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Abstract

Complete one-loop results are presented for neutralino and Higgs decay

processes of the form χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j in the MSSM with CP-

violating parameters. An on-shell renormalisation scheme is developed

for the chargino–neutralino sector that consistently takes into account

imaginary parts arising from complex parameters and absorptive parts

of loop integrals. The genuine vertex contributions are combined with

two-loop Higgs propagator-type corrections to obtain the most precise

prediction currently available for this class of processes. In the CP-

violating CPX benchmark scenario, the corrections to the neutralino

decay width are found to be particularly large – of order 45% for a

Higgs mass of 40 GeV. We find that in this unexcluded parameter re-

gion, which will be difficult to cover by standard Higgs search channels

at the LHC, the branching ratio for the decay χ̃0
2 → χ̃0

1h1 is large.

This may offer good prospects of detecting such a light Higgs boson

in cascade decays of supersymmetric particles. We also study the full

Higgs production and decay processes in scenarios where the interme-

diate Higgs bosons are nearly mass degenerate and interference effects

can have a significant impact. We find that an on-shell approximation

gives results in good numerical agreement with the full momentum-

dependent Higgs propagator matrix calculation and we develop a gen-

eralised narrow width approximation to be used in such a situation. We

use these methods to study the asymmetry between the production of

left-handed and right-handed neutralinos in Higgs decays at the LHC

in the presence of CP-violating phases. Large asymmetries are found to

be possible for large MH±
>
∼ 500 GeV and tanβ <

∼ 10, where the decay

into neutralinos may be the only possibility to detect the heavy Higgs

bosons.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) of Particle Physics is one of the most successful theories of

the 20th Century. It elegantly describes the elementary particles and their strong, weak

and electromagnetic interactions in terms of the gauge group SU(3)C × SU(2)L × U(1)Y,

and has led to solid experimental predictions, which have been confirmed with extraor-

dinary and ever-increasing precision over the last few decades.1

So far the only particle of the SM that has not been seen at colliders is the Higgs

boson. This hypothetical scalar particle is a prediction of the Higgs mechanism, incor-

porated into the SM as a way of spontaneously breaking electroweak symmetry. The

Large Electron Positron Collider (LEP), in operation at CERN until 2000, excluded

the existence of a SM Higgs boson with a mass, MH , of up to 114.4 GeV at the 95%

confidence level [2]. The Tevatron at Fermilab has since excluded the mass region of

158 < MH < 175 GeV [3–5]. One of the major goals of the new Large Hadron Collider

(LHC) at CERN, which began colliding proton beams in late 2009, and is designed to

eventually reach a centre of mass energy of 14 TeV, is to shed light on the mechanism of

electroweak symmetry breaking (EWSB), for which many popular models contain one or

more Higgs boson(s). It has been shown that searches at the LHC for a SM Higgs boson

should be sensitive to the whole theoretically motivated mass region [6]. We discuss the

Higgs mechanism in more detail in the next section.

1Many excellent books have been written on the SM and gauge theories. See eg. Ref. [1] for a review.
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Introduction 2

1.1.1 The Higgs Mechanism in the Standard Model

The Higgs Mechanism was proposed in the 1960s as a way of explaining the gauge boson

masses through spontaneous electroweak symmetry breaking [7–11]. If one explicitly in-

troduces mass terms for the W and Z bosons into the SM Lagrangian, the Lagrangian is

no longer gauge invariant under the electroweak symmetry group SU(2)L × U(1)Y, and

the renormalisability of the SM is no longer guaranteed. In the Higgs mechanism, mass

terms are generated by spontaneously breaking the symmetry of the vacuum, while the

underlying Lagrangian remains gauge invariant. There are many excellent books and

reviews about the Higgs Mechanism (see eg. Refs. [1, 12, 13]). Below we give a brief

overview as a means of introducing notation.

One introduces a scalar SU(2)L doublet, written as

φ(x) =


 φ+(x)

φ0(x)


 . (1.1)

The Lagrangian for this scalar is chosen to be

LS = (Dµφ)†Dµφ − µ2φ†φ − λ(φ†φ)2. (1.2)

The gauge invariance of the kinetic term is ensured by using the covariant derivative,

Dµ ≡ ∂µ − igW̃µ − ig′yφBµ, (1.3)

instead of ∂µ.2 Here, g = e/sW and g′ = e/cW are the SU(2)L and U(1)Y couplings

respectively, e is the electromagnetic coupling, and we have adopted the abbreviations

sW and cW for the sine and cosine of the weak mixing angle, θW . The U(1)Y charge of the

scalar is given by yφ = Qφ−T 3
φ , where Qφ is its electromagnetic charge and T 3

φ is the third

component of its weak isospin. Bµ is the U(1)Y gauge field and W i
µ (i = 1, 2, 3) are the

SU(2)L gauge fields, where W̃µ = σiW
i
µ/2, and σi are the Pauli matrices. The physical

2Note that this formula assumes the SM sign convention for the covariant derivative. Later in this
thesis, we will use the MSSM convention, where Dµ ≡ ∂µ + igW̃µ + ig′yφBµ.



Introduction 3

gauge boson fields, W±
µ , Zµ and Aµ, are then derived from W±

µ = (W 1
µ ∓ iW 2

µ )/
√

2 and


 W 3

µ

Bµ


 =


 cW sW

−sW cW





 Zµ

Aµ


 . (1.4)

For λ > 0 and µ2 < 0, the second and third terms of Equation (1.2) make up the

“Mexican Hat” Higgs potential, V, which has an infinite set of degenerate minima,

φ0(x), all with energy V0 = −λv4/4 and non-zero vacuum expectation value,

|〈0|φ0|0〉| =

√
−µ2

2λ
=

v√
2
. (1.5)

Once a particular ground state is chosen, such as

φ0(x) =
1√
2


 0

v


 , (1.6)

the electroweak SU(2)L × U(1)Y symmetry is spontaneously broken to the electromag-

netic subgroup U(1)em. This means that while the underlying Lagrangian is fully gauge

symmetric, the vacuum ground state is not. We parameterise φ(x) in terms of excitations

with respect to this non-trivial vacuum, as,

φ(x) =
ei

σi
2

θi(x)

√
2


 0

v + H(x)


 . (1.7)

Here, the four degrees of freedom of the complex scalar doublet have been written in

terms of four real scalar fields, θi(x) (i = 1, 2, 3) and H(x). Since the Lagrangian is locally

SU(2) gauge invariant, θi(x) can be rotated away by a gauge transformation, without

loss of generality. These three fields are the would-be massless Goldstone bosons which

provide the longitudinal degrees of freedom for the W± and Z bosons.

Expanding the kinetic term of the Lagrangian in terms of the physical fields we obtain,

(Dµφ)†Dµφ =
1

2
∂µH∂µH + M2

W W−
µ W+µ +

1

2
M2

ZZµZ
µ + gMWHW−

µ W+µ

+
g

2cW
MZHZµZ

µ +
g2

4
H2W−

µ W+µ +
g2

8c2
W

H2ZµZ
µ. (1.8)
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The first term in Equation (1.8) is a kinetic term for the scalar H(x), the Higgs boson.

The second and third terms are mass terms for the W± and Z bosons, where

MW =
vg

2
, MZ =

vg

2cW
. (1.9)

We see that it is the non-zero vacuum expectation value, v, of the neutral component

of the Higgs doublet which gives rise to the gauge boson masses. The values of v and

cW are fixed by the experimental values of MW and MZ . Note that the electromagnetic

symmetry U(1)em remains intact; the photon, Aµ, is exactly massless. The remaining

terms of Equation (1.8) contain three- and four-point interactions between the Higgs

boson and the massive gauge bosons. Expanding the Higgs potential in terms of the

physical fields results in the following,

V = −λv4

4
+ v2λH2 + λvH3 +

λ

4
H4. (1.10)

The first term in Equation (1.10) is the minimum energy, V0. The third and fourth terms

are Higgs cubic and quartic self-interactions. The second term is the mass term for the

scalar Higgs boson, where,

MH =
√

2λv =
√

−2µ2. (1.11)

Thus, the two parameters of the Higgs potential, µ and λ, can be conveniently reparam-

eterised in terms of MH and v, where MH is, as yet, undetermined by experiment.3

Note that the fermion masses can also be generated by allowing Yukawa interactions

between the fermions and the Higgs doublet, φ(x), described by Lagrangian,

LY = −yd (ū, d̄)L φ(x) dR − yu (ū, d̄)L φC(x) uR − ye (ν̄e, ē)L φ(x) eR + h.c. (1.12)

for each generation of fermions, where φC(x) ≡ iσ2φ
∗(x) and h.c. denotes the Hermitian

conjugate. Here yd, yu and ye are Yukawa couplings, (ū, d̄)L and (ν̄e, ē)L are the quark

and lepton SU(2) doublets respectively and fR are the SU(2) singlets. Once Equation

3Nevertheless, there are theoretical reasons to expect the Higgs mass to be at the electroweak scale.
Requiring the SM to remain valid up to the grand unification scale, Λ ∼ 1016 GeV, without the intro-
duction of new physics, results in a theoretically motivated mass region of 130 GeV <∼ MH

<∼ 180 GeV
(see Refs. [13,14] for details). We shall see in the next section, however, that there are indeed theo-
retical motivations for introducing new physics below this scale which can alter this prediction. Some
new physics models predict a Higgs mass of even less than 130 GeV (see Section 2.2). Electroweak
precision data also favours a light Higgs boson (see eg. Refs. [15, 16]).
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(1.12) is rewritten in terms of the physical fields after spontaneous symmetry breaking,

fermion mass terms arise, with mf = yfv/
√

2, along with fermion interactions with the

physical Higgs field, H(x).

1.1.2 Limitations of the Standard Model

Despite the tremendous successes of the SM, it is well known that it cannot be the

ultimate theory of everything. Perhaps most notably, it only contains three of the four

fundamental interactions, making no attempt at a quantum theory of gravity. For inter-

actions at the electroweak energy scale, MW ∼ O(102) GeV, which is the scale probed by

current particle physics experiments, gravity is many orders of magnitude weaker than

the other forces and does not play a significant role. However, at much higher energies,

near the Planck scale, MPl ∼ O(1019) GeV, gravitational and quantum effects become

equally important. Therefore, the SM is widely viewed as a low-energy effective theory,

which can only be valid up to MPl. At or below this energy scale, a more complete

and fundamental theory is expected to replace the effective theory. Discussed below are

further motivations for physics beyond the SM (BSM), which may manifest at energies

much lower than MPl, perhaps accessible at the LHC.

Perhaps the most often discussed motivation is the so called Hierarchy Problem of the

SM. This is a question concerning the naturalness of the coexistence of the electroweak

and Planck scales, where MW ≪ MPl. If there is no new physics between these scales

then one must consider the cut-off scale, Λ, of the SM to be MPl. This becomes a

problem, in particular, when quantum corrections to the Higgs mass are considered.

These corrections turn out to be quadratically divergent, so that δM2
H ∼ Λ2 ∼ M2

Pl.

Divergences in quantum field theories are routinely dealt with using a procedure known

as renormalisation, which we will discuss in detail in Chapter 3. So long as the Higgs

mass is a free parameter, as it is in the SM, its bare value can be chosen to cancel with

the quadratic divergences to give a finite physical value. However, in order to achieve

a physical Higgs mass at the electroweak scale, an extreme, perhaps “unnatural” fine

tuning of some 30 orders of magnitude is required between the bare Higgs mass and the

quadratically divergent corrections, and different amounts of fine tuning are required at

different orders of perturbation theory. This means that the Higgs mass is extremely

unstable and sensitive to quantum corrections. The only way to stabilise the Higgs mass

seems to be to introduce new physics at a scale well below this.
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This instability problem is unique for scalar masses – the corresponding mass correc-

tions for fermions and gauge bosons in the SM turn out to be protected from quadratic

divergences by symmetries. However, corrections to the Higgs mass driven by Planck

scale physics are indeed a problem for the entire theory, since all sectors of the SM are

affected by elecroweak symmetry breaking. The discovery of a Higgs boson would hence

instantly beg the question of what new physics allows its mass to be stabilised.

Another problem of the SM is that it contains no viable candidate for Dark Matter

(DM), which astrophysical and cosmological data suggest makes up about 23% of the

Universe (see Ref. [17] for a review). Many BSM models predict hypothetical particles

which may help to explain DM.

Furthermore, the SM does not allow the unification of its three fundamental forces into

one single interaction, in the form of a Grand Unified Theory (GUT). If one uses the

renormalisation group equations to extrapolate the behaviour of the three fundamental

coupling constants, αEM , αW and αS, up to high energy scales, they cannot be made

to coincide without the introduction of some new physics between the electroweak and

GUT scales [18].

Another compelling motivation for BSM physics is the observed baryon asymmetry of

the Universe. Big Bang Cosmology gives rise to the prediction that matter and anti-

matter should have been created in equal amounts in the early Universe. Yet today the

Universe is mostly made of matter. In order to explain this observation, the Sakharov

conditions require the existence of interactions which are not symmetric under the com-

bination of charge conjugation (C) and parity inversion (P), at least at the extreme

energies after the Big Bang [19]. Yet there is not enough CP-violation in the SM to

explain such a large asymmetry.

The above motivations, together with many other shortcomings of the SM which we

will not discuss further here, illustrate that, while the discovery of a SM-like Higgs bo-

son at the LHC could complete the so far remarkably successful SM, there are many

reasons to believe this will not be the whole story. One popular BSM physics model is

supersymmetry, which will be our focus for the remainder of this thesis.
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1.2 Supersymmetry

1.2.1 A symmetry between fermions and bosons

Supersymmetry is a symmetry between bosons and fermions, whereby a group generator,

Q, transforms fermions into bosons, Q|f〉 = |b〉, and bosons into fermions, Q|b〉 = |f〉.4
If exact supersymmetry existed in Nature, then every SM particle would have a super-

symmetric partner with all the same properties except its spin, which would differ by

half an integer. The scalar partners of SM fermions are known as sfermions, while the

fermionic partners of the gauge bosons and Higgs bosons are known as gauginos and

higgsinos respectively. Since no supersymmetric partners have ever been seen at collid-

ers, we know that if supersymmetry exists in Nature, it must be a broken symmetry, so

that the masses of the partners are, in general, much larger than their SM counterparts.

In the context of developing a more fundamental theory of Nature, supersymmetry is

interesting because it is the unique extension of the direct product of a gauge symmetry

with the Poincare group [24]. Also in this context, demanding local gauge invariance

of supersymmetry transformations can lead to (non-renormalisable) theories involving

gravity. Indeed, many attempts to unify gravity with the SM involve string theories,

which may even demand supersymmetry, but experimental hints of these theories are

not required until energies close to MPl [25]. However, there are several motivations for

finding supersymmetry at the TeV energy scale explored by the LHC, as we discuss in

the next section.

1.2.2 Motivations for low-energy supersymmetry

In order to explain why many believe that supersymmetry may be found at the energies

accessible at the LHC, we first return to the Hierarchy Problem. The quadratically

divergent quantum corrections to the Higgs mass in the SM arise from self-energy loops

containing fermions. The offending term5 takes the following form in the limit p2 → Λ2,

where p is the loop momentum;

Σφφ
f ∼ −λ2

fΛ
2 (1.13)

4There are many excellent books and reviews on the topic of supersymmetry. See eg. Refs. [20–23].
5See Ref. [20] for its derivation.
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where λf is the coupling. In supersymmetric extensions of the SM, for every such fermion

loop diagram, there is a corresponding sfermion diagram, with coupling λ̃f , which results

in a quadratically divergent term of the form

Σφφ

f̃
∼ λ̃fΛ

2. (1.14)

Notice that the sfermion terms come with a plus sign while the fermion terms come with

a minus sign. Thus the quadratic divergences cancel if the coupling factors are equal;

λ2
f = λ̃f (1.15)

as they are in a supersymmetric theory. In fact, the complete quantum correction to the

Higgs self-energy from fermion and sfermion loops cancels if the masses of the fermion

and its superpartner exactly coincide;

m2
f̃

= m2
f . (1.16)

This would only be true for exact supersymmetry. As discussed in the previous section,

if supersymmetry exists in Nature, then it is broken, and we assume

m2
f̃

= m2
f + ∆2. (1.17)

In order not to introduce any new sources of quadratic divergences, we assume “soft”

supersymmetry breaking, in which the relations between dimensionless couplings remain

unchanged. Moreover, the remaining corrections can be kept “acceptably small” if we

assume ∆ ∼ O(TeV). There are further reasons to expect the masses of the superpart-

ners to be at the TeV scale, as we will discuss below.

Realistic realisations of supersymmetric theories often contain the assumption of R-

parity conservation, in order to avoid rapid proton decay. SM particles and Higgs bosons

are assigned an R-parity of 1, while their supersymmetric partners are assigned an R-

parity of −1. If R-parity is conserved, then an even number of supersymmetric particles

must always appear at a vertex. Thus a given supersymmetric particle cannot decay

into purely SM particles, rendering the lightest supersymmetric particle (LSP) stable

and hence a natural DM candidate. Furthermore it has been shown that the LSP relic

density can be made to coincide with the favoured range for the cold DM relic density

if the mass of the LSP, MLSP, is less than around 1 TeV (see eg. Ref. [26]).
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It has also been shown that the unification of the strong, weak and electromagnetic

couplings is possible if the masses of the supersymmetric particles are close to the TeV

scale [18]. Thus, each of the above motivations for BSM physics is consistent with

supersymmetry being present at the energy scales accessible at the LHC.

1.2.3 Supersymmetry and Higgs physics at colliders

In the previous sections we have provided motivations for why Higgs bosons and super-

symmetric particles are prime candidates for new physics that could be discovered at

the LHC. In this thesis we will explore cases where the searches for Higgs bosons and

supersymmetric particles are very much linked and should go hand-in-hand.

While in the SM, Higgs physics is determined by a single parameter, MH , we will see

in the next chapter that Higgs phenomenology is very much enriched in supersymmet-

ric theories. In the Minimal Supersymmetric Standard Model (MSSM), the spectrum

contains five physical Higgs bosons, the properties of which may differ significantly from

those of a SM Higgs boson. At lowest order the neutral Higgs bosons of the MSSM

are CP-eigenstates, so that there are two CP-even Higgs bosons, h and H , a CP-odd

Higgs boson, A, and two charged Higgs bosons, H±. Higher-order contributions in the

MSSM Higgs sector yield large corrections to the masses and couplings, and can also

induce CP-violation, so that mixing can occur between h, H and A in the general case

of complex parameters.

If the mixing between the three neutral mass eigenstates, denoted h1, h2 and h3, is

such that the coupling of the lightest Higgs boson, h1, to gauge bosons is significantly

suppressed, this state can be very light without being in conflict with the exclusion

bounds from the Higgs searches at LEP [2, 27] and the Tevatron [28]. In the CPX

benchmark scenario [29] an unexcluded region remains in which Mh1
≈ 45 GeV and

tan β ≈ 7 [27] (see also Ref. [30] for a recent reevaluation with improved theoretical

predictions). This unexcluded parameter region with a very light Higgs boson will also

be difficult to cover at the LHC with the standard search channels [31–33]. We will show

in this thesis, however, that there may be good prospects to detect such a light Higgs

boson in cascade decays of supersymmetric particles such as neutralinos.

Decays of Higgs bosons into supersymmetric particles can also be phenomenologically im-

portant at the LHC, and may extend the discovery reach for heavy Higgs bosons [34–37]
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(see eg. Refs. [38, 39] for a discussion of the parameter region in which only the light

CP-even MSSM Higgs boson can be discovered with the standard search channels). The

decay processes of heavy Higgs bosons into supersymmetric particles, if accessible, can

provide important information about the properties of the decaying particles. We will

explore the possibility of measuring an asymmetry in the polarisation of the super-

symmetric particles produced in the decay of Higgs bosons, in order to determine the

existence of CP-violation in the MSSM. In this study, we will come across scenarios

where two or more of the three neutral Higgs bosons are nearly mass degenerate. This

can lead to an enhancement or suppression of the Higgs production and decay processes

due to interference between the Higgs bosons, a phenomenon which obviously does not

occur in the SM where there is only one Higgs boson.

For most of this thesis, we will focus on the Higgs and neutralino–chargino sectors of the

complex MSSM. We will obtain complete one-loop corrections to the processes where

a neutralino decays into a Higgs boson, χ̃0
i → χ̃0

jha, and where a Higgs boson decays

into two neutralinos, ha → χ̃0
i χ̃

0
j , and explore the phenomenology of these decays in the

context of Higgs physics at the LHC.

1.3 Thesis Outline

In Chapter 2 we lay out our notation for the MSSM with complex parameters. In Chapter

3 we explain how higher-order corrections involve divergent loop integrals which must be

dealt with using renormalisation. We describe in detail our renormalisation prescription

for the gauge and Higgs sectors and the electric charge. In Chapter 4 we develop an on-

shell renormalisation scheme for the chargino–neutralino sector that consistently takes

into account imaginary parts arising from complex parameters and absorptive parts of

loop integrals. In Chapter 5 we evaluate the one-loop corrections to the χ̃0
i χ̃

0
jha vertex

and combine these with two-loop Higgs propagator-type corrections to obtain precise

predictions for the processes χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j . In Chapter 6 we show numerical

results for the decay of a neutralino into a light Higgs boson, χ̃0
i → χ̃0

jha, focusing in

particular on the CPX scenario. In Chapter 7 we compute the branching ratios for

this process and discuss the prospects for covering the “CPX hole” using the decay

χ̃0
2 → χ̃0

1h1. In Chapter 8 we show numerical results for the decay of a heavy Higgs

boson into a pair of neutralinos, focusing in particular on the effect of CP-violating

phases on the decays into polarised neutralinos. In Chapter 9 we study interference
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effects in the production and decay of nearly mass degenerate Higgs bosons, developing

a generalised narrow width approximation. In Chapter 10 we study asymmetries in the

polarisation of neutralinos produced in the processes bb̄, gg, WW → hi → χ̃0
2χ̃

0
2 at the

LHC. In Chapter 11 we will conclude.



Chapter 2

The Complex MSSM

2.1 The Minimal Supersymmetric Standard Model

In this thesis, we will consider the Minimal Supersymmetric Standard Model (MSSM),

the simplest supersymmetric extension of the SM with R-parity conservation and soft

SUSY breaking. Table 2.1 shows the field content of the MSSM. Each SM field is placed

in a supermultiplet with a superpartner, indicated by a tilde, which differs in spin from

the SM particle by a half. The spin-1/2 fermions (quarks and leptons) each have spin-0

scalar partners (squarks and sleptons), and the spin-1 gauge bosons (gluons, W and B

bosons) each have spin-1/2 gaugino partners (gluinos, winos and binos). There are also

spin-1/2 higgsino partners for the spin-0 Higgs doublets.

While the SM has only one Higgs doublet, the MSSM requires two Higgs doublets,

H1 and H2, in order to give masses to both the down- and up-type quarks without the

use of the Hermitian conjugate of the Higgs field as in Equation (1.12), which would

break supersymmetry. In addition, having two Higgs doublets ensures the cancellation of

gauge anomalies and quadratic divergences. As in the SM, EWSB uses up three degrees

of freedom, so the eight degrees of freedom contained in the two complex Higgs doublets

result in five physical Higgs bosons. The supersymmetric partners to the Higgs fields

are the four spin-1/2 higgsinos, h̃+
u , h̃0

u, h̃0
d and h̃−

d , contained in the two corresponding

SU(2) doublets. In terms of the physical particle content of the MSSM, EWSB allows

particles with different quantum numbers to mix with each other. For example, the

charged winos and charged higgsinos mix, resulting in two “charginos”, labelled χ̃±
1,2.

Similarly, the neutral bino, wino and higgsinos mix, resulting in four “neutralinos”, la-

belled χ̃0
1,2,3,4.

12
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Chiral supermultiplets: spin 0 spin 1
2

(SU(3)C, SU(2)L, U(1)Y)

squarks and quarks Q (ũL, d̃L) (uL, dL) (3, 2, 1
6
)

U ũ∗
R u†

R (3̄, 1,−2
3
)

D d̃∗
R d†

R (3̄, 1, 1
3
)

sleptons and leptons L (ν̃, ẽL) (ν, eL) (1, 2,−1
2
)

E ẽ∗R e†R (1, 1, 1)

higgs and higgsinos H1 (h0
d, h

−
d ) (h̃0

d, h̃
−
d ) (1, 2,−1

2
)

H2 (h+
u , h0

u) (h̃+
u , h̃0

u) (1, 2, 1
2
)

Vector supermultiplets: spin 1
2

spin 1 (SU(3)C, SU(2)L, U(1)Y)

gluinos and gluons g̃ g (8, 1, 0)

winos and W-bosons W̃±, W̃ 0 W±, W 0 (1, 3, 0)

binos and B-boson B̃ B (1, 1, 0)

Table 2.1: The field content of the MSSM

The MSSM Lagrangian consists of the following main parts;

LMSSM = Lkin. + Lsuperpot. + Lsoft + Lgauge−fix. + Lghost. (2.1)

The kinetic terms for each of the fields are contained in Lkin., while Lgauge−fix. and Lghost

are the terms involving gauge-fixing and Faddeev-Popov ghosts respectively. The super-

potential terms contained in Lsuperpot. are the mass terms and interaction terms which

respect supersymmetry. The terms which break supersymmetry are contained in Lsoft.

There has been much discussion in the literature about possible mechanisms for su-

persymmetry breaking. However, in the MSSM, no particular supersymmetry breaking

model is assumed. Rather, Lsoft is the most general parameterisation of the supersym-

metry breaking terms which keep relations between dimensionless couplings unchanged

so that no quadratic divergences result.

A careful count reveals that the MSSM has 105 new parameters, in addition to the 19

of the SM, which appear as masses, mixing angles and CP-violating phases [40]. A large

number of these parameters arise from allowing intergenerational mixing in the sfermion

sectors. In this work, we assume minimal flavour violation, setting these parameters

to zero so that the only flavour violation comes from the Cabibbo-Kobayashi-Maskawa

(CKM) matrix in the SM. This leaves us with 41 independent parameters (see Equation
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(2.43)), 12 of which are CP-violating phases. We discuss these phases in more detail in

Section 2.6. In the following sections, we lay out our notation for the various sectors of

the MSSM at tree level.

2.2 The Higgs sector at tree level

For the Higgs sector of the complex MSSM, we follow the notation of Ref. [41]. The

Higgs potential is written as

VH = m2
1H

∗
1iH1i + m2

2H
∗
2iH2i − ǫij(m2

12H1iH2j + m2 ∗
12 H∗

1iH
∗
2j) (2.2)

+
1

8
(g2 + g′ 2)(H∗

1iH1i − H∗
2iH2i)

2 +
1

2
g′ 2|H∗

1iH2i|2.

This potential contains all the terms from Lsuperpot. and Lsoft which involve Higgs fields

only, where Hi = (Hi1 Hi2)
T , i, j = 1, 2 are summed over and ǫ12 = 1. Here, m2

i is

defined by m2
i = m̃2

i + |µ|2, where m̃2
i are real coefficients from Lsoft. m2

12 ≡ |m2
12|e

iφ
m2

12

is a potentially complex coefficient from Lsoft. As we show in Section 2.6 that the CP-

violating phase, φm2
12

, can be rotated away, we treat m2
12 as real in the following.

It can be shown that one can choose a minimum for the Higgs potential for which the

vacuum expectation values, 〈0|h+
u |0〉 and 〈0|h−

d |0〉, are both zero, while 〈0|h0
d|0〉 ≡ v1 and

〈0|h0
u|0〉 ≡ v2 are both real and non-zero, leading to spontaneous electroweak symmetry

breaking. We can hence parameterise the two Higgs doublets in terms of excitations

with respect to this ground state;

H1 =


 v1 + 1√

2
(φ1 − iχ1)

−φ−
1


 , (2.3)

H2 = eiξ


 φ+

2

v2 + 1√
2
(φ2 + iχ2)


 , (2.4)

where ξ is a possible relative phase between the two doublets. Expanding the Higgs

kinetic terms in terms of this parameterisation, one finds the mass terms for the W±

and Z bosons;

M2
W =

1

2
g2(v2

1 + v2
2), M2

Z =
1

2
(g2 + g′ 2)(v2

1 + v2
2). (2.5)
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The photon remains massless. Three of the eight degrees of freedom from the two com-

plex Higgs doublets have been used to give longitudinal components to the gauge bosons

via the Higgs mechanism. One can expand the Higgs potential in this parameterisation,

and write the result in terms of powers of the fields;

VH = ... − Tφ1
φ1 − Tφ2

φ2 − Tχ1
χ1 − Tχ2

χ2

+
1

2
(φ1 φ2 χ1 χ2)Mφφχχ




φ1

φ2

χ1

χ2




+
1

2
(φ−

1 φ−
2 )Mφ±φ±


 φ+

1

φ+
2


 + ... (2.6)

We see that there are linear (tadpole) and bilinear (mass) Higgs terms. There are also

3- and 4- point interactions between Higgs and gauge bosons, which we do not list here.

The values for the tadpole coefficients are given by

Tφ1
= −

√
2(m2

1v1 − cos ξ|m2
12|v2 +

1

4
(g2 + g′ 2)(v2

1 − v2
2)v1), (2.7)

Tφ2
= −

√
2(m2

2v2 − cos ξ|m2
12|v1 −

1

4
(g2 + g′ 2)(v2

1 − v2
2)v2), (2.8)

Tχ1
= −Tχ2

v2

v1
=

√
2 sin ξ|m2

12|v2. (2.9)

Mφφχχ is a real, symmetric 4 × 4 mass matrix with elements given by

Mφ1φ1
= m2

1 +
1

4
(g2 + g′ 2)(3v2

1 − v2
2), (2.10)

Mφ1φ2
= Mφ2φ1

= − cos ξ m2
12 −

1

2
(g2 + g′2)v1v2, (2.11)

Mφ2φ2
= m2

2 +
1

4
(g2 + g′ 2)(3v2

2 − v2
1), (2.12)

Mφ1χ1
= Mφ2χ2

= Mχ1φ1
= Mχ2φ2

= 0, (2.13)

Mφ1χ2
= Mχ2φ1

= sin ξ m2
12, (2.14)

Mφ2χ1
= Mχ1φ2

= − sin ξ m2
12, (2.15)

Mχ1χ1
= m2

1 +
1

4
(g2 + g′ 2)(v2

1 − v2
2), (2.16)

Mχ1χ2
= Mχ2χ1

= − cos ξ m2
12, (2.17)

Mχ2χ2
= m2

2 +
1

4
(g2 + g′ 2)(v2

2 − v2
1), (2.18)
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and Mφ±φ± is a Hermitian 2 × 2 mass matrix with elements given by

Mφ±

1
φ±

1
= m2

1 +
1

4
g2(v2

1 − v2
2) +

1

4
g′ 2(v2

1 + v2
2), (2.19)

Mφ±

1
φ±

2
= −eiξm2

12 −
1

2
g′ 2v1v2, (2.20)

Mφ±

2
φ±

1
= −e−iξm2

12 −
1

2
g′ 2v1v2, (2.21)

Mφ±

2
φ±

2
= m2

2 +
1

4
g2(v2

2 − v2
1) +

1

4
g′ 2(v2

1 + v2
2). (2.22)

The conditions for minimising the Higgs potential require that the tadpole coefficients,

Tφ1,φ2,χ1,χ2
, and the phase between the Higgs doublets, ξ, are all equal to zero. Diagonal-

ising Mφφχχ and Mφ±φ± under these conditions leads to the physical mass eigenstates,

which are a rotation from the above parameterisation as follows;




h

H

A

G




=




− sin α cos α 0 0

cos α sin α 0 0

0 0 − sin βn cos βn

0 0 cosβn sin βn







φ1

φ2

χ1

χ2




, (2.23)


 H±

G±


 =


 − sin βc cos βc

cos βc sin βc





 φ±

1

φ±
2


 , (2.24)

where α, βn and βc are mixing angles. The CP-even Higgs bosons are the lighter h and

the heavier H , while A is the CP-odd Higgs boson, and G and G± are the would-be

Goldstone bosons. The null entries in the 4×4 mixing matrix above come about because

the Higgs sector at lowest order contains no complex parameters. Hence at tree level

there is no CP-violating mixing between the neutral Higgs bosons – the mass eigenstates

coincide with the CP-eigenstates. It turns out that the Higgs sector can be described at

tree level by two parameters; these can be chosen to be the mass of the CP-odd Higgs

boson, MA, and the ratio of the Higgs vacuum expectation values, tanβ, where

tan β ≡ v2/v1. (2.25)
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The remaining neutral Higgs masses can be expressed at tree level1 as,

{m2
h, m

2
H} =

1

2

(
m2

A + M2
Z ∓

√
(m2

A + M2
Z)2 − 4m2

AM2
Z cos2 2β

)
(2.26)

and the tree-level charged Higgs mass can be written,

m2
H± = m2

A + M2
W . (2.27)

It turns out that the mixing angles βn and βc coincide with β, due to minimisation of

the Higgs potential.2 The remaining mixing angle, α, is given by

α = arctan

[ −(m2
A + M2

Z) sin β cos β

M2
Z cos2 β + m2

A sin2 β − m2
h

]
, −π

2
< α < 0. (2.28)

If one uses the above equation for the neutral Higgs masses, one obtains the prediction

that the lightest Higgs boson mass is less than the Z boson mass, m2
h ≤ M2

Z . This value

is obviously excluded by Higgs searches at LEP, but it is only a tree-level prediction.

Loop corrections turn out to be very important in the Higgs sector. For instance, the

contribution from loops involving the Yukawa coupling of the top quark can be of order

100%. Including these corrections up to two-loop order in the Feynman-diagrammatic

approach gives an upper bound on the lightest Higgs mass of around 130 GeV [42–46].

Also in the context of loop corrections, note that, while the Higgs sector is CP-conserving

at tree level, since it contains no complex parameters, complex parameters from the

sfermion and gaugino sectors can enter the Higgs sector at the loop level. Then the CP-

eigenstates, h, H and A, are no longer mass eigenstates. They can mix via loop diagrams

which contain complex parameters. In the real MSSM, where there is no CP-violation,

the CP-odd Higgs boson, A, does not mix with the other neutral Higgs states and its

mass is therefore a convenient input parameter. However, in this thesis, we will consider

the complex MSSM. Thus, following Ref. [41], we do not use MA as an input parameter

for CP-violating scenarios; rather, we use the mass of the charged Higgs boson MH± as

input, along with tanβ.

1Note that throughout this thesis, we will always use a lower-case m to denote a tree-level mass and
an upper-case M to denote a loop-corrected or physical mass.

2However, in our renormalisation scheme, discussed in Chapter 3, tanβ receives a counterterm, while
βn and βc are just mixing angles and are not renormalised. Thus in expressions depending on tanβn

and tanβc we keep this dependence until the renormalisation has been carried out, after which tanβn

and tanβc may be set to tan β.
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2.3 The chargino–neutralino sector at tree-level

At tree level, the physical chargino states, χ̃±
i , (i = 1, 2), are Dirac spinors constructed

from the mass eigenstates of the 2 × 2 complex mass matrix, X, which reads, in the

wino-higgsino basis,

X =


 M2

√
2MW sin β

√
2MW cos β µ


 (2.29)

where M2 and µ are the wino and higgsino mass parameters, respectively. The mass

matrix is diagonalised by two 2×2 complex unitary matrices, U and V , where U∗XV † =

diag(mχ̃+

1
, mχ̃+

2
). Hence the Born Lagrangian for charginos reads:

Lχ̃± = χ̃−
i ( 6p δij − ωL(U∗XV †)ij − ωR(V X†UT )ij)χ̃

−
j , (2.30)

where ωR/L = 1
2
(1 ± γ5), 6p = γµpµ, χ̃−

j is the chargino spinor, with χ̃−
j = (χ̃−

j )†γ0.

Similarly, the neutralinos χ̃0
i , (i = 1, 2, 3, 4) are Majorana spinors constructed from mass

eigenstates of the 4 × 4 complex mass matrix, Y , which reads, in the (B̃, W̃ 3, h̃0
d, h̃

0
u)

basis:

Y =




M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ

MZsβsW −MZsβcW −µ 0




(2.31)

where M1 is the bino mass parameter and we adopt the abbreviations cβ ≡ cos β and

sβ ≡ sin β. Due to the Majorana nature of neutralinos, only one 4 × 4 complex unitary

matrix, N , is required to diagonalise Y , where N∗Y N † = diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
).

Hence the Born Lagrangian for neutralinos reads:

Lχ̃0 =
1

2
χ̃0

i ( 6p δij − ωL(N∗Y N †)ij − ωR(NY †NT )ij)χ̃
0
j . (2.32)

Besides parameters from other sectors, the masses and mixings of neutralinos and

charginos can thus be described by three independent input parameters, M1, M2 and

µ. If all three parameters are real, then U and V can also be chosen to be real, while

each of the rows of N can be chosen to be purely real or purely imaginary such that all
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neutralino masses are positive. In the complex MSSM, however, the input parameters

M1, M2 and µ of the chargino–neutralino sector can be chosen to be complex. In this

case the elements of U , V and N will have both real and imaginary parts. We write

M1 = |M1|eiφM1 , M2 = |M2|eiφM2 , µ = |µ|eiφµ. (2.33)

However, we will show in Section 2.6 that only two of the three phases, φM1
, φM2

and

φµ, are physical, while the other can be rotated away.

2.4 The sfermion sector at tree level

At tree level, the physical squark and charged slepton states, f̃1, f̃2, are the mass eigen-

states of a 2×2 complex mass matrix, which reads in the (f̃L, f̃R) basis for each flavour,

Mf̃ =


 M2

L + m2
f + M2

Z cos 2β(If
3 − Qfs

2
W ) mfX

∗
f

mfXf M2
f̃R

+ m2
f + M2

Z cos 2β Qfs
2
W


 (2.34)

with

Xf = Af − µ∗ {cotβ, tanβ} (2.35)

where cotβ applies for the up-type massive fermions, f = u, c, t, and tanβ applies for the

down-type fermions, f = d, s, b, e, µ, τ . The soft supersymmetry breaking parameters

introduced in the sfermion sector are M2
L and M2

f̃R
, which are real, and the trilinear

coupling Af , which can be complex. We write the latter as

Af = |Af |eiφAf . (2.36)

We will not consider processes involving sfermions as external particles. However, the

sfermion sector will be important for higher order corrections. The phase φAf
plays a

large role in the Higgs sector, particularly for loops involving the supersymmetric part-

ners of the heavy third-generation SM fermions, t, b, τ , where the term mfXf appears

in couplings of sfermions to Higgs bosons. It also plays a role in the neutralino sector at

one-loop level.

The mass matrix Mf̃ is diagonalised by a 2 × 2 complex, unitary matrix, Uf̃ , where
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Uf̃Mf̃U
†
f̃

= diag(mf̃1
, mf̃2

), where mf̃1
< mf̃2

. The bilinear part of the Born Lagrangian

for squarks and charged leptons then reads,

Lf̃ = −(f̃ †
1 , f̃

†
2) Uf̃ Mf̃ U †

f̃


 f̃1

f̃2


 . (2.37)

Since there are no right-handed neutrinos in the SM, the three sneutrinos in the MSSM

have masses dependent only on M2
L, tan β and SM parameters;

M2
ν̃ = M2

L +
1

2
M2

Z cos 2β. (2.38)

The Born Lagrangian for sneutrinos is

Lν̃ = −ν̃†M2
ν̃ ν̃. (2.39)

2.5 The gluino sector at tree level

The bilinear part of the Born Lagrangian for the gluino is given by

Lg̃ = −1

2
¯̃g M3 g̃ (2.40)

where M3 is the gluino mass parameter, which can be complex and is written;

M3 = |M3|eiφM3 . (2.41)

The gluino mass, mg̃, is given by |M3|. We will not consider any processes involving

gluinos as external particles. Gluinos only couple to coloured particles, so only enter

higher order corrections in the Higgs and neutralino sectors at the two-loop level. These

parameters, M3 and φM3
, can play a large role in Higgs sector phenomenology.

2.6 CP-violating phases

From the previous sections, there are fourteen parameters in the MSSM that can, in

principle, take complex values; M1, M2, M3, µ, m2
12 and Af for f = u, d, c, s, t, b, e, µ, τ .

However, not all of the corresponding CP-violating phases are physical; two of them
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can be rotated away by a redefinition of fields. To show how this works we extend the

procedure of Ref. [47] to allow independent phases for each of the gaugino masses and

trilinear couplings.

We perform two U(1) transformations; a Peccei-Quinn transformation (PQ) and an

R2 transformation. Under a general U(1) transformation, quantities are multiplied by a

factor eiqθ, where θ is the rotation angle and q is the U(1) charge. We define the trans-

formations of the parameters, Mi, Af , m2
12 and µ, such that the Lagrangian remains

invariant. The U(1) charges of the MSSM parameters and fields under PQ and R2 are

given in Table 2.2.

Mi Af m2
12 µ Hi F θ

qPQ 0 0 -1 -1 1/2 -1/2 0

qR2
-1 -1 0 1 0 1 -1/2

Table 2.2: The charges of the parameters, M1,2,3, Af , m2
13 and µ, the Higgs supermultiplets,

H1,2, the (s)quark and (s)lepton supermultiplet combinations, F = QŪ,QD̄, LĒ,
and the Grassman superspace coordinate, θ, under PQ and R2 transformations.

We choose to make an R2 transformation with angle φM2
on each of the parameters and

fields, followed by a PQ transformation with angle φm2
12

. This has the following effect

on the phases of the parameters.

{φµ, φM1
, φM2

, φM3
, φm2

12
, φAf

}
↓ R2(φM2

)

{φµ + φM2
, φM1

− φM2
, 0, φM3

− φM2
, φm2

12
, φAf

− φM2
}

↓ PQ(φm2
12

)

{φµ + φM2
− φm2

12
, φM1

− φM2
, 0, φM3

− φM2
, 0, φAf

− φM2
} (2.42)

The phases of M2 and m2
12 have thus been rotated away. The remaining phases and

fields are redefined to absorb φM2
and φm2

12
. If we attempt further U(1) transformations

by angles φM1
, φM2

, φµ or φAf
, we find that no more of the phases can be absorbed.

However, we could have equally chosen φM1
or φM3

instead of φM2
for the angle of the

R2 transformation. This is just a matter of convention. Thus, in total, there are 12

independent CP-violating phases in the MSSM, which we choose to be φM1
, φM3

, φµ and
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φAf
for f = u, d, c, s, t, b, e, µ, τ .

Theoretically, these 12 phases may be arbitrarily large, providing new sources of CP-

violation which could help to satisfy the Sakharov conditions required to explain the

observed baryon asymmetry of the Universe. However, experimental limits on electric

dipole moments (EDMs) of atoms and neutrons already place rather stringent con-

straints on new sources of CP-violation beyond the single phase of the CKM matrix in

the SM [48–60]. Large phases in the trilinear couplings for the first two generations of

sfermions are only allowed experimentally if these generations are very heavy or if large

cancellations occur. The constraints on the third generation trilinear couplings are much

weaker. The higgsino phase, φµ, is quite tightly constrained in the convention where

φM2
is zero. Ref. [59] not only provides a review of all of these constraints, but also

gives a detailed study of how large cancellations can occur among various combinations

of the CP-violating phases, such that the predicted EDMs still satisfy the experimental

constraints. This leaves open the possibility of large phases for both the gaugino mass

parameters and the trilinear couplings of the third generation of sfermions, which we

will allow in some of the scenarios we study in this thesis. We will always set the phases

of the trilinear couplings for the first and second generations of sfermions to zero.

2.7 Parameters and benchmark scenarios

In order to specify a scenario in the complex MSSM, we require input values for the

following 41 real parameters;

|M1|, |M2|, |M3|, |µ|, MqiL, MlL, MfR, |Af |, tanβ, φM1
, φM3

, φµ, φAf
(2.43)

where i = 1, 2, 3 labels the quark generation, l = e, µ, τ and f = e, µ, τ, u, d, c, s, t, b. As

in the SM, we must also specify a Higgs mass value; MH± being the most convenient.3

The large number of parameters above is mostly due to our ignorance of the mecha-

nism of soft supersymmetry breaking. In practice, some universality assumptions are

often made at the GUT scale in order to reduce the number of parameters to a more

manageable size, sometimes inspired by models which attempt to describe supersym-

3We do not include MH± in the list of Equation (2.43) since it belongs in the parameter count of the
SM, in which a Higgs mass value must also be specified.
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metry breaking. The corresponding low-energy MSSM parameters listed in Equation

(2.43) are then determined from the renormalisation group running of the GUT scale

parameters down to the weak scale. In this thesis, we will instead use benchmark points

and scenarios defined directly in terms of the low-energy MSSM parameters listed in

Equation (2.43). Often these scenarios will have features which are inspired by the

supersymmetry breaking models. For example, in many of our scenarios we assume a

common gaugino mass at the GUT scale, resulting in the relation,

M1 =
5

3

(
sW

cW

)2

M2, (2.44)

at the weak scale. We will also usually assume that the first and second generations of

sfermions have common mass parameters and trilinear couplings. When we assume that

that the first, second and third generation of sfermions all have common mass parame-

ters, we will denote these as ML = Mf̃R
≡ MSUSY.

The specific scenarios studied in this thesis are given in Table 2.3. We will consider in par-

ticular the standard Higgs phenomenology scenarios, including the CPX scenario [29]4,

the small αeff scenario [61] and the Mmax
h scenario [61, 62]. As already discussed, the

CPX scenario is particularly interesting because CP-violating effects give rise to an

unexcluded parameter region with a light Higgs boson. The CP-conserving small αeff

scenario makes for an interesting comparison to the CPX scenario since it also has very

large values for |Af | and µ. The Mmax
h scenario is a CP-conserving scenario often used

in the literature for reporting on experimental bounds for Tevatron and LEP and the

discovery potential at the LHC. In addition to the standard Higgs phenomenology sce-

narios, we also consider the standard set of SPS points [63], using as input the agreed

low-energy values taken from Ref. [64], as shown in Table 2.3 for SPS1a.

We furthermore investigate a specific case of a CP-conserving scenario giving rise to a

very light χ̃0
1, inspired by a recent study [65] which showed that very light neutralinos

are not ruled out by experimental data. Here the GUT relation in Equation (2.44) is

relaxed, allowing M1 to be chosen such that the lightest neutralino is approximately

massless using,

M1 =
M2M

2
Z sin 2βs2

W

µM2 − M2
Z sin 2βc2

W

. (2.45)

4The value for |Af | given in Table 2.3 is an on-shell value that is slightly shifted from the DR value
specified in Ref. [29] (see also Ref. [30]).
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For our study of decays of Higgs bosons into neutralinos in Chapters 8 and 10, we use

a scenario found in the literature to have a large number of H, A → χ̃0
2χ̃

0
2 events at the

LHC [35]. We denote this scenario, “4L1”, which corresponds to “Point 1” in Ref. [35].

We will also consider a slightly modified scenario, “4L1b”, with lighter squarks and a

large trilinear coupling. In Chapter 4 we will consider the scenario, “CPV1”, as an

example where both decays, h2,3 → χ̃0
3χ̃

0
1 and χ̃0

3 → tt̃1 are kinematically open.

We always use a top quark mass of mt = 172.4 GeV. We use a running bottom quark

mass, mb(mt) = 2.734 GeV, (see Ref. [66]), except where indicated otherwise.
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Scenario: CPX small αeff Mmax
h light χ̃0

1 SPS1a 4L1 4L1b CPV1

|M1| Eq.2.44 Eq.2.44 Eq.2.44 Eq.2.45 99.1 90 90 100

|M2| 200 500 200 400 192.7 200 200 200

|M3| 1000 500 800 1000 595.2 1000 1000 1000

|µ| 2000 2000 200 600 352.4 500 500 500

MSUSY 500 800 1000 500 - - - -

Mq3L - - - - 495.9 1000 500 500

Mq12L - - - - 539.9 1000 500 500

MτL - - - - 195.8 250 250 300

MeµL - - - - 196.6 250 250 200

MtR - - - - 428.8 1000 500 500

MbR - - - - 516.9 1000 500 500

MτR - - - - 133.6 250 250 300

MucR - - - - 521.7 1000 500 500

MdsR - - - - 519.5 1000 500 500

MeµR - - - - 136.2 250 250 200

|At,c,u| 900 - - 1000 510.0 0 1000 1200

|Ab,s,d| 900 |At| |At| 1000 772.7 0 1000 1200

|Aτ,µ,e| 900 |At| |At| 1000 254.2 0 1000 1000

Xt - -1100 2000 - - - - -

φM1
0 0 0 0 0 0 0 0

φM3
π/2 0 0 0 0 0 0 0

φµ 0 0 0 0 0 π π 0

φAt,b,τ
π/2 π 0 0 π 0 0 π/2

φAf1,2
π 0 0 0 π 0 0 0

tanβ var var var 20 10 20 20 20

MH± var var var - - - - 850

MA - - - 500 393.6 500 500 -

Table 2.3: Definition of scenarios in terms of the low-energy MSSM parameters. All parame-
ters with mass dimension are given in GeV. “var” denotes a parameter which we
will specify as required. We give nominal values for the phases, but will vary these
when we study CP-violating effects. Where Xt is given instead of |Af |, then |At| is
evaluated from |Xt +µ∗ cot β|. For some CP-conserving scenarios, we choose MH±

such that MA agrees with the values in the literature. φAf1,2
denotes the phase of

the first and second generation sfermion trilinear couplings, which we always set
to CP-conserving values.



Chapter 3

Renormalisation of the MSSM

3.1 Regularisation and renormalisation

Much of this thesis will be concerned with higher order corrections in the MSSM.1

Observables are evaluated using the Feynman-diagrammatic approach, in which higher

order corrections to a tree-level process are obtained by computing Feynman diagrams

involving one or more loops. These loop calculations involve tensor integrals over the

loop momentum.2 At the one-loop level, each tensor integral can be reduced down to a

finite set of scalar integrals, via a procedure known as Passarino-Veltman Reduction [69].

Such integrals are often ultra-violet (UV) divergent; i.e. they diverge as the loop mo-

mentum gets arbitrarily large. In order to deal with these UV divergences, we employ a

two step process, comprising regularisation and renormalisation.

Regularisation is the procedure by which we express divergences in such a way that

they are well-defined and can be isolated from the rest of an expression. One method

often used in the SM is dimensional regularisation, in which the computation is extended

to D = 4− ǫ dimensions, where ǫ is small and set to zero after the renormalisation pro-

cedure. Divergences then take the form of poles in (D − 4). Dimensional regularisation

is convenient in the SM because it preserves Lorentz and gauge invariance. However,

since it does not preserve supersymmetry, dimensional reduction is often used instead

in the MSSM. Here, while the loop integrals are evaluated in D dimensions, the fields

are evaluated in four dimensions, allowing supersymmetry to be preserved up to at least

two loop order [70, 71].

1For excellent reviews of higher order corrections in the SM, see Refs. [67, 68].
2See Appendix A.1 for the definitions of the loop integrals used in this thesis.

26
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Renormalisation is the procedure by which the divergences, after having been isolated

by regularisation, are systematically absorbed by a consistent re-identification of the free

parameters and fields. The UV divergent bare parameters and fields which appear in the

Lagrangian are interpreted as unphysical. A counterterm is required for each quantity

in order to obtain a UV finite, physical result. The renormalised parameter or field, â

or φ̂, is obtained from the bare parameter or field, a or φ, and its counterterm, δa or

δZφ, as follows;

a = â + δa,

φ = φ̂(1 +
1

2
δZφ). (3.1)

Therefore, to obtain the counterterm for a vertex involving this field or parameter at

tree level, one should replace the bare parameter or field in the Lagrangian with the

physical (renormalised) parameter and the counterterm;

a → a + δa,

φ → φ +
1

2
δZφφ. (3.2)

Note that once this replacement has been made, it is customary to drop the hat from the

renormalised quantity on the right. The value of the counterterm depends on the choice

of renormalisation scheme. There are a number of schemes used in the literature. In the

minimal subtraction (MS) scheme, used in conjunction with dimensional regularisation,

only the divergent parts of the integrals, poles in (D − 4), are included in the countert-

erm. The MS scheme is a slightly modified scheme in which the constant, (log 4π− γE),

which arises alongside poles in (D − 4) in these integrals (see Appendix A.1), is also

absorbed into the counterterm. The DR scheme is similar to the MS scheme except it

is used in conjunction with dimensional reduction, and is hence suitable for the MSSM.

Another popular scheme for both the SM and MSSM is the on-shell scheme, in which

physical masses are identified with the poles of the loop-corrected propagators.

In practice, for our calculations we have made use of the program FeynArts, allow-

ing automated generation of the Feynman diagrams and amplitudes [72–74]. In con-

junction, we have utilised the packages FormCalc and LoopTools for the calculation of

matrix elements and the reduction and numerical evaluation of loop integrals [75]. For

regularisation we use constrained differential renormalisation [76], a scheme available
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in FormCalc which has been shown to be equivalent to dimensional reduction at the

one-loop level [75].

While the MSSM model file which comes with FeynArts contains all the fields and

vertices of the MSSM, it does not contain any counterterms, leaving it up to the user

to choose and implement a renormalisation scheme. We have therefore supplemented

the model files available in FeynArts with our own counterterms for the parameters and

vertices. Arriving at a consistent renormalisation prescription for the complex MSSM

was one of the major tasks of this thesis, so the rest of this and the next chapter will

be devoted to describing our scheme in detail. In this chapter we describe the one-loop

renormalisation of the gauge sector, the electric charge and the Higgs sector. In the fol-

lowing chapter we describe our renormalisation prescription for the chargino–neutralino

sector, which was worked out for the first time in this thesis for the general case of

complex parameters.

3.2 One-loop renormalisation of the gauge sector

For the gauge boson sector, we follow Ref. [67], since this scheme was already imple-

mented into FeynArts for the SM in a way that is easily generalised to the MSSM. The

main difference to be noted between the SM and MSSM is the sign convention for the

covariant derivative, which is given by Dµ = ∂µ + igW̃µ + ig′yφBµ in the MSSM. This

results in the replacement sW → −sW in the corresponding Feynman rules. In Ref. [67],

the parameters are renormalised with the following transformations;

M2
Z → M2

Z + δM2
Z , (3.3)

M2
W → M2

W + δM2
W , (3.4)

sW → sW + δsW , (3.5)

cW → cW + δcW . (3.6)

Using

s2
W = 1 − M2

W

M2
Z

, (3.7)
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we see that δsW and δcW can be derived from δM2
Z and δM2

W ;

δsW =
c2
W

2sW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
and δcW = −sW

cW
δsW . (3.8)

The gauge fields are renormalised as

W± → (1 +
1

2
δZWW )W± (3.9)

and


 Z

γ


 →


 1 + 1

2
δZZZ

1
2
δZZγ

1
2
δZγZ 1 + 1

2
δZγγ





 Z

γ


 . (3.10)

In the Feynman gauge, the renormalised one-particle irreducible (1PI) two-point vertex

functions for gauge fields, V, V ′ = W, Z, γ, are given by

Γ̂V V ′

µν (p) = −igµν(p
2 − M2

V )δV V ′

+ iΣ̂V V ′

µν (p) (3.11)

where p is the incoming momentum and Σ̂V V ′

µν (p) is the self-energy evaluated at p. The

hat notation is used to denote renormalised quantities. Each gauge-boson self-energy

can be expressed in terms of its transverse part, ΣT , and its longitudinal part, ΣL;

Σµν(p) = −
(

gµν −
pµpν

p2

)
Σ̂T (p2) − pµpν

p2
Σ̂L(p2). (3.12)

The renormalised self-energy is related to the unrenormalised self-energy by

Σ̂V V ′

µν (p) = ΣV V ′

µν (p) − gµν

[1

2
(p2 − M2

V )δZV V ′ +
1

2
(p2 − M2

V ′)δZV ′V − δM2
V δV V ′]

. (3.13)

To obtain the renormalisation constants at one-loop order we apply on-shell conditions.

Firstly, the propagators should have unity residues;

lim
p2→M2

V

1

p2 − M2
V

R̃e Γ̂V V
µν (p)ǫν(p) = −iǫµ(p), (3.14)

where ǫ(p) is the polarisation vector. Secondly, the γ and Z should not mix for on-shell

external particle momenta;

R̃e Γ̂γZ
µν (p)ǫν(p)|p2=M2

Z
= 0 = R̃e Γ̂γZ

µν (p)ǫν(p)|p2=0. (3.15)
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Finally, the physical mass, MV , should correspond to the real part of the pole of the

propagator, or, equivalently, the zero of the corresponding 1PI two-point vertex function;

R̃e Γ̂V V
µν (p)ǫν(p)|p2=M2

V
= 0. (3.16)

In the above expressions, R̃e takes the real part of the loop integrals appearing in a self-

energy but not of the mixing matrix elements or parameters appearing as coefficients

of the loop integral. (See Appendix A.2 for a discussion of the relationship between

R̃e, Ĩm, Re and Im.) As shown in Appendix A.2, R̃e will coincide with the usual “Re”

if all parameters are real. Otherwise, imaginary parts of loop integrals resulting from

absorptive effects can appear with imaginary coefficients and thus contribute to the real

part of the self-energy. For the SM and the MSSM with real parameters, since the only

potential source of imaginary coefficients is the quark mixing matrix, which we set to

unity, R̃e may be replaced by Re everywhere. In the complex MSSM, there may be

parameters from other sectors with non-zero phases which can enter the gauge boson

self-energies as coefficients to loop integrals. However, in general, we will not consider

scenarios where the SUSY particle masses are lighter than the gauge boson masses,

so their loop integral contributions to the self-energies will not have absorptive parts.3

The contributions from SM particles will contain absorptive loop integrals, but, without

imaginary coefficients, these will not contribute to the real parts of self-energies. Thus,

R̃e may be replaced by Re in the expressions above even for the complex MSSM. We

leave the notation as it is above in order to agree with the FeynArts SM file, which is

based on Ref. [67]. The renormalisation conditions lead to the following values for the

renormalisation constants;

δZV V = −R̃e (ΣV V
T )′(M2

V ), (3.17)

δZγZ = −2R̃e ΣγZ
T (M2

Z)

M2
Z

, δZZγ =
2R̃eΣZγ

T (0)

M2
Z

, (3.18)

δM2
W = R̃e ΣWW

T (M2
W ) and δM2

Z = R̃e ΣZZ
T (M2

Z), (3.19)

where we have introduced the notation Σ′(k2) ≡ ∂Σ(p2)
∂p2 |p2=k2.

3The light neutralino scenario, given in Table 2.3, has a χ̃0
1 mass well below the W and Z masses,

so will give an absorptive contribution to their self-energies. However, the coefficient appearing in
front of this particular loop integral happens to be real even in the complex MSSM.
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3.3 Charge renormalisation

The electric charge, e, is related to the electromagnetic coupling constant, α = αem,

via e2(0) = 4πα(0), where α(0) = 1/137.0359895 is taken from experiment [28]. It is

renormalised with the transformation

e(0) → e(0)(1 + δZe), (3.20)

where δZe is fixed by the renormalisation condition that the electric charge coincides

with the full eeγ coupling for on-shell external particles, u(p), in the limit of zero photon

momentum;

ū(p) Γ̂eeγ
µ (p, p) u(p)|p2=m2

e
= ū(p)

(
i e(0) γµ

)
u(p). (3.21)

The full eeγ coupling, Γ̂eeγ
µ , consists of the corresponding loop-corrected vertex function

together with the wavefunction renormalisation constants. Applying Equation (3.21) as

in Ref. [67], one finds that

δZe = −1

2
(δZγγ −

sW

cW

δZZγ)

=
1

2
Πγ(0) +

sW

cW

Re ΣT
γZ(0)

M2
Z

(3.22)

where Πγ(0) ≡ ∂Σγγ (k2)
∂k2 |k2=0 is the photon vacuum polarisation. One needs to be careful

about how one computes Πγ(0), as it contains a logarithmic dependence on the fermion

masses. The leptonic contribution can be evaluated from the known lepton masses, while

for the hadronic contribution the quark masses are not well-defined input parameters

since non-perturbative strong interaction effects dominate in this low energy regime.

One option, used in the default settings of FormCalc, is to deliberately choose the quark

masses as effective parameters to produce the “correct” value of Πγ(0).

Instead of using this effective approach, we use ∆α as an input parameter, where

α(M2
Z) =

α(0)

1 − ∆α
(3.23)
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includes the running of the electromagnetic coupling induced by the light fermions,

resummed to all orders, with

∆α ≡ ∆αlept + ∆α
(5)
had ≡ −Re Π̂lept

γ (M2
Z) − Re Π̂had

γ (M2
Z). (3.24)

The hatted quantity Π̂γ is UV-convergent and is given by

Re Π̂γ(M
2
Z) ≡ Re Σγγ(M

2
Z)

M2
Z

− Πγ(0). (3.25)

The abbreviations lept and had refer to the contributions from the leptons, e, µ, τ , and

from the five light quarks u, d, c, s, b, respectively. We use the three-loop value of ∆αlept =

0.031498, calculated in Ref. [77]. We use the recent literature value of ∆α
(5)
had = 0.02758,

which was derived from experimental data in Ref. [78].

One can then rearrange the expression for δZe such that it depends on ∆α instead of

the light fermion masses;

δZe =
1

2
Πγ(0)heavy +

sW

cW

ΣT
γZ(0)

M2
Z

+
1

2
Re Πγ(M

2
Z)light +

1

2
∆α

(3.26)

where Πγ(0)heavy is the photon vacuum polarisation, including only heavy particles (i.e.

not the light fermions e, µ, τ, u, d, c, s, b).

In our calculations, it is appropriate to use the electric charge, e(M2
Z) =

√
4πα(M2

Z),

defined at the electroweak scale, where

e(0) = e(M2
Z)
√

1 − ∆α = e(M2
Z)(1 − ∆α

2
+ ...). (3.27)

By using e(M2
Z) as input instead of e(0), we effectively shift the large-logarithmic part

of the one-loop correction to the electromagnetic coupling, α(M2
Z), into the tree-level

result. At the one-loop level, these parameterisations are equivalent. The bare coupling

should be independent of the parameterisation chosen;

e(M2
Z)

(
1 + δZ

(M2
Z )

e

)
= e(0)(1 + δZe). (3.28)
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Hence, the ∆α included in the tree-level coupling should be compensated with a ∆α in

the counterterm for e(MZ);

e(M2
Z)(1 + δZ

(M2
Z)

e ) = e(M2
Z)(1 − ∆α

2
+ ...)(1 + δZe)

⇒ δZ
(M2

Z)
e = δZe −

∆α

2

=
1

2
Πγ(0)heavy +

sW

cW

ΣT
γZ(0)

M2
Z

+
1

2
Re Πγ(M

2
Z)light. (3.29)

The resulting expression for δZ
(M2

Z )
e contains no explicit dependence on ∆α. All depen-

dence of the electromagnetic coupling on large logarithms involving light fermions has

been factored into α(M2
Z), which takes ∆α as input.

3.4 Renormalisation of the Higgs sector

Higher order corrections in the MSSM Higgs sector are known to be very important,

especially when CP-violation is considered. In the Feynman-diagrammatic approach, the

full one-loop and the leading two-loop corrections to all Higgs self-energies, masses and

mixings, as well as higher-order corrections to further relevant observables are available

in the public code FeynHiggs [41, 79–81]. So that we can use this code to supplement

our one-loop corrections with those leading two-loop corrections, we follow the same

renormalisation scheme, given in Ref. [41], almost exclusively. The scheme is already

valid for complex parameters in the MSSM, taking into account possible CP-violating

phases. Since the implementation of this scheme into FeynArts and the consistent

inclusion of Higgs propagator corrections into our calculations both required numerous

checks and derivations to be carried out, we present the renormalisation scheme used in

this work in some detail below.

3.4.1 Tadpoles

Each of the Higgs tadpole terms is given a counterterm as follows;

Th,H,A → Th,H,A + δTh,H,A. (3.30)
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Note that the tadpole coefficients in terms of the physical fields, h,H and A, are related

to those in Equation (2.6) via the mixing matrices of Equation (2.23). The tree level

values for the tadpole coefficients vanish due to the minimisation of the Higgs potential.

The renormalisation condition imposed is that the tadpole diagrams should also vanish

at the one-loop order. This results in the following counterterms;

δTh,H,A = −Th,H,A. (3.31)

3.4.2 Field renormalisation

One field renormalisation constant is introduced for each Higgs doublet;

H1,2 → (1 +
1

2
δZH1,2)H1,2. (3.32)

These are related to the counterterms for the physical fields by

δZhh = s2
αδZH1

+ c2
αδZH2

, (3.33)

δZAA = s2
βδZH1

+ c2
βδZH2

, (3.34)

δZhH = sαcα(δZH2
− δZH1

), (3.35)

δZAG = sβcβ(δZH2
− δZH1

), (3.36)

δZHH = c2
αδZH1

+ s2
αδZH2

, (3.37)

δZGG = c2
βδZH1

+ s2
βδZH2

, (3.38)

δZH−H+ = s2
βδZH1

+ c2
βδZH2

, (3.39)

δZG−H+ = δZH−G+ = sβcβ(δZH2
− δZH1

), (3.40)

δZG−G+ = c2
βδZH1

+ s2
βδZH2

. (3.41)

The CP-violating mixing counterterms are all zero;

δZhA = δZHA = δZhG = δZHG = 0. (3.42)

As in Ref. [41], we adopt DR renormalisation for the fields, which leads to,

δZDR
H1

= −Re Σ′ div
HH,α=0 (3.43)

δZDR
H2

= −Re Σ′ div
hh,α=0 (3.44)
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where Σ′(p2) = ∂Σ(p2)
∂p2 and “div” indicates that only the parts of the self-energy that are

proportional to ∆ ≡ 2/(4 − D) − γE + log 4π should be included (see Appendix A.1).

We code this into FeynArts using the built-in FormCalc function UVDivergentPart.

3.4.3 Renormalisation of tanβ

The convention used in Ref. [41] for the counterterm of tanβ is the transformation

tanβ → tanβ(1 + δ tan β). (3.45)

We will also need counterterms for other trigonometric expressions involving the angle

β. For example, we can derive

sβ → sβ + sβ c2
β δtβ, (3.46)

cβ → cβ − cβ s2
β δtβ , (3.47)

c2
αβ → c2

αβ − cβsβs2αβ δtβ, (3.48)

s2
αβ → s2

αβ + cβsβs2αβ δtβ, (3.49)

c2
βα → c2

βα − cβsβs2βα δtβ, (3.50)

where we use the abbreviation δ tan β ≡ δtβ , cβ ≡ cos β, sβ ≡ sin β, cαβ ≡ cos(α + β),

sαβ ≡ sin(α + β), cβα ≡ cos(β − α), s2αβ ≡ sin 2(α + β) and s2βα ≡ sin 2(β − α). As

already mentioned, the mixing angles, α, βn and βc are not renormalised. Thus, one

needs to be careful that the β appearing in a vertex being renormalised really arises from

the ratio of the vacuum expectation values of the two Higgs doublets and not from the

mixing angles βc or βn, which are equal to β at the tree level, but are not renormalised.

Following Ref. [41], we adopt DR renormalisation for tanβ. The reason this scheme

has been adopted for FeynHiggs is that there is no obvious physical observable to which

tan β could be related for an on-shell definition. Furthermore, the scheme has been

shown to yield numerically stable and gauge invariant results at one-loop order [41].

The counterterm for tanβ in the DR scheme is given by

δ tanβDR =
1

2
(δZDR

H2
− δZDR

H1
). (3.51)



Renormalisation of the MSSM 36

3.4.4 Mass parameter renormalisation

The mass matrices Mφφχχ and Mφ±χ± from Equation (2.6) are each given a counterterm

as follows;

Mφφχχ → Mφφχχ + δMφφχχ, (3.52)

Mφ±φ± → Mφ±φ± + δMφ±φ±. (3.53)

The resulting transformations on the elements of these matrices lead to mass counter-

terms for the physical fields which can be written entirely in terms of δTh,H,A, δtβ and

δm2
H± , as follows;

δm2
h = δm2

Ac2
βα + δM2

Zs2
αβ +

e

2MZsW cW
(δTHcβαs2

βα − δThsβα(1 + c2
βα))

+δtβsβcβ(−M2
As2βα + M2

Zs2αβ), (3.54)

δm2
hH =

1

2
(−δm2

As2βα − δM2
Zs2αβ) +

e

2MZsW cW
(−δTHs3

βα − δThc
3
βα)

−δtβsβcβ(M2
Ac2βα + M2

Zc2αβ), (3.55)

δm2
H = δm2

As2
βα + δM2

Zc2
αβ − e

2MZsW cW

(δTHcβα(1 + s2
βα) − δThsβαc2

βα)

−δtβsβcβ(−M2
As2βα + M2

Zs2αβ), (3.56)

δm2
AG =

e

2MZsW cW

(δTHsβα − δThcβα) − δtβM2
Asβcβ (3.57)

δm2
G =

e

2MZsW cW
(−δTHcβα − δThsβα), (3.58)

δm2
hA =

e

2MZsW cW
(−δTAsβα), (3.59)

δm2
hG =

e

2MZsW cW
(δTAcβα), (3.60)

δm2
HA = −δm2

hG, (3.61)

δm2
HG = δm2

hA, (3.62)

δm2
H−G+ =

e

2MZsW cW
(δTHsβα − δThcβα − iδTA) − δtβM2

H±sβcβ, (3.63)

δm2
G−H+ = (δm2

H−G+)∗, (3.64)

δm2
G± =

e

2MZsW cW

(−δTHcβα − δThsβα). (3.65)

To fix δm2
H± , we use the mass of the charged Higgs boson, MH± , as input, applying the

on-shell renormalisation condition that its value should agree with the real part of the
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pole of the loop-corrected propagator. This leads to

δM2
H± = Re ΣH+H−(M2

H±). (3.66)

Note that here Re could equally be replaced with R̃e, since the coefficients of the ab-

sorptive parts of the loop integrals which enter the charged Higgs boson self-energy turn

out to be real, even in the MSSM with complex parameters.

3.4.5 Higgs self-energies

The renormalised Higgs self-energies can be expressed in terms of the unrenormalised

self-energies and the renormalisation constants as follows;

Σ̂hh(p
2) = Σhh(p

2) + δZhh(p
2 − m2

h) − δm2
h,

Σ̂hH(p2) = ΣhH(p2) + δZhH

(
p2 − 1

2

(
m2

h + m2
H

))
− δm2

hH ,

Σ̂HH(p2) = ΣHH(p2) + δZHH(p2 − m2
H) − δm2

H ,

Σ̂AA(p2) = ΣAA(p2) + δZAA(p2 − m2
A) − δm2

A,

Σ̂AG(p2) = ΣAG(p2) + δZAG

(
p2 − 1

2
m2

A

)
− δm2

AG,

Σ̂GG(p2) = ΣGG(p2) + δZGG p2 − δm2
G,

Σ̂hA(p2) = ΣhA(p2) − δm2
hA,

Σ̂hG(p2) = ΣhG(p2) − δm2
hG,

Σ̂HA(p2) = ΣHA(p2) − δm2
HA,

Σ̂HG(p2) = ΣHG(p2) − δm2
HG,

Σ̂H−H+(p2) = ΣH−H+(p2) + δZH−H+(p2 − m2
H±) − δm2

H± ,

Σ̂H−G+(p2) = ΣH−G+(p2) + δZH−G+

(
p2 − 1

2
m2

H±

)
− δm2

H−G+,

Σ̂G−H+(p2) = Σ̂∗
H−G+(p2),

Σ̂G−G+(p2) = ΣG−G+(p2) + δZG−G+ p2 − δm2
G±

. (3.67)

We have performed numerous checks on the renormalised Higgs self-energies for UV

convergence. We have also checked that the numerical values of the renormalised

self-energies obtained using the expressions above, in conjunction with FormCalc and

LoopTools, are in agreement with those obtained as output from FeynHiggs at the one-

loop level. This is important since FeynHiggs can also output the two-loop renormalised
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self-energies, which we use later in some parts of our calculations to supplement our one-

loop results. This can only be done when we are certain that the one-loop results and

conventions are in agreement.

3.4.6 Higgs masses

The loop-corrected neutral masses Mha are defined as the real parts of the poles of the

diagonal elements of the 3× 3 Higgs propagator matrix.4 The latter, ∆hHA(p2), is given

by the inverse of the 3 × 3 matrix of irreducible vertex functions, Γ̂hHA(p2);

∆hHA(p2) = −(Γ̂hHA(p2))−1, (3.68)

where

Γ̂hHA(p2) = i(p21l −Mn(p2)), (3.69)

with the Higgs 3 × 3 mass matrix in the {h, H, A} basis defined as

Mn(p2) =




m2
h − Σ̂hh(p

2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂hH(p2) m2
H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂hA(p2) −Σ̂HA(p2) m2
A − Σ̂AA(p2)


 . (3.70)

The 3 × 3 Higgs propagator matrix can be written in terms of its elements as follows;




∆hh ∆hH ∆hA

∆hH ∆HH ∆HA

∆hA ∆HA ∆AA


= i




p2 − m2
h + Σ̂hh(p

2) Σ̂hH(p2) Σ̂hA(p2)

Σ̂hH(p2) p2 − m2
H + Σ̂HH(p2) Σ̂HA(p2)

Σ̂hA(p2) Σ̂HA(p2) p2 −m2
A + Σ̂AA(p2)




−1

.

(3.71)

4In fact, the 3 × 3 propagator matrix is an approximation to the 6 × 6 propagator matrix which also
includes mixing with the neutral would-be Goldstone boson, G, the Z boson and the photon. For
the Higgs mass calculation, this has an effect of sub-leading two-loop order less than some other
two-loop effects which are also not taken into account in FeynHiggs. Thus, a 3 × 3 propagator
matrix is used in FeynHiggs. See Ref. [41] for details. In this thesis, we will include the mixing
effects with the G and Z bosons when we perform one-loop vertex calculations involving external
Higgs and/or Z bosons. Here they are a true one-loop effect, although numerically small, so must
be included in a full one-loop calculation. See Section 5.4.
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Evaluating the inverse of Γ̂hHA gives, for the diagonal Higgs propagators (i=h,H,A);

∆ii(p
2) =

i

p2 − m2
i + Σ̂eff

ii (p2)
(3.72)

with the effective self-energy, Σ̂eff
ii (p2), defined to include the usual self-energy plus the

mixing contributions with the remaining two Higgs bosons (labelled j and k, where i, j

and k are simply some permutation of h, H and A and are therefore not summed over);

Σ̂eff
ii (p2) = Σ̂ii(p

2) − i
2Γ̂ij(p

2)Γ̂jk(p
2)Γ̂ki(p

2) − Γ̂2
ki(p

2)Γ̂jj(p
2) − Γ̂2

ij(p
2)Γ̂kk(p

2)

Γ̂jj(p2)Γ̂kk(p2) − Γ̂2
jk(p

2)
. (3.73)

We identify the poles of the diagonal Higgs propagators of Equation (3.72) with the

physical Higgs masses. The complex pole M2
i of the propagator ∆ii is the solution of

M2
i − m2

i + Σ̂eff
ii (M2

i ) = 0. (3.74)

We write the complex pole as

M2
i = M2

i − iMiΓi (3.75)

where Mi is the loop-corrected Higgs mass, and Γi its width. One can solve Equation

(3.74) iteratively to find the loop-corrected mass, Mi, in terms of the lowest order mass,

mi, where i = h, H, A. We implemented this iterative method of solving Equation

(3.74) in Mathematica. We evaluated the self-energies at complex squared momentum,

p2 ≡ p2
r + ip2

i , by using the truncated expansion

Σ̂ij(p
2) = Σ̂ij(p

2
r) + i p2

i Σ̂
′
ij(p

2
r). (3.76)

We have checked that the higher order terms in this expansion are numerically small.

These expansions for the individual self-energies are then inserted into the expression for

the effective self-energy in Equation (3.73). We do not expand Σ̂eff
ii (p2) about p2

r directly;

instead we expand the individual terms on the right hand side of Equation (3.73) which

gives more numerically reliable results. In contrast to our iterative method of solving

Equation (3.74) directly to find the physical masses, note that FeynHiggs actually uses a

diagonalisation procedure, iteratively finding the eigenvalues of the 3×3 mass matrix Mn,

and then verifying that each eigenvalue is indeed the appropriate solution of Equation
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(3.74). As discussed in the next section, we find agreement between the two methods.

The loop-corrected mass eigenvalues are defined with Mh1
≤ Mh2

≤ Mh3
.

3.4.7 Numerical results for Higgs masses in the CPX scenario

As an example, we show numerical results for the Higgs masses evaluated from FeynHiggs

2.6.5 for the CPX scenario defined in Table 2.3. Figure 3.1(a) shows the three neu-

tral Higgs masses, Mhi
, as a function of the on-shell charged Higgs mass, MH± , with

tan β fixed at 5.5. We see that arbitrarily small values for the lightest Higgs mass, Mh1

are theoretically accessible for low MH± . For large MH±, Mh1
reaches an upper limit

of around 111 GeV in this example. Mh2
and Mh3

increase with MH± for large MH± .

These masses are evaluated at the two-loop level, i.e. they include the complete one-loop

contributions from the full MSSM, along with the leading two-loop corrections available

within FeynHiggs.

Figure 3.1(b) shows the various contributions to the lightest Higgs mass, as a func-

tion of MH± , with tanβ = 5.5. We see that the one-loop mass exhibits a very different

behaviour to the tree-level Higgs mass, emphasising the importance of loop corrections

in the Higgs sector. The most important contribution to the one-loop correction comes

from loops involving (s)top quarks, due to the large top Yukawa coupling.

We have also computed the one-loop Higgs masses using the iterative method described

in the previous section. Our results are in perfect numerical agreement with those

obtained from FeynHiggs. This is true whether we use as input our own one-loop renor-

malised self-energies computed using FormCalc and LoopTools or the one- or two-loop

self-energies obtained from FeynHiggs. Therefore we can incorporate the higher order

corrections available within FeynHiggs with confidence that our schemes and conven-

tions are compatible.

Figure 3.1(b) shows the importance of including the leading two-loop corrections, which

are of O(αtαs).
5 These can lead to corrections to the one-loop mass of some 10−30 GeV.

5We do not include further two-loop corrections available within FeynHiggs for the MSSM with real
parameters only. For the MSSM with complex parameters, FeynHiggs can provide an interpolated
result for those corrections based on the results for real parameters. However, since this method
does not always give numerically stable results for scenarios with maximal CP-violating phases, like
the CPX scenario, we do not include these further two-loop corrections; we only include the O(αtαs)
corrections.
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Figure 3.1: (a) Neutral Higgs masses in the CPX scenario with tan β = 5.5, evaluated at the two-loop
level using FeynHiggs 2.6.5, shown as a function of MH± . (b) Lightest Higgs mass in
CPX scenario with tanβ = 5.5 evaluated using FeynHiggs-2.6.5, shown as a function
of MH± . The plot shows the tree-level mass, the one-loop mass evaluated including
only top quarks and squarks in the loops, the one-loop mass evaluated including all
MSSM particles in the loops and the “two-loop” mass which also includes the O(αtαs)
corrections.

In practice hereafter, we obtain our Higgs masses directly from FeynHiggs, so as to allow

these important two-loop effects to be included.

3.4.8 Higgs propagator corrections

In the previous section we found the diagonal Higgs propagators to be given by Equation

(3.72). We can also obtain the off-diagonal Higgs propagators from the inverse of Γ̂hHA

(i 6= j). These are also momentum dependent, but we have dropped the p2 below for

simplicity;

∆ij =
Γ̂ijΓ̂kk − Γ̂2

jkΓ̂ki

Γ̂iiΓ̂jjΓ̂kk + 2Γ̂ijΓ̂jkΓ̂ki − Γ̂iiΓ̂
2
jk − Γ̂jjΓ̂

2
ki − Γ̂kkΓ̂

2
ij

. (3.77)

We then find that the effective self-energy from Equation (3.73) can be written in terms

of Higgs self-energies weighted by ratios of the off-diagonal and diagonal propagators as



Renormalisation of the MSSM 42

follows;

Σ̂eff
ii (p2) = Σ̂ii(p

2) +
∆ij(p

2)

∆ii(p2)
Σ̂ij(p

2) +
∆ik(p

2)

∆ii(p2)
Σ̂ik(p

2). (3.78)

In order to understand which Feynman diagrams these loop-corrected propagators and

their ratios represent, we expand the expressions in terms of the Higgs self-energies

(which are momentum-dependent but again we drop the p2 for simplicity) and the tree-

level propagators in a simplified 2 × 2 mixing scenario, where mixing with the third

Higgs boson, k, can be ignored. Then

∆ii(p
2)2×2 =

i (p2 − m2
j + Σ̂jj)

(p2 − m2
i + Σ̂ii)(p2 − m2

j + Σ̂jj) − Σ̂2
ij

(3.79)

=
i(Dj + Σ̂jj)

DiDj [(1 + Σ̂ii/Di)(1 + Σ̂jj/Dj) − Σ̂2
ij/(DiDj)]

= i(
1

Di
− Σ̂ii

D2
i

+
Σ̂2

ii

D3
i

+
Σ̂2

ij

D2
i Dj

+ O(3 − loop)) (3.80)

where Di ≡ p2 −m2
i . We show this diagrammatically for ∆HH in Figure 3.2(a). We see

that ∆ii(p
2) consists of the tree level propagator, i/Di, at the lowest order. Then at one

loop it includes the diagonal self-energy, Σ̂ii, with tree-level propagators, i/Di, either

side. Then at two loop there are two diagrams; one with two diagonal self-energies, Σ̂ii,

and three tree-level propagators, i/Di, in between and either side, and one with two

mixing self-energies, Σ̂ij , one propagator i/Dj in between and two propagators, i/Di,

either side.

Similarly in the 2 × 2 mixing case, the off-diagonal propagator can be written as

∆ij(p
2)2×2 =

−i Σ̂ij

(p2 − m2
i + Σ̂ii)(p2 − m2

j + Σ̂jj) − Σ̂2
ij

(3.81)

=
−iΣ̂ij

DiDj[(1 + Σ̂ii/Di)(1 + Σ̂jj/Dj) − Σ̂2
ij/(DiDj)]

= i(− Σ̂ij

DiDj
+

Σ̂ijΣ̂ii

D2
i Dj

+
Σ̂ijΣ̂jj

DiD2
j

+ O(3 − loop)) (3.82)

where the lowest order diagram consists of one mixing self-energy, Σ̂ij , with two propa-

gators, i/Di and i/Dj either side, and so on. We show this diagrammatically for ∆HA

in Figure 3.2(b).
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It is also useful to have an expansion of the ratio of propagators in the 2 × 2 mixing

case;

∆ij(p
2)

∆ii(p2) 2×2

=
Σ̂ij

p2 − m2
j + Σ̂jj

= −Σ̂ij

Dj

(1 − Σ̂jj

Dj

+
Σ̂2

jj

D2
j

−
Σ̂3

jj

D3
j

+ ...)

= −Σ̂ij

Dj
+

Σ̂ijΣ̂jj

D2
j

+ O(3 − loop). (3.83)

One can think of the diagrams for this ratio as being obtained from the diagrams for

∆ij(p
2) by “dividing out” the parts of diagrams which start and end on the ith propa-

gator, i/Di, as shown diagrammatically in Figure 3.2(c).

H H H H H H H A H

Σ̂HH Σ̂HH Σ̂HH Σ̂HA Σ̂AH

∆HH =
2 × 2

+O(3 − loop)+ + +

(a)

H A H H A H A A

Σ̂HA Σ̂HH Σ̂HA Σ̂HA Σ̂AA

∆HA =
2 × 2

+O(3 − loop)+ +

(b)

A A A

Σ̂HA Σ̂HA Σ̂AA

∆HA
∆HH

=
2 × 2

+ O(3 − loop)+

(c)

Figure 3.2: Diagrams for propagator corrections in the simplified 2 × 2 H-A mixing case; (a) the
diagonal propagator, ∆HH , (b) the off-diagonal propagator, ∆HA, and (c) the ratio of
propagators, ∆HA/∆HH .
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3.4.9 Ẑ matrices for external Higgs bosons

Where possible in the SM, physical fields, φi, with the same quantum numbers are usually

renormalised using an on-shell condition, Γ̂ijφi(p)|p2=m2
j

= 0 for i 6= j, to ensure that the

fields do not mix on the mass shell of the physical particles at the loop-level. However,

in our choice of renormalisation scheme for the Higgs fields in Equations (3.43) and

(3.44), the lowest order Higgs bosons, h, H, A, are not forced to obey such a condition.

Instead the DR renormalisation scheme for Higgs fields was chosen for convenience and

agreement with Ref. [41]. An artefect of this choice is that the loop-corrected states,

h1, h2, h3, are actually mixtures of h, H, A. Therefore, in order to ensure the correct

on-shell properties of Higgs bosons appearing as external particles in physical processes,

and thus a properly normalised S-matrix, one has to use finite normalisation factors, Ẑij,

to account for the mixing between the Higgs bosons. A vertex with an external Higgs

boson i, (i = h, H, A) has the correctly normalised form;

√
Ẑi(Γ̂i + ẐijΓ̂j + ẐikΓ̂k + ...). (3.84)

Here Γ̂i are the renormalised one-particle irreducible vertices, j, k are the remaining two

of h, H, A and are not summed over, and the ellipsis refers to the mixing contributions

with the Goldstone and Z bosons. Ignoring the latter for now (see Section 5.4), the

normalisation of the wavefunctions can be expressed in terms of a 3 × 3 non-unitary

matrix Ẑij =
√

ẐiẐij, with Ẑii = 1. Rather than using the definition for the Ẑ matrix

given in Ref. [41], where the self-energies are evaluated at the real part of the complex

poles, M2
ha,b,c

, we use the method of Ref. [30], which has also been implemented in more

recent versions of FeynHiggs. Here all self-energies in the Ẑ matrix are evaluated at the

complex poles M2
ha,b,c

. The Ẑ matrix elements are chosen such that

limp2→M2
ha

− i
p2−M2

ha

(Ẑ · Γ̂hHA · ẐT )hh = 1, (3.85)

limp2→M2
hb

− i
p2−M2

hb

(Ẑ · Γ̂hHA · ẐT )HH = 1, (3.86)

limp2→M2
hc

− i
p2−M2

ha

(Ẑ · Γ̂hHA · ẐT )AA = 1, (3.87)

with




Γ̂ha

Γ̂hb

Γ̂hc


 =




√
Ẑh

√
ẐhẐhH

√
ẐhẐhA√

ẐHẐHh

√
ẐH

√
ẐHẐHA√

ẐAẐAh

√
ẐAẐAH

√
ẐA


 ·




Γ̂h

Γ̂H

Γ̂A


 . (3.88)
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The resulting expressions, which we use in our implementation in FeynArts, are

Ẑh =
1

∂
∂p2

i
∆hh(p2)

∣∣∣∣∣
p2=M2

ha

, ẐH =
1

∂
∂p2

i
∆HH(p2)

∣∣∣∣∣
p2=M2

hb

, ẐA =
1

∂
∂p2

i
∆AA(p2)

∣∣∣∣∣
p2=M2

hc

(3.89)

and

ẐhH =
∆hH(p2)

∆hh(p2)

∣∣∣∣∣
p2=M2

ha

, ẐHh =
∆Hh(p

2)

∆HH(p2)

∣∣∣∣∣
p2=M2

hb

, ẐAh =
∆Ah(p

2)

∆AA(p2)

∣∣∣∣∣
p2=M2

hc

,

ẐhA =
∆hA(p2)

∆hh(p2)

∣∣∣∣∣
p2=M2

ha

, ẐHA =
∆HA(p2)

∆HH(p2)

∣∣∣∣∣
p2=M2

hb

, ẐAH =
∆AH(p2)

∆AA(p2)

∣∣∣∣∣
p2=M2

hc

. (3.90)

We choose a = 1, b = 2 and c = 3, but in principle other combinations are possible.

Notice that Ẑij corresponds to the ratio of propagators described by the diagrams in

Figure 3.2(c), i.e. it describes the transition of the ith Higgs boson into the jth Higgs

boson. Also notice that Ẑi can be written as

Ẑi =
1

1 + Σ̂eff ′
ii (p2)

∣∣∣∣∣
p2=M2

ha

. (3.91)

where Σ̂eff ′
ii (p2) ≡ ∂

∂p2 Σ̂
eff
ii (p2). To see what this represents, we expand the diagonal

Higgs propagator, ∆ii(p
2) about the complex mass solution, p2 = M2

i = M2
ha

, where

M2
i − m2

i + Σ̂eff
ii (M2

i ) = 0;

∆ii(p
2) =

i

p2 − m2
i + Σ̂eff

ii (p2)

=
i

p2 −M2
i

(
1

1 + (Σ̂eff
ii )′(M2

i ) + O(p2 −M2
i )

)

≈ i

p2 −M2
i

Ẑi

=
i

p2 − M2
i + iMiΓi

Ẑi

= ∆BW
i (p2)Ẑi (3.92)

where the approximation is true if p2 ≈ M2
i . Thus, near its pole, ∆ii(p

2) can be repre-

sented by a Breit-Wigner propagator, ∆BW
i (p2), with mass Mi and width Γi, weighted

by a normalisation factor, Ẑi, evaluated at the complex pole.
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Figure 3.3: Ẑ matrix elements for the lightest Higgs boson in the CPX scenario evaluated at two-loop
level using FeynHiggs 2.6.5 (a) shown as a function of Mh1

, with tanβ = 5.5, and (b)
shown as a function of φAt

, with tanβ = 7 and Mh1
= 45 GeV. (In both cases, MH±

was varied as input to produce the displayed variation in Mh1
.)

3.4.10 Numerical results for Ẑ matrices in the CPX scenario

As an example, we show numerical results for the Ẑ matrices evaluated from FeynHiggs

2.6.5 for the CPX scenario defined in Table 2.3. Figure 3.3(a) shows the variation in the

Ẑ1i matrix elements for the lightest Higgs boson as a function of its mass for tanβ = 5.5.

We see that when Mh1
is less than around 80 GeV, its on-shell composition is a mixture

of the tree-level CP eigenstates, h, H, A, with a particularly large CP-odd component,

|Ẑ13| ≈ 0.9. For larger masses near 111 GeV, the lightest Higgs boson is more SM-like,

with |Ẑ11| ≈ 1.

Figure 3.3(b) shows the variation in the Ẑ matrix elements for the lightest Higgs boson

as a function of the phase of the third generation sfermion trilinear coupling, φAt . As

already discussed, the largest contribution to the Higgs masses and self-energies comes

from the (s)top loops, so this phase plays a very important role both at one- and two-

loop level.6 When this phase is zero or a multiple of π, the scenario is close to being

CP-conserving (although the non-zero phase of M3 still induces some CP-violation in the

Higgs mass predictions at the two-loop level). Consequently, the CP-odd content of the

6In fact it is the phase of the product µAt which plays a large role since the CP-violating effects in
the Higgs sector are most significant for large Im(µAt)/M

2
SUSY [29].
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Figure 3.4: The “CPX hole” in the Mh1
-tan β plane (reproduced from Ref. [27]). The light

green (dark green) shows the region excluded by LEP at 95% (99.7%) confidence
level in the CPX scenario with mt = 174.3GeV.

lightest Higgs boson is small; it will mostly be made up of h and H . However, when φAt is

π/2, as it is in the CPX scenario, |Ẑ13| is close to one. This means that the lightest Higgs

boson is mostly made up of the CP-odd neutral Higgs boson, A, which will drastically

change its couplings to other particles. For example, its coupling to vector bosons is

highly suppressed. This reduced coupling to the Z boson is part of the reason for the

“CPX hole”, the parameter region in the Mh1
-tanβ plane where a very light Higgs boson

cannot be excluded by LEP (see Figure 3.4, where we show this unexcluded parameter

region, as determined by the LEP collaborations, reproduced from Ref. [27]). The “CPX

hole” refers to the white region with Mh1
∼ 40 GeV and tanβ ∼ 4−8. In this region, the

main production process of e+e → Z∗ → Zh1, h1hj would have been suppressed due to

the small CP-even content of the light Higgs boson. For a more detailed discussion of the

bounds from Higgs boson searches in this scenario and improved theoretical predictions

for the exact size and shape of the hole, see Ref. [30].

We have checked that our values for the Ẑ matrix elements obtained using Equations

(3.89) and (3.90) agree numerically with those obtained as output of FeynHiggs. In

practice, we use the Ẑ matrix values from FeynHiggs in our code as this allows us to

easily incorporate leading two-loop corrections.
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3.4.11 Comparison of full propagator matrix calculation with

factorisation into production and decay processes

As well as calculations involving Higgs bosons on external legs, where Ẑ matrix elements

must be used, we will also carry out calculations involving Higgs bosons on internal

parts of diagrams. Here, for a complete result, including all CP-violating effects, the

full momentum dependent, loop-corrected Higgs propagators, ∆ij(p
2), from Equations

(3.72) and (3.77), should be included into the amplitude as follows;

∑

i,j

Γ̂i∆ij(p
2)Γ̂j (3.93)

where Γ̂i are the one-particle irreducible vertices and i, j = h, H, A are summed over.

We have coded this full method into FeynArts and FormCalc for the calculations of the

2 → 2 processes studied in Chapters 9-10, using Equations (3.72) and (3.77) to evaluate

∆ij , with the momentum-dependent two-loop self-energies from FeynHiggs as input.

However, in some situations, a good approximation can be found without requiring the

full momentum dependence of the self-energies. If p2 ≈ M2
hi

, then, using Equation

(3.92), we can show that the amplitude in Equation (3.93) can be approximated using

∑

i

(ẐiiΓ̂i + ẐijΓ̂j + ẐikΓ̂k) ∆BW
i (p2) (ẐiiΓ̂i + Ẑij Γ̂j + ẐikΓ̂k). (3.94)

The Breit-Wigner propagator captures the main part of the p2 dependence of the prop-

agator near the pole. The self-energies contained in the Ẑ matrix elements, the mass,

Mhi
, and the width, Γhi

, are all evaluated for on-shell values of the momenta. If the

internal Higgs boson can be on-shell and the assumptions of the narrow width approxi-

mation, described in Appendix C, apply, we can then factorise the cross-section for the

full process into the separate production and decay of the Higgs boson. We will discuss

this further in Chapter 9.

Another approximation that can be made is to evaluate all self-energies at p2 = 0. In

this case, the Ẑ matrix reduces to a unitary matrix, U, which diagonalises the Higgs

mass matrix, Mn(0), of Equation (3.70), evaluated at p2 = 0. The U matrix elements

are available as part of the standard output of FeynHiggs, and can be used to obtain

effective couplings to internal Higgs bosons.



Chapter 4

Renormalisation in the

chargino–neutralino sector

In this chapter we describe our scheme for the one-loop renormalisation of the fields and

parameters in the chargino–neutralino sector of the MSSM with CP-violating phases.

A significant number of one-loop calculations have been carried out in the chargino–

neutralino sector of the CP-conserving MSSM with real parameters, see e.g. Ref. [82–89],

with the renormalisation schemes of Refs. [88,90] also applicable for complex parameters.

More recently, CP-odd observables have been calculated at one-loop level in the MSSM

with CP-violating phases, see e.g. Refs. [90–92], but these calculations did not always

require a dedicated renormalisation scheme as the specific observables calculated were

UV-finite.

In order to renormalise the fields and parameters in this sector we introduce counter-

terms and renormalisation constants of a similar form to Ref. [86]. However, we apply

different on-shell conditions for the mass parameters and we extend the formalism to

the general case including CP-violation, properly taking into account imaginary parts

arising both from the complex MSSM parameters and from absorptive parts of loop

integrals. Unlike Ref. [86], we will allow non-zero phases for M1 and µ, which appear

in the chargino–neutralino sector at the tree level, as well as Af and M3, which play a

role in the chargino–neutralino sector at the one-loop level and two-loop level respec-

tively. To supplement the existing FeynArts MSSM model file, which contains tree level

vertices but does not contain any counterterms, we have written an additional model

file which implements the scheme we develop below, along with the renormalisation for

other sectors described in the previous chapter. This implementation will have many

applications for loop calculations in the general MSSM with CP-violating phases.

49
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4.1 Renormalisation transformations

The chargino and neutralino mass matrices, of Equations (2.29) and (2.31) respectively,

each receive a counterterm as follows,

X → X + δX, Y → Y + δY, (4.1)

where δX and δY are 2×2 and 4×4 matrices respectively. Their elements contain three

new renormalisation constants, δM1, δM2 and δµ, defined by the transformations;

M1 → M1 + δM1,

M2 → M2 + δM2,

µ → µ + δµ, (4.2)

as well as renormalisation constants from other sectors. Writing out the matrix elements

explicitly, we have

δY11 = δM1,

δX11 = δY22 = δM2,

δX22 = δY34 = δY43 = δµ,

δX12 =
√

2δ(MW sin β) =
δM2

W sβ√
2MW

+ MWsβc2
βδtβ,

δX21 =
√

2δ(MW cos β) =
δM2

W cβ√
2MW

− MW cβs
2
βδtβ ,

δY14 = δY41 = δ(MZsβsW ) = δsWMZsβ +
δM2

Z

2MZ
sWsβ + sβc

2
βδtβsW MZ ,

δY23 = δY32 = δ(MZcβcW ) = δcWMZcβ +
δM2

Z

2MZ
cW cβ − cβs2

βδtβcW MZ ,

δY24 = δY42 = −δ(MZsβcW ) = −δcWMZsβ − δM2
Z

2MZ

cW sβ − sβc2
βδtβcW MZ ,

δY13 = δY31 = −δ(MZcβsW ) = −δsWMZcβ − δM2
Z

2MZ

sW cβ + cβs
2
βδtβsW MZ . (4.3)

In order to be completely general for the case of CP-violation, we introduce renormal-

isation constants separately for the left and right-handed components of the incoming
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and outgoing fermion fields, as follows,

ωLχ̃−
i → (1 + 1

2
δZL

−)ijωLχ̃−
j , χ̃−

i ωR → χ̃−
i (1 + 1

2
δZ̄L

−)ijωR,

ωRχ̃−
i → (1 + 1

2
δZR

−)ijωRχ̃−
j , χ̃−

i ωL → χ̃−
i (1 + 1

2
δZ̄R

−)ijωL,

ωLχ̃0
i → (1 + 1

2
δZL

0 )ijωLχ̃0
j , χ̃0

i ωR → χ̃0
i (1 + 1

2
δZ̄L

0 )ijωR,

ωRχ̃0
i → (1 + 1

2
δZR

0 )ijωRχ̃0
j , χ̃0

i ωL → χ̃0
i (1 + 1

2
δZ̄R

0 )ijωL, (4.4)

where j is summed over 1,2 (1,2,3,4) for the charginos (neutralinos).1 Note that we

have introduced barred renormalisation constants for outgoing fermions and incoming

antifermions. In the CP-conserving MSSM, one can write down an equivalent renormal-

isation scheme where these are related to the non-barred renormalisation constants for

incoming fermions and outgoing antifermions by a Hermitian conjugate, i.e. one can

make the replacement δZ̄ij → δZ†
ij. For the MSSM with CP-violating phases, we choose

to treat these quantities as independent at this stage, with more discussion to follow.

Inserting the above transformations into the Born Lagrangian of Equation (2.30), and

decomposing fermionic self-energies as

Σij(p
2) = 6p ωLΣL

ij(p
2) + 6p ωRΣR

ij(p
2) + ωLΣSL

ij (p2) + ωRΣSR
ij (p2), (4.5)

we obtain the renormalised self-energies for the charginos;

Σ̂R
ij,−(p2) = ΣR

ij,−(p2) +
1

2
(δZR

− + δZ̄R
−)ij,

Σ̂L
ij,−(p2) = ΣL

ij,−(p2) +
1

2
(δZL

− + δZ̄L
−)ij,

Σ̂SR
ij,−(p2) = ΣSR

ij,−(p2) − [V δX†UT +
1

2
V X†UT δZR

− +
1

2
δZ̄L

−V X†UT ]ij ,

Σ̂SL
ij,−(p2) = ΣSL

ij,−(p2) − [U∗δXV † +
1

2
U∗XV †δZL

− +
1

2
δZ̄R

−U∗XV †]ij. (4.6)

1The renormalisation constants for incoming and outgoing χ̃+
i fields can be obtained from the outgoing

and incoming field renormalisation constants for χ̃−

i . We define the field renormalisation in terms
of χ̃−

i in order to agree with the MSSM model file in FeynArts.
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Similarly, using Equation (2.32), we obtain the renormalised self-energies for the neu-

tralinos;

Σ̂R
ij,0(p

2) = ΣR
ij,0(p

2) +
1

2
(δZR

0 + δZ̄R
0 )ij ,

Σ̂L
ij,0(p

2) = ΣL
ij,0(p

2) +
1

2
(δZL

0 + δZ̄L
0 )ij ,

Σ̂SR
ij,0(p

2) = ΣSR
ij,0(p

2) − [NδY †NT +
1

2
NY †NT δZR

0 +
1

2
δZ̄L

0 NY †NT ]ij ,

Σ̂SL
ij,0(p

2) = ΣSL
ij,0(p

2) − [N∗δY N † +
1

2
N∗Y N †δZL

0 +
1

2
δZ̄R

0 N∗Y N †]ij . (4.7)

The renormalised two-point vertex functions for neutralinos and charginos are given by

Γ̂
(2)
ij (p2) = i( 6p − mi)δij + iΣ̂ij(p

2) (4.8)

and the propagators by

Ŝ
(2)
ij (p2) = (Γ̂

(2)
ij (p2))−1. (4.9)

4.2 Field renormalisation

4.2.1 Field renormalisation in a general scheme

The field renormalisation constants are fixed by requiring that the renormalised two-

point vertex functions, Γ̂
(2)
ij , are diagonal for on-shell external particle momenta;

Γ̂
(2)
ij χ̃i(p)|p2=m2

χ̃j
= 0, (4.10)

χ̃i(p)Γ̂
(2)
ij |p2=m2

χ̃i
= 0, (4.11)

and that the propagators have unity residues;

lim
p2→m2

χ̃i

1

6p − mχ̃i

Γ̂
(2)
ii χ̃i(p) = iχ̃i, (4.12)

lim
p2→m2

χ̃i

χ̃i(p)Γ̂
(2)
ii

1

6p − mχ̃i

= iχ̃i, (4.13)

where χ̃i = χ̃−
i (i, j = 1, 2) or χ̃0

i (i, j = 1, 2, 3, 4) and i 6= j. Note that we have

written these on-shell conditions in terms of the tree-level masses, mχ̃i
. In Sections 4.3
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and 4.4, when we discuss the parameter renormalisation, we will see that, in general,

there will be a distinction between the tree-level and loop-corrected masses for at least

three of the six neutralinos and charginos. We denote the loop-corrected masses as

Mχ̃i
. For the one-loop field renormalisation conditions given above, the effect of using

Mχ̃i
instead of mχ̃i

is of higher order. In the MSSM with real parameters, the above

conditions, together with the mass renormalisation conditions, are enough to ensure the

correct on-shell conditions at one-loop. For the complex MSSM, we must also ensure

that the loop-corrected propagator has the same Lorentz structure in the on-shell limit

as it does at tree level. In the on-shell limit, where p2 → Mχ̃2
i
, we can use the on-shell

field renormalisation conditions to write the propagator in terms of the diagonal two

point vertex function only, to obtain

iŜ
(2)
ii (p2) =

6p [(1 + Σ̂L
ii)ωL + (1 + Σ̂R

ii)ωR] + (mi − Σ̂SR
ii )ωL + (mi − Σ̂SL

ii )ωR

p2(1 + Σ̂L
ii)(1 + Σ̂R

ii) − (mi − Σ̂SL
ii )(mi − Σ̂SR

ii )
. (4.14)

In order to ensure that the on-shell Ŝ
(2)
ii has only a scalar and vector part (and no

dependence on γ5), we require two additional renormalisation conditions to make the ωL

and ωR coefficients equal;

Σ̂L
ii(m

2
χ̃i

) = Σ̂R
ii(m

2
χ̃i

), (4.15)

Σ̂SL
ii (m2

χ̃i
) = Σ̂SR

ii (m2
χ̃i

). (4.16)

Equation (4.15) will turn out to be automatically satisfied even in the complex MSSM.

Equation (4.16) is automatically fulfilled in the MSSM with real parameters, due to

the CP invariance relations between the self-energies given in Equation (A.11), but it

will give a non-trivial condition in the CP-violating case. We start by applying the

diagonality condition. Using Equation (4.5), we insert Equation (4.8) into Equation

(4.10) for i 6= j and apply 6p χ̃i(p)|p2=m2
χ̃j

= mχ̃j
χ̃i. This gives

ωRmχ̃j
Σ̂L

ij(m
2
χ̃j

) + ωLmχ̃j
Σ̂R

ij(m
2
χ̃j

) + ωRΣ̂SR
ij (m2

χ̃j
) + ωLΣ̂SL

ij (m2
χ̃j

) = 0. (4.17)

Similarly, Equation (4.11) leads to

ωLmχ̃i
Σ̂L

ij(m
2
χ̃i

) + ωRmχ̃i
Σ̂R

ij(m
2
χ̃i

) + ωRΣ̂SR
ij (m2

χ̃i
) + ωLΣ̂SL

ij (m2
χ̃i

) = 0. (4.18)

Next, we insert the renormalised chargino self-energies of Equation (4.6) into Equation

(4.17), and use (V X†UT )ij = (U∗XV †)ij = δijmχ̃j
. The ωR coefficient of the resulting
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equation gives

mχ̃j
ΣL

ij(m
2
χ̃j

) + ΣSR
ij (m2

χ̃j
) − V δX†UT +

1

2
mχ̃j

δZL
ij −

1

2
mχ̃i

δZR
ij = 0, (4.19)

while the ωL coefficient gives

mχ̃j
ΣR

ij(m
2
χ̃j

) + ΣSL
ij (m2

χ̃j
) − U∗δXV † +

1

2
mχ̃j

δZR
ij −

1

2
mχ̃i

δZL
ij = 0. (4.20)

Multiplying Equations (4.19) and (4.20) by mχ̃j
and mχ̃i

respectively and adding the

two equations, we obtain

δZL
−,ij =

2

m2
χ̃±

i

− m2
χ̃±

j

[
m2

χ̃±

j
ΣL

−,ij(m
2
χ̃±

j
) + mχ̃±

i
mχ̃±

j
ΣR

−,ij(m
2
χ̃±

j
) + mχ̃±

i
ΣSL

−,ij(m
2
χ̃±

j
)

+mχ̃±

j
ΣSR

−,ij(m
2
χ̃±

j
) − mχ̃±

i

(
U∗δXV †)

ij
− mχ̃±

j

(
V δX†UT

)
ij

]
, (4.21)

while multiplying Equations (4.19) and (4.20) by mχ̃i
and mχ̃j

respectively and adding

the two equations, we obtain

δZR
−,ij =

2

m2
χ̃±

i

− m2
χ̃±

j

[
m2

χ̃±

j
ΣR

−,ij(m
2
χ̃±

j
) + mχ̃±

i
mχ̃±

j
ΣL

−,ij(m
2
χ̃±

j
) + mχ̃±

i
ΣSR

−,ij(m
2
χ̃±

j
)

+mχ̃±

j
ΣSL

−,ij(m
2
χ̃±

j
) − mχ̃±

j

(
U∗δXV †)

ij
− mχ̃±

i

(
V δX†UT

)
ij

]
. (4.22)

Inserting the renormalised chargino self-energies into Equation (4.18) and following the

same procedure gives the barred off-diagonal constants for charginos;

δZ̄
L/R
−,ij =

2

m2
χ̃±

j

− m2
χ̃±

i

[
m2

χ̃±

i
Σ

L/R
−,ij (m

2
χ̃±

i
) + mχ̃±

i
mχ̃±

j
Σ

R/L
−,ij (m

2
χ̃±

i
) + mχ̃±

i
Σ

SL/SR
−,ij (m2

χ̃±

i
)

+mχ̃±

j
Σ

SR/SL
−,ij (m2

χ̃±

i
) − mχ̃±

i/j

(
U∗δXV †)

ij
− mχ̃±

j/i

(
V δX†UT

)
ij

]
. (4.23)

In order to find the diagonal field renormalisation constants, we insert Equation (4.8)

into Equation (4.12) for i = j, which gives

0 = lim
p2→m2

χ̃i

1

6p − mχ̃i

[
6p ωLΣ̂L

ii(p
2) + 6p ωRΣ̂R

ii(p
2) + ωLΣ̂SL

ii (p2) + ωRΣ̂SR
ii (p2)

]
χ̃i(p). (4.24)



Renormalisation in the chargino–neutralino sector 55

Subtracting and adding the term mχ̃i
[ωLΣ̂L

ii(p
2) + ωRΣ̂R

ii(p
2)] allows us to write

0 =
(
ωLΣ̂L

ii(m
2
χ̃i

) + ωRΣ̂R
ii(m

2
χ̃i

)
)
χ̃i + lim

p2→m2
χ̃i

6p + mχ̃i

p2 − mχ̃2
i

[
mχ̃i

ωLΣ̂L
ii(p

2)

+mχ̃i
ωRΣ̂R

ii(p
2) + ωLΣ̂SL

ii (p2) + ωRΣ̂SR
ii (p2)

]
χ̃i(p). (4.25)

The term in the square brackets can be expanded about the pole mass, leaving us,

at one-loop order, with terms proportional to the derivatives of the self-energies with

respect to p2, evaluated at the tree-level mass; Σ′
ii(m

2
χ̃i

) ≡ ∂Σii

∂p2 |p2=m2
χ̃i

. Evaluating the

limit in Equation (4.25) then leads to

0 = ωLΣ̂L
ii(m

2
χ̃i

) + ωRΣ̂R
ii(m

2
χ̃i

) + m2
χ̃i

Σ̂L′

ii (m2
χ̃i

) + m2
χ̃i

Σ̂R′

ii (m2
χ̃i

)

+mχ̃i
Σ̂SL′

ii (m2
χ̃i

) + mχ̃i
Σ̂SR′

ii (m2
χ̃i

). (4.26)

Taking the ωL and ωR coefficients, we obtain two equations;

0 = Σ̂L
ij(m

2
χ̃i

) + m2
χ̃i

[Σ̂L′

ii (m2
χ̃i

) + Σ̂R′

ii (m2
χ̃i

)] + mχ̃i
[Σ̂SL′

ii (m2
χ̃i

) + Σ̂SR′

ii (m2
χ̃i

)], (4.27)

0 = Σ̂R
ij(m

2
χ̃i

) + m2
χ̃i

[Σ̂L′

ii (m2
χ̃i

) + Σ̂R′

ii (m2
χ̃i

)] + mχ̃i
[Σ̂SL′

ii (m2
χ̃i

) + Σ̂SR′

ii (m2
χ̃i

)]. (4.28)

Equation (4.13) also leads to Equations (4.27) and (4.28) when the ωL and ωR coeffi-

cients are taken. Inserting the renormalised chargino self-energies of Equation (4.6) into

Equations (4.27) and (4.28) we obtain

1

2
(δZR

−,ii + δZ̄R
−,ii) = −ΣR

−,ii(m
2
χ̃±

i
) − m2

χ̃±

i

[
ΣL′

−,ii(m
2
χ̃±

i
) + ΣR′

−,ii(m
2
χ̃±

i
)
]

−mχ̃±

i

[
ΣSL′

−,ii(m
2
χ̃±

i
) + ΣSR′

−,ii(m
2
χ̃±

i
)
]
, (4.29)

1

2
(δZL

−,ii + δZ̄L
−,ii) = −ΣL

−,ii(m
2
χ̃±

i
) − m2

χ̃±

i

[
ΣL′

−,ii(m
2
χ̃±

i
) + ΣR′

−,ii(m
2
χ̃±

i
)
]

−mχ̃±

i

[
ΣSL′

−,ii(m
2
χ̃±

i
) + ΣSR′

−,ii(m
2
χ̃±

i
)
]
. (4.30)

The renormalisation condition in Equation (4.15) is now automatically satisfied, so we

now apply the last remaining condition in Equation (4.16) to give, for the charginos,

1

2
mχ̃±

i

[
(δZL

−,ii − δZ̄L
−,ii)−(δZR

−,ii − δZ̄R
−,ii)

]
=

[
ΣSL

−,ii(m
2
χ̃±

i
)−ΣSR

−,ii(m
2
χ̃±

i
) + (V δX†UT )ii

−(U∗δXV †)ii

]
. (4.31)
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There is still some freedom in the choice of renormalisation constants since there are

only three equations (Equations (4.29), (4.30) and (4.31)) and four unknowns, δZL
ii ,

δZR
ii , δZ̄L

ii and δZ̄R
ii . In order to achieve symmetry in our expressions, we choose as a

fourth condition;

δZR
ii − δZ̄R

ii = δZ̄L
ii − δZL

ii . (4.32)

This leads to the following diagonal chargino field renormalisation constants;

δZ
L/R
−,ii = − Σ

L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i

[
ΣSL′

−,ii(m
2
χ̃±

i
)+ΣSR′

−,ii(m
2
χ̃±

i
)
]

± 1

2mχ̃±

i

[
ΣSL

−,ii(m
2
χ̃±

i
)−ΣSR

−,ii(m
2
χ̃±

i
) + (V δX†UT )ii−(U∗δXV †)ii

]
, (4.33)

δZ̄
L/R
−,ii = − Σ

L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i

[
ΣSL′

−,ii(m
2
χ̃±

i
)+ΣSR′

−,ii(m
2
χ̃±

i
)
]

∓ 1

2mχ̃±

i

[
ΣSL

−,ii(m
2
χ̃±

i
)−ΣSR

−,ii(m
2
χ̃±

i
) + (V δX†UT )ii−(U∗δXV †)ii

]
. (4.34)

Inserting the neutralino self-energies of Equation (4.7) into Equations (4.17) and (4.18),

and following the same procedure as for the charginos, leads to the following off-diagonal

field renormalisation constants for the neutralinos;

δZ
L/R
0,ij =

2

m2
χ̃0

i
− m2

χ̃0
j

[
m2

χ̃0
j
Σ

L/R
0,ij (m2

χ̃0
j
) + mχ̃0

i
mχ̃0

j
Σ

R/L
0,ij (m2

χ̃0
j
) + mχ̃0

i
Σ

SL/SR
0,ij (m2

χ̃0
j
)

+mχ̃0
j
Σ

SR/SL
0,ij (m2

χ̃0
j
) − mχ̃0

i/j

(
N∗δY N †)

ij
− mχ̃0

j/i

(
NδY †NT

)
ij

]
, (4.35)

δZ̄
R/L
0,ij =

2

m2
χ̃0

j
− m2

χ̃0
i

[
m2

χ̃0
i
Σ

L/R
0,ji (m2

χ̃0
i
) + mχ̃0

j
mχ̃0

i
Σ

R/L
0,ji (m2

χ̃0
i
) + mχ̃0

j
Σ

SL/SR
0,ji (m2

χ̃0
i
)

+mχ̃0
i
Σ

SR/SL
0,ji (m2

χ̃0
i
) − mχ̃0

j/i

(
N∗δY N †)

ji
− mχ̃0

i/j

(
NδY †NT

)
ji

]
. (4.36)

Inserting the neutralino self-energies into Equations (4.27) and (4.28) and applying the

conditions of Equations (4.16) and (4.32), leads to the following diagonal field renormal-

isation constants for the neutralinos;

δZ
L/R
0,ii =−Σ

L/R
0,ii (m2

χ̃0
i
)−m2

χ̃0
i

[
ΣL′

0,ii(m
2
χ̃0

i
)+ΣR′

0,ii(m
2
χ̃0

i
)
]
−mχ̃0

i

[
ΣSL′

0,ii (m
2
χ̃0

i
)+ΣSR′

0,ii (m2
χ̃0

i
)
]

± 1

2mχ̃0
i

[
ΣSL

0,ii(m
2
χ̃0

i
)−ΣSR

0,ii(m
2
χ̃0

i
) + (NδY †NT )ii−(N∗δY N †)ii

]
,

δZ̄
L/R
0,ii =−Σ

R/L
0,ii (m2

χ̃0
i
)−m2

χ̃0
i

[
ΣL′

0,ii(m
2
χ̃0

i
)+ΣR′

0,ii(m
2
χ̃0

i
)
]
−mχ̃0

i

[
ΣSL′

0,ii (m
2
χ̃0

i
)+ΣSR′

0,ii (m2
χ̃0

i
)
]

∓ 1

2mχ̃0
i

[
ΣSL

0,ii(m
2
χ̃0

i
)−ΣSR

0,ii(m
2
χ̃0

i
) + (NδY †NT )ii−(N∗δY N †)ii

]
. (4.37)
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Because neutralinos are Majorana particles, their self-energies obey the C-invariance

relations given in Equation (A.12) in Appendix A. Using these relations, it can be

shown that

δZ
L/R
0,ij = δZ̄

R/L
0,ji (4.38)

for any i, j = 1, 2, 3, 4. That is, the left-handed (right-handed) field renormalisation

constant for incoming particles and outgoing antiparticles is the same as the right-

handed (left-handed) field renormalisation constant for outgoing particles and incoming

antiparticles. Thus, the barred renormalisation constants for neutralinos are fixed once

the non-barred renormalisation constants are specified. However, since this does not

apply to charginos, which are Dirac fermions, we will keep the formulae general and

continue to refer to the barred renormalisation constants for outgoing fermions and

incoming antifermions. This will help to ensure that the appropriate renormalisation

constants are used in each vertex counterterm.

4.2.2 Field renormalisation in a scheme without absorptive

loop integrals

Suppose we discard any absorptive parts of loop integrals occurring in the field renormal-

isation constants, by inserting the symbol R̃e in front of any self-energies (see Appendix

A.2 for a discussion of the relationship between R̃e, Ĩm and the usual Re and Im). With

this procedure, our treatment would become the same as eg. Refs. [67, 93]. Recall that

R̃e takes the real part of any loop integrals occurring in the self-energies, but not of any

mixing matrix elements or parameters appearing as coefficients to those loop integrals.

This means that it removes any absorptive loop integrals, but retains all dispersive loop

integrals, even if they are multiplied by an imaginary coefficient. Then we have

R̃e δZ
L/R
−,ij =

2

m2
χ̃±

i

− m2
χ̃±

j

R̃e
[
m2

χ̃±

j
Σ

L/R
−,ij (m

2
χ̃±

j
) + mχ̃±

i
mχ̃±

j
Σ

R/L
−,ij (m

2
χ̃±

j
) + mχ̃±

i
Σ

SL/SR
−,ij (m2

χ̃±

j
)

+ mχ̃±

j
Σ

SR/SL
−,ij (m2

χ̃±

j
) − mχ̃±

i/j

(
U∗δXV †)

ij
− mχ̃±

j/i

(
V δX†UT

)
ij

]
, (4.39)

R̃e δZ̄
L/R
−,ij =

2

m2
χ̃±

j

− m2
χ̃±

i

R̃e
[
m2

χ̃±

i
Σ

L/R
−,ij (m

2
χ̃±

i
) + mχ̃±

i
mχ̃±

j
Σ

R/L
−,ij (m

2
χ̃±

i
) + mχ̃±

i
Σ

SL/SR
−,ij (m2

χ̃±

i
)

+ mχ̃±

j
Σ

SR/SL
−,ij (m2

χ̃±

i
) − mχ̃±

i/j
(U∗δXV †)ij − mχ̃±

j/i
(V δX†UT )ij

]
, (4.40)
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R̃e δZ
L/R
−,ii = − R̃e Σ

L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i
R̃e

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i
R̃e

[
ΣSL′

−,ii(m
2
χ̃±

i
)

+ΣSR′

−,ii(m
2
χ̃±

i
)
]
± 1

2mχ̃±

i

R̃e
[
ΣSL

−,ii(m
2
χ̃±

i
)−ΣSR

−,ii(m
2
χ̃±

i
)+(V δX†UT −U∗δXV †)ii

]
,

(4.41)

R̃e δZ̄
L/R
−,ii = − R̃e Σ

L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i
R̃e

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i
R̃e

[
ΣSL′

−,ii(m
2
χ̃±

i
)

+ΣSR′

−,ii(m
2
χ̃±

i
)
]
∓ 1

2mχ̃±

i

R̃e
[
ΣSL

−,ii(m
2
χ̃±

i
)−ΣSR

−,ii(m
2
χ̃±

i
)+(V δX†UT −U∗δXV †)ii

]
.

(4.42)

We evaluate the Hermitian conjugate, (R̃e δZ̄L/R)†−,ij = (R̃e δZ̄L/R)∗−,ji, and apply the

relations between fermion self-energies due to CPT -invariance given in Equation (A.9),

to obtain

(R̃e δZ̄
L/R
−,ij ) †=

2

m2
χ̃±

i

− m2
χ̃±

j

R̃e
[
m2

χ̃±

j
Σ

L/R ∗
−,ji (m2

χ̃±

j
)+mχ̃±

j
mχ̃±

i
Σ

R/L ∗
−,ji (m2

χ̃±

j
)+mχ̃±

j
Σ

SL/SR ∗
−,ji (m2

χ̃±

j
)

+ mχ̃±

i
Σ

SR/SL ∗
−,ji (m2

χ̃±

j
) − mχ̃±

j/i
(UδX∗V T )ij − mχ̃±

i/j
(V ∗δXTU †)ji

]

=
2

m2
χ̃±

i

− m2
χ̃±

j

R̃e
[
m2

χ̃±

j
Σ

L/R
−,ij (m

2
χ̃±

j
)+mχ̃±

j
mχ̃±

i
Σ

R/L
−,ij (m

2
χ̃±

j
)+mχ̃±

j
Σ

SR/SL
−,ij (m2

χ̃±

j
)

+ mχ̃±

i
Σ

SL/SR
−,ij (m2

χ̃±

j
) − mχ̃±

j/i
(UδX∗V T )ij − mχ̃±

i/j
(V †δXU∗)ij

]

=R̃e δZ
L/R
−,ij . (4.43)

Similarly, again using Equation (A.9);

(R̃e δZ̄
L/R
−,ii )†= − R̃e Σ

L/R ∗
−,ii (m2

χ̃±

i
)−m2

χ̃±

i
R̃e

[
ΣL ∗′

−,ii(m
2
χ̃±

i
)+ΣR ∗′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i
R̃e

[
ΣSL ∗′

−,ii (m2
χ̃±

i
)

+ΣSR ∗′
−,ii (m2

χ̃±

i
)
]
∓ 1

2mχ̃±

i

R̃e
[
ΣSL ∗

−,ii (m2
χ̃±

i
)−ΣSR ∗

−,ii (m2
χ̃±

i
)+(V ∗δXTU †−UδX∗V T )ii

]

= − R̃e Σ
L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i
R̃e

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i
R̃e

[
ΣSR′

−,ii(m
2
χ̃±

i
)

+ΣSL′

−,ii(m
2
χ̃±

i
)
]
∓ 1

2mχ̃±

i

R̃e
[
ΣSR

−,ii(m
2
χ̃±

i
)−ΣSL

−,ii(m
2
χ̃±

i
)+(V ∗δXTU †−UδX∗V T )ii

]

= − R̃e Σ
L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i
R̃e

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
−mχ̃±

i
R̃e

[
ΣSL′

−,ii(m
2
χ̃±

i
)

+ΣSR′

−,ii(m
2
χ̃±

i
)
]
± 1

2mχ̃±

i

R̃e
[
ΣSL

−,ii(m
2
χ̃±

i
)−ΣSR

−,ii(m
2
χ̃±

i
)+(V δX†UT −U∗δXV †)ii

]

= R̃e δZ
L/R
−,ii . (4.44)
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Hence the chargino field renormalisation constants obey R̃e δZ̄
L/R
−,ij = (R̃e δZL/R)†−,ij for

any i, j = 1, 2. The same procedure can be followed for neutralinos to show that

R̃e δZ̄
L/R
0,ij = (R̃e δZL/R)†0,ij for any i, j = 1, 2, 3, 4. This is in addition to the relation

for neutralinos in Equation (4.38). Thus, the hermiticity relation between the field

renormalisation constants for incoming and outgoing particles is restored when only dis-

persive parts of loop integrals are considered. The barred constants, δZ̄ij, are different

from the hermitian conjugates, δZ†
ij, in their absorptive (Ĩm) parts only.

Also note that the ± 1
2m

χ̃±

i

term in Equation (4.44) is purely imaginary when only dis-

persive parts are included (see Equation (A.10)) and can be written

± i

mχ̃±

i

[
Im(R̃e ΣSL

−,ii(m
2
χ̃±

i
)) + Im(V δX†UT )ii

]
. (4.45)

A similar simplification is possible for neutralinos.

For the above scheme where absorptive parts are discarded, the following definitions for

the renormalisation transformations for the chargino and neutralino fields will suffice;

ωLχ̃−
i → (1 + 1

2
δZ̃L)ijωLχ̃−

j , χ̃−
i ωR → χ̃−

i (1 + 1
2
δZ̃L †)ijωR,

ωRχ̃−
i → (1 + 1

2
δZ̃R)ijωRχ̃−

j , χ̃−
i ωL → χ̃−

i (1 + 1
2
δZ̃R †)ijωL,

ωLχ̃0
i → (1 + 1

2
δZ̃0)ijωLχ̃0

j , χ̃0
i ωR → χ̃0

i (1 + 1
2
δZ̃0 †)ijωR,

ωRχ̃0
i → (1 + 1

2
δZ̃0 ∗)ijωRχ̃0

j , χ̃0
i ωL → χ̃0

i (1 + 1
2
δZ̃0 T )ijωL, (4.46)

where j is summed over 1,2,(3,4) for the charginos (neutralinos). Dirac fermions receive

independent renormalisation constants for the left and right fields, δZ̃
L/R
ij ≡ R̃e δZ

L/R
−,ij ,

while the Majorana neutralino fields require only one renormalisation constant, δZ̃0
ij ≡

R̃e δZL
0,ij, due to Equation (4.38). The field renormalisation constants for incoming

antifermions are simply given by the Hermitian conjugate of the field renormalisation

constants for outgoing fermions.

The same formulae for δZ̃
L/R
ij and δZ̃0

ij can be arrived at by the following simplified

renormalisation conditions;

R̃e Γ̂
(2)
ij χ̃j(p)|p2=m2

j
= 0, (4.47)

lim
p2→m2

i

1

6p − mi
R̃e Γ̂

(2)
ii χ̃i(p) = χ̃i,

R̃e Σ̂SL
ii (m2

i ) = R̃e Σ̂SR
ii (m2

i ). (4.48)
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The corresponding renormalisation constants are in agreement with the formulae that

appear in the thesis of Ref. [94], where absorptive parts of loop integrals were not

included in the field renormalisation constants.

4.2.3 Discussion of absorptive parts

As shown in the previous section, the requirement of separate renormalisation constants

for outgoing fermions and incoming antifermions arises from the non-zero absorptive

parts of loop integrals. The issue of the treatment of absorptive parts of loop integrals is

not a straightforward one. Indeed, strictly speaking, only stable particles should appear

on external legs of Feynman diagrams in a quantum field theory, so that the formalism of

in and out states at t → ±∞ can be applied. However, in practice, most of the particles

in the SM, and beyond, are unstable, so one must find some way to treat the imaginary

parts of the loop integrals that arise in the self-energies of the unstable particles, that

are related to their non-zero decay widths. At one-loop, these absorptive parts are only

an issue in CP-violating theories (such as the complex MSSM or the SM when the full

CKM quark mixing matrix is used), since the squared matrix element of a process at

one-loop is evaluated, up to contributions of two-loop order, as

|M|2 = |Mborn|2 + 2 Re (M∗
bornM1−loop) (4.49)

where Mborn and M1−loop are the tree-level and one-loop matrix elements of the pro-

cess respectively. In a CP-conserving theory, an imaginary quantity can only occur in

this expression if an unstable particle above threshold gives rise to a loop integral with

absorptive parts in M1−loop. However, since there are no complex parameters in the cou-

plings or mixing parameters, there will be no imaginary quantity in Mborn or M1−loop

which can then multiply the imaginary loop integral to give a real contribution to |M|2.
Even if imaginary loop integrals arise, they will not contribute to the squared matrix

element at one-loop. Of course, if one includes two-loop contributions to |M|2, then

absorptive parts may contribute. Conversely, in a CP-violating theory, the absorptive

parts of loop integrals for unstable particles may enter the squared matrix element at

the one-loop level since they can be multiplied by imaginary coefficients in Mborn or

M1−loop arising from the complex parameters.

In the literature, the issue of the treatment of absorptive parts of loop integrals in

field renormalisation constants has found considerable attention, mostly in the context
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of the renormalisation of the SM, see e.g. Refs. [67, 93, 95–98]. A possibility that has been

advocated for instance in Refs. [67, 93], is to discard the absorptive parts of loop inte-

grals in the field renormalisation constants, as we have illustrated in Section 4.2.2, while

keeping any complex parameters in the coefficients, indicated by inserting the symbol

R̃e into the renormalisation conditions. We have shown that, with this choice, the her-

miticity relation between the field renormalisation constants for incoming and outgong

particles, δZ̄
L/R
ij = (δZ

L/R
ij )†, is restored. However, the on-shell conditions of Equations

(4.10), (4.11), (4.12) and (4.13) are no longer satisfied since non-zero absorptive parts

of loop integrals can cause mixing between on-shell states and give contributions to the

propagator residues. Instead, the weaker conditions of Equations (4.47) and (4.48) are

satisfied. Therefore, for a full one-loop calculation, one must include all reducible, mix-

ing self-energy diagrams and one will have to introduce additional finite normalisation

constants to ensure the external particles have the correct on-shell properties, similar to

the Ẑ factors we have introduced in the Higgs sector in Section 3.4.9.2

General renormalisation conditions without the R̃e, as we have used in Section 4.2.1,

were suggested in Ref. [96] for the SM, as a way of ensuring the correct on-shell con-

ditions and gauge-independent matrix elements. In this scheme, the renormalisation

constants are chosen to exactly eliminate all (dispersive and absorptive) contributions

to the off-diagonal parts of the on-shell self-energies. There is consequently no mixing

between on-shell states and the on-shell propagators remain diagonal even if absorp-

tive parts of loop integrals arise. Thus, additional reducible self-energy diagrams and

normalisation factors for external particles need not be considered. The trade-off is

that one needs a field renormalisation constant, δZ, for outgoing particles and incoming

antiparticles, and a separate field renormalisation constant, δZ̄, for incoming particles

and outgoing antiparticles, no longer given by the hermitian conjugate of the former.

Although the hermiticity relation between renormalisation constants is not valid in this

case, the authors of Ref. [96] showed that the CPT theorem still holds. In particular,

the total widths of particles and antiparticles coincide, although not derived from the

same renormalisation constant.

Nevertheless, the issue of an appropriate field renormalisation of unstable particles on ex-

ternal legs remains under debate in the literature. For the class of processes, χ̃0
i → χ̃0

jha,

2To the author’s knowledge, to date, no such Z factors have been derived for fermions in the literature.
The derivation, beyond the scope of this work, is less straightforward than the derivation for scalar
fields due to the Lorentz structure of the fermion propagators.
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that we studied in Ref. [99], it turns out that all absorptive parts of external neutralino

self-energy diagrams cancel when the squared matrix element for the full process is

summed over left- and right-handed spins. This is due to the relation between the left-

and right-handed components of the (Majorana) neutralinos. Hence, for the numerical

results presented in Ref. [99] and in Chapters 6-7 of this thesis, absorptive parts of loop

integrals do not contribute and the schemes with and without the insertion of R̃e are

equivalent.

However this argument does not apply for (Dirac) charginos nor for spin-dependent

calculations. Our main focus in this thesis will be processes with external neutrali-

nos; we have only considered processes involving charginos when carrying out checks

of UV-finiteness, which will not be affected by these absorptive parts. In Chapter 8,

we calculate partial decay widths involving Majorana neutralinos with left-handed and

right-handed polarisations, and thus, absorptive parts will contribute. In Section 4.5,

we will show examples where the absorptive contributions to the field renormalisation

constants are numerically relevant and the general scheme of Section 4.2.1 should be

used in order to ensure the correct on-shell properties are satisfied. For the rest of this

thesis we will use the general scheme, including absorptive parts of loop integrals, unless

otherwise stated.

4.2.4 Field renormalisation in the CP-conserving case

In the MSSM with real parameters, we can use the CP invariance relations between

the self-energies given in Equation (A.11) to simplify our expressions for the diagonal

field renormalisation constants from Equations (4.33) and (4.37). Also, in this case, the

± 1
2mχ̃i

terms in the diagonal constants (see Equation (4.45)) vanish. For the charginos,

Equation (4.33) simplifies to

δZ
L/R
−,ii,CPC = − Σ

L/R
−,ii (m

2
χ̃±

i
)−m2

χ̃±

i

[
ΣL′

−,ii(m
2
χ̃±

i
)+ΣR′

−,ii(m
2
χ̃±

i
)
]
− 2mχ̃±

i
ΣSL′

−,ii(m
2
χ̃±

i
)

= δZ̄
L/R
−,ii,CPC (4.50)

where CPC denotes the CP-conserving MSSM. For the neutralinos we can use Equations

(A.11) and (A.12) to simplify Equation (4.37) to

δZ
L/R
0,ii,CPC = δZ̄

L/R
0,ii,CPC = −Σ

L/R
0,ii (m2

χ̃0
i
) − 2m2

χ̃0
i
ΣL′

0,ii(m
2
χ̃0

i
) − 2mχ̃0

i
ΣSL′

−,ii(m
2
χ̃0

i
). (4.51)
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The off-diagonal field renormalisation constants can also be simplified in the CP-conserving

case to

δZ
L/R
−,ij,CPC =

2

m2
χ̃±

i

− m2
χ̃±

j

[
m2

χ̃±

j
Σ

L/R
−,ij (m

2
χ̃±

j
) + mχ̃±

i
mχ̃±

j
Σ

R/L
−,ij (m

2
χ̃±

j
) + mχ̃±

i
Σ

SL/SR
−,ij (m2

χ̃±

j
)

+mχ̃±

j
Σ

SR/SL
−,ij (m2

χ̃±

j
) − mχ̃±

i/j

(
UδXV T

)
ij
− mχ̃±

j/i

(
V δXT UT

)
ij

]

= δZ̄
L/R
−,ji,CPC. (4.52)

A similar simplification is possible for the neutralinos. Up to absorptive parts, the above

formulae are in agreement with Ref. [86], where CP-conservation is assumed. As already

discussed, in the CP-conserving MSSM, absorptive parts of loop integrals will not con-

tribute to the squared matrix element of a process at one-loop order, and so will not

affect results for physical quantities. Therefore, if one equivalently discards the absorp-

tive contributions to the field renormalisation constants, then the field renormalisation

constants become real and the hermiticity relation, δZ̄ij = δZ†
ij, is trivially satisfied.

4.3 Determining the loop-corrected masses

In order to find the loop-corrected neutralino and chargino masses, we consider the

diagonal fermion propagators. We need not consider mixing between the fields, because

we have applied on-shell conditions which ensure that such contributions to the masses

vanish. We identify the poles of the fermion propagator in Equation (4.14) with the

physical fermion masses. The complex pole, Mχ̃2
i
, of the propagator, Ŝ

(2)
ii , is found by

solving

M2
χ̃i

(
1 + Σ̂L

ii(M2
χ̃i

)
)(

1 + Σ̂R
ii(p

2)
)
−

(
mχ̃i

− Σ̂SL
ii (M2

χ̃i
)
)(

mi − Σ̂SR
ii (M2

χ̃i
)
)

= 0 (4.53)

where χ̃i = χ̃−
i (i, j = 1, 2) or χ̃0

i (i, j = 1, 2, 3, 4). We write the complex pole as

M2
χ̃i

= M2
χ̃i
− iMχ̃i

Γχ̃i
, where Mχ̃i

is the loop-corrected mass and Γχ̃i
is the width. To

obtain the complex pole up to terms of two-loop order, the self-energies can be evaluated

at the tree-level masses, m2
χ̃i

. We thus find that at one-loop level, the physical masses

may be written in terms of the renormalised self-energies as follows;

Mχ̃i
= mχ̃i

(1 − 1

2
Re[Σ̂L

ii(m
2
χ̃i

) + Σ̂R
ii(m

2
χ̃i

)]) − 1

2
Re[Σ̂SL

ii (m2
χ̃i

) + Σ̂SR
ii (m2

χ̃i
)]

= mχ̃i
+ ∆mχ̃i

(4.54)
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where

∆mχ̃i
≡ −mχ̃i

2
Re[Σ̂L

ii(m
2
χ̃i

) + Σ̂R
ii(m

2
χ̃i

)] − 1

2
Re[Σ̂SL

ii (m2
χ̃i

) + Σ̂SR
ii (m2

χ̃i
)]. (4.55)

Note that, due to the conditions in Equations (4.15) and (4.16), we have identical renor-

malised diagonal left and right self-energies in the on-shell limit, so we may further

simplify the masses to

Mχ̃i
= mχ̃i

[1 − Re Σ̂L
ii(m

2
χ̃i

)] − Re Σ̂SL
ii (m2

χ̃i
)

= mχ̃i
[1 − Re Σ̂R

ii(m
2
χ̃i

)] − Re Σ̂SR
ii (m2

χ̃i
)

= mχ̃i
[1 − Re Σ̂L

ii(m
2
χ̃i

)] − Re Σ̂SR
ii (m2

χ̃i
)

= mχ̃i
[1 − Re Σ̂R

ii(m
2
χ̃i

)] − Re Σ̂SL
ii (m2

χ̃i
) (4.56)

for both charginos and neutralinos.

4.4 Parameter renormalisation

For the parameter renormalisation of M1, M2, µ, we use an on-shell approach, because

this is convenient in processes with external charginos and neutralinos. In the chargino–

neutralino sector, we have five independent input parameters, three with mass dimension,

|M1|, |M2| and |µ|, and two CP-violating phases, φM1
and φµ (as discussed in Section

2.6, we use a convention where the phase of M2 is set to zero). These five parameters

determine the tree-level masses of the six fields, χ̃+
1,2, χ̃0

1,2,3,4. We fix three of the six

masses on-shell by requiring that the pole masses, Mχ̃i
, coincide with their tree level

values, mχ̃i
;

0 =
meχi

2
Re[Σ̂L

ii(m
2
eχi

) + Σ̂R
ii(m

2
eχi

)] +
1

2
Re[Σ̂SL

ii (m2
eχi

) + Σ̂SR
ii (m2

eχi
)]. (4.57)

This gives us three equations to help us fix δM2 and the real and imaginary parts of

δM1 and δµ. The remaining three loop-corrected masses will differ from the tree-level

masses by ∆mχ̃i
, given in Equation (4.55). For charginos on-shell, the condition given

in Equation (4.57) becomes

(V δX†UT +U∗δXV †)ii =mχ̃±

i
Re [ΣL

−,ii(m
2
χ̃±

i
)+ΣR

−,ii(m
2
χ̃±

i
)] + Re [ΣSL

−,ii(m
2
χ̃±

i
)+ΣSR

−,ii(m
2
χ̃±

i
)].

(4.58)
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We expand the left-hand side of this equation to give

(U∗δXV † + V δX†UT )ii = Re δM2(U
∗
i1V

∗
i1 + Vi1Ui1)

+Re δµ(U∗
i2V

∗
i2 + Vi2Ui2) + iIm δµ(U∗

i2V
∗
i2 − Vi2Ui2)

+δX12(U
∗
i1V

∗
i2 + Vi2Ui1) + δX21(V

∗
i1U

∗
i2 + Ui2Vi1), (4.59)

where δX12 and δX21 are real since we do not have CP-violation at tree-level in the

gauge boson sector.

Similarly for neutralinos on-shell, the condition given in Equation (4.57) becomes

(Y δN †Y T + Y ∗δNY †)ii =mχ̃0
i
Re [ΣL

0,ii(m
2
χ̃0

i
) + ΣR

0,ii(m
2
χ̃0

i
)] + Re (ΣSR

0,ii(m
2
χ̃0

i
) + ΣSL

0,ii(m
2
χ̃0

i
)).

(4.60)

We expand the left-hand side of this equation to give

(N∗δY N † + NδY †NT )ii = Re δM1 ((N∗
i1)

2 + N2
i1) + iIm δM1 ((N∗

i1)
2 − N2

i1)

+Re δM2 ((N∗
i2)

2 + N2
i2) + 2δY13(N

∗
i1N

∗
i3 + Ni1Ni3)

+2δY14(N
∗
i1N

∗
i4 + Ni1Ni4) + 2δY23(N

∗
i2N

∗
i3 + Ni2Ni3)

+2δY24(N
∗
i2N

∗
i4 + Ni2Ni4) − 2Re δµ (N∗

i3N
∗
i4 + Ni3Ni4)

−2iIm δµ (N∗
i3N

∗
i4 − Ni3Ni4). (4.61)

Introducing the following shorthand;

C(i) ≡ Re
[
mχ̃+

i
[ΣL

−,ii(m
2
χ̃+

i
) + ΣR

−,ii(m
2
χ̃+

i
)] + ΣSL

−,ii(m
2
χ̃+

i
) + ΣSR

−,ii(m
2
χ̃+

i
)
]

−2δX21 Re(Ui2Vi1) − 2δX12 Re(Ui1Vi2),

N(i) ≡ Re
[
mχ̃0

i
[ΣL

0,ii(m
2
χ̃0

i
) + ΣR

0,ii(m
2
χ̃0

i
)] + ΣSL

0,ii(m
2
χ̃0

i
) + ΣSR

0,ii(m
2
χ̃0

i
)
]
− 4δY13 Re(Ni1Ni3)

−4δY23 Re(Ni2Ni3) − 4δY14 Re(Ni1Ni4) − 4δY24 Re(Ni2Ni4), (4.62)

we can write the condition of (4.60) for the i′th neutralino mass to be on-shell as

Re δM1 ((N∗
i′1)

2 + N2
i′1) + iIm δM1 ((N∗

i′1)
2 − N2

i′1) + Re δM2 ((N∗
i′2)

2 + N2
i′2)

−2Re δµ (N∗
i′3N

∗
i′4 + Ni′3Ni′4) − 2iIm δµ (N∗

i′3N
∗
i′4 − Ni′3Ni′4) = N(i′),

(4.63)
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and the condition of Equation (4.58) for the i′′th chargino mass to be on-shell as

Re δM2(U
∗
i′′1V

∗
i′′1+Vi′′1Ui′′1)+Re δµ(U∗

i′′2V
∗
i′′2+Vi′′2Ui′′2)+iIm δµ(U∗

i′′2V
∗
i′′2−Vi′′2Ui′′2)=C(i′′).

(4.64)

4.4.1 Parameter renormalisation in the case where M1, M2

and µ are real

If there is no CP-violation in the neutralino sector at tree level, i.e. M1, M2 and µ are

real, then the rows of the mixing matrices, U , V and N , are either purely real or purely

imaginary, so that the mixing matrix elements in Equations (4.63) and (4.63) always

appear in combinations where the conjugate symbol can be dropped. Coefficients for

the imaginary parts of δM1 and δµ vanish since NijNik = N∗
ijN

∗
ik and UijVik = V ∗

ijU
∗
ik.

Thus we only have three unknowns; δM1 = Re δM1, δM2 = Re δM2 and δµ = Re δµ.

These are found by solving three equations, chosen from

2Re δM1 N2
i′1 + 2Re δM2 N2

i′2 − 4Re δµ Ni′3Ni′4 = N(i′), (4.65)

2Re δM2Vi′′1Ui′′1 + 2Re δµVi′′2Ui′′2 = C(i′′). (4.66)

We implemented three options into FeynArts, the first with two neutralinos and one

chargino mass on-shell, the second with three neutralino masses on-shell and the third

with two chargino masses and one neutralino mass on-shell.

Real M1, M2, µ: χ̃0
i
, χ̃0

j
, χ̃

+

k on-shell

Assuming real M1, M2 and µ, we consider the case where we fix the masses of two

neutralinos, χ̃0
i , χ̃0

j , and one chargino, χ̃±
k , on-shell, where i 6= j = 1, 2, 3, 4 and k = 1, 2.

This means solving simultaneously Equation (4.65) for i′ = i, j and Equation (4.66) for

i′′ = k. Doing this leads to

δM1 = [2(Ni3Ni4N
2
j2 − N2

i2Nj3Nj4)C(k) + (Uk2Vk2N
2
j2 + 2U∗

k1V
∗
k1N

∗
i3N

∗
i4)N(i)+

− (Uk2Vk2N
2
i2 + 2Uk1Vk1Ni3N

∗
i4)N(j)]/K, (4.67)

δM2 = [−2(Ni3Ni4N
2
j1 − N2

i1Nj3Nj4)C(k) − Uk2Vk2N
2
j1N(i) + Uk2Vk2N

2
i1N(j)]/K, (4.68)

δµ = [−(N2
i2N

2
j1 − N2

i1N
2
j2)C(k) + Uk1Vk1N

2
j1N(i) − Uk1Vk1N

2
i1N(j)]/K, (4.69)
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where

K = 2Uk2Vk2(−N2
i2N

2
j1 + N2

i1N
2
j2) + 4Uk1Vk1(−Ni3Ni4N

2
j1 + N2

i1Nj3Nj4). (4.70)

Real M1, M2, µ: χ̃0
i
, χ̃0

j
, χ̃0

k
on-shell

To fix the masses of three neutralinos, χ̃0
i , χ̃0

j , χ̃0
k, on-shell, where i 6= j 6= k = 1, 2, 3, 4,

we must simultaneously solve Equation (4.65) for i′ = i, j, k. Doing this leads to

δM1 = [(Ni3Ni4N
2
j2 − Nj3Nj4N

2
i2)N(k) + (Nj3Nj4N

2
k2 − Nk3Nk4N

2
j2)N(i)

+(Nk3Nk4N
2
i2 − Ni3Ni4N

2
k2)N(j)]/L, (4.71)

δM2 = [(Nj3Nj4N
2
i1 − Ni3Ni4N

2
j1)N(k) + (Nk3Nk4N

2
j1 − Nj3Nj4N

2
k1)N(i)

+(Ni3Ni4N
2
k1 − Nk3Nk4N

2
i1)N(j)]/L, (4.72)

δµ = −[(N2
i2N

2
j1 − N2

i1N
2
j2)N(k) + (N2

j2N
2
k1 − N2

j1N
2
k2)N(i)

+(N2
i1N

2
k2 − N2

i2N
2
k1)N(j)]/2L, (4.73)

where

L = 2(Ni3Ni4N
2
j2N

2
k1 − N2

i2Nj3Nj4N
2
k1 − Ni3Ni4N

2
j1N

2
k2

+N2
i1Nj3Nj4N

2
k2 + N2

i2N
2
j1Nk3Nk4 − N2

i1N
2
j2Nk3Nk4). (4.74)

Real M1, M2, µ: χ̃0
i
, χ̃

+

j , χ̃
+

k on-shell

To fix the masses of one neutralino, χ̃0
i , and two charginos, χ̃±

j , χ̃±
k , on-shell, where

i = 1, 2, 3, 4 and j 6= k = 1, 2, we must simultaneously solve Equation (4.65) for i′ = i

and Equation (4.66) for i′′ = j, k. Doing this leads to

δM1 = −[(2Ni3Ni4Uj1Vj1 + N2
i2Uj2Vj2)C(k) + (Uj1Uk2Vj1Vk2 − Uj2Uk1Vj2Vk1)N(i)

−(N2
i2Uk2Vk2 + 2Ni3Ni4Uk1Vk1)C(j)]/(N2

i1M), (4.75)

δM2 = [Uj2Vj2C(k) − Uk2Vk2C(j)]/M, (4.76)

δµ = −[Uj1Vj1C(k) − Uk1Vk1C(j)]/M, (4.77)

where

M = 2(Uj2Uk1Vj2Vk1 − Uj1Uk2Vj1Vk2). (4.78)
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In Ref. [86], the masses of χ̃0
1, χ̃±

1 and χ̃±
2 were fixed on-shell. We find agreement between

our expressions above and those that appear in Ref. [86]. This choice is advantageous

for processes where charginos appear as external particles, and avoids difficulties with

infra-red divergences present in QED corrections. However, it is not so convenient for

processes involving more than one external neutralino.

4.4.2 Parameter renormalisation in the full complex MSSM

If there is CP-violation in the chargino–neutralino sector at tree level, then M1 and µ

can be complex in our convention (see Section 2.6), so there are five parameter renormal-

isation constants to determine; Re δM1, Re δM2, Re δµ, Im δM1 and Im δµ. Equally,

one can parameterise the five renormalisation constants in terms of the absolute values

and phases; δ|M1|, δ|M2|, δ|µ|, δφM1
and δφµ. In the latter case, the parameters are

renormalised with the following transformations;

|M1| → |M1| + δ|M1|, φM1
→ φM1

+ δφM1
,

|M2| → |M2| + δ|M2|,
|µ| → |µ| + δ|µ|, φµ → φµ + δφµ. (4.79)

while in the former case, the parameters are renormalised with

Re M1 → Re M1 + δ(ReM1), Im M1 → Im M1 + δ(Im M1),

Re M2 → Re M2 + δ(ReM2),

Re µ → Re µ + δ(Re µ), Im µ → Im µ + δ(Reµ), (4.80)

where δ(Re M2) = δ|M2|. We can write

δ(Re M1) = δ|M1| cosφM1
− |M1| sin φM1

δφM1
,

δ(Im M1) = δ|M1| sin φM1
+ |M1| cos φM1

δφM1
,

δ(Re µ) = δ|µ| cosφµ − |µ| sinφµδφµ,

δ(Im µ) = δ|µ| sinφµ + |µ| cosφµδφµ, (4.81)
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and

δ|M1| = δ(Re M1) cosφM1
+ δ(Im M1) sin φM1

,

δφM1
= −(δ(Re M1) sin φM1

− δ(Im M1) cosφM1
)/|M1|,

δ|µ| = δ(Re µ) cosφµ + δ(Im µ) sin φµ,

δφµ = −(δ(Re µ) sin φµ − δ(Im µ) cosφµ)/|µ|. (4.82)

In both parameterisations, we have five renormalisation constants to determine, and so

far only three equations (chosen from Equations (4.63) and (4.64)) resulting from the

condition that three of the six masses be on-shell. Two further conditions are required

to fix all five renormalisation constants. This comes from having to renormalise the two

CP-violating phases, φM1
and φµ. Like for tanβ, there is no obvious on-shell definition

of these phases. Thus a convenient scheme would be the DR scheme. The DR scheme

has been advocated, in particular, in the SPA conventions for supersymmetry parameter

analysis [100]. However, we will show in the following that, in fact, φM1
and φµ should

be considered as mixing parameters, like α, βn and βc in the Higgs sector, and therefore

need not be renormalised at all.

For demonstration purposes we investigate an “on-shell” scheme in which we require the

conditions

δZR
0,11 = δZ̄R

0,11, δZL
0,11 = δZ̄L

0,11, (4.83)

δZR
−,22 = δZ̄R

−,22, δZL
−,22 = δZ̄L

−,22, (4.84)

in addition to the usual on-shell field renormalisation conditions of Equations (4.10),

(4.11), (4.12), (4.13) and (4.16). This means that the ± 1
2mχ̃i

terms in the diagonal field

renormalisation constants for χ̃0
1 and χ̃±

2 , in Equations 4.37 and 4.33 respectively, are

zero. Equation (4.16) can now only be satisfied if

0 = ΣSL
−,11(m

1
χ̃±

1

) − ΣSR
−,11(m

2
χ̃±

1

) − (N∗δXY †)11 + (NδY †NT )11 ≡ N(11) (4.85)

0 = ΣSL
−,22(m

2
χ̃±

2

) − ΣSR
−,22(m

2
χ̃±

2

) − (U∗δXV †)22 + (V δX†UT )22 ≡ C(22). (4.86)

We use these two conditions in conjunction with the requirement that the masses of

χ̃0
1, χ̃±

1 and χ̃±
2 are on-shell (Equations (4.63), with i′ = 1, and (4.64), with i′′ = 1, 2).
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Solving simultaneously we obtain

δ(Reµ) =
[
− 2 Im(U12V12) Re(U22V22)

2 + Im(U22V22) Re(U21V21) Re(U11V11)

+ C(2)[Im(U21V21) Im(U12V12) + Re(U22V22) Re(U11V11)]

− C(1)[Im(U21V21) Im(U22V22) + Re(U21V21) Re(U22V22)]

− C(22)[Im(U12V12) Re(U21V21) + Im(U22V22) Re(U12V12)]
]
/2X, (4.87)

δ(Imµ) =
[
− 2 Re(U21V21) Re(U22V22) Re(U11V11) + Re(U21V21)

2 Re(U12V12)

+ C(2)[Im(U22V22) Re(U11V11) − Im(U21V21) Re(U12V12)]

− C(1)[Im(U22V22) Re(U21V21) − Im(U21V21) Re(U22V22)]

+ C(22)[Re(U22V22) Re(U11V11) − Re(U21V21) Re(U12V12)]
]
/2X (4.88)

where X contains only U and V matrix elements. Using Equation (4.82), we can find

the corresponding δ|µ| and δφµ. The resulting expression for δφµ turns out to be UV-

convergent. The same observation is made for δφM1
, so we have

δφdiv
µ = 0, δφdiv

M1
= 0. (4.89)

The phase renormalisation constants do not contain any UV divergent parts required to

cancel with some other quantity to ensure the UV-finiteness of vertex functions involving

neutralinos or charginos. We have confirmed that this is also true when χ̃0
1, χ̃0

2 and χ̃±
2

are replaced with some other choice of neutralinos and charginos in the renormalisation

conditions. Accordingly, we will adopt in the following a scheme where the phases of

M1 and µ are left unrenormalised. We regard this as a more convenient choice than the

“on-shell” scheme given above, which would have lead to non-zero (δZ
L/R
ii − δZ̄

L/R
ii ) for

only four of the six fields. Also, even if at tree level one or all of the phases were zero,

with the “on-shell” scheme this would not necessarily have been maintained at one-loop

level; corrections to the phases could have been generated from another source of CP-

violation in the MSSM, such as a non-zero phase for the sfermion trilinear coupling. In

the scheme where the phases are not renormalised, this will not occur and there will be

no resulting confusion over what is meant by the physical phases. The phases remain

at their tree-level value, whether it is zero or non-zero. It is only the renormalisation

constants for the absolute values of the parameters which receive one-loop corrections.

Returning to the Born Lagrangians for charginos and neutralinos in Equations (2.30)

and (2.32) respectively, it is not surprising that it is only the absolute values of M1, M2

and µ that need renormalising. M1, M2, µ appear in full along with any phases when
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the Lagrangian is expressed in the gaugino-higgsino basis. However, in the mass eigen-

state basis, it is only the real combinations, U∗XV † = diag(mχ̃+

1
, mχ̃+

2
) and N∗Y N † =

diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
), which appear. The elements of U , V and N contain phases

which compensate the phases in M1 and µ. However, they are mixing matrix elements

and do not need to be not renormalised. It is these mixing matrix elements which appear

in the couplings of neutralinos and charginos to other particles.

In the scheme where the phases are not renormalised, the conversion from the param-

eterisation in terms of absolute values and phases to the parameterisation in terms of

real and imaginary parts simplifies to

δ(Re µ) = δ|µ| cosφµ, δ(Im µ) = δ|µ| sinφµ,

δ(Re M1) = δ|µ| cosφM1
, δ(Im M1) = δ|µ| sinφM1

. (4.90)

The condition for having the i′th neutralino mass on-shell given in Equation (4.60) can

now be written as

N(i′) =δ|M2| cos φM1
((N∗

i′1)
2 + N2

i′1) + iδ|M2| sinφM1
, ((N∗

i′1)
2 − N2

i′1)

+ δ|M2| ((N∗
i′2)

2 + N2
i′2) − 2δ|µ| cosφµ (N∗

i′3N
∗
i′4 + Ni′3Ni′4)

− 2iδ|µ| sin φµ (N∗
i′3N

∗
i′4 − Ni′3Ni′4)

=2δ|M2|Re(e−iφM1 N2
i′1) + 2δ|M2|Re(N2

i′2) − 4δ|µ|Re(e−iφµNi′3Ni′4), (4.91)

while the condition for having the i′′th chargino mass on-shell, given in Equation (4.58),

can now be written as

C(i′′) = δ|M2|(U∗
i′′1V

∗
i′′1 + Vi′′1Ui′′1) + δ|µ| cosφµ(U

∗
i′′2V

∗
i′′2 + Vi′′2Ui′′2)

+iδ|µ| sinφµ(U
∗
i′′2V

∗
i′′2 − Vi′′2Ui′′2) (4.92)

= 2δ|M2|Re(Ui′′1Vi′′1) + 2δ|µ|Re(e−iφµUi′′2Vi′′2). (4.93)

χ̃0
i
, χ̃0

j
, χ̃

±

k on-shell

We first consider the case where we fix the masses of two neutralinos, χ̃0
i , χ̃0

j , and one

chargino, χ̃±
k , on-shell. We solve Equation (4.91) with i′ = i, j and Equation (4.92) with
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i′′ = k simultaneously to obtain,

δ|M1| =(2[Re(e−iφµNi3Ni4) Re(N2
j2) − Re(e−iφM2N2

i2) Re(e−iφµNj3Nj4)]C(k)

+ [Re(e−iφµUk2Vk2) Re(N2
j2) + 2 Re(Uk1Vk1) Re(e−iφµNi3Ni4)]N(i)+

− [Re(e−iφµUk2Vk2) Re(N2
i2) + 2 Re(Uk1Vk1) Re(e−iφµNi3Ni4)]N(j))/K,

δ|M2| =(−2[Re(e−iφµNi3Ni4) Re(e−iφM1 N2
j1) − Re(e−iφM1 N2

i1) Re(e−iφµNj3Nj4)]C(k)

− Re(e−iφµUk2Vk2) Re(e−iφM1 N2
j1)N(i)+Re(e−iφµUk2Vk2) Re(e−iφM1N2

i1)N(j))/K,

δ|µ| =(−[Re(N2
i2) Re(e−iφM1 N2

j1) − Re(e−iφM1 N2
i1) Re(N2

j2)]C(k)

+ Re(Uk1Vk1) Re(e−iφM1 N2
j1)N(i) − Re(Uk1Vk1) Re(e−iφM1 N2

i1)N(j))/K (4.94)

where

K =2 Re(e−iφµUk2Vk2)[−Re(N2
i2) Re(e−iφM1 N2

j1) + N2
i1 Re(N2

j2)]

+ 4 Re(Uk1Vk1)[−Re(e−iφµNi3Ni4) Re(e−iφM1N2
j1)+Re(e−iφM1N2

i1) Re(e−iφµNj3Nj4)].

(4.95)

χ̃0
i
, χ̃0

j
, χ̃0

k
on-shell

In order to fix the masses of three neutralinos, χ̃0
i , χ̃0

j , χ̃0
k, on-shell, we solve Equation

(4.91) with i′ = i, j, k simultaneously to obtain,

δ|M1| =[(Re(e−iφµNi3Ni4) Re(N2
j2) − Re(e−iφµNj3Nj4) Re(N2

i2))N(k)

+ (Re(e−iφµNj3Nj4) Re(e−iφM2N2
k2) − Re(e−iφµNk3Nk4) Re(N2

j2))N(i)

+ (Re(e−iφµNk3Nk4) Re(N2
i2) − Re(e−iφµNi3Ni4) Re(N2

k2))N(j)]/L, (4.96)

δ|M2| =[(Re(e−iφµNj3Nj4) Re(e−iφM1 N2
i1) − Re(e−iφµNi3Ni4) Re(e−iφM1 N2

j1))N(k)

+ (Re(e−iφµNk3Nk4) Re(e−iφM1 N2
j1) − Re(e−iφµNj3Nj4) Re(e−iφM1 N2

k1))N(i)

+ (Re(e−iφµNi3Ni4) Re(e−iφM1 N2
k1) − Re(e−iφµNk3Nk4) Re(e−iφM1 N2

i1))N(j)]/L,

(4.97)

δ|µ| = − [(Re(N2
i2) Re(e−iφM1 N2

j1) − Re(e−iφM1 N2
i1) Re(N2

j2))N(k)

+ (Re(N2
j2) Re(e−iφM1 N2

k1) − Re(e−iφM1 N2
k1) Re(N2

k2))N(i)

+ (N2
i1 Re(N2

k2) − Re(N2
i2) Re(e−iφM1 N2

k1))N(j)]/2L (4.98)
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where

L =2[Re(e−iφµNi3Ni4) Re(N2
j2) Re(e−iφM1N2

k1)−Re(N2
i2) Re(e−iφµNj3Nj4) Re(e−iφM1N2

k1)

−Re(e−iφµNi3Ni4) Re(e−iφM1N2
j1) Re(N2

k2)+Re(e−iφM1N2
i1) Re(e−iφµNj3Nj4) Re(N2

k2)

+ Re(N2
i2) Re(e−iφM1N2

j1) Re(e−iφµNk3Nk4)−Re(e−iφM1N2
i1) Re(N2

j2) Re(e−iφµNk3Nk4)].

(4.99)

χ̃0
i
, χ̃

+

j , χ̃
±

k on-shell

In order to fix the masses of one neutralino χ̃0
i , and two chargino, χ̃±

j , χ̃±
k , on-shell, we

solve Equation (4.91) with i′ = i and Equation (4.92) with i′′ = j, k simultaneously to

obtain,

δ|M1| = −[(2 Re(e−iφµNi3Ni4) Re(Uj1Vj1) + Re(N2
i2) Re(e−iφµUj2Vj2))C(k)

+(Re(Uj1Vj1) Re(e−iφµUk2Vk2) − Re(e−iφµUj2Vj2) Re(Uk1Vk1))N(i)

−(Re(N2
i2) Re(e−iφµUk2Vk2) + 2 Re(e−iφµNi3Ni4) Re(Uk1Vk1))C(j)]

/(Re(e−iφM1 N2
i1)M), (4.100)

δ|M2| = [Re(e−iφµUj2Vj2)C(k) − Re(e−iφµUk2Vk2)C(j)]/M, (4.101)

δ|µ| = −[Re(Uj1Vj1)C(k) − Re(Uk1Vk1)C(j)]/M (4.102)

where

M = 2(Re(Uk1Vk1) Re(e−iφµUj2Vj2) − Re(Uj1Vj1) Re(e−iφµUk2Vk2)). (4.103)

4.4.3 Comparing parameter renormalisation schemes: a toy

model

In the previous sections, we derived several different schemes for on-shell parameter

renormalisation in the chargino–neutralino sector for real and complex parameters. The

expressions for the parameter counterterms depended on which three of the six parti-

cle masses were placed on-shell. Using the same tree-level values for the parameters,

combined with the different values of the counterterms, these different schemes result

in different physical (loop-corrected) values for the parameters. In order to be able to

compare between different renormalisation schemes, one should consider the same phys-
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ical situation; that is, the same physical masses, and in order to do this one may require

different values for the tree-level parameters.

To help us understand the difference between the required input parameters to achieve

the same physical situation when different combinations of neutralino and chargino

masses are on-shell, we perform a comparison in a toy renormalisation scheme as follows.

We consider the simplified no-mixing case, where MW is set to zero in the neutralino

and chargino mass matrices. We also assume M1 < M2 < µ are real and positive. Then

at tree level, the masses are given by

mχ̃0
1

= M1, mχ̃0
2

= M2 = mχ̃±

1
, mχ̃±

2
= µ = mχ̃0

3
= mχ̃0

4
. (4.104)

Using Equation (4.55) under the above assumptions, the one-loop mass corrections are

found to be

∆mχ̃0
1

=mχ̃0
1
ReΣL

0,11(m
2
χ̃0

1

) + ReΣSL
0,11(m

2
χ̃0

1

) − δM1,

∆mχ̃0
2

=mχ̃0
2
ReΣL

0,22(m
2
χ̃0

2

) + ReΣSL
0,22(m

2
χ̃0

2

) − δM2,

∆mχ̃0
3

=mχ̃0
3
ReΣL

0,33(m
2
χ̃0

3

) + ReΣSL
0,33(m

2
χ̃0

3

) − δµ,

∆mχ̃0
4

=mχ̃0
4
ReΣL

0,44(m
2
χ̃0

4

) + ReΣSL
0,44(m

2
χ̃0

4

) − δµ,

∆mχ̃±

1
=

mχ̃±

1

2
Re(ΣL

−,11 + ΣR
−,11)(m

2
χ̃±

1

) + ReΣSL
−,11(m

2
χ̃±

1

) − δM2,

∆mχ̃±

2
=

mχ̃±

2

2
Re(ΣL

−,22 + ΣR
−,22)(m

2
χ̃±

2

) + ReΣSL
−,22(m

2
χ̃±

2

) − δµ. (4.105)

The tree-level masses, mχ̃i
, still satisfy the relations in Equation (4.104), while the loop-

level masses, Mχ̃i
, in general, do not satisfy these relations.

Toy Scheme (1): χ̃0
1
, χ̃0

2
, χ̃0

3
on-shell

If the masses of χ̃0
1, χ̃0

2, χ̃0
3 are chosen to be on-shell, then the renormalisation constants

are given by

δM
(1)
1 = mχ̃0

1
ReΣL

11(m
2
χ̃0

1

) + ReΣSL
11 (m2

χ̃0
1

), (4.106)

δM
(1)
2 = mχ̃0

2
ReΣL

22(m
2
χ̃0

2

) + ReΣSL
22 (m2

χ̃0
2

), (4.107)

δµ(1) = mχ̃0
3
ReΣL

33(m
2
χ̃0

3

) + ReΣSL
33 (m2

χ̃0
3

). (4.108)
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The loop-corrected masses obey the relations;

Mχ̃0
1

= M1, Mχ̃0
2

= M2, Mχ̃0
3

= µ,

Mχ̃0
4

= Mχ̃0
3
− ∆m00

34, Mχ̃±

1
= Mχ̃0

2
+ ∆m+0

12 , Mχ̃±

2
= Mχ̃0

3
+ ∆m+0

23 (4.109)

where the quantities, ∆m00
34 ≡ ∆mχ̃0

3
− ∆mχ̃0

4
, ∆m+0

12 ≡ ∆mχ̃±

1
− ∆mχ̃0

2
and ∆m+0

23 ≡
∆mχ̃±

2
−∆mχ̃0

3
, depend only on a finite combination of self-energies and tree-level masses

in this case. The masses of Mχ̃0
4
, Mχ̃±

1
and Mχ̃±

2
are determined by the input parameters,

Mχ̃0
1
, Mχ̃0

2
and Mχ̃0

3
, along with these computable quantities.

Toy Scheme (2): χ̃0
1
, χ̃0

2
, χ̃

±
2 on-shell

If the masses of χ̃0
1, χ̃0

2, χ̃±
2 are chosen to be on-shell, then the renormalisation constants

are given by

δM
(2)
1 = mχ̃0

1
ReΣL

0,11(m
2
χ̃0

1

) + ReΣSL
0,11(m

2
χ̃0

1

), (4.110)

δM
(2)
2 = mχ̃0

2
ReΣL

0,22(m
2
χ̃0

2

) + ReΣSL
0,22(m

2
χ̃0

2

), (4.111)

δµ(2) =
1

2
mχ̃±

2
Re(ΣL

−,22 + ΣR
−,22)(m

2
χ̃±

2

) + ReΣ−,SL
22 (m2

χ̃±

2

) (4.112)

with the loop-corrected masses satisfying the relations;

Mχ̃0
1

= M1, Mχ̃0
2

= M2, Mχ̃±

2
= µ,

Mχ̃±

1
= Mχ̃0

2
+ ∆m+0

12 , Mχ̃0
3

= Mχ̃±

2
− ∆m+0

23 , Mχ̃0
4

= Mχ̃±

2
− ∆m+0

24 . (4.113)

where ∆m+0
24 ≡ ∆mχ̃±

2
− ∆mχ̃0

4
.

Comparing Toy Schemes (1) and (2)

The value of δµ in Toy Scheme (1) is different to its value in Toy Scheme (2) by a finite

combination of self-energies;

δµ(2) − δµ(1) = ∆m+0
23 (4.114)
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Suppose we have M1 = 100 GeV, M2 = 200 GeV and µ = 400 GeV and we start from

Toy Scheme (1) with three neutralinos on-shell. Then;

Mχ̃0
1

= 100 GeV, Mχ̃0
2

= 200 GeV, Mχ̃0
3

= 400 GeV, (4.115)

Mχ̃0
4

= 400 GeV − ∆m00
34, Mχ̃±

1
= 200 GeV + ∆m+0

12 , Mχ̃±

2
= 400 GeV + ∆m+0

23 .

In order to compare the two schemes for the same physical situation, we need the same

set of physical masses in scheme (2). For the three input masses, we choose

Mχ̃0
1

=100 GeV = M1,

Mχ̃0
2

=200 GeV = M2,

Mχ̃±

2
= 400 GeV − ∆m+0

23 = µ. (4.116)

From the relations it follows that

Mχ̃±

1
= 200 GeV + ∆m+0

12 ,

Mχ̃0
3

= 400 GeV + ∆m+0
23 − ∆m+0

23 = 400 GeV,

Mχ̃0
4

= 400 GeV + ∆m+0
23 − ∆m+0

24 = 400 GeV − ∆m00
34. (4.117)

So in the end, the same set of six physical masses are achieved. The tree-level values of

M1 and M2 are still 100 GeV and 200 GeV, while the tree-level value of µ is now µ(2) =

400 GeV−∆m+0
23 . Using Equation (4.114), it can be shown that once the corresponding

counterterms are taken into account, the resulting one-loop corrected values of µ are

identical. This would not be necessary in a more general situation, where µ does not

directly correspond to one of the mass values. In this toy model, it is relatively simple to

choose the same physical situation in each parameter renormalisation scheme. For the

more general case, it is technically much more difficult to find input parameters which

give the same six physical masses in different schemes since the loop corrections to those

masses will have a non-trivial dependence on the input parameters.

Another issue with comparing parameter renormalisation schemes is that not all schemes

work equally well for every MSSM scenario. In general, one single scheme is not expected

to be suitable for the whole MSSM parameter range. In the toy schemes above with

M1 < M2 < µ, we could not have used Mχ̃0
1
, Mχ̃0

2
and Mχ̃±

1
as input because there would

have been no way of fixing δµ. Similarly, if we were to choose a different parameter

hierarchy with µ < M1, M2, then the toy schemes given above would not work because

only one of M1 or M2 could be fixed by the choice of input masses. Nevertheless, for the
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more general case, when the terms depending on MW are restored in the mass matrices,

a priori it looks feasible to choose Mχ̃0
1
, Mχ̃0

2
and Mχ̃±

1
as input for M1 < M2 < µ, but

one may encounter severe numerical instabilities in such a case. We will investigate this

further in the next section, where we show a numerical comparison between the schemes

for different scenarios and the resulting one-loop mass corrections.

4.5 Comparing renormalisation schemes: Numerical

results

4.5.1 Field renormalisation

In Section 4.2, we pointed out that, in the MSSM with CP-violating parameters, absorp-

tive parts of loop integrals for unstable particles can enter the squared matrix element

for processes at the one-loop level. In order to ensure the external particles have the

correct on-shell properties in this case, we use a general scheme with separate field

renormalisation constants for incoming and outgoing fermions.

In Table 4.1, we show the finite parts of the neutralino field renormalisation constants for

the CPX scenario. In the first row, they are computed in the general scheme of Section

4.2.1, where absorptive parts of loop integrals are included in the field renormalisation

constants, while in the second row the absorptive parts are discarded, as in Section

4.2.2. The table shows that the numerical differences between the two procedures are

not significant for the constants involving only the two light neutralinos. However, the

absorptive effects are large for δZL
0,13 and δZL

0,14, since, in this scenario, all two-body

decays for χ̃0
3 and χ̃0

4 are kinematically open.

In Figure 4.1(a), we show the imaginary parts of the field renormalisation constants

involving the third lightest neutralino, as a function of φAt for the CPV1 scenario,

defined in Table 2.3. In this scenario, χ̃0
3 has a mass of around 505 GeV, and can decay

into the lighter third generation squarks, so phases introduced in the squark sector can

be expected to play a role for the imaginary parts of the χ̃0
3 self-energies. The solid lines

show the renormalisation constants in the general scheme, including absorptive effects,

while for the dashed lines, these absorptive parts are discarded. We see that there

is a sizeable difference between the dashed and solid curves. As discussed in Section

4.2.3, the absorptive parts in the field renormalisation constants do not contribute to
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δZL
0,11/10−2 δZL

0,12/10−2 δZL
0,13/10−2 δZL

0,14/10−2

1.5346+0.9622 i 0.2550+0.1914 i -0.1251+1.7108i -0.0134-0.1890i

δZ̃0
11/10−2 δZ̃0

12/10−2 δZ̃0
13/10−2 δZ̃0

14/10−2

1.5346+0.9622 i 0.2550+0.1911i -0.0425+0.0878i -0.0887+0.0383 i

Table 4.1: Comparison of neutralino field renormalisation constants in the general scheme
with absorptive parts of Section 4.2.1, and then taking R̃e of those values (indi-
cated by a tilde), as in Section 4.2.2, for the CPX scenario with MH± = 135.7GeV
and tan β = 5.5. In order to evaluate the terms involving δM1, δM1 and δµ, we
use the parameter renormalisation scheme where the masses of χ̃0

1, χ̃0
2 and χ̃±

2 are
on-shell.
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0.1*Im(dZ33)

Im(dZ23)
Im(dZ13)Im(δZL

0 )

φAt

2π3π
2

ππ
20

0.025

0.02

0.015

0.01

0.005

0

−0.005

−0.01

−0.015

−0.02

−0.025

(a)

Loop w/o abs.
Loop w abs.

Impr.Born

ΓLL(MeV)

φAt

2π3π
2

ππ
20

450

400

350

300

250

200

150

100

50

0

(b)

Figure 4.1: (a) Imaginary parts of field renormalisation constants, δZL
i3, for i = 1, 2, 3, 4 (black, red,

blue, green respectively) in the CPV1 scenario, defined in Table 2.3, as a function of
φAt

. The solid curves show the full field renormalisation constants, while in the dashed
curves, the absorptive parts of loop integrals are discarded. (b) Partial decay width,
ΓLL ≡ Γ(h2 → χ̃0 L

3 χ̃0 L
2 ), into left-handed neutralinos in the CPV1 scenario, as a function

of φAt
. The black dashed curve is the Improved Born result; the blue and red curves

show the incorporation of one-loop vertex corrections without and with absorptive parts
in the field renormalisation constants respectively. For both plots, in order to evaluate
the terms involving δM1, δM1 and δµ, we use the parameter renormalisation scheme
where the masses of χ̃0

1, χ̃0
2 and χ̃0

3 are on-shell.

spin-summed squared matrix elements for Majorana neutralinos. They do contribute,

however, to spin-dependent squared matrix elements. In Figure 4.1(b), we show their

effect on the partial decay width of a heavy Higgs boson into left-handed neutralinos,

ΓLL ≡ Γ(h2 → χ̃0 L
3 χ̃0 L

2 ), again in the CPV1 scenario, as a function of φAt. The black
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dashed curve shows the Improved Born decay width.3 The blue curve includes the one-

loop vertex corrections, discarding the effects of absorptive parts of loop integrals in the

field renormalisation constants. The red curve includes the one-loop vertex corrections,

using the general field renormalisation constants with absorptive parts. We see that the

difference between the latter two curves can be sizeable when the CP-violating phase is

large. The absorptive parts can enhance or suppress the effect of the one-loop vertex

corrections relative to the Improved Born level result. Thus, a proper treatment of

absorptive parts in one-loop calculations involving neutralinos in the complex MSSM

is crucial. If one were to use the field renormalisation constants containing R̃e, as in

Section 4.2.2 or as in the blue curve of Figure 4.1(b), without separately taking into

account the products of the absorptive contributions and imaginary parameters, then

the calculation would be incomplete. In order to ensure the correct on-shell properties

of external fermions, we adopt the general scheme given in Section 4.2.1 for the rest of

this thesis.

4.5.2 Parameter renormalisation

As discussed in Section 4.4, we have implemented three schemes for the parameter

renormalisation in the neutralino-chargino sector; with either three neutralinos, two

neutralinos and one chargino, or two charginos and one neutralino on-shell. As seen

with the toy model in the previous section, not all schemes are expected to work equally

well for every given scenario in the MSSM. In Table 4.2 we show the finite parts of δ|M1|,
δ|M2| and δ|µ| in the CPX scenario with MH± = 132.1 GeV and tan β = 5.5, for five

different choices of parameter renormalisation; NNN with χ̃0
1, χ̃0

2 and χ̃0
3 on-shell; NNC

with χ̃0
1, χ̃0

2 and χ̃±
2 on-shell, NNCb with χ̃0

1, χ̃0
2 and χ̃±

1 on-shell, NCC with χ̃0
1, χ̃±

1 and

χ̃±
2 on-shell, NCCb with χ̃0

2, χ̃±
1 and χ̃±

2 on-shell, and NCCc, with χ̃0
3, χ̃±

1 and χ̃±
2 on-shell.

We also show the resulting one-loop corrections to the remaining masses. We see that

NNN, NNC and NCC work equally well, all giving similar values for δ|M1|, δ|M2| and

δ|µ| and modest corrections to the masses. However, NNCb gives a very large value for

δ|µ|, while NCCb and NCCc give very large values for δ|M1| respectively. This is due

to the fact that the CPX scenario has the gauge parameter hierarchy M1 < M2 ≪ µ,

where the mass of mχ̃0
1

is closest to |M1|, mχ̃0
2

and mχ̃±

1
are close to |M2|, and mχ̃0

3,4
and

mχ̃±

2
are close to |µ|. Consequently, if we do not use one of mχ̃0

3,4
or mχ̃±

2
as input, there

is only a weak fixing of |µ|. The value of its counterterm will be driven to unphysically

3See Chapter 5 for a full description of the method used to calculate decay widths in the Improved
Born approximation and to include the one-loop vertex corrections.
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large values by numerical instabilities. These instabilities also manifest themselves in

the corresponding one loop corrections to the masses. Similarly, if we do not use mχ̃0
1

as

input, there is only a weak fixing of |M1|. Thus the NNN, NNC and NCC schemes are the

most numerically stable choices for the parameter hierarchy of |M1| < |M2| ≪ |µ|. This

is known as a gaugino-like scenario, as the lighter neutralinos and charginos are mostly

gaugino. However, for a different hierarchy, a different choice may be more favourable. In

the last two columns, we show the finite parts of the parameter renormalisation constants

and the one-loop mass corrections for a higgsino-like scenario, with |µ| < |M1| < |M2|.
We set µ = 200 GeV, M2 = 1000 GeV, M1 = (5/3)(s2

W/c2
W )M2 and all other parameters

the same as for the CPX scenario. For this parameter hierarchy, the masses of mχ̃0
1,2

and

mχ̃±

1
are closest to |µ|, mχ̃0

3
is closest to |M1| and mχ̃±

2
and mχ̃0

4
are close to |M2|. We

see that the NCCb scheme does not give numerically stable results, because |M1| is only

weakly fixed. The NCCc scheme, however, where the mass of the χ̃0
3 is fixed on-shell,

works well for this higgsino-like scenario.

NNN NNC NNCb NCC NCCb NCCc NCCb* NCCc*

δ|M1| -1.468 -1.465 2.981 -1.468 2518.7 -3684.6 -355.6 -4.642

δ|M2| -9.265 -9.265 9.704 -9.410 -9.410 -9.410 10.683 10.683

δ|µ| -18.494 -18.996 -20944.2 -18.996 -18.996 -18.996 -5.136 -5.136

∆mχ̃0
1

0 0 0 0 2518.8 -3681.1 -11.44 -0.636

∆mχ̃0
2

0 0 0 -0.1446 0 0.356 0 -0.671

∆mχ̃0
3

0 -0.5012 -20913.8 -0.5016 -0.8446 0 -339.5 0

∆mχ̃0
4

0.3237 -0.1775 -20890.0 -0.1775 0.6851 -1.439 -0.0794 -0.0328

∆mχ̃±

1
0.1446 0.1445 0 0 0 0 0 0

∆mχ̃±

2
0.5012 0 -20888.0 0 0 0 0 0

Table 4.2: Finite parts of parameter renormalisation constants and mass corrections in GeV
for the CPX scenario with MH± = 132.1GeV and tan β = 5.5 using the different
parameter renormalisation schemes defined in the text. The last two columns,
denoted with an asterisk, show the results for a higgsino-like scenario, with µ =
200GeV, M1 = (5/3)(s2

W /c2
W )M2 and M2 = 1000GeV, and all other parameters

the same as the CPX scenario.

In Figure 4.2, we show the variation of the one-loop mass corrections in the NNC scheme,

where the masses of χ̃0
1,2 and χ̃±

2 are fixed on shell. The masses of masses of χ̃0
3,4 and χ̃±

1

receive corrections. Figure 4.2(a) shows the mass corrections for the CPX scenario with

MH± = 132.1 GeV as a function of tanβ. We see that the corrections remain modest,
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Figure 4.2: One loop corrections to the neutralino and chargino masses in the NNC scheme for the
CPX scenario with MH± = 132.1 GeV; (a) as a function of tanβ, (b) as a function of
M2 with tanβ = 7, (c,d) as a function of µ with tanβ = 7, with all other parameters as
in Table 2.3.

much less than 1 GeV for the range of tanβ shown. In Figure 4.2(b), we show the mass

corrections as a function of M2 with tanβ = 7. We see that the χ̃±
1 mass is affected

by thresholds for quark-squark pair production between 300 and 800 GeV. Similarly, in

Figure 4.2(c), where the mass corrections are shown as a function of µ with tan β = 7,

the χ̃0
3,4 masses are affected by thresholds below 800 GeV. In Figure 4.2(d), we lower

µ further and see that near µ = M2, there is a pole in the renormalisation constants,
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Figure 4.3: One loop corrections to the neutralino and chargino masses in the NNC scheme for the
CPX scenario with MH± = 132.1 GeV and tanβ = 7, (a) as a function of φM1

, (b) as a
function of φµ, with all other parameters as in Table 2.3.

where the quantity K, defined in Equation (4.70), vanishes. In this parameter region

the renormalisation scheme produces unphysically large values for the mass correction.

In Figures 4.3(a) and 4.3(b) respectively, we show the dependence of the one-loop mass

corrections on the phases φM1
and φµ, again for the CPX scenario in the NNC scheme.

We see that the dependence on φM1
is only slight because |M1| is fixed by mχ̃0

1
, while the

other masses do not have a strong dependence on its value. Conversely, the neutralino

masses do have a strong dependence on φµ since their tree-level values lie at the scale of

|µ|, while the value of |µ| is fixed by the heavy chargino mass.

For most of this thesis, we examine scenarios with a gaugino-like parameter hierarchy,

|M1| < |M2| < |µ|. Therefore, we will use the NNC parameter renormalisation scheme,

where the masses of χ̃0
1, χ̃0

2 and χ̃±
2 are fixed on-shell, unless otherwise stated.



Chapter 5

Calculation of vertex corrections

In this chapter we give a detailed description of our method for calculating higher order

corrections to two-body decays involving particles from the MSSM with complex pa-

rameters. We focus in particular on the class of processes with two neutralinos and one

Higgs boson, χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j , but we have also studied other processes, which

we will discuss in Section 5.6. We begin in Section 5.1 by studying the χ̃0
i χ̃

0
jh

0
k vertex

and its associated decay widths at tree-level. In Section 5.2, we use the renormalisation

constants derived in the previous chapters to construct a counterterm for this three-point

vertex. In Section 5.3, the counterterm is combined with the one-loop triangle diagrams

to obtain the renormalised 1PI χ̃0
i χ̃

0
jh

0
k vertex function at one-loop, taking into account

the contributions from all MSSM particles. In Section 5.4 we combine the genuine 1PI

vertex contributions with the one-loop propagator-type corrections for the Higgs boson

to construct the renormalised one-loop χ̃0
i χ̃

0
jha vertex for on-shell ha. We also include

the reducible self-energy diagrams involving mixing of the neutral Higgs bosons with

the Goldstone and Z bosons. In Section 5.5 we show how we combine our full one-loop

results with the state-of-the-art two-loop propagator-type corrections from the Higgs

sector, obtaining the currently most precise prediction for this class of processes.

5.1 Tree-level decay width

We consider the χ̃0
i χ̃

0
jh

0
k vertex, shown in Figure 5.1(a), where i, j = 1, 2, 3, 4 and k labels

neutral Higgs bosons, i.e. h0
k = {h, H, A, G}. For the interaction of neutralinos with

neutral Higgs bosons, the relevant piece of the Lagrangian can be written in terms of

83
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Figure 5.1: (a) The tree-level neutralino-neutralino-Higgs vertex and (b) its counterterm.

tree-level mass eigenstates as

L =
i

2
h0

k χ̃0
i [ωRCR

ijh0
k
+ ωL(−1)δk3(−1)δk4CL

ijh0
k
] χ̃0

j , (5.1)

where ωR/L = 1
2
(1 ± γ5). A minus sign appears between the ωR and ωL terms for the

CP-odd Higgs states. The couplings, C
R/L

ijh0
k
, are given by

CR
ijh0

k
= CL∗

ijh0
k

=
e

2cW sW
cijh0

k
, (5.2)

where

cijh0
k

= [(akNi3 + bkNi4)(sW Nj1 − cW Nj2) + (akNj3 + bkNj4)(sWNi1 − cW Ni2)],

ak = {−sα, cα, isβn,−icβn},
bk = {−cα,−sα,−icβn ,−isβn}. (5.3)

The quantity in the square brackets in Equation (5.1) is the three-point vertex function

at tree level;

Γtree
χ̃0

i χ̃0
jh0

k
≡ ωRCR

ijh0
k
+ ωL(−1)δk3(−1)δk4CL

ijh0
k
. (5.4)

where δk3(4) = 1 for k = 3(4) and zero otherwise. The tree-level decay width Γ tree
χ̃0

i→χ̃0
jh0

k

for the two-body decay χ̃0
i → χ̃0

jh
0
k, where h0

k = {h, H, A}, can then be written as

Γ tree
χ̃0

i →χ̃0
jh0

k
=

1

16πm3
χ̃0

i

|CR
ijh0

k
|2 κ(m2

χ̃0
i
, m2

χ̃0
j
, m2

h0
k
) [m2

χ̃0
i
+ m2

χ̃0
j
− m2

h0
k
+ 2(−1)δk3mχ̃0

i
mχ̃0

j
],

(5.5)
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and

κ(x, y, z) = ((x2 − y2 − z2)2 − 4yz)1/2. (5.6)

Similarly, the tree-level decay width Γ tree
h0

k
for the two-body decay h0

k → χ̃0
i χ̃

0
j , where

h0
k = {h, H, A}, can be written as

Γ tree
h0

k→χ̃0
i χ̃0

j
=

1

8πm3
h0

k

|CR
ijh0

k
|2 κ(m2

h0
k
, m2

χ̃0
i
, m2

χ̃0
j
) [m2

h0
k
− m2

χ̃0
i
− m2

χ̃0
j
− 2(−1)δk3mχ̃0

i
mχ̃0

j
]

(5.7)

with an extra factor of 2 in the denominator if i = j.

In order to obtain a prediction for the decay width at one-loop level, the parameters

appearing in the lowest-order result and the fields of χ̃0
i , χ̃

0
j , h

0
k need to be renormalised.

We have described their renormalisation in the previous chapters. In the next section

we describe how to put all of this together to renormalise the vertex.

5.2 χ̃0
i χ̃

0
jh

0
k vertex renormalisation

The 3-point vertex for χ̃0
i χ̃

0
jh

0
k, where h0

k = {h, H, A, G}, can be renormalised by a

counterterm vertex

δΓχ̃0
i χ̃0

jh0
k
≡ ωRδCR

ijh0
k
+ ωL(−1)δk3(−1)δk4δCL

ijh0
k

(5.8)

where the coupling counterterm is given by

δC
R/L

ijh0
k

=
e

2cWsW
δc

(∗)
ijh0

k
+ C

R/L

ijh0
k
(δZe −

δsW

sW
− δcW

cW
) +

1

2

4∑

l=1

(δZ
R/L
li C

R/L

ljh0
k

+ δZ̄
L/R
jl C

R/L

ilh0
k
)

+
1

2
(δZh0

khC
R/L
ijh + δZh0

kHC
R/L
ijH + δZh0

kAC
R/L
ijA + δZh0

kGC
R/L
ijG ) (5.9)

with

δcijh0
k

= [(akNi3 + bkNi4)(δsWNj1 − δcWNj2) + (akNj3 + bkNj4)(δsWNi1 − δcWNi2)].

(5.10)
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This counterterm has been implemented into a supplementary model file for FeynArts.

With this supplementary file, FeynArts can be used to generate a counterterm diagram,

as shown in Figure 5.1(b), and a corresponding amplitude which can be added to the

one-loop vertex contributions using FormCalc. There are built-in functions in FeynArts

which allow the user to select which MSSM particles should be inserted into the self-

energies that make up the counterterm amplitude.

5.3 One-loop χ̃0
i χ̃

0
jh

0
k vertex corrections

The one-loop diagrams which must be considered for the χ̃0
i χ̃

0
jh

0
k vertex are shown in

Figure 5.2. Here we consider only triangle diagrams. Any self-energies occurring on

external neutralino legs are taken care of by the neutralino field renormalisation, as de-

scribed in Chapter 4. The self-energies for the external Higgs boson are included in the

next section when we normalise the vertices to convert from a tree-level state, h0
k, to a

loop-corrected on-shell state, ha.

The diagrams were generated using FeynArts, which applies the Feynman rules in the

MSSM model file to obtain all possible particle insertions into the triangle topologies

and generates the corresponding amplitudes. FeynArts also contains built-in functions

which allow the user to insert only certain particles or groups of particles into the loops,

so that smaller sets of diagrams can be considered separately. To avoid divergences, one

should only consider gauge-invariant sets of diagrams.

There are, for example, 24 diagrams containing third generation quarks and squarks

(t, t̃, b and b̃) in the loops (see Figure 5.2(a)). When these are combined with the vertex

counterterm from Equation (5.8), also evaluated with the same restriction on which par-

ticles occur in the loops, they form a UV-finite set. One cannot separate the diagrams

containing only t and t̃ from those containing only b and b̃ because there are diagrams

in the counterterms in which both particles species appear. For example, δsW depends

on the W boson self-energy, ΣWW , which contains contributions from a stop-sbottom

loop and a top-bottom loop.

There are two further UV-finite sets of 24 diagrams, one for each of the first and second

generations of quarks. For the lepton sector there are less diagrams since the neutrino

does not couple to Higgs bosons and there is only one type of sneutrino in the MSSM.
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Figure 5.2: Triangle diagrams contributing to the one-loop χ̃0
i χ̃

0
jh

0
k vertex. (a) Loops containing

SM fermions and their scalar superpartners; for f = u, d, c, s, t, b, e, µ, τ , the subscripts
v, w can take the values 1 and 2; for f = νe, νµ, ντ , the subscripts v, w can take the
value L only. The diagram with two neutrinos in the loop is always absent, the diagram
with one neutrino in the loop is absent if the external Higgs boson is CP-odd. The
arrows indicating fermion flow can be reversed. (b) Loops containing Higgs bosons,
vector bosons and their scalar superpartners; h0

l = {h, H, A, G}, H±

l = {H±, G±},
χ̃0

l = {χ̃0
2, χ̃

0
2, χ̃

0
3, χ̃

0
4}, χ̃0

l = {χ̃0
1, χ̃

0
2}. Depending on the CP-properties of the external

Higgs bosons, not all combinations of Higgs boson insertions in the loops are allowed.
Also, the diagrams containing two vector bosons occur only if the external Higgs boson
is CP-even.

The sneutrino does not couple to the CP-odd Higgs boson. Each generation of leptons

and sleptons hence forms a UV-finite set of 14 (12) diagrams if the external Higgs boson

is CP-even(odd).
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If the external Higgs boson is CP-even (h or H), there are then 192 remaining diagrams

at the particle level (i.e. those in Figure 5.2(b)) which themselves form a UV-finite set.

The loops in these diagrams contain gauge bosons, Higgs bosons and their superpartners;

the charginos and neutralinos. They cannot be divided up into smaller UV-finite sets.

If the external Higgs boson is CP-even (A), the equivalent set contains only 168 diagrams.

In total we have 306 or 276 diagrams, depending on the CP-parity of the external Higgs

boson, each translated into an amplitude by the function CreateFeynAmp in FeynArts.

For example; for the process χ̃0
i → χ̃0

jh
0
k, the first diagram in Figure 5.2(a) is translated

into the amplitude;

M =

∫
− d4q1

16π4
ū(k1, mχ̃0

j
)[ωLCL

fχ̃0
j

¯̃fw
+ ωRCR

fχ̃0
j

¯̃fw
]( 6q1 + mf )[ωLCL

χ̃0
i f̄ f̃v

+ ωRCR
χ̃0

i f̄ f̃v
]

C
h0

kf̃w
¯̃fv
u(p1, mχ̃0

i
)/

(
(q2

1 − m2
f )[(q1 − k1)

2 − m2
f̃v

][(q1 − k1 − k2)
2 − m2

f̃w
]
)

(5.11)

where p1 is the incoming momentum of the χ̃0
i , k1, k2 are the outgoing momenta of the

χ̃0
j and h0

k respectively, and q1 is the loop momentum on the internal fermion line. The

couplings of neutralinos to fermion-sfermion pairs and sfermion-sfermion pairs involve

masses and mixing matrices. FormCalc makes the task of evaluating these amplitudes

relatively straightforward. The function CalcFeynAmp performs the contraction of in-

dices, the calculation of traces, the reduction of tensor integrals, further simplifications

and the introduction of abbreviations. In our example, Equation (5.11) is simplified to

M =
i

16π2
[F1(C

L

fχ̃0
j

¯̃fw
CL

χ̃0
i f̄ f̃v

C
h0

kf̃w
¯̃fv
mfC0 − CR

fχ̃0
j

¯̃fw
CL

χ̃0
i f̄ f̃v

C
h0

kf̃w
¯̃fv
mχ̃0

j
C1

−CL

fχ̃0
j

¯̃fw
CR

χ̃0
i f̄ f̃v

C
h0

kf̃w
¯̃fv
mχ̃0

i
C2) + F2(C

R

fχ̃0
j

¯̃fw
CR

χ̃0
i f̄ f̃v

C
h0

kf̃w
¯̃fv
mfC0

−CL

fχ̃0
j

¯̃fw
CR

χ̃0
i f̄ f̃v

C
h0

kf̃w
¯̃fv
mχ̃0

j
C1 − CR

fχ̃0
j

¯̃fw
CL

χ̃0
i f̄ f̃v

C
h0

kf̃w
¯̃fv
mχ̃0

i
C2)] (5.12)

where Ci ≡ Ci(m
2
χ̃0

j
, m2

h0
k
, m2

χ̃0
i
, m2

f , m
2
f̃v

, m2
f̃w

) are scalar loop integrals (see Appendix A.1

for the definitions of the loop integrals used in this thesis) and the abbreviations

F1 = ū(k1, mχ̃0
j
)ωLu(p1, mχ̃0

i
), F2 = ū(k1, mχ̃0

j
)ωRu(p1, mχ̃0

i
) (5.13)

are used. These matrix elements and abbreviations, combined with the corresponding

output for the counterterms, are then converted to Fortran code using WriteSquaredME.
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Figure 5.3: Contributions to the one-loop χ̃0
i χ̃

0
jh

0
k vertex involving mixing self-energies of

Higgs bosons with the G and Z bosons; (a) h0
k–G self-energy diagram, (b) h0

k–Z
self-energy diagram, (c) h0

k–G counterterm diagram, (d) h0
k–Z self-energy dia-

gram.

The code contains everything required to convert these matrix elements into numerical

values for decay widths and cross sections. The loop integrals are evaluated numerically

using LoopTools. We vary the parameter ∆ ≡ 2/(4 − D) − γE + log 4π to check the

UV finiteness of the decay width and show that in the corresponding vertex function,

Γ̂1PI
χ̃0

i χ̃0
jh0

k
= Γ1PI

χ̃0
i χ̃0

jh0
k
+ δΓ1PI

χ̃0
i χ̃0

jh0
k
, the UV divergences cancel out.

5.4 Inclusion of self-energy diagrams

In the previous section we obtained the 1PI renormalised vertex function for χ̃0
i χ̃

0
jh

0
k.

Although it is UV-finite, this vertex function will not lead to physical amplitudes and

decay widths, as the external Higgs field is not on-shell and can mix with other fields.

The 3-point vertex for χ̃0
i χ̃

0
jha is constructed from the vertices for χ̃0

i χ̃
0
jh, H, A using

the 3 × 3 Ẑ matrix for the normalisation of wavefunctions as in Equation (3.84). This

automatically includes the reducible self-energy diagrams involving h, H, A.

For a complete one-loop result, reducible diagrams, of the type shown in Figure 5.3(a),

involving mixing self-energies of Higgs bosons with the G and Z bosons, must also

be included. In order to ensure a proper cancellation of the gauge parameter depen-

dence, we follow the approach of Ref. [30] and evaluate these reducible contributions,

Γ̂G,Z.se, strictly at the one-loop level. The diagrams and amplitudes were generated us-

ing FeynArts, and added to the corresponding counterterm diagram from Figure 5.3(b).

The h0
k–G vertex counterterms from Equation (3.67) and the resulting h0

k–Z countert-

erms were implemented into our FeynArts model file.
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Our full result, Γ̂Full Loop, is then obtained by combining these contributions with those

of genuine vertex type, Γ̂ 1PI, as follows,

Γ̂
Full Loop

χ̃0
i χ̃0

jha
= Ẑal[Γ̂

1PI
χ̃0

i χ̃0
jh0

l
(M2

ha
) + Γ̂

G,Z.se

χ̃0
i χ̃0

jh0
l
(m2

h0
l
)], (5.14)

where h0
l = {h, H, A} are the tree-level states with tree-level masses, mh0

l
, and are

summed over. In contrast, Mha is the loop-corrected mass of the Higgs boson ha in

the physical process, i.e. one of h1, h2, h3. Numerically, inclusion of the G–Z mixing

did not have a significant effect, but we include these diagrams for a complete one-loop

result. Across the CPX parameter space studied in Chapters 6 and 7, the effect of this

correction on the decay widths was less than 0.1%.

5.5 Combination with higher-order results

As Higgs propagator-type corrections are known to be large, we have combined our one-

loop result for the genuine vertex contribution with state-of-the-art two-loop propagator-

type corrections obtained within the Feynman diagrammatic approach, as implemented

in the program FeynHiggs [41, 79–81]. These contributions incorporate in particular

the full phase dependence at O(αtαs), while we do not include here further two-loop

corrections that are known only for the case of real MSSM parameters.1 Using Equa-

tion (5.14), we combine the two-loop Ẑ factors and Higgs masses Mha from FeynHiggs

2.6.5, with our own genuine vertex (Γ̂ 1PI) and G–Z mixing (Γ̂G,Z.se) corrections to the

processes χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j , thereby obtaining the most precise predictions

for the corresponding decay widths and branching ratios in the MSSM with complex

parameters.

In order to investigate the effects of the genuine vertex contributions for the processes

χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j , we will in the following compare our full result with an

Improved Born approximation. The latter is obtained by summing over the tree-level

amplitudes for χ̃0
i → χ̃0

jh
0
k or h0

k → χ̃0
i χ̃

0
j , weighted by the appropriate Ẑ factors and

1This means in FeynHiggs selecting the flag t1cp1approx= 1 instead of the default flag for complex
parameters t1cp1approx= 3, which uses an interpolation between phases to include the further
two-loop corrections evaluated at real parameters.
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evaluated at the loop-corrected Higgs masses,

Γ̂
Improved Born

χ̃0
i χ̃0

jha
= Ẑal[Γ̂

Born
χ̃0

i χ̃0
jhl

(Mh2
a
)]. (5.15)

We will always compare our numerical results to this Improved Born approximation,

rather than to the strict tree-level result of Equation (5.5). This allows us to separate out

the effect of our new genuine (process-specific) vertex corrections from those corrections

coming from mixing effects and mass shifts in the Higgs sector which are already known

to be large. Thus when we speak of the relative effect of our genuine vertex loop

calculations on the partial decay width, Γ, we are referring to the ratio

r =
ΓFull Loop − ΓImproved Born

ΓImproved Born

. (5.16)

As well as our full MSSM calculation, we will show approximations, where only some

(UV-finite) sets of diagrams such as third generation quarks and squarks, i.e. t, t̃, b, b̃, are

included in the genuine vertex corrections. In all cases, the two-loop propagator-type

corrections from FeynHiggs are evaluated in the full MSSM. Various other approxima-

tions exist in the literature. In Ref. [101], only the one-loop 3rd generation (s)quark

contributions in the real MSSM were considered. In Ref. [102], all one-loop (s)fermion

contributions in the real MSSM were considered. Our full results thus go beyond these

works, as we include all possible MSSM particles in the loops, we allow complex param-

eters, and we incorporate complete one-loop and leading two-loop contributions from

the Higgs sector.

5.6 Other vertices

In addition to the χ̃0
i χ̃

0
jh

0
k vertex, we have renormalised all three-point vertices involv-

ing Higgs or gauge bosons with charginos and/or neutralinos. The counterterms for

these vertices have been implemented into our supplementary FeynArts model file and

checked for UV-finiteness. We give formulae for these in Appendix B for reference, but

will not use all of them for the numerical results presented in this thesis.

We will present numerical results for the one-loop χ̃0
i χ̃

0
jZ vertex. To obtain these cor-

rections, the procedure followed was similar to that described in the previous sections

for the χ̃0
i χ̃

0
jh

0
k vertex. At the particle level there are 292 diagrams to compute, which
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can be split into analogous UV-finite sets to the Higgs case. The three-point vertex is

given at tree level by

Γtree
χ̃0

n1
χ̃0

n2
Z = i(CL

χ̃0
n1

,χ̃0
n2

,ZγµωL + CR
χ̃0

n1
,χ̃0

n2
,ZγµωR). (5.17)

where

C
L/R

χ̃0
n1

,χ̃0
n2

,Z
=

e

2cW sW
c
L/R

χ̃0
n1

χ̃0
n2

Z (5.18)

with

cL
χ̃0

n1
χ̃0

n2
Z = −N∗

n23Nn13 + N∗
n24Nn14,

cR
χ̃0

n1
χ̃0

n2
Z = N∗

n13Nn23 − N∗
n14Nn24. (5.19)

The vertex counterterms are then given by

δCL/R(χ̃0
n1

, χ̃0
n2

, Z) =
e

2cWsW

[
2c

L/R
χ̃0

n1
χ̃0

n2
Z(δZe −

δcW

cW
− δsW

sW
+

1

2
δZZZ)

+
1

2
(δZ

L/R
0,n1ic

L/R

χ̃0
i χ̃0

n2
Z

+ c
L/R

χ̃0
n1

χ̃0
i Z

δZ̄
L/R
0,in2

)
]
. (5.20)

Equation (5.20) is somewhat simpler than the Higgs vertex counterterm of Equation

(5.9). The counterterm, δc
L/R

χ̃0
n1

χ̃0
n2

Z , is zero since it contains only mixing matrix elements.

Also, the Z field renormalisation transformation (see Equation (3.10)) mixes the Z bo-

son only with the photon, which does not couple to neutralinos, so the δZZγ term can

be dropped from the vertex counterterm. Unlike the Higgs vertex, there is no need to

normalise the Z vertex using finite normalisation factors, since the on-shell renormalisa-

tion conditions ensure the correct propagator residue. However, for a complete one-loop

result for the process χ̃0
i → χ̃0

jZ, we do include reducible diagrams involving the mixing

self-energies for the Z boson with h, H , A, and G.



Chapter 6

Results for the decay width of a

neutralino into a light Higgs boson

6.1 Motivation

In this chapter we present numerical results for the decay width of a neutralino into

a light Higgs boson, calculating the vertex corrections using the method described in

Chapter 5. Our motivation for the study of this decay is the CPX benchmark sce-

nario [29]. As already discussed, not only does this scenario contain a parameter region

in which a very light Higgs boson, of mass around 40 GeV, is unexcluded by LEP [27,30],

but it is known that this unexcluded parameter region will also be difficult to cover at

the LHC with the standard search channels [31–33].

While on the one hand a supersymmetric scenario such as the CPX scenario may have

much worse prospects compared to the SM case for Higgs searches at the LHC in the

standard channels, on the other hand additional Higgs production channels involving

SUSY particles may occur in such a case. In cascade decays of heavier SUSY particles

down to the lightest supersymmetric particle (LSP), Higgs bosons can in particular be

produced in decays of neutralinos and charginos, via χ̃0
i → χ̃0

j h1, h2, h3 and χ̃±
i → χ̃0

jH
±,

see e.g. Refs. [103, 104] for studies of these channels at the LHC in the MSSM with real

parameters. These channels have also attracted recent interest for studies of scenarios

with non-universal gaugino masses [105–107].

Since higher-order contributions in the MSSM Higgs sector are known to be large, a

proper inclusion of Higgs-sector corrections is indispensable for a reliable prediction of

this class of processes. The process-independent corrections to the mass of the outgoing

93
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Higgs boson and to the Higgs wave function normalisation can be incorporated via an

effective Born-type prediction for the neutralino decay process, see Refs. [30, 41, 108] (see

Section 5.5). We show results for such an Improved Born approximation using Equation

(5.15). The genuine (process-specific) vertex corrections, included in Equation (5.14),

can also be very important. This has recently been demonstrated in Ref. [30] for Higgs

cascade decay processes, ha → hbhc, in the CPX scenario, where the genuine vertex

corrections were found to give rise to drastic changes in the decay widths compared

to the effective Born-type predictions. In the neutralino decay processes, comprising

just one instead of three external Higgs bosons, the genuine vertex corrections are not

expected to be quite as large as for the Higgs cascade decays, but their effects can

nevertheless be expected to be non-negligible.

Concerning existing theoretical predictions for this class of processes, partial one-loop

results have been published previously for the decays H, A → χ̃0
i χ̃

0
j in both the Feynman-

diagrammatic [101, 102] and effective potential [109] approaches. These predictions did

not include the full MSSM, and the Feynman-diagrammatic calculations were restricted

to the case of real parameters.

Here we present the full vertex corrections at the one-loop level, taking into account

the contributions from all MSSM particles, and all possible complex parameters using

the renormalisation scheme detailed in Chapters 4 and 5. We combine these results

with state-of-the-art two-loop propagator-type corrections as implemented in the code

FeynHiggs [41, 79–81] using Equation (5.14). In this way the currently most precise

prediction for this class of processes is obtained.

In our numerical discussion we concentrate in particular on the parameter region in

the CPX benchmark scenario where a light Higgs boson is unexcluded by current data

(see also Refs. [110–112] and the more recent Ref. [113] for discussions of other possible

LHC search channels to access this parameter region), but we also give examples for the

CP-conserving case. In addition we will also compare our results for the decay width of

a neutralino into a Higgs boson to the decay width of a neutralino into a Z boson.

6.2 Numerical results for the CPX scenario

We start with numerical results for our genuine vertex corrections to the decay width

for χ̃0
2 → χ̃0

1h1 in the CPX scenario. Figure 6.1(a) shows the partial decay width
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Γ(χ̃0
2 → χ̃0

1h1) as a function of Mh1
. The value of tanβ is fixed at 5.5, while MH± is varied

as input. As Mh1
increases, the partial width decreases, becoming kinematically closed

for Mh1

>∼ 103 GeV ∼ Mχ̃0
2
− Mχ̃0

1
. The dashed Improved Born curve shows the result

obtained by combining the tree-level amplitudes with 2-loop Ẑ matrix elements and

masses according to Eq. (5.15). The other curves incorporate our results for the genuine

vertex corrections, taking into account different sets of loop contributions. Figure 6.1(b)

shows the ratio r, defined in Eq. (5.16), of the genuine vertex corrections relative to the

Improved Born result as a function of Mh1
. We see from the figure that the impact of the

genuine vertex corrections on the decay width is very large. The corrections from the full

MSSM contributions to the vertex amount to about 45% for Higgs mass values in the

region of the “CPX hole”, i.e. for Mh1
∼ 40 GeV. As expected, the dominant effect arises

from the triangle diagrams containing third generation quarks and squarks (t, t̃, b, b̃), due

to the large top Yukawa coupling, yielding a correction of about 35% compared to the

Improved Born result. The other (s)fermions also play a non-negligible role, in particular

through their couplings to neutralinos, increasing the total (s)fermion contribution to

just under 50%. The vertex corrections from the remainder of the particles in the

MSSM, namely the vector bosons, Higgs bosons, neutralinos and charginos, are negative

and contribute about a 5% correction.
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Figure 6.1: Results for (a) the decay width Γ(χ̃0
2 → χ̃0

1h1) and (b) the ratio r = (ΓFull Loop −
ΓImprovedBorn)/ΓImprovedBorn in the CPX scenario plotted against Mh1

for tanβ = 5.5.
(MH± was varied as input.) The different curves indicate the inclusion of various subsets
of diagrams.
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Figure 6.2: Results for (a) the decay width Γ(χ̃0
2 → χ̃0

1h2) as a function of Mh1
in the CPX scenario,

(MH± was varied as input, Mh2
and Mh3

will vary with MH±); and (b) the decay widths
Γ(χ̃0

2 → χ̃0
1h1,2,3) as a function of Mχ̃0

2

in the CPX scenario for tanβ = 5.5; (M2 was
varied as input to produce the displayed variation in Mχ̃0

2

(mostly wino); Mχ̃0

1

(mostly
bino) also varies due to the GUT relation between M1 and M2). The different curves
indicate the inclusion of various vertex corrections.

In Figure 6.2(a) we show the partial decay width Γ(χ̃0
2 → χ̃0

1h2) for the second light-

est Higgs boson, as a function of Mh1
in the CPX scenario with tan β = 5.5.1 For

Mh1

>∼ 50 GeV, Mh2
drops below Mχ̃0

2
− Mχ̃0

1
, and the decay is no longer kinematically

open. For the nominal CPX value of M2 = 200 GeV and values of Mh1
and tan β chosen

in the region of the “CPX hole”, the decay width into h2 is always less than the decay

width into h1, shown in Figure 6.1(a). However, for larger values of M2 (and hence Mχ̃0
2
),

this may not always be the case, and also the decay into h3 may become kinematically

open.

In Figure 6.2(b) we show the variation in each of the partial decay widths Γ(χ̃0
2 →

χ̃0
1h1,2,3), as a function of Mχ̃0

2
. MH± was adjusted to keep Mh1

and tan β fixed at

40 GeV and 5.5 respectively. We see that the decay into the lightest Higgs boson, h1,

is kinematically open for the whole range of Mχ̃0
2

shown, while h2 and h3 can only be

produced on-shell for Mχ̃0
2

greater than around 195 and 250 GeV respectively. Once Mχ̃0
2

1The variation as a function of Mh1
is merely for reference later in Chapter 7 when we compute the

branching ratio of χ̃0
2 as a function of Mh1

. In fact the input parameter MH± was varied to produce
the displayed variation in Mh1

.
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Figure 6.3: (a) The decay width Γ(χ̃0
2 → χ̃0

1h2) as a function of tanβ in the CPX sce-
nario, with various subsets of diagrams included. (b) The ratio r = (ΓFull Loop −
ΓImprovedBorn)/ΓImprovedBorn for χ̃0

2 → χ̃0
1h1 plotted against µ in the CPX scenario,

with tanβ = 5.5, with various subsets of diagrams included. MH± was adjusted in order
to keep Mh1

= 40 GeV constant for both figures.

becomes large enough, the decay into h2 dominates over the decay into h1, since h2

has a larger CP-even component. Notice that all three decay widths receive large vertex

corrections of O(50%). For Mχ̃0
2

just below 520 GeV, there is a slight enhancement in the

vertex corrections, corresponding to the threshold for the decay of χ̃0
2 into squark-quark

final states. We will see in Chapter 7 that, above this threshold, the squark-quark decay

then begins to dominate the branching ratio of the second lightest neutralino.

In Figure 6.3(a) we show the decay width of Γ(χ̃0
2 → χ̃0

1h1) as a function of tanβ, where

MH± is adjusted to keep Mh1
constant at 40 GeV. We observe a similar pattern in the

relative impact of the various contributions of the subsets of diagrams to the vertex

corrections, the largest coming from the third generation quarks and squarks. Values of

tan β below 5 yield a significant increase of the decay width.

Such large effects from the genuine vertex corrections are not unexpected in the CPX

scenario (see also Ref. [30] for an analysis of genuine vertex corrections to Higgs cascade

decays). It is well known that loop corrections in the Higgs sector can be large, especially

in this rather extreme scenario with large trilinear couplings and CP-violating phases.

Such a large value of µ also enhances the effect of loop corrections in the neutralino
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Figure 6.4: The ratio r = (ΓFull Loop − ΓImprovedBorn)/ΓImprovedBorn in the CPX scenario: (a) r for
χ̃0

2 → χ̃0
1h1 plotted against φAt

. (b) r for each of χ̃0
2 → χ̃0

1h, H, A plotted against φAt

for |At| = 900 GeV, where h, H , A indicate the unnormalised Higgs CP-eigenstates (i.e.
the Ẑ1i matrix elements are set to {1, 0, 0}, {0, 1, 0} and {0, 0, 1} respectively). For both
figures, MH± was adjusted in order to keep Mh1

= 45 GeV constant and tanβ = 7.

sector. In Figure 6.3(b) we see how the effect of the genuine vertex corrections is further

enhanced to values of 60% or more if µ is increased compared to its value in the CPX

scenario of µ = 2 TeV. On the other hand, if µ is decreased one obtains correspondingly

smaller corrections.

We also examined the effect of varying the absolute value and CP-violating phase of

the trilinear coupling, At = Ab = Aτ , for the third generation of sfermions. In Figure

6.4(a), we plot r for the decay χ̃0
2 → χ̃0

1h1 as a function of φAt for various values of

|At|. MH± was adjusted in order to keep Mh1
= 45 GeV constant and tanβ = 7. (A

Higgs mass of Mh1
= 40 GeV was not theoretically accessible for all φAt when |At| =

500 GeV.) In Figure 6.4(b), we plot r for each of χ̃0
2 → χ̃0

1h, H, A as a function of φAt for

|At| = 900 GeV, where h, H, A are the unnormalised Higgs CP-eigenstates. We compute

the latter (unphysical) decay widths in the limit where we set the Ẑ1i matrix elements

for the lightest Higgs boson to {1, 0, 0}, {0, 1, 0} and {0, 0, 1} respectively. (For reasons

discussed in Section 3.4.9, these will not correspond to physical mass eigenstates.) First

we discuss the red curve in Figure 6.4(a), where |At| = 900 GeV. At φAt = π/2, the loop

corrections show a steep dependence on the phase, φAt , emphasising the importance of

including the effects of phases in the calculation. At this value, h1 has its largest CP-odd
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content, i.e. |Ẑ13| is largest (as shown in Figure 3.3(b)), while the CP-even contributions

are suppressed, giving rise to corrections of order r ∼ 45%, which is consistent with the

size of the corrections to the decay width into the CP-odd eigenstate, A, at φAt = π/2

shown in Figure 6.4(b). When φAt = 0, the loop corrections to Γ(χ̃0
2 → χ̃0

1h1) are found

to be somewhat smaller, with r ∼ 30%. This is because at this value of the phase, h1

is mostly h (see Figure 3.3(b)), and as seen in Figure 6.4(b), the decay width into the

CP-even eigenstate, h, receives corrections of around this size. On the other hand, the

effect of the genuine vertex corrections to Γ(χ̃0
2 → χ̃0

1h1) is maximised for φAt = π, i.e.

At = −|At|. This corresponds to maxima in |Ẑ11| and |Ẑ12|, so that the lightest Higgs

boson is mostly CP-even (see Figure 3.3(b)). The genuine vertex corrections for a CP-

even Higgs are larger than for a CP-odd one at φAt = π, so that their effect is maximised

here. The corrections are particularly large for the Higgs with an h-like coupling (see

Figure 6.4(b)). Hence the genuine vertex corrections in such a CP-conserving scenario

(with φAt = π) can even exceed the ones in the CPX scenario (where φAt = π/2). It

should be noted in this context, however, that such a light CP-even Higgs boson is of

course experimentally excluded. Figure 6.4(b) also shows corrections of order 200% at

φAt = 0, 2π for the unrenormalised H state of mass 45 GeV. Note, however, that this

200% effect is not physical; it does not play a large role for the physical h1 state since

Ẑ12 is small at these φAt values (see Figure 3.3(b)). For smaller values of |At| (blue and

green curves in Figure 6.4(a)), the corrections are in general smaller, and the variation

with the phase of At is less pronounced. Nevertheless, even for |At| = 500 GeV we find

r ∼ 35% and r ∼ 40% at φAt = π/2 and φAt = π, respectively.

6.3 Numerical results for the small αeff scenario

We next consider the numerical results for the genuine vertex corrections to the decay

width, Γ(χ̃0
2 → χ̃0

2h1), in the CP-conserving small αeff scenario. Like the CPX scenario,

this scenario has large µ and large, negative At. For the small αeff scenario with MH± =

220 GeV and tanβ = 10, we find genuine vertex corrections of size r ∼ 35%. The

variation with µ, shown in Figure 6.5(a), results in a pattern that is very similar to

the one observed for the CPX scenario in 6.3(b). The size of the correction scales

approximately linearly with µ, and the inclusion of the full (s)fermion contributions

yields a shift of about 10% compared to the contribution of only the third generation

(s)quarks. The non-(s)fermionic corrections to the genuine vertex give rise to a downward

shift of about 5%.
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Figure 6.5: The ratio r = (ΓFull Loop − ΓImprovedBorn)/ΓImprovedBorn for χ̃0
2 → χ̃0

1h1 in the small αeff

scenario. (a) r plotted against µ with various subsets of diagrams included. In this plot
MH± = 220 GeV and tanβ = 10. b) r plotted against φAt

for three different values
tanβ = 3.3, 5, 10 and hence |At| = 500, 700, 900 GeV respectively (see Eq. (2.34)), with
MH± = 220 GeV.

In Figure 6.5(b) the small αeff scenario is modified by varying the phase φAt while

keeping |At| = |Xt + µ∗ cotβ| constant. We find that, like in the CPX scenario, the

genuine vertex corrections have the largest effect of order 35% at the nominal value of

φAt = π, while the corrections are only a few percent when the phase is maximally CP-

violating for φAt = π/2. This can again be compared with Figure 6.4(a). Unlike the CPX

scenario for which the corrections to the physical decay width into h1 are minimised at

φAt = 0, 2π, in the small αeff scenario the vertex corrections exhibit another extremum

here, with r ∼ −20%. As for Figure 6.3(b), the dotted curves in Figure 6.5(b) show

a reduced effect of the loop corrections when |At| is decreased. Here we vary tanβ in

order to produce the desired |At| from Xt = −1100 GeV using Eq. (2.34).

6.4 Other benchmark scenarios

In addition to the CPX and small αeff scenarios, we examined all of the kinematically

open decay modes of the form χ̃0
i → χ̃0

jh for the SPS benchmark points [63]. We show the
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ratio r, defined in Eq. (5.16), of the genuine vertex corrections relative to the Improved

Born result for the decay widths in Table 6.1. Corrections of over 10% to the partial

decay widths were found to be common, indicating that significant effects are not limited

to scenarios with very large values of µ.

Decay: χ̃0
3 → χ̃0

2h χ̃0
3 → χ̃0

1h χ̃0
4 → χ̃0

1h χ̃0
4 → χ̃0

2h χ̃0
2 → χ̃0

1h χ̃0
3 → χ̃0

1h

SPS1a -8.8% -0.12% -1.6% -10.3% - -

SPS1b -11.7% -2.5% -2.5% -12.1% - -

SPS2 - - -8.2% -12.3% - -

SPS3 - - -2.5% -12.0% -3.0% -

SPS4 - - - -9.9% - -

SPS5 - - - -1.5% - -

SPS6 - - -1.4% -13.4% - -

SPS8 - - -2.9% -9.9% -8.7% -

SPS9 - - -21.2% -6.2% - -17.3%

Table 6.1: Relative effect of the genuine vertex corrections on the decay widths, shown as a
percentage, r(%), for the kinematically open decay modes of the form χ̃0

i → χ̃0
jh

for the SPS benchmark points.

Another scenario which we examined was the benchmark point LM5, studied in the CMS

Technical Design Report, in the context of the decay χ̃0
2 → χ̃0

1h [104]. For this scenario

we found the corrections to the partial decay width to be around 5%. However, due

to the large branching ratio of around 85% for the process, these corrections translated

into an effect of less than a percent on the branching ratio. We will discuss the effect of

decay width corrections on the branching ratios further in Chapter 7.

6.5 Comparison with the decay width of a

neutralino into a Z boson

As detailed in Section 5.6, we have also computed the one-loop vertex corrections to the

χ̃0
i χ̃

0
jZ vertex. In this section we show numerical results for the decay width, Γ(χ̃0

2 →
χ̃0

2Z), to serve as a comparison to Γ(χ̃0
2 → χ̃0

2ha). In Figure 6.6(a), we plot the relative

size of the corrections, r, as a function of µ for Mh1
= 40 GeV and tanβ = 5.5 in

the CPX scenario. We see that, unlike for the Higgs vertex, the vertex corrections are
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Figure 6.6: The ratio r = (ΓFull Loop − ΓImprovedBorn)/ΓImprovedBorn for χ̃0
2 → χ̃0

1Z in the CPX
scenario. (a) r plotted against µ, with various subsets of diagrams included. MH± was
adjusted in order to keep Mh1

= 40 GeV constant and tanβ = 5.5. (b) r plotted against
φAt

for several different values of |At|. MH± was adjusted in order to keep Mh1
= 45 GeV

constant and tanβ = 7.

negative, but, like for the Higgs vertex, they increase in relative size as µ increases. For

µ = 2000 GeV, the corrections are sizeable, with r ∼ −30%. If µ is increased above its

nominal CPX value of 2000 GeV, the corrections can reach a relative size of −40% or

more. The effect from the subset of diagrams including only third generation quarks

and squarks (t, t̃, b, b̃) is less than half of the effect of the full MSSM diagrams, yielding a

correction of about −15%. This is in contrast to the Higgs vertex, for which this subset

was by far the dominant contribution, enhanced by the large top Yukawa coupling.

Inclusion of the other (s)fermion diagrams gives a further negative contribution of about

15% and results in a very good approximation to the full result. The remaining particles

in the MSSM, namely the vector bosons, Higgs bosons, neutralinos and charginos, do

not play a large role, giving a small, negative contribution.

In Figure 6.6(b), we show the relative size of the corrections to Γ(χ̃0
2 → χ̃0

2Z) in the CPX

scenario with Mh1
= 45 GeV and tanβ = 7 as a function of the phase of the trilinear

coupling, At = Ab = Aτ , for the third generation of sfermions, for various values of

|At|. The red curve shows the variation when |At| = 900 GeV. At φAt = π/2, the

loop corrections show a steep dependence on the phase, φAt, once again emphasising the
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Figure 6.7: The decay widths for χ̃0
2 → χ̃0

1h and χ̃0
2 → χ̃0

1Z in the light χ̃0
1 scenario, (a) plotted

against tanβ, and, (b) plotted against At.

importance of including these phases in the calculation. Unlike the Higgs vertex, the

negative corrections to the Z vertex are the largest when φAt = 0, where they reach a

value of r ∼ −50%. Here the effect of the subset of triangle diagrams including only

third generations of (s)fermions is enhanced. As with the Higgs vertex, for smaller values

of |At| (blue and green curves in Figure 6.6(b)) the corrections are in general smaller,

and the variation with the phase of At is less pronounced.

While, in the CPX scenario, the decay width for χ̃0
2 → χ̃0

1Z receives corrections of a

similar order to the χ̃0
2 → χ̃0

1ha processes, the decay width itself is about a factor of

100 smaller than the Higgs decay widths, and therefore it will not play such a large role

in the branching ratio of χ̃0
2. We will discuss this further in Chapter 7. In contrast, a

scenario in which the decay widths into the Higgs and Z bosons are of similar order is

the CP-conserving light χ̃0
1 scenario given in Table 2.3. In Figure 6.7(a) we show the

variation of the decay widths of χ̃0
2 into h and Z, with and without vertex corrections,

as a function of tanβ for the light χ̃0
1 scenario. Like for the CPX scenario, we see a

significant increase of the Higgs decay width for small values of tanβ, while the Z decay

width gets smaller in this region. However, for values above tanβ = 10, both decays

have similar widths and can contribute significantly to the χ̃0
2 branching ratio. The

vertex corrections to the Z decay width are negative and of order less than 5%, while
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the vertex corrections to the Higgs decay width are negative, with size increasing from

20% to 37% for the increase in tanβ shown.

In Figure 6.7(b) we show the variation of the decay widths of χ̃0
2 into h and Z, with

and without vertex corrections, as a function of the third generation sfermion trilinear

coupling, At for the light χ̃0
1 scenario. As for their dependence on tanβ, we observe that

the vertex corrections to the Z and Higgs vertices, while both negative, each display a

different dependence on At. As At increases, the Z vertex corrections decrease, while the

Higgs vertex corrections increase, enhanced by the diagrams containing third generation

quarks and squarks.

6.6 The effect of CP-violating phases from the

neutralino sector

So far we have only shown numerical results for CP-violating scenarios in which the

phases contribute to the neutralino-chargino sector only at the loop level, such as φAt . We

now consider scenarios where the parameters which enter the neutralino-chargino sector

at tree level can also be complex. For the CP-violating Higgs propagator corrections, the

combined phase of µAt plays the largest role at one-loop level. For the genuine vertex

corrections, which involve the neutralino sector at tree-level, φM1
can also be important.

In Figure 6.8(a) we show the decay width for χ̃0
2 → χ̃0

1h1 as a function of φM1
in the CPX

scenario with Mh1
= 62 GeV and tanβ = 5.5. We see in the dashed curve that φM1

has

a significant effect on Γ(χ̃0
2 → χ̃0

1h1) even at the Improved Born level. The green, blue

and red curves show the inclusion of the vertex corrections due to the third generation

(s)quarks, the full set of (s)fermions and the full MSSM respectively. As seen previously,

the former is the largest contribution. One can better understand the shape of the curves

in Figure 6.8(a) by considering the (unphysical) “decay widths” for the unnormalised

CP-eigenstates, h, H and A, shown in Figure 6.8(b) (in this figure the Ẑ matrix elements

are set to {1, 0, 0}, {0, 1, 0} and {0, 0, 1} respectively). The neutralino mixing matrix

elements, Nij, and hence the couplings of neutralinos to Higgs bosons, have a strong

dependence on φM1
. We see that the CP-odd Higgs has a different dependence on φM1

to the CP-even Higgs bosons, but both are symmetric about φM1
= 0, the former (latter)

having a minimum (maximum) at φM1
= 0. However, when φM1

= 0, there is still CP-

violation in the Higgs sector due to the non-zero φAt and φM3
. This can be seen in
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Figure 6.8: (a) Decay width for χ̃0
2 → χ̃0

1h1 as a function of φM1
, with various subsets of vertex

corrections included; (b) unphysical “decay widths” into unnormalised CP-eigenstates,
“Γ”(χ̃0

2 → χ̃0
1h, H, A) as a function of φM1

(i.e.the Ẑ matrix elements are set to {1, 0, 0},
{0, 1, 0} and {0, 0, 1} respectively); (c) r = (ΓFull Loop −ΓImprovedBorn)/ΓImprovedBorn for
χ̃0

2 → χ̃0
1h1, as a function of φM1

with various subsets of vertex corrections included. All
plots are for the CPX scenario with Mh1

= 60 GeV and tanβ = 5.5.

the loop-corrected widths, the maxima and minima of which are shifted slightly. When

the appropriate linear combination of h, H and A is made using the Ẑ factors (see

Figure 3.3(b); there is almost no variation from these Ẑ factors when φM1
is varied), the

resulting decay width for h1 is asymmetric about φM1
= 0. Although φM1

plays very
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little role in the pure Higgs sector corrections, we see that its effect can be significant for

the χ̃0
2χ̃

0
1h1 vertex corrections. Moving away from the nominal CPX value of φM1

= 0

where the vertex corrections amount to r ∼ 45%, we see in Figure 6.8(c), that the vertex

corrections can increase to r ∼ 55% for φM1
∼ π/2.

6.7 Summary

In this chapter we have presented numerical results for the one-loop decay widths for

χ̃0
2 → χ̃0

1h1,2,3 in various CP-violating and CP-conserving scenarios. We compared these

to results for the one-loop decay widths for χ̃0
2 → χ̃0

1Z. For the Higgs vertex, we

found particularly large vertex corrections of O(45%) for the unexcluded parameter

region in the CPX scenario, where a light Higgs could be produced by the decay of the

second lightest neutralino. These vertex corrections could be further enhanced with the

variation of parameters from the neutralino sector, such as φM1
, which do not play a

large role in the Higgs sector. In the context of utilising the decay, χ̃0
2 → χ̃0

1h1, in the

region of the “CPX hole”, it was important to compute the effect of the genuine vertex

corrections on the decay width, since it had been seen previously that such genuine vertex

corrections for h2 → h1h1 had a dramatic effect on the size and position of the hole [30].

In assessing the viability of this decay at the LHC, it will be the branching ratios rather

than the decay widths that are important. In the next chapter we present results which

show the effect the large corrections to the decay widths have on the branching ratios.

We will then use these results to discuss the prospects for closing the “CPX hole” at the

LHC using the decay χ̃0
2 → χ̃0

1h1.



Chapter 7

Results for the branching ratio of a

neutralino into a light Higgs boson

7.1 Calculation of branching ratios

In the previous chapter, we found that the genuine vertex corrections to the partial decay

width Γ(χ̃0
2 → χ̃0

1h1) were of order 45% in the CPX scenario. For phenomenology at the

LHC it is important to consider, in addition to the decay widths, also the branching ratios

of neutralinos. In this section, we compute the branching ratios of χ̃0
2, incorporating our

loop-corrected decay widths for the two-body decays, χ̃0
2 → χ̃0

1h1,2,3 and χ̃0
2 → χ̃0

1Z. In

the CPX scenario, depending on its mass, χ̃0
2 can decay via the following decay modes:

χ̃0
2 → χ̃0

1h1, χ̃0
1h2, χ̃0

1h3, χ̃0
1Z, χ̃0

1f f̄ , f̃1,2f̄ , ˜̄f1,2f. (7.1)

Where kinematically possible, we calculate the decays χ̃0
2 → χ̃0

1ha, which produce on-

shell neutral Higgs bosons, as two-body decays, including the genuine vertex corrections

as detailed in the previous chapters. Where kinematically possible, we also calculate

the decay χ̃0
2 → χ̃0

1Z into an on-shell Z boson as a two-body decay, including the

equivalent genuine vertex corrections as detailed in the previous chapters. Note, however,

that the amplitude for this decay is suppressed by several orders of magnitude in the

CPX scenario, since the Z boson only couples to the higgsino component of each of

the neutralinos, while the large value of µ renders χ̃0
1 and χ̃0

2 mostly bino and wino,

respectively. Finally, we calculate the 3-body decay χ̃0
2 → χ̃0

1f f̄ . For this, we include,

firstly, the diagrams where an off-shell Higgs boson is exchanged (i.e. where some or all of

h1, h2, h3 are too heavy to be produced on-shell). For these diagrams we use the unitary
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Û matrix elements and masses from FeynHiggs to construct effective couplings (see

Section 3.4.11) which take into account the two-loop Higgs propagator-type corrections.

Secondly, in the three-body decay, where the kinematics do not permit an on-shell Z

boson, we include the diagram where a Z boson is exchanged, along with the diagram

where the would-be Goldstone boson, G, is exchanged (in this way a proper cancellation

of the gauge dependence is ensured). Thirdly, we include in the three-body decay the

diagrams where a sfermion is exchanged. As the neutralino mass approaches the scale

of the sfermion masses, the possibility of on-shell production of sfermions arises, which

subsequently decay into χ̃0
1. To treat this threshold region, we include a finite width for

each sfermion, calculated from its self-energy. All self-energies and two- and three-body

partial decay widths were calculated using FeynArts and FormCalc.

7.2 Numerical results for the branching ratio in the

CPX scenario

The resulting branching ratios of χ̃0
2 in the CPX scenario are plotted as a function of

the neutralino mass, Mχ̃0
2
, in Figure 7.1a, with tanβ = 5.5 and Mh1

= 40 GeV. Both

the Improved Born and full MSSM vertex-corrected results are shown. We see that

for Mχ̃0
2

<∼ 190 GeV, BR(χ̃0
2 → χ̃0

1h1) ≈ 100%, and therefore the loop corrections to

the χ̃0
2 → χ̃0

1h1 partial width have negligible effect. As one increases Mχ̃0
2

from 190 to

470 GeV, the on-shell decays χ̃0
2 → χ̃0

1h2 and χ̃0
2 → χ̃0

1h3 become kinematically allowed.

This causes BR(χ̃0
2 → χ̃0

1h1) to vary from 100% to around 25%. In this region, the three

competing decay modes into Higgs bosons all receive large vertex corrections of order

50% (see Figure 6.2(b)). However, since these vertex corrections have similar structure,

their effects tend to cancel each other out, producing an effect of only a few percent on

the branching ratios. Thus, the Improved Born approximation works well in this region.

The effect of vertex corrections on the branching ratio will be more significant in regions

of parameter space where there is another competing decay mode of χ̃0
2 which does

not have loop corrections of a similar structure to χ̃0
2 → χ̃0

1h1. In the CPX scenario,

this competition will never be provided by the highly suppressed decay into a Z boson.

However, for large enough Mχ̃0
2
, decays via sfermions become important. While the

Higgs bosons require both a non-zero gaugino and higgsino component to couple to

neutralinos, sfermions couple only to the gaugino part. Thus, if sfermion decays can

proceed on-shell, they will, in this scenario, dominate over the Higgs decay modes,
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Figure 7.1: Branching ratio for each of χ̃0
2 → χ̃0

1h1,2,3 and for the other decay modes, χ̃0
2 → χ̃0

1Z and
χ̃0

2 → χ̃0
1f f̄ (labelled “Other”) (a) shown as a function of Mχ̃0

2

, for Mh1
= 40 GeV and

tanβ = 5.5; (M2 was varied as input to produce the change in Mχ̃0

2

(mostly wino); Mχ̃0

1

(mostly bino) also varies due to the GUT relation between M2 and M1; MH± was varied
as input to keep Mh1

constant; Mh2
and Mh3

will vary with MH±); and, (b) shown as
a function of Mh1

for tanβ = 5.5 and M2 = 200 GeV (Mχ̃0

2

and Mχ̃0

1

are 198.5 GeV and
94.7 GeV respectively; MH± was varied as input). In both plots we show the Improved
Born approximation as a dashed line and the full MSSM result as a solid line.

rendering BR(χ̃0
2 → χ̃0

1h1) ≈ 0. A threshold region for 450 <∼ Mχ̃0
2

<∼ 520 GeV can be

seen in Figure 7.1(a) for the curve labelled“Other” (χ̃0
2 → χ̃0

1Z and χ̃0
2 → χ̃0

1f f̄ decays).

Within this region, the existence of competing decay modes means that the genuine

vertex corrections are very important. The maximum effect occurs near Mχ̃0
2
∼ 500GeV,

where the positive vertex corrections to the Higgs decay widths result in a reduction of

the branching ratio BR(χ̃0
2 → χ̃0

1f f̄) of more than 10% compared to its Improved Born

value.

In Figure 7.1(b), we show the branching ratios of χ̃0
2 as a function of Mh1

, to be compared

with Figures 6.1(a) and 6.2(a). Here M2 = 200 GeV and tanβ = 5.5, so only decays

into χ̃0
1h1, χ̃0

1h2, χ̃0
1Z and χ̃0

1f f̄ (the latter two labelled “Other”) are kinematically open.

For Mh1

>∼ 50GeV, the second lightest Higgs boson is too heavy to be produced on-shell

and so BR(χ̃0
2 → χ̃0

1h1) is close to 100%. In the CPX hole, with Mh1
≈ 40 GeV, we

find BR(χ̃0
2 → χ̃0

1h1) ≈ 79%, an increase of around 3% compared to the Improved Born

value.
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Figure 7.2: Branching ratios for each of χ̃0
2 → χ̃0

1h, χ̃0
2 → χ̃0

1Z and χ̃0
2 → χ̃0

1f f̄ (labelled “Other”)
in the CP-conserving “light χ̃0

1 scenario”: (a) shown as a function of tanβ, for fixed
Af = 1 TeV; and, (b) shown as a function of At, for fixed tanβ = 20. We show the
Improved Born approximation (I.B.) as the dotted line, and the full MSSM result (F.M.)
as the solid line.

7.3 Numerical results for the branching ratio in

other scenarios

Although we found large loop corrections to the partial decay widths of χ̃0
2 → χ̃0

1h1,2,3

in the CPX scenario, the effects on the branching ratios turn out to be significantly

smaller, because the Higgs decays are not competing with other modes and so the large

genuine vertex corrections cancel each other out. This will also be the case for the

small αeff scenario, in which the Z decay mode is also suppressed and the sfermions are

heavy. However, this situation is not generic, and large vertex corrections can affect the

branching ratios if there are other competing decay modes with vertex corrections of a

different structure. In non-gaugino-like scenarios, without a large hierarchy between M2

and µ, the decays into Higgs bosons are more likely to compete with the decays into Z

bosons and sfermions.

For example, in Figure 7.2 we show the Improved Born and full MSSM branching ratios

for the “light χ̃0
1 scenario” of Table 2.3. Here we can have BR(χ̃0

2 → χ̃0
1h) ∼ BR(χ̃0

2 →
χ̃0

1Z). In the previous chapter, we computed genuine vertex corrections to both Γ(χ̃0
2 →
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χ̃0
1h) and Γ(χ̃0

2 → χ̃0
1Z), and found the former (latter) to be negative and of order 20%

(3%) and 35% (2%) for At = 500 GeV and At = 1200 GeV, respectively (see Figures

6.7(a) and 6.7(b)). The corrections are further enhanced at large values of tanβ. In this

scenario, the branching ratio for χ̃0
2 → χ̃0

1h happens to be near 50%. Thus, the effect of

the vertex corrections on the branching ratios is maximised in this case. The plots in

Figure 7.2 show corrections to the branching ratio of more than 10%.

7.4 Prospects for the “CPX Hole”

In Section 7.2, we found that χ̃0
2 → χ̃0

1h1 has a large branching ratio, BR(χ̃0
2 → χ̃0

1h1) ∼
79%, for the “CPX hole”, i.e. in the region where a light Higgs is unexcluded by present

data. We now investigate whether Higgs production in neutralino decays at the LHC

could help to cover this parameter region. Consider the SUSY cascade decay chain

starting with a gluino;

g̃ → f̃ f̄ → χ̃0
2f f̄ → χ̃0

1f f̄hi → χ̃0
1f f̄bb̄(τ+τ−). (7.2)

Coloured sparticles like gluinos are expected to be produced in large numbers at the

LHC provided they are light enough, (see eg. Ref. [114] for detailed analyses of SUSY

cascade decays). These gluinos will decay into lighter coloured sparticles, namely the

squarks with masses around 500 GeV (see Table 2.3). For most squarks, the only way to

conserve R-parity will be to decay into χ̃0
2, χ̃±

1 and χ̃0
1. As shown in the previous section,

79% of the produced χ̃0
2 will decay into h1 in this scenario for a Higgs mass of 40 GeV.

The light Higgs boson then decays mostly into bb̄ (91%), and also τ+τ−.

Branching ratios for all parts of the decay chain, except the decays involving Higgs

bosons, were computed at tree level using FeynArts and FormCalc. For decays involving

Higgs bosons, such as t̃2 → t̃1ha, we use an Improved Born approximation, as in Eq. 5.15.

We computed the branching ratio for g̃ → q̃1,2q for each of q = u, d, c, s, t, b. We found

that b̃1, ũ1, d̃2, c̃2, s̃1, s̃2 all have substantial branching ratios to decay into χ̃0
2. Summing

over the various decay modes we found that 17% of all gluinos produced in this scenario

decay via a squark into χ̃0
2.

Combining BR(χ̃0
2 → χ̃0

1h1) ∼ 79% with BR(g̃ → χ̃0
2qq̄) ∼ 17%, we estimate that around

13% of the gluinos produced in this scenario will decay into h1. Thus, SUSY cascade

decays where a light Higgs is produced in the decay of the second-lightest neutralino
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appear to be a promising possibility to cover this problematic parameter region where

standard search channels may only have small sensitivities. Detailed experimental anal-

yses would be needed to determine whether it is indeed possible in such a case to extract

a Higgs signal from the SM and SUSY backgrounds.

It should be noted in this context that the CMS collaboration has performed a full

detector simulation and event reconstruction for the production of a Higgs boson at the

end of a cascade of supersymmetric particles starting with squarks and gluinos [104].

These results, obtained for the benchmark point LM5, cannot be directly translated

to the case of the CPX scenario, since in the case of LM5 the Higgs boson is much

heavier, Mh ∼ 115 GeV, than in the region of the CPX scenario that we are considering

here. The b jets resulting from the Higgs decay in the CPX scenario are therefore softer

than for LM5, so that cuts on the energy of the jets will be less efficient to suppress

the QCD background. Therefore, further investigation, beyond the scope of this work,

would be needed to determine whether such an event reconstruction would be possible

for the CPX scenario. In light of the large branching ratio we have found for this decay,

and given that it remains unclear whether the “CPX hole” can be covered using other

channels at the LHC, the production of the light Higgs boson in the χ̃0
2 → χ̃0

1h1 decay

would certainly be worth pursuing.



Chapter 8

Results for the decay width of a

heavy Higgs boson into neutralinos

8.1 Motivation

In the previous chapters we saw that the one-loop corrections to the χ̃0
i χ̃

0
jha vertex could

have a large effect on the decays of neutralinos into light Higgs bosons. A related process

to the production of a Higgs boson in the decay of a neutralino is the decay of a heavy

Higgs boson into two neutralinos, ha → χ̃0
i χ̃

0
j . This process, with a possible signature of

four leptons plus missing energy, can also be phenomenologically important [34–37]. The

CMS study in Ref. [34] focused on the decay H, A → χ̃0
2χ̃

0
2, where each χ̃0

2 subsequently

decays into two leptons and the χ̃0
1 LSP, i.e. χ̃0

2 → χ̃0
1l

+l−, where l = e or µ. The authors

reported a 5σ discovery potential for Higgs masses in the region of 230 to 450GeV for

low to intermediate values of tanβ, and for sufficiently light neutralinos. The authors

of Refs. [35, 36] extended this study to include all kinematically possible decays into

neutralinos and charginos, H, A → χ̃0
i χ̃

0
j , χ̃+

k χ̃−
l , for i, j = 2, 3, 4 and k, l = 1, 2, finding

for the scenarios studied that this extended the discovery region to even larger values

of MA ∼ 800 GeV, where the heavy Higgs bosons cannot be discovered using decays

into SM particles (see eg. Refs. [38, 39]). The heavier neutralinos and charginos are

more likely to have masses greater than those of the sleptons, ẽ1,2 and µ̃1,2, so that the

neutralino decay into leptons and the lightest neutralino can proceed via a two-body

decay into a slepton, enhancing the branching ratios to leptonic final states and hence

the discovery potential. In Ref. [37], it was found that these decays can be utilised not

only for the initial discovery of the Higgs bosons, but also in the determination of their

masses and other MSSM parameters using invariant mass techniques.
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As already mentioned, partial one-loop results have been published previously for the

decays H, A → χ̃0
i χ̃

0
j in both the Feynman-diagrammatic [101, 102] and effective poten-

tial [109] approaches. The predictions in Refs. [101] and [102] were restricted to the

case of real parameters, with the former including only the contributions from diagrams

containing quarks and squarks in the loops, and the latter including only diagrams

containing sfermions and fermions in the loops. For the effective potential approach

in Ref. [109], complex parameters were allowed, but the corrections were restricted to

contributions from third generation quarks and squarks, charginos, neutralinos, gauge

and Higgs bosons. In this chapter we will present the full one-loop results for the decay

widths, Γ(ha → χ̃0
i χ̃

0
j ), including all possible MSSM particles in the loops and allow-

ing for complex parameters as described in Chapter 5.1 As in Chapters 5-7, we use

Equation (5.14) to supplement these results with the state-of-the-art two-loop Higgs

propagator-type corrections as implemented in the code FeynHiggs [41,79–81], thus ob-

taining the most precise prediction currently available for this class of processes. We

will see the importance of including all particles in the loops for obtaining the correct

size and magnitude of the vertex corrections in the scenarios studied. We also find that

the CP-violating phases can enhance or suppress the relative effect of the corrections.

The CP-violating phases turn out to play a particularly interesting role for the decays

of Higgs bosons into polarised neutralinos. This will lead us to propose a study of CP-

asymmetries in the decays, h2, h3 → χ̃0
2χ̃

0
2, using the polarisation of the neutralinos as

way of determining the existence of CP-violation in the Higgs sector.

8.2 Numerical results for decay widths

We begin by considering the decay widths for the parameter “Point 1” studied in Ref. [35]

in the context of four-lepton events from Higgs boson decays into neutralino and chargino

pairs. We give the low-energy MSSM parameters for this point in Table 2.3 under the

heading, “4L1”. The corresponding tree-level neutralino and chargino masses are (in

GeV);

mχ̃+

1
= 176.3, mχ̃+

2
= 514.0, mχ̃0

1
= 89.7, mχ̃0

2
= 176.3, mχ̃0

3
= 506.9, mχ̃0

4
= 510.9

1Note that in this chapter we use the parameter renormalisation scheme where the masses of χ̃0
1, χ̃0

2, χ̃0
3

are fixed on-shell, as this is convenient for extending the calculations to processes where χ̃0
3 is

produced in Higgs decays.
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Figure 8.1: (a) Higgs masses in the 4L1 scenario, obtained from FeynHiggs 2.7.0, at tree-level
and at loop-level, where the latter includes the full one-loop and the dominant two-loop
O(αtαs) corrections as discussed in Section 3.4.7; (b) Size of the loop corrections to the
masses relative to the corresponding tree-level Higgs masses; r(Mhi

) = (Mhi
−mhi

)/mhi
.

for tan β = 20. The authors of Ref. [35] showed that, for much of the MA–tanβ plane in

this scenario, the percentage of H, A → 4l + X events coming from the decays into the

second lightest neutralino, H, A → χ̃0
2χ̃

0
2, is larger than 90%. The heavier neutralinos

and charginos are not kinematically accessible for MA
<∼ 700 GeV. It was shown that

the highest cross section times branching ratio for four lepton events from Higgs bosons

at the LHC was for the region of tanβ ∼ 10 − 30 with MA ∼ 400 − 500 GeV. The

authors found the resulting discovery region of tanβ ∼ 4.5 − 40, MA ∼ 350 − 600 GeV

for 300 fb−1 at the LHC for this particular scenario.

In Figure 8.1(a) we show how the two heavy Higgs masses, Mh2
and Mh3

,2 obtained as

output from FeynHiggs 2.70,3 vary with tanβ in the 4L1 scenario with fixed MH± =

508 GeV as input. We see that the mass degeneracy of the heavy Higgs bosons, both

at tree-level and at two-loop, becomes more pronounced for large tanβ. Figure 8.1(b)

shows the size of the mass corrections relative to the tree-level Higgs masses. We see

2For the CP-conserving parameters shown in this plot, h2 is the CP-odd A and h3 is the CP-even H ,
but we continue to denote the Higgs bosons in order of their masses so as to agree with later results
where we include CP-violation.

3Note that we use FeynHiggs 2.70 for this scenario with large tanβ, since it contains improvements
to the implementation of the resummation of the QCD corrections to the bottom mass for the flags
chosen. Later in this chapter, when we consider SPS1a with lower tan β we use FeynHiggs 2.6.5

as usual.
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Figure 8.2: (a) Decay widths Γ(h2,3 → χ̃0
2χ̃

0
2) as a function of tanβ in the 4L1 scenario, with

MH± = 508 GeV. The dashed lines show the Improved Born result, while the bold
lines include the full one-loop vertex corrections; (b) Relative size of the vertex correc-
tions compared to the Improved Born result for various UV-finite subsets of diagrams
indicated by different dashing. Note that where the green dashed curves are not visible
in the figure, they are directly underneath the blue dashed curves.

that, over the range of tanβ shown, the effects are less than half a percent and generally

become more negative as tanβ increases. On the other hand, for tanβ = 20, the lightest

Higgs mass at tree-level, mh, is 90.7 GeV, while the two-loop mass, Mh1
, is 109.4 GeV,

an increase of 20.6%. The heavier Higgs masses are significantly less sensitive to loop

corrections than the lightest Higgs mass.

In Figure 8.2(a) we show the decay widths for h2, h3 → χ̃0
2χ̃

0
2, both at the Improved Born

level and including the one-loop vertex corrections, as a function of tanβ for the 4L1

scenario with MH± = 508 GeV. We see that the decay width of h2 (A) is nearly a factor

of two larger than the decay width of h3 (H). As tan β increases to large values, the

decay widths become independent of tanβ, while for tan β below 5, both decay widths

drop off due to the increase in Mχ̃0
2
.

Figure 8.2(b) shows the relative size, r, of the genuine vertex corrections compared with

the Improved Born decay widths, as a function of tanβ for various UV-finite subsets

of diagrams. We see that the vertex corrections including all the MSSM particles in

the loops are only of the order of a few percent throughout the range of tanβ shown,

significantly less than the impact of the vertex corrections seen for the decay of the
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second lightest neutralino into the lightest Higgs boson in the CPX scenario. This is

expected since the heavier Higgs bosons are less affected by large loop corrections than

the lightest Higgs boson. The 4L1 scenario furthermore has a smaller value for |µ| than

the CPX scenario, so the vertex corrections are not enhanced to the same extent. Also,

the squark mass parameters in the 4L1 scenario are defined to be at the TeV scale,

with the trilinear coupling, Af , is set to zero, so the contribution from self-energies

and triangle diagrams containing quarks and squarks is expected to be less than for

the CPX scenario. Figure 8.2(b) shows that the effect of the diagrams containing only

third generation quarks and squarks is around −15% for the range of tanβ shown. The

remaining (s)fermions then have a positive effect of around +15%, largely cancelling

the effect of the (s)top and (s)bottom quarks. The further contributions from vector

bosons, Higgs bosons and their superpartners are small and positive, giving a total effect

of only a few percent. We see that including all possible MSSM particles in the loops is

important for obtaining both the correct magnitude and size of the vertex corrections

in this scenario. Hence our result is a significant improvement on what was previously

available in the literature.

In Figure 8.3(a) we show the decay widths for h2, h3 → χ̃0
2χ̃

0
2, both at Improved Born

level and including the one-loop vertex corrections, as a function of MH± for the 4L1

scenario with tanβ = 20. As expected from phase space considerations, the decay widths

increase as the Higgs masses increase. For MH± ∼ 688 GeV there is a kink where the

CP-even Higgs boson, H , becomes lighter than the CP-odd Higgs boson, A. Figure

8.3(b) shows the relative size of the vertex corrections for various UV-finite subsets of

diagrams. The contributions from all sfermions and the third generation quarks and

squarks are fairly independent of MH±. The contributions from the latter are largely

cancelled to less than a few percent by the remaining (s)fermions. The vertex corrections

from the full MSSM vary from r ∼ 20% (5%) to r ∼ −15% for h2 (h3), changing sign

from positive to negative at MH± ∼ 550 GeV.

Figure 8.4(a) shows the relative size of the vertex corrections, r, for Γ(h3 → χ̃0
2χ̃

0
2),

as a percentage in the MH±–tanβ plane for the 4L1 scenario. The relative size of

the vertex corrections for h2 is similar. We see that the vertex corrections have the

largest effect for MH±
>∼ 600 GeV. For the region of particular interest in Ref. [35], near

tan β ∼ 10−30 with MA ∼ 400−500 GeV, where the cross section times branching ratio

for H, A → χ̃0
2χ̃

0
2 events is largest, the effect of the vertex corrections on the decay widths

is only of the order of 5%. This translates into an absolute increase in the branching

ratio of a few tenths of a percent. Figure 8.4(b) shows the Improved Born level branching
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Figure 8.3: (a) Decay widths Γ(h2,3 → χ̃0
2χ̃

0
2) as a function of MH± in the 4L1 scenario, with

tanβ = 20. The dashed lines show the Improved Born result, while the bold lines
include the full one-loop vertex corrections; (b) Relative size of the vertex corrections
compared to the Improved Born result for various UV-finite subsets of diagrams indicated
by different dashing. Note that where the green dashed curves are not visible in the figure,
they are directly underneath the blue dashed curves.

ratio, BR(h3 → χ̃0
2χ̃

0
2), as a percentage in the MH±–tanβ plane for the 4L1 scenario.

Inclusion of the one-loop vertex corrections does not produce a noticeable change in this

plot.

SPS1a is another scenario in which the dominant contribution to the four-lepton signal

is H, A → χ̃0
2χ̃

0
2. This point was studied in some detail in Ref. [37] in the context of

using four-lepton events to extract MSSM masses and Higgs masses. One important

difference between the 4L1 scenario and the SPS1a scenario is that the latter has much

lighter squarks and non-zero trilinear couplings. Also the sleptons are light enough to

be produced in on-shell decays of χ̃0
2, which results in larger leptonic branching ratios

of the neutralinos. In SPS1a, the tree-level decay width, Γ(h2 → χ̃0
2χ̃

0
2) is 0.103 GeV,

with vertex corrections increasing this value by 6.5%, while the tree-level decay width

Γ(h3 → χ̃0
2χ̃

0
2) is 0.0157 GeV, with vertex corrections increasing this value by 5.9%. The

corresponding branching ratios of 7.9% and 1.8% increase in absolute terms by 0.5% and

0.1% respectively.
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Figure 8.4: (a) The relative size of the vertex corrections, r, as a percentage in the 4L1 scenario
in the MH±–tanβ plane for Γ(h3 → χ̃0

2χ̃
0
2); (b) Branching ratio, BR(h3 → χ̃0

2χ̃
0
2), as a

percentage in the 4L1 scenario in the MH±–tanβ plane.

8.3 Effect of CP-violating phases

Most of the work in the literature on the decays of h2, h3 → χ̃0
i χ̃

0
j , has been for CP-

conserving scenarios, where h2, h3 = H, A [34–37, 101, 102, 109]. We now consider the

effect of CP-violating phases on the decay widths and vertex corrections. As we have

seen in Chapter 6 for the χ̃0
i → χ̃0

jha decays, complex parameters can be particularly

important for the Higgs propagator corrections. (As usual, we absorb these into the

lowest order decay widths using the Improved Born approximation of Equation (5.15)).

The induced CP-violating mixing between H and A can significantly alter the Improved

Born decay widths. This can also affect the size of the genuine vertex corrections for

the (physical) normalised h2 and h3 vertices.

The phases which usually play a large role in Higgs sector corrections are φAt and/or

φµ, as well as φM3
at the two-loop level. In order to study their effects for ha → χ̃0

2χ̃
0
2,

we study a modified 4L1 scenario with lighter squarks and a non-zero At. Our modified

scenario, denoted “4L1b” in Table 2.3, has the same parameters as 4L1 except Mq̃R,q̃L =

500 GeV and |At,b,τ | = 1000 GeV. In Figure 8.5(a) we show the dependence of the decay

widths for Γ(h2,3 → χ̃0
2χ̃

0
2) on the phase φAt in the 4L1b scenario. The dashed lines

show the Improved Born result, while the solid lines include the one-loop genuine vertex

corrections in the full MSSM. We see that, at the Improved Born level, the phase of At

has a large effect on the decay widths, arising from the variation in CP character of the
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Figure 8.5: (a) Decay widths Γ(h2,3 → χ̃0
2χ̃

0
2) at the Improved Born level (dashed) and including

the one-loop vertex corrections in the full MSSM (solid); (b) Masses of h2 and h3; (c)
Absolute value of Ẑ matrix elements, |Ẑ23| ∼ |Ẑ32| and |Ẑ33| ∼ |Ẑ22|; (d) Relative size
of vertex corrections, r; for all figures plotted as a function of φAt

in the 4L1b scenario.

Higgs bosons. The variation of the Higgs masses and Ẑ matrix elements are displayed

in Figures 8.5(b) and 8.5(c) respectively. We see that the two masses, Mh2
and Mh3

are

closest for φAt = 0, π, 2π, where h2 (h3) is purely CP-odd (even) with |Ẑ23| ∼ |Ẑ32| ∼ 1

and |Ẑ22| ∼ |Ẑ33| ∼ 0. The Ẑ matrix elements vary substantially away from these CP-

conserving values for the phase; at φAt = π/2, 3π/2 we obtain |Ẑ22| ∼ |Ẑ33| ∼ 1 so that

the CP character of the mass eigenstates is swapped relative to the CP-conserving case.

The h2 (h3) partial decay width varies from roughly 0.045 GeV (0.08 GeV) at φAt = 0 to

0.08 GeV (0.045 GeV) at φAt = π/2 back down (up) to 0.045 GeV (0.085 GeV) at φAt = π

respectively. The maximum and minimum decay widths correspond approximately to
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the CP-conserving decay widths shown in Figure 8.2(a), so this is consistent with the

Ẑ matrix values. Figure 8.5(d) shows the relative size of the vertex corrections, r, as

a function of φAt . We see that for both h2 and h3 the corrections have the maximum

negative effect of around −5% and −4.5% respectively in the CP-conserving case where

the phase is zero and At is positive. The maximum positive effect is around 4.5% at

φAt = π for h2, while for h3, there are two maxima of around 2.5% for φAt slightly

below and above zero. When the phases are maximally CP-violating at φAt = π/2, the

corrections are less than a percent.

We also examine the effect introducing CP-violating phases has on the decay widths

Γ(h2,3 → χ̃0
2χ̃

0
2) in the SPS1a scenario. Figure 8.6(a) shows the variation of the decay

widths as a function of φAt for the modified SPS1a scenario. We see the dependence is

not as pronounced as for the 4L1b scenario and the decay widths for h2 and h3 remain

separated by ∼ 80 MeV. This is because, as seen in Figure 8.6(c) the absolute values

of the Ẑ factors do not vary so far from 0 and 1 as those in the 4L1b scenario, so that

the CP character of the mass eigenstates remains closer to, h2 ∼ A and h3 ∼ H for

all φAt , even though the masses become quite close in value, as shown in Figure 8.6(b).

In Figure 8.6(d) we show the relative size of the vertex corrections, r, as a function of

φAt . The maximum positive effect on the decay width of h2 is around 6.5% at φAt = 0,

while the maximum negative effect is around 3.5% at φAt = π. The maximum positive

effect on the decay width of h3 is around 6.5% at φAt ∼ π/4, 7π/4, while the maximum

negative effect is around −3.7% for phases slightly above and below φAt = 0.

8.4 CP-odd asymmetries

The results we have shown so far are for the spin-summed decay widths, Γ(ha → χ̃0
i χ̃

0
j ),

where all possible polarisations for the neutralinos are included. It is also interesting to

look at spin-dependent decay widths since, in an experiment, it may be possible to study

the polarisations of the neutralinos by looking at their leptonic decay products (see eg.

Ref. [115]). Since the Higgs is a scalar particle, the two neutralinos will either both have

left-handed polarisation or both have right-handed polarisation. In this section, we study

the effect of CP-violating phases on the partial decay widths into left- and right-handed

neutralinos, ΓLL ≡ Γ(ha → χ̃0 L
i χ̃0 L

j ) and ΓRR ≡ Γ(ha → χ̃0 R
i χ̃0 R

j ) (a = 2, 3) respectively.

It would be particularly interesting if these quantities could tell us something about the

existence and size of the CP-violating phases.
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Figure 8.6: (a) Decay widths Γ(h2,3 → χ̃0
2χ̃

0
2) at the Improved Born level (dashed) and including

the one-loop vertex corrections in the full MSSM (solid); (b) Masses of h2 and h3; (c)
Absolute value of Ẑ matrix elements, |Ẑ23| ∼ |Ẑ32| and |Ẑ33| ∼ |Ẑ22|; (d) Relative size
of vertex corrections, r; for all figures plotted as a function of φAt

in the modified SPS1a
scenario.

Figure 8.7(a) shows the spin-dependent decay widths, ΓLL and ΓRR, for h2,3 → χ̃0
2χ̃

0
2 in

the 4L1b scenario as a function of φAt. We see that for both h2 and h3, ΓLL and ΓRR do

not have their maxima and minima at multiples of π/2 like the total decay width shown

in Figure 8.5(a). Rather, ΓLL for h2 (h3) has a similar shape to to Γtot but is shifted to

the left (right), while ΓRR for h2 (h3) is obtained by a reflection of ΓLL for h2 (h3) about

φAt = 0. The polarised decay widths thus satisfy ΓRR(φAt) = ΓLL(−φAt) for each ha.

In Figure 8.7(b) we show the spin-dependent partial decay widths, ΓLL and ΓRR, for

h2 → χ̃0
2χ̃

0
2 as a function of the trilinear coupling phase φAt in the modified SPS1a
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Figure 8.7: (a) ΓLL and ΓRR for h2,3 → χ̃0
2χ̃

0
2 for the 4L1b scenario as a function of φAt

, including
the one-loop vertex corrections in the full MSSM (the dashed (solid) lines indicate left-
handed (right-handed) polarisation); (b) ΓLL and ΓRR for h2 → χ̃0

2χ̃
0
2 for the modified

SPS1a scenario as a function of φAt
(the dashed lines indicate the Improved Born result,

while the solid lines indicate the inclusion of the one-loop vertex corrections in the full
MSSM.

scenario. Here the curves for left-handed and right-handed neutralinos are very different

from the spin-summed widths shown in Figure 8.6(a). The left-handed and right-handed

decay widths again satisfy ΓLL(φAt) = ΓRR(−φAt). Notice that the vertex corrections

enhance both ΓLL and ΓRR by around 4 − 10%. Note also that ΓLL and ΓRR always

coincide when the phase is a multiple of π, i.e. when the scenario is CP-conserving.

In Figure 8.8(a) we plot the difference, ∆ΓLR ≡ ΓLL − ΓRR, between the left and right-

handed decay widths for the modified SPS1a scenario as a function of φAt and we see

that it is a CP-odd quantity, i.e. it is non-zero only in the presence of a non-zero CP-

violating phase and is antisymmetric under φAt → −φAt . We also notice that the

difference ΓLL − ΓRR for h3 can become quite large relative to the spin summed decay

width, ΓLL + ΓRR, for h3 shown in Figure 8.6(a).

In Figure 8.8(b) we plot the ratio of the difference relative to the spin summed decay

width,

Aa ≡ ΓLL − ΓRR

ΓLL + ΓRR

, (8.1)

as a function of φAt for ha → χ̃0
2χ̃

0
2 (a = 2, 3) for the modified SPS1a scenario. A2 (A3)

has its peak values of ∼ ±38% (±9%) for φAt ∼ ±7π/8, not far from the nominal CP-
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Figure 8.8: (a) The difference, ∆LR ≡ ΓLL − ΓRR, as a function of φAt
in the modified SPS1a

scenario for each of h2 and h3; (b) Aa ≡ (ΓLL −ΓRR)/(ΓLL + ΓRR) as a function of φAt

for ha → χ̃0
2χ̃

0
2 for the modified SPS1a scenario.

conserving values of ±π. The slopes of the curves are steepest near φAt = ±π, showing

that even a small phase introduced into SPS1a can make a big difference to this ratio.

The genuine vertex corrections reduce (increase) A2 (A3) at its peak values by a few

percent.

In Figure 8.9(a) we show the ratios, A2 and A3, as function of φµ for the SPS1a scenario.

Here the peak values for A2 and A3 occur at different values of the phase; |A2| has a

maximum value of ∼ 38% at φµ ∼ ±π/3, while |A3| has a maximum value of ∼ 46%

at φµ ∼ ±π/8. However, both A2 and A3 are zero at φµ = 0,±π. In Figure 8.9(b) we

show the ratios, A2 and A3, as a function of φAt for the 4L1b scenario. |A2| and |A3|
have peak values of around 12% and 7% respectively. The former is enhanced by a few

percent by the vertex corrections, while the latter is reduced by the vertex corrections.

The key message gained from the results shown in Figures 8.8 and 8.9 is that a non-

zero value of the CP-odd ratio, Aa, would be a clear signal of CP-violation. In each

of the plots, if the phases are set to their CP-conserving values of 0, ±π, the ratio,

Aa, is exactly zero. If the phases are not a multiple of π, then there is CP-violation

and the ratio is non-zero. This is true even when the vertex corrections to the Higgs-

neutralino-neutralino vertex are taken into account. In the scenarios studied, the vertex

corrections for h2 reduce the total ratio by a few percent, while for h3 they increase it

by a few percent, but in both cases they do not alter the CP-odd behaviour of the ratio.

Furthermore, the ratios A2 and A3 have the same sign for a given CP-violating phase,
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Figure 8.9: (a) Aa ≡ (ΓLL − ΓRR)/(ΓLL + ΓRR) as a function of φµ for ha → χ̃0
2χ̃

0
2 for the modified

SPS1a scenario; (b) Aa as a function of φAt
for ha → χ̃0

2χ̃
0
2 for the 4L1b scenario.

so their effects will reinforce when added together or averaged over. This is important

because the two heavy Higgs bosons are nearly mass degenerate. In an experiment it

will not be possible to tell them apart and measure polarisation effects in their decay

products separately. Thus it would be less encouraging if the ratios for h2 and h3 had

opposite signs and cancelled one another out.

With this mind, it is also significant that A2 and A3 each vanish in the case where there

is no CP-violation. Despite the CP-even H and CP-odd A states being nearly mass

degenerate, they do not behave as one effective CP-violating state. This is interesting in

the context of experimentally distinguishing between the “true” CP-violating case, with

two mass eigenstates h2 and h3, and the “faked” case where the CP-eigenstates, H and

A, are experimentally indistinguishable mass eigenstates with near-degenerate masses,

mimicking the effect of CP-violation. For a true CP-odd quantity like Aa, the two cases

are indeed distinguishable. A non-zero value of Aa does not arise in the case where H

and A are mass degenerate but there are no non-zero CP-violating phases. One would

not need to be able to experimentally distinguish between the mass degenerate h2 and

h3 to confirm a nonzero value for this ratio and hence the existence of CP-violation.

The next question is what could actually be measured at a collider experiment. If

there is an asymmetry between the number of left-handed and right-handed neutralinos

produced in heavy Higgs boson decays, this can show up in asymmetries constructed

from the properties of the leptonic decay products of those neutralinos [115]. Suppose
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that the neutralinos decay via two-body decays into a lepton and a slepton, which then

decays into the lightest neutralino, i.e. χ̃0
2 → l̃+1,2l

−
near → χ̃0

1l
+
farl

−
near. Then there exist

methods for reconstructing the momenta in the decay chains on an event-by-event basis

if the particle masses in the cascade are known (see eg. Refs. [116, 117]). Provided

that this technique can be carried over to this example, one could use it to measure,

for example, the angle, θχ̃0
2
lnear

, between the decaying neutralino and the near lepton.

One could then construct a forward-backward asymmetry, AFB ≡ (Nf −Nb)/(Nf +Nb),

by counting the number of events, Nf , with cos θχ̃0
2
lnear

> 0 and the number of events,

Nb, with cos θχ̃0
2
lnear

< 0. AFB is related directly to the asymmetry between left- and

right-handed neutralino production. In order to obtain a prediction for AFB in various

scenarios, we need to calculate the number of events where a heavy Higgs boson decays

into left-handed and right-handed neutralinos respectively. In order to calculate the

number of events, for example at the LHC, we need the Higgs production cross sections

as well as the partial and total decay widths. This is made more complicated by the

fact that the Higgs masses are close to degenerate and therefore interference effects can

occur in the presence of CP-violation.

Normally we can use the narrow width approximation to separate the production and de-

cay of a Higgs boson into two separate parts, a cross section multiplied by a branching ra-

tio (see Appendix C for a review of the narrow width approximation). The polarisation-

dependent partial decay widths calculated in this chapter belong in the decay part of

the calculation. However, we are considering a scenario where the assumptions of the

narrow width approximation break down because the two nearly mass degenerate Higgs

bosons are not CP-eigenstates and can interfere with one another in the squared matrix

calculation. Thus, we must consider the full production and decay process of the Higgs

bosons. We cannot simply weight each Aa by the ha production cross section multiplied

by the branching ratio for ha → χ̃0
2χ̃

0
2 and add them together; this would miss inter-

ference effects between the h2 and h3 which may enhance or suppress the asymmetry.

In Chapter 9 we explore interference effects for nearly mass degenerate Higgs bosons

and develop methods for calculating an effective cross section times branching ratio. In

Chapter 10 we return to the calculation of the asymmetry between the number of left-

and right-handed neutralinos produced in heavy Higgs boson decays at the LHC, taking

into account the full production and decay processes.



Chapter 9

Interference effects for nearly mass

degenerate Higgs bosons

9.1 Beyond the narrow width approximation

Until now we have used the Ẑ matrix formalism given in Section 3.4.9 to compute

amplitudes, cross sections and branching ratios involving on-shell Higgs bosons. This

formalism takes into account higher-order propagator-type corrections in the Higgs sec-

tor, but in essence it is based on the narrow-width approximation; i.e. it assumes that

it is possible to factorise the production and decay of the Higgs boson into two separate

parts, a production cross section and a decay branching ratio, each evaluated on-shell.

In Appendix C we give a brief review of the narrow width approximation. One of the

assumptions of the approximation is that there should be no interference of the resonant

diagram with other diagrams that have the same initial and final state. For most cases

where we apply the Ẑ matrix formalism, the splittings between the Higgs boson masses

are large compared with their widths, and therefore this assumption holds. However,

in the context presented in the last chapter – on-shell decays of Higgs bosons into neu-

tralinos, ha → χ̃0
i χ̃

0
j – the kinematics require us to consider scenarios that have Higgs

bosons with masses larger than the neutralino masses. As is the case quite generically

for scenarios with large MA, the two heavy Higgs bosons, h2 and h3, are almost mass-

degenerate, while the light Higgs boson has a mass very far below the others so is not

usually relevant for interference effects.

In the CP-conserving case, assuming no non-resonant exchange diagrams are important,

and neglecting the contributions for h, one can express the squared matrix element for

127
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the full production and decay process, ab → H, A → de, as

|M|2 = |Mab→H→de|2 + |Mab→A→de|2 (9.1)

because the CP-violating interference term,

2Re(Mab→H→deM∗
ab→A→de), (9.2)

vanishes. This means that the narrow width approximation can be separately applied to

the two processes containing H and A respectively. The total integrated cross section for

the full production and decay process, σ(pp → ab → H, A → de), can then be written

in terms of the sum of the individual production cross sections, each weighted by the

appropriate branching ratio;

σpp→ab→H,A→de = σpp→ab→HBRH→de + σpp→ab→ABRA→de. (9.3)

If we consider the MSSM with CP-violating parameters, however, things become very

different. Not only do the CP-eigenstates, H and A, mix to form the mass eigenstates h2

and h3, but, when the full production and decay process of the Higgs bosons is considered,

there is also the possibility of diagrams containing the h2 and h3 to interfere; i.e. the

interference term,

2Re[Mab→h2→deM∗
ab→h3→de], (9.4)

is non-vanishing. Hence, the fifth assumption given for the narrow width approximation

in Appendix C fails and one cannot simply add the individual cross sections for h2 and h3

weighted by their branching ratios because this could miss out large interference terms.

The same applies for the polarisation dependent asymmetries, Aa, considered at the end

of Chapter 8.

Another situation where interference effects can be important, even in the CP-conserving

MSSM, is for scenarios with low MA and large tanβ, where it is possible to have an h and

H that are nearly mass-degenerate. This could be important for the interpretation of

the Higgs boson exclusion limits set by the Tevatron and for the prospects of discovering

MSSM Higgs bosons with early LHC data. We will discuss this further in Section 9.6.

The idea that calculations in the MSSM and other BSM models may need to go beyond

the narrow width approximation has received considerable recent attention in the liter-
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ature [118–123]. Some of the effects of nearby resonances in new physics models were

also studied in Ref. [124], but most of these references mainly focus on the importance

of including off-shell effects near thresholds and in situations where the width can be

measured. In Ref. [118], a weight factor was derived to include off-shell effects by reintro-

ducing the momentum dependence of the Breit-Wigner distribution of the intermediate

propagator. It was noted that this method was not suitable in situations where inter-

ference between intermediate particles was important, such as the interference between

the intermediate Z boson and selectrons, ẽL,R in the three-body decay, χ̃0
2 → χ̃0

1e
+e−,

particularly just above the Z threshold. In our case, we are far from any thresholds;

the only reason the narrow width approximation fails is that there can be interference

between the nearby Higgs resonances.

In this chapter we show several methods for calculating the combined production and

decay process which include the interference effects between Higgs bosons. For illustra-

tion purposes, we include the Higgs propagator corrections (up to O(αtαs) at two-loop),

but we do not consider higher order corrections for the production and decay vertices.

The first method, in Section 9.2, incorporates the full 3 × 3 Higgs propagator matrix,

which includes the full momentum dependence of the Higgs self-energies and all possible

mixing and interference terms between h, H, A. The second method, in Section 9.3, is an

on-shell approximation to the full Higgs propagator matrix, using the Ẑ factor formalism

to include mixing effects between h, H, A, along with Breit-Wigner propagators for the

resulting h1, h2, h3 to include the interference and leading momentum dependence of the

resonances. Both of these methods require a squared matrix element calculation of the

combined production and decay process, which may not be practicable in all situations.

Thus, in Section 9.5, we develop a method where the separate production and decay pro-

cesses are weighted by an appropriate interference factor. We find that this gives a good

approximation to the full squared matrix element calculations in the scenarios where the

interference effects are important. As an application, in Section 9.6, we use this method

to show that interference effects could have a noticeable effect on the interpretation of

the Higgs exclusion limits in the MSSM.

9.2 Full 3 × 3 Higgs propagator matrix calculation

Consider the 2 → 2 process, ab → h, H, A → cd, mediated by intermediate Higgs

bosons (for simplicity, we neglect other possible intermediate particles here). The full
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Figure 9.1: Diagrams for the process ab → cd allowing for internal Higgs bosons, h, H, A, taking
into account higher-order mixing between the tree-level Higgs bosons using the full 3×3
propagator matrix elements, ∆ij(p

2). Diagrams for the same process but with other
intermediate particles, such as vector bosons, sfermions and fermions, are not considered
here.

3 × 3 Higgs propagator matrix calculation,1 illustrated diagrammatically in Figure 9.1,

includes the full loop-corrected Higgs propagator matrix elements, ∆ij(p
2), evaluated

using Equations (3.72) and (3.77), into the matrix element as follows;

Mab→cd = Mab→h∆hhMh→cd + Mab→h∆hHMH→cd + Mab→h∆hAMA→cd

+Mab→H∆HhMh→cd + Mab→H∆HHMH→cd + Mab→H∆HAMA→cd

+Mab→A∆AhMh→cd + Mab→A∆AHMH→cd + Mab→A∆AAMA→cd,

(9.5)

where, for example, the matrix elements Mab→h and Mh→cd are calculated using the

tree-level couplings of h to ab and cd respectively. A generalisation to loop-corrected

effective couplings is possible. We have coded this full method into FeynArts by defining

new particles with the appropriate couplings and propagators. (For example, the particle

“hH” couples to ab like the tree-level h boson, couples to cd like the tree level H boson

and has the propagator ∆hH .) The propagators are then evaluated in FormCalc using

the momentum dependent two-loop self-energies from FeynHiggs as input.

1We neglect here the Higgs mixing with the gauge and Goldstone bosons, which would result in a 6x6
Higgs propagator matrix (see Sections 3.4.6 and 5.4).
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9.2.1 Example: H–A mixing in bb̄ → τ+τ−

Consider for example, the matrix element for bb̄ → τ+τ−, mediated by Higgs boson

exchange. We write the general tree-level Higgs-fermion-fermion vertex as

Γ̂hff̄ = −GhffωL − G∗
hffωR,

Γ̂Hff̄ = GHffωL + G∗
HffωR,

Γ̂Aff̄ = −iGAffωL + iG∗
AffωR. (9.6)

where, for f f̄ = bb̄ or τ+τ−, the couplings are given by

Ghbb̄(τ+τ−) =
emb(τ)

2MW sW

(
sα

cβ

)
,

GHbb̄(τ+τ−) =
emb(τ)

2MW sW

(
cα

cβ

)
,

GAbb̄(τ+τ−) =
emb(τ)

2MW sW

(
sβ

cβ

)
. (9.7)

In the case where MH± is large, the dominant mixing and interference contributions will

be between H and A, and the lightest Higgs boson, h, need not be considered. Ignoring

the ∆hi and ∆ih propagators and other non-Higgs propagators, we can write the matrix

element for bb̄ → τ+τ− as

M = v̄bub

[
Γ̂Hbb̄∆HH Γ̂Hττ + Γ̂Hbb̄∆HAΓ̂Aττ + Γ̂Abb̄∆AH Γ̂Hττ + Γ̂Abb̄∆AAΓ̂Aττ

]
ūτvτ (9.8)

where ub ≡ us1

b (k1) and v̄b ≡ v̄s2

b (k2) are the spinors for the incoming b and b̄, with

momenta k1 and k2 respectively, with the squared centre of mass energy, s ≡ (k1 + k2)
2.

ūτ ≡ ūs3

τ (k3) and vτ ≡ vs4

τ (k4) are the spinors for the outgoing τ+ and τ−, with momenta

k3 and k4 respectively. Squaring the matrix element, summing over τ polarisations, s3

and s4, and averaging over b polarisations, s1 and s2, and keeping the fermion masses

only in the Yukawa couplings, we obtain

|M|2 =
e4m2

bm
2
τs

2

16c4
βM

4
W s4

W

[
c4
α|∆HH |2 + c2

αs2
β(∆HA∆∗

HA + ∆AH∆∗
AH) + s4

β|∆AA|2
]
. (9.9)

The second term in the square brackets contains the mixing propagator between H and

A, which is only non-zero in the case of CP-violation. Further interference terms, such

as those proportional to ∆AA∆∗
AH , cancel out in this simple example because the bb̄ and
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τ+τ− couplings to Higgs bosons are real and proportional to one another. Note that the

propagators ∆ij are evaluated at p2 = s.

In Section 9.4 we will compare our numerical results for bb̄ → τ+τ− obtained in this way

to the numerical results obtained using the on-shell (Ẑ) approximation of Section 9.3.

9.3 On-shell (Ẑ matrix) approximation to Higgs

propagator matrix calculation

a

b

c

dh1

a

b

c

dh2

a

b

c

dh3

Figure 9.2: Process ab → cd, with on-shell production and decay of the Higgs bosons, h1, h2, h3,
taking into account higher-order mixing between the Higgs bosons by using vertices
weighted by Ẑ factors. Breit-Wigner propagators are used for the h1, h2 and h3.

As an on-shell approximation to the full Higgs propagator matrix calculation for the

process ab → h, H, A → cd, we use the Ẑ factor formalism for on-shell external Higgs

bosons. As explained for the external Higgs bosons in Section 3.4.9, we replace the tree-

level coupling, gh0
kX , to particle X (where h0

k = h, H, A), with a loop-corrected coupling,

ghaX (where ha = h1, h2, h3), thus including the Higgs propagator-type corrections as

follows;

ghaX = Ẑa1ghX + Ẑa2gHX + Ẑa3gAX . (9.10)

This can be combined with the effective Breit-Wigner propagator

∆BW
ha

(p2) =
i

p2 −M2
ha

=
i

p2 − M2
ha

+ iMhaΓha

(9.11)

where M2
ha

= M2
ha

− iMhaΓha, for a = 1, 2, 3, is the complex pole of the corresponding

diagonal Higgs propagator, to produce an approximation to an amplitude involving

intermediate on-shell Higgs bosons. Recall from Equation (3.92), that the expansion

of the full diagonal Higgs propagator ∆ii(p
2) about the complex pole results in Ẑi ×

∆BW
hi

(p2), plus terms of higher order in (p2 − M2
hi

), so we expect the combination of
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Equations (9.10) and (9.11) to give a good approximation to the full process for p2 ≈
M2

hi
.

For the process ab → cd, shown diagrammatically in Figure 9.2, the matrix element is

calculated in the on-shell approximation as

Mab→cd = Mab→h1
∆BW

h1
Mh1→cd + Mab→h2

∆BW
h2

Mh2→cd + Mab→h3
∆BW

h3
Mh3→cd,

(9.12)

where the couplings in Mab→ha and Mha→cd are derived using Equation (9.10). We have

coded this method into FeynArts and FormCalc using the Higgs masses, Mha , and Ẑ

factors from FeynHiggs as input. For a direct comparison with the 3 × 3 propagator

matrix approach from Section 9.2, the widths, Γha , are obtained from the imaginary

part of the complex pole, M2
ha

. In practice, higher order contributions to the width can

also be included. A generalisation to loop-corrected effective couplings is also possible.

9.3.1 Example: H–A mixing in bb̄ → τ+τ−

Consider the process studied in Section 9.2.1, bb̄ → τ+τ−, mediated by Higgs bosons. In

the case where MH± is large, the dominant mixing and interference contributions will

be between H and A, and the contributions from h can be ignored. Omitting the ∆BW
h1

propagators and non-Higgs propagators, we can write the matrix element for bb̄ → τ+τ−

as

M = v̄bub[Γ̂h2bb̄∆
BW
h2

Γ̂h2ττ + Γ̂h3bb̄∆
BW
h3

Γ̂h3ττ ]ūτvτ (9.13)

where

Γ̂h2ff̄ = Ẑ22Γ̂Hff̄ + Ẑ23Γ̂Aff̄ ,

Γ̂h3ff̄ = Ẑ32Γ̂Hff̄ + Ẑ33Γ̂Aff̄ . (9.14)
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We find that the spin-averaged squared matrix element, in the limit where the fermion

masses are kept only in the Yukawa couplings, is given by

|M|2 =
e4m2

bm
2
τs

2

16c4
βM4

W s4
W

[
(c2

α|Ẑ22|2 + s2
β|Ẑ23|2)2|∆BW

h2
(s)|2 + (c2

α|Ẑ32|2 + s2
β|Ẑ33|2)2

× |∆BW
h3

(s)|2 + 2 Re
[
(c2

αẐ22Ẑ
∗
32 + s2

βẐ23Ẑ
∗
33)

2∆BW
h2

(s)(∆BW
h3

(s))∗
]]

. (9.15)

The third term in the square brackets represents the interference between h2 and h3. If

there is no CP-violation, then Ẑ23 = 0 = Ẑ32 (or Ẑ22 = 0 = Ẑ33 if MA < MH), and

the interference term vanishes. The interference will only be large if there is significant

overlap between the two Breit-Wigner functions, ∆BW
h2

and ∆BW
h3

, which occurs when the

masses are nearly degenerate, Mh3
− Mh2

∼ Γh2
, Γh3

.

So long as there is not much mixing with h, we can approximate the 2 × 2 part of the

Ẑ matrix by a mixing matrix with the properties


 Ẑ22 Ẑ23

Ẑ32 Ẑ33


 ∼


 cθ sθ

sθ −cθ


 (9.16)

where cθ = cos θ, sθ = sin θ and θ is a (complex) mixing angle. In the limit of mA ≫ MZ

and large tanβ ≫ 1, we can write cα/cβ ≈ tβ, leaving the two heavy Higgs bosons with

very similar couplings to the fermions and hence with very similar widths, Γh2
≈ Γh3

.

In the limit of cα/cβ → tβ, Γh3
→ Γh2

and Mh3
→ Mh2

, our expression for the squared

matrix element reduces to

|M|2 ∝ 2t4β

( |c2
θ|2 + 2|cθsθ|2 + |s2

θ|2 − 4[Im(cθ)Re(sθ) − Im(sθ)Re(cθ)]
2

(s − M2
h2

)2 + M2
h2

Γ2
h2

)
. (9.17)

In this limit, the effect of the interference term in the square brackets is only large if the

Ẑ matrix elements contain large imaginary parts, caused by large absorptive parts of

loop integrals in the Higgs self-energies. Away from this limit, there can be significant

interference even if the Ẑ matrix elements do not contain large imaginary parts, since

the different widths, Γh2
and Γh3

, weighted by different couplings, can also contribute.
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9.3.2 Example: h–H mixing for bb̄ → τ+τ−

We again consider the process bb̄ → τ+τ−, but this time in the case of small MA, where

h and H can be close in mass. In this case, there can be significant interference effects

even when there are no CP-violating parameters. Leaving out the contributions from

A for simplicity, and keeping the fermion masses only in the Yukawa couplings, the

spin-averaged squared matrix element can be written as

|M|2 =
e4m2

bm
2
τs

2

16c4
βM

4
W s4

W

(
|(sαẐ11 − cαẐ12)

2|2|∆BW
h1

(s)|2 + |(sαẐ21 − cαẐ22)
2|2|∆BW

h2
(s)|2

+ 2 Re
[
(sαẐ11 − cαẐ12)

2(sαẐ
∗
21 − cαẐ

∗
22)

2∆BW
h1

(s)(∆BW
h2

(s))∗
])

. (9.18)

The interference term in square brackets between ∆BW
h1

and ∆BW
h2

can be large if the

masses are nearly degenerate, with MH − Mh ∼ Γh, ΓH , and there is significant mixing

between h and H , leading to large values for Ẑ12 and Ẑ21.

9.4 Numerical comparison between 3 × 3 propagator

matrix calculation and on-shell approximation

In Figure 9.3, we show the total spin-summed cross section, σ(bb̄ → H, A → τ+τ−),

as a function of the centre of mass energy,
√

s, in three modified SPS1a scenarios,

each with non-zero CP-violating phases. We use the masses, Ẑ matrix elements and

self-energies from FeynHiggs 2.6.5, obtaining the widths from the imaginary part of

the complex pole. In Figure 9.3(a), the modified parameters are µ = 1000 GeV and

φAt = −7π/10, resulting in Mh2
= 392.5 GeV, Mh3

= 394.7 GeV, Γh2
= 1.6 GeV,

Γh3
= 1.6 GeV and Ẑ22 ∼ −0.6, Ẑ23 ∼ 0.8. We see that the two resonances are separated

by about 2 GeV, which is larger than the widths involved. The full 3 × 3 propagator

matrix result (black), the on-shell Breit-Wigner result (green), and the on-shell Breit-

Wigner result without the interference term (blue) are in good numerical agreement

(the curves are indistinguishable in the figure because they are on top of one another).

Despite the Ẑ matrix elements showing a large amount of CP-violating mixing between

H and A, the masses are not close enough for interference to have a large effect.

In Figure 9.3(b), we use φAt = −4π/5, with µ returned to its usual SPS1a value of

−352.4 GeV, resulting in Mh2
= 393.0 GeV, Mh3

= 393.6 GeV, Γh2
= 2.1 GeV, Γh3

=
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Figure 9.3: Spin summed cross section σ(bb → ττ) in the modified SPS1a scenario as a function of√
s; (a) with µ = 1000 GeV and φAt

= −7π/10, (b) with µ = −354.2 GeV and φAt
=

−4π/5, (c) with µ = −354.2 GeV and φM2
= −9π/20. The black, green and blue curves

show the full 3×3 Higgs propagator matrix calculation, the on-shell approximation using
Ẑ matrix elements and Breit-Wigner propagators, and the latter without the inclusion
of the Breit-Wigner interference term, respectively. Note that some curves cannot be
seen in the figures because they are directly underneath other curves.

1.7 GeV and Ẑ22 ∼ −0.2+0.07i, Ẑ23 ∼ 0.99+0.01i. We see that the separation between

the two resonances is too small to be resolved. The full 3 × 3 propagator matrix result

(black) agrees well with the on-shell approximation using Ẑ matrix elements and Breit-

Wigner propagators (green) (the curves are indistinguishable in the figure because they
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are on top of one another). However, if the interference term is not included in the

calculation (blue), the cross section is overestimated by a few percent at its peak value.

In Figure 9.3(c), we use φM2
= −9π/20,2 with all other parameters as in the usual

SPS1a scenario, resulting in Mh2
= 393.3 GeV, Mh3

= 393.3 GeV, Γh2
= 1.9 GeV,

Γh3
= 1.9 GeV and Ẑ22 ∼ −0.3 − 0.7i, Ẑ23 ∼ 1.2 − 0.2i. We see that the separation

between the two resonances is too small to be resolved. Again, the full 3× 3 propagator

matrix result (black) agrees well with the on-shell approximation using Ẑ matrix elements

and Breit-Wigner propagators (green) (the curves are indistinguishable in the figure

because they are on top of one another). However, if the interference term is not included

in the on-shell approximation (blue), the cross section is overestimated by around 400%.

The interference effect is enhanced for these particular parameters because the masses

and widths are almost identical and there is a large amount of CP-violating mixing

between H and A, as seen by the Ẑ matrix values.

In Figure 9.4 we consider the Mmax
h scenario. The Mmax

h scenario is a standard CP-

conserving scenario in which Higgs boson searches are interpreted in the MSSM. An

important channel at hadron colliders is (b)bh, h → ττ in which a Higgs is produced in

association with bottom quarks and then decays to taus. Usually the exclusion bounds

or discovery sensitivity are interpreted using the individual cross sections for h, H and A,

each weighted by their individual branching ratios. When the masses are approximately

degenerate, then these are simply added together (see eg. Ref. [123]). For MA
>∼ 150 GeV

and large tanβ, this method works well in the CP-conserving case, since Mh is well below

MH . Here, however, we consider values of MA ∼ 120− 130 GeV with large tanβ, which

is an interesting part of parameter space where all three neutral Higgs bosons can be

nearly mass degenerate. Here we expect interference effects between h and H to be

important.

We compute the cross section for bb̄ → h, H, A → τ+τ− as a function of
√

s in the Mmax
h

scenario with MH± = 170 GeV and tanβ = 40, using the masses, Ẑ matrix elements and

self-energies from FeynHiggs 2.6.5, and obtaining the widths from the imaginary part

of the mass solution. For these parameters, the masses are Mh = 123.0, MH = 125.8

and MA = 124.9 GeV, the widths are Γh = 2.5 GeV, ΓH = 4.8 GeV and ΓA = 7.3 GeV

2In our convention, we do not normally allow a phase for M2 since only two of the three phases in
the neutralino sector are physical. We only introduce one here because it provides an interesting
example of degenerate masses and large Ẑ matrix elements with large imaginary parts. This should
not be combined with the simultaneous introduction of phases for M1 and µ.
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Figure 9.4: Cross section for bb̄ → h, H, A → τ+τ− in the Mmax
h scenario with MH± = 170 GeV and

tanβ = 40 using FeynHiggs 2.6.5; (a) Computed using the on-shell approximation
with Ẑ matrix elements and Breit-Wigner propagators for each of h, H and A separately
(green, blue and red respectively); (b) Computed by adding the on-shell approximations
for h and H separately without interference (blue), and with interference (green); (c)
Full 3 × 3 Higgs propagator matrix result (red), compared with on-shell approximation
with interference terms (green) and without any interference terms (blue) (note that the
red curve is directly underneath the green curve); (d) Comparison between the on-shell
approximation with interference (green) and without interference (blue), this time using
the total decay widths, Γtot

ha
as input for the Breit-Wigner widths. For (a), (b) and (c)

the Breit-Wigner widths are obtained from the imaginary part of the complex mass pole.
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and the Ẑ matrix elements of interest are Ẑhh = 0.99 − 0.24i, ẐhH = 0.53 + 0.42i,

ẐHh = −0.53 − 0.44i and ẐHH = 0.96 − 0.26i.

Figure 9.4(a) shows the cross sections computed from the individual squared matrix

elements, each with only one of h, H and A as the intermediate particle, i.e. bb̄ →
h → τ+τ−, bb̄ → H → τ+τ− and bb̄ → A → τ+τ− respectively, in the on-shell approx-

imation using Ẑ factors and Breit-Wigner propagators. We see that while the masses

are separated by a few GeV, the widths are also of the order of a few GeV, so that

there is significant overlap of the three resonances. The curve in blue in Figure 9.4(b)

shows the cross section obtained by simply adding together the resonances for h and H

without including any interference, while we show in green the cross section computed

from squaring the matrix element that includes both the h and H Breit-Wigner terms

so that interference is included. We see that the effect of including interference is quite

dramatic, reducing the peak value of the cross section by more than a factor of three,

and shifting the corresponding peak centre of mass energies away from Mh and MH .

Destructive interference between the h and H matrix elements causes the cross section

to drop dramatically to zero at
√

s ≈ 124 GeV.

In Figure 9.4(c) we include the effect of all three neutral Higgs bosons. We see that

the on-shell approximation obtained from squaring the matrix element computed from

Ẑ factors and Breit-Wigner propagators (green) agrees well with the full 3× 3 propaga-

tor matrix result (red) which includes further momentum dependence coming from the

self-energies (note that the red curve is not visible in the figure because it is directly

underneath the green curve). The on-shell approximation using the Ẑ matrix formalism

works well because the cross section is dominated by resonant contributions. Inclusion

of the leading order momentum dependence using the Breit-Wigner propagators with

a constant width does just as well as including the full momentum dependence of the

Higgs propagator matrix. It correctly predicts the reduction of the total cross section

compared to the cross sections where no interference is included. Any further momen-

tum dependence is only expected to be important near thresholds, where the narrow

width approximation breaks down anyway. In such situations it can be advantageous to

use a running width, but for our purposes we see that this is not necessary.

Note that in order to find the agreement shown above between the full propagator ma-

trix method and the on-shell approximation, the width, Γha , used in the Breit-Wigner

propagator must be obtained from the imaginary part of the complex pole, M2
ha

. This

is essentially a tree-level width, obtained from considering the one-loop effective self-

energy. However, QCD corrections to the total Higgs boson decay widths can be large,
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particularly in parts of parameter space where ha → bb̄ is the dominant decay channel.

The total Higgs decay widths, Γtot
ha

, that can be obtained as output from FeynHiggs, are

evaluated as the sum of the partial decay widths for all possible decay modes. Many

of these partial decay widths are evaluated with higher order corrections. For exam-

ple, the ha → bb̄ partial decay width contains higher-order SM-type and SUSY-type

QCD corrections, as well as electroweak corrections. Now that we have demonstrated

that the on-shell approximation computed from Ẑ factors and Breit-Wigner propagators

agrees with the full propagator matrix result when the same effective width is used, as

a further improvement we use the total decay widths, Γtot
ha

instead of the complex pole

decay widths, thereby incorporating higher order effects. For the scenario and version of

FeynHiggs considered above, this has a big impact on the widths; resulting in Γtot
h = 2.0,

Γtot
H = 3.9 and Γtot

A = 4.0 GeV. The results for the cross section σ(bb̄ → h, H, A → τ+τ−)

obtained using these widths for the Breit-Wigner propagators instead of the widths ob-

tained from the complex pole, are shown in Figure 9.4(d). Because the widths are

smaller, the interference between h and H has less of an effect. The large difference

in the methods for obtaining the widths for this version of FeynHiggs 2.6.5 is due

to the different implementations of the running bottom mass in the calculation of the

self-energies compared to the calculation of the partial decay widths. In the more recent

version, FeynHiggs 2.7.0, there is much better agreement between the two methods.

Thus, for our final results in Section 9.6, where we show the effect interference can have

on the interpretation of the Higgs exclusion limits, we will use FeynHiggs 2.7.0.

9.5 Factorisation into cross section × branching

ratio: Incorporation of interference effects

In the previous sections, we showed two different approaches for calculating the full

squared matrix element for the production and decay of Higgs bosons. The on-shell

approximation using Ẑ factors and Breit-Wigner propagators was found to be in nu-

merical agreement with the full 3 × 3 Higgs propagator matrix calculation. We also

showed that, in parts of parameter space where two or more Higgs bosons are nearly

mass-degenerate, there can be significant interference between the intermediate Higgs

propagators. These interference effects will not be included when one treats the pro-

duction and decay processes independently, and thus the narrow width approximation

is not applicable in these parts of parameter space. However, carrying out a full matrix
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element calculation is not always practicable, especially if one wants to incorporate the

important higher order corrections that are available in the literature for the separate

production and decay processes. Our aim in the following is to find a generalised narrow

width approximation which is applicable to the situation where there is more than one

resonance, with Mi − Mj
<∼ Γi, Γj .

In order to find a generalised narrow width approximation, we consider carefully where

the narrow width approximation, reviewed in Appendix C, breaks down. In its usual

formulation, the narrow width approximation is expected to work well if the resonant

propagator is separable from the matrix elements, one is sufficiently far away from

thresholds, the width is small compared to the mass, Γ ≪ M , and interference between

resonances can be neglected. In the situation of the production and decay of nearly

mass degenerate Higgs bosons, it is usually only the last assumption that does not ap-

ply. While the widths are small compared to the masses, Γhi
≪ Mhi

, they are not

small compared to the mass splittings; Γhi
∼ |Mhi

− Mhj
|. Since there can therefore be

significant overlap between the resonances, there can be interference between the reso-

nant diagrams. Nevertheless, since the other assumptions still apply, we expect to be

able to find a generalised narrow width approximation. In the following section, we find

that we can incorporate the main interference effects by introducing an “interference

weight factor”, which contains the integration over the interfering Breit-Wigner propa-

gators, while still treating the production and decay processes in factorised form, with

the matrix elements evaluated on-shell.

9.5.1 Interference weight factor

As in Appendix C, we consider the process, ab → cef , shown in Figure C.1, but we now

allow both h1 and h2 to appear as resonant internal propagators. As in Equation (C.1)

we can write the production matrix elements, the propagators and the decay matrix

elements separately. The Lorentz invariant phase space element can be factored into

its production and decay parts in the same way as Equation (C.6). The resulting cross
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section can then be written as

σab→cef =
1

2π

1

2λ
1

2 (s, m2
a, m

2
b)

∫
dq2dlips(s; pc, q)dlips(q; pe, pf) ×

( |Mab→ch1
|2|Mh1→ef |2

(q2 − M2
h1

)2 + M2
h1

Γ2
h1

+
|Mab→ch2

|2|Mh2→ef |2)
(q2 − M2

h2
)2 + M2

h2
Γ2

h2

+ 2Re

[ Mab→ch1
M∗

ab→ch2
Mh1→efM∗

h2→ef

(q2 − M2
h1

+ iMh1
Γh1

)(q2 − M2
h2

− iMh2
Γh2

)

])
.

=
1

π

∫
dq2

(
σab→ch1

(q2)
√

q2Γh1→ef(q
2)

(q2 − M2
h1

)2 + M2
h1

Γ2
h1

+
σab→ch2

(q2)
√

q2Γh2→ef(q
2)

(q2 − M2
h2

)2 + M2
h2

Γ2
h2

+

∫
dΩ 2Re

[ Mab→ch1
M∗

ab→ch2
Mh1→efM∗

h2→ef

(q2 − M2
h1

+ iMh1
Γh1

)(q2 − M2
h2

− iMh2
Γh2

)

])
(9.19)

where dΩ ≡ dlips(s; pc, q)dlips(q; pe, pf)/(4λ
1

2 (s, m2
a, m

2
b)) (see Appendix C for the phase

space definitions). σab→cha(q
2) is the off-shell cross section for the production of ha

with momentum q2, while Γha→ef(q
2) is the off-shell decay width for ha, decaying at

momentum q2 (a = 1, 2). In the limit of narrow width, the squares of the Breit-Wigner

propagators in the first two terms can each be approximated by a constant multiplied

by a delta function, δ(q2 − M2
ha

), as in Equation (C.8), which allows the cross sections

and decay widths to be evaluated on-shell, at q2 = Mh2
1

and q2 = Mh2
2

respectively.

Essentially, the resonant structure of the propagators singles out the most important

matrix element contributions to be those which are evaluated on-shell. Although the

third term does not contain the square of Breit-Wigner propagators, for Mh1
∼ Mh2

, it

does have a resonant structure, and is only expected to be large near q2 ∼ M2
h1

∼ M2
h2

.

Our claim is that, so long as the other assumptions of the narrow width approximation

apply, the matrix elements in the interference term can be evaluated on-shell and taken

outside the dq2 integral. We can therefore make the following on-shell approximation;

σab→cef ≈σab→ch1
BRh1→ef + σab→ch2

BRh2→ef

+ 2ΩRe
[(
Mab→ch1

M∗
ab→ch2

Mh1→efM∗
h2→ef

) ∫
dq2∆BW

h1
(q2)(∆BW

h2
(q2))∗

]
,

(9.20)

where the cross sections, branching ratios and matrix elements are all evaluated on-shell.

The first two terms are the usual cross sections multiplied by the respective branching

ratios, while the third term is the interference term written as a universal integral over the

interfering Breit-Wigner propagators, multiplied by a coefficient consisting of process-

specific matrix elements evaluated on-shell and a phase space factor, Ω.
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To make a further approximation, we note that we can often express the on-shell matrix

elements for the interference term in terms of the on-shell matrix elements for the h1

and h2 production and decay processes respectively;

Mab→ch1
M∗

ab→ch2
Mh1→efM∗

h2→ef ≈xa |Mab→cha|2|Mha→ef |2 (9.21)

where xa (a = 1 or 2) is a numerical scaling factor and Mh1
≈ Mh2

. For example, for

h–H mixing in bb̄ → τ+τ−, we use Equation (9.18) to obtain the scaling factor,

xa =
(sαẐ11 − cαẐ12)

2(sαẐ
∗
21 − cαẐ

∗
22)

2

|(sαẐa1 − cαẐa2)2|2
. (9.22)

This simple scaling factor allows us to write the total cross section as

σab→cef ≈ σab→ch1
BRh1→ef(1 + R1) + σab→ch2

BRh2→ef(1 + R2) (9.23)

where

Ra =
MhaΓha

π

σab→chaBRha→ef

σab→ch1
BRh1→ef + σab→ch2

BRh2→ef

2 Re
[
xa

∫ q2
max

q2
min

dq2∆BW
h1

(q2)(∆BW
h2

(q2))∗
]

(9.24)

is the interference weight factor, for a = 1 or 2, where q2
max and q2

min are chosen to be the

square of Mha plus or minus a few times Γha respectively. The first term in Ra divides out

the Breit-Wigner integral contained in the ha cross section times branching ratio, while

the second term is a weight factor which takes into the account the fact that we could

equally choose to express the interference matrix elements in terms of the h1 or h2 matrix

elements. The term inside the square brackets consists of the process-dependent scaling

factor, xa, and the universal integral over the interfering Breit-Wigner propagators. Note

that this equation applies to both partonic and hadronic cross sections, as well as in the

case where higher-order corrections are included in the cross sections and decay widths.

Thus, in order to obtain an estimate for the cross section of the full production and decay

process in the generalised narrow width approximation, all one needs is the production

cross sections and decay branching ratios at the desired order, the masses and total decay

widths for the universal integral contained in Ra, and a number, xa, for the scaling factor.

All but the latter are available in the literature, for example, in FeynHiggs, with many

important higher-order corrections already included. One can easily obtain a leading

order estimate for xa in terms of tree-level couplings and Ẑ matrices by considering
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the leading partonic process as we have done for bb̄ → τ+τ−. Note that the factor we

have derived for this process also applies to the often experimentally indistinguishable

processes gb → bha → bτ+τ−, gb̄ → b̄ha → b̄τ+τ− and gg → bb̄ha → bb̄τ+τ−. This

can then be conveniently combined with the state-of-the-art hadronic cross sections and

branching ratios, to obtain an improved estimate of the effective cross section times

branching ratio including interference effects.

9.5.2 Numerical testing for bb̄ → hi → τ+τ−

In going from the integral over q2 in Equation (9.19) to the on-shell approximation in

Equation (9.20), we made the assertion that the matrix elements could be evaluated at

fixed momentum, q2 ≈ M2
h1

or M2
h2

, outside the integral, leaving only the Breit-Wigner

dependence inside the integral. We show the validity of this assumption for the partonic

process, bb̄ → h1, h2 → τ+τ−, by considering the integrand from Equation (9.19);

f(q2, q′ 2, q′′ 2)= q′σbb̄→h1
(q′ 2)|∆BW

h1
(q2)|2Γh1→ττ (q

′ 2)+q′′σbb̄→h2
(q′′ 2)|∆BW

h2
(q2)|2Γh2→ττ (q

′′ 2)

+

∫
dΩ 2Re

[(
Mab→ch1

M∗
ab→ch2

Mh1→efM∗
h2→ef

)
|q2=q′ 2∆

BW
h1

(q2)(∆BW
h2

(q2))∗
]

(9.25)

where q′(′) ≡
√

q′(′) 2. In Figure 9.5 we show the dependence of f on
√

s =
√

q2 for the

Mmax
h scenario with MH± = 173 GeV and tanβ = 40, for several values of q′ 2 and q′′ 2.

For these parameters, using FeynHiggs 2.6.5 and the widths derived from the complex

pole, we have Mh1
≡ Mh = 121.5 GeV, Mh2

≡ MH = 124.3 GeV, Γh1
= 2.1 GeV and

Γh2
= 6.1 GeV. In the black curve, q′ 2 = q′′ 2 = q2; in the green curve q′ 2 = q′′ 2 = M2

h1

and in the blue curve q′ 2 = q′′ 2 = M2
h2

. The red curve shows the dependence of f for

q′ 2 = q′′ 2 = q2 when the interference term is not included. We see that the curves where

q′ and q′′ 2 are taken to be constants, M2
h1

or M2
h2

, give a good approximation to full q2

dependence of f . In particular, they give a much better approximation to the (black)

curve with the full q2 dependence than the (red) curve for which interference is ignored

altogether. In the situations where interference is important, the masses are nearly

degenerate, and the main q2 dependence of f comes from the Breit-Wigner propagators

and their interference. Thus the integrand, f , can be evaluated at q2 ≈ M2
h1

or M2
h2

with only small errors in reproducing the full integrand.
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Figure 9.5: Dependence of function f(q2, q′ 2, q′′ 2) defined in Equation (9.25) on
√

q2. In the black
curve, q′ 2 = q′′ 2 = q2; in the green curve q′ 2 = q′′ 2 = M2

h1
; in the blue curve q′ 2 =

q′′ 2 = M2
h2

; in the red curve the interference term is not included.

9.5.3 Application to pp → bb → hi → τ+τ−

We have tested the generalised narrow width approximation of Equation (9.23) with

interference weight factors, Ra, for the calculation of the LHC integrated cross section

for pp → bb̄ → h, H → τ+τ− in the Mmax
h scenario with MH± = 170 GeV. We calculate

the squared matrix element for the partonic process using the on-shell approximation

with Ẑ matrix elements and Breit-Wigner propagators as in Section 9.3. We then use

the built-in option in FormCalc to convert our squared matrix element calculation into

an integrated cross section with protons in the initial state. For the pdf distributions,

we use CTEQ5L [125] because it is the default option in FormCalc and sufficient for

our purpose of testing the validity of the interference factor method. The Higgs masses

and Ẑ matrix elements were obtained from FeynHiggs 2.6.5, including the O(αtαs)

corrections, while the total widths were obtained from the imaginary part of the complex

pole. In this way we obtain numerical values for σh ≡ σ(pp → bb̄ → h only → τ+τ−),

σH ≡ σ(pp → bb̄ → H only → τ+τ−) and σhH ≡ σ(pp → bb̄ → h, H → τ+τ−). For

simplicity we ignore the contributions from A.

The resulting cross sections are shown in Figure 9.6(a) as a function of tanβ. The

black points show σhH , i.e. they include the h–H interference. The blue points show

σh + σH , i.e. they do not include the h–H interference. The green points are obtained

using σh(1+R1)+σH(1+R2), where the interference weight factors are calculated using

Equation (9.24). We see that for 35 <∼ tanβ <∼ 45, simply adding together σh and



Interference effects for nearly mass degenerate Higgs bosons 146

R Method
|h|2 + |H|2
|h + H|2σ(pb)

tan β
55504540353025

1200

1000

800

600

400

200

0

(a)

R method
|h|2 + |H|2
|h + H|2Γ(GeV)

M1(GeV)
180160140120100806040

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

(b)

Figure 9.6: (a) Integrated LHC cross section for pp → bb̄ → h, H → τ+τ− in the Mmax
h scenario with

MH± = 170 GeV as a function of tanβ. The black points are computed using the Breit-
Wigner propagators and Ẑ matrix elements for h and H , including interference. The
blue curve ignores the interference. The green points show the generalised narrow width
approximation using the interference weight factor; (b) The decay width in GeV for the
process χ̃0

4 → χ̃0
1τ

+τ− in the Mmax
h scenario with tanβ = 40 and MH± = 170 GeV as

a function of M1, ignoring contributions from intermediate CP-odd Higgs bosons and
other non-Higgs intermediate particles. The black curve shows the three-body decay
width computed using the Breit-Wigner and Ẑ matrix method, including h and H and
their interference. The blue curve shows the standard narrow width approximation, while
green red curve includes the interference weight factor to obtain a generalised narrow
width approximation.

σH in a “narrow width estimation” (blue) leads to an overestimation for σhH (black)

by up to a factor of 8, due to the resonant enhancement of the Ẑ matrix elements in

this region. The generalised narrow width approximation using the interference weight

factors (green), however, gives a good estimation of the full σhH result.

9.5.4 Application to χ̃0
4 → χ̃0

1τ
+τ−

The generalised narrow width approximation of Equation (9.23) applies to decay widths

as well as cross sections. We have applied the method to the calculation of the three

body decay width of a neutralino into a lighter neutralino and two taus; χ̃0
4 → χ̃0

1τ
+τ−.

In the CP-conserving case with h–H mixing, one can write down a relatively compact

expression for xa, involving only Ẑ matrix elements and couplings. This can be combined

with the universal integral over Breit-Wigner propagators to obtain the appropriate in-
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terference factor, Ra, using Equation (9.24). The two-body and three-body decay widths

were computed using FormCalc, the Higgs masses and Ẑ matrix elements were obtained

from FeynHiggs 2.6.5, including the O(αtαs) corrections, while the total widths were

obtained from the imaginary part of the complex pole. Figure 9.6(b) shows the decay

width in GeV for the process, χ̃0
4 → χ̃0

1τ
+τ− in the Mmax

h scenario with tan β = 40 and

MH± = 170 GeV as a function of M1, ignoring contributions from the intermediate CP-

odd Higgs boson and other non-Higgs intermediate particles. The black curve shows the

three-body decay width computed using the on-shell approximation with Breit-Wigner

propagators and Ẑ matrix elements, as in Section 9.3, including the interference between

h and H . The blue curve shows the usual narrow width approximation, obtained by

adding the two body Improved Born decay widths into h and H , each weighted by their

respective branching ratios into taus. Finally the green curve includes the interference

weight factors using the generalised narrow width approximation of Equation (9.23). We

see that the usual narrow width approximation overestimates the full three-body decay

width by more than a factor of two. Inclusion of the interference weight factor in the

generalised narrow width approximation, however, predicts the full three-body decay

width to within a few percent.

9.6 Interference effects on the interpretation of

experimental limits for Higgs searches

As a phenomenologically relevant application of the generalised narrow width approx-

imation with interference weight factors, as described in Equations (9.23) and (9.24),

we investigate the effect that interference between h and H can have on the interpreta-

tion of the Higgs exclusion limits at the Tevatron. We focus on the di-tau channel in

the Mmax
h scenario. In their analyses of this channel so far [123, 126–130], the Tevatron

collaborations have not included the effect of interference between h and H . The cross

section, σ(pp̄ → φ+ X), times branching ratio, BR(φ → τ+τ−), is computed for a given

Higgs boson, φ, with mass Mφ, taking the cross sections, branching ratios and masses

from FeynHiggs. The predicted cross section times branching ratio is then compared

with the experimental limit for this quantity at this particular Higgs mass. In cases

where the Higgs bosons have nearly degenerate masses, their production cross sections

are added [123]. Finite width effects for large tanβ were investigated in Ref. [123],

where they were simulated by multiplying the individual Higgs cross sections by a Breit-
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Wigner function. It was found that the effect of the width was small for most of the

Mmax
h parameter space. However, the effect of interfering Breit-Wigner propagators was

not studied.

In the previous section, we showed examples where interference can lead to a significant

decrease in the cross sections for pp → bb̄ → h, H, A → τ+τ−. bb̄ fusion is the main Higgs

production channel for much of the Mmax
h parameter space. For tanβ <∼ 30, gluon fusion

can also be important. We include gluon fusion in our total cross section, but, since

we are mostly interested in larger tanβ, we do not incorporate the interference effects

for gluon fusion here; these could easily be included in a future work. Note that the

examples shown in the previous sections with large interference effects for tan β ∼ 40

and MA ∼ 122 GeV were computed using the Higgs masses and Ẑ matrix elements

from FeynHiggs 2.6.5, including the O(αtαs) corrections, while the total widths were

obtained from the imaginary part of the complex pole. In fact, when we use FeynHiggs

2.7.0, and furthermore include the full set of available two-loop corrections for the real

MSSM (i.e. beyond O(αtαs)), we find that the interference between h and H is largest

in the Mmax
h scenario for MA ∼ 132 GeV and tanβ ∼ 70. Such high values of tanβ are

not very relevant for the recent Tevatron exclusion limits, which are at much smaller

tan β. Thus, what follows should be treated as an example for illustration purposes only.

The Tevatron collaboration has published numerous dedicated analyses of their exclusion

limits interpreted in the Mmax
h scenario, as well as model independent upper limits at the

95% confidence level for the cross sections times branching ratio for a single Higgs boson

with a certain mass. HiggsBounds is a computer tool designed for interpreting these

limits in the MSSM and other models [131]. We use a version of HiggsBounds modified

by the authors to take as input our modified cross sections, σpp→bb̄→haX(1 + Ra), as well

as the other usual cross sections, masses, branching ratios and decay widths. We obtain

all of these quantities from FeynHiggs and compute the interference factors, Ra, from

Equation (9.24). The output from HiggsBounds indicates whether a given parameter

point is excluded or unexcluded on the basis of the Tevatron analysis with the highest

sensitivity. For illustration purposes, we do not use all available analyses; we select the

analysis where the exclusion limit is close to the values of tan β where the maximum

interference between h and H occurs.

In Figure 9.7, we show results for the Mmax
h scenario in the MA–tan β plane using

FeynHiggs 2.6.5, including the O(αtαs) corrections and obtaining the widths from the

imaginary part of the complex pole. Figure 9.7(a) shows the difference in the CP-even

Higgs masses, MH −Mh, in the MA–tan β plane. We see a band for MA ∼ 122−125 GeV
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and tan β > 40, where the mass difference is well below a GeV and interference effects

can be expected to be large. Figures 9.7(b) shows the interference weight factor, R1, for

the bb̄ → τ+τ− in the MA–tanβ plane. We see that its value can deviate significantly

from zero for MA ∼ 120−125 GeV and 30 < tan β < 60, thus leading to large interference

effects. Figure 9.7(c) shows the sum of the three bb̄ cross sections each multiplied by the

τ+τ− branching ratios; σbb̄h×BRh→ττ +σbb̄H×BRH→ττ +σbb̄A×BRh→ττ . We see that the

cross section generally rises with tanβ, but we also see an interesting region near MA ∼
122 GeV and tanβ ∼ 40, where the resonant enhancement of the Ẑ matrix elements leads

to a very large cross section. Figure 9.7(d) shows the equivalent cross section including

interference; σbb̄h ×BRh→ττ (1 +R1)+σbb̄H ×BRH→ττ (1 +R2)+σbb̄A ×BRh→ττ . We see

that the cross section near MA ∼ 122 GeV and tanβ ∼ 40 is significantly suppressed.

Figure 9.7(e) shows the output from HiggsBounds when interference is not included. We

restrict the analysis to that by the CDF collaboration in Ref. [127], where the search was

performed in the φ → ττ channel using 1.8 fb−1 of data collected with the CDF detector

in Run II of the Tevatron. The red points are excluded by this analysis at the 95%

confidence level for the particular cross sections, branching ratios, masses and widths

we obtained from FeynHiggs 2.6.5 as detailed above. Taking the same values for these

quantities, but including the interference factors, R1 and R2, results in the HiggsBounds

output shown in Figure 9.7(f). We see that a significant number of points in blue below

tan β = 43 which were excluded in Figure 9.7(e) can no longer be excluded for these

particular numbers and this particular analysis.

In Figure 9.8 we show results for the Mmax
h scenario in the MA–tanβ plane using

FeynHiggs 2.7.0, now obtaining the widths from the sum of the partial decay widths.

As already discussed, the on-shell approximation using these widths will not agree so well

with the full propagator matrix approach, but will include further important higher-order

QCD corrections that are available in FeynHiggs for the Higgs partial decay widths. Fig-

ure 9.8(a) shows the difference in the CP-even Higgs masses, MH −Mh, in the MA–tanβ

plane. This time we see a band for MA ∼ 122 − 125 GeV and tanβ > 55, where the

mass difference is well below a GeV. This mass degeneracy occurs at much larger tanβ

than for FeynHiggs 2.6.5. Figures 9.8(b) shows that the interference weight factor

also has its largest deviation from zero around this region. Figures 9.8(c) and 9.8(d)

again show the sum of the three bb̄ cross sections each multiplied by their respective

ττ branching ratios, without and with interference respectively. We see that the total

cross section near MA ∼ 124 GeV and tanβ ∼ 55 is significantly suppressed by the

interference. Figure 9.8(e) shows the output from HiggsBounds when interference is not

included. We restrict the analysis to that by the D0 collaboration in Ref. [123], where
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the search was performed in the φ → ττ channel using 1 fb−1 of data collected with the

D0 detector at the Tevatron. The red points are excluded by this analysis at the 95%

confidence level for the particular cross sections, branching ratios, masses and widths

we obtained from FeynHiggs 2.7.0 as detailed above. Taking the same values for these

quantities, but including the interference factors, R1 and R2, results in the HiggsBounds

output shown in Figure 9.8(f). We see that a significant number of blue points around

tan β = 50 which were excluded in Figure 9.8(f) can no longer be excluded for these

particular numbers and this particular analysis.

As already explained, the shifts in the Tevatron Higgs exclusion limits described above

for the Mmax
h scenario should not be taken literally, since, first of all, we do not include

all available higher-order corrections in the Higgs sector; we only include the O(αtαs)

corrections. Secondly, the Tevatron analyses we use are not the most recent available.

The recent published analysis in Ref. [126] combines the results for searches for a neutral

Higgs boson in the di-tau final state using 1.8 fb−1 and 2.2 fb−1 of integrated luminosity

collected at the CDF and D0 experiments respectively. The resulting exclusion limits

reach a much lower tanβ of around 35. Including the interference effects as described

above using FeynHiggs 2.7.0 does not have a large effect on this boundary. Our

examples are simply to illustrate that, for certain Higgs masses, mixings and widths,

interference between h and H can have a significant impact on the interpretation of

Higgs exclusion bounds with a certain sensitivity. There may be other CP-conserving

and CP-violating scenarios with large interference between h1, h2 and/or h3 occurring

in regions of parameter space where the most recent exclusion limits are significantly

affected. The CP-violating case is also of particular interest for the Higgs discovery

potential for large tanβ in the early stages at the LHC. Unlike the interference between

h and H in the Mmax
h scenario, which only occurs for a small resonance region in the

MA–tan β plane, the interference between H and A can be significant quite generically

since their masses are usually nearly degenerate for moderate to large values of MA

and large tanβ. It is clear that for such scenarios, one cannot simply add the cross

sections for H and A production as has been done in the past. In this chapter we have

developed a method for using simple interference factors in conjunction with the state-of-

the-art cross sections and branching ratios to include these effects. The method is more

convenient than doing a full squared matrix element calculation but produces a good

estimate of the effects. The method has been implemented and tested for the particular

case of h–H mixing in the bb̄ → τ+τ−, but can easily be applied to other processes and

the CP-violating case. In the next chapter, we study CP asymmetries in the processes,

bb̄, W+W−, gg → ha → χ̃0
2χ̃

0
2. In Section 10.5, we will use a generalised narrow width
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approximation with interference factors to produce estimates of the asymmetries at the

LHC.
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Figure 9.7: Results for the Mmax
h scenario in the MA–tanβ plane using FeynHiggs 2.6.5, including

the O(αtαs) corrections, and obtaining the widths from the imaginary part of the mass
solution; (a) MH −Mh; (b) R1; (c) Cross section for bb̄ha, ha → ττ without interference;
i.e. σh×BRh→ττ+σH×BRH→ττ +σA×BRA→ττ ; (d) Cross section for bb̄ha, ha → ττ with
interference; i.e. σh×BRh→ττ (1+R1)+σH×BRH→ττ (1+R2)+σA×BRA→ττ ; (g) Exclu-
sion of these parameters by CDF analysis 9071 without interference (Red=Excluded); (f)
Exclusion of these parameters by CDF analysis 9071 with interference (Red=excluded,
blue or white=unexcluded).
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Figure 9.8: Results for the Mmax
h scenario in the MA–tanβ plane using FeynHiggs 2.7.0, including

the O(αtαs) corrections, and obtaining the widths from the sum of the partial decay
widths; (a) MH − Mh; (b) R1; (c) Cross section for bb̄ha, ha → ττ without interference;
i.e. σh ×BRh→ττ + σH ×BRH→ττ + σA ×BRA→ττ ; (d) Cross section for bb̄ha, ha → ττ
with interference; i.e. σh×BRh→ττ (1+R1)+σH ×BRH→ττ (1+R2)+σA×BRA→ττ ; (g)
Exclusion of these parameters by D0 analysis 2491 without interference (Red=Excluded);
(f) Exclusion of these parameters by D0 analysis 2491 with interference (Red=excluded,
blue or white=unexcluded).



Chapter 10

Asymmetry in the full production

and decay process

10.1 Motivation

In Chapter 8 we showed that, in the presence of CP-violating phases, there could be a

significant difference between the partial decay widths of a heavy Higgs boson into two

neutralinos with left-handed polarisation, Γa
LL ≡ Γ(ha → χ̃0 L

2 χ̃0 L
2 ), and right-handed

polarisation, Γa
RR ≡ Γ(ha → χ̃0 R

2 χ̃0 R
2 ), respectively. The ratio Aa ≡ (Γa

LL−Γa
RR)/(Γa

LL +

Γa
RR) was found to be a CP-odd quantity. Namely, it is antisymmetric with respect to the

transformation, φ → −φ, where φ is a CP-violating phase, even when loop corrections

to the Higgs-neutralino-neutralino vertex are included. Thus, a non-zero value for Aa

would indicate the existence of CP-violation in the MSSM. Furthermore, Aa was found

to have the same sign for both ha = h2 and ha = h3, so that the individual ratios, once

combined, would reinforce rather than cancel one another. One might naively expect

to be able to construct a relevant physical observable by combining A2 and A3 into an

average, weighted by the cross sections for h2 and h3 production and branching ratios

for their subsequent decay into neutralinos.

However, we noted that in scenarios where this decay is important, where the Higgs

bosons are heavier than the mass of the neutralinos, the Higgs masses are likely to be

nearly degenerate, Mh2
∼ Mh3

, with the mass splitting of the same order as the widths

of the Higgs bosons, |Mh2
− Mh3

| ∼ Γh2
, Γh3

. Thus, it would not be appropriate to

construct a weighted average of A2 and A3 using the narrow width approximation, the

assumptions for which fail in this situation. In order to construct a CP-odd asymmetry

154
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that could be an observable at experiments like the LHC, one must include the full

production and decay process for the the nearly mass degenerate Higgs bosons. As seen

in Chapter 9, interference effects between the two Higgs propagators in the full squared

matrix element can play a large role for the total cross section. It can thus be anticipated

that the interference terms may also have the effect of decreasing or even increasing an

asymmetry constructed from the polarisation dependent cross sections.

On the one hand, the fact that the asymmetry must be evaluated in situations with

nearly degenerate masses is computationally more difficult, on the other hand, we will

see that the mass degeneracy of the two Higgs bosons causes the resonant enhancement

of CP-violation in the Higgs sector, thus increasing the CP-odd asymmetry.

The resonant enhancement of CP-violating asymmetries in the Higgs sector has received

much attention in the literature for the LHC and future colliders. A study of the CP
asymmetries in the polarisations of taus produced in Higgs decays at the LHC was

carried out in Ref. [132] using the method developed in Refs. [133, 134]. Scenarios were

considered where all three Higgs bosons are light and the mass eigenstates are mixtures

of all three CP-eigenstates. It was found that large asymmetries were possible in the

longitudinal and transverse polarisations of the tau pairs. The same authors considered

similar CP asymmetries at photon-photon colliders [135] and e+e− colliders [136] (see

also Ref. [137] for a study of the Higgs line-shape in such scenarios with 3x3 mixing). In

our study, we wish to consider asymmetries in neutralino polarisations, and so the Higgs

bosons in question, must, of course, be heavier than the masses of the neutralinos. In

such cases, the lightest Higgs boson has a mass well below the masses of the h2 and h3,

so the CP-violating Higgs mixing is effectively 2×2 mixing between H and A. Resonant

enhancement of CP asymmetries in the polarisation of top quarks at photon colliders

was studied in the 2 × 2 mixing case in Ref. [138] (see also Ref. [139] for a similar

analysis at the LHC). The Higgs line-shape has also been studied in the 2 × 2 mixing

case [140]. Similar asymmetries were also studied for photon colliders in Ref. [141] and

muon colliders in Refs. [142–145]. Asymmetries in Higgs decays into Z boson pairs were

studied in Ref. [146] as a method of determining the spin as well as the CP properties of

Higgs bosons (see also Refs. [147, 148]). Asymmetries in the polarisation of neutralinos

produced in Higgs decays were studied in Ref. [144] in the context of a muon collider.

This study turns out to be rather different to our study of neutralino production in

Higgs decays for the LHC, since their technique makes use of polarised muon beams.

In this chapter we consider the asymmetry between the production of left- and right-

handed neutralinos in Higgs decays at the LHC. We compute the asymmetries expected
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at the parton level for the full production and decay processes, bb̄ → hi → χ̃0
2χ̃

0
2,

W+W− → hi → χ̃0
2χ̃

0
2 and gg → hi → χ̃0

2χ̃
0
2, using both the full propagator matrix

method and the on-shell approximation using Ẑ factors described in Chapter 9. We find

that the asymmetry for the bb̄ fusion process is suppressed by several orders of mag-

nitude, while WW and gg fusion can each result in large asymmetries. We therefore

continue by considering the parts of parameter space where Higgs bosons can be detected

by their production in gluon fusion and subsequent decay via neutralinos into four lep-

tons. We finally compute the left-right asymmetries in the hadron-level LHC production

cross sections for pp → hi → χ̃0
2χ̃

0
2, comparing the full squared matrix element method to

the use of a generalised narrow width approximation with an interference weight factor,

as in Section 9.5.

10.2 Calculation of CP-odd asymmetry

For each partonic Higgs production and decay process, xx′ → hi → χ̃0
2χ̃

0
2, where xx′ = bb̄,

W−W+, or gg, we define the asymmetry

Axx′(
√

s) ≡ σ2

σ1

(10.1)

with

σ1(
√

s) ≡ σxx′→Hi→χ̃0 L
2

χ̃0 L
2

+ σxx′→Hi→χ̃0 R
2

χ̃0 R
2

=

∫
dΩ(|MLL|2 + |MRR|2), (10.2)

σ2(
√

s) ≡ σxx′→Hi→χ̃0 L
2

χ̃0 L
2

− σxx′→Hi→χ̃0 R
2

χ̃0 R
2

=

∫
dΩ(|MLL|2 − |MRR|2) (10.3)

where dΩ ≡ dlips(s; k3, k4)/(2λ
1

2 (s, m2
x, m

2
x′)), s = (k1 + k2)

2 = (k3 + k4)
2 is the squared

centre of mass energy, k1 and k2 are the four-momenta of the incoming particles, k3

and k4 are the four-momenta of the outgoing fermions, and |MLL|2 and |MRR|2 are the

squared matrix elements for the decay into neutralinos with both left-handed and both

right-handed polarisation respectively, averaged over the xx′ polarisations. Note that, if

OL and OR are the effective couplings of xx′ to left-handed and right-handed fermions

respectively, i.e.

Mxx′→Hi→ff̄ = ūf(O
LωL + ORωR)vf , (10.4)
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then

|MLL|2 − |MRR|2 = (|OL|2 − |OR|2)
√

s(s − 4m2
f), (10.5)

|MLL|2 + |MRR|2 = (|OL|2 + |OR|2)(s − 2m2
f ) − 4m2

fRe[OR(OL)∗]. (10.6)

10.2.1 Full propagator matrix approach

In Section 9.2 we showed how to evaluate σ1 for a general process in the full Higgs

propagator matrix approach, using Equation (9.5). The same method can be applied

to compute σ2. There are nine diagrams to consider, illustrated in Figure 9.1, coded

into FeynArts as nine particles, “ij”, where i, j = h, H, A. There are three initial state

vertices to consider, Γ̂xx̄i, and three final state vertices, Γ̂jff̄ , connected by nine full loop-

corrected Higgs propagator matrix elements ∆ij , obtained from Equations (3.72) and

(3.77). The general tree-level Higgs-fermion-fermion vertex is given in Equation (9.6),

where the relevant neutralino-neutralino-Higgs couplings can be obtained from Equation

(5.2). We will write the following in terms of general outgoing fermion-antifermion pairs,

f and f̄ , so that our results can also be used to compute asymmetries for eg. τ+τ− and

tt̄ production.

bb̄ → hi → χ̃0
2
χ̃0

2

The bb̄-Higgs couplings are given in Equation (9.7). We have coded the full 3x3 propa-

gator matrix result into FeynArts. Setting ∆hi and ∆ih to zero leads to the simplified

2 × 2 mixing case where

|MLL|2 − |MRR|2 = − 2
√

s(s − 4m2
f )Re(GffAG∗

ffH)

[s G2
bbAIm(∆AA∆∗

AH) + G2
bbH(4m2

b − s)Im(∆HH∆∗
HA)] (10.7)

We see that the asymmetry will vanish in the limit of CP-conservation in the Higgs sector,

where ∆HA and ∆AH are zero. A non-zero asymmetry also requires the loop-corrected

propagator matrix elements to have imaginary parts. This will only come about if the

Higgs self-energies contain absorptive loop integrals. Absorptive effects on their own,

however, cannot fake an asymmetry just because there exist both CP-even and CP-odd

Higgs bosons in the same matrix squared element. The CP-eigenstates really have to

mix due to CP-violation, so σ2 is a true CP-odd observable. Also note that complex
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neutralino couplings from the vertex alone are not enough to cause an asymmetry; they

only appear explicitly in Re(GffAG∗
ffH). Complex neutralino couplings could, however,

enter the Higgs self-energies in such a way as to cause CP-violating mixing in the Higgs

sector, which would contribute to the asymmetry.

W +W − → hi → χ̃0
2
χ̃0

2

The tree-level Higgs-WW vertex is written as

Γ̂hWµWν = iGhWWgµν ,

Γ̂HWµWν = iGHWWgµν (10.8)

with Γ̂AWµWν = 0 and

GhWW =
eMW

sW
sβα, GHWW =

eMW

sW
cβα. (10.9)

In the 2 × 2 case we obtain

|MLL|2 − |MRR|2 = 4
√

s(s − 4m2
f)|ǫ1.ǫ2|2G2

WWHRe(GffAG∗
ffH)Im(∆HH∆∗

AH)

(10.10)

where ǫ1 and ǫ2 are the W boson polarisation vectors;

ǫµ
1 (±) =

1√
2
(0,∓1,−i, 0), ǫµ

2 (±) =
1√
2
(0,∓1, i, 0),

ǫµ
1 (0) =

1

MW
(|k1|, 0, 0, k0

1), ǫµ
2 (0) =

1

MW
(|k2|, 0, 0,−k0

2) (10.11)

where the ± denote right-handed and left-handed W polarisations respectively, while 0

denotes the W longitudinal polarisation. A centre of mass frame is assumed, with initial

state four-momentum vectors k1,2 = (
√

M2
W + |k1|2, 0, 0,±|k1|) (see Ref. [149]). Again

note that the asymmetry vanishes in the CP-conserving limit and in the limit where

there are no absorptive parts in the propagator matrix elements.

gg → hi → χ̃0
2
χ̃0

2

Gluon-gluon fusion is an important Higgs production process at the LHC (see eg.

Ref. [150]). In the SM, the largest contribution to the gluon-gluon vertex is the one-loop
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Figure 10.1: Leading order contributions to gluon fusion in the MSSM, where h0
k = {h, H, A}.

top quark triangle diagram. One can write down an effective scalar-type coupling of

gluons to the Higgs boson using form factors. In the MSSM, the top quark loop is not

always the leading contribution. There are three types of one-loop diagrams, with quarks

and squarks running in the loops as shown in Figure 10.1. In the MSSM, the bottom

quark loop and the sbottom quark loops can become important for large tanβ. As in

the SM, one can write down effective couplings of the tree-level MSSM Higgs bosons to

gluons using gluon fusion form factors, but now there is the possibility for pseudoscalar-

type couplings, which have a different Lorentz structure. The effective vertices to the

CP-even eigenstates h and H can be written in terms of scalar-type form-factors, Sg
h,H ,

while the effective vertex to A can be written in terms of a scalar and pseudoscalar-type

form-factor, Sg
A and P g

A respectively, as follows;

Γ̂hgµgν = Sg
h(g

µνk1.k2 − kµ
1 kµ

2 ),

Γ̂Hgµgν = Sg
H(gµνk1.k2 − kµ

1 kµ
2 ),

Γ̂Agµgν = Sg
A(gµνk1.k2 − kµ

1 kµ
2 ) + P g

A(iεµνρσǫµ
1ǫ

ν
2k

ρ
1k

σ
2 ), (10.12)

where εµνρσ is the antisymmetric Levi-Civita tensor with ε0123 = 1 and we use the

expressions for Sg
h,H,A and P g

A from Ref. [151];

Sg
h(H) =

∑

f=b,t

Gh(H)ff

Fsf(τh(H)f )

mf
−

∑

f̃l=b̃1,b̃2,t̃1,t̃2

Gh(H)f̃ f̃

F0(τh(H)f̃l
)

4m2
f̃

,

Sg
A = −

∑

f̃l=−b̃1,b̃2,t̃1,t̃2

GAf̃f̃

F0(τAf̃l
)

4m2
f̃

,

P g
A =

∑

f=b,t

GAff
Fpf(τAf )

mf

, (10.13)
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where τh0
kf ≡ m2

h0
k
/4m2

f , τAf̃l
≡ m2

h0
k
/4m2

f̃
and the functions F0, Fsf and Fpf are defined

as

Fsf(τ) ≡ (τ + (τ − 1)f(τ))/τ2,

Fpf(τ) ≡ f(τ)/τ,

F0(τ) ≡ (−τ + f(τ))/τ2, (10.14)

where

f(τ) ≡





arcsin2(
√

τ) : τ < 1

−1
4
[ln

√
τ+

√
τ−1√

τ−
√

τ−1
− iπ]2 : τ > 1



 . (10.15)

We include only third generation quarks and squarks; they are the most important due

to their large Yukawa coupling. The scalar type couplings to CP-even Higgs bosons,

Sg
h,H, come from contributions from all three diagrams in Figure 10.1. There is no

pseudoscalar-type coupling for the CP-even Higgs bosons. The pseudoscalar coupling

for the CP-odd Higgs boson, P g
A, comes from the first type of diagram containing quarks

only. In the CP-conserving MSSM, these are the only contributions, and Sg
A is zero.

When there is CP-violation in the squark sector, due to a non-zero Af or µ, the contri-

bution to the Γ̂ggA vertex is no longer pure pseudoscalar as there can be scalar sfermion

loop contributions of the type arising from the second and third diagrams in Figure 10.1.

The sfermion loops were found to have a large impact on the gluon fusion couplings in

some CP-violating scenarios [152]. Even in CP-conserving scenarios, the sfermion loops

can play a significant role for the scalar couplings of the CP-even Higgs bosons [153].

Thus we include all three types of form factors in our asymmetry calculation. We have

coded these expressions into FeynArts and FormCalc.

We construct the matrix element for gg → h, H, A → f f̄ in the full 3x3 propagator

matrix approach by considering the nine propagators, ∆ij (i, j = h, H, A), and the

corresponding tree-level vertices, Γhgµgν , ΓHgµgν , ΓAgµgν , Γhff̄ , ΓHff̄ and ΓAff̄ . In the

2 × 2 mixing case, ignoring, ∆hi and ∆ih, we obtain

|MLL|2 − |MRR|2 = −s2
√

s(s − 4m2
f )Re(GffAG∗

ffH) ×
[|Sg

H |2Im(∆HH∆∗
HA) + (|P g

A|2 − |Sg
A|2)Im(∆AA∆∗

AH)

+Im(Sg
HSg ∗

A ∆HA∆∗
AH + Sg ∗

H Sg
A∆AA∆∗

HH)] (10.16)
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where ǫ1 and ǫ2 are the gluon polarisation vectors

ǫµ
1 =

1√
2
(0,∓1,−i, 0), ǫµ

2 =
1√
2
(0,∓1, i, 0) (10.17)

where the ± indicates right and left gluon helicities respectively, and a centre of mass

frame is assumed with the gluons moving in the ±z direction respectively (see Ref. [149]).

Again note that the asymmetry vanishes in the CP-conserving limit and is only non-zero

if there are absorptive effects in the Higgs self-energies.

10.2.2 On-shell (Ẑ matrix) approximation to Higgs propagator

matrix calculation

We follow the method shown in Figure 9.2 and Equation (9.12). Recall that the on-

shell approximation with Ẑ matrices is an approximation which keeps only the momen-

tum dependence of the Breit-Wigner propagator, while any other momentum dependent

quantities are evaluated with the Higgs boson on-shell. Here there are three particles

to consider, h1, h2 and h3, each with a Breit-Wigner propagator, given by Equation

(9.11), and vertices determined by the tree-level vertices given in the previous subsec-

tion, weighted by Ẑ matrix elements as in Equation (9.10).

bb̄ → hi → χ̃0
2
χ̃0

2

For the bb̄ → hi → f f̄ process in the limit of H–A mixing, with the h terms ignored, we

obtain,

|MLL|2 − |MRR|2 =− 2
√

s(s − 4m2
f )Re(GffAG∗

ffH)
[
|∆BW

h2
|2Im(Ẑ22Ẑ

∗
23)[(4m

2
b − s)G2

Hbb|Ẑ22|2 − sG2
Abb|Ẑ23|2]

+ |∆BW
h3

|2Im(Ẑ32Ẑ
∗
33)[(4m

2
b − s)G2

Hbb|Ẑ32|2 − sG2
Abb|Ẑ33|2]

+ Im
[
∆BW

h2
(∆BW

h3
)∗(Ẑ22Ẑ

∗
33 − Ẑ23Ẑ

∗
32)[(4m

2
b − s)G2

HbbẐ22Ẑ
∗
32

− sG2
AbbẐ23Ẑ

∗
33]

]]
. (10.18)

.
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W +W − → hi → χ̃0
2
χ̃0

2

For the W+W− → hi → f f̄ process in the limit of H–A mixing, with the h terms

ignored, we obtain,

|MLL|2 − |MRR|2 = − 4
√

s(s − 4m2
f)|ǫ1.ǫ2|2G2

WWH|Re(GffAG∗
ffH)

[
|∆BW

h2
|2Im(Ẑ∗

22Ẑ23)|Ẑ22|2 + |∆BW
h3

|2Im(Ẑ∗
32Ẑ33)|Ẑ32|2

+ Im
[
∆BW

h2
(∆BW

h3
)∗(Ẑ23Ẑ

∗
32 − Ẑ22Ẑ

∗
32)Ẑ22Ẑ

∗
32

]]
. (10.19)

.

gg → hi → χ̃0
2
χ̃0

2

For the gg → hi → f f̄ process in the limit of H–A mixing, with the h terms ignored,

we obtain,

|MLL|2 − |MRR|2 = −s2
√

s(s − 4m2
f)Re(GffAG∗

ffH)
[
|∆BW

h2
|2Im(Ẑ22Ẑ

∗
23)(|Sg

HẐ22 + Sg
AẐ23|2 + |P g

AẐ23|2)

+|∆BW
h3

|2Im(Ẑ32Ẑ
∗
33)(|Sg

HẐ32 + Sg
AẐ33|2 + |P g

AẐ33|2)

+Im

(
∆BW

h2
(∆BW

h3
)∗(Ẑ23Ẑ

∗
32 − Ẑ22Ẑ

∗
33)[(S

g
HẐ22 + Sg

AẐ23)

×(Sg ∗
H Ẑ∗

32 + Sg ∗
A Ẑ∗

33) + |P g
A|2Ẑ23Ẑ

∗
33]

)]
. (10.20)

For reference in a later example we also write down the spin summed matrix element,

|MLL|2 + |MRR|2 in the limit where the fermion masses are only kept in the Yukawa
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couplings;

|MLL|2+|MRR|2 =
s3

2

[
|∆BW

h2
|2

(
|Sg

HẐ22 + Sg
AẐ23|2 + |P g

AẐ23|2
)(
|GHff Ẑ22|2 + |GAff Ẑ23|2

+ 2Re(Ẑ22Ẑ
∗
23)Im(GAffG

∗
Hff)

)
+|∆BW

h3
|2

(
|Sg

HẐ32+Sg
AẐ33|2

+ |P g
AẐ33|2

)(
|GHff Ẑ32|2+|GAff Ẑ33|2+2Re(Ẑ32Ẑ

∗
33)Im(GAffG

∗
Hff )

)

+ 2iIm

(
∆BW

h2
(∆BW

h3
)∗

[
(Sg

HẐ22+Sg
AẐ23)(S

g
HẐ∗

32+Sg
AẐ∗

33)

+ |P g
A|2Ẑ23Ẑ

∗
33

][
|GHff |2Ẑ22Ẑ

∗
32 + |GAff |2Ẑ23Ẑ

∗
33 + (Ẑ23Ẑ

∗
32

+ Ẑ22Ẑ
∗
33)Im(GAffG

∗
Hff )

])]
. (10.21)

10.2.3 Importance of interference effects

In the Ẑ matrix approach, the interference terms can have a large effect if there is

significant overlap of the two Breit-Wigner functions and significant CP-violating mixing

so that the Ẑ matrix elements are all non-zero. In order to see the importance of

interference to obtain the correct value for σ2, we consider the process bb̄ → h2, h3 →
τ+τ−. We assume degenerate masses, Mh2

∼ Mh3
, and widths, Γh2

∼ Γh3
, and cα/cβ ≈

tβ. We then use Equation (9.16) to write the Ẑ matrix elements in Equation (10.18) in

terms of a complex mixing angle, θ, to obtain

|MLL|2 − |MLL|2 ∝ t4β |∆BW
h2

|2
[(

cθsθc
∗ 2
θ + s2

θc
∗
θs

∗
θ − sθcθs

∗ 2
θ − c2

θs
∗
θc

∗
θ

)

+
(
cθsθs

∗ 2
θ − s2

θs
∗
θc

∗
θ − sθcθc

∗ 2
θ + c2

θc
∗
θs

∗
θ

)]

= 0. (10.22)

The first bracket comes from |∆BW
h2

|2 and |∆BW
h3

|2, while the second bracket is the inter-

ference term from ∆BW
h2

(∆BW
h3

)∗ and ∆BW
h3

(∆BW
h2

)∗. One can see that they exactly cancel

in this limit. If we had not included the interference term in the second bracket we would

have wrongly predicted a non-zero asymmetry between the squared matrix elements for

the left and right-handed tau polarisations. Of course, this cancellation only occurs un-

der the exact conditions given above. We shall see in the next section that asymmetries

are possible with masses that are nearly but not exactly degenerate. The point made

here is that interference can have a very large effect on asymmetries and must be taken

into account for accurate predictions.
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A similar cancellation occurs for gg → h2, h3 → f f̄ in this limit. Assuming degenerate

masses and widths, Mh2
∼ Mh3

and Γh2
∼ Γh3

and ignoring Sg
A, we use Equation (9.16)

to write the Ẑ matrix elements in Equation (10.20) in terms of a complex mixing angle,

θ, to obtain

|MLL|2 − |MRR|2 ∝ |∆BW
h2

|2Im(cθs
∗
θ)

[
(|cθ|2 − |sθ|2)(|Sg

H|2 − |P g
A|2)

+(|sθ|2 + |cθ|2)(|Sg
H|2 − |P g

A|2)
]

= 2|∆BW
h2

|2Im(cθs
∗
θ|cθ|2)

[
|Sg

H|2 − |P g
A|2

]
(10.23)

where the term in the second line is the interference term from ∆BW
h2

(∆BW
h3

)∗. The scalar

coupling, Sg
H , is often of a similar size to the pseudoscalar coupling, P g

A. Hence, in

the limit of exactly degenerate masses and widths, we expect the asymmetry to be

suppressed. On the other hand, resonant enhancement of the CP-violating mixing self-

energies, and hence ẐAH ∼ cθ, also occurs in the limit of degenerate masses. So there

are two effects in play which may enhance or suppress the asymmetry in this case.

10.3 Numerical results for asymmetry at the parton

level

We report on numerical results for Axx′(
√

s) in the modified SPS1a scenario with CP-

violating phases. In Figures 10.2(a) and 10.2(b) we show σ1(
√

s) and σ2(
√

s) respec-

tively for bb̄ → hi → χ̃0
2χ̃

0
2 in the modified SPS1a scenario with At = 510 e−i7π/10 GeV.

In the previous chapter we showed examples where interference could have a large effect

on the value of σ1. As seen previously, the full 3x3 propagator matrix result (black

curve) and the on-shell approximation using Breit-Wigner propagators and Ẑ matrices

(green curve) agree very well (the latter is not visible in the plot because it is directly

underneath the black curve). As discussed in the previous chapter, this is expected

because the Breit-Wigner propagator captures the leading momentum dependence of

the diagonal propagator matrix elements, while the remaining non-resonant momentum

dependence of the self-energies is not as important. In addition, the on-shell approxi-

mation in the 2 × 2 case with no interference term (blue curve) also agrees quite well,

only slightly overestimating the peak value of σ1 by a few percent. Based on this re-

sult, one might be tempted to use the narrow width approximation to calculate the

asymmetry, Abb̄. However, as the blue curve in Figure 10.2(b) for σ2 shows, leaving out
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Figure 10.2: Partonic cross sections for bb → hi → χ̃0
2χ̃

0
2 in the modified SPS1a scenario with

φAt
= −7π/10; (a) σ1 as a function of

√
s; (b) σ2 as a function of

√
s. The black curve

is obtained from the full 3x3 propagator matrix calculation, while the green and blue
curves are obtained using the on-shell approximation with Ẑ factors and Breit-Wigner
propagators. The green curve contains 3x3 mixing with interference, while the blue
curve contains only 2 × 2 mixing and no interference. Note that the green curve is
directly underneath the black curve.

the important interference terms overestimates the size of σ2 in the full 3x3 propagator

matrix method (black curve) by around 400%. The on-shell approximation including

interference between the Breit-Wigner propagators (green) does give a good estimation

of σ2 if interference is included (the green curve is directly underneath the black curve).

It is interesting to note that, despite the large values for A2 ∼ 40% and A3 ∼ 9% found

for the individual decays h2 → χ̃0
2χ̃

0
2 in Figure 8.8(b), the asymmetry for the full pro-

duction and decay process is small. σ1 has a peak value of nearly 500 pb, while σ2 has

a peak value of only ∼ 10 pb, leading to an asymmetry of only around 2%. The same

observation was also made in Ref. [132] for the process bb̄ → h1, h2, h3 → τ+τ−. It turns

out to be particular to asymmetries with down-type fermions in the initial state, for

scenarios where the main contribution to the absorptive parts of the Higgs self-energies

also comes from down-type SM fermions. We will explain this in more detail in the next

section.

In Figures 10.3(a) and 10.3(b) we show σ1(
√

s) and σ2(
√

s) respectively for W+W− →
hi → χ̃0

2χ̃
0
2 in the SPS1a scenario again modified so that At = 510 e−i7π/10 GeV. We see

that again, for this process, the full 3x3 propagator matrix method (black) and on-shell



Asymmetry in the full production and decay process 166

full 3x3
BW:|h2|2 + |h3|2

BW:|h2 + h3|2
BW:|h1 + h2 + h3|2σ1(pb)

√
s(GeV)

410405400395390385380

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

(a)

full 3x3
BW:|h2|2 + |h3|2

BW:|h2 + h3|2
BW:|h1 + h2 + h3|2σ2(pb)

√
s(GeV)

410405400395390385380

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

−0.02

(b)

Figure 10.3: Partonic cross sections for WW → hi → χ̃0
2χ̃

0
2 in the SPS1a scenario with φAt

=
−7π/10; (a) σ1 as a function of

√
s; (b) σ2 as a function of

√
s. The black curve is

obtained from the full 3x3 propagator matrix calculation, while the green, red and blue
curves are obtained using the on-shell approximation with Ẑ factors and Breit-Wigner
propagators. The green curve contains 3x3 mixing with interference, while the red
(blue) curve contains 2 × 2 mixing with (without) interference. Note that the green
curve is directly underneath the black curve.

apporximation with Breit-Wigner propagators and Ẑ factors with 3x3 mixing (green)

give results in almost perfect agreement for σ1 (the green curve is directly underneath

the black curve). The latter approach using only 2×2 mixing (red curve) does not do so

well, resulting in a different line-shape. For WW fusion, the h1 continuum production

continues to have an effect at larger
√

s ∼ Mh2,3 , since it has a much larger coupling

to gauge bosons than the heavy Higgs bosons. This distorts the combined line-shape

of the h2 and h3 resonances. The on-shell Breit-Wigner approximation in the 2 × 2

case underestimates the cross section for
√

s <∼ Mh2,3 and for
√

s >∼ 400 GeV where the

continuum h1 production dominates. The 2×2 method also overestimates the total cross

section for Mh2,3
<∼

√
s <∼ 400 GeV, where h2 and h3 exhibit destructive interference with

the h1. Thus, for the WW initial state, it is important to include 3x3 mixing to get the

correct line-shape. The effect of not including the interference between h2 and h3 in the

2 × 2 case (blue curve) is to overestimate the peak value of σ1 compared with the 2 × 2

calculation with interference (red curve). For the asymmetric cross section, σ2, shown

in Figure 10.3(b), the line-shape effects from the h1 interference are less prominent.

The full 3x3 propagator matrix method and on-shell Breit-Wigner approximation in the
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Figure 10.4: Partonic cross sections for gg → hi → χ̃0
2χ̃

0
2 in the modified SPS1a scenario with

φAt
= −7π/10; (a) σ1 as a function of

√
ŝ; (b) σ2 as a function of

√
ŝ. The black (cyan)

curve is obtained from the full 3x3 (2 × 2) propagator matrix calculation, while the
green, red and blue curves are obtained using the on-shell approximation with Ẑ factors
and Breit-Wigner propagators. The green curve contains 3x3 mixing with interference,
while the red (blue) curve contains 2× 2 mixing with (without) interference. The pink
curve, denoted “no sf” indicates that the sfermion couplings are set to zero in the gluon
fusion form factors. Note that curves not visible in the plot are directly underneath
other curves.

3x3 case give results in perfect agreement (the green curve is directly underneath the

black curve). The peak value of σ2 is around 0.12 pb, while the peak value of σ1 is

around 0.27 pb. The resulting asymmetry is ∼ 45%, a much more promising result than

that seen for the bb̄ initial state. The results obtained using the on-shell Breit-Wigner

approximation in the 2 × 2 case (red) slightly underestimate the peak value of σ2, and

result in a slightly different line-shape compared to the full 3x3 result, but this is not

nearly as noticeable as for σ1. The effect of not including the interference between h2

and h3 (blue) is to underestimate σ2, and hence the asymmetry, by nearly a factor of 2.

The interference term can therefore enhance, as well as suppress, the asymmetry.

In Figures 10.4(a) and 10.4(b) we show σ1(
√

s) and σ2(
√

s) for gg → hi → χ̃0
2χ̃

0
2 in

the SPS1a scenario again modified so that At = 510 e−i7π/10 GeV. The black and green

curves, which use the full 3x3 propagator matrix method and the 3x3 on-shell approxi-

mation with Breit-Wigner propagators and Ẑ matrices respectively to calculate σ1, are

indistinguishable, with a peak value of σ1 ∼ 0.6 pb. Similarly, the cyan and red curves,

which use the 2 × 2 propagator matrix method and the 2 × 2 on-shell Breit-Wigner
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Figure 10.5: Asymmetry, Axx′ , for xx′ = bb̄, WW and gg (black, green and blue respectively) with√
s = 393 GeV; (a) as a function of φAt

in the modified SPS1a scenario (with φµ = 0);
(b) as a function of φµ in the modified SPS1a scenario (with φAt

= π as in the usual
SPS1a scenario).

approximation with interference respectively, are in good numerical agreement with the

full 3x3 results. On the other hand, the 2×2 on-shell Breit-Wigner approximation with-

out the interference between h2 and h3 (dark blue) underestimates the full result by a

few percent. We also show in pink the 3x3 on-shell Breit-Wigner approximation, where

we only include top and bottom quark contributions in the gluon fusion form factors.

This underestimates the full result by even more than the BW without interference,

emphasising the importance of including the squark contributions to the gluon fusion

form factors. For the asymmetric cross section, σ2, shown in Figure 10.4(b), again the

black and green curves for the full 3x3 propagator matrix result and the 3x3 on-shell

Breit-Wigner approximation respectively, are indistinguishable, with a peak value of

∼ 0.06 pb, resulting in an asymmetry of ∼ 9%. The 2 × 2 propagator matrix result

(light blue) and the 2× 2 on-shell Breit-Wigner approximation (red) are also very close

to this value. The 2× 2 on-shell Breit-Wigner approximation with no interference (dark

blue) is well below these curves, with a peak value of ∼ 0.045 pb, underestimating the

asymmetry by ∼ 20%. Finally, in pink we also show the 3x3 on-shell Breit-Wigner

approximation, where we only include top and bottom quark contributions in the gluon

fusion form factors, omitting the sfermion contributions. This results in the wrong sign

and magnitude for σ2, highlighting the importance of including the additional scalar

contributions to the gluon fusion form factors from squarks in this scenario.
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In Figure 10.5(a) we show the asymmetry, Axx′, for xx′ = bb̄, WW and gg (black, green

and blue respectively), as a function of φAt in the SPS1a scenario, with
√

s = 393 GeV.

As already discussed, the asymmetry for the bb̄ fusion process is much less than for

the other processes. We see that WW fusion has the largest asymmetry of the three

processes, with a peak value of more than 50% for φAt ∼ ±π/4. This is much larger than

the peak values of the asymmetry for gg of around 9%. We can explain the asymmetry

values by looking at the values of A2 and A3 in Figure 8.8(b). A3 exhibits a much larger

peak asymmetry of ∼ 38%, compared to A2, which has a peak value of ∼ 9%. The Ẑ

matrix elements shown in Figure 8.6(c) for this scenario indicate that h2 is mostly A and

h3 is mostly H . (Note also that the peaks in the asymmetry correspond roughly to the

peaks for the Ẑ matrix elements in Figure 8.6(c).) Since gauge bosons do not couple to A,

the effect of the larger asymmetry, A3, will dominate for WW . For gg on the other hand,

the couplings to H and A are similar so that both contribute significantly. However, as

shown in Figure 8.6(a), the decay width (and, correspondingly, the branching ratio) for

h2 → χ̃0
2χ̃

0
2 is about 7 times larger that that of h3 → χ̃0

2χ̃
0
2 for the range of φAt shown.

This explains why the Agg asymmetry is much closer to A2 ∼ 9% than the larger A3.

This suppression of Agg relative to AWW is not, however, universal. In Figure 10.5(b) we

show the asymmetry, Axx′, for xx′ = bb̄, WW and gg (black, green and blue respectively),

as a function of φµ in the SPS1a scenario, again with
√

s = 393 GeV. Here we find that

Agg has peak values of ∼ ±18%, while AWW has peak values of ∼ ±17%. Once again,

we find that Abb̄ is much less than Agg and AWW . In the next section we explore the

reason behind this observation.

10.4 A closer look at the asymmetry using the

propagator matrix approach

In this section we take a closer look at the expressions derived for |MLL|2 − |MRR|2
in Section 10.2.1 using the 2 × 2 propagator matrix approach in order to show why

the asymmetry between the production of left and right fermions in Higgs decays is

suppressed for bb̄ in the initial state, but not for WW and gg.



Asymmetry in the full production and decay process 170

For bb̄ → H, A → f f̄ , in the limit of massless bottom quarks (retaining their mass in

the Yukawa couplings), we have,

|MLL|2 − |MRR|2 = −2s2Re(GffAG∗
ffH)[G2

bbAIm(∆AA∆∗
AH) − G2

bbHIm(∆∗
HH∆∗

HA)]

(10.24)

In the 2×2 mixing case, the propagators ∆ii and ∆ij are given by Equations (3.79) and

(3.81) respectively. Using these expressions we obtain

Im(∆HH∆∗
HA) =

−Im[(p2 − m2
A)Σ̂∗

HA + Σ̂AAΣ̂∗
HA]

|(p2 − m2
H + Σ̂HH)(p2 − m2

A + Σ̂AA) − Σ̂2
HA|2

(10.25)

and

Im(∆AA∆∗
AH) =

−Im[(p2 − m2
H)Σ̂∗

HA + Σ̂HHΣ̂∗
HA]

|(p2 − m2
H + Σ̂HH)(p2 − m2

A + Σ̂AA) − Σ̂2
HA|2

(10.26)

For the scenarios studied, Im(Σ̂HA) ≪ Im(Σ̂HH , Σ̂AA), so we will assume that the only

significant contribution to the imaginary part comes from the latter. Then

|MLL|2 − |MRR|2 ∝ G2
bbH(Im Σ̂AA)(Re Σ̂HA) − G2

bbA(Im Σ̂HH)(Re Σ̂HA). (10.27)

This so far confirms what we have already claimed; in order to have an asymmetry, there

must be an absorptive part, i.e. non-zero Im Σ̂HH and/or Im Σ̂AA, and there must be

CP-violation, i.e non-zero Re Σ̂HA. The reason that, even with these conditions satisfied,

the asymmetry for bb̄ is suppressed, is that the main contribution to the imaginary part

of the Higgs self-energies comes from the b-quark loop. In each case this contribution is

given by

Im(Σ̂b
AA) = − 3

π2
G2

bbAIm[p2 B1(p
2, m2

b , m
2
b)] ≡ G2

bbAY,

Im(Σ̂b
HH) = − 3

π2
G2

bbHIm[p2 B1(p
2, m2

b , m
2
b) + 2m2

bB0(p
2, m2

b , m
2
b)] ≈ G2

bbHY

(10.28)

where the m2
bIm[B0(p

2, m2
b , m

2
b)] term is small. Thus, the imaginary parts of the H and

A self-energies can each be written in terms of the same expression, Y , weighted by the

coupling factors, G2
bbH and G2

bbA respectively. This leads to

|MLL|2 − |MRR|2 ∝ −G2
bbH(G2

bbAY ) + G2
bbA(G2

bbHY ) = 0. (10.29)
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Thus, the main contribution to the asymmetry vanishes. Of course there are other,

smaller contributions to the imaginary parts of ∆HH∆∗
HA and ∆AA∆∗

AH which do not

cancel, so the asymmetry is not exactly zero. However, the asymmetry is significantly

suppressed due to the fact that the fermions in the initial state have the same couplings

as the b-quarks contributing to the absorptive parts of the Higgs self-energies. The

authors of Ref. [132] made a similar observation for the tau polarisation asymmetry in

bb̄ → h, H, A → ττ and gave an explanation using the optical theorem. We also note

that the same cancellation will occur if the initial state fermions are muons or any other

down-type fermions, since m2
bG

2
µµH = m2

µG
2
bbH and m2

bG
2
µµA = m2

µG
2
bbA.

In their study of asymmetries in the polarisation of neutralinos in the process µ+µ− →
H, A → χ̃0

2χ̃
0
2 at a muon collider, the authors of Ref. [144] assume polarised muon beams,

which enhances the effect of the asymmetry. At the LHC we do not have the option of

polarised beams, so we will need to consider processes which do not involve down-type

fermions in the initial state.1

Applying the same argument as above for WW → H, A → f f̄ , we obtain,

|MLL|2 − |MRR|2 ≈
4
√

s(s − 4m2
f )|ǫ1.ǫ2|2G2

WWHRe(GffAG∗
ffH)[G2

bbAY Re(ΣHA)]

|(p2 − m2
H + Σ̂HH)(p2 − m2

A + Σ̂AA) − Σ̂2
HA|2

.

(10.30)

Here there can be no cancellation; there is only one term since gauge bosons do not couple

to the CP-odd Higgs boson and in any case there is no down-type fermion-fermion-Higgs

coupling in the initial state. For gg → H, A → f f̄ , we obtain,

|MLL|2 − |MRR|2 ≈ −s2
√

s(s − 4m2
f)Re(GffAG∗

ffH) Y Re(ΣHA) ×
(|P g

A|2 − |Sg
A|2)G2

bbH + |Sg
H|2G2

bbA

|(p2 − m2
H + Σ̂HH)(p2 − m2

A + Σ̂AA) − Σ̂2
HA|2

(10.31)

Again there is no cancellation. Even in the case where the gluon fusion form factors are

dominated by a bottom quark loop, so that the Higgs is effectively coupling to bb̄, with

1Note, however, that, while the asymmetry between left and right fermion polarisations is proportional
to |OL|2 − |OR|2, where OL and OR are defined in Equation (10.4), triple product asymmetries
in the momenta of the decay products arise from non-zero Im(ORO∗

L). We have checked that
Im(ORO∗

L) for xx′ = bb̄ does not suffer from the same cancellation as |OL|2 − |OR|2. Thus, triple
product asymmetries may offer a method complementary to the neutralino polarisation asymmetries,
especially for large tanβ, where bb̄ fusion is the dominant production process for heavy Higgs bosons
[150], and neutralino decays may be one of the only decay channels in which they are visible [35].
This is, however, beyond the scope of this work.
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|P g
A|2 ∝ G2

Abb, |Sg
H |2 ∝ G2

Hbb and |Sg
A|2 ≈ 0, there is no cancellation due to the plus sign

between the two terms.

Note that in both Equations 10.30 and 10.31, the asymmetry is proportional to the

absorptive loop integral, Y , and the CP-violating self-energy, Re(ΣHA). Also note that

the denominator becomes small when the masses are nearly degenerate; i.e. for p2 ∼
M2

h2
∼ M2

h3
∼ m2

H ∼ m2
A, causing the resonant enhancement of the asymmetry.

10.5 Factorisation of asymmetry into production

and decay including interference effects

10.5.1 Asymmetry factor method

In the previous sections we have shown that studying the asymmetry between the

production of left- and right-handed neutralinos in heavy Higgs decays is a promis-

ing method of determining the existence of CP-violation in the Higgs sector. We have

shown that, in order to predict the values of these asymmetries for a particular set of

parameters, interference effects between the two heavy Higgs bosons must be taken into

account. We have also shown that the on-shell approximation using Breit-Wigner prop-

agators and Ẑ factors gives good numerical agreement with the full Higgs propagator

matrix calculation. The only reason that the narrow width approximation breaks down

is that the mass splitting between the two heavy Higgs bosons is of the order of their

widths, Mi−Mj
<∼ Γi, Γj. All other assumptions of the narrow width approximation are

satisfied. Thus our goal in the following is to find a method for calculating the asymme-

try using a generalised narrow width approximation, similar to the method developed

for calculating the full cross section in Section 9.5.1.

To agree with Section 9.5.1 and Appendix C, we consider the general process, ab → cef ,

shown in Figure C.1, this time with intermediate h2 and h3. In order to compute the

asymmetry, we are interested in σ2, which is obtained from the difference between the

squared matrix elements for left-handed e and f and for right-handed e and f in the
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final state (the polarisation states of c (a and b) are summed (averaged) over);

|Mab→ceLfL |2−|Mab→ceRfR|2 =|Mab→ch2
|2|∆BW

h2
|2(|Mh2→eLfL|2−|Mh2→eRfR |2)

+ |Mab→ch3
|2|∆BW

h3
|2(|Mh3→eLfL|2−|Mh3→eRfR |2)

+ 2 Re
[
Mab→ch2

M∗
ab→ch3

∆BW
h2

(∆BW
h3

)∗×
(Mh2→eLfLM∗

h3→eLfL−Mh2→eRfRM∗
h3→eRfR)

]
. (10.32)

Inserting this expression into the integral over phase space, as in Equation (9.19), and

making the same assumption that in the limit of narrow width we can evaluate all

matrix elements on-shell outside the dq2 integral, we can write down the following on-

shell approximation for σ2;

σ2(ab → cef) ≈σab→ch2

Γh2→eLfL − Γh2→eRfR

Γh2

+ σab→ch3

Γh3→eLfL − Γh3→eRfR

Γh3

+ 2 Ω Re
[
Mab→ch2

M∗
ab→ch3

(Mh2→eLfLM∗
h3→eLfL−Mh2→eRfRM∗

h3→eRfR)

×
∫

dq2∆BW
h2

(q2)(∆BW
h3

(q2))∗
]

(10.33)

where the integral in the last line is the same universal integral over interfering Breit-

Wigner propagators that appears in Equation (9.20), and Ω is the phase space factor

also in this equation. We can conveniently express the on-shell matrix elements for the

interference term at leading order in terms of the on-shell matrix elements for the h2

and h3 production and decay processes respectively;

Mab→ch2
M∗

ab→ch3
(Mh2→eLfLM∗

h3→eLfL −Mh2→eRfRM∗
h3→eRfR)

≈ ya |Mab→cha|2
(
|Mha→eLfL|2 − |Mha→eRfR|2

)
(10.34)

where ya (a = 2 or 3) is a numerical scaling factor and Mh2
≈ Mh3

. For example, for

H–A mixing in gg → f f̄ , we use Equation (10.20) to obtain the scaling factor,

ya = −i(Ẑ23Ẑ
∗
32 − Ẑ22Ẑ

∗
33)[(S

g
HẐ22 + Sg

AẐ23)(S
g ∗
H Ẑ∗

32 + Sg ∗
A Ẑ∗

33) + |P g
A|2Ẑ23Ẑ

∗
33]

2Im(Ẑa2Ẑ∗
a3)(|Sg

HẐa2 + Sg
AẐa3|2 + |P g

AẐa3|2)
(10.35)

This simple scaling factor allows us to write the spin-dependent cross section as

σ2(ab → cef) ≈ σab→ch2
BRh2→efA2(1 + rA

2 ) + σab→ch3
BRh3→efA3(1 + rA

3 ) (10.36)
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where

rA
a =

MhaΓha

π

σab→chaBRha→ef

σab→ch2
BRh2→ef + σab→ch3

BRh3→ef

2 Re
[
ya

∫ q2
max

q2
min

dq2∆BW
h2

(q2)(∆BW
h3

(q2))∗
]

(10.37)

are the asymmetry interference weight factors and Aa ≡ (ΓLL − ΓRR)/(ΓLL + ΓRR)

is the decay asymmetry defined in Equation (8.1), with ΓLL ≡ Γ(ha → eLfL) and

ΓRR ≡ Γ(ha → eRfR). Equation (10.36) is a convenient way of converting the decay

width asymmetries, Aa, into an estimate of the asymmetry for the full production and de-

cay process, using only cross sections, branching ratios, and the asymmetry interference

weight factors, rA
a . One could, in particular, use cross sections at the hadron level, incor-

porating higher order corrections. One could also incorporate higher-order corrections

into the branching ratios and Aa, as studied in Chapter 8. This could be important

when CP-violating and absorptive effects in the loop-corrected Higgs-fermion-fermion

vertex give a large enhancement to the asymmetry. In scenarios where the dominant

contribution to the asymmetries comes from Higgs propagator corrections contained in

the Ẑ matrix elements, it can be convenient to make a further approximation relating

the on-shell matrix elements in terms of a scaling factor wa;

|Mab→cha|2(|Mha→eLfL |2 − |Mha→eRfR |2) ≈wa |Mab→cha|2|Mha→ef |2 (10.38)

where, like ya, wa consists of couplings and Ẑ matrix elements. For example, for H–A

mixing in gg → f f̄ in the limit where the fermion masses are only kept in the couplings,

we can compare Equations (10.20) and (10.21) to obtain the scaling factor

wa≈
−2Re(GffAG∗

ffH)Im(Ẑa2Ẑ
∗
a3)(

|GHff Ẑa2|2+|GAff Ẑa3|2+2Re(Ẑa2Ẑ∗
a3)Im(GAffG∗

Hff)
) (10.39)

Using such a scaling factor, we can make the approximation

σ2(ab → cef) ≈ σab→ch2
BRh2→efw2(1 + rA

2 ) + σab→ch3
BRh3→efw3(1 + rA

3 ). (10.40)

10.5.2 Numerical testing of asymmetry factor method

In Figure 10.6(a), we show the hadronic level asymmetry for gluon fusion, Agg = σ2(pp →
gg → h2, h3 → χ̃0

2χ̃
0
2)/σ1(pp → gg → h2, h3 → χ̃0

2χ̃
0
2), in the SPS1a scenario modified
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to have At = 510 e−i7π/10 GeV. For simplicity we do not include higher order vertex

corrections to the neutralino-neutralino Higgs vertex. We calculated the squared matrix

element for the partonic process using the on-shell approximation with Ẑ matrix elements

and Breit-Wigner propagators for case of the 2 × 2 H–A mixing (for simplicity we

ignore the contributions from h and other non-Higgs intermediate particles). We then

use the built-in option in FormCalc to convert our squared matrix calculation into the

integrated LHC cross sections, σ1 and σ2, using the default pdf set, CTEQ5L [125].

We use FeynHiggs 2.6.5 to obtain the Higgs masses, Ẑ matrix elements and widths,

the latter from the imaginary part of the complex pole. The black points include the

interference between the h2 and h3 propagators. We see that the asymmetry becomes

more resonantly enhanced as tanβ increases, with a value of around 2% at tanβ =

5 increasing to around 23% at tanβ = 20. For larger tanβ values the asymmetry

decreases. The blue points are obtained by summing the separate contributions σ1,2,

σi,ha ≡ σi(pp → gg → ha only → χ̃0
2χ̃

0
2) (i = 1, 2, a = 2, 3), i.e. without the interference

between h2 and h3. This results in an underestimation of the asymmetry by several

percent for tan β <∼ 25. Above this value, the asymmetry obtained in this way continues

to increase with tanβ, resulting in an overestimation compared to the full result. For

the green curve, we compute σ1 from the sum σ1,h2
(1 + R2) + σ1,h3

(1 + R3), where the

interference weight factors, R2 and R3, are obtained from Equation (9.24), while for σ2

we compute the sum σ2,h2
w2(1 + rA

2 )+σ2,h3
w3(1 + rA

3 ) using the asymmetry interference

weight factors rA
2 and rA

3 from Equation (10.37) and w2,3 from Equation (10.38). This

approximation is in good numerical agreement with the full squared matrix element

result, predicting the asymmetry to within a couple of percent for the range of tanβ

shown, including the decrease for large tanβ. These results confirm that we can use

Equation 10.36 to construct the asymmetry from the h2 and h3 asymmetries.

In order to help explain the general trends as tanβ increases, in Figure 10.6(b) we show

the mass differences, widths and Ẑ matrices as a function of tanβ for the modified

SPS1a scenario. We see an enhancement of Re(Ẑ33) = Re(ẐHA) as tan β increases. This

causes a resonant enhancement of the asymmetry. For larger tan β values, however, we

showed that the asymmetry decreases, despite the fact that Figure 10.6(b) shows the

masses and widths becoming more degenerate and Re(Ẑ33) becoming large. This is due

to cancellations between the interference term and the h2 and h3 terms for degenerate

masses, widths and couplings, as discussed in Section 10.2.3 (see in particular Equation

(10.23)). If one does not include interference effects then the asymmetry will continue

to increase as Re(Ẑ33) increases with tanβ.
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Figure 10.6: (a) Agg = σ2(pp → gg → h2, h3 → χ̃0
2χ̃

0
2)/σ1(pp → gg → h2, h3 → χ̃0

2χ̃
0
2), in the

modified SPS1a scenario with At = 510e−i7π/10 GeV, computed using several different
methods with Breit-Wigner propagators and Z matrices; in black is the 2 × 2 result
with interference, in blue is the 2 × 2 result without interference, in green is result
using the generalised narrow width approximation, i.e. σ1 is calculated from σ1,h2(1 +
R2) + σ1,h3

(1 + R3) and σ2 is calculated from σ2,h2
w2(1 + rA

2 ) + σ2,h3
w3(1 + rA

3 ) where
σi,h2,3

are the cross sections for h2 only and h3 only, respectively. (b) The difference
between the masses (black) and widths (green) as a function of tanβ in the SPS1a
with At = 510e−i7π/10 GeV with fixed MH± . Also shown are the absolute widths from
the imaginary part of the mass solution Γh2

(blue) and Γh3
(red). In pink is shown

ReẐ33 ≈ ReẐ22.

10.6 Asymmetries at the LHC

We now use the on-shell generalised narrow width approximation of Equations (9.23)

and (10.40) to compute the total asymmetry in terms of LHC cross sections,

A =
σ(pp → h2, h3 → χ̃0 L

2 χ̃0 L
2 ) − σ(pp → h2, h3 → χ̃0 R

2 χ̃0 R
2 )

σ(pp → h2, h3 → χ̃0 L
2 χ̃0 L

2 ) + σ(pp → h2, h3 → χ̃0 R
2 χ̃0 R

2 )
(10.41)

in the MH±–tan β plane for the SPS1a scenario with At = 510e−i13π/20 GeV. We use the

cross sections, masses, total widths and branching ratios from FeynHiggs 2.7.12 and

the interference weight factors and asymmetry interference weight factors computed from

Equations (9.24) and (10.37) respectively. We include both the gg fusion and bb̄ fusion

processes, which are the main production methods for the Higgs masses considered.

2This recently released version of FeynHiggs contains improvements to the gluon fusion production
cross section.
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Figure 10.7: LHC cross sections in fb from FeynHiggs 2.7.1 for the SPS1a scenario with At =
510e−i13π/20 GeV for (a) σ(pp → bb̄ → h2X); (b) σ(pp → gg → h2X).

Figure 10.7(a) shows the LHC cross section, σ(pp → bb̄ → h2X), in the MH±–tanβ

plane for the SPS1a scenario with At = 510e−i13π/20 GeV, obtained as output from

FeynHiggs 2.7.1. Figure 10.7(b) shows the corresponding gluon fusion cross section,

σ(pp → gg → h2X). We see that bb̄ fusion has the largest cross section for large tanβ,

while gluon fusion process can dominate for tanβ <∼ 8.

We showed in Section 10.4 that bb̄ fusion does not exhibit a large asymmetry between the

production of neutralinos with left- and right-handed polarisation, due to a cancellation

between the couplings to down-type fermions in the initial state and in the imaginary

parts of Higgs self-energies. Gluon fusion is much more promising in this respect. It

would therefore seem that we have the most chance of seeing this asymmetry at low tanβ.

At large tanβ, the signal will be washed out by events with bb̄ in the initial state, which

are experimentally indistinguishable from gg, and have a much smaller asymmetry. For

these low tanβ values it will be difficult to detect such heavy Higgs bosons using their

decays into SM particles. According to the study in Ref. [35], however, there may be

a significant discovery potential for heavy Higgs bosons from utilising their decay into

neutralinos, ha → χ̃0
i χ̃

0
j → 4lX. For the 4L1 scenario, given in Table 2.3 and studied in

Chapter 8, the authors claimed a 5σ discovery potential for tanβ ≥ 5, while for the other

parameter point analysed, where the decays into heavier neutralinos are open and can

be utilised for the four lepton signal, they claim that the discovery potential extends to

values of tan β below 5. In scenarios with low tanβ, there will also be less stau mixing,

so that more neutralinos will decay via on-shell selectron and smuon decay, to produce
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Figure 10.8: Asymmetry, A = (σ(pp → h2, h3 → χ̃0 L
2 χ̃0 L

2 ) − σ(pp → h2, h3 → χ̃0 R
2 χ̃0 R

2 ))/(σ(pp →
h2, h3 → χ̃0 L

2 χ̃0 L
2 ) + σ(pp → h2, h3 → χ̃0 R

2 χ̃0 R
2 )) as a percentage in the MH±–tanβ

plane for the SPS1a scenario with At = 510e−i13π/20GeV; (a) with only the gluon
fusion production process included; (b) with both gluon fusion and bb̄ fusion included.

a clean lepton signature. It may be that we can utilise decays of Higgs bosons into

the heavier neutralinos for the asymmetry signal. Low tanβ, however, does mean less

resonant enhancement of the asymmetry, since the mass splitting of the Higgs bosons

will be larger. The interplay between these effects should be fully considered in further

studies.

In Figure 10.8(a), we show the asymmetry as a percentage in the MH±–tanβ plane for the

SPS1a scenario with At = 510e−i13π/20 GeV when only the gg fusion production process

is included. We see it can be particularly large for large tanβ >∼ 8, and also in the region

of small tanβ and MH±
>∼ 750 GeV. For much of the MH±–tanβ plane, the asymmetry

is sizeable, with values above 40%. However, this is not including the bb̄ fusion process,

which will be experimentally indistinguishable from the gluon fusion process. We include

both processes in Figure 10.8(b). We see that the region with large tanβ no longer has

a large asymmetry, since the bb̄ fusion process has a much higher cross section, but

only a suppressed asymmetry. For these parts of the MH±–tanβ plane, where the bb̄

fusion process dominates, it may be interesting to study other CP-asymmetries, such

as triple product asymmetries in the momenta of the decay products, which appear to

be more promising for the bb̄ fusion process. The region with low tanβ <∼ 8 and large

MH±
>∼ 500 GeV looks the most promising for measuring the asymmetry between the

production of left- and right-handed neutralinos. In this region, the asymmetry can be

10−20%. Such asymmetries are certainly worth further investigation. A full assessment
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of the capability of the LHC to measure such an asymmetry will require a realistic

detector simulation, which is beyond the scope of this work.

Our study indicates that there is certainly scope for utilising the decays of Higgs bosons

into neutralinos, not only for Higgs discovery at the LHC, but also for probing CP-

violation in the MSSM. The methods developed in this chapter can be used to calculate

the asymmetry in various approximations that include important interference effects,

and they will also have applications in studies of other CP-asymmetries.



Chapter 11

Conclusion

We are entering an exciting era for particle physics. The LHC is expected to finally shed

light on the mechanism of electroweak symmetry breaking, for which many popular

models predict the existence of one or more Higgs boson(s) within the discovery reach of

the LHC. There are also compelling motivations for discovering supersymmetric particles

at the TeV energy scale explored by the LHC. Supersymmetry may help to explain

the Hierarchy Problem, dark matter, the unification of the fundamental forces and, in

supersymmetric models with CP-violation, the baryon asymmetry of the Universe.

In this thesis we have investigated the effects of higher order corrections and CP-violation

in the Higgs and neutralino sectors of the MSSM. We have focused in particular on

cases where the searches for Higgs bosons and supersymmetry can go hand-in-hand.

In particular, the decays of neutralinos into Higgs bosons may offer good prospects for

detecting a very light Higgs boson in the CPX scenario, where standard search channels

may fail. Conversely, studies of the polarisation of neutralinos produced in Higgs decays

may offer good prospects for determining the existence of CP-violation in the MSSM.

Complete one-loop results were obtained for the processes χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j

in the MSSM with complex parameters. The renormalisation scheme used for the Higgs

sector was described in some detail, paying particular attention to the incorporation of

important Higgs propagator corrections. In this scheme, finite wavefunction normali-

sation factors (Ẑ matrix elements) are used to ensure the correct on-shell properties of

Higgs bosons appearing as external particles in a process. For a complete treatment of

Higgs bosons appearing in internal parts of diagrams, the full 3 × 3 Higgs propagator

matrix should be used to include all CP-violating and momentum dependent self-energy

contributions.

180
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An on-shell renormalisation scheme was developed for the first time in this thesis for

the chargino–neutralino sector of the MSSM with CP-violating parameters. The field

renormalisation prescription takes into account the imaginary parts arising from complex

parameters and absorptive parts of loop integrals. Unlike in CP-conserving theories,

the latter can enter the squared matrix element at the one-loop level in the complex

MSSM and can have a large impact on decay widths and cross sections of charginos and

polarised neutralinos. In order to ensure the correct on-shell conditions, we developed a

scheme in which the renormalisation constants introduced for the outgoing fermions and

incoming antifermions, δZ̄ij , are different to those introduced for the incoming fermions

and outgoing antifermions, δZij. The hermiticity relation, δZ̄ij = δZ†
ij, can be restored

in the CP-conserving case where absorptive parts of loop integrals do not contribute to

physical quantities at the one-loop level.

For the renormalisation of the parameters of the chargino–neutralino sector, |M1|, |M2|
and |µ|, we compared three different on-shell schemes, where the masses of either three

neutralinos, two neutralinos and one chargino, or two charginos and one neutralino were

fixed on-shell. From these options, no one single scheme was found to be suitable for

the whole MSSM parameter space, with the most appropriate choice depending on the

gauge parameter hierarchy of the scenario. For most of the scenarios studied in this

thesis, the scheme with the masses of χ̃0
1, χ̃0

2 and χ̃±
2 on-shell was found to be the most

appropriate. We found that the phases entering the chargino–neutralino sector at tree-

level, φM1
and φµ, should be considered as mixing parameters and therefore do not need

to be renormalised. The renormalisation scheme we have developed, which we have

implemented into FeynArts, will have numerous applications for loop calculations in

the MSSM with CP-violating parameters.

For both χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j , the complete one-loop genuine vertex contributions

were combined with dominant two-loop Higgs propagator-type corrections to obtain the

most precise prediction currently available for this class of processes. Previous work for

this process using the Feynman-diagrammatic approach included only a subset of the

one-loop contributions and did not allow for CP-violation.

The numerical impact of the genuine vertex corrections on the decay χ̃0
i → χ̃0

jha was

studied for several examples of CP-conserving and CP-violating scenarios. We found that

significant effects on the decay widths and branching ratios were possible even in the CP-

conserving MSSM. In the CP-violating CPX benchmark scenario, the corrections to the

decay width, χ̃0
2 → χ̃0

1h1, were found to be particularly large – of order 45% for a Higgs

mass of 40 GeV. This parameter region of the CPX scenario, where a very light Higgs
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boson is not excluded by present data, was analysed in detail. We found that in this

parameter region, which will be difficult to cover with standard Higgs search channels

at the LHC, the branching ratio for the decay χ̃0
2 → χ̃0

1h1 is large. This may offer good

prospects of detecting such a light Higgs boson in cascade decays of supersymmetric

particles.

The numerical impact of the genuine vertex corrections was also studied for the decay

ha → χ̃0
i χ̃

0
j in scenarios where the resulting signature of four leptons plus missing energy

may be phenomenologically important at the LHC. For these scenarios, it was shown

that the inclusion of the full MSSM corrections is crucial for obtaining the correct sign

and magnitude of the vertex corrections, since cancellations between the various UV-

finite subsets of diagrams can occur. Thus, our result is a significant improvement over

previous calculations in the literature for this process. For the 4L1 and SPS1a scenarios

we found modest corrections to the partial decay widths of order 5 − 10%, resulting

in an effect on the branching ratios of less than a percent. We also showed that in

these scenarios, the introduction of CP-violating phases can have a significant effect on

the decay widths and relative size of the vertex corrections. They can also have a large

impact on the decay widths for Higgs bosons into polarised neutralinos. The ratio, Aa ≡
(ΓLL − ΓRR)/(ΓLL + ΓRR), where ΓLL ≡ Γ(ha → χ̃0 L

2 χ̃0 L
2 ) and ΓRR ≡ Γ(ha → χ̃0 R

2 χ̃0 R
2 )

(a = 2, 3), was found to be a CP-odd quantity, which could help identify the existence

of CP-violation in the MSSM. It was noted, however, that in the scenarios of interest,

the two heavy Higgs bosons, h2 and h3, are nearly mass degenerate and can interfere,

so one needs to calculate the full production and decay process in order to assess the

viability of such an observable.

Interference effects for nearly mass degenerate Higgs bosons were then studied in some

detail, both analytically and numerically. Several methods were developed for calculating

the full production and decay process in the case where the splitting between the masses

of the intermediate Higgs bosons, |Mhi
− Mhj

|, is of the order of their widths, Γhi

and Γhj
. The full 3 × 3 propagator matrix calculation was employed to include the

full momentum dependence of the self-energies and all possible mixing and interference

terms between the three neutral Higgs bosons. An on-shell approximation, using Breit-

Wigner propagators for the Higgs bosons and the Ẑ matrix formalism to describe the

mixing, was found to give results in good numerical agreement with the full propagator

matrix calculation. As an example, interference effects were studied in the process

bb̄ → hi → τ+τ−, both in the case of small MA where h and H (and A) can be mass

degenerate and in the case of large MA where h2 and h3 can be mass degenerate and
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interfere in the presence of CP-violating parameters. When there was significant overlap

between the propagators and the mixing self-energy contributions were large, it was

found that omitting the interference term could lead to an overestimation of the cross

section by up to 400%. Thus the usual narrow width approximation for factorising the

process into separate parts for production and decay is not applicable in such a case.

Given that the full squared matrix calculation is not practicable in all situations, we

developed a generalised narrow width approximation for the process ab → cha → cde

(a = 1, 2), to be applied in situations where the individual masses of the intermedi-

ate Higgs bosons satisfy Mha ≫ Γha and we are sufficiently far from thresholds, but the

masses are nearly degenerate, with |Mh1
−Mh2

| ∼ Γh1
, Γh2

. In our approximation, we add

the usual cross section times branching ratio for each of the Higgs bosons to an interfer-

ence term. This interference term is expressed as a universal integral over the interfering

Breit-Wigner propagators with a process-dependent coefficient made up of on-shell ma-

trix elements. These on-shell matrix elements can be estimated at leading order from

the individual h1 and h2 cross sections and branching ratios multiplied by an appropriate

scaling factor. Combining this process-specific scaling factor with the universal integral

over interfering Breit-Wigner propagators, we obtained an interference weight factor,

Ra. This can be conveniently combined with the state-of-the-art Higgs branching ratios

and hadronic cross sections to obtain an effective cross section times branching ratio

which includes interference effects; σab→ch1
BRh1→de(1 + R1) + σab→ch2

BRh2→de(1 + R2).

We have tested this method for several processes and found that it gives results in nu-

merical agreement with the full squared matrix calculation. As an example, we used the

generalised narrow width approximation to investigate the effect of interference between

h and H on the interpretation of Higgs exclusion limits by Tevatron analyses in the

Mmax
h scenario. Although we found that the interference did not affect the most recent

exclusion bounds in this scenario which reach to tanβ ∼ 35, we showed examples where

we interpreted previous exclusion limits at larger tanβ without including the full set of

available higher-order corrections to the Higgs masses. For these particular masses and

widths, the interference effects resulted in a significant shift in our interpretation of the

exclusion limits. Such interference effects could also be important for Higgs discovery

at the LHC, in both CP-conserving and CP-violating scenarios.

Asymmetries between the production of left- and right-handed neutralinos were studied

analytically and numerically for the production and decay processes bb̄, gg, WW → hi →
χ̃0

2χ̃
0
2 at the LHC. A non-zero asymmetry results from the existence of both CP-violation

and absorptive effects in the Higgs self-energies. Large asymmetries were found to be
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possible for the gg and W+W− fusion production processes, while for the bb̄ fusion the

asymmetry was found to be suppressed due to a cancellation between the couplings of

down-type fermions in the initial state and in the dominant absorptive contributions to

the Higgs self-energies. The on-shell approximation using Breit-Wigner propagators and

the Ẑ factor formalism was again found to be in good numerical agreement with the full

3 × 3 Higgs propagator matrix calculation. We also used the generalised narrow width

approximation to calculate the asymmetry, leading to results in numerical agreement

with the full squared matrix calculations. Using this method, the asymmetry, A ≡
(σpp→hi→χ̃0 L

2
χ̃0 L

2
− σpp→hi→χ̃0 R

2
χ̃0 R

2
)/(σpp→hi→χ̃0 L

2
χ̃0 L

2
+ σpp→hi→χ̃0 R

2
χ̃0 R

2
), was studied in the

MH±–tanβ plane for a modified SPS1a scenario with CP-violating phases. It was found

that the asymmetry for gluon fusion alone was resonantly enhanced to values of more

than 40% for large tanβ, but this effect was suppressed in the total asymmetry due to

the large bb̄ cross section. The most promising parameter region for this scenario was for

MH±
>∼ 500 GeV and tanβ <∼ 10, where gluon fusion dominates and a total asymmetry

of order 10 − 20% is possible.

The processes χ̃0
i → χ̃0

jha and ha → χ̃0
i χ̃

0
j are potentially interesting for the LHC as

Higgs discovery channels. We have shown in this thesis that higher order effects, such

as vertex corrections and interference between Higgs propagators, can be important in

both the CP-conserving and CP-violating MSSM. We have also explored the possibility

of utilising decays of Higgs bosons into neutralinos for discovering CP-violation in the

MSSM. The LHC has been built both as a Higgs discovery machine and as a discovery

machine for new physics beyond the Standard Model. The crucial links between these

two searches, such as those presented in this thesis, should be fully utilised in the years

ahead.



Appendix A

Loop integrals

A.1 Definitions for loop integrals

Using the conventions of Ref. [75], the generalised one-loop integral in D = 4− ǫ dimen-

sions can be written

TN
µ1...µP

(k1, ...kN−1, m0, m1...mN−1)

=
(2πµ)4−D

iπ2

∫
dDq

qµ1
...qµP

[q2 − m2
0][(q + k1)2 − m2

1]...[(q + kN−1)2 − m2
N−1]

, (A.1)

where µ is a renormalisation scale on which the resulting loop integrals will depend.1

T 1, T 2, T 3, ... are denoted as A, B, C..., and the scalar integrals with P = 0 are denoted

as A0, B0, ...

For example, the scalar two-point function, B0, reads

B0(p1, m0, m1) = (4πµ2)
D−4

2 Γ

(
4 − D

2

) ∫ 1

0

dx[x2p2
1 − x(p2

1 − m2
1 + m2

0) + m2
0]

D−4

2

= ∆ −
∫ 1

0

dx log

[
x2p2

1 − x(p2
1 − m2

1 + m2
0) + m2

0

µ2

]
+ O(D − 4), (A.2)

where the UV-divergence is contained in

∆ ≡ 2

4 − D
− γE + log 4π. (A.3)

1The dependence of the one-loop integrals on µ in the constrained differential renormalisation scheme
is the same as for dimensional regularization, although it arises in a conceptually different way (see
Ref. [75]).
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FormCalc writes the tensor loop integrals in terms of tensor coefficients and Lorentz-

covariant tensors as follows;

Bµ = k1µB1

Bµν = gµνB00 + k1µk1νB11

Cµ = k1µC1 + k2µC2

Cµν = gµνC00 +

2∑

i,j=1

kiµkjνCij

Cµνρ =

2∑

i=1

(gµνkiρ + gνρkiµ + gµρkiν)C00i +

2∑

i,j,l=1

kiµkjνklρCijl (A.4)

Of the A, B and C integrals, only A0, B0, B1, B00, B11, C00 and C00i are UV-divergent.

We use LoopTools to evaluate the tensor coefficients of the loop integrals numerically.

The UV-finiteness of a resulting expression can then be tested by varying ∆ and seeing

whether the numerical result changes.

A.2 The absorptive parts of loop integrals

Consider the scalar two point function, B0(p1, m0, m1), in equation (A.2). This function

often arises in particle self-energies. If p2
1 − (m1 + m0)

2 is positive, then the term in the

square brackets is negative, resulting in a factor of iπ from the logarithm. Thus the loop

integral will have an imaginary part. This is an absorptive effect arising from the fact

that the particles in the loop integral can be on-shell, since the squared four-momentum

of the incoming particle is greater than the squared sum of the masses of the particles

inside the loop.

Any loop-level quantity, L, can be separated into its dispersive (R̃e) and absorptive (Ĩm)

parts as follows;

L = R̃e L + i Ĩm L (A.5)

where R̃e takes the real part of loop integrals occuring in L, but not of any parameters

occuring as coefficients to those loop integrals. Thus R̃e does not simply take the real

part of a quantity; it can still contain imaginary parts resulting from complex param-

eters and mixing matrix elements (CP-violating parameters in the theory) multiplied
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by dispersive loop integrals. Conversely, iĨm L can contain real parts resulting from

imaginary parameters multiplied by absorptive loop integrals. We can write

L = Re (R̃eL) + iIm (R̃e L) + i(Re (Ĩm L) + iIm (Ĩm L)). (A.6)

Thus, separating L = ReL + iIm L into its real and imaginary parts gives

ReL = Re (R̃eL) − Im (Ĩm L), Im L = Im (R̃e L) + Re (Ĩm L). (A.7)

In CP-conserving theories, Im (Ĩm L) and Im (R̃e L) vanish since there are no imaginary

mixing matrix elements occuring as coefficients to multiply the loop integrals. Hence

R̃e ≡ Re and Ĩm ≡ Im. However, in CP-violating theories, the definitions with and

without the tilde remain distinct.

A.3 Self-energy relations for fermions

Fermion self-energies can be decomposed into Lorentz invariants as

Σij(p
2) = 6p ωLΣL

ij(p
2) + 6p ωRΣR

ij(p
2) + ωLΣSL

ij (p2) + ωLΣSR
ij (p2). (A.8)

The Lorentz invariant pieces of the self-energies then satisfy certain relations if the

Lagrangian is invariant under various combinations of charge conjugation (C), parity

reversal (P) and time reversal (T ) (see Ref. [94] for derivation).

If the theory is CPT -invariant, then

R̃eΣ
L/R
ij (p2) = (R̃eΣ

L/R
ji (p2))∗

R̃eΣSL
ij (p2) = (R̃eΣSR

ji (p2))∗. (A.9)

Hence, we always have the following relations if the CPT theorem holds,

Im(R̃eΣ
L/R
ii (p2)) = 0

Im(R̃e ΣSL
ii (p2)) = −Im(R̃e ΣSR

ii (p2))

Re(R̃e ΣSL
ii (p2)) = Re(R̃e ΣSR

ii (p2))

Im(R̃e ΣSL
ii (p2)) =

1

2
R̃e (ΣSL

ii (p2) − ΣSR
ii (p2)). (A.10)
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If the theory is CP-invariant, then

Σ
L/R
ij (p2) = Σ

L/R
ji (p2)

ΣSL
ij (p2) = ΣSR

ji (p2). (A.11)

In most of this thesis we consider the CP-violating MSSM, so we do not use these

CP-invariance relations unless otherwise stated.

If the theory is C-invariant then

ΣL
ij(p

2) = ΣR
ji(p

2)

ΣSL
ij (p2) = ΣSL

ji (p2)

ΣSR
ij (p2) = ΣSR

ji (p2). (A.12)

The charge conjugation invariance relations are obeyed by Majorana fermions, such as

neutralinos.

We use the above relations in Chapter 4 to simplify the renormalisation constants of

charginos and neutralinos.



Appendix B

Renormalised vertices

In this appendix we write down the counterterms for all the three-point vertices that

involve a single Higgs or gauge boson and two charginos or neutralinos, using the defi-

nitions for the field and parameter renormalisation constants given in Chapters 3 and 4.

These are implemented into our counterterm model file to supplement the MSSM model

file in FeynHiggs. They have all been tested for UV-finiteness.

B.1 SFF vertices

The three-point vertex for a scalar and two fermions, along with its counterterm, has

the following Lorentz structure;

Γ(3) =
i

2

(
(CL + δCL)ωL + (CR + δCR)ωR

)
, (B.1)

where the coupling constants CL and CR depend on the vertex in question. Incoming

fermions (Fi) and outgoing fermions (F̄i) are renormalised as

ωL/RF2 → ωL/R(1 +
1

2
δZL/R)F2 (B.2)

F̄1ωL/R → F̄1ωL/R(1 +
1

2
δZ̄R/L). (B.3)
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The chargino-chargino-neutral Higgs vertex:

For h0
k = {h, H, A, G};

CR(χ̃−
c1, χ̃

+
c2, h

0
k) = (CL(χ̃−

c1, χ̃
+
c2, h

0
k))

∗ =
e√
2sW

cχ̃−
c1

χ̃+
c2

h0
k

δCR/L(χ̃−
c1,−χ̃+

c2, h
0
k) =

e√
2sW

[
δc

(∗)
χ̃−

c1
χ̃+

c2
h0

k

+ c
(∗)
χ̃−

c1
χ̃+

c2
h0

k

(δZe −
δsW

sW

)

+
1

2
(δZ

R/L
−,ic1

c
(∗)
χ̃−

i χ̃+
c2

h0
k

+ c
(∗)
χ̃−

c1
χ̃+

i h0
k

δZ̄
L/R
−,c2i)

+
1

2
(c

(∗)
χ̃−

c1
χ̃+

c2
h
δZhh + c

(∗)
χ̃−

c1
χ̃+

c2
H

δZhH + c
(∗)
χ̃−

c1
χ̃+

c2
A
δZhA + c

(∗)
χ̃−

c1
χ̃+

c2
G
δZhG)

]

cχ̃−
c1

χ̃+
c2

h0
k

= (aksαUc22Vc11 + bkcαUc21Vc12)

ak = {sα,−cα, isβ ,−icβ}
bk = {−cα,−sα, icβ,−isβ}

δcχ̃−
c1

χ̃+
c2

h0
k

= 0

The neutralino-chargino-charged Higgs vertex:

CL/R(χ̃0
n1, χ̃

+
c2, H

−) =
e

sW
c
L/R

χ̃0
n1

χ̃+
c2

H−

δCL/R(χ̃0
n1, χ̃

+
c2, H

−) =
e

sW

[
δc

L/R

χ̃0
n1

χ̃+
c2

H−
+ c

L/R

χ̃0
n1

χ̃+
c2

H−
(δZe −

δsW

sW
)

+
1

2
(δZ

L/R
0,in1

c
L/R

χ̃0
i χ̃+

c2
H−

+ c
L/R

χ̃0
n1

χ̃+

i H−
δZ̄

R/L
−,c2i)

+
1

2
(c

L/R

χ̃0
n1

χ̃+
c2

H−
δZH+H+ + c

L/R

χ̃0
n1

χ̃+
c2

G−
δZH+G+)

]

CL(R)(χ̃−
c2, χ̃

0
n1, H

+) =
e

sW
c
L(R)

χ̃−

c2χ̃0
n1

H+

δCL(R)(χ̃−
c2, χ̃

0
n1, H

+) =
e

sW

[
δc

L(R)

χ̃−

c2χ̃0
n1

H+
+ c

L(R)

χ̃−

c2χ̃0
n1

H+
(δZe −

δsW

sW

)

+
1

2
(δZ̄

R/L
0,n1ic

L(R)

χ̃−

c2χ̃0
i H+

+ c
L(R)

χ̃−

i χ̃0
n1

H+
δZ

L/R
ic2

)

+
1

2
(c

L/R

χ̃−

c2χ̃0
n1

H+
δZH+H+ + c

L/R

χ̃−

c2χ̃0
n1

G+
δZH+G+)

]
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and similarly for G± where

cL
χ̃0

n1
χ̃+

c2
H− = (cR

χ̃−
c2

χ̃0
n1

H+)∗ = −cβ(V ∗
c22(sW N∗

n11/cW + N∗
n12)/

√
2 + V ∗

c21Nn14)

cR
χ̃0

n1
χ̃+

c2
H− = (cL

χ̃−
c2

χ̃0
n1

H+)∗ = −sβ(−Uc22(sWNn11/cW + Nn12)/
√

2) + Uc21Nn13)

cL
χ̃0

n1
χ̃+

c2
G− = (cR

χ̃−
c2

χ̃0
n1

G+)∗ = −sβ(V ∗
c22

(sWN∗
n11/cW + N∗

n12
)/
√

2 + V ∗
c21N

∗
n14

)

cR
χ̃0

n1
χ̃+

c2
G− = (cL

χ̃−
c2

χ̃0
n1

G+)∗ = cβ(−Uc22(sW Nn11/cW + Nn12)/
√

2) + Uc21Nn13)

δcL
χ̃0

n1
χ̃+

c2
H− = −cβsWV ∗

c22N
∗
n11

(δsW/sW − δcW /cW )/(
√

2cW )

δcR
χ̃0

n1
χ̃+

c2
H− = sβsW Uc22Nn11(δsW/sW − δcW /cW )/(

√
2cW )

δcL
χ̃0

n1
χ̃+

c2
G− = −sβsWV ∗

c22
N∗

n11
(δsW/sW − δcW /cW )/(

√
2cW )

δcR
χ̃0

n1
χ̃+

c2
G− = −cβsWUc22Nn11(δsW /sW − δcW/cW )/(

√
2cW ).

The neutralino-neutralino-Higgs vertex:

For h0
k = {h, H, A, G};

CR(χ̃0
n2, χ̃

0
n1, h

0
k) = = (CL(χ̃0

n2, χ̃
0
n1, h

0
k))

∗ =
e

2cWsW
cχ̃0

n2
χ̃0

n1
h0

k

δCL/R(χ̃0
n2, χ̃

0
n1, h

0
k) =

e

2cWsW

[
δc

(∗)
χ̃0

n2
χ̃0

n1
h0

k
+ c

(∗)
χ̃0

n2
χ̃0

n1
h0

k
(δZe −

δcW

cW
− δsW

sW
)

+
1

2
(δZ

L/R
0,in1

c
(∗)
χ̃0

n2
χ̃0

i h0
k
+ c

(∗)
χ̃0

i χ̃0
n1

h0
k
δZ̄

R/L
0,in2

)

+
1

2
(c

(∗)
χ̃0

n2
χ̃0

n1
hδZhh + c

(∗)
χ̃0

n2
χ̃0

n1
HδZhH + c

(∗)
χ̃0

n2
χ̃0

n1
AδZhA + c

(∗)
χ̃0

n2
χ̃0

n1
GδZhG)

]

cχ̃0
n2

χ̃0
n1

h0
k

= [(akNi3 + bkNi4)(sWNj1 − cWNj2) + (akNj3 + bkNj4)(sW Ni1 − cW Ni2)]

ak = {−sα, cα, isβn ,−icβn}
bk = {−cα,−sα,−icβn ,−isβn}

δcχ̃0
n2

χ̃0
n1

h0
k

= [(akNi3 + bkNi4)(δsWNj1 − δcWNj2) + (akNj3 + bkNj4)(δsW Ni1 − δcWNi2)]



Renormalised vertices 192

B.2 VFF vertices

The three-point vertex for a vector boson and two fermions, along with its counterterm,

has the following Lorentz structure;

Γ(3) = i((CL + δCL)γµωL + (CR + δCR)γµωR). (B.4)

where the coupling constants CL and CR depend on the vertex in question. Using the

relation ωL/Rγµ = γµωR/L, we find

γµωL/RF2 → γµωL/R(1 +
1

2
δZL/R)F2 (B.5)

F̄1γ
µωL/R → F̄1γ

µωL/R(1 +
1

2
δZ̄L/R). (B.6)

The chargino-chargino-gauge boson vertex:

CL/R(χ̃+
c2, χ̃

−
c1, γ) = eδc1c2

δCL/R(χ̃+
c2, χ̃

−
c1, γ) = e

[
δc1c2(δZe +

1

2
δZAA)

+
1

2

1

sW cW
c
L/R

χ̃+
c2

χ̃−
c1

Z
δZZA +

1

2
(δZ

L/R
−,ic1

δic2 + δc1iδZ̄
L/R
−,c2i)

]

CL/R(χ̃+
c2, χ̃

−
c1, Z) =

e

cWsW
c
L/R

χ̃+
c2

χ̃−
c1

Z

δCL/R(χ̃+
c2, χ̃

−
c1, Z) =

e

cWsW
{δcL/R

χ̃+
c2

χ̃−
c1

Z
+ c

L/R

χ̃+
c2

χ̃−
c1

Z
(δZe −

δcW

cW
− δsW

sW
+

1

2
δZZZ)

−1

2
c
L/R

χ̃+
c2

χ̃−
c1

γ
δZAZ +

1

2
(δZ

L/R
−,ic1

c
L/R

χ̃+
c2

χ̃+

i Z
+ c

L/R

χ̃+

i χ̃+
c1

Z
δZ̄

L/R
−,c2i)}

cL
χ̃+

c2
χ̃−

c1
γ

= cR
χ̃+

c2
χ̃−

c1
γ

= −cW sW δc1c2

cL
χ̃+

c2
χ̃−

c1
Z

= s2
W δc1c2 − U∗

c11
Uc21 − U∗

c12Uc22/2

cR
χ̃+

c2
χ̃−

c1
Z

= s2
W δc1c2 − V ∗

c21Vc11 − (V ∗
c22Vc12)/2

δcL
χ̃+

c2
χ̃−

c1
γ

= δcR
χ̃+

c2
χ̃−

c1
γ

= −(δcW sW + δsW cW )δc1c2

δcL
χ̃+

c2
χ̃−

c1
Z

= δcR
χ̃+

c2
χ̃−

c1
Z

= 2δsW sW δc1c2



Renormalised vertices 193

The chargino-neutralino-W vertex:

CL/R(χ̃0
n2

, χ̃+
c1, W

−) =
e

sW
c
L/R

χ̃0
n2

χ̃+
c1

W−

δCL/R(χ̃0
n2

, χ̃+
c1, W

−) =
e

sW

[
δc

L/R

χ̃0
n2

χ̃+
c1

W−
+ c

L/R

χ̃0
n2

χ̃+
c1

W−
(δZe −

δsW

sW
+

1

2
δZWW )

+
1

2
(δZ

R/L
in2

c
L/R

χ̃0
i χ̃+

c1
W−

+ c
L/R

χ̃0
n2

χ̃+

i W−
δZ̄

R/L
c1i )

]

CL/R(χ̃−
c1, χ̃

0
n2, W

+) =
ie

sW
c
L/R

χ̃−

c1χ̃0
n2

W+

δCL/R(χ̃−
c1, χ̃

0
n2, W

+) =
ie

sW
{δcL/R

χ̃−

c1χ̃0
n2

W+
+ c

L/R

χ̃−

c1χ̃0
n2

W+
(δZe −

δsW

sW
+

1

2
δZWW )

+
1

2
(δZ

R/L)
− , ic1c

L/R

χ̃−

i χ̃0
n2

W+
+ c

L/R

χ̃−

c1χ̃0
i W+

δZ̄
R/L
0,n2i)}

cL
χ̃0

n2
χ̃+

c1
W− = V ∗

c11Nn22 − V ∗
c12Nn24/

√
2, cR

χ̃0
n2

χ̃+
c1

W− = N∗
n22Uc11 + N∗

n23Uc12/
√

2

cL
χ̃−

c1
χ̃0

n2
W+ = N∗

n22
Vc11 − N∗

n24
Vc12/

√
2, cR

χ̃−
c1

χ̃0
n2

W+ = Uc11Nn22 + U∗
c12Nn23/

√
2

δc
L/R

χ̃0
n2

χ̃+
c1

W−
= 0 = δc

L/R

χ̃−
c1

χ̃0
n2

W+
.

The neutralino-neutralino-Z vertex:

CL/R(χ̃0
n1, χ̃

0
n2, Z) =

ie

2cWsW
c
L/R

χ̃0
n1

χ̃0
n2

Z

δCL/R(χ̃0
n1

, χ̃0
n2

, Z) =
e

2cWsW

[
δc

L/R

χ̃0
n1

χ̃0
n2

Z + c
L/R

χ̃0
n1

χ̃0
n2

Z(δZe −
δcW

cW
− δsW

sW
+

1

2
δZZZ)

+
1

2
(δZ

L/R
0,n1ic

L/R

χ̃0
i χ̃0

n2
Z

+ c
L/R

χ̃0
n1

χ̃0
i Z

δZ̄
L/R
0,in2

)
]

where

cL
χ̃0

n1
χ̃0

n2
Z = −N∗

n23Nn13 + N∗
n24

Nn14, cR
χ̃0

n1
χ̃0

n2
Z = N∗

n13
Nn23 − N∗

n14Nn24

δc
L/R
χ̃0

n1
χ̃0

n2
Z = 0.
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The narrow width approximation

a

b

c

e

f

a

b

c
e

fd
= + . . .

Figure C.1: Process ab → cef where the main contribution is the resonant diagram mediated by
intermediate particle, d, where d can go on-shell. The ellipses represent other non-
resonant diagrams which we will ignore here.

The narrow width approximation is often used to calculate a process which contains an

internal propagator with a pole at q2 = M2−iMΓ by splitting the production and decay

into two separate processes. To see how this is done, we consider the process, ab → cef ,

shown in Figure C.1, where the main contribution to the amplitude is the resonant

diagram mediated by the intermediate scalar particle d, with a Breit-Wigner propagator,
1

q2−M2+iMΓ
. The conditions that are required for the narrow width approximation to be

valid are as follows.

• The resonant propagator should be separable from the matrix element.

• The scattering energy,
√

s, should be sufficiently larger than the masses, mc + M ,

involved in the production process.

• The mass of the resonant particle, M , should be well above the sum of the masses

of its decay products, me + mf .

• The width should be small, i.e “narrow-width”, compared to the mass, Γ ≪ M .

• There should be no interference of the resonant diagram with other diagrams that

have the same initial and final state.
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For simplicity here, we further assume that other (resonant or non-resonant) diagrams

do not give a large contribution to the process and can be ignored completely. Then the

matrix element for the process can be written as

Mab→cef = Mab→cd
1

q2 − M2 + iMΓ
Md→ef (C.1)

so that the spin-averaged squared matrix element is given by

|Mab→cef |2 = |Mab→cd|2
1

(q2 − M2)2 + M2Γ2
|Md→ef |2. (C.2)

The cross section for the process is defined as

σb→cef =
1

2λ
1

2 (s, m2
a, m

2
b)

∫
dlips(s; pc, pe, pf)|Mab→cef |2 (C.3)

where s = (pa+pb)
2, 2λ

1

2 (s, m2
a, m

2
b) = 4

√
(pa.pb)2 − m2

am
2
b is the flux and dlips(s; pc, pe, pf)

is the Lorentz invariant phase space element,

dlips(s; pc, pe, pf) ≡ (2π)4δ4(s − pc − pe − pf)
d3pc

(2π)32Ec

d3pe

(2π)32Ee

d3pf

(2π)32Ef
.(C.4)

Like the squared matrix element, the phase space element can be factorised into separate

elements for production and decay, by inserting the phase space of the intermediate

decaying particle, d, with momentum q, and using the property that

1 =

∫
d4qδ4(q − pe − pf) =

∫
(2π)3 d3q

(2π)3

dq2

2
√

q2
δ4(q − pe − pf) (C.5)

to give

dlips(s; pc, pe, pf) = (2π)3 d3q

(2π)3

dq2

2
√

q2
δ4(q − pe − pf)(2π)4δ4(s − pc − pe − pf )

d3pc

(2π)32Ec

d3pe

(2π)32Ee

d3pf

(2π)32Ef

=
1

2π
dlips(s; pc, q) dq2 dlips(q; pe, pf) (C.6)

where in the last line we are able to separate the terms belonging to the phase space for

the production and decay as dlips(s; pc, q) and dlips(q; pe, pf) respectively. This means
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that our cross section can be written as

σab→cef =
1

π

∫
dq2

[
1

2λ
1

2 (s, m2
a, m

2
b)

∫
dlips(s; pc, q)|Mab→cd|2)

]

√
q2

(q2 − M2)2 + M2Γ2

[
1

2
√

q2

∫
dlips(q; pe, pf)|Md→ef |2

]

=
1

π

∫
dq2σab→cd(q

2)

√
q2

(q2 − M2)2 + M2Γ2
Γd→ef(q

2)

≈ 1

π

∫ q2
max

q2
min

dq2σab→cd(q
2)

√
q2

(q2 − M2)2 + M2Γ2
Γd→ef(q

2) (C.7)

where σab→cd(q
2) is the off-shell cross section for the process which produces the resonant

particle, d, with momentum q2 and Γd→ef(q
2) is the off-shell decay width for the resonant

particle, d, decaying at momentum q2. The last line is an approximation for the full

integral, where qmax and qmin are defined to be M plus or minus a few times the decay

width respectively. The limit,

lim
MΓ→0

1

(q2 − M2)2 + M2Γ2
= δ(M2 − q2)

π

MΓ
, (C.8)

allows us to evaluate the integral in the limit of “narrow-width”. The delta function

means we can compute the cross-section and decay width as on-shell quantities, at

q2 = M2, leaving us with

σ(ab → cef) ≈ σab→cd(M
2)

Γd→ef(M
2)

Γ
, (C.9)

i.e. in the narrow width approximation, the cross-section for the full production and
decay process can be simply computed by multiplying the cross section for the production
part of the process with the branching ratio for the decay part of the process. The
Breit-Wigner dependence of the propagator has been integrated out and replaced with
the constant π/MΓ and only the on-shell production and decay contribute.



Bibliography

[1] A. Pich, “The Standard Model of electroweak interactions,”
arXiv:hep-ph/0502010.

[2] LEP Working Group for Higgs boson searches Collaboration, R. Barate et al.,
“Search for the standard model Higgs boson at LEP,” Phys. Lett. B565 (2003)
61–75, arXiv:hep-ex/0306033.

[3] CDF Collaboration “Combined CDF and D0 Upper Limits on Standard Model
Higgs Boson Production with 2.1 - 5.4 fb-1 of Data,” arXiv:0911.3930

[hep-ex].

[4] CDF and D0 Collaboration, T. Aaltonen et al., “Combination of Tevatron
searches for the standard model Higgs boson in the W+W- decay mode,” Phys.

Rev. Lett. 104 (2010) 061802, arXiv:1001.4162 [hep-ex].

[5] The TEVNPH Working Group of the CDF and D0 Collaboration “Combined
CDF and D0 Upper Limits on Standard Model Higgs- Boson Production with up
to 6.7 fb−1 of Data,” arXiv:1007.4587 [hep-ex].

[6] A. De Roeck et al., “From the LHC to Future Colliders,” Eur. Phys. J. C66
(2010) 525–583, arXiv:0909.3240 [hep-ph].

[7] P. W. Higgs, “Broken Symmetries and the masses of gauge bosons,” Phys. Rev.

Lett. 13 (1964) 508–509.

[8] P. W. Higgs, “Spontaneous Symmetry Breakdown without Massless Bosons,”
Phys. Rev. 145 (1966) 1156–1163.

[9] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector
mesons,” Phys. Rev. Lett. 13 (1964) 321–322.

[10] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws
and massless particles,” Phys. Rev. Lett. 13 (1964) 585–587.

[11] T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge theories,” Phys.

Rev. 155 (1967) 1554–1561.

[12] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The Higgs Hunter’s

Guide. Addison-Wesley, Redwood City, California, 1990.

[13] A. Djouadi, “The anatomy of electro-weak symmetry breaking. I: The Higgs
boson in the standard model,” Phys. Rept. 457 (2008) 1–216,
arXiv:hep-ph/0503172.

[14] T. Hambye and K. Riesselmann, “Matching conditions and Higgs mass upper
bounds revisited,” Phys. Rev. D55 (1997) 7255–7262, arXiv:hep-ph/9610272.

197



Bibliography 198

[15] LEP Collaboration “A Combination of preliminary electroweak measurements
and constraints on the standard model,” arXiv:hep-ex/0412015.

[16] U. Baur et al., “Theoretical and experimental status of the indirect Higgs boson
mass determination in the standard model,” arXiv:hep-ph/0111314.

[17] D. Hooper, “TASI 2008 Lectures on Dark Matter,” arXiv:0901.4090 [hep-ph].

[18] U. Amaldi, W. de Boer, and H. Furstenau, “Comparison of grand unified theories
with electroweak and strong coupling constants measured at LEP,” Phys. Lett.

B260 (1991) 447–455.

[19] A. D. Sakharov, “Violation of CP Invariance, C Asymmetry, and Baryon
Asymmetry of the Universe,” Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.

[20] M. Drees, “An Introduction to Supersymmetry,” arXiv:hep-ph/9611409.

[21] S. P. Martin, “A Supersymmetry Primer,” arXiv:hep-ph/9709356.

[22] M. Drees, R. Godbole, and P. Roy, “Theory and phenomenology of sparticles:
An account of four-dimensional N=1 supersymmetry in high energy physics,”.

[23] H. Baer and X. Tata, “Weak scale supersymmetry: From superfields to
scattering events,”.

[24] R. Haag, J. T. Lopuszanski, and M. Sohnius, “All Possible Generators of
Supersymmetries of the S Matrix,” Nucl. Phys. B88 (1975) 257.

[25] D. Bailin and A. Love, “Supersymmetric gauge field theory and string theory,”.
Bristol, UK: IOP (1994) 322 p. (Graduate student series in physics).

[26] J. R. Ellis, K. A. Olive, Y. Santoso, and V. C. Spanos, “Supersymmetric Dark
Matter in Light of WMAP,” Phys. Lett. B565 (2003) 176–182,
arXiv:hep-ph/0303043.

[27] LEP Working Group for Higgs boson searches Collaboration, S. Schael et al.,
“Search for neutral MSSM Higgs bosons at LEP,” Eur. Phys. J. C47 (2006)
547–587, arXiv:hep-ex/0602042.

[28] Particle Data Group Collaboration, C. Amsler et al., “Review of particle
physics,” Phys. Lett. B667 (2008) 1.

[29] M. S. Carena, J. R. Ellis, A. Pilaftsis, and C. E. M. Wagner, “CP-violating
MSSM Higgs bosons in the light of LEP 2,” Phys. Lett. B495 (2000) 155–163,
arXiv:hep-ph/0009212.

[30] K. E. Williams and G. Weiglein, “Precise predictions for ha− > hbhc decays in
the complex MSSM,” Phys. Lett. B660 (2008) 217–227, arXiv:0710.5320
[hep-ph].

[31] V. Buescher and K. Jakobs, “Higgs boson searches at hadron colliders,” Int. J.

Mod. Phys. A20 (2005) 2523–2602, arXiv:hep-ph/0504099.

[32] M. Schumacher, “Investigation of the discovery potential for Higgs bosons of the
minimal supersymmetric extension of the standard model (MSSM) with
ATLAS,” arXiv:hep-ph/0410112.



Bibliography 199

[33] E. Accomando et al., “Workshop on CP studies and non-standard Higgs
physics,” arXiv:hep-ph/0608079.

[34] F. Moortgat, S. Abdullin, and D. Denegri, “Observability of MSSM Higgs bosons
via sparticle decay modes in CMS,” arXiv:hep-ph/0112046.

[35] M. Bisset, J. Li, N. Kersting, F. Moortgat, and S. Moretti, “Four-lepton LHC
events from MSSM Higgs boson decays into neutralino and chargino pairs,”
arXiv:0709.1029 [hep-ph].

[36] M. Bisset, J. Li, and N. Kersting, “How to Detect ‘Decoupled’ Heavy
Supersymmetric Higgs Bosons,” arXiv:0709.1031 [hep-ph].

[37] P. Huang, N. Kersting, and H. H. Yang, “Extracting MSSM masses from heavy
Higgs boson decays to four leptons at the CERN LHC,” Phys. Rev. D77 (2008)
075011, arXiv:0801.0041 [hep-ph].

[38] M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, “MSSM Higgs
boson searches at the Tevatron and the LHC: Impact of different benchmark
scenarios,” Eur. Phys. J. C45 (2006) 797–814, arXiv:hep-ph/0511023.

[39] S. Gennai et al., “Search for Heavy Neutral MSSM Higgs Bosons with CMS:
Reach and Higgs-Mass Precision,” Eur. Phys. J. C52 (2007) 383–395,
arXiv:0704.0619 [hep-ph].

[40] S. Dimopoulos and D. W. Sutter, “The supersymmetric flavor problem,” Nucl.

Phys. B452 (1995) 496–512, arXiv:hep-ph/9504415.

[41] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “The
Higgs boson masses and mixings of the complex MSSM in the
Feynman-diagrammatic approach,” JHEP 02 (2007) 047,
arXiv:hep-ph/0611326.

[42] S. Heinemeyer, W. Hollik, and G. Weiglein, “The Masses of the neutral CP -
even Higgs bosons in the MSSM: Accurate analysis at the two loop level,” Eur.

Phys. J. C9 (1999) 343–366, arXiv:hep-ph/9812472.

[43] S. Heinemeyer, W. Hollik, and G. Weiglein, “QCD corrections to the masses of
the neutral CP-even Higgs bosons in the MSSM,” Phys. Rev. D58 (1998)
091701, arXiv:hep-ph/9803277.

[44] S. Heinemeyer, W. Hollik, and G. Weiglein, “Precise prediction for the mass of
the lightest Higgs boson in the MSSM,” Phys. Lett. B440 (1998) 296–304,
arXiv:hep-ph/9807423.

[45] S. Ambrosanio, A. Dedes, S. Heinemeyer, S. Su, and G. Weiglein, “Implications
of the Higgs boson searches on different soft SUSY breaking scenarios,” Nucl.

Phys. B624 (2002) 3–44, arXiv:hep-ph/0106255.

[46] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, “Towards
high-precision predictions for the MSSM Higgs sector,” Eur. Phys. J. C28 (2003)
133–143, arXiv:hep-ph/0212020.



Bibliography 200

[47] D. Stoeckinger, “Einschleifenbeitraege zu schwachen Dipolmomenten und
Quark-/Squarkzerfaellen im MSSM,” Diploma Thesis, Karlsruhe, 1998.

[48] W. Hollik, J. I. Illana, S. Rigolin, and D. Stockinger, “One-loop MSSM
contribution to the weak magnetic dipole moments of heavy fermions,” Phys.

Lett. B416 (1998) 345–352, arXiv:hep-ph/9707437.

[49] W. Hollik, J. I. Illana, S. Rigolin, and D. Stockinger, “Weak electric dipole
moments of heavy fermions in the MSSM,” Phys. Lett. B425 (1998) 322–328,
arXiv:hep-ph/9711322.

[50] D. A. Demir, O. Lebedev, K. A. Olive, M. Pospelov, and A. Ritz, “Electric
dipole moments in the MSSM at large tan(beta),” Nucl. Phys. B680 (2004)
339–374, arXiv:hep-ph/0311314.

[51] D. Chang, W.-Y. Keung, and A. Pilaftsis, “New two-loop contribution to electric
dipole moment in supersymmetric theories,” Phys. Rev. Lett. 82 (1999) 900–903,
arXiv:hep-ph/9811202.

[52] A. Pilaftsis, “Higgs-boson two-loop contributions to electric dipole moments in
the MSSM,” Phys. Lett. B471 (1999) 174–181, arXiv:hep-ph/9909485.

[53] O. Lebedev, K. A. Olive, M. Pospelov, and A. Ritz, “Probing CP violation with
the deuteron electric dipole moment,” Phys. Rev. D70 (2004) 016003,
arXiv:hep-ph/0402023.

[54] S. Abel, S. Khalil, and O. Lebedev, “EDM constraints in supersymmetric
theories,” Nucl. Phys. B606 (2001) 151–182, arXiv:hep-ph/0103320.

[55] P. Nath, “CP Violation via electroweak gauginos and the electric dipole moment
of the electron,” Phys. Rev. Lett. 66 (1991) 2565–2568.

[56] Y. Kizukuri and N. Oshimo, “The Neutron and electron electric dipole moments
in supersymmetric theories,” Phys. Rev. D46 (1992) 3025–3033.

[57] T. Ibrahim and P. Nath, “The neutron and the electron electric dipole moment
in N = 1 supergravity unification,” Phys. Rev. D57 (1998) 478–488,
arXiv:hep-ph/9708456.

[58] M. Brhlik, G. J. Good, and G. L. Kane, “Electric dipole moments do not require
the CP-violating phases of supersymmetry to be small,” Phys. Rev. D59 (1999)
115004, arXiv:hep-ph/9810457.

[59] J. R. Ellis, J. S. Lee, and A. Pilaftsis, “Electric Dipole Moments in the MSSM
Reloaded,” JHEP 10 (2008) 049, arXiv:0808.1819 [hep-ph].

[60] Y. Li, S. Profumo, and M. Ramsey-Musolf, “A Comprehensive Analysis of
Electric Dipole Moment Constraints on CP-violating Phases in the MSSM,”
JHEP 08 (2010) 062, arXiv:1006.1440 [hep-ph].

[61] M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, “Suggestions
for benchmark scenarios for MSSM Higgs boson searches at hadron colliders,”
Eur. Phys. J. C26 (2003) 601–607, arXiv:hep-ph/0202167.



Bibliography 201

[62] M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, “Suggestions
for improved benchmark scenarios for Higgs boson searches at LEP2,”
arXiv:hep-ph/9912223.

[63] B. C. Allanach et al., “The Snowmass points and slopes: Benchmarks for SUSY
searches,” Eur. Phys. J. C25 (2002) 113–123, arXiv:hep-ph/0202233.

[64] See www.ippp.dur.ac.uk/ georg/sps/ for the low-energy MSSM parameters
corresponding to the SPS points.

[65] H. K. Dreiner et al., “Mass Bounds on a Very Light Neutralino,” Eur. Phys. J.

C62 (2009) 547–572, arXiv:0901.3485 [hep-ph].

[66] S. Heinemeyer, W. Hollik, and G. Weiglein, “Decay widths of the neutral
CP-even MSSM Higgs bosons in the Feynman-diagrammatic approach,” Eur.

Phys. J. C16 (2000) 139–153, arXiv:hep-ph/0003022.

[67] A. Denner, “Techniques for calculation of electroweak radiative corrections at the
one loop level and results for W physics at LEP-200,” Fortschr. Phys. 41 (1993)
307–420, arXiv:0709.1075 [hep-ph].

[68] M. Bohm, A. Denner, and H. Joos, Gauge theories of the strong and electroweak

interaction. Teubner, Stuttgart, 2001.

[69] G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e-
Annihilation into mu+ mu- in the Weinberg Model,” Nucl. Phys. B160 (1979)
151.

[70] D. Stockinger, “Regularization by dimensional reduction: Consistency, quantum
action principle, and supersymmetry,” JHEP 03 (2005) 076,
arXiv:hep-ph/0503129.

[71] W. Hollik and D. Stockinger, “MSSM Higgs-boson mass predictions and two-loop
non- supersymmetric counterterms,” Phys. Lett. B634 (2006) 63–68,
arXiv:hep-ph/0509298.

[72] J. Kublbeck, M. Bohm, and A. Denner, “FeynArts: Computer algebraic
generation of Feynman graphs and amplitudes,” Comput. Phys. Commun. 60
(1990) 165–180.

[73] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,”
Comput. Phys. Commun. 140 (2001) 418–431, arXiv:hep-ph/0012260.

[74] T. Hahn and C. Schappacher, “The implementation of the minimal
supersymmetric standard model in FeynArts and FormCalc,” Comput. Phys.

Commun. 143 (2002) 54–68, arXiv:hep-ph/0105349.

[75] T. Hahn and M. Perez-Victoria, “Automatized one-loop calculations in four and
D dimensions,” Comput. Phys. Commun. 118 (1999) 153–165,
arXiv:hep-ph/9807565.

[76] F. del Aguila, A. Culatti, R. Munoz Tapia, and M. Perez-Victoria, “Techniques
for one-loop calculations in constrained differential renormalization,” Nucl. Phys.

B537 (1999) 561–585, arXiv:hep-ph/9806451.



Bibliography 202

[77] M. Steinhauser, “Leptonic contribution to the effective electromagnetic coupling
constant up to three loops,” Phys. Lett. B429 (1998) 158–161,
arXiv:hep-ph/9803313.

[78] H. Burkhardt and B. Pietrzyk, “Low energy hadronic contribution to the QED
vacuum polarization,” Phys. Rev. D72 (2005) 057501, arXiv:hep-ph/0506323.

[79] S. Heinemeyer, W. Hollik, and G. Weiglein, “FeynHiggs: A program for the
calculation of the masses of the neutral CP-even Higgs bosons in the MSSM,”
Comput. Phys. Commun. 124 (2000) 76–89, arXiv:hep-ph/9812320.

[80] S. Heinemeyer, W. Hollik, and G. Weiglein, “QCD corrections to the masses of
the neutral CP-even Higgs bosons in the MSSM,” Phys. Rev. D58 (1998)
091701, arXiv:hep-ph/9803277.

[81] S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “The Higgs sector of the
complex MSSM at two-loop order: QCD contributions,” Phys. Lett. B652 (2007)
300–309, arXiv:0705.0746 [hep-ph].

[82] A. B. Lahanas, K. Tamvakis, and N. D. Tracas, “One loop corrections to the
neutralino sector and radiative electroweak breaking in the MSSM,” Phys. Lett.

B324 (1994) 387–396, arXiv:hep-ph/9312251.

[83] D. Pierce and A. Papadopoulos, “Radiative corrections to neutralino and
chargino masses in the minimal supersymmetric model,” Phys. Rev. D50 (1994)
565–570, arXiv:hep-ph/9312248.

[84] D. Pierce and A. Papadopoulos, “The complete radiative corrections to the
gaugino and Higgsino masses in the minimal supersymmetric model,” Nucl.

Phys. B430 (1994) 278–294, arXiv:hep-ph/9403240.

[85] H. Eberl, M. Kincel, W. Majerotto, and Y. Yamada, “One-loop corrections to
the chargino and neutralino mass matrices in the on-shell scheme,” Phys. Rev.

D64 (2001) 115013, arXiv:hep-ph/0104109.

[86] T. Fritzsche and W. Hollik, “Complete one-loop corrections to the mass
spectrum of charginos and neutralinos in the MSSM,” Eur. Phys. J. C24 (2002)
619–629, arXiv:hep-ph/0203159.

[87] W. Oller, H. Eberl, W. Majerotto, and C. Weber, “Analysis of the chargino and
neutralino mass parameters at one-loop level,” Eur. Phys. J. C29 (2003)
563–572, arXiv:hep-ph/0304006.

[88] W. Oller, H. Eberl, and W. Majerotto, “Precise predictions for chargino and
neutralino pair production in e+ e- annihilation,” Phys. Rev. D71 (2005)
115002, arXiv:hep-ph/0504109.

[89] M. Drees, W. Hollik, and Q. Xu, “One-loop calculations of the decay of the
next-to-lightest in the MSSM,” JHEP 02 (2007) 032, arXiv:hep-ph/0610267.

[90] K. Rolbiecki and J. Kalinowski, “CP violation at one loop in the
polarization-independent chargino production in e+e- collisions,” Phys. Rev.

D76 (2007) 115006, arXiv:0709.2994 [hep-ph].



Bibliography 203

[91] H. Eberl, T. Gajdosik, W. Majerotto, and B. Schrausser, “CP-violating
asymmetry in chargino decay into neutralino and W boson,” Phys. Lett. B618
(2005) 171–181, arXiv:hep-ph/0502112.

[92] P. Osland and A. Vereshagin, “CP violation in unpolarized e+e−− > charginos
at one loop level,” Phys. Rev. D76 (2007) 036001, arXiv:0704.2165 [hep-ph].

[93] A. Denner, E. Kraus, and M. Roth, “Physical renormalization condition for the
quark-mixing matrix,” Phys. Rev. D70 (2004) 033002, arXiv:hep-ph/0402130.

[94] T. Fritzsche, “Berechnung von Observablen zur supersymmetrischen
Teilchenerzeugung an Hochenergie-Collidern unter Einschluss hoeherer
Ordnungen,” PhD Thesis, Karlsruhe, 2005.

[95] D. Espriu and J. Manzano, “CP violation and family mixing in the effective
electroweak Lagrangian,” Phys. Rev. D63 (2001) 073008,
arXiv:hep-ph/0011036.

[96] D. Espriu, J. Manzano, and P. Talavera, “Flavor mixing, gauge invariance and
wave-function renormalisation,” Phys. Rev. D66 (2002) 076002,
arXiv:hep-ph/0204085.

[97] Y. Zhou, “Wave-function renormalization prescription,” Mod. Phys. Lett. A21
(2006) 2763, arXiv:hep-ph/0502186.

[98] B. A. Kniehl and A. Sirlin, “A Novel Formulation of
Cabibbo-Kobayashi-Maskawa Matrix Renormalization,” Phys. Lett. B673 (2009)
208–210, arXiv:0901.0114 [hep-ph].

[99] A. C. Fowler and G. Weiglein, “Precise Predictions for Higgs Production in
Neutralino Decays in the Complex MSSM,” JHEP 01 (2010) 108,
arXiv:0909.5165 [hep-ph].

[100] J. A. Aguilar-Saavedra et al., “Supersymmetry parameter analysis: SPA
convention and project,” Eur. Phys. J. C46 (2006) 43–60,
arXiv:hep-ph/0511344.

[101] R.-Y. Zhang, W.-G. Ma, L.-H. Wan, and Y. Jiang, “Supersymmetric electroweak
corrections to the Higgs boson decays into chargino or neutralino pair,” Phys.

Rev. D65 (2002) 075018, arXiv:hep-ph/0201132.

[102] H. Eberl, M. Kincel, W. Majerotto, and Y. Yamada, “One-loop corrections to
neutral Higgs boson decays into neutralinos,” Nucl. Phys. B625 (2002) 372–388,
arXiv:hep-ph/0111303.

[103] A. Datta, A. Djouadi, M. Guchait, and F. Moortgat, “Detection of MSSM Higgs
bosons from supersymmetric particle cascade decays at the LHC,” Nucl. Phys.

B681 (2004) 31–64, arXiv:hep-ph/0303095.

[104] CMS Collaboration, G. L. Bayatian et al., “CMS technical design report,
Volume II: Physics performance,” CERN-LHCC-2006-021, CMS-TDR-008-2 J.

Phys. G34 (2007) 995–1579.



Bibliography 204

[105] P. Bandyopadhyay, A. Datta, and B. Mukhopadhyaya, “Signatures of gaugino
mass non-universality in cascade Higgs production at the LHC,” Phys. Lett.

B670 (2008) 5–11, arXiv:0806.2367 [hep-ph].

[106] K. Huitu, R. Kinnunen, J. Laamanen, S. Lehti, S. Roy, and T. Salminen, “Search
for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with
Non-universal Gaugino Masses,” arXiv:0808.3094 [hep-ph].

[107] P. Bandyopadhyay, “Probing non-universal gaugino masses via Higgs boson
production under SUSY cascades at the LHC: A detailed study,”
arXiv:0811.2537 [hep-ph].

[108] T. Hahn et al., “CP-violating Loop Effects in the Higgs Sector of the MSSM,”
arXiv:0711.2020 [hep-ph].

[109] T. Ibrahim, “Neutralino decay of MSSM neutral Higgs bosons,” Phys. Rev. D77
(2008) 065028, arXiv:0803.4134 [hep-ph].

[110] A. G. Akeroyd, “Searching for a very light Higgs boson at the Tevatron,” Phys.

Rev. D68 (2003) 077701, arXiv:hep-ph/0306045.

[111] D. K. Ghosh, R. M. Godbole, and D. P. Roy, “Probing the CP-violating light
neutral Higgs in the charged Higgs decay at the LHC,” Phys. Lett. B628 (2005)
131–140, arXiv:hep-ph/0412193.

[112] P. Bandyopadhyay, A. Datta, A. Datta, and B. Mukhopadhyaya, “Associated
Higgs Production in CP-violating supersymmetry: probing the ‘open hole’ at the
Large Hadron Collider,” Phys. Rev. D78 (2008) 015017, arXiv:0710.3016
[hep-ph].

[113] P. Bandyopadhyay, “Higgs production in CP-violating supersymmetric cascade
decays: probing the ‘open hole’ at the Large Hadron Collider,”
arXiv:1008.3339 [hep-ph].

[114] LHC/LC Study Group Collaboration, G. Weiglein et al., “Physics interplay of
the LHC and the ILC,” Phys. Rept. 426 (2006) 47–358, arXiv:hep-ph/0410364.

[115] G. A. Moortgat-Pick, H. Fraas, A. Bartl, and W. Majerotto, “Polarization and
spin effects in neutralino production and decay,” Eur. Phys. J. C9 (1999)
521–534, arXiv:hep-ph/9903220.

[116] G. Moortgat-Pick, K. Rolbiecki, J. Tattersall, and P. Wienemann, “Probing CP
Violation with and without Momentum Reconstruction at the LHC,” JHEP 01
(2010) 004, arXiv:0908.2631 [hep-ph].

[117] G. Moortgat-Pick, K. Rolbiecki, and J. Tattersall, “Momentum reconstruction at
the LHC for probing CP- violation in the stop sector,” arXiv:1008.2206

[hep-ph].

[118] M. A. Gigg and P. Richardson, “Simulation of Finite Width Effects in Physics
Beyond the Standard Model,” arXiv:0805.3037 [hep-ph].

[119] C. F. Uhlemann and N. Kauer, “Narrow-width approximation accuracy,” Nucl.

Phys. B814 (2009) 195–211, arXiv:0807.4112 [hep-ph].



Bibliography 205

[120] D. Berdine, N. Kauer, and D. Rainwater, “Breakdown of the Narrow Width
Approximation for New Physics,” Phys. Rev. Lett. 99 (2007) 111601,
arXiv:hep-ph/0703058.

[121] N. Kauer, “Narrow-width approximation limitations,” Phys. Lett. B649 (2007)
413–416, arXiv:hep-ph/0703077.

[122] N. Kauer, “A threshold-improved narrow-width approximation for BSM
physics,” JHEP 04 (2008) 055, arXiv:0708.1161 [hep-ph].

[123] D0 Collaboration, V. M. Abazov et al., “Search for Higgs bosons decaying to τ
pairs in pp̄ collisions with the D0 detector,” Phys. Rev. Lett. 101 (2008) 071804,
arXiv:0805.2491 [hep-ex].

[124] G. Cacciapaglia, A. Deandrea, and S. De Curtis, “Nearby resonances beyond the
Breit-Wigner approximation,” Phys. Lett. B682 (2009) 43–49, arXiv:0906.3417
[hep-ph].

[125] CTEQ Collaboration, H. L. Lai et al., “Global QCD analysis of parton structure
of the nucleon: CTEQ5 parton distributions,” Eur. Phys. J. C12 (2000)
375–392, arXiv:hep-ph/9903282.

[126] Tevatron New Phenomena and Higgs Working Group Collaboration, D. Benjamin
et al., “Combined CDF and D0 upper limits on MSSM Higgs boson production
in tau-tau final states with up to 2.2 fb-1,” arXiv:1003.3363 [hep-ex].

[127] The CDF Collaboration, “CDF Note 9071: Search for Neutral MSSM Higgs
Bosons Decaying to Tau Pairs with 1.8 fb−1 of Data,” (2008) (see
http://tevnphwg.fnal.gov).

[128] The D0 Collaboration, “D0 Note 5740: Search for MSSM Higgs Production in
Di-tau Final States with L = 1.8 fb−1 at the D0 Detector,” (2007) (see
www-d0.fnal.gov).

[129] The TEVNPH Working Group for the CDF and D Collaborations, “D0 Note
5980 / CDF Note 9888: Combined CDF and D upper limits on MSSM Higgs
boson production in tau-tau final states with up to 2.2 fb1 of data,” (2009) (see
www-d0.fnal.gov).

[130] CDF Collaboration, T. Aaltonen et al., “Search for Higgs bosons predicted in
two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV proton-
antiproton collisions,” Phys. Rev. Lett. 103 (2009) 201801, arXiv:0906.1014
[hep-ex].

[131] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams,
“HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from
LEP and the Tevatron,” Comput. Phys. Commun. 181 (2010) 138–167,
arXiv:0811.4169 [hep-ph].

[132] J. R. Ellis, J. S. Lee, and A. Pilaftsis, “LHC signatures of resonant CP violation
in a minimal supersymmetric Higgs sector,” Phys. Rev. D70 (2004) 075010,
arXiv:hep-ph/0404167.



Bibliography 206

[133] A. Pilaftsis, “Resonant CP violation induced by particle mixing in transition
amplitudes,” Nucl. Phys. B504 (1997) 61–107, arXiv:hep-ph/9702393.

[134] A. Pilaftsis, “Higgs scalar-pseudoscalar mixing in the minimal supersymmetric
standard model,” Phys. Lett. B435 (1998) 88–100, arXiv:hep-ph/9805373.

[135] J. R. Ellis, J. S. Lee, and A. Pilaftsis, “Resonant CP violation in MSSM Higgs
production and decay at gamma gamma colliders,” Nucl. Phys. B718 (2005)
247–275, arXiv:hep-ph/0411379.

[136] J. R. Ellis, J. S. Lee, and A. Pilaftsis, “Resonant CP violation in Higgsstrahlung
at an e+ e- linear collider,” Phys. Rev. D72 (2005) 095006,
arXiv:hep-ph/0507046.

[137] J. R. Ellis, J. S. Lee, and A. Pilaftsis, “Diffraction as a CP and lineshape
analyzer for MSSM Higgs bosons at the LHC,” Phys. Rev. D71 (2005) 075007,
arXiv:hep-ph/0502251.

[138] S. Y. Choi, J. Kalinowski, Y. Liao, and P. M. Zerwas, “H / A Higgs mixing in
CP-noninvariant supersymmetric theories,” Eur. Phys. J. C40 (2005) 555–564,
arXiv:hep-ph/0407347.

[139] W. Bernreuther, A. Brandenburg, and M. Flesch, “Effects of Higgs sector CP
violation in top quark pair production at the LHC,” arXiv:hep-ph/9812387.

[140] J. Bernabeu, D. Binosi, and J. Papavassiliou, “CP violation through particle
mixing and the H - A lineshape,” JHEP 09 (2006) 023, arXiv:hep-ph/0604046.

[141] R. M. Godbole, S. Kraml, S. D. Rindani, and R. K. Singh, “Probing
CP-violating Higgs contributions in gamma-gamma -¿ f anti-f through fermion
polarization,” Phys. Rev. D74 (2006) 095006, arXiv:hep-ph/0609113.

[142] S. Y. Choi and J. S. Lee, “s-channel production of MSSM Higgs bosons at a
muon collider with explicit CP violation,” Phys. Rev. D61 (2000) 111702,
arXiv:hep-ph/9909315.

[143] E. Asakawa, S. Y. Choi, and J. S. Lee, “Probing the MSSM Higgs boson sector
with explicit CP violation through third generation fermion pair production at
muon colliders,” Phys. Rev. D63 (2001) 015012, arXiv:hep-ph/0005118.

[144] H. K. Dreiner, O. Kittel, and F. von der Pahlen, “Disentangling CP phases in
nearly degenerate resonances: neutralino production via Higgs at a muon
collider,” JHEP 01 (2008) 017, arXiv:0711.2253 [hep-ph].

[145] O. Kittel and F. von der Pahlen, “CP-violating Higgs boson mixing in chargino
production at the muon collider,” JHEP 08 (2008) 030, arXiv:0806.4534
[hep-ph].

[146] S. Y. Choi, D. J. Miller, 2, M. M. Muhlleitner, and P. M. Zerwas, “Identifying
the Higgs spin and parity in decays to Z pairs,” Phys. Lett. B553 (2003) 61–71,
arXiv:hep-ph/0210077.

[147] R. M. Godbole et al., “CP studies of the Higgs sector,” arXiv:hep-ph/0404024.



Bibliography 207

[148] R. M. Godbole, D. J. Miller, 2, and M. M. Muehlleitner, “CP Asymmetries in
Higgs decays to ZZ at the LHC,” J. Phys. Conf. Ser. 110 (2008) 072024,
arXiv:0708.3612 [hep-ph].

[149] H. E. Haber, “Spin formalism and applications to new physics searches,”
arXiv:hep-ph/9405376.

[150] T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein, and S. Willenbrock, “SM and
MSSM Higgs boson production cross sections at the Tevatron and the LHC,”
arXiv:hep-ph/0607308.

[151] J. S. Lee et al., “CPsuperH: A computational tool for Higgs phenomenology in
the minimal supersymmetric standard model with explicit CP violation,”
Comput. Phys. Commun. 156 (2004) 283–317, arXiv:hep-ph/0307377.

[152] A. Dedes and S. Moretti, “Effect of large supersymmetric phases on Higgs
production,” Phys. Rev. Lett. 84 (2000) 22–25, arXiv:hep-ph/9908516.

[153] S. Dawson, A. Djouadi, and M. Spira, “QCD corrections to SUSY Higgs
production: The Role of squark loops,” Phys. Rev. Lett. 77 (1996) 16–19,
arXiv:hep-ph/9603423.


