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Abstract 

Many contemporary experimental QCD results achieve greater accuracy in measurement 

than equivalent theoretical predictions calculated at leading order. Therefore it is necessary 

to consider next to leading order (NLO) predictions for many processes in order to compare 

experiment with theory. Accurate theoretical predictions are also important in order to 

reduce the uncertainty in QCD parameters such as the coupling constant ag and to test 

whether QCD is in fact the correct theory to describe the strong interaction. With NLO 

results it is also possible to separate different clustering algorithms and test non-perturbative 

effects. 

This thesis concentrates on the techniques necessary for the calculation of NLO observ-

ables from the processes e'^e~ —> 4 jets and pp ^ ^ + X. We formulate a new version of 

the hybrid subtraction scheme based on the colour antenna structure of the final state to 

evaluate the necessary phase space integrals for the 4 jet process. The scheme is universal 

and can be applied to any QCD processes. The general purpose Monte Carlo EERAD2 which 

incorporates this new technique is compared with both experimental data gathered by the 

DELPHI collaboration and other groups which have reported similar calculations. 

A Monte Carlo written for the process pp j + X requires a knowledge of the non-

perturbative photon fragmentation function, Dj, and the second half of this thesis concen­

trates on a calculation of this process using the ALEPH measurement of based on a 

democratic algorithm. The Monte Carlo DPRAD incorporates these techniques and results 

from it are compared with data from the Tevatron. 
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Chapter 1 

Introduction 

1.1 In the beginning... 

At the start of the 1930's, it was recognised that the strong nuclear force between nucleons did 

not depend on the identity of the nucleons involved. This meant that the strong interaction 

between a proton and another proton is seen to be identical to the interaction between a 

neutron and a proton and similarly between two neutrons. Consider the three nuclei ^He.^Li 

and ^Be. These can be thought of as two neutrons, a proton and a neutron and two protons 

attached to a '^He nucleus respectively. After allowing for differing electromagnetic effects, 

the masses of these three nuclei are found to be very similar.^ From these observations 

particle physicists considered that the proton and neutron might be two different states of the 

same particle, the nudeon. Thus the proton and neutron were thought to be much akin to the 

up and down spin states of the electron. Therefore these two particles were grouped together 

in a SU(2) baryon isospin doublet where isospin is a mathematical construct analogous to 

electron spin and SU(2) is the two dimensional representation of the rotation group J = 1/2. 

The group J = 1/2 defines the compositions that are formed by combining particles that 

can exist in either of two states i.e. an "up" state and a "down" state. Combinations are 

either symmetric or antisymmetric, so when two particles combine according to the J = 1/2 

group, the following states can be created. 

^The ground state energy of the lithium nucleus is actually 2 MeV lower than the other two nuclei and 
it is the excited state with isospin equal to 1 that has the equivalent mass of the other two nuclei. 
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(1.1.1) 

where S is the total spin of the pair and Mg is the z component of this spin. The top three 

configurations of "up" and "down" form the symmetric triplet of two J = 1/2 particles. The 

remaining state is the antisymetric singlet. SU (2) is a representation of this group, making 

use of the Pauli spin matrices in its fundamental representation. 

The requirement that the strong nuclear force be invariant under isospin transformations 

demanded that all particles that are affected by the strong nuclear force fill such isospin 

multiplets and that isospin be a conserved quantity or a conserved quantum number. In 1948 

the discovery of the three pions, which also have similar masses, forced particle physicists to 

create a new multiplet and by the 1960's a whole proliferation of baryons and mesons had 

been found and similarly grouped. The light baryons of spin 1/2 (from here onwards spin 

refers to the intrinsic angular momentum of a particle and not isospin) formed a octet and the 

light mesons of spin 0 also formed another octet (with a ninth at considerably higher mass). 

Also, the existence of another quantum number, that of strangeness, had been postulated 

by Gell-Mann [1] and, independently, by Nishijima [2]. This new conserved quantity was 

proposed in order to explain the long lifetimes of some of the newly observed particles (such 

as the E - ) . Wi th such large multiplets and two independently conserved numbers, the 

natural consequence was to arrange the particles into a larger, all embracing group which 

would link strange and non-strange particles. With two conserved quantum numbers, a 

group would need to contain two mutually commuting generators that could give quantum 

numbers to each particle (i.e. a group of rank 2) and in 1961 the group SU(3)flavour was 

proposed. The fundamental representation of SU(3)flavour is a triplet composed of the three 

different flavours, 'up','down' and 'strange'. Al l other multiplets can be built up from this 

and its conjugate. This fundamental representation is the basis of what is known today as 

the Quark Model proposed independently by Gell-Mann [3] and Zweig[4 . 

By considering the fundamental triplet and the corresponding anti-triplet i.e. an identical 

triplet except that the quantum numbers are reversed in sign, the lightest meson multiplet 



can be formed. Let the elements of the fundamental triplet/anti-triplet be. 

u \ 
d 
5 / 

/ u 
d (1.1.2) 

Then, by considering the group operation 3 O 3 = 8 0 1, the meson octet and singlet are 

formed. In terms of quark content they are 

ud, us, du, ds, SU, sd (1.1.3) 

and also the three linear combinations of uu, dd and ss. 

^{uu + dd + ss), sj]^{uu-dd), -Xuu + dd- 2ss). (1.1.4) 

where the first combination forms the symmetric singlet, the second completes the non-

strange antisymmetric triplet and we are forced into the form of the last combination by 

demanding orthogonality between states. Other more massive mesons are also combinations 

of these nine states with varying discrete amounts of angular and intrinsic spin between the 

quark/antiquark pair. 

Similarly we can form the various baryons multiplets by considering the SU(3)flavour group 

operation 3 ® 3 ® 3 = 1 0 ® 8 ® 8 ® 1 which are the multiplets formed by combining three 

fundamental triplets. The baryon octet that contains the proton and neutron form one of 

the above octets. The quark model successfully predicts the quantum numbers for hundreds 

of baryons which are excitations of this basic 10,8, 8,1 form. Akin to the Periodic Table of 

Chemistry, the quark model also successfully predicts the existence (and mass) of hitherto 

unseen particles such as the However the symmetry of SU(3)flavour is not a perfect one. 

For this to be true would require that all the masses of particles in the same multiplet be 

exactly the same. 



But the idea of quarks other than mathematical constructs to explain the SU(3)flavour 

group properties of the hadrons did not gain full support until 1968 when direct evidence for 

the existence of point-like objects in nucleons was first seen at the deep inelastic scattering 

experiments of SLAC-MIT [5 . 

However, there still remained some difficulties. How can a fermion such as the A++ 

which has spin of 3/2 exist with both symmetrical quark content {uuu) and symmetrical 

spin orientation of the quarks? The answer is to introduce a new quantum number which is 

referred to as colour and to make the A++ antisymmetric in this new quantity. Colour comes 

in three varieties, red, green and blue (R,G and B) together with their antipartners {R, G 

and B). The combination of all three colours is regarded as a colour singlet (or colourless) 

as is the mixture of a colour and its antipartner. It was proposed that all hadrons are 

colourless, but the quarks that make up the particles are coloured and thus the A++ retains 

its Fermi-Dirac statistics by having a linear combination of a red up quark, a blue up quark 

and a green up quark which is antisymmetric under SU(3)coio«7- rotation. This new quantum 

number also explains the apparent short-fall in the R ratio by a factor of 3. The R factor is 

the ratio 

^ cr(e+e —)• hadrons) , 
R = ^ — — ( 1 . 1 . o ) 

cr(e+e- -> /^+/x-) 

and as such is only dependent on the number of energetically available quarks and the square 

of their charge. See Figure 1.1. The observed experimental value was seen to be a factor 

of 3 too large compared to the theoretical prediction if only one quark of each fiavour is 

considered, but with colour there now exist three independent quarks of each flavour e.g. 

UR ,UB and UQ which accounts for the discrepancy. Another consequence of colour and 

the demand that all observed particles are colourless is that we can never see an isolated 

quark. Nor can we ever remove a single quark from a hadron. This limitation is known as 

confinement and is still not well understood. 

Colour is another example of an SU(3) group, but not to be confused with the flavour 

SU(3) group previously mentioned. The number of quark flavours is now known to be 

equal to six and so 5C/(3)flavour is only used when considering the light quarks. SU{3)coioui 

however, is the group that exactly describes colour and as such the triplet R,G,B makes up 
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Figure 1.1: The R ratio of Equation 1.1.5 as a function of Q. The horizontal lines indicate 
the expected values of R with 3 colours and with 3, 4 and 5 active quark flavours. As we can 
clearly see, without the colour factor, theoretical predictions could not predict the overall 
normalisation of the ratio. The peaks at approximately 4 GeV are the J/IIJ and x resonances. 
This diagram is taken from a collection of data over many papers. [7 



its fundamental representation. As we shall see later, it is also the group that we use to 

describe the theory of quark interactions. 

Wi th any unitary group, we need to consider the generators of the symmetry and for 

SU(3) there are 8 Gell-Mann matrices that make up these generators. Just as the funda­

mental representation corresponds to the basic building blocks of the group (and the basic 

field for the Lagrangian), the adjoint representation of SU(3) contains the generators of the 

group and these represent the mediators of the strong force that bind all coloured particles. 

They are known as gluons. As we shall see later, these eight additional fields are necessary 

for the Lagrangian of the strong force to remain locally gauge invariant (i.e. the Lagrangian 

does not change if the definition of colour depends on position) and the adjoint represen­

tation is the source of these gluon fields. For the electromagnetic force (a U( l ) symmetry) 

the photon ensures that a position dependent definition of charge does not affect the QED 

Lagrangian (the theory of electromagnetic interactions). The only difference between the 

two sorts of gauge bosons is that the gluon is colour-charged whereas the photon carries no 

electrical charge. I f the gluons did not carry colour charge then we could bind together three 

red quarks to form a coloured hadron violating our earlier postulate of colourless physical 

particles. In fact the gluon must carry colour and anticolour to ensure no coloured hadrons 

are seen. Since we have 3 colours this gives us nine gluons, but one is a colourless singlet 

and so decouples, having no interaction with either quarks or other gluons. I t can be shown 

that the gluon must have spin 1, like the photon, in order to mediate the interactions of spin 

1/2 quarks. Also, as the gluons are coloured they can interact with each other as well as 

the quarks. We shall see this more clearly when we consider the Langrangian of the strong 

interactions. 

In this thesis we shall concern ourselves with a quantitative description of quarks and 

the colour forces that bind them. This construction is known as Quantum Chromodynamics 

(QCD) and is an example of a quantum field theory. These are highly successful theories 

that link all of particle physics. The Standard Model of particle physics consists of three such 

theories which are all described mathematically with reference to unitary groups. But in this 

thesis we concern ourselves with that group and theory that describes the strong interactions 

of the constituents of the nucleus. In Section 1.2 we shall see how we proceed from the QCD 

Langrangian to a point where we can calculate experimental variables using the Feynman 

rules of QCD. However the theory at this stage still contains hidden infinities and these need 
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to be removed using a prescription known as renormalisation. We shall consider this and 

its influence on QCD in Section 1.3. Finally we shall study the error involved in using a 

truncated perturbation theory (the technique used for all quantum field theory calculations 

in this thesis) and how this can be reconciled with the full theoretical result. This we present 

in Section 1.4 

1.2 The QCD Langrangian 

In this section we shall consider the structure of an SU(3) gauge theory and how we can 

relate the Langrangian of this theory to a more perturbative, diagrammatically orientated 

prescription. From this we can derive rules for the calculation of physical parameters such 

as the cross-section and event shape variables. 

We begin by considering the Langrangian of QCD, the theory of strong interactions. 

From the same deep inelastic scattering experiments that suggested a point-like structure 

to the nucleon, it was shown that these partons also have intrinsic spin 1/2 and so they are 

fermions. From this we can write down an expression for a single flavour massless coloured 

quark 

>Cquark+gluon = ^a^^'^^i wherC = 
VB J 

(1.2.6) 

where i>i is a member of the SU(3) triplet of 4 component Dirac spinors, i = R.G.B, 

ly = 0,1,2,3 and 7^ are the 4 by 4 matrices that satisfy the Clifford algebra {7^, 7^} = 2g^„. 

We also have an implied summation over the index i. 

However, if we wish to enforce local colour invariance i.e. changing the colours in different 

ways at diflferent points in space-time without changing the Lagrangian we are led to the 

following form of £quark+gluon 



We define the covariant derivative, V f j as 

Vf^ = d''5,j+igU,aA^,, (1.2.8) 

where is the gluon field in the adjoint representation labelled wi th colour index a and 

couples to quarks of colour i , j via the 8 Gell-Mann matrices tija and wi th strength g. These 

colour matrices do not commute as do the U ( l ) charge matrices present in QED. Instead 

they obey the commutation relation [ta,ti,] = ifabctc where fabc are the structure constants 

of SU(3). Having constructed the matter content of the QCD Lagrangian, we now consider 

the dynamics of the gauge particles. We include a kinetic term by incorporating the field 

strength tensor of the gluon field, F^" such that 

>Cquark+gluon = i^^illi'^ij^i ' ^ K " a {1.2.9) 

where there is an implied summation over a = 1..8. The field strength tensor is defined so 

as to ensure local colour invariance under SU(3) rotations. I t is given by, 

r r = O'^A: - d^A^, - gfabcA'^A:. (1.2.10) 

We can clearly see that the gluonic kinetic energy term in the Lagrangian wi l l generate terms 

which have three and four gluon fields and therefore produce self-interactions of the gluon. 

I t is these terms that w i l l be crucial to the renormalisation of the theory (See Section 1.3). 

Let us now see how the local invariance of the proposed Lagrangian works. We can 

describe an SU(3) transformation by rotating the fundamental tr iplet using Vij{x) where 

y.^.(x) = e^^"(-)*'-, (1.2.11) 



and 6a{x) is an arbitrary function that depends on the four vector x so that, 

(1.2.12) 

As Vij{x) is a unitary transformation this ensures any mass term incorporated into the 

Langrangian w i l l remain unaffected under rotation. (Any mass must have the form mipiipi). 

When we apply Vij{x) to Equation. 1.2.9 we see that i f C is to be unaffected this implies 

that, 

p /^ . .^ . ^ Vi,{x)V^j,ijk. (1.2.13) 

which then forces a transformation rule on the gluon field A. The invariance of the quark field 

term in the Lagrangian can be seen when the transformations of Equations 1.2.12 and 1.2.13 

are applied to Equation 1.2.8. (See Appendix A ) 

Thus the first term of equation 1.2.9 is invariant under an SU(3) gauge transformation. 

In a similar manner i t can be shown that the gluon kinetic energy term is also invariant 

w i t h respect to the transformations of equation 1.2.12 and the gluon field transformation 

(see Appendix A ) . 

However, there is s t i l l some ambiguity to our Lagrangian. The gluon field is not uniquely 

defined as we can transform i t without affecting any measureable quantity. In fact the 

propagator cannot exist unless we remove some of these extra degrees of freedom. This is 

done by adding a gauge-fixing term of the form 

Aauge = - ^ ( 5 , ^ n ' (1.2.14) 

where ( is the arbitrary gauge parameter and defines the covariant propagator to be used. 

We associate the Lorentz condition df.A'^ = 0 w i th the covariant propagator and for this 



thesis ^ w i l l be taken to be 1 which is usually known as the Feynman gauge. (It is not 

necessary to impose the Lorentz condition to derive a set of Feynman rules. Axia l gauges 

define an axial vector that can be used). This process is necessary to uniquely define the 

photon propagator in QED as well. 

The final term in the QCD Lagrangian is required to keep the number of polarization 

states of external gluons equal to two. We have associated wi th the covariant gluon prop­

agator four degrees of freedom. I n QED the photon has a similar problem, however the 

longitudinal and scalar components cancel wi th each other to leave the physically-seen two 

transverse degrees of freedom. In QCD this does not happen due to the gluon self-interaction. 

So an additional term is added to the Lagrangian to ensure that longitudinal gluons do not 

propagate. This term is given by 

C,^os^ = d.viiK^Vc) (1.2.15) 

where is a scalar field i n the adjoint representation which obeys Fermi statistics. This term 

is known as the ghost term and is important when considering gluon loop diagrams. 

Therefore the f u l l QCD Lagrangian can be wri t ten as 

.^QCD — .^quark+gluon + .^ghost + .^gauge (1.2.16) 

The f u l l QCD Lagrangian can now be used to write the action, S of the theory which 

consists of a free theory term <So and an interaction term <S/. I f the coupling of quarks and 

gluons is assumed to be small then the interaction term can be treated as a perturbation 

and a series can be calculated using Feynman's path integral formalism. A detailed account 

of Feynman's path integral formalism can be found in [6]. One way of visualizing this is by 

using Feynman diagrams. These diagrams, together wi th the Feynman rules derived f rom the 

Lagrangian via the path integral formalisms can be used to calculate experimental transition 

probabilities. A l l viable, topologically different diagrams of a given order are summed to 

give an amplitude iM which when squared gives the transition probability of a final state 

10 



+ I + V 

Figure 1.2: The three diagrams that form the process qq gg in QCD. Note the additional 
diagram w i t h the triple gluon vertex. In QED, the U ( l ) charges commute so that the first two 
diagrams are all that is required for gauge invariance. However, the SU(3) colour charges 
of QCD require the additional diagram to conserve gauge invariance and thus using this 
process, the fo rm of the triple gluon vertex can be deduced 

being produced f rom any given ini t ia l state. By integrating the product of this and certain 

phase space and int ial flux factors over relevant momentum variables an experimental value 

can be calculated such as the cross-section or any jet observable. 

The Feynman rules for Q C D in the Feynman gauge (a covariant gauge wi th ^ = 1) 

can be seen in Figure 1.3. Another convenient method of obtaining the Feynman rules for 

the tr iple gluon self-interaction is by considering the reaction qq gg. Without the triple 

gluon vertex, there would be two diagrams that contribute to this process (see the first 

two diagrams of Figure 1.2). In the analogous QED process these two diagrams would be 

invariant under the gauge transformation —>• -h ap^ where is the polarisation state of 

one of the photons and is its four momentum. This is because the U ( l ) charge matrices 

present in the matr ix elements commute. This gauge invariance leads to the formulation of 

the Ward Identity which states that 

p^M'' = 0 (1.2.17) 

where M'^ is the matr ix element of the process. However, wi th the non-Abelian nature 

of QCD, the SU(3) colour matrices present do not commute and i f we consider the same 

two diagrams we are left w i th a gauge dependent answer. By introducing the triple gluon 

diagram and demanding that the sum of these is gauge invariant, the form of the triple gluon 

vertex can be derived. A similar argument can be used to derive the form of the four gluon 

vertex by considering the gauge invariance of the the process gg -)• gg. Other Feynman rules 

that are used to calculate squared matr ix elements include 

11 



u(p) V(P) 

n(p) v(p) 

S^(P) 

(p^-m^+ie) b a 

P2,b,v 

P" 

P3,C,P 

b,v c,p 

X . 

- d,a 

P i A H 

-gfabc((PrP2)''g'' 

+(P2-P3)^g^' 

+(P3-P , )Y'') 

-lg'fabefcde(g^''g^''-g^V) 

-ig'facefbde(g''V^-g^°g^'') 

-ig'fadefcbe(g^''g^''-g''"g''^) 

Figure 1.3: Feynman rules for covariant gauge QCD wi th ^ = 1. The straight lines correspond 
to quark tracks and the springs correspond to gluon tracks. The rules for external and vir tual 
particles are almost identical to those for QED, the only differences being the coupling 
strength and the presence of an SU(3) Gell-Mann matrix as opposed to the U ( l ) charge 
matr ix . As can be seen in the QCD Lagrangian there exist triple and quadruple gluon self-
interactions and the rules for these can be calculated by considering the processes qq -)• gg 
and gg —gg and demanding local gauge invariance 
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The completeness relations of any fermion, derived f rom the Dirac equation. 

^ U^'\P)U^'HP) = 2/+ 
s=l,2 

^ v^'\p)v^'\p) = i / - m (1.2.18) 
s=l,2 

where s is the spin of the fermion. 

• The completeness relation for the vector bosons 

where s is the spin of the boson. 

• Spin-summing final states and averaging over ini t ia l state spins of a matrix element. 

This is performed only for unpolarized physical observables meaning that no informa­

t ion about the spins of the in i t ia l state particles is passed through the calculation. 

• mul t ip ly ing by a factor -1 for every fermion loop (and ghost loop although this wi l l 

not concern us). 

• mul t ip ly ing by a factor 1/n! for n identical final state particles. 

• integration over any loop momenta e .g . /dH/(2-nY . 

Throughout this thesis we shall work wi th the masses of all the quarks set to zero which wi l l 

s impl i fy the calculation of matr ix elements containing a large number of external particles. 

This may be seen as working without any reference to physical quarks, but because the 

centre-of-mass energies we w i l l be using are far greater than the masses of the light quarks 

any mass effects can usually be neglected. (For an example of QCD calculations involving 

mass effects and the techniques involved the reader is referred to [8]). 

Another parameter important to any QCD calculation is which is defined as g"^I (47r) 

where g is the coupling strength of QCD. The value of ag is a subject of huge diversity and 
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interest to anyone working i n QCD. However, this parameter is not uniquely defined unt i l 

we consider the renormalisation of QCD. The succeeding two sections wi l l concentrate on 

the theory and application of renormalisation and the different methods that are used. 

1.3 The renormalisation of QCD 

When the Feynman rules described in the last section are applied to leading order (LO) 

diagrams (i.e. those diagrams corresponding to the first term in the perturbation series), 

they are seen to work reasonably well for high energies (energies of the order of the Z mass). 

W i t h i n theoretical confines which we shall look at later, LO QCD results give a good general 

description for many distributions. However, i f we were to consider Feynman diagrams 

corresponding to higher terms in the series such as diagrams that contain loops, the current 

Feynman rules give infinite answers. For example, consider the 1-loop correction to the 

quark propagator. The matr ix element describing this graph contains the integral 

L 0 Pik-iy 
(1.3.20) 

where k is the external momentum. I n the l imi t / oo the integral can be seen to become 

logarithmically divergent; this is known as an ultraviolet divergence. This is true for both 

Q E D and QCD. 

The remedy for ultraviolet poles is to absorb these divergences into the definition of quark 

masses and fields, the couplings and the gluon fields. Thus the Langrangian we introduced 

i n Equation 1.2.16 can be thought of as the bare QCD Lagrangian which depends solely on 

the bare charges, masses and fields which are all infinite. Once the divergences of the loop 

contributions are absorbed by the infinite bare parameters the physical or dressed parameters 

are rendered finite. 

Bare and dressed parameters can be related using infinite counter terms. The diagrams of 

Figure 1.4 show the graphs which contribute to the counter terms at the 1-loop level for the 

quark and gluon fields and the coupling of quarks to gluons. The loop integrals have to be 

regularized so that the divergences can be made explicit. This can be done by either applying 
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# ^ 1 

Figure 1.4: The 1-loop contributions to the counterterms for the gluon self energy (top 
4 diagrams), the quark self-energy (the middle diagram) and the quark charge (bottom 2 
diagrams) 

an upper bound to the loop momentum or by continuing the number of dimensions of space-

t ime to d where = 4 — 2e. This latter technique is known as dimensional regularization. We 

shall consider the implications of this in the next chapter. Using either method introduces 

a scale / i to the calculation such that the coupling constant is rendered dimensionless. This 

scale is referred to as the renormalisation scale and as such all truncated observables depend 

upon i t . When calculating quantities such as the gluonic self-energy in perturbative QCD 

(pQCD) the ultraviolet divergences can be made explicit in terms of 1/e poles which must 

be subtracted to make the answer finite. I f only the poles are removed this procedure is 

known as the Minimial Subtraction scheme {MS). However, wi th the poles there are also 

finite terms of the form log47r - where is the Euler constant. I f these terms are also 

removed then the new renormalisation procedure is known as the MS scheme. For a more 

detailed calculation of the gluonic self energy the reader is referred to [9 . 
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Having introduced a renormalisation procedure we can now see how this affects the results 

of a fixed order calculation. As we have seen, the removal of the ultraviolet poles f rom the 

loop diagrams has required us to redefine the coupling constant of QCD. Whereas before we 

had as which was a constant, we now have as{iJ.) which is referred to as a running coupling 

constant. To show the effect this has on our calculations consider a dimensionless quantity 

R which depends on a single energy scale Q (let this be the centre of mass energy of the 

experiment e.g. Mz for L E P l experiments) which is large enough to make other scales such 

as the quark masses negligible. I f we renormalize the perturbation series for R we introduce 

a second scale ^ (this can be thought of as the energy at which the subtractions take place). 

Now R depends in general on the ratio Q / f i . Also ag w i l l depend on IJL i.e. as as{fi). 

However, the renormalisation scale fj, is an arbitrary parameter and R cannot depend on the 

value of this scale as i t is not present in the QCD Lagrangian. This independence can be 

expressed as 

— i ? -,as{li) = 
dn \H J 

_a_ ^ das d 
dji dfi das 

(O ' 
R -,cxs{iJ,) (1.3.21) 

which we can rewrite by making the substitution, ^ ( a , ) = and using the chain rule to 

rewrite the derivative w i t h respect to Q, 

i? = 0. (1.3.22) 

We introduce the new variable t where 

(1.3.23) 

Therefore we can rewrite Equation 1.3.22 as 

R{e\as{fi))=0 (1.3.24) 
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We can solve this partial differential equation by introducing a new function, Q;,(Q) such 

that 

t = ^ (1.3.25) 

DiflFerentiating Equation 1.3.25 using the identity 

nves 

das{Q) . . . da.{Q) P{as{Q)) 
— = ^{as{Q)), = -r- —rr (1.3.27) 
dt das{fj,) P{as{^i)) 

Therefore i ? ( l , as{Q)) is a solution of Equation 1.3.24. We can see f rom this that all the scale 

dependence in R is due to the running of the coupling constant as{Q) and i f R{1, as{iJ,)) is 

known at one scale we can predict its variation wi th Q by solving Equation 1.3.25 which can 

be performed by using perturbation theory for sufficiently high values of Q. This is due to 

the asymptotically free nature of QCD i.e. as{Q) decreases as Q increases. 

To solve Equation 1.3.25 we must know the form of the /? function in QCD which can 

be calculated using the counter term graphs we saw in Figure 1.4. I t has a perturbative 

expansion of the fo rm 

/3(a,) = - 6 a 2 ( i + ft'«^ + 0 ( « ^ ) ) (1-3.28) 

w i t h the one loop graphs f rom Figure 1.4 determining b, the coefficient 
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where is the number of colours and Uf is the number of light flavours of quark that 

could fo rm quark loops in the gluon propagator. The value of b' is also known f rom 2-loop 

graphs. However, even higher order coefficients are dependent on the renormalisation scheme 

employed. As can be seen f rom Equation 1.3.29, QCD wi th Uf < 17 gives a negative value for 

P{as) and therefore according to Equation 1.3.22 as decreases as the scale increases making 

QCD an asymptotically free theory. This is the exact opposite behaviour to QED where the 

/5 funct ion is given as 

^QED{a) = ^ a ' (1.3.30) 

at the 1-loop level which is clearly positive. 

Having wr i t ten a perturbative form for the /3 function we can now write an expression 

for the variation of ag. Starting f rom the definition of /3 we may write. 

= -bami^ + b'asiQ) + 0{al{Q))]. (1.3.31) 

I f both as{ii) and as{Q) are sufficiently small to lie in the perturbative region we can truncate 

the P funct ion series and solve the remaining differential equation. I f we only include the 

first term of the series then. 

l + as{lj)b\n^ 

Thus we can see that, given a value of ag at some scale n its value at other perturbative 

scales can be calculated. Using this technique, experiments at very different energies can 
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DIS [pol. strct. fctn. 
DIS [Bj-SR] 
DIS [GLS-SR] 

T-decays [LEP] 

F2,F3 [ v - D l S ] 
F2[M-DTS] 
Jets [HERA] 
F2 [HERA] 
ev. shapes [HERA] 

QQ + lattice QCD 
Y decays 

e;*;e-[ahad] 
e e [ev. sliapes 22 GeV] 
e^e-[ahad] 
e'*'e [ev. shapes 35 GeV] 
e+e "[ev. shapes 44 GeV] 

e"[ev. shapes 58 GeV] 
p p - > b b X • 
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cr(pp-> jets) 

r(ZO^had.) [LEP] 
Z^ev. shapes 
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Figure 1.5: The current world average for ^ ^ ( M l ) = 0.119 ± 0.004 in the MS scheme taken 
f rom a variety of experiments wi th energy ranges 1.6 GeV up to 189 GeV. [10 

compare values of at a given scale. Physicists calculate at the experimental energy 

scale of the process (this is known as the physical scale). This is to avoid large logarithms 

of the fo rm \og{iJ,/Q) which occur in next to leading order and higher terms. As / i is 

arbitrary, we could do the calculations for at any scale and i f we included all the terms of 

the perturbative expansion the / i dependence would fal l out. However, w i th our truncated 

series, to remove these large logarithms we choose the physical scale and later allow the 

coupling to run to compare ag at different energies by using Equation 1.3.32. Due to the 

large number of experiments at L E P l and that i t lies far f rom any quark thresholds well 

w i th in the perturbative region the most common scale at which to compare experimental 

values of is taken to be Mz. The results of 'running' the coupUng to this scale can be 

seen in Figure 1.5. 
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Alternatively, we can introduce another dimensionless parameter into the definition of 

as{Q^). This is known as AQCD which is defined as. 

, dx 
In / 4 ^ . (1.3.33) 

A^CD Ja4Q')P{x)' 

AQCD can be thought of as the scale at which the coupling becomes too large for perturbation 

theory. A t present, its value is thought to be around 200MeV and thus QCD is thought to 

break down at the scale of the masses of the light hadrons. W i t h AQCD we can rewrite 

cxsiQ"^) i n terms of the beta function coefficients and Q"^, removing the dependence on the 

renormalization scale. For the equivalent equation to Equation 1.3.32 we get, 

However this technique is not favoured as A q c d changes as more terms are included in the 

perturbative expansion and i t also takes different values as more quarks are introduced. 

Thus i t is more common in the literature to convert all couplings to Q ; S ( M | ) and for the rest 

of this thesis we shall adopt this approach. 

1.4 Theoretical uncertainty 

The largest uncertainty i n any theoretical prediction for physical observables comes f rom 

the uncertainty in the renormalisation scale and its relation to the inclusion of higher order 

terms. I t is clear that to achieve the same experimental results, a truncation after the first 

coefficient would require a larger value of as{Q^) than one which retained the next term 

(assuming that the coefficient of the second term was positive). To allow for this uncertainty 

in the coupling, the scale is often allowed to vary, usually between Q/2 and 2Q. As each 

term is included in the calculation, this scale dependence cancels between terms and i f all 

the terms are used i t is obvious that the result is independent of fx. This can be seen in the 

example of the average Thrust distribution. Thrust is a 3-jet like observables describing the 
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Figure 1.6: The leading order and next to leading order calculation of < 1 - T > according 
to Equation 1.4.35 and the respective dependence on the renormalisation scale ii. Not shown 
on this graph is that the N L O calculation becomes negative divergent as ^ 0. This is due 
to the additional logarithm in f j , in the calculation. 

spatial distr ibution of the event. For back to back events T = 1 and for completely spherical 

ones r = 1/2. Let us consider the perturbative expansion of this event shape variable [11 . 

< 1 - T > = 2.10 
'as{fi^y 

27r 
+ 40.74 + 4.27rMn 

Ml 27r 
(1.4.35) 

where 2.1 and 40.74 are the first and second coefficient of the perturbative series calculated 

w i t h five active quark flavours. As wi th all variables the only scheme independent coefficients 

in the expansion are the first two. Higher order terms are not known. The dependence of 

< 1 - r > on the renormalisation scale at each level of truncation is shown in Figure 1.6. 

As can be seen f rom the diagram the leading order calculation is highly scale dependent, 

being positive divergent as fx/Q 0 and slowly tending to zero as / / /Q -> oo. This is 

expected as < 1 — T > at leading order is simply a scaled as{Q^) distribution. A t NLO, the 
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presence of an additional \og{fj,/Mz) dominates at small // and forces the distribution to ' rol l 

over' and become negative divergent as / i —> 0. However, i t can be seen that there exists 

a relatively flat period of the distribution between fi/Q = 0.05 and fj./Q = 10. I t is here 

that the calculation is fa i r ly insensitive to the value of fx and thus theoretical calculations 

of < 1 — T > have smaller errors than those calculated at scales (or orders) where the 

calculation is more dependent on the scale. Also, using the expansion of Equation 1.4.35, 

the value for Q;̂  deduced f rom experiment at the physical scale w i l l contain smaller errors. 

However, the physical scale is not the only choice we can make of f j , that reduces theoret­

ical error. I f we can model the rest of the perturbative series at each order by our choice of n 

then we exchange our uncertainty in higher perturbative coefficients for an uncertainty in //. 

This is the main idea used for The Principle of Minimal Sensitivity proposed by Stevenson 

12]. For this we assume that the value of f j , that best models the rest of the perturbative 

series is the value at the local maximum where the dependence on i t is smallest. So we 

differentiate < 1 - T > w i t h respect to log(//) using the two loop expansion for ^^ ( / i ) and 

set the answer to zero. A t N L O (ignoring all term of order and higher) we find 

1 / / PMS\\ 
Ab' + - B + 2TrAblog = 0 (1.4.36) 

TT V \ Mz JJ 

which defines the scale UPMS-

There also exists another scale choice which attempts to allow for higher order corrections. 

The Fastest Apparent Convergence method or FAC scale[13] assumes that all higher order 

corrections are zero. This scale is first estimated at NLO and occurs when the LO result 

and N L O result coincide such that the NLO contribution is zero. 

As can be seen f rom Figure 1.6 the PMS scale and FAC scale are relatively close and i t 

can be shown that this occurs at next-to-next-to-leading order [14] as well. In general, the 

scales only differ by approximately 15%. However, as we shall see later in this thesis, the 

physical scale and the FAC/PMS scale can be widely separated as in this example. 

22 



1.5 Summary 

This first chapter has introduced the main ideas and motivations behind modern particle 

physics such as how the vast array of 'fundamental' particles can be explained by the quark 

model and how the proposal of a colour charge was able to prevent the violation of the Pauli 

exclusion principle and describe the R ratio. The justification of these theories was finally 

proven by the discovery of the parton in the SLAC-MIT experiments. 

From this basis i t is possible to build a Lagrangian of a SU(3) group that describes the 

quark model. I t is subtly different f rom QED in that QCD is a non-Abelian theory and 

contains interactions not found in QED such as the gauge boson self-interactions. From this 

Lagrangian the Feynman rules are derived and i t is the covariant Feynman gauge set of rules 

that are used throughout the rest of this thesis. 

Having calculated the necessary rules, i t is then possible to show that although these rules 

work at leading order, when loop diagrams are considered such as the quark self energy, the 

rules derived f rom the bare Lagrangian give divergent answers (ultraviolet divergences).These 

ultraviolet divergences introduce the concept of renormalisation 

Renormalisation involves cancelling the infinite bare parameters found in the Lagrangian 

(such as mass and coupling constants) w i th the divergent loop diagrams to give finite dressed 

parameters. These parameters are related to the bare ones via counter terms which can be 

calculated using a momentum cut-off in the integral or dimensional regularization. Both 

prescriptions introduce an additional scale known as the renormalisation scale ^ which is 

arbitrary and on which any truncated theory is dependent. (For an all orders result, any 

observable must be independent of /j, as i t does not appear in the QCD Lagrangian.) However, 

when using truncated theories, the observable does depend on the scale. This dependence 

can be placed into the coupling and as such introduces the idea of a running coupling 

constant where the coupling depends on the scale used. Couplings at difl^'erent energy scales 

can be related using the beta function and the value of as{Mz) can be calculated f rom very 

different experiments. The usual scale at which is calculated before running i t up to Mz 

is the experimental process energy and is known as the physical scale. However, there exist 

prescriptions which t ry to reproduce the entire perturbative series by the choice of scale. 
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The rest of this thesis, will concentrate on the calculation of physical observables using 

the Feynman rules derived and on comparing the theoretical results to current experimental 

data. 
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Chapter 2 

Experiments, Next-to-Leading Order 
and Motivation 

2.1 Introduction 

In the previous chapter we outlined the formulation of QCD, a quantum field theory that 

can be used to describe strong processes in terms of quarks, gluons and their interactions. 

This led to the description of any physical quantity (such as the cross section) in terms of 

a perturbative series in the coupling constant which converges for high energies (such as 

Mz). Each term in the expansion can be represented" diagramatically as a set of Feynman 

diagrams, all of which have indistinguishable initial and final states from each other ^ and 

the same power in the coupling constant, g. 

This chapter will be primarily concerned with the background theory necessary for the 

calculation of higher order corrections and specifically next-to-leading order (NLO) calcula­

tions. Section 2.2 will briefly review how we can reconcile the theoretical Feynman picture 

with that of observed experimental jets. We shall concentrate on the techniques used for 

identifying resolvable jets, both at leading order and for higher orders. In section 2.3 we will 

consider two simple QCD processes, e+e~ —>• 2 jets and qq —> gg in order to demonstrate 

some of the techniques used for evaluating higher order corrections. These included colour 

algebra, colour decompostion, matrix element factorisation and dimensional regularisation. 

^Typically, theoretical calculations of higher order corrections for a given process consist of diagrams 
which have more initial and/or final state partons than the leading order diagram. These extra partons 
are experimentally unresolvable and therefore we consider the series to consist of diagrams which have 
indistinguishable initial and final states at all orders in the series. 
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Section 2.5 will look at the motivations for performing NLO calculations in general, but 

specifically the NLO calculation for the process e+e" -)• 4 jets. 

2.2 Jets and higher orders 

In e^e' annihilation experiments, the measured particles seen in detectors are hadrons which 

form in a nonperturbative manner. But the general distribution of these hadrons is governed 

by the short distance creation of quark/antiquark pairs and subsequent gluon emissions. The 

uncertainty principle states that the fluctuation of a virtual Z / j into a quark/antiquark pair 

occurs in a space-time interval ofl/Q where Q is the centre of mass energy of the experiment. 

I f Q is large enough then we lie in a regime where perturbation theory and the Feynman rules 

can be used to calculate physical quantities. Quarks and gluons will bind into hadrons in a 

time scale of 1/A.QCD where the coupling becomes large. Typical values of AQCD range from 

about 100 MeV to about 400 MeV and as such these effects take place long after the original 

partons have been produced. Therefore the final state distribution of kinematics between 

the hadrons is governed by the non-perturbative hadronization effect, but the likelihood of 

a given process occuring is dictated by the short distance interactions of the partons which 

can be calculated using perturbation theory. 

In hadronization, "jets" of hadrons are created which, as a first approximation, can be 

associated directly with the original partons which govern the short distance dynamics of 

the process. I f the hadrons created from a high energy quark have a limited transverse 

energy compared to the original quark, {collinear fragmentation) then the quark can be 

interpreted as a jet at leading order. For example, in the experiments performed at LEPl , 

e+e" can annihilate to form quark/antiquark pairs and any number of gluons. Naively we 

might expect that for every parton emitted at this short distance a corresponding jet can 

be expected in the detector. At leading order it is true that each final state parton can be 

identified with one of the final state jets. However, i f we consider the process e+e~ -> qqg 

there are final state configurations that are experimentally indistingusihable from two jet 

final states due to the finite resolution of the detector (see Figure 2.1). In terms of the 

original partons these states are when the gluon either becomes too soft to form a jet that 

will register in the detector or when the gluon's momentum is collinear to one of the other 

final state partons, producing two jets that merge into a single one. The precise definition 
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of soft and collinear partons is dependent on the prescription of the jet-finding algorithm 

and as such we defer this until Section 2.3. Therefore to calculate the next to leading order 

contribution to e+e~ -)• 2 jets we are naturally led to consider graphs with more than two 

final state partons. 

2.2.1 Jet-finding algorithms 

The number of jets present in a final state is now complicated. Just when is a parton 

resolvable or not? To formalize this we introduce the idea of the jet measure. This is 

a procedure which attempts to clarify the number of jets in a final state of hadrons (or 

the number of resolvable quarks and gluons for theoretical calculations) and facilitate the 

exclusive calculation of n jets in the final state. By considering some quantity formed from jet 

(or parton) momenta and comparing this to our jet measure we can cluster jets/partons into 

clearly distinguishable jets. To be useful this measure should give cross-sections which are 

insensitive to the presence of additional collinear and soft partons when calculating higher 

order corrections in perturbation theory and also be insensitive to hadronization effects. One 

technique suggested to make jet cross-sections calculable was one presented by Sterman and 

Weinberg [17]. Their prescription describes a final state as two jet-like if all but a fraction 

e of the total energy is present in a pair of cones of half-angle S. The two jet cross section 

is then obtained by integrating over the phase space region described by e and 6. Consider 

again the example of e+e" -> 2 jets. At leading order this corresponds to the production of 

e+C -> qq and thus we should integrate over the whole of the phase space. However at 0{as) 

the process to consider is e~^e~ —)• qqg and this only requires integrating over specific values 

of the quark and antiquark energy fractions xi and X2 as defined by e and 5. This is shown 

in Figure 2.2. The two jet region is that between the edges of the entire phase space triangle 

and the boundaries formed by the limits on e and S. Inside the e — S region we have three jet­

like events. By introducing this jet measure, we also introduce logarithms into the result of 

the order log(J) Iog(£) and i f 6 is set to be small these logarithms need to be resummed to 

all orders in perturbation theory. However, at higher orders, the Sterman-Weinberg measure 

is not well-suited to calculating multijet final states. 

Another technique to measure the topology of final state systems is the JADE jet finding 

algorithm [18]. This prescription uses a measurable quantity known as the scaled invariant 
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Figure a 

Figure b 

Figure c 

Figure 2.1: Figure (a) shows a leading order Feynman diagram for the process e+e" 2 jets. 
Here each parton in the final state is associated with a jet in the detector. Figures (b) and 
(c) show next to leading order Feynman diagrams for the same process. Although there 
are three partons in the final state of Figure (b), the gluon is unresolvable either by being 
too soft to register or too collinear to the quark or antiquark thereby forming one large jet. 
Therefore only two jets are counted experimentally. Figure (c) shows the virtual correction 
that also contributes to the NLO calculation of any jet observsable. 
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Figure 2.2: Area of phase space defined to be two jet like is bounded by the physical phase 
space triangle and the Sterman-Weinberg jet scaled measure (solid fine) with e= 0.3 and 6= 
30° or the JADE scaled measure with ycut=0.1 (dotted line)depending on the measure used. 
xi and X2 are the energy fractions of the quark and antiquark respectfully. This diagram is 
taken from [20 
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mass. This is defined as 

yii = {p^+Pi?IQ' = f , (2 .2 .1) 

where Q'^ is the total energy in the final state. For the JADE algorithm the measure we use 

is such that 

= § : (2-2-2) 

where E'vis is the total visible energy in the final state. This quantity is calculated for all 

possible pairs of the final state partons. For example, between the three partons qqg there are 

three invariant masses that need to be considered, dqg, dgq and dgg. I f the minimum invariant 

mass is larger than the preset measure cut |/cut then the process has as many resolvable jets 

as it has final state partons. Thus 

(Pi + P-iY 2EiEi(l - cos9ij) . . _ 0 Q̂  
^^'Zn ^ = ^ ^ > y c u t « , J = g , 9 , P (2-2.3) 

assuming that the final state partons are all massless. This corresponds to a boundary in 

the phase space which is also shown in Figure 2.2 for the process e'^e" —> qqg. Again, 

the region in which two of the partons are clustered together to give a 2 jet final state lies 

between the edge of the physical phase space triangle and the boundary as defined by the 

measure. The 3 jet-like region lies within the shape defined by the measure. Whereas before 

we generated terms of the order log(5) log(e) for the Sterman-Weinberg model, we now 

form log^(?/cut) terms. This prescription is easily extended to multijet final states. Let 

us assume that there are n partons in the final state. Firstly, we calculate the minimum 

invariant mass. I f this is greater than ?/cut then there are n jets in the final state. If it is less 

than the cut then the partons are combined into a single pseudo-parton (the method used for 

combining the partons also has several schemes, see Section 2 .2 .2) and the next minimum is 

30 



Figure 2.3: A possible configuration of the final state qqgg where the minimum invariant 
mass lies between the two gluons. Even though the angle between the two gluons is large, 
if their invariant mass is smaller than ?/cut a jet will be formed in the direction of the dotted 
line and the process will be identified as a three jet event, despite the original orientation of 
the partons towards a two jet-like event. 

calculated. I f this too is less than ?/cut (including all new invariants formed using the pseudo 

parton) then this clustering continues until the minimum invariant mass is greater than the 

cut. The remaining number of clusters at this point is the number of final state jets. This 

way, any number of jets from n to 2 can be found. The above procedure is that taken for 

a theoretical calculation. For experimental purposes, the clustering is over the final-state 

hadrons. This technique is sensitive to hadronization effects for some recombination schemes 

21] but at high energies these are found to be small. 

The JADE algorithm, as all algorithms must, needs to have the large logarithms at small 

y^ut resummed. However, for the JADE algorithm, there is no simple formula which allows 

this sum to be explicitly calculated [19]. Also the JADE algorithm has a tendency to produce 

pseudojets which are combinations of partons which have a net momentum in a direction 

that is not an obvious choice for a final state jet. Consider the configuration of a quark 

and antiquark which emit two soft gluons in Figure 2.3. When the invariant masses are 

calculated, the mass between the two soft gluons will be the minimum despite their large 

separation. I f this mass is less than the cut, a cluster will be formed in the direction of the 

dotted line. This is obviously not the direction of a jet as i t is not remotely close to the 

direction of any of the original partons. If all the rest of the invariant masses exceed t/cut 

then a spurious jet has been created and the event is labeled three jet-like. 

There have been several algorithms suggested to overcome these problems such as the 

DURHAM or kr algorithm [21] and the Geneva algorithm [22]. Al l of these are variations 

of the original JADE algorithm. 

The Durham algorithm attempts to better model the arrangement of jets by making 
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use of a quantity related to the transverse momenta of the parton pair. We notice that in 

the example above, the relative transverse momenta of the two gluons is larger than that 

of the gluon with the quark. Therefore if we choose to cluster according to the minimum 

relative transverse momentum of the pair, the pseudo jet will not appear and a more sensible 

2 jet event will be recorded. However, we cannot use the relative transverse momenta 

directly as for back to back events the invariant also vanishes leading to a false clusterings. 

Instead we make use of a related quantity that for small angles gives identical results where 

sin^9 ^ 2(1 — cosO). This measure is given by 

The Durham jet finding algorithm has become the standard method due to three reasons. 

Firstly, it has smaller hadronisation corrections compared to the JADE algorithm at higher 

orders such as the qqg contribution to the two jet cross section. Secondly the large logarithms 

present at small y^ut can be resummed in the Durham algorithm. And finally the variation 

of variables with respect to the renormalisation scale close to the physical scale is less than 

that seen using the JADE algorithm [21 . 

The Geneva algorithm again attempts to avoid the clustering of soft partons together 

and ensures that soft gluons are only grouped together if the angle between them is much 

smaller than those considered in the JADE algorithm. The Geneva dimensionless measure 

is defined to be 

8EiEj{l-cosei,) 
= 9{E. + E,r ^^^^ 

where the factor 8/9 is to ensure that the maximum value of ?/cut that reconstructs three 

jets from three partons is 1/3 as i t is in the other two algorithms. The energy factor 

EiEj/{Ei + EjY « mm{Ei, Ej)/max{Ei, Ej) again favours soft partons clustering to hard 

ones as opposed to other soft ones. The Geneva algorithm is claimed to suffer less from 

perturbative corrections due to soft gluon emissions at the physical scale as compared to 

32 



the Durham algorithm which means that the variation with the renormalisation scale, /z 

is less for // « Q [22]. Another advantage of the Geneva algorithm is that it is expected 

to be sensitive to the number of light flavours[23] thus making it a good algorithm to use 

in searches for new physics. However, the Geneva algorithm is sensitive to experimental 

measurement error as it depends purely on the energies of the partons involved and not on 

the better known total energy. I t may also be more sensitive to hadronization eflfects as 

modelled by parton shower programs[22]. For more information on jet-finding algorithms 

the reader is referred to [24 

2.2.2 Recombination schemes 

Having chosen a jet-finding algorithm there still remains some ambiguity over how the clus­

tering of partons should be performed. To study this and the problems inherent with each 

scheme, let us consider the clustering of two partons i,j to another parton k such that 

i + j —>• k. The simplest technique (known as the E-scheme) is to retain all the momen­

tum and energy of each parton and sum them to form the energy and momentum of the 

final state parton. However, in doing this, i t is assumed that all final state particles are 

massless and as such pi = 0. But we can see from summing over the two partons that 

PI = (^p- + pjY = 2pi.pj ^ 0. Thus we have problems combining this technique with ma­

trix elements calculated assuming all final state particles are massless. Another technique 

which retains massless final state particles (the P scheme) does so by defining the energy 

with regards to the momentum such that pk = Pi + Pj and Ek = \pk\- But now we have 

preserved masslessness at the cost of energy conservation. A third scheme chooses instead 

to violate momentum conservation and conserve energy instead (the EO scheme) such that 

Ek = Ei + Ej and pk = Ek{pi + Pj)/\Pi + Pj • 

2.3 Next-to-Leading order techniques 

2.3.1 Introduction 

In considering the details of higher order calculations it is valuable to consider two simple 

examples. For this reason we will review the NLO calculation of the process, e+e" —> 2 jets 
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and the LO calculation of the process qq —>• gg. Using the e+e" 2 jets process, we can 

study the different methods used for analytically cancelling divergent contributions inherent 

in both the virtual loop diagram and the extra, unresolved parton processes. These are 

known as infra red divergences and occur when the loop momenta is allowed to become zero. 

The qq gg process will be useful in demonstrating how techniques such as colour algebra, 

colour decomposition and matrix element factorisation can be utilised to simplify difficult 

QCD calculations. 

2.3.2 K L N theorem 

Infrared poles are inherent in all NLO QCD calculations and are due to integrals of the form 

(2.3.6) 
0 k^{k-pY{q-kf 

when the limit A; 0 is taken. These integrals are found in vertex loop integrals leading to 

divergent results. However, another source of infrared divergences can be shown to cancel the 

loop divergences exactly. When calculating a NLO quantity not only must loop corrections 

be considered, but we must also include extra unresolved partons in real emission processes 

such as in Section 2.2. These contributions have integrals of the form 

'-'"^ rfy^_4±ii±^ (2.3.7) 
yqgVgq 

where the scaled invariant, y^, is defined in the same way as for Equation 2.2.1. (The 

equation shown above is that for the process e"'"e~ —̂  2 jets.) The divergences are due to 

the integration over the lower bounds of Uqg = 0,ygq = 0. I t can be shown that for all 

processes these infrared poles can be cancelled at each order for infrared safe observables 

such as Thrust. By infrared safe observables we mean observables that are not sensitive to 

soft or collinear gluon emission (which we define later) and are dominated by short distance 

physics i.e. perturbative physics. Al l the divergences created by the loop diagrams of a n 

parton final state process are cancelled when we consider the tree level diagrams of an - M 
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parton final state process where one or more is unresolvable. By unresolved, we mean that 

the scaled invariant mass of the unresolved parton with its colour-connected neighbour (see 

Section 2.3.7 for a definition of colour connections) is less than some cut, ymin- Therefore, 

i f the invariant mass of a parton and its colour-connected neighbour is less than y^-^n and 

the invariant mass of the parton with its other colour connected neighbour is less than t/^in 

then both integrals will give large values, the matrix element will be large and the parton 

is said to be soft. I f only one of the scaled invariant masses is less than ^min then only one 

integral blows up, the matrix element is still large and the pair of partons are said to be 

collinear. In both these limits we shall find that the matrix elements can be factorised. We 

shall study these definitions and what they mean in terms of matrix elements in Section 2.3.5 

and Appendix C. That such cancellations occur at all orders was first proved for QED by 

Kinoshita [15] and later developed for QCD by Nauenberg and Lee [16]. Divergences are 

made explicit by regularising the integral. This can be done in a number of ways, but for 

this thesis we shall concentrate on the technique of extending the number of space-time 

dimensions the integral is performed under. For more details on this prescription and how 

the poles are made explicit see Section 2.3.4 and Appendix B. We shall study examples of 

this cancellation in the proceeding sections. 

2.3.3 e + e ~ - > 2 j e t s 

We begin by considering the simple NLO calculation for the process e'^e~ —> 2 jets. We have 

already seen (in general terms) that this consists of two separate contributions, the extra 

unresolved parton and the virtual loop (See Figure 2.1). Also we have stated that each of 

these contributions is separately infra-red divergent, but that the sum of the two is finite with 

the poles cancelling exactly according to the Kinoshita-Lee-Nauenberg (KLN) theorem. To 

introduce the different techniques used in making these poles explicit we consider the squared 

matrix element for the real emission process. 

M 2„2 = ^Cpe'g 
3 partons « [y-^g y^g y^gy^g 

(2.3.8) 

As we have shown previously the loop contribution introduces a divergence due to integrating 

over the virtual loop momentum. In Equation 2.3.8 we see indications of the divergences that 
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will cancel the infra-red pole from the loop diagram. (The actual pole in Equation 2.3.8 is 

not explicit until we incorporate the phase space integration over the scaled invariant masses 

present in the denominator which run from 0 to a finite phase space boundary limit.) As 

the loop momentum from the virtual term tends to zero, the divergence is exactly cancelled 

by the above squared matrix element in the phase space regions in which the unresolved 

gluon becomes soft {yqg and y-qg 0) or where it becomes collinear to either the quark or 

antiquark (dqg or Ogq 0 which forces either yqg or yqg —> 0). 

Normally the integration of the matrix elements over the allowed phase space region is 

too difficult to analytically perform and the only method of calculating NLO observables is 

to evaluate the integrals numerically. However numerical integration cannot give sensible 

results when we have divergent contributions. Therefore we need to find a technique which 

allows us to analytically isolate and cancel the separate poles. Then the resultant sum can 

be integrated numerically with safety. 

2.3.4 Divergences and Dimensional regularisation - "to infinity 
and beyond" 

To explicitly demonstrate the divergences present in NLO calculations and specifically show 

that the cancellations of the KLN theorem work, we need a method to isolate and regularize 

the infinite parts of the integrals. There are a number of prescriptions that have been 

suggested and we outline three of these below. 

• By applying a cut-off on the loop momentum such that the integral runs between 0 

and the cut-off A. For example, we may have an integral of the form 

Jo 
x^dx ^2.3.9) 

Jo 2{x + AY 

By applying the cut-off we regulate the pole and introduce logarithms of the cut-off 

into the result. 
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/•A x^dx _ dxjx + A)^ - 2A(x + A) + _ dx ^ ^ / A \ 
Jo 2ix + A f J o 2{x + Ay ~ Jo {x + A) \kJ 

f A + A\ f A 

(2.3.10) 

However, this prescription is only applicable to ultraviolet divergences and violates 

both Lorentz and gauge invariance. 

By introducing a large fictitious mass into the boson propagator (Pauli-Villars regu­

larisation [30]). Therefore we make the replacement 

where M is the mass of the boson. When k^ « we return the usual propagator 

and when k'^ » we find terms cancel and a smooth cut-off is achieved. Thus the 

original integral in Equation 2.3.9 becomes 

r ,2dx - \ J = I log ( ^ ] + O ( ^ ] (2.3.12) 
Jo [2(a: + A ) 3 2(a; + A M ) ^ J 2 ^ \ A J \M^J 

where A M = A + x M ^ . This regularisation technique is problematic if we consider 

massive QCD calculations where it violates gauge invariance 

• By analytically continuing the number of space-time dimensions that the integral is 

calculated in to 4 — 2e where e is small and positive to regularise ultra-violet poles and 

small and negative to regularise infra-red poles (Dimensional regularisation [31]) 

For the rest of this thesis we shall use dimensional regularisation as it preserves both Lorentz 

and gauge invariance. Divergences present in the integral are made explicit in terms of 1/e 

and 1/e^ poles. These poles can then be manipulated until it is clear that they cancel 

between diagrams. Once these poles are removed the limit e -)• 0 can be safely taken and 

the finite answer returned to the usual 4 space-time dimensions. 
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However, within dimensional regularisation, there are a number of schemes. These are 

dependent on how many dimensions particles' momenta and polarisations are taken in, both 

for internal and external particles. The 'tHooft-Veltman scheme retains four dimensions 

for external particles' momenta and polarisation. Only the internal gluon polarisations 

and momenta are taken in d dimensions. Compare this with the conventional dimensional 

regularisation where all the momenta and polarisations are in d dimensions. For use in 

supersymmetric calculations it is essential that the number of dimensions used be the same 

both for the polarisations of the quarks and the gluons in order to preserve the SUSY Ward 

identities. This scheme is referred to as dimensional reduction and uses 4 dimensions for the 

number of polarisations. For the rest of this thesis we shall use the conventional scheme and 

occasionally refer to the 'tHooft-Veltmann scheme. 

d dimensional integration is a non-trivial problem and as such needs to be defined. For 

a detailed introduction to non-integer dimensional integration the reader is referred to [32 . 

We begin by considering the 3 body phase space integral needed for the 2 jet NLO calculation 

considered above. 

/ d'^-^Pq d'^-% d'^-^Pg 5'^{p^ -Pg-Pq-Pg) (2.3.13) 
2Eq 2Eq 2Eg (27r)3-2<i 

where is the centre of mass four momentum. By redefining a d - 1 dimensional integral in 

terms of a one dimensional radial integral and a d - 2 angular integral (c.f. d^r = r^drdn2 = 

sin{6)drd9d(j)) we find 

I Q^-'dsuds,sds2,dn,^2dnd-3isnSnS2zV-^S{su + si3 + S2,-Q'){2nf-''' (2.3.14) 

where we have subtituted the energies of each individual parton for the invariant masses 

between them. See Appendix C for more details. 

For the 2 jet 1-loop correction we must consider an integral of the form (after Feynman 

parameterisation and Wick rotation. See Appendix B). 

38 



where dfld is a c? dimensional solid angle such that 

I d^ld = r 9 3 i f i ^ 

Other consequences of changing the number of space-time dimensions include 

• The contraction of metrics g^u^g'^" = d. However we keep the metric ^ ^ j , and the gamma 

matrices,7^ as 4 x 4 matrices as well as retaining the Cliflford algebra {y^. j"} = 2^^". 

• The Lagrangian now must have dimension d with the coupling constant redefined as 

2.3.5 Colour in QCD calculations and colour algebra 

Now that we have a prescription that will isolate and cancel the divergences we can study 

the details for the NLO calculation of e+e" -> 2 jets. One aspect we have neglected to date 

is that of the colour structure of the matrix elements. In QCD, the Feynman rules describing 

the interaction of quarks and gluons are governed by the SU(3) colour representation. Instead 

of the one dimensional charges found in QED, we have a more complicated formalism. Each 

vertex is the source of a 3 x 3 colour matrix. The prescription that determines the colour 

structure of the final squared quantity is that of colour algebra. But before we can study 

this algebra we shall familiarise ourselves with some of the properties of the SU(3) colour 

group. 

2.3.6 The colour factors of SU(3) 

The colour factors of QCD are derived by considering the generator matrices of SU(3) in 

the adjoint representation which are defined by the commutation relations show in Equa­

tion 2.3.17. (For this section we use a different notation for colour labelling as compared to 
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Section 1 and the Appendix A simply for aesthic reassons. The mathematical formulae are 

unaffected by placing the colour index in superscript or the subscript.) 

r,t''] = ir'"'f (2.3.17) 

and for which we adopt the normalisation procedure such that 

trlf't^] = TRd"^ (2.3.18) 

where a, ft = 1..8 and the trace runs over the 3 x 3 matrices. By convention the normalisation 

constant TR is taken to be equal to 1/2. 

In QCD calculations we are often faced with quantities such as [tH°')ij.f°''^'''f^'^'^ and 

{tH^t"')ij with implicit sums over repeated indices. Here i,j represents the colour of the 

external quarks the gluons are attacted to. The SU(3) generators are traceless and making 

use of this property we can derive a very useful relation known as Fierz' identity. Using this, 

we will then be in a position to derive all possible combinations of colour structure such as 

the three examples above. 

Consider an arbitrary 3 x 3 matrix M. It can, in general, be decomposed into two parts 

M = CoI + E C a i " (2.3.19) 
a 

where are the SU(3) generators in the fundemental representation. By taking the trace of 

M we can find expressions for the coefficients, Co and Ca (recalling that the trace of a single 

SU(3) generator is zero).Thus, Co is given by 

'iM (2.3.20) 
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as the unit matrix gives a trace of TV = 3 in the fundamental representation. If we multiply 

M by and take the trace we find 

Ca = 2tr{eM) (2.3.21) 

using Equation 2.3.18 with the usual normalisation constant. Therefore we write M as 

M = ^-^l + ^ 2tr{t'^M)t\ (2.3.22) 
a 

If we now show the indices contracted over, M has the form 

M . , = ^ < ^ . i + E 2 ^ r . M , 4 . . (2.3.23) 
a 

However, as this form is true for all M , we can write 

MuU.5,i-^-^-Y.^tU%)=^. (2-3.24) 

Therefore 

X : 2 C ^ ^ . = M i . - ^ . (2.3.25) 

This relationship is known as the Fierz identity and diagrammatically can be thought of as 

the decomposition of a gluon attached between two quark lines in terms of the two separate 

colour lines. (See Figure 2.4) 

Immediate consequences of this identity are that we can write the form of two of the 

colour structures mentioned earlier (see Figure 2.5). 
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111 1 /2N 

Figure 2.4: A diagramatic representation of Fierz's identity. The colour structure of a gluon 
line between two quark lines in terms of colour flow along the quark lines and the colour 
factors. I f the first term on the right hand side was zero then we would have a QED like 
process 

(tV), 

1 a I a J 

Figure 2.5: The diagramatic representations of the three colour structures used in the text 
as examples. Using the Fierz identity, the form of structure constants can be written in 
terms of the number of colours, N. 
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(t'^nj = = c^^ij' (t't'nj = ^ 4 - (2.3.26) 

The final colour structure can be derived by making use of Equations 2.3.17 and 2.3.18 

j^acdj^bcd ̂  _2^r( [^^f ] [^^^^]) 

= -2tr{2tHHH''-{et^+ t H ' ' ) f f ) (2.3.27) 

Applying the first two colour structures to this we find 

jacdjbcd ^ -2tr{2t%[tHH% - {tH^ + th'')ji{ft%) 

^2N 2N ' 

= 
= CAS"^ . (2.3.28) 

The three colour structures we have considered ((t"t")ij , {f'""^P'"^)ij and {tH^)ii) form what 

are known as the quadratic Casimir operators. These Casimirs commute with all SU(3) 

operators and as such are fundamental quantities of the gauge group. The quadratic Casimir 

factors {Cp, CA and TR respectively) can be thought of as colour charges analogous to the 

electric charge of QED. When the diagrams shown in Figure 2.6 are present in a QCD 

calculation then the constants are factored into the squared matrix element as the electric 

charge is factored into any QED process. We now have all the elements necessary to perform 

leading order QCD calculations. 

2.3.7 qq gg 

We can see how colour factors greatly simplify more difficult QCD calculations when we 

consider the leading order calculation of the process qq gg. We can decompose the 
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C<b 
^ C v T -

^cd^cd_^ gab 

(T')ik(T^)kj=CF5,j 

n (r ) , (T ' ' ) j rTR5ab 

Figure 2.6: The three Casimir factors of SU(N) can be associated with colour charges that 
are utilized in QCD calculations. Repeated indices are summed over, L.iV^ - 1 for the gluon 
colour indices a, b, c and over l..iV" for the quark colour indices k 

relevant matrix elements into colourless kinematic subamplitudes (which we shall see later 

have their own factorisation properties) and the colour structures we have studied above. 

Unlike the related QED process qq 7 7 , there are three Feynman diagrams to consider 

(due to the self-coupling of gluons in QCD). These are shown in Figure 2.7. The sum of 

these three form the total matrix element. 

(2.3.29) 

where Mi are the kinematical terms from each diagram. However because the three diagrams 

have different colour structures we will have several different colour factors multiplying each 

separate kinematic term when the matrix element is squared e.g. squaring the first term 

gives CpNAdl whereas the interference between the first and second term is —Cp/2M.iMl. 

We can simplify the number of structures by using the identity [t°-, t^] = if^H'^. By applying 

this identity to the third term we can write i t as {t°'t'')ijMz - {t'^t°')ijMz and therefore 
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a 

b 

^ 7 

1̂  

(t^t") i j 
(tV) 

Figure 2.7: The three Feynman diagrams that are needed to evaluate the leading order 
calculation qq —)• gg. Below we show the different colour structures for each amplititude. 
From this we can see that there are nine possible colour structures that can be formed in 
the squared matrix element. 

(2.3.30) 

; colour structure Now we have only two colour structures to consider. The squared terms give 

tr{tHHH"-) = ClN and the interference gives tr{tH^tn^) which, using the two identities in 

Equation 2.3.26, gives - C F / 2 . Therefore 

\M\''= NCl[\Mi+Mi\^MM2-Mz\^]-^[\Mi+Mz\\M2-Mi\''+\M2-Mz\\^^ 

(2.3.31) 

This colour structure is true even under rearrangement of the partons between the final and 

initial states. I t is also true under addition of any colour neutral particles (such as photons). 

Therefore, this simple mechanism for computing the colour structure of one process has 

become a powerful tool which can be used to describe the colour structure of many more 

processes such as qg —)• qg, 7* qqgg and qq —>• 5 5 7 . The only terms that change between 

these processes are the kinematic colourless subamplitudes. The primary function of this 

division into colour structure and kinematical terms is to allow the factorisation of the 
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colourless subamplitudes when one parton becomes unresolvable, such as is necessary for 

NLO calculations. 

We recall from our simple example that the colourless subampUtudes actually describe the 

kinematic part of a specific ordered gluon emission i.e. |A^ i + describes the kinematical 

factor related to the emission of gluon a before gluon b. To represent this we redefine the sub-

amplitude to be g'^S{Q; a, b; Q) where g is the coupling constant that we now make explicit. 

Similarly for the other subamplitude we write g'^S{Q;b,a;Q). This idea of grouping parts 

of diagrams into ordered gluon amplitudes is the basis behind colour decomposition. Firstly, 

after decompostion we find that the subamplitudes now display factorisation properties when 

a parton becomes unresolvable. Secondly, the singular terms from unresolved partons are 

found to be due only to soft gluons and colour connected collinear partons. Colour connected 

partons are those that are colour neighbours and at leading order in colour these are simply 

those partons next to each in the ordering e.g. for a qgaSbQ ordered final state, the colour 

connected neighbours of gluon a are the quark q and gluon b while for gluon b they are 

gluon a and the antiquark q. Note that the quark and gluon b are not colour connected in 

this ordering. By leading colour we refer to those contributions that have the largest colour 

factor. For example, in considering the qq -> gg case we had two colour factors. Rewriting 

the squared matrix element we see 

\M\' [|A4i + M,\' + \M2 - Mz\' - ^ \ M i + Mz + M2- Ms\' 

(2.3.32) 

Thus the squared colour ordered subamplitudes were both leading and sub-leading in colour 

whereas the interference terms were only sub-leading. However this leads to the cancellation 

of the gluon splitting diagram in the sub-leading colour term and the result is a QED-type, 

ordering independent term. The gluons have become colour detacted (photon-like) from 

each other and thus are no longer colour connected neighbours. To represent this we write 

the sub-leading colour term as 
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Mi + M2 = S{Q;d,~b:Q) 

= S(Q;a,b;Q)+S{Q:b,a;Q) (2.3.33) 

where the accents indicate that there is no colour ordering. We also note that for the sub-

leading colour terms, the only colour connection the gluons can make is with the quark 

line. Thus the only singular contributions from the sub-leading colour term are soft gluons 

and gluons collinear to the quark or antiquark. The size of contributions from collinear 

partons that are not colour connected is typically of the order of the invariant mass cut ymin 

whereas the colour connected contributions (after cancellation of the poles) give terms such 

as log(ymin)-

When more than two gluons are present in the process, we can have several different 

degrees of colour factor and related subamplitudes. Let us consider the process e+e^ -> 

qqgig2gz which for the phase space region of one unresolved parton is a NLO contribution 

to any 4 jet calculation. The full matrix element is given by 

M = g^ t''H''H'''S^{Q;l,2,3;Q)V^ (2.3.34) 
P(123) 

where is the well known lepton current. Six permutations of gluons are needed to include 

all the colour orderings. For the squared matrix element there exists a leading colour term in 

which the colour ordering of the subamplitude is maintained and all the partons are colour 

connected to their ordered neighbours written as \S^{Q; 1, 2, 3; Q)V''\^. Here it is interesting 

to note that the middle gluon only gives a singular contribution when it is collinear to one 

of the other gluons and not when it becomes collinear with the quark line. There is also a 

most sub leading colour term where none of the gluons are colour connected and all behave 

like colour neutral particles e.g. only giving a singular contribution to the calculation when 

they become collinear with the quark line. This is written as |<S (̂Q; 1,2,3; Q) which is 

given by 
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S{Q; i , 2, 3; Q)^ = \S,{Q; 1, 2, 3; Q)^ + S,iQ; 1, 3, 2; Q)V'^ + 5^(Q; 2,3,1; 

+ S,iQ; 2,1, 3; Q)V'' + S,iQ; 3, 2,1; Q)V^ + S,iQ: 3,1, 2; Q)V^ 

(2.3.35) 

Finally, there is another term which has a colour structure that lies between the other two. 

This is where two of the gluons are still colour connected and thus ordered, leaving one 

detacted. Here, the ordered gluons give a singular contribution when they are collinear to 

each other or the respective quark/antiquark (whichever is their colour connected neighbour) 

but not with the colour detacted gluon which only contributes as in the most sub leading 

term. This term is written as \S^{Q; 1,2,3;Q)K^P with the ordering permutated. This is 

given by 

S,{Q; 1,2,3; Q)V' = <5.(Q; 1, 2,3; Q)V' + S,{Q; 1,3,2; Q)V'^ + S,{Q; 3,1,2: Q)V>^ (2.3.36) 

Therefore the total squared matrix element is given by 

\M\' = 
2 ^ 

4 

iV^ + i 

\S,{Q; 1,2,3; Q)V^\' - v^ | 5 , (Q ; 1,2,3: Q)V M|2 

]V4 
5^(Q;i ,2 ,3;Q)y ' ' l^ (2.3.37) 

From these two examples we see the form that all QCD final states of the form qq + ng take 

at leading order in colour. We write 

(2.3.38) 

P(ia...n) 
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For a rigourous derivation of this formula the reader is refered to [34] which derives this 

equation from the gluon recursion relation. 

We also colour decompose diagrams which have two quark lines such as final states like 

qqQQ (where q and Q may or may not of the same flavour). The matrix element of the 

process e+e" —>• qqQQ is given by 

Sc^cAsc. i A.iQi-MV' + A,{Q,:Ql)V' + % {A,{QU Q,)V^ + A,{Q,:, Q2)V'^) 
N 

- '̂ c, cAsc, [~ {A,{QUQ2)V^ + A,{Qs, Q,)V^) + d,Q {A,{Qu Q,) V<^ - f A,{Q^., Q2)V'-

(2.3.39) 

The subamplitude A has two possible directions of colour flow, which we represent with 

the delta functions of the quark colour indices e.g. 5ci 04*^0302 indicates that quark 1 and 

antiquark 4 are colour connected. There also exists the supressed configuration where quark 

1 and antiquark 2 are colour connected. The arguments of the functions indicate which 

quark line the colour neutral Z/^* attacts to. With crossing symmetry we include all the 

other diagrams for both like and unlike pairs of quarks. 

Using the same rules as before we find the squared matrix element of the above four 

quark final state (produced by a colour neutral particle such as a virtual photon) is given by 

, ^ | 2 ^ (9^]U^^]\^%{Q,M2-.QimV'? 

+ ^ ( | r , ( Q i , Q^; Q i , Q,)V^? + \%{Qu Q2\Qz, Q2)V'\') 

+ (<3l ^ Q 3 , ^ Q ^ ) + SQQ{QI ^ Q 3 ) + SgQiQ'2 ^ WA) 

(2.3.40) 

where we define the T functions as 

%{i,rXl)V^? = \{A,{i..3)V^)^A,{Kl)V^\ (2.3.41) 

49 



This corresponds to \T{Qi, Q2; Qi, Q2)P being the squared subamphtude where quark 1 and 

antiquark 2 are attacted to the virtual photon (this attactment defines the initial quark line) 

and \T(Qi,Q2;Q3,Q4)\^ being the interference between quark 1 and antiquark 2 forming 

the initial quark line and quark 3 and antiquark 4 coupling to the virtual photon in the 

conjugate. See Figure 2.8. Again, for a detailed derivation of this formula the reader is 

referred to [33 

2.3.8 Matrix element and Subamplitude factorisation 

In this section we shall consider the singular behaviour of the squared matrix elements for the 

NLO calculation of the process e+e" -> n-|-2jets considering both extra unresolved partonic 

final states qq + {n + l)g and qqQQ + {n~ l)g. For the moment we shall only consider terms 

leading in colour as this will simplify the calculation. This can be done utilizing the Fierz 

identity we derived earlier. The calculation is easily extended to include sub-leading colour 

terms [33] and we will use results from this reference for the full NLO 4 jet calculation later. 

The factorisation of the matrix element when one of the final state partons is soft is very 

similar to that of QED and the eikonal factors seen there [37]. This eikonal factor multiplies 

the remaining hard process when an external photon becomes soft (see Figure 2.9). If we 

consider a single photon final state QED process in which the photon is soft (momentum 

K and polarisation vector e) coupled to a quark/antiquark fermion line (with momentum Q 

and P respectively), the matrix element factorises such that 

M{Q; K; P) ^ e, e{Q- K; P)M{Q:, P) (2.3.42) 

where 

e{Q-K-P) = c ^ [ ^ ^ - ^ (2.3.43) 

In QCD, as the gluons carry colour, the usual matrix element cannot be factorised in this 

manner for soft gluons. However, with the colour decomposition shown earlier, the soft 
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q,P2 Q,P4 

q,Pi Q,P3 

Q,P4 q>P2 

Q,P3 q.Pi 

q,P2 Q,P4 

Q,P3 q.Pi 

Q,P4 q>P2 

p i ' / ID4' 

p2' p3' 

Figure 2.8: The Feynman diagrams for the process 7* —^ qqQQ. The solid cir­
cle indicates the location of the Z/j* vertex. Below these are diagrams to indicate 
the colour structure of the squared matrix elements. The dotted line indicates the 
boundary between the matrix element and the conjugate. Thus we have at leading 
order in colour |7^(Qi, Q 2 ; Q i , Q2)V"^PJ7^(Qi, Q 2 ; <?3, <?4 )^^P and subleading we have 
mQi,Q2-,QuQ4)V''\M%{QuQ'2;Q3,Q'2)V''\' respectively 
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e(Q;P) . 

Figure 2.9: The eikonal factor multiplying the remaining hard process in the presence of 
a soft photon. This QED process is exactly analogous to the colour ordered QCD process 
present in all NLO calculations. 

factorisation of the colourless subamplitudes is now possible [35]. This is due to the ordering 

of the partons which form well-defined lines of colour which the gluon can couple to. Thus 

we can retrieve an eikonal factor from the soft gluon factorisation of the colour ordered 

subamplitudes. It is precisely these eikonal factors that contain the divergent terms that 

will cancel the 1/e^ poles coming from the virtual 1-loop correction (see Appendix B). 

The eikonal factor is only dependent on the momentum of its colour ordered neighbours, 

regardless of their identity. Examining the form of the eikonal factor for our e^e~ qq + 

{n + l)g process letting gluon s be our soft unresolved parton, we find, 

S^iQi;l,...,n,s-MV>' ^ ge{n-sMS^{Q,;l,...,n;Q;)V^ 

S^iQu 1, m, 5, m + 1,.., n; Q^)!/'^ ^ ge{m- s; m + l )5^(Qi ; 1 , n : Q^)K'^ 

S,{Q,;s,l,..,n;Q-2)V'^ g e{Q,; s;l)S,{Q^,l, ...,n;Q-2)V>^ (2.3.44) 

where describes the lepton current and is well defined. This, when extended to squared 

matrix elements, becomes 

2 [ N 
Y: [SF{QU 1, - , n; Q2)\S,{Qu 1, n: Qs)^"!' 

P{l,-,n) 
(2.3.45) 

where is the full squared matrix element. We find 
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SpiQu 1 , n : Q2) = ] [/QAS] + fi2{s) + ... + fnQ-M) (2.3.46) 

which is related to the eikonal factors such that 

fabis) = |e(a;s:6)p 
45ab 

Sas^sb 
(2.3.47) 

Therefore the ful l squared matrix element has been decomposed into a sum of squared colour 

ordered subamplitudes multiplied by similarly ordered divergent eikonal factors which are 

dependent on the permutation of the gluons. 

For the process e+e~ -> qqQQ + {n- l)g with one soft gluon at leading order in colour 

we find a similar decomposition which follows the same pattern as for the n + 1 gluon final 

state. 

9^Y(^f^] Y : Y\^F{Qul,-...r,Q4\Qz,i + l,---,n-2:Q2) 
P(l,,..,n-2) i=0 

X 

+ 

( 1 7 ^ ( ^ 1 , Q^; Qi , Q^; 1, 2 ) ^ 1 ' + | 7 ; ( Q i , 02:^3, Q4; 1 , - 2)1/1^) 

{Ql O Qs, Q2 ^ QA) + ^ , Q ( Q 2 ^ QA) + ScQiQl ^ Qz) (2.3.48) 

where Tp,V^ ^ represents the ful l squared matrix element and T^{Qi,Q2] Qz-.Qi'-A-, -

2)V^\^ corresponds to the colourless subamplitudes we saw in Equation 2.3.41 except here 

there are i gluons attacted to the initial quark line and the rest are attacted to the other 

quark line. This is summed over to include all possible diagrams. The soft factor is given by 

S F ( Q I ; 1 , i ; (34|<93;« + 1 , - 2; <32) 

'g'N' 
'fQrl{s) + /l2(s) + - + + / Q 3 H I ( S ) + ... + /„_2Ql(5) 

(2.3.49) 
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Therefore, as we found for the n + 1 gluon final state, the four quark soft gluon limit becomes 

the sum of the tree level process multiplied by a divergent factor that depends on the ordered 

emission of gluons along the quark lines. 

Now we have shown that using colour decomposition it is possible to factorise soft matrix 

elements, we consider final state collinear partons. As we saw earlier, these divergent terms 

come from the integral over the matrix element when one of the invariant masses between 

two colour-connected neighbours tends to zero. If both masses tend to zero the parton is 

said to be soft, but if one is greater than the invariant cut, it is the angle between the other 

two that tends to zero, thus making the partons unresolvable. Let the sum of the partons 

momenta form the four momenta of a new parton. Thus, 

Pa + Pb = Pc- (2.3.50) 

There are several methods of dividing the momenta of the new parton between the old ones. 

For the moment we shall consider one based on the Altarelli-Parisi splitting functions [38] 

which simply split the momenta thus. 

Pa = zP,, P, = { l - z ) P , (2.3.51) 

This method however does have a problem. If we are working with matrix elements that 

assume all final state partons are massless, this implies that {Pa + Pbf = Pc = 0 for all areas 

where we are applying this division of momentum. But {Pa + A ) ^ = 2Pa.Pb which is only 

equal to zero on the divergent edge of phase space. We are applying this combination in 

regions of phase space where Sab < Smin and so throughout this region (except on the divergent 

edge) we are using contradictory ideas of the mass of Pc- Other methods of dividing the 

momentum have been considered and will be studied in greater depth in following chapters. 

But for the moment we will use this technique to show how the matrix elements factorise 

when two partons become collinear. 

Unlike the soft gluon case, the entire squared matrix element does factorise in the case 

of a collinear pair of partons. The divergent factor relating the sqaured matrix element of 
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n + 1 partons to the squared matrix element of n partons does depend on the identity of the 

partons becoming collinear and so. 

\M{...,a,b,...)f' = cf^''\Mi...,c, (2.3.52) 

where 

4'^' = 
"99 

'g'N' (i _ 
\ N^J Sqg 

(^) (2.3.53) 

and where the Pab^c are the Altarelli-Parisi splitting functions given by 

Pgg^siz) = 2 

Pqg-^g{z) — 2 

P- — 2 

A + ^^ + ( l - ^ ) ^ ^ 
I ^(1 - Z) , 

l-Z y 

'z'' + { l - z f - e 
l - e 

(2.3.54) 

These splitting functions are symmetric in z and {1 — z) such that z -H- [1 — z) implies 

Pqg^g ^ Pgq-yq and thcy are also symmetric under charge conjugation. However, depending 

on whether the final state combined parton is treated in 4 or d dimensions, a different scheme 

can be used. The splitting functions in Equation 2.3.54 are defined in the conventional 

dimensional regularisation scheme where the combined parton is calculated in d dimensions. 

The ' t Hooft-Veltman[39] scheme uses 4 dimensions instead and diflfers in terms proportional 

to e which will then give different finite terms between schemes. 

It should be noted that singular terms only come from collinear colour-connected partons. 

If the partons are not joined by a colour line, then the result is a term proportional to the 

55 



invariant cut. The singular term f rom two gluons becoming coUinear and forming another 

gluon for the process e+e" qq + {n + l)g is given by 

S^{Qi; 1, . . . ,m - l,gi,g2,m + l,...,n-Q2)V 

'9'N\ ^PP-. W 1 , m - 1, m + 1 , n ; Q,)V>^f (2.3.55) 
2 / ^9X92 

and the factorisation when a gluon becomes coUinear wi th either a quark or an antiquark is 

| 5 „ ( „ . i , . . . . „ ; © v ' ' P ^ ( ^ ) ( i - ^ ) S ^ | s . W . ; i 

| 5 „ W , ; i , . . . n , s ; 5 ) V ' ' M f ' ^ ) ( i - ^ ) % ^ | 5 „ W . ; i . . . , « ; 0 ; ) v " | ^ 
99 

(2.3.56) 

The only t ime a quark and antiquark can become collinear in the final state is when they 

have been created f rom the decay of gluon which was emitted f rom another quark line. Thus 

the four quark contribution also contributes in a unique way to the cancellation of the 1-loop 

correction. The singular terms f rom this process when and are collinear are 

V ^ / *Q3<34 

\%{QuQl;Q^.Q2)V''\' (2.3.57) 

where we have a factor nj for the number of quarks flavours that could be produced. There­

fore the four quark squared matr ix element factorises to a divergent term multiplied by the 

two quark mat r ix element squared, but w i th one less power of N. So the quark/antiquark 

collinear configuration of the four quark squared matrix element factorises to a sub-leading 

colour contribution of the two quark final state. Thus for the process e+e" -> qqQQ-^{n—l)g 

we have 
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2 . f N ^ - l \ ^ 
iV P{\,...,n) 

g^nA Pqg{z) 

2 ' ^Q3Q4 

S,iQul,...,n;Q2)V''\' + 0 
N 

(2.3.58) 

giving a final form for the f u l l squared matrix element of the two quark final state where two 

partons become coUinear 

M|2l 

N P{l,...,n) 
(2.3.59) 

where 

C F ( Q i ; l , . . . , n ; Q 2 ) 
Sr. 

Pgg^qiz) , nfnPqq^giz) 

"9192 

9Q^Q 

^9nq N Sqg 

(2.3.60) 

We have a similar structure to that of the soft parton where ordered divergent factors are 

mult ipl ied to the colourless subamplitudes and the result is summed over the permutation 

of the gluons to include all graphs. The four quark structure is also of the same form as its 

soft counterpart. Its factorisation for the process e+e" -> qqQQ + (n - l ) ^ is given by 

n-2 r 

P{l,...,n-2) i=0 
E E c ^ ( Q i ; i = - > ^ ; Q 4 | Q 3 ; ^ + i , - , n - 2 : Q 2 ) 

X | 7 ; ( Q i , g ; ; Q i , Q ; ; l , . . . , n - 2 ) l ^ ' ^ r + | 7 ; ( g i , g 2 ; Q 3 , Q 4 ; l , . . . , n - 2 ) \ / 1 ^ 

+ {Qx^Q^,Q2^Ql) + 5qQ{Qi^Qz) + ^9Q{Q'2^Ql) (2-3-61) 

where we define the cp function to be 

CF{QI] 1, • - , i] QA\QZ\i + 1 , n - 2; Q 2 ) = 
^qi9i ^9192 ^gn-iQi 

(2.3.62) 

Recall that these terms are only those at leading order in colour. 
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2.4 P h a s e space 

Now we have factorised the squared matrix elements in their singular limits, we wish to 

repeat the procedure wi th phase space. W i t h a factorised phase space, we can write the 

divergent n + 1 partonic physical quantity, an+i, as the finite (T„ multiplied by a divergent 

factor such that for the soft l imi t 

l - £ 

^ danj dSaudstuF{s^t',s-^-') (2.4.63) 

where F{s^^~^, s:^^''^) is the divergent term f rom the matrix element factorisation and the 

integral is due to the extra phase space necessary to integrate over. 

There are several techniques for performing this factorisation. We shall briefly review the 

technique employed by [36] and see that this prescription needs to be improved. Another 

technique we shall consider in the next chapter is the Seymour and Catani dipole formalism. 

Also i n the next chapter we shall present a new procedure for the phase space factorisation 

of N L O QCD calculations which tackles the problems of massless partons and phase space 

approximations in a wholly symmetric and universal manner. 

One way of performing this factorisation is to approximate the phase space factor using 

the same l imi ts as we did for the matr ix elements e.g. neglecting all terms in the phase space 

factor not singular when the soft/coUinear l imits are taken. This was the technique used 

by [36]. For example, consider 3 final state partons wi th momentum Pj and energy Ei all 

derived f rom the decay of a colourless neutral boson wi th centre of mass energy equal to Q. 

Then the phase space factor derived f rom the final state kinematics of the system is given 

by 
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dP'{Q;Pi,P2,Ps) (27r) V(g - Pi - P2 - P3) 

7J" 2 , _ o > 2 - d r it^f^J^d-l 
= (27r)^ ^ ' ^ 2 r ( ^ ) ^'^^^ [^12^13^23]"^^ '^^i~^dsi2ds^ids2i x 

5(512 + 513 + 523 - Q ' ) (2.4.64) 

where we have changed the measures to be over final state invariant masses and a solid angle 

and have averaged over the azimuthal angle. 

Let us assume that parton 3 becomes soft. Then S13 < Smin and S23 < Smin- Therefore 

we assume all terms wi th S13 and S23 in the numerator are negligible and ignore them. This 

gives 

d^PiQ; P i , P 2 , P 3 ) (2^)3-2d ^ ^ g " dSizdS2Z [Si^S2z\Siskin - Si3)e{s^in ' S23) X 

5l2 ^ ^ C ^ 5 l 2 ( ^ ( S l 2 - Q ) 

d-2 ^ ^ 

^ (27 r )^~ ' ^ -—^Z2T^lT'^5 l3 (^523[5 l3S23]"^©(5min - S l 3 ) © ( 5 m i n " §23) 
2 i I 2 

X dP'{Q;Pi,P2) (2.4.65) 

Therefore we see that in the soft l imi t , we can perform the desired factorisation of the 3 

parton phase space factor to the 2 parton phase space multiplied by a soft term which wi l l 

regulate the divergent term f rom the matrix element factorisation. However, we have used 

the assumption that S13 = S23 = 0 for the whole region S13 < Smm, ^23 < Smin which is clearly 

false. 

For the collinear regime we use the Altarelli-Parisi spli t t ing functions. We again take the 

3 parton phase space factor (after azimuthal averaging) and apply the split t ing of the two 

collinear momenta. Let us assume that partons 2 and 3 are collinear and that we assign a 

fraction z of the total momenta to parton 2 such that 

59 



Sl2 = ZSia, Si3 = (1 - Z)sia- (2.4.66) 

Apply ing these transformations to our phase space factor we find 

d''PS{Q;P,,P2,Ps) ^ {27T)'-"'-^-^ds2^dz[s23z{l-z)]'^Q{{s^,n-S23)x 

^ (2?^)^"'^ d523C?^[g23^(l - 2 ) ] ^ e ( ( S m i n - S23) 

X d'P{Q-P,,Pa) (2.4.67) 

Again, we find the desired factorisation of the 3 parton phase space into the 2 parton phase 

space factor mult ipl ied by the collinear term. Here we make the same mistake as before by 

assuming that the factorisation is exact throughout the collinear region whereas i t is only 

str ict ly true at the edges of the 3 parton phase space. 

Any mult ipar ton phase space can be approximated in the soft and collinear l imits using 

this 3 parton procedure. By dividing out the unresolved parton wi th its colour connected 

neighbours to fo rm a separate 3 parton subspace, we can make these approximations and 

then the remaining 2 parton subspace is integrated back into the whole phase space factor. 

This technique is independent of the partons used. 

This method of phase space factorisation is problematic because the assumption that 

terms can be neglected throughout a region in which they are not necessarily zero is false 

and as the number of particles increases these terms begin to contribute. Also, the mapping 

of momenta f rom n -h 1 partons to n partons is inconsistent w i th the massless nature of the 

matr ix elements. Finally, the mapping of momenta f rom one set of partons to another is 

not symmetrical and may lead to problems between regions where the momenta are mapped 

differently. The technique we present in the next chapter manages all these problems and 

produces a factorisation technique that is free f rom these errors. 
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2.5 M o t i v a t i o n 

I n Section 2.2 we saw how experimental observables such as jets and theoretical construc­

tions such as partons are related both at and beyond leading order. We also compared the 

different techniques employed in studying the final state of any interaction. But we have not 

yet addressed the question of why i t is so important to consider processes beyond leading 

order. I n this section we shall consider the motivation and background leading to the main 

calculation of this thesis, namely the phenomenological calculation of the process e"*"e~ 4 

jets at next to leading order (NLO) . 

I t is important to consider the four jet process at NLO both f rom a physical and math­

ematical perspective. We note that four jet production is sensitive both to the Casimir 

structure of QCD (thus making i t an excellent test bed for QCD) and also the possible 

presence of light gluinos which are present in many supersymmetry models (see for example 

27]). These hypothetical particles would have an eff'ect similar to that of increasing the 

number of active quarks f rom nf to Uf + 3. Thus the process e+e" -> 4 jets is a superb 

process to test well-established theories such as QCD and also a good source of possible new 

physics. Other physical motivations include 

1. Another method for deriving the strong coupling constant either directly f rom the 

event shape distributions or the energy dependence of their average value[29 . 

2. Better detailed predictions for distributions of event shape variables akin to Thrust. 

This is due to the uncertainty in the renormalisation scale and at LO the only motivated 

choice of scale we can make is the physical scale argument. A t NLO other scale choices 

can be calculated. 

3. A test for non-perturbative effects such as power corrections which can be hidden by 

the uncertainty in higher order perturbation calculations. 

4. By calculating higher order terms the theoretical uncertainty can be reduced by reduc­

ing the renormalisation scale dependence. Thus higher order theoretical calculations 

are necessary to maintain parity wi th experimental errors. 

5. Only at N L O can a discernible difference between jet-finding algorithms be seen. 
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Higher order calculations are necessary to model the hadronic jets seen in detectors 

where there are typically 20 or more hadrons. 

6. Direct production of 4 jets is a large source of background at the new LEP2 energies and 

as such needs to be well known so that i t can be removed f rom new physics searches. 

The N L O e'^e~ 4 jets has also proven to be very mathematically insightful. For a N L O 

calculation i t is necessary to perform 1-loop integrals and those integrals were for many 

years a bottle neck to the N L O calculation. Many improved techniques and methods were 

required to solve them. Also, when we consider integrating the matr ix elements over the 

available phase space i t was necessary to develop techniques that could handle two separately 

divergent answers, but when combined give a finite answer. We shall consider these problems 

in more detail when we look in-depth at the N L O e+e" -> 4 jets calculation in the following 

chapters. For present however, we shall concentrate on the tests of QGD that the calculation 

provides and the background theory necessary for these calculations. 

A reliable test of the SU(3) nature of QCD is to measure the colour factors present in any 

Q C D calculation. This test can be made at the 2 and 3 jet level[26], but the non-Abelian 

nature of QCD only becomes present in mult i jet final states greater or equal to 4 as one of 

the colour factors, CA, is only present in the calculation for the triple gluon vertex. Thus 4 

je t final states are the first place we can study this colour structure at leading order. Having 

calculated the Casimirs for SU(3) we can compare these values to what is actually seen in 

experiment. For any suitable 4 jet observable, the tree level calculation can be writ ten as 

^rfcT^jet = ( ^ ) ' ( A ( 0 ) + ^ 5 ( 0 ) + ^ C ( O ) ) dO (2.5.68) 

where ao is the 2 jet cross-section and A, B and G are the coefficients calculated f rom the 

three relevant processes, namely qqgg, qqqq and qqQQ. O is any 4 jet like observable. Thus 

by fitting the theoretical calculation to the data, one can extract the colour ratios, C a / C f 

and TR/CF- Results f rom [25] give a value 

^ = 2.11 ± 0 . 3 2 , ^ = 0 . 4 0 ± 0 . 1 7 (2.5.69) 
CF CF 
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compared w i t h the SU(3) values of CA/CF = 2.25 and TR/CF = 0.375. Figure 2.10 shows 

how the experimental values compare wi th those colour factors f rom different types of gauge 

group. As we can see, the current experimental values do not rule out other gauge groups 

such as SU(4) or Sp(4), but by performing the same fit at N L O the errors can be drastically 

reduced [28 . 

2.6 S u m m a r y 

I n this chapter we have attempted a review of the techniques and ideas used when considering 

higher order calculations. As partons are not directly seen in experiment i t is essential to have 

a prescription that catagorises the event such that theoretical calculations can be directly 

compared w i t h data. The development of jet finding algorithms has gone a long way to 

reconciling theoretical and experimental perspectives and is now a necessary tool in all QCD 

calculations. Here we have outlined some of the more common variants and later we shall 

use them in calculating the N L O term for the cross-section and other 4 jet observables. We 

shall see how different algorithms, although consistent at leading order, now differ and the 

magnitude of these deviations. 

We have also seen the different techniques used to regularise the infra red pole structure 

of higher order diagrams such as the vertex corrections necessary for the NLO calculation of 

the cross section for the process e^e~ —>• 2 jets. Using dimensional regularisation solves the 

problem of cancelling divergences analytically at this level without introducing Lorentz or 

gauge invariance violation. However, for process of more complexity i t becomes impossible 

to deal w i t h the integration by hand and we are forced to consider numerical methods. These 

prescriptions w i l l constitute the main part of the next chapter. 

Colour algebra enables us to visualise QCD calculations as we would QED ones by in­

troducing colour factors akin to the simpler QED electric charge factor. Thus we are able to 

wri te complicated matr ix elements as colourless subamplitudes multiplied by colour terms. 

This leads on to the idea of colour decompostion where the various Feynman diagrams can 

be split into colour ordered subamplitudes such as in the qq gg case where the three 

diagrams can be shown to divide into subamplitudes where the gluons are ordered and one 

where the gluons are colour detacted. This then simplifies NLO calculations for unresolved 
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Figure 2.10: The colour factors as measured by the OPAL collaboration. The circles around 
the central star show confidence limits,the inner being the 68% level and the outer one the 
95% level. This diagram is taken f rom reference [25 . 
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partons where the only singular collinear contributions are those between colour connected 

neighbours. For those ordered amplitudes this just means their neighbour in the ordering 

whereas for the colour detacted gluons, their only singular terms come f rom being collinear 

to the quark or antiquark. The final NLO technique we studied was that of the factorisation 

properties of the subamplitudes and phase space factors under unresolved partons. This 

property is only true for the subamplitudes in the soft partons l imi t and is not seen for the 

f u l l matr ix element. However, in the collinear l imi t both the n parton subamphtude and fu l l 

mat r ix element factorises into a divergent term proportional to the Altarelli-Parisi spli t t ing 

functions ( i f we divide the momenta of the newly formed parton between the collinear pair 

linearly) and the hard n — 1 subamplitude or f u l l matr ix element. 

Final ly we looked at the motivation for considering NLO calculations. We see that not 

only is i t a good test for Standard Model physics and beyond, but that the calculations have 

produced new techniques in solving loop integrals and numerically calculating the finite 

sum of two divergent contributions. N L O calculations are also useful for calculating 

comparing jet-f inding algorithms and reducing scale dependence in the final answer. 
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Chapter 3 

N L O Numerical Techniques 

3.1 Introduction 

In the previous chapters we outlined some of the standard techniques used in QCD calcula­

tions both for leading order and higher order corrections. However there is a very important 

issue that has not yet been fu l ly addressed. Performing the integrations required for these 

calculations is in general beyond analytic methods. For example the NLO term for the cross 

section for the process e+e" —>• 4jets involves an eleven dimensional integral over all the 

5 particle phase space. Therefore we are required to utilise numerical methods. But these 

techniques remain unstable unt i l we have analytically removed the divergences present in 

the v i r tua l and unresolved contributions. Section 3.2 wi l l review some of the different pre­

scriptions used to remove the pole structure analytically before numerical integration and 

Section 3.3 w i l l detail one, namely that of hybrid subtraction which is used for the calcula­

t ion of the process e^e" —)• 4jets. This method is general to any QCD process and is well 

behaved throughout phase space. We present and calculate new universal subtraction terms 

which utilise a symmetric momentum transformation which preserves the massless nature 

of the partons involved. These subtraction terms have been implemented into a new Monte 

Carlo routine for the N L O calculation of the process e^e~ —> 4 jets. 
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3.2 Subtraction, Slicing and Hybrid subtraction 

A t present there are three main methods used for removing the pole structure of NLO 

contributions. These are best described by considering a simple toy example of a N L O 

calculation combining both the unresolved parton contribution and the vir tual loop term 

41]. Consider the integral equation for the calculation of any jet observable, X, such as the 

n jet cross section. 

X^\vm\\ - ^ x ' d x ~ - M { S i ) \ (3.2.1) 

where the first term is the unresolved parton contribution and the second term is the vir tual 

loop. Here, the integral over the extra phase space (due to the unresolved parton) is rep­

resented by an integral over x which can be thought of as any physical quantity that tends 

to zero in the unresolved l imi t such as the angle between two partons or the energy of a 

gluon. The funct ion ^^^^ represents the n + l parton matrix element which is singular as 

X 0. I n this l i m i t M.{x) -> A^(0) where 7W(0) is the n parton tree level matrix element. 

The factor x^dx is due to the extra phase space of the unresolved parton. In performing 

this integral i t is assumed that 0^ = 0. The second term represents the vir tual contribution 

which is proportional to tree level w i th the explicit Ije pole coming f rom the the evalution 

of the loop integral itself. As a; —> 0 we see that the unresolved parton term is regularised 

by the phase space factor although the integral is st i l l divergent for e -> 0. This divergence 

is cancelled by the explicit e pole in the second term. Therefore the total integral is finite 

and the l i m i t e ^ 0 can be taken. Using this example we can outline the current methods 

used to deal w i t h this cancellation. 

3.2.1 Slicing[42 

Slicing or phase space slicing solves the problem of analytically handling the pole structure 

of complicated integrals by using soft and collinear approximations to the f u l l matr ix ele­

ment w i th in well defined areas of the available phase space. The phase space is divided into 

two areas ^ < x < h and h < x < \ and i t is wi th in the first of these that the approxi-
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mation M{x) ^ M{0) applies assuming that the cut-off 6 is small. (Errors made by the 

approximation are due to neglected terms of the order 6.) This then gives 

l i n j ( / ^ x « A . ( x ) + A 1 ( 0 ) ^ ' ^ . . - l M ( 0 ) ) 

l i m / —x'M{x) + M{0) M{0) 

^ / -~M{x)+M(<S)log{5) + 0{e) (3.2.2) 

The pole structure of the observable has been removed by expanding 5^ = 6^'°^^'') = 14-

The benefits of slicing are that the approximations used are the same as those derived in 

the previous chapter and are therefore universal to all QCD processes. However, this method 

does introduce a theoretical parameter into the calculation of a physical quantity. Obviously 

J cannot depend on 5 and therefore the 5 dependence of the lower l imi t of the first term 

(which is now finite and can be calculated numerically) should cancel wi th the second term 

leaving a finite, 5 independent answer. As we stated above the approximations are valid only 

for small values of 5. But i f we choose a very small value (where the approximation is almost 

exact) we introduce the cancellation of large logarithms which leads to numerical instability 

(see Figure 9.3 of [43]). Therefore the results produced using this technique vary wi th 5 

where at small 5 we have a correct answer but w i th large errors, but at large 6 we have an 

erroneous result w i t h small errors. A good example of this is Figure 1 of [36] where the factor 

for the process e+e~ -> 2 jets is calculated making use of the slicing prescription. For 

this calculation the integrals are actually simple enough to do analytically thus the value is 

known exactly. For (5 > 0.1 the numerical answer over estimates by about 2% but wi th error 

bars too small to show on the plot. For 0.01 < <̂  < 0.1 the slicing method gives the correct 

value w i t h error bars giving an uncertainty of about 0.5%. However, for 8 < 0.01 the error 

bars have become of the order of 1% wi th the value lying on the correct answer. Therefore 

the choice of 5 is cri t ical for accurate, precise measurements. 
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3.2.2 Subtraction[44 

Another method developed originally for the evaluation of 0{a^) observables in electron-

positron annihilation experiments by Ellis, Ross and Terrano is the subtraction prescription. 

The basic idea behind this technique is to add and subtract a divergent subtraction term. 

This term is an integral over n + l partonic phase space wi th the same pointlike structure 

as the extra unresolved contribution and can therefore be included in the extra integration, 

leaving a finite n + l phase space integral. But i t is also analytically integrable over the 

single parton subspaces leading to the explicit soft/collinear e poles. The result can then 

be combined w i t h the vi r tual contribution leaving a finite n partonic phase space integral. 

Subtracting this term f rom the first term in Equation 3.2.1 and adding i t to the second gives 

dr dr 1 \ 
^x'{M{x) - M{0)) + M{0) ~x' - -M{Q) 

= / —{M{x)-MiO)) (3.2.3) 
Jo X 

where the v i r tua l pole is cancelled by evaluating the second term and letting e 0 after 

setting X = 0 so that 0^ = 0. The combined first term can now be performed numerically 

in the usual 4 dimensions (so that the x^ term becomes equal to 1). The difficulty of this 

technique is the analytic evaluation of the fu l l ll ^x^ term for real processes. Originally, i t 

was necessary to recalculate this quantity for every process. However, a variant of the sub­

tract ion method using a new factorisation formula called the dipole formula has generalised 

these subtraction terms so that they are universal [45]. This uses a dipole structure where 

the factorisation depends solely on the momentum and colour of three partons where two of 

these partons are set to become soft and/or collinear. These three partons are then mapped 

into two partons in a momentum conserving manner. However, this mapping is not symmet­

ric over the whole of phase space and is dependent on which half of the 3 parton subspace 

the mapping is being done in . Unlike the slicing method, the subtraction prescription makes 

no assumptions about the phase space or the matrix elements and i t does not introduce any 

new theoretical parameter into the calculation.-^ 

^In practice it is impossible to integrate numerically from 0 and so a small cut-ofF is applied to the lower 
bound of the final integral 
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3.2.3 Hybrid subtraction 

Finally, we consider the numerical method known as hybrid subtraction. This technique uses 

elements of both prescriptions described above to preserve the universality of the procedure 

whilst removing the dependence of the answer (and its precision) on d. 

This is achieved by introducing a second cut-off or scale A . Phase space is again divided 

up into regions where 

• between 0 < x < 5, the slicing procedure (using universal approximations to the matrix 

element and phase space) is applied. 

• between 6 < x < A, an analytically integrable set of universal subtraction terms, E{x), 

are added and subtracted f rom the two terms in an identical fashion to the subtraction 

method. 

• between A < a: < 1 the integrals are numerically calculated 

This then gives 

£-^o\J5 X ^ ^ Jo X ^ ' e Js X Js X J 

^ / -Mix)+M{0)log{5)+ E { x ) - - E { x ) -
yj5 X J6 X JS X J 

^ i —{M{x)-E{x)e{A-x))+ E{x)— + M{0)\og{d)] (3.2.4) 
. J s x Js X J 

There are a number of requirements that E{x) must f u l f i l l for i t to be consider a valid 

subtraction term. Firstly, we require the E{x)~ term to integrate analytically without 

any approximations to the phase space, giving a term —M(0) \og{5) f rom the lower bound, 

cancelling all S dependence arising f rom the slicing procedure. Therefore S can be driven as 

low as is necessary (and practical) for the slicing approximations to hold. Secondly, E{x) 

must approximate smoothly to M{x) as a; —)• 0, making certain that no 5 dependence comes 

f rom the lower bound of the first term and that no discontinuities exist at phase space 

boundaries. This makes the integral safe to numerically integrate. Ideally, E(x) should 
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be smooth and close to M{x) over the entire phase space region x < A. As we add and 

subtract the same term any A dependence vanishes and we allow this cut-off to be big so as 

to reduce errors f rom cancelling logarithms. This is the method that we shall use for all the 

e+e" —)• 4 jets calculations in this thesis. In the next section we shall outline the derivation 

of the universal subtraction terms that can be used in hybrid subtraction and how they are 

employed in calculations 

3.3 Antenna factorisation 

As we have already seen the factorisation of an n + 1 parton matrix element in the singular 

l i m i t of an unresolved parton is solely dependent on the momentum and identity of the 

colour connected neighbours to the unresolved parton, u. In these l imits the matrix element 

factorises into a divergent term dependent on the invariants of the unresolved parton wi th 

its colour connected neighbours and the hard n parton tree level matrix element wi th the 

unresolved parton removed. Therefore we can divide these three partons f rom the rest of 

the n + l parton matr ix element and treat this antenna separately. From the singular 

behaviour of this antenna we can predict the singular behaviour of the entire matrix element 

w i t h respect to that particular unresolved parton. And then by adding together all possible 

antenna, we can calculate any singular behaviour the n + l parton matrix element might 

portray. 

Th ink of the antenna as three partons a, b and u where one of these partons, u w i l l be 

unresolved. I n the completely unresolved l imi t we are left wi th two hard partons, A and 

B. Alternatively we can think the reverse process of two hard partons A and B emit t ing a 

t h i r d unresolved parton, u. See Figure 3.1. The singular l imits of the antenna function now 

depends solely on terms such as — , — and —-— and the squared matr ix elements factorise 

as 

\M{...,a,u,b,...)\' ^ Aaub\M{...,A,B,...)\^ (3.3.5) 

where Aaub is the antenna function and has the correct behaviour in each of the unresolved 

l imits . W i t h only three partons in the antenna we see that there is only a small number of 
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potential antennae e.g ggg, qgg and qgq. I f we calculate the singular limits for each of these 

potential antennae we can use them in an universal manner that would describe the singular 

l imits of any QCD process w i t h an unresolved parton. We postpone the detail of calculating 

the antenna functions unt i l we have considered the division of the phase space under this 

antenna factorisation. 

3.3.1 Momentum mapping 

In collapsing the hard partons down into three separate partons, the momenta wi l l obviously 

change and we need to use a momentum mapping of three partons to two that w i l l respect 

the masslessness nature of the partons before and after the mapping. Also, this mapping 

should be smooth across the phase space of the antenna. We would like to factorise the 

n + 1 parton phase space into an n parton phase space and an antenna phase space term. 

We can write the f u l l phase space factor as the product of the 3 parton antenna phase space 

attached to the n — 2 parton phase space integrating over the total invariant mass of the 

antenna, Saub-

dPSiQ';Pr, ...,Pn) = dPS{Q';Pu ...,Paub, ...Pn)^dPS{saub;Pa..Pu..Pb) (3.3.6) 

Here Paub = Pa + Pu + Pb and Saub = plub- To get Equation 3.3.6 in the desired form we 

mul t ip ly the right hand side of the equation by 

dPS{sAB;PA,PB) 3̂ 3 

J dPS{SAB;PA,PB) 

where particles A and B have momenta PA and PB such that, Paub — PAB = PA + PB, 

= p | = 0 and Saub = SAB- In other words. 

dPS{Q';pi,...,Pn) = dPS{Q';pu...,PAB,...,Pn)^dPS{sAB;PA,PB) X dPS^'"^ 

= dPS{Q';pu...,PA,PB,...,Pn) X dPS^^^. (3.3.8) 
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Figure 3.1: The singular l im i t of a n + 1 parton matrix element (i) can be calculated by 
dividing i t into a 3 parton antenna attached to the n — 2 hard partons. By dividing out 
the three body antenna that contains the soft/collinear partons (ii) the antenna's singular 
l imi ts can be found once and for all . These l imits w i l l be the same as for the entire n + 1 
parton matr ix element when the parton in the antenna becomes unresolved as the l imits 
only depend on the invariants of the parton wi th its coloue connected neighbours and not on 
any of the other n - 2 partons. Therefore the 3 parton antenna can be collapsed down to a 
2 parton antenna mult ipl ied by the divergent singular terms using a symmetric momentum 
mapping that preserves the massless condition. The two body antenna (i i i ) can then be 
reconstructed w i t h the rest of the matrix element to give a n parton matrix element in the 
singluar l i m i t of a specific unresolved parton. By summing over all possible antenna the 
singualr l imi ts that can ever exist are then calculated. 
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As desired, we have the phase space for an final state containing n lightlike particles mul t i ­

plied by rfPS'*''"^. Working in four-dimensions and after integration over the Euler angles, 

dPS{s 
aub; Pa) Pu j Pb) 

J dPS{sAB;PA,PB) 
- Xab), 

167r2 
(3.3.9) 

where Xij = Sij/saub- For this to work, a mapping must exist that determines PA and PB for 

a given set of momenta Pa, Pb and p„. Many choices are possible [45, 46] and we choose the 

symmetric mapping of [46], 

PA 

PB 

1 + P + 

1 - p -

Subji + P - "^fl) 

Sab + 

g„b(l + p - 2 r i ) 

Sab + 

Pa + npu + 2 

Pa + i l - ri)pu + 

1-P + 

1 

S a « ( l - p - 2 r i ) 
Pb: 

1 + P 

Sab + Sub 

Sau{l - P - 2r-i) 

âb "I" Sub 
Pb: 

(3.3.10) 

where. 

r i = 
Sub 

+ Sub 

(3.3.11) 

and. 

' S ^ j + [Sau + Sub)Sab + ^ri{l-ri)s 

^ab^aub 

(3.3.12) 

Note that this transformation approaches the singular l imits smoothly. For example, as 

Sau -> 0, then r i -> 1, p 1 and PA^Pa+ Pu, PB ^ Pb- Also note that this mapping pro­

duces massless partons at all points in phase space and not just along the singular boundary 

where Pi.pj = 0. 
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3.3.2 The universal subtraction terms 

Having factorised the phase space, we now wish to find the analogues of the subtraction 

functions E{x) discussed in Section 3.2. These functions should ideally be valid over the 

whole of the antenna phase space dPS'™^ and, in the soft and coUinear regions must match 

onto the singular l imits of the f u l l n + 1 matrix elements. In other words, for a given {n + 1) 

particle amplitude, in the l imi t where particle u is unresolved, 

\S,{..., a, u, b, ...)V^\' ^ Aaub\S,{..., A, B, ...)V''\\ (3.3.13) 

where we have replaced the antenna comprising a,u,b by the hard partons A and B to 

obtain an n particle amplitude. The antenna function Aaub depends on the momenta of the 

radiated particles a, b and u, but the n particle amplitude \Sf^{..., A, B, . . . ) y p does not. 

The leading colour contribution to an observable cross section f rom an (n + 1) particle 

final state w i t h a particular colour ordering is proportional to. 

\S,i...,a,u,b,...)V'^\'j^nu^dPS{Q';...,p,,p^,Pt,...)., (3.3.14) 
V ^ / 

where the observable function J(n+i) represents the cuts applied to the (n + 1 ) particle phase 

space to define the observable. Using the factorisation of the matrix elements defined in 

Equation 3.3.13, when particle u is unresolved we should subtract, 

' ^ " j ^ Aaub\S,{...,A,B,...)V^\'j^n)dPS{Q';...,Pa,Pu,Pb,...)., (3.3.15) 
V ^ / 

f r o m the (n + 1) particle contribution and, using the phase space factorisation of Equa­

t ion 3.3.8, add. 

^ ] ^ A,^,dPS''-^\S,{...,A,B,...)V''\'j^n)dPS{Q'-,...,pA,PB,.^^^ (3.3.16) 
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to the n particle contribution where both the observable function J and matrix elements 

S'^V^P depend only on the momenta of the n remaining hard partons. Note that for any 

infrared safe observable, in the l imi t that one particle is unresolved, J{n+i) ^(n)- In the 

subtraction term Equation 3.3.15, we use the transformations of Equation 3.3.10 to map the 

momenta Pa, Pu and pi, defined in the (n + 1) particle phase space onto the momenta PA 

and PB used in the n-particle matr ix elements and observable functions. In Equation 3.3.16, 

al l dependence on the momenta of particles a, b and u may be integrated out to give the 

antenna factor, F , 

FAB{SAB) = V / ^aubdPS''^\ (3.3.17) 
\ I J J 

mul t ip ly ing the n particle cross section (for a given colour ordered amplitude), 

\ - \S,{...,A,B,...)V>^\'j^„^dPS{Q';...,pA,PB,-)- (3.3.18) 
V ^ / 

The f u l l set of subtraction terms is obtained by summing over all possible antennae. 

The Dali tz plot for the {AB) aub phase space is shown in Figure 3.2. In the hybrid 

scheme we are implementing, we use the slicing method of [36] in the region min(sau, Sub) < 

and the subtraction scheme in the region, S < min(sQ„, Sub) < A . In the slicing region, the 

phase space and soft and collinear approximations to the matrix elements are kept md = 4 — 

2e dimensions to regularise the singularities present when either invariant vanishes. Using the 

approach of [36], there are three separate contributions (a) soft gluon when max(sa„, Sub) < S, 

(b) a and u collinear when Sau < ^ but Sub > ^ and (c) b and u collinear when Sub < ^ but 

Sau > ^• 

Before turning to the explicit forms for the antenna subtraction terms, we note that while 

quarks are only directly colour connected to one particle - a gluon or antiquark, gluons are 

directly connected to two particles - the gluon (or quark) on either side. Therefore,while 

the quark (or antiquark) appear in a single antenna, gluons appear in two. This gives an 

ambiguity in how to assign the collinear singularities of a pair of gluons to each antenna. 
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ANTENNA SUBTRACTION 

SLICING 

Figure 3.2: The phase space for the decay [AB) -> aub. The cut min(sQ„,s„b) = S w i th 
S = 0.1 Saul is shown as a solid line while min(Sa„, s^b) = A is shown as a dashed line for 
A = 0.25 Saub- The region mm{sau, Sub) < ^ defines where the slicing approach is utilised, 
w i t h the soft and coUinear regions demarked by dotted lines. Antenna subtraction is applied 
when 5 < mm{sau, Sub) < A . 

Later we w i l l exploit this ambiguity to make the antenna functions Aaub for different pairs 

of hard partons finite simpler. 

3.3.3 Quark-Antiquark antenna 

Let us first consider a system containing a quark, antiquark and a gluon. This is produced 

by an antenna comprising of a hard quark and antiquark pair that decays by radiating a 

gluon. Any funct ion that has the correct soft gluon and collinear quark/gluon singularities 

in the appropriate l im i t is satisfactory. Here the hard particles in the antenna are Q and Q 

which radiate to form q, q and the gluon g. A suitable choice for the antenna function is. 

\SMQ)V'\' 
2 / ^au , -^ub 

Saub ^ ^ub 
+ 

'2X(ii)X(iiii} 
(3.3.19) 
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Because this is proportional to the three parton matrix elements, \S^{q; g;q)V^\'^, i t auto­

matically contains the correct soft and collinear l imits. Furthermore, i t is smooth over the 

whole three particle phase space and singularities only appear in the Sau —> 0 and Sub 0 

l imits . 

Expl ic i t ly integrating over the antenna phase space for 6 < min(sQu, s„(,) < A we find. 

[ 2 )J FQQ^SQQ) = V lA,,,dPS'-^ 

f A ) ^hn(^]]+ F--, A ) + OiS). (3.3.20) 
/ \ \Snn 2 XSQO) \SOOJ 27r / \ \SQQ/ ^ \ * Q Q / / " ' \^QQ. 

Since we intend to take the 5 -> 0 l imi t , the terms of 0{S) may be safely neglected. The 6 

independent funct ion F^-^ is given by, 

- ( ^ ) ( - « - f - - ( i - - 4 ) ( ^ ) ) • 

3.3.4 Quark-Gluon antenna 

For antenna made of a quark Q and gluon G, there are two possible ways of radiating. Either 

a gluon can be radiated so that a quark-gluon-gluon system is formed, or the gluon may split 

into a antiquark-quark pair. This latter possibility is subleading in the number of colours 

and the discussion of situations like this is deferred to Section 3.3.6. 

For a quark-gluon-gluon system there is a less obvious choice of antenna function, par­

t icularly since the singularity that is produced when the gluon splits sits in more than one 

antenna. If , in the collinear l i m i t , the gluon splits into an unresolved gluon u which carries 

momentum fraction z and a hard gluon b w i th momentum fraction 1 — z, the antenna func­

t ion should naively be proportional to Pgg-^g which is singular as 2: 0 and z 1. This 

corresponds to singularities as both Sau -> 0 and Sab 0 where a is the quark, Q. However, 

because the collinear singularity sits in more than one antenna - the two gluons also occur 
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in a second antenna where the role of the two gluons is reversed - we can make use of the 

N = 1 supersymmetric identity to rewrite Pgg^g as. 

Pgg^g ^ As-^e + Pgq^i ^qq^g- (3.3.22) 

The soft singularities as z —)• 0 are contained in Pgq^q while those as z —̂  1 are in Pqg^q. We 

therefore divide Pgg^g amongst the two antennae such that Pgq^q sits in the antenna where 

gluon u is unresolved. The 2; —> 1 singularities are placed in the antenna where the role of 

the two gluons is reversed. The remaining Pqq^g may be divided between the two antennae 

according to choice. W i t h a slight modification due to the Pqq^g term, the antenna function 

used for the QQ antenna has the correct limits, so that, 

Anna — Anan ^ . (3.3.23) 
^aub \-^ub-^aub J 

This is again smooth over the whole three particle phase space wi th singularities only appear­

ing in the Sau 0 and s^b 0 l imits. In particular, as ^ -> 0, the collinear l imi t matches 

onto the soft l im i t which would not have been the case i f we had divided the soft/collinear 

singularities equally between the two antenna. 

Af te r integrating over the antenna phase space for 5 < mm{sau, Sub) < A we find. 

FQC{SQG) = / AqggdPS^^^ 

/ i , . f _ L U ^ l n m U F , - J ^ l (3.3.24) 
27r J V \SQGJ 6 \sQaJJ V^QG 

w i t h the S independent function F^Q given by 

19x x'^ x^ 

-6 y + 9 

/ I - x\ 
— In 
6 i \ X J 

•a,N-

+ f i 2 - 2 x + f - ^ r l l n ( — ) | . (3.3.25) 
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Antennae containing a gluon and an antiquark are described by, 

^99Q = ^ b), (3.3.26) 

and, 

FoqisoQ) = FQcisag). (3.3.27) 

3.3.5 Gluon-Gluon antenna 

For antenna comprising only gluons, we repeat this SUSY inspired trick for each of the 

resolved gluons so that, 

^999 = ^999 ~ — + • (3-3.28) 
Saub \XubXaub XauXaub / 

I t is noted in passing that Kosower [46] has proposed an antenna factorisation for gluonic 

processes. 

^Kosower _ ^ {^^aubiXgub Xab) + ^^^fc)^ ^ 

Saub \ XauXubXabXsub J 

which, in the u/b collinear l i m i t regenerates the f u l l Pgg-^g spl i t t ing function, as well as the 

soft l imits . 

Integration of the antenna function Aggg over the whole of the subtraction region yields, 

"^)L^(A.),11J±))^,^^ (3.3^30) 
27r / \ \SGGJ 6 \SGGJJ V S G G 
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with the 5 independent function FQ^ given by, 

/ f l i_2 , + ^_f),„(l^)). (3.3.31) 
\ 6 2 3 \ X J J 

3.3.6 Antenna where a quark-antiquark pair merge 

There are also configurations when two (or more) colour lines are present. Here the matrix 

elements have the form, 

\S,i...,a,q\q,b,...)V''\\ (3.3.32) 

I n the collinear l imi t , the quark-antiquark pinch the two colour lines together to form a 

single colour line. 

\S,{..., a, q\q, b, ...)V'^\' ^ Pqq^g{z, Sqq)\S,{..., u, G, b, ...)V''\\, (3,3.33) 

w i t h Pqq^ciz.s) given by Equation 2.3.54. There is no soft singularity, nor is there any 

dependence on the type of adjacent parton, a or b. Clearly, the quark-antiquark pair can 

sit in two antennae, (a, q, q) and (g, q, b) and we have some freedom of how to assign the 

singularities to the antennae. There are two obvious choices. Either we divide the singular 

contribution equally over the two antennae, or, we place the z"^ part of Pqq-^g{z) in one 

antenna and the {I - z^ part in the other (as we did wi th the three gluon antenna before). 

Whi le there appears to be no preference, we follow this latter route so that the antenna 

funct ion vanishes as the unresolved particle becomes soft, 

Aa-qq = — ( , (3-3.34) 
^aqq \^qq^aqq, 
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and. 

Aqqb AaqqiXaq ^ Xql,, X^qq •f-̂  X-qqb). (3.3.35) 

Following this procedure and integrating over the whole of the subtraction region yields, 

= f"^\LlJ±)]^,^j^(±), (3.3.36) 
V 27r / \ 6 \SaG J J \SaGy 

and. 

F^asGb) = F,l-{sGb). (3.3.37) 

The factor of A^^ arises because each of the Np quark flavours may contribute. The 6 

independent funct ion is. 

Fal'^ix) = FSf^ix) 
'a,Np\ f 2x x^ x^ (1 x^\ , ( l - x 

27r 7 V 3 6 9 V6 

I n f — n . (3.3.38) 
\ X J 

3.4 Summary 

I n this chapter we have attempted to detail the problems inherent in calculating N L O ob-

servables due to the complex, divergent integrals that need to be numerically evaluated. We 

have outlined three techniques that have been used in the literature and seen the benefits 

and failings of these prescriptions. We have choosen to use hybrid subtraction for the main 
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calculations of the thesis. We have seen earlier that some phase space mappings lead to 

ambiguities in the massless nature of the final combined partons and so we have choosen to 

use a phase space mapping procedure proposed by Kosower which is smooth and symmetric 

over the entire range of phase space and produces massless final combined partons. 

I n this chapter we have also introduced the concept of the antenna, as two hard partons 

that are colour connected and f rom which a th i rd irresolvable parton is emitted. This leads 

to the prescription of evaluating subtraction functions for each antenna so that we have 

universal functions that can be used for any QCD process. For the simplest antenna, that 

of a quark and an antiquark emit t ing a gluon, we use the scaled squared matrix element for 

the process e'^e" —)• qqg. This has the right singular behaviour and is smooth over the entire 

phase space region. For the more complex quark-gluon-gluon and three gluon antennae, we 

can make use of the N = 1 supersymmetric identity that relates the Altarelli-Paresi spl i t t ing 

functions. The problem for these antennae is the ambiguity of which antenna contains which 

divergences. By spli t t ing the two singluar regions of the Pgg^g between the two antennae 

(and including a term f rom the Pqq-^g spli t t ing function), we arrive at expressions that have 

the correct singular behaviour and that smoothly link the soft and collinear regions. By 

combining all the antennae functions for a squared matrix element, the whole of the gluon 

spl i t t ing function is recovered. 
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Chapter 4 

Matrix elements/subtraction terms 
for the calculation of e ~ — > 4 jets 

4.1 Introduction 

We now collect together all of the ideas covered in the preceding chapters in order to calculate 

the cross section of the process e+e" —> 4 jets. Once this has been formulated the calculation 

(and associated numerical routines) can be adapted to evaluate any infra-red safe, four jet­

like observable. (We define a small group of such observables which have been implemented 

into the Monte Carlo already and which we compare wi th experimental data in Chapter 5.) 

As we have seen, N L O calculations consist of vir tual loop corrections and extra, unre­

solved parton contributions. However, at the four jet level, there are two different underlying 

processes. For the vi r tual loop corrections we must consider the loops that modify the tree 

level process e'^e" —>• qqgg and also the tree level processes e'^e~ —̂  qqQQ where the flavour 

of q and Q are not necessarily the same. Similarly, the extra unresolved parton contributions 

have terms derived f rom the processes e^e~ —> qqggg and e'^e~ —> qqQQg. Section 4.2 wi l l 

briefly consider the relevant diagrams and squared matrix elements for the vir tual terms, 

while Section 4.3 w i l l repeat the process for the unresolved parton contribution. Section 4.4 

w i l l look at the symmetries of the sub processes and jus t i fy neglecting some of the terms, 

making the final calculation more compact. Finally Section 4.5 w i l l make use of the antenna 

functions and phase space mapping derived in the last chapter to outline the finite terms 

mul t ip ly ing the tree level processes after the analytic removal of the infra-red poles. 
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4.2 The virtual loop matrix elements 

4.2.1 e^e~ —>• qqgg 

We begin by considering the relevant diagrams and related squared matrix elements for the 

tree level and 1 loop contribution to the sub process e"'"e~ —)• qq^gg. We outline the colour 

structure and show how the entire contribution can be writ ten in terms of five independent 

colourless subamplitudes. The f u l l squared matrix element for this process was first calcu­

lated by [66] and [63] independently using different methods (the basics of which we describe 

later). For more details on the loop integrals and pole structure necessary for this calculation 

the reader is referred to [66],[63],[64] and [65]. For the purpose of all these calculations we 

w i l l concentrate on the QCD current, neglecting the well known leptonic current, V^. I t is 

easily replaced and we drop i t solely to keep the notation compact. 

As we have already shown in Section 2.3.7 the tree level matrix element for the process 

Z / 7 * -> qqgg has a structure directly related to the process qq —)• gg. The vir tual matrix 

element is also similar in form. Therefore we write the matrix element of each as 

/ ^ \ 2n r I 

= e^e^e^'Ml,^ = j YH'^^)MI{Z, 4) - f {t-H'^-)Ml[^, 3) + -K^aMli^-. 4) 
(4.2.1) 

where n = 0 describes the tree level matr ix element and n = 1 the 1 loop correction. The 

different gluon colours are given by as and 0 4 and the arguments of the functions, M.. 

indicate the ordering of the gluon emission e.g. jM(3 ,4 ) has the gluon wi th momentum pz 

emitted before the gluon wi th momentum P4. See Figure 4.1. For all the two gluon processes 

we fix the quark to have momentum px and the antiquark momentum p^. A t tree level 

>10(3,4) = 0. The functions >1^(3,4) , A^"(4 ,3) and A1b(3,4) can themselves be colour 

decomposed and at the 1 loop level are given by 
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rO Ma(3,4) 

rO 
Ma(4,3) 

Figure 4.1: The relevant tree level Feynman diagrams for the process Z/7* -> qqgg. The top 
two diagrams have the gluon wi th momentum ps emitted before the gluon wi th momentum P4 
whereas in the bot tom two diagrams the roles are reversed and the gluon wi th momentum p^ 
is emitted before the gluon wi th momentum pz- The solid black circles indicates the possible 
positions for the Z /7* vertex. 
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K ( 4 , 3 ) = A ^ A ^ ^ ( 4 , 3 ) - ^ M M 4 , 3 ) 

Ml{3,4) = Mh{3A) = Mh{4,3) (4.2.2) 

where the colourless amplitudes M\{i,j), M e i ^ j ) and A^J.(3,4) represent the combination 

of diagrams that give the same colour structure. Figures 4.2, 4.3 and 4.4 demonstrate the 

relevant diagrams for each of these amplitudes. This gives the following form for the tree 

level and 1-loop squared matr ix elements. The tree level is expressed as 

spins 

0|2 {N^ - 1)N 5 ( 3 , 4 ) + 5 ( 4 , 3 ) - ^ < S (4.2.3) 

where 

5 (3 ,4 ) = E I (K(3 ,4 ) )^K(3 ,4 ) | 
spins 

S = El((^a(3,4))t + (A4°(4,3)) t ) (A^«(3,4) + K ( 4 , 3 ) ) | (4.2.4) 
spins 

where S has no contribution f rom the triple gluon diagram as seen previously. For the 1 

loop level we find 

spins 

X CA{3, 4) + £ ^ ( 4 , 3 ) - ^ { C A + CB{3, 4) + £ ^ ( 4 , 3 ) - Cc) + 

(4.2.5) 

where we define the ordered structures and QED like contributions as 
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A(3,4) = ^Re[(A^l(3,4)) t>fO(3,4)] 
spins 

A- = ZMi(MU3,4)y + iMli4,3)mMl{3A)+Ml{4,3))] (4.2.6) 
spins 

Therefore we see that the 1 loop squared matrix element is composed of five independent 

functions which obey the following symmetry properties : £i(3,4) remains unaltered after 

the exchange pi o p2 and ps p4 whereas Ci is symmetric after the rearrangement pi o p2 

or P3 ^ P4. 

4.2.2 e+e- ^ ggQQ 

The second part of the virtual contribution derives from the 1 loop correction to the process 

e'^e~ —> qqQQ. Again, for a detailed account of the calculation the reader is referred to 

67],[63],[64] and [65]. Here we shall detail the colour decompostion of the relevant diagrams, 

leaving the ful l result until it is implemented in a Monte Carlo program. We write the matrix 

elements of the tree level process (n = 0) and the one loop correction (n = 1) as 

2 U t t ; 

(4.2.7) 

where C1..C4 are the quark colours and the arguments of Af indicate the location of the Z / j 

vertex and thus the relevant charge associated with the matrix element e.g. -A?(Qi, Q2) refers 

to the diagram where the gauge boson couples to the quark/antiquark pair with momenta 

Pi and p2 respectively. See Figure 4.5. The delta function SqQ is only non-zero for identical 

quark flavours (which allows the primary quark/antiquark pair to be qq.QQ,qQ and Qq 

whereas non-identical quarks only form the first two combinations). For tree level n = 0 we 

find 
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, f(TfflP 

4^ 

Figure 4.2: The set of Feynman diagrams responsible for the subamphtude function M\{^., 4) 
where we define the permutation of the gluons : from the top of the quark line, gluon 3 is the 
first encountered when reading around the diagram clockwise. As these diagrams represent 
the final state of the process, the virtual Z / 7 boson that is created in the electron positron 
collision attachs to these diagrams at the solid circle indicated (except in the second diagram 
where the solid circle along the gluon indicates a quartic gluon coupling). The dashed lines 
correspond to ghost loops. The top seven diagrams along with their 3 •H- 4 permutations 
contribute to CA whereas all the diagrams contribute to £^(3,4) . In dimensional regularisa-
tion diagrams with external leg corrections are identically zero and therefore are not included 
here or in any of the other loop diagrams. ^ 
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to-/ 
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Figure 4.3: The set of Feynman diagrams responsible for the subamplitude function A^b (3 , 4) 
where we define the permutation of the gluons as such : from the top of the quark line, gluon 
3 is the first encountered when reading around the diagram clockwise. As these diagrams 
represent the final state of the process, the virtual Z / 7 boson that is created in the electron 
positron collision attachs to these diagrams at the solid circle indicated. The top six diagrams 
alone contribute to £ 5 whereas all the diagrams contribute to £ 5 (3,4). 
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I 
\SI3S33SSJ 

19333333^ 

Figure 4 .4: The set of Feynman diagrams responsible for the subamplitude function ^ ^ £ 7 ( 3 . 4 ) 

where we define the permutation of the gluons as such : from the top of the quark line, gluon 
3 is the first encountered when reading around the diagram clockwise. As these diagrams 
represent the final state of the process, the virtual Z / 7 boson that is created in the electron 
positron collision attachs to these diagrams at the solid circle indicated. All the diagrams 
contribute to Cc-
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1 4 4 1 

' 2 3 3 2 

A^(Q,,Q2) 

1 2 3 4 
-ff"(r(r(r(r(r(r(r(r(r(r(r(r(r 

' 4 3 2 1 

a';(q,,q4) Â (Q3,Q2) 

Figure 4.5: The relevant Feynman diagrams for the tree level process Z/j* —)• qqQQ where 
the flavour of the quarks can be identical or diflterent. The first diagram has the Z / 7 * vertex 
attached to the quark line consisting of a quark with momentum pi and an antiquark with 
momentum P2. This we denote with the symbol Ai{l, 2). Similarly, the second diagram has 
the gauge boson vertex attached to the quark line consisting of a quark with momentum pa 
and an antiquark with momentum p^. This is denoted with the symbol .4i(3,4). The third 
and fourth diagrams are only valid for processes with identically flavoured quark/antiquark 
pairs where we exchange p2 -H- P4 for the third diagram (compared to the first diagram) and 
Pi Ps for the fourth diagram. 
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AUi,j) = AUi,j) (4.2.8) 

whereas at the one loop level n = 1, we can further colour decompose the Ai functions such 

that 

Al{i,j) = NAhi^,j)-^{2A\iz,j) + AUiJ)) 

AliiJ) = N { A U h j ) - A \ { i , j ) ) - ^ { A \ i i , j ) + A],{i,j)) (4.2.9) 

As before we form three groups of diagrams, A\{i,j),AB{hj) and Ac{i.j) which have the 

same colour structure and these are shown in Figure 4.6. One set of diagrams which we may 

have naively expected to be contributing are the closed fermion triangles, but according to 

Furry's theorem (a consequence of charge conjugation) these are identically zero i.e. QCD 

is charge conjugation invariant and the contributions for fermions circulating clockwise and 

anticlockwise cancel. Now let us consider the squared matrix elements. At tree level these 

are given by [68], 

spins 

5, 
TiQu Q2\ Qi, QT) + r{Qi,Q2; Qs,QA) + ^ (r(Qi,Q2;Qi,Q,) + T{QuQ2\Qz, Q2)) 

+ {QI^QZ,W2^QI)-^^<,Q{Q'2^QA) + 5,Q{QI^QZ)\ (4.2.10) 

where the arguments of the functions indicate the position of the Z / 7 vertex i.e. T{Q\., Q2', Qi, Q2) 

indicates the Z / j is attacted to the qq quark fine (as opposed to the QQ quark fine) for 

both the matrix element and its conjugate whereas T{Qi,Q2', Qz-, Qi) has the Z / 7 linking a 

qq line in the matrix element to a QQ line in the conjugate. 
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•(r(r(r(r(r(r(r(r(r(r(r(r(r(r| 

rff-fi-ff-fircrffTtrff-ff-fftrl 

g-ffrtrfffftrij-fq 

Figure 4.6: The set of Feynman diagrams responsible for the subamplitude functions 
AA{hj),-AB{h3) and Ac{i,3) where the top two diagrams are represented by ^^(« , j ) , the 
middle four are represented by AB{i,j) and the last six are represented by Acii-j)- The 
solid circle indicates the position of the initial Z / 7 boson. 
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For the one-loop squared matrix elements we write 

y : 2 i > t ( ° ) t M ^ i = ^ r ^ ) ( A ^ ^ - i ) 
s ^ s 4 V 27r ; ^ ' 

( £ c ( l , 2 ; l , 2 ) + £c ( l , 2 ;3 ,4 ) ) 

1 
iV2 

+ 5, 

(2£^(1, 2; 1, 2) + 2CA{1, 2; 3, 4) + £ ^ ( 1 , 2; 1, 2) + CB{1, 2; 3, 4)) 

^ ( £ c ( l , 2; 1,4) + £ c ( l , 2; 3, 2) - £ ^ ( 1 , 2; 1,4) - £^ (1 , 2: 3, 2)) 

- ^ ( £ ^ ( 1 , 2; 1, 4) + £ ^ ( 1 , 2; 3, 2) + £ ^ ( 1 , 2; 1,4) + £ ^ ( 1 , 2; 3, 2)) 

+ (Ql ^ QS, ^ 07) + ^qQ(Q^ ^QA)+ SqQiQl ^ Qz)) (4.2.11) 

where 

Caii,r,k,i) = E I^L'^^(Qi,'5.-M°(g.,goi (4.2.12) 
spins 

Making use of crossing symmetry we find that £«( ! , 2; 3, 2) and £«( ! , 2; 1,4) are related and 

thus the squared matrix element at the one loop level for the process e'^e~ qqQQ is given 

by 9 independent functions. 

To calculate the virtual corrections to the 4 jet process, two separate techniques have 

been developed. For this thesis, we have used the squared matrix elements of [66] and [67 

which utilise the usual prescription of conventional Feynman diagrams and the reduction of 

tensor integrals in d dimensions. The virtual contribution was also calculated separately by 

the group of Bern, Dixon, Kosower and Weinzierl (BDKW) [63],[64] and [65]. The BDKW 

calculation differed in approach in that it was performed directly in the helicity amplitude 

approach using dimensional reduction, appealing to the analytic structure of the amplitudes 

and unitarity. This allowed the amplitudes to be fully described from specific collinear limits. 

The two results have been shown to be consistent with each other (see [47]). 
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4.3 The unresolved parton matrix elements 

4.3.1 e+e- -> qqggg 

As we have seen before, the matrix elements of multi-gluon emissions can be simply colour 

decomposed into a colour factor that is related to the permutations and colour connections of 

the gluons and a colourless subamplitude which contains the kinematical information about 

the diagram. For the NLO calculation of the process e^e~ 4jets we write the hadronic 

current of the extra, unresolved contribution as 

S,{Q,-l,2,?,-Q2) = ieg' ^ (t"W3),i ,2<S;.((5i; 1, 2,3; Qs) (4.3.13) 
P(l,2,3) 

where a i , 02 and 03 are the colours of the three gluons and Ci and C2 are the quark/antiquark 

colours. As we have seen before, the permutations of colour matrices create the colour factor 

and S^{Qi] 1, 2, 3; Q2) describes the kinematical, gluon ordered subamplitude where a gluon 

with momentum pi is emitted first followed by a gluon with momentum p2 and finally a 

gluon with momentum is emitted. The Feynman diagrams relevant to this subamplitude 

are shown in Figure 4.7. This then gives, when squared 

E (\MQ^-^i>2,3;Q^)yi^ - 2,kmv^' 
LP(1>2,3) ^ 

-. \ 1 
(4.3.14) + ^ ^ ^ |5 . (Qi; 1,2,3; g2 )Vl2 

where V is the well-known QED electron current. As usual, the tilde on the gluon indicates 

its colour detachment from the rest of the gluons and as such it can be placed anywhere 

along the quark line e.g 

S,{Qu 1,2, 3; Q2) = S,{Q,; 1,2,3; Q2) + S,{Qi; 1,3, 2; Q2) + S,{Qu 3,1,2: Q2) (4.3.15) 
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Figure 4.7: The Feynman diagrams contributing to the colourless subamplitude 
<5 (̂<3i; 1) 2, 3; (52). As indicated the ordering is such that a gluon with momentum pi is 
at the extreme top of the diagram, a gluon with momentum p2 is next followed by a gluon 
with momentum p^. The off-shell 7 / Z from the e+e" annihilation attacts at the sites in­
dicated by the solid circle. By combining different permutations of gluons, these diagrams 
can lead to cancellations such as for <S^(Qi; I j 2,3; Q2) where all the diagrams in which gluon 
P3 couples to another gluon cancel and S^{Qi;l,2,3:Q2) where all triple gluon couplings 
cancel. This is analogous to the example we saw for qq —> gg where the two triple gluon 
diagrams cancelled for Sf^{Qi; g, g; Q2)-

97 



4.3.2 e+e~ qqQQg 

The final contribution to the NLO calculation is that of the unresolved parton to the tree 

level process e+e~ —>• qqQQ. This again may be colour decomposed to give colourless 

subamplitudes. Here we use a slightly different notation compared to the process e'^e~ 

qqQQ in order to clarify the various subamplitudes that combine to give the same colour 

structure. The form of the matrix element is given by 

fiQi,Q2;Qz:Q4;i) = i^[tf,Jc,c,n{QuQ2;Qs,QA;i) + {Qi^Q^:Q3^Q4) 

- {Qi^Q5)-iQ~2^Ql)] (4.3.16) 

where C1..C4 are the colours of the quarks (these are also affected by the symmetries) and 

ai is the gluon colour. Here as with the loop correction we label the two quarks, q and Q 

with momenta pi and ps respectively and the two antiquarks q and Q with momenta p2 and 

P4 respectively. This current can be further broken down into diff"erent diagrams and colour 

factors such that 

n{Q,,Q2;Qs,Q4;i) = 6Q,QJQ,Q,R^{QI,Q2;Q5,Q4-A) 

+ ^6Q,Q,5Q,Q,R''{QUQ~2:.QZ,Q'4:A) (4-3.17) 

where the delta functions indicate whether the quarks are the same flavour or not. Also 

R''{Qi,Q~2;Qz,Q~4;l) = A'^^'^'{Qi;l]mQ3-,W2) + A'^''^'{Q^,Q'2\Qi:l;Ql) 

R^{Qi,Q~2;Qs,Q~4;i) = B^^^^Qi ; liQ^IQa; 0^) + ^^^^^(QaiQ^IQi; i ; 0^) 

(4.3.18) 

The diff"erence between these two functions is the direction of colour flow and where the 

vector boson is attached. This in turn dictates which partons can form colour antennae, the 
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electric charge of the quark coupling to the photon and the colour factor for the singular 

contribution where the antennae partons become collinear with the gluon. The superscripts 

on A and B give the quark line to which the photon couples such that A^^'^'^ has the photon 

attached somewhere along the quark line between quark 1 and antiquark 2. However, the 

colour antenna for A'^^'^'^ is formed between quark 1 and antiquark 4 such that colour is 

transmitted through the gluon propagator whereas the colour antenna for B^^'^'^ lies between 

quark 1 and antiquark 4 with no colour being carried by the gluon. The relevant diagrams 

for each of these functions are shown in Figure 4.8. 

The squared matrix element is given by 

X 

2~l \ m 

n{Qi, Q2; Qz, Qi, 1)1' + l^(<5i, Q4; Qz, Q2; i ) r 

Re(7^(Ql, Q^; Q3, Q ;̂ 1) + 7^(Q3, Ql; Qi, Q ;̂ l))(7e(Qi, Ql; Q3, Q ;̂ 1))^ 
N 

+ {Qi^Qz,Q2^Q4) (4.3.19) 

where terms of the form TliQi, Q2] Qz, QA, 1)(^(Q3, QA, QI, Q2; 1))^ are zero due to the trace-

less nature of the colour matrices. We can rewrite to display all the colour factors as 

\n\' = 
'N^ - 1 

. 2 M 
X '\n''{Q,,Q2;Qz,QA;l)? 

+ jpilT^^iQu01;Qz,Q2; i )P - \n{QuQ'2\QZ,Q'A; 1)1') 

+ ^^Re(7e^ (Qi ,Q; ;Q3 ,Q; ; i ) ) (7 l^ (Qi ,Q^ ;Q3 ,Q; ; i ) ) t 

TV^-i-l _ _ 
- ^^ '^Q2Q4Re(7^(Ql, Q2; Q3, Q4; l))(7e(Qi, Q4; Qs, Q2; i ) ) t 

+ {Qi ^ Qz,Q2 ^QA) + hiQAQi ^ Q^) + h2QM2 ^^Ql) (4.3.20) 

where 
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Q i 

•ff-fi-tf-tf-ff-ffl 

Q i Q i 

Figure 4.8: The Feynman diagrams contributing to the process e"̂ e" -)• qqQQg. The 
top three diagrams form the colourless subcurrent -4^' '^^(Qi; 1; Q4IQ3: Q2), the next 
three form A^^'^'^{Q3;Q2\Qi;l]Q4), the first two diagrams on the bottom line form 
B j i ^ ^ ( Q i ; 1 ; ^ |Q3 ;Q^) and the last two form B^^'^^iQ^.Q^lQ^; 1 ; ^ ^ ) . The photon propa­
gator couples to this final state current at the solid circles. 

n{Qi,Q2;Q3,Q4]i) = n^{Qi,Q2;Qz,Q4;i) + n^{Qs,Q4;Qi,Q2:.l) 

= n''{QuW4-,Qz,Q~2-,i) + n^iQ3,Q~2-,Qi,Q'4;i) (4 .3 .21) 

4.4 Symmetries and negligible contributions 

Although we have outlined all the possible sources which contribute to the cross section 

of the NLO calculation of e'^e~ —)• 4 jets, we can make the numerical evaluation simpler 

by counting the symmetries inherent in the matrix elements. This reduces the number of 
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functions i t is necessary to evaluate. Also, after phase space integration it can be shown that 

some contributions partially cancel and can thus be thought of as negligible for the rest of 

the calculation. 

4.4.1 Negligible contributions 

We begin by considering the four quark virtual terms. At tree level the qqQQ process has 

four diagrams that contribute to the squared matrix element term 7'(1,2;3,4). I t can be 

seen that two of the contributing diagrams are related by the reversal of the Q^QA quark line. 

(See Figure 4.9). I f the cut between the matrix element and the conjugate was not present 

we would set this contribution to zero by Furry's theorem. However, as the quarks are 

indistinguishable, we find after phase space integration this leads to a cancellation between 

the diagrams because for each contribution from the first diagram's squared matrix element, 

an equal and opposite contribution can be found for the second diagram at a different phase 

space point. A similiar argument is used for the 1-loop level corrections. The cancellation 

for the 1-loop correction is not perfect and the resultant contribution is not zero, but is small 

enough to be thought of as negligible[48]. Therefore we treat terms of the form £(1,2; 3,4) 

as negligible. 

The only other contribution that we treat as negligible is part of the contribution to the 

subprocess qqQQg. In the same way as for the virtual term we shall not calculate those 

terms for which different quark pairs couple to the photon in the matrix element and the 

conjugate i.e. we treat terms of the form A^'^^{Qu 1;Q'A\QZ;Q2)A'^^^'{QZ\Q'2\QI; 1; QI)^ 

as equal to zero. 

4.4.2 Symmetry factors 

Making use of symmetry factors we can simplify the calculation greatly by evaluating one 

function and then multiplying it by a factor dependent on the degree of symmetry. We 

already are familiar with summing over the rip active quark flavours and we also note that 

for n identical particles in the final state we attribute a factor 1/n! to the function. 

We begin with the symmetries for the tree level process Z / 7 * - > qqQQ. For identical 

101 , - T ? . * > . 



Figure 4.9: Two of the four diagrams that make up the four quark term T ( l , 2: 3, 4). The 
dotted line separates the matrix element from its conjugate. 

final state quark pairs we must include a factor 1/4. This gives a symmetry factor of np/4 

for matrix elements with identical quark fiavours in the final state. Similarly there are 

Upinp — l ) / 2 ways of choosing a pair of non-identical quarks in the final state. Collecting 

these all together we have 

r ( l , 2; 1, 2) -> 2 X npinp - I) 12 + 4 x np/^ = 4 (4.4.22) 

where we have included the 1 3, 2 -H^ 4 symmetry for the non-identical pairs and the 

1 0 3, 2 <H- 4, the 1 o 3 and the 2 -H- 4 symmetries for the identical pair. 

For the terms of the form T ( l , 2 ; 1,4) (which only identical quark pairs contribute to) 

we have 

102 



r(l ,2;l ,4) ^ 4 x n ^ / 4 

r(l ,2;3,2) 4 x n i . / 4 (4.4.23) 

Note however that the term T(l,2;3,2) is generated by the symmetry pi p2.,Pz ^ P4 

from the term T(l,2;l,4). Therefore we put these together to form the single function, 

T(l, 2; 1, 4) with symmetry factor 2nF. 

For the one-loop correction to the process Z/j* -> qqQQ the symmetries are identical 

giving 

£j ( l ,2 ; 1,2)-f (1 3,2 o 4 symmetry) -)• n | 

£ j ( l , 2; 1, 4) + (1 -f^ 3, 2 O 4 symmetry) -h (1 -H- 3 symmetry) ^ 2 x 

+{2 ^ 4 symmetry) + (1 <-)• 2, 3 -H- 4 symmetry) (4.4.24) 

We now consider the symmetries of the other virtual term, that of the subprocess qqgg. 

The tree level process can be written as two terms, T(3,4) and T which describe all possible 

terms when combined with their respective symmetry factors. The one loop factor is identical 

to the tree level term such that the ordered gluon term has an obvious symmetry under 

interchange of the gluons whereas the photon-like term has no such symmetry. Also a factor 

1/2 arises due to the identical nature of the gluons. Therefore we find 

T(3, 4) -h (3 O 4 symmetry) -> 2 x 71^/2 = np 

T -> nF/2 (4.4.25) 

Extending this to the 1-loop correction gives 

£j(3,4) + (3 o 4 symmetry) -> 2 x np/2 = np 

Ci ^ np/2 (4.4.26) 
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The extra unresolved contributions to the NLO calculation also contain symmetries with 

which we can use to multiply a single term by a symmetry factor to account for all possible 

terms. The simplest case is that of the subprocess qqggg where we have a single quark pair 

in the matrix element and a 1/3! factor due to the identical nature of the three gluons. For 

the leading order colour term there are six symmetric terms under the permutation of the 

ordered gluons but there is also the identical particle factor of 1/3!. For the sub-leading 

colour term with only one colour detached gluon there are two symmetric terms under the 

permutation of the ordered gluons and also three symmetric terms due to the indistinguish 

nature of the colour detached gluon. This again gives 6 terms. Finally we have the most 

subleading colour term where all the gluons are colour detached. Here the single term already 

includes all the permutations and thus we only need consider the identical particle factor. 

More concisely this gives 

| 5 ^ ( g i ; l , 2 , 3 ; Q ^ ) F l ' 6 x np/3! = 

\s'^iQ,;l,2,~3-Q'2)V''f ^ 6 x n^/3! = n j . 

\S,iQ^;i,~2,~3;Q;)V^\' ^ /3! = n^/6 (4.4.27) 

Finally we consider the subprocess Z/j* —> qqQQg. The symmetry factors associated 

with this process follow the same rules as for the tree level process without the gluon, with 

the same division of terms into those that are relevant for all flavoured pairs and those that 

are only relevant for non-identical flavoured quark pairs. Thus we find 

|^?^^^(Qi;i;Q^IQ3;Q^)P ^ 2 x ^ / 2 = 4 

IS^'^'iQiii-MQziQ'dl' -> 2 x 4 / 2 = 4 

IB'^'^'iQiMQz-A-Ml' 2 x 4 / 2 = 4 

| ^ J^«^(Qi ; i ;g ; iQ3;Q^) + -4j^'^H<3i;Q^|Q3;i;Q^)r ^ 4 x 4 / 2 = 2 4 

Re(^Q^Q^(Qi;l;Q;iQ3;Q^)(5Q><^^(Qi;l;Ql|Q3;Q^))t ^ 4 x n^/4 = n^. 

ReMQ^Q^(Qx;l;Ql|Q3;Q^) + ^Q^<^^(Qi;Q;iQ3;l;Q^)) x 

(^J^«^(g i ; l ;Q^ |Q3;Q; ) + ^?^^(Qi;Q^|Q3; l ;Ql))^ 1 6 x n ^ / 4 = 4ni. 

(4.4.28) 
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where the factor two on the first four terms is due to the (1 3, 2 -H- 4) symmetry. The 

factor in the fifth term is due to the symmetric nature nature of T (which contributes a factor 

2) and the (1 -o- 3, 2 -H- 4) symmetry. These first five factors are all due to non-identical 

and identical quark pair contributions together. The sixth and seventh terms now introduce 

all the symmetries possible for identical quark pairs only i.e.(l -H- 3, 2 f-)- 4). (2 f-> 4) and 

( 1 ^ 3 ) . Al l four of these make up the factor in the sixth term whereas in the seventh term 

a factor 4 comes from the symmetries and another factor 4 is due to the factor 2 symmetry 

from each T term in the TiQuQ^; QZ,WA)T{QI,QI\QZ,QZV term. 

4.5 Using hybrid subtraction for the NLO calculation 
of e+e~ 4 jets 

Now we are in a position to evaluate the relevant antennae functions necessary for the 

numerical NLO calculation of e+e" 4 jets and see how these can be implemented alongside 

the terms produced by the slicing technique after the removal of the singular regions of phase 

space. To begin with we shall consider the dominant leading colour contribution and then 

extend this to produce the ful l colour result. As we have seen before, the hybrid subtraction 

technique will be bounded by theoretical cut-off's which we call 5 for the phase space slicing 

and both 5 and A for the subtraction. Al l dependence on 6 will cancel exactly and we 

can justify driving the cut-off, 5 small such that the approximations made by the slicing 

technique are valid whilst not producing large logarithms. The logarithms will now be of the 

form log(A) and thus we keep this cut-off large to keep the numerical cancellation of these 

logarithms stable. 

Before we begin with the NLO contribution, we consider the LO form. This will multiply 

both the divergent factors from the virtual and extra parton contributions later. For leading 

colour, this is given by 

= M ! f ^ ) ( ' ^ ) \ s , i Q , , G , , G , m v W B , (4,5.29) 

where only the final state qggq contributes at leading order in colour. Here 64 is the phase 

space cuts defining the physical quantity e.g. D parameter. 
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For the slicing contribution we consider the extra unresolved parton. Its squared matrix 

element is given in a very similar form as the above equation. 

da5 
(7Q 

(27r)^ ( N - ' - l \ fasN 
27r 

\S,{qi;9i,92,g5;q^)V^\'dPS,er, (4.5.30) 

We write the labels for the quarks and gluons differently to demonstrate how the three parton 

antennae collapse to form two hard partons later. We also note that for any infra-red safe 

observable in the four resolved parton limit 64 = 65. At this level of colour we note that all 

the triple and quartic gluon vertices are present, so that the three available antennae consist 

of the partons, {qi, 91,92), {91,92,93) and {g2,93,q2) where gi is unresolved in the first, 92 in 

the second and gz in the third. The invariant masses of the unresolved partons run over the 

range 0 < mm(sg^g^, Sg^g^) < 5 for the first antenna and so on. 

The slicing term (at leading order) is simply a divergent factor multiplied by the tree 

level contributions (with different phase space mappings relating them). The general form 

of this factor for final states qq + ng (where n is the number of resolved gluons) is given in 

36]. For our case (n = 2) we find the divergent factor is given by 

R{Qi;GuG2;Q2) 
asN 
2TV J T{l-e) 

V ( - - log' ( 

3_ A y 
^ 2e[ 5 

+ 
a,\ 2bo 

197 2 
+ TT̂  

1 / 47r/x 
2nJ e r { l - e ) \ 6 

(4.5.31) 

By summing over the colour connected pairs i,j we retrieve all the divergent terms. Note 

that some terms are common to two antennae, e.g the poles and logarithms containing Sg^g^ 

are found in both the first and second antennae. 

Now we consider the subtraction terms that need to be added and subtracted from the 

two divergent terms. We have already seen that at leading colour there exist three separate 

antennae which leads to three separate subtraction terms, each with its own phase space 
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mapping from three partons to two using Equation 3.3.10. For instance in the first antenna. 

a — qi,b = g2,u = gi, giving A = Qi and B = Gi. Kinematical cuts to model jet variables, 

©4 are made after this mapping. We find for the 5 parton subtraction term 

^0 s \ N J \ 27r 

+ iA,^9r92\S,iQi;Gr,gr,qi)V^\' 

+ ^g293g2\Si,{qi]gi,G2;Q^)V^f) (4.5.32) 

and for the 4 parton subtraction term we have 

"^^"^ - {FQ,G, + Fa,G. + Fa,Q^)da\^ (4.5.33) 

where the antennae functions Fij are those of Equations 3.3.24, 3.3.27 and 3.3.30 and where 

the four parton momenta used are the antenna momenta after mapping i.e. Qi and Gi for 

the first antenna and the remaining resolved parton's original momenta i.e gz G2 and 

q2 Q2 for the first antenna. 

Finally we need to consider the virtual term necessary for this leading colour calculation. 

Again, we need only consider the sub-process e'^e~ —)• qggq. This gives a term that is 

proportional to tree level (with a divergent multiplying factor) and a finite correction. Using 

Equation 4.2.5 and a re-written form for £ ^ ( 2 , j ) [66] such that 

CAiG„G2) = UGU G2) + ^ ' ^ V ( l ' - ^ 2 y 

X — -
I / 4 V Y _ ]_ ( 4 V y _ i_ 1 4 V y _ 3_ / 4 v y \ 

(4.5.34) 

we can write the virtual, leading colour contribution as 
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= V{Qi; Gi, G2; Q2)da\'' + daf'"' (4.5.35) 

where 

^ f i n i t e ^ ( M ! f ^ ^ ) ( ^ ) ' CA{G„G2)Q,dPS, (4.5.36) 

and the divergent factor is written as 

V{Qi;GuG2;Q2) = 
'asN\ ( 1 / 47r/i2 V i f iniP V i f 4 ^ V ^ 

(4.5.37) 

Now we can compile all of the separate pieces and thus form the analytic terms that will need 

to be integrated over in the Monte Carlo routine. These will be separately calculated using 

a four parton momentum generation and later combined with the numerical routines that 

integrate over five parton phase space. Collecting the slicing term, the analytic subtraction 

functions and the virtual terms and removing all ultra-violet divergences with the one loop 

renormalisation of such that 

a 
.2TT) \ 2TT I \ e V 27r ; r ( l - £ ) 

we find the final form of the analytic function is given by 

da4^L0 = K[Qv, Gu G2; Q2)daY' + daf"'' (4.5.39) 
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where the tree level and finite contributions are the same as in Equations 4.5.29 and 4.5.36 

with the replacement Q!s(//̂ ). The factor multiplying tree level is now finite and is 

given in terms of 

KiQi;GuG2;Q2) = 2TV . 

m T:' . ( A \ ^ / A 

. / A \ 10, fsQ.oA 11 , [SG.GA 10, M G , Q ; \ 

• ^ " - ' " ' ' ^ a J o l o g f i ^ ) (4.5.40) 

We note that all dependence on the slicing phase space cut-off S has been removed and now 

that the poles have been analytically cancelled, the four dimensional limit can be taken, 

removing all terms of order e or higher. The analytic term still depends on the remaining 

phase space cut-off A. However when this is combined with the numerical routine calculating 

the five parton contribution, this dependence will be removed. By setting A large, the 

numerical stabilty of this cancellation improves and the final answer becomes independent 

of both phase space cut-offs. 

Now we have seen how we can apply hybrid subtraction to the leading colour part of the 

NLO e+e~ 4 jets calculation, we shall quickly review the remaining terms of a full colour 

calculation. The techniques used for the leading colour calculation are exactly those which 

we shall use for the rest of the calculation and thus we shall detail a set of all (colour) order 

K factors which will multiply various terms of the tree level. Firstly, we must identify the 

relevant antennae so as to be able to select the necessary antennae functions and factors. 

This will also make clear which partons become unresolvable at which order in colour, making 

the four parton contribution less confusing. 

The simplest way to collate all the information is to consider the tree level result. We 

write it as 
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where each of the four terms, daf*^, is the matrix element multiplied by the four parton 

phase space factor. Decomposing the matrix elements into colour subamplitudes gives 

daf"^ {27i)^ (N^-1\ fa^N 
ao I / V 27r 

MidPS4 (4.5.42) 

where ctq is a normalisation factor given by the leading order result for the process 7* —> qq 

and the colourless amplitudes are given by 

Ma = \S,{Qr;G,,G2;Q'2)V>'\' 

M, = \S,{QuG,,G2;Q2)V^\' 

Mc = r ( l , 2 ; l , 2 ) 

Md = r ( l , 2 ; l , 4 ) (4.5.43) 

The first term we have seen before and recognise as the leading colour contribution to the 

subprocess qggq. The second term is the sub leading contribution to the same process. 

The third and fourth terms make up the leading and sub-leading pieces of the four quark 

subprocess. Each antenna factor Aijk will multiply one of these four tree level colourless 

subamplitudes. 

The form of each antenna can now be simply collected together such that the 5 parton 

subtraction contribution is given by 

dar' _ {2.y ( N ^ \ (^\\ps^QAj^i _ ^ + ! ^ + M : ! ) (4 5 44) 

where 
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- ^«i^:^^l'^A(Qi;G'i,p2;g2)l/''p + A , , , , , 3 | 5 4 g i ; G i , G 2 ; ^ ) 7 ' ' p 

+ '^929z92\SMu9l,G2\Q~2)V^\'^ 

+ 7^ \'^<i^r.<i3\S,{Qi]Gug2-,qi)V''\^ + A^,^JS^{q^-^ 

+ Kmi\S,{qi; 91, G2; Q~2)V^ 2 + ^,^,3 SMuGr, G2; qi)V'\ 

^,A,,,,r2\S,{Qu9u92:.Q2)V>^? 

(4.5.45) 

The first three terms for come from the three antennae making up the leading colour 

contribution to qgggq, namely qi—gi—g2, 9i—g2—9z and 52—53 —92- We see for each that the 

mapping takes the three antenna partons and maps them to two which are entered into the 

colourless subamplitudes. (These are expressed as upper case letters whereas those partons 

not in the antenna have their original momenta in lower case.) The next four terms in A' are 

due to the collinear limit of a quark and antiquark forming a gluon. When one of the colour 

lines pinches together, we are left with the four parton subamplitudes |5^(Qi; Gi , 6*2; Q2)y^\'^ 

or \Sfj,{Qi\ Gi, G 2 ; Q2)V'^\^ depending on whether the remaining colour line runs through the 

virtual gluon or not. For A^ we consider the former case. The only antennae that can form 

must have the partons ^3 and in them. These can be colour connected either to the gluon 

(on either side), the remaining quark or the remining antiquark. Finally, the sub-leading 

colour term for the three gluon process contributes the last term of A^, but only when the 

unresolved gluon is the colour detached one, leaving the other two gluons ordered. With 

unresolved colour detached gluons we can only form antennae qi — gz — qi-

= AiPiS2<S;.(Qi;Gx,#3;9^)I^1' + Am,J*S^(gi;p--3,Gi;5^)]/^P 

+ A9i92Q^\St.{qi; Gugz; Ql)T^^P + Ag^g,^\S^{q,; g^, Gi ; Q;)y'^P 
2nF ( ~ 

+ ^ (^^9i939il'5;.(gi;Pi,G2;gi)y''|2-t-yl,35J5^|<S^(gi;pi,G2;Q2)^'^' 

+ K9.m\SAQi\9x,92\Q2)V^f^ 

(4.5.46) 
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Here the first four terms of A^^ are formed from the three gluon process. They are from the 

single colour detacted gluon digrams, but here, as opposed to , one of the ordered gluons is 

unresolved. This gives antennae of the form qi—gi—g2 and g\ — g2 — q2, but now the remaining 

gluons (after mapping) are colour detached and we must write out all their permutations 

explicitly. Therefore we can have both the |5^(Qi; Gi , ps; g^)V '̂'P colourless subamplitude 

and the |<S (̂<5i; gz,Gi;q2)V^^\^ colourless subamplitude multiplying the qi — gi — p2 antenna 

factor. Simialrly for the gi — g2 — Q2 antenna. The next two terms are again from the 4 

quark process as described for A^, but now the external gluon attachs to a colour line that 

runs through the primary quark line only, thus making the collinear quark/antiquark pair 

(and therefore itself) colour detached. Here the antenna factors consist solely of quarks and 

antiquarks. The final three terms of A^^ are due to the antennae of the 3 gluon process 

where all three gluons are colour detached. Here all the antennae are of the form gi —gi — q2-

I t is not necessary to swap the order of the gluons in the colourless subamplitudes here as 

the mapping leaves them unaffected and therefore all permutations are already accounted 

for. 

A^^^ = {Aq^gq^ + Ag^gq^ — J^{2Ag^gg^ + 2Aq^gg:^ 

~ 2^91393 ~ 2^92594 "t" •^Ql9Q2 ^93S94))'^(1) 2; 1, 2) 

A = i^qigqs + -^02904 ~ 'j^{-^Qi9Q2 ^93594 ~^ ^91994 + ^93392 

- Ag,gq,-Ag,gg,))Til,2;l,4) (4.5.47) 

The remaining terms for A^^^ and A^^ are formed from the remaining four quark-one 

gluon terms. The presence of antennae of the form Ag^^gg^ and Aq^gg^ is due to the interference 

between antennae such as Aq-^gg^ and Ag^gq^. They have the same form as the quark-antiquark 

antennae. A^^^ gives the functions for identical and non-identical quark pairs whereas A^"^ 

is the antenna function for the identical quark pairs only. 

Following the same technique as above for the four partonic contribution we write the 

slicing terms, the virtual terms and the subtraction terms all together in terms of K, factors 

and logarithms that multiply the four tree level terms. 
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da, NLO K:{QI;GUG2;Q2) - ^K:{QUQ2) dai 

2N^ JCiQuGu Q2) + /C(Qx; G2; Q2) - (̂ 1 + ] ^ j ^ ( ^ i ^ ^2) del' 

N 
1 

JC{Qi;Q4) + JC{Q3;Q2)-^\og 
2, / S Q 3 ^ \ 31 

g2 / + 9 

(2/C(Qi; Q 4 ) + 2/C(Q3; (32) - 2/C(Qi; Q 3 ) - 2/C(g2; QA) + !C{Qu Q2) 

'%3o7\s , riF f-10 
N \ 9 

dai'' 

+ JCiQuQ^) + nQ2;Q4) - \log + y 

{lC{QiM + ^(Qs;Ql) + nQuWi) + /C(Q3; Q^) - /C(Qi; Qs) 

- /C(Q2;Q4) + 3log 'Q394 + 
Up -10 

- l o g ^ 
3 ^ 1 g2 

(4.5.48) 

where dcrf"''*^ now constitutes all the finite terms from the virtual contribution e.g. C^, LB, CC 

with relevant colour factors. The extra logarithms come from the virtual terms and are due 

to single poles of the form \{xy being expanded in terms of e. The factors y — are due 

to the self-energy corrections to the 4 quark virtual terms. The form of the /C factors is given 

by taking the relevant slicing factor (n = 1 or n = 0) and combining it with the analytic 

antennae functions F and the one loop coupling constant renormalisation such that. 

/C(Q;G;Q) 

1C{Q:Q) 

m u Q j ) 

18 ^ 3 ^ ' 

10 
log X ^ ) 

(as{l^)N\ 

/C(g,;Q,) = /C(Q,;Q,) 

63 TT̂  
18 6 

+ 

A 

9 Q / 

(4.5.49) 
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4.6 Summary 

In this chapter we have outlined all the contributions to the NLO calculation of the process 

e^e~ —4 jets at all orders in colour. We have shown how the virtual diagrams for the final 

states qqgg and qqQQ can be grouped together at similiar orders of colour such that the 

entire expression can be written in terms of five and nine independent functions respectively. 

We have also seen the same process repeated for the extra, unresolved partonic contributions 

qq999 and qqQQg. 

Finally we have derived the analytic functions (for both a leading colour calculation and 

an all orders in colour calculation) in which the poles have been cancelled. These are to be 

integrated over four parton phase space and combined with the numerically calculated five 

partonic contribution which has been rendered finite by use of the subtraction terms. 

In the next chapter we shall outline the results from these integrations which were cal­

culated using a Monte Carlo program written specifically for this approach called EERAD2 

which calculates a number of 4 jet-like event shape variables . 

114 



C h a p t e r 5 

D a t a r e s u l t s f o r N L O 4 j e t o b s e r v a b l e s 

5.1 Introduction 

We now turn to the comparision of the theoretical calculations outlined in the previous 

chapters with experimental findings. There are many 4 jet observables that can be measured 

at modern particle detectors. Al l of these give some indication of the shape of the event, 

for instance how spherical the event is or how collimated the jets are. The topology of an 

event also can be used to indirectly measure other theoretical parameters such as as by 

comparing theoretical and experimental distributions for each observable. 4 jet observables 

are also useful for testing the Casimir factors of QCD and testing for the presence of light 

gluinos. Electron-positron annihilations are particularly useful as the results are clean and 

free from the uncertainty of parton distribution functions within hadrons which are necessary 

for proton-antiproton or electron-proton collisions. 

Definitions of some 4 jet observables are given in Section 5.2. In Section 5.3 we com­

pare the results of EERAD2 with two other NLO 4 jet programs, namely MENLD PARC[55] and 

DEBRECEN[54] for the 4 jet rate, the D parameter and Thrust minor, Tminor- The quanti­

tative differences between these programs shall be briefly discussed. Section 5.4 presents 

the theoretical predictions for previously uncalculated 4 jet variables such as the narrow jet 

broadening, the light hemisphere mass and the jet transition variables for the Geneva and 

JADE algorithms. Al l of these are compared with experimental results in Section 5.5 gath­

ered by the DELPHI collaboration and the variation with renormalisation scale is studied, 

at the physical and FAC scales. 
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5.2 Four jet event shapes 

The sorts of variables we are interested in are four jet-like, since they can only be non-zero 

for final states in which there are four or more particles. They usually rely on the hadronic 

final state having some volume and, when the event is coplanar, some observables like the 

D parameter are identically zero. 

5.2.1 Definition of Variables 

In the following definitions, the sums run over all Â ' final state particles, k = 1,.... N. Pk is 

the three-momentum of particle k in the cm. frame, with components p^, i = 1, 2, 3. 

• C and D parameters [49]. We first construct the linear momentum tensor. 

Qij ^ ^±JP±^ (5 2.1) 
Efe Pk 

with eigenvalues Aj for ? = 1, 2, 3. The normalisation is such that E i -^i = 1- For planar 

events one of the eigenvalues is zero. The C and D parameters are defined by, 

C = 3(AiA2 + A2A3 + A3A1) 

D = 27X1X2X3 (5-2.2) 

D can only be non-zero for non-planar four (or more) parton events, while three parton 

events may produce 0 < C < 0.75. Only the region C > 0.75 should be considered 

four jet-like. 

Thrust minor, Tminor [50]. We first define the thrust, major and minor axes (ni, n2, ns) 

by, 

T ^ . m a x ^ ^ ^ ^ , (5.2.3) 
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where n2 is constrained by n i • n2 = 0. and na = n i x n2. 

• Light hemisphere mass, M | / s . The event is separated into two hemispheres Hi, H2 

divided by the plane normal to the thrust axis n i , as defined above. Particles that 

satisfy Pi • Hi > 0 are assigned to hemisphere Hi, while all other particles are in H2. 

Then, 

^ = - - m i n l j : p,] . (5.2.4) 

Note that this is the common modification of the original definition suggested by 

Clavelli [51 . 

• Narrow jet broadening, Bnun [52]. Using the same division into hemispheres as above, 

we define, 

i?:ni„ = m i n ? ^ f ^ i 4 ^ . (5.2.5) 

Jet transition variable . The variable denotes the value of the jet resolution 

parameter Ucut at which an event changes from a four jet event to a three jet event 

where the jets are defined according to algorithm S. We consider three algorithms, the 

JADE algorithm (S = J) [18], the Durham algorithm (5 = D) [21] and the Geneva 

algorithm {S = G) [22]. The jet-finding measures for each of these three algorithms 

can be found in Equations 2.2.3, 2.2.4 and 2.2.5. Recall that when particles combine, 

there is some ambiguity as to how to add the energies and momenta (see Section 2.2.2). 

In all three schemes, we use the E scheme i.e. we merely add four momenta. 

P f . - P f + P , " . (5.2.6) 

Other choices such as the EO or P schemes where the cluster is made massless by 

rescaling the momentum or energy give similar results. 

Of these variables, the D, C, T^moi and distributions have been studied in [54 . 
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5.2.2 Structure of Perturbative Prediction 

The differential cross-section at centre-of-mass energy ^ for one of these four-jet variables 

(O4) at next-to-leading order is described by two coefficients, BQ^ and C04 which represent 

the leading and next-to-leading order perturbative contributions. 

(Jo dOi \ 2n J \ 2^ J \ \ s J J 

Both Boi and CQ^ are scale independent and do not depend on the beam energy. However, 

the running coupling Q;̂  is calculated at renormalization scale /j, which is commonly chosen 

to be the physical scale, fi = ^/s. Compared to the leading order prediction, which decays 

monotonically with increasing /x, the next-to-leading order term reduces the scale dependence 

somewhat through the first coefficient of the beta-function, JSQ = (33—2A^/)/ 6. For five active 

quark flavours, /3o = 3.833. 

5.2.3 Scale choice, theoretical uncertainty and resummations 

As mentioned above, for hadronic observables in electron-positron annihilation it is common 

to choose the renormalisation scale to be the physical scale = ^/s. This choice is motivated 

by naturalness arguments and the fact that choosing a scale far from ^/s introduces large 

logarithms of the form log(/i/-v/s) in eq. (5.2.7). However, as we have seen in section 1.4, 

there are a number of choices of scale that attempt to model the rest of the perturbative 

series such as the FAC scale[13] and the PMS scale[12]. While even higher order corrections 

remain uncalculated, varying the renormalisation scale can only give a crude indication of the 

theoretical uncertainty. Therefore, in an attempt to make a fair estimate of the theoretical 

uncertainty on the NLO prediction we will show both the physical scale and FAC scale 

predictions. 

Four jet event shapes typically depend on the event having some volume and not lying 

entirely in a plane. Typical hadronic events contain more than 20 hadrons and it is extremely 

unlikely that the value of any event shape is precisely zero for any experimental event. 

However, in a LO or NLO fixed order parton calculation, there only four or five partons 

118 



present in the final state and, when one or more are soft, the calculated O4 may approach 

zero. In such circumstances, soft gluon singularities cause the fixed order prediction to 

become wildly unstable and grow logarithmically. In the small O4 limits, the perturbative 

coefficients have the following form. 

Bo, Az2L^ + A22L'^ + A12L + A02, 

Co, ^ A^sL^ + A^zL^ + AzzL^ + A2zL'+ AizL + Ao3, (5.2.8) 

where L — log( l /04) , Anm are undetermined coefficients and thus whenever L is sufficiently 

large, resummation effects will become important.-^ For the 4 jet rate the calculation of these 

coefficients has been performed and resummed in [57]. In comparing with data, we choose to 

make a cut on the size of O4 which is typically in the range 0.001-0.01, since for such small 

values of O4 we do not trust the NLO prediction. Equating this with the DELPHI data, the 

cut will usually be the lower edge of the second data bin. 

5.3 Comparison with existing results 

5.3.1 Four jet rates 

As a check of the numerical results, Table 5.1 shows the predictions for each of the three 

Monte Carlo programs of the four jet rate for three jet clustering algorithms; the Jade-E0[18], 

Durham-E [21], and Geneva-E [22] algorithms. We show results with as{Mz) = 0.118 for 

three values of the jet resolution parameter ycut- There is good agreement with the results 

from the other two calculations. 

5.3.2 Shape variables 

As mentioned earlier, Nagy and Trocsanyi [54] have computed CD with their Monte Carlo 

DEBRECEN. In Table 5.2 we show the leading and next-to-leading order coefficients BQ and Co 

^Whether the coefficients exponentiate and can be resummed will depend on the observable. 
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Algorithm Vmt MENLO PARC DEBRECEN EERAD2 

Durham 
0.005 
0.01 
0.03 

(1.04 ±0.02) • 10-1 
(4.70 ± 0.06) • 10-2 

(6.82 ±0.08) • 10-3 

(1.05 ±0.01) • 10-1 
(4.66 ±0.02) • 10-2 
(6.87 ±0.04) • 10-3 

(1.05 ±0.01) • 10-1 
(4.65 ± 0.02) • 10-2 

(6.86 ± 0.03) • 10-3 

Geneva 
0.02 
0.03 
0.05 

(2.56 ±0.06) • 10-1 
(1.71 ±0.03) • 10-1 
(8.58 ±0.15) • 10-2 

(2.63 ±0.06) • 10-1 
(1.75 ±0.03) • 10-1 
(8.37 ±0.12) • 10-2 

(2.61 ±0.05) • 10-1 
(1.72 ±0.03) • 10-1 
(8.50 ±0.06) • 10-2 

JADE-EO 
0.005 
0.01 
0.03 

(3.79 ±0.08) • 10-1 
(1.88 ±0.03) • 10-1 
(3.46 ± 0.05) • 10-2 

(3.88 ±0.07) • 10-1 
(1.92 ±0.01) • 10-1 
(3.37 ±0.01) • 10-2 

(3.87 ±0.03) • 10-1 
(1.93 ±0.01) • 10-1 
(3.35 ±0.01) • 10-2 

Table 5.1: The four-jet fraction as calculated by MENLO PARC, DEBRECEN and EERAD2, for the 
different jet recombination schemes and varying y^ut- The rate is normalized by the 0{as) 
total hadronic cross-section, cThad = CTQ (1 ± as/ir). 

calculated by EERAD2, together with the DEBRECEN result. The two calculations are clearly 

consistent with one another, with the quoted errors overlapping in almost all cases. The 

errors from EERAD2 are of the order of 2% in each bin, except in the tail of the distribution 

where the errors rise as high as 10%. The infrared enhancement of the distribution described 

in section 5.2.3 means that the Monte Carlo procedure favours the phase space region cor­

responding to small values of the D parameter, so that the large D tail suffers larger errors. 

In fact CD drops by four orders of magnitude over the kinematic range of the observable 

so it is necessary to use importance sampling with respect to the observable distribution to 

ensure sufficient Monte Carlo points are produced in the high D region. This is also true for 

all of the other shape variables. 

In addition, Nagy and Trocsanyi have also presented results for the next-to-leading order 

coefficents for thrust minor Tmmor and the jet transition variable in the Durham scheme 

[54]. Although we do not present a detailed comparison here, we note that the agreement 

is qualitatively the same as discussed for the D parameter above. We find that the distri­

butions extend beyond the range of coefficents presented in [54], with non-zero coefficients 

for bins in the ranges 0.5 < T^inor < 0.58 and 0.125 < y f < 0.17. 
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D BD DEBRECEN 

0.0200 (3.79 ±0.01) •102 (1.47 ±0.00) • 10^ (1.08 ±0.06) • 10̂  
0.0600 (2.32 ±0.01) •102 (1.25 ±0.01) • lO'* (1.24 ±0.02) • lO'i 
0.1000 (1.45 ±0.01) •102 (8.69 ±0.04) •10^ (8.59 ±0.12) • 10^ 
0.1400 (1.04 ±0.01) •102 (6.39 ±0.03) • 10̂  (6.24 ±0.12) • 10̂  
0.1800 (7.68 ±0.04) •10^ (4.89 ± 0.03) •10^ (4.99 ±0.11) • 10̂  
0.2200 (5.87 ±0.03) •10^ (3.88 ± 0.03) • 10^ (3.85 ± 0.06) • 10^ 
0.2600 (4.66 ± 0.07) •10^ (3.04 ±0.03) •10=̂  (2.98 ±0.05) • 10^ 
0.3000 (3.75 ± 0.07) •10^ (2.51 ±0.04) •10=̂  (2.52 ±0.05) • 10̂  
0.3400 (3.07 ±0.05) •10^ (2.02 ±0.03) • 10^ (1.94 ±0.05) • 10^ 
0.3800 (2.41 ± 0.03) •10^ (1.61 ±0.03) •10^ (1.59 ±0.04) • 10̂  
0.4200 (1.97 ±0.04) •10^ (1.37 ±0.02) • 10^ (1.37 ±0.03) • 10^ 
0.4600 (1.56 ±0.03) •10^ (1.09 ±0.01) • 10̂  (1.06 ±0.03) • 10̂  
0.5000 (1.32 ±0.01) •10^ (8.97 ±0.14) •102 (8.72 ±0.19) • 102 
0.5400 (1.05 ±0.02) •10^ (7.12 ±0.15) •102 (7.11 ±0.16) • 102 
0.5800 (8.46 ±0.16) •10° (5.79 ±0.12) • 102 (5.68 ±0.14) • 102 
0.6200 (6.60 ±0.16) •10° (4.55 ± 0.09) •102 (4.46 ±0.21) • 102 
0.6600 (5.32 ± 0.13) •10° (3.58 ± 0.07) •102 (3.52 ±0.11) • 102 
0.7000 (3.99 ± 0.09) •10° (2.80 ± 0.09) •102 (2.74 ±0.09) • 102 
0.7400 (3.06 ± 0.05) •10° (2.05 ± 0.08) •102 (2.08 ±0.08) • 102 
0.7800 (2.26 ±0.04) •10° (1.58 ±0.04) •102 (1.54 ±0.06) • 102 
0.8200 (1.54 ±0.04) •10° (1.05 ±0.03) •102 (1.03 ± 0.04) • 102 
0.8600 (9.72 ±0.21) 10-^ (6.72 ± 0.29) •101 (6.66 ± 0.31) • 101 
0.9000 (5.63 ±0.16) 10-1 (3.85 ±0.17) •101 (3.89 ±0.20) • 101 
0.9400 (2.62 ± 0.07) 10-1 (1.71 ±0.10) •101 (1.71 ±0.19) • 101 
0.9800 (5.34 ±0.11) 10-2 (3.15 ±0.27) •10° (2.60 ± 1.30) • 10° 

Table 5.2: The leading and next-to-leading order coefficients for the D parameter. The NLO 
coefficient predicted by Nagy and Trocsanyi Monte Carlo DEBRECEN [54] is also shown. 

5.4 New results 

In this section we extend the analysis of 4 jet-like event shape observables already found 

in the literature by reporting the leading and next-to-leading order coefficients for the light 

hemisphere mass, the narrow hemisphere broadening and the jet transition variable in both 

the JADE and Geneva schemes, y( and y f . In particular, we examine the relative sizes of 

the two terms by inspecting the K factor (at the physical scale) for each variable across the 

allowed kinematic range of the distributions. 

For all the variables presented in this section, we must be careful to differentiate between 
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the true behaviour of the distribution as the observable tends to zero and the behaviour in 

fixed order perturbation theory. Each of the observables should have a smooth behaviour 

as O4 ^ 0 rather than the divergent behaviour exhibited by the coefficients according to 

equation 5.2.8. To recover a smooth result in this limit it is necessary to resum powers of 

log(l/(94) where possible, a procedure which has been performed already for many 3 jet-like 

variables [58, 52 

5.4.1 Light Hemisphere Mass 

Ml/s BMI/S CMIIS 

0.0150 (3.23 ±0.08) •102 (1.41 ±0.01) • 10^ 
0.0250 (1.88 ±0.02) •102 (8.85 ±0.10) •103 
0.0350 (1.25 ±0.02) •102 (5.97 ±0.11) •103 
0.0450 (8.52 ±0.10) •101 (4.14 ±0.08) •103 
0.0550 (5.97 ± 0.06) •lOi (3.04 ±0.04) • 103 
0.0650 (4.20 ± 0.09) •101 (2.15 ±0.05) •103 
0.0750 (3.02 ± 0.07) •101 (1.58 ±0.05) • 103 
0.0850 (2.13 ±0.03) •101 (1.11 ±0.02) • 103 
0.0950 (1.39 ±0.04) •101 (7.66 ± 0.23) •102 
0.1050 (8.75 ±0.20) •10° (4.97 ±0.17) •102 
0.1150 (5.18 ±0.13) •10° (3.27 ±0.07) •102 
0.1250 (2.59 ±0.12) •10° (1.66 ±0.07) •102 
0.1350 (8.97 ±0.35) 10-1 (6.61 ±0.41) •101 
0.1450 (2.49 ±0.13) 10-1 (1.79 ±0.09) •101 
0.1550 (5.00 ±0.27) 10-2 (3.75 ±0.26) •10° 
0.1650 (1.46 ±0.21) 10-3 (2.30 ±0.37) 10-1 

Table 5.3: The leading and next-to-leading order coefficients for the light jet mass Ml/s. 

As defined before, the light hemisphere mass is the smaller invariant mass of the two 

hemispheres formed by separating the event by a plane normal to the thrust axis. The NLO 

coefficient Cj^yg evaluted at the physical scale n = y/s together with the LO term is given 

in Table 5.3. The errors are estimates from the numerical program and are typically 2-3% 

for each entry. As with the previously known results on four jet event shapes, the NLO 

terms are significantly larger than the LO term. Here, we see that CMI/S is typically 50 

times larger than Bj^^yg so that even when the additional factor of as/2Tr is restored, the 
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NLO correction is large. This is illustrated by considering the K factor defined by. 

I t is found that the K factor increases with the value of the observable, rising from 1.8 at 

small Ml/s up to 2.4. This behaviour is similar to that observed for other four jet event 

shapes [54 . 

5.4.2 Narrow Hemisphere Broadening 
r 

Narrow hemisphere broadening, B^i^, is defined in a similiar manner to the light hemisphere 

mass. The event is again divided into two hemispheres by the plane normal to the thrust 

axis, but now the momenta transverse to the thrust axis is summed (normalised by the sum 

of absolute momenta) in each hemisphere. The narrow hemisphere is that with the least 

transverse momentum with respect to the thrust axis. Numerical results for this variable 

as calculated by EERAD2 can be found in Table 5.4. As with the light hemisphere mass, the 

NLO contribution is significant yielding a K factor of roughly 1.7 over most of the kinematic 

range of the variable 

5.4.3 Jet transition variables 

As previously stated the jet transition variable yf describes the scale where two jets merge, 

thereby changing a four jet event into a three jet event. This is essentially the same as the 

derivative of the four jet rate with respect to the jet resolution parameter y^nt- However, 

the number of jets in an event is dependent on the jet finding algorithm used to define the 

'closeness' of particles which is compared with ?/(.ut- In [54] the transition rate for the Durham 

jet finding algorithm [21] is given and we have checked that our results are consistent with 

these predictions. Here, we provide results for two other jet algorithms, the JADE and 

Geneva [22] schemes for which the jet finding measures are given in Equations 2.2.3, 2.2.4 

and 2.2.5. We note that the Geneva algorithm enjoys the same benefits as the Durham 

algorithm in that it is also supposed to exponentiate, enabling infrared logarithms to be 

safely resummed. It also ensures that softly radiated gluons are clustered with hard partons 

unless the angle of separation between two soft gluons is much smaller than the angular 

separation between them and a hard parton. 
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BB 
•'-'mm 

CB . 
-'-'mm 

0.0150 (1.19 ±0.01) •10^ (3.41 ±0.07) • 10^ 
0.0250 (7.04 ±0.06) •102 (2.56 ±0.02) • 10^ 
0.0350 (4.80 ±0.02) •102 (1.92 ±0.04) • 10̂  
0.0450 (3.39 ±0.02) •102 (1.41 ±0.02) • 10^ 
0.0550 (2.49 ±0.02) •102 (1.07 ±0.02) • 10^ 
0.0650 (1.89 ±0.02) •102 (8.04 ±0.12) • 10̂  
0.0750 (1.43 ±0.02) •102 (6.29 ±0.12) •10^ 
0.0850 (1.08 ±0.01) •102 (4.81 ±0.08) •10^ 
0.0950 (8.19 ±0.04) •101 (3.65 ± 0.08) •10^ 
0.1050 (6.23 ±0.08) •101 (2.77 ± 0.09) •103 
0.1150 (4.69 ± 0.06) •lOi (2.10 ±0.04) •10=̂  
0.1250 (3.37 ±0.04) •101 (1.45 ±0.04) •10^ 
0.1350 (2.36 ± 0.04) •101 (1.09 ±0.03) •10^ 
0.1450 (1.64 ±0.03) •101 (7.07 ± 0.25) •102 
0.1550 (9.82 ±0.12) •10° (4.48 ±0.15) •102 
0.1650 (5.08 ±0.12) •10° (2.18 ±0.10) •102 
0.1750 (1.71 ±0.04) •10° (7.53 ± 0.33) •101 
0.1850 (4.32 ±0.11) • 10-1 (1.59 ±0.12) •101 
0.1950 (5.47 ±0.11) • 10-2 (1.34 ±0.24) •10° 

Table 5.4: The leading and next-to-leading order coefficients for the narrow jet broadening 
- ^ m i n * 

Our results for the two schemes are given in Tables 5.5 and 5.6. As can be seen from the 

tables the NLO coefficients are again large. The K factor for the JADE scheme is roughly 

1.8-1.9, but is slightly smaller for the Geneva algorithm, typically in the region 1.4-1.6. 

5.5 Comparison with experimental data 

Four jet event shape observables have been studied extensively by the four LEP experiments. 

However, the most complete analysis of event shape variables has been carried out by the 

DELPHI collaboration [56]. Here we compare their study of the event shape variables dis­

cussed in section 5.2 with the results from EERAD2. Distributions based on charged particles 

alone as well as charged and neutral particles are presented. In this section, we wish to 

examine whether or not these event shapes can be described by fixed order perturbation 

theory. As discussed earlier, to avoid numerical instabilities in the infrared region where 
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fixed order perturbation theory is no longer valid we impose a cut on the smallness of the 

variable that is generally equal to the lower edge of the second bin. More precisely, that is, 

D > 0.008 

T • 
minor 

> 0.02, 

Ml/s > 0.01, 

> 0.01, 

> 0.002, 

yi > 0.002. (5.5.2) 

The experimental distributions are normalised to the hadronic cross section (rather than 

the Born cross section) and are also not weighted by the observable, but are rather. 

da la.ipWBo. , /O.M W^O , - J I ^ ' \ BO. , Co.-2Bo. 

Throughout, we choose as{Mz) = 0.118 which was consistent with the current world average 

60] at the time of writing the program. In each case, the theoretical predictions have been 

evaluated using bins of the same size as in the experiment and therefore appear as histograms 

in the plots. The data is corrected for detector effects, but not for hadronisation effects. 

Figures. 5.1 and 5.2 show the comparison between the leading order and next-to-leading 

order predictions evaluated at the physical scale // = ^/s = Mz for narrow jet broadening 

and light hemisphere mass with the published DELPHI data [56]. We see that in both cases, 

the LO prediction undershoots the data by a significant factor (about a factor of four), and 

that including the NLO correction improves the situation but still gives a rate that is much 

lower than the data. However, the NLO prediction still contains a large renormalisation 

scale uncertainty. Usually, one varies the choice of scale about the physical scale by a factor 

of two or so, but as discussed earlier, the FAC (or PMS) scale defined in Equation 1.4.36 are 

attractive alternative choices in that the known ultraviolet logarithms are resummed [59 . 

For both of these variables, the FAC scale is significantly less than the physical scale, for 

example, for Bmm , M "̂̂ *^ ~ 0.06>/s. This has the effect of increasing as, thereby increasing 
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Figure 5.1: The leading order (dashed) and next-to-leading order (solid) predictions evalu­
ated at the physical scale fj, = = Mz for (a) l/ahad' da/dBjnm compared to the published 
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to 
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale 
which is very nearly the same as the PMS scale (see Equation. 1.4.36). 

the NLO prediction and in both cases, we see much improved agreement at larger values 

of the observable. At smaller values, and particularly in the region where the data turns 

over the agreement is still poor. This, of course, is where the infrared logarithms are large 

and need to be resummed. Furthermore, we also expect non-perturbative hadronisation 

effects or power corrections to influence the perturbative shape of the distribution [61, 62 . 

These contributions (together with resummation of the infrared logarithms) have played an 

important role in extracting useful information from analyses of three jet shape variables, 

and are likely to be important in analysing four jet event shapes. 

A similar comparison of the perturbative predictions for the jet transition rates with the 

DELPHI measurements2 is made in Figures 5.3 and 5.4. Once again, the LO distribution lies 

well below the data. This time, the NLO prediction lies much closer to the data for most of 

the available kinematic range. The FAC scale rate usually lies above the NLO prediction so 

that the data lies within the range of uncertainty engendered by the renormalisation group. 

^The DELPHI data gives the differential jet rate rather than the jet transition variable. Up to a small 
(~ few %) correction from five (and more) jet events falling into a four jet configuration, the two quantities 
coincide at fixed order. 

126 



s 
0 10° 

(a) 

DELPHI 96 
DELPHI 96 ctiarged 

• NLO 
LO 

• NLO with FAC scale 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 
Ml/s (b) 

n i l 

DELPHI 96 
DELPHI 96 charged 

• LO 
FAC 

0.06 

Figure 5.2: The leading order (dashed) and next-to-leading order (solid) predictions eval­
uated at the physical scale // = ^/s = Mz for (a) 1/ahad " da/d{Ml/s) compared to the 
published DELPHI data [56] and (b) the difference between data and NLO theory (nor­
malised to NLO). The short-dashed line shows the next-to-leading order prediction using 
the FAC scale which is very nearly the same as the PMS scale (see Equation 1.4.36). 

For completeness. Figures 5.5 and 5.6 show the DELPHI data and perturbative predic­

tions for the D parameter and T^inor repectively. As expected from the analysis of Nagy 

and Trocsanyi [54], the LO prediction for D is too low by a factor of about four, while at 

the physical scale ji = ^/s = Mz the NLO distribution is roughly twice as large but still lies 

a factor of two below the data. However, for the FAC scale (which for the D parameter is 

approximately 0.035^/s) the prediction overshoots by 50% or so for D > 0.1 where the fixed 

order prediction is least affected by large infrared logs. 

The importance of resumming these logs is clearly shown in Figure 5.6 where the Tminor 

distribution is shown. For Tminor > 0.1 the data again lies between the next-to-leading order 

predictions at the physical and FAC scales (which encompass an uncertainty of about a 

factor three for Tminor ~ 0.2). However, the turn-over at Tminor = 0.1 cannot be modelled 

without resumming the large logs which cause the perturbative prediction to grow rapidly. 

The same is true at small values of the light hemisphere mass and narrow jet broadening 

although there the effects are less pronounced because of the choice of bin sizes. 

127 



(a) 

DELPHI 96 
DELPHI 96 charged 
NLO 
LO 
NLO with FAC scale 

(b) 

DELPHI 95 
DELPHI 96 charged 

• LO 
• FAC 

r 

0.02 0.04 0.06 0.08 0.1 

Figure 5.3: The leading order (dashed) and next-to-leading order (solid) predictions evalu­
ated at the physical scale jj, = y/s = Mz for (a) l/cThad • da/dyf compared to the published 
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to 
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale 
(see Equation 1.4.36). 
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Figure 5.4: The leading order (dashed) and next-to-leading order (solid) predictions evalu­
ated at the physical scale ^ = y/s = Mz for (a) 1/ahad • da/dyf compared to the published 
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to 
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale 
(see Equation 1.4.36). 
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Figure 5.5: The leading order (dashed) and next-to-leading order (solid) predictions evalu­
ated at the physical scale / i = = Mz for (a) l/(7had • da/dD compared to the published 
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to 
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale 
(see Equation 1.4.36). 

5.6 Summary 

In this chapter we have introduced a number of 4 jet-like event shape variables which have 

been encoded into the NLO Monte Carlo program, EERAD2. This routine has been based on 

the prescriptions described in the earlier chapters of this thesis. We have compared these 

results with the experimental data as collected by the DELPHI collaboration at CERN and 

with two other Monte Carlo routines, MENLO PARC and DEBRECEN. For those variables that 

have been calculated by the other groups (the 4 jet rate, the D parameter and Thrust minor) 

the agreement is good. For those variables that have not been calculated we present the scale 

independent coefficients for both LO and NLO. From these a prediction for can be made, 

either by fitting directly to the experimental data or by using the renormalisation group 

equations and the property of asymptotic scaling [69 . 

I t is found that the NLO corrections for all variables is large, but that the total is still 

short of the data. This maybe due to uncertainty in the scale, higher order corrections, 

power corrections and at small values of some of the variables, resummation effects need to 
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Figure 5.6: The leading order (dashed) and next-to-leading order (solid) predictions evalu­
ated at the physical scale n = ^/s = Mz for (a) l/crh?,d-da/dTjamoT compared to the published 
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to NLO). 
The short-dashed line shows the next-to-leading order prediction using the FAC scale (see 
Equation 1.4.36). 

be taken into consideration. 
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0.0250 (8.00 ± 0.04) •102 (9.93 ±0.34) •10^ 
0.0350 (5.59 ± 0.04) •102 (9.91 ±0.30) • 10̂  
0.0450 (4.15 ±0.03) •102 (8.57 ±0.13) •10^ 
0.0550 (3.15 ±0.03) •102 (7.31 ±0.18) •103 
0.0650 (2.47 ±0.02) •102 (5.96 ±0.12) • 10̂  
0.0750 (1.93 ±0.02) •102 (4.99 ±0.14) • 10^ 
0.0850 (1.50 ±0.02) •102 (3.96 ±0.11) •10^ 
0.0950 (1.23 ±0.01) •102 (3.36 ±0.13) •10^ 
0.1050 (9.88 ±0.12) •IQi (2.84 ±0.06) •10^ 
0.1150 (7.90 ±0.09) •101 (2.19 ± 0.09) • 10̂  
0.1250 (6.07 ±0.08) •101 (1.69 ±0.11) •10=̂  
0.1350 (4.79 ± 0.07) •101 (1.53 ±0.08) •10^ 
0.1450 (3.84 ± 0.06) •101 (1.15 ±0.04) •10^ 
0.1550 (3.00 ±0.05) •101 (8.41 ±0.53) •102 
0.1650 (2.26 ±0.04) •101 (6.52 ± 0.36) •102 
0.1750 (1.61 ±0.02) •lOi (4.99 ±0.33) •102 
0.1850 (1.21 ±0.02) •101 (3.60 ± 0.23) •102 
0.1950 (8.71 ± 0.27) •10° (2.53 ±0.20) •102 
0.2050 (5.70 ±0.16) •10° (1.78 ±0.17) •102 
0.2150 (3.89 ±0.09) •10° (1.20 ±0.11) •102 
0.2250 (2.41 ± 0.06) •10° (6'.83 ± 0.87) •101 
0.2350 (1.43 ±0.05) •10° (4.87 ±0.36) •101 
0.2450 (7.69 ± 0.30) 10-1 (2.57 ±0.25) •IQi 
0.2550 (3.78 ± 0.09) 10-1 (1.18 ±0.13) •101 
0.2650 (1.50 ±0.04) 10-1 (4.57 ±0.79) •10° 
0.2750 (4.20 ±0.17) 10-2 (1.15 ±0.35) •10° 
0.2850 (4.59 ± 0.39) 10-^ (1.16 ±0.65) 10-1 

0.2950 (5.37 ±0.91) 10-^ (2.15 ±1.11) 10-3 

Table 5.5: The leading and next-to-leading order coefficients for the jet transition variable 
in the Geneva-E algorithm . 
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yi 
0.0075 (6.02 ±0.01) •102 (1.75 ±0.01) • 10^ 
0.0125 (3.60 ±0.01) •102 (1.33 ±0.02) • lO'' 
0.0175 (2.47 ±0.01) •102 (1.02 ±0.04) • 10̂  
0.0225 (1.78 ±0.01) •102 (7.63 ±0.32) •103 
0.0275 (1.34 ±0.01) •102 (6.19 ±0.16) • 103 
0.0325 (1.01 ±0.01) •102 (4.76 ±0.12) •103 
0.0375 (7.88 ± 0.08) •101 (3.86 ±0.11) •103 
0.0425 (6.19 ±0.05) •101 (3.07 ±0.16) •103 
0.0475 (4.99 ±0.05) •101 (2.38 ±0.12) •103 
0.0525 (3.89 ±0.05) •101 (2.08 ±0.11) •103 
0.0575 (3.13 ±0.05) •lOi (1.54 ±0.05) •103 
0.0625 (2.43 ± 0.04) •IQi (1.26 ±0.03) •103 
0.0675 (1.90 ±0.03) •lOi (9.68 ± 0.58) •102 
0.0725 (1.49 ±0.04) •lOi (7.70 ±0.35) •102 
0.0775 (1.21 ±0.02) •IQi (5.89 ±0.41) •102 
0.0825 (9.38 ±0.18) •10° (4.83 ±0.35) •102 
0.0875 (6.94 ±0.09) •10° (3.50 ±0.19) •102 
0.0925 (5.36 ±0.11) •10° (2.48 ±0.27) •102 
0.0975 (3.85 ±0.06) •10° (1.93 ±0.19) •102 
0.1025 (2.84 ± 0.07) •10° (1.26 ±0.11) •102 
0.1075 (1.97 ±0.07) •10° (9.99 ± 1.22) •101 
0.1125 (1.30 ±0.06) •10° (6.69 ±0.94) •101 
0.1175 (8.32 ± 0.37) 10-1 (3.57 ±0.52) •101 
0.1225 (4.94 ±0.07) 10-1 (2.36 ±0.44) •lOi 
0.1275 (3.05 ±0.10) 10-1 (1.85 ±0.38) •101 
0.1325 (1.70 ±0.03) 10-1 (8.38 ±3.15) •10° 
0.1375 (8.94 ±0.29) 10-2 (4.99 ± 1.15) •10° 
0.1425 (4.20 ±0.12) 10-2 (2.01 ±0.38) •10° 
0.1475 (1.67 ±0.07) 10-2 (1.08 ±0.73) •10° 
0.1525 (5.51 ±0.44) 10-3 (3.94 ±2.32) 10-1 

0.1575 (8.48 ± 0.58) 10-4 (4.37 ±2.44) 10-2 

Table 5.6: The leading and next-to-leading order coefficients for the jet transition variable 
in the JADE-EO algorithm yi-
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Chapter 6 

A new calculation: 
pp ^ J + jets at Oi aa^g) 

6.1 Introduction 

We now turn our attention to another important calculation in pQCD, that of prompt photon 

production in hadronic collisions. Specifically, this part of the thesis will concentrate on the 

emission of a resolved photon from the collision/annihilation of protons and antiprotons. 

There are many papers in the literature that have studied prompt photon production from 

hadronic collisions [72] and related processes in electron-proton collisions[70] and electron-

positron annihilations [71]. However for this calculation we apply the fragmentation power 

counting of Morgan and Glover [71] which was introduced for the electron-positron initial 

state. 

Photon production is considered to be a good probe into the underlying dynamics of 

both the short range interactions of partons and the composition of the proton itself (where 

for certain phase space configurations this process can determine the gluon distribution in 

the poorly understood regime of moderate values of x, the longitudinal momentum fraction 

carried by the parton inside the hadron). This is due to the simple nature of the photon 

coupling and the clean signal seen in the detectors. A high energy photon is identified by 

a shower in the electromagnetic calorimeter, accompanied by no charged tracks pointing to 

the energy deposit. Not only is this subject important for testing existing theories, but it is 

vital in order to reduce backgrounds in the search for the Higgs boson. 
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The production of photons has two sources; firstly in the hard partonic process where 

the photon is well separated from the other partons and secondly at smaller scales where the 

photon can either be emitted coUinear to its parent quark or where a parton can fragment 

into a photon. The hard partonic mechanism is well understood and can be calculated using 

pQCD whereas the smaller scale process contains a universal, non-perturbative effect and 

uncancelled infra red poles. However, as we shall see later, the non-perturbative term can 

be constrained by a well-determined evolution and the poles absorbed into the definition of 

the fragmentation. 

This chapter will concentrate on introducing the theoretical tools necessary to calculate 

the photon distribution. Section 6.2 will outline the isolated and non-isolated photon events 

as described above and Section 6.3 introduces the concept of the fragmentation function 

making use of the process e^e~ ^ 7 + 1 jet for which the non perturbative fragmentation 

function has been experimentally measured. Section 6.4 will detail a necessary tool in dealing 

with hadronic colliders, that of initial state radiation and how this leads to C^{x) functions. 

Section 6.5 will incorporate these two functions into the calculation and outline the Monte 

Carlo, DPRAD. 

6.2 Photon emission and fragmentation functions 

Let us look at the two cases of photon emission more closely. Isolated photon emission is an 

attractive area to study many aspects of both pQCD and new physics as the non-perturbative 

fragmentation contributions are neglected due to their collinear nature. Isolated photons are 

emitted at a scale where perturbation theory is reliable and as such tend to be well separated 

from the remaining partons. This is due to the uncertainty principle where over a short time 

scale, an off-shell internal quark line propagates a small distance before returning on shell 

by emitting a photon. The photon-quark pair have a large invariant mass and the angle 

between them is large leading to the isolation of the photon. 

Experimentally (and theoretically), isolation of a photon is determined by applying a 

cone algorithm. There are a number of different techniques [72, 73] for doing this and here 

we outline the most common found in the literature [72 . 
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A cone of specified half angle 6 is centred on the photon direction. For hadron colliders 

this cone is usually taken to be a region in pseudorapidity-azimuthal angle space determined 

by the equation 

R < ^(A7y)2 + {A^y (6.2.1) 

where for small values oirj, S. Inside the cone, the total hadronic energy is calculated. 

If it is less than a certain cut (usually a fraction of the photon's energy), the event is 

retained. Note that the amount of hadronic energy cannot be exactly zero (and the isolation 

complete) as this is infrared unsafe because the phase space of potential soft gluon radiation 

is limited. Therefore isolated photon calculations cannot completely neglect fragmentation 

contributions although they are suppressed. 

In e+e- colliders a different procedure is used. Typically the photon is removed from 

the event and normal clustering algorithms (as described in Section 2.2.1) are applied to the 

remaining partons/jets. The photon is returned and the event retained if the photon remains 

resolvable from the clustered partons/jets. (See Figure 6.1 for the phase space division using 

the cone algorithm in the process e'^e~ —> 7 + 1 jet.) Note that this technique combines any 

partons originally inside the cone into jets outside the cone. It also treats gluons and quarks 

differently, allowing soft gluons inside the cone, but quarks are kept out. In experimental 

calculations the exact nature of the hadronic energy is not classified and it was seen that 

using this algorithm the NLO predicted rate for the process e~^e~ -> 7 ± 1 jet was too large. 

I t was suggested (Stirling and Glover in[72]) that the two step nature of this prescription 

was responsible for this discrepancy. 

An alternative approach to photon calculations is to attempt to experimentally measure 

the non-perturbative fragmentation component of the fragmentation function and use this 

universal quantity in other theoretical calculations. The cone algorithm can be used for this 

type of analysis, although a better algorithm would be more susceptible to the fraction of the 

parent quark's momentum carried off by the photon. Also by allowing electromagnetic and 

hadronic clustering a closer representation of experimental techniques can be found. One 

method proposed (see Morgan and Glover in [71]) is to treat the photon in a democratic 

manner, retaining it in the event whilst the clustering algorithm is applied. The jet with the 
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Figure 6.1: The Dali tz plot for the process e'̂ 'e"" —̂  qq'y where x' = l — Sg^/s and x = 1-Sg^/s 
using the cone algorithm. Plotted are the two regions that contribute to the process e+e" -> 
7 + 1 jet , for two different clustering algorithms, J A D E and Durham. Regions 2 are common 
to both algorithms and are the regions in which the photon is emitted coUinear to the 
quark/antiquark (along the x/x' = 1 hue) and where the hadronic energy inside the cone is 
less than eE^. Regions 1 are where the quark and antiquark merge to form a single jet and 
are different for the two clustering algorithms. 
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photon in i t is declared the photon candidate and the event is rejected i f the hadronic energy 

in i t makes up more than a certain fraction of the total energy, i.e we define a parameter 

E. 
z = 7 

{E^ + -Bhad) 
(6.2.2) 

such that z must be higher than a certain cut for the event to be retained. This better models 

the democracy of the experimental measurement. Also the algorithm no longer suppresses 

the second source of photon emission and the photon is allowed to be emitted collinear to the 

quark, thus making the calulation sensitive to long range, non-perturbative physics. This 

can then be used to measure the photon fragmentation function and once this universal 

funct ion is known i t can be applied to different processes. 

Let us consider the inclusive NLO calculation for the process e+e" -> 7 + 1 jet. This 

process is particularly sensitive to the fragmentation of final state partons, as i t has no LO 

diagram. Therefore, the lowest order terms that constitute this process are e+e" —> qq^y 

where the quark and antiquark become collinear and form a single je t and the fragmentation 

process e^e~ qq where the quark or the antiquark fragment (see Figure 6.2). We shall 

use this process to demonstrate how the coUinear quark-photon poles can be absorbed into 

the non-perturbative fragmentation function. This then leads to a well-defined evolution 

equation for the fragmentation function wi th respect to the fragmentation scale which is 

similar to the renormalisation scale of Section 1.3. From this evolution equation and other 

considerations a parametric form for the fragmentation function can be proposed, the pa­

rameters of which must be experimentally measured. I t is these parameters that the A L P E H 

collaboration have measured in[74 . 

6.3 Construction of the q j fragmentation function 

Photon-quark collinear divergences are defined as in the previous chapters (i.e. Sg-y < Smin 

where Smin is similiar to S in the 4 jet calculation. We make the change to avoid confusion 

between the cut and the cone size) using the slicing technique to divide the phase space into 

resolved and unresolved regions. They are absorbed into the definition of the fragmentation 
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Figure 6.2: The Dalitz plot for the process e+e~ qqj where x' = l-Sq^/s and x = l - s^^ /s 
using the democratic algorithm. Plotted are the two regions that contribute to the process 
e+e~ 7 + 1 jet , for the J A D E clustering algorithms. Regions 2 are the regions in which the 
photon is emitted collinear to the quark/antiquark (along the x/x' - 1 line) and where the 
energy fraction of the electromagnetic energy over the total jet energy is greater than Zcut-
Region 1 is where the quark and antiquark form a single jet.These two regions are divided 
by the dotted line. 
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funct ion, Da-^-yiz) in much the same way as the loop corrections to the quark-gluon vertex 

were absorbed into the definition of the coupling constant (see Section 1.3). Therefore 

the infini te bare Da^^{z) is replaced by the finite Va-^-^{z). The two functions are related 

by the expression. 

Va^,{z) = D,^,{z) - I l ^ ^ X ^ - ^ ^ l"^] [ . (1 - . ) ] - 4 ^ , ( . ) (6.3.3) 

where the LO photon spli t t ing function, P^^_l^{z) has the same z dependence as the gluon one 

(see Equation 2.3.54). The second term is the explicit form of the divergence (after slicing) as 

the photon becomes collinear w i th the quark. This includes ^.R as the usual renormalisation 

scale ( f rom here on we refer to the renormalisation scale as IIR to avoid confusion between 

other scales). 

As w i t h coupling constant renormalisation (in the MS scheme) this factorisation of sin­

gularities introduces a scale to the new finite quantity. Making this explicit we write the 

bare fragmentation function as a counter term to the collinear pole wi th some degree of 

non-perturbative input so that 

D,^,[z) = D,^,{z, + i (^g) {^-^) P, '2,(^) (6.3.4) 

This gives the f u l l result of the finite, dressed fragmentation function at LO as 

V,^,{z) = Dg^,{z, / . fra,) + ( ^ ) (Pi%iz) log ('""-f + z] (6.3.5) 

As well as deriving the perturbative part of the fragmentation function, we note that V must 

be independent of the unphysical fragmentation scale //frag at each order. Therefore, at this 

order we can write an evolution equation which the perturbative part of the function forces 

on the non-perturbative part such that 
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5iog(AxLg) " U - r ^ " ^ ^ ^ ^ ^ ^ ^ 

This is similar to the evolution equation of the running coupling constant and just as as 

can be run to different scales once known at one, so can the non-perturbative part of the 

fragmentation function. The evolution equation is only of this form at this order i.e. 0{a) 

and at higher orders we must include additional terms where, for example the quark emits 

an unresolved gluon before fragmenting. Similarly we wi l l have a contribution f rom gluons 

decaying into a collinear qq pair where one of the pair later fragments into a photon. This can 

be thought of as the gluon fragmenting and is thus the leading order term for the function 

Dg^^{z, fXfrag)- However we do not include this for our calculation as in the Glover/Morgan 

power counting scheme i t is 0{aag). 

Another consequence of renormalising the fragmentation function is that a pseudo pole 

has been introduced into the perturbative term. In the process e+e~ ^ 7 -|- 1 jet this was 

explicit ly demonstrated by Morgan and Glover in[71]. (Note that the appearance of this pole 

is dependent on the renormalisation scheme used. For schemes such as DIS-y[75] the pole is 

absorbed into the non-perturbative term already.) We find that the perturbative part of the 

fragmentation function has a term of the form log( l — z)^ (where one factor comes f rom the 

renormalisation as seen above and the other f rom the boundary between the quark-photon 

collinear phase space region and the quark-antiquark collinear phase region) which blows up 

as 2; —>• 1. Therefore we place a further constraint on Dg^j{z, /ifrag) that i t must cancel this 

pseudo-pole ensuring the e+e~ -) • 7 -I-1 jet rate is well-behaved as 2 -> 1. 

Also, as Smin IS an artifical construct, physical observables cannot depend on i t . I t is seen 

that when recombined w i t h the resolved photon contributions that all dependence disappears 

(assuming Saiin is taken small enough for the approximations to hold true). 

A possible form for the non-perturbative part of the fragmentation function calculated 

at the order 0(a) has the structure 

D^^iz, = ( ^ ) Pi%{z) log + D^%iz, ^0) (6.3.7) 

140 



where /xq and Dg^^{z,iJ,o) are constants of integration or more physical, can be thought 

of as the scale at which the physics becomes non-perturbative and as such can only be 

determined f rom experimental measurement which wi l l give Dg^^{z, no). As can be seen, 

this funct ion has the correct form to satisfy both the cancellation of the pseudo-pole and the 

evolution equation. 

The values of fxo and Dg^^{z, (MQ) have been extracted f rom data gathered by the A L E P H 

collaboration using a democratic algorithm and the Durham clustering in the region 0.7 < 

z < 0.95. I t was found that 

Dl%{z,^,)=(^^^ (^-Pl%{z)\ogil-zr-l-\n(^^^^ (6.3.8) 

This then leads to a one parameter fit the result of which is given by 

/̂ o = 0 . 1 4 i g ; ^ ™ G e V (6.3.9) 

However, i f the calculation of e"^e" —> 1 jet is extended to 0{aas) [79] and the form of the 

fragmentation function recalculated we find that 

/?r-^?(^,A^frag) = ^ f ; ? ( - , / ^ o ) + ^ l o g ^ P i ^ , ( ^ ) 

log f P m , ( . ) » (6.3.10) 

+ 

+ 

+ 

where P^}l^{z) is the next to leading order quark to photon universal spli t t ing function 

and P^^g{z) is the leading order quark to quark universal split t ing function [38]. The non-

perturbative input D^}^'^{z, fio) can then be extracted by performing a similar fit to the 

A L E P H data [74] (except now we also have to fit for as{Mz) as well) giving 
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f ae^\ 
D f ^ ? ( z , / x o ) = ( - P j ! ) , ( z ) l o g ( l - 2 ) 2 - F 2 0 . 8 ( 1 - z ) - 1 1 . 0 7 ) (6.3.11) 

w i t h //o = 0.64 GeV and a^iMz) = 0.124. 

Another form for the fragmentation function can be derived by considering the evolution 

equations and resumming all the leading logarithms (LL) and next to leading logarithms 

( N L L ) respectively. For this thesis we shall present a basic overview of this technique. 

For more details the reader is referred to [78]. Let us for the moment assume that the 

perturbative part of the fragmentation function is proportional to a/as instead of the fixed 

approach where i t is proportional to a. This adapts the LO evolution equation such that 

the convolution between the fragmentation function and the quark to quark split t ing is 

as important as the quark to photon spli t t ing function. Therefore the new LO and NLO 

evolution equations are given by 

(6.3.12) 

As w i t h the fixed order technique the solutions to Equations 6.3.12 have two contributions, 

a perturbative, pointlike term and a non-perturbative hadronic term. The perturbative part 

of the resummed solution of Equation 6.3.12 is found by the following prescription 

• The leading logarithmic (LL) or beyond leading logarithmic (BLL) approximation is 

performed by Mel l in transforming the respective evolution equation. A Mell in trans­

form is defined as 

D,^,{n, /zLg) = [ dz z^-'Dg^,{z, / . ^g) (6-3.13) 
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The transform has the effect of separating any convoluted functions and thus making 

the necessary integration over log(//|.j^g) possible. Therefore after Mellin transformation 

an analytic solution can be found. 

• The solution is then Mell in inverted numerically such that the fragmentation function 

is returned to z space. For L L , only terms of the order a" log""*"̂  (/ul^g) are kept 

whereas for B L L both leading logarithms and logarithms of the form a" log"(/Lifj.ag) 

are retained. The coupling constant is expanded according to the beta function up 

to the order required. Approximations of these numerical resummed solutions can be 

obtained analytically by expanding the solution as a series in in moment space and 

then analytically inverting the truncated expression. 

From the asymptotic l imi t of the Mell in transform where the solution is independent of any 

experimental input 

we see just if icat ion for our choice that the fragmentation function is of the order 0{a/as) 

unlike in the fixed order approach where i t is simply 0{a). This makes the fragmentation 

contribution as important as the LO perturbative contribution in pp - > 7 + jets. 

The hadronic part of the fragmentation function is given by the solution of the homoge­

nous evolution equation i.e P°_^^ = Pq_^^ = 0. Again we perform a Mell in transformation 

to make the integral over the convolution possible and return the solution to z space af­

terwards. However, an additional input must be included in the hadronic solution similar 

to the Dg^j{z, /io) term in the fixed order solution. This input can either be taken f rom 

experimental data or f rom a set of V M D (Vector Meson Dominance) model assumptions and 

whichever approach used is proportional to a only. 

Even when both the perturbative and non-perturbative parts of the resummed solution 

have been calculated, there exists some ambiguity in how to combine them. One method is to 

combine the relevant terms together such as the L L pointlike solution wi th the L L hadronic 

solution. This approach was adopted by Gliick, Reya and Vogt (GRV) [80]. However this 
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prescription has a tendency to include terms beyond the order being considered which can 

lead to significant contributions and must be systematically omitted. 

Another approach performed by Bourhis, Fontannaz and Guillet (BFG) [81] links the B L L 

perturbative solution wi th the L L hadronic solution. We shall see later how this resummed 

approximation compares wi th the fixed order calculation. 

For resummation techniques to work, the resummed logarithms must be the only large 

logarithms present in the calculation as all other logarithms are neglected including terms 

of the order l n ( l — z) which we saw are important in the large z l imi t for the process 

e+e" ^ 7 - 1 - 1 jet . When resummed analytic expressions for Dq^^ are implemented into 

a Monte Carlo routine for electron-positron annihilation, the l n ( l - z) contribution f rom 

the perturbative counter term is not cancelled and the differential cross-section becomes 

negative for 0.9 < z < 1. This was pointed out by B.R.Webber in [76] where he stated that 

the leading logarithmic approximation would be expected to yield accurate predictions for 

intermediate values of z only. The A L E P H collaboration also made a fit to data for this 

fo rm of the fragmentation function, but in order to approach the data, large values of A 

were required (of the order 1 GeV). Scales of this size no longer allow for the dismissing 

of non-logarithmic terms in the fragmentation function and as such suggests that the L L A 

approach should be ruled out at values of z between 0.7 and 0.9. 

DPRAD makes use of the fragmentation function as defined in Equation 6.3.7 wi th the 

measured parameters of Equations 6.3.8 and 6.3.9 for the process pp j+ jets. We also 

study the effects of using the BFG resummed fragmentaion function. Before we can detail 

the structure of DPRAD, we need to consider another theoretical tool used in hadron colliders, 

that of calculating in i t i a l state radiation. 

6.4 Initial state radiation and crossing functions 

I n our previous calculations we have only treated final state radiation because the in i t ia l state 

of e"''e" cannot radiate gluons. However in the collision of a proton and an antiproton, we 

allow ourselves the possibility of producing in i t ia l state hadronic radiation that is unresolved 

in the detector. This radiation (and the poles that are produced) is absorbed into the 
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structure functions of the participating hadrons in much the same way as the quark-photon 

collinear poles were absorbed into the fragmentation function of the previous section. 

We again make use of the ordered subamplitudes which exhibit the universal soft and 

collinear l imits after colour decomposition. (See Section 2.3.8). For a fu l l derivation of the 

crossing functions the reader is referred to [77, 36]. What we present here is an overview of 

that proof. 

The differential cross section at leading order for the hadronic process a + 6 7 + n 

partons where each parton is identified as a jet and a and b are the hadrons involved is given 

by 

d(TH,H, = J2fa'{^i)f"'i^2)da^a°{^u^2)dx,dx2 (6.4.15) 

where f^^ is the probability of finding parton a in hadron Hi w i th momentum fraction 

xi and daab{xi,X2) is the squared matrix element of the partonic process wi th ini t ia l state 

partons a and b w i t h incoming kinematics x i and X2. This also contains the relevant phase 

space factors and in i t ia l averaging factors. In order to retain the crossing properties of LO 

at N L O we define the differential cross section at NLO as 

dan.H, = Y.^a'{^i^b'i^2)da'^^''{xi,X2)dxidx2 (6.4.16) 
ab 

where T^^ is the eflfective NLO structure function and da^^'^ is the finite NLO partonic 

cross section which can be calculated by crossing f rom the NLO calculation of the process 

vacuum —>• a + 6 + 7 + n^ . This can be expressed as usual in terms of a perturbative expansion 

in the coupling such that 

daT=dal^ + a45aT (6-4.17) 
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where the coupling is evaluated at the renormalisation scale, fiR. A similar form can be 

wr i t ten for the effective NLO structure functions after mass factorisation, the renormalisation 

procedure that absorbs all the divergences f rom the ini t ia l state poles. This can be wri t ten 

as 

^a'i^l)=fa'{^l,f^F) + 0^sC^'{Xl,PF) (6.4.18) 

where the function ' ( x i , y^^) is known as a crossing function. Here as is calculated at the 

renormalisation scale. I t can also be calculated using the factorisation scale although the 

difference is negligible (assuming asln{fj,l/^l) < 1). This gives the fu l l NLO result as 

d<7H.H. = E [ / i ' n ^ i ) / f ^ ( ^ 2 ) ( < i a , ^ , ° ( a : i , X 2 ) + a.d<Ja,^,^°) 
ab 

+ as{C^^{x,)f^^{x2) + f^^C^^{x2))dal^{xuX,)\ (6.4.19) 

The crossing functions receive two contributions, which are due to the inability of differenti­

ating between a single incoming parton and two collinear partons where the collinear partons 

either exist a) i n the in i t i a l state and the final state or b) both in the in i t ia l state. The first of 

these leads to a convolution between the structure function and the Altarelli-Parisi split t ing 

functions. The second contribution is necessary to cancel the unphysical ini t ia l - ini t ia l state 

collinear pairs which come f rom crossing two collinear partons f rom the final state to the 

in i t i a l state. Schematically this gives 

Vmin (6.4.20) 

where ?/min = Smin/Q and where the first term is due to the emission of radiation into the 

final state and the second is the crossed final state unresolved radiation. (The minus sign of 

this term is due to the crossing prescription.) 
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The derivation of the crossing functions makes use of the factorisation of phase space and 

the matr ix elements as seen in Section 2.3.8, but wi th some slight modifications due to the 

in i t ia l state. We begin by concentrating on the init ial-final state collinear pairs. We write 

the phase space of the 2 - ^ 2 process wi th parton Q off-shell as 

dQ^d'^Pia + b ^ u + Q)=dQ-
•d'-'pu, 

2K,, 
i27rY-''6{Sab - \Sau\ - \Sbu\ - Q') (6.4.21) 

where the absolute values of the mass invariants are used to ensure positive values for those 

invariants between in i t ia l and final partons. We then write the d - 1 integral as a 1 dimen­

sional radial term mult ipl ied by a d - 2 dimensional angular term. This gives 

d'^-^Pu dnd-2 
{Eu sin ey-^dE^de 

2 K , 
(6.4.22) 

where 6 is the angle between u and b. Substituting the integration variables for invariants 

using the Jacobian we find 

Ehin'^e 
^au^ub ^ 

Sab 
dsaudsub — ^Eu sin OsabdEudB (6.4.23) 

which leads to 

^ dQ^d''P{a+p^u+Q) = dQ''^^''-' 
2Sab 8 

Sbu 

Sab 

d-A 
2 d Sfiy^ d Sy^b 

'ab 
{27rf-'d{Sab-\Sau\-\Snb\-Q') 

(6.4.24) 

As there is no dependence on the vir tual i ty of Q we can integrate over this without changing 

the rest of the factor. Now we consider the configuration where u is collinear to b such that 

Sub\ < Smin and we introduce parton h which participates in the hard scattering process. I t 

carries a fract ion z of the parent quark's momentum such that 
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Ph = ZPb, Sah = ZSab 

= il-z)pb; \sau\ = ( l - z)Sab (6.4.25) 

I n this l i m i t we find that the 2 2 body phase space factorises to a collinear term multiplied 

by the 2 1 phase space. 

—d'Pia + b^u + Q)^ d''P,oi{b -^u + h)-^d''P{a + h ^ Q) (6.4.26) 

where 

d''P,,,(h ^u + h)= dzdSuAi} - z)sub]'^^^^{2Trf-''^ (6.4.27) 
4 ZTT 

This is the fo rm for the collinear phase space factor that we shall use later. Now we shall 

briefiy consider the behaviour of collinear in i t ia l state matrix elements. 

The mat r ix elements, as in the collinear final state configurations, factorises when an 

in i t i a l state parton is collinear to a final state parton such that for h and u collinear we find 

\M{..Au,...)\' ^ cY^''\M{..,h,...)\' (6.4.28) 

where 

A^,k_(9'N\ 1 P^,^,{z) 
\ 2 J Sij z 

(6.4.29) 
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As we can see this is very similar to the final-final collinear factor. The extra factor I/2 is 

due to the identity of the partons becoming collinear. In the init ial-final example we can see 

that the invariant mass is a factor z smaller as we allow the parton wi th momentum fraction 

{\ ~ z) to take part in the hard scattering whereas before the hard scattering parton had 

a momentum fraction equal to 1. As before we shall use the conventional Altarelli-Parisi 

sp l i t t ing functions which are defined in Equation 2.3.54. The major difference between the 

in i t ia l - f inal spl i t t ing and the final-final split t ing is that the parton that participates in the 

hard scattering can not be soft. This places a lower bound on the value of z unlike the 

final-final collinearity where the parent parton participates in the hard scattering and z can 

be equal to 0. The upper bound of z is also set by demanding that the final state parton in 

the in i t ia l - f inal collinear pair must not be soft (to avoid the double counting of final state 

soft gluons). 

Incorporating Equation 6.4.26 and 6.4.28 into the cross section for the collinear pairing 

Sub < 5min givCS 

^^^initiai = E ^4 -^" '<o i (& ^ « + h)6{x2 - zx')dx']da]:^{xux,)dx,dx2 (6.4.30) 
ahb 

where momentum fraction X2 carried by parton h is given by the momentum fraction x' 

carried by parton b mult ipl ied by the fraction left after the emission of parton u which 

carries off a fraction (1 - z) of the incoming momentum. Comparing this equation wi th 

Equation 6.4.19 we see the form of the crossing function is given by 

« . ^ . % t i a l ( ^ 2 ) = E / f ^(^OcF-^^'^^ollf t - > U + h)6{X2 - zx') (6.4.31) 
b 

Making this explicit we substitute in Equations 6.4.29 and 6.4.27 giving 

(6.4.32) 
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where we have integrated the delta function over the y momentum fraction, giving the extra 

factor l / z , and also over the invariant mass Sub between the l imits 0 < s„6 < Smin assuming 

0~^ = 0. The scale ^IR is introduced to keep Q;^ dimensionless and the limits on the z integral 

ensure that u is not soft. (Here Z2 = Smin/ |s6n| where n is the colour connected neighbour of 

b and = {1 - z)\sbn\-) The lower bound is fixed by assuming that parton b is carrying 

all of the proton's momentum (x' = 1) and then the fraction needed to ensure X2 enters the 

hard process is z = X2. 

As the spl i t t ing functions Pgg^g and Pgq~^g are not sensitive to the upper bound of the 

z integral due to the non-singular nature of soft quarks (the quark-antiquark split t ing does 

not depend on any of the l imits and the quark-gluon split t ing is only dependent on the lower 

bound whereas the gluon-quark spli t t ing is only dependent on the upper bound) we allow 

their upper bounds to equal 1. We can also set the upper bound to 1 for the other two 

splittings by using the ( )+ prescription such that 

Jx [{i-zy+']+ Jx ii-z)+ Jx ""^^y 1-z )^ 

f d z j ^ = / ' d . ?4^ + , ( l ) l o g ( l - . ) 
Jx (1 - Z ) + Jx 1 - Z 

= / ' , , £ ( 4 ^ , o g ( l - . ) + £ ^ l o g ' ( l - . X 6 . 4 . 3 3 ) 
Jx \ L — Z J ^ Jx I — Z L 

provided that g(\) is well behaved. Therefore we can write the crossing functions all in terms 

of 

=- (̂ ) ̂  (^)li:£f/f- ( ? ) ( - . 3 4 ) 

where 
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J,^A^,^2) = ^^V^) - )̂ + . . . " + ^ ^ - ^ + ^(1 - Z ) ^ -
\ e J [{L — z) z 

Jg^g{Z,Z2) = ( l - j ^ ) 
^ - 1 \ 1 / 1 - I - ^2 ^ 

2 \ [ { i - z y ^ % 

Jg^g{z,Z2) = -Pgg-,g{z){l - Z)-' 

Jg-,g{Z,Z2) = ^Pgg^g{z){l - Z)-' (6.4.35) 

Now we must form the contribution f rom the crossed final state collinear pair. This is given 

by the final-final spl i t t ing seen in the previous chapters recalling now that h ^ ub rather 

than b uh 

da^n.X = E/fn^l)[/f^(^2)4""'c?'^Pcol,final]c^^aT(^l>^2)c/:rid^ (6.4.36) 
abh 

where the equations for c/^^ and c/'̂ Pcoi,finai are given in Equations 2.3.54 and 2.4.67 respec­

tively. This gives the form of the crossing function as 

« . C , % ( x , ) = - ( ^ ) — 1 - ^ i " ^ ) fl!\x2)Whu-.H{zuZ2) (6.4.37) 

The funct ion Ibu^h{zi,Z2) is an integral over the momentum fraction z and the integration 

l imi ts zi and Z2 are again due to the requirement that u cannot be soft where zi is defined 

as Sjnm/\shn\ (« is a colour connected neighbour). Therefore the integral is given by exactly 

the same form as for a final-final collinear pair 

Ibu^hizi, Z2) = \ dz\z{\ - z)rP^^u{z) (6.4.38) 
4 y^i 

which leads to 
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2 

(6.4.39) 

Combining these two functions into a single crossing kernel which is convoluted wi th the 

structure functions we find for the crossing function 

1̂ dz 
^ J x Z \ZJ 

(6.4.40) 

where 

+ ^ / . 5 - . . ( 0 , 0 ) 

(1 - e) \ Smin / 

Xa-.q{z) 

Xq-^gi^) 

f ) rlT—^ f — V . ^ . ( ^ > - 2 ) - Iq,^q{0,z,)S{^ - Z)) 
IT:J l\L — e) \ Smin / t 
N 1 / f T T M i y i 

27ry r ( l - e ) V s 

N_ 
2^ 

min / ^ 

J r ( l - e) U m i n j e-"^-^^"'"^ 
(6.4.41) 

where all dependence on the bounds of the integrals exactly cancels, leaving the kernel 

independent of the hard process. Note that for the gluon-gluon split t ing we include two 

terms J{z, Z2) and J{z, zi). This is due to the different ordering that the gluons can achieve 

in the spl i t t ing. The delta functions are used for calculated integrals at an arbitrary point 

along the z integral w i t h z = 1 choosen for simplicity. The last two kernels Xg^q and Xq-^g 

have no contribution f rom the crossed collinear pair as these would lead to soft in i t ia l quark 

states (as we let the upper bound equal 1) which are not allowed. 
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However, we st i l l have explicit 1/e poles that need to be absorbed. This is done by 

renormalising the bare LO structure functions / / f (a;) in the equation 

^ / f ( ^ ) = / / f ( ^ ) + « .C ' f ( r r ) ( 6 . 4 . 4 2 ) 

The bare structure function is renormalised to give a finite LO structure function which is 

scale dependent and an infinite counter term that wi l l cancel wi th the intial state collinear 

pairs. This can be wri t ten as 

f^{x) = f^{x,l^F)-asj: -f^[-.,,j,AR,^n{z,HF) ( 6 . 4 . 4 3 ) 

Therefore the finite crossing functions are given by 

C^{x. ^F) = E - f i " t^A {X,^k{z) + R,^k{z, M f ) ) ( 6 . 4 . 4 4 ) 
^ Jx Z \Z J 

These R^^hiz, fJ-r) counter terms exactly cancel all the collinear poles leaving the effective 

structure functions independent of the factorisation scale although the fixed order cross 

section is dependent on fip as we neglect terms of the form alC^^{xi, fj.F)Cb^{x2; IJ-F)- For 

the exact forms of the counter terms the reader is referred to the previous reference of [77]. 

I t is assumed for this overview that the scheme used is the MS scheme. After cancellation 

and integration, the finite form of the crossing functions is given by 

c f - ( . , . . ) = ( ^ ) ( 6 . 4 . 4 5 ) 

where we have summed over all partons b. The fu l l form of the functions A and B can 

be found in [77]. Therefore, given a set of structure functions in a given scheme we can 

derive a set of process independent crossing functions which can be used in conjunction wi th 

the 0{aas) 2 -> 2 hard processes to calculate the 0{aal) contribution f rom ini t ia l state 

radiation. 
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6.5 The full result and structure of DPRAD 

We combine these two theoretical contributions to the standard NLO final state photon 

production calculations to find the resultant 0(aa^J form. In this section we shall outline 

the fo rm of each contribution to the f u l l prompt photon production process for this Monte 

Carlo. 

6.5.1 L O contributions to 1 jet final states 

The LO cross section for the production of a photon f rom hadron-hadron annihilation is 

relatively simple and the squared matr ix elements can be calculated by hand or using a 

short F O R M program. Wi thout any quark fiavour summation the LO contribution is given 

by 

da!;%,, = I dx,dx2 E Ys^a{x,)Mx2)\Ml?^,^, iJ'dPS2^2 (6.5.46) 
ab 

where Xi,X2 are the fractions of the hadron's momentum carried by the partons, s = xiX2S 

is the centre of mass energy of the partonic process, fa{xi),fb{x2) are the LO parton dis­

t r ibu t ion functions where parton a is f rom the proton and parton b is f rom the antiproton, 

dPS2^2 is the differential phase space factor for 2 to 2 body scattering and finally where the 

squared mat r ix elements are given by 

jetP = 2^aMael{N' - 1)8 + ^ ) (6.5.47) 
XSq-y SqgJ 

However, we need to separately include the tree level processes qq -> ^7, qq —> g^. qg —> 97, 

QQ —> 97) gQ 97 and gq -> 57 because the order and identity of the in i t ia l partons is 

important due to the different structure functions of the proton and the antiproton. We wi l l 

assume for the rest of this thesis that the order of the ini t ia l partons is such that the first 

parton resides in the proton and the second in the antiproton. The relevant diagrams for 

this contribution are given in Figure 6.3 
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'"(rtrfcrtrirt ''(rrff-ff-ff-ri 

Figure 6.3: The tree level diagrams contributing to the process —> 7 + 1 jet. Diagrams are 
labelled such that the parton f rom the proton is in the top left hand corner of the diagram and 
the parton f rom the antiproton is in the bot tom left hand corner of the diagram. Although 
many of the diagrams may appear the same, due to the different parton distribution functions 
of the proton and the antiproton we must calculate each individually i.e. no symmetry factor 
can be used to relate the cross section of the subprocess qq —)• gj to the cross section of 
QQ 91 the quark distribution is different in the proton compared to the antiproton. 
The dots on the quark lines indicate alternative locations for the photon which have been 
taken into account, but which do not affect the colour structure of the matrix elements. 
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6.5.2 L O contributions to 2 jet final states 

Another source of tree level diagrams comes f rom the photon plus 2 jets final state diagrams. 

Again these can be calculated by F O R M , but now we must consider three possible processes 

and their symmetries, qq —> gg-y, qq —)• QQ-y and qq qqj. Therefore the cross section for 

this tree level process is given by 

^ C 2 j e t s = / ^ ^ 1 ^ ^ 2 E ^ A ( ^ l ) A ( ^ 2 ) ( | A ^ K + 2 j e t s 
ab 

a6-»-7+2jets l 

ai)->7+2jets 

^J^QQ^QQl |2 

\M'l^^%,f)dPS2^, (6.5.48) 

where the superscript refers to the subprocess and the subscript refers to the ini t ia l partons 

e.g. for the superscript qq —> ggj we could have subscripts gg —̂  7 + 2 jets, —> 7 + 2 

jets, gq ^ + 2 jets plus all the charge conjugated ini t ia l states. is the differential 

phase space factor for 2 to 3 body scattering. Firstly the squared matrix elements for the 

subprocess qq gg-f are given by 

l - ^ K + V P = {27ras)'{A7vael)N{N' - 1)16 [\S{Q;1,2;Q)\'+ \S{Q;2,1;Q)\' 

(6.5.49) ^ | 5 ( Q ; i , 2 ; Q ) r 

where 

\SiQ;l,2;Q) 

\SiQ;2,l-Q) 

\SiQ;l,~2;Q)\' 

2 _ ^qgi^giq ^qg2^g2g + ^q^^jg ^ggi^liq ^Qg2^g2q ^QJ^jq 

2 _ ^qgi^giQ + *gg2*g2g + '^97*79 '^ggi^gig + *gg2'^g29 *g7'^7g 

^952*5251 ^319*97*79 

^ggi^qgi^giq + *gg2^g2g + *g7'^79 + *9fll*gi9 *gfl2*g2g •^97'^79) 

•̂ 991'̂ 992 •^97'^Si9'^929'^79 

(6.5.50) 

156 



We recover the related processes e.g. qg —)• qgj by exchanging momenta in the invariants, 

but the fo rm remains the same. A l l colour distinct diagrams are given in Figure 6.4 

Secondly, the squared matr ix elements for the subprocess qq QQj where the flavours 

of the quarks are distinct. We treat this separately to the process where the flavours of the 

quarks are identical. The form of the squared matrix elements before summation over the 

quark flavours is given by 

l -Min?+%tsP = {27ra,r{Ana){N' - 1)16 [el\T{q,q;q,q)\'+ el\r{Q.,Q:Q,Q)\' 

+ egeQ\T{q,q;Q,Q)\' + e,eQ\T{Q,Q;q,q)\'] (6-5.51) 

where the arguments of the T functions indicate which quark line the photon couples to in 

the mat r ix element and the conjugate respectively. Note that the degree of colour is reduced 

by a factor N for the four quark term compared to the 2 quark, 2 gluon term making this a 

sub-leading colour contribution. The T functions are given by 

r{q,q:q.q) = , , , _ 

riQ,Q;Q,Q) 

T{q, q; g , Q) + r{Q, Q; q, q) = {SIQ + 4q + s\-^ + 3%^) 
SqqSqjS-yq 

X ( I ^gQ 

K^Ql^-yQ^QQ^QQ ^Ql^iq^m^QQ ^qi^Qj^gg^QQ ^IQ^yQ^QQ^QQ y 
(6.5.52) 

The final LO squared matr ix elements to calculate are those for the subprocess qq qqj 

where the quark flavour is identical for the two fermion lines. Here we wi l l refer to the 

quarks as pair 1 and pair 2 to identify which line the photon couples to. However, unlike 

the distinct quark flavour diagram there exist two LO matrix element diagrams, one in the 

s channel and one in the t channel. This leads to two squared terms and two interference 

terms in the squared matr ix element which have different colour factors. We find 
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Figure 6.4: The tree level diagrams contributing to the process —)• 7 + 2 jets through 
symmetries of the subprocess qq —> gg-j. Diagrams are labelled such that the parton f rom 
the proton is in the top left hand corner of the diagram and the parton f rom the antiproton 
is in the bo t tom left hand corner of the diagram. Although many of the diagrams may 
appear the same, due to the different parton distribution functions of the proton and the 
antiproton we must calculate each individually i.e. no symmetry factor can be used to relate 
the cross section of the subprocess qq ggy to the cross section of qq —>• ggj as the quark 
distr ibut ion is different in the proton compared to the antiproton. The dots on the quark 
lines indicate alternative locations for the photon which have been taken into account, but 
which do not alTect the colour structure of the matrix elements. The dot on the gluon line 
indicates a tr iple gluon coupling. 
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,h->-7+2jetsl {2nasf{ATiael){N^ - 1)16 

7; channel I + \% channel + ^ (I channel T̂ ĉhannel I + I "̂ t channel T̂ ĉhannel I) 

(6.5.53) 

where 

IT; 

IT: s channel 

channel — 

s channel /t channel 

_l_ of -
Q1Q2 

^qigi^q2g2 

'9251 

^917^792 ^927^791 
' o2 I + s2 _ 

9192 ' 9192 ' qiqi 

^9192'^9291 

'9191 + 
•^917*791 

^92 92 

^927 *792 

+ T ; channel T̂ ĉhannel ~ 

'9191 *9292 

92 91 

'9 l9 i 

^917^791 

- ~ \ 9292 I s 

X 

+ '9292 '9192 '9192 

•̂ 927 ̂ 792 ^917*927 ^791 ^792 

•̂ 9192 

^917 •̂ 792 
+ '9291 9192 '9192 

*927'^79l "^9l7'*927 '̂ 791 "̂ 792 

I S " . + 1̂̂ 92") ('^9191^9292 + ^9192^9291 ^9192^9192) 

^9191*9292*9192^9291 

.2 
'9192 

* 9 l 7 * 7 9 l 
+ '9i92 + 

*929i '9192 '9192 

*927 *792 *gi7*792 *927 *79l *9l7*927 *79i *792 

X 

(6.5.54) 

which we note is another sub-leading colour contribution. The diagrams contributing to the 

4 quark subprocess are given in Figure 6.5 

6,5.3 Extra unresolved parton contribution to 1 jet final states 

Having calculated the LO terms for the process pp 7 + 2 jets we can easily find the 0{aal) 

corrections to the process -> 7 4- 1 jet due to an extra unresolved parton added to the 

tree level process —>• 7 -1- 1 jet by using the singular limits of the two jet result. These 

are given in terms of 1/e and poles multiplied by the L O result for 1 je t final state. 

Therefore for the extra unresolved partons we have 
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Figure 6.5: The tree level diagrams contributing to the process pp ^ ^ + 2 jets through 
symmetries of the subprocesses qq -)• qq^ and qq -> QQ'y . Diagrams are labelled such that 
the parton f rom the proton is in the top left hand corner of the diagram and the parton 
f rom the antiproton is in the bot tom left hand corner of the diagram. Although many of 
the diagrams may appear the same, due to the different parton distribution functions of 
the proton and the antiproton we must calculate each individually i.e. no symmetry factor 
can be used to relate the cross section of the subprocess qq QQ^ to the cross section of 
qq —>• QQi as the quark distribution is different in the proton compared to the antiproton. 
The dots on the quark lines indicate alternative locations for the photon which have been 
taken into account, but which do not affect the colour structure of the matrix elements. 
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mm 

(6.5.55) 

As usual, by renormalising we eliminate the U V pole f rom the last term. 

6.5.4 Virtual corrections 

As we have seen before and according to the K L N theorem the singular terms present in the 

v i r tua l contribution cancel the singularities f rom the extra unresolved parton contribution. 

The relevant diagrams for the vi r tual corrections can be seen in Figures 6.6 and 6.7. Here 
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we present the poles and finite terms as calculated. 

V 
2n 

— -
^ W K'r, 

+ ^{Q;9;Q) 
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£2 

'991 3_f 
2e \4iTfj, 

'991 '991 

4e 4e 
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2. 

L O 
a6-)-7+ljet 

(6.5.56) 

where 

:F{Q;g;Q) 27ra,47ra A^^ - 1) 
\ 27r 

+ 7r2( i -e (5 , , ) -e (s ,^) ) + 

3 log 
'99 '99/ 

'991 

'991 

+ 2 M + f M log 2 / P99I 

i V 2 
_ 4 M _ 2 ^ - 4 log ' 

'99 '99 

'99 

'991 

'991 

'99 . 15591 

+ ;r ' ( l - e(.,,) - 6 ( 5 , , ) ) + - 4 ^ - 2 - ^ - 4 log 
•̂ 99 '99 

'991 

'991 

+ 7r2(l - 0 ( 5 , , ) - 6 ( 5 , 5 ) ) + 
^^99 A\\^„i\^19\ 4 log 

'99 '991 

+ 
6s 99 

'99 
4 log IS99I 

'991 

(6.5.57) 

In both the v i r tua l and extra parton terms we have had to analytically continue log'(re) 

such that invariant masses calculated between ini t ia l and final state partons wi l l produce 

sensible results. Therefore we introduce 0 terms into the calculation. Combining the extra 

unresolved parton and vi r tual results and cancelling the IR poles we find 

^ < + S e t = / ^ ^ 1 ^ ^ 2 E ^ / a ( ^ l ) A ( ^ 2 ) | > l f , ^ ° 7 + l j e t l ' ^ ^ 5 2 - . 2 (6-5.58) 
ab 

where 

\M o6->7+ljet l 7e + v 
m \ 9 ; Q) - ^ ^ ( Q ; Q) ] l - ^ 7 ? i j e t l + H Q ; 9; Q) (6.5.59) 
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q/q 

Figure 6.6: The v i r tua l corrections to the subprocess qq —> gj and qq gj. The circle 
indicates either a quark self energy i.e. a gluon emitted and reabsorbed or a vertex correction. 
The solid dots indicate alternative positions for the photon which have been taken into 
account i n the calculation. As usual the proton's parton is in the top left hand corner of the 
diagram and the antiproton's parton is in the bottom left hand corner. 
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2-K 

+ 
TT 

/ C ( Q ; Q ) 

2 ^e{Sqg) + e{Sgq) - ^ 

27r 

min mm mm 

+ a,(//^)fco log 
mm 

mm 

(6.5.60) 

Not shown here is the factorisation of the 3 body phase space into the 2 body phase space 

mult ipl ied by regulating x^ terms. The reader is referred back to Chapter 2 for the details 

of this factorisation. 

6.5.5 Crossing terms and fragmentation contributions 

First we consider the crossing terms derived in Section 6.4. As stated before these simply 

replace the respective parton density functions and mult iply the LO 7-I-I jet matrix elements. 

Therefore we write 
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q/cj q̂ qj 

q/q q/q q/q 

q/d q/q? 

Figure 6.7: The v i r tua l corrections to the subprocesses qg 57, gq 97, 95 ^ ?7 and 
gq qj. The circle indicates either a quark self energy i.e. a gluon emitted and reabsorbed 
or a vertex correction. The solid dots indicate alternative positions for the photon which 
have been taken into account in the calculation. As usual the proton's parton is in the top 
left hand corner of the diagram and the antiproton's parton is in the bot tom left hand corner. 
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da';°l%, = I dx,dx2^^.{Caixul,l)Mx2) + fa{Xr)a{x2,f^l))\Ml^^^^ 
ab 

(6.5.61) 

where the Ca{xi) functions are defined in Equation 6.4.45. 

The final contribution we consider is due to the fragmentation of a final state parton 

into a photon. The matr ix elements that are convoluted wi th the fragmentation function 

are those tree level diagrams of order 0{aa'^) wi th quarks and/or antiquarks in the final 

state. See Figure 6.8 for the relevant LO diagrams. Therefore we need to consider all the 

symmetries of the diagrams qq —)• gg, qq -> QQ and qq —>• qq that have at least a single 

quark/antiquark in the final state. This gives the differential cross section as 

rf<:!jet = fdx,dX2j:^Jaix,)fb{x2){\M'^?-,gg\' 
•' ab 

+ M^^ - I ' 
- r •''''9g-*99l 

+ \M^o?-.oo\")Dq-.,iz,t^UdPS2^2dz (6.5.62) 

The squared matr ix elements for these processes are well known and are reproduced in 

Equation 6.5.63. 

/ 3 3 
\M^P,J' = 47r'alN{N' - 1)8 I ̂ ^^^ + '''' + '-^^^ + 

\ *9l92 *99i'^9i92 *9i92 *992'^9i92 

1 / 9 S \ \ 

_ _J_ •̂ 991 _|_ ''992 
\ *992 *99l / > (<}2 _ | - <}2 „ 2 t<2 9 o 2 \ 

« 2 ^ o 2 A/s —c — 
^qiqi ^9i92 •'9191^9192/ 

\M];^_^^^f = i . ^ a ^ A N ' - l ) s l i ^ ^ ] (6.5.63) 
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Figure 6.8: The tree level diagrams that are convoluted wi th the fragmentation function, 
Dq^^{z, lip) to produce the fragmentation contribution to the process pp ^ 7 4- I j e t . The 
only requirement is that one of the final state partons must be a quark or an antiquark. (At 
this order we neglect the contribution L>p^-y(z,/i |)). 

6.5.6 Final result 

Bring all the separate contributions together we have 

da, pp->7+X 
j ^ L O I J ^ N L O I j_cross 
" ^ 7 + l j e t " " 7 + l j e t "'^7+1 jet 

L O 
+ C?^7+2jet 

+ ^"^7+1 jet (6.5.64) 

We split up the equation in this manner to identify various groups. The top group can all 

be calculated using the 2 to 2 body differential phase space factor and therefore we only 

need to call this momentum generator once. The next term down is the only term that 

requires the 2 to 3 body differential phase space factor and therefore is set up on its own. 

Finally, the bot tom term requires not only integration over 2 to 2 body scattering, but also 

contains an additional integral over the fraction, z of the photon's momentum compared 
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to the photon cluster's momentum. A l l these calculations include integrals over the in i t ia l 

partons' momentum fractions xi and X2. This is the basic structure of DPRAD. We have not 

included quark flavour summation here, but this is ful ly incorporated into the Monte Carlo. 

In the next chapter we analysis some of the results produced using both the fixed order and 

the B F G resummed fragmentation functions, comparing wi th data gathered at the Tevatron 

and studying some of the effects of cone algorithms and renormalisation/fragmentation scale 

dependence on the z / p t distributions. 

6.5.7 5min independence 

Having collated all the separate pieces we outline the independence of the final calculation 

on the theoretical phase space division parameter, Smin- This is the parameter we have used 

to define collinear and soft partons such that i f < Smin and Sjk < s^m then parton j 

is soft whereas i f < Sjnin and Sj^ > Smin then partons i and j are said to be collinear. 

When we calculate the sliced contribution to the process this introduces terms of the form 

log'(sniin) and log(5niin)- Howcver, these are cancelled by the numerically calculated region 

of phase space where all the partons are resolved. In Figure 6.9 we demonstrate the Smin 

independence of DPRAD, an essential indication of whether the routine correctly calculates 

the cross section. 

6.6 Summary 

I n this chapter we have introduced two theoretical tools necessary for the calculation of 

prompt photon production f rom hadron-hadron collisions. This is an important process to 

study as i t facilitates our understanding of both the gluon distribution in the proton at 

moderate values of x and the process of fragmenatation, a universal non-perturbative effect. 

Firstly, we considered different techniques used in measuring and calculating prompt 

photons. Ideally, we would wish to eliminate the non-perturbative part of the calculation 

and this naively could be done by using isolated photons which are also relatively easy to 

measure. However, a perfectly isolated photon is an infra red unsafe object and therefore we 

must allow some degree of non-perturbation into the calculation to ensure a sensible answer. 
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Figure 6.9: Plot demonstrating the independence of the calculated cross section on the 
theoretical parameter Smin- The approximations made by the slicing routine are better at 
smaller values of s^in, but as we can see, numerical instabilty is a problem in this region. 
Therefore we choose a value of Smin = 0.1 for the rest of the calculation. 
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Alternatively we could embrace the entire calculation and attempt to measure the non-

perturbative terms in other enviroments such as e'^e~ —)• 7 + 1 jet which we could use in our 

hadron-hadron collision due to its universal nature. We outhned this calculation, showing 

how potential infra red poles can be absorbed into the fragmentation function which in turn 

leads to an evolution equation for the fragmentation function. Another l imitat ion placed on 

the fragmentation function is that i t must be well-behaved in the l imi t z 1 where z is 

the fraction of the parent parton's momenta which the photon carries away. We suggested 

a fo rm for the 0{a) fragmentation function and also consider another form proportional to 

0{a/as) for which we outline a resummation technique to include all logarithms of the form 

a" log"'"^^(//frag) and a" log"(^frag)- The technique we make use of for calculation is that of 

Bourhis, Fontannaz and Guillet (BFG). 

Another contribution which needed to be addressed was that of ini t ia l state radiation 

which is not a concern for electron-positron calculations. Here, an in i t ia l state parton be­

comes indistinguishable f rom two collinear partons where parton b splits into partons u and 

h and Sub -> 0 leaving h to take part in the hard scattering. These divergent contributions 

are absorbed into the structure function and the renormalisation leads to a crossing function 

which can be convoluted wi th hard processes to account for the finite terms remaining f rom 

these collinear states. 

Finally we collated all the contributions to the process pp •j+ jets at C(o;a^) and 

detailed their inclusion in the Monte Carlo, DPRAD. We present the results in the next chapter. 
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Chapter 7 

Results and comparisons with prompt 
photon data 

7.1 Introduction 

In this chapter we study the photon transverse momentum distribution obtained using the 

parton level Monte Carlo DPRAD described in the preceding chapter. In particular, we inves­

tigate the effects of varying parameters inherent in the calculation of —> 7 + X at 0{aa1). 

I n Section 7.2 we present the results and analysis of varying certain theoretical parameters 

(such as the renormalisation scale) and of comparing the two different fragmentation func­

tions outlined in the previous chapter; the fixed order, fragmentation function measured by 

A L E P H and the BFG resummed fragmentation function. We also make comparisons wi th 

experimental data gathered by the CDF and DO collaborations [82, 83]. In Section 7.4 we 

briefly outline another technique used by other groups for this calculation, namely the kr 

broadening due to in i t i a l state soft gluon emission. Finally we summarise these findings in 

Section 7.5. 

7.1.1 Initial parton contributions 

I n this section we briefly show how each of the leading order subprocesses contributes to the 

leading order calculation. As we have seen there are only two subprocesses, qq —> jg and 

19 Ql (wi th respective charge conjugation and swapped in i t ia l parton symmetries). In 

Figure 7.1 we show the percentage of each of the two contributions at different values. 
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Figure 7.1: Ratio plot of the two subprocesess' contributions against the total leading order 
calculation. The solid line shows the percentage of the leading order result due to the 
subprocess qq g j and its symmetries whereas the dashed line shows the contribution due 
to the subprocess qg and symmetries. 

The solid line shows the qq -yg contribution and the dashed line shows the qg —^ qj one. 

As we can see, at low values of the transverse photon momentum the quark-gluon ini t ia l state 

dominates over the quark-antiquark contribution. However, by 100 GeV, the two effects are 

roughly equal w i t h the quark-gluon contribution fall ing off at higher pj, values, leaving the 

QQ ~^ 19 contribution to dominate. Therefore, we see that to study the gluon distribution 

in the proton, we must concentrate on small values of the transverse photon momentum. 

7.2 Uncertainty in the theoretical prediction 

In this section we shall study the variations of the photon transverse momentum distribution 

w i t h theoretical parameters such as the renormalisation and factorisation scales [IIR. /ip) and 

parton distr ibut ion functions (MRST98 upper, central and lower gluon) which are intrinsic 

to any observable in hadron-hadron collisions. We also study features specific to photon 

production such as isolation criteria (cone size, hadronic energy cut-off) , as well as analysing 

the differences between the different fragmentation functions we have introduced (fixed order 

A L E P H and BFG resummation) and the inherent fragmentation scale (//frag) dependence. 

We shall also look at distributions in z, the fraction of momentum carried by the photon in 

the photon cluster where i t w i l l become apparent that there is a problem. Finally we shall 
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compare the theoretical results of DPRAD w i th experimental measurements gathered by the 

C D F and DO collaborations. These extend over the range 10-120 GeV for the transverse 

momentum of the photon and the rapidity ranges |?7̂ | < 0.9 for CDF and both l?;̂ ! < 0.9 

and 1.6<\ri^\< 2.5 for DO. 

7.2.1 Differences between the fragmentation functions 

We begin by studying the differences between the two fragmentation functions we considered 

earlier. The fixed order A L E P H fragmentation function (FO) differs f rom the BFG resummed 

case in that i t is total ly /Xfrag independent at each order whereas we have some uncertainty 

due to scale choice in the fragmentation function of BFG. For this thesis we have taken 

two extreme cases, one that represents the hard scale in the process, /Xfrag = Pr-, and one 

that reflects the fact that the fragmentation process is essentially a long distance process, 

Mfrag = where is the transverse momentum of the hadrons wi th respect to the photon 

direction. I n practice this latter scale is kx = £'hadsin((5) and where S ^ R, the cone size 

and E'had is the hadronic energy cut used in the definition of isolation. For the comparisons 

w i t h experimental data presented here, Ehad w i l l be set at 2 GeV. Therefore the /̂ frag = kx 

scale is fixed as opposed to the //frag = PT scale (or physical scale) which varies w i th photon 

momentum. These two choices encompass the reasonable range of fragmentation scales (up 

to simple factors). 

As a baseline choice, we choose the physical scale, IJLR = HF = A*frag = PT together wi th 

the A L E P H fragmentation function (FO) unless stipulated otherwise. Similarly, we select 

the MRST2 parton distributions which have been obtained using fits to the data assuming 

no intrinsic smearing due to transverse motion of the partons in the proton. 

I n Figure 7.2 we see the ratio plot of the differential cross sections, da/dp^ for the 

two extreme BFG scale choices compared against the baseline FO result. The lower scale 

(short dashed line) gives higher values of the cross section compared to FO, wi th values 

at high j9y being comparable wi th FO, but then rising to approximately 10% larger at low 

Pj. values indicating the increasing importance of the fragmentation contribution at low p^. 

The higher, physical scale, choice (long dashed line) has smaller values of the cross sections 

compared to FO at large p^, but after dropping to a minimum at p'^ ^ 30 GeV the BGF 
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Figure 7.2: Ratio of the fixed order A L E P H fragmentation function calculation to the re-
summed B F G fragmentation function calculation. The two lines represent the two different 
scales BFG(/ifrag = PT) and BFG (//frag = kx). 

(/^frag = PT) I'esult rises sharply so that for the lowest pj, bin i t is approximately equal to the 

FO result. 

We can understand these trends i f we consider the z distributions of the different non-

perturbative fragmentation functions. To gauge the fragmentation function effect, we con­

sider the combination of perturbative and non-perturbative parts, 

Vq{z,IJ,lJ=Dg{z,IJ,l 
rag/ 

a 4 f SminZil-z)\ 1 + (1 -

27r /̂ frag 
(7.2.1) 

for a given choice of Smin which we take to be 0.1 GeV^. Changing Smin gives a weak 

dependence on z due to the spl i t t ing function and affects all fragmentation functions equally. 

To be specific, we select the up quark fragmentation function and in Fig. 7.3 we show three 

lines representing the three approaches. The FO curve (solid line) rises as 2 -> 1 due to 

a factor — l o g ( ( l — z^) in the non-perturbative part of the fragmentation function. This 

divergence is part ial ly cancelled by the perturbative part of the fragmentation function and 

in the f u l l calculation by the integration over the isolated photon region which both yield a 

factor l o g ( l ~ z). In both of the BFG curves the fragmentation function dies away as z —y 1 

due to the perturbative log ( l — z) term. Note that to mimic the isolation criteria, which 

relates the min imum allowed z value to the p j . via, 
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Figure 7.3: z distributions of the three fragmentation functions considered, the fixed order 
(FO) A L E P H calculation (solid line), the BFG resummed function wi th //frag =PT = 2-^/(1 -
z) (dashed line) and the BFG resummed function wi th //frag = kx (dotted line). Note the 
diflFerence in shape of the FO and BFG functions. This accounts for the rise at low p\ in 
Figure 7.2 in the BFG prediction as compared to FO. 

z > 
PT 

Ehad + PT 
(7.2.2) 

we have selected /Xfrag — PT — Ehudz/il - z) for the hard scale BFG curve (dashed line). 

We now consider the pj^ = 115 - 120 GeV bin. I f we have an allowed hadronic cone energy 

cut of Ehad = 2 GeV this corresponds to a Zcnt value of 0.983 (115/117). This is the lowest 

value of z that an event must exhibit to be retained and we numerically integrate up f rom 

Zcnt to calculate the cross section (for that particular photon momentum). For the hard 

scale BFG result, the fragmentation contribution is clearly more negative than any of the 

other procedures, w i th the FO and soft scale BFG results being roughly equal, as seen in 

figure 7.2. 

On the other hand, for the p^ = 10 - 15 GeV bin, we integrate f rom values of z^ut = 

0.833 (10/12) upwards. Due to their shapes we see that the low scale BFG prescription 

integrated gives a smaller negative value than the FO approach which becomes increasingly 

more negative as ^cut decreases. The visible relative rise at small pj^ is due to this effect. 

Similarly, the fragmentation contribution in the high scale BFG approach becomes closer to 

that for FO, giving the relative rise at small pj, seen in Figure 7.2. 
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Figure 7.4: Ratio plot of the different predictions for pp —)• 7-I- jets as a function of p^^ 
obtained by varying the renormalisation scale and factorisation scales. This scale variation 
effects both FO and BFG results in the same way. We use the same value for both the 
factorisation scale and the fragmentation scale although this need not be the case. The 
dashed line demonstrates the effect of increasing the scale by a factor 2 while the dotted line 
corresponds to halving the scale. 

7.2.2 Renormalisation and factorisation scale dependence 

Two of the most important parameters that i t is necessary to have some degree of control 

over i n any perturbative calculation are the renormalisation scale HR and factorisation scale 

HF- (See Section 1.4.) Figure 7.4 shows the effect obtained by varying /J,R = /J,F hy & factor 

of two around the physical scale HR = fJ-p = PT- This gives some idea of the contribution of 

uncalculated higher order corrections. 

We see that by varying the renormalisation (and factorisation) scale in DPRAD, for the 

lower scale choice there is an overall increase of about 10% in the cross section. The shape 

of the dis tr ibut ion has not been aflfected to any great degree. However, for HR = (J-F = 2py, 

although we have an overall 10% decrease compared to the physical scale, we do see a slight 

relative increase of about 5% in the cross section at low (pj. < 20 GeV). This is precisely 

the region where data and theory disagree most strongly. However, an increase of 5% is not 

sufficient to explain the differences seen between theory and data and so we cannot attribute 

the data-theory disagreement to scale variation solely. 
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Figure 7.5: Ratio of the fixed order A L E P H fragmentation function calculation wi th cone 
size R = 0.7 to the same calculation wi th different values for i? as a function oi pTp. Again, 
this behaviour is similar for both of the fragmentation functions under consideration. 

7.2.3 Dependence on the photon isolation criteria 

Another important effect to examine is the dependence on the isolation criteria used i.e. on 

the parameters used to separate isolated photon events f rom fragmentation contributions 

and other events. In our predictions we have used a cone algorithm which places a cone 

around the photon of size R = ^J(Ar}y + (A(/))2 = 0.7. Any partons inside the cone are then 

checked against an allowed hadronic energy cut. I f the amount of hadronic energy is greater 

than the cut then the photon is considered to be non-isolated and the event is removed 

f rom consideration. In comparisons wi th the experimental data, this cut is usually fixed at 

2 GeV. On the other hand, in electron-positron collisions, the amount of hadronic energy 

must be less than a fixed percentage of the photon cluster energy. Clearly the contribution 

f r o m very isolated photons - i.e. the lowest order contribution, is unaltered by changing the 

isolation requirements. However, by changing these cuts, together wi th the cone size, we can 

investigate the contribution f rom both real radiation and fragmentation. 

By increasing the cone size we incorporate more hadronic energy into the cone and 

therefore the probabili ty of the photon remaining isolated decreases. This is exactly what 

we see in Figure 7.5 where we have plotted the ratio of results using different sized cones 

against the standard R = 0.7 cone. Increasing the size of the cone f rom 0.7 decreases the 

differential cross section by a few per cent almost independently of p^. Similarly, smaller 
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Figure 7.6: Ratio of the prediction using the fixed order A L E P H fragmentation function for 
different values of Zcut compared to the same calculation wi th iî had = 2 GeV. Similar results 
are also obtained using the BFG fragmentation function. 

cone sizes give a slight rise in the cross section. 

In Figure 7.6 we show the variations induced by altering the hadronic energy cut off, 

Zcut- As Zcut (or 1 — -BhadZ-Cciuster) iucrcascs, more events that previously made the cut are 

rejected. For example, when Zcut = 0.7, a gluon wi th energy 2 GeV can exist in the cone 

w i t h a photon of energy 10 GeV. However, i f z^ut is increased to 0.9 this event fails the cut 

and is removed f rom consideration. Therefore as Zcut 1, events that pass the cut become 

more and more isolated and the differential cross section should decrease accordingly. This 

is what we see for large values of Pj, in Figure 7.6 where Zcut = 0.7 is approximately 10% 

larger than ^cut = 0.99 for the = 115 — 120 GeV bin. However, for small values of p^ 

e.g. p j . < 30 GeV we see the reverse occuring i.e. the differential cross section increasing as 

Zcut increases. To study this effect we have calculated the z distribution of the FO result for 

specific pj^ bins. These can be seen in Figure 7.7. 

I n Figure 7.7 we show the distribution in z for the fixed order calculation in the p j . 

bins 10-15 GeV, 15-20 GeV, 20-25 GeV and 25-30 GeV respectively wi th Zcut = 0.7. A t 

z = 1 the photon is completely isolated and here the differential cross section is largest. 

This corresponds to the parts of the calculation where quarks and gluons either become 

collinear w i t h each other and distinct f rom the photon (i.e. not inside the cone) or that all 

the particles are distinct. Away f rom z = 1 we have the fragmentation contribution to the 
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Figure 7.7: The differential cross section da/dz as a function of the fraction z = PT/Pc\ustei 
for the PI bins 10-15 GeV, 15-20 GeV, 20-25 GeV and 25-30 GeV respectively. 

calculation as well as the collinear quark-photon final states. 

In this figure we immediately see the reason for the unexpected behaviour of Figure 7.6 

where the cross section appears to increase as the isolation criteria is stiffened. The dif­

ferential cross section is actually negative for certain values of z and becomes increasingly 

more negative for smaller values of pj^. Also, at small values of Pj,, the range over which 

the differential cross section is negative grows. This is reminiscent of a similar problem seen 

in [84] where, in the process e~^e~ - > 7 - I - 1 jet a negative differential cross section was also 

observed. 

Glover and Morgan, studying both the cone and the democratic algorithms, in electron-

positron collisions considered the same differential cross section in z and found a similar 

effect. Al though in principle the cross section for photon -|- X should be well behaved as 

a funct ion of z, there is an effect to consider. There is a discontinuity across the boundary 

between the isolated region in which z = I and the region where the parton lies inside the 

photon's cone where z ^ 1 (the boundary between regions 1 and 2 of Figure 6.1). When 

hadronisation effects are taken into consideration (the process of extending the partonic 

picture to the hadronic one) sizeable shifts are seen in z. This w i l l always be the case, 

however there is a dramatic effect when the matrix elements are large leading to big shifts 

in the cross section which makes parton level predictions of the accompanying hadronic 

energy particularly unreliable. A L E P H [85], using the democratic cone algorithm, saw this 
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effect in the shower Monte Carlo they used as a spilling over of parton level events f rom the 

0.99-1 bin into the 0.95-0.99 bin at the hadron level. In other words, a previously isolated 

photon wi th z=l may, during the hadronisation process, find that a soft gluon is now wi th in 

the isolation cone such that z is reduced to below 0.99. A L E P H therefore changed their 

definit ion of isolation and defined an isolated photon as one which has z > Ziso = 0.95 (i.e. 

combined the bins) and compared this against the partonic picture wi th z > z-^so- This 

makes sense because although hadronisation effects change the precise value of z, they tend 

not to move events f rom the isolated to non-isolated categories i.e. a isolated photon wi th 

z = 1 w i l l not be moved further than 0.05 due to hadronisation and thus wi th the new 

definition of Zjso i t w i l l s t i l l remain isolated. This worked satisfactorily for the democratic 

algorithm where the cone size is effectively 90°. However, in cone algorithm the range of z 

values for which the differential cross section is negative is larger and a smaller value of Ziso is 

required. I n parton language, a smaller cone allows the quark-photon collinear singularity to 

be probed more closely. This is where the matr ix elements are much larger and consequently 

the hadronisation effects are much more marked. This shows up as an enlargement of the 

region where the parton-level differential cross section is negative as the cone size decreases. 

I n other words, w i t h smaller cones the hadronisation effects are more pronounced due to 

the fact that we are t ry ing to resolve the collinear region where perturbation theory breaks 

down. Thus the min imum allowed hadronic energy in the cone should rise to minimise the 

size of hadronisation effects that are not included in the theoretical calculation, but which 

are clearly present in the data. 

We can also see the effect of increasing the cone size for the process pp + X in Figure 7.8. 

We see that as the cone size increases, the region of negative differential cross section becomes 

smaller. We are moving further away f rom the collinear region and hadronisation effects are 

becoming smaller. We note that for the CDF and DO measurements, R is taken to be 0.7. 

Al though the largest cone seems to have the largest cross section (after integration) this is 

misleading as the z = 1 peak shrinks wi th increasing cone size as can be seen clearly in 

Figure 7.5. 
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Figure 7.8: The differential cross section as a function oi z = Pj/pduster for the p^^ bin 15-
20 GeV. The figure highlights the effects of different cone sizes on the fixed order A L E P H 
fragmentation function calculation. 

7.2.4 Dependence on the parton density functions 

We consider the variation of the results wi th different parton distribution function inputs. 

For brevity we only consider variations induced by the five different parton distributions 

developed by the MRST98 collaboration. Figure 7.9 shows a ratio plot of the different 

distributions w i t h respect to the baseline MRST2 set as a function of p j . . This distribution 

was choosen as a baseline because i t contains no intrinsic kx smearing and therefore is closer 

to the perturbative approach we have adopted for this calculation. We see that all the 

results lie wi th in a band of 14% at the small pj^ end wi th the high distribution giving the 

largest result and the low ag distribution giving the lowest one. A l l the results decrease as 

we increase p^ so that at pT-y = 120 GeV the band has thinned to about 10%. However, the 

low as distr ibution has the correct shape to account for some of the disagreement between 

theory and data. 

7.2.5 Predictions using the resummed fragmentation function 

I n this section we compare the fixed order results wi th those using the BFG resummed 

fragmentation function. In the previous section we saw that the z distribution of the smaller 

Pj, bins for the FO result left us w i th a region where the differential cross section became 
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Figure 7.9: Ratio plot of the fixed order result wi th diflferent parton distribution inputs. 
A l l ratios are compared against MRST2 which is the set of parton distribution functions 
w i t h no intrinsic fcy smearing. The lines are as follows M R S T l = central gluon ( ( A ; ^ ) = 0.4 
GeV,a , = 0.1175), MRST3 = lower gluon ( ( ^ T ) = 0.64 GeV, a, = 0.1175), MRST4 = lower 
as {{kT) = 0.4 GeV,as = 0.1125), MRST5 = higher a, ((A;T) = 0.4 GeV,a, = 0.1225). 

negative. We consider those same distributions, but plot the results found using the BFG 

resummed fragmentation function. We consider the two extreme fragmentation scales, the 

physical scale where /Xfrag = PT and a smaller scale set at /Xfrag = kT as defined in Section 7.2.1. 

Figure 7.10 shows the z distributions for different pj, bins for both fixed order and re-

summed fragmentation functions. We see that wi th the large fragmentation scale /Xfrag = PT-, 

the resummed and fixed order predictions are qualitatively very similar; we have the same 

problem w i t h the differential cross section becoming negative at large values of z. This 

problem is particularly apparent at small p j . . Quantitatively, there are st i l l slight differences 

and the high scale BFG predictions are slightly less negative than their FO counterparts 

and the range of z for which i t is negative is smaller. Neverthless, we again take this to be 

a warning sign that hadronisation effects are both sizeable and necessary to give a physical 

answer. However, when we consider the smaller scale fif^ag = A^T, we find that the differential 

cross section is positive definite for all values of z and for all the p^. bins. Based on this 

discussion, we suggest that the resummed fragmentation function wi th a small scale is the 

best theoretical model to directly compare wi th the experimental data. 

We note in passing that the BFG resummed fragmentation function has the same be-
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Figure 7.10: The differential cross section as a function of the fraction z for different p j . bins, 
10 GeV <pl<\h GeV, 15 GeV < p?- < 20 GeV, 20 GeV < < 25 GeV, and 25 GeV < 
Pj~ < 30 GeV, respectively. The three lines shown are the fixed order A L E P H fragmentation 
funct ion (solid), the BFG resummed fragmentation function wi th //frag = PT (long-dashed) 
and the BFG resummed fragmentation function wi th //frag = kT (short-dashed). 

haviour as the FO result w i th respect to the other perturbative parameters. For example, 

w i t h increasing cone size the differential cross section grows for z < 1 and the z = 1 peak 

shrinks giving an overall decrease in differential cross section as R increases. 

7.3 Comparison with the data 

The final figures of this result section (Figure 7.11) are the comparisons between the CDF and 

DO data and theory. For the theory lines we have plotted the LO result, the BFG (//frag = PT) 
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Figure 7.11: The ratio of experiment to the baseline NLO fixed order result for the CDF 
experiment w i t h \ri.y\ < 0.9. The dotted line shows the ratio of the lowest order prediction 
(LO) to N L O FO, while the large dashed (short dashed) lines show the ratio of the BFG 
/^frag = PT (A*frag = ^ T ) prcdictious to the same baseline theory. 

N L O result and the B F G (/«frag = ^ r ) result using the isolation criteria appropriate to the 

CDF experiment {R — 0.7, Eha,d = 2 GeV). Based on the previous discussion the best 

motivated theoretical prediction is the BFG (//frag = /cr) curve. However, we see that i t is 

unable to produce a steep enough slope at low p^. to accurately describe the data. In the 

next section we outline one possible technique which has been used to improve the fit. 

W i t h the experience gained through examining the prompt photon transverse energy 

distr ibut ion for the CDF experiment, we now turn to the data gathered by DO. The DO 

photon isolation cone is somewhat smaller R = 0.4 and the amount of hadronic energy is 

l imi ted to be Ehad < 2 GeV. 

7.4 Intrinsic kr broadening and initial state soft gluon 
resummation 

I t has been noted [86] that unexplained deviations between experimentally measured direct 

photon cross sections and N L O calculations exist. These discrepancies exist for essentially 

all direct photon data sets; fixed target, ISR, the SppS and the T E V A T R O N . This can be 

seen especially clearly in the E706 fixed target data [87]. One possible explanation for this 
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Figure 7.12: The ratio of experiment to the baseline NLO fixed order result for the DO 
experiment w i t h (a) \r]^\ < 0.9 and (b) 1.6 < \r]j\ < 2.5. The large dashed (short dotted) 
lines show the ratio of the BFG /ifrag = PT (/^frag — kT) predictions to the same baseline 
theory. 

disagreement is in i t i a l state soft gluon radiation which gives a transverse boost to the hard 

scattering process itself. Of course, some degree of transverse momenta is expected due to 

the finite size of the proton which is labelled intrinsic kT broadening. However, we expect 

that this is a relatively small effect being of the order (A;^) = 0.3 GeV per parton. 

However, [88] claim that additional kT smearing has been observed in dimuon, diphoton 

and dijet pairs over a wide range of centre of mass energies. They claim that the average 

transverse momentum of the pair is firstly too large to be intrinsic (0.5-5 GeV) and secondly 

that i t increases logarithmically wi th y/s. They state that "similar soft gluon effects are 

expected to be present in all hard scattering processes, such as the inclusive production of jets 

or direct photons" [89]. In their paper they outline the necessary resummation calculation, 

noting that at collider energies most of the /c^ is attributed to the perturbative part of the 

resummation together w i th a non-perturbative input that specifies the contribution of gluon 

emission in the infrared. The non-perturbative function is then determined by convoluting 

w i t h the L O perturbative prediction, integrating over fitting to the data. This procedure 

depends on the fo rm of the non-perturbative function which is typically taken to be Gaussian. 

Using this method, Apanasevich et al found that a reasonable fit to the Tevatron data could 

be achieved w i t h a Gaussian width {kT) = 3.5 GeV. The kT smearing generally moves events 

f rom low p3̂  where the cross section is largest out to larger pip. Because the cross section falls 
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off dramatically w i t h increasing p^, even a slight smearing can have a noticeable effect. Of 

course, the effects die off w i th increasing and generally they only affect the cross section 

in the region < 40 GeV. 

Unfortunately, there is no value of (kr) that can simultaneously explain all of the available 

data. In particular, the recent E706 data seems to require a {kr) out of line wi th both the 

lower and higher energy experiments. In fact, according to [90] "including kr effects may help 

some data sets (E706) to agree wi th theoretical predictions, but i t simultaneously destroys 

the agreement wi th other sets (WA70, ISR) wi th theory". Another concern over the inclusion 

of kr smearing voiced by Aurenche et al was that fitting the value of (kx) depends on the 

perturbative cross section. A t small values of p j . the perturbative predictions are not stable 

w i t h respect to the renormalisation and factorisation scales and so the perturbative cross 

section and therefore the smearing (kr) are dependent on these scales. Also, i t has been 

shown that a reasonable fit to data can be achieved by essentially fine tuning the gluon 

distr ibut ion [91 . 

7.5 Summary 

I n this chapter we have used the Monte Carlo routine DPRAD to make predictions for the pho­

ton transverse momentum distribution and compared these predictions wi th data obtained 

by the CDF and DO experiments at the T E V A T R O N . We have reproduced the well known 

effect that the theory undershoots the data at small p j . ~ 20 GeV. We have investigated the 

different fragmentation functions outlined in the previous chapter, namely the fixed order, 

A L E P H measured fragmentation function and the BFG resummed fragmentation function. 

I n particular we have investigated the effects of changing the theoretical inputs such as the 

renormalisation scale, the parton density functions and the way in which the photon iso­

lation is applied. The most striking effect was that as the isolation condition is relaxed 

- the amount of hadronic energy accompanying the photon is increased, the cross section 

appeared to decrease. This is counterintuitive and can be traced back to the diflferential 

cross section in z being negative for the FO and BFG (fJ-hzg — Pr) predictions. One way of 

understanding this is that the isolation criterion is probing the region where hadronisation 

effects cause large shifts in the measured z value. A parton level event w i th 2 = 1 is turned 

into an event w i t h z = Zhad < 1 at the hadron level. Parton level theoretical predictions wi l l 
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have great diff icul ty in describing this effect. One way round this is to lower the isolation 

cut Zcut so that the event is retained at both the parton and hadron level. In fact, in e'^e~ 

annihilation, the A L E P H collaboration studied the z distribution before deciding on the 

isolation criteria. This has not been done at the T E V A T R O N . A n alternative approach is 

to lower the fragmentation scale t̂x̂ ag which has the effect of increasing the fragmentation 

contribution at high z (but s t i l l z < 1). Evolution to lower z is then suppressed and the z 

distr ibut ion rendered positive definite. This is rather less satisfactory, but in the absence 

of an experimental investigation of the z distribution yields the best theoretical prediction 

for the photon transverse energy distribution. As we see f rom Figs. 7.11 and 7.12, this goes 

some way towards improving the agreement between theory and experiment, but st i l l leaves 

room for improvement. One possible explanation may be the inclusion of broadening 

due to intrinsic transverse momenta considerations and ini t ia l state soft gluon resummation. 

However, the perturbative part of this calculation has not yet been performed and the cur­

rent models that assume this part of the calculation can be approximated using a Gaussian 

smearing are s t i l l too different and dependent on the perturbative predictions to definitely 

state that this is the source of the necessary additional theory. 
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Chapter 8 

Conclusions 

8.1 Review 

In this thesis we have utilised some of the modern techniques used in NLO QCD calculations 

for both electron-positron and proton-antiproton experiments. Specifically we have concen­

trated on the N L O calculations of the processes e~^e~ —> 4 jets and pp ^ -y + X and have 

produced two Monte Carlo routines, EERAD2 and DPRAD, that can be used in the evalution 

of any 4 jet variable and the transverse photon momentum distribution respectively. 

In Chapter 1 we introduced the formation of the QCD Lagrangian using the quark model 

as a basic picture and outlined how this leads to the perturbative expansion of physical vari­

ables in terms of the coupling constant, g. We studied the necessary gauge invariance and the 

differences between the non-Abelian nature of QCD and Abelian QED. We also considered 

the prescription of renormalisation where the absorption of the ul t ra violet poles into the 

bare gluon and quark fields and the bare coupling leads to the concept of a running coupling 

constant. For QCD (unlike QED) we find that the strength of the coupling diminishes as 

energy increases making i t an asymptotically free field theory. Renormalisation also intro­

duces a scale, /j,, into N L O QCD calculations which all truncated observables depend on. 

This scale is arbitrary, but is usually taken to be the scale of the process (^ = v ^ ) known 

as the physical scale. However, we also considered other scales proposed by Stevenson and 

Grunberg. 

Al though the likelihood of a process occuring is controlled by the short distance per-
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turbative QCD picture the formation of hadrons is governed by non-perturbative physics. 

Therefore at leading order only can we directly relate quarks and gluons to jets. A t higher 

order we start to model the partonic showers that form jets and so a prescription for quan­

t i f y i n g the number of jets in an event is required. These are known as jet finding algorithms 

and ideally they are insensitive to long range hadronisation. For this thesis we concentrated 

on three variants, the JADE, D U R H A M and GENEVA algorithms. Looking at higher or­

der techniques in Chapter 2 we saw how NLO QCD calculations introduce new divergences 

due to the integration over internal loop momenta. These are infra-red poles and these 

divergences cancel, order by order, w i th the poles present in processes wi th a single extra 

unresolved parton according to the K L N theorem. The formation of colour algebra also aids 

the evaluation of N L O quantities, deriving the colour factors that can be factorised into the 

calculation. Af te r this colour division we are left w i th kinematical terms which we can group 

into ordered gluon emission; this is known as colour decomposition. These ordered subam-

plitudes then display factorisation properties in the soft and coUinear regimes, allowing us 

to write the divergent extra unresolved contribution as a divergent factor multiplied by the 

hard remaining process. 

Having identified the cancellation of infra red divergences i t is then necessary to develop a 

routine which analytically removes these poles. In Chapter 3 we studied three contemporary 

techniques, but for the N L O calculation of the process e~^e~ 4 jets in this thesis we have 

used a new variant of the hybrid subtraction scheme (the hybrid subtraction scheme uses 

both the slicing and subtraction scheme to remain universal and independent of additional 

theoretical parameters). This particular prescription relies on the factorisation of the matrix 

elements and the phase space using an antenna of particles where the antenna consists of 

two colour connected partons f rom which a th i rd unresolved parton is emitted. This then 

factorises the f u l l matr ix element and phase space term into a hard scattering term and 

a divergent antenna factor. We derive the necessary integrals for each of the four types 

of antennae, uti l ising the N = 1 supersymmetric identity which relates the NLO split t ing 

functions to each other. I t is these functions that are used in EERAD2. 

I n Chapter 4 we outlined the calculations necessary for the evalution of NLO observables 

f r o m the process e+e ' -> 4 jets. This includes the vir tual diagrams f rom e^e~ qqgg 

and e+e" <NQQ using the matr ix elements of [66, 67] and the extra, unresolved parton 

diagrams f rom e+e" -> qqggg and e+e~ qqQQg- Making use of symmetries and neglecting 
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some contributions reduces the lengthy calculation to a more compact form. 

Comparing EERAD2 to results obtained wi th the other Monte Carlo routines, MENLQ PARC 

and DEBRECEN in Chapter 5 gives good agreement for the 4 jet fraction and in the case 

of DEBRECEN for the 4 jet variables, D parameter and Thrust minor as well. We have 

also present the N L O coefficients for previously uncalculated variables such as the light 

hemisphere mass, the narrow hemisphere broadening and the jet transition variable for the 

G E N E V A and J A D E algorithms. For each distribution i t was found that the NLO corrections 

were of the order of 100% of the L O result, although for all the observables calculated at 

the physical scale this was s t i l l a factor 2 below the experimental data as measured by 

the D E L P H I collaboration. Using a smaller scale such as the FAC scale seems to model 

the experimental data better. For observable O4 i t is clearly seen that the resummation of 

leading and subleading logarithms of the type l og ( l / 04 ) is necessary in the infra red region. 

Chapter 6 looks at the N L O calculation for the process -> 7 + jets. For this calculation 

we need to introduce two more ideas, that of fragmentation and ini t ia l state coUinearities. 

Fragmentation is one of the processes by which a photon can enter the final state of a process. 

I t is a universal, non-perturbative effect where a parton fragments into a photon which 

carries off a momentum fraction z of the parent parton's momentum. This occurs during 

the hadronisation process and is described by the function Di^^{z). However, we can also 

produce photons perturbatively and in some configurations this gives a divergent result i.e. 

when the photon becomes collinear wi th its parent parton. These poles can be absorbed into 

the fragmentation function in much the same way as the 1 loop quark self energy corrections 

are absorbed into the defintion of the quark wavefunction. This renormalisation procedure 

introduces a scale to the process, /Xfrag which the fragmentation must be independent of, 

placing a constraint on the non-perturbative part of the function. The coupling of this 

non-perturbative contribution is contested in the literature and for this calculation we have 

used a fo rm w i t h coupling proportional to 0(a) which we jus t i fy by using the experimental 

measurement of the e+e" -> 7 -I-1 jet rate. The other technique introduced in this chapter 

is a method of dealing wi th in i t ia l state radiation and the potential divergences present here. 

W i t h a in i t i a l state hadronic current we can form init ial-final state collinear states which are 

normalised into the definition of the structure functions. In this thesis the NLO calculation 

is performed w i t h all of the particles in the final state, then we cross two into the in i t ia l state. 

This correctly contains all the final-final divergences and the newly introduced init ial-final 
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divergences. However i t introduces non-physical ini t ia l - ini t ia l state divergences which we 

subtract f rom the process. From this we form the necessary K, factors for the calculation 

and divergent crossing terms which are renormalised, introducing another scale iMp. A l l these 

calculations are incorporated into the Monte Carlo routine DPRAD. 

Finally in Chapter 7 we compared the results obtained using DPRAD w i th experimental 

measurements made by the CDF and DO collaborations. We also studied differences induced 

in the results due to the variation of parameters such as the renormalisation and factorisation 

scales, the cone size and hadronic energy cut-off and the parton distribution function inputs. 

I n studying the z distr ibution at fixed pj. we found that for the lower values of p^. ( < 30 GeV) 

the dis tr ibut ion becomes negative for large values of z. This was similar to a problem seen in 

the process e+e" 7 + I jet where the cause was related to the spiUing over of isolated events 

into lower z valued events due to hadronisation. To solve this, the A L E P H colaboration and 

Glover and Morgan combined the final bins in the definition of isolation. This effect was 

also seen to be cone size dependent. For the pp 7-I- jets case we have shown that another 

solution is to make use of a resummed fragmentation function at small ^^ag which gives a 

positive definite z distr ibution for all p^.. For this thesis we have used the fragmentation 

funct ion of Bourhis, Fontannaz and Guillet (BFG) and considered its form at two extreme 

scales, p j . and kx = £ 'hads in5 . Comparing theory and experiment st i l l leaves a shortfall in 

theory at small p^- and one suggestion for resolving this is the inclusion of ini t ia l state gluon 

resummation which leads to k^ smearing effects. However, the result of the dominant part 

of this eflFect remains uncalculated and models that attempt to approximate i t are many and 

varied. Also in [91] i t has been shown that the data can be fitted by fine tuning the gluon 

distr ibut ion. Finally, the inclusion of kx effects relies on a stable perturbative calculation in 

the low p j . regime, but here the variation wi th scale is too large for such a precise calculation. 

Therefore, we do not include any kx effect in this calculation except that inherent in the 

MRST98 functions. 

Remaining work that needs to be considered in light of these calculations includes further 

phenomenology of four jet production. Having seen the large NLO corrections and the 

remaining theory-data discrepancy at the physical scale, this may suggest choosing a smaller 

scale (as we have done) or including non-perturbative power corrections. Also the debate 

remains over the theory-data disagreement in direct photon production. Whether fine-tuning 

of the perturbative parameters or in i t i a l state gluon emission resummation is the missing 
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piece of this puzzle requires much more work to resolve this discrepancy. 
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Appendix A 

Local gauge invariance of the QCD Lagrangian 

One of the most fundamental principles underpinning the formulation of QCD is that of 

local gauge invariance. This symmetry ensures that the Lagrangian (and thus any physical 

process) has no dependence on a spatial definition of the SU(3) colour charge. I f we define our 

Lagrangian as in Equation 1.2.9 (using Equation 1.2.8 in our definition as well) and use the 

spatially dependent SU(3) transformation in Equation 1.2.11, then we see that the first term 

in the Lagrangian is only independent of V i f and only i f the covariant derivative multiplied 

by the fundamental tr iplet transforms as the fundamental triplet i.e. V'lp' = V{x)Vip. This 

forces a transformation law on the gluon field which defines the covariant derivative. This 

transformation is given by (here we drop the colour indices for clarity) 

^ y ( x ) f M ^ y t ( 2 . ) _ '-V{x){d''V\x)) (A.0.1) 
9 

where repeated indices are summed over. We w i l l show that this transformation, along wi th 

the transformation of the quark field leads to the local invariance of the QCD Lagrangian. 

Consider the transformations of Equation 1.2.12. Then 

Vip ^ d''{Vix)ip) + ig Vix)t''A''^V^ix) - ^V{x){d''V^{x)) V{x)7jj (A.0.2) 

Expanding this out and recalling that all SU(3) transformations obey the unitary relation 

y y t = 1 we find, 
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P^V d''{V(x))i) + V{x)d''{-iP) + igV{x)t''A^^ + V{x){d>'V^ix))Vix)ij (A.0.3) 

We then make use of the product rule, rewrit ing the last term such that 

V^^iP d^{V{x))ij + V{x)d^{^) + igV{x)t''Ay - {d^V{x))V\x)Vix)i; (A.0.4) 

where d'^(V{x)V^x)) — d^{\) = 0, again employing the unitary condition. This leads to 

the cancellation of the first and last terms giving 

V''^/J ^ V{x){d^^) + igV{x)t''A^^ = V{X)V^IIJ (A.0.5) 

and we have shown that using the SU(3) transformations that the first term of the proposed 

Lagrangian is local gauge invariant. 

Now let us consider the kinetic term. The form of the field strength tensor we shall use 

here is that given by Equation 1.2.10 which generalises to the form 

[D^,V'']7P ^igF^^^l) (A.0.6) 

where Ea F'^" = F^^. We know that under an SU(3) transformation the covariant deriva­

tive transforms as VV^'V^. Therefore for gauge invariance we require 

'D^',D'"]i)' = igF'""i;' 

VD^V^VD,V^Vi> -VD^V^VD^V^V^J - igF^^'Vilj 

VD^D,ij-VD,D^tP = igF^^'V^/j 

V[D„Dnu]i^ = igF^'^'Vi; 

igVF^,'^ = igFf""Vij 

p^u, ^ VF^^V^ (A.0.7) 
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W i t h this transformation property we can now show that the kinetic term is locally gauge 

invariant. We first need to demonstrate that 

Tr 
2 

(A.0.8) 

where 

Tr 

— IJ.U a (A.0.9) 

where T r [ i " , t''] = 1/26"-^. Therefore, by substituting in the gauge transformed quantities and 

using the cyclic properties of trace, we see that the kinetic term is locally gauge invariant. 

We have now shown that all the terms in the proposed Lagrangian are locally gauge invariant 

(as well as any quark mass terms as well). However, there can be no mass term for the gauge 

bosons as this is clearly not gauge invariant. 
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Appendix B 

The 1 loop correction to the process ê e h a d r o n s 

I n this appendix we shall look at the method developed by Feynman used to evaluate the 

di f f icul t one-loop integrals found in all N L O calculations. For the purpose of demonstrating 

this technique we shall study the vertex loop correction of the NLO calculation of e'^e~ —)• 

hadrons (See Figure B) . For this calculation we mult iply the loop diagram wi th the tree 

level diagram to give a squared matr ix element of the order 0{as)- Af ter performing all the 

traceology in 4 — 2e dimensions we find 

32Nie-l)ieyCFf,'' 1^ 
(27r) 4 - 2 £ 

e{p'.k'){p.k) + e{p.p'){k.k') - (e + 2){p.k'){p'.k)' 
{k^ + ie){k'^ + ie){{k - py + ie) 

(B.0.1) 

where \M.\'^ represents the interference between the tree level process and the 1 loop process. 

We find that the factor i later cancels wi th another i coming from the integral over the loop 

momentum, leaving the squared matr ix element positive definite. Note also the difference 

between e, the small distance moved in complex space used to define the time ordered product 

and e, the small change in the number of dimensions. Finally we introduce the scale, / i ^ ^ , in 

order to keep the coupling constant dimensionless in d dimensions. 

The basic idea of Feynman parameterisation is to squeeze the denominator factors of 

the squared matr ix element into a single quadratic polynomial. This quadratic can then be 
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Figure B . l : 1-loop correction term in the NLO calculation of e+e~ ^ hadrons 

shifted such that the square can be completed and the remaining spherically symmetric inte­

gral can easily be performed. However, the cost of this procedure is to introduce additional 

parameters to the calculation which in turn wi l l need to be integrated over. Let us consider 

an integral w i t h just two factors in the denominator first. 

Pu t t ing this identity into a real example might give 

1 
/ dxdy6{x + y — 1) 
Jo (k~p)Hk^) h - ' | i , (4_p)2 + j(42)J2 

By le t t ing I = k — xp we can complete the square and the integral depends solely on P and 

can easily be evaluated since d'^k = dH. For a general result we require the identity 

— - 4 T- = t dxi...dxJ{Txi - 1 ) ^ — ^ ^ - ^ ^ ^ -— (B.0.4) 
AiA2Ai...An Jo " ' ^[XiAi+X2A2 + ...+XnAn]'' ^ ' 
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Now let us apply Equation B.0.4 to our matrix element example in Equation B.0.1. We 

write 

{ { k - p y + ie){k^ + ie){k'^ + ie) 

where D is given by 

= r dzdydx^5{x + y + z - 1) (B.0.5) 
Jo D'^ 

D = x{{k - pf + ie) + y{k^ + ie) + z{k'^ + ie) 

= l^ + Q^zy + ie 

= f - A (B.0.6) 

The fo rm of D is given by using the identities k' = q ~ k, p'^ = p'^ — 0, q — p = p'. _, q2 

and finally I — k — zq — xp. We write the numerator of the matrix element in term of /, p, Q, e 

and the Feynman parameters x, y and z and make use of the identities 

j 4 - 2 £ ; 

Loo (27r)4-2^ " 

i-oo (27r)4-2^ ~ Jo (27r)4-2e (4 - 2e)D^ ^ ' ' ^ 

The first of these identities follows f rom symmetry as D depends only on P thus making the 

integrand on odd function. The second identity can be evaluated by rewriting I'^l" as Ag'^'^ 

which also w i l l vanish by symmetry unless /j, — v. We have to evaluate A and we do this 

by postmult iplying both sides by g^^ which gives — A{4 - 2e). So using the identities of 

Equation B.0.7 we find the numerator reduces to 

I'Q^l - ef ^ Q'[zy{E - l ) - x ] ^^ ^ ^^ 

2(2 - e) 
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Therefore the matr ix element is now given by 

M 

l'Q'{l-ef , Q\zy{e-\)-x]-\ ^^^^^ 
2 ( 2 - e ) ' 2 

A t this point of the calculation we introduce another technique necessary to analytically 

integrate over the momentum variable /, namely Wick rotation. By rotating the coordinate 

system f rom the Minkowski metric to the Euclidean metric (where there is no relative minus 

sign between spacial and temporal diagonal elements) we can easily perform the integral. 

We define an Euclidean variable IE such that the temporal component is f multiplied by i. 

but the spatial components of IE are the same as the spatial components of / which implies 

the measure has been mult ipl ied by i as well. Therefore we have rotated the contour of 

integration throught 90° (anticlockwise to avoid the poles) in the plane. Now we can 

evaluate the integral as we can write the d dimensional measure as a radial measure and the 

volume of a c/ dimensional sphere. Therefore 

where the volume of a d dimensional sphere is defined as in Equation 2.3.16. So we are left 

w i t h integrals that we can reformulate w i th the change of variables / | = wA to give beta 

functions in w. Therefore we find the two momentum integrals reduce to 

^4-2^/ 1 i ( - l ) 3 7 r 2 - T ( l - e ) 1 

-oo (27r)4-2- [ P - A + ief T{3) A^" 

^ d^'-^H P _ i 7 r ^ - ^ ( - l ) 4 r ( £ ) 4 - 2 e 

(27r)4-2- [ P - A + ie]3 ~ 2r(3) A -
(B.0.11) 

We are left w i t h integrals over the two independent Feynman parameters having let e -)• 0 

to regulate the poles present in the r(e) functions. Both of the remaining integrals are fair ly 
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straightforward and give further F functions. We expand the function to express the poles in 

terms of 1/e and 1/e^ poles making the poles explicit. Thus the final form of the divergent 

matr ix element for the 1-loop correction to e^e~ hadrons is given by 

2 _ NeyCpQ' / 4 V y T{l + e ) V \ l - e ) 
\Q2 ) y r ( l - 2e) 

(B.0.12) 

We then mul t ip ly by the phase space factor ( r ( l - £)(47r)787r(g2)T(2 - 2e)) and the in i t ia l 

flux ( l / 2 g ) . In Appendix C the form of phase space factors wi l l be studied in more detail. 

This gives 

^ l - l o o p _ ^tree 1 

27r \Q^j r ( l - e ) 
— 8 -I - TT 

a 
(B.0.13) 

where a*"̂ ^ is equal to the cross section of the tree level diagram and is of the form 

f^T^y^Y r ( 2 - £ ) 
4 Q 2 j r (2 - 2e) 

(B.0.14) 

We complete the N L O calculation for e+e" hadrons by considering the extra unresolved 

parton contribution. Taking the squared matr ix element for the extra parton process we 

have 

M = 8C^ey(l- . ) yqgUqg Vgg Vgg 
e l ^ + ^ j - 2 e (B.0.15) 

Rewrit ing the phase space factor in terms of the dimensionless invariant mass, yij (where 

yij = S i j / Q ^ ) we find (see Appendix C) 

16(27r)3 \ J r (2 - 2e) 
I dyggdy-gg{yggy^g{l " Vqg ' ?/̂ ,)) ' (B.0.16) 
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Put t ing the squared matr ix element and ini t ia l flux into this integral and redefining one of 

the variables such that both variables run f rom 0 to 1 we can perform the integrals to give 

a cross-section comprising of several beta functions. After much algebra we are left w i th 

^3partons ^ Q^^^^Q 1 ^ 4 r ( 2 - £ ) r(i-£)^ 
4(27r)3 V Q 2 j r(2 - 2e) r(l - 3e) 

2 '3 19 
+ - + ^ (B.0.17) 

which in terms of the tree level cross section is given by 

a 3 partons 
cr 

tree 
27r V g 2 j r(l - 3£) 

2 3 19 
-7; + - + ^ (B.0.18) 

I t can be shown that the Gamma function factors in front of the loop calculation (Equa­

t ion B.0.12) and the 3 parton calculation are the same as the £ —)• 0 l imi t is taken. Therefore 

we can clearly see that the coefficients of the double and single poles of the loop term are 

exact opposite to those of the 3 parton term and thus the sum of the two is a finite result. 

In the £ 0 l im i t 

^total _ (jtree _|_ ^3 partons _|_ ^loop _ ^jtree 1 + 
a. 
TT 

(B.0.19) 

Therefore we have shown that for the process e+e hadrons the Kinoshita-Lee-Nauenberg 

theorem is obeyed for the NLO calculation of the cross section. 
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Appendix C 

Phase space factors for multi parton final states in d 
dimensions. 

C.O.l 2 body final states 

I t can be shown [40] that the form of the phase space factor (or more physically the number 

of final states per particle per unit volume) is derived from consideration of the boundary 

conditions placed upon quantum particles bound in a finite region and the normalised density 

of particles in this region. For n particles in the final state the expression is given by 

Z^mS^iq-pi-pi-.-.-Pn) (C.O.l) 2Ei(27r)'^-i 2E2{2TTY-^""2Er,{27rY-

However in many cases it is more useful to convert this integral into one over other quantities 

such as mass invariants or the transverse momentum. Consider the simple case of a 2 body 

system. Let us redefine the integral firstly in terms of invariant masses and later in terms 

of transverse momentum. Both are necessary for the calculations considered in this thesis. 

One of the d — 1 dimensional measures can be written in terms of a d dimensional one and 

a delta function such that the original d dimensional delta function is integrated away. 

^ = d W ) e { p ' ) (c.0.2) 
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Then the other measure is written in terms of its radial component and its solid angle such 

that 

d'^-^p = p'^-^dpdCld-ieip) = E'^-^dEd^d-iO{E) (C.0.3) 

since we are dealing with massless particles. This gives for the phase space factor the 

function, (assuming that the integral over momentum pi has been performed) 

m - P2f)0{E,)9{E,)Et'dE, ^^^^^ 
d-2 

The delta function can be rewritten so that it depends on the invariant S12 = 2pi.p2 since 

= p'^ +P2- E2 can also be rewritten in terms of this invariant such that E2 = S12I2Q 

where = Q"^. Therefore the phase space factor in terms of invariants is given by 

5{Q^ - s,2)e{E,)e{E2)s;^'ds,2 . 

and this is the final form that is used in all 2 body calculations contained in this thesis. 

C.0.2 3 body final states 

For our NLO calculation of e^e~ —)• hadrons we were required to calculate the three body 

phase space factor. For simplicity we shall use the mass invariants again. Removing one 

integration by making use of the delta function (assuming that the integrated momentum 

was ps) leaves us with 
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Again we can write the remaining measures in terms of a radial part and a solid angle. How­

ever, another variable now needs to be considered, the angle between the two independent 

momenta. We divide the two measures into radial components and two solid angles, but not 

of the same dimension. One solid angle has a degree of freedom made explicit. 

^dEidE2ddudnd-2dfld-3{EiE2sm{en)V~^6{pl){2TTf-^'' (C.0.7) 

It is here that we introduce the Gram determinant that is related to the Jacobian used 

when switching from momenta to invariants in phase space integrals. In our three dimen­

sional example it is given by 

A(g,Pi,P2) = A{pi,p2,P3) = - S 1 2 S 1 3 S 2 3 = Q^ElElsm^iOu) (C.0.8) 

as it is defined to be determinant of the matrix 

A(pi ,P2,---,Pn) 

Pi-Pi P1-P2 ••• Pl-Pn 
P2-Pl P2-P2 ••• P2-Pn 

Pn-Pl P2-Pn ••• Pn-Pn 

(C.0.9) 

Therefore using the Gram determinant and re-expressing the measures in terms of mass 

invariants such that 

dEidE2d9i2 = (16(5^Si2Si3S23) ^^'^dsudsi3ds23 (C.0.10) 

the final form of the three particle phase space, generated from the decay of a single massive 

particle is given by 
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1 r d 4 

J Q^-'^dsi2dsnds23dftd-2dnd-3{si2SuS2sy-^d{su + Sis + S23-Q^)i2TrY-^'^ (C.0.11) 

Thus the Gram determinant defines the boundaries of available phase space such that if 

A 3 > 0 we lie outside of the kinematical region. 

C.0.3 Two to two body scattering 

Now let us consider the case where we wish to define a differential cross-section for a two 

to two body scattering 1 + 2 ^ a + b such as the reaction pp —¥ qq where not only do we 

include the 2 body phase space factor, but we also consider the momentum fractions of the 

incoming partons. In this thesis it has been necessary to calculate the cross-section with 

respect to the transverse momentum. This gives a phase space factor of the form 

dx,dX2-^,^^S\p,+P2-Pa-p>,) (C.0.12) 
47r'' ZEa 2Eb 

where xi and X2 are the momentum fractions of the incoming partons such that 

p'l = x,P^ = ^-^{lMl) 

p^, = ^ ( 1 , 0 , 0 , - 1 ) (C.0.13) 

where P and P are the momenta of the proton and antiproton respectively. We also define 

= 2P.P and = 2pi.p2. We can rewrite the transverse components of the measure 

such that 

dpldpl = rdrde = nd{r^) = T^d{pl) (CO. 14) 
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which, using the transverse part of the delta function determines the transverse component 

of parton b. This then gives 

dpl^^dx^dx2~5 { ^ { x , + X2) -Ea~ E\ 6 ( ^ { x , - X2) - pi - pi] (C.0.15) 

To remove the longitudinal momentum integrals we substitute these for integrals over rapid­

ity y where 

1 E + pA , E + PL\ r r n i f i ^ 
^ = 9 ^ ° § — (C.0.16) 

2 \ E - P l \ Pt 

Therefore we substitute ya for p\ and y^ for to give 

dpldyady,dx,dx2z^5 { ^ { x , + X2) - E, - E,] 5 ( ^ { x , - X2) - p i - p'r) (C.0.17) 

We can remove the final longitudinal momentum dependence from the delta functions by 

using the identities 

=prcosh(?/a), Pi = sinh(?/„) (C.0.18) 

and finally we are left with 

1 / \ 
dp\dyady^---b pT{cos\i{ya) + cosh(?/b)) - — (a;i - ^ 2 ) 

iDTT y Z J 

( \/s \ 
X 5 pT{sin]i{yi) + sm\i{y2)) -—-{xi - X2) dxidx2 (CO.19) 

\ Z 
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Now we perform the xi and x^ integrals such that the measures become 

dpldyady^^ (C.0.20) 

whilst the delta functions define the intial momenta fractions as 

xi = ^{e-^" + e^^"), X2 = ^{ey- + ê ") (C.0.21) 
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