of the spatial parameters constraining vergence on 

stereoacuity, are examined in chapter 3. According to Marr and Poggio, the sampled 

disparities (both small and large) are temporarily stored in a visual buffer termed the 21/2 

-D sketch. 

Another way of constraining the input to binocular correlation is to combine 

information from the different spatial frequency channels monocularly, to obtain a rich 

representation of each eye's image so that false matches are unlikely. Such an approach 

was used by May hew and Frisby ( 1980) who filtered the stereo image halves with a 

broad band filter (a circularly symmetric Laplacian centre-surround operator) and 

located zero-crossings forming monocular contours before binocular combination. 
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Broad band filtering is equivalent to convolving the inputs from a number of different 

spatial-frequency and orientation tuned channels. In conclusion, the main difference 

between these two non-cooperative solutions to the correspondence problem is the order 

in which information is combined binocularly and from different spatial-frequency 

channels. May hew and Frisby ( 1980) criticised Marr and Poggio ( 1979) for the 

unrealistically limited range of disparities their model could represent. In fact, the 

visual system does impose a limit on the range of disparities about the horopter which 

can be fused. This limit, known as Panum's fusional area, will be discussed in the next 

section (0.4). Mayhew and Frisby's model also requires range limitation, but this is 

based on psychophysical estimates ofPanum's area. 

Cross-correlation of the images in the two eyes can be used to generate an estimate 

of depth without, explicitly, addressing the correspondence problem (e.g. Sperling, 

1970). A cross-correlation matrix of the stimulus, such as shown in figure 12, is used to 

derive a cross-correlation profile (see figure 13). It is plain that such a profile will peak 

at the correct disparity, since matches in this plane outnumber matches in any other 

plane. Cross correlation can give a local estimate of depth within the window used to 

perform the correlation, however the extraction of depth boundaries would depend on 

the size and density of such windows, as with any spatial frequency account. This 

approach is nonetheless useful because it can provide a coarse disparity estimate, as is 

required for vergence, without the need for prefiltering. The detection of interocular 

correlation can be predicted from differences in the cross-correlation functions between 

correlated and uncorrelated random-dot stereograms. Cormack (Cormack et al., 1994) 

found that preformance in this task depended on the number of elements in the display. 

Cross-correlation has been used to model disparity integration for vergence (Mallot et 
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al., 1996, see also chapter 1). The outcomes of processing image correspondence for 

vergence and correlation detection are compared in chapter 4 . 
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Figure 13. A cross-correlation matrix and profile. 

Neurophysiological evidence is, at present, insufficient to select between these 

different matching strategies. This is because all the different kinds of disparity 

sensitivity required by the different models appear to coexist among the binocular 

neurones of the primary visual cortex (for review, see Howard and Rogers, 1995). 

Further discussion of the neurophysiological basis of binocular combination is in 

section 0.5. Psychophysical evidence is also ambiguous, for example recent 

experiments have supported both spatial-frequency based (Smallman and MacLeod, 

1997) and cooperative (Glennerster and McKee, 1997) accounts. Cross-correlation also 

explains a number of stereoscopic phenomena (Stevenson et al., 1994). Perhaps all 

three strategies are used by the human visual system, depending on the stimulus and the 

task. (This approach to stereoalgorithms draws from the account given by Poggio and 

Poggio, 1984). 

24 



A. V. Popple Disparity Averaging Introduction 

Is binocular depth perception learnt, as Berkeley had suggested? About 5% of the 

adult population lack good stereoscopic vision (Richards, 1971 ). Binocularity is rare in 

strabismics, who frequently suppress information from one eye. In other words, 

binocular depth perception is associated with accurate binocular fixation, and vergence. 

Strabismus is often the result of poor vision in one eye, for example anisometropia (a 

difference in focus between the two eyes), giving rise to amblyopia (impaired visual 

resolution in one eye). It appears that accurate binocular fixation can only develop 

when disparity information is available, that is when the images in the two eyes are 

sufficiently similar to be matched. Binocular vision is unlikely to be restored by 

surgical correction of the strabismus, showing instead a critical period of development. 

Early treatment of monocular aberrations, for example by removing a cataract in one 

eye, results in the development of normal binocular vision. (The aetiology of 

strabismus and its relation to binocularity is reviewed by Flax (1983) ). Monkeys reared 

with an esotropia surgically induced at an early age, failed to develop normal 

stereoacuity after eye alignment recovered spontaneously, although their fusional 

vergence eye-movements were accurate (Harwerth et al., 1997). It appears that 

binocular depth perception is learnt from early visual experience. Like first language 

acquisition (Brown, 1958), it follows a maturational pattern and can only be achieved 

during a critical period, as cases of monocular visual deprivation indicate. Berkeley 

(1709) concluded his essay with the following observation: " ... we cannot without great 

pains cleverly separate and disentangle in our thoughts the proper objects of sight from 

those of touch which are connected with them. ... consider how hard it is for anyone to 

hear the words of his native language pronounced in his ears without understanding 

them. Though he endeavour to disunite the meaning from the sound, it will nevertheless 
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intrude into his thoughts ... ". Berkeley's analogy between visual depth perception and 

language acquisition is more apt than can have been foreseen. It remains to enquire 

whether this reliance on learning in (at least binocular). depth perception also reflects the 

absence of an internal representation of abstract space, as Berkeley believed. 

0.4 Visual direction 

We are able to distinguish visual directions that differ by only arcseconds of visual 

angle, less than the width of a single photoreceptor. Such hyperacuity can be 

demonstrated by our ability to align vernier lines, a method which will be described 

more fully in the experimental chapters ofthis thesis. Similarly, stereoacuity enables us 

to make equally accurate comparisons of depth based on disparity of a few arcseconds 

(McKee et al., 1990). 

How do we integrate the different directions of an object seen in the two eyes? The 

general geometry of binocular vision was described by Alhazen in the ll 1
h Century. A 

set of rules governing apparent visual direction was formulated by Wells ( 1792). Later, 

Hering ( 187911942) delineated the 'Laws of visual direction' in a theoretical framework 

including the notion ofthe 'cyclopean eye'. These are summarised in figure 14. 

According to Ono (1991), 'information about the visual line is provided by the 

afferent signal from a retinal image location (local sign)', and 'information about the 

common axis is provided by the efferent signals sent to the eye muscles and/or by the 

afferent signals from the eye muscles.' Gregory ( 1958, 1966) proposed two subsystems 

to determine visual direction, a retinal-image system and an eye-head system. Ono 

(1974,1975; in Ono, 1991) suggested that, in line with the laws ofcyclopean projection 

(figure 14, IV), the joint binocular local signals combine with the joint eye position 
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signals. Panum's fusional area is the region delimiting the boundaries of V(b). In this 

area, which is normally broader horizontally than vertically (Panum, 1858; cited in 

Howard and Rogers, 1995), the disparate images of an object in the two eyes can be 

fused and therefore appear to have the same visual direction, which is the mean of their 

directions in the two eyes. Beyond this area, the images are seen in two different visual 

directions (diplopia). The size of this region depends on a large number of factors. 

These include eccentricity (Hampton and Kertesz, 1983) and spatial frequency (Schor et 

al., 1984), but not contrast or phase (Schor et al., 1989). Panum's area is often 

represented as a thickening of the empirical horopter compared with the geometrical 

horopter (e.g. Tyler 1983,1991). However, this is confusing as objects within Panum's 

area, although fused, appear at different depths. Ogle ( 1952) described a region of 

patent stereopsis, where veridical depth impressions could be obtained with diplopic 

stimuli. Although monocular half-images may appear at different locations and cannot 

be fused, they must be matched in some way to obtain a disparity value for this region. 

Similarly, disparities beyond Panum's area must be processed to stimulate appropriate 

vergence eye-movements as demonstrated in chapter 5 (5.2) and discussed in chapter 3. 

Figure 14. Herings' Laws of Visual Direction. 

(overleaf) 

27 



A. V. Popple Disparity Averaging Introduction 

I. The laws of oculocentric direction. 

a) Objects on a given visual line appear to 
be aligned, or superimposed. That is, they appear 
to have the same ocu/ocentric direction. 

b) Non-coincident retinal images give rise to 
a judgment of spatial separateness. 

la 

II 

If. The law of the cyclopean eye. 

All visual objects are judged as if from the 
cyc/opean eye located midway between the two 
eyes. 

Ill. The laws of monocular visual direction. 

a) In monocular viewing, objects on the same 
visual line are judged to be in the same visual 
direction, which is unique to that visual line. 

b) All visual lines appear to point to the same 
cyc/opean eye. 

IV. The laws of cyc/opean projection. 

a) Objects on the visual axes of the two eyes 
are judged to be in the common axis (passing 
through the cyc/opean eye and the intersection of 
the two visual axes). 

b) An unfosed monocular object on a visual 
line is judged to deviate from the common axis 

V. The laws of binocular visual directions. 

a) Every visual line in the binocular field of 
one eye has a corresponding visual line in the 
other eye, with an identical apparent visual 
direction. 

b) The visual direction of slightly disparate, 
fosed images is the average of the visual directions 
of the monocular components. 

c) The visual direction of rivalling images in 
the two eyes is that of the dominant image. 

with the same angle subtended by the visual axis I y d I 
and the visual line that contains the object. 
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Recently, these laws of binocular visual direction have come under some criticism. 

Erkelens and Van de Grind (1994) showed that the laws of cyclopean projection and 

mean visual direction made paradoxical predictions in the case of half-occlusions. 

When one object is positioned in front of another, larger object parts of the second 

object will be visible only monocularly, and hence follow the law of cyclopean 

projection. In effect, this means that two points of the partially occluded object will 

appear to have the same visual direction, a prediction of the laws which is not borne out 

in practice. Erkelens and V an de Grind showed that, instead, when a binocular and a 

monocular object are aligned under such conditions, alignment between the monocular 

object and the same-eye half image of the binocular object takes place. Subsequently, 

Erkelens and van Ee (1997ab) went on to show that the apparent location of a 

monocular line was 'captured' by a nearby binocular surround. Similarly, McKee and 

Harrad ( 1993) demonstrated that fusional suppression restricted access to monocular 

alignment information except in the dominant eye of stereoanomalous observers. In the 

field of binocular rivalry, Logothetis et al. ( 1996) found that, when different images 

were presented to the two eyes, instead of perceptions alternating between the two 

half-images, global constraints were taken into account, to cause alternation between 

grouped objects or coherent scenes containing neighbouring regions from either eye. 

Another area of debate has been the visual direction assigned to stimuli differing in 

contrast between the two eyes. Mans field and Legge ( 1996) found that gabor luminance 

patches fused in a visual direction weighted by their contrast, and closer to the 

higher-contrast half-image. This, they proposed, could be accounted for if the position 

of the 'cyclopean eye' shifted depending on the stimulus. As the cyclopean eye is a 

theoretical construct which describes the reference frame in which we see visual 
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'where' has been proposed (Ungerleider and Mishkin, 1982) which is associated with 

two relatively independent 'dorsal' and 'ventral' pathways (Baizer et al., 1991). These 

themselves perhaps originate from the M and P ganglion cells in the retina (Livingston 

and Hubel, 1988). An alternative scheme, espoused by Zeki ( 1993), contains 

specialised visual areas for colour (V4), motion (MT or VS) and dynamic form (V3). 

What all these theories have in common is a reliance on V 1 , the primary visual area, as 

a relay station for different properties of the visual scene. 

The striate visual cortex, V 1, is also significant in the integration of the images 

from the two eyes. The optic fibres from the two eyes partially decussate (cross over) at 

the optic chiasma, so the right LGN (lateral geniculate nucleus) receives its input 

primarily from the left visual field of both eyes, and the left LGN from the right visual 

field. However, the two monocular inputs are shunted to different, alternating layers of 

the LGN. From the LGN, these unintegrated monocular inputs are carried up to Vl 

where binocular combination takes place. Only the input layer of V 1, layer 4b, contains 

monocular neurones. In visual areas beyond V 1, all neurones are binocular, responding 

to stimulation from either eye or both. Therefore, it is in VI that we must look for 

physiological evidence of disparity processing and this is the area I will concentrate on 

here. 

Cells in V I are specialised along a number of stimulus dimensions. These include 

spatial frequency, orientation, phase, ocular dominance, and disparity. The way in 

which such preferences are distributed among cells in VI suggests that this stage of 

visual processing is more than a sorting system for subsequent stages. The organisation 

of orientation and phase preferences can be described by topological equations, and 

predicted from a self-organising neural network (Tanaka, 1995). Further, physiological 
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evidence of tangential connections between cells of the same orientation suggests a role 

for Vl in image segmentation following Gestalt grouping processes such as collinearity 

(Gilbert and Wiesel, 1989; Hirsch and Gilbert, 1991; Schmidt et al., 1997). If similar 

connections were found between neurones tuned to the same disparity, this would 

provide support for cooperative models of disparity processing. 

A receptive field is the area of visual space in which a visual neuron responds to 

stimulation. Receptive fields can be classical, responding with decreasing strength to 

stimulation further from their centre following a gaussian receptive field profile. 

Alternatively, they may have a centre-surround organisation where stimulation in the 

surround prohibits a response. Such centre-surround cells may be linear, such that an 

inactive balance can be achieved between static stimulation in the centre and surround 

areas. Non-linear cells in VI are described as complex, since they may be particularly 

sensitive to moving stimuli and have specialisations along the temporal dimension. 

Simple cells respond equally to static stimuli. The concept of a receptive field is used 

for visual neurones from the retina and up to higher visual areas such as MT and MST. 

In V l, receptive field profiles to oriented bar stimuli outline the spatial frequency, 

orientation and phase selectivity of a cell. Spatial frequency tunings from 2 to 8 c/deg 

have been found foveally, and lower in the periphery (DeValois et al., 1982). This 

arrangement could be used to perform a patch-wise fourier analysis of the retinal image, 

to extract useful boundary information necessary to reconstruct both objects and the 

spatial layout of the environment. It is also a useful starting point for any theory of 

visual processing as such linear filtering precedes subsequent operations. 
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Figure 15. Disparity tuning profiles of neurones recorded by Poggio ( 1984). Schematic illustration, 

showing neural response plotted against disparity. 

About two thirds of cells in V 1 are selective for binocular disparity. Responses 

along this dimension were obtained in alert monkeys by Poggio and Fisc her ( 1977) and 

Poggio and Tal bot ( 1981 ). The cells were originally categorised along two dimensions -

tuned or untuned, and near vs. far. Tuned excitatory cells peaked at zero disparity, 

whereas tuned inhibitory cells troughed at this value. Near and far cells both exhibited a 

broader range of disparity selectivity, responding most strongly to disparities in front of, 

or behind, the fixation plane respectively. The disparity tuning functions of these 

different cells are shown in figure 15. Later (Poggio, 1991) two further categories were 

added to this scheme: tuned near, and far, detectors. 
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Figure 16. Left (black) and right (white) 

receptive fields of neurones modelled 

by Freeman and Ohzawa ( DeA ngelis, 

1991). Neural activity is plotted against 
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One problem with the scheme proposed by Poggio was that disparity selectivity 

was isolated from other stimulus dimensions. Freeman and Ohzawa (1990) (see figure 

16) developed a model where disparity is selected by a phase shift between the two 

monocular receptive field profiles of a simple cell, rather than a shift in the centre 

location of the monocular fields. They found physiological evidence of this (in the 

anaesthetized cat, DeAngelis et al. 1991, 1993; Ohzawa et al. 1996) compatible with the 

spatial frequency and orientation preferences of the simple cells they describe. In the 

original Freeman and Ohzawa model, these simple cells specialised for both disparity 

and location were summed in quadrature by a complex binocular disparity neuron, 

relatively insensitive to location (also in Ohzawa et al., 1997b). This latter part of the 

model appears an oversimplification in the light of further research on complex cells, 

which cannot easily be described in terms of phase shifts (Ohzawa et al., 1997 a). This 

kind of model is nevertheless better suited to current understanding of V I than the 

disparity profiles provided by Poggio. The two are fully compatible, as 'near' and 'far' 

disparity tuning curves may arise from low spatial frequency selectivity, whereas the 

tuned excitatory profiles could be the result of high spatial frequency selection, with 

cells having binocular receptive fields shifted by 180° corresponding to the tuned 

inhibitory neurones of Poggio et al.. These phase-shifted neurones easily fit in with 

Marr and Poggio's (1979) spatial frequency theory of disparity processing (DeAngelis, 

1991 ). What might appear to be a Keplerian representation of different disparities 

(Lehky and Sjenowski, 1990) could actually be a sparse representation repeated at 

different spatial frequencies (Smallman and McLeod, 1997). 
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0.6 How does the brain see with two eyes? 

Is there evidence for an internal representation of external, three-dimensional space? 

The 17'h century debate between Berkeley and Descartes has, in my view, a modern 

equivalent in the conflict between connectionist and symbolic theories of mental 

processing. Symbolists, like Descartes, describe the rules or algorithms which govern 

perception. Although connectionists often make no claim to emulate or simulate brain 

systems, their models are based on the parallel links between units which, in my 

opinion, resemble the parallel organization of neurones in the brain. These links can be 

subject to learning reminiscent of Berkeley's notion of associating vergence angles with 

tactile distances. Marr (1982), who led the computational approach to vision, identified 

three levels of representation in an information-processing system such as the brain or a 

computer. The first level is the computational level, which describes the input-output 

function. The second is the algorithmic level, the transformational rules by which the 

input becomes the output. The third level is that of hardware implementation. Marr 

held that these levels are relatively independent. If this is the case, there is no need to 

couch theories of visual processing in neural terms (whether biological or connectionist) 

providing the input output function is maintained. However, more recent work on 

computer information processing has shown the importance of evolutionary constraints 

in algorithm development, even down to the level of using the material properties of 

silicon chips (Thompson, 1997), and indeed physicists have recently emphasized the 

physical nature of information itself (Zurek, 1989). 

The aim of this thesis is to unravel the processing of visual information in a 

specific biological substrate (the human brain) continuously with other physical 

processes. Although our knowledge of disparity processing in the brain is limited, 
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various organisational principles such as the existence of interconnected, parallel 

networks, the use of receptive fields, and spatial frequency analysis, can be used to 

constrain the theories proposed. An outline of the theory supported by the thesis would 

look very much like Marr and Poggio's (1979) stereoalgorithm; low spatial frequencies 

processed rapidly drive vergence (chapters 1 and 2), which brings into register the finer 

disparities that determine stereoacuity (chapter 3). The processing of interocular 

correlation can be modelled using the same pooling mechanisms as with correlated 

binocular stimuli (chapter 4). Finally, however, cooperative interactions between 

neighbouring units are invoked to explain perceived monocular visual direction in a 

binocular context (eh. 5). This places the integration of disparity firmly in the disparity 

domain, rather than the spatial domain as originally proposed by Marr and Poggio. 

In chapter I initial vergence was measured as the proportion of random dots in two 

transparent disparity-defined planes was varied, in replication of M allot et al. ( I996). 

Vergence was estimated using the psychophysical technique of dichoptic nonius 

alignment, a method corroborated by simultaneous binocular eye-movement recording 

in chapter 5. Vergence was a function of the mean disparity of the two planes, weighted 

by the number of dots in each plane. This vergence response was dissociated from the 

perceived depth of the stimulus, which could be seen in transparency. Coarse filtering 

of the input could account for the fmdings in this broad-band spatial frequency stimulus. 

Mallot preferred a model filtering (or averaging) disparity peaks obtained by quantized 

cross-correlation. Initial coarse-filtering was based on the ideas of Marr and Poggio 

(1979). 

Following from the local averaging found in chapter I, chapter 2 established that 

even a global stereo-figure is integrated with its surround by the pooling mechanism 
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which determines initial vergence. The integration of neighbouring disparities extended 

a region of about 6°. Chapter 3 related the spatial tuning properties of vergence in the 

disparity domain, to those of stereoacuity. Stereoacuity was better for a smaller (l-2°) 

target, as can be predicted from spatial-frequency tuning to disparity gratings (Rogers 

and Graham, 1982). When the area of a depth pedestal was increased, making initial 

vergence more accurate, stereoacuity to a test-patch on the pedestal also increased. This 

demonstrates the role of vergence in the ongoing processing of disparities. Larger 

pedestals, however, produced better results even for very brief (40 msec) stimuli, 

suggesting that vergence itself relies on the early stages of disparity processing, as does 

transient stereopsis. But stereoacuity improved considerably when the stimulus interval 

was increased to 500 msec, demonstrating the dependence of binocular vtston on 

vergence eye-movements to implement coarse to fine disambiguation. 

The perception of interocular decorrelation, and the vergence response to it, were 

explored in chapter 4. Interocular correlation is commonly used to explore the 

underlying processing of disparities (e.g. Cormack et al., 1994). Surprisingly, and in 

contrast with previous studies (Tyler and Julesz, 1978; Cormack et al., 1994), the spatial 

tuning for changes in correlation was identical to that reported for changes in disparity. 

Decorrelation, therefore, may be represented by the visual system as a range of 

disparities and processed by the same mechanisms responsible for disparity processing. 

Some individuals verged in response to changes in interocular correlation. This may 

have been due to the prevalence of'near' or 'far' disparity pools (Richards, 1970,1971), 

later integrated in the determination of a target vergence disparity. 

One finding which did not fit neatly with the filter model is reported in chapter 5. 

Monocular alignment was tested across a disparity step (5.1). The results could easily 
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be explained by interactions between congruent disparity units, or feedback from a later 

disparity processing stage. However, dichoptic lines presented subsequently to the 

binocular stimulus reflected the vergence angle between the two eyes, and not the 

preceding disparity (5.2). 

The motivation behind most of these studies was the empirical exploration of the 

spatial parameters governing disparity integration, both for vergence and for depth 

perception. Although each chapter follows logically from the preceding one, the 

selection of a particular experiment undertaken from the range of possible studies was 

by no means exclusive. However, by combining the findings obtained in all five 

experimental chapters a novel theory of disparity integration emerges in the last chapter. 

This final coherence of ideas sublimes the sometimes haphazard progression of the 

doctoral studies presented in this thesis. 

Bringing together the study of vergence eye-movements and perception highlights 

the role of the visual system as actively exploring the environment, not simply a 

hierarchy of selective filters operating on a constantly refreshed sensory input. The 

problem of integrating the two eyes' views can be seen as one of sampling from 

three-dimensional surroundings, using the learned constraints of Euclidean space, rather 

than reconstructing a 3D nomenal world. 
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Chapter 1 

Initial horizontal vergence is stimulated by the weighted 
mean disparity of two transparent planes 

1.0 Abstract 

Mallot et al. (1995, 1996) reported that initial vergence is directed to the mean disparity 

of two transparent, random-dot planes, weighted by the dot density and contrast in the 

planes. Here, one of these findings was replicated in a sample of 10 viewers, using a 

slightly different method. Brief (230 msec) rectangular stereo grams were flashed up on 

a modified Wheatstone stereoscope, instead of the shutter-goggles used by Mallot. Each 

was followed by a 160 msec dichoptic nonius vernier. The position of perceived 

alignment was determined using a forced-choice procedure followed by Probit analysis, 

rather than the method of adjustment Mallot had employed. As in MallotDs study, 

vergence (as estimated by the dichoptic nonius procedure) was found to be directed to 

the weighted mean disparity when the number of dots in the two planes was varied. 

Further, in experiment 2 the planes were shifted laterally so that they overlapped, with 

the result that the weight of each plane in the disparity pooling for vergence was 

determined by the number of dots in that plane. Dot density, which remained constant 

while dot number was altered, had no effect. In conclusion, disparities of all the dots in 

the stimulus area were pooled in the calculation of initial vergence, regardless of their 

spatial contiguity. 
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1.1 Selective replication of Mallot et al. (1995,1996) 

1.1.1 Introduction 

Mallot, Roll and Arndt (1995,1996) showed that disparity evoked vergence is directed 

towards an average of two depth planes. When viewers were shown a stereogram 

consisting of 1 00 dots distributed between two planes, ± 18 arc m in from fixation, their 

vergence response took an intermediate value, weighted by the proportion of dots in 

each plane. Thus, when all the dots were at a crossed disparity of 18 arcmin, vergence 

was directed approximately to this plane, depending on individual biases in fixation 

disparity and asymmetry of responses to crossed and uncrossed disparities. When 50% 

of the dots were in each plane, vergence remained in the fixation plane, subject to the 

same individual constraints. 

Mallot et al. used a psychophysical method of estimating vergence, based on the 

alignment of a dichoptic nonius vernier. One vertical line is presented to each eye, so 

that they lie one above the other. Following HeringDs Laws of monocular visual 

direction and cyclopean projection (see section 0.4), the two lines will appear vertically 

aligned when their horizontal visual angles in the two eyes are identical. Therefore, the 

angle of vergence between the eyes is given by the angular lateral displacement between 

the two lines added to the vergence angle of the plane on which they are shown. If a 

fixation stimulus on the same plane is used, the angular displacement between the two 

eyes can be termed a fixation disparity. Conventionally, a positive fixation disparity is 

convergent (increase in vergence angle) and a negative fixation disparity is divergent 

(decrease in vergence angle). 

The internal validity of this method was demonstrated by Mallot et al., who 

recorded vergence as a function of disparity and found responses consistent with data 
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obtained by other methods. Subsequently, a close correspondence with simultaneous 

eye-movement recordings was observed (5.2). In fact the differences between the two 

(subjective and objective) methods of vergence estimation, within the range of 

disparities investigated in this chapter and chapters 2 and 3, proved to be insignificant. 

At the time of conducting this experiment, only a single dual-Purkinje tracker was 

available, so this could not be used to measure vergence directly. Although the 

purchase of a second tracker had been planned since before the author began her 

doctoral studies, this only arrived during her final year of study. When delivered, the 

second instrument proved unreliable which led to protracted negotiations with the 

suppliers. Binocular eye-tracking systems available were a head-mounted Skalar Iris 

tracker, and a coil system. These were less accurate than the dual-Purkinje trackers, 

which was eventually used to validate the nonius procedure employed here (chapter 5). 

The nonius stimulus was displayed, following Mallot, directly after the offset of a 

brief stimulus, which was preceded by a fixation interval. One major drawback of the 

nonius method is that, with a single presentation time in the sequence of each trial, it 

cannot be used to investigate the dynamics of the vergence response. Instead, it is used 

to sample the vergence position of the eyes at a given time. The position of the eyes 

may reflect a vergence eye-movement made in response to the target. Alternatively, if 

trials are blocked in sequences of similar or identical disparity stimuli the nonius 

estimate might reflect an adapted position of the fixation disparity, ie. one which is 

maintained even during the fixation interval. A further possibility is that the motor 

response to a stimulus, presented repeatedly in each block, becomes conditioned and is 

repeated on subsequent trials without further visual processing. 
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Mallot et al. conducted trials in blocks of 30-40 adjustments. Each trial consisted 

of a 750 ms fixation, followed by a 230 ms stimulus and finally a 160 ms vernier 

interval (see figure 1.1). After each trial, the viewer adjusted the relative positions of 

the central nonius lines until, after a number of adjustments, they appeared in line. For 

each condition, 20 such blocks were averaged to obtain a reliable estimate of the 

vergence response in that condition and ofthe error associated with it. 

It was necessary to repeat MallotDs experiment with a larger number of subjects, as 

his six observers showed considerable individual variation, so much so that an 

additional term had to be included in the mathematical model proposed to account for 

one subjectDs data. A further objective was to find out whether the results could be 

replicated on a Wheatstone stereoscope. In MallotDs experiment, stimuli were 

displayed by temporally interlacing left and right half images in synchrony with liquid 

crystal shutter goggles, at a frequency of 60 Hz. The risk of crosstalk between the two 

eyes is a major drawback of this apparatus. The psychophysical technique used in the 

present study differed from Mallot, the method of constant stimuli was employed in 

place of a staircase procedure. If his results proved reliable, this would be a way of 

accessing the automatic disparity processing which determines the initial vergence 

output. 

1.1.2 Method 

a Subjects 

Ten observers aged between 20 and 30 participated in this experiment. With the 

exception of the author, the participants were naive of the theory involved. All had 

normal or corrected to normal vision. 
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b Apparatus and stimuli 

(All dimensions are given in Height x Width). Stimuli were generated on a Cambridge 

Research Systems VSG graphics board driven by a Logix Systems Processor PC. They 

were displayed on two EIZO Flex-6500 21n flat monitors viewed through a modified 

Wheatstone stereoscope. Head movements were minimised using a chin and forehead 

rest. The stereoscope consisted of two 5 x 7 cm front silvered mirrors mounted at a 

right angle. The total viewing distance was approximately 90 cm ( 10 cm to the mirrors 

and a further 80 cm to each screen). The layout of the apparatus is illustrated in figure 

2.1. The monitors were set at a resolution of 768 x I 024 pixels on a screen 25.5 x 34 

cm, subtending a total visual angle of about 16 x 21 degrees, 1.25 arcmins per pixel. 

The two monitors were positioned at an identical distance from the mirrors, and 

perpendicular (in both horizontal and vertical planes) to the line between the centres of 

the two monitors. This line passed, at its midpoint, through the apex of the mirrors, at 

45 degrees to each mirror in the horizontal plane, and perpendicular to the mirrors in the 

vertical plane. Rough positioning was achieved using rulers, set-squares, and spirit 

levels. Finer adjustments were made by monocularly aligning first the outside of the 

monitors, then a grid presented on both screens, in the two mirrors. Aligning the 

outside of the monitors ensures that the accommodative distance is equal to the 

vergence distance when stimuli are positioned in the same location on both monitors. 

Aligning the grid displayed on both screens ensures that stimuli can be accurately 

positioned to coincide on the two monitors. As basic optics ensure that the angle of 

incidence equals the angle of reflection, and the distance of the image equals the 

distance of the object from the mirror, providing both monitors are the same distance 

from the mirrors, and properly aligned, and the mirrors accurately set at 90 degrees, then 
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the virtual images of the two monitors will fall on the same physical, spatial location. 

The monocular adjustment makes use of the exquisite human vernier hyperacuity, up to 

seconds of arc (McKee et al., 1990). At a distance of 1 m, 20 arcsec acuity is sufficient 

to detect an alignment error of 0.1 mm. Such a tiny displacement is much harder to 

measure with a ruler! No steps were taken to ensure that vergence was appropriate for 

the viewing distance of the stereoscopic image. Indeed, later results suggest that, for 

most subjects, it was not, as most subjects were found to have a fixation disparity of 

several arcmins (see 2.1.3). 

The fixation stimulus was a pixel-wide 25 x 25 arcmin square. Target stimuli were 

given a fixed, arbitrary disparity of ±12.5 arcmin. As this was the author" s first 

experiment using the specified apparatus, a disparity was chosen at which the author 

could perceive transparency and thereby ensure the desired stimulus was indeed shown. 

Additionally, 12.5 arcmin was, it was hoped, sufficient to drive vergence. Stimuli were 

generated by placing 100 2.5 x 2.5 arcmin non-adjacent random dots over a 5° x 3.75° 

region, then giving a certain proportion of the dots an uncrossed disparity of 12.5 

arcmin, and the remainder a crossed disparity of 12.5 arcmin. A nonius vernier stimulus 

was generated by displaying three 160 x 2.5 arcmin vertical bars 25 arcmin apart on 

one monitor and a single bar above them on the other monitor, at one of 21 possible 

horizontal locations corresponding to vergence angles separated by 2.5 arcmin. 

c Design 

Elicited vergence was measured, with 1 00 random dots distributed between two planes. 

The distributions tested were as follows: 0:100, 20:80, 40:60, 60:40, 80:20 and 100:0 

(number of dots in far plane: number of dots in near plane). 
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d Procedure 

Eighty-eight trials were presented m a block for each dot distribution. Trials were 

blocked in this way following Mallet (1985), however see the introduction to this 

chapter for a discussion of the disadvantages of blocking. See also experiment 2.3, 

where trials were randomised. 

Every trial consisted of a 1 second fixation while the random dots were calculated 

off-line followed by a 230 ms stimulus that was, in turn, replaced immediately by a 160 

ms dichoptic nonius vernier target. The nonius stimulus consisted of a single vertical 

bar in one eye above three vertical bars in the other eye. Subjects were instructed to 

attend to the fixation target, and following the briefly flashed stereogram to respond to 

the nonius vernier target with a key-press left or right, depending on whether the top line 

was left or right of the central lower line. The vernier target was presented randomly 

eight times at each of 11 chosen angles separated by 2.5 arcmins. The nonius half 

images were allocated at random to the left and right screens. Vergence angle was 

determined by finding the nonius displacement angle which produced 50 % far 

responses using probit analysis (Finney, 1947). 

The rationale behind this method of vergence estimation is as follows: if the top 

line (seen in the right eye) appears to align with the central lower line (seen in the left 

eye) the physical displacement between the two lines indicates the degree of vergence 

from the plane of the screen (see figure l.l). This follows from Heringr s laws of visual 

direction, cited in the introduction (0.4). However, since the use of nonius lines has 

been brought into question recently, in chapter 5 this method was validated as applies to 

our experiments (5.2). 
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For the present chapter, the nonius method supplied an estimate of where, on 

average, the two eyes were looking during a given interval in time following the 

stimulus onset and offset. The estimate obtained by this method can be presumed to 

constitute an accurate indicator of the size of initial vergence. The only assumption 

made about the dynamics of vergence, was that during the fixation interval, vergence 

returned to its original value. This assumption seems reasonable, as viewers were 

instructed to keep the long ( 1 second) fixation stimulus fixated, and then attend to the 

nonius task. They were not instructed to attend the brief (230 msec) 1targetr 

random-dot stimulus. Subjects were asked after each session whether the fixation 

stimulus had appeared diplopic, and if they replied positively the session was repeated. 

The possibility remains, however, that, as trials were blocked in sessions of equal 

stimuli, the viewers, in some cases, developed a fixation disparity appropriate to the 

stimulus, rather than respond to each trial. In retrospect, the procedure may have been 

improved by monitoring pre-stimulus vergence using an additional nonius interval. No 

assumptions were made concerning the relation between this subjective measure of 

vergence and oculomotor vergence, which can be recorded objectively by tracking the 

horizontal position of the two eyes. However, for ease of discussion the estimate 

obtained will henceforth be referred to as vergence. 

Dichoptic nonius vernier acuity can be in the order of seconds of arc (McKee and 

Levi, 1987). Rather large (2.5 arcmin) vernier steps were used in the present 

experiment. Nevertheless, these provided sufficient sampling to produce acceptable 

psychometric functions in the sample of untrained observers. The stability of the results 

obtained by this method can be seen from the example illustrated in figure 1.1. 
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Figure 1. 1. a) Procedure on each trial. A 1 ooo ms fixation consisting of an outlined white square on a 

black screen was followed by a 230 ms stimulus which preceded a dichoptic nonius vernier (160 

ms). The viewel s task was to decide whether the top line was /en or right of the centra/lower 

line, the vergence angles implied by alignment with each of the three lines are shown. b) 

Example of' top left response frequency. The physical displacement of the top nonius line is 

shown. The displacement at 50% /en is a measure of vergence angle. (In the experiment the 

allocation of top and bottom nonius half-images to the Jen and right monitors was randomised, 

so the len-or·right distinction was translated into far-or·near). raner Mal/of et a/, 1996) 
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1.1.3 Results 
Figure 1. 2. Results of experiment 1. 1. All ten subjects verged in propottion to the distribution of dots 

between the two planes. Error bars show 95% confidence intervals. 
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All ten viewers responded to the disparity stimulus, although they were instructed 

to attend only the subsequent nonius task. The effect of dot distribution was found 

statistically significant in a repeated measures ANOV A taking data from the 9 subjects 

for whom results were available for all seven conditions (F(S,40)=3S.3, p<O.OOl). A 

linear trendline fitted to the means from the entire sample closely approximated model 

predictions of a linear function from -10 to + 10 arcmin. This linear trend was also 

significant (F(l ,8)=S6.0, p<O.OO l ). 

In seven subjects, the increase in vergence as dots were moved from the far to the 

near plane was monotonic. The remaining three (s3, sS and s6) had an anomalous 

response only when all the dots were in the far plane. Data from one subject (sS) were 

too noisy to be fitted with a psychometric function in the condition where 20% of dots 

were in the near plane, although she repeated this condition several times. Additionally, 

sS was the only observer who reported a difficulty in maintaining the fixation stimulus 

in single vision. In every case where diplopia was reported, she repeated the session 

until single vision was achieved. Due to the missing data point, her data have been 

removed from subsequent analyses. Inspection of this subjectns data nonetheless 

reveals a clear linear trend. 

Looking at the individual plots, error bars are generally consistent within subjects 

and across conditions, indicating that when the distribution of dots was intermediate 

between the planes, viewers were indeed adopting an intermediate vergence position 

rather than alternating between the two stimulus depths. In addition, the function of 

vergence with dot distribution is noticeably stepped only for s3 and s8, with the 

remainder of the subjects showing a linear increase in vergence as more dots are moved 

to the near plane. 
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1.1.4 Discussion 

As in Mallet's (1996) paper, the results confirm that initial vergence follows the 

weighted mean disparity of the two depth planes presented. However, like Mallet's 

results, the results presented here must be treated with caution. There is a potential 

artefact in measuring vergence using the nonius procedure. A number of recent studies 

have warned of the pitfalls of monitoring vergence state using dichoptic alignment ( eg. 

Shimono et al., 1998). The issue of the relation between nonius and objective vergence 

estimates is addressed in chapter 5. Additionally, as in Mallet's procedure, the nonius 

here was used to sample vergence only during a particular interval. Therefore, no 

conclusions can be drawn as to whether the results represent a final state of vergence in 

the different conditions, or merely different dynamics of the response depending on the 

stimulus variables. Further, as trials were blocked according to condition, it is possible 

that some viewers developed a fixation disparity appropriate to that condition and did 

not, in fact, change their vergence state in response to the stimulus on each trial. To 

prevent this eventuality, viewers were strictly directed to attend the fixation stimulus 

and report any diplopia at the end of each session (see 1.1.2 Procedure). Nevertheless, 

adaptation to the conditions of each session through fixation disparity remains feasible. 

Subsequent experiments reported in this thesis provide similar results with blocked and 

randomised trials (2.1 and 2.3}, but this is insufficient to preclude blocking effects in the 

present experiment. With hindsight, firmer conclusions might have been drawn had a 

randomised trial sequence been used. 

In this current experiment, the two planes were separated only by 25 ', a separation at 

which transparency can be perceived in the stimulus (Anderson, 1992). The contrast 

between the unimodal distribution of vergence responses (each response intermediate 
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between the two planes, not sometimes to the near plane and sometimes to the far 

plane), and the bimodal depth percept (both planes clearly visible, not an average 

between the two) supports the independence of the two on a global as well as a local 

scale. In confirmation of this conjecture, both the author and one other subject reported 

observing transparency in the stimuli. However, on debriefing, the remaining 

participants reported no such observation. As the participants were instructed only to 

fuse the fixation target, and attend to the nonius task, their lack of subtle observations 

regarding the unattended disparity stimulus is not surprising. It would be interesting to 

repeat the experiment either to test transparency alone, or, using a dual task, 

simultaneously estimate vergence. By varying the disparity, the upper and lower limits 

of both disparity averaging (for vergence) and perceived transparency could be 

compared, in order to establish their independence. 

This conclusion could not have been drawn from Mallot's study, because the large 

disparity between the two planes would be unlikely to give a percept of transparency. 

Locally, a disparity difference of 36', can give rise to a depth step. However, on a more 

global scale such a large separation results in diplopia, and the perception is of 'lacy 

depth' (Akerstrom and Todd, 1988). 

Mallot suggested that vergence is determined by pooling the responses of a large 

number of disparity tuned units over the stimulus area, using a population code for 

disparity. This model also accounts for his finding that, when the contrast of the dots 

rather than the number of dots in the two planes was varied, the intermediate vergence 

response was similarly weighted by contrast. 
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Mallot discussed a cross-correlation theory of disparity determination. The weight 

given to contrast in his mathematical model was consistent with this idea. He suggested 

that visual system performs a cross-correlation between the two eyes, and the vergence 

response is weighted by the strength of the two peak disparities in the cross-correlation 

profile. This is similar to saying that the cross-correlation profile is filtered to obtain a 

unimodal distribution. If so, it would be simpler to propose that vergence responds to 

the peak of the cross-correlation profile taken through coarse input filters which would 

blur the distinction between the two disparities (illustrated in figure 1.3). In fact, Arndt 

et al. ( 1995) showed, in a related paper, that the predictions from the two models (cross 

correlation and population coding) would be identical in the case of low frequency 

stimuli. One of the goals of Mallot's experiment was to distinguish between the two, 

however unless the random-dot stereogram were filtered at a high spatial frequency, it is 

not possible to exclude the possibility that a low frequency filter precedes 

cross-correlation. As another test of this hypothesis, Mallot's experiment could be 

repeated with increasing disparity between the two planes, to find out whether a bimodal 

response can be obtained, as would be predicted from a coarse pre-filter. 

The foregoing formulation of disparity processing for vergence removes the need to 

solve the correspondence problem. False matches, if they occur, will have a mean 

disparity value of zero and an even distribution across the disparity range, and therefore 

will not affect the output of an averaging mechanism. 

Such an averaging mechanism may be unique to transparent planes, or operate also 

for adjacent stimuli. There are two possible ways in which the distribution of dots 

between two planes could contribute to signal strength. The mean dot density for each 

disparity plane might add to signal strength, as with contrast, or the overall level of 
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activity at that disparity might simply be pooled over the entire area. In other words, the 

increased weighting may be due to increased dot density, or dot number. In the next 

experiment the aim was to distinguish between these different options . 
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Figure 1.3. The cross-correlation between left and right half-images of a 2-disparity stereogram, showing 

a bimodal distribution (black) which is transformed into a unimodal distribution (grey) by filtering the 

image through 2-unit wide filters. 

1.2 Disparity integration of overlapping planes 

1.2.1 Introduction 

In 1.1 Mallot' s (1995, 1997) finding, that initial vergence responds to the mean disparity 

of two transparent planes, weighted by the number of dots in each, was replicated. In 

that experiment, the density of dots in each plane covaried with the number of dots so 

either may have determined its weight in the disparity averaging process. In addition, 

the averaging may be unique to transparent planes, or operate also in the case of 

adjacent disparity regions. Experiment 1.1 was repeated with the two disparity planes . 

shifted one in relation to the other. The planes were shifted diagonally to obtain two 
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overlapping rectangles. Further, the region of overlap either remained transparent (as in 

1.1) or contained dots only from one or other of the two planes. If averaging occurs 

when the overlap region is not transparent, it might depend on the number of dots in 

each plane, or their density, which remained constant when one plane was occluded. 

1.2.2 Method 

a Design 

As in 1.1, the proportion of dots in the near and far planes was varied. However, this 

time only four conditions were presented; 20:80, 40:60, or vice versa. In addition, the 

region of overlap was either 'transparent', in which case all dots were visible, or 

occluded. There were two occlusion conditions. The occlusion cue was either 

'consistent' with an interpretation based on the assumption of two rectangular fields, or 

JinconsistentD with this interpretation. In effect the 'inconsistent' condition consisted 

of an L-shaped region in front of a neighbouring rectangular area. (As a result of 

occlusion, the actual distribution of dots between the two planes differed from their 

relative density, which remained constant in each of the three conditions). 

b Apparatus and stimuli 

The apparatus and stimuli were as in experiment 1.1, except that the two planes were 

shifted by 2° horizontally and 2° vertically one in relation to the other. 

c Subjects 

Only the author, AP, and one naive subject (MB) participated in this experiment. Both 

had uncorrected, normal vision. 

d Procedure 

The procedure used was identical to 1.1, but this time with separate blocks for the 

different occlusion conditions. 

54 



A. V. Popple Disparity Averaging Chapter 1 

1.2.3 Results 

The results from the two viewers were very different. MB diverged, but only when the 

dot density in the far plane was large. AP responded poorly to the uncrossed disparity, 

and maintained a large crossed fixation disparity throughout the experiment. 

Nevertheless, when AP's results were replotted as a function of actual dot distribution, a 

clear linear trend emerged. A similar linear trend can be found in MB' s data, taking 

only the 80:20 and 20:80 dot distributions. 
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Figure 1.4. Results of experiment 1. 2 · initial vergence is plotted by condition and also as a function of 

the dot distribution. The plots look similar, as the proportion of dots in the far plane is always 

slightly smaller in the 'consistent' occlusion condition (where dots in the far plane were deleted) 

than in the 'transparent' condition, and larger in the 'inconsistent' occlusion condition (where 

some of the dots in the near plane have been deleted). Note the different scales used for the 

two subjects, to best accommodate their results. 
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1.2.4 Discussion 

'ifhis experim~nt .is included in the thesis merely to illustrate the .authoros 111oti:vatiort ih 

proceeding to the experim_ents of the next chapteL In addition to the drawbacks.ofthe 

procedure{already discussed in ·1.1'.4), the data from the two subjects are verydiffetent. 

N0 conclusions can be drawn .in this section~ 

The results are, however, consistent with the spatial averaging ·Of disparities for initial. 

vergence, although in the case ofMB a sigmoid operator must be added to the averaging 

function, as Mall0t (T1995,1996)was forced ~to do for one of his subjects. rhis idea of 

spatial averaging, which emerged from this experiment led to ~the experiments ·of the 

n(!xt chapter, which deal :w:ith the size 0f the region over which such averaging takes 

;place. 
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Chapter 2 

The area of spatial averaging for initial horizontal 
disparity vergence 

2.0 Abstract 

In experiment 2.1, we investigated over what central area disparity in a random dot 

stereogram is averaged to stimulate an initial vergence response. Vergence was 

measured subjectively, with a forced choice dichoptic nonius vernier task following a 

brief (230 ms) stimulus presentation. Stimuli were random-dot stereograms showing a 

central circular disc of 12.5 arcmins crossed retinal disparity in front of, and occluding, 

a same-density fixation plane surround. (The author also completed the experiment in a 

12.5 arcmin uncrossed disparity condition, and as there were no major differences 

between the results in the two conditions, the volunteer subjects only carried out the 

crossed disparity condition). The size of the disc was varied. All ten observers 

responded to the brief stimulus. For six out of the seven observers shown discs smaller 

than 3° diameter, surround and target disparities were averaged together in this 

condition. In nine out of ten observers, the response saturated with larger discs. Initial 

horizontal vergence responds automatically to a cyclopean target presented in the centre 

of gaze by pooling disparities within a limited area. 

Further to this study, we conducted a series of experiments to determine the 

constraints on this pooling mechanism. Experiment 2.2 was concerned with the effect of 

varying dot size, which was found to be neglibible. However, the results of 2.1 were 

replicated in 2.2 using an improved method with randomised trials, and more data was 

gathered on the rising portion of the vergence-size function. In experiment 2.3, we 
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increased the stimulus disparity to 19 arcmin, and used a larger display to allow us to 

rule out any effects of peripheral stimulation on the asymptotic portion of the curve. 

2.1 The pooling region for initial vergence 

2.1.1 Introduction 

Because the two eyes are laterally displaced, the image of an object off the plane of 

fixation falls on slightly different, or disparate, points on the left and right retinas. The 

binocular disparities that arise from such situations can be used by the visual system, not 

only to reconstruct the relative depths of objects, but also to make astonishingly precise 

discriminations (Berry, 1948; Westheimer and McKee, 1978). We are best able to 

discriminate the binocular disparities of objects in, or near, the fixation plane (Ogle, 

1953; Blakemore, 1970; Smallman and MacLeod, 1997). Vergence eye movements 

serve to bring objects into the plane of fixation partly to bring this exquisite stereo 

sensitivity to bear. In this chapter we investigate what information is processed from 

the monocular retinal images to mediate the successful programming of vergence eye 

movements. We show that the information for initial horizontal disparity vergence for 

foveal targets is spatially integrated over a surprisingly large region (up to 6°). 

Vergence eye-movements are stimulated by changes in the disparity of the entire 

visual field (Erkelens and Collewijn, 1985b). However, in a real visual environment, 

surfaces at many depths are present. Humans are very flexible in their ability to redirect 

their vergence to different objects in cluttered displays (Erkelens and Collewijn, 1989). 

Some type of attentional control must presumably mediate the programming of such eye 

movements (Erkelens and Collewijn, 1991). Although Erkelens and Collewijn (1991) 

showed that the vergence system can be subject to attentional control, it seems likely 

that the system often operates efficiently without the need of such influence. 
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Given automatic processing, one possibility is that disparities are initially pooled 

over a large but discrete region. Vergence would respond as well to disparity in this 

region as it responds to disparity over the entire visual field, without the need for prior 

target selection. If disparities were averaged over an extended, but limited, central 

region of the visual field, no active attentional selection of a target need take place. In a 

natural environment we are more likely to require optimal vergence for a particular 

target than for the entire visual field. A large but discrete region of spatial averaging 

would also account for the differences between vergence and stereopsis, because initial 

vergence would be essentially blind to the fine grain relative local disparities that 

determine stereoacuity (Harris et al., 1997). Appropriate vergence without attention 

could help pick up salient objects rapidly. Vergence to disparities in the centre of gaze 

might be considered part of the orienting reflex. 

We tried to estimate the proposed spatial pooling region in the absence of 

monocular spatial integration. We accomplished this through the use of cyclopean 

presentation. Attention was directed to the task of aligning a nonius vernier, to provide 

a subjective measure of initial vergence to the briefly presented stereogram. The size of 

the central cyclopean target depicted in the stereogram was varied. If disparities are 

averaged over a limited area, the target size at which the vergence response asymptotes 

should give an indication of the size of this area. 

2.1.2 Method 

Mallot et al. ( 1996) described a subjective method for measuring elicited vergence 

following the brief presentation of a stereogram, and this was the method used in th~ 

previous chapter (1.1.2). We adapted this method for the purposes of the present study. 

We estimated vergence when the size of a central occluding disc in front of a fixation 

59 



A. V. Popple Disparity Averaging Chapter 2 

plane surround was varied. The stimuli were cyclopean random dot stereograms 

(Julesz, 1971 ). 

a Subjects 

Eight female and two male volunteer subjects participated in this experiment as 

observers. All had normal or corrected to normal vision, and were aged between 20 and 

40. All except two (HSS and A VP) were naive as to the purpose of the study. 

b Apparatus and Stimuli 

The apparatus was described m 1.1.2b. Stimuli were generated on a Cambridge 

Research Systems VSG graphics board driven by a Logix Systems Processor PC. They 

were displayed on two EIZO Flex-6500 21" flat monitors viewed through a modified 

Wheatstone stereoscope. Head movements were minimised using a chin and forehead 

rest. The stereoscope consisted of two 5 x 7 cm front silvered mirrors mounted at a 

right angle. The total viewing distance was approximately 90 cm (1 0 cm to the mirrors 

and a further 80 cm to each screen). The monitors were set at a resolution of 768 x 1024 

pixels on a screen 25.5 x 34 cm, subtending a total visual angle of about 16 x 21 

degrees, 1.25 arcmins per pixel. The fixation stimulus was a pixel-wide 25 x 25 arcmin 

square. Target stimuli were generated by placing 2000 2.5 x 2.5 arcmin non-adjacent 

random dots over the screen, then shifting a circular region on one of the two monitors 

and later filling the remaining crescent region to create a cyclopean Julesz stereogram of 

a central disc in front of a fixation plane surround. A nonius vernier stimulus was 

generated by displaying three 160 x 2.5 arcmin vertical bars 25 arcmin apart on one 

monitor and a single bar above them on the other monitor, at one of 21 possible 

horizontal locations corresponding to vergence angles separated by 2.5 arcmin. (All 

dimensions are given in Height x Width). 
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Figure 2.1. a) The setup of our mirror stereoscope. Min·ors were positioned at right angles, 10 cm from 

the viewer's face. The monitors were a further 80 cm away on either side, facing each other and 

parallel. The stereogram was seen at a distance of90 cm in front of the viewer, disparity causing the 

central disc to protrude as illustrated. b) The stimulus profile depicted - a central, protruding disc of 

variable size but constant (12.5 arcmin) disparity to the surround. 

c Design 

The size of a central disc, protruding from a fixation plane surround in a Julesz random 

dot stereogram, was varied up to 16 degrees of visual angle. The disparity of the disc 

was fixed at 12.5 arcmin crossed disparity, except for the author, who also completed a 

12.5 arcmin uncrossed disparity condition. The value of 12.5 arcmin was selected 

arbitrarily (but see 1.1.2). The (unpaid) volunteer subjects completed only the crossed 

disparity condition, as data from the author (AP) revealed no striking differences 

between the crossed and uncrossed conditions (see figure 2.2). There was a no-target 

(background-only) control, to provide a baseline for fixation disparity. This is shown 

in the results as a zero-diameter disc condition. Elicited vergence was measured 

subjectively following a brief stimulus interval. 

d Procedure 

The procedure was as delineated in 1.1.2d. Eighty-eight trials were presented in a block 

for each central circle size. As discussed in 1.1.2d, the blocking of the trials in this way 
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introduces the potential for adaptation to the stimulus by way of a fixation disparity. As 

in the previous experiments, the observers were instructed to direct their fixation 

towards the attended fixation target. Nevertheless, as trials were blocked in this way, 

the results may reflect such adaptation rather than vergence change. The vergence 

change in each trial was not directly measured, only inferred from the estimated 

vergence state at the end of each trial. In experiment 2.3, the results of 2.1 are, however, 

closely replicated using a randomised trial sequence. 

Every trial consisted of a 1 second fixation while the random dots were calculated 

off-line followed by a 230 ms stimulus that was, in turn, replaced immediately by a 160 

ms dichoptic nonius vernier target. The nonius stimulus consisted of a single vertical 

bar in one eye above three vertical bars in the other eye. Subjects were instructed to 

attend to the fixation target, and following the briefly flashed stereogram to respond to 

the nonius vernier target with a key-press left or right, depending on whether the top line 

was left or right of the central lower line. The vernier target was presented randomly 

eight times at each of 11 chosen angles separated by 2.5 arcmins. The nonius half 

images were allocated at random to the left and right screens. Vergence angle was 

determined by finding that nonius displacement angle which produced 50 % far 

responses using probit analysis (Finney, 1947). 

The rationale behind this method of vergence estimation is as follows: if the top 

line (seen in the right eye) appears to align with the central lower line (seen in the left 

eye) the physical displacement between the two lines indicates the degree of vergence 

from the plane of the screen (see figure 1.1 ). 
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The nonius method supplied an estimate of where the two eyes were looking at a 

given point in time following the stimulus onset and offset. The estimate obtained by 

this method can be presumed to constitute an accurate indicator of the size of initial 

vergence. No assumptions were made about the dynamics of vergence, and whether the 

response was sustained or transient. Because of the blocking procedure (like trials were 

grouped together) two kinds of adaptation to the stimulus may have occured. The 

vergence response may have been conditioned, and repeated without further analysis of 

the stimulus on each given trial. The fixation disparity may have become adapted to the 

stimulus, and not returned to baseline on subsequent fixation intervals. Further 

discussion of these drawbacks is in the introduction to Chapter 1. However, similar 

results were obtained later in this chapter (experiment 2.3) where the order of trials was 

randomised and not blocked. 

No assumptions were made concerning the relation between this subjective 

measure of vergence and oculomotor vergence, which can be recorded objectively by 

tracking the horizontal position of the two eyes. However, for ease of discussion the 

estimate obtained will henceforth be referred to as vergence. This proposal was later 

corroborated by an empirical comparison between objectively measured vergence, and 

the nonius procedure used in this study (experiment 5.2). 

Although dichoptic nonius vernier acuity can be in the order of seconds of arc 

(McKee and Levi, 1987) and we used rather large vernier steps (2.5 arcmin) 

nevertheless these provided sufficient sampling to produce acceptable psychometric 

functions. One possible explanation for the poor vernier acuity we obtained is the use of 

naive subjects rather than trained psychophysical observers. Another reason is that any 

vergence eye-movement made in response to the stimulus was probably still ongoing 
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during the nonius intervaL (This ·is corifi.rmed by the finall experiment ofthe thesis~ .5.2; 

where eye-'ttacket recordings during the nonius intervai showed' vt;rgence chan~e). 

klthough when asked, no sUbjects reported' that the non! us llnes w:ere seen in apparent 

motion, any residual vergence may h~ve interfered with 1ilie .acuity of alignment. 

Nevertheless, the stability of the ~results obtainedi by ~this method can be seen from .the 

example iUusttated in figure 1'.2b; 
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2.1.3 Results 
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Figure 2.2. Elicited vergence with increasing target size for all ten subjects. Error bars show 95% 

confidence intervals. The upper six graphs provide evidence for disparity averaging. All except 

RG show saturation beyond a target size of about 3-5 degrees. The no-disc fv:ation-disparity 

control is plotted on x=O. 

Although subjects were not instructed to attend to a particular region of the random-dot 

stimulus, all ten subjects clearly verged to the disc that was presented in it. Inspection 

of figure 2.2 shows that this response asymptoted near the target disparity for discs 
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larger than about 3-5 degrees, with the exception ofRG. Disparity averaging is evident 

in the data of six subjects (MC, AP, KP, CM, FN, and RG) who were tested on targets 

smaller than 4 degrees. The vergence response to these small discs is intermediate 

between the response in the baseline (no disc) condition, and the response to a large (16 

degree) disc. This suggests that the disparities of the disc and its surround might be 

averaged. The region over which vergence reaches an asymptote potentially reveals the 

spatial limits of this averaging, as the response no longer increases when more positive 

disparities are added outside this region. HSS responded equally to small and large 

targets, and this response was not significantly different from zero but slightly higher 

than his no-target control vergence. 

Vergence to small targets (<5°) was intermediate between the cyclopean target and 

surround disparities. We wanted to determine whether this may have been due to 

subjects verging to the target on some trials, but to the surround on other trials. Had this 

been the case, the variability of responses to the dichoptic nonius would be increased in 

comparison with that for the no-target condition (plotted as target size=0°), or for larger 

disc sizes, where presumable vergence is directed accurately to the target. However, 

confidence intervals on the vergence estimate for small targets (<5°) appear no larger 

than those for the other cases. This indicates that disparity averaging rather than target 

selection is responsible for the depth-averaged response we found. 

To specify the suggested averaging of disparities, the following two mathematical 

models were fitted to the data. a) A cortical magnification model, in which the lesser 

weight given to peripheral disparities is accounted for by their diminished cortical 

representation, and b) a gaussian model which pools disparities within a central 

integration area (for averaging). The no-target condition was included in the data for the 
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model fits, to provide an estimate of fixation disparity (as this was found, on average, to 

be non-zero). However, all the models were forced to go through this point, so the 

no-target condition was effectively only used to estimate a constant term in the 

equations. 

a) Fovea} magnification means that the centre of the visual field is neurally 

over-represented or informationally enlarged when compared with the periphery. 

Cortical magnification as a function of retinal eccentricity is conventionally 

modelled by the following formula: 

Me is the cortical magnification factor, E is the retinal eccentricity, Mr is a fovea} 

magnification constant and E2 is the half-width or the angle at which magnification is 

halved (Wilson et al., 1990). This function was used to derive a model which integrates 

disparities over the entire visual field (equation 1.2). 

a(r) = ao + Cm[ln(1 + r/ E2) + 
1 

-1]1 (1.2) 
1 + r/ £2 

Where is the vergence response as a function ofr, the radius ofthe target disc. a 

0 is a constant of integration that allows for fixation disparity, and Cm is a magnification 

constant. 

This function was fitted to the data as a non-linear regression using SPSS for 

Windows (Release 6, SPSS Inc.). The value of U 0 was estimated from the no-target 

control condition data, which was therefore included in the analysis. E2 was estimated 

visually from the data at 5 arcmin. The only comparable value from previous research is 
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E2 for stereoacuity, estimated at about 20 arcmin (McKee et al., 1990). The estimated 

values of Cm and 0.0 from the regression were 3.54 and 2.5 arcmin respectively. This 

model accounted for 49.9% of the variance in the pooled data. However, because 

cortical magnification falls exponentially with eccentricity, the model could never 

asymptote, merely slope more gently as target size increases. Thus, although the 

'knee-point' in the data can be modelled by this kind of function, the saturation obtained 

prior to full-field stimulation cannot. 

b) Alternatively, initial vergence might integrate disparities over a limited central 

area. To model this possibility, a cumulative normal centering on zero target 

size was fitted to the pooled data. 

As before, 0.0 is a constant added to allow for fixation disparity, and Cm is a 

magnification constant. cr is the standard deviation of the distribution. Again, data from 

the no-target control were used to estimate the fixation disparity, 0.0 which was valued 

at 1.68 arcmin. Cm was estimated by regression at 21 arcmin. cr was estimated at 0.84 

degrees. From sigma, the radius at which 95% of the response is accounted for can be 

estimated to be 1.39, which is equivalent to a disc diameter of about 2.8 degrees. (At 5 

degrees, 99.9% ofvergence is accounted for). 
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Figure 2.3. Vergence pooled across all ten subjects. The model is a cumulative normal predictedfi·om a 

Gaussian pooling region, and accounts for more than half the variance across subjects. 

This model accounted for 50.4% of the variance in the pooled data. Figure 2.3 

shows that model vergence saturated at a vergence of 12.23 arcmin (to 2 d. p.), close to 

target vergence ( 12.5 arcmin). This would be the mean of individual responses, 

showing that (regardless of fixation disparity) the disc, when sufficiently large, was 

verged to, on average, with considerable accuracy, even after only a brief (230 msec) 

interval. 

Looking at the asymptotic portion of the curves, there appears to be a slight fall in 

vergence as disc diameter increased from S-12 degrees for five subjects with more than 

two relevant data points (MC, AH, A VP, CM and KF in figure 2.2). Three more 

subjects {KP, FN and HSS) had some fall in vergence beyond S0
• Only one subject (RG) 

had vergence continuing to rise with target size for targets larger than S0
• 

However, the main finding remains that initial vergence increased with the 

increasing size of a cyclopean target, but disparate regions more eccentric than the 

central 3-5 degrees of gaze provided a negligible contribution to initial vergence. Due 
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to the sparsity of data points inside this area, and the small number of subjects who were 

tested on these disc sizes, the estimate obtained must be treated as a first guess to be 

qualified by later results. To anticipa~ the value of sigma is closely replicated in 2.3, 

where more appropriate data was gathered. 

2.1. 4 Discussion 

The results show that the automatic initial vergence response to a brief stimulus pools 

disparities over a limited central region. Disparities within this area are averaged 

despite the presence of a smaller central cyclopean target, ie. there is no evidence of 

trial-by-trial target selection favouring either the disc or the surround. Instead, vergence 

can be modelled by taking a gaussian weighted mean of the two disparities within the 

pooling region. The weighting function fitted to the data had a standard deviation of 

about a degree, such that 95% of vergence is accounted for by a target 3 degrees wide. 

It should be noted that, in the present experiment, there was insufficient data on the 

rising portion of the function to be confident of these estimates. These values are 

replicated in experiment 2.3, where more care was taken to test within the appropriate 

stimulus domain and trial order was randomised. 

This finding has recently beeR replicated also for dynamic vergence stimuli (Fang 

et al., 1998). A drawback of both that study and the present experiment is that it was 

always the central figure, rather than the surround, which was given a non-zero 

disparity. To control for a saturation of vergence velocity (despite the influence of 

eccentric disparities) the result must be repeated also for a disparity annulus. In chapter 

4, the effect of uncorrelated dots (modelled as multiple disparities) will be shown 

negligible at an eccentricity of 4 degrees. Thus, for this purpose of the thesis, the 

necessary control is provided. 
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Others have already demonstrated the ability to make fast shifts in vergence 

between small, attended targets in different regions of the display (Erkelens and 

Collewijn, 1991; Collewijn et al., 1995). These shifts occurred following instructions to 

attend voluntarily to specific fovea! or parafoveal targets. However, to reiterate, in our 

procedure no attention to the disparity stimulus was required. Instead, subjects were 

instructed only to attend the prior fixation and complete the subsequent dichoptic nonius 

alignment task. 

Simply weighting disparities across the visual field by cortical magnification to 

derive a signal to drive vergence fails to account for the saturation of the data at 5°-10°. 

It is well know that sensitivity to higher spatial frequencies also declines in the 

periphery (c. f. Wilson et al., 1990). The saturation of vergence with increasing central 

target size could be accounted for by this fact, because of the greater energy of the small 

random dots in our stimuli at high spatial frequencies. Further experiments with 

low-pass filtered stimuli would be needed to test this possibility. Nevertheless, on the 

basis of present findings, a limited pooling region as exemplified by the Gaussian model 

offers the best description of the data. 

What, if any, physiological mechanism might account for the proposed averaging 

of neighbouring disparities over a central region? Short-latency disparity vergence has 

been linked directly to the properties of tuned disparity-sensitive cells. Busettini et al. 

(1996) showed that short-latency vergence breaks down for disparities larger than about 

1°, the limit placed on the disparity sensitivity of tuned cells (Poggio and Tal bot, 1981 ). 

Indeed, Poggio and Talbot (1981) outlined a crude way in which the output of 'near' 

detectors might be subtracted from 'far' detectors to determine the direction of 

vergence, while the tuned receptors are pooled to calculate the amplitude of 
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eye-movement required. However, our averaging region is far larger than the pooling 

region envisaged by Poggio and Tal bot in 1981, which was presumably based on 

receptive fields found in early visual areas. 

There is evidence for large integration regions in the control of other oculomotor 

functions. Analogies have often been drawn between motion parallax and binocular 

parallax (e.g. Rogers and Graham, 1982). As well as leading to a sensation of depth, 

motion parallax and binocular parallax also stimulate oculomotor responses. 

Optokinetic following, which is thought to stabilise gaze during motion, like vergence, 

responds well to full field stimulation. However, Miles et al. ( 1986) found that the 

relative motion of a 20-40 degree central disc in a random dot stimulus produced more 

gain in monkeys' short-latency ocular following than absolute full-field motion. They 

argue that maximal response to a whole moving field would be less ecologically 

beneficial in the animal's attempts to stabilise the retinal image during motion than 

tracking a target of limited size. The same argument can be applied to disparity 

vergence. An extended central disparity region would offer the best target to correct for 

vergence error following saccades, by allowing observers to focus rapidly on the object 

to which they have turned their gaze. 

The analogy between initial disparity vergence and short-latency ocular tracking is 

given empirical support by the finding that both responses are enhanced following a 

saccade (Busettini et al., 1996; Kawano and Miles, 1986). The tenuous but suggestive 

downturn in vergence for larger disc sizes (>8°) could be indicative of cyclopean lateral 

inhibition. That is, the data hints at a centre-surround receptive field model for vergence 

as has been successful for motion tracking (Tanaka et al., 1986). 
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Cyclopean receptive fields have been proposed to account for lateral inhibition in 

depth perception from stereopsis (Anstis et al., 1978; Lunn and Morgan, 1995). The size 

of receptive fields processing disparity gratings can be estimated at 1°-2° of visual angle, 

from the modulation transfer function to such stimuli (Rogers and Graham, 1982; Tyler, 

1983). It may be noted that this estimate, half of a single sine-wave cycle at 0.25-0.5 

cycles per degree, is also confirmed in chapter 3. There may be differences between 

vergence and stereopsis at the input end (size of receptive fields) as well as at the output 

end (stereoacuity as opposed to limited oculomotor muscle control). The spatial 

frequency functions for vergence and depth sensitivity will be compared directly in 

chapter 3. 

Is the function of initial vergence simply to bring the images from the left and right 

eyes into approximate correspondence, to facilitate the more refined mechanisms of 

stereopsis? Absolute disparity and vergence are believed to contribute little to depth 

perception (Erkelens and Collewijn, 1985a), which is based almost exclusively on 

relative disparity (Collewijn and Erkelens, 1990). Relative disparity is fixed regardless 

of vergence angle (Collewijn et al., 1991; V an Ee and Erkelens, 1996). However, 

relative horizontal disparities alone are insufficient to determine the thickness of objects 

in our visual environment. They must first be scaled according to viewing distance 

(Kaufman, 1974). 

In the absence of monocular indicators of distance (such as texture gradients), only 

two sources of information are available to scale relative horizontal disparities. These 

are vergence, which presumably reflects the mean absolute horizontal disparity of a 

surface, and vertical disparity, which varies over a surface because of the differential 

perspective of the two eyes. Foley (1980) suggested that vergence angle might be used 
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to obtain an estimate of viewing distance to scale relative disparities. Indeed, the 

association between vergence angle and perceived size was fust noted by Wheatstone 

(1852). Vertical disparity information alone, however, is also, in principle, sufficient to 

recover viewing distance (Mayhew and Longuet-Higgins, 1982). 

How are these two sources of information combined to scale relative disparities? 

Bradshaw et al. ( 1996) compared the influence of vergence and vertical disparity on 

disparity scaling for different target sizes. They found that vergence alone led to 

effective scaling for a target 9° of visual angle, whereas vertical disparity only affected 

the scaling oflarger targets. Vertical disparity is pooled over a region of 14° (Adams et 

al., 1996) to 20° (Kaneko and Howard, 1995), perhaps because the geometry of 

differential perspective dictates that only large targets give rise to appreciable amounts 

of vertical disparity. It makes sense that vergence, which influences depth judgments 

for relatively small targets, should use horizontal disparities pooled over a smaller area. 

However, whether the dependence of vergence on target size found in our results 

extends to longer inspection times is something we still need to investigate. 

The main contribution of this chapter has been to show that the default initial 

vergence response does not simply follow the disparity of the entire visual field, or of a 

cyclopean target presented in that field. Neither is it determined completely by 

disparities at the fovea, although 95% of the response is accounted for by an eccentricity 

of approximately 1.5 degrees. In conclusion, it appears that more initial vergence is 

elicited for a target about 3° of visual angle than for smaller targets. Most everyday 

objects we encounter in our proximal environment subtend 3° or more. Binocular vision 

is mostly used for tasks in the near environment (Sheedy et al., 1986). The mechanism 

discussed here might be used to compensate for vergence error following a saccade. It 
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complements the input of vertical disparity in estimating viewing distance to resolve 

stereoscopic depth by operating best for smaller targets. 

2.2 Disparity and display size have little effect on the disparity 
averaging area for initial vergence 

2.2.1 Introduction 

It has been suggested that the area over which disparities are averaged depends on the 

disparity presented. This would account for the difference between the integration 

regions for stereoacuity, controlling threshold disparities of under 1 arcmin ( 1.5°, 

Rogers and Graham, 1982) and the averaging region we found for vergence to a 

disparity of 12 arcmin (3°, experiment 2.1). Indeed, a preference for lower corrugation 

frequencies of a disparity grating is found at supra-threshold disparities (Iounnou et al., 

1993; cited in Howard and Rogers, 1995). Ifthis were the case, there would be no need 

to postulate different mechanisms controlling the two responses. 

Another difference between disparity processing for vergence and depth perception 

is the sensitivity of the latter only to relative disparity, which might be the result of 

lateral interactions between disparities. Although a vergence response is obtained even 

in the absence of relative disparity, it is possible that the response could be enhanced by 

lateral interactions, as suggested in the discussion section 2.1.4. 

In experiment 2.1, we found that horizontal disparities were averaged over an area 

of 6° to determine initial vergence, much smaller than the area over which vertical 

disparities are pooled in the global computation of viewing distance (e.g. Kaneko and 

Howard, 1996). One possible reason for this discrepancy was that we had used only ~ 

small disparity of 12 arcmin, a disparity which under our experimental conditions was 

within Panum's area so no vergence eye-movement was required for fusion. Another 
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possibility was that we were unable to pick up any slow increase in vergence due to 

cortical magnification beyond 6°, because of the limits of our display. Additionally, in 

the previous section we suggested there may be a downturn beyond 8° but there was 

insufficient data in this range to test the suggestion. To examine these possibilities in 

further detail, we increased the size and disparity of the stimuli. 

2.2.2 Method 

a Subjects 

Four female adult observers with normal or corrected to normal vision participated in 

this extension of the first study. Data from a fifth (male) observer had to be discarded 

because his inconsistent results indicated that he was he was unable to follow the 

instructions, as indeed he reported verbally. All viewers except AP were naive about 

the exact aims of the study, although MB and CM had participated in 2.1 and been 

debriefed. 

b Apparatus and stimuli 

The apparatus was identical to experiment 2.2. The mirrors were positioned directly in 

front of the viewer's nose (an estimated viewing distance of 5-7 cm) to allow a 

horizontal binocular viewing angle of about 45°-60° (assuming an interocular separation 

of approximately 5.8-6 cm, as measured by the author in her (unpublished) 

undergraduate dissertation study in a sample of 2 male and 8 female observers including 

herself). The monitors were positioned at a total viewing distance of 22 cm, 17 cm 

from the mirrors. The dots were now 1 pixel wide, at this viewing distance an angle of 

4. 7 arcmin. Again, 2000 dots were distributed over the screen. But this time the central 

disc was given an arbitrary fixed disparity of 4 pixels, or 19 arcmin. 
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c Design 

As in 2.1, the diameter of a central crossed-disparity disc was varied. The dependent 

variable was the initial vergence response. For AP, the diameter of the disc was varied 

in multiples of 50 pixels (3.9°). The remaining viewers responded to multiples of 100 

pixels (7.8° approx.). For all observers, a zero-diameter condition was used as a 

measure of fixation disparity. 

d Procedure 

As before, trials were blocked in same-diameter sessions. See 1.1.2 d for procedure. 

The method of constant stimuli was used to determine the position of the nonius lines, 

and left response frequencies were fitted with a cumulative normal to find the position 

of dichoptic alignment and hence vergence. 

1.1.3 Results 

Again, observers responded to the presence of a crossed-disparity disc (see figure 2.5). 

For AP and MB, the response to a disc smaller than 16° was intermediate between the 

response when no disc was present and the response to larger discs. LG and CM simply 

converged steadily when the disc was present, suggesting any averaging had taken place 

within the smallest (8°) disc diameter. Beyond the knee-point in the data, there was no 

hint of any further steady increase in vergence, as might be expected from cortical 

magnification, or any clear downturn, as would be predicted from lateral interaction. 

Because of the small number of subjects, no statistical tests were carried out on these 

data. 

Some further details are worth noting in this results section. The author AP, who 

features as a subject in all the experiments of the thesis, normally has a steady 

convergent fixation disparity of approximately 10 arcmin. Here, however, because of 
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the short viewing distance, this is replaced by a small (1 arcmin but not significant) 

divergent fixation disparity. Such discrepancies between near-viewing and far-viewing 

fixation disparities are typical of the type-1 FVFD (forced-vergence fixation disparity; 

Ogle, 1950) curve recorded for AP in experiment 5.2. Another observation is that 

despite the brief (230 msec) stimulus interval, one subject (LG) was able to complete 

the 19 arcmin vergence movement demanded by the stimulus disparity, unless this was 

an artefact of the blocking procedure, and this subject in fact simply developed a 

convergent fixation disparity during the course of the experiment. 
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0 +------+-----+------
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lg 
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15 15 

10 10 
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Figure 2.4. Vergence (arcmin) is plotted against target size (degrees) for a 19 arcmin crossed disparity 

disc protruding from a fvcation plane surround. Vergence saturated well before the maximum 

size of over 50 degrees was reached. For AP and MB the point of saturation appears to be 

between 10 and 20 degrees, whereas both LG and CM verged no further to targets beyond 10 

degrees in diameter, LG obtaining near target vergence at this size. Note the direction of 

fvcation disparity in AP is reversed for the shorter viewing distance used in this study. 
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2.2.4 Discussion 

From these results, there is no consistent indication of a continued increase in vergence 

beyond the knee-point in the data, as would be predicted if the results of experiment 2.1 

were due to cortical magnification rather than a limited averaging region. Neither is 

there any sign of a downturn, which would be expected if lateral interactions in the 

disparity domain were involved in the processing of vergence. 

There is insufficient data here to prove or disprove the suggestion of a fixed 5° 

region of disparity integration for initial vergence. However, the functions of vergence 

against target size for AP appears to saturate at a slightly larger diameter here than in 

2.1 (compare figures 2.4 and 2.2). A number of reasons for this difference can be 

suggested. The pooling region observed in 2.1 may be specific to small disparities, with 

larger scale pooling operating for greater disparities. There may be integration regions 

of different sizes depending on absolute vergence angle, or viewing distance. The larger 

stimulus dots in the present experiment will have stimulated lower spatial-frequency 

tuned mechanisms, which may be averaged over larger regions in the determination of 

vergence. 

Two kinds of pooling are possible - disparity averaging and disparity integration. 

Disparity integration (without dividing by the area) would lead to an increase in 

response when the area of a stimulus (without a surround) is simply increased. Such 

disparity integration is negligible for horizontal vergence (Fang et al., 1998). 

Averaging, however, where the integral is subsequently divided by the area, does occur 

when horizontal disparities are spatially varied, i.e. the size of a target area is varied in 

the presence of a disparity surround (also Fang, et al., 1998). This second kind of 

spatial integration or pooling, which is really averaging, is the one intended here. 
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It is the first suggestion, of a size-disparity correlation in the cyclopean domain, 

which is most consistent with the model we were beginning to develop in 2.1. This was 

based on Marr and Poggio 's ( 1979) theory, but replacing luminance spatial frequency 

with the spatial frequency of disparities. The third suggestion, however, is compatible 

with an explanation based on luminance spatial frequency distributions. Therefore, in 

the next section we examined the effect of dot size alone. 

2.3 Dot size has little effect on the disparity averaging area for initial 
vergence 

2.3.1 Introduction 

Experiment 2.1 was repeated with different sizes of stimulus dots. Increasing the size of 

the dots correspondingly lowers the peak spatial frequency (Morgan and Fable, 1992). 

Following the results of 2.1, data points were chosen on a logarithmic scale so the rising 

portion of the curve could be determined more effectively. The method in 2.1 was 

improved by randomly interleaving trials with different target disc diameters (see 2.1.2 

for a discussion of the drawbacks of blocking by condition). 

2.3.2 Method 

a Subjects 

Five observers, including AP, participated in this study. All had normal or corrected to 

normal vision. CM and KP had been debriefed after experiment 2.1. 

b Apparatus and stimuli 

The apparatus and stimuli were similar to those used in 2.1. However, although the 

EIZO Flex-6500 monochrome monitors were still used in this experiment, the VSG card 

was now mounted on an Ambra 486 PC. Additionally, large (25 x 20.5 cm) mirrors 

were used to permit a wider viewing angle. The viewing distance was 65 cm. At this 
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distance, each pixel subtended 1. 72 arc min. As the number of dots was not changed, 

mean luminance increased with dot size. 

c Design 

Once more, the diameter of a central 6 pixel crossed-disparity disc was varied. The 

disparity of the disc was again arbitrary, here set to 10.3 arc min. There was a no-target 

control. The disc sizes presented were chosen from a set which increased on a 

logarithmic scale, from 0.6°, 1.1 °, 2.3°, 4.6° to 9.2°. The size of the dots from which the 

stereogram was composed also formed a set that increased logarithmically. The dots 

were 1. 72 arcmin, 3.44 arcmin or 6.88 arcmin squares. Initial vergence was estimated 

in each condition of the two variables. 

d Procedure 

The nonius method was used to estimate vergence, as before. However, here the nonius 

stimulus consisted simply of two dichoptic lines. A staircase procedure was introduced 

to better fit the nonius offset to perceived alignment, but as before the response 

frequencies at each offset were analysed using Probit to obtain the vergence estimate. 

An additional difference in the procedure was that the trials were blocked into only three 

sessions, by dot size. During each session, the presentation order of trials in the 

different diameters was fully randomised, with separate nonius staircases operating 

under the different conditions. These measures were taken so that the number of trials 

taken for each data point could be reduced to 50, and more data could be gathered from 

each subject in a shorter time. 

2.3.3 Results 

The pattern of results in 2.1 was replicated despite the change in procedure (compare 

figures 2.2 and 2.5). All five observers showed intermediate vergence to targets smaller 
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than about 3°, suggesting an averaging of target and ground disparities. The data from 

new subjects EM and NC were noisy, and, like RG in experiment 2.1, show no clear 

saturation as disc size increases. Only CM's response varied consistently with dot size. 
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Figure 2.5. Vergence (arcmin) is plotted against target size (degrees) for three different dot sizes: 2 

arcmin (diamonds), 4 arcmin (squares) and 8 arcmin (triangles). Across observers, dot size 

makes no consistent difference to thefonction ofvergence with target size. Target disparity was 

always 10.3 arcmin. Note different axes for EM because of a large fu:ation disparity. 

As in 2.1.3, the data were fitted with a cumulative normal, this time using probit 

fitted to proportions of full response. Because the purpose of this modelling was to 

estimate the width of the pooling region, only data from AP, CM and KP were included 
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as the functions of EM and NC did not asymptote. This time, cr obtained was 0.86 

(compared with 0.84 in experiment 2.1 ), giving a 95% pooling diameter of 2.84, and a 

99.9% region of 5.16 degree diameter. (For comparison with experiment 2.1, see 

figures 2.3 and 2.6). 
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Figure 2.6. Means for AP, CM and KP were averaged across dot sizes. The grand mean across these 

three observers was fitted with a cumulative normal, as in figure 2. 3. 

2.3. 4 Discussion 

The aim of this experiment was to determine the effect of dot size. Across subjects, we 

found no difference in saturation point (or any other aspect of the vergence: size 

function) between the different dot sizes. If anything, one subject (CM) had a lower 

saturation point for the larger dots. 

The possibility remains that the input filters which control initial vergence are 

larger than any of the dot sizes we used, as Morgan and Fahle ( 1992) have argued for 

motion. This is consistent with the short latencies of initial vergence (50-100 msec, 
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Masson et ali., li997). It is compatible with a response driven by the .early stages of 

. v.isual processing and' controlled .by coa.rse, 'transient' spatial frequency channels 

(CampbeJ:l and Robson,. 1968). 

The main .conclusion from this section :is that ·the J degree pooling region suggested 

by the modelling in 2.1 was a genuine parameter ofdisparity processing, not an• artefact 

of the sparse sampling for srhaH' disparity discs in ,that experiment,. nor of,the blocking 

procedure .employed. However, ,three of the subjects tested so far (EM and NC from 

22, andi 1RG ,from 2.1) showed. no ver:gence s(ltl1ration. in the disc-size--domain tested. 

Therefore, the area of disparity averaging appears, to be subject to ;individual: variation 

andi should be examined in a.larger sample ·ofobservers' 
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Chapter 3 

Stereoacuity - spatial integration and the effects of 
vergence 

3.0 Abstract 

Experiment 3.1 confirms the effects of disparity modulation scale on stereoacuity 

thresholds, described by Tyler ( 1975), Rogers and Graham ( 1982, 1985), and others. 

Using a disc target, as in chapter 2, stereoacuity was optimal at a target diameter of 1-3° 

in a sample of 6 observers. Although there was considerable variation between 

individuals, this was much smaller than the integration region we found for initial 

vergence. Additionally, stereoacuity, unlike vergence, declined as the disc size was 

increased beyond the optimal diameter. 

Previously (Chapter 2; Popple et al., 1998) we found, using random-dot 

stereograms, that initial vergence increases with the size of a cyclopean disc. A 

corresponding improvement in stereoacuity within the disc was predicted, because 

disparities in the disc would be brought closer to the plane of current fixation. 

In experiment 3.2, we looked at the effect of the spatial extent of a briefly presented 

(~500 msec) cyclopean depth pedestal on stereoacuity thresholds. Observers were 

required to judge the depth of a small 1. 7° central disc relative to a larger surrounding 

disc in a random-pattern stereogram. The larger disc was set, initially, at a pedestal 

disparity of ±24' against a fixation-plane surround. The size of the larger disc was 

varied from 2.6°-8.0°. As predicted, stereoacuity thresholds fell significantly with 

increasing pedestal disc size. Next, the disparity of the pedestal disc was varied. When 

pedestal disparity was reduced to ±2.4D (experiment 3.3), a disparity too small to 
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demand vergence, the size effect disappeared except when the pedestal boundary was 

within 30' ofthe test disc boundary. This shows the effect was largely due to vergence 

and not cyclopean integration alone. 

However, the effect of pedestal size was found to persist with stimuli too brief to 

permit vergence (:~ 100 msec) although at such durations the depth discrimination 

thresholds were large and outside the stereoacuity range. 

3.1 The effect of random-dot disc diameter on stereoacuity threshold 

3.1.1 Introduction 

Contrast sensitivity threshold, the minimum amount of luminance contrast required to 

detect a stimulus, varies with the spatial frequency of contrast modulation (ref.). 

Similarly, stereoacuity threshold, the minimum disparity difference required to detect a 

depth step (Fahle et al., 1994), varies with the spatial frequency of disparity modulation. 

Tyler (1975) showed that lowest thresholds of under 0.3 arcmin (20 arcsec) were 

obtained for modulations of about 0.4 c/deg in the depth of a vertical line, with 

thresholds increasing for both lower and higher frequencies. Rogers and Graham ( 1982) 

replicated this fmding using cyclopean, random-dot disparity gratings. They found an 

optimal spatial frequency of disparity modulation in the region of 0.2-0.5 c/deg. Later 

this result was confirmed using difference-of-gaussians disparity profiles where the 

number of cycles visible did not vary between spatial frequencies (Rogers and Graham, 

1985). In chapter 2 we argued that our fmding of vergence saturation at a cyclopean 

disc of diameter 6° indicated that disparities were integrated over a larger area than for 

stereopsis. However, to make a more direct comparison, stereoacuity would have to be 

measured using a similarly broad-band stimulus. Although the fundamental spatial 
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frequency of a square disparity profile decreases as the breadth of the square is 

increased, a range of spatial frequencies of depth modulation is present in the stimulus. 

In the present experiment, we measured stereoacuity thresholds directly in such a 

broad-band disparity stimulus. As in experiment 2.1, the size of a cyclopean disc was 

varied. From the aforementioned studies, we predicted a minimum disparity threshold 

at a disc diameter of 1-2.5°, which is half of one cycle at 0.2-0.5 c/deg. 

3.1.2 Method 

a Subjects 

Three male and two female adult observers aged 25-35, and the 6-year-old authorDs son 

(UP) participated in the experiment. All had normal or corrected to normal visual 

acuity, and stereoacuity as demonstrated by the results. Only AP had precise knowledge 

of the purpose of the study, although the remaining subjects except for UP and MO were 

experienced psychophysical observers and vision scientists who were aware of the 

theory involved. 

b Apparatus and stimuli 

As before, stimuli were generated on an Ambra 486 PC using a Cambridge Research 

VSG graphics card. They were displayed on two EIZO Flex-6500 28 x 36 cm 

monochrome monitors. The monitors were placed at a viewing distance of 

approximately 160 cm. To form a modified Wheatstone stereoscope, two large (25 x 

20.5 cm) mirrors fixed at right angles to each other were positioned 5 cm directly in 

front of the viewer, with the monitors 150 cm away on either side. (All measurements 

are height x width). A chin rest was used to maintain viewing position. The stimuli we 

used were random-pattern stereograms of a central test disc in front or behind a larger 
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disc set at a pedestal disparity against a fixation plane surround. The apparatus is 

illustrated in figure 3.1. 

APPARATUS AND STIMULI 
LEFT MONITOR RIGHT MONITOR 

155cm 

viewer resting on chin-rest 

Figure 3. 1. Apparatus and stimuli. We used a modified Wheatstone stereoscope consisting of two 25 x 

20.5 cm mirrors mounted at a right angle. Stimuli (random·pattern stereograms, see text for details) 

were displayed on two 28 x 36 cm monochrome EIZO Flex·6500 monitors at a viewing distance of 155 

cm. The stimuli. depicting a small disc embedded in a larger disc, were generated using a CRS VSG 

card on an Ambra 486 PC. A chin rest was used so the viewer could comfortably maintain head 

position. The stereogram illustrates one of a number of possible depth profiles, but is not based on 

the actual stimuli used in our experiment. 

The stimuli were stereograms of a variable diameter test-disc in front of, or behind, 

a 10.3° x 10.3° square fixation plane surround. 

Small (3"-45") disparities of the test disc were generated using sub-pixel shifting. 

To represent a disparity smaller than a pixel width (48") from a given pixel on one 

monitor, the brightness of the corresponding pixel on the other monitor and its 

horizontal neighbour were modified in proportion with the desired shift (Morgan & 

Aiba, 1986). 
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To reduce memory requirements and speed stimulus generation, random-pattern 

stereo grams were used (Tyler ( 1979) in Tyler and Clarke, 1990). The stereo grams 

consisted of a repeated pattern of vertical strips of 50% black and white 1.6' x 1.6' 

random dots. (We must emphasize that although a repeated pattern was used, the 

stereograms were viewed using a stereoscope and not free-fused as autostereograms). 

Fifteen different strips were stored in memory. For each strip, 15 different disparities 

produced by sub-pixel shifting were also stored, for rapid stimulus generation. Because 

the patterns were repeated, this was sufficient to produce a range of possible 

stereograms by simply cutting and pasting appropriately. Stereograms were generated 

on-line from these stored patterns. 

Viewers reported no difficulties with the repeated pattern, or with possible screen 

luminance non-linearities resulting from the sub-pixel shifting. 

A 16' x 16' white 0.8' outline central square on a mid-grey screen was displayed 

both as a fixation and following the stimulus interval. PC generated auditory signals 

were used for feedback to mouse-button press responses. 

c Design 

Stereoacuity thresholds were estimated as disc diameter was increased logarithmically 

d Procedure 

Each trial began with a 1.3 second fixation period during which the stereogram was 

calculated off-screen. This was followed by the stimulus, presented for 500 msec, 

which in turn was replaced with the fixation stimulus. Viewers were instructed to 

respond with a right mouse button-press if the test disc was in front of the surround, and 
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left if behind. Errors were signalled by a tone to provide continuous feedback 

throughout. 

There were 4 blocks of 200 trials. Disc size varied randomly, with equal numbers 

of presentations in each of the 5 sizes displayed. The disparity sign of the test disc was 

crossed or uncrossed on half the trials, each chosen randomly on every trial. Test 

disparity was determined by a staircase procedure for each diameter of the test disc. 

The five staircases for the different disc sizes operated simultaneously. 

Results, in terms of number correct out of total number of presentations, were fitted 

with a cumulative normal to determine the 75% stereoacuity threshold. Data from 

crossed and uncrossed disparities the disc were pooled. 

3.1.3 Results 

As can be seen from figure 3.2, stereoacuity varied with disc diameter with minimum 

stereoacuity thresholds generally observed at a diameter of approximately 1-2°. The 

exception is AP, who performed best at a disc diameter of 3.4°. There was, however, 

considerable variation between subjects in the thresholds obtained for the largest and 

smallest disc sizes. EM had stereoacuity of under 1 arcmin (60 arcsec) for all disc 

diameters, whereas CM and MO could only detect a disparity of several arcmins when 

the size of the disc was greater than 6°. 
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Figure 3.2. Stereoacuity thresholds (arcsec( are plotted against test disc diameter (degrees) for six 

observers. Effor bars representing 95% confidence intervals are shown where available, in some 

cases error bars could not be calculated because of the heterogeneity of the data. Note the 

considerable individual differences in the shape of this function. 

3.1.4 Discussion 

Our findings for broad-band disparity stimuli (in the disparity domain) generally 

confirm the predictions made from published results using narrow-band stimuli, as 

described in the introduction. Specifically, minimum stereoacuity thresholds were 

obtained in the disc-diameter range from 0.9-3.4°. In our investigation, data were 

collected from six observers rather than the one or two common to the studies 

mentioned in the introduction. This may be the reason why differences between 

individuals were a more prominent feature of our results. To explore these differences 
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in the context of both narrow-band and broad-band stimuli, a greater number of subjects 

must be studied. 

The main goal of this study was to show a contrast between performance on depth 

perception and initial vergence as the size of a cyclopean disc is increased. This has 

clearly been achieved. Unlike initial vergence, which only saturated at a disc diameter 

wider than 5°, the best stereoacuity performance was observed when the disc was only 

about 2° in diameter. As discussed in chapter 2, depth perception is mediated by a finer 

disparity processing mechanism than is initial vergence. In addition to the differences 

in the acceleration of the responses at small sizes, stereoacuity shows a clear decline (i.e. 

stereothresholds increase) beyond an optimal size, in our broad-band disparity stimuli as 

in the narrow-band stimuli used in the literature. This is in contrast with initial 

vergence, where there was little indication of a decline after the response saturated. The 

rise in stereoacuity thresholds at low spatial frequencies has been taken to imply lateral 

interactions, which would arise from the presence of centre-surround receptive fields for 

disparity, as have been found for motion processing (Rogers and Graham, 1982; Tanaka 

et al., 1985). By implication, disparity processing for initial vergence must therefore 

involve classical (gaussian) receptive fields of limited size, although other possible 

explanations for the saturation of that response were discussed in section 2.2. 

This study formed a preliminary to the investigation of the role of such coarse 

disparity pooling for vergence in the fine computation of depth that determines 

stereoacuity. From the present study, we concluded that, across subjects, stereoacuity of 

arcseconds was obtained for a disc diameter of 0.9-3.4°. Therefore, the intermediate 

size in this range ( 1. 7°) was used for the test disc in the next experiment. 
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3.2 'Coarse to fine' cyclopean processing 

3.2.1 Introduction 

Cyclopean images are visible only by combining information from the left and right 

eyes, as in a random-dot stereogram (Julesz, 1971 ). Depth information is given by the 

pattern of disparities between the two eyes' views. However, only disparities separated 

by less than a critical limit, known as Panum's fusional area, can easily be fused 

simultaneously. This area is traditionally taken to be approximately ±1 0' from the plane 

of current fixation (Mitchell, 1966) although it varies with stimulus properties such as 

eccentricity, spatial frequency and temporal duration (for a recent review see Howard 

and Rogers, 1995). Additionally, there is an upper disparity limit, which is much larger 

(about 30 arcmin, depending on the stimulus), beyond which even diplopic stimuli do 

not give rise to depth. Computationally, having an upper disparity limit reduces the 

correspondence problem- the problem that a dot in the right eye could be matched with 

any one of a number of possible dots in the left. The limit also agrees with the 

properties of 'tuned' binocular disparity-detector cells in the primary visual cortex 

(Poggio and Talbot, 1981) which are maximally sensitive to disparities near fixation, 

and decline sharply showing almost no response beyond 1°. 

In order to bring the pattern of disparities on different surfaces in the environment 

to within Panum's fusional area (i.e. into single vision), we make vergence 

eye-movements. Vergence eye-movements are disjunctive movements of the two eyes 

which determine the locus of their common fixation in depth, that is along the z-axis 

towards and away from the viewer. When the eyes move in opposite directions, the 

plane of fixation changes. Vergence responds directly to disparity (Rashbass and 

Westheirner, 1961). 
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Previously (Chapter 1, Popple et al., 1998) we showed that initial vergence depends 

on the size of a cyclopean target, such that it becomes more accurate with increase in the 

diameter of a random-dot disc. From that result, we predicted that stereoacuity, the 

ability to make fine depth discriminations on the surface of the disc, would improve 

similarly. This is because, with improved vergence, the surface of the disc would be 

brought closer to the plane of current fixation, where stereoacuity is best (Westheimer 

and McKee, 1978). To test this prediction, we presented a stereo target superimposed 

on a larger disc. The larger disc was set at a constant pedestal disparity. We varied the 

diameter of the disc, and measured stereoacuity thresholds for a smaller target within the 

disc. 

3.2.2 Method 

a Subjects 

Eleven viewers with normal or corrected to normal vision participated. All except AP 

and JF were naive as to the purpose of the study. 

b Apparatus and stimuli 

Apparatus and stimulus generation were as in 3.1.2. The stimuli were stereograms of a 

1.7° diameter test-disc in front of, or behind, a larger (2.6°-7.8°) disc set at a crossed or 

uncrossed pedestal disparity (±24' in experiment 3.2, ±2.4' in experiment 3.3) against a 

10.3° x 10.3° square fixation plane surround. 

c Design 

Stereoacuity thresholds for the test disc were measured, as pedestal disc diameter varied. 

The pedestal disc diameter was 2.6°, 3.9°, 5.2°, 6.5°, or 7.8°. Test disc diameter was 

fixed at 1. 7° and pedestal disparity was ±24'. 
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d Procedure 

The procedure was similar to 3.1.2, but for the sake of completion and clarity full details 

are given below. 

sample data 
100% 

-probit 

75% ------ ·~ 2.6°~.8° 
pedestal disc diameter 

0 1 0 20 30 40 50 60 
test disc (+/ 

....... 
1311-

crossed uncrosse 
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""'----- ' 
i 
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Figure 3.3. Method. Each trial consisted of a 1300 msec fixation, followed by a 500 msec stimulus which 

was replaced with a mask. The stimulus consisted of a large (2.6°·7.8°} disc at a pedestal disparity of 

±24 in the centre of which was embeded a small (1 .7°} test disc. The relative depth of the test disc 

was varied using a staircase procedure. Viewei:S" pressed a mouse button to indicate whether the test 

disc was in front or behind the larger, pedestal disc. 75% stereoacuity thresholds for each size of the 

pedestal disc were determined by fitting a cumulative normal to the data pooled across crossed and 

uncrossed disparities (see example}. 

As shown in figure 3.3, each trial began with a 1.3 second fixation period during 

which the stereogram was calculated off-screen. This was followed by the stimulus, 

presented for 500 msec, which in turn was replaced with a mask. Viewers were 

instructed to respond with a right mouse button-press if the central disc was in front of 

its immediate surrounding, and left if behind. Errors were signalled by a tone to provide 

continuous feedback throughout. 

In the experiment, there were 4 blocks of 200 trials. Throughout the experimental 

sessions, the depth of the test disc was judged against the larger disparity pedestal disc 
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surrounding it. Disc size varied randomly, with equal numbers of presentations in each 

of the 5 sizes displayed. The disparity sign of both pedestal and test disc were crossed 

or uncrossed on half the trials, each chosen randomly on every trial. Test disparity was 

determined by a staircase procedure for each diameter of the pedestal disc. The five 

staircases for the different pedestal disc sizes operated simultaneously. 

Results, in terms of number correct out of total number of presentations, were fitted 

with a cumulative normal to determine the 75% stereoacuity threshold. Data from 

crossed and uncrossed disparities of both test and pedestal discs were pooled. The latter 

is based on the assumption that fixation disparities were minimal, and crossed and 

uncrossed vergence follow a similar pattern as a function of cyclopean target size. 

3.2.3 Results 

Figure 3.4 shows the results from all 11 observers. Stereoacuity thresholds fell as the 

size of the pedestal disc increased. Stereoacuity thresholds are plotted on a logarithmic 

axis, because this produced the best linear representation ofthe data (see plot of means). 

The log-linear relationship between stereoacuity and pedestal disc size was 

confirmed using repeated-measures ANOV A on the data from the 10 subjects who 

provided complete sets. There was a significant effect of disc size on log stereoacuity 

threshold (F( 4,36)=24.1, p<O.OO 1 ). This could be accounted for by the significant linear 

trend (F(1,9)=43.6, p<O.OOl). 
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Figure 3.4. Results of experiment 3.2. Stereoacuity improved as the size of the pedestal disc was 

increased. All the viewers show a consistent pattern of reduced stereoacuity thresholds for larger 

pedestal discs. The plot of means across subjects illustrates the log-linear trend in the data. See text 

for details of statistical analyses. 

The improvement in stereoacuity with increasing disc size was considerably greater 

in subjects with poor stereoacuity (IG, JF and TR), as would be expected if the function 
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is logarithmic. Subjects with exceptionally good stereoacuity (KF and EM) showed 

little improvement with increasing diameter of the disparity pedestal disc beyond 3.9°. 

Because the plots are steeper for the interval from 2.6° to 3.9°, we wanted to exclude 

the possibility that this alone accounted for the significant results. A partial comparison 

was carried out using only the data from 3.9°-7.8°. There was still a significant effect 

of size (F(3,27)=4.8, p=0.008). 

3.2.4 Discussion 

Stereoacuity improves with increasing the spatial extent of a pedestal disparity disc. We 

are better at telling a bump from a dent on a large surface than on a small surface. This 

can be taken as evidence of coarse to fine processing. 

Initial vergence pools disparities over a large (at least 6°) area (chapter 2, Popple et 

al., 1998), and the best stereoacuity was found for such large pedestal discs. This 

optimum size for the pedestal disc is considerably greater than the optimum size of the 

stereoacuity target (see experiment 3.1). Rogers and Graham (1982) found that 

stereoacuity peaks at a spatial frequency of disparity modulation from 0.2-0.5 cycles/0
, 

equivalent to a target 1°-2.5° across. 

A separation between coarse and fme mechanisms of disparity processing was 

proposed by Richards ( 1970, 1971 ), following his work with stereoanomalous 

observers. In these subjects, an impairment in coarse stereopsis for either near or far 

targets resulted in an inability to perceive transient depth in a briefly flashed, coars~ 

disparity target, although the same subjects were able to perform normally on a fine 
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stereoacuity task. It was suggested that the coarse mechanism was responsible for 

bringing vergence onto a disparate target, and the fine mechanism for stereoacuity tasks. 

However, the results of Experiment 1 might be explained without recourse to 

vergence. The advantage of a larger pedestal disc could be the result of spatial 

interactions. Neighbouring luminance contours interact laterally, suppressing one 

another at close proximity and enhancing at a slightly greater distance (Toet and Levi, 

1992; Polat and Sagi, 1993). Lateral interactions have been reported in the cyclopean 

domain (Anstis et al., 1978; Brookes and Stevens, 1989; Lunn and Morgan, 1995), as 

have interactions across spatial frequencies of disparity modulation (Tyler, 1983). 

Perhaps the improvement in stereoacuity with the size of the disparity pedestal was the 

result of such interactions. The 2.6° pedestal disc was close in size to the 1. 7° test disc. 

The contour of the pedestal disc might have suppressed the test discos contour, 

rendering it less visible. Both discs may have excited similar spatial-frequency tuned 

mechanisms, making it hard to select which was the target of the depth discrimination 

task. For larger pedestal discs, these inhibitory interactions would be reduced, and 

possibly even replaced by facilitatory ones. 

Moreover, the existence of a peak in sensitivity for -0.3 cycles/deg disparity 

modulation (Rogers and Graham, 1982) might account for the advantage of a 5.1 deg 

disparity pedestal, which, with a 1. 7 deg target disc creates a circularly-symmetric 

square-wave-like profile of wavelength 3.4 deg. This has energy over a range of 

different spatial frequencies, but will have substantial energy at -Q.3 cycles/deg (the 

fundamental frequency of the square-wave). 
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3.5). Thresholds were, generally, lower for the 2.4' disparity than at 24'(F(l,5)=8.4, 

p=0.034). Pedestal disc size still had a significant effect when the standing disparity was 

2.4' (F(4,20)=3.73, p=0.02), however this effect was entirely accounted for by the 

difference between discs of diameter 2.6° and 3.9°, and disappeared when only discs 

3.9° and larger were compared (F(3, 15)=0.23, not significant) (for similar analyses 

with the larger pedestal disparity, see the results section of 3 .2). 

For EM and KF, the functions of stereoacuity with pedestal disc diameter were 

almost parallel for 2.4' and 24' standing disparity, with the only clear improvement in 

stereoacuity when the pedestal disc was enlarged from 2.6° to 3.9°. Both these subjects 

had unusually good stereoacuity, and the lack of variation in their depth thresholds may 

have been due to a floor effect. 

KF, who completed the 2.4' condition (3.3) before the 24' condition (3.2), 

nevertheless had stereoacuity thresholds consistently lower for the 2.4' than the 24' 

pedestal, as did the other subjects, indicating that this was not a practice effect. 
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Figure J.5. Results of experiment J.J. The effect of pedestal disc size on stereoacuity was much reduced 

when the pedestal disparity was reduced to 2.4'. a) The interaction between pedestal disc size and 

pedestal disparity is evident in most subjects' data. b) This pattern is clearer when looking at the 

means. At 2.4', there is little effect of pedestal disc diameter. 
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3.3.4 Discussion 

The effect of pedestal disc diameter on depth thresholds depends on standing disparity, 

and can largely be explained by impairments in stereoacuity resulting from inadequate 

vergence to small cyclopean discs. This finding favours the acceptance of vergence as 

the major constraining factor in coarse cyclopean processing. If the results of 

experiment 3.2 had been due to lateral interactions, a similar dependence of acuity on 

disc diameter would have been expected for the smaller pedestal disparity in experiment 

3.3. However, cyclopean interactions cannot be ruled out as contributing to the effect of 

pedestal disc diameter, especially for the smallest 2.6° disc, where stereoacuity was 

relatively poor even at a 2.4' pedestal disparity. Our results will be discussed in the 

context of existing theories of disparity processing for vergence and depth perception. 

Vergence is unlikely to be the only cause of the pedestal size effect observed in 

Experiment 1, and, to a lesser degree (literally only for small pedestals) in Experiment 

2. Cyclopean interactions cannot be ruled out as contributing to the effect of pedestal 

disc diameter, especially for the smallest 2.6° disc, where stereoacuity was relatively 

poor even at a 2.4' pedestal disparity. It also remains possible that this effect was due to 

reduced acuity away from the horopter. One must simply assume that the 2.6° pedestal 

disc at 2.4' disparity stimulated negligible vergence, whereas vergence was accurate for 

the larger discs. 

Experiment 2 was carried out to determine whether the pedestal size effect 

observed in Experiment 1 was due to vergence, or lateral cyclopean interactions. 

Because of the floor effect found, this comparison is difficult to make. It could be 

argued that both vergence and lateral interactions might vary quantitatively (but not 

qualitatively) as a result of changing the magnitude of the disparity step. An alternative 
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test of the two hypotheses is to render vergence ineffective by shortening the stimulus 

interval. Intervals of 100 msec and less are needed to exclude short-latency vergence 

(Masson et al., 1997). At such brief stimulus durations, the depth discrimination task 

proved too difficult for most subjects. Data from the author (AP), who had trained 

extensively while creating the stimuli, are presented below for 100 and 500 msec 

intervals. 
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Figure 3.6. Effects of stimulus duration in AP. The effect of pedestal diameter persists even at stimulus 

intervals as brief as 40 msec, when vergence is not possible. However, comparison with stereoacuity 

thresholds in the fixation plane (figure 3.2) shows that vergence was needed for fine stereoacuity away 

from the horopter. These results suggest that vergence is constrained by the spatial preferences of 

early disparity processing, which also drives 'transient', coarse stereopsis (Richards, 1970). 

AP repeated experiment 1 with briefer stimulus intervals (200, 100 and 40 msec ). 

Stereoacuity improved considerably with increased presentation interval (figure 3.6). 

Depth thresholds at brief (~100 msec) stimulus intervals were in the order of minutes 

rather than seconds of arc. However, these thresholds were still dependent on the spatial 

extent of the disparity pedestal, and indeed visual inspection shows the functions of 
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depth threshold against pedestal disc diameter on log-linear axes were near parallel for 

I 00 and 500 msec intervals. (As data from only one subject were available, no statistical 

tests were carried out). This result should be treated with caution until it is replicated by 

additional trained observers). 

Stereoacuity at a pedestal disparity of 24' improves considerably when the stimulus 

interval increases from 40 msec to 500 msec, much more so than stereoacuity in the 

fixation plane. The lOO-fold improvement in stereoacuity with a 10-fold increase in 

stimulus duration is an order of magnitude larger than that obtained for lines near the 

horopter (Watt, 1987). Vergence, although it has a latency of 50-1 00 msec and a peak 

velocity at 150 msec (Semmlow and Carpenter, 1996) takes at least 500 msec to reach 

completion (Carpenter, 1988). The need for longer durations of stereoscopic stimuli at a 

pedestal disparity clearly implicates the role of vergence in this task. 

However, the apparent continuity between the functions of stereoacuity with disc 

diameter at intervals ranging from 40 msec (no vergence) to 500 msec (vergence nearing 

completion) is evidence against the dependence of coarse-to-fine constraints in disparity 

processing on effecting vergence eye-movements. Instead, it supports the notion that 

vergence takes its input from early, coarse disparity processing, as does transient 

stereopsis (Richards, 1970, 1971 ). In their 1979 model, Marr and Poggio suggested 

that, as well as stimulating vergence, coarse disparities are registered in a spatial 

memory buffer (the 2YlD sketch). Our results are in agreement with this aspect of the 

model. 

Vergence is rapid, and under certain circumstances can have latencies as short as 

50-100 msec (Masson et al., 1997). Initial vergence must therefore rely on the outcome 
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of disparity processing in an interval perhaps as short as SO msec. At such brief 

intervals, a shift in disparity spatial frequency tuning for perceived depth towards 

coarser modulation has been suggested (Glennerster, 1996). It is possible that initial 

vergence registers the outcome of the same disparity processing stream as perceived 

depth, but at an earlier moment in time. 

In the luminance domain, low spatial frequencies are processed more rapidly 

(Breitmeyer, 1975; Parker and Dutch, 1987) and are thought to constrain the 

interpretation of higher frequencies. It is the computational efficiency of this strategy for 

image analysis that the Marr-Poggio model brings to disparity processing. An important 

feature of the Marr and Poggio model is the association between luminance and 

disparity spatial frequencies. It may be th:tt because of the association between low 

frequencies and coarse disparity modulation, that the latter is more readily visible at 

brief intervals (Glennerster, 1996). Similarly, Schor et al. ( 1986) found that high spatial 

frequency stimuli were better at driving vergence to small disparities. Other evidence of 

this association comes from Smallman and McLeod (1997), who demonstrated that the 

improved stereoacuity for low-frequency stimuli at large pedestal disparities could be 

explained by coarse-coding of depth, as in the Marr-Poggio model (based on Richards' 

( 1970, 1971) Three Pools hypothesis). However, the dependence of pedestal 

stereoacuity on spatial frequency has a direct analogy in vernier acuity, where the effect 

of separation is similarly dependent upon spatial frequency (Whitaker and Mac Veigh, 

1991 ). Therefore, this spatial frequency dependence may result from a problem of 

relative localisation rather than binocular processing per se. Both peak luminance 

frequency (Smallman and McLeod, 1997) and peak frequency of disparity modulation 

(Schumer and Julesz, 1984) for stereoacuity judgments are shifted to lower frequencies 
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away from the horopter. In effect, this means there may be multiple disparity channels 

with different spatial frequency selectivity. Empirical evidence for multiple channels 

was found by Stevenson et al. ( 1992), who showed that the adaptation tuning-width to 

disparity is as small as 5-1 0 arc m in in a decorrelation detection task on broad-band 

stimuli. 

The association between low frequencies and coarse disparities has been questioned 

because there is evidence that we use 'second order' information, from the pattern of 

high-frequency stimuli, to compute depth. Such second order information is used only 

for relatively coarse depth judgments (Mowforth et al., 1981; Wilcox and Hess, 1995; 

Statham and Georgeson, 1997) and does not necessarily signal rich monocular image 

recovery prior to disparity processing. In our stimuli, coarse depth judgements may 

have been based on first and higher order disparity. The recombination of spatial 

channels in the cyclopean domain to disambiguate matching noise, in metaphorical 

analogy with Fourier analysis in the luminance domain, and regardless of any actual 

association between the two, might prove to be the lasting contribution of the 

Marr-Poggio model. 

In this experiment, vergence was not measured. Therefore, any interpretation of the 

results as due to vergence is entirely hypothetical, made by inference from similar 

experiments; there may have been no oculomotor vergence in either experiment. The 

evidence for vergence under similar stimulus conditions comes from Popple et al. 

(1998), which is chapter 2 (experiment 2.1) in this thesis, and even there vergence was 

measured using a 'subjective' psychophysical technique. In subsequent work, we have 

measured vergence objectively (Popple and Findlay, 1998b; chapter 5). A clear 
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association between such 'subjective' vergence estimates, and concurrent 'objective' 

estimates obtained using binocular dual-Purkinje trackers was found. 

Assuming vergence took place in Experiment 1, the similar effect of pedestal size 

without vergence (figure 3.6, 40 and 100 msec durations) makes it unlikely that 

vergence and perceived depth are processed autonomously. The literature does, 

however, provide considerable evidence for autonomous processing. Horizontal 

vergence, unlike perceived depth, responds well to absolute disparity modulation (for 

review see Collewijn and Erkelens, 1990). Vertical vergence has no perceptual 

correlate, and yet must rely the same kind of disparity processing as horizontal vergence 

(Stevenson et al., 1997). The non-volitional component of horizontal vergence would, 

according to this explanation,. provide the coarse disparity code which constrains fine 

stereoacuity. 

Previously, experimenters have failed to find coarse to fine shifting in the matching 

range of compound spatial frequency stimuli (Rohaly and Wilson, 1993; Smallman and 

MacLeod, 1997) although fine-scale stimuli can disambiguate coarse-scale information 

(Smallman, 1995). This may be simply because stereoacuity is not possible away from 

the horopter, and their experiments were designed to preclude vergence. We have 

shown that such shifting takes place in broad band stereograms, possibly through the 

motor intervention of vergence and via the scale of disparity modulation. 
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Chapter 4 

The spatial integration of interocular correlation 

4.0 Abstract 

Chapters 2 and 3 explored the effects of spatial integration on the processing of stepped 

disparities for vergence and depth perception respectively. A cyclopean figure can be 

defined by interocular correlation, as well as disparity. The uncorrelated dots may be 

matched at a range of disparities, or undergo binocular rivalry. In this chapter, the 

spatial integration of decorrelation was studied. 

Disparities larger than the matching limit, m random-dot stereograms, are 

equivalent to a region of decorrelation, because the dichoptic half-images cannot be 

correlated within the matching range. A vergence response to binocular decorrelation 

may therefore serve to bring stimuli into this range. Such a response was found in most 

subjects ( 4.1 ), and subsequently the spatial integration underlying this response was 

studied ( 4.1-4.4). Integration within the central area of the stimulus was smooth ( 4.3, 

4.4), similar to disparity integration (chapters 1 and 2). 

Unlike depth perception, previous studies (Cormack et al., 1994; Tyler and Julesz, 

1978) have shown no spatial bounds to the integration of perceived decorrelation. 

However, when attempting to replicate these results ( 4.5) the same spatial tuning was 

found for decorrelation detection as for a depth detection task performed under similar 

conditions (3.1). Both functions were compatible with existing estimates of spatial 

tuning to disparity modulation in stereoacuity (e.g. Rogers and Graham, 1982). 

Overall, the results in this chapter support the conclusion that decorrelation IS 
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spatially integrated (as activity at a range of disparities) by the same neural mechanisms 

responsible for disparity integration per se. 

4.1 The effect of surround correlation on vergence integration 

4.1.1 Introduction 

In the previous chapters, the data indicated that disparities for the computation of 

vergence are pooled over a wider area than disparities for the computation of 

stereoscopic depth. In the latter case, there is evidence of lateral interactions (Anstis et 

al., 1978; Tyler, 1983). Depth perception, unlike vergence, requires the presence of 

relative disparities (Erkelens and Collewijn, 1985ab ). However, as pointed out in the 

discussion in chapter 2, optokinetic following, which like vergence can be stimulated by 

full-field motion, was found to be subject to lateral interactions (Miles et al., 1986). To 

test whether lateral interactions played a role in the computation of initial vergence, the 

effects of target size when the surround was either correlated and in the fixation plane, 

or uncorrelated, were compared. The aim was to test the hypothesis that initial 

vergence is enhanced by a fixation plane surround. A fixation plane surround might 

enhance initial vergence if the response were geared to correct for a small error in 

fixation, as might occur if a disjunctive saccade were aimed near the target. The role of 

initial, short-latency vergence in correcting small errors in fixation was suggested by 

Bussetini et al. (1996, see also chapter 2). In contrast, an uncorrelated surround 

resembles a distant (nearer or farther) environment. If the initial vergence mechanism 

blindly pooled disparities in the central 6° of view, the same response would be 

expected in both cases as the uncorrelated dots would have a mean disparity of zero, 

assuming that the matching range is symmetrical about the fixation depth. A target 

diameter of 8° was chosen because of the slight downturn in initial vergence beyond this 
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limit, discussed in chapter 2. This was compared with a 2° target, much smaller than the 

integration region proposed. 

4.1.2 Method 

a Subjects 

Eight adults aged between 23 and 30 (5 female and 3 male) participated m this 

experiment. All had normal or corrected to normal vision. 

b Apparatus and stimuli 

Apparatus and stimuli were identical to those used in experiment 2.1 (see 2.1.2). The 

only exception was that, in the uncorrelated condition, the dots surrounding the 12.5 

arcmin crossed disparity disc were randomly positioned on the left and right monitors. 

c Design 

Vergence was estimated when two parameters of the stimulus were varied. As in 

experiment 2.1, the size of a central cyclopean disc was varied. The disc diameter was 

set at either 2° or 8°. In addition, the random-dot correlation in the surround was varied. 

The surround was either fully correlated with zero disparity, or uncorrelated. 

d Procedure 

For procedure, see 2.1.2. As in experiment 2.1, trials were blocked according to disc 

diameter. In addition, separate blocks were used for the different correlation conditions. 

However, unlike in experiment 2.1, a staircase procedure was used to determine the 

position of the dichoptic nonius lines on each trial. The centre portion of the percentage 

left responses was analyzed using probit as before, that is by fitting a cumulative normal 

function to the data. During debriefing, viewers were asked whether they saw the disc 

present in the stereogram (although as in the previous vergence experiment, the 

instructions were to attend only the dichoptic nonius display). 
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4.1.3 Results 

The results for the eight viewers are shown in figure 4.1. Surprisingly, all except AP 

and IG diverged strongly when the 2° wide, 12.5' crossed disparity disc was surrounded 

by uncorrelated dots. AP responded no differently to correlated and uncorrelated 

surrounds, whereas IG converged to the uncorrelated dots beyond his already large 

convergent fixation disparity. As with the majority of the subjects, his response was 

greater when the diameter of the disc was small. 

To establish whether the interaction between surround correlation and disc size was 

statistically significant, the data were entered into a 2 x 2 within-subjects ANOV A. 

Outlier IG was excluded from this analysis because of his large convergent fixation 

disparity, and because the interaction in his data was opposite to the other subjects'. 

The visually evident interaction between surround correlation and disc size was found 

statistically significant (F( 1 ,6)= 17 .8,p=0.006), as were the main effects of disc stze 

(F{l,6)=50.5,p<0.001) and surround correlation (F(1,6)=11.7,p=0.014). 

In addition to the divergent response to uncorrelated dots when the disc was small, 

half the subjects still showed a significant difference in response to the large, 8° disc 

depending on its surround. Across subjects, however, this difference was not 

significant. 
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Figure 4. 1. Initial vergence response (arcmin) to a 12.5 arcmin crossed disparity disc, plotted against disc 

diameter (degrees) for a cyc/opean disc seen against a correlated surround (squares) or an 

uncorrelated surround (diamonds). The divergent response to the uncorrelated surround with the 

small disc was surprising. Note exceptions AP and /G. AP responded equally to the discs whether 

surrounded by correlated or uncorrelated dots. /G, whose data are plotted on a different scale from 

the other subjects because of his large convergent fixation disparity, converged rather than diverging 

in the presence of an uncoffe/ated surround. 
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Only IG reported seeing the disc in the uncorrelated surround condition, due to a 

lower dot density in the disc. The remaining subjects generally reported they saw the 

disc at a depth step when the surround was correlated. (IG is therefore an exception to 

the paradox whereby the same dot density is seen in uncorrelated and correlated 

random-dot stereograms, whereas the presence of monocular unpaired dots might be 

expected to increase perceived density under reduced correlation. This phenomenon 

was coined 'binocular frequency reduction' by Tyler in 1976). 

4.1.4 Discussion 

The initial purpose of this experiment was to establish whether lateral interactions 

involving a fixation-plane surround input (beyond an 8° target size) played a role in 

generating initial vergence. Across subjects, vergence to the large disc remained 

constant regardless of its surround. Therefore, this hypothesis can be rejected. The 

possibility remains that lateral interactions between, for instance, crossed and uncrossed 

disparities may play a role in the generation of initial vergence. However, the balance 

of evidence both from the present section and from chapters 1 and 2 points to a simple 

pooling mechanism when two disparities in the central field of view are integrated. 

Although the effect of disc size with a correlated surround appears smaller in figure 4.1 

than it did in figure 2.2, this is because the scale of the y-axis has been enlarged to 

accommodate the large divergent responses made by most subjects when the surround 

was uncorrelated. The main effect of disc size remained significant, suggestive of 

spatial integration as before. 

In contrast, when the surround was uncorrelated, the initial vergence response 

obtained was inconsistent with a centrally weighted averaging process. To reiterate the 

point made in the introduction, uncorrelated random dots can be matched equally across 
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a range of disparities distributed about the fixation plane, and therefore have a mean 

disparity of zero. However, unlike in the case of a correlated zero-disparity surround, 

when the surround of a small (2°) disc was uncorrelated most naive observers diverged 

their eyes. This divergent response often went beyond the zero-disparity plane, despite 

the presence of a foveal, crossed (convergent) disparity stimulus. The present findings 

could be explained within the averaging model only if the matching range were biased 

towards divergent disparities. Then the uncorrelated dots would weigh heavier in an 

uncrossed direction. However, this seems unlikely as most viewers show the opposite 

asymmetry, with better performance both in stereoacuity and vergence towards crossed 

disparities. 

Stevenson et al. (1994) thoroughly investigated vergence eye-movements made in 

response to differing disparities as the interocular correlation was varied. They found 

that correlation contributed to signal strength for vergence, in a similar way to 

luminance contrast. No initial vergence response to decorrelation was reported in their 

study, but such a response would be unlikely under the conditions of their experiments 

for a number of reasons. First, viewers were instructed to maintain fixation on a 

zero-disparity line abutted by dichoptic nonius to monitor their performance. All were 

experienced psychophysical observers, and able to follow this instruction as 

demonstrated by a later experiment on voluntary vergence (Stevenson et al., 1997). 

Secondly, even when one subject repeated the experiment with no conflicting vergence 

requirements, the stimulus interval was preceded by an interval containing uncorrelated 

dots. Any response to this stimulus, if present, would have formed the baseline for 

subsequent vergence calculations (these were the starting conditions throughout the 

experiment). Concluding the discussion of the aforementioned paper, although 
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apparently addressing a similar subject area to the present experiment their focus was 

very different from ours. 

The finding of a vergence response to decorrelation is not, however, without 

precedent. Schor and Howarth ( 1985) reported a tendency to verge in response to 

interocularly uncorrelated stimuli. O'Shea and Blake (1987) conducted a survey of a 

phenomenon they called 'rivaldepth', whereby a depth impression is created by the 

decorrelation of a region in a random-dot stereogram without introducing disparity in 

this region. They found that the perceived depth of the rivalrous, or uncorrelated region 

followed a bimodal distribution in most subjects, typically peaking at either a crossed or 

an uncrossed disparity beyond the fusion limit. The preferred depth was negatively 

associated with the subject's fixation disparity or phoria, but later found to be positively 

associated with their vergence response to the stimulus (phasic fixation disparity). Only 

the direction, and not the magnitude of phasic fixation disparity was recorded. O'Shea 

and Blake suggested that vergence changes were made towards the apparent depth of the 

stimulus. However, the results here 4.1 indicate that such vergence to decorrelation can 

be triggered without depth perception. 

No subjects reported 'rivaldepth' in the present experiment. Several reasons for 

this can be put forward. O'Shea and Blake confirmed that rivaldepth is weaker with 

sparse stereograms, as were those here, during brief stimulus intervals, and when it is 

the surround rather than the centre which is uncorrelated. In addition, viewers in the 

present experiment were not instructed to attend to the stereogram, but to the subsequent 

nonius task. In conclusion, whatever triggers the initial vergence response to 

decorrelation, it is rapid, automatic and independent of any perceived depth. 
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What might be the function of a large, automatic initial vergence response to 

decorrelation? In a natural environment, objects or surfaces well separated in depth 

from the plane of fixation cannot be correlated between the two eyes' views within the 

disparity limits imposed by the interocular matching process. Therefore, a large 

vergence eye-movement that brings the plane of fixation to beyond those limits may be 

adaptive. If no fusion can be reached, a further 'searching' vergence movement might 

be triggered by the same mechanism. Such a sequence of sweeping vergence 

eye-movements has been suggested as a method of homing in to the appropriate 

vergence angle for viewing 'magic-eye' stereograms (Reimann et al., 1995). If this 

were the case, the data of subject IG could be explained by a preference to initiate this 

search with a convergent movement. Such individual differences in the search pattern 

could account for viewers' preferences to cross-fuse or uncross-fuse autostereograms. 

One remaining question is that of how decorrelation is processed. Stevenson et al. 

favoured a statistical model, appropriate to their data, where the goal of early disparity 

processing is to compute a cross-correlation between the two eyes. The peak of this 

profile corresponds to the stimulus disparity, whereas the width of the distribution 

depends on the interocular correlation. When interocular correlation is zero, this 

function is completely flat. It may be the overall absence of disparity information that 

triggers a vergence response. If so, the response could be a default of the vergence 

system or driven by some aspect of the stimulus. In the next experiment, the aim was 

to find out which aspect of the uncorrelated stimulus might drive initial vergence. 
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4.2 Interocular integration of initial vergence triggered by non-fused 
stimuli 

4.2.1/ntroduction 

Documented in the previous experiment is an initial, divergent response to a small (2°) 

crossed-disparity disc in the midst of uncorrelated dots. A similar response had 

previously been noted by O'Shea and Blake (1987) to 'rivaldepth' stereograms 

containing an uncorrelated central patch. They suggested that vergence to uncorrelated 

dots followed their perceived depth. However, experiment 4.1 shows such vergence in 

the absence of depth perceptions. 

What aspect of the stimulus generated this automatic vergence response? It can be 

surmised that the response was stimulated by the uncorrelated dots themselves, rather 

than the cyclopean figure present. In a paper on vergence to anticorrelated stereograms, 

Masson et al. (1997) published data showing a significant non-zero saturation level of 

initial vergence as disparity was increased. This saturation level corresponds to 

vergence to uncorrelated stimuli, since, as mentioned, random-dot stereograms showing 

disparities beyond the matching range, that is the range where vergence is dependent 

disparity, are uncorrelated within this range. In this experiment, the question addressed 

was whether a field of uncorrelated dots alone would also trigger divergence. There 

were five stimulus conditions. The response to a field of uncorrelated dots was 

compared with fixation disparity to a field of zero-disparity, correlated dots. An 

additional control condition consisted of a briefly presented, blank interval where 

vergence was free to move from fixation disparity towards the tonic dark phoria 

position. Monocular fields of dots were also presented to each eye on separate trials. 

A number outcomes were possible m this experiment, supporting different 
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alternative hypotheses concerning the stimuli for vergence to uncorrelated dots. 1) The 

divergent response found in the previous experiment may have been due to the spread of 

binocular matches in the absence of a pe~ disparity, in which case it would require 

binocular stimulation and occur only with uncorrelated dots. 2) The response might be 

the vergence system's default in the absence of any disparity information, giving 

divergence in all conditions excepting a field of fixation plane dots. 3) A further 

possibility is that divergence is triggered by overall visual stimulation without a peak 

disparity, but not necessarily requiring the activity of disparity-tuned mechanisms. This 

latter possibility would be supported if divergence were found for monocular, as well as 

uncorrelated dots, but not following fixation plane dots or a blank interval. 

4.2.2 Method 

a Subjects 

Eight viewers with normal or corrected to normal vision participated. All except the 

author, AP, were naive. 

b Apparatus and stimuli 

The apparatus was identical to that used in 4.1. Monocular stimuli consisted of a field 

of 2000 white dots randomly positioned in a 16° x 21° field. In the binocular stimuli 

these dots were either located in the same position on both left and right monitors 

(correlated condition) or at different locations (uncorrelated condition). In the blank 

condition, both screens were clear during the stimulus interval. As mentioned in 4.1.3, 

2000 monocular dots will have the same apparent density as 4000 uncorrelated dots 

because of binocular frequency reduction (Tyler, 1976). 

c Design 

There were five different stimulus conditions. These were as follows: 1) binocular, 
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uncorrelated dots; 2) binocular, correlated dots; 3) monocular dots in the left eye; 4) 

monocular dots in the right eye and 5) a blank interval following the fixation stimulus. 

d Procedure 

The procedure was similar to previous initial-vergence experiments (chs. 1,2; 4.1), i.e. 

each trial started with a 1 second fixation, followed by a 230 msec stimulus, and a 160 

msec nonius interval. However in this case the five stimulus conditions were 

randomised across blocks of 200 trials. Five concurrent staircases determined the 

position of the nonius stimulus for the five conditions, and again only the central portion 

of the left response frequency was used to determine the central tendency of the 

response. 

4.2.3 Results 

Figure 4.2 shows the results for all eight subjects. Excepting AP, whose data contain no 

difference in vergence between the different conditions, viewers diverged somewhat 

following the monocular stimuli, and considerably more after the uncorrelated stimuli. 

Conversely, there was little or no change in fixation disparity following a blank interval. 

Statistical tests carried out on the data showed a significant effect of stimulus 

condition (F( 4,28)= 1 0.32,p<O.OO 1 ). There were no significant differences between the 

two monocular conditions, or between the two control conditions (correlated dots, blank 

interval). However, all other partial comparisons yielded significant differences 

(correlated vs. uncorrelated: F(1,7)=12.99, p=0.009; uncorrelated vs. monocular: 

F(l,7)=11.64, p=O.Oll; correlated vs. monocular: F(l,7)=5.79, p=0.047). The 

divergence to uncorrelated binocular stimuli was greater than that found for monocular 

stimuli, which in turn was greater than the control conditions. 
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Figure 4. 2. Vergence to brief. uniform random-dot stimuli. The initial vergence response rarcmin) to 

uncorrelated and monocular stimuli is shown. In addition, the two control conditions (con-elated dots 

and blank interval) are illustrated. 
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The response to uncorrelated dots was generally divergent, in the same direction as 

the responses in the monocular conditions, but larger in magnitude. This is shown in the 

table below: 

avp erne mgp js cm mb rg ah MEAN 
left-eye 8.27 -13.5 -8.83 -1.49 -0.53 -2.48 -2.53 -0.75 -2.73 
right-eye 8.56 -11.4 -6.46 -0.53 -0.02 -2.42 -4.16 -1.53 -2.25 
binocular 6.62 -16.3 -17.00 -2.76 -1.52 -11.40 -16.80 -4.46 -7.95 

Table 4.1. The divergent response to uncorrelated dots is generally larger than in both monocular 

conditions. 

4.2.4 Discussion 

As expected, divergence was found to a field of uncorrelated random dots. This was not 

due simply to the lack of binocular fusion, as evidenced by the viewers' tendency to 

maintain vergence position at fixation disparity in the blank interval condition. 

Divergence was also found with monocular stimulation, however this was less than in 

the uncorrelated condition. This result supports a hypothesis that divergence to 

uncorrelated dots is stimulated by monocular activity in the absence of binocular fusion 

or correlation. However, it also remains possible that the divergent responses to 

monocular and binocularly uncorrelated stimuli were driven by entirely different 

mechanisms. 

If this were the case, perhaps the vergence response to uncorrelated stereo grams is 

a function of the initial vergence found in response to anticorrelated dots (Masson et al., 

1997). The latter followed the disparity tuning profiles of those binocular neurones 

which responded to anticorrelated stereograms (Cumming and Parker, 1997). 

Uncorrelated dots might weigh more heavily on anti-correlated than correlated patterns, 

because the greater number of positive nodes (Ohzawa et al., 1997). This makes chance 

matches likelier with the inverted receptive field profiles, explaining the results reported 
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here. A more parsimonious theory would, however, integrate the divergent responses 

found to monocular and uncorrelated stimuli. 

A vergence response to brief (200 msec) monocular stimuli was recorded by Jones 

( 1976). Little has been made of this finding in the literature, but as discussed in 4.1 

such a response would be adaptive. If an object were foveated in one eye, a tendency to 

make a vergence eye-movement could bring that object into fusion range in the other 

eye. However, such eye-movements would be wasteful in the absence of any visual 

input. 

The integration of activity across monocular neurones at an early level of visual 

processing, for example Vl or below, might trigger a reflex, searching vergence 

eye-movement. This reflex could be suppressed by the process which determines a 

stable disparity for fusional vergence movements. Vergence recordings taken from 

subjects under the influence of drugs which disinhibit reflex responses may provide 

support for this idea, if sudden deviations from fixation disparity at the onset of visual 

stimuli were observed. Indeed, many viewers habitually verge to transient stimuli even 

under normal sensory conditions (Edwards et al., 1998). 

The aim in the next section was to explore precisely how disparity driven vergence 

is integrated with the initial vergence response to decorrelation. 

4.3 Integrating correlated and uncorrelated dots at the same location 

4.3.1/ntroduction 

Very little has been written about initial vergence to binocularly non-corresponding 

stimuli, although many viewers respond in this way (Jones, 1976; Edwards et al., 1998). 

Such a response can be considered adaptive, because it can potentially bring stimuli 
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outside Panum's fusional area and outside disparity processing limits into 

correspondence. To serve this function, an all-or-nothing response would be ideal. 

There would be little point in making a small vergence eye-movement when some 

degree of decorrelation was present. There were quite large responses to uncorrelated 

stereograms in most viewers ( 4.1 and 4.2), but smaller changes in vergence following 

monocular stimulation ( 4.2). This suggested an integration of monocular activity in the 

initiation of such searching vergence eye-movements. Although less adaptive than an 

all-or-nothing response, such integration may operate on the same principles as the 

disparity integration seen in chapter 1. This kind of integration is suited to the one-stage 

automatic disparity pooling process which determines the goal of initial vergence, as 

suggested in chapter 2. 

The aim was to determine how decorrelation is integrated. The stimuli chosen were 

1-bit random-dot stereograms, as the percent decorrelation in these is easy to quantify. 

The following equation describes the cross-correlation (cp) between the two eyes' 

images (IR, IJ as a function of disparity( d): 

qJ(d)= JJ R(x)J L(x +dflx 
(1) 

With uniform 1-bit stereograms, where 50% of dots are white and 50% black, this 

reduces to a function ofthe proportion of matching dots at each disparity (Pd): 

Clearly, when the left and right images are uncorrelated, Pd is always equal to 50%, 

therefore the cross-correlation is distributed about zero. Because of sampling 
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limitations, noise from false matches will cause spurious little peaks in this function. 

Fifty percent is also the probability of chance matches at any disparity except the 

stimulus disparity, when this is defined. When the images are identical, the 

cross-correlation at zero disparity is equal to one, a delta function with a width equal to 

the size of a stereogram element surrounded by sampling noise. As the percentage 

correlation is reduced, this peak is submerged until it eventually becomes enveloped in 

the surrounding noise. 

Vergence was estimated as a function of percent correlation. This is analogous to 

chapter I as a stereogram containing a reduced percentage of correlation can be 

interpreted (although not literally seen) as a zero-disparity fixation plane overlapping an 

anticorrelated 'rivaldepth' plane. An alternative description would be a plane of dots 

surrounded by a cloud of dots at different depths. On the cross correlation profile, the 

transparent stimuli in chapter I appeared as a bimodal distribution. With reduced 

correlation, a multimodal distribution is obtained. 

4.3.2 Method 

a Subjects 

Only four could be found for this experiment. These included the author AP who, in 

any case, did not respond markedly to decorrelation as can be seen from 4.I and 4.2. 

Additionally, data from four new paid student subjects had to be discarded as the 

variability in their responses suggested they were simply not following the instructions. 

b Apparatus and stimuli 

The apparatus, as before, was an Ambra 486 PC with a VSG stimulus generator card 

with two EIZO Flex-6500 monochrome monitors. This time, the monitors were 

positioned at a distance of I.05 m to ensure each pixel subtended almost exactly I 
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arcmm. Stimuli were 10° square binary stereo grams composed of 1 arc m in elements 

drawn from a random pattern of numbers from 0-99. The numbers were reinterpreted 

on each trial to give the desired percentage of correlation between the two monitors and 

create a new random pattern. The fixation stimulus consisted of a 10° mid-grey square. 

The dichoptic nonius consisted of abutting 1 x 20 arcmin white lines on this grey 

square, positioned centrally on the left and right monitors. The monitors were viewed 

through the large 25 x 20.5 cm mirrors described in previous chapters, mounted at right 

angles to each other and positioned directly in front of the viewer, whose head rested on 

a chin rest. 

c Design 

The percentage dot correlation was varied. There were six levels of correlation; 0, 20%, 

40%, 60%, 80% and 100%. The latter, of course, is a measure of fixation disparity. The 

dependent variable in all cases was initial vergence. At 0% correlation, the images in 

the left and right eyes are statistically uncorrelated. This means that, because of chance 

matches in the binary pattern, about 50% of the dots match and 50% do not match. If 

all the dots did not match, this would be a correlation of -100%. 

d Procedure 

There were 300 trials in each session, divided into four blocks of 75 trials. Fifty trials in 

each of the six conditions were randomised across each session. Each trial consisted of 

an approx. 1 second fixation during which the stimulus was calculated off-line, a 200 

msec stimulus interval followed by a 160 msec nonius interval. The position of the 

nonius on each trial was determined by a staircase procedure that operated 

independently for each of the experimental conditions. A judgment of whether the top 

line was left or right of the lower line was indicated using a mouse-button press. The 
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central portion of the results under each condition was fitted with a cumulative normal 

using Probit, to determine the estimate of subjective vergence. 

4.3.3 Results 
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Figure 4.3 The integration of decorrelation in triggering initial vergence. Percent con-elation is plotted 

against vergence (arcmin). AP and KP did not respond to decon-elation (i.e. their response in the 

uncorrelated conditions was no different from the response in the 100% correlated condition). EM 

diverged increasingly as decon-elation increased (going from right to left on the graph). IG converged 

as a smooth function of percentage decorrelation. (These results are described as a function of 

decorrelation rather than correlation since the 1 OO% con-elated response, which represents the 

viewers' fixation disparity, is here the norm) 

The results are shown in figure 4.3. Of the four subjects, AP and KP did not make a 

vergence response to the decorrelated stimuli. A general conclusion from these data is 

that the response to decorrelation, if present, is smoothly integrated with the weight of 

stimulation at the fixation disparity. This is the case both for a divergent response to 

decorrelation (EM) and a convergent response (IG). 
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4.3.4 Discussion 

The results suggest responses to uncorrelated and correlated elements of the stimulus are 

integrated, like the integration of different disparities found in chapter 1. The vergence 

response could be put down to the prevalence of 'near' and 'far' disparity-detectors in 

the primary visual cortex. This would account for considerable individual variation. 

Richards (1970, 1971) reported selective crossed and uncrossed stereoanomalies in the 

detection of coarse disparities in brief stimuli, which Jones (1977) later employed in his 

attempt to explain vergence responses to transient stimuli. Neurones classified as 'near' 

and 'far' show greater ocular dominance than 'tuned' cells (Poggio and Talbot, 1981), 

and therefore might respond more vigorously to monocular stimulation. It was 

suggested in chapter 2 that initial vergence might result from pooling the responses of 

disparity sensitive cells over a fairly large region. Does the integration of decorrelation 

follow similar spatial bounds? The results of 4.1 indicated that this is so. Decorrelation 

beyond 8° had little effect on vergence. However, the function of vergence to 

decorrelation within the pooling region had not been studied. Therefore, this function 

was explored in greater detail in the next section. 

4.4 Integrating neighbouring correlated and uncorrelated regions 

4.4.1 Introduction 

Chapter 2 showed that the spatial integration of disparities determines the initial 

vergence response. In section 4.3, the local integration of decorrelation was likened to 

the integration of two transparent disparity planes (chapter 1). If decorrelation is 

processed by the same spatial pooling mechanism as disparity, and indeed represented 

as a bias in the disparity spectrum due to the uneven individual distribution of disparitY 

detectors, then the vergence response to it should follow the same spatial function as 
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disparity integration. Evidence that this is so was given m section 4.1, where 

decorrelation, like disparities, beyond an 8° region made no difference to the vergence 

response. However, as only one other data point was present in that experiment, it was 

necessary to repeat the main experiment of chapter 2 with an uncorrelated central figure. 

In this case, the same stimuli were used as in the previous section, but instead of varying 

the percent decorrelation over the entire stimulus, the size of a central uncorrelated 

region was varied. 

4.4.2 Method 

a Subjects 

Three viewers participated. As before, these included the author AP who, in any case, 

did not respond markedly to decorrelation as can be seen from 4.1 and 4.2. 

b Apparatus and stimuli 

Apparatus and stimulus generation were as in 4.3.2b. The stimuli were 100% correlated 

except for a 0% correlation central square of variable size. 

c Design 

Initial vergence was estimated as the size of the uncorrelated square was varied. The 

extent of a square uncorrelated figure was 0.4°, 0.8°, 1.6°, 3.3° or 6.7°. In this 

experiment, there was no measure of fixation disparity. 

d Procedure 

There were 300 trials in each session, divided into five blocks of75 trials. Sixty trials in 

each of the five conditions were randomised across each session. As in 4.3.2d, each 

trial consisted of an approx. 1 second fixation during which the stimulus was calculated 

off-line, a 200 msec stimulus interval followed by a 160 msec nonius interval. The 

position of the nonius on each trial was determined by a staircase procedure that 
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operated independently for each of the experimental conditions. A judgment of whether 

the top line was left or right of the lower line was indicated using a mouse-button press. 

The central portion of the results under each condition was fitted with a cumulative 

normal using Probit, to determine the estimate of subjective vergence. 

4.4.3 Results 

The results are shown in figure 4.4. Of the three subjects, AP and MO did not make a 

vergence response to the decorrelated stimuli. However, MP responded smoothly to the 

increasing stimulus size, showing a saturation of the vergence response as the area of the 

decorrelated figure was increased. 
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Figure 4.4 The spatial integration of decorrelation. Target area (sq. deg.) is plotted against vergence 

( arcmin). AP and MO did not respond to deccrrelation. Note different scales on y-axis. 

4.4.4 Discussion 

As predicted in the discussion section 4.3.4, spatial integration of decorrelation was 

comparable to the spatial integration of disparities. This new theory can now be phrased 

more neatly. Initial vergence is directed towards a spatially integrated estimate of 
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disparity in the centre of view (chapter 2). This is probably based on the operation of 

low spatial frequency and/or coarse disparity selective neurones, as are depth judgments 

to very brief stimuli (chapter 3). As some individuals have an imbalance between the 

very coarse, 'near' and 'far' types of neurones which are also more subject to ocular 

dominance, local monocular activity, whether from a monocular stimulus or from a 

region of decorrelation between the two eyes, could bias this pooled disparity estimate 

towards the predominant (near or far) disparity. Both simple and complex binocular 

cells exist, and their differing temporal preferences could account for the difference 

between transient and sustained responses reported by Jones (1976), assuming the 

imbalance of near and far pools could be reversed across these two groups of cells. 

Alternatively, the transient vergence documented here might be governed by the 

integration mechanism described, whereas phoria and the closely related measure of 

fixation disparity could be determined by growth (including the changing position of the 

eyes in the head) and the maturation of response patterns. 

Although the data provide some support for this theory, a much larger number of 

subjects would have to be tested before it could be generally accepted. If groups of 

subjects were found with such convergent and divergent response tendencies, these 

would have to be associated with corresponding anomalies in depth judgment. Animal 

studies, which have purported to show imbalances between 'near' and 'far' neurones, 

might further determine whether these are associated with similar biases in transient 

vergence. Yet another explanation would have the response to uncorrelated or 

monocular stimulation weighted against fusional stimulation at a later stage in the 

vergence pathway. 
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In chapter 3, the suggestion was made that vergence is generated by the early stages 

of a process which later resulted in perceived depth. Is this also the case with the 

integration of decorrelation, which might be processed by the very same mechanism that 

pools disparity for vergence? The spatial properties of decorrelation detection were 

investigated in the next section so a comparison could be made with depth detection and 

stereoacuity (3.1). This is similar to chapter 3, except, of course, that the central figure 

of the stereogram consisted of decorrelated rather than disparate dots. 

4.5 Spatial limitations of decorrelation hyperacuity 

4.5.1/ntroduction 

Section 4.3 showed that decorrelation and disparity might be pooled by the same spatial 

integration mechanism in the generation of an initial vergence response. The notion was 

raised that decorrelation resulted in a skewed coarse disparity value being integrated 

together with other local disparities. Although such imbalances in stereoacuity between 

crossed and uncrossed disparities are less common (Richards, 1970; 1971 ), the same 

principle could hold for the detection of decorrelation providing it is not assumed this 

must have a determinate depth. Thus, a region containing a small percentage of 

decorrelation might appear at many different disparities, and therefore less flat than its 

correlated surround. 

Tyler and Julesz (1978; Julesz and Tyler, 1976) showed that viewers are acutely 

sensitive to a small amount ofdecorrelation (<2%}, and also full (100%) decorrelation at 

extremely short ( <5 msec) intervals. They too explored the spatial properties of 

correlation integration, as did Cormack et al. (1994). Neither group found any evidence 

of lateral interactions, as with stereoacuity. Both suggested that the detection of 

correlation is based on statistical sampling of individual elements, integrated both 
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spatially and temporally until some limit is reached. However, the largest stimulus used 

by either group was only 5° wide. By going slightly beyond this limit, there was a 

chance of finding some evidence of spatial selectivity as found with stereoacuity ( 4.1 ). 

An additional difference between these published studies and the present experiments 

was that the stimuli others used were dynamic random-dot stereograms rather than the 

static random-dot stereograms employed here. 

4.5.2 Method 

a Subjects 

Four observers, who except AP were naive, participated in this study. All had normal 

vision. 

b Apparatus and stimuli 

The apparatus and stimuli were essentially identical to those used in 4.3.2b. However, 

there was no dichoptic nonius stimulus, and instead the percentage decorrelation of the 

decorrelated square was set at five fixed values. These values were 0 (no square), 4%, 

8%, 16% and 20% on the easy scale or 0 (no square), 2%, 4%, 8% and 10% on the hard 

scale. Note that these are the percentage of decorrelation. For the percentage 

correlation, they must be deducted from 100% i.e. a 4% decorrelation implies 96% 

correlation. 

c Design 

As in 4.4, the size of a decorrelated square was varied (0.4°, 0.8°, 1.6°, 3.3° or 6.7°). 

However, this time the dependent variable was decorrelation sensitivity thresholds. 

This was defined as the percent decorrelation in the square required for detection. 

d Procedure 

As in 4.3.2d, sessions consisted of 300 trials presented in four blocks. There were ten 
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trials in each condition, randomised across the sessions. Viewers were instructed to 

respond (with a mouse-button press) only if they definitely saw a square, so that the 

results could neatly be fitted with a cumulative normal from 0 to 100% response 

frequencies (rather than the 50% to 100% which would have been appropriate had the 

subjects been allowed to guess). In this way, the task equivalent of a 75% decorrelation 

detection threshold was obtained. 

4. 5.3 Results 

All observers had the lowest thresholds for a 0.8°-3.3° square, and less well when the 

square was either 0.4° or 6.7° wide. The function of decorrelation thresholds plotted 

against stimulus size was similar to that found for stereoacuity thresholds (3.1 ). To 

make a visual comparison more convenient, the stereoacuity data are shown alongside 

the decorrelation data for those subjects who completed both experiments (AP and EM 

in figure 4.5). 

4.5.4 Discussion 

The results confirm the hypothesis that decorrelation is integrated by the same 

mechanism as disparity, in the determination of perceptual as well as oculomotor 

outputs. This can be concluded from the similar functions for both stereoacuity and 

decorrelation 'hyperacuity' as target size is varied. As in the previous section, however, 

these results must be treated with caution because of the small number of subjects who 

participated in the experiment. Nevertheless, the trough at about 1.5° in the case of 

stereoacuity was supported by a volume of evidence on the spatial frequency selectivity 

to disparity modulation in stereoacuity, described in chapter 3. The similarity between 

the two functions, although qualitative, is striking. 
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4.5.4 Discussion 

The results confirm the hypothesis that decorrelation is integrated by the same 

mechanism as disparity, in the determination of perceptual as well as oculomotor 

outputs. This can be concluded from the similar functions for both stereoacuity and 

decorrelation 'hyperacuity' as target size is varied. As in the previous section, however, 

these results must be treated with caution because of the small number of subjects who 

participated in the experiment. Nevertheless, the trough at about 1.5° in the case of 

stereoacuity was supported by a volume of evidence on the spatial frequency selectivity 

to disparity modulation in stereoacuity, described in chapter 3. The similarity between 

the two functions, although qualitative, is striking. 
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Figure 4.5. Decoffelation thresholds with increase in size of a decoffelated square (% decorrelation 

threshold against size in degrees). For AP and EM, stereoacuity thresholds from figure 3.4 

)diamonds) are plotted alongside decorrelation thresholds (squares)(stereoacuity thresholds in arcmin 

against disparity disc diameter in degrees). 
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These results stand in contradiction with previous studies (Tyler and Julesz, 1978; 

Cormack et al., 1994) where the detection of decorrelation following a correlated 

interval, and correlation following an uncorrelated one, was found to be dependent on 

the number of elements (integrated both spatially and temporally) up to about 10000. 

Based on their results, decorrelation thresholds were expected to reach a saturation point 

with the 1.6° square, which consisted of 10000 elements. A number of explanations for 

this discrepancy between the present data and others' can be suggested. First, the 

elements used here were smaller ( 1 arcmin instead of 10 and 3 x 5 arcmin). Perhaps, 

therefore, the edge of the stimulus could not be resolved sufficiently beyond a certain 

eccentricity. The same explanation would also apply to the stereoacuity data, where 0.8 

arcmin elements were used. Another possibility is that decorrelation integration in 

dynamic random dot stereograms is subject to a different process from static integration. 

Further, and finally, as mentioned in the introduction the largest stimuli in the present 

study were bigger than any used by others, and therefore might have picked up a 

downturn in decorrelation hyperacuity beyond the scope of previously published 

studies. 

Although the theory of decorrelation detection using a stereo mechanism seems 

appealing, there may be other processes which can also be used to detect decorrelation. 

The ability to detect decorrelation in an entire field (Tyler and Julesz, 1978) apparently 

conflicts with the inability to perceive full field disparity change (Erkelens and 

Collewijn, 1985ab). However, we are able to perceive transparency between two 

disparity planes (see chapter 1 for references). A decorrelated field could be represented 

as multiple planes. Nevertheless, one would expect full field decorrelation thresholds to 

be higher than those for a decorrelation step. Such a difference has been found between 
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stereoscopic hyperacuity (for a depth step) and superresolution (for a thickening in 

depth) (Stevenson et al., 1989). No such decrement has been reported in the case of 

decorrelation. 

To conclude this chapter, an adaptive initial vergence response to decorrelation was 

found (4.1). This was first described in terms of monocular activity triggering a large, 

generally divergent, eye-movement that brought fixation to beyond Panum's area, 

perhaps as part of a search for interocular correspondence ( 4.2). However, the spatial 

integration for this response could more easily be described if the monocular activity 

was processed by coarse-disparity binocular neurones which were then pooled using the 

same integration mechanism as disparity vergence (4.3). The idea that binocular visual 

neurones are used to process monocular stimuli is explored further in the next chapter. 
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Chapter 5 

Visual direction and local disparity integration 

5.0 Abstract 

Ono ( 1991; Shimono et al., 1998) reported a difference in the perceived position of 

alignment between two dichoptic vernier targets located in the figure and background 

areas of a Julesz random-dot stereogram. His finding implies that monocular alignment 

across a disparity step is pulled in the direction of the shifted half-images. We tested this 

prediction in experiment 5.1. Stimuli were dense 8° cyclopean stereograms containing 

a single, central horizontal 11 ' depth step between two flat, abutting panels. A 

monocular vernier target consisting of two 29' vertical lines separated by 15' was in the 

centre of the image. The position of perceived alignment of this target was determined 

for 8 viewers using a forced-choice paradigm. There were two independent variables: 

the vernier target was presented to the left or right eye, and the top panel was behind or 

in front of the lower panel. The interaction between eye and depth profile was 

significant. The perceived alignment of the monocular vernier was shifted in the 

direction of the surrounding half-images by 1 '-6'. Monocular alignment is dependent 

on the surrounding binocular context. This conclusion is in contradiction with a simple 

local-sign account of vernier acuity, and with Hering's Laws of Visual Direction. 

However, our results and others' can be modelled in terms of the binocular neurones 

described by Ohzawa et al. (e.g. 1996). The topographic organisation of the visual 

cortex makes it ideally suited for the computation of alignment and visual direction. 

Experiment 5.1 suggested that the nonius procedure may give a misleading 

estimate of vergence, because of the role of disparity integration in the determination of 
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visual direction. Therefore, in experiment 5.2 we tested the accuracy of this method as 

used in previous chapters. Unlike the dichoptic nonius used by Ono (1991; Shimono et 

al., 1997) we used a brief ( 160 msec) dichoptic nonius which was subsequent to, and 

temporally distinct from, the presentation of a disparity target, to estimate vergence. A 

concurrent estimate based on the output of binocular dual-Purkinje trackers was also 

calculated. The subjective estimates correlated well (98%) with objectively measured 

vergence for two observers who responded appropriately to the disparity stimulus, and 

gave an indication of vergence error for a third subject, when the response to the 

stimulus was poor (72% correlation). We can conclude that the nonius method, when 

used carefully as in this thesis, can provide a viable estimate of initial vergence. What is 

more, the nonius method is not subject to the vagaries of eye-tracker operation and the 

tedious analysis of reams of data. These may be reserved for more complex tasks than 

the estimation of initial vergence. 

5.1 Is monocular visual direction computed by binocular neurones? 

5.1.1 Introduction 

Ono (1991) reported that dichoptic nonius lines presented in the figure and 

background areas of a Julesz random-dot stereogram aligned at different 'vergence' 

angles, although vergence eye-movements were precluded by the brief (lOO msec) 

stimulus interval. He also showed that the extent to which the lines had to be 

non-corresponding covaried with the disparity in the stereogram. As figure 5.1 

illustrates, the difference in alignment between the dichoptic nonius lines in the figure 

and background areas implies that the two monocular portions of each dichoptic vernier 

are themselves misaligned across the disparity step, when they are perceived to be 

collinear. 
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Figure 5.1 (Adapted fi·om Ono, 1991). 

Schematic representation of a Julesz 

random-dot stereogram showing the 

actual positions of two pairs of dichoptic 

non ius lines in the two eyes' half images. 

and their perceived positions in the 

combined image. 

This finding violates the first of Hering's (187911942) 'laws of visual direction' 

(0.4) explicitly, since the monocular visual direction of the dichoptic nonius lines does 

not transfer unaltered to the cyclopean eye, and implicitly, as the two lines in the right 

eye appear misaligned when they in fact have the same oculocentric direction, and 

conversely appear aligned when they do not. (The same is true of the two lines in the 

left eye). The laws of visual direction assign a unique monocular direction which 

should be unaffected by any binocular relationship. If the monocular misalignment is 

also large enough to fall outside the range of likely errors of judgment, it brings into 

question existing theories of vernier acuity. To accommodate the finding, the 

processing of monocular alignment must be subject to interaction with binocular 

processing, perhaps even computed in the same population of neurones. Ohzawa et al. 

(1996) recorded from a large number of binocular simple cells in cat V1 whose 

receptive field profiles in the two eyes make them suited to the first stages of calculating 

both binocular disparity and 2-dimensional form. Cooperative interactions between 

such neurones tuned locally to the stereogram disparity might explain why a monocular 

stimulus is shifted in the same direction as the monocular half-image of the stereogram. 

Shimono et al. ( 1998) explored in detail the effects of the spatial proximity of the 

dichoptic lines to the disparity stimulus. In his study, the monocular portions within 

each eye were widely spaced and although one was adjusted in relation to the other, the 
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details of these adjustments were not reported. 

We set out to quantify and model this monocular misalignment. 

5.1.1 Method 

a Subjects 

Eight subjects participated in this study. All except the author were naive as to the 

purpose of the experiment. All had normal or corrected to normal vision. Their report 

of normal binocular vision was confirmed by their ability to see the depth step present in 

the stimuli. 

b Apparatus and Stimuli 

Stimuli were 7.3° square 16-shade dense stereograms composed of0.73 arcmin random 

dots. There was a horizontal disparity step of 11 arcmin in the centre of the stereogram. 

Twenty such stereograms were stored in memory and presented in a random order, at 

either disparity profile. A vernier target consisting of two 29 arcmin long, 0. 73 arcmin 

wide maximum luminance bars separated by 16 arcmin was located centrally on one 

half-image of the stereogram. Small(< 0.73 arcmin) displacements of the vernier lines 

were effected using sub-pixel shifting (see chapter 3). Stimuli were calculated on an 

Ambra PC with a CRS VSG card and displayed on two EIZO Flex-6500 monochrome 

monitors, viewed through a modified Wheatstone stereoscope. The effective screen size 

was 25.5 x 34 cm, with a resolution of 768 x 1024 pixels. The mirrors were 25 x 20.5 

cm. The viewing distance was 155 cm (10 cm to the mirrors, and a further 145 cm to 

the monitors), such that each pixel subtended a visual angle of approximately 0.73 

arcmin. A mid-grey 7.3° square replaced the stimulus between trials. 
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c Design 

A separated monocular vernier was presented in the left or right eye. This was 

superimposed on a random-dot stereogram containing a cyclopean disparity step 

between the upper and lower halves of the screen. The direction of the disparity step 

was varied. 

right behind left behind 

0 0 

0 0 
I right infront I I left infront I 
Figure 5.2. Design of experiment 5.1 - monocular misalignment across a disparity step. 

d Procedure 

Each subject completed one session. Trials were presented in four randomised blocks of 

100. Overall, in every session 100 trials were presented in each of the four conditions, 

Each trial consisted of a fixation (approx. 1.3 s) while the stereogram was retrieved from 

memory, followed by a 100 msec stimulus interval. Concurrent staircases were used to 

142 



A. V. Popple Disparity Averaging Chapter 5 

estimate the perceived alignment of the monocular vernier in each condition. Viewers 

responded with a mouse-button press whether the top line was left or right of the lower 

line, and the position of the line was adjusted accordingly on the next trial in the same 

condition. Response frequencies at each angle presented were later fitted a cumulative 

normal function using probit, to determine the central tendency and hence the position 

of perceived alignment. 

5.1.3 Results 

As predicted, we found an interaction between the eye in which the vernier was 

presented, and the depth profile depicted. This interaction was statistically significant 

(f(1,7)=33.75,p=0.001), and visually compelling (see figure 5.3). In the pooled data 

from all eight subjects, this interaction crosses over the central line although most of the 

individual subjects show some bias in mean alignment away from the centre. These 

results confirm that the top line is perceptually shifted in the same direction as the 

surrounding stereogram half-image. 

The error bars on the individual data in figure 5.3 show 75% vernier acuity 

thresholds. These are quite wide (1-6 arcmin}, probably because ofthe short duration of 

the stimulus ( 1 00 msec ), the low contrast of the vernier target and the separation 

between the two lines ( 15 arcmin). (The effects of visibility and timing on vernier acuity 

were studied by Waugh and Levi in 1993). Despite this limited acuity, the error bars in 

many cases do not contain the point of zero misalignment. The misalignment therefore 

not only follows a regular pattern depending on the stimulus, but can also fall outside 

the normal acuity margins. 
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Figure 5.3 Results of experiment 5.1. Mean results for all 8 subjects are followed by the individual 

results. Positive values denote a shift to the left, negative a shift to the right. Error bars for individuals 

signify 75% vernier acuity thresholds. In ovemll data, error bars show standard deviation between 

subjects. Both across subjects, and for each subject, the interaction between eye and depth profile is 

clear. 
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In contrast, differences in alignment between the two eyes, and between the two 

depth profiles, although present in the individual data, showed no regular pattern across 

observers. The main effects of eye and depth profile were small and non-significant 

(see graph of pooled data). 

5.1.4 Discussion 

The results show that Hering's law I (the law of oculocentric direction) is invalid in the 

presence of binocular disparities. Lines that stimulate horizontally coincident regions of 

the retina can appear misaligned. This finding invalidates the notion that the visual 

direction of monocular objects is represented entirely by a population of monocular 

neurones, found only in the input layer of the primary visual cortex. Instead, we must 

accept that binocular interactions, either feeding back to the monocular layer or 

superseding its activity, determine the apparent directions of monocular objects. Similar 

results were recently described by Ono (Ono et al., submitted). 

145 



A. V. Popple Disparity Averaging Chapter 5 

Figure 5.4. To model the results, all we need is the assumption that both position and disparity are coded 

by the same population of cells. Left and right response profiles of the simple binocular 

neurones described by Ohzawa and Freeman ( 1996) are shown. These are phase-shifted gabors, 

however the same would hold for a shift in position. Any activity at the surrounding disparity 

will mean a shift from zero to the black (white) line is required for alignment in the left (right) 

eye. A similar distribution of disparity -sensitive cells is assumed at locations throughout the 

visual field, providing a population code for position as well as disparity. 
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Many experimental findings can be explained by the assumption that monocular 

localisation is effected by binocular neurones (figure 5.4). The dichoptic misalignment 

observed by Ono (1991; Shimono et al., 1998) is one. The 'capture ofbinocular visual 

direction' described by Erkelens and V an Ee ( 1997 ab) is also accounted for. Erkelens 

and Van Ee (1997ab) reported that a monocular line between two random-dot squares 

changing in disparity had to be given motion in the same direction as the monocular 

half-image of the dots to appear stationary, more than simply required to null the 

monocular component of the vergence eye-movements stimulated by the dots. Like 

Ono's findings, this result violates Hering's law IVb. The law describes the situation 

where a binocular object is the target of gaze, and lies on the 'common axis' which is 

the intersection of the 'visual axes' of the two eyes. An unfused monocular object is 

judged to deviate from the common axis by the angle subtended between the visual axis 

and the 'visual line' containing the object. This implies that a monocular object in the 

vicinity of a binocular one will have a visual direction equivalent to the monocular 

angle between the two objects. Excitatory interactions between cells tuned to the same 

disparity might account for violations of this 'law', and additionally for the decline in 

the effect of binocular disparity on monocular visual direction as the size of the gap 

between the two panels (Erkelens and Van Ee 1997ab) and around the dichoptic nonius 

lines (Shimono et al., 1998) was increased. 

Why is the obtaip.ed misalignment (approx. 3 arcmin) so much smaller than the 

disparity difference (approx. 20 arcmin) This can be explained by considering the 

response of neurones such as those illustrated in figure 5.4 to a monocular stimulus. In 

this case, activity would be distributed between the different disparities, and different 

locations, peaking broadly at zero disparity and the stimulus location in monocular 
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coordinates. With a combination of monocular and binocular stimuli, the activity would 

be a weighted mean between this and the response at stimulus disparity. The 'model' 

also accounts for the perceived location of different-contrast stimuli in the two eyes, 

whether they are fused (Mansfield and Legge, 1995) or unfused (Smallman and McKee, 

1995). With similar-contrast stimuli, activity will peak at stimulus disparity and mean 

direction weighted by contrast (in idealised form, this is like the quadrature model 

suggested by Mansfield and Legge). When the contrast of the monocular stimuli is very 

different, there will be a position peak at the location of the bright monocular stimulus 

(centred at zero disparity, consistent with the results of Smallman and McKee) and a 

smaller peak at the location of the faint stimulus. 

Excitatory interactions between disparity-tuned neurones bring to mind Marr and 

Poggio 's (1976) stereoalgorithm, mentioned in the introduction. The constraint of 

continuity was implemented in this algorithm by positing precisely such interactions. 

This algorithm has many disadvantages, however these have been resolved in more 

recent cooperative stereoalgorithms (e.g. Marshall et al., 1996) which would 

nevertheless account for the dichoptic and direction-capture results, providing it is 

assumed that the same population of neurones represents both depth and location. 

To account for our own fmdings, however, all that would be required is a large 

filter of the kind manifested by the simple cells of Ohzawa et al. ( 1996), which could 

blur the 0. 7 arc m in wide vernier lines with the surrounding binocular dots. At the 

location of the vernier, such cells tuned to the stimulus disparity will be more active 

than those tuned to other disparities (with some error introduced by the unmatched 

vernier lines), and the additional activity of these cells resulting from the higher contrast 

of the vernier line, integrated along the length of the line, might account for the 
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perceived location of the line. However, this more economical model cannot explain 

monocular dislocation when there is a large gap between monocular and binocular 

elements (Shimono 1998, Erkelens and Van Ee 1997ab). 

Indeed, the interactions proposed may well underlie stereoscopic depth perception, 

which requires relative disparity information (Erkelens and Collewijn, l985b ). 

However, the effect found in Erkelens and Van Ee's (1997ab) study shows that these 

interactions take place even when there is no perceived depth, that is when only absolute 

disparities are varied. Perhaps such enhancement of disparities plays a role in their 

spatial integration by secondary filters, which might differ in their surround properties 

between the coarse filters driving vergence and the tuned ones that determine 

stereoacuity (chapters 2, 3, see also Summary and Discussion). 

5.2 A comparison between subjective and objective estimates of initial 
vergence 

5.2.1 Introduction 

In the early chapters ofthis thesis (1 and 2), the Nonius method was used to estimate the 

angle of vergence of the two eyes. This method is termed subjective, because it relies 

on the subject's perceived alignment between two dichoptically presented lines. In 

contrast, an objective method uses a physical recording of the position of the eyes. The 

physical position of the eyes can be inferred from the apparent alignment of the nonius 

stimuli, only if Hering's Laws of visual direction (cited in 0.4) are correct. The 

accuracy of the subjective method has been questioned by many recent (Shimono et al., 

1998; Erkelens and Van Ee, 1997ab; Fogt and Jones, 1998) as well as older publications 

(Remole et al., 1985, 1986; Kertesz and Lee, 1987). Before that, large fixation 

disparities had been obtained using some objective methods, absent from the subjective 
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measurement (e.g. Tani et al., 1956) but not with other varieties of objective 

eye-tracking (Rashbass and Westheimer, 1960). The general finding that fixation 

disparities were subjectively reduced in some way, caused speculation that there may be 

a cortical fusional mechanism independent of oculomotor vergence, which could shift 

the apparent relative directions of the two eye's images much as vergence 

eye-movements would do (e.g. Schor, 1983). 

Many of the earlier studies of this issue are inherently flawed, either because 

subjective and objective measurements were not taken during the same trials (Remole et 

al., 1986) or because the objective position of vergence is inferred from monocular 

eye-tracking, and the subjective position inferred from monocular visual direction 

(Kertesz and Lee, 1987). However, the possibility of more than one nonius alignment 

position in the absence of eye-movements has clearly been demonstrated (Ono, 1991; 

discussed in 5.1). This makes it a potentially unreliable tool for measuring vergence. 

Additionally, variation in the visual direction of a monocular line does not consistently 

follow the objectively recorded position of that eye (Erkelens and Van Ee, 1997ab). In 

all these studies (except Kertesz and Lee) monocular stimuli were presented at the same 

time as binocular stimuli. Shimono et al. (1998), Erkelens and Van Ee (1997ab), and 

Remole et al. (1986) showed that monocular shift in the direction of the corresponding 

binocular half-images declined as the distance between monocular and binocular stimuli 

was increased. This finding indicates that there is a spatial integration of monocular 

fusional shifts. It raises concern about the nonius procedure employed in chapters 1 and 

2, as although the nonius was subsequent to the binocular stimulus such wide-ranging 

spatial integration (up to 8°, according to Erkelens and Van Ee) may reflect some 

temporal integration as well. 
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Therefore, the aim in this experiment was to validate the procedure for subjective 

vergence estimation used in chapters 1 and 2, against a simultaneous objective binocular 

eye-movement recording. Subjective and objective estimates of vergence were taken as 

a function of the disparity of a prior stimulus. If temporal integration of any monocular 

fusional shifts were taking place, the slopes of the two functions could be expected to 

differ, with a steeper slope (and less fixation disparity) in the case of the subjective 

estimate. 

5.2.2 Method 

a Subjects 

Three experienced psychophysical observers with normal or corrected to normal vision 

took part in this study. Only the author, AP, knew the purpose of the experiment. 

b Apparatus and stimuli 

As in previous chapters, stimuli were generated using a CRS VSG card on an Ambra 

486 PC, and displayed on two monochrome Eizo FLEX-6500 monitors viewed through 

a modified Wheatstone stereoscope which consisted of two large (20 x 25 cm)mirrors 

mounted at right angles. AP and EM viewed the monitors at a distance of 80 cm, 

whereas VB had a viewing distance of 110 cm. Two dual-Purkinje trackers (Fourward 

Engineering) recorded the positions of the left and right eyes, sending digital data to an 

Apple-Mac Quadra computer. Stimuli were 300 x 300 pixel fields of 200 1 x 1 pixel 

white dots, given a disparity of -40 to 40 pixels. The nonius stimuli consisted of 

horizontally abutting, central 1 x 20 pixel full-contrast vertical bars. A nine-point 

calibration consisting of 20 x 20 pixel crosses was used. The dimensions of the display 

were 25.5 x 34 cm, or 768 x 1024 pixels, giving a pixel size in visual angle of 1.4 

arcmin for AP and EM, and 1 arcmin for VB. 
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c Design 

Vergence was estimated subjectively and objectively at each of a number of different 

stimulus disparities. The stimulus disparities were 0 and ±7, 14, 21, 28 for EM, and, 

additionally 42, and 56 arcmin (approx.) for AP. VB was presented disparities ofO and 

±5, 10, 15, 20 and 25 arcmin. (Stimulus disparity 0 used to measure fixation disparity). 

d Procedure 

Each session began with a nine-dot calibration, after the eye trackers had been 

positioned. This was followed by 80 trials at a given disparity from the fixation plane, 

half with a crossed disparity and half with an uncrossed disparity (except, of course, 

when the disparity was zero). The order of trials in the two conditions was random. 

Each trial consisted of a 1 second fixation, while the stimulus was calculated off-line, 

followed by a 230 msec stimulus interval and finally a 160 msec nonius display 

succeeded by a blank screen while the viewer made his/her response. Response was a 

mouse-button press to indicate whether the top line was left or right of the lower line. 

The position of the lines on each trial was controlled by a staircase procedure, and 

response frequencies were subsequently fitted a cumulative normal using Probit (see 

chapter 1 for further details). At the end of each session there was a second calibration. 

Subjects completed a number of sessions in a single sitting, taking breaks as required. 

To obtain the objective vergence estimate, records ofhorizontal eye-position (fed to 

the Mac every 5 msec) were scaled according to the two calibrations. For each trial, the 

vergence movement between the averaged first 50 msec of stimulus onset, and the first, 

second and third 50 msec of stimulus offset were calculated. As with the subjective 

estimates, these were averaged over the forty trials with the same disparity. 
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5.2.3 Results 

Figure 5.5 contains vergence estimates for the different temporal intervals, and the 

subjective estimates. The constant difference between subjective and objective 

estimates is due to static fixation disparity, which cannot be measured objectively 

without tracking the actual position of the fovea. Looking at the change in vergence 

during the nonius interval (the three dark lines in figure 5.5), AP and VB continue to 

verge in the direction of the stimulus disparity, although there is some deceleration of 

the eye movement (visual inspection shows the gap wider between the first two intervals 

than the second two intervals). For EM, however, there is no such deceleration and his 

eyes continue to drift in a divergent direction regardless of the stimulus disparity. 

For each subject, the 'instant' of best correspondence between the two measures 

was used for further comparisons. This turned out to be the first 50 msec of the nonius 

stimulus for AP, the second 50 msec in the case of EM, and the third 50 msec for VB. 

The reason for subjects not basing their judgment on the first appearance of the nonius 

lines may be the visual suppression which occurs during vergence (Manning and Riggs, 

1984). This may be why only AP, who has the least difference in vergence between the 

three intervals, has the best correspondence between subjective and objective estimates 

during the first interval. However, it seems more likely that individual differences are 

due to observers using different response strategies to cope with any apparent motion of 

the lines. 
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Figure 5.5. Vergence measured subjectively (white line, crosses) is shown together with objective 

vergence estimates averaged over the different temporal intervals ( diamonds=stimulus offset to 

50 msec, squares=50 -100 msec delay, triangles=J00-150 msec delay). 

There was a close correlation between subjective and objective estimates of 

vergence at all the given stimulus disparities. This correlation was over 98% for AP and 

VB, who responded consistently to the stimulus disparity. EM diverged effectively to 

the uncrossed stimuli, but failed to converge when crossed disparities were presented. 

Nevertheless, there is a significant (p=0.03) 72% correlation between the subjective and 

objective measurements in his case, and it is the objective measurement that 

corresponds more closely to the stimulus disparity. However, correlation is not the 

appropriate measure if trying to see whether the slopes of objective and subjective 

responses are different. For a comparison of the slopes, see figure 5.7. 
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Figure 5.6. Subjective vergence estimates (open symbols) and objective vergence estimates (closed 

symbols) are plotted against stimulus disparity. To facilitate a visual comparison between the slopes, 

and the individual data points, the subjective and objective functions have been superimposed, as 

follows: The two measures were normalised to zero vergence at zero disparity, by subtracting a 

constant value. The constant subtracted from the objective measure is shown by the dark horizontal 

bar, the constant subtracted from the subjective measure is shown by the light horizontal bar. These 

constants are the respective fuation disparities, or responses to zero disparity, from the two measures. 

The error bars on the horizontal bars show the error associated with the vergence estimates at zero 

disparity. 
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In none of the subjects did a t-test between the two sets of data reveal any 

significant difference between their means (once static fixation disparity had been 

discarded). These results are illustrated in figure 5.6, where the data have been 

normalised to coincide at zero disparity. Because the objective measurement is 

vergence change, it cannot reflect any standing fixation disparity. Such standing 

fixation disparity, shown by the horizontal lines, was large in the case of AP (approx. 10 

arcmin) here as in the previous chapters. 

Visual inspection of figure 5.6, where error bars show 95% confidence intervals on 

each data-point, indicates that for AP and VB there were no statistically significant 

differences between the objective and subjective estimates in the range tested, the only 

exceptions being at approximately+ 30 arcmin (AP), and at -25 arcmin (VB). With EM, 

however, the two measures differed for crossed disparities such that the magnitude of 

vergence error was overestimated by the subjective procedure. 

The good correlation between subjective and objective vergence estimates does not 

preclude a difference in magnitude between the two as a function of stimulus disparity, 

although inspection of figure 5.6 suggests that the slopes are similar. To test this, 

however, the slope of the regression of subjective on objective measurements was taken. 

This was close to the predicted value of 1 for AP and VB, and did not differ 

significantly from 1 even in the case of EM, as figure 5.7 shows. Indeed, the slope for 

EM was considerably less than 1, showing that, if anything, the objective measurement 

increased more rapidly as a function of stimulus disparity than did the subjective one. 
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Figure 5. 7. The slopes of subjective against objective fixation disparity did not differ significantly from 

unity, although all were significantly correlated, as shown by this histogram (error bars represellt 95% 

confidence) 

A fourth way of representing the data is as an FVFD (forced-vergence: 

fixation-disparity) curve (Ogle, 1950). Figure 5.8 reveals underlying trends in the 

pattern of fixation disparity as a function of stimulus disparity. Although not directly 

relevant to the comparison between objective and subjective measurements, they show 

that the three observers come from two different sub-populations of this function. 

Whereas AP belongs to type-I, EM and VB tend towards type-m (Ogle, 1950). 
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Figure 5.8. The data from figure 5.6 have been replotted as fv:ation disparity(i.e. the discrepancy 

between vergence and stimulus disparity) against stimulus disparity. Here, data were not normalized. 

The gap between subjective (squares) and objective (diamonds) estimates is due to static fv:ation 

error, eliminated from the objective series because of the calibration procedure. Note, however, that 

the series are broadly parallel, and deviations fi"om parallelism do not always favour the subjective 

estimate( e.g. EM at large crossed disparities). 

5.2.4 Discussion 

The results show subjective estimation of vergence usmg the nonius procedure, as 

employed in chapters 1 and 2, to be unbiased in comparison with objective vergence 

measurement. They clearly demonstrate that the apparent direction of dichoptic lines 

flashed briefly in the absence of other stimulation is closely related to the physical 

position of the two eyes. These results are not in contradiction with extant criticisms of 

the nonius procedure (see introduction and 5.1), they merely specify that temporal 
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contiguity might be required for any fusional shift in monocular visual direction. The 

stimuli here differed from those used in chapters 1 and 2, where two disparities were 

presented at the same time. However, biases in monocular visual direction have been 

reported both for relative disparity (Ono, 1991; Shimono et al., 1998) and absolute 

disparity modulation (Erkelens and Van Ee, 1997ab). Therefore, there is no reason to 

suppose a difference between the two situations, at least in their influence on monocular 

localisation. 

There are a number of drawbacks to the present experiment. Only three observers 

participated, because of the difficulty of taking objective binocular eye-movement 

records from unpractised subjects they were all experienced psychophysical observers. 

There are four known categories of FVFD functions (Ogle, 1950) and the subjects here 

represented only two of these. It is possible that discrepancies between subjective and 

objective vergence are subject to individual differences dependent on these patterns. 

Indeed, Fogt and Jones ( 1998) presented data from six subjects, only three of whom 

showed the predicted discrepancy. Nevertheless, the results here pose a problem for any 

theory that this discrepancy is due to the influence of a monocular shift on the subjective 

data, as the only subject who diverged from correspondence between the two measures, 

actually recorded more accurate vergence in the objective than the subjective estimate 

(EM, see figs. 5.5-5.7). 

How can this slight divergence be explained? It is possible that, because trials were 

blocked in randomised sequences of crossed and uncrossed disparities, EM developed 

an uncrossed response-bias. The staircase procedure used in the nonius method, may 

have converged towards an uncrossed peak in his data at crossed disparities given their 

possibly bimodal distribution. The objective estimate was, however, based on the 
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average across trials and therefore would reflect the mean rather than the mode vergence 

across trials. Because the difference was significant at certain disparities, EM's data in 

other experiments were reviewed. In chapter 4, for example, unlike here, he provided 

considerable vergence change between conditions during a similarly blocked procedure. 

Therefore, perhaps the present results were due to fatigue or eyestrain resulting from the 

additional eye-tracking apparatus. (In the Purkinje tracker the stimulus must be viewed 

through a partially reflecting surface which bounces an infra-red beam onto the lens and 

back to a video camera and tracking device. This surface provides an inappropriate 

proximal vergence cue. Viewers are expected to ignore it by fixating the experimental 

stimulus instead, but some might conceivably get in the habit of diverging their eyes to 

overcome the misleading cue). 

The discrepant measures of fixation disparity, normalised in figure 5.6, give rise to 

a serious methodological criticism of this study. The subjective measurement indicates 

presumed divergence from the fixation plane, which may be static or reactive to the 

stimulus presented. Objectively, one can only measure reactive fixation disparity as the 

'static' component is eliminated by the calibration procedure. In this case, only 

vergence change during the stimulus interval was measured objectively, and hence 

clearly no underlying static fixation disparity was computed. However, even an 

absolute measure of vergence using the eye-trackers must rely on an assumption 

concerning the vergence position during the calibration procedure. Therefore, objective 

eye-trackers cannot be used to measure a stable static fixation disparity, only change in 

vergence. The only exception would be if it were possible to track the actual position of 

the foveas in the two eyes, and the torsional angle of the eyes. If this experiment were 

to be repeated, it would be preferable to take an analogous interval in the subjective 
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measurement. This could be done by preceding each stimulus with a nonius interval, 

and measuring the change in nonius alignment rather than its absolute position, in 

analogy with the objective measurement. This procedure was not used because the 

experiments in previous chapters ( 1, 2 and 4) had only a single nonius interval per trial, 

and similarly what was measured was the sum of static and reactive fixation disparities. 

In conclusion, and to lead back to chapter 1, nonius alignment can provide a viable 

estimate of oculomotor vergence. It is economical, and easy to use with untrained 

subjects. Providing no concurrent binocular stimuli are present, this subjective estimate 

of vergence is no different from an objective estimate obtained using two binocular 

dual-Purkinje trackers. However, when binocular stimuli are present monocular visual 

direction is affected (see 5.1), and this close relation between the two measures must 

break down. The continuum between these apparently contradictory results concerns 

the temporal rather than the spatial integration of disparities, and therefore lies outside 

the scope of this thesis. 
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How are disparities integrated? 

6.0 Summary 

The aim of this thesis was to study the spatial averaging of disparities in brief 

random-dot stereograms, using the two possible outcomes of vergence and perceived 

depth. To summarise the results, disparities were averaged over a large (at least 5°) 

region to determine the target for automatic, initial vergence (chapter 2). This 

integration took place between both overlapping and adjacent disparities (chapter 1). 

However, in both these chapters vergence was estimated using the nonius method, 

which, although validated in 5.2, still has many potential drawbacks, discussed in these 

chapters. Particularly where trials were blocked by condition, there was the potential 

for subjects to develop a fixation disparity appropriate to that condition, rather than 

change their vergence in response to the stimulus on each trial. Disparities were 

integrated over a smaller (1-3°) area to determine stereoacuity (chapter 3). A region of 

interocular decorrelation, which can be regarded as multiple matches at different 

disparities, was similarly integrated over a large area for vergence, but over a smaller 

area when decorrelation detection thresholds were studied (chapter 4). This result must 

also be qualified, as many observers, including the author, did not have a vergence 

response to decorrelation. Indeed, the small number of subjects in the experiments of 

chapter 4, and the large individual differences between them, preclude any firm 

conclusion concerning the processing of decorrelated stimuli. Instead, the results hint at 

an interesting and previously unreported phenomenon which might, if studied more 

appropriately, bring theoretical advancement to the topic of disparity processing. 
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Binocular combination and disparity summation were found to precede the 

determination of monocular alignment (chapter 5). 

In this chapter, theories of disparity integration will be examined (6.1 ), in their 

relation to the findings reported in this thesis (6.2). Following this will be some 

suggestions for further study (6.3), including suggested methodological improvements 

on the experiments of this thesis (6.3.5) and finally a conclusion relating to the issues 

raised in the introduction (6.4). 

6.1 Theories of disparity integration 

The main conclusion that can be drawn from this research is that vergence and 

stereoacuity result from differential spatial integration of disparities. There are three 

distinct ways in which this could be achieved. First, disparity detectors at increasing 

spatial frequencies, sensitive to decreasing disparities, might be responsible for the 

reduction in the pooling region from vergence to stereoacuity (Richards, 1970,1971; 

Marr and Poggio, 1978)(6.1.1). Put simply, large objects in one eye can be matched 

with large objects in the other eye, at large disparities to stimulate vergence. Smaller 

objects are only matched at smaller disparities, the finest giving stereoacuity. This 

theory is based on the linear processing of incoming luminance patterns. The second 

possibility is that non-linear monocular processing can be carried out over regions of 

different size prior to binocular combination (Wilcox and Hess, 1995)(6.1.2). In other 

words, the matching process takes in large windows for vergence and small windows for 

stereoacuity, regardless of the windows' spatial content. The third option is that the 

output of more or less linear primary binocular filters could be integrated by secondary 

disparity filters which selectively feed the resultant oculomotor and perceptual 

outcomes. This means matching large objects at large disparities, small objects at small 
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disparities, and then pooling the obtained disparities from all scales in different-sized 

pools (6.1.3). These three theories are discussed in the sections that follow. 

6.1.1 The linear model 

The first theory is the simplest. This linear model would put the point of departure 

between vergence and stereoacuity at the initial filtering stage. Incoming visual 

information is known to be filtered at a number of different spatial frequencies. Coarse 

filters might extract the large disparities governing vergence, while fine filters extract 

the small disparities of stereoacuity. This model is illustrated in figure 6.1. 

Marr and Poggio's (1979) model was based on the physiological presence of 

'tuned' and 'untuned' disparity detectors (Poggio and Fischer, 1977), which were 

likened to the fine and coarse disparity pools suggested by Richards ( 1970,1971 ). Marr 

and Poggio suggested that these were associated with high and low spatial frequency 

channels. They applied the principle of spatial-frequency analysis to disparity 

processing, achieving a reduction in matching noise. The rapid processing of low 

spatial frequencies of luminance modulation is assumed to lead to the rapid formation of 

a coarse-disparity map, which can be used to direct vergence. 
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V 1-------

Figure 6.1 . Illustrating the linear model. White lines show the right-eye 's stimuli and receptive fields, 

black lines the left-eye's. Low frequency, coarse-disparity filtering determines vergence. 

Vergence position feeds back into the disparity stimulus, nu/ling the mean disparity to enhance 

activity in the finer filters. 

Evidence of an association between disparity and luminance spatial tuning comes 

from the bandwidth of spatial frequency combination for disparity averaging (Rohaly 

and Wilson, 1994). Additionally, Smallman and McLeod (1997) showed that pedestal 

stereoacuity is limited by spatial frequency, consistent with the lack of large disparity 

representation in high frequency channels (see introduction and chapter 3 for further 

discussion of this paper). 

Marr and Poggio's (1979) theory does not specify a mechanism for the extraction 

of relative disparity, necessary for depth perception in all but the coarsest disparity 

channels (Ogle, 1950; Erkelens and Collewijn, 1985ab). 
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6.1.2 Non-linear monocular pre-processing 

According to the second theory, there is non-linear monocular processing prior to 

binocular combination (Hess and Wilcox, 1994; Wilcox and Hess, 1996). The 

non-linear channels are additional to the linear channels described in 6.1.1. One such 

scheme is presented in figure 6.2. 

lstereoacuity j V 
Figure 6.2. A model showing the spatial integration of disparities following monocular processing. The 

left and right images (indicated as in figure 6. 1) are filtered independently with non-linear 

summation prior to cross-correlation between the two eyes. Vergence and stereoacuity differ in 

the size of the cross-correlation matrix. 
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In I994 Hess and Wilcox showed that stereoacuity depends on the envelope size, as 

well as the spatial frequency, of a gabor target. They used a three-gabor task, where the 

disparity of the central gabor (a sine wave in a gaussian envelope) was modulated, and 

depth had to be detected. They argued that the results showed non-linear monocular 

preprocessing, similar to that evident in monocular alignment (Hess and Holiday, I992) 

which must precede binocular combination. This is physiologically plausible, as 

non-linear channels are evident in early visual processing (e.g. complex retinal parasol 

cells, which project to magnocellular layers of the LGN, and complex cells in VI; for 

further detail see introduction). The argument was furthered in 1996, when Wilcox and 

Hess demonstrated stereoacuity with interocularly uncorrelated noise patches; 

one-dimensional band-limited noise in a gaussian envelope. Linear channels would be 

unable to extract a disparity between such patches. Nevertheless, stereoacuity in this 

task was measurable, although thresholds were I 0 times higher than for correlated gabor 

patches. 

However, non-linear monocular processing is not the only possible explanation for 

their results. This is easily argued in the case of stereoacuity for binocularly 

uncorrelated patches. Such patches will have an average disparity equal to the envelope 

disparity. This can be calculated by working out all the chance matches between the 

linear elements of the display, that is cross correlating the left and right images, and then 

taking a central measure of the disparity distribution (mean, median or mode). 

According to this argument, the findings of Wilcox and Hess ( 1996) are not 

incompatible with the theory advanced in the next section (6.1.3 ). 

Wilcox and Hess (1996) also found that depth detection, although possible with 

either vertically or horizontally oriented noise carriers in the two eyes, failed when one 
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patch contained a vertical carrier, and the other a horizontal carrier. They explained this 

by means of orientationally tuned envelope extraction. A much simpler explanation is 

that the vertical and horizontal bars simply could not be matched to extract a mean 

disparity from linear binocular combination. Only one result fits their account better 

than the above alternative. This is that stereoacuity for uncorrelated patches, as a 

function of viewing distance, was identical to monocular vernier acuity. This, they 

suggested, was because the two use a common monocular envelope extraction process. 

However, vernier acuity is good for vertical-horizontal comparisons but poor for ±45° 

comparisons (Keeble and Hess, 1998). The opposite is true of stereoacuity, which 

breaks down for vertical-horizontal matches (Wilcox and Hess, 1996) but not for ±45° 

matches (Tyler, 1995). 

It could be argued that the envelope-size dependence described by Hess and Wilcox 

( 1994) reflects the effect of frequency of disparity modulation (see chapters 2 and 3 for 

details). Hess and Wilcox found stereoacuity thresholds decreased down to an envelope 

sigma of about 10 arcmin for the highest spatial frequency carrier they used (5.24 

cycles/deg.). As they were using a target-reference separation of 8 sigma, this is 

equivalent to a disparity modulation frequency of about 0.4 cycles/deg, similar to the 

value obtained by Rogers and Graham (1982). Interestingly, peak performance for 

lower frequency carriers was obtained with larger envelope sizes (and hence lower 

disparity modulation frequencies) showing an association between spatial frequency of 

disparity modulation and luminance spatial frequency (see previous section for a 

discussion of this topic). As in the previous section, the two alternative explanations 

cannot be distinguished using the spatially broad-band stimuli employed in this thesis. 

One suggestion for comparing them would be to vary the separation between the gabors 
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used by Hess and Wilcox, another to replicate Rogers and Graham's study with spatially 

filtered stimuli. 

Non-linear processing, although not necessary to explain the findings of Wilcox 

and Hess (e.g. 1996), might still take place prior to binocular combination. There is a 

multitude of stereo-phenomena related to Da Vinci stereopsis and occlusion (Nakayama 

and Shimojo, 1990; Liu et al., 1994), which are most easily explained by postulating 

monocular processing and interactions (Anderson and Nakayama, 1994; Anderson and 

Julesz, 1995). Occlusion relations are affected by left-right, temporal-nasal 

asymmetries, and matching occurs between junction elements distinguishable only 

monocularly. This provides strong evidence for the argument favoured by Wilcox and 

Hess (e.g. 1994), that complex (non-linear) monocular information is the substrate for 

binocular combination and matching. 

6.1.3 Secondary filters 

The third theory is that the outputs of initial filters are pooled, and perhaps recombined, 

by different-sized secondary filters. This approach uses the principle of noise-reduction 

from spatial frequency analysis, as Marr and Poggio did in 1979, but in the disparity 

domain and not the luminance domain (figure 6.3). The differences between disparity 

integration observed for vergence and depth outcomes can be attributed to differentially 

sized secondary filters for disparity, which are not necessarily tuned in the domain of 

luminance spatial-frequency. It seems probable that any such secondary filters would 

derive their input predominantly, but not exclusively, from similarly tuned primary 

filters, because they would carry less ambiguous information. 
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.....____V 

Figure 6.3. A model showing the spatial integration of disparities. Local disparity is obtained through 

linear, binocular filters, and subsequently filtered through different size (and depth) filters in the 

disparity domain to determine vergence and stereoacuity. 

Before accepting the scheme shown in figure 6.3, a number of arguments must be 

considered. There is evidence that luminance frequencies are combined prior to the 

determination of depth judgments. Westheimer ( 1998) found a stereoacuity advantage 

for broad-band over narrow-band visual stimuli. The binocular neurones described by 

Ohzawa et al. (e.g. 1996, 1997) were, however, spatial-frequency tuned. To explain this 

discrepancy, the role of such neurones in depth perception must be considered. Parker 

170 



A. V. Popple Disparity Averaging Discussion 

and Cumming ( 1997) showed that neurones in an alert monkey respond ambiguously to 

an ambiguous local disparity, unlike the animal who favours the disparity consistent 

with global cues. Additionally, they point out that although the neurones continue to 

respond when no relative disparity is present, depth perception is unavailable in this 

situation (Erkelens and Collewijn, 1985a). This discrepancy clearly demonstrates that 

perceived depth is not represented at the level of such single neurones. It is, however, 

possible that the pattern of activity across a population of binocular neurones, each 

tuned for disparity and spatial frequency, might correspond with our perceptions. If so, 

they may be encoded by cooperative computation among the neurones, and additionally 

or alternatively by a second layer of filters such as proposed here. 

Miles et al. ( 1997), following Parker and Cummings ( 1997) showed that vergence, 

like the cell responses, and unlike perceived depth, reversed for anti-correlated stimuli. 

How does single-cell activity affect vergence? One possibility is that vergence pools 

these cell responses summatively. The difference between vergence and stereoacuity 

could be in the nature of disparity pooling, with stereoacuity processed by smaller, 

subtractive filters. For a review of 'disparity receptive fields' for stereopsis, see Howard 

and Rogers ( 1995). 

Subtractive filters form the basis of image segmentation in the luminance domain. 

Such centre-surround cells are often used as edge-detectors in vision algorithms (e.g. 

Marr, 1982). The role of stereopsis in viewing random-dot stereograms is akin to 

breaking camouflage (Ames leaf room, Ogle, 1950). Subtractive disparity filters would 

form an ideal mechanism for cyclopean image segmentation. Vergence, in contrast, 

requires a single (absolute or continuous) signal. As this must be reasonably close to 
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the disparity of the attended or fixated target, an additive filter of limited extent could 

easily provide an adequate initial goal. 

Secondary filters for disparity have been found by Ohzawa et al. ( 1997) in the form 

of complex cells in V 1. Their output can be described as a function of the outputs of 

four or more simple cells, however there is as yet no physiological evidence of such 

hierarchical connections within V 1. These neurones remain tuned in the spatial 

frequency domain, making them unlikely candidates for the formation of global 

perceptual judgments. According to Ohzawa et al. ( 1997) they could play a role in 

solving the correspondence problem by matching local image segments beyond a single 

element. Secondary filters for form from motion have been found in MT (e.g. Tanaka et 

al., 1986). Hierarchical connections from V 1 to prestriate areas are well documented 

(for review see Zeki, 1993), and therefore these other areas are a more likely location for 

the secondary disparity filters proposed. 

6.2 Theories and thesis 

The way in which the three models can explain the findings presented in this thesis will 

be discussed in the next three sections. This discussion will follow the order in which 

the models were presented in the previous section. 

6.2.1 Disparity in different spatia/frequency channels 

According to this model, vergence has access to coarse luminance channels which can 

provide information about large disparities. This explains both the large integration area 

we found for vergence (chapter 2), and the averaging of transparent disparity planes 

(chapter 1 ). The vergence response to binocularly uncorrelated stimuli can also be 

accounted for (chapter 4). Stereoacuity, in contrast, is processed by the finest channels 

as these give the cleanest information about small disparities. That is reflected by the 
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smaller integration regton found for depth discrimination (chapter 3). Similarly, 

decorrelation discrimination is likely to rely on fine channels, when the scale of 

decorrelation is fine, as in chapter 4. 

Coarse processing precedes fine processing, and therefore vergence modulates 

subsequent analysis of disparities at higher spatial frequencies. Evidence of such 

modulation was found in chapter 3. 

Even the results of chapter 5 can be accounted for by this theory, providing we envisage 

sufficiently large filters for detecting the disparity step, which are still able to pick up 

the signal of the monocular lines. 

Without using spatially narrow-band stimuli, the Marr-Poggio model cannot be 

rejected. However, it is an unlikely explanation of differential disparity integration in 

our stimuli, which were composed of small random dots, as these have little energy at 

low spatial frequencies. 

6.2.2 Vergence from large non-linear filters 

Wilcox and Hess ( 1995) showed that Dmax for stereopsis, the maximum disparity that 

can be used to determine depth direction, depended on the envelope size of gabors, and 

was relatively unaffected by their spatial frequency content. A similar relationship might 

be predicted for vergence, which can also depend on the processing of large disparities. 

This is in contrast to stereoacuity, which was influenced more by the carrier spatial 

frequency, especially for narrow-band stimuli (Hess and Wilcox, 1994). 

The differential integration regions found in this thesis for vergence and 

stereoacuity might, therefore, reflect a difference not only in the underlying spatial 

frequency channel, but a difference between linear channels for stereoacuity and 

173 



A. V. Popple Disparity Averaging Discussion 

non-linear channels for vergence. Vergence might match the pattern of dots, extracted 

over a large area, between the left and right images. This explanation overcomes the 

problem of the limited availability of low frequency information from random dots, 

which was a drawback for the model described in the previous section (6.1.2). It 

accounts for the effect of envelope disparity on the perceived depth of gabors (Statham 

and Georgeson, 1998}, and similarly the effect of pedestal disparity on stereoacuity 

(chapter 3). Alternatively, the difference between the disparity integration regions of 

stereoacuity and vergence might be one of window size, rather than a difference 

between linear and non-linear channels. Both may be the result of monocular 

pre-processing, but over a small scale for stereoacuity and a large scale for vergence. 

There is some evidence against monocular pre-processing in this thesis. If 

considerable monocular processing takes place prior to binocular combination, it is hard 

to imagine why monocular alignment cannot be assessed veridically in the presence of a 

binocular disparity (5.1). The possibility remains, however, that binocular combination 

takes place inevitably after whatever monocular processing (including nonlinear 

envelope extraction), which stops short of relative localisation. 

6.2.3 Different sized secondary filters 

The first two theories described (the simple linear model, 6.1.1; non-linear monocular 

preprocessing, 6.1.2) cannot be rejected outright on the basis of the evidence presented 

in this thesis (see 6.2.1 and 6.2.2). However, the former seems unlikely because of the 

spatial frequency spectrum of the random-dot stimuli used here, and the latter seems 

unlikely because of the effect of binocular disparity on monocular alignment. This 

leaves the disparity tuning scheme (6.1.3) as the best candidate. 
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The empirical evidence presented in the different chapters supports the integration 

of disparities by secondary filters, possibly subject to non-linear interactions or feedback 

at the early stages of visual processing (chapter 5). These filters will differ in their 

spatial properties (at least in the cyclopean domain) for the two measured outcomes of 

vergence (chapters 1 and 2) and stereoacuity (chapter 3). However, vergence 

modulation serves to bring the finer filters into register, providing a reduction in 

matching noise (chapter 3). 

The complex binocular neurones described by Ohzawa et al. ( 1997) can be 

modelled as secondary disparity filters, that is they might result from a combination of 

the outputs of simple binocular neurones. It is hard to speculate, based on the properties 

of these neurones' receptive fields in cats, whether they could match the specifications 

for the secondary filters proposed here. The cells described are narrowly tuned in their 

disparity profile, but broadly tuned across spatial location. Therefore, although they 

might underlie the pooling of disparities for vergence, they could not account for the 

effect of disparity on apparent visual direction. 

As discussed in chapter 5, the large scale interaction of disparity and monocular 

visual direction (up to 4°, Erkelens and Van Ee, 1997ab) can only be explained by 

assuming excitatory interactions among neighbouring disparity-tuned neurones, or 

feedback from a secondary filtering process. The neural-network model that was 

referred to (Marshall et al., 1996) was similar to Marr and Poggions (1976) model (see 

introduction, 0.3), however it contained a third layer of surface-patch neurones. The 

model contained feedback from this layer to the disparity-detector layer, which could 

explain the far-reaching effects of binocular objects on monocular ones described in 

chapter 5. Surface patch neurones are secondary filters operating on disparities. For 
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further discussion of the relation between this model and the theory outlined here see 

6.3.1. 

6.3 Suggestions for further studies 

How might these different possible mechanisms of disparity integration be 

distinguished? One simple modification to the experiments reported here would be the 

use of spatially filtered stimuli, as has already been suggested. If disparity integration 

depended on a single linear filter, the removal of low spatial frequencies would have 

detrimental consequences on any response to disparity. This would not, however, be 

sufficient to distinguish between the second two theories (6.1.2 and 6.1.3). The 

large-scale spatial integration of high spatial frequency stimuli might be the result either 

of non-linear monocular processing or of secondary disparity integration. These two 

theories are harder to discriminate empirically. One possibility would be to create a 

stimulus where two different (linear) depths were presented in the same (non-linear) 

envelope, and examine whether transparency could be perceived. Using similar stimuli, 

one could determine whether vergence depended on the envelope disparity, or the 

contrast weighted mean of the two planes when their relative contrast was varied. This 

is the case for unbounded stimuli (Mallot et al., 1996). 

There are several research areas beyond the scope of this thesis which are relevant 

to the topic of disparity integration. Four will be discussed in further detail in the next 

few sections. These are as follows: 1 )Disparity gradients, slant and inclination 

perception. 2) Vertical disparities and differential perspective. 3)The dynamics of 

disparity processing. 4) The neurophysiological study of disparity processing. Finally; 

in 6.3.5, methodological improvements on the experiments reported in the thesis are 

suggested. 
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6.3.1 Disparity gradients, slant and inclination perception 

Horizontal disparity gradients define slant. Vertical disparity gradients define 

inclination. Howard and Rogers ( 1995) provide a comprehensive review of both. A 

model of 3D tilt perception was referred to in chapter 5 (5.1; Marshall et al., 1997). 3D 

tilt is a combination of slant and inclination. Disparity integration for depth perception 

serves two complementary purposes, the first is identify and locate differences in 

disparity, and the second is to discriminate patterns of continuity from the abrupt 

changes caused by surface boundaries. In this thesis, the emphasis has been on the 

former; however, the latter must also be considered in a complete account of disparity 

integration. The mechanism suggested in 6.1.3 could serve as a differencing operator to 

obtain a disparity gradient over the visual field, with subsequent grouping to give a 

representation of local tilt. Alternatively, primary linear disparities might be pooled 

directly by different tilted disparity receptive fields. To test this, tilt thresholds might be 

compared with appropriately oriented disparity grating stereoacuity thresholds (from 

horizontal for inclination to vertical for slant). The use of a differencing operator based 

on the modulation thresholds would limit tilt perception. 

6.3.2 Vertical disparities and differential perspective 

Vertical disparities are pooled over a large (20°) region to control vertical vergence, and 

unlike horizontal disparities the absolute signal in a small region, even without 

surrounding visual stimuli, is insufficient to drive a full response (Fang and Howard, 

1998). This difference may have developed because vertical vergence movements are 

required to correct any misalignment of the eyes, and the best estimate of this 

misalignment can be obtained from sampling the entire field. Horizontal vergence 

movements, on the other hand, are needed to selectively bring into correspondence the 

object that is the target of attention, leaving other parts of the field disparate. 
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Objects not equidistant between the two eyes will have a larger projection on the 

retina of the eye to which they are closest. This is termed differential perspective. Like 

vergence or absolute disparity, the pattern of vertical disparities can be used to estimate 

the viewing distance of an object. This estimate is used by the visual system to scale 

both size and depth (Rogers and Bradshaw, 1993). Such vertical disparity gradients are 

integrated over a region of up to 20° (Kaneko and Ho ward, 1995). 

Most points in the visual field have a disparity vector which is intermediate 

between horizontal and vertical (see example in introduction, 0.1 ). There is no 

evidence, however, that the angle of disparity is used by the visual system. Many 

models of stereo-matching use an epipolar constraint, that is they match horizontally 

only elements up to a certain limit of vertical disparity. This is equivalent to a vertical 

estimate of Panumns fusional area. It appears that the visual system computes depth 

using orthogonal axes of disparity, with the horizontal axis used for depth and 

horizontal vergence, and the vertical axis used for vertical vergence, differential 

perspective and cyclovergence (evidence for the latter is reported by Rogers and 

Bradshaw, submitted). 

The differential integration and processing of vertical and horizontal disparities 

might be hard-wired, or may have developed as a result of early visual experience. 

These two options could be distinguished by rearing animals with optically rotated 

visual fields, although the ethics of an experiment of this kind are questionable. Such a 

study would shed light on the plasticity of the pooling and implementation of horizontal 

and vertical disparities in vergence and depth perception, and also determine whether 

the use of orthogonal axes of disparity can be modified. 
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6.3.3 The dynamics of disparity processing 

All the experiments in this thesis have used brief, static stimuli to exclude temporal 

integration. Disparities are, however, integrated temporally as well as spatially both to 

improve static performance (Glennerster, 1996) and to obtain a dynamic experience of 

motion in depth (Harris and Watamaniuk, 1995) or a dynamic vergence response 

(Erkelens and Collewijn, 1985a). Such temporal integration may reflect the temporal 

properties of the spatial integration mechanisms already discuss, or might involve 

completely different mechanisms. 

Fang et al. ( 1998) replicated the spatial limitations described in chapter 2, using 

dynamic stimuli and measuring the gain in vergence velocity. They suggest that, at 

least for vergence, spatial integration is consistent for static and dynamic stimuli. 

However, recently Howard et al. ( 1998) showed that motion in depth could be obtained 

from dynamic stereograms which contained no static disparity. Interocularly 

uncorrelated, but temporally correlated patches (seen through an aperture) moved in 

depth in the direction of relative monocular motion. This could be achieved either by a 

mechanism which cross-correlates the monocular velocity signals (similar to 6.1.2), or 

by one that pools the change in disparity of randomly paired dots. The latter is 

compatible with the spatial pooling proposed in 6.1.3. This could be tested by 

investigating the spatial properties of the motion in depth phenomenon described by 

Howard et al., and also the spatial limitations of any vergence resulting from such 

stimuli. 

The effect of disparity on monocular visual direction (5.1) was found to be short 

lived (5.2). The decay of such effects must be studied to specify the temporal properties 

of disparity integration. In a visual environment where both observer and observed are 
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commonly moving, the spatiotemporal integration of disparities is necessary for the use 

of disparity information to compute depth, or to perform image segmentation. 

6.3.4 Neurophysiological studies 

Functional magnetic resonance imaging (fMRI) has provided useful information about 

the prestriate visual areas used in a variety of visual modalities, for example colour, 

motion and form (for review see Zeki, 1993). However, no area has been highlighted for 

processing disparity. Disparity sensitive neurones can be found in most visual areas, 

however so can neurones sensitive to the other modalities. One possibility is that this 

lack of positive findings reflects not a lack of imagination in the direction of performing 

image subtractions involving stereo, but a lack of interesting findings when disparity 

exclusive areas are extracted. This might suggest that disparity processing takes place at 

the earliest possible stages in the hierarchy (perhaps even V 1 or V2) before the other 

modalities are segregated. A review and meta-analysis of any such null findings could 

be useful. 

Additional support for this idea comes from the dearth of neuropsychological 

patients with specific deficits in disparity processing. Although such disturbances have 

been reported in the literature (Poppelreuter, 1917; Holmes, reprinted 1979) defects in 

stereoacuity and form from disparity often accompany other deficits, for example 

akinetopsia (Rizzo et al., 1995). However, the study of disparity processing would 

benefit if a patient were found with selective cortical stereo-blindness. Therefore, it 

may be useful to test potential patientsD stereovision selectively in different areas of the 

visual field, using measures of both acuity and cyclopean form perception. 

Our knowledge of disparity processing in the brain has grown through a number of 

studies using single-cell recording techniques (Poggio, e.g. 1991; Ohzawa, e.g. 1997). 
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So far, such studies have mostly addressed the disparity (and other) tuning properties of 

neurones in V1 and V2. These neurones are invariably sensitive to absolute disparity 

(Cumming and Parker;1997). Subsequent visual areas such as V4 and VS also contain 

disparity-sensitive neurones, and their tuning properties have yet to be investigated. 

Perhaps some of the latter might be selective for relative rather than absolute disparity, 

reflecting psychophysical data. 

6.3.5 Suggestions for methodological improvements 

The chapters on disparity averaging for vergence (chs. 1,2 and 4) use the nonius method 

of vergence estimation. This method is subsequently validated in chapter 5. However, 

the method, as used, has many drawbacks. Since only a single measurement is taken, 

nothing can be determined about the dynamics of vergence, so the results obtained may 

be due to adapatation of fixation disparities, rather than vergence change. There is no 

conclusive evidence that vergence change actually occurred. Additionally, the results 

may represent differences in vergence velocity, rather than the final state of vergence. 

To address these issues, it would be worthwhile to attempt a replication of the major 

findings using an objective eye-movement measuring technique, such as with the 

binocular dual-Purkinje trackers employed in chapter 5. 

In many cases (experiments 1.1, 1.2, 2.1, 2.2 and 4.1) trials were blocked by 

condition. This may introduce artefacts in the results, such as the adaptation of the 

fixation disparity, as already mentioned. These experiments in particular should be 

replicated using a randomised trial sequence. Then a comparison could be made to 

determine the effect (if any) of the order of the trials. 

As mentioned in the acknowledgements at the front of the thesis, most of the 

participants in the various experiments were the author's colleagues, friends and family, 
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who volunteered their time for little or no monetary reward. Often, only a few subjects 

could be found. Many of the experiments where there were fewer than five subjects, 

also revealed considerable individual differences. As already discussed in the relevant 

sections, these experiments should be explored further using a larger sample of 

observers. They include experiments 1.2, 2.2, 2.3, 4.3, 4.4, and 5.2. 

6.4 Conclusion 

The problem of seeing the world with two eyes was discussed in the introduction. 

HeringDs laws of visual direction were summarised. These geometrical rules, like the 

geometry of disparity processing, can be attributed to the way in which visual 

information from the two eyes is processed by the brain ( 5.1 ). The disparity between 

the images in the two eyes is not absolute, such that it could be corrected by appropriate 

vergence, but varies over the visual field because of the layout of surfaces in the 

environment. In this chapter, theories have been outlined concerning the way the brain 

deals with this variation - how disparities are integrated, to stimulate vergence and 

perceived depth. Presumably, the ultimate goal of such processing is to recover 

efficiently something of the environmental layout which caused the pattern of 

disparities, at least sufficient to respond to salient stimuli. To progress towards 

understanding how this goal is achieved, however, vergence and depth perception must 

be investigated using richer stimuli than in this thesis, such as those described under 

suggestions for further study. The relationship between neurophysiology and even the 

low-level mechanisms proposed here is still unclear. It is hoped that the discussion in 

the various chapters has shown how simple neural mechanisms might account for 

apparently elaborate computations, without the need to postulate symbolic abstracts 
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such as the visual angles Berkeley objected 'to in Desc(lrtes' account of binocular depth 

perception (Introduction). 

This 'thesis has addressed empitical,constructs of visual processing. A theoreticall:y 

unsurprising di£ference ih pooling regions for vergence and stereoacuity has been found 

(Chs, l-;3~ .and made to account also for responses to inter:ocul'ar decorrelation (Ch. 4). 

Chapter 5 shows, indirectly, that this integration of disparities ,takes place. surprisingly 

ewly in visual processing. 
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