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Abstract 
DURHAM - A Word Sense Disambiguation 

System 
Paul Martin Hawkins 

Ever since the 1950's when Machine Translation first began to be developed, 

word sense disambiguation (WSD) has been considered a problem to developers. In 

more recent times, all NLP tasks which are sensitive to lexical semantics potentially 

benefit from WSD although to what extent is largely unknown. 

The thesis presents a novel approach to the task of WSD on a large scale. In 

particular a novel knowledge source is presented named contextual information. 

This knowledge source adopts a sub-symbolic training mechanism to learn infor­

mation from the context of a sentence which is able to aid disambiguation. The 

system also takes advantage of frequency information and these two knowledge 

sources are combined. The system is trained and tested on SEMCOR. 

A novel disambiguation algorithm is also developed. The algorithm must tackle 

the problem of a large possible number of sense combinations in a sentence. The 

algorithm presented aims to make an appropriate choice between accuracy and 

efficiency. This is performed by directing the search at a word level. 

The performance achieved on SEMCOR is reported and an analysis of the 

various components of the system is performed. The results achieved on this test 

data are pleasing, but are difficult to compare with most of the other work carried 

out in the field. For this reason the system took part in the SENSEVAL evaluation 

which provided an excellent opportunity to extensively compare WSD systems. 

SENSEVAL is a small scale WSD evaluation using the HECTOR lexicon. Despite 

this, few adaptations to the system were required. The performance of the system 

on the SENSEVAL task are reported and have also been presented in [Hawkins, 

2000 . 
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Chapter 1 

Introduction 

The subject of this research is Word Sense Disambiguation (WSD). This is the 

process of automatically assigning a sense to an ambiguous word in a sentence, 

where the choice of possible senses is determined from a lexicon. 

"Word sense disambiguation involves the association of a given word in a text or 

discourse with a definition or meaning (sense) which is distinguishable from other 

meanings potentially attributable to that word." 

[Ide and Veronis, 1998 

The chapter proceeds by examining the importance of WSD, this is followed by 

a methodological introduction which sets the context for this work. A plan of the 

organisation of the thesis is then given. 

1.1 Importance of WSD 

Natural Language Processing (NLP) is concerned with understanding a language, 

in our case English. WSD is an important component of this process. For exam­

ple, the following sentences taken from newspaper headlines, show how the entire 

meaning of the sentence can change by the incorrect choice of a sense. 
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• Deaf mute gets new hearing in killing. 

• Quarter of a million Chinese live on water. 

• William Kelly was fed secretary. 

Despite its importance, WSD is only a component, or sub-task, of a NLP system 

Wilks and Stevenson, 1996]. There is little non-linguistic interest or commercial 

viability in a system which solely disambiguates words. Any NLP task which is 

sensitive to lexical ambiguity is subject to benefit from accurate WSD [Fujii, 1998]. 

The specific ways in which WSD can aid some of these real NLP tasks are now 

considered. A more detailed account is given in [Kilgarriff, 1997b . 

Machine Translation 

Machine Translation (MT) is one NLP task where the effects of inaccurate ambi­

guity resolution can easily be identified. The need for ambiguity resolution within 

MT has been a long standing problem [Bar-Hill, 1960]. The choice for a word in 

the target language will largely depend on the sense chosen in the source language. 

Two types of ambiguity are identified [Hutchins and Somers, 1992]. Monolingual 

ambiguity is concerned with the ambiguity contained in the source language. For 

example, the fly in the sky sense of plane translates to the French word avion 

and the smoothing wood sense translates to robot. The second type of ambiguity 

is called translational ambiguity. This is concerned with one sense in the source 

language translating to several different words in the target language. For exam­

ple, one sense of the English word ice possesses eleven different senses in Icelandic. 

Therefore, WSD is solely able to aid monolingual ambiguity. 

The importance of WSD to M T is highlighted by the WSD researchers who 

have come from a MT background [Brown et al, 1991] and [Yngve, 1955]. Despite 

this MT systems do not apply current state of the art WSD techniques. 
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Information Retrieval 

Information Retrieval (IR) is concerned with selecting appropriate documents from 

a database based on a query. IR is a well established NLP task and has become of 

particular importance due to the rapid growth of the internet. Lexical ambiguity is 

of importance in both the query and the documents to be retrieved. WSD faces a 

difficult challenge in both of these environments. Typical queries, particularly for 

the internet are very short [Grefenstette, 1997]. Therefore, there is little context 

available to aid the WSD process. The documents themselves must be analysed at 

speed in order to return results in an acceptable time frame. Therefore, efficiency 

requirements constrain the depth of the semantic analysis which can be performed 

on the document. Instead most current IR systems rely on stochastic techniques 

based on the lexical items, but do not consider the linguistic structure. WSD can 

therefore perform the role of disambiguating these lexical items. As a result, WSD 

may be of benefit to IR not as a component within a larger NLP system, but 

as an efficient alternative to performing deep semantics [Kilgarriff, 1997b]. Many 

WSD systems have been developed specifically to benefit IR [Voorhees, 1993] and 

McRoy, 1992]. 

Some work has examined the benefits of WSD for IR. [Krovets and Croft, 1992] 

sense tagged a corpus manually so that all sense choices were correct. They dis­

covered only a 2% improvement in the IR performance. [Sanderson, 1994] used 

pseudo-words to artificially introduce ambiguity into the corpus. He found that 

for long queries, considering all senses of ambiguous words caused no degradation 

to performance as there were sufficient other words to identify the required topic. 

However, he also found that incorrect ambiguity resolution did cause a substantial 

reduction to the IR performance. Finally [Schiitze and Pedersen, 1995] performed 

only very coarse grained sense disambiguation as this is more appropriate for iden­

tifying the correct topic information. Performing this disambiguation was found to 

increase IR performance by 4.3%. 
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Text to Speech Processing 

Speech processing considers the problem of generating speech from text. Some 

words can be pronounced in different ways depending on the chosen sense. For 

example, two senses of lead; the type of metal and used for walking a dog are 

pronounced differently. The correct sense choice needs to be made in order to 

synthesize the correct pronunciation [Stevenson, 1999]. 

WSD may also be beneficial for other internal components of a NLP system for 

example, parsing [Lytinen, 1986]. The problem of attaching a prepositional phrase 

relies on a semantic knowledge of the lexical items. This can only be achieved if 

these items are not ambiguous. However, some WSD techniques in particular se-

lectional restrictions require a knowledge of the syntactic structure of the sentence. 

This therefore becomes a circular problem with interdependencies between both 

subtasks. A method proposed to resolve both forms of ambiguity in unison is given 

in [Lytinen, 1986 . 

As yet no quantifiable measure is available to ascertain the contribution WSD 

is able to make either directly for any NLP task or indirectly by aiding another 

component. The only way in which this can be achieved is by integrating WSD 

into a larger system. However, this can only be achieved if the WSD system is 

considered sufficiently credible to warrant integration. 

1.2 Methodological Introduction 

Before an analysis of the WSD problem can be considered, the context of this work 

needs to be established by discussing important background methodological issues. 

The area of this research is Natural Language Engineering (NLE) which is a rapidly 

growing field within Artificial Intelligence (AI). 

This section discusses the general methodological issues by contrasting A I with 

Cognitive Science. More specific methodology adopted in this work is described by 

examining Natural Language Engineering. This is put into context by contrasting 
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it with Computational Linguistics. 

1.2.1 Artificial Intelligence 

There are many definitions of Artificial Intelligence (AI), this work uses the follow­

ing: 

...the field of research concerned with making machines perform tasks which are 

generally thought of as requiring human intelligence 

Beardon, 1989] 

The most challenging fields of A I seem to be those which humans take for 

granted that they can perform. For example, walking, reading and writing. Tasks 

which humans find more complex such as long division or a database search are 

often much less challenging for a computer. There are two distinct reasons why 

developing computers to do intelligent tasks is of interest. 

• To use computers as a tool to artificially simulate the human brain. 

• To increase the functionality of computers. 

Psychologists, linguists and philosophers want to make computer systems which 

wil l purely be used to test theories about the brain. This research interest is known 

as Cognitive Science. Cognitive Science restricts itself to only using methods which 

are employed or thought to be employed within the human brain. This approach 

tends to lead to the development of very small scale systems designed to test a 

theory rather than be of any practical use. 

Artificial Intelligence aims to make computers systems intelligent for the later 

reason, and that is the reason behind this work. Artificial Intelligence is already 

being incorporated into many of the everyday applications we use, and in some 

cases take for granted. 
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• Spell and grammar checker in a word processor. 

• Computer games eg chess. 

• Predicting financial strategy in business. 

• Performing the dangerous or unskilled jobs in manufacturing. 

• Automatic diagnosis and management of treatment in health care. 

Indeed the goal posts for A I have moved substantially, and at one stage the intro­

duction of an automatic dish washer was considered intelligent. 

A I systems are designed to work on a real life scale, and deal with all the 

external problems faced with working in a real life environment. The methods 

used by humans are one possible approach which may be used as a starting point 

or when other methods seem less appropriate. However, A I does not restrict itself to 

only using this method, and a wide range of techniques have been developed which 

have no human correlation. Therefore, the challenge of A I is, by understanding the 

specific problem and the resources available, to chose the best A I technique/s for 

that specific problem. This freedom to use which ever method seems appropriate, 

lifts the upper limit on performance above that which can be achieved by a human. 

In some areas A I systems already out perform humans, for example night vision 

systems. 

1.2.2 Natural Language Engineering 

The more general field of Natural Language Processing is the study of computer 

systems for understanding and generating language. By doing so it aims to develop 

appUcations which will help humans better cope with their complex environments. 

These applications include: 

• Machine Translation 

• Information Retrieval 
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• Information Extraction 

• Dialogue systems 

• Speech synthesis 

The work described in this thesis has been designed and developed according 

to the principles of Natural Language Engineering (NLE). NLE follows on from 

Linguistic Engineering which is defined as follows: 

"Linguistic Engineering (LE) is an engineering endeavour, which is 

to combine scientific and technological knowledge in a number of rele­

vant domains (descriptive and computational linguistics, lexicology and 

terminology, formal languages, computer science, software engineering 

techniques, etc.). LE can be seen as a rather pragmatic approach to 

computerised language processing, given the current inadequacies of the 

theoretical computational linguistics." 

EC, 1991] page 7 

The NLE approach to NLP is a pragmatic one, which specifically considers 

the difficulty of the task [Boguraev et al., 1995]. The NLE approach sets out 

typical engineering criteria, found in many other disciplines, which enables it to 

cope with the complexity of the computer systems developed. The current level of 

acceptability for each of these criteria varies for different NLE tasks. The criteria 

considered along with the level of acceptability for this WSD task is described: 

Scale The purpose of NL systems is to be able to process real-life, free text. In 

order to achieve this, the number of entries in the lexicon must be large 

scale so that all words found in the text are contained in the lexicon. Also, 

the system must not impose any restriction on the length of a sentence or 

discourse. 
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Robustness The system should be robust enough to handle free text in any do­
main. The system should not crash or be badly affected when encountering 
difficult circumstances such as very long sentences, or words not found in the 
lexicon. 

Maintainability The system should be useful over a long period of time. In 

order to achieve this, it must be flexible to change. Also, as the personnel 

developing a system are likely to change over a long period of time, all code 

written must be developed to facilitate the process of other people further 

developing the code. 

Flexibility The system should be flexible so that it is able to be adapted to operate 

in different domains. This refers to the topic domain of the text and also the 

lexicon which is used. 

Integration The system should allow ease of integration with other sources of 

knowledge and facilitate the process of being integrated into a larger system. 

Feasibility The hardware requirements of the system should not be too substan­

tial. Therefore, the system must operate at an acceptable speed during train­

ing (if required) and testing. The system should also be able to operate with 

an acceptable amount of memory. 

Usability The ultimate criterion for success for a system is that end users are 

happy with i t . Within the research environment, the core functionality is the 

most important feature of this criterion. Other features which are important 

in the business environment such as user friendliness and a good marketing 

strategy are not considered goals of NLE research. 

The pragmatic approach adopted by NLE is in contrast to Computational Lin­

guistics (CL). CL is a more theoretical study of the human language. A common 

criticism of applications which adopt a CL approach is the inability to process 

realistic material: 
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"Computational linguistics research in practice tends to revolve round 

little "toy" subsets of artificially simple linguistic forms, in the hope 

that systems which succeed in dealing with these may eventually be 

expanded and linked together until they cover entire languages." 

Sampson, 1987] page 17 

NLE differs from CL by incorporating a full range of A I techniques. NLE may 

use CL theories when applicable, but will also make the most of what ever else is 

available. 

1.2.3 Symbolic and Sub-Symbolic Approaches 

The traditional approach to artificial intelligence is symbolic, involving a represen­

tation of the problem, and a mechanism to search through i t . Traditionally this 

mechanism was considered sufficient to generate artificial intelligent behaviour. 

"A physical symbol system has the necessary and sufficient means for general 

intelligent action. By "necessary" we mean that any system that exhibits general 

intelligence will prove upon analysis to be a physical symbol system. By 

"sufficient" we mean that any physical symbol system of sufficient size can be 

organized further to exhibit general intelligence." 

[Newell and Simon, 1976 

A characteristic of many symbolic approaches is the development of rules which 

enable a chaining process towards an intelligent solution. This chaining process 

enables a chosen solution to be identified which conforms to these rules. The solu­

tion can be shown to conform to the rules as part of its reasoning which increases 

the credibility and level of acceptance of the choice made. 

A significant challenge to the symbolic approaches has come from adaptive 

learning mechanisms. The initial most significant step was through parallel dis­

tributed processing [Rumelhart et al., 1986]. These sub-symboUc approaches have 
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developed into two significant branches, stochastic approaches based on Bayesian 
probabilities and machine learning approaches in particular evolutionary algorithms 
and neural networks. The sub-symbolic approaches are based on simple compo­
nents and the interaction between them. Unlike symbolic approaches, they are 
generally unable to provide reasoning for their solutions. However, they are char­
acterized by an abiUty to learn and adapt to different environments. 

"...it is widely believed that there are some activities of intelligence (e.g. 

recognition of multidimensional patterns) where an approach operating at some 

lower level than a level of description in symbols is more appropriate than the 

traditional logical-symbolic approach." 

Calmet and Campbell, 1993 

The methodology adopted in this work recognises that beneficial characteristics 

exist for both symbolic and sub-symbolic approaches. To restrict oneself solely to 

considering one approach may identify the upper limit for the technique, but may 

not identify the upper limit for the solution. Therefore, the work presented in the 

thesis adopts an engineering methodology and considers all possible approaches. 

The aim being to enable these approaches to complement and not contradict each 

other. 

The benefits of combining approaches can be highlighted by considering an ex­

ample. To learn to play cricket a number of rules must be learnt; the laws of 

the game, the fielding positions and the basic technique for batting, bowling and 

fielding. These could all be accomplished by a symbolic approach. Learning the 

game also requires extensive practice to experience many times over the different 

situations which may arise. This is equivalent to a sub-symbolic approach. There­

fore, to become good at the game both symboUc and sub-symboUc techniques are 

required. 
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1.3 Logical Progression of the Thesis 

This section sets out the framework by which the thesis is organised. This is carried 

out by summarising the issues considered in each chapter. 

Chapter 1 sets out the problem definition for this work and discusses the impor­

tance of WSD. Methodological issues are then addressed in relation to the 

position of this work within the field of computer science. Finally a plan of 

the thesis is given. 

Chapter 2 considers the main challenges within WSD so that a better under­

standing of the problem can be established. In particular, the chapter con­

centrates on the various resources available to aid WSD and the problems 

associated with evaluation. The criteria for success is then given. 

Chapter 3 considers other approaches to the task of WSD. The chapter is struc­

tured by considering various knowledge sources adopted to aid WSD. The 

features of these knowledge sources are reflected by the characteristics of the 

systems which use them. The problems associated with evaluation within 

WSD prevent a detailed comparison of the systems considered. 

Chapter 4 commences the discussion of DURHAM, the system developed aiming 

to fulfil the criteria for success. The chapter examines the knowledge sources 

adopted by DURHAM to provide information to aid disambiguation. The 

chapter introduces a novel knowledge source named contextual information 

and examines the way this is learnt. The chapter also considers the method 

by which the knowledge sources are combined. 

Chapter 5 examines the mechanism used to calculate the scores for each knowl­

edge source. The chapter then progresses to consider the disambiguation 

algorithm developed to select a sense for each ambiguous word. The disam­

biguation algorithm is novel, and provides a compromise between accuracy 

and efficiency. 
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Chapter 6 initially sets out various evaluation metrics which are used to assess the 
performance of DURHAM. These evaluation metrics are then used to report 
the results achieved by DURHAM for the large scale task of disambiguation 
on SEMCOR. Analysis of DURHAM is then performed to discover the effect 
various components of the system have made to results. The work is then 
compared with another system which has been evaluated on the same test 
set. A more complete comparison with other systems is not possible due to 
other work being evaluated on different data sets. However, an analysis of 
the feasibility of comparing WSD systems performing on different data sets 
is given. 

Chapter 7 reports the evaluation of DURHAM on the SENSEVAL task. The 

chapter examines the differences between evaluation on SEMCOR and SEN­

SEVAL and the various adaptations to the system required. In particular 

a further knowledge source is introduced into DURHAM named clue words. 

The results achieved are reported and compared with other systems which 

also took part in the evaluation. A discussion is then given concerning the 

scalability of clue words and the SENSEVAL evaluation. 

Chapter 8 provides a conclusion to the thesis by considering the criteria for suc­

cess. The ability of the system to meet these criteria is discussed. Various 

directions in which work in the future could build upon this system are also 

discussed. 

Appendix A A list of the SEMCOR files used for training, testing and blind 

testing. 

A Glossary of terms is also provided. 



Chapter 2 

The Word Sense Disambiguation 

Problem 

2.1 Introduction to WSD 

Now that the WSD task has been defined at the start of chapter 1, this chapter will 

examine the challenges faced by the developers of WSD systems. The challenges 

considered are generic to all WSD systems and do not consider any further specific 

problems encountered in this work. The chapter highlights the problems with 

context information, using a lexicon as a sense inventory and as a knowledge source. 

The chapter also considers the difficulties of training and testing WSD systems. 

Only once the problems within the field have been clearly examined will a detailed 

criteria for the success of this work be given. 

WSD is no more difficult than part-of-speech tagging [Wilks and Stevenson, 

1996]. This claim made by Wilks and Stevenson suggests that 92% accuracy can 

be achieved for disambiguating all open class words^ They claim that this high 

accuracy can be achieved solely by knowing the frequency distribution of the senses 

and correctly identifying the part-of-speech. However, it is easy to misinterpret 

^Open class words are nouns, verbs, adjectives and adverbs. Closed class words are determiners 
such as the, of, in, a etc and are not generally considered as ambiguous 
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the high accuracy achieved. The metric adopted to test the system includes words 
which are not ambiguous and uses a coarse grained lexicon. 

Using the WordNet lexicon, only 62.1% accuracy will be achieved for ambiguous 

words if the most frequent sense belonging to the correct PCS is always chosen. 

This result shows that WSD is a more difficult task than POS tagging. The reason 

for this is that WSD must attempt to categorize a word to a much finer level than 

is required for POS tagging. Moreover, the WSD categories (senses) are different 

for each word, whereas they remain the same for POS tagging. 

2.2 Context Information 

Even if i t is accepted that WSD is more difficult than part-of-speech tagging, the 

difficulty of the task is generally still not fully appreciated. "Word sense dis­

ambiguation is easy - you just look at the context!!" - to quote the typical first 

impressions of someone considering the problem! I t is true that the context of an 

ambiguous word is important for resolving the ambiguity. However, the following 

examples taken from [Hearst, 1991] show how the sense of the word tank changes 

despite many words in the sentence remaining the same. 

• "Plagued by a critical shortage of fuel tanks". 

• "Plagued by a critical shortage of fuel and tanks". 

• "Plagued by a critical shortage of fuel and tanks, the army were unable to 

advance". 

In the first sentence, the sense of tank is clear as fuel takes the role of a modifying 

noun describing the type of tank being referred to. However, in the second and 

third sentence fuel is a noun and in this role provides less conclusive evidence for 

the fuel tank sense. Hearst identifies this difference and aims to take advantage 

of local syntactic information to benefit more fully from the surrounding context. 

However, the fuel tank sense is still the most likely meaning of tank in sentence 
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two. In sentence three the context word army provides strong evidence for the 
military sense of tank, although there is insufficient context to ensure it is referring 
to this sense. Despite this, i t has been shown in sentence two that fuel provides 
evidence for a different sense. Therefore, in order to achieve the correct ambiguity 
resolution, the system must be able to weigh the value different parts of the context 
are able to provide for different senses. In this example, army should be identified 
as stronger contextual evidence than fuel. 

The next set of examples are all taken from newspaper headlines. They show 

that the syntactic information is not always sufficient, and only deep semantic 

knowledge will resolve the ambiguity. The examples demonstrate how the incorrect 

resolution of an ambiguous word (given in bold) can significantly alter the meaning 

of a sentence. The first two examples also demonstrate the circular problem caused 

by using the information from the context of the sentence. To resolve the ambiguity 

of a word requires the knowledge of the meaning of the context, but this too can 

be ambiguous. Therefore, there is a problem of knowing which ambiguous word 

should be resolved first. 

• Iraqi head seeks arms. 

• Farmer bill dies in house. 

• Police begin campaign to run down jay walkers. 

• Milk drinkers are turning to powder. 

• Two convicts evade noose, jury hung. 

2.3 Lexical Problems 

Although a number of difficulties of using contextual information have been shown, 

understanding the context in which a word is used is essential to enable accurate 

ambiguity resolution. Developing ways to best exploit this information is the chal­

lenge faced by WSD researchers. However, the lack of resources available to help 



Chapter 2: The Word Sense Disambiguation Problem 16 

disambiguation is a major problem hindering this process. The most important 
resource which is available for researchers is the lexicon. 

The lexicon is able to provide two important roles within WSD. The first role 

is as a sense inventory to provide the list of senses which the WSD system must 

distinguish between. The second role is as a knowledge source to help understand 

the context in which a word is used to aid ambiguity resolution. Difficulties with 

the lexicon performing both of these roles are now considered. I t is important to 

consider these difficulties so that the correct choice of a lexicon can be made by the 

WSD developer. However, it is not the aim of this work to try to find any solutions 

to these difficulties. The challenge of developing a lexicon is the research interest 

of lexicographers [Hanks, 1993] [Kilgarriff, 1993]. 

2.3.1 The Lexicon as a Sense Inventory 

Problems exist for WSD developers regardless of which lexicon they choose as 

their sense inventory. The problem stems from the fact that no lexicon has been 

designed specifically for the WSD community. Therefore, the procedure of how to 

split a word into its component senses is dependent on the objectives of the lexicon. 

This causes a large variation in the sense divisions between different lexicons. The 

difficulties involved with the task of assigning a sense to a word are now considered. 

I t is a characteristic of the English language that most frequently used words 

are ambiguous. As these words are well understood, they are able to be applied 

in several different contexts without causing confusion. I t is their usage in these 

different contexts which generally leads lexicographers to distinguish between them 

and define individual senses for each context. For example the adjective brilliant is 

usually used to describe something which is pleasant. I t is frequently used within 

different contexts to describe a performance, smile, musical note or a light. In most 

lexicons brilliant is assigned a separate sense for each of these contexts. Not only 

does this greatly increase the number of senses, it also creates many senses which 

are extremely similar in meaning. 
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The Bank Model 

The difficulty of assigning senses to words is a greatly discussed topic by lexicog­

raphers. The discussions often adopt bank as an example from which the Bank 

Model is derived. The Bank Model primarily is designed to show that some senses 

of a word are homonymous with no relation between them. However, this model 

can be shown not to generalise for all words [Kilgarriff, 1992]. The bank example 

can be adopted to highlight the difficulties facing lexicographers in defining senses 

for a word. 

Two noun senses of bank come immediately to mind, one concerning money 

and the other bordering a river. I t is argued in [Hanks, 2000] that these two senses 

are actually two different words which are spelt the same way. Analysis of the 

derivatives of each sense adds weight to this argument. The side of the river sense 

is derived from medieval French (banki) or old Icelandic (bakki). The money sense 

comes from medieval Latin (bancus/a). 

Sentences can be created such as "/ ran to the bank" which could be referring 

to either sense/word. However, these types of sentences rarely occur in real text. 

Some context which determines the sense being referred to usually exists in real 

text. For example, bank balance, bank manager, rob the bank, or slippery bank, 

burst its banks and flood banks. 

However, artificially created sentences for which the ambiguity remains un­

resolved is not the difficulty highlighted by the Bank Model. For many words, 

including bank, one sense shades into another, capturing some but not all of the 

features of the initial sense. For example blood bank and sperm bank share some 

features which are similar to the financial sense of bank. They are all institutions 

responsible for the safe keeping of an object. Equally sand bank and bank of snow 

have features similar to the river bank sense, but neither are by the river. The 

next examples show that the problem of assigning senses to words can become 

even more difficult. Seemingly the same sense of bank is referring to three very 

different things. 
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• "The bank will be closed on Saturday." 

• "The bank has made a mistake with my overdraft." 

• "The bank needs a large refurbishment." 

The first example refers to the bank as an establishment, the second to the 

people working in the establishment and the third to the building in which the 

bank is housed. Bank is by no means an exception. Many other words have similar 

features, and television may be considered as a further example: 

• "Put the picture on top of the television." 

• "The television has inspired mis to do great things." 

• "Television has injected large amounts of money into the game." 

I t is the role of lexicographers to decide whether to create a new sense for a 

word or to accept that a sense can be used for a slightly different meaning. This 

process is known as lumping or splitting. Some lexicographers prefer to lump senses 

together, generalising the details and invariably making the definition more vague. 

Other lexicographers try to be precise, splitting words into many senses in order 

that each sense can only be used in a single context. Ultimately, the policy adopted 

depends on the requirements of the dictionary being produced. As a result, there 

are large discrepancies between sense distinctions in different lexicons. 

A proposal for classifying the similarity between senses is given in [Miller and 

Teibel, 1991]. Miller and Teibel propose three categories of similarity: 

• Categorical - for senses which have a different part-of-speech. 

• Homonymous - for senses which have completely different meanings. 

• Polysemous - for senses which are similar. 

However, this model does not give a true representation of the problem. For many 

words there exists graded levels of similarity between senses. As a result, no clear 

cut off point between polysemous and homonymous senses exists. 
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Task Specific Lexicons 

One of the reasons identified why there are difficulties in choosing the correct 

lexicon for WSD is that no lexicon has been designed specifically for WSD. However, 

difficulties would remain even if a group of lexicographers were assigned the task of 

preparing a standard lexicon specifically for WSD. In reality, the WSD community 

would not be able to agree the degree of granularity to which the lexicon should 

be defined. WSD is an internal task within NLP, and different real tasks require 

diflferent lexicons. Therefore, the appropriate WSD lexicon is dependent on the 

NLP task it is aiming to assist. Whilst the distinction between two senses of a word 

may not be important for one NLP task, it may be very important for another. 

For example, consider three senses of band - a musical band, a radio frequency and 

a rubber band. The first two senses both translate to the same Italian word banda. 

The rubber band sense translates to a different Italian word cerotto. Therefore, a 

NLP system attempting to translate from English to Italian would not need to use 

a lexicon which makes a distinction between the first two senses of band. 

One possible solution may be to develop a dictionary which splits senses to such 

a fine level that it is sufficient for all NLP tasks. If a specific task only requires a 

vague meaning of a sense, then choosing the wrong sense from the lexicon may not 

degrade the performance of the larger task. Using the above example if the radio 

band sense was chosen instead of the music band sense, the correct translation 

would still be made. There are two problems with this approach. Firstly the 

machine readable dictionary would become very large. I t is unlikely that any 

single NLP task would require anywhere near the level of detail contained in it . 

The second problem is more important particularly from a WSD perspective. To 

improve a WSD system and to integrate it into a NLP system, it is important 

to be able to test the accuracy of the WSD system. To do this a mechanism 

to evaluate the disambiguation algorithm is required. Testing a disambiguation 

system is performed using a corpus of manually sense tagged text. I f the lexicon 

is too finely grained, then even humans will find i t difficult to accurately assign 

the correct sense to a word. Therefore, manually sense tagged corpora become 
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very difficult to produce. I f the agreement of sense choices between different sense 
taggers is low, then the credibility of the sense tagged corpus is reduced. The 
problems of manual sense tagging are discussed in section 2.4. 

Effect on W S D 

This section has identified three difl!iculties with the way words are split into their 

component senses. Their effect on WSD is now considered. The first difficulty 

is the semantic similarity between different senses of the same word. This makes 

the WSD process much more difficult because semantically similar words are more 

likely to be used in similar contexts. Therefore, a very accurate understanding of 

the context is required before the correct choice of two similar senses can be made. 

The second difficulty is the large number of senses which are assigned to many 

words, in particular the frequently occuring words. The large number of possible 

senses leads to an explosion of the total number of possible sense combinations 

for a sentence. For example, even in a short sentence "The boy will be on a run 

before school starts", there are 5,754,112 different sense combinations for that par­

ticular sentence, using the WordNet lexicon. Even if the correct POS is known for 

each word there still remains 348,480 sense combinations. This explosion of sense 

combinations is known as Wilks' problem [Slator and Wilks, 1987]. Wilks' prob­

lem shows the difficulty of correctly disambiguating an entire sentence. Moreover, 

i f the system is going to perform at an acceptable speed, it highUghts problems 

associated with the computation time which can be spent on each possible sense 

combination. 

The third difficulty identifies the large variation between the way different lex­

icons have chosen to assign senses. This prevents the WSD developer from em­

ploying more than one lexicon. Multiple lexicons could however be beneficial to 

enable one lexicon to be used as the sense inventory and further lexicons to be em­

ployed as a knowledge source. Moreover, the variation between lexicons prevents 

an evaluation between different systems which use different lexicons as their sense 

inventory. The problems of evaluation are considered further in section 2.5. The 
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variation between lexicons also causes difficulties for using a lexicon as a knowledge 
source. This role of the lexicon is now considered. 

2.3.2 The Lexicon as a Knowledge Source 

In addition to the lexicon providing a list of senses for the WSD system to dis­

tinguish between, the lexicon is also able to serve as a knowledge source to aid 

disambiguation. Most lexicons provide a definition with each sense that is listed. 

This definition enables the reader to distinguish between all the possible senses of 

that word. A great deal of research has concentrated on automatically extracting 

information from these definitions which can aid disambiguation. This work is dis­

cussed in section 3.2. However, this section examines some of the problems with 

the dictionary definitions resource. 

Until recently, lexicons were not available in machine readable format. Lexi­

cographers developing dictionaries to be published needed to consider the size of 

the dictionary being produced. As a result, the length of the definitions were con­

strained to the minimum so that the reader was still able to distinguish between 

the possible senses. This compromises the precision and uniformity with which the 

senses are defined. As a result, the automatic extraction of information from these 

definitions is very difficult. More recently machine readable dictionaries have be­

come available which removes the size constraint. However, the problem of clearly 

being able to make distinctions between senses still exist. 

Some dictionaries, including the Cambridge International Dictionary of English 

(CIDE) [Procter, 1995] and the Longmans Dictionary of Contemporary English 

(LDOCE) [Procter, 1978], have adapted their dictionaries, which has made them 

more useful for NLP. Al l definitions in the dictionary are made up from a core 

of 2000 words, predominantly to aid foreign users of the dictionary. However, 

the process of automatically extracting semantic information from the dictionary 

definition is substantially facilitated if only a core 2000 words are used in the 

definition. As a result, it is possible for the computer to acquire knowledge about 

other words outside the core from their definitions [Poria, 1999]. 
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A further problem still exists with using the dictionary definitions as a knowl­
edge source. The definitions are designed to enable a distinction between the pos­
sible senses in that lexicon. However, as already discussed the variation in the way 
words are split into component senses is very different for each individual lexicon. 
The type of information required to make sense distinctions for one lexicon may 
be very different for a separate lexicon. Therefore, the ability for this knowledge 
source to be applied to a different lexicon is reduced. 

2.4 Sense Tagging and Inter Tagger Agreement 

A corpus of manually sense tagged text is an essential resource for WSD systems. 

The corpus provides a mechanism for testing, enabling different algorithms to be 

compared. Moreover, some disambiguation algorithms require training data in the 

form of manually sense tagged text. For these systems, the choice of lexicon may be 

restricted to those for which sense tagged data is available. This section examines 

some of the problems concerned with developing a manually sense tagged corpus. 

The quality of a manually sense tagged corpus can be measured by its accuracy. 

The metric for computing accuracy is the Inter-Tagger Agreement (ITA), which is 

applicable so long as more than one person has sense tagged the same text. The 

ITA is defined as the percentage of words which have been assigned the same sense 

by all sense taggers. The ITA is perceived as an upperbound figure for WSD 

systems [Kilgarriff, 1998a]. A computer system would not be expected to achieve 

higher accuracy than a human, as is possible in some other fields within A I . Also 

i f a disagreement amongst the sense taggers exists there may be errors present in 

the corpus which the computer system is being tested against. 

I t would be easy to conceive that sense tagging for a human is a simple task, 

and as a result, all humans always agree on the sense of a word. Unfortunately 

this is not the case. The remainder of this section discusses the main causes for 

disagreement amongst taggers together with ways in which this disagreement can 

be minimized. 



Chapter 2; The Word Sense Disambiguation Problem 23 

2.4.1 Dictionary definitions 

The people performing the sense tagging are often not the same people who de­

veloped the dictionary which is being used as the sense inventory. This is a major 

cause of disagreement amongst senses taggers. The way in which a lexicographer 

splits a word into its component senses may seem unusual to the sense tagger who 

perceives the senses of a word differently. The dictionary definitions are normally 

designed to give general indication of the meaning of a sense. In instances where 

one sense shades into another, the definition is unlikely to be be able to provide a 

definitive indication of where one sense stops and another begins. As a result, the 

tagger is left with doubts as to the exact meaning of each sense. When there is 

doubt then each tagger will use their intuition to determine what each sense refers 

to. Individual taggers may resolve this doubt in different ways, leading to disagree­

ment. Resolving any uncertainties before tagging commences would be the simple 

solution to the disagreement. Equally important though, is that the taggers should 

primarily work in isolation from each other. Being isolated ensures that each set of 

results has not been influenced by another tagger. This bias would undermine the 

value of a corpus which has been multiply sense tagged. Many recently published 

dictionaries have taken steps to approach the problem of clarity to the fine level 

required. The ability to be able to distinguish between different senses has been 

improved by accompanying the definitions of senses with examples of their use. 

2.4.2 Dictionary feedback 

In previous years, writing dictionaries and using them to sense tag data were con­

sidered two separate tasks. The taggers would have to accept and work with 

the sense distinctions they were given. No mechanism existed allowing taggers to 

suggest changes to definitions or sense distinctions. CIDE is one of the current 

dictionaries which has enabled an iterative process. Problems encountered whilst 

sense tagging are referred back to the lexicographers responsible for writing the 

dictionary. By returning to these lexicographers, sense distinctions may be revised 

and dictionary definitions may be made clearer. Al l amendments should make the 
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sense taggers task less ambiguous, leading to higher ITA. 

With an iterative approach the sense tagged corpus can be viewed as a test bed 

for the development of the dictionary. The necessity for manual sense tagging for 

dictionary development is important. WSD is not a large enough field by itself to 

warrant the investment of funds required to produce a sense tagged corpus. This 

helps to ensure that more sense tagged corpora will become available which is of 

great benefit to WSD systems. 

An example of how sense tagging is able to offer valuable information for lexi­

cographers is given in [Bruce and Wiebe, 1998]. Five people were assigned the task 

of sense tagging 2369 instances of the word interest. The LDOCE dictionary was 

used as the sense inventory, from which 6 senses of interest were considered. In 

general the ITA between the five judges was very high. However, analysis of the 

results showed that most of the tagger's error occurred between two of the senses. 

The two senses were closely related, and the taggers found it difficult to distinguish 

between them. This information could be used by a lexicographer, who may then 

decide to lump the two closely related senses together and give a broader definition 

to encompass both senses. Combining the two senses increased the Kappa^ value 

for the ITA from 89.8% to 91.6%. In this example. Kappa is a useful metric for 

measuring ITA. After the two senses have been combined the number of agreements 

expected by chance increases. Kappa is able to take this into account enabling a 

fair comparison of ITA before and after the two senses are combined. 

2.4.3 Sentence Ambiguity 

Even if no uncertainty exists in the definition of the sense, some sentences will con­

tinue to cause problems for the taggers. Some of the examples offered to highlight 

these difficulties are taken from [Krishnamurthy and NichoUs, 2000], Krishna-

murthy and Nicholls' task was to produce a manually sense tagged gold standard 

for the SENSEVAL evaluation. The SENSEVAL evaluation is discussed in section 

^The achieved accuracy relative to the accuracy which can be achieved by chance. Kappa is 
detailed in section 2.5.2 



Chapter 2: The Word Sense Disambiguation Problem 25 

2.6. 

Many senses are defined by a collocation or a multi-word expression. Taggers 

need to decide the degree of variation allowed in these expressions. For example, 

it may seem reasonable to assign the expression couldn't be bothered to the can't 

be bothered sense which is the defined phrase. But what about can be bothered? 

Should knees of jelly be assigned to the weak at the knees expression? These 

decisions are arbitrary and difficult to lay out rules for all cases. As a result, the 

decision must be left to each individual tagger. 

Another problem occurs when the context of a word is insufficient to conclu­

sively determine the sense of the word to which i t is referred. Some sense tagged 

corpora try to accommodate this by allowing the tagger to list all possible senses. 

For example, in producing the gold standard for SENSEVAL, distinctions needed 

to be made between two closely related senses of bet. One sense refers to the gam­

bling sense where money is wagered - "I put a bet on the third race at Aintree". 

The other sense is a verbal speculation - "I bet he doesn't get here on time". In 

these two examples the distinction is clear, but in other cases it is less so. 

• " I bet Owen will be the first to score." 

• " I lost my bet today." 

In both of these examples, it is not clear whether money is wagered. Therefore, 

the tagger should list both the possible senses. However, using world knowledge a 

tagger may decide that the sense being implied can be inferred without listing both 

possible senses. This subjective decision provides another source of inconsistent 

sense tagging. A similar problem is reported in [Wiebe et ai, 1997] where the 

task is to tag common verbs with their WordNet senses. In their example - "The 

group has forecast 1989 revenue of 56.9 billion francs.", the sense for the verb have 

can not be determined. Has the group done the forecasting? or has a third party 

forecasted the group's revenue? 



Chapter 2; The Word Sense Disambiguation Problem 26 

2.4.4 Skilled sense taggers 

As sense tagging is a very labourious process, a temptation exists to employ un­

skilled people for the task. However, experience has shown that the quality of the 

sense tagged corpus is degraded if inexperienced lexicographers are employed. 

The DSO corpus is sense tagged with WordNet meanings by a group of under­

graduates in Singapore [Hwee Ton Ng and Hian Beng Lee, 1996]. They adopted 

a lexical approach, by sense tagging all instances of the most frequently occurring 

nouns and verbs in the SEMCOR corpus. 121 nouns and 70 verbs were considered, 

and 1,500 instances were sense tagged for each word. Frequently occurring words 

typically have the greatest number of senses, making the task more difficult. Also 

English was not the first language for many of the sense taggers. As a result, un­

derstanding the differentiation between senses proved very difficult. Both the DSO 

and SEMCOR corpuses contain text taken from the Wall Street Journal which 

enables comparisons to be made. On this subsection of the corpus the agreement 

between the DSO sense taggers and the SEMCOR sense taggers (ITA) was reported 

to be 57%. 

The SEMCOR group themselves have investigated the importance of using 

skilled lexicographers to perform sense tagging [Fellbaum et a/., 1996]. They found 

that on average the 'naive' taggers agreed with the experienced taggers in 74% of 

all instances. 

Bruce and Wiebe's work described in section 2.4.2, also highlights the effect 

of using skilled lexicographers. Out of the five judges who sense tagged the word 

interest, only two of them were experienced sense taggers. The two experienced 

taggers agreed with each other in 96.8% of all cases. The unskilled taggers showed 

biases towards different senses resulting in lower ITA figures. The lowest ITA 

between two of the unskilled taggers was 88.4%. 

2.4.5 Textual or Lexical 

Two approaches exist for manually sense tagging a corpus. 
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• A textual approach assigns a tag to every context word in a sentence. 

• A lexical approach chooses a set of words to be sense tagged. For each of 

these words, sentences are selected in which the word is contained. Only that 

particular word is sense tagged in the sentence. 

Both of these approaches are discussed. 

SEMCOR is the most widely used and best known manually sense tagged corpus 

Landes et al, 1996]. I t is sense tagged using the WordNet lexicon [Fellbaum, 1997]. 

Most of the text is taken from the Brown Corpus, which is made up of extracts 

from the Wall Street Journal. The remaining text consists of Stephen Crane's 

novel The Red Badge of Courage [Crane, 1987]. SEMCOR is a textual corpus, 

therefore every open class word in every sentence is sense tagged. SEMCOR can 

be contrasted with the lexical SENSEVAL corpus. The SENSEVAL corpus sense 

tags 35 different words, these words include nouns, verbs and adjectives. 

Potentially a textual corpus is a comparably more valuable resource than a 

lexical corpus. A textual corpus encourages a large scale approach to word sense 

disambiguation, and is more applicable to real NLP tasks. Moreover, a textual 

corpus enables the evaluation of the effect of using the correct sense of the context 

words. 

However, i t is difficult to obtain a high ITA with a textual corpus, and this its 

main disadvantage. The sense taggers compiling a textual corpus are faced with 

a more difficult task than those compiling a lexical corpus. Textual sense taggers 

are unable to concentrate on one particular word at a time. The taggers must 

constantly read and understand the sense distinctions of each word in the text as it 

is sense tagged. When a word reoccurs in the text, the sense taggers interpretation 

of the sense distinctions may vary, leading to inconsistencies. The lexically tagged 

SENSEVAL corpus achieved a 96.5% ITA, much higher than any of the ITA figures 

mentioned earlier on SEMCOR. 

The process of continuous reference to the lexicon makes the production of a 

textual corpus extremely labour intensive. In relative terms, a lexical corpus is 
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less labour intensive. [Krishnamurthy and NichoUs, 2000] report that on average 
the SENSEVAL sense taggers achieved a speed of 66 instances of a word per hour. 
With an increase in the number of instances they sense tagged, the taggers became 
increasingly familiar with the sense distinctions. This enabled the tagging speed 
to increase. In addition, the taggers found that i t was often only necessary to look 
at the immediate context of the word. This also increased the tagging speed. 

The final problem with a textual approach is the low number of instances of 

a particular word. In SEMCOR a great number of words are sense tagged, but 

less than 100 senses occur more than 500 times. A WSD system which requires 

training data is likely to prefer a lexically sense tagged corpus, in order that many 

examples exist of each word being considered. 

2.4.6 Automatic Sense Tagging 

This section has detailed many of the problems associated with manually sense 

tagging a corpus. Therefore, is it possible to generate a corpus of sense tagged 

data automatically? This question is considered in [Gale and Church, 1991a] and 

[Gale and Church, 1991b]. Their method is to identify parallel text written in more 

than one language such as the Canadian Hansards^. Using the word duty, they are 

able to distinguish between the tax and obligation senses of the word. This is done 

by examining the parallel French text to see which word is used for the translation. 

For the word duty this method was successful. I t enabled a statistical based 

disambiguation system to be developed which used the automatically tagged data 

for training and testing. The system is detailed in [Gale et al, 1995]. However, for 

most words such a method would not be possible. The method relies on the word 

having completely distinctive senses so that each sense maps to different words in 

the target language. The system reported in [Brown et al., 1988] and [Brown et al., 

1991] also uses the Canadian Hansard as training data. However, inability to make 

fine grained sense distinctions does not cause a problem for this system. The reason 

^The Canadian Hansards are proceedings from the Canadian Parliament which are published 
in both English and French. 
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for this is that Brown's system was developed specifically for MT and therefore the 
Canadian Hansard is able to provide the correct level of sense granularity for this 
task. Other problems, which both systems must consider, are concerned with 
identifying the parallel word in the text. Since in any language there are many 
ways to say the same thing, it is possible to convey the same meaning without 
using a particular word. Determining the correct sense would then involve a deep 
understanding of the target text. 

2.5 Evaluation Difficulties in WSD 

The desire to compete and test oneselves against others is a natural human instinct. 

This instinct can be seen in most aspects of our daily life. At work we are assessed, 

and pay may be dependent on performance. Many people partake in some kind of 

sport where one trains to compete against others. This competitive natural instinct 

is a very healthy one. The desire to do well provides us with the motivation to 

drive ourselves in order to succeed. 

The importance of evaluation has been shown in many areas of NLP. Perfor­

mance of state-of-the-art POS taggers and parsers are often acceptable for the task 

required, although neither are completely error free. Both of these tasks benefit 

from having common resources for training and testing, most significantly the Penn 

Treebank corpus and the Brown corpus. In addition to a common corpus, these 

fields also benefit from standard evaluation metrics. These two factors enable an 

evaluation mechanism to be established within which different systems can evalu­

ate on a common task, leading to the generation of a worthy comparison between 

systems. 

Government funding agencies have also recognised the importance of evaluation. 

The MUC competition [Kaufmann, 1995] has enabled other NLP tasks such as 

information extraction, proper-noun classification and even anaphora resolution 

to possess a framework for evaluation. In addition to providing a motivation, the 

MUC evaluation also provides inspiration. MUC facilitates the opportunity to pool 
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ideas, and discuss common problems by providing a focus towards a common task. 
An extensive study of evaluation within NLP is given in [Callaghan, 1998 . 

2.5.1 WSD Evaluation 

Unfortunately, there are many problems involved with setting up an evaluation 

mechanism for WSD systems. This section discusses some of these difficulties. 

One of the fundamental principles behind all worthwhile competitions is that 

i t must be fair for all competitors. This may seem intuitive, but for WSD this is 

extremely difficult to achieve. Different systems are developed using different sense 

inventories. Each sense inventory will split senses and give definitions in a unique 

way. The word interest is used to highlight the difference. LDOCE has ten senses 

of interest, WordNet has eight, and [Zernik and Jacobs, 1990] consider only four 

senses of the word. 

I t is important that the evaluation mechanism provides free text. This free 

text must be sense tagged with one particular sense inventory. Any system which 

has been developed using the same sense inventory as used in the evaluation will 

immediately hold an advantage. This is because the system will have been devel­

oped to take advantage of the information which that particular lexicon offers and 

tailored to the specific sense inventory. Information given in other dictionaries used 

by other systems may not be available. 

By providing mappings between the senses of different lexicons, attempts to 

overcome the use of a wide variety of lexicons could be made. The mapping process 

is equivalent to sense tagging the text with each of the different sense inventories. 

However, i f all systems were allowed to assign a sense tag from the lexicon famil­

iar to them those systems using a coarsely grained sense inventory would benefit 

more than those systems which did not. Secondly, developing a mapping between 

lexicons causes information to be lost. Senses overlap, and as a result creating a 

complete map may not be possible. To avoid the problems, the prefered solution 

is to use a lexicon which is not used by any WSD system. 
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Even i f an appropriate lexicon can be found, there are still many other problems. 
A successful evaluation is reUant on an accurate manually sense tagged corpora. 
Section 2.4 discussed the difficulties involved with producing such a corpus. The 
evaluation must determine a method to deal with sentences where human sense 
taggers disagree. Choosing to remove all these sentences would make the task 
artificially easier and would not give a true reflection of the accuracy achievable by 
state-of-the-art WSD systems. If human taggers have been able to assign multiple 
senses to a word, should the system be expected to produce all of these senses? 

The difficulty of evaluating a WSD system is discussed in [McRoy, 1992]. McRoy 

made an unsuccessful attempt to quantify the performance of her WSD system. 

She reports the reasons for the evaluation failure being due to the difficulties of 

manual sense tagging. The manual sense tagging is described as "... far more 

tedious than manual part of speech tagging or bracketing" (McRoy, 1992, p. 26) In 

addition McRoy questioned the benefit of evaluating WSD systems as WSD is a 

sub task of a NLP system. 

2.5.2 Evaluation Metrics 

Unlike parsing or POS tagging there are no standard evaluation metrics for WSD. 

Different metrics used for WSD are now considered. 

The Stochastic Scoring Metric 

A proposal for a stochastic scoring mechanism is given in [Melamed and Resnik, 

2000]. The metric enables the evaluation of stochastic systems which assign proba­

bilities to several senses rather than choosing one particular sense. The stochastic 

system scores the value of the probability assigned to the correct sense of the word. 

The metric is also able to evaluate deterministic systems which uniquely choose only 

one sense. These systems score 1 i f the correct sense is chosen and 0 otherwise. 

The following example shows that this evaluation metric favours a deterministic 

system. 
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Table 2.1: Example of score discrepancy between stochastic and deterministic 
system using Resnik's scoring system 

Test Correct Stochastic Deterministic 
Number Sense Score Score 

1 A 0.7 1 
2 A 0.7 1 
3 A 0.7 1 
4 A 0.7 1 
5 A 0.7 1 
6 A 0.7 1 
7 A 0.7 1 
8 B 0.3 0 
9 B 0.3 0 
10 B 0.3 0 

Total 5.8 7 

For this example, let us take a simple word which has two senses A and B. Using 

training data provided we find that A is referred to in 70% of the instances and B 

30%. Assuming that this is the only information available, the stochastic system 

will assign A a score of 0.7 and B a score of 0.3 in all test cases. The deterministic 

system will always choose sense A as it is the more frequently occurring sense. I f 

the frequency distribution of senses in the test data roughly reflects the frequency 

distribution in the training data, the deterministic system will achieve a higher 

score than the stochastic system, using Melamed and Resnik's scoring scheme. 

This is shown in table 2.1. 

The stochastic system will out perform the deterministic System, only if sense 

B was referred to in more than 50% of the testing instances. In this instance the 

baseline accuracy established by choosing a sense at random would outperform 

both systems. 

This example is not intended to suggest that deterministic systems outperform 

stochastic systems. The example simply highlights the difficulty of finding a scoring 

scheme which is able to evaluate both types of system fairly. 
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Kappa 

Other evaluation metrics take into account different aspects of the problem. Kappa 

and entropy both quantify the difficulty of the task in order that the comparison 

of different tasks can be improved. 

Kappa reports disambiguation accuracy relative to a chance baseline. Kappa is 

calculated as: 

Kappa = -—- (2.1) 
1 — e 

where a is the achieved accuracy and e is the accuracy which could be achieved 

by chance. A Kappa value of zero means that the system has achieved the same 

accuracy as the chance system, and a perfect system will score a Kappa value of 

one. 

How to calculate the accuracy of a chance system is one of the questions which 

developers need to consider when using Kappa. There are two choices: Consider 

a chance system to be one which chooses each sense with equal probability. A l ­

ternatively consider a chance system to be one which chooses the most frequently 

occurring sense. The former takes into account the number of senses for each 

word, but neglects the frequency distribution of those senses. The later considers 

the most frequent sense, but neglects the number and frequency distribution of the 

remaining senses. 

Entropy 

An entropy measure is used widely within statistics to measure the confusion within 

a system [Charniak, 1994]. I t may therefore be possible to use entropy to measure 

the confusion within a disambiguation system and quantify the difficulty of the 

task. Unlike Kappa, entropy takes into account both the number of senses and the 

frequency distribution of those senses. Entropy is calculated as: 
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Table 2.2: Table showing how entropy scores change for different 
frequency distributions of senses 

Word Frequency Frequency Entropy 
Number Distribution Baseline 
Word 1 0.5 0.5 0.5 1 
Word 2 0.8 0.2 0.8 0.7219 
Word 3 0.8 0.05 0.05 0.05 0.05 0.8 1.1219 

Entropy = - Y^Pilog2Pi 
i=l 

(2.2) 

where pi is the probability of sense i appearing in the text and n is the number 

of senses of the word. A high entropy measure reflects a word which is difiicult 

to disambiguate. Table 2.2 gives examples of different words with their frequency 

distribution and entropy measure. The table shows that to some extent entropy 

does indeed reflect the difficulty of disambiguation for each word. Word 2 has 

a lower entropy than word 1, which shows that entropy has captured the effects 

of an uneven frequency distribution for word 2. Moreover word 2 has a lower 

entropy than word 3 showing that the measure has captured the effect of word 3 

having a large number of senses. However, the entropy for word 3 is higher than 

the entropy for word 1. This is unexpected as most WSD systems would achieve 

greater accuracy for word 3 than word 1 due to its higher frequency baseline. This 

highlights the weakness of using entropy as a measure of the difficulty of a WSD 

task. The two factors entropy considers, frequency distribution and number of 

senses, are not weighted correctly. For WSD, the frequency of the major sense has 

a large effect on the accuracy. Its eflFect is much greater than the number of senses 

a word possesses. Therefore, entropy may be unable to give a good measure of the 

difficulty of the WSD task. This is investigated in section 6.9 
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The Cos t /Error Matrix 

I t has now been shown that kappa and entropy incorporate a "difficulty of task" 

factor into their evaluation metric. Considering the difficulty of the task is only 

useful i f the task used for evaluation is not the same for all systems. 

The metric proposed in [Resnik and Yarowsky, 1997] incorporates a different 

factor into WSD evaluation. This factor is important even if the task is the same 

for all systems. The factor considered by Resnik and Yarowsky is a cost matrix. 

The cost matrix does not consider a system's choice of sense to be either right 

or wrong. A misclassification across broad sense distinctions is assigned a greater 

penalty than a misclassification between two very similar senses. This is enabled 

through the cost matrix. 

A metric to evaluate the potential damage a system's misclassification may 

cause seems appropriate for WSD. I t is often not necessary to determine the correct 

sense of a word for real NLP tasks to be successful. The correct broad meaning, 

which could be achieved from other senses, is often sufficient. How to derive a cost 

matrix to encode the appropriate penalties is the challenge required in order to use 

this metric. 

Resnik and Yarowsky propose three methods for calculating a cost matrix. 

The first method proposed uses a semantic distance measure ^[Resnik, 1995b], 

[Richardson et ai, 1994]. Calculation of a semantic distance requires a hierarchical 

structure within the lexicon. I t is this hierarchy which enables the calculation of 

a distance representing the similarly of two senses. I t would not be possible to 

calculate a cost matrix using semantic distance for a lexicon with no hierarchical 

structure. 

The second method proposed uses a communicative distance measure. This 

measure is based on psycholinguistic work and studies how closely related humans 

perceive different senses [Miller and Charles, 1991]. This is a labourious process 

and would be difficult to achieve on a large scale. 

^Semantic distance is discussed in chapter 3 
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The final method proposed is the most promising, as i t relates the error con­
ceived in WSD to a real NLP task. Consider machine translation as an example of 
a real NLP task. The cost of misclassification relates to the chances of the chosen 
sense being mapped to the incorrect word in the target language. Using bi-lingual 
dictionaries, it would be possible to obtain large scale cost matrices for machine 
translation. Whilst this method is promising for machine translation, i t is less easy 
to conceive how equivalent cost matrices could be developed for other NLP tasks. 
Also the benefit of the cost matrix must not be over estimated. The method is 
only valuable for evaluating WSD systems. I t does not enable a measure to be 
determined to quantify the amount WSD improves the accuracy of a specific NLP 
task. 

2.6 SENSEVAL 

Many of the problems involved with the evaluation of WSD systems which were 

considered in the previous section were identified in [Resnik and Yarowsky, 1997]. 

These problems were discussed at the 1997 SIGLEX conference and as a conse­

quence Adam Kilgarriff took up the challenge of developing a solution. The first 

major step towards developing an established solution took place in September 1998 

with the pilot SENSEVAL evaluation. This was the first ever MUG style [Kauf-

mann, 1995] conference organized specifically for WSD. An outUne of the format 

of the evaluation, and some of the considerations made in establishing SENSEVAL 

is now given. An equivalent evaluation was run at the same time for French and 

Italian called Romanseval. However, this account will concentrate on the English 

evaluation. A more detailed account is given in [Kilgarriff, 1998b] and [Kilgarriff, 

1998a. 

KilgarrifF's principle objective was to ensure that all types of system were able to 

compete. The primary challenge facing Kilgarriff was to find a corpus of manually 

sense tagged text which could be used for the evaluation. There were three choices: 

SEMGOR, DSC and HECTOR. SEMCOR and DSO are both readily available 
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and tagged with WordNet senses. WordNet does not supply complete dictionary 
definitions with all their senses. Therefore, both of these corpuses would make 
it difficult for systems which rely on dictionary definitions to compete. Also, as 
SEMCOR adopts a textual approach, there are less than 100 senses which occur 
more than 500 times. The DSO corpus does adopt a lexical approach, and there 
are many tagged instances of 191 commonly used nouns and verbs. However the 
tagging accuracy of the DSO corpus is not perceived to be high enough for an 
evaluation. 

2.6.1 The HECTOR Data 

Fortunately the HECTOR corpus provided a better solution. The HECTOR 

project is detailed in [Atkins, 1993] and contains 200,000 tagged sentences taken 

from the British National Corpus. HECTOR also adopts a lexical approach, and 

there are more than 300 words which possess over 100 tagged instances. Moreover 

the HECTOR data is not readily available, so no systems were at an advantage 

by using the data before the evaluation. The quality of the corpus was tested by 

re-sense tagging it in order to find the ITA. A figure of 96.5% ITA achieved was 

considered high enough to warrant the corpus being considered as a gold standard. 

Within the HECTOR lexicon the division of a word into its component senses 

forms a shallow hierarchy. Senses which are considered to be completely separate 

are aligned at the top of the hierarchy. Senses which are semantically similar are 

all grouped as children of a broader more vague sense. The broader sense aims 

to encapsulate the possible meanings of all of its children. Other senses may be 

grouped together i f they are semantically the same, but have syntactic variations. 

The word band is used as an example to highlight the format of the HECTOR 

hierarchy. Some of the senses identified for band in HECTOR are given in table 

2.3. 

Table 2.3 highlights many characteristics of the HECTOR lexicon. Two in­

stances of the HECTOR hierarchy are shown. In both cases the parent sense 

(senses 3 and 4) has a broad definition so that it encapsulates all possible varia-
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Table 2.3: Definitions for some of the senses for band identified in the 
HECTOR lexicon 

Sense Number Definition 
1 A group of musicians. 
2 A group of people - "A select band of athletes" 
3 A strip of material 
3.1 A gold wedding ring 
3.2 Strip of an object different from main colour of material 
3.3 Area in the form of a long flat strip - band of cloud 
4 A range of values within a series 
4.1 A range of frequencies or wave lengths particularly radio 
5 Brass band 
6 Rubber band 
7 Waistband 

Figure 2.1: Diagram showing the structure of the HECTOR hierarchy using 
the senses for band identified in table 2.3 

Musicians -1 Waistband - 7 People - 2 Brass Band - 5 

Strip - 3 Rubber Band - 6 Range - 4 

Ring-3.1 Material-3.2 Cloud 3.3 Radio-4.1 
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tions of the sense. The main variations are then given as sub-senses. The sub-senses 
themselves can be quite different from each other, as is the case for the sub-senses 
of 3. A human should have no difficulty in determining which sub-sense of 3 was 
being referred to in any context. The sub-senses identify specific domains in which 
the more general sense is frequently used. Sense 4 is almost always referred to 
within the context of radio frequencies, and thus a sub-sense (4.1) is assigned to 
this specific domain. As a result, the more general sense 4 is infrequently tagged in 
a corpus. The more general sense will be used if a sense is used outside a domain 
in which a sub-sense has been identified. For example, sense 4 would be chosen in 
the following context - "Profit margins were in the 20% - 30% band". The range 
of values topic domain does occur frequently enough to warrant its own sub-sense. 

The development of the HECTOR lexicon has been corpus driven, and this 

is reflected by the choices made in determining the structure of the hierarchy. 

In theory, the music band sense (1) should be a sub-sense of the more general 

group of people sense (2). After all, a music band is a group of people who play 

music together. The choice to consider these two senses are completely separate is 

primarily because of the large number of occurences of band referring to the music 

sense. 

The example also highlights the way in which HECTOR deals with collocations 

and idioms. Brass Band and Rubber Band are both considered separate from any 

of the other senses identified. This choice may be because senses which have a 

definite collocate are easy to identify in free text. However, the hierarchy would 

better represent the semantic similarity between senses if Brass Band was a sub-

sense of the music band sense (1) and Rubber Band was a sub-sense of the strip 

of material sense (3). Finally the example shows how a separate word such as 

waistband maybe included as a possible sense. I t is trivial to choose a separate 

word as the correct sense in a text. Therefore, the inclusion of such senses distorts 

metrics used to quantify the difficulty of the task. The metrics affected include 

the number of possible senses for a word, and the baseline accuracy achieved by 

considering all senses with equal probability. 
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2.6.2 Evaluation Mechanism for SENSEVAL 

The evaluation mechanism adopted for SENSEVAL is based on a probabilistic 

proposal by [Melamed and Resnik, 2000]. Other issues concerning the evaluation 

mechanism can be found in [Kilgarrif and Rosenzweig, 2000]. A summary and 

discussion of the evaluation mechanism is now given. 

The evaluation mechanism enables both stochastic and deterministic systems to 

be evaluated. This is done by the system scoring the probability it assigned to the 

correct sense of the ambiguous word. A deterministic system will score either 1 or 

0 in all instances. Whether this mechanism enables both systems to be evaluated 

fairly was discussed in section 2.5.2. 

Fine grained and course grained results are both obtained. For the fine grained 

results, the same sense must be chosen as the tagged sense in the test data. For 

the course grained results, any sub-sense which belongs to the same main sense 

may be chosen. Band is used as an example to highlight the difference between 

coarse and fine grained results. I f the correct sense is the cloud sense of band (3.3) 

then for the fine grained results the cloud sense must be chosen. However, for the 

coarse grained results senses 3, 3.1, 3.2 and 3.3 will score equally well if chosen. 

A mixed grain metric also exists which is a mixture of the fine and coarse results. 

Full credit is given for choosing senses 3 or 3.3 and partial credit is given for senses 

3.1 or 3.2. 

The coarse grained results may seem a more appropriate metric, because in 

many instances the sub-senses are very closely related. Few NLP tasks would 

need to distinguish between senses to the level required by the fine grained metric. 

However, the coarse grained metric relies on the HECTOR hierarchy. As was 

shown earlier, the structure of the HECTOR hierarchy is corpus driven and can 

cause semantically related senses to be far apart in the hierarchy. As a result, the 

credibility of the coarse grained results is reduced. 

For all metrics, a precision and recall figure is given. This is done to encourage 

systems to participate which are unable to disambiguate all types of ambiguity. The 
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precision figure gives the system's accuracy out of all the instances i t attempted. 
The recall figure gives the system's accuracy out of all possible instances. The 
difference between the precision and recall figures gives an indication of how many 
instances each system attempted. 

. . Number of correct answers 
Precision = — ; f- (2.3) 

Total number of test sentences 

„ Number of correct answers 
Recall = — ; — ; (2.4) 

Number of attempted test sentences 

2.6.3 Format of SENSEVAL Evaluation 

The evaluation comprised of the competitors being assigned a manually sense 

tagged training data and extensive dictionary definitions for a set of 31 words. 

A further four words were assigned for which the dictionary definitions were given 

but there was no training data. For five of the words the POS of the correct sense 

was not known. The competitors had approximately two months to work with 

the training data and dictionary definitions to enable their system to disambiguate 

HECTOR senses. After that time all systems were frozen and test data was re­

leased for the same set of words. The results from all the systems were submitted 

and evaluated. An analysis of the results is given in chapter 7. 

2.7 Criteria for Success 

Now that some of the problems associated with WSD have been defined, the criteria 

for success for this work can be stated. The overall aim of this work is to produce 

a state-of-the-art WSD system. In order to be able to determine whether this 

has been achieved, i t is necessary to set specific goals which relate to the seven 

NLE goals discussed in section 1.2.2. Three of the NLE goals are considered most 

relevant to this particular task. Showing that the system developed achieves these 

three goals is the primary criteria for success for this thesis. Highlighting three of 

the NLE goals does not imply that the remaining four goals will not be achieved. 
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The three NLE goals, and their criteria for success are now detailed: 

2.7.1 Usability 

The usability criterion refers to producing something which is actually desired by 

an end-user. For WSD, the end user is a developer of a NLP system. Accuracy is 

the most important criterion for a NLP developer wishing to incorporate a WSD 

module. Achieving 100% disambiguation accuracy would be an unrealistic criterion 

for success. Therefore, in order to fulf i l this criterion, i t must be shown that the 

system is able to achieve at least the same level of accuracy as other disambiguation 

systems performing the same task. 

2.7.2 Flexibility 

The ability to use a WSD system in diflFerent domains and for different tasks is 

a measure of its flexibility. Section 2.3.1 examined the problems associated with 

different systems working in different domains. The ability of the WSD system 

to be independent of any one domain is another criterion for the success of this 

system. This will enable i t to be useful for many NLP tasks. The system develops 

a learning algorithm and requires sense tagged training data. Therefore, for this 

system two requirements are imposed in order to achieve domain independence. 

• I f mappings are available, a system trained on one lexicon can be applied to 

a separate lexicon without re-training. 

• The learning algorithm developed must not be dependent on any one partic­

ular lexicon. 

2.7.3 Scale 

NLP systems should be able to process free text, which has not been written 

specifically for the NLP task. Therefore, there exist two dimensions to the scale 
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criterion relevant to WSD. 

• The disambiguation system must be able to disambiguate text regardless of 

the number of sentences, or the length of any of the sentences in the text. 

• The system must have wide coverage. The usability and flexibility criteria 

must be fulflUed for all words of all parts-of-speech which are found in a 

lexicon. 

2.8 Summary 

To summarise, the major problems associated with WSD are as follows: 

• Large scale lexicons which are used as sense inventories assign a large number 

of senses to a word. 

• Many senses are very similar in meaning. 

• Sense distinctions vary greatly between lexicons, so comparisons can not be 

made, and the level of complexity of the task can not be quantified. 

• To test a system a corpus of manually sense tagged text is required. This 

corpus is both labourious to produce and will not be completely accurate. 

• Even with an accurate corpus there exists no metric which is able to evaluate 

all systems equally. 

The chapter then examined the framework of the SENSEVAL evaluation which 

aims to overcome many of the problems identified above. Finally the criteria for 

success for this work were detailed relating them to the goals of NLE identified in 

chapter 1. 



Chapter 3 

Related Work 

Chapter 2 details many of the problems which a developer of a WSD system must 

consider. This chapter examines what has already been achieved within the field. 

The chapter focusses on the many different sources of information which have 

been used to help resolve WSD. This chapter discusses and provides criticism for 

each of these knowledge sources and examines ways in which they have been used 

by system developers. Less emphasis is placed on reporting the results achieved 

by other systems. WSD Evaluation performed on different data sets is difficult 

to compare as was discussed in chapter 2. Emphasising the results achieved by 

different systems may imply that one system is better than another. However, this 

implication could be very misleading. 

Before any of the modern day state-of-the art systems are considered, a brief 

discussion is given of how this field has developed. 

3.1 A Brief Look Back 

Early work investigating WSD began in the 1950's. The research was inspired by 

automatic machine translation systems which identified the need for accurate sense 

discrimination. This work identified many of the principles behind which modern 

day techniques are based. 
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The importance of local context to help humans resolve ambiguity is discussed in 
Weaver, 1955]. Subsequent work found that humans could normally resolve sense 

ambiguity i f they were given two contextual words either side of the ambiguous 
word. Local context was therefore considered important for automatic systems. 
Weaver also identified a need to use statistical techniques due to the uneven nature 
of a sense's frequency distribution. Grammatical structure was also considered 
by Reifler in 1955. Reifler shows how the ambiguity of keep can be resolved by 
examining the grammatical type of its object: 

• He kept a record - noun phrase. 

• He kept calm - adjectival phrase. 

• He kept eating - gerund. 

However, in the 1950's machine translation was only being developed for spe­

cific domains, in which much ambiguity is already resolved. For example, in a 

mathematics domain, root can only refer to the square root, and not to the part 

of a plant. Moreover, these techniques remained predominately theoretical ideas. 

There was not the lexical or computational resources available to enable them to 

be expanded. However, many of these theoretical ideas have been adopted in more 

modern day approaches. For example, [Kilgarriff, 1997a] proposes a foreground 

and background lexicon for IE. The foreground lexicon is specific to a particular 

domain to aid the WSD process. The remainder of this section examines a variety 

of modern day approaches to WSD and shows how the techniques discussed in the 

1950's are still relevant today. 

3.2 Dictionary definitions 

Using sense definitions given in a dictionary is a convenient way to resolve am­

biguity. This approach has many advantages. As Machine readable dictionaries 

are widely used in many domains they are readily available. Moreover, manually 
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sense tagged training data is not required. The value of this characteristic is shown 
in chapter 2, which highlights the difficulties involved in creating manually sense 
tagged data. The method used to develop a system for one dictionary may also be 
able to be applied to a different dictionary. Potentially this enables the system to 
operate in several domains and increases the portability. 

The use of dictionary definitions was inspired by [Lesk, 1986], who used the 

Oxford Advanced Learners' Dictionary (OALD) [Hornby, 1963] dictionary for the 

definitions of senses. Ambiguity is resolved by examining the number of overlaps 

between the ambiguous word and the context words. An overlap is the number 

of words a sense's definition has in common with the definition of a context word. 

Lesk uses pine cone as his example. The correct senses of both pine and cone can 

be determined as tree is common to both definitions. 

Veronis and Ide, 1995] show that Lesk's method can be adopted to correctly 

resolve the ambiguity of pen i f sheep is a context word. Veronis and Ide show this 

using the Collins English Dictionary (CED) [Hanks, 1979], instead of the OALD 

dictionary as used by Lesk. The use of a different dictionary highlights the potential 

portability characteristic of the dictionary definition approach. However, Veronis 

and Ide proceed by showing the fragility of Lesk's method due to its reliance on 

the particular wording of the dictionary. I f either chicken or goat are the context 

words instead of sheep, the ambiguity of pen is unable to be correctly resolved. 

The definitions of chicken and goat contain no words which are also contained in 

the definition of pen. With the writing utensil sense of pen a converse problem is 

observed. I f page is a context word then seven senses of pen have the same number 

of overlaps. There is therefore no way to determine which of these is the correct 

sense. 

Lesk's work was built upon by [Cowie et al., 1992] who determined a way to 

simultaneously resolve the ambiguity for all words within a context window. Cowie 

et. al. applied Simulated Annealing techniques to the disambiguation problem. 

Simulated Annealing is a search mechanism which has been successfully applied 

in many other aspects of A I such as the travelling salesman problem. Simulated 
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annealing requires a function E which depends upon the particular configuration 
of the system. The aim is to minimize E. A new configuration is chosen randomly 
from a set starting point. I f E is reduced, the new configuration is chosen. I f 
E increases, the new configuration may still be chosen enabling the algorithm to 
move up hill and thus escape local minima. A solution is derived when no more 
improvements can be found. 

Within the context of WSD, the configurations are the sense choices for each 

word in the context window. In the work of Cowie et. al., E is calculated in 

terms of the number of word overlaps in the definitions of the senses of a particular 

configuration. The lower the value of E, the more overlaps there are, and hence 

the configuration is more likely to have the correct senses. This search algorithm 

proved very successful when used with the overlap function for dictionary defini­

tions. However, simulated annealing is not restricted to use with the dictionary 

definition approach. Any other disambiguation approaches which are able to assign 

a score to a configuration of sense choices are able to adopt simulated annealing 

techniques. 

Gowie et. al.'s system improved on Lesk's work by enabling larger context 

windows. Lesk limited his context window to ten words, Gowie et. al. used a whole 

sentence as context. As a consequence, inconsistencies in the dictionary definitions 

were smoothed over a large data set, thus reducing the effect on results. However, 

Lesk's and Gowie et. al.'s system did not fully realise its potential capabilities. The 

reason for this is that the length of the dictionary definitions was not considered. 

I f a sense has a long definition, the likelihood that some words in the definition will 

overlap is increased. Therefore, senses with short definitions and senses which are 

defined in terms of their synonyms are penalised. 

Gowie et. al.'s work is very important for the simulated annealing search algo­

rithm i t developed. However, the information extracted from the machine readable 

dictionary was similar to that which Lesk had used. This richness of the informa­

tion extracted from the dictionary is improved in [Veronis and Ide, 1990] and is 

later presented in more detail in [Veronis and Ide, 1995]. Veronis and Ide identify 
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a dictionary as a highly connected network of words and concepts. By doing so, 

they are able to consider not only the words in a definition, but also the definitions 

of the words in a definition, and so on. Using the CED as their machine readable 

dictionary, Veronis and Ide produce a very large neural network. The nodes in the 

network represent concepts in the dictionary and the connections between them 

represent a semantic relationship between words. Once trained, this neural net­

work can be used for WSD. Context words in a text will activate different senses of 

an ambiguous word based on their relationship in the dictionary. The sense with 

the highest activation will be chosen. Other connectionist approaches have been 

applied in different ways to the WSD problem in [Lyon, 1994], [k Kawamoto and 

Anderson, 1994], and [G.Cottrell, 1984. 

Veronis and Ide provide an intriguing method to extract semantic information 

from a dictionary. Their approach is limited by their underlying assumption -

"there are significant semantic relations between a word and the words used to de­

fine them." - [Veronis and Ide, 1995]. I t is evident that the dictionaries do contain 

semantic information which is able to help disambiguation. However, there will 

always exist many instances where the dictionary information is insufficient. Dic­

tionary definitions provide information concerning the meaning of a sense. These 

definitions do not contain information regarding the distinctions between different 

senses. An alternative approach to extracting semantic information from dictionary 

definitions is given in [Chodorow and Byrd, 1985]. 

This limitation of the dictionary definition approach is realised in [Wilks and 

Stevenson, 1997b] and [Wilks and Stevenson, 1998]. Their basic approach builds 

upon Cowie et. al.'s work by using simulated annealing with LDOCE dictionary 

definitions. Wilks and Stevenson approach the problem caused by a variation 

in dictionary definition lengths. The contribution a word makes to the overlap 

function is normalized by the number of words in the definition. Therefore, a word 

contained in a long definition will contribute less to the overlap function than a word 

contained in a short definition. This normalization produces a small improvement 

in accuracy. 



Chapter 3: Related Work 49 

3.3 Other Dictionary Information 

All the systems examined in the previous section used the definitions in the dictio­

nary as their knowledge source. This section discusses other information available 

in a dictionary which also may aid disambiguation. 

In addition to the LDOCE dictionary definitions, Wilks and Stevenson combine 

two other knowledge sources from the LDOGE dictionary. LDOGE assigns prag­

matic codes to all entries. These codes represent a subject category to which a 

word belongs. Primary and secondary codes exist producing a shallow hierarchy. 

Senses are chosen to achieve the greatest overlap of pragmatic codes within a text. 

The overlap is optimized over a paragraph of text as this knowledge source tries to 

capture general topic information. 

LDOGE also facilitates the use of basic selectional preferences which Wilks 

and Stevenson also take advantage of. Each noun is assigned one of 35 semantic 

classes identified by LDOGE. Within the definition for each adjective, adverb and 

verb, information is given regarding the semantic classes each word is likely to 

modify or possess as arguments. This information enables the elimination of senses 

which do not fall into the required semantic class. [Morgan et al., 1995] uses "He 

drove the train" as their example to demonstrate their use of selectional restrictions 

for disambiguation. The correct sense of the verb drive must take a vehicle as its 

object. Therefore, the part of a wedding dress and sequence of events senses of 

train can be disregarded as they are the wrong semantic class to be an object of 

drive. Equally the correct sense of train helps to resolve the ambiguity of drive. The 

ability to identify the grammatical links within a sentence is a pre-requisite for using 

selectional restrictions. Automatically identifying the grammatical links using a 

shallow parse will introduce some error into the system [Basili et al., 1992]. Also in 

some cases, the correct sense may not belong to a semantic category allowable by 

the verb's selectional constraints. The example used to highlight this point is taken 

from [Wilks, 1978]. The verb drink constrains its subject to an animate object. 

However, in the sentence "My car drinks gasoline", this selectional constraint is 

broken. I t is for these reasons that Wilks chooses to use the selectional constraint 



Chapter 3; Related Work 50 

information to weight possible senses known as preference semantics [Wilks, 1968 . 
This is in contrast to earlier restrictional approaches [Katz and Fodor, 1964] which 
did not consider instances where the constraints could give misleading information. 

The information from selectional constraints is still used in current research 

[Wilks and Stevenson, 1997a], [Harley and Glennon, 1997], [Hirst, 1994], [Hearst, 

1991] and [Gomez, 1997]. Also selectional restrictions are in general only useful 

for ambiguity resolution between broad senses. Finely grained senses are likely to 

belong to, or be used with, the same semantic class. 

Wilks and Stevenson's sense tagging system is promising for its ability to ex­

tract from the LDOCE dictionary as much information as possible which may help 

WSD. Their ability to perform disambiguation on a large scale has enabled their 

system to be integrated into the GATE architecture [Cunningham et ai, 1998] 

and [Stevenson et al., 1998]. GATE - a General Architecture for Text Engineering 

provides the organisational pattern for various components and knowledge sources 

which constitute text processing [Cunningham et al., 1996]. 

However, the sense tagging system uses training data in order to establish the 

best way to combine the weights from each of the knowledge sources. This require­

ment on training data loses one of the initial advantages of building on Cowie et. 

al.'s work. The system has also lost another initial advantage of the dictionary 

definition approach. The system is no longer able to be used with any machine 

readable dictionary, but is dependent on LDOCE. I t is partly for these reasons 

that Wilks and Stevenson's system was unable to take part in the SENSEVAL 

evaluation [Wilks, 2000]. As a result, there exists no acceptable way to compare 

their system with other state-of-the-art systems. 

Similar knowledge sources to those employed by Wilks and Stevenson are used 

in [Harley and Glennon, 1997]. Harley and Glennon use the CIDE dictionary as 

their knowledge base. The main advantage of this system is it is being closely 

developed with the lexicographic team responsible for the CIDE dictionary. This 

partnership enables them to have an input into which dictionary information is 

beneficial for disambiguation. Like LDOCE, the CIDE dictionary offers subject 
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Table 3.1: Table showing the words (given in bold) identified in the CIDE 
dictionary which help to distinguish between five senses of bang 

Sense Definition Clue 
bang 1 0 
bang 1 5 
bang 2 0 
bang 3 0 
bang 4 0 

To make a sudden loud noise 
To make a sudden loud noise 
To accidentally hit something 
To have sex 
Exactly or directly 

someone banging at/about 
went bang 
banged his head against/on 
banging away 
bang in the middle, slap bang 

domain tags and selectional preference tags. As well as these two data sources, 

the CIDE dictionary also identifies clues which may appear in the context and 

help to determine the correct sense of a word. Table 3.1 is used to show the type 

of clues CIDE identifies using bang as its example. CIDE uses examples with 

these clues in to show where they must be positioned relative to the ambiguous 

word. This additional knowledge source makes CIDE an excellent resource for 

WSD. Unfortunately the CIDE dictionary is a commercial product and is still 

under development. Therefore, CIDE is not readily available. These two factors 

prevent i t from being used more widely. Harley and Glennon's system uses additive 

weights to combine their diflPerent knowledge sources. These weights are manually 

set, based on a subjective opinion for the value of information from each knowledge 

source. Whilst the value for the weights may not be optimal, i t does prevent their 

system requiring any form of training data. 

3.4 Thesaurus 

Unlike dictionaries, thesauri do provide information concerning the relationship 

between words and the similarity of senses. Therefore thesauri could provide more 

useful information to distinguish between senses than dictionaries. The most com­

monly used machine readable thesaurus for WSD is the Roget's International The­

saurus [Chapman, 1977]. The measurement of overlap using a thesaurus list of 

words rather than a dictionary definition may seem appropriate for WSD. By the 
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very nature of a thesaurus, the words listed together are similar, and therefore may 

provide useful contextual information. However, this approach using a thesaurus 

as a knowledge base is not well developed. Instead, the Roget's thesaurus has been 

used in a different way. 

Within Roget's thesaurus, 1042 semantic categories have been identified. Each 

word in the thesaurus is assigned one, or several, of these semantic categories. 

Roget's thesaurus does not spht a word into component senses. Individual senses 

broadly equate to a single semantic category assigned to a word. I t was this 

information that was used by [Yarowsky, 1992] and [Gale et al., 1992a] to resolve 

word ambiguity. These semantic categories are similar to the pragmatic codes 

found in LDOCE and the subject domain tags found in CIDE. However, Yarowsky 

introduces a novel way to utilise this resource, this method is described in a three 

step process. 

• Collect contexts for each Roget's category: The first step is to collect 

a set of context words which frequently appear with a word belonging to 

a particular Roget's category. As the corpus used to collect these words is 

not tagged with their Roget's categories, some noise is introduced through 

polysemy. 

• Identify salient words: I t can be seen from the set created in step one, 

that many words will exist because they frequently occur. Step two involves 

identifying salient words in the set, which appear significantly more often in 

the context of one category than in the rest of the corpus. This is achieved 

by adopting probabilistic measures, and results in the identification of words 

which provide useful contextual information for that category. Table 3.2 

highlights some salient words found for two Roget's categories. 

• Use salient words to resolve ambiguity in novel text: I f salient words 

identified in step two appear in the context, they provide evidence for the 

particular Roget's category for which they have been identified for. A large 

contextual window is used which consists of 50 words before and 50 words 

after the ambiguous word. In such a large context several salient words are 
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Table 3.2: Table given in (Yarowsky 1992) to show some of the salient words found 
to help identify a Roget's category. 

Roget's Category Salient Words 
Animal/Insect species, family, bird, fish, breed, egg, 

centimetre, animal, tail, wild, common, 
coat, female, inhabit, eat, nest 

Tools/Machinery tool, machine, engine, blade, cut, saw, 
lever, pump, device, gear, knife, wheel, 
shaft, wood, tooth, piston 

likely to appear. The weights for all words found in the context are added 

together, and the category with the greatest sum is chosen. 

Using topic information in the aforementioned way is a very promising approach. 

Other knowledge sources aim to find words which are similar or related to the 

ambiguous word. This is based on the assumption that similar words do provide 

useful clues. Yarowsky's approach tackles the problem more directly by identifying 

words which provide contextual clues. As table 3.2 shows, not all the identified 

salient words would be considered similar to words in a particular Rbget's category. 

For example, centimetre is not similar to an animal/insect, but it is still able to 

provide a useful contextual clue to help determine the correct Roget category. 

Yarowsky found that this knowledge source performed most eflSciently if a wide 

context window is used to capture the topic information. 50 words either side of 

the ambiguous word were considered. The same large context window was also 

adopted in [Rigau and Agirre, 1995] where the knowledge source developed also 

aims to capture the general topic information. 

There are difficulties involved with using the Roget's categories, as is highlighted 

in [EUman et ai, 2000]. EUman et al report a degradation in performance when 

Roget's semantic categories are included as a knowledge source. The technique 

finds "many spurious relations where words in the local context are interpreted am­

biguously. ". Moreover, Yarowsky reports that for many words, some ambiguity still 

remains even if the correct Roget's category is chosen. Roget's semantic categories 



Chapter 3; Related Work 54 

can not be used to resolve these fine grained sense ambiguities. 

The use of a large context window is typical of an approach which tries to 

encapsulate topic information. This type of topic information has proved to be 

beneficial for disambiguating nouns. Verbs and adjectives benefit more from local 

context. This approach proves to be particularly beneficial for nouns which are 

topic constrained. For example, the money sense of interest is predominantly used 

within a financial domain. However, other senses of interest are less constrained to 

a single topic and hence this approach is less reliable for resolving their ambiguity. 

3.5 WordNet 

This section examines a hierarchical lexicon which is a quite different resource 

from the machine readable dictionaries discussed above. This kind of hierarchy 

may be consistent with the method in which humans organise their mental lexicon. 

As a result, there is interest in hierarchical networks across many different fields. 

However, within NLP, the underlying purpose of a hierarchical network is similar 

to dictionary definitions. The purpose of a hierarchical network is to quantify the 

similarity between words. This is important for WSD as similar words are likely 

to appear in the same context. This section examines approaches to WSD which 

have used a hierarchical network resource. 

The best known and most commonly used hierarchical network within NLP is 

WordNet. WordNet is a lexical database and has been a continuous research project 

at Princeton University since 1985. WordNet is dissimilar to a dictionary as lexical 

information is organised by semantic properties rather than spelling. Although 

later versions of WordNet do contain definitions for most words, these definitions 

are merely helpful extras rather than a principle component. The meaning of a 

concept is determined by its position in the hierarchy. 

"The theory we were testing assumed that, if you got the pattern of semantic 

relations right, a definition could be inferred from that - it seemed redundant to 
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include definitions along with the network of semantic relations" [Fellbaum, 1997] 

The building blocks for the WordNet lexicon is a synset. A synset is a group 

of words which express a single concept. I f words can be interchanged in some 

contexts, they are identified as synonymous in WordNet. A stronger requirement 

for interchangeability within all contexts would be impractical and lead to very few 

synonyms. Polysemous words are defined by appearing in more than one synonym. 

Each synonym in which the word appears represents a concept which refers to a 

sense of the word. The strong use of synonyms in WordNet resembles the structure 

of a thesaurus. Indeed, WordNet can be used as a thesaurus to help the user find 

the correct word to express a concept. However, WordNet offers further information 

about the relationship between these synsets and this is one of its main advantages. 

This information is not available in a thesaurus. 

The type of links found between synsets is dependent on the part-of-speech. 

The organization of nouns, verbs and adjectives within WordNet is now described. 

3.5.1 Nouns 

The synset groups for nouns are linked by hypernyms and hyponyms. A hypernym 

is a generalisation of a concept. For example, a citrus fruit is a hypernym of an 

orange. A hyponym represents a specialization and is the inverse of a hypernym. 

Continuing the example, a citrus fruit is a hyponym of an edible fruit. Hyponyms 

can be considered as an "is a kind o f link - an orange "is a kind of" citrus fruit. 

WordNet categories synsets based on lexical rather than discourse semantics. 

This causes the Tennis Problem [Fellbaum, 1996]. Al l of the concepts associated 

with a game of tennis are distributed across the WordNet Hierarchy. A tennis player 

is a hyponym of person. The racket, balls, net etc. are hyponyms of artifact. The 

tennis shots are hyponyms of actions and tennis itself is a hyponym of activity. 

The distributed nature of elements in WordNet related to tennis highlights the 

difficulty of using WordNet to extract topic information from a text. This is shown 

in figure 3.1. The tennis problem highlights a problem with using WordNet for 
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WSD. Developers who use WordNet for WSD often make the assumption that the 

correct sense of a word is the one which is close in the WordNet hierarchy to other 

concepts in the sentence. The tennis problems demonstrates that a word which 

provides useful information in the context of an ambiguous word may not appear 

in the same section of the WordNet hierarchy. 

Furthermore, the purpose of the WordNet hierarchy is to distinguish among 

hyponyms, rather than fully represent all the features of a particular concept. 

Using the earlier example, of orange, the hierarchy shows that it is a type of citrus 

fruit . However, there are no links to other concepts which define the characteristics 

of orange. For example, orange could be defined as a specialization of things that 

roll, things that are orange, things found in a supermarket etc. 

Synsets in WordNet do not lead up to a single root concept serving as the 

hypernym of all nouns. Instead, 25 unique beginners have been identified, which 

form the basis for the top level of the WordNet hierarchy. The unique beginners 

have been chosen in order that each category covers a distinct lexical domain. Some 

overlapping between categories is unavoidable. Analysis of the types of nouns that 

an adjective could modify was carried out. This analysis was influential for the 

selection process of the unique beginners. The high level structure for WordNet 

showing all the unique beginners is shown in figure 3.1 

3.5.2 Verbs 

Like nouns, the synonyms of verbs are grouped together into synsets. There are 

very few true verb synonyms where one verb can always replace another verb in a 

text. Due to the wide variety of contexts in which verbs can be used, some verbs 

will be semantically similar in some contexts, but dissimilar in other contexts. For 

example, in most contexts rise and fall have close synonyms ascend and descend 

respectively. However, i f the subject is the temperature or stock market prices then 

the synonyms can not be interchanged. Difficulties arise in deciding which verbs 

can be grouped as synonyms and which can not be grouped. 
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Figure 3.1: Top level hierarchy of nouns in WordNet 
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Moreover, as with nouns, the verb hierarchy contains 14 unique beginners which 
categorize the verbs into sections. Compared with noun categorization, verb cat­
egorization causes more difficulties as many verbs cross categories. For example, 
the verb roar in "The bike roared passed", describes both a motion and a sound. 
Hyponym links connect synsets in the hierarchy as they do for nouns. A hyponym 
link for verbs is equivalent to saying that To VI is V2 where V I is a hyponym of 
V2. For example, To sing is to perform. 

3.5.3 Adjectives 

There exists no hierarchical structure available to organize adjectives, unlike for 

nouns and verbs where hierarchies do exist. In general i t is meaningless to suggest 

that one adjective "is a kind o f another adjective. Adjectives fall roughly into two 

categories - descriptive and relational. 

Adjectives which fall into the descriptive category constitute the larger propor­

tion. This type of adjective are usually thought of as "common" adjectives such as 

cold, heavy, hard and tall. Descriptive adjectives refer to an attribute belonging to 

the noun which the adjective describes. For example cold modifies the temperature 

attribute of a noun. Therefore, a temperature attribute must belong to all nouns 

which cold is used to describe. Many descriptive adjectives possess an antonym 

which modifies the same attribute in the opposite way. The antonym of cold is hot. 

There also exists relationships between semantically similar adjectives that modify 

the same attribute in the same way, but to different extents. For example cold is 

semantically similar to hitter, chilled, parky, frosty, crisp and raw. I t is these re­

lationships which enable WordNet to organize the descriptive adjectives. A synset 

is defined as a group of semantically similar adjectives which modify an attribute 

in the same direction. One of the members of each synset is linked to their direct 

antonym. This antonym is a member of a synset of adjectives modifying the same 

attribute in the opposite direction. The adjective structure for words which modify 

the weight attribute are shown in figure 3.2. 
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Figure 3.2: Diagram showing the WordNet structure for descriptive adjectives 
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3.6 Approaches using WordNet 

Now that the WordNet lexicon has been described, approaches which have used 

this resource for WSD can now be discussed. The approaches described aim to 

give a broad representation of diflferent methods adopted for using the WordNet 

resource. 

3.6.1 Overcoming Data Sparseness 

The lack of adequate training data for WSD is a common problem. The system 

described in [Leacock and Chodorow, 1998] uses WordNet to identify text similar to 

text found in sense tagged training data. Leacock and Chodorow's work is based 

on the assumption that if the context is similar to the training text, it follows 

that the referred sense is the same in both texts. For example, if cricket provides 

contextual information to resolve the ambiguity of play, then similar ambiguous 

words to cricket, such as rugby, football, tennis etc will also provide evidence for the 

same sense of play. This approach provides contextual information for many words 

that have not appeared in the training data. Greater use is made of each sentence 

in the training data which helps to overcome the problem of data sparseness. 
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Leacock and Chodorow use the distance between two nodes in the WordNet 
hierarchy as their measure of semantic similarity. They calculate the path length 
between two nodes a and b as: 

SI Mat = m a x [ - / o ^ 2 ^ ] (3.1) 

where Np is the number of nodes in path p from a to 6 and D is the maximum 

depth of the path in the hierarchy. Depth is considered as two concepts linked low 

down in the hierarchy are semantically more related than two concepts linked at 

the top. The measure uses the number of nodes in the path rather than the number 

of hypernym/hyponym links in the path, so that a score for two words in the same 

synset can be calculated. 

3.6.2 Semantic Distance 

The next method considered uses a measure of semantic relatedness in a different 

way to Leacock and Chodorow to resolve WSD. The diflference stems from the initial 

assumption made. The assumption made in [Agirre and Rigau, 1995], [Agirre and 

Rigau, 1996] is that semantically related words appear together in the same text. 

Therefore, Agirre and Rigau choose senses which contribute to a high Contextual 

Density in one section of the WordNet's hierarchy. The WordNet hierarchy is 

sectioned so each possible sense of an ambiguous word is assigned its own section. 

The contextual density for each sense is calculated. This calculation is based on 

the number of contextual words found in a section and the overall size of the 

section. The sense which belongs to the section with the highest contextual density 

is selected. This is shown in figure 3.3 

A similar approach is presented in [Sussna, 1993]. Sussna uses the same assump­

tion made by Agirre and Rigau - that semantically related words appear together 

in the same text. A formula is determined to calculate a semantic distance mea­

sure between two nodes in WordNet. Unlike Leacock and Chodorow, this formula 

considers the number of hyponyms leaving a node as well as the depth of a node in 
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Figure 3.3: Diagram showing the use of Contextual Density for sense discrimina­
tion. Sense 2 is chosen as i t has the highest Contextual Density 
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WordNet. This is performed in order to compensate for the imbalance present in 

the WordNet hierarchy. Much greater depth exists in some areas of the WordNet 

hierarchy than others. There is a greater likelihood of a node with many hyponyms 

representing a general concept regardless of it being positioned low down in Word-

Net. 

A different method for overcoming the unbalanced nature of WordNet is pre­

sented in [Resnik, 1995a]. The similarity of two concepts, a and h in the WordNet 

hierarchy is determined by the concept which subsumes both a and h. I f the 

subsuming concept occurs frequently, i t follows that both concepts are less seman­

tically related. The frequency information is determined from training data. The 

frequency of each concept found in the text and all of its hypernyms are incre­

mented by one. Resnik uses the following formula to determine his measure of 

semantic similarity: 

SIMoi, = max[-/op2(Pr(c))] (3.2) 

where Pr(c) is the probability of a concept c which subsumes both senses a and h. 

Resnik reports that his measure for semantic distance is more closely related to a 

human's perception of similar words rather than edge counting measures [Resnik, 
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1995b]. However, this does not imply that Resnik's algorithm is a better measure 
for WSD. The approach adopted by Agirre, Rigau and Sussna's requires no training 
data proving an advantage over the measure used by Resnik. 

A l l these methods suffer from the Tennis Problem described in section 3.5. 

Many words provide strong contextual clues, which humans would consider related, 

but do not appear in the same part of the WordNet hierarchy. For example, the 

semantic similarity approach works well to aid the disambiguation of pitcher in the 

sentence: "The baseball pitcher's injury would mean that he would miss the rest of 

the season". In WordNet the thrower sense of pitcher is a specialization of baseball. 

Therefore, baseball subsumes both concepts and each concept would be considered 

very similar. However, only the root node subsumes pitcher and either injury or 

season in WordNet. Therefore, i f baseball was removed from the sentence, it would 

become more difficult to disambiguate pitcher correctly using a semantic similarity 

measure. A good disambiguation system should still be able to find the correct 

sense of pitcher using the contextual words injury and season as contextual clues. 

Even if the algorithm correctly determines the most similar sense to the con­

textual words, this does not guarantee that the most similar sense is the correct 

one. Consider the sentence "The pitcher called for a glass of water". In Word-

Net, glass and the "vessel" sense of pitcher are both subsumed by container and 

hence would give misleading contextual information. [Karov and Edelman, 1996] 

use hospital and doctor as their example to highlight a similar problem. These 

words are assigned a very low semantic similarity in WordNet as the former is a 

type of building and the latter a type of professional. Figure 3.4 highlights another 

example of this concept. Hammer and nail are most closely related to the circuit 

and control sense of board rather than the lumber sense. 

WordNet categorizes words based on their lexical relatedness. This is one of the 

diflliculties of using WordNet for WSD and is highlighted by the tennis problem. 

A measure of relatedness in terms of topic information may be more relevant for 

WSD. 

Applying a semantic distance measure to WSD causes extreme difficultly in 
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Figure 3.4: Diagram showing that in WordNet the board (plank) sense is not the 
nearest to either nail or hammer. 
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using words with different parts of speech as context. In WordNet the noun and 

verb hierarchies are completely separate. Therefore, using the subsuming or node 

counting approach, no way exists of obtaining a similarity measure between con­

cepts with different POS. This often means that the algorithm tries only to dis­

ambiguate nouns, using only nouns as context [Resnik, 1995a]. In the sentence 

"The pitcher throws very fast" the algorithm would be unable to use throws as a 

contextual clue to help disambiguate pitcher. 

To summarize, WordNet is a very useful resource for NLP systems. Within 

the smaller domain of WSD there are also many ways in which WordNet can be 

usefully applied. However, there is a danger of expecting WordNet to accomplish 

more than its capability with respect to WSD. When using WordNet for WSD one 

must always remember what the developers of WordNet set out to achieve and 

work with those limitations. 

3.7 Corpus Based Methods 

The recent availability of data which has been manually sense tagged has been 

of enormous benefit to WSD. Manually sense tagged data and the availability of 

powerful computers have enabled many avenues of research to become practically 
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viable, on a large scale. For example, the Machine Translation system developed 
by Masterman in 1957 was unable to be tested on a large scale due to a lack 
of resources and processing power. Some approaches which have exploited the 
resources presently available will now be discussed. 

An exemplar-based approach is given by [Hwee Tou Ng and Hian Beng Lee, 

1996]. The principle behind Ng and Lee's method is similar to Leacock and 

Chodorow's, discussed in section 3.6. Both systems determine a similarity measure 

between sentences. Each sentence in a test set is compared with the sentences in 

a training set. The training sentence most similar to the test sentence is chosen. 

The tagged sense in the training sentence is then assigned to the ambiguous word 

in the test sentence. Unlike Leacock and Chodorow, the training data is not only 

used as a set of example sentences by Ng and Lee, but also to learn their similarity 

measure. The similarity measure is based on a set of features which have been 

identified as aiding the disambiguation process. These features are: part-of-speech 

of neighbouring words, morphological form, set of surrounding words and the verb-

object syntactic relationship. During training, the system learns the effect different 

values of these features has on the sense of a particular ambiguous word. By doing 

so, distance measures can be obtained between different values of each feature. 

The importance of each feature for disambiguation can also be determined. The 

distance measures learnt are the basis of the similarity measure between sentences. 

Ng and Lee's method is not dependent on any one particular lexicon and is a 

major advantage of this approach. This feature enables the algorithm to be portable 

and used in many domains. Moreover, Ng and Lee report that the method achieves 

high accuracy when tested on the ambiguous word interest. However, scalability is 

the main drawback of this system. 1769 sentences were used to train the system to 

disambiguate the word interest. I t would be impractical to produce a corpus with 

this number of training examples for all ambiguous words. The system performed 

less well when tested on the common ambiguous words found in SemCor, this 

highlights the problem of the scalability feature of this approach. 

The problem of needing a large number of training sentences for an exemplar 
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approach is considered in [Fujii et al., 1996] and [Fujii et al., 1988]. Examining ten 
Japanese verbs, it was found that 100 example sentences were needed for each verb. 
The manual resources required to sense tag this quantity of sentences for a large 
quantity of verbs was far too big. In addition, i t was computationally expensive 
to compare each test sentence with such a quantity of example sentences. Fujii et. 
al. proposed a solution using selective sampling to identify the most informative 
sentences which aid example selection. The verb sense disambiguation system 
which uses the example sentences is described in [Fujii, 1998]. I f the sentences 
have been selectively sampled prior to being used in the verb sense disambiguation 
system, the system requires only one third the number of training sentences. 

The sense tagged corpus has also enabled a range of probabilistic techniques to 

be employed for disambiguation [Key-yih Su et al., 1992] and [Chang et al., 1992]. 

Identifying a range of informative features for ambiguity resolution is the funda­

mental principle underlying this approach. The probability of each sense occuring, 

given the presence of a particular feature, is then calculated. The probabilities are 

calculated based on Bayes theorem: 

where s is a sense of an ambiguous word and x is a feature. 

Bayes theory is used in [Brown et al., 1991] where collocations are adopted for 

the features. Similar probabilistic techniques are present in [Yarowsky, 1992] where 

the features used are based on the Roget's semantic categories. 

Producing probabilistic models becomes more difficult if many features are con­

sidered. The more features considered, the greater the demand on training data 

to produce accurate probabilities. However, [Back and Schwefel, 1993] proposes a 

method which uses probabilistic techniques to estimate probabilities for instances 

where the data is sparce. 

Considering many features causes other difficulties. I t can not be assumed that 

all features considered are independent of each other. Considering all interdepen-
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dencies between features, leads to an extremely complex probabilistic model with 
a large number of parameters. [Gale et al., 1995] propose Bayesian Discrimination 
Analysis to operate in a high dimension search space such as this. An alterna­
tive approach to the problem of interdependencies between features is proposed 
in [Bruce and Wiebe, 1994] and [Pedersen et ai, 1997]. Bruce and Wiebe use 
decomposable probabilistic models which do not consider all of the interdepen­
dencies between features. Using training data, Bruce and Wiebe identify which 
decomposable models are most beneficial for the disambiguation task. 

An alternative statistic approach is cited in [Yarowsky, 1994]. Yarowsky uses 

statistical decision lists rather than adopting a Bayesian approach. Although many 

informative features are still identified, the classification of a word is based solely on 

the single most reliable piece of evidence in the context. Not attempting to combine 

evidence from different features, the problem of interdependencies between features 

is avoided. 

In order to achieve accurate probabilities a large amount of training data is 

required and this is a major drawback for all approaches using probabilistic models. 

In most cases the required training data must be sense tagged and this substantially 

increases the required investment of human resources. 

3.8 One Sense Per Discourse 

This section considers one possible factor which may reduce the difficulty of solving 

the WSD problem. Following an evaluation of WSD algorithms [Gale et ai, 1992b], 

an investigation into a "One sense per discourse" hypothesis was performed. The 

following hypothesis was proposed: I f a word appears in a discourse referring to a 

particular sense, i t is unlikely that other senses of the same word will be referred 

to within the same discourse. Initial experimentation to test this hypothesis is 

reported in [Gale et al., 1992c]. The experiment was conducted on a small scale, 

and considered nine ambiguous words. 54 pairs of sentences were identified. Both 

sentences in each pair contained the same ambiguous word and both were taken 
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from the same discourse. The results showed that 51 out of the 54 pairs referred to 
the same sense of the ambiguous word. Therefore, there existed a 94% probabiUty 
that two instances of an ambiguous word would refer to the same sense in a given 
discourse. 

The claims made by Gale et al are questioned in [Krovetz, 2000]. Krovetz notes 

that the accuracy of the "One sense per discourse" hypothesis depends both on the 

length of the discourse, and the level of similarity between the senses. Krovetz used 

SEMCOR and the DSO corpuses, which both tag words with WordNet senses, to 

test the hypothesis. Krovetz found that in 33% of the instances tested more than 

one sense of a word appeared in the same discourse. This is significantly higher 

than the results reported by Gale et al. The difference is accounted for by the fine 

level of sense distinctions made in the WordNet lexicon. 

Krovetz's work shows that a strict "One sense per discourse" rule can not be 

applied to WSD. However, this does not imply that Gale et al's findings are not 

beneficial for WSD. As a result of the work of Gales et al, developers may decide 

that it is beneficial to consider all instances of a word within a discourse at the 

same time. The developer need not assign the same sense to all instances, but may 

use a weighting to prefer similar senses. I t may also become beneficial to adopt 

different weightings for different words. As Krovetz mentions, the likelihood of 

more than one sense of a word appearing in the same discourse is dependent on the 

range of domains within which the senses can be used. This approach may enable 

instances where the ambiguity can be easily resolved to aid the disambiguation of 

other instances of the same word found in the same discourse. 

3.9 Summary 

This chapter has detailed many different sources of knowledge which can be used 

to help resolve word ambiguity. Various ways of using information from a dictio­

nary and a thesaurus have been considered. Moreover, other contextual features 

such as morphology, collocations, part-of-speech, neighbouring words and syntac-
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tic information have all been used by many of the systems considered. The recent 
availability of sense tagged data has also enabled stochastic information to be ex­
ploited. 

The importance of combining different knowledge sources is noted in [McRoy, 

1992], [Hwee Tou Ng and Hian Beng Lee, 1996] and most recently in [Wilks and 

Stevenson, 1999]. There exist many sources of information which are able to help 

disambiguation, but none are able to achieve high accuracy independently. Com­

pared with other fields within NLP, the availability of many sources of information 

is an unusual feature for word sense disambiguation. The idea of employing weak 

knowledge sources for strong results must therefore be adopted. The challenge 

facing developers is to determine which knowledge sources should be adopted and 

also how these knowledge sources should be combined. The systems discussed 

have used a wide variety of techniques for combining knowledge sources. Harley 

and Glennon's system uses additive weights similar to those adopted in the eval­

uation of chess positions by computers. The combination of knowledge sources is 

optimised by a learning algorithm in the work of Wilks and Stevenson's [Wilks and 

Stevenson, 1998]. For the stochastic approaches combining the knowledge sources 

is not the problem, but handling the interdependencies between them. Wiebe and 

Bruce approach the problem using Decomposable Models which reduce these inter­

dependencies. Yarowsky proposes Baysian Discrimination Analysis which is able 

to cope with a large number of interdependencies. 

Finally, [Yarowsky, 1994] proposes a radical solution to the problem avoiding the 

need to combine knowledge sources. Yarowsky proposes that knowledge sources are 

useful in different instances. Therefore, the system must identify which knowledge 

source is most beneficial in a particular instance. 



Chapter 4 

Large Scale Knowledge Sources 

The previous chapter examined in detail a range of knowledge sources which have 

been used by systems to aid the resolution of lexical ambiguity. This chapter follows 

on from chapter 3 by continuing to discuss the issue of knowledge sources. This 

chapter details the two knowledge sources used by the system being developed. 

Arguments for the choices made are given and compared with some of the different 

approaches discussed in chapter 3. Throughout this and subsequent chapters, this 

system will simply be referred to as DURHAM. DURHAM is the name given to 

this system for the SENSEVAL evaluation and is therefore an appropriate choice. 

The two sources of information used by DURHAM to aid disambiguation are 

frequency and contextual information. The frequency knowledge source is com­

monly found in similar forms in other systems. However, the contextual informa­

tion knowledge source is unique and is one of the main contributions made by this 

work. A third knowledge source which has been named clue words has also been 

developed. Clue words provide very reliable information, but difficulties exist with 

their ability to be applied on a large scale. Therefore, they do not feature in the 

knowledge sources considered for a large scale system which is the subject of this 

chapter. Chapter 7 discusses how the large scale system can be applied to a smaller 

domain. Therefore, clue words are considered in chapter 7. 

The frequency and contextual information knowledge sources are combined to 
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produce a hybrid system. By doing so, both corpus based and sub-symbolic learn­
ing methods are exploited. The difficulty and nature of the task varies greatly for 
different words and is a reason why a hybrid approach is appropriate for the WSD 
task. For example, the number of different senses, the frequency distribution of 
those senses, the number of training examples available and the number of collo­
cates which can help disambiguation all vary greatly for different words. Each of 
these factors affect the complexity of the task. As a result, the issue regarding 
the best method to combine individual knowledge sources is a difficult problem. 
The approach adopted by DURHAM and the reasons for the choices made are 
discussed in section 4.6. However, before the combining of knowledge sources can 
be discussed, both knowledge sources must be considered individually. Section 
4.2 discusses the frequency information and sections 4.3, 4.4 and 4.5 discuss the 
contextual information and the method by which i t is learnt. Before either of the 
knowledge sources are discussed an examination of the corpus used to train and 
test DURHAM is given. 

4.1 Training and Test Data 

Both of the knowledge sources used by DURHAM require manually sense tagged 

data to be trained and evaluated on. DURHAM is a large scale system. To fulfil 

the large scale criterion for success set out in section 2.7, DURHAM must be able 

to attempt to disambiguate all words in a lexicon. Therefore, the training and test 

data must also be large scale. Large scale refers to the number of different words 

which are sense tagged in the corpus. Large scale does not refer to the number of 

instances one particular word has been sense tagged. 

There is only one corpus available to this project which fulfils these criteria. 

SEMCOR is a widely available manually sense tagged corpus which can be consid­

ered large scale. SEMCOR is a textual sense tagged corpus, so every open class 

word is assigned a WordNet sense tag. DURHAM uses the SEMCOR version which 

accompanies WordNet version 1.6. This version contains 359,732 words, of which 
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192,639 are open class words that have been assigned a WordNet sense. There are 
over 37,000 different senses of words identified in SEMCOR. A further section of 
SEMCOR is available, in which only the verbs are sense tagged. This section of 
SEMCOR is not used by DURHAM. 

The utilised section of the SEMCOR corpus is split up into 186 files. There are 

approximately 100 sentences in each file. The files are grouped depending on the 

topic domain of the sentences contained within each file. The corpus is split into 

three sections: 

• Training data 

• Validation data^ 

• Blind test data 

There exist 103 files used for training data which constitutes a section of SEMCOR 

known as Brownl. Out of the remaining 83 files, 30 are used as validation data 

and the remaining 53 files are blind test data. The files are split in order that 

there exists roughly equal proportions of each topic domain in the training data, 

validation data and blind test data. The role of each of these data sets is detailed 

in section 4.4. 

4.2 The Frequency Knowledge Source 

Dissimilar to some of the approaches discussed in section 3.7, DURHAM does not 

consider features as part of the frequency knowledge source. Some of the infor­

mation which the stochastic features aim to encapsulate into a WSD system have 

been incorporated into different knowledge sources in DURHAM. This informa­

tion includes collocations and semantic tags. Other features such as the POS of 

neighbouring words have not been incorporated into DURHAM. The POS of neigh­

bouring words is not a primary source of evidence to aid WSD, but is employed by 

'This could also be considered semi-blind test data 
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some systems as a backup mechanism when no other means are available [Yarowsky, 
1996]. By incorporating the POS of neighbouring words, the amount of training 
data required is greatly increased. The sense tagged training data available for a 
textual corpus gives limited examples for each word. A textual corpus is required 
as training data for DURHAM to keep in line with the large scale criterion already 
set out. As a result, the increase in accuracy achieved by considering the POS of 
neighbouring words is lost by the resulting less accurate stochastic information. 

As a consequence of eliminating the use of features, the frequency information is 

not based on Bayes Theorem and consideration of the interdependencies between 

features is not necessary. Instead, the frequency information is used simply to 

measure the likelihood of each possible sense appearing in the text. Counting the 

number of occurrences for each sense in the sense tagged corpus is the basic method 

to calculate the statistical information. The number of occurrences for all possible 

senses is assigned at the beginning of the program. This ensures that during train­

ing, the frequency information can be obtained without computational expense. 

This method is slightly modified for the SENSEVAL task. These modifications 

are discussed in chapter 7. For the large scale system, the frequency information is 

obtained solely from the section of SEMCOR assigned as training data. This policy 

has been strictly enforced. For example, WordNet assigns a number for each sense 

for every word in the lexicon. The lower the number assigned, the more frequent 

the sense. Although this source of knowledge is very valuable for a WSD system, it 

can not be employed in DURHAM. The reason for this is that the entire SEMCOR 

corpus will have been used to determine the number for each sense. Therefore, the 

WordNet numbers are determined using the blind test data which is not considered 

acceptable. The formula used to calculate the frequency information is given in 

section 5.1. 

Although frequency information is a straightforward knowledge source, it is still 

very useful. Most lexicons contain senses which are obscure and infrequently used. 

The frequency information enables the more commonly used senses to be favoured. 

For example, in SEMCOR there are 2,345 noun instances of the word group. Out 

of these instances, 2,333 refer to the members considered as a unit sense. The 
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chemical sense is referred to in nine instances and the blood sense is referred to 
in three instances. Therefore, solely using the frequency information alone 99.49% 
accuracy can be achieved for group on this data set. The accuracy achieved by 
solely using the frequency information is known as the frequency bciseline. 

The frequency information also helps to direct the training of the contextual 

information. This contributes to enabling the overall system to achieve accuracy 

above the frequency baseline. 

4.3 Contextual Information 

This section discusses the knowledge source referred to in this work as contex­

tual information. The format of the knowledge source is novel and is one of the 

major contributions of this work. Contextual information is based on the Word-

Net hierarchy and uses a sub-symbolic learning mechanism. Therefore, like the 

frequency information, the contextual information requires training data. A justi­

fication for the design of the contextual information will be given. This is followed 

by a description of the algorithm used to learn contextual information. 

4.3.1 Aims for Contextual Information 

A fundamental component for the development of contextual information was the 

recognition of WordNet as a valuable resource for WSD. WordNet is discussed in 

detail in section 3.5. However, the advantages and disadvantages of using WordNet 

to aid WSD can be summarized as follows: 

y/ WordNet provides a fine grained sense inventory. 

^y Synsets and the low level WordNet hierarchy are beneficial in reducing the 

required training data. 

SEMCOR is the only large scale, widely available sense tagged corpus. SEM­

COR is sense tagged with WordNet senses. 
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X Problems exist with the high level WordNet structure for WSD. This is high­
lighted by the tennis problem. 

X In general words of diflFerent POS are unconnected in the WordNet hierarchy. 

X The manual sense tagging accuracy of SEMCOR is not as high as would be 

hoped. This is measured in terms of ITA. 

To benefit from the useful characteristics of WordNet and to try and overcome 

the problems also associated with WordNet is the aim of the contextual information 

knowledge source. To help overcome the identified problems, SEMCOR is used 

as a training resource. However, problems have also been identified with using 

SEMCOR for WSD, and these are also considered. The structure of the contextual 

information knowledge source will now be explained. The justification for the 

choices made relate back to these aims. 

4.3.2 The Contextual Score 

Contextual information is concerned with learning contextual scores between nodes 

in the WordNet hierarchy. Figure 4.1 is used to show how a contextual score is 

calculated. Just under 2000 of the high level concepts in WordNet are represented 

in a Contextual Matrix, and the contextual matrix stores scores between all of 

these nodes. The reason for this number, and the method by which these nodes 

are selected is detailed later in this section. The section also compares this method 

with other similar approaches. 

To calculate the contextual score between any two nodes in WordNet, the pres­

ence of both nodes in the matrix is checked. I f either of the nodes do not appear 

their hypernyms are moved up until a node is found which is in the matrix. The 

score between the two appropriate nodes in the matrix can then be obtained. 

Nodes from all four of the WordNet hierarchies - nouns, verbs, adjectives and 

adverbs are included in the contextual matrix. By including all POS in the con­

textual matrix, the four hierarchies become much more connected. This overcomes 
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Figure 4.1: Diagram showing how to calculate the contextual score between two 
nodes in WordNet 
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one of the problems identified with using WordNet, the lack of connection between 
POS hierarchies. Greater connection enables the training process to learn contex­
tual information between words of different POS. Possessing scores between senses 
of diflFerent POS enables all open class words found in the sentence to provide 
contextual information and assist in resolving the ambiguity of a word. I t also 
ensures that all ambiguous words regardless of their POS can be disambiguated. 
The later benefit is important in order to fulfi l the large scale criterion set out for 
DURHAM. DURHAM will only be considered large scale if words from all POS 
can be disambiguated. 

I t is the lack of connection between the diflFerent POS hierarchies which prevents 

the system reported in [Agirre and Rigau, 1995] disambiguating all ambiguous 

words. Agirre uses a semantic distance measure based on the WordNet hierarchy. 

Agirre is only able to disambiguate nouns. Moreover, Agirre is only able to use 

nouns to provide contextual information. 

The low level concepts in WordNet are not included in the contextual matrix. 

The reason for this is that i t is not considered beneficial to try to learn scores 

between highly related concepts. As shown in [Leacock and Chodorow, 1998], the 

low level WordNet hierarchy and the synset structure can be used to reduce the 

requirement on training data. Therefore, concepts represented by the same node in 

the contextual matrix will all contribute to learning the contextual scores for that 

node. As contextual scores generally operate between concepts above the word 

level, more general information is taken from each training instance. 

The low level WordNet hierarchy is considered more beneficial for WSD than 

the classification of concepts higher up the hierarchy. For WSD, problems exist 

with the high level WordNet hierarchy. This is highlighted by the tennis problem. 

Al l the concepts associated with tennis are distributed widely over the hierar­

chy. Therefore, these concepts are not considered similar through the classification 

adopted by WordNet. However, these concepts are likely to appear together in the 

same sentence and provide useful contextual clues to aid WSD. 

[Karov and Edelman, 1996] consider the reliance on the structure of a lexical 
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hierarchy the major drawback for a semantic distance approach, such as those 
considered in section 3.6.2. Karov and Edelman highlight this drawback using 
hospital and doctor as their example. The high level WordNet structure determines 
that these two words have a high semantic distance. Hospital is classified as a type 
of building and doctor is classified as a type of professional. However, if found in the 
same sentence, hospital is an excellent contextual clue to identify the correct sense 
of doctor. This example highlights another problem with the high level WordNet 
hierarchy. Al l senses of doctor are classified as people. As a result, all senses are 
found in a similar section of the WordNet hierarchy. This makes i t increasingly 
difficult to use the hierarchy to distinguish between the senses. An attempt to 
develop a more beneficial hierarchy specifically for WSD was undertaken by the 
CoreLex project [Buitelaar, 1998]. Using the WordNet lexicon, 126 semantic tags 
were identified which aimed to distinguish between the homonymous senses of 
ambiguous words. 

The purpose of the contextual score is to determine a more appropriate clas­

sification specifically for WSD. This classification is learnt using SEMCOR. As a 

result, a contextual score is different from a semantic distance. A contextual score 

aims to represent the likelihood of two concepts appearing in the same sentence. 

Semantic distance represents the extent to which two concepts are semantically 

similar based on a lexical hierarchy. 

Two difficulties arise with developing a contextual score in this manner. Firstly, 

the determination of the number of nodes which should be included in the contex­

tual matrix. Secondly the identification concerning which nodes should be included 

in the contextual matrix. 

Selecting Nodes for the Contextual Matrix 

1973 nodes are included in the contextual matrix so that in most cases, all senses of 

a word are represented by a different node in the contextual matrix (A justification 

for the number of nodes in the contextual matrix is given later). If sufficient nodes 

were included so that all senses were represented by different nodes, almost all nodes 
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in the WordNet hierarchy would need to be included. Such a large contextual 
matrix would place a much greater demand on training data. As a result, the 
contextual information is unable to make some fine grained sense distinctions. 
This is not a major drawback for the contextual information knowledge source. 
The purpose of this knowledge source is to assist in distinguishing between more 
coarse grained sense distinctions. In most cases, coarse grained sense distinctions 
are more important than fine grained distinctions. Many NLP tasks do not require 
the ambiguity of a word to be resolved to such a fine level. Moreover, there exists a 
low ITA between sense taggers, and this is one of the problems identified with using 
SEMCOR. A great deal of the disagreement between sense taggers will be between 
finely grained senses. I f two finely grained senses are represented by the same node 
in the contextual matrix it is less important if these senses are inconsistently sense 
tagged in SEMCOR. Therefore, the credibility for using SEMCOR as training data, 
despite its low ITA, is increased. 

To determine which nodes should be included in the contextual matrix a fre­

quency measure is adopted. This is similar to the approach adopted in [Resnik, 

1995a]. The depth of the node in the WordNet hierarchy does not reflect how 

specific the concept is which the node represents. This is because the WordNet 

hierarchy is unevenly distributed. Figure 4.1 shows how the cut off point for a con­

cept's inclusion in the contextual matrix can occur at varying depths. The selection 

process is carried out using the section of SEMCOR assigned as training data. For 

each occurrence of a WordNet node in SEMCOR, that particular node, and all 

the hypernyms of that node are incremented by 1. This produces non increasing 

frequency counts as the WordNet hierarchy is moved down. For nouns and verbs, 

nodes are included in the contextual matrix only if their total frequency count is 

over twenty. However, the frequency cut off point for adjectives and adverbs was 

ten. The reason for this is that adjectives and adverbs occur less frequently in 

the training text and there is less hierarchical structure for them in WordNet. If 

an adjective or adverb synset occurs more than ten times in SEMCOR then that 

synset and the antonym synset are included in the hierarchy. Infrequently occur­

ring adjective/adverb synsets are all represented in the contextual matrix by an 
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adjective/adverb root node. 

I t should be noted that it is not the aim of this work to find an optimum 

number of nodes for the contextual matrix, or an optimum method for selecting 

those nodes. The choices made are based on subjective decisions. This work only 

claims that the choices made do work. I t does not claim that other choices will 

work better or worse. Also this work uses all the words in the sentence as a context 

window. This is also a subjective choice and does not claim that the choice is 

better than either a larger or smaller context window. 

4.4 Learning Contextual Scores 

Now that the concepts of a contextual score and a contextual matrix have been 

detailed, the mechanism through which contextual scores are learnt is considered. 

Before learning commences, all scores in the matrix are set equal to each other. 

This is carried out in order that no pre-conceptions for the contextual scores are 

made before training commences. An alternative approach may be to use a seman­

tic distance measure between concepts as a starting point for a contextual score. 

The benefits of such an approach are considered. I f a semantic distance measure 

does provide useful contextual information, then the starting point for learning is 

higher than i f all nodes are set equal to each other. This could be beneficial partic­

ularly with limited training data for each ambiguous word. The learning process 

could then be concerned with optimising semantic distances. A high semantic dis­

tance represents a poor contextual clue but a high contextual score represents a 

good contextual clue. Therefore, the semantic distance measure would need to be 

inverted. 

Two reasons exist why semantic distances are not used as a starting point in this 

work. Firstly, the semantic distance measure is meaningless between concepts with 

different POS. As a result, i t would be difficult to derive an appropriate starting 

point for contextual scores between senses of different POS. Potentially this could 

lead to the contextual information from different POS not contributing equally to 
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aid the resolution of an ambiguous word. Secondly, the process adopted to learn 
contextual scores is sub-symboHc. As with most sub-symbolic learning mechanisms, 
the internal mechanism for determining the solution can not be understood by the 
developer. This is referred to as a black box architecture. Initiating the learning 
process with semantic distance scores may not be appropriate for this architecture. 
As a result, the learning process may be forced to a local maxima from which i t can 
not escape. Setting all scores equal to each other is a more conventional approach 
to initiating weights for sub-symbolic learning. 

The first stage of the training process involves taking a single sentence from 

the training data. The sentence is disambiguated using the algorithm discussed in 

chapter 5. The algorithm returns a sentence with all open class words assigned 

with a WordNet sense. The sense tagged sentence is compared with the manual 

sense tags assigned for each word. The learning process identifies which words were 

incorrectly sense tagged. More importantly, i t also identifies which words in the 

sentence used as context provided evidence for any incorrect classification. This is 

carried out by comparing the contextual score between each context word and the 

correct sense, with each context word and the chosen sense. This information is 

used to calculate the amount contextual scores should be changed. The algorithm 

for changing contextual scores is detailed in section 4.5. 

Nodes in the contextual matrix are typically above the word level. This is likely 

to decrease the required amount of training data. However, further steps are taken 

to extract as much information as possible from each training sentence. In order to 

achieve this, further generalisations are carried out also. Not only are contextual 

scores between nodes which represent words in the training text changed, but so 

are their hypernyms and hyponyms. 

Once all training sentences have been processed, the new contextual matrix 

is tested on the validation data. I f an improvement in accuracy is observed then 

another iteration of the training phase will be initiated. This is repeated until there 

are no more improvements on the validation data. Finally, DURHAM is tested on 

blind test data which has until that point been unseen by the system. The learning 
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process is summarized in figure 4.2. 

4.4.1 Learning Contextual Scores Example 

The learning algorithm is now further explained with the aid of an example. The 

example aims to highlight some of the benefits of adopting this approach. The ex­

ample considers the ambiguous word board. This word is also used as an example 

in [Voorhees, 1998] and [Voorhees, 1993]. Voorhees adopts a semantic distance ap­

proach based on a hood which is a section of the WordNet hierarchy that subsumes 

one possible sense for an ambiguous word. Disambiguation then proceeds based on 

the following principle: 

"We use the hoods of the synsets containing an ambiguous word w to define the 

categories that represent the different senses of w. Another word that occurs in a 

text with w and is a member of a synset in the hood of one of the senses of w is 

evidence for that sense of w." 

Voorhees, 1998] page 291 

The approach adopted by Voorhees will be used in the example for comparative 

purposes. 

The example assumes a training sentence such as "/ hit the board with my 

hammer", where board is manually sense tagged to the Board(plank) sense. The 

first stage of the learning algorithm is to use the disambiguation algorithm to 
a 

automatically sense tag the training sentence. For the purposes of the example let 

us also assume that the disambiguation algorithm incorrectly assigns the Circuit 

board sense. Figure 4.3 shows the senses of board taken from WordNet that are 

considered in this example. 

The approach adopted by Voorhees does not use training data, and therefore 

must rely on the original WordNet structure. This is shown in figure 4.3. Using 

the Voorhees method. Device wil l be the hood for the Circuit board and Control 
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Figure 4.2: Flow graph to illustrate the contextual score learning mechanism 
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Figure 4.3: Diagram showing the original WordNet structure before learning. 
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board senses. As hammer and nail are both members of this hood they will incor­

rectly provide evidence for these two senses. This highlights the problem with the 

semantic distance approach. 

Unlike a semantic distance approach, DURHAM is able to use the training data 

to improve the disambiguation accuracy. In this example the words hit and hammer 

are used as context to help disambiguate board. For simplicity, the example will 

only consider the context word hammer, but the same method can be repeated 

for hit. Hammer is represented by Device in the contextual matrix. The correct 

sense of board is represented by Building Material and the incorrectly chosen sense 

is represented by Electrical Device in the contextual matrix. The training process 

will then increase the contextual score between Device and Building Material and 

decrease the score between Electrical Device and Device. Thus making hammer a 

better contextual clue for Board (plank) and a worse contextual clue for Circuit 

Board. A high contextual score represents a good contextual clue. These changes 

in contextual scores are shown in figure 4.4. 

This example highlights that generalisations are made during training by only 

including the higher level WordNet nodes in in the contextual matrix. By increasing 

the contextual score between Device and Building Material, Nail will automatic­

ally receive a higher contextual score with Board (plank). Moreover, decreasing 

the contextual score between Device and Electrical Device automatically decreases 
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Figure 4.4: Diagram shovî ing how contextual scores change if hammer and the 
board (plank) sense of board appear in a training sentence. 
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the scores between Hammer and Control Board. This shows one way in which 

generalisations are made to extract extra information from each piece of training 

data. 

The further generalisations within the contextual matrix are also shown in Fig­

ure 4.4. The contextual score between nodes Instrumentality and Device is reduced 

as Instrumentality is a hypernym of Electrical Device. The Electrical Device node 

in the matrix represents the incorrectly chosen sense of board. In this example, 

the generalisation mechanism enables the Dining table sense of board to reduce its 

contextual score with Hammer and Nail. 

I f the Dining table sense of board had been chosen by the disambiguation mech­

anism, the contextual score of Electrical Device would still have been reduced. 

This follows because Electrical Device is a hyponym of Instrumentality. Contex­

tual scores involving Artifact are not moved because it is contained in the hierarchy 

of both the chosen and correct sense of board. 
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The net result of the training sentence is that nail and hammer become better 
contextual clues for the Board (plank) sense. 

4.5 Changing Contextual Scores 

The features of the learning mechanism have now been examined. The learning 

mechanism has been shown to make generalisations to reduce the reliance on a 

large quantity of training data. I t has also been shown to be less dependent on a 

semantic hierarchy as some semantic distance approaches. This section continues 

to examine the learning mechanism by detailing the method adopted to change 

contextual scores. 

The disambiguation mechanism discussed in chapter 5 provides the informa­

tion for determining how the contextual scores should be changed. Two pieces of 

evidence are used to determine which contextual scores should be changed and to 

what degree these should be altered. The first piece of evidence identifies whether 

the ambiguous word has been assigned the same sense as was manually identified. 

The second piece of evidence identifies the amount the words serving as context 

contributed towards any misclassification of a sense. 

To calculate the extent to which a score should be changed between nodes, 

an error function is determined. The error represents the difference between the 

contextual score of the correct sense and the context sense, and the contextual 

score of the chosen sense and the context sense. If the chosen sense is correct then 

the error is equal to zero. 

Error = CS{correct, context) — CS(chosen, context) (4.1) 

Where CS is the contextual score. The error is then used to calculate the amount 

each contextual score should change. The change is calculated as the sigmoid 

function of the error. 
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Change = \ (4.2) 

The sigmoid function is chosen because of the similarities between this type of 

learning and the error distribution mechanism of Back Propagation (the standard 

learning algorithm in Neural Networks). Error back propagation uses the sigmoid 

function. I t enables contextual scores between nodes which have caused high error 

to be altered more than those with small error. This is done without allowing any 

scores to change substantially as this could cause oscillation. L is the learning rate 

which is reduced throughout the learning phase, so changes to scores become less. 

This is similar to Simulated Annealing also used in Neural Networks. 

The learning algorithm adopts the same method to take advantage of senses 

which have been disambiguated correctly. In such cases the correct and chosen 

sense are the same leading to the error being equal to zero. Using equation 4.2, 

the change will be 0.5. This slightly reinforces the contextual score between the 

correct sense and contextual word. By doing so i t helps to ensure that DURHAM 

will continue to correctly classify the senses which i t was able to classify before 

training. 

The calculated change is then added to the contextual score between the correct 

and context sense, enabling the context sense to provide stronger evidence in the 

future. The change is also subtracted from the contextual score between the chosen 

and the co 

ntext sense, making the evidence for selecting the incorrectly chosen sense 

weaker. The change score is also used as the basis by which the hypernym's and 

hyponym's contextual score will also be altered. Using the training data to change 

the scores between hypernyms by making further generalisations is not as reliable 

as changing the initial nodes. As a result, the contextual scores are moved by less. 

The contextual score of a hypernym or hyponym is changed by half the amount that 

the initial node was changed to compensate for this. A grandparent/grandchild of 
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a node is changed one quarter of the amount, and so on. 

4.6 Combining Knowledge Sources 

One problem facing all developers who choose a hybrid approach to WSD is the 

combining of the knowledge sources they incorporate. The amount each knowledge 

source is able to help disambiguation varies for each particular word. By combining 

these knowledge sources the aim is to take the useful information each is able to 

offer, and restrict the confusion in cases where they are unable to help. Various 

approaches to this problem were considered in chapter 3. 

DURHAM chooses additive weights to combine knowledge sources as used in 

[Harley and Glennon, 1997]. Adding scores from each knowledge source is more 

appropriate than multiplying them in this instance. Multiplying scores is beneficial 

only i f the scores represent the probability of a particular outcome. However, the 

contextual score is not a probabilistic measure. Also, there are many senses of words 

which appear in the blind test set which do not appear in the training set. For these 

senses the frequency score will equal zero. I f the scores were multiplied, the overall 

score would equal zero regardless of the contextual information's score. Adding 

scores also enables the possibility for the contextual information to assign a negative 

score. Moreover, adding scores seems more appropriate than Yarowsky's method 

that chooses the single best knowledge source for each instance. By assigning a very 

high score to one knowledge source, that knowledge source can have the overriding 

outcome on the choice of a sense. However, adopting the additive framework also 

allows a combination of evidence in cases which are less clear cut. This is not 

possible using Yarowsky's method. 

4.6.1 The Roles of each Knowledge Source 

For the DURHAM large scale system, both the frequency and contextual informa­

tion have been trained from the same training data. This section discusses why 
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the two knowledge sources can not be combined into one knowledge source. In 
addition, it discusses the steps taken to ensure that the knowledge sources are ex­
tracting different information from the training data. The central issue to both of 
these questions is an understanding of the specific role each knowledge source aims 
to achieve. 

The frequency information provides fine grained evidence as i t operates at the 

sense level. For the frequency information to be beneficial in resolving the ambigu­

ity of a word, there must exist a large number of training instances containing that 

word. Even if there are a large number of training instances, the frequency infor­

mation will only be beneficial i f the distribution of senses is skewed. The contextual 

information complements the frequency information by operating above the word 

level. Therefore, it provides more coarse grained evidence. I f more than one sense 

is represented by the same node in the contextual matrix, the contextual informa­

tion has no way to determine between them. A choice between the possible senses 

must be taken from the frequency information. By operating above the word level, 

the contextual information is less reliant on the coverage of the training data. The 

aim of contextual information is to find clues in the surrounding context to resolve 

the ambiguity. As a result, it is less dependent on the frequency distribution of 

a word's senses. Therefore, the two knowledge sources aim to aid the ambiguity 

resolution of different types of words. This is the reason why separate knowledge 

sources are required. 

The frequency information is calculated before the contextual information so 

that it can be used during the training of the contextual information. This helps 

to prevent the contextual information simply learning to choose the most frequent 

sense of each word. In the early stages of the contextual information training 

process, the system is likely to choose the most frequent sense. Misclassifications 

will take place in instances which do not refer to the most frequent sense. These 

misclassifications aid the contextual information in learning contextual evidence 

for the less frequent senses. Identifying contextual evidence for all senses, not only 

the most frequent, helps to ensure that the contextual information fulfils its specific 

role and complements the frequency information. 
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The use of frequency information as a knowledge source has for a long time been 
inhibited by the influence of Chomsky's work [Chomsky, 1965]. He proposes a dis­
tinction between understanding the linguistic content of the problem and generat­
ing good performance. Relating his claims to this work, the frequency information 
goes some way to improving performance. However, he claims that frequency infor­
mation does not aid the understanding towards the reason why a particular sense 
is chosen. A disambiguation system which aims to achieve 100% accuracy will not 
be able to use frequency information as a knowledge source. Frequency informa­
tion enables guesses to become more educated. Seldom can frequency information 
always supply evidence for the correct sense. 

For this work, there are several reasons why Chomsky's claims are not accepted. 

Firstly, the frequency information helps direct the learning of the contextual in­

formation and therefore aids the process of learning linguistic content. Secondly, 

a measure of how well the linguistic problems have been learnt can still be deter­

mined. This is done by examining the performance of the system with respect to 

the frequency baseline. The frequency baseline is the accuracy achieved by the 

system if the most frequent sense is always chosen. As developments are made to 

improve the contextual information, the extent to which the frequency information 

contributes towards accuracy is reduced. For the foreseeable future, setting a goal 

of achieving 100% accuracy is unrealistic. Finally, from a NLP perspective, gener­

ating good performance is the goal of the WSD system. The goal is not to develop 

an understanding of linguistic content. 

4.7 Summary 

This chapter has set out the three subsections of SEMCOR which are used for 

training and evaluating DURHAM. These three data sets are training data, vali­

dation data and blind test data. The chapter then proceeded to examine the two 

knowledge sources employed for evaluation on SEMCOR. The frequency knowl­

edge source is straight forward and was only calculated from the training data. 
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The contextual information knowledge source is novel. The features of contextual 
information were discussed and the mechanism by which i t is learnt was detailed. 
Finally, the method by which the two knowledge sources are combined was exam­
ined. 



Chapter 5 

The Disambiguation Algorithm 

The characteristics of the knowledge sources used by DURHAM for evaluation on 

SEMCOR were detailed in the previous chapter. This chapter details the formula 

used to calculate the scores for the frequency and contextual information. The 

formula for combining the individual scores from each knowledge source is then 

detailed. This formula is used to assign each possible sense in the sentence with a 

score which represents the likelihood of that sense being chosen. These scores are 

then used to determine which sense will be selected for each ambiguous word. 

The chapter then moves forward to detail the mechanism by which the scores 

are used to select senses for each word. This is not a trivial task. There are two 

problems which need to be considered. Firstly, the problem outlined by Wilks, 

detailed in section 2.3.1. This highlights the number of sense combinations that 

a sentence may possess. Therefore, the computational expense of the mechanism 

must be considered. A system which considers all possible sentence combinations 

wil l be too computationally expensive, particularly for long sentences. The second 

problem is related and is concerned with the circular nature of the disambiguation 

task. The contextual information for any word in the sentence is dependent on the 

sense choices made for other ambiguous words in the sentence. Therefore, for all 

words i t is difficult to select the correct sense until all other words in the sentence 

have been disambiguated. 
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DURHAM adopts a novel approach to overcome these difficulties. After the 
disambiguation mechanism has been detailed, it will be compared with methods 
adopted by other systems to overcome the same difficulties. 

The definitions of the mathematical notation used throughout this chapter is 

now given: 

Wi refers to the ith word in the sentence. 

Wij refers to the jth sense of the ith word in the sentence. 

Freq{wij) is the frequency of sense j of word i in the training data. 

CS{wij,Wki) refers to the contextual score between Wij and Wki. 

CIS{wij) The contextual information score assigned to sense Wij by 

combining the scores from all the context words. 

5.1 Calculating Scores 

This section details the mathematical formulae used for calculating the scores for 

the frequency and contextual information. 

The frequency score is the probability of a particular sense occurring given that 

one of the possible senses of the word has occured. The formula used is as follows: 

where m is the number of possible senses for word i. I t is possible for a word 

to be found in either the validation data or blind test data, which has not been 

contained in the training data. In these instances the nominator and denominator 

in equation 5.1 are both equal to zero. This produces an undefined frequency score 

using equation 5.1. In these instances the Frequencyij is set to zero. 

The calculation of the contextual score is more complex. Unlike the frequency 

information, the scores for each sense are dependent on the sense choices made for 

other words in the context window. The context window is one sentence, but this 

choice is not claimed to be optimal. The method by which the contextual score is 
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calculated is the first step towards overcoming the problem of knowing where to 
start disambiguating. 

To calculate a score for a particular sense, no sense choices are assumed for 

contextual words. Instead, a maximum and minimum score for each sense is cal­

culated based on the sense choices made for the contextual words. The process by 

which the maximum and minimum contextual scores for a sense wij are calculated 

is now detailed. 

For each word Wk in the context of the sentence, the senses of that word which 

possess the greatest and smallest contextual score with Wij are initially identified. 

The scores between these senses and Wij are named MaxContext and MinContext. 

MaxContext{wij, Wk) = max{C5(wij, Wki),CS{wij, Wkrn)} (5.2) 

MinContext{wij,Wk) = mm{CS{wij,Wki), ....,CS{wij,Wkm)} (5.3) 

For contextual words which are not ambiguous, the MaxContext will equal 

the MinContext. The MaxContext and MinContext scores for all the contextual 

words in the sentence are added together to produce a maximum and minimum 

contextual information score for sense Wij. This is shown in equations 5.4 and 

5.5. These scores represent a measure of the strength of the evidence which all the 

combined contextual words assign to a particular sense. 

Max.CIS{w,) = ^U,^^Ma.Coute.t(n.,„w,) ^^^^ 

The minimum contextual information score is calculated in a similar way. 

Min.CIS(«,,) = SLi^^iMmContertK.^,) ^̂ ^̂  

In equations 5.4 and 5.5, n is the number of open class words in the sentence. 



Chapter 5: The Disambiguation Algorithm 94 

Normalising the contextual information score by the number of words in the 
sentence is important. A long sentence will contain more contextual words than a 
short sentence. Normalization ensures that the value of the contextual information 
scores is independent of the sentence length. This does not effect the rank order 
of the senses with respect to the contextual information. However, normalization 
facilitates the combining of the contextual information score with the frequency 
score. The amount the contextual information score contributes to the overall 
score will be the same regardless of the sentence length. 

5.2 Combining Scores 

In the previous section, the process by which the frequency score and the maximum 

and minimum contextual information scores are calculated was detailed. This sec­

tion continues on the same theme by examining the formula used to combine these 

scores. The formula uses additive weights to combine the knowledge sources. The 

weights represent the extent to which each knowledge source contributes towards 

the overall score. 

I t is not considered beneficial to multiply the scores from each knowledge source. 

Multiplicative weights are beneficial in probabilistic systems where each knowledge 

source assigns a probability for each sense. Although the frequency information 

score assigns a probabilistic measure for each sense, the contextual information 

score is not a probabilistic measure. Therefore, the benefit of multiplicative weights 

is lost. In addition, employing additive weights enables the contextual information 

to assign negative scores. 

The previous section detailed how the contextual information assigns two scores 

for each sense, a maximum contextual information score and a minimum contextual 

information score. As a consequence, a maximum and minimum score is also 

produced for the overall score. 

The formulae for calculating the overall maximum and minimum scores for sense 

Wij are given in 5.6 and 5.7. 
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MaxScoreij — A* Frequencyij + B * Max.CIS{wij) (5.6) 

MinScoreij — A* Frequencyij + B * Min.CIS{wij) (5.7) 

A and B are constants which represent the weights which the frequency and con­

textual information contribute to the overall score. A possible area which could 

be examined in future work may include investigating any benefits associated with 

not using constants for these weights. This is because the amount each knowledge 

source is able to contribute towards each sentence is variable with each sentence. I f 

this can be measured then the contribution of that knowledge source can be varied 

accordingly using the weights. For example, the frequency information provides 

much more reliable evidence for senses of a word if there have been many training 

instances. Therefore, future work could examine defining A as a variable, which is 

dependent on the number of training instances found for a particular word. 

Using variable weights was not a direction of research developed in DURHAM 

because both knowledge sources are trained on the same data. The contextual 

information will also assist in providing better evidence if many training examples 

exist. I f one knowledge source has strong evidence for a particular sense, then that 

knowledge source can assign a large score to the particular sense. This would be 

sufficient to ensure that the particular sense is chosen without the need to change 

constants A and B. 

Finding the optimum values for the constants A and B is also beyond the scope 

of this thesis. The optimum values for A and B during the training phase may not 

be the same as the optimum values for testing. Therefore, DURHAM would need to 

be trained many times using different values for A and B in each instance. Each of 

these instances would then need to be tested again using different values for A and 

B. Section 6.4 examines the affect on the accuracy of varying the values of A and 

B. This analysis is beneficial in examining the contribution each knowledge source 

makes to the overall accuracy of DURHAM. However, the analysis also suggests 
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that the optimum values for A and B may not generate an increase in accuracy 
which is statistically significant. 

5.3 Eliminating Senses 

The previous sections have examined the process by which a maximum and mini­

mum score is generated for each possible sense in a sentence. This section progresses 

on from sections 5.1 and 5.2 and details the mechanism by which the maximum 

and minimum scores are used to determine the sense which should be chosen for 

each word. 

This is a difficult problem due to the interdependencies between the sense 

choices of all the ambiguous words in the sentence. Eliminating a sense of one 

context word, may greatly reduce the score for a sense of another word. The 

problem can be considered at two levels, the word level and the sentence level. 

At the word level, the difference between the maximum and minimum scores for 

all the possible senses represents the level of uncertainty remaining in the system. 

As senses of context words are removed, the difference between the maximum and 

minimum scores for each sense is reduced. This removal of some of the uncertainty 

makes it easier for the word to eliminate one or several of its possible senses. As a 

result, more of the uncertainty for the context senses is eliminated so more of their 

ambiguity can be resolved. This unravelling process proceeds until all the ambiguity 

is resolved. Each step reduces the uncertainty in the system making subsequent 

steps more reliable. Once the sense choice has been made for all ambiguous words 

in the sentence, the maximum and minimum scores will be the same as no more 

uncertainty remains in the system. 

At the sentence level, the purpose of this mechanism is to try to find the com­

bination of senses for each ambiguous word which generates the highest total score 

for the sentence. The score for the best sense combination will be referred to as the 

best sentence score. As some sentences may have many million different sense 

combinations, identifying the best sentence score is not a trivial task. A mechanism 
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which considers all possible sentence combinations to find the best sentence score 
is not practically viable. For long sentences, the computational expense of such a 
mechanism is far too great. 

Moreover, a simple mechanism which chooses the sense for each word with the 

highest max score or a similar heuristic would also be unsatisfactory. I t is important 

to consider which sense for each of the context words is chosen, as this influences 

the information the context words are able to provide. A sense (wij) could have 

a high max score because i t possesses a high contextual score with a particular 

context sense (wki). I f the context sense Wki is not chosen for Wk, then the max 

score for Wij will be reduced. The effect that using the correct sense for the context 

words makes to the overall accuracy of DURHAM, is considered in section 6.6. 

The mechanism adopted by DURHAM to select a sense for each ambiguous word 

is novel. The iterative process is directed by considering scores at the word level, 

as this is substantially less computationally expensive than considering sentence 

scores. This seems particularly appropriate for the knowledge sources used by 

DURHAM as the frequency information is not dependent on the sense choices made 

by the context words and therefore operates solely at the word level. However, the 

aim of each iteration is to reduce the possible number of sense combinations in 

the sentence without making unjustified assumptions about the correct senses of 

context words. By so doing the senses eliminated in each iteration are those which 

are least likely to contribute to the best sentence score. Therefore, the aim is to 

identify a sentence combination with a score as close to the best sentence score as is 

possible, without considering all of the possible combinations. In instances where 

the best sense combination is identified, the ambiguity resolution may still not be 

correct. However, the cause of a correct sense being eliminated is an inappropriate 

score assigned to the sense by the knowledge sources, not the elimination algorithm 

itself. 

This mechanism adopted ensures that only the senses which have not been 

eliminated are used as contextual information for other ambiguous words. After 

each iteration, the maximum and minimum scores for the remaining senses need to 
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be recalculated. I f a sense of word Wi is eliminated, then the frequency information 
for the remaining senses of will need to be recalculated. This is shown in 
equation 5.1 where n is the number of senses remaining consideration. I f senses of 
a different word have been eliminated, the maximum and minimum CIS need to be 
recalculated. This is because the eliminated senses may have contributed towards 
the CIS scores. 

There are two algorithms which are used to eliminate senses at each iteration. 

The first algorithm is more efficient, but is not available at all stages. The second 

algorithm is always available, but incorporates a greater chance that a sense which 

is a member of the best sentence score will be eliminated. 

5.3.1 No Intersection Elimination 

No Intersection Elimination (NIE) is the more powerful of the two algorithms. 

When i t is available, NIE is able to eliminate many senses from many different 

words in one iteration. NIE does not compare scores for senses between different 

words, and therefore operates at the word level. Al l the senses which are eliminated 

by this mechanism can not possess a score which is higher than the chosen sense 

for that word. However, a sense may be eliminated which is a member of the best 

sentence combination if the eliminated sense enabled other words in the sentence 

to possess a higher score. A fully worked example taken from SEMCOR is given 

in section 6.6.1. This example demonstrates an instance where a sense is removed 

by the NIE method, which had it have been chosen, would have created a higher 

sentence score. 

For each word, the maximum and minimum scores for all possible senses are 

compared. The NIE algorithm commences by identifying the highest minimum 

score for each ambiguous word in the sentence. Equation 5.8 shows how the highest 

minimum score is calculated. 
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Highest Minimum Score{wi) = max.{MinScoreii...MinScoreim} (5.8) 

where m is the number of senses of Wi. The maximum score for each sense is 

then compared with the highest minimum score for that word. Any sense with a 

maximum score less than the highest minimum score is eliminated. This is shown 

in equation 5.9. 

MaxScoreij < Highest Minimum Score(wi) =^ eliminateij (5.9) 

This algorithm is called No Intersection Elimination, as senses are eliminated 

when no overlap exists between the possible range of scores of two possible senses of 

a word. The eliminated sense possesses a lower score than another sense regardless 

of which senses of the context words are chosen. 

In some instances, all of the words possess senses where an intersection exists 

between the maximum and minimum scores. In these instances the NIE algorithm 

can not be employed, and this is a drawback of this method. To overcome this 

problem a second algorithm is required to continue the elimination. The elimination 

of only one sense by a different algorithm may be sufficient to reduce the level of 

uncertainty and re-enable the usage of the NIE algorithm. 

5.3.2 Normalised Max Score Elimination 

The Normalised Max Score Elimination (NMSE) algorithm deals with more difficult 

instances where no clear evidence exists at the word level regarding which sense 

should be eliminated. The algorithm aims to minimize the chances that a sense 

which contributes to the best sentence score is eliminated. To do this NMSE 

operates at the sentence level, and only one sense is eliminated from the sentence 

for each iteration. Therefore, the algorithm aims to identify the one sense in the 

sentence which is least likely to be chosen. 
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The algorithm considers only the maximum scores for each sense. This is be­
cause the senses of the contextual words which are used to achieve the maximum 
score are more likely to be correct than those used to achieve the minimum score. 
The maximum scores can not be directly compared between senses of different 
words as the scores for each word may lie within a different range. This is shown 
in the example in section 5.4. Therefore, the maximum scores for all senses are 
normalised by the highest maximum score for each word. The equation used to 
calculate the normalised score is given in 5.10. 

,. , o Max Scor en 
Normalised ScorCij = r — — 77—7; 7 (5.10) 

max{MaxScoreii...MaxScoreijn} 

The normalised score represents a measure of the strength of each sense relative 

to the strongest sense for each word. Normalisation of the scores in this way enables 

the eUmination of a sense to be based on the strength of the best sense as well as 

the weakest sense. For example, i f the best sense for a word has a high maximum 

score relative to the other senses, then that sense is more likely to remain the best 

sense as more of the uncertainty is removed. Therefore, i t is beneficial to eliminate 

the sense with the lowest score from that word. The NMSE algorithm eliminates 

the sense which has the lowest normalised maximum score out of all the possible 

senses in the sentence. 

5.4 Example 

The process by which possible senses are eliminated from a sentence is now further 

explained with the aid of an example. To maintain clarity, the example considers 

a very simple sentence - "/ wear the black suit". WordNet assigns twelve senses 

to wear, eleven senses to black and eight senses to suit. Therefore, despite its 

shortness, the sentence still possesses 1056 sense combinations. The closed class 

words / and the are not considered during the disambiguation process. 
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Table 5.1: Definitions and frequencies of the senses being considered by the disam­
biguation example. 

Sense Definition Freq 
wear(l) To have clothes on 30 
wear(2) To deteriorate or decay 10 
black(l) A colour 20 
suit(l) Type of clothing 15 
suit (2) Part of a pack of playing cards 30 

Table 5.2: Contextual scores between senses. 

wear(l) wear(2) black(l) suit(l) suit (2) 
wear(l) 0 4 6 3 2 
wear(2) 4 0 6.5 2.5 3.1 
black(l) 6 6.5 0 2 1 
suit(l) 3 2.5 2 0 1 
suit (2) 2 3.1 1 1 0 

DURHAM only considers senses belonging to the correct POS which reduces 

the complexity of the task. In this example DURHAM only considers nine verb 

senses of wear, eight adjective senses of black and four noun senses of suit. This 

reduces the number of sense combinations for the sentence to 288. For further 

simplification, the example commences in the middle of the ehmination process, 

when many of the senses have already been removed. The definitions and frequency 

information of the remaining senses are shown in table 5.1. The contextual scores 

between the remaining senses are shown in table 5.2. The values in both tables are 

not actual values from DURHAM and are used for illustration purposes only. 

The elimination process proceeds using the information in tables 5.1 and 5.2 to 

calculate the maximum score, minimum score and normalised score for each sense. 

These are calculated using equations 5.6, 5.7 and 5.10 respectively. The values are 

shown in table 5.3. 

Table 5.3 shows that none of the senses can be eliminated by the No Intersection 

method. For both ambiguous words, the highest minimum score (3.417 for wear 

and 1.833 for suit) is lower than the lowest maximum score (3.45 for wear and 2.00 
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Table 5.3: Scores for each sense before any elimination has taken place. 

Max Min Normalised 
Word Frequency Max_CS Min.CS Score Score Max Score 

wear(l) 0.75 3 2.667 3.75 3.417 1 
wear(2) 0.25 3.2 3 3.45 3.25 0.92 
black(l) 1 2.833 2.333 3.833 3.333 1 
suit(l) 0.333 1.667 1.5 2.00 1.833 0.983 
suit (2) 0.667 1.367 1 2.034 1.667 1 

Table 5.4: Scores for each sense after wear(2) has been eliminated. 

Max Min Normalised 
Word Frequency Max_CS Min_CS Score Score Score 

wear(l) 1 3 2.667 4.0 3.667 1 
black(l) 1 2.667 2.333 3.667 3.333 1 
suit(l) 0.333 1.667 1.667 2.0 2.0 1 
suit (2) 0.667 1 1 1.667 1.667 0.833 

for suit). Therefore, the No Intersection Elimination algorithm can not be adopted 

at this stage. As a result, the Normalised Max Score EHmination algorithm must 

be used. The sense with the lowest normalised score is eliminated. Table 5.3 shows 

that wear(2) has the lowest normahsed score (0.92) and is therefore ehminated from 

consideration. 

The example highlights the importance of normalising the scores so that senses 

from different words can be compared. The range of scores for both senses of wear 

are much higher than the range of scores for both senses of suit. 

Once wear(2) has been removed, the scores are recalculated considering only 

the remaining possible senses. The recalculated scores are shown in Table 5.4. Note 

the changed frequency score for wear(l) due to the instances of wear(2) no longer 

being considered. The contextual scores for black and suit have also changed as 

wear(2) can no longer provide contextual information. 

At this stage only multiple senses for suit remain. The ambiguity of the context 

words has been resolved. As a result, the max and min scores are the same for both 

senses of suit. This ensures that the NIE algorithm can be applied. Table 5.4 shows 
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Table 5.5: Scores of possible sense combinations for the sentence 
"/ wear the black suit" 

Wear Black Suit Sentence 
Sense Score Sense Score Sense Score Score 

1 3.75 1 3.67 1 2.00 9.42 
1 3.42 1 3.33 2 1.67 8.42 
2 3.25 1 3.83 1 1.83 8.91 
2 3.45 1 3.50 2 2.04 8.99 

that the max score for suit(2) is 1.667, which is lower than the min score for suit(l) 

(2.0). Therefore, suit(2) can be eliminated. Disambiguation is now complete as no 

words exist with more than one possible sense. 

This example highlights the importance of removing the least likely senses at 

any one time. By so doing, i t prevents unlikely senses providing unhelpful contex­

tual information, which could cause an incorrect classification of other words. In 

this example suit(2) initially had a higher max score than suit(l). However, the 

high contextual score suit(2) had with the incorrect sense of wear was the reason 

for this. Once this sense of wear was eliminated, suit(l) maintained the highest 

score. 

The role of the elimination algorithm is to find the sense combination with as 

high a sentence score as possible. I f the elimination algorithm is able to perform 

this i t has fulfilled its role. I f the chosen senses belong to the sense combination 

with the best sentence score and these senses are incorrect, then the cause of the 

error is the score assigned by the knowledge sources. Table 5.5 shows that for the 

example, the elimination algorithm correctly chooses the senses which generates 

the sense combination with the best sentence score. 

5.5 Discussion of Elimination Mechanism 

The example has shown one of the advantages of only eliminating the least likely 

sense or senses at any one time. I t enables only the remaining senses to provide 
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contextual information which are the most likely to be correct. However, there is 
an additional advantage. By eliminating senses one at a time, the framework is set 
to allow a lazy evaluation. For some NLP tasks, i t may not be necessary to resolve 
the ambiguity of a word completely. For such NLP tasks, the elimination process 
can be halted at any stage once sufficient ambiguity has been resolved. The NLP 
system may be designed to carry some of the word ambiguity through to a later 
processing stage. This could also be accommodated by the elimination process 
which could be halted to produce an N-best list of possible sense combinations for 
the sentence. 

The mechanism for eliminating senses from a sentence adopted by DURHAM 

is not claimed to be optimal. I t is merely put forward as an alternative approach. 

Currently i t is not possible to compare the methods used to select the correct senses 

which are incorporated by different systems. Many systems are evaluated on text 

where only one word is considered ambiguous. For these systems, the correct sense 

of context words is not considered. This makes the selection process less complex as 

maximum and minimum scores do not need to be considered. Section 6.6 examines 

the effect of choosing the correct context sense. Section 6.6 also puts forward some 

evaluation metrics to test the eflFectiveness of the selection process. 

In [Agirre and Rigau, 1996] all the nouns in a context window are disam­

biguated. Therefore, consideration of the ambiguity of context words is necessary. 

Their approach is to resolve the words in sequence. The word W to be disam­

biguated is in the middle of the context window. Al l words prior to W will have 

previously been disambiguated leaving only one sense needing to be considered. 

Al l senses of the context words after W will provide equal contextual evidence. 

Should a sense provide useful evidence which is later not chosen, no back tracking 

mechanism is proposed. 

The most similar method to that used by DURHAM is adopted in [Cowie et al, 

1992] and developed further in [Stevenson, 1999]. In these approaches a simulated 

annealing search mechanism is adopted. Similar to DURHAM, it aims to find the 

sense combination which produces the highest score. Compared to DURHAM'S 
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approach, simulated annealing is a more random search algorithm which enables 
the escape from local maxima. By doing so some back tracking is enabled which is 
not possible in DURHAM'S algorithm. The benefit of DURHAM'S approach is that 
individual scores for each sense are considered. These individual scores help direct 
the search towards the best sentence score. The simulated annealing mechanism 
is only directed by the total sentence score so only a small percentage of the total 
number of sense combinations can be considered. 

5.6 Summary 

To summarise, the disambiguation system obtains scores from two different knowl­

edge sources: frequency, and contextual information. These scores are combined 

producing a maximum and minimum score for each sense depending on the chosen 

sense for the contextual words. These scores are then used to iteratively eliminate 

senses by the elimination of the least likely senses at any one time. This process is 

continued until all the word level ambiguity has been resolved. 

The algorithm introduces a new compromise between considering words in iso­

lation from the sense choices made for the context words and considering all the 

possible sense combinations for a sentence. The compromise must weigh up the 

relative importance of efficiency and accuracy. Considering the problem at the 

word level is more efficient and considering the problem at the sentence level is 

more accurate. The compromise made in this algorithm slightly favours the word 

level approach. This seems appropriate for a system in which one of the knowledge 

sources used is not affected by the sense choices made for the context words. 



Chapter 6 

Evaluation on SemCor 

The previous two chapters have examined the various components which constitute 

the DURHAM system. This chapter details the performance of this system when 

it is evaluated on SEMCOR. SEMCOR is the largest widely available large scale 

sense tagged corpus, and is sense tagged using the WordNet lexicon. 

For each sense tagged word in SEMCOR, the POS and the root form of that 

word is given. This information is used by DURHAM so that only the senses with 

the correct word form and of the correct POS are considered. The reason for this is 

that in a typical NLP system the morphology module identifies the root form of a 

word and the POS tagger identifies the POS. Therefore, these tasks are considered 

out of the scope of WSD. Knowing the root form of the word does remove a small 

amount of word level ambiguity. For example, the word won could refer to the 

past tense of win, or i t could refer to the Korean monetary unit. However, by 

considering senses of different POS, the number of possible senses for each word 

is greatly increased. This makes the learning process unnecessarily more complex 

when the POS of a word can be identified with high accuracy by a POS tagger 

Bri l l , 1992], [Brill, 1995]. Therefore, the task being evaluated in this section is: 

Given a list of senses belonging to the correct word form and the correct POS of a 

particular word, to select the correct sense for that word from the list. 

This evaluation is a large scale task, as all open class words in SEMCOR are 
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disambiguated. 

Before any results can be reported, the evaluation metrics adopted must be 

detailed. Several evaluation metrics are considered in order that various compo­

nents of DURHAM can be analysed. The chapter then proceeds by detailing the 

nature of the training and test sets used for evaluation. The results achieved by 

DURHAM are then reported. This is followed by an analysis of various components 

of DURHAM which have been discussed in the previous chapters. 

An attempt to compare this work with other systems is then carried out. This 

is a complex task due to the problems of evaluation on different data sets. These 

problems were detailed in section 2.5. However, a comparison is made with one 

other system, also evaluated on SEMCOR. Due to the difficulties of comparing 

work on different data sets, various metrics have been proposed which indicate the 

complexity of the data set in terms of its ambiguity. These metrics are investigated 

to determine their correlation with the accuracy achieved by DURHAM. 

6.1 Evaluation Metrics 

Prior to the results for DURHAM being reported, the evaluation metrics used to 

assess the performance of DURHAM need to be detailed. Chapter 2 highlighted 

the lack of standards for evaluation metrics within WSD. As a result, some of the 

evaluation metrics introduced in this section are unique. However, the metrics aim 

to be sufficiently thorough that the results can be compared, should any other 

work be carried out on the same blind test set. For all the evaluation metrics, 

the sense which has been chosen by the sense tagger is assumed to be correct. 

Although the ITA agreement may imply that some of the sense tags are incorrect, 

this assumption needs to be made as there is no way of knowing which senses are 

misclassified. There are 666 instances in SEMCOR where more than one sense for 

a word has been assigned. In these instances, DURHAM need only choose any one 

of the possible senses to be considered correct. The evaluation metrics are now 

detailed individually. 
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6.1.1 Random Baseline 

The random baseline is the accuracy of a system which always chooses a sense of 

a word at random. This baseline figure gives an indication for the complexity of 

the task. This is a particularly useful baseline figure for systems which do not take 

advantage of training data. 

6.1.2 Frequency Baseline 

The frequency baseline is a standard bench mark from which results can be mea­

sured for systems which do take advantage of training data. The frequency baseline 

is the accuracy achieved by the system if the most frequent sense is always chosen 

for each ambiguous word. The frequency information is calculated from the data 

used to train the system. As DURHAM takes advantage of training data, the fre­

quency baseline is a better bench mark to compare results against than the random 

baseline. 

6.1.3 Fine Grained Accuracy 

The fine grained accuracy is the percentage of senses correctly chosen by DURHAM 

out of all the ambiguous words. The fine grained accuracy is the metric which can 

be used to compare the DURHAM system with other systems evaluated on the 

same blind test set. 

Fine Grained Accuracy = ^"^^^^ of correctly resolved ambiguous words 
Total number of ambiguous words 

(6.1) 



Chapter 6: Evaluation on SemCor 109 

6.1.4 Contextual Level Accuracy 

The contextual level accuracy metric is designed to evaluate the performance of 

the contextual information knowledge source. The contextual information gener­

ally operates above the word level. In some instances more than one sense of a 

word is represented by the same node in the contextual matrix. If the node in 

the contextual matrix which represents the correct sense is selected, the contex­

tual information has fulfilled its role even if the incorrect sense is finally chosen. 

Therefore, the contextual level accuracy considers a sense choice to be correct i f i t 

is represented by the same node in the contextual matrix as the correct sense. 

, , , ^ , . Number of correct contextual matrix nodes 
Contextual Level Accuracy = ; 

Total number of ambiguous words 
(6.2) 

6.1.5 Lex File Accuracy 

Within WordNet each sense is assigned one of 45 lexicographer files based on the 

syntactic category and logical groupings. There are 26 categories for nouns, 15 cat­

egories for verbs, 3 categories for adjectives and 1 category for adverbs. Achieving 

high lex file accuracy is more difficult for nouns and verbs compared with adjectives 

and adverbs, as there are many more possible categories. The lex file accuracy con­

siders the instances where the chosen sense is of the correct lex file. DURHAM has 

not been designed to achieve high accuracy at this very coarse level of granularity 

because it may be to the detriment of the finer grained accuracy. For example, 

consider three noun senses of the word bank shown in table 6.1 along with their 

lex file groupings and frequency information. For the purposes of the example, the 

frequency information has not been taken from the SEMCOR training data. 

If a system based solely on frequency information aimed to achieve high accu­

racy at the fine grained level, the system would choose sense 3 in all instances. An 

accuracy of 40% would be achieved at both the fine grained and lex file level. How-
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Table 6.1: The definitions and frequencies for three senses of bank being 
considered 

Sense Number Definition Lex File Frequency 
1 The side of a river object 30 
2 Building offering financial services object 30 
3 Funds held by a gaming house possession 40 

ever, a system aiming to achieve high lex file accuracy would choose either sense 

1 or 2. In this case it would only achieve 30% fine grained accuracy, but would 

achieve 60% lex file accuracy. The purpose of including this metric is to enable a 

comparison should other systems evaluate at this level. 

. Number of correct lex files „, 
Lex File Accuracy = — — ^ (6.3) 

Total number of ambiguous words 

6.1.6 All Words Accuracy 

All of the accuracy metrics detailed above have only considered ambiguous words 

in the sentence. The reason for this is that within WSD the ambiguous words 

represent the non trivial subset of all words for the correct sense to be chosen. 

By including the trivial monosemous words, the overall accuracy of the system is 

increased. As a result, the accuracy gains made by changes to the system become 

smaller and therefore less is shown about the performance of the system. However, 

i t is also important to define accuracy in terms of the words in the sentence. This 

metric is beneficial for developers outside WSD. For example, a developer of a NLP 

system is interested in the likelihood of a word being tagged with its correct sense. 

The difficulty to assign the correct sense is of less interest. The "all words" metric 

gives a better indication of the importance of resolving word ambiguity for their 

particular task. Developers may be interested in all of the words in the sentence 

or just the open class words in the sentence. Both of these metrics are therefore 

given. The accuracy including these additional trivial words is given at the fine 

grained level. 



Chapter 6: Evaluation on SemCor 111 

_ . Number of correctly resolved words 
Open Class Accuracy = — — ; ; ; (6.4) 

Total number of open class words 

rrr , A Numbcr of corrcctly rcsolvcd words 
All Words Accuracy = , ^ , ; (6.5) 

Total number of words 

6.1.7 Kappa 

A description of Kappa was given in chapter 2. The aim of Kappa is to assign 

a score between zero and one which represents where the system lies between a 

chance system and a perfect system. As training data is available for this work, 

frequency information is available. Therefore, a system achieving chance accuracy 

is considered to be one which achieves the frequency baseline. As a result. Kappa 

is calculated as follows for this work. 

a - freq baseline , , 
Kappa = '—-i- — - 6.6 

1 — freq baseline 

where a is the accuracy achieved by DURHAM. 

6.1.8 UBAKappa 

An additional formula for calculating Kappa is also proposed. This separate metric 

takes into consideration a realistic upper bound for that particular data set as well 

as the lower bound frequency baseline already considered. 

In equation 6.6, the 1 in the denominator represents the accuracy of a perfect 

system. However, i t is questionable whether an automatic system is able to achieve 

100% accuracy on a data set which contains inter-tagger disagreement. A realistic 

upper bound for any WSD system is to achieve the same level of accuracy as a 

human could achieve [Wilks, 2000]. This upper bound is shown as the ITA for 

that data set. The proposed metric relates the accuracy of the system to both an 
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upper and lower bound. In this work, this metric will be called UBAKappa (Upper 
Bound Adjusted Kappa) and is defined as follows. 

a — freq baseline „. 

where a is the accuracy of the system. For both Kappa measurements, the accuracy 

considered will be the fine grained accuracy. 

Using this metric, DURHAM will score a UBAKappa value of one if it achieves 

the same accuracy as a human could achieve on SEMCOR. The entire SEMCOR 

corpus has not been sense tagged by more than one person to produce a definitive 

ITA figure. However, [Fellbaum, 1996] report that unskilled lexicographers agreed 

with the senses assigned in SEMCOR in 74% of all instances. This figure is lower 

than could be achieved on SEMCOR because unskilled lexicographers perform the 

sense tagging. However, it is substantially better than the 57% ITA found be­

tween the text contained in both SEMCOR and the DSO corpus [Hwee Tou Ng 

and Hian Beng Lee, 1996]. For this work, it is considered acceptable to set an 

upper bound for an automatic system to perform comparably with unskilled lexi­

cographers. Therefore, 74% will be used as the upper bound figure for calculating 

UBAKappa for evaluation on SEMCOR. 

6.1.9 Statistical Significance 

Analysis of DURHAM will provide results highlighting the effects that different 

components have made to the overall accuracy of DURHAM. I t is insufficient to 

only examine the change in accuracy in order to be sure that a particular compo­

nent has made a positive contribution. Additionally i t is necessary to test if any 

improvement made is statistically significant. The significance test chosen to per­

form this function is called the The McNemar test for the significance of changes 

Siegel, 1956 . 

To be able to use this statistical test, the test set must be the same before and 
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Table 6.2: Fourfold table to represent the way the classification of senses 
has changed 

After 
Correct Incorrect 

Before Incorrect A B Before 
Correct C D 

after the change has been made. For each word, the test identifies if the chosen 

sense is correct or incorrect before and after the change. An alternative approach 

would be to consider each SEMCOR file as a separate sample and examine the 

difference in accuracy for each file. This approach would apply a t test to the 

difference scores [Siegel, 1956]. However, by considering each ambiguous word 

in the test set individually, the sample size is greatly increased enabling a more 

accurate statistical measure. 

The McNemar test establishes a fourfold table of frequencies in order to repre­

sent the results before and after the change to the system. The frequencies represent 

the four possibilities in which a word can be classified, and is shown in table 6.2. 

The cases which have shown changes between the before and after test appear 

in cells A and D. I f a word is correctly classified in both test runs i t will appear 

in cell C. I f a word is incorrectly classified in both test runs i t will appear in cell 

B. As the statistical test is concerned with how the system has changed only the 

frequencies from cells A and D are considered. 

The formula to calculate the McNemar test is derived from the test shown 

in equation 6.8 

i=l 
(6.8) 

where Oi is the observed number of cases in the i th category, Ei is the expected 

number of cases in the i th category under the null hypothesis {HQ) and k is the 

number of categories. 
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Table 6.3: Table showing the probability of HQ for different values of 

mo) 0.15 0.10 0.05 0.025 0.01 0.005 0.0005 
1.07 1.64 2.71 3.84 5.41 6.64 10.83 

The null hypothesis states that any change is by chance and therefore i t would 

expect A and D to be equal. Therefore, the expected number of cases in categories 

A and D is ^{A + D). Substituting this value for Ei and applying a correction for 

continuity generates equation 6.9. This equation constitutes the McNemar test. 

{\a-d\-iy 
a + d (6.9) 

The region of rejection of HQ is one tailed, as the statistical significance is only 

of concern if the changed system performs better than the original and thus A> D. 

Table 6.3 shows the probability of HQ for different values of x^-

6.2 Training and Test data 

The SEMCOR corpus consists of 186 sense tagged files, with each file containing 

approximately 100 sentences. For this work SEMCOR is split into three sections, 

training data, validation data and blind test data. The training data consists of 

a section of SEMCOR known as Brown 1. The validation data and blind test 

data are both taken from Brown 2. Splitting the corpus in this way increases the 

chances of other systems being evaluated on the same test set in the future and is 

the reason for this choice. Table 6.4 shows the relative sizes of each of the three 

data sets. A list of the files used in each data set can be found in appendix A. The 

purpose of each data set is detailed in chapter 5. 

Table 6.4 shows that approximately 55% of SEMCOR is used to train the 

contextual matrix and derive the frequency information, and a further 17% is used 

as validation data for this training process. Approximately 28% of SEMCOR is 

used to evaluate the performance of DURHAM on unseen data. In addition table 
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Table 6.4: Table showing the size of the training, validation and blind test data 
sets 

Training Test Blind Test 
Data Data Data 

Number of files 103 30 53 
Number of sentences 11,182 3,222 5,734 
Number of words 198,796 58,000 102,936 
Number of open class 106,639 31,404 54,596 
words 
Number of ambiguous 82,325 24,059 43,339 
word occurrences 

6.4 highlights the relative frequency of open and closed class words in free text. 

Despite the existence of far more open than closed class words in the lexicon, open 

class words constitute only 54% of all words in free text. However, the table also 

shows that 78% of all open class word occurrences are ambiguous. 

6.3 Results 

This section considers the results achieved by DURHAM on the bUnd test data. 

Section 5.2 detailed the method by which knowledge sources are combined and 

explained how constants are used to weight the contribution of each knowledge 

source. In the results reported in this section, these constants are both arbitrarily 

set to 0.5. An analysis of the effect of using different weights is considered in section 

6.4. 

DURHAM learns contextual scores by examining the training text. The vali­

dation data is used to signal an end to the training process. When accuracy on the 

validation set falls, no further training iterations will be carried out. This method 

was discussed in section 4.4. Figure 6.1 examines how the accuracy on both the 

training and validation data changes after each iteration of training. Figure 6.1 

shows that after three iterations of the training procedure the highest accuracy is 

achieved on the validation data. Further iterations of training cause the accuracy 

on the validation data to decrease. However, the accuracy continues to increase on 
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Figure 6.1: Graph showing accuracy on validation and training data 
after each training iteration 
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the training data set. The accuracy on the training set is 15% higher after eight 

iterations than i t is after three iterations. The reason for this is that the train­

ing process is no longer able to make generalised adjustments to the contextual 

scores to improve accuracy. As a result, the training process makes specific adjust­

ments which are suitable only for the training data. Training which only causes 

an improvement on seen data is a common problem in other areas of artificial 

intelligence such as neural networks. The problem is referred to as Overfitting 

Winston, 1992 . 

Once the system has finished training, DURHAM is evaluated at the different 

levels of granularity using the metrics detailed in section 6.1. The results are shown 

in table 6.5. The results show that DURHAM achieved 62.14% accuracy at the fine 

grained level. This is slightly under an 11% increase above the frequency baseline. 

A greater increase of almost 12% is observed at the contextual level. The 

reason for this is that the training process alters scores between nodes found in the 

contextual matrix. Therefore, the training process is more suited to the contextual 
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Table 6.5: Table showing the results achieved by DURHAM when evaluated on the 
blind test data. The figures are expressed as a percentage 

Fine Contextual Lex file Open Class All words 
Random baseline 27.70 34.19 71.43 42.61 69.56 
Frequency baseline 51.27 55.09 81.56 61.32 79.48 
DURHAM 62.14 66.92 86.19 69.94 84.06 

level evaluation. However, there is only a small difference in accuracy between the 

fine grained and contextual level results. This suggests that the contextual matrix 

extends to a sufficient depth in WordNet to distinguish between all senses in most 

instances. 

The results show that using the training data to provide frequency informa­

tion is extremely beneficial. The frequency baseline is 23.57% above the random 

baseline. This is a substantial increase, which suggests that most words have a 

skewed frequency distribution of senses. I f all words had a uniform frequency dis­

tribution of senses the frequency baseline and the random baseline would be the 

same. In addition, the results display a further benefit through using frequency 

information. Unlike the contextual information, frequency information operates at 

the fine grained sense level. Therefore, only the frequency information is available 

to distinguish between two senses which are represented by the same node in the 

contextual matrix. This benefit can be measured by examining the probability of 

identifying the correct sense given that the correct node in the contextual matrix 

is chosen. This is calculated using Bayes theorem. 

P{Fine\Contextual) = Pi^inen Contextual) 
P [Contextual) 

(6.10) 

Using the results in table 6.5, a random system will correctly identify the correct 

sense in 81% of all instances i f the correct contextual node is given. However, using 

frequency information increases this figure to 93%. 

High accuracy of 86.18% is achieved at the lex file level. However, this is only 

4.63% above the frequency baseline. This shows that the lex files are not suited to 
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identifying semantic categories which separate various senses of a word. This adds 
evidence to the argument given in section 4.3 which highUghted that all senses of 
doctor were assigned the same lex file category. 

The lex file accuracy is reported because it is a level of granularity which can 

be easily evaluated. By reporting these results the chance of future work being 

compared with these results is increased. However, the lex file accuracy is reported 

with some caution. The objectives of DURHAM were to perform well at a finer 

level of granularity than the lex files. This is reflected by both knowledge sources 

operating at a finer level of granularity. Therefore, the lex file accuracy can be a 

misleading metric to assess the performance of DURHAM. I t is likely that higher 

lex file accuracy could be achieved if training and the disambiguation algorithm 

were targeted at the lex file level. 

The "open class" metric considers all open class words, even if the word only 

possesses one sense and can be resolved trivially. By including these trivial words 

only a 7% increase in accuracy is generated for the DURHAM results. The reason 

for this is that most open class words are ambiguous. The figure achieved of 

slightly less than 70% is useful for a NLP developer to give an indication of the 

overall accuracy of the disambiguated text. 

The "all words" metric also considers closed class words, none of which are 

ambiguous. As this almost doubles the number of words being considered the 

accuracy is greatly increased. The DURHAM accuracy for all words at the fine 

level of granularity is 84.06%. This figure is useful to gain an overall perspective 

on the WSD problem. However, a diflference of only 4.58% between the frequency 

baseline and DURHAM highlights the reason why the "all words" metric is not 

suited for comparing different WSD systems. 

Using table 6.5 the Kappa values for DURHAM can be calculated as follows: 

Kappa = "-yoTsm'' =0.2230 
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UBAKappa = ' - f ^ ^ =0.4781 

Kappa provides an excellent metric for comparing WSD systems and for high­

lighting the extent of development still required in WSD. The Kappa value shows 

that DURHAM is slightly over one fifth of the way towards a perfect system. The 

UBAKappa value is a little more encouraging. I t suggests that DURHAM is just 

under half the way towards achieving a system which could perform comparably 

with an untrained human. 

The increase in accuracy above the frequency baseline achieved by DURHAM 

is statistically significant. Due to the large size of the data set, only small increases 

in accuracy are required for the improvement to be statistically significant at a 

99% level. Table 6.3 shows that x^ must be greater than 10.83 for the improved 

accuracy to be statistically significant at the 99.95% level. The calculated x^ for 

the improved accuracy achieved by DURHAM over the frequency baseline is 1852 

6.4 Analysing Constants A and B 

Now that the overall results of DURHAM have been reported, various components 

will be analysed to measure their eflfect on accuracy. Constants A and B are used in 

equations 5.6 and 5.7. Their purpose is to weight the contribution each knowledge 

source makes to the overall score for each sense. This section examines the effect 

that varying the constants A and B has on the accuracy of DURHAM. This is 

carried out in order to see if an improvement in accuracy can be made on the blind 

test data. In addition the relative importance of each knowledge source can be 

examined. 

Analysing A and B values can not be performed using the training data. The 

best values for A and B on the training data will not necessarily be the same as on 

unseen data. The reason for this is that the training data has been used to derive 

the frequency information and train the contextual matrix. Optimum values for A 

and B on the training set would not represent the ability of each knowledge source 
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Figure 6.2: Graph showing the effect different values of A and B have on fine 
grained accuracy on the validation data 
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to perform on unseen data. Furthermore, the blind test data can not be used. 

Finding better values for A and B is considered part of the training phase and can 

not be carried out on data reserved for testing. 

The values for A and B which produce the highest fine grained accuracy are 

found on the validation data. This is performed by iterating through different 

values of A and B. For all values considered, the sum of A and B is equal to one. 

The results are shown in figure 6.2. 

The results show that the best values for A and B on the validation data are 

A = 0.58 and B = 0.42. Applying these constants to the evaluation on the blind 

test data leads to an increased achieved accuracy of 62.29%. However, this increase 

is not statistically significant even at the 0.1 level. 
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Table 6.6: Table showing statistical significance at the 95% level for constant A in 
the range 0.52 - 0.70. B ^ 1 - A 

0.58 0.56 0.60 0.54 0.52 0.62 0.64 0.50 0.66 0.68 0.70 
0.58 - X X 
0.56 X - X X X 
0.60 X - X X 
0.54 X X X - X X X 
0.52 X X X - X X 
0.62 X X - X X 
0.64 X X X - X 
0.50 X X -
0.66 -
0.68 _ 

0.70 -

6.5 The Role of Frequency Information 

Many benefits of using frequency information have already been highlighted in 

section 6.3. The frequency information has been shown to substantially increase 

accuracy particularly at the fine grained level. This section investigates a further 

benefit of the frequency information. 

During the training of the contextual scores, DURHAM disambiguates each 

training sentence based on the information i t possess. Frequency and contextual 

information are combined to perform the disambiguation. This section investigates 

whether better contextual scores would be learnt i f only the contextual information 

was used during the training of contextual scores, the principle being to train each 

knowledge source in isolation and then determine the best way for them to be 

combined. 

The system was re-trained on the same training data. The A and B constants 

used to weight the contribution from each knowledge source were set to zero and one 

respectively in order that no frequency information was considered. Five iterations 

of training were performed before accuracy on the validation data signalled an end 

to the training process. The new system was then tested on the validation data 

using different values of constants A and B. The results achieved are compared 
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Figure 6.3: Graph showing the effect using frequency information during the train­
ing of contextual scores makes to the accuracy of the system. 
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with the original system in figure 6.3. 

Figure 6.3 shows that training the contextual scores in isolation from frequency 

information achieves higher accuracy when the frequency information is also not 

used during testing. However, the figure also indicates that this method does not 

achieve such high accuracy overall. The combined knowledge is not greater than 

the individual knowledge sources. Further analysis highlights the reason for this. 

Three different systems are compared: 

• System X: No frequency information is used in either training or testing of 

the system. 

• System Y: Frequency information is used during training of the contextual 

scores, but is not used during testing. 

System Z: A system tested using frequency information only. 
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Each of the three systems is marked in figure 6.3. System X achieved 53.73% 

accuracy on the validation data, which is 3.61% higher than system Y. However, 

93.4% of all the correct answers given by system X were also correct in system Z. 

Only 67.8% of all correct answers given by system Y were also correct in system Z. 

The results show that system X is similar to system Z. By not incorporating 

the frequency information into the training of the contextual scores, the contextual 

information will learn to choose the most frequent sense, and is the reason for the 

similarity. Thus the contextual information and the frequency information become 

very similar and are unable to complement each other. By contrast, incorporating 

the frequency information into the training process helps direct the training of the 

contextual information. This enables it to learn features in the sentence which may 

contribute to a sense other than the most frequent being chosen. 

6.6 Analysis of the Disambiguation Algorithm 

The previous sections have analysed the performance of DURHAM'S knowledge 

sources, the role they perform and the way they are combined. This section pro­

gresses on from that analysis and considers the performance of the disambiguation 

algorithm. The disambiguation algorithm is discussed in chapter 5, and its purpose 

is to select a sense for each ambiguous word based on the information given from 

the knowledge sources. 

The disambiguation algorithm aims to identify the sense combination which 

generates as high a sentence score as possible for each sentence. However, due 

to the large number of sense combinations, particularly for long sentences, this 

is a difficult task. In order to evaluate the performance of the disambiguation 

algorithm, the score of the chosen sense combination must be calculated for each 

sentence. However, the chosen sentence score can not be compared against the best 

sentence score because the best sentence score can not be calculated eflficiently. 

Instead the chosen sentence score is compared against the correct sentence score 

(the score of a sentence with all the correct sense choices). By comparing these 
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scores, the error can be catagorized into two types. This first type is error caused 

by the knowledge sources assigning incorrect scores. The second type is the error 

caused by the disambiguation algorithm failing to identify a sense combination with 

a higher score. 

In the blind test set there are 5734 sentences. For 4516 of these sentences 

the correct sentence score is lower than the chosen sentence score. Therefore, the 

scores from the knowledge sources are the cause of the misclassifications. 575 

sentences have a higher correct sentence than chosen sentence score and therefore 

for these sentences the disambiguation algorithm could have done better. The 

correct sentence is chosen for the remaining 643 sentences. 

These results show that the knowledge sources cause the incorrect choice of 

sense combination in 78.8% of all the sentences. The disambiguation algorithm 

is, at least partly, the cause of the misclassification in 10.0% of all sentences. The 

results also show that despite achieving 62% accuracy at the word level, only 11.2% 

of sentences are sense tagged correctly. 

6.6.1 NIE and NMSE 

Section 5.3 detailed the two elimination algorithms (NIE and NMSE) which com­

bine to form the core of the disambiguation algorithm. This section examines the 

relative performance of each of these elimination algorithms. To perform this only 

the 575 sentences were considered. These sentences are those where the disambigua­

tion failed to select a sentence combination whose score is as high as the correct 

sentence score. The reason for choosing these sentences is that the elimination 

algorithm could have done better on these sentences. On the 575 sentences a total 

of 22219 senses were eliminated. 66.8% of the senses were eliminated by the NIE 

algorithm and the remaining 33.2% were eliminated by the NMSE algorithm. From 

all the eliminated senses, 1293 were correct senses. 746 of these correct senses were 

eliminated by the NIE algorithm and the remaining 547 were eliminated by the 

NMSE algorithm. Therefore, the NIE algorithm incorrectly eliminated a correct 

sense in 5.0% of all of the senses it eliminated, and the NMSE algorithm incorrectly 
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eliminated a correct sense in 7.4% of all the senses i t eliminated. This difference in 
accuracy between the two elimination algorithms is to be expected, as the NMSE 
algorithm deals with more difficult instances. 

To gain a greater understanding of the why the elimination algorithm selects 

a sub optimal sense combination, an example is investigated. The example sent­

ence is taken from SEMCOR and is one of the 575 sentences where the correct 

sense combination achieved a higher score than the chosen sentence. The sentence 

is: "And the USSR existed as the revolutionary experiment in radical socialism, 

the ultimate exemplar." and is taken from file br-g21. The example was chosen 

for simplicity because a low number of sense combinations exist in the sentence. 

Table 6.7 shows the starting point for the disambiguation algorithm. The senses 

highlighted in bold are the correct senses for each word. DURHAM disambiguates 

all the ambiguous words correctly except for experiment. However, table 6.7 shows 

that for revolutionary and radical the correct sense is not initially the sense with the 

highest max score. This highlights the importance of an iterative disambiguation 

procedure. 

After some senses have been eliminated the cause of the misclassification of 

experiment can be observed. The remaining senses are shown in table 6.8. The 

correct sense (experiment(1)) possesses a higher maximum and minimum contex­

tual score than the chosen sense - experiment(3). However, experimentfS) has a 

much higher frequency score. As a result the minimum score for experimentfS) 

(2.96) is higher than the maximum score for experiment(l) (2.89). Therefore, ex-

periment(l) is ehminated by the NIE algorithm. 

However, experimentf1) provides a high contextual score for many of the other 

words in the sentence. As a result, the increase in the sentence score affected by 

choosing experimentfS) is lost through many of the other words producing a lower 

score. This is shown in table 6.9 where the scores for the correct and chosen sense 

combination are compared. The table shows that although the only difference 

between the two sense combinations, is the sense choice of experiment, the scores 

for all words are different. The chosen sense of experiment receives a higher score 
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Table 6.7: Al l possible senses for the sentence before any elimination is performed. 

Max Min Normalised 
Word Prob Max_CS Min.CS Score Score Max Score 

U S S R ( l ) 1 7.40 5.75 3.69 2.99 1 
exist (1) 0.03 6.73 3.83 2.84 1.62 0.78 

exist(2) 0.97 7.35 5.83 3.65 3.01 1 
revolutionary (1) 0 6.27 4.55 2.63 1.91 0.99 
revolutionary(2) 0 6.36 2.53 2.67 1.06 1 

r evolutionary (3 ) 0 6.19 4.03 2.60 1.69 0.97 
experiment (1) 0.14 6.69 5.52 2.89 2.40 0.90 
experiment (2) 0.06 7.42 4.75 3.15 2.03 0.98 
experiment (3) 0.80 6.57 5.63 3.22 2.83 1 

radical(l) 0 5.29 3.96 2.22 1.66 0.73 
radical(2) 0 4.92 3.28 2.07 1.38 0.68 
radical (3) 0 6.01 4.03 2.52 1.69 0.83 

radical(4) 0 6.02 3.29 2.53 1.38 0.83 
radical (5) 0 7.25 2.53 3.04 1.06 1 

socialism(l) 0 5.38 3.83 2.26 1.61 0.74 
socialism(2) 1 5.91 3.51 3.06 2.056 1 
ultimate(l) 0.33 6.47 5.28 2.91 2.41 1 
ultimate (2) 0.33 6.07 5.00 2.74 . 2.29 0.94 
ultimate(3) 0.33 4.83 2.28 2.22 1.15 0.76 

exemplar (1) 1 6.55 4.72 3.33 2.56 1 
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Table 6.8: Table showing why the correct sense of experiment is eliminated by the 
NIE algorithm. 

Max Min Normalised 
Word Prob Max_CS Min.CS Score Score Max Score 

U S S R ( l ) 1 6.71 5.92 3.40 3.07 1 
exist (2) 1 7.22 5.87 3.61 3.04 1 

revolutionary(l) 0 5.93 4.84 2.49 2.03 0.96 
revolutionary(2) 0 5.58 3.58 2.35 1.50 0.90 

re volut ioneiry (3) 0 6.19 5.02 2.60 2.11 1 
experiment (1) 0.14 6.69 6.09 2.89 2.64 0.90 
experiment (2) 0.06 7.42 5.34 3.15 2.28 0.98 
experiment (3) 0.80 6.57 5.94 3.22 2.96 1 

radical(l) 0 4.79 4.29 2.01 1.80 0.74 
radical (2) 0 4.92 3.94 2.07 1.65 0.76 
radical (3) 0 6.01 5.02 2.52 2.11 0.93 

radical (4) 0 6.02 4.47 2.53 1.88 0.93 
radical(5) 0 6.47 3.58 2.72 1.50 1 

socialism(2) 1 5.91 4.12 3.06 2.31 1 
ultimate(l) 0.5 6.47 5.51 3.01 2.60 1 
ultimate(2) 0.5 6.07 5.42 2.84 2.57 0.94 

exemplar(l) 1 6.55 5.69 3.33 2.97 1 

(3.03) than the correct sense (2.89). However, the total sentence score is higher for 

the correct sense combination. 

The example has outlined that the disambiguation algorithm is not fully able to 

consider how the elimination of a sense will affect the other words in the sentence. 

This is mainly due to the frequency information being independent of the contextual 

words. 

The example also demonstrates the ability of DURHAM to generalise by the 

contextual information operating above the word level. The words revolutionary 

and radical do not appear in the training data. Therefore, despite neither word 

possessing any frequency information or having any instances to be trained on, 

they are both disambiguated correctly. 
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Table 6.9: Table comparing the correct and chosen scores for each word 
in the sentence. 

Word Chosen Correct 
ussr 3.19826 3.18776 
exist 3.29309 3.27209 

revolutionary 2.50455 2.59905 
experiment 3.03104 2.89191 

radical 2.47389 2.51589 
socialism 2.9848 3.0163 
ultimate 2.82388 2.88688 
exemplar 3.27355 3.31555 
TOTAL 23.583 23.6848 

6.6.2 The Effect of Correct Context 

The above example demonstrated the effect of a different sense choice for experiment 

on the scores for all other words in the sentence. Despite the incorrect sense choice 

for experiment the remaining ambiguity was still able to be resolved correctly. This 

section examines the importance of identifying the correct sense of the context 

words. 

In order to investigate the importance of accurate context, the contextual score 

for each word is calculated by considering only one sense for each context word. As 

a result, the maximum and minimum contextual scores for each sense are always 

the same making the disambiguation algorithm less complex. Three tests were 

performed on the blind test data. The first two tests served as lower bound base­

lines. A random sense and then the most frequent sense was used as the context 

sense. The third test was an upper bound baseline with the correct sense being 

used as the context sense. The results are shown in table 6.10. The table shows 

that the correct sense choice for the context words greatly affects the extent to 

which the ambiguity of a word can be resolved accurately. The accuracy for all 

POS is increased which implies that all words are reliant on accurate context. For 

all POS, DURHAM achieves 4.53% higher accuracy than the most frequent sense 

baseline. This shows that the more complex disambiguation algorithm adopted by 
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Table 6.10: Table showing the effect that choosing the correct sense for the con­
text words has on the disambiguation accuracy. The figures are expressed as a 
percentage 

Context Sense Choice Nouns Verbs Adjectives Adverbs Overall 
Random 63.67 46.37 49.66 63.73 56.06 

Most Frequent 64.90 49.02 49.52 65.84 57.60 
Correct 76.22 58.50 59.41 70.78 67.61 

DURHAM 69.36 54.12 54.65 66.23 62.14 

DURHAM is worth the computational expense. I f the correct sense of the con­

text words is always used a 5.48% accuracy improvement over DURHAM can be 

achieved. This shows that i f one word in the sentence is incorrectly disambiguated 

it can lead to other words also being disambiguated incorrectly due to the less 

accurate contextual information available. 

These results may be beneficial to a NLP developer. The developer may employ 

other methods which may be able to eliminate some of the possible senses, for 

example parsing or semantics. By using the WSD module as late in the NLP 

process as possible the contextual information may be more accurate. This has 

been shown to be of great benefit to the accuracy with which the ambiguity can 

be resolved. 

6.7 Examining POS 

Further analysis of the DURHAM performance can be made by individually eval­

uating each syntactic category. Fine grained disambiguation accuracy for nouns, 

verbs, adjectives and adverbs are shown in table 6.11. 

The table shows that DURHAM'S accuracy is above the frequency baseline for 

all four syntactic categories. The Kappa values are given so that the accuracy 

can be compared relative to the frequency baseline. The highest Kappa values are 

achieved for nouns and adjectives. The smallest increase in accuracy is achieved 

for verbs. This may be the result of a low random baseline but relatively high 
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Table 6.11: Table showing the fine grained results for each POS. The accuracy 
figures and Kappa are expressed as a percentage. 

Nouns Verbs Adjective Adverbs 
Number of 19874 13189 6897 3379 
instances 
Random baseline 35.27 15.63 26.98 31.76 
Frequency baseline 57.43 48.39 36.10 57.21 
DURHAM 69.36 54.12 54.65 66.23 
Kappa 28.01 12.13 29.02 21.09 

frequency baseline. This shows that verbs possess a large number of senses and 

a skewed frequency distribution. As a result, it is more difficult to improve the 

accuracy beyond the frequency baseline. 

A possible reason for the smaller improvement in adverbs over nouns and ad­

jectives is the amount of training data available. The table shows that only 7.80% 

of the ambiguous words in the blind test set are adverbs. A similar proportion can 

also be expected in the training set. A further reason may be the high frequency 

baseline for adverbs, particularly in comparison with adjectives. I t is easier to make 

improvements beyond the frequency baseline if the frequency baseline is low. It is 

for this reason, that adjectives have the highest value for Kappa. This highlights 

a potential weakness of using the Kappa metric. 

6.8 Comparison with Agirre and Rigau 

Due to the evaluation problems considered in chapter 2, it is not possible to compare 

this work with the majority of other WSD systems. A fair comparison can only be 

performed if the evaluation has taken place on the same data set. 

The interest corpus [Bruce and Wiebe, 1994] consists of 2,369 sentences each 

containing the word interest. Each instance is sense tagged with one of six LDOCE 

senses. As only one word is sense tagged by the corpus, the corpus is more suited 

to evaluating a small scale WSD system. A better analysis of the application 

of DURHAM to a small scale evaluation can be carried out through SENSEVAL 
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Table 6.12: Table comparing the fine grained accuracy of DURHAM with Agirre 
and Rigau's system on four SEMCOR files. 

br-aOl br-b20 br-r05 br-j09 Overall br-aOl br-b20 br-r05 br-j09 
Fine Lex 

Agirre and Rigau 46% 44% 39% 44% 43% 53.9% 
DURHAM 75% 72% 70% 87% 76% 87% 

which is considered in chapter 7. Therefore, DURHAM has not been evaluated on 

the interest data set. 

Very few systems have been evaluated on the SEMCOR data set. This is 

predominantly due to the difficulty of the large scale task. The work reported in 

Stevenson, 1999] and [Wilks and Stevenson, 1998] is evaluated on the SEMCOR 

corpus. However, this system requires the LDOCE dictionary definitions which 

force Stevenson and Wilks to use mappings between WordNet and LDOCE. These 

mappings are incomplete and prevents any kind of comparison between results. 

This is supported in [Paliouras et al., 1999] which aims to compare this work with 

their evaluation on SEMCOR, which, like Wilks and Stevenson, uses the LDOCE 

lexicon. They report that no comparison can be made. 

Evaluation on SEMCOR using WordNet mappings is reported in [Agirre and 

Rigau, 1996]. Agirre and Rigau report accuracy on four SEMCOR files - br-aOl, 

br-b20, br-j09 and br-r05. Al l of these files are contained in the training data set 

for DURHAM. To enable a fair comparison between the two systems DURHAM 

is re-trained with these four files removed from the training data set. The four 

files are not seen by DURHAM before testing commences. In addition, Agirre and 

Rigau's system attempts only to disambiguate nouns. Despite the capability of 

DURHAM to disambiguate all open class words regardless of their POS, only the 

disambiguation accuracy for the nouns can be compared. For the individual files 

only the fine grained accuracy is reported. However, the overall results can be 

compared at the fine grained and lex file level. The results for both systems are 

shown in table 6.12. 

The results show that on all four SEMCOR files, DURHAM achieves higher 
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accuracy than achieved by Agirre and Rigau. Overall DURHAM achieves 33% 
higher accuracy at the fine grained level and 33.1% higher accuracy at the lex file 
level. 

The main difference between the two systems is that DURHAM takes advantage 

of training data, but Agirre and Rigau's system does not. Instances may occur 

where no training data can be provided to train a WSD system. In such instances an 

approach such as Agirre and Rigau's may be adopted. However, these results show 

that a substantial increase in accuracy is achievable if training data is available. 

This may encourage a developer to invest the required resources to produce training 

data in order to benefit from increased WSD accuracy. 

Agirre and Rigau use the WordNet hierarchy to calculate semantic distance 

measures between concepts. It is unlikely that the formula adopted to calculate 

the semantic distance measure is the cause of the low disambiguation accuracy. A 

more likely cause is the structure of the WordNet hierarchy. The WordNet hier­

archy was not developed to aid WSD. The results indicate that semantic distance 

measures obtained using WordNet are not beneficial in producing high disambigua­

tion accuracy. The alternative contextual information proposed here offers a way 

forward, but does require training data. 

6.9 Evaluating Complexity Metrics 

The difficulty of comparing different WSD systems was discussed in Chapter 2. 

This was further highlighted in section 6.8 which demonstrated that this work 

could only be compared with one other WSD system. As that system did not 

use training data, even this comparison is not ideal. The main difficulty is that 

diflferent systems choose to evaluate on data sets which are most appropriate for 

their work. 

In order to move towards overcoming these difficulties, metrics have been estab­

lished which aim to quantify the WSD difficulty of a particular data set. The aim 

of these metrics is to enable a comparison of disambiguation accuracy based on the 
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difficulty of the task. This section identifies four metrics which give an indication 
of the difficulty of the task. 

The random baseline I f a test file contains words with many senses it will be 

more difficult to disambiguate. This is reflected by the accuracy achieved on 

the test file by choosing a sense at random. 

The frequency baseline The difficulty of a test file is dependent on the fre­

quency of the most common sense for each word in the test set. This infor­

mation is encapsulated by the frequency baseline. 

Average Polysemy This metric is used in [Stevenson, 1999]. I t finds the average 

number of senses per word in the text and is calculated as shown in equa­

tion 6.11. Unlike the random baseline, average polysemy does not take into 

consideration the varied number of senses that different words in the text 

possess. 

Average Entropy Entropy was discussed in section 2.5.2 and has been used in 

Kilgarrif and Rosenzweig, 2000]. I t combines both the number of senses and 

the frequency distribution of those senses into its metric. Average entropy is 

calculated using equation 6.12 

Average Polysemy = (6.11) 

Average Er^tropy = (g.is) 

where N is the total number of ambiguous words in the text, S{i) is the number of 

senses of word i and pij is the probability of sense j of word i. 

The metrics are calculated for each of the 53 blind test files. The success of each 

metric is measured by its ability to predict the accuracy achieved by DURHAM 

for each of the 53 files. In order to implement this, the values of each metric 

are correlated with the accuracy achieved by DURHAM for all of the blind test 

files. The correlation is determined using bivariant correlation coefficients. These 
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Table 6.13: Table showing the bivariant correlation coefficients between various 
complexity metrics. 

Random 
Baseline 

Frequency 
Baseline 

DURHAM Kappa Average 
Entropy 

Average 
Polysemy 

Random 
Baseline 

1 0.406* 0.172 -0.158 -0.139 -0.071 

Frequency 
Baseline 

0.406* 1 0.064 -0.658* -0.126 0.272 

DURHAM 0.172 0.064 1 0.697* -0.107 -0.232 
Kappa -0.158 -0.658* 0.697* 1 -0.017 -0.393* 
Average 
Entropy 

-0.139 -0.126 -0.107 -0.017 1 0.722* 

Average 
Polysemy 

-0.071 0.272 -0.232 -0.393 0.722* 1 

* Correlation is significant at the 0.05 level. 

coefficients range from -1 to 1. A high negative or positive coefficient represents a 

strong relationship between the two variables. A coefficient of zero represents no 

relationship between the two variables. The correlation coefficients between all the 

metrics are shown in table 6.13. 

Table 6.13 shows that none of the four difficulty metrics have a statistically 

significant relationship at the 0.05 level with the accuracy achieved by DURHAM. 

The table shows a strong relationship between DURHAM and Kappa. However, 

Kappa is an alternative way of expressing the system's accuracy and not a metric 

for evaluating the difficulty of the test set. 

Entropy aims to combine the number of possible senses and the frequency dis­

tribution of those senses into its measure. However, there is a strong relationship 

between the average entropy and average polysemy, and a weak relationship be­

tween average entropy and the frequency baseline. This suggests that with the 

entropy measure, the number of possible senses is the more dominant feature. This 

evidence supports the criticism of entropy given in section 2.5.2. The graphs show­

ing that there is no relationship between the achieved accuracy and either the 

average entropy or the average polysemy are shown in 6.4 and 6.5. 

The correlation co-efficient between the frequency baseline and DURHAM is 
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Figure 6.4: Graph showing the relationship between the average entropy and 
achieved accuracy on the 53 blind test files. 
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Figure 6.5: Graph showing the relationship between the average polysemy and 
achieved accuracy on the 53 blind test files. 
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Figure 6.6: Graph showing the relationship between the frequency baseline and 
achieved accuracy on the 53 blind test files 
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extremely low suggesting that there is no relationship. However, the graph shown 

in figure 6.6 indicates that some relationship may exist. Figure 6.6 shows that for 

most of the blind test files a positive relationship does exist between the frequency 

baseline and DURHAM. However, five files do not conform to this relationship 

and thus reduces the correlation co-efficient. By examining the Kappa values, part 

of the reason for the lack of conformity can be explained. There exists a strong 

negative relationship between Kappa and the frequency baseline as shown in figure 

6.7. This suggests that it is easier to achieve accuracy above the frequency baseline 

on test files where the frequency baseline is low. The five files in the uppermost left 

corner of figure 6.7 are the same files which prevent a positive relationship between 

the frequency baseline and DURHAM in figure 6.6. 

These results suggest that none of the metrics investigated give a measure of 

WSD difficulty that relates to the accuracy achieved by DURHAM. This highlights 

the importance of evaluating WSD systems on the same data set in order that a 

fair comparison can be made without the need to consider the difficulty of the task. 
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Figure 6.7: Graph showing the relationship between the frequency baseline and 
Kappa on the 53 blind test files 
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6.10 Summary 

This chapter has detailed several evaluation metrics. These evaluation metrics 

have then been applied to assess the accuracy of DURHAM at disambiguating 

SEMCOR. The metrics have shown that DURHAM performs well and significantly 

better than the frequency baseline. Analysis of the two knowledge sources showed 

that using the frequency information during training of the contextual information 

enables the knowledge sources to complement each other better. The effect of 

varying the weight each of the knowledge sources contributes to the overall score 

was also shown. 

An analysis of the disambiguation algorithm was also performed. This demon­

strated that correctly sense tagged context words greatly increased the accuracy 

of the disambiguation system. The elimination algorithms were shown to perform 

well at identifying sense combinations, which produced a high sentence score. 

In addition, this chapter demonstrated that DURHAM fulfilled some of the cri­

teria for success set out in section 2.7. DURHAM has been shown to be large scale. 
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DURHAM has been able to disambiguate all ambiguous words in real text and is 
able to achieve high accuracy on them. Also, as much as is possible, DURHAM 
has shown good accuracy relative to other WSD systems. This is required for the 
usability criterion. This criterion and the flexibility criterion will be considered 
further in the following chapter. 



Chapter 7 

Adaptation to a Small Scale Task 

7.1 Introduction 

Chapter 6 demonstrated the ability of DURHAM to be applied to a large scale 

task. The chapter showed that on the large scale task DURHAM achieved good 

accuracy, but that the accuracy could not be extensively compared with other 

systems. This chapter aims to examine the accuracy of DURHAM when compared 

with other systems. This is necessary in order to examine the usability criterion 

for success of this work. In addition, the flexibility criterion for success will be 

demonstrated by the ability of DURHAM to be adapted to a different task which 

uses a different lexicon. The separate WSD task DURHAM is evaluated on is the 

SENSEVAL evaluation. This enables an extensive comparison of results with other 

systems. 

This chapter proceeds initially by highlighting the differences between the SEM­

COR and SENSEVAL evaluation. Each of the major components of DURHAM 

is then examined, and any adaptations made for the SENSEVAL task are consid­

ered. The major adaptation is the inclusion of a new knowledge source named 

clue words and this is discussed in detail. The results achieved on SENSEVAL 

are presented and compared with the other systems entered into the evaluation. 

Various components of DURHAM are then examined to analyse the effect they 
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have on results. Finally, the chapter is concluded with a discussion concerning the 
scalability of DURHAM and the SENSEVAL evaluation. 

7.2 SENSEVAL Evaluation 

The SENSEVAL evaluation is discussed in detail in section 2.6. This section sum­

marises the important features of the evaluation and highlights the areas which 

differ between evaluation on SEMCOR and SENSEVAL. It is important to iden­

tify these areas in order to understand how to adapt DURHAM for the SENSEVAL 

task. These differences are now listed: 

• The SENSEVAL task is small scale. Only 35 ambiguous words are considered 

for disambiguation and no adverbs are considered. 

• The ambiguous words are tagged with HECTOR senses for SENSEVAL, but 

WordNet senses are used in SEMCOR. 

• The SENSEVAL task requires only one word per sentence to be disam­

biguated, whereas all open class words were disambiguated in SEMCOR. 

• There are many more training instances per ambiguous word in SENSEVAL. 

On average 426 training instances were provided per ambiguous word. 

• Unlike SEMCOR, the root word form is not provided in SENSEVAL. 

• For five words the POS of the word is not given in SENSEVAL. 

• For four words no training data is provided in SENSEVAL. 

• For all senses in SENSEVAL a complete HECTOR dictionary definition is 

available. 

• Mult i word expressions and short phrases are considered additional senses in 

HECTOR but are classed as separate words in WordNet. For example, scrap 

heap is a sense of scrap in HECTOR but not in WordNet. 
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Based on the differences between the SEMCOR and SENSEVAL tasks high­
lighted above, this chapter now examines the adaptations made to the various 
components of DURHAM. 

7.3 Adaptations to the Frequency Knowledge 

Source 

Several of the required adaptations to DURHAM were made by modifying the 

method in which the frequency information is calculated. This modification is pos­

sible due to the large amounts of training data available per word. Large amounts 

of training data for each word greatly strengthens the value of the frequency infor­

mation. The identified problem of not being provided with the root forms of the 

ambiguous words is overcome by this adaptation. Moreover, this adaptation pro­

vides more specific frequency information than was previously possible in SEMCOR 

which increases accuracy. 

The modification identifies that information aiding ambiguity resolution is avail­

able at the morphology level. Therefore, this information is incorporated into the 

frequency measure. This is carried out by calculating the frequency distribution of 

senses for all the word forms, rather than simply using the root form frequency dis­

tribution. As the frequency distribution of senses can be very different for differing 

word forms, the word form frequency distribution provides useful information mak­

ing the frequency information more specific to each individual example. A word 

form may appear in the test set, which has not appeared sufficiently frequently in 

the training set to obtain accurate frequency information. In these instances the 

root form frequencies are used. 

Even in cases where sufficient training data is available, the morphology in­

formation is often overlooked by WSD developers. The reason for this is that 

dictionary entries only exist for the root form of each word. Many systems im­

mediately convert all words to their root form so that they can be identified in a 

lexicon, and thus lose the word form information. 
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Table 7.1: Table showing the frequency information for noun senses of promise 
in different word forms. 

Sense Definition Promise Promises Root Form 
537566 Declaration to do something 58.7% 74.9% 64% 
537626 Showing potential 28.9% 0.6% 19.6% 
538409 "To keep one's promise" 5.8% 7.3% 6.3% 
538411 "Can't make any promises" 0.0% 17.3% 5.7% 
537573 Something will come about 6.6% 0.0% 4.4% 

The following example shows how the morphological information can be ben­

eficial for choosing the correct sense. The example uses the five most frequently 

used noun senses of the word promise, which is one of the words considered in 

SENSEVAL. Table 7.1 gives the probability of each sense appearing in word forms 

promise and promises. The probabilities are also given if only the root forms are 

considered. The probabilities have been determined from the SENSEVAL training 

data. 

Table 7.1 outlines how the word form information is particularly beneficial for 

identifying specific information assisting with the acquisition of an accurate prob­

ability measure for the showing potential sense of promise (537626). I f the word 

found in the text is promise, there is a 28.9% chance that the sense is referring 

to the showing potential meaning. However, i f promises is found the probability 

of the same sense is only 0.6%. I t is interesting to note that in this example the 

frequency baseline is unaffected regardless of whether root form or word form fre­

quencies are used. This is because, for all word forms considered the declaration 

to do something sense (537566) is the most frequently used. This is not the case 

for all words. 

Similarly, the morphology information is able to provide a primitive solution to 

another of the differences identified in section 7.2. For five of the assigned words 

the POS of the correct sense is not given. Therefore, all of the senses from all 

possible POS must be considered for those words. If the POS is not given, the word 

form frequency information is particularly helpful. In general, the word forms are 
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able to provide useful evidence to help to distinguish between the various possible 
POS. For example, senses which appear in word forms with a ing or ed suffix are 
always verb senses. On the training data, by using solely the word form frequency 
information a 96.6% POS tagging accuracy is achieved on the instances where the 
POS is not known. This accuracy is slightly lower than can be achieved by a 
dedicated POS tagger. However, the small accuracy gain, which could have been 
achieved by incorporating a POS tagger is not considered worthy of the manual 
resources required, particularly as only five words are not POS tagged and such 
a development would be of no benefit to the core DURHAM system. Therefore, 
for the SENSEVAL evaluation, the word form frequencies perform the task of a 
primitive POS tagger. 

The drawback of the word form frequency method is that by making the fre­

quency information more specific, the number of examples in each word form cate­

gory is less than a single root form category. This results in less accurate frequency 

information. However, as there are normally no more than four different word 

form categories, the amount the frequency information is reduced per category is 

not substantial. Therefore, given the amount of training data available for the 

SENSEVAL task it is considered beneficial to calculate the frequency information 

in this way. The merits of applying the method to other disambiguation tasks 

would depend on the characteristics of each individual task. 

7.4 Adaptations to the Contextual Information 

One of the most difficult problems for most systems which entered SENSEVAL 

was the obstacle of adapting to using the HECTOR lexicon. The information 

available in the dictionary definitions may have been different, or the mappings 

available between their normal lexicon and HECTOR could cause error. Many 

other systems may have chosen not to compete because of this difficulty. For 

DURHAM the process of switching lexicons was much less complex. The only part 

of the core system dependent on WordNet is the contextual matrix. This section 
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examines the small adaptations made to the contextual matrix enabling it to be 
applied to the SENSEVAL task. 

The contextual matrix trained on SEMCOR provides the starting point for the 

SENSEVAL contextual matrix. The adaptation to the new lexicon simply involves 

replacing the WordNet senses of the 35 words being considered with HECTOR 

senses. For each HECTOR sense, the semantically closest WordNet sense is iden­

tified using the HECTOR / WordNet mappings provided. The HECTOR sense 

then replaces the WordNet sense in the hierarchy so that the same node in the 

contextual matrix represents the HECTOR sense. New nodes in the contextual 

matrix are added in instances where more than one WordNet sense is represented 

by the same node in the contextual matrix, and where more than one HECTOR 

sense maps to the same WordNet sense. The newly created node is initially set 

with all the same contextual scores as the original contextual node. Any WordNet 

sense which is not mapped onto by a HECTOR sense is removed. 

This adaptation of the contextual matrix enables all the HECTOR senses to 

be considered individually, because all of the senses are represented by a different 

node in the contextual matrix. The advantage of this method is that the inter­

relationships between nodes learnt during training on SEMCOR are able to be ap­

plied to SENSEVAL. Therefore, the contextual matrix is already partially trained 

before any training on the SENSEVAL data commences. Finally, the problem 

caused by mapping from one lexicon to another is greatly reduced. The contextual 

matrix trained on SEMCOR merely provides a starting point. Further training of 

the contextual matrix on the SENSEVAL corpus tunes the matrix for the SENSE­

VAL task and overcomes any mapping difficulties. This is in contrast with some 

other systems which choose to identify a sense in the WordNet lexicon and then 

convert it to a HECTOR sense. 

The training of the contextual matrix for SENSEVAL is very similar to the 

training on SEMCOR. A l l the words in the sentence are still disambiguated but 

only the relevant word in the sentence is examined to ascertain whether it is dis­

ambiguated correctly. The WordNet morph program is used to identify the root 
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form of all the context words, and the senses from all possible POS are considered. 

7.5 An additional Knowledge Source - Clue words 

The addition of a third knowledge source for the SENSEVAL task is inspired by 

one of the evaluation differences identified in section 7.2. Idioms and short phrases 

are considered a separate sense of the main word in HECTOR, but are considered 

separate words in WordNet. For example, dead and buried, bury the hatchet and 

bury one's head in the sand are all considered as separate senses of bury in the 

HECTOR lexicon. Examining these idioms emphasises a characteristic of WSD 

which is also true even for lexicons that consider idioms to be a separate word. 

Whilst in many instances the ambiguity of a word can be very difficult to resolve, 

there always exist some instances in which the ambiguity can easily be resolved. 

Some instances are simple to resolve as there exists a word or phrase in the context 

which provides a strong clue to help resolve the ambiguity. Using the examples 

above, dead and, the hatchet and one's head in the sand all provide conclusive 

clues available in the context, which identify their respective senses. 

As a result, the clue words knowledge source is developed to enable accurate 

ambiguity resolution of these easy instances, and not introduce confusion in the 

more difficult instances. The way in which the clue words are developed is based 

on another difference between SENSEVAL and SEMCOR identified in 7.2. The 

difference is that SENSEVAL is a small scale evaluation in terms of the number of 

words to be disambiguated. As a result, all clues which help resolve the ambiguity 

for a word can be manually identified without a huge investment of resources. Also, 

this task was assigned to a person who was unskilled in any related field. Therefore, 

the task did not slow down the process of adapting DURHAM to the SENSEVAL 

task. A discussion of this human resource and its ability to scale up is given in 

section 7.9. 

The manual identification process primarily uses the SENSEVAL training data. 

However, other textual corpus such as SEMCOR and the Penn Treebank corpus 
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[Marcus et a/., 1993] are used in DURHAM, particularly for words where little or 
no training data is given. The purpose of the identification process is to identify 
words in the context which provide evidence for a particular sense or senses of a 
word. Whichever corpus is being used, its purpose is to act as a trigger to enable 
the human to identify other similar clues not found in the data. For example, the 
clue word troops can be identified from the corpus for the take land by force sense 
of seize. This identification enables the human to identify similar words to troops 
not found in the corpus which could also serve as a clue word, for example forces, 
army, military, invasion, marines etc. Al l of these words help identify the topic 
information in which this sense is used and as a result provide useful clues. 

In some instances the process of generalising to identify other clues not found 

in the corpus can be semi-automatic. For example, given the sentence taken from 

SENSEVAL: 

"... brilliant blue sea, custard coloured sand, white yachts and purple mountains 

in the background." 

blue provides a useful clue word to identify the reflecting a high proportion of light 

sense of brilliant. However, any colour would provide a similarly useful clue. To 

prevent the labourious process of entering every possible colour, the WordNet hier­

archy is used. In this instance the WordNet node chromatic is identified together 

with a code permitting all hyponyms of that node to be automatically entered as 

clue words. A l l colours listed in WordNet are subsumed by chromatic. When used 

in this role, clue words extract similar evidence to the evidence which selectional 

preferences would be able to produce. The use of clue words in this way provides 

an alternative approach to selectional preferences. The advantage of the clue words 

approach is that it is less complex and does not require parsing information. 

7.5.1 Position of Clue Words 

The developer of a clue words knowledge source must make a compromise between 

precision and recall. The developer could choose just to add a few clues which 
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are always correct and have high precision, but low recall. Alternatively, the recall 
could be increased by adding more clue words, and accepting that in some instances 
the clue words will provide evidence for the incorrect sense, and thus reducing the 
precision. In many cases a further piece of evidence can be obtained, which enables 
the increase in either precision or recall, but not at the expense of the other. This 
piece of evidence is the position of the clue word relative to the ambiguous word. 
Specifying the position of the clue word aids in eliminating instances where the clue 
word appears in the sentence, but is unrelated to the word for which it provides 
a clue. Thus it enables these words to be included, increasing the recall without 
causing a decrease to the precision. For example, the following two sentences 
highlight how the position of taste affects its ability to provide a clue for hitter. 

• "The taste of coffee was sweet having come out of the bitter weather." 

• "The raw lemon left a bitter taste in his mouth." 

In the first sentence taste appears, but is unrelated to hitter and therefore does 

not help resolve the ambiguity. In the second sentence taste appears directly after 

hitter and is able to provide a strong clue to resolve the ambiguity. 

In some instances, the same clue word can provide evidence for diff"erent senses 

of an ambiguous word by appearing in diflferent positions relative to the ambiguous 

word. For example, consider the two sentences taken from the SENSEVAL training 

data: 

• "And you'll see four skeletal, toothless old men shaking hands and embrac­

ing." 

• " I know it ain't really polite, but my hands are shaking so much I'd spill it 

if I picked i t up." 

The word hands provides a strong clue for the greeting sense of shake referred to 

in the first sentence. Hand or hands appears in 101 out of the 102 training sentences 

for the greeting sense of shake. However, hands also appears in 22 instances of the 
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tremhle in fear sense of shake. The position of the clue word enables a distinction to 
be drawn relating to the sense that the clue is providing evidence. In most instances 
hands appears after shake if it is referring to the greeting sense and before shake 
if i t is referring to the tremble in fear sense. 

Other instances occur where the clue word may appear in the same position for 

more than one sense. Such clues are still beneficial for eliminating some senses even 

if they are unable to uniquely identify the correct sense. The following example 

gives two sentences in which spoon provides a clue for different senses of wooden. 

• "Pounding is done with a large wooden spoon". 

• "The reward for the new captain and his side looked to be worth much more 

than mere avoidance of the wooden spoon". 

The example shows that the clue, spoon, is unable to distinguish between the 

kitchen utensil arid the coming last in a competition senses of wooden. However, 

the commonly used made of wood sense and the poor acting sense can be eliminated 

from consideration. 

Clue words that must appear immediately before or after the ambiguous word 

are usually referred to as collocates. Collocates have been extensively used by 

disambiguation systems [Yarowsky, 1995], [Brown et ai, 1991], [McRoy, 1992], 

[Pedersen et al., 1997]. When available, collocates provide extremely strong evi­

dence for a particular sense. However, there are many senses for which collocates 

are unavailable. For the SENSEVAL task, collocates are manually identified for 

35% of all senses. 

Many more clue words are identified for the SENSEVAL task which can appear 

anywhere in the sentence. These clue words aim to capture the more general topic 

information. Therefore, these clue words are more suited to resolve ambiguous 

words which possess senses that are specific to different topic domains. In this 

way, clues can be identified that are likely to appear in the context of a particular 

topic and unlikely to appear in a different topic. Using the seize example considered 
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earlier, different senses belong to different topic domains. The take land by force 
sense belongs to the military domain, so clues such as troops, forces, marines, 
army, over-throw, rule and power also provide clues that this topic domain is 
being referred to. The traffic jam sense belongs to the transport domain, so clues 
such as road works, accident, pile up, traffic and delays provide clues for this topic. 

Specifying the position of a clue is only one way of aiding the precision/recall 

compromise. An additional method allows clue phrases as well as single clue words. 

For example, when scrap is followed by the phrase of difference, the no difference 

sense of scrap is clearly being referred to. However, both of these words could ap­

pear after scrap by themselves and not provide such conclusive evidence to aid dis­

ambiguation. By incorporating clue phrases, idioms can be identified more clearly. 

Consider the idiom "an accident waiting to happen". Adding the whole phrase as 

a clue is better than adding the individual words in the phrase which could occur 

with a different sense of accident. For example, "The accident waiting room would 

happen to be near by". 

7.5.2 Strength of Evidence from Clue Words 

Specifying the position of a clue and adding clue phrases has been observed to 

enable either the precision or recall of clue words to be increased, without a com­

promise to the other. However, even with these additional pieces of information 

the compromise between precision and recall still exists. For example, the afore­

mentioned hands clue would give mis-leading information in the sentence: 

• "You could sense the fear by his shaking hands." 

In this sentence the hands clue appears after shaking but is still referring to the 

tremble in fear sense. 

The ideal compromise between precision and recall is dependent on the other 

knowledge sources also available to aid disambiguation, and the way clue words are 

incorporated with them. The DURHAM system chooses to make the compromise 
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in favour of high precision. This compromise is not the best choice for a system 
in order to achieve as high accuracy as possible in SENSEVAL, but is chosen for 
several reasons. The sole purpose of clue words within DURHAM is to ensure that 
the system achieves high accuracy in all the easy instances where the ambiguity 
can be resolved trivially. Manually identifying these clues is not a time consuming 
effort. However, continuing to identify further clues that are less accurate is a 
more time consuming process, and extends beyond the purpose of the clue words 
knowledge source. A major purpose for competing in SENSEVAL is to evaluate 
the core part of DURHAM evaluated on SEMCOR. If the clue words knowledge 
source extends beyond the trivial instances, then the contribution that the core 
part of DURHAM makes to the overall system is reduced. 

Therefore, when available, clue words give very reliable information in assisting 

to resolve the ambiguity. The most reliable type of clue words are those which take 

the role of collocates. These must appear immediately before or after the ambiguous 

word. Clue words which can appear anywhere in the sentence are slightly less 

reliable and are generally restricted to senses which are domain specific. 

These characteristics enable the clue words to complement the remaining two 

knowledge sources used in the large scale system. As seen in chapter 6, the contex­

tual information is not suited to distinguishing between very fine grained senses. 

HECTOR is a very fine grained lexicon, and some senses differ only by their syn­

tactic role and not their semantic meaning. Clue words can often make these dis­

tinctions. For example, consider the two sentences which refer to different senses 

of the word het. 

• "William Hill stopped taking bets on Thatcher continuing in office." 

• "At 7-4, the challenger looks like a good bet." 

The first sentence refers to the act of risking money and the second sentence 

refers to the competitor on which money is risked. It would be difficult for the 

contextual information to be able to distinguish between these two semantically 

similar senses. However, on frequently follows the first sense of het and taking 
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or staking often precedes it. The second sense is often preceded by an adjective 
such as good, attractive, best, outside etc. Therefore, the clue words are able to 
distinguish between them. 

Additionally, the clue words also complement the frequency information by 

enabling infrequently used senses to be selected. If an infrequent sense possesses 

a reliable clue word, then that clue provides strong enough evidence to out-weigh 

the frequency information. This is a useful characteristic as infrequently used 

senses typically appear infrequently in training data. Therefore, the contextual 

information, which relies on learning from the training data, is generally unable 

to provide evidence for an infrequent sense. Using the wooden example considered 

earlier, spoon is identified as a useful clue word. Nevertheless, the made of wood 

sense is by far the most frequent, and simply choosing this sense in all training 

instances achieves 93.9% accuracy on the test data. However, the clue word gives 

evidence for two of the infrequent senses of wooden enabling them to be identified 

despite the low frequency score. Adding the spoon clue word increases the accuracy 

to 98% on the test data. 

7.6 Combining the Clue Words Knowledge Source 

The characteristics of the clue words knowledge source have now been discussed. 

They have been shown to provide strong evidence for a sense when available and 

complement both the frequency and contextual information knowledge sources. 

This section examines the way the clue words are combined with the other knowl­

edge sources into the DURHAM system. 

Despite the additional knowledge source incorporated for the SENSEVAL task, 

the general framework for combining knowledge sources remains the same as in the 

core system. The equations calculating the maximum and minimum score for each 

sense in the core system were given in equations 5.6 and 5.7. The same equations 

are used for the SENSEVAL task with the clue words added to the weighted sum. 
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MaxScoreij = A* Frequencyij + B * Max.CIS{wij) + C * CW{wij) (7.1) 

MinScorcij = A* Frequencyij B * Min.CIS{wij) + C * CW{wij) (7.2) 

where CW{wij) is the clue words score for sense Wij. The clue words score returns 

zero if no clues are available and one is added to the score for each clue identified in 

the sentence. This framework for calculating the scores for each sense provides an 

opportunity for all three knowledge sources to contribute towards the ambiguity 

resolution. However, tests show that the best way to combine these knowledge 

sources is to adopt a high value for the constant C used in equations 7.1 and 7.2. 

In this way if a clue word is available i t would have the over-riding effect on the 

sense choice for that particular ambiguous word. In effect this causes the clue words 

to act as a filtering system as shown in figure 7.1. 

Figure 7.1 shows that the core DURHAM system is used to resolve all senses 

unable to be resolved by clue words. In general, these are the difficult instances. 

Considering the clue words knowledge source as a filter changes the approach with 

which the frequency and contextual information are trained. The analysis of the 

core system tested on SEMCOR in section 6.5 showed that including the frequency 

information during the training of the contextual information, assisted in the two 

knowledge sources complementing each other. The same principle can be applied 

here, where the evidence from clue words is considered during the training of both 

the frequency and contextual information. The changes made to the training of 

both the frequency and contextual information are now discussed 

The frequency information is important for the test instances where no clue 

words have been identified. Therefore, i t is beneficial to calculate the frequency 

information from the subset of training instances where no clue words have been 

identified. This enables the frequency information to complement the clue words 

and is favourable to calculating the frequency over the entire training set. If the 

most frequent sense is identified from the entire training data, then it is less im-
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Figure 7.1: Clue words acting as a filter for core large scale system. 
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portant to find clue words for this most frequent sense. The most frequent sense 
is likely to be chosen in the instances where no clue words exist. However, the 
most frequent sense may possess very useful clue words which occur in most of its 
instances. In this case there is greater benefit in choosing a less frequent sense in 
an instance where no clue words appear. The following examples helps to explain 
this idea. 

Consider once again the word shake. In this example, two diflferent senses will 

be examined - sense 1: to shake your head and sense 2: to move someone violently. 

For the purposes of the example let us suppose that these are the only two possible 

senses of shake. In the training data, 100 instances of sense 1 and 50 instances of 

sense 2 are identified. The clue word head is identified for sense 1 and occurs in 

95 out of the 100 training instances. The frequency information is then calculated 

from the 55 training instances where no clue word can be identified. Out of these 

55 instances sense 2 is the most frequent, occurring in 90.9% of all instances. If 

the frequency information had been calculated from the entire training set, sense 1 

would have been the most frequent occurring in 66.7% of all instances. A system 

which used the single clue word, and frequency information calculated over the 

entire data set would achieve 66.7% accuracy on the training data set. However, a 

system which used the single clue word, and frequency information calculated over 

the subset of training data would achieve 96.7% accuracy on the same data set. 

This increase in accuracy can be accounted for by an improvement in the way clue 

words and frequency information complement each other. 

Further efforts are also made to ensure that the contextual information com­

plements the other two knowledge sources. However, this is carried out using a 

different method from the frequency information. Unlike the frequency informa­

tion, all the training sentences are used to train the contextual information. The 

reason for this is that other information in the sentence, apart from a clue word, 

may be present, and this may be able to help train the contextual matrix. More­

over, this approach increases the number of sentences available for training. The 

drawback of this approach is that the contextual matrix could learn the clue words 

information. To overcome this problem clue words are omitted from the sentence 
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during the training of the contextual information. For example, consider the fol­
lowing sentence taken from the SENSEVAL training set for the word hand. 

"For this visit he hrings his seven-piece band, including pianist Marcus Roberts, 

whose album The Truth Is Spoken Here has had considerable success in the States 

this summer." 

NUMBER-piece is identified as a clue word for the sense of band being referred 

to in this instance. However, there are many other context words which also provide 

evidence for this sense. Although these other words do not provide strong enough 

evidence to be identified as clue words, they can help to train the contextual matrix. 

7.7 Adaptations to Disambiguation Algorithm 

Now that the adaptations to the knowledge sources have been examined, the dis­

ambiguation algorithm, which uses the scores from these knowledge source is now 

considered. The task required to be performed by the disambiguation algorithm is 

different for the SENSEVAL task compared to the SEMCOR evaluation. This dif­

ference stems from the final difference to be considered between the two tasks iden­

tified in section 7.2. The SENSEVAL task only requires one word per sentence to 

be disambiguated, compared to all open class words which must be disambiguated 

in SEMCOR. 

Despite this difference, the disambiguation algorithm is the same for both tasks. 

Al l of the context words are still disambiguated according to their WordNet senses. 

This is carried out as a consequence of the analysis on SEMCOR detailed in section 

6.6.2. This analysis shows that choosing the correct sense of the context words 

enables a large improvement in accuracy. There is no way of training or testing the 

accuracy for the context words on the SENSEVAL task. However, the SEMCOR 

results show that DURHAM is able to achieve higher accuracy than any baseline 

measure. For all the context words, the WordNet morph program is used to identify 

the root form of the word, and senses from all POS are considered. 
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The drawback of this approach is that it is much less efficient than a system that 
solely disambiguates one word in each system. In addition, the accuracy gains found 
on SEMCOR by identifying the correct context may not apply to SENSEVAL. This 
is because WordNet senses are used for the context words, and HECTOR senses 
are used for the word being evaluated. This hypothesis is investigated in 7.8.2. 

7.8 Results 

This section examines the results achieved by DURHAM in SENSEVAL and com­

pares them to the results achieved by some of the other systems which took part 

in the evaluation. The results presented in this section are limited to those that 

highlight interesting features of DURHAM. An extensive breakdown of the results 

is given in [Kilgarrif and Rosenzweig, 2000]. Many evaluation metrics are used to 

report the results, and these are discussed in section 2.6.2. This section concen­

trates predominantly on the fine grained results. However, the relative performance 

of the systems is not changed by using different metrics. 

Figure 7.2 shows the performance of all systems that entered the SENSEVAL 

evaluation. The recall metric refers to the system's accuracy out of all the words 

in the test set, and the precision metric refers to the accuracy out of all the words 

that the system attempted. Figure 7.2 shows that DURHAM achieved the highest 

precision and recall of all the systems entered in SENSEVAL. The system names 

of the four groups which achieved the highest precision and recall are also shown, 

this is highlighted in order that these systems can be used for comparison. 

A closer examination of the results can be achieved by comparing the four 

systems identified in figure 7.2 on various subsets of the test data. The precision 

metric is used to compare different systems as this gives a better indication of the 

quality of disambiguation. Al l four systems attempted a high percentage of the test 

data, so the difference between precision and recall is low. DURHAM attempted 

all of the test data, so there is no difference between the precision and recall results. 

Table 7.2 shows that relative to the other three systems considered, DURHAM 
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Figure 7.2: The fine grained results for all systems competing in SENSEVAL 
showing that DURHAM achieved the highest precision and recall. 
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Table 7.2: Comparison of systems on various subsets of the SENSEVAL test data. 

System Nouns Verbs Adjectives Indeterminates All Words 
DURHAM 83.9 70.0 75.2 77.5 77.1 
HOPKINS 80.7 71.4 78.4 75.9 76.4 
TILBURG 81.9 69.2 72.9 77.1 74.8 
E T S - P U 80.7 70.1 72.7 73.5 74.5 

FREQ BASELINE 59.9 57.9 64.3 46.7 56.6 
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performs well on nouns and least well on verbs. HOPKINS performs particularly 
well on adjectives, with DURHAM 2.3% better than any other system on this sub­
set. Interestingly, DURHAM 'S relative performance on nouns, verbs and adjectives 
is the same in both the evaluation on SEMCOR and SENSEVAL - see section 6.7. 
I t is unfortunate that no adverbs were considered in SENSEVAL in order for fur­
ther evaluation to determine whether this pattern would have continued. Possible 
reasons for DURHAM achieving a lower accuracy for verbs than nouns are consid­
ered in section 6.7. A further reason only applicable to SENSEVAL is concerned 
with clue words being more difficult to identify for verbs than any other POS. 

The indeterminates subset is the group of five words for which no POS is as­

signed. DURHAM achieves the highest fine grained accuracy on this subset. How­

ever, DURHAM assigns a sense with the correct POS in only 95.5% of all instances. 

Some systems were able to achieve a POS tagging accuracy 3.0% higher than this 

figure. The lack of a POS tagger as a sense filter in DURHAM is the reason for 

this. A POS tagger is used in the three systems which achieve higher POS accuracy. 

This result is to be expected, and demonstrates that although the WSD mechanism 

performs well as a POS tagger, a dedicated POS tagger is able to perform better. 

The frequency baseline accuracy is also included in table 7.2 enabling the accu­

racy of the systems to be compared with a baseline figure. The frequency baseline 

figure is used to calculate Kappa for DURHAM. 

The ITA agreement on SENSEVAL is calculated as 96.5%. Therefore, this fig­

ure can be used as an upperbound for an automatic system. This enables the 

UBAKappa metric, introduced in section 6.1.8, to be calculated. 

Both of these measures of Kappa are higher for DURHAM on the SENSEVAL 
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Table 7.3: The accuracy achieved by the overall DURHAM system and by various 
components of DURHAM. The figures are expressed as a percentage. 

Description Fine grained Onion Generous Shake 
(1) Root Form Frequency 56.6 84.6 37.0 23.9 
(2) Word Form Frequency 61.6 85.0 37.0 30.6 
(3) Clue words and word 

form frequency 
73.7 92.5 44.9 71.1 

(4) Contextual scores and 
word form frequency 

69.8 85 50.1 61.8 

(5) Full System 77.1 92.5 50.7 72.5 

evaluation than they are for SEMCOR. The reason for this is that the SENSEVAL 

evaluation considers less ambiguous words and provides more training data for 

those words. Therefore, higher accuracy is to be expected. 

Table 7.3 shows the contribution that each knowledge source makes to the ac­

curacy of the overall system, and for three particular words. Row (2) shows that 

the overall fine grained accuracy is increased by 5.0% by using word form rather 

than root form frequencies. This shows that information which aids in disam­

biguation is available at the morphology level. Row (3) reports the accuracy of a 

system which uses clue words and the word form frequency information knowledge 

sources. The word form frequencies have been recalculated to complement clue 

words as discussed in section 7.6. The substantial increase above the frequency 

baseline highlights the value of clue words. If the clue words knowledge source 

was to be considered unacceptable, then row (4) provides interesting results. This 

shows that DURHAM is able to achieve almost 70% fine grained accuracy without 

the use of clue words. Such a system would have achieved the fourth highest pre­

cision and second highest recall in SENSEVAL. Also the 30% of instances which 

were incorrectly tagged would include many instances which are considered easy 

to disambiguate. Nevertheless, it is interesting to note that a system using fre­

quency information and clue words achieves a higher accuracy than a system using 

frequency information and contextual information. This result would therefore 

suggest that investing a manual resource into identifying clue words is more bene­

ficial than investing the resource into sense tagging training data required to train 
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the contextual matrix. Row (5) highlights that the overall system achieves much 
higher accuracy than any sub-section of it. This suggests that clue words and con­
textual scores are useful for disambiguating different types of words and so can be 
successfully combined. 

The three individual words presented in table 7.3 are chosen because they high­

light interesting characteristics of the system. Onion has a high frequency baseline 

and only 26 training examples are given for that word. This prevents the contextual 

information from contributing to the accuracy. By contrast, generous has a very 

low frequency baseline and very few clues can be identified to aid disambiguation. 

These characteristics are ideally suited for the contextual information performing 

well. This is shown by the 13.1% improvement in accuracy which the contextual 

information makes. Shake is one of the words for which the POS is not given. This 

is the reason for the large increase in accuracy caused by using word form rather 

than root form frequency information. Shake possesses strong clue words such as 

hands and head which help disambiguation and produces 71.1% accuracy. The 

contextual information is only able to add a further 1.4% to this score in the full 

system. 

7.8.1 SENSEVAL Training data 

One of the most pleasing aspects of the results is the high accuracy achieved for 

the five words for which no training data was given. For these words this system 

achieves 9.7% higher precision than the next highest system. This result highlights 

the domain independence of the system. DURHAM has been able to use the train­

ing performed on SEMCOR to help disambiguation on SENSEVAL. This suggests 

that DURHAM could be used for disambiguation using a different lexicon from 

WordNet whether sense tagged training data was available or not (so long as there 

are mappings to the WordNet senses.) 

For the remaining words in SENSEVAL there exists a large variation in the 

amount of training data given. For onion there are only 26 training sentences, but 

there are over 1,000 for accident. The effect that a large amount of training data 
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has on the accuracy of this system is now investigated. 

The investigation of the effect that the amount of training data has on accuracy 

is an important issue for a WSD developer. Additionally, it may be useful for plan­

ners of any future disambiguation evaluations providing them with an indication 

of the effect the quantity of training data has on disambiguation accuracy. This is 

an important issue, as a vast manual resource is required to produce the training 

data. Simply correlating the accuracy achieved for each word with the amount of 

training data supplied, will not enable any conclusion to be drawn about the effect 

that the quantity of training data has on accuracy. This is due to the existence 

of many other factors, such as frequency distribution of senses, also affecting ac­

curacy. Instead, the analysis is carried out by choosing a sample of words, and 

training them using different size subsets of the available training data. In order 

to maximise the effect of the training data, the clue words knowledge source is 

not used for this analysis as i t is independent of the training data. In addition, 

the frequency information is calculated using only the subset of training sentences. 

Figure 7.3 shows the change in accuracy when different amounts of training data 

are used, for five words in SENSEVAL. 

Figure 7.3 shows that for most words there is a sharp increase in accuracy from 

10 to 70 training sentences. Generally, accuracy continues to increase at a slower 

rate up to 130 training sentences. No substantial increase in accuracy is gained by 

using a higher number of sentences. For accident it is apparent that the accuracy 

actually decreases as more training sentences are used. The contextual information 

knowledge source has a greater influence on the choice of a sense as more training 

sentences are used. However, as accident has a high frequency baseline, the con­

textual information is unable to help. The features highlighted in the five words 

shown on the graph are typical of many other words considered in SENSEVAL. 

7.8.2 Correct Context 

Section 6.6.2 investigates the importance of choosing the correct sense of the context 

words for the accuracy on SEMCOR. A similar investigation is now reported on 
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Figure 7.3: Effect of number of training sentences on accuracy 
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the SENSEVAL data. Unfortunately, the upper bound measurement used on the 

SEMCOR analysis can not be calculated for SENSEVAL. During the evaluation, 

this upper bound was calculated by continually considering the correct sense for the 

context words. However, the context words are not sense tagged in SENSEVAL so 

there is no way of knowing which sense is correct. Nevertheless, the investigation is 

able to measure the importance of correct context relative to a lower bound. As in 

section 6.6.2 this is performed by continually considering the most frequent sense 

for the context words. 

The system achieves 75.4% fine grained accuracy on SENSEVAL when the 

most frequent sense of the context words are considered. These frequencies are 

calculated from WordNet. This accuracy is 1.7% lower than the accuracy achieved 

by considering all possible senses for the context words. This decrease in accuracy 

again highlights the importance of the complex disambiguation algorithm employed 

by DURHAM. However, the difference in accuracy caused by the disambiguation 

algorithm is less on SENSEVAL than i t is on SEMCOR. The reason for this is that 

the clue words knowledge source is independent of the sense of the contextual words. 
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Therefore, i t makes no difference wiiicii sense of the context words is considered if 
a clue word is able to resolve the ambiguity. 

7.9 Are Clue Words a Valid Knowledge Source? 

The system which competed in SENSEVAL and the results achieved have now been 

discussed. This section now moves on to discuss the validity of the system. 

Despite DURHAM performing successfully in the SENSEVAL evaluation, the 

system did receive some criticism. The criticism waged has a sound basis and 

therefore needs to be considered. The criticism stems from the use of manually 

identified clue words as a knowledge source. This section presents the case both 

for and against using clue words in the SENSEVAL evaluation. 

7.9.1 Clue Words are not a Valid Knowledge Source 

Scalability is the basis on which the manually identified clue words can be criticised. 

The clue words must be identified individually for each ambiguous word being 

considered. Therefore, the time required to identify clue words is proportional to 

the number of ambiguous words being considered. In the WordNet lexicon there 

are 23,256 ambiguous words. The time required to identify clue words for all of 

these ambiguous words is too great. Therefore, clue words can not be applied to a 

large scale system. 

The purpose of the SENSEVAL evaluation is to identify systems and approaches 

which can be applied in NLP systems performing real tasks. Since most NLP tasks 

are performed on a large scale, it is not beneficial to the evaluation process to 

consider mechanisms which are unable to scale up. Therefore, clue words should 

not be included as a knowledge source because it prevents the DURHAM system 

evaluated in SENSEVAL from scaling up. 
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7.9.2 Clue Words are a Valid Knowledge Source 

Earlier chapters have shown that the core DURHAM system, without the clue 

words knowledge source, is large scale. This has been highlighted by the evaluation 

on SEMCOR. In addition a similar system without the clue words knowledge source 

would achieve fourth highest precision and second highest recall in the SENSEVAL 

evaluation as shown in section 7.8. However, for all systems using the SENSEVAL 

training data, including the core DURHAM system without clue words, a scalability 

problem arises. This is due to the vast quantity of training data provided for 31 of 

the words considered. The scalability of the training data is a consideration easily 

over looked. The reason for this is that the manual resource is performed by sense 

taggers and not by the system developers. The effort required to produce training 

data on a large scale is far more substantial than that required to produce clue words 

on a large scale. Human sense taggers report that on average they were able to 

achieve a speed of 66 instances of a word per hour for the SENSEVAL training data 

Krishnamurthy and Nicholls, 2000]. There were on average 426 training instances 

per word and all instances were sense tagged by two people. Therefore, the manual 

sense tagging process took approximately two person days per word. The entire 

process of manually identifying clue words for all the ambiguous words considered in 

SENSEVAL took less than two days. In addition, the manual sense tagging process 

must be done by skilled lexicographers. However, no particular skill is required to 

identify clue words. Not only is the identification of clue words less labour intensive 

than training data, for DURHAM it is more beneficial. A system which only uses 

clue words and frequency information achieves 73.7% accuracy. A system using 

contextual scores learnt on the training data and frequency information achieves 

69.8% accuracy. 

The SENSEVAL evaluation is therefore not suited to identifying systems which 

can be applied on a large scale. I t is for this reason that there is not a "large scale" 

category of systems in SENSEVAL. If this category existed, DURHAM would have 

entered a second system without the clue words knowledge source. SENSEVAL 

was designed to be a small scale evaluation to encourage participation. This is 
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necessary as a large scale task is not achievable by many systems. 

Within the context of the evaluation, two possible methods exist for identifying 

the instances where disambiguation is easy. The first is to manually identify the 

clue words, the second is to automatically identify them using the training data. 

An automatic approach which requires no sense tagged training data such as that 

proposed in [Gale et ai, 1992c] is not possible in the SENSEVAL evaluation, as 

a larger discourse would be required. For both feasible methods, the time taken 

to develop the knowledge source is proportional to the number of words being 

considered. Therefore, both methods have scalability difficulties. As a result, 

within the context of a small scale evaluation, the manual identification approach 

is valid. This approach is chosen for DURHAM as i t offers a greater quality of 

information than could be automatically generated. 

7.9.3 A Measure of Scalability 

I t is important to consider how scalability should be measured so a more definite 

answer can be determined in the future. In terms of the required human resources, 

the best indication of scalability which SENSEVAL offers is given by the words 

where no training data is available. For these words, DURHAM achieves an accu­

racy 9.7% higher than the next highest system. However, there are only four words 

in this test set. 

In addition, scalability can be measured in terms of coverage. A system capable 

of being applied to a large scale task must also be able to disambiguate all types of 

words. DURHAM is one of only four systems which attempts all the test instances 

given. Nevertheless, there is no doubt that the SENSEVAL evaluation is unable to 

conclusively determine whether a system is able to scale up. 

Although SENSEVAL is able to offer an indication of the scalability of a sys­

tem, a future evaluation should aim to identify scalable systems more definitely. 

Wilks, 2000] proposes that this could be achieved by combining resources to pro­

duce a large scale corpus on which WSD systems could be trained and tested. If 
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the required resources necessary to produce such a corpus were considered "ac­
ceptable" , it may additionally seem "acceptable" to identify the clue words at the 
same time. The human sense taggers would identify the clue words as part of the 
sense tagging process so it would add very little to the cost of resources. The figure 
of 23,256 ambiguous words in WordNet gives a misleading impression of the size 
of the task. This is because many of these words are very infrequently used. In 
SEMCOR only 6241 ambiguous words appear in more than one sense. A large scale 
clue words resource would be very beneficial to the WSD community as shown by 
their performance on a small scale. To an extent this process has already taken 
place in the CIDE project [Harley and Glennon, 1997]. The CIDE dictionary has 
been developed from a corpus, and does contain clue words in the definition of each 
sense. 

7.10 Conclusion 

This chapter has highlighted that there are many differences between the SEM­

COR and SENSEVAL evaluation. Despite this, only a few changes are required to 

enable DURHAM to be evaluated on the SENSEVAL task. Two characteristics of 

DURHAM have been shown to be applicable on more than one lexicon, and this 

has facilitated the conversion to a different evaluation task. The contextual matrix 

trained on SEMCOR has been shown to be beneficial for disambiguating HECTOR 

senses. This was demonstrated by the high accuracy achieved on the words where 

no training data was available. Furthermore the training method of the contextual 

matrix has been shown to be domain independent. This was demonstrated by the 

ability to use the same mechanism on the HECTOR training data as was used on 

SEMCOR. These two characteristics demonstrate that the fiexibility criterion for 

success set out in section 2.7 has been fulfilled. 

The usability criterion for success refers to the ability of the WSD system to 

be used by an NLP developer. The required criterion for success is to achieve an 

accuracy as high as any other system performing the same task. This is partially 
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fulfilled in chapter 6 which demonstrates that DURHAM is able to achieve high 
accuracy on a large scale task. However, the SEMCOR evaluation could not be 
compared with many other systems. This chapter has shown that DURHAM is also 
able to achieve high accuracy on a small scale task. DURHAM can be compared 
against many systems in the SENSEVAL evaluation. The accuracy achieved is 
sufficiently high to fulfi l the usability criterion for success. 



Chapter 8 

Conclusions and Future Work 

Al l the work which was has been undertaken for this piece of research has now 

been discussed, and the results achieved have been reported. This chapter discusses 

the conclusions from the work and examines if the criteria for success have been 

achieved. The chapter then moves on to discuss various directions in which future 

work could build upon what has been developed. 

8.1 Conclusions 

The conclusions of this work relates back to the criteria for success outlined in 

section 2.7. This section investigates these criteria and discusses if the system 

developed has been able to fulfi l these criteria. 

Seven specific goals which relate to NLE were identified in section 1.2.2. The 

criteria for success identified three of these goals as the most relevant for this work. 

Specific levels of achievement were set for these three goals. The criteria for success 

also stated that some achievement should be made for the remaining four goals. 

This section initially discusses the three primary criteria for success for this work, 

and then also considers the remaining four NLE goals. 
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8.1.1 Primary Criteria for Success 

The three primary criteria for success are each considered individually. 

Usability 

The accuracy of the WSD system was identified as the feature of primary impor­

tance for it to be usable in an NLP system. This criterion stated that the accuracy 

must be comparable with other WSD systems performing the same task. This 

work has demonstrated that DURHAM has fulfilled this criterion. On SEMCOR, 

DURHAM achieved higher accuracy than Agirre and Rigau which is the only sys­

tem which has performed a comparable large scale task on SEMCOR. Also on 

SENSEVAL, DURHAM achieved the highest precision and recall on the complete 

test set. Therefore on both test sets, the usability criterion has been fulfilled. 

Flexibility 

The WSD system needed to be able to perform in different domains to fulfil the 

flexibility criterion. Two specific goals were set to measure the fiexibility criterion. 

The first was that a system trained on one lexicon could be applied to a separate 

lexicon. This achievement has been demonstrated by the contextual matrix trained 

on SEMCOR, which uses the WordNet lexicon, being applied for SENSEVAL which 

uses the HECTOR lexicon. The second goal was that the learning algorithm could 

be applied to more than one lexicon. This was shown by the same learning algo­

rithm being used for SEMCOR and SENSEVAL. Therefore, the flexibility criterion 

has been achieved. 

Scale 

The scale criterion determines if the system is able to process all real text. Two 

specific goals were also set to measure this criterion. The first goal states that 

all sentences regardless of length can be processed. The second goal states that 
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all words found in a lexicon can be disambiguated. Both of these specific goals 
are demonstrated by the evaluation on SEMCOR. The longest sentence on the 
SEMCOR blind test data contains 158 words. Al l open class words were disam­
biguated. Also on SENSEVAL all the test instances for all the words considered 
were attempted. 

8.1.2 Other NLP Goals 

The remaining four NLP goals are now considered individually to examine the level 

of achievement made in these areas. 

Robustness DURHAM has achieved a high level of robustness as it is able to 

fully operate in both the domains within which i t was tested. 

Maintainability A measure of the systems maintainability was the ease with 

which i t could adapt to a new domain. 

Integration DURHAM has not been integrated with other components of a larger 

system. However, no problems are envisaged with such an integration. 

Feasibility DURHAM has been shown to be feasible by operating at an acceptable 

speed. This was achieved by a complex disambiguation algorithm which 

performed a directed search through a large search space. The system would 

not be feasible if all the sense combinations for a sentence were considered 

individually. 

8.2 Future Work 

This section examines the various directions in which work in the future could 

develop further the system reported in this thesis. This is done by firstly considering 

each of the major components of DURHAM individually, and then by considering 

the system as a whole. 
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8.2.1 Frequency Information 

The frequency information currently provides a probability for each possible sense 

given that a particular word has occured in the text. This probabilistic measure 

is calculated from the training data. The value of this information is dependent 

on the number of training instances for that particular word. For example, a 

frequency score of 0.9 for a sense is much more reliable if the sense has occured 90 

out of 100 instances rather than 9 out of 10 instances. Future work could examine 

incorporating the number of training examples into the frequency score. As the 

frequency score is combined with other non probabilistic measures, the frequency 

score could also be non probabilistic. 

8.2.2 Clue Words 

The credibility of manually identified clue words is largely dependent on the ques­

tion of their scalability. This was discussed in section 7.9. Future work is required 

to examine the benefit of clue words on a large scale and estimate the investment 

in man hours required. I f this analysis showed clue words to be a credible knowl­

edge source there is scope for further development. Future work could develop a 

weight associated with a clue word which represented the strength of the evidence 

the clue provided. In this way the clue words could be incorporated with the other 

knowledge sources rather than being used as a filter. This would enable a much 

greater number of clue words to be identified, as the requirement of high precision 

would be removed. 

8.2.3 Contextual Information 

Many of the choices made in the development of the contextual information knowl­

edge source were not claimed to be optimal. Therefore, future work could investi­

gate these areas to establish if further improvements could be made. For example, 

the number of nodes included in the contextual matrix and the choice of those 

senses could both be further investigated. The mechanism by which the contextual 
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matrix is trained is similar to neural network learning, and the structure of the 
contextual matrix most closely resembles a Hopfield network [Krose and van der 
Smagt, 1993]. Future work could examine how the contextual matrix could be 
adapted to enable neural networks to provide a large scale knowledge source. 

8.2.4 Disambiguation Algorithm 

The development of any disambiguation algorithm must consider the compromise 

between accuracy and efficiency. Future work is likely to move in the direction 

of higher accuracy at the expense of greater computational requirements. This 

is because computer hardware improvements reduce the constraints of software 

efficiency. In this case, the disambiguation algorithm could be developed further. 

This could be carried out by examining better ways in which to determine the 

effect that removing a sense will have on the context words. Moreover, future work 

could examine incorporating a disambiguation algorithm which considers all sense 

combinations once the number of possibilities has been reduced to below a set level. 

8.2.5 Integration 

A WSD system is only a component of a larger system. Therefore, an important 

area for future work is the integration of the system. Integration can be considered 

at three different levels. Firstly, within WSD other knowledge sources could be 

integrated such as dictionary definitions and selectional preferences. Also other 

sub tasks of NLP could be integrated, in particular a POS tagger. This would 

enable a larger list of possible senses to be accurately considered. Finally, future 

work could integrate the WSD system into a NLP system performing real tasks. 

This area of future work has already been planned with some of the techniques 

developed in this work being incorporated into a NLP system named CONCEPT 

(formerly known as LOLITA [Morgan et ai, 1995]). This demonstrates that the 

future of NLP is very exciting and may have a significant impact on our everyday 

lives in the not too distant future. 



Appendix A 

Training and Test Data 

The SEMCOR files used for the training data, validation data and blind test data 

are now listed. 

A . l Training Data 

br-aOl br-c04 br-f03 br-j04 br-jl5 br-j54 br-k04 br-kl5 

br-k26 br-r06 br-a02 br-dOl br-flO br-j05 br-jl6 br-j55 

br-k05 br-kl6 br-k27 br-r07 br-a l l br-d02 br-fl9 br-j06 

br-j l7 br-j56 br-k06 br-kl7 br-k28 br-r08 br-al2 br-d03 

br-f43 br-j07 br-j l8 br-j57 br-k07 br-kl8 br-k29 br-r09 

br-al3 br-d04 br-gOl br-j08 br-jl9 br-j58 br-k08 br-kl9 

br-111 br-al4 br-eOl b r -g l l br-j09 br-j20 br-j59 br-k09 

br-k20 br-112 br-al5 br-e02 br-gl5 br-jlO br-j22 br-j60 

br-klO br-k21 br-mOl br-bl3 br-e04 br-hOl b r - j l l br-j23 

br-j70 b r - k l l br-k22 br-m02 br-b20 br-e21 br-jOl br-jl2 

br-j37 br-kOl br-kl2 br-k23 br-n05 br-cOl br-e24 br-j02 

br-jl3 br-j52 br-k02 br-kl3 br-k24 br-pOl br-c02 br-e29 

br-j03 br-j l4 br-j53 br-k03 br-kl4 br-k25 br-r05 
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A.2 Validation Data 

br-e22 br-fl3 br-f23 br-gl8 br-g43 br-hl7 br-j34 br-114 

br-nl4 br-p24 br-e23 br-fl4 br-f24 br-gl9 br-g44 br-hl8 

br-j35 br-115 br-nl5 br-r04 br-e25 br-fl5 br-f25 br-g20 

br-h09 br-h21 br-j38 br-116 br-nl6 br-e26 

4.3 Blind Test Data 

br-fl6 br-f33 br-g21 b r -h l l br-h24 br-j41 br-117 br-nl7 

br-e27 br-fl7 br-f44 br-g22 br-hl2 br-j29 br-j42 br-118 

br-n20 br-e28 br-fl8 br-gl2 br-g23 br-hl3 br-j30 br-108 

br-n09 br-p07 br-e30 br-f20 br-gl4 br-g28 br-hl4 br-j31 

br-109 br-nlO br-p09 br-e31 br-f21 br-gl6 br-g31 br-hl5 

br-j32 br-UO b r - n l l br-plO br-f08 br-f22 br-gl7 br-g39 

br-hl6 br-j33 br-113 br-nl2 br-pl2 



Glossary 

C I S Contextual information score 

Contextual Information The novel knowledge source introduced in this work. 

Contextual Score The score between two nodes in the WordNet hierarchy 

I E Information extraction 

I R Information retrieval 

I T A Inter tagger agreement 

M T Machine Translation 

N I E No Intersection Elimination 

N M S E Normalised Max Score Elimination 

N L E Natural Language Engineering 

N L P Natural Language Processing 

P O S Part of speech 

U B A A K a p p a Upper bound adjusted Kappa 

W S D Word sense disambiguation 
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