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ABSRACT 

In SW England, a highly deformed and metamorphosed assemblage of ultramafic, mafic and 
granitic rocks is interpreted to represent a fragment of upper mantle and lower oceanic crust: 
the Lizard Ophiolite Complex. Although the processes involved in the tectonic and chemical 
evolution of mafic rocks and subsequent emplacement of this complex are well documented, 
the importance of the tectonic evolution of the peridotites is poorly constrained. Structural field 
mapping of deformed peridotites, ultramafic and mafic cumulates and amphibolites, combined 
with geochronological (sensitive high mass-resolution ion micro-probe), microstructural 
(optical microscope and universal stage) and geochemical (X-ray fluorescence, ICP-MS and 
electron microprobe) analyses undertaken as part of this thesis have identified evidence of four 
tectono-magmatic events, three of which occurred during the Early to Late Devonian. An 
earlier episode relates to a fragment of Ordovician basement that became tectonically 
incorporated within the basal structural unit of the Lizard Ophiolite Complex. 

A basement, and structurally lowermost unit, comprising granitic (MOWG) and 
layered meta-sedimentary and meta-basic (OLHS) rocks of earliest Ordovician age (-499-
488Ma) is interpreted as fragments of arc-type crust developed in an active magmatic arc 
during closure of an ocean basin (Rheic ocean?). 

Tectonic exhumation of mantle along extensional lithosphere-scale mantle shear zones 
in the Early Devonian or earlier (-397 Ma) may be responsible for the early tectonic evolution 
of the mantle section of the Lizard Ophiolite Complex. It is proposed that this may have 
occurred during asymmetric extension associated with continental breakup and oceanic rifting. 
During exhumation, the high-T and high-P mineral assemblage (-]200°C & 15Kb) of the 
Lizard peridotites progressively re-equilibrated to conditions of lower T and P (-919-1074°C & 
5-6Kb). High temperature (-900-1050°C) deformation of ultramafic and mafic Traboe 
cumulates is consistent with deformation and metamorphism of early formed oceanic crust in 
the hangingwall of the inferred shear zone, which may have been located at the base of the 
crustal sequence close to the Moho. 

The later evolution of a second generation of oceanic crust sequence shown by gabbro 
and mafic dyke intrusion in the early to middle Devonian (~ 375 Ma) primarily involved 
magmatism, but NE-SW directed extension of the oceanic crust may have been predominantly 
accommodated by low-angle ductile shear zones, suggestive of a magma-starved slow-
spreading ridge environment. 

Emplacement of the Lizard Ophiolite Complex took place during the Middle to Late 
Devonian (-390-366Ma). Top-to-the-NW thrusting facilitated decoupling of the mantle and 
emplacement over deformed and metamorphosed oceanic crust. During emplacement, 
widespread magmatism involved the intrusion of a mixed suite of felsic and mafic magmas that 
may well have been focused along the detachment surface. The geochemical characteristics of 
this suite of intrusive rocks suggests that initial emplacement of the Lizard Ophiolite Complex 
may have taken place in a subduction zone environment. Extensive, apparently extensional re­
activation of thrust contacts involved the development serpentine-filled fault zones. 

It is proposed that infiltration of volatile-rich melts during the early mantle deformation and 
exhumation along extensional shear zones could have led to significant localisation of strain 
and weakening of the upper mantle. The main evidence supporting this hypothesis being 
mylonitic peridotites that demonstrate confirmation of chemical enrichment as a result of melt 
impregnation. Weakening may have occurred by replacement of strong mineral phases e.g. 
pyroxene by weaker phases e.g. amphibole i.e. reaction softening, characterised by the 
development of mylonitic amphibole-bearing peridotites. It is concluded that this and other 
weakening processes may also be responsible for the development and enhancement of mantle 
shear zones in other ophiolite complexes and present-day oceanic lithosphere during oceanic 
rifting. 
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Introduction and terminology 

CHAPTER ONE 

I N T R O D U C T I O N AND T E R M I N O L O G Y 

1.1. Introduction. 

It is well established in the literature that ophiolites usually represent fragments of 

lithosphere, which have become detached from their oceanic substrate and tectonically 

emplaced (or obducted) onto a continental margin. During the past three decades, a 

great deal o f research has been dedicated to ophiolite complexes. These studies were 

primarily concerned with comparisons between present-day oceanic rocks and 

ophiolites. Nowadays, it is recognised that ophiolites provide an ideal opportunity to 

directly investigate the nature o f magmatic and tectonic processes operative in the 

lowermost crust and upper mantle o f oceanic lithosphere. This includes the generation 

o f oceanic crust at mid-ocean or arc spreading centres and also the subsequent closure 

of ocean basins and emplacement o f ophiolite complexes. Peridotites are one of the 

major rock types o f oceanic/ophiolite complexes. 

The purpose o f this chapter is to outline the nature and occurrence of peridotites 

and introduce the processes related to the construction and subsequent tectonic 

emplacement o f ophiolite complexes. The objective and layout for the remainder of the 

thesis is presented at the end o f this chapter. 

1.2. Peridotite classification, terminology and occurrence 

Both composition and texture provide the basis for classification o f ultramafic rocks 

referred to in the text, with textural terms being used as a prefix for classifications 

based on the composition o f ultramafic rocks. In the following sections, the various 

classification schemes for ultramafic rocks relevant to this thesis are presented. This is 

followed by a brief outline o f the nature and occurrence o f peridotites from different 

tectonic environments. 
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1.2.1.a. Composition 

Classification follows lUGS recommendation (Le Maitre et al. 1989) and conforms to 

the BGS Rock Classification Scheme (Gillespie & Styles, 1998). Compositional 

classification of ultramafic rocks is based on the relative proportions of olivine (OL). 

orthopyroxene (OPX) and clinopyroxene (CPX) (Figure 1.1). These terms may be 

qualified by a prefix based on the main accessory phase: plagioclase, spinel, garnet or 

hornblende. 

harzburgite 

ol i \ itic orlhopyruxcnilc 

orlhopyroxcnilc 

duni lc 

Pcndomcs 
wchr Uc 

I h c r / o l i t c 

olivine webstente olivine elinopyroxcnitc 
ryroxcnilcs 

clinopyroxcnitc 
webstenle 

O P X 10 90 C P X 

Figure 1.1. Classification of uitramafic rocks based on the proportions of primary 
mineralogies (modified after Le Maitre et al., 1989). 

1.2.1.b. Textures 

The nomenclature ascribed to classification o f peridotite textures is extensive. Early 

classifications o f textures o f peridotites were mainly concerned with peridotite 

xenoliths in alkali basalts and kimberlites (Mercier and Nicolas, 1975; Harte, 1977; 

Pike and Schwarzman, 1977; Mercier, 1985). However, the application of these 

xenolith-based classifications of peridotite textures to peridotites in ophiolites is 

diff icult (Suhr, 1993). The deformation history suffered by ophiolitic peridotites is very 

different from peridotites in xenoliths, and hence different textures are present in 

ophiolitic peridotites. Mercier (1985) has proposed a classification for peridotites from 
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both ophiolite massifs and xenoliths. Nicolas et al. (1980), Nicolas (1986) and 

Ceuleneer et al. (1988) provide textural classifications specifically for peridotites from 

ophiolitic massifs. A limitation o f the classifications o f ophiolitic peridotites is that the 

terms asthenospheric microstructure and lithospheric microstructure were introduced 

(Nicolas et al., 1980; Nicolas, 1986; Ceuleneer et al., 1988). The term asthenospheric 

microstructure refers to microstructures that were developed at very high temperature 

and low stress deformation conditions. These are supposed to be related to the 

spreading phase in ophiolite development (Suhr, 1993). Lithospheric microstructures 

refer to microstructures which were developed at lower temperature, and higher stress 

deformation conditions that are supposed to be related to the emplacement of the 

ophiolites (Suhr, 1993). The use o f these terms therefore has direct genetic implications 

for the geodynamic environment in which the textures were developed and in some 

examples these implications are difficult or impossible to justify (Suhr, 1993). 

None o f these classifications are adequate to be used individually to sufficiently 

describe the textures observed in ophiolitic peridotites. Therefore a classification based 

on the terminology adopted by Bailey (1997) is utilised in this study. The principal 

textural types are in order o f increasing strain: coarse granular, coarse-grained 

porphyroclastic, fine-grained porphyroclastic, mylonitic and fluidal. Following the 

classification o f Bailey (1997) two subtypes, equidimensional mosaic and 

equidimensional tabular are used to describe the matrix fabric. For comparison, all of 

these textural types (except the fine-grained porphyroclastic texture) are shown in 

Figure 1.2A-F. This scheme incorporates . textural terms used in the 

classificafions o f Mercier and Nicolas (1975), Mercier (1985) and Girardeau and 

Mercier (1988). The scheme adopted by Bailey (1997) places an emphasis on 

descriptive rather than genetic elements and consolidates the various classification 

schemes, which were produced in parallel by other authors (see above), therefore 

causing confiision in the literature. The classification presented here differs from that o f 

Bailey (1997), in that his porphyroclastic texture has been subdivided to include 

coarse-grained porphyroclastic and fine-grained porphyroclastic textures. 

Coarse-granular (Figure 1.2A) (Boullier and Nicolas, 1975; proto-granular o f 

Mercier and Nicolas, 1975; or coarse o f Harte, 1977): This term describes a coarse­

grained (2-4 mm) rock that lacks porphyroclasts. These textures are the oldest 
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preserved in xenoliths and hence are considered essentially pre-deformational. The 

constituent crystals have almost no elongation, and the rocks are devoid of any 

Figure 1.2. Classification of peridotite textures. A. Coarse granular texture; olivine: blank, 
except for dotted lines that represent kink-band boundaries. Orthopyroxene: dashes aligned 
parallel to the (100) plane. Clinopyroxene: random dashes. Spinel: black (from Mercier & 
Nicolas, 1975). B. Coarse-grained porphyroclastic texture. Shading scheme as above (from 
from Mercier & Nicolas, 1975). C. Mylonitic texture, (from Bailey, 1997). D. Fluidal 
microstructure. Olivine: blank and completely recrystallised. Orthopyroxene: dotted. ( 
Bailey, 1997). E and F. Equigranular mosaic and equigranular tabular respectively. Shading 
scheme is the same as that used for A and B (from Mercier & Nicolas, 1975). 
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foliation or lineation. The constituent crystal phases, particularly olivine and 

orthopyroxene, may show minor recrystallisation along grain boundaries, which may 

be straight, curvilinear or slightly irregular. Other evidence for minor deformation 

includes the presence of kink-bands (KB) in olivine crystals. The crystallographic 

fabrics in olivine and orthopyroxene are weak (Mercier and Nicolas, 1975). 

Coarse-grained porphyroclastic (Figure 1.2B) (Boullier and Nicolas, 1975; 

Mercier and Nicolas, 1977; Pike and Schwarzman, 1977; Harte, 1977; Nicolas et al, 

1980; Mercier, 1985): A porphyroclastic texture is transitional from a coarse-granular 

texture and this transition is identified by the appearance of porphyroclasts (Harte, 

1977). Porphyroclasts are coarse (500-5000 fj,m), relict strained crystals, which are 

heavily kinked and often have recrystallised rims. Porphyroclasts are surrounded by a 

matrix of fine-grained (100-500 ]xm), recrystallised strain-free grains (neoblasts). 

Porphyroclasts, which are predominantly orthopyroxene, are generally flattened and 

elongate, and therefore define a moderate foliation and lineation within the rock. Spinel 

displays a characteristic 'holly-leaf form which is indicative of post-kinematic growth 

(Mercier and Nicolas, 1975) and are flattened parallel to the porphyroclasts within the 

foliation plane. Olivine and orthopyroxene display strong crystallographic fabrics. 

Fine-grained porphyroclastic (not shown) (Nicolas et al., 1980): The fine­

grained porphyroclastic microstructure is transitional fi-om the coarse-grained 

porphyroclastic microstructure. This transition is characterised by a reduction in the 

abundance of porphyroclasts and a decrease in the grain size of the porphyroclasts 

(100-500 fxm) and matrix grains (40-400 ^m). Porphyroclasts are predominantly 

composed of orthopyroxene and are significantly more flattened and elongate than 

porphyroclasts present in the coarse-grained porphyroclastic microstructure. These 

porphyroclasts define a well-developed foliation and lineation within the rock. Spinels 

also display a 'holly-leaf form. Olivine and orthopyroxene possess strong 

crystallographic fabrics. 

Mylonitic (Figure 1.2C) (Girardeau & Mercier, 1988): The mylonitic texture is 

transitional from a fine-grained porphyroclastic microstructure. Mylonitic textures 

possess a strong foliation and lineation defined by elongate pyroxene porphyroclasts. 

This texture is characterised by pervasive recrystallisation and a smaller matrix grain 
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size (<100 |xm), which often develops an equigranular mosaic microstructure (see 

below). Olivine and clinopyroxene are normally completely recrystallised into fine­

grained neoblasts, which have a heterogeneous grain size distribution (Nicolas et al. 

1980). Spinels are commonly drawn out into irregular shaped elongate aggregates with 

fine-grained tails of spinel adjacent to larger grains. These aggregates define a foliation 

and lineation within the mylonitic peridotite. 

Fluidal (Figure 1.2D): Bailey (1997) defines the fluidal texture as foUows-

"The term 'fluidal' is applied to a specific mylonitic texture in which thin (<0.03mm) 

lamellae of intensely recrystallised, monominerallic material (<0.01mm) define a 

discontinuous foliation that is connected with porphyroclasts of the same material. The 

matrix is also very fine-grained (<0.01mm) and predominantly displays an 

'equigranular mosaic' texture (see below). Fluidal microstructures are interpreted as 

results of very high strains (>1000%) and are invariably correlated with superplasticity 

(Boullisr and Nicolas, 1975; BouHi er and Guegen, 1975; Drury et al., 1990)". 

Equigranular (Figure 1.2E-F) (Mercier and Nicolas, 1975; equidimensional 

mosaic of Pike and Schwarzman, 1976; Harte, 1977; Mercier, 1985): This textural type 

is divided into two subtypes based on microstructural observations. In the xenolith 

classification schemes, these textures are considered to be a separate textural type. 

However, in the present scheme, they are referred to as a sub-type, because they are 

only ever observed in the matrix of fine-grained porphyroclastic and mylonitic textural 

types (Bailey, 1997). Equigranular mosaic (Figure 1.2F) describes a matrix texture 

which is fine-grained (<0.07mm), in which olivine, orthopyroxene and clinopyroxene 

are equidimensional, of relatively constant grain size, and in which crystallographic 

fabrics are weak. Grain boundaries are commonly straight and converge at triple points 

defining a polygonal texture (Bailey, 1997). Equigranular tabular (Figure 1.2G) 

textures area also fine-grained, but differ in that they are characterised by parallel, 

tabular, grains that define a foliation and occasionally weak mineral lineation (Bailey, 

1997). 
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1.2,2. Oceanic ultramafic rocks 
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Figure 1.3. Idealised velocity-depth profile for the oceanic crust (adapted from Gass (1980) 
and Fowler(1993)-from Bailey, 1997). 

Ultramafic rocks occur in the lower oceanic crust and the upper mantle of generalised 

oceanic crust. The upper mantle, composed of peridotite, is often termed Layer 4 in 

idealised velocity-depth profiles for oceanic crust (Figure 1.3). Ultramafic rocks also 

occur in Layer 3, the oceanic layer, which is predominantly composed of gabbro and 

ultramafic cumulates. The boundary between layers 3 and 4 may be defined by 

petrological or seismic criteria (Figure 1.3). The seismic Moho is a transition from 

crustal rocks to ultramafic rocks, based on the changes in seismic velocities. The 

petrological Moho is the boundary between ultramafic cumulates, precipitated from 

melt, and underlying deformed, residual upper mantle. 

Peridotites are exposed on the sea floor in one of four geodynamic environments 

(Bonatti & Hamlyn, 1981): 

• Relatively young crust associated with mid-ocean ridges. 

• Crustal sections exposed along transform faults with large offsets (> 100km). 

• Crustal sections exposed in subduction-related trenches and forearc regions. 

• In regions associated with pre-oceanic rifts and continental margins. 
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Peridotites from these environments are usually strongly serpentinised and are 

tectonically exposed at the sea floor along faults as serpentinite protrusions. For 

detailed discussion of the characteristics of peridotites from these different geodynamic 

environments the reader is referred to the review compiled by Bonatti and Hamlyn 

(1981). 

1.2.3. Continental ultramafic rocks 

Two groups of upper mantle rocks are available for direct study and sampling in 

continental regions. The first group includes xenoliths of subcontinental upper mantle, 

which have been carried to the surface by basalts or kimberlites. A second group 

comprises relatively larger fault-bounded units of upper mantle emplaced within the 

continental crust during orogenesis. Peridotites of this second group exposed in 

orogenic zones are invariably serpentinised and termed v4//7/>?e-type (e.g. Thayer, 1960; 

Coleman, 1971) and may be sub-divided into three groups: (1) ultramafic units within 

obducted fi-agments of oceanic lithosphere (e.g. ophiolites), (2) peridotites exhumed 

along mantle shear zones and emplaced into continental crust (e.g. Ronda massif), (3) 

serpentinites situated along fault zones. 

1.2.3.a. Ophiolitic ultramafic rocks 

Better known ophiolite complexes throughout the world include the Oman (Pearce et 

al., 1981), Bay of Islands, Newfoundland (Williams, 1973), Vourinos Complex, Greece 

(Moores, 1969) and Troodos Complex, Cyprus (Gass, 1968). Ultramafic rocks are 

characteristic of the lowest parts of these obducted ophiolite complexes. The 

stratigraphy observed in ophiolites is broadly similar to that suggested for present-day 

oceanic crust (Section 1.2.2). Early studies of ophiolites suggested that they were 

developed at mid-ocean ridges. However, recent studies (e.g. Alabaster et fl/.,1982; 

Pearce et al., 1984) have demonstrated that the majority formed in a supra-subduction 

zone environment. This is a region above a subduction zone where arc, back-arc and 

fore-arc magmatism occurs (Elthon, 1991). These interpretations are based primarily on 

the geochemical composition of lavas and cumulates in ophiolites, which are very 



Introduction and terminology 

different to mid-ocean-ridge basahs (MORB), but comparable to rocks found in supra-

subduction zone environments. Interpretation of the origin of an ophiolite body has 

important implications for regional tectonics and obduction models. 

Peridotites occur as layered ultramafic cumulates in the crustal sequence and 

tectonised spinel or plagioclase-bearing harzburgite or Iherzolite in the mantle 

sequence, which forms the lowermost section of ophiolites. Coleman (1977) proposed 

that the manfle sequence represents residual upper-mantle after partial melting and that 

the overlying cumulates formed by fractional crystallisation of magma derived from the 

mantle section. 

Geochemical and petrological studies of peridotites from ophiolites have been 

primarily concerned with unravelling the complexities of melt segregation processes in 

the upper manfle (e.g. Ozawa, 1994 and references therein). These studies have 

focused on mantle heterogeneites, which probably reflect differences in the degree of 

melting, spatial variations in source composition, variations in the efficiency of melt 

extraction and variations in the amount and composition of melt fluxing through the 

mantle section (Ozawa, 1994). Mechanisms of melt-rock interaction and metasomatism 

of peridotites have also been addressed by geochemical and petrological studies 

(Menzies and Dupuy, 1991 and references therein). 

Structural studies of peridotites from ophiolites (e.g. Nicolas, 1989; Peters et 

al., 1991) have dealt with two aspects of the evolution of ophiolites. Earlier processes 

took place in the upper mantle near to ancient spreading centres while later tectonic 

processes took place during obduction. Detailed studies of the mantie flow patterns 

(mantle fabrics) and peridotite textures in ophiolites have demonstrated that these can 

be related to mantle upwelling beneath spreading centres (e.g. Nicolas et al., 1988; 

Ceuleneer et al., 1988; Boudier & Nicolas, 1995). This type of study has important 

implications for the generation of oceanic lithosphere and plate tectonics. Ceuleneer et 

al. (1988) demonstrated that particular mantle flow patterns distinguish between 

different types of spreading centres, e.g. fast or slow-spreading ridges or transform fault 

zones. More recently, several authors have proposed that peridotite mylonites and 

shear-zone structures in a few ophiolites record the uplift of mantle and rifting during 

continental breakup and the opening of an ocean basin (Drury et al., 1990; Hoogerduijn 

Strating et al., 1990; Vissers et al., 1991). Other sftidies (Nicolas et al., 1980; Girardeau 

& Nicolas, 1981) have shown that basal peridotite mylonites in ophiolite complexes 

were developed during early thrusting of the oceanic lithosphere during obduction. 
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These basal mylonites are superimposed over the earlier spreading-related fabrics 

(Figure 1.4). Basal peridotite mylonites are in structural and kinematic continuity with 

underlying high-grade metamorphic rocks. These metamorphic rocks have been 

interpreted as dynamothermal aureoles or metamorphic soles caused by overthrusting 

of the mantle rocks (Church & Stevens, 1971; Williams & Smyth, 1973; Malpas et al., 

1973). It has been shown that dynamothermal aureoles represent oceanic crustal 

lithologies highly metamorphosed and deformed during thrusting in the oceanic 

environment (Malpas, 1979; Jamieson, 1980, 1981, 1986; Searle & Malpas. 1980). 

Metamorphic soles develop from a combination of residual heat in the overlying 

ophiolite and limited shear heating generated during obduction (Hacker, 1990,1991). 
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Figure 1.4. Schematic cross-section through the lower part on an ophiolite sequence showing 
obduction related structures (S'l) superimposed on spreading related structures (Si). (SM) is the 
cumulate layering (from Boudier et al., 1982). 
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1.3. Structural terminology 

A key factor in structural analysis is to recognise the conditions responsible for 

deformation and to establish the mechanisms that facilitate deformation. The purpose 

of this section is to review natural deformation processes, with particular reference to 

the mineral olivine, which forms >50% of peridotite. For a more detailed discussion of 

deformation mechanisms in natural rocks the reader is referred to a detailed review by 

Knipe (1989) on which the following text is largely based. 

1.3.1. Deformation mechanisms 

Deformation in rocks is accomplished by a whole host of processes that operate at the 

scale of individual grains (Passchier & Trouw, 1996). These processes depend on 

lithological and environmental variables including mineralogy, grain size, temperature, 

pressure, strain rate, fluid activity, etc (Figure 1.5). Combinations of these factors 

control which grain-scale material processes are operative and therefore which 

deformation mechanisms are involved. Three different groups of deformation 

mechanisms that operate in rocks can be defined (Knipe, 1989): 

• Fracture, frictional grain-boundary sliding and cataclastic flow 

• Diffiisive mass transfer 

Crystal plastic flow 
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Figure 1.5. Flow diagram showing the inter-relationships between lithological and 
environmental controls and material behaviour during rock deformation (from Knipe, 1989). 
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In general, no single deformation mechanism operates alone, and in addition to the 

variables introduced above, activation of one mechanism will influence the operation of 

others (Williams et al., 1994). 

1.3.1.a. Fracture, frictional grain-boundary sliding and cataclastic flow 

Deformation by these methods involves the creation of new surfaces, loss of cohesion 

due to fracturing, and frictional sliding along grain boundaries and surfaces within the 

rock (Knipe, 1989). 

Fracture processes involve the displacement along cracks that have nucleated 

and propagated during deformation. 

Frictional grain-boundary sliding involves sliding of grains past each other, 

where individual grains remain essentially undeformed and act as rigid bodies. Sliding 

occurs when the cohesion and friction strength between grains is overcome. Frictional 

grain-boundary sliding is distinguished from high-temperature grain-boundary sliding, 

where sliding is controlled by difftision or defect movement along grain boundaries and 

cohesion is not lost. 

Cataclastic flow is accomplished by mechanical fragmentation of a rock, due to 

fine-scale fracturing, movement along fractures and the subsequent sliding and rotation 

of fragments (Passchier and Trouw, 1996). The conditions responsible for cataclasis 

depend on the type of mineral involved and on fiuid pressures; high fluid pressure 

promotes cataclasis (Passchier and Trouw, 1996). These processes are also generally 

favoured by low temperatures and high stresses. Cataclasis of rock is differentiated 

from deformed and recrystallised rocks by a lack of grain shape-preferred orientation, 

grains with angular outlines and straight sharp boundaries (Passchier and Trouw, 1996). 

1.3.1.b. Diffusive mass transfer (DMT) 

DMT involves the transfer of material away from zones of relatively high intergranular 

normal stress, or a source, to sites of low normal stress, or a sink (Rutter, 1983; Knipe, 

1989). Variations in the chemical potential of a rock aggregate created by internal 

stress differences (Wheeler, 1987), fluid pressure gradients (Etheridge et al., 1984) or 

changes in the internal strain energy of grains (Wintsch and Dunning, 1985), are the 

12 
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mechanism(s) responsible for driving DMT. Several migration processes or solid-state 

diffusion creep processes facilitate diffiasion mechanisms. The two basic types are: 

Coble creep which operates by diffusion of vacancies in the crystal lattice along grain 

boundaries and Nabarro-Herring creep, involving diffusion of vacancies throughout 

the crystal lattice (Passchier and Trouw, 1996). DMT is likely to dominate in fine­

grained material, high temperatures for solid-state, in the presence of a fluid and prefers 

low stresses and strain rates. However, the influence of fluids and grain size on the rate 

of diffusion mean that deformation mechanisms controlled by DMT can occur at low 

temperatures in the crust. Characteristic microstructures of DMT include those related 

to redistribution of material e.g. styolites, differentiation during crenulation cleavage 

development where quartz or carbonate migrates. Other microstructures include those 

which preserve evidence of the mass transfer path involved^ e.g., presence of reaction 

products along selected grain boundaries and the occurrence of overgrowths and 

pressure shadows (Knipe, 1989 and references therein). 

I . 3 . I . C . Crystal plastic flow 

Crystal plasticity involves the accumulation of strain by intracrystalline processes, such 

as the movement of dislocations (linear lattice defects) and twirming (Barber, 1985). At 

low temperatures (<0.5 melting temperature), deformation is preferentially 

accommodated by dislocation glide, where dislocation movement is restricted to be 

along slip planes (Knipe, 1989). During deformation at these temperatures, dislocations 

become locked and thus dislocation tangles are formed, and this inhibits ftirther 

dislocation motion. The increase in resistance to straining which results from the 

resistance to motion is referred to as work hardening. At higher temperatures (>0.5 

melting temperature), thermally activated recovery processes counteract work-

hardening by allowing crystal defects to be more mobile in the lattice. Thus tangles are 

avoided and crystals can lower their internal strain energy and increase the ductility of 

the material (Knipe, 1989). One of the predominant mechanisms which is involved in 

recovery is movement of the dislocations by diffusion of atoms to higher or lower slip 

planes; this basically allows the dislocation to 'climb' over a blocked site, and hence is 

termed dislocation climb. The conditions that facilitate recovery are slow strain rates 

and/or higher temperatures. The mechanism of dislocation glide with climb of 

13 
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dislocations is known as dislocation creep (Passchier and Trouw, 1996). During these 

processes of intracrystalline deformation, characteristic sub-structures are developed in 

olivine crystals: 

Olivine sub-structures developed during intracrystalline deformation 

Olivine porphyroclasts, which have suffered intracrystalline deformation, display 

characteristic sub-structures. There is some discrepancy in the literature regarding the 

terminology used to describe olivine sub-structures and their origin. These 

substructures include kink-bands and kink-band boundaries (Nicolas et al., 1971), 

dislocation walls or sub-grain boundaries (sub-boundaries) and sub-grains (Nicolas and 

Poirier, 1976; Suhr, 1991), and dislocation sub-boundaries (Karato et al., 1986). The 

reason for the discrepancy in the description of olivine sub-structures is that the 

different terms often refer to a similar substructure and also to the use of transmitted 

electron microscopy (TEM) as a method of study in recent publications. TEM studies 

reveal features of lattice deformation, which cannot be directly viewed using 

conventional microscopes, hence a new terminology has been developed. 

Kink-bands (KB) are a type of planar lattice defect or dislocation within a 

crystal where the lattice is differently orientated and not curved, which are bounded by 

kink-band boundaries (KKB) (Nicolas and Poirier, 1976). The development of a kink 

band results in the overall shortening of a crystal, due to bending and ultimate kinking 

of a crystal slip plane. Lattice defects geometrically similar to kink bands can develop 

in a process by which dislocations collect into walls by slip or climb. This results in a 

slight misorientation between two adjacent regions of crystal or subgrain, subgrain 

boundaries or dislocation walls (Nicolas and Poirier, 1976) that bound these sub-grains. 

Sub-grains can be distinguished from kink-bands by the magnitude of the change in 

orientation of the crystal lattice between adjacent subgrains or kink-bands. The angle is 

usually less than 5° between subgrains (FitzGerald et al., 1983; White and Mawer, 

1988) and a mean value of 9° between kink-bands (Nicolas and Poirier, 1976). 

Different types of subgrain boundary can be classified according to the rotation axis 

involved during their development. Subgrain boundaries with a rotation axes parallel to 

the boundary are termed tiltwalls, and those normal to the boundary, twistwalls 

(Passchier and Trouw, 1996). 

14 
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Kink band and subgrains may both develop simultaneously within an olivine 

porphyroclast. For example in a peridotite from the Lanzo massif, sub-boundaries are 

related to [100] slip and kink bands to [001] slip. This makes it possible for the 

porphyroclast to be elongated by [100] slip with associated bending and twisting, and 

simultaneously shortened by kinking in the [001] direction (Nicolas and Poirier, 1976). 

Recrystallisation 

Recrystallisation may occur in a rock during increased mobility of the defects described 

above. During recrystallisation new relatively strain-free grains (neoblasts) with high-

angle grain boundaries may grow from old strained grains (paleoblasts) either after 

(static) or during (dynamic) deformation. Two mechanisms of dynamic recrystallisation 

have been recognised (Drury and Urai, 1990): 

• Grain boundary migration recrystallisation 

• Subgrain rotation recrystallisation 

'Grain boundary migration recrystallisation' occurs between adjacent deformed crystals 

of the same mineral type, when one has high dislocation density (less strained) and the 

other a low dislocation density (more strained). Migration of grain boundary from the 

less strained grain into the more highly strained grain occurs, thus reducing overall 

dislocation density and the strain energy of the system. Local bulging of the grain 

boundary into the more highly strained crystal may occur and form new independent 

crystals; this phenomena is known as grain boundary bulging (Passchier and Trouw, 

1996). Microstructures indicative of grain boundary migration include highly irregular 

grain boundaries and abrupt changes in the lattice preferred orientation between 

paleoblasts and neoblasts. 

'Subgrain rotation recrystallisation' involves creation of a new grain from a 

subgrain, due to a gradual increase in the angle between the crystal lattice on both sides 

of a subgrain boundary. This process develops by progressive misorientation of 

subgrains due to an increasing number of dislocations accumulating at a subgrain 

boundary. Subgrain rotation recrystallisation is characterised by gradual changes in the 
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lattice preferred orientation between paleoblasts and neoblasts, and a gradual transition 

from aggregates of subgrains to aggregates of new grains (Passchier and Trouw, 1996). 

1.3.2. Grain size effects 

In the upper mantle either dislocation creep or diffusion creep can accommodate plastic 

deformation (e.g. Karato et al., 1986; Jaroslow et al., 1996): 

• Dislocation creep regime, in which strain rate is thought to display a power law 

relationship with stress and flow is facilitated by the movement of defects in the 

crystal lattice. 

• Diffusion creep regime, in which strain rate is thought to display a linear 

relationship to stress and is controlled by diffusive mass transport along either grain 

boundaries or through grain interiors. 

Diffusion creep is strongly dependent on grain size and is therefore termed a grain size 

sensitive deformation mechanism, as opposed to dislocation creep, which is grain size 

insensitive. This is because finer-grained rocks have a greater volume of grain 

boundaries that accommodate intergranular diffusion, in addition to smaller grain sizes 

that result in a shorter intracrystalline diffusion paths (Handy, 1989). Experimental 

work has demonstrated that the activation energy for dislocation creep is higher than 

that required for diffusion creep (Jaroslow et ah, 1996 and references therein). 

Deformation mechanism maps for olivine (Figure 1.6) demonstrate the effects of the 

variation in grain size on deformation. Strain rate curves in the dislocation creep regime 

(blank shading) are horizontal, which indicates insignificant dependence on grain size. 

In the diffiision creep regime (shaded), strain rate curves exhibit a strong dependence 

on grain size. These two deformation mechanism maps (Figure 1.6) indicate that the 

diffusion creep field expands with decreasing temperature (800 to 600°) as a result of 

the smaller activation energy required for diffusion creep relative to dislocation creep. 

Therefore, a reduction in grain size, accompanied by a decrease in temperature may 

effect a change in the operative deformation mechanism in the upper mantle (Jaroslow 

etal, 1996). 
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Figure 1.6. Deformation mechanism maps for olivine. Parameters and constitutive flow laws 
are presented in Rutter & Brodie (1988). Estimates for the dynamic recrystallised grain size are 
derived from the piezometer used by Karato et al. (1986). Adapted after Rutter & Brodie 
(1988). 

1.3.3. Aggregate microstructures and rheologv 

The rheology of a polymineralic aggregate is largely controlled by: 

• The relative strength/competence of the stronger and weaker phases - astrong 

mineral^''weak mineral? sr id , 

• The volume proportion of the weak phase (and degree of interconnectivity) -

Two basic types of microstructure have been distinguished in naturally and 

experimentally deformed two-phase aggregates (Figure 1.7) (Handy, 1990; 1994): 
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• The stronger phase forms a load-bearing framework (LBF microstructure) that 

contains isolated pockets of the weaker phase; 

• The weaker phase forms an interconnected weak matrix or layers (IWL 

microstructure) separating boudins or clasts of the stronger phase. 

Load-Bearing Interconnecfed 
l̂ jgf, Framework Weak Layers. 

^ "LBF" "IWL" 

WMk p « k e t s «eal ( layers 
or matrix 

Tc 

Viscous 
strength 
Contrast 

unity 

- frameworic 

strong 
boudins 

,, . . high 
C^w volume Proportion 

of Weak Phase 

Figure 1.7. Microstructures in deformed two-phase viscous materials as a function of the 
volume proportion of the weaker phase ((j)w) and the relative strength/competence of the 
stronger and weaker phases -cJstrong mineral/<^weak mineral • (" ĉ)- LBF and IWL are abbreviations 
for 'load-bearing framework' and 'interconnected weak layer' microstructures (from Handy, 
1994). 

In aggregates with the LBF microstructure, strain rate is nearly uniform and stress 

is concentrated in the load-bearing framework. Handy (1994) demonstrates that 

aggregates with an IWL microstructure are characterised by strain rate and occasionally 

also stress higher in the interconnected weak phase than in boudins and clasts of strong 

phase. The viscous strength contrast and relative amounts of the constituent mineral 

phases exert a strong control on the degree of stress and strain partitioning (Handy, 

1994). The findings of Handy (1994) predict that during steady-state creep, the LBF 

microstructure is stable only in rocks with low volume proportions of weak phase {^^ 

<0.1) and low to moderate mineral strength contrasts (Ostrong minerai/cTweak mineral ^ 5), 

but the IWL microstructure is predicted to be stable over a broad range of two-phase 

compositions and mineral strength contrasts. Handy (1994) derived flow laws for two-

phase aggregates with idealised LBF and IWL microstructures on the basis of 

microstructural observations in naturally deforming rocks which were used to show 

how stress and strain partition in rheological and structurally heterogeneous material. 

Flow laws derived by Handy (1994) predict that rock composition, in addition to 
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geothermal gradient and regional strain rate have a strong influence on the rheological 

stratification in the lithosphere, particularly in rocks with low volume proportions of a 

weak phase and high material contrasts. 

1.3.4. Interpretation of peridotite microstructures; olivine petrofabrics 

Measurement of lattice preferred orientation (LPO) is an important technique in 

understanding the operation of slip systems involved during dislocation creep as a 

consequence of intracrystalline deformation. Since dislocations may move in specific 

lattice planes, a rock deforming by movement of dislocations may develop a preferred 

orientation of the grains that make up the rock (Passchier and Trouw, 1996). 

Polarising microscope studies of peridotite samples orientated in the X-Z plane 

(perpendicular to foliation and parallel to the lineation) reveals that minerals often 

possess a lattice preferred orientation (LPO) (Nicolas and Poirier 1976, Mercier, 1985). 

The following discussion wil l only describe the LPO patterns associated with olivine 

crystals, although orthopyroxene LPO is commonly utilised (Boudier and Coleman 

1981, Mercier, 1985). 

The LPO of olivine is revealed by measuring the extinction angles of the [100], 

[010] and [001] crystallographic axes of the crystals by using a universal stage and 

plotting the data on stereonets or olivine petrofabric diagrams. The kinematic analysis 

of LPO is based on the observation that in a peridotite deformed in a non-coaxial flow 

regime during simple shear, the LPO of olivine is often oblique to the shape fabric 

(Figure 1.8). As a consequence, asymmetry between the shape fabric and the LPO may 

be used to determine the sense of shear (Boudier et al., 1982; Bouchez et al., 1983; 

Smewing et al., 1984). Interpretation of olivine petrofabric diagrams extends beyond 

simply determining shear sense in a particular sample. They also reveal which of the 

olivine slip systems were activated during deformation. It is well established from 

experimental (Carter and Ave Lallemant, 1970) and studies of natural systems (Nicolas 

et al., 1971; Smewing et al., 1984; Mercier, 1985; Nicolas & Christensen, 1987) that 

temperature exerts a control on which slip system is activated. In these studies, the 

temperatures suggested for activation of the different slip systems 
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(a) 

Foliation (Shape fabric) 

"^e fab, <ric) 

[100] [010] [001] 

(b) 

Figure 1.8. (a) Schematic section in XZ plane of an olivine aggregate. Dashed lines = trace of 
sub-grain boundaries, narrow lines = slip planes, thick lines = grain boundaries, (b) Lower 
hemisphere equal area projection of olivine crystallographic axes. Solid plane = foliation, dot = 
lineation. Dashed plane = flow plane. The sense of shear is deduced from the orientation of the 
foliation relative to the average slip plane (equated to the flow plane). Adapted from Boudier et 
a/. (1982) 

vary, so this investigation refers to the temperatures suggested by Nicolas & 

Christensen (op cit.). At 'low' temperatures (700-1000°C) the slip systems (Okl) [100] 

or pencil glide are operative (where (Okl) refers to the slip plane and [100] the slip 

direction). Activation of the system (010) [001] (Nicolas & Christensen, 1987) or (110) 

[001] (Carter & Ave Lallemant, 1970) are also proposed for 'low' temperatures. At 

'high' temperatures (T>1000°C) the system (010) [100] is dominant and at very high 

temperatures (T>1250°C) activation of the system (001) [100] is suggested (Nicolas & 

Christensen, 1987). Petrofabric diagrams enable both the slip direction and the 

activated slip plane involved in the slip system to be determined. 

Other uses of olivine petrofabric diagrams include an average estimate of shear 

strain by measuring the angle between the foliation and shear plane (LPO) (Bouchez et 

al., 1983; Ceuleneer et al., 1988). 

The type of LPO pattern that is formed in a rock depends on many factors. 

These include which slip systems are operative and the amount of slip on each slip 

system, the finite strain, the activity of dynamic recrystallisation and the growth of 
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grains from solution (Schmid, 1994). The effects of recrystallisation on the LPO pattern 

are diff icul t to predict, but they may influence it in several ways. These include 

weakening o f the existing pattern by generation of new, randomly orientated grains or 

alternatively strengthening a pattern or part o f a pattern by removing certain grains with 

a relatively high dislocation density (Passchier and Trouw, 1996). 

1.3.5. Kinematic indicators 

Kinematic indicators are structures that can be used to make reliable inferences about 

the flow in rocks during progressive deformation (Hanmer & Passchier, 1991). These 

can occur at the scale o f a thin section, outcrop or a geological region. Shear sense 

indicators, which represent a subset o f kinematic indicators, are developed during non-

coaxial strain and comprise a number o f structures, microstructures and fabrics that 

have an asymmetry reflecting the sense o f vorticity (Hanmer & Passchier, 1991). In 

order to reliably determine the shear sense on a fault/shear-zone, the shear direction 

must be identified to provide the necessary kinematic framework. The shear direction is 

defined by linear structures, for example striae, slickenlines and ductile mineral 

lineations. Once the shear direction has been deduced, shear sense is determined by 

using the shear sense indicators presented below. Shear sense observations must be 

made in the X Z plane o f the finite strain ellipsoid, which is a plane normal to the shear 

plane and parallel to the shear direction. No single shear sense indicator may reliably 

determine the sense o f shear; therefore, several different shear sense indicators should 

be used in conjunction to determine the shear sense along a fault/shear-zone. 

1.3.5.a. Shear sense indicators - ductile regime 

The following shear sense indicators are discussed in this thesis and the description of 

these shear sense indicators is based on the comprehensive review of Hanmer &. 

Passchier (1991). The reader is directed to this review for detailed discussion of these 

shear sense indicators. 

• Shape fabrics 
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• Porphyroclast systems 

• Folds 

Shape Fabrics 

Shape fabrics include the modification o f a generated or pre-existing foliation by 

rotation or deflection, by shear zones (Ramsay & Graham, 1970) (Figure 1.9); C/S 

fabrics (Berthe et al., 1979) (Figure 1.10); asymmetrical extensional shear bands 

(AESBs) (White etal., 1980) (Figure 1.11). 

Porphyroclast systems 

Porphyroclast systems most commonly comprise a rigid, monocrystalline core 

surrounded by a thin, polycrystalline ' ta i l ' , that is often derived from the host 

porphyroclast. However, the tails may also comprise deformed pressure shadows. 

A S ' V / / / / / / / / / y' / 
y / y / y y y y y y y y y y 

/ ^ / ^ ^ y ^ ^ y-y y 

y y / / / / / / / / / / 
y y y y y / yA^" 

Margin of shear zone 

Figure 1.9. Shear zone geometry resulting from progressive simple shear. Schistosity 
originates at 45° to the shear zone boundary and rotates with increasing strain towards 
parallelism with the shear zone boundary (after Ramsay & Graham, 1970 - from Bailey, 1997). 

reaction products or bands o f matrix material entrained by the rotation porphyroclast. 

all o f which extend along foliation planes in the direction of shear (Hanmer & 

Passchier, 1991). Four main types o f porphyroclast system: ©-type, (j)-type. a-type and 

6-type may be defined on the basis o f the geometry o f these tails (Passchier & Trouw. 

1996). D-type objects lack tails and (j)-type objects have a mantle with orthorhombic 

symmetry, a-type and 6-type objects have monoclinic shape symmetry. The a-type 

objects display stair-stepping, which is defined by tails at different elevations on both 

sides o f a porphyroclast. a-type and 5-type objects can be used as shear sense 

indicators (Figure 1.12) using their internal asymmetry and the stair- stepping of the 

tails; the tails step up in the direction of displacement. 
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Instantaneous 
Stretches & Quadrants 

Strain Gradient 

S' Planes 

Mylonite 
Shear 

Plane 

'C Planes 

Figure 1.10. Idealised C/S fabric in a general non-coaxial flow. C-planes are discrete shear 
zones that parallel the bulk shear plane and are bound on either side by strain gradients. The 
rotation of both S- and C-planes into parallelism with the shear plane results from high fmite 
strains (from Hanmer & Passchier, 1991). 

Shear 

Plane 

Shear Band 

Figure 1.11. Asymmetrical extensional shear bands in a general non-coaxial flow. Note the 
obliquity between shear bands and the bulk shear plane (from Hanmer & Passchier, 1991). 
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R E F E R E N C E P L A N E 

MATRIX 
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E M B A Y M E N T 

Figure 1.12. Geometries of a- and 8-type porphyroclast systems in sinistral shear. Note that 
tails of both types step up to the left with respect to the trace of the reference plane (after 
Passchier & Simpson, 1986 - from Bailey, 1997). 

Folds 

Fold asymmetry may result from non-coaxial deformation (Figure 1.13), although folds 

are generally considered to be the least reliable of shear sense indicators. Fold 

asymmetry can only be used to infer shear sense where (Hanmer & Passchier. 1991): 
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(1) a readily identifiable set o f contemporaneous folds shows a regionally extensive 

consistent asymmetry, and/or (2) there is evidence for the progressive development of a 

fold shape with deformation. 

Figure 1.13. Asymmetric {drag) fold resulting from dextral shear. Planar constituents of the 
structure orientated at high angles to the shear direction, such as the fold axial plane and fold 
limbs, rotate with the same sense as the vorticity of the flow during progressive deformation 
(from Bailey, 1997). 

1.4. Scientific methods 

A complementary, yet diverse set o f scientific methods has been utilised during the 

course o f this study and compilation o f this thesis. These include both field and 

laboratory based methods. The following is a summary o f these methods: 

1.4.1. Field methods 

Field based mapping and structural analysis was conducted individually for 8 weeks 

and accompanied by M.T.Styles and collaborating parties for 3 weeks. This included 

detailed mapping o f areas o f geological importance, identified in the literature and by 

initial 'recormaissance' mapping o f the area. Lithological and structural mapping o f 

inland areas was conducted on 1:10 000 scale topographical base maps, whilst coastal 

areas were mapped on 1:1500 aerial photograph overlays. Structural logging (Imber, J., 

pers comm. 1998) was utilised in structurally complex areas, for example reactivated 

fault zones, in order to systematically record observations and structural data. 

Representative samples o f the different ultramafic and mafic rocks were collected for 

microstructural studies and geochemical analysis. 
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1.4.2. Laboratory methods (University of Durham) 

A variety o f laboratory methods were used for study and analysis o f samples collected 

in the field. In the following text these methods are briefly introduced. A more detailed 

account o f the methods is provided in Appendices A and B. 

1.4.2.a. Geographical Information System (GIS) 

Petrological descriptions o f the thin sections of peridotite samples from the Lizard 

ophiolite complex were incorporated in a GIS system (Arcview) in order to produce 

petrological maps to aid interpretation o f petrological variations. 

1.4.2.b. Olivine petrofabrics 

Olivine petrofabrics were determined for orientated samples o f peridotite using a 5-axis 

universal stage. This method can provided important kinematic data and constraints 

regarding the operative deformation mechanisms and conditions during deformation. 

1.4.2. C . Whole rock geochemical analyses 

X-Ray Fluorescence (XRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-

MS) were used to obtain major, trace and rare earth element data for selected samples 

collected during the course o f fieldwork. 

1.4.3. Data from other sources 

The following organisations/people have provided additional data and information that 

has been incorporated in this thesis. 
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1.4.3.a. British Geological Survey 

Addftional data was obtained f rom the British Geological Survey (BGS) during a six 

week visft to the Keyworth offices and subsequent shorter visits (Styles, M.T., pers 

comm. 1996). This data included access to an extensive collection of hand specimens 

and thin sections o f samples collected from the Lizard complex, which included the 

extensive coUecfion o f Flett & H i l l (1912). Examinafion of borehole core, drilled 

through a variety o f lithologies f rom the Lizard complex was also made available for 

study and fiirther sampling. Borehole logs, mineral and wholerock geochemical 

analyses (XRF, ICP-MS and isotopic analyses) were provided for inclusion in this 

thesis. BGS (Styles, M.T. , pers comm. 1996) also provided equipment for field work, 

including base maps, aerial photographs, hammers, etc. 

The majority o f the electron probe micro-analyses (EPMA) of minerals 

presented in this thesis were conducted at BGS (Keyworth) by the author. Three visits, 

each a week long, were required to obtain this data. 

1.4.3.b. Research School of Earth Sciences (Australian National University) 

Professor David Green invited the author to spend six weeks at the Research School of 

Earth Sciences (Australian National University, Canberra) to allow collaboration and 

integration o f new Sensitive High Resolution Ion Micro-Probe (SHRIMP) 

geochronological data for samples from the Lizard ophiolite Complex into this thesis 

(Nutman, A. , pers comm. 1998). During the research visit, major and trace element 

analyses o f rocks from the Lizard complex were made available in addition to thin 

sections for petrological study. Further electron probe micro-analyses (EPMA) were 

conducted on the authors own samples and samples provided by Professor Green. 

I.4.3 .C. Cambridge University (Sedgewick Museum) 

Cambridge University allowed access to the extensive collection o f samples collected 

by D.H.Green (1964a,b,c) and thin sections made from these samples. 

26 



Introduction and terminology 

1.5. Primary objectives and layout of thesis 

This thesis is principally a structural and geochemical study of the Lizard ophiolite 

Complex in SW England. The primary objectives o f the thesis and the layout of the 

thesis are presented below: 

Primary objectives 

To produce maps showing variation in peridotites and related rocks in the Lizard 

Ophiolite Complex. 

• To characterise the Lizard peridotites in terms of their structural and geochemical 

evolution and determine the tectonic environment in which they formed. 

Constrain the emplacement history o f the Lizard ophiolite Complex using new 

geochronological data, with particular attention paid to fabrics developed in 

peridotites, amphibolites and serpentine-filled faults. 

Present a new model for the tectonothermal evolution o f the Lizard ophiolite 

Complex and its significance regarding the evolution o f SW England and the 

Hercynian belt o f northern Europe. 

To suggest what implications this study may have regarding the interpretation of 

the tectonothermal and geochemical evolution o f other ophiolite complexes. 
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Layout of thesis 

Chapter 2: Geology o f the Lizard ophiolite Complex and the stratigraphic 

terminology used with reference to the findings o f previous studies. 

Chapter 3: Field observations and structural interpretation of the Lizard ophiolite 

Complex. Specific reference is made to field relationships, structures and 

magmatism broadly associated with three tectonothermal events that punctuate the 

evolution o f this ophiolite Complex. 

Chapter 4: Microstructural characteristics o f various rocks that comprise the Lizard 

ophiolite complex. Particular attention is paid to the microstructural evolution of 

the Lizard peridotites. 

Chapter 5: Geochemical characterisation o f the rocks f rom the Lizard ophiolite 

Complex using mineral analyses. 

Chapter 6: Geochemistry o f rocks from the Lizard ophiolite Complex using XRF, 

ICP-MS and isotopic analyses. 

Chapter 7: General discussion o f the findings and summary o f the geological 

evolution o f the Lizard ophiolite Complex and implications for SW England, 

northern Europe, and ophiolite complexes in general. 
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CHAPTER TWO 

P R E V I O U S W O R K : T H E G E O L O G Y O F T H E L I Z A R D O P H I O L I T E 

C O M P L E X 

2.1. Regional setting of the Lizard Ophiolite Complex 

The Lizard ophiolite Complex is located in south-west Cornwall forming part of the 

Lizard peninsula, the most southerly point o f mainland in the British Isles (Figure 2.1). 

The Lizard complex forms the highest structural unit exposed in the Variscan nappe 

stack o f south-west England (Holder & Leveridge, 1986a), with the complex o f higher-

grade metamorphic rocks being separated f rom the low-grade, Devonian 

metasediments to the north by faulted contacts. 

A plate tectonic reconstruction o f western Europe during the Variscan 

orogenesis is shown in Figure 2.2. The Lizard Ophiolite Complex is inferred to have 

developed in the Cornwall Basin which was an area o f sea bound to the north by the 

Welsh Massif and London-Brabant Massif landmasses and south by the Normarmian 

High landmasses (Ziegler, 1982). 

In models for the tectonic evolution o f south Cornwall (Holder & Leveridge, 

1986a; Holdsworth, 1989; Leveridge et al., 1990; Clark et al., 1998a,b) generation of 

oceanic lithosphere, represented by the Lizard ophiolite Complex, is thought to have 

occurred during the early Devonian. The presence of relict oceanic lithosphere 

supports the existence o f a Rheic ocean (McKerrow & Zeigler, 1972; Burret & 

Griffi ths, 1977; Cocks & Fortey, 1982) within Rhenohercynian zone o f northern 

Europe. Existence o f an extensive along-strike basin in the north European Variscides 

was proposed by Holder & Leveridge (1986b) on the basis o f a close similarity o f 

interpreted south Cornish geology to that o f the Harz mountains o f Germany. More 

recenfly Barnes & Andrews (1986) and Holdsworth (1989) suggested that the 

Gramscatho flysch basin and the Lizard Ophiolite Complex formed in a dextral pull-

aparts along a major E-W continental megashear. This model, following Badham 

(1982) implies that the Lizard Ophiolite Complex represents localised formation o f 

ocean crust rather than extensive ocean crust development as proposed by Holder & 

Leveridge (1986b). Subsequent closure o f this ocean basin occurred during the late 
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Devonian (Clark et a/., 1998a,b) when the Lizard ophiolite complex was obducted and 

thrust towards the N N W along a major low-angle detachment. During closure, the 

Lizard ophiolite complex became incorporated within a series o f thrust nappes, which 

included the Normannian High (Figure 2.3). The Normannian High represented a thrust 

nappe, which was a continental area that was bounded to the north by a deep-water 

basin (Holder & Leveridge, 1986a). N N W overthrusting of these nappes and 

consumption o f the oceanic basin was possibly accompanied by development of a 

southward dipping subduction zone (Holder & Leveridge, 1986a). Closure of the ocean 

basin was followed by continental collision between the Normannian High and the 

southern part o f Laurentia in the Upper Devonian with deformation progressing until 

the late Carboniferous (Holder & Leveridge, 1986a). Similar tectonic models have been 

proposed for the Grissen/Selke Nappe, Northern Phyllite Zone and the Mid-German 

Crystalline Rise o f Harz and eastern Rhineland in Germany and support the existence 

of an extensive along-strike basin in the north European Variscides (Holder & 

Leveridge, 1986a,b). 
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Figure 2.1. Present-day location of the Lizard ophiolite Complex in Cornwall (Taken from 
Holder & Leveridge, 1986a). 
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Figure 2.2. Structural components of Variscan deposition and deformation in western Europe. 
Shaded areas represent landmasses emergent during Variscan convergence whilst unshaded 
areas denote seas. Heavy barbed line represents subduction zone and stippled line follows the 
trace of the Variscan front (i.e. the northen limit of thrusting). After Ziegler, (1982). 

2.2. Int roduct ion: The geological subdivision of the Lizard Peninsula 

The Lizard Peninsula (Geological Survey 1:50 000 map - Sheet 359) can be divided 

into three geologically distinct units (Figure 2.4). These are: (1) Ordovician basement; 

(2) Devonian sediments and volcanic rocks of the Gramscatho Group, and; (3) 

Devonian rocks o f Lizard Ophiolite Complex. 

2.2.1. The Ordovician basement 

Rocks o f the Ordovician basement are situated at the south-western extremity of the 

Lizard Peninsula and occur as limited exposures along the coastal section and rocks 
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Figure 2.3. A model for the Devonian tectonic evolution of south Cornwall. 
Stratigraphic units: Cne, Came Formation; Ds, Dartmouth Slates; Mg, Meadfoot Group; Ms, 
Mylor Slate Formation; Pdr, Pendower Formation; Pto, Portscatho Formation; Ptn, Porthtowan 
Formation; Rbr, Roseland Breccia Formation. 
Tectonic units: Ck, Carrick Nappe; CT, Carrick Thrust; Dp, Dodman Nappe; DT, Dodman 
Thrust; LT, Lizard Thrust; Lz, Lizard Nappe; N, Normannian Nappe; NT, Normannian Thrust. 
Taken from Holder & Leveridge (1986a). 
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Figure 2.4. Geological sub-division of the Lizard peninsula. 

and reefs south of Lizard point (Figure 2.4). This basement unit comprises two different 

suites of rocks: the Man of War Gneiss and the Old Lizard Head Series. Early studies 

(Fox, 1888; Flett, 1946) recognised that these rocks are amongst the oldest exposed on 

the Lizard peninsula and suggested that the Man of War Gneiss represents 

metamorphosed granites and tonalites that are intrusive into the metasedimentary rocks 

of the Old Lizard Head Series. A large granitic sill, known as the Lizard Head Sill, 

which crosscuts the Old Lizard Head Series was interpreted as offshoots of the main 

body of the Man of War Gneiss (Flett, 1946). The Old Lizard Head Series are 

composed of pelitic and psammitic rocks interlayered with amphibohtes and have long 

been regarded to represent a series of metamorphosed basaltic lavas, tuffs and quartz-

rich and pelitic sediments (Bonney, 1883; Somervail, 1884; Flett, 1946; Floyd et ai, 

1993). Amphibolite layers in the Old Lizard Head Series were interpreted to be 

transitional with the Landewednack amphibolites (Green, 1946b,c; Floyd et ai, 1993). 

In recent studies, Jones (1994; 1997) demonstrated the presence of at least four low-

angle shear zones that cross cut the Ordovician basement rocks. Jones (1994; 1997) 

proposed that one of these shear zones, the Old Lizard Head Thrust separate rocks of 

the Old Lizard Head Series in the hangingwall, from the Man of War Gneiss in the 

footwall. Sandeman et al. (1997) recently established that the Man of War Gneiss is 
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early Ordovician in age (499 +8/-3Ma). On the basis of this new evidence and the 

structural relationships founded by Jones (1994), they proposed that the Man of War 

Gneiss represent a fragment o f pre-Hercynian basement incorporated in the 

Normaimian nappe during closure o f a Devonian ocean basin. This therefore suggests 

that the Man o f War Gneiss is a distinct geological unit to the Old Lizard Head Series 

and the Lizard ophiolite Complex. Sandeman et al. (1997) emphasise that there are 

geological and geochronological similarities between the Man of War Gneiss and early 

Ordovician rocks f rom Europe and propose that these rocks may represent remnants of 

Tremadoc arcs that formed oceanward from the northern margin o f Gondwana. 

Sandeman et al. (1997) demonstrated by '^'^Ar-^^Ar date for amphiboles that the 

northern most zone o f the Man of War Gneiss was subjected to an amphibolite-grade 

metamorphic event at ca. 374 Ma (mid Devonian). Clark et al. (1998a) demonstrated 

by laser-probe '^^Ar-^^Ar dating o f biotite and muscovite in the Old Lizard Head Series 

that amphibolite facies metamorphism of this unit began by ca. 380 ± 5 Ma. The 

authors interpreted this metamorphic event and metamorphism of the Man of War 

Gneiss to have been related to the development o f thrusts and shear-zones, including 

the Old Lizard Head Thrust, probably associated with the thrust emplacement of the 

Lizard ophiolite complex. 

Rocks interpreted to represent pre-Devonian basement also occur at or near the 

surface in the Eddystone and Start areas o f south Cornwall (Doody &, Brooks, 1986). 

Seismic refraction studies (Doody & Brooks, op cit.) suggest that the high grade 

metamorphic rocks o f which this basement is composed are present ca. 3 km beneath 

the Lizard Ophiolite Complex. These basement rocks may possibly be associated with 

the Man of War Gneiss and Old Lizard Head Series, but there is insufficient evidence 

to support this hypothesis. 

2.2.2. Devonian sediments and volcanic rocks of the Gramscatho Group 

The Gramscatho Group comprises a variable suite o f rocks developed in the 

Gramscatho basin at a similar time to the development o f the oceanic lithosphere, 

represented by the Lizard ophiolite Complex (Barnes & Andrews, 1986). The 

Gramscatho group structurally underlies the Lizard ophiolite Complex. The contact 

between these low-grade rocks and the high-grade metamorphic rocks o f the Lizard 
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ophiolite Complex is a normal fault, related to the reactivation of earlier thrust faults 

(Power et al., 1996). The Gramscatho group is dominated^flysch, deposited in 

submarine fans, which may have had a southerly source (Wilson & Taylor, 1976; 

Barnes & Andrews, 1986). The rocks immediately in contact with the Lizard ophiolite 

Complex are termed the Meneage melange and occupy a 3-4 km wide belt of 

sedimentary and volcanic rocks structurally underlying the Lizard ophiolite Complex 

(Figure 2.4). These rocks comprise a lower sequence o f clasts o f wacke, arenite, quartz-

arenite and limestone set in a sparse mudstone matrix (Barnes & Andrews, 1986). An 

upper sequence includes large masses up to several km in size o f pil low lava (Mullion 

Island), brecciated lava, tuff , amphibolite and serpentinite set in a mudstone matrix. 

Smaller clasts in this mudstone include 'greenstones', basalts, dolerites, and rare 

gabbros and their metamorphic equivalents, including amphibolites (Barnes, 1984). 

Relicts o f a felsic volcanic suite are also present in the upper sequence of this melange 

as autochthonous pyroclastic flows and tuffs (Barnes & Andrews, 1986). Leveridge et 

al. (1984) and Holder & Leveridge (1986a) interpret parts o f the Meneage melange, 

including serpentinite, as ophiolitic detritus shed from the advancing Lizard thrust 

sheet. Floyd et al. (1993) concluded that metabasalt clasts within the Meneage melange 

did not represent the eroded detritus from the Lizard ophiolite complex on the basis of 

geochemical evidence, but had many chemical similarities. 

Folds and development o f a penetrative cleavage in these rocks record 

deformation associated with the closure o f the Gramscatho basin (Barnes & Andrews, 

1986). Fold vergence and the consistent trend o f stretching lineations suggest N N W 

directed overthrusting (Rattey & Sanderson, 1984). Barnes & Andrews (1984) 

demonstrated that that the Meneage melange sediments and volcanic rocks immediately 

underlying the Lizard ophiolite complex record a single prograde pumpellyite-actinolite 

facies metamorphic event. This led the authors to propose a two stage event for the 

emplacement o f the Lizard Complex: an initial hot obduction including decoupling of 

the mantle sequence and thrusting over oceanic crust, followed by later emplacement 

over the Meneage melange as a cold thrust sheet. Clark et al. (1998a) proposed that 385 

± 2 Ma, whole-rock '"^Ar-'^^Ar dates for epizonal metaclasts o f the Dodman Formation 

exposed ca. 15 km NE of the Lizard ophiolite complex record the initial NNW-directed 

thrusting o f the Normannian High over the oldest flysch shed f rom its leading edge. 
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2.2.3. Devonian rocks of the Lizard ophiolite Complex 

The following lithological units are now recognised within the Lizard Ophiolite 

Complex (Figure 2.5): 

• Variably deformed and serpentinised peridotite (Lizard peridotites) 

• Traboe Cumulate Complex (Ultramafic and Mafic Traboe cumulates) 

• Metabasalt amphibolites (Landewednack amphibolites) 

• Metagabbro and metabasalt amphibolites (Porthoustock amphibolites) 

• Massive and weakly layered gabbros (Crousa gabbro) 

• Variably metamorphosed mafic dykes 

• Banded felsic/mafic intrusive complex (Kennack Gneiss) 

The structure and interpretation o f the Lizard ophiolite Complex has been the subject of 

debate for many years. Flett (1946) and Green (1964a,b,c) conducted two of the most 

complete studies o f the Lizard ophiolite Complex. These authors concluded that the 

Lizard peridotite formed a plug-like or diapiric body and that it was intruded into the 

Landewednack amphibolites. Flett (1946) suggested that the mafic Traboe cumulates 

(Traboe hornblende-schists) represent a group of mafic rocks intruded immediately 

prior to the intrusion o f the peridotite. Green (1964b) rejected this hypothesis and 

alternatively proposed that the mafic Traboe cumulates (Traboe hornblende-schists) 

represent the high-grade metamorphic equivalent o f the Landewednack amphibolites, 

which developed in a dynamothermal aureole surrounding the Lizard peridotite. 

In the 1970s the Lizard ophiolite Complex was re-interpreted by several authors 

in light o f emerging plate tectonic theories that recognised the concept of ophiolites. 

The recognition that the Lizard ophiolite complex represented a deformed and 

dismembered ophiolite complex (Figure 2.6) was supported by borehole (Styles & 

Kirby, 1980) and regional geophysical studies (Doody & Brooks, 1986; RoUin, 1986) 

evidence that demonstrated that the Lizard had a sheet-like form, supporting the earlier 

conclusions o f Sanders (1955). The tectonic and geochemical relationships between the 

three areas described above are reviewed in greater detail in Chapter 7 where they are 

incorporated into a regional tectonic model, which attempts to explain the evolution o f 

the Lizard ophiolite complex and place it in a European context. The units of the Lizard 
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Ophiolite Complex are discussed in more detail below in section 2.3. 

2.3. The geology of the Lizard ophiolite Complex. 

Flett & H i l l (1912) and Green (1964a,b,c) produced the first detailed maps of the 

Lizard Ophiolite Complex and these maps included the first subdivision of the Lizard 

peridotites. The maps produced by these authors showed that the Lizard peridotite had 

an almost circular form, wi th coarser grained peridotites in the central region, 

surrounded by deformed peridotites. It was this pattern on a map that suggested that the 

Lizard peridotite was an intrusive diapiric body. Thayer (1969) first proposed that the 

Lizard Complex represented a deformed ophiolite complex. Bromley (1973; 1975; 

1979) supported the ophiolitic origin o f the Lizard Ophiolite Complex and conducted 

several detailed studies on the peridotite-gabbro-sheeted dyke sequence on the eastern 

part o f the Lizard peninsula. Kirby (1979) presented geochemical evidence that 

demonstrated similarities between the mafic rocks fi"om the Lizard ophiolite Complex 

and oceanic rocks. Bromley (1979) suggested that the Lizard ophiolite Complex was 

constructed f rom a sequence o f thrust bounded units (Figure 2.7), that were fi-om top to 

bottom: 

1) Crousa Dovms Unit - a section on the east coast o f the Lizard peninsula where a 

bottom to top sequence o f peridotite-gabbro-sheeted dykes is observed and is 

comparable wi th idealised ophiolite stratigraphy. 

2) Goonhilly Downs Unit - the largest unit, predominantly composed o f peridotite and 

overlain by deformed gabbros, amphibolites and metasediments. 

3) Basal Unit - this was defined as a narrow belt around the south and the south-east 

o f the Lizard peninsula and includes Landewednack amphibolites. Old Lizard Head 

Series and the Kennack Gneiss intruded in close proximity to the thrust contact 

between the Basal Unit and the overlying Goonhilly Downs Unit. 
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Figure 2.7. Structural sub-division of the Lizard ophiolite complex into three tectonic units. 
Taken from Bromley (1979). 

Leake and Styles (1984) questioned the supposed thrust contact between the Crousa 

Downs Unit and the Goonhilly Downs unit, on the basis of continuity of rock 

sequences across the contact. Power et al. (1996) conducted a detailed structural 

analysis o f the fault architecture o f the Lizard ophiolite Complex and proposed a new 

structural sub-division. The authors proposed that the Crousa Downs Unit of previous 

workers represents the downfaulted upper level of the Goonhilly Downs Unit, and 

expanded the Basal Unit to include the Traboe cumulate complex and amphibolites 

previously included in the Goonhilly Downs Unit. The authors therefore subdivided the 

Lizard ophiolite Complex into two tectonic units: the Goonhilly Downs Nappe, 

underlain by the Goonhilly Downs Thrust, and the Basal Nappe, underlain by the Basal 

Thrust. Jones (1997) conducted a detailed study of the Basal Unit of the Lizard 

ophiolite Complex and proposed a sub-division of the unit into two allochthonous 

tectonic units, the Upper Nappe Series and the Lower Nappe Series, each comprising 
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two Nappes. Jones (1994, 1997) recognised that the Basal Unit was emplaced over the 

Man o f War Gneiss along the Old Lizard Head Thrust. 

New geochronological constraints presented in this thesis require a new 

nomenclature and strati graphical framework for the units o f the Lizard ophiolite 

Complex and these are presented in the following chapters. 

The following section is sub-divided into descriptions o f the seven main lithological 

units that occur in the Lizard ophiolite Complex (see Section 2.2.3). 

2.3.1. Lizard peridotites 

Flett & H i l l (1912) sub-divided the Lizard peridotites into four main types on the basis 

o f detailed mapping and petrological evidence: bastite serpentine, tremolite serpentine, 

dunite serpentine and chromite serpentine. Serpentine was used as a rock name when 

the term serpentinite should be used for partially or completely serpentinised ultramafic 

rock. The authors showed that the bastite serpentine was the least deformed of the 

Lizard peridotites and occurred in the central and eastern parts o f the peridotite body. 

Tremolite serpentine, which occurred as a belt surrounding the bastite serpentine, was 

interpreted to represent a highly deformed and recrystallised type that was derived from 

either metamorphism o f the bastite serpentine or an earlier intrusion. Dunite serpentine 

was thought to have originated as dunite and to have had a significantly different bulk 

composition. Chromite serpentine was limited to pods and bands in the bastite 

serpentine and was distinguished by the presence of chromite stringers. Green (1964a) 

elaborated on the scheme of Flett & H i l l (1912) and produced a map showing a similar 

distribution o f peridotite types. On the basis of detailed field observations and a 

petrographic study and identification o f distinct mineral assemblages and textures. 

Green (1964a) suggested that the different peridotites were related to the intrusion o f a 

single peridotite diapir. Green (1964a) proposed that the different peridotite types were 

produced at progressively lower temperatures and pressures during several stages o f 

recrystallisation and re-equilibration during intrusion o f this diapir, and supported this 

with mineral and whole rock analyses. A relict primary assemblage was similar to the 

'bastite serpentine' o f Flett &. H i l l (1912) and consisted o f olivine, aluminous 

orthopyroxene, aluminous clinopyroxene and olive-green spinel. This assemblage had 

crystallised at high-pressure and high-temperature in the upper mantle. A second type 
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of peridotite,. the recrystallised anhydrous assemblage, occurred in a cataclastic, finely 

foliated and recrystallised marginal shell surrounding a primary core and was similar to 

the 'tremolite serpentine' o f Flett & H i l l (1912). This assemblage consisted o f olivine, 

low-alumina orthopyroxene, low-alumina clinopyroxene, plagioclase and brown 

chromite and crystallised and re-equilibrated at lower pressure and temperature than the 

primary assemblage. A third assemblage, the recrystallised hydrous assemblage, was 

developed locally in the recrystallised anhydrous assemblage as narrow zones, 

particularly in the margin o f the peridotite body. This assemblage was characterised by 

the presence of olivine, pargasite amphibole and brown chromium spinel. Green 

(1964a) proposed that the dunite serpenfine o f Flett & H i l l (1912), was the highly 

serpentinised equivalent o f the recrystallised hydrous assemblage. Green (1964a) 

demonstrated that all the peridotite assemblages had a similar bulk composition and 

thus disagreed with the data presented by Flett & H i l l (1912), that showed that the 

'dunite serpentine' had a different bulk composition to the other peridotite types. The 

diapir model o f Green (1964a) was challenged when borehole evidence (Styles and 

Kirby, 1980) demonstrated that the peridotite had a sheet-like form and was underlain 

by amphibolite. This led to models suggesting that the peridotite evolved in the 

suboceanic mantle and now represents the lowermost stratigraphic slice o f an ophiolite 

complex. Thrusting o f a sheet o f peridotite over oceanic crust was invoked to explain 

the amphibolites underlying the Lizard peridotites and comparisons with the 

Newfoundland and Oman ophiolites were presented in order to support these models 

(Styles & Kirby, 1980). Although many papers after Green (1964a) discussed the later 

obducfion o f an ophiolite slab (Bromley, 1979; Styles & Kirby, 1980; Veamcombe, 

1980; Floyd et al., 1993; Jones, 1994, 1997 and Sandeman et al., 1995) none of these 

publications attempt to adequately explain the earlier tectonic evolution of the Lizard 

peridotite body. Therefore, although later models dispute the diapiric model o f Green 

(1964a), they can neither provide a satisfactory alternative nor doubt the petrological 

evidence and mineral assemblages on which the model was in part based, including 

Styles & Kirby (1980) who agreedi^f^h ^fe petrological evidence. Rothstein (1977; 

1981; 1988; 1994 and 1998) is one o f a minority o f authors, since the work of Green 

(1964a), who has specifically studied the Lizard peridotites. Rothstein (op cit.) 

supported Green's (1964a) sub-division o f the Lizard peridotites and presented 

thermobarometric data to support the high-pressure and high-temperature origin of the 

primary assemblage peridotite. Rothstein {op cit.) also recognised that deformation 
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fabrics in the peridotites, particularly the recrystallised assemblages, are associated 

overall with sub-solidus re-equilibration o f the pyroxenes at decreasing temperatures. 

However, Rothstein {op cit.) did not suggest any tectonic models to explain the 

evolution o f the Lizard peridotites. Instead, he presented very detailed field and textural 

evidence for the preservation o f earlier, pre-tectonic, textures in the primary 

assemblage peridotite that developed prior to recrystallisation and re-equilibration. 

These textures occur in pyroxenite, harzburgite and dunite-rich bands and include a 

wide range o f micro-textures, particularly involving olivine, which are orientated at a 

steep angle to the mineralogical banding. In a series o f publications, Rothstein {op cit.) 

has demonstrated that these textures may be interpreted as relics o f cumulates and 

micro-crescumulates that crystallised from liquids, which are related to one or possibly 

two early igneous episodes, involving separate puUtsof melt or magma within the 

spinel-lherzolite facies. 

Frey (1969) studied the rare earth element (REE) geochemistry of the Lizard 

peridotites and showed that the primary spinel-lherzolite assemblage had very depleted 

LREE, typical o f residual, mantle-derived Alpine peridotites (Floyd et al, 1993). The 

recrystallised anhydrous and hydrous assemblages o f Green (1964a) were also analysed 

and showed less depleted REE, the latter close to chondritic abundances with only 

slight LREE depletion. Davies (1984) also studied the REE geochemistry o f the Lizard 

peridotites in addition to their isotopic composition. Davies (1984) demonstrated that a 

single sample o f plagioclase Iherzolite had five times chondrite abundances and slight 

LREE enrichment. He proposed that the LREE depletion of the primary spinel 

Iherzolite assemblage resulted f rom a multi-stage melting event, involving the removal 

o f very small increments o f melt. This would account for the depleted LREE, whilst 

retaining a fertile major-element characteristics. The REE geochemistry and Sm-Nd 

isotopic systematics o f the recrystallised anhydrous and hydrous assemblage peridotites 

were interpreted to probably reflect the infiltration o f a LREE-enriched magma. 

Most authors have commented on the pervasive serpentinisation that has 

hampered study o f the textural features o f the Lizard peridotites. Power et al. (1997) 

conducted a study o f the Lizard ophiolite Complex, which was specifically focused on 

the nature and timing o f serpentinisation o f the Lizard peridotites. The authors 

established that there were at least two episodes o f serpentinisation, the first resulted in 

large-scale hydration o f the peridotite and was characterised by zones of veins o f white 

serpentine. A second episode was restricted to faults and fractures and occurs as a 
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pseudo-fibrous mixture o f lizardite and chrysotile. Power et al. (op cit.) proposed a 

Carboniferous age for the primary episode and a latest Carboniferous to early Permian 

age for the secondary serpentinisation episode, on the basis o f previously published 

geochronological constraints (Seager et al., 1975; 1978; Halliday & Mitchell, 1976). 

2.3.2. Ultramafic and Mafic Traboe cumulates 

Flett & H i l l (1912) recognised the presence o f two distinct types o f amphibolite in the 

Lizard ophiolite complex, which they termed the Landewednack and Traboe types. 

Flett & H i l l (op cit.) distinguished the Traboe amphibolites from the Landewednack 

type (see section 2.3.3) on the basis o f a more variable fabric orientation, coarser grain 

size, compositional differences and the presence o f an interlayered and folded 

association with the Lizard peridotites, in particular the 'dunite serpentine'. The authors 

concluded that the Traboe amphibolites had been subjected to different metamorphic 

conditions and were derived f rom a series o f mafic intrusives that immediately 

preceded the emplacement o f the Lizard peridotite body. 

On the basis o f detailed field and petrographic evidence Green (1964a,b,c) 

concluded that the Traboe amphibolites, which include a pyroxene granulite 

assemblage, were the metamorphosed equivalent o f the Landewednack amphibolites. In 

his re-interpretation. Green (op cit.) proposed that the Traboe amphibolites were 

developed within a dynamothermal aureole related to the hot emplacement of the 

Lizard peridotites as a diapir (Section 2.3.1). Green (op cit.) proposed that differences 

in the stress-field in the margins o f the peridotite diapir were responsible for the 

development o f generally steeper and more irregular fabrics in the Traboe 

amphibolites, compared to the more flat-lying fabrics o f the Landewednack 

amphibolites (Section 2.3.3). Green (op cit.) presented a few mineral analyses to 

support these conclusions, and more specifically, his whole rock analyses suggested 

that the Traboe and Landewednack amphibolites had a similar composition. Thayer 

(1969) suggested that the Traboe amphibolites were original gabbros and formed part 

of the lower crustal sequence o f a dismembered ophiolite. Kirby (1979) presented a 

large number o f whole rock geochemical analyses for the Traboe and Landewednack 

amphibolites and this data clearly showed differences between the Traboe and 

Landewednack amphibolites, and confirmed that they could not have shared the same 

pre-metamorphic protolith. On the basis o f this data and field relationships, he 
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concluded that the Traboe amphibolites were derived from cumulate gabbroic rocks. 

The most convincing evidence that the Traboe amphibolites represented deformed and 

metamorphosed gabbroic cumulates was presented by Leake & Styles (1984). The 

authors presented evidence f rom three borehole sections (IGS Boreholes, 1978) and 

included a large number whole rock and mineral analyses o f the rocks intersected by 

the boreholes. These boreholes intersected a large variety o f rock types, including 

Traboe amphibolites and layered ultramafic rocks. Ultramafic rocks resembled the 

'dunite serpentine' recognised by Flett & H i l l (1912) and included dunites and 

pyroxenites, and on this basis the authors proposed that these ultramafic rocks were 

deformed and serpentinised layered ultramafic cumulates. Rocks that resembled the 

Traboe amphibolites included gabbros and anorthosites, leading Leake & Styles (1984) 

to propose that these rocks were originally mafic cumulates that formed an upper part 

o f a cumulate complex, transitional with the ultramafic cumulates. The authors termed 

the sequence o f rocks the 'Traboe cumulate complex' and suggested that it originated 

as a layered peridotite-gabbro cumulate complex overlying the Lizard peridotites. 

Leake & Styles {op cit.) also demonstrated that the composition o f the mafic rocks was 

very different f rom the composition o f the Landewednack amphibolites, and that the 

bulk composition o f the ultramafic cumulates was quite different from the Iherzolites of 

the main Lizard peridotite body. 

Clark et al. (1998b) obtained an age o f 397 ± 2 Ma by U-Pb dating of zircons 

for a plagiogranite that occurred as veins cross-cutting amphibolitised mafic Traboe 

cumulates. This demonstrates that the cumulates were being deformed and 

amphibolitised in the Early Devonian and the authors proposed that this occurred 

during intra-oceanic metamorphism, extensional ductile shearing related to the 

construction o f the oceanic crust section o f the Lizard ophiolite complex. This 

supported the earlier conclusions o f Gibbons & Thompson (1991), who suggested that 

these rocks represent the footwall o f a low-angle amphibolite-facies shear zone. Later 

closure o f the ocean basin and emplacement o f the Lizard ophiolite complex is 

recorded by amphibolite facies metamorphism of a leucogabbro associated with the 

mafic Traboe cumulates. Clark et al. (1998a) obtained a amphibole ''"Ar-'^^Ar age 

determination for this rock that suggested that emplacement took place around 381 ± 12 

Ma. 
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Throughout the following chapters o f this thesis (Chapters 3-7) the term Traboe 

amphibolites or Traboe hornblende schist is replaced by 'mafic Traboe cumulates' and 

the layered ultramafic rocks associated with these mafic rocks are termed the 

'ultramafic Traboe cumulates'. It is anticipated that this change of terminology w i l l be 

better suited to an understanding o f the present day interpretation o f the geology of the 

Lizard ophiolite Complex and comparisons with other ophiolite complexes. 

2.3.3. Landewednack amphibolites 

Flett & H i l l (1912) distinguished the Landewednack amphibolites from the mafic 

Traboe cumulates (Traboe amphibolites) on the basis o f a regular, flat-lying foliation, 

strong mineral lineation, fine-grain size and the presence of epidotic layers. Flett & Hi l l 

(op cit.) concluded that the Landewednack amphibolites originated as lavas and 

intrusive sills and were presumably basalts and dolerites. Green (1964a,b,c) proposed 

that the Landewednack amphibolites were developed during the regional 

metamorphism of a protolith composed o f basaltic lavas and/or sills with minor dykes, 

tuffs and calcareous sediments. 

More recently, authors have proposed that the Landewednack amphibolites 

consist o f metamorphosed basaltic lavas and sills with minor gabbros, which represent 

a highly deformed and metamorphosed equivalent to oceanic crust (Bromley, 1979; 

Kirby, 1979; Styles and Kirby, 1980; Floyd et al., 1993; Sandeman et al., 1995; Jones, 

1997). Floyd et al. (1976) and Kirby (1979) demonstrated that the chemical 

composition o f these rocks is very similar to ocean-floor basalt, therefore supporting 

the conclusions based on field evidence. Most authors suggested that the 

metamorphism of these amphibolites and the development o f flat-lying fabrics was due 

to overthrusting o f a hot ophiolite slab during obduction. These amphibolites were 

therefore interpreted to represent a dynamothermal aureole beneath the peridotite. 

Sandeman et al. (1995) presented '^'^Ar-^^Ar age determinafions for amphiboles from 

the Landewednack amphibolites, which suggest that the Lizard ophiolite complex was 

thrust over the Landewednack amphibolites at 366 ± 4 Ma. The authors also presented 

thermobarometric data and this suggested that the peak P-T conditions during 

metamorphism o f the amphibolites was ca. 600°C and 300-400 Mpa. 
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Jones (1997) recently proposed that the Basal Unit o f the Lizard ophiolite 

complex, which includes Landewednack amphibolites, preserves evidence of a 

protracted deformation and accretion history. Jones {op cit.) demonstrated evidence for 

five thrusts and divided the Basal Unit into four nappes on the basis o f field evidence. 

Decoupling o f the mantle, emplacement over the Basal Unit and subsequent 

development o f a dynamothermal aureole in the previously accreted Basal Unit was 

inferred to be a late stage feature. A final stage o f syn-emplacement extensional 

collapse was recognised and was responsible for the reactivation of earlier 

emplacement-related thrusts. 

2.3.4. Porthoustock amphibolites 

When Bromley (1979) sub-divided the Lizard ophiolite complex into separate tectonic 

units he proposed that the Landewednack amphibolites occur in two different structural 

units. Bromley {op cit.) suggested that the amphibolites in the structurally higher 

Goonhilly Downs unit represented the deformed equivalent o f a gabbro/dyke transition 

zone, similar to that preserved in the Crousa gabbro. This led Veamcombe (1980) to 

introduce the terms Upper and Lower Landewednack amphibolites. The Upper 

Landewednack amphibolites belong to the northern and structurally higher Goonhilly 

Downs Unit, and Lower Landewednack amphibolites belong to the structurally lower 

Basal Unit. Veamcombe {op cit.) suggested that the Upper Landewednack amphibolites 

were derived f rom highly deformed gabbroic rocks and that these rocks do not preserve 

evidence for the more complex deformational history observed in the Lower 

Landewednack amphibolites. Gibbons & Thompson (1991) demonstrated that the 

Upper Landewednack amphibolites resembled mylonitised and amphibolitised 

metagabbros interleaved with finer-grained mylonitic amphibolites that locally 

preserved porphyritic dolerite textures. The authors termed this unit the Porthoustock 

shear zone and noted that rocks were flat-lying and lineations plunged at a low-angle 

towards the west and south-west. Kinematic indicators suggested a top-to-the-SW sense 

o f shear. These findings contrasted with the top-to-the-NW kinematics observed in the 

Lower Landewednack amphibolites that were developed during obduction. As a result. 

Gibbons & Thompson {op cit.) proposed that the Porthoustock shear zone (Upper 

Landewednack amphibolites) represented the deformed equivalent o f a gabbro-sheeted 
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dyke complex and this was generated due to ductile extension at an oceanic spreading 

centre. 

New chemical data for these rocks, presented in this thesis (Chapter 6) supports 

the findings o f Bromley (1979), Veamcombe (1980) and Gibbons & Thompson (1991) 

and suggests that the Upper Landewednack amphibolites are indeed different from the 

Lower Landewednack amphibolites. Therefore the term Porthoustock amphibolites is 

introduced in order to clearly distinguish these rocks, previously known as the Upper 

Landewednack amphibolites, f rom the Landewednack amphibolites that occur in the 

Basal Unit o f the Lizard ophiolite complex. 

2.3.5. Crousa gabbro 

Green (1964c) proposed that the Crousa gabbro represented a part of a large ring 

intrusion that clearly post-dated the emplacement o f the Lizard peridotite body. Green 

(op cit.) also noted the presence o f spectacular fiaser gabbros and numerous small 

gabbro dykes associated with the main Crousa gabbro body. Kirby & Badham (1976) 

suggested an ophiolitic origin for the Crousa gabbro, but showed that the transition 

from peridotite to the Crousa gabbro was dissimilar to a typical ophiolite succession, as 

a substantial cumulate succession was missing. They suggested that the gabbro was a 

later intrusion and possibly related to off-axis magmatism. Kirby (1979) presented 

chemical analyses o f the Crousa gabbro and revealed it became progressively 

fractionated f rom south to north, going upwards in the ophiolite sequence. Kirby (op 

cit.) concluded that the chemistry o f the Crousa gabbro was consistent with it forming 

f rom magma similar to MORB. Styles & Kirby (1980) suggested that a coast secfion on 

the eastern side o f the Lizard peninsula, which included the Crousa gabbro, was the 

most convincing evidence for an ophiolitic origin o f the Lizard ophiolite complex. 

They interpreted the transition from peridotite to overlying gabbro to represent the 

petrological Moho and therefore rejected the finding o f Green (1964c), who suggested 

the gabbro was unrelated to the peridotite. The authors demonstrated that the Crousa 

gabbro recorded a complex history o f intrusive phases and deformation. Floyd (1984) 

demonstrated that the Crousa gabbros have low incompatible-element contents and 

LREE depletion and he interpreted this to indicate derivation from a depleted mantle 

source and consistent wi th an oceanic origin. Several studies (Gibbons & Thompson, 
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1991; Roberts et al., 1993 and Hopkinson & Roberts, 1995; 1996) have described the 

presence o f low-angle extensional shear zones within the Crousa gabbro. These shear 

zones have been interpreted by the authors to record ductile extension in the lower 

oceanic crust in a slow-spreading ridge-axis environment. Davies (1984) obtained a 

combined mineral and whole rock Sm-Nd isochron for the Crousa gabbro and this 

yielded an age o f 375 ± 34 Ma for the formation o f ocean crust. Andrews & Jolly {in 

press) have recently proposed that a large gabbro mylonite body within the Lizard 

peridotite, the Carrick Luz shear-zone, represents a feeder zone to the overlying Crousa 

gabbro body. The authors have suggested that the orientations o f gabbroic dykes 

associated with this shear zone are consistent with development o f oceanic crust at an 

oblique spreading centre. 

2.3.6. Mafic dykes 

Flett & H i l l (1912) and Green (1964c) commented on a suite o f NNW-SSE trending 

basaltic dykes that exhibited chilled contacts against the Lizard peridotite, Crousa 

gabbro and mafic Traboe cumulates. Green (1964c) suggested that this suite o f dykes 

formed the vertical feeder zones to mafic sills associated with the Kermack Gneiss 

(Section 2.3.7). Bromley (1973; 1979) sub-divided mafic dykes from the Lizard 

ophiolite complex into three groups, based on field evidence. He suggested that 

numerous NW-SE trending subvertical metadolerite dykes, which occupy between 50 

and 80% of outcrop in the northern area o f the Crousa gabbro body, represented a 

sheeted dyke complex. Kirby (1984) presented field and chemical evidence to support a 

sub-division o f mafic dykes from the Lizard ophiolite complex into three groups, 

similar to the groups o f Bromley (1979). However, Kirby (1984) suggested a different 

sequence to Bromley (1979). He suggested that later (olivine) dolerites were the most 

primitive, with MORE like characteristics, and that an earlier (aphyric) suite were more 

fractionated with a slightly calc-alkaline composition. Davies (1984) presented REE 

data for dykes f rom the Lizard ophiolite complex and proposed that there were two 

groups, similar to two of the groups o f Kirby (1984). A n early group was LREE 

enriched and a later group was MORB-like and LREE depleted. Sandeman (1988) also 

established the same chemical groups as Kirby (1984) and Davies (1984), but he 

suggested, in accordance with Bromley (1979) that the LREE enriched, aphyric, suite 
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were later and not the earliest suite. Roberts et al. (1993) presented the most reliable 

sub-division o f the mafic dykes associated with the Crousa gabbro body from the 

Lizard ophiolite complex. Identification o f the different dyke suites and their relative 

chronology was based primarily on field observations, including detailed structural 

analysis, and not chemical data. The authors recognised three dolerite dyke suites, the 

first two (suites 1 & 2) are restricted^the main Crousa gabbro body and are cut by and 

rotated on a series o f extensional faults and shear zones. Later dykes (suite 3) cross-cut 

the extensional faults and also cross-cut the Lizard peridotites and mafic Traboe 

cumulates. A l l the dyke suites show MORB characteristics, although the later dyke 

(suite 3) are the more primitive, in agreement with the chronology established by Kirby 

(1984) and Davies (1984). Roberts et al. (op cit.) suggested that the sequence of dyke 

intrusions, their geochemical evolution and inter-relationships with the extensional 

faults was consistent tectonic and magmatic processes at a slow-spreading ridge. 
A 

2.3.7. Kennack Gneiss 

The Kennack Gneiss comprises a series o f interbanded and mixed felsic and mafic 

gneissose rocks that occur along the south-east coast o f the Lizard peninsula. These 

rocks are located in proximity to the thrust contact between the underlying Basal Unit 

and the overlying Goonhilly Downs Unit. Bonney (1887) was one of the earliest 

workers to study the Kennack Gneiss and he proposed that it was older than the Lizard 

peridotite and that the peridotite was intrusive into the Gneiss. Flett & H i l l (1912) 

concluded that the Kennack Gneiss was an injection gneiss o f mixed felsic and mafic 

magmas intruded into the Lizard peridotite during a period o f deformation and 

metamorphism. 

Sanders (1955) shared Bonney's (op cit.) view that the Kennack Gneiss was 

older than the peridotite, although he proposed tectonic inclusion o f Kennack Gneiss in 

the peridotite rather than intrusion. Sanders (op cit.) also proposed that the Kennack 

Gneiss was the migmatised equivalent o f the Landewednack amphibolites and Old 

Lizard Head Series. 

Green (1964c) supported the findings o f Flett & H i l l (1912) and proposed that 

the Kennack Gneiss intruded the peridotite as a two-stage event forming composite 

intrusions. Mafic magmas intruded the peridotite as NNW-SSE trending dykes and as 

49 



The geology of the Lizard Ophiolite Complex 

gently dipping sheets and deformation accompanied their intrusion. Mafic magma was 

followed by felsic intrusions, which were preferentially intruded along the gently 

dipping mafic sheets. 

Recent interpretations o f the Kennack Gneiss are divided into two camps, 

following the conclusions o f previous authors. Kirby (1979), Veamcombe (1980) and 

Malpas & Langdon (1987) shared the opinion o f Sanders (1955) and proposed that the 

Kennack Gneiss was the migmatised equivalent o f the Landewednack amphibolites and 

Old Lizard Head Series. The authors suggested that the hot overriding ophiolite slab 

provided the heat necessary for melting. Bromley (1979), Barnes & Andrews (1986), 

Sandeman (1988) and Sandeman et al. (1995) supported the models of Flett & H i l l 

(1912) and Green (1964c). These authors suggested that the Kennack Gneiss was the 

product o f a co-mingled assemblage of mafic and felsic magmas intmded into the base 

of the Lizard ophiolite complex during obduction. Sandeman (1988) suggested that the 

mafic portion o f the Kennack Gneiss was older than the felsic portion and that both 

physical and chemical mixing o f the two magmas took place. He showed that the mafic 

portion has chemical characteristics similar to calc-alkaline basalts and that it probably 

had no close relationships with the felsic magma prior to intmsion. 

Sandeman et al. (1995) presented estimates o f the P-T conditions of 

dynamothermal metamorphism recorded by the Landewednack amphibolites and mafic 

portion o f the Kennack Gneiss and concluded that they were probably insufficient to 

cause anatexis o f the units underlying the ophiolite. 

Styles & Rundle (1984) provided a whole-rock Rb-Sr isochron for a felsic vein 

in the Kennack Gneiss and this gave an age o f 369 ±12 Ma. The authors interpreted this 

as a metamorphic age recording the time of emplacement of the Lizard ophiolite 

complex. A similar age o f ca. 366 Ma was obtained by '^'^Ar-^^Ar dating o f hornblende 

in the mafic component o f the Kennack Gneiss (Sandeman et al., 1995). 
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CHAPTER T H R E E 
F I E L D AND G E O C H R O N O L O G I C A L E V I D E N C E F O R T H E S T R U C T U R A L 

AND M A G M A T I C E V O L U T I O N O F T H E L I Z A R D O P H I O L I T E C O M P L E X 

3.1. Introduction 

New geochronological constraints relating to the igneous and metamorphic events that 

have taken place in the Lizard Ophiolite Complex have been integrated with a tectonic 

sequence based on detailed field evidence. This new evidence has been used to 

establish a new chronological order o f tectonic and magmatic events that occurred 

during the evolution o f the Lizard Ophiolite Complex. 

Geochronological constraints are provided by new U-Pb SHRIMP dating o f 

zircon and monazite obtained f rom various parts o f the Lizard Ophiolite Complex 

(Figures 3.1 & 3.2) and also existing age constraints provided by previous publications. 

Isotopic ratios used to obtain primary igneous and metamorphic ages were obtained 

f rom separated zircon and monazite crystals by U-Pb SHRIMP analysis at the Research 

School o f Earth Sciences, Australian National University, Canberra (Nutman, A., pers 

comm, 1998). Full details o f the sample preparation techniques, methods and results are 

provided in Appendix A. 

The layout o f this chapter and subsequent chapters in this thesis is based on the 

new chronological order o f tectonic and magmatic events. This chapter is sub-divided 

into four main sections. These sections describe the field relationships, structures and 

magmatism broadly associated with four tectono-magmatic events: 

• A n early magmatic and tectonic evolution in basement rocks exposed at the SW 

point o f the Lizard peninsula. 

• A later sequence o f deformation and magmatism in mantle rocks and associated 

mafic rocks, including the generation o f sub-vertical fabrics and peridotite 

mylonites during construction o f early oceanic lithosphere. 
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• Extensive magmatism resulting in the intrusion o f gabbro and basaltic dykes, and 

associated extensional tectonics, which represent the generation of later oceanic 

lithosphere. 

• Top-to-the-NW thrusting and contemporaneous magmatism, resulting in the 

emplacement and juxtaposition of the different lithological units that comprise the 

Lizard Ophiolite Complex as seen today. This includes emplacement of the Lizard 

Ophiolite Complex structurally over Ordovician basement. Thrust contacts are 

subsequently reactivated during later deformation events. 

Magmatic Events 

9 J < 400 H 

K e n n a c k 
Gneiss 

A; Ai 

7 ^ 

• MONASTE 
A HCfiNeiENDf 

• MUSCOVITE 

Metamorphic Events 
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Kennack 
Gneiss 
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LOWS' LondewetlancK 

Amphibolttes 

1 

basement 

Devon'on ophiolife 
lormatHyi 

Ophio:ite emcwocemenr 
and mogmotism 

Figure 3.1. Summary of chronological data for the Lizard complex showing the interpretation 
of magmatic and metamorphic events as recorded by geochronological data for rocks of the 
Lizard complex. Data sources are ( I ) Miller and Green (1961a): (2) Miller and Green (1961b); 
(3) Dodson (1961): (4) Styles and Rundle (1984); (5) Davies (1984); (6) Sandeman et 
al.(1995); (7) Sandeman et al. (1997); (8) Clark et al. (1998a); (9) Clark et al. (!998b); (10) this 
study. 
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Figure 3.2. Simplified geological map of the Lizard complex: modified after Flett (1946), 
Green (1964a) and Floyd et al. (1993). Location of samples used in geochronological study are 
shown as stars and labelled accordingly. 

3.2. Ordovician basement rocks of the Lizard Peninsula 

On the SW point of the Lizard peninsula there is an association of supracrustal rocks 

with oceanic affinity, granitoids and associated intrusives (Figure 3.3). These basement 

rocks occur in the footwall of thrust contacts with the mafic and ultramafic rocks of the 

Lizard Ophiohte Complex. New geochronological constraints derived from U-Pb 

SHRIMP analyses of zircon in these rocks establish that the early steeper fabrics 

preserved in some of these rocks are at least of early Ordovician age 

53 



Field and Geochronological evidence 

F'oitia: DA 

Traboe 

Mullion 

Predannack Kennack 
Sands 

Clamck Black Hsa ] 

Ogo Dour Cove 

Head 
Kildown Point 

IGS Bo-eholes 
Cadgwilh 

Traboe horehol 
Traboe borehole 2 

The BalkQuan^ 
Kynace 

Kilometers 
Lizard Point 

3 Traboe borehole 3 
Counts/bridge 
Predannack Downs 
Kennack Sands 

Mantle 

\ Lherzolite Peridotites 

Mylonitic Plagioclase-bearing Peridotites 

Mylonitic Amphibole-bearing Peridotite 

Crus t 

Traboe "Cumulate" Complex 

I Porthoustock Amphibolites 

Lower Landewednack Amphibolites 

Crousa Gabbro 

Dyke Complex 

I Kennack Gneiss 

Ordovician Basement 

Man of War Gneiss 

I Old Lizard Head Series 

Sediments 

3 Devonian Sediments 

Major Extensional Fault 

Thrust 

Fault 
lntrusive/sedimentai> contact 

Figure 3.3. Simplified geological map of the Lizard complex: modified after Flett (1946), 
Green (1964a) and Floyd et al. (1993). Including a sub-division of the different peridotite-types 
and the location of IGS boreholes referred to in the text. 
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(Appendix A ) . In all o f the rocks discussed below, there is a strong fabric overprint 

related to the effects o f deformation developed during later emplacement o f the Lizard 

Ophiolite Complex (Section 3.5.1.)-

3.2.1. The Man of War Gneiss 

The Man o f War Gneiss (MOWG) outcrops on rocks and reefs south of Lizard Point 

and these are only accessible at extremely low tide or by boat. In the course of the 

present study, only the strongly deformed M O W G outcrops on the wave cut platform at 

Lizard Head (GR 6942 1151) and boulders o f the less deformed rock on the shore have 

been observed (Figure 3.4). Therefore much of the following discussion is based on the 

detailed observations o f previous authors (Chapter 2). In a recent study, Sandeman et 

al. (1997) established by U-Pb dating o f zircon that the original magmas that now form 

the M O W G crystallised in the early Ordovician (499 +8/-3 Ma). The outer reefs o f f the 

Lizard Head consist o f coarse-grained gabbro to tonalite (Sandeman et al., 1997); 

similar boulders are found on the beach at Polpeor Cove (GR 7000 1150). These rocks 

are weakly foliated, and the strike o f the foliation is variable, although dips are 

generally steep and lineations have not been reported (Sandeman et al. 1997). For 

further details o f the orientation data the reader is directed to the studies o f Sandeman 

et al. (1997) and Jones (1994, 1997). The inner reefs and outcrops on the shore at 

Lizard Head and the southern extremity o f Vellan Drang (GR 7000 1127) comprise a 

strongly deformed variant o f the M O W G . These rocks are o f fine-grained, mylonitised 

tonalitic gneiss and foliations dip at a low-angle towards the NE (Sandeman et al., 

1997). These mylonites were produced during the re-working o f the Man of War 

Gneiss in the footwall o f the Old Lizard Head Thrust (Section 3.5.1.b). Amphibolitised, 

porphyritic mafic dykes occur in the M O W G , and locally cross-cut the early steeper 

foliation (Fox, 1888; Flett, 1946; Sandeman et al., 1997). 

3.2.2. The Old Lizard Head Series and Lizard Head Sill 

The Old Lizard Head Series (OLHS) comprise interleaved pelitic and psammitic 

schists, hornblende schists and minor amphibolites exposed around the southern area o f 

the Lizard Peninsula between Pentreath Beach (GR 6935 1265) and Polbream Cove 

(GR 7023 1150). These rocks have been long regarded as a series o f metamorphosed 
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basaltic lavas, tuffs and quartz-rich and pelitic sediments (Bonney. 1883; Somervail. 

1884; Flett and H i l l , 1912; Tilley, 1937; Floyd et al., 1991) (Chapter 2). Orientation 

data for structural features in these rocks are presented in recent papers by Sandeman et 

al. (1997) and Jones (1994, 1997). Pelitic horizons are composed of muscovite, biotite, 

feldspar, minor quartz and garnet. Pelitic layers alternate with psammites composed of 

quartz, and minor muscovite, biotite and feldspar (Figure 3.5). Amphibolites comprise 

abundant, elongate green hornblende and feldspar. These amphibolites are superficially 

similar to Landewednack amphibolites which are extensively exposed on the east and 

Figure 3.4. Boulder of Man of War Gneiss on the shore at Polpeor Cove. Note the shear zone 
(S) that cross-cuts an earlier fabric. 

Figure 3.5. Typical Old Lizard Head Series metasediments comprising pelitic (Pe) and 
psammtitic (Ps) layers. Note folds and the presence of quartz veins. 
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west coasts o f the Lizard (Section 3.5.2.c), but detailed examination shows that the 

OLHS amphibolites contain a greater abundance o f hornblende and thus can be 

distinguished fi-om the Landewednack amphibolite. The whole rock geochemistry of 

the OLHS amphibolites and the other amphibolites is compared in Chapter 6 to provide 

clues as to the origin o f their protoliths. Original textures in these rocks, which include 

compositional layering, are rarely preserved. In many outcrops, there are later intrusive 

mafic sheets wi th relict igneous textures. The textures preserved in these sheets are 

ofl:en coarse-grained, and large plagioclase phenocrysts are observed in hand-specimen 

(Figure 3.6). The porphyritic, mafic sheets may belong to the same suite o f porphyritic 

mafic rocks, which are observed in the M O W G (Flett, 1946). In a recent paper, Jones 

(1997) inferred that outcrops o f these intrusive mafic rocks all belong to the same 

intrusion, termed the 'Old Lizard Head Basic Sheet'. This term is rejected in the 

present study, because it may be confused with the 'Lizard Head Si l l ' at Lizard Head 

which is a granitic in composition and is referred to in previous publications (Flett, 

1946; Green, 1964c; Sandeman et al., 1997). Two different and unrelated suites o f 

intrusive rock are therefore recognised in the OLHS, a suite o f granitic sills and a suite 

o f mafic sheets. The origin o f the mafic sheets is imclear. Jones (1997) stated that they 

are cross-cut by the granitic Lizard Head Sill, but only tectonic contacts between the 

mafic sheets and granitic rock were observed during the course o f the present study. 

The whole-rock geochemical compositions o f porphyritic rocks analysed during this 

study are very similar to the composition o f the Landewednack amphibolites and later 

dolerite dykes, yet different to the amphibolite layers in the OLHS (Chapter 6). Granitic 

veins occur in the Polpeor Cove area, 300 m east o f the nearest granitic intrusion, but 

there is no evidence to suggest a relationship between these veins and the Lizard Head 

Sill . 

The granitic Lizard Head Sill (Figure 3.7) is fine-grained, grey coloured and 

shows granoblastic textures. The Sill has intruded and cross-cut an early fabric 

developed under upper-amphibolite conditions preserved in the OLHS (Jones, 1997). 

New U-Pb SHRIMP dating o f magmafic zircons (97/712) provide an age o f 488 ± 8Ma 

(Appendix A ) , which is interpreted as giving the intrusive age o f the granitic sill. U-Pb 

SHRIMP analyses o f zircon from a phacoid o f granitic rock (97/719) entrained along 

the Old Lizard Head Thrust yield an age o f 499 ± 7 Ma (Appendix A ) . The age for the 

phacoid o f granitic rock (97/719) is statistically indistinguishable from that of the 
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granitic Lizard Head Sill (97/712), and suggests that they belong to the same intrusive 

suite (Nutman, A.,pers comm 1998). The early Ordovician age for the intrusion of the 

Lizard Head Sill is extremely significant in terms of the tectono-stratigraphic evolution 

Figure 3.6. Coarse-grained mafic sheet containing abundant plagioclase phenocryts. Compare 
with OLHS metasediments (Figure 3.5) which lack this porphyritic texture. 

S i D 

Figure 3.7. Detail of the Lizard Head Sill (Sill) which has intruded the Old Lizard Head Series 
(OLHS). Note the sheared margins of the sill. 

of the Lizard Ophiolite Complex as this indicates that the OLHS and early fabrics must 

be early Ordovician or older. The similarity in the age of the MOWG and the Lizard 

Head Sill suggests that they may be genetically related. This therefore contradicts the 

previous interpretations of Sandeman et al. (1997) and Jones (1997) which suggest that 

the Lizard Head Sill is unrelated to the M O W G and possibly represents local melting 
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during Devonian emplacement. The earlier interpretation o f Flett (1946) that the Lizard 

Head Sill represents fractionated offshoots o f the M O W G may indeed be justified. 

The early fabrics and igneous textures o f the OLHS and the Lizard Head Sill are 

cross-cut by a later pervasive fabrics and several generations of shear-zones related to 

subsequent emplacement tectonics in the early to late Devonian (Section 3.5.l.a.). 

3.2.3. Summary 

• Rocks exposed on the SW point o f the Lizard peninsula are oldest preserved in the 

Lizard OphioHte Complex and hence represent older basement. 

• The rocks o f the OLHS are at least early Ordovician in age, which has been 

established by U-Pb SHRIMP dating o f magmatic zircon in a granitic sill which 

cross-cuts original textures and early fabrics. 

• In a recent paper, Sandeman et al. (1997) established that the M O W G is also early 

Ordovician in age, and this therefore suggests an association with the OLHS. 

• The early evolution o f the igneous rocks forming the M O W G and the sedimentary 

and associated igneous rocks o f the OLHS is therefore distinct from the other units 

o f the Lizard Ophiolite Complex. 

3.3. Early mantle deformation 

The earliest deformation phase recognised in the Devonian rocks o f the Lizard 

Ophiolite Complex (this excludes the SW basement) is preserved in deformed 

peridotites. Two main textural types o f peridotite can be identified by field observation: 

coarse-grained Iherzolites and mylonitic peridotites. The coarse-grained Iherzolites are 

exposed in the central, southern and eastern parts o f the Lizard (Figure 3.3), whilst the 

mylonitic peridotites are predominant in the northern and western areas. In most areas, 

the different peridotite types are juxtaposed by later brittle faults, but the similarity in 

the orientation o f fabrics in the different peridotite types, and the presence of 

gradational contacts in some areas suggests that these fabrics where produced by 

heterogeneous strain during the same deformation event. In all outcrops o f peridotite, 

there is evidence for the pervasive serpentinisation which has affected the ultramafic 

rocks o f the Lizard Ophiolite Complex. Serpentinisation here involves alteration o f 

olivine and pyroxene in hand-specimen, and the development o f cross-cutting veins. As 
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serpentinisation is ubiquitous it w i l l not be mentioned at every instance the peridotites 

are discussed. In the northern and western areas o f the Lizard, mylonitic peridotites are 

in contact wi th highly deformed ultramafic and mafic Traboe cumulates. Flett (1912) 

regarded the mafic rocks, which he termed the Traboe Hornblende Schists, as being a 

group o f mafic intrusions emplaced into the peridotite. Green (1964a,b,c), however, 

interpreted the Lizard peridotite as being a diapir intruded into regionally 

metamorphosed amphibolite, with the mylonitic peridotite forming the highly deformed 

margin and what he termed 'mafic granulites' as a contact dynamothermal aureole. 

Evidence f rom a series o f boreholes drilled through the mylonitic peridotite, ultramafic 

and mafic cumulates in the Traboe area (GR 744 213) o f the Lizard Ophiolite Complex 

led Leake and Styles (1984) to propose that these rocks represent the lowermost crust 

transitional to the mantle, in what was termed the Traboe cumulate complex (Figure 

3.3). 

The field characteristics o f the different peridothe textural types and associated 

ultramafic rocks are discussed in the following sections. 

3.3.1 Coarse-grained Iherzolites 

A t outcrop, the coarse-grained Iherzolites are identified by a moderate to strong 

foliation, wi th or without a mineral stretching lineation, defined by stretched bronze 

coloured orthopyroxene porphyroclasts ( l -5mm), usually ahered to bastite (the name 

given to serpentine pseudomorphs after orthopyroxene - Whittaker & Zussman (1965)), 

and dark brown coloured spinel (Figure 3.8). When fresh, the rock is dark in colour, 

however weathering results in a pale-brown coloured rock and accentuates the foliation 

giving the rock a characteristic ribbed appearance. The rock is commonly banded and 

these bands ( l-5cm) are defined by variations in the abundance of pyroxene and 

olivine. Pyroxene-rich bands between 10-20cm in thickness and metres in length occur, 

and are here termed pyroxenites (Figure 3.9). Pyroxenite bands are particularly 

numerous at Carleon Cove (GR 7280 1565), Beagles Point (GR 7660 1655) and 

Pentreath Beach (GR (GR 6935 1265) where they are commonly orientated parallel to 

the peridotite fabric. They may be boudinaged and the fabric is also observed to be 

oblique and cross-cut the pyroxenite bands at some localities. These observations 

suggest that the pyroxenite bands are a primary layering feature, which predates the 
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development of the deformation fabric in the coarse-grained Iherzolites. Rothstein 

(1977, 1981, 1988, 1994) proposed that these pyroxenite bands preserve crescumulate 

Figure 3.8. Coarse-grained Iherzolite displaying a strong foliation defined by stretched 
orthopyroxene porphyroclasts. Cross-cutting black veins (S) are composed of serpentine. 

Figure 3.9. Plan view looking down at showing pyroxenite bands (?) in coarse-grained 
Iherzolite. 

structures. Rothstein {op cit.) also described dunite and harzburgite layers and 

suggested that these preserved similar structures to the pyroxenite bands and these 

formed during early igneous events prior to deformation of the Lizard peridotites. 

Within the areas mapped as coarse-grained Iherzolite (Figure 3.3), dunites are 

numerous. These rocks are a distinctive light-green or brown colour and consist of 

serpentine after olivine and minor stringers of coarse-grained Cr-spinel (Figure 3.10). 
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The stringers of Cr-spinel vary in length (10-150cm) and are aligned parallel to the 

margins of the dunite body and the fabric in the adjacent coarse-grained Iherzolite 

(3.11). Dunites are planar bodies, which generally have a lensoid form and vary in 

Figure 3.10. Dunite (D) within coarse-grained Iherzolite (L). Note the gradational margins to 
the dunite bodies. 

A) B) 

/ 

+ I 

f t ̂  \ 

Figure 3.11. Stereographic projections showing poles to (A) dunite body margins, and (B) 
coarse-grained Iherzolite foliation along the coastal outcrops between Carrick Luz and 
Coverack. 

width between ]0-500cm, extending along strike between tens of centimetres or up to 

several hundred metres. In the Black Head (GR 7790 1615) to Chynalls Point (GR 

7866 1740) coast section dunite, bodies are particularly abundant and detailed mapping 

(Figure 3.12) has revealed that the dunites coalesce in several zones that are up to 70 

metres in width and extend for 350 metres along strike. At Lankidden Cove (GR 7563 

1665), on a small rock promontory, an outcrop of dunite 15 metres wide occurs. The 

dunite body has an anastomosing form and contains screens of Iherzolite and 
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harzburgite, which are between 20cm to 200cm in width. The contacts between the 

dunite and coarse-grained Iherzolite are gradational over 10-30cm. These gradational 

contacts are characterised by the absence of clinopyroxene, followed^orthopyroxene in 

a traverse f rom the Iherzolite to dunite. The gradational margins between the dunite and 
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Figure 3.12. Geological map of the coastline between Chynalls Point and Black Head showing 
the distribution of dunite bodies, gabbro dykes and mafic dykes in the coarse-grained Iherzolite. 

Iherzolite are therefore harzburgites. In other outcrops, the harzburgitic margins of 

dunite bodies are up to 2 metres in width. The form of the dunite bodies and their 

relationships with the coarse-grained Iherzolite suggest that these bodies formed prior 

to the development of the fabric in the peridotite. These dunites may represent relict 
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Figure 3.13. Geological map of the Lizard Complex. The different fabric domains in the 
coarse-grained Iherzolite are labelled with stereographic projections showing poles to the 
foliation and plunge of the mineral lineation. 

conduits through which melt has percolated and reacted with the host peridotite. 

The majority o f the coarse-grained Iherzolites are a spinel Iherzolite assemblage 

consisting of olivine, orthopyroxene, chnopyroxene and spinel, but in some outcrops, a 

fine-grained white coloured mineral is observed. This mineral is saussurite, which is 

derived from the alteration of plagioclase; therefore some of the coarse-grained 

Iherzolites have a plagioclase Iherzolite assemblage. 
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3.3.1.a. Fabric Orientation 

The characteristic fabric o f the coarse-grained Iherzolites is a steep to sub-vertical 

foliation wi th mineral stretching lineations plunging down-dip. The fabric shows 

kilometre-scale variations in orientation throughout the Lizard Ophiolite Complex 

(Figure 3.13). This may be attributed a heterogeneous strain field or due to the effects 

o f subsequent deformation events. On the east Coast o f the Lizard peninsula, between 

Kennack Sands (GR 7385 1650) and Coverack (GR 7825 1830), the Iherzolites show a 

well-developed sub-vertical foliation whilst mineral lineations are weakly developed or 

non-existent. This area contains peridotites with a high proportion of relict primary 

features (Rothstein 1977, 1981, 1988, 1994) and thus appears to represent the least 

deformed parts o f the Lizard peridotites. The foliation between Carrick Luz (GR 7555 

1650) and Coverack, is orientated N to NNE and dips steeply W (Figiu-e 3.13). The 

orientation o f the fabric changes in the coastal stretch between Carrick Luz and 

Kennack Sands, where the foliation trends NE and dips steeply N W and SE. The 

orientation o f the fabric changes abruptly at Chiverton Croft (GR 725 175), one 

kilometre inland f rom Kennack Sands. In this area the foliation is orientated N W to N 

and dips steeply W. This transition in the fabric orientation does not appear to be 

gradational, and instead it is suggested that a later fault contact separates the two areas 

with a contrasting fabric orientation. This fault was not observed in the field, but it is 

suggested that it represents a continuation o f the fault that juxtaposes peridotite with 

gabbro north-east o f this area. In the Clahar (GR 6867 2003) to Bochym H i l l (GR 6950 

2030) area, the foliation is orientated E to ESE, and dips steeply N and S. The transition 

in the orientation o f the fabric between this area, and in the Chiverton Croft to Trenoon 

area to the south-east appears to be abrupt, and it is suggested that a later fault contact 

separates these areas. 

At Kynance cove (GR 6847 1330), in the south western part o f the Lizard 

peninsula the fabric in the coarse-grained Iherzolite is strongly developed and 

transitional to mylonitic peridotite. The orientation of the fabric is different to the 

localities described above and also on the south-east coast o f the Lizard in the Pam 

Voose Cove (GR 7150 1304) area. Between Kynance Cove and Pentreath Beach (GR 

6935 1270) the foliation is orientated NE to E and dips moderately-steeply to the NW, 

mineral stretching lineations plunge moderately down-dip towards the N W (Figure 

3.13). The transition f rom coarse-grained Iherzolite to mylonitic peridotite occurs over 
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a distance of two hundred metres, f rom the south-east to north-west, close to Tor Balk 

(GR 6849 1342) at Kynance Cove (Figure 3.14). The transition is characterised as a 
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Figure 3.14. Geological map of the Kynance Cove to Pentreath Beach area. The distribution of 
coarse-grained lherzolite,a transitional assemblage and mylonitic peridotite are shown and the 
orientation of the foliation and mineral lineation in representative outcrops. 

decrease in the overall grain-size of the peridotite and the development of a stronger 

fabric. There is possibly a transition from coarse-grained Iherzolite to mylonitic 

peridotite in the northern area of the Lizard, west of Trelan (GR 7450 1885), although 

interpretation of the field relationships in this area is hampered by a lack of outcrop. 

3.3.2. Mylonitic Peridotites 

A reduction in the overall grain size, an increase in the degree of elongation of 

pyroxene porphyroclasts, and the development of a mylonitic fabric with a stronger 

foliation and mineral stretching lineation distinguish the mylonitic peridotites from the 

coarse-grained Iherzolites. Mylonitic peridotites outcrop on the west coast of the 
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Lizard, at Mul l ion Cove (GR 6660 1775) and inland to Penhale (GR 6975 1847) and 

Mount Careless (GR 7016 1613), and along the coast between Potstone Point (GR 6684 

1561) and Kynance Cove (GR 6847 1330). In the northern area o f the Lizard, the 

mylonitic peridotites outcrop in a two kilometre wide zone between Bonython (GR 

7000 2105), Trevassick (GR 7103 2243) and Trelan (GR 7450 1885). Limited areas of 

outcrop occur on the east coast near to Black Rock (GR 7280 1549), Kildown Point 

(7262 1470), Cadgwith (GR 7220 1450) to Cam Barrow (GR 7190 1384), The Balk 

(GR 7154 1283), Lizard village (GR 7035 1250) and the south end of Pentreath Beach 

(GR6935 1270) (Figure 3.3). 

Two different sub-types of mylonitic peridotite are recognised by examination 

o f hand specimens. A n assemblage consisting o f olivine, orthopyroxene, clinopyroxene 

and plagioclase (commonly saussuritised) and spinel define a mylonitic plagioclase-

bearing peridofite (Figure 3.15). This assemblage is transifional into a 

mylonitic amphibole-bearing peridotite assemblage, which is characterised by the 

presence o f distinct yellow-green amphibole grains in hand-specimen (Figure 3.16). 

The two different mylonitic peridotite sub-types are often interbanded on a centimetre 

scale and kilometre scale domains o f the different sub-types also occur. The 

distribution o f the different sub-types o f mylonitic peridotite shown in Figure 3.3 has 

been deduced by detailed mapping and geographic information system (GIS) study of 

data f rom thin sections (Chapter 4). Outcrops o f mylonitic amphibole-bearing peridotite 

occur at Henscath (GR 6650 1802), Mull ion C l i f f (GR 6670 1765), Meaver (GR 6857 

1898), and Potstone Point (GR 6684 1561) to Vellan Head (GR 6680 1490), Kynance 

Farm (GR 6801 1455) and Kynance Cove on the west coast o f the Lizard. On the east 

coast, mylonitic amphibole-bearing peridotite is exposed at The Balk, Cam Barrow, 

Cadgwith and Ki ldown Point. In the northern area o f the Lizard, outcrops o f mylonitic 

amphibole-bearing peridotite occur between Trevassick, Traboe Cross (GR 7360 2055), 

Kemewas (GR 7443 2024) and one kilometre north-west o f Trelan. Pyroxenite layers 

and dunite bodies characteristic o f the coarse-grained Iherzolites are never observed in 

the mylonitic peridotites; and it is therefore assumed that deformation and 

recrystallisation has obliterated these primary features. Within both mylonitic peridotite 

sub-types, feldspathic bands occur and form thin discontinuous bands <2cm wide 

(Figure 3.17). The bands have sharply defined margins, which are parallel to the 

foliation in the adjacent peridotite. The bands often occur as several thin layers, 

interbanded with the host peridotite in zones up to 30cm wide. In the outcrop, no 
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Figure 3.15. Mylonitic plagioclase-bearing peridotite. Note the strong foliation and prominent 
down-dip plunging mineral lineation on foliation surfaces. 

Figure 3.16. Plan view looking down at mylonitic amphibole-bearing peridotite. Note the 
stretched orthopyroxene porphyroclasts aligned parallel to the foliation. 

connectivity between adjacent bands is observed. These bands are pale-green or white 

coloured and in hand specimen are observed to be composed of plagioclase, pyroxene 

and amphibole. 

At several localities in the Lizard Ophiolite Complex, mylonitic amphibole-

bearing peridotites are intimately associated with gabbroic veins (petrologically and 

chemically distinct f rom the Crousa gabbro) and mafic Traboe cumulates. At these 

localities the two different lithologies are interbanded and interfolded, and fabrics are 

parallel. The field relationships, stmctures within the peridotites, gabbroic veins and 
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Figure 3.17. Foliation parallel feldspathic bands (pale) within mylonitic amphibole-bearine 
peridotite. 

Mafic Traboe cumulates and their significance are described in Section 3.4. 

3.3.2.a. Dip-slip fabrics 

At the majority of outcrops the mylonitic peridotites show a consistent NW- to NNW-

orientated foliation which dips steeply to the ENE, whilst mineral lineations plunge 

down-dip (Figure 3.18). This contrasts with the more variable fabric orientations 

observed in the coarse-grained Iherzolites. 

3.3.2.b. Strike-parallel fabrics 

In the area of Mullion Cove (GR 6670 1780), Mullion Cliff (OR 6670 1765) and inland 

to Isle of Wight (GR 6767 1743) and Tenerife Farms (GR 6724 1670) a fault-bounded 

unit of mylonitic peridotite occurs with a fabric orientation that contrasts with 

orientation observed elsewhere in the Lizard peridotites. The mylonitic peridotites in 

this area are predominantly composed of the mylonitic amphibole-bearing sub-type. 
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Figure 3.18. A geological map of the Lizard Complex, including a sub-division of the 
mylonitic peridotites into a 'dip-slip" fabric domains (red) and a strike-paraller fabric domain 
(green). Stereographic projections show poles to the foliation and plunge of mineral stretching 
lineation in these fabric domains. 

with only very minor occurrences of plagioclase-bearing zones. The foliation in this 

area is consistently orientated N to NNE and dips predominately W (Figure 3.18). 

Mineral lineations are sub-horizontal, and plunge at a low angle towards the SSW. 

which contrasts with the 'dip-slip' fabrics observed in peridotites in all other areas of 

the Lizard. This area of peridotites with a "strike-parallel' fabric is separated from 'dip-

slip' mylonitic peridotites to the east, by a N-S striking fault (Figure 3.18). 
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3.3.3. Kinematics analysis 

In outcrop, determination of the shear-sense using conventional shear-sense indicators 

(e.g. asymmetric porphyroclasts) is ambiguous and shear bands, folds and other shear-

sense indicators are not observed in these rocks. The asymmetry of the pyroxene-rich 

bands in the peridotite and the cross-cutting fabric may also be used as a potential 

kinematic indicator. This method, however, is only applicable i f the original orientation 

of the pyroxene-rich bands is established and this is not known in the deformed 

peridotites of the Lizard. Therefore a different approach has been used to determine the 

sense of shear in these rocks and has involved collection of orientated specimens of 

peridotite. Thin sections made from orientated specimens have been used in a study of 

lattice-preferred orientation or LPO of olivine, which has then been used to determine 

the sense of shear. The LPO technique and the results of its application on the Lizard 

peridotites are discussed in Chapter 4. 

3.3.4. Summary 

• In areas of low-strain the peridotites preserve evidence for an early, coarse-grained 

spinel Iherzolite assemblage, associated with pyroxene-rich bands, and minor 

harzburgite and dimite bodies. This assemblage is cross-cut by larger anastomosing 

dunite bodies. 

• Early textures and contacts preserved in these rocks are cross-cut by a later 

pervasive fabric, which is characterised by a subvertical foliation and down-dip 

mineral iineations. 

• Spinel Iherzolites possess a coarse-grained porphyroclastic fabric and in many 

outcrops, the spinel Iherzolite assemblage is replaced by a plagioclase Iherzolite 

assemblage. 

• Coarse-grained Iherzolites show a transition to mylonitic plagioclase-bearing 

peridotites and transitional mylonitic amphibole-bearing peridotites in areas of 

high-strain. 

• At several localities the mylonitic peridotites are in contact with gabbroic veins and 

ultramafic and mafic Traboe cumulates. 

• The presence of plagioclase-bearing peridotites and association with mafic rocks 

suggests that this deformation occurred in the upper mantle/lower crust. 
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3.4. Oceanic crust construction 

It has been previously recognised that the mafic rocks exposed in the Lizard Ophiolite 

Complex are highly variable in character, and several controversial interpretations for 

the origin of these rocks have been proposed (see Chapter 2 for a more comprehensive 

review). During the course of the present study, it has been established on the basis of 

field, microstructure (see Chapter 4) and geochemical evidence (see Chapters 5 and 6) 

that the existing terminology (Chapter 2) for the mafic rocks can be inconsistent and is 

often misleading. Therefore the terminology which will be referred to in this thesis is 

presented below (Table 3.1). This includes ultramafic and mafic rocks that are thought 

to represent relict oceanic crust .;- associated with the peridotites of the Lizard 

Ophiolite Complex. The ultramafic and mafic rocks are subdivided into five groups on 

the basis of field, petrological (Chapter 4) and geochemical evidence (Chapters 5 & 6). 

• Highly deformed and metamorphosed ultramafic and mafic cumulates (Ultramafic 

and Mafic Traboe cumulates) 

• Gabbroic veins (Petrologically and geochemically distinct from Crousa gabbro) 

• Metamorphosed basaltic and gabbroic rocks (Landewednack amphibolites) 

• A large gabbro intrusion (Crousa gabbro) with associated gabbro dykes 

• Porthoustock amphibolites. 

Revised Scheme Flett & Hill (1912) Green (1964a,b,c) Bromley (1979) , 

Ultramafic Traboe 
cumulate Dunite serpentine Lizard peridotite Peridotite 

Mafic Traboe 
cumulate 

Traboe hornblende schist Traboe hornblende schist Traboe schist 

Gabbroic vein Traboe hornblende schist 
Hornblende/pyroxene 
granulite Granulite 

Landewednack 
amphibolite 

Landewednack hornblende 
schist 

Landewednack hornblende 
schist 

Lower Landewednack 
schist 

Crousa Gabbro Lizard gabbro Lizard gabbro Lizard gabbro 

Porthoustock 
amphibolite 

Landewednack hornblende 
schist 

Landewednack hornblende 
schist 

Upper Landewednack 
schist 

Table 3.1. Comparison of the terminology for the ultramafic and mafic rocks used in the 
revised scheme with the published terminology for the same rocks developed by Flett & Hill 
(1912), Green (1964a,b,c) and Bromley (1979). 

The ultramafic and mafic Traboe cumulates are exposed along a one kilometre 

coastal section on the west of the Lizard (Figure 3.3), a ca. 6 km^ inland area near 
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Traboe (GR 74 21) and at the north-east part of the Lizard, along one kilometre of coast 

at Porthkerris (805 230). Outcrops of the Landewednack amphibolites occur along the 

south east coast of the Lizard peninsula and along the west coast between Pare Bean 

Cove (GR 666 158) and Polurrian Cove (GR 6675 1865). 

The Crousa gabbro and associated gabbro dykes, outcrop on the east coast of the 

Lizard, between Porthoustock (GR 8064 2185) and Coverack (GR 7820 1837). Gabbro 

intrusions and dykes, which may be related to the Crousa Gabbro, outcrop between 

Carleon Cove (GR 7281 1565) and Church Cove (GR 7150 1280). The Porthoustock 

amphibolites, which represent a distinct geochemical (Chapter 6) and tectonic suite of 

amphibolites, outcrop on the east coast between Porthkerris Cove and Porthoustock and 

inland exposures extend to the Traboe area. 

The field evidence is discussed in this section in the context of a tectonic 

chronology established by detailed mapping of fabrics and U-Pb SHRIMP dating of 

zircon. Field evidence for the Ultramafic and mafic Traboe cumulates and gabbroic 

veins associated with mylonitic peridotites are described in a separate section to the 

Landewednack amphibolites, Crousa gabbro and Porthoustock amphibolites, which are 

not directly associated ultramafic rocks. 

3.4.1. Ultramafic and mafic Traboe cumulates and gabbroic veins 

On the west coast of the Lizard, at localities near Potstone Point (GR 6684 1560), Pare 

Bean Cove (GR 6657 1584), Kynance Cove (GR 6835 1332) and on the east coast at 

Porthkerris (80502300), ultramafic rocks are in contact with gabbroic veins and 

ultramafic and mafic Traboe cumulates. At all of these localities mylonitic amphibole-

bearing peridotites show complex interbanded and interfolded relationships with 

gabbroic veins and/or ultramafic and mafic Traboe cumulates. At some localities, the 

gabbroic veins appear to be intrusive into both the peridotite and ultramafic and mafic 

Traboe cumulates. The interbanded/interfolded relationship between these gabbroic 

veins and the mylonitic peridotite can be used to distinguish them from gabbro dykes 

associated with the Crousa gabbro, which do not show these relationships. Detailed 

descriptions of the lithological and structural characteristics of these rocks are 

presented, with reference to the localities mentioned above, in the following sub­

sections. 
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Similar relationships to those viewed in the field are observed in borehole cores 

drilled by LG.S. (BGS) in the Traboe area (GR 74 21) of the Lizard Ophiolite Complex 

(Leake and Styles, 1984). The borehole logs and observations are discussed in this 

section following detailed discussions of the field relationships at exposed outcrops. 

3.4.1.a. Potstone Point - Georges Cove area (GR 670 155; Figure 3.19) 

Along a approximately 500m stretch of coastline between Potstone Point and Georges 

Cove (Figure 3.19), located on the westem coast of the Lizard peninsula, mylonitic 

amphibole-bearing peridotites are in contact with gabbroic veins and ultramafic and 

mafic Traboe cumulates. Interpretations of contact relationships between the peridotite 

and amphibolite in the outcrop in this area have been the source of much controversy 

and debate over the last century (Fox and Teall, 1889; Green, 1964b; Bromley, 1979; 

Jones, 1997). The rocks in this area are juxtaposed with mylonitic plagioclase-bearing 

peridotites to the east and south by later brittle fault contacts and to the north-east with 

massive Landewednack amphibolites by a steeply dipping ductile shear zone. 

Mylonitic amphibole-bearing peridotites occur at the north-eastem margin of 

this locality, in the cliffs above Potstone Point. The peridotite has weathered a brown 

colour, and shows a strong fabric, defined by orthopyroxene porphyroclasts and spinel. 

The rock has a stronger mylonitic fabric than the mylonitic plagioclase-bearing 

peridotite which outcrops 400m south-east of Potstone Point. In a 3 metre wide gully 

on Potstone Point, the mylonitic amphibole-bearing peridotite is in contact with 

ultramafic and mafic Traboe cumulates (Figure 3.20). The mylonitic peridotite and 

Traboe cumulates are interbanded at a centimetre scale and folded, and there appears to 

be a wide range of transitional lithologies, between ultramafic and mafic rock. This 

banding is very similar to layered mafic and ultramafic cumulate rocks and suggests 

that these rocks may represent deformed cumulates. Deformation and shearing has 

obliterated any evidence for any intrusive relationships between the different 

lithologies. Close to this gully, the mylonitic peridotite, Traboe cumulates and 

transitional lithologies are cross-cut by two porphyritic basaltic dykes, which are 

orientated north-west and dip steeply towards the north-east. On the shoreline, on the 

south-east side of Potstone Point, massive coarse-grained mafic Traboe cumulates 

occur, and these locally show complex interfolded and interbanded contact 

relationships with ultramafic rock, similar to those seen in the gully in the cliff above. 
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Figure 3.19. Geological map of the Potstone Point to Vellan Head area. The distribution of the 
different mylonidc peridotite-types and amphibolite-types are shown. Stereographic projecdons 
show poles to the foliation, plunge of mineral lineadon and fold axes in selected lithological 
units. 

Small patches of plagioclase-amphibole bearing veinlets are observed, which cross-cut 

the fabric in the cumulates. Green (1964b) and M.T.Styles {Pers Comm, 1996) describe 

the occurrence of a similar rock at Ogo Dour Cove. The amphiboles in these veinlets 

are coarse-grained and a dark brown colour, suggesting that they may be kaersutitic. 
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These veinlets may represent minor kaersutite gabbro intrusions (M.T.Styles, Pers 

Comm 1996). 

Fox and Teall (1889) describe the presence of a "porphyritic diorite', on the 

north-westem side of Potstone Point, which is only accessible with the aid of a rope. 

Fox and Teall (1889) show that this rock cross-cuts the fabric in the mylonitic 

Figure 3.20. Plan view looking down at interbanded and folded mylonitic peridotite and 
ultramafic and mafic Traboe cumulates. 

SE N W 

Figure 3.21. Gabbroic vein (G) cross-cutting mylonitic peridotite (P), ultramafic and mafic 
Traboe cumulates (C). 
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peridotite, Traboe cumulates and transitional lithologies. This 'porphyritic diorite' is 

itself cross-cut by later mafic dykes. Similar field relationships are seen at the Georges 

Cove, where a coarse-grained gabbroic vein is observed to cross-cut the fabric in the 

mylonitic peridotite, ultramafic and mafic Traboe cumulates (Figure 3.21). These 

gabbroic veins contain large crystals of pyroxene or amphibole, and plagioclase and the 

rock locally posses a fabric, which is parallel to the margins of the contact with 

adjacent rocks. A K-Ar age determination on homblende in a gabbroic vein from this 

area, produced an age of 492 Ma (Green, 1964c). I f this age determination is reliable, it 

could suggest that the gabbroic veins were intruded at ca.492Ma, and therefore the 

peridotites and associated Traboe cumulates are older. 

The foliations in both the mylonitic peridotite and ultramafic and mafic Traboe 

cumulates at Potstone Point are consistently orientated north-west, and dip steeply 

towards the south-west or north-east. Mineral lineations plunge steeply down-dip, 

towards the south-east. Fold axes of isoclinal folds, observed in mylonitic peridotite 

and ultramafic and mafic Traboe cumulates, also plunge steeply towards the south-east, 

and hence parallel to the lineation. Unfortunately, no shear sense criteria has been 

found at the Potstone Point-Georges Cove locality. 

3.4.1.b. Pare Bean Cove (GR 666 158; Figure 3.22) 

At the Pare Bean Cove locality, strongly serpentinised mylonitic amphibole-bearing 

peridotite is interbanded at a metre scale with coarse-grained gabbroic veins and 

ultramafic and mafic Traboe cumulates (Figure 3.22). The rocks at this locality do not 

show the fine-scale interbanding and folding observed at Potstone Point. The gabbroic 

veins at this locality are similar to the cross-cutting gabbroic veins observed at Georges 

Cove. Mafic dykes cross-cut the ultramafic and mafic rocks at this locality. To the east, 

the mylonitic peridotites-mafic rocks are in contact with massive coarse-grained 

Landewednack amphibolites. The contact is a NW-orientated brittle fault, which dips 

towards the E. Shear-sense criteria within the fault zone suggest a dextral normal 

displacement. 

The curved outcrop pattern and orientation of foliations in ultramafic and mafic 

rocks at this locality suggests the presence of a NW plunging antiform. Detailed 

mapping of the fabrics at this locality suggests that the apparent fold form is related to 

the presence of a series of ductile shear zones which cross-cut and rotate the earlier 
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Figure 3.22. Geological map of the Pare Bean Cove, showing the distribution of mylonitic 
peridotite, gabbroic veins, Landewednack amphiboiite and cross-cutting shear-zones. 
Stereographic projecdons show poles to the foliation and plunge of mineral lineation. Dashed 
line indicates extrapolation of faults. 

fabrics. The early fabric preserved in the mylonitic peridotite, gabbroic vein and Traboe 

amphiboiite is a subvertical NW-orientated foliation, with mineral lineations plunging 

down-dip. This fabric is truncated by a series of low-angle shear-zones, which dip 

towards the N, and are related to later emplacement tectonics (Section 3.5.2.b). These 

later shear-zones juxtapose the mylonitic peridotite-mafic rocks with the more massive 

Landewednack amphibolites to the west. 
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Figure 3.23. Geological map of the Nantivet Rock to Kynance Cove region. The distribution 
of the mylonitic plagioclase-bearing and mylonitic amphibole-bearing peridotites and gabbroic 
veins is shown. Stereographic projections display poles to the foliation, plunge of mineral 
lineations and fold axes in selected areas. 

3.4.I.C. Nantivet Rock - Kynance Cove area (GR 683 133; Figure 3.23) 

Along an approximately 300m coastal section, between Nantivet Rock and Kynance 

Cove, mylonitic amphibole-bearing peridotites are associated with gabbroic veins 

(Figure 3.23). The two different rock types are associated in a north-west trending 

zone, which forms an inlet between Asparagus Island and mainland. Intrusions of 

granite, that cross-cut the fabric in the peridotite and gabbroic vein, are numerous in the 

Kynance Cove and the cliffs to the west. Rocks in this area have been subjected to later 

brittle faulting, and in the largest of these extensional faults, mylonitic plagioclase-

bearing peridotites in the hanging-wall overly mylonitic amphibole-bearing peridotite 

and gabbroic veins in the footwall (Figure 3.24). At Nantivet Rock - Kynance Cove 

locality, the mylonitic peridotite-gabbroic vein contact relationships are seen at 

Nantivet Rock, Lawamick Pit, north of Asparagus Island and Kynance Cove. Contact 
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Figure 3.24. Interbanded and folded mylonitic amphibole-bearing peridotite ( M A B ) and 
gabbroic veins (G) in the footwall of a fault (marked by white line) at Lawamick Pit. Mylonitic 
plagioclase-bearing peridotite (MPB) is exposed in the hangingwall of the fault. 

relationships at Nantivet Rock and north of Asparagus Island have been logged in detail 

(Figure 3.25) in two traverses and these structural logs reveal the complexities of the 

relationships between the two lithologies. Mylonitic peridotite and gabbroic vein are 

folded and interbanded on a centimetre to metre scale (Figure 3.26) and isoclinal fold 

axes plunge moderately towards the NW. The contacts between the mylonitic peridotite 

and gabbroic vein are generally sharp, although gradational contacts do occur, which 

result in the generation of transitional lithologies. The gabbroic veins vary between 

massive coarse-grained rocks, which resemble gabbro in hand specimen (Figure 3.27) 

and fine-grained, banded rocks. Within the mylonitic peridotite and fine-grained 

gabbroic veins, fabrics are parallel and a strong foliation strikes NNW, dips steepl>' 

towards the NE and SW and mineral lineations plunge steeply down-dip. Within the 

coarse-grained gabbroic veins, the fabric is less well developed, but it is parallel with 

the fabric in the peridotite and fine-grained <"y>. The effects of folding and the 

development of the fabric in the rock have obliterated any evidence for an intrusive 

relationship between the mylonitic peridotite and gabbroic vein at this locality. These 

gabbroic veins could therefore represent either later gabbroic intrusions, which have 

subsequently been deformed, or deformed mafic cumulate layers. A sample of gabbroic 

vein (96/530) from this locality was used in the SHRIMP dating study. Metamorphic 

zircons were analysed by SHRIMP and established that there was a metamorphic event 

at 385 + 7 Ma. A single zircon grain showed zircon inheritance with an age of 450-500 
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Figure 3.25. Structural log sections from the Kynance Cove area. Log sections show the 
relationships between mylonidc peridotite (dark shade) and gabbroic veins (light shade). 
Structural data is included and orientations are relative to the vertical axes of the log, which 
represents N. 

Ma, which could either represent an inherited grain of unknown origin or a rare 

magmatic grain (Nutman, A., pers comm 1998). The thermal event at 385 ± 7 Ma could 

either be associated with metamorphism during the development of the steep fabric, or 

later deformation events. The mineral chemistry and whole rock composition of these 

gabbroic veins is used to establish their origin in Chapters 5 and 6. 

3.4.1.d. Porthallow Cove - Porthkerris Cove (GR 805 231; Figure 3.28) 

Along the 2 Km section of coastline between Porthallow Cove and Porthkerris Cove, a 

remarkably variable sequence of rocks are observed (Figure 3.28). An ENE trending, 

southerly dipping extensional fault 200 m east of the Five Pilchards Inn at Porthallow 

juxtaposes shales and volcanic rocks to the north, with rocks of much higher 

metamorphic grade to the south. The first lithology encountered south of this 

extensional fault is fine-grained garnet-mica schists and, although they are very sheared 

and altered, are very similar to the Old Lizard Head Series schists observed in the 

Lizard Head area. Another extensional fault contact separates the garnet- micaschists 
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Figure 3.26. Plan view looking down at interbanded and interfolded gabbroic veins (pale) 
within serpentinised mylonitic amphibole-bearing peridotite (red) at Lawamick Pit. 

#^7 , 1 

Figure 3.27. Coarse-grained portion of a gabbroic vein showing large pyroxene porphyroclasts 
(dark) set in a matrix of finer-grained pyroxene and plagioclase. Note the development of a 
foliation defined by elongate pyroxene porphyroclasts. 

from mylonitic peridotites to the east. In hand specimen, these mylonitic peridotites 

contain orthopyroxene porphyroclasts and large amphibole grains, which suggests that 

these are mylonitic amphibole-bearing peridotites. At Pol Gwarra, further east, further 

outcrops of mylonitic peridotite also appear to resemble the mylonitic amphibole-

bearing peridotite characteristic of the west coast of the Lizard. Between Porthallow 

Cove and Porthkerris Quarry, the peridotite is strongly serpentinised and only 

pseudomorphs of the original minerals are observed in hand-specimen. The rock is 

fine-grained, green-black in colour and contains bastite after orthopyroxene and 
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Figure 3.28. Geological map of coastal outcrops between Porthallow Cove and Porthkerris 
Cove showing locations referred to in the text. Modified after Floyd et al. (1993). 

chlorite pseudomorphs after spinel. Many of these ultramafic rocks i.e. the ultramafic 

Traboe cumulates, resemble highly serpentinised dunite. The rock is criss-crossed by a 

network of chrysotile veinlets (Figure 3.29). The foliation in these rocks strikes ENE 

and dips moderately towards the N. Serpentinised ultramafic Traboe cumulates are 

associated with an extremely variable range of mafic Traboe cumulates. The 

serpentinised ultramafic Traboe cumulates are interbanded with mafic Traboe 

cumulates and this banding is related to repetition by isoclinal folding. In the cliff face 

of Porthkerris Quarry, the ultramafic Traboe cumulates form the core of a series of 

antiforms associated with mafic Traboe cumulates, which plunge at a moderate angle 

towards the NW. The mafic Traboe cumulates at Porthkerris Quarry and Porthkerris 

Point are highly deformed and disharmonic folding is observed (Figure 3.30). A wider 

range of rock types is observed in mafic Traboe cumulates at this locality than at the 

localities described in previous sections. The rocks vary in composition between 

amphibole- and pyroxene-rich layers to plagioclase-rich layers, and in many places 
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resemble deformed gabbroic rocks. The association of serpentinised ultramafic Traboe 

cumulates, including dunites, pyroxene-rich rocks and gabbroic rocks suggests that 

these outcrops represent a highly deformed and metamorphosed cumulate complex. 

Geochemical evidence for a cumulate origin for rocks similar to these is presented in 

Chapter 6. The highly folded nature of these rocks and the presence of ductile shear 

zones suggest that they have been subjected to several phases of high-temperature 

deformation. Granitic veinlets (1 - 25cm) at Porthkerris Quarry cross-cut the fabric 

mm 

Figure 3.29. Serpentinised ultramafic Traboe cumulate at Porthallow. This rock resembles 
dunite and is criss-crossed by a network of chrysotile veinlets. 

Figure 3.30. Strongly deformed and folded mafic Traboe cumulates at Porthkerris Quarry. 
Note the large variation in compostion, f rom plagioclase-rich anorthosite layers (white) to 
amphibolitised pyroxenite layers (dark). 
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within the mafic Traboe cumulates. A few granite veins are parallel to the fabric in the 

host amphibolite and fabrics within the veins are also concordant with the amphibolite 

fabric. Later folding has deformed the veinlets. Clark et al. (1998b) recently dated a 

granitic vein from Porthkerris, which they describe as a plagiogranite, by U-Pb analysis 

of zircon. The plagiogranites described by Clark et al. (1998b) are believed to be 

identical to the granite veins observed during the present study. An age of 397±2 Ma 

was obtained from the zircons, which is interpreted by Clark et al. (1998b) to record the 

crystallisation of the plagiogranite. This zircon age therefore constrains the deformation 

in ultramafic and mafic Traboe cumulates at Porthkerris to an age of 397±2 Ma or 

earlier. At Pol Gwarra, a highly deformed coarse-grained leucogabbro is exposed and is 

cross-cut by gabbro mylonite shear-zones and gabbro pegmatites. 

The fabric orientation and composition of ultramafic and mafic Traboe 

cumulates contrasts with Porthoustock amphibolites on the south side of Porthkerris 

Cove. On the south side of the Cove, the Porthoustock amphibolites are massive, with 

little of the variation seen at Porthkerris Quarry and Point, and the foliation is flat-lying 

with sub-horizontal mineral lineations plunging predominantly SW. It is postulated that 

an unexposed fault in Porthkerris Cove forms the contact between these two contrasting 

lithological units. 

3.4.1.e. Traboe Boreholes 

In 1978, three near vertical boreholes were drilled to the W and SW of Traboe (1,2 & 3 

on Figure 3.3). These boreholes were drilled as part of a geochemical survey by the 

I.G.S. (BGS). Leake and Styles (1984) published simplified graphical logs presented in 

this section (Figure 3.31). Leake and Styles (1984) concluded that the ultramafic and 

mafic rocks preserved in the borehole core represent a deformed and dismembered 

cumulate complex, termed the Traboe cumulate complex, overlying the Lizard 

peridotite. 

During the course of this study, the borehole core has been studied at the 

Keyworth offices of the British Geological Survey. The study of this core complements 

the detailed field observations described in the preceding sections. 

A wide range of lithologies is observed in the borehole core and these are very 

similar to the rocks observed at the Porthkerris coastal section (3.4.2.d.). The 

lithologies range in composition between serpentinised mylonitic peridothes to 
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Figure 3.31. Simplified graphic logs of the Traboe boreholes (from Leake & Styles, 1984). 

anorthosites. Al l of the rocks are highly deformed, with a well-developed foliation, 

which is usually folded. Later faulting has disrupted the sequences observed in the core. 

The core from borehole 1 displays the most variable range of lithologies that includes 

serpentinised dunites, mylonitic peridotite, layered pyroxenites, amphibolites and 

granulites. The different lithologies are layered at a cm to m scale and layer boundaries 
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are often gradational. Borehole 2 consists almost entirely of serpentinised peridotite; 

both dunite and mylonitic peridotite are observed. The uppermost section of borehole 2 

consists of Traboe amphibolite. Borehole 3 consists predominantly of Traboe 

amphibolite, with minor pyroxenite and anorthositic layers. There appears therefore to 

be a stratigraphic sequence from borehole 2 to 1 to 3. Borehole 2, which is 

predominantly composed of ultramafic rocks represents the upper mantle/lower crust 

and borehole 3, which is almost entirely mafic rocks, represents the highest 

stratigraphical unit and is equivalent to oceanic crust. Borehole 1 consists of deformed 

layered ultramafic and mafic cumulates as a transitional sequence. The boreholes do 

not represent a complete sequence through the cumulate complex, presumably due to 

the effects of later faulting. Leake and Styles (1984) concluded that the borehole 

intersections originated as a layered peridotite-gabbro cumulate complex, with possible 

cyclic units. The petrography and geochemical compositions of selected borehole 

samples is discussed in Chapters 4, 5 & 6, and is compared with samples collected from 

field outcrops to provide a correlation with the borehole evidence. 

3.4.2. Landewednack Amphibolites 

The Landewednack amphibolites outcrop extensively between Polurrian Cove (GR 

6675 1865) and Mullion Cove (GR 6665 1780), Ryniau (GR 6645 1731) to Ogo Dour 

Cove (GR 6682 1575), and the southern end of Pentreath Beach (GR 6933 1266) on the 

west coast of the Lizard. On the east coast outcrops occur on the coast and inland 

between Polbream Cove (GR 7020 1150) and Kildown Point (GR 7264 1468)(Figure 

3.3). 

Amphibolites described in this section do not show any complex interbanded 

and interfolded relationships with ultramafic rocks. The contacts between 

Landewednack amphibolites and the mafic Traboe cumulates observed in field 

localities and described in the previous section are generally ductile shear-zone 

contacts. The following discussion is focused on evidence for early textures/fabrics in 

the Landewednack amphibolites, which develop prior to later emplacement-related 

fabrics. At Polurrian Cove there is evidence for preservation of lithological layering, 

which pre-dates the development of later fabrics in the amphibolite. At Polurrian Cove 

and Pen Olver (GR 7130 1170), these early textures are cross-cut by a series of 

medium-grained mafic dykes, which have themselves been deformed by the later 
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fabrics. These early textures are interpreted to be primary crystallisation textures in a 

suite of gabbroic and basaltic rocks (Chapter 6), which have been subsequently been 

deformed and amphibolitised. In several outcrops, particularly at Pen Olver, there are 

pelitic horizons interbanded with the amphibolite. 

The earliest fabric to effect the early textures is related to an amphibolite-grade 

metamorphism (Chapter 4). These early steep fabrics are preserved in amphibolites on 

the west coast between Polurrian Cove and Ogo Dour Cove. These early fabrics are 

cross-cut by later, low-angle fabrics, related to the emplacement of the Lizard Ophiolite 

Complex. Jones (1997) concludes that these early fabrics are contemporaneous with 

early fabrics preserved in areas of low-strain within the OLHS, and thus related to the 

same deformation event. Currently there is insufficient geochronological evidence to 

link these amphibolites and early fabrics with the early fabrics preserved in the OLHS. 

The amphibolites and OLHS are juxtaposed by later thrust contacts, related to 

Devonian emplacement of the Lizard Ophiolite Complex, and it is impossible, 

therefore, on the basis of field evidence to justify a genetic relationship between the 

amphibolites and the OLHS. It should be noted, however, that early fabrics preserved 

in both the OLHS and the amphibolites are relatively steep in comparison to the gently 

dipping fabrics related to emplacement, which are seen in both the OLHS and 

amphibolites. Amphibolites, which outcrop on the east coast of the Lizard, between 

Kildown Point and Polbream Cove, preserve little evidence for earlier textures and 

fabrics. The fabrics in these amphibolites are dominantly sub-horizontal and related to 

later emplacement-related tectonics. At Kilcobben Point (GR 7173 1250), however, 

outcrops of amphibolite locally preserve evidence for an earlier, steep fabric, which has 

been subsequently re-worked by sub-horizontal fabrics. In the Predannack Cliff (GR 66 

16) to Ogo Dour Cove area foliations strike NW-SE and plunge moderately to steeply 

SW and NE. Mineral stretching lineations moderately plunge down-dip. The 

orientation of fabrics in these amphibolites is similar to fabrics in gabbroic veins, 

ultramafic and mafic Traboe cumulates on the west coast and at Porthkerris (Section 

3.2.4), but there is insufficient evidence to determine whether these are 

contemporaneous. Sub-horizontal fabrics that relate to later emplacement tectonics 

(Section 3.5) cross-cut these early steep fabrics. At Ogo Dour Cove, these fabrics are 

cross-cut by a suite of NW-SE striking mafic dykes, which are similar in composition 

to dykes (Chapter 6) observed on the east coast of the Lizard e.g. Coverack (GR 7830 

1835). 
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3.4.3. Later magmatism and deformation - East coast of Lizard 

On the east coast of the Lizard peninsula, between Porthkerris (GR 805 231) and 

Coverack (GR 7830 1835), there is evidence for extensive magmatism and deformation 

that appears to post-date the magmatism and tectonism discussed in preceding sections. 

Evidence for this includes the presence of gabbro dykes cross-cutting the fabrics in the 

Lizard peridotites and also mafic Traboe cumulates in the Traboe borehole core (Leake 

& Styles, 1984). This includes a combination of contemporaneous magmatism and 

structural events associated with the intrusion of the Crousa gabbro (Roberts et al, 

1993). North of Porthoustock (GR 8060 2180), massive amphibolites outcrop, which 

are termed the Porthoustock amphibolites. Field and geochemical (Chapter 6) evidence 

suggest that fabrics preserved in these amphibolites were developed in a different 

tectonic environment to fabrics observed in the Landewednack amphibolites. The field 

evidence for these structural and magmatic events, and available geochronological 

constraints is discussed below. 

3.4.3.a. Magmatism and deformation associated with the Crousa gabbro 

The Crousa gabbro is exposed in a ca. 22 km^ area between Porthoustock and Coverack 

on the east coast, and the northern margin of the gabbro has an arcuate contact with the 

Porthoustock amphibolites, Traboe cumulate complex and Lizard peridotites between 

Porthoustock and Gwenter (GR 7410 1789). At Carrick Luz (GR 7555 1650), a 

massive deformed gabbro dyke outcrops in the steep cliffs of this peninsula. At 

Coverack the contact between the gabbro and coarse-grained Iherzolites is observed in 

outcrops on the beach (Figure 3.32). The contact is a complex zone of interdigitating 

gabbro intrusions and peridotite, which represents a petrological Moho and dips at a 

low-angle towards the north. The fabric in the peridotite is cross-cut by gabbro sills and 

the foliation is sub-vertical striking N-S to NE-SW. Troctolite bodies are the first 

intrusive phase observed to post-date the peridotite fabric at Coverack. The troctolite 

forms a series of irregular intrusions, which enclose xenoliths of peridotite, and in hand 

specimen consist of a wide range of compositions including plagioclase, olivine and 

clinopyroxene. The olivine is invariably altered to serpentine and the plagioclase to 

saussurite, which gives the rock a distinctive red and white mottled appearance. Field 

evidence at Coverack shows that gabbro sills associated with the Crousa gabbro intrude 
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the troctolite. The intrusion and crystallisation of the main body of the gabbro has been 

constrained by a combined mineral and whole rock Sm-Nd isochron, which gave an 

age of 375 ± 34Ma (Davies, 1984). At Coverack, and along the coast south to Black 

Head (GR 7793 1615), the peridotite is intruded by coarse-grained gabbro dykes, which 

are often gabbro pegmatites. These dykes have variable orientations, the majority dip 

steeply (>45°). In hand specimen, the gabbro and gabbro dykes consist of 

clinopyroxene and plagioclase, with minor olivine, and these primary minerals are 

GobCTO pegmoMe sneets 

— _ OTeooffcd comoci opDrciximcire 

Fo*<ilion 

Figure 3.32. Geological map of Coverack Bay. Stereonets display poles to peridotite foliation, 
dunite bodies, gabbro dykes and mafic dykes. Modified after Floyd et al. 1993. 

commonly altered to amphibole, saussurite and serpentine respectively. 

North of the contact zone at Coverack, the gabbro is intruded by a series of flat-

lying, irregular dolerite sheets, which lack chilled margins. These dolerite dykes are 
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cross-cut by a series of steeply-dipping plagioclase-phyric dykes (Roberts er al., 1993). 

which are particularly abundant at Porthoustock Point (GR 8105 2165) and there 

comprise a sheeted dyke complex. At Coverack, ductile shear-zones defined by aligned 

and elongate plagioclase, pyroxene and amphibole crystals cross-cut the gabbro. 

dolerite sheets and plagioclase-phyric dykes. The shear-zones strike NW-SE and dip 

moderately towards the NE. The field evidence suggests that these shear-zones are 

extensional, which is consistent with the detailed investigation by Roberts et al. (1993). 

who demonstrated that these shear-zones are extensional and show a top-to-the-

northeast sense of displacement. A later suite of dolerite dykes cross-cut the ductile 

shear-zones, gabbro, earlier plagioclase-phyric dykes, dolerite sheets, troctolite and 

peridotite at Coverack. The dykes have chilled margins, and trend NW-SE and dip 

steeply (<50°) to the NE and SW. These dykes are aphyric to plagioclase-phyric in 

composition, and up to 2 metres in width (Figure 3.33). Mafic dykes with an identical 

Figure 3.33. Mafic dyke (D) cross-cutting coarse-grained Iherzolite (L) and a gabbroic dyke 
(G)(associated with Crousa gabbro). Note that the mafic dyke is itself cross-cut by a later brittle 
fault (F). 

trend (Figure 3.34) and similar composition (Chapter 6) occur throughout the Lizard 

Ophiolite Complex, for example, cross-cutting peridotite/gabbroic vein and ultramafic 

and mafic Traboe cumulates at Potstone Point (Section 3.2.4.a) and also between 

Kennack Sands (GR 7390 1660) and Church Cove (GR 7150 1280). This suggests that 

this later dyke suite is an extensive intrusive phase, which is not restricted to the gabbro 

body. 
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Figure 3.34. Lower hemisphere stereographic projection displaying poles to all mafic dykes 
(late dyke suite). 

At Carrick Luz, on the east coast of the Lizard, a large body of spectacular 

flaser gabbros and gabbro mylonites is exposed and is known^he Carrick Luz shear-

zone (Andrews and Jolly, in press). This shear-zone is approximately 150 metres wide 

and strikes NW-SE and dips steeply NE (Figure 3.35). The foliafion in the flaser-

mylonitic gabbros within the shear-zone is similarly orientated NW-SE, and dips 

steeply NE, and mineral stretching lineations are sub-horizontal, plunging shallowly 

NW and SE. Shear-sense indicators (shear-bands and asymmetric porphyroclasts) 

consistently show a dextral shear-sense. The intensity of the fabric is very variable, and 

varies between coarser-grained flaser gabbros, and intensifies into gabbro mylonites, 

and is often localised into shear-zones of ultramylonite. The shear-zone is in contact 

with coarse-grained Iherzolite on both its NE and SW margins. On the NE margin, the 

contact dominantly consists of an irregular contact with many gabbro dykes (Andrews 

and Jolly, in press). On the SW margin, the subvertical N-S to NNE-SSW foliation in 

the peridotite is re-worked in the margins of the Carrick Luz shear-zone. In a transition 

zone 5 metres wide, the peridotite fabric is re-orientated into parallelism with the NW-

SE trending fabric in the adjacent gabbro mylonites. The peridotites adjacent (<2m) to 

the contact with gabbro mylonites are'peridotite mylonites (Figure 3.36), and have a 

strongly developed fabric and sub-horizontal mineral lineations. The 'peridotite 

mylonites are different from the'mylonitic peridotites ,̂' which outcrop on the west coast 

of the Lizard (Section 3.2.2). In hand specimen the'peridotite mylonites^ are composed 

of an original spinel Iherzolite mineralogy (Section 3.2.1.), which is reworked by shear-

zones composed of colourless amphibole and chlorite. These amphibole and chlorite-

bearing shear-zones are very similar to hydrous shear-zones observed at thrust contacts 

between peridotite and Landewednack amphibolite on the east coast (Section 3.5.1). 
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Shear-sense indicators within the peridotite mylonite show a dextral sense of 

displacement, consistent with the fabric within the gabbro. In many outcrops along the 

SW margin of the Carrick Luz shear-zone, elongate, phacoids of'peridotite mylonite' 

occur within host gabbro mylonites. 

Coarse-grained, deformed, gabbro intrusions and gabbro pegmatite dykes also 

outcrop extensively in the Cam Barrow (GR 7190 1390) to Pam Voose Cove 

PnmoivtaDiicn 
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Figure 3.35. Geological map of the Canick Luz peninsula. Stereonets display poles to 
foliadon and lineation plunge in gabbro and'peridodte mylonites'on the western margin of the 
peninsula, and coarse-grained Iherzolites on the eastem margin. Modified after Floyd et al. 
(1993). 

(GR 7148 1303) area of the Lizard peninsula. These gabbro intrusions post-date the 

peridotite fabric in this area, and pre-date the intrusion of mixed felsic and mafic 

Kennack Gneiss. The relationship between these gabbro intrusions and the Crousa 

gabbro is unknown, but Sandeman (1988) suggests that they are not directly related, 

based on contrasting whole rock geochemical compositions. The gabbros are variably 

deformed, and evidence for localised deformation includes the presence of shear-zones 

composed of gabbro mylonite. 
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3.4.3.b. Porthoustock amphibolites: an extensional shear-zone 

North of the sheeted dyke complex at Porthoustock Point, massive amphibolites are 

exposed along ca. 1 km of coast between Porthkerris Cove and Porthoustock and inland 

to Traboe. These have been previously known as the Upper Landewednack 

amphibolites (Bromley, 1979; Veamcombe, 1980) and are restricted to this area of the 

Lizard Ophiolite Complex. On the basis of contrasting tectonic fabrics (see below) and 

different whole rock geochemical compositions (Chapter 6) from the other 

amphibolites in the Lizard Ophiolite Complex, the amphibolites discussed in this 

section are termed the Porthoustock amphibolites. A late brittle fault is assumed to 

form the contact between the sheeted dyke complex and these amphibolites at 

Porthoustock. At Porthkerris Cove, an assumed fault contact separates these 

amphibolites from ultramafic rocks and Traboe amphibolites to the north. 

On coastal outcrops, north of Porthoustock and in old quarry workings (GR 

8090 2200), the amphibolites are variable in composition. The amphibolites consist of 

coarse-grained and fine-grained varieties, which are interbanded on a centimetre to 

metre scale (Figure 3.37). The coarse-grained amphibolites consist of conspicuous 

plagioclase phenocrysts set in a matrix of finer grained plagioclase and amphibole, and 

textures suggest that these may represent deformed gabbros. The fine-grained 

amphibolites lack plagioclase phenocrysts and are composed of fine-grained 

plagioclase and amphibole, and these may represent deformed mafic dykes. Further 

north, near Porthkerris Cove, the fine-grained amphibolite is predominant over the 

coarse-grained variety. Minor pelitic horizons (~10cm wide) are interbanded with the 

amphibolites in the Pencra Head area (GR 8095 2239). In all the outcrops of 

Porthoustock amphibolite there is a strongly developed flat-lying fabric (Figure 3.38), 

defined by the shape-preferred orientation of plagioclase and amphibole. The foliation 

strikes NW-SE and dips at a low-angle (<15°) towards the NE and SW, with dips 

towards the SW being predominant. Mineral stretching lineations plunge down-dip, 

predominantly towards the SW, with minor plunges towards the NE. Asymmetric 

plagioclase porphyroclasts in the coarse-grained amphibolites and shear-band fabrics 

show a consistent top-to-the-SW shear-sense in these amphibolites, which is consistent 

with the observations of Gibbons and Thompson (1991). 
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The orientation of the fabrics and top-to-the-SW shear-sense, is very different 

from the top-to-the-NW shear-sense in the Landewednack amphibolites on the SE 

Coast of the Lizard (Section 3.5). This evidence suggests that the Porthoustock 

amphibolites were developed in a different tectonic environment, and this was possibly 

Figure 3.36. Plan view looking down at a contact between gabbro myionite (G) and 
mylonitised peridotite on the western margin of the Carrick Luz shear-zone. Asymmetric 
porphyroclast systems developed in amphiboles (dark) in the gabbro mylonite indicate dextral 
shear. 

Figure 3.37. Coarse-grained (middle and lower part of photograph) and fine-grained (top of 
photograph) Porthoustock amphibolite. Aligined amphibole porphyroclasts (dark) define a 
lineation and are set in a matrix of recrystalli sed plagioclase (white). Asymmetric 
porphyroclast systems developed in amphiboles indicate top-to-the-SW shear. 
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during extension related to the construction of oceanic crust, and therefore related to 

the extensional shear-zones in the Crousa gabbro (see above). The whole rock 

composition (Chapter 6) of the Porthoustock amphibolites is distinctly different to the 

Traboe cumulates and Landewednack amphibolites of the Lizard Ophiolite Complex. 

Stereonet key 

+ Pole to foliation 

• Mineral lineation 

Figure 3.38. Lower hemisphere stereographic projection displaying poles to foliation and 
mineral lineation plunge in Porthoustock amphibolites. 

3.4.4. Summary 

• The association of gabbroic veins, ultramafic and mafic Traboe cumulates and 

Landewednack amphibolites, which preserve relict textures and field relationships 

indicative of gabbro and basaltic dyke protoliths, with ultramafic rocks suggests 

that these rocks represent deformed upper mantle/lower crust. 

• It is proposed that early steep fabrics preserved in these rocks may have developed 

during deformation that accommodated the extension of oceanic crust and upper 

mantle rocks during the early stages of ocean rifting. 

• The generation of early steep fabrics in mafic Traboe cumulates has been 

constrained to an age of 397±2 Ma or earlier by dating of a cross-cutting 

plagiogranite vein (Clark et al., 1998b). 

• Later gabbro (Crousa gabbro - 375 ± 34 Ma, Davies 1984), mafic dyke intrusions 

and contemporaneous extensional tectonics are linked to this phase of ocean 

lithosphere development, but may represent slightly later off-axis magmatism and 

deformation. 

• The Porthoustock amphibolites preserve low-angle fabrics and shear-sense 

indicators suggest top-to-the-SW, apparently extensional displacements. The fabrics 

developed in these amphibolites may be contemporaneous with shear-zones in the 

Crousa Gabbro. 
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3.5. Emplacement of the Lizard Ophiolite Complex, and later tectonic/magmatic 
events 

The majority of the rocks exposed in the Lizard peninsula show evidence for later, 

emplacement-related tectonic events. This includes the development of cross-cutting 

large-scale and localised sub-horizontal shear-zones, which re-work earlier fabrics in 

the Ordovician basement rocks (MOWG and OLHS), and the Devonian rocks of the 

Lizard Ophiolite Complex (peridotites, associated ultramafic^ rocks, and 

Landewednack amphibolites). These shear-zones were developed during top-to-the-

NW thrusting of the different lithological units of the Lizard Ophiolite Complex. At 

major shear-zone contacts on the east coast of the Lizard, mantle peridotites overthrust 

Landewednack amphibolites, which represent the deformed equivalent of oceanic crust. 

Metamorphic zircons within the Landewednack amphibolite have been dated by U-Pb 

SHRIMP analysis and constrain the metamorphism associated with thrusting to the 

early to late Devonian. During this thrusting event there is evidence for extensive 

magmatism which is identified by numerous intrusions of a mixed suite of felsic and 

mafic rock known as the Keimack Gneiss. This magmatism is closely associated with 

the shear-zones. 

Later tectonic/magmatic events include re-activation of thrust contacts and 

intrusion of later post-tectonic granites. Finally, high angle brittle extensional faulting 

results in dismemberment of the Lizard Ophiolite Complex (Alexander and Shall, 

1996; Power era/., 1996). 

3.5.L Emplacement-related fabrics in the Basement rocks 

In section 3.2 it was established that the MOWG and OLHS which outcrop on the 

south-west most extremity of the Lizard peninsula represent Ordovician basement, and 

preserve early textures and fabrics developed at this time. It was also established that 

these early fabrics are re-worked by a series of later sub-horizontal shear-zones. The 

fabrics and structures associated with these later shear-zones have not been studied in 

detail during the course of the present study, and much of the following discussion 

(Sections 3.5.La & b) of structural relafionships is a summary of the detailed work of 

Jones (1994) and Jones (1997). 
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3.5.1.a. Old Lizard Head Series (OLHS) 

In section 3.2, relict, primary igneous textures and early fabrics were described, and the 

occurrence of a cross-cutting granitic sill (Lizard Head Sill). An igneous protolith age 

of 488 ± 8Ma (Appendix A) was established by U-Pb SHRIMP dating of zircon from 

the Lizard Head Sill. The primary textures, early fabrics and the granitic sill have been 

subsequently deformed and re-worked by a series of sub-horizontal shear-zones. The 

fabric in these later shear-zones strikes NE-SW and dips at a low-angle (<20°) towards 

the SE, and mineral lineations plunge down-dip, towards the SE (Jones, 1994). Jones 

{pp cit.) demonstrated that the mylonitic fabric intensifies into four major shear-zones, 

the Most Southerly Point Shear Zone (MSPSZ), Polbream Cove Shear Zone (PCSZ), 

the Polbream Cove Thrust (PCT) and the Old Lizard Head Thrust (OLHT) (Figure 

3.39). Landewednack amphibolites, which are Devonian rocks of the Lizard Ophiolite 

Complex, are exposed in the hangingwall of the PCT and PCSZ. Mineral lineations and 

sheath fold axes within OLHS rocks in the footwall of the PCT plunge at shallow 

angles towards the south (Jones, op cit.). Shear-sense indicators suggest top-to-the-
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Figure 3.39. Geology of the south-west most extremity of the Lizard peninsula showing the 
Most Southerly Point Shear Zone (MSPSZ), Polbream Cove Thrust (PCT) and the Old Lizard 
Head Thrust (OLHT) (from Jones, 1997). 
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north-directed overthrusting occurred on the PCT (Jones, op cit.). This suggests that the 

PCT and PCSZ are responsible for emplacement and juxtaposition of Landewednack 

amphibolites (Section 3.4.2) structurally over the OLHS (Jones, op cit.). The PCT and 

PCSZ therefore represent major detachments that facilitated emplacement of Devonian 

rocks of the Lizard Ophiolite Complex structurally over these Ordovician basement 

rocks. The fabrics and structures associated with the OLHT are discussed in the 

following section (Section 3.5.1.b.). Shear-sense indicators in the MSPT suggest a top-

to-the-NW thrusting (Jones, 1994). Recent geochronological work (Clark et al, 1998a) 

constrains the age of amphibolite facies metamorphism in OLHS rocks associated with 

this thrusting to ca. 354-377 Ma (Figure 3.1). These are similar to metamorphic ages of 

samples of Landewednack amphibolite in the Lizard Ophiolite Complex obtained 

during the course of this study by SHRIMP dating (Section 3.5.2.). 

3.5.Lb. Old Lizard Head Thrust (OLHT) 

The OLHT thrust, which outcrops at Lizard Head (GR 6945 1150), is a zone of ductile 

to brittle faulting up to 50 metres wide that strikes NW-SE and dips at a low angle 

towards the NE. The hangingwall of this thrust zone consists of strongly sheared rocks 

of the Old Lizard Head Series. Within the thrust zone, asymmetric phacoids of Old 

Lizard Head Series rock. Lizard Head Sill and Man of War Gneiss, S-C structures and 

OLHS 

Figure 3.40. The Old Lizard Head Thrust (OLHT). Note the phacoids of Lizard Head Sill (S) 
set in a matrix of sheared Old Lizard Head Series (OLHS) rocks. Shear-sense indicators 
including asymmetric phacoids indiate a top-to-the-NW displacement along this thrust. 
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shear-bands indicate top-to-the-NW senses of displacement (Figure 3.40). A '"'Ar-'^^Ar 

step-heating analysis of amphiboles in samples of mylonitised Man of War Gneiss in 

the footwall of this thrust suggest that they have been subjected to an amphibolite-grade 

metamorphic event at ca. 374 Ma (Sandeman et al., 1997). Recent hornblende-plateau 

fiision-ftimace results are in^error, at 363 ± 9Ma (Clark et al. 1998a). This amphibolite-

grade metamorphic event was presumably contemporaneous with reworking and 

displacement along the Old Lizard Head Thrust. 

3.5.2. Emplacement-related fabrics within the Devonian rocks of the Lizard 

Ophiolite Complex 

Sub-horizontal fabrics and shear-zones were developed during top-to-the-NW thrusting 

within the mafic and ultramafic rocks that comprise the Devonian rocks of Lizard 

Ophiolite Complex. During this thrusting event, the Devonian rocks of the Lizard 

Ophiolite Complex were thrust over Ordovician basement (MOWG and OLHS), and 

mantle peridotites were emplaced over oceanic crust (Landewednack amphibolites). 

Cross-cutting hydrous shear-zones developed in the mantle peridotites and similar, 

ductile-thrust contacts between the peridotite and Landewednack amphibolite formed 

and are preserved on the east coast of the Lizard. On the east coast of the Lizard 

pervasive emplacement-related mylonite fabrics are developed in the Landewednack 

amphibolites, but on the west coast there is only localised development of 

emplacement-related shear-zones which cross-cut earlier, steep fabrics. 

3.5.2.a. Mullion Cliff to Ogo-dour Cove (Figure 3.41) 

Earlier steeper fabrics which are preserved in the amphibolites (Section 3.4.2) exposed 

near Ryniau are re-worked by low-angle shear-zones (Figure 3.41). To the north, the 

amphibolites are in contact with mylonitic peridotites. The contact between these 

different lithologies is a later NW-SE striking, steep brittle fault. To the south, the 

change in orientation, from earlier steep fabrics to flat-lying fabrics of the low-angle 

shear-zones is transitional over a distance of 5 metres in a contact zone which strikes 

N-S and dips (-45°) to the east. The field evidence suggests that this contact may 

represent the margin of a large shear-zone, with amphibolites with an original steeper 
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Figure 3.41. Geological map of the NW coast of the Lizard complex between Polurrian Cove 
and Pare Bean Cove. Stereonets display poles to foliation and plunges of mineral lineation in 
the mylonitic peridotites, Landewednack amphibolites and cross-cutting shear-zones. 

fabric in the footwall, and amphibolites with a flat-lying fabric being developed within 

the shear-zone. Alternatively, this contact may represent a thrust contact, juxtaposing 

two different units of amphibolite. The transition in fabric in the amphibolites is also 

marked by change in the character of the amphibolites, from coarser-grained 

amphibolites in the footwall, to fine-grained, more uniform amphibolites with a 

mylonitic fabric within the overlying shear-zone. The amphibolites with a flat-lying 

fabric are characterised by the presence of epidote rich bands, which may represent 
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later zones o f alteration in the amphibolites. The whole-rock geochemistry of the 

amphibolites both within the shear-zone, and the in the footwall is very similar 

(Chapter 6) and characteristic o f the Landewednack-type, this suggests that this shear-

zone is related to emplacement o f the Lizard Ophiolite Complex. Within the shear-

zone, the amphibolites strike NE-SW and dip at a low angle (< 40) towards the south, 

mineral lineations consistently plunge down-dip. Asymmetric plagioclase 

porphyroclasts and shear-band fabrics, determine a top-to-the-NW shear-sense in these 

amphibolite mylonites. 

South o f the shear-zone at Ryniau, the Landewednack amphibolites have steep 

fabrics, and are coarser grained. Metamorphic zircons from a sample of amphibolite 

(96/510) in this area have been analysed by SHRIMP and a metamorphic age of 392 ± 

5 Ma has been obtained. It is not clear i f this metamorphic age corresponds to the 

metamorphism associated with the development of the steep fabric or later sub-

horizontal fabrics. Between Predannack Head and Ogo Dour Cove, however, there is 

evidence for later cross-cutting shear-zones, including the Predannack Head Shear -

Zone (PHSZ). The PHSZ is observed in the cliff-section between Predarmack Head and 

Ogo Dour Cove, although in several places it is truncated by later brittle-faults and 

down-faulted below sea level. The PHSZ consists o f an anastomosing network, on 

narrow (< Im) mylonite zones, which have a distinctive white colour and cross-cut the 

steep fabrics in the amphibolite. The PHSZ strikes NE-SW to E-W and dips at a 

moderate-angle (<56°) toward the north, mineral lineations plunge down-dip (Figure 

3.42). Shear-sense indicators, including the deflection of the steeper fabric o f the 

Sicreonei key 
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Figure 3.42. Lower hemisphere stereographic projection displaying structural data from the 
Predannack Head shear-zone (PHSZ). Poles to the foliation and plunge of mineral lineation in 
the shear-zone are shown and poles to serpentine-filled faults which reactivate the shear-zone. 

amphibolites into the mylonite zones indicate a top-to-the-north displacement. The 

development o f the PHSZ and the amphibolite mylonite shear-zone near Ryniau may 
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be contemporaneous, as both show a top-to-the-north displacement, however, there is 

insufficient field-evidence to determine whether they are directly related. Where the 

PHSZ outcrops, later serpentine-filled brittle/ductile faults are observed. These faults 

have re-activated the PHSZ and strike NE-SW, and dip at a moderate-angle (<38°) 

N W . A top-to-the-NW shear-sense within these faults zones is suggested by S-C 

fabrics. 

A t Pare Bean Cove, it has already been demonstrated (Section 3.4.Lb) that in 

outcrops o f mylonitic peridotite and gabbroic veins, earlier steeper fabrics are cross-cut 

by a series o f shear-zones composed o f amphibolite mylonite. These shear-zones strike 

NE-SW, dip at a moderate-angle (<40) towards the N W and mineral lineations plunge 

down-dip. Shear sense criteria suggest that the shear-zones are extensional, with a top-

to-the-north displacement. At the western side o f this locality, these low-angle fabrics 

are rotated into a north-west-orientated foliation, which dips steeply towards the north­

east and mineral lineations plunge at a shallow angle towards the north-west. The sense 

o f rotation o f the low-angle fabrics into this sub-vertical fabric suggests a sinistral 

displacement in this strike-slip shear zone, and this strike-slip shear zone is likely to be 

a transfer zone, developed during displacement on the low-angle top-to-the-NW shear 

zones. This shear zone juxtaposes the mylonitic peridotite and gabbroic veins with the 

more, massive Landewednack amphibolites, with steep fabrics (see above) to the west. 

A later, NNW-SSE striking, sub-vertical brittle fault re-activates this sub-vertical, 

strike-slip shear-zone. These shear-zones are believed to be related to the emplacement 

of the Lizard Ophiolite Complex, and therefore contemporaneous with the shear-zone 

at Ryniau, and emplacement-related fabrics in Landewednack amphibolites on the east 

coast o f the Lizard (see below). 

3.5.2.b. Polbream Cove to Kildown Point area (Figure 3.43) 

In the southern part o f this area (Figure 3.43), the rocks are predominantly composed of 

amphibolite, but in the northern part, mantle peridotites are observed in contact with 

amphibolite and there are numerous intrusions o f Kennack Gneiss (Chapter 2). The 

amphibolites are predominantly the Landewednack-type, and are generally massive and 

dark green in colour, although in some outcrops there are layers more 
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Figure 3.43. Geological map of the SE coast of the Lizard complex between Polbream Cove 
and Enys Head. Stereonets display poles to foliation and plunges of mineral lineations in 
coarse-grained Iherzolites, mylonitic peridotites, Landwednack amphibolites, thrusts (hydrous 
shear-zones) and serpentine-filled faults related to reactivation of thrusts. 

rich in plagioclase or amphibole. Bands rich in epidote (<20cm) are also fairly 

abundant and characteristic of these amphibolites, and these are very similar to the 

epidote rich bands observed in mylonitic Landewednack amphibolites at Ryniau (see 

above). The predominant fabric in the amphibolites is shallow (Figure 3.44) and post­

dates earlier steeper fabrics (Section 3.4.2). At Kilcobben Point, the sub-horizontal 

fabrics are observed to cross-cut and re-work earlier steeper fabrics. Geochronological 

constraints for the thermal event associated with the metamorphism and development 
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Figure 3.44. Typical exposures of Landewednack amphibolite near The Balk. Note the 
shallow foliation which dips towards the east. 

of the sub-horizontal fabrics are provided by SHRIMP analysis of metamorphic zircon 

grains within a sample of amphibolite (96/543) from Pen Olver which suggest that a 

thermal event occurred at 374 ± 15 Ma. Zircons in a pelite (96/546) produced several 

age populations at -390 Ma, -425 Ma, 450-500 Ma, -750 Ma and >I100 Ma. The 

youngest age, -390 Ma, may represent a thermal event related metamorphism and 

development of the sub-horizontal fabrics. The zircons in the pelite are small and 

diff icult to analyse (Nutman, A. , pers comm, 1998) and therefore these age populations 

are diff icul t to interpret. The presence of older inherited grains suggests that this pelite 

layer is a sedimentary layer, possibly of volcanic origin, which contains detritus from 

older basement rocks. 

The foliation in the amphibolites strikes NE-SW and dips at a low-angle 

towards the NE or SW, mineral lineations plunge down-dips towards the NW or SE. 

Shear-sense indicators, which include asymmetric porphyroclast shapes and shear-band 

fabrics, consistently suggest a top-to-the-NW displacement. At many localities, 

isoclinal folds are observed, the fold hinges being parallel to the mineral lineations. 

The contact relationships between peridotite and amphibolite are well exposed 

along the east coast of the Lizard at Kildown Point (Figures 3.45 & 3.46), the Devils 

Frying-pan (Figures 3.47 & 3.48) and The Balk (Figures 3.49 & 3.50). Detailed 

structural logging of the contacts at these localities has revealed the presence of shear-

zones and faults that were developed during a complex sequence of deformational 
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Figure 3.45. Geological map of the Kildown Point area, displaying the ductile thrust contact 
between peridotite and Landwednack amphibolite. Serpentine-filled faults related to 
reactivation of the thrust contact are also shown. 

events associated with the emplacement of the Lizard Ophiolite Complex (Figures 3.46, 

3.48 & 3.50). At these contacts coarse-grained Iherzolite and mylonitic amphibole-

bearing peridotite structurally overlies Landewednack amphibolite. An early phase of 

ductile deformation is responsible for the generation of hydrous shear-zones (Section 

3.53), which cross-cut pre-existing sub-vertical fabrics in peridotites. These shear-
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zones strike NE-SW and dip at a low-angle (12° to 62°) towards the NW. Elongate 

hornblende and relict augen of orthopyroxene define mineral lineations in these shear-
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Figure 3.46. Structural log across the thrust contact between peridotite and Landwednack 
amphibolite at Kildown Point. Serpentine-filled faults related to reactivation of the thrust 
contact are also shown. Stereonets display structural data for the different units and tectonic 
contacts. 

-zones which plunge down-dip. The shear-zones have the appearance of a schistose 

rock, and are composed of hornblende, chlorite and serpentine (Figure 5.51). At The 

Balk quarry, an anastomosing network of these shear-zones is exposed. The shear 

zones have a mylonitic fabric which wraps around phacoids of peridotite and gabbro. 

Shape fabrics within these shear-zones at all of the localities indicate a top-to-the-NW, 

apparent extensional sense of displacement. 
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The shear-zones are gradational into the underlying Landewednack amphibohte. 

The fabric in the amphibolite is sub-parallel to the shear-zones, with foliations striking 

NE-SW and dipping at a low-angle (8° to 50°) to the NW, and mineral stretching 
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Figure 3.47. Geological map of the Devils Frying-pan area, near Cadgwith. Thrust contacts 
between peridotite and Landewednack amphibolite are shown, and low-angle serpentine-filled 
faults related to reactivation of thrust contacts. 

lineations plunge down-dip. Shear bands and shape fabrics in the amphibolite (Figure 

5.52) are consistent with a top-to-the-NW, apparent extensional sense of shear. 

Banded felsic and mafic Kennack Gneiss intrusions cross-cut the fabric in the 

peridotites, hydrous shear-zones and amphibolites. The fabric in the Kennack Gneiss is 

sub-parallel to the fabric in the amphibolites and contact shear-zone. Foliations strike 

NE-SW and dip at a low-angle (1° to 18°) towards the NW and mineral lineations 

plunge down dip. The banded Gneiss is folded, and tight folds have an axes which 

plunges at a low-angle (5° to 18°) predominantly towards the NW. 

Later reactivation of high-temperature ductile contacts by cm-scale, foliated, 

light-green serpentinite-filled fault-zones is ubiquitous at these contact zones (Figures 

3.53 & 3.54). These faults enclose phacoids of mylonitic peridotite, amphibolite and 

Kennack Gneiss. The faults strike NE-SW and dip at a low-angle (13° to 52°) to the 

N W , and long axes of the phacoids plunge towards the NW. S-C fabrics and 
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asymmetric phacoids within the serpentinite-filled fault zones indicate a top-to-the-

NW, apparent extensional displacement. At Kildown Point, the largest of the 

serpentinite-filled faults forms a basal detachment at the contact between amphibolite 

and peridotite(Figure 5.54). In the outcrops of peridotite above this detachment, smaller 
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Figure 3.48. Structural log across the thrust contact between peridotite and Landwednack 
amphibolite at the Devils Frying-pan. Serpentine-filled faults related to reactivation of the 
thrust contact are also shown. Stereonets display structural data for the different units and 
tectonic contacts. 

serpentinite-filled faults which are often steeply dipping are linked to the basal 

detachment. Reactivadon of the tlirust contacts was facilitated by displacement along 

serpenfine-filled faults and probably occurred in response to late stage collapse of the 

entire nappe pile (Jones, 1997). The apparently extensional nature of these thrust 

contacts may be explained by fault-block rotations associated with later brittle faults 

(Section 3.5.6). 
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Figure 3.49. Geological map of the Balk Quarry area, near Church Cove. The thrust contact 
between peridotite and Landewednack amphibolite is shown and serpendne-filled faults related 
to reactivation of the thrust contact. 

In summary, at all of these localities between Polbream Cove and Kildown 

Point the tectonic contacts, early and late, between these rocks consistently strike NE-

SW and dip to the N W (4° to 60°E) and structures indicate NW-directed, apparently 

extensional displacement. Intrusions of mixed felsic and mafic components of Kennack 

Gneiss are invariably associated with these contacts. 

3.5.2.C. The Predannack Borehole (GR 6901 1634; Figure 3.55) 

A borehole drilled by the Bridsh Geological Survey on Predannack Down (GR 6901 

1634) (Institute of Geological Sciences, 1978) (Figure 3. |) encountered a contact 

between peridofite and amphibolite (Figure 3.55). The borehole was terminated at 326 

m, and was predominanUy drilled through mylonitic peridotite (plagioclase and 

amphibole-bearing) with a steeply dipping foliation. At a depth of 300 m a sub-

horizontal contact between mylonific peridofite and underlying amphibolite is seen. 

The discovery of this contact is highly significant as it shows that the peridotite has a 

sheet-like form, at least 300m thick, and is not a plug-like intrusion as suggested by 

previous authors (Flett and H i l l , 1912; Green, 1964a). The amphibolites below this 

contact zone have a character that is very similar to the Landewednack amphibolites 
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Figure 3.50. Structural log across the thrust contact between peridotite and Landwednack 
amphibolite at the Balk Quarry locality. Serpentine-filled faults related to reactivation of the 
thrust contact are also shown. Stereonets display structural data for the different units and 
tectonic contacts. 

Figure 3.51. Hydrous shear-zones (pale) re-working mylonitic peridotite at the thrust contact 
at The Balk. Orthopyroxene porphyroclasts are stretched-out in these shear-zones. Asymmetric 
porphyroclast systems developed in pyroxene indicate top-to-the-NW shear. 
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N W 

Figure 3.52. Landewednack amphibolites near Cadgwith. Shear-bands cross-cut an earlier 
steeper fabric and indicate a top-to-the-NW sense of shear. 

Figure 3.53. Serpentine-filled faults (marked by white line) reactivate the thrust contact 
between peridotite (P) and amphibolite (A) at the Devils Frying-pan (Figure 3.48). Note the 
interbanded felsic (pink) and mafic (dark) Kennack Gneiss at the top of the exposure. 
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Figure 3.54. Serpentine-filled fault (marked by white line) forming a basal detachment at the 
contact between Landewednack amphibolite (A) and mylonitic peridotite (P) at Kildown Point. 
A steeply dipping serpentine-filled fault is also shown. 
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Figure 3.55. Borehole log based on core from the Predannack Borehole. The thrust contact 
between peridotite and Lanwednack amphiboiite is shown. 

exposed on the east coast of the Lizard, and the localities discussed above. The 

foliation in the amphibolites is sub-horizontal. The contact between the peridotite and 

amphibolite is complex and is extensively veined by talc and carbonate. In the 

mylonific peridotite above the contact zone, there are several sub-horizontal, cross-

cutting, hydrous shear-zones. These shear-zones are several centimetres in width and 

are composed of pale-coloured hornblende and chlorite. The contact zone itself is a 

zone of serpentinite-filled faults, which have reactivated the hydrous shear-zones that 
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formed the original contact between the mylonitic peridotite and amphibolite. Phacoids 

of peridotite within the serpentinite-filled fault zone, contain hydrous shear-zones. 

Shear-sense indicators (Shear bands and asymmetric porphyroclasts) are preserved in 

these shear-zones, but they cannot be orientated in this borehole core. 

3.5.3. Emplacement-related fabrics in the Lizard peridotites 

Thin (<30cm) hydrous shear-zones cross-cut the sub-vertical fabric of the peridotite 

(Figure 3.56) at many outcrops of coarse-grained Iherzolite, mylonilic plagioclase-

bearing or mylonitic amphibole-bearing peridotite throughout the Lizard Ophiolite 

Figure 3.56. Plan view looking down on a hydrous shear-zone (marked by black line) cross-
cutting coarse-grained Iherzolite and pyroxene-rich layers (pale) at Pentreath Beach. The 
rotation of the pyroxene-rich layer into the shear-zone indicates a top-to-the-NW, apparently 
extensional displacement. 

Complex. These shear-zones have an anastomosing form that wraps around relict 

phacoids of peridotite. The shear-zones are composed of pale-coloured hornblende and 

chlorite, which replace the original peridotite mineral assemblage. At Penlreath Beach 

(GR 6923 1285), spectacular examples of these hydrous shear-zones are observed in 

steeply foliated coarse-grained Iherzolite, which is exposed in the c l i f f and on the wave 

cut platform. Pyroxene rich layers in rotated into the shear-zone (Figure 3.56) 

indicating a top-to-the-NW, apparent extensional displacement. 
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Throughout the Lizard Ophiolite Complex, the later shear-zones are dominantly 

sub-horizontal, with a foliation which strikes NW-SE to NE-SW, and dips to the N W to 

NE. Mineral lineations, defined by aligned hornblende prisms, plimge at low angles 

-I- Pole to sfiear-zone fabric 

• Mineral lineation 

A Pole to strike-slip sfieat-zone 

• Mineral llneotlon - strike-slip shear-zone 

Figure 3.57. Lower hemisphere stereographic projections display structural data for the 
hydrous shear-zones that cross-cut peridotite fabrics. Poles to shear-zone fabric and plunges of 
mineral lineations for sub-horizontal and strike-slip shear-zones are included. 

(4° to 20°) towards the N W to NE, N N W plunges predominantly (Figure 3.57). Drag o f 

the original peridotite fabric or pyroxene-rich layers into these shear-zones and shape 

fabrics show that top-to-the-NNW and top-to-the-SSE occur, however, top-to-the-

N N W and apparently extensional displacements are dominant. More rarely, sub-

vertical orientated shear-zones (<30 cm) occur (Carleon Cove (GR 7279 1563); 

Mul l ion C l i f f (GR 6712 1750)) and sub-horizontal lineafions within these shear-zones 

suggest a strike-slip displacement. In the strike-slip shear-zones examined in the field 

(Figure 3.58), sinistral displacements were indicated by the drag o f the original 

peridotite fabric into the shear-zones. 

The sub-horizontal shear-zones have similar mineral assemblages and are 

structurally identical to shear-zones that occur in the contact zones between peridotite 

and amphibolite on the east coast o f the Lizard Ophiolite Complex (Secfion 3.5.2), and 

are hence interpreted to be contemporaneous. 

3.5.4. Magmatism associated with emplacement 

The Kermack Gneiss has been introduced in Chapter 2 and briefly described in the 

previous section (3.5.2). U-Pb dating by SHRIMP analysis o f igneous zircons within 

the granitic component o f the Kennack Gneiss (96/ 517; 97/713 and 97/714) yielded 

ages o f 384 ± 16 Ma (Monazite - 390 ± 16 Ma) and ca. 390 Ma, which are interpreted 

to represent the crystallisation o f the igneous protolith. Inherited zircons yielded ages of 

500-600 Ma and >1700 Ma, which suggests that the protolith may be derived from 
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melting o f older basement rocks. In a study by Styles and Rimdle (1984), an age of 369 

± 12 was obtained for an felsic vein o f the Kennack Gneiss using a whole-rock Rb-Sr 

isochron, which was interpreted to represent a metamorphic age. In a recent study, 

Sandeman et al. (1995) obtained '^^Ar/^^Ar high-temperature plateau ages of 366.1 ± 

4.2, 364.2 ± 4.8 and 359.8 ± 7.4 Ma for hornblendes in two samples o f mafic Keimack 

Gneiss and a sample o f Landewednack amphibolite respectively. This data is consistent 

with the geochronology obtained during the present study and the field evidence that 

suggests that deformation o f the Kennack Gneiss is contemporaneous with a phase of 

deformation in the Landewednack amphibolites. 

The Kennack Gneiss is exposed extensively along the east coast of the Lizard, 

between Green Saddle (GR 7445 1657) and Pam Voose Cove (GR 7150 1305). On the 

west coast o f the Lizard, outcrops o f the Kennack Gneiss are limited to the coast 

section at Pentreath Beach (GR 6920 1290). There are also several large, poorly 

exposed areas o f Kennack Gneiss which occur inland. Inland exposures o f significance 

(>0 5 km^) include an area 1.5km NE of Penhale (GR 705 195), in the valley running 

south between Trenoon (GR 7072 1852) and Treal (GR 7174 1612), in the valley at 

Cadgwith (GR 717 149) and a large area between Kennack Sands (GR 7380 1670) and 

Gwendreath Farm (GR 7306 1696). Core fi-om a borehole drilled by the I.G.S. (I.G.S., 

1979) at Kermack Sands (Gr 7325 1647) has been examined during the course of this 

study and Kermack Gneiss is observed in the core interbanded with coarse-grained 

Iherzolite to a depth o f 150 m where drilling terminated. The borehole evidence 

demonstrates that the Kennack Gneiss is not a simple, localised zone of intrusions, but 

a more complex zone, at least 150 m thick. In the majority o f outcrops o f the Kennack 

Gneiss there are two rock types, a rock o f granitic composition and a mafic rock, 

resembling amphibolite. The two different rocks occur as distinct intrusions, as 

homogenous bands in composite banded intrusions (Figure 3.59), and as mixed hybrid 

forms with a composition transitional between the granitic and mafic components. 

Along the coast, east o f Ketmack Sands and inland at Gwendreath Farm, there are 

several large intrusions that are composed entirely o f the granitic component. The 

granitic rock is characteristically pink, medium-grained and often foliated. Hand-

specimens o f the granitic rock contain quartz, feldspar and minor biotite. The mafic 

component does not form large intrusions. The mafic rock is dark in colour, fine- to 

medium-grained and nearly always foliated, and distinct plagioclase xenocrysts are 
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Figure 5.58. Plan view looking down on a sub-vertical hydrous shear-zone (marked by white 
line) cross-cutting the pre-existing fabric (marked by black line) in mylonitic amphibole-
bearing peridotite. The sense of rotation of the pre-existing foliation into the shear-zone 
indicates sinistral displacement. 

Figure 3.59. Plan view looking down on mixed intrusions of felsic (pale) and mafic (dark) 
Kennack Gneiss at Pentreath Beach. Note the folding, shearing and boundinage of the felsic 
component. 

often observed. In hand specimen, the rock is composed predominantly of green 

amphibole, plagioclase and minor biotite, which distinguishes it from the 

Landewednack amphibolites discussed in previous sections (Section 3.5.2). The field-

relationships suggest that the granitic component of the Gneiss intrudes the mafic 

component, and both rocks have been subsequently deformed, this interpretation is 

consistent with the detailed work of previous authors (Flett, 1912; Green, 1964c; Styles 
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and Rundle, 1984; Sandeman, 1988; Floyd et ai, 1993). The Kennack Gneiss therefore 

appears to represent a series of composite intrusions, with an earlier mafic phase and a 

later granitic component. These two intrusive phases were very close together. 

The relationships between the Kennack Gneiss and the peridotite, gabbro. 

amphibolites can be observed in many localities on the east and west coasts of the 

Lizard. The gneiss clearly intrudes the peridotite and cross-cuts the steep fabric. It 

clearly intrudes the gabbro mylonites at Carrick Luz (GR 7546 1655) and gabbro 

bodies at Pam Voose Cove. Granite veins at Polpeor Cove (GR 7000 1150) cross-cut 

the OLHS and may be part of the same intrusive suite as the Kennack Gneiss. The 

gneiss intrudes Landewednack amphibolites, but at Cadgwith (GR 7215 1450) and 

Kildown Point (GR 7270 1471), both lithologies preserve sub-horizontal fabrics 

(Section 3.5.2) and thus a phase of deformation appears to post-date the intrusion of the 

gneiss. This fabric is interpreted to have developed during top-to-the-NW thrusting of 

mantle over amphibolite, and therefore the field-relationships at Cadgwith and Kildown 

Point suggest that the Kennack Gneiss was intruded during this tectonic event (Section 

3.5.2). This interpretation is consistent with the available geochronological evidence. 

Figure 3.60. Vertical mafic dyke (M) cross-cutting coarse-grained Iherzolite (L) and itself 
truncated at the margin of low-angle intrusion of mixed felsic (pink) and mafic (dark) Kennack 
Gneiss at Enys Head. The field relationships can be interpreted in two ways (see text). 

The field-relationships between the Kennack Gneiss and the NW-SE trending mafic 

dykes (Section 3.4.3) are less clear. In some outcrops, for example near Green Saddle 

(GR 7446 1660), the dykes have the form of feeders to mafic sills within the Kennack 
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Gneiss, but in outcrops at Keimack Sands, a mafic dyke is cross-cut by banded Gneiss 

and mafic dykes later than the Gneiss. An outcrop at Enys Head (GR 7289 1494), 

which demonstrates a relationship between the Kennack Gneiss and a mafic dyke, has 

been studied in detail (Figure 3.60). At this outcrop a 75cm wide, NW-SE trending 

near-vertical mafic dyke intrudes peridotite and is truncated by a body of banded 

gneiss. The lithological banding in the gneiss and foliation strike NE-SW and dip at a 

low-angle (~ 6°) towards the N W and mineral lineations plimge down-dip. The mafic 

dyke is smeared/sheared-out at the base of this banded gneiss intrusion, and forms a 

lobate protrusion, 1.5 metres long, which stretches towards the west. Thin 1cm veins o f 

granitic gneiss have subsequently intruded this protrusion. The mafic dyke is not 

observed to continue in outcrops o f peridotite above the sub-horizontal banded gneiss 

body. The field-relationships at this locality can be interpreted in two ways: 

• The mafic dyke forms a vertical feeder to the banded gneiss, where it feeds sub-

horizontal sills o f mafic gneiss intrusions, which have subsequently been sheared. 

• Alternatively, the intrusion o f the mafic dyke pre-dates the banded gneiss, and was 

subsequently smeared/sheared-out along the base of this composite intrusion. 

The second interpretation would imply that there has been extensive displacement 

during the intrusion o f the gneiss, because the mafic dyke is not observed outcrops 

above the intrusion. 

The serpentine-filled faults related to re-activation o f thrust contacts between 

peridotite and amphibolite (Section 3.5.2) and later steep brittle-faults (Section 3.5.5) 

clearly cross-cut and therefore post-date the intrusion o f the Kennack Gneiss. 

3.5.5. Later magmatic events 

A t many localities throughout the Lizard Ophiolite Complex there are small (< 5m) 

granite intrusions; e.g. Ryniau (GR 6644 1730), Georges Cove (GR 6695 1511), 

Pengersick (GR 6694 1480), Gew Graze (GR 6760 1441) and Kynance Cove (GR 6838 

1329) and Porthallow Cove (GR 7990 2315. The granites are generally pink, coarse­

grained and composed o f quartz and feldspar, with minor mica. These granites are 

rarely foliated and do not show any association with mafic rocks, and are therefore 

regarded to be distinct f rom the granitic rocks that comprise in-part the Kennack 

Gneiss. New U-Pb SHRIMP dating o f monazites with an igneous morphology from a 
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granite at Ryniau yielded an age o f ca. 360 Ma. This date clearly reveals that these 

granites are unrelated to the granitic component of the Kennack Gneiss, which was 

intruded ca. 384 - 390 Ma (Section 3.5.4). These granites represent the final phase o f 

igneous activity associated with the Lizard Ophiolite Complex. The granites are cross­

cut by later high angle brittle extensional faults (see below), which often occur in 

association with the granites, possibly suggesting that they re-activate the same 

weakness that the granite sheets have exploited. The geochronological evidence 

presented above demonstrates that these granites are unrelated to the granites o f the 

Comubian Batholith, which were emplaced ca. 274 - 293 Ma (Chen et al, 1993). 

3.5.6. High angle brittle extensional faulting 

The tectonic-stratigraphy of the Lizard Ophiolite Complex is strongly irrfluenced by 

displacements along high angle, brittle extensional faults. The faults post-date all of the 

tectonic and magmatic events discussed above, and therefore represent one of the 

youngest deformation events to effect the Lizard Ophiolite Complex. Detailed mapping 

o f faults throughout the Lizard Ophiolite Complex in the course o f the present study 

has revealed that there are two dominant sets o f high angle brittle extensional faults 

(Figure 3.61) in accordance with the findings o f Alexander and Shail (1996) and Power 

Poles to oil late brittle faults 
1 % area contour 

Slickenllne orientations In late 
brittle faults 

Figure 3.61. Lower hemisphere stereographic projections for structural data fi-om brittle faults 
exposed in the Lizard complex. 1% area contour for the poles to brittle faults and plunges of 
slickenlines are displayed. 

et al. (1996). The first set strike NE-SW to NNE-WSW and dip steeply (20° to 90°) 

towards the north and south. Slickenlines on fault planes generally have a high pitch. 

This set o f faults occasionally reactivates the serpentinite-filled fault zones described 

above. The second set o f faults, which usually cross-cut the first set, strike N-S to 

NNW-SSE and dip steeply east and west. Slickenlines within this second set of fault 
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predominantly have a low pitch, which suggests strike-slip displacement. The 

association o f these two fault sets therefore suggests that the second set represent 

transfers (Alexander and Shail, 1996; Power et al, 1996). 

The Lizard Boundary Fault, which outcrops at Porthallow (GR 7966 2320) in 

the north-east o f the Lizard, and Polurrian Cove (GR 6692 1884) in the west forms the 

contact between the high-grade metamorphic rocks o f the Lizard Ophiolite Complex 

and the lower-grade Gramscatho Group metasediments to the north. This fault is an 

ENE-WSW striking high angle extensional fault, and it is probably related to the 

reactivation and extensional cut-out o f an earlier thrust fault (Flett, 1946; Alexander 

and Shall, 1996; Power et al., 1996). Other ENE-WSW striking high angle extensional 

faults also have a strong influence on the tectonic-stratigraphy of the Lizard Ophiolite 

Complex. A n imexposed fault, at Porthoustock (GR 8065 2183), forms the contact 

between the Porthoustock amphibolites to the north and the Crousa gabbro to the south. 

Faults at Pentreath Beach (GR 6943 1267) and The Balk (GR 7153 1282), in the south 

of the Lizard, form the contact between peridotite in the hangingwall, and 

Landewednack amphibolite in the footwall. Major and stratigraphically significant 

ENE-WSW striking faults also occur at Georges Cove (GR 6703 1527), MuUion Cove 

(GR 6672 1778) and Porthkerris Cove (GR 8056 2273). The second set of NNW-SSE 

striking faults also have a major influence on the stratigraphy of the Lizard Ophiolite 

Complex, important faults occur at Ryniau (GR 6640 1745), Georges Cove (GR 6703 

1527) and Kynance Cove (GR 6864 1325). 
is 

A fiirther fault set, which^relatively rare, strikes E-W to WNW-ESE and often 

show strike-slip displacements. A major fault belonging to this set outcrops at Gew 

Graze (GR 6760 1439) on the west coast o f the Lizard, and a fault at Polbarrow (GR 

7180 1377) on the east coast o f the Lizard is believed to be the same fault. The fault at 

Gew Graze strikes E-W and dips steeply (50°) towards the south. Slickenlines in this 

fault zone have a both a high and low pitch, which suggests that there has been 

reactivation. The displacement is therefore both dip-slip normal and strike-slip, both 

sinistral and dextral shear-sense is observed. 

Fault block rotations produced by displacement along these different fault sets 

may explain the apparently extensional nature of the top-to-the-NW emplacement-

related thrusts on the east coast o f the Lizard (Section 3.5.2). 
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3.5.7. Summary 

• The basement rocks, ultramafic rocks and associated gabbroic veins/Traboe 

cumulates and Landewednack amphibolites, which represent different lithological 

units are all cross-cut by pervasive sub-horizontal shear-zones that show top-to-the-

N W displacements. 

• The different units are also juxtaposed along sub-horizontal thrust contacts, which 

also show top-to-the-NW displacements and are therefore contemporaneous with 

the shear-zones. 

• The basement rocks comprise the lowermost structural unit, Landewednack 

amphibolites are thrust over these, and mantle rock is emplaced over the 

amphibolite. 

• Magmatism contemporaneous with emplacement o f the mantle rocks resulted in the 

intrusion o f mixed suite granitic and mafic magmas (Kermack Gneiss), in close 

association with thrust contacts. 

• The metamorphism o f the amphibolites (ca 374 - 392 Ma), associated with 

thrusting and the intrusion o f the granitic component of the Kennack Gneiss (ca 384 

- 390 Ma) are contemporaneous having occurred in the mid-early Devonian. 

• These thrust contacts always show evidence for extensive re-activation, involving 

the development o f apparently extensional serpentine-filled fault zones, possibly 

related to late stage collapse o f the entire nappe pile 

• Fault-block rotation associated with displacement along later high-angle brittle 

faulting may be responsible for the present-day, apparent extensional geometry of 

emplacement-related thrusts. 
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3.6. Summary of field and geochronological evidence 

In the previous sections, field and geochronological evidence has been presented that 

establishes a tectono-magmatic evolution for the different units o f the Lizard Ophiolite 

Complex. A summary o f these events is presented below: 

• A n early association o f supracrustal rocks and granitic rocks, which includes the 

Man o f War Gneiss and Old Lizard Head Series and associated intrusions, represent 

basement associated with the Lizard Ophiolite Complex. Metasedimentary and 

metavolcanic rocks known as the Old Lizard Head Series preserve evidence for an 

early fabric in areas o f low-strain (Jones, 1997), which pre-dates emplacement 

related fabrics (see below). A granitic sill cross-cuts this early fabric and a primary 

igneous age o f ca.490 Ma for this rock has been obtained by U-Pb SHRIMP 

analysis o f zircon (Appendix A ) . A n igneous protolith crystallisation age o f 499 +8/ 

-3 Ma has also obtained by U-Pb dating o f zircon (Sandeman et al., 1997) of a 

series o f deformed gabbro to tonalite rocks, known as the Man of War Gneiss 

which outcrop on rocks and reefs south o f Lizard Point. 

• Early (middle Devonian?), deformation of a coarse-grained Iherzolite protolith in 

upper mantle produced coarse-grained porphyroclastic Iherzolites and mylonitic 

peridotites. 

• Gabbroic veins and ultramafic and mafic Traboe cumulates associated with the 

peridotites represent the deformed equivalent of mafic/ultramafic cumulate rocks 

and oceanic crust associated with the mantle peridotites. The development of 

fabrics in the peridotite, and ultramafic and mafic rocks, occurred prior to the 

intrusion o f the Crousa gabbro, but the available field, geochemical (Chapter 6) and 

geochronological evidence suggest that they are broadly associated and related by a 

contemporaneous phase o f oceanic lithosphere construction. The development of 

the fabric in mafic Traboe cumulates at Porthkerris has been constrained to an age 

o f 397±2 Ma by U-Pb dating o f zircon in a syn-tectonic granite vein (Clark et ai, 

1998b). 

Construction o f a second generation oceanic crust in the early to middle 

Devonian has been constrained by the intrusion o f the Crousa gabbro. The gabbro is 
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believed to have crystallised during the formation o f ocean crust and an Sm-Nd 

combined mineral and whole-rock isochron has yielded an age of 375 ± 34 Ma 

(Davies, 1984). The Crousa gabbro and Porthoustock amphibolites have been 

deformed by a series o f ridge-parallel ductile shear-zones during ductile extension 

o f the lower oceanic crust in a slow-spreading ridge-axis environment (Gibbons & 

Thompson, 1991; Roberts et ai, 1993; Hopkinson & Roberts, 1995). 

Later deformation and emplacement o f the Ordovician basement rocks and 

Devonian rocks o f the Lizard Ophiolite Complex has been constrained to occur 

during the middle to late Devonian by U-Pb SHRIMP dating of metamorphic 

zircons within amphibolites. This prolonged tectonic episode was accompanied by 

the development o f low-angle shear-zones and top-to-the-NW thrusting within the 

ocean lithosphere rocks (Landewednack amphibolites) and, finally, mantle 

decoupling and emplacement over the previously accreted units (Jones, 1997). 

Magmatism contemporaneous with emplacement includes the intrusion of a 

complex interbanded suite o f felsic and mafic rocks, known as the Kennack Gneiss, 

in close association with thrust contacts. U-Pb SHRIMP dating o f zircons within the 

granitic component o f the Kennack Gneiss yielded ages of 384 ± 16 Ma and ca. 390 

Ma, which are interpreted to represent the crystallisation of the igneous protolith. 

Later reactivation o f thrust contacts is identified by the presence of serpentinite-

f i l led fault zones. The apparently extensional nature of the emplacement-related 

thrust contacts may be explained by fault block rotation associated with later high-

angle brittle faulting. 

A late phase o f magmatism involved the intrusion of minor granites, and U-Pb 

SHRIMP dating o f monazites with an igneous morphology within one of the 

granites yielded an age o f ca. 360 Ma. 

Finally, high angle brittle extensional faulting, results in the reactivation o f the 

Lizard Boundary Fault (Alexander and Shail, 1996; Power et al., 1996) and 

dismemberment o f the Lizard Ophiolite Complex. 
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CHAPTER FOUR 

M I C R O S T R U C T U R E S O F R O C K S F R O M T H E L I Z A R D O P H I O L I T E 

C O M P L E X 

4.1. Introduction 

In the previous chapter (Chapter 3) a structural and magmatic evolution o f the Lizard 

Ophiolite Complex was proposed based on field evidence, in addition to new and 

existing geochronological constraints. The aim of this chapter is to: (a) characterise the 

different lithologies on the basis o f microstructure, (b) correlate the microstructural 

characteristics and mineralogical chronology with the field evidence and 

geochronological constraints, (c) constrain the conditions during deformation 

accompanying the evolution o f the Lizard peridotites, and (d) use the field, 

geochronological and microstructural constraints as a basis for the investigation of the 

geochemical properties o f the different lithologies (Chapters 5 & 6). 

This chapter is sub-divided into descriptions o f microstructures in three main 

lithological associations, namely: the Ordovician basement rocks, the Lizard 

peridotites, and finally the Lizard oceanic crust and cumulate rocks. Discussions o f the 

microstructural characteristics o f each lithological unit are sub-divided into a 

mineralogical chronology, including primary relict and later metamorphic assemblages. 

4.2. Ordovician basement rocks 

In the previous chapter (Chapter 3) it was established that the metamorphic and igneous 

rocks which are exposed around the southerly peninsula o f the Lizard are Ordovician in 

age and are thus older and unrelated to the younger Devonian rock of the Lizard 

Ophiolite Complex. In many previous publicafions (e.g. Green, 1964c; Floyd et al., 

1993; Jones, 1997), the Old Lizard Head Series (OLHS) rocks, which are included here 

in the Ordovician basement, were interpreted to be a transitional assemblage with the 

Landewednack amphibolites. This interpretation was based partly on the presence of 

amphibolites in the OLHS similar in composition and appearance to the Landewednack 

amphibolites. This interpretation is inconsistent with the new geochronological data 

and therefore the petrology o f the OLHS amphibolites is described separately. A 
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petrological description o f the samples o f the Lizard Head Sill analysed in the 

geochronological dating program is also included. 

4.2.1. Old Lizard Head Series (amphibolites) 

Specimens o f OLHS amphibolite that have been examined are described below; 

specimens o f OLHS pelite and psammite have not been examined and are therefore not 

discussed. The purpose o f examining the OLHS amphibolites is to compare and 

contrast petrographic characteristics wi th the Landewednack amphibolites. Two 

different types o f amphibolite have been identified in the OLHS based on detailed field 

observation (Section 3.2.2): amphibolites interbanded pelite and psammite and, 

amphibolitised porphyritic basic sheets. The petrographic features o f these rocks are 

discussed separately below. 

4.2.1.a. Amphibolites interbanded with pelite and psammite 

These rocks are fine-grained amphibolites with nematoblastic textures composed of 

green amphibole, plagioclase and opaque accessory minerals (Figure 4.1). Specimens 

of amphibolite commonly exhibit a foliation defined by aligned amphibole prisms and 

tight crenulation folding o f this foliation on thin section scale. Green amphiboles are 

subhedral and have a characteristic elongate, acicular form, which contrasts with the 

form o f amphiboles in the porphyritic basic sheets (see below) and the Landewednack 

amphibolite (Section 4.4.l.d). Anhedral plagioclase is always recrystallised to fine­

grained aggregates, which define a foliation in the rock. The plagioclase usually shows 

breakdown to a secondary assemblage of saussurite. Opaque minerals often occur in 

elongate clusters, parallel to the fabric defined by the amphibole and plagioclase. Relict 

primary minerals or textures were not observed in the specimens o f OLHS amphibolite 

examined. 

4.2. L b . Porphyritic basic sheets 

These rocks can be distinguished f rom the OLHS amphibolites discussed above and the 

Landewednack amphibolites by the presence o f conspicuous relict plagioclase 

phenocrysts. The form o f the amphibole in these rocks is also different from the OLHS 
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amphibolites. The rocks are medium- to fine-grained and display porphyroclastic to 

nematoblastic textures (Figure 4.2). Subhedral, prismatic green amphiboles occur in 

aligned clusters that define a planar fabric in the rock. These clusters wrap around 

coarser-grained porphyroclasts of amphibole and relict plagioclase phenocrysts. 

Figure 4.1. Folded foliation in OLHS amphibolite defined by aligned amphibole (A) and 
plagioclase (P) (Sample CAC184). coc 

Figure 4.2. Relict porphyroclasts of plagioclase (?) and amphibole (A) enlosed by a matrix of 
aligned clusters of amphibole and plagioclase. (Sample CAC186). C P ^ 

Inclusions of opaque minerals are common in the green amphibole. Plagioclase occurs 

as coarse-grained, subhedral to euhedral phenocrysts and fine-grained, anhedral 

recrystallised grains, which occur as mantles around relict, coarse-grained plagioclase 
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cores. In more retrogressed samples, plagioclase phenocrysts are rare or not present and 

the rock is composed entirely of fine-grained green amphibole and plagioclase, with 

nematoblastic textures. In thin section these rocks resemble samples of retrogressed 

dolerite dykes. 

4.2.LC. L izard Head Sill 

The Lizard Head Sill is a fine-grained trondhjemitic rock (Sandeman el al.. 1997) and 

is composed predominantly of anhedral grains of quartz and plagioclase, which have a 

granoblastic texture. The plagioclase is extensively altered to saussurite. The rock is 

foliated and this fabric is defined by aligned chlorite which pseudomorphs biotite 

(Figure 4.3). Subhedral titanite occurs as a common accessory mineral in addition to 

euhedral opaque minerals. The Lizard Head Sill rocks are therefore represented by a 

/ in 

Figure 4.3. Aligned chlorite (C) pseudomorphs after biotite define a fabric, the matrix is 
composed of quartz (Q) and plagioclase (P). Plagioclase is altered to saussurite (S) and titanite 
is also present (T). (Sample .MS 1668). PP^ 

deformed and retrogressed mineral assemblage and primary igneous textures are not 

preserved. 
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4.2.2. Summary 

• Two types o f amphibolite are recognised in the OLHS and these have been 

distinguished in the field on the basis o f macroscopic characteristics. 

• The amphibolites that are interbanded with the OLHS psammites are distinguished 

f rom the amphibolitised porphyritic basic sheets by differences in the form of the 

amphibole and the presence of relict plagioclase phenocrysts in latter units. 

• The form of the amphibole in the OLHS amphibolites and the relict plagioclase 

phenocrysts in these rocks also distinguishes them from the Landewednack 

amphibolites (Section 4.4.1 .d). 

• The Lizard Head Sill is trondhjemitic in composition (Sandeman et al., 1997) and is 

therefore different to the rocks o f the Man of War Gneiss, which are predominantly 

tonalitic or quartz dioritic in composition (Sandeman et al., 1997). 

4.3. The Lizard peridotites 

In the fol lowing sections the microstructure o f the different peridotite types, associated 

ultramafic rocks and later cross-cutting shear zone structures are described. This 

discussion includes the introduction o f a revised sub-division of the Lizard peridotites 

based in part on microstructural characteristics. Geographical information system (GIS) 

based map production is utilised to clarify the distribution o f petrological variations in 

the peridotites. A study o f the lattice preferred orientation (LPO) o f olivine is applied to 

constrain the deformation mechanisms that operated during the microstructural 

evolution o f the peridotites. 

Field (Section 3.3) evidence suggested that the spinel Iherzolite is the least 

deformed of the lizard peridotites and preserves evidence o f a relict pre-deformation 

mineral assemblage. The plagioclase Iherzolite, mylonitic plagioclase-bearing 

peridotite and mylonitic amphibole-bearing peridotite are transitional with the spinel 

Iherzolite through a process o f increasing strain, which is recognised in the field by a 

fabric evolution f rom coarse-grained peridotites with a moderately developed fabric to 

finer-grained mylonitic peridotites with a well developed fabric. 

Other ultramafic rocks, which are associated with the peridotites, include dunite 

and websterite. The microstructure o f these rocks and of feldspathic bands within the 
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mylonitic peridotite are discussed in the context o f their relationships to the host 

peridotite assemblage. 

Hydrous shear zones cross-cut the peridotite fabrics, websterite and feldspathic 

bands, and these shear zones are in turn re-worked by serpentine-filled faults. The 

microstructure o f these shear zone structures is reviewed at the end o f this section. 

4.3.1. New sub-division of the peridotites 

The terminology classifying the Lizard peridotites has been revised (Table 4.1) to 

incorporate the results o f new field, microstructtiral, geochemical work and the results 

o f previous studies (Flett and H i l l , 1912; Green, 1964a; Davies, 1984). 

Revised Scheme Flett and Hill (1912) Green (1964a) Davies (1984) 

Spinel Iherzolite Bastite serpentine Primary peridotite Spinel Lherzolite 

Plagioclase Iherzolite Bastite serpentine Primary peridotite 
Plagioclase Lherzolite 

(Undeformed) 

Mylonitic piagioclase-

bearing peridotite 
Tremolite serpentine 

Anhydrous recrystallised 

peridotite 

Plagioclase Lherzolite 

(Deformed) 

Myionitic Amphibole-

bearing peridotite 
Tremolite serpentine 

Hydrous recrystallised 

peridotite 
Pargasite Harzburgite 

Feldspathic bands ' N/A Mafic bands Pargasite Lherzolite 

Dunite Chromite serpentine Chromite serpentine N/A 

Table 4.1. Comparison of the terminology for the Lizard peridotites used in the revised scheme 
with the published terminology for the same rocks developed by previous workers. 

The coarse-grained peridotites (spinel and plagioclase Iherzolites and dunites) have 

been classified based on the modal abundance of olivine, clinopyroxene and 

orthopyroxene (Figure 4.4). This classification shows that the rocks (with the exception 

of the dunites) are predominantly Iherzolitic in composition, although there is overlap 

into the harzburgite field. For the sake o f convenience, the rocks w i l l still be termed 

'Iherzolites', because the harzburgitic-types are o f minor abundance and are often 

specific to particular circiraistances (Secfion 4.3.4.c). Mylonitic peridotites are not 

included in this classification diagram because the fine-grained nature of these rocks 

makes it diff icul t to distinguish between olivine and pyroxenes. 
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I I Spinel IherzoiilL'S 

I I Plagioclasc Iheraolites 

olivine orthopyroxenite 

orlhopyroxenite 
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olivine chnopyroxenite olivine webstente 
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Figure 4.4. Terminology of ultramafic rocks based on the proportions of primary minerals 
(after Le Maitre et al., 1989). The range of compositions for the coarse-grained peridotites is 
displayed. 

4.3.2. Serpentinisation 

The effects o f serpentinisation are widely preserved in the peridotites o f the Lizard 

Ophiolite Complex and involve the heterogeneous alteration of the peridotites to 

lizardite, chrysotile and magnetite (Power et al., 1997). Power et al. (1997) document a 

second phase o f serpentinisation which is volumetrically minor, and represented by 

laterally persistent veins comprising lizardite and chrysotile (vein serpentine). 

The variability and extent o f the first, pervasive serpentinisation phase, is 

demonstrated by GIS analysis o f the lizard peridotites (see section 4.3.6.g). The present 

study is primarily concerned with mineral assemblages and microstructures, which 

precede serpentinisation, but the form of the serpentine minerals provides an indication 

o f the mineral they have replaced and its original abundance. Olivine is replaced by 

mesh textured serpentine dominated by a lizardite+/-chrysotile and/or antigorite 

assemblage (Selfridge, 1935) and bladed-mat textured serpentine consisting o f an 

assemblage o f antigorite+/-Iizardite+/-chrysotile (Maltman, 1978). Orthopyroxene is 

pseudomorphed by the serpentine mineral bastite, which is composed o f lizardite and 

chrysotile (Whittaker and Zussman, 1956). Spinels alter to magnetite and also ferrit 

chromite, which has a composition which is intermediate between relict chromite and 

magnetite (Bailey, 1997). Plagioclase is altered to a saussuritic assemblage of fine­

grained masses o f epidote and mica. 
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4.3.3. Relict primary microstructures 

Field evidence (Section 3.3) has revealed that the least deformed of the Lizard 

peridotites occur in the eastern part o f the Lizard, between Kennack Sands (GR 7390 

1665) and Coverack (GR 7824 1845). Rothstein (1977, 1981, 1988, 1994) shows that in 

several peridotite samples f rom this area, a high proportion of relict primary textures 

are preserved, particularly in a kilometre stretch o f coastline between Dovmas Cove 

(GR 7640 1676) and Pedn Boar (GR 7715 1619). These relict textures occur within cm 

scale layers o f dimitic, harzburgitic and Iherzolitic varieties of the peridotite and 

include olivine micro-textures orientated at a steep angle to the layering, which 

developed at a high pressure and high temperature within the spinel Iherzolite facies 

(Rothstein, 1994). 

Although pristine, undeformed, 'primary' assemblage peridotite is never 

observed in the Lizard, relict, pre-deformation microstructures have been observed 

within deformed spinel Iherzolites. The relict assemblage consists of olivine, 

orthopyroxene, clinopyroxene and spinel. Coarse-granular textures, i f they were ever 

present, are not preserved. Orthopyroxene porphyroclasts often display relict 

microstructures by enclosing olivine crystals and, in many examples, the 

porphyroclasts are embayed by olivine (Figure 4.5). Similar textures in the Josephine 

peridotites described by Dick (1977) are related to the breakdown of orthopyroxene 

producing olivine and melt during partial melting. Clusters of orthopyroxene-

clinopyroxene-spinel are not observed in even the least deformed peridotite samples. 

These microstructures are often characteristic o f undeformed, coarse-granular 

peridofites, and are interpreted as being derived f rom garnet (Nicolas, 1986; Fabrics et 

al., 1991). Therefore, microstructural evidence alone suggests that the relict assemblage 

was developed within the spinel facies and not the garnet facies. However, it cannot be 

ruled out that later deformation may have obliterated the former presence of 

orthopyroxene-clinopyroxene-spinel clusters. 

The microstructure o f primary pyroxene-rich layers within the spinel Iherzolite 

and dunite bodies associated with the spinel Iherzolite has been studied in detail, but, 

no relict primary microstructure is present. Hence the microstructure o f these rocks w i l l 

be discussed in the following secfions. 
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4.3.4. Microstructures of coarse-grained Iherzolitic peridotites 

Spinel Iherzolite is the least deformed of the Lizard peridotites and contains a high-

proportion o f primary relict textures (see above). Plagioclase Iherzolites are a 

metamorphic assemblage, transitional f rom the spinel Iherzolite, in response to a 

decrease in pressure, and are distinguished by the appearance o f plagioclase. 

4.3.4.a. Spinel Iherzolite 

The spinel Iherzolite is composed o f olivine, orthopyroxene, clinopyroxene and spinel 

in varying proportions (Section 4.3.6) and is generally medium-grained (500 - 1500 

Jim). The texture o f the spinel Iherzolite varies between fine- to coarse-grained 

porphyroclastic (Figure 4.6), which overprint the relict, primary microstructures 

(Rothstein, 1977; 1981; 1988; 1994) described in the preceding section. 

The microstructure is characterised by the presence of a varied olivine grain 

size, which includes large crystals (average 500 - 2250 | im) and fine-grained (100 -

500 |am) recrystallised neoblasts. The large olivine crystals are often tabular and 

undulose extinction is observed. Occasionally a kink-like subgrain structure (Drury et 

al. 1990) is observed in large olivine crystals. The modal proportion of olivine in the 

spinel Iherzolite varies between 50 - 80%. 

Orthopyroxene is generally the coarsest mineral phase in the spinel Iherzolite, 

forming medium- to coarse-grained anhedral porphyroclasts (500 - 4200 jam) which 

often have a tabular form. Clinopyroxene exsolution, either as fine lamellae or 

irregular, anhedral, blebs are nearly always present. Undulatory extinction, kinked 

clinopyroxene exsolution lamellae and curved kink bands, are observed in the 

orthopyroxene porphyroclasts, and these textural features show that the porphyroclasts 

are deformed. The margins o f the porphyroclasts usually lack the exsolution lamellae 

typical o f the cores, Davies (1983) suggests that this is related to significant re-

equilibration o f the porphyroclast rims. Porphyroclasts have fractured margins which 

are associated with rims or mantles o f recrystallised orthopyroxene, and 

orthopyroxenes in the matrix also occur as fine-grained recrystallised grains (90 - 500 

jLim). The modal volume o f orthopyroxene in the spinel Iherzolite varies between 10 -

25 %. 

Clinopyroxene rarely occurs as large porphyroclasts, usually it forms smaller 
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Figure 4.5. Relict orthopyroxene porphyroclast (OPX) is embayed by olivine (OL) and also 
encloses olivine. (Sample E57879). C9c 

Figure 4.6. Relict, coarse-grained porphyroclast of orthopyroxene (OPX) surrounded by a 
matrix of recrystallised clinopyroxene (CPX), olivine (OL) and spinel (SP). (Sample CAC65). cP^-

anhedral grains (500 - 1000 | im). However, these are usually recrystallised clusters of 

smaller equidimensional grains (50 - 500 )j,m) which are aligned in the foliation plane. 

These clusters occur as interstitial grains at the triple junctions of olivine crystals. 

Davies (1983) notes that the clinopyroxenes at olivine triple junctions may extend as 

narrow septa along grain boundaries, and he interprets this as suggesting interstitial 

crystallisation of a trapped liquid remaining after inefficient melt extraction. 

Clinopyroxene modal volumes vary between 5 - 15%. 
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Spinels are commonly brovra coloured, and more rarely olive-green coloured. 

The coarse spinel grains (500 - 1500 \xm) usually have a holly-leaf form (Figure 4.7), 

which is indicative o f post-kinematic growth (Mercier and Nicolas, 1975). Spinel is 

also present as small (<500 |j,m) anhedral grains. 

Several textural features can be related to greater deformation in some 

Iherzolites (fine-grained, porphyroclastic) compared to less-deformed examples 

(medium- to coarse-grained, porphyroclastic). In Iherzolites subjected to greater 

deformation the degree o f re -crystallisation o f olivine and clinopyroxene is more 

pronounced and the olivine grains have a tabular form. Orthopyroxene, the least readily 

deforming mineral phase, develops porphyroclasts with a tabular form, and displays 

recrystallisation o f the margins o f porphyroclasts to fine grains. Spinels also develop a 

tabular form and are often present as diffiise aligned aggregates defining a well-

developed mineral lineation. 

4.3.4.b. Pyroxenite 

The modal analyses o f two representative pyroxenite samples are presented below: 

CAC 44 - 75% clinopyroxene, 20% orthopyroxene, 5% olivine, < \ % spinel. 

CAC 99 - 70% clinopyroxene, 15%) orthopyroxene, 10%) plagioclase, 5% 

olivine, <l%o spinel. 

The modal analyses o f the two pyroxenites show that they are primarily websterites, 

although they are clinopyroxene-rich. The constituent mineral phases within the 

pyroxenites are extensively recrystallised (Figure 4.8) and therefore the pyroxenites 

were developed prior to deformation o f the coarse-grained Iherzolite host rock. 

Plagioclase, which is a secondary metamorphic phase, is completely altered to 

saussurite, although the original textural relationships o f the plagioclase are still 

preserved. It occurs as fine interstitial grains with respect to clinopyroxene, 

orthopyroxene, and olivine and as rims around skeletal spinels. It occurs predominantly 

at the triple-junctions o f recrystallised clinopyroxenes and also extends as septa along 

the clinopyroxene grain boundaries. Examination o f the clinopyroxenes reveals the 

presence of plagioclase exsolution within the larger porphyroclasts. 

Clinopyroxene occurs as both coarse-grained porphyroclasts and recrystallised 

grains wi th a varied grain size, although predominantly fine-grained. The 
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Figure 4.7. Brown spinels with a holly-leaf form in a matrix of serpentinite after olivine. 
(Sample CACl) . PP̂  

Figure 4.8. Ciinopyroxene porphyroclasts (CPX) with bent exsolution lamellae mantled by 
finer-grained recrystallised clinopyroxene. Bastite pseudomorphs orthopyroxene porphyroclasts 
(OPX). (Sample CAC44). 6 PL 

porphyroclasts possess rims and mantles of fine-grained recrystallised grains. The 

poiphyroclasts show other evidence of deformation, including bent exsolution lamellae, 

curved kink-bands and undulose extinction. Generally, the recrystallised 

clinopyroxenes are less deformed and do not have exsolution lamellae, although some 

grains do exhibit undulose extinction. The recrystallised grain boundaries meet adjacent 

boundaries at 120° triple junctions. 

Descriptions of the pyroxenite bands by Green (1964a) reveal that the petrology 

of the pyroxenites is more variable. Green (1964a) describes pyroxenites from Pedn 
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Boar (GR 76401676) which are olivine websterites, containing - 15% olivine, 39% 

orthopyroxene, 3 1 % clinopyroxene, 15% recrystallised, olivine, clinopyroxene, 

orthopyroxene and altered plagioclase. 

Rothstein (1977,1981,1988,1994) has conducted a detailed examination o f the 

microstructure o f the pyroxenites and concludes that they originated as a primary 

layering feature. The microstructure o f pyroxenites examined in the present study 

shows that the pyroxenites were developed prior to deformation, and this is consistent 

wi th interpretation o f Rothstein (1977,1981,1988,1994). 

4.3.4.C. Dunite 

The microstructures described in this section refer to the large dunite bodies described 

in Section 3.3.1, and not the smaller scale primary dunite layers discussed by Rothstein 

(1977,1981,1988,1994). 

In all o f the samples o f dunite examined, the olivine is completely altered to 

serpentine. The original microstructure o f the olivine can be recognised by the presence 

o f a 'ghost texture'; olivine has a medium to coarse grain size, an anhedral form and 

meets at 120° triple jimctions. Olivine (serpentine) comprises 80-95% of most samples. 

Spinels comprise between 5-20% volume in the thin-sections studied, and form 

elongate trails in thin-section (Figure 4.9). Microstructures suggests that the spinels are 

the disaggregated remnants o f larger spinel grains, and suggests that a fabric formed in 

the rock in response to later deformation. Spinel also shows internal fracturing, which 

is evidence o f internal deformation associated with the disaggregation. Spinels are 

medium- to coarse-grained and have an anhedral interstitial form. They vary from a 

deep brown to a black colour, depending on the degree o f secondary alteration and 

commonly have secondary chlorite rims. They usually have concave crystal margins 

against adjacent olivine and often poikilitically enclose fine-grained olivine. These 

features suggest that the spinel crystallised later than the olivine. 

In some sections, microstructures suggest the former presence o f pyroxene. It is 

not known i f this reflects secondary alteration or whether there was original 

clinopyroxene or orthopyroxene. Pyroxenes are fine-grained, anhedral and have an 

interstitial form with concave margins against adjacent olivine and usually comprises 

<2% of the sections. 

The microstructures o f harzburgites, which occur as gradational margins 
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between the dunite and spinel Iherzolite, have been examined in order to deduce the 

relationship between dimite and spinel Iherzolite. In all the samples examined, 

however, pervasive serpentinisation has severely hampered identification of the 

original microstructure. Large bastite pseudomorphs occur after orthopyroxene 

porphyroclasts and the microstructure and abundance appears to be similar to 

orthopyroxene in the spinel Iherzolite. Spinel is red-brown in colour and has an 

anhedral form, with the holly-leaf form observed in spinel Iherzolite. Spinels may have 

a r im of saussurite, and alteration product after plagioclase. 

4.3.4.d. Plagioclase Iherzolite 

Plagioclase Iherzolites possess a similar microstructure to the spinel Iherzolites, and 

represent a transitional assemblage between the spinel Iherzolite and mylonitic 

plagioclase-bearing peridotite described in the next section. Plagioclase Iherzolite is 

distinguished fi-om spinel Iherzolite by the presence of 5 - 15 % modal volume 

saussurite, a secondary replacement mineral after plagioclase (Figure 4.10). Plagioclase 

is fine- to medium-grained (150-1500 \im) and often forms rims aroimd spinel grain, as 

interstitial grains to olivine and orthopyroxene, and within the clinopyroxene clusters. 

The interstitial grains have an elongate form and have the appearance of stringers, 

which may enclose small crystals o f olivine and orthopyroxene. 

The transformation from a spinel Iherzolite to plagioclase Iherzolite assemblage 

is a sub-solidus transition that occurs in response to a progressive decrease in P and is 

described by a univariant reaction (Rampone et al, 1993):-

CPX + OPX + Spinel Anorthite + 2 Forsterite 

The reaction is mainly dependent on P at high T, and has been determined at ~8 kbar 

for T>900°C f rom experimental work (Rampone et al., 1993 and references therein). 

The plagioclase Iherzolites described here are chemically different (see Chapter 

6) f rom the plagioclase Iherzolites with plagioclase-rich veinlets related to melt-

impregnation described by Davies (1983) from exposures near Coverack and are 

therefore not directly analogous. 
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_ m n i 

Figure 4.9. Anhedral spinel grains (black) surrounded by serpentinised olivine (OL) grains 
and minor, altered pyroxene (PYX). (Sample CAC 37). PPc-

Figure 4.10. Plagioclase is altered to saussurite (S) that forms rims around spinel grains (SP) 
and aligned clusters within the peridotite. (Sample CAC61). PPc 

4.3.5. Microstructures of mylonitic peridotites 

A decrease in overall grain-size, increase in the degree of recrystallisation, 

development of fine-grained porphyroclastic microstructures and the presence of T i -

pargasite amphibole, characterises a transition from plagioclase Iherzolite (see above) 

to mylonitic peridotite. Plagioclase Iherzolite is also distinguished from mylonitic 

peridotite on the basis of whole-rock geochemical composition (see Chapter 6). Two 

sub-types of mylonitic peridotite are recognised: mylonitic plagioclase-bearing 

peridotite and mylonitic amphibole-bearing peridotite. The mylonitic amphibole-
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bearing peridotite is transitional with the mylonitic plagioclase-bearing peridotite and 

both sub-types are often interbanded at a cm scale. 

4.3.5.a. Mylonitic plagioclase-bearing peridotite 

Mylonitic plagioclase-bearing peridotites are typically fine- to medium-grained and 

possess fine-grained porphyroclastic to mylonitic textures. These textures are similar to 

the equigranular/ tabular-equigranular textures described by Mercier and Nicolas 

(1975). 

In specimens orientated parallel to the X-Z plane (i.e. parallel to the mineral 

stretching lineation and perpendicular to the foliation), the peridotite displays a weak 

mineral banding parallel to the foliation plane. This banding is produced by variations 

in the modal volume of olivine and pyroxene. 

The mylonitic plagioclase-bearing peridotites are characterised by plagioclase and, 

in many samples, brown amphibole (Figure 4.11). Plagioclase is present in abundances 

up to 15% modal volume and is usually altered to a brown secondary alteration 

product, saussurite. Plagioclase is always foimd in two textural associations, firstly as 

fine-grained aggregates forming rims around spinel, and secondly, as fine-grained 

crystals interstitial wi th respect to olivine and pyroxene. Plagioclases often display 

undulose extinction, which suggests that they have been subjected to stress during 

deformation. 

Olivine commonly occurs in two forms. 1) Tabular grains with a strong shaped 

preferred orientation, a medium- to fine-grain size (200 - 500 straight to curved 

grain boundaries; these grains may show a kink-like subgrain structure (Drury et al. 

1990). 2) Fine, recrystallised anhedral grains (40 - 150 \im) which usually have curved 

grain boundaries. These grains commonly occur with orthopyroxene, plagioclase and 

clinopyroxene as polycrystalline aggregate porphyroclasts, or granoblastic domains 

with an equidimensional mosaic microstructure (Figure 4.12). Anhedral, brown-

coloured, very fine-grained spinel (5-10 j im) is often associated with these granoblastic 

domains. Olivine, wi th an amoeboid form and curved grain boundaries, also occurs as 

reaction rims associated with fine-grained recrystallised orthopyroxene, at the margin 

of orthopyroxene porphyroclasts. Green (1964a) noted this recrystallisation 

microstructure and describes "ball-like aggregates" and suggested that they represent 
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recrystallised pyroxene porphyroclasts. However, this ball-like aggregate appearance is 

a phenomena related to selective serpentinisation of the surrounding area. This has been 
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Figure 4.11. Fine-grained mylonitic plagioclase-bearing peridotite with relict orthopyroxene 
(OPX) porphyroclasts and brown patches of saussurite (S) after plagioclase. (Sample CAC13). PfC-

Figure 4.12. Fine-grained matrix comprising a granoblastic domain of olvine grains (OL) with 
an equidimensional mosaic microstructure. A relict orthopyroxene (OPX) porphyroclast is 
preserved. (Sample E7457). cfc 

recognised, as in less serpentinised samples, the entire matrix has this aggregate 

appearance. In situ mineral analyses confirm that the microstructure is composed of 

olivine and orthopyroxene (Chapter 5). Disequilibrium textures similar to those 

described above are suggestive of the fluid-induced incongruent breakdown of 

orthopyroxene to olivine and spinel (Edwards and Malpas, 1995):-

OPX + Fluid ^ OLV + Spinel 
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Recrystallised olivine often displays a mineral preferred orientation, although it 

is not as strong as that displayed by the coarser grains, which lies parallel to the 

lineation defined by stretched orthopyroxene porphyroclasts and spinels. 

Orthopyroxene crystals generally form fine-grained recrystallised grains (40 -

400 pm), although many samples contain relict coarser grained orthopyroxene 

porphyroclasts. The porphyroclasts have fractured margins associated with 

recrystallised fine-grained orthopyroxene. Occasionally, flattened porphyroclasts are 

observed and are inferred to have developed due to slip on the (100) planes (Drury et 

al., 1990). 

Clinopyroxene is usually present as fine-grained interstitial recrystallised grains 

(40 - 500 pm) in the matrix and relict porphyroclasts o f clinopyroxene are rarely 

preserved. 

Spinel crystals vary in size f rom fine- to medium-grained (50 - 750 pm), 

although spinels with the fine grain size are usually more abundant. The larger spinels 

usually have a skeletal form with concave margins against the adjacent plagioclase 

rims. The spinels are commonly dravm out into irregular shaped elongate aggregates 

with fine tails o f spinel adjacent to larger grains. These aggregates define a foliation 

plane within the mylonitic peridotite. 

In rare samples, large green spinel crystals are present; these spinels have thin 

plagioclase rims and appear to have a syn- or post-kinematic origin. Larger spinel 

crystals usually display a holly-leaf form (Mercier and Nicolas, 1975). Green (1964a) 

notes that the large green-coloured spinels do not exhibit any evidence o f strain and a 

lack o f deflection o f the peridotite foliation around the spinels. He therefore proposed 

that the larger green spinels represent porphyroblasts, and not porphyroclasts. They are, 

therefore, not augen o f earlier large crystals as proposed for the pyroxene 

porphyroclasts. These large green spinels are often associated with plagioclase-rich 

regions, and in some circumstances, coarse-grained clinopyroxene and Ti-rich 

pargasitic-homblende/tschermakite/pargasite amphibole. 

Interstitial brown-coloured amphiboles are commonly present, but not 

ubiquitous in the mylonitic plagioclase-bearing peridotite. These are Ti-pargasite to 

kaersutite according to the I M A classification scheme of Leake (1978) (Chapter 5). 

Amphiboles are a minor phase in samples o f the mylonitic plagioclase-bearing 

peridotite, rarely exceeding 3%o modal volume. They form rims on clinopyroxene 
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grains and this suggests that their development is related to the breakdown of 

clinopyroxene. Possible reactions responsible for amphibole being produced are 

discussed in the following section. A n absence of brown amphibole in the coarse­

grained spinel and plagioclase Iherzolites suggests that the amphibole was created 

during the mylonitisation o f the Lizard peridotites. 

4.3.5.b. Mylonitic amphibole-bearing peridotite 

Mylonitic amphibole-bearing peridotites are characterised by the assemblage olivine + 

orthopyroxene + amphibole + spinel +- clinopyroxene +- plagioclase. The amphibole, 

pargasitic hornblende and edenitic hornblende according to the I M A classification of 

Leake (1978)(Chapter 5), commonly has abundances between 15-25 % modal volume 

and rarely exceeds 30%) modal volume. Pale green-coloured amphibole (Figure 4.13) 

displays a strong mineral preferred orientation which defines a strong foliation and 

mineral stretching lineation, parallel with tabular olivine crystals. Amphibole is 

assumed to be transitional with the brovm-coloured amphibole in the mylonitic 

plagioclase-bearing peridotite. This transition is accompanied by a change in colour of 

the amphibole f rom brown to pale-green in response to an increase in its modal 

abundance. Amphibole is observed to form rims and intergrowths in association with 

clinopyroxene (when present), suggesting that clinopyroxene is being consumed during 

amphibole formation. A relative lack o f clinopyroxene in the mylonitic amphibole-

bearing peridotite in comparison to the mylonitic plagioclase-bearing peridotite 

supports this hypothesis. Spinel is a rare phase in the mylonitic amphibole-bearing 

peridotite and is usually present as fine-grained Cr-spinel crystals (30 - 300 pm) 

enclosed within amphiboles. These spinels appear to be secondary, in comparison to 

the coarser-grained spinels in the mylonitic plagioclase-bearing peridotite and their 

textural association with amphibole suggests that they are related to the amphibole-

producing reactions. Orthopyroxene does not show the textural relationships observed 

between amphibole and clinopyroxene, and is therefore probably not a significant 

reactant in the amphibole-producing reactions. However, similar textural associations 

have been described in amphibole peridotites by Agrinier et al. (1993) and involve both 

clinopyroxene and orthopyroxene in a amphibole-producing reaction:-

Spinel I + CPX + OPX + H2O + Na20 ^ Pargasite + Spinel I I + OLV 

143 



Microstructural evolution 

A second reaction, which does not involve orthopyroxene is proposed by Bonatti et al. 

(1986):-

CPX + Spinel + H20-fluid Amph 

The above reactions suggests the involvement o f a hydrous metasomatic fluids 

and fiirther evidence for metasomatism is presented on the basis of geochemical 

evidence in Chapters 5 & 6. The origin o f these metasomatic fluids and their influence 

on the tectonic and geochemical evolution o f the Lizard peridotites is discussed in 

Chapter 7. 

Mylonitic amphibole-bearing peridotite has an overall grain size within the fine-

to medium-grain size range. Pargasitic-homblende crystals are usually slightly coarser 

than the olivine (20 - 625 |a,m) and pyroxene grains and usually form fine to medium-

grained euhedral crystals (60 - 1250 |am). The overall texture of the mylonitic 

amphibole-bearing peridotite is fine-grained porphyroclastic to mylonitic. 

In sections orientated in the X-Z plane, amphibole defines a weak banding 

(Figure 4.14) composed entirely o f pargasitic-homblende that appears to grade into 

bands containing olivine +/- orthopyroxene +/- amphibole. 

The Lizard mylonitic amphibole-bearing peridotites are similar to amphibole 

peridotites described in the Vol t r i Massif (Hoogerduijn Strating al., 1993) and at 

Zarbargad Island (Red Sea) (Piccardo et al., 1988, Dupuy et al., 1991, Agrinier et al., 

1993, Kuratetal . , 1993). 

4.3.5.C. Feldspathic bands 

Feldspathic bands occur in both the mylonitic plagioclase-bearing peridotite and 

mylonitic amphibole-bearing peridotite. 

Feldspathic bands are plagioclase-, amphibole- and clinopyroxene-rich in 

comparison with the mylonitic peridotite in which they occur, but there is a great 

variability in the constituent phases between different bands. The modal volumes of the 

constituent phases in the three representative bands are shown below, to demonstrate 

the variability in modal composition: 

CAC 180 - 25% clinopyroxene, 25% colourless amphibole (after clinopyroxene), 50% 

saussurite (after plagioclase), < 1 % spinel. 
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CAC 73 - 50% pargasitic hornblende, 20% plagioclase, 20% orthopyroxene, 10% 

clinopyroxene, < 1 % spinel. 

E 50308 - 55% plagioclase, 25% pargasitic hornblende, 20% clinopyroxene, < l % 

spinel and orthopyroxene. 

) 111 111 

Figure 4.13. Aligned pale-brown amphibole (A) and olivine (OL) grains define a strong 
fabric. Spinel (SP) and saussurite (S) after plagioclase are also present. (Sample CAC32). P P ^ 

Figure 4.14. Amphibole (A) rich bands within mylonitic amphibole-bearing peridotite, relict 
porphyroclasts of orthopyroxene (OPX) are also present. (Sample CAC81). CPL 

The grain size of the bands is distinctly coarser (average 1-2 mm) than the 

adjacent mylonitic peridotite host rocks (average 0.1 -0.3 mm) and this may be a grain 

boundary area reduction phenomenon (Passchier & Trouw, 1996). The grains within 
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the feldspathic bands are oriented parallel to the margins on the bands which is 

concordant with foliation in the adjacent peridotite (Figure 4.15). The grains have 

curved boundaries and the band has a granoblastic texture. Generally, the grains in the 

Figure 4.15. Feldspathic band composed of clinopyroxene (CPX), saussurite (S) after 
plagioclase and secondary amphibole (A) after clinopyroxene. (Sample E50308). cPc 

bands appear to be less deformed than grains in adjacent mylonitic peridotite. These 

bands are up to 10 mm wide and have margins that are amphibole-rich and contain no 

clinopyroxene or plagioclase, and grade into the adjacent mylonitic peridotite. 

Amphibole is usually brown-coloured and it often rims clinopyroxene or occurs along 

cleavage planes, which suggests that it replaces clinopyroxene. In some bands, brown 

amphibole is not present, and a colourless, fibrous amphibole is present instead. This 

also rims clinopyroxene, and represents a reaction product derived from the breakdown 

of the pyroxene. Colourless amphibole also replaces brown amphiboles as rim growths 

and within pull-apart fractures. Spinel has a "holly-leaf form, and is usually red-brown 

in colour, but in some samples it is olive green, whilst spinel in the adjacent mylonitic 

peridotite is a red-brown colour. The spinel is rimmed by plagioclase. 

Several unusual samples do not show banding, preserving instead small (<lcm) 

veinlets/pods, elongate parallel to the peridotite foliation. The veinlets consist of 70% 

plagioclase, 25% clinopyroxene and 5% Ti-rich pargasite. The grains in the segregation 

are coarser (2-5 mm) than the adjacent peridotite (0.25-2 mm) and have sharp contacts 

with the adjacent peridotite. Both the plagioclase and the clinopyroxene have an 

anhedral form with straight to curved grain boundaries. Clinopyroxenes in the veinlets 

exhibit a notable feature not observed in band: they contain small (0.1-0.25 mm) 
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exsolution patches (up to 10%)) o f brown amphibole (Ti-pargasite), which has a similar 

composition to the amphibole in the veinlet (Chapter 5). These clinopyroxenes also 

contain fine-grained exsolutions o f spinel. The clinopyroxenes within the peridotite 

adjacent to the veinlets do not show the amphibole exsolution. These veinlets are 

assumed to be analogous to the bands, but they contain less amphibole and more 

plagioclase, they probably represent the initial form of a band, i.e. a series of 

interconnected veinlets. 

4.3.6. Petrological variations in the Lizard peridotites: GIS based study 

In this section, the resuhs o f a GIS (Geographical Information System) based study on 

petrological variations in the Lizard peridotites are reviewed and the implications for 

petrogenesis and deformation are discussed. This method is based on detailed 

examination o f petrographic features observed in thin-sections of the Lizard peridotites. 

Figure 4.16a shows an introductory map, which includes the digitised coastline, major 

lithological boundaries, and Ikm-grid lines. The map also includes labels for place 

names in the Lizard which w i l l be referred to in the following discussions and a 

subdivision o f the Lizard into several fault-bounded 'areas', these being the northern, 

eastern, southern, western, and central areas. These 'areas' are referred to in the 

following sections. Figure 4.16b displays the location o f all the samples used in this 

study. Full details o f the objectives and methodology used in this GIS study are 

provided in Appendix B. 

4.3.6.a. Lithological map: Primary rock type (Figure 4.17) 

The distribution o f the peridotite types on Figure 4.17 is very similar to Figure 3.3, 

although the distribution o f plagioclase Iherzolite is included on Figure 4.17. The GIS-

based map also supports the field evidence (Figure 3.3) for the distribution o f mylonitic 

peridotite in the Trevassick (GR 71002250) to Trelan area (GR 74501870) around the 

northern margin. This data is consistent with the textural evolution discussed in the 

previous section. Several o f the previous publications that describe the Lizard 

peridotites have proposed that the coarse-grained peridotites are both Iherzolitic and 

harzburgitic in composition (Bromley, 1979; Kirby, 1979, Leake & Styles, 1984). The 

petrographic examination for the GIS-based study reveals that the coarse-grained 

Iherzolites are predominantly spinel Iherzolites and that harzburgites are rare in the 

147 



Microstructural evolution 

Porihallow 

PorthkcmsCmc 

SORTHERS AREA 

VI u I i ion 
• 

[•olutTian V 
. .-^er.,.. 

X)lor Point 

Chynalls Pom 

^onsonyaih 
Muilion Cove 

FASTERI\ AREA CEyTRAL AREA 

WESTERN ARl 

PreJunnack .amck I.U7 kenna -̂k Sand^ 

Georges C o v e j ] 

15 Vellan Head ^ ' 

G r a z e ^ 

1̂  C arleon L 

76 77 78 7q 

/ \ y Lithological boundaries 

:km grid 

Kiidov-n Poini 
Cadgwith 

[ ani Hini>\^ \ SOUTHERN AREA ^ill Point 

Kynance 
I'entreaih Beach 

* ^ Bas.s P 

69 70 71 7: 73 74 

6 Kllomatars 

Figure 4.16a. Introductory base-map of the Lizard for GIS studies, including digitised 
coastiine, 1km grid, and major lithological boundaries (after Floyd et al., 1993). Labels for 
place names and the 'areas' used to sub-divide the Lizard are included. 
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Figure 4.16b, Introductory map showing the location of the samples used for GIS studies. 
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Lhcrzolit ic peridotitc (InsufRcieni dala to sub-divide) 

Spinel Ihcrzolite 

Piagioclasc Ihcrztililc 

b y / ] Myloni l icpcridol i tc (Insufficient data 10 sub-divide) 

Mylonitic plagioclase-bcaring peridotite 

Mylonitic amphibolc-bcanng pendotitc 

Figure 4.17. Summary map displaying the distribution of the different peridotite types, 
interpreted from GIS data plots. 

Lizard Ophiolite Complex, usually being restricted to the margins of dunite bodies 

(Section 4.3.4.C.). It appears that in the previous work (Kirby, 1979; Leake & 

Styles, 1984) the classification of the peridotites as harzburgite or Iherzolite was based 

largely on whole-rock composition and not petrography. 

4.3.6.b. Grain size variations (Figure 4.18) 

The summary map showing the grain size of the Lizard peridotites establishes that there 

are significant variations in the study area. These variations occur in coarse-grained 

Iherzolites and mylonitic peridotites. The Iherzolites in the southern area in general 

have a 'finer' grain size (medium grained) than Iherzolites in the central and eastern 

areas (coarse/medium & medium grained), which suggests that they are more 
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deformed. This observation has been confirmed by fieldwork (Section 3.3.), which 

reveals that the peridotites in the southern area have a strong foUation and a mineral 

stretching lineation. Lherzolites in the central and eastern areas vary between 

coarse/medium to medium grained. In the central area there appear to be variations in 

the grain size across the strike of the peridotite fabric (Figure 3.13.); this is also 

observed in the eastern area. The grain size of the peridotites between Kennack Sands 

(GR 7390 1665) and Black Head (GR 7780 1615) is predominantly coarse/medium. 

However, there are 'zones' where the peridotite is medium-grained and these may 

represent zones of higher strain formed during deformation of the peridotite. In the 

Coverack (GR 7824 1845) to Trelan (GR 7455 1889) section and in the southern unit 

there appears to be a correlation between grain size and the peridotite type, the spinel 

Iherzolites being 'coarser'-grained than plagioclase Iherzolites. 

In the northern area, shown in Figure 4.17 to comprise mylonitic peridotite, 

there are significant variations in the grain size of the peridotite. The grain size 

decreases from the S to N, and these variations in grain size correspond to the different 

'zones' of mylonitic peridotite type: mylonitic plagioclase-bearing and mylonitic 

amphibole-bearing peridotite (Figure 4.17). The mylonitic plagioclase-bearing 

peridotites are generally medium/fine-grained and the mylonitic amphibole-bearing 

peridotites are predominantly fine-grained. In the western area, at Vellan Head (GR 

6682 1485), there is a contrast in the grain size of the mylonitic peridotite, also related 

to the composition of the peridotite. On the W side of a fault at Vellan Head mylonitic 

amphibole-bearing peridotites are predominantly fine-grained, and on the E side of the 

fault mylonitic plagioclase-bearing peridotites are medium/fine-grained. 

4.3.6.C. Modal volume variations in the constituent mineral 

In this section only minerals showing significant variation in modal abundance are 

included, these being clinopyroxene, olivine, plagioclase and colourless hornblende. In 

the following discussions of modal volume of constituent phases, variations in 

clinopyroxene and olivine in mylonitic peridotites are not included due to the fine grain 

size of these rocks hampering the distinction between pyroxene and olivine and 

therefore rendering estimates of modal volumes unreliable. 
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kilometres 

Lherzolitic peridotite (Insufficient grain-size data) 

\y y y . 
/ / / \ Mylonitic peridotite (Insufficient grain-size data) 

Fine-grained 

Fine/medium-grained 

Medium-grained 

Medium/coarse-grained 

Coarse-grained 

Other lithologies 

Figure 4.18. Geological map of the Lizard Ophiolite Complex displaying variations in the 
grain size of peridotite based on GIS data. Major faults and lithological contacts after Floyd et 
al.(1993). 

4.3.6.d. Clinopyroxene (Figure 4.19) 

An estimate of the modal volume of clinopyroxene in the Lizard peridotites is 

important, particularly because the modal volume in a peridotite provides an indication 

of the degree of depletion of the peridotite with respect to partial melting processes. A 

harzburgite, which by definition has <5% clinopyroxene, has suffered a greater degree 

of melt extraction due to partial melting processes than a Iherzolite with >5% 

clinopyroxene. Figure 4.19 shows that there are variations in the modal volume of 

clinopyroxene in coarse-grained Iherzolites. In the southern area, all the Iherzolites 
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show >5% clinopyroxene, and in places 9 - 17%. In the central area the modal volume 

of clinopyroxene in the Iherzolites falls within the 5-8% range, although, some areas 

have up to 15% clinopyroxene. In the eastern area, many Iherzolites display a relatively 

high abimdance of clinopyroxene, up to 17% modal volume. Between Coverack and 

Trelan, near the contact with the Crousa gabbro, Iherzolites show higher clinopyroxene 

contents than those on the coast between Kermack Sands and Black Head. This 

observation is inconsistent with idealised ophiolite stratigraphy (Roberts & Neary, 

1993), where the peridotites close to the contacts with gabbros of the lower oceanic 

crust are often depleted in clinopyroxene relative to those lower in the mantle section. 

However, this observation is consistent with the Crousa gabbro representing a later off-

axis intrusion and the clinopyroxene abimdances in the peridotite being a primary 

feature unrelated to the intrusion of the gabbro. Microstructures in the Iherzolites from 

the Coverack to Trelan area do not show any evidence for melt-impregnation (Suhr & 

Robinson, 1994), and the relatively high clinopyroxene content is therefore believed to 

be a primary feature. 

4.3.6.e. Olivine (Figure 4.20) 

.There appear to be several variations in the olivine content, which are related to the 

geographic distribution of the peridotite. Within the central area of the Lizard, 

Iherzolites in the northern part (GR 7217 & 7317) have a lower olivine content than 

Iherzolites in the south. Within the eastern area, Iherzolites at Gwenter (GR 74001800), 

Poldowrian (GR 75001690) and Lankidden Cove (GR 75601665) show the olivine 

contents within the 70-90% range. This compares to the other Iherzolites within the 

eastern area, in which the olivine contents are within the 50-69%) range. 

4.3.6.f. Plagioclase (Figure 4.21) 

Figure 4.21 reveals that the mylonitic plagioclase-bearing peridotites have higher 

plagioclase contents than the plagioclase Iherzolites. The mylonitic plagioclase-bearing 

peridotites contain up to 9-12%) plagioclase. There appears to be a variation in the 

plagioclase content of the peridotites between the central and northern areas of the 

Lizard. Plagioclase Iherzolites in the northern part of the central area show the highest 

modal volume of plagioclase, in comparison with elsewhere in the central area. This 
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Figure 4.19. Geological map of the Lizard Ophiolite Complex which displays the results of 
GIS data for the 'theme' Clinopyroxene in coarse-grained Iherzolites. Area proportional circles 
represent the % modal volume of clinopyroxene in the Iherzolites. Intervals are chosen to 
include value ranges <5% and >5%, which allows distinction between harzburgite and 
Iherzolite peridotite-types. 

increase in plagioclase in this area may be related to a transition into mylonitic 

plagioclase-bearing peridotites to the north (Figure 4.17.), which is consistent with the 

variations in grain size (Figure4.18.). 

4.3.6.g. Serpentinisation (Figure 4.22) 

In this ex£imple serpentine, refers to the modal volume of lizardite and chrysotile (after 

olivine) and bastite (after pyroxene). The Lizard peridotites have suffered pervasive 

serpentinisation. The degree of alteration falls into the range of 20-80% in the majority 
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Figure 4.20. Geological map of the Lizard Ophiolite Complex displaying the results of GIS 
data for the 'theme' olivine in the coarse-grained Iherzolites. Area proportional circles represent 
the % modal volume of olivine. 

of peridotites, and only a minority, <5% are within the 1-20% serpentinisation range 

i.e. relatively fresh. In summary, the most serpentinised peridotites are located between 

Vellan Head and Ogo Dour Cove (GR 6683 1577) in the Western area, between 

Trevassick Quarry (GR 7116 2212) and Trelan in the northern area, and at Poldowrian 

(GR 7497 1671), Carrick Luz (GR 7554 1651) and Coverack in the eastern area. 

Peridotites in the Porthkeriis (GR 805 231) area are extremely serpentinised, most 

sections showing 100% serpentinisation. The geographic distribution of the 

serpentinisation appears to be related to several geological controls, including both 

lithology and tectonics. Dunite is the most serpentinised peridotite type, because it is 

predominantly composed of olivine, one of the most susceptible mineral phases to 

serpentinisation (Floyd et al., 1993). Serpentinisation is also influenced by the presence 
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Figure 4.21. Geological map of the Lizard Ophiolite Complex displaying the results of GIS 
data for the 'theme' plagioclase the peridotites. Area proportional circles represent the % modal 
volume of plagioclase. Samples with >10% plagioclase are not ultramafic rocks and represent 
plagioclase-rich bands within the peridotite. 

of faults. In areas of the Lizard where faults are prevalent, e.g. Vellan Head, the 

peridotites show a higher degree of serpentinisation than areas where the are fewer 

faults. 

4.3.6.h. Secondary amphibole: Colourless-hornblende (Figure 4.23) 

In the central area of the Lizard, mylonitic peridotites and pyroxenites south of Carleon 

cove at GR 728154 contain the highest content of colourless-hornblende, in the 21-33% 

range. Mylonitic amphibole-bearing peridotites associated with the tectonic contacts at 

Kildown point (GR 72651470) and in Cadgwith (GR 71961486) contain colourless-
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Figure 4.22. Geological map of the Lizard Ophiolite Complex displaying the results of GIS 
data for the 'theme' serpentinisation iii all the peridotites. Area proportional circles represent the 
% modal volume of serpentinisation. 

hornblende in the 3-20%) range. Other localities where the peridotites in the central area 

contain colourless-hornblende as a conspicuous secondary phase include a locality (GR 

69041906) near Penhale and GR 73781893 west of Trelan. In the eastern area of the 

Lizard, coarse-grained Iherzolites at Carrick Luz contain colourless -hornblende in the 

3-14%o range, whilst at Downas cove (GR 76341675) colourless-hornblende contents 

are in the 3-7%o range. At Coverack, a few Iherzolites contain colourless-hornblende in 

the 3-7%) range. Other localities in the eastern area where Iherzolites contain colourless-

hornblende include GR 753179 and GR 74681800 west of Ponsongath, and GR 

75881687 at Arrowan farm. 
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Figure 4,23. Geological map of the Lizard Ophiolite Complex displaying the results of GIS 
data for the 'theme' colourless hornblende in the peridotites. Area proportional circles represent 
the % modal volume of colourless hornblende. 

In the southern area of the Lizard, colourless-hornblende is seen in the 3-33% 

range in peridotites from four localities -

1) Near GR 691142, which is close to an E-W fauk, colourless-hornblende occurs 

in both mylonitic peridotites and coarse-grained peridotites at this locality. 

2) Close to the NW striking fault at Kynance Cove (GR 684136). 

3) At the SE end of Pentreath beach (GR 693127). 

4) Mylonitic amphibole-bearing peridotite at Lizard village (GR 70751249). 

In the western area of the Lizard, mylonitic peridotite from the Lawamick area 

(GR 682136) contains colourless-hornblende in the 15-20% modal volume range. Field 
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evidence shows that there are hydrous shear zones in peridotites from this area, and 

many later faults. Between Gew Graze (GR 6760 1438) and Pare Bean Cove (GR 6667 

1583), mylonitic peridotites contain colotirless-homblende within the 15-33%) modal 

voliune range, field evidence again reveals the presence of hydrous shear zones and 

also later sub-vertical fault zones in this area. South-east of Meaver, at GR 68741870, 

mylonitic peridotite contains colourless-hornblende in the 21-33% range, and mylonitic 

peridotites at MuUion Cliff (GR 665 175) and SE of the Predannack airfield (GR 6765 

1555) have between 6-14%o colourless-hornblende. The colourless-hornblende in these 

peridotites may also be associated with hydrous shear zones. 

4.3.7. Olivine petrofabrics and shear sense 

Olivine petrofabric diagrams are used to determine which slip systems were 

activated during deformation in the different peridotite types. These diagrams can also 

be used to determine the sense of shear in orientated specimens. The principles relevant 

to this technique have been outlined in Chapter 1. A universal stage (U-stage) was used 

to determine and measure the olivine lattice preferred orientation (LPO) in selected 

samples. Petrofabric diagrams, which are equal-area projections on a lower hemisphere 

were constructed using this data. The foliation or lineation defiried by spinel and 

pyroxene in hand-specimen is used as a reference frame. For a detailed review of the 

technique of using the universal stage the reader is referred to^^erd-we^/ii {\96j). 

Olivine petrofabric diagrams are presented for one coarse-grained spinel 

Iherzolite, one coarse-grained plagioclase Iherzolite and one transitional-assemblage 

peridotite (plagioclase Iherzolite to mylonitic plagioclase-bearing peridotite), all of 

which have coarse-grained porphyroclastic textures. Olivine petrofabrics presented for 

the mylonitic peridotites include three mylonitic plagioclase-bearing peridotites and 

two mylonitic amphibole-bearing peridotites with fine-grained porphyroclastic textures. 

It is immediately evident upon examination of the petrofabric diagrams that the coarse­

grained Iherzolites and transitional-assemblage peridotite have stronger point maxima 

of the [100], [010] and [001] crystallographic axes (i.e. stronger LPO) than the 

mylonitic peridotites. Separate summaries of the olivine petrofabric diagrams for the 

different samples are presented below. 
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4.3.7.a. Olivine petrofabrics: Results. 

Sample CAC 64 - coarse-grained spinel Iherzolite (Figure 4.24a) 

CAC 64 has a strong olivine lattice fabric with (100) concentrated close to the lineation 

(21/344), however (010) and (001) define partial girdles with maximimi concentrations 

(010) - (33/253) and (001) - (51/092) oblique to the foliation plane. The results suggest 

that the dominant slip system was (Okl) [100] and there was possibly activation and 

interchange with (010) and (001) slip planes. 

Sample CAC 158 - coarse-grained plagioclase Iherzolite (Figure 4.24b) 

Petrofabric data indicates a moderate olivine lattice fabric for CAC 158, including a 

concentration of (100) close to the lineation (6/345). The (010) direction has a 

maximum perpendicular to the foliation plane (3/261) and (001) defines a maximum 

within the foliation plane and perpendicular to the lineation (72/200). This data suggest 

activation of the (010) [100] slip system, however a spread of (001) suggests that 

contribution by (Okl) [100] cannot be excluded. 

Sample CAC 159 -transitional assemblage (Plagioclase Iherzolite to mylonitic 
plagioclase-bearing peridotite) (Figure 4.24c) 

The petrofabric diagram for the CAC 159 shows a strong maximum concentration of 

(100) close to the lineation (12/175), and maximums of (010) perpendicular to the 

foliation plane (6/246) and (001) within the foliation plane and perpendicular to the 

lineation (81/020). This lattice fabric suggests that the activated slip system was (010) 

[100], although there may have been contribution of {Okl} [100]. 

Sample CAC 113 - mylonitic plagioclase-bearing peridotite (Figure 4.25a) 

The olivine petrofabric diagram for this sample, and those below, is weak in 

comparison to the previous samples. The (100) direction defines a weak maximum 

close to the lineation (3/019), however there are also three other weak concentrations 

close to the lineation and symmetrical about this point. A weak maximum (3/120) is 

also defined by (010), which is perpendicular to the foliation plane and there are also 

three diffuse concentrations within symmetrical about this point and another within the 
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a) 
[100] [010] 

N= 100 

b) 
[100] [010] [001] 

N = 50 

C) 
[100] [010] [001] 

N = 50 

Figure 4.24. Stereographic projections display 1% area contours of poles to olivine lattice 
orientations (Olivine petrofabric diagrams) for coarse-grained Iherzolite and transitional 
peridotite assemblages, (a) CAC 64 - spinel herzolite. (b) CAC 158 - plagioclase Iherzolite. (c) 
CAC 159 - transitional peridotite. Solid line = trace of foliation, dashed line = trace of shear-
plane, arrows show shear-sense, dot = lineation, triangle = point maximum. 

foliation plane. The (001) direction defines weak maximum perpendicular to the 

lineation and within the foliation plane (54/230) and there are several other weak 

concentrations. The lattice pattern of this sample is difficult to interpret and activation 

of several different slip systems is proposed. 

Sample CAC 157 - mylonitic plagioclase-bearing peridotite (Figure 4.25b) 

The lattice pattern of this sample is weak and similar to CAC 113. Again (100) defines 

four concentrations close to and symmetrical about the lineation with a point maximum 
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a) [100] [010] [001] 

N = 50 

b) [100] [010] [001] 

N = 50 

C) [100] [010] [001] 

Figure 4.25. Stereographic projections display 1% area contours of poles to olivine lattice 
orientations (Olivine petrofabric diagrams) for mylonitic plagioclase-bearing peridotites. (a) 
CAC 113. (b) CAC 157. (c) CAC 67. Solid line = trace of foliation, dashed line = trace of 
shear-plane, arrows show shear-sense, dot = lineation, triangle = point maximum. 

at (12/162). The (010) direction defines four weak concentrations perpendicular to the 

foliation and symmetrical with respect to each other, with a maximum at (3/110). A 

strong point maximum (78/345) is defined by (001) perpendicular to the lineation and 

within the foliation plane, and there are several other weak concentrations. The lattice 

pattern is difficult to interpret, and in common with CAC 113, activation of several 

different slip systems is proposed. 
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Sample CAC 67 -mylonitic plagioclase-bearing peridotite (Figure 4.25c) 

This sample has the stronger olivine LPO than all the other mylonitic peridotites. This 

may be due in part to the larger number of measurements, 100 in contrast to 50 in the 

other samples. The lattice fabric shows a moderate maximum concentration of (100) 

oblique to the lineation (8/144), and weak concentrations also occur. The (010) 

direction forms concentrations perpendicular to the foliation plane with a maximum at 

(8/053) and a weak concentration within the foliation plane and perpendicular to the 

lineation. A maximum concentration of (001) occurs within the foliation plane and 

perpendicular to the lineation (81/220), and there are several weak concentrations that 

define a partial girdle. In common with the other mylonitic peridotites this lattice 

pattern is difficult to interpret, although the stronger lattice pattern facilitates 

interpretation. The lattice patterns suggest that the activated slip system was (Okl) [100] 

and the weak concentrations suggest that contribution by several other slip systems 

cannot be excluded. 

Sample CAC 110 - mylonitic amphibole-bearing peridotite (Figure 4.26a) 

A moderate LPO is shovm by this sample. The (100) direction defines several 

concentrations oblique and symmetrical about the lineation, with a moderate maximum 

at (12/342). Two concentrations are defined by (010) with the stronger maximum at 

(72/070) within the foliation plane and perpendicular to the lineation and the weaker 

concentration perpendicular to the foliation plane. The (001) direction defines a 

maximum concentration (87/180) within the foliation plane and perpendicular to the 

lineation, and several weaker concentrations oblique to and symmetrical about the 

lineation. This lattice pattern, which is difficult to interpret, suggests the involvement of 

several different slip systems. 

Sample CAC 131 - mylonitic amphibole-bearing peridotite (Figure 4.26b) 

CAC 131 shows a moderate LPO. The (100) direction defines several concentrations 

oblique to and symmetrical about the lineation with a maximum concentration at 

(12/203). Several concentrations are also defined by (010), which has a maximum 

concentration perpendicular to the foliation plane and slightiy oblique to the lineation 

(24/330). There are several (010) concentrations perpendicular to the foliation plane 
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a) [100] [010] 

N = 50 

[010] [001] 

N = 50 

Figure 4.26. Stereographic projections display 1% area contours of poles to olivine lattice 
orientations (Olivine petrofabric diagrams) for mylonitic amphibole-bearing peridotites. (a) 
CAC 110. (b) CAC 131. Solid line = trace of foliation, dashed line = trace of shear-plane, 
arrows show shear-sense, dot = lineation, triangle = point maximum. 

and a concentration within the foliation plane. The (001) direction defines two 

concentrations within the foliation plane and perpendicular to the lineation with a 

maximum concentration at (75/216). The activation of several different slip systems is 

proposed for this sample. 

4.3.7.b. Olivine slip systems: Deformation temperatures and mechanisms 

Deformation temperatures 

The results presented above suggest that in the coarse-grained Iherzolites to transitional 

assemblage peridotites, the dominant slip system activated during deformation was 

(010) [100] and there is contribution by (Okl) [100] in one sample (CAC 64). In the 

mylonitic peridotites, the lattice fabrics are difficult to interpret and it is proposed that 

the simultaneous activation of several slip systems is responsible; in one sample (CAC 

67), the activation of the (Okl) [100] is identified. In Chapter 1 it was established from a 

review of the literature, including both experimental work and studies on natural 
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systems, that temperatiare exerts a control on which slip system is activated. The (010) 

[100] slip system is dominant at 'high' temperatures (T>1000°C) (Nicolas & 

Christensen, 1987). The (Okl) [100] slip system identified in one of the coarse-grained 

Iherzolites and a mylonitic peridotite (see above) has been referred to as pencil glide by 

of Nicolas & Christensen (1987) and it was proposed that this slip system is operative 

at 'low' temperatures (700-1000°C). The temperature conditions at which the 

simultaneous slip systems were activated in the majority of the mylonitic peridotites is 

more difficult to establish. Similar olivine lattice fabrics are observed in the basal 

ultramylonites from peridotites in the Table Motmtain massif (Bay of Islands ophiolite, 

Newfoundland) and lower temperattires (<1000°C) are proposed in this example (Suhr, 

1993). Comparable olivine lattice fabrics to the Lizard mylonitic peridotites are also 

observed in peridotites from Baldissero (Ivera Zone, western Alps) where activation of 

the (010) [100] and {Okl} [100] slip systems has been proposed (Nicolas et al., 1971; 

Nicolas and Poirier, 1976). The results for the Lizard rocks suggest, therefore, that 

deformation of the coarse-grained Iherzolites occurred at relatively high temperatures 

(T>1000°C) whilst the mylonitic peridotites were deformed at lower temperattires 

(700-1000°C). The temperature of deformation may be further constrained in the 

mylonitic peridotites by the presence of calcic-amphibole to an inferred upper 

temperature limit of 1100°C. Calcic-amphibole has an upper stability limit of between 

825°C (Jaroslow et al., 1996) to 1100°C (Nicolas, 1986). The presence of pargasitic 

amphibole (IMA classification of Leake, 1978) in the mylonitic plagioclase-bearing 

peridotite allows further temperature constraints. Recent experimental work {pers 

comm. Niidua and Green, 1997) establishes that between 18-25Kb, the maximum 

temperature stability limit of pargasite is 1075°C. Further temperature constraints are 

provided by geothermometric techniques in Chapter 5. 

Deformation mechanisms 

A common feattire of the lattice fabrics in all the Lizard peridotites is the occurrence of 

[100] direction maximimi concentration close to the lineation. This establishes that the 

slip direction in these peridotites always coincides with [100] and this lies close to the 

bulk shear direction defined by the lineation. In the Lizard samples, the consistent 

asymmetry between the foliation/lineation and the olivine lattice fabric suggests that a 

significant component of rotational strain occurred during deformation (Bouchez et al., 
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1983) and this can therefore be used to determine a sense o f shear (see below). It has 

already been established that the (010) [100] slip system was dominant and that this is 

characteristic o f high temperatures and low differential stress. In the coarse-grained 

Iherzolites, the lattice fabric is measured using both fine- and coarse-grained olivines, 

and the strong LPO suggests that they have a similar lattice fabric. It is therefore 

proposed that the fine-grained olivines were developed from the coarse ones through 

subgrain rotation (Jin et aL, 1998 and references therein), and that the new, fine grains 

inherit the lattice orientation o f the coarser parent grains (Jin et al, 1998). In order to 

inherit a similar LPO f rom coarser parent grains, the degree o f subgrain rotation must 

be limited, as during continued subgrain rotation there should be a progressive 

weakening o f the lattice fabric (Lloyd, G.E., pers comm. 1998). The relatively coarse 

grain size o f these Iherzolites and the strong LPO suggest dislocation creep-dominated 

flow during which only one slip system is usually involved. When only a single slip 

system operates the crystal must deform heterogeneously on the grain scale and other 

deformation mechanisms must be operative (Paterson, 1969; Bouchez et al., 1983). 

Alternative mechanisms include diffusion, flexure o f the crystal lattice, twisting and 

parting (Bouchez et al., 1983). 

The comparative weakness o f the lattice fabrics o f the mylonitic peridotites in 

comparison with the Iherzolites may reflect several different processes. These may 

indicate the activation o f several different slip systems that contribute equally to the 

LPO to produce a diffiase lattice fabric (Nicolas and Christensen, 1987). The degree of 

subgrain rotation in the olivine neoblasts in the mylonitic peridotite is likely to be more 

extensive than in the coarse-grained Iherzolites. Hence, the progressive mis'^ orientation 

o f the lattice fabric o f the olivine neoblasts in the mylonitic peridotites could weaken 

the overall lattice fabric o f the rock. A n alternative explanation is that a significant 

contribution o f grain-boundary sliding in the mylonitic peridotites may cause diffuse 

LPO (Jin et al., 1998). Jaroslow et al. (1996) demonstrate that the crystallographic 

fabric o f olivines decreases in intensity with a decrease in grain size. These phenomena 

may be related to the partial activation o f grain size sensitive diffusion creep at lower 

temperatures (~600°C) and higher strain rates, although the dominant deformation 

mechanism is grain size insensitive dislocation creep. The microstructural evidence in 

mylonitic peridotites f rom the Lizard suggests that diffusion creep processes have not 

had a strong influence. This evidence includes the presence of weak-moderate LPO and 
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the minimum grain size for recrystallised olivine observed in the mylonitic plagioclase-

bearing peridotite is ~40 \im and in the mylonitic amphibole-bearing peridotite ~20nm. 

I f olivine were to deform by grain size sensitive diffusion creep alone there would be 

little or no LPO and a recrystallised olivine grain size <10|j,m would be observed 

(Jaroslow et al., (1996). It is possible that both deformation mechanisms were operative 

i f deformation lay close to the boundary between diffusion and dislocation creep in 

stress-grain size space (Figure 1.7)(Jin et al., 1998). In the previous section, the LPO of 

the mylonitic peridotites was compared with the LPO of peridotites from Baldissero 

(Ivera Zone, western Alps). A feature that both the Lizard mylonitic peridotites and the 

Baldissero share is the presence o f several concentrations o f the lattice directions, 

symmetrical about the foliation plane. Nicolas et al. (1971) suggested that the 

Baldissero peridotite fabric could be attributed to the presence of two olivine lattice 

planes, which are symmetrical to the foliation plane and 20° oblique to it (Figure 4.27). 

A similar interpretation is proposed for the Lizard mylonitic peridotites. In the 

Baldissero example, the two lattice planes are explained by the presence o f two shear 

planes SI and S2 that are symmetrically inclined to the maximum principle stress 

direction and these determine, by rotation, the symmetrical orientations of the olivine 

glide system to the foliation (Nicolas et al., 1971). The mylonitic peridotites from the 

Lizard do not display small olivine grains forming the boundaries between surrounding 

larger grains, which is observed in the Baldissero peridotites (Nicolas et al., 1971). 

These boundaries are interpreted by Nicolas et al. (1971) to represent the active 

surfaces along which the crystals undergo relative displacements. In summary, several 

/I 
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Figure 4.27. Theoretical sketch illustrating the orientation of olivine relatively to kinematic 
elements. Example from the Baldissero Massif showing the relationship between orientations 
of olivine and two shear planes SI and S2 (from Nicolas et al., 1971). 
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different mechanisms may account for the unusual LPO displayed by the mylonitic 

peridotites. It is not possible, however, to determine, with the current data, which of 

these mechanisms or combinafion o f mechanisms is responsible.' 

In both the coarse-grained Iherzolites and the mylonitic peridotites, 

microstructural evidence shows that grain-size reducing processes have operated. There 

are two main grain-size reducing processes proposed in the literature; dynamic 

recrystallisafion (e.g. Drury et al., 1990; Girardeau and Mercier, 1988; Jin et al., 1998) 

and high-temperature cataclasis (Vissers et al., 1995; Jaroslow et al., 1996). Evidence 

in the coarse-grained Iherzolites shows that neoblasts have a similar LPO to 

palaeoblasts; this suggests operation o f subgrain rotation recrystallisation. The presence 

o f fractured orthopyroxene porphyroclasts in the coarse-grained Iherzolites is 

suggestive o f high-temperatures cataclasis mechanisms. Flattened orthopyroxene 

porphyroclasts are observed in the mylonitic peridotites and these are inferred to 

develop due to slip on the (100) planes (Drury et al., 1990). 

4.3.7.C. Shear-sense implications 

The use o f LPO in a kinematic study in order to determine the kinematics of flow in 

peridotites f rom the Lizard Ophiolite Complex has been inhibited for three reasons: 

1) Over 50% o f the orientated sections collected proved to be too serpentinised 

to allow determination o f the LPO of olivine. 

2) It cannot be determined by how much the fabrics have been re-oriented by 

later thrusting and faulting. 

A total o f 15 Iherzolite and mylonitic peridotites with a dip-slip fabric have 

been included, based on detailed LPO analysis by U-stage and assessment of obliquity 

o f extinction o f olivine in X Z sections. These show both reverse and extensional 

kinematics wi th respect to the orientation o f the fabric in the field, but as the fabric is 

steeply dipping this makes interpretation ambiguous. Therefore the kinematics have 
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Figure 4.28. Geological map of the Lizard Ophiolite Complex displaying the shear-sense in 
the peridotites, represented by shear-planes orientated and with dip-direction. Arrows indicate 
the shear-sense, with the larger arrow representing the 'hangingwall' of the shear-plane. The 
letters in brackets represent the displacement in terms of a 'top-to-the-' present-day geographic 
direction. 

been examined in terms o f their "downthrow" direction relative to present-day 

orientation. This is either to the east or west as the fabrics dominantly strike NW-SE. 

Of the 15 peridotites studied, 9 show a E-side down and 6 show a W-side down shear-

sense (Figure 4.28). It is suggested, therefore, that dip-slip fabrics in the Iherzolite and 

mylonitic peridotites are related to deformation with dominantly E-side down shear 

sense. The high-strain zones (mylonitic peridotite) dip predominantly towards the E, 

suggesting that the dip-slip movements were extensional. This extension event may be 

responsible for the exhumation o f the Lizard peridotites. The mylonitic amphibole-

bearing peridotites in the Mull ion area show a strike-parallel fabric. Olivine LPO 

patterns reveal a sinistral shear sense and the asymmetry o f amphibole extinction with 
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respect to the shape fabric is also consistent with a sinistral shear sense. The tectonic 

implications o f the peridotite fabric orientations and shear-sense are discussed in 

Chapter 7. 

4.3.8. Hydrous shear zones in the Lizard peridotites 

Hydrous shear zones possess a mylonitic fabric and cross-cut fabrics in the spinel 

Iherzolite, plagioclase Iherzolite, mylonitic plagioclase-bearing peridotite and mylonitic 

amphibole-bearing peridotite, which are rotated into these later shear zones. These 

shear zones are dominated by narrow (~0.5mm wide) anastomosing hornblende and 

chlorite-bearing shear bands (Figure 4.29) that extend across the length of a thin 

section. The shear bands wrap around relict orthopyroxene and olivine porphyroclasts 

forming tails defining asymmetric porphyroclast systems. The shear band also wrap 

around asymmetric lenticular domains o f olivine. Orthopyroxene porphyroclasts are 

usually altered to bastite and stretched by displacement along brittle fractures with 

length:width ratios o f up to 10:1, which defines a lineation parallel to the strike o f the 

amphibole and chlorite-bearing shear zones. Porphyroclasts display evidence of 

internal deformation including undulose extinction, kink-banding and bent 

clinopyroxene exsolution lamellae. Pull-apart fractures and clinopyroxene exsolution 

lamellae within the orthopyroxene porphyroclasts are infil led with amphibole, and 

brittle fractured clasts at margins o f porphyroclasts are also enveloped in amphibole 

fibre growths. Amphibole also develops as fibre growth reaction rims around 

orthopyroxene, and has the same composition o f the amphibole in the shear bands 

(Chapter 5). Clinopyroxene grains are never present within these shear zones, which is 

attributed to its replacement by amphibole. 

Olivine grains, within the matrix o f shear zones cross-cutting peridotite 

mylonites, display a similar grain-size (range 100-2000 |am) to olivine grains within the 

adjacent peridotite mylonite. The coarser-grained olivine grains are often elongate, with 

long dimensions parallel to the stretching lineation. However, the majority o f the 

olivine grains are equant, wi th curved grain-boundaries and little evidence for internal 

deformation. Olivine within shear zones which cross-cut the coarse-grained spinel and 

plagioclase Iherzolite are finer-grained in comparison to the adjacent Iherzolite. 

The hornblende- and chlorite-bearing shear bands consist o f fine-grained, elongate 

amphiboles (50-100 j^m), which usually posses a well defined crystallographic- and 
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shape-preferred orientation parallel to the margins o f the shear band. The development 

o f amphibole is therefore inferred to be syn-kinematic and indicates the infiltration o f a 

hydrous fluid and its interaction with the peridotite mineral assemblage (Drury et al. 

1990; Bailey, 1997). Fine-grained chlorite (50-150 \im) usually occupies the central 

portion o f these shear bands and develops a fabric which often cross-cuts the amphibole 

fabric, and also shows asymmetric fabrics which wrap-around amphibole 

porphyroclasts (Figure 4.30). The chlorite within these shear bands usually possesses a 

strong crystallographic- and shape-preferred orientation. However, randomly orientated 

grains also occur, often developed as rims surrounding relict Cr-bearing spinel. Spinel 

porphyroclasts are fractured and show fine-grained tails o f Cr-spinel, or magnetite, in a 

matrix o f fine-grained amphibole and chlorite. 

In many samples of coarse-grained spinel and plagioclase Iherzolite and mylonitic 

peridotite, amphibole and chlorite occur as randomly orientated mineral growths, often 

forming replacement rims around spinel and pyroxene, and within internal fractures 

within pyroxene and the matrix. In these samples, the development of a shear band 

fabric is limited. The similarity in the form and composition (Chapter 5) of the 

amphibole and chlorite, and associations with spinel and pyroxene, suggests that these 

textures were developed simultaneously with the development of shear bands observed 

in more deformed rocks. The less-deformed, amphibole- and chlorite-bearing rocks are 

hkely to be one of the assemblages which Flett and Hill(1912) classified as 'tremolite 

serpentine'. The presence of amphibole constrains the deformation temperature of these 

shear zones to between 825°C and 1100°C (Section 4.3.7.b) and the development o f a 

amphibole+chlorite+olivine assemblage suggests temperatures between 500-800°C 

(Hoogerduijn Strating et al., 1993). 

Lizardite serpentine veins, which may exhibit 'extensional jogs', cross-cut the 

original peridotite fabric, hydrous shear zones and are therefore considered to be one of 

the youngest deformation phases to have affected the peridotites. 

4.3.10. Serpentine-filled faults 

Samples collected f rom shear zones, which form the contacts between peridotite and 

amphibolite (e.g. Kildown Point (GR 7265 1470), Balk Quarry (GR 714 129) and the 

Predannack borehole (GR 6901 1634)), contain evidence for several deformation 

phases, each characterised by a particular mineral assemblage. 
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Figure 4.29. Hornblende (HBL) and chlorite-bearing (CL) hydrous shear zones wrap around a 
relict asymmetric olivine (OL) porphyroclast. (Sample CAC149). (-9i-

Figure 4.30. Anastomosing hydrous shear zones, showing both aligned and randomly 
orientated chlorite grains (CL) and aligned hornblende grains (HBL) that wrap around 
asymmetric lenticular domains of olivine (OL). (Sample CACl 15). cPl-

An early peridotite fabric is cross-cut by hydrous shear zones that are reworked 

in turn by a later fabric defined by the shape-preferred orientation of serpentine 

minerals (antigorite?)-)-/- talc, and brucite as a minor phase. These mineral phases are 

fine-grained (50-150um), and form elongate grains, and their development appears to 

be related to the replacement of olivine, amphibole and chlorite. The presence of 

seipentine minerals, possibly antigorite, indicates temperatures between 300 and 500°C 

for these serpentine-bearing shear zones (Hoogerduijn Strating et al., 1993). 

171 



Microstructural evolution 

4.3.11. Microstructural evolution of the Lizard peridotites - summary 

The microstructural evidence presented in the preceding sections supports the field 

evidence for a tectonic evolution o f the peridotites from a coarse-grained Iherzolite 

protolith to mylonitic peridotites. Relict primary textures are preserved in a small 

proportion o f samples o f spinel Iherzolite. The spinel Iherzolite assemblage is 

transitional to mylonitic peridotite via an intermediate plagioclase Iherzolite 

assemblage that has a similar microstructure to the spinel Iherzolite but is distinguished 

by the presence of plagioclase, or its alteration product, saussurite. Microstructures 

suggest that a process o f increasing deformation, dynamic recrystallisation, grain size 

reduction and metamorphic re-equilibration is responsible for the transition fi-om 

coarse-grained Iherzolite to mylonitic peridotite. Two types o f mylonitic peridotite are 

recognised: mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing 

peridotite. The mylonitic amphibole-bearing peridotite is transitional from the 

mylonitic plagioclase-bearing peridotite and this transition is identified by the 

breakdown of clinopyroxene to pargasitic hornblende, a metamorphic change probably 

related to a metasomatic interaction with hydrous fluids. 

The microstructural chronology presented above is consistent with the main 

findings o f a detailed study o f the peridotites by Green (1964a) who suggested that 

there is evidence for chemical re-equilibration o f Iherzolitic peridotite under conditions 

o f decreasing temperature and pressure. Although there are differences in detail. Green 

(1964a) proposed a nearly identical microstructural evolution responsible for the 

preservation o f several different peridotite mineral assemblages. 

A study o f the LPO o f olivine in the peridotites has suggested that deformation 

of the coarse-grained Iherzolites occurred at relatively high temperature (T>1000°C) 

and in the mylonitic peridotites the deformation progressed to lower temperatures (700-

1000°C). The presence o f plagioclase co-existing with olivine in the plagioclase 

Iherzolite and the mylonitic peridotites establishes that deformation also progressed to 

conditions o f lower pressure, because this mineral assemblage is only stable below 8 

kbar (Rampone et al., 1993 and references therein). 

The microstructure o f cross-cutting hydrous shear zones shows that they are 

later structures and developed in response to deformation at conditions o f lower 

temperature than the mylonitic peridotites. 
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The microstructural evolution o f the Lizard peridotites is fiirther constrained in 

Chapters 5 & 6 by an investigation into the geochemical properties o f these rocks and 

their minerals. 

4.4. Petrographic characteristics of the oceanic crust and cumulate rocks 

In this section the petrographic characteristics o f rocks directly and indirectly 

associated with the mantle peridotites (Section 4.3) are described. These rocks include 

ultramafic and mafic cumulates and amphibolites that are related to the construction 

and evolution o f oceanic lithosphere during the formation of the Lizard ophiolite 

complex. Some of these rocks, for instance the ultramafic Traboe cumulates, are 

genetically related to the Lizard peridotites, whilst others, including the Crousa gabbro 

are not. 

4.4.1. Cumulates and amphibolites 

Field evidence (Chapter 3) revealed that the amphibolites and associated could be sub­

divided into several groups; this sub-division is confirmed by differences in mineral 

chemistry (Chapter 5) and whole rock chemistry (Chapter 6). In this section, the 

petrographic features o f these groups, including ultramafic Traboe cumulates, mafic 

Traboe cumulates, gabbroic veins, Landewednack amphibolites and Porthoustock 

amphibolites are described. The descriptions are sub-divided into relict primary 

assemblages and later metamorphic assemblages where possible. 

4.4.1.a. Ultramafic Traboe cumulates 

The microstructure o f these rocks, which resemble ultramafic cumulates fi-om other 

ophiolites (Hebert et ah, 1989; Harris, 1995), is described with reference to samples 

collected f rom the Potstone Point (GR 6683 1565) on the west coast o f the Lizard, 

Porthkerris Quarry (GR 805 231) on the north-east coast o f the Lizard and fi-om the 

Traboe borehole core (BGS collection). 

The samples collected from the field outcrops occur in close proximity to 

mylonitic peridotite (Section 4.3.5) and mafic Traboe cumulate. The microstructure of 

these samples is very variable and all o f the rocks have been subjected to secondary 
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alteration. They are predominantly medium to fine-grained and preserve granular or 

mylonitic textures. The samples comprise variable proportions of olivine, 

clinopyroxene, orthopyroxene, plagioclase and brown amphibole as primary mineral 

phases. Spinel occurs as a minor mineral phase. Brown amphibole also occurs as a 

secondary mineral phase, replacing pyroxene. Colourless hornblende forms a secondary 

retrogressive phase after pyroxene, and saussurite after plagioclase. Talc, chlorite and 

serpentine minerals are also common, related to the breakdown of olivine and 

pyroxene. Colourless hornblende and chlorite also occur as the host-mineral phase in 

cross-cutting hydrous shear zones, identical to the shear zones observed in the coarse­

grained and mylonitic peridotites (Section 4.3.8). 

In all examples, the primary mineral phases show evidence for extensive 

recrystallisation and relict porphyroclasts are rarely preserved. Primary textures are 

rarely preserved, as they are overprinted by secondary metamorphic textures. Relict 

primary textures include modal layering, with olivine-, pyroxene- and plagioclase-rich 

layers (<0.5 cm)(Figure 4.31). This modal layering distinguishes these rocks from the 

feldspathic bands and gabbroic veins discussed in Sections 4.3.5.C. and 4.4.1.c, which 

do not exhibit modal layering. However, a few samples have a microstructure that 

strongly resembles the gabbroic veins described in Section 4.4.I.e. It is difficult to 

determine whether these rocks represent gabbroic veins or pyroxene-rich cumulate 

layers, because later shearing, recrystallisation and folding has obliterated original 

textures. The individual layers show both sharp and gradational contacts with adjacent 

horizons. The olivine, pyroxene and plagioclase generally have an anhedral form and 

display curved grain boundaries. Spinel occurs as medium grained porphyroclasts and 

as fine-grained recrystallised grains. It is predominantly associated with olivine or 

pyroxene-rich layers. Plagioclase or saussurite invariably rims spinel. The spinel is 

generally a red-brown colour, although, in several samples, the spinel is an olive green 

colour, very different from spinels in the mylonitic peridotites. 

A more variable o f range microstructures has been observed in samples 

obtained f rom the Traboe borehole core ( c f Leake and Styles, 1984). The 

microstructure in many of these rocks is difficult to interpret because o f the effects of 

later alteration, including pervasive serpentinisation. A large proportion of the 

ultramafic rocks in the borehole samples, particularly borehole 2, are mylonitic 

peridotites. However, several samples appear to be dunitic in composition and 

superficially resemble serpentinised mylonitic peridotite. They are distinguished by the 
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abundance o f spinel (5-10% modal volume) which is far higher than in the mylonitic 

peridotites (< 2% modal volume). The spinel in the dunitic rocks is also generally 

medium-grained, in comparison to fine-grained spinels in the mylonitic peridotites 

(Figure 4.32). The spinels in the dunitic rocks often show a sub-euhedral form, which is 

never observed in the mylonitic peridotites, where the spinels are anhedral. The dunitic 

rocks are commonly interlayered at a mm to cm scale with pyroxene or plagioclase rich 

layers, and show either sharp or gradational margins. These layers are often highly 

folded, in response to later deformation. In the pyroxene-rich rocks, both 

orthopyroxene and clinopyroxene are observed in variable proportions. Relict 

porphyroclasts o f medium-grained orthopyroxene and clinopyroxene are observed in 

these rocks, surrounded by a matrix o f fine-grained, recrystallised pyroxene in a 

granoblastic matrix. This textural evidence suggests that these rocks have been 

extensively recrystallised, which explains the lack of preservation o f primary igneous 

textures. 

The microstructure o f the ultramafic rocks discussed above suggests that these 

represent deformed and recrystallised, originally layered ultramafic cumulate rocks. 

These rocks are intimately associated with the mylonitic peridotites of the Lizard 

Ophiolite Complex and also mafic Traboe cumulate rocks (Section 4.4. Lb.). The 

mineral and whole rock geochemistry o f these cumulates is discussed in Chapters 5 and 

6. 

4.4.1.b. Mafic Traboe cumulates 

The rocks described in this section were sampled from areas mapped as the Traboe 

cumulate complex (Leake and Styles, 1984) (Chapter 3). Due to the effects of later 

amphibolite facies metamorphism, the microstructure o f the mafic Traboe cumulates is 

very similar to the Landewednack amphibolites. Therefore, in addition to 

microstructural methods, whole rock geochemistry has also been used to distinguish 

between the different rock types (Chapter 6). The samples were collected from 

outcrops, where they are inter-layered with ultramafic Traboe cumulates (see above) 

and f rom outcrops where there are no associated ultramafic rocks. Samples collected 

from the I.G.S. Traboe borehole (Leake and Styles, 1984) have also been examined, 

and in many cases the amphibolitised mafic Traboe cumulates were interlayered with 

ultramafic rock. These rocks are therefore layered cumulates and represent the upper 
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Figure 4.31. Folded and altered relict modal layering in ultramafic Traboe cumulates. Layers 
are composed of chlorite (C) and serpentine minerals (S) after olivine and, coioudess 
hornblende (A) after pyroxene (Sample E52180). cPc 

Figure 4.32. Sub-euhedral spinel grains (black) in a dunitic layer (serpentinised olivine) of 
ultramafic Traboe cumulate. (Sample E52167) PP^ 

levels of the cumulate stratigraphy, transitional with the ultramafic rocks described 

above (Leake and Styles, 1984). 

Relict primary assemblage 

The original primary minerals and textures are very rarely preserved in samples of 

mafic Traboe cumulate and therefore much of the following discussion refers to later 

metamorphic assemblages and associated textures. Primary mineral phases include 
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clinopyroxene, orthopyroxene and plagioclase, which usually occur as relict, coarser-

grained porphyroclasts mantled by a recrystallised matrix o f fine-grained pyroxene, 

plagioclase or amphibole. Relict primary igneous textures preserved in these mafic 
of 

Traboe cumulates include the presence^mineral layering (Figure 4.33). The layering is 

defined by variations in the modal abundance o f pyroxene and plagioclase, and when 

altered, amphibole and plagioclase or saussurite. The petrological features and 

composition o f these layers suggests that, prior to deformation and amphibolite facies 

metamorphism, the original protoliths were layered gabbroic cumulates. The layering 

generally shows gradational boundaries, although sharp contacts between individual 

layers are observed. The scale o f the layering is on the mm to cm scale. In some 

samples, layers may be composed o f monomineralic plagioclase or 

pyroxene/amphibole, and this suggests the development of anorthosite and pyroxenite 

layers. The layering, characteristic in the mafic Traboe cumulates, is never observed in 

samples o f Landewednack-type amphibolites and can therefore be used to distinguish 

the different rocks. The layering is thought to have originated by primary 

igneous cumulate processes in the upper levels o f the Traboe cumulate complex. 

The mafic Traboe cumulates usually show a weak foliation and lineation 

defined by the alignment o f amphibole, plagioclase and rare relict primary phases. The 

rocks are generally fine- to medium-grained, although the grain size may show a large 

variation even at the scale o f a single thin-section. The majority o f samples have 

porphyroclastic or granoblastic textures consistent with widespread recrystallisation of 

these rocks. 

Later metamorphic assemblages 

The majority o f samples o f mafic Traboe cumulate preserve several distinct 

metamorphic assemblages, which may be related to different tectono-thermal events or 

phases during an essentially continuous deformation phase. 

The earliest metamorphic assemblage recognised comprises relict 

orthopyroxene or clinopyroxene, brown amphibole and plagioclase (Figure 4.34). This 

assemblage is rarely preserved, but it is observed in samples collected from the 

Georges Cove area. In samples where i t can be recognised there is evidence for 

extensive retrogression to later metamorphic assemblages. The rock is fine- to medium-

grained and show a wide range textures, including porphyroclastic, granoblastic and 
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nematoblastic types. Relict pyroxene occurs as either porphyroclasts or recrystallised 

aggregates with a polygonal granoblastic texture. The pyroxene is invariably rimmed 

by brown amphibole, suggesting that the amphibole is the product o f retrogression o f 

the pyroxene. The brown amphibole typically has a euhedral, elongate prismatic form, 

which defines the foliation and lineation in the rock. The brown amphibole often 

contains inclusions o f opaque minerals. Anhedral plagioclase is recrystallised to fine­

grained aggregates and is extensively altered to a saussurite. 

A second metamorphic assemblage comprises green amphibole, plagioclase and 

rare relict orthopyroxene or clinopyroxene (Figure 4.35). It is this assemblage that is 

most similar to the Landewednack amphibolites. It is characteristic o f rocks with a fine-

to medium grain size with nematoblastic textures. Green amphiboles have a euhedral, 

elongate prismatic f rom and are generally fine-grained. They occur as distinct grains or 

nematoblastic aggregates that pseudomorph former brown amphiboles or pyroxenes. 

When preserved, relict porphyroclasts o f brown amphibole or pyroxene are mantled by 

an aggregate o f green amphibole, which produces well-developed asymmetric 

porphyroclast shape fabrics. The green amphiboles commonly host inclusions o f 

opaque minerals. Plagioclase is fine-grained, has an anhedral form and is extensively 

recrystallised. Secondary alteration o f the plagioclase to saussurite often obscures its 

original texture. 

A third and relatively minor metamorphic assemblage is characterised by the 

presence o f a fibrous, fine-grained colourless hornblende (Figure 4.36). The colourless 

hornblende commonly hosts discrete (<0.25mm) anastomosing shear zones, which 

crosscut pre-existing fabrics and relict porphyroclasts o f brown or green amphibole. 

Within these shear zones the colourless hornblende displays a marked shape-preferred 

orientation parallel to the shear zone margins. The colourless hornblende also occurs 

are randomly orientated, fibrous grains, which rim relict porphyroclasts of green or 

brown amphibole and plagioclase, and forms the host phase within fractured 

amphiboles. The colourless hornblende therefore represents a retrograde metamorphic 

phase, related to the breakdown of pre-existing metamorphic minerals. 

Other later low temperature retrograde phases include chlorite after hornblende, 

saussurite replacing plagioclase and epidote-rich veins that crosscut the shear zones 

discussed above. 
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Figure 4.33. Mineral layering in mafic Traboe cumulates, individual layers are composed of 
saussurite (S) after plagioclase and amphibole (A) after pyroxene (Sample E52184). PP6 

Figure 4.34. Brown amphibole-bearing assemblage of the mafic Traboe cumulates, note 
brown amphibole (A) after pyroxene and most of the plagioclase (?) is now altered to 
saussurite (S)(Sample CACl43). PP^ 

Correlation with field evidence 

The different metamorphic assemblages observed in the mafic Traboe cumulates can be 

correlated with different fabric and/or shear zone orientations The earliest metamorphic 

assemblage (relict orthopyroxene or clinopyroxene, brown amphibole and plagioclase) 

is characteristic of cumulates with a steep fabric, for example in the Porthkerris and 

Georges Cove areas. Where this assemblage is observed in areas with flat-lying to 

moderately dipping fabrics (e.g. south-east coast of the Lizard), the assemblage is 
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Figure 4.35. Green amphibole-bearing assemblage of the mafic Traboe cumulates, note green 
amphibole (A) after pyroxene and brown amphibole, and the majority of plagioclase grains (?) 
are altered to saussurite (S)(Sample CAC162). PPi. 

Figure 4.36. Brown amphibole-bearing assemblage of the Mafic traboe cumulates with cross-
cutting colourless hornblende-bearing shear zones (HBL), which wrap around relict brown 
amphibole grains (A). Plagioclase grains are completely altered to saussurite (S) (Sample 
CAC143). PPL. 

always retrogressed to the second metamorphic assemblage characterised by the 

presence of green amphibole. The green amphibole-bearing assemblage is also 

observed in samples collected f rom outcrops with a steep fabric. The third metamorphic 

and retrograde assemblage, defined by the presence of fibrous, colourless hornblende 

occurs in proximity to narrow, sub-horizontal shear zones, for example below the 

peridotite at Kildown Point. 

Evidence for later low temperature retrograde alteration is observed in all 

samples, and includes chlorite, saussurite and epidote. The alteration is often related to 
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brittle fractures. 

4.4.I .C. Gabbroic veins 

The microstructure o f the gabbroic veins is similar to the microstructure of the smaller 

feldspathic bands in the mylonitic peridotite (Section 4.3.5.C.). However, the gabbroic 

veins form much larger and more extensive bodies. Representative modal volumes of 

the constituent phases in what are regarded as the least altered gabbroic veins are 

presented below. 

C A C 151 - 45% cpx, 35% saussurite (plagioclase), 10% opx, 5% brown amphibole, 

5% opaques. 

C A C 147 - 50% saussurite (plagioclase), 40% cpx, 5% opx, 4%, opaques, \ % brown 

amphibole. 

Relict primary assemblage 

The modal volumes o f the representative gabbroic veins shows that plagioclase 

and clinopyroxene are major phases and orthopyroxene, brown amphibole and opaque 

minerals are minor phases. The rocks are medium to fine-grained (Figure 4.37), and 

often show a weak foliation defined by the shape-preferred orientation o f pyroxene and 

plagioclase. The texture o f the rock is granoblastic, although in some specimens, later 

alteration and deformation has modified the original textures. Clinopyroxene forms 

anhedral, medium- to fine-grained crystals, but relict porphyroclasts are preserved in 

some samples. Where preserved, they are coarse-grained and mantled by medium- to 

fine-grained, anhedral clinopyroxenes. The presence of porphyroclasts with bent 

cleavage is further evidence for deformation and this results in recrystallisation to finer-

grained clinopyroxenes. Orthopyroxene shows similar textures to the clinopyroxene, 

and also evidence for extensive recrystallisation. 

Plagioclase occurs as medium- to fine-grained crystals with an anhedral form 

with well developed multiple twinning. In all samples examined, plagioclase occurs as 

recrystallised grains, associated with pyroxene in a granoblastic texture. 

In the majority o f specimens, brown amphibole occurs (1-15%) modal volume) 

as a minor phase. The amphibole has an anhedral form and is medium to fine-grained. 
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The textural relationship between the brown amphibole and pyroxene are complex and 

may be diff icul t to interpret. The amphibole often occurs as fine-grained rims to 

pyroxene and more rarely as a replacement phase along cleavage or exsolution 

lamellae. In a few specimens, the brown amphibole is a dominant phase (>50 % modal 

volume) and occurs as large porphyroclasts, whilst pyroxene is relatively scarce and 

extensively rimmed by amphibole. In most examples, brown amphibole occurs as 

interlocking grains with the pyroxene. These textural relationships suggest that in the 

majority o f samples, brown amphibole is close to textural equilibrium with the two-

pyroxene and plagioclase assemblage. In a minority o f examples, however, the 

amphibole shows evidence for either incipient or extensive replacement o f pyroxene. 

Secondary alteration of gabbroic veins 

In all sarnples o f gabbroic veins, there is evidence for secondary alteration of the 

primary mineral assemblage. Plagioclase is commonly entirely replaced by an 

amorphous, brown-coloured mass o f saussurite. Most samples preserve evidence for 

the breakdown and replacement o f pyroxene and, when present, brown amphibole, by 

pale-green or colourless, fine-grained hornblende (Figure 4.38). The colourless 

hornblende occurs as randomly orientated, fine-grained laths, which often completely 

replace an original pyroxene or brown amphibole crystal. The colourless hornblende 

also occurs as extensive replacement rims or occupies pull-apart fractures associated 

with pyroxene or brown amphibole. These textures suggest that the colourless 

hornblende is a later replacement phase related to later retrograde metamorphism of the 

two-pyroxene or two-pyroxene + brown amphibole assemblage. Titanite occurs as 

euhedral grains in a few samples. Titanite only occurs where there is extensive 

development o f green amphibole or colourless hornblende and this suggests that it is a 

metamorphic phase. In a few samples, the colourless hornblende is associated with 

shear zones, which cross-cut the two-pyroxene + brown amphibole assemblage. Where 

these samples have been collected, there is usually evidence in the field for cross-

cutting shear zones, e.g. Pare Bean Cove (Section 3.4.2.b.). In thin-section, the shear 

zones are composed o f fine-grained colourless hornblende, which shows a mineral 

preferred orientation parallel to the shear zone margins. Colourless hornblende wraps 

around relict asymmetric porphyroclasts o f pyroxene, plagioclase and brown 

amphibole. It also occupies pull-apart fractures within these porphyroclasts and 
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w.m 

Figure 4.37. Gabbroic vein comprising recrystallised clinopyroxene (CPX) and orthopyroxene 
(OPX) grains. Plagioclase is completely altered to saussurite (S). (Sample CAC15I). cf>c 

Figure 4.38. Secondary alteration of a gabbroic vein. Note that colourless hornblende (HBL) 
replaces clinopyroxene (CPX), and plagioclase is altered to saussurite (S)(Sample CAC28). c(>L 

develops in fine-grained, recrystallised tails associated with these relict porphyroclasts. 

Textural features suggest that not only is the hornblende a later retrogressive phases, 

but that it is also product of the later development of shear zones which cross-cut the 

fabric defined by the earlier two-pyroxene and two-pyroxene -i- brown amphibole 

assemblage. These colouriess hornblende-bearing shear zones are texturally identical to 

the hydrous shear zones identified in the Lizard peridotites (Section 4.3.8.). 

183 



Microstructural evolution 

4.4.1.d. Landewednack amphibolites 

Landewednack amphibolites are distinguished from the amphibolitised mafic Traboe 

cumulates (Section 4.4.l.b) on the basis o f geochemistry (Chapters 5 & 6) and 

microstructure. The Landewednack amphibolites exhibit a wide range o f mineral 

assemblages and textures that correspond to relict primary and several metamorphic 

assemblages. 

Relict primary assemblage 

In all samples of Landewednack amphibolite examined there is little preservation of the 

original primary mineral assemblage, which is inferred to be igneous. The original 

primary assemblage is inferred to have consisted of clinopyroxene and plagioclase. A 

weak layering o f the metamorphic minerals may represent a relict primary igneous 

layering or be an artefact o f tectonic transposition o f the metamorphic mineral 

assemblages. 

Later metamorphic assemblages 

The earliest metamorphic mineral assemblage preserved in the Landewednack 

amphibolites is identified by the presence o f brown amphibole. The amphibole occurs 

in associafion with relict clinopyroxene and plagioclase (Figure 4.39). Samples 

preserving this assemblage are fine- to medium-grained and show a weak foliation and 

lineation defined by aligned amphibole and plagioclase grains. Textures vary between 

nematoblastic and granoblastic. The brown amphibole is typically euhedral and 

elongate prismatic. The amphibole often hosts inclusions o f opaque minerals. 

Plagioclase is anhedral and often occurs in granular clusters, although secondary 

alteration to saussurite commonly obscures the original textures. The plagioclase 

commonly hosts small, prismatic apatite grains. Relict clinopyroxene occurs as 

'corroded' anhedral porphyroclasts eind minor brown amphiboles are common as a 

secondary replacement mineral assemblage along cleavage planes. Further evidence for 

the breakdown of clinopyroxene to brown amphibole includes the presence of brown 

amphibole rims around clinopyroxene. The brown amphiboles often wrap-around the 

clinopyroxene and develop distinctive asymmetric porphyroclast shapes. 
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A second metamorphic mineral assemblage is distinguished, from the brown 

amphibole-bearing assemblage by the appearance of green amphibole and titanite 

(Figure 4.40). The presence of titanite distinguishes this assemblage from the green 

amphibole-bearing assemblage observed in amphibolitised mafic Traboe cumulates 

(Section 4.4.l.b.). The lack of titanite in the latter units is attributed to the low 

abundance of T i in these meta-gabbroic rocks in contrast to the higher Ti in the meta-

basaltic Landewednack amphibolites (Chapter 6). The green amphibole + titanite 

bearing assemblage may partially or wholly replace the brown amphibole-bearing 

Figure 4.39. Typical brown amphibole-bearing assemblage of the Landewednack 
amphibolites. Note aligned clusters of recrystallised plagioclase (PL) and brown amphibole 
(A). Opaque minerals are also observed. (Sample CAC152). 

Figure 4.40. Green amphibole-bearing assemblage of the Landwednack amphibolite. Note 
layers composed of clinopyroxene (CPX) and green amphibole (A) after clinopyroxene and 
brown amphibole. Plagioclase (P) is altered to saussurite (S)(Sample CAC153). ?fL 
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assemblage. Evidence for incipient retrogression of the brown amphibole-bearing 

assemblage is seen where fine-grained green amphibole grains surround porphyroclasts 

o f brown amphibole or brown amphiboles with green rims (Figure 4.41). In many 

samples, the only evidence for an earlier assemblage is the presence of green 

amphiboles with relict brown cores. Relict clinopyroxene porphyroclasts are common 

and are always rimmed by green amphibole, which may define asymmetric 

porphyroclast shapes. The green amphibole also occurs as small crystals along cleavage 

planes within the relict clinopyroxene. The clinopyroxene grains may define a layering 

in the rock, alternating with amphibole-rich layers; this presumably reflects local 

variations in the degree o f retrogression o f clinopyroxene. The green amphibole + 

titanite-bearing rocks are fine- to medium-grained and predominantly have 

nematoblastic textures. They are generally finer-grained than rocks characterised by an 

earlier brown amphibole-bearing assemblage, and this imdoubtedly reflects a greater 

degree o f recrystallisation in the later assemblage, possibly related to higher-strain. The 

foliation and lineation are better developed in the green amphibole + titanite-bearing 

assemblage. Two crystal forms o f green amphibole are identified, coarser-grained 

amphiboles wi th a euhedral and prismatic form, and fine-grained, subhedral to anhedral 

amphiboles. The fine-grained amphiboles occur as fibrous grains that form elongate 

clusters that wrap around and r im the coarser-grained amphiboles. The coarser-grained 

amphiboles occasionally preserve brown cores and it is suggested, therefore, that these 

are relict porphyroclasts. Anhedral plagioclase occurs in recrystallised clusters that 

commonly host small acicular apatites. Titanite, typically euhedral to anhedral, often 

occurs in elongate clusters that define a foliation in the rock. Minor minerals that occur 

in this metamorphic assemblage include rare biotite and opaque minerals. 

A third metamorphic mineral assemblage can be identified in rocks with either a 

brown amphibole or a green amphibole + titanite-bearing assemblage. This 

metamorphic assemblage is characterised by the presence of colourless hornblende 

(Figure 4.42). Hornblende occurs as randomly orientated fibrous laths that r im earlier 

clinopyroxenes, brown amphiboles or green amphiboles. The hornblende also hosts 

narrow cross-cutting shear zones that may wrap around relict porphyroclasts of the pre­

existing mineral assemblage. 

Epidote hosts veinlets cross-cut all mineral assemblages and other later, 

retrograde, assemblages include chlorite and prehnite. 
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Distribution of the different metamorphic assemblages 

The different metamorphic mineral assemblages can be correlated with different 

fabric orientations and shear zones in the field. Amphibolites characterised by a brown 

amphibole-bearing assemblage are correlated with steep fabrics in the amphibolites on 

the west coast of the Lizard, e.g. Polurrian Cove, Predannack Head and Ogo Dour Cove 

Figure 4.41. Relict brown amphiboles (BA) rimmed by green amphibole (GA) - Green 
amphibole-bearing assemblage of the Landewednack amphibolite. Plagioclase (P) is also 
present (Sample CAC153). PPL 

Figure 4.42. Sheared green amphiboie-bearing assemblage of the Landewednack amphibolite. 
Note that colourless hornblende (HBL) wraps around relict green amphibole (A) and also hosts 
narrow anastomosing shear zones. Plagioclase is completely replaced by saussurite (S)(Sample 
CAC 116). PPL 
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(Section 3.4.3). Amphibolites with relatively flat-lying fabrics exposed at Ryniau 

(Section 3.5.2.b), on the south-east coast o f the Lizard between Kildown Point and 

Polbream Cove (Section 3.5.2.c) and also in the Predannack borehole core, 

predominantly consist o f a green amphibole + titanite-bearing assemblage. In some 

areas on the south-east coast o f the Lizard, amphibolites with a steeper fabric are 

preserved, for example Kilcobben Point (Section 3.5.2.c), and are characterised by a 

brown amphibole-bearing assemblage. The colourless hornblende-bearing assemblage 

is generally more localised in its occurrence. This assemblage fills cross-cutting shear 

zones within amphibolites in the contact zone with peridotites in the Predaimack 

borehole core and also at similar contact zones at Kildown Point. 

Microstructural evidence therefore suggests that the Landewednack 

amphibolites underwent an initial high-temperature metamorphism of an igneous 

protolith, resulting in the development of a characteristic by the brown amphibole-

bearing assemblage; fabrics are steeply dipping. Two subsequent retrograde 

metamorphic events are identified by the development green amphibole and colourless 

hornblende-bearing amphibolites. These different mineral assemblages are correlated 

with different, low-angle, fabric orientations and shear zone structures preserved in 

field-outcrop. 

4.4.I.e. Porthoustock amphibolites 

Porthoustock amphibolite samples are almost indistinguishable from the green 

amphibole + titanite-bearing assemblage of the Landewednack amphibolites. Both rock 

types consist o f green amphibole, plagioclase and titanite. The Porthoustock units are 

distinguished by the presence of relict porphyroclasts of plagioclase, which have an 

igneous form (Figure 4.43). They also exhibit a greater range o f grain size variation, 

ranging between coarse- and fine-grained varieties, often at the scale o f a single thin-

section. This grain size variation is attributed to varying protolith lithologies, including 

meta-gabbros and meta-basaltic dykes, and also to the presence o f cross-cutting shear-

band fabrics. Other than plagioclase, no relict igneous minerals are observed. The rocks 

have a nematoblastic to mylonitic textures and a fabric defined by the preferred 

orientation o f amphibole and plagioclase. Subhedral amphibole occurs in clusters that 

wrap around larger amphibole or plagioclase porphyroclasts, and develop asymmetric 

porphyroclast shape fabrics. Anhedral plagioclase in the matrix is usually recrystallised 

188 



MicrostruciuraI evolution 

and defines elongate clusters in the rock. Rare, small apatite needles are enclosed by 

the plagioclase. Minor accessory minerals include subhedral titanite and opaque 

minerals. 

The microstructural evidence suggests that the Porthoustock amphibolites are a 

retrograde metamorphic assemblage, similar to the Landewednack amphibolites. Whole 

rock geochemical compositions are different (Chapter 6) and show that the 

Figure 4.43. Porthoustock amphibolite - Asymmetric porphyroclasts of green amphibole (A) 
and plagioclase (P) (partially altered to saussurite) set in a matrix of aligned clusters of 
recrystallised amphibole and plagioclase (Sample CAC160). P P ^ 

Landewednack and Porthoustock amphibolites are derived from different igneous 

protoliths. 

4.4.2. Summary 

In this section petrographic and microstructural descriptions of a large variety of 

different lithologies have been presented. In the majority of examples, relict primary 

mineral assemblages and textures are rarely preserved and later metamorphic mineral 

assemblages and textures are predominant. In most of the lithologies, regardless of 

protolith composition and textures, similar metamorphic assemblages and textures are 

observed. A mineralogical chronology establishes that in some lithological units up to 

three metamorphic mineral assemblages are present. The three different mineral 

assemblages are mainly characterised by the colour of amphibole, which reflects its 

composition (Chapter 5) and these include (a) a brown amphibole -i- plagioclase high-
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temperature metamorphic assemblage, (b) a green amphibole + plagioclase retrograde 

assemblage, and (c) a second retrograde assemblage characterised by the presence o f 

colourless hornblende. The different metamorphic mineral assemblages are interpreted 

to be the product o f early high-temperature metamorphism, followed by later retrograde 

tectonothermal events. A correlation between different fabric orientations and shear 

zones observed in the field (Chapter 3) and the different metamorphic assemblages has 

been established. The brown amphibole + plagioclase metamorphic assemblage is 

characteristic o f the rocks wi th steep foliations, which are the earliest fabric preserved 

in the Lizard rocks. The green amphibole + plagioclase metamorphic assemblage is 

correlated with flat-lying to moderately dipping fabrics, for example amphibolites on 

the SE coast o f the Lizard. The colourless hornblende-bearing metamorphic assemblage 

has a more restricted distribution and is typical of the shear zone contacts between 

peridotite and amphibolite on the SE coast o f the Lizard. These correlations are only 

general and it should be noted that there are exceptions, for example, the occurrence o f 

the green amphibole + plagioclase assemblage in amphibolites with a steep foliation in 

the Predarmack C l i f f area. 

Green (1964b) recognised the presence o f several different metamorphic 

mineral assemblages in the Lizard amphibolites and proposed that these were 

developed during a period o f regional metamorphism and contemporaneous 

metamorphism in the aureole o f an intrusive peridotite body. Although the same 

metamorphic mineral assemblages are recognised in the present study, a different 

sequence o f tectonic and metamorphic events is proposed to account for the 

microstructural evolution. This microstructural evolution is based on presence o f 

different fabric and shear zone structures in the amphibolites and the recognition of 

both an early high-temperature and later retrograde metamorphic mineral assemblages. 

This contrasts with the interpretation o f Green (1964b), who maintained that the 

different metamorphic mineral assemblages relate to an entirely prograde metamorphic 

evolution o f an initial blue-green hornblende amphibolite assemblage (with a basaltic 

composition) in the aureole o f the Lizard peridotite. Thus, the brown-green hornblende, 

brown hornblende with orthopyroxene and clinopyroxene, and orthopyroxene and 

clinopyroxene pyroxene granulites were viewed as higher-grade equivalents of the 

blue-green hornblende amphibolite. The present study fiirther demonstrates that rocks 

characterised by a different metamorphic mineral assemblage do not necessarily have 
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the same bulk composition, e.g. the gabbroic veins (Chapter 6), suggesting that they are 

not the metamorphic equivalent o f the blue-green hornblende amphibolites. 

It should also be noted that there is no petrological evidence for presence o f an 

inverted metamorphic zonation in amphibolites immediately beneath the peridotites 

(e.g. Ki ldown Point, Devils Frying-pan, Balk Quarry and Predannack borehole core). 

Inverted metamorphic zonation has been described in several of the best documented 

ophiolite complexes, including the Bay o f Islands complex (Malpas et al, 1973; 

Williams and Smyth, 1973; Malpas, 1979; McCaig, 1983; Fergusson and Cawood, 

1995) and White Hills ophiolite (Jamieson, 1977,1979; Giradeau, 1982) in 

Newfotmdland and the Semail ophiolite (Searle et al., 1980; Searle and Malpas, 1980; 

Searle and Malpas, 1982) in Oman. These sub-ophiolitic metamorphic 'dynamothermal 

aureoles' are characterised by decreasing metamorphic grade with depth beneath the 

peridotite (e.g. high-grade amphibolites to unmetamorphosed rocks via greenschist 

facies rocks) and parallel orientations o f the fabrics in basal ultramafic rocks and 

underlying metamorphic rocks. Although the Lizard Ophiolite Complex does not 

preserve a dynamothermal aureole directly comparable to the examples documented 

above, metamorphic rocks o f oceanic crust character (Chapter 6) are observed 

underlying ultramafic rocks at the localities mentioned above (Chapter 3). Field 

evidence reveals that the fabrics in these metamorphic rocks (Landewednack 

amphibolites) are parallel to local shear zone fabrics that crosscut the ultramafic rocks 

at these localities (Chapter 3). Mineral assemblages in shear-zones in the 

Landewednack amphibolites are also similar to the shear-zones in the ultramafic rocks. 

The evidence suggests, therefore, that although there is no evidence preserved for a 

decreasing metamorphic grade with depth, metamorphism in rocks underlying the 

ultramafic rocks maybe related to a tectonothermal event accompanying tectonic 

emplacement or obduction o f the Lizard Ophiolite Complex. The structural and 

metamorphic relationships between the ultramafic (peridotites) and metamorphic rocks 

(Landewednack amphibolites) o f the Lizard Ophiolite Complex and the tectonic 

implications are discussed in more detail, with additional geochemical constraints 

(Chapters 5 & 6) and compared with other ophiolite complexes in Chapter 7. 
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4.5. Summary of microstructural evidence 

Peridotites preserve evidence in the least deformed samples o f a relict primary mineral 

assemblage and textures, which were developed in the spinel Iherzolite stability field. 

Subsequent deformation and a metamorphic evolution o f the peridotites was initiated in 

the spinel Iherzolite stability field and produced coarse-grained porphyroclastic 

textures. A pressure decrease during deformation resulted in the peridotites passing into 

the plagioclase stability field, and coarse-grained plagioclase Iherzolites record this 

transition. In areas o f high-strain, mylonitic plagioclase-bearing peridotite and 

mylonitic amphibole-bearing peridotite were developed in response to grain-size 

reduction and recrystallisation. Olivine petrofabrics indicate that the transition fi-om 

coarse-grained Iherzolites to the mylonitic peridotites was also accompanied by a 

decrease in temperature. The occurrence o f amphibole grains in the mylonitic 

peridotites indicates that fluids or hydrous melts were present during deformation. 

Later hydrous, low-angle, shear-zones that cross-cut the steeper peridotite fabrics on 

the east coast o f the Lizard, were developed during retrogression o f the peridotite. They 

are composed o f colourless hornblende and chlorite that replace pyroxene and earlier 

amphibole grains. 

The microstructure preserved in the ultramafic and mafic Traboe cumulates, 

Landewednack amphibolites and other rocks related to the generation of oceanic crust, 

also include relict primary mineral assemblages and textures. These rocks, like the 

peridotites, also show evidence for a metamorphic evolution and this includes three 

mineral assemblages and associated textures that correspond to three metamorphic 

events. The three mineral assemblages, in a mineralogical chronological order are: (a) a 

brovm amphibole + plagioclase high-temperature metamorphic assemblage, (b) a green 

amphibole + plagioclase retrograde assemblage, and (c) a colourless hornblende-

bearing retrograde assemblage. The thermal events that were responsible for the early 

high-temperature and later retrograde metamorphism are correlated with the different 

fabric orientations and shear zones observed in the field. The colourless hornblende-

bearing assemblage observed in these 'crustal' rocks, is likely to be the metamorphic 

equivalent to the hydrous shear zones that occur in the peridotites, since both are 

observed at contacts between peridotite and amphibolite on the SE coast o f the Lizard. 

The interpretation presented here suggests a history o f progressive retrogression 

during exhumation o f an initially high grade metamorphic assemblage. This contrasts 
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with the entirely prograde metamorphic evolution of the Lizard amphibolites proposed 

by Green (1964b). In the following chapters (Chapters 5 & 6) geochemical evidence is 

utilised to fiirther constrain the microstructural and mineralogical evolution of the rocks 

o f the Lizard Ophiolite Complex. 
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CHAPTER 5 

M I N E R A L C H E M I S T R Y O F T H E L I Z A R D P E R I D O T I T E S AND 

A S S O C I A T E D R O C K S 

5.1. Introduction 

In the previous chapter (Chapter 4), detailed petrological descriptions provided the 

basis for a study o f the composition, and particularly variations in composition, with 

changes in microstructure o f the constituent mineral phases in the rocks of the Lizard 

peninsula. It has already been established that the Lizard peridotites show a transition 

in microstnicture f rom coarse-grained Iherzolites to mylonitic peridotites. Thus, one of 

the aims o f this chapter is to determine whether there is any variation in the 

composition o f the constituent phases allied to this microstructural transition. A variety 

o f different mafic and ultramafic rocks including dunite, pyroxenite, feldspathic bands, 

mafic cumulate rocks and troctolite are associated with the Lizard peridotites. The 

composition o f minerals in these rocks is thus examined to allow comparison with the 

coarse-grained Iherzolites and mylonitic peridotites. In this chapter the rocks of the 

Traboe cumulate complex are subdivided into two types: mafic Traboe cumulates and 

ultramafic Traboe cumulates on the basis o f petrological characteristics (Chapter 4). 

Analyses o f minerals for Traboe cumulates f rom the Traboe borehole core are included 

in this chapter (Leake and Styles, 1984). 

Variations in microstructure are also observed in the Landewednack 

amphibolites and this includes a variation in the colour of amphiboles (Chapter 4) in 

amphibolites with different fabric orientations and/or associated with different shear-

zone structures (Chapter 3). The compositions o f the different amphibole types are 

examined to determine the nature o f the correlation between amphibole colour and 

composition, and the metamorphic significance o f the amphibole compositions. 

Thermobarometric constraints are provided for the evolution o f the peridotites 

and amphibolites o f the Lizard Ophiolite Complex. These constraints are based on the 

application to these rocks o f published thermobarometers using the composition o f the 

constituent mineral phases, specifically mineral pairs. 

The overall aim of this chapter is to use mineral compositions to further 

constrain the microstructural evolution o f the rocks of the Lizard Ophiolite Complex 
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and allow comparison with similar microstructural and mineral compositional 

variations in other ophiolite complexes documented in the literature. The results 

presented in this chapter and comparisons with other ophiolites w i l l fiirther constrain 

the tectonothermal and magmatic evolution o f the Lizard Ophiolite Complex. 

5.2. Olivine chemistry 

Olivine compositions in all the different peridotite-types defined by field (Chapter 3) 

and microstructural (Chapter 4) evidence are presented in this section. The 

compositions o f olivines in feldspathic bands associated with the mylonitic peridotites, 

and also o f olivines in the Traboe cumulate complex rocks, including examples from 

the Traboe borehole core (Leake and Styles, 1984) and a sample of Coverack troctolite, 

are included for comparison. The composition o f olivines in the Lizard Ophiolite 

Complex is compared with those in rocks f rom ophiolites and oceanic environments 

documented in the literature. The composition o f olivines in ultramafic rocks is a 

sensitive petrogenetic indicator and provides important clues to the degree of melting, 

fractionation and also interaction with melts during the evolution o f these rocks. 

5.2.1. Olivine chemistry- results 

The main compositional variations in olivine in the Lizard peridotites and associated 

ultramafic/mafic rocks are outlined below. Representative mineral analyses are given in 

Table 5.1. The fu l l electron probe data set is presented in Appendix D. 

%Fo (range) %Fo (average) Wt% NiO 
Spinel Iherzolite 90.0-91.1 90.6 0.33-0.43 
Plagioclase Iherzolite 89.7-90.7 90.2 0.43 
Transitional assemblage 89.2-89.3 89.3 0.36 
Mylonitic plagioclase-
bearing peridotite 

89.0-90.9 89.7 0.23-0.40 

Mylonitic amphibole-
bearing peridotite 

88.7-90.7 89.7 0.37-0.39 

Feldspathic bands 89.3 - -

Troctolite 80.8 - -
Ultramafic Traboe 
cumulates 

78.1-91.0 87.9 0.13-0.46 

Table 5.1. Summary of the compositions of olivines in the Lizard peridotites and the rocks 
associated with the Lizard peridotites. 
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Overall, Fo in olivines in the Lizard peridotites and the associated 

ultramafic/mafic rocks ranges from 78.1 to 91.1 (Figure 5.1; Table 5.1). Spinel 

Iherzolites (90.6) and plagioclase Iherzolites (90.2) have the highest average Fo. and 

ultramafic Traboe cumulates (87.9) the lowest. The ultramafic Traboe cumulates also 

display the greatest range of Fo (78.1-91.0). The highest and lowest Nickel contents, 

and the greatest range o f Nickel contents are displayed by the ultramafic Traboe 

cumulates, which vary from 0.13 to 0.46 wt% NiO. The CaO content (Appendix D) of 

the olivines is invariably low (i.e. <0.09 wt%) and there is no significant variation in 

composition allied to the different microstructures (Chapter 4). 

5.2.2. Olivine chemistry- interpretation and discussion 

Figure 5.1 displays the range of olivine forsterite (Fo) values obtained from the Lizard 

peridotites and associated ultramafic/mafic rocks and illustrates that they overlap the 

compositional range of olivines from various ultramafic rocks in different tectonic 
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Cumulates (Brooks Range ophiolite) 
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Figure 5.1. Forsterite contents of olivines for the Lizard peridotites and associated rocks 
compared with forsterite contents of olivines for ultramafic rocks from oceanic and ophiolitic 
environments. Data taken from the literature includes: Hess Deep samples (Hekinian et al., 
1993), Miyamori ophiolite, Japan (Ozawa, 1994), oceanic and ophiolitic rocks (Girardeau and 
Francheteau, 1993), Pyrolite (Ringwood, 1966), Less residual mantle (Mercier et al., 1993). 
Hess Deep plagioclase peridotite (Girardeau and Francheteau, 1993), Bay of Islands ophiolite 
(Varfaivy ei al., 1996), ODP 895 Hess Deep (Edwards and Malpas, 1996), Voltri Massif 
Hoogerduijn Strating et al. 1993), (External Ligurides (Rampone et al., 1995), Brooks Range 
ophiolite (Harris, 1995), Zabargad Island (Bonatti et al., 1986), 
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settings. Four main physical and/or chemical processes may be responsible for the 

variations in the compositions of olivines in the mafic and ultramafic rocks from the 

Lizard, and these are: (1) partial melting, (2) spinel- to plagioclase-facies re-

equilibration, (3) melt-rock interaction, (4) fractional crystallisation. In the following 

discussions the variations in the compositions of olivines are discussed in order to 

evaluate which of these processes are responsible for the compositional variations 

displayed by olivines in the ultramafic rocks from the Lizard complex. 

Figure 5.2 displays wt% NiO versus Fo composition of the olivines in the 

Lizard peridotites and associated rocks and demonstrates that they are overlap the range 

defined by olivines in oceanic and ophiolitic peridotites. The olivines in the Lizard 

spinel Iherzolites have a composition that lies on a partial melting trend based on an 

estimate of primitive mantle composition (Less Residual Mande)(Mercier et«/., 1993). 

This suggests that the composition of the olivine in the spinel Iherzolites may be related 

to partial melting prior to the later deformation and development of the mylonitic 

peridotites. Olivines in the mylonitic peridotites do not lie on this partial melting trend: 

0.5 

0,45 
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0.35 

O 
Z 0,25 ^ 
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0.15 

0.05 

Oceanic and ophioi i t ic rocks 

O 
D S D P U g 37 
Plagioclase peridotites 

Troodos 
Plagioclase Iherzolite s 

82 84 86 

Forslerite content (Po) 

LRM 

90 

• Spinel Lheraolite 

jfi Plagioclase Lherzolite 

A Transistional assemblage 

# Mylon i t i c plagioclasc-
beanng pendotite 

t Mylomt ic amphibole-
bearing pendotite 

r Uluamaf ic Tiaboe 
cumulates 

Figure 5.2. Plot of wt% NiO versus forsterite content of olivine for peridotites and ultramafic 
Traboe cumulates from the Lizard Ophiolite Complex compared with olivines from Troodos 
plagiocla.se iherzolite (Benn and Laurent, 1987), oceanic environments (DSDP Leg 45,82 and 
107) and ophiolites (Table Mountain and Oman)(Girardeau and Francheteau. 1993). DSDP Leg 
37 "metasomatised" plagioclase Iherzolites (Girardeau and Francheteau, 1993). Star is for less 
residual mantle (LRM) defined by Mercier et al., (1993) and the arrow shows the partial 
melting trend. 
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therefore it is proposed that the compositional variations in these ohvines are not 

related to partial melting. Olivines in the ultramafic Traboe cumulates from the Lizard 

have the loM^est Fo and NiO composition, which are related to fractionation processes 

rather than partial melting. 

Fo contents (Figure 5.1) in olivines from the Lizard peridotites shows a 

systematic decrease from the coarse-grained spinel Iherzolites to the mylonitic 

peridotites i.e. there is a progressive Fe enrichment, and this is directly correlated with 

a decrease in the grain-size o f the olivine in response to re-crystallisation (Chapter 4). 

Evidence presented in the literature (e.g. Hoogerduijn Strating et al, 1993; Rampone et 

al., 1995) suggests that decreasing Fo values (i.e. Fe-enrichment) in olivine are not 

related to spinel- to plagioclase-facies re-equilibration o f peridotites. Therefore, it is 

suggested that the decreasing Fo values (i.e. Fe-enrichment), that accompany a 

decrease in grain-size o f olivine f rom spinel Iherzolite to mylonitic peridotite in the 

Lizard rocks (Chapter 4) are not related to closed-system re-equilibration of olivine at 

conditions o f lower P and T during syn-tectonic recrystallisation. 

The compositional trends displayed by the Lizard olivines do not correspond 

either to melting or to resultant melt segregation o f the spinel Iherzolite protolith, which 

would be characterised by an increase in Mg# and NiO in olivine (Ozawa, 1993). 

Instead, the compositional trends displayed by Lizard olivines may be interpreted to 

reflect re-equilibration o f olivine in response to interaction with a melt. Melt-rock 

interactions and accompanying mineral compositional changes, including those seen in 

olivine are well documented in the literature (Edwards and Malpas, 1996; Ozawa, 

1994). Melt-impregnated harzburgites f rom ODP Site 895 (Hess Deep) show a 

decrease in olivine Fo values and NiO contents in contrast to harzburgites that have not 

been impregnated by melt (Edwards and Malpas, 1996). Similarly, olivines in 

peridotites f rom the Miyamori ophiolite complex (Japan) show a trend o f decreasing Fo 

values and NiO contents and are interpreted by Ozawa (1994) to result from interaction 

between residual harzburgites and slightly evolved melts. These examples from the 

literature demonstrate that decreasing Fo values and NiO contents in olivine occur in 

response to melt-rock interaction. Therefore, it is proposed that similar compositional 

trends in olivines f rom the Lizard peridotites are also related to melt-rock interaction. 

Further evidence for melt-rock interactions on the basis on mineral composition 

changes are discussed in the following sections and in Chapter 6 the whole rock 

composition o f the Lizard peridotites provides fiirther evidence for melt interaction. 
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5.2.3. Olivine chemistry - summary 

• The analyses o f olivine compositions in the Lizard peridotites demonstrates that 

there is asag^ish^ trend o f decreasing Fo values in olivine from spinel Iherzolite 

to mylonitic amphibole-bearing peridotite. This is also accompanied by a slight 

decrease in N iO contents. 

• It is suggested that the variation in olivine composition from spinel Iherzolite to 

mylonitic peridotite is not related to spinel- to plagioclase-facies re-equilibration or 

to related partial melting. 

• It is proposed that the compositional variations are related to melt-rock interaction. 

• The more variable range of olivine compositions defined by the ultramafic Traboe 

cumulates is probably related to igneous fractionation in contrast to the melt-rock 

interaction trends defined by the peridotites. 

5.3. Orthopyroxene chemistry 

Electron microprobe analyses o f orthopyroxene in the Lizard peridotites are examined 

and discussed to determine i f there is any correlation between microstructure and 

orthopyroxene composition. The results are compared with examples from the literature 

o f peridotites from oceanic environments and ophiolites, in order to interpret any 

tectonic and/or magmatic processes that may have caused the trends observed in 

orthopyroxene in the Lizard peridotites. The compositions o f orthopyroxenes in 

feldspathic bands and the gabbroic veins interbanded/veining with the mylonitic 

peridotites, and also in ultramafic Traboe cumulates, including examples from the 

Traboe borehole core (Leake and Styles, 1984) are compared with the orthopyroxene in 

the Lizard peridotites. 

5.3.1. Orthopyroxene chemistry - results 

The main compositional variations in orthopyroxene are outlined below. Representative 

mineral analyses are given in Table 5.2. The frill electron probe data set is presented in 

Appendix D. 
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Fs-En-Wo Wt% 
CaO 

Wt% 
A I 2 O 3 

Wt% 
Cr203 

Mg# Wt% Ti02 

Spinel Iherzolite (PC) Fsg.fiEnge.gWoj.s 1.39-2.29 3.46-5.84 0.47-0.95 89.7-91.0 0.062-0.17 
Spinel Iherzolite (PR) - 1.55-2.14 4.07-5.21 0.53-0.96 - -
Spinel Iherzolite (N) - 1.04-2.31 4.27-4.7 0.48-0.54 90.0-90.4 0.02-0.11 
Plagioclase Iherzolite 
(PC) FS,oEn87.3W02.7 0.83-1.93 3.11-4.92 0.79-0.84 89.4-90.4 0.1-0.14 

Plagioclase Iherzolite 
(PR) - 0.83-1.28 2.37-3.51 0.73-0.8 - -

Plagioclase Iherzolite 
(N) 

- 1.05-1.39 2.4-2.59 0.58-0.69 89.5-89.9 0.2-0.23 

Transitional 
assemblage (PC) Fs,o.7En86.4W02.9 1.32-1.63 3.97-4.07 0.68-0.78 89.0 0.14-0.17 

Transitional 
assemblage (PR) - 1.09 2.66 0.64-0.68 - -

Transitional 
assemblage (N) - 0.68-0.79 2.11-2.57 0.45 89.3 0.19 

Mylonitic plagioclase-
Bearing peridotite 
(PC) 

- 0.58-1.6 1.88-4.72 0.33-0.64 88.8-90.0 0.15-0.28 

Mylonitic plagioclase-
Bearing peridotite 
(PR) 

- 0.51-0.9 2.37-4.72 0.34-0.7 - -

Mylonitic plagioclase-
Bearing peridotite (N) Fs,o.6En88Wo,.4 0.55-1.11 1.19-1.96 0.17-0.49 88.8-90.2 0.14-0.30 

Mylonitic amphibole-
Bearing peridotite (N) Fs,o.5En88.3WOi.2 0.55-0.7 1.51-2 0.24-0.37 88.9-90.0 0.06-0.12 

Pyroxenite (N) F s , , . 8 E n 8 5 . 6 W 0 2 . 5 1.3 2.3 0.5 87.9 0.23 
Feldspathic bands (P) 0.6 3.97 0.36 88.6 0.11 

Feldspathic bands (N) Fsn.i6-ii.2En87 6-
87 7WO1 i.| 2 

0.580.63 1.39-1.67 0.15-0.30 88.9-89.0 0.085-0.2 

Ultramafic Traboe 
cumulates (P) - 0.4-0.9 2.4-3.5 0.07-0.36 74.1-89.7 0.08-0.14 

Ultramafic Traboe 
cumulates (N) 

FS9.64-33.oEn65 7. 
90.0 WO0.3-1.8 

0.13-0.7 0.63-1.8 0.1-0.22 67.0-90.5 0.014-0.14 

Mafic Traboe 
cumulates 

FS36.4-51.2En46 9. 
61.4WOl 2-2.6 

0.66-1.26 0.63-1.1 0.014-0.19 48.5-89.6 0.008-0.32 

Gabbroic veins FS340.45.6En52.l-

63.6W02.2-6.1 
1.1-1.2 0.86-1.34 0.07-0.14 53.7-65.6 0.15-0.33 

Table 5.2. Summary of the compositions of orthopyroxenes in the Lizard peridotites and 
associated ultramafic/mafic rocks. Data for porphyroclasts cores (PC), porphyroclasts rims 
(PR) and neoblasts (N) are also included. 

The orthopyroxenes from the Lizard peridotites and associated ultramafic/mafic 

rocks plot in the enstatite, bronzite or hypersthene fields with Mg# ranging from 48.5 to 

91.0. CaO contents vary f rom 0.13 to 2.31 wt% and AI2O3 contents from 0.63 to 5.84 

wt%. The highest CaO and AI2O3 concentrations are found in the spinel Iherzolites and 

plagioclase Iherzolites, whereas the mylonitic plagioclase-bearing peridotites and 

mylonitic amphibole-bearing peridotites show low CaO and low AI2O3 contents. The 

ultramafic Traboe cumulates, mafic Traboe cumulates and gabbroic veins show the 

lowest CaO and AI2O3 values. Cr203 contents range from 0.14 to 0.96 wt % with the 
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highest values being found in the spinel Iherzolites and plagioclase Iherzolites and the 

lowest values in the ultramafic Traboe cumulates, mafic Traboe cumulates and 

gabbroic veins (Table 5.2). Orthopyroxenes in the gabbroic veins and mylonitic 

plagioclase-bearing peridotites have the highest Ti02 concentrations, with values 

ranging between 0.15 to 0.33 wt%, and 0.14 to 0.30 wt% respectively. 

5.3.2. Orthopyroxene chemistry - interpretation and discussion 

The quadrilateral Fs-En-Wo diagram (Figure 5.3) shows that the compositions of 

orthopyroxenes in the Lizard peridotites and associated ultramafic/mafic rocks overlaps 

the range o f compositions shown by orthopyroxenes in ultramafic and mafic rocks fi-om 

ophiolites and oceanic environments. The trend defined by the ultramafic and mafic 

Traboe cumulates lies close to the 700-900°C isotherms defined by Lindsley 

(1983)(Figure 5.3b), which suggests these compositions may reflect temperature 

controlled re-equilibration. 

The CaO content o f the orthopyroxenes in the Lizard peridotites decreases from 

cores o f porphyroclasts in spinel Iherzolite to neoblasts in the mylonitic plagioclase-

bearing peridotite and mylonitic amphibole-bearing peridotite and this is accompanied 

by a decrease in the AI2O3 concentration (Figure 5.4; Table 5.2). Significantly, the 

compositional field defined by relict orthopyroxene porphyroclasts in the mylonitic 

plagioclase-bearing peridotites overlaps the field o f porphyroclasts in the spinel and 

plagioclase Iherzolites and transitional assemblage peridotites. This supports the 

hypothesis that the mylonitic plagioclase-bearing peridotites are the deformed 

equivalent o f the spinel Iherzolites and plagioclase Iherzolites (Chapter 4). In general 

there is a decrease in AI2O3 and CaO content f rom porphyroclast cores to rims to 

neoblasts in orthopyroxene in the different peridotite types. However, in some spinel 

Iherzolites, the CaO contents increase in porphyroclast rims (Figure 5.4; Table 5.2). 

This phenomenon may be attributed in part to the resorption of clinopyroxene-rich 

exsolution lamellae in the rims o f these porphyroclasts (Section 4.3.4.a). Thus, the 

resultant homogenised composition o f the rims is therefore slightly more CaO-rich in 

than the cores. With one exception, the AI2O3 and CaO contents of orthopyroxene 

neoblasts in the spinel Iherzolite are lower than porphyroclast core and rim 
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Figure 5.3. Fs-En-Wo triangular diagrams of orthopyroxene for ultramafic and mafic rock.s 
associated with the peridotites from the Lizard Ophiolite Complex, (a) Including the 
compositional fields defined for ultramafic and mafic rocks from the ophiolites and oceanic 
environments: (1) Oceanic gabbro, "major oceanic basins" (Hebert et al., 1989 and references 
therein), (2) Fe-Ti gabbro norite. Garret transform fault (Hebert et al.. 1983). (3) Olivine 
gabbro, Hess Deep (Hekinian et al., 1993), (4) Gabbro. Leg 37, (Hebert et al., 1989 and 
references therein), (5) Gabbro, Northern Apennine ophiolites (Hebert et al., 1989). (6) 
Cumulate gabbro and mylonitised gabbro, Hess Deep (Hekinian et al., 1993), (7) Olivine 
gabbro. Garret tran.sform (Hebert et al., 1983) and ultramafic cumulate. Northern Apennine 
ophiolites (Hebert et al., 1989), (8) Oceanic ultramafic cumulates (Hebert et al.. 1989). (9) 
Harzburgite and Iherzolite, 'major ocean basins" and Northern Apennine ophiolites (Hebert et 
al., 1989 and references therein), harzburgite, Hess Deep (Hekinian et al., 1993) and Garret 
transform fault (Hebert et al., 1983), Iherzolite, Zabargad Island (Bonatti et al.. 1986). (b) 
Including 600-900°C isotherms from Lindsley (1983). 

compositions. In the plagioclase Iherzolites, neoblast compositions were analysed in 

two samples and these have higher CaO contents than porphyroclast rims in the same 

samples. This phenomenon might be related to equilibrium crystallisation with 

plagioclase or secondary amphibole. 

It is significant that the trend of decreasing A I 2 O 3 and CaO contents of 

orthopyroxenes f rom porphyroclasts to neoblasts, as shown by the Lizard peridotites 

(Figure 5.4; Table 5.2), is also observed in peridotites described in the literature (Figure 
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5.5). In comparison to the Lizard peridotites, an overall grain-size reduction of the 

peridotite and the appearance of plagioclase also accompany the compositional trends 

shown by orthopyroxenes found in peridotites discussed in the literature. Hoogerduijn 

Strating et al. (1993) interpret the compositional trends in orthopyroxenes in peridotites 

from the Voltri Massif e.g. decreasing A I 2 O 3 and CaO contents, to reflect changing 

conditions of T (and P) during syn-tectonic recrystallisation. More precisely, these 

compositional changes are a consequence of subsolidus reactions that accompany the 

spinel- to plagioclase-facies transition in these mantle peridotites. It is suggested that 

spinel- to plagioclase-facies re-equilibration and the related subsolidus reactions are 

also responsible for the compositional trends shown by orthopyroxenes found in the 

Lizard peridotites. This suggestion is based on similarities with trends shown by 

peridotites discussed in the literature i.e. decreasing A I 2 O 3 and CaO contents 

accompanied by decreasing grain size and the development of mylonitic fabrics. In 

addition, thermobarometric constraints presented in Section 5.8 demonstrate that the 

mylonitic peridotites f rom the Lizard re-equilibrated at lower conditions of T and P 

than the spinel Iherzolites. Further evidence for re-equilibration of mineral 

• Spinel Iherzolite - (PC) 

O Spinel Iherzolite - (PR) 

• Spinel Iherzolite - (N) 

_ Plagioclase Iherzolitc - (PC) 

Plagioclase Iheriolite - (?R) 
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* Transitional assemblage - ( \ ) 

• Myloni t ic plagioclase-bearing peridotite - (PC) 

O Myloni t ic plagioclase-bearing peridotite - (PR) 

• Myloni t ic plagioclase-beanng peridotite - (N) 

• Mylonit ic amphibolc-beanng peridotite - (N) 

X Pyroxenite layer in Iherzolile 

Figure 5.4. Plot of wt% A I 2 O 3 versus wt% CaO of orthopyroxene for peridotites from the 
Lizard Ophiolite Complex. Tie lines link porphyroclast core (PC), porphyroclast rim (PR), and 
neoblast (N) compositions of the same sample for the Iherzolites and transitional assemblage 
peridotite. 
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Figure 5.5. Plot of wt% A I 2 O 3 versus wt% CaO of orthopyroxene for peridotites, ultramafic 
and mafic rocks from the Lizard compared with compositional fields defined for ultramafic and 
mafic rocks from the ophiolites and oceanic environments: (1) Spinel Iherzolite. External 
Ligurides (Rampone et al., 1995), (2) Spinel Iherzolite, Voltri Massif (Hoogerduijn Strating ei 
al., 1993), (3) Peridotite, 'major ocean basins' (Hebert et a!., 1989 and references therein), (4) 
Spinel Iherzolite, Zabargad Island (Bonatti et al., 1986), (5) Plagioclase Iherzolite, Zabargad 
Island (Bonatti et al., 1986), (6) Harzburgite, Hess Deep (Edwards and Malpas, 1996), (7) 
Gabbro, Northern Apennine ophiolites (Hebert et al., 1989), (8) Oceanic gabbro, "major ocean 
basins" (Hebert et al., 1989 and references therein), (9) Plagioclase-bearing peridotite 
mylonites, Voltri Massif (Hoogerduijn Strating et al., 1993), (10) Homblende-bearing 
peridotite mylonites, Voltri Massif (Hoogerduijn Strating et al., 1993). Also included (see key) 
are peridotite from Northern Apennine ophiolites (Hebert et al., 1989), harzburgite. Iherzolite 
and cumulates from the Brooks Range ophiolite (Harris, 1995) and plagioclase Iherzolite from 
the External Ligurides (Rampone et al., 1995). 

compositions, particularly clinopyroxene and spinel, in response to this spinel- to 

plagioclase-facies transition w i l l be discussed in later sections. 

The A I 2 O 3 and CaO contents of the ultramafic Traboe cumulates, mafic Traboe 

cumulates and gabbroic veins are distinctly lower than primary orthopyroxenes in 

ultramafic cumulates and gabbros presented in the literature. This suggests thcit the 

orthopyroxenes in cumulates and gabbros from the Lizard are not primary in origin. 

These compositions are likely to reflect re-equilibration to conditions of lower T and P 

during metamorphism, which is confirmed by estimates of T and P presented in Section 

5.8. 

In Figure 5.6, de lines link the composition of porphyroclast cores, rims and 

neoblasts of orthopyroxene in the peridotites and this demonstrates that the Cr203 

values generally show a systematic decrease from core to rim to neoblast in the 

different peridotite assemblages. It is also evident that Cr203 contents decrease from the 
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Figure 5.6. Plot of wt% Cr203 versus wt% ALOj of orthopyroxene for peridotites from the 
Lizard Ophiolite Complex. Tie lines link porphyroclast core (PC), porphyroclast rim (PR), and 
neoblast (N) compositions of the same sample for the Iherzolites and transitional assemblage 
peridotite, and porphyroclast cores (PC) and rims (PR) for the mylonitic plagioclase-bearing 
peridotite. 
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Figure 5.7. Plot of wt% CraOi versus wt% ALO, of orthopyroxene for peridotites, ultramafic 
and mafic rocks from the Lizard compared with compositional fields defined for ultramafic and 
mafic rocks from the ophiolites and oceanic environments: (1) Peridotite, the Brooks Range 
ophiolite (Hanris, 1995), (2) Harzburgite, Hess Deep (Edwards and Maipas. 1996), (3) 
Peridotite, "major ocean basins' (Hebert et al., 1989 and references Therein), (4) Plagioclase 
Iherzolite, External Ligurides (Rampone et al., 1995), (5) Spinel Iherzolite, External Ligurides 
(Rampone et ai, 1995), (6) Oceanic gabbro, "major ocean basins' (Hebert et al., 1989 and 
references therein). Also included (see key) are peridotite from Northern Apennine ophiolites 
(Hebert et al., 1989) and cumulates from the Brooks Range ophiolite (Harris, 1995). 
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spinel Iherzolites to the mylonitic peridotites. A decrease o f Cr203 in orthopyroxene 

from coarse-grained porphyroclasts to fine-grain neoblasts is also reported in 

recrystallised plagioclase-bearing peridotites from the Voltr i Massif (Hoogerduijn 

Strating et al., 1993). This suggests that a decrease in the Cr203 content o f 

orthopyroxenes may be related to spinel- to plagioclase-facies re-equilibration, with 

Cr203 being re-distributed into spinel, which shows an increase in Cr203 (Section 5.5). 

The Ti02 contents and Mg# (100Mg/( Mg+Fctotai)) o f orthopyroxene in the 

different peridotite types also changes with microstructure (Figure 5.8; Table 5.2). The 

Ti02 content o f the orthopyroxene is low and therefore close to the detection limit of 

the microprobe used. However, there are variations that are correlated with changes in 

peridotite microstructure and consequently these are probably analytically significant. 

The Ti02 contents increase in orthopyroxene from porphyroclast cores in the spinel 

Iherzolites to mylonific plagioclase-bearing peridotites (Figure 5.8; Table 5.2). 

Data presented by Hoogerduijn Strating et al. (1993) for peridotites from the 

Volt r i Massif shows that Ti02 contents decrease from orthopyroxene porphyroclasts in 

spinel Iherzolites to neoblasts in recrystallised plagioclase-bearing peridotites. The 

trend o f decreasing Ti02 with Mg# is possibly related to spinel- to plagioclase-facies 

re-equilibration, because Ti02 may be redistributed into spinel because it caimot be 

hosted by plagioclase (Rampone et al., 1993). This is the opposite o f the trend observed 

in the Lizard peridotites. This suggests that the trend o f increasing Ti02 with 

decreasing Mg# from spinel Iherzolite to mylonitic plagioclase-bearing peridotite is not 

related to spinel- to plagioclase-facies re-equilibration. The increase in Ti02 is also 

inconsistent with different degrees o f melting, because the lack o f evidence for melting 

based on microstructural observations (Chapter 4) and bulk compositions (Chapter 6). 

A n alternative process that may modify the Ti02 content o f orthopyroxene in 

peridotites is melt impregnation, therefore trend o f increasing Ti02 in the mylonitic 

plagioclase-bearing peridotite observed in the Lizard peridotites may be attributed to 

melt-rock interactions, as suggested by olivine compositions e.g. decreasing Fo values 

(Section 5.2.2). Orthopyroxenes in the mylonitic amphibole-bearing peridotites show 

significantly lower Ti02 contents than mylonitic plagioclase-bearing peridotites. This 

Ti02 decrease is attributed to the extensive development o f pargasitic hornblende in the 

mylonitic amphibole-bearing peridotite, which results partly fi"om the breakdown of the 

pyroxene and melt- or fluid-rock interactions (see Secfion 4.3.5.b). 
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Figure 5.8. Plot of wt% Ti02 versus Mg# (100Mg/(Mg+Fe) of orthopyroxene for peridotites 
from the Lizard Ophiolite Complex. The plot includes both porphyroclast core (PC) and 
neoblast (N) compositions for the Iherzolites, transitional assemblage and mylonitic 
plagioclase-bearing peridotites. 
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Figure 5.9. Plot of w t ^ Ti02 versus Mg# (100Mg/(Mg-i-Fe) of orthopyroxene for peridotite. 
ultramafic and mafic rocks from the Lizard Ophiolite Complex compared with compositional 
fields defined for ultramafic and mafic rocks from the ophiolites and oceanic environments: (1) 
Gabbro, Northern Apennine ophiolites (Hebert et al., 1989). Also included (see key) are 
Oceanic gabbro and peridotite from "major ocean basins' (Hebert et al., 1989 and references 
therein) and peridotite from Northern Apennine ophiolites (Hebert etal., 1989). 

The range of compositions of the major elements in the orthopyroxenes of the 

ultramafic Traboe cumulates, mafic Traboe cumulates and gabbroic veins may be 
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attributed to a variety o f magmatic processes. The large range of Mg# suggests 

different degrees o f fractionation related to melt segregation during formation. The 

possibility that some o f the compositional variations e.g. decreasing CaO with AI2O3 

contents in orthopyroxene in the ultramafic Traboe cumulates, mafic Traboe cumulates 

and gabbroic veins are related to metamorphic re-equilibration and/or melt-rock 

interactions cannot be excluded on the basis o f the evidence presented here. In 

particular, it should be noted that these processes have modified the composition of 

orthopyroxene and olivine in the mylonitic peridotites o f the Lizard. 

5.3.3. Orthopyroxene chemistry - summary 

• The compositional trends in orthopyroxene (e.g. decreasing AI2O3 and CaO) in 

peridotites from the Lizard Ophiolite Complex are interpreted to reflect re-

equilibration following changing conditions o f T (and P) during syn-tectonic 

recrystallisation and more specifically subsolidus reactions that accompany the 

spinel- to plagioclase-facies transition in these mantle peridotites. 

• The trend o f increasing Ti02 in the mylonitic plagioclase-bearing peridotite is not 

consistent with spinel- to plagioclase-facies re-equilibration or different degrees of 

melting. Alternatively it is proposed that the Ti02 increase may be attributed to 

melt-rock interactions, as suggested by variations in the Fo content o f olivines 

(Section 5.2). 

• It is therefore proposed that the compositional variations in orthopyroxene in the 

Lizard peridotites may be a consequence of both spinel- to plagioclase-facies re-

equilibration and meh-rock interactions. 

• The large range o f Mg# for orthopyroxene in the ultramafic and mafic Traboe 

cumulates and gabbroic veins suggests different degrees fractionation related to 

melt segregation during formation. 

5.4. Clinopyroxene chemistry 

The results o f a electron microprobe study o f clinopyroxene composition in the Lizard 

peridotites and associated ultramafic and mafic rocks are presented in this Section and, 

in accordance with the previous two Sections, these results are compared with 
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examples from the literature. The results for the Lizard clinopyroxenes are also 

interpreted in terms o f the metamorphic and/or magmatic processes responsible for the 

compositions and compositional trends observed. The composition o f clinopyroxenes 

in particular, serves as a sensitive petrogenetic indicator and should therefore provide 

important clues to the magmatic processes that have occurred during the origin and 

evolution o f the ultramafic and mafic rocks o f the Lizard Ophiolite Complex. In a final 

sub-Section, the analyses o f clinopyroxene taken from the Landewednack amphibolites 

are presented and interpreted in terms o f the geological processes responsible for the 

compositions observed. These analyses are also compared with examples taken from 

the literature. 

5.4.1. Clinopyroxene chemistry - results 

Fs-En-Wo 
Wt% 
CaO 

Wt% 
A I 2 O 3 

Wt% 
Cr203 

Mg# Wt% TiOj 

Spinel Iherzolite (PC) 
FS4.3-5.8En46 g. 

52.9WO41 8-49.6 
19.7-23.1 4.2-7.0 1.0-1.4 89.6-91.8 0.18-0.46 

Spinel Iherzolite (PR) 20.8-21.6 3.12-6.98 1.1-1.4 90.2-91.8 0.26-0.42 
Spinel Iherzolite (N) 21.4-23.4 3.15-6.11 1.0-1.2 90.9-93.2 0.21-0.37 
Plagioclase Iherzolite 
(PC) 

FS4 8-6.3En48 8-

5O.8WO42.9-46.4 
20.3-22.2 4.5-6.7 1.0-1.3 89.2-91.2 0.21-0.38 

Plagioclase Iherzolite (N) - 22.4 4.84 1.24 90.0 0.46 
Transitional assemblage 
(PC) 

FS5.9-6.2En48 5-

51 4WO42.4-45.5 
19.9-21.5 5.0-7.0 1.0-1.1 89.1-89.2 0.45-0.47 

Transitional assemblage 
(PR) 

- 23.3 6.24 1.15 88.9 0.76 

Transitional assemblage 
(N) 

22.5 3.6 1.2 90.0 0.62 

Mylonitic plagioclase-
Bearing peridotite (N) 

FS4.7-6.6En46 3. 
55.1^038.3-48.5 

18.5-23.3 2.8-4.75 0.68-1.1 89.3-93.1 0.55-0.93 

Mylonitic amphibole-
Bearing peridotite (N) 

FS4.2-4.9En47 8-

48.7WO46.4-47.9 
22.5-23.9 2.0-2.74 0.61-0.68 91.1-92.3 0.05-0.23 

Pyroxenite (N) 
FS5.5.6.8En45.i. 

5O.7WO42.5-49.I 
20.3-22.8 4.8-7.0 0.82-1.2 88.2-89.8 0.2-0.5 

Feldspathic bands (N) FS4 |En48.4W047 4 24.1 1.8 0.31 92.4 0.29 
Ultramafic Traboe 
cumulates (N) 

FS2.8-8.3En43.i-

48.6WO46.0-48.6 
22.8-24.2 1.36-4.8 0.26-0.49 84.2-94.5 0.12-0.48 

Mafic Traboe cumulates 
FS4.9-2i.0En36.5-

47 3WO43 3-44 7 
18.9-25.6 0.9-5.4 0.06-0.22 62.0-90.4 0.11-0.83 

Gabbroic veins FSi4.8-19.lEn36 2-
41 7WO43.3-44.7 

20.6-21.9 1.2-2.4 0.12-0.17 65.6-74.3 0.35-0.61 

Mafic dyke 
Fsii 2En441W044. 

6 
21.2 4.4 0.35 79.8 1.2 

Troctolite FS9.4En45 3WO45.4 22.0 3.5 0.67 82.8 1.1 

Table 5.3. Summary of the compositions of clinopyroxenes in the Lizard peridotites and 
associated ultramafic/mafic rocks. Data for porphyroclasts cores (PC), porphyroclasts rims 
(PR) and neoblasts (N) are also includued. 
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The main compositional variations in clinopyroxene are outlined below. Representative 

mineral analyses are given in Table 5.3. The fu l l electron probe data set is presented in 

Appendix D. 

Clinopyroxene compositions range between diopside and augite with 

wollastonite contents ranging from 42.4 to 49.6 (Table 5.3). CaO contents range from 

18.5 to 25.6 wt% with the largest range being found in the mafic Traboe cumulates 

(18.9-25.6 wt%) . AI2O3 contents vary f rom 0.9 to 7.0 wt% with the highest 

concentrations being found in the spinel Iherzolites, plagioclase Iherzolites and 

transitional assemblage peridotites, and the lowest values in the mafic Traboe 

cumulates and gabbroic veins (Table 5.3). CriOs contents are highest in the peridotites 

(0.61-1.4 wt%) and lowest in the ultramafic and mafic Traboe cumulates and gabbroic 

veins (0.06-0.49 wt%) . The peridotites display a limited range of Mg# contents (88.2-

93.1), whereas the mafic Traboe cumulates show the largest range from 62.0 to 90.4. 

Ti02 contents range f rom 0.05 to 1.2 wt% with the highest values being found in a 

mafic dyke. 

5.4.2. Clinopyroxene chemistry - interpretation and discussion 

A quadrilateral Fs-En-'Wo diagram (Figure 5.10) illustrates that the Lizard peridotites 

fal l within the range defined by ultramafic rocks from ophiolites and oceanic 

enviroimients and that the ultramafic Traboe cumulates overlap this range. More 

significantly the mafic Traboe cumulates and gabbroic veins fall within the 

compositional ranges defined by mafic cumulates and gabbroic rocks, confirming the 

cumulate origin o f these rocks. 

Figure 5.11 demonstrates that there is a systematic decrease in AI2O3 

contents, which is correlated with increasing CaO concentrations in clinopyroxenes 

f rom the spinel Iherzolites to the mylonitic amphibole-bearing peridotites. But, the 

variations in composition between clinopyroxene porphyroclasts cores, rims and 

neoblasts in the spinel Iherzolite, plagioclase Iherzolite and transitional assemblage 

peridotites are inconsistent, although porphyroclast rims and neoblasts generally show 

lower AI2O3 and higher CaO contents than porphyroclast cores (Figure 5.11). In one 

particular pyroxenite sample (CAC 44); the AI2O3 contents decrease systematically 

f rom porphyroclast core (7 wt%) and r im (5.23 wt%) to the neoblasts (3.34 wt%). 

210 



Mineral chemistry 

En 70 
Lizard peridotites 

Wo 5 

20 
E n 100 

Augite 

Diopside 

F Feldspathic band 

O Ultramafic Traboe cumulate 

A Mafic Traboe cumulate 

^ Gabbroic vein 

En 70 
F s O 

Figure 5.10. A Fs-En-Wo triangular diagram of clinopyroxene for peridotites, ultramafic and 
mafic rocks from the Lizard Ophiolite Complex compared with compositional fields defined 
for ultramafic and mafic rocks from the ophiolites and oceanic environments: (1) Includes 
harzburgite, Iherzolite and ultramafic cumulates from "major oceanic basins" (Hebert et al., 
1989 and references therein), harzburgite and Iherzolite from Northem Apennine ophiolites 
(Hebert et al., 1989), Iherzolite from Zabargad Island (Bonatti et al., 1986), harzburgite from 
Hess Deep (Hekinian et al., 1993) and harzburgite. Garret transform fault (Hebert et al., 1983), 
(2) Olivine gabbro, Garret transform (Hebert et al., 1983), (3) Oceanic gabbro, "major oceanic 
basins' (Hebert et al., 1989 and references therein), (4) Isotropic gabbro, Hess Deep (Hekinian 
et al., 1993), (5) Fe-Ti gabbro norite. Garret transform fault (Hebert et al.. 1983). (6) 
Metagabbro and gabbroic mylonites, Hess Deep (Hekinian et al., 1993). (7) Cumulate 
gabbronorite, Hess Deep (Hekinian et al., 1993), (8) Gabbro, Northem Apennine ophiolites 
(Hebert et al., 1989), (9) Olivine gabbro, Hess Deep (Hekinian et al., 1993). 
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Figure 5.11. Plot of wt% AlaO.̂  versus wt% CaO of clinopyroxene peridotites from the Lizard. 
Tie lines link porphyroclast core (PC), porphyroclast rim (PR), and neoblast (N) compositions 
of the same sample for the Iherzolites and transitional assemblage peridotite. 
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Figure 5.12. Plot of wt% ALO? versus wt% CaO of clinopyroxene for peridotites, ultramafic 
and mafic rocks from the Lizard compared with compositional fields defined for ultramafic and 
mafic rocks from the ophiolites and oceanic environments: (1) Spinel Iherzolite. External 
Ligurides (Rampone et al., 1995), (2) Spinel Iherzolite, Zabargad Island (Bonatti et al.. 1986). 
(3) Peridotite, Northern Apennine ophiolites (Hebert et al., 1989), (4) Spinel Iherzolite, Voltri 
Massif (Hoogerduijn Stradng et al., 1993), (5) Plagioclase Iherzolite, External Ligurides 
(Rampone et al., 1995), (6) Plagioclase-bearing peridotite mylonites, Voltri Massif 
(Hoogerduijn Strating et al., 1993), (7) Gabbro, Northern Apennine ophiolites (Hebert et al.. 
1989), (8) Gabbro cumulates. Brooks Range ophiolite (Harris, 1995), (9) Oceanic gabbro, 
"major ocean basins' (Hebert et al., 1989 and references therein), (10) Harzburgite, Hess Deep 
(Edwards and Maipas, 1996), (11) Homblende-bearing peridotite mylonites, Voltri Massif 
(Hoogerduijn Strating et al., 1993). Also included (see key) are: plagioclase Iherzolite. 
Zabargad Island (Bonatti et al., 1986), peridotite, "major ocean basins" (Hebert et at., 1989 and 
references therein), troctolite, Hess Deep (Hekinian et al., 1993). 

whereas the CaO contents show only a slight increase (22.8; 22.9: 23 wt'^f 

respectively). 

Figure (5.12) demonstrates that the compositional range of CaO and ANO;, 

contents in clinopyroxenes in the Lizard peridotites and associated ultramafic/mafic 

rocks are similar to the range of clinopyroxene compositions defined by ultramafic and 

mafic rocks from ophiolitic and oceanic environments. In particular this comparison 

demonstrates that the systematic change of decreasing A I 2 O 3 and increasing CaO in 

clinopyroxenes f rom porphyroclasts in spinel Iherzolite via neoblasts in mylonitic 

plagioclase-bearing peridotites to neoblasts mylonitic amphibole-bearing peridotites, is 
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also observed in peridotites with similar mineral assemblages and microstructural 

characteristics in various peridotite massifs (e.g. Hoogerduijn Strating et al., 1993). In 

both the Lizard peridotites and examples discussed in the literature (e.g. Hoogerduijn 

Strating et al., 1993; Rampone et al., 1993, 1995), the trend of decreasing AI2O3 and 

increasing CaO in clinopyroxenes is shown to accompany recrystallisation and an 

overall grain size reduction in the host peridotites and the appearance of plagioclase as 

a constituent mineral phase. Such compositional changes in clinopyroxene can be 

interpreted to reflect a tectono-metamorphic evolution of the peridotites in response to 

changing conditions of T and P during the subsolidus transition from spinel-facies to 

plagioclase-facies conditions, particularly when there are no parallel changes in the 

bulk composition (Piccardo et al., 1990; Hoogerduijn Strating et al., 1993; Rampone et 

al., 1993, 1995). The compositional changes in the clinopyroxenes are related to 

equilibrium crystallisation with plagioclase and with orthopyroxene partitioning for 

CaO. Plagioclase is produced during reactions accompanying this subsolidus transition 

(Rampone et al., 1993). However, a decrease in AI2O3 contents and an increase in CaO 

contents of clinopyroxene can also be related to magmatic processes e.g. melt-rock 

interaction (Rampone, 1997). 

Thus, the compositional trends defined by clinopyroxenes of the Lizard 

peridotites may be either metamorphic or magmatic in origin. Changes in the bulk 

composition of these peridotites (Chapter 6) demonstrate that melt-rock interactions 

have probably modified clinopyroxene compositions. However, on the basis of 

geothermometric constraints (Section 5.8) and the clear microstructural evolution of the 

peridotites (Chapter 4) i.e. recrystallisation, overall grainsize reduction and the 

development of mylonitic fabrics, the compositional changes in the clinopyroxenes are 

interpreted to predominantly reflect metamorphic re-equilibration. In comparison with 

the examples discussed in the literature (see above), metamorphic re-equilibration of 

the Lizard peridotites is interpreted to have occurred in response to changing conditions 

of T and P during the subsolidus transition from spinel-facies to plagioclase-facies 

conditions. 

The ultramafic Traboe cumulates, mafic Traboe cumulates and gabbroic veins 

define similar compositional trends (Figure 5.12) i.e. decreasing AI2O3 concentrations 

are accompanied by an increase in CaO contents. In addition, the AI2O3 contents of 

clinopyroxenes from mafic Traboe cumulates and gabbroic veins in the Lizard extend 

to lower AI2O3 concentrations than magmatic clinopyroxenes of troctolite, gabbro and 
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gabbro cumulates f rom oceanic environments and ophiolites (Figure 5.12), and this 

may reflect differences in the conditions of T and P during crystallisation or more 

extreme re-equilibration. 

The Cr^Oi content of clinopyroxene decreases systematically with decreasing 

A I 2 O 3 contents from porphyroclast cores in spinel Iherzolites through to neoblasts in 

mylonitic plagioclase-bearing peridotites and to mylonidc amphibole-bearing 

peridotites (Figure 5.13). There is a positive correladon between decreasing AI2O3 and 

decreasing Cr203 contents in clinopyroxene neoblasts in the mylonitic plagioclase-
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Figure 5.13. Plot of wt% Cr20;, versus w t ^ AiaOi of clinopyroxene for peridotites from the 
Lizard Ophiolite Complex. Tie lines link porphyrociast core (PC), porphyroclast rim (PR), antd 
neoblast (N) compositions of the same sample for the Iherzolite, transitional assemblage 
peridotite and pyroxenite. 

bearing peridotites. The compositional trends for Cr203 between poiphyroclast cores, 

rims and neoblasts in the same sample are inconsistent, with Cr20:, increasing from 

core-rim-neoblast in some samples and decreasing in others (Figure 5.13). In a single 

pyroxenite sample (CAC 44), Cr203 increases slightly from porphyroclast cores (0.82 

wt%) and rims (0.94 wt%) to neoblasts (1 wt%), which may be due to local 

equilibration with adjacent Cr203-rich minerals e.g. spinel. Data presented by Rampone 

et al. (1997) demonstrates that Cr203 concentrations of clinopyroxene may increase in 

response to melt-rock interactions. The fact that the CriO^ contents of clinopyroxenes 

found in the Lizard peridotites decreases suggests that the compositional trends are 
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related to another process. Decreasing Cr^O.̂  contents of clinopyroxenes are found in 

deformed peridotites from the Voltri Massif, N.W. Italy (Hoogerduijn Strating er al.. 

1993) and are interpreted to be related to metamorphic re-equilibration in response to 

changing conditions of T and P during the subsolidus transition from spinel-facies to 

plagioclase-facies conditions. It is suggested that the trend of decreasing Cr^O;, contents 
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Figure 5.14. Plot of wt% CT2O1. versus Mg# of clinopyroxene for peridotites. ultramafic and 
mafic rocks from the Lizard compared with compositional fields defined for ultramafic and 
mafic rocks from the ophiolites and oceanic environments: (1) ultramafic cumulates. Northern 
Apennine ophiolites (Hebert er al., 1989), (2) oceanic ultramafic tectonites (Hebert and 
Laurent, 1989), (3) oceanic harzburgites and Iherzolites (Hebert et al., 1989 and references 
therein), (4) peridotites, Northern Apennine ophiolites (Hebert et al.. 1989). (5) oceanic 
ultramafic cumulates (Hebert and Laurent, 1989), (6) cumulate gabbro. Northern Apennine 
ophiolites (Hebert et al., 1989), (7) oceanic gabbro (Hebert and Laurent, 1989). 

with decreasing ALO.^ contents as shown by clinopyroxene of the Lizard peridotites is 

also related to metamorphic re-equilibration, on the basis of geotheiTnometric 

constraints (Section 5.8) and the interpretation of variations in CaO concentrations (see 

above). 

Figure 5.14 demonstrates that the clinopyroxenes of the ultramafic Traboe 

cumulates and mafic Traboe cumulates define a trend of decreasing Mg# w'nh 

decreasing CroO^ contents. This trend, including a large range of Mg#, is also shown by 

cumulate gabbros from Northern Apennine ophiolites and oceanic gabbros (Figure 
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5.14). The wide range of Mg# in the ultramafic Traboe cumulates and mafic Traboe 

cumulates suggests crystal fractionation (Hekinian er al.. 1993). 

Interestingly, the Ti02 contents in clinopyroxene neoblasts in the mylonitic 

plagioclase-bearing peridotite peridotites are higher than the compositional ranges 

defined of the other peridotite-types (Figure 5.15). This may be related to local 

equilibration with Ti02-rich amphibole, which is only present in the mylonitic 

plagioclase-bearing peridotite. It is also notable that the Ti02 contents in 

clinopyroxenes f rom the mylonitic amphibole-bearing peridotites are lower those in the 

other peridotite-types and the significance of this is discussed below. In general, there 

are no consistent variations in Ti02 content with Mg# between porphyroclast cores, 

rims or neoblasts in the peridotites. 

• • 

• Spinel Iherzolite - (PC) 

Plagioclase Iherzolitc - (PC) 

A Trasitional a.ssemblage - (PC) 

• Mylonitic plagioclase-beanng pendotite - (N" 

.c Mylonitic amphibole-beanng peridotitc - 1"N) 

O Spinel Iherzolite - (PR) 

• Spinel Iherzolile - (N) 

Plagioclase Iherzolite - (K) 

. Transitional assemblage - (PR) 

* Transitional assemblage - (N) 

Pyroxenite - (PC) 

• Pyroxenite - (PR) 

• Pyroxenite - (N) 

Figure 5.15. Plot of wt% Ti02 versus Mg# (iOOMg/(Mg-i-Fe) of clinopyroxene for peridotites 
from the Lizard Ophiolite Complex. Tie lines link porphyroclast core (PC), porphyroclast rim 
(PR), and neoblast (N) compositions of the same sample for the transitional assemblage 
peridotite and pyroxenite. 

The Ti content of clinopyroxenes in the Lizard peridotites and associated 

ultramafic/mafic rocks is plotted against their Cr content in Figure 5.16 and 

demonstrates that they overlap the range of compositions found in clinopyroxene in 

ultramafic and mafic rocks in ophiolitic and oceanic environments. The trend of 

increasing T i accompanied by decreasing Cr content in the ultramafic Traboe 
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Figure 5.16. Plot of Ti versus Cr (number of cations per 6 oxygens) of clinopyroxene for 
peridotites, ultramafic and mafic rocks from the Lizard compared with compositional fields 
defined for ultramafic and mafic rocks from the ophiolites and oceanic environments: (1) 
oceanic ultramafic cumulates (Hebert et al., 1989 and references therein), (2) oceanic gabbro 
(Hebert et al., 1989 and references therein), (3) Bralome gabbro suite, Bridge River 
accredonary complex (Church et al., 1995), (4) Shulaps gabbro suite. Bridge River accretionar> 
complex (Church et al., 1995). 

cumulates of the Lizard could be explained by fractional crystallisation (Mercier, 

1976). The high Ti contents of clinopyroxene in the mylonitic plagioclase-bearing 

peridotite could be a signature of melt-rock interaction (Figure 5.15). This effect is 

documented in melt-impregnated peridotites of the Miyamori ophiolite complex 

(Ozawa, 1993), the Table Mountain Massif (Bay of Islands Ophiolite) (Suhr and 

Robinson, 1994) and Hess Deep (Girardeau and Francheteau, 1993; Edwards and 

Malpas, 1996). An increase in Ti of clinopyroxene can also occur in response to closed-

system subsolidus re-equilibration and the following reaction describes the spinel-

facies to plagioclase-facies transition of peridotite (Rampone et al., 1993): 

P x i + A l - S p , PL + OI2 ± Px2 + Cr-Sp2 

The increase of Ti in clinopyroxene found in the mylonitic plagioclase-bearing 

peridotite is due to the fact that plagioclase and olivine, two of the reaction products, 

cannot host any T i released during spinel breakdown. 
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The microstructures of the mylonitic amphibole-bearing peridotites are very 

similar to the microstructures of the mylonidc plagioclase-bearing peridotites, yet the 

Ti contents of clinopyroxene in the former peridotite type are a lot lower. These low-

values can be explained by the presence of up to 30% modal volume pargasitic 

hornblende in the mylonitic amphibole-bearing peridotite, which replaces 

clinopyroxene. The formation of amphibole may be related to meli'fluid-rock 

interaction and as a consequence clinopyroxene compositions are modified e.g. Ti 

decreases, due to re-equilibration with the amphibole. The major element compositions 

of amphiboles in the mylonitic peridotites are discussed in Section 5.6 to provide 

further evidence to support this hypothesis. 

Subcontinental 
peridotites 

Mid-oceanic 
ridge peridotites 

• Spinel Iherzolite - (P) 

Z Plagioclase Iherzolite - (P) 

A Transitional assemblage - (P) 

Myloniric piagioclasc-
bearing peridolite - (N) 

Mylonitic amphibole-
^ bearing pendotite - (N) 

O Ultramallc Traboe cumulate 

Mafic Traboc cumulate 

O Gabbroic vein 

F Feldspathic band 

Figure 5.17. Plot of cationic proportions of Al^ ' versus Al'^ of clinopyroxene for peridotites. 
ultramafic and mafic rocks from the Lizard compared with compositional fields defined for 
subcontinental peridotites and mid-oceanic ridge peridotites (Seyer et al.. 1994). Porphyroclast 
(P) and neoblast (N) compositions are shown. 

A plot of the cationic proportions of A l ^ ' versus Al'"* in clinopyroxene from the 

Lizard peridotites has been compared with examples from subcontinental peridotites 

and mid-oceanic ridge peridotites (Seyler et al.. 1994)(Figure 5.17). This plot 

demonstrates that the compositional trend in the Lizard peridotites is similar to the 

trend in mid-oceanic ridge peridotites (Seyler et al., 1994) and suggests that the Lizard 

peridoutes may be mid-oceanic in origin. However, Rivalenti et al. (1996) demonstrate 

that differences in clinopyroxene chemistry may reflect mantle processes rather than 

continental versus oceanic setting. Thus caution should be applied when comparing the 
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Lizard data with the data of Seyler et al. (1994) especially when interpreting the results 

simply in terms of the tectonic setting of the Lizard peridotites. 

5.4.3. Clinopvroxene chemistry - Landewednack amphibolites 

In a few samples of Landewednack amphibolites, fine-grained clinopyroxenes are 

preserved and these often form layers (Chapter 4). In the majority of samples, however, 

all clinopyroxenes have been replaced by amphibole. Analyses of clinopyroxenes taken 

from the Landewednack amphibolites are presented in the following sub-Section and 

these results are interpreted and discussed with reference to equivalent data in the 

literature. Representative analyses of clinopyroxenes for all the amphibolites are 

presented in Appendix D. 

5.4.3.a. Results and interpretation 

The main compositional variations in clinopyroxene in the Landewednack amphibolites 

are discussed below. Representative mineral analyses are given in Table 5.4. 

Amphibolites Fs-En-Wo Wt% CaO Wt% AI2O3 Mg# 
Wt% 
TiOj 

Brown amphibole-
bearing assemblage 

FSi2.7-12.7En35 7.40.3WO46 7^9.4 24-23 0.49-1.46 64-77 0.1-0.27 

Green amphibole-
bearing assemblage 

FSn.8-18.7En33 4.39 7 WO46 7^8.5 24.6-23.3 0.4-1.67 71-76 0-0.19 

Table 5.4. Summary of the compositions of clinopyroxenes for the Landewednack 
amphibolites from the Lizard Ophiolite Complex. The data from the brown amphibole-bearing 
assemblage is distinguished from the green amphibole-bearing assemblage. 

The clinopyroxenes fi-om both subtypes of amphibolite plot in the diopside 

composifional field of a Wo-En-Fs diagram (Figure 5.18). This diagram shows that the 

compositions of the Landewednack amphibolites are generally more calcic than mafic 

rocks fi"om ophiolites and oceanic environments, but the compositional field of 

clinopyroxenes from the Landewednack amphibolites does overlap the range of MORB 

clinopyroxenes defined by the Basaltic Volcanism Study Project (1981). The 

Landewednack amphibolites are also compositionally distinct from the mafic Traboe 

cumulates and gabbroic veins from the Lizard (compare with Figure 5.10). 
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Figure 5.18. A Fs-En-Wo triangular diagram of clinopyroxene for Landewednack amphibolites 
from the Lizard Ophiolite Complex compared with compositional fields defined for mafic 
rocks from the ophiolites and oceanic environments: (1) Mid-ocean ridge basalt (MORB). 
(Basaltic Volcanism Study Project, 1981), basalt, Hess Deep (Hekinian et al.. 1993), (2) (3) 
dolerite, Hess Deep (Hekinian et al., 1993), (4) gabbro, 'major ocean basins" (Heben et al.. 
1989 and references therein), (5) metagabbro and amphibolites, Hess Deep (Hekinian et al.. 
1993), (6) gabbro, Northem Apennine ophiolites (Hebert etal., 1989). 

Figure 5.19 demonstrates that the CaO contents of the Landewednack 

amphibolites are higher than those in defined by other mafic rocks from the Lizard, 

although ALO? contents are similar. The high CaO contents (i.e. Wo > 45) suggest that 

< 4 

5 

A Mafic Tmboe cumulate 

O Gabbroic vein 

Malic dyke 

X Bro\\n amphibole-hearine assemblage 
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O 

A OA A 

A O ^ 
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Figure 5.19. Plot of wt% A I 2 O 3 versus wt% CaO of clinopyroxene for Landewednack 
amphibolites from the Lizard Ophiolite Complex compared with the composition of mafic 
Traboe cumulates, gabbroic vein and a mafic dyke from the Lizard. 
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Figure 5.20. Plot of wt% Ti02 versus Mg# of clinopyroxene for Landewednack amphibolites 
from the Lizard Ophiolite Complex. The data from the brown amphibole-bearing assemblage is 
distinguished from the green amphibole-bearing assemblage. 

these are re-equilibrated metamorphic compositions. The clinopyroxene compositions 

in both amphibolite types define a trend of decreasing AI2O3 content with increasing 

CaO. 

X Brown amphibole-bearmg assemblage 

-H Green amphiboie-bearing assemblage 

Ocean Floor Basalt 

4 5 
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Figure 5.21. Plot of wt% Si02 versus wt% AI2O3 of clinopyroxene for the Landewednack 
amphibolites from the Lizard Ophiolite Complex compared with the compositional field 
defined by ocean floor basalt (Searle e/a/., 1980). 
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The Ti02 contents of the clinopyroxenes are slightly higher in the brown 

amphibole-bearing assemblage than in the green amphibole-bearing assemblage 

(Figure 5.20). This is probably related to the equilibration of the clinopyroxenes with 

the Ti02-rich brown amphiboles characteristic of the former amphibolite assemblage. 

The Cr203 contents of the clinopyroxenes in the Landewednack amphibolites 

are extremely low and therefore the results are not presented. 

A plot of wt% Si02 versus wt% AI2O3 (Figure 5.21) shows that the 

compositional range defined by clinopyroxenes in the Landewednack amphibolites is 

distinct from the compositional field of ocean floor basalt (Searle et al., 1980). 

The results show that the clinopyroxene from the Landewednack amphibolites 

are different in composition to MORB clinopyroxenes. In particular, the Landewednack 

clinopyroxene are generally richer in CaO and depleted in AI2O3 relative to igneous 

clinopyroxene from basaltic rocks. It is suggested that the compositions of the 

Landewednack amphibolite clinopyroxenes have been modified during metamorphism 

i.e. the clinopyroxenes have re-equilibrated to lower conditions of T and P. The 

compositions of the clinopyroxenes are consistent with amphibolite facies 

metamorphism in the region of 500-600°C (Green, 1964b; Lindsley, 1983)(Section 

5.8). 

5.4.4. Clinopvroxene chemistry - summary 

• A systematic compositional trend of decreasing AI2O3 and increasing CaO is 

defined by clinopyroxene from porphyroclasts in spinel Iherzolites via neoblasts in 

mylonitic plagioclase-bearing peridotites to neoblasts mylonitic amphibole-bearing 

peridotites. This trend is interpreted to reflect a tectono-metamorphic evolution of 

the peridotites in response to decreasing conditions of T and P during the subsolidus 

transition from spinel-facies to plagioclase-facies conditions. 

• Higher Ti contents are observed in clinopyroxene in the mylonitic plagioclase-

bearing peridotites than in the spinel and plagioclase Iherzolites. It is suggested that 

this variation in composition could be a signature of melt-rock interaction or it may 

have occurred in response to closed-system re-equilibration during the subsolidus 

transition from spinel-facies to plagioclase-facies conditions. With the data 
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currently available, it is not possible to distinguish which of these two processes 

may be responsible for the trends in Ti. 

Thus, it is proposed that compositional variation in clinopyroxenes in the Lizard 

peridotites may be related to both spinel-facies to plagioclase-facies re-equilibration 

and melt-rock interaction. 

The low Cr contents and lower range of Mg# in the ultramafic Traboe cumulates 

and mafic Traboe cumulates in the Lizard suggest crystal fractionation. The trend of 

increasing Ti accompanied by decreasing Cr content in the ultramafic Traboe 

cumulates of the Lizard are indicative of a fractional crystallisation effect. 

The compositions of clinopyroxene in the Landewednack amphibolites are also 

interpreted to reflect to metamorphic re-equilibration. 

5.5. Spinel chemistry 

It is well established in the literature that the composition of spinel in ultramafic rocks 

serves as a powerful tool in determining the petrogenetic history of the host rock. For 

example, Dick and Bullen (1984) have demonstrated that changes in the composition of 

spinel reflect changes in the degree of partial melting in the mantle source region. With 

this type of petrogenetic information, it can even be established whether the host rock 

formed at an island arc or mid-ocean ridge setting. However, changes in spinel 

chemistry are also the signature of several other geological processes, including 

metamorphic re-equilibration, melt-rock interaction and igneous fractionation. 

Therefore, in the following sections analyses of spinel from the rocks of the Lizard 

Ophiolite Complex are presented and subsequently interpreted and discussed with 

references to examples taken from the literature. The aim of this investigation is, firstly 

to determine whether there is any variation in spinel composition in the rocks of the 

Lizard Ophiolite Complex and then interpret any variations in terms of a plausible 

process or processes. 

5.5.1. Spinel chemistry - results 

The main compositional variations in spinel are outlined below. Representative mineral 

analyses are given in Table 5.5. Both core and rim analyses are presented for spinels in 
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the Lizard peridotites. The fiill electron probe data set is presented in Appendix D. 

Cr# ranges from 3.3 to 55, with the largest range been found in the ultramafic 

Traboe cumulates (Table 5.5). The ultramafic Traboe cumulates also show the largest 

range of Mg# from 39.2 to 72.3, when the overall range in the ultramafic rocks of 

Lizard ranges from 39.2 to 81.8. Mg# is negatively correlated with Cr# and decreases 

from the spinel Iherzolites to mylonitic plagioclase-bearing peridotites. Ti02 contents 

are higher in the mylonitic plagioclase-bearing peridotites and transitional assemblage 

peridotites and the lowest values are found in the spinel Iherzolites. V2O3 contents 

range from 0.07 to 0.42 wt%. 

Cr# Mg# Wt% TiOj Wt% V 2 O 3 

Spinel Iherzolite (PC) 17-47 51-79 0.08-0.53 0.07-0.35 
Spinel Iherzolite (PR) 17-45 73-50 - -
Plagioclase Iherzolite (PC) 41-48 52-62 0.25-0.59 0.2 
Plagioclase Iherzolite (PR) 41 57 - -
Transitional assemblage (PC) 44-45 52-54 0.74 0.28 
Mylonitic plagioclase-
Bearing peridotite (N) 

31-49 40-67 0.17-0.9 0.24-0.42 

Mylonitic amphibole-
Bearing peridotite (N) 

31-44 53-65 0.1-0.25 0.19 

Dunite 28-40 56-76 0.14-0.33 0.13-0.19 

Feldspathic bands (Br) 28.2 65.6 0.1 -
Feldspathic bands (Gr) 3.3 81.8 0.055 -
Green spinels in peridotite 13.2-22.7 64.2-73.5 0.054-0.22 0.13-0.19 
Ultramafic Traboe cumulates (N) 7.7-55 39.2-72.3 0.012-0.24 0.07-0.34 

Table 5.5. Summary of the compositions of spinels in the Lizard peridotites and associated 
ultramafic/mafic rocks. Data for porphyroclasts cores (PC), porphyroclasts rims (PR), brown 
(Br) and green (Gr) spinels are included. 

5.5.2. Spinel chemistry - interpretation and discussion 

Variations in spinel chemistry in mantle rocks may be attributed to a variety of 

processes and these include: 

• Partial melting, 

• Metamorphic re-equilibration, 

• Melt-rock interaction, 

• Igneous fractionation. 

In order to determine which of these processes may be responsible for variations in 

the composition of spinels of ultramafic rocks from the Lizard complex, this Section is 

split into four different sub-Sections according to the processes listed above. 
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5.5.2.a. Partial melting trends 

A plot of Cr# versus Mg# (Figure 5.22) is utilised to compare the compositions of 

spinels f rom the Lizard peridotites with examples from oceanic environments and 

ophiolites. Nb. Cr# = 1 OOCr/(Cr+Al); Mg# = 1 OOMg/(Mg+Fe^^). 
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Figure 5.22. Plot of Cr# versus Mg# showing the field of spinels for peridotites from the 
Lizard Ophiolite Complex compared with the composition of spinels from the Mamonia and 
Troodos peridotites (Wayne Bailey pers comm, 1998). The field of abyssal peridotites (1) is 
also included for comparison (Dick and Bullen, 1984). Arrows indicate the trends defined for 
spinels for peridotites from ophiolites and oceanic environments, including (2) alpine-type and 
abyssal peridotites (Dick and Bullen, 1984), (3) peridotite. Bay of Islands ophiolite. 
Newfoundland (Casey et al., 1985), (4) harzburgite and dunite, Luobusa ophiolite, Tibet (Zhou 
et al., 1996), (5) harzburgite and dunite, Oman ophiolite (Kelemen et al., 1995), (6) peridotites. 
Northem Apennine ophiolites (Hebert et al., 1989). 

The range for the Lizard peridotites excludes green spinels in spinel Iherzolites and 

mylonitic plagioclase-bearing peridotites and spinels from the ultramafic Traboe 

cumulates. Figure 5.22 demonstrates that the trend of increasing Cr# with decreasing 

Mg# is similar to trends shown by peridotites from ophiolites and oceanic 

environments. However, it is immediately evident that the trend in the Lizard 

peridotites diverges slightly from the trends defined for peridotites from ophiolites and 
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oceanic environments presented on Figure 5.22. The compositional trend for spinels in 

the examples listed above is interpreted to be the result of progressive partial melting, 

because Cr and Mg are strongly partitioned into the solid and A l strongly partitioned 

into the melt with increasing degrees of depledon of peridotites (Dick and Bullen. 

1984). 

Dick and Bullen (1984) defined three sub-types of alpine peridotite based on an 

extensive study of spinel composition: Type I = Cr#<60, Type I I I = Cr#>60, and Type 

I I have intermediate Cr#. The spinel Iherzolites from the Lizard Ophiolite Complex, 

which are believed to represent the least deformed assemblage and least chemically 

modified after later melt-rock interaction, plot in low Cr# area of the Type I field of 

alpine peridotites and the field of abyssal peridotites (Dick and Bullen. 1984). The 

spinel Iherzolites are therefore the residues from only small degrees of melting, in 

contrast to peridotites with higher Cr# for spinel. Higher Cr# of spinels (e.g. Type I I I of 

Dick and Bullen, 1984) are probably related to the presence of a significant amount of 
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Figure 5.23. Plot of Cr# versus wt% Ti02 of spinel for peridotites from the Lizard Ophiolite 
Complex compared with compositional fields defined for the Mamonia and Troodos peridotites 
(Wayne Bailey pers comm, 1998). The arrow indicates the partial melting trend defined by the 
composition of spinel for peridodtes (Girardeau and Francheteau, 1993; Ozawa, 1993; Edwards 
and Malpas, \996l 
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water during melting i.e. hydrous melt or anomalously low pressure melting (Dick and 

Bullen, 1984). These requirements and conditions often exist in a subduction zone 

environment (Bonatti and Hamlyn, 1989) where water is introduced into the mantle 

wedge above a subducting slab in the form of hydrous melts. 

Further evidence for the compositional trends in spinel from the Lizard 

peridotites not being related to progressive partial melting is provided by changes in the 

Ti02 content of spinel (Figure 5.23). ft has already been demonstrated that the Ti02 

contents increase with Cr# in the spinel Iherzolites, and in particular the plagioclase 

Iherzolites, transitional assemblage peridotites and mylonitic plagioclase-bearing 

peridotites. The trend of increasing TiOi contents with Cr# departs strongly from the 

partial melting trend in peridotites (Girardeau and Francheteau, 1993; Ozawa, 1993: 

Edwards and Malpas, 1996), which shows no change in Ti02 contents associated with 

an increase in Cr# (Figure 5.23). This partial melting trend is also demonstrated by 

spinel compositions taken from the Mamonia and Troodos peridotites, Cyprus (Wayne 

BaUey pers comm, 1998). 

An increase in V2O3 contents is correlated with increasing Cr# in the Lizard 
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Figure 5.24. Plot of Cr# versus wt% V 2 O 3 of spinel for peridotites from the Lizard Ophiolite 
Complex compared with compositional fields defined for peridotites from Mamonia and 
Troodos ophiolites (Wayne Bailey pers comm, 1998). 
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peridotites, f rom spinel Iherzolite to mylonitic plagioclase-bearing peridotite. Spinels 

from Iherzolites and harzburgites from the Mamonia and Troodos ophiolites. SW 

Cyprus (Wayne Bailey pers comm, 1998), are presented in Figure 5.24, and these also 

show an increase in V contents, which parallels an increase in Cr#. The variations in 

these rocks are attributed to partial melting processes. However, it may also be possible 

that the increase in V 2 O 3 content is related to plagioclase-facies re-equilibration 

(Section 5.5.2.b) or a manifest of melt-rock interaction (Secfion 5.5.2.C). However, 

there is insufficient evidence in the literature to determine whether this is plausible. 

A correlation between Cr# in spinel and olivine Fo% (Figure 5.25) shows that 

the spinel Iherzolite plots within the meUing trend defined for Tinaquillo Iherzolite at 

10 kbar (Jacques and Green, 1980) and falls on the partial melting trend defined by 

Ozawa (1993). The trend of decreasing olivine Fo% number with increasing Cr# in 

spinel defined by the plagioclase Iherzolites. transitional assemblage peridotites and 

mylonitic peridotites of the Lizard departs from these melting trends. Changes in 
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Figure 5.25. Plot of olivine Fo^c number versus spinel Cr# for peridotites from the Lizard 
Ophiolite Complex compared with (1) the partial melting trend of peridotites from the 
Miyamori ophiolite complex (Ozawa, 1993) and (2) the melting trend of Tinaquillo Iherzolite 
(Jacques and Green, 1980). 

olivine Fo% are not observed during plagioclase-facies re-equilibration (Hoogerduijn 

Strating et al., 1993). Thus, the changes in the olivine Fo% combined with increasing 

Cr# in spinel in the Lizard peridotites are interpreted to be the result of melt-rock 

interaction (Section 5.2.2.c). Ozawa (1993) shows that olivine Fo% decreases in 

peridotites that have equilibrated with melt, which supports the interpretation proposed 

for the Lizard peridofites. 
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5.5.2.b. Metamorphic re-equilibration trends 

Figure 5.26 demonstrates that although Cr# increases and Mg# decreases from spinel 

Iherzolites to mylonitic plagioclase-bearing peridotites there are no consistent trends 

between spinel cores and rims. 

The trend for the Lizard peridotites shows a greater decrease in Mg# at a lower 

Cr# than the examples listed above, and therefore a process other than progressive 

partial melting must be invoked to account for the compositional trend. The trend for 

the Lizard peridotites is very similar to the trends observed in peridotites from the 

Voltr i Massif (Hoogerduijn Strating et al, 1993) and External Ligurides (Rampone et 

al., 1995)(Figure 5.27). In these examples, the trend of increasing Cr# and decreasing 

Mg# in spinel accompanies a change in the peridotite mineral assemblage and 
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Figure 5.26. Plot of Cr# versus Mg# of spinel for peridotites from the Lizard Ophiolite 
Complex. Tie-lines link core (C) and rim (R) compositions of the spinel. 

microstructure, f rom coarse-grained spinel Iherzolites (low Cr#, high Mg#) to 

deformed-mylonitic plagioclase Iherzolites (high Cr#, low Mg#). The trend of 

increasing Cr# and decreasing Mg# in the Lizard peridotites is also accompanied by a 

decrease in the overall grain-size, appearance of plagioclase and the development of 

mylonitic peridotites. These compositional changes could occur in a closed system 

during the subsolidus reactions that accompany the spinel- to plagioclase-facies 
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transition in the peridotites in response to re-equilibration o f the mineral assemblage to 

conditions o f lower P and T (Rampone et al., 1993). Similar compositional trends can 

also be produced by melt-rock interaction in peridotites, and thus caution should be 

applied as these may be indistinguishable from those produced by plagioclase-facies re-

equilibration (Section 5.5.2.c). 

Lizard peridotites 

5(1 40 60 

Mg# 

^1 911 

Figure 5.27. Plot of Cr# versus Mg# of spinel for peridotites from the Lizard Ophiolite 
Complex compared with compositional fields defined for peridotites from ophiolites, including: 
(1) deformed-mylonitic plagioclase Iherzolites, Voltri Massif (Hoogerduijn Strating et al., 
1993), (2) spinel Iherzolites, Voltri Massif (Hoogerduijn Strating et al., 1993), (3) plagioclase 
and spinel Iherzolites, External Ligurides (Rampone et al., 1995). 

A n increase in Ti02 contents with Cr# is reported for peridotites from the 

External Ligurides (Figure 5.28), with TiOj increasing progressively from a suite of 

partially plagioclase-recrystallised samples to strong plagioclase-recrystallised samples 

(Rampone et al., 1993). Similar compositional correlations have been observed in 

spinels f rom the Galicia Bank peridotites (Komprobst and Tabit, 1988). Rampone et al. 

(1993) propose that an increase in Ti and Cr and a decrease in A l in plagioclase-bearing 

peridotites f rom the External Ligurides is due to equilibrium crystallisation of spinel 

with plagioclase, in response to the transition from spinel- to plagioclase-facies stability 

field which may be described by the reaction: 

Pxi + Al-Spi ^ PI2 + OI2 ± Px2 + Cr-Sp2 
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The increase in Ti and Cr in spinel in the plagioclase-bearing peridotites is due 

to the fact that these elements cannot be hosted by plagioclase and olivine, both the 

products of the above reaction (Rampone et al., 1993). The correlation with the spinel 

compositional change in the Lizard peridotites with peridotites from the External 

Ligurides (Rampone et al., 1993) suggests that the processes and reactions described 

above were responsible for changes observed in the Lizard peridotites. However, this 

comparison should be treated with caution, because an increase in Ti and Cr, and a 

decrease in A l in spinel can also occur in response to melt-rock interaction (Section 

5.5.2.C). 
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Figure 5.28. Plot of Cr# versus wt% Ti02 of spinel for peridotites from the Lizard Ophiolite 
Complex compared with compositional fields defined for: (1) type A, least plagioclase-
recrystallised peridotites and (2) type B, strong plagioclase-recrystallised peridotites from 
External Ligurides (Rampone etal., 1993). 

5.5.2.C. Melt-rock interaction trends 

Edwards and Malpas (1996) show that the composition of spinels in harzburgites that 

have been modified by melt-rock interaction define a trend similar to the Lizard 

peridotites (Figure 5.29) and different to progressive partial melting trends (Figure 

5.22). A similar compositional trend to the Lizard peridotites is described by Hekinian 

et al. (1993) for spinels in harzburgites impregnated by wehrlite from the Hess Deep; 

this trend also departs from the partial melting trend. 
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Figure 5.29. Plot of Cr# versus Mg# of spinel for peridotites from the Lizard Ophiolite 
Complex compared with compositional fields defined for melt-impregnated peridotites (1) from 
Hess Deep (Edwards and Malpas, 1996). 

Figure 5.30 demonstrates that increasing Ti02 contents in the Lizard peridotites 

define a positive trend with Cr#. Changes in the Ti02 concentration of spinel can occur 

in response to equilibration between the host Iherzolite and a migrating melt. Kelemen 

et al. (1995) present evidence for a Ti02 increase in spinel from dunites that are 

believed to represent conduits of focused melt f low and the T iO: increase is therefore 

in response to open-system melt-rock interaction. An increase of Ti02 in spinel is also 

described in melt-impregnated peridotites and harzburgites that have been modified by 

melt-rock interaction, in samples from the Hess Deep (Girardeau and Francheteau, 

1993; Hekinian et al., 1993; Edwards and Malpas, 1996), melt-impregnated peridotites 

of the Miyamori ophiolite complex (Northeastern Japan)(Ozawa, 1993). plagioclase-

Iherzolites of the Bay of Islands ophiolite that are interpreted to be the products of melt-

rock interaction (Suhr and Robinson, 1994; Edwards and Malpas, 1995). and dunites of 

the Luobusa ophiolite (Southern Tibet) that result from melt-rock interaction (Zhou ct 

al., 1996). Whole rock compositional trends of the mylonitic peridotites from the 

Lizard Ophiolite Complex indicate major and trace element enrichment (Chapter 6.), 
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which is suggestive of melt-infiltration; therefore the changes in spinel composition are 

probably a result of both melt-rock interaction and plagioclase-facies re-equilibration. 

However, whole rock compositions of the spinel Iherzolites do not show any evidence 

for major and trace element enrichment (Chapter 6). It is therefore proposed that the 

Ti02 and Cr# increase in spinel in the spinel Iherzolites is related to incipient 
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Figure 5.30. Plot of Cr# versus wt% TiO: of spinel for peridotites from the Lizard Ophiolite 
Complex compared with compositional trends and fields defined for melt-impregnated 
peridotites: (1) arrow shows trend of peridotites from Miyamori ophiolite complex (Ozawa. 
1993), (2) dunites from the Oman ophiolite (Kelemen et al., 1995) and (3) plagioclase 
Iherzolites from the Bay of Islands ophiolite (Edwards and Malpas, 1995). 

plagioclase-facies re-equilibration (Section 5.2.2.b) and not melt-rock interaction. 

However, the compositions of spinels found in dunite bodies within the spinel 

Iherzolite are consistent with an origin related to melt-rock interaction, which is 

suggested by the form of these bodies and the interpretation that they represent the sites 

of melt f low. 

The MgO and A^O.^rich and low Ti02 green spinels (Figure 5.29 and 5.30) 

found in the Lizard peridotites, including examples associated with clinopyroxene. 

plagioclase and pargasitic hornblende veinlets and feldspathic bands (Section 4.3.5.c) 

are commonly observed in samples which also contain Fe""̂ -, Cr203- and TiO^-rich 

brown spinels. The green spinels commonly occur as porphyroblasts and it is suggested 
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that the spinels may have precipitated from percolating melts. Al-spinel porphyroblasts 

are described in peridotites from Zabargad Island (Red Sea) and an origin involving 

precipitation from a melt is similarly proposed (Kurat et al., 1993). However, the green 

spinels found in the Lizard peridotites show low Cr# and high Mg#. This is not a usual 

feature of melt precipitation, which usually involves the precipitation of spinels with 

higher Cr# and lower Mg#. The form of the green spinels.i.e.^porphyroblasts. illustrates 

that these cannot represent relict spinels that have not re-equilibrated to conditions of 

lower P and T. I f the spinels were relicts, one would expect to see detlection of the 

foliation around the grains. This is not observed and the spinel grains show no evidence 

Cr 
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• Mylonitic plagioclase-bearing peridotite 

Mylonitic amphibole-bearing peridotite 
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A i 

Figure 5.3L Triangular plot of Fe*"̂ , Cr and Al proportions of spinel for peridotites from the 
Lizard Ophiolite Complex compared with the (1) partial melting trend of peridotite (Ozawa, 
1993), (2) composidonal field of abyssal peridotite (Dick and Bullen, 1984) and (3) melt-rock 
interaction trend of peridotites from the Miyamori ophiolite complex, Japan (Ozawa, 1993). 

for internal strain. Green (1964) suggested that these green spinels grew as 

porphyroblasts whilst the olivine and primary pyroxenes (AhO^-rich) were 

recrystallising as the rock was deformed. This would require the early stages of 

deformation of the mylonitic plagioclase-bearing peridotites (in which the green spinels 
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are found) to occur in the spinel-facies stability field, thus the green Al-rich spinels 

would be stable. Following the model of Green {op. cit), it is suggested that the 

plagioclase-rims surrounding these spinel porphyroblasts were developed during the 

later re-equilibration reactions that accompanied the spinel- to plagioclase-facies 

transition (Section 5.2.2.b). 

A triangular plot o f Fe^^, Cr and A l contents o f spinel (Figure 5.31) shows that 

the trend defined by the Lizard peridotites lies on the partial melting trend (Ozawa, 

1993). But the Fe'̂ ^ increase o f the mylonitic plagioclase-bearing peridotites and 

transitional assemblage peridotites deviates slightly from the partial melting trend and 

is consistent with melt-rock interaction trends presented by Ozawa (1993). 

5.5.2.d. Igneous fractionation trends 

80 

70 
O Ultramafic Traboe cumulates 

Lizard pendotites 

30 40 50 60 •'O 80 '»0 

Figure 5.32. Plot of Cr# versus Mg# of spinel for ultramafic Fraboe cumulates from the Lizard 
Ophiolite Complex compared with composidonal trends defined for (1) ultramafic cumulates 
from Northem Apennine ophiolites (Hebert et al., 1989) and (2) cumulates from the Brooks 
Range ophiolite, Alaska (Harris, 1995). The compositional field defined by the peridotites from 
the Lizard Ophiolite Complex is included for comparison. 
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The compositional trends defined by Cr# and Mg# for spinels from ultramafic Traboe 

cumulates of the Lizard deviates from the trends defined for the peridotites (Figure 

5.32). The trends in the ultramafic Traboe cumulates are interpreted to represent 

fi-actional crystallisation processes. The Fe enrichment (low Mg#) at low Cr# in these 

ultramafic Traboe cumulates is different to trends in cumulates from the Brooks Range 

ophiolite (Harris, 1995) and cumulates from the Northern Apennine ophiolites (Hebert 

etal., 1989)(Figure 5.32). 

The Fe^^ increase, correlated with Cr decrease in the ultramafic Traboe 

cumulates, although not showing the same range of compositions, is similar to a trend 

seen in the olivine cumulate peridotites from the Marum ophiolite (Dick and Bullen, 

1984 and references therein), which is interpreted to be a result of low pressure 

fractional crystallisation (Figure 5.33). The slight Fe^^ enrichment of .jptnaU in 

ultramafic Traboe cumulates, which positively correlates with the low Cr values also 

suggests fractional crystallisation in the Lizard cumulates. 

Cr 

Ultramafic Traboe cumulate 

Lizard peridotites 

Al 

Figure 5.33. Triangular plot of Fê ,̂ Cr and Al proportions of spinel for ultramafic Traboe 
cumulates associated with peridotites from the Lizard Ophiolite Complex compared with (1) 
fractionation trend of cumulate peridotites from the Marum ophiolite (Dick and Bullen, 1984). 
The compositional field defined by the peridotites from the Lizard Ophiolite Complex is 
included for comparison. 
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5.5.2.e. Evidence for the palaeotectonic setting of the Lizard peridotites 

Bonatti and Michael (1989) characterised peridotites from a variety of 

geodynamic environments, f rom continental, pre-oceanic rifts, to passive ocean 

margins, to "mature' mid-ocean ridges and to subduction zones, by compiling mineral 
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Figure 5.34. Spinel Cr# data of Lizard peridotites plotted against inferred tectonic setting. 
Shaded regions are the ranges of data presented by Bonatti and Michael (1989). 

and whole rock geochemical data for peridotites. One of the parameters utilised in the 

study of Bonatti and Michael (1989) is the Cr# value of spinel, and it is shown that this 

increases in peridotites going from continental to pre-oceanic rifts to passive ocean 

margins to "mature" mid-ocean ridges to subduction zones and reflects an increase in 

the degree of depletion of the peridotites. In Figure 5.34, the range of Cr# from the 

Lizard peridotites are plotted against inferred tectonic environment and are compared 

with the data compiled by Bonatti and Michael (1989). The spinel Iherzolites with 
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primary spinel compositions e.g. low Cr# and high Mg#, plot in the 'ocean margin' 

field. The spinels with 're-equilibrated' compositions e.g. higher Cr# and lower Mg#, 

(see Section 5.5.2.b), which include a second group of spinel Iherzolites, and 

plagioclase Iherzolites, transitional assemblage peridotites and mylonitic peridotites, 

plot in the 'oceanic' field. However, the compositions in the 're-equilibrated' spinels 

cannot be interpreted in terms of a geodynamic setting, because the compositions of 

these spinels reflect re-equilibration processes and not the degree of depletion due to 

partial melting processes, which the data of Bonatti and Michael (1989) represents. In 

summary, the range of data for the spinel Iherzolites along the tectonic setting axis 

illustrates the possibility that they represent mantle derived from an 'oceanic margin' 

geodynamic setting. 

5.5.3. Spinel chemistry - summary 

• The variations in the Mg#, Cr# and Ti content of spinel in the Lizard peridotites 

depart from partial melting trends described in the literature. It is therefore 

suggested that compositional variations are not related to partial melting processes 

alone, but later chemical and physical processes have modified them. 

• The compositional trends defined by spinel in the Lizard peridotites are consistent 

with spinel- to plagioclase-facies re-equilibration of the peridotites during tectonic 

exhttmation i.e. related to subsolidus reactions that accompany changing conditions 

of T (and P) during syn-tectonic recrystallisation. 

• The same compositional trends are also consistent with melt-rock interaction, which 

is indicated by whole rock compositions of the mylonitic peridotites (Chapter 6). 

• Its is therefore concluded that plagioclase-facies re-equilibration and/or melt-rock 

interaction could have modified the composition of spinels in the Lizard peridotites. 

• Spinel compositions in the spinel Iherzolites suggest the possibility that prior to the 

later tectonic and chemical evolution these were derived from an 'oceanic margin' 

geodynamic setting. 

• In contrast to the peridotites it is suggested that the compositional variation in 

spinels from the ultramafic Traboe cumulates are related to fractional crystallisation 

processes. 
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5.6. Amphibole chemistry 

Microstructural evidence has shown (Chapter 4) that amphiboles are a common mineral 

phase in the mylonitic peridotites and also in the ultramafic and mafic Traboe 

cumulates and other rocks associated with the peridotites. Several populations of 

amphibole, defined by colour, are also characteristic of the Landewednack 

amphibolites. The majority of the amphiboles present are secondary in origin, having 

replaced the primary minerals of the host rocks. However, in some rocks, 

microstructures suggest that brown amphiboles may be primary in origin (Chapter 4). 

5.6.1. Amphibole chemistry - results 

The main compositional variations in amphibole are outline below. Representative 

mineral analyses are given in Table 5.6. The full electron probe data set is presented in 

Appendix D. 

The results includes analyses taken of brown-coloured amphiboles, which are 

the earliest amphibole-type recognised in these rocks and in some examples, may be 

primary in origin. According to the IMA amphibole classification of Leake (1978), 

brown amphiboles in the mylonitic plagioclase-bearing peridotite range from kaersutite 

to Ti-rich pargasite, and tschermakite types. Pale-brown coloured amphiboles in the 

mylonitic amphibole-bearing peridotite have a different composition and range from 

edenitic to pargasitic hornblende. Brovm amphiboles in the ultramafic Traboe 

cumulates and the mafic Traboe cumulates also range from edenitic to pargasitic 

hornblende and ferroan pargasitic hornblende. Amphiboles in a feldspathic band and 

gabbroic veins are pargasitic hornblende. 

Analyses taken from green to colourless amphiboles of secondary origin are 

also presented. These amphiboles are frequently observed to develop as rims aroimd the 

earlier brown amphiboles and other primary minerals. These amphiboles also host (in 

addition to chlorite) cross-cutting shear-zones in the peridotites (Chapter 4). 

Compositions range from tremolite and tremolitic hornblende to magnesio-homblende 

types. Colourless hornblende, which replaces pyroxene in the ultramafic Traboe 

cimiulates ranges between tremolitic hornblende, actinolitic hornblende and magnesio-

homblende types, and are therefore similar in composition to the secondary hornblende 
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in the Lizard peridotites. Secondary green to colourless-hornblende in the mafic Traboe 

cumulates, which replaces primary pyroxene and brown amphiboles, ranges from 

actinolitic hornblende, magnesio-homblende and ferro-homblende types. K contents 

range from 0.0016 to 0.48 (apfu) and Ti contents range from 0.008 to 0.51 (apfu). The 

highest Cr203 contents are shown by brown and pale brown amphiboles found in the 

mylonitic plagioclase-bearing peridotites and mylonitic amphibole-bearing peridotites 

and the lowest in colourless hornblendes found in the mafic Traboe cumulates (Table 

5.6). 

K (apfii) Ti (apfii) Wt% CrjOa 

Mylonitic plagioclase-
Bearing peridotite (B) 

0.008-0.07 0.37-0.51 1.56-1.96 

Mylonitic amphibole-
Bearing peridotite (B-G) 

0.005-0.046 0.05-0.2 1.17-2.02 

All peridotites (C) 0.0016-0.007 0.008-0.045 0.07-0.62 

Feldspathic bands (B-G) 0.009 0.16 1.15 

Ultramafic Traboe cumulates (B) 0.028-0.11 0.023-0.28 1.3-1.8 

Ultramafic Traboe cumulates (C) 0.009-0.48 0.033-0.1 0.24-0.67 

Mafic Traboe cumulates (B-G) 0.02-0.17 0.2-0.3 0.19-0.65 

Mafic Traboe cumulates (C) 0.006-0.07 0.022-0.12 0.03-0.4 

Gabbroic veins (B) 0.07-0.44 0.31-0.41 0.49-0.61 

Table 5.6. Summary of the compositions of amphiboles in the Lizard peridotites and associated 
ultramafic/mafic rocks. (B) = brown amphiboles, (B-G) = brown-green amphiboles, (C) = 
colourless/secondary amphiboles. 

5.6.2. Amphibole chemistry - interpretation and discussion 

In Figure 5.35, the compositions of amphiboles from the Lizard rocks are 

compared with examples from the literature using the IMA amphibole classification of 

Leake (1978). This diagram demonstrates that three different amphibole compositional 

groups are defined for the amphiboles in the Lizard peridotites and correspond to 

amphiboles from mylonitic plagioclase-bearing peridotites (kaersutite to Ti-rich 

pargasite, and tschermakite types), mylonitic amphibole-bearing peridotites (edenitic to 

pargasitic hornblende) and hydrous shear-zones (tremolite and tremolitic hornblende to 

magnesio- hornblende types). These different compositional groups within the Lizard 
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Figure 5.35. Classification of calcic amphiboles according to the IMA scheme (Leake, 1978). 
Amphiboles from the Lizard Ophiolite Complex are compared with examples from the 
Zabargad Island peridotites, including data from (1) Piccardo et al., (1988) and (2) Bonatti et 
a / . , ( 1 9 8 6 ) . - f l f e ^ . 
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peridotites are similar to compositional groups identified for deformed peridotites from 

Zabargad Island, Red Sea (Bonatti et al., 1986, Piccardo et al., 1988, Dupuy et 

al.,\99\,kgvmicretal., 1993). 

The three compositional groups for the Zabargad Island are summarised by 

Agrinier et al. (1993). These include 'type 1' amphiboles which occur as minor 

interstitial brown coloured crystals in spinel peridotites, and 'type 2' amphiboles, which 

are abundant (~30 % modal volume), pale green in colour and characteristic of 

amphibole peridotites. 'Type 3' amphiboles are green to colourless and are associated 

with late shear-zones and veins. 

'Type r amphiboles are predominantly titanian pargasite and, rarely, kaersutite 

in composition, and 'type 2' amphiboles overlap the pargasite and pargasitic 

hornblende fields. However, the 'type 3' amphiboles are more variable in composition 

and range between pargasitic hornblende to tremolitic (where amphibole names are 

based on the IMA classification of Leake, 1978). The different amphibole groups 

identified in the Lizard peridotites, in addition to being compositionally very similar to 

the amphibole groups identified in the Zabargad peridotites (see above), are also 

texttirally similar (Chapter 4). Brown to pale coloured amphibole of feldspathic bands, 

ultramafic Traboe cumulates, mafic Traboe cumulates and gabbroic veins also overlap 

the compositional ranges of the 'type 1' and 'type 2' amphiboles from Zabargad Island 

peridotites. Secondary green to colourless amphiboles in the ultramafic Traboe 

cumulates are compositionally identical to the 'type 3' amphiboles hosting shear-zones 

and veins in the Zabargad peridotites (Agrinier et al., 1993). Secondary amphiboles of 

mafic Traboe cumulates from the Lizard are more Fe-rich than the 'type 3' amphiboles 

from Zabargad. However, the compositional ranges defined for these rocks do overlap 

slightly. Interstitial brown amphiboles of Ti-pargasitic to kaersutitic composition 

(Leake, 1978) are also documented in numerous other peridotite complexes in the 

literature, including amphibole-bearing peridotites from the Lherz massif (Bodinier et 

al., 1990; Woodland et al., 1996), Northern Apennine peridotites (Rampone et al, 

1993; Rampone et al., 1995), mantie xenoliths (Menzies and Hawkesworth, 1987 and 

references therein) and peridotite mylonites of basal thrust contacts from the White 

Hills peridotite (Jamieson, 1980) and the Bay of Islands ophiolite complex (McCaig, 

1983) of Newfoundland. 

A K versus Ti diagram (Figure 5.36) demonstrates that the brown amphiboles in 

the mylonitic plagioclase-bearing peridotite (A) have Ti /K ratios similar to brown 
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amphiboles ('type 1' amphibole) from Zabargad Island spinel peridotites (Dupuy et al., 

1991; Agrinier et al., 1993). Brown amphiboles o f the Lizard also posses Ti /K ratios 

that fal l within the range defined by amphibole-bearing harzburgite from the Lherz 
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Figure 5.36. Plot of K versus Ti (apfu, atoms per formula unit) of amphiboles from rocks of 
the Lizard Ophiolite Complex, including - (A) brown amphiboles in mylonitic plagioclase-
bearing peridotite, (B) pale brown-green coloured amphiboles in myionitic amphibole-bearing 
peridotite, cumulate rocks, gabbroic veins and feldspathic band and (C) secondary colourless 
amphiboles peridotite and cumulate rocks. The amphiboles from the Lizard Ophiolite Complex 
are compared with compositional fields defined for amphiboles from various ophiolites, 
including - (1) 'type 3' amphibole, Zabargad Island (Agrinier et al., 1993), (2) 'type 2' 
amphibole, Zabargad Island (Agrinier et al., 1993), (3) green porphyroclastic amphibole, 
Zabargad Island (Dupuy et al., 1991), (4) brown amphibole, Zabargad Island (Dupuy et al., 
1991), (5) amphibole rich peridotites, Caussou ophiolite (Fabrics et al., 1989), (6) 'type 1" 
amphibole, Zabargad Island (Agrinier et al., 1993), (7) brown amphibole bearing-peridotite, 
Zabargad Island (Bonatti etal, 1986). 

massif (Bodinier et al., 1990) and amphibole-rich peridotites from Caussou peridotites 

(Fabrics et al., 1989). The T i /K ratio of pale coloured amphiboles in the mylonitic 

amphibole-bearing peridotite, feldspathic band, ultramafic Traboe cumulates, mafic 

Traboe cumulates and gabbroic vein from the Lizard (B) overiap the compositional 

range of both green porphyroclastic ('type 2') amphibole of amphibole peridotites and 

brown amphibole ('type 1') o f spinel peridotites from Zabargad Island (Dupuy et al.. 
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1991; Agrinier et al., 1993). The "type 3' amphiboles that host shear-zones in the 

Zabargad peridotites have T i /K ratios which are very similar to the range o f Ti/K ratios 

observed in colourless hornblende-bearing shear-zones in the Lizard peridotites and in 

secondary green to colourless amphiboles in the ultramafic Traboe cumulates and mafic 

Traboe cumulates (C). 

A plot o f vvft% Cr203 versus Ti02 (Figure 5.37) shows that the compositional 

ranges defined by the three amphibole groups in the Lizard peridotites (A-C) 

correspond closely to the range of Cr203 and Ti02 contents observed for the different 

amphibole 'types' in the Zabargad Island peridotites (Agrinier et al.. 1993). 

Textural (Chapter 4), geochemical evidence and comparison with the literature 

(see above) suggests that the origin o f three different amphibole compositional groups 
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Figure 5.37. Plot of wt% CrjOj versus wt% Ti02 of amphiboles from rocks of the Lizard 
Ophiolite Complex, including - (A) brown amphiboles in mylonitic plagioclase-bearing 
peridotite, (B) pale brown-green coloured amphiboles in mylonitic amphibole-bearing 
peridotite, cumulate rocks, gabbroic veins and feldspathic band and (C) secondar> colourless 
amphiboles in peridotite (Hydrous shear-zones) and Traboe cumulate rocks. The amphiboles 
from the Lizard Ophiolite Complex are compared with compositional fields defined for 
amphiboles from peridotites of Zabargad Island (Agrinier et al., 1993). 
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(brown amphibole, green amphibole and colourless hornblende) in the Lizard 

peridotites are related to different melt + fluid- and/or fluid-rock interaction events and 

the thermal evolution during the tectonic evolution of the Lizard Ophiolite Complex. 

The composition of the amphiboles within each group and comparison with data 

presented in the literature can be used to constrain the thermal conditions during these 

events and demonstrates that these events occurred at progressively lower temperatures. 

The Ti-rich pargasite-kaersutite amphiboles of mylonitic plagioclase-bearing peridotite 

represent the earliest amphibole group in the Lizard peridotites and recent experimental 

work (Niidua and Green submitted min & Pet) establishes that between 18-25Kb the 

maximum temperature stability limit of pargasite is 1075°C. In addition, and Agrinier 

et al. (1993) suggest that 'type 1' Ti-pargasite from Zabargad Island formed at 

temperatures around (900-1000°C). 

The 'type 2' Cr-pargasite amphiboles from Zabargad Island are believed to have 

formed at temperatures around 700-800°C (Agrinier et al., 1993). It is suggested that 

the pale coloured edenitic to pargasitic hornblende, typical of the mylonitic amphibole-

bearing peridotite and feldspathic bands, and the early amphiboles of ultramafic Traboe 

cumulates, mafic Traboe cumulates and gabbroic veins developed at similar 

temperatures, on the basis of similarities in composition with the 'type 2' Cr-pargasites 

from Zabargad Island. The composition and stability of olivine, chlorite and colourless 

tremolite and tremolitic hornblende to magnesio-homblende in hydrous shear-zones 

within the Lizard peridotites is suggestive of temperatures around 500-800°C on the 

basis of similarities with amphiboles of similar composition in chlorite-bearing 

peridotite mylonites from the Voltri Massif, NW Italy (Hoogerduijn Strating et al., 

1993). 

Pyroxene thermobarometry, presented later in this chapter, provides further P-T 

constraints to substantiate temperatures suggested above. In the following chapter 

(Chapter 6), whole rock geochemical properties of the Lizard peridotites and associated 

rocks are presented and additional evidence for melt + fluid and/or fluid-rock is 

discussed. 
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5.6.3. Amphibole chemistry - Landewednack amphibolites 

Landewednack amphibolites show variations in composition. These amphibole-types 

include brown and green-coloured amphibole and colourless hornblende, which were 

identified on the basis of microstructural evidence (Chapter 4). The analyses of 

amphiboles taken from the Landewednack amphibolites are then compared with those 

taken from amphibolites in ophiolites described in the literature. A comparison of the 

analyses from the Lizard with the published data will aid the interpretation of the 

metamorphic conditions responsible for any variations observed in the Landewednack 

amphibolites. Representative analyses of amphibole for all the Landewednack 

amphibolites are presented in Appendix D. 

5.6.3.a. Results 

The principal compositional variations in amphibole are summarised below. 

Representative mineral analyses are given in Table 5.7. The full electron probe data set 

is presented in Appendix D. 

K (apfu) Ti (apfii) 

Brown-amph ibole 0.012-0.07 0.07-0.28 

Green amphibole 0.0001-0.16 0.041-0.14 

Colourless hornblende 0.008 0.032 

Table 5.7. Summary of the compositions of amphiboles in the Landewednack amphibolites 

Brown amphiboles are characteristic of the earliest metamorphic assemblage in 

the Landewednack amphibolites (Section 4.4.1.d), and the composition of these 

amphiboles and relict brown amphibole cores within later green amphiboles ranges 

from pargasitic hornblende, ferroan pargasitic hornblende, edenitic hornblende, edenite, 

magnesio-homblende types (according to the IMA amphiboles classification of Leake, 

1978)(Figure 5.38). The green amphiboles that characterise a second metamorphic 

assemblage in these amphibolites (Sections 4.4.l.b and 4.4.l.d), occur as rims around 

relict pyroxene and brown amphiboles of the earliest metamorphic assemblage, range 

from ferroan pargasitic hornblende, edenitic hornblende, ferro- edenitic hornblende and 
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magnesio-homblende to ferro-homblende types. A third metamorphic assemblage is 

identified in the amphibolites (Sections 4.4.l.b and 4.4.l.d) and is distinguished by the 

presence of colourless hornblendes. Analysis of colourless hornblendes in a single 

sample (CAC 143) shows that they are actinolite in composition. Ti contents range 

from 0.032 to 0.48 and K contents range from 0.0001-0.16. 
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Figure 5.38. Classification of calcic amphiboles according to the IMA scheme (Leake, 1978). 
Brown and green coloured amphiboles and colourless hornblende for the three different 
metamorphic assemblages of the Landewednack amphibolites from the Lizard Ophiolite 
Complex are shown. <̂  = ̂  . 

5.6.3.b. Interpretation and discussion 

The composifional range defined by the brown and green amphiboles and colourless 

hornblende from the Landewednack amphibolites overlaps the range displayed by 
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amphibolites associated with the Troodos ophiolite (Spray and Roddick, 1981; Malpas 

et al., 1992) and Oman ophiolite (Searle and Malpas, 1982). The brown and green 

coloured amphiboles from the Lizard amphiboles define different trends on a plot of K 

versus Ti (Figure 5.39), with the green amphibole showing a limited range of Ti 

contents and wide range of K contents in contrast to brown amphibole. which have 

more variable Ti contents and limited K contents. 
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Figure 5.39. Plot of K versus Ti (apfu, atoms per formula unit) of brown and green coloured 
amphiboles and colourless hornblende for the three different metamorphic assemblages of the 
Landewednack amphibolites from the Lizard Ophiolite Complex are shown. 

It is suggested that these different compositional trends and the different 

metamorphic mineral assemblages, including amphibole colour in the amphibolites. are 

related to contrasting metamorphic conditions e.g. temperature, pressure and/or 

variations in the composition metamorphic fluids. The composition of brown 

amphiboles in the Lizard amphibolites overlaps the range defined by pale brown/green 

amphiboles in the mylonitic amphibole-bearing peridotites, feldspathic bands, 

ultramafic Traboe cumulates, mafic Traboe cumulates and gabbroic veins (Figure 

5.36). This suggests that the development of the amphibole-bearing assemblages in all 

of these rocks may be related to the same tectono-thermal event, as already proposed on 

the basis of textural evidence in the previous chapter (Chapter 4). The compositions of 
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colourless hornblende within a shear-zone in the amphibolites overlap the range 

defined by colourless hornblende hosting hydrous shear-zones in the Lizard peridotites, 

and secondary hornblende in the ultramafic Traboe cumulates and mafic Traboe 

cumulates (Figure 5.36). This similarity in composition also supports the conclusion 

based on field (Chapter 3) and microstructural (Chapter 4) evidence, that the shear-

zones and secondary green to colourless hornblende in the Lizard peridotites, 

ultramafic Traboe cumulates, mafic Traboe cumulates and amphibolites are analogous. 

•On the basis of the geochemical properties of amphiboles in the Landewednack 

amphibolites, it is suggested that the transition from an amphibolite assemblage 

characterised by brown amphibole to green amphibole (via relict brown amphibole 

cores with green rims) and, finally, colourless hornblende is related to different 

tectono-thermal events. It is suggested that these different tectono-thermal events are 

associated with a decrease in temperature and a change in the composition of 

metamorphic fluids. This hypothesis contrasts with the findings of Green (1964b), who 

proposed that the metamorphism of the Lizard amphibolites is prograde rather than 

retrograde, and that brown amphibole-bearing assemblages post-date a green 

amphibole-bearing assemblage. However, Green (1964c) also notes that, in many 

specimens with a brown amphibole-bearing assemblage, there is evidence for incipient 

retrogression of brown amphibole to a blue-green amphibole, which supports the 

findings presented above. Further constraints for temperature and pressure conditions 

during metamorphism in the Lizard amphibolites are provided by thermobarometry 

later in this chapter. 

5.6.3. Amphibole chemistry - summary 

• Three different amphibole types were defined in the mylonitic peridotites and 

associated ultramafic and mafic rocks on the basis of microstructural observations 

and these were brown-amphibole, green amphibole and colourless hornblende 

(Chapter 4); and this is confirmed by variations in mineral composition. 

• It is suggested that the three different amphibole types are related to different melt 

+ fluid- and/or fluid-rock interaction events during the evolution of the peridotites 

and associated ultramafic and mafic rocks and that these events occurred at 

progressively lower temperatures. 
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Three different amphibole types have also been defined in the Landewednack 

amphibolite and these were brown amphibole, green amphibole and colourless 

hornblende (Chapter 4); and this is also confirmed by variations in mineral 

composition. The green amphibole and colourless hornblende are similar in 

composition to amphiboles in the Lizard peridotites and associated ultramafic and 

mafic rocks. 

It is proposed that the different amphibole types (i.e. metamorphic mineral 

assemblages) in the Landewednack amphibolites were developed during different 

tectono-thermal events, which appear to have been associated with a decrease in 

temperature and a change in the composition of metamorphic fluids. 

5.7. Plagioclase chemistry 

Plagioclase is a relatively minor phase in the Lizard peridotites, as it is only observed in 

the plagioclase Iherzolites, the transitional assemblage peridotites and the mylonitic 

plagioclase-bearing peridotites. However, the Traboe cumulate rocks associated with 

the peridotites often contain a high proportion of plagioclase. Therefore it is important 

to analyse these grains. The Landewednack amphibolites also contain abundant 

plagioclase. The chemistry of plagioclase in these rocks may reflect primary 

compositions, including igneous fractionation trends, in addition to compositions 

modified through metamorphism. The purpose of this sub-Section is to present analyses 

of plagioclase in the peridotites, associated cumulate rocks and the Landewednack 

amphibolites in order to determine the nature of their compositions, then identify and 

evaluate any significant compositional variations. 

5.7.1. Plagioclase chemistry - results 

The following discussion summaries the principal variations in plagioclase 

composition. In the following sub-Section, interpretations and discussions of this data 

and comparison with data presented in the literature are provided. Representative 

mineral analyses are given in Table 5.8. The full electron probe data set is presented in 

Appendix D. 
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%An 

Mylonitic plagioclase-bearing peridotite 68-74 

Ultramafic Traboe cumulate 77 

Mafic Traboe cumulate 45-79 

Gabbroic vein 50-55 

Troctolite 61 

Mafic dyke 23-31 

Landewednack amphibolite (brown amphibole assemblage) 52-71 

Landewednack amphibolite (green amphibole assemblage) 31-55 

Landewednack amphibolite (colourless hornblende assemblage) 10-24 

Table 5.8. Summary of the compositions of plagioclases found in the ultramafic and mafic 
rocks from the Lizard Ophiolite Complex. 

The An content of plagioclases ranges from AnlO to An79 (Table 5.8). The highest 

values are found in the mafic Traboe cumulates and the lowest values in the colourless 

hornblende-bearing assemblage of the Landewednack amphibolites. The largest range 

of An contents are shown by plagioclases found in the mafic Traboe cumulates (An45-

79). 

5.7.2. Plagioclase chemistry - interpretation and discussion 

In Figure 5.40, the range of plagioclase compositions for the mylonitic plagioclase-

bearing peridotites is compared with plagioclase compositions of plagioclase-bearing 

peridotites from ophiolites presented in the literature. The development of plagioclase 

in plagioclase peridotites from ophiolites (Figure 5.40) is interpreted by Bonatti et al., 

(1986), Hoogerduijn Strating et al., (1993) and Rampone et al., (1993) to be related to 

subsolidus reactions involving the breakdown of spinel and pyroxene and re-

equilibration, which accompanies the spinel- to plagioclase-facies transition of 

peridotite. 

The similarity between the composition of the plagioclase in the mylonitic 

plagioclase-bearing peridotites from the Lizard and the examples from the literature 

suggests that the origin of the plagioclase in the Lizard rocks may be attributed to 

metamorphic re-equilibration in response to the spinel- to plagioclase-facies transition. 

However, the possibility that the plagioclase is also derived from melt-rock interactions 
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Figure 5.40. Diagram showing the anorthite content (%An) of plagioclase for rocks from the 
Lizard Ophiolite Complex (including data from Sandeman et al., 1995 for Landewednack 
amphibolites) compared with ultramafic and mafic rocks from oceanic environments and 
ophiolites, including examples from Hess Deep (Girardeau and Francheteau, 1993; Hekinian et 
al., 1993), Northern Apennine ophiolites (Rampone et al., 1993; Rampone et al., 1997), Voltri 
Massif (Hoogerduijn Strating et al., 1993), Zabargad Island (Bonatti et al., 1986), Oceanic and 
ophiolitie environments (Hebert et al., 1989 and references therein). Mid-ocean ridge 
environments (Beard, 1986). 

must also be considered, especially when variations in the composition of the other 

constituent phases (olivine, pyroxene and spinel) suggests that melt-rock interaction 

may be involved in addition to reactions accompanying the spinel to plagioclase-facies 

transition. Plagioclase-bearing peridotites and cumulates that represent the product of 

melt impregnation, from the Hess Deep (An 86 and 91) (Girardeau and Francheteau, 

1993) and Northern Apennines (An80-94)(Rampone et ah, 1997), have higher anorthite 

contents than the mylonitic plagioclase-bearing peridotites from the Lizard. The 

presence of amphibole- and plagioclase-bearing veinlets (Chapter 4) in the mylonitic 

peridotite, and plagioclase veinlets in the coarse-grained Iherzolites (Davies, 1984) also 

suggests that melt impregnation has occurred in the Lizard peridotites. I f melt-

interaction is responsible for the composition of the plagioclase in the Lizard 

peridotites, the reason for the An contents being lower than those presented for melt 

impregnated ultramafic rocks from Hess Deep and the Northern Apennines could be a 

consequence of differences in the composition of the infiltrating melt and the host rock. 

In conclusion, it is proposed that the composition of plagioclase in the mylonitic 

plagioclase-bearing peridotite from the Lizard may be related to reactions 

252 



Mineral chemistry 

accompanying the spinel to plagioclase-facies re-equilibration of the peridotite and 

melt-rock interaction. 

The mafic Traboe cumulates from the Lizard exhibit a considerable range of 

plagioclase compositions (An45-79), which would be expected as a result of crystal 

fractionation processes. The variations in plagioclase composition in these cumulates is 

less likely to be a result of metamorphism, because plagioclase would be relatively 

stable at the pressure and temperature conditions which are calculated (Section 5.8) for 

deformation and metamorphism in these rocks. 

The different mineral assemblages found in the Landewednack amphibolites, 

which are defined by the presence of brown amphibole, green amphibole and colourless 

hornblende respectively, plot as three distinct compositional groups on a diagram 

(Figure 5.40) displaying the anorthite content of plagioclase. 

The range of anorthite contents of plagioclases in Landewednack amphibolites 

with a brovvTi amphibole-bearing assemblage is similar to the range in the mafic Traboe 

cumulates, which possess both brown and green amphibole-bearing assemblages, and 

falls within the range defined by cumulate rocks from oceanic environments and 

ophiolites (Figure 5.40). Plagioclase compositions in Landewednack amphibolites with 

a green amphibole-bearing assemblage overlap the range of compositions obtained in a 

study of the same unit of amphibolites from the Lizard by Sandeman et al., (1995). 

These amphibolites and those associated with colourless hornblende-bearing shear-

zones have plagioclase compositions that overlap the range displayed by 

amphibolitised metagabbro and amphibolite (An4-40) from the Hess Deep (Hekinian et 

al., 1993). 

The variations in the compositions of plagioclases between the different 

metamorphic mineral assemblages of the Landewednack amphibolites, which all have a 

similar bulk whole rock composition (Chapter 6), do not appear to be primary in origin. 

This is because the anorthite contents of the Landewednack amphibolites are lower 

than the range observed for primary plagioclase compositions in mafic igneous rocks 

(see above) from ophiolites and oceanic environments. Alternatively it is proposed that 

the decrease in anorthite content of plagioclase from brown amphibole-bearing 

amphibolites via green amphibole-bearing amphibolites to colourless hornblende-

bearing amphibolites is related to metamorphic processes (Plyusina, 1982; Blundy and 

Holland, 1990). The changes in the anorthite composition of plagioclase are related to 

equilibrium exchange reactions with co-existing calcic amphiboles, with plagioclase 
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becoming less calcic and amphibole more calcic at lower temperatures and pressures 

during metamorphism (Plyusina, 1982). It has already been suggested on the basis of 

amphibole compositions, that changes in the mineral assemblage in the amphibolite 

occurred in response to a decrease in temperature during different tectono-thermal 

events (Section 5.6.3.b). The temperature and pressure conditions of metamorphism in 

the Landewednack amphibolites are investigated later in this chapter with reference to 

the application of plagioclase-amphibole thermobarometry. 

5.7.4. Plagioclase chemistry - summary 

• It is suggested that the occurrence of plagioclase in the mylonitic plagioclase-

bearing peridotites from the Lizard Ophiolite Complex may be controlled by 

reactions accompanying involving the breakdown of Al-rich spinel and pyroxenes 

during the spinel to plagioclase-facies re-equilibration of the peridotite. Variations 

in the composition of the plagioclase may be related to differences in the 

composition of spinel and/or pyroxene. The plagioclase may also been derived from 

melt-rock interactions. 

• The large range (An45-79) compositions of plagioclases in the mafic Traboe 

cumulates are probably related to crystal fractionation processes. 

• The compositional variations of plagioclases in the Landewednack amphibolites are 

directly correlated with the metamorphic mineral assemblage, based on the type of 

amphibole. It is suggested that the decrease in An content of plagioclase in the 

different metamorphic mineral assemblages may be related decreasing conditions of 

T and P during metamorphism, because plagioclase becomes less calcic at lower T 

and P as a consequence of equilibrium exchange reactions with co-existing calcic 

amphiboles. 

5.8. Temperature and pressure evolution and conditions during deformation 

In the previous chapter (Chapter 4), microstructures of the Lizard peridotites and 

associated rocks, including ultramafic and mafic Traboe cumulates, have shown 

variations consistent with changes in the conditions of P and T during deformation. 

This evidence includes the results of a study of olivine petrofabrics for the peridotites. 
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which provides constraints for the temperature conditions during deformation. In the 

previous Sections, compositional variations of the constituent minerals in the Lizard 

peridotites and associated rocks e.g. decreasing AI2O3 and CaO of orthopyroxene, 

decreasing AI2O3 and increasing CaO of clinopyroxene, increasing Cr# and decreasing 

Mg# of spinel have been interpreted in terms of changes in the conditions of P and T 

during deformation and metamorphism. Similarly, it is has been suggested that changes 

in the P and T conditions of metamorphism may be responsible the low AI2O3 contents 

and high CaO contents of clinopyroxene, and decreasing %An of plagioclases found in 

the Landewednack amphibolites. In the following sub-Sections published mineral 

thermometers and barometers are applied to the rocks of the Lizard Ophiolite Complex 

in order to substantiate the hypotheses that have already been proposed. This study will 

also provide additional new constraints, on the conditions of P and T during the 

deformation and metamorphism associated with the evolution of the Lizard Ophiolite 

Complex. 

5.8.1. Pyroxene thermobarometry 

A variety of methods, based on mineral compositions, are used to determine the 

temperature and pressure values of equilibration of the Lizard peridotites and 

associated ultramafic and mafic rocks. The methods of determining these equilibration 

conditions are based on both experimental CMS (CaO-MgO-Si02) and CMAS (CaO-

MgO-Al203-Si02) systems, in addition to natural systems. 

The thermometer of Wells (1977) is based on the exchange of Ca and Mg 

between clinopyroxene and orthopyroxene. The partitioning of A l and Cr in 

orthopyroxene (Witt-Eickschen and Seek, 1991) is not applicable to plagioclase-

bearing assemblages, hence can only be applied to spinel Iherzolites or relict spinel-

facies orthopyroxene porphyroclasts in plagioclase-bearing assemblages. The Brey and 

Kohler (1990) thermometer is based on the partitioning of Na between orthopyroxene 

and clinopyroxene. The thermometer of Brey et al., (1990) is also applied, and this is 

based on the partitioning of Fe, Mg, Ca and Na between orthopyroxene and 

clinopyroxene. A l and Cr solubility in pyroxene is utilised by the thermobarometer of 

Mercier (1980) for spinel facies peridotites. The Al""^ content of amphibole is strongly 

dependent on pressure. Thus, the barometers of Johnson & Rutherford (1989) and 

Schmidt (1992) have been applied to amphibole compositions in the mylonitic 

255 



Mineral chemistry 

peridotites, feldspathic bands, ultramafic and mafic cumulates and gabbroic veins to 

provide estimates of pressure. The Mercier et al. (1984) barometer, based on Ca 

partitioning between co-existing orthopyroxene and clinopyroxene yielded unrealistic 

values for the Lizard peridotites (i.e. extremely high or low pressure and negative 

pressures). Processes other than temperature and pressure controlled equilibration may 

therefore affect the Ca concentration in the pyroxenes. The Kohler and Brey (1990) 

barometer based on Ca exchange between olivine and clinopyroxene also yielded 

unrealistic values, and is therefore not used. The erroneous results of the Mercier et al. 

(1984) and Kohler and Brey (1990) barometers highlight the fact that there can be 

problems when applying thermometers and barometers to natural rock systems. 

One of main assumptions associated with the application of thermometers and 

barometers is that the chemical composition of the constituent minerals reflects 

equilibration at transient pressures and temperatures (Hoogerduijn Strating et al., 

1993). The resuhs obtained from these techniques when applied to natural systems also 

depend on many other factors, including (1) analytical error, (2) secondary alteration of 

the constituent mineral phases, (3) the activity of other elements e.g. Na, Cr and Fê *, 

(4) non-ideal solution behaviour of the constituent phases, (5) deviations of the ideal 

cation ordering on sites of coexisting mineral phases, (6) grain size, (7) cooling rate, (8) 

the presence of fluids, and (9) the influence of deformation on the diffusion kinetics 

(Witt-Eickschen and Seek, 1991; Hoogerduijn Strating et al., 1993). In particular, in 

preceding Sections describing and interpreting the compositions of the mineral phases 

in the Lizard peridotites and associated rocks, it has been demonstrated that the mineral 

compositions in these rocks have been modified by melt-rock interaction in addition to 

temperature and pressure controlled equilibration. The compositional changes resulting 

from the melt-rock interaction processes are therefore likely to influence the results of 

geothermometric and geobarometric calculations presented below. The closure 

temperature of cation-exchange reactions, on which the thermometers and barometers 

are based, are influenced by these and other factors and therefore the validity of these 

methods is questioned. 

A comprehensive discussion of the principles pertinent to the thermometers and 

barometers utilised on the Lizard rocks and the effects of the factors influencing the 

results is beyond the scope of this study. With consideration of the problems associated 

with the use of thermometers and barometers, the results of thermometric and 
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barometric calculations cannot be considered as precise values. Additional constraints, 

particularly for pressure estimates, are obtained from associated mineral assemblages. 

Four pyroxene thermometers and a single pyroxene thermobarometer have been 

selected from the methods presented in the literature (see Table 5.9) and applied to 

pyroxenes from the Lizard peridotites and associated ultramafic and mafic rocks. 

Pyroxenes with minimal exsolution lamellae were selected and, where present, a 

defocused beam analysis was used. The Witt-Eickschen and Seek (1991) thermometer 

has been applied to plagioclase-free assemblages and, in plagioclase-bearing 

assemblages, it is only applied to relict, coarse-grained, orthopyroxene porphyroclasts 

which are interpreted to have originally equilibrated at higher-pressure conditions. 

Additional pressure estimates for the mylonitic peridotites and associated ultramafic 

Author(s) Estimate Mineral(s) Method 

Wells (1977) Thermometer 
Clinopyroxene-
orthopyroxene pair 

Mg-Ca exchange 

Brey and Kohler (1990) Thermometer 
Clinopyroxene-
orthopyroxene pair 

Na partitioning 

Brey et al., (1990) Thermometer 
Clinopyroxene-
orthopyroxene pair 

Fe, Mg, Ca and Na partitioning 

Witt-Eickschen and Seek 
(1991) 

Thermometer Orthopyroxene Cr and Al partitioning 

Mercier (1980) Thermobarometer Single pyroxene Al and Cr solubility 

Johnson and Rutherford 
(1989) 

Barometer Amphibole Al '" '^ content 

Schmidt (1992) Barometer Amphibole Al '" '^ content 

Spear (1980) Thermometer Amphibole-plagioclase pair Na and Ca partitioning 

Plyusina (1982) Thermobarometer Amphibole-plagioclase pair 
An content of plagioclase and 
Al""^ content of amphibole 

Blundy and Holland 
(1990) 

Thermobarometer Amphibole-plagioclase pair 
An content of plagioclase and 
Al'°'^ content of amphibole 

Table 5.9. Summary of methods used by the thermometers, barometers and thermobarometers 
for P-T estimates of equilibration of the Lizard peridotites, associated rocks and Landewednack 
amphibolites. 

and mafic rocks are provided by the amphibole barometers of Johnson & Rutherford 

(1989) and Schmidt (1992) (Table 5.9). See Appendix C for the equations used for the 

P & T calculations. 
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5.8.1.a. Results 

The results for all the thermometers used for each particular sample are presented on a 

graph to facilitate comparison of the different methods (Figure 5.41). The data 

presented for a thermometer in each sample represents an average value for all the 

clinopyroxene-orthopyroxene pairs, or single orthopyroxene compositions. Error bars 

for each result refer to the errors recommended by the authors. For each particular 

sample the average values, based on different thermometers, usually fall within a range 

of 110°C and are generally within error of different methods. However, the Brey et al. 

(1990) thermometer often yields results which are, in some examples, between 150-

200°C lower than the other thermometers. Hence the results of this thermometer are 

omitted when they fall outside the error defined by the other methods. 

The average values, obtained by the various thermometers, for pyroxene 

porphyroclasts in the spinel Iherzolites yield temperatiires that range between 1021 and 

1197°C and thus appear to represent the crystallisation conditions of the earliest, pre-

tectonic, peridotite mineral assemblage in the Lizard. Porphyroclasts in plagioclase 

Iherzolites give temperatures between 1063-1121°C. In peridotite assemblages 

transitional between plagioclase Iherzolites and mylonitic plagioclase-bearing 

peridotites, temperatures range between 1049 and 1164°C. The^porphyroclasts in the 

plagioclase-bearing assemblages are therefore slightly lower than those in the spinel 

Iherzolite. Although the temperatures in the plagioclase-bearing rocks are interpreted to 

reflect the relict, pre-tectonic and spinel-facies equilibration of the porphyroclasts, there 

has been incipient equilibration to lower temperature. Temperatures yielded by relict 

orthopyroxene porphyroclasts in mylonitic plagioclase-bearing peridotites support this 

observation. They are lower, ranging between 926 and 1080°C. Neoblasts in the 

mylonitic plagioclase-bearing peridotites provide lower temperatures between 919 and 

1035°C. A similar range is observed in neoblasts in mylonitic amphibole-bearing 

peridotites, namely 965 to 1074°C. 

Fine-grained pyroxene neoblasts in a feldspathic band (CAC 73) within 

mylonitic amphibole-bearing peridotite provide a temperature of 947°C, which is in 

error of results for the mylonitic peridotites. A similar range of temperatures, between 

972 and 1061°C, is observed in ultramafic Traboe cumulates and these results 
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Figure 5.41. Diagram showing the temperature estimates based on pyroxene thermometry for 
the Lizard peridotites and associated rocks. Sample numbers are displayed and the 
thermometers applied include: (1) Wells (1977), (2) Witt-Eickschen and Seek (1991). (3) Brey 
and Kohler (1990), (4) Mercier (1980), (5) Brey et al., (1990). Error bars are based on errors 
recommended by the authors. 
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are within error of the temperature range of 900-1050°C obtained by thermometry for 

layered ultramafic and mafic Traboe cumulates from the Traboe cumulate complex 

(Floyd et al., 1993). Gabbroic veins yield a temperature range between 979 and 

1048°C, which falls within the range given for the mylonitic peridotites and cumulate 

rocks. 

Pressure estimates based on the Mercier (1980) thermobarometer are only 

applicable to the spinel facies peridotites, and the pressure values obtained for the 

spinel Iherzolites range between 13.6 and 19.3 Kb (Figure 5.42). Pressure estimates for 

the mylonitic plagioclase-bearing peridotites and mylonitic amphibole-bearing 

Hydrous shear-zone in 
peridotite 

-e 1 Ultramafic Traboe cumulate 

IT 
I ^ 

I ^ 1 

I — e — I CAC 151 Gabbroic vein 

I • 1 CAC 73 Feldspathic band 

Mylonitic amphiboie-
bearing peridotite 

I » I Mylonitic plagioclase-
I ^0^1 ^ bearing peridotite 

Spinel Iherzolite 

1 

0 5 10 15 20 25 
Pressure estimate (Kb) 

Figure 5.42, Diagram showing the pressure estimates based on a pyroxene barometer 
(Mercier, 1984) and an average value based on amphibole barometers (Johnson and Rutherford, 
1989; Schmidt, 1992) for the Lizard peridotites and associated rocks. Error bars are based on 
errors recommended by the authors. 

peridotites are provided by the amphibole barometers of Johnson & Rutherford (1989) 

and Schmidt (1992). The application of these barometers yields a pressure estimate of 

5.3 Kb for the mylonitic plagioclase-bearing peridotite and between 6.2 and 6.4 Kb for 

the mylonitic amphibole-bearing peridotite. A feldspathic band (CAC 73) provides a 
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pressure estimate of 6 Kb. The ultramafic Traboe cumulates yield pressure estimates 

between 4.5 and 6 Kb and a gabbroic vein (CAC 151) gives a value of 5.7 Kb. These 

results are within error of the pressure estimates provided by the mylonitic peridotites. 

and the values are compatible with the presence of plagioclase in equilibrium with the 

other constituent mineral phases which suggests pressures <7.5 Kb. Amphiboles within 

hydrous shear-zones in the Lizard peridotites yield pressure estimates that are notably 

lower than the mylonitic peridotites, with values ranging between 1.5 and 3.9 Kb. 

5.8. Lb. Interpretation and discussion 

The results demonstrate a decrease in equilibration temperature from spinel Iherzolite 

(1109°C ± 88) to mylonitic plagioclase-bearing peridotite (977°C ± 58) and mylonitic 
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Figure 5.43. Diagram showing P-T trajectory of the Lizard peridotites and associated rocks 
(arrow). The diagram includes P-T estimates for the Lizard peridotites taken from Davies 
(1984) and Rothstein (1988). The P-T fields of the garnet, spinel and plagioclase Iherzolite and 
the Iherzolite solidus are after Davies (1984) and references therein. 

amphibole-bearing peridotite (1020°C ± 54), via plagioclase Iherzolite (1092°C ± 29) 

and transitional assemblage peridotite (I106°C ± 58). These results support the 

discussion earlier in this chapter concerning pyroxene and spinel compositions. It was 

suggested that decreasing ALO^ and CaO of orthopyroxene, decreasing ALO;, and 

increasing CaO of clinopyroxene, increasing Cr# and decreasing Mg# of spinel may be 

related to decreasing P and T during deformation and metamorphism. The results also 
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broadly support deformation temperatures proposed on the basis of activated slip 

systems in olivine (Section 4.3.7.b). 

The results from this study, and previous studies on the Lizard peridotites by 

Davies (1983) and Rothstein (1988), are presented schematically on Figure 5.43. This 

diagram depicts the P-T trajectory of the Lizard peridotites during a history from initial 

upper mantle equilibration through re-equilibration at declining conditions of P and T 

in association with deformation. Estimates of pressure applied to the mylonitic 

peridotites are based on amphibole barometers. However, amphibole is not always 

present in these mylonitic peridotites and in particular in the plagioclase Iherzolite and 

transitional peridotite, therefore a pressure value of 5 Kb is estimated for these rocks by 

comparison with values obtained by Davies (1983) for similar rocks from the Lizard. 

Temperature values for the Lizard peridotites are based on the average value of the 

different thermometers. 

Figure 5.43 demonstrates that the results of this study are within the range of 

values presented by Davies (1983) and Rothstein (1988). Rothstein (1988) proposed 

that, at 1200° ± 70°C and 15 ± 4 Kb, a large part of the Lizard peridotite contained 

extensive primary textural elements in an undeformed state. These primary textures are 

believed to have developed from an original equilibration within the upper mantle 

(Rothstein, 1988). Pyroxene in deformed spinel Iherzolites yielded a mean temperature 

of 1085° ± 70°C and 14.5 ± 4 Kb (Rothstein, 1988), which the author proposed to 

reflect sub-solidus re-equilibration of the pyroxenes with declining temperatures in 

association with the development of deformation fabrics. The P-T conditions 

demonstrate that these deformation processes were initiated in the spinel-facies of the 

upper mantle (Rothstein, 1988). 

The temperature and pressure values yielded by spinel Iherzolites in the course 

of this study are therefore compatible with this spinel-facies sub-solidus re-

equilibration of the Lizard peridotite, although some values (Figure 5.43) approach the 

primary equilibration temperatures proposed by Rothstein (1988). However, the results 

from this study reveal that the process of sub-solidus re-equilibration, in association 

with the development of mylonitic fabrics, continued to lower temperature (<1074°C), 

and pressure (<7.5 Kb) conditions than those discussed by Rothstein (1988). The 

results presented by Davies (1983) are also consistent with this observation. Davies 

(1983) demonstrated that pyroxenes in the spinel Iherzolite equilibrated at conditions in 
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the region of 1100°C and 19 Kb, in the plagioclase Iherzolite at 1076°C and 5 Kb. the 

mylonitic plagioclase-bearing peridotite at 874 °C and 5 Kb and in mylonitic 

amphibole-bearing peridotite the lowest P-T values are observed, 862°C and 5 Kb. It is 

therefore apparent that the re-equilibration of the Lizard peridotites spans a wide range 

of temperatures and pressures, which correspond to the spinel and plagioclase Iherzolite 

facies. 

The lowest P and T values are obtained in the mylonitic plagioclase-bearing 

peridotite and mylonitic amphibole-bearing peridotite, which are the most recrystallised 

and deformed of the Lizard peridotites. A similar P-T trajectory (Figure 5.44) has been 

obtained for the Voltri Massif peridotites (Hoogerduijn Strating et al., 1993) and 
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Figure 5.44. Diagram showing P-T trajectory of the Lizard peridotites and associated rocks 
(arrow). The diagram includes P-T estimates for the Lizard peridotites taken from Davies 
(1984) and Rothstein (1988). The P-T fields of the garnet, spinel and plagioclase Iherzolite and 
the Iherzolite solidus are after Davies (1984) and references therein. Also included are P-T 
estimates for peridotites from various ophiolites, including: (1) granular spine! Iherzolite. Voltri 
Massif (Hoogerduijn Strating er al., 1993), (2) spinel Iherzolite, External Ligurides (Rampone 
et al., 1995), (3) spinel-bearing tectonites, Voltri Massif (Hoogerduijn Strating et al.. 1993). (4) 
plagioclase Iherzolite, External Ligurides (Rampone et al., 1995), (5) plagioclase-beanng 
peridotite mylonites, Voltri Massif (Hoogerduijn Strating et al., 1993), (6) plagioclase-bearing 
tectonites, Voltri Massif (Hoogerduijn Strating et al., 1993), (7) hornblende-bearing peridotite 
mylonites, Voltri Massif (Hoogerduijn Strating etal., 1993). 

External Liguride peridotites (Rampone et al., 1995). However, spinel facies 

equilibration of the External Liguride peridotites occurred at lower temperatures 

(<1100°C) than the Lizard peridotites and Voltri Massif peridotites (Hoogerduijn 
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Strating et al., 1993; Rampone et al, 1995). These two examples from the literature are 

interpreted by the authors to represent fragments of subcontinental mantle emplaced at 

shallow levels by tectonic denudation mechanisms, during the early stages of rifting of 

the Jurassic Ligurian Piemontese basin (Rampone et al., 1995). The P-T estimates 

yielded by the spinel Iherzolites from the Lizard are also within error of estimates from 

peridotites that preserve fabrics developed during an asthenospheric uprise at mid-

ocean spreading centres (Nicolas, 1986). 

It is interesting to note that the temperatures and pressures of pyroxene re-

equilibration in the feldspathic band (947°C and 6.5 Kb), ultramafic Traboe cumulates 

(1016°C and 6 Kb), Traboe cumulates (900-1050°C)(Floyd et al., 1993) and gabbroic 

veins (979-1016°C and 5-6 Kb) are within error of the range defined by the mylonitic 

peridotites (919-1074°C and 5.3-6.4 Kb) from the Lizard. These results, in addition to 

the fact that these rocks are'often interbanded/layered with the mylonitic peridotites and 

have identical fabric orientations (Chapter 3), suggest that the processes of deformation 

and re-equilibration of these rocks and the mylonitic peridotites were contemporaneous. 

The temperatures of re-equilibration yielded by the ultramafic Traboe cumulates 

(including Traboe cumulate complex, Floyd et al., 1993) from the Lizard are similar to 

ultramafic rocks and cumulates from the Hess Deep, which re-equilibrated at 

temperatures within the range of 980-1100°C during re-crystallisation and associated 

melt-impregnation (Hekinian et al., 1993). This re-equilibration occurred in response to 

tectonic processes associated with the emplacement of mantle in an intra-rift ridge 

environment (Hekinian et al., 1993). 

P-T conditions of 7-11 Kb, 750-850°C have been calculated for ultramafic and 

metabasic rocks immediately above and below the dynamothermal aureole contact of 

the Bay of Islands ophiolite complex (McCaig, 1983). Ultramafic rocks, which are 

found as basal mylonites of the White Hills peridotite (St. Anthony complex, 

Newfoimdland), yield two-pyroxene temperatures of 900 to 950°C, and temperatures of 

860°C have been calculated for 2-pyroxene amphibolites below the peridotites 

(Jamieson, 1980). Basal, mylonitic peridotites from the Oman ophiolite have pyroxene 

re-equilibration temperatures which are slightly higher, in the region of 1000°C 

(Boudier et al., 1988). The temperatures yielded by ultramafic and metabasic rocks 

from examples of dynamothermal aureoles and basal peridotite mylonites from various 

ophiolite complexes (see above) are generally lower than those observed in mylonitic 
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peridotites and cumulates (900-1074°C) from the Lizard, and distinctly lower than in 

the coarse grained Iherzolites (1063-1197°C). This suggests that the deformation 

associated with the Lizard peridotites, Traboe cumulates and gabbroic veins was not 

related to the development of a dynamothermal aureole. Alternatively, the deformation 

of the Lizard peridotites and associated rocks may be related to exhumation of mantle 

to shallow levels by tectonic denudation processes, similar to the mechanisms proposed 

for the Voltri Massif (Hoogerduijn Strating et al., 1993) and External Ligurides 

peridotites (Rampone et al., 1995). However, the association of deformed mantle 

peridotites, containing relict textures developed within the spinel Iherzolite facies with 

lower crustal ctunulate rocks of oceanic character, suggests a more complex 

tectonothermal evolution for the Lizard Ophiolite Complex. The presence of ultrainafic 

and mafic Traboe cumulates in contact with the mantle peridotites, which possess 

similar mylonitic fabric orientations to the peridotites, suggests that deformation took 

place in an oceanic environment, or at least in a pre-oceanic rift environment. 

Furthermore, the relatively high temperatures in the ultramafic and mafic cumulates are 

inconsistent with prograde metamorphism of colder rocks in a dynamothermal aureole. 

However, they are compatible with the mylonitisation and break-up of hot, relatively 

young, lower oceanic crust (Floyd et al., 1993; Hekinian et ah, 1993). It is therefore 

proposed on the basis of this and evidence discussed elsewhere (Chapters 3, 4 and 6) 

that a shear-zone contact located at or near to the Moho may be responsible for the 

exhumation of the Lizard peridotites from the spinel Iherzolite to plagioclase Iherzolite 

facies, and that the cumulates could represent the hanging-wall of this detachment. 

Further, more detailed, discussions of tectonic models to account for the ca.30 km 

exhumation of the Lizard peridotite are presented in Chapter 7. 

The lowest pressure estimates, between 1.5 and 3.9 Kb, are calculated for 

hydrous shear-zones which cross-cut the fabric in the Lizard peridotites and associated 

rocks. This supports the field (Chapter 3) and microstructural (Chapter 4) evidence, that 

these structures are developed late in the evolution of the Lizard, during the thrusting of 

mantle over the Landewednack amphibolites. In the following section, estimates of 

pressure and temperature conditions during the metamorphism of these Landewednack 

amphibolites are presented. 
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5.8.2. Amphibole-plagioclase thermobarometry - Amphibolites 

Estimates of conditions P and T of metamorphism in the amphibolitised mafic Traboe 

cumulates and Landewednack amphibolites are provided by amphibole barometers, and 

thermometers and thermobarometers applied to amphibole-plagioclase pairs (Table 

5.1). The amphibole barometers of Johnson &. Rutherford (1989) and Schmidt (1992) 

are based on the fact that the Al'°'^' content of amphibole is strongly dependent on 

pressure. Blundy and Holland (1990) propose a amphibole barometer which is based on 

the Al'^ content of amphibole, stating that the barometer of Johnson & Rutherford 

(1989), which is based on the Al'""*' content of amphibole. does not yield temperature-

dependent pressures. The thermometer of Blundy and Holland (1990) is based on the 

Al'°'^' content of amphibole coexisting with plagioclase. The thermometer developed by 

Spear (1980) is based on the temperature dependent partitioning of Na and Ca between 

amphibole and plagioclase. Plyusina (1982) developed an empirical graphical 

thermobarometer, which utilises the anorthite content of plagioclase and the total 

alumina content of co-existing amphibole. 

5.8.2.a. Results 

Temperature estimates of metamorphism of the amphibolitised mafic Traboe cumulates 

and Landewednack amphibolites based on three different methods (Spear. 1980; 

Plyusina, 1982; Blundy and Holland, 1990) are presented in Figure 5.45. The 

temperature estimates shown in Figure 5.45 represent the average values for numerous 

amphibole-plagioclase pairs, and errors are based on errors in the calculations as 

suggested by the respective authors. The thermometers of Spear (1980) and Plyusina 

(1982) yield temperatures, which are consistently within a range of 50°C. The Blundy 

and Holland (1990) thermometer consistently yields higher temperatures (ca. 160°C) 

than the Spear (1980) and Plyusina (1982) calibrations, so these results will be 

excluded from the following discussion. Landewednack amphibolites with a green 

amphibole-bearing assemblage yield temperatures that range between 525 and 638°C. 

and those with a brown amphibole-bearing assemblage yield a slightly higher 

temperature range, between 550 and 698°C. Amphibolitised mafic Traboe cumulates. 
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Figure 5.45. Diagram showing the temperature estimates based on plagioclase-amphibole 
thermometers for the amphibolitised mafic Traboe cumulate and Landewednack amphibolites. 
Sample numbers are displayed and the thermometers applied include: (1) Blundy and Holland 
(1990), (2) Spear (1980), (3) Plyusina (1982). Error bars are based on errors recommended by 
the authors. 

with a green amphibole-bearing assemblage yield metamorphic temperatures between 

618 and 683°C, which are slightly higher than those obtained in the Landewednack 

amphibolites. 

Pressure esUmates provided by the barometers of Plyusina (1982), Johnson & 

Rutherford (1989), Blundy and Holland (1990) and Schmidt (1992) generally produce a 

similar range of results (Figure 5.46). Landewednack amphibolites with a green 

amphibole-bearing assemblage produce pressure estimates that range between 2.6 and 

6.4 Kb. Estimates of pressure yielded by Landewednack amphibolites with a brown 

amphibole-bearing assemblage fall within this range, with values between 2.2 and 5.9 

Kb. Amphibolitised mafic Traboe cumulates with a green amphibole-bearing 

assemblage yield similar results, with pressure estimates between 3 and 5.6 Kb. It is 

interesting to note that the pressure estimates obtained for the hydrous shear-zones in 

the peridotites (1.5-3.9 Kb) (Figure 5.42) overlap the range defined by the green-

amphibole-bearing Landewednack amphibolites (2.6-6.4 Kb). The amphibolites show 

distinctly lower pressure values than the mylonitic peridotites, and ultramafic Traboe 
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Figure 5.46. Diagram showing the pressure estimates based on plagioclase-amphibole 
barometers for the amphibolitised mafic Traboe cumulate and Landewednack amphibolites. 
Sample numbers are displayed and the thermometers applied include: (1) Johnson and 
Rutherford (1989), (2) Spear (1980), (3) Blundy and Holland (1990), (4) Plyusina (1982). Error 
bars are based on errors recommended by the authors. 

cumulates with a brown-amphibole bearing metamorphic mineral assemblage. 

5.8.2.b. Interpretation and discussion 

Average P and T values of the amphibolites are plotted with the P and T estimates for 

the peridotites and associated rocks on Figure 5.47. This diagram illustrates that the 

maximum temperature and pressure conditions metamorphism are markedly lower than 

the conditions for the mylonitic peridotites, feldspathic band, ultramafic Traboe 

cumulates and gabbroic veins. This diagram also demonstrates that the Landewednack 

amphibolites with the green amphibole-bearing assemblage show the lowest P and T 

values. These results are within error of values presented by Sandeman et al., (1995), 

which yield maximum temperatures of ca. 600°C and pressures of 3-4 Kb for the green 

amphibole-bearing assemblage of the Landewednack amphibolites. In Chapter A , it was 

proposed on the basis of microstructural evidence, that the brown amphibole-bearing 
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Figure 5.47. Diagram showing P-T esdmates of the amphibolitised mafic Traboe cumulate 
and Landewednack amphibolites compared with the Lizard peridotites and associated rocks 
(arrow shows trajectory). The diagram includes P-T estimates for the Lizard peridotites taken 
from Davies (1984) and Rothstein (1988). The P-T fields of garnet, spinel and plagioclase 
Iherzolite and the Iherzolite solidus are after Davies (1984) and references therein. 

assemblage in the Landewednack amphibolites represents the product of early high-

temperature metamorphism of basaltic and gabbroic rocks. The temperatures yielded b> 

the brown amphibole-bearing assemblage (611-762°C) are slightly higher than those of 

the green amphibole-bearing assemblage. However, these temperatures are too low to 

be consistent with high temperature metamorphism, in contrast to the high 

metamoiphic temperatures (978-1026°C) yielded by pyroxene compositions in the 

ultramafic Traboe cumulates and gabbroic veins with the brown amphibole-bearing 

assemblage. These results suggest that the brown amphibole-bearing assemblage of the 

Landewednack amphibolites was indeed developed during a different metamorphic 

event, at lower temperature, than that recorded by the Traboe cumulates and gabbroic 

veins. Alternatively, there has been re-equilibration of the brown amphibole to lower 

temperature compositions during the later retrograde metamorphism. responsible for 

the development of a green amphibole-bearing assemblage. This second hypothesis is 

supported by the extensive development of green amphibole rims around the relict 

brown amphiboles in the Landewednack amphibolites. 

Field and microstructural evidence suggest that the metamorphism of the 

Landewednack amphibolites took place during Top-to-the-NW thrusting, and 

emplacement of an overriding mantle unit (Chapter 3). Temperatures in the region of 
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700-860°C and pressures of 2-5 Kb have been calculated for amphibolites within 

metamorphic aureole immediately below peridotites from the St. Anthony complex, 

Newfoundland (Jamieson, 1979). Amphibolites beneath the Semail ophiolite in Oman 

yielded a temperature range of 670-750°C (Searle and Malpas, 1980). Malpas (1979) 

calculated temperatures of 720-850°C for amphibolites fi-om the dynamothermal 

aureole of the Bay of Islands ophiolite complex, Newfoundland. McCaig (1983) 

calculated P-T condifions of 7-11 Kb, 750-850°C for rocks on both sides of the thrust 

plane of the same ophiolite. 

The metamorphic conditions calculated for dynamothermal aureoles associated 

with other examples of ophiolites (see above) are therefore slightly different to the 

conditions in the Landewednack amphibolites (green amphibole-bearing assemblage) 

of the Lizard ophiolite complex. Although the pressure estimates (3-5.6 Kb) are 

comparable with these examples, the temperatures (525-638°C) are lower than the 

range observed in dynamothermal aureoles from other ophiolites complexes. This 

difference in metamorphic conditions in the dynamothermal aureole of the Lizard 

Ophiolite Complex can be explained by the nature of the thrust contact itself (Chapter 

3). 

In the examples of other ophiolite complexes, the thrust contact between the 

overriding mantle sheet and underlying dynamothermal aureole is characterised by the 

presence of peridotite mylonites in the mantle unit, which form an integral part of the 

aureole assemblage (Malpas, 1979). The peridotite mylonites and associated fabrics are 

developed within a zone, which may be up to 500 metres in thickness (Suhr and 

Cawood, 1993), above the thrust contact. In the examples of ophiolites with a 

dynamothermal aureole, there is a gradual transition downwards from coarser-grained 

peridotites, with moderately developed fabrics, to mylonitic peridotites with strongly 

developed fabrics that parallel those developed in the rocks in the dynamothermal 

aureole. Amphibole-bearing peridotite mylonites have been described in the lowermost 

(<20m) regions of these zones above the dynamothermal aureole (Jamieson, 1979; 

McCaig, 1980; Suhr and Cawood, 1993). Metamorphic temperatures in the range 750-

1000°C have been calculated for these peridotite mylonites (see Secfion 5.8.1.b). 

The thrust contact between peridotites and amphibolites of the dynamothermal 

aureole of the Lizard Ophiolite Complex shows several differences with other 

ophiolites. Field evidence (Chapter 3) has demonstrated that, although mylonites are 
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found within the peridotite immediately above the thrust contact with the 

Landewednack amphibolites, they are of limited extent and certainly not 500 metres in 

thickness. The basal mylonites in peridotites (hydrous shear-zones) from the Lizard are 

characterised by a mineral assemblage composed of colourless hornblende and chlorite, 

in contrast to the assemblage composed of recrystallised orthopyroxene, clinopyroxene 

and olivine Ti-pargasite observed in other ophiolites (Malpas. 1979; Girardeau, 

1982; Suhr and Cawood, 1993). This evidence demonstrates that the mylonite zones 

within the peridotites above the amphibolites in the Lizard Ophiolite Complex 

developed at lower metamorphic temperatures than peridotite mylonites fi-om other 

ophiolites. This evidence is therefore in accord with the fact that the Landewednack 

amphibolites yield metamorphic temperatures lower than those of amphibolites of 

dynamothermal aureoles fi-om other ophiolites (see above). Further discussion with 

additional constrains, regarding the tectonothermal evolution of these aureole rocks and 

the peridotite mylonites, including the tectonic models, is presented in Chapter 7. 

5.8.3. Thermobarometrv - summary 

• The P-T estimates presented in the preceding section support the evidence for 

metamorphic re-equilibration at conditions of lower P and T as suggested by 

compositional trends of minerals in the peridotites, the associated ultramafic and 

mafic rocks and the Landewednack amphibolites. 

• The early equilibration of the spinel Iherzolite took place in the region of 1200°C ± 

70 and 15 ± 4 Kb. Later deformation and re-equilibration of the peridotites was 

initiated in the spinel facies stability field in the region of 1000-1200°C and 13.6-

19.3Kb. Continued deformation and re-equilibration resulted in the development of 

mylonitic peridotites, which re-equilibrated at conditions of lower T (919-1074°C) 

and P (5-6Kb). 

• The ultramafic Traboe cumulate were deformed and metamorphosed at conditions 

of high T (900-1050°C) and P (4.5-6Kb). It is suggested tiiat this may have 

happened during the deformation and high-temperature metamorphism 

accompanying the break-up of hot lower oceanic crust. 

• The metamorphic evolution of the Landewednack amphibolites took place at 

conditions of lower T (525-639°C) and P (2.6-6.4Kb). Hydrous shear-zones in the 
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amphiboiites and peridotites developed at similar pressures (1.5-3.9Kb). It is 

proposed that the metamorphic evolution of the Landewednack amphibolites is 

related to the obduction of the Lizard Ophiolite Complex. 

5.9. Mineral chemistry and thermobarometry: summary and discussion 

Throughout this chapter the compositional trends observed in the different mineral 

phases, from the various rocks of the Lizard, have been interpreted as being the product 

of several geological processes. These processes include: 

• Metamorphic re-equilibration 

• Melt-rock interaction 

• Igneous fi-actionation trends 

In this final discussion, the evidence presented in the previous sections of this 

chapter is evaluated and summarised. The aim of this is to integrate and clarify the 

discussions that have been presented in order to explain the compositional variations of 

the different mineral phases. In addition, the P-T constraints provided by mineral 

thermometers and barometers are summarised and integrated with the processes listed 

above. In Chapter 7, tectonic and magmatic models are evaluated in order to account 

for the evidence presented and processes proposed in this Chapter. 

5.9.1. Metamorphic re-equilibration 

The Lizard peridotites have shown clear variations in the compositions of 

orthopyroxene, clinopyroxene and spinel, which are associated with a decrease in the 

overall grain-size from spinel Iherzolite to mylonitic peridotites. These compositional 

changes include a decrease in the AI2O3 content of orthopyroxene and clinopyroxene, a 

decrease of CaO in orthopyroxene and an increase of CaO in clinopyroxene. Spinels 

show an increase in Cr# and a decrease in Mg#, from spinel Iherzolites to mylonitic 

peridotites. Similar compositional variations in orthopyroxene, clinopyroxene, and 

spinel are observed in peridotites from Zabargad Island (Bonatti et al, 1986), the Voltri 

Massif (Hoogerduijn Strating et al., 1993) and External Ligurides peridotites (Rampone 

et al., 1993). Grain-size reduction of the host peridotite and the appearance of 

plagioclase also accompany the compositional variations of minerals in these 
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peridotites. These correlation are also found in the Lizard peridotites. The 

compositional changes in orthopyroxene, clinopyroxene, and spinel in the Lizard 

peridotites and the published examples, are related changing conditions of T (and P) 

during syn-tectonic recrystallisation. To be more precise, these compositional changes 

are a consequence of subsolidus reactions that accompany the spinel- to plagioclase-

facies transition in these mantle peridotites (Piccardo etal., 1990; Hoogerduijn Strating 

et al., 1993; Rampone et al., 1993, 1995). The composition variations in the minerals in 

the Lizard peridotites are therefore the outcome of the tectonothermal evolution of the 

mantle, which involved significant exhumation, from the spinel-facies to the 

plagioclase-facies stability field. Microstructural evidence (Chapter 4) demonstrates 

that deformation, grain-size reduction and recrystallisation, leading to the development 

of mylonitic peridotites accompanied this evolution. However, it should be noted that 

processes other than metamorphic re-equilibration have modified the composition of 

the mineral phases in the Lizard peridotites, and these processes are discussed in the 

following sections. Compositional changes in the Traboe cumulate rocks, mafic rocks 

and feldspathic bands may also be a consequence of re-equilibration. In particular, 

changes in the anorthite content of plagioclase and the composition of amphibole in the 

Landewednack amphibolites are related to metamorphic re-equilibration. 

5.9.2. Melt-rock interaction 

The transition from spinel Iherzolite to mylonitic peridotite is accompanied by a 

decrease in the forsterite content of olivine. This compositional change is inconsistent 

with partial melting trends involving higher degrees of melting, which would result in 

an increase in the forsterite content of olivine and it is also inconsistent with 

metamorphic re-equilibration, which would have no effect on the forsterite content. 

Alternatively this compositional trend may be a consequence of melt-rock interaction. 

This hypothesis is supported by similar compositional changes reported in the 

literature, for peridotites from ophiolitic and oceanic environments. Further evidence 

for melt-rock interaction in the Lizard peridotites is provided by increases in the Ti 

content of orthopyroxene, clinopyroxene and spinel. Although a Cr# value increase and 

a Mg# value decrease in spinel has been associated with metamorphic re-equilibration 

(see above), this compositional change is also consistent with melt-rock interaction. 

The presence of minor (<5%) Ti-pargasite and kaersutite amphibole in the mylonitic 
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plagioclase-bearing peridotite is also consistent with melt-rock interaction, as 

amphiboles of identical composition are documented in peridotites from ophiolitic 

environments which have been impregnated by melt. Finally, the most conclusive 

evidence for melt-rock interaction in the Lizard peridotites is changes in the whole rock 

composition. These whole rock compositional changes are discussed in detail in 

Chapter 6. 

5.9.3. Igneous fractionation trends 

Both the ultramafic Traboe cumulates and the mafic Traboe cumulates display 

variations in the composition of the constituent mineral phases which are consistent 

with igneous fractionation. Olivines in the layered cumulates show a range of forsterite 

contents, which extends well beyond the range defined by the Lizard peridotites. In 

both orthopyroxenes and clinopyroxenes from the ultramafic Traboe cumulates and the 

mafic Traboe cumulates, a large range of Mg# is observed, which is consistent with 

igneous fractionation. Spinel grains in the ultramafic Traboe cumulates show a range of 

Mg#, which are associated with low Cr#. The spinels in these cumulates also show an 

increase in Fê "̂ , which is correlated with decreasing Cr#. These variations are very 

different from the compositional trends observed in the peridotites, which are 

interpreted to reflect metamorphic re-equilibration and melt-rock interactions. Instead, 

it is suggested that the variations in mineral composition observed in these cumulates 

reflects igneous fractionation processes. 

5.9.4. P-T evolution 

P-T constraints provided by mineral thermometers and barometers support the evidence 

of metamorphic re-equilibration suggested by compositional trends of minerals in the 

peridotites. The results demonstrate that a complex tectonothermal evolution is 

recorded by the composition of minerals in the peridotites, and these results support the 

conclusions foimded on the basis of field (Chapter 3) and microstructural evidence 

(Chapter 4). These P-T constraints support the findings of Rothstein (1988), which 

revealed that the Lizard peridotites preserve evidence for textures that were developed 

in spinel Iherzolites during an early equilibration of the mantle in an undeformed state 

in the region of 1200°C ± 70 and 15Kb ± 4. However, the majority of the peridotites 
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are extensively deformed, and P-T estimates show that this relates to subsequent 

deformation which was initiated in the spinel facies stability field in the region of 1000-

1200°C and 13.6-19.3Kb. This deformation resulted in the development of mylonitic 

peridotites, which re-equilibrated at conditions of lower T and P, with P-T estimates 

suggesting temperature conditions between 919-1074°C and pressures between 5-6Kb. 

The results demonstrate that the cumulates also equilibrated under similar conditions, 

between 900-1050°C and 4.5-6Kb in the lower crust. 

These P-T conditions are inconsistent with the P-T evolution observed in 

peridotites which are developed immediately above a dynamothermal atireole during 

emplacement of ophiolites. The results demonstrate that the Lizard peridotites have 

undergone tectonic exhimiation of ca. 30km from the spinel to plagioclase facies. As an 

alternative to deformation associated with obduction and the development of a 

dynamothermal aureole, the deformation and P-T evolution of the Lizard peridotites 

may be related to exhumation of mantle to shallow levels by tectonic denudation 

processes, similar to the mechanisms proposed for the Voltri Massif (Hoogerduijn 

Strating et al., 1993) and External Ligurides peridotites (Rampone et al., 1995). 

These processes would result in strain localisation within the mantle and the 

development of shear-zones characterised by the presence of peridotite mylonites. 

Furthermore, the equilibration conditions suggested by the Traboe cumulate rocks are 

consistent with high-temperature deformation and break-up of hot, lower oceanic crust, 

and not with prograde metamorphism of colder rocks (Floyd et al., 1993). This 

suggests that the deformation of these cumulates, is associated with the evolution of the 

peridotites. However, these cumulates are not derived from the spinel facies stability 

field, and would not have undergone significant exhtmiation, therefore they may 

represent the hanging-wall of the proposed detachment zone, which was possibly 

developed close to the Moho. 

In contrast to the peridotites and cumulates, the Landewednack amphibolites 

preserved evidence for a metamorphic evolution at lower grade. Maximum 

metamorphic temperatures of 525-638°C, and pressures of 2.6-6.4Kb have been 

calculated for the green amphibole-bearing assemblage, in amphibolites in the footwall 

of thrust contacts on the east coast of the Lizard (Chapter 3). The hanging-wall of these 

thrust contacts is composed of variably deformed peridotites, and includes the 

development of hydrous shear zones within the peridotites. These shear zones form the 
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actual contact between the amphibolite and peridotite, and are composed of colourless 

hornblende and chlorite. Barometric calculations suggest that these shear-zones were 

developed at pressures of 1.5-3.9Kb, similar to the estimates obtained for the 

Landewednack amphibolites. This thrust contact is interpreted to have developed 

during the obduction of the Lizard Ophiolite Complex, the mantle being decoupled 

from its substrate and emplaced over the amphibolites during top-to-the-NW thrusting 

(Jones, 1997). The deformation and metamorphism of the Landewednack amphibolites 

represents the development of a dynamothermal aureole that accompanied the 

emplacement of the mantle unit. Comparison of the field characteristics of this thrust 

contact and the P-T evolution of the Landewednack amphibolites, with examples of 

dynamothermal aureole of other ophiolites, reveals that there are significant 

differences. The metamorphic temperatures attained in the dynamothermal aureoles of 

other ophiolites are significantly higher than calculated for the Landewednack 

amphibolites. In addition, high-temperature (750-1000°C) peridotite mylonites which 

are characteristic of the overriding mantle sheet of other ophiolites, are not observed at 

the Lizard. This evidence suggests that the mantle of the overriding sheet of the Lizard 

was relatively cold during obduction, in comparison to the mantle of other ophiolites, 

and hence the metamorphic conditions in the dynamothermal aureole were 

correspondingly lower. Further discussion regarding the tectonothermal and magmatic 

history of the Lizard peridotites and Landewednack amphibolites with additional 

geochemical constraints are presented in Chapter 7. 
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C H A P T E R 6 

I S O T O P I C , M A J O R , T R A C E AND R A R E E A R T H E L E M E N T 

C H A R A C T E R I S A T I O N O F T H E R O C K S F R O M T H E L I Z A R D O P H I O L I T E 

C O M P L E X 

6.1. Introduction 

It has already been established in the previous chapter (Chapter 5) that the Lizard 

peridotites display variations in mineral chemistry, which can be correlated with 

changes in microstructure f rom relatively, undeformed spinel and plagioclase 

Iherzolites to mylonitic peridotites. These changes in mineral chemistry are associated 

with re-equilibration o f the mineral assemblage to conditions of lower T and P, in 

addition to metasomatism in response to melt/fluid - rock interaction. Therefore 

analyses o f major, trace and rare earth elements of the Lizard peridotites are presented 

in order to constrain the chemical evolution o f the Lizard peridotites. In particular, 

evidence for metasomatism is investigated and the probable source of melt/fluid 

responsible is evaluated with reference to metasomatised peridotites from ophiolitic 

environments described in the literature. One o f the overall aims of the investigation of 

the geochemical characteristics o f the Lizard peridotites is to constrain the geodynamic 

environment in which the peridotites formed. 

In this study, feldspathic bands, ultramafic and mafic Traboe cumulates, 

gabbroic veins, Landewednack amphibolites, Porthoustock amphibolites, mafic dykes 

f rom the Lizard Ophiolite Complex have been also been analysed. The analyses of 

these rocks include major and trace element analyses, rare earth element analyses as 

well as isotopic analyses. These analyses are used in an attempt to characterise the 

types o f magma forming during the evolution o f the Lizard Ophiolite Complex and to 

determine whether these are compatible with the oceanic environment proposed on the 

basis o f geological observations o f the previous chapters (Chapters 3, 4 & 5). The 

characterisation o f geochemical properties o f these rocks and the igneous processes 

responsible for any variations is made by comparison with similar rocks from oceanic 

and ophiolitic environments described in the literature. 

Analyses o f Ordovician basement rocks, including amphibolite layers within the 

Old Lizard Head Series (OLHS), deformed mafic sheets that cross-cut the OLHS and 
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the Lizard Head sill are also provided in order characterise the magma types and 

provide geochemical constraints on the tectonic origin o f the Ordovician basement unit 

(Chapter 3). 

6.2. Major and trace elements 

Major and trace element analyses o f selected samples were performed using the Philips 

PW 1500 spectrometer located in the Department o f Geological Sciences at the 

University o f Durham. Full details of sample selection, sample preparation, the 

analytical procedure, analytical errors and representative analyses are presented in 

Appendices A and D. A l l major element analyses are reported as anhydrous in wt% and 

trace elements are in ppm. 

Analyses presented in this section include analyses o f uhramafic and mafic 

rocks taken f rom the field outcrops, Traboe cumulate complex borehole cores and the 

Predannack borehole core (Institute o f Geological Sciences borehole reports, 1978, 

1979; Leake and Styles, 1984; M.T. Styles pers comm, 1997) and analyses provided 

D.H.Green {pers comm., 1997). Additional analyses for the Lizard peridotites and 

Landewednack amphibolites are taken from Shepherd (1986). 

6.2.1. Serpentinisation 

In order to successfully interpret the major and trace element compositions o f the 

Lizard peridotites, it is important to establish whether or not serpentinisation modified 

the original compositions o f these rocks. Several samples o f serpentinised spinel 

Iherzolite which show >90 % serpentinisation were analysed and are compared with the 

composition o f the relatively fresh (<30 % serpentinisation) spinel and plagioclase 

Iherzolites f rom the Lizard (Figure 6.1). Major elements are plotted against T i02 , which 

is assumed to be immobile during serpentinisation. I f the serpentinised samples fall on 

the same trend as the fresher Iherzolites on a plot, it can be assumed that 

serpentinisation has not modified the abundance o f that particular element. However, i f 

the serpentinised samples deviate from the trend defined by the fresher Iherzolites it can 

be assumed that this reflects addition or removayhe element being investigated as a 

consequence o f serpentinisation. Figure 6.1 demonstrates that the serpentinised 
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Iherzolites are enriched in FeiOs, NaaO, K2O and SiOa and depleted in CaO and to 

some extent MgO, relative to the comparatively fresh spinel and plagioclase Iherzolite. 

AI2O3 and MnO show little variafion relative to the comparatively fresh Iherzolites. The 

decrease in CaO is thought to be related the breakdown of clinopyroxene during 

serpentinisation. The CaO increase in one o f the samples is related to the presence of 

calcite veins. NaiO and K2O are well known mobile elements and it is suggested that 
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Figure 6.L Graphs illustrating the variation of major elements with Ti02 (in wt%) for strongly 
(>90 % serpentinisation) serpentinised Iherzolites and relatively fresh (<30% serpentinisation) 
spinel and plagioclase Iherzolites. 
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the fluids present during serpentinisation were enriched in these elements. This 

evidence suggests that serpentinisation can indeed modify the primary composition of 

the peridotites as a result o f the mobilisation o f major elements. Therefore in this study, 

only the 'freshest' peridotite samples (<30 % alteration) have been used in order to 

reduce the possibility o f misrepresentation o f Fe203, NaiO, K2O, Si02, CaO and MgO. 

6.2.2. Lizard peridotites - results 

The volatile-free compositions o f the Lizard peridotites show some well-defined trends. 

Abundances o f MgO in the peridotites are negatively correlated with CaO, Na20, 

AI2O3, T i02 , Sc and Zr contents. N i contents are positively correlated with MgO 

concentrations, and Cr and V abundances show no correlation with MgO content 

(Figures 6.2.a-i). In addition, the different peridotite types (subdivided on the basis o f 

field (Chapter 3) and microstructural (Chapter 4) evidence), which define these 

chemical trends, show systematic variations in major and trace element abundances that 

can be correlated with changes in microstructure. Spinel Iherzolites display the highest 

MgO contents (41.2-43.5 wt%) and the plagioclase Iherzolites (40.7-42.4 wt%) show 

values that overlap the range defined by the spinel Iherzolites (Figure 6.2.a-i). 

However, the MgO concentrations decrease f rom the Iherzolites to the mylonitic 

plagioclase-bearing peridotites (35.5-39.8 wt%) and mylonitic amphibole-bearing 

peridotites (36.5-39.5 wt%) via the peridotites with a transitional assemblage (40.3-

40.4 wt%) . A pyroxenite layer in spinel Iherzolite shows the lowest MgO abundances 

(29.5 wt%) . 

Figure 6.2.a demonstrates that spinel Iherzolite shows the lowest CaO 

abundances (0.47-1.51 wt%) and plagioclase Iherzolites (1.0-1.6 wt%) display a range 

similar to the spinel Iherzolites. Lherzolites by definition must contain 1-1.25 wt% CaO 

minimum for 5% clinopyroxene (M.T.Styles,/?er^ comm., 1999); therefore the low Ca 

content observed in these rocks is probably due to Ca loss due to serpentinisation. CaO 

contents increase f rom the Iherzolites to the transitional assemblage peridotites (2.2-2.3 

wt%) and the mylonitic plagioclase-bearing peridotite (2.0-3.4 wt%) and mylonitic 

amphibole-bearing peridotite (2.2-3.4 wt%). The highest CaO contents are observed in 

a pyroxenite layer in spinel Iherzolite (10.1 wt%) . 

Na20 abundances are low (<0.6 wt%) in the Lizard peridotites (Figure 6.2.b). 

However^there is a trend o f increasing Na20 f rom the spinel Iherzolite (0-0.1 wt%) and 
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plagioclase Iherzolite (0-0.005 wt%) via the transitional assemblage (0.06-0.11 wt%) to 

the mylonitic plagioclase-bearing peridotite (0.06-0.49 wt%) and the highest range is 

shown by the mylonitic amphibole-bearing peridotite (0.17-0.61 wt%). A pyroxenite 

layer in spinel Iherzolite shows Na20 contents (0.18 wt%) within the range values 

shown by the transitional and mylonitic peridotites. 
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Figure 6.2.a-f. Whole rock abundances of wt% MgO versus (a) wt7c CaO, (b) wt% Na20, (c) 
wt% AI2O3, (d) wt^c Ti02, (e) Cr (ppm) and (f) Sc (ppm) contents for the Lizard peridotites. 

Spinel Iherzolite displays the lowest AI2O3 abundances (2.1-2.4 wt%), and these 

increase progressively f rom the plagioclase Iherzolite (2.2-2.9 wt%) , via the transitional 
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assemblage peridotite (3.3-3.6 wt%) to the mylonitic plagioclase-bearing peridotite 

(3.4-5.3 wt%) and mylonitic amphibole-bearing peridotite (3.5-4.0 wt%) (Figure 6.2.c). 

A pyroxenite layer in spinel Iherzolite has the highest AI2O3 abundance (6.7 wt%). 
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Figure 6.2.g-i. Whole rock abundances of wt9c MgO versus (g) Ni (ppm). (h) Zr (ppm) and (i) 
V (ppm) contents for the Lizard peridotites. 

The spinel Iherzolite also shows the lowest range of T i O i concentrations (0.06-

0.1 wt%) and the plagioclase Iherzolite (0.06-0.12 wt%) and transitional assemblage 

peridotite (0.11 wt%) fal l within this range (Figure 6.2.d). The highest T iO: contents 

are observed in the mylonitic plagioclase-bearing peridotite (0.13-0.28 wt%) and 

mylonitic amphibole-bearing peridotite (0.14-0.28 wt%), which is most likely related to 

the amphibole content of these samples. A pyroxenite layer in spinel Iherzolite has 

Ti02 contents (0.27 wt%) that fal l within the range defined by the mylonitic peridotites. 

Spinel Iherzolite (2433-2854 ppm) and a pyroxenite layer within spinel 

Iherzolite (3298 ppm) display the highest Cr abundances (Figure 6.2.e). Plagioclase 

Iherzolite (2004-2340 ppm), the transitional assemblage (2038-2044 ppm), the 

mylonitic plagioclase-bearing peridotite (1950-2450 ppm) and the mylonitic 
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amphibole-bearing peridotite (1600-2450 ppm) possess overlapping ranges of Cr 

values. 

Sc abundances show an increase from spinel Iherzolite (10-14 ppm) and 

plagioclase Iherzolite (10-14 ppm) to mylonitic plagioclase-bearing peridotite (12-16 

ppm) and mylonitic amphibole-bearing peridotite (12-17 ppm)(Figure 6.2.f). The 

transitional assemblage peridotites show Sc contents which are lower (8-9 ppm) than 

the trend defined by the other peridotite-types. The highest Sc concentration (32 ppm) 

is observed in a pyroxenite layer within spinel Iherzolite. Increases in the Sc content of 

these samples are related to an increase in the clinopyroxene content. 

The highest N i concentrafion is shown by spinel Iherzolite (2083-2242 ppm), 

and this decreases f rom the plagioclase Iherzolite (1839-2146 ppm) to mylonitic 

plagioclase-bearing peridotite (1820-2150 ppm), mylonitic amphibole-bearing 

peridotite (1735-2050 ppm) and the transitional assemblage (1758-1824 ppm)(Figure 

6.2.g). The lowest N i contents as displayed by a pyroxenite layer (748 ppm) within 

spinel Iherzolite. Variations in the N i content are related to variations in the olivine 

content o f these samples. 

Spinel Iherzolite (1.6-2.5 ppm) and plagioclase Iherzolite (2.0-3.4 ppm) show 

the lowest Zr abundances (Figure 6.2.h). In contrast, the transitional assemblage (7.7-

11.0 ppm), the mylonitic plagioclase-bearing peridotite (4.8-10.5 ppm), the mylonitic 

amphibole-bearing peridotite (7.3-16.5 ppm) and a pyroxenite layer (8.9 ppm) within 

spinel Iherzolite show higher Zr contents. 

Figure 6.2.i. demonstrates that the concentration o f V in spinel Iherzolite (64-80 

ppm), plagioclase Iherzolite (69-88 ppm), transitional assemblage (74-83 ppm), 

mylonitic plagioclase-bearing peridotite (40-80 ppm) mylonitic amphibole-bearing 

peridotite (50-94 ppm) are similar. The highest abimdance of V is observed in a 

pyroxenite layer (265 ppm) within spinel Iherzolite. 

Analyses o f Iherzolites and transitional assemblage peridotites o f the Lizard 

Ophiolite Complex taken f rom Shepherd (1986) are generally consistent with the data 

presented above (Figures 6.2.a-i). The transitional assemblage peridotites show lower 

MgO and higher CaO, Na20, AI2O3, T i02 , Sc and V than the Iherzolites. The 

Iherzolites have slightly higher N i than the transitional assemblage peridotites. The Sc 

and Na20 contents o f the Iherzolite and transitional assemblage peridotite taken from 

Shepherd (1986) are higher than those observed in the Iherzolites and transitional 
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assemblage peridotites analysed during the course of this study. These differences are 

probably related to differences in the analytical procedure. 
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Figure 6.3.a-f. Whole rock abundances of wt% MgO versus (a) w t ^ CaO. (b) wi9c Na^O, (c) 
wt7c A I 2 O 3 , (d) wt7f TiO:, (e) Cr (ppm) and (f) Sc (ppm) contents for feldspathic bands, 
ultramafic and mafic Traboe cumulates and gabbroic veins. Data for ultramafic and mafic 
Traboe cumulates from Traboe borehole core (Leake and Styles, 1984) is also shown. The 
range of compositions defined by the Lizard peridotites is included for comparison. Mineral 
fractionation control lines are shown: ol - olivine, opx - orthopyroxene, cpx - clinopyroxene. 
amph - amphibole and plag - piagioclase. 
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6.2.3. Rocks associated wi th the Lizard peridotites - results 

In general, the chemical trends exhibited by these rocks are comparable to the trends 

demonstrated by the Lizard peridotites, for example MgO abundances are negatively 

correlated with CaO, Na20, AI2O3, Ti02, Sc and V. In contrast, Ni and Cr contents are 

positively correlated MgO abundances (Figure 6.3.a-i). Mineral fractionation control 

lines shown on Figure 6.3.a-i clearly demonstrate that the whole rock elements in these 

rocks are controlled by modal variation in the main minerals. 

A feldspathic band shows lower MgO abundances (27 wt%) than the Lizard 

peridotites and a specimen containing both mylonitic amphibole-bearing peridotite 
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Figure 6.3.g-i. Whole rock abundances of wt% MgO versus (g) Ni (ppm), (h) Zr (ppm) and (i) 
V (ppm) contents for feldspathic bands, ultramafic and mafic Traboe cumulates and gabbroic 
veins. Data for ultramafic and mafic Traboe cumulates from Traboe borehole core (Leake and 
Styles, 1984) is also shown. The range of compositions defined by the Lizard peridotites is 
included for comparison. 
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and feldspathic bands (35.4 wt%) shows MgO contents similar to the mylonitic 

peridotites (Figure 6.2.a-i). Ultramafic Traboe cumulates show variable MgO 

abimdances (21.3 and 38.3 w t % respecfively). Mafic Traboe cumulates (5.6-11.8 wt%) 

and gabbroic veins (7.21-26.1 wt%) have much lower MgO concentrations than the 

Lizard peridotites. Analyses o f borehole core drilled through the Traboe cumulate 

complex taken from Leake and Styles (1984) show that these ultramafic and mafic 

Traboe cumulates possess a wide range o f MgO contents (4.5-46.0 wt%). 

Figure 6.3.a. demonstrates that a feldspathic band has higher CaO abundances 

(11.7 wt%) than the Lizard peridotites and a specimen containing both mylonitic 

amphibole-bearing peridotite and feldspathic bands (4.7 wt%) shows CaO contents 

slightly higher than the mylonitic peridotites. Two specimens o f ultramafic Traboe 

cumulates show different CaO contents (10.9 and 2.8 wt% respectively). Mafic Traboe 

cumulates (7.7-13.4 wt%) and gabbroic veins (6.3 and 10.3 wt%) display a similar 

range o f CaO concentrations. The CaO abundance o f ultramafic and mafic Traboe 

cumulates (0-18 wt%) f rom the Traboe cumulate complex borehole core (Leake and 

Styles, 1984) define a large compositional range due to a large range of clinopyroxene 

and amphibole contents. 

A specimen of a feldspathic band and a specimen containing both mylonitic 

amphibole-bearing peridotite and feldspathic bands have Na20 contents (0.39 and 0.29 

w t % respectively) similar to those o f the mylonitic peridotites (Figure 6.2.b). 

Comparable Na20 abundances are observed in the ultramafic Traboe cumulates (0.56 

and 0.24 v ^ % ) . The mafic Traboe cumulates display a restricted range of Na20 

abundances (1.58-3.0 wt%) which is higher than the range defined by the Lizard 

peridotites. Gabbroic veins also possess relatively high Na20 contents (0.9-3.3 wt%). 

Ultramafic and mafic Traboe cumulates from the Traboe cumulate complex borehole 

cores (Leake and Styles, 1984) define the largest range o f Na20 abundances (0-4.2 

wt%) and this overlaps the range defined by the Lizard peridotites. Variations in 

amphibole content o f these rocks control the whole rock Na20 content. 

The AI2O3 contents o f a feldspathic band and a specimen containing both 

mylonitic amphibole-bearing peridotite and feldspathic bands (7.5 and 4.7 wt% 

respectively) are higher than the range defined by the Lizard peridotites (Figure 6.3.c). 

Two specimens o f ultramafic Traboe cumulate possess AI2O3 abimdances both higher 

and similar to the Lizard peridotites (8.2 and 3.7 wt% respectively). AI2O3 abundances 

in mafic Traboe cumulates (14.7-21 wt%) are considerably higher than those observed 
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in the Lizard peridotites. The AI2O3 contents o f gabbroic veins (15-19.4 wt%) are 

similar to those in the mafic Traboe cumulates. The ultramafic and mafic Traboe 

cumulates fi^om the Traboe cimiulate complex borehole core (Leake and Styles, 1984) 

define a wide range of AI2O3 abundances (0.56-23.9 wt%). The AI2O3 contents of the 

ultramafic Traboe cumulates f rom these borehole core samples are lower than observed 

in the mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing 

peridotite, yet similar to the Iherzolites. Higher whole rock AI2O3 contents are 

consistent with an increased proportion o f plagioclase. 

A feldspathic band has higher Ti02 contents (0.5 wt%) than Lizard peridotites 

and a specimen containing both mylonitic amphibole-bearing peridotite and feldspathic 

bands (0.17 wt%) (Figure 6.3.d). Ultramafic Traboe cumulates show Ti02 abundances 

(0.16-0.27 v^%) that fal l within the range defined by the Lizard peridotites. The Ti02 

concentration o f the mafic Traboe cumulates (0.29-1.75 wt%) is higher than in the 

ultramafic Traboe cumulates and the Lizard peridotites. Among the highest Ti02 

contents (0.53-1.67 wt%) are displayed by the gabbroic veins. (0.02-1.33 wt%). 

Ultramafic and mafic Traboe cumulates f rom the Traboe cumulate complex borehole 

core (Leake and Styles, 1984) define a large range of Ti02 contents that overlap the 

ranges defined by the Lizard peridotites and gabbroic veins. The Ti02 contents o f the 

ultramafic Traboe cumulates firom these borehole core samples are lower than observed 

in the mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing 

peridotite. Higher whole rock Ti02 concentrations suggest a greater proportion of T i -

rich amphibole. 

The Cr concentration o f a feldspathic band and a specimen containing both 

mylonitic amphibole-bearing peridotite and feldspathic bands (2753 and 2042 ppm 

respectively) are similar to the range defined by the Lizard peridotites (Figure 6.3.e). 

The Cr concentration o f the ultramafic Traboe cumulates (2803 and 3468 ppm) is 

higher than the range defined by the Lizard peridotites. Mafic Traboe cumulates have 

much lower Cr abundances (27.4-1150 ppm) than the ultramafic Traboe cumulates. The 

gabbroic veins possess a relatively restricted range of Cr contents (207-544 ppm). 

Ultramafic and mafic Traboe cumulates fi"om the Traboe cumulate complex borehole 

core (Leake and Styles, 1984) show a massive range of Cr abundances (38-6010 ppm), 

which overlap the range defined by the Lizard peridotites. 

The Sc concentration o f a feldspathic band and a specimen containing both 

mylonitic amphibole-bearing peridotite and feldspathic bands (27.5 and 20.1 ppm 
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respectively) are higher than the range defined by the Lizard peridotites (Figure 6.3.f). 

The ultramafic Traboe cumulate samples contain variable Sc abundances (10.5 and 

36.6 ppm). Mafic Traboe cumulates possess (33.7-64.0 ppm) a range of Sc contents 

which are higher than observed in the ultramafic Traboe cumulates and the Lizard 

peridotites. In contrast, the gabbroic veins show a narrower range of Sc contents (26.4-

38.4 ppm). 

A feldspathic band and a specimen containing both mylonitic amphibole-

bearing peridotite and feldspathic bands show lower N i abundances (1032 and 1535 

ppm) than the Lizard peridotites (Figure 6.3.g). Ultramafic Traboe cumulates have N i 

contents (558 and 2150 ppm) which overlap the range defined by the Lizard peridotites. 

However, the mafic Traboe cumulates (17.5-216 ppm) possess much lower N i contents 

than the Lizard peridotites. Gabbroic veins have a N i content (93-262 ppm) similar to 

the mafic Traboe cumulates. The largest range o f N i abundances is found in ultramafic 

and mafic Traboe cumulates (19-2865 ppm) from the Traboe cumulate complex 

borehole core (Leake and Styles, 1984). The modal variation of olivine in these rocks 

controls the whole rock N i content. 

A feldspathic band has a higher Zr concentration (24 ppm) than a specimen 

containing both mylonitic amphibole-bearing peridotite and feldspathic bands (10 

ppm)(Figure 6.3.h). Ultramafic Traboe cumulates show Zr contents (4 and 10 ppm) 

similar to those o f the Lizard peridotites. The largest range o f Zr concentrations (2-128 

ppm) is foimd in the mafic Traboe cumulates, and the gabbroic veins (19-118) show a 

similar range o f Zr contents. 

A feldspathic band and a specimen containing both mylonitic amphibole-

bearing peridotite and feldspathic bands have higher V contents (222 and 120 ppm) 

than the Lizard peridotites (Figure 6.3.i). Ultramafic Traboe cumulates show variable V 

contents (40 and 166 ppm). A wide range of V abundance is displayed (120-484 ppm) 

by mafic Traboe cumulates. In contrast, the gabbroic veins (191-282 ppm) display a 

relatively restricted range of V concentrations. The largest range of V contents is 

shown by ultramafic and mafic Traboe cumulates (10-794 ppm) from the Traboe 

cumulate complex borehole core (Leake and Styles, 1984). 
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6.2.4. Lizard peridotites and associated rocks - Interpretation and discussion 

The results o f a whole rock major and trace element analyses o f the Lizard peridotites 

demonstrates several important chemical trends. The MgO content in the rocks is 

negatively correlated with CaO, Na20, AI2O3, Ti02, Sc and Zr, whilst N i is positively 

correlated with MgO (consistent with N i being hosted by olivine). Cr and V 

concentrations show no correlation with MgO abundance. Spinel Iherzolites and 

plagioclase Iherzolites plot at the high-MgO end o f these correlations, whilst the 

mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing peridotite 

plot at the low-MgO end. Transitional assemblage peridotites are intermediate between 

the spinel and plagioclase Iherzolites and the mylonitic peridotites. 

In Figure 6.4, the major element compositions o f relafively fi-esh (<30% 

serpentinisation) plagioclase Iherzolite, transitional assemblage and mylonitic 

peridotites are normalised to the 'average' spinel Iherzolite composition, which is 

assumed to represent the protolith peridotite composition prior to deformation. This 

plot clearly demonstrates that the transitional assemblage and mylonitic peridotites are 

enriched in CaO, AI2O3, Na20, K2O, Ti02 and MnO relative to the spinel Iherzolite 

protolith. Plagioclase Iherzolites generally have a composition similar to the spinel 

Iherzolite. However, they are relatively enriched in P2O5. A similar diagram (Figure 

6.5) shows the trace element composition o f plagioclase Iherzolite, the transitional 

assemblage and the mylonitic peridotites normalised to the 'average' spinel Iherzolite 

composition. In this plot, the enrichment and depletion o f these peridotites relative to 

the spinel Iherzolite protolith composition is less obvious. The most significant 

differences are the enrichment o f Zr, Y, Sr, Rb and Co in the transitional assemblage 

and mylonitic peridotites relative to spinel Iherzolite. It is suggested that the differences 

between the composition o f the spinel Iherzolite and the plagioclase Iherzolite, the 

transitional assemblage and the mylonitic peridotites are not related to serpentinisation 

or secondary alteration, because only 'fresh' samples were used. The compositional 

variations are therefore inferred to be related to differences in the petrogenesis of these 

rocks e.g. melt-rock interaction, and this is discussed later in this Section. 

The compositional trends demonstrated by the Lizard peridotites are similar to 

those defined by peridotites fi-om the Yugoslavian central Dinaric ophiolite belt 

(Lugovic et al, 1991) and External Ligurides in Italy (Rampone et al, 1995)(Figures 
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Figure 6.4. Whole rock, major element abundances of plagioclase Iherzolite, transitional 
peridotite and mylonitic peridotites normalised to the composition of spinel Iherzolite (= 1) 
from the Lizard Ophiolite Complex. Positive peaks (>1) represent enrichment of an element 
relative to spinel Iherzolite, and negative peaks (<1) indicate relative depletion. 
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Figure 6.5. Whole rock, trace element abundances of plagioclase Iherzolite, transitional 
peridotite and mylonitic peridotites normalised to the composition of spinel Iherzolite (= 1) 
from the Lizard Ophiolite Complex. Incompatible elements (Ba-Y) are plotted in order of 
incompatibility increasing from left to right and compatible elements (Sc-Ni) are plotted at the 
right hand side of the plot. Positive peaks (>I) represent enrichment of an element relative to 
spinel Iherzolite, and neganve peaks (<1) indicate relative depletion. 
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6.6.a-g). The trends defined by the Lizard peridotites overiap the primitive mantle 

estimates of Ringwood (1975), Jagoutz et al. (1979) and Hoffman (1988), that plot at 

the low-MgO end of the correlations (Figure 6.6.a-g). Peridotites from the Internal 
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Figure 6.6.a-f. Whole rock abundances of wt% MgO versus (a) wt% CaO, (b) wt'/c Na20, (c) 
wt% AI2O3, (d) wt% TiOa, (e) Cr (ppm) and (f) Sc (ppm) contents for the Lizard peridotites 
compared with estimates for primitive mantle composition of Ringwood (1975). Jagoutz et al. 
(1979) and Hoffman (1988). Also included for comparison are: (1) peridotites from the 
Yugoslavian central Dinaric ophiolite belt (Lugovic et al., 1991), (2) peridotites from External 
Ligurides ophiolites, Italy (Rampone et al.. 1995) and (3) depleted peridotites from the Internal 
Ligurides ophiolites, Italy (Rampone, 1992). 
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Ligurides, Italy (Rampone, 1992) are more depleted than the Lizard peridotites, 

showing higher MgO, and lower CaO, Na20, AI2O3 and T iOi contents (Figure 6.6.a-g). 

In the mantle peridotites described in the literature, there are no observed changes in 

major and trace element chemistry, which can be correlated with changes in 

microstructure,e.g., increasing CaO and AI2O3 contents from coarse-grained peridotites 

to mylonitic peridotites. Significantly, coarse-grained spinel Iherzolites and plagioclase 

(or amphibole)-bearing deformed and mylonitic peridotites from Zabargad Island 

(Bonatti et al., 1986) and the Voltr i Massif (Hoogerduijn Strating et a!., 1993) all have 

a similar bulk composition. Therefore the compositional trends defined by the Lizard 

peridotites, which include a decrease in MgO and Ni contents, and an increase in CaO. 

Na^O, AI2O3, Ti02, Sc and Zr f rom the coarse-grained spinel and plagioclase 

Iherzolites to the mylonitic peridotites, are unusual. 

• Spinel Iherzoliie 

s Plagioclase Iherzolite 

A Transitional assemblage 

• Mylonitic plagioclase-bearing pendotite 

Mylonitic amphibole-beanng peridotite 

X Hoffman (1988) 

X Jagoutz et al. (1979) 

+ Ringwood(1975) 

Figure 6.6.g. Whole rock abundances of vji9c MgO versus (g) Ni (ppm) contents for the 
Lizard peridotites compared with estimates for primitive mantle composition of Ringwood 
(1975), Jagoutz et al. (1979) and Hoffman (1988). Also included for comparison are: (1) 
peridotites from the Yugoslavian central Dinaric ophiolite belt (Lugovic et al., 1991), (2) 
peridotites from External Ligurides ophiolites, Italy (Rampone et al., 1995) and (3) depleted 
peridotites from the Internal Ligurides ophiolites, Italy (Rampone, 1992). 

A plot of Cr /Al versus N i / A l (Figure 6.7)(Roberts and Neary, 1993) compares 

the composition of the Lizard peridotites with peridotites from several ophiolites 

(Roberts and Neary, 1993). This diagram is used because it provides an indication of 

the degree of depletion of the peridotites, i.e.̂  the trend from low Cr/Al , N i /A l ratios to 

high Cr /Al , N i / A l ratios in peridotites reflects an increase in the degree of depletion 

(Roberts and Neary, 1993).This diagram clearly demonstrates that the Lizard 

peridotites have lower Cr /Al and N i / A l ratios than peridotites from the Semail and 

Vourinos ophiolites. The Lizard peridotites have Cr/Al , N i / A l ratios closer to those of 
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the Apennine peridotites (External Ligurides), and are therefore relatively -fertile" and 

have undergone limited partial melting. This diagram also shows that the transitional 

assemblage, mylonitic plagioclase-bearing peridotite and mylonitic amphibole-

0.6 T 

0.2 + 

• Spinel Iherzolite 

» Plagiodase Iherzolite 

A Transitional assemblage 

• Mylonitic plagiodase-tjearing p€n(Jotite| 

Mytonitic amphibole-bearing pendotite 

Figure 6.7. Cr/Al versus Ni/Al diagram for peridotites from the Lizard Ophiolite Complex 
compared with a series of ophiolitic peridotites, including: (1) Vourinos ophiolite, Greece, (2) 
Semail ophiolite, Oman and (3) Apennine ophiolites (External Ligurides), Italy. The trend from 
low Cr/Al, Ni/Al ratios to high Cr/Al, Ni/Al ratios indicate increasing depletion. Data sources: 
this study and Roberts and Neary (1993). 

bearing peridotite, has lower have Cr /Al , N i / A l ratios than the spinel and plagioclase 

Iherzolites from the Lizard Ophiolite Complex. 

The process of deformation and recrystallisation of the Lizard peridotites cannot 

itself account for changes in composition from the spinel and plagioclase Iherzolites to 

the mylonitic peridotites. Alternatively it is possible that during deformation the 

transitional assemblage peridotite, mylonitic plagioclase-bearing peridotite and 

mylonitic amphibole-bearing peridotite were enriched in certain major and trace 

elements. A process that causes the geochemical enrichment of a rock is metasomatism 

(Menzies and Hawkesworth (1987) and references therein), in which the interaction 

between a rock, and a melt or hydrous f luid results in a change of the bulk composition. 

Harte et al. (1987) demonstrate that metasomatism involving melt-rock interaction 

results in the bulk addition of Fe, T i , A l , Cr, K, S, Zr. Nb, Ta, Hf and H 2 O to 

peridotites. The increase of T i O : in the transitional assemblage and mylonitic 

peridotites relative to the coarse-grained Iherzolites suggests that the metasomatism 

may have been related to the infiltration of a melt. Eggler (1987) suggests that Ti is 
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relatively insoluble in H2O- and C02-rich fluids and hence a magmatic component, 

rather than a fluid alone, is likely to be important. The presence of amphibole, a 

hydrous phase, in the mylonitic peridotites shows that a hydrous melt may have been 

responsible for the metasomatism of the peridotites. The composition of a feldspathic 

band and a specimen containing both mylonitic amphibole-bearing peridotite and 

feldspathic bands, suggests that these bands may represent the residual product of the 

hydrous melt responsible for melt/fluid-rock interaction of the peridotites. The 

feldspathic band plots on a linear trend with the peridotites and lie at the extreme low-

MgO end of this trend. Spray (1982) obtained similar results after analysing an 

identical rock from the Lizard and proposed that these bands represent crystal 

segregations from picritic fluids. Amphibole-bearing peridotites, which form the wall-

rock immediately adjacent (<20 cm) to amphibole pyroxenite veins from the Lherz 

massif, show similar chemical variations to the Lizard peridotites (Bodinier et al, 

1990). These peridotites show a trend of increasing Fe, Mn, Ti , Al , Ca and Na, and 

decreasing Mg and Ni towards the vein contact. However, the Lizard peridotites show 

evidence for uniform metasomatism in mylonitic peridotites on a scale of several 

kilometres, and therefore differs substantially from the centimetre scale metasomatism 

described for the Lherz Massif (Bodinier et al., 1990). Further discussion regarding the 

melt/fluid-rock interaction and resultant metasomatism of the Lizard peridotites is 

presented in Section 6.3, with reference to the rare earth composition of these rocks. 

The ultramafic and mafic Traboe cumulates analysed during the course of this 

study have a composition consistent with the larger number of analysis of ultramafic 

and mafic Traboe cumulates from the Traboe cumulate complex borehole core (Leake 

and Styles, 1984). The Traboe cumulates define linear chemical trends and the mafic 

Traboe cumulates analysed during this study plot at the low-MgO end of the 

compositional field defined by the borehole core analyses (Leake and Styles, 1984). It 

is also apparent that the ultramafic Traboe cumulates from the Traboe cumulate 

complex borehole core have higher MgO contents, and lower CaO, Na20, AI2O3, Ti02 

and Zr abundances, than the mylonitic peridotites. This contradicts the findings of 

Green (1964a,b), which suggests that the ultramafic rocks in the Traboe region 

represent highly serpentinised mylonitic peridotites. These bulk rock analyses clearly 

demonstrate that the ultramafic rocks in the Traboe region have a different chemistry, 

consistent with these rocks being ultramafic cumulates. The large range of MgO, CaO, 
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Figure 6.8.a-f. Whole rock abundances of wt% MgO versus (a) wt% CaO, (b) w t ^ Na^O. (c) 
wt% A l 2 0 j , (d) wt% Ti02, (e) Cr (ppm) and (f) Sc (ppm) contents for the mafic Traboe 
cumulates, gabbroic veins and samples of ultramafic and mafic Traboe cumulates from Traboe 
borehole core (Leake and Styles, 1984) compared with gabbroic rocks from ophiolites: (1) 
gabbros from the Bridge River accretionary complex, SW British Columbia (Church et al.. 
1995) and (2) layered gabbro cumulates from the Brooks Range ophioiite. Alaska (Harris. 
1995). 

AI2O3, Na20 and T I O t contents in the ultramafic Traboe cumulates are believed to be 

due to fractional crystallisation and magmatic differentiation of a similar magma 

source, because these processes could produce the wide range of compositions 

observed in these cumulates. 
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Figure 6.8.g. Whole rock abundances of wt% MgO versus (g) Ni (ppm) contents for the mafic 
Traboe cumulates, gabbroic veins and samples of ultramafic and mafic Traboe cumulates from 
Traboe borehole core (Leake and Styles, 1984) compared with (2) layered gabbro cumulates 
from the Brooks Range ophiolite, Alaska (Harris, 1995). 

Figures 6.8.a-g. show that the mafic Traboe cumulates, including those from the Traboe 

cumulate complex borehole core, are compositionally similar to layered gabbro 

cumulates from the Brooks Range ophiolite, Alaska (Harris, 1995) and gabbroic rocks 

from the Bridge River accretionary complex, SW British Columbia (Church et al.. 

1995). This supports the field, microstructural and mineral composition evidence 

(Chapters 3,4 & 5), which suggests that these mafic and ultramafic Traboe cumulates 

represent a highly deformed cumulate complex. 

The whole-rock composition of gabbroic veins from the Lizard is very similar 

to gabbroic veins that cross-cut peridotites in the mantle sequence of the Jormua 

ophiolite, Finland (Peltonen et al., 1998). These rocks also have a whole rock major 

and trace element composition which is identical to the mafic Traboe cumulates and 

ophiolitic gabbros (see above). The gabbroic veins may share the same magma source 

as the mafic Traboe cumulates. 

6.2.5. Amphibolites and mafic dykes 

In the previous section, the major and trace element chemistry of mafic Traboe 

cumulates and gabbroic veins associated with the Lizard peridotites have been 

discussed. In this section, the chemistry of mafic rocks that are not directly associated 
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with the Lizard peridotites is presented and includes Landewednack amphibolites and 

mafic dykes. Data for the Porthoustock amphibolites obtained from Shepherd (1986) 

are also included for comparison. Only a few plots are included in this section, and 

these are for elements that show clear differences between the Landewednack 

amphibolites and the mafic Traboe cumulates. 

6.2.5.a. Results 

These amphibolites and mafic rocks show several compositional trends, which can be 

used to distinguish them from the Traboe cumulates associated with the Lizard 

peridotites. Figure 6.9.a-b. demonstrates that the Landewednack amphibolites have a 

relatively restricted range of MgO contents (5.1-15.2 wt%), which fall at the low-end of 

the range defined by the Traboe cumulates (see Figure 6.3.a-i). The data for 

Landewednack amphibolites presented by Shepherd (1986) is consistent with this 

observation. The MgO contents of the Porthoustock amphibolites (Shepherd. 1986) 

overlap the range displayed by the Landewednack amphibolites. Mafic dykes show the 

largest range of MgO contents (8.5-22.9 wt%). 

Landewednack amphibolites can be distinguished chemically from the mafic 

Traboe cumulates on the basis of whole rock Ti02 abundances, which are much higher 

Landewcdnack amphibolites 
• Landwednack amphiboliics - (Shepherd I 

Porthoustock amphibolites - (Shepherd 1986) 

X Mafic dyke 

Old Lizard Head Series - Deformed mafic sheet 

i: Old Lizard Head Series - Amphibolile layer 

Mafic and ultramafic 
Traboc cumulates 

b) 

Mafic and ultramafic 
Traboe cumulates ^ 

Wl% MgO 

Figure 6.9. Whole rock abundances of wt% MgO versus (a) wt% TiOi (b) Ni (ppm) for 
Landewednack amphibolites, Porthoustock amphiboiites and mafic dykes from the Lizard 
Ophiolite Complex, including data from Shepherd (1986). Also included are deformed mafic 
sheets and amphibolite layers from the Old Lizard Head Series. The range of composition 
defined by the mafic and ultramafic Traboe cumulates are included from comparison (Leake 
and Styles, 1984^ 
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• Landewednack amphibolites 

o Landwednack amphibolites - (Shepherd 1986) 

- Pordioustock amphibolites - (Shepherd 1986) 

X Mafic dyke 

Old Lizard Head Series - Deformed mafic sheet 

X Old Lizard Head Series - Amphibolite layer 

vlafic and uttramanc 
Traboe cumulates 

Figure 6.10. Whole rock abundances of Zr (ppm) versus Zr/Y ratio for Landewednack 
amphibolites, Porthoustock amphibolites and mafic dykes from the Lizard Ophiolite Complex, 
including data from Shepherd (1986). Also included are deformed mafic sheets and 
amphibolite layers from the Old Lizard Head Series. The range of composition defined by the 
mafic and ultramafic Traboe cumulates are included from comparison (Leake and Styles. 
1984). 

in the Landewednack amphibolites (0.7-3.2 wt%)(Figure 6.9.a). The data presented by 

Shepherd (1986) establishes that the Porthoustock amphibolites also possess high TiO: 

contents. Mafic dykes show a restricted range of T iO: abundances (1.0-1.6 wt%). 

which fall at the low-end of the range defined by the Landewednack amphibolites. 

The Landewednack amphibolites, with the exception of a single sample, show 

low Ni contents (30-232 ppm) which fall at the low-end of the range defined by the 

Traboe cumulates (Figure 6.9.b). The Porthoustock amphibolites define a more 

restricted compositional range (17-107 ppm) (Shepherd, 1986). The mafic dykes have 

relatively high Ni abundances (132-270 ppm) which overlap the high-end of the range 

defined by the Landewednack amphibolites. 

A plot (Figure 6.10) of Zr content versus Zr/Y ratio also distinguishes the 

Landewednack amphibolites from the mafic Traboe cumulates. The Landewednack 

amphibolites show a large range of Zr contents (21-249 ppm), far greater than the range 

observed in the Traboe cumulates. Comparable Zr contents (47-173 ppm) are 

characteristic of the Porthoustock amphibolites (Shepherd, 1986). The mafic dykes 

define a slightly different compositional trend from the amphibolites, which is 

characterised by lower Zr contents (78-112 ppm) at higher Zr/Y ratios (3.55-4.92). 
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6.2.5. b. Interpretation and discussion 

The analyses of major and trace elements in the Landewednack amphibolites, shows 

that these rocks have higher concentrations of 'immobile' elements (Ti02 and Zr) and a 

restricted range of Ni contents, in contrast to the mafic Traboe cumulates which have a 

greater range of composition, including more primitive chemical compositions. These 

chemical data therefore show that the amphibolitised mafic Traboe cumulates are not 

the metamorphic equivalent of the Landewednack amphibolites, a hypothesis proposed 

by Green (1964b). These results suggest that the Landewednack amphibolites are not 

cumulate in origin, and that a volcanic origin is more likely. However, the low Ti and 

Zr contents in some specimens indicate that gabbro bodies are also present in the 

Landewednack amphibolites. The compositional ranges defined by the Porthoustock 

amphibolites (Shepherd, 1986) overlaps the Landewednack amphibolites, and is 

suggests that some samples of the Porthoustock amphibolites are volcanic in origin. 

The majority of samples of the Porthoustock amphibolite have low Zr contents, which 

suggests that these samples have gabbroic protoliths. In summary, the Landewednack 

and Porthoustock amphibolites are derived from both basaltic and gabbroic protoliths, 

although the majority of Landewednack amphibolites appear to be volcanic in origin 

and the majority of the Porthoustock amphibolites appear to be gabbroic in origin. 

On the basis of the chemical data presented so far, it is not possible to confirm 

whether or not the Traboe cumulates are derived from the same parental magmas as the 

Landewednack amphibolites and mafic dykes. Rare-earth element chemistry and 

isotopic compositions of these rocks are presented in later sections in order to establish 

the chemical relationships between these different rocks and the palaotectonic setting 

that they formed in. 

6.2.6. Ordovician basement 

Analyses of amphibolite layers in the Old Lizard Head Series (OLHS) and deformed 

mafic sheets that cross-cut the OLHS are presented in this section and compared with 

the composition of mafic rocks from the Lizard Ophiolite Complex. 
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6.2.6.a. Results 

Amphibolite layers is the OLHS (4.4 and 6.6 wt%) have MgO abundances which 

overlap the range defined by the Landewednack amphibolites, and deformed mafic 

sheets that cross-cut the OLHS have similar MgO contents (6.9 and 8.0 wt%) (Figure 

6.9.a-b). 

Amphibolite layers in the OLHS have Ti02 abundances (1.1 and 1.5 wt%) that 

fall at the low-end of the range defined by the Landewednack amphibolites (Figure 

6.9.a). The deformed mafic sheets that cross-cut the OLHS have similar Ti02 contents 

(1.0 and 1.5 wt%) to the amphibolite layers in the OLHS. 

Amphibolite layers in the OLHS possess low Ni contents (24 and 57 ppm) and 

deformed mafic sheets that cross-cut the OLHS have higher Ni contents (92 and 121 

ppm)(Figure 6.9.b). 

The amphibolite layers in the OLHS also possess high Zr contents (71 and 162 

ppm), and similar values (80 and 131 ppm) are observed in the deformed mafic sheets 

that cross-cut the O L H S (Figure 6.10). 

6.2.6. b. Interpretation and discussion 

Overall the MgO, Ti02, Ni and Zr contents of these rocks cannot be used reliably to 

distinguish them from the mafic rocks of the Lizard Ophiolite Complex. In a later 

section (Section 6.3) the rare earth element chemistry provides the basis for a more 

satisfactory method of examining the geochemical properties of these rocks. 

6.2.7. Summary 

The analyses of major and trace elements of rocks from the Lizard Ophiolite Complex 

and Ordovician basement rocks provide several important geochemical constraints on 

the processes involved in the evolution of the these rocks and the nature of the tectonic 

environment in which they formed: 

• Major and trace element composition of the Lizard peridotites display systematic 

changes which support the subdivison based on field and microstructural evidence. 

These changes include an increase in CaO, Na20, AI2O3, Ti02, Sc and Zr 
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abundances and a decrease in MgO contents fi-om the spinel Iherzolites to the 

mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing 

peridotite. 

Changes in the major and trace element composition of the Lizard peridotites are 

interpreted to result fi-om metasomatism in response to fluid-rich melt - rock 

interaction during deformation. 

Ultramafic Traboe cumulates display a much wider compositional range than the 

Lizard peridotites, which is consistent with the interpretation that these rocks are 

layered cumulates associated with mafic Traboe cumulates and represent the upper 

mantle/lower crust section of the Lizard Ophiolite Complex. 

Mafic Traboe cumulates and gabbroic veins show major and trace element 

characteristics comparable with those of gabbroic rocks from oceanic and ophiolitic 

environments. 

Landewednack amphibolites display major and trace element geochemical 

properties that distinguish them from the mafic Traboe cumulates. The results 

demonstrate that these amphibolites have compositions that suggests they are 

derived from basaltic and gabbroic protoliths. 

Mafic dykes and the Porthoustock amphibolites have compositions similar to those 

of the Landewednack amphibolites, but the majority of Porthoustock amphibolite 

samples are derived from a gabbro protolith. 

Mafic rocks from the Ordovician basement unit display compositions characteristic 

of basaltic rocks and are indistinguishable from the mafic rocks of the Lizard 

Ophiolite Complex. 

6.3. Rare Earth Elements 

Rare earth element analyses of selected samples were performed with the Elan 6000 

ICP-MS spectrometer located in the Department of Geological Sciences at the 

University of Durham. Full details of sample selection, sample preparation, the 

analytical procedure, analytical errors and representative analyses are presented in 

Appendices A and D. 

Analyses presented in this section also include samples of ultramafic and mafic 

rocks taken from the field outcrops, Traboe cumulate complex borehole cores and the 
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Predannack borehole core (Institute of Geological Sciences borehole reports, 1978, 

1979; Leake and Styles, 1984; M.T. S\.y\ts,pers comm, 1997). 

6.3.1. Lizard peridotites - results 

8 

-Sp ine l Iherzolile 

Plagioclase Iherzolite 

- Transitional assemblage 

- Mylonitic plagioclase-bearing peridoiite 

Mylonii ic amphibole-bearing peridotite 

- Amphibole-rich vein in mylonitic 
amphibole-bearing peridoiite 

- Pyro.\enite 

L a C e Pr Nd Sm E u G d T b Dy Ho E r T m Y b L u 

Rare Earth Elements 

Figure 6.11. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns for 
peridotites from the Lizard Ophiolite Complex. 

In the following discussion the REE contents of the peridotites have been 

normalised to chondrite abundances using the normalising values of Nakamura (1974). 

The spinel Iherzolites and plagioclase Iherzolites have nearly identical REE 

compositions, characterised by extreme depletion of LREE relative to chondrite (LREE 

close to detection limits), a positive slope from Sm to Lu and (Ce/Yb)\ ratios of 

(average = 0.029 and 0.03 respectively)(Figure 6.11). The two transitional assemblage 

peridotites analysed possess REE contents which are intermediate between the 

plagioclase Iherzolites and mylonitic peridotites, and have (Ce/Yb)N ratios of (0.05 and 

0.15). The REE compositions of the mylonitic plagioclase bearing-peridotite and 

mylonidc amphibole-bearing peridotites are identical showing HREE contents (1* 

chondrite), which are nearly flat between Gd and Lu. They are only slightly depleted in 

LREE, with average (Ce/Yb)N ratios of (average = 0.35) for the mylonitic plagioclase 

bearing-peridotite and (average = 0.44) for mylonitic amphibole-bearing peridotites. An 

amphibole-rich vein in a sample of mylonitic amphibole-bearing peridotite shows a 

marked LREE-enriched composition from La to Eu, with a (Ce/Yb)N ratio of 2.8. This 

composition suggests that the LREE are predominantly hosted by the amphibole in 

these rocks. 
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A pyroxenite layer, hosted by spinel Iherzolite, also shows a R E E profile similar 

to that of the spinel Iherzolites and is characterised by extreme L R E E depletion giving 

a (Ce/Yb)N ratio (0.09). However, the pyroxenite layer has a higher H R E E abundance 

than the mylonitic peridotites. The pyroxenite layer is predominantly composed of 

clinopyroxene, and it is proposed that this mineral hosts a high-proportion of the H R E E 

in the peridotites in order to account for the relatively high H R E E content, which is 

known from mineral separate studies e.g. Frey (1969). 

6.3.2. Rocks associated with the Lizard peridotites - results 

Samples with a E prefix were analysed at N I G L (BGS, Keyworth) (M.T. Styles, pers. 

comm., 1997). 

A variety of R E E patterns are displayed by the different rocks associated with 

the Lizard peridotites, and these generally show higher R E E relative to chondrite 

a) 

I j Cc Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb U 

Rare Earth Elements 

c) 

b) 

U Cc Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 
Rare Earth Elemeals 

d) 

K 52200 
E.S2I71 

La Cc Pr Nd Sni Eu Gd Tb Dy Ho Er Tm Yb Lu 
Rare Earth Elements 

CAC 2K 

U Cc Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb U 
Rare Earth Elements 

Figure 6.12. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns of 
various rocks associated with the Lizard peridotites: (a) Feldspathic bands, (b) Ultramafic 
Traboe cumulates, (c) Mafic Traboe cumulates and (d) Gabbroic veins. 
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(Figure 6.12.a-d). The R E E patterns of the ultramafic Traboe cumulates are different 

from the patterns characteristic of the Lizard peridotites and in particular they do not 

display the strong L R E E depletion observed in the spinel Iherzolites and plagioclase 

Iherzolites from the Lizard. A feldspathic band (CAC 180) has a R E E pattern which 

shows a positive slope from L a to Pr, and a slight decrease in R E E abundances from Pr 

to Lu, with a peak of 7* chondrite at Gd (Figure 6.12.a). A sample of mylonitic 

amphibole-bearing peridotite containing feldspathic bands ( C A C 73) possesses a 

different R E E pattern from the feldspathic band (CAC 180). The pattern displayed by 

C A C 73 shows a strong increase from L R E E to H R E E , and is also very different to the 

R E E patterns of the mylonitic amphibole-bearing peridotite, having higher H R E E 

abimdances. 

The ultramafic Traboe cumulates display variable R E E patterns and abimdances 

(Figure 6.12.b). Sample C A C 130 shows a negative slope from L a to Nd, a nearly flat 

R E E pattern at 1.5* chondrite from Nd to L u and a minor positive Eu anomaly. Sample 

C A C 128 shows a different R E E pattern, with similar R E E abundances at 1.6* 

chondrite from L a to Lu. However, there is a marked positive Eu anomaly and a 

negative Ce anomaly. Sample E54523 also shows a very different R E E pattern from 

samples C A C 130 and C A C 128. L R E E increase in abundance from La to Nd with a 

negative anomaly displayed by Ce and there is a general decrease in R E E from Sm to 

Lu. Tb and Eu display minor negative anomalies. 

The mafic Traboe cumulates have higher R E E contents than the Lizard 

peridotites, with L u ranging between 2.7 and 12.6* chondrite (Figure 6.12.c). With the 

exception of sample E52185, all of the samples show a strong positive Eu anomaly. 

The R E E pattern of sample E52185 bears a strong similarity to the R E E patterns of the 

Landewednack amphibolites (Section 6). This includes a positive slope from La to Sm 

and a fairly flat R E E pattern between Sm and L u at 14* chondrite. The other mafic 

Traboe cimiulates can be sub-divided into two groups on the basis of their R E E 

patterns. Samples C A C 142 and E52200 display a negative slope from La to Lu, with 

[La]N varying from 5.6 to 10.6 and a minor negative Ce anomaly that could be due to 

alteration. E52171 displays a slightly different R E E pattern, with the R E E showing a 

flat pattern between L a and Sm, with [Lajw of 5.6. A second group is characterised by a 

R E E pattern showing a slight increase from La to Sm and a decrease from Gd to Lu, 

with [La]N varying between 2.7 and 3.5. A few of this second group of samples show a 

minor negative Ce anomaly. 
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The gabbroic veins can be subdivided into two groups on the basis of their R E E 

patterns (Figure 6.12.d). Two samples, C A C 28 and 168, have higher [La]N, of 25 and 

29 respectively. These samples show an decrease in R E E from La to Lu, and a minor 

negative Ce anomaly. A second group is characterised by a clear positive Eu anomaly 

and an decrease in R E E from L a to Lu, with [La]N varying between 6 to 10.3. The R E E 

pattern of this second group is similar to the R E E patterns of two samples of mafic 

Traboe cumulate ( C A C 142 and E52200). 

MORB normalised (Pearce, 1980) geochemical pattems can also be used to 

distinguish between the mafic Traboe cimiulates and the gabbroic veins (Figure 6.13.a-

b). The mafic Traboe ciunulates show enrichment of Sr, K, Rb and Ba relative to 

MORB and this is probably related to alteration (Figure 6.13.a). The other elements are 

depleted relative to MORB, particularly in Ta and Nb. The gabbroic veins are also 

enriched in Sr, K , Rb and Ba relative to MORB (Figure 6.13.b). There are no clear 

negative Ta and Nb anomalies. However, there is a strong negative Th anomaly, which 

distinguishes these rocks from the mafic Traboe cumulates. 

a) b) 

Trace uxi Raie Eartb Elnnciiu Trace nnd Rare E*nh ElcmcnU 

Figure 6.13. MORB normalised (Pearce, 1980) trace and rare earth element patterns for: (a) 
Mafic Traboe cumulates and (b) Gabbroic veins, associated with peridotites from the Lizard 
Ophiolite Complex. 

6.3.3. Lizard peridotites and associated rocks - Interpretation and discussion 

The spinel Iherzolites and plagioclase Iherzolites from the Lizard show extreme 

depletion of L R E E relative to chondrite. Strongly LREE-depleted pattems are observed 

for spinel Iherzolites from Errio-Tobbio Iherzolites, NW Italy (Ottenello et al., 1979), 

spinel Iherzolites from the Central Dinaric ophiolite belt, Yugoslavia (Lugovic et al., 

1991) and Intemal Ligurides (Northem Apennine) peridotites (Ottonello et al. 1984) 
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(Figure 6.14). Davies (1984) demonstrated that the very low abundances of LREE in 

association with relatively high HREE of the spinel Iherzolites from the Lizard cannot 

be reproduced by batch melting models. However, these LREE-depleted compositions 

could be produced by fractional melting or incremental melting of very small melt 

increments (Lugovic et al., 1991; Rampone et al., 1991). 

—•— Spinel Iherzolitc 

—•— Plagioclase Iherzolite 

^t— Transitional assemblage 

— M y l o n i t i c plagioclase-bearing peridotite 

Mylonitic amphibole-bearing peridotite 

—t— CEKDB - Lugovic et al. 1991 

La C e Pr Nd Sm EtJ Gd Tb Dy Ho Er Tm Yb L j 

R a r e E a r t h Elements 

Figure 6.14. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns for 
peridotites from the Lizard Ophiolite Complex compared Iherzolites from the Central Dinaric 
Ophiolite Belt (Lugovic et al., 1991), (1) spinel Iherzolites from Errio-Tobbio Iherzolites, NW 
Italy (Ottenello et al., 1979), and (2) peridotites from the Interna! Ligurides (Nonhem 
Apennine) (Ottonello g/g/. 1984). 

The mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing 

peridotite and, to a lesser extent the transitional assemblage, show clear evidence for 

LREE enrichment relative to the spinel and plagioclase Iherzolites. The LREE 

enrichment is illustrated by Figure 6.14, which demonstrates a progressive increase in 

LREE from spinel Iherzolite to mylonitic plagioclase-bearing peridotite and mylonitic 

amphibole-bearing peridotite via plagioclase Iherzolite and transitional assemblage 

peridotite. The enrichment of LREE in the Lizard peridotites, parallels an increase in 

the abundance of CaO, Na20, AI2O3, T i O i , Sc and Zr (see Section 6.2), and this is 

illustrated by a plot of AI2O3 wt% versus Sm (ppm)(Figure 6.15). It has already been 

suggested in Section 6.2.4. that melt/fluid-rock interaction is responsible for the 

resultant metasomatism of the mylonitic peridotites. 

The enrichment of LREE in the mylonitic peridotites relative to the spinel and 

plagioclase Iherzolites is therefore consistent with interaction with a LREE-enriched 
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melt. Small-scale LREE enrichment of peridotites adjacent to veins is well documented 

in the literature and includes mantle xenoliths form the Rhenish Massif (Witt and Seek, 

1989), peridodtes from the Lherz Massif (McPherson et al., 1996). and mantle 

xenoliths from Romania (Chalot-Prat and BouUier, 1997). The major, trace and rare 

earth element enriched mylonitic peridotites from the Lizard are exposed over of 

• Spinel Iherzolite 

• Plagioclase Iherzolite 

• Myloninc plagioclase-bearing peridotite 

• Mylonilic amphitx)le-be.'iring peridotite 

• Transitional assemblage 

O L'ltrtimallc Traboe cumulate 

G Feldspathic band 

X P\ roxeniie 

Sni (ppni) 

Figure 6.15. Plot of wt% AI2O3 versus Sm (ppm) for peridotites, ultramafic Traboe 
cumulates and feldspathic bands f rom the Lizard Ophiolite Complex. 

several kilometres (Chapter 3), and therefore the scale of melt-rock interaction of the 

Lizard peridotites differs substantially from the examples of small scale metasomatism 

adjacent to veins discussed above. However, km-scale pervasive melt percolation is 

invoked to explain metasomatism of peridotites from the Ronda Massif Spain (Van der 

Wal and Bodinier, 1996). I f a fluid/melt were to pass over a long distance through 

mantle peridotites it w i l l eventually lose its LREE-enriched characteristics through 

equilibration with the peridotite (Win and Seek, 1989)(Figure 6.16). Therefore, a 

process which avoids progressive modification of the composition of an infiltrating 

melt through equilibrium with the wall-rock must account for the consistent LREE 

enrichment of the mylonitic peridotite from the Lizard. The development of a reaction 

zone, which moves through the rock, is a possible mechanism of avoiding melt-rock 

interaction involving a melt with an evolving composition. Such a process would 
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a) 

•Wall rock Wall rock 

Reaction fronts' 

Figure 6.16. Cartoon illustrating two different melt-rock interaction processes: (a) Single melt 
batch (I) becomes progressively equilibrated with the wall rock and results in heterogeneous 
metasomatism of the wall rock (see text), (b) The development of reaction fronts and the 
infiltration of several batches of melt (I-III) produces homogeneous metasomatism of the wall 
rock (see text). 

involve a melt which reacts with the rock until equilibrium is reached and subsequent 

batches of melt would pass through this zone unmodified until they reach the reaction 

front (McPherson et al., 1996)(Figure 6.16). The shearing and grain-size reduction 

associated with formation of the mylonitic peridotites would facilitate the movement of 

melts through the rock. 

The ultramafic Traboe cumulates and feldspathic bands are also included in 

Figure 6.15. A feldspathic band (CAC 180) shows the highest Sm concentration, which 

is probably related to the high content of clinopyroxene and amphibole in this sample 

(Chapter 4). 

The REE patterns of the ultramafic Traboe cumulates are more variable than 

those observed in the mylonitic peridotites, and include LREE enriched patterns. In 

particular, sample CAC 128 shows a clear positive Eu anomaly and CAC 130 shows a 

minor positive Eu anomaly. The anomalies are typical features of plagioclase 

accumulation in cumulates (Beniot et al., 1996). Several of the ultramafic Traboe 

cumulates display a negative Ce anomaly, which is not observed in the Lizard 

peridotites, and is probably due to secondary alteration. The varied REE patterns of 

these ultramafic cumulates is consistent with their variable mineralogy (Chapter 4). The 

high REE content of clinopyroxene and amphibole in particular means that they have a 

strong influence on the whole rock REE pattern. 

The mafic Traboe cumulates were subdivided on the basis of REE patterns and 

include LREE-enriched and LREE-depleted samples, comparable with gabbros from 

ophiolitic environments (Beniot et al., 1996; Kelemen et al., 1997). These mafic 

cumulates all show a clear positive Eu anomaly and this is a feature of plagioclase 
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accumulation. Several o f the mafic Traboe cumulates also show the slight negative Ce 

anomaly observed in the ultramafic Traboe cumulates. The Ce anomaly may be related 

to secondary alteration. The shape of the REE pattern in the LREE-depleted mafic 

Traboe cumulates is probably controlled by accumulation o f clinopyroxene (now 

altered to amphibole). The LREE-enriched mafic Traboe cumulates appear to have a 

REE pattern controlled by plagioclase, which is usually LREE-enriched relative to 

clinopyroxene (Beniot et al., 1996). 

The gabbroic veins all show LREE enriched patterns. These rocks are 

subdivided into two groups on the basis o f REE patterns. One group of samples (CAC 

28 and 168) displays higher overall REE abundances and lacks a Eu anomaly. A second 

group is characterised by a strong positive Eu anomaly, a feature o f plagioclase 

accumulation. A l l o f the samples show minor negative Ce anomalies, similar to the 

anomalies observed in the ultramafic and mafic Traboe cumulates. These Ce anomalies 

may be related to secondary alteration. 

Oceanic arc 

Calc-alkal inc 

Active continental 
margin 

Tholeiitic 

Primordial 
mantle 

M O R B 
N-type 

l a M l 

0.01 

A Maf ic Traboc cumulate 

O Gabbroic vein 

Figure 6.17. ThA'b versus TaA'b discrimination diagram (Pearce, 1983) showing mafic 
Traboe cumulates and gabbroic veins from the Lizard Ophiolite Complex. The graph 
demonstrates that these different groups of rocks possess different ratios. Vectors shown 
indicate the influence of subduction components (S), within-plate enrichment (W), crustal 
contamination (C) and fractional crystallisation, (F) 
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A plot of Th/Yb ratio versus Ta/Yb ratio (Figure 6.17) demonstrates that the 

mafic Traboe cumulates define a linear trend within the tholeiitic compositional field, 

and this trend is probably related to source variations, including crustal contamination, 

and may also be influenced by different degrees of fractional crystallisation. However, 

the gabbroic mantle dykes do not plot on this trend, and are characterised by higher 

Ta/Yb ratios, therefore it is proposed that they are derived from distinct magma 

sources. The gabbroic veins possess Th/Yb ratio versus Ta/Yb ratios that are similar to 

MORB and the Landewednack amphibolites and mafic dykes (Section 6.3.4.b). The 

composition of both the mafic Traboe cumulates and gabbroic mantle dykes is 

consistent with depleted mantle sources. 

6.3.4. Amphibolites and mafic dykes 

Analyses of Landewednack amphibolites, Porthoustock amphibolites and mafic dykes 

fi-om the Lizard Ophiolite Complex are presented in Appendix D. One of the main aims 

of this Section is to determine whether or not the Landewednack amphibolites share 

similar geochemical characteristics with the mafic Traboe cumulates and Porthoustock 

amphibolites. In addition the compositions of the amphibolites and mafic dykes are 

compared with data taken from the literature for volcanic and plutonic rocks fi-om 

ophiolites, in order to verify the tectonic environment in which the Lizard Ophiolite 

Complex formed. 

6.3.4.a. Results 

Chondrite-normalised abundances of R E E for the Landewednack amphibolites are 

presented in Figure 6.18. This diagram demonstrates that the amphibolites can be 

subdivided into three general groups on the basis of R E E patterns. The majority of 

samples (A) show a pattern defined by a sharp increase in L R E E from La ([Lajw = 8.9 

- 28) to Pr ([Pr]n = 14-38), then a small decrease in R E E abundance to Lu ( [LU]N = 8.5 

- 21.5) (Figure 6.18). A few samples show small negative Eu anomalies. A second 

group (B) is characterised by a increase in L R E E Irom L a ([La]N = 7 and 11.5) to Sm 

([Sm]N = 12.8 and 18), then nearly flat R E E patterns to Lu ( [LU]N = 13 and 15) (Figure 

6.18). The third group (C) displays lower R E E abundances and is characterised by a 

slight increase of L R E E fi-om L a ([La]N = 5.8 and 6.3) to Pr ([Pr]N = 7 and 7.9), then a 
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slight decrease to Lu ( [ L U ] N = 5.5 and 5.8) (Figure 6.18). This group is also 

distinguished by the presence of a small positive Eu anomaly. 

Group A 

Group 'B 

- Group 'C 

1 -I 

L a C e Pr Nd Sm E u G d T b Dy Ho E r T m Y b L u 

Rare Earth Elements 

Figure 6.18. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns for 
Landewednack amphibolites from the Lizard Ophiolite Complex. The amphibolites have been 
subdivided into three groups (A-C) on the basis of different REE patterns. 

The Porthoustock amphibolites display slightly higher REE contents than the 

Landewednack amphibolites. The LREE abundance increases from La ([La]N = 41 -

56) to Pr ([Pr]N = 5 1 - 66), then shows a small decrease in REE to Lu ( [ L U ] N = 1 8 - 2 7 ) 

(Figure 6.19a). The REE pattern of the Porthoustock amphibolites is also distinguished 

from the Landewednack amphibolites by the presence of a clear negative Eu anomaly. 

Mafic dykes f rom the Lizard Ophiolite Complex have chondrite normalised 

REE patterns that strongly resemble the REE patterns of the majority of the 

Landewednack amphibolites (group A) . The LREE abundances increase from La 

([Lajw = 7.5 - 19) to Pr ([Pr]N = 13.4 - 23.3), then decrease to Lu ( [ L U ] N = 8.3 - 12) 

(Figure 6.19b). A few samples show a slight positive Eu anomaly. 

A plot o f the amphibolites and mafic rocks normalised to values o f average 

MORB (Pearce. 1983) is used with the elements divided into two groups based on their 

relative mobility in aqueous fluids. Sr, K, Rb and Ba are mobile and plot on the left 

side o f the graph, whilst the remaining elements are immobile. These immobile 

elements are not considered to be greatly changed by fractional crystallisation or 

variable degrees o f partial melting and may therefore be used to discuss source 

characteristics (Pearce, 1983). The MORB-normalised REE abundances of the 
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Figure 6.19. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns for: 
(a) Porthoustock amphibolites and (b) Mafic dykes from the Lizard Ophiolite Complex. 

Landewednack amphibolites generally show enrichment of the mobile elements. Sr, K. 

Rb and Ba, relative to MORB (Figure 6.20a). However, some of the amphibolites show 

a marked negative Th anomaly, whilst others show a negative Th-Ta-Nb anomaly. 

These different patterns cannot be correlated with the different groups defined on the 

basis o f chondrite-normalised REE patterns. 

The MORB normalised REE pattern o f the Porthoustock amphibolite can be 

used to distinguish these rocks from the Landewednack amphibolites. The Porthoustock 

amphibolites do not show a large negative Th anomaly or a Th-Ta-Nb anomaly 
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Figure 6.20. MORB normalised (Pearce, 1980) trace and rare earth element patterns for: (a) 
Landewednack amphibolites and (b) Porthoustock amphibolites and (c) Mafic dykes from the 
Lizard Ophiolite Complex. 

(Figure 6.20b). The Porthoustock amphibolites display variable Sr, K, Rb and Ba 

contents. 

Mafic dykes display a MORB-normalised REE pattern (Figure 6.20c) which is 

very similar to that o f the Landewednack amphibolites. The mafic dykes are strongly 
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enriched in K, Rb and Ba relative to MORB, and show a clear negative Th-Ta-Nb 

anomaly, comparable with some of the Landewednack amphibolites. 

6.3.4.b. Interpretation and discussion 

The chondrite-normalised patterns defined by the Landewednack amphibolites and 

mafic dykes fall in the range defined for MORB (Schilling et al., 1983) (Figure 6.21a-

c). The group B Landewednack amphibolites, characterised by unfiractionated H R E E 

and depleted L R E E are similar to the R E E patterns of typical T-MORB (Schilling et 

al., 1983) and suggest a mantle source depleted in L R E E (Figure 6.21a). The majority 

of the Landewednack amphibolites have a different R E E pattern (Group A) i.e. 

decreasing values from Pr to L u and mafic dykes from the Lizard define a similar 

pattern to these (Figure 6.21a and c). The L R E E depleted pattern defined by these rocks 

overlaps the R E E pattern of lavas and dykes from the Oman ophiolite (Kelemen et al., 

1997) and mafic dykes fi-om the Central Dinaric ophiolite belt, Yugoslavia (Lugovic et 

al., 1991)(Figure 21a and c). Overall the general shapes of the patterns for the 

Landewednack amphibolites (Group B) and mafic dykes are similar to those of MORB 

or back-arc basins. The group C Landewednack amphibolites show lower R E E 

abundances and resemble the patterns defined by the mafic Traboe cumulates (see 

Figure 6.12c). These samples were collected from just below thrust-contacts on the east 

coast of the Lizard where mafic Traboe cumulates also occur. The unusual R E E 

patterns in these rocks suggests that the samples analysed may represent rocks 

composed of tectonically interleaved Landewednack amphibolite and mafic Traboe 

cumulate. This would explain the similarities between the compositions of these rocks 

and the mafic Traboe cumulates. 

The MORB-normalised R E E patterns of the Landewednack amphibolites and 

mafic dykes show enrichment of Sr, K, Rb and Ba and it is proposed that this 

enrichment is related to secondary alteration during amphibolite-facies metamorphism. 

The clear negative Th anomaly in the group A Landewednack amphibolites may be 

related to loss of a small melt fraction during metamorphism. 

The LREE-enriched chondrite-normalised patterns displayed by the 

Porthoustock amphibolites suggest that these rocks are derived from a different magma 

source than that of the Landewednack amphibolites and mafic dykes which are L R E E -
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Figure 6.21a-c. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns for: 
(a) Landewednack amphibolites, (b) Porthoustock amphibolites and (c) Mafic dykes from the 
Lizard Ophiolite Complex compared with the REE patterns defined from mafic rocks from 
oceanic environments and ophiolites: MORB (Schilling et al., 1983), mafic dykes from the 
Central Dinaric Ophiolite Belt, Yugoslavia (Lugovic et al., 1991) and dykes and lavas from the 
Oman ophiolite (Kelemen et al., 1997). 

depleted. The REE pattern o f the Porthoustock amphibolites suggests that the source 

may have been more enriched in REE than the source of the Landewednack 
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amphibolites and mafic dykes. This pattern is more typical of a subduction-related or 

island arc origin (Styles, 1992), because rocks formed in these environments are 

invariably LREE-enriched due to contamination involving slab-derived fluids, in 

contrast to the MORB-like Landewednack amphibolites and the maflc dykes. The 

Landewednack amphibolite 

T h Nb L a C e Pr Nd Zr Sm E u G d T i Dy Y E r Y b L u 

Trace and Rare Earth Elements 

Figure 6.22. Primitive mantle (Hoffman, 1988) normalised trace and rare earth element pattern 
of Landewednack amphibolites from the Lizard Ophiolite Complex. The absence of a negative 
Ta anomaly suggests the amphibolites do not have island-arc - suprasubduction-zone affinities. 

negative Eu anomaly displayed by the Porthoustock amphibolites suggests that Eu was 

preferably partitioned into plagioclase during fractionation (Wilson, 1989). Davies 

(1984) presented REE data for an early dyke suite, which showed LREE-enriched 

characteristics similar to those o f the Porthoustock amphibolites. These dykes are 

exposed within the sheeted dyke complex within the Crousa gabbro. immediately south 

o f the Porthoustock amphibolites. These data therefore support the conclusions of 

Bromley (1979), Vearncombe (1980) and Gibbons & Thompson (1991), who suggested 

that the Porthoustock amphibolites may represent the deformed equivalent of a gabbro-

sheeted dyke complex. The samples of Porthoustock amphibolite analysed may 

therefore represent the deformed equivalent o f the early REE-enriched dyke suite. 

The Landewednack amphibolites do not display a negative Nb anomaly on a 

plot o f REE normalised to primitive mantle values of Hoffman (1988) (Figure 6.22) or 

a negative Ta anomaly on REE patterns normalised to the chondrite values of Elthon 

(1991) (Figure 6.23) and this confirms the non-arc, MORB like characteristics of these 

rocks. The Porthoustock amphibolites, which showed LREE enriched patterns on a 

chondrite normalised plot do not display a Nb or Ta anomaly on either Figure 6.24 or 

316 



Geochemical characterisation of the Lizard Ophiolite Complex 

Figure 6.25, and this suggests that they do not have a island-arc - suprasubduction-zone 

geochemical characteristics. 

Landewednack amphibolite 

Th Ta La Ce P^O. HI" Zr Sm Eu Ti^O Tb 

Trace and Rare Earth Elements 

Yb Lu 

Figure 6.23. Chondrite (Elthon, 1991) normalised trace and rare earth element pattern of 
Landewednack amphibolites from the Lizard Ophiolite Complex. The absence of a negative Ta 
anomaly suggests the amphibolites do not have island-arc - suprasubduction-zone affinities. 

^orthoustock ampriitwiite 

Th Nb La Ce Pr Nd Zr Sm Eu Gd l i Dy Y Er Yb l-u 

Trace and Rare llarth Elements 

Figure 6.24. Primitive mantle (Hoffman, 1988) normalised trace and rare earth element pattern 
of Porthoustock amphibolite from the Lizard Ophiolite Complex. The absence of a negative Ta 
anomaly suggests the amphibolites do not have island-arc - suprasubduction-zone affinities. 

The Landewednack amphibolites and mafic dykes predominantly plot in the 

'ocean floor basalt' field o f a Ti-Zr-Y discriminant diagram (Pearce and Cann, 1973), 

which is typical o f basalt from mid-ocean ridge (MORB) and back-arc basins 

environments (Figure 6.26). The elements (Ti-Zr-Y) used in this diagram are 

considered to be the least susceptible to secondary alteration and therefore these are 

considered to represent protolith compositions. The Porthoustock amphibolites also 

possess MORB chemistry. The oceanic affinity of the Landewednack amphibolites 
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Figure 6.25. Chondrite (Elthon, 1991) normalised trace and rare earth element pattern of 
Porthoustock amphibolite from the Lizard Ophiolite Complex. The absence of a negative Ta 
anomaly suggests the amphibolites do not have island-arc - suprasubduction-zone affinities. 

Ti/100 
Dolerite dykes 

Zr 

b) Ti/100 

A L K T - L o w - K . tholeiites 
B O F B - Ocean floor basalts 
C C A B - Calc-alkaline basalts 
D W P B - Within-Plate basalts 

Zr 

Landewednack 
Amphibolites 

Ti/lOO 
Porthoustock 
Amphibolites 

Zr 

d ) Ti/100 

Zr 

Old Lizard Head Senes 
(Ordovician basement) 

• Deformed mafic sheet 

V Amphiboliie layer 

Figure 6.26. Ti-Zr-Y discriminant diagram (Pearce and Cann, 1973), which 
demonstrates the 'oceanic character' of: (a) mafic dykes, (b) Landewednack 
amphibolites and (c) Porthoustock amphibolites from the Lizard Ophiolite Complex. 
Deformed mafic sheets and amphibolite layers (d) from the Old Lizard Head Series are 
also shown. 
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supports the ophiolite nature o f the Lizard Ophiolite Complex and these rocks are 

believed to have originally been tholeiitic basalts, and represent relict oceanic crust. 

Mafic rocks from many of the better-known ophiolites, including Bay of Islands (Casey 

et ai, 1985) and Oman (Searle and Malpas, 1982) have a MORB-like chemical 

composition which is similar to the Landewednack amphibolites. 

In order to investigate whether the different mafic rocks from the Lizard 

Ophiolite Complex are derived from similar magma sources, they have been plotted on 

a Th/Yb versus Ta/Yb discriminafion diagram (Pearce. 1983)(Figure 6.27). This 

diagram demonstrates that the Landewednack amphibolites, Porthoustock amphibolites 

and mafic dykes from the Lizard have similar Th/Yb and Ta/Yb ratios. These Th/Yb 

versus Ta/Yb discrimination diagram demonstrate that these different rocks are derived 

from a depleted mantle source, and they are similar in composition to MORB. It is 

important to note that these ratios overlap the range defined by the gabbroic veins 

associated with the Lizard peridotites. The range of Th/Yb and Ta/Yb ratios defined by 

the mafic Traboe cumulates is distinct from the range defined by the Landewednack 
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Figure 6.27. Th/Yb versus Ta/Yb discrimination diagram (Pearce, 1983) showing 
Landewednack amphibolites, Porthoustock amphibolites and mafic dykes from Lizard 
Ophiolite Complex. Mafic Traboe cumulates and gabbroic veins from the Lizard Ophiolite 
Complex are included for comparison. The graph demonstrates that the mafic Traboe 
cumulates possess higher Th/Yb ratios and lower Ta/Yb ratios than the other rocks. Vectors 
shown indicate the influence of subduction components (S), within-plate enrichment (W), 
crustal contamination (C) and fractional crystallisation.(i^ 
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amphibolites, and this is strong evidence against the mafic Traboe cumulates being the 

metamorphic equivalent of the Landewednack amphibolites, a hypothesis previously 

proposed by Green (1964b). This diagram suggests that the Landewednack 

amphibolites, Porthoustock amphibolites, mafic dykes and gabbroic veins are derived 

from the same magma source or at least a source of similar composition. 

6.3.5. Ordovician basement 

The purpose of this section is to present analyses of R E E for amphibolite layers within 

the Old Lizard Head Series (OLHS), deformed mafic sheets that cross-cut the OLHS, 

and the Lizard Head sill and compare this data with the data for Devonian mafic rocks 

from the Lizard Ophiolite Complex. These rocks represent a slice of basement and it is 

therefore important to characterise the nature of the magma sources of these rocks and 

provide geochemical constrains regarding the tectonic environment in which these 

rocks were developed. The results are also compared with analyses of the Man of War 

gneiss (MOWG) taken from Sandeman et al. (1997), which also comprise this 

Ordovician basement unit. 

6.3.5.a. Results 

The R E E content of rocks from the OLHS have been normalised to chondrite and 

plotted on Figure 6.28, in order to allow comparison with the Lizard Ophiolite 

Complex. The mafic rocks fi-om the OLHS define two different R E E patterns. 

Amphibolite layers within the OLHS and interlayered with meta-sediments have 

strongly L R E E enriched patterns, with the R E E abundance decreasing fi"om La ([Lajw = 

39.7 and 54) to L u ( [LU]N = 11.3 and 15). These rocks also display small negative Eu 

and Ce anomalies. The deformed mafic sheet, which cross-cuts the OLHS meta-

sediments, displays R E E patterns very similar to those of the mafic dykes from the 

Lizard Ophiolite Complex. These R E E patterns are characterised by a sharp increase in 

L R E E abundance from La ([La]N = 11.6 - 16) to Pr ([Prjw = 14.6 - 21.9), then a 

decrease in R E E to L u ( [LU]N = 8.4 - 12.6). A sample taken from the Lizard Head Sill 

shows a large decrease in R E E abundance fi-om La ([Lajn = 87) to Er ([Er]N = 6.4), 

then weak R E E enrichment to L u ([LU]N = 8.3). The R E E patterns of samples of the 

Man of War Gneiss are identical to that of the Lizard Head Sill. 
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The deformed mafic sheets that cross-cut the OLHS display a MORB 

normalised REE pattern which is nearly idenfical to that o f the mafic dykes (Figure 

6.20c) o f the Devonian Lizard Ophiolite Complex. 
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Figure 6.28. Chondrite normalised (Nakamura, 1974) rare earth element (REE) patterns for 
deformed mafic sheets that cross-cut the Old Lizard Head Series (OLHS), amphibolite layers 
within the OLHS, the Lizard Head Sill and the Man of War Gneiss (MOWG) from the 
Ordovician basement. 
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Figure 6.29. MORB normalised (Pearce, 1983) trace and rare earth element (REE) patterns for 
deformed mafic sheets that cross-cut the Old Lizard Head Series (OLHS), amphibolite layers 
within the OLHS, the Lizard Head Sill from the Ordovician basement. 
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Amphibolite layers within the OLHS show a MORB normalised R E E pattern 

which is completely different to the other amphibolites and mafic rocks from the Lizard 

Ophiolite Complex, including the deformed mafic sheets (Figure 6.29). The R E E 

pattern is characterised by a large positive Th anomaly, which contrasts with the 

negative Th anomaly observed in the Landewednack amphibolites. These rocks also 

show a clear positive Ce anomaly. The R E E pattern of the Lizard Head Sill is 

remarkably similar to these amphibolite layers. 

6.3.5.b. Interpretation and discussion 

The deformed mafic sheets that cross-cut the Ordovician OLHS series display both 

chondrite and MORB normalised patterns which are nearly identical to the mafic dykes 

from the Lizard Ophiolite Complex. This suggests that the deformed mafic sheets may 

be part of the same suite as these dykes. 

Amphibolite layers in the Ordovician OLHS display chondrite-normalised R E E 

patterns, which are very different to that of the Devonian mafic rocks of the Lizard 

Ophiolite Complex. The strongly LREE-enriched patterns are very similar to the R E E 

pattern basalts of island arc origin derived from a LREE-eru-iched mantle source 

(Wilson, 1989). The MORB-normalised R E E patterns of these rocks, which include 

enrichment of Sr, K , Rb, Ba, Th, and P, are also consistent with an island arc origin for 

these rocks, as the enrichment of these elements suggest the involvement of a 

subduction-zone fiuid. Whereas Sr, K , Rb and Ba are likely to be transported in an 

aqueous fiuid, Th and P are more likely to be transported in a partial melt (Wilson, 

1989). The Ta and Nb trough for these rocks could suggest that these elements were 

retained in a titaniferous phase e.g. ilmenite or titanite in the subducted rock (Saunders 

et al., 1980), although, a Ta-Nb trough is also a characteristic feature of crustal 

contamination of basalt (Pearce, 1983). 

The granitic Lizard Head Sill displays chondrite normalised and MORB 

normalised R E E patterns which are very similar to the amphibolite layers in the OLHS. 

It is also interesting to note that the chondrite-normalised R E E pattern of the Man of 

War Gneiss (MOWG) is identical to that of the Lizard Head Sill. This similarity in 

R E E composition between the Lizard Head Sill and the MOWG suggests that both 

were derived from the same source, alternatively the Lizard Head Sill could be derived 
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Figure 6.30. Primitive mantle normalised (Hoffman, 1988) trace and rare earth element (REE) 
patterns for deformed mafic sheets that cross-cut the Old Lizard Head Series (OLHS). 
amphibolite layers within the OLHS, the Lizard Head Sill and the Man of War Gneiss 
(MOWG) from the Ordovician basement. Note the clear negative Nb anomaly for all the rocks 
except the deformed mafic sheets, this is a characteristic feature of mafic rocks from island-arc 
- suprasubduction-zone environments. 
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Figure 6.31. Chondrite normalised (EUhon, 1991) trace and rare earth element (REE) patterns 
for deformed mafic sheets that cross-cut the Old Lizard Head Series (OLHS), amphibolite 
layers within the OLHS and the Lizard Head Sill from the Ordovician basement. Note the clear 
negative Ta anomaly for all the rocks except the deformed mafic sheets; this is a characteristic 
feature of mafic rocks from island-arc - suprasubduction-zone environments. 
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by melting o f the MOWG. This supports the observation of Flett (1946) who 

interpreted the Lizard Head sill as an offshoot o f the MOWG. This interpretation was 

recently questioned by Sandeman et al. (1997), who suggested on the basis of 

normative composition and major element composition, that the Lizard Head Sill was 

chemically similar to the M O W G but probably unrelated. 

A plot of trace element-normalised to the primitive mantle values of Hoffman 

(1988)(Figure 6.30) demonstrates that the amphibolite layers in the OLHS, Lizard Head 

Sill and M O W G have identical REE patterns. These patterns are characterised by 

strong enrichment of Th, the depletion of Nb, and minor depletion of Zr. This diagram 

presents strong evidence that these three different rock suites are derived from the same 

or a similar magma source. A negative Nb anomaly relative to Th and La may represent 

an island-arc - suprasubduction-zone geochemical signature (Jenner et al.. 1991). 

Elthon (1991) has demonstrated that Ta depletion in lavas and dolerites from the Bay o f 

Islands ophiolite is a characteristic o f magmas erupted above a subduction zone. A plot 
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Figure 6.32. Th/Yb versus Ta/Yb discrimination diagram (Pearce, 1983) showing deformed 
mafic sheets that cross-cut the Old Lizard Head Series (OLHS), amphibolite layers within the 
OLHS and the Lizard Head Sill. Note the similarity between the ratios of the deformed mafic 
sheets and the Landewednack amphibolites, Porthoustock ainphibolites, mafic dykes and 
gabbroic veins from Lizard Ophiolite Complex. Vectors shown indicate the influence of 
subduction components (S), within-plate enrichment (W), crustal contamination (C) and 
fractional crystallisation.(P) 
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o f the REE o f the rocks from the Ordovician basement rocks normaUsed to the 

chondrite values o f Elthon (1991)(Figure 6.31) displays a strong negative Ta anomaly 

for the patterns o f the amphibolite layers in the OLHS and the Lizard Head sill and 

therefore confirms the subduction zone geochemical characteristics o f these rocks. 

Deformed mafic sheets that cross-cut OLHS rocks plot in the 'ocean floor 

basalt' f ie ld o f the Ti-Zr-Y discriminant diagram (Pearce and Cann, 1973) and 

amphibolite layers in the OLHS plot both in the 'calc-alkaline basalt' and 'ocean floor 

basalt' fields (Figure 6.26). 

The Th/Yb and Ta/Yb ratios o f the deformed mafic sheets that cross-cut the 

OLHS overlap the range defined by the Landewednack amphibolites, Porthoustock 

amphibolites and mafic dykes from the Lizard Ophiolite Complex (Figure 6.32). These 

results suggest that the deformed mafic sheets may be derived from the same magma 

source, or at least a source o f similar composition. This Th/Yb versus Ta/Yb 

discrimination diagram (Pearce, 1983) suggests that the deformed mafic sheets are 

derived f rom a depleted mantle source and this is similar to the composition o f MORB. 

The amphibolite layers within the OLHS and the Lizard Head sill have much higher 

Th/Yb rafios (1.4 - 6.8) than the deformed mafic sheets (Th/Yb = 0.056-0.09). The 

Th/Yb rafios (1.1 - 9.4) o f the M O W G (Sandeman et al, 1997) are comparable with 

the range defined by the amphibolites layers within the OLHS and the Lizard Head sill. 

The similarity in these Th/Yb and Ta/Yb ratios suggests that the amphibolites layers 

within the OLHS, the Lizard Head sill and the M O W G are derived from the same 

magma source or a source o f similar composition, distinct from the source o f the cross-

cutting deformed mafic sheet. This Th/Yb versus Ta/Yb discrimination diagram 

(Pearce, 1983) demonstrates that the amphibolites layers within the OLHS and the 

Lizard Head sill plot within the calc-alkaline oceanic arc domain, in contrast to the 

MORB-like compositions o f the deformed mafic sheets, Landewednack amphibolites, 

Porthoustock amphibolites and mafic dykes. The higher Th/Yb ratios in the 

amphibolites layers within the OLHS, Lizard Head sill and M O W G are believed to 

reflect the influence o f subduction-zone fluids enriched in Th during the petrogenesis 

o f these rocks or crustal contamination (Pearce, 1983). 
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6.3.6. Summary 

Trace element characteristics o f rocks f rom the Lizard ophioUte Complex provide 

important new constraints regarding the genesis and tectonic evolution o f this ophiolite. 

New REE analyses o f rocks f rom the Ordovician basement unit has provided important 

clues with regard to the origin o f this suite o f rocks. The most salient results o f the REE 

characteristics o f rocks f rom the Lizard Ophiolite Complex and Ordovician basement 

unit are summaries below: 

• Mylonitic plagioclase-bearing peridotite and mylonitic amphibole-bearing 

peridotite are enriched in LREE relative to spinel and plagioclase Iherzolites. The 

LREE enrichment is consistent with metasomatism involving a LREE enriched 

volatile-rich melt. 

• The presence o f a km-scale reaction front involving discrete batches o f infiltrating 

melt must be invoked as a possible mechanism to account for the km-scale, uniform 

LREE enrichment o f the mylonitic peridotites. 

• The trace element characteristics o f mafic Traboe cumulates and gabbroic veins are 

different. A Th/Yb versus Ta/Yb discrimination diagram reveals that these rocks 

have different Th/Yb and Ta/Yb ratios and demonstrates that they do not plot on 

mutual crustal contamination or fractional crystallisation trends. This data also 

demonstrates that the gabbroic veins are unlikely to be the metamorphic equivalent 

o f the mafic Traboe cumulates. 

• Landewednack amphibolites and mafic dykes from the Lizard ophiolite Complex 

display MORB-like trace element compositions. In contrast the Porthoustock 

amphibolites show LREE enriched REE patterns, which is suggestive of an island-

arc or subduction zone genesis. 

• The REE patterns o f the Porthoustock amphibolites are similar to an early dyke 

suite identified by Davies (1984) and therefore support models that suggest that 

these rocks are the deformed equivalents o f this early dyke suite, which comprises a 

sheeted dyke complex. 

• Landewednack amphibolites, Porthoustock amphibolites, mafic dykes and gabbroic 

veins show similar, MORB-like Th/Yb ratio and Ta/Yb ratios suggesting derivation 

f rom a similar magma source. 
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Deformed mafic sheets that cross-cut the Old Lizard Head Series (OLHS) show 

REE characteristics that are very similar to the mafic dykes o f the Lizard Ophiolite 

Complex, suggesting that they may be derived f rom the same or a similar magma 

source. 

Amphibolite layers wi th the OLHS and the Lizard Head sill display strongly LREE 

enriched patterns, and negative Nb and Ta anomalies, which are geochemical 

signatures o f genesis in an island-arc or subduction zone environment. A Th/Yb 

versus Ta/Yb diagram strongly supports the involvement o f subduction zone fluids 

or crustal contamination in the petrogenesis o f amphibolite layers with the OLHS 

and the Lizard Head sill . The Man of War gneiss displays very similar, island-arc or 

subduction zone geochemical characteristics, suggesting that these different rocks 

are derived f rom the same or a similar magma source. 

6.4. Isotopic evidence - results and interpretation 

''^•^Nd/''*^Nd and ^^Sr/̂ ^Sr isotopic ratios for the ultramafic and mafic Traboe cumulates, 

Landewednack amphibolites, Porthoustock amphibolites, mafic dykes, Crousa gabbro 

and Kennack Gneiss f rom the Lizard Ophiolite Complex and the Man of War gneiss 

and Lizard Head sill f rom the Ordovician basement were provided by Mike Styles 

ipers. comm., 1997). Analyses o f these samples were performed at the NERC Isotope 

Geosciences Laboratory (British Geological Survery, Keyworth). 

The initial ratio (T = 375) '''^Nd/''*''Nd is based on the age o f the Crousa gabbro 

calculated fi-om a combined mineral and whole rock Sm-Nd isochron (Davies, 1984). 

6.4.1. Lizard Ophiolite Complex - results and interpretation 

The initial (T=375 Ma) ''*'^Nd/''*'*Nd ratios o f various ultramafic, mafic and granitic 

rocks are plotted on Figure 6.33 for comparison. This diagram demonstrates that the 

'^^Nd/""Nd ratios o f the Crousa gabbro (0.51252 - 0.51269), mafic dykes (0.51266 

andO.51269) and Landewednack amphibolites (0.51255 - 0.51266) overlap. The 

similarity in the range o f "'^^Nd/'^'^Nd ratios for these rocks is consistent with the REE 

chemistry o f the Landewednack amphibolites and mafic dykes, which suggest that they 

are derived f rom the same source. The diagram demonstrates that the Porthoustock 
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amphibolites possess an overlapping range o f '"^Nd/'^^Nd ratios (0.51253 and 0.51256) 

and are consistent with the REE chemistry which suggested that these rocks have a 

similar magma source to that o f the Landewednack amphibolites. The mafic Traboe 

cumulates display a wide range o f '"'^Nd/'^^Nd ratios (0.51211 - 0.51252), which are 
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Figure 6.33. Diagram displaying the initial (T=375 Ma) ''"Nd/'''''Nd ratio of the Crousa 
gabbro, mafic dykes, Landewednack amphibolite, Porthoustock amphiboMte, ultramafic and 
mafic Traboe cumulates and Kennack Gneiss from the Lizard Ophiolite Complex. The 
'''^Nd/''''*Nd ratio obtained for the Crousa gabbro by Davies (1984) is included for comparison. 
The '''"'Nd/'''''Nd ratio for the Man of War gneiss and the Lizard Head sill from the Ordovician 
basement rocks are also included. 

much lower that the range defined by the Landewednack amphibolites. The highest 

'''•'Nd/''''*Nd ratio = 0.51252 is for a deformed dyke intersected by the Traboe boreholes, 

this has a chondrite normalised REE pattern, which is very similar to the REE patterns 

o f the Landewednack amphibolite and mafic dykes and is therefore likely to belong to 

the same suite as the mafic dykes. The ultramafic Traboe cumulates possess 

'^^Nd/'^^Nd rafios (0.51229 - 0.51236) that fall in the range defined by the mafic 

Traboe cumulates. These data demonstrate that the ultramafic and mafic Traboe 

cumulates are derived f rom the same source, and that this is different from the source 

of the Landewednack amphibolites, mafic dykes and Crousa gabbro. The large range of 

'''^Nd/''*'*Nd rafios displayed by the mafic Traboe cumulates is probably related to 
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mixing of different batches of magma during the formation of the Lizard cumulate 

complex. 

The mafic component of the Kennack Gneiss displays a large range of 

'" ' 'Nd/ '^Nd ratios (0.51218 - 0.51258) with the highest values overlapping the range 

defined by the Landewednack amphibolites and Crousa gabbro. The lowest '"*'̂ Nd/ ''*"̂ Nd 

ratio (0.51205) is defined by the felsic component of the Kennack Gneiss. These results 

clearly demonstrate that the Kennack Gneiss is not necessarily the product of anatexis 

of the Landewednack amphibolites alone, as proposed in several previous studies 

(Sanders, 1955; Kirby, 1979; Veamcombe, 1980; and Malpas & Langdon. 1987). The 

data suggests that the Kennack Gneiss is likely to be the product of mixing of a felsic 

magma derived from melting of a source exotic to the Lizard and a mafic magma, 

which may include a component similar to the Landewednack amphibolite (M.T.Styles 

pers comm. 1998). 

A plot of eNd versus eSr (Figure 6.34) demonstrates that the Landewednack 

amphibolites and Crousa gabbro display a wide range of eSr values (-1 - 16 and -17 -

25 respectively). These values define a linear trend which lies along the seawater 
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Figure 6.34. Plots showing eNd versus eSr for Crousa gabbro, Landevvednack 
amphibolite, mafic dykes, Porthoustock amphibolite, ultramafic and mafic Traboe cumulates 
and Kennack Gneiss from the Lizard Ophiolite Complex. The Lizard Head Sill and Man of 
War Gneiss from the Ordovician basement unit are included for comparison. The sea water 
contamination trend is based on the data of McCullogh et al.. (1981). Compositional fields for 
MORB and the Mantle Array are taken from Wilson (1989) and references therein. 
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interaction trend calculated by McCullogh et al., (1981). This large scatter of eSr 

values in these rocks is therefore thought to be due to seawater interaction during 

hydrothermal alteration o f these oceanic crustal rocks (Beniot et al., 1996). The 

increase eSr may also be related to fluid interaction during amphibolite facies 

metamorphism. The increase in e Sr has shifted these rocks to the right of the mantle 

array. The positive eNd values o f these rocks imply a depleted mantle source and lie 

within the range o f most volcanic and plutonic ophiolitic rocks (Richard and Allegre, 

1980). These eNd values are also similar to the range defined by MORB. This suggests 

that the mantle source o f Landewednack amphibolites, mafic dykes, Crousa gabbro and 

Porthoustock amphibolites is similar in composition to the mantle source of MORB. 

The ultramafic Traboe cumulates and mafic Traboe cumulates define a more 

restricted range o f e Sr values (5 - 22), which may reflect more limited hydrothermal 

alteration, serpentinisation or metamorphism (Figure 6.34). The range of eNd for the 

ultramafic and mafic Traboe cumulates approach negative values, which suggests 

involvement o f both depleted and enriched mantle sources. 

The felsic component o f the Kennack Gneiss displays the lowest eNd (-2.1) 

and a high eSr value (22), which suggests derivation from an enriched source. The 

mafic component o f the Kennack Gneiss shows a large range of eNd (0.4 - 8.3) and 

eSr (2 - -16), which defines a linear trend between the range defined by MORB and the 

felsic component o f the Kermack Gneiss. These data suggest that the mafic component 

o f the Kermack Gneiss was derived from mixing of at least two magma sources. One 

source has a Nd isotopic composition equivalent to MORB and another source has the 

N d isotopic composition of the felsic component of the Kermack Gneiss. The Nd 

isotopic composition o f the Landewednack amphibolites falls within the range defined 

by MORB, which suggests that a melted component of the Landewednack amphibolites 

may represent one o f the sources o f the mafic Kennack Gneiss. The Nd isotopic 

composition o f the felsic component o f the Kennack Gneiss approaches the Nd isotopic 

composition o f Palaeozoic metasedimentary rocks to the north of the Lizard Ophiolite 

Complex, including samples o f the Mylor series, Portscatho Formation, Porthtowan 

Formation and Meadfoot Group ( e N d = -5.2 - -11.5)(Darbyshire & Shepherd, 1994). 

These Palaeozoic metasedimentary rocks structurally underlie the Lizard Ophiolite 

Complex and, therefore the felsic component o f the Kennack gneiss may be derived 
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from melting o f this unit during obduction. Further work is required to substantiate this 

possibility. 

6.4.2. Ordovician basement - results and interpretation 

A limited range of "*^Nd/"*^Nd ratios, which overlap, characterise the M O W G (0.51226 

- 0.51228) and the Lizard Head sill (0.51227 - 0.51228)(Figure 6.33). This isotopic 

data strongly supports the REE chemistry o f these rocks, which suggests that they are 

derived from the same source and that this source is enriched relative to the source of 

MORB. 

6.4.3. Summary 

The isotopic composition o f rocks from the Lizard Ophiolite Complex and the 

Ordovician basement unit confirms several o f the conclusions that have been proposed 

on the basis o f major, trace and rare earth element chemistry: 

• Landewednack amphibolites, mafic dykes, Crousa gabbro and Porthoustock 

amphibolites from the Lizard Ophiolite Complex show a similar range of initial 

"'*^Nd/'''''Nd ratios and this confirms that these rocks are derived from a source of 

the same or similar Nd isotopic composition. The initial '''^Nd/'^'^Nd ratios o f these 

rocks overlap the range defined by MORB, confirming the MORB-like REE 

characteristics o f these rocks. 

• Ultramafic and mafic Traboe cumulates display a wide range of initial '''^Nd/''*''Nd 

ratios that do not overlap with the Landewednack amphibolites. This suggests that 

these rocks are derived f rom a heterogeneous or different source, and the wide 

range o f values may suggest mixing o f sources o f variable compositions. 

• The isotopic composition o f the felsic component o f the Kennack Gneiss is distinct 

f rom any rocks o f the Lizard Ophiolite Complex and suggests derivation from an 

enriched source. The mafic component o f the Kennack Gneiss displays a wide 

range o f N d isotopic compositions. The data is consistent with mixing between a 

magma source equivalent to the felsic Kennack Gneiss and another source 

compositionally equivalent to MORB or the Landewednack amphibolites. This data 
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clearly demonstrates that the Kennack Gneiss is not derived f rom anatexis of the 

Landewednack amphibolites alone. 

A wide range of eSr displayed by the Landewednack amphibolites, mafic dykes 

and Crousa gabbros is suggestive o f extensive hydrothermal alteration involving 

seawater and/or fluid interaction during amphibolite facies metamorphism. 

The Lizard Head sill and M O W G possess a restricted and overlapping range of 

initial '''•̂ Nd/'̂ ^Vd ratios. This confirms REE characteristics that suggest that these 

rocks are derived f rom the same source or a source o f similar REE composition. 

6.5. Whole rock geochemistry - summary and discussion 

The preceding sections have demonstrated that the various rocks of the Lizard 

Ophiolite Complex and Ordovician basement exhibit several important geochemical 

characteristics. These geochemical characteristics provide important clues to the nature 

o f the chemical evolution o f these rocks and the tectonic environment in which they 

formed. In the fol lowing section the most significant geochemical properties of the 

different rocks f rom the Lizard Ophiolite Complex and the Ordovician basement rocks 

are summarised. 

6.5.1. Lizard peridotites 

• Spinel Iherzolites, which represent the least deformed assemblage of the Lizard 

peridotites, have major and trace element compositions comparable with spinel 

Iherzolites f rom several ophiolite complexes. The spinel Iherzolites from the Lizard 

display extreme depletion o f LREE, which suggests very low degrees of melting. 

• The mylonitic plagioclase-bearing peridotite, mylonitic amphibole-bearing 

peridotite and transitional assemblage peridotites show higher CaO, Na20, Ti02, Sc 

and Zr abundances, LREE enrichment and lower MgO contents than the spinel 

Iherzolites and plagioclase Iherzolites. 
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• Changes in the major, trace and rare earth element from the spinel Iherzolite to 

mylonitic peridotites are interpreted as the result o f metasomatism in response to 

volatile-rich melt-rock interaction during deformation. 

• The km-scale, uniform major, trace and LREE enrichment o f the mylonitic 

peridotites suggests the presence of a km-scale reaction front involving discrete 

batches o f infiltrating melt rather than a single batch o f percolating melt. 

6.5.2. Ultramafic and mafic Traboe cumulates 

• Ultramafic Traboe cumulates have a major, trace and rare earth element 

composition that distinguishes them from the Lizard peridotites and is consistent 

with these rocks being ultramafic cumulates. 

• Mafic Traboe cumulates display a wide range of major and trace element 

compositions transitional with the ultramafic Traboe cumulates and it is proposed 

that igneous fractionation processes may be responsible for these variations. 

• The REE patterns o f the mafic Traboe cumulates include a clear positive Eu 

anomaly, which is a feature of plagioclase accumulation. The REE patterns of these 

rocks are comparable with gabbroic rocks from various ophiolite complexes. 

• The Th/Yb and Ta/Yb ratios o f the mafic Traboe cumulates are different from the 

other mafic rocks o f the Lizard Ophiolite Complex and do not plot on a mutual 

fractional crystallisation or crustal contamination trend, • suggesting that these 

cumulates are derived from a different magma source during an early crust forming 

event. 

• Ultramafic and mafic Traboe cumulates possess similar Nd isotopic compositions, 

which are in turn distinct f rom the Landewednack amphibolites. Variations in the 

isotopic composition o f these rocks suggest mixing o f parental magmas with 

different isotopic composition. 
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6.5.3. Gabbroic veins 

• The Th/Yb and Ta/Yb ratios o f gabbroic veins are distinct from the mafic Traboe 

cumulates, yet similar to the Landewednack amphibolites. This suggests that these 

gabbroic rocks are derived f rom a magma source that is different to the source o f 

the mafic Traboe cumulates and similar in composition to the source of the 

Landewednack amphibolites. 

6.5.4. Landewednack amphibolites and mafic dykes 

• Major and trace element geochemical properties o f the Landewednack 

amphibolites, including higher T i 0 2 and Zr abundances, distinguish them from the 

mafic Traboe cumulates. 

• The major, trace and rare earth element compositions o f the Landewednack 

amphibolites and mafic dykes are similar to typical T-MORB. 

• The N d isotopic composition o f the Landewednack amphibolites, mafic dykes and 

Crousa gabbro are similar, suggesting that these rocks are derived from the same 

source or a source o f similar Nd isotopic composition. A large range of eSr 

displayed by these rocks suggests extensive hydrothermal alteration involving sea-

water and/or fluid interaction during amphibolite facies metamorphism. 

6.5.5. Porthoustock amphibolites 

• The Porthoustock amphibolites display LREE-enriched patterns that distinguish 

them from the Landewednack amphibolites. The REE patterns are similar to the 

early dyke suite identified by Davies (1984) and support the hypothesis that these 

rocks are the deformed equivalent o f this early dyke suite that comprises a sheeted 

dyke complex. In contrast, the Th/Yb and Ta/Yb ratios o f these amphibolites and 

the Landewednack amphibolites are similar, suggesting derivation f rom a magma 

source o f similar composition. 
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• The N d isptopic composition o f the Porthoustock amphibolites also suggests that 

they are derived f rom a magma source o f similar composition to the source o f the 

Landewednack amphibolites. 

6.5.5. Ordovician basement 

• Deformed mafic sheets that cross-cut the Old Lizard Head Series (OLHS) show 

REE characteristics that are very similar to the mafic dykes o f the Lizard Ophiolite 

Complex, and suggests that they may be derived from the same or a similar magma 

source. 

• Amphibolite layers wi th the OLHS and the Lizard Head sill show geochemical 

signatures o f that are characteristic o f genesis in an island-arc or subduction zone 

environment. The Man of War gneiss displays very similar, island-arc or 

subduction zone geochemical characteristics, suggesting that these different rocks 

are derived f rom the same or a similar magma source. 

• The Lizard Head sill and M O W G possess overlapping range of N d isotopic ratios, 

suggesting that these rocks are derived f rom the same source, or at least sources o f 

similar isotopic compositions. 
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CHAPTER SEVEN 

SYNTHESIS, DISCUSSION AND CONCLUSIONS 

7.1. Introduction 

This chapter contains a summary and discussion o f the main findings o f this study. The 

chapter is sub-divided into four sections: 

1 A tectonic model for the evolution o f the Lizard Ophiolite Complex based on the 

findings o f this study. 

2 Review o f the regional tectonic implications o f this model. 

3 The implications for the early evolution o f mantle rocks in ophiolite complexes. 

4 A consideration o f the role o f the structural geology o f the mantle during 

lithospheric deformation. 

7.2. Summary of the tectonic evolution of the Lizard Ophiolite Complex 

The tectono-magmatic model presented in this study involves Devonian rocks of the 

Lizard Ophiolite Complex in five tectonic events, three o f which occurred during the 

carly to l ate Devonian. A n earlier episode relates to a fragment of Ordovician 

basement that became tectonically incorporated within the basal structural unit o f the 

Lizard Ophiolite Complex. Late Carboniferous to Triassic extensional faulting resulted 

in dismemberment o f the post-obduction geometry o f the Lizard Ophiolite complex 

(Powered a/., 1996): 

• A n early sequence of intrusive and deformation events during evolution of a 

basement unit that includes rocks with island arc - supra-subduction zone 

geochemical characteristics formed during the earliest Ordovician (~499-488Ma). 

• Exhumation o f mantle and development o f high-temperature sub-vertical fabrics in 

mantle peridotites and associated cumulates in response to the construction o f early 

oceanic lithosphere during the early Devonian (~397Ma). 

• Later magmatism and extensional tectonics associated with intrusion o f gabbro and 

basaltic dykes in an oceanic regime. Cross-cutting, deformed mafic sheets with 

similar geochemical characteristics to these basaltic dykes occur within the 
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Ordovician basement unit. I f these deformed mafic sheets belong to the same 

intrusive suite as the basaltic dykes associated with the Lizard Ophiolite Complex, 

it is possible that the Ordovician rocks may have been close in proximity to 

developing oceanic crust, and thus spatially linked to the Devonian ophiolitic rocks 

prior to emplacement. 

Top-to-the-NW thrusting and contemporaneous magmatism during the tectonic 

emplacement o f the Lizard Ophiolite Complex during the Middle to Late Devonian 

(~390-366Ma). This included incorporation o f the Ordovician basement within the 

basal part o f the Lizard Ophiolite Complex. Reactivation o f thrust-related contacts 

resulted in the development o f serpentine-filled faults, and is possibly related to late 

stage collapse o f the o f the nappe pile (Jones, 1997). 

Fault block rotation associated with displacements along high angle brittle 

extensional faults, during the late Carboniferous to Triassic, is probably responsible 

for the apparently extensional nature o f the top-to-the-NW, emplacement-related 

thrusts. 

7.2.1. Early evolution of Ordovician basement 

The earliest deformation event is recorded in Ordovician basement rocks exposed on 

the SW part o f the Lizard Peninsula. New geochronological data (Section 3.2) has 

demonstrated that the Old Lizard Head Series (OLHS) are at least early Ordovician 

(~488-499Ma) and it is therefore proposed that this unit is genetically related to the 

Man o f War Gneiss (MOWG). The M O W G has recently been dated as early 

Ordovician (499 +8/-3 Ma) (Sandeman et al., 1997). Previous studies have proposed 

that the metasedimentary and metavolcanic rocks o f the OLHS represented deformed 

and metamorphosed seafloor sediments and ocean floor basalts that formed part o f the 

Devonian upper ocean crust sequence of the Lizard Ophiolite Complex (e.g. Styles, 

1992). In the past, the Landewednack amphibolites have been interpreted as 

metamorphosed ocean floor basalts that were transitional with the OLHS (e.g. 

Bromley, 1979). The new geochronological data demonstrates that the OLHS (and 

M O W G ) are unrelated to the Landewednack amphibolites and other Devonian rocks o f 

the Lizard Ophiolite Complex. 
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Amphibolite layers within the OLHS display geochemical characteristics 

typical o f magmas erupted above an island-arc - suprasubduction-zone (Section 6.3). 

The Lizard Head Sill , which cross-cuts the OLHS, also displays island-arc or 

subduction zone geochemical characteristics (Section 6.3). Sandeman et al. (1997) 

recently demonstrated that the M O W G also possess geochemical variations 

characteristic o f granitoids formed in supra-subduction zone environments. 

On the basis o f the new and existing geochronological (Chapter 3) and 

geochemical evidence (Chapter 6), it is proposed that the OLHS and M O W G represent 

a fragment o f Ordovician arc-type crust. The regional geological implications of this 

basement unit w i l l be discussed later (Section 7.2). The earliest fabrics preserved in the 

OLHS and M O W G are generally steep and these are cross-cut by the Lizard Head Sill 

and therefore developed during an Ordovician deformation event. There is insufficient 

structural evidence to determine the tectonic processes responsible for this deformation 

episode. Jones (1997) proposed that these early steep fabrics were developed during the 

emplacement o f the Lizard Ophiolite Complex in the Devonian. Jones (1997) also 

suggested that early steep fabrics o f similar orientation in the Landewednack 

amphibolites were contemporaneous with those in the OLHS. These interpretations can 

now be rejected in light o f the new geochronological evidence. 

Tectonic models for the later emplacement o f Devonian rocks of the Lizard 

Ophiolite Complex as a structural unit overlying the Ordovician basement rocks wi l l be 

discussed in Section 7.2.4. 

7.2.2. Early mantle exhumation and development of oceanic crust 

The earliest deformation event in the Devonian rocks o f the Lizard Ophiolite Complex 

is preserved in the Lizard peridotites, ultramafic and mafic Traboe cumulates and 

gabbroic veins (Sections 3.3 & 3.4). The Lizard peridotites include relatively 

undeformed coarse-grained Iherzolites through to highly deformed mylonitic 

peridotites. Evidence demonstrating that the different peridotite-types are genetically 

related includes: 

• Sub-vertical foliations and down-dip mineral lineations are observed in exposures 

o f both end-member peridotite-types (Section 3.3), 
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• The presence in some areas o f gradational contacts between coarse-grained 

Iherzolite and mylonitic peridotite (Section 3.3), 

• Microstructures o f the peridotite suggest that the mylonitic peridotites are the 

deformed equivalent o f the coarse-grained Iherzolites (Section 4.3), 

• The chemical composition o f relict orthopyroxene and clinopyroxene 

porphyroclasts in mylonitic peridotites is similar to porphyroclasts in the coarse­

grained Iherzolites (Section 5.3 & 5.4). 

• Systematic changes in bulk chemical composition from the coarse-grained 

Iherzolites to mylonitic peridotites (Section 6.2 and 6.3). 

Microstructural evidence (Section 4.3) reveals that the coarse-grained 

peridotites can be sub-divided into spinel Iherzolite and plagioclase Iherzolite. The 

mylonitic peridotites are also sub-divided into a mylonitic plagioclase-bearing 

peridotite and mylonitic amphibole-bearing peridotite. A microstructural evolution 

f rom spinel Iherzolite to mylonitic amphibole-bearing peridotite, via plagioclase 

Iherzolite, a transitional assemblage peridotite and mylonitic plagioclase-bearing 

peridotite has been established. A process o f increasing deformation, dynamic 

recrysteillisation and grain size reduction constitutes the microstructural evolution. The 

presence of plagioclase replacing aluminous spinel in the more deformed peridotites 

indicates that there has been a sub-solidus transition in response to a progressive 

decrease in pressure during deformation (Section 4.3). Olivine petrofabrics indicate that 

deformation o f the coarse-grain Iherzolites occurred at relatively high temperature 

(T>1000°C) and, in the mylonitic peridotites, that the deformation continued to lower 

temperatures (700-1000°C)(Section 4.3). Development o f pargasitic hornblende in the 

mylonitic amphibole-bearing peridotite is related to the breakdown of clinopyroxene. 

This suggests that hydrous melt/fluids were present during deformation and caused a 

metasomatic interaction (Section 4.3). 

Compositional variations in orthopyroxene, clinopyroxene and spinel support 

microstructural evidence for a decrease in P and T conditions during deformation o f the 

peridotites (Sections 5.4, 5.5 & 5.6). In addition, mineral thermometers and barometers 

also demonstrate that the peridotites have re-equilibrated at progressively lower 

conditions o f P and T during deformation (Section 5.9). The P-T estimates suggest that 

there has been ca. 30km exhumation o f the Lizard peridotites during deformation. The 

P-T trajectory o f the peridotites follows a non-adiabatic subsolidus cooling gradient 
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(i.e. temperatures decrease with decreasing pressure). This P-T trajectory would 

suggest that there has been very limited partial melting during exhumation. Variations 

in the composition o f the constituent minerals in transitional assemblage peridotites and 

mylonitic peridotites are also suggestive o f melt-rock interaction processes (Chapter 5). 

The most conclusive evidence for melt-rock interaction is the changes in the bulk 

composition o f the peridotites (Chapter 6). Transitional assemblage peridotites and 

mylonitic peridotites are enriched in certain major and trace elements, particularly 

alkalis, T i , Ca, A l and, more importantly, LREE elements, relative to the spinel and 

plagioclase Iherzolites. The uniform enrichment o f these elements suggests the 

presence of a km-scale reaction front involving discrete batches o f infiltrating melt 

during deformation. 

Green (1964a) proposed that the structural and chemical evolution of the Lizard 

peridotites was related to the intrusion o f a peridotite diapir into continental crust. 

Several pieces o f evidence appear to support Green's {op cit.) model: 

• Steep fabrics in the peridotites, 

• The presence in the Lizard peninsula o f a region o f mylonitic peridotite broadly 

surrounding a central area o f coarse-grained peridotites, 

• The evidence o f a microstructural evolution from a coarse-grained peridotite 

protolith to mylonitic peridotites, 

• Re-equilibration o f the mineral assemblage in the deformed peridotite to 

conditions o f lower P and T. 

Green {op cit.) strengthened his diapir model by proposing the presence of a 

dynamothermal aureole adjacent to the mylonitic peridotites. He contended that the 

deformed mafic rocks adjacent to the peridotites were a higher-grade metamorphic 

equivalent to the Landewednack amphibolites. This interpretation is consistent with the 

field evidence in some areas, but geochemical data presented in the present study 

confirms the earlier suggesfion o f Leake & Styles (1984) which demonstrates that the 

'aureole rocks' o f Green {op cit.), now referred to as ultramafic and mafic Traboe 

cumulates, display a much wider range o f bulk compositions than the Landewednack 

amphibolites (Chapter 6). This demonstrates that the ultramafic and mafic Traboe 

cumulates are not the metamorphosed equivalent o f the Landewednack amphibolites. 

The bulk composition and the composition o f the constituent mineral phases (Chapter 

5) establish that the Traboe rocks are highly deformed and metamorphosed ultramafic 
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and mafic cumulates. The Traboe cumulate complex (Leake & Styles, 1984) is 

tectonically interleaved with mylonitic peridotites. P-T estimates (Chapter 5) suggest 

that these cumulates re-equilibrated at similar conditions to the mylonitic peridotites. 

This data is consistent with the similar fabric orientations in the mylonitic peridotites 

and the cumulates. Although many authors have criticised Green's {op cit.) 

interpretation of the evolution of the Lizard peridotites, few have proposed an 

alternative model to account for the evidence for an early tectonic evolution of the 

peridotites and associated cumulates. The majority of studies have instead focused on 

the ophiolitic aspect of the Lizard. Styles & Kirby (1980) demonstrated that the Lizard 

peridotites have a sheet-like form and that its present day form is not diapiric. They 

proposed that it could represent the sliced-off top of a sub-oceanic diapir that rose to 

the upper levels of oceanic mantle beneath a ridge or transform region. Clark et al. 

(1998) recently showed that the deformation of the mafic Traboe cumulates and the 

development of the early steep fabrics in these rocks occurred during the Early 

Devonian or earlier (~397Ma) (Section 3.4). 

Considering the evidence presented above, a model is favoured whereby the 

deformation of the peridotites was initiated in the upper mantle at a depth of ca. 30 km. 

Development of peridotite mylonite shear zones accommodated the tectonic 

exhumation and the formation of plagioclase-bearing assemblages record the re-

equilibration of the peridotite to conditions of lower P (and T). Deformation near the 

base of oceanic crust is inferred from the similarity of fabric orientations and estimates 

of P and T for the high-grade metamorphism of both the Traboe cumulates and the 

mylonitic peridotites. The relatively fertile major and trace element composition of the 

coarse-grained Iherzolitic peridotites from the Lizard suggests that they have undergone 

limited partial melting and could therefore represent fragments of subcontinental 

lithospheric mantle, possibly exhumed in an incipient oceanic rift. However, spinel 

compositions in the spinel Iherzolites suggest the possibility that they are derived from 

an 'oceanic margin' geodynamic setting. The whole rock and spinel compositions, 

combined with a lack of evidence for the former presence of a significant oceanic 

crustal sequence, argue against the Lizard Ophiolite Complex representing an extensive 

ocean with spreading ridges. However, the compositions of the metamorphosed mafic 

rocks associated with the Lizard peridotites (Chapter 6) are similar to MORB from 

slow-spreading ridges. The Lizard Ophiolite Complex shows many differences in detail 

to several of the better knownti ophiolites, for example Troodos, Oman and the Bay of 
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Islands (e.g. Coleman, 1977). It has, however, many features comparable with ophiolite 

complexes in the Northern Apennines and Liguria (NW Italy)(e.g. Drury et al, 1990) 

and Zabargad Island (northern Red Sea)(e.g. Piccardo et al., 1988). These include: 

1) Exhumation of mantle due to tectonic denudation; 

2) P-T estimates demonstrating exhumation involving a non-adiabatic (sub-

solidus) gradient; 

3) Limited "wet" partial melting; 

4) Development of a Iherzolite-type mantle sequence with a discontinuous, 

relatively thin crustal sequence. 

Various tectonic models have been proposed to explain the bulk extension of 

continental lithosphere and, the resultant exhumation of fairly fertile mantle during the 

incipient oceanic rifting. In the literature, two main models have been put forward (see 

Bolliot et al., 1988; Piccardo et al, 1990; Hoogerduijn Strating et al., 1993; and 

references therein): 

1) Symmetric pure shear deformation of the upper mantle (e.g. McKenzie, 1978; 

Figure 7.1), which can also involve asthenospheric vertical diapirism (e.g. Boudier 

& Nicolas, 1985; and references therein; Nicolas et al., 1994). 

2) Tectonic denudation of the upper mantle by asymmetric simple shear (e.g. 

Wernicke, 1985; Figure 7.2). 

Evidence in favour of either of these two (end-member) alternatives is derived from: 

1) The investigation of structures and geometries recorded in deep seismic sections 

(e.g. Serpa & de Voogd, 1987; Serpa et al., 1988; Reston, 1990); 

2) The systematic comparison of model calculations with measured surface response 

in terms of vertical movements, heat-flow, gravity anomalies, and magmatism (see 

Hoogerduijn Strating et al., 1993; and references therein). 

According to the former model (e.g. Figure 7.1), exhumation of peridotites in both fast-

and slow-spreading continental and oceanic rifts is normally thought to occur in mantle 

diapirs in response to symmetric, pure shear extension (e.g. Nicolas, 1986; Nicolas et 

ah, 1994). Recently a two-stage model has been proposed for rift development (Nicolas 

et al., 1994). The first stage of rifting of a structurally and thermally homogeneous 

lithosphere is thought to require both an initial plume heating of the base of the 
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Figure 7.1. Symmetric "pure-shear" (e.g. Mackenzie, 1978) model for the tectonic exhumation 
and deformation of mantle during rifting. Taken from Vissers et al. (1995). 
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Figure 7.2. Asymmetric "simple-shear" (e.g. Wernicke, 1985) detachment model for the 
tectonic exhumation and deformation of mantle during rifting Taken from Vissers et al. (1995). 

lithosphere and that a tensile stress is applied to the lithosphere (Nicolas et al., 1994). 

This stage is characterised by lithospheric rupture and conforms to the Mackenzie 

(1978) symmetric pure-shear extension model, but with the additional requirement of 

weakening of the base of the lithosphere as a consequence of thermal thinning in 

response to an upwelling mantle diapir. It is emphasised that a tensile stress must be 

applied to the lithosphere because the pressure exerted by a rising mantle diapir is 

negligible (Nicolas et al., 1994). After creation of a weakness zone in the lithosphere. a 

second stage follows a 10-15 Ma period of thermal relaxation. This second stage 

involves large extension by homogeneous stretching of the lithosphere. which is 

controlled by tectonic stretching of the lithosphere. Heat transport in diapirs is thought 

to be controlled by convective flow only, therefore implying an adiabatic system (e.g. 

Hoogerduijn Strating, 1993; and references therein). Temperature paths in the region of 

0.6°C/km have been proposed for the exhumation of convecting asthenospheric mantle 
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as it rises passively beneath extending lithosphere deforming by bulk pure shear 

(Nicolas, 1986; Hoogerduijn Strating et ah, 1993; and references therein). This type of 

super-solidus adiabatic gradient is typical for oceanic basins with well-developed 

(symmetric) spreading ridges (e.g. Forsyth, 1977). It has recently been demonstrated by 

P-T estimates for peridotites from the Erro-Tobbio Massif (NW Italy) that exhumation 

of these peridotites involved a distinctly non-adiabatic gradient between 2 and 5°C/km 

and it was proposed that this seems inconsistent with mantie diapirism (Hoogerduijn 

Strating et al., 1993). The latter, alternative model (e.g. Figure 7.2), explaining the 

inferred subsolidus exhumation of the Erro-Tobbio peridotites is provided by 

considering the thermal response of continental lithosphere on simple shear extension 

(Hoogerduijn Strating et al., 1993; and references therein). Several model studies, 

considering this factor (Buck et al., 1988; Ruppel et al., 1988; Latin & White, 1990) 

have established that mantle rocks exhumed in the footwall of an inclined lithospheric 

detachment accommodating simple shear extension are cooled significantly, as a result 

of continuous contact with colder hanging-wall rocks (Hoogerduijn Strating, 1990). In 

contrast, mantle rocks exhumed in a rift dominated by pure shear symmetric extension 

wil l show near adiabatic decompression and extensive low-pressure partial melting 

(Hoogerduijn Strating, 1990; and references therein). On the basis of these 

observations, Hoogerduijn Strating et al. (1993) suggested that the non-adiabatic 

subsolidus uplift path of the Erro-Tobbio peridotites is most consistent with tectonic 

denudation during incipient rifting dominated by slightly to strongly asymmetric 

extension. A similar tectonic evolution has been suggested for peridotites in several 

other ophiolite complexes (e.g. Kizildag, Josephine and Troodos ophiolites; Dilek & 

Eddy, 1992), Iherzolites exposed in modem, asymmetric oceanic rifts (e.g. Zabargad 

Island; Piccardo et al., 1988; Voggenreiter et al., 1988), the early evolution of many 

continental margins of slow-spreading oceans and marginal or back-arc basins (BoUiot 

et al., 1987; Kastens et al., 1988; LePichon & Barbier, 1988; Mutter et al., 1989; Dilek 

&Eddy, 1992). 

Based upon the above observations and similarities to the ophiolite complexes 

from Liguria (Hoogerduijn Strating et al., 1993) it is suggested that prior to the 

intrusion of the Crousa gabbro and later mafic dykes (i.e. later oceanic crust 

development), the exhumation and deformation of the Lizard peridotites may also be 

consistent with asymmetric extension in the early stages of oceanic rifting. Evidence 
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supporting this hypothesis includes P-T estimates (Chapter 5) that suggest non-

adiabatic (sub-solidus) (~5°C/km) exhumation of the Lizard peridotites and the rather 

fertile nature of the spinel Iherzolite i.e. prior to re-fertilisation during later deformation 

and syn-tectonic melt infiltration resulting in the development of mylonitic peridotites. 

Following the model suggested above, the mylonitic peridotites of the Lizard 

Ophiolite Complex are thought to represent the footwall of a major mantle shear zone 

and the deformed and metamorphosed ultramafic and mafic Traboe cumulates 

represent the hangingwall near to the base of an oceanic crust sequence (Figure 7.3). It 

is suggested that the ultramafic and mafic cumulates represent the hangingwall of the 

proposed shear-zone on the basis that these rocks cannot have originated at the depths 

(~30 km) from which the Lizard peridotites originated. This is because the mineral 

assemblages (e.g. plagioclase and Cr-rich spinel), that comprise the cumulate rocks 

would be unstable at this depth. Later, emplacement-related deformation and brittle 

faulting make it difficult, i f not impossible, to deduce the original geometry of these 

shear zones. Therefore the present-day distribution of the mylonitic peridotites cannot 

be completely resolved in terms of a tectonic model. All that is known is that the 

foliations in the mylonitic peridotites and overlying Traboe cumulates strike NW-SE, 

dip steeply NE and mineral lineations plunge down-dip. This suggests that extension 

and rifting was NE-SW directed, which is consistent with the orientation of the later 

mafic dyke suite and gabbro mylonite shear zones associated with the Crousa gabbro 
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f.-Meta-gabbro - . f , ^ j - ; ; V ' ^ ^ ' J 

volatil melts 
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Figure 7.3. Schematic diagram showing a possible interpretation of the early evolution of the 
Lizard Ophiolite Complex associated with rifting and development of early oceanic crust. 
Mylonitic peridotites are developed in a detachment zone (mantle shear zone) during 
exhumation of mantle and cumulates are disrupted, deformed and highly metamorphosed (900-
1050°C) in the hangingwall. 
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(Chapter 3). It has also been established that during exhumation, the mylonitic 

peridotites were chemically enriched in response to meft-rock interaction involving 

volatile-rich melt. Early steep fabrics preserved in the Landewednack amphibolites may 

have also developed during oceanic rifting and may thus represent deformation and 

associated high-temperature metamorphism higher in the oceanic crust sequence. The 

steep fabrics preserved in the Lizard peridotites and relict fabrics in the Landewednack 

amphibolites are inconsistent with the low- to moderately-dipping extensional shear-

zones depicted in Figure 7.3. This implies that there has been re-orientation of the dip 

of the fabrics preserved in the peridotites. A possible mechanism to account for these 

steep fabrics is rotation of fauft blocks during extensional faulting. However, it seems 

that this rotation must have taken place prior to the later magmatism associated with the 

Crousa gabbro, because the gabbro sheets and vertical mafic dykes associated with this 

magmatism chill against peridotites with a sub-vertical fabric. Extensional faulting 

associated with this later magmatism can also be invoked to have caused the observed 

fabric rotation. 

Further discussion regarding the implications for the early mantle evolution of the 

Lizard Ophiolite Complex and other ophiolite complexes is presented in Section 7.3. 

7.2.3. Later magmatism and extensional tectonics 

Intrusion of the Crousa gabbro, associated gabbro dykes and later mafic dykes clearly 

post-dates the deformation of the Lizard peridotites. Isotopic data (Chapter 6) 

demonstrates that the Crousa gabbro and mafic dykes were probably derived from a 

magma source similar to the source of the Landewednack amphibolites. Thus, there 

appears to have been a later phase of magmatism and construction of oceanic crust 

following a period of mantle exhumation, oceanic rifting and early oceanic crust 

formation (see Secfion 7.2.2)(Figure 7.4). Gibbons & Thompson (1991) and Roberts et 

al. (1993) have suggested that extensional shear zones represented by myionite zones 

including the Porthoustock amphibolites (Secfion 3.4.3.b) and gabbro myionite zones in 

the Crousa gabbro body (Section 3.4.3.a) indicate that this period of magmatism was 

dominated by ductile extension of the oceanic crust. Roberts et al. (1993) drew 

comparisons with examples of modem oceanic crust and proposed that accommodation 

of extension by displacement along faults and ductile shear zones was a feature typical 
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of magma-starved, slow spreading ridges. Shear zones in the Crousa gabbro strike NW-

SE, dip towards the NE and show a top-to-the-NE displacement, whereas the fabric in 

the Porthoustock amphibolites strikes NW-SE, predominantly dip SW and shear-sense 

indicators suggest at top-to-the-SW displacement. 

Porthoustock amphibolitcs 
- Extensional shear zone 

Newer ocean crust 

Dykes and lavas 
r Landewednack 

/^amphibolites ? 

wj Meta-gabbro V . . X^;? ^'J 

53 e-
IS o 
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Sheeted dykes 

^jRidgc-parallel cxtcnsionai 
shear zones s ^ ^ 
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^ Crousa ^ 'V^Xx- ' 

* * * * * • * • • Metamorphosed 
Ultramafic and mafic;;.. 
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•• Traboe-type? 'vt^iiiiWv 

-375 Ma (early to middle Devonian) later oceanic crust forming event 

Figure 7.4. Schematic diagram depicting the later magmatism and extensional tectonics. 
Showing the intrusion of the Crousa gabbro and extensional shear zones, including the 
Porthoustock amphibolites. The Carrick Luz shear-zone is depicted as a feeder system to the 
overlying Crousa Gabbro (ocean crust) (after Andrews & Jolly, in press), see discussion in text. 

It has recently been suggested that the Carrick Luz shear-zone (Andrews & 

Jolly, in press; Chapter 3) represents part of a feeder system to the developing 

overlying crust (Figure 7.4). The dextral shear-zone is a steep 150 m wide band of 

gabbro myionite within coarse-grained spinel Iherzolite. On the basis of a 11° 

clockwise rotation of the trend of the main generation of mafic dykes in the overlying 

oceanic crust to the shear-zone, Andrews & Jolly (in press) propose that development 

of the oceanic crust occurred above an oblique spreading centre. Figure 7.4 that shows 

this shear-zone may represent the feeder zone to the overlying crust, but the possibility 

that the pre-existing mantle shear-zone could also represent a feeder zone cannot be 

excluded, although there is currently no field evidence to support this hypothesis. 

It is therefore apparent that during this later evolution of the oceanic crust 

sequence of the Lizard Ophiolite Complex, tectonic processes rather than magmatism 

dominated extension. This observation is consistent with the tectonic model proposed 

for the earlier evolution of the upper manfie and lower crust sequence of the Lizard 

(Secfion 7.2.2). It is also evident that the NE-SW directed extension inferred from the 
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mylonitic fabrics in the Lizard peridotites and Traboe cumulates continued during the 

later evolution of this oceanic crust sequence. 

7.2.4. Emplacement of the Lizard Ophiolite Complex 

Emplacement or obduction of the Lizard Ophiolite Complex was responsible for the 

juxtaposition of several different lithological units, which are the Lizard peridotites, 

Landewednack amphibolites and Ordovician basement. This included top-to-the-NW 

thrusting of mantle peridotites over Landewednack amphibolites (Figure 7.5), which 

represent deformed and metamorphosed oceanic crust. This is in keeping with the 

Overthrusting mantle unit 

NW 1 SE 

Landewednack amphibolites * ' * * ' * Lizard pendotites 
(deformed ocean crust) ^ r ^ - " i * | * i * i * i * i * • * i * i i T - T (mantle unit) 

Figure 7.5. Sketch illustrating the overthrusting of the mantle unit over Landewednack 
amphibolites. 

obduction-related structural evolution of several well-known ophiolites, for example 

Bay of Islands (Suhr & Cawood, 1993) and Oman (Searle & Malpas, 1980). The fact 

that mantle peridotites structurally overiie deformed oceanic crust demonstrates that the 

detachment surface that forms the contact between these units extended down at least to 

the upper mantle. Although the basal part of the Lizard Ophiolite Complex and 

emplacement-related structures are in many ways comparable with other ophiolite 

complexes, there are several unusual features observed in the Lizard which distinguish 

it from the basal sequence of 'typical' ophiolite complexes (e.g. Williams & Smyth, 

1973): 

1) The basal part of the peridotite unit is not composed of high-temperature mylonitic 

peridotites. 
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2) The absence of an inverted metamorphic zonation in amphibolites below the 

peridotite unit from amphibolite- and granulite-facies rocks at the top to sub-

greenschist facies at the base. 

3) The extensive magmatism during emplacement, involving the intrusion of a mixed 

suite of felsic and mafic magmas along the detachment surface. 

4) The re-activation of thrust contacts involving the development of apparently 

extensional, serpentine-filled fault zones. 

5) The present day kinematics of the thrust contact between the overlying peridotite 

and underlying amphibolite suggesting apparently extensional displacements. 

Several lines of evidence suggest that the final phase of overthrusting of the 

Lizard Ophiolite Complex occurred at lower temperature (< 638 °C) than other 

examples of ophiolite complexes (see above). This evidence includes estimates of the 

conditions of P & T during metamorphism of the Landewednack amphibolites (Chapter 

5) and a lack of high-temperature peridotite mylonites at the base of the peridotite unit. 

Instead deformation in the basal part of the peridotite imit was accommodated by the 

development of hydrous shear zones composed of amphibole and chlorite (Chapters 3 

& 4)(compare Figure 1.4 with Figures 3.46, 3.48 & 3.50). These shear zones cross- cut 

the earlier steep fabrics in the peridotite and are parallel to both the thrust contact and 

fabrics developed in the underlying amphibolites. Shear-sense indicators within these 

shear zones are consistent with top-to-the-NW displacement of the peridotite unit over 

the Landewednack amphibolites. During emplacement, low-angle fabrics were 

developed in the Landewednack amphibolites. These fabrics cross-cut earlier steeper 

fabrics related to construction of the oceanic crust sequence (Section 7.2.2). 

Amphibolites with a steep fabric are characterised by a high-temperature metamorphic 

mineral assemblage composed of brown amphibole -i- plagioclase (Chapter 4). In areas 

where the amphibolites have low-angle fabrics, the mineral assemblage is characterised 

by the presence of a retrograde metamorphic assemblage composed of green amphibole 

+ plagioclase (Chapter 4). A third retrograde metamorphic assemblage occurs in 

narrow shear zones and is distinguished by the presence of colourless hornblende 

(Chapter 4). It is proposed that the latter two retrograde metamorphic mineral 

assemblages were developed during metamorphism associated with the emplacement of 

the Lizard Ophiolite Complex. Similar metamorphic assemblages are developed in the 
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mafic Traboe cumulates and gabbroic veins. Emplacement-related fabrics are also 

observed in the rocks of the Ordovician basement. These fabrics were developed during 

thrusting of Devonian rocks of the Lizard Ophiolite Complex over the basement 

(Chapter 3). 

SHRIMP dating of the felsic component of the Kennack Gneiss, part of a syn-

tectonic magmatic suite intruded during emplacement of the Lizard Ophiolite Complex, 

has constrained emplacement to an age of ca. 390-384 Ma (Chapter 3). Additional age 

determinations provided by SHRIMP dating (Chapter 3), provide dates ranging 

between ca.392-374 Ma for the metamorphism of Landewednack amphibolites and a 

gabbroic vein. With consideration of analytical errors this indicates that the thermal 

event(s) associated with emplacement of the Lizard Ophiolite Complex span a 

minimum of 18 Ma and a maximum of 47 Ma. This data is consistent with the span of 

age ranges for the emplacement of other ophiolites, for example the Semail ophiolite in 

Oman (Searle & Malpas, 1980) and the Bay of Islands ophiolite in Newfoundland 

(Cawood & Suhr, 1992). 

Several conclusions can be dravra from the evidence presented above and in the 

preceding chapters. Emplacement of the Lizard Ophiolite Complex took place as an 

intra-oceanic thrusting event (Figure 7.5; Chapter 3; Chapter 6). The mantle unit was 

relatively cool during emplacement and peridotite mylonites were not developed at its 

base. This meant that an inverted metamorphic zonation was not developed in the 

underlying amphibolites. It is suggested that some residual heat was present in the 

mantle unit and was responsible for the amphibolite-grade metamorphism of the 

Landewednack amphibolites, an event distinct from the earlier deformation and high-

temperature (900-1050°C) metamorphism of the Traboe cumulates. This phase of 

relatively cool emplacement should not be conftjsed with the later, cold emplacement 

of the Lizard Ophiolite Complex over Meneage melange sediments and volcanic rocks 

(Barnes & Andrews, 1984), i.e., the event discussed above occurred earlier and in an 

intra-oceanic setting. 

The origin of the Kennack Gneiss is poorly constrained. Isotopic evidence 

(Chapter 6; Darbyshire & Shepherd, 1994) suggests that the felsic component may 

possibly be derived from melting of Palaeozoic metasedimentary rocks under-thrust 

beneath the Lizard Ophiolite Complex and similar to those exposed to the north of the 

Lizard Ophiolite Complex. The mafic component of the Kennack Gneiss has 
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geochemical properties similar to arc-derived magmas (Floyd et al., 1993). It is 

therefore possible that emplacement of the Lizard Ophiolite Complex actually involved 

underthrusting of oceanic crust beneath mantle in a subduction zone and that the 

Kennack Gneiss is the product of melting of subducted mafic rocks. It is proposed that 

the Lizard Ophiolite Complex was emplaced as a series of thrust sheets, with the 

peridotites forming the highest structural unit above a unit of deformed and 

metamorphosed oceanic crust while, Ordovician basement forms the lowest structural 

unit. 

Reactivation of the thrust contact between the peridotite and Landewednack 

amphibolite involved the development of apparently extensional, serpentine-filled fault 

zones. The serpentine-filled faults could have formed during reactivation of thrust 

contacts in response to late stage foreland-directed collapse of the nappe pile (Jones, 

1997)(Figure 7.6). This model would explain why the majority of the serpentine-filled 

fault zones are more steeply dipping that the original thrust contacts (Chapter 3). It is 

suggested that overthrusting of the mantle unit provided the necessary load for gravity-

driven, vertical tectonic thinning. The development of serpentine-filled faults 

demonstrates that reactivation is a significant feature in the structural evolution of the 

Lizard Ophiolite Complex. These findings have important implications for the 

development of basal serpentinite zones of other ophiolite complexes, for example the 

Semail ophiolite, Oman (Searle & Malpas, 1980), which may have also developed 

during re-activation of earlier, higher-temperature thrust contacts. 

Scrpentinc-fillcd fault zones Lizard peridotitcs 
(Reactivation of thmst contact) (mantle unit) 

N W Late-stage extensional I T T 
_ / SE 

collapse of nappe pile L-i^-fi*^ ** ** ** *•*•*•*+*•*• — 

Landewednack amphibolitcs 
(deformed ocean cnis t )^^ 

Figure 7.6. Late -stage extensional collapse of the nappe pile, faciliated by reactivation of 
earlier thrust contacts (cf Jones, 1997) is proposed to account for the development of 
serpentine-filled faults. 
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On the east coast of the Lizard, thrust contacts between the overlying peridotite 

and underlying Landewednack amphibolites strike NE-SW and dip at a low-angle 

towards the NW. Shear sense indicators within shear zones in the basal part of the 

peridofites and in the amphibolites indicate a top-to-the-NW apparently extensional 

displacement (Chapter 3). It is suggested that the present day geometry of these 

contacts may be related to post-emplacement fault-block rotation facilitated by 

displacement along later steep brittle faults (Figure 7.7) or related to the extensional 

collapse phase (Figure 7.6) and reactivation of the emplacement-related thrusts. 

Apparently 
extensional Normal faults and 
displacement fault block rotation 

\ \ 

Landewednack amphibolites 
(deformed ocean crust) 

Lizard peridotites 
(mantle unit) 

Ocffan m i s t s ^ s ^ X s ^ v ^ X s 
f' lt » ' » 4̂. .I. • • • • • • • 

Mantle Continental crust 
(Man or War Gneiss?) 

and Gramscatho Group jlysch 

Figure 7.7. A sketch, which demonstrates that later post-emplacement fauting and rotation of 
the thrust contact within rotated fault blocks may explain the present day geometry and 
apparently extensional displacements along thrust contacts between peridotite and amphibolite 
on the east coast if the Lizard peninsula. 

7.3 Regional tectonic implications of evolution of the Lizard Ophiolite Complex 

7.3.1. Ordovician evolution of NW Europe 

Sandeman et al. (1997) demonstrated that the early Ordovician age of the MOWG is 

significantly older than any other in situ igneous or meta-igneous rocks in SW England. 

The associafion of the MOWG and the OLHS which both exhibit arc-like geochemical 

characteristics has important implicafions for the pre-Hercynian geological history of 

NW Europe (Sandeman et al., 1997). Several other complexes in the northern and 

western European Variscides, which incorporate granitic rocks, pelitic metasediments, 

ophiolific units, oceanic island volcanics, calc-alkaline volcanics and high P-T 

metabasites, yield U-Pb ages in the range ca. 480-510 Ma (Sandeman et al., 1997). 
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These complexes include: the Morals complex of northern Portugal (Dallmeyer & 

Tucker, 1993); the Malpica-Tuy allochthon in NW Spain (Santos Zalduegui et al., 

1995); the Sudeten Batholith of SW Poland (Oliver et al., 1993); and the Gory Sowie 

Massif of SW Poland (Kroner & Hegner, 1998). A similarity in ages of these 

complexes and their geological similarity are evidence for the existence of an active 

magmatic arc in the Cambrian and Ordovician times (Kroner & Hegner, 1998). This arc 

would have extended between the English Channel to the SW Sudetes of Poland. 

Sandeman et al. (1997) consider that during the Ordovician, eastern Avalonia was 

probably separated from northern Gondwana by the Rheic ocean basin. 

7.3.2. Devonian tectonic evolution of SW England 

The tectonic models (Sections 7.2.2, 7.2.3. & 7.2.4) proposed for the tectonic evolution 

of the Devonian rocks of the Lizard Ophiolite Complex are broadly compatible with the 

tectonic model for the evolution of south Cornwall presented by Holder & Leveridge 

(1986a) (Chapter2; Figure 2.3). The Holder & Leveridge {op cit.) model predicts the 

presence of an ocean basin in the Gedinnian - Siegenian (i.e. Early Devonian). Direct 

comparisons have been made between the association between the Lizard Ophiolite 

Complex, Carrick Nappe flysch, Dodman Phyllites and the Eddystone gneisses 

(Normaimian Nappe) in SW England with the Giessen/Selke Nappe, Northern Phyllite 

zone and the Mid-German Crystalline Rise of the Harz and eastern Rhineland in 

Germany (Holder & Leveridge, 1986b). Similarities between these two regions of the 

Rhenohercynian zone led Holder & Leveridge (1986a) to propose the existence of an 

extensive along-strike oceanic basin in the north European Variscides, rather than the 

localised short-lived basin suggested previously by Badham (1982). It has been 

suggested that the crustal thinning necessary to produce the Gramscatho basin and 

oceanic crust represented by the Lizard Ophiolite Complex may have arisen as a local 

pull-apart associated with dextral strike-slip faulting (Badham, 1982). The localised 

nature of the rocks of the Lizard Ophiolite Complex is compatible with this model and, 

more significantly with the NW-SE trend of the sheeted dyke complex which implies 

NE-SW directed extension, which is consistent with an E-W dextral shear (Sanderson, 

1984). Furthermore, isotopic evidence presented by Davies (1984) demonstrates that 

the magmatic evolution of the Lizard Ophiolite Complex is analogous to that of the 
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early stages of rifting of the Red Sea, which represents a relatively small 

intracontinental basin. Barnes & Andrews (1986) reviewed previously published field 

and geochemical data on the Lizard Ophiolite Complex and Meneage Formation and, 

following Badham (1982) suggested that the findings were consistent with the Lizard 

Ophiolite Complex being developed in a pull-apart basin associated with an E-W 

trending intracontinental dextral transform fault zone. Barnes & Andrews (1986) 

suggested similarities between the development of the Lizard Ophiolite Complex and 

the Caymen Ridge (Wadge & Burke, 1983; Mann et al., 1983), rifting of the Baja 

California and Salton Sea basin associated with San Andreas fault system (Cromwell & 

Sylvester, 1979). The suggestion that the E-W trending Start-Perranporth line (SPL) in 

S.Devon and Cornwall marked a major basement fault during the Devonian 

(Holdsworth, 1989) has provided fiirther support for the model of Badham (1982). The 

SPL basement fault zone appears to have been a major E-W continental dextral 

megashear that formed the northern boundary for a series of pull-apart basins 

(Holdsworth, op cit.). Further evidence for the NE-SW directed extension during 

development of the later crust sequence of the Lizard Ophiolite Complex is 

demonstrated by a series of NW-SE orientated extensional shear zones that dip towards 

the NE in the Crousa gabbro. These shear zones have been interpreted to represent 

ridge-parallel faults that controlled lithospheric extension during construction of the 

later oceanic crust sequence (Roberts et al., 1993). Following Badham (op cit.), 

Sanderson {op cit.), Barnes & Andrews {op cit.) and Holdsworth {op cit.), it is 

suggested that the Lizard Ophiolite Complex and the Gramscatho flysch basin formed 

in a dextral pull-apart basin (Figure 7.8) during the early Devonian. Several lines of 

evidence support this hypothesis: (1) In Secfion 7.2.1 it is suggested that the 

deformation and exhumation of Lizard peridotites may be consistent with asymmetric 

extension in the early stages of oceanic rifting. Asymmetric extension in a pull-apart 

basin is not an atypical feature of extending crustal lithosphere. For example it has been 

demonstrated by COCORP deep seismic reflection profiles that the Death Valley pull-

apart basin in southeastern California shows an asymmetrical architecture (Serpa et al, 

1988) and the exhumafion of Errio-Tobbio peridotites of NW Italy is believed to have 

been accommodated km- to 100-m-scale extensional shear zones in the mantle by 

asymmetric extension associated with 'passive' rifting in a pull-apart domain such as 

the Piemonte-Ligurian ocean (Hoogerduijn Strating, 1990). (2) The rather fertile 

chemistry of the Lizard peridotites (Chapter 6) is similar to sub-continental mantle, this 
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and the limited crust sequence of the ophiolite and the localised nature of the Lizard 

Ophiolite Complex are compatible with a pull-apart model. (3) A NE-SW extension 

direction is inferred from the fabrics in the mylonitic peridotites and deformed Traboe 

cumulates that strike NW-SE and dip steeply NE, in addition to the NW-SE orientation 

of mafic dykes of the sheeted dyke complex and extensional shear zones in the Crousa 

gabbro (see above). This extension direction is consistent with development of a pull-

apart basin associated with E-W trending intracontinental dextral fault zone; i.e. the 

SPL (see above). 

In light of the findings of Holdsworth {op cit.) and the evidence presented in 

this thesis (see above) the former existence of an extensive along-strike basin in the 

north European Variscides during the Early Devonian (Holder & Leveridge, 1986a) is 

rejected. Alternatively it is suggested that the Giessen/Selke Nappe, Northern Phyllite 

zone and the Mid-German Crystalline Rise of the Harz and eastern Rhineland in 

? E A R L Y - M I D D L E DEVONIAN (ca. 397-375Ma) BASEMENT FAULTS, 
SW ENGLAND. 
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Figure 7.8. Speculative sketch map showing the suggested fault and basin configuration in pre-
Devonian basement ca. 397-375 Ma. SPL, Start-Perranporth line fault; PBF, Plymouth Bay 
fault; SF, Sticklepath fault. Adapted after Holdsworth (1989). 

Germany (Holder & Leveridge, 1986b), the Gramscatho flysch and Lizard Ophiolite 

Complex (Normannian Nappe) and possibly the Start Complex (Holdsworth, op cit.) 

formed in a series of separate dextral pull-apart basins along the Rhenohercynian zone. 

Closure of the ocean basin, top-to-the-NW thrusting and obduction of oceanic 

crust was initiated in the Emsian (i.e. late-Early Devonian), and Holder & Leveridge 

{op cit.) suggested that complete closure of the ocean basin had occurred by the 

Fammenian (i.e. Late Devonian), which is compatible with the span of U-Pb ages 

presented in Chapter 3. Holder & Leveridge {op cit.) proposed that closure of the ocean 
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basin was probably associated with a southward dipping subduction zone below a 

Normannian Nappe. This model is supported by the arc-like geochemical 

characteristics of the Kennack Gneiss, which was intruded during emplacement of the 

Lizard Ophiolite Complex and the felsic component of this mixed felsic and mafic suite 

may have been derived from melting of rocks in the under-thrust Gramscatho Group 

flysch (Figure 7.9). The source of the mafic component is not known. A major 

omission in the Holder & Leveridge {op cit.) model is the lack of the inclusion of a 

^ • ^ ^ Fragment of Ordovician hasement-

Olistostrome and 
sedimentary breccia 

SSE 
Man of War Gneiss and Old Lizard Head Series 

Normaimian Nappe 

Figure 7.9. A model for the closure of a Devonian ocean basin accomodated by a southerly 
dipping subduction zone. Kennack Gneiss intrusions along the thrust contact below the Lizard 
Ophiolite Complex are inferred to be derived from melting of the 'underthrust' Gramscatho 
Group flysch forming felsic magmas and mixing with mafic magmas from an unknown source. 
Adapted after Holder & Leveridge (1986a). 

fragment of Ordovician basement at the base of the Lizard Nappe, but the Ordovician 

age of these rocks was not known at the time the model was presented. 

7.4. Implications for the early evolution of mantle rocks in ophiolite complexes 

The implications of early evolution of the mantle section in ophiolite sequences have 

been overlooked in many studies. It has often been assumed that the fabrics in 

peridotites were developed during the ascent of a mantle diapir beneath a mid-ocean 

ridge. Although manfle diapirism may be responsible for the evolution of mantle in 

some ophiolite complexes, it is not the only possible process. The combined structural 

and geochemical approach adopted in this present study demonstrates that the early 

evolution of the Lizard peridotites is consistent with tectonic exhumation by 

asymmetric extension during the development of an oceanic rift (Section 7.2.2). This 

tectonic model highlights the importance of a wide-range of deformation processes that 
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operate in the upper mantle and the effects of syn-tectonic meU-fluid intlkration. In the 

following sections the implications of these processes are discussed. 

7.4,1. Mant le fabrics in ophiolite complexes 

Until recently, early pre-emplacement related fabrics in mantle section of ophiolites 

were interpreted in terms of asthenospheric flow beneath mid-oceanic ridges (e.g. 

Ceuleneer et al, 1988). Following a detailed study of fabrics in the mantle section of 

spreading 
V 

Figure 7.10. Sketch of the four asthenospheric flow patterns below spreading centres, based 
on recognition of such patterns in the Oman mantle peridotites. Upper boxes: Crustal reference 
plane (sheeted dykes and Moho discontinuity). Lower boxes: Asthenospheric flow planes and 
lines. M - Moho. (a) Homogeneous flow at right angles to ridge axis, (b) Vertical flow lines, 
down-dip flow planes and curved flow plane trajectories, (c) Flow line parallel to ridge axis, (d) 
Flow planes strongly dipping and striking normal to the ridge axis. Subhorizontal flow lines 
indicate strike-slip (from Ceuleneer et al., 1988). 
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the Oman ophiolite, Ceuleneer et al. (1988) documented four well-contrasted 

asthenospheric f low patterns (Figure 7.10). These included: a) homogeneous f low away 

from a ridge axis, b) f low in asthenospheric diapirs, c) channeling of mantle f low along 

a ridge axis, and, d) asthenospheric flow in a broad mantle shear zone. The only flow 

pattern that bears any similarity with the steep fabrics observed in the Lizard peridotites 

is that associated with diapirs, but the swing o f the fabric from vertical to sub-

horizontal a few hundred metres below the cumulates is not observed in the Lizard. In 

all o f these flow pattern models deformation fabrics are restricted to the mantle section 

and are not observed in the overlying cumulates. In the Lizard Ophiolite Complex, 

deformation fabrics in the mylonitic peridotites and overlying Traboe cumulates are 

parallel and interpreted as contemporaneous (Section 7.2.2). As a consequence, its was 

proposed in Section 7.2.2. that these fabrics were developed during tectonic 

exhumation o f the mantle in response to the early stages of oceanic rif t ing in a pull-

apart basin and that deformation o f the Traboe cumulates occurred in the hangingwall 

o f a mantle shear zone. The development o f a pull-apart basin is often associated with 

very rapid, focused zones o f extension and this could adequately accommodate the ca. 

30km exhumation o f the Lizard peridotites. This interpretation is based, in part, on a 

tectonic model proposed for the evolution o f Liguria ophiolite complexes (Hoogerduijn 

Strating, 1991), with which the peridotites o f the Lizard Ophiolite Complex share many 

similarities. Thus, the Moho is defined not only by an igneous compositional change 

f rom mantle peridotites to ultramafic and mafic cumulates, but more significantly by a 

major detachment surface. Rheological consequences of this detachment surface are 

discussed in Section 7.4.3. Therefore mantle fabrics and the microstructural 

characteristics o f peridotites from ophiolite complexes around the world should be 

studied in detail as they provide important clues as to the structural evolution o f mantle 

in oceanic lithosphere. In particular, these fabrics in ophiolites that have previously 

been interpreted to represent asthenospheric flow beneath mid-ocean ridges require re­

examination. Piccardo et al. (1993) recently proposed that the Zabargad Island (Red 

Sea) peridotites were tectonically exhumed in a lithosphere-scale dipping extensional 

detachment zone during the early r i f t ing stage o f the northern sector o f the Red Sea. 

The microstructural and chemical evolution o f the Lizard peridotites is remarkably 

similar to that o f the Zabargad Island peridotites and provides ftarther support for the 

tectonic model proposed for the early evolution of mantle section o f the Lizard 

Ophiolite Complex. 
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7.4.2. Implications of syn-tectonic melt infiltration 

Mylonitic peridotites from the Lizard Ophiolite Complex are chemically enriched in 

LREE and certain major and trace elements relative to the less deformed coarse-grained 

Iherzolites. In Chapter 6, it was suggested that a km-scale reaction front involving 

discrete batches o f infiltrating melt during deformation was responsible for this 

enrichment. Development o f amphibole grains in the mylonitic peridotites suggests that 

the infiltrating melt was volatile-rich. The source o f the melt is not known, but it may 

have been derived from the lower oceanic crustal rocks (Traboe cumulates) that formed 

the hangingwall of the shear zones responsible for the tectonic exhumation of the 

peridotites. Melts could have gained access to the mantle via shear zones represented 

by the mylonitic peridotites. Alternatively, the melts could have been generated at 

deeper (asthenospheric) levels during initiation of rift ing and infiltrated mantle shear 

zones during extension o f the overlying lithosphere. Regardless o f whether the volatile-

rich melts are derived f rom lower oceanic crustal rocks, or from the mantle 

(asthenospheric), i t is clear that the melts have preferentially infiltrated and 

metasomatised the mylonitic peridotites that formed the mantle shear zone. A process 

o f pervasive melt flow through porous peridotite is favoured rather than melt flow 

through fractures. When a melt flows through fractures, the reaction surface between 

melt and host peridotite is limited and therefore metasomatism is also spatially limited 

(Van der Wal & Bodinier, 1996). I f pervasive melt flow through porous peridotite 

occurred the reactional surface is nearly unlimited and hence km-scale metasomatism 

o f the peridotite is possible (Van der Wal & Bodinier, 1996). Km-scale pervasive 

porous melt flow has been proposed by Van der Wal & Bodinier (1996) to account for 

structural and geochemical features o f the Ronda massif in southern Spain. 

Structural and geochemical evidence from the Lizard suggests that porous flow 

o f volatile-rich melt in the mantle was preferentially focused along actively deforming 

shear zones. Several different explanations are presented for this process and are based 

on the recent findings o f Kelemen & Dick (1995). Kelemen & Dick {op cit.) 

investigated evidence for focused melt flow in mantle shear zones exposed in the 

Josephine peridotite in SW Oregon. Models include the hypothesis o f Stevenson 

(1986), who proposed that weaker material in the mantle might be created by the 

presence of heterogeneous melt distribution and areas rich in melt would defomi more 
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rapidly than surrounding peridotite. As a consequence, a pressure gradient would be 

created in which melt would f l ow into the weak zones (shear zones), maintaining and 

enhancing the initial rheological contrast (Kelemen & Dick, op cit). Presence of 

anisotropic permeability in rocks with a strong crystal shape fabric and/or strong lattice 

preferred orientation may also favour focused melt f low along shear zones (Kelemen & 

Dick, op cit.). Focused f low of melt may also enhance localised deformation and the 

development o f shear zones, i.e. there is a positive feedback mechanism involving 

'meh-lubrication' o f shear zones. In Section 6.3.3, i t was suggested that the presence of 

a reaction front could account for the km-scale uniform metasomatism of the mylonitic 

peridotites in the Lizard Ophiolite Complex. Alternatively, 'clogging' of the 

intergranular porosity o f the peridotite by crystallisation o f the syn-tectonic melts 

during cooling associated with exhumation o f the mantle could lead to defocusing o f 

intergranular melt f low and migration o f f low into adjacent 'un-clogged' regions of 

intergranular porosity. 

One o f the difficulties in an investigation syn-tectonic melt infiltration is 

determining whether the recrystallised nature of mantle shear zones facilitated melt 

infiltration, or whether the initial development o f a shear zone is the result o f 

deformation enhanced by melt flow, i.e. which came first? (Kelemen & Dick, op cit.). 

In the Lizard Ophiolite Complex, deformed peridotites which show no geochemical 

evidence for melt infiltration are observed (e.g. spinel and plagioclase Iherzolites) and 

it is only the highly deformed mylonitic peridotites that show significant metasomatism 

as a result o f melt infiltration. This indicates that the mylonitic peridotites probably 

formed in response to the development o f focused flow networks in deforming 

peridotites that led to continued localisation o f strain, increased recrystallisation and 

metasomatism i.e. shear zones formed first. 

The presence o f melts in deforming peridotites can lead to significant 

Theological weakening. For example, in the mylonitic amphibole-bearing peridotite 

f rom the Lizard Ophiolite Complex, the replacement o f pyroxene by amphibole, a 

weaker phase, is suggestive o f reaction softening (Karato et al., 1986). This reaction is 

thought to be associated with interaction with volatile-rich melts. The influx o f 

chemically active volatile-rich melts, synchronous with deformation is thought to have 

result in the breakdown o f the load-bearing framework, in which the bulk rheology is 

controlled by a strong, interlocking network o f silicate phases dominated by olivine 

(Handy, 1990). Breakdown o f the load-bearing framework leads to the development of 
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localised interconnected weak layers (or shear zones), which now control the bulk 

strength o f the fault rock and as a consequence, the rheological behaviour of the shear 

zone (Handy, 1990). Thus, the mylonitic peridotites from the Lizard Ophiolite 

Complex appear to represent areas o f mantle rock that were significantly weakened 

during deformation as a consequence o f transformation o f the mineral phases in 

response to the influx o f volatile-rich melts. 

Melt 'lubricated' shear zones may therefore significantly weaken the upper 

mantle beneath r i f t zones and incipient ocean basins, relative to regions o f deforming 

upper manfle where there is no influx o f chemically active volatile-rich melt. Where 

developed, melt 'lubricated' shear zones would represent major structural 

discontinuities, which control the rheological behaviour o f the upper mantle. 

Further discussion o f the rheological implications o f syn-tectonic melt 

infiltration is presented below (Section 7.4.3). 

7.4.3. Rheological implications and strength of the mantle 

Jaroslow et al. (1996) predicted that zones o f weakness in oceanic lithosphere may 

promote the existence o f long-lived faults in the upper mantle at slow-spreading ridges 

and that this could facilitate tectonic exhumation o f lower crust/upper mantle to higher 

structural levels by extension along low-angle detachment faults. Field and 

microstructural observations and geochemical analyses o f deformed peridotites from 

the Lizard Ophiolite Complex suggest evidence to support the existence o f similar 

detachment faults. Evidence f rom the Lizard shows that a detachment fault may have 

existed at the base o f developing oceanic crust (i.e. the Moho) and that this fault is 

represented by mylonitic peridotites and high-temperature deformation o f ultramafic 

and mafic Traboe cumulates. Shear localisation in the upper mantle is regarded by 

several authors (e.g. Kirby, 1985; Rutter and Brodie, 1988; Jaroslow et al, 1996) to 

represent a possible weakening mechanism and may therefore 'eliminate' a significant 

part o f the strength profile i.e. a localised reduction in the strength o f the mantle. Thus 

trans-lithospheric failure and continental breakup can be facilitated at stresses much 

lower than expected, even than those predicted for wet dislocation creep at constant 

microstructure (Vissers et ah, 1995). In the previous secfion (Section 7.4.2), it was 

proposed that the presence o f melt 'lubricated' shear zones could provide localised 

zones o f weakness in the mantle as a consequence of reaction softening processes. The 
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presence of a fluid during deformation can also result in weakening o f rocks deforming 

by diffusion creep by increasing the bulk and grain boundary diffiasion coefficients 

(Karato et al., 1986). Another processes that may significantly weaken mantle shear 

zones can include the operative deformation mechanism. For instance, Rutter & Brodie 

(1988) and Jaroslow et al. (1996) demonstrated with reference to experimental work 

that shear zones characterised by intense grain size reduction, and therefore the 

operation o f grain size sensitive diffi ision creep processes, w i l l be significantly weaker 

than those in which deformation was accommodated by brittle processes or grain size 

insensitive dislocation creep (Figure 7.11). On the basis o f flow law data, Rutter & 

Brodie {op cit.) also showed that the most dramatic weakening is at lower temperatures, 

because the diffusion creep field expands with decreasing temperatures due to the 

smaller activation energy for diffusion creep relative to dislocation creep (Chapter 1: 

Figure 1.6). In summary, the four dominant weakening mechanisms recognised in 

mantle rocks at a microstructural scale are: 

• Grain size reduction leading to the operation of diffusion creep. 

• Infiltration o f melt in deforming shear zones. 

• Reaction softening caused by mineralogical phase changes (possibly in response to 

the interaction o f volatile-rich melts). 

• Fluid flux facilitating intragranular and intergranular deformation mechanisms. 

O f these weakening mechanisms, reaction softening appears to have been the most 

important i n weakening o f the Lizard peridotites during deformation. 

It is inferred that shear zone localisation and significant weakening of the 

mantle during the rifting associated with the tectonic exhumation o f the Lizard 

peridotites was primarily related to syn-tectonic volatile-rich melt infiltration and the 

resultant progressive transformation to hydrated weaker phases e.g. amphibole. In other 

studies o f mantle shear zones, a change in the dominant deformation has been invoked 

as the primary control for strain localisation and resultant weakening o f the mantle (e.g. 

Vissers et al., 1995; Jaroslow et al., 1996). In recent studies o f mantie rocks from SW 

Cyprus influx o f chemically active hydrous fluids during deformation has been 

proposed to lead to long term weakening (Bailey, 1997; Jones et al., 1997), but in 

general little emphasis has been placed on the role o f melt infiltration as a mechanism 

o f weakening. Therefore this study highlights an alternative process that has important 
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implications for the rheology of upper mantle during continental breakup and oceanic 

rifting and therefore merits further investigation. 
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Figure 7.11. Schematic mechanical strength vs depth profile of the oceanic hthosphere. The 
dotted curve represents an inferred geotherm for 1-Ma lithosphere at a slow-spreading ridge. 
The upper line represents the brittle strength based on Byerlee's law for frictional sliding and 
the lower curve represents the ductile strength of the mantle assuming an olivine composition. 
The solid curve is for deformation accomodated by dislocation creep (from Jaroslow et al., 
1996). 

7.5. Structural geology of the upper mantle 

The present study and the studies discussed in the previous section (e.g. Kirby, 1985; 

Rutter and Brodie, 1988; Vissers et al., 1995; Jaroslow et al, 1996) highlight the 

rheological significance of localised deformation in the upper mantle during continental 

rifting and the early stages of oceanic rifting. Structural studies of orogenic peridotite 

massifs and ophiolites such as these supports the increasing acceptance that shear zones 

in the lithospheric upper mantle to some extent accommodate large-scale displacements 

associated with crustal extension and continental breakup. In addition to field based 

studies, deep seismic studies beneath extensional domains reveal the presence of deep 

reflectors beneath the seismic Moho, but it cannot be confirmed i f these actually 

represent shear zones (e.g. Serpa & de Voogd, 1987; Serpa et al., 1988; Reston, 1990). 
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The studies discussed above suggest that the mantle could play a major role in 

lithosphere deformation, because o f its greater strength and the fact that it makes up a 

large part o f the lithospheric plate. The weaker crust could then deform passively along 

with the mantle; i.e. the crust and mantle should deform coherently as part of the plate, 

a process known as vertically coherent deformation (VCD) (Silver & Chan, 1988; 

1991). In a recent review, Silver (1996) shows that mantie fabric patterns, as revealed 

by seismic anisotropy f rom beneath continents derived from shear-wave splitting data 

suggest that mantle deformation is coherent and contemporaneous with deformation of 

the crust. The results also demonstrated than there is no clear evidence for a significant 

(-100 km thick) subcontinental decoupling zone, suggesting that the continental 

lithosphere is coupled to general mantle circulation. This study demonstrates that 

deformation is not limited to the crust, but it is a phenomenon that pervasively deforms 

the entire continental lithosphere, which is most consistent with the VCD model 

(Silver, op cit.). The mantle deformation described by Silver (op cit.) primarily relates 

to orogeny and is therefore very different to the mantle deformation fabrics described in 

the present study, which are not orogenic. The fabrics described in the present study are 

related to extensional tectonics and exhumation o f the mantle, but the principles 

regarding the coherence o f lithospheric deformation during orogenic deformation are 

believed to apply during lithospheric extension. 

The findings o f Silver (1996) fljrther reinforces the importance of the 

investigation o f structural geology of the mantle, since mantle deformation is not just a 

process limited to the study o f ophiolites, but one that plays a major role in lithospheric 

deformation in general. 

7.4.4. Final conclusions 

Field, geochronological, microstructural and geochemical studies have 
demonstrated that rocks exposed on the Lizard peninsula include Ordovician 
basement and Devonian rocks o f the Lizard Ophiolite Complex. Evidence for three 
tectono-magmatic events during Early to Late Devonian times has been identified 
in the rocks o f the Lizard Ophiolite Complex. 

A basement, and structurally lowermost unit, comprising granitic (MOWG) and 
layered meta-sedimentary and meta-basic (OLHS) rocks o f earliest Ordovician age 
(~499-488Ma) is interpreted as fragments of arc-type crust developed in an active 
magmatic arc during closure o f an ocean basin (Rheic ocean?). 
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Tectonic exhumation o f mantle along extensional lithosphere-scale mantle shear 
zones in the Early Devonian or earlier (-397 Ma) may be responsible for the early 
tectonic evolution o f the mantle section o f the Lizard Ophiolite Complex. It is 
proposed that this may have occurred during asymmetric extension associated with 
continental breakup and oceanic rif t ing. During exhumation, the high-T and high-P 
mineral assemblage (~1200°C & 15Kb) o f the Lizard peridotites progressively re-
equilibrated to conditions o f lower T and P (~919-1074°C & 5-6Kb). High 
temperature (~900-1050°C) deformation o f ultramafic and mafic Traboe cumulates 
is consistent with deformation and metamorphism of early formed oceanic crust in 
the hangingwall o f the inferred shear zone, which may have been located at the base 
o f the crustal sequence close to the Moho. 

The later evolution o f a second generation of oceanic crust sequence shown by 
gabbro and mafic dyke intrusion in the early to middle Devonian (~ 375 Ma) 
primarily involved magmatism, but NE-SW directed extension of the oceanic crust 
may have been predominantly accommodated by low-angle ductile shear zones, 
suggestive o f a magma-starved slow-spreading ridge environment. 

Emplacement o f the Lizard Ophiolite Complex took place during the Middle to 
Late Devonian (~390-366Ma). Top-to-the-NW thrusting facilitated decoupling o f 
the mantle and emplacement over deformed and metamorphosed oceanic crust. 
During emplacement, widespread magmatism involved the intrusion of a mixed 
suite o f felsic and mafic magmas that may well have been focused along the 
detachment surface. The geochemical characteristics o f this suite of intrusive rocks 
suggests that initial emplacement o f the Lizard Ophiolite Complex may have taken 
place in a subduction zone environment. Extensive, apparently extensional re­
activation o f thrust contacts involved the development serpentine-filled fault zones. 

It is proposed that infilfration o f volatile-rich melts during the early mantle 
deformation and exhumation along extensional shear zones could have led to 
significant localisation o f strain and weakening o f the upper mantle. The main 
evidence supporting this hypothesis being mylonitic peridotites that demonstrate 
confirmation o f chemical enrichment as a result o f melt impregnation. Weakening 
may have occurred by replacement o f strong mineral phases e.g. pyroxene by 
weaker phases e.g. amphibole i.e. reaction softening, characterised by the 
development o f mylonitic amphibole-bearing peridotites. It is concluded that this 
and other weakening processes may also be responsible for the development and 
enhancement o f mantle shear zones in other ophiolite complexes and present-day 
oceanic lithosphere during oceanic rif t ing. 
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Appendices 

APPENDICES 

A P P E N D I X A: A N A L Y T I C A L T E C H N I Q U E S 

The procedures presented in A.1-A.3 are taken from Freeman (1996), but data 

presented was obtained during the course o f the present study. 

A . l Sample Preparation 

A l l the samples analysed in this study were prepared in the same way. Prior to sample 

preparation the samples were sorted into batches o f similar lithological type. The 

samples were then processed in these batches, starting with the most chemically 

depleted lithology first e.g. peridotite, in order to minimise cross-sample 

contamination. 

Before samples were crushed, they were brushed clean under rurming water and 

then dried using a high-pressure air hose. 

Samples were crushed in a Pulverisette jaw crusher. Before crushing began the 

machine was stripped and thoroughly cleaned to avoid any contamination from 

previous users. The crusher was also carefiilly cleaned between each sample using a 

wire brush and absolute alcohol. A dust extractor helped to reduce the build up of dust 

within the machine, which speeded up the cleaning process. 

Samples were then milled in a agate ball mi l l for 30 minutes. The mil l was 

cleaned using sharp sand before use, between each sample batch and at the end of the 

day's work. Between each sample the mi l l was cleaned under running water with a 

nylon brush and dried using a high-pressure air hose. 

A.2 X-Rav Fluorescence Analysis 

A l l samples were analysed for major and selected trace elements by XRF at the 

University o f Durham. Major elements were analysed on fusion discs and trace 

elements on pressed pellets. 
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Before the fusion discs were prepared, the loss on ignition (LOI) for each 
sample was determined. Firstly, the powder was dried at 105°C to remove any surface 
water. Then a known amount o f powder was heated at 900°C in porcelain crucibles for 
two hours to derive the L O I . Fusion discs were prepared by thoroughly mixing 
0.45g±0.001g o f the L O I powder with 2.25±0.001g o f dried lithium metaborate/lithium 
tetraborate f lux (Spectroflux lOOB) using a pestle and mortar. Effective mixing ensures 
good totals when the samples are analysed. The powder was then placed in a platinum 
crucible and heated in a furnace at 1050°C for 25 minutes. After removing the sample 
f rom the furnace, the molten mixture was homogenised by 'swirling' the crucible. The 
melt was then poured into moulds on a hot plate and quenched with a metal plunger. 
After the discs had cooled they were labelled, bagged and stored in a desiccator. Care 
was taken not to touch the analytical surface to avoid Na contamination. 

Pressed pellets were made by mixing approximately 1 Og of sample with 8 to 10 

drops o f Mowiol binder in a beaker using a glass rod. The amount o f Mowiol used 

varied according to the properties o f each sample and had to be judged from 

experience. The mix was pressed at 10 bars for approximately 30 seconds. The pellets 

were labelled then dried overnight at 110°C. 

Fusion discs and pellets were analysed on a Philips PW 1500 spectrometer with 

a Rhodium tube. The machine was calibrated using international standards. Only 

standards with compositions close to those expected fi-om the unknowns were used so 

that high concentration standards did not skew the calibration line at low levels. As a 

precaution, in-house peridotite standard samples were run prior to the unknowns to 

check the calibration. During the analyses, a drift monitor was analysed every 6 

samples. I f the variation o f the repeat analyses of the monitor had exceeded 1% for the 

major elements or 10% for the trace elements (Potts, 1987) the analytical run would 

have been stopped and the XRF re-calibrated. In practice the drift o f the machine was 

very small as indicated by the precision values presented below. 

A.2.1. X R F E r r o r control 

Two main elements o f error control were studied during the XRF analyses; 
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a) how accurate the calibration was in relation to the accepted values for the 
international standards, 

b) the instrumental precision. 

Accuracy: the accuracy o f the calibration can be judged by comparing the values 

obtained for the analyses o f international standards with the published accepted values. 

Because there are relatively few low level international standards with elemental 

abundances similar to the unknowns the international standards which were run as a 

check o f accuracy were the same as those used in the calibration. This means that the 

accuracy o f the technique w i l l be slightly over-estimated. The results of the analyses of 

the international standards are summarised in Table A. 1. 

PCC-1 (n=4) DTS-1 (n=3) NIM-D (n=2) W-2 (n=0) 

Discs CAC Accpt RSD CAC Accpt RSD CAC Accpt RSD CAC Accpt RSD 

Si02 43.47 43.86 1.2 40.27 40.42 1.1 38.68 38.96 1.2 - - -

AI2O3 0.67 0.71 7.3 0.22 0.19 13.7 0.24 0.3 5.9 - - -

FezOs 8.62 8.68 2.8 8.68 8.69 3.0 16.99 17 0.1 - -

MgO 45.17 45.71 2.1 50.03 49.64 0.6 44.01 43.51 0.6 - - -

CaO 0.57 0.55 3.7 0.13 0.17 12.1 0.3 0.28 0.0 - - -

T i 0 2 0.01 0.014 25.2 0.01 0.005 46.6 0.02 0.02 0.0 - - -

MnO 0.12 0.125 3.4 0.13 0.12 3.8 0.23 0.22 1.8 - - -

Pellets PCC-1 (n=4) DTS-1 (n=3) NIM-D (n=2) W-2 (n=6) 

Zn 43.6 42 6.4 47.5 48 5.7 90.2 90 3.1 79.1 77 3.9 

Cu 9.1 10 4.1 7.7 7.5 18.2 11.9 10 71.0 105.7 103 4.4 

N i 2386 2400 2.3 2400. 2350 0.9 2150 2040 4.8 64.5 70 4.9 

Co 109.4 110 5.1 137.5 139 4.0 220.6 208 1.8 43.1 44 7.2 

Cr 2696 2730 1.6 3932. 3920 2.0 2998 2870 0.9 91.7 93 3.7 

V 33.2 30 4.5 10.5 12 7.3 36.3 40 1.8 261.8 262 0.7 

Sc 7.2 8.5 15.4 3.3 3.5 42.9 5.3 - - 32.2 35 7.5 

Table A . l . Summary of international standard analysis for major elements analysed on fusion 
discs and trace elements on pressed pellets, n= number of repeat analysis, CAC = analyses 
made during this study, accpt = accepted values for the international standards from Potts et al. 
(1992), RSD = relative standard deviation. Oxide data in wt%, elements in ppm. 
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Instrumental precision: the instrumental precision was determined by making repeat 
analysis o f the same disc/pellet during the analytical run. The standard deviation of the 
analyses obtained is a measure o f how reliably the XRF repeats each measurement (i.e. 
how well the crystals return to the same positions etc.). The results are summarised in 
Table A.2. 

Disc Pellet 

Instrument 

Precision 

CAC 180B 

Instrument 

Precision 

CAC 159 

Instrument 

Precision 

CAC 169 

Instrument 

Precision 

CAC 130 

Si02 0.19 0.08 0.317 Zn 2.33 

AI2O3 0.06 0.06 0.775 Cu 0.49 

0.02 0.43 0.138 Ni 32.46 

MgO 0.39 0.46 1.981 Co 0.35 

CaO 0.02 0.02 0.194 Cr 11.31 

Ti02 0.00 0.00 0.276 V 1.06 

MnO 0.00 0.00 0.532 Sc 1.56 

Ni 12.07 46.97 

Cr 107.63 59.33 

V 3.61 3.34 

Table A.2. Summary of relative standard deviations for instrumental precision; all values in %. 

A.3. I C P - M S Analysis 

Sc, T i , V , Cr, M n , Co, N i , Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Pr, Nd, Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th and U were analysed by 

inductively coupled plasma mass spectrometry on a Perkin Elmer Sciex 6000 at the 

University o f Durham. Samples were prepared as follows. 

A l l the equipment was scrupulously cleaned before the samples were 

dissolved. Funnels, volimietric flasks etc. were leached overnight with 5% nitric acid. 

The Teflon vials were cleaned by heating overnight with approximately 2 ml o f 

Analar'^'^ nitric acid. This process was repeated 3 times before the vials were used for 
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X-108 W2 BCR-1 

Sc 33.44±2.12 33.86 34.68±2.57 35.39 33.25±0.59 32.6 

V 215.55+3.1 218.34 263.94±2.7 264.14 418+9.2 407 

Cr 471.03±18.4 466.83 96.34±9.8 99.5 11.07+0.664 16 

MnO 0.15+0.006 0.15 0.17±0.004 0.17 0.19+0.006 0.18 

Co 38.12+0.573 38.32 44.91±0.537 45.47 37.48±0.549 37 

Ni 122.92+5.7 116.67 79.33±13.1 97.53 9.20+1.218 13 

Cu 82.41±1.68 85.63 102.25+1.78 105.74 24.57±1.092 19 

Zn 132.16±139.2 66.12 79.53±11.8 77.27 124.01±21.6 129.5 

Ga 9.28±0.053 9.33 17.39dt0.25 17.53 21.79±0.221 22 

Rb 12.42+0.215 13.03 19.80+0.353 20.36 47.51+0.441 47.2 

Sr 87.50±1.48 85.47 198.38±1.463 193.31 337.3+4.15 330 

Y 4.31 ±0.045 4.26 22.72±0.320 21.36 37.94±0.325 38 

Zr 24.16±0.250 25.13 92.72± 92.87 190.7±1.7 195 

Nb 0.53±0.013 0.56 7.68+0.073 7.76 12.99+0.055 13.5 

Ba 35.56±0.453 35.44 172.64±2.1 167.08 682.5±14.4 681 

La 0.87+0.040 0.93 10.37±0.099 10.61 25.29+0.281 24.9 

Ce 1.63±0.018 1.73 22.55±0.231 23.03 53.06±0.681 53.7 

Pr 0.27+0.008 0.25 3.01+0.035 2.94 7.01+0.071 6.8 

Nd 1.27+0.021 1.14 13.36±0.222 13.22 29.97+0.174 28.8 

Sm 0.34±0.016 0.38 3.29±0.033 3.36 6.71+0.045 6.59 

Eu 0.12±0.002 0.12 1.07+0.007 1.12 1.97+0.023 1.95 

Gd 0.45±0.017 0.44 3.73±0.070 3.63 6.87+0.137 6.68 

Tb 0.08±0.002 0.08 0.62+0.002 0.62 1.08+0.010 1.05 

Dy 0.57±0.014 0.59 3.77+0.026 3.71 6.36±0.050 6.34 

Ho 0.14+0.003 0.12 0.77±0.006 0.74 1.29±0.010 1.26 

Er 0.45±0.009 0.48 2.16±0.018 2.23 3.57±0.026 3.63 

Tm 0.09+0.003 0.09 0.35±0.003 0.34 0.57±0.004 0.56 

Yb 0.62±0.014 0.68 2.04±0.015 2.03 3.3910.024 3.38 

Lu 0.11dt0.002 0.11 0.32±0.003 0.33 0.5310.004 0.51 

Hf 0.66±0.011 0.69 2.47±0.015 2.49 4.9610.047 4.95 

Ta 0.09±0.083 0.052 0.52±0.028 0.54 0.8310.046 0.81 

Th 0.13±0.003 0.13 2.17±0.021 2.04 6.0710.034 5.98 

Table A .3. Comparison o f accepted standard values for international standards (Potts et al, 
1992) and in-house standards (normal type), and values obtained during this study (bold type). 
Quoted standard deviations obtained f rom five separate measurements in 5 different analytical 
sessions. A l l values in ppm. Except MnO wt%. 
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the first time, and then once between each batch o f samples. The samples were 
prepared in batches o f 30, each batch included three blanks and one or two repeat 
samples. 

Samples o f 0.1±0.001g were digested with 1 ml of Aristar™ nitric acid and 4ml 

of Aristar'^'^ hydrofluoric acid for 48 hours. The product was evaporated almost to 

dryness and then taken up in 1 ml o f Aristar'^'^ nitric acid and again evaporated to near 

dryness. A fiirther 1 ml of Aristar^"^ nitric acid was added the product again evaporated 

to near dryness. The samples were redissolved with 2.5 ml Aristar''"'^ nitric acid and 

approximately 15 ml o f deionised water, and then boiled for 30 minutes. The cooled 

solutions were spiked with 1.25ml o f a 2 ppm B i , Re and Rh internal standard spike 

solution and made up accurately to 50 ml . 

The samples were further diluted 1:10 with 5% nitric before rurming on the 

ICP-MS. The ICP-MS was configured to make 2 replicate analyses per sample with 

dwell times o f 20 ms for all elements except Rb, Sr, Nb, Y, Zr and the REE when dwell 

times o f 40 ms were used, and 50 scans were made across the mass range per replicate. 

Calibration lines were constructed f rom analyses of international standards and in-

house peridotite samples. The standard values and the values obtained during the 

analytical runs are compared in Table A.3. 

A.3.1. I C P - M S detection limits 

Because the machine had to operate close to the detection limit in order to obtain 

reliable data for the unknowns, it was important to have good blank data. Therefore 

three blanks per batch o f samples were made. Satisfactory results were obtained using 

ArsitarT"^ hydrofluoric acid and Romil™ Ultrapurity nitric acid. Despite careful 

laboratory work, differences were still found between blanks made for each sample 

batch. Because the unknown concentrations were so low, the blank correction for each 

sample was made using the relevant blank from the sample batch, rather than 

calculating a bulk average blank. The detection l imit was taken as 3 times the standard 

deviation o f the blank, and typical values for several blanks are presented in Table A.4. 
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Blank A Blank B Blank C Blank A Blank B Blank C 

Sc 0.225 0.836 1.539 Ce 0.004 0.004 0.004 

V 0.030 0.018 0.208 Pr 0.002 0.001 0.003 

Cr 0.502 3.240 1.510 Nd 0.003 0.004 0.005 

Mn 0.000 0.000 0.000 Sm 0.005 0.010 0.011 

Co 0.024 0.040 0.029 Eu 0.000 0.003 0.001 

Ni 0.149 0.000 0.806 Gd 0.007 0.021 0.008 

Cu 0.065 0.015 0.039 Tb 0.000 0.001 0.001 

Zn 68.184 0.000 7.174 Dy 0.002 0.002 0.004 

Ga 0.003 0.059 0.016 Ho 0.000 0.001 0.001 

Rb 0.008 0.010 0.018 Er 0.002 0.004 0.006 

Sr 0.007 0.012 0.011 Tm 0.000 0.001 0.000 

Y 0.001 0.018 0.008 Yb 0.001 0.000 0.003 

Zr 0.011 0.033 0.003 Lu 0.000 0.000 0.000 

Nb 0.001 0.004 0.003 Hf 0.003 0.004 0.009 

Ba 0.036 0.177 0.052 Ta 0.002 0.004 0.001 

La 0.000 0.002 0.006 Th 0.000 0.000 0.002 

Table A.4. Summary of detection limits at 3*s.d. of the blank for three different blank 
samples. Values in ppm. 

A.3.2. I C P - M S precision 

Trying to estimate the precision o f the technique for such low level analyses is difficult. 

Standard instrumental precision for the ICP-MS, measured by making repeat 

measurements o f a sample throughout an analytical run, is high. The standard deviation 

and relative standard deviation o f two standards, which were run 5 times during a 

single analytical session are shown in Table A.5. As the Table shows many elements 

have a precision o f better than 1% and most are better than 7%. Sc, Zn and Ta appear to 

have the worst instrumental precision, up to 20.9%. 
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BHVOl X-108 BHVOl X-108 

Sc 7.1 4.2 Ce 0.8 1.8 

V 1.0 1.0 Pr 0.8 1.1 

Cr 0.7 1.0 Nd 0.8 3.1 

Mn 0.7 1.0 Sm 1.2 3.0 

Co 0.6 1.2 Eu 0.6 3.1 

Ni 1.2 1.5 Gd 1.7 4.3 

Cu 0.8 1.5 Tb 0.6 1.3 

Zn 0.9 20.4 Dy 0.6 3.3 

Ga 1.4 0.8 Ho 0.4 1.6 

Rb 0.7 1.3 Er 0.7 2.5 

Sr 0.8 1.2 Tm 1.2 1.1 

Y 1.1 0.9 Yb 1.5 2.0 

Zr 0.7 1.4 Lu 0.9 1.0 

Nb 0.6 1.5 Hf 1.2 1.9 

Ba 0.8 0.8 Ta 5.2 20.9 

La 1.3 2.8 Th 0.6 1.5 

Table A.5. Summary of the relative standard deviations for the elements in standards BHVOl 
and X-108 based on 7 and 5 replicate analysis respectively in a single analy tical session. 

However, these values are the best possible estimate of the precision because other 

factors can introduce significant errors into the data. Two of the most significant factors 

are likely to be: 

a) differences in inter-run calibration lines - the samples were run over several 

days on the ICP-MS so a different calibration line had to be constructed for 

each days analyses. Because the unknowns were at such low concentrations, 

small differences in the slope o f the calibration lines between nms produces 

significant differences in the calculated concentrations. 

b) sampling imhomogeneity - this is a possible cause of error especially for 

elements concentrated in minor phases (e.g. Zr) and is exacerbated by the 

small sample size used in ICP-MS analysis (O.lg). 

These factors w i l l result in the 'method precision' being worse than the 

instrumental precision. 
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X-108 W2 BHVOl A G V I Average 

Sc 5.75 9.46 6.86 16.33 9.60 

V 2.78 2.28 0.72 1.41 1.80 

Cr 1.07 8.08 9.94 37.08 14.04 

Mn 3.36 1.46 0.36 3.63 2.20 

Co 1.30 1.58 0.99 2.12 1.50 

Ni 1.20 16.61 19.98 4.08 10.47 

Cu 1.20 1.65 0.57 2.19 1.40 

Zn 67.06 14.84 13.45 16.86 28.05 

Ga 1.35 1.56 0.87 1.63 1.35 

Rb 1.51 1.60 1.33 0.40 1.21 

Sr 1.55 0.62 1.40 0.95 1.13 

Y 1.68 1.21 0.50 0.99 1.09 

Zr 1.53 0.39 1.03 0.45 0.85 

Nb 0.78 0.72 0.82 1.00 0.83 

Ba 2.14 0.86 1.09 0.22 1.08 

La 4.95 0.94 1.00 0.28 1.79 

Ce 0.70 0.71 0.77 0.73 0.73 

Pr 1.26 1.06 0.73 1.00 1.01 

Nd 2.06 1.69 0.59 0.63 1.24 

Sm 3.05 1.16 0.50 1.45 1.54 

Eu 1.28 1.19 0.80 1.33 1.15 

Gd 5.28 1.21 1.11 0.59 2.05 

Tb 2.75 1.28 1.23 0.43 1.42 

Dy 1.51 1.32 0.39 0.67 0.97 

Ho 1.73 0.54 0.77 1.07 1.03 

Er 1.82 1.91 0.39 1.61 1.43 

Tm 2.36 1.15 1.12 1.60 1.56 

Yb 2.35 1.03 2.11 1.21 1.67 

Lu 1.71 1.48 0.95 1.36 1.37 

Hf 3.75 1.01 1.14 1.06 1.74 

Ta 80.81 5.31 3.22 4.37 23.43 

Th 1.52 0.92 1.07 0.38 0.97 

Table A.6. Summary of relative standard deviations calculated for analyses of standard 
samples made at the beginning of each days analy tical run: the same solution of each standard 
was used for each analysis. 
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CAC 159 (n=2) CAC 135 (n=2) CAC 49 (n=4) CAC 81 (n=2) Average 

Sc 2.9 10.7 31.4 24.8 17.5 

V 1.2 1.2 5.4 6.9 3.7 

Cr 0.4 0.3 5.4 7.5 3.4 

MnO 1.8 0.6 4.7 12.7 4.9 

Co 1.3 0.8 3.3 5.3 2.6 

Ni 1.1 0.2 1.3 2.7 1.3 

Cu 0.4 0.1 3.0 1.3 1.2 

Zn 163.9 10.6 14.4 17.0 51.5 

Ga 0.6 0.2 6.0 11.8 4.6 

Rb 1.9 0.6 7.8 7.2 4.4 

Sr 4.4 1.0 22.9 16.7 11.3 

Y 1.6 0.0 20.5 17.5 9.9 

Zr 6.9 1.3 129.6 9.3 36.8 

Nb 7.8 2.3 38.2 2.4 12.7 

Ba 2.8 1.1 61.8 44.5 27.5 

La 5.3 2.2 13.4 7.0 

Ce 13.7 1.8 15.7 10.4 

Pr 6.7 1.9 93.4 14.5 29.1 

Nd 1.2 0.7 12.1 16.4 7.6 

Sm 0.5 0.5 28.2 5.4 8.6 

Eu 3.8 1.0 18.2 10.0 8.2 

Gd 2.2 1.0 23.7 14.3 10.3 

Tb 1.4 0.1 21.8 19.3 10.6 

Dy 1.3 0.6 15.0 11.7 7.1 

Ho 0.6 1.7 17.3 13.9 8.4 

Er 2.5 0.2 16.2 18.4 9.3 

Tm 0.6 0.5 17.4 18.9 9.3 

Yb 0.5 0.6 17.1 12.8 7.7 

Lu 3.9 2.2 16.1 11.9 8.5 

Hf 4.9 4.3 29.6 11.5 12.6 

Ta 19.4 5.4 26.5 27.3 19.7 

Th 74.9 8.5 60.6 27.8 42.9 

Table A.7. Summary of relative standard deviations of duplicate analyses, n = number of 
analyses. 

The errors introduced by differences in calibration line gradients and machine 

efficiencies during each daily run can be estimated from replicate analyses made of the 
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calibration standards at the beginning o f each days analyses. The relative standard 
deviation data calculated for four days analyses o f the calibration standards are 
summarised in Table A.6. 

As Table A.6. shows, the precision is generally worse when the between run 

variation is taken into account. However, the majority o f elements still have an average 

precision o f better than 2%, although Zn and Ta are poorer at 28% and 23%. The REE 

precision is considerably better than obtained by Freeman (1996), who obtained values 

ranging between 6.3% and 64.8% for various REE elements. 

To try to estimate the extent to which sampling imhomogeneity affects the 

precision, duplicate solutions were made for several samples. The results of these 

duplicate analyses are given in Table A.7. 

As the table shows, the precision values are slightly worse for most elements 

once the effects o f sampling inhomogeneity have been taken into account and, in 

particular, considerably worse for Zn, Zr and Th. Notably, the duplicate analysis of 

CAC 49 are particularly poor, and may be because this is a peridotite sample, depleted 

in trace elements and REE. 

S.D. S.D. 

Sc 1.661 Ce 0.004 

V 1.009 Pr 0.010 

Cr 256.868 Nd 0.027 

MnO 0.001 Sm 0.025 

Co 0.737 Eu 0.008 

Ni - Gd 0.061 

Cu 0.063 Tb 0.007 

Zn - Dy 0.046 

Ga 0.073 Ho 0.010 

Rb 0.016 Er 0.061 

Sr 0.150 Tm 0.011 

Y 0.146 Yb 0.050 

Zr 0.257 Lu 0.004 

Nb 0.008 Hf 0.019 

Ba 0.362 Ta 0.043 

La 0.006 Th 0.006 

Table A.8. Summary of the estimated standard deviation values for the ICP-MS analyses. 
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CAC 116 CAC 135 CAC 144 CAC 165 CAC 166 CAC 172 

Zr (ICP-MS) 16.2264 18.2268 30.453 28.3519 28.3789 72.7499 

Zr (XRF) 107.9 42.3 213 138.9 114.9 123.3 

Table A.9. Comparison of Zr data provided by ICP-MS and XRF for the same sample. Note 
that values are distinctly lower when analysed by ICP-MS. Values in ppm. 

Table A.9 demonstrates the effects of incomplete dissolution of minor phases 

(e.g. zircon) in amphibolite samples. Values for Zr, which is hosted by zircon, are 

distinctly lower in analyses made by ICP-MS in comparison with analyses made by 

XRF. This phenomena is related to the incomplete dissolution of zirconium during the 

sample preparation stage. Thus, values for Zr obtained by ICP-MS are not reported in 

this study, alternatively values obtained by XRF are used. 

Sample CAC 152 Hf Zr 

ICP-MS (standard preparation) 2.5101 70.6498 

ICP-MS (fusion-disc preparation) 5.008 221.3988 

XRF - 216.8 

Table A.IO. Comparison of Hf data provided by ICP-MS analysis of a sample prepared using 
the standard procedure (see above) compared with the same sample prepared using a fused 
disc. Values in ppm. 

Solubility problems also seem to effect the element H f (Table A.IO), which is 

also hosted by zircon and does not dissolve properly during the standard ICP-MS 

preparation procedure (see above). However, in a sample that was prepared using a 

fused-disc (see Section A.2) and then analysed by ICP-MS, the H f values are higher 

and this suggests that this procedure eliminates the solubility problem associated with 

zirconium. This is confirmed by the fact that the Zr value obtained by ICP-MS using a 

fused-disc is similar to the value obtained by XRF (Table A.IO). Unfortunately only a 

few samples were prepared using the fiised-disc method, therefore an alternative 

method of obtaining valid H f data must be used. Thus, the H f data presented has been 

re-calculated on the basis o f that the real H f and Zr values differ from the measured H f 

and Zr by insoluble zircon, which typically has a Z r /Hf ratio o f 34. Therefore the 

difference in Zr between XRF and ICP-MS (AZr) has been used to correct H f by the 

expression: 
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H f (real) = H f (measured) + AZr/34 
A l l re-calculated values for H f shown in Appendix D are quoted in italics. 

The above discussion illustrates the difficulties inherent in trying to obtain 

reliable low level determinations o f the trace elements in depleted peridotites. As a best 

estimate o f the precision obtained during this study, the average relative standard 

deviations values calculated in Tables A.6 and A.7 were themselves averaged, and then 

converted to ppm by multiplying by an averaged Iherzolite value. The results obtained 

are presented in Table A. 8 and are the basis upon which errors can be calculated. 

A.4. Electron Probe Micro-Analysis 

Major element analysis o f representative mineral phases was performed at the British 

Geological Survey, Keyworth, by energy-dispersive spectrometry (EDS) using a 

Cambridge Instruments Microscan 5 electron microprobe (accelerating voltages 15kV, 

specimen current 5 nA, with counting times of 60 seconds). Additional analyses to 

obtain better data for minor elements were conducted at BGS by wavelength-dispersive 

spectrometry (WDS) using a Cameca SX50 electron microprobe (accelerating voltages 

15 kV, specimen current 5 nA, counting time 60 seconds). Analyses were also 

conducted at the Research School o f Earth Sciences, the Australian National 

University, Canberra, by EDS using a fu l ly automated Cameca Camebax electron 

microprobe using the methods o f Ware (1991) (accelerating voltage 15 kV, Beam 

current 4-6 nA, counting time 80 seconds). Additional data, which is presented for 

several o f the mineral phases in the following sections, includes analyses provided by 

M.T.Styles (British Geological Survey) and D.H.Green, M.Cmiral and W.Lus 

(Research School o f Earth Sciences, the Australian National University, Canberra). 

The calibration was checked periodically during the analyses o f the unknowns 

on the different machines by analysing in-house standards. 

The majority o f specimens probed showed evidence of alteration o f the mineral 

phases under investigation, for example alteration of olivine to serpentine minerals. 

Therefore samples showing the least alteration were selected and analyses were taken 

from grains showing the least alteration, or where this was not possible, at a distance 

f rom the alteration. Several analyses (>5) o f different grains in a single sample were 

collected in order identify the altered grains, and discard them in order to reduce the 
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possibility o f including them in the final representative composition. The representative 
composition o f each mineral phase under investigation, in each particular sample, is 
therefore an average value based on the analyses o f several grains. For pyroxenes and 
spinels, analysis o f the core and rims o f grains were taken to demonstrate any core to 
r im compositional variation. In some rocks, both relict porphyroclasts and neoblasts o f 
pyroxene were present, therefore analyses of both grains were taken. When exsolution 
lamellae were observed in pyroxenes, a defocused beam was used to obtain a 
homogenous composition for these grains. 

Microprobe analysis cannot detect the two oxidation states of iron, Fe^* and 

Fe^^ separately, therefore the Fe^V Fe^^ ratios in the minerals analysed have to 

estimated by computation after the analysis has been performed. A l l methods of 

computation o f the Fe^VFe^* ratios have their limitations and assumptions, however, 

the method of Droop (1987) has been applied. This method is well established in the 

literature and produces favourable results. With this method, the number o f Fe^^ ions 

per X oxygens in the mineral formula, F, is given by formula (A) . 

(A) F=2X{\-TIS) 

Where T is the ideal number o f cations per formula unit, and S is the observed 

cation per X oxygens calculated assuming all iron to be Fe^^ (Droop, 1987). This 

formula has been applied to the microprobe analysis obtained for spinels, pyroxenes 

and amphiboles. The resulting Fe^^/Fe^^ ratios calculated for spinels were consistent, 

however, the results for the pyroxenes and amphiboles in particular were unrealistic 

and included negative values. Therefore, only the data presented for spinel analysis 

includes recalculated Fe^ /̂Fe'̂ '̂  ratios. Examination o f the data presented in the 

literature shows that the pyroxenes in rocks from the Lizard contain negligible Fe'̂ * 

ratios and this is also the case for the majority o f the amphibole analysis. It is therefore 

assumed that the data presented for the pyroxenes and amphiboles is satisfactory, even 

with the omission o f the recalculation o f Fe^VFe^* ratios, for the reasons presented 

above. A l l o f the iron in olivine can be assumed to be Fe^*, therefore no re-calculation 

was required. 

Formula for olivine, pyroxene, spinel, amphibole and plagioclase analyses were 

calculated using 4, 6, 32, 23 and 8 oxygens respectively. 

The graphs in Chapter 5 are annotated with 2a error bars. For several mineral 

parameters (e.g. Cr# in spinel), the errors are smaller in size than the points .on the 

graph. In these cases, the error bars have been omitted for clarity, and the error can be 

assumed to be less than the size o f the points on the graph.^Errors are based on errors 
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A.5 Sensitive High Mass-Resolution Ion Micro-Probe (SHRIMP) Analysis 

The following analytical methods are taken from Nutman et al. {in prep). 

A.5.1. Analytical methods and results 

Following coarse crushing, sample chips were hand picked and then standard heavy 

liquid and isodynamic techniques were used to produce zircon and monazite 

concentrates. These were then hand-picked using a binocular microscope, to produce a 

varied assortment o f least metamict and damaged grains for analysis. Assessment 

grains and choice sites for analysis was based on transmitted and refiected light 

microscopy and cathode luminescence imaging. 

U-Th-Pb isotopic ratios and concentrates were determined in zircon separates 

using SHRIMPs I and I I and were referenced to the Australian National University 

standard zircon SL13 (572 Ma; °̂Ŵ Û = 0.0928). Further details o f the zircon 

analytical procedure and data assessment are given Compston et al. (1984), Roddick &. 

van Breemen (1994) and Claoue-Long et al. (1995). 

Monazite analyses were undertaken following the method outlined by Williams 

et al. (1996), using monazites f rom Thompson mine, Canada as a standard. Several 

isotope dilution thermal ionisation analyses o f these have average U content of 2100 

ppm and a mean ^^^Pb/̂ ^^Pb age o f 1767±0.3 Ma, but with slight dispersion o f 

ages, giving both slightly positive to negative discordant points (C.Roddick, 

written communicafion, 1995). A ^^^Pb/^^^U age of 1767 Ma is used for the Thompson 

monazite standard. As discussed by Williams et al. (1996), the '̂̂ '*Pb- corrected 

207py206pj^ ages obtained by SHRIMP on Thompson monazites are slightly too young 

relative to the isotope dilution data. This is best accounted for by an isobaric 

interference under the *̂''*Pb peak, at count rates of 0.5 to 1.5 counts per second. The 

problem is compounded by high background counts (measured at mass -204.1). As 

pointed-out by Williams et al. (1996), correction o f mass 204 counts o f some monazite 

unknowns using an amount assessed from the Thompson standard leads to the ^"''Pb 

values less than the background counts. This demonstrates that this interference is 

variable, depending on the chemistry o f the monazite suite in question. Fortunately in 

the case o f the unknown monazites reported in this paper, this problem is of no 
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consequence because their young age has meant that ^"^Pb/^^^U ratios, after correction 
for small amounts o f common Pb by the "̂̂ P̂b method (Compston et al., 1984) has been 
used in the age calculation. Summary data is given in Table A.9. 

Quoted errors on isotopic ratios take into account fluctuations in ion count rates 

above that expected f rom counting statistics alone (e.g. Williams et al. 1996). Errors 

are purely based on counting statistics (e.g. Page & Laing, 1992) give a false 

impression o f precision, and hence ease o f resolution o f geological events. This is 

particularly the case in very high Th and U monazites and zircons, where the counting 

statistics component o f error can be subordinate to that due to intra analysis fluctuation 

in ion counting rates. In addition, ^^^Pb/^^*U ratios have an extra error component 

(typically 1.5 to 2.0%) from calibration of the measurement using the standard zircon 

SL13. 

Sample Lithology Metamorphism Igneous Zircon inheritance 

96/510 Landewednack 

Amphibolite 

392 ±5 Ma (z) 

96/517 Felsic Kennack 

Gneiss 

384+16 Ma (z) 

390 ±16 Ma (m) 

500-600,>1700 Ma 

96/530 Gabbroic vein 385 ±7 Ma (z) 

96/543 Landewednack 

Amphibolite 

374115 Ma (z) 

96/546 Pelite layer -390 Ma (z) -425 Ma (z) 450-600,-750, >1100Ma 

97/719 Granite - Lizard Head 

Sill 

499 ±7 Ma 

97/712 Granite - Lizard Head 

Sill 

488 +9 Ma 

97/713 Felsic Kennack 

Gneiss 

390 Ma 500 Ma and 

Palaeoproterozoic 

97/714 Felsic Kennack 

Gneiss 

390 Ma 500 Ma and 

Palaeoproterozoic 

97/716 Granite sheet 360 Ma 

Table A . I L Summary of studied samples, including sample lithology and calculated ages. 

Most ages presented in this paper are weighted means (2a; with analyses with the 

largest analytical error receiving the lowest weighting) derived from ^^^Pb/^^^U ratios of 
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analyses from the isotopically least-disturbed sites (those having close to concordant 
U/Pb ages, with lowest non-radiogenic components o f Pb) in grains which form optical 
microscopy and cathode luminescence (CL) imagery were ascertained to belong to 
single populations. The decay constants and present-day '̂'''Pb/^ '̂̂ U value given by 
Steiger and Jager (1977) were used to calculate the ages. Tera-Wasserburg ^^Vb/^'^^U 
vs. ^^*Pb/'̂ *'̂ U plots for the zircon and monazites analysed during the course of this 
study are presented on Figure A. 1. 
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Figure A.l.a. Tera-Wasserburg '°'Pb/-°'U vs. -•''Pb/''"U plots for 96/530 (Gabbroic vein) 
zircon, 96/543 (Landewednack amphibolite) zircon and 96/546 (Pelite layer in Landewednack 
amphibolite) zircons. Errors on plots are depicted at the l a level. 
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Figure A.l.b. Tera-Wasserburg -'"Pb/-°^U vs. -^^Pb/-°''U plots for 96/510 (Landewednack 
amphibolite) zircon, 96/517 (Feisic Kennack Gneiss) zircon and 96/517 (Felsic Kennack 
Gneiss) monazite. Errors on plots are depicted at the l a level. 
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Figure A.I.C. Tera-Wasserburg -"'Pb/'^'U vs. -'^Pb/'^'U plots for 97/719 (Lizard Head Sill-
deformed) zircon, 97/712 (Lizard Head Sill) zircon. Errors on plots are depicted at the la level. 
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Figure A.l.d. Tera-Wasserburg -"'Pb/^°*U vs. -̂ *Pb/̂ "''U plots for 97/713 (Felsic Kennack 
Gneiss) zircon, 97/714 (Felsic Kennack Gneiss) zircon and 97/716 (Granite sheet) monazite. 
Errors on plots are depicted at the l a level. 
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APPENDIX B: GEOGRAPHICAL INFORMATION SYSTEM (GIS) 

B . l INTRODUCTION 

This section describes the approach of using Geographical Information Systems (GIS) 

as part of this work to complement detailed field and petrological studies of the 

ultramafic rocks of the Lizard Complex. The primary aim of this method is to produce 

petrogenetic maps of the ultramafic rocks of the Lizard Complex and to observe i f the 

information can reveal large-scale patterns of variation in mineralogical and textural 

features in the ultramafic rocks. In the previous publications on the Lizard, two authors 

Flett (1946) and Green (1964a), have produced detailed maps which have sub-divided 

the peridotites. The map of Flett (1946) is based on the secondary alteration 

characteristics of the peridotites, and Green (1964a) produced a map based on both the 

primary petrographic features of the peridotites and deformation characteristics. 

Several authors (Bromley 1979; Kirby 1979, Leake & Styles 1984) have proposed that 

the Lizard peridotites comprise both harzburgites and Iherzolites, and suggest that in 

certain areas harzburgite is predominant. Therefore, one of the aims of this study is to 

use the GIS technique to provide a rigorous method of clarifying the observations of 

the previous publications, in addition to revealing new petrographic features. 

GIS was used in this study as it provides a relatively rapid and qualitative 

method of displaying, querying and analysing information stored in a database, in a 

map format. The database consists of petrographic information obtained from thin-

sections of samples collected from the Lizard Complex. Over the Years a large number 

of thin sections have been prepared from outcrop and core material of the Lizard 

Complex. The most important collection include those of the BGS, collected 

principally by JS Flett and MT Styles, those of the Sedgewick Museum collection at 

Cambridge University, collected by DH Green and fiirther sections prepared in the 

course of the present study. 

The purpose of the GIS approach is to produce new lithological and 

petrogenetic information on the Lizard Complex from petrographic data obtained from 

all available thin sections. This approach is based on the methodology described in 

BGS report WG/94/I4 14 (Gillespie et al. 1994) on the Huntly-Knock intrusions of 
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Aberdeenshire. The following outlines of the objectives and methodology utilised in 
the GIS approach are based on and taken from Gillespie et al. 1994). The results of the 
study on Lizard rocks are described and the implications for petrogenesis and 
deformation are discussed. 

B.2 O B J E C T I V E S 

In summary the principal objectives are: 

1) to collate, from diverse sources, all the thin sections for ultramafic rocks available 

from the Lizard Complex, and to identify all those that are relevant to this study; 

2) to utilise the new approach to geological mapping and petrogenetic interpretation 

designed and tested by BGS report WG/94/14 (Gillespie et al. 1994). This involves a 

standardised description of the petrogenetic features, which have been recorded on a 

computer spreadsheet and computer-generated maps of selected petrographic features 

from these data have been produced using GIS software; 

3) to identify possible refinements and changes to the BGS 1:50,000 litho-structural 

map of the Lizard Complex on the basis of information generated in (2), and from other 

information, where appropriate; 

4) to utilise this information in an investigation into the origin and emplacement of the 

Lizard Complex. 

B.3 M E T H O D O L O G Y 

The general approach adopted in this study is based on the methods utilised in BGS 

BGS report WG/94/14 (Gillespie et al. 1994). This procedure involves: selecting thin 

sections for petrographic description; designing and producing a pro forma sheet and 

accompanying Procedure Notes; performing petrographic descriptions of all selected 

thin sections; transferring petrographic data from the pro forma sheet onto a computer 
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database; constructing maps using the ArcView (v.3) GIS software from data selected 
from the database. These procedures are described below. 

B.3.1 Thin section selection 

The process of selecting thin sections for petrographic description started by viewing 

BGS excel spreadsheet database of all BGS-registered thin sections from the area 

covered by Sheet 359. This process was supplemented by viewing the "hard copy" 

catalogue of thin sections from the area covered by Sheet 359. In addition a copy of the 

catalogue of samples collected by D.H.Green was obtained from the Earth Sciences 

Department at Cambridge University. The list of thin sections created was then refined 

by only selecting ultramafic rocks, because the principle aim of this investigation is to 

study the ultramafic rocks. In some examples the catalogues did not provide an 

accurate geographic location for a particular thin section, these examples were omitted, 

as they are useless in a GIS study. From this point the database was further reduced by 

briefly examining all the thin sections using an optical microscope and removing all 

those that were clearly non-ultramafic or those with >90% secondary alteration. In 

many examples two or more thin sections have identical grid reference locations and, 

where these have identical mineralogical and textural features, only one was retained in 

the dataset. 

The final total of 296 thin sections represents virtually all of the presently available thin 

sections of ultramafic rock from the Lizard complex that have a unique grid reference 

or accurate geographic location. 

Of the 296 thin sections described in this study, 97 were from samples collected 

by JS Flett, 2 were from samples collected by DCK, 2 were from samples collected by 

JEM, 3 were from samples collected by M, 51 were from samples collected by DH 

Green, 70 were from samples collected by MT Styles and 71 were from samples 

collected by the author. 
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B.3.2. The pro forma sheet 

The pro forma (Figure B . l ) sheet used in this study was entitled 'Petrographic 

description - mafic and ultramafic rocks', the pro forma sheet is a modification of the 

pro forma sheet used in Gillespie et al. (1994). The principle purpose of the sheet is to 

ensure a simple, standardised and consistent approach to recording petrographic 

information from ultramafic rocks (Gillespie et al. 1994). The pro forma approach 

allows petrographic features to be recorded relatively rapidly, and directs the one to 

select and record features, which are relevant to a particular study. The majority of the 

pro forma sheet is designed so that information is recorded in tick-boxes, this serves to 

maximise the speed and ease of description of the information recorded. The form is 

divided into several segments which deal with different petrographic features, namely 

hand specimen characteristics, primary mineralogy, secondary mineralogy, modal 

volumes of the prim.ary and secondary phases, estimated modal volumes of the primary 

phases (based on an assessment of residual primary phases and secondary alteration), 

grainsize, primary textures, physical alteration, chemical alteration and spinel - colour 

and texture. An advantage of this technique is that the form can be easily adapted to 

take into account other features. Data recorded can be transferred easily onto a 

computer database from which maps of different features, or combinations of features 

can be displayed, queried and analysed using GIS software. The principle aim of this 

method is to provide a flexible system for identifying meaningful patterns within large 

databases to improve mapping of lithologies, to establish variations in primary and 

secondary mineralogy, to identify variations in primary textures and physical alteration 

and to identify (or confirm the presence of) large-scale features such as faults or ductile 

shear zones. 

The petrographic features included on the pro forma were chosen after 

reviewing the approach described in Gillespie et al. (1994) and on the basis of a 

preliminary study of a sub-set of sections, to identify aspects of petrography which 

have potential significance in determining lithological variations and interpreting 

aspects of the petrogenesis. 

A set of 'Procedure Notes' accompanies the pro forma sheet and describes in 

detail how the petrographic information should be evaluated and recorded in each 
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Figure B.l. The pro forma sheet used to record petrographic features of the Lizard rocks. 

section of the pro forma. The Procedure Notes are based on and modified after those of 

Gillespie et al. (1994). 
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B.3.3. Transferring petrographic data from pro forma sheets onto an Excel 
database 

An additional set of Procedure Notes entitled "Transferring petrographic data from pro 

forma sheets onto an Excel database" was prepared. These Procedure Notes are 

modified after Gillespie et al. (1994) and maximise consistency in the process of 

transferring petrographic data from the pro forma sheets onto an Excel database. The 

Procedure Notes describe how data recorded on a pro forma sheet should be transferred 

onto an Excel database for the purpose of data manipulation and map generation using 

GIS software. Numeric data, such as the modal volume of each primary phase, were 

transferred directly, whereas data recorded in tick-boxes were converted to a numeric 

scheme before being entered on the database. The database has the National Grid 

Reference and petrographic data for the 296 thin sections recorded in 69 columns. The 

database has to be saved in dBASE I I I , dBASE IV, a tab-delimited or comma-delimited 

text file before export to GIS software. 

B.3.4 Working with GIS - summary 

Digitizing 

In order to view the petrographic database in a map-format as base map is required. 

The base maps were prepared by digitizing features on 1:10 000 scale Ordanance 

Survey topographic map sheets SW 72 SW; SW 72 SE;SW 82 SW; SW 61 NE; SW 71 

NW; SW 71 NE; SW 61 SE; SW 71 SW which cover the Lizard area shown in the 1:50 

000 scale geological map sheet 359. The features selected for digitizing were the 

MLWS coastline and 1km spaced gridlines, other features such as roads and 

topographic contours were omitted because it was decided they were not necessary. 

The features on each of the 1:10 000 map sheets were digitized separately using a 

digitizing table and Arc/Info software. Each of the 1:10 000 map sheets were digitized 

accurately and referenced to National Grid Reference co-ordinates. The eight separate 

digitized maps were then 'joined' using Arc/Info software to provide a complete map 

coverage of the Lizard area, showing the coastline and 1km gridlines. This map 

provides the basis for the GIS display, query and analysis. 
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Displaying, querying and analyzing the data using Arcview (v.3) 

Arcview (v.3) is a GIS software package, which is relatively simple to use, and most 

functions can be performed using pull-down menus. Al l the tasks required for GIS 

work are contained within this program, therefore one is not required to transfer data 

between sub-programs manually as one has to with Arc/Info (used to digitize the 

maps). 

When using Arcview, work is usually compiled as a Project. A Project allows 

one to organise the different Arcview components, these consist of Views, Tables, 

Layouts, Charts and Scripts. A view is an interactive map that allows the user to 

display, explore, query and analyse geographic data efficiently, by defining the 

geographic data that will be used and how it wil l be displayed. A View comprised of 

several Themes, which represent a distinct set of geographic features in a particular 

geographic data source. 

In this GIS based study the project created is referred to as the 'Lizard Project'. 

The Lizard Project consists of a View component, titled Lizard View, which is 

composed of several Themes. The Themes used are the coastline and 1km grid squares 

which were digitized and also a Theme which shows the main lithological contacts, 

which is based on the 1:50 000 geological map Sheet 359. 

The petrographic data stored in an Excel database is used to create a Table in 

Arcview. The Table can be viewed to allow the user to check its contents, or data can 

be added or deleted. The Table of petrographic data contains X-Y coordinates in the 

form of National Grid References, therefore data may be accessed and displayed as a 

particular Theme on the Lizard View. For example, a Theme showing the location of 

all the thin sections in the Table may be displayed as points on a View. These points 

can be defined to represent any particular component of the petrographic database 

stored in the Table. These points can all be given a user defined colour, shape or size, 

for instance, i f one selects 'primary rock name' from the Table, a Theme may be 

created showing all 'dunites' as a red circle, 'Iherzolites' with a blue square, and 

'harzburgites' with a green triangle etc. Therefore the resulting View would show a 

coastline map of the Lizard, the 1km grid-squares, the main lithological contacts and a 

series of coloured symbols which represent the location of all the thin sections and 

define their primary rock type. Other symbol types are also utilised in the Lizard 

Project, for example area proportional symbols are used to represent the average 
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grainsize of minerals in a thin section. This allows one to produce a map composed of 
circles, where the size of the circle is proportional to the average grainsize of the rock 
sample at each particular locality. 

The properties of the data displayed on the resulting maps (Views) map also be 

changed using a 'query builder', for example, one may decide to display only the 

samples which have <55% serpentinisation. This function allows one to query several 

petrographic features together. One may therefore create a map showing the location of 

thin sections defined by their primary rock name, whilst omitting those with <55% 

serpentinisation and/or those with a recrystallised texture. 

Views can be created which show several layers of petrographic information 

(Themes) superimposed on one another and a 'basemap' of the coastline, 1km grid 

lines and the main lithological contacts. Thus allowing one to produce a series of 

spatially co-registered maps showing a variety of lithological, mineralogical and 

petrological information. The maps (Views) can be examined at any scale in Arcview 

and hard copy maps can be created. 
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APPENDIX C: Thermometry and barometry equations 

C . l Wells (1977) pyroxene thermometer 

T(°K) = 
7341 

3.355 +2.44 -InK 

Where 

Fe 2+ 
yopx _ 

Fe'^ + Mg^ 

C.2. Brev and Kohler (1990) pyroxene thermometer 

r(°K) = 
35000 +61.5 x P 

2 l n ^ ^ + 19.8 
V Na'̂ "̂  

Where P is the pressure in Kb. 

C.3. Brey et al. (1990) pyroxene thermometer 

Ti°K) = 

(23644. (24 .9 . (126.3 xj^^^W_|))).p 

13.38 + ^c^*+11.59 X Fe(T)°^^ 
\Fe(T)'"'' +Mg'" ' \ " 

Where ^ J * is: ? In 
1 - Ca°^^ * 
1 - Câ "̂  * 

Qg^op" Ca''̂ ^ 
Câ ""̂  * and Ca""" * are the : — ^ 7 - ^ and : — r e s p e c t i v e l y . 

1 - N a opx 1-Na cpx 
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C.4 Witt-Eickschen and Seek (1991) pyroxene thermometer 

T(°C)c,_^/.„p, = 636.54 + 2088.21 x x^' + 14527.32 x x^/ 

Where: x^' = the Al on the Ml-site of orthopyroxene, 

x^' = the Cr on the Ml-site of orthopyroxene. 

C.5. Mercier (1980) pyroxene barometer 

351.32 X \nXKw - 706.14 x \nXKa + 299.13 
P(Kb) 

6 X 

Where: ;fibv = 

D 

l-2xW 

A 

Xka-

W = 

1 - 2.87 X FCrf 

Fe'"""" + Fe'̂ ""' + Mn""' + Mg""" + Ca""" 

FCr = 

2 

AF"^ + Cr""̂  - Na""^ 

D = InXKa x InX^w - 8.6751 x InXKw + 2.2595 x XKa + 24 .568 

C.6 Johnson and Rutherford (1989) amphibole barometer 

/'(Kb) = (4.23 X ( A f ' + Ar')-3.46) 
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C.l Schmidt (1992) 

P(Kb) = -3.01 + (4.76 X (Al'^ + A f ' ) ) 

C.8 Spear (1980) amphibole-plagioclase thermometer 

InKd - 8.04 

Where: Kd = r - x 

C.9 Blundy and Holland (1990) amphibole-plagioclase thermobarometer 

P(Kb) = 7.29 X A C , , - 4 . 6 3 

0.677 X P - 48.98 + Y 
r(°K) = -0.0429-0.008314 x l n ^ 

Where: Y = 8.06 + 25.1 x ^jl-Ay"" only ifAbf'"' < 0.5, 

( . .amph _ A 

K = - i-xAb"'"' 
8 - Si"""" 
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APPENDIX D: G E O C H E M I C A L DATA 

This appendix contains a listing of the electron microprobe and whole rock XRF and 

ICP-MS geochemical data used in this thesis. The following abbreviations are used in 

the data tables: 

P core Porphyroclast core 

P rim Porphyroclast rim 

Neoblas Neoblast 

Neo core Neoblast core 

Neo rim Neoblast rim 

Clust Pyroxene cluster 

Analyses of samples with prefix 'E' were provided by M.T.Styles (BGS). 

Samples with a prefix 'ANU' or 'DHG' are samples from Professor David Green's 

collection and were analysed by the author whilst at the Research School of Earth 

Sciences, ANU, Canberra. 

The data in his appendix is quoted in wt% oxide for the major elements and in ppm for 

the trace elements. 

Samples marked with a n w e r e analysed by energy-dispersive spectrometry (EDS). 

Samples not marked with an '-if 'were analysed by wavelength-dispersive spectrometry 

(WDS). :-
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T H E TECTONIC EVOLUTION OF PERIDOTITES IN T H E LIZARD OPHIOLITE COMPLEX, 

SOUTH-WEST E N G L A N D 

CA. COOK, R E. HOLDSWORTH AND M.T. SIYLES 

Cook, C.A., Holdswoi lh, R.E. and Styles, M.T. 1988. The tectonic evolution of peridotites in the Lizard Ophiolite Complex, south-west 
Enghnd.Geoscience in south-west England, 8, 000-000. 

The mantle peridotites of the Lizard Complex, south-west England, preserve direct and indirect evidence for several deformation 
episodes : 1) Extensional uplift of mantle prior to the formation of oceanic crust in an incipient ocean basin; 2) Their subsequent 
emplacement by thrusting in an intra-oceanic setting at the onset of pbduction; 3) Extensional reactivation of the intra-oceanic thrust 
contacts in response to late stage collapse of a nappe pile (Jones, 1997). 
An early fabric is characterised by a sub-vertical foliation and a steeply plunging mineral lineation. This fabric pre-dates the formation 
of oceanic crust as it is cross-cut by MORB-type gabbro intrusions and dykes. Among the least deformed peridotites are spinel- and 
plagioclase-lherzolites with a coarse to medium-grained porphyroclastic texture. With increasing deformation, these pass transitionally 
into mylonitic plagioclase-bearing peridotites and mylonitic amphibole-bearing peridotites which have a medium to fine-grained 
porphyroclastic textures. The presence of 'fertile' spinel Iherzolite and the orientation of the peridotite fabric is not typical of ' 
emplacement of peridotites at an oceanic spreading centre. Alternatively it is proposed that systematic changes in microstructure, 
mineral chemistiy and geothermometiy of the different peridotite types are related to changing conditions of P and T during tectonically 
controlled uplift of mantle. Changes in the whole-rock compositions of the deformed peridotites are thought to be related to syn-
tectonic metasomatism by hydrous melts. The subsolidus trajectory of the peridotites suggests deformation in the footwall of an 
extensional shear zone or in the margins of a upwelling mantle diapir. 

C.A.Cook and R.E.Holdsiuorth, Reactivation Research Group, Department of Geological Sciences, 
University of Durham, Durham, DHl 3LE 

M.T.Styles, British Geological Survey, Keyworth, Nottingham, NG12 5GG 

INTRODUCTION 

The Lizard Complex (FigLire 1) forms the highest staictural 
level exposed in the Variscan nappe stack of south-west England 
(Holder and Leveridge, 1986). The Lizard Complex has previ­
ously been interpreted as a peridotite diapir with a dynamothermal 
aureole overprinted on regionally metamorphosed amphibolites 
(Green,. 1964). More recently, the Lizard Complex has been 
considered as a highly deformed and dismembered De\onian 
ophiolite assemblage (Bromley, 1979; Styles and Kirby, 1980). In 
the ophiolite models, the mantle section of the Lizard consists of 
variably deformed peridotites (Flett and Hill , 1912; Green, 1964; 
Rorhstein, 1977, 1981, 1988, 1994; Davies, 1984). A detailed 
discussion of the ophiolite model and a summaiy of the different 
lithologies represented in the Lizard complex is presented in a 
review by Floyd et al. (1993). 

The Lizard complex of high-grade metamorphic rocks is 
separated from the low-grade, Gramscalho group De\'onian 
metnsediments to the north by a high-angle extensional fault, 
related lo reactivation of earlier thrust faults (Power et al., 1996). 

Tliis paper describes fabrics which predate the main 
magmatic events related lo the formation of oceanic crust. These 
fabrics are related to deformation of a high pressure and 
liigh-temperature spinel Iherzolite protolith and its subsequent 
evolution to lower P and T assemblages during uplift of the 
mantle. Details are provided about the nature of fabrics related to 
this deformation and the subsec|uent changes in peridotite 
niicrostructure, mineral and whole-rock geochemistiy. These 

observations are consistent with other examples of deformed 
mantle, and provide important new constraints on the tectonic 
evolution of the Lizard peridotites. 

F I E L D OBSERVATIONS 

Field evidence suggests that the peridotites are one of the 
earliest rock types formed in the ophiolite part of the Lizard 
complex. Borehole evidence (Leake and Sr>'les, 1984) suggests' 
that the peridotites are the substrate on/in which the highly 
deformed ultramafic/mafic rocks of the Traboe cumulate com­
plex were formed. Controversial contacts between peridotite and 
amphibolite in the Ogo Dour cove area, on the west coast, suggest 
that some amphibolites at this locality are intrusive into peridotite. 
The peridotites are clearly intruded by the Crousa gabbro, MORB-
type basaltic dykes and the Kennack Gneiss (Figure 1 for 
locations). 

In the field two main types of peridotite can be identified: 
coarse-grained Iherzolites in low-strain areas, and mylonitic 
peridotites in high-strain zones. The coarse-grained Iherzolites 
are exposed in the central, southern and eastern parts of the 
Lizard (Figure 1), whilst the mylonitic peridotites are predominant 
in the northern and western areas. In most areas, the different 
peridotite types are juxtaposed by later brittle faults, although 
gradational contacts are preseived near Kynance Cove (Figure 1). 

In the field, coarse-grained Iherzolites have a fabric 
defined by slightly stretched orthopyroxene porphyroclasts, 
spinel, olivine and reciystallised clinopyroxene. Pyroxene-rich 
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're 1 = Geological Map of ibe Lizard Complex. Modified after (Fietl, 
?; Green, 1964: Floyd & al., 1993). 

IS may occur parallel to this fabric. In comparison, the 
Dnitic peridotites have a much stronger fabric, also defined by 
igate orthopyroxene porphyroclasts and more extensively 
ystallised olivine, pyroxene, spinel, plagioclase and/or promi-
: amphibole. 
he characteristic fabric of the coarse-grained Iherzolites is a 
h-north-west to north-east orientated sub-vertical foliation 
1 mineral stretching lineations plunging down-dip (Figure 2). 
le high-strain zones, the mylonitic peridotites show a north-
h-west orientated foliation which dips steeply to the east-
h-east, whilst mineral lineations again plunge down-dip. The 
larity in the orientation of fabrics in the different peridotite 
s, and the presence of gradational contacts near Kynance 
2 SLiggests that these fabrics where produced by heteiogene-
strain during the same deformation event. 

:ROSTRUCTURES 

detailed study of peridotile microstructure has been con­
ed on samples of coarse-grained Iherzolite and mylonitic 
:lotite. This has allowed further sub-division of the peridotites 
g miciostructural characteristics. 

'oarse-grained Iherzolites : The coarse-grained Iherzolites are 
lominantly spinel Iherzolites being composed of coarse-
led orthopyroxene porphyroclasts surrounded by a matrix of 
ne, clino|3yroxene and spinel, all showing varied degrees of 
'stallisation. They typically show medium to coarse-grained 
ihyroclastic microstruclures (Mercier and Nicolas, 1975). In 
s outcrops coarse-grained llierzolites with identical micro-
:tures occur, but these differ due to the occurrence of 
slitial patches of sausstirite and spinels with saussurite rims. 

The saussurite appears to be an alteration product of plagioclase. 
This observation suggests that although the original 'primary' 
assemblage was a coarse-grained spinel Iherzolite (Green, 1964), 
some of these rocks have undergone incipient metamorphic re-
equilibration as a result o f passing from the spinel to the 
plagioclase stability field, and are now plagioclase Iherzolites. 

Mylonitic peridotites : In the high-strain zones, two types of 
mylonitic peridotite occur - mylonitic plagioclase-bearing peridotite 
and mylonitic amphibole-bearing peridotite. These two peridotite 
types are often interbanded at a mm scale (Green, 1964; Davies, 
1984). The mylonitic plagioclase-bearing peridotites have a fine 
to medium-grained porphyroclastic microstructure (Mercier and 
Nicolas, 1975). They are characterised by an assemblage of 
olivine, relict orthopyroxene porphyroclasts, clinopyroxene, and 
plagioclase, the latter occurs as interstitial ciystals and rims 
around spinel. Small brown Ti-pargasite amphiboles (amphibole 
names are according to the IMA classification, Leake, 1978) occur 
as a minor component in some samples. Microstmctures suggest 
that the mylonitic plagioclase-bearing peridotites are transitional 
with the coarse-grained Iherzolites through a process of increas­
ing deformation, dynamic recrystallisation and grain size reduc­
tion. 

The mylonitic amphibole-bearing peridotites are transitional 
in microstructure from the mylonitic plagioclase-bearing peridotites 
(Green, 1964). This assemblage is characterised by the presence 
of up to 30% pargasitic hornblende, which has replaced pyroxene 
and plagioclase (Green, 1964). 

MINERAL COMPOSITIONS 

In order to establish the relationships between the different 
peridotite types defined using microstructural criteria, selected 
samples have been analysed to determine mineral compositions. 

Figure 3 shows wt% Al^O, versus wt% CaO in orthopyroxene, 
these compositions are selected as representative data. Figure 3 
reveals that the composition of orthopyroxene varies with 
microstructure. There is a systematic decrease of Al^O, and CaO 
from porphyroclasts in spinel Iherzolite to neoblasts in the 
mylonitic amphibole-bearing peridotite. This observation is 

(a) 
Spinel and plagioclase 
Iherzolite 

(b) 
Mylonitic peridotites 

Poles to 
Foliation 

Lineation 

Figure 2 = I'eridotilefabric orientations: (a) Coarse-grained Ihcrzotiles 
(n=l50); (b) Mylonitic peridoliles (n=75): data presented as contoured 
slere<),^raphic plots. 
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Figure 3 = Plot of Alfi^ vs CaO for orlhopyroxenes from spinel Iherzolite, 
picifiioclase Iherzolite, mylonitic plagioclcise-hearing peridotile, and 
mylonitic amphihole-hearing. peridolile. Major_ element analysis of 
orll:t(>pyrt>xenes were performed at the British Geological Survey, Keyivorlh, 
by Wavelength-dispersive speclromeliy using a Cameca SX50 electron 
microprohe and at the Research School of Harth Sciences, the Australian 
National Unii;e)Sily, Canberra, by energy-dispersive spectrometrfnising a 
fully automated Cameca Camehax electron microprohe using the methods 
of Ware (1991). 

The tectonic evolution of Lizard peridotites 

consistent with the smaller number of analyses of mineral 
.separates presented by Green (1964). 

Cores of porphyroclasts in the coarse-grained spinel Iherzolites 
have slightly higher Al^O, and CaO than the rims, which have 
compositions approaching those of the adjacent neoblasts. This 
suggests that during deformation the rims are reacting and 
approaching equilibrium with the fine-grained neoblasts 
(Hoogerduijn Strating et al., 1993). A significant feature of this 
data is that the composition of orthopyroxene porphyroclasts in 
the mylonitic plagioclase-bearing peridotites is similar to 
porphyroclasts in the coarse-grained Iherzolites. This suggests 
that the orthopyroxene porphyroclasts in the mylonitic peridotites 
are relicts from a coarse-grained Iherzolite protolith. 

These compositional changes are interpreted as reflecting 
changing conditions of temperature and pressure, synchronous 
with dynamic reciystallisation of the peridotites. 

An inferred P-T trajectory for the evolution of the peridotites 
is presented in Fig.4, and the results confirm that the tectonic 
evolution of the peridotites is accompanied by a decrease in P and 
T. This P-T trajectory is based on estimates of pyroxene equilibra­
tion temperatures and the results are consistent with those of 
Rothstein (1988) and Davies (1984). 

W H O L E R O C K GEOCHEMISTRY 

Major and trace elements 

Volatile free compositions of the different peridotite types are 
shown in Figure 5. These two graphs show that the mylonitic 
peridotites have compositions which are different from the spinel 
and plagioclase Iherzolites as there is virtually no overiap for the 
composition fields for these and many other elements. In 
particular, the mylonitic peridotites have lower MgO, and higher 
TiO, and Al^O^ than the coarse-grained Iherzolites. 

Rare Earth Elements 

200 
_l 

TEMPERATURE(T) 
600 800 1000 1400 1600 I Z O O 

Plagioclase 

Garnet 

A - Spinel Iherzolite 
B - Plagioclase Iherzolite 
C - Mylonitic plagioclase-bearing peridotite 
D - Mylonitic amphlbole-bearing peridotite 

Figure 4 - the inferred P-'lf)ath for ti:ie Lizard peridotites, based u / x i n 

data obtained f-om the thennometer of Wells (1977) and Witt-liikscben 
and Seek (1991), and data presented in Rothstein (19SS) and Oavies 
(19'S-1). 

The chondrite normalised compositions for the Lizard peridotites 
analysed in this study (Figure 6) are comparable with the analyses 
from the Lizard published by Prey (1969), although there are 
subtle differences which may be due to different analytical 
techniques used. 

The spinel Iherzolites and plagioclase Iherzolites have identi­
cal REE compositions, characterised by extreme depletion of 
LREE relative to chondrite (LREE close to detection limits) and 
they possess (Ce/Yb) normalised ratios of (average = 0.0^). The 
REE compositions of the mylonitic plagioclase bearing-peridotite 
and mylonitic amphibole-bearing peridotites are identical, but 
contrast markedly with the spinel and plagioclase Iherzolites. The 
mylonitic peridotites show similar HREE to the spinel and • 
plagioclase Iherzolites, but they are much less depleted in LREE, 
approaching chondritic values, and possess (Ce/Yb) normalised 
ratios of (average = 0.35) for (he mylonitic plagioclase bearing-
peridotite and (average = 0,44) for mylonitic amphibole-bearing 
peridotites. 

INTERPRETATION OF GEOCHEMICAL DATA 

The geochemical compositions of the Lizard peridotites shown 
in Figures 5 and 6 reveal that peridotites vaiy in composition, 
between the coarse-grained Iherzolites and the niylonilic 
peridotites. If the mylonitic peridotites were simply the products 
of deformation and re-equilibr ation of a coarse-grained Iherzolite 
piotolith, as suggested by field, microstr-uctirral and mineral 
compositions above, they would be expected to show a similar 
wliole rock composition. The observed changes in geochemistry 
sirggest, however, that during deformation, the mylonitic peridotiies 
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I f Durham. Includes data from Shepherd < I9H6). Styles and Kirby (1980) 
and D H (j'reenipcys comin ) . All major element com/josiliom are reported 
as nilalile /ree. 

were enr iched in major, trace and rare earth elements. A process 
that causes the geochemical enr ichment o f a rock is metasomatism, 
related lo the interact ion be tween a rock, and a melt and /or a 
hydrous fluid result ing in a change o f the bu lk compos i t ion . The 
increase o f T i O , in the who le - rock compos i t i on o f the myloni t ic 
per idot i les relative to the coarse-grained Iherzolites suggests that 
ihe mciasomal i sm was related to the in f i l t ra t ion o f a melt. Eggler 
(1987) suggests that T i is relati\ 'ely in.solublc in H , 0 and C O , r ich 
fluids and hence a magmatic com | jonen t , rather than a fluid 
alone, is l ike ly to be impor tan t . Using pct rological , who le - rock 
I \ I - : F and i so lopic studies, Da\-ies (1984) conc luded that the 
c o m p o s i t i o n o l ' the m \ l o n i t i c peridoti tes is related to a melt 
i n f i k r a i i o n event. The presence o f amphibo le , a hydrous phase, 
in flie nn lon i l i c pcr ido l i les shows that hydrous fluids must also 
have been asociated w i t h the melt responsible for the metasomatism 
ol flic per idol i les . 
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tectonic metasomatism caused by the addition of a hydrous, fluid-
rich melt during the recrystallisation and re-equilibration of a 
coarse-grained spinel/plagioclase Iherzolite host during defor­
mation in the upper mantle. 

A subsequent interaction of a hydr ous fluid with the mylonitic 
plagioclase-bearing peridotite resulted in pyroxene being re­
placed by pargasitic hornblende, thus producing • mylonitic 
amphibole-bearing peridotite. This would account for both the 
presence of mylonitic amphibole bearing peridotite over .lOO's m 
of outcr op, and mm scale interbanded zones within mylonitic 
plagioclase-beai-ing peridotite. This is also compatible with the 
very similar bulk composition. 

The evidence presented hei'e suggests that the metasomatic 
event and later hydrous fluid interaction seem to have preferen­
tially occurr-ed in the high-strain zones now composed of 
mylonitic peridotite..Evidence from the Lizard and other exam­
ples of deformed mantle, such as Zabargad Island (Agr inier etai, 
1993) and the Josephine peridotite, south-west Oregon (Keleman 
and Dick, 1995), suggest that melt f low is preferentially focused 
along actively deforming ductile shear zones. What is not clear, 
however, is whether the recrystallised nature of the shear zones 
facilitates melt infiltration, or whether the shear zone is the result 
ofdeformation enhanced by fluid f low (Keleman and Dick, 1995). • 

In terms of a tectonic environment these processes could occur 
either in the deforming rrrargins of a peridotite diapir as proposed 
by Green (1964), or dur'ing footwall uplift along an extensional 
detachment within the mande (Figure. 7). The pi'esent-day 
geographic distribution of the peridotite mylonites in the Lizard 
complex may be consistent wi th ' either model, however, the 
effects of later faulting and thrusting hamper interpretation of the 
original geometry of these shear-zones. 
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CONCLUSIONS 

The Lizard peridotites show a tnetamorphic evolution from a 
high-temperature and high-pressure spinel Iherzolite protolith, 
\'ia plagioclase Iherzolite to mylonitic plagioclase-bearing peridotite • 
during deformation related to the uplift of the mantle to condi­
tions of lower P and T. 

During uplift and deformation, hydrous melt flow was local­
ised within the high-strain zones resuking in metasomatism 
forming mylonitic plagioclase-bearing peridotites. At a lower P/ 
T an interaction with hydrous fluid resulted in the formation of 
mylonitic amphibole-bearing peridotite. These results highlight 
the importance of the relationship between deformation in 
mantle rocks and focused flow of melt and fluids. Although there 
are many differences in detail, this modern study supports the 
main findings o f Green (1964) that the Lizard shows extensive 
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