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Abstract

Many contemporary experimental QCD results achieve greater accuracy In measurement
than equivalent theoretical predictions calculated at leading order. Therefore it is necessary
to consider next to leading order (NLO) predictions for many processes in order to compare
experiment with theory. Accurate theoretical predictions are also important in order to
reduce the uncertainty in QCD parameters such as the coupling constant o, and to test
whether QCD is in fact the correct theory to describe the strong interaction. With NLO

results it is also possible to separate different clustering algorithms and test non-perturbative

effects.

This thesis concentrates on the techniques necessary for the calculation of NLO observ-
ables from the processes ete™ — 4 jets and pp — v+ X. We formulate a new version of
the hybrid subtraction scheme based on the colour antenna structure of the final state to
evaluate the necessary phase space integrals for the 4 jet process. The scheme is universal
and can be applied to any QCD processes. The general purpose Monte Carlo EERAD2 which
incorporates this new technique is compared with both experimental data gathered by the

DELPHI collaboration and other groups which have reported similar calculations.

A Monte Carlo written for the process pp — 7 + X requires a knowledge of the non-
perturbative photon fragmentation function, D., and the second half of this thesis concen-
trates on a calculation of this process using the ALEPH measurement of D, based on a
democratic algorithm. The Monte Carlo DPRAD incorporates these techniques and results

from it are compared with data from the Tevatron.



Contents

1 Introduction 1
1.1 1In the beginning... . . . . . . . . . .. 1
1.2 The QCD Langrangian . . . . . . . . . . . .. oo 7
1.3 The renormalisation of QCD . . . . . . . . .. oo 14
1.4 Theoretical uncertainty . . . . . . . . . .. 20
1.5 SUMIMALY .« .« o v e o e e e e e 23

2 Experiments, Next-to-Leading Order and Motivation 25
2.1 Introduction . . . . . . . o e 25
2.2 Jets and higher orders . . . . .. . ... oo 26

2.2.1 Jet-finding algorithms . . . . . .. ... ... 27
2.2.2 Recombination schemes . . . . . . . .. ... 33
2.3 Next-to-Leading order techniques . . . . . ... ... .. ... ... .. ... 33
2.3.1 Introduction . . . . . . . . ... e 33
2.3.2 KLN theotem . . . . . . o v v v v i it 34
233 ete” = 2Jets . ... 35
2.3.4 Divergences and Dimensional regularisation - “to infinity and beyond” 36



2.3.5 Colour in QCD calculations and colour algebra . . . . ... .. ... 39

2.3.6 The colour factors of SU(3) . . . .. ... ... ... .. ... ... 39
237 QT GG - - o e .. 43
2.3.8 Matrix element and Subamplitude factorisation . . .. . ... .. .. 50
2.4 Phase SPACE . . . . v . . oo 58
2.5 Motivation . . . . . . . . . e 61
2.6 SUIMMATY . .« o o o o e e e e e e 63
NLO Numerical Techniques 66
3.1 Introduction . . . . . . . . o . 66
3.2 Subtraction, Slicing and Hybrid subtraction . . . . .. ... ... .... .. 67
3.2.1 Slicing[42] . . . ... 67
3.2.2 Subtraction[44] . . . . ... 69
3.2.3 Hybrid subtraction . . . . . ... ... 70
3.3 Antenna factorisation . . . . . . . . . ... 71
3.3.1 Momentum mapping . . . . . . . ... 72
3.3.2 The universal subtraction terms . . . . . . .. .. ... 75
3.3.3 Quark-Antiquark antenna . . . . .. ... 77
3.3.4 Quark-Gluon antenna . . . .. .. ... .. 78
3.3.5 Gluon-Gluon antenna . . . . . . . . ... 80
3.3.6 Antenna where a quark-antiquark pair merge. . . . . . . ... .. .. 81
3.4 SUIINATY . .« v o v o e e e e e 82



4 Matrix elements/subtraction terms for the calculation of ete™ — 4 jets 84

4.1 Introduction . . . . . . . . . . e 84
4.2 The virtual loop matrix elements . . . . . . .. .. L 00000 85
421 eTe™ = q@gg - - e 85
422 ete” = qqQQ . . . . ... 88

4.3 The unresolved parton matrix elements . . . . . ... ... ... ... .. 96
431 ete” = qgggg . . . . . o e 96
432 ete” = q@QQg . . . . . 98

4.4 Symmetries and negligible contributions . . . . ... ... ..o 100
4.4.1 Negligible contributions . . . . .. .. .. ... 101
4.4.2 Symmetry factors . . . . ... 101

4.5 Using hybrid subtraction for the NLO calculation of e*e™ —> 4 jets . . . . . . 105
4.6 SUIMIMATY .« o v v o o e e e i e e e 114
5 Data results for NLO 4 jet observables 115
5.1 Introduction . . . . . o o o e e e e e 115
5.2 Fourjet event shapes . . . . . . . ... . 116
5.2.1 Definition of Variables . . . . . .. ... .. oo 116

5.2.2 Structure of Perturbative Prediction . . ... .. ... ... ... .. 118
5.2.3 Scale choice, theoretical uncertainty and resummations . . . . . . .. 118

5.3 Comparison with existing results . . . . .. ... ... ... oo 119
5.3.1 Fourjetrates . . . . . . . . ... 119



5.3.2 Shape variables . . . . . ... .. L 119

54 New results . . . . . . . . e 121
5.4.1 Light Hemisphere Mass . . . . . . . . ... ... .. ... ... .... 122
5.4.2 Narrow Hemisphere Broadening . . . . . . .. ... ... ... .. .. 123
5.4.3 Jet transition variables . . . . . . . ... oo 123
5.5 Comparison with experimentaldata . . . .. ... ... ... . ... ... 124
5.6 SUMMATY .+« v v v v e e e e e e e 129
A new calculation: pp — v + jets at O(aa?) 133
6.1 Introduction . . . . . . . . . . 133
6.2 Photon emission and fragmentation functions . . . . . .. ... .. ... .. 134
6.3 Construction of the ¢ — v fragmentation function . . . . .. .. ... ... 137
6.4 Initial state radiation and crossing functions . . . . . . ... ... 144
6.5 The full result and structure of DPRAD . . . . . . . . . .« ... 154
6.5.1 LO contributions to 1 jet final states . . . .. .. ... ... ... .. 154
6.5.2 LO contributions to 2 jet final states . . . . . . ... ... 156
6.5.3 Extra unresolved parton contribution to 1 jet final states . . . . . .. 159
6.5.4 Virtual corrections . . . . . . . ..o 160
6.5.5 Crossing terms and fragmentation contributions . . . . .. ... ... 162
6.5.6 Finalresult . . . . . . . . . 165
6.5.7 Smin independence . . . ... 166
6.6 SUIMIMATY . . . o v v v v o e e e e e 166



7 Results and comparisons with prompt photon data

7.1 Introduction . . . . ... ... ...

7.1.1 Initial parton contributions

7.2 Uncertainty in the theoretical prediction . . . ... ... ... .. ... ...

7.2.1 Differences between the fragmentation functions . . . . . . . . .. ..

7.2.2 Renormalisation and factorisation scale dependence . . . . . . . . ..

7.2.3 Dependence on the photon isolation criteria . . . . .. .. ... ...

7.2.4 Dependence on the parton density functions . . . . ... ... .. ..

7.2.5 Predictions using the resummed fragmentation function . . . . . . . .

7.3 Comparison with the data . . . . .

7.4 Intrinsic kr broadening and initial state soft gluon resummation . . . . . ..

7.5 Summary . ... ..........

8 Conclusions

81 Review . . . . . . . . . ...

C.0.1 2 body final states . . . ..

C.0.2 3 body final states . . . ..

C.0.3 Two to two body scattering

169

169

169

170

171

174

175

179

179

181

182

184

186

186

191

194

200



Chapter 1

Introduction

1.1 In the beginning...

At the start of the 1930’s, it was recognised that the strong nuclear force between nucleons did
not depend on the identity of the nucleons involved. This meant that the strong interaction
between a proton and another proton is seen to be identical to the interaction between a
neutron and a proton and similarly between two neutrons. Consider the three nuclei $He ,®Li
and ¢Be. These can be thought of as two neutrons, a proton and a neutron and two protons
attached to a *He nucleus respectively. After allowing for differing electromagnetic effects,
the masses of these three nuclei are found to be very similar.! From these observations
particle physicists considered that the proton and neutron might be two different states of the
same particle, the nucleon. Thus the proton and neutron were thought to be much akin to the
up and down spin states of the electron. Therefore these two particles were grouped together
in a SU(2) baryon isospin doublet where isospin is a mathematical construct analogous to
electron spin and SU(2) is the two dimensional representation of the rotation group J =1 /2.
The group J = 1/2 defines the compositions that are formed by combining particles that
can exist in either of two states i.e. an “up” state and a “down” state. Combinations are
either symmetric or antisymmetric, so when two particles combine according to the J = 1/2

group, the following states can be created.

1The ground state energy of the lithium nucleus is actually 2 MeV lower than the other two nuclei and
it is the excited state with isospin equal to 1 that has the equivalent mass of the other two nuclei.



S=1 M,=1 M

S=1 M,=0 (3)(1L+11)

S=1 M,=-1 i (1.1.1)
§=0,M,=0,, (5t ~1D)

where S is the total spin of the pair and M; is the z component of this spin. The top three
configurations of “up” and “down” form the symmetric triplet of two J =1 /2 particles. The
remaining state is the antisymetric singlet. SU(2) is a representation of this group, making

use of the Pauli spin matrices in its fundamental representation.

The requirement that the strong nuclear force be invariant under isospin transformations
demanded that all particles that are affected by the strong nuclear force fill such isospin
multiplets and that isospin be a conserved quantity or a conserved quantum number. In 1948
the discovery of the three pions, which also have similar masses, forced particle physicists to
create a new multiplet and by the 1960’s a whole proliferation of baryons and mesons had
been found and similarly grouped. The light baryons of spin 1/2 (from here onwards spin
refers to the intrinsic angular momentum of a particle and not isospin) formed a octet and the
light mesons of spin 0 also formed another octet (with a ninth at considerably higher mass).
Also, the existence of another quantum number, that of strangeness, had been postulated
by Gell-Mann [1] and, independently, by Nishijima [2]. This new conserved quantity was
proposed in order to explain the long lifetimes of some of the newly observed particles (such
as the 7). With such large multiplets and two independently conserved numbers, the
natural consequence was to arrange the particles into a larger, all embracing group which
would link strange and non-strange particles. With two conserved quantum numbers, a
group would need to contain two mutually commuting generators that could give quantum
numbers to each particle (i.e. a group of rank 2) and in 1961 the group SU(3)fiavour Was
proposed. The fundamental representation of SU(3)favour 18 & triplet composed of the three
different fiavours, ‘up’,’down’ and ‘strange’. All other multiplets can be built up from this
and its conjugate. This fundamental representation is the basis of what is known today as

the Quark Model proposed independently by Gell-Mann [3] and Zweig[4).

By considering the fundamental triplet and the corresponding anti-triplet i.e. an identical

triplet except that the quantum numbers are reversed in sign, the lightest meson multiplet
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can be formed. Let the elements of the fundamental triplet/anti-triplet be,

(1.1.2)

QL
@l Qul 2

Then, by considering the group operation 3 ® 3 = 8 ® 1, the meson octet and singlet are

formed. In terms of quark content they are

ud, u3, di, ds, si, sd (1.1.3)

and also the three linear combinations of ui, dd and ss,

\/g(uﬂ+dcz+s§), @(uﬂ—dd), \/g(uﬂ+dd—2s§). (1.1.4)

where the first combination forms the symmetric singlet, the second completes the non-
strange antisymmetric triplet and we are forced into the form of the last combination by
demanding orthogonality between states. Other more massive mesons are also combinations

of these nine states with varying discrete amounts of angular and intrinsic spin between the

quark/antiquark pair.

Similarly we can form the various baryons multiplets by considering the SU(3)favour group
operation 3® 3® 3 =10® 8 ® 8 ® 1 which are the multiplets formed by combining three
fundamental triplets. The baryon octet that contains the proton and neutron form one of
the above octets. The quark model successfully predicts the quantum numbers for hundreds
of baryons which are excitations of this basic 10,8, 8,1 form. Akin to the Periodic Table of
Chemistry, the quark model also successfully predicts the existence (and mass) of hitherto
unseen particles such as the ~. However the symmetry of SU(3)favour is DOt a perfect one.

For this to be true would require that all the masses of particles in the same multiplet be

ezactly the same.



But the idea of quarks other than mathematical constructs to explain the SU(3)gavour
group properties of the hadrons did not gain full support until 1968 when direct evidence for
the existence of point-like objects in nucleons was first seen at the deep inelastic scattering

experiments of SLAC-MIT [5].

However, there still remained some difficulties. How can a fermion such as the ATt
which has spin of 3/2 exist with both symmetrical quark content (uuu) and symmetrical
spin orientation of the quarks? The answer is to introduce a new quantum number which is
referred to as colour and to make the AT+ antisymmetric in this new quantity. Colour comes
in three varieties, red, green and blue (R,G and B) together with their antipartners (R,G
and B). The combination of all three colours is regarded as a colour singlet (or colourless)
as is the mixture of a colour and its antipartner. It was proposed that all hadrons are
colourless, but the quarks that make up the particles are coloured and thus the ATT retains
its Fermi-Dirac statistics by having a linear combination of a red up quark, a blue up quark
and a green up quark which is antisymmetric under SU(3)cotour rotation. This new quantum

number also explains the apparent short-fall in the R ratio by a factor of 3. The R factor is

the ratio

o(ete” — hadrons)

e (1.1.5)

R=

and as such is only dependent on the number of energetically available quarks and the square
of their charge. See Figure 1.1. The observed experimental value was seen to be a factor
of 3 too large compared to the theoretical prediction if only one quark of each flavour is
considered, but with colour there now exist three independent quarks of each flavour e.g.
ug ,up and ug which accounts for the discrepancy. Another consequence of colour and
the demand that all observed particles are colourless is that we can never see an isolated
quark. Nor can we ever remove a single quark from a hadron. This limitation is known as

confinement and is still not well understood.

Colour is another example of an SU(3) group, but not to be confused with the flavour
SU(3) group previously mentioned. The number of quark flavours is now known to be
equal to six and so SU(3)gavour is only used when considering the light quarks. SU(3)colour

however, is the group that exactly describes colour and as such the triplet R,G,B makes up

4
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Figure 1.1: The R ratio of Equation 1.1.5 as a function of Q. The horizontal lines indicate
the expected values of R with 3 colours and with 3, 4 and 5 active quark flavours. As we can
clearly see, without the colour factor, theoretical predictions could not predict the overall
normalisation of the ratio. The peaks at approximately 4 GeV are the J /1 and x resonances.
This diagram is taken from a collection of data over many papers.|7]



its fundamental representation. As we shall see later, it is also the group that we use to

describe the theory of quark interactions.

With any unitary group, we need to consider the generators of the symmetry and for
SU(3) there are 8 Gell-Mann matrices that make up these generators. Just as the funda-
mental representation corresponds to the basic building blocks of the group (and the basic
field for the Lagrangian), the adjoint representation of SU(3) contains the generators of the
group and these represent the mediators of the strong force that bind all coloured particles.
They are known as gluons. As we shall see later, these eight additional fields are necessary
for the Lagrangian of the strong force to remain locally gauge invariant (i.e. the Lagrangian
does not change if the definition of colour depends on position) and the adjoint represen-
tation is the source of these gluon fields. For the electromagnetic force (a U(1) symmetry)
the photon ensures that a position dependent definition of charge does not affect the QED
Lagrangian (the theory of electromagnetic interactions). The only difference between the
two sorts of gauge bosons is that the gluon is colour-charged whereas the photon carries no
electrical charge. If the gluons did not carry colour charge then we could bind together three
red quarks to form a coloured hadron violating our earlier postulate of colourless physical
particles. In fact the gluon must carry colour and anticolour to ensure no coloured hadrons
are seen. Since we have 3 colours this gives us nine gluons, but one is a colourless singlet
and so decouples, having no interaction with either quarks or other gluons. It can be shown
that the gluon must have spin 1, like the photon, in order to mediate the interactions of spin
1/2 quarks. Also, as the gluons are coloured they can interact with each other as well as

the quarks. We shall see this more clearly when we consider the Langrangian of the strong

interactions.

In this thesis we shall concern ourselves with a quantitative description of quarks and
the colour forces that bind them. This construction is known as Quantum Chromodynamics
(QCD) and is an example of a quantum field theory. These are highly successful theories
that link all of particle physics. The Standard Model of particle physics consists of three such
theories which are all described mathematically with reference to unitary groups. But in this
thesis we concern ourselves with that group and theory that describes the strong interactions
of the constituents of the nucleus. In Section 1.2 we shall see how we proceed from the QCD
Langrangian to a point where we can calculate experimental variables using the Feynman

rules of QCD. However the theory at this stage still contains hidden infinities and these need

6



to be removed using a prescription known as renormalisation. We shall consider this and
its influence on QCD in Section 1.3. Finally we shall study the error involved in using a
truncated perturbation theory (the technique used for all quantum field theory calculations

in this thesis) and how this can be reconciled with the full theoretical result. This we present

in Section 1.4

1.2 The QCD Langrangian

In this section we shall consider the structure of an SU(3) gauge theory and how we can
relate the Langrangian of this theory to a more perturbative, diagrammatically orientated
prescription. From this we can derive rules for the calculation of physical parameters such

as the cross-section and event shape variables.

We begin by considering the Langrangian of QCD, the theory of strong interactions.
From the same deep inelastic scattering experiments that suggested a point-like structure
to the nucleon, it was shown that these partons also have intrinsic spin 1/2 and so they are

fermions. From this we can write down an expression for a single flavour massless coloured

quark

Vr
ACquark—l—gluon = i"ﬁi’}’ua“wi where 10 = ?1)5 (126)
Vg

where 1; is a member of the SU(3) triplet of 4 component Dirac spinors, ¢ = R,G, B,
v =0,1,2,3 and ~, are the 4 by 4 matrices that satisfy the Clifford algebra {Vus Yo} = 2900

We also have an implied summation over the index 3.

However, if we wish to enforce local colour invariance i.e. changing the colours in different

ways at different points in space-time without changing the Lagrangian we are led to the

following form of Lguark+gluon

Lquark—Jf-gluon = ZE'Y;A,DZ"% (127)



We define the covariant derivative, Dj; as

Df; = 0"dy; + igtijaAj, (1.2.8)

where A¥ is the gluon field in the adjoint representation labelled with colour index a and
couples to quarks of colour ¢, j via the 8 Gell-Mann matrices t;;4 and with strength g. These
colour matrices do not commute as do the U(1) charge matrices present in QED. Instead
they obey the commutation relation [t,, ] = %fasctc Where fabe are the structure constants
of SU(3). Having constructed the matter content of the QCD Lagrangian, we now consider
the dynamics of the gauge particles. We include a kinetic term by incorporating the field

strength tensor of the gluon field, F” such that

. 1
Lquark-l-gluon = Z¢i7uD%¢j - ZF:' Fp,ya, (129)

where there is an implied summation over a = 1..8. The field strength tensor is defined so

as to ensure local colour invariance under SU(3) rotations. It is given by,

Fi = 1AV — 8" A — gfanc AL AY. (1.2.10)

We can clearly see that the gluonic kinetic energy term in the Lagrangian will generate terms
which have three and four gluon fields and therefore produce self-interactions of the gluon.

It is these terms that will be crucial to the renormalisation of the theory (See Section 1.3).

Let us now see how the local invariance of the proposed Lagrangian works. We can

describe an SU(3) transformation by rotating the fundamental triplet using V;j(z) where

Vij(z) = e¥e@toe, (1.2.11)



and 6,(z) is an arbitrary function that depends on the four vector z so that,

As V;(z) is a unitary transformation this ensures any mass term incorporated into the
Langrangian will remain unaffected under rotation. (Any mass must have the form maps;).
When we apply Vi;(z) to Equation. 1.2.9 we see that if £ is to be unaffected this implies
that,

Dby — Vi (@)D" iy (1.2.13)

which then forces a transformation rule on the gluon field A. The invariance of the quark field

term in the Lagrangian can be seen when the transformations of Equations 1.2.12 and 1.2.13

are applied to Equation 1.2.8. (See Appendix A)

Thus the first term of equation 1.2.9 is invariant under an SU(3) gauge transformation.
In a similar manner it can be shown that the gluon kinetic energy term is also invariant

with respect to the transformations of equation 1.2.12 and the gluon field transformation

(see Appendix A).

However, there is still some ambiguity to our Lagrangian. The gluon field is not uniquely
defined as we can transform it without affecting any measureable quantity. In fact the

propagator cannot exist unless we remove some of these extra degrees of freedom. This is

done by adding a gauge-fizing term of the form

1

Lgauge = —%((%A’j)z (1214)

where € is the arbitrary gauge parameter and defines the covariant propagator to be used.

We associate the Lorentz condition 8,4% = 0 with the covariant propagator and for this

9



thesis £ will be taken to be 1 which is usually known as the Feynman gauge. (It is not
necessary to impose the Lorentz condition to derive a set of Feynman rules. Axial gauges
define an axial vector n* that can be used). This process is necessary to uniquely define the

photon propagator in QED as well.

The final term in the QCD Lagrangian is required to keep the number of polarization
states of external gluons equal to two. We have associated with the covariant gluon prop-
agator four degrees of freedom. In QED the photon has a similar problem, however the
longitudinal and scalar components cancel with each other to leave the physically-seen two
transverse degrees of freedom. In QCD this does not happen due to the gluon self-interaction.

So an additional term is added to the Lagrangian to ensure that longitudinal gluons do not

propagate. This term is given by

ﬁghost = 8;/'73; (foc??c) (1.2.15)

where 7 is a scalar field in the adjoint representation which obeys Fermi statistics. This term

is known as the ghost term and is important when considering gluon loop diagrams.

Therefore the full QCD Lagrangian can be written as

Lqcp = Lquark+giuon + Lghost T Lgauge (1.2.16)

The full QCD Lagrangian can now be used to write the action, S of the theory which
consists of a free theory term S, and an interaction term S;. If the coupling of quarks and
gluons is assumed to be small then the interaction term can be treated as a perturbation
and a series can be calculated using Feynman’s path integral formalism. A detailed account
of Feynman’s path integral formalism can be found in [6]. One way of visualizing this is by
using Feynman diagrams. These diagrams, together with the Feynman rules derived from the
Lagrangian via the path integral formalisms can be used to calculate experimental transition
probabilities. All viable, topologically different diagrams of a given order are summed to

give an amplitude iM which when squared gives the transition probability of a final state

10
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Figure 1.2: The three diagrams that form the process ¢g — gg in QCD. Note the additional
diagram with the triple gluon vertex. In QED, the U(1) charges commute so that the first two
diagrams are all that is required for gauge invariance. However, the SU(3) colour charges
of QCD require the additional diagram to conserve gauge invariance and thus using this
process, the form of the triple gluon vertex can be deduced

being produced from any given initial state. By integrating the product of this and certain
phase space and intial flux factors over relevant momentum variables an experimental value

can be calculated such as the cross-section or any jet observable.

The Feynman rules for QCD in the Feynman gauge (a covariant gauge with £ = 1)
can be seen in Figure 1.3. Another convenient method of obtaining the Feynman rules for
the triple gluon self-interaction is by considering the reaction ¢g¢ — gg. Without the triple
gluon vertex, there would be two diagrams that contribute to this process (see the first
two diagrams of Figure 1.2). In the analogous QED process these two diagrams would be
invariant under the gauge transformation €, — €, +ap, where €, is the polarisation state of
one of the photons and p,, is its four momentum. This is because the U(1) charge matrices
present in the matrix elements commute. This gauge invariance leads to the formulation of

the Ward Identity which states that

puMHE =0 (1.2.17)

where MH# is the matrix element of the process. However, with the non-Abelian nature
of QCD, the SU(3) colour matrices present do not commute and if we consider the same
two diagrams we are left with a gauge dependent answer. By introducing the triple gluon
diagram and demanding that the sum of these is gauge invariant, the form of the triple gluon
vertex can be derived. A similar argument can be used to derive the form of the four gluon
vertex by considering the gauge invariance of the the process gg — gg. Other Feynman rules

that are used to calculate squared matrix elements include
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matrix. As can be seen in the QCD Lagrangian there exist triple and quadruple gluon self-
interactions and the rules for these can be calculated by considering the processes ¢q — g9

strength and the presence of an SU

u(p) y v(p)
u(p) A v(p)
l)‘)‘)()()()’ *
e'(p) s " (p)
s
3999{)
i(p+m)5; CEEEEEEREE66T™ _Euvsab
(pz_ it £) b a pz
p2,b,v PGP
@23';&99‘)‘)()9
P1,a,1

-gfne((P1-p2) 2"
+(pz-p3)’v‘ g”
+(py-p1)'g™)

-igifabefcde(gwg“"-g“"gj”)
'1g2facefbde(gscgp -g"% ’:)
-ig faefene(g °2"-272™")

and gg — gg and demanding local gauge invariance
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e The completeness relations of any fermion, derived from the Dirac equation.

> O @)a(p) = y-m (1.2.18)

where s is the spin of the fermion.

e The completeness relation for the vector bosons

8 S8 p pl/
S et = —guw + ;2 (1-¢) (1.2.19)

where s is the spin of the boson.

Spin-summing final states and averaging over initial state spins of a matrix element.

This is performed only for unpolarized physical observables meaning that no informa-

tion about the spins of the initial state particles is passed through the calculation.

multiplying by a factor -1 for every fermion loop (and ghost loop although this will

not concern us).

multiplying by a factor 1/n! for n identical final state particles.

integration over any loop momenta e.g. [ dil/(2m)*.

Throughout this thesis we shall work with the masses of all the quarks set to zero which will
simplify the calculation of matrix elements containing a large number of external particles.
This may be seen as working without any reference to physical quarks, but because the
centre-of-mass energies we will be using are far greater than the masses of the light quarks
any mass effects can usually be neglected. (For an example of QCD calculations involving

mass effects and the techniques involved the reader is referred to [8]).

Another parameter important to any QCD calculation is o which is defined as g2/(4n)

where g is the coupling strength of QCD. The value of a, is a subject of huge diversity and
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interest to anyone working in QCD. However, this parameter is not uniquely defined until
we consider the renormalisation of QCD. The succeeding two sections will concentrate on

the theory and application of renormalisation and the different methods that are used.

1.3 The renormalisation of QCD

When the Feynman rules described in the last section are applied to leading order (LO)
diagrams (i.e. those diagrams corresponding to the first term in the perturbation series),
they are seen to work reasonably well for high energies (energies of the order of the Z mass).
" Within theoretical confines which we shall look at later, LO QCD results give a good general
description for many distributions. However, if we were to consider Feynman diagrams
corresponding to higher terms in the series such as diagrams that contain loops, the current
Feynman rules give infinite answers. For example, consider the 1-loop correction to the

quark propagator. The matrix element describing this graph contains the integral

o d4
A 1.3.20

/o 12(k —1)2 ( )
where k is the external momentum. In the limit [ — oo the integral can be seen to become

logarithmically divergent; this is known as an ultraviolet divergence. This is true for both

QED and QCD.

The remedy for ultraviolet poles is to absorb these divergences into the definition of quark
masses and fields, the couplings and the gluon fields. Thus the Langrangian we introduced
in Equation 1.2.16 can be thought of as the bare QCD Lagrangian which depends solely on
the bare charges, masses and fields which are all infinite. Once the divergences of the loop
contributions are absorbed by the infinite bare parameters the phy§ical or dressed parameters

are rendered finite.

Bare and dressed parameters can be related using infinite counter terms. The diagrams of
Figure 1.4 show the graphs which contribute to the counter terms at the 1-loop level for the
quark and gluon fields and the coupling of quarks to gluons. The loop integrals have to be

regularized so that the divergences can be made explicit. This can be done by either applying
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Figure 1.4: The 1-loop contributions to the counterterms for the gluon self energy (top
4 diagrams), the quark self-energy (the middle diagram) and the quark charge (bottom 2

diagrams)

an upper bound to the loop momentum or by continuing the number of dimensions of space-
time to d where d = 4— 2¢. This latter technique is known as dimensional regularization. We
shall consider the implications of this in the next chapter. Using either method introduces
a scale p to the calculation such that the coupling constant is rendered dimensionless. This
scale is referred to as the renormalisation scale and as such all truncated observables depend
upon it. When calculating quantities such as the gluonic self-energy in perturbative QCD
(pQCD) the ultraviolet divergences can be made explicit in terms of 1/e poles which must
be subtracted to make the answer finite. If only the poles are removed this procedure is
known as the Minimial Subtraction scheme (MS). However, with the poles there are also
finite terms of the form log4m — g where g is the Euler constant. If these terms are also

removed then the new renormalisation procedure is known as the MS scheme. For a more

detailed calculation of the gluonic self energy the reader is referred to [9].
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Having introduced a renormalisation procedure we can now see how this affects the results
of a fixed order calculation. As we have seen, the removal of the ultraviolet poles from the
loop diagrams has required us to redefine the coupling constant of QCD. Whereas before we
had a, which was a constant, we now have a,(p) which is referred to as a running coupling
constant. To show the effect this has on our calculations consider a dimensionless quantity
R which depends on a single energy scale @ (let this be the centre of mass energy of the
experiment e.g. Mz for LEP1 experiments) which is large enough to make other scales such
as the quark masses negligible. If we renormalize the perturbation series for R we introduce
a second scale u (this can be thought of as the energy at which the subtractions take place).
Now R depends in general on the ratio @/u. Also o, will depend on p ie. a, = as(u).
However, the renormalisation scale y is an arbitrary parameter and R cannot depend on the

value of this scale as it is not present in the QCD Lagrangian. This independence can be

expressed as

R I R

which we can rewrite by making the substitution, () = u% and using the chain rule to

rewrite the derivative with respect to @,

8 8
_Q% 4 ﬁ(O‘S)?)&—s R=0. (1.3.22)

We introduce the new variable ¢t where

Q_ e’ (1.3.23)
il

i} R(e*, a,(u)) =0 (1.3.24)



We can solve this partial differential equation by introducing a new function, a,(Q) such

that

as(Q) dz
t = - 1.3.25
/asuz) B(z) ( )

Differentiating Equation 1.3.25 using the identity

z2 8.’172 1
t:/m Wik = 5= T (1.3.26)
gives
00(Q) _ 5 o (@) _ Ble(@)
o = P@@) 5oy = Bla) (1.3.21)

Therefore R(1, a;5(Q)) is a solution of Equation 1.3.24. We can see from this that all the scale
dependence in R is due to the running of the coupling constant o,(Q) and if R(1, a,(ps)) is
known at one scale we can predict its variation with @ by solving Equation 1.3.25 which can
be performed by using perturbation theory for sufficiently high values of Q. This is due to

the asymptotically free nature of QCD i.e. as(Q) decreases as () increases.

To solve Equation 1.3.25 we must know the form of the A function in QCD which can
be calculated using the counter term graphs we saw in Figure 1.4. It has a perturbative

expansion of the form

Blas) = —ba(1 +b'as + O(ex)) (1.3.28)
with the one loop graphs from Figure 1.4 determining b, the coefficient
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(11N - 27’lf)

or (1.3.29)

b=
where N is the number of colours and n; is the number of light flavours of quark that
could form quark loops in the gluon propagator. The value of &' is also known from 2-loop
graphs. However, even higher order coefficients are dependent on the renormalisation scheme
employed. As can be seen from Equation 1.3.29, QCD with n;y < 17 gives a negative value for
B(a,) and therefore according to Equation 1.3.22 o decreases as the scale increases making
QCD an asymptotically free theory. This is the exact opposite behaviour to QED where the

[ function is given as

ﬂQED(OA) = 5%&2 (1330)

at the 1-loop level which is clearly positive.

Having written a perturbative form for the 8 function we can now write an expression

for the variation of ;. Starting from the definition of 8 we may write,

Q%% — @)1+ Vaul@) + Ol Q)L (1331)

If both (1) and o, (Q) are sufficiently small to lie in the perturbative region we can truncate

the § function series and solve the remaining differential equation. If we only include the

first term of the series then,

B as(p)
(@) =7 TS (1.3.32)

Thus we can see that, given a value of o, at some scale u its value at other perturbative

scales can be calculated. Using this technique, experiments at very different energies can
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Figure 1.5: The current world average for as(M2) = 0.119 £ 0.004 in the MS scheme taken
from a variety of experiments with energy ranges 1.6 GeV up to 189 GeV.[10]

compare values of o, at a given scale. Physicists calculate o, at the experimental energy
scale of the process (this is known as the physical scale). This is to avoid large logarithms
of the form log(/Q) which occur in next to leading order and higher terms. As p is
arbitrary, we could do the calculations for oy at any scale and if we included all the terms of
the perturbative expansion the p dependence would fall out. However, with our truncated
series, to remove these large logarithms we choose the physical scale and later allow the
coupling to run to compare «;, at different energies by using Equation 1.3.32. Due to the
large number of experiments at LEP1 and that it lies far from any quark thresholds well
within the perturbative region the most common scale at which to compare experimental

values of o, is taken to be Mz. The results of ‘running’ the coupling to this scale can be

seen in Figure 1.5.
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Alternatively, we can introduce another dimensionless parameter into the definition of

a,(Q?). This is known as Agcp which is defined as,

Q? 00 dz
In — / ar 1.3.33
A?QCD as(@?) B(z) ( )

Agcp can be thought of as the scale at which the coupling becomes too large for perturbation
theory. At present, its value is thought to be around 200MeV and thus QCD is thought to
break down at the scale of the masses of the light hadrons. With Agcp we can rewrite
a,(Q?) in terms of the beta function coefficients and @Q?, removing the dependence on the

renormalization scale. For the equivalent equation to Equation 1.3.32 we get,

1

a,(Q%) = D0 W) (1.3.34)

However this technique is not favoured as Agcp changes as more terms are included in the
perturbative expansion and it also takes different values as more quarks are introduced.
Thus it is more common in the literature to convert all couplings to a,(M3) and for the rest

of this thesis we shall adopt this approach.

1.4 Theoretical uncertainty

The largest uncertainty in any theoretical prediction for physical observables comes from
the uncertainty in the renormalisation scale and its relation to the inclusion of higher order
terms. Tt is clear that to achieve the same experimental results, a truncation after the first
coefficient would require a larger value of a,(Q?) than one which retained the next term
(assuming that the coefficient of the second term was positive). To allow for this uncertainty
in the coupling, the scale is often allowed to vary, usually between Q/2 and 2Q). As each
term is included in the calculation, this scale dependence cancels between terms and if all
the terms are used it is obvious that the result is independent of w. This can be seen in the

example of the average Thrust distribution. Thrust is a 3-jet like observables describing the
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<1-T>

mu/M_2Z

Figure 1.6: The leading order and next to leading order calculation of < 1 —T > according
to Equation 1.4.35 and the respective dependence on the renormalisation scale u. Not shown
on this graph is that the NLO calculation becomes negative divergent as g — 0. This is due
to the additional logarithm in p in the calculation.

spatial distribution of the event. For back to back events T' = 1 and for completely spherical

ones T = 1/2. Let us consider the perturbative expansion of this event shape variable [11].

<1-T>=210 (%) + (40.74 +4.27b1n (1\’;;)) <a32(;‘2)>2 (1.4.35)

where 2.1 and 40.74 are the first and second coefficient of the perturbative series calculated
with five active quark flavours. As with all variables the only scheme independent coefficients
in the expansion are the first two. Higher order terms are not known. The dependence of
< 1—T > on the renormalisation scale at each level of truncation is shown in Figure 1.6.
As can be seen from the diagram the leading order calculation is highly scale dependent,
being positive divergent as p/Q — 0 and slowly tending to zero as p/Q — oo. This is
expected as < 1 —T > at leading order is simply a scaled o, (Q?) distribution. At NLO, the
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presence of an additional log(p/Mz) dominates at small 42 and forces the distribution to roll
over’ and become negative divergent as p — 0. However, it can be seen that there exists
a relatively flat period of the distribution between 1/Q = 0.05 and p/Q = 10. It is here
that the calculation is fairly insensitive to the value of y and thus theoretical calculations
of < 1 — T > have smaller errors than those calculated at scales (or orders) where the
calculation is more dependent on the scale. Also, using the expansion of Equation 1.4.35,

the value for o, deduced from experiment at the physical scale will contain smaller errors.

However, the physical scale is not the only choice we can make of p that reduces theoret-
ical error. If we can model the rest of the perturbative series at each order by our choice of u
then we exchange our uncertainty in higher perturbative coefficients for an uncertainty in p.
This is the main idea used for The Principle of Minimal Sensitivity proposed by Stevenson
[12]. For this we assume that the value of x that best models the rest of the perturbative
series is the value at the local maximum where the dependence on it is smallest. So we
differentiate < 1 — T > with respect to log(x) using the two loop expansion for as(u) and

set the answer to zero. At NLO (ignoring all term of order o? and higher) we find

1 #PMS
Ab + — (B + 2w Ablog ( )) =0 (1.4.36)
™ MZ

which defines the scale ppass.

There also exists another scale choice which attempts to allow for higher order corrections.
The Fastest Apparent Convergence method or FAC scale[13] assumes that all higher order
corrections are zero. This scale is first estimated at NLO and occurs when the LO result

and NLO result coincide such that the NLO contribution is zero.

As can be seen from Figure 1.6 the PMS scale and FAC scale are relatively close and it
can be shown that this occurs at next-to-next-to-leading order [14] as well. In general, the
scales only differ by approximately 15%. However, as we shall see later in this thesis, the

physical scale and the FAC/PMS scale can be widely separated as in this example.
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1.5 Summary

This first chapter has introduced the main ideas and motivations behind modern particle
physics such as how the vast array of ‘fundamental’ particles can be explained by the quark
model and how the proposal of a colour charge was able to prevent the violation of the Pauli
exclusion principle and describe the R ratio. The justification of these theories was finally

proven by the discovery of the parton in the SLAC-MIT experiments.

From this basis it is possible to build a Lagrangian of a SU(3) group that describes the
quark model. It is subtly different from QED in that QCD is a non-Abelian theory and
contains interactions not found in QED such as the gauge boson self-interactions. From this
Lagrangian the Feynman rules are derived and it is the covariant Feynman gauge set of rules

that are used throughout the rest of this thesis.

Having calculated the necessary rules, it is then possible to show that although these rules
work at leading order, when loop diagrams are considered such as the quark self energy, the
rules derived from the bare Lagrangian give divergent answers (ultraviolet divergences).These

ultraviolet divergences introduce the concept of renormalisation

Renormalisation involves cancelling the infinite bare parameters found in the Lagrangian
(such as mass and coupling constants) with the divergent loop diagrams to give finite dressed
parameters. These parameters are related to the bare ones via counter terms which can be
calculated using a momentum cut-off in the integral or dimensional regularization. Both
prescriptions introduce an additional scale known as the renormalisation scale ¢ which 1s
arbitrary and on which any truncated theory is dependent. (For an all orders result, any
observable must be independent of 1« as it does not appear in the QCD Lagrangian.) However,
when using truncated theories, the observable does depend on the scale. This dependence
can be placed into the coupling and as such introduces the idea of a running coupling
constant where the coupling depends on the scale used. Couplings at different energy scales
can be related using the beta function and the value of as(M. z) can be calculated from very
different experiments. The usual scale at which «; is calculated before running it up to Mz
is the experimental process energy and is known as the physical scale. However, there exist

prescriptions which try to reproduce the entire perturbative series by the choice of scale.
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The rest of this thesis will concentrate on the calculation of physical observables using

the Feynman rules derived and on comparing the theoretical results to current experimental

data.
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Chapter 2

Experiments, Next-to-Leading Order
and Motivation

2.1 Introduction

In the previous chapter we outlined the formulation of QCD, a quantum field theory that
can be used to describe strong processes in terms of quarks, gluons and their interactions.
This led to the description of any physical quantity (such as the cross section) in terms of
a perturbative series in the coupling constant which converges for high energies (such as
Mj). Each term in the expansion can be represented diagramatically as a set of Feynman

diagrams, all of which have indistinguishable initial and final states from each other * and

the same power in the coupling constant, g.

This chapter will be primarily concerned with the background theory necessary for the
calculation of higher order corrections and specifically next-to-leading order (NLO) calcula-
tions. Section 2.2 will briefly review how we can reconcile the theoretical Feynman picture
with that of observed experimental jets. We shall concentrate on the techniques used for
identifying resolvable jets, both at leading order and for higher orders. In section 2.3 we will
consider two simple QCD processes, e"e™ — 2 jets and ¢g — gg in order to demonstrate
some of the techniques used for evaluating higher order corrections. These included colour

algebra, colour decompostion, matrix element factorisation and dimensional regularisation.

1Typically, theoretical calculations of higher order corrections for a given process consist of diagrams
which have more initial and/or final state partons than the leading order diagram. These extra partons
are experimentally unresolvable and therefore we consider the series to consist of diagrams which have
indistinguishable initial and final states at all orders in the series.
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Section 2.5 will look at the motivations for performing NLO calculations in general, but

specifically the NLO calculation for the process ete™ — 4 jets.

2.2 Jets and higher orders

In e*e~ annihilation experiments, the measured particles seen in detectors are hadrons which
form in a nonperturbative manner. But the general distribution of these hadrons is governed
by the short distance creation of quark/antiquark pairs and subsequent gluon emissions. The
uncertainty principle states that the fluctuation of a virtual Z /7 into a quark/antiquark pair
occurs in a space-time interval of 1/Q where @ is the centre of mass energy of the experiment.
If Q is large enough then we lie in a regime where perturbation theory and the Feynman rules
can be used to calculate physical quantities. Quarks and gluons will bind into hadrons in a
time scale of 1/Agcp where the coupling becomes large. Typical values of Agcp range from
about 100 MeV to about 400 MeV and as such these effects take place long after the original
partons have been produced. Therefore the final state distribution of kinematics between
the hadrons is governed by the non-perturbative hadronization effect, but the likelihood of
a given process occuring is dictated by the short distance interactions of the partons which

can be calculated using perturbation theory.

In hadronization, “jets” of hadrons are created which, as a first approximation, can be
associated directly with the original partons which govern the short distance dynamics of
the process. If the hadrons created from a high energy quark have a limited transverse
energy compared to the original quark, (collinear fragmentation) then the quark can be
interpreted as a jet at leading order. For example, in the experiments performed at LEPL,
e+e— can annihilate to form quark/antiquark pairs and any number of gluons. Naively we
might expect that for every parton emitted at this short distance a corresponding jet can
be expected in the detector. At leading order it is true that each final state parton can be
identified with one of the final state jets. However, if we consider the process ete”™ — qqg
there are final state configurations that are experimentally indistingusihable from two jet
final states due to the finite resolution of the detector (see Figure 2.1). In terms of the
original partons these states are when the gluon either becomes too soft to form a jet that
will register in the detector or when the gluon’s momentum is collinear to one of the other

final state partons, producing two jets that merge into a single one. The precise definition
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of soft and collinear partons is dependent on the prescription of the jet-finding algorithm
and as such we defer this until Section 2.3. Therefore to calculate the next to leading order

contribution to ete~ — 2 jets we are naturally led to consider graphs with more than two

final state partons.

2.2.1 Jet-finding algorithms

The number of jets present in a final state is now complicated. Just when is a parton
resolvable or not? To formalize this we introduce the idea of the jet measure. This is
a procedure which attempts to clarify the number of jets in a final state of hadrons (or
the number of resolvable quarks and gluons for theoretical calculations) and facilitate the
exclusive calculation of n jets in the final state. By considering some quantity formed from jet
(or parton) momenta and comparing this to our jet measure we can cluster jets/partons into
clearly distinguishable jets. To be useful this measure should give cross-sections which are
insensitive to the presence of additional collinear and soft partons when calculating higher
order corrections in perturbation theory and also be insensitive to hadronization effects. One
technique suggested to make jet cross-sections calculable was one presented by Sterman and
Weinberg [17]. Their prescription describes a final state as two jet-like if all but a fraction
¢ of the total energy is present in a pair of cones of half-angle . The two jet cross section
is then obtained by integrating over the phase space region described by € and ¢. Consider
again the example of ete~ — 2jets. At leading order this corresponds to the production of
ete~ — ¢g and thus we should integrate over the whole of the phase space. However at O(a)
the process to consider is ete™ — ¢gg and this only requires integrating over specific values
of the quark and antiquark energy fractions x, and z, as defined by € and 6. This is shown
in Figure 2.2. The two jet region is that between the edges of the entire phase space triangle
and the boundaries formed by the limits on € and 6. Inside the e - ¢ region we have three jet-
like events. By introducing this jet measure, we also introduce logarithms into the result of
the order o log(6) log(e) and if 4 is set to be small these logarithms need to be resummed to
all orders in perturbation theory. However, at higher orders, the Sterman-Weinberg measure

is not well-suited to calculating multijet final states.

Another technique to measure the topology of final state systems is the JADE jet finding

algorithm [18]. This prescription uses a measurable quantity known as the scaled invariant
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Figure 2.1: Figure (a) shows a leading order Feynman diagram for the process ete™ — 2 jets.
Here each parton in the final state is associated with a jet in the detector. Figures (b) and
(c) show next to leading order Feynman diagrams for the same process. Although there
are three partons in the final state of Figure (b), the gluon is unresolvable either by being
too soft to register or too collinear to the quark or antiquark thereby forming one large jet.

Therefore only two jets are counted experimentally. Figure (c) shows the virtual correction
that also contributes to the NLO calculation of any jet observsable.
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Figure 2.2: Area of phase space defined to be two jet like is bounded by the physical phase
space triangle and the Sterman-Weinberg jet scaled measure (solid line) with e= 0.3 and 6=
30° or the JADE scaled measure with yc.;=0.1 (dotted line)depending on the measure used.
z; and z, are the energy fractions of the quark and antiquark respectfully. This diagram is

taken from [20)

29



mass. This is defined as

Siq
v = 0+ 0)"/Q° = 5 (2.2.1)
where Q% is the total energy in the final state. For the JADE algorithm the measure we use
is such that

dij = ;; (2.2.2)

vis

where E,j is the total visible energy in the final state. This quantity is calculated for all
possible pairs of the final state partons. For example, between the three partons ggg there are
three invariant masses that need to be considered, dgq, dyz and dgz. If the minimum invariant
mass is larger than the preset measure cut ye; then the process has as many resolvable jets

as it has final state partons. Thus

gy = & }; :1)2 _ 2EiEj(2%SCOS %) 5 g i=a00 (2.2.3)
assuming that the final state partons are all massless. This corresponds to a boundary in
the phase space which is also shown in Figure 2.2 for the process ete™ — ¢gg. Again,
the region in which two of the partons are clustered together to give a 2 jet final state lies
between the edge of the physical phase space triangle and the boundary as defined by the
measure. The 3 jet-like region lies within the shape defined by the measure. Whereas before
we generated terms of the order o, log(é)log(e) for the Sterman-Weinberg model, we now
form «, log?(yeyw) terms. This prescription is easily extended to multijet final states. Let
us assume that there are m partons in the final state. Firstly, we calculate the minimum
invariant mass. If this is greater than g, then there are n jets in the final state. If it is less
than the cut then the partons are combined into a single pseudo-parton (the method used for

combining the partons also has several schemes, see Section 2.2.2) and the next minimum is
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Figure 2.3: A possible configuration of the final state gggg where the minimum invariant
mass lies between the two gluons. Even though the angle between the two gluons is large,
if their invariant mass is smaller than y..; a jet will be formed in the direction of the dotted
line and the process will be identified as a three jet event, despite the original orientation of
the partons towards a two jet-like event.

calculated. If this too is less than yey; (including all new invariants formed using the pseudo
parton) then this clustering continues until the minimum invariant mass is greater than the
cut. The remaining number of clusters at this point is the number of final state jets. This
way, any number of jets from n to 2 can be found. The above procedure is that taken for
a theoretical calculation. For experimental purposes, the clustering is over the final-state
hadrons. This technique is sensitive to hadronization effects for some recombination schemes

[21] but at high energies these are found to be small.

The JADE algorithm, as all algorithms must, needs to have the large logarithms at small
Yeus resummed. However, for the JADE algorithm, there is no simple formula which allows
this sum to be explicitly calculated [19]. Also the JADE algorithm has a tendency to produce
pseudojets which are combinations of partons which have a net momentum in a direction
that is not an obvious choice for a final state jet. Consider the configuration of a quark
and antiquark which emit two soft gluons in Figure 2.3. When the invariant masses are
calculated, the mass between the two soft gluons will be the minimum despite their large
separation. If this mass is less than the cut, a cluster will be formed in the direction of the
dotted line. This is obviously not the direction of a jet as it 1s not remotely close to the
direction of any of the original partons. If all the rest of the invariant masses exceed Yeut

then a spurious jet has been created and the event is labeled three jet-like.

There have been several algorithms suggested to overcome these problems such as the
DURHAM or kg algorithm [21] and the Geneva algorithm [22]. All of these are variations
of the original JADE algorithm.

The Durham algorithm attempts to better model the arrangement of jets by making

31



use of a quantity related to the transverse momenta of the parton pair. We notice that in
the example above, the relative transverse momenta of the t\z;fo gluons is larger than that
of the gluon with the quark. Therefore if we choose to cluster according to the minimum
relative transverse momentum of the pair, the pseudo jet will not appear and a more sensible
2 jet event will be recorded. However, we cannot use the relative transverse momenta
directly as for back to back events the invariant also vanishes leading to a false clusterings.
Instead we make use of a related quantity that for small angles gives identical results where

sin? @ =~ 2(1 — cos ). This measure is given by

2 min(E?, E2)(1 — cos 6;;)
dij = 72

vis

(2.2.4)

The Durham jet finding algorithm has become the standard method due to three reasons.
Firstly, it has smaller hadronisation corrections compared to the JADE algorithm at higher
orders such as the ¢gg contribution to the two jet cross section. Secondly the large logarithms
present at small y,, can be resummed in the Durham algorithm. And finally the variation
of variables with respect to the renormalisation scale close to the physical scale is less than

that seen using the JADE algorithm [21].

The Geneva algorithm again attempts to avoid the clustering of soft partons together
and ensures that soft gluons are only grouped together if the angle between them is much

smaller than those considered in the JADE algorithm. The Geneva dimensionless measure

is defined to be

d. = 8EZEJ(1 — COS 0’])
Y 9B+ Ey)?

(2.2.5)

where the factor 8/9 is to ensure that the maximum value of yq that reconstructs three
jets from three partons is 1/3 as it is in the other two algorithms. The energy factor
E,E;/(E; + E;)* ~ min(E;, Ej)/max(E;, E;) again favours soft partons clustering to hard
ones as opposed to other soft ones. The Geneva algorithm is claimed to suffer less from

perturbative corrections due to soft gluon emissions at the physical scale as compared to
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the Durham algorithm which means that the variation with the renormalisation scale, u
is less for u ~ Q [22]. Another advantage of the Geneva algorithm is that it is expected
to be sensitive to the number of light flavours|[23] thus making it a good algorithm to use
in searches for new physics. However, the Geneva algorithm is sensitive to experimental
measurement error as it depends purely on the energies of the partons involved and not on
the better known total energy. It may also be more sensitive to hadronization effects as
modelled by parton shower programs[22]. For more information on jet-finding algorithms

the reader is referred to [24]

2.2.2 Recombination schemes

Having chosen a jet-finding algorithm there still remains some ambiguity over how the clus-
tering of partons should be performed. To study this and the problems inherent with each
scheme, let us consider the clustering of two partons ¢,j to another parton k such that
i+ 4§ — k. The simplest technique (known as the E-scheme) is to retain all the momen-
tum and energy of each parton and sum them to form the energy and momentum of the
final state parton. However, in doing this, it 1s assumed that all final state particles are
massless and as such p2 = 0. But we can see from summing over the two partons that
p? = (p; + p;)? = 2p;.p; # 0. Thus we have problems combining this technique with ma-
trix elements calculated assuming all final state particles are massless. Another technique
which retains massless final state particles (the P scheme) does so by defining the energy
with regards to the momentum such that py = p; +p; and Ej = |px|- But now we have
preserved masslessness at the cost of energy conservation. A third scheme chooses instead

to violate momentum conservation and conserve energy instead (the EO scheme) such that

Ey = E; + E; and py = Ex(pi + p;)/|ps + psl-

2.3 Next-to-Leading order techniques

2.3.1 Introduction

In considering the details of higher order calculations it is valuable to consider two simple

examples. For this reason we will review the NLO calculation of the process, ete™ — 2 jets
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and the LO calculation of the process qg — gg. Using the eTe™ — 2 jets process, we can
study the different methods used for analytically cancelling divergent contributions inherent
in both the virtual loop diagram and the extra, unresolved parton processes. These are
known as infra red divergences and occur when the loop momenta is allowed to become zero.
The ¢qg — gg process will be useful in demonstrating how techniques such as colour algebra,

colour decomposition and matrix element factorisation can be utilised to simplify difficult

QCD calculations.

2.3.2 KLN theorem

Infrared poles are inherent in all NLO QCD calculations and are due to integrals of the form

o0 d*k
[ s e (2.3.6)

when the limit & — 0 is taken. These integrals are found in vertex loop integrals leading to
divergent results. However, another source of infrared divergences can be shown to cancel the
loop divergences exactly. When calculating a NLO quantity not only must loop corrections
be considered, but we must also include extra unresolved partons in real emission processes

such as in Section 2.2. These contributions have integrals of the form

1 1-Yqg y2, +y% + g
/ @Yqq / dygg——— & (2.3.7)
0 0 YagYgq

where the scaled invariant, y;;, is defined in the same way as for Equation 2.2.1. (The
equation shown above is that for the process ete” — 2 jets.) The divergences are due to
the integration over the lower bounds of y,, = 0,95 = 0. It can be shown that for all
processes these infrared poles can be cancelled at each order for infrared safe observables
such as Thrust. By infrared safe observables we mean observables that are not sensitive to
soft or collinear gluon emission (which we define later) and are dominated by short distance
physics i.e. perturbative physics. All the divergences created by the loop diagrams of a n

parton final state process are cancelled when we consider the tree level diagrams of an n+1
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parton final state process where one or more is unresolvable. By unresolved, we mean that
the scaled invariant mass of the unresolved parton with its colour-connected neighbour (see
Section 2.3.7 for a definition of colour connections) is less than some cut, ymin. Therefore,
if the invariant mass of a parton and its colour-connected neighbour is less than ymin and
the invariant mass of the parton with its other colour connected neighbour is less than ymin
then both integrals will give large values, the matrix element will be large and the parton
is said to be soft. If only one of the scaled invariant masses is less than ymi, then only one
integral blows up, the matrix element is still large and the pair of partons are said to be
collinear. In both these limits we shall find that the matrix elements can be factorised. We
shall study these definitions and what they mean in terms of matrix elements in Section 2.3.5
and Appendix C. That such cancellations occur at all orders was first proved for QED by
Kinoshita [15] and later developed for QCD by Nauenberg and Lee [16]. Divergences are
made explicit by regularising the integral. This can be done in a number of ways, but for
this thesis we shall concentrate on the technique of extending the number of space-time
dimensions the integral is performed under. For more details on this prescription and how
the poles are made explicit see Section 2.3.4 and Appendix B. We shall study examples of

this cancellation in the proceeding sections.

2.3.3 ete” — 2 jets

We begin by considering the simple NLO calculation for the process ete™ — 2 jets. We have
already seen (in general terms) that this consists of two separate contributions, the extra
unresolved parton and the virtual loop (See Figure 2.1). Also we have stated that each of
these contributions is separately infra-red divergent, but that the sum of the two is finite with
the poles cancelling exactly according to the Kinoshita-Lee-Nauenberg (KLN) theorem. To
introduce the different techniques used in making these poles explicit we consider the squared

matrix element for the real emission process,

2 _ Nfom
)M‘ = 8Crerg’ Yog | Yag | “Ya1 | (2.3.8)
3 partons Yag  Yag  YagYag

As we have shown previously the loop contribution introduces a divergence due to integrating

over the virtual loop momentum. In Equation 2.3.8 we see indications of the divergences that
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will cancel the infra-red pole from the loop diagram. (The actual pole in Equation 2.3.8 is
not explicit until we incorporate the phase space integration over the scaled invariant masses
present in the denominator which run from 0 to a finite phase space boundary limit.) As
the loop momentum from the virtual term tends to zero, the divergence is exactly cancelled
by the above squared matrix element in the phase space regions in which the unresolved
gluon becomes soft (y,, and yz, — 0) or where it becomes collinear to either the quark or

antiquark (8,, or 6,z — 0 which forces either y,, or yz, — 0).

Normally the integration of the matrix elements over the allowed phase space region 1is
too difficult to analytically perform and the only method of calculating NLO observables is
to evaluate the integrals numerically. However numerical integration cannot give sensible
results when we have divergent contributions. Thercfore we need to find a technique which

allows us to analytically isolate and cancel the separate poles. Then the resultant sum can

be integrated numerically with safety.

2.3.4 Divergences and Dimensional regularisation - “to infinity
and beyond”

To explicitly demonstrate the divergences present in NLO calculations and specifically show
that the cancellations of the KLN theorem work, we need a method to isolate and regularize
the infinite parts of the integrals. There are a number of prescriptions that have been

suggested and we outline three of these below.

e By applying a cut-off on the loop momentum such that the integral runs between 0

and the cut-off A. For example, we may have an integral of the form

©  g2dr
/0 TERwNE (2.3.9)

By applying the cut-off we regulate the pole and introduce logarithms of the cut-off

into the result.
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A z2dz Adz(z 4+ A)? — 2A(z + A) + A? A dx A
/0 2( /0 - /0 +O< >

s+ AP 2z + A)? (z + A) A
~ 1os(57) +0(3)
(2.3.10)

However, this prescription is only applicable to ultraviolet divergences and violates

both Lorentz and gauge invariance.

By introducing a large fictitious mass into the boson propagator (Pauli-Villars regu-

larisation [30]). Therefore we make the replacement

11 1
- (2.3.11)

R oM

where M is the mass of the boson. When k? << M? we return the usual propagator
and when k2 >> M2 we find terms cancel and a smooth cut-off is achieved. Thus the

original integral in Equation 2.3.9 becomes

Jj ot [2@ i INERIC: +1AM)3] = 5 los (%) +0 (ﬁs) (2:3.12)

where Ay = A + zM?2. This regularisation technique is problematic if we consider

massive QCD calculations where it violates gauge invariance

By analytically continuing the number of space-time dimensions that the integral is
calculated in to 4 — 2¢ where ¢ is small and positive to regularise ultra-violet poles and

small and negative to regularise infra-red poles (Dimensional regularisation [31])

For the rest of this thesis we shall use dimensional regularisation as it preserves both Lorentz

and gauge invariance. Divergences present in the integral are made explicit in terms of 1 /€

and 1/e2 poles. These poles can then be manipulated until it is clear that they cancel

between diagrams. Once these poles are removed the limit ¢ — 0 can be safely taken and

the finite answer returned to the usual 4 space-time dimensions.
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However, within dimensional regularisation, there are a number of schemes. These are
dependent on how many dimensions particles’ momenta and polarisations are taken in, both
for internal and external particles. The ‘tHooft-Veltman scheme retains four dimensions
for external particles’ momenta and polarisation. Only the internal gluon polarisations
and momenta are taken in d dimensions. Compare this with the conventional dimensional
regularisation where all the momenta and polarisations are in d dimensions. For use in
supersymmetric calculations it is essential that the number of dimensions used be the same
both for the polarisations of the quarks and the gluons in order to preserve the SUSY Ward
identities. This scheme is referred to as dimensional reduction and uses 4 dimensions for the
number of polarisations. For the rest of this thesis we shall use the conventional scheme and

occasionally refer to the ‘tHooft-Veltmann scheme.

d dimensional integration is a non-trivial problem and as such needs to be defined. For
a detailed introduction to non-integer dimensional integration the reader is referred to (32].

We begin by considering the 3 body phase space integral needed for the 2 jet NLO calculation

considered above.

d%1p, d*~'pg d*'py 6%(py — Py — P7 — Py) (2.3.13)
2F, 2F; 2E, (277)3_%

where p, is the centre of mass four momentum. By redefining a d — 1 dimensional integral in
terms of a one dimensional radial integral and a d — 2 angular integral (c.f. d®r = r2drdQ, =

r2 sin(#)drdfde) we find

1 d—4 _
(_2)T|—T /Qz_dd312d813d823de_ngd_;;(812813823) dz 6(812 + 813 + So3 — Qz)(QTF)S 2 (2314)

where we have subtituted the energies of each individual parton for the invariant masses

between them. See Appendix C for more details.

For the 2 jet 1-loop correction we must consider an integral of the form (after Feynman

parameterisation and Wick rotation. See Appendix B).
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12d4 12(1%)4-1dl
[GEWNE /de m (2:3.15)
where df); is a d dimensional solid angle such that
2(71—)‘1/2
dQq = : 3.
/ ‘7 T(d/2) (2:3.16)

Other consequences of changing the number of space-time dimensions include

e The contraction of metrics g,,g* = d. However we keep the metric g, and the gamma

matrices,y# as 4 X 4 matrices as well as retaining the Clifford algebra {y*,+"} = 2¢".

e The Lagrangian now must have dimension d with the coupling constant redefined as

ay = 92“—26/47‘.
2.3.5 Colour in QCD calculations and colour algebra

Now that we have a prescription that will isolate and cancel the divergences we can study
the details for the NLO calculation of ete~ — 2 jets. One aspect we have neglected to date
is that of the colour structure of the matrix elements. In QCD, the Feynman rules describing
the interaction of quarks and gluons are governed by the SU(3) colour representation. Instead
of the one dimensional charges found in QED, we have a more complicated formalism. Each
vertex is the source of a 3 x 3 colour matrix. The prescription that determines the colour
structure of the final squared quantity is that of colour algebra. But before we can study

this algebra we shall familiarise ourselves with some of the properties of the SU(3) colour

group.

2.3.6 The colour factors of SU(3)

The colour factors of QCD are derived by considering the generator matrices of SU(3) in
the adjoint representation which are defined by the commutation relations show in Equa-

tion 2.3.17. (For this section we use a different notation for colour labelling as compared to
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Sectionl and the Appendix A simply for aesthic reassons. The mathematical formulae are

unaffected by placing the colour index in superscript or the subscript.)

[t%, 7] = iforeee (2.3.17)

and for which we adopt the normalisation procedure such that

tr(tt?] = Tré6™ (2.3.18)

where a,b = 1..8 and the trace runs over the 3 x 3 matrices. By convention the normalisation

constant T is taken to be equal to 1/2.

In QCD calculations we are often faced with quantities such as (£%4%);,/**f** and
(t“tbt“)ij with implicit sums over repeated indices. Here i, j represents the colour of the
external quarks the gluons are attacted to. The SU(3) generators are traceless and making
use of this property we can derive a very useful relation known as Fierz’ identity. Using this,

we will then be in a position to derive all possible combinations of colour structure such as

the three examples above.

Consider an arbitrary 3 x 3 matrix M. It can, in general, be decomposed into two parts

M =(I+ ) Gt° (2.3.19)

where £ are the SU(3) generators in the fundemental representation. By taking the trace of
M we can find expressions for the coefficients, (; and {, (recalling that the trace of a single

SU(3) generator is zero).Thus, (g is given by

(2.3.20)




as the unit matrix gives a trace of N = 3 in the fundamental representation. If we multiply

M by t* and take the trace we find

(o = 2tr(t"M) (2.3.21)

using Equation 2.3.18 with the usual normalisation constant. Therefore we write M as

tr(M)
N

M = I+ 2tr(t* M)t (2.3.22)

If we now show the indices contracted over, M has the form

M,
My = =70 + 30 265 Mt (2.3.23)
a

However, as this form is true for all M, we can write

Ok10s5
My, (@kdjl — i]’V—J -3 2t7kt;?j> = 0. (2.3.24)
Therefore
k10
> 2thts; = 0kl — % (2.3.25)

This relationship is known as the Fierz identity and diagrammatically can be thought of as

the decomposition of a gluon attached between two quark lines in terms of the two separate

colour lines. (See Figure 2.4)

Immediate consequences of this identity are that we can write the form of two of the

colour structures mentioned earlier (see Figure 2.5).
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Figure 2.4: A diagramatic representation of Fierz’s identity. The colour structure of a gluon
line between two quark lines in terms of colour flow along the quark lines and the colour
factors. If the first term on the right hand side was zero then we would have a QED like

process
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. g 3 ) ()
i a a j
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b % . (tatbta)ij
i a § a j
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S50,
fvmmé% ST fredped
a \?@ 93 b
2099985
d

Figure 2.5: The diagramatic representations of the three colour structures used in the text
as examples. Using the Fierz identity, the form of structure constants can be written in

terms of the number of colours, N.
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N? -1

-1
—QJV—‘(sij = CF(SZ] ,(tatbta)ij = —tb (2326)

(%)i; = = ot

The final colour structure can be derived by making use of Equations 2.3.17 and 2.3.13

facdfbcd — —Qt’l‘([ta, tc] [tb, tc])
= —2tr (20010 — (%" + t7¢%)tt°) (2.3.27)

Applying the first two colour structures to this we find

a —1 b a4b bia N? -1
= —2t7‘(2tji2—ﬁtij - (t t'+1t )jzw(s”)
-1 N2 -1
= -9 __5ab _ 5ab
(2N 2N )
= N§®

= O (2.3.28)

The three colour structures we have considered ((t2¢%);, (f*4f**#);; and (£°t");) form what
are known as the quadratic Casimir operators. These Casimirs commute with all SU(3)
operators and as such are fundamental quantities of the gauge group. The quadratic Casimir
factors (Cr,Ca and T respectively) can be thought of as colour charges analogous to the
electric charge of QED. When the diagrams shown in Figure 2.6 are present in a QCD
calculation then the constants are factored into the squared matrix element as the electric
charge is factored into any QED process. We now have all the elements necessary to perform

leading order QCD calculations.

2.3.7 qg— g9

We can see how colour factors greatly simplify more difficult QCD calculations when we

consider the leading order calculation of the process g7 — gg. We can decompose the
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Figure 2.6: The three Casimir factors of SU(N) can be associated with colour charges that
are utilized in QCD calculations. Repeated indices are summed over, 1.V 2 — 1 for the gluon
colour indices a, b, ¢ and over 1..N for the quark colour indices %, j, k

relevant matrix elements into colourless kinematic subamplitudes (which we shall see later

have their own factorisation properties) and the colour structures we have studied above.

Unlike the related QED process gg — 7, there are three Féynman diagrams to consider
(due to the self-coupling of gluons in QCD). These are shown in Figure 2.7. The sum of

these three form the total matrix element.

M = (t40) My + (t2%) 3 M + (1 *1°)i;Ms (2.3.29)

where M; are the kinematical terms from each diagram. However because the three diagrams
have different colour structures we will have several different colour factors multiplying each
separate kinematic term when the matrix element is squared e.g. squaring the first term
gives C2N M? whereas the interference between the first and second term is —Crp/ 2M M.
We can simplify the number of structures by using the identity [t%, "] = i febete, By applying
this identity to the third term we can write it as (t%¢");; Mg — (t°¢%);; M3 and therefore
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Figure 2.7: The three Feynman diagrams that are needed to evaluate the leading order
calculation qg — gg. Below we show the different colour structures for each amplititude.

From this we can see that there are nine possible colour structures that can be formed in
the squared matrix element.

M= (tatb)ij(Ml + Ms) + (tbta)ij(Mz — Ms). (2.3.30)

Now we have only two colour structures to consider. The squared terms give colour structure
tr(t°t°4%¢*) = CZN and the interference gives ¢r(t*¢*¢*t") which, using the two identities in
Equation 2.3.26, gives —Cr/2. Therefore

C
IM? = NC%‘HM1+M3|2+|M2—M3|2]__2£['M1+M3||M2—M3IT+|M2—M3”M1+M3”]-
(2.3.31)

This colour structure is true even under rearrangement of the partons between the final and
initial states. It is also true under addition of any colour neutral particles (such as photons).
Therefore, this simple mechanism for computing the colour structure of one process has
become a powerful tool which can be used to describe the colour structure of many more
processes such as gg — qg, v* — qqgg and g7 — ggv. The only terms that change between
these processes are the kinematic colourless subamplitudes. The primary function of this

division into colour structure and kinematical terms is to allow the factorisation of the
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colourless subamplitudes when one parton becomes unresolvable, such as is necessary for

NLO calculations.

We recall from our simple example that the colourless subamplitudes actually describe the
kinematic part of a specific ordered gluon emission i.e. |M; + Ms| describes the kinematical
factor related to the emission of gluon a before gluon b. To represent this we redefine the sub-
amplitude to be ¢*S(Q; @, b; Q) where g is the coupling constant that we now make explicit.
Similarly for the other subamplitude we write g*S(@;¥, a; Q). This idea of grouping parts
of diagrams into ordered gluon amplitudes is the basis behind colour decomposition. Firstly,
after decompostion we find that the subamplitudes now display factorisation properties when
a parton becomes unresolvable. Secondly, the singular terms from unresolved partons are
found to be due only to soft gluons and colour connected collinear partons. Colour connected
partons are those that are colour neighbours and at leading order in colour these are simply
those partons next to each in the ordering e.g. for a gg,g,q ordered final state, the colour
connected neighbours of gluon a are the quark ¢ and gluon b while for gluon b they are
gluon a and the antiquark g. Note that the quark and gluon b are not colour connected in
this ordering. By leading colour we refer to those contributions that have the largest colour

factor. For example, in considering the g — gg case we had two colour factors. Rewriting

the squared matrix element we see

2 = NzCF 2 2 1 2
IMP = —— |[[Mi+ My + Mz — M| —WIM1+M3+M2—M3|
N2Cpg* _ B 1
= ———2Fg {IS(Q;a,b; Q)+ |S(Q;b,0;Q) — WWI +M2,2] (2.3.32)

Thus the squared colour ordered subamplitudes were both leading and sub-leading in colour
whereas the interference terms were only sub-leading. However this leads to the cancellation
of the gluon splitting diagram in the sub-leading colour term and the result is a QED-type,
ordering independent term. The gluons have become colour detacted (photon-like) from

ecach other and thus are no longer colour connected neighbours. To represent this we write

the sub-leading colour term as
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Mi+M, = S(Q; )
= 8(Q;a,b;Q) +S5(Q;b,0;Q) (2.3.33)

Q)

j=1

b
b

3

where the accents indicate that there is no colour ordering. We also note that for the sub-
leading colour terms, the only colour connection the gluons can make is with the quark
line. Thus the only singular contributions from the sub-leading colour term are soft gluons
and gluons collinear to the quark or antiquark. The size of contributions from collinear
partons that are not colour connected is typically of the order of the invariant mass cut Ymin

whereas the colour connected contributions (after cancellation of the poles) give terms such

as 10g(Ymin)-

When more than two gluons are present in the process, we can have several different
degrees of colour factor and related subamplitudes. Let us consider the process ete™ —
¢Gg192g3 which for the phase space region of one unresolved parton is a NLO contribution

to any 4 jet calculation. The full matrix element is given by

M=g Z 191492498, (Q; 1,2,3;Q)V* (2.3.34)
P(123)

where V*# is the well known lepton current. Six permutations of gluons are needed to include
all the colour orderings. For the squared matrix element there exists a leading colour term in
which the colour ordering of the subamplitude is maintained and all the partons are colour
connected to their ordered neighbours written as |S,(@;1,2,3; Q)V*#[?. Here it is interesting
to note that the middle gluon only gives a singular contribution when it is collinear to one
of the other gluons and not when it becomes collinear with the quark line. There is also a
most sub leading colour term where none of the gluons are colour connected and all behave
like colour neutral particles e.g. only giving a singular contribution to the calculation when

they become collinear with the quark line. This is written as 18,(@; 1,2,3,Q)V#|? which is

given by
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S(@;1,2,3,Q)VF = [S.(@;1,2,3,Q)V* +8,(@;1,3,2,QV* + 5,(@; 2,3, 1, Q)V*
+ 8,(Q;2,1,3,Q)VH +8.(@;3,2, ,Q)VH + 85,(Q;3,1,2,Q)V*
(2.3.35)

Finally, there is another term which has a colour structure that lies between the other two.
This is where two of the gluons are still colour connected and thus ordered, leaving one
detacted. Here, the ordered gluons give a singular contribution when they are collinear to
each other or the respective quark/antiquark (whichever is their colour connected neighbour)
but not with the colour detacted gluon which only contributes as in the most sub leading

term. This term is written as [S,(Q;1,2,3;Q)V*#|? with the ordering permutated. This is

given by

S,(Q;1,2,3,Q)V* = 8,(Q;1,2,3,QV* + S,.(Q; 1,3, Q)V*+5,(Q;3,1,2,Q)V* (2.3.36)

Therefore the total squared matrix element is given by

9 N3Cr Ve 2 1 37N H 2
M2 = Z 1S,(Q;1,2,3; Q)VH|* - ﬁ|5u(Q§1:2=3> %8
4 P(123)

N2 +1 N
+ o 1S(@ L5V (2.3.37)

From these two examples we sce the form that all QCD final states of the form gg + ng take

at leading order in colour. We write

2\ A2
M= (5F) 25 T 5@ (2339
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For a rigourous derivation of this formula the reader is refered to [34] which derives this

equation from the gluon recursion relation.

We also colour decompose diagrams which have two quark lines such as final states like

gqQQ (where ¢ and @ may or may not of the same flavour). The matrix element of the

process ete™ — qgQQ is given by

2
Surerbens (57 (Aul @2 GIV* + Au(Qe, T)V) + B (Aul@1, 1) V¥ + A @5, TIV")

2
M= i et (Au(Ql;@vuAﬂ(Qs;@)vu‘s—;\%(Au(Ql;@z>v“+Au(Q3;@;)vu))
N )

(2.3.39)

The subamplitude A has two possible directions of colour flow, which we represent with
the delta functions of the quark colour indices e.g. 0 ¢ 0csc, indicates that quark 1 and
antiquark 4 are colour connected. There also exists the supressed configuration where quark
1 and antiquark 2 are colour connected. The arguments of the functions indicate which
quark line the colour neutral Z/v* attacts to. With crossing symmetry we include all the

other diagrams for both like and unlike pairs of quarks.

Using the same rules as before we find the squared matrix element of the above four

quark final state (produced by a colour neutral particle such as a virtual photon) is given by

2 2 2 o . —_ _
lMlz = ¢ (g 2N> (NN2 1) [|E(Q1,Q2;Q1>Q2)V”‘2 + |7;(Q1>Q23Q3’Q4)V“|2

+ %‘?(m(czh@@h@v“ﬁwtm@l,@;;czg,@;)v“l?)

b (@1 o Q0T 6 Qo) +0,0(Qr & Qs) +3,0(Q2 + Q)]
(2.3.40)

where we define the 7 functions as

1T, s b VAP = (A 5V AL, DV (2.3.41)
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This corresponds to | T(Q1, Q2; @1, Q2)|? being the squared subamplitude where quark 1 and
antiquark 2 are attacted to the virtual photon (this attactment defines the initial quark line)
and |T(Q1, Q2; @3, Q4)|? being the interference between quark 1 and antiquark 2 forming
the initial quark line and quark 3 and antiquark 4 coupling to the virtual photon in the

conjugate. See Figure 2.8. Again, for a detailed derivation of this formula the reader is

referred to [33]

2.3.8 Matrix element and Subamplitude factorisation

In this section we shall consider the singular behaviour of the squared matrix elements for the
NLO calculation of the process eTe™ — n+ 2 jets considering both extra unresolved partonic
final states ¢+ (n+1)g and qgQQ + (n — 1)g. For the moment we shall only consider terms
leading in colour as this will simplify the calculation. This can be done utilizing the Fierz
identity we derived earlier. The calculation is easily extended to include sub-leading colour

terms [33] and we will use results from this reference for the full NLO 4 jet calculation later.

The factorisation of the matrix element when one of the final state partons is soft is very
similar to that of QED and the eikonal factors seen there [37]. This eikonal factor multiplies
the remaining hard process when an external photon becomes soft (see Figure 2.9). If we
consider a single photon final state QED process in which the photon is soft (momentum
K and polarisation vector €) coupled to a quark/antiquark fermion line (with momentum Q

and P respectively), the matrix element factorises such that

M(Q; K; P) = ¢ e(Q; K; PYM(Q; P) (2.3.42)
where
P,
e(Q; K; P) = ¢ (QQ“K e _“P) (2.3.43)

In QCD, as the gluons carry colour, the usual matrix element cannot be factorised in this

manner for soft gluons. However, with the colour decomposition shown earlier, the soft
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Figure 2.8: The Feynman diagrams for the process v* — qgRQ. The solid cir-
cle indicates the location of the Z/4* vertex. Below these are diagrams to indicate
the colour structure of the squared matrix elements. The dotted line indicates the
boundary between the matrix element and the conjugate. Thus we have at leading
order in colour |T,(Q1,Q2; Q1, Q2) VA, | Tu(@1, Q2; @3, Qs)V#[* and subleading we have
| T(Q1, Qa; @1, Q) VA2, | Tu(Q1, Q2 Q&@)V;f respectively



y roft P

Figure 2.9: The eikonal factor multiplying the remaining hard process in the presence of
a soft photon. This QED process is exactly analogous to the colour ordered QCD process
present in all NLO calculations.

factorisation of the colourless subamplitudes is now possible [35]. This is due to the ordering
of the partons which form well-defined lines of colour which the gluon can couple to. Thus
we can retrieve an eikonal factor from the soft gluon factorisation of the colour ordered
subamplitudes. It is precisely these eikonal factors that contain the divergent terms that
will cancel the 1/e? poles coming from the virtual 1-loop correction (see Appendix B).
The eikonal factor is only dependent on the momentum of its colour ordered neighbours,
regardless of their identity. Examining the form of the eikonal factor for our ete™ — ¢q +

(n + 1)g process letting gluon s be our soft unresolved parton, we find,

S.(Qu;1,...,m, 5;Q)V* = ge(n; 5,Q2)8,(Q1; 1, ..., 1 Qy)V*
S.(Q;1,..,m, s,m+1,.,nQ)VF — ge(m;s;m+1)Su(Q1;1,...,n;@)V“
Su(Ql;s,l,..,n;@)V“ - ge(Ql;s;1)Su(Q1;1,...,n;@)V“ (2.3.44)

where V# describes the lepton current and is well defined. This, when extended to squared

matrix elements, becomes

2 2N\" [N? -1 — —
‘SMV“& — € (92 ) ( ) Z [SF(Q1;1;---,n§Q2)|5u(Q1;1;--~=“;Q2)V“|2]
P(1,...,n)
(2.3.45)

where |:S;V“|2 is the full squared matrix element. We find
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SF(QI; 1, [P 2 @) = (%) [lel(S) + flg(S) + ...+ fn@(s)] (2346)

which is related to the eikonal factors such that

4s,
Fan(8) = le(a; s;b)> = - S”b (2.3.47)

Therefore the full squared matrix element has been decomposed into a sum of squared colour
ordered subamplitudes multiplied by similarly ordered divergent eikonal factors which are

dependent on the permutation of the gluons.

For the process ete™ — qgQQ + (n — 1)g with one soft gluon at leading order in colour

we find a similar decomposition which follows the same pattern as for the n +1 gluon final

state.

sp(Qu; 1,y QalQs, i+ 1, = 2,Q0)

2 2N\" (N -1 2
wf - e (5) (57),. 2.5
P

1,...,n—2) =0

X (Iﬁ(Qla—@a Ql?@; 17 S (e 2)Vﬂ|2 + |7-Z(Q1a©_2 Q37@; la sy 2)V#|2)
+ (Q1 ¢ Qs,Q2 < Q1) +6,0(Q2 ¢ Qu) +d50(Q1 > @) (2.3.48)

— 2 . J— R
where }EV“I represents the full squared matrix element and |THQ1, Q2 @3, Q4 1, ..,n —
2)V*#|? corresponds to the colourless subamplitudes we saw in Equation 2.3.41 except here
there are 7 gluons attacted to the initial quark line and the rest are attacted to the other

quark line. This is summed over to include all possible diagrams. The soft factor is given by

sr(@1; 1, ~-J;@Z|Q3; 1+1,..,n— 2;@) =
2
<g2N> [lel(s) + f12(3) + ...+ ft@(s) + ani.H(S) + ...+ f'n.—2©—2_(8)]

(2.3.49)
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Therefore, as we found for the n+1 gluon final state, the four quark soft gluon limit becomes
the sum of the tree level process multiplied by a divergent factor that depends on the ordered

emission of gluons along the quark lines.

Now we have shown that using colour decomposition it is possible to factorise soft matrix
elements, we consider final state collinear partons. As we saw earlier, these divergent terms
come from the integral over the matrix element when one of the invariant masses between
two colour-connected neighbours tends to zero. If both masses tend to zero the parton is
said to be soft, but if one is greater than the invariant cut, it is the angle between the other
two that tends to zero, thus making the partons unresolvable. Let the sum of the partons

momenta form the four momenta of a new parton. Thus,

P,+P,=P. (2.3.50)

There are several methods of dividing the momenta of the new parton between the old ones.
For the moment we shall consider one based on the Altarelli-Parisi splitting functions [38]

which simply split the momenta thus.

P, =2P, Py=(1-2)P (2.3.51)

This method however does have a problem. If we are working with matrix elements that
assume all final state partons are massless, this implies that (P,+ P,)? = P? = 0 for all areas
where we are applying this division of momentum. But (P, + B,)? = 2P,.P, which is only
equal to zero on the divergent edge of phase space. We are applying this combination in
regions of phase space where $gp < Smin and so throughout this region (except on the divergent
edge) we are using contradictory ideas of the mass of P,. Other methods of dividing the
momentum have been considered and will be studied in greater depth in following chapters.

But for the moment we will use this technique to show how the matrix elements factorise

when two partons become collinear.

Unlike the soft gluon case, the entire squared matrix element does factorise in the case

of a collinear pair of partons. The divergent factor relating the sqaured matrix element of
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n + 1 partons to the squared matrix element of n partons does depend on the identity of the

partons becoming collinear and so,

IM(.eya,b, )2 = @ M., )P (2.3.52)

where

B9 = <92N) Pg—9(2)

2 Sqq

P - @_ 1— i) Pagq(2)

a8 = 29927
2 N? Sqq

H = (92’” ) Faas(2) (2.3.53)
2 Sqa

and where the P,,_,. are the Altarelli-Parisi splitting functions given by

Prs(s) =2 (1 + zz‘*(;r_(lz)— z)“)

Pron(s) =2 (1+z21—_s(zl —z)z)

2+(1-2)?%-¢
Py =2 ( — (2.3.54)

These splitting functions are symmetric in z and (1 — z) such that z < (1 — 2) implies
Pyyq > Pyqrsq and they are also symmetric under charge conjugation. However, depending
on whether the final state combined parton is treated in 4 or d dimensions, a different scheme
can be used. The splitting functions in Equation 2.3.54 are defined in the conventional
dimensional regularisation scheme where the combined parton is calculated in d dimensions.
The 't Hooft-Veltman[39] scheme uses 4 dimensions instead and differs in terms proportional

to € which will then give different finite terms between schemes.

It should be noted that singular terms only come from collinear colour-connected partons.

If the partons are not joined by a colour line, then the result is a term proportional to the
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invariant cut. The singular term from two gluons becoming collinear and forming another

gluon for the process ete™ — qg + (n + 1)g is given by

ISTL(QI, 1; vy M — 17917925m =+ 17 “'7n;@)vu|2 —

2 Ju—
G*N\ Pyyyq(2) 0,V
( 2 ) gzm; |S,LL(Q1;1;"‘>m_ 1193)m+ L...,n; 2) V'IQ (2355)

and the factorisation when a gluon becomes collinear with either a quark or an antiquark is

= — N 1\ Pyooi(z -
o tom @V > (58] (1- 35) P52 DS @ om BV
Sqg

— 2N 1 P_ oa\z .
15,(Q1; 1, ..n, g; QV*|* — <22_> (1 - ﬁ) %Q—-(_)‘SM(QH 1,...n; Q) V¥
9
(2.3.56)

The only time a quark and antiquark can become collinear in the final state is when they
have been created from the decay of gluon which was emitted from another quark line. Thus
the four quark contribution also contributes in a unique way to the cancellation of the 1-loop

correction. The singular terms from this process when Q)3 and @4 are collinear are

—— —_— — 2 =y —
@@ o TV = (51) Feis, @y BV
Q3Q4

1Tn(Q1, Qs Qs, Q) VAP > 0 (2.3.57)

where we have a factor n; for the number of quarks flavours that could be produced. There-
fore the four quark squared matrix element factorises to a divergent term multiplied by the
two quark matrix element squared, but with one less power of N. So the quark/antiquark
collinear configuration of the four quark squared matrix element factorises to a sub-leading

colour contribution of the two quark final state. Thus for the process eTe™ — qIQQ+(n—1)g

we have
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=up_, 2 (9N (N -1 g°ns \ Pa(2) VN 1
lnvu| e ( 2 ) ( N ) P(Z,n) l:( 2 ) Q3Q4 | (Ql’ T QQ)V“P +0 (N)]
(2.3.58)

giving a final form for the full squared matrix element of the two quark final state where two

partons become collinear

= —~ 2N\" [N? - __ _

[SuV“|2—|—|7;V“[2—>eZ (g ) < 1) Z [CF(Ql;1,...,n;Q2)|SM(Q1;1,...,n;Qz)V“IQ]
P(

(2.3.59)

where

cp(Q1; 1, ..., n; Q)

9°N qu—m(z) I ng—>g(z) 1 gq—>q( ) nf” Pqﬁ—)y(z)
2 ' Sg N Sqa

nq

S¢91 59192

(2.3.60)
We have a similar structure to that of the soft parton where ordered divergent factors are
multiplied to the colourless subamplitudes and the result is summed over the permutation
of the gluons to include all graphs. The four quark structure is also of the same form as 1ts

soft counterpart. Its factorisation for the process efe™ — gqQQ + (n — 1)g is given by

—~ IN\"(N? -1 e —
IEVMP - 62 <g2 > ( N2 ) Z Z [CF Qla ) .,Z;Q4|Q3;’L+1,...,TL—2;Q2)
.,n—2) i=0

X lﬁ(Ql:@§ Q1,Q2;1,...,n — 2)VH> + |7Z(Q1, 02:Q3,Qa;1,...,n — 2)VH]?
4 (Qr o Qs, Qs <> Qa) +0,0(Q1 < Qs) + 840(Q2 > Qu) (2.3.61)

where we define the ¢y function to be

— N [P P P
cr(Qu 1, .oy 0dQsi+1,.m—2; Q2) g qg—>q(z) 4 gy—>g(z) N gq(z)
2 S0 Sg19 Sgn-1Ta
(2.3.62)

Recall that these terms are only those at leading order in colour.
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2.4 Phase space

Now we have factorised the squared matrix elements in their singular limits, we wish to
repeat the procedure with phase space. With a factorised phase space, we can write the
divergent n + 1 partonic physical quantity, on41, as the finite o, multiplied by a divergent

factor such that for the soft limit

donyn = an+1|2ddPn+1
M, 24P, / dsaudspu F(s1°%, 5707%)

& do, / d5audssu F (53¢, 5727°) (2.4.63)

where F(s7}=¢,s517¢) is the divergent term from the matrix element factorisation and the

integral is due to the extra phase space necessary to integrate over.

There are several techniques for performing this factorisation. We shall briefly review the
technique employed by [36] and see that this prescription needs to be improved. Another
technique we shall consider in the next chapter is the Seymour and Catani dipole formalism.
Also in the next chapter we shall present a new procedure for the phase space factorisation
of NLO QCD calculations which tackles the problems of massless partons and phase space

approximations in a wholly symmetric and universal manner.

One way of performing this factorisation is to approximate the phase space factor using
the same limits as we did for the matrix elements e.g. neglecting all terms in the phase space
factor not singular when the soft/collinear limits are taken. This was the technique used
by [36]. For example, consider 3 final state partons with momentum P; and energy E; all
derived from the decay of a colourless neutral boson with centre of mass energy equal to Q.

Then the phase space factor derived from the final state kinematics of the system is given

by
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3 d—1p.
dPYQ; P, Py, P3) = [ 4 h

11 (2r)12E;

d—2
2 2—d d—4 dQ —
21—\(d;2) (Qz) 2 [812513823] 2 —2(1(_1_11 d512d813d823 X

(5(.5’12 + S13 + S23 — Q2) (2.4.64)

} (2m)%4Q — P — P, — P3)

— (27r)3—2d

where we have changed the measures to be over final state invariant masses and a solid angle

and have averaged over the azimuthal angle.

Let us assume that parton 3 becomes soft. Then si3 < Smin and $23 < Smin. Therefore

we assume all terms with s;3 and s,3 in the numerator are negligible and ignore them. This

gives

d—2
Tz 2—d —4
ddP(Q; P, P, P3) - (277)3“2‘12“4;2)5122 d$13d323[813823]d79(8min - 513)6(5min - 823) X
2
d=4 dQy_
3122 —zgli—lldslzd(Slg — QZ)
1-d s e 4t
— (27) 813 ds13ds23[513823] 2 O(Smin — $13)©(Smin — S23)
2I'(%5%)
x dPYQ; P, P,) (2.4.65)

Therefore we see that in the soft limit, we can perform the desired factorisation of the 3
parton phase space factor to the 2 parton phase space multiplied by a soft term which will
regulate the divergent term from the matrix element factorisation. However, we have used

the assumption that s;3 = s23 = 0 for the whole region s13 < Smin, 523 < Smin which is clearly

false.

For the collinear regime we use the Altarelli-Parisi splitting functions. We again take the
3 parton phase space factor (after azimuthal averaging) and apply the splitting of the two

collinear momenta. Let us assume that partons 2 and 3 are collinear and that we assign a

fraction z of the total momenta to parton 2 such that
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S1a = 812+ 813

812 = ZS81q, S13 — (1 - Z)Sla. (2466)

Applying these transformations to our phase space factor we find

d—

[¥]

ddPS(Q; Py, Py, Ps) — (2”)3_2(1%61323(&[32%(1 - Z)]d_;é@((smin — S23) X
2
d=1
S14 —2%30331(15(3111 - QZ)
d—2
m2 —4
— (27?)1—dﬁd823d2[8232(1 — Z)]dT@((Smin — 823)
2r(%3%)
x d*P(Q; Py, P,) (2.4.67)

Again, we find the desired factorisation of the 3 parton phase space into the 2 parton phase
space factor multiplied by the collinear term. Here we make the same mistake as before by
assuming that the factorisation is exact throughout the collinear region whereas it is only

strictly true at the edges of the 3 parton phase space.

Any multiparton phase space can be approximated in the soft and collinear limits using
this 3 parton procedure. By dividing out the unresolved parton with its colour connected
neighbours to form a separate 3 parton subspace, we can make these approximations and
then the remaining 2 parton subspace is integrated back into the whole phase space factor.

This technique is independent of the partons used.

This method of phase space factorisation is problematic because the assumption that
terms can be neglected throughout a region in which they are not necessarily zero is false
and as the number of particles increases these terms begin to contribute. Also, the mapping
of momenta from n + 1 partons to n partons is inconsistent with the massless nature of the
matrix elements. Finally, the mapping of momenta from one set of partons to another is
not symmetrical and may lead to problems between regions where the momenta are mapped
differently. The technique we present in the next chapter manages all these problems and

produces a factorisation technique that is free from these errors.
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2.5 Motivation

In Section 2.2 we saw how experimental observables such as jets and theoretical construc-
tions such as partons are related both at and beyond leading order. We also compared the
different techniques employed in studying the final state of any interaction. But we have not
yet addressed the question of why it is so important to consider processes beyond leading
order. In this section we shall consider the motivation and background leading to the main
calculation of this thesis, namely the phenomenological calculation of the process ete” — 4

jets at next to leading order (NLO).

It is important to consider the four jet process at NLO both from a physical and math-
ematical perspective. We note that four jet production is sensitive both to the Casimir
structure of QCD (thus making it an excellent test bed for QCD) and also the possible
presence of light gluinos which are present in many supersymmetry models (see for example
[27]). These hypothetical particles would have an effect similar to that of increasing the
number of active quarks from ny to ny + 3. Thus the process ete” — 4 jets is a superb
process to test well-established theories such as QCD and also a good source of possible new

physics. Other physical motivations include

1. Another method for deriving the strong coupling constant o either directly from the

event shape distributions or the energy dependence of their average value[29].

2. Better detailed predictions for distributions of event shape variables akin to Thrust.
This is due to the uncertainty in the renormalisation scale and at LO the only motivated

choice of scale we can make is the physical scale argument. At NLO other scale choices

can be calculated.

3. A test for non-perturbative effects such as power corrections which can be hidden by

the uncertainty in higher order perturbation calculations.

4. By calculating higher order terms the theoretical uncertainty can be reduced by reduc-
ing the renormalisation scale dependence. Thus higher order theoretical calculations

are necessary to maintain parity with experimental errors.

5. Only at NLO can a discernible difference between jet-finding algorithms be seen.
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Higher order calculations are necessary to model the hadronic jets seen in detectors

where there are typically 20 or more hadrons.

6. Direct production of 4 jets is a large source of background at the new LEP2 energies and

as such needs to be well known so that it can be removed from new physics searches.

The NLO ete™ — 4 jets has also proven to be very mathematically insightful. For a NLO
calculation it is necessary to perform 1-loop integrals and those integrals were for many
years a bottle neck to the NLO calculation. Many improved techniques and methods were
required to solve them. Also, when we consider integrating the matrix elements over the
available phase space it was necessary to develop techniques that could handle two separately
divergent answers, but when combined give a finite answer. We shall consider these problems
in more detail when we look in-depth at the NLO ete™ — 4 jets calculation in the following
chapters. For present however, we shall concentrate on the tests of QCD that the calculation

provides and the background theory necessary for these calculations.

A reliable test of the SU(3) nature of QCD is to measure the colour factors present in any
QCD calculation. This test can be made at the 2 and 3 jet level[26], but the non-Abelian
nature of QCD only becomes present in multijet final states greater or equal to 4 as one of
the colour factors, C4, is only present in the calculation for the triple gluon vertex. Thus 4
jet final states are the first place we can study this colour structure at leading order. Having
calculated the Casimirs for SU(3) we can compare these values to what is actually seen in

experiment. For any suitable 4 jet observable, the tree level calculation can be written as

2
Liogi = (O‘SCF) (40)+ C4p(0) + 2£0(0)) dO (2.5.68)
o0 2T Cr Cr

where o is the 2 jet cross-section and A, B and C are the coefficients calculated from the

three relevant processes, namely ¢qggg, qgqq and ggQQ®. O is any 4 jet like observable. Thus

by fitting the theoretical calculation to the data, one can extract the colour ratios, C4/Cr

and Tr/Cr. Results from [25] give a value

T,
Ca _911x 0.32, C—R —0.40 £ 0.17 (2.5.69)

F F
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compared with the SU(3) values of C4/Cr = 2.25 and Tg/Cr = 0.375. Figure 2.10 shows
how the experimental values compare with those colour factors from different types of gauge
group. As we can see, the current experimental values do not rule out other gauge groups

such as SU(4) or Sp(4), but by performing the same fit at NLO the errors can be drastically
reduced[28].

2.6 Summary

In this chapter we have attempted a review of the techniques and ideas used when considering
higher order calculations. As partons are not directly seen in experiment it is essential to have
a prescription that catagorises the event such that theoretical calculations can be directly
compared with data. The development of jet finding algorithms has gone a long way to
reconciling theoretical and experimental perspectives and is now a necessary tool in all QCD
calculations. Here we have outlined some of the more common variants and later we shall
use them in calculating the NLO term for the cross-section and other 4 jet observables. We
shall see how different algorithms, although consistent at leading order, now differ and the

magnitude of these deviations.

We have also seen the different techniques used to regularise the infra red pole structure
of higher order diagrams such as the vertex corrections necessary for the NLO calculation of
the cross section for the process ete™ — 2jets. Using dimensional regularisation solves the
problem of cancelling divergences analytically at this level without introducing Lorentz or
gauge invariance violation. However, for process of more complexity it becomes impossible
to deal with the integration by hand and we are forced to consider numerical methods. These

prescriptions will constitute the main part of the next chapter.

Colour algebra enables us to visualise QCD calculations as we would QED ones by in-
troducing colour factors akin to the simpler QED electric charge factor. Thus we are able to
write complicated matrix elements as colourless subamplitudes multiplied by colour terms.
This leads on to the idea of colour decompostion where the various Feynman diagrams can
be split into colour ordered subamplitudes such as in the g7 — gg case where the three
diagrams can be shown to divide into subamplitudes where the gluons are ordered and one

where the gluons are colour detacted. This then simplifies NLO calculations for unresolved
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Figure 2.10: The colour factors as measured by the OPAL collaboration. The circles around
the central star show confidence limits,the inner being the 68% level and the outer one the
95% level. This diagram is taken from reference [25].
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partons where the only singular collinear contributions are those between colour connected
neighbours. For those ordered amplitudes this just means their neighbour in the ordering
whereas for the colour detacted gluons, their only singular terms come from being collinear
to the quark or antiquark. The final NLO technique we studied was that of the factorisation
properties of the subamplitudes and phase space factors under unresolved partons. This
property is only true for the subamplitudes in the soft partons limit and is not seen for the
full matrix element. However, in the collinear limit both the n parton subamplitude and full
matrix element factorises into a divergent term proportional to the Altarelli-Parisi splitting
functions (if we divide the momenta of the newly formed parton between the collinear pair

linearly) and the hard n — 1 subamplitude or full matrix element.

Finally we looked at the motivation for considering NLO calculations. We see that not
only is it a good test for Standard Model physics and beyond, but that the calculations have
produced new techniques in solving loop integrals and numerically calculating the finite
sum of two divergent contributions. NLO calculations are also useful for calculating a;,

comparing jet-finding algorithms and reducing scale dependence in the final answer.
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Chapter 3

NLO Numerical Techniques

3.1 Introduction

In the previous chapters we outlined some of the standard techniques used in QCD calcula-
tions both for leading order and higher order corrections. However there is a very important
issue that has not yet been fully addressed. Performing the integrations required for these
calculations is in general beyond analytic methods. For example the NLO term for the cross
section for the process ete™ — 4jets involves an eleven dimensional integral over all the
5 particle phase space. Therefore we are required to utilise numerical methods. But these
techniques remain unstable until we have analytically removed the divergences present in
the virtual and unresolved contributions. Section 3.2 will review some of the different pre-
scriptions used to remove the pole structure analytically before numerical integration and
Section 3.3 will detail one, namely that of hybrid subtraction which is used for the calcula-
tion of the process ee™ — 4jets. This method is general to any QCD process and is well
behaved throughout phase space. We present and calculate new universal subtraction terms
which utilise a symmetric momentum transformation which preserves the massless nature
of the partons involved. These subtraction terms have been implemented into a new Monte

Carlo routine for the NLO calculation of the process ete™ — 4 jets.
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3.2 Subtraction, Slicing and Hybrid subtraction

At present there are three main methods used for removing the pole structure of NLO
contributions. These are best described by considering a simple toy example of a NLO
calculation combining both the unresolved parton contribution and the virtual loop term

[41]. Consider the integral equation for the calculation of any jet observable, Z, such as the

n jet cross section.

T = lim (/01 —/\%@ﬁdw - %M(o)) (3:2.1)
where the first term is the unresolved parton contribution and the second term is the virtual
loop. Here, the integral over the extra phase space (due to the unresolved parton) is rep-
resented by an integral over z which can be thought of as any physical quantity that tends
to zero in the unresolved limit such as the angle between two partons or the energy of a
gluon. The function Mgl represents the n + 1 parton matrix element which is singular as
¢ — 0. In this limit M(z) — M(0) where M(0) is the n parton tree level matrix element.
The factor z€dz is due to the extra phase space of the unresolved parton. In performing
this integral it is assumed that 0° = 0. The second term represents the virtual contribution
which is proportional to tree level with the explicit 1 /e pole coming from the the evalution
of the loop integral itself. As z — 0 we see that the unresolved parton term is regularised
by the phase space factor although the integral is still divergent for ¢ — 0. This divergence
is cancelled by the explicit ¢ pole in the second term. Therefore the total integral is finite

and the limit ¢ — 0 can be taken. Using this example we can outline the current methods

used to deal with this cancellation.

3.2.1 Slicing[42]

Slicing or phase space slicing solves the problem of analytically handling the pole structure
of complicated integrals by using soft and collinear approximations to the full matrix ele-
ment within well defined areas of the available phase space. The phase space is divided into

two areas 0 < £ < 6 and 6 < z < 1 and it is within the first of these that the approxi-
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mation M(z) ~ M(0) applies assuming that the cut-off § is small. (Errors made by the

approximation are due to neglected terms of the order 4.) This then gives

T ~ lim (/51 d—””fo(x)+M(0)/(]5 4z e _ 1M(0)>

e—0 xT i 3

Q

T

lim (/; B e M(z) + M(O)é; _ %M(O))

1 dg

?M(a:) + M(0) log(d) + O(¢) (3.2.2)

Q

J

The pole structure of the observable has been removed by expanding 6° = €6 = 1 +

elog(d) + ...

The benefits of slicing are that the approximations used are the same as those derived in
the previous chapter and are therefore universal to all QCD processes. However, this method
does introduce a theoretical parameter into the calculation of a physical quantity. Obviously
7 cannot depend on & and therefore the § dependence of the lower limit of the first term
(which is now finite and can be calculated numerically) should cancel with the second term
Jeaving a finite, § independent answer. As we stated above the approximations are valid only
for small values of 6. But if we choose a very small value (where the approximation is almost
exact) we introduce the cancellation of large logarithms which leads to numerical instability
(see Figure 9.3 of [43]). Therefore the results produced using this technique vary with ¢
where at small § we have a correct answer but with large errors, but at large § we have an
erroneous result with small errors. A good example of this is Figure 1 of [36] where the factor
"TNL%E for the process ete™ — 2 jets is calculated making use of the slicing prescription. For
this calculation the integrals are actually simple enough to do analytically thus the value is
known exactly. For § > 0.1 the numerical answer over estimates by about 2% but with error
bars too small to show on the plot. For 0.01 < § < 0.1 the slicing method gives the correct
value with error bars giving an uncertainty of about 0.5%. However, for § < 0.01 the error
bars have become of the order of 1% with the value lying on the correct answer. Therefore

the choice of § is critical for accurate, precise measurements.
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3.2.2 Subtraction[44]

Another method developed originally for the evaluation of O(c?) observables in electron-
positron annihilation experiments by Ellis, Ross and Terrano is the subtraction prescription.
The basic idea behind this technique is to add and subtract a divergent subtraction term.
This term is an integral over n + 1 partonic phase space with the same pointlike structure
as the extra unresolved contribution and can therefore be included in the extra integration,
leaving a finite n + 1 phase space integral. But it is also analytically integrable over the
single parton subspaces leading to the explicit soft/collinear £ poles. The result can then
be combined with the virtual contribution leaving a finite n partonic phase space integral.

Subtracting this term from the first term in Equation 3.2.1 and adding it to the second gives

1= ([ T mon 4 10 [[ o - L)
_ /Oli—m(/\/t(x)—M(O)) (3.2:3)

where the virtual pole is cancelled by evaluating the second term and letting e — 0 after
setting z = 0 so that 0° = 0. The combined first term can now be performed numerically
in the usual 4 dimensions (so that the z° term becomes equal to 1). The difficulty of this
technique is the analytic evaluation of the full fy 1 dz e term for real processes. Originally, it
was necessary to recalculate this quantity for every process. However, a variant of the sub-
traction method using a new factorisation formula called the dipole formula has generalised
these subtraction terms so that they are universal [45]. This uses a dipole structure where
the factorisation depends solely on the momentum and colour of three partons where two of
these partons are set to become soft and/or collinear. These three partons are then mapped
into two partons in a momentum conserving manner. However, this mapping is not symmet-
ric over the whole of phase space and is dependent on which half of the 3 parton subspace
the mapping is being done in. Unlike the slicing method, the subtraction prescription makes

no assumptions about the phase space or the matrix elements and it does not introduce any

new theoretical parameter into the calculation.!

Tn practice it is impossible to integrate numerically from 0 and so a small cut-off is applied to the lower
bound of the final integral
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3.2.3 Hybrid subtraction

Finally, we consider the numerical method known as hybrid subtraction. This technique uses
elements of both prescriptions described above to preserve the universality of the procedure

whilst removing the dependence of the answer (and its precision) on 4.
This is achieved by introducing a second cut-off or scale A. Phase space is again divided
up into regions where
e between 0 < z < §, the slicing procedure (using universal approximations to the matrix
element and phase space) is applied.

e between § < £ < A, an analytically integrable set of universal subtraction terms, E(z),

are added and subtracted from the two terms in an identical fashion to the subtraction

method.

e between A < z < 1 the integrals are numerically calculated

This then gives

e—0 X

. hm( 61 9 g + /0‘5 9 e M(0) - 1M(0)+/6AE(:B)%$—/JAE($)%E)

~ (51 9 \f(2) + M(0) log(6) +/ 99— JAE(z)%ﬁf)
~ (Al‘iﬁ(M(x)—E( A-a)+ [ B@E 4 MO )log(d)) (3.2.4)

There are a number of requirements that E(z) must fulfill for it to be consider a valid
subtraction term. Firstly, we require the f&A E (alc)%“—c term to integrate analytically without
any approximations to the phase space, giving a term —M(0) log(é) from the lower bound,
cancelling all § dependence arising from the slicing procedure. Therefore § can be driven as
low as is necessary (and practical) for the slicing approximations to hold. Secondly, E(z)
must approximate smoothly to M(z) as z — 0, making certain that no d dependence comes
from the lower bound of the first term and that no discontinuities exist at phase space

boundaries. This makes the integral safe to numerically integrate. Ideally, E(z) should
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be smooth and close to M(z) over the entire phase space region z < A. As we add and
subtract the same term any A dependence vanishes and we allow this cut-off to be big so as
to reduce errors from cancelling logarithms. This is the method that we shall use for all the
ete™ — 4 jets calculations in this thesis. In the next section we shall outline the derivation
of the universal subtraction terms that can be used in hybrid subtraction and how they are

employed in calculations

3.3 Antenna factorisation

As we have already seen the factorisation of an n + 1 parton matrix element in the singular
limit of an unresolved parton is solely dependent on the momentum and identity of the
colour connected neighbours to the unresolved parton, u. In these limits the matrix element
factorises into a divergent term dependent on the invariants of the unresolved parton with
its colour connected neighbours and the hard n parton tree level matrix element with the
unresolved parton removed. Therefore we can divide these three partons from the rest of
the n + 1 parton matrix element and treat this antenna separately. From the singular
behaviour of this antenna we can predict the singular behaviour of the entire matrix element
with respect to that particular unresolved parton. And then by adding together all possible

antenna, we can calculate any singular behaviour the n + 1 parton matrix element might

portray.

Think of the antenna as three partons a,b and u where one of these partons, u will be
unresolved. In the completely unresolved limit we are left with two hard partons, A and
B. Alternatively we can think the reverse process of two hard partons A and B emitting a

third unresolved parton, u. See Figure 3.1. The singular limits of the antenna function now

depends solely on terms such as 7, -~ and ; L and the squared matrix elements factorise

as

Mooy a0, b, ) = Agap| My A, B, )2 (3.3.5)

where A,y is the antenna function and has the correct behaviour in each of the unresolved

limits. With only three partons in the antenna we see that there is only a small number of
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potential antennae e.g ggg, ggg and qgq. If we calculate the singular limits for each of these
potential antennae we can use them in an universal manner that would describe the singular
limits of any QCD process with an unresolved parton. We postpone the detail of calculating

the antenna functions until we have considered the division of the phase space under this

antenna factorisation.

3.3.1 Momentum mapping

In collapsing the hard partons down into three separate partons, the momenta will obviously
change and we need to use a momentum mapping of three partons to two that will respect
the masslessness nature of the partons before and after the mapping. Also, this mapping
should be smooth across the phase space of the antenna. We would like to factorise the
n + 1 parton phase space into an n parton phase space and an antenna phase space term.
We can write the full phase space factor as the product of the 3 parton antenna phase space

attached to the n — 2 parton phase space integrating over the total invariant mass of the

antenna, Sgup-

dsau
® AP S(Squb; Pa, Pus Db) (3.3.6)

dPS(Q% p1, .-y pn) = APS(Q% p1, -, Daubs --Pn)

27

Here paup = Pa + Pu + D» and Sgup = p2.- To get Equation 3.3.6 in the desired form we
multiply the right hand side of the equation by

dPS(sap;pa, PB) (3.3.7)
JdPS(s4B;Pa;PB)

where particles A and B have momenta ps and pg such that, psw = Pap = Pa + DB,

p% = p% = 0 and S = sap. In other words,

ds in
dPS(QZ;Pla--~,Pn) = dPS(QQ;pI:---apAB;---apn) Z;BdPS(sAB;pA,pB) x dPS5"8
= dPS(Q* D1, -, DA, PBs - Pn) X dPSsme. (3.3.8)
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(1)
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Figure 3.1: The singular limit of a n + 1 parton matrix element (i) can be calculated by
dividing it into a 3 parton antenna attached to the n — 2 hard partons. By dividing out
the three body antenna that contains the soft/collinear partons (ii) the antenna’s singular
limits can be found once and for all. These limits will be the same as for the entire n + 1
parton matrix element when the parton in the antenna becomes unresolved as the limits
only depend on the invariants of the parton with its coloue connected neighbours and not on
any of the other n — 2 partons. Therefore the 3 parton antenna can be collapsed down to a
2 parton antenna multiplied by the divergent singular terms using a symmetric momentum
mapping that preserves the massless condition. The two body antenna (iii) can then be
reconstructed with the rest of the matrix element to give a n parton matrix element in the
singluar limit of a specific unresolved parton. By summing over all possible antenna the
singualr limits that can ever exist are then calculated.
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As desired, we have the phase space for an final state containing n lightlike particles multi-

plied by dPS%"8. Working in four-dimensions and after integration over the Euler angles,

dPS(sa,ub; Pas Pu, pb)

JdPS(saB;pa,PB)
1
= g2 8aubdTauTupdTab0 (1 — Loy — Tup — Tap), (3.3.9)

dPSSing

where z;; = $;;j/Saus. For this to work, a mapping must exist that determines p4 and pp for

a given set of momenta p,, p» and p,. Many choices are possible [45, 46] and we choose the

symmetric mapping of [46],

1 sub(1+,0—27’1) 1 Sau(l—p—Z’f‘l)
= Z|1+p+ trputgil-pt '
pa 2 l: P Sab + Sau Pa 1Pu 2 p Sab + Sub P
1 sup(1+p — 211) 1 Sau(l = p = 211)
= Z|1=p— +(1-—r7r +-1+p-
PB 2 [ P Sab + Sau Pa ( l)pu 2 p Sab T Sub P
(3.3.10)
where,
Sub
py— S 3.3.11
! Sau T Sub ( )
and,
_ \/Tg,,+ (Sau + Sup)Sab + 471(1 — 71)SauSub (3.3.12)
SabSaub

Note that this transformation approaches the singular limits smoothly. For example, as
Sgu — 0, then 7y = 1, p — 1 and pa — pa + pu, P — Py Also note that this mapping pro-

duces massless partons at all points in phase space and not just along the singular boundary

where p;.p; = 0.
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3.3.2 The universal subtraction terms

Having factorised the phase space, we now wish to find the analogues of the subtraction
functions E(z) discussed in Section 3.2. These functions should ideally be valid over the
whole of the antenna phase space dPS"¢ and, in the soft and collinear regions must match
onto the singular limits of the full n+ 1 matrix elements. In other words, for a given (n+1)

particle amplitude, in the limit where particle u is unresolved,

1S, (cory @y u, by )VH?E — Ags| Sl A, B, L )VEE, (3.3.13)

where we have replaced the antenna comprising a,u,b by the hard partons A and B to
obtain an n particle amplitude. The antenna function A,,;, depends on the momenta of the

radiated particles a, b and u, but the n particle amplitude |S,(..., 4, B, ...)V¥|? does not.

The leading colour contribution to an observable cross section from an (n + 1) particle

final state with a particular colour ordering is proportional to,

gzN n+1
(T) 1S, (-, @, 1w, b, .. ) VE 2 J (1) dPS(Q%; ..., Das Pus o ), (3.3.14)

where the observable function J,41) represents the cuts applied to the (n+1) particle phase
space to define the observable. Using the factorisation of the matrix elements defined in

Equation 3.3.13, when particle u is unresolved we should subtract,

2N n+1
(%) Aqu|Su(eoes A, B, ) VH 2Ty dPS(Q; ..., Pay Pus Do ---), (3.3.15)

from the (n + 1) particle contribution and, using the phase space factorisation of Equa-

tion 3.3.8, add,

2N n+1 .
(%) ApsdPS|S, (., A, B, )V dPS(Q% . pas s, ), (3.3.16)
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to the n particle contribution where both the observable function J and matrix elements
|S,V*#|> depend only on the momenta of the n remaining hard partons. Note that for any
infrared safe observable, in the limit that one particle is unresolved, Jint1) — Jm). In the
subtraction term Equation 3.3.15, we use the transformations of Equation 3.3.10 to map the
momenta p,, P, and p, defined in the (n + 1) particle phase space onto the momenta py
and pp used in the n-particle matrix elements and observable functions. In Equation 3.3.16,
all dependence on the momenta of particles a, b and u may be integrated out to give the

antenna factor, F,

N .
Fap(sap) = (%) /AaudeSS‘“g, (3.3.17)

multiplying the n particle cross section (for a given colour ordered amplitude),

N
(92—> 1Su(crey A, B, . )VH Iy dPS(Q; ... pa, DB, ... (3.3.18)

The full set of subtraction terms is obtained by summing over all possible antennae.

The Dalitz plot for the (AB) — aub phase space is shown in Figure 3.2. In the hybrid
scheme we are implementing, we use the slicing method of [36] in the region min(8gy; Sup) < 0,
and the subtraction scheme in the region, § < min(say, Sup) < A. In the slicing region, the
phase space and soft and collinear approximations to the matrix elements are kept in d = 4 —
92¢ dimensions to regularise the singularities present when either invariant vanishes. Using the
approach of [36], there are three separate contributions (a) soft gluon when max(sgu, Sus) < 4,

(b) @ and u collinear when s,, < d but s, > 4 and (c) b and u collinear when s, < 6 but

Saqu > 0.

Before turning to the explicit forms for the antenna subtraction terms, we note that while
quarks are only directly colour connected to one particle - a gluon or antiquark, gluons are
directly connected to two particles - the gluon (or quark) on either side. Therefore,while
the quark (or antiquark) appear in a single antenna, gluons appear in two. This gives an

ambiguity in how to assign the collinear singularities of a pair of gluons to each antenna.
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Figure 3.2: The phase space for the decay (AB) — aub. The cut min(Sey; Sup) = 0 With
§ = 0.1 sS4y is shown as a solid line while min(sey, sup) = A is shown as a dashed line for
A = 0.25 s45. The region min(sgy, su) < ¢ defines where the slicing approach is utilised,
with the soft and collinear regions demarked by dotted lines. Antenna subtraction is applied

when § < min(8gy, Sup) < A.

Later we will exploit this ambiguity to make the antenna functions Ag for different pairs

of hard partons finite simpler.

3.3.3 Quark-Antiquark antenna

Let us first consider a system containing a quark, antiquark and a gluon. This is produced
by an antenna comprising of a hard quark and antiquark pair that decays by radiating a
gluon. Any function that has the correct soft gluon and collinear quark/gluon singularities
in the appropriate limit is satisfactory. Here the hard particles in the antenna are @ and @

which radiate to form ¢, g and the gluon g. A suitable choice for the antenna function is,

As = 22
e 1S,(Q; Q)VH[?
2 ou u 2 abLau
= (3— 4oy fi—") . (3.3.19)
Saub \Tub Tou LauZub
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Because this is proportional to the three parton matrix elements, |S,(g; g; Q) V|3, it auto-
matically contains the correct soft and collinear limits. Furthermore, it is smooth over the
whole three particle phase space and singularities only appear in the s, — 0 and sy — 0

limits.

Explicitly integrating over the antenna phase space for § < min(8ey, Swp) < A we find,

2
g N sin,
Foglsqn) = (T) /AngdPS 5
N )
= ( ) (m2 (-) + % in (i» +F5s (—A—> + 0(9). (3.3.20)
27 sea/ 2 \%qq SqQ

Since we intend to take the § — 0 limit, the terms of O(8) may be safely neglected. The §

Q

independent function Fgé is given by,

Fis(a) = (“27]:[) (— In? (z) + ‘%”' — Wig(z) + (% — 2z f;) In (1 - ’”)) (33.21)

3.3.4 Quark-Gluon antenna

For antenna made of a quark @ and gluon G, there are two possible ways of radiating. Either
a gluon can be radiated so that a quark-gluon-gluon system is formed, or the gluon may split
into a antiquark-quark pair. This latter possibility is subleading in the number of colours

and the discussion of situations like this is deferred to Section 3.3.6.

For a quark-gluon-gluon system there is a less obvious choice of antenna function, par-
ticularly since the singularity that is produced when the gluon splits sits in more than one
antenna. If, in the collinear limit, the gluon splits into an unresolved gluon u which carries
momentum fraction z and a hard gluon b with momentum fraction 1 — 2, the antenna func-
tion should naively be proportional to P,,_,, which is singular as z — 0 and z — 1. This
corresponds to singularities as both sg, — 0 and sz — 0 where a is the quark, ¢). However,

because the collinear singularity sits in more than one antenna - the two gluons also occur
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in a second antenna where the role of the two gluons is reversed - we can make use of the

N = 1 supersymmetric identity to rewrite Py, as,

Pggsg = FPagq + Pygsq — Pagg- (3-3-22)

The soft singularities as z — 0 are contained in Py, while those as z — 1 are in Pyy,,. We
therefore divide P,,_,, amongst the two antennae such that Py, sits in the antenna where
gluon u is unresolved. The z — 1 singularities are placed in the antenna where the role of
the two gluons is reversed. The remaining Pg_,, may be divided between the two antennae
according to choice. With a slight modification due to the P, term, the antenna function

used for the QQ antenna has the correct limits, so that,

2 2
Ay = Aggs — — (—L) . (3.3.23)

Saub \ TubTaub

This is again smooth over the whole three particle phase space with singularities only appear-
ing in the s, — 0 and s,, — 0 limits. In particular, as z — 0, the collinear limit matches
onto the soft limit which would not have been the case if we had divided the soft/collinear

singularities equally between the two antenna.

After integrating over the antenna phase space for 6 < min(sgy, Sw) < A we find,

2]V .
FQG(SQG) = (%) /Aqggdpssmg

asN) <1n2 (i) + O (—5—)> + Fjg (A> (3.3.24)
STale 6 SQc STale

il
TN
N
3

A _ (asN 5 19z z* 28
FA(z) ( - ) (- In? (¢) + — = 5 + 5 — 2Lia(a)
10 R -z
L LA ) . 3.3.25
+(6 2ty 6)”( z )) (3:3.25)



Antennae containing a gluon and an antiquark are described by,

Aggg = Aggg(a < b), (3.3.26)

and,

FGG(SGG) = FQG(SGQ)' (3327)

3.3.5 Gluon-Gluon antenna

For antenna comprising only gluons, we repeat this SUSY inspired trick for each of the

resolved gluons so that,

2 z2 T2
Aggg = Aggs — e el 3.3.28
999 a4 Saub (mubxaub ma.umaub> ( )

It is noted in passing that Kosower [46] has proposed an antenna factorisation for gluonic

processes,

AKosower — 4 ((xaub(maub - mab) + ng)2) (3 3 29)
999 Squb TauZyubZabl sub ‘

which, in the u/b collinear limit regenerates the full Py, splitting function, as well as the

soft limits.

Integration of the antenna function A,y over the whole of the subtraction region yields,

2N .
Fea(see) = (%) /AgygdPSsmg
_ N o 0 11 0 A ( A >
- ( - ) <ln (sGG) +on (m)) -] oo IRNCEED
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with the § independent function F5, given by,

N 23z 227 243
F.(z) = (0‘ ) (— In? (z) + o — 22 4 2 9Liy(a)

11 R 1—2x
L PP A . 3.
+<6 Tt 3 3>ln< " )) (3.3.31)

3.3.6 Antenna where a quark-antiquark pair merge

There are also configurations when two (or more) colour lines are present. Here the matrix

elements have the form,

1S,(...y a,lg, b, .. ) VH|*. (3.3.32)

In the collinear limit, the quark-antiquark pinch the two colour lines together to form a

single colour line,

1S,(..., 4,7, by . ) V#> = Prgse(2, 550)|Su(-, 0, G, b, L)VEE, (3.3.33)

with Py_c(z,s) given by Equation 2.3.54. There is no soft singularity, nor is there any
dependence on the type of adjacent parton, a or b. Clearly, the quark-antiquark pair can
sit in two antennae, (a,7,q) and (g,¢,b) and we have some freedom of how to assign the
singularities to the antennae. There are two obvious choices. Either we divide the singular
contribution equally over the two antennae, or, we place the 2% part of Pg4(2) in one
antenna and the (1 — z)? part in the other (as we did with the three gluon antenna before).
While there appears to be no preference, we follow this latter route so that the antenna

function vanishes as the unresolved particle becomes soft,

2 %
Ay = — (ﬁ—> , (3.3.34)




and,

A?qb = Aaﬁq(xaﬁ — Tgb; Tagqg <7 -'Eﬁqb)- (3.3.35)

Following this procedure and integrating over the whole of the subtraction region yields,

2
Fal\éF(saG) — (g ;VF)/Aa_q_quSSing

Oész 1 ) NeA ( A )
= ——1 E& , 3.
< 2m ) < 6 t (Sac>> + aG SaG ' (3 3 36)

and,

FAF (sa) = Fof (se). (3.3.37)

The factor of Ny arises because each of the Np quark flavours may contribute. The 0

independent function is,

3.4 Summary

In this chapter we have attempted to detail the problems inherent in calculating NLO ob-
servables due to the complex, divergent integrals that need to be numerically evaluated. We
have outlined three techniques that have been used in the literature and seen the benefits

and failings of these prescriptions. We have choosen to use hybrid subtraction for the main
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calculations of the thesis. We have seen earlier that some phase space mappings lead to
ambiguities in the massless nature of the final combined partons and so we have choosen to
use a phase space mapping procedure proposed by Kosower which is smooth and symmetric

over the entire range of phase space and produces massless final combined partons.

In this chapter we have also introduced the concept of the antenna, as two hard partons
that are colour connected and from which a third irresolvable parton is emitted. This leads
to the prescription of evaluating subtraction functions for each antenna so that we have
universal functions that can be used for any QCD process. For the simplest antenna, that
of a quark and an antiquark emitting a gluon, we use the scaled squared matrix element for
the process ete™ —+ qgg. This has the right singular behaviour and is smooth over the entire
phase space region. For the more complex quark-gluon-gluon and three gluon antennae, we
can make use of the N = 1 supersymmetric identity that relates the Altarelli-Paresi splitting
functions. The problem for these antennae is the ambiguity of which antenna contains which
divergences. By splitting the two singluar regions of the Py, between the two antennae
(and including a term from the Pz, splitting function), we arrive at expressions that have
the correct singular behaviour and that smoothly link the soft and collinear regions. By

combining all the antennae functions for a squared matrix element, the whole of the gluon

splitting function is recovered.
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Chapter 4

Matrix elements/subtraction terms
for the calculation of e e~ — 4 jets

4.1 Introduction

We now collect together all of the ideas covered in the preceding chapters in order to calculate
the cross section of the process efe™ — 4 jets. Once this has been formulated the calculation
(and associated numerical routines) can be adapted to evaluate any infra-red safe, four jet-
like observable. (We define a small group of such observables which have been implemented

into the Monte Carlo already and which we compare with experimental data in Chapter 5.)

As we have seen, NLO calculations consist of virtual loop corrections and extra, unre-
solved parton contributions. However, at the four jet level, there are two different underlying
processes. For the virtual loop corrections we must consider the loops that modify the tree
level process ete™ — gggg and also the tree level processes ete™ — qgQQ where the flavour
of ¢ and @ are not necessarily the same. Similarly, the extra unresolved parton contributions
have terms derived from the processes ete™ — qgggg and ete™ — q7QQg. Section 4.2 will
briefly consider the relevant diagrams and squared matrix elements for the virtual terms,
while Section 4.3 will repeat the process for the unresolved parton contribution. Section 4.4
will look at the symmetries of the sub processes and justify neglecting some of the terms,
making the final calculation more compact. Finally Section 4.5 will make use of the antenna
functions and phase space mapping derived in the last chapter to outline the finite terms

multiplying the tree level processes after the analytic removal of the infra-red poles.
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4.2 The virtual loop matrix elements
4.2.1 ete” = qqgyg

We begin by considering the relevant diagrams and related squared matrix elements for the
tree level and 1 loop contribution to the sub process ete™ — ¢ggg. We outline the colour
structure and show how the entire contribution can be written in terms of five independent
colourless subamplitudes. The full squared matrix element for this process was first calcu-
lated by [66] and [63] independently using different methods (the basics of which we describe
later). For more details on the loop integrals and pole structure necessary for this calculation
the reader is referred to [66],[63],[64] and [65]. For the purpose of all these calculations we
will concentrate on the QCD current, neglecting the well known leptonic current, V#. It is

easily replaced and we drop it solely to keep the notation compact.

As we have already shown in Section 2.3.7 the tree level matrix element for the process
Z/v* — qggg has a structure directly related to the process gz — gg. The virtual matrix

element is also similar in form. Therefore we write the matrix element of each as

2n
M* = * P MP = eg? (%) [(t“3t“4)M;‘(3,4)+(t“4t“3)MZ(4,3)+—;—5a3a4M{,‘(3,4)
(4.2.1)

where n = 0 describes the tree level matrix element and n = 1 the 1 loop correction. The
different gluon colours are given by a3 and a4 and the arguments of the functions, M,
indicate the ordering of the gluon emission e.g. M(3,4) has the gluon with momentum ps
emitted before the gluon with momentum p4. See Figure 4.1. For all the two gluon processes
we fix the quark to have momentum p, and the antiquark momentum p,. At tree level
M3(3,4) = 0. The functions M?2(3,4), M?(4,3) and M}(3,4) can themselves be colour

decomposed and at the 1 loop level are given by
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Figure 4.1: The relevant tree level Feynman diagrams for the process Z/v* — qggg. The top
two diagrams have the gluon with momentum p; emitted before the gluon with momentum py
whereas in the bottom two diagrams the roles are reversed and the gluon with momentum py
is emitted before the gluon with momentum p3. The solid black circles indicates the possible

positions for the Z/v* vertex.
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1
Mi(3>4) = NM}Q(3:4) - ]_\T_M}B(3:4)

MA4,3) = NMy(4,3)~ - M5(43)
MAGA) = MY(3,4) = ML(4,3) (4.2.2)

where the colourless amplitudes MY (i, 7), M%(4, j) and M{(3, 4) represent the combination
of diagrams that give the same colour structure. Figures 4.2, 4.3 and 4.4 demonstrate the
relevant diagrams for each of these amplitudes. This gives the following form for the tree

level and 1-loop squared matrix elements. The tree level is expressed as

S MO = efff(Nz —1)N |5(3,4) +S5(4,3) — ]—\ﬁs (4.2.3)

spins

where

S5(3,4) = Y |(M23,4))"M;(3,4)]

spins

S = Y I(MIB,4) + (M(4,3)) (M3, 4) + Ma(4,3)) (4.24)

spins

where S has no contribution from the triple gluon diagram as seen previously. For the 1

loop level we find

syl - 22 (52) -
x [LA(3, 4) + La43) - = L LatLs(3,4) + L5(4,3) - Lo) + W.CB
(4.2.5)

where we define the ordered structures and QED like contributions as
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L£:(3,4) = > Re[(M](3,4))'M0(3,4)]

spins

L; = Y Re[(Mi(3,4) + (M;(4,3))(Ma(3,4) + Mq(4,3))]  (42.6)

spins
Therefore we see that the 1 loop squared matrix element is composed of five independent
functions which obey the following symmetry properties : £;(3,4) remains unaltered after

the exchange p; < p, and p; > ps whereas £; is symmetric after the rearrangement p; < p2

Or p3 <7 P4.

4.2.2 ete” — qqQQ

The second part of the virtual contribution derives from the 1 loop correction to the process
ete™ — qgQQ. Again, for a detailed account of the calculation the reader is referred to
[67,[63],[64] and [65]. Here we shall detail the colour decompostion of the relevant diagrams,
leaving the full result until it is implemented in a Monte Carlo program. We write the matrix

elements of the tree level process (n = 0) and the one loop correction (n = 1) as

2 2n
n _ 89 (9
M—2(47r>

[am 0y e (Am;@ AQ5 T + 22 12 (A3(@u @) + AS(Qs;@))

Bereadeses 37 (AB(Q1T0) + A3(Q0,00)) + dug (A (@, Qi) + AT, %))
(4.2.7)

where c;..c4 are the quark colours and the arguments of A7 indicate the location of the Z/v
vertex and thus the relevant charge associated with the matrix element e.g. AY(Q1, Q>) refers
to the diagram where the gauge boson couples to the quark/antiquark pair with momenta
p1 and p, respectively. See Figure 4.5. The delta function 8¢ is only non-zero for identical
quark flavours (which allows the primary quark/antiquark pair to be ¢g, QQ, qQ and Qg

whereas non-identical quarks only form the first two combinations). For tree level n =0 we

find
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Figure 4.2: The set of Feynman diagrams responsible for the subamplitude function ML(3.4)
where we define the permutation of the gluons : from the top of the quark line, gluon 3 is the
first encountered when reading around the diagram clockwise. As these diagrams represent
the final state of the process, the virtual Z/y boson that is created in the electron positron
collision attachs to these diagrams at the solid circle indicated (except in the second diagram
where the solid circle along the gluon indicates a quartic gluon coupling). The dashed lines
correspond to ghost loops. The top seven diagrams along with their 3 4 permutations
contribute to £ 4 whereas all the diagrams contribute to £4(3,4). In dimensional regularisa-
tion diagrams with external leg corrections are identically zero and therefore are not included
here or in any of the other loop diagrams.
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Figure 4.3: The set of Feynman diagrams responsible for the subamplitude function Mj(3, 4)
where we define the permutation of the gluons as such : from the top of the quark line, gluon
3 is the first encountered when reading around the diagram clockwise. As these diagrams
represent the final state of the process, the virtual Z/y boson that is created in the electron
positron collision attachs to these diagrams at the solid circle indicated. The top six diagrams
alone contribute to £Lp whereas all the diagrams contribute to Lp(3,4).
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where we define the permutation of the gluons as such : from the top of the quark line, gluon
diagram clockwise. As these diagrams
represent the final state of the process, the virtual Z /7 boson that is created in the electron
positron collision attachs to these diagrams at the solid circle indicated. All the diagrams
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Figure 4.5: The relevant Feynman diagrams for the tree level process Z/v* — q7QQ where
the flavour of the quarks can be identical or different. The first diagram has the Z/~* vertex
attached to the quark line consisting of a quark with momentum p; and an antiquark with
momentum py. This we denote with the symbol .A3(1,2). Similarly, the second diagram has
the gauge boson vertex attached to the quark line consisting of a quark with momentum p3
and an antiquark with momentum p,. This is denoted with the symbol A%(3,4). The third
and fourth diagrams are only valid for processes with identically flavoured quark/antiquark
pairs where we exchange p, ¢ py for the third diagram (compared to the first diagram) and

p1 <> ps for the fourth diagram.
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AY(i, 5) = A3(3, 9) (4.2.8)

whereas at the one loop level n = 1, we can further colour decompose the A; functions such

that

Ad) = NAY(g) — (A4, 5) + Ab(i, )

Ay(i,5) = N(A};(i,j)-flh(i,j))—%(Ah(i,j)%‘ﬁa(i,j)) (4.2.9)

As before we form three groups of diagrams, A% (i, 7), A% (¢, j) and Ag (s, j) which have the
same colour structure and these are shown in Figure 4.6. One set of diagrams which we may
have naively expected to be contributing are the closed fermion triangles, but according to
Furry’s theorem (a consequence of charge conjugation) these are identically zero i.e. QCD
is charge conjugation invariant and the contributions for fermions circulating clockwise and

anticlockwise cancel. Now let us consider the squared matrix elements. At tree level these

are given by [68],

2.4
Z |M0|2 — e_f_(N2 _ 1)

spins

X T(Qla—Q_ga Ql)@) -+ T(le@a QSa—Q_‘l_) + %Q— (T(Qh@a Ql)@) + T(Ql@a Q37@)>
Q1o Q5,05 & Qa) +6,0(@s & Qa) +0,0(Q1 > Qs))] (4.2.10)

where the arguments of the functions indicate the position of the Z /v vertexie. T(Q1, Q2;Q1,Q2)
indicates the Z/v is attacted to the ¢g quark line (as opposed to the QQ quark line) for
both the matrix element and its conjugate whereas T(Q1, Qz; Q3, Q4) has the Z/v linking a

qq line in the matrix element to a QQ line in the conjugate.
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Figure 4.6: The set of Feynman diagrams responsible for the subamplitude functions
Aa(i,j), Ap(i, j) and Ac(i,j) where the top two diagrams are represented by A4(i, ), the
middle four are represented by Agp(i,j) and the last six are represented by Ac(i,j). The

solid circle indicates the position of the initial Z/~ boson.
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For the one-loop squared matrix elements we write

T2 Mt = 7 () v -
([(cc(l, 2:1,2) + Lo(1,2 3, 4))
- %(2/;,4(1,2;1,2)+2£A(1,2;3,4)+£B(1,2;1,2)+£B(1,2;3,4))J
+ b0 [%(50(1, 2 1,4) + Lo(1,2,3,2) — £4(1,2,1,4) — L£4(1,2:3,2)
- %(LA(L 2:1,4) + La(1,23,2) + L5(1,2:1,4) + L(1,2 3, 2))]
+ (Q1 ¢ Qs, Q2 ¢ Qu) +0,0(@2 © Qu) +0,0(Q1 © Qs)) (4.2.11)

where

La(i, 53 k,0) = D7 [ADN(Qi, Q) A% (Qx, Q1) (4.2.12)

spins

Making use of crossing symmetry we find that £,(1,2;3,2) and £4(1,2;1,4) are related and
thus the squared matrix element at the one loop level for the process ete™ — q7QQ is given

by 9 independent functions.

To calculate the virtual corrections to the 4 jet process, two separate techniques have
been developed. For this thesis, we have used the squared matrix elements of [66] and [67]
which utilise the usual prescription of conventional Feynman diagrams and the reduction of
tensor integrals in d dimensions. The virtual contribution was also calculated separately by
the group of Bern, Dixon, Kosower and Weinzier] (BDKW) [63],(64] and [65]. The BDKW
calculation differed in approach in that it was performed directly in the helicity amplitude
approach using dimensional reduction, appealing to the analytic structure of the amplitudes
and unitarity. This allowed the amplitudes to be fully described from specific collinear limits.

The two results have been shown to be consistent with each other (see [47]).

95



4.3 The unresolved parton matrix elements

4.3.1 e*e” — qgggg

As we have seen before, the matrix elements of multi-gluon emissions can be simply colour
decomposed into a colour factor that is related to the permutations and colour connections of
the gluons and a colourless subamplitude which contains the kinematical information about
the diagram. For the NLO calculation of the process ete™ — 4jets we write the hadronic

current of the extra, unresolved contribution as

g/l.(Ql; 17 2’ 3) @) = i€g3 Z (talta2ta3)cl CQSM(QI; 1; 27 3: @;) (4313)

P(1,2,3)

where a1, a; and ag are the colours of the three gluons and ¢; and ¢, are the quark /antiquark
colours. As we have seen before, the permutations of colour matrices create the colour factor
and S,(@1;1,2,3; Q-) describes the kinematical, gluon ordered subamplitude where a gluon
with momentum p; is emitted first followed by a gluon with momentum p, and finally a
gluon with momentum p; is emitted. The Feynman diagrams relevant to this subamplitude

are shown in Figure 4.7. This then gives, when squared

o = 28] (55

{ ( (Q1;1,2,3; Q) V¥ — 2IS,L(Ql;1,2,?>;C2—2)V“|2>

(N 1) @ 12,3: GV (1314

where V*# is the well-known QED electron current. As usual, the tilde on the gluon indicates

its colour detachment from the rest of the gluons and as such it can be placed anywhere

along the quark line e.g

S.(Q1:1,2,3;,Q2) = Su(@131,2,3,Q2) + Su(@131,3,2; Q) + Su(Q1:3,1,2,Q2)  (4.3.15)
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Figure 4.7 The Feynman diagrams contributing to the colourless subamplitude
S.(Ch; 1,2, 3;Q2). As indicated the ordering is such that a gluon with momentum p, is
at the extreme top of the diagram, a gluon with momentum p, is next followed by a gluon
with momentum p;. The off-shell v/Z from the e*e” annihilation attacts at the sites in-
dicated by the solid circle. By combining different permutations of gluons, these diagrams
can lead to cancellations such as for §,(@1; 1, 2, 3; Q2) where all the diagrams in which gluon
ps couples to another gluon cancel and S,(Q1; 1,2,3;Q,) where all triple gluon couplings
cancel. This is analogous to the example we saw for ¢ — gg where the two triple gluon
diagrams cancelled for S,,(Q1; 9, 9 Q).
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4.3.2 e'e” = qqQQg

The final contribution to the NLO calculation is that of the unresolved parton to the tree
level process ete” — ¢gQQ. This again may be colour decomposed to give colourless
subamplitudes. Here we use a slightly different notation compared to the process ete™ —
¢gQQ in order to clarify the various subamplitudes that combine to give the same colour

structure. The form of the matrix element is given by

o~ —_— — 3 —_— R I —_—
T(Q1,Q2; @3, Q4;1) = i% [tgllcﬁcsc{R(Ql;Qz;Q3=Q4; 1)+ (Q1 ¢ Qs; Q3 ¢ Qu)

— Q1o Qs) — (@20 Q) (4.3.16)

where ¢;..c4 are the colours of the quarks (these are also affected by the symmetries) and
a; is the gluon colour. Here as with the loop correction we label the two quarks, ¢ and @
with momenta p; and ps respectively and the two antiquarks g and () with momenta p, and

p, respectively. This current can be further broken down into different diagrams and colour

factors such that

R(Qla —Q;; Q3> @5 1) - 5Q1Q26Q3Q4RA(Q1a @; Q37—Q—4§ 1)
+ %5Q3Q25Q1Q4RB(Q1:Q_23 Qs,Qq;1) (4.3.17)

where the delta functions indicate whether the quarks are the same flavour or not. Also

RA4(Q1,Q2;Qs,Qs;1) = A192(Qy;1; T4l Q3; Q2) + A%(Q3; Q2|Q1;1; Q)
RE(Q1,02Q3, Q1) = BU(Q1; 1;04|Q3 Q2) + B¥(Q3;Q2|Q1; 1; Qu)
(4.3.18)

The difference between these two functions is the direction of colour flow and where the

vector boson is attached. This in turn dictates which partons can form colour antennae, the
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electric charge of the quark coupling to the photon and the colour factor for the singular

contribution where the antennae partons become collinear with the gluon. The superscripts

on A and B give the quark line to which the photon couples such that 4992 has the photon
1

attached somewhere along the quark line between quark 1 and antiquark 2. However, the

colour antenna for Afle? is formed between quark 1 and antiquark 4 such that colour is

transmitted through the gluon propagator whereas the colour antenna for BI?IQ“ lies between

quark 1 and antiquark 4 with no colour being carried by the gluon. The relevant diagrams

for each of these functions are shown in Figure 4.8.

The squared matrix element is given by

7P = e

¢?N\® (N2 -1
N2

2

% [[R(Qr, @2 Qs, Qu; )I” + [R(Qs, Qs @5, @2 )P
-~ ERG(R(QD Q2 Qs, Qs 1) + R(Qs3, Qa; Q1, Q2 1)) (R(Qr, Qu; Qs, Qs 1)

N

+ (Q1 ¢ Q3,Qz2 & Qu) (4.3.19)

where terms of the form R(Q1, Qz; @3, @4; 1)(R(Q3, Qa; @1, Q2; 1)) are zero due to the trace-

less nature of the colour matrices. We can rewrite to display all the colour factors as

where

L (PN (N? =1

“(7) (%)

[IRA(Q1, Qs @, 0 )P

(R (@1, T Qs, @ DI — [R(Q1, @i a, D0 )P)
20001 o (RA(Q, Qs Qu, st ) (RP(Qs, Qi 00, T 1)’

2 —
%7\,—2_15622624Re(ﬁ(Q1a @; Qs, @é 1))(ﬁ(Q1, —Q; Qs, Qq; 1))T

(Q1 ¢ Q3, @2 < Q) + 00,05 (Q1 © Qs) +60,0,(Q2 <+ Qa)]  (4.3.20)
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Figure 4.8: The Feynman diagrams contributing to the process ez — _gj@@g. The
top three diagrams form the colourless subcurrent A%'92(Qq;1;Q4|@3;Q2), the next
three form AZ*94(Qs;Q2]Q1;1;Qs), the first two diagrams on the bottom line form

B9194(Q1; 1; Q4|Q3; @2) and the last two form B*92(Qs3; Q2/Q1;1;Q4). The photon propa-
gator couples to this final state current at the solid circles.

R(Q1,Q2,Q3,Q51) = RAQ1, Q2 Qs3, Qs 1) + RHQs, Qa; @1, @23 1)
= RP(Q1,Q5Qs,Q2;1) + RP(Q5,Q2;Q1,Qu; 1)  (4.3.21)

4.4 Symmetries and negligible contributions

Although we have outlined all the possible sources which contribute to the cross section
of the NLO calculation of ete™ — 4 jets, we can make the numerical evaluation simpler

by counting the symmetries inherent in the matrix elements. This reduces the number of
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functions it is necessary to evaluate. Also, after phase space integration it can be shown that
some contributions partially cancel and can thus be thought of as negligible for the rest of

the calculation.

4.4.1 Negligible contributions

We begin by considering the four quark virtual terms. At tree level the gGQQ process has
four diagrams that contribute to the squared matrix element term T(1,2;3,4). It can be
seen that two of the contributing diagrams are related by the reversal of the Q3Q.4 quark line.
(See Figure 4.9). If the cut between the matrix element and the conjugate was not present
we would set this contribution to zero by Furry’s theorem. However, as the quarks are
indistinguishable, we find after phase space integration this leads to a cancellation between
the diagrams because for each contribution from the first diagram’s squared matrix element,
an equal and opposite contribution can be found for the second diagram at a different phase
space point. A similiar argument is used for the 1-loop level corrections. The cancellation
for the 1-loop correction is not perfect and the resultant contribution is not zero, but is small

enough to be thought of as negligible[48]. Therefore we treat terms of the form £(1,2;3,4)
as negligible.

The only other contribution that we treat as negligible is part of the contribution to the
subprocess ¢gQQg. In the same way as for the virtual term we shall not calculate those
terms for which different quark pairs couple to the photon in the matrix element and the

conjugate i.e. we treat terms of the form AQQ2(Qy; 1;@|Q3;@Z)AQ3Q“(Q3;Q_2|Q1; 1;Qq)f

as equal to zero.

4.4.2 Symmetry factors

Making use of symmetry factors we can simplify the calculation greatly by evaluating one
function and then multiplying it by a factor dependent on the degree of symmetry. We
already are familiar with summing over the np active quark flavours and we also note that

for n identical particles in the final state we attribute a factor 1/n! to the function.

We begin with the symmetries for the tree level process Z /v* = q@QQ. For identical
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Figure 4.9: Two of the four diagrams that make up the four quark term T(1,2;3,4). The
dotted line separates the matrix element from its conjugate.

final state quark pairs we must include a factor 1/4. This gives a symmetry factor of np/4
for matrix elements with identical quark flavours in the final state. Similarly there are

np(np — 1)/2 ways of choosing a pair of non-identical quarks in the final state. Collecting

these all together we have

T(1,2;1,2) = 2 X np(np — 1)/2+4 x np/d = n} (4.4.22)

where we have included the 1 < 3, 2 <> 4 symmetry for the non-identical pairs and the

143, 2 <> 4, the 1 < 3 and the 2 <> 4 symmetries for the identical pair.

For the terms of the form 77(1,2;1,4) (which only identical quark pairs contribute to)

we have
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T(1,2;1,4) — 4xnp/d
T(1,23,2) — 4xng/4 (4.4.23)

Note however that the term 7(1,2;3,2) is generated by the symmetry p; ¢ pa,ps <> Ps
from the term 7(1,2;1,4). Therefore we put these together to form the single function,
T(1,2;1,4) with symmetry factor 2np.

For the one-loop correction to the process Z/v* — ¢gQQ the symmetries are identical

giving

£:(1,2;1,2)+ (1 3,2 & 4 symmetry) — nj
L£:(1,2;1,4) + (1 ¢ 3,2 <> 4 symmetry) + (1 <> 3 symmetry) — 2Xnp
+(2 & 4 symmetry) + (1 <> 2,3 > 4 symmetry) (4.4.24)

We now consider the symmetries of the other virtual term, that of the subprocess ¢gggg.
The tree level process can be written as two terms, 7(3,4) and 7 which describe all possible
terms when combined with their respective symmetry factors. The one loop factor is identical
to the tree level term such that the ordered gluon term has an obvious symmetry under
interchange of the gluons whereas the photon-like term has no such symmetry. Also a factor

1/2 arises due to the identical nature of the gluons. Therefore we find

7(3,4) + (3 < 4 symmetry) — 2Xnp/2=ng
T — np/2 (4.4.25)

Extending this to the 1-loop correction gives

Li(3,4) + (3 > 4 symmetry) — 2xnp/2=np
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The extra unresolved contributions to the NLO calculation also contain symmetries with
which we can use to multiply a single term by a symmetry factor to account for all possible
terms. The simplest case is that of the subprocess ggggg where we have a single quark pair
in the matrix element and a 1/3! factor due to the identical nature of the three gluons. For
the leading order colour term there are six symmetric terms under the permutation of the
ordered gluons but there is also the identical particle factor of 1/3!. For the sub-leading
colour term with only one colour detached gluon there are two symmetric terms under the
permutation of the ordered gluons and also three symmetric terms due to the indistinguish
nature of the colour detached gluon. This again gives 6 terms. Finally we have the most
subleading colour term where all the gluons are colour detached. Here the single term already
includes all the permutations and thus we only need consider the identical particle factor.

More concisely this gives

ISM(QIQ 1,2,3; Q_)Vul2 — 6xnp/3l=np
‘S[;(Qla 1, 2>§) @—)V”P — 6Xx TLF/?)' =npg
18.(Q1;1,2,3;Q)VHP = np/3l=np/6 (4.4.27)

Finally we consider the subprocess Z/y* — qGQRQg. The symmetry factors associated
with this process follow the same rules as for the tree level process without the gluon, with
the same division of terms into those that are relevant for all flavoured pairs and those that

are only relevant for non-identical flavoured quark pairs. Thus we find

A2 (Q1;1; Q4] Qs; Qo) 2 x n%/2 = n
|A21Q2(Q Q41Q3;1;Q,)|?
1BZ19(Q1; 1; Q2| Qs; Q) ?
(
(1

)
)
)
B219(Q1; Q:]Q3; 1; Q) *
)
)

2 x nk/2 = nk

2 x n%/2 = nk
2xnk/2 =n%

A9192(Q1;1; Q4 Qs; Qz) + AT 9 (Q1; Qa|Qs; 1, Qo) 4 x n%/2 = 2n}

N

4X77,F/4=’n,p

Re(A2%(Qy; 1; Qa|Qs; Qo) (BH ¥ (Q1; 1; Qe Qs Q2))'
Re(A QIQQ(Q1§1§Q4IQ3;Q2)+AQ1Q2(Q1§Q4|Q3; Qs)) %
)

(AZ192(Q1;1; Q2| Q3; Qa) + AG19(Q1; Q2| Qs; 15 Q) f 16 x np/4 = 4np

(4.4.28)

1
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where the factor two on the first four terms is due to the (1 + 3,2 ¢ 4) symmetry. The
factor in the fifth term is due to the symmetric nature nature of 7 (which contributes a factor
2) and the (1 > 3,2 <> 4) symmetry. These first five factors are all due to non-identical
and identical quark pair contributions together. The sixth and seventh terms now introduce
all the symmetries possible for identical quark pairs only i.e.(1 < 3,2 <> 4), (2 +> 4) and
(1 <> 3). All four of these make up the factor in the sixth term whereas in the seventh term

a factor 4 comes from the symmetries and another factor 4 is due to the factor 2 symmetry

from ea’Ch 7-' term in the 7;(Qla @7 Q37 @)T(Qla @1 Q37 @)T term.

4.5 Using hybrid subtraction for the NLO calculation
of ete™ — 4 jets

Now we are in a position to evaluate the relevant antennae functions necessary for the
numerical NLO calculation of ete™ — 4 jets and see how these can be implemented alongside
the terms produced by the slicing technique after the removal of the singular regions of phase
space. To begin with we shall consider the dominant leading colour contribution and then
extend this to produce the full colour result. As we have seen before, the hybrid subtraction
technique will be bounded by theoretical cut-offs which we call § for the phase space slicing
and both § and A for the subtraction. All dependence on § will cancel exactly and we
can justify driving the cut-off, § small such that the approximations made by the slicing
technique are valid whilst not producing large logarithms. The logarithms will now be of the

form log(A) and thus we keep this cut-off large to keep the numerical cancellation of these

logarithms stable.

Before we begin with the NLO contribution, we consider the LO form. This will multiply
both the divergent factors from the virtual and extra parton contributions later. For leading

colour, this is given by

doL© 2m)® [N? =1\ /a,N\?2 —
. & ( ) ( 2 ) |SM(Q1;G1,G2;Q2)V#|2dPS4@4 (4.5.29)

oL s N2

where only the final state gggg contributes at leading order in colour. Here ©, is the phase

space cuts defining the physical quantity e.g. D parameter.
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For the slicing contribution we consider the extra unresolved parton. Its squared matrix

element is given in a very similar form as the above equation.

dos  (2m)7 (N2 =1\ [a;N\?® _
i (%) 1Su01.91,92 95TV dP S50, (4.5.30)

We write the labels for the quarks and gluons differently to demonstrate how the three parton
antennae collapse to form two hard partons later. We also note that for any infra-red safe
observable in the four resolved parton limit ©4 = ©5. At this level of colour we note that all
the triple and quartic gluon vertices are present, so that the three available antennae consist
of the partons, (g1, 91, 92), (g1, g2, 93) and (ga, g3, Tz) Where g; is unresolved in the first, g» in
the second and g; in the third. The invariant masses of the unresolved partons run over the

range 0 < min(8q,g,, Sgig,) < 0 for the first antenna and so on.

The slicing term (at leading order) is simply a divergent factor multiplied by the tree
level contributions (with different phase space mappings relating them). The general form
of this factor for final states qg + ng (where n is the number of resolved gluons) is given in

[36]. For our case (n = 2) we find the divergent factor is given by

R(Q1;G1,G2;Qs) = ( ) ( [ (12 (%)E_log%?))
() Ee

(5?) Q?b()ml- €) (4? ) (4:5:31)

By summing over the colour connected pairs 7, j we retrieve all the divergent terms. Note

that some terms are common to two antennae, e.g the poles and logarithms containing sg, g,

are found in both the first and second antennae.

Now we consider the subtraction terms that need to be added and subtracted from the
two divergent terms. We have already seen that at leading colour there exist three separate

antennae which leads to three separate subtraction terms, each with its own phase space
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mapping from three partons to two using Equation 3.3.10. For instance in the first antenna,
a=gq,b=gy,u=q, giving A = @, and B = G;. Kinematical cuts to model jet variables,

©4 are made after this mapping. We find for the 5 parton subtraction term

d sub 9 7 N2 -1 3
05 — ( 71') < ) <a3N> dPS5@4
0 s N 2T

+ (Aqlg1gz|5u(Q1§G1a92§q_2)vﬂ|2
A9192y3 l‘su(ql; G1, Ga; @) Vﬂlz
gyl Sl 91, C; Q) VHP?) (4.5.32)

and for the 4 parton subtraction term we have

sub
doj

o == (FQ1G1 + FGng + FGQE)dO'i‘O (4533)

where the antennae functions Fj; are those of Equations 3.3.24, 3.3.27 and 3.3.30 and where
the four parton momenta used are the antenna momenta after mapping i.e. Qi and G, for
the first antenna and the remaining resolved parton’s original momenta i.e g3 — Ga and

7z — Q- for the first antenna.

Finally we need to consider the virtual term necessary for this leading colour calculation.
Again, we need only consider the sub-process ete” — qggq. This gives a term that is
proportional to tree level (with a divergent multiplying factor) and a finite correction. Using

Equation 4.2.5 and a re-written form for £4(4, j) [66] such that

A T2(1 — e\l -
L4(G1,G3) = La(G1,G2) + (1]:‘(16?_2(i)+E)ISM(Ql;Gl,GQ;QQ)V”P

y ( 1 ( A p? ) 1 ( 4 p? )E 1 ( Ay )e 3 (zmﬁ)E)
e2 \ =506 e? \ —s¢,6, €2\ —5¢,5, 2e \ —Q?

(4.5.34)

we can write the virtual, leading colour contribution as

107



virt
doy

. = V(Qn; G1, Go; Q3)doy® + dof™te (4.5.35)
where
nite 27T 5 N2 hand 1 a.SN 3 ~
dofnite — ( S) ( B ) ( e ) LA(Gh,G2)04dPS, (4.5.36)

and the divergent factor is written as

V(Q1;G1, G2;Q2) =

<asN> 1 dmp? 6_1 drp® \© 1 [ 4mp? \° 3 [4mpP\°
2 g? —80:6, 82 —8G1G, g2 —Ssz 2e —Q2

(4.5.37)

Now we can compile all of the separate pieces and thus form the analytic terms that will need
to be integrated over in the Monte Carlo routine. These will be separately calculated using
a four parton momentum generation and later combined with the numerical routines that
integrate over five parton phase space. Collecting the slicing term, the analytic subtraction
functions and the virtual terms and removing all ultra-violet divergences with the one loop

renormalisation of ¢, such that

(5) - (a—z(::i)> (1 - Z—O (a;(::?)) F((fw_)l)) (4.5.38)

we find the final form of the analytic function is given by

doY'° = K (Qy; Gy, Go; Qq)dal® + dofimite (4.5.39)
4
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where the tree level and finite contributions are the same as in Equations 4.5.29 and 4.5.36
with the replacement o, — «,(u?). The factor multiplying tree level is now finite and is

given in terms of

_ SN [197 72 A A
K(Q1;G1,G2;Q2) = (__a ) )[1_+£+FQAIG1( >+Fc?1c2< )
8 2 50 G

2m 1Gy 5G1G
A 10 S 11 s 10 Sa. 00
A G G1G» G202
o rm (o) - T (g2) - e () - s ()
22
a,(p?) U_Q
T (TW >2bolog ( 7 (4.5.40)

We note that all dependence on the slicing phase space cut-off § has been removed and now
that the poles have been analytically cancelled, the four dimensional limit can be taken,
removing all terms of order ¢ or higher. The analytic term still depends on the remaining
phase space cut-off A. However when this is combined with the numerical routine calculating
the five parton contribution, this dependence will be removed. By setting A large, the

numerical stabilty of this cancellation improves and the final answer becomes independent

of both phase space cut-offs.

Now we have seen how we can apply hybrid subtraction to the leading colour part of the
NLO ete~ — 4jets calculation, we shall quickly review the remaining terms of a full colour
calculation. The techniques used for the leading colour calculation are exactly those which
we shall use for the rest of the calculation and thus we shall detail a set of all (colour) order
K factors which will multiply various terms of the tree level. Firstly, we must identify the
relevant antennae so as to be able to select the necessary antennae functions and factors.
This will also make clear which partons become unresolvable at which order in colour, making

the four parton contribution less confusing.

The simplest way to collate all the information is to consider the tree level result. We

write it as

1 2
do}° = ot - zdo}® + Sodo™ + Sdof® (4:5.41)
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where each of the four terms, do©, is the matrix element multiplied by the four parton

phase space factor. Decomposing the matrix elements into colour subamplitudes gives

doF©®  (2m)® (N? -1\ [a,N\?
= ( i )( 27T> M;dPS, (4.5.42)

where oy is a normalisation factor given by the leading order result for the process v* — ¢g

and the colourless amplitudes are given by

M, = |8“(Q1;G1,G2;@)V“l2

M, = IS;L(Q1§G~1>G~2;@)V”|2

M, = T(1,21,2)

Mg = T(1,2;1,4) (4.5.43)

The first term we have seen before and recognise as the leading colour contribution to the
subprocess qggg. The second term is the sub leading contribution to the same process.
The third and fourth terms make up the leading and sub-leading pieces of the four quark

subprocess. Each antenna factor A;;; will multiply one of these four tree level colourless

subamplitudes.

The form of each antenna can now be simply collected together such that the 5 parton

subtraction contribution is given by

AH ’I’LF.AHI 2AIV
2N2+ N + N2 )

(4.5.44)

sub 7 2 3
dot (27) (N 1) <asN> PS04 A —
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.AI

Agorg218u(Q15 G, g2, @)V* P + Agrgags|Sulan; G, G @)V*?

Ayzga'q_zlsu(QU g1, G2; @)V“F

ng . .
N (A‘“q_‘*qal‘su(Qﬁ Gr, 92 @)V + Agigag|Sulq; G1, Ga; @) VH?

Aqamlsu(fh; 91, G; @)V”P + Ayt‘ﬁqslsu(‘h; G, Go; Q_2)V”,2 )

1 _
- ﬁAqlgsaﬂSp(Ql;gl,gz;QQ)V“lz

RS

_*_.

(4.5.45)

The first three terms for A? come from the three antennae making up the leading colour
contribution to ggggg, namely g1 — g1 — g2, g1—g2—gs and go— g3 —Tz. We see for each that the
mapping takes the three antenna partons and maps them to two which are entered into the
colourless subamplitudes. (These are expressed as upper case letters whereas those partons
not in the antenna have their original momenta in lower case.) The next four terms in Al are
due to the collinear limit of a quark and antiquark forming a gluon. When one of the colour
lines pinches together, we are left with the four parton subamplitudes |S,(Q1; G1, G2; Q) VH?
or 18,(Q1; G1, Ga; Q2)V*]? depending on whether the remaining colour line runs through the
virtual gluon or not. For A’ we consider the former case. The only antennae that can form
must have the partons g; and @z in them. These can be colour connected either to the gluon
(on either side), the remaining quark or the remining antiquark. Finally, the sub-leading
colour term for the three gluon process contributes the last term of Al but only when the
unresolved gluon is the colour detached one, leaving the other two gluons ordered. With

unresolved colour detached gluons we can only form antennae ¢ — gs — Gz

A419192|Su(Q1§ él: gs; @)V”z + A419192|SM(Q1; g3, é1§ @)V”‘Z
Agr0:51Su(@; G, G Q) VAI* + Ay, |Su(ans s, Gu; Q) VP
2n o o
—]VF (AqlngﬂSM(Ql; g1, Ga; qz)V“IQ + Agsgazz|Su(ar; 91, G2; Qz)Vulz)

1 1 o D

3 (1 * JT/5> (A‘hg@"su(Ql;gz,gz;Qz)V"I?‘ + Azl Su(Qn; G, G Q) VM
+ Alhgsq_zl‘su(Ql;g~1:g~23@)vu|2>

AH

+ o+

+

(4.5.46)
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Here the first four terms of Al are formed from the three gluon process. They are from the
éingle colour detacted gluon digrams, but here, as opposed to .A”, one of the ordered gluons is
unresolved. This gives antennae of the form ¢; — g, —g» and g1 — g2 —qz, but now the remaining
gluons (after mapping) are colour detached and we must write out all their permutations
explicitly. Therefore we can have both the |S,(Q1; Gh, §s; @) V*[? colourless subamplitude
and the |S,(Q1; gs, G1;2)V*#|? colourless subamplitude multiplying the ¢; — g1 — g2 antenna
factor. Simialrly for the g, — g2 — gz antenna. The next two terms are again from the 4
quark process as described for Al but now the external gluon attachs to a colour line that
runs through the primary quark line only, thus making the collinear quark/antiquark pair
(and therefore itself) colour detached. Here the antenna factors consist solely of quarks and
antiquarks. The final three terms of A’f are due to the antennae of the 3 gluon process
where all three gluons are colour detached. Here all the antennae are of the form ¢; — g; — G-
It is not necessary to swap the order of the gluons in the colourless subamplitudes here as

the mapping leaves them unaffected and therefore all permutations are already accounted

for.

1

- 2Aqlgqs - 2Aq—29t1_4 + Aqlgq—z + Aqsqu))T(l, 25 1, 2)

1
AIV = (AQI.‘]‘B + Aq_zqux - ﬁ(Aqlgq_z + Aqsgq—4 + Aqlgq_4 + Aqsgiﬁ
Agigas — Amga)) T (1,2;1,4) (4.5.47)

The remaining terms for A7f and AV are formed from the remaining four quark-one
gluon terms. The presence of antennae of the form Ay, o4, and Agg; is due to the interference
between antennae such as Ay, gz7 and Ag,gz;- They have the same form as the quark-antiquark
antennae. AT gives the functions for identical and non-identical quark pairs whereas AV

is the antenna function for the identical quark pairs only.

Following the same technique as above for the four partonic contribution we write the

slicing terms, the virtual terms and the subtraction terms all together in terms of K factors

and logarithms that multiply the four tree level terms.
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do© = [’C(Ql;Gl,Gz;@;) - ‘]%]C(QH@)] do;

- #[K(Ql;a;@%(@l;azs@—(””1‘) (@@ o

+ [ (Ql,Q4)+’C(Q3,Q2)‘_10g< 2?4> +31
- m@’c(@l;@) +2K(Qs; Q2) — 2K(Q1; Qs) — 2K(Q2; Qs) + K(Q1; Q2)
+ (Q3,Q4)+310g< %2@4))-}-_ ( 910+§log (362632@4>>] dof!!

- [’C(Q1; Q3) + K(Q2; Q4) — 3 10g (8Q3Q4>

e
- %(K(Ql;@)+’C(Qs;@)+/€(Q1;Q4) Q5 T2) — K(@1Q9)

- (Q27Q4) + 3log ( 25?4)) + = ( 910 - §1 0g ( 2?))] doﬁv + daﬁ’“te
(4.5.48)

where dofiit® now constitutes all the finite terms from the virtual contribution e.g. La, L B, Le
with relevant colour factors. The extra logarithms come from the virtual terms and are due
to single poles of the form %(:c)e being expanded in terms of €. The factors %1 - 13—7\,‘3 are due
to the self-energy corrections to the 4 quark virtual terms. The form of the K factors is given
by taking the relevant slicing factor (n = 1 or n = 0) and combining it with the analytic

antennae functions F and the one loop coupling constant renormalisation such that.

_ JNY [130 72 A A
00 - (42 (3518 () ()
- e (") - s (0] + (%522 s ()
a0 - (2] 225 () -D(E)
KQ:Q;) = K(Q:Q;) =K(QiQ;) (4.5.49)
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4.6 Summary

In this chapter we have outlined all the contributions to the NLO calculation of the process
ete™ — 4 jets at all orders in colour. We have shown how the virtual diagrams for the final
states ¢ggg and ¢gQQ can be grouped together at similiar orders of colour such that the
entire expression can be written in terms of five and nine independent functions respectively.

We have also seen the same process repeated for the extra, unresolved partonic contributions
q9999 and ggQQg.

Finally we have derived the analytic functions (for both a leading colour calculation and
an all orders in colour calculation) in which the poles have been cancelled. These are to be

integrated over four parton phase space and combined with the numerically calculated five

partonic contribution which has been rendered finite by use of the subtraction terms.

In the next chapter we shall outline the results from these integrations which were cal-
culated using a Monte Carlo program written specifically for this approach called EERAD2

which calculates a number of 4 jet-like event shape variables .
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Chapter 5

Data results for NLO 4 jet observables

5.1 Introduction

We now turn to the comparision of the theoretical calculations outlined in the previous
chapters with experimental findings. There are many 4 jet observables that can be measured
at modern particle detectors. All of these give some indication of the shape of the event,
for instance how spherical the event is or how collimated the jets are. The topology of an
event also can be used to indirectly measure other theoretical parameters such as a; by
comparing theoretical and experimental distributions for each observable. 4 jet observables
are also useful for testing the Casimir factors of QCD and testing for the presence of light
gluinos. Electron-positron annihilations are particularly useful as the results are clean and

free from the uncertainty of parton distribution functions within hadrons which are necessary

for proton-antiproton or electron-proton collisions.

Definitions of some 4 jet observables are given in Section 5.2. In Section 5.3 we com-
pare the results of EERAD2 with two other NLO 4 jet programs, namely MENLO PARC[55] and
DEBRECEN[54] for the 4 jet rate, the D parameter and Thrust minor, Tpiner- The quanti-
tative differences between these programs shall be briefly discussed. Section 5.4 presents
the theoretical predictions for previously uncalculated 4 jet variables such as the narrow jet
broadening, the light hemisphere mass and the jet transition variables for the Geneva and
JADE algorithms. All of these are compared with experimental results in Section 5.5 gath-

ered by the DELPHI collaboration and the variation with renormalisation scale is studied,

at the physical and FAC scales.
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5.2 Four jet event shapes

The sorts of variables we are interested in are four jet-like, since they can only be non-zero
for final states in which there are four or more particles. They usually rely on the hadronic
final state having some volume and, when the event is coplanar, some observables like the

D parameter are identically zero.

5.2.1 Definition of Variables

In the following definitions, the sums run over all N final state particles, k = 1,..., N. py is

the three-momentum of particle k in the c.m. frame, with components pi, i = 1,2, 3.

e C and D parameters [49]. We first construct the linear momentum tensor,

Z p&pk
_ =k TG (5_2'1)

B >k IP-I;| ’

with eigenvalues ); for = 1,2, 3. The normalisation is such that >, A; = 1. For planar

CE

events one of the eigenvalues is zero. The C' and D parameters are defined by,

C == 3(/\1/\2+)\2/\3+/\3/\1)
D = 2T\ (5.2.2)

D can only be non-zero for non-planar four (or more) parton events, while three parton

events may produce 0 < C < 0.75. Ounly the region C > 0.75 should be considered

four jet-like.

e Thrust minor, Tpiser [50]. We first define the thrust, major and minor axes (71, 7o, Tis)

by,



where 75 is constrained by 7; - 7is = 0. and 73 = 7i; X 7is.

e Light hemisphere mass, M?/s. The event is separated into two hemispheres H;, Ho
divided by the plane normal to the thrust axis 7, as defined above. Particles that
satisfy p; - 11 > 0 are assigned to hemisphere Hy, while all other particles are in Ho.

Then,

2
M2 1
—“7¢£(Zm)- (5.2.4)

Note that this is the common modification of the original definition suggested by

Clavelli [51].

e Narrow jet broadening, Bu, [52]. Using the same division into hemispheres as above,

we define,

Buin = mi
min = 23 | Dkl

e Jet transition variable y5. The y; variable denotes the value of the jet resolution
parameter 7., at which an event changes from a four jet event to a three jet event
where the jets are defined according to algorithm S. We consider three algorithms, the
JADE algorithm (S = J) [18], the Durham algorithm (S = D) [21] and the Geneva
algorithm (S = G) [22]. The jet-finding measures for each of these three algorithms
can be found in Equations 2.2.3, 2.2.4 and 2.2.5. Recall that when particles combine,
there is some ambiguity as to how to add the energies and momenta (see Section 2.2.2).

In all three schemes, we use the E scheme i.e. we merely add four momenta,

Pl = i + 1. (5.2.6)

Other choices such as the E0 or P schemes where the cluster is made massless by

rescaling the momentum or energy give similar results.

Of these variables, the D, C, Tminor and yP distributions have been studied in [54].
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5.2.2 Structure of Perturbative Prediction

The differential cross-section at centre-of-mass energy +/s for one of these four-jet variables
(O4) at next-to-leading order is described by two coeflicients, Bp, and Cp, which represent

the leading and next-to-leading order perturbative contributions,

Lo, _ <O‘3(’“‘)>2 Bo, + (M>3 (mo log (”“2) Bo, + 004) . (5.2.7)

agg d04 2m 27 ?

Both Bp, and Cp, are scale independent and do not depend on the beam energy. However,
the running coupling a; is calculated at renormalization scale 4 which is commonly chosen
to be the physical scale, u = /5. Compared to the leading order prediction, which decays
monotonically with increasing i, the next-to-leading order term reduces the scale dependence
somewhat through the first coefficient of the beta-function, Sy = (33—2Ny) / 6. For five active
quark flavours, £y = 3.833.

5.2.3 Scale choice, theoretical uncertainty and resummations

As mentioned above, for hadronic observables in electron-positron annihilation it is common
to choose the renormalisation scale to be the physical scale u = 4/s. This choice is motivated
by naturalness arguments and the fact that choosing a scale far from /s introduces large
logarithms of the form log(i/+/3) in eq. (5.2.7). However, as we have seen in section 1.4,
there are a number of choices of scale that attempt to model the rest of the perturbative
series such as the FAC scale[13] and the PMS scale[12]. While even higher order corrections
remain uncalculated, varying the renormalisation scale can only give a crude indication of the
theoretical uncertainty. Therefore, in an attempt to make a fair estimate of the theoretical

uncertainty on the NLO prediction we will show both the physical scale and FAC scale

predictions.

Four jet event shapes typically depend on the event having some volume and not lying
entirely in a plane. Typical hadronic events contain more than 20 hadrons and it is extremely
unlikely that the value of any event shape is precisely zero for any experimental event.

However, in a LO or NLO fixed order parton calculation, there only four or five partons
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present in the final state and, when one or more are soft, the calculated O4 may approach
zero. In such circumstances, soft gluon singularities cause the fixed order prediction to
become wildly unstable and grow logarithmically. In the small Oy limits, the perturbative

coefficients have the following form,

BO4 — A32L3 + A22L2 + AlzL + Aog,
Co, — AssL®+ ApL® + AssL® + ApsL? + AL + Aos, (5.2.8)

where L = log(1/0,), Anm are undetermined coefficients and thus whenever L is sufficiently
large, resummation effects will become important.! For the 4 jet rate the calculation of these
coefficients has been performed and resummed in [57]. In comparing with data, we choose to
make a cut on the size of O4 which is typically in the range 0.001-0.01, since for such small
values of Q4 we do not trust the NLO prediction. Equating this with the DELPHI data, the

cut will usually be the lower edge of the second data bin.

5.3 Comparison with existing results

5.3.1 Four jet rates

As a check of the numerical results, Table 5.1 shows the predictions for each of the three
Monte Carlo programs of the four jet rate for three jet clustering algorithms; the J ade-E0[18],
Durham-E [21], and Geneva-E [22] algorithms. We show results with a;(Mz) = 0.118 for
three values of the jet resolution parameter y.,:. There is good agreement with the results

from the other two calculations.

5.3.2 Shape variables

As mentioned earlier, Nagy and Trécsanyi [54] have computed Cp with their Monte Carlo

DEBRECEN. In Table 5.2 we show the leading and next-to-leading order coefficients Bpand Cp

1Whether the coefficients exponentiate and can be resummed will depend on the observable.
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| Algorithm | yey | MENLO PARC | DEBRECEN | EERAD2 |

0.005 | (1.04 +0.02) - 10~ | (1.05+0.01) - 1071 | (1.05 £ 0.01) - 10 ¢

Durham | 0.01 | (4.70 £0.06) - 1072 | (4.66 +0.02) - 1072 | (4.65 £ 0.02) - 102
0.03 | (6.82£0.08)-1073 | (6.87+0.04) - 1073 | (6.86 £ 0.03) - 102

0.02 | (2.56 £0.06) - 107! | (2.63 £0.06) - 10~ | (2.61 = 0.05) - 107!

Geneva | 0.03 | (1.71£0.03)-107! | (1.75 £ 0.03) - 10~* | (1.72 4 0.03) - 10~
0.05 | (8.58 +0.15) - 1072 | (8.37+0.12) - 1072 | (8.50 & 0.06) - 102

0.005 | (3.79£0.08) - 107 | (3.88 £0.07) - 107! | (3.87 £0.03) - 107!

JADE-EO | 0.01 | (1.88+0.03) 107! | (1.9240.01)-107! | (1.93 £0.01) - 1071
0.03 | (3.46 £0.05) - 1072 | (3.37 £0.01) - 1072 | (3.35 £ 0.01) - 1072

Table 5.1: The four-jet fraction as calculated by MENLO PARC, DEBRECEN and EERAD2, for the
different jet recombination schemes and varying y.,.. The rate is normalized by the O(a;)
total hadronic cross-section, onaq = 0 (1 + /7).

calculated by EERAD2, together with the DEBRECEN result. The two calculations are clearly
consistent with one another, with the quoted errors overlapping in almost all cases. The
errors from EERAD2 are of the order of 2% in each bin, except in the tail of the distribution
where the errors rise as high as 10%. The infrared enhancement of the distribution described
in section 5.2.3 means that the Monte Carlo procedure favours the phase space region cor-
responding to small values of the D parameter, so that the large D tail suffers larger errors.
In fact Cp drops by four orders of magnitude over the kinematic range of the observable
so it is necessary to use importance sampling with respect to the observable distribution to
ensure sufficient Monte Carlo points are produced in the high D region. This is also true for

all of the other shape variables.

In addition, Nagy and Trécsényi have also presented results for the next-to-leading order
coefficents for thrust minor T, and the jet transition variable in the Durham scheme
yP [54]. Although we do not present a detailed comparison here, we note that the agreement
is qualitatively the same as discussed for the D parameter above. We find that the distri-
butions extend beyond the range of coefficents presented in [54], with non-zero coefficients

for bins in the ranges 0.5 < Tiinor < 0.58 and 0.125 < yP < 0.17.
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| D | Bp Cp |  DEBRECEN |
0.0200 [ (3.79£0.01)-10* | (1.47 +0.00) - 10* | (1.08 £ 0.06) - 10*
0.0600 | (2.324£0.01)-10% | (1.25+0.01)-10* | (1.24 4+ 0.02) - 10*
0.1000 | (1.45+0.01)-10% | (8.69 +0.04) - 10° | (8.59 +0.12) - 10°
0.1400 | (1.04£0.01)-10% | (6.39 +0.03) - 10° | (6.24 %+ 0.12) - 10°
0.1800 | (7.68£0.04) - 10" | (4.89+0.03) - 10° | (4.99 £ 0.11) - 10°
0.2200 | (5.8740.03) - 10" | (3.88 £ 0.03) - 10 | (3.85 + 0.06) - 10°
0.2600 | (4.66 +0.07) - 10" | (3.04£0.03) - 10° | (2.98 £ 0.05) - 10°
0.3000 | (3.7540.07) - 10" | (2.51£0.04) - 10* | (2.52 £0.05) - 10°
0.3400 | (3.07£0.05)-10" | (2.02£0.03)-10% | (1.94 +0.05) - 10°
0.3800 | (2.4140.03) 10" | (1.61£0.03)-10% | (1.59 £ 0.04) - 10°
0.4200 | (1.974£0.04) -10' | (1.37£0.02) - 10° | (1.37 £0.03) - 10°
0.4600 | (1.56 +0.03) - 10" | (1.09£0.01) - 10* | (1.06 £ 0.03) - 10°
0.5000 | (1.3240.01)-10' | (8.97+=0.14)-10% | (8.72+0.19) - 10°
0.5400 | (1.05+0.02)-10' | (7.12£0.15) - 10% | (7.11 £ 0.16) - 10°
0.5800 | (8.46£0.16) -10° | (5.79 4 0.12) - 10* | (5.68 £0.14) - 10?
0.6200 | (6.60+ 0.16) - 10° | (4.55 % 0.09) - 10% | (4.46 £0.21) - 10°
0.6600 | (5.32+0.13) -10° | (3.58 +0.07) - 10* | (3.52+0.11) - 10?
0.7000 | (3.99 £ 0.09) - 10° | (2.80 £ 0.09) - 10* | (2.74 £ 0.09) - 10°
0.7400 | (3.06+0.05) - 10° | (2.05 +0.08) - 10? | (2.08 +0.08) - 10?
0.7800 | (2.26£0.04) - 10° | (1.58 4 0.04) - 10* | (1.54 £ 0.06) - 10°
0.8200 | (1.54 £0.04) -10° | (1.05£0.03) - 10? | (1.03 £ 0.04) - 10?
0.8600 | (9.72 £0.21) - 107" | (6.72+0.29) - 10" | (6.66 = 0.31) - 10"
0.9000 | (5.63 £ 0.16) - 10! | (3.85 £ 0.17) - 10 | (3.89 £0.20) - 10"
0.9400 | (2.62 +0.07) - 107! | (1.71£0.10) - 10" | (1.71£0.19) - 10!
0.9800 | (5.34 +0.11) - 10-2 | (3.15 +0.27) - 10° | (2.60 + 1.30) - 10°

Table 5.2: The leading and next-to-leading order coefficients for the D parameter. The NLO
coefficient predicted by Nagy and Trécsanyi Monte Carlo DEBRECEN [54] is also shown.

5.4 New results

In this section we extend the analysis of 4 jet-like event shape observables already found
in the literature by reporting the leading and next-to-leading order coefficients for the light
hemisphere mass, the narrow hemisphere broadening and the jet transition variable in both

the JADE and Geneva schemes, 37 and yS.
the two terms by inspecting the K factor (at the physical scale) for each variable across the

allowed kinematic range of the distributions.

For all the variables presented in this section, we must be careful to differentiate between
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the true behaviour of the distribution as the observable tends to zero and the behaviour in
fixed order perturbation theory. Each of the observables should have a smooth behaviour
as O4 — 0 rather than the divergent behaviour exhibited by the coeflicients according to
equation 5.2.8. To recover a smooth result in this limit it is necessary to resum powers of
log(1/0,) where possible, a procedure which has been performed already for many 3 jet-like
variables [58, 52]

5.4.1 Light Hemisphere Mass

| Mi/s | Burys | Cay/s |
0.0150 | (3.23 £0.08) - 107 | (14L£0.01) - 10°
0.0250 | (1.8840.02)- 102 | (8.85 0.10) - 107
0.0350 | (1.25+0.02)-10% | (5.97 % 0.11) - 10°
0.0450 | (8.52 4 0.10)- 10 | (4.14 % 0.08) - 10°
0.0550 | (5.97 +0.06) - 10 | (3.04 % 0.04) - 10°
0.0650 | (4.20 % 0.09)- 10 | (2.15 % 0.05) - 10°
0.0750 | (3.0240.07)-10" | (158 0.05) - 10°
0.0850 | (2.13+0.03)-10' | (1.11+0.02) - 10°
0.0950 | (1.39+0.04)- 10" | (7.66 4 0.23) - 102
01050 | (8.75+0.20)-10° | (4.97+0.17) - 102
01150 | (5.18+0.13)-10° | (3.27 % 0.07) - 107
01250 | (2.59+0.12)-10° | (1.66 % 0.07) - 107
0.1350 | (8.97 +0.35)- 101 | (6.61 % 0.41) - 10*
0.1450 | (2.49 +0.13) - 10~1 | (1.79+0.09) - 10!
0.1550 | (5.00 +0.27) - 1072 | (3.75 % 0.26) - 10°
0.1650 | (1.46 + 0.21) - 10~* | (2.30 £ 0.37) - 1072

Table 5.3: The leading and next-to-leading order coefficients for the light jet mass M2/s.

As defined before, the light hemisphere mass is the smaller invariant mass of the two
hemispheres formed by separating the event by a plane normal to the thrust axis. The NLO
coefficient C'pz /5 evaluted at the physical scale u = /s together with the LO term is given
in Table 5.3. The errors are estimates from the numerical program and are typically 2-3%
for each entry. As with the previously known results on four jet event shapes, the NLO
terms are significantly larger than the LO term. Here, we see that Chp/s is typically 50

times larger than B)s/, so that even when the additional factor of a,/27 is restored, the
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NLO correction is large. This is illustrated by considering the K factor defined by,

as(\/§)> Co, (5.4.1)

2T BO4 ’

It is found that the K factor increases with the value of the observable, rising from 1.8 at

Ko =1+

small M2/s up to 2.4. This behaviour is similar to that observed for other four jet event

shapes [54].

5.4.2 Narrow Hemisphere Broadening

Narrow hemisphere broadening, By, is defined in a similiar manner to the light hemisphere
mass. The event is again divided into two hemispheres by the plane normal to the thrust
axis, but now the momenta transverse to the thrust axis is summed (normalised by the sum
of absolute momenta) in each hemisphere. The narrow hemisphere is that with the least
transverse momentum with respect to the thrust axis. Numerical results for this variable
as calculated by EERAD2 can be found in Table 5.4. As with the light hemisphere mass, the

NLO contribution is significant yielding a K factor of roughly 1.7 over most of the kinematic

range of the variable

5.4.3 Jet transition variables

As previously stated the jet transition variable y; describes the scale where two jets merge,
thereby changing a four jet event into a three jet event. This is essentially the same as the
derivative of the four jet rate with respect to the jet resolution parameter yeu. However,
the number of jets in an event is dependent on the jet finding algorithm used to define the
‘closeness’ of particles which is compared with ycy. In [54] the transition rate for the Durham
jet finding algorithm [21] is given and we have checked that our results are consistent with
these predictions. Here, we provide results for two other jet algorithms, the JADE and
Geneva [22] schemes for which the jet finding measures are given in Equations 2.2.3, 2.2.4
and 2.2.5. We note that the Geneva algorithm enjoys the same benefits as the Durham
algorithm in that it is also supposed to exponentiate, enabling infrared logarithms to be
safely resummed. It also ensures that softly radiated gluons are clustered with hard partons
unless the angle of separation between two soft gluons is much smaller than the angular

separation between them and a hard parton.
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| Bmin 1 BBm;n ' Cijn |
0.0150 | (1.19 = 0.01)- 10 | (3.41 % 0.07) - 10*
0.0250 | (7.04 % 0.06) - 10% | (2.56 + 0.02) - 10*
0.0350 | (4.80 £ 0.02) - 102 | (1.92 4 0.04) - 10*
0.0450 | (3.3940.02) - 102 | (1.41 £ 0.02) - 10*
0.0550 | (2.49 4 0.02) - 10? | (1.07 £0.02) - 10*
0.0650 | (1.89 4 0.02)- 102 | (8.04 +0.12) - 10°
0.0750 | (1.43£0.02)-10% | (6.29 & 0.12) - 10?
0.0850 | (1.08 4+ 0.01)-102 | (4.81 % 0.08) - 103
0.0950 | (8.19 & 0.04) - 10* | (3.65 £ 0.08) - 103
0.1050 | (6.2340.08)-10' | (2.77 £ 0.09) - 103
0.1150 | (4.69 +0.06) - 10" | (2.10 + 0.04) - 103
0.1250 | (3.37 £ 0.04) - 10 | (1.45 4 0.04) - 103
0.1350 | (2.36 & 0.04) - 10* | (1.09 £0.03) - 103
0.1450 | (1.64 +£0.03) - 101 | (7.07£0.25) - 102
0.1550 | (9.8240.12)-10° | (4.48 £0.15) - 102
0.1650 | (5.08 £0.12) - 10° | (2.18 £ 0.10) - 102
0.1750 | (1.7140.04)-10° | (7.53 4 0.33) - 10!
0.1850 | (4.32+£0.11) - 107* | (1.59 £ 0.12) - 10*
0.1950 | (5.47 +£0.11) - 1072 | (1.34 + 0.24) - 10°

Table 5.4: The leading and next-to-leading order coefficients for the narrow jet broadening
Bmin-

Our results for the two schemes are given in Tables 5.5 and 5.6. As can be seen from the
tables the NLO coefficients are again large. The K factor for the JADE scheme is roughly
1.8-1.9, but is slightly smaller for the Geneva algorithm, typically in the region 1.4-1.6.

5.5 Comparison with experimental data

Four jet event shape observables have been studied extensively by the four LEP experiments.
However, the most complete analysis of event shape variables has been carried out by the
DELPHI collaboration [56]. Here we compare their study of the event shape variables dis-
cussed in section 5.2 with the results from EERAD2. Distributions based on charged particles
alone as well as charged and neutral particles are presented. In this section, we wish to
examine whether or not these event shapes can be described by fixed order perturbation

theory. As discussed earlier, to avoid numerical instabilities in the infrared region where
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fixed order perturbation theory is no longer valid we impose a cut on the smallness of the

variable that is generally equal to the lower edge of the second bin. More precisely, that is,

D > 0.008,
Tminor > 0.02,
M3/s > 0.01,
Bpin > 0.01,

yP > 0.002,

y; > 0.002. (5.5.2)

The experimental distributions are normalised to the hadronic cross section (rather than

the Born cross section) and are also not weighted by the observable, but are rather,

1 do _ Qs (1) 2BO4 s (1) ’ s Bo, Co, — 2By,
Onad A0y _< 21 ) Oy T 2fo log 5 ] 0, + O . (5.5.3)

Throughout, we choose a;(Mz) = 0.118 which was consistent with the current world average
[60] at the time of writing the program. In each case, the theoretical predictions have been
evaluated using bins of the same size as in the experiment and therefore appear as histograms

in the plots. The data is corrected for detector effects, but not for hadronisation effects.

Figures. 5.1 and 5.2 show the comparison between the leading order and next-to-leading
order predictions evaluated at the physical scale u = /s = My for narrow jet broadening
and light hemisphere mass with the published DELPHI data [56]. We see that in both cases,
the LO prediction undershoots the data by a significant factor (about a factor of four), and
that including the NLO correction improves the situation but still gives a rate that is much
lower than the data. However, the NLO prediction still contains a large renormalisation
scale uncertainty. Usually, one varies the choice of scale about the physical scale by a factor
of two or so, but as discussed earlier, the FAC (or PMS) scale defined in Equation 1.4.36 are
attractive alternative choices in that the known ultraviolet logarithms are resummed [59)].
For both of these variables, the FAC scale is significantly less than the physical scale, for

example, for Buin , u AC 0.06+/s. This has the effect of increasing o, thereby increasing
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Figure 5.1: The leading order (dashed) and next-to-leading order (solid) predictions evalu-
ated at the physical scale p = /s = My for (a) 1/0haq - do/dBmin compared to the published
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale
which is very nearly the same as the PMS scale (see Equation. 1.4.36).

the NLO prediction and in both cases, we see much improved agreement at larger values
of the observable. At smaller values, and particularly in the region where the data turns
over the agreement is still poor. This, of course, is where the infrared logarithms are large
and need to be resummed. Furthermore, we also expect non-perturbative hadronisation
effects or power corrections to influence the perturbative shape of the distribution (61, 62].
These contributions (together with resummation of the infrared logarithms) have played an
important role in extracting useful information from analyses of three jet shape variables,

and are likely to be important in analysing four jet event shapes.

A similar comparison of the perturbative predictions for the jet transition rates with the
DELPHI measurements? is made in Figures 5.3 and 5.4. Once again, the LO distribution lies
well below the data. This time, the NLO prediction lies much closer to the data for most of
the available kinematic range. The FAC scale rate usually lies above the NLO prediction so

that the data lies within the range of uncertainty engendered by the renormalisation group.

2The DELPHI data gives the differential jet rate rather than the jet transition variable. Up to a small
(~ few %) correction from five (and more) jet events falling into a four jet configuration, the two quantities
coincide at fixed order.
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Figure 5.2: The leading order (dashed) and next-to-leading order (solid) predictions eval-
uated at the physical scale g = /s = My for (a) 1/0yaq - do/d(M7/s) compared to the
published DELPHI data [56] and (b) the difference between data and NLO theory (nor-
malised to NLO). The short-dashed line shows the next-to-leading order prediction using
the FAC scale which is very nearly the same as the PMS scale (see Equation 1.4.36).

For completeness, Figures 5.5 and 5.6 show the DELPHI data and perturbative predic-
tions for the D parameter and Tpinor Tepectively. As expected from the analysis of Nagy
and Trécsényi [54], the LO prediction for D is too low by a factor of about four, while at
the physical scale u = /s = Mz the NLO distribution is roughly twice as large but still lies
a factor of two below the data. However, for the FAC scale (which for the D parameter is
approximately 0.035./5) the prediction overshoots by 50% or so for D > 0.1 where the fixed

order prediction is least affected by large infrared logs.

The importance of resumming these logs is clearly shown in Figure 5.6 where the Tiinor
distribution is shown. For Thinor > 0.1 the data again lies between the next-to-leading order
predictions at the physical and FAC scales (which encompass an uncertainty of about a
factor three for Thpinor ~ 0.2). However, the turn-over at Tiinor = 0.1 cannot be modelled
without resumming the large logs which cause the perturbative prediction to grow rapidly.
The same is true at small values of the light hemisphere mass and narrow jet broadening

although there the effects are less pronounced because of the choice of bin sizes.
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Figure 5.3: The leading order (dashed) and next-to-leading order (solid) predictions evalu-
ated at the physical scale g = /s = Mz for (a) 1/onaq - do/dy] compared to the published
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale

(see Equation 1.4.36).
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Figure 5.4: The leading order (dashed) and next-to-leading order (solid) predictions evalu-

ated at the physical scale = /s = Mz for (a) 1/0naq - do/ dyP compared to the published
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale

(see Equation 1.4.36).

128



®  DELPHI®
3 A4 DELPHI 96 charged
3t s e o
- P FAC
9 I
8 z 2y
[°} ~ B
8 3 |/ withil]
3 Z FE 1 ! i ! I
L g [/ 1
8 1—:.' 1 * }
€ i {
Hoa
L { HE
» ®  DELPHI 96 [ K [ ]
10%E 4 DELPHI 86 charged ] 4 3 °
£ NLO [} 1
- Lo : 2__
E --------- NLOwith FACscaie -« 1 b TTETErTTSsssmsemSmeo e
. — 4 | R S P
102 107 10° 0 0.2 0.4 06 0.8 1
D D
(a) (b)

Figure 5.5: The leading order (dashed) and next-to-leading order (solid) predictions evalu-
ated at the physical scale = /s = Mz for (a) 1/0haq - do/dD compared to the published
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to
NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale
(see Equation 1.4.36).

5.6 Summary

In this chapter we have introduced a number of 4 jet-like event shape variables which have
been encoded into the NLO Monte Carlo program, EERAD2. This routine has been based on
the prescriptions described in the earlier chapters of this thesis. We have compared these
results with the experimental data as collected by the DELPHI collaboration at CERN and
with two other Monte Carlo routines, MENLO PARC and DEBRECEN. For those variables that
have been calculated by the other groups (the 4 jet rate, the D parameter and Thrust minor)
the agreement is good. For those variables that have not been calculated we present the scale
independent coefficients for both LO and NLO. From these a prediction for s can be made,
either by fitting directly to the experimental data or by using the renormalisation group

equations and the property of asymptotic scaling [69].

It is found that the NLO corrections for all variables is large, but that the total is still
short of the data. This maybe due to uncertainty in the scale, higher order corrections,

power corrections and at small values of some of the variables, resummation effects need to
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Figure 5.6: The leading order (dashed) and next-to-leading order (solid) predictions evalu-
ated at the physical scale p = /s = M for (a) 1/0naq*do/dTminor compared to the published
DELPHI data [56] and (b) the difference between data and NLO theory (normalised to NLO).
The short-dashed line shows the next-to-leading order prediction using the FAC scale (see

Equation 1.4.36).

be taken into consideration.
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1 ve ’ Byf [ Cyf |

0.0250 [ (8.00 £ 0.04) - 102 | (9.93 +0.34) - 10°
0.0350 | (5.5940.04)-10% | (9.91 4+ 0.30) - 10°
0.0450 | (4.1540.03)-10* | (8.57+0.13) - 10°
0.0550 | (3.1540.03) -10* | (7.3140.18) - 10
0.0650 | (2.4740.02)-10* | (5.96 +£0.12) - 10°
0.0750 | (1.934+0.02)-10% | (4.9940.14)-10°
0.0850 | (1.5040.02)-10? | (3.96 4+ 0.11) - 10°
0.0950 | (1.2340.01)-10% | (3.36£0.13)-10°
0.1050 | (9.8840.12)-10' | (2.84 £0.06) - 10°
0.1150 | (7.90 4 0.09) - 10* | (2.19 +0.09) - 10°
0.1250 | (6.07 £0.08)-10' | (1.69+0.11)-10°
0.1350 | (4.7940.07)-10' | (1.5340.08)-10°
0.1450 | (3.844+0.06)-10' | (1.154+0.04)-10°
0.1550 | (3.00£0.05)-10! | (8.41+0.53)-10°
0.1650 | (2.2640.04)-10' | (6.5240.36) - 10°
0.1750 | (1.61+0.02)-10* | (4.99 & 0.33) - 10
0.1850 | (1.2140.02)-10' | (3.60 +0.23) - 10°
0.1950 | (8.714+0.27)-10° | (2.53+0.20) - 10
0.2050 | (5.70 +0.16) - 10° | (1.78 +£0.17) - 10
0.2150 | (3.89+0.09)-10° | (1.20 +0.11) - 10
0.2250 | (2.41+0.06)-10° | (6:83+0.87)-10!
0.2350 | (1.43+0.05)-10° | (4.87+0.36) - 10"
0.2450 | (7.69 & 0.30) - 107! | (2.57 4 0.25) - 10
0.2550 | (3.78 +0.09) - 107 | (1.18 £0.13) - 10
0.2650 | (1.50 & 0.04) - 107 | (4.57 £ 0.79) - 10°
0.2750 | (4.20£0.17)- 1072 | (1.154+0.35) - 10°
0.2850 | (4.59 £0.39) - 1073 | (1.16 £ 0.65) - 10~*
0.2950 | (5.37 £0.91)-107° | (2.15+1.11) - 107°

Table 5.5: The leading and next-to-leading order coefficients for the jet transition variable
in the Geneva-E algorithm yS.
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‘ vi | B i i Cyi |

0.0075 | (6.02£0.01)- 102 | (1.75 % 0.01) - 10°
0.0125 | (3.60£0.01)-102 | (1.33 % 0.02) - 10*
0.0175 | (2.47+0.01)-102 | (1.02 % 0.04) - 10*
0.0225 | (1.78 £0.01)-102 | (7.63 +0.32) - 10?
0.0275 | (1.34+0.01)-10% | (6.19+0.16) - 103
0.0325 | (1.0140.01)-10 | (4.76 + 0.12) - 103
0.0375 | (7.88+0.08)-10' | (3.860.11) - 10
0.0425 | (6.19 £0.05)-10* | (3.07 + 0.16) - 10?
0.0475 | (4.99 +0.05)- 101 | (2.38 %+ 0.12) - 103
0.0525 | (3.89+0.05)-10' | (2.08+0.11)- 103
0.0575 | (3.134+0.05)-10* | (1.54 +0.05) - 10°
0.0625 | (2.43+0.04)-10" | (1.26+ 0.03) - 103
0.0675 | (1.90 +0.03) - 10 | (9.68 + 0.58) - 102
0.0725 | (1.49+0.04) - 10" | (7.70 £ 0.35) - 10°
0.0775 | (1.21+0.02)-10" | (5.89 & 0.41) - 10?
0.0825 | (9.38+0.18)-10° | (4.83+ 0.35) - 102
0.0875 | (6.94£0.09) -10° | (3.50 % 0.19) - 102
0.0925 | (5.36+£0.11)-10° | (2.48 +0.27) - 10°
0.0975 | (3.85+0.06)-10° | (1.93+ 0.19) - 102
0.1025 | (2.84+0.07)-10° | (1.26+ 0.11) - 10
0.1075 | (1.97 +£0.07)-10° | (9.99 £ 1.22) - 10!
0.1125 | (1.30+0.06) - 10° | (6.69 = 0.94) - 10}
0.1175 | (8.32+0.37) - 1071 | (3.57 £ 0.52) - 10t
0.1225 | (4.94 +0.07) - 107 | (2.36 £ 0.44) - 10!
0.1275 | (3.05 +0.10) - 10~ | (1.85+ 0.38) - 10!
0.1325 | (1.70 £0.03) - 107! | (8.38 +3.15) - 10°
0.1375 | (8.94 +0.29) - 1072 | (4.99 £ 1.15) - 10°
0.1425 | (4.20 £ 0.12) - 102 | (2.01 % 0.38) - 10°
0.1475 | (1.67£0.07)- 1072 | (1.08 +0.73) - 10°
0.1525 | (5.51 4+ 0.44) - 1073 | (3.94 + 2.32) - 10~
0.1575 | (8.48 +0.58) - 107* | (4.37 + 2.44) - 10~

Table 5.6: The leading and next-to-leading order coefficients for the jet transition variable
in the JADE-EO algorithm y;.
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Chapter 6

A new calculation:
pp — v+ jets at Ocaal,

6.1 Introduction

We now turn our attention to another important calculation in pQCD, that of prompt photon
production in hadronic collisions. Specifically, this part of the thesis will concentrate on the
emission of a resolved photon from the collision/annihilation of protons and antiprotons.
There are many papers in the literature that have studied prompt photon production from
hadronic collisions [72] and related processes in electron-proton collisions[70] and electron-
positron annihilations [71]. However for this calculation we apply the fragmentation power

counting of Morgan and Glover [71] which was introduced for the electron-positron initial

state.

Photon production is considered to be a good probe into the underlying dynamics of
both the short range interactions of partons and the composition of the proton itself (where
for certain phase space configurations this process can determine the gluon distribution in
the poorly understood regime of moderate values of z, the longitudinal momentum fraction
carried by the parton inside the hadron). This is due to the simple nature of the photon
coupling and the clean signal seen in the detectors. A high energy photon is identified by
a shower in the electromagnetic calorimeter, accompanied by no charged tracks pointing to
the energy deposit. Not only is this subject important for testing existing theories, but it is

vital in order to reduce backgrounds in the search for the Higgs boson.
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The production of photons has two sources; firstly in the hard partonic process where
the photon is well separated from the other'partons and secondly at smaller scales where the
photon can either be emitted collinear to its parent quark or where a parton can fragment
into a photon. The hard partonic mechanism is well understood and can be calculated using
pQCD whereas the smaller scale process contains a universal, non-perturbative effect and
uncancelled infra red poles. However, as we shall see later, the non-perturbative term can
be constrained by a well-determined evolution and the poles absorbed into the definition of

the fragmentation.

This chapter will concentrate on introducing the theoretical tools necessary to calculate
the photon distribution. Section 6.2 will outline the isolated and non-isolated photon events
as described above and Section 6.3 introduces the concept of the fragmentation function
making use of the process ete™ — v + 1 jet for which the non perturbative fragmentation
function has been experimentally measured. Section 6.4 will detail a necessary tool in dealing
with hadronic colliders, that of initial state radiation and how this leads to C (z) functions.

Section 6.5 will incorporate these two functions into the calculation and outline the Monte

Carlo, DPRAD.

6.2 Photon emission and fragmentation functions

Let us look at the two cases of photon emission more closely. Isolated photon emission is an
attractive area to study many aspects of both pQCD and new physics as the non-perturbative
fragmentation contributions are neglected due to their collinear nature. Isolated photons are
emitted at a scale where perturbation theory is reliable and as such tend to be well separated
from the remaining partons. This is due to the uncertainty principle where over a short time
scale, an off-shell internal quark line propagates a small distance before returning on shell
by emitting a photon. The photon-quark pair have a large invariant mass and the angle

between them is large leading to the isolation of the photon.

Experimentally (and theoretically), isolation of a photon is determined by applying a
cone algorithm. There are a number of different techniques [72, 73] for doing this and here

we outline the most common found in the literature [72].
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A cone of specified half angle § is centred on the photon direction. For hadron colliders
this cone is usually taken to be a region in pseudorapidity-azimuthal angle space determined

by the equation

R < \/(An)? + (Ag)? (6.2.1)

where for small values of , R = 6. Inside the cone, the total hadronic energy is calculated.
If it is less than a certain cut (usually a fraction of the photon’s energy), the event is
retained. Note that the amount of hadronic energy cannot be exactly zero (and the isolation
complete) as this is infrared unsafe because the phase space of potential soft gluon radiation
is limited. Therefore isolated photon calculations cannot completely neglect fragmentation

contributions although they are suppressed.

In ete™ colliders a different procedure is used. Typically the photon is removed from
the event and normal clustering algorithms (as described in Section 2.2.1) are applied to the
remaining partons/jets. The photon is returned and the event retained if the photon remains
resolvable from the clustered partons/jets. (See Figure 6.1 for the phase space division using
the cone algorithm in the process ete™ — v+ 1 jet.) Note that this technique combines any
partons originally inside the cone into jets outside the cone. It also treats gluons and quarks
differently, allowing soft gluons inside the cone, but quarks are kept out. In experimental
calculations the exact nature of the hadronic energy is not classified and it was seen that
using this algorithm the NLO predicted rate for the process ete™ — v+ 1 jet was too large.
It was suggested (Stirling and Glover in[72]) that the two step nature of this prescription

was responsible for this discrepancy.

An alternative approach to photon calculations is to attempt to experimentally measure
the non-perturbative fragmentation component of the fragmentation function and use this
universal quantity in other theoretical calculations. The cone algorithm can be used for this
type of analysis, although a better algorithm would be more susceptible to the fraction of the
parent quark’s momentum carried off by the photon. Also by allowing electromagnetic and
hadronic clustering a closer representation of experimental techniques can be found. One
method proposed (see Morgan and Glover in [71]) is to treat the photon in a democratic

manner, retaining it in the event whilst the clustering algorithm is applied. The jet with the
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Figure 6.1: The Dalitz plot for the process e*e™ — gy where 2’ = 1—3,,/s and £ = 1—55,/s
using the cone algorithm. Plotted are the two regions that contribute to the process ete” —
v+1 jet, for two different clustering algorithms, JADE and Durham. Regions 2 are common
to both algorithms and are the regions in which the photon is emitted collinear to the
quark/antiquark (along the /2’ = 1 line) and where the hadronic energy inside the cone is
less than €E,. Regions 1 are where the quark and antiquark merge to form a single jet and
are different for the two clustering algorithms.
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photon in it is declared the photon candidate and the event is rejected if the hadronic energy

in it makes up more than a certain fraction of the total energy. i.e we define a parameter

— By
z= (Fo + Brag) (6.2.2)

such that z must be higher than a certain cut for the event to be retained. This better models
the democracy of the experimental measurement. Also the algorithm no longer suppresses
the second source of photon emission and the photon is allowed to be emitted collinear to the
quark, thus making the calulation sensitive to long range, non-perturbative physics. This
can then be used to measure the photon fragmentation function and once this universal

function is known it can be applied to different processes.

Let us consider the inclusive NLO calculation for the process ete™ — v + 1 jet. This
process is particularly sensitive to the fragmentation of final state partons, as it has no LO
diagram. Therefore, the lowest order terms that constitute this process are ete™ — qgy
where the quark and antiquark become collinear and form a single jet and the fragmentation
process eTe~ — ¢ where the quark or the antiquark fragment (see Figure 6.2). We shall
use this process to demonstrate how the collinear quark-photon poles can be absorbed into
the non-perturbative fragmentation function. This then leads to a well-defined evolution
equation for the fragmentation function with respect to the fragmentation scale which is
similar to the renormalisation scale of Section 1.3. From this evolution equation and other
considerations a parametric form for the fragmentation function can be proposed, the pa-
rameters of which must be experimentally measured. It is these parameters that the ALPEH

collaboration have measured in[74].

6.3 Construction of the ¢ — v fragmentation function

Photon-quark collinear divergences are defined as in the previous chapters (i.e. 84y < Smin
where sy, is similiar to § in the 4 jet calculation. We make the change to avoid confusion
between the cut and the cone size) using the slicing technique to divide the phase space into

resolved and unresolved regions. They are absorbed into the definition of the fragmentation
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Figure 6.2: The Dalitz plot for the process ete™ — qgy where z’ = 1—84y/sand z = 1—sg,/s
using the democratic algorithm. Plotted are the two regions that contribute to the process
ete~ — v+1 jet, for the JADE clustering algorithms. Regions 2 are the regions in which the
photon is emitted collinear to the quark/antiquark (along the z/z' = 1 line) and where the
energy fraction of the electromagnetic energy over the total jet energy is greater than Zzey.
Region 1 is where the quark and antiquark form a single jet.These two regions are divided
by the dotted line.
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function, D,,,(#) in much the same way as the loop corrections to the quark-gluon vertex
were absorbed into the definition of the coupling constant ¢ (see Section 1.3). Therefore

the infinite bare D,,,(2) is replaced by the finite D, (2). The two functions are related

by the expression.

Da(2) = Daorn(2) — % (4;“%) . (11_ 5 (C;f> 1 -2 PO, () (633)

where the LO photon splitting function, Pq@v(z) has the same z dependence as the gluon one
(see Equation 2.3.54). The second term is the explicit form of the divergence (after slicing) as
the photon becomes collinear with the quark. This includes px as the usual renormalisation
scale (from here on we refer to the renormalisation scale as pg to avoid confusion between

other scales).

As with coupling constant renormalisation (in the MS scheme) this factorisation of sin-
gularities introduces a scale to the new finite quantity. Making this explicit we write the

bare fragmentation function as a counter term to the collinear pole with some degree of

non-perturbative input so that

1 (4Anp% 1 ael
= = PO 6.3.4
DQ——)’Y(Z) Dq—>’Y(Z7,u'frag) + € ( Mfgrag > 1-\(1 — 5) < ot q—)'y(z) ( )

This gives the full result of the finite, dressed fragmentation function at LO as

2

Dysy(2) = Dyory (2, fitrag) + (%) (P;(Qv(z) log (fﬂ%@) + z> (6.3.5)

.u'frag

As well as deriving the perturbative part of the fragmentation function, we note that D must
be independent of the unphysical fragmentation scale jiag at each order. Therefore, at this

order we can write an evolution equation which the perturbative part of the function forces

on the non-perturbative part such that
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0 Dy (2, lifrag) ae?
Gloeliteg) ~ \2r ) Tl (6:36)

This is similar to the evolution equation of the running coupling constant and just as a;
can be run to different scales once known at one, so can the non-perturbative part of the
fragmentation function. The evolution equation is only of this form at this order i.e. O(a)
and at higher orders we must include additional terms where, for example the quark emits
an unresolved gluon before fragmenting. Similarly we will have a contribution from gluons
decaying into a collinear qg pair where one of the pair later fragments into a photon. This can
be thought of as the gluon fragmenting and is thus the leading order term for the function
Dy, (2, pitrag). However we do not include this for our calculation as in the Glover/Morgan

power counting scheme it is O(aay).

Another consequence of renormalising the fragmentation function is that a pseudo pole
has been introduced into the perturbative term. In the process e*e™ — v + 1 jet this was
explicitly demonstrated by Morgan and Glover in[71]. (Note that the appearance of this pole
is dependent on the renormalisation scheme used. For schemes such as DIS,[75] the pole is
absorbed into the non-perturbative term already.) We find that the perturbative part of the
fragmentation function has a term of the form log(1 — 2)? (where one factor comes from the
renormalisation as seen above and the other from the boundary between the quark-photon
collinear phase space region and the quark-antiquark collinear phase region) which blows up
as z — 1. Therefore we place a further constraint on Dy_,,(2, tsrag) that it must cancel this

pseudo-pole ensuring the ete™ — v+ 1 jet rate is well-behaved as z — 1.

Also, as Smin is an artifical construct, physical observables cannot depend on it. It is seen
that when recombined with the resolved photon contributions that all dependence disappears

(assuming Sy, is taken small enough for the approximations to hold true).

A possible form for the non-perturbative part of the fragmentation function calculated

at the order O(«) has the structure

ae; Hira
D35y (7 israg) = (2—;> P2, (2) log ( ;(;) + D5z o) (6.3.7)



where po and D(II‘SW(z, o) are constants of integration or more physical, py can be thought

of as the scale at which the physics becomes non-perturbative and as such can only be

determined from experimental measurement which will give D;“S,y(z, o). As can be seen,

this function has the correct form to satisfy both the cancellation of the pseudo-pole and the

evolution equation.

The values of py and D;‘_Ow(z, o) have been extracted from data gathered by the ALEPH

collaboration using a democratic algorithm and the Durham clustering in the region 0.7 <

z < 0.95. It was found that

DS (2, o) = (0;—:?) (—P;(Qv(z) log(1-2)?2—-1—-1In (@_)) (6.3.8)

2415

This then leads to a one parameter fit the result of which is given by

fro = 0.1410214022 GeV (6.3.9)

However, if the calculation of ete™ — 1 jet is extended to O(aw;) [79] and the form of the

fragmentation function recalculated we find that

«e
Do ) = DS esp) + () o
e’ o 12
) (25 1op | ZH2e
- (5) G (58

1 [ae? o 9 N?r 0 0
o 5 (50) (Go)eet () Per o Pt0

2
a T
o () oe (M) PO 0 D) 6320
where P{1) (z) is the next to leading order quark to photon universal splitting function

and Pq(gzq(z) is the leading order quark to quark universal splitting function [38]. The non-
perturbative input DqN_I;EY)(z, fto) can then be extracted by performing a similar fit to the
ALEPH data [74] (except now we also have to fit for a,(Mz) as well) giving
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q=>7 2 q

DNLO (2 o) = (geé) (—P(Ezy(z) log(1 — 2)* +20.8(1 — z) — 11.07) (6.3.11)

with pg = 0.64 GeV and a,(Mz) = 0.124.

Another form for the fragmentation function can be derived by considering the evolution
equations and resumming all the leading logarithms (LL) and next to leading logarithms
(NLL) respectively. For this thesis we shall present a basic overview of this technique.
For more details the reader is referred to [78]. Let us for the moment assume that the
perturbative part of the fragmentation function is proportional to a/a; instead of the fixed
approach where it is proportional to . This adapts the LO evolution equation such that
the convolution between the fragmentation function and the quark to quark splitting is

as important as the quark to photon splitting function. Therefore the new LO and NLO

evolution equations are given by

ODS,, (%, Urag) 0 s

Ploglig) (zw)Pm( )+ (52) PuE) © Do g
e () (500 Zreb0)

010g(1ifeag) o ) \Fo =7

Qs
+(52) (P) + 52P, ) © Dyl iag) +
(6.3.12)

As with the fixed order technique the solutions to Equations 6.3.12 have two contributions,
a perturbative, pointlike term and a non-perturbative hadronic term. The perturbative part

of the resummed solution of Equation 6.3.12 is found by the following prescription

e The leading logarithmic (LL) or beyond leading logarithmic (BLL) approximation is

performed by Mellin transforming the respective evolution equation. A Mellin trans-

form is defined as

1
D1, pikg) = /0 dz 2" Dy (2, i ag) (6.3.13)
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The transform has the effect of separating any convoluted functions and thus making
the necessary integration over log(u,,) possible. Therefore after Mellin transformation

an analytic solution can be found.

e The solution is then Mellin inverted numerically such that the fragmentation function

"1 (ufag) are kept

is returned to z space. For LL, only terms of the order of log
whereas for BLL both leading logarithms and logarithms of the form of log" (f )
are retained. The coupling constant is expanded according to the beta function up
to the order required. Approximations of these numerical resummed solutions can be
obtained analytically by expanding the solution as a series in «, in moment space and

then analytically inverting the truncated expression.

From the asymptotic limit of the Mellin transform where the solution is independent of any

experimental input

ae? 2m
[pasymptot 2y [e) =0 6.3.14
g7 (TL, :U‘frag) < I ) o, (M%rag) a(n) ( )

we see justification for our choice that the fragmentation function is of the order O(a/a)
unlike in the fixed order approach where it is simply O(«). This makes the fragmentation

contribution as important as the LO perturbative contribution in pp — v+ jets.

The hadronic part of the fragmentation function is given by the solution of the homoge-
nous evolution equation i.e Py, = P, = 0. Again we perform a Mellin transformation
to make the integral over the convolution possible and return the solution to z space af-
terwards. However, an additional input must be included in the hadronic solution similar
to the Dy_(z, o) term in the fixed order solution. This input can either be taken from
experimental data or from a set of VMD (Vector Meson Dominance) model assumptions and

whichever approach used is proportional to o only.

Even when both the perturbative and non-perturbative parts of the resummed solution
have been calculated, there exists some ambiguity in how to combine them. One method is to
combine the relevant terms together such as the LL pointlike solution with the LL hadronic

solution. This approach was adopted by Gliick, Reya and Vogt (GRV) [80]. However this
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prescription has a tendency to include terms beyond the order being considered which can

lead to significant contributions and must be systematically omitted.

Another approach performed by Bourhis, Fontannaz and Guillet (BFG) [81] links the BLL
perturbative solution with the LL hadronic solution. We shall see later how this resummed

approximation compares with the fixed order calculation.

For resummation techniques to work, the resummed logarithms must be the only large
logarithms present in the calculation as all other logarithms are neglected including terms
of the order In(1 — z) which we saw are important in the large z limit for the process
ete™ — v+ 1 jet. When resummed analytic expressions for D,_,, are implemented into
a Monte Carlo routine for electron-positron annihilation, the In(1 — 2) contribution from
the perturbative counter term is not cancelled and the differential cross-section becomes
negative for 0.9 < z < 1. This was pointed out by B.R.Webber in [76] where he stated that
the leading logarithmic approximation would be expected to yield accurate predictions for
intermediate values of z only. The ALEPH collaboration also made a fit to data for this
form of the fragmentation function, but in order to approach the data, large values of A
were required (of the order 1 GeV). Scales of this size no longer allow for the dismissing
of non-logarithmic terms in the fragmentation function and as such suggests that the LLA

approach should be ruled out at values of z between 0.7 and 0.9.

DPRAD makes use of the fragmentation function as defined in Equation 6.3.7 with the
measured parameters of Equations 6.3.8 and 6.3.9 for the process pp — v+ Jets. We also
study the effects of using the BFG resummed fragmentaion function. Before we can detail
the structure of DPRAD, we need to consider another theoretical tool used in hadron colliders,

that of calculating initial state radiation.

6.4 Initial state radiation and crossing functions

In our previous calculations we have only treated final state radiation because the initial state
of ete~ cannot radiate gluons. However in the collision of a proton and an antiproton, we
allow ourselves the possibility of producing initial state hadronic radiation that is unresolved

in the detector. This radiation (and the poles that are produced) is absorbed into the
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structure functions of the participating hadrons in much the same way as the quark-photon

collinear poles were absorbed into the fragmentation function of the previous section.

We again make use of the ordered subamplitudes which exhibit the universal soft and
collinear limits after colour decomposition. (See Section 2.3.8). For a full derivation of the
crossing functions the reader is referred to [77, 36]. What we present here is an overview of

that proof.

The differential cross section at leading order for the hadronic process a +b — v+ n

partons where each parton is identified as a jet and a and b are the hadrons involved is given

by

dog,, = ZfaHl (:El)fbH2 (ng)daz}f)(ml,xg)d:cldxg (6.4.15)

ij

where fHi is the probability of finding parton @ in hadron H; with momentum fraction
z1 and dogp(z1, z2) is the squared matrix element of the partonic process with initial state
partons a and b with incoming kinematics z; and z,. This also contains the relevant phase
space factors and initial averaging factors. In order to retain the crossing properties of LO

at NLO we define the differential cross section at NLO as

dog,m, = Z Ffl (:vlf,fh (xg)dog,w(xl, To)dz1dzs (6.4.16)
ab

where FH1 is the effective NLO structure function and dol-© is the finite NLO partonic

cross section which can be calculated by crossing from the NLO calculation of the process

vacuum — a+b+-vy+ng. This can be expressed as usual in terms of a perturbative expansion

in the coupling such that

dob© = doll + a,d 60D (6.4.17)
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where the coupling is evaluated at the renormalisation scale, pg. A similar form can be
written for the effective NLO structure functions after mass factorisation, the renormalisation
procedure that absorbs all the divergences from the initial state poles. This can be written

as

}—fh (z1) = ffl (z1, pp) + asC’fl (z1, pr) (6.4.18)

where the function CZ1(z,, pr) is known as a crossing function. Here o is calculated at the
renormalisation scale. It can also be calculated using the factorisation scale although the

difference is negligible (assuming o, In(p%/p%) < 1). This gives the full NLO result as

domm = 3 |7 (30) £ (22) (doty (21, 72) + rsddoyy )
ab

+ ay(CF (1) [ (25) + FIOF (22))do ) (31, 72)] (6.4.19)

The crossing functions receive two contributions, which are due to the inability of differenti-
ating between a single incoming parton and two collinear partons where the collinear partons
either exist a) in the initial state and the final state or b) both in the initial state. The first of
these leads to a convolution between the structure function and the Altarelli-Parisi splitting
functions. The second contribution is necessary to cancel the unphysical initial-initial state
collinear pairs which come from crossing two collinear partons from the final state to the

initial state. Schematically this gives

[ [ [ Z () Peate) - f00) [ 2 PH} ¥ (6.4.20)

c

where Ymin = Smin/@ and where the first term is due to the emission of radiation into the
final state and the second is the crossed final state unresolved radiation. (The minus sign of

this term is due to the crossing prescription.)
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The derivation of the crossing functions makes use of the factorisation of phase space and
the matrix elements as seen in Section 2.3.8, but with some slight modifications due to the
initial state. We begin by concentrating on the initial-final state collinear pairs. We write

the phase space of the 2 — 2 process with parton ¢ off-shell as

dd—l
dQ?d*P(a+b — u+ Q) = dQ2—ﬁ&(2w)2‘d6(sab ~ IS0u] — |85 = @?) (6.4.21)
U
where the absolute values of the mass invariants are used to ensure positive values for those
invariants between initial and final partons. We then write the d — 1 integral as a 1 dimen-

sional radial term multiplied by a d — 2 dimensional angular term. This gives

dd—lpu _ de—Z

¥ 5 (E,sin 8)?3dE,df (6.4.22)

where 6 is the angle between u and b. Substituting the integration variables for invariants

using the Jacobian we find

E?sin? @ = 295 s, ds,y = 2, sin Os,,d B, (6.4.23)

)
Sab

which leads to

d—4
1 dQq- aullSpul | 2 d|Sauld|sy _
_dQ%P(a+p = ut+Q) = dQ*—2 [Saull st #”—'(2@2 48 (Sab—|Sau| | Susl — Q%)
23ab 8 Sab Sab

(6.4.24)

As there is no dependence on the virtuality of @ we can integrate over this without changing
the rest of the factor. Now we consider the configuration where w is collinear to b such that
|sus| < Smin and we introduce parton h which participates in the hard scattering process. It

carries a fraction z of the parent quark’s momentum such that
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Pn = ZDb, Saeh = ZSab

Pu = (1= 2P [Saul = (1 — 2)8as (6.4.25)

In this limit we find that the 2 — 2 body phase space factorises to a collinear term multiplied

by the 2 — 1 phase space.

1

1
;—ddP(a +bsu+Q) = d*P(b— u+h) 5 d*Pla+h — Q) (6.4.26)
ab ah
where
wadQy_
4 Po(b = u+ h) = dzdsupz|(1 — 2)5u) T Q: 2 (zw)z—d-Ql (6.4.27)
s

This is the form for the collinear phase space factor that we shall use later. Now we shall

briefly consider the behaviour of collinear initial state matrix elements.

The matrix elements, as in the collinear final state configurations, factorises when an

initial state parton is collinear to a final state parton such that for b and u collinear we find

IM(.,bu, . ) = &M R, )P (6.4.28)
where
2
ivik {8 N 1 ij—)i(z) 9
Cp —< 5 )|3ij| . (6.4.29)
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As we can see this is very similar to the final-final collinear factor. The extra factor 1/z is
due to the identity of the partons becoming collinear. In the initial-final example we can see
that the invariant mass is a factor z smaller as we allow the parton with momentum fraction
(1 — 2) to take part in the hard scattering whereas before the hard scattering parton had
a momentum fraction equal to 1. As before we shall use the conventional Altarelli-Parisi
splitting functions which are defined in Equation 2.3.54. The major difference between the
initial-final splitting and the final-final splitting is that the parton that participates in the
hard scattering can not be soft. This places a lower bound on the value of z unlike the
final-final collinearity where the parent parton participates in the hard scattering and z can
be equal to 0. The upper bound of z is also set by demanding that the final state parton in

the initial-final collinear pair must not be soft (to avoid the double counting of final state

soft gluons).

Incorporating Equation 6.4.26 and 6.4.28 into the cross section for the collinear pairing

Sub < Smin giVeS

dainitial = Z le (Sﬂl)[szCb—mthcol(b — U+ h,)(S(J?g - le)d.’L'/]dU(Il}? (iEl, $2)d$1d1}2 (6430)
ahb

where momentum fraction z, carried by parton h is given by the momentum fraction z’
carried by parton b multiplied by the fraction left after the emission of parton u which
carries off a fraction (1 — z) of the incoming momentum. Comparing this equation with

Equation 6.4.19 we see the form of the crossing function is given by

Ot itiar (2) Z FH2 (1) B dPE (b — u + B)d (2 — 227) (6.4.31)

Making this explicit we substitute in Equations 6.4.29 and 6.4.27 giving

Smm

N 1 4 1-z2 dz [z
Ci{{?nitial(a:?) == (%) 1—\(1 _ 6 ( MR) Z / 1_ z Phu—)b(z) bH (;)
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where we have integrated the delta function over the y momentum fraction, giving the extra
factor 1/z, and also over the invariant mass s,; between the limits 0 < 8,5 < Syin assuming
07¢ = 0. The scale ug is introduced to keep «; dimensionless and the limits on the z integral
ensure that v is not soft. (Here 23 = Sumin/|Sen| where n is the colour connected neighbour of
b and |syn| = (1 — 2)|sen].) The lower bound is fixed by assuming that parton b is carrying

all of the proton’s momentum (2’ = 1) and then the fraction needed to ensure z, enters the

hard process is z = z5.

As the splitting functions Py, and Py, are not sensitive to the upper bound of the
z integral due to the non-singular nature of soft quarks (the quark-antiquark splitting does
not depend on any of the limits and the quark-gluon splitting is only dependent on the lower
bound whereas the gluon-quark splitting is only dependent on the upper bound) we allow
their upper bounds to equal 1. We can also set the upper bound to 1 for the other two

splittings by using the ( ), prescription such that

/1_22 dz(l_f(j.))m _ (Z'EEE— 1) g(1)+/1 dz—l—_ggTh
/dz 1—z 1+E] - /dl——zz—_g/d (logll—_zZ))+

/mdzm /d 9(2) = 9(1) + g(1) log(1 — z)

1—-2

/: dz g(2) (%)L = /z dz—’in:—z) log(l —z) + @ log?(1 — z)(6.4.33)

provided that g(1) is well behaved. Therefore we can write the crossing functions all in terms

of

Ch initial — <%> F(ll— ) (47WR>E ! Z/E < > Josn (2, 22) (6.4.34)

smm

where
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Trmalti20) = (ZQ—;_ 1) 1= 2)+ g, L= ooy

Jq_m(z, ) = <1 B %) [(22_65_ 1) oA —2)+ % ([(1 1__iz_)21is]Jr —e(1- Z)l_€>]
Jog(2,22) = ipgq—*q(z)(l —z)7F

Jyoal22) = quq_)g(z)(l ) (6.4.35)

Now we must form the contribution from the crossed final state collinear pair. This is given

by the final-final splitting seen in the previous chapters recalling now that h — ub rather

than b — uh

dogna = > FI (1) [ (22) 7" d* Peoy mat) dogy (21, B2)dz1dz (6.4.36)
abh

where the equations for ¢2 7% and d?P.y gna are given in Equations 2.3.54 and 2.4.67 respec-

tively. This gives the form of the crossing function as

asN 1 drp \° 1
asC}{{fglnal(wQ) = - ( 97 > 1-\(1 _ 6) ( Smi:) }{{2($2)g ;Ibu——)h(zl:'@) (6437)

The function Iyu_n(21,22) is an integral over the momentum fraction z and the integration
limits z; and z, are again due to the requirement that u cannot be soft where z is defined
as Smin/|Snn| (n is a colour connected neighbour). Therefore the integral is given by exactly

the same form as for a final-final collinear pair

]_ 1-29
Ibu_,h(zl, ZQ) = Z dZ[Z(l - Z)]—pru_)h(z) (6438)

which leads to
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2{E+2,°—2 11 2 67
s = (2552) 2 (2.2),
3 2
Iogsq(21,22) = ( 1

171 5e
Lgsy = [—+—] (6.4.39)

Combining these two functions into a single crossing kernel which is convoluted with the

structure functions we find for the crossing function

C}?Q = Cf{{lmtlal( ) - leﬁnal(:v)

= Z / _fb (f) Xosn(2) (6.4.40)

where
Xgsgl2) = = ( T(1—e) <4S7:fnR>E% Jgosg(2,21) + Jgosg(2, 22) — [Iggmsg(21, 22)
+ q,Hg(o 0)] 5(1— z))
Xyoolz) = — ( i (4;“R)§ a2 22) = Logosa 0, 22)5(1 = 2))
Xyoals) = — ( i (Z’f)}]m 2,0)
X, ,(z) = — (%) . 11_ 5 (4;“R> %Jﬁg(z, 0) (6.4.41)

where all dependence on the bounds of the integrals exactly cancels, leaving the kernel
independent of the hard process. Note that for the gluon-gluon splitting we include two
terms J(z,z;) and J(z, z1). This is due to the different ordering that the gluons can achieve
in the splitting. The delta functions are used for calculated integrals at an arbitrary point
along the z integral with z = 1 choosen for simplicity. The last two kernels X,,; and Xy,
have no contribution from the crossed collinear pair as these would lead to soft initial quark

states (as we let the upper bound equal 1) which are not allowed.
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However, we still have explicit 1/e poles that need to be absorbed. This is done by

renormalising the bare LO structure functions ff(z) in the equation

Fi(z) = [ (z) + o,Cf (2) (6.4.42)

The bare structure function is renormalised to give a finite LO structure function which is
scale dependent and an infinite counter term that will cancel with the intial state collinear

pairs. This can be written as

=) = £ (2, pr) _asZ/ —fb < up) Ry sn(2, 1iF) (6.4.43)

Therefore the finite crossing functions are given by

(z, ur) 2/ —fb ( ,up) (Xosn(2) + Roosn(z, pr)) (6.4.44)

These Ry_,n(2, ur) counter terms exactly cancel all the collinear poles leaving the effective
structure functions independent of the factorisation scale although the fixed order cross
section is dependent on pr as we neglect terms of the form o?Cf (z,, pr)CH2 (24, up). For
the exact forms of the counter terms the reader is referred to the previous reference of [77].
Tt is assumed for this overview that the scheme used is the MS scheme. After cancellation

and integration, the finite form of the crossing functions is given by

eI (o, ur) = (o) [Ah (¢, 1) o ( ;:) + Bl Ms(x,m} (6.4.4)

where we have summed over all partons b. The full form of the functions A and B can
be found in [77). Therefore, given a set of structure functions in a given scheme we can
derive a set of process independent crossing functions which can be used in conjunction with
the O(aq;,) 2 — 2 hard processes to calculate the O(aa?) contribution from initial state

radiation.
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6.5 The full result and structure of DPRAD

We combine these two theoretical contributions to the standard NLO final state photon
production calculations to find the resultant O(aa?) form. In this section we shall outline
the form of each contribution to the full prompt photon production process for this Monte

Carlo.

6.5.1 LO contributions to 1 jet final states

The LO cross section for the production of a photon from hadron-hadron annihilation is
relatively simple and the squared matrix elements can be calculated by hand or using a

short FORM program. Without any quark flavour summation the LO contribution is given

by

y+1je

1
dULO ¢ = /dl‘ld.’ﬂg Z %fa(l'l)fb(iﬂg)lM{;bo_w_i_l jetlzdPSQ_,g (6546)
ab

where z1, zo are the fractions of the hadron’s momentum carried by the partons, § = 21225
is the centre of mass energy of the partonic process, fo(z1), fo(22) are the LO parton dis-
tribution functions where parton a is from the proton and parton b is from the antiproton,

dPS,_,5 is the differential phase space factor for 2 to 2 body scattering and finally where the

squared matrix elements are given by

ab—v+1 jet
S¢y  Sqg

|MED ? = 2radrael(N? —1)8 <sﬂ + Sﬂ> (6.5.47)

However, we need to separately include the tree level processes gq — g7, 4@ — g7, 99 — 97,
g9 — Gv, 99 — ¢y and gg — gy because the order and identity of the initial partons is
important due to the different structure functions of the proton and the antiproton. We will
assume for the rest of this thesis that the order of the initial partons is such that the first
parton resides in the proton and the second in the antiproton. The relevant diagrams for

this contribution are given in Figure 6.3
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Figure 6.3: The tree level diagrams contributing to the process pp — v+1 jet. Diagrams are
labelled such that the parton from the proton is in the top left hand corner of the diagram and
the parton from the antiproton is in the bottom left hand corner of the diagram. Although
many of the diagrams may appear the same, due to the different parton distribution functions
of the proton and the antiproton we must calculate each individually i.e. no symmetry factor
can be used to relate the cross section of the subprocess ¢ — g7 to the cross section of
qq — g7 as the quark distribution is different in the proton compared to the antiproton.
The dots on the quark lines indicate alternative locations for the photon which have been
taken into account, but which do not affect the colour structure of the matrix elements.
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6.5.2 LO contributions to 2 jet final states

Another source of tree level diagrams comes from the photon plus 2 jets final state diagrams.
Again these can be calculated by FORM, but now we must consider three possible processes
and their symmetries, qg — 997, q@ — Q@7 and qg — qgvy. Therefore the cross section for

this tree level process is given by

1 .
do—flyl—?Zjets = /dmld‘rQZ%fa(ml)fb(ah)(lMgg:g‘l—]&jets2
ab
+ JMggjg(?zjetsJZ

IME29 1M4PS, |, (6.5.48)

ab—y+2 jets

where the superscript refers to the subprocess and the subscript refers to the initial partons
e.g. for the superscript ¢qg — ggy we could have subscripts gg — v + 2 jets, qg — 7 + 2
jets, gg — v + 2 jets plus all the charge conjugated initial states. dPS,,3 is the differential

phase space factor for 2 to 3 body scattering. Firstly the squared matrix elements for the

subprocess qg — ggry are given by

|IMIZ9 2 = (2ma,)’(drael) N(N® —1)16 [lS(Q; 1,2 Q)P +15(@;2,1,Q)

ab—v+2 jets
1 o
H1S@150F] (6:5.49)

where

3 3 3 e 3 3 3
Sug15017 T S3g25923 t SqyS7a T 540159, T 5092555 T SavSyg

1S(@;1,2;Q)?
S $4915919259295975g

3 3 3 3 3 3
— 82 Sgz+ S5 Sg.5+ SonSvi T Sgg150.5 T S¢g250.5 T SqvSoz
2 9149 929 gy e q91%g1q q92< gaq aY“vq
5(Q;2,1,Q))F = —& 2 : :

$492592915919597577
(3 e LB e L3 3 3 3
8q7(8501 8017t S3g2 5927 T Sqy517 T Sag15917 T Sag2Sgog T SevSya)

899159925¢759195920577

(6.5.50)
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We recover the related processes e.g. qg — qgv by exchanging momenta in the invariants,

but the form remains the same. All colour distinct diagrams are given in Figure 6.4

Secondly, the squared matrix elements for the subprocess g7 — Q@ where the flavours
of the quarks are distinct. We treat this separately to the process where the flavours of the
quarks are identical. The form of the squared matrix elements before summation over the

quark flavours is given by

IMEZI9 P = (2re,)*(4ma)(N? = 1)16 [¢2|T (6,30, D)I° + €5l T(Q, @ Q, Q)
+ egeolT(a,7 Q. Q) + 60| T(Q, Q3 0,0 (6.5.51)

where the arguments of the 7 functions indicate which quark line the photon couples to in
the matrix element and the conjugate respectively. Note that the degree of colour is reduced
by a factor N for the four quark term compared to the 2 quark, 2 gluon term making this a

sub-leading colour contribution. The 7 functions are given by

2 2 2 2
5qQ+5—+3q§+SQa

T(9,3¢:9) = =
SqvSygSqQ
2 2 2 2
Sto T 8o+ 85+ 805
—= = qQ Q9
T(Q,@:Q,Q) = w49
SqgSqySg
= = N _ (.2 2 2 2
T(Qv 4q; @, Q) + T(Q7 Q; g, q) - (qu + Sa@ + Sqa + sQﬁ)
. ( ) n 3Qg _ 54Q _ 53Q )
SevS4084@S00  SQv51aSaSqq  SorSevSawSqq  5va5,QSw@Sqn

(6.5.52)

The final LO squared matrix elements to calculate are those for the subprocess qg — ¢gv
where the quark flavour is identical for the two fermion lines. Here we will refer to the
quarks as pair 1 and pair 2 to identify which line the photon couples to. However, unlike
the distinct quark flavour diagram there exist two LO matrix element diagrams, one in the
s channel and one in the ¢ channel. This leads to two squared terms and two interference

terms in the squared matrix element which have different colour factors. We find
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Figure 6.4: The tree level diagrams contributing to the process pp — <y + 2 jets through
symmetries of the subprocess gg — gg7y. Diagrams are labelled such that the parton from
the proton is in the top left hand corner of the diagram and the parton from the antiproton
is in the bottom left hand corner of the diagram. Although many of the diagrams may
appear the same, due to the different parton distribution functions of the proton and the
antiproton we must calculate each individually i.e. no symmetry factor can be used to relate
the cross section of the subprocess qg — ggy to the cross section of gg — ggy as the quark
distribution is different in the proton compared to the antiproton. The dots on the quark
lines indicate alternative locations for the photon which have been taken into account, but
which do not affect the colour structure of the matrix elements. The dot on the gluon line

indicates a triple gluon coupling.
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MU ersl” = (2m0)?(dmrel)(V? — 1)16

1
(lT channell + |7; cha.nnel| + = (|7; channe17; channell + |7; channelT channel'))
(6.5.53)
where
s2
2 111112 qu]2 41112 + g2q1
I7;channel| - ( )X
3111(11592112
s s Sg. 7T Sg.75 s Sei5
Q1q2 Q2¢11 q1q9 2 2
[ + Lo, Cee | Sae 0@ }
Sqnquz SQZ’)’S'YQI SavS$y@m SqySvm SavSqy  Sy@mSve
T 2 thqz q1qz Q'1(I1 +8!]242
| tchanne1| - X
S @ ST
Sg e Sg.75 So5s Sy.7r s St
q1q1 q2q2 4192 q2q1 142 q1q2
{ + + e }
SarSyar SevSvm SarSvm SevSvam SavSey Svadh@
Ts TT T TT . ( Sqige + Sqlqg)(s‘hq—lsq?q_? + Sq@Sem — sq1qzsqxqz)
| s channel tcha.nnel| + | t channel schannell = e —e —a X
S @S mSadSen
Sgior Sg7s L Sgoa- s S5
[ ai | Sem | Sowm | Sem _  Pan 0@ } (6.5.54)
SavSya SevSv SarSve SerSvym SarSer SywSve

which we note is another sub-leading colour contribution. The diagrams contributing to the

4 quark subprocess are given in Figure 6.5

6.5.3 Extra unresolved parton contribution to 1 jet final states

Having calculated the LO terms for the process pp — y+2 jets we can easily find the O(aa?)
corrections to the process pp — v + 1 jet due to an extra unresolved parton added to the
tree level process pp — 7 + 1 jet by using the singular limits of the two jet result. These
are given in terms of 1/¢ and 1/&* poles multiplied by the LO result for 1 jet final state.

Therefore for the extra unresolved partons we have
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Figure 6.5: The tree level diagrams contributing to the process pp — v + 2 jets through
symmetries of the subprocesses ¢@ — ggy and qg — QQ~ . Diagrams are labelled such that
the parton from the proton is in the top left hand corner of the diagram and the parton
from the antiproton is in the bottom left hand corner of the diagram. Although many of
the diagrams may appear the same, due to the different parton distribution functions of
the proton and the antiproton we must calculate each individually i.e. no symmetry factor
can be used to relate the cross section of the subprocess qg — QQ~ to the cross section of
79 — QQ as the quark distribution is different in the proton compared to the antiproton.
The dots on the quark lines indicate alternative locations for the photon which have been
taken into account, but which do not affect the colour structure of the matrix elements.

R | () <3 i) —ve (2) o (2]
N 23_3E ( L ) N 63+6:8— 0n; (; B @(;qg) _ @(;g§)>
() )2 ()8 -2)
e e N R 6559

As usual, by renormalising a, we eliminate the UV pole from the last term.

6.5.4 Virtual corrections

As we have seen before and according to the KLN theorem the singular terms present in the
virtual contribution cancel the singularities from the extra unresolved parton contribution.

The relevant diagrams for the virtual corrections can be seen in Figures 6.6 and 6.7. Here
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we present the poles and finite terms as calculated.

EPAY 1 |Sq] ’ 3 |Sqq] ’ 3 |$ga] ) 7
Smin €2 \ Smin 4e \dmp3 4e \dmp? 2
‘ 7

1 (1 (|sql 3 ( lsal \ LO 2
+ N2 <—2 (Smin +§g Ay, +§ |Mab—)'y+1jet|

€
+ F(Q;9;:Q) (6.5.56)

where

F(Q;9:Q) = 2madna(N?—1) <a2s7JTV) [3 (E _ Sﬂ> log (@) 19 (fﬁ@ T 5&) log? (M)

Sqg  Sg7 |53l Sqg  Sgg |53l
+ (1 - O(s49) — O(s,7)) + % ((—4M _ ol _ 4) log? (@>
N Sqg Sgg |547]
21 — Ofs) — O(s.)) 4 | —a%19 _ 95 _ 2 [ 154s]
+ 71— O(s53) — O(sqg)) + | —4 2 4 |log
Sgq Sqg |S4gl
65 -
+ 72(1 — O(sqg) — O(543)) + <_Siq_ _ ) log (l_‘s_@_,)
Sqg S gzl

CREE)

In both the virtual and extra parton terms we have had to analytically continue log®(z)
such that invariant masses calculated between initial and final state partons will produce
sensible results. Therefore we introduce © terms into the calculation. Combining the extra

unresolved parton and virtual results and cancelling the IR poles we find

1
dO',l;I_*Iijet = /diﬂldxg Z 2_§_fa($1)fb(l'2)|M%I_Ig+1jet|2dps2—>2 (6558)
ab

where

IMOED il? = RV

ab—y+1 jet

= [(’C(Q;g;@) - %’C(Q;@D IMED P + F(Q;9; Q)| (6.5.59)
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Figure 6.6: The virtual corrections to the subprocess qg — g7 and gg — gv. The circle
indicates either a quark self energy i.e. a gluon emitted and reabsorbed or a vertex correction.
The solid dots indicate alternative positions for the photon which have been taken into
account in the calculation. As usual the proton’s parton is in the top left hand corner of the
diagram and the antiproton’s parton is in the bottom left hand corner.

and where

= o (uh) N 2 [ 544l 2 (1843l 3 |84l 3 |Sgal
R — _ 179971 749491 - 17491 1 1Je7
’C(Q’ s Q) ( 2m log Smin log Smin * 4 log Smin * 4 °8 Smin

2 4 67 5 2
+ % (9(549) +O(sg7) — ‘) +o2 —nlj} + s (1u*)bo log (;ﬁ )

3 18 9N min
— J(uE)N _ 3 . 2 9

(6.5.60)

Not shown here is the factorisation of the 3 body phase space into the 2 body phase space
multiplied by regulating z° terms. The reader is referred back to Chapter 2 for the details

of this factorisation.

6.5.5 Crossing terms and fragmentation contributions

First we consider the crossing terms derived in Section 6.4. As stated before these simply

replace the respective parton density functions and multiply the LO y+1 jet matrix elements.

Therefore we write
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Figure 6.7: The virtual corrections to the subprocesses gg — ¢v, 99 — ¢7v, @9 — QY and
gG — Gv. The circle indicates either a quark self energy i.e. a gluon emitted and reabsorbed
or a vertex correction. The solid dots indicate alternative positions for the photon which
have been taken into account in the calculation. As usual the proton’s parton is in the top
left hand corner of the diagram and the antiproton’s parton is in the bottom left hand corner.
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do‘f;{;_)iiet = /d.’l/'leQ Z 2A .’171 ,LLF)fb(-TZ) + fa(xl)Cb(x%)U’F))lMab—w-}—lje(:' dPSZ—’2
(6.5.61)

where the C,(z;) functions are defined in Equation 6.4.45.

The final contribution we consider is due to the fragmentation of a final state parton
into a photon. The matrix elements that are convoluted with the fragmentation function
are those tree level diagrams of order O(aa?) with quarks and/or antiquarks in the final
state. See Figure 6.8 for the relevant LO diagrams. Therefore we need to consider all the
symmetries of the diagrams ¢q7 — gg, ¢ — QQ and gg — ¢g that have at least a single

quark/antiquark in the final state. This gives the differential cross section as

dafyrigljet — /dg;ldeZ fa 1 fb($2)(|qu—>gy|

+ IM;“?_)‘MI?
T IM q—)QQI )Dq—”)'(z’ .u’?rag)dPS2—>2dZ (6562)

The squared matrix elements for these processes are well known and are reproduced in

Equation 6.5.63.

3 3
Sq9.5 &) SggoS S
IMLO |2 — 47T2a2N(N2 _ 1)8 991492 + 492 4 492~491 + q91
99799 s s Sqa S s 84928
9192 491-9192 9192 492°9192
1 (ngl 3qu>>
2
N2 \849:  Sqmn
2 2 2
+ s + s 2 s
|M¢I;O |2 — 471'2012(N2 _ 1)8 Q1112 oz + 41Q2 Sam _ = q192
1914292 s 52 g2 _ Ns. —8, —
Qg 9192 191°9192
2 2
$;0t+ 8=
2 _ 2 2/n72 9@ " “qQ
M2 qal” = 4rPal(N? - 1)8 (——33_ (6.5.63)
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Figure 6.8: The tree level diagrams that are convoluted with the fragmentation function,
D, (2, u%) to produce the fragmentation contribution to the process pp — v + 1jet. The
only requirement is that one of the final state partons must be a quark or an antiquark. (At

this order we neglect the contribution Dy, (z, u%)).

6.5.6 Final result

Bring all the separate contributions together we have

_ LO NLO Cross
dopssqrx = d0y{15e A0y Tier T 405 et
LO
+  doy e

frag
+ d07+1 jet

(6.5.64)

We split up the equation in this manner to identify various groups. The top group can all

be calculated using the 2 to 2 body differential phase space factor and therefore we only

need to call this momentum generator once. The next term down is the only term that

requires the 2 to 3 body differential phase space factor and therefore is set up on its own.

Finally, the bottom term requires not only integration over 2 to 2 body scattering, but also

contains an additional integral over the fraction, z of the photon’s momentum compared
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to the photon cluster’s momentum. All these calculations include integrals over the initial
partons’ momentum fractions z; and z5. This is the basic structure of DPRAD. We have not
included quark flavour summation here, but this is fully incorporated into the Monte Carlo.
In the next chapter we analysis some of the results produced using both the fixed order and
the BFG resummed fragmentation functions, comparing with data gathered at the Tevatron
and studying some of the effects of cone algorithms and renormalisation/fragmentation scale

dependence on the z/pr distributions.

6.5.7 spin iIndependence

Having collated all the separate pieces we outline the independence of the final calculation
on the theoretical phase space division parameter, sy,. This is the parameter we have used
to define collinear and soft partons such that if s;; < Smin and sjx < Smin then parton j
is soft whereas if $;; < Smin and sjz > Smin then partons i and j are said to be collinear.
When we calculate the sliced contribution to the process this introduces terms of the form
10g%(Smin) and log(smin). However, these are cancelled by the numerically calculated region
of phase space where all the partons are resolved. In Figure 6.9 we demonstrate the Smin

independence of DPRAD, an essential indication of whether the routine correctly calculates

the cross section.

6.6 Summary

In this chapter we have introduced two theoretical tools necessary for the calculation of
prompt photon production from hadron-hadron collisions. This is an important process to
study as it facilitates our understanding of both the gluon distribution in the proton at

moderate values of z and the process of fragmenatation, a universal non-perturbative effect.

Firstly, we considered different techniques used in measuring and calculating prompt
photons. Ideally, we would wish to eliminate the non-perturbative part of the calculation
and this naively could be done by using isolated photons which are also relatively easy to
measure. However, a perfectly isolated photon is an infra red unsafe object and therefore we

must allow some degree of non-perturbation into the calculation to ensure a sensible answer.
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Figure 6.9: Plot demonstrating the independence of the calculated cross section on the
theoretical parameter spiy,. The approximations made by the slicing routine are better at
smaller values of Sy, but as we can see, numerical instabilty is a problem in this region.
Therefore we choose a value of smin = 0.1 for the rest of the calculation.
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Alternatively we could embrace the entire calculation and attempt to measure the non-
perturbative terms in other enviroments such as ete™ — v+ 1 jet which we could use in our
hadron-hadron collision due to its universal nature. We outlined this calculation, showing
how potential infra red poles can be absorbed into the fragmentation function which in turn
leads to an evolution equation for the fragmentation function. Another limitation placed on
the fragmentation function is that it must be well-behaved in the limit z — 1 where z is
the fraction of the parent parton’s momenta which the photon carries away. We suggested
a form for the O(«a) fragmentation function and also consider another form proportional to
O(a/as) for which we outline a resummation technique to include all logarithms of the form
o 1og™ ! (Usrag) and o 1og™ (fisrag). The technique we make use of for calculation is that of

Bourhis, Fontannaz and Guillet (BFG).

Another contribution which needed to be addressed was that of initial state radiation
which is not a concern for electron-positron calculations. Here, an initial state parton be-
comes indistinguishable from two collinear partons where parton b splits into partons u and
h and s,, — O leaving h to take part in the hard scattering. These divergent contributions
are absorbed into the structure function and the renormalisation leads to a crossing function

which can be convoluted with hard processes to account for the finite terms remaining from

these collinear states.

Finally we collated all the contributions to the process pp — v+ jets at O(aa?) and
detailed their inclusion in the Monte Carlo, DPRAD. We present the results in the next chapter.
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Chapter 7

Results and comparisons with prompt
photon data

7.1 Introduction

In this chapter we study the photon transverse momentum distribution obtained using the
parton level Monte Carlo DPRAD described in the preceding chapter. In particular, we inves-
tigate the effects of varying parameters inherent in the calculation of pp — v+ X at O(aa?).
In Section 7.2 we present the results and analysis of varying certain theoretical parameters
(such as the renormalisation scale) and of comparing the two different fragmentation func-
tions outlined in the previous chapter; the fixed order, fragmentation function measured by
ALEPH and the BFG resummed fragmentation function. We also make comparisons with
experimental data gathered by the CDF and DO collaborations [82, 83]. In Section 7.4 we
briefly outline another technique used by other groups for this calculation, namely the kp

broadening due to initial state soft gluon emission. Finally we summarise these findings in

Section 7.5.

7.1.1 Initial parton contributions

In this section we briefly show how each of the leading order subprocesses contributes to the
leading order calculation. As we have seen there are only two subprocesses, gg = 79 and
qg — qv (with respective charge conjugation and swapped initial parton symmetries). In

Figure 7.1 we show the percentage of each of the two contributions at different pr. values.
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Figure 7.1: Ratio plot of the two subprocesess’ contributions against the total leading order
calculation. The solid line shows the percentage of the leading order result due to the
subprocess g7 — g7 and its symmetries whereas the dashed line shows the contribution due

to the subprocess qg — ¢y and symmetries.

The solid line shows the ¢g — g contribution and the dashed line shows the gg — ¢7 one.
As we can see, at low values of the transverse photon momentum the quark-gluon initial state
dominates over the quark-antiquark contribution. However, by 100 GeV, the two effects are
roughly equal with the quark-gluon contribution falling off at higher pJ. values, leaving the
qq — 7yg contribution to dominate. Therefore, we see that to study the gluon distribution

in the proton, we must concentrate on small values of the transverse photon momentum.

7.2 Uncertainty in the theoretical prediction

In this section we shall study the variations of the photon transverse momentum distribution
with theoretical parameters such as the renormalisation and factorisation scales (ug, pr) and
parton distribution functions (MRST98 upper, central and lower gluon) which are intrinsic
to any observable in hadron-hadron collisions. We also study features specific to photon
production such as isolation criteria (cone size, hadronic energy cut-off), as well as analysing
the differences between the different fragmentation functions we have introduced (fixed order
ALEPH and BFG resummation) and the inherent fragmentation scale (pgag) dependence.
We shall also look at distributions in z, the fraction of momentum carried by the photon in

the photon cluster where it will become apparent that there is a problem. Finally we shall
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compare the theoretical results of DPRAD with experimental measurements gathered by the
CDF and DO collaborations. These extend over the range 10-120 GeV for the transverse
momentum of the photon and the rapidity ranges |n,| < 0.9 for CDF and both |7,| < 0.9
and 1.6 < |n,| < 2.5 for DO.

7.2.1 Differences between the fragmentation functions

We begin by studying the differences between the two fragmentation functions we considered
earlier. The fixed order ALEPH fragmentation function (FO) differs from the BFG resummed
case in that it is totally j., independent at each order whereas we have some uncertainty
due to scale choice in the fragmentation function of BFG. For this thesis we have taken
two extreme cases, one that represents the hard scale in the process, pgas = pr, and one
that reflects the fact that the fragmentation process is essentially a long distance process,
Pirag = kr where kp is the transverse momentum of the hadrons with respect to the photon
direction. In practice this latter scale is kz = Epaqsin(d) and where § ~ R, the cone size
and Ej.q is the hadronic energy cut used in the definition of isolation. For the comparisons
with experimental data presented here, Eyag will be set at 2 GeV. Therefore the pigag = kr
scale is fixed as opposed to the pga, = py scale (or physical scale) which varies with photon

momentum. These two choices encompass the reasonable range of fragmentation scales (up

to simple factors).

As a baseline choice, we choose the physical scale, ur = pir = fitrag = P together with
the ALEPH fragmentation function (FO) unless stipulated otherwise. Similarly, we select
the MRST?2 parton distributions which have been obtained using fits to the data assuming

no intrinsic smearing due to transverse motion of the partons in the proton.

In Figure 7.2 we see the ratio plot of the differential cross sections, do /dpl. for the
two extreme BFG scale choices compared against the baseline FO result. The lower scale
(short dashed line) gives higher values of the cross section compared to FO, with values
at high pJ. being comparable with FO, but then rising to approximately 10% larger at low
py. values indicating the increasing importance of the fragmentation contribution at low D
The higher, physical scale, choice (long dashed line) has smaller values of the cross sections

compared to FO at large p}, but after dropping to a minimum at pj. =~ 30 GeV the BGF
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Figure 7.2: Ratio of the fixed order ALEPH fragmentation function calculation to the re-
summed BFG fragmentation function calculation. The two lines represent the two different

scales BFG (fifrag = py) and BFG(pgag = kr).

(4trag = D7) result rises sharply so that for the lowest pr bin it is approximately equal to the

FQO result.

We can understand these trends if we consider the z distributions of the different non-
perturbative fragmentation functions. To gauge the fragmentation function effect, we con-

sider the combination of perturbative and non-perturbative parts,

2 2

Dy (2 1hag) = Dol hug) + 52 10 (sminzgrlag— z)) 1+ (1Z —2) (7.2.1)

for a given choice of sy, which we take to be 0.1 GeV?. Changing Smin gives a weak
dependence on z due to the splitting function and affects all fragmentation functions equally.
To be specific, we select the up quark fragmentation function and in Fig. 7.3 we show three
lines representing the three approaches. The FO curve (solid line) rises as z — 1 due to
a factor —log((1 — 2)?) in the non-perturbative part of the fragmentation function. This
divergence is partially cancelled by the perturbative part of the fragmentation function and
in the full calculation by the integration over the isolated photon region which both yield a
factor log(1 — 2). In both of the BFG curves the fragmentation function dies away as z — 1

due to the perturbative log(1 — z) term. Note that to mimic the isolation criteria, which

relates the minimum allowed z value to the p}. via,
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Figure 7.3: z distributions of the three fragmentation functions considered, the fixed order
(FO) ALEPH calculation (solid line), the BFG resummed function with g = pp = 22/(1—
) (dashed line) and the BFG resummed function with pg.e = kr (dotted line). Note the
difference in shape of the FO and BFG functions. This accounts for the rise at low p} in
Figure 7.2 in the BFG prediction as compared to FO.

is BT (7.2.2)
Ehaa + pp

we have selected pgag = Pf = Fhaaz/(1 — z) for the hard scale BFG curve (dashed line).
We now consider the pJ. = 115 — 120 GeV bin. If we have an allowed hadronic cone energy
cut of Eyp.g = 2 GeV this corresponds to a zqy value of 0.983 (115/117). This is the lowest
value of z that an event must exhibit to be retained and we numerically integrate up from
Zeut to calculate the cross section (for that particular photon momentum). For the hard
scale BFG result, the fragmentation contribution is clearly more negative than any of the
other procedures, with the FO and soft scale BFG results being roughly equal, as seen in

figure 7.2.

On the other hand, for the pJ. = 10 — 15 GeV bin, we integrate from values of zey =
0.833 (10/12) upwards. Due to their shapes we see that the low scale BFG prescription
integrated gives a smaller negative value than the FO approach which becomes increasingly
more negative as zey decreases. The visible relative rise at small pr is due to this effect.
Similarly, the fragmentation contribution in the high scale BFG approach becomes closer to

that for FO, giving the relative rise at small p}. seen in Figure 7.2.
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Figure 7.4: Ratio plot of the different predictions for pp — v+ jets as a function of p}.
obtained by varying the renormalisation scale and factorisation scales. This scale variation
effects both FO and BFG results in the same way. We use the same value for both the
factorisation scale and the fragmentation scale although this need not be the case. The
dashed line demonstrates the effect of increasing the scale by a factor 2 while the dotted line

corresponds to halving the scale.

7.2.2 Renormalisation and factorisation scale dependence

Two of the most important parameters that it is necessary to have some degree of control
over in any perturbative calculation are the renormalisation scale pp and factorisation scale
pr. (See Section 1.4.) Figure 7.4 shows the effect obtained by varying ur = pp by a factor
of two around the physical scale g = pur = pp. This gives some idea of the contribution of

uncalculated higher order corrections.

We see that by varying the renormalisation (and factorisation) scale in DPRAD, for the
lower scale choice there is an overall increase of about 10% in the cross section. The shape
of the distribution has not been affected to any great degree. However, for up = pr = 2py,
although we have an overall 10% decrease compared to the physical scale, we do see a slight
relative increase of about 5% in the cross section at low py (p} < 20 GeV). This is precisely
the region where data and theory disagree most strongly. However, an increase of 5% is not
sufficient to explain the differences seen between theory and data and so we cannot attribute

the data-theory disagreement to scale variation solely.
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Figure 7.5: Ratio of the fixed order ALEPH fragmentation function calculation with cone
size R = 0.7 to the same calculation with different values for R as a function of pJ.. Again,
this behaviour is similar for both of the fragmentation functions under consideration.

7.2.3 Dependence on the photon isolation criteria

Another important effect to examine is the dependence on the isolation criteria used i.e. on
the parameters used to separate isolated photon events from fragmentation contributions
and other events. In our predictions we have used a cone algorithm which places a cone
around the photon of size R = \/ (An)? + (A¢)? = 0.7. Any partons inside the cone are then

checked against an allowed hadronic energy cut. If the amount of hadronic energy is greater

than the cut then the photon is considered to be non-isolated and the event is removed
from consideration. In comparisons with the experimental data, this cut is usually fixed at
2 GeV. On the other hand, in electron-positron collisions, the amount of hadronic energy
must be less than a fixed percentage of the photon cluster energy. Clearly the contribution
from very isolated photons - i.e. the lowest order contribution, is unaltered by changing the
isolation requirements. However, by changing these cuts, together with the cone size, we can

investigate the contribution from both real radiation and fragmentation.

By increasing the cone size we incorporate more hadronic energy into the cone and
therefore the probability of the photon remaining isolated decreases. This is exactly what
we see in Figure 7.5 where we have plotted the ratio of results using different sized cones
against the standard R = 0.7 cone. Increasing the size of the cone from 0.7 decreases the

differential cross section by a few per cent almost independently of pl. Similarly, smaller
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Figure 7.6: Ratio of the prediction using the fixed order ALEPH fragmentation function for
different values of z,; compared to the same calculation with Ey,q = 2 GeV. Similar results
are also obtained using the BFG fragmentation function.

cone sizes give a slight rise in the cross section.

In Figure 7.6 we show the variations induced by altering the hadronic energy cut off,
Zeut- AS Zeus (0T 1 — Enaa/Feuster) increases, more events that previously made the cut are
rejected. For example, when z.,; = 0.7, a gluon with energy 2 GeV can exist in the cone
with a photon of energy 10 GeV. However, if zqy; is increased to 0.9 this event fails the cut
and is removed from consideration. Therefore as 2., — 1, events that pass the cut become
more and more isolated and the differential cross section should decrease accordingly. This
is what we see for large values of p}. in Figure 7.6 where 2. = 0.7 is approximately 10%
larger than ze = 0.99 for the pj = 115 — 120 GeV bin. However, for small values of py
e.g. py < 30 GeV we see the reverse occuring i.e. the differential cross section increasing as
Zeus increases. To study this effect we have calculated the z distribution of the FO result for

specific pj. bins. These can be seen in Figure 7.7.

In Figure 7.7 we show the distribution in 2 for the fixed order calculation in the py
bins 10-15 GeV, 15-20 GeV, 20-25 GeV and 25-30 GeV respectively with zey = 0.7. At
= 1 the photon is completely isolated and here the differential cross section is largest.
This corresponds to the parts of the calculation where quarks and gluons either become
collinear with each other and distinct from the photon (i.e. not inside the cone) or that all

the particles are distinct. Away from z = 1 we have the fragmentation contribution to the
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Figure 7.7: The differential cross section do/dz as a function of the fraction z = D1/ Peluster
for the p). bins 10-15 GeV, 15-20 GeV, 20-25 GeV and 25-30 GeV respectively.

calculation as well as the collinear quark-photon final states.

In this figure we immediately see the reason for the unexpected behaviour of Figure 7.6
where the cross section appears to increase as the isolation criteria is stiffened. The dif-
ferential cross section is actually negative for certain values of z and becomes increasingly
more negative for smaller values of p}. Also, at small values of pr, the range over which
the differential cross section is negative grows. This is reminiscent of a similar problem seen

in [84] where, in the process ete™ — v +1 jet a negative differential cross section was also

observed.

Glover and Morgan, studying both the cone and the democratic algorithms, in electron-
positron collisions considered the same differential cross section in z and found a similar
effect. Although in principle the cross section for photon + X should be well behaved as
a function of z, there is an effect to consider. There is a discontinuity across the boundary
between the isolated region in which z = 1 and the region where the parton lies inside the
photon’s cone where z # 1 (the boundary between regions 1 and 2 of Figure 6.1). When
hadronisation effects are taken into consideration (the process of extending the partonic
picture to the hadronic one) sizeable shifts are seen in z. This will always be the case,
however there is a dramatic effect when the matrix elements are large leading to big shifts
in the cross section which makes parton level predictions of the accompanying hadronic

energy particularly unreliable. ALEPH [85], using the democratic cone algorithm, saw this
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effect in the shower Monte Carlo they used as a spilling over of parton level events from the
0.99-1 bin into the 0.95-0.99 bin at the hadron level. In other words, a previously isolated
photon with z=1 may, during the hadronisation process, find that a soft gluon is now within
the isolation cone such that z is reduced to below 0.99. ALEPH therefore changed their
definition of isolation and defined an isolated photon as one which has z > z5, = 0.95 (i.e.
combined the bins) and compared this against the partonic picture with z > 2. This
makes sense because although hadronisation effects change the precise value of z, they tend
not to move events from the isolated to non-isolated categories i.e. a isolated photon with
z = 1 will not be moved further than 0.05 due to hadronisation and thus with the new
definition of 2, it will still remain isolated. This worked satisfactorily for the democratic
algorithm where the cone size is effectively 90°. However, in cone algorithm the range of z
values for which the differential cross section is negative is larger and a smaller value of zig is
required. In parton language, a smaller cone allows the quark-photon collinear singularity to
be probed more closely. This is where the matrix elements are much larger and consequently
the hadronisation effects are much more marked. This shows up as an enlargement of the
region where the parton-level differential cross section is negative as the cone size decreases.
In other words, with smaller cones the hadronisation effects are more pronounced due to
the fact that we are trying to resolve the collinear region where perturbation theory breaks
down. Thus the minimum allowed hadronic energy in the cone should rise to minimise the

size of hadronisation effects that are not included in the theoretical calculation, but which

are clearly present in the data.

We can also see the effect of increasing the cone size for the process pp+ X in Figure 7.8.
We see that as the cone size increases, the region of negative differential cross section becomes
smaller. We are moving further away from the collinear region and hadronisation effects are
becoming smaller. We note that for the CDF and D0 measurements, R is taken to be 0.7.
Although the largest cone seems to have the largest cross section (after integration) this is

misleading as the z = 1 peak shrinks with increasing cone size as can be seen clearly in

Figure 7.5.
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Figure 7.8: The differential cross section as a function of z = p/Peuster for the pJ. bin 15-
20 GeV. The figure highlights the effects of different cone sizes on the fixed order ALEPH

fragmentation function calculation.

7.2.4 Dependence on the parton density functions

We consider the variation of the results with different parton distribution function inputs.
For brevity we only consider variations induced by the five different parton distributions
developed by the MRST98 collaboration. Figure 7.9 shows a ratio plot of the different
distributions with respect to the baseline MRST2 set as a function of py.. This distribution
was choosen as a baseline because it contains no intrinsic k7 smearing and therefore is closer
to the perturbative approach we have adopted for this calculation. We see that all the
results lie within a band of 14% at the small p}. end with the high «; distribution giving the
largest result and the low «, distribution giving the lowest one. All the results decrease as
we increase py so that at pp, = 120 GeV the band has thinned to about 10%. However, the

low «; distribution has the correct shape to account for some of the disagreement between

theory and data.

7.2.5 Predictions using the resummed fragmentation function

In this section we compare the fixed order results with those using the BFG resummed
fragmentation function. In the previous section we saw that the z distribution of the smaller

py bins for the FO result left us with a region where the differential cross section became
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Figure 7.9: Ratio plot of the fixed order result with different parton distribution inputs.
All ratios are compared against MRST2 which is the set of parton distribution functions
with no intrinsic kr smearing. The lines are as follows MRST1 = central gluon ({kz) = 0.4
GeV,a, = 0.1175), MRST3 = lower gluon ((kr) = 0.64 GeV, o, = 0.1175), MRST4 = lower
as ((kr) = 0.4 GeV,a, = 0.1125), MRST5 = higher o, ((kr) = 0.4 GeV,a, = 0.1225).

negative. We consider those same distributions, but plot the results found using the BFG
resummed fragmentation function. We consider the two extreme fragmentation scales, the

physical scale where pigag = p and a smaller scale set at piga; = kr as defined in Section 7.2.1.

Figure 7.10 shows the z distributions for different p}. bins for both fixed order and re-
summed fragmentation functions. We see that with the large fragmentation scale Ifrag = 28
the resummed and fixed order predictions are qualitatively very similar; we have the same
problem with the differential cross section becoming negative at large values of 2. This
problem is particularly apparent at small pX. Quantitatively, there are still slight differences
and the high scale BFG predictions are slightly less negative than their FO counterparts
and the range of z for which it is negative is smaller. Neverthless, we again take this to be
a warning sign that hadronisation effects are both sizeable and necessary to give a physical
answer. However, when we consider the smaller scale pa, = k7, we find that the differential
cross section is positive definite for all values of z and for all the p). bins. Based on this
discussion, we suggest that the resummed fragmentation function with a small scale is the

best theoretical model to directly compare with the experimental data.

We note in passing that the BFG resummed fragmentation function has the same be-
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Figure 7.10: The differential cross section as a function of the fraction z for different P bins,
10 GeV < pl < 15 GeV, 15 GeV < pi < 20 GeV, 20 GeV < pp < 25 GeV, and 25 GeV <
py. < 30 GeV, respectively. The three lines shown are the fixed order ALEPH fragmentation
function (solid), the BFG resummed fragmentation function with pg.g = pr (long-dashed)
and the BFG resummed fragmentation function with pga, = kr (short-dashed).

haviour as the FO result with respect to the other perturbative parameters. For example,
with increasing cone size the differential cross section grows for z < 1 and the z = 1 peak

shrinks giving an overall decrease in differential cross section as R increases.

7.3 Comparison with the data

The final figures of this result section (Figure 7.11) are the comparisons between the CDF and
DO data and theory. For the theory lines we have plotted the LO result, the BFG (urag = Pr)
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Figure 7.11: The ratio of experiment to the baseline NLO fixed order result for the CDF
experiment with |7, < 0.9. The dotted line shows the ratio of the lowest order prediction
(LO) to NLO FO, while the large dashed (short dashed) lines show the ratio of the BFG
Utrag = pr (Wotrag = kr) predictions to the same baseline theory.

NLO result and the BFG (ugag = kr) result using the isolation criteria appropriate to the
CDF experiment (R = 0.7, Epag = 2 GeV). Based on the previous discussion the best
motivated theoretical prediction is the BFG (it = kr) curve. However, we see that it is
unable to produce a steep enough slope at low p}. to accurately describe the data. In the

next section we outline one possible technique which has been used to improve the fit.

With the experience gained through examining the prompt photon transverse energy
distribution for the CDF experiment, we now turn to the data gathered by DO. The DO

photon isolation cone is somewhat smaller R = 0.4 and the amount of hadronic energy is

limited to be Fi.q < 2 GeV.

7.4 Intrinsic k7 broadening and initial state soft gluon
resummation

It has been noted [86] that unexplained deviations between experimentally measured direct
photon cross sections and NLO calculations exist. These discrepancies exist for essentially
all direct photon data sets; fixed target, ISR, the SppS and the TEVATRON. This can be
seen especially clearly in the E706 fixed target data [87]. One possible explanation for this
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Figure 7.12: The ratio of experiment to the baseline NLO fixed order result for the DO
experiment with (a) |7,| < 0.9 and (b) 1.6 < |n,| < 2.5. The large dashed (short dotted)
lines show the ratio of the BFG gy = Py (prag = kr) predictions to the same baseline
theory.

disagreement is initial state soft gluon radiation which gives a transverse boost to the hard
scattering process itself. Of course, some degree of transverse momenta is expected due to
the finite size of the proton which is labelled intrinsic kr broadening. However, we expect

that this is a relatively small effect being of the order (kr) = 0.3 GeV per parton.

However, [88] claim that additional kr smearing has been observed in dimuon, diphoton
and dijet pairs over a wide range of centre of mass energies. They claim that the average
transverse momentum of the pair is firstly too large to be intrinsic (0.5-5 GeV) and secondly
that it increases logarithmically with /s. They state that “similar soft gluon effects are
expected to be present in all hard scattering processes, such as the inclusive production of jets
or direct photons” [89]. In their paper they outline the necessary resummation calculation,
noting that at collider energies most of the kr is attributed to the perturbative part of the
resummation together with a non-perturbative input that specifies the contribution of gluon
emission in the infrared. The non-perturbative function is then determined by convoluting
with the LO perturbative prediction, integrating over kr fitting to the data. This procedure
depends on the form of the non-perturbative function which is typically taken to be Gaussian.
Using this method, Apanasevich et al found that a reasonable fit to the Tevatron data could
be achieved with a Gaussian width (kr) = 3.5 GeV. The kp smearing generally moves events

from low pj. where the cross section is largest out to larger p}.. Because the cross section falls
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off dramatically with increasing pJ., even a slight smearing can have a noticeable effect. Of
course, the effects die off with increasing p} and generally they only affect the cross section

in the region py < 40 GeV.

Unfortunately, there is no value of (kr) that can simultaneously explain all of the available
data. In particular, the recent E706 data seems to require a (kr) out of line with both the
lower and higher energy experiments. In fact, according to [90] “including kr effects may help
some data sets (E706) to agree with theoretical predictions, but it simultaneously destroys
the agreement with other sets (WA70, ISR) with theory”. Another concern over the inclusion
of kr smearing voiced by Aurenche et al was that fitting the value of (kr) depends on the
perturbative cross section. At small values of pJ. the perturbative predictions are not stable
with respect to the renormalisation and factorisation scales and so the perturbative cross
section and therefore the smearing (kr) are dependent on these scales. Also, it has been
shown that a reasonable fit to data can be achieved by essentially fine tuning the gluon

distribution [91].

7.5 Summary

In this chapter we have used the Monte Carlo routine DPRAD to make predictions for the pho-
ton transverse momentum distribution and compared these predictions with data obtained
by the CDF and DO experiments at the TEVATRON. We have reproduced the well known
effect that the theory undershoots the data at small pJ. ~ 20 GeV. We have investigated the
different fragmentation functions outlined in the previous chapter, namely the fixed order,
ALEPH measured fragmentation function and the BFG resummed fragmentation function.
In particular we have investigated the effects of changing the theoretical inputs such as the
renormalisation scale, the parton density functions and the way in which the photon iso-
lation is applied. The most striking effect was that as the isolation condition is relaxed
- the amount of hadronic energy accompanying the photon is increased, the cross section
appeared to decrease. This is counterintuitive and can be traced back to the differential
cross section in z being negative for the FO and BFG (p,e = p}) predictions. One way of
understanding this is that the isolation criterion is probing the region where hadronisation
effects cause large shifts in the measured z value. A parton level event with z = 1 is turned

into an event with z = 21,9 < 1 at the hadron level. Parton level theoretical predictions will
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have great difficulty in describing this effect. One way round this is to lower the isolation
cut zeyt 80 that the event is retained at both the parton and hadron level. In fact, in ete™
annihilation, the ALEPH collaboration studied the z distribution before deciding on the
isolation criteria. This has not been done at the TEVATRON. An alternative approach is
to lower the fragmentation scale g, which has the effect of increasing the fragmentation
contribution at high z (but still z < 1). Evolution to lower z is then suppressed and the z
distribution rendered positive definite. This is rather less satisfactory, but in the absence
of an experimental investigation of the z distribution yields the best theoretical prediction
for the photon transverse energy distribution. As we see from Figs. 7.11 and 7.12, this goes
some way towards improving the agreement between theory and experiment, but still leaves
room for improvement. One possible explanation may be the inclusion of kr broadening
due to intrinsic transverse momenta considerations and initial state soft gluon resummation.
However, the perturbative part of this calculation has not yet been performed and the cur-
rent models that assume this part of the calculation can be approximated using a Gaussian
smearing are still too different and dependent on the perturbative predictions to definitely

state that this is the source of the necessary additional theory.
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Chapter 8

Conclusions

8.1 Review

In this thesis we have utilised some of the modern techniques used in NLO QCD calculations
for both electron-positron and proton-antiproton experiments. Specifically we have concen-
trated on the NLO calculations of the processes eTe™ — 4 jets and pp — v + X and have
produced two Monte Carlo routines, EERAD2 and DPRAD, that can be used in the evalution

of any 4 jet variable and the transverse photon momentum distribution respectively.

In Chapter 1 we introduced the formation of the QCD Lagrangian using the quark model
as a basic picture and outlined how this leads to the perturbative expansion of physical vari-
ables in terms of the coupling constant, g. We studied the necessary gauge invariance and the
differences between the non-Abelian nature of QCD and Abelian QED. We also considered
the prescription of renormalisation where the absorption of the ultra violet poles into the
bare gluon and quark fields and the bare coupling leads to the concept of a running coupling
constant. For QCD (unlike QED) we find that the strength of the coupling diminishes as
energy increases making it an asymptotically free field theory. Renormalisation also intro-
duces a scale, p, into NLO QCD calculations which all truncated observables depend on.
This scale is arbitrary, but is usually taken to be the scale of the process (x = 4/s) known

as the physical scale. However, we also considered other scales proposed by Stevenson and

Grunberg.

Although the likelihood of a process occuring is controlled by the short distance per-
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turbative QCD picture the formation of hadrons is governed by non-perturbative physics.
Therefore at leading order only can we directly relate quarks and gluons to jets. At higher
order we start to model the partonic showers that form jets and so a prescription for quan-
tifying the number of jets in an event is required. These are known as jet finding algorithms
and ideally they are insensitive to long range hadronisation. For this thesis we concentrated
on three variants, the JADE, DURHAM and GENEVA algorithms. Looking at higher or-
der techniques in Chapter 2 we saw how NLO QCD calculations introduce new divergences
due to the integration over internal loop momenta. These are infra-red poles and these
divergences cancel, order by order, with the poles present in processes with a single extra
unresolved parton according to the KLN theorem. The formation of colour algebra also aids
the evaluation of NLO quantities, deriving the colour factors that can be factorised into the
calculation. After this colour division we are left with kinematical terms which we can group
into ordered gluon emission; this is known as colour decomposition. These ordered subam-
plitudes then display factorisation properties in the soft and collinear regimes, allowing us

to write the divergent extra unresolved contribution as a divergent factor multiplied by the

hard remaining process.

Having identified the cancellation of infra red divergences it is then necessary to develop a
routine which analytically removes these poles. In Chapter 3 we studied three contemporary
techniques, but for the NLO calculation of the process ete™ — 4 jets in this thesis we have
used a new variant of the hybrid subtraction scheme (the hybrid subtraction scheme uses
both the slicing and subtraction scheme to remain universal and independent of additional
theoretical parameters). This particular prescription relies on the factorisation of the matrix
elements and the phase space using an antenna of particles where the antenna consists of
two colour connected partons from which a third unresolved parton is emitted. This then
factorises the full matrix element and phase space term into a hard scattering term and
a divergent antenna factor. We derive the necessary integrals for each of the four types
of antennae, utilising the N = 1 supersymmetric identity which relates the NLO splitting

functions to each other. It is these functions that are used in EERAD2.

In Chapter 4 we outlined the calculations necessary for the evalution of NLO observables
from the process efe™ — 4 jets. This includes the virtual diagrams from e*e™ — qggg
and ete~ — ¢gQQ using the matrix elements of [66, 67] and the extra, unresolved parton

diagrams from ete™ — ¢gggg and ete™ — q3QQg. Making use of symmetries and neglecting
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some contributions reduces the lengthy calculation to a more compact form.

Comparing EERAD2 to results obtained with the other Monte Carlo routines, MENLO PARC
and DEBRECEN in Chapter 5 gives good agreement for the 4 jet fraction and in the case
of DEBRECEN for the 4 jet variables, D parameter and Thrust minor as well. We have
also present the NLO coefficients for previously uncalculated variables such as the light
hemisphere mass, the narrow hemisphere broadening and the jet transition variable for the
GENEVA and JADE algorithms. For each distribution it was found that the NLO corrections
were of the order of 100% of the LO result, although for all the observables calculated at
the physical scale this was still a factor 2 below the experimental data as measured by
the DELPHI collaboration. Using a smaller scale such as the FAC scale seems to model
the experimental data better. For observable Oy it is clearly seen that the resummation of

leading and subleading logarithms of the type log(1/04) is necessary in the infra red region.

Chapter 6 looks at the NLO calculation for the process pp — 7 + jets. For this calculation
we need to introduce two more ideas, that of fragmentation and initial state collinearities.
Fragmentation is one of the processes by which a photon can enter the final state of a process.
It is a universal, non-perturbative effect where a parton fragments into a photon which
carries off a momentum fraction z of the parent parton’s momentum. This occurs during
the hadronisation process and is described by the function D;_,,(z). However, we can also
produce photons perturbatively and in some configurations this gives a divergent result i.e.
when the photon becomes collinear with its parent parton. These poles can be absorbed into
the fragmentation function in much the same way as the 1 loop quark self energy corrections
are absorbed into the defintion of the quark wavefunction. This renormalisation procedure
introduces a scale to the process, pgag which the fragmentation must be independent of,
placing a constraint on the non-perturbative part of the function. The coupling of this
non-perturbative contribution is contested in the literature and for this calculation we have
used a form with coupling proportional to O(c) which we justify by using the experimental
measurement of the ete™ — 4 + 1 jet rate. The other technique introduced in this chapter
is a method of dealing with initial state radiation and the potential divergences present here.
With a initial state hadronic current we can form initial-final state collinear states which are
normalised into the definition of the structure functions. In this thesis the NLO calculation
is performed with all of the particles in the final state, then we cross two into the initial state.

This correctly contains all the final-final divergences and the newly introduced initial-final
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divergences. However it introduces non-physical initial-initial state divergences which we
subtract from the process. From this we form the necessary K factors for the calculation
and divergent crossing terms which are renormalised, introducing another scale pr. All these

calculations are incorporated into the Monte Carlo routine DPRAD.

Finally in Chapter 7 we compared the results obtained using DPRAD with experimental
measurements made by the CDF and D0 collaborations. We also studied differences induced
in the results due to the variation of parameters such as the renormalisation and factorisation
scales, the cone size and hadronic energy cut-off and the parton distribution function inputs.
In studying the z distribution at fixed pJ- we found that for the lower values of pJ. (< 30 GeV)
the distribution becomes negative for large values of z. This was similar to a problem seen in
the process ete™ — v+1 jet where the cause was related to the spilling over of isolated events
into lower z valued events due to hadronisation. To solve this, the ALEPH colaboration and
Glover and Morgan combined the final bins in the definition of isolation. This effect was
also seen to be cone size dependent. For the pp — v+ jets case we have shown that another
solution is to make use of a resummed fragmentation function at small pg,e Which gives a
positive definite z distribution for all p}.. For this thesis we have used the fragmentation
function of Bourhis, Fontannaz and Guillet (BFG) and considered its form at two extreme
scales, p} and kp = Ey,qsind. Comparing theory and experiment still leaves a shortfall in
theory at small p}. and one suggestion for resolving this is the inclusion of initial state gluon
resummation which leads to kr smearing effects. However, the result of the dominant part
of this effect remains uncalculated and models that attempt to approximate it are many and
varied. Also in [91] it has been shown that the data can be fitted by fine tuning the gluon
distribution. Finally, the inclusion of kr effects relies on a stable perturbative calculation in
the low p} regime, but here the variation with scale is too large for such a precise calculation.

Therefore, we do not include any kr effect in this calculation except that inherent in the

MRST98 functions.

Remaining work that needs to be considered in light of these calculations includes further
phenomenology of four jet production. Having seen the large NLO corrections and the
remaining theory-data discrepancy at the physical scale, this may suggest choosing a smaller
scale (as we have done) or including non-perturbative power corrections. Also the debate
remains over the theory-data disagreement in direct photon production. Whether fine-tuning

of the perturbative parameters or initial state gluon emission resummation is the missing
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piece of this puzzle requires much more work to resolve this discrepancy.
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Appendix A

Local gauge invariance of the QCD Lagrangian

One of the most fundamental principles underpinning the formulation of QCD is that of
local gauge invariance. This symmetry ensures that the Lagrangian (and thus any physical
process) has no dependence on a spatial definition of the SU(3) colour charge. If we define our
Lagrangian as in Equation 1.2.9 (using Equation 1.2.8 in our definition as well) and use the
spatially dependent SU(3) transformation in Equation 1.2.11, then we see that the first term
in the Lagrangian is only independent of V' if and only if the covariant derivative multiplied
by the fundamental triplet transforms as the fundamental triplet i.e. D'y’ = V(z)Dy. This
forces a transformation law on the gluon field which defines the covariant derivative. This

transformation is given by (here we drop the colour indices for clarity)

AR 5 V(2)1* ARV (z) — gV(m)(B“VT(x)) (A.0.1)

where repeated indices are summed over. We will show that this transformation, along with
the transformation of the quark field leads to the local invariance of the QCD Lagrangian.

Consider the transformations of Equation 1.2.12. Then

Dl = B4 (V (@)) + ig |V ()1 APV (z) éV(x)(@“VT(x)) V(z) (A.0.2)

Expanding this out and recalling that all SU(3) transformations obey the unitary relation

VVT =1 we find,
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DFep — MV (2)) + V()0 (1) + igV (z)t* Al + V () (8#V 1 (2))V (z)3 (A.0.3)

We then make use of the product rule, rewriting the last term such that

DHyp = O (V ()9 + V()0 (9) + igV (2)t* Alp — (0"V (2))V(z)V (z)9 (A.0.4)

where 9#(V(z)VT(z)) = &*(1) = 0, again employing the unitary condition. This leads to

the cancellation of the first and last terms giving

DHyp — V(2)(0") + igV (z)t* Atep = V(z) D (A.0.5)

and we have shown that using the SU(3) transformations that the first term of the proposed

Lagrangian is local gauge invariant.

Now let us consider the kinetic term. The form of the field strength tensor we shall use

here is that given by Equation 1.2.10 which generalises to the form

[D*, D" = igF*¢ (A.0.6)

where Y, F* 9t® = F**. We know that under an SU(3) transformation the covariant deriva-

tive transforms as D* — VD*VT. Therefore for gauge invariance we require

(DY, D'y = igF*'y
VD, VIVDVIVy - VD VIVD,VIVy = igF*'Vy
VD,D,p—VD,Dyp = igF*'Vy
VIDy, Dnp = igF*"'Vep
igVFE, = igF*'Vy
!l = VYT (A.0.7)
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With this transformation property we can now show that the kinetic term is locally gauge

invariant. We first need to demonstrate that

1 1
—FFy o =Ty [—iFWF’“’] (A.0.8)
where
1 i1z 1 uv a b
Tr [—EFWF } = =SB oFUTHE, 1]
1 v
= —ZF"”F‘f (A.0.9)

where Tr[t?, t°] = 1/2§%. Therefore, by substituting in the gauge transformed quantities and
using the cyclic properties of trace, we see that the kinetic term is locally gauge invariant.
We have now shown that all the terms in the proposed Lagrangian are locally gauge invariant

(as well as any quark mass terms as well). However, there can be no mass term for the gauge

bosons as this is clearly not gauge invariant.
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Appendix B

The 1 loop correction to the process ete™ — hadrons

In this appendix we shall look at the method developed by Feynman used to evaluate the
difficult one-loop integrals found in all NLO calculations. For the purpose of demonstrating
this technique we shall study the vertex loop correction of the NLO calculation of e¥e™ —
hadrons (See Figure B). For this calculation we multiply the loop diagram with the tree
level diagram to give a squared matrix element of the order O(c;). After performing all the

traceology in 4 — 2¢ dimensions we find

|M> = 32N(e — 1)ie2g’Crp® /

© di*k [6(10’-’6 )(p-k) + e(pp)(k.K) — (€ +2) (k) (P K)
(2m)4-2¢ (k2 + i€e) (k" + ie) ((k — p)* + i€)

(B.0.1)

where | M |? represents the interference between the tree level process and the 1 loop process.
We find that the factor 4 later cancels with another 4 coming from the integral over the loop
momentum, leaving the squared matrix element positive definite. Note also the difference
between ¢, the small distance moved in complex space used to define the time ordered product
and e, the small change in the number of dimensions. Finally we introduce the scale, p*, in

order to keep the coupling constant dimensionless in d dimensions.

The basic idea of Feynman parameterisation is to squeeze the denominator factors of

the squared matrix element into a single quadratic polynomial. This quadratic can then be
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Ka]

Figure B.1: 1-loop correction term in the NLO calculation of ete™ — hadrons

shifted such that the square can be completed and the remaining spherically symmetric inte-
gral can easily be performed. However, the cost of this procedure is to introduce additional
parameters to the calculation which in turn will need to be integrated over. Let us consider

an integral with just two factors in the denominator first.

! 1
- ) B.0.2
/dedyé(x—iry DAt BT (B.0.2)

AB / xA+ 1-xz)B

Putting this identity into a real example might give

1 1
I R s R e o

1 1
— -1
/o dedyd(z +y )[k2 — 2zp.k + zp?]?

(B.0.3)

By letting [ = k — xp we can complete the square and the integral depends solely on [ and

can easily be evaluated since d*k = d*l. For a general result we require the identity

(n—1)!

—_— dz;...dz, i — 1) B.04
A A2A3 / 10T Z-TJ .’L'1A1 + .'172142 + ...+ ZCnAn]n ( )
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Now let us apply Equation B.0.4 to our matrix element example in Equation B.0.1. We

write

1
(k —p)2 + i) (k2 + ie) (K2 + ic

1 2
;= /0 dadydo—s8(c +y +z— 1) (B.0.5)

where D is given by

D = z((k—p)®+ic) +y(k® +ic) + z(k"? + ie)
= PP+ Q%%y+ic
= P-A (B.0.6)

The form of D is given by using the identities ¥’ = ¢ —k, p> =p? =0, ¢—p=p/, ¢¢ = @*
and finally | = k — zq— zp. We write the numerator of the matrix element in term of {,p, Q, €

and the Feynman parameters z,y and z and make use of the identities

50 4—251 Iz
[ gm0

o 2T)E DD
/oo d4—2el lulu _/oo d4—2sl g‘“’l2
0

oo (2m)4% D3 (27)" % (4 — 2¢)D° (B.0.7)

The first of these identities follows from symmetry as D depends only on /2 thus making the
integrand on odd function. The second identity can be evaluated by rewriting [*I” as Ag"”
which also will vanish by symmetry unless 4 = v. We have to evaluate A and we do this
by postmultiplying both sides by g,, which gives [> = A(4 — 2¢). So using the identities of

Equation B.0.7 we find the numerator reduces to

PQY1-¢)®  Q'zyle —1) 1]
22 =2 . (B.0.8)
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Therefore the matrix element is now given by

0] 4--2¢ 1 _
F[" = 3209 - 1)ie? 2CF,U/ e / dodydzd(z +y+z— 1)

2’/’1‘ 4—2¢ D3
[l 622(2(1_—;) N Q [Zy(g; 1) — ] (B.0.9)

At this point of the calculation we introduce another technique necessary to analytically
integrate over the momentum variable [, namely Wick rotation. By rotating the coordinate
system from the Minkowski metric to the Euclidean metric (where there is no relative minus
sign between spacial and temporal diagonal elements) we can easily perform the integral.
We define an Euclidean variable [g such that the temporal component is {° multiplied by i,
but the spatial components of [ are the same as the spatial components of I which implies
the measure has been multiplied by ¢ as well. Therefore we have rotated the contour of
integration throught 90° (anticlockwise to avoid the poles) in the [° plane. Now we can
evaluate the integral as we can write the d dimensional measure as a radial measure and the

volume of a d dimensional sphere. Therefore

o 42 1 (—1)% o  Bdlg
- A% s / _BWE B.0.10

/—oo (2m)4-2% (12— A)®  (2m)4-2% / 2 o (1% + A) ( )
where the volume of a d dimensional sphere is defined as in Equation 2.3.16. So we are left
with integrals that we can reformulate with the change of variables 12 = wA to give beta

functions in w. Therefore we find the two momentum integrals reduce to

/oo 2] 1 (-1l -e) 1

—oo (2m)42€ 12 — A 4 4e? ['(3) Al-e

/00 d*=%] I? _ in? e (=1)*(e) 4 — 2¢ (B.0.11)
—oo (2m)4 2 [12 — A + ie]? 2I'(3) Ae o

We are left with integrals over the two independent Feynman parameters having let € — 07

to regulate the poles present in the T'(¢) functions. Both of the remaining integrals are fairly
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straightforward and give further I' functions. We expand the function to express the poles in
terms of 1/e and 1/e% poles making the poles explicit. Thus the final form of the divergent

matrix element for the 1-loop correction to ete~ — hadrons is given by

2.2 2 €
e - Ne2g?CrQ <47m2> el alf0—e) =1 15, 50 g1z

w2 Q? T(1— 2) €2 2% 2

We then multiply by the phase space factor (I'(1 — ) (47)¢/87(¢%)°T'(2 — 2¢)) and the initial
flux (1/2g). In Appendix C the form of phase space factors will be studied in more detail.
This gives

Crag (4np?\° 1 -2 3
1-loop _ tree ZF™s H [_ —— -8 2 B.0.13
d 7 Ton <Q2) I'(l—¢)le? ¢ o (B.0.13)

where '™ is equal to the cross section of the tree level diagram and is of the form

tree 4\ T2 —¢)
o _aeg( 0 ) 2 ) (B.0.14)

We complete the NLO calculation for efe™ — hadrons by considering the extra unresolved

parton contribution. Taking the squared matrix element for the extra parton process we

have

M = 8Cre2g?(1 ) |2 4 P T (g—@ + yig) - 25] (B.0.15)
YagYqe Yag¢  Yag Y9 Yag

Rewriting the phase space factor in terms of the dimensionless invariant mass, y;; (where

yi; = 8i;/Q?) we find (see Appendix C)

2 4 2\ ¢ 1 ~
16?27r)3 ( g; ) T'(2 - 2) /dngdng(ngng(l ~ Yag — Vo)) (B.0.16)
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Putting the squared matrix element and initial flux into this integral and redefining one of
the variables such that both variables run from 0 to 1 we can perform the integrals to give

a cross-section comprising of several beta functions. After much algebra we are left with

4mp?\* T(2—¢) T(1—¢)?[2 ~*3 19
3partons _ C 2.2 Q K [— — —} B.0.1
7 P9 4 (om)e ( Q? ) T(2—2)T(1—3€) L2 & ' 2 (B.0.17)
which in terms of the tree level cross section is given by
Cras (4np?\° T(1 —¢)? [2 3 19}
3 partons — ytree S — — — B.0.1
g 7 Tor ( Q? ) T(1—-3e)lez e 2 ( §)

It can be shown that the Gamma function factors in front of the loop calculation (Equa-
tion B.0.12) and the 3 parton calculation are the same as the e — 0 limit is taken. Therefore
we can clearly see that the coefficients of the double and single poles of the loop term are

exact opposite to those of the 3 parton term and thus the sum of the two is a finite result.

In the & — 0 limit
O_total — o.tree 4 O,Spartons s O,loop — O,tree [1 + 9_5] (BOIQ)
T

Therefore we have shown that for the process ete™ — hadrons the Kinoshita-Lee-Nauenberg

theorem is obeyed for the NLO calculation of the cross section.
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Appendix C

Phase space factors for multi parton final states in d
dimensions.

C.0.1 2 body final states

It can be shown [40] that the form of the phase space factor (or more physically the number
of final states per particle per unit volume) is derived from consideration of the boundary
conditions placed upon quantum particles bound in a finite region and the normalised density

of particles in this region. For n particles in the final state the expression is given by

dd—lpl dai—lp2 dd_lp J
2F,(2m)4-1 2, (2m)2-1 2En(277)d_1( T)*0%(q — pr — P2 Dn) ( )

However in many cases it is more useful to convert this integral into one over other quantities
such as mass invariants or the transverse momentum. Consider the simple case of a 2 body
system. Let us redefine the integral firstly in terms of invariant masses and later in terms
of transverse momentum. Both are necessary for the calculations considered in this thesis.
One of the d — 1 dimensional measures can be written in terms of a d dimensional one and

a delta function such that the original d dimensional delta function is integrated away.

dd—lp

s = APoE)0 () (C.0.2)
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Then the other measure is written in terms of its radial component and its solid angle such

that

d4p = p*2dpdQy_10(p) = E*2dEdQ,_10(F) (C.0.3)

since we are dealing with massless particles. This gives for the phase space factor the

function,(assuming that the integral over momentum p, has been performed)

3((q — p2)*)0(F)0(En) E5—*d

o (C.0.4)

The delta function can be rewritten so that it depends on the invariant s;o = 2p;.p2 since
q* = p! + p4. E, can also be rewritten in terms of this invariant such that E, = s12/2Q

where ¢ = Q*. Therefore the phase space factor in terms of invariants is given by

d—4

5(@2 — 812)9(E1)9(E2)812Td812
S (o) (C.0.5)

and this is the final form that is used in all 2 body calculations contained in this thesis.

C.0.2 3 body final states

For our NLO calculation of ete™ — hadrons we were required to calculate the three body
phase space factor. For simplicity we shall use the mass invariants again. Removing one
integration by making use of the delta function (assuming that the integrated momentum

was p3) leaves us with

dd—lp dd—lp ~
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Again we can write the remaining measures in terms of a radial part and a solid angle. How-
ever, another variable now needs to be considered, the angle between the two independent
momenta. We divide the two measures into radial components and two solid angles, but not

of the same dimension. One solid angle has a degree of freedom made explicit.

1
ZdEldEzdelngd_ngd_g (E1E2 sin(012))d_35(p§) (271')3*2(1 (007)

It is here that we introduce the Gram determinant that is related to the Jacobian used
when switching from momenta to invariants in phase space integrals. In our three dimen-

sional example it is given by

1 .
A(q, p1,p2) = A(pr, 2, p3) = 18125’13523 = Q*E?F3sin®(6:2) (C.0.8)

as it is defined to be determinant of the matrix

PL*P1 P1-P2 - D1 Dn
DPo-P1 P2:DP2 °°* P2 Dn

A(pl,P% te apn) = . . . (009)
Pn-DP1 P2°Pn ' DPn Dn

Therefore using the Gram determinant and re-expressing the measures in terms of mass

invariants such that

dEldEgd(glg = (16Q2312813823)_1/2d812d813d823 (CO].O)

the final form of the three particle phase space, generated from the decay of a single massive

particle is given by
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1

-(W/Qz_ddsudslgds23de_2de_3(512313323)d_;4'5(512+313+323—Q2)(27r)3_2d (COll)

Thus the Gram determinant defines the boundaries of available phase space such that if

Az > 0 we lie outside of the kinematical region.

C.0.3 Two to two body scattering

Now let us consider the case where we wish to define a differential cross-section for a two
to two body scattering 1+ 2 — a + b such as the reaction pp — ¢g where not only do we
include the 2 body phase space factor, but we also consider the momentum fractions of the
incoming partons. In this thesis it has been necessary to calculate the cross-section with

respect to the transverse momentum. This gives a phase space factor of the form

3
~-0%(p1 + p2 — Pa — Pb) (C.0.12)

where z; and x5 are the momentum fractions of the incoming partons such that

o= :c1P“="”—12*/—§(1,0,0,1)

Py = zz_ﬁ:@zﬁ(l,o,o,—n (C.0.13)

where P and P are the momenta of the proton and antiproton respectively. We also define

/3 = 2P.P and V/§ = 2p,.po. We can rewrite the transverse components of the measure

such that

dpdp? = rdrdd = wd(r?) = nd(p¥) (C.0.14)
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which, using the transverse part of the delta function determines the transverse component

of parton b. This then gives

dp? dp® 1 (/s Vs a
dp%QEZ Z_Eidxldmﬂé (7(-’51 +2) = Ba— By ) 6 | - (21 —22) — 11 —pp) (C0.15)

To remove the longitudinal momentum integrals we substitute these for integrals over rapid-

ity y where

1
y = =log <E+§L> = log (E+pL> (C.0.16)

Therefore we substitute y, for p% and y, for p} to give

(ﬁ(ml +25) — B, — E,,) 5 (—*gé(:cl - T3) = PL — p‘i) (C.0.17)

1
dpdy,dyydz,dz, 1—;(5 5

6

We can remove the final longitudinal momentum dependence from the delta functions by

using the identities

E, = prcosh(y,), pt = prsinh(y,) (C.0.18)

and finally we are left with

%

)

X 4 (pT(sinh(yl) + sinh(yz)) — ?(ml — acz)) dzidzs (C.0.19)

1
dp%dyadybi&—ré (pT(cosh(ya) + cosh(ys)) —
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Now we perform the z; and z, integrals such that the measures become

1
dp2-dy, dyy — 0.2
Prdyadys c— (C.0.20)

whilst the delta functions define the intial momenta fractions as

Ty ==V +e ) 1= 7(6‘% + %) (C.0.21)
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