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Abstract

Complete one-loop results are presented for neutralino and Higgs decay
processes of the form x{ — XA, and he — XJX7 in the MSSM with CP-
violating parameters. An on-shell renormalisation scheme is developed
for the chargino—neutralino sector that consistently takes into account
imaginary parts arising from complex parameters and absorptive parts
of loop integrals. The genuine vertex contributions are combined with
two-loop Higgs propagator-type corrections to obtain the most precise
prediction currently available for this class of processes. In the CP-
violating CPX benchmark scenario, the corrections to the neutralino
decay width are found to be particularly large — of order 45% for a
Higgs mass of 40 GeV. We find that in this unexcluded parameter re-
gion, which will be difficult to cover by standard Higgs search channels
at the LHC, the branching ratio for the decay Y3 — xVh; is large.
This may offer good prospects of detecting such a light Higgs boson
in cascade decays of supersymmetric particles. We also study the full
Higgs production and decay processes in scenarios where the interme-
diate Higgs bosons are nearly mass degenerate and interference effects
can have a significant impact. We find that an on-shell approximation
gives results in good numerical agreement with the full momentum-
dependent Higgs propagator matrix calculation and we develop a gen-
eralised narrow width approximation to be used in such a situation. We
use these methods to study the asymmetry between the production of
left-handed and right-handed neutralinos in Higgs decays at the LHC
in the presence of CP-violating phases. Large asymmetries are found to
be possible for large My+ 2 500 GeV and tan 3 S 10, where the decay
into neutralinos may be the only possibility to detect the heavy Higgs

bosons.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) of Particle Physics is one of the most successful theories of
the 20th Century. It elegantly describes the elementary particles and their strong, weak
and electromagnetic interactions in terms of the gauge group SU(3)¢ x SU(2);, x U(1)y,
and has led to solid experimental predictions, which have been confirmed with extraor-

dinary and ever-increasing precision over the last few decades.!

So far the only particle of the SM that has not been seen at colliders is the Higgs
boson. This hypothetical scalar particle is a prediction of the Higgs mechanism, incor-
porated into the SM as a way of spontaneously breaking electroweak symmetry. The
Large Electron Positron Collider (LEP), in operation at CERN until 2000, excluded
the existence of a SM Higgs boson with a mass, My, of up to 114.4 GeV at the 95%
confidence level [2]. The Tevatron at Fermilab has since excluded the mass region of
158 < My < 175 GeV [3-5]. One of the major goals of the new Large Hadron Collider
(LHC) at CERN, which began colliding proton beams in late 2009, and is designed to
eventually reach a centre of mass energy of 14 TeV, is to shed light on the mechanism of
electroweak symmetry breaking (EWSB), for which many popular models contain one or
more Higgs boson(s). It has been shown that searches at the LHC for a SM Higgs boson
should be sensitive to the whole theoretically motivated mass region [6]. We discuss the

Higgs mechanism in more detail in the next section.

Many excellent books have been written on the SM and gauge theories. See eg. Ref. [1] for a review.
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1.1.1 The Higgs Mechanism in the Standard Model

The Higgs Mechanism was proposed in the 1960s as a way of explaining the gauge boson
masses through spontaneous electroweak symmetry breaking [7-11]. If one explicitly in-
troduces mass terms for the W and Z bosons into the SM Lagrangian, the Lagrangian is
no longer gauge invariant under the electroweak symmetry group SU(2);, x U(1)y, and
the renormalisability of the SM is no longer guaranteed. In the Higgs mechanism, mass
terms are generated by spontaneously breaking the symmetry of the vacuum, while the
underlying Lagrangian remains gauge invariant. There are many excellent books and
reviews about the Higgs Mechanism (see eg. Refs. [1,12,13]). Below we give a brief

overview as a means of introducing notation.

One introduces a scalar SU(2);, doublet, written as

sy = ). (1)
#(a)

The Lagrangian for this scalar is chosen to be
Ls = (Do) Do — 1”6’ — A(6¢)%. (1.2)
The gauge invariance of the kinetic term is ensured by using the covariant derivative,
Dy, = 8, — igW,, — ig'ysBy, (1.3)

instead of 0,.2 Here, g = e/sy and ¢’ = e/cy are the SU(2);, and U(1)y couplings
respectively, e is the electromagnetic coupling, and we have adopted the abbreviations
sw and ¢y for the sine and cosine of the weak mixing angle, fy,. The U(1)y charge of the
scalar is given by y, = Q¢>_T$7 where ), is its electromagnetic charge and Tg’ is the third
component of its weak isospin. B, is the U(1)y gauge field and W, (i = 1,2,3) are the
SU(2)y, gauge fields, where W, = UZ'WZL /2, and o; are the Pauli matrices. The physical

*Note that this formula assumes the SM sign convention for the covariant derivative. Later in this
thesis, we will use the MSSM convention, where D, = 0, + igW,, + ig'ysB,.
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gauge boson fields, W=+, Z, and A,, are then derived from W* = (W}! FiW?)/v/2 and
po “p 1 p n 1

WS B Cw Sw Zﬂ (1 4)
B,u —Sw Cw A“

For A > 0 and p? < 0, the second and third terms of Equation (1.2) make up the
“Mexican Hat” Higgs potential, V, which has an infinite set of degenerate minima,

¢o(x), all with energy Vy = —Av?/4 and non-zero vacuum expectation value,

[(O@ol0)| =1/ 5 = —%&- (1.5)
Once a particular ground state is chosen, such as

_ 0 1.6
¢0($)—ﬁ o (1.6)

the electroweak SU(2)p, x U(1)y symmetry is spontaneously broken to the electromag-
netic subgroup U(1)ey,. This means that while the underlying Lagrangian is fully gauge
symmetric, the vacuum ground state is not. We parameterise ¢(x) in terms of excitations

with respect to this non-trivial vacuum, as,

el %Gi (z) 0

V2 v+ H(x)

P(z) = (1.7)

Here, the four degrees of freedom of the complex scalar doublet have been written in
terms of four real scalar fields, 6;(z) (i = 1,2, 3) and H(x). Since the Lagrangian is locally
SU(2) gauge invariant, 6;(z) can be rotated away by a gauge transformation, without
loss of generality. These three fields are the would-be massless Goldstone bosons which

provide the longitudinal degrees of freedom for the W and Z bosons.

Expanding the kinetic term of the Lagrangian in terms of the physical fields we obtain,

1 1
(Do)D" = OO H + Mg, W, Wt 4 §M§ZMZ“ + gMy HW, W

2 2
g 9 ot —ti+ g 2

+——M;HZ 7"+ =HW W™+ =——H*Z 7", 1.8
Qe L 4 ” 8¢z, a (1.8)
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The first term in Equation (1.8) is a kinetic term for the scalar H(x), the Higgs boson.

The second and third terms are mass terms for the W+ and Z bosons, where

My =29 pm,=29

- 1.
5 2o (1.9)

We see that it is the non-zero vacuum expectation value, v, of the neutral component
of the Higgs doublet which gives rise to the gauge boson masses. The values of v and
cw are fixed by the experimental values of My, and M. Note that the electromagnetic
symmetry U(1)_  remains intact; the photon, A,, is exactly massless. The remaining
terms of Equation (1.8) contain three- and four-point interactions between the Higgs
boson and the massive gauge bosons. Expanding the Higgs potential in terms of the
physical fields results in the following,

Vo= —%”4 + v AH? + \WH? + %H“. (1.10)
The first term in Equation (1.10) is the minimum energy, V5. The third and fourth terms
are Higgs cubic and quartic self-interactions. The second term is the mass term for the

scalar Higgs boson, where,
My = V2 v = /=242, (1.11)

Thus, the two parameters of the Higgs potential, i and A, can be conveniently reparam-

eterised in terms of My and v, where My is, as yet, undetermined by experiment.?

Note that the fermion masses can also be generated by allowing Yukawa interactions

between the fermions and the Higgs doublet, ¢(x), described by Lagrangian,

Ly = —ya (@, d)r ¢(z) dr = yu (@,d) ¢ (2) up — ye (7, €)1 $(w) g + hoc. (1.12)

for each generation of fermions, where ¢%(z) = ige¢*(z) and h.c. denotes the Hermitian

conjugate. Here y,4, v, and y. are Yukawa couplings, (u,d);, and (7., €) are the quark

and lepton SU(2) doublets respectively and fr are the SU(2) singlets. Once Equation

3Nevertheless, there are theoretical reasons to expect the Higgs mass to be at the electroweak scale.
Requiring the SM to remain valid up to the grand unification scale, A ~ 10'6 GeV, without the intro-
duction of new physics, results in a theoretically motivated mass region of 130 GeV S My S 180 GeV
(see Refs. [13,14] for details). We shall see in the next section, however, that there are indeed theo-
retical motivations for introducing new physics below this scale which can alter this prediction. Some
new physics models predict a Higgs mass of even less than 130 GeV (see Section 2.2). Electroweak
precision data also favours a light Higgs boson (see eg. Refs. [15,16]).
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(1.12) is rewritten in terms of the physical fields after spontaneous symmetry breaking,

fermion mass terms arise, with m; = ysv/ V2, along with fermion interactions with the
physical Higgs field, H(z).

1.1.2 Limitations of the Standard Model

Despite the tremendous successes of the SM, it is well known that it cannot be the
ultimate theory of everything. Perhaps most notably, it only contains three of the four
fundamental interactions, making no attempt at a quantum theory of gravity. For inter-
actions at the electroweak energy scale, My ~ O(10%) GeV, which is the scale probed by
current particle physics experiments, gravity is many orders of magnitude weaker than
the other forces and does not play a significant role. However, at much higher energies,
near the Planck scale, Mp; ~ O(10'%) GeV, gravitational and quantum effects become
equally important. Therefore, the SM is widely viewed as a low-energy effective theory,
which can only be valid up to Mp;. At or below this energy scale, a more complete
and fundamental theory is expected to replace the effective theory. Discussed below are
further motivations for physics beyond the SM (BSM), which may manifest at energies
much lower than Mp,, perhaps accessible at the LHC.

Perhaps the most often discussed motivation is the so called Hierarchy Problem of the
SM. This is a question concerning the naturalness of the coexistence of the electroweak
and Planck scales, where My, < Mp,. If there is no new physics between these scales
then one must consider the cut-off scale, A, of the SM to be Mp;. This becomes a
problem, in particular, when quantum corrections to the Higgs mass are considered.
These corrections turn out to be quadratically divergent, so that M3 ~ A? ~ M3,
Divergences in quantum field theories are routinely dealt with using a procedure known
as renormalisation, which we will discuss in detail in Chapter 3. So long as the Higgs
mass is a free parameter, as it is in the SM, its bare value can be chosen to cancel with
the quadratic divergences to give a finite physical value. However, in order to achieve
a physical Higgs mass at the electroweak scale, an extreme, perhaps “unnatural” fine
tuning of some 30 orders of magnitude is required between the bare Higgs mass and the
quadratically divergent corrections, and different amounts of fine tuning are required at
different orders of perturbation theory. This means that the Higgs mass is extremely
unstable and sensitive to quantum corrections. The only way to stabilise the Higgs mass

seems to be to introduce new physics at a scale well below this.
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This instability problem is unique for scalar masses — the corresponding mass correc-
tions for fermions and gauge bosons in the SM turn out to be protected from quadratic
divergences by symmetries. However, corrections to the Higgs mass driven by Planck
scale physics are indeed a problem for the entire theory, since all sectors of the SM are
affected by elecroweak symmetry breaking. The discovery of a Higgs boson would hence

instantly beg the question of what new physics allows its mass to be stabilised.

Another problem of the SM is that it contains no viable candidate for Dark Matter
(DM), which astrophysical and cosmological data suggest makes up about 23% of the
Universe (see Ref. [17] for a review). Many BSM models predict hypothetical particles
which may help to explain DM.

Furthermore, the SM does not allow the unification of its three fundamental forces into
one single interaction, in the form of a Grand Unified Theory (GUT). If one uses the
renormalisation group equations to extrapolate the behaviour of the three fundamental
coupling constants, agy, aw and ag, up to high energy scales, they cannot be made
to coincide without the introduction of some new physics between the electroweak and

GUT scales [18].

Another compelling motivation for BSM physics is the observed baryon asymmetry of
the Universe. Big Bang Cosmology gives rise to the prediction that matter and anti-
matter should have been created in equal amounts in the early Universe. Yet today the
Universe is mostly made of matter. In order to explain this observation, the Sakharov
conditions require the existence of interactions which are not symmetric under the com-
bination of charge conjugation (C) and parity inversion (P), at least at the extreme
energies after the Big Bang [19]. Yet there is not enough CP-violation in the SM to

explain such a large asymmetry.

The above motivations, together with many other shortcomings of the SM which we
will not discuss further here, illustrate that, while the discovery of a SM-like Higgs bo-
son at the LHC could complete the so far remarkably successful SM, there are many
reasons to believe this will not be the whole story. One popular BSM physics model is

supersymmetry, which will be our focus for the remainder of this thesis.
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1.2 Supersymmetry

1.2.1 A symmetry between fermions and bosons

Supersymmetry is a symmetry between bosons and fermions, whereby a group generator,
Q, transforms fermions into bosons, Q|f) = |b), and bosons into fermions, Q[b) = |f).*
If exact supersymmetry existed in Nature, then every SM particle would have a super-
symmetric partner with all the same properties except its spin, which would differ by
half an integer. The scalar partners of SM fermions are known as sfermions, while the
fermionic partners of the gauge bosons and Higgs bosons are known as gauginos and
higgsinos respectively. Since no supersymmetric partners have ever been seen at collid-
ers, we know that if supersymmetry exists in Nature, it must be a broken symmetry, so

that the masses of the partners are, in general, much larger than their SM counterparts.

In the context of developing a more fundamental theory of Nature, supersymmetry is
interesting because it is the unique extension of the direct product of a gauge symmetry
with the Poincare group [24]. Also in this context, demanding local gauge invariance
of supersymmetry transformations can lead to (non-renormalisable) theories involving
gravity. Indeed, many attempts to unify gravity with the SM involve string theories,
which may even demand supersymmetry, but experimental hints of these theories are
not required until energies close to Mp, [25]. However, there are several motivations for
finding supersymmetry at the TeV energy scale explored by the LHC, as we discuss in

the next section.

1.2.2 Motivations for low-energy supersymmetry

In order to explain why many believe that supersymmetry may be found at the energies
accessible at the LHC, we first return to the Hierarchy Problem. The quadratically
divergent quantum corrections to the Higgs mass in the SM arise from self-energy loops
containing fermions. The offending term® takes the following form in the limit p? — A2,

where p is the loop momentum,;

D9~ —ARA? (1.13)

4There are many excellent books and reviews on the topic of supersymmetry. See eg. Refs. [20-23].
°See Ref. [20] for its derivation.
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where Ay is the coupling. In supersymmetric extensions of the SM, for every such fermion
loop diagram, there is a corresponding sfermion diagram, with coupling A #, which results

in a quadratically divergent term of the form
zj‘;” ~ ApAZ (1.14)

Notice that the sfermion terms come with a plus sign while the fermion terms come with

a minus sign. Thus the quadratic divergences cancel if the coupling factors are equal,
A2 =\ (1.15)

as they are in a supersymmetric theory. In fact, the complete quantum correction to the
Higgs self-energy from fermion and sfermion loops cancels if the masses of the fermion

and its superpartner exactly coincide;
= m? (1.16)
f . .

This would only be true for exact supersymmetry. As discussed in the previous section,

if supersymmetry exists in Nature, then it is broken, and we assume
2 2 2
my=my+ A° (1.17)

In order not to introduce any new sources of quadratic divergences, we assume “soft”
supersymmetry breaking, in which the relations between dimensionless couplings remain
unchanged. Moreover, the remaining corrections can be kept “acceptably small” if we
assume A ~ O(TeV). There are further reasons to expect the masses of the superpart-

ners to be at the TeV scale, as we will discuss below.

Realistic realisations of supersymmetric theories often contain the assumption of R-
parity conservation, in order to avoid rapid proton decay. SM particles and Higgs bosons
are assigned an R-parity of 1, while their supersymmetric partners are assigned an R-
parity of —1. If R-parity is conserved, then an even number of supersymmetric particles
must always appear at a vertex. Thus a given supersymmetric particle cannot decay
into purely SM particles, rendering the lightest supersymmetric particle (LSP) stable
and hence a natural DM candidate. Furthermore it has been shown that the LSP relic
density can be made to coincide with the favoured range for the cold DM relic density
if the mass of the LSP, Mjgp, is less than around 1TeV (see eg. Ref. [26]).
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It has also been shown that the unification of the strong, weak and electromagnetic
couplings is possible if the masses of the supersymmetric particles are close to the TeV
scale [18]. Thus, each of the above motivations for BSM physics is consistent with

supersymmetry being present at the energy scales accessible at the LHC.

1.2.3 Supersymmetry and Higgs physics at colliders

In the previous sections we have provided motivations for why Higgs bosons and super-
symmetric particles are prime candidates for new physics that could be discovered at
the LHC. In this thesis we will explore cases where the searches for Higgs bosons and

supersymmetric particles are very much linked and should go hand-in-hand.

While in the SM, Higgs physics is determined by a single parameter, My, we will see
in the next chapter that Higgs phenomenology is very much enriched in supersymmet-
ric theories. In the Minimal Supersymmetric Standard Model (MSSM), the spectrum
contains five physical Higgs bosons, the properties of which may differ significantly from
those of a SM Higgs boson. At lowest order the neutral Higgs bosons of the MSSM
are CP-eigenstates, so that there are two CP-even Higgs bosons, h and H, a CP-odd
Higgs boson, A, and two charged Higgs bosons, H*. Higher-order contributions in the
MSSM Higgs sector yield large corrections to the masses and couplings, and can also
induce CP-violation, so that mixing can occur between h, H and A in the general case

of complex parameters.

If the mixing between the three neutral mass eigenstates, denoted h;, hs and hg, is
such that the coupling of the lightest Higgs boson, hy, to gauge bosons is significantly
suppressed, this state can be very light without being in conflict with the exclusion
bounds from the Higgs searches at LEP [2,27] and the Tevatron [28]. In the CPX
benchmark scenario [29] an unexcluded region remains in which M, ~ 45 GeV and
tan 3 ~ 7 [27] (see also Ref. [30] for a recent reevaluation with improved theoretical
predictions). This unexcluded parameter region with a very light Higgs boson will also
be difficult to cover at the LHC with the standard search channels [31-33]. We will show
in this thesis, however, that there may be good prospects to detect such a light Higgs

boson in cascade decays of supersymmetric particles such as neutralinos.

Decays of Higgs bosons into supersymmetric particles can also be phenomenologically im-

portant at the LHC, and may extend the discovery reach for heavy Higgs bosons [34-37]
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(see eg. Refs. [38,39] for a discussion of the parameter region in which only the light
CP-even MSSM Higgs boson can be discovered with the standard search channels). The
decay processes of heavy Higgs bosons into supersymmetric particles, if accessible, can
provide important information about the properties of the decaying particles. We will
explore the possibility of measuring an asymmetry in the polarisation of the super-
symmetric particles produced in the decay of Higgs bosons, in order to determine the
existence of CP-violation in the MSSM. In this study, we will come across scenarios
where two or more of the three neutral Higgs bosons are nearly mass degenerate. This
can lead to an enhancement or suppression of the Higgs production and decay processes
due to interference between the Higgs bosons, a phenomenon which obviously does not

occur in the SM where there is only one Higgs boson.

For most of this thesis, we will focus on the Higgs and neutralino—chargino sectors of the
complex MSSM. We will obtain complete one-loop corrections to the processes where

a neutralino decays into a Higgs boson, ¥} — )Z?ha, and where a Higgs boson decays
0

into two neutralinos, h, — X; )2?, and explore the phenomenology of these decays in the

context of Higgs physics at the LHC.

1.3 Thesis Outline

In Chapter 2 we lay out our notation for the MSSM with complex parameters. In Chapter
3 we explain how higher-order corrections involve divergent loop integrals which must be
dealt with using renormalisation. We describe in detail our renormalisation prescription
for the gauge and Higgs sectors and the electric charge. In Chapter 4 we develop an on-
shell renormalisation scheme for the chargino—neutralino sector that consistently takes
into account imaginary parts arising from complex parameters and absorptive parts of
loop integrals. In Chapter 5 we evaluate the one-loop corrections to the f(?f(?ha vertex
and combine these with two-loop Higgs propagator-type corrections to obtain precise

predictions for the processes X! — X?hd and h, — )2?)29. In Chapter 6 we show numerical

0
J

particular on the CPX scenario. In Chapter 7 we compute the branching ratios for

results for the decay of a neutralino into a light Higgs boson, ¥? — x%h,, focusing in
this process and discuss the prospects for covering the “CPX hole” using the decay
X3 — XVhi. In Chapter 8 we show numerical results for the decay of a heavy Higgs
boson into a pair of neutralinos, focusing in particular on the effect of CP-violating

phases on the decays into polarised neutralinos. In Chapter 9 we study interference
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effects in the production and decay of nearly mass degenerate Higgs bosons, developing
a generalised narrow width approximation. In Chapter 10 we study asymmetries in the
polarisation of neutralinos produced in the processes bb, gg, WW — h; — X9X3 at the
LHC. In Chapter 11 we will conclude.



Chapter 2

The Complex MSSM

2.1 The Minimal Supersymmetric Standard Model

In this thesis, we will consider the Minimal Supersymmetric Standard Model (MSSM),
the simplest supersymmetric extension of the SM with R-parity conservation and soft
SUSY breaking. Table 2.1 shows the field content of the MSSM. Each SM field is placed
in a supermultiplet with a superpartner, indicated by a tilde, which differs in spin from
the SM particle by a half. The spin-1/2 fermions (quarks and leptons) each have spin-0
scalar partners (squarks and sleptons), and the spin-1 gauge bosons (gluons, W and B
bosons) each have spin-1/2 gaugino partners (gluinos, winos and binos). There are also

spin-1/2 higgsino partners for the spin-0 Higgs doublets.

While the SM has only one Higgs doublet, the MSSM requires two Higgs doublets,
‘H1 and Hs, in order to give masses to both the down- and up-type quarks without the
use of the Hermitian conjugate of the Higgs field as in Equation (1.12), which would
break supersymmetry. In addition, having two Higgs doublets ensures the cancellation of
gauge anomalies and quadratic divergences. As in the SM, EWSB uses up three degrees
of freedom, so the eight degrees of freedom contained in the two complex Higgs doublets
result in five physical Higgs bosons. The supersymmetric partners to the Higgs fields
are the four spin-1/2 higgsinos, 713, ﬁg, }33 and 71;, contained in the two corresponding
SU(2) doublets. In terms of the physical particle content of the MSSM, EWSB allows
particles with different quantum numbers to mix with each other. For example, the
charged winos and charged higgsinos mix, resulting in two “charginos”, labelled )ZfQ.
Similarly, the neutral bino, wino and higgsinos mix, resulting in four “neutralinos”, la-

belled )2(1]727374.

12
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Chiral supermultiplets: spin 0 spin | (SU(3)c, SU(2)1,, U(1)y)
squarks and quarks Q | (ar, JL) (ur,drp) (3,2, %)
D | dj di (3.1.%)
sleptons and leptons L | (7,ér) (v,er) (1,2,—3)
E &, el (1,1,1)
higgs and higgsinos Hy | (Y, hy) | (R, h7) (1,2,—3)
Vector supermultiplets: spin 3 spin 1 | (SU(3)c, SU(2)1, U(1)y)
gluinos and gluons g g (8,1,0)
winos and W-bosons Wt Wwo | wt wo (1,3,0)
binos and B-boson B B (1,1,0)
Table 2.1: The field content of the MSSM
The MSSM Lagrangian consists of the following main parts;
‘CMSSM - Ckin. + ‘Csuperpot. + ‘Csoft + Egauge—ﬁx. + Lghost- (2]-)

The kinetic terms for each of the fields are contained in Ly, , while Lgauge—fix. and Lgnost
are the terms involving gauge-fixing and Faddeev-Popov ghosts respectively. The super-
potential terms contained in Lgperpot. are the mass terms and interaction terms which
respect supersymmetry. The terms which break supersymmetry are contained in L.
There has been much discussion in the literature about possible mechanisms for su-
persymmetry breaking. However, in the MSSM, no particular supersymmetry breaking
model is assumed. Rather, Ly is the most general parameterisation of the supersym-
metry breaking terms which keep relations between dimensionless couplings unchanged

so that no quadratic divergences result.

A careful count reveals that the MSSM has 105 new parameters, in addition to the 19
of the SM, which appear as masses, mixing angles and CP-violating phases [40]. A large
number of these parameters arise from allowing intergenerational mixing in the sfermion
sectors. In this work, we assume minimal flavour violation, setting these parameters
to zero so that the only flavour violation comes from the Cabibbo-Kobayashi-Maskawa

(CKM) matrix in the SM. This leaves us with 41 independent parameters (see Equation
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(2.43)), 12 of which are CP-violating phases. We discuss these phases in more detail in
Section 2.6. In the following sections, we lay out our notation for the various sectors of
the MSSM at tree level.

2.2 The Higgs sector at tree level

For the Higgs sector of the complex MSSM, we follow the notation of Ref. [41]. The

Higgs potential is written as

VH = m%HﬁHh + m%H;ZHQZ — eij(m%QHquj + m%Q*HfZng) (22)

1 * * 1 *
+§<92 +¢'*)(H;Hy; — HyHy)® + 59,2‘H1iH2i‘2-

This potential contains all the terms from Lgyperpot. and Leog, which involve Higgs fields

only, where H; = (H; Hp)T, i,j = 1,2 are summed over and €2 = 1. Here, m? is
2

defined by m? = m? + |u|?, where m? are real coefficients from Lyog. mi, = |mf2|ei¢m§z
is a potentially complex coefficient from L. As we show in Section 2.6 that the CP-

violating phase, ¢,,2 , can be rotated away, we treat m2, as real in the following.

It can be shown that one can choose a minimum for the Higgs potential for which the
vacuum expectation values, (0|h]0) and (0|h;|0), are both zero, while (0|h9|0) = v; and
(0|h2|0) = v, are both real and non-zero, leading to spontaneous electroweak symmetry
breaking. We can hence parameterise the two Higgs doublets in terms of excitations

with respect to this ground state;

+ 5(p1—i
w, o~ [T 2.3

—¢1
+
Hy = & € : (2.4)
v + %@52 +ix2)

where ¢ is a possible relative phase between the two doublets. Expanding the Higgs
kinetic terms in terms of this parameterisation, one finds the mass terms for the W=

and Z bosons;

1 1
Miy = Sg*(vf +03), M =c(g° +9") (0] +03). (2.5)
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The photon remains massless. Three of the eight degrees of freedom from the two com-
plex Higgs doublets have been used to give longitudinal components to the gauge bosons
via the Higgs mechanism. One can expand the Higgs potential in this parameterisation,

and write the result in terms of powers of the fields;

VH = ... T¢1¢1 - T¢2¢2 - TX1X1 - TX2X2
b1
1 o 1 T
+§(¢1 b2 X1 X2) Mggyy + §(¢1 by ) Mgz g+ N (2.6)
X1 2
X2

We see that there are linear (tadpole) and bilinear (mass) Higgs terms. There are also
3- and 4- point interactions between Higgs and gauge bosons, which we do not list here.

The values for the tadpole coefficients are given by

1
Ty = —V2(m3vi — cos&m?y|vs + Z(gQ +¢'%)(v] — v3)w), (2.7)
1
Ty, = —V2(m2vy — cos &|m3y vy — Z(g2 +¢"%)(v7 — v3)va), (2.8)
v .
TXl = _TXQU_Q = \/§SIH§‘mf2|v2' <29)
1

Mgy 1s a real, symmetric 4 x 4 mass matrix with elements given by

Moo, = mi+ (6" + )30 —03), (210)
My, p, = My,s, = —cosEmi, — %(92 + ¢ )orvs, (2.11)
Moy = mi+ 36" + )3 — o}), (212
Moy = Moyy, = Myyp, = Myyg, = 0, (2.13)
My, = M, =sinémi,, (2.14)
Mgy = My,4, = —sin&mi,, (2.15)
My = mi+ 36+ 003 — ) (216)
M, = M, =—cosémi,, (2.17)
Myns = 3+ (67 + 9263~ 03), (215)

4
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and M+ ,+ is a Hermitian 2 X 2 mass matrix with elements given by

Myge = mi+70%3 =) + 103 +4d), (219)
Myzye = —eigmé—%gavlvg, (2.20)
Mgy = —e_’fm%z—%g'%lvg, (2.21)
Myge = md+ 3008 — ) + 30203 + ) (222)

The conditions for minimising the Higgs potential require that the tadpole coefficients,
T, 6,x1,x2» and the phase between the Higgs doublets, &, are all equal to zero. Diagonal-
ising Mgy, and M=+ under these conditions leads to the physical mass eigenstates,

which are a rotation from the above parameterisation as follows;

h —sina  cosa 0 0 01
H cosa  sina 0 0
- %2 , (2.23)
A 0 0 —sinf, cosp, X1
G 0 0 cos 3, sinf, X2
H* —sin 3. cos (3. *
= 2 2 ", (2.24)
G* cos 3. sin 3, 5

where «, 3, and . are mixing angles. The CP-even Higgs bosons are the lighter A and
the heavier H, while A is the CP-odd Higgs boson, and G and G* are the would-be
Goldstone bosons. The null entries in the 4 x 4 mixing matrix above come about because
the Higgs sector at lowest order contains no complex parameters. Hence at tree level
there is no CP-violating mixing between the neutral Higgs bosons — the mass eigenstates
coincide with the CP-eigenstates. It turns out that the Higgs sector can be described at
tree level by two parameters; these can be chosen to be the mass of the CP-odd Higgs

boson, M4, and the ratio of the Higgs vacuum expectation values, tan 3, where

tan § = vy /vy. (2.25)
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The remaining neutral Higgs masses can be expressed at tree level® as,

1
{mi, m3} = 3 (m?4 + Mz F \/(mi1 + M2)? — 4m?* M2 cos? 26) (2.26)

and the tree-level charged Higgs mass can be written,
mye = m4 + Mg, (2.27)

It turns out that the mixing angles (3, and [. coincide with (3, due to minimisation of

the Higgs potential.? The remaining mixing angle, o, is given by

_ 2 M2 :
a = arctan (my + M) sin B cos 3 , T ca<o. (2.28)

2 02 2 o2 2
M7 cos? 3 + m7 sin® 3 —m;, 2

If one uses the above equation for the neutral Higgs masses, one obtains the prediction
that the lightest Higgs boson mass is less than the Z boson mass, m? < M%. This value
is obviously excluded by Higgs searches at LEP, but it is only a tree-level prediction.
Loop corrections turn out to be very important in the Higgs sector. For instance, the
contribution from loops involving the Yukawa coupling of the top quark can be of order
100%. Including these corrections up to two-loop order in the Feynman-diagrammatic

approach gives an upper bound on the lightest Higgs mass of around 130 GeV [42—-46].

Also in the context of loop corrections, note that, while the Higgs sector is CP-conserving
at tree level, since it contains no complex parameters, complex parameters from the
sfermion and gaugino sectors can enter the Higgs sector at the loop level. Then the CP-
eigenstates, h, H and A, are no longer mass eigenstates. They can mix via loop diagrams
which contain complex parameters. In the real MSSM, where there is no CP-violation,
the CP-odd Higgs boson, A, does not mix with the other neutral Higgs states and its
mass is therefore a convenient input parameter. However, in this thesis, we will consider
the complex MSSM. Thus, following Ref. [41], we do not use M4 as an input parameter
for C’P-violating scenarios; rather, we use the mass of the charged Higgs boson Mg+ as

input, along with tan 3.

!Note that throughout this thesis, we will always use a lower-case m to denote a tree-level mass and
an upper-case M to denote a loop-corrected or physical mass.

2However, in our renormalisation scheme, discussed in Chapter 3, tan 3 receives a counterterm, while
OB and 3. are just mixing angles and are not renormalised. Thus in expressions depending on tan G,
and tan 3. we keep this dependence until the renormalisation has been carried out, after which tan g,
and tan 8. may be set to tan 3.
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2.3 The chargino—neutralino sector at tree-level

At tree level, the physical chargino states, )Zii, (1 = 1,2), are Dirac spinors constructed
from the mass eigenstates of the 2 x 2 complex mass matrix, X, which reads, in the

wino-higgsino basis,

M. 2 My sin

V2Myy cos 3 Iz

where M, and p are the wino and higgsino mass parameters, respectively. The mass
matrix is diagonalised by two 2 x 2 complex unitary matrices, U and V, where U* XV =

diag(mg+, my+). Hence the Born Lagrangian for charginos reads:

Lys = X; W0y —wr(U XV —wr(VXTUT) )X (2.30)

where wr/, = 3(1 %+ 75), ¥ = ¥"pu, X; is the chargino spinor, with g = (x;)1".
Similarly, the neutralinos x?, (i = 1,2, 3,4) are Majorana spinors constructed from mass
eigenstates of the 4 x 4 complex mass matrix, Y, which reads, in the (E,W3, ﬁg, ﬁg)

basis:

M1 0 —Mzcﬁsw Mzsﬁsw
0 M. Mycge —Myssc
v 2 ZCpew ZopBCW (2.31)
—MZcBSW MzcﬁCW 0 — U
MzsgSW —MzsgCW —u 0

where ) is the bino mass parameter and we adopt the abbreviations cg = cos 3 and
sg = sin . Due to the Majorana nature of neutralinos, only one 4 x 4 complex unitary
matrix, NN, is required to diagonalise Y, where N*Y Nt = diag(micf,mig,mig,mig).

Hence the Born Lagrangian for neutralinos reads:

1= . -
Lyo = 5Xi (#0i; — wi(N YNT)y; — wr(NYTNT);)X5- (2.32)
Besides parameters from other sectors, the masses and mixings of neutralinos and
charginos can thus be described by three independent input parameters, M;, M, and
. If all three parameters are real, then U and V' can also be chosen to be real, while

each of the rows of N can be chosen to be purely real or purely imaginary such that all
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neutralino masses are positive. In the complex MSSM, however, the input parameters
My, My and g of the chargino—neutralino sector can be chosen to be complex. In this

case the elements of U, V and N will have both real and imaginary parts. We write
My = [M;|e'®, My = | M|z, = |p|e’®". (2.33)

However, we will show in Section 2.6 that only two of the three phases, ¢y, ¢a, and

¢,, are physical, while the other can be rotated away.

2.4 The sfermion sector at tree level

At tree level, the physical squark and charged slepton states, fl, fQ, are the mass eigen-

states of a 2 X 2 complex mass matrix, which reads in the ( fL, fR) basis for each flavour,

M? +m?2 + M2 cos26(I1 — Qs> me X5
M — L f z Bls — Qysw) [ (2.34)
my X M]%R + m3 4+ M cos 20 Qg sy
with
Xp= Ay — p {cot 5, tan 8} (2.35)

where cot 3 applies for the up-type massive fermions, f = u, ¢, t, and tan § applies for the
down-type fermions, f = d,s,b,e,u, 7. The soft supersymmetry breaking parameters
introduced in the sfermion sector are M7 and MJ%R, which are real, and the trilinear

coupling Ay, which can be complex. We write the latter as
Ap = |Agle™s. (2.36)

We will not consider processes involving sfermions as external particles. However, the
sfermion sector will be important for higher order corrections. The phase ¢4, plays a
large role in the Higgs sector, particularly for loops involving the supersymmetric part-
ners of the heavy third-generation SM fermions, ¢,b, 7, where the term m;X; appears
in couplings of sfermions to Higgs bosons. It also plays a role in the neutralino sector at

one-loop level.

The mass matrix M; is diagonalised by a 2 x 2 complex, unitary matrix, Uy, where
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U};MfU} = diaug(m};1 , mﬁ), where mjy < mj . The bilinear part of the Born Lagrangian

for squarks and charged leptons then reads,

L= —GLibvput [ 7). (2.37)

2

Since there are no right-handed neutrinos in the SM, the three sneutrinos in the MSSM

have masses dependent only on Mg, tan 0 and SM parameters;
2 o 1.5
MZ = M; + §MZ cos 203. (2.38)
The Born Lagrangian for sneutrinos is

L;= -0 M. (2.39)

2.5 The gluino sector at tree level

The bilinear part of the Born Lagrangian for the gluino is given by
1o
Ly=—59Msg (2.40)
where M3 is the gluino mass parameter, which can be complex and is written;
My = | Ms|e*™s. (2.41)

The gluino mass, mg, is given by |M;z|. We will not consider any processes involving
gluinos as external particles. Gluinos only couple to coloured particles, so only enter
higher order corrections in the Higgs and neutralino sectors at the two-loop level. These

parameters, M3 and ¢,y,, can play a large role in Higgs sector phenomenology.

2.6 CP-violating phases

From the previous sections, there are fourteen parameters in the MSSM that can, in
principle, take complex values; My, My, M, pu, mi, and Ay for f =wu,d,c, s, t,b,e,u, 7.

However, not all of the corresponding CP-violating phases are physical; two of them
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can be rotated away by a redefinition of fields. To show how this works we extend the
procedure of Ref. [47] to allow independent phases for each of the gaugino masses and

trilinear couplings.

We perform two U(1) transformations; a Peccei-Quinn transformation (PQ) and an
Ry transformation. Under a general U(1) transformation, quantities are multiplied by a
factor €’ where 6 is the rotation angle and ¢ is the U(1) charge. We define the trans-
formations of the parameters, M;, A;, mi, and u, such that the Lagrangian remains
invariant. The U(1) charges of the MSSM parameters and fields under PQ) and R, are
given in Table 2.2.

M; | Ay m%Q | H; F 6
qprqQ 0 0 -1 -1 1/2 —1/2 0
Gy | -1 |1 0 | 1] 0| 1 |-1/2

Table 2.2: The charges of the parameters, My 23, Ay, m%?) and pu, the Higgs supermultiplets,
Hi 2, the (s)quark and (s)lepton supermultiplet combinations, F' = QU,QD, LE,
and the Grassman superspace coordinate, 8, under PQ and Rs transformations.

We choose to make an R, transformation with angle ¢, on each of the parameters and
fields, followed by a PQ transformation with angle ¢,,2 . This has the following effect

on the phases of the parameters.

{Bus Oarys Pty Pty P2, s Py}
I Ra(ons,)
{0 + Ors Oary — Otz 0, Orty — Oty Pz, P, — Oty }
L PQ(¢p2,)
{6+ Orr, — Oz, Oty — Oty 0, bty — iy, 0, G4 — Gy } (2.42)

The phases of M, and m?2, have thus been rotated away. The remaining phases and
fields are redefined to absorb ¢, and ¢,,2 . If we attempt further U (1) transformations
by angles ¢, Py ¢ OF @a,, we find that no more of the phases can be absorbed.
However, we could have equally chosen ¢y, or ¢, instead of ¢y, for the angle of the
Ry transformation. This is just a matter of convention. Thus, in total, there are 12

independent CP-violating phases in the MSSM, which we choose to be ¢, dary, ¢, and
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Ga, for f=wu,d,c s,t,be pu,T.

Theoretically, these 12 phases may be arbitrarily large, providing new sources of CP-
violation which could help to satisfy the Sakharov conditions required to explain the
observed baryon asymmetry of the Universe. However, experimental limits on electric
dipole moments (EDMs) of atoms and neutrons already place rather stringent con-
straints on new sources of CP-violation beyond the single phase of the CKM matrix in
the SM [48-60]. Large phases in the trilinear couplings for the first two generations of
sfermions are only allowed experimentally if these generations are very heavy or if large
cancellations occur. The constraints on the third generation trilinear couplings are much
weaker. The higgsino phase, ¢,, is quite tightly constrained in the convention where
O, 1s zero. Ref. [59] not only provides a review of all of these constraints, but also
gives a detailed study of how large cancellations can occur among various combinations
of the CP-violating phases, such that the predicted EDMs still satisfy the experimental
constraints. This leaves open the possibility of large phases for both the gaugino mass
parameters and the trilinear couplings of the third generation of sfermions, which we
will allow in some of the scenarios we study in this thesis. We will always set the phases

of the trilinear couplings for the first and second generations of sfermions to zero.

2.7 Parameters and benchmark scenarios

In order to specify a scenario in the complex MSSM, we require input values for the

following 41 real parameters;

‘Ml‘a |M2‘7 |M3|7 ‘:u|7 MqiLu MlL7 MfR7 ‘Af‘v tanﬁ, ¢M17 (sza (b,uu ¢Af (243)

where i = 1,2, 3 labels the quark generation, [ = e, u, 7 and f =e,u, 7,u,d,c,s,t,b. As

in the SM, we must also specify a Higgs mass value; My=+ being the most convenient.?

The large number of parameters above is mostly due to our ignorance of the mecha-
nism of soft supersymmetry breaking. In practice, some universality assumptions are
often made at the GUT scale in order to reduce the number of parameters to a more

manageable size, sometimes inspired by models which attempt to describe supersym-

3We do not include My« in the list of Equation (2.43) since it belongs in the parameter count of the
SM, in which a Higgs mass value must also be specified.
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metry breaking. The corresponding low-energy MSSM parameters listed in Equation
(2.43) are then determined from the renormalisation group running of the GUT scale
parameters down to the weak scale. In this thesis, we will instead use benchmark points
and scenarios defined directly in terms of the low-energy MSSM parameters listed in
Equation (2.43). Often these scenarios will have features which are inspired by the
supersymmetry breaking models. For example, in many of our scenarios we assume a

common gaugino mass at the GUT scale, resulting in the relation,

5 SWw 2
My =—-|—| M 2.44
=5(2) (2.44)

at the weak scale. We will also usually assume that the first and second generations of
sfermions have common mass parameters and trilinear couplings. When we assume that
that the first, second and third generation of sfermions all have common mass parame-

ters, we will denote these as My, = Mj, = Msusy.

The specific scenarios studied in this thesis are given in Table 2.3. We will consider in par-
ticular the standard Higgs phenomenology scenarios, including the CPX scenario [29]%,
the small a.g scenario [61] and the M scenario [61,62]. As already discussed, the
CPX scenario is particularly interesting because CP-violating effects give rise to an
unexcluded parameter region with a light Higgs boson. The CP-conserving small g
scenario makes for an interesting comparison to the CPX scenario since it also has very
large values for |Af| and p. The M;™ scenario is a CP-conserving scenario often used
in the literature for reporting on experimental bounds for Tevatron and LEP and the
discovery potential at the LHC. In addition to the standard Higgs phenomenology sce-
narios, we also consider the standard set of SPS points [63], using as input the agreed

low-energy values taken from Ref. [64], as shown in Table 2.3 for SPS1a.

We furthermore investigate a specific case of a CP-conserving scenario giving rise to a
very light X9, inspired by a recent study [65] which showed that very light neutralinos
are not ruled out by experimental data. Here the GUT relation in Equation (2.44) is
relaxed, allowing M; to be chosen such that the lightest neutralino is approximately

massless using,

M, = My M2 sin 23s%,

- . 2.45
uMy — M2 sin 23¢%, (2.45)

“The value for |Ay| given in Table 2.3 is an on-shell value that is slightly shifted from the DR value
specified in Ref. [29] (see also Ref. [30]).
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For our study of decays of Higgs bosons into neutralinos in Chapters 8 and 10, we use
a scenario found in the literature to have a large number of H, A — Y9x5 events at the
LHC [35]. We denote this scenario, “4L.1”, which corresponds to “Point 1” in Ref. [35].
We will also consider a slightly modified scenario, “4L1b”, with lighter squarks and a
large trilinear coupling. In Chapter 4 we will consider the scenario, “CPV1”, as an

example where both decays, ho3 — Y9%) and Y3 — t; are kinematically open.

We always use a top quark mass of m; = 172.4 GeV. We use a running bottom quark

mass, my(m;) = 2.734 GeV, (see Ref. [66]), except where indicated otherwise.
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Scenario: CPX small aeg Mprax light ¥{ | SPSla | 4L1 | 4L1b | CPV1
| M| Eq.2.44 | Eq.2.44 | Eq.2.44 | Eq.2.45 | 99.1 90 90 100
| M| 200 500 200 400 192.7 | 200 | 200 | 200
| M| 1000 500 800 1000 | 595.2 | 1000 | 1000 | 1000
| ] 2000 2000 200 600 352.4 | 500 | 500 | 500
Msusy 500 800 1000 500 - - - -
M, - - - - 495.9 | 1000 | 500 | 500
Mio1, - - - - 539.9 | 1000 | 500 | 500
M, - - - - 195.8 | 250 | 250 | 300
M1, - - - - 196.6 | 250 | 250 | 200
M;r - - - - 428.8 | 1000 | 500 | 500
Myr - - - - 516.9 | 1000 | 500 | 500
M. r - - - - 133.6 | 250 | 250 | 300
Myer - - - - 521.7 | 1000 | 500 | 500
Mysr - - - - 519.5 | 1000 | 500 | 500
Mg - - - - 136.2 | 250 | 250 | 200
| At el 900 - - 1000 | 510.0 0 1000 | 1200
| Ap, 5.4l 900 | Ayl | Ay 1000 | 772.7 0 1000 | 1200
|Ar el 900 | Ayl | Ay 1000 | 254.2 0 1000 | 1000
X - -1100 2000 - - - -
On,y 0 0 0 0 0 0 0 0
O, /2 0 0 0 0 0 0 0
o 0 0 0 0 0 ™ ™ 0
ba,,. /2 7r 0 0 T 0 0 /2
Pagy s s 0 0 0 s 0 0 0
tan 3 var var var 20 10 20 20 20
M+ var var var - - - - 850
My - - - 500 393.6 | 500 | 500 -

Table 2.3: Definition of scenarios in terms of the low-energy MSSM parameters. All parame-
ters with mass dimension are given in GeV. “var” denotes a parameter which we
will specify as required. We give nominal values for the phases, but will vary these
when we study CP-violating effects. Where X, is given instead of |A¢|, then |4, is
evaluated from |X; 4 p* cot B|. For some CP-conserving scenarios, we choose M+
such that M4 agrees with the values in the literature. ¢4,, , denotes the phase of
the first and second generation sfermion trilinear couplings, which we always set
to C’P-conserving values.



Chapter 3

Renormalisation of the M SSM

3.1 Regularisation and renormalisation

Much of this thesis will be concerned with higher order corrections in the MSSM.!
Observables are evaluated using the Feynman-diagrammatic approach, in which higher
order corrections to a tree-level process are obtained by computing Feynman diagrams
involving one or more loops. These loop calculations involve tensor integrals over the
loop momentum.? At the one-loop level, each tensor integral can be reduced down to a
finite set of scalar integrals, via a procedure known as Passarino-Veltman Reduction [69].
Such integrals are often ultra-violet (UV) divergent; i.e. they diverge as the loop mo-
mentum gets arbitrarily large. In order to deal with these UV divergences, we employ a

two step process, comprising regularisation and renormalisation.

Regularisation is the procedure by which we express divergences in such a way that
they are well-defined and can be isolated from the rest of an expression. One method
often used in the SM is dimensional regularisation, in which the computation is extended
to D = 4 — e dimensions, where ¢ is small and set to zero after the renormalisation pro-
cedure. Divergences then take the form of poles in (D — 4). Dimensional regularisation
is convenient in the SM because it preserves Lorentz and gauge invariance. However,
since it does not preserve supersymmetry, dimensional reduction is often used instead
in the MSSM. Here, while the loop integrals are evaluated in D dimensions, the fields
are evaluated in four dimensions, allowing supersymmetry to be preserved up to at least
two loop order [70,71].

IFor excellent reviews of higher order corrections in the SM, see Refs. [67, 68].
2See Appendix A.1 for the definitions of the loop integrals used in this thesis.

26
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Renormalisation is the procedure by which the divergences, after having been isolated
by regularisation, are systematically absorbed by a consistent re-identification of the free
parameters and fields. The UV divergent bare parameters and fields which appear in the
Lagrangian are interpreted as unphysical. A counterterm is required for each quantity
in order to obtain a UV finite, physical result. The renormalised parameter or field, a
or qB, is obtained from the bare parameter or field, a or ¢, and its counterterm, da or

02, as follows;

a = a+da,

b = ¢(1+%5Z¢). (3.1)

Therefore, to obtain the counterterm for a vertex involving this field or parameter at
tree level, one should replace the bare parameter or field in the Lagrangian with the

physical (renormalised) parameter and the counterterm;

a — a+da,

gb — ¢+%5Z¢¢) (32)

Note that once this replacement has been made, it is customary to drop the hat from the
renormalised quantity on the right. The value of the counterterm depends on the choice
of renormalisation scheme. There are a number of schemes used in the literature. In the
minimal subtraction (MS) scheme, used in conjunction with dimensional regularisation,
only the divergent parts of the integrals, poles in (D — 4), are included in the countert-
erm. The MS scheme is a slightly modified scheme in which the constant, (log4r — vg),
which arises alongside poles in (D — 4) in these integrals (see Appendix A.1), is also
absorbed into the counterterm. The DR scheme is similar to the MS scheme except it
is used in conjunction with dimensional reduction, and is hence suitable for the MSSM.
Another popular scheme for both the SM and MSSM is the on-shell scheme, in which

physical masses are identified with the poles of the loop-corrected propagators.

In practice, for our calculations we have made use of the program FeynArts, allow-
ing automated generation of the Feynman diagrams and amplitudes [72-74]. In con-
junction, we have utilised the packages FormCalc and LoopTools for the calculation of
matrix elements and the reduction and numerical evaluation of loop integrals [75]. For

regularisation we use constrained differential renormalisation [76], a scheme available
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in FormCalc which has been shown to be equivalent to dimensional reduction at the

one-loop level [75].

While the MSSM model file which comes with FeynArts contains all the fields and
vertices of the MSSM, it does not contain any counterterms, leaving it up to the user
to choose and implement a renormalisation scheme. We have therefore supplemented
the model files available in FeynArts with our own counterterms for the parameters and
vertices. Arriving at a consistent renormalisation prescription for the complex MSSM
was one of the major tasks of this thesis, so the rest of this and the next chapter will
be devoted to describing our scheme in detail. In this chapter we describe the one-loop
renormalisation of the gauge sector, the electric charge and the Higgs sector. In the fol-
lowing chapter we describe our renormalisation prescription for the chargino—neutralino
sector, which was worked out for the first time in this thesis for the general case of

complex parameters.

3.2 One-loop renormalisation of the gauge sector

For the gauge boson sector, we follow Ref. [67], since this scheme was already imple-
mented into FeynArts for the SM in a way that is easily generalised to the MSSM. The
main difference to be noted between the SM and MSSM is the sign convention for the
covariant derivative, which is given by D, = 0, + igwu +i9'ysB,, in the MSSM. This
results in the replacement sy, — —sy in the corresponding Feynman rules. In Ref. [67],

the parameters are renormalised with the following transformations;

M2 — M2+ 0M32, (3.3)
M2, — M} 4 MG, (3.4)
Sw — Sw + 55W, (3 5)
Cw — Cw + 5CW. (3 6)
Using
M2
sty =1--% (3.7)

2
M,
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we see that dsy and dey can be derived from dMZ and M3,

c? M2 SM?E s
Ssy = zZ _ W d ey = —Lssy. 3.8
SW 2$W ( M% M‘%V an CW CW SW ( )

The gauge fields are renormalised as

1
WE - (1+ 5<5ZWW)Wi (3.9)
and
Z B 1+162,, 1674, Z | (3.10)
v 16Z,, 1416z, ~

In the Feynman gauge, the renormalised one-particle irreducible (1PI) two-point vertex

functions for gauge fields, V, V' = W, Z, v, are given by
0 () = —igu (0" = M) +iS) (7) (3.11)

where p is the incoming momentum and 2}\;\/ '(p) is the self-energy evaluated at p. The
hat notation is used to denote renormalised quantities. Each gauge-boson self-energy

can be expressed in terms of its transverse part, 7, and its longitudinal part, X%;

Pubv \ & Pubv &
) = — (g0 = 252 ) S00) - 222547, (312)
The renormalised self-energy is related to the unrenormalised self-energy by
-l !/ / ]_ ]_ /
SV () = S5 (0) — 0 [ 07 = ME)OZyvs + 267 = ME)SZyoy = 5MESVV. (313

To obtain the renormalisation constants at one-loop order we apply on-shell conditions.

Firstly, the propagators should have unity residues;
: 1 RaTVV v :
lim ——Re VY (p)e(p) = —ieu (1), (3.14)

where €(p) is the polarisation vector. Secondly, the v and Z should not mix for on-shell

external particle momenta;

Re 172 (p)e” (p)lyrmrsz = 0 = Re 172 (p)e” (p) | 2—o- (3.15)
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Finally, the physical mass, My, should correspond to the real part of the pole of the

propagator, or, equivalently, the zero of the corresponding 1PI two-point vertex function;
Re )Y (p)e” (p)]pe—arz = 0. (3.16)

In the above expressions, Re takes the real part of the loop integrals appearing in a self-
energy but not of the mixing matrix elements or parameters appearing as coefficients
of the loop integral. (See Appendix A.2 for a discussion of the relationship between
15;:3, ﬂ;l, Re and Im.) As shown in Appendix A.2, Re will coincide with the usual “Re”
if all parameters are real. Otherwise, imaginary parts of loop integrals resulting from
absorptive effects can appear with imaginary coefficients and thus contribute to the real
part of the self-energy. For the SM and the MSSM with real parameters, since the only
potential source of imaginary coefficients is the quark mixing matrix, which we set to
unity, Re may be replaced by Re everywhere. In the complex MSSM, there may be
parameters from other sectors with non-zero phases which can enter the gauge boson
self-energies as coefficients to loop integrals. However, in general, we will not consider
scenarios where the SUSY particle masses are lighter than the gauge boson masses,
so their loop integral contributions to the self-energies will not have absorptive parts.?
The contributions from SM particles will contain absorptive loop integrals, but, without
imaginary coefficients, these will not contribute to the real parts of self-energies. Thus,
Re may be replaced by Re in the expressions above even for the complex MSSM. We
leave the notation as it is above in order to agree with the FeynArts SM file, which is
based on Ref. [67]. The renormalisation conditions lead to the following values for the

renormalisation constants;

0Zyy = —Re (S}V) (M), (3.17)

2Re X7 (M2) 2Re ©77(0)
02z M2 . 02z, M (3.18)
SM2, = Re SWW(M2) and 0M2 = Re 4% (M2), (3.19)
where we have introduced the notation ¥'(k?) = agg;?) |p2—k2.

3The light neutralino scenario, given in Table 2.3, has a Y mass well below the W and Z masses,
so will give an absorptive contribution to their self-energies. However, the coefficient appearing in
front of this particular loop integral happens to be real even in the complex MSSM.
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3.3 Charge renormalisation

The electric charge, e, is related to the electromagnetic coupling constant, a = e,
via €2(0) = 47 (0), where a(0) = 1/137.0359895 is taken from experiment [28]. Tt is

renormalised with the transformation
e(0) — e(0)(1462.), (3.20)

where 07, is fixed by the renormalisation condition that the electric charge coincides
with the full eey coupling for on-shell external particles, u(p), in the limit of zero photon

momentuin;

a(p) T4 (p, p) w(p)lpemmz = u(p) (i €(0) 7,) ulp). (3.21)

The full eey coupling, IA“Z”, consists of the corresponding loop-corrected vertex function
together with the wavefunction renormalisation constants. Applying Equation (3.21) as

in Ref. [67], one finds that
1 Sw
0Z, = —=(0Z,, — —0Zz,)
2 Cw

_ Iy BT 32)

where I, (0) = azg}f’ |x2—0 is the photon vacuum polarisation. One needs to be careful
about how one computes II,(0), as it contains a logarithmic dependence on the fermion
masses. The leptonic contribution can be evaluated from the known lepton masses, while
for the hadronic contribution the quark masses are not well-defined input parameters
since non-perturbative strong interaction effects dominate in this low energy regime.
One option, used in the default settings of FormCalc, is to deliberately choose the quark

masses as effective parameters to produce the “correct” value of II,(0).

Instead of using this effective approach, we use A« as an input parameter, where

a(M%) - 1 (i(OA)Oz

(3.23)
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includes the running of the electromagnetic coupling induced by the light fermions,

resummed to all orders, with
Aa = Ay + Aay), = —Re [P (M2) — Re I1"(M2). (3.24)

The hatted quantity lil7 is UV-convergent and is given by

Re ¥, (M7)
M

Re IT,(M2) — I1,(0). (3.25)
The abbreviations lept and had refer to the contributions from the leptons, e, u, 7, and
from the five light quarks u, d, c, s, b, respectively. We use the three-loop value of Aaye, =
0.031498, calculated in Ref. [77]. We use the recent literature value of Aa}(li)d = 0.02758,

which was derived from experimental data in Ref. [78].

One can then rearrange the expression for 07, such that it depends on A« instead of

the light fermion masses;

1 sw222(0) 1 A 1
5Ze = ZT1.(0 heavy oW ZRell M2 light A
9 'Y( ) + cw M% + 9 e 'Y( Z) + ) o

(3.26)

where IL, (0)"¢®*¥ is the photon vacuum polarisation, including only heavy particles (i.e.

not the light fermions e, i, 7,u, d, ¢, s, b).

In our calculations, it is appropriate to use the electric charge, e(M%) = /4mwa(M32),

defined at the electroweak scale, where

e(0) = e(M2)V1 — Aa = e(M2)(1 — % +...). (3.27)

By using e(M2%) as input instead of e(0), we effectively shift the large-logarithmic part
of the one-loop correction to the electromagnetic coupling, a(M3%), into the tree-level
result. At the one-loop level, these parameterisations are equivalent. The bare coupling

should be independent of the parameterisation chosen;

e(M2)(1+ 62M2)) = e(0)(1 + 62.). (3.28)
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Hence, the A« included in the tree-level coupling should be compensated with a A« in

the counterterm for e(My);

e@@ﬂ1+5AM%)::eM@Xl—%?+“)ﬂ+5L)

_ os7MB _ 5y A

S_szz(o)
Cw M%

1 eav 1 7
= §H7(0)h Y4+ +§ReH,Y(M§)lght. (3.29)

) contains no explicit dependence on Aa. All depen-

The resulting expression for 5Z§M%
dence of the electromagnetic coupling on large logarithms involving light fermions has

been factored into a(M2%), which takes Aa as input.

3.4 Renormalisation of the Higgs sector

Higher order corrections in the MSSM Higgs sector are known to be very important,
especially when CP-violation is considered. In the Feynman-diagrammatic approach, the
full one-loop and the leading two-loop corrections to all Higgs self-energies, masses and
mixings, as well as higher-order corrections to further relevant observables are available
in the public code FeynHiggs [41,79-81]. So that we can use this code to supplement
our one-loop corrections with those leading two-loop corrections, we follow the same
renormalisation scheme, given in Ref. [41], almost exclusively. The scheme is already
valid for complex parameters in the MSSM, taking into account possible CP-violating
phases. Since the implementation of this scheme into FeynArts and the consistent
inclusion of Higgs propagator corrections into our calculations both required numerous
checks and derivations to be carried out, we present the renormalisation scheme used in

this work in some detail below.

3.4.1 Tadpoles
Each of the Higgs tadpole terms is given a counterterm as follows;

Thga— Thga+ 0Thma. (3.30)
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Note that the tadpole coefficients in terms of the physical fields, h,H and A, are related
to those in Equation (2.6) via the mixing matrices of Equation (2.23). The tree level
values for the tadpole coefficients vanish due to the minimisation of the Higgs potential.
The renormalisation condition imposed is that the tadpole diagrams should also vanish

at the one-loop order. This results in the following counterterms;

0Th A= —Thmua (3.31)

3.4.2 Field renormalisation

One field renormalisation constant is introduced for each Higgs doublet;
1
His— (1+ 5(5ZH172)H1,2. (3.32)

These are related to the counterterms for the physical fields by

5Zhh = 83(52’)—[1 + Ci(;Z'HQ, (333)
0Zan = 5071, + 50 Zns, (3.34)
5ZhH = saca(éZH2 — 5Z7'(1)7 (335)
5ZAG’ = 8505(527@ - 5ZH1), (336)
82y = 07w, + 82071, (3.37)
5ZGG’ = C%(SZHl + S%(SZHQ, (338)
0Zy-n+ = 3072y, + €30 Zny, (3.39)
5ZG’*H+ = (SZH7G'+ = S,GCB((SZ’HQ — 5Z7-(1), (340)
5ZG—G+ = C%éZHl + 8%5ZH2. (341)
The C’P-violating mixing counterterms are all zero;

5ZhA - (SZHA - 5ZhG - 5ZHG = O (342)

As in Ref. [41], we adopt DR renormalisation for the fields, which leads to,
§ZIR = —Re Tplv (3.43)

870 = —Re odv (3.44)
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where Y/ (p?) = %p]j) and “div” indicates that only the parts of the self-energy that are

proportional to A = 2/(4 — D) — vg + log 47 should be included (see Appendix A.1).
We code this into FeynArts using the built-in FormCalc function UVDivergentPart.

3.4.3 Renormalisation of tan 3
The convention used in Ref. [41] for the counterterm of tan 3 is the transformation
tan f — tan B(1 + dtan ). (3.45)

We will also need counterterms for other trigonometric expressions involving the angle

(. For example, we can derive

s — S+ spcts, (3.46)
g — cz—cgsyotg, (3.47)
ciﬁ — ciﬁ — 353520 013, (3.48)
535 — 535 + 3585203 0L, (3.49)
Cha = Cha — C3SaS28a Ol (3.50)

where we use the abbreviation § tan 3 = dtg, cg = cos 3, sg = sin 3, cop = cos(a + ),
Sap = sin(a + ), cga = cos(f — ), Saap = sin2(a + F) and S, = sin2(f — a). As
already mentioned, the mixing angles, «, (3, and . are not renormalised. Thus, one
needs to be careful that the g appearing in a vertex being renormalised really arises from
the ratio of the vacuum expectation values of the two Higgs doublets and not from the

mixing angles (. or [3,, which are equal to 3 at the tree level, but are not renormalised.

Following Ref. [41], we adopt DR renormalisation for tan 3. The reason this scheme
has been adopted for FeynHiggs is that there is no obvious physical observable to which
tan 3 could be related for an on-shell definition. Furthermore, the scheme has been
shown to yield numerically stable and gauge invariant results at one-loop order [41].

The counterterm for tan 3 in the DR scheme is given by

§ tan PR = %(52% — §ZPR). (3.51)
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3.4.4 Mass parameter renormalisation

The mass matrices Mgy, and M=, + from Equation (2.6) are each given a counterterm

as follows;

Mooy = Magyx + 0Mepgyy (3.52)
M¢:l:¢i d M¢:l:¢i +5M¢:l:¢i. (353)

The resulting transformations on the elements of these matrices lead to mass counter-
terms for the physical fields which can be written entirely in terms of 07}, i 4, 6tz and

dm?,., as follows;

2 2 9 2 2 € 2 2
omy, = Omych, +0Mzs,s + SRy p— (0THCBa550 — 0ThSpa(l + C34))
+5t58ﬁ05<—M3‘82ﬁa + M%SQQI@), (354)
1 e
5m2H = 5(—5m§1325a - 5M582a6) + m(—aTHS%a - 5Thcza)
—0tgspes(Micapa + Mzcaap), (3.55)
2 2 9 2 9 € 2 2
omy = 0myss, +0Myc,s — m(5TH05a(1 + 550) = 0ThSpaCs,)
—5tﬁ8ﬁ05<—Mi82ﬁa + M%SQQﬁ), (356)
2 € 2
o (§Tuss — 0Thesa) — StsM 57
omiyg L ooy OTH8ge = 0Thsa) = 0tsMasacy (3.57)
2 e
= — (=0T, — 07, .
5mG 2MZ$WCW( 5 Hcﬁa 5 tha), (3 58)
e
omi, = ———(—6T4530 3.59
mpa 2MZSWCW< ASp )7 ( )
: e
= —— (6Tucs.), 3.60
My 2M25W0W(5 ACBa) (3.60)
Smi ., = —0mig, (3.61)
Smiy, = 0miy,, (3.62)
(5m%]_G+ = #QSTHSBQ — 5ThCﬁa — iéTA) — 5tﬁM§Ii8ﬁ05, (363)
2M28WcW
e = (mge)’, (3.64)
e
omis = ————(—8Tycsa — 6ThS30). 3.65
M 2M25W0W( HCB hSBa) (3.65)

To fix §m?,., we use the mass of the charged Higgs boson, Mp=, as input, applying the

on-shell renormalisation condition that its value should agree with the real part of the
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pole of the loop-corrected propagator. This leads to
SM7. = Re Sy (M. (3.66)

Note that here Re could equally be replaced with f{é, since the coefficients of the ab-
sorptive parts of the loop integrals which enter the charged Higgs boson self-energy turn

out to be real, even in the MSSM with complex parameters.

3.4.5 Higgs self-energies

The renormalised Higgs self-energies can be expressed in terms of the unrenormalised

self-energies and the renormalisation constants as follows;

= Snn(p®) + 0 Zpn(p* — my) — dmy,
1
= ZhH(pQ) + 5ZhH(p2 - §(mi + mZH)) — 5miH,

= Sun(p®) + 0Zuu(p® — my) — omy,
2

Y44 = Zaa(p?) +0Zaa(p* — m%) — om?,
Sac(p?) = Yac(p?) + 6 Zac (p2 — %mi) — dmie,
Sea(p?) = Sec(p?) +0Zaqp* — dmi,

Sha(P?) = Zpa(p?) — omiy,

> = Be(p?) — dmig,

Su-p+(0?) = Zp-g+(0®) +0Zg-p+ (p* — mys) — 0mis,

Su-o+(0?) = Zu-a+r () +6Zy-c+ (p* — %mfy{i) —om¥y g+,

SG—H+ ) = i;{fm (PQ),

Sa-g+(?) = Sa-a+(p?) + 6 Zg-g+ p* — Im,. (3.67)

We have performed numerous checks on the renormalised Higgs self-energies for UV
convergence. We have also checked that the numerical values of the renormalised
self-energies obtained using the expressions above, in conjunction with FormCalc and
LoopTools, are in agreement with those obtained as output from FeynHiggs at the one-

loop level. This is important since FeynHiggs can also output the two-loop renormalised
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self-energies, which we use later in some parts of our calculations to supplement our one-
loop results. This can only be done when we are certain that the one-loop results and

conventions are in agreement.

3.4.6 Higgs masses

The loop-corrected neutral masses M}, are defined as the real parts of the poles of the
diagonal elements of the 3 x 3 Higgs propagator matrix.* The latter, A,g4(p?), is given

by the inverse of the 3 x 3 matrix of irreducible vertex functions, f‘h ma(p?);

Apa(P®) = —(Cra(®) ™, (3.68)
where

Thia(p?) = i(p*1 — M, (p?)), (3.69)

with the Higgs 3 x 3 mass matrix in the {h, H, A} basis defined as

m? — S~ (p?) ~Sa(p?)
Mn(pQ) = —ihH(pQ) qu - ZA:HH(pQ) _i}HA(pQ) . (3~70)
~Sa(p?) ~Spa?)  mi - Zaalp?)

The 3 x 3 Higgs propagator matrix can be written in terms of its elements as follows;

-1

Apn Apg Apa p?— m% + 2hh(pQ) ZAJhH(pz) ﬁ:hA(p2>
Apg Agn Apa |=1 Sha(p?) P2 —m¥ + Suu(p?) Sra(p?)
Apa Apga Aya Sha(p?) Sia(p?) p? —m% + Saalp?)

(3.71)

4In fact, the 3 x 3 propagator matrix is an approximation to the 6 x 6 propagator matrix which also
includes mixing with the neutral would-be Goldstone boson, GG, the Z boson and the photon. For
the Higgs mass calculation, this has an effect of sub-leading two-loop order less than some other
two-loop effects which are also not taken into account in FeynHiggs. Thus, a 3 x 3 propagator
matrix is used in FeynHiggs. See Ref. [41] for details. In this thesis, we will include the mixing
effects with the G and Z bosons when we perform one-loop vertex calculations involving external
Higgs and/or Z bosons. Here they are a true one-loop effect, although numerically small, so must
be included in a full one-loop calculation. See Section 5.4.
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Evaluating the inverse of IV gives, for the diagonal Higgs propagators (i=h,H,A);

i
P m? o+ ()

Aii(p?) (3.72)
with the effective self-energy, 3¢ (p?), defined to include the usual self-energy plus the
mixing contributions with the remaining two Higgs bosons (labelled j and k, where i, j

and k are simply some permutation of h, H and A and are therefore not summed over);

Sl (?) — $3,:(57) — Z.Zfij(PQ)fjk(PQ)fki(PQ) — L3055 (0°) — T3 (") D (0°)
: Ui (0*)Ter(p?) — T%.(0?)

(3.73)

We identify the poles of the diagonal Higgs propagators of Equation (3.72) with the
physical Higgs masses. The complex pole M? of the propagator Ay is the solution of

M2 —m? + (M2 =0, (3.74)
We write the complex pole as
M} = M} —iMT; (3.75)

where M; is the loop-corrected Higgs mass, and I'; its width. One can solve Equation
(3.74) iteratively to find the loop-corrected mass, M;, in terms of the lowest order mass,
m;, where ¢ = h, H, A. We implemented this iterative method of solving Equation
(3.74) in Mathematica. We evaluated the self-energies at complex squared momentum,

p? = p? +ip?, by using the truncated expansion
£5(0%) = Sy(0]) + 07 (p)). (3.76)

We have checked that the higher order terms in this expansion are numerically small.
These expansions for the individual self-energies are then inserted into the expression for
the effective self-energy in Equation (3.73). We do not expand i]lelﬁ (p*) about p? directly;
instead we expand the individual terms on the right hand side of Equation (3.73) which
gives more numerically reliable results. In contrast to our iterative method of solving
Equation (3.74) directly to find the physical masses, note that FeynHiggs actually uses a
diagonalisation procedure, iteratively finding the eigenvalues of the 3x3 mass matrix M,,,

and then verifying that each eigenvalue is indeed the appropriate solution of Equation
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(3.74). As discussed in the next section, we find agreement between the two methods.

The loop-corrected mass eigenvalues are defined with M, < M}, < Mj,.

3.4.7 Numerical results for Higgs masses in the CPX scenario

As an example, we show numerical results for the Higgs masses evaluated from FeynHiggs
2.6.5 for the CPX scenario defined in Table 2.3. Figure 3.1(a) shows the three neu-
tral Higgs masses, M}, as a function of the on-shell charged Higgs mass, Mpy=, with
tan  fixed at 5.5. We see that arbitrarily small values for the lightest Higgs mass, Mj,
are theoretically accessible for low Mpy=+. For large My+, M), reaches an upper limit
of around 111 GeV in this example. M, and M}, increase with Mpy+ for large Mpy+.
These masses are evaluated at the two-loop level, i.e. they include the complete one-loop
contributions from the full MSSM, along with the leading two-loop corrections available

within FeynHiggs.

Figure 3.1(b) shows the various contributions to the lightest Higgs mass, as a func-
tion of My+, with tan 3 = 5.5. We see that the one-loop mass exhibits a very different
behaviour to the tree-level Higgs mass, emphasising the importance of loop corrections
in the Higgs sector. The most important contribution to the one-loop correction comes

from loops involving (s)top quarks, due to the large top Yukawa coupling.

We have also computed the one-loop Higgs masses using the iterative method described
in the previous section. Our results are in perfect numerical agreement with those
obtained from FeynHiggs. This is true whether we use as input our own one-loop renor-
malised self-energies computed using FormCalc and LoopTools or the one- or two-loop
self-energies obtained from FeynHiggs. Therefore we can incorporate the higher order
corrections available within FeynHiggs with confidence that our schemes and conven-

tions are compatible.

Figure 3.1(b) shows the importance of including the leading two-loop corrections, which

are of O(ayay).5 These can lead to corrections to the one-loop mass of some 10—30 GeV.

®We do not include further two-loop corrections available within FeynHiggs for the MSSM with real
parameters only. For the MSSM with complex parameters, FeynHiggs can provide an interpolated
result for those corrections based on the results for real parameters. However, since this method
does not always give numerically stable results for scenarios with maximal CP-violating phases, like
the CPX scenario, we do not include these further two-loop corrections; we only include the O(a; )
corrections.
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Figure 3.1: (a) Neutral Higgs masses in the CPX scenario with tan § = 5.5, evaluated at the two-loop
level using FeynHiggs 2.6.5, shown as a function of Myz=. (b) Lightest Higgs mass in
CPX scenario with tan 3 = 5.5 evaluated using FeynHiggs-2.6.5, shown as a function
of Mpy+. The plot shows the tree-level mass, the one-loop mass evaluated including
only top quarks and squarks in the loops, the one-loop mass evaluated including all
MSSM particles in the loops and the “two-loop” mass which also includes the O(aza)
corrections.

In practice hereafter, we obtain our Higgs masses directly from FeynHiggs, so as to allow

these important two-loop effects to be included.

3.4.8 Higgs propagator corrections

In the previous section we found the diagonal Higgs propagators to be given by Equation
(3.72). We can also obtain the off-diagonal Higgs propagators from the inverse of IV
(i # 7). These are also momentum dependent, but we have dropped the p? below for
simplicity;

DyTer — T2,k

Ayj= —— e B (3.77)
Dol D + 2050 Dy — D3D% — 0502, — DL

We then find that the effective self-energy from Equation (3.73) can be written in terms
of Higgs self-energies weighted by ratios of the off-diagonal and diagonal propagators as
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follows;

A, (pZ)
Ayi(p?)

iquwziﬁ@%+ﬁjggimw%+ Six(p?). (3.78)

In order to understand which Feynman diagrams these loop-corrected propagators and
their ratios represent, we expand the expressions in terms of the Higgs self-energies
(which are momentum-dependent but again we drop the p? for simplicity) and the tree-
level propagators in a simplified 2 x 2 mixing scenario, where mixing with the third
Higgs boson, k, can be ignored. Then
02 2 ¥
Nii(p*)axa = 5 5 Z (? T fjj) = =y (3.79)
(p* —mi + i) (p* —mj + Xj5) — X
i(D; + %55)
DiD;[(1+ /D) (1 + %53/ D;) — 3% /(D:D;)]
1%, 2 %2

— (= - 2y Ty 1 .
Z(Di D? + s + DD, + O(3 — loop)) (3.80)

where D; = p?> — m?. We show this diagrammatically for Ay in Figure 3.2(a). We see
that Ay (p?) consists of the tree level propagator, i/ D;, at the lowest order. Then at one
loop it includes the diagonal self-energy, Sy, with tree-level propagators, i/D;, either
side. Then at two loop there are two diagrams; one with two diagonal self-energies, S
and three tree-level propagators, i/D;, in between and either side, and one with two
mixing self-energies, i]ij, one propagator i/D; in between and two propagators, i/D;,

either side.

Similarly in the 2 x 2 mixing case, the off-diagonal propagator can be written as

i
ANi(pP)ax2 = = = - - (3.81)
e (P> = m? + S (p? — m? + 3y5) — 33
—i%y
DiD;[(1+ X3/ Di)(1 + X5/ Dy) — % /(DiDy)]

. 2@‘ izyiu 21‘]‘2]‘3‘
= (- 03 -1 3.82

where the lowest order diagram consists of one mixing self-energy, iij, with two propa-
gators, i/D; and i/D; either side, and so on. We show this diagrammatically for A4
in Figure 3.2(b).
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It is also useful to have an expansion of the ratio of propagators in the 2 x 2 mixing

case;
Ay(r®)  _ >
Aii(P?) 22 p* —m5 + Xj;
D," D, D DI
IR 3P 37
— _D] + 2)2” + O(3 — loop). (3.83)

One can think of the diagrams for this ratio as being obtained from the diagrams for
A;;(p?) by “dividing out” the parts of diagrams which start and end on the ith propa-

gator, i/D;, as shown diagrammatically in Figure 3.2(c).

Apg= H . H~NH | H ~H~H _ H A \H e
Tt U OO+ O OB~ loop)
Yyn Sug Y Ypa  Yam

x 2 EnA

()

Figure 3.2: Diagrams for propagator corrections in the simplified 2 x 2 H-A mixing case; (a) the
diagonal propagator, Agg, (b) the off-diagonal propagator, Ag 4, and (¢) the ratio of
propagators, Aga/Apgpy.
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3.4.9 7 matrices for external Higgs bosons

Where possible in the SM, physical fields, ¢;, with the same quantum numbers are usually

|p2,mz = 0 for 7 # j, to ensure that the

fields do not mix on the mass shell of the physical particles at the loop-level. However,

renormalised using an on-shell condition, T';;¢;(p)

in our choice of renormalisation scheme for the Higgs fields in Equations (3.43) and
(3.44), the lowest order Higgs bosons, h, H, A, are not forced to obey such a condition.
Instead the DR renormalisation scheme for Higgs fields was chosen for convenience and
agreement with Ref. [41]. An artefect of this choice is that the loop-corrected states,
hi, ho, hs, are actually mixtures of h, H, A. Therefore, in order to ensure the correct
on-shell properties of Higgs bosons appearing as external particles in physical processes,
and thus a properly normalised S-matrix, one has to use finite normalisation factors, Zij,
to account for the mixing between the Higgs bosons. A vertex with an external Higgs

boson i, (i = h, H, A) has the correctly normalised form;
\ Zi(Ti + ZTj + Zali + ...). (3.84)

Here I'; are the renormalised one-particle irreducible vertices, 7, k are the remaining two
of h, H, A and are not summed over, and the ellipsis refers to the mixing contributions
with the Goldstone and Z bosons. Ignoring the latter for now (see Section 5.4), the
normalisation of the wavefunctions can be expressed in terms of a 3 x 3 non-unitary
matrix Z] \/722% with Z = 1. Rather than using the definition for the 7 matrix
given in Ref. [41], where the self-energies are evaluated at the real part of the complex
poles, M, ia’b’c, we use the method of Ref. [30], which has also been implemented in more
recent versions of FeynHiggs. Here all self-energies in the Z matrix are evaluated at the

complex poles M%a ,.- The 7 matrix elements are chosen such that

limPQHMia 2 M}QLG (Z FhHA ZT)hh Il, (385)
limye e~ M2 (Z -Toua - Z0) gy =1, (3.86)
lime pe  —o M2 (Z-Thua - Z0)an =1, (3.87)

with
L, Vo N ZwZwn N ZnZna Iy
fhb = V ZHZHh V ZH V ZHZHA : 1AﬂH . (3-88)
L. VZsZan N ZaZan Za IV
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The resulting expressions, which we use in our implementation in FeynArts, are

) 1 . 1 . 1
Zh:ﬁ 5 ZH:ﬁ y ZA:ﬁ (389)
op? Apn(p?) p*=M3, op? Apn(p?) pP=M;, Ip? Aaa(p?) p?=M}_
and
. N (p?) . Ag(p?) . Auq(?)
hh\D PM2 HH\D p2:M%b AA\D PG
. A 2 . A 2 . A 2
ZhA — hA(pQ) , ZHA — HA(pQ) , ZAH — AH(pQ) (390)
Am@)&mz &m@)ﬁﬂﬂ AM@)ﬁﬂﬂ
ha hy, he

We choose a = 1, b = 2 and ¢ = 3, but in principle other combinations are possible.
Notice that Zij corresponds to the ratio of propagators described by the diagrams in
Figure 3.2(c), i.e. it describes the transition of the i*" Higgs boson into the ;" Higgs

boson. Also notice that ZZ can be written as

. 1
Zi == W (391)
+ 35 (p?) P2=M3,
where 2/(p?) = 8%22?23 (p?). To see what this represents, we expand the diagonal
Higgs propagator, A;(p*) about the complex mass solution, p* = M? = %a, where
MG = mf + S (MF) = 0;
i
Aii(pQ) = ~
p> = mi + X5 (p?)
- el 1 )
P MET+ (S (M) + 007 — M)
i .
7 ~
— 7
p? — M7 +iM,T;
= APV Z, (3.92)

where the approximation is true if p? ~ M?. Thus, near its pole, A;(p?) can be repre-
sented by a Breit-Wigner propagator, ABW(p?); with mass M; and width T';, weighted

by a normalisation factor, Z:, evaluated at the complex pole.
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Figure 3.3: 7 matrix elements for the lightest Higgs boson in the CPX scenario evaluated at two-loop
level using FeynHiggs 2.6.5 (a) shown as a function of My, with tan 8 = 5.5, and (b)
shown as a function of ¢4,, with tan8 = 7 and My, = 45GeV. (In both cases, M+
was varied as input to produce the displayed variation in Mj,.)

3.4.10 Numerical results for Z matrices in the CPX scenario

As an example, we show numerical results for the Z matrices evaluated from FeynHiggs
2.6.5 for the CPX scenario defined in Table 2.3. Figure 3.3(a) shows the variation in the
Z.1; matrix elements for the lightest Higgs boson as a function of its mass for tan 8 = 5.5.
We see that when My, is less than around 80 GeV, its on-shell composition is a mixture
of the tree-level CP eigenstates, h, H, A, with a particularly large CP-odd component,
|213| ~ 0.9. For larger masses near 111 GeV, the lightest Higgs boson is more SM-like,
with |Zy1| ~ 1.

Figure 3.3(b) shows the variation in the 7 matrix elements for the lightest Higgs boson
as a function of the phase of the third generation sfermion trilinear coupling, ¢4,. As
already discussed, the largest contribution to the Higgs masses and self-energies comes
from the (s)top loops, so this phase plays a very important role both at one- and two-
loop level.5 When this phase is zero or a multiple of 7, the scenario is close to being
CP-conserving (although the non-zero phase of Mj still induces some CP-violation in the

Higgs mass predictions at the two-loop level). Consequently, the CP-odd content of the

6In fact it is the phase of the product A, which plays a large role since the CP-violating effects in
the Higgs sector are most significant for large Im(uAs)/MZ3ygy [29].
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Figure 3.4: The “CPX hole” in the M}, -tan 8 plane (reproduced from Ref. [27]). The light
green (dark green) shows the region excluded by LEP at 95% (99.7%) confidence
level in the CPX scenario with m; = 174.3 GeV.

lightest Higgs boson is small; it will mostly be made up of h and H. However, when ¢4, is
/2, as it is in the CPX scenario, |213| is close to one. This means that the lightest Higgs
boson is mostly made up of the CP-odd neutral Higgs boson, A, which will drastically
change its couplings to other particles. For example, its coupling to vector bosons is
highly suppressed. This reduced coupling to the Z boson is part of the reason for the
“CPX hole”, the parameter region in the Mj,-tan 3 plane where a very light Higgs boson
cannot be excluded by LEP (see Figure 3.4, where we show this unexcluded parameter
region, as determined by the LEP collaborations, reproduced from Ref. [27]). The “CPX
hole” refers to the white region with M}, ~ 40 GeV and tan 3 ~ 4—8. In this region, the
main production process of ete — Z* — Zhy, hih; would have been suppressed due to
the small CP-even content of the light Higgs boson. For a more detailed discussion of the
bounds from Higgs boson searches in this scenario and improved theoretical predictions

for the exact size and shape of the hole, see Ref. [30].

We have checked that our values for the Z matrix elements obtained using Equations
(3.89) and (3.90) agree numerically with those obtained as output of FeynHiggs. In
practice, we use the Z matrix values from FeynHiggs in our code as this allows us to

easily incorporate leading two-loop corrections.
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3.4.11 Comparison of full propagator matrix calculation with

factorisation into production and decay processes

As well as calculations involving Higgs bosons on external legs, where 7 matrix elements
must be used, we will also carry out calculations involving Higgs bosons on internal
parts of diagrams. Here, for a complete result, including all CP-violating effects, the
full momentum dependent, loop-corrected Higgs propagators, A;;(p?), from Equations
(3.72) and (3.77), should be included into the amplitude as follows;

> L ()T, (3.93)
‘7.]‘

where [; are the one-particle irreducible vertices and i,j = h, H, A are summed over.
We have coded this full method into FeynArts and FormCalc for the calculations of the
2 — 2 processes studied in Chapters 9-10, using Equations (3.72) and (3.77) to evaluate

A;j, with the momentum-dependent two-loop self-energies from FeynHiggs as input.

However, in some situations, a good approximation can be found without requiring the
full momentum dependence of the self-energies. If p? ~ M%w then, using Equation

(3.92), we can show that the amplitude in Equation (3.93) can be approximated using

> (Zils + Zif Ty + Zuli) APV (0°) (Zali + Zig T + Zig L) (3.94)
The Breit-Wigner propagator captures the main part of the p? dependence of the prop-
agator near the pole. The self-energies contained in the 7, matrix elements, the mass,
My, and the width, I'y,, are all evaluated for on-shell values of the momenta. If the
internal Higgs boson can be on-shell and the assumptions of the narrow width approxi-
mation, described in Appendix C, apply, we can then factorise the cross-section for the
full process into the separate production and decay of the Higgs boson. We will discuss
this further in Chapter 9.

Another approximation that can be made is to evaluate all self-energies at p?> = 0. In
this case, the Z matrix reduces to a unitary matrix, U, which diagonalises the Higgs
mass matrix, M, (0), of Equation (3.70), evaluated at p? = 0. The U matrix elements
are available as part of the standard output of FeynHiggs, and can be used to obtain

effective couplings to internal Higgs bosons.



Chapter 4

Renormalisation in the

chargino—neutralino sector

In this chapter we describe our scheme for the one-loop renormalisation of the fields and
parameters in the chargino—neutralino sector of the MSSM with CP-violating phases.
A significant number of one-loop calculations have been carried out in the chargino—
neutralino sector of the CP-conserving MSSM with real parameters, see e.g. Ref. [82-89],
with the renormalisation schemes of Refs. [88,90] also applicable for complex parameters.
More recently, CP-odd observables have been calculated at one-loop level in the MSSM
with CP-violating phases, see e.g. Refs. [90-92], but these calculations did not always
require a dedicated renormalisation scheme as the specific observables calculated were
UV-finite.

In order to renormalise the fields and parameters in this sector we introduce counter-
terms and renormalisation constants of a similar form to Ref. [86]. However, we apply
different on-shell conditions for the mass parameters and we extend the formalism to
the general case including CP-violation, properly taking into account imaginary parts
arising both from the complex MSSM parameters and from absorptive parts of loop
integrals. Unlike Ref. [86], we will allow non-zero phases for M; and p, which appear
in the chargino-neutralino sector at the tree level, as well as Ay and Mj, which play a
role in the chargino—neutralino sector at the one-loop level and two-loop level respec-
tively. To supplement the existing FeynArts MSSM model file, which contains tree level
vertices but does not contain any counterterms, we have written an additional model
file which implements the scheme we develop below, along with the renormalisation for
other sectors described in the previous chapter. This implementation will have many

applications for loop calculations in the general MSSM with CP-violating phases.

49
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4.1 Renormalisation transformations

The chargino and neutralino mass matrices, of Equations (2.29) and (2.31) respectively,

each receive a counterterm as follows,
X = X+40X, Y —=Y+93Y, (4.1)

where 0. X and §Y are 2 x 2 and 4 x 4 matrices respectively. Their elements contain three

new renormalisation constants, M, d My and du, defined by the transformations;

M1 — M1+5M1,
M2 - M2+5M27
poo— et op, (4.2)

as well as renormalisation constants from other sectors. Writing out the matrix elements

explicitly, we have

oYy = oM,
0X11 = Y =My,

0X9 = 0Ys3y = 5Y43 = 5,%
6X19 = V26(My, sin ) = OMyy 55 + My sgcsdt
12 — w - \/EMW Weops 3 B
IM2.c
6 X9 = V26(Myy cos = W8 _ M, cps30ts,
21 ( w ﬁ) \/§MW wepoglts
2

oM
5}/14 = 5}/;11 = (5(M28ﬁSW) = (5SWM28ﬁ + QMZ Swsp + SgC%éthWMZ,
Z
M2 5
0Yos3 = 0Yay = 6(Mzycgew) = dewMyceg+ SN, Ve~ cps0tgew My,
Z

M
0Yoy = 0Yao = —6(Mysgew) = —dewMysg — 2MZ cwsg — SgC%(StﬁCWMz,
Z
dM3 )
(53/13 = 5}/:0,1 = —(5(MzclgSW) = —58wMch — SwCp + cﬁsﬁétﬁsWMZ. (43)

2My,

In order to be completely general for the case of CP-violation, we introduce renormal-

isation constants separately for the left and right-handed components of the incoming
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and outgoing fermion fields, as follows,

wrX; — (L4 3625)50wLX; X;wr — X (1+ 1621, 0r,

wrX; — (1+ 3025)wRX; Xiwr — X; (L4 362501,

wrXy = (14 $025)iwr X5, Nwr — V(1 + 3625w,
( )

wR)Z? — (1 + %525% iijjZ‘?a X_ng — )2_?(1 + %525%)1']‘(4}[,, (44)

where j is summed over 1,2 (1,2,3,4) for the charginos (neutralinos).! Note that we
have introduced barred renormalisation constants for outgoing fermions and incoming
antifermions. In the CP-conserving MSSM, one can write down an equivalent renormal-
isation scheme where these are related to the non-barred renormalisation constants for
incoming fermions and outgoing antifermions by a Hermitian conjugate, i.e. one can
make the replacement §Z;; — 5ZZ-T].. For the MSSM with CP-violating phases, we choose

to treat these quantities as independent at this stage, with more discussion to follow.

Inserting the above transformations into the Born Lagrangian of Equation (2.30), and

decomposing fermionic self-energies as
54 (0%) = PwiSl(p%) + YwrSi(p®) + wi S (0P) + wrXi (97, (4.5)
we obtain the renormalised self-energies for the charginos;

1 _

1 _
N5-0%) = B5_(0*) + 5(525 +025)y,
SR (Y = B3R () — [VoxTUT + %VXTUTézR + %5ZLVXTUT]

Zj77 ZJ’

1 1,
SSL(p?) = u3b (pQ)—[U*éXVTJr§U*XVTéZf+§5ZI_%U*XVT],~j. (4.6)

vJ,—

!The renormalisation constants for incoming and outgoing )Z:F fields can be obtained from the outgoing
and incoming field renormalisation constants for y; . We define the field renormalisation in terms
of x; in order to agree with the MSSM model file in FeynArts.
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Similarly, using Equation (2.32), we obtain the renormalised self-energies for the neu-

tralinos;
. 1 -
She") = THo®) + 50075 + 02,
A 1 _
Sh0") = To?) + 50725 +0Z5)y,

. 1 1
L5007 = T’ — INOYINT + oNYINTSZ3 + S0 ZgNY N,

~ 1 1 -
SR%) = SPh(%) — [NTOYNT 4+ 5J\J*YJW(SZOL + 5cszg%z\f*yz\ﬁ]ij. (4.7)
The renormalised two-point vertex functions for neutralinos and charginos are given by
I5 %) = iy = mi)dy +i85(°) (48)
and the propagators by

SPp?) = (T (p*) 7" (4.9)

4.2 Field renormalisation

4.2.1 Field renormalisation in a general scheme

The field renormalisation constants are fixed by requiring that the renormalised two-

point vertex functions, f’g), are diagonal for on-shell external particle momenta;
A9 _
EO%M) ez = 0, (4.10)
J
GO [z = 0, (4.11)
and that the propagators have unity residues;
lim 9% = it 4.12
— A 1 —
lim X, (p)l"%? = X 4.13

where v, = x; (4,7 = 1,2) or X¥ (4,7 = 1,2,3,4) and i # j. Note that we have

written these on-shell conditions in terms of the tree-level masses, my,. In Sections 4.3
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and 4.4, when we discuss the parameter renormalisation, we will see that, in general,
there will be a distinction between the tree-level and loop-corrected masses for at least
three of the six neutralinos and charginos. We denote the loop-corrected masses as
Mj,. For the one-loop field renormalisation conditions given above, the effect of using
M, instead of my, is of higher order. In the MSSM with real parameters, the above
conditions, together with the mass renormalisation conditions, are enough to ensure the
correct on-shell conditions at one-loop. For the complex MSSM, we must also ensure
that the loop-corrected propagator has the same Lorentz structure in the on-shell limit
as it does at tree level. In the on-shell limit, where p? — Mz, we can use the on-shell
field renormalisation conditions to write the propagator in terms of the diagonal two

point vertex function only, to obtain

I+ E0wr + (1 + S8 wg] + (mi — 5w, + (m; — E55)wr
P21+ SH) (1 +28) — (my — 25F) (m; — 25F)

iSP(p?) = (4.14)

In order to ensure that the on-shell Si(f) has only a scalar and vector part (and no

dependence on 7;), we require two additional renormalisation conditions to make the wy,

and wpg coefficients equal,

Sim:,) = Bim}), (4.15)

Sek(mi) = Xf(ml). (4.16)
Equation (4.15) will turn out to be automatically satisfied even in the complex MSSM.
Equation (4.16) is automatically fulfilled in the MSSM with real parameters, due to
the CP invariance relations between the self-energies given in Equation (A.11), but it
will give a non-trivial condition in the CP-violating case. We start by applying the
diagonality condition. Using Equation (4.5), we insert Equation (4.8) into Equation

(4.10) for i # j and apply ﬂfgi(pﬂpz:m; = myg,X;. This gives

meXJEL( )+ wLmXJZR( )+ wRESR( L)t wLESL( 2)=0. (4.17)
Similarly, Equation (4.11) leads to

wLmXZEL( ) + WRMy, ER( ) + WRESR( ) + wLZSL( i ) =0. (418)

Next, we insert the renormalised chargino self-energies of Equation (4.6) into Equation
(4.17), and use (VXTUT);; = (U*XVT);; = d;;mg,. The wg coefficient of the resulting
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equation gives

1
my, S5 (m3) + S mi ) = VXU + 5 mg, 025 — melézﬁ = (4.19)
while the wy, coefficient gives
1 1
mg, Xi(m?) + X5 (m},) — U6 X VT 4 2mXJ52R — 5myﬁ.ézg = 0. (4.20)

Multiplying Equations (4.19) and (4.20) by mg, and myg, respectively and adding the

two equations, we obtain

2
L _ 2 L 2 R 2 SL 2
i J
SR 2 * T
+mg N7 (mﬁ) —mg=(U 5XVT)U — mge (Vox'U )] (4.21)

while multiplying Equations (4.19) and (4.20) by myg, and my, respectively and adding

the two equations, we obtain

2

52?71] = m[mXiZR (mxi) +m im :I:ZL (m ;t) +m :I:Z]SR (m)zjt)
Xi X
Fmga R0 (mes) = mes (UTOXVT) ;= mgs (VOXTUT) ] (4.22)

Inserting the renormalised chargino self-energies into Equation (4.18) and following the

same procedure gives the barred off-diagonal constants for charginos;

SL/R 2 L/R /L SL/SR 9
027 = 77”?( o [m iiz (m i) +mgEmg iE (m i) +mgeX (mii )
J
SR/SL 2 T
Fmge D7 T (M) = mge + (U6XVT), — mys (Vex'u™), ]. (4.23)

In order to find the diagonal field renormalisation constants, we insert Equation (4.8)

into Equation (4.12) for ¢ = j, which gives

0= lim [ﬂwLZ (p?) +wai§(p2) + waliL(pQ) - wRiiR(pQ)}f(i(p). (4.24)

1
pP—mZ ﬂ_
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Subtracting and adding the term my, [wr 25 (p?) + wrXE(p?)] allows us to write
- - ) . +my, -
0 = (orBhm2) 4 wnSEmd )+ i, TEE 0, SEG2)
P onS ) + oS5+ onSE0)] G0 (4.29)

The term in the square brackets can be expanded about the pole mass, leaving us,

at one-loop order, with terms proportional to the derivatives of the self-energies with

respect to p?, evaluated at the tree-level mass; X (m2 ) = 24

= G5t lp2=m2 - Evaluating the
limit in Equation (4.25) then leads to
0 = wLEiLi(mfzi) - wREff(mfzi) - miEﬁ (mi) - mf&Ef} (mi)
+mg B3 (m3,) +mg B3 (m3). (4.26)

Taking the wy, and wg coefficients, we obtain two equations;
&L 2 2 L2 SR 2 &SI
0= Zij (mfa) +m3, X5 (m Z) + 35 (m3,)] + mg (257 (m
_ Ry, 2 2 &L
0= Zij (mxl) +mg, 225 (m

o (4.27)

2)+S5F (m,
X i
] 3. (428)

Xi
) + S8 (m2)] + mg, [25F (m2) + 255 (m

XN X
XN XN

i

Equation (4.13) also leads to Equations (4.27) and (4.28) when the w; and wg coeffi-
cients are taken. Inserting the renormalised chargino self-energies of Equation (4.6) into
Equations (4.27) and (4.28) we obtain

1 - /
5(521—%@ + 5Zi%,ii) = _Z}j,ii(m;?ﬁ) - m%t [qu(mii) + Z}—%m‘(m%i)}
—mg [ng;(mif) + Zfﬁ;(m%)], (4.29)
1 - /
5(5Z£,z'i + 5Z£,ii) = _Zf,z'i(mii) - m%} [me(mfz:i) + x5 m(m%})}
—ms [958 (m2e) + 2 (m2s)]. (4.30)

The renormalisation condition in Equation (4.15) is now automatically satisfied, so we

now apply the last remaining condition in Equation (4.16) to give, for the charginos,

my« [(5Z£u - 525,%)_(52}—%,1‘1‘ - 5231‘1‘)] = [ZSL

—,4%

—(U*6XV1);]. (4.31)

(miii)—ZSR (m%t) + (VoXTUT);

—,4%

DO | —
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There is still some freedom in the choice of renormalisation constants since there are
only three equations (Equations (4.29), (4.30) and (4.31)) and four unknowns, §Z%

)

625 6ZL and §ZE. In order to achieve symmetry in our expressions, we choose as a

(R

fourth condition;
Sz — 62 =67k -7k (4.32)
This leads to the following diagonal chargino field renormalisation constants;

s7LE _ ZL/R( i )—m?2 i[ZL (m i)+21jm( i )] —m. i[ZSL (sz )+ESR (mxi)]

—,27 —,11 —,1% —,i% —,11

1

o 2m =+ [Z“EL”( X +)— 25}2( X )+ (VOXTUT)— (U X V)], (4.33)

SZH = = S )=y (27 () 4 S ()]~ (895 2 )+ 5 )
1 *

T oms 2mg+ [del( X +)= Z‘EIZ( X 2) + (VoxXTUT),—(U 5XVT)¢J- (4.34)

Inserting the neutralino self-energies of Equation (4.7) into Equations (4.17) and (4.18),
and following the same procedure as for the charginos, leads to the following off-diagonal

field renormalisation constants for the neutralinos;

oy s S 4 S ) Sy
OE(?Z/SL(”@?Z?) Mo ,(N*(SYNT) — My, (NOYINT) ], (4.35)

071 = Mo = : m (2S5 (M) + mgamp g7 () + myp 05/ (m2)
tmp s (mk) —my (N*OYNT) . —mgo (NSYINT) ]. (4.36)

Inserting the neutralino self-energies into Equations (4.27) and (4.28) and applying the
conditions of Equations (4.16) and (4.32), leads to the following diagonal field renormal-
isation constants for the neutralinos;

L/R L/R ’ /
520,1/1' __2051 ( i )_m?(? [Zén( )+EO u(m 0)] _mf(? [ngz (m§?)+25§( i )]

1 *
5Z0LZ/ZR__Z§Z/ZL( 5( ) O[Zgzz(m 0)+EO u(m 0)] _mf(? [ngz( )+Eg§/( 5( )]
1 *
Fo— [zgfi(m; )= m(m?2 o) + (NSYTNT);;— (N*6Y NT);]. (4.37)

X
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Because neutralinos are Majorana particles, their self-energies obey the C-invariance
relations given in Equation (A.12) in Appendix A. Using these relations, it can be
shown that

0zl = 0Zy1F (4.38)
for any 4,7 = 1,2,3,4. That is, the left-handed (right-handed) field renormalisation
constant for incoming particles and outgoing antiparticles is the same as the right-
handed (left-handed) field renormalisation constant for outgoing particles and incoming
antiparticles. Thus, the barred renormalisation constants for neutralinos are fixed once
the non-barred renormalisation constants are specified. However, since this does not
apply to charginos, which are Dirac fermions, we will keep the formulae general and
continue to refer to the barred renormalisation constants for outgoing fermions and
incoming antifermions. This will help to ensure that the appropriate renormalisation

constants are used in each vertex counterterm.

4.2.2 Field renormalisation in a scheme without absorptive

loop integrals

Suppose we discard any absorptive parts of loop integrals occurring in the field renormal-
isation constants, by inserting the symbol Re in front of any self-energies (see Appendix
A.2 for a discussion of the relationship between Pf{ve, Im and the usual Re and Im). With
this procedure, our treatment would become the same as eg. Refs. [67,93]. Recall that
Re takes the real part of any loop integrals occurring in the self-energies, but not of any
mixing matrix elements or parameters appearing as coefficients to those loop integrals.
This means that it removes any absorptive loop integrals, but retains all dispersive loop

integrals, even if they are multiplied by an imaginary coefficient. Then we have

%525/5 :ﬁRe [m iZL/R(m i) + mgemg ;tE /L(m i) +my ZSL/SR(m%i)
’ m_.L —mL X
X; X5
+me S (mds) = mgs (UROXVT), —mge (VOXTUT), ], (4.39)
J 7' J j 7
b c7L/R L/R /L SL/SR 2
Re 5Z—,ij —mRe [m 2 ( X ) + m :I:m iz ( ) —+ m 2 (mﬁ[)

X X;

#me DT ) = mee (UOXVY)yy —mee (VOXTUT)), (440)

Xi i/j Xj/i
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Re 62" = — Re S (m? 1) - m%if{E[zL () + 2 (m)] - mg+Re[S%% (m2s)

+ 358 (m? 2e)]+ Re[ESL( m2e) =S8 (m3e )+ (VOXTUT U6 X V)],

(4.41)
Re sz = ReZL/R(mii) mXiRe[ZL (M%) + 50 (m) ]| =maRe[S5 (m?,)

SR’
+27 m( X})]:F 9

ESL ESR xtyT *SXVH..1.
mXiRe[ () =S5 (m2 )+ (VOXTUT U X V)]

(4.42)

We evaluate the Hermitian conjugate, (f{é AL G = (Re VAL i

relations between fermion self-energies due to CP7 -invariance given in Equation (A.9),

and apply the

to obtain
b s~7L/R . L/Rx R/L % SL/SRx*
(ReéZf’/ij)Jr mRe [mXiZ /Z (m%)erﬁm iZf/ﬂ (m? i)+mx + 37 / (mi;t)
X; X;
+me zSR/SL*(m%) —mgs (USXTVT)yy —mgs (VVOXTUT);]
2 —
=———5Re [ Z /R(m i)+m imXiZ /L( )+m ZSR/SL(m%i)
mxi - m)zi X

SL/S * )
+mas? Y R(mfgi) —mgx (UOX V)i — miﬁj(vTéXU )i

J

L/R
=Re 52_7/0 . (4.43)
Similarly, again using Equation (A.9);

(RedZ" )=~ Re Y[ (m mis)—m iRe[ZL*(m 2)+EE T (mEe)] - mgRe[S55 (m?.)

— it —,i% ;
1

SR+’ SL * SR * * Trrt w171
+557 (mﬁ)}q:m iRe[E? it (me) = X2 (M H(VIOXTUT = Ud X VT )]

Xi

:_ReZL/R( ) miRe[ZL (m i)+zlj”( Qi)} iRe[ZSR( xit)

—,11 —,11

+Efﬁé<m§¢>h Re[S5%, (m2s) = £5E (m2s) + (VXU = USX*VT)]

mo+
%

=—ffeELfff<m 5= mRe[zL (m22)+ 20 ()] i Re 255 (2 )

—,i% —,i%

—,11 —,27

Re[ZSL( m2s) =520 (m? £)+ +(VoxXUT U6 X V)]

=ReoZ"/}. (4.44)
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Hence the chargino field renormalisation constants obey Re 5ZL/ " (Rve WA R)T_’Z-j for

any 4,7 = 1,2. The same procedure can be followed for neutralinos to show that
Re 5Z0LZ/JR = (Re 5ZL/R)OU for any 7,7 = 1,2,3,4. This is in addition to the relation

for neutralinos in Equation (4.38). Thus, the hermiticity relation between the field
renormalisation constants for incoming and outgoing particles is restored when only dis-
persive parts of loop integrals are considered. The barred constants, 5Zij, are different

" . o . . o~
from the hermitian conjugates, 0Zj;, in their absorptive (Im) parts only.

(4.44) is purely imaginary when only dis-

X4
persive parts are included (see Equation (A.10)) and can be written

b [Im(Re 2%, (m? i))+1m(V5X*UT)“} (4.45)

m;t

A similar simplification is possible for neutralinos.

For the above scheme where absorptive parts are discarded, the following definitions for

the renormalisation transformations for the chargino and neutralino fields will suffice;

wrx; — (1+ %5ZL)iij>2j_, wa — )2_;(1 + %52”)1-]@()3,
wrX; — (1+ %5ZR)iij>~<j_, )Z_i_wL — )2_2_(1 + %5ZRT)Z~ij,
wLX? — (1+ %520)1-]0)@22, X_?wR — )2_?(1 + %5ZOT)Z~ij,
wrXY — (L + 362°%)wrX?, Qwr — 01+ 162°7) 01, (4.46)

where j is summed over 1,2,(3,4) for the charginos (neutralinos). Dirac fermions receive

independent renormalisation constants for the left and right fields, 0Z;; 7R = Red 7 L/Zlf,

while the Majorana neutralino fields require only one renormalisation Constant, 0z Z-j =
Re 0 Z§,;,
antifermions are simply given by the Hermitian conjugate of the field renormalisation

due to Equation (4.38). The field renormalisation constants for incoming

constants for outgoing fermions.

The same formulae for 525/ B and 52?]- can be arrived at by the following simplified

renormalisation conditions;

ReTS % (0)pommz = 0, (4.47)

lim ReTP%:(p) = i,

p2—-m2 P — My

ReS5E(m2) = ReS3(m?). (4.48)
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The corresponding renormalisation constants are in agreement with the formulae that
appear in the thesis of Ref. [94], where absorptive parts of loop integrals were not

included in the field renormalisation constants.

4.2.3 Discussion of absorptive parts

As shown in the previous section, the requirement of separate renormalisation constants
for outgoing fermions and incoming antifermions arises from the non-zero absorptive
parts of loop integrals. The issue of the treatment of absorptive parts of loop integrals is
not a straightforward one. Indeed, strictly speaking, only stable particles should appear
on external legs of Feynman diagrams in a quantum field theory, so that the formalism of
in and out states at ¢ — +o0o can be applied. However, in practice, most of the particles
in the SM, and beyond, are unstable, so one must find some way to treat the imaginary
parts of the loop integrals that arise in the self-energies of the unstable particles, that
are related to their non-zero decay widths. At one-loop, these absorptive parts are only
an issue in CP-violating theories (such as the complex MSSM or the SM when the full
CKM quark mixing matrix is used), since the squared matrix element of a process at

one-loop is evaluated, up to contributions of two-loop order, as
IMP? = [ Miom|* + 2 Re (M7, M —toop) (4.49)

where My, and M_j0p are the tree-level and one-loop matrix elements of the pro-
cess respectively. In a CP-conserving theory, an imaginary quantity can only occur in
this expression if an unstable particle above threshold gives rise to a loop integral with
absorptive parts in Mj_jo0p. However, since there are no complex parameters in the cou-
plings or mixing parameters, there will be no imaginary quantity in My, or Mi_jo0p
which can then multiply the imaginary loop integral to give a real contribution to |M|?.
Even if imaginary loop integrals arise, they will not contribute to the squared matrix
element at one-loop. Of course, if one includes two-loop contributions to |M]?, then
absorptive parts may contribute. Conversely, in a CP-violating theory, the absorptive
parts of loop integrals for unstable particles may enter the squared matrix element at
the one-loop level since they can be multiplied by imaginary coefficients in My, or

M _j00p arising from the complex parameters.

In the literature, the issue of the treatment of absorptive parts of loop integrals in

field renormalisation constants has found considerable attention, mostly in the context
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of the renormalisation of the SM, see e.g. Refs. [67,93,95-98]. A possibility that has been
advocated for instance in Refs. [67,93], is to discard the absorptive parts of loop inte-
grals in the field renormalisation constants, as we have illustrated in Section 4.2.2, while
keeping any complex parameters in the coefficients, indicated by inserting the symbol
Re into the renormalisation conditions. We have shown that, with this choice, the her-
miticity relation between the field renormalisation constants for incoming and outgong
particles, 525/ R = (525/ R)T, is restored. However, the on-shell conditions of Equations
(4.10), (4.11), (4.12) and (4.13) are no longer satisfied since non-zero absorptive parts
of loop integrals can cause mixing between on-shell states and give contributions to the
propagator residues. Instead, the weaker conditions of Equations (4.47) and (4.48) are
satisfied. Therefore, for a full one-loop calculation, one must include all reducible, mix-
ing self-energy diagrams and one will have to introduce additional finite normalisation

constants to ensure the external particles have the correct on-shell properties, similar to

the Z factors we have introduced in the Higgs sector in Section 3.4.9.2

General renormalisation conditions without the Pf{ve, as we have used in Section 4.2.1,
were suggested in Ref. [96] for the SM, as a way of ensuring the correct on-shell con-
ditions and gauge-independent matrix elements. In this scheme, the renormalisation
constants are chosen to exactly eliminate all (dispersive and absorptive) contributions
to the off-diagonal parts of the on-shell self-energies. There is consequently no mixing
between on-shell states and the on-shell propagators remain diagonal even if absorp-
tive parts of loop integrals arise. Thus, additional reducible self-energy diagrams and
normalisation factors for external particles need not be considered. The trade-off is
that one needs a field renormalisation constant, 7, for outgoing particles and incoming
antiparticles, and a separate field renormalisation constant, 67, for incoming particles
and outgoing antiparticles, no longer given by the hermitian conjugate of the former.
Although the hermiticity relation between renormalisation constants is not valid in this
case, the authors of Ref. [96] showed that the CP7 theorem still holds. In particular,
the total widths of particles and antiparticles coincide, although not derived from the

same renormalisation constant.

Nevertheless, the issue of an appropriate field renormalisation of unstable particles on ex-

ternal legs remains under debate in the literature. For the class of processes, Y? — )Z?ha,

2To the author’s knowledge, to date, no such Z factors have been derived for fermions in the literature.
The derivation, beyond the scope of this work, is less straightforward than the derivation for scalar
fields due to the Lorentz structure of the fermion propagators.
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that we studied in Ref. [99], it turns out that all absorptive parts of external neutralino
self-energy diagrams cancel when the squared matrix element for the full process is
summed over left- and right-handed spins. This is due to the relation between the left-
and right-handed components of the (Majorana) neutralinos. Hence, for the numerical
results presented in Ref. [99] and in Chapters 6-7 of this thesis, absorptive parts of loop
integrals do not contribute and the schemes with and without the insertion of Re are

equivalent.

However this argument does not apply for (Dirac) charginos nor for spin-dependent
calculations. Our main focus in this thesis will be processes with external neutrali-
nos; we have only considered processes involving charginos when carrying out checks
of UV-finiteness, which will not be affected by these absorptive parts. In Chapter 8§,
we calculate partial decay widths involving Majorana neutralinos with left-handed and
right-handed polarisations, and thus, absorptive parts will contribute. In Section 4.5,
we will show examples where the absorptive contributions to the field renormalisation
constants are numerically relevant and the general scheme of Section 4.2.1 should be
used in order to ensure the correct on-shell properties are satisfied. For the rest of this
thesis we will use the general scheme, including absorptive parts of loop integrals, unless

otherwise stated.

4.2.4 Field renormalisation in the CP-conserving case

In the MSSM with real parameters, we can use the CP invariance relations between

the self-energies given in Equation (A.11) to simplify our expressions for the diagonal

field renormalisation constants from Equations (4.33) and (4.37). Also, in this case, the
T

X
Equation (4.33) simplifies to

terms in the diagonal constants (see Equation (4.45)) vanish. For the charginos,

—,27

L/R L/R
5Z7,/zz,cpc =3 (mx' )—m; i[ZL (m? )+ER

722 —,11 —ZZ
7

(in)} — 2m X5 (mﬁ)

~L/R
=02 o (4.50)

where CPC denotes the CP-conserving MSSM. For the neutralinos we can use Equations
(A.11) and (A.12) to simplify Equation (4.37) to

0 Zylore = 02y hiope = —Sok (M) — 2m20 g5, (m2) — 2mp¥ (m2).  (4.51)
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The off-diagonal field renormalisation constants can also be simplified in the CP-conserving

case to
L/R B 2 9 wL/R, 2 R/L, 9 SL/SR, 2

5Zi,ij,CPC = m [m}zji277zj (mﬁ[) + mglimi;txi,m (m)ﬁ) -+ mili277zj (m;(] )

X; X;

SR/SL, 9 T T7:T
Fmee X2 (i) —mee (UOXVT) | —mye (VOXTUT), ]
SL/R
= 02" pe. (4.52)

A similar simplification is possible for the neutralinos. Up to absorptive parts, the above
formulae are in agreement with Ref. [86], where CP-conservation is assumed. As already
discussed, in the CP-conserving MSSM, absorptive parts of loop integrals will not con-
tribute to the squared matrix element of a process at one-loop order, and so will not
affect results for physical quantities. Therefore, if one equivalently discards the absorp-
tive contributions to the field renormalisation constants, then the field renormalisation

constants become real and the hermiticity relation, 67;; = §Z I

i 18 trivially satisfied.

4.3 Determining the loop-corrected masses

In order to find the loop-corrected neutralino and chargino masses, we consider the
diagonal fermion propagators. We need not consider mixing between the fields, because
we have applied on-shell conditions which ensure that such contributions to the masses
vanish. We identify the poles of the fermion propagator in Equation (4.14) with the

physical fermion masses. The complex pole, M)"c?> of the propagator, S@

1 )

is found by

solving

MR (14 BEMR)) (L4 BE07) = (my, = 35HMR)) (mi = SEFMR)) =0 (4.53)

Xi Xi

where v; = x; (i,5 = 1,2) or X? (4,7 = 1,2,3,4). We write the complex pole as
/\/liz = Mi — 1My, T'g,, where My, is the loop-corrected mass and I'y, is the width. To
obtain the complex pole up to terms of two-loop order, the self-energies can be evaluated
at the tree-level masses, m?@' We thus find that at one-loop level, the physical masses

may be written in terms of the renormalised self-energies as follows;

1. ¢ - 1 .« .
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where
Amg, = — XZR[ZL( 2)+ S m2)) - —RG[ZSL( 20+ 83 (m2). (4.55)

Note that, due to the conditions in Equations (4.15) and (4.16), we have identical renor-
malised diagonal left and right self-energies in the on-shell limit, so we may further

simplify the masses to

M;, = my[l—Re f]ﬁ(m;z)] — Re Zf;L(m;i)
= mg[l — ReXf(m2)] — Re i (m?)
= mg[l —Re Eﬁ(mi)] — Re 2iR(mi)
= my[l —Re 25(771?()] — Re 2iL(mi) (4.56)

for both charginos and neutralinos.

4.4 Parameter renormalisation

For the parameter renormalisation of My, M,, u, we use an on-shell approach, because
this is convenient in processes with external charginos and neutralinos. In the chargino—
neutralino sector, we have five independent input parameters, three with mass dimension,
| M|, |Ms| and |p|, and two CP-violating phases, ¢y, and ¢, (as discussed in Section
2.6, we use a convention where the phase of M, is set to zero). These five parameters
determine the tree-level masses of the six fields, )Zfz, XV234- We fix three of the six
masses on-shell by requiring that the pole masses, My,, coincide with their tree level

values, my,;
0= %Re[ig( 2) + 2B (m2 )] + Re[ZSL( 2 ) 4+ 557 (m2 )], (4.57)

This gives us three equations to help us fix M, and the real and imaginary parts of
0M; and dpu. The remaining three loop-corrected masses will differ from the tree-level
masses by Amyg,, given in Equation (4.55). For charginos on-shell, the condition given

in Equation (4.57) becomes

—,27

(VEXTUT U XV = Re [EL () + 50 ()] + Re (5% (ms) + 557, ().
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We expand the left-hand side of this equation to give

(U6 XV + V6XTUT),: = RedMy(USL VS + VaUy)
+Re dpu(Ui Vg + VioUio) + tlm (U Vg — ViaUso)
+0 X125 (U Vs + ViaUt ) + 0 Xo1 (ViU + UiaVir), (4.59)

where 0X;2 and 0 X5, are real since we do not have CP-violation at tree-level in the

gauge boson sector.

Similarly for neutralinos on-shell, the condition given in Equation (4.57) becomes

(YONTYT + Y*SNY )ii=mgoRe [Sg;:(mbo) + g (m3o)] + Re (855 (m3) + S5 (m)).

(4.60)

We expand the left-hand side of this equation to give

(N*0YNT+ NoYTNT);; = RedM; ((N;)?*+ Nj) +ilm M, (N;;)? — N7)
+Re M, ((N3)? + Njp) + 20Y13(N;y Njs + N Nig)
+20Y14(NA N7 + NitNig) + 20Yo3(N5 N + NigNig)
+20Y24(N5N} 4+ NioNig) — 2Re dpu (N5SN] + NisNiy)
—2iIm op (Nj5Njy — NisNig). (4.61)

Introducing the following shorthand;

C(Z) = Re [mij [Ef,ll(m 7L) + Elj u( 2 )] + Efl;z(m +) + Eifz(m +)]
—20 X9 Re(UiaVin) — 20 X1z Re(UquQ)
Ni = Relmg[Sg;(m) + Tg(m3)] + g5 (m? o) + 30 (m3 20)] — 4013 Re(Ni1 Nis)

—455/23 Re(NiQNig) — 455/14 Re(NilNM) — 45}/24 RG(NZ'QNM), (462)
we can write the condition of (4.60) for the ¢th neutralino mass to be on-shell as

RedM, ((N;,)? + N2,) +ilm oM, ((N;,)? — N2,) + RedM, ((N},)* + N2,)
—2Re 5[1 (N;;P)N;4 -+ Ni/3Ni/4) — 2iIm (SIU/ (N:;?,N;;4 — Ni/3Ni/4) = N(y),
(4.63)
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and the condition of Equation (4.58) for the ¢"th chargino mass to be on-shell as

RGCSMQ( ;/1 Z-jk/1+‘/,‘//1Ui//1)+R65/L( ;/2 27/2+V;~2U2~u2)+i1m5u( ;/2 iﬁQ—‘/iugUiug):C(iu).
(4.64)

4.4.1 Parameter renormalisation in the case where M, M,

and p are real

If there is no C’P-violation in the neutralino sector at tree level, i.e. My, Ms and u are
real, then the rows of the mixing matrices, U, V and N, are either purely real or purely
imaginary, so that the mixing matrix elements in Equations (4.63) and (4.63) always
appear in combinations where the conjugate symbol can be dropped. Coeflicients for
the imaginary parts of dM; and oy vanish since N;; Ny, = N;}N;; and U Vi = VZ;‘ e
Thus we only have three unknowns; dM; = RedM;, dMy = RedMs and du = Redpu.

These are found by solving three equations, chosen from

2Re My N7y + 2RedMy Njy — 4Re dpu NygNing = Ny, (4.65)
2Re 5M2%//1Ui//1 —+ 2Re 5,&‘/2‘//2[]1'//2 = C(i”)- (466)

We implemented three options into FeynArts, the first with two neutralinos and one
chargino mass on-shell, the second with three neutralino masses on-shell and the third

with two chargino masses and one neutralino mass on-shell.

Real My, My, p: X3, X3, X# on-shell

Assuming real My, M, and p, we consider the case where we fix the masses of two
neutralinos, X7, ¥J, and one chargino, Yj’, on-shell, where i # j = 1,2,3,4 and k = 1,2.
This means solving simultaneously Equation (4.65) for i = 4, j and Equation (4.66) for
1" = k. Doing this leads to

OMy = [2(NigNigN7, — N NjsNja)Ciay + (UkaVia N3 + 205, Vil NisNjy) Ny +
— (Ur2Via N + 2Ui1 Via Nis N, ) Nyl / K, (4.67)
OMy = [=2(NizNiuN}y — N7 NjsNju)Ciry — UpeViaN; Ny + U Via N3 Nyl /K, (4.68)
op = [—(NGNZ — NAND)Coy + U Via NI Ny — U Via N NG/ K (4.69)
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where

K = 2U,€2v,§2(—J\@J\f}1 + N;N}Q) + 4U,ﬂvm(—J\figz\fig\@1 + N3 Nj3Njy). (4.70)

Real M, M3, p: X7, X3, X on-shell

To fix the masses of three neutralinos, x?, )Z?, x>, on-shell, where i # j # k = 1,2,3,4,

we must simultaneously solve Equation (4.65) for ¢ = i, j, k. Doing this leads to

oM, = [(N,;),NMNJZZ — NjsNjsN%) Ny + (NjsNjaNgy — NiaNaN o) Ny

J

+(NpaNpaNj — NisNu NNyl /L, (4.71)
SMy = [(NjsNjNj — NgNuNZ ) Noy + (NisNea N7 — NisNijaNi ) Ny
+(NizNiuNZ — NisNia N3Nyl /L, (4.72)
op = _[(Ni22Nj21 - Ni21Nj22)N(k) + (N]'22N131 - N]'21N132)N(i)
H(NANG — NN )Nl /2L, (4.73)

where
L = 2(Ni3Ni4N]-22N,31 — N3 N3Ny NE — NigNMN]-QlN,fQ
+NZ N3Ny NE, + 1\1321\[].21J\fmj\fk4 — N;N§2Nk3Nk4). (4.74)
Real My, M, p: x?, )2;.", X; on-shell

To fix the masses of one neutralino, x?, and two charginos, )Z;-t, )Zf, on-shell, where
i=1,2,3,4and j # k = 1,2, we must simultaneously solve Equation (4.65) for ¢ = ¢
and Equation (4.66) for i = j, k. Doing this leads to

oMy = —[(2NisNuUj Vi1 + NjUpVie)Ciwy + (Uit U2 Vi Vie — UspUi Via Vi ) Ny
—(N3Uk2Viz 4 2NisNigUs1 Vi )Cj)) /(NG M), (4.75)
oMy = [UpVj2Ciy — UpaVieC)] /M, (4.76)
o = —[UpnVjCuy — UnVinCj)) /M, (4.77)
where

M = 2<Uj2Uk1Vj2Vk1_Ulek2‘/y'1Vk2)- (478)
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In Ref. [86], the masses of Y¥, ¥i and Y3 were fixed on-shell. We find agreement between
our expressions above and those that appear in Ref. [86]. This choice is advantageous
for processes where charginos appear as external particles, and avoids difficulties with
infra-red divergences present in QED corrections. However, it is not so convenient for

processes involving more than one external neutralino.

4.4.2 Parameter renormalisation in the full complex MSSM

If there is CP-violation in the chargino—neutralino sector at tree level, then M; and pu
can be complex in our convention (see Section 2.6), so there are five parameter renormal-
isation constants to determine; Re 6 My, Re 6Ms, Re dp, Im 6M; and Im dpu. Equally,
one can parameterise the five renormalisation constants in terms of the absolute values
and phases; 6|M.|, d|Mal|, 6|p|, ¢, and 6¢,. In the latter case, the parameters are

renormalised with the following transformations;

|My|  — |My| + 6| My, O, — Oan, + 0P,
|My|  — | M| + 6| My,
il = [l +6]ul, bu = Dy + 00, (4.79)

while in the former case, the parameters are renormalised with

ReM1 HReMl—l—é(ReMl), Ili —>ImM1+5(ImM1),
R,GMQ — Re M2 -+ 5<R€M2),
Rep — Rep+ d(Re p), Imp — Im p + 6(Re p), (4.80)

where 0(Re My) = §|Ms|. We can write

) = O0|Mi|coson, — |Mi|sin durddns,,
) = O|My|sinony, + | M| cos danddnr s
5(Re ) = dlulcos 6, — [ulsin 6,66,
) = Olu|sing, + |u|cos P dp,, (4.81)
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and

O|My| = 6(Re My)cosop, + 6(Im M) sin gy,
0o, = —(0(Re My)singp, — 0(Im My) cos par, ) /| M,
Ol = O(Re p)cos, + 0(Im p)sin ¢,
¢, = —(6(Re p)sing, —d(Im ) cosg,)/|p|. (4.82)

In both parameterisations, we have five renormalisation constants to determine, and so
far only three equations (chosen from Equations (4.63) and (4.64)) resulting from the
condition that three of the six masses be on-shell. Two further conditions are required
to fix all five renormalisation constants. This comes from having to renormalise the two
CP-violating phases, ¢y, and ¢,. Like for tan 3, there is no obvious on-shell definition
of these phases. Thus a convenient scheme would be the DR scheme. The DR scheme
has been advocated, in particular, in the SPA conventions for supersymmetry parameter
analysis [100]. However, we will show in the following that, in fact, ¢y, and ¢, should
be considered as mixing parameters, like «, 3, and (. in the Higgs sector, and therefore

need not be renormalised at all.

For demonstration purposes we investigate an “on-shell” scheme in which we require the

conditions

028 =028, 6%, =062",,, (4.84)

in addition to the usual on-shell field renormalisation conditions of Equations (4.10),
(4.11), (4.12), (4.13) and (4.16).

renormalisation constants for 9 and Y3, in Equations 4 37 and 4.33 respectively, are

zero. Equation (4.16) can now only be satisfied if

0 = %% (mes) - zfﬁl(mx) (N*6XY )11 4+ (NSYTNT) ;1 = Ny (4.85)
0 = ¥0,(m2s) = ¥, (m3s) — (U 6XV o + (VOXTUT )20 = Con). (4.86)

"H

We use these two conditions in conjunction with the requirement that the masses of
XV, XF and Xi are on-shell (Equations (4.63), with ¢/ = 1, and (4.64), with i’ = 1,2).
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Solving simultaneously we obtain

5(Re,u) :[ -2 Im(Ume) RG(UQQVQQ)z + Im(UQQVQQ) RG(U21V21) Re(UnVn)
+ Croy[Im(Usy Va1 ) Im(Ur2Via) + Re(UsaVaz) Re(Ur1 Vi)
— Coy[Im(Us1 Vor ) Im(Una Vao) + Re(Uai Var) Re(Uza Vao)]
- 0(22) [Im(U12V12) Re(Ume) + Im(UQQVQQ) Re(U12V12)H /QX, (4-87)
O (Tmype) :[ — 2Re(Uy Var) Re(Usa Vg ) Re(Ur1 Vi1) + Re(Ungl)2 Re(Ur2Vi2)
+ C(2) [Im(U22V22) Re(UnVn) - Im(U21V21) Re(Ulzvlz)]
- C(l) [Im(U22V22) Re(Uszl) - Im(U21V21) Re(U22V22)]
+ Co2)[Re(Un2Vaz) Re(U11Vi1) — Re(Uz Vi) Re(Ume)H/QX (4.88)

where X contains only U and V' matrix elements. Using Equation (4.82), we can find
the corresponding d|u| and d¢,. The resulting expression for d¢, turns out to be UV-

convergent. The same observation is made for d¢,,, so we have
53 =0, 8¢5y =0. (4.89)

The phase renormalisation constants do not contain any UV divergent parts required to
cancel with some other quantity to ensure the UV-finiteness of vertex functions involving
neutralinos or charginos. We have confirmed that this is also true when %9, ¥ and Y3
are replaced with some other choice of neutralinos and charginos in the renormalisation
conditions. Accordingly, we will adopt in the following a scheme where the phases of
M, and p are left unrenormalised. We regard this as a more convenient choice than the
“on-shell” scheme given above, which would have lead to non-zero (5Z£/ f_ 525/ ) for
only four of the six fields. Also, even if at tree level one or all of the phases were zero,
with the “on-shell” scheme this would not necessarily have been maintained at one-loop
level; corrections to the phases could have been generated from another source of CP-
violation in the MSSM, such as a non-zero phase for the sfermion trilinear coupling. In
the scheme where the phases are not renormalised, this will not occur and there will be
no resulting confusion over what is meant by the physical phases. The phases remain
at their tree-level value, whether it is zero or non-zero. It is only the renormalisation

constants for the absolute values of the parameters which receive one-loop corrections.

Returning to the Born Lagrangians for charginos and neutralinos in Equations (2.30)
and (2.32) respectively, it is not surprising that it is only the absolute values of M;, M,

and p that need renormalising. M, Ms, u appear in full along with any phases when
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the Lagrangian is expressed in the gaugino-higgsino basis. However, in the mass eigen-
state basis, it is only the real combinations, U*X VT = diag(mﬁr,mi;) and N*YNT =
diag(mig,mig,mig, mgo), which appear. The elements of U, V' and N contain phases
which compensate the phases in M; and p. However, they are mixing matrix elements
and do not need to be not renormalised. It is these mixing matrix elements which appear

in the couplings of neutralinos and charginos to other particles.

In the scheme where the phases are not renormalised, the conversion from the param-
eterisation in terms of absolute values and phases to the parameterisation in terms of

real and imaginary parts simplifies to

5(Re 1) = ] cos 6, 5(Tm 1) = 8l in .
d(Re My) = 6|u| cos o, O(Im M) = 6|p|sin ¢y, . (4.90)

The condition for having the i'th neutralino mass on-shell given in Equation (4.60) can

now be written as

Niry =0|Ma| cos g, (( )%+ Ny + 40| My sin g, (N7y)? = Nioy)
+ 0| M| (N75)? + Nisp) — 26| cos ¢u (NisNiy + NizNia)
— 2i6|p| sin ¢, (N;13N;7, — NirgNira)
=25| My| Re(e™"1 N2,) + 26| Ms| Re(N2,) — 46| | Re(e " NysNyy),  (4.91)

while the condition for having the ¢"th chargino mass on-shell, given in Equation (4.58),

can now be written as

Cuny = 0| Ma|(Ujn Vi, + ViniUsny) + 6| ] cos ¢ (Using Vg + VirgUsna)
= 25|M2| RG(UZ’/q‘/Z‘Nl) + 25|,u| Re(e_w“Ui//QV;//g). (493)

X0, X%, Xi& on-shell

We first consider the case where we fix the masses of two neutralinos, x?, )Z?, and one

chargino, Xi', on-shell. We solve Equation (4.91) with ¢ = 4, j and Equation (4.92) with
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1" = k simultaneously to obtain,

8| Mi| =(2[Re(e™"** NizNis) Re(N3,) — Re(e "2 N3 ) Re(e ™% NjsN;4)| Cay
+ [Re(e ™" UpaViz) Re(Ny) + 2 Re(Upt Vier) Re(e ™% NigNig )| Ny +
— [Re(e " UyaVio) Re(N3) + 2 Re(Upa Via) Re(e "% NisNi ) |N () / K,
8| Ms| =(—2[Re(e” "% Ni3Nyy) Re(e "™ N7) — Re(e "™ N7 ) Re(e™"* Nj3N;4)]Copy
— Re(e ™" UpaVia) Re(e**1 N2 )Ny +Re(e ™ UyaVia) Re(e M N3 )Nj)) /K,
lul =(~[Re(N3) Re(e™"#¥1 N7,) — Re(e " Nj) Re(N3)]Cle
+ Re(Ui Vit) Re(e " N2 )Ny — Re(Upt Vir) Re(e ™1 NNy /K (4.94)

where

K =2Re(e " UpaVia)[— Re(N3) Re(e M1 N7)) + N7 Re(N},)]
+ 4 Re(Ukl Vkl) [— Re(e"m NigNM) Re(e_mﬁMl szl) +Re(6_i¢Ml N121) Re(e‘wﬂ NjgNj4)] .
(4.95)

Xi» X3» Xp on-shell

In order to fix the masses of three neutralinos, y?, )22, X», on-shell, we solve Equation

(4.91) with ¢ = 4, j, k simultaneously to obtain,

8| My| =[(Re(e™"** NizNiy) Re(N3) — Re(e"* N3 Njy) Re(N3)) Ny

+ (Re(e"*Nj3Nj4) Re(e M2 N,) — Re(e ™" N3 Nit) Re(N3)) Ny

+ (Re(e™ """ Nj3Nia) Re(Nj) — Re(e™* NizNis) Re(NZ,) )Nyl / L, (4.96)
8| Ms| =[(Re(e™ "% NjsNjq) Re(e " Njj) — Re(e™ "% NizNyg) Re(e "M N7 )) N,

+ (Re(e™"* NiggNia) Re(e ¥ N7)) — Re(e ™" Nj3Njs) Re(e ™™ N2 )Ny

+ (Re(e™ " Ni3Nig) Re(e "M N2 ) — Re(e ™" Nyz Nya) Re(e " N3 )Nyl /L,

(4.97)
0lul = — [(Re(NZ) Re(e™"*1 N7 ) — Re(e™"*1 Njj) Re(N7,)) Ny
+ (RG(N]‘QQ) Re(e_imjl N131) - Re(e_imjl N1?1) Re(N132))N(i)
+ (N Re(Nii) — Re(N) Re(e™ N ))Nij)] /2L (4.98)
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where

L =2[Re(e”"*" Ni3Nis) Re(N7) Re(e "M Ny ) —Re(Nj3) Re(e "% Nj3Njs) Re(e ™M N}
—Re(e"*NisNis) Re(e 1 N7 ) Re(N,) +Re(e ¥ N7 ) Re(e N3 N;g) Re(Ni,)
+ Re(N3) Re(e "*iN? ) Re(e™ "% Niis Nia) —Re(e"**1N7)) Re(N7,) Re(e ™" Ny Niwy ).
(4.99)

X%, XJ, Xi§ on-shell

In order to fix the masses of one neutralino x?, and two chargino, )Z;»t, )Zf, on-shell, we

solve Equation (4.91) with ¢ = ¢ and Equation (4.92) with ¢/ = j, k simultaneously to

obtain,
S|My| = —[(2Re(e " NigNia) Re(Uj1Vi1) + Re(N) Re(e™ " UjaVi2)) Cry
+(Re(U;1Vj1) Re(e " UpaVio) — Re(e ™ "# UjaVig) Re(Ura Vi )) Ny
—(Re(N3) Re(e " UgaVia) + 2 Re(e ™" NigNis) Re(Uri Via ) Cy)]
/(Re(e™ " N2YM), (4.100)
|Ms| = [Re(e™"*"UjpVj2) Oy — Re(e ™ UpaVia)Cy)] /M, (4.101)
Slul = —[Re(UjVj1)Cwy — Re(UpiVin ) Ciy)l /M (4.102)
where

M = 2(Re(Up Vi) Re(e ™ UVig) — Re(Uj1 V1) Re(e ™ UpaVig)).  (4.103)

4.4.3 Comparing parameter renormalisation schemes: a toy

model

In the previous sections, we derived several different schemes for on-shell parameter
renormalisation in the chargino—neutralino sector for real and complex parameters. The
expressions for the parameter counterterms depended on which three of the six parti-
cle masses were placed on-shell. Using the same tree-level values for the parameters,
combined with the different values of the counterterms, these different schemes result
in different physical (loop-corrected) values for the parameters. In order to be able to

compare between different renormalisation schemes, one should consider the same phys-
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ical situation; that is, the same physical masses, and in order to do this one may require

different values for the tree-level parameters.

To help us understand the difference between the required input parameters to achieve
the same physical situation when different combinations of neutralino and chargino
masses are on-shell, we perform a comparison in a toy renormalisation scheme as follows.
We consider the simplified no-mixing case, where My, is set to zero in the neutralino
and chargino mass matrices. We also assume M; < M, < p are real and positive. Then
at tree level, the masses are given by

meo = My, mg

X o =My =mgt, mex=p=mg =mgy. (4.104)

Using Equation (4.55) under the above assumptions, the one-loop mass corrections are

found to be

Amgo =myoReX; 11(mf~< )+ Rengl(m?(?) — oMy,

Amgg :migReEQ Q(még) + ReEgéQ(m;g) — O My,

Amyg :migReZoL&(m?(g) + ReEgé?)(m;g) —op,

Amgo :migReZéM(m;g) + ReE*&il(m?(g) —opu,

Amgs :$Re(25711 + 2 1)(mis) + ReEEﬁl(m%) — 6 Mo,

Am :?Re@fﬂ + 38 ) (M) + ReE‘iLQQ(m%) — o (4.105)

The tree-level masses, my,, still satisfy the relations in Equation (4.104), while the loop-

level masses, My,, in general, do not satisfy these relations.

Toy Scheme (1): x9, X5, X3 on-shell

If the masses of ¥, X3, X3 are chosen to be on-shell, then the renormalisation constants

are given by

OM{Y = mggReXf; (m2o) + ReXyf (m2), (4.106)
oMY = mygReX,(m2g) + ReX5y (m2), (4.107)
sV = mygReSg(m2,) + ReXis (m3o). (4.108)

NO

X
2
X
2
X
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The loop-corrected masses obey the relations;

My = M, My = M, My = p,
My = Mg — Amgy, Mg = Mg+ Amfy, Mg = My +Amgy  (4.109)

where the quantities, Amg) = Amgy — Amge, Amfy = Ames — Amgg and Amgy =
3 4 X1

Amﬁ — Amig, depend only on a finite combination of self-energies and tree—level masses

in this case. The masses of Mo, Mﬁt and M@t are determined by the input parameters,

Mo, Myg and My, along with these computable quantities.

Toy Scheme (2): X%, X, X3 on-shell

If the masses of Y?, X3, X3 are chosen to be on-shell, then the renormalisation constants

are given by

M = mgyReSk (m 20) + Rexg Tt (m2), (4.110)

OME? = mygReSfa(m2g) + ReXih(mly), (4.111)
1

su? = Sy #Re(ZL 5y + 58 ) (ms) + ReSy, ™ (m3y) (4.112)

with the loop-corrected masses satisfying the relations;

M~0 :Mla Mig :M27 M)Zét =

where AmJ) = Amgz — Amgo.

Comparing Toy Schemes (1) and (2)

The value of dp in Toy Scheme (1) is different to its value in Toy Scheme (2) by a finite

combination of self-energies;

opu® —suM = AmjY (4.114)
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Suppose we have M; = 100 GeV, M; = 200 GeV and p = 400 GeV and we start from
Toy Scheme (1) with three neutralinos on-shell. Then;

Mo = 100 GeV, Mgy = 200 GeV, Mo = 400GeV,  (4.115)
My =400GeV — Amfj,  Mgs =200GeV + Amyy, Mgz = 400 GeV + Amfy.

In order to compare the two schemes for the same physical situation, we need the same

set of physical masses in scheme (2). For the three input masses, we choose

Mo =100 GeV = Mj,
Mg =200 GeV = Mo,
M =400 GeV — Amj)) = p. (4.116)

From the relations it follows that

Mg = 200GeV + Amfy,
Mg = 400GeV + Amgy — Amgy = 400 GeV,
Mg = 400GeV + Amyy — Amg) = 400 GeV — Amj. (4.117)

So in the end, the same set of six physical masses are achieved. The tree-level values of
M, and M are still 100 GeV and 200 GeV, while the tree-level value of x is now p® =
400 GeV — Am3y. Using Equation (4.114), it can be shown that once the corresponding
counterterms are taken into account, the resulting one-loop corrected values of u are
identical. This would not be necessary in a more general situation, where p does not
directly correspond to one of the mass values. In this toy model, it is relatively simple to
choose the same physical situation in each parameter renormalisation scheme. For the
more general case, it is technically much more difficult to find input parameters which
give the same six physical masses in different schemes since the loop corrections to those

masses will have a non-trivial dependence on the input parameters.

Another issue with comparing parameter renormalisation schemes is that not all schemes
work equally well for every MSSM scenario. In general, one single scheme is not expected
to be suitable for the whole MSSM parameter range. In the toy schemes above with
M, < M5 < p, we could not have used Mo, My and Mﬁc as input because there would
have been no way of fixing du. Similarly, if we were to choose a different parameter
hierarchy with p < My, Ms, then the toy schemes given above would not work because

only one of M; or My could be fixed by the choice of input masses. Nevertheless, for the
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more general case, when the terms depending on My, are restored in the mass matrices,
a priori it looks feasible to choose Mo, My and Mﬁc as input for M; < M, < p, but
one may encounter severe numerical instabilities in such a case. We will investigate this
further in the next section, where we show a numerical comparison between the schemes

for different scenarios and the resulting one-loop mass corrections.

4.5 Comparing renormalisation schemes: Numerical

results

4.5.1 Field renormalisation

In Section 4.2, we pointed out that, in the MSSM with CP-violating parameters, absorp-
tive parts of loop integrals for unstable particles can enter the squared matrix element
for processes at the one-loop level. In order to ensure the external particles have the
correct on-shell properties in this case, we use a general scheme with separate field

renormalisation constants for incoming and outgoing fermions.

In Table 4.1, we show the finite parts of the neutralino field renormalisation constants for
the CPX scenario. In the first row, they are computed in the general scheme of Section
4.2.1, where absorptive parts of loop integrals are included in the field renormalisation
constants, while in the second row the absorptive parts are discarded, as in Section
4.2.2. The table shows that the numerical differences between the two procedures are
not significant for the constants involving only the two light neutralinos. However, the
absorptive effects are large for 5ZOLJ3 and 5Z&14, since, in this scenario, all two-body

decays for X3 and Y} are kinematically open.

In Figure 4.1(a), we show the imaginary parts of the field renormalisation constants
involving the third lightest neutralino, as a function of ¢4, for the CPV1 scenario,
defined in Table 2.3. In this scenario, X3 has a mass of around 505 GeV, and can decay
into the lighter third generation squarks, so phases introduced in the squark sector can
be expected to play a role for the imaginary parts of the x5 self-energies. The solid lines
show the renormalisation constants in the general scheme, including absorptive effects,
while for the dashed lines, these absorptive parts are discarded. We see that there
is a sizeable difference between the dashed and solid curves. As discussed in Section

4.2.3, the absorptive parts in the field renormalisation constants do not contribute to
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52&11/10_2
1.5346+0.9622 i

5ZOL712/10_2
0.2550+-0.1914 i

52&13/10_2
-0.1251+1.7108i1

52&14/10_2
-0.0134-0.18901

629 /1072
1.5346+0.9622 i

629,/1072
0.25504-0.1911i

62%,/1072
-0.0425-+0.0878i

62°,/1072
-0.0887+0.0383 i

Table 4.1: Comparison of neutralino field renormalisation constants in the general scheme
with absorptive parts of Section 4.2.1, and then taking Re of those values (indi-
cated by a tilde), as in Section 4.2.2, for the CPX scenario with My+ = 135.7 GeV
and tan 8 = 5.5. In order to evaluate the terms involving My, dM; and du, we
use the parameter renormalisation scheme where the masses of Y, ¥9 and )Zzi are

on-shell.
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Figure 4.1: (a) Imaginary parts of field renormalisation constants, 625, for i = 1,2, 3,4 (black, red,
blue, green respectively) in the CPV1 scenario, defined in Table 2.3, as a function of
¢a4,- The solid curves show the full field renormalisation constants, while in the dashed
curves, the absorptive parts of loop integrals are discarded. (b) Partial decay width,

FLL = F(hg —

X3

SOL-0L
X2

), into left-handed neutralinos in the CPV1 scenario, as a function

of ¢4,. The black dashed curve is the Improved Born result; the blue and red curves
show the incorporation of one-loop vertex corrections without and with absorptive parts
in the field renormalisation constants respectively. For both plots, in order to evaluate
the terms involving dM7, 6M; and du, we use the parameter renormalisation scheme
where the masses of X{, X3 and x93 are on-shell.

spin-summed squared matrix elements for Majorana neutralinos. They do contribute,

however, to spin-dependent squared matrix elements. In Figure 4.1(b), we show their

effect on the partial decay width of a heavy Higgs boson into left-handed neutralinos,

cO0L 0L

e =T(he — X3°X5

), again in the CPV1 scenario, as a function of ¢4,. The black
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dashed curve shows the Improved Born decay width.® The blue curve includes the one-
loop vertex corrections, discarding the effects of absorptive parts of loop integrals in the
field renormalisation constants. The red curve includes the one-loop vertex corrections,
using the general field renormalisation constants with absorptive parts. We see that the
difference between the latter two curves can be sizeable when the CP-violating phase is
large. The absorptive parts can enhance or suppress the effect of the one-loop vertex
corrections relative to the Improved Born level result. Thus, a proper treatment of
absorptive parts in one-loop calculations involving neutralinos in the complex MSSM
is crucial. If one were to use the field renormalisation constants containing five, as in
Section 4.2.2 or as in the blue curve of Figure 4.1(b), without separately taking into
account the products of the absorptive contributions and imaginary parameters, then
the calculation would be incomplete. In order to ensure the correct on-shell properties
of external fermions, we adopt the general scheme given in Section 4.2.1 for the rest of
this thesis.

4.5.2 Parameter renormalisation

As discussed in Section 4.4, we have implemented three schemes for the parameter
renormalisation in the neutralino-chargino sector; with either three neutralinos, two
neutralinos and one chargino, or two charginos and one neutralino on-shell. As seen
with the toy model in the previous section, not all schemes are expected to work equally
well for every given scenario in the MSSM. In Table 4.2 we show the finite parts of 6| M|,
0| Ms| and §|u| in the CPX scenario with My+ = 132.1 GeV and tan 3 = 5.5, for five
different choices of parameter renormalisation; NNN with x9, X3 and x93 on-shell; NNC
with X9, X9 and ¥& on-shell, NNCb with %%, ¥ and YT on-shell, NCC with %?, ¥ and
X; on-shell, NCCb with ¥, T and Y3 on-shell, and NCCc, with X9, Xi and Y5 on-shell.
We also show the resulting one-loop corrections to the remaining masses. We see that
NNN, NNC and NCC work equally well, all giving similar values for §|M;|, §|Mz| and
d|p| and modest corrections to the masses. However, NNCb gives a very large value for
d|p|, while NCCb and NCCc give very large values for §|M;| respectively. This is due
to the fact that the CPX scenario has the gauge parameter hierarchy M; < M, < pu,
where the mass of my is closest to [Mi], mgy and mg+ are close to Mo, and myg, and
Mgk are close to |p|. Consequently, if we do not use one of Mgy, OF Myt as input, there

X
is only a weak fixing of |u|. The value of its counterterm will be driven to unphysically

3See Chapter 5 for a full description of the method used to calculate decay widths in the Improved
Born approximation and to include the one-loop vertex corrections.
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large values by numerical instabilities. These instabilities also manifest themselves in
the corresponding one loop corrections to the masses. Similarly, if we do not use myo as
input, there is only a weak fixing of | M;|. Thus the NNN, NNC and NCC schemes are the
most numerically stable choices for the parameter hierarchy of |M;| < |My| < |p|. This
is known as a gaugino-like scenario, as the lighter neutralinos and charginos are mostly
gaugino. However, for a different hierarchy, a different choice may be more favourable. In
the last two columns, we show the finite parts of the parameter renormalisation constants
and the one-loop mass corrections for a higgsino-like scenario, with |u| < |M;| < |Ma|.
We set 1 = 200 GeV, My = 1000 GeV, M, = (5/3)(s%,/c%; )My and all other parameters
the same as for the CPX scenario. For this parameter hierarchy, the masses of mss, and
mg+ are closest to ||, mgo is closest to [M;[ and mgs and my are close to [Ma|. We
see that the NCCb scheme does not give numerically stable results, because | M| is only

weakly fixed. The NCCc scheme, however, where the mass of the X3 is fixed on-shell,

works well for this higgsino-like scenario.

NNN NNC NNCbH NCC | NCCb | NCCc || NCCb* | NCCc*
d| My || -1.468 | -1.465 2.981 -1.468 | 2518.7 | -3684.6 | -355.6 | -4.642
S| Ms| || -9.265 | -9.265 9.704 -9.410 | -9.410 | -9.410 | 10.683 | 10.683
Olp| | -18.494 | -18.996 | -20944.2 | -18.996 | -18.996 | -18.996 || -5.136 | -5.136
Amgo 0 0 0 0 2518.8 | -3681.1 | -11.44 | -0.636
Amgg 0 0 0 -0.1446 0 0.356 0 -0.671
Amy 0 -0.5012 | -20913.8 | -0.5016 | -0.8446 0 -339.5 0
Amgo || 0.3237 | -0.1775 | -20890.0 | -0.1775 | 0.6851 | -1.439 | -0.0794 | -0.0328
Amili 0.1446 | 0.1445 0 0 0 0 0 0
Amﬁ 0.5012 0 -20888.0 0 0 0 0 0

Table 4.2: Finite parts of parameter renormalisation constants and mass corrections in GeV
for the CPX scenario with Mg+ = 132.1 GeV and tan § = 5.5 using the different
parameter renormalisation schemes defined in the text. The last two columns,
denoted with an asterisk, show the results for a higgsino-like scenario, with u =
200 GeV, My = (5/3)(s¥,/ct;)Ms and My = 1000 GeV, and all other parameters
the same as the CPX scenario.

In Figure 4.2, we show the variation of the one-loop mass corrections in the NNC scheme,
where the masses of )2(1]72 and Y3 are fixed on shell. The masses of masses of )Zg , and YT
receive corrections. Figure 4.2(a) shows the mass corrections for the CPX scenario with

Mp+ = 132.1 GeV as a function of tan 3. We see that the corrections remain modest,
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Figure 4.2: One loop corrections to the neutralino and chargino masses in the NNC scheme for the
CPX scenario with Mpy+ = 132.1 GeV; (a) as a function of tan 3, (b) as a function of
My with tan 8 = 7, (c,d) as a function of p with tan 3 = 7, with all other parameters as
in Table 2.3.

much less than 1 GeV for the range of tan 3 shown. In Figure 4.2(b), we show the mass
corrections as a function of M, with tan3 = 7. We see that the ¥ mass is affected
by thresholds for quark-squark pair production between 300 and 800 GeV. Similarly, in
Figure 4.2(c), where the mass corrections are shown as a function of p with tan g = 7,
the ng masses are affected by thresholds below 800 GeV. In Figure 4.2(d), we lower

w1 further and see that near p = My, there is a pole in the renormalisation constants,
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Figure 4.3: One loop corrections to the neutralino and chargino masses in the NNC scheme for the
CPX scenario with Mg+ = 132.1 GeV and tan 5 = 7, (a) as a function of ¢y, (b) as a
function of ¢,, with all other parameters as in Table 2.3.

where the quantity K, defined in Equation (4.70), vanishes. In this parameter region

the renormalisation scheme produces unphysically large values for the mass correction.

In Figures 4.3(a) and 4.3(b) respectively, we show the dependence of the one-loop mass
corrections on the phases ¢y, and ¢,, again for the CPX scenario in the NNC scheme.
We see that the dependence on ¢y, is only slight because | M| is fixed by myo, while the
other masses do not have a strong dependence on its value. Conversely, the neutralino
masses do have a strong dependence on ¢, since their tree-level values lie at the scale of

|it|, while the value of |u| is fixed by the heavy chargino mass.

For most of this thesis, we examine scenarios with a gaugino-like parameter hierarchy,
|M,| < |Ms| < |p|. Therefore, we will use the NNC parameter renormalisation scheme,

where the masses of YV, X and Y& are fixed on-shell, unless otherwise stated.



Chapter 5

Calculation of vertex corrections

In this chapter we give a detailed description of our method for calculating higher order
corrections to two-body decays involving particles from the MSSM with complex pa-

rameters. We focus in particular on the class of processes with two neutralinos and one

0
J

we will discuss in Section 5.6. We begin in Section 5.1 by studying the )Z?)Z?hg vertex

Higgs boson, X — xhe and h, — X7xJ, but we have also studied other processes, which
and its associated decay widths at tree-level. In Section 5.2, we use the renormalisation
constants derived in the previous chapters to construct a counterterm for this three-point
vertex. In Section 5.3, the counterterm is combined with the one-loop triangle diagrams
to obtain the renormalised 1PI X?)Z?hg vertex function at one-loop, taking into account
the contributions from all MSSM particles. In Section 5.4 we combine the genuine 1PI
vertex contributions with the one-loop propagator-type corrections for the Higgs boson
to construct the renormalised one-loop )Z?)Z?ha vertex for on-shell h,. We also include
the reducible self-energy diagrams involving mixing of the neutral Higgs bosons with
the Goldstone and Z bosons. In Section 5.5 we show how we combine our full one-loop
results with the state-of-the-art two-loop propagator-type corrections from the Higgs

sector, obtaining the currently most precise prediction for this class of processes.

5.1 Tree-level decay width

We consider the X?i?hg vertex, shown in Figure 5.1(a), where i, j = 1,2, 3,4 and k labels
neutral Higgs bosons, i.e. h) = {h, H, A,G}. For the interaction of neutralinos with

neutral Higgs bosons, the relevant piece of the Lagrangian can be written in terms of

83
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Figure 5.1: (a) The tree-level neutralino-neutralino-Higgs vertex and (b) its counterterm.
tree-level mass eigenstates as

i 0=
L= 3 h) {0 [wRC]ho + wr(—1)%s3 (= )5’“4th0] X], (5.1)

where wg/;, = 1(1 + v5). A minus sign appears between the wgp and wy, terms for the

CP-odd Higgs states. The couplings, C are given by

hO 9
e
Cljho Czyho = QCWSW Cijhgu (52)
where
Cijn) = [(arNiz 4+ b Nis) (swNj1 — ew Nja) + (axNjs + b Nja) (swNix — cw Nia)],
ar = {=Sa,Ca,iss,,—icgs, },
b = {—Ca,—Sa,—lcs,,—1Ss,} (5.3)

The quantity in the square brackets in Equation (5.1) is the three-point vertex function
at tree level,

Ptrgeoho = WRCJhO + u)L( 1)5k3( )6k4CZIJ/h

(5.4)

where 634y = 1 for k = 3(4) and zero otherwise. The tree-level decay width I" ;f)eigoho

for the two-body decay x§ — x}hy, where h{ = {h, H, A}, can then be written as

1

- 167ms3,
X2

| ]ho |2 ’%(m;gv m?(?, mig) [m?(? + m?((; - mig + 2(_1)5k3m>~<?m>~<2]’

]‘vtree

X9 HXOhO
i

(5.5)
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and

K(x,y,2) = (2 —y* = 2°)° — dyz)'/*. (5.6)

Similarly, the tree-level decay width Ftree for the two-body decay hy — x7x3}, where
hY = {h, H, A}, can be written as

1
Ftrej’x,f(? = - h | ]h0‘2 KV(m}ng’ m?(?,m%) [mig — mfz? — m?{? — 2(—1)5k3m>~<?m§(?]
k

(5.7)
with an extra factor of 2 in the denominator if i = j.

In order to obtain a prediction for the decay width at one-loop level, the parameters
appearing in the lowest-order result and the fields of x?, )Z?, h{ need to be renormalised.
We have described their renormalisation in the previous chapters. In the next section

we describe how to put all of this together to renormalise the vertex.

5.2 X;Xjh; vertex renormalisation

The 3-point vertex for x; X?ho where h) = {h,H, A, G}, can be renormalised by a

counterterm vertex

0T 50500 = wWrOC, 0 +wr(— 1)%k3 (— )5k4502§h (5.8)
where the coupling counterterm is given by
e 0s dc 1o
R/L _ R/L _9sw ocw . 1 R/L ~R/L L/R ~R/L
0C 1y = rwswa o+ Cing (02, )t ;(5% Cojng + 02" Cyipe’)
1
+§(5Zh0h05hL + 5Zh2HCZ};E§{L + 5Zh0AC + 5ZhOGC~};~EéL) (59)

with

5Cijh2 = [(akNig + kam)((SSWle — 5CWNj2) + ((lkNjg + kaj4)(5SWNZ‘1 — 5CWN22)]
(5.10)
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This counterterm has been implemented into a supplementary model file for FeynArts.
With this supplementary file, FeynArts can be used to generate a counterterm diagram,
as shown in Figure 5.1(b), and a corresponding amplitude which can be added to the
one-loop vertex contributions using FormCalc. There are built-in functions in FeynArts
which allow the user to select which MSSM particles should be inserted into the self-

energies that make up the counterterm amplitude.

5.3 One-loop XX jh; vertex corrections

The one-loop diagrams which must be considered for the )Z?)Z?hg vertex are shown in
Figure 5.2. Here we consider only triangle diagrams. Any self-energies occurring on
external neutralino legs are taken care of by the neutralino field renormalisation, as de-
scribed in Chapter 4. The self-energies for the external Higgs boson are included in the
next section when we normalise the vertices to convert from a tree-level state, hY, to a

loop-corrected on-shell state, h,,.

The diagrams were generated using FeynArts, which applies the Feynman rules in the
MSSM model file to obtain all possible particle insertions into the triangle topologies
and generates the corresponding amplitudes. FeynArts also contains built-in functions
which allow the user to insert only certain particles or groups of particles into the loops,
so that smaller sets of diagrams can be considered separately. To avoid divergences, one

should only consider gauge-invariant sets of diagrams.

There are, for example, 24 diagrams containing third generation quarks and squarks
(t, %, b and b) in the loops (see Figure 5.2(a)). When these are combined with the vertex
counterterm from Equation (5.8), also evaluated with the same restriction on which par-
ticles occur in the loops, they form a UV-finite set. One cannot separate the diagrams
containing only ¢ and ¢ from those containing only b and b because there are diagrams
in the counterterms in which both particles species appear. For example, dsy, depends
on the W boson self-energy, Xy, which contains contributions from a stop-sbottom

loop and a top-bottom loop.

There are two further UV-finite sets of 24 diagrams, one for each of the first and second
generations of quarks. For the lepton sector there are less diagrams since the neutrino

does not couple to Higgs bosons and there is only one type of sneutrino in the MSSM.
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Figure 5.2: Triangle diagrams contributing to the one-loop )Z?)Z?h% vertex. (a) Loops containing
SM fermions and their scalar superpartners; for f = u,d, ¢, s,t,b, e, u, T, the subscripts
v,w can take the values 1 and 2; for f = ve,v,,v;, the subscripts v,w can take the
value L only. The diagram with two neutrinos in the loop is always absent, the diagram
with one neutrino in the loop is absent if the external Higgs boson is CP-odd. The
arrows indicating fermion flow can be reversed. (b) Loops containing Higgs bosons,
vector bosons and their scalar superpartners; h) = {h, H, A, G}, Hli = {H* G*},
X = {3, %3, %%, X2}, X = {x?,X3}. Depending on the CP-properties of the external
Higgs bosons, not all combinations of Higgs boson insertions in the loops are allowed.
Also, the diagrams containing two vector bosons occur only if the external Higgs boson
is CP-even.

The sneutrino does not couple to the CP-odd Higgs boson. Each generation of leptons
and sleptons hence forms a UV-finite set of 14 (12) diagrams if the external Higgs boson
is CP-even(odd).
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If the external Higgs boson is CP-even (h or H), there are then 192 remaining diagrams
at the particle level (i.e. those in Figure 5.2(b)) which themselves form a UV-finite set.
The loops in these diagrams contain gauge bosons, Higgs bosons and their superpartners;
the charginos and neutralinos. They cannot be divided up into smaller UV-finite sets.

If the external Higgs boson is CP-even (A), the equivalent set contains only 168 diagrams.

In total we have 306 or 276 diagrams, depending on the CP-parity of the external Higgs
boson, each translated into an amplitude by the function CreateFeynAmp in FeynArts.
For example; for the process Y — X]h the first diagram in Figure 5.2(a) is translated

into the amplitude;
d*q _
M= / 167r14 ks, mp) wiCy ©F 5]
Chgfwfvu(phm;zg)/((% —mp)[(q = k1)? = m3 [(q — k1 — k2)* = m?% ])
(5.11)

wRCf ](Q/1+mf)[wLC~off +WRC

where p; is the incoming momentum of the x?, k;, ko are the outgoing momenta of the
)2? and h{ respectively, and ¢; is the loop momentum on the internal fermion line. The
couplings of neutralinos to fermion-sfermion pairs and sfermion-sfermion pairs involve
masses and mixing matrices. FormCalc makes the task of evaluating these amplitudes
relatively straightforward. The function CalcFeynAmp performs the contraction of in-
dices, the calculation of traces, the reduction of tensor integrals, further simplifications
and the introduction of abbreviations. In our example, Equation (5.11) is simplified to

M = 17,807, 71C0 = Cfla, Chogs, Cra s O

167 315 <Cfx°fw XOF fo B Fus Fo o RO Fo 1O fu o

0y, Owa 2077,Cng w0 C2) + B (O Owa 077, Cng 7, 7,11 Co

~Cr7. Cn1.Copr i msCr = Cliaz Cagr Cp, st Co)) (5.12)

where C; = C; (m 205 Zo,méo, mf, mf ,m? ) are scalar loop integrals (see Appendix A.1
] k 7

for the definitions of the loop integrals used in this thesis) and the abbreviations
Fy = a(ky, mi?)wLu(pl, myo), Iy =k, mi?)wRu(pl, mygo) (5.13)

are used. These matrix elements and abbreviations, combined with the corresponding

output for the counterterms, are then converted to Fortran code using WriteSquaredVE.
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Figure 5.3: Contributions to the one-loop X?)Z?hg vertex involving mixing self-energies of
Higgs bosons with the G' and Z bosons; (a) h{-G self-energy diagram, (b) h{-Z
self-energy diagram, (c) h)-G counterterm diagram, (d) h)-Z self-energy dia-
gram.

The code contains everything required to convert these matrix elements into numerical
values for decay widths and cross sections. The loop integrals are evaluated numerically
using LoopTools. We vary the parameter A = 2/(4 — D) — vg + log 4w to check the
UV finiteness of the decay width and show that in the corresponding vertex function,

[wr o rLpl STPL .  the UV divergences cancel out.
0x0hy = L xoxong T 0L goz0n0s g

5.4 Inclusion of self-energy diagrams

In the previous section we obtained the 1PI renormalised vertex function for X?X?hg.
Although it is UV-finite, this vertex function will not lead to physical amplitudes and
decay widths, as the external Higgs field is not on-shell and can mix with other fields.
The 3-point vertex for x?X%h, is constructed from the vertices for xJx9h, H, A using
the 3 x 3 Z matrix for the normalisation of wavefunctions as in Equation (3.84). This

automatically includes the reducible self-energy diagrams involving h, H, A.

For a complete one-loop result, reducible diagrams, of the type shown in Figure 5.3(a),
involving mixing self-energies of Higgs bosons with the G and Z bosons, must also
be included. In order to ensure a proper cancellation of the gauge parameter depen-
dence, we follow the approach of Ref. [30] and evaluate these reducible contributions,
[GZse strictly at the one-loop level. The diagrams and amplitudes were generated us-
ing FeynArts, and added to the corresponding counterterm diagram from Figure 5.3(b).
The h{-G vertex counterterms from Equation (3.67) and the resulting h)—Z countert-

erms were implemented into our FeynArts model file.
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Our full result, IFullkeor g then obtained by combining these contributions with those

of genuine vertex type, I''P!, as follows,

~Full L 5 7 ~GLZ.
)zél}z?h(;op = Zal [F)%;figh?(M/fa) + I}(?}(?if? (mi?)]a (514)
where h) = {h, H, A} are the tree-level states with tree-level masses, mpo, and are

summed over. In contrast, M}, is the loop-corrected mass of the Higgs boson h, in
the physical process, i.e. one of hy, ho, h3. Numerically, inclusion of the G-Z mixing
did not have a significant effect, but we include these diagrams for a complete one-loop
result. Across the CPX parameter space studied in Chapters 6 and 7, the effect of this

correction on the decay widths was less than 0.1%.

5.5 Combination with higher-order results

As Higgs propagator-type corrections are known to be large, we have combined our one-
loop result for the genuine vertex contribution with state-of-the-art two-loop propagator-
type corrections obtained within the Feynman diagrammatic approach, as implemented
in the program FeynHiggs [41,79-81]. These contributions incorporate in particular
the full phase dependence at O(ayay), while we do not include here further two-loop

corrections that are known only for the case of real MSSM parameters.’

Using Equa-
tion (5.14), we combine the two-loop 7 factors and Higgs masses My, from FeynHiggs
2.6.5, with our own genuine vertex (I''*") and G—Z mixing (I'"®%*) corrections to the
processes X — )22

for the corresponding decay widths and branching ratios in the MSSM with complex

he and h, — )2?)2?, thereby obtaining the most precise predictions
parameters.

In order to investigate the effects of the genuine vertex contributions for the processes

X{ = Xjha and h, — X9X9, we will in the following compare our full result with an
Improved Born approximation. The latter is obtained by summing over the tree-level

amplitudes for ¥ — X?hg or h) — )Z?)Z?, weighted by the appropriate Z factors and

!This means in FeynHiggs selecting the flag t1cplapprox= 1 instead of the default flag for complex
parameters tlcplapprox= 3, which uses an interpolation between phases to include the further
two-loop corrections evaluated at real parameters.
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evaluated at the loop-corrected Higgs masses,

plamesedBom _ g (1R, (Mig)). (5.15)
We will always compare our numerical results to this Improved Born approximation,
rather than to the strict tree-level result of Equation (5.5). This allows us to separate out
the effect of our new genuine (process-specific) vertex corrections from those corrections
coming from mixing effects and mass shifts in the Higgs sector which are already known
to be large. Thus when we speak of the relative effect of our genuine vertex loop

calculations on the partial decay width, I', we are referring to the ratio

o FFull Loop — FImproved Born

tT I'mproved Born (5.16)
As well as our full MSSM calculation, we will show approximations, where only some
(UV-finite) sets of diagrams such as third generation quarks and squarks, i.e. t,, b, b, are
included in the genuine vertex corrections. In all cases, the two-loop propagator-type
corrections from FeynHiggs are evaluated in the full MSSM. Various other approxima-
tions exist in the literature. In Ref. [101], only the one-loop 3rd generation (s)quark
contributions in the real MSSM were considered. In Ref. [102], all one-loop (s)fermion
contributions in the real MSSM were considered. Our full results thus go beyond these
works, as we include all possible MSSM particles in the loops, we allow complex param-
eters, and we incorporate complete one-loop and leading two-loop contributions from

the Higgs sector.

5.6 Other vertices

In addition to the x{x9h{ vertex, we have renormalised all three-point vertices involv-
ing Higgs or gauge bosons with charginos and/or neutralinos. The counterterms for
these vertices have been implemented into our supplementary FeynArts model file and
checked for UV-finiteness. We give formulae for these in Appendix B for reference, but

will not use all of them for the numerical results presented in this thesis.

We will present numerical results for the one-loop )Z?)Z?Z vertex. To obtain these cor-
rections, the procedure followed was similar to that described in the previous sections

for the )Z?)Z?hg vertex. At the particle level there are 292 diagrams to compute, which
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can be split into analogous UV-finite sets to the Higgs case. The three-point vertex is

given at tree level by

F;r:le X0Z Z<Cx21,x0 ZfY“wL + C 0 )2(7)1272’}/“003). (5.17)
where
L/R _ € L/R
Otz = G Ot 10,7 (5.18)
with
C%{lfc%QZ = N;23Nn13 + Nn24N 145
R *
CXn1XnQZ = angNn23 Nn14N (519)

The vertex counterterms are then given by

5CW 5SW 1
SCL/R 7) = — [ocR, (57, W TV 5y
(an Xn27 ) 2CWSW |: anlxn2Z( CW SW + 2 ZZ)

S OZRR o+ " 070 (5.20)
Equation (5.20) is somewhat simpler than the Higgs vertex counterterm of Equation
(5.9). The counterterm, 5CX% ?~22 »» 18 zero since it contains only mixing matrix elements.
Also, the Z field renormalisation transformation (see Equation (3.10)) mixes the Z bo-
son only with the photon, which does not couple to neutralinos, so the §Zz, term can
be dropped from the vertex counterterm. Unlike the Higgs vertex, there is no need to
normalise the Z vertex using finite normalisation factors, since the on-shell renormalisa-
tion conditions ensure the correct propagator residue. However, for a complete one-loop
result for the process y? — X]Z we do include reducible diagrams involving the mixing

self-energies for the Z boson with h, H, A, and G.



Chapter 6

Results for the decay width of a

neutralino into a light Higgs boson

6.1 Motivation

In this chapter we present numerical results for the decay width of a neutralino into
a light Higgs boson, calculating the vertex corrections using the method described in
Chapter 5. Our motivation for the study of this decay is the CPX benchmark sce-
nario [29]. As already discussed, not only does this scenario contain a parameter region
in which a very light Higgs boson, of mass around 40 GeV, is unexcluded by LEP [27,30],
but it is known that this unexcluded parameter region will also be difficult to cover at
the LHC with the standard search channels [31-33].

While on the one hand a supersymmetric scenario such as the CPX scenario may have
much worse prospects compared to the SM case for Higgs searches at the LHC in the
standard channels, on the other hand additional Higgs production channels involving
SUSY particles may occur in such a case. In cascade decays of heavier SUSY particles
down to the lightest supersymmetric particle (LSP), Higgs bosons can in particular be
produced in decays of neutralinos and charginos, via X — X9 hy1, ha, hs and x; — YIH*,
see e.g. Refs. [103,104] for studies of these channels at the LHC in the MSSM with real
parameters. These channels have also attracted recent interest for studies of scenarios

with non-universal gaugino masses [105-107].

Since higher-order contributions in the MSSM Higgs sector are known to be large, a
proper inclusion of Higgs-sector corrections is indispensable for a reliable prediction of

this class of processes. The process-independent corrections to the mass of the outgoing

93
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Higgs boson and to the Higgs wave function normalisation can be incorporated via an
effective Born-type prediction for the neutralino decay process, see Refs. [30,41,108] (see
Section 5.5). We show results for such an Improved Born approximation using Equation
(5.15). The genuine (process-specific) vertex corrections, included in Equation (5.14),
can also be very important. This has recently been demonstrated in Ref. [30] for Higgs
cascade decay processes, h, — hph,., in the CPX scenario, where the genuine vertex
corrections were found to give rise to drastic changes in the decay widths compared
to the effective Born-type predictions. In the neutralino decay processes, comprising
just one instead of three external Higgs bosons, the genuine vertex corrections are not
expected to be quite as large as for the Higgs cascade decays, but their effects can

nevertheless be expected to be non-negligible.

Concerning existing theoretical predictions for this class of processes, partial one-loop
results have been published previously for the decays H, A — )2?)22 in both the Feynman-
diagrammatic [101,102] and effective potential [109] approaches. These predictions did
not include the full MSSM, and the Feynman-diagrammatic calculations were restricted

to the case of real parameters.

Here we present the full vertex corrections at the one-loop level, taking into account
the contributions from all MSSM particles, and all possible complex parameters using
the renormalisation scheme detailed in Chapters 4 and 5. We combine these results
with state-of-the-art two-loop propagator-type corrections as implemented in the code
FeynHiggs [41,79-81] using Equation (5.14). In this way the currently most precise

prediction for this class of processes is obtained.

In our numerical discussion we concentrate in particular on the parameter region in
the CPX benchmark scenario where a light Higgs boson is unexcluded by current data
(see also Refs. [110-112] and the more recent Ref. [113] for discussions of other possible
LHC search channels to access this parameter region), but we also give examples for the
CP-conserving case. In addition we will also compare our results for the decay width of

a neutralino into a Higgs boson to the decay width of a neutralino into a Z boson.

6.2 Numerical results for the CPX scenario

We start with numerical results for our genuine vertex corrections to the decay width

for X3 — x%h; in the CPX scenario. Figure 6.1(a) shows the partial decay width
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(x93 — x%hy) as a function of Mj,,. The value of tan 3 is fixed at 5.5, while My+ is varied
as input. As M}, increases, the partial width decreases, becoming kinematically closed
for My, 2 103 GeV ~ My — Mgo. The dashed Improved Born curve shows the result
obtained by combining the tree-level amplitudes with 2-loop Z matrix elements and
masses according to Eq. (5.15). The other curves incorporate our results for the genuine
vertex corrections, taking into account different sets of loop contributions. Figure 6.1(b)
shows the ratio r, defined in Eq. (5.16), of the genuine vertex corrections relative to the
Improved Born result as a function of Mj,. We see from the figure that the impact of the
genuine vertex corrections on the decay width is very large. The corrections from the full
MSSM contributions to the vertex amount to about 45% for Higgs mass values in the
region of the “CPX hole”, i.e. for Mj, ~ 40 GeV. As expected, the dominant effect arises
from the triangle diagrams containing third generation quarks and squarks (¢, 7, b, l~)), due
to the large top Yukawa coupling, yielding a correction of about 35% compared to the
Improved Born result. The other (s)fermions also play a non-negligible role, in particular
through their couplings to neutralinos, increasing the total (s)fermion contribution to
just under 50%. The vertex corrections from the remainder of the particles in the
MSSM, namely the vector bosons, Higgs bosons, neutralinos and charginos, are negative

and contribute about a 5% correction.

0.6 : : : : . 50
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F(MeV) (s)top/(s)bottom T(%)
0.5} (s)fermion 1 A5
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Figure 6.1: Results for (a) the decay width I'(Y3 — x%h1) and (b) the ratio 7 = (I'full Loop —
Iimproved Born ) /T tmproved Born i the CPX scenario plotted against My, for tan = 5.5.
(Mpy+ was varied as input.) The different curves indicate the inclusion of various subsets
of diagrams.
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Figure 6.2: Results for (a) the decay width I'(Y9 — X{h2) as a function of M}, in the CPX scenario,
(Mpy+ was varied as input, M, and Mp,, will vary with Mg+ ); and (b) the decay widths
(x93 — XVhi123) as a function of Mg in the CPX scenario for tan 3 = 5.5; (M2 was

varied as input to produce the dlsplayed variation in Mg (mostly wino); Mo (mostly

bino) also varies due to the GUT relation between M; and M3). The different curves
indicate the inclusion of various vertex corrections.

In Figure 6.2(a) we show the partial decay width (Y3 — X{ho) for the second light-
est Higgs boson, as a function of Mj,, in the CPX scenario with tan3 = 5.5.! For
M, Z 50GeV, M, drops below Mg — My, and the decay is no longer kinematically
open. For the nominal CPX value of My = 200 GeV and values of M}, and tan 3 chosen
in the region of the “CPX hole”, the decay width into hs is always less than the decay
width into hy, shown in Figure 6.1(a). However, for larger values of My (and hence Myo),
this may not always be the case, and also the decay into h3 may become kinematically

open.

In Figure 6.2(b) we show the variation in each of the partial decay widths ['(yJ —
f(?hm,g), as a function of ng- Mpy+ was adjusted to keep Mj, and tan [ fixed at
40 GeV and 5.5 respectively. We see that the decay into the lightest Higgs boson, hq,
is kinematically open for the whole range of Mgy shown, while i, and hj can only be

produced on-shell for My greater than around 195 and 250 GeV respectively. Once Mg

IThe variation as a function of M}, is merely for reference later in Chapter 7 when we compute the
branching ratio of Y9 as a function of My, . In fact the input parameter M+ was varied to produce
the displayed variation in Mj, .
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Figure 6.3: (a) The decay width T'(x3 — x{h2) as a function of tan3 in the CPX sce-
nario, with various subsets of diagrams included. (b) The ratio r = (Irull Loop —
Iimproved Born)/Timproved Born for X3 — X{h1 plotted against p in the CPX scenario,
with tan 8 = 5.5, with various subsets of diagrams included. My+ was adjusted in order
to keep My, = 40 GeV constant for both figures.

becomes large enough, the decay into h, dominates over the decay into hy, since ho
has a larger CP-even component. Notice that all three decay widths receive large vertex
corrections of O(50%). For My just below 520 GeV, there is a slight enhancement in the
vertex corrections, corresponding to the threshold for the decay of Y9 into squark-quark
final states. We will see in Chapter 7 that, above this threshold, the squark-quark decay

then begins to dominate the branching ratio of the second lightest neutralino.

In Figure 6.3(a) we show the decay width of T'(x3 — X{h) as a function of tan 3, where
Mpy+ is adjusted to keep M}, constant at 40 GeV. We observe a similar pattern in the
relative impact of the various contributions of the subsets of diagrams to the vertex
corrections, the largest coming from the third generation quarks and squarks. Values of

tan 3 below 5 yield a significant increase of the decay width.

Such large effects from the genuine vertex corrections are not unexpected in the CPX
scenario (see also Ref. [30] for an analysis of genuine vertex corrections to Higgs cascade
decays). It is well known that loop corrections in the Higgs sector can be large, especially
in this rather extreme scenario with large trilinear couplings and CP-violating phases.

Such a large value of p also enhances the effect of loop corrections in the neutralino
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Figure 6.4: The ratio r = (I'full Loop — 'Improved Born )/ Improved Born it the CPX scenario: (a) r for
3 — XVh1 plotted against ¢4,. (b) r for each of X3 — YYh, H, A plotted against ¢4,
for |A| = 900 GeV, where h, H, A indicate the unnormalised Higgs CP-eigenstates (i.e.
the Z1; matrix elements are set to {1,0,0}, {0,1,0} and {0, 0,1} respectively). For both
figures, M+ was adjusted in order to keep My, = 45 GeV constant and tan 3 = 7.

sector. In Figure 6.3(b) we see how the effect of the genuine vertex corrections is further
enhanced to values of 60% or more if p is increased compared to its value in the CPX
scenario of = 2TeV. On the other hand, if u is decreased one obtains correspondingly

smaller corrections.

We also examined the effect of varying the absolute value and CP-violating phase of
the trilinear coupling, A; = A, = A,, for the third generation of sfermions. In Figure
6.4(a), we plot r for the decay Y3 — x{h; as a function of ¢4, for various values of
|A;]. Mpy+ was adjusted in order to keep My, = 45GeV constant and tanf = 7. (A
Higgs mass of M}, = 40 GeV was not theoretically accessible for all ¢4, when |A;| =
500 GeV.) In Figure 6.4(b), we plot r for each of Y — x%h, H, A as a function of ¢, for
|A;| = 900 GeV, where h, H, A are the unnormalised Higgs CP-eigenstates. We compute
the latter (unphysical) decay widths in the limit where we set the 71; matrix elements
for the lightest Higgs boson to {1,0,0}, {0,1,0} and {0, 0, 1} respectively. (For reasons
discussed in Section 3.4.9, these will not correspond to physical mass eigenstates.) First
we discuss the red curve in Figure 6.4(a), where |A;| = 900 GeV. At ¢4, = 7/2, the loop
corrections show a steep dependence on the phase, ¢4,, emphasising the importance of

including the effects of phases in the calculation. At this value, hy has its largest CP-odd
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content, i.e. |Z3| is largest (as shown in Figure 3.3(b)), while the CP-even contributions
are suppressed, giving rise to corrections of order r ~ 45%, which is consistent with the
size of the corrections to the decay width into the CP-odd eigenstate, A, at ¢4, = 7/2
shown in Figure 6.4(b). When ¢4, = 0, the loop corrections to I'(x3 — x{h) are found
to be somewhat smaller, with r ~ 30%. This is because at this value of the phase, h;
is mostly A (see Figure 3.3(b)), and as seen in Figure 6.4(b), the decay width into the
CP-even eigenstate, h, receives corrections of around this size. On the other hand, the
effect of the genuine vertex corrections to I'(x3 — X{h1) is maximised for ¢4, = 7, i.e.
A; = —|Ay|. This corresponds to maxima in |Zy;| and |Z5|, so that the lightest Higgs
boson is mostly CP-even (see Figure 3.3(b)). The genuine vertex corrections for a CP-
even Higgs are larger than for a CP-odd one at ¢4, = 7, so that their effect is maximised
here. The corrections are particularly large for the Higgs with an h-like coupling (see
Figure 6.4(b)). Hence the genuine vertex corrections in such a CP-conserving scenario
(with ¢4, = m) can even exceed the ones in the CPX scenario (where ¢4, = 7/2). It
should be noted in this context, however, that such a light CP-even Higgs boson is of
course experimentally excluded. Figure 6.4(b) also shows corrections of order 200% at
¢4, = 0,27 for the unrenormalised H state of mass 45 GeV. Note, however, that this
200% effect is not physical; it does not play a large role for the physical h; state since
Z15 is small at these ¢4, values (see Figure 3.3(b)). For smaller values of [4,| (blue and
green curves in Figure 6.4(a)), the corrections are in general smaller, and the variation
with the phase of A; is less pronounced. Nevertheless, even for |A;| = 500 GeV we find
r ~ 35% and r ~ 40% at ¢4, = /2 and ¢4, = 7, respectively.

6.3 Numerical results for the small a.g scenario

We next consider the numerical results for the genuine vertex corrections to the decay
width, T'(x9 — X9h1), in the CP-conserving small a.g scenario. Like the CPX scenario,
this scenario has large p and large, negative A;. For the small aeg scenario with My+ =
220 GeV and tan = 10, we find genuine vertex corrections of size r ~ 35%. The
variation with g, shown in Figure 6.5(a), results in a pattern that is very similar to
the one observed for the CPX scenario in 6.3(b). The size of the correction scales
approximately linearly with p, and the inclusion of the full (s)fermion contributions
yields a shift of about 10% compared to the contribution of only the third generation
(s)quarks. The non-(s)fermionic corrections to the genuine vertex give rise to a downward
shift of about 5%.
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Figure 6.5: The ratior = (FFull Loop — FImproved Born)/FImproved Born for )~(8 — )??hl in the small Oleff
scenario. (a) r plotted against u with various subsets of diagrams included. In this plot
Mp+s = 220GeV and tan§ = 10. b) r plotted against ¢4, for three different values
tan 8 = 3.3,5,10 and hence |A;| = 500, 700,900 GeV respectively (see Eq. (2.34)), with
Myg+ =220GeV.

In Figure 6.5(b) the small a.g scenario is modified by varying the phase ¢4, while
keeping |A;| = |X; + p* cot 5| constant. We find that, like in the CPX scenario, the
genuine vertex corrections have the largest effect of order 35% at the nominal value of
¢, = m, while the corrections are only a few percent when the phase is maximally CP-
violating for ¢4, = w/2. This can again be compared with Figure 6.4(a). Unlike the CPX
scenario for which the corrections to the physical decay width into h; are minimised at
¢4, = 0,27, in the small a.g scenario the vertex corrections exhibit another extremum
here, with r ~ —20%. As for Figure 6.3(b), the dotted curves in Figure 6.5(b) show
a reduced effect of the loop corrections when |A;| is decreased. Here we vary tan [ in
order to produce the desired |A;| from X; = —1100 GeV using Eq. (2.34).

6.4 Other benchmark scenarios

In addition to the CPX and small a.g scenarios, we examined all of the kinematically

open decay modes of the form X — x}h for the SPS benchmark points [63]. We show the
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ratio r, defined in Eq. (5.16), of the genuine vertex corrections relative to the Improved
Born result for the decay widths in Table 6.1. Corrections of over 10% to the partial

decay widths were found to be common, indicating that significant effects are not limited

to scenarios with very large values of .

Decay: | X5 — Xoh | X5 — Xth | X3 — Xih | Xi — Xoh | X2 — Xih | X5 — Xih
SPSla | -88% | -0.12% | -1.6% | -10.3% - -
SPS1b | -11.7% | -2.5% 2.5% | -12.1% - -
SPS2 - - -8.2% | -12.3% - -
SPS3 - - 25% | -12.0% | -3.0% -
SPS4 - - - -9.9% - -
SPS5 - - - -1.5% - -
SPS6 - - 14% | -13.4% - -
SPS8 - - -2.9% -9.9% -8.7% -
SPS9 - - 21.2% | -6.2% - -17.3%

Table 6.1: Relative effect of the genuine vertex corrections on the decay widths, shown as a
percentage, (%), for the kinematically open decay modes of the form 9 — )Z?h
for the SPS benchmark points.

Another scenario which we examined was the benchmark point LM5, studied in the CMS
Technical Design Report, in the context of the decay Xy — Y%k [104]. For this scenario
we found the corrections to the partial decay width to be around 5%. However, due
to the large branching ratio of around 85% for the process, these corrections translated
into an effect of less than a percent on the branching ratio. We will discuss the effect of

decay width corrections on the branching ratios further in Chapter 7.

6.5 Comparison with the decay width of a

neutralino into a Z boson

As detailed in Section 5.6, we have also computed the one-loop vertex corrections to the
XiXjZ vertex. In this section we show numerical results for the decay width, I'(x3 —
X37Z), to serve as a comparison to I'(xy — x9h,). In Figure 6.6(a), we plot the relative
size of the corrections, r, as a function of u for M, = 40GeV and tanf = 5.5 in

the CPX scenario. We see that, unlike for the Higgs vertex, the vertex corrections are
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Figure 6.6: The ratio 7 = (I'rull Loop — IImproved Born)/I'Improved Born for X3 — X7 in the CPX
scenario. (a) r plotted against p, with various subsets of diagrams included. M+ was
adjusted in order to keep M}, = 40 GeV constant and tan 8 = 5.5. (b) r plotted against
¢4, for several different values of |A¢|. Mg+ was adjusted in order to keep M}, = 45 GeV
constant and tan 3 = 7.

negative, but, like for the Higgs vertex, they increase in relative size as u increases. For
1 = 2000 GeV, the corrections are sizeable, with r ~ —30%. If p is increased above its
nominal CPX value of 2000 GeV, the corrections can reach a relative size of —40% or
more. The effect from the subset of diagrams including only third generation quarks
and squarks (t,, b, Z~)) is less than half of the effect of the full MSSM diagrams, yielding a
correction of about —15%. This is in contrast to the Higgs vertex, for which this subset
was by far the dominant contribution, enhanced by the large top Yukawa coupling.
Inclusion of the other (s)fermion diagrams gives a further negative contribution of about
15% and results in a very good approximation to the full result. The remaining particles
in the MSSM, namely the vector bosons, Higgs bosons, neutralinos and charginos, do

not play a large role, giving a small, negative contribution.

In Figure 6.6(b), we show the relative size of the corrections to I'(x3 — X5Z) in the CPX
scenario with M, = 45GeV and tan/3 = 7 as a function of the phase of the trilinear
coupling, A, = A, = A,, for the third generation of sfermions, for various values of
|A;|. The red curve shows the variation when |A4;] = 900GeV. At ¢4, = 7/2, the

loop corrections show a steep dependence on the phase, ¢ 4,, once again emphasising the
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Figure 6.7: The decay widths for Y3 — ¥Vh and X3 — X{Z in the light ! scenario, (a) plotted
against tan 3, and, (b) plotted against A;.

importance of including these phases in the calculation. Unlike the Higgs vertex, the
negative corrections to the Z vertex are the largest when ¢4, = 0, where they reach a
value of r ~ —50%. Here the effect of the subset of triangle diagrams including only
third generations of (s)fermions is enhanced. As with the Higgs vertex, for smaller values
of |A;| (blue and green curves in Figure 6.6(b)) the corrections are in general smaller,

and the variation with the phase of A; is less pronounced.

While, in the CPX scenario, the decay width for Y5 — YYZ receives corrections of a
similar order to the ¥3 — X{h, processes, the decay width itself is about a factor of
100 smaller than the Higgs decay widths, and therefore it will not play such a large role
in the branching ratio of 3. We will discuss this further in Chapter 7. In contrast, a
scenario in which the decay widths into the Higgs and Z bosons are of similar order is
the CP-conserving light ¥? scenario given in Table 2.3. In Figure 6.7(a) we show the
variation of the decay widths of Y3 into h and Z, with and without vertex corrections,
as a function of tan 3 for the light x? scenario. Like for the CPX scenario, we see a
significant increase of the Higgs decay width for small values of tan 3, while the Z decay
width gets smaller in this region. However, for values above tan § = 10, both decays
have similar widths and can contribute significantly to the x5 branching ratio. The

vertex corrections to the Z decay width are negative and of order less than 5%, while
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the vertex corrections to the Higgs decay width are negative, with size increasing from
20% to 37% for the increase in tan 3 shown.

In Figure 6.7(b) we show the variation of the decay widths of X3 into & and Z, with
and without vertex corrections, as a function of the third generation sfermion trilinear
coupling, A; for the light ¥ scenario. As for their dependence on tan 3, we observe that
the vertex corrections to the Z and Higgs vertices, while both negative, each display a
different dependence on A;. As A; increases, the Z vertex corrections decrease, while the
Higgs vertex corrections increase, enhanced by the diagrams containing third generation

quarks and squarks.

6.6 The effect of C’P-violating phases from the

neutralino sector

So far we have only shown numerical results for CP-violating scenarios in which the
phases contribute to the neutralino-chargino sector only at the loop level, such as ¢4,. We
now consider scenarios where the parameters which enter the neutralino-chargino sector
at tree level can also be complex. For the CP-violating Higgs propagator corrections, the
combined phase of A, plays the largest role at one-loop level. For the genuine vertex

corrections, which involve the neutralino sector at tree-level, ¢, can also be important.

In Figure 6.8(a) we show the decay width for X3 — x{h; as a function of ¢y, in the CPX
scenario with M, = 62GeV and tan 3 = 5.5. We see in the dashed curve that ¢,;, has
a significant effect on T'(x9 — Xx{h1) even at the Improved Born level. The green, blue
and red curves show the inclusion of the vertex corrections due to the third generation
(s)quarks, the full set of (s)fermions and the full MSSM respectively. As seen previously,
the former is the largest contribution. One can better understand the shape of the curves
in Figure 6.8(a) by considering the (unphysical) “decay widths” for the unnormalised
CP-eigenstates, h, H and A, shown in Figure 6.8(b) (in this figure the Z matrix elements
are set to {1,0,0}, {0,1,0} and {0,0, 1} respectively). The neutralino mixing matrix
elements, N;;, and hence the couplings of neutralinos to Higgs bosons, have a strong
dependence on ¢,;,. We see that the CP-odd Higgs has a different dependence on ¢y,
to the CP-even Higgs bosons, but both are symmetric about ¢, = 0, the former (latter)
having a minimum (maximum) at ¢y, = 0. However, when ¢,,, = 0, there is still CP-

violation in the Higgs sector due to the non-zero ¢4, and ¢u,. This can be seen in
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Figure 6.8: (a) Decay width for Y3 — x%h1 as a function of ¢y, with various subsets of vertex
corrections included; (b) unphysical “decay widths” into unnormalised CP-eigenstates,
“T7(x9 — xX%h, H, A) as a function of ¢y, (i.e.the Z matrix elements are set to {1,0,0},

{05 17 0} and {07 05 1} reSPeCtiVel}’); (C) r= (FFull Loop — FImproved Born)/rlmproved Born for
%5 — XVh1, as a function of ¢y, with various subsets of vertex corrections included. All
plots are for the CPX scenario with M}, = 60 GeV and tan 8 = 5.5.

the loop-corrected widths, the maxima and minima of which are shifted slightly. When
the appropriate linear combination of A, H and A is made using the 7. factors (see
Figure 3.3(b); there is almost no variation from these 7 factors when ¢ M, 1s varied), the

resulting decay width for h; is asymmetric about ¢,;, = 0. Although ¢, plays very
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little role in the pure Higgs sector corrections, we see that its effect can be significant for
the Y9xVh, vertex corrections. Moving away from the nominal CPX value of ¢y, = 0
where the vertex corrections amount to r ~ 45%, we see in Figure 6.8(c), that the vertex

corrections can increase to r ~ 55% for ¢p, ~ /2.

6.7 Summary

In this chapter we have presented numerical results for the one-loop decay widths for
X9 — XVh1 2,3 in various CP-violating and CP-conserving scenarios. We compared these
to results for the one-loop decay widths for Y5 — x%Z. For the Higgs vertex, we
found particularly large vertex corrections of O(45%) for the unexcluded parameter
region in the CPX scenario, where a light Higgs could be produced by the decay of the
second lightest neutralino. These vertex corrections could be further enhanced with the
variation of parameters from the neutralino sector, such as ¢, which do not play a
large role in the Higgs sector. In the context of utilising the decay, X3 — X\hy, in the
region of the “CPX hole”, it was important to compute the effect of the genuine vertex
corrections on the decay width, since it had been seen previously that such genuine vertex
corrections for hy — hihy had a dramatic effect on the size and position of the hole [30].
In assessing the viability of this decay at the LHC, it will be the branching ratios rather
than the decay widths that are important. In the next chapter we present results which
show the effect the large corrections to the decay widths have on the branching ratios.
We will then use these results to discuss the prospects for closing the “CPX hole” at the
LHC using the decay x5 — x%h.



Chapter 7

Results for the branching ratio of a

neutralino into a light Higgs boson

7.1 Calculation of branching ratios

In the previous chapter, we found that the genuine vertex corrections to the partial decay
width T'(9 — x%h,) were of order 45% in the CPX scenario. For phenomenology at the
LHC it is important to consider, in addition to the decay widths, also the branching ratios
of neutralinos. In this section, we compute the branching ratios of x5, incorporating our
loop-corrected decay widths for the two-body decays, Y5 — XJhi23 and Y5 — xVZ. In

the CPX scenario, depending on its mass, Y3 can decay via the following decay modes:

Xy — X1, XOha, XOhs, 02, X0FF, Fiofs fiof. (7.1)

Where kinematically possible, we calculate the decays X3 — XYh4, which produce on-
shell neutral Higgs bosons, as two-body decays, including the genuine vertex corrections
as detailed in the previous chapters. Where kinematically possible, we also calculate
the decay Xy — XYZ into an on-shell Z boson as a two-body decay, including the
equivalent genuine vertex corrections as detailed in the previous chapters. Note, however,
that the amplitude for this decay is suppressed by several orders of magnitude in the
CPX scenario, since the Z boson only couples to the higgsino component of each of
the neutralinos, while the large value of u renders X! and Y9 mostly bino and wino,
respectively. Finally, we calculate the 3-body decay x5 — xVff. For this, we include,
firstly, the diagrams where an off-shell Higgs boson is exchanged (i.e. where some or all of

h1, ha, hs are too heavy to be produced on-shell). For these diagrams we use the unitary
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U matrix elements and masses from FeynHiggs to construct effective couplings (see
Section 3.4.11) which take into account the two-loop Higgs propagator-type corrections.
Secondly, in the three-body decay, where the kinematics do not permit an on-shell Z
boson, we include the diagram where a Z boson is exchanged, along with the diagram
where the would-be Goldstone boson, G, is exchanged (in this way a proper cancellation
of the gauge dependence is ensured). Thirdly, we include in the three-body decay the
diagrams where a sfermion is exchanged. As the neutralino mass approaches the scale
of the sfermion masses, the possibility of on-shell production of sfermions arises, which
subsequently decay into ¥!. To treat this threshold region, we include a finite width for
each sfermion, calculated from its self-energy. All self-energies and two- and three-body

partial decay widths were calculated using FeynArts and FormCalc.

7.2 Numerical results for the branching ratio in the

CPX scenario

The resulting branching ratios of Y9 in the CPX scenario are plotted as a function of
the neutralino mass, Mg, in Figure 7.1a, with tan 8 = 5.5 and My, = 40 GeV. Both
the Improved Born and full MSSM vertex-corrected results are shown. We see that
for My < 190 GeV, BR(X5 — X{h1) ~ 100%, and therefore the loop corrections to
the X3 — X1hi partial width have negligible effect. As one increases My from 190 to
470 GeV, the on-shell decays x5 — XVhy and X3 — YVh3 become kinematically allowed.
This causes BR(x3 — XYh1) to vary from 100% to around 25%. In this region, the three
competing decay modes into Higgs bosons all receive large vertex corrections of order
50% (see Figure 6.2(b)). However, since these vertex corrections have similar structure,
their effects tend to cancel each other out, producing an effect of only a few percent on

the branching ratios. Thus, the Improved Born approximation works well in this region.

The effect of vertex corrections on the branching ratio will be more significant in regions
of parameter space where there is another competing decay mode of x5 which does
not have loop corrections of a similar structure to Y5 — Y"h;. In the CPX scenario,
this competition will never be provided by the highly suppressed decay into a Z boson.
However, for large enough My, decays via sfermions become important. While the
Higgs bosons require both a non-zero gaugino and higgsino component to couple to
neutralinos, sfermions couple only to the gaugino part. Thus, if sfermion decays can

proceed on-shell, they will, in this scenario, dominate over the Higgs decay modes,
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Figure 7.1: Branchmg ratio for each of X3 — X{h1 2,3 and for the other decay modes, Y3 — ¥JZ and
X9 — XVff (labelled “Other”) (a) shown as a function of Mgy, for My, = 40 GeV and
tan 8 = 5.5; (My was varied as input to produce the change in M (mostly wino); Mo
(mostly bino) also varies due to the GUT relation between My and M;y; Mg+ was varied
as input to keep M}, constant; My, and My, will vary with Mg+ ); and, (b) shown as
a function of Mj, for tan 8 = 5.5 and Mz = 200 GeV (Mg and Mo are 198.5 GeV and
94.7 GeV respectively; Mpy+ was varied as input). In both plots we ' show the Improved
Born approximation as a dashed line and the full MSSM result as a solid line.

rendering BR(X§ — X1h1) ~ 0. A threshold region for 450 < My < 520 GeV can be
seen in Figure 7.1(a) for the curve labelled “Other” (Y5 — V7 and x5 — XV ff decays).

Within this region, the existence of competing decay modes means that the genuine
vertex corrections are very important. The maximum effect occurs near Mg ~ 500GeV,
where the positive vertex corrections to the Higgs decay widths result in a reduction of
the branching ratio BR(Y — XV f) of more than 10% compared to its Improved Born

value.

In Figure 7.1(b), we show the branching ratios of Y5 as a function of Mj,,, to be compared
with Figures 6.1(a) and 6.2(a). Here My = 200 GeV and tan 3 = 5.5, so only decays
into XVh1, X0hs, X0Z and XV f f (the latter two labelled “Other”) are kinematically open.
For Mj,, Z 50GeV, the second lightest Higgs boson is too heavy to be produced on-shell
and so BR(YS — xVhq) is close to 100%. In the CPX hole, with M, ~ 40GeV, we
find BR(X9 — X{h1) ~ 79%, an increase of around 3% compared to the Improved Born

value.
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Figure 7.2: Branching ratios for each of ¥y — Y%A, X3 — X9Z and X3 — X{ff (labelled “Other”)
in the CP-conserving “light Y scenario”: (a) shown as a function of tan 3, for fixed
A; = 1TeV; and, (b) shown as a function of A;, for fixed tan/s = 20. We show the
Improved Born approximation (I.B.) as the dotted line, and the full MSSM result (F.M.)
as the solid line.

7.3 Numerical results for the branching ratio in

other scenarios

Although we found large loop corrections to the partial decay widths of X3 — XJhi 23
in the CPX scenario, the effects on the branching ratios turn out to be significantly
smaller, because the Higgs decays are not competing with other modes and so the large
genuine vertex corrections cancel each other out. This will also be the case for the
small g scenario, in which the Z decay mode is also suppressed and the sfermions are
heavy. However, this situation is not generic, and large vertex corrections can affect the
branching ratios if there are other competing decay modes with vertex corrections of a
different structure. In non-gaugino-like scenarios, without a large hierarchy between M,
and u, the decays into Higgs bosons are more likely to compete with the decays into Z

bosons and sfermions.

For example, in Figure 7.2 we show the Improved Born and full MSSM branching ratios
for the “light ¥ scenario” of Table 2.3. Here we can have BR(x5 — Xx{h) ~ BR(xJ —

XYZ). In the previous chapter, we computed genuine vertex corrections to both T'(xy —
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xX0h) and T'(x9 — xV7Z), and found the former (latter) to be negative and of order 20%
(3%) and 35% (2%) for A, = 500 GeV and A; = 1200 GeV, respectively (see Figures
6.7(a) and 6.7(b)). The corrections are further enhanced at large values of tan 5. In this
scenario, the branching ratio for 3 — x%h happens to be near 50%. Thus, the effect of
the vertex corrections on the branching ratios is maximised in this case. The plots in

Figure 7.2 show corrections to the branching ratio of more than 10%.

7.4 Prospects for the “CPX Hole”

In Section 7.2, we found that ¥y — x%h; has a large branching ratio, BR(X3 — X{hy) ~
79%, for the “CPX hole”, i.e. in the region where a light Higgs is unexcluded by present
data. We now investigate whether Higgs production in neutralino decays at the LHC
could help to cover this parameter region. Consider the SUSY cascade decay chain

starting with a gluino;
= ST = X80T = X Thi — 3 Foblr 7). (72)

Coloured sparticles like gluinos are expected to be produced in large numbers at the
LHC provided they are light enough, (see eg. Ref. [114] for detailed analyses of SUSY
cascade decays). These gluinos will decay into lighter coloured sparticles, namely the
squarks with masses around 500 GeV (see Table 2.3). For most squarks, the only way to
conserve R-parity will be to decay into X9, ¥i and XV. As shown in the previous section,
79% of the produced x93 will decay into h; in this scenario for a Higgs mass of 40 GeV.
The light Higgs boson then decays mostly into bb (91%), and also 77 7.

Branching ratios for all parts of the decay chain, except the decays involving Higgs
bosons, were computed at tree level using FeynArts and FormCalc. For decays involving
Higgs bosons, such as ty — t,h,, we use an Improved Born approximation, as in Eq. 5.15.
We computed the branching ratio for ¢ — i 2¢ for each of ¢ = u,d, c, s, t,b. We found
that l~)1, U1, JQ, G2, 81, 2 all have substantial branching ratios to decay into x3. Summing
over the various decay modes we found that 17% of all gluinos produced in this scenario

decay via a squark into 3.

Combining BR(XS — XYh1) ~ 79% with BR(9 — X%¢q) ~ 17%, we estimate that around
13% of the gluinos produced in this scenario will decay into h;. Thus, SUSY cascade
decays where a light Higgs is produced in the decay of the second-lightest neutralino
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appear to be a promising possibility to cover this problematic parameter region where
standard search channels may only have small sensitivities. Detailed experimental anal-
yses would be needed to determine whether it is indeed possible in such a case to extract
a Higgs signal from the SM and SUSY backgrounds.

It should be noted in this context that the CMS collaboration has performed a full
detector simulation and event reconstruction for the production of a Higgs boson at the
end of a cascade of supersymmetric particles starting with squarks and gluinos [104].
These results, obtained for the benchmark point LM5, cannot be directly translated
to the case of the CPX scenario, since in the case of LM5 the Higgs boson is much
heavier, M) ~ 115 GeV, than in the region of the CPX scenario that we are considering
here. The b jets resulting from the Higgs decay in the CPX scenario are therefore softer
than for LM5, so that cuts on the energy of the jets will be less efficient to suppress
the QCD background. Therefore, further investigation, beyond the scope of this work,
would be needed to determine whether such an event reconstruction would be possible
for the CPX scenario. In light of the large branching ratio we have found for this decay,
and given that it remains unclear whether the “CPX hole” can be covered using other
channels at the LHC, the production of the light Higgs boson in the X5 — X%h; decay

would certainly be worth pursuing.



Chapter 8

Results for the decay width of a

heavy Higgs boson into neutralinos

8.1 Motivation

In the previous chapters we saw that the one-loop corrections to the )Z?)Z?ha vertex could
have a large effect on the decays of neutralinos into light Higgs bosons. A related process

to the production of a Higgs boson in the decay of a neutralino is the decay of a heavy

0
J

four leptons plus missing energy, can also be phenomenologically important [34-37]. The

Higgs boson into two neutralinos, h, — X9x?. This process, with a possible signature of
CMS study in Ref. [34] focused on the decay H, A — x5X3, where each Y3 subsequently
decays into two leptons and the x? LSP, i.e. xJ — x{/TI~, where [ = e or p. The authors
reported a 5o discovery potential for Higgs masses in the region of 230 to 450GeV for
low to intermediate values of tan 3, and for sufficiently light neutralinos. The authors

of Refs. [35,36] extended this study to include all kinematically possible decays into
0

neutralinos and charginos, H, A — X; )Z?, XiX;, fori,j =2,3,4and k,l = 1,2, finding
for the scenarios studied that this extended the discovery region to even larger values
of My ~ 800GeV, where the heavy Higgs bosons cannot be discovered using decays
into SM particles (see eg. Refs. [38,39]). The heavier neutralinos and charginos are
more likely to have masses greater than those of the sleptons, €; o and fi; 2, so that the
neutralino decay into leptons and the lightest neutralino can proceed via a two-body
decay into a slepton, enhancing the branching ratios to leptonic final states and hence
the discovery potential. In Ref. [37], it was found that these decays can be utilised not
only for the initial discovery of the Higgs bosons, but also in the determination of their

masses and other MSSM parameters using invariant mass techniques.
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As already mentioned, partial one-loop results have been published previously for the
0

i

tial [109] approaches. The predictions in Refs. [101] and [102] were restricted to the

case of real parameters, with the former including only the contributions from diagrams

decays H, A — x )2? in both the Feynman-diagrammatic [101,102] and effective poten-

containing quarks and squarks in the loops, and the latter including only diagrams
containing sfermions and fermions in the loops. For the effective potential approach
in Ref. [109], complex parameters were allowed, but the corrections were restricted to
contributions from third generation quarks and squarks, charginos, neutralinos, gauge
and Higgs bosons. In this chapter we will present the full one-loop results for the decay
widths, I'(h, — X7X3), including all possible MSSM particles in the loops and allow-
ing for complex parameters as described in Chapter 5.! As in Chapters 5-7, we use
Equation (5.14) to supplement these results with the state-of-the-art two-loop Higgs
propagator-type corrections as implemented in the code FeynHiggs [41,79-81], thus ob-
taining the most precise prediction currently available for this class of processes. We
will see the importance of including all particles in the loops for obtaining the correct
size and magnitude of the vertex corrections in the scenarios studied. We also find that
the CP-violating phases can enhance or suppress the relative effect of the corrections.
The CP-violating phases turn out to play a particularly interesting role for the decays
of Higgs bosons into polarised neutralinos. This will lead us to propose a study of CP-
asymmetries in the decays, ho, hs — X5X5, using the polarisation of the neutralinos as

way of determining the existence of CP-violation in the Higgs sector.

8.2 Numerical results for decay widths

We begin by considering the decay widths for the parameter “Point 17 studied in Ref. [35]
in the context of four-lepton events from Higgs boson decays into neutralino and chargino
pairs. We give the low-energy MSSM parameters for this point in Table 2.3 under the
heading, “4L.1”. The corresponding tree-level neutralino and chargino masses are (in

GeV);

Mg+ =176.3, mes = 514.0, mgg = 89.7, myg = 176.3, mgg = 506.9, mgg = 510.9

!Note that in this chapter we use the parameter renormalisation scheme where the masses of ¥, X3, X3
are fixed on-shell, as this is convenient for extending the calculations to processes where Y3 is
produced in Higgs decays.
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Figure 8.1: (a) Higgs masses in the 4L1 scenario, obtained from FeynHiggs 2.7.0, at tree-level
and at loop-level, where the latter includes the full one-loop and the dominant two-loop
O(ayas) corrections as discussed in Section 3.4.7; (b) Size of the loop corrections to the
masses relative to the corresponding tree-level Higgs masses; r(Mp,,) = (Mp, —mp,)/mp, .

for tan 3 = 20. The authors of Ref. [35] showed that, for much of the M —tan 8 plane in
this scenario, the percentage of H, A — 4] + X events coming from the decays into the
second lightest neutralino, H, A — x9x9, is larger than 90%. The heavier neutralinos
and charginos are not kinematically accessible for M4 < 700 GeV. It was shown that
the highest cross section times branching ratio for four lepton events from Higgs bosons
at the LHC was for the region of tanf3 ~ 10 — 30 with M4 ~ 400 — 500 GeV. The
authors found the resulting discovery region of tan 3 ~ 4.5 — 40, M4 ~ 350 — 600 GeV
for 300 fb~! at the LHC for this particular scenario.

In Figure 8.1(a) we show how the two heavy Higgs masses, M}, and Mj,,? obtained as
output from FeynHiggs 2.70,% vary with tan 3 in the 4L1 scenario with fixed My« =
508 GeV as input. We see that the mass degeneracy of the heavy Higgs bosons, both
at tree-level and at two-loop, becomes more pronounced for large tan 3. Figure 8.1(b)

shows the size of the mass corrections relative to the tree-level Higgs masses. We see

2For the CP-conserving parameters shown in this plot, ho is the CP-odd A and hs is the CP-even H,
but we continue to denote the Higgs bosons in order of their masses so as to agree with later results
where we include CP-violation.

3Note that we use FeynHiggs 2.70 for this scenario with large tan 3, since it contains improvements
to the implementation of the resummation of the QCD corrections to the bottom mass for the flags
chosen. Later in this chapter, when we consider SPSla with lower tan 8 we use FeynHiggs 2.6.5
as usual.
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Figure 8.2: (a) Decay widths I'(ha3 — X3%3) as a function of tan3 in the 4L1 scenario, with
Mp+ = 508 GeV. The dashed lines show the Improved Born result, while the bold
lines include the full one-loop vertex corrections; (b) Relative size of the vertex correc-
tions compared to the Improved Born result for various UV-finite subsets of diagrams
indicated by different dashing. Note that where the green dashed curves are not visible
in the figure, they are directly underneath the blue dashed curves.

that, over the range of tan # shown, the effects are less than half a percent and generally
become more negative as tan [ increases. On the other hand, for tan = 20, the lightest
Higgs mass at tree-level, my, is 90.7 GeV, while the two-loop mass, My, , is 109.4 GeV,
an increase of 20.6%. The heavier Higgs masses are significantly less sensitive to loop

corrections than the lightest Higgs mass.

In Figure 8.2(a) we show the decay widths for s, hs — X5X3, both at the Improved Born
level and including the one-loop vertex corrections, as a function of tan § for the 4L1
scenario with Mpy+ = 508 GeV. We see that the decay width of hy (A) is nearly a factor
of two larger than the decay width of hg (H). As tan /[ increases to large values, the
decay widths become independent of tan §, while for tan § below 5, both decay widths

drop off due to the increase in Myg.

Figure 8.2(b) shows the relative size, r, of the genuine vertex corrections compared with
the Improved Born decay widths, as a function of tan 3 for various UV-finite subsets
of diagrams. We see that the vertex corrections including all the MSSM particles in
the loops are only of the order of a few percent throughout the range of tan § shown,

significantly less than the impact of the vertex corrections seen for the decay of the
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second lightest neutralino into the lightest Higgs boson in the CPX scenario. This is
expected since the heavier Higgs bosons are less affected by large loop corrections than
the lightest Higgs boson. The 4L1 scenario furthermore has a smaller value for |u| than
the CPX scenario, so the vertex corrections are not enhanced to the same extent. Also,
the squark mass parameters in the 411 scenario are defined to be at the TeV scale,
with the trilinear coupling, Ay, is set to zero, so the contribution from self-energies
and triangle diagrams containing quarks and squarks is expected to be less than for
the CPX scenario. Figure 8.2(b) shows that the effect of the diagrams containing only
third generation quarks and squarks is around —15% for the range of tan 5 shown. The
remaining (s)fermions then have a positive effect of around +15%, largely cancelling
the effect of the (s)top and (s)bottom quarks. The further contributions from vector
bosons, Higgs bosons and their superpartners are small and positive, giving a total effect
of only a few percent. We see that including all possible MSSM particles in the loops is
important for obtaining both the correct magnitude and size of the vertex corrections
in this scenario. Hence our result is a significant improvement on what was previously

available in the literature.

In Figure 8.3(a) we show the decay widths for hy, hs — Y9x5, both at Improved Born
level and including the one-loop vertex corrections, as a function of My« for the 4L1
scenario with tan § = 20. As expected from phase space considerations, the decay widths
increase as the Higgs masses increase. For Mg+ ~ 688 GeV there is a kink where the
CP-even Higgs boson, H, becomes lighter than the CP-odd Higgs boson, A. Figure
8.3(b) shows the relative size of the vertex corrections for various UV-finite subsets of
diagrams. The contributions from all sfermions and the third generation quarks and
squarks are fairly independent of My+. The contributions from the latter are largely
cancelled to less than a few percent by the remaining (s)fermions. The vertex corrections
from the full MSSM vary from r ~ 20% (5%) to r ~ —15% for hy (hs), changing sign
from positive to negative at Mpy+ ~ 550 GeV.

Figure 8.4(a) shows the relative size of the vertex corrections, r, for T'(hy — X9x9),
as a percentage in the Mpy+—tan 3 plane for the 4L1 scenario. The relative size of
the vertex corrections for hy is similar. We see that the vertex corrections have the
largest effect for My+ 2 600 GeV. For the region of particular interest in Ref. [35], near
tan  ~ 10—30 with M4 ~ 400 —500 GeV, where the cross section times branching ratio
for H, A — x99 events is largest, the effect of the vertex corrections on the decay widths
is only of the order of 5%. This translates into an absolute increase in the branching

ratio of a few tenths of a percent. Figure 8.4(b) shows the Improved Born level branching
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Figure 8.3: (a) Decay widths I'(ha3 — X3X3) as a function of My= in the 4L1 scenario, with
tan3 = 20. The dashed lines show the Improved Born result, while the bold lines
include the full one-loop vertex corrections; (b) Relative size of the vertex corrections
compared to the Improved Born result for various UV-finite subsets of diagrams indicated
by different dashing. Note that where the green dashed curves are not visible in the figure,
they are directly underneath the blue dashed curves.

ratio, BR(hs — X9X3), as a percentage in the My=—tan 3 plane for the 4L1 scenario.
Inclusion of the one-loop vertex corrections does not produce a noticeable change in this

plot.

SPS1a is another scenario in which the dominant contribution to the four-lepton signal
is H A — x9x5. This point was studied in some detail in Ref. [37] in the context of
using four-lepton events to extract MSSM masses and Higgs masses. One important
difference between the 4L1 scenario and the SPS1a scenario is that the latter has much
lighter squarks and non-zero trilinear couplings. Also the sleptons are light enough to
be produced in on-shell decays of x9, which results in larger leptonic branching ratios
of the neutralinos. In SPSla, the tree-level decay width, I'(hy — X9%3) is 0.103 GeV,
with vertex corrections increasing this value by 6.5%, while the tree-level decay width
['(hs — X9x3) is 0.0157 GeV, with vertex corrections increasing this value by 5.9%. The
corresponding branching ratios of 7.9% and 1.8% increase in absolute terms by 0.5% and

0.1% respectively.
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Figure 8.4: (a) The relative size of the vertex corrections, r, as a percentage in the 4L1 scenario
in the My+—tan 3 plane for I'(hs — x9%3); (b) Branching ratio, BR(hs — X9x%3), as a
percentage in the 4L1 scenario in the My+—tan 3 plane.

8.3 Effect of CP-violating phases

Most of the work in the literature on the decays of hy, hy — )2?)2?, has been for CP-
conserving scenarios, where hy, hy = H, A [34-37,101,102,109]. We now consider the
effect of C’P-violating phases on the decay widths and vertex corrections. As we have
seen in Chapter 6 for the x) — X; 9%, decays, complex parameters can be particularly
important for the Higgs propagator corrections. (As usual, we absorb these into the
lowest order decay widths using the Improved Born approximation of Equation (5.15)).
The induced CP-violating mixing between H and A can significantly alter the Improved
Born decay widths. This can also affect the size of the genuine vertex corrections for

the (physical) normalised hy and hg vertices.

The phases which usually play a large role in Higgs sector corrections are ¢4, and/or
bu, as well as ¢y, at the two-loop level. In order to study their effects for h, — X5x9,
we study a modified 4.1 scenario with lighter squarks and a non-zero A;. Our modified
scenario, denoted “4L1b” in Table 2.3, has the same parameters as 4L1 except Mg 41, =
500 GeV and |A; | = 1000 GeV. In Figure 8.5(a) we show the dependence of the decay
widths for ['(hys — X5X3) on the phase ¢4, in the 4L1b scenario. The dashed lines
show the Improved Born result, while the solid lines include the one-loop genuine vertex
corrections in the full MSSM. We see that, at the Improved Born level, the phase of A,

has a large effect on the decay widths, arising from the variation in CP character of the
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Figure 8.5:

(a) Decay widths I'(ha3 — ¥9%9) at the Improved Born level (dashed) and including
the one-loop vertex corrections in the full MSSM (solid); (b) Masses of hy and hs; (c)
Absolute value of Z matrix elements, |Zos| ~ |Zsa| and |Zss| ~ |Zaa|; (d) Relative size
of vertex corrections, r; for all figures plotted as a function of ¢4, in the 4L1b scenario.

Higgs bosons. The variation of the Higgs masses and 7 matrix elements are displayed

in Figures 8.5(b) and 8.5(c) respectively. We see that the two masses, Mj, and M}, are
closest for ¢4, = 0, m, 2m, where hy (hg) is purely CP-odd (even) with |Zag| ~ |Zsy| ~ 1

and |Zgy| ~ |233| ~ 0. The Z matrix elements vary substantially away from these CP-

conserving values for the phase; at ¢4, = 7/2, 37/2 we obtain |Zg,| ~ |Zss| ~ 1 so that

the CP character of the mass eigenstates is swapped relative to the C’P-conserving case.
The hs (h3) partial decay width varies from roughly 0.045 GeV (0.08 GeV) at ¢4, = 0 to
0.08 GeV (0.045 GeV) at ¢4, = 7/2 back down (up) to 0.045 GeV (0.085 GeV) at ¢4, = 7

respectively. The maximum and minimum decay widths correspond approximately to
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the CP-conserving decay widths shown in Figure 8.2(a), so this is consistent with the
Z matrix values. Figure 8.5(d) shows the relative size of the vertex corrections, r, as
a function of ¢4,. We see that for both hy and hs the corrections have the maximum
negative effect of around —5% and —4.5% respectively in the CP-conserving case where
the phase is zero and A; is positive. The maximum positive effect is around 4.5% at
¢4, = 7 for hy, while for hs, there are two maxima of around 2.5% for ¢4, slightly
below and above zero. When the phases are maximally CP-violating at ¢4, = 7/2, the

corrections are less than a percent.

We also examine the effect introducing CP-violating phases has on the decay widths
['(has — X59X5) in the SPSla scenario. Figure 8.6(a) shows the variation of the decay
widths as a function of ¢4, for the modified SPS1a scenario. We see the dependence is
not as pronounced as for the 4L.1b scenario and the decay widths for hy and hs remain
separated by ~ 80MeV. This is because, as seen in Figure 8.6(c) the absolute values
of the Z factors do not vary so far from 0 and 1 as those in the 4L1b scenario, so that
the CP character of the mass eigenstates remains closer to, ho ~ A and hy ~ H for
all ¢4,, even though the masses become quite close in value, as shown in Figure 8.6(b).
In Figure 8.6(d) we show the relative size of the vertex corrections, r, as a function of
¢4,- The maximum positive effect on the decay width of hy is around 6.5% at ¢4, = 0,
while the maximum negative effect is around 3.5% at ¢4, = 7. The maximum positive
effect on the decay width of hs is around 6.5% at ¢4, ~ 7/4, 77 /4, while the maximum
negative effect is around —3.7% for phases slightly above and below ¢4, = 0.

8.4 CP-odd asymmetries

The results we have shown so far are for the spin-summed decay widths, I'(h, — )2?)2?),

where all possible polarisations for the neutralinos are included. It is also interesting to
look at spin-dependent decay widths since, in an experiment, it may be possible to study
the polarisations of the neutralinos by looking at their leptonic decay products (see eg.
Ref. [115]). Since the Higgs is a scalar particle, the two neutralinos will either both have
left-handed polarisation or both have right-handed polarisation. In this section, we study
the effect of CP-violating phases on the partial decay widths into left- and right-handed
neutralinos, Iy = (hy — X7 *X3") and Trg = T'(he — X7 "X3") (a = 2, 3) respectively.
It would be particularly interesting if these quantities could tell us something about the

existence and size of the CP-violating phases.
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Figure 8.6: (a) Decay widths I'(ha3 — X5X3) at the Improved Born level (dashed) and including
the one-loop vertex corrections in the full MSSM (solid); (b) Masses of hy and hs; (c)
Absolute value of Z matrix elements, |Zos| ~ |Zsa| and |Zss| ~ |Zaa|; (d) Relative size
of vertex corrections, r; for all figures plotted as a function of ¢4, in the modified SPS1a
scenario.

Figure 8.7(a) shows the spin-dependent decay widths, T'z, and Tgrg, for hes — X5X3 in
the 4L1b scenario as a function of ¢4,. We see that for both hy and hs, I'y; and I'gg do
not have their maxima and minima at multiples of 7/2 like the total decay width shown
in Figure 8.5(a). Rather, I'y, for hy (h3) has a similar shape to to Iy, but is shifted to
the left (right), while I'gg for hy (h3) is obtained by a reflection of I'yy, for hs (h3) about
¢4, = 0. The polarised decay widths thus satisfy I'rr(¢a,) = I'Lr(—¢4,) for each h,.

In Figure 8.7(b) we show the spin-dependent partial decay widths, I';;, and I'gg, for

hy — X5X5 as a function of the trilinear coupling phase ¢4, in the modified SPSla
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Figure 8.7: (a) I'rr, and T'rp for ha s — X5X3 for the 4L1b scenario as a function of ¢4,, including
the one-loop vertex corrections in the full MSSM (the dashed (solid) lines indicate left-
handed (right-handed) polarisation); (b) 'z, and T'rg for ha — ¥9%3 for the modified
SPSla scenario as a function of ¢4, (the dashed lines indicate the Improved Born result,
while the solid lines indicate the inclusion of the one-loop vertex corrections in the full
MSSM.

scenario. Here the curves for left-handed and right-handed neutralinos are very different
from the spin-summed widths shown in Figure 8.6(a). The left-handed and right-handed
decay widths again satisfy I'r1(¢a,) = [rr(—¢a,). Notice that the vertex corrections
enhance both I';;, and I'gr by around 4 — 10%. Note also that I';; and I'rr always

coincide when the phase is a multiple of 7, i.e. when the scenario is C’P-conserving.

In Figure 8.8(a) we plot the difference, Al'ygr ="', — I'gr, between the left and right-
handed decay widths for the modified SPS1a scenario as a function of ¢4, and we see
that it is a C’P-odd quantity, i.e. it is non-zero only in the presence of a non-zero CP-
violating phase and is antisymmetric under ¢4, — —¢@4,. We also notice that the
difference ', — I'rgr for hs can become quite large relative to the spin summed decay
width, I'pf, 4+ I'gg, for hg shown in Figure 8.6(a).

In Figure 8.8(b) we plot the ratio of the difference relative to the spin summed decay
width,

'y =T
A, = 2 B (8.1)
I'rr +Trr

as a function of ¢4, for h, — Y9x5 (a = 2, 3) for the modified SPSla scenario. Ay (A3)
has its peak values of ~ £38% (£9%) for ¢4, ~ £77/8, not far from the nominal CP-
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Figure 8.8: (a) The difference, A = 'L, — g, as a function of ¢4, in the modified SPSla
scenario for each of hy and hs; (b) Ay = T —Trr)/(Trr +Trr) as a function of ¢4,
for hg — X9X3 for the modified SPS1a scenario.

conserving values of 7. The slopes of the curves are steepest near ¢4, = +7, showing
that even a small phase introduced into SPS1la can make a big difference to this ratio.
The genuine vertex corrections reduce (increase) As (As) at its peak values by a few

percent.

In Figure 8.9(a) we show the ratios, A, and As, as function of ¢,, for the SPS1a scenario.
Here the peak values for A and Az occur at different values of the phase; |Ay| has a
maximum value of ~ 38% at ¢, ~ £7/3, while |A3| has a maximum value of ~ 46%
at ¢, ~ £m/8. However, both Ay and Ajz are zero at ¢, = 0,+m. In Figure 8.9(b) we
show the ratios, A and As, as a function of ¢4, for the 4L1b scenario. |Ay| and |Asj]
have peak values of around 12% and 7% respectively. The former is enhanced by a few

percent by the vertex corrections, while the latter is reduced by the vertex corrections.

The key message gained from the results shown in Figures 8.8 and 8.9 is that a non-
zero value of the CP-odd ratio, A,, would be a clear signal of CP-violation. In each
of the plots, if the phases are set to their CP-conserving values of 0, £, the ratio,
A,, is exactly zero. If the phases are not a multiple of 7, then there is CP-violation
and the ratio is non-zero. This is true even when the vertex corrections to the Higgs-
neutralino-neutralino vertex are taken into account. In the scenarios studied, the vertex
corrections for hs reduce the total ratio by a few percent, while for hg they increase it
by a few percent, but in both cases they do not alter the C’P-odd behaviour of the ratio.

Furthermore, the ratios As and Az have the same sign for a given CP-violating phase,



Results for the decay width of a heavy Higgs boson into neutralinos 125

hs: Improved Born ho: Improved Born
—60 + ’ hg:pFull MSSM g —15 ho: Full MSSM
hs: Improved Born - - - - hs: Improved Born --------
hs: Full MSSM —— hs: Full MSSM
—80 ‘ : —20
-7 -3 0 z ™ z ™ 3 27
Qbu ¢Az

(a) (b)

Figure 8.9: (a) A, = (U —Trr)/(Trr +Trr) as a function of ¢, for h, — X3%3 for the modified
SPS1a scenario; (b) A, as a function of ¢4, for hy, — X3X3 for the 4L1b scenario.

so their effects will reinforce when added together or averaged over. This is important
because the two heavy Higgs bosons are nearly mass degenerate. In an experiment it
will not be possible to tell them apart and measure polarisation effects in their decay
products separately. Thus it would be less encouraging if the ratios for hs and hs had

opposite signs and cancelled one another out.

With this mind, it is also significant that A, and Az each vanish in the case where there
is no CP-violation. Despite the CP-even H and CP-odd A states being nearly mass
degenerate, they do not behave as one effective CP-violating state. This is interesting in
the context of experimentally distinguishing between the “true” CP-violating case, with
two mass eigenstates hy and hsz, and the “faked” case where the CP-eigenstates, H and
A, are experimentally indistinguishable mass eigenstates with near-degenerate masses,
mimicking the effect of CP-violation. For a true CP-odd quantity like A,, the two cases
are indeed distinguishable. A non-zero value of A, does not arise in the case where H
and A are mass degenerate but there are no non-zero CP-violating phases. One would
not need to be able to experimentally distinguish between the mass degenerate hy and

hs to confirm a nonzero value for this ratio and hence the existence of CP-violation.

The next question is what could actually be measured at a collider experiment. If
there is an asymmetry between the number of left-handed and right-handed neutralinos
produced in heavy Higgs boson decays, this can show up in asymmetries constructed

from the properties of the leptonic decay products of those neutralinos [115]. Suppose
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that the neutralinos decay via two-body decays into a lepton and a slepton, which then
decays into the lightest neutralino, i.e. Y5 — l~f2l;ear — XU 1., Then there exist
methods for reconstructing the momenta in the decay chains on an event-by-event basis
if the particle masses in the cascade are known (see eg. Refs. [116,117]). Provided
that this technique can be carried over to this example, one could use it to measure,
for example, the angle, 059, ., between the decaying neutralino and the near lepton.
One could then construct a forward-backward asymmetry, App = (Ny—Ny)/(Ny+Ny),
by counting the number of events, N, with cos Qiglnear > 0 and the number of events,
Ny, with cosfyg, .. < 0. App is related directly to the asymmetry between left- and
right-handed neutralino production. In order to obtain a prediction for Agp in various
scenarios, we need to calculate the number of events where a heavy Higgs boson decays
into left-handed and right-handed neutralinos respectively. In order to calculate the
number of events, for example at the LHC, we need the Higgs production cross sections
as well as the partial and total decay widths. This is made more complicated by the
fact that the Higgs masses are close to degenerate and therefore interference effects can

occur in the presence of CP-violation.

Normally we can use the narrow width approximation to separate the production and de-
cay of a Higgs boson into two separate parts, a cross section multiplied by a branching ra-
tio (see Appendix C for a review of the narrow width approximation). The polarisation-
dependent partial decay widths calculated in this chapter belong in the decay part of
the calculation. However, we are considering a scenario where the assumptions of the
narrow width approximation break down because the two nearly mass degenerate Higgs
bosons are not CP-eigenstates and can interfere with one another in the squared matrix
calculation. Thus, we must consider the full production and decay process of the Higgs
bosons. We cannot simply weight each A, by the h, production cross section multiplied
by the branching ratio for h, — X9%3 and add them together; this would miss inter-
ference effects between the hy and hs which may enhance or suppress the asymmetry.
In Chapter 9 we explore interference effects for nearly mass degenerate Higgs bosons
and develop methods for calculating an effective cross section times branching ratio. In
Chapter 10 we return to the calculation of the asymmetry between the number of left-
and right-handed neutralinos produced in heavy Higgs boson decays at the LHC, taking

into account the full production and decay processes.



Chapter 9

Interference effects for nearly mass

degenerate Higgs bosons

9.1 Beyond the narrow width approximation

Until now we have used the Z matrix formalism given in Section 3.4.9 to compute
amplitudes, cross sections and branching ratios involving on-shell Higgs bosons. This
formalism takes into account higher-order propagator-type corrections in the Higgs sec-
tor, but in essence it is based on the narrow-width approximation; i.e. it assumes that
it is possible to factorise the production and decay of the Higgs boson into two separate
parts, a production cross section and a decay branching ratio, each evaluated on-shell.
In Appendix C we give a brief review of the narrow width approximation. One of the
assumptions of the approximation is that there should be no interference of the resonant
diagram with other diagrams that have the same initial and final state. For most cases
where we apply the Z matrix formalism, the splittings between the Higgs boson masses
are large compared with their widths, and therefore this assumption holds. However,
in the context presented in the last chapter — on-shell decays of Higgs bosons into neu-

tralinos, h, — XV

)Z? — the kinematics require us to consider scenarios that have Higgs
bosons with masses larger than the neutralino masses. As is the case quite generically
for scenarios with large My, the two heavy Higgs bosons, he and hg, are almost mass-
degenerate, while the light Higgs boson has a mass very far below the others so is not

usually relevant for interference effects.

In the CP-conserving case, assuming no non-resonant exchange diagrams are important,

and neglecting the contributions for h, one can express the squared matrix element for

127
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the full production and decay process, ab — H, A — de, as
IMP? = [ Mapt—ael” + [Map—aael? (9.1)
because the CP-violating interference term,
2Re(Map—t—deMay— A—ae) (9.2)

vanishes. This means that the narrow width approximation can be separately applied to
the two processes containing H and A respectively. The total integrated cross section for
the full production and decay process, o(pp — ab — H, A — de), can then be written
in terms of the sum of the individual production cross sections, each weighted by the

appropriate branching ratio;

Opp—ab—H,A—de — O'ppﬂabHHBRHﬂde + O-ppﬂabﬂABR'Aﬂde- (93)

If we consider the MSSM with CP-violating parameters, however, things become very
different. Not only do the CP-eigenstates, H and A, mix to form the mass eigenstates ho
and hs, but, when the full production and decay process of the Higgs bosons is considered,
there is also the possibility of diagrams containing the hy and hs to interfere; i.e. the

interference term,
2Re[Map—hy—deMop .y —dels (9.4)

is non-vanishing. Hence, the fifth assumption given for the narrow width approximation
in Appendix C fails and one cannot simply add the individual cross sections for hy and hg
weighted by their branching ratios because this could miss out large interference terms.

The same applies for the polarisation dependent asymmetries, A,, considered at the end
of Chapter 8.

Another situation where interference effects can be important, even in the CP-conserving
MSSM, is for scenarios with low M4 and large tan 3, where it is possible to have an h and
H that are nearly mass-degenerate. This could be important for the interpretation of
the Higgs boson exclusion limits set by the Tevatron and for the prospects of discovering
MSSM Higgs bosons with early LHC data. We will discuss this further in Section 9.6.

The idea that calculations in the MSSM and other BSM models may need to go beyond

the narrow width approximation has received considerable recent attention in the liter-
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ature [118-123]. Some of the effects of nearby resonances in new physics models were
also studied in Ref. [124], but most of these references mainly focus on the importance
of including off-shell effects near thresholds and in situations where the width can be
measured. In Ref. [118], a weight factor was derived to include off-shell effects by reintro-
ducing the momentum dependence of the Breit-Wigner distribution of the intermediate
propagator. It was noted that this method was not suitable in situations where inter-
ference between intermediate particles was important, such as the interference between
the intermediate Z boson and selectrons, €5,z in the three-body decay, x5 — Ylete™,
particularly just above the Z threshold. In our case, we are far from any thresholds;
the only reason the narrow width approximation fails is that there can be interference

between the nearby Higgs resonances.

In this chapter we show several methods for calculating the combined production and
decay process which include the interference effects between Higgs bosons. For illustra-
tion purposes, we include the Higgs propagator corrections (up to O(a;) at two-loop),
but we do not consider higher order corrections for the production and decay vertices.
The first method, in Section 9.2, incorporates the full 3 x 3 Higgs propagator matrix,
which includes the full momentum dependence of the Higgs self-energies and all possible
mixing and interference terms between h, H, A. The second method, in Section 9.3, is an
on-shell approximation to the full Higgs propagator matrix, using the Z factor formalism
to include mixing effects between h, H, A, along with Breit-Wigner propagators for the
resulting hq, hs, hs to include the interference and leading momentum dependence of the
resonances. Both of these methods require a squared matrix element calculation of the
combined production and decay process, which may not be practicable in all situations.
Thus, in Section 9.5, we develop a method where the separate production and decay pro-
cesses are weighted by an appropriate interference factor. We find that this gives a good
approximation to the full squared matrix element calculations in the scenarios where the
interference effects are important. As an application, in Section 9.6, we use this method
to show that interference effects could have a noticeable effect on the interpretation of
the Higgs exclusion limits in the MSSM.

9.2 Full 3 X 3 Higgs propagator matrix calculation

Consider the 2 — 2 process, ab — h, H A — cd, mediated by intermediate Higgs

bosons (for simplicity, we neglect other possible intermediate particles here). The full
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Figure 9.1: Diagrams for the process ab — cd allowing for internal Higgs bosons, h, H, A, taking
into account higher-order mixing between the tree-level Higgs bosons using the full 3 x 3
propagator matrix elements, A;;(p?). Diagrams for the same process but with other
intermediate particles, such as vector bosons, sfermions and fermions, are not considered
here.

3 x 3 Higgs propagator matrix calculation,® illustrated diagrammatically in Figure 9.1,
includes the full loop-corrected Higgs propagator matrix elements, A;;(p?), evaluated

using Equations (3.72) and (3.77), into the matrix element as follows;

Map—ca = Mapn AnpMp—ca + Map—n A Mu—ca + Mapn ApaMaca
+Map g AgnMi—ca + Mapm Aga My —ca + Mo AgaMaca
+Map AAanMpca + Map—aDag M —ca + Map—aDaaMa_ca,

(9.5)

where, for example, the matrix elements Mg, ., and M,,_, .4 are calculated using the
tree-level couplings of h to ab and cd respectively. A generalisation to loop-corrected
effective couplings is possible. We have coded this full method into FeynArts by defining
new particles with the appropriate couplings and propagators. (For example, the particle
“hH” couples to ab like the tree-level h boson, couples to cd like the tree level H boson
and has the propagator A,y.) The propagators are then evaluated in FormCalc using

the momentum dependent two-loop self-energies from FeynHiggs as input.

'We neglect here the Higgs mixing with the gauge and Goldstone bosons, which would result in a 6x6
Higgs propagator matrix (see Sections 3.4.6 and 5.4).
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9.2.1 Example: H-A mixing in bb — 777~

Consider for example, the matrix element for bb — 777, mediated by Higgs boson

exchange. We write the general tree-level Higgs-fermion-fermion vertex as

Uwrp = —Guppwr — Gppwr,
Uuip = Guppwr + Glppwr,
FAff = —iGAfwa+iG*Afwa. (96)

where, for ff = bb or 777, the couplings are given by

G B - emb(T) Sa
hbb(T+T7) - QMWSW % 9
B - emb(T) Ca
Gbe(TJFT*) - m <%) )
_ _ EM(r) [ S5p
G aph(r+r-) = My sy <£) - (9.7)

In the case where Mpy+ is large, the dominant mixing and interference contributions will
be between H and A, and the lightest Higgs boson, h, need not be considered. Ignoring
the Ay; and A;, propagators and other non-Higgs propagators, we can write the matrix

element for bb — 77~ as
M = vyuy, [beBAHHfHTT + DA nal arr + TagAanT rr + f‘Abz,AAAfATT] urv. (9.8)

where u, = uj'(k;) and ©, = 0;*(ks) are the spinors for the incoming b and b, with
momenta k; and k, respectively, with the squared centre of mass energy, s = (k; + ko).
u, = u(ks) and v, = v24(ky) are the spinors for the outgoing 7+ and 77—, with momenta
ks and k4 respectively. Squaring the matrix element, summing over 7 polarisations, s3
and s4, and averaging over b polarisations, s; and sy, and keeping the fermion masses

only in the Yukawa couplings, we obtain

o etmpmis® T 2, 2.2 4 2
T * *
M= Teaapi i [CalBunl™ + casg(Bnalys + Dan D) + splAaal"|. (9.9)
s w Sw
The second term in the square brackets contains the mixing propagator between H and
A, which is only non-zero in the case of CP-violation. Further interference terms, such

as those proportional to A,4A% , cancel out in this simple example because the bb and
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77~ couplings to Higgs bosons are real and proportional to one another. Note that the

propagators A;; are evaluated at p* = s.

In Section 9.4 we will compare our numerical results for bb — 7+7~ obtained in this way

to the numerical results obtained using the on-shell (Z) approximation of Section 9.3.

9.3 On-shell (Z matrix) approximation to Higgs

propagator matrix calculation

a c a c a c
/\: h :i ; h i ; h3 :
b 1 d b 2 d b d

Figure 9.2: Process ab — cd, with on-shell production and decay of the Higgs bosons, hi, hs, hs,
taking into account higher-order mixing between the Higgs bosons by using vertices
weighted by Z factors. Breit-Wigner propagators are used for the hi, he and hs.

As an on-shell approximation to the full Higgs propagator matrix calculation for the
process ab — h, H, A — cd, we use the Z factor formalism for on-shell external Higgs
bosons. As explained for the external Higgs bosons in Section 3.4.9, we replace the tree-
level coupling, grox» 1O particle X (where h) = h, H, A), with a loop-corrected coupling,
gn,x (where h, = hy, ho, h3), thus including the Higgs propagator-type corrections as

follows;

Ghex = ZalghX + ZaQQHX + ZaBQAX- (9.10)

This can be combined with the effective Breit-Wigner propagator

ABW (2} — ¢ — ! 9.11
ha <p ) p2 - M%a p2 — M]%a + iMhaPha ( )

where M; = M} —iM,,T'y,, for a = 1,2,3, is the complex pole of the corresponding
diagonal Higgs propagator, to produce an approximation to an amplitude involving
intermediate on-shell Higgs bosons. Recall from Equation (3.92), that the expansion
of the full diagonal Higgs propagator Ay;(p?) about the complex pole results in Zi %

AEZW(pz), plus terms of higher order in (p* — Mj ), so we expect the combination of
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Equations (9.10) and (9.11) to give a good approximation to the full process for p? ~

For the process ab — cd, shown diagrammatically in Figure 9.2, the matrix element is

calculated in the on-shell approximation as

Map—ca = MabﬂhlAEIVVMhlﬂcd+Mabﬂh2AEQVVMh2Hcd+Mab~>h3AE3\vah3~>cd7
(9.12)

where the couplings in My,_.p, and My, .4 are derived using Equation (9.10). We have
coded this method into FeynArts and FormCalc using the Higgs masses, M, , and y/
factors from FeynHiggs as input. For a direct comparison with the 3 x 3 propagator
matrix approach from Section 9.2, the widths, I';,, are obtained from the imaginary
part of the complex pole, M,Zla. In practice, higher order contributions to the width can

also be included. A generalisation to loop-corrected effective couplings is also possible.

9.3.1 Example: H-A mixing in bb — 777~

Consider the process studied in Section 9.2.1, bb — 7+7~, mediated by Higgs bosons. In
the case where My+ is large, the dominant mixing and interference contributions will
be between H and A, and the contributions from h can be ignored. Omitting the AE;W
propagators and non-Higgs propagators, we can write the matrix element for bb — 747~

as
M = @bub[fhgbBAE;}thzTr+fh3b5AE:th37T]arvT (9'13)
where

1Aﬂhsz = Z22fof’+Z23fAff3
Uhopf = Zsolpyp+ Lzl yy5. (9.14)
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We find that the spin-averaged squared matrix element, in the limit where the fermion

masses are kept only in the Yukawa couplings, is given by

M =SS [0 10 2 2 2 PR (5) 2 + (2 Zaaf? + 52 22’
- 1604 M4 54 o | H22 31423 ha o | 32 #1433
B WeeWw
< AP (5)[2 1 2 Re [(¢2 Zn iy + 222 PAPY () APV ()] . (0.15)

The third term in the square brackets represents the interference between h, and hs. If
there is no CP-violation, then Zos = 0 = Zs» (or Tioy = 0 = Zas if My < My), and
the interference term vanishes. The interference will only be large if there is significant
overlap between the two Breit-Wigner functions, APY and APYW, which occurs when the

masses are nearly degenerate, M, — Mp, ~ 'y, ['p,.

So long as there is not much mixing with h, we can approximate the 2 x 2 part of the

7 matrix by a mixing matrix with the properties

?22 ?23 N Co  Sg (9.16)
13y 7133 S —Co

where ¢y = cos, sy = sinf and 6 is a (complex) mixing angle. In the limit of m4 > My
and large tan § > 1, we can write ¢,/cg = tg, leaving the two heavy Higgs bosons with
very similar couplings to the fermions and hence with very similar widths, I'y, ~ I'y,.
In the limit of ¢,/cg — tg, I'ny, — I'n, and M, — M,,, our expression for the squared

matrix element reduces to

IM*

o ((1661° +2|cqsol” + [s5]” — 4[lm(co)Re(sg) — Im(sp)Re(co)]” (9.17)
8 (s — M}%Q)z +M,§2T}212 - (9.

In this limit, the effect of the interference term in the square brackets is only large if the
7 matrix elements contain large imaginary parts, caused by large absorptive parts of
loop integrals in the Higgs self-energies. Away from this limit, there can be significant
interference even if the Z matrix elements do not contain large imaginary parts, since

the different widths, I'y, and I';,, weighted by different couplings, can also contribute.
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9.3.2 Example: h—H mixing for bb — 77~

We again consider the process bb — 777, but this time in the case of small M, where
h and H can be close in mass. In this case, there can be significant interference effects
even when there are no CP-violating parameters. Leaving out the contributions from
A for simplicity, and keeping the fermion masses only in the Yukawa couplings, the

spin-averaged squared matrix element can be written as

M2_64m§m352 T e 7 )212|ABW ()2 g — e 7o )2 2] ABW ()2
M| T16AME S [(8aZn1 = caZna)™[P| AR (8)° + [(SaZi21 — caZina)™[7| A} (5)]

CagiViyy Sy

+2Re [(sazu — ¢aZi12) (502, — CQZZQ)QAEIVV(S)(AE;N(S))*}). (9.18)

The interference term in square brackets between APW and APV can be large if the
masses are nearly degenerate, with My — M), ~ I'y, 'y, and there is significant mixing

between h and H, leading to large values for 212 and 221.

9.4 Numerical comparison between 3 X 3 propagator

matrix calculation and on-shell approximation

In Figure 9.3, we show the total spin-summed cross section, o(bb — H, A — 7+77),
as a function of the centre of mass energy, /s, in three modified SPSla scenarios,
each with non-zero C’P-violating phases. We use the masses, 7 matrix elements and
self-energies from FeynHiggs 2.6.5, obtaining the widths from the imaginary part of
the complex pole. In Figure 9.3(a), the modified parameters are p = 1000 GeV and
¢a, = —7n/10, resulting in M, = 392.5GeV, M,, = 394.7GeV, T, = 1.6GeV,
I'h, = 1.6 GeV and 222 ~ —0.6, 223 ~ 0.8. We see that the two resonances are separated
by about 2 GeV, which is larger than the widths involved. The full 3 x 3 propagator
matrix result (black), the on-shell Breit-Wigner result (green), and the on-shell Breit-
Wigner result without the interference term (blue) are in good numerical agreement
(the curves are indistinguishable in the figure because they are on top of one another).
Despite the Z matrix elements showing a large amount of CP-violating mixing between

H and A, the masses are not close enough for interference to have a large effect.

In Figure 9.3(b), we use ¢4, = —4n/5, with p returned to its usual SPSla value of
—352.4 GeV, resulting in M, = 393.0GeV, M;, = 393.6 GeV, I'y, = 2.1GeV, I';, =
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Figure 9.3: Spin summed cross section o(bb — 77) in the modified SPS1a scenario as a function of

V/s; (a) with g = 1000 GeV and ¢4, = —77/10, (b) with 4 = —354.2GeV and ¢4, =
—4r/5, (¢) with p = —354.2 GeV and ¢y, = —97/20. The black, green and blue curves
show the full 3 x 3 Higgs propagator matrix calculation, the on-shell approximation using
7 matrix elements and Breit-Wigner propagators, and the latter without the inclusion
of the Breit-Wigner interference term, respectively. Note that some curves cannot be
seen in the figures because they are directly underneath other curves.

1.7GeV and 222 ~ —0.240.077, 223 ~ 0.99+0.012. We see that the separation between

the two resonances is too small to be resolved. The full 3 x 3 propagator matrix result

(black) agrees well with the on-shell approximation using 7 matrix elements and Breit-

Wigner propagators (green) (the curves are indistinguishable in the figure because they
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are on top of one another). However, if the interference term is not included in the

calculation (blue), the cross section is overestimated by a few percent at its peak value.

In Figure 9.3(c), we use ¢y, = —97/20,%> with all other parameters as in the usual
SPS1la scenario, resulting in M, = 393.3GeV, M, = 393.3GeV, I'y, = 1.9GeV,
', = 1.9GeV and 222 ~ —0.3 — 0.74, 223 ~ 1.2 —0.2i. We see that the separation
between the two resonances is too small to be resolved. Again, the full 3 x 3 propagator
matrix result (black) agrees well with the on-shell approximation using 7 matrix elements
and Breit-Wigner propagators (green) (the curves are indistinguishable in the figure
because they are on top of one another). However, if the interference term is not included
in the on-shell approximation (blue), the cross section is overestimated by around 400%.
The interference effect is enhanced for these particular parameters because the masses
and widths are almost identical and there is a large amount of CP-violating mixing

between H and A, as seen by the 7 matrix values.

In Figure 9.4 we consider the M;** scenario. The M;"* scenario is a standard CP-
conserving scenario in which Higgs boson searches are interpreted in the MSSM. An
important channel at hadron colliders is (b)bh, h — 77 in which a Higgs is produced in
association with bottom quarks and then decays to taus. Usually the exclusion bounds
or discovery sensitivity are interpreted using the individual cross sections for h, H and A,
each weighted by their individual branching ratios. When the masses are approximately
degenerate, then these are simply added together (see eg. Ref. [123]). For M, 2 150 GeV
and large tan 3, this method works well in the C’P-conserving case, since M}, is well below
My . Here, however, we consider values of M4 ~ 120 — 130 GeV with large tan 3, which
is an interesting part of parameter space where all three neutral Higgs bosons can be
nearly mass degenerate. Here we expect interference effects between h and H to be

important.

We compute the cross section for bb — h, H, A — 777~ as a function of y/s in the Mmax
scenario with Mg+ = 170 GeV and tan = 40, using the masses, 7 matrix elements and
self-energies from FeynHiggs 2.6.5, and obtaining the widths from the imaginary part
of the mass solution. For these parameters, the masses are M), = 123.0, My = 125.8
and My = 124.9 GeV, the widths are I'j, = 2.5 GeV, I'y = 4.8 GeV and I'y = 7.3 GeV

2In our convention, we do not normally allow a phase for My since only two of the three phases in
the neutralino sector are physical. We only introduce one here because it provides an interesting
example of degenerate masses and large 7 matrix elements with large imaginary parts. This should
not be combined with the simultaneous introduction of phases for M; and pu.
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: Cross section for bb — h, H, A — 777~ in the M scenario with My« = 170 GeV and
tan 8 = 40 using FeynHiggs 2.6.5; (a) Computed using the on-shell approximation
with Z matrix elements and Breit-Wigner propagators for each of h, H and A separately
(green, blue and red respectively); (b) Computed by adding the on-shell approximations
for h and H separately without interference (blue), and with interference (green); (c)
Full 3 x 3 Higgs propagator matrix result (red), compared with on-shell approximation
with interference terms (green) and without any interference terms (blue) (note that the
red curve is directly underneath the green curve); (d) Comparison between the on-shell
approximation with interference (green) and without interference (blue), this time using
the total decay widths, T'}°* as input for the Breit-Wigner widths. For (a), (b) and (c)
the Breit-Wigner widths are obtained from the imaginary part of the complex mass pole.
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and the Z matrix elements of interest are Zhh = 0.99 — 0.24q, ZhH = 0.53 + 0.42:,
Zon = —0.53 — 0.44i and Zyy = 0.96 — 0.264.

Figure 9.4(a) shows the cross sections computed from the individual squared matrix
elements, each with only one of h, H and A as the intermediate particle, i.e. bb —
h— 7777, bb — H — 777~ and bb — A — 777~ respectively, in the on-shell approx-
imation using Z factors and Breit-Wigner propagators. We see that while the masses
are separated by a few GeV, the widths are also of the order of a few GeV, so that
there is significant overlap of the three resonances. The curve in blue in Figure 9.4(b)
shows the cross section obtained by simply adding together the resonances for h and H
without including any interference, while we show in green the cross section computed
from squaring the matrix element that includes both the A and H Breit-Wigner terms
so that interference is included. We see that the effect of including interference is quite
dramatic, reducing the peak value of the cross section by more than a factor of three,
and shifting the corresponding peak centre of mass energies away from M), and My.
Destructive interference between the h and H matrix elements causes the cross section
to drop dramatically to zero at /s ~ 124 GeV.

In Figure 9.4(c) we include the effect of all three neutral Higgs bosons. We see that
the on-shell approximation obtained from squaring the matrix element computed from
7 factors and Breit-Wigner propagators (green) agrees well with the full 3 x 3 propaga-
tor matrix result (red) which includes further momentum dependence coming from the
self-energies (note that the red curve is not visible in the figure because it is directly
underneath the green curve). The on-shell approximation using the 7 matrix formalism
works well because the cross section is dominated by resonant contributions. Inclusion
of the leading order momentum dependence using the Breit-Wigner propagators with
a constant width does just as well as including the full momentum dependence of the
Higgs propagator matrix. It correctly predicts the reduction of the total cross section
compared to the cross sections where no interference is included. Any further momen-
tum dependence is only expected to be important near thresholds, where the narrow
width approximation breaks down anyway. In such situations it can be advantageous to

use a running width, but for our purposes we see that this is not necessary.

Note that in order to find the agreement shown above between the full propagator ma-
trix method and the on-shell approximation, the width, I',,, used in the Breit-Wigner
propagator must be obtained from the imaginary part of the complex pole, M%a. This
is essentially a tree-level width, obtained from considering the one-loop effective self-

energy. However, QCD corrections to the total Higgs boson decay widths can be large,
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particularly in parts of parameter space where h, — bb is the dominant decay channel.
The total Higgs decay widths, I'};°*, that can be obtained as output from FeynHiggs, are
evaluated as the sum of the partial decay widths for all possible decay modes. Many
of these partial decay widths are evaluated with higher order corrections. For exam-
ple, the h, — bb partial decay width contains higher-order SM-type and SUSY-type
QCD corrections, as well as electroweak corrections. Now that we have demonstrated
that the on-shell approximation computed from 7, factors and Breit-Wigner propagators
agrees with the full propagator matrix result when the same effective width is used, as
a further improvement we use the total decay widths, I} instead of the complex pole
decay widths, thereby incorporating higher order effects. For the scenario and version of
FeynHiggs considered above, this has a big impact on the widths; resulting in T'{** = 2.0,
I'et = 3.9 and I'Y* = 4.0 GeV. The results for the cross section o(bb — h, H, A — 7+77)
obtained using these widths for the Breit-Wigner propagators instead of the widths ob-
tained from the complex pole, are shown in Figure 9.4(d). Because the widths are
smaller, the interference between h and H has less of an effect. The large difference
in the methods for obtaining the widths for this version of FeynHiggs 2.6.5 is due
to the different implementations of the running bottom mass in the calculation of the
self-energies compared to the calculation of the partial decay widths. In the more recent
version, FeynHiggs 2.7.0, there is much better agreement between the two methods.
Thus, for our final results in Section 9.6, where we show the effect interference can have

on the interpretation of the Higgs exclusion limits, we will use FeynHiggs 2.7.0.

9.5 Factorisation into cross section X branching

ratio: Incorporation of interference effects

In the previous sections, we showed two different approaches for calculating the full
squared matrix element for the production and decay of Higgs bosons. The on-shell
approximation using Z factors and Breit-Wigner propagators was found to be in nu-
merical agreement with the full 3 x 3 Higgs propagator matrix calculation. We also
showed that, in parts of parameter space where two or more Higgs bosons are nearly
mass-degenerate, there can be significant interference between the intermediate Higgs
propagators. These interference effects will not be included when one treats the pro-
duction and decay processes independently, and thus the narrow width approximation

is not applicable in these parts of parameter space. However, carrying out a full matrix
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element calculation is not always practicable, especially if one wants to incorporate the
important higher order corrections that are available in the literature for the separate
production and decay processes. Our aim in the following is to find a generalised narrow
width approximation which is applicable to the situation where there is more than one
resonance, with M; — M; ST, L.

In order to find a generalised narrow width approximation, we consider carefully where
the narrow width approximation, reviewed in Appendix C, breaks down. In its usual
formulation, the narrow width approximation is expected to work well if the resonant
propagator is separable from the matrix elements, one is sufficiently far away from
thresholds, the width is small compared to the mass, I' < M, and interference between
resonances can be neglected. In the situation of the production and decay of nearly
mass degenerate Higgs bosons, it is usually only the last assumption that does not ap-
ply. While the widths are small compared to the masses, I'y,, < Mj,, they are not
small compared to the mass splittings; I'y, ~ [M}, — Mp,|. Since there can therefore be
significant overlap between the resonances, there can be interference between the reso-
nant diagrams. Nevertheless, since the other assumptions still apply, we expect to be
able to find a generalised narrow width approximation. In the following section, we find
that we can incorporate the main interference effects by introducing an “interference
weight factor”, which contains the integration over the interfering Breit-Wigner propa-
gators, while still treating the production and decay processes in factorised form, with

the matrix elements evaluated on-shell.

9.5.1 Interference weight factor

As in Appendix C, we consider the process, ab — cef, shown in Figure C.1, but we now
allow both h; and hy to appear as resonant internal propagators. As in Equation (C.1)
we can write the production matrix elements, the propagators and the decay matrix
elements separately. The Lorentz invariant phase space element can be factored into

its production and decay parts in the same way as Equation (C.6). The resulting cross
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section can then be written as

1 1 |Mab—>ch1|2|Mh1—>ef|2

3 dq*dlips(s; pe, q)dlips(q; pe, pr) X (

T ] s et (25
|Mab—>ch2|2|Mh2—>ef|2) Mab—’ChlM:bﬂcthhl—’efMItgﬂef })
(q2 - MF?Q)Q + M}%QP%LQ ((]2 - Mﬁl + iMh1Fh1)(q2 - Mf?g - Z.]thF/m) .

_l/‘dq2<aab~>ch1 <q2> V q2Fh1H6f<q2) I O ab—schsy (qQ) q2Fh2~>ef(q2)
@ MR, @ - ML T M,

+ / 40 2Re[ Maprems My M —ef Mi,—ef D (9.19)
<q2 - M}%l + iMhlrhl)(QQ - M/%g o iMhQFhQ)

Oab—cef =

+2Re[

where d€2 = dlips(s; pe, q)dlips(q;pe,pf)/(él)\%(s, m?2,m?)) (see Appendix C for the phase
space definitions). o4 e, (¢?) is the off-shell cross section for the production of h,
with momentum ¢?, while I'j, _.¢(¢?) is the off-shell decay width for h,, decaying at
momentum ¢* (a = 1,2). In the limit of narrow width, the squares of the Breit-Wigner
propagators in the first two terms can each be approximated by a constant multiplied
by a delta function, §(¢> — M} ), as in Equation (C.8), which allows the cross sections
and decay widths to be evaluated on-shell, at ¢ = M2 and @ = Mz respectively.
Essentially, the resonant structure of the propagators singles out the most important
matrix element contributions to be those which are evaluated on-shell. Although the
third term does not contain the square of Breit-Wigner propagators, for My, ~ My, it
does have a resonant structure, and is only expected to be large near ¢ ~ M, ,%1 ~ M,fz.
Our claim is that, so long as the other assumptions of the narrow width approximation
apply, the matrix elements in the interference term can be evaluated on-shell and taken

outside the dg? integral. We can therefore make the following on-shell approximation;

O'abﬂcef %Uabﬂchl BRhlﬂef + O'abﬂcthRhgﬂef
_'_2QRe|:(Mab*;chlM;bﬂchQMhI*)efM;kLQ*)ef) /dq2AEIVV<q2)(AE;N<q2))*:|7
(9.20)

where the cross sections, branching ratios and matrix elements are all evaluated on-shell.
The first two terms are the usual cross sections multiplied by the respective branching
ratios, while the third term is the interference term written as a universal integral over the
interfering Breit-Wigner propagators, multiplied by a coefficient consisting of process-

specific matrix elements evaluated on-shell and a phase space factor, (2.
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To make a further approximation, we note that we can often express the on-shell matrix
elements for the interference term in terms of the on-shell matrix elements for the hy

and hs production and decay processes respectively;

Y pr— Moo My, o R Ta | Mabcn, | [ M, —ef]? (9.21)

*
ab—chso

where z, (a = 1 or 2) is a numerical scaling factor and Mj, ~ M,,. For example, for
h—H mixing in bb — 7777, we use Equation (9.18) to obtain the scaling factor,
(Sazll - Ca212)2(5a231 - CaZ§2)2

Ty = - - . (9.22)
|(Saza1 - Caza2)2|2

This simple scaling factor allows us to write the total cross section as

Oab—cef = Uab—»chlBRhl—mf(]- + Rl) + Uab—>ch2BRh2—>ef(1 + RQ) (923>
where
My, Ty, Oab—cha BRh,—ef / Tmex o BW/ 20 ABW/ .2
R, = < “ = 2 Re |z, dg°A A *
T Uab—»chlBRhl—»ef + Uab—>ch2BRh2—>ef [ qfnin q h1 (q )( ho (q )) }

(9.24)

is the interference weight factor, for a = 1 or 2, where ¢2 . and ¢2,, are chosen to be the
square of Mp,, plus or minus a few times [, respectively. The first term in R, divides out
the Breit-Wigner integral contained in the h, cross section times branching ratio, while
the second term is a weight factor which takes into the account the fact that we could
equally choose to express the interference matrix elements in terms of the h; or hy matrix
elements. The term inside the square brackets consists of the process-dependent scaling
factor, z,, and the universal integral over the interfering Breit-Wigner propagators. Note
that this equation applies to both partonic and hadronic cross sections, as well as in the
case where higher-order corrections are included in the cross sections and decay widths.
Thus, in order to obtain an estimate for the cross section of the full production and decay
process in the generalised narrow width approximation, all one needs is the production
cross sections and decay branching ratios at the desired order, the masses and total decay
widths for the universal integral contained in R,, and a number, z,, for the scaling factor.
All but the latter are available in the literature, for example, in FeynHiggs, with many
important higher-order corrections already included. One can easily obtain a leading

order estimate for x, in terms of tree-level couplings and 7 matrices by considering
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the leading partonic process as we have done for bb — 777~. Note that the factor we
have derived for this process also applies to the often experimentally indistinguishable
processes gb — bh, — brt7™, gb — bh, — brtT™ and gg — bbh, — bbrt7T~. This
can then be conveniently combined with the state-of-the-art hadronic cross sections and
branching ratios, to obtain an improved estimate of the effective cross section times

branching ratio including interference effects.

9.5.2 Numerical testing for bb — h; — 77~

In going from the integral over ¢* in Equation (9.19) to the on-shell approximation in
Equation (9.20), we made the assertion that the matrix elements could be evaluated at
fixed momentum, ¢*> ~ M7 or M} , outside the integral, leaving only the Breit-Wigner
dependence inside the integral. We show the validity of this assumption for the partonic

process, bb — hy, hy — 777, by considering the integrand from Equation (9.19);

F(@ 4%, 0" = d o, (@ DAY (@)PThy—rr (62) 6" 00y (@AY (6) T hg—rr (¢7%)
+/dQ 2Re [(Mab—WhlM:b—wthhl—’efMZz—wf) |q2:q’2AEIW(q2) (AEQVV(QQ))*}
(9.25)

where ¢) = 1/¢'®2. In Figure 9.5 we show the dependence of f on /s = /@ for the
MP#x scenario with My« = 173 GeV and tan 3 = 40, for several values of ¢’ and ¢"2.
For these parameters, using FeynHiggs 2.6.5 and the widths derived from the complex
pole, we have My, = M), = 121.5GeV, M, = My = 124.3GeV, ', = 2.1 GeV and
Iy, = 6.1GeV. In the black curve, ¢’ = ¢"? = ¢% in the green curve ¢'> = ¢"* = M},
and in the blue curve ¢'> = ¢”? = M} . The red curve shows the dependence of f for
q'? = ¢""? = ¢* when the interference term is not included. We see that the curves where
¢ and ¢"? are taken to be constants, M,%l or M ,32, give a good approximation to full ¢?
dependence of f. In particular, they give a much better approximation to the (black)
curve with the full ¢*> dependence than the (red) curve for which interference is ignored
altogether. In the situations where interference is important, the masses are nearly
degenerate, and the main ¢? dependence of f comes from the Breit-Wigner propagators
and their interference. Thus the integrand, f, can be evaluated at ¢*> ~ M,fl or M,fQ

with only small errors in reproducing the full integrand.
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Figure 9.5: Dependence of function f(q?,q’?,q"”?) defined in Equation (9.25) on y/¢2. In the black

curve, ¢'? = ¢"? = ¢% in the green curve ¢'> = ¢”? = M} ; in the blue curve ¢'? =
12

q"* =M }%2; in the red curve the interference term is not included.

9.5.3 Application to pp — bb — h; — 777~

We have tested the generalised narrow width approximation of Equation (9.23) with
interference weight factors, R,, for the calculation of the LHC integrated cross section
for pp — bb — h, H — 777~ in the M™ scenario with My« = 170 GeV. We calculate
the squared matrix element for the partonic process using the on-shell approximation
with Z matrix elements and Breit-Wigner propagators as in Section 9.3. We then use
the built-in option in FormCalc to convert our squared matrix element calculation into
an integrated cross section with protons in the initial state. For the pdf distributions,
we use CTEQSL [125] because it is the default option in FormCalc and sufficient for
our purpose of testing the validity of the interference factor method. The Higgs masses
and Z matrix elements were obtained from FeynHiggs 2.6.5, including the O(azay)
corrections, while the total widths were obtained from the imaginary part of the complex
pole. In this way we obtain numerical values for o, = o(pp — bb — honly — 777),
og = o(pp — bb — Honly — 7777) and o,y = o(pp — bb — h,H — 7777). For

simplicity we ignore the contributions from A.

The resulting cross sections are shown in Figure 9.6(a) as a function of tan3. The
black points show oy, i.e. they include the h—H interference. The blue points show
on + ogy, i.e. they do not include the h—H interference. The green points are obtained
using 0;,(14+ Ry) + o (14 Ry), where the interference weight factors are calculated using
Equation (9.24). We see that for 35 S tan3 < 45, simply adding together o, and
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Figure 9.6: (a) Integrated LHC cross section for pp — bb — h, H — 777~ in the M™** scenario with
Mp+ =170 GeV as a function of tan 5. The black points are computed using the Breit-
Wigner propagators and 7 matrix elements for h and H, including interference. The
blue curve ignores the interference. The green points show the generalised narrow width
approximation using the interference weight factor; (b) The decay width in GeV for the
process Y — Y9777~ in the M scenario with tan 8 = 40 and Mpy+ = 170 GeV as
a function of M, ignoring contributions from intermediate CP-odd Higgs bosons and
other non-Higgs intermediate particles. The black curve shows the three-body decay
width computed using the Breit-Wigner and Z matrix method, including h and H and
their interference. The blue curve shows the standard narrow width approximation, while
green red curve includes the interference weight factor to obtain a generalised narrow
width approximation.

og in a “narrow width estimation” (blue) leads to an overestimation for o,y (black)
by up to a factor of 8, due to the resonant enhancement of the 7 matrix elements in
this region. The generalised narrow width approximation using the interference weight

factors (green), however, gives a good estimation of the full o, result.

9.5.4 Application to x) — x7t7~

The generalised narrow width approximation of Equation (9.23) applies to decay widths
as well as cross sections. We have applied the method to the calculation of the three
body decay width of a neutralino into a lighter neutralino and two taus; Y — x{777.
In the CP-conserving case with h—H mixing, one can write down a relatively compact
expression for x,, involving only 7 matrix elements and couplings. This can be combined

with the universal integral over Breit-Wigner propagators to obtain the appropriate in-
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terference factor, R,, using Equation (9.24). The two-body and three-body decay widths
were computed using FormCalc, the Higgs masses and Z matrix elements were obtained
from FeynHiggs 2.6.5, including the O(aay) corrections, while the total widths were
obtained from the imaginary part of the complex pole. Figure 9.6(b) shows the decay
width in GeV for the process, X§ — X777~ in the M scenario with tan 3 = 40 and
Mpy+ =170 GeV as a function of My, ignoring contributions from the intermediate CP-
odd Higgs boson and other non-Higgs intermediate particles. The black curve shows the
three-body decay width computed using the on-shell approximation with Breit-Wigner
propagators and Z matrix elements, as in Section 9.3, including the interference between
h and H. The blue curve shows the usual narrow width approximation, obtained by
adding the two body Improved Born decay widths into h and H, each weighted by their
respective branching ratios into taus. Finally the green curve includes the interference
weight factors using the generalised narrow width approximation of Equation (9.23). We
see that the usual narrow width approximation overestimates the full three-body decay
width by more than a factor of two. Inclusion of the interference weight factor in the
generalised narrow width approximation, however, predicts the full three-body decay

width to within a few percent.

9.6 Interference effects on the interpretation of

experimental limits for Higgs searches

As a phenomenologically relevant application of the generalised narrow width approx-
imation with interference weight factors, as described in Equations (9.23) and (9.24),
we investigate the effect that interference between h and H can have on the interpreta-
tion of the Higgs exclusion limits at the Tevatron. We focus on the di-tau channel in
the M scenario. In their analyses of this channel so far [123,126-130], the Tevatron
collaborations have not included the effect of interference between h and H. The cross
section, o(pp — ¢+ X), times branching ratio, BR(¢ — 777), is computed for a given
Higgs boson, ¢, with mass My, taking the cross sections, branching ratios and masses
from FeynHiggs. The predicted cross section times branching ratio is then compared
with the experimental limit for this quantity at this particular Higgs mass. In cases
where the Higgs bosons have nearly degenerate masses, their production cross sections
are added [123]. Finite width effects for large tan 3 were investigated in Ref. [123],

where they were simulated by multiplying the individual Higgs cross sections by a Breit-
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Wigner function. It was found that the effect of the width was small for most of the
M;"** parameter space. However, the effect of interfering Breit-Wigner propagators was

not studied.

In the previous section, we showed examples where interference can lead to a significant
decrease in the cross sections for pp — bb — h, H, A — 777~ bb fusion is the main Higgs
production channel for much of the M™** parameter space. For tan 3 < 30, gluon fusion
can also be important. We include gluon fusion in our total cross section, but, since
we are mostly interested in larger tan 3, we do not incorporate the interference effects
for gluon fusion here; these could easily be included in a future work. Note that the
examples shown in the previous sections with large interference effects for tan 3 ~ 40
and My ~ 122 GeV were computed using the Higgs masses and 7 matrix elements
from FeynHiggs 2.6.5, including the O(ay) corrections, while the total widths were
obtained from the imaginary part of the complex pole. In fact, when we use FeynHiggs
2.7.0, and furthermore include the full set of available two-loop corrections for the real
MSSM (i.e. beyond O(aza)), we find that the interference between h and H is largest
in the M;"** scenario for My ~ 132 GeV and tan 3 ~ 70. Such high values of tan 3 are
not very relevant for the recent Tevatron exclusion limits, which are at much smaller

tan 3. Thus, what follows should be treated as an example for illustration purposes only.

The Tevatron collaboration has published numerous dedicated analyses of their exclusion
limits interpreted in the M;"®* scenario, as well as model independent upper limits at the
95% confidence level for the cross sections times branching ratio for a single Higgs boson
with a certain mass. HiggsBounds is a computer tool designed for interpreting these
limits in the MSSM and other models [131]. We use a version of HiggsBounds modified
by the authors to take as input our modified cross sections, o, .15 .5, x (1 + Rq), as well
as the other usual cross sections, masses, branching ratios and decay widths. We obtain
all of these quantities from FeynHiggs and compute the interference factors, R,, from
Equation (9.24). The output from HiggsBounds indicates whether a given parameter
point is excluded or unexcluded on the basis of the Tevatron analysis with the highest
sensitivity. For illustration purposes, we do not use all available analyses; we select the
analysis where the exclusion limit is close to the values of tan 3 where the maximum

interference between h and H occurs.

In Figure 9.7, we show results for the M;"** scenario in the M,—tan 3 plane using
FeynHiggs 2.6.5, including the O(a;a;) corrections and obtaining the widths from the
imaginary part of the complex pole. Figure 9.7(a) shows the difference in the CP-even
Higgs masses, My — M, in the M,—tan 8 plane. We see a band for M4 ~ 122 —125 GeV
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and tan 3 > 40, where the mass difference is well below a GeV and interference effects
can be expected to be large. Figures 9.7(b) shows the interference weight factor, Ry, for
the bb — 77~ in the M4 tan 3 plane. We see that its value can deviate significantly
from zero for My ~ 120—125 GeV and 30 < tan § < 60, thus leading to large interference
effects. Figure 9.7(c) shows the sum of the three bb cross sections each multiplied by the
717~ branching ratios; oy, X BRp,_rr + 0050 X BRE i + 0354 X BRy,_.rr. We see that the
cross section generally rises with tan 3, but we also see an interesting region near My ~
122 GeV and tan 8 ~ 40, where the resonant enhancement of the Z matrix elements leads
to a very large cross section. Figure 9.7(d) shows the equivalent cross section including
interference; o5, X BRpyrr(1+ Ry) + 0y X BRE 77 (14 Ro) + 054 X BRy_..r. We see
that the cross section near M4 ~ 122 GeV and tan 3 ~ 40 is significantly suppressed.
Figure 9.7(e) shows the output from HiggsBounds when interference is not included. We
restrict the analysis to that by the CDF collaboration in Ref. [127], where the search was
performed in the ¢ — 77 channel using 1.8 fb™" of data collected with the CDF detector
in Run II of the Tevatron. The red points are excluded by this analysis at the 95%
confidence level for the particular cross sections, branching ratios, masses and widths
we obtained from FeynHiggs 2.6.5 as detailed above. Taking the same values for these
quantities, but including the interference factors, R; and R,, results in the HiggsBounds
output shown in Figure 9.7(f). We see that a significant number of points in blue below
tan § = 43 which were excluded in Figure 9.7(e) can no longer be excluded for these

particular numbers and this particular analysis.

In Figure 9.8 we show results for the M;"** scenario in the My-tan3 plane using
FeynHiggs 2.7.0, now obtaining the widths from the sum of the partial decay widths.
As already discussed, the on-shell approximation using these widths will not agree so well
with the full propagator matrix approach, but will include further important higher-order
QCD corrections that are available in FeynHiggs for the Higgs partial decay widths. Fig-
ure 9.8(a) shows the difference in the CP-even Higgs masses, My — My, in the M s—tan 3
plane. This time we see a band for M4 ~ 122 — 125 GeV and tan 8 > 55, where the
mass difference is well below a GeV. This mass degeneracy occurs at much larger tan 3
than for FeynHiggs 2.6.5. Figures 9.8(b) shows that the interference weight factor
also has its largest deviation from zero around this region. Figures 9.8(c) and 9.8(d)
again show the sum of the three bb cross sections each multiplied by their respective
77 branching ratios, without and with interference respectively. We see that the total
cross section near My ~ 124 GeV and tan (3 ~ 55 is significantly suppressed by the
interference. Figure 9.8(e) shows the output from HiggsBounds when interference is not
included. We restrict the analysis to that by the DO collaboration in Ref. [123], where
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the search was performed in the ¢ — 77 channel using 1fb™! of data collected with the
DO detector at the Tevatron. The red points are excluded by this analysis at the 95%
confidence level for the particular cross sections, branching ratios, masses and widths
we obtained from FeynHiggs 2.7.0 as detailed above. Taking the same values for these
quantities, but including the interference factors, R; and R,, results in the HiggsBounds
output shown in Figure 9.8(f). We see that a significant number of blue points around
tan § = 50 which were excluded in Figure 9.8(f) can no longer be excluded for these

particular numbers and this particular analysis.

As already explained, the shifts in the Tevatron Higgs exclusion limits described above
for the M;"** scenario should not be taken literally, since, first of all, we do not include
all available higher-order corrections in the Higgs sector; we only include the O(aya)
corrections. Secondly, the Tevatron analyses we use are not the most recent available.
The recent published analysis in Ref. [126] combines the results for searches for a neutral
Higgs boson in the di-tau final state using 1.8 fb™' and 2.2fb™! of integrated luminosity
collected at the CDF and DO experiments respectively. The resulting exclusion limits
reach a much lower tan 3 of around 35. Including the interference effects as described
above using FeynHiggs 2.7.0 does not have a large effect on this boundary. Our
examples are simply to illustrate that, for certain Higgs masses, mixings and widths,
interference between h and H can have a significant impact on the interpretation of
Higgs exclusion bounds with a certain sensitivity. There may be other CP-conserving
and CP-violating scenarios with large interference between hy, hy and/or hg occurring
in regions of parameter space where the most recent exclusion limits are significantly
affected. The CP-violating case is also of particular interest for the Higgs discovery
potential for large tan 3 in the early stages at the LHC. Unlike the interference between
h and H in the M;*®* scenario, which only occurs for a small resonance region in the
M s—tan 3 plane, the interference between H and A can be significant quite generically
since their masses are usually nearly degenerate for moderate to large values of My
and large tan 3. It is clear that for such scenarios, one cannot simply add the cross
sections for H and A production as has been done in the past. In this chapter we have
developed a method for using simple interference factors in conjunction with the state-of-
the-art cross sections and branching ratios to include these effects. The method is more
convenient than doing a full squared matrix element calculation but produces a good
estimate of the effects. The method has been implemented and tested for the particular
case of h—H mixing in the bb — 7777, but can easily be applied to other processes and
the CP-violating case. In the next chapter, we study CP asymmetries in the processes,

bb, WTW =, 99 — he — X9%5. In Section 10.5, we will use a generalised narrow width
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approximation with interference factors to produce estimates of the asymmetries at the

LHC.
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Figure 9.7: Results for the M;"®* scenario in the M s—tan § plane using FeynHiggs 2.6.5, including

the O(apas) corrections, and obtaining the widths from the imaginary part of the mass
solution; (a) Mg — Mjy; (b) Ry; (c) Cross section for bbhy,, ha — 77 without interference;
i.e. opxBRy_rr 0 xBRy 77 +04xBRA_,+; (d) Cross section for bbhy, h, — 77 with
interference; i.e. op XxBRp—7r(1+R1)+0y XxBRy— 77 (14 R2)+04 XxBRA_,+7; (g) Exclu-
sion of these parameters by CDF analysis 9071 without interference (Red=Excluded); (f)
Exclusion of these parameters by CDF analysis 9071 with interference (Red=excluded,

blue or white=unexcluded).
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Results for the M;"** scenario in the M 4—tan 3 plane using FeynHiggs 2.7.0, including

the O(azas) corrections, and obtaining the widths from the sum of the partial decay

widths; (a) My —

Mp; (b) Ry; (c) Cross section for bbh,, hy — 77 without interference;

ie. o x BRyrr + 0 X BRy 77 + 04 X BRa_,+; (d) Cross section for bbhy, hy — 7T
with interference; i.e. o X BRp—rr(1+R1)+ 0 X BRy— 77 (14 R2)+ 04 X BRa— 713 (8)
Exclusion of these parameters by DO analysis 2491 without interference (Red=Excluded);
(f) Exclusion of these parameters by D0 analysis 2491 with interference (Red=excluded,

blue or white=unexcluded).



Chapter 10

Asymmetry in the full production

and decay process

10.1 Motivation

In Chapter 8 we showed that, in the presence of CP-violating phases, there could be a
significant difference between the partial decay widths of a heavy Higgs boson into two

neutralinos with left-handed polarisation, I'Y; = T'(h, — X3¥5%), and right-handed

polarisation, ['4p = T'(h, — X5 #X57), respectively. The ratio A, = (T'%; —T'%p)/ (1%, +
I'% ) was found to be a CP-odd quantity. Namely, it is antisymmetric with respect to the
transformation, ¢ — —¢, where ¢ is a CP-violating phase, even when loop corrections
to the Higgs-neutralino-neutralino vertex are included. Thus, a non-zero value for A,
would indicate the existence of CP-violation in the MSSM. Furthermore, A, was found
to have the same sign for both h, = hy and h, = hg, so that the individual ratios, once
combined, would reinforce rather than cancel one another. One might naively expect
to be able to construct a relevant physical observable by combining A; and As into an
average, weighted by the cross sections for hy and hs production and branching ratios

for their subsequent decay into neutralinos.

However, we noted that in scenarios where this decay is important, where the Higgs
bosons are heavier than the mass of the neutralinos, the Higgs masses are likely to be
nearly degenerate, M}, ~ Mj,, with the mass splitting of the same order as the widths
of the Higgs bosons, |M, — My,| ~ T',,T's,. Thus, it would not be appropriate to
construct a weighted average of Ay and As using the narrow width approximation, the

assumptions for which fail in this situation. In order to construct a CP-odd asymmetry

154
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that could be an observable at experiments like the LHC, one must include the full
production and decay process for the the nearly mass degenerate Higgs bosons. As seen
in Chapter 9, interference effects between the two Higgs propagators in the full squared
matrix element can play a large role for the total cross section. It can thus be anticipated
that the interference terms may also have the effect of decreasing or even increasing an

asymmetry constructed from the polarisation dependent cross sections.

On the one hand, the fact that the asymmetry must be evaluated in situations with
nearly degenerate masses is computationally more difficult, on the other hand, we will
see that the mass degeneracy of the two Higgs bosons causes the resonant enhancement

of C’P-violation in the Higgs sector, thus increasing the CP-odd asymmetry.

The resonant enhancement of CP-violating asymmetries in the Higgs sector has received
much attention in the literature for the LHC and future colliders. A study of the CP
asymmetries in the polarisations of taus produced in Higgs decays at the LHC was
carried out in Ref. [132] using the method developed in Refs. [133,134]. Scenarios were
considered where all three Higgs bosons are light and the mass eigenstates are mixtures
of all three CP-eigenstates. It was found that large asymmetries were possible in the
longitudinal and transverse polarisations of the tau pairs. The same authors considered
similar CP asymmetries at photon-photon colliders [135] and e*e™ colliders [136] (see
also Ref. [137] for a study of the Higgs line-shape in such scenarios with 3x3 mixing). In
our study, we wish to consider asymmetries in neutralino polarisations, and so the Higgs
bosons in question, must, of course, be heavier than the masses of the neutralinos. In
such cases, the lightest Higgs boson has a mass well below the masses of the hy and hsg,
so the CP-violating Higgs mixing is effectively 2 x 2 mixing between H and A. Resonant
enhancement of CP asymmetries in the polarisation of top quarks at photon colliders
was studied in the 2 x 2 mixing case in Ref. [138] (see also Ref. [139] for a similar
analysis at the LHC). The Higgs line-shape has also been studied in the 2 x 2 mixing
case [140]. Similar asymmetries were also studied for photon colliders in Ref. [141] and
muon colliders in Refs. [142-145]. Asymmetries in Higgs decays into Z boson pairs were
studied in Ref. [146] as a method of determining the spin as well as the CP properties of
Higgs bosons (see also Refs. [147,148]). Asymmetries in the polarisation of neutralinos
produced in Higgs decays were studied in Ref. [144] in the context of a muon collider.
This study turns out to be rather different to our study of neutralino production in

Higgs decays for the LHC, since their technique makes use of polarised muon beams.

In this chapter we consider the asymmetry between the production of left- and right-

handed neutralinos in Higgs decays at the LHC. We compute the asymmetries expected
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at the parton level for the full production and decay processes, bb — h; — X9X5,
WTW~= — h; — X9%9 and gg — h; — X5x3, using both the full propagator matrix
method and the on-shell approximation using 7 factors described in Chapter 9. We find
that the asymmetry for the bb fusion process is suppressed by several orders of mag-
nitude, while WIW and gg fusion can each result in large asymmetries. We therefore
continue by considering the parts of parameter space where Higgs bosons can be detected
by their production in gluon fusion and subsequent decay via neutralinos into four lep-
tons. We finally compute the left-right asymmetries in the hadron-level LHC production
cross sections for pp — h; — X5X3, comparing the full squared matrix element method to
the use of a generalised narrow width approximation with an interference weight factor,

as in Section 9.5.

10.2 Calculation of CP-odd asymmetry

For each partonic Higgs production and decay process, z2’ — h; — Y3X9, where 22’ = bb,

W-WT, or gg, we define the asymmetry

A (VV5) = 2 (10.1)

01

with
_ _ 2 2
01(V5) = Ouurmmgg 2" + Tuwm g RRgR = /dQ(\MLL\ + [Mgrl*),  (10.2)

2 2

02(V'S) = Ottty oxQLQE ~ Oar 3y RO R = /dQ(\MLL|2 — [Mgrl*)  (10.3)

where d = dlips(s; ks, k4)/(2X2 (s, m2,m2,)), s = (k1 + k2)? = (ks + k4)? is the squared
centre of mass energy, k; and ko are the four-momenta of the incoming particles, k3
and k4 are the four-momenta of the outgoing fermions, and |[Myr|* and |[Mprg|? are the
squared matrix elements for the decay into neutralinos with both left-handed and both
right-handed polarisation respectively, averaged over the xz’ polarisations. Note that, if
OF and OF are the effective couplings of xz’ to left-handed and right-handed fermions

respectively, i.e.

M:m/HHiﬁff = ﬂf(OLwL + ORwR)vf, (104)
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then

MLl — IMgrl? = (|O"? = |0%)y/s(s — 4m?), (10.5)
Mol + (Mggrl> = (JO"]> +|0%?)(s — 2m}) — 4m3Re[O™(O")*].  (10.6)

10.2.1 Full propagator matrix approach

In Section 9.2 we showed how to evaluate oy for a general process in the full Higgs
propagator matrix approach, using Equation (9.5). The same method can be applied
to compute o5. There are nine diagrams to consider, illustrated in Figure 9.1, coded
into FeynArts as nine particles, “ij”, where i, j = h, H, A. There are three initial state
vertices to consider, fm—m-, and three final state vertices, fj 77, connected by nine full loop-

corrected Higgs propagator matrix elements A;;, obtained from Equations (3.72) and

ij>
(3.77). The general tree-level Higgs-fermion-fermion vertex is given in Equation (9.6),
where the relevant neutralino-neutralino-Higgs couplings can be obtained from Equation
(5.2). We will write the following in terms of general outgoing fermion-antifermion pairs,
f and f, so that our results can also be used to compute asymmetries for eg. 757~ and

tt production.

bb — h; — X9x9
The bb-Higgs couplings are given in Equation (9.7). We have coded the full 3x3 propa-
gator matrix result into FeynArts. Setting Ay; and A, to zero leads to the simplified

2 X 2 mixing case where

(Ml = [Mgg|* = - 2\/mRe(foAG}fH)

[5 ngAIm(AAAAZH) + szH(‘lmg - S)Im(AHHAEA)] (10.7)

We see that the asymmetry will vanish in the limit of CP-conservation in the Higgs sector,
where Ay and Ay are zero. A non-zero asymmetry also requires the loop-corrected
propagator matrix elements to have imaginary parts. This will only come about if the
Higgs self-energies contain absorptive loop integrals. Absorptive effects on their own,
however, cannot fake an asymmetry just because there exist both CP-even and CP-odd
Higgs bosons in the same matrix squared element. The CP-eigenstates really have to

mix due to CP-violation, so oy is a true CP-odd observable. Also note that complex
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neutralino couplings from the vertex alone are not enough to cause an asymmetry; they
only appear explicitly in Re(Gy AGY; ;7). Complex neutralino couplings could, however,
enter the Higgs self-energies in such a way as to cause CP-violating mixing in the Higgs

sector, which would contribute to the asymmetry.

WHW— — h; — X9%2

The tree-level Higgs-WW vertex is written as

1Aﬂhvvuvvy = 1Ghww 9w,
fHWuWV = iGrwwYw (10.8)
with T aw,w, = 0 and
eM eM
Crww = —$pa, Grww = —Cga. (10.9)
Sw Sw

In the 2 x 2 case we obtain

IMpr? = [Mgr|?* = 4y/5(s — 4m3)|er.e2* Gy yRe(G rpa G ) I (A g Ay )

(10.10)
where €; and €, are the W boson polarisation vectors;
1 _ 1 , " 1 .
e (£) = ﬁ<07:!:17 —i,0), e (£) = ﬁ(oa:FlaZaO)a
G0 = 5 (L 0.0K), 40 = (kl.0.0.-K) (01D

where the + denote right-handed and left-handed W polarisations respectively, while 0
denotes the W longitudinal polarisation. A centre of mass frame is assumed, with initial
state four-momentum vectors k1o = (/M3 + |k1/2,0,0, £|k;|) (see Ref. [149]). Again
note that the asymmetry vanishes in the CP-conserving limit and in the limit where

there are no absorptive parts in the propagator matrix elements.

g9 — h; — xX9x5

Gluon-gluon fusion is an important Higgs production process at the LHC (see eg.

Ref. [150]). In the SM, the largest contribution to the gluon-gluon vertex is the one-loop
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Figure 10.1: Leading order contributions to gluon fusion in the MSSM, where h = {h, H, A}.

top quark triangle diagram. Omne can write down an effective scalar-type coupling of
gluons to the Higgs boson using form factors. In the MSSM, the top quark loop is not
always the leading contribution. There are three types of one-loop diagrams, with quarks
and squarks running in the loops as shown in Figure 10.1. In the MSSM, the bottom
quark loop and the sbottom quark loops can become important for large tan 3. As in
the SM, one can write down effective couplings of the tree-level MSSM Higgs bosons to
gluons using gluon fusion form factors, but now there is the possibility for pseudoscalar-
type couplings, which have a different Lorentz structure. The effective vertices to the
CP-even eigenstates h and H can be written in terms of scalar-type form-factors, S,i o
while the effective vertex to A can be written in terms of a scalar and pseudoscalar-type

form-factor, S% and P respectively, as follows;

Dhgugr = SU(g"kyky — KIEY),
Chgnge = S§(g"kiky — KK,
Cagngr = S%4(g" k1 ko — KK + PY(icmpo€ ey kVES), (10.12)

0123

where €,,,, is the antisymmetric Levi-Civita tensor with ¢ = 1 and we use the

expressions for S ; , and Pj from Ref. [151];

Fyf Th(H) ) FO(Th(H)f)
Sty = D Guunyy - Y. Gz

4
f=bt my fi=b1,b2,11,t2 mf
FO(TAf)
Sfl = — Z GAff 4m2~l7
fi=—b1,b2, 1o !
Fo(Tay)
A Z Aff my ’ ( )

f=bt
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where 7,0, = mig / 4m§, Taf, = mig / 4mj; and the functions Iy, Fir and F),; are defined

Fg(r) = (r+(1—=1f(1))/7?
Fyp(r) = f(7)/T,
Fo(r) = (—7+ f(1)/7 (10.14)
where
arcsin®(y/7) <1
T) = . 10.15
Fr) —i[ln 7£J_”/§ —am]? T >1 ( )

We include only third generation quarks and squarks; they are the most important due
to their large Yukawa coupling. The scalar type couplings to CP-even Higgs bosons,
S,g% i, come from contributions from all three diagrams in Figure 10.1. There is no
pseudoscalar-type coupling for the CP-even Higgs bosons. The pseudoscalar coupling
for the CP-odd Higgs boson, P4, comes from the first type of diagram containing quarks
only. In the CP-conserving MSSM, these are the only contributions, and S% is zero.
When there is CP-violation in the squark sector, due to a non-zero Ay or u, the contri-
bution to the f’gg A vertex is no longer pure pseudoscalar as there can be scalar sfermion
loop contributions of the type arising from the second and third diagrams in Figure 10.1.
The sfermion loops were found to have a large impact on the gluon fusion couplings in
some CP-violating scenarios [152]. Even in CP-conserving scenarios, the sfermion loops
can play a significant role for the scalar couplings of the CP-even Higgs bosons [153].
Thus we include all three types of form factors in our asymmetry calculation. We have

coded these expressions into FeynArts and FormCalc.

We construct the matrix element for gg — h, H,A — ff in the full 3x3 propagator
matrix approach by considering the nine propagators, A;; (i,j = h, H, A), and the
corresponding tree-level vertices, Uygugr, Uprgugr, Tagugr, Upps, Upp and T ypp. In the

2 X 2 mixing case, ignoring, Ay; and A;,, we obtain

ML — [Mggl? = _SQWRG(foAG;fH) x

[1S% P Im (A Af4) + ([P — 1S4 Im(Aaady )
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where €; and €, are the gluon polarisation vectors

1 1
el = —(0,F1,—i,0), € =—(0,F1,i,0 10.17
1 \/5( + ) 2 \/§< + ) ( )
where the 4+ indicates right and left gluon helicities respectively, and a centre of mass
frame is assumed with the gluons moving in the £z direction respectively (see Ref. [149]).
Again note that the asymmetry vanishes in the C’P-conserving limit and is only non-zero

if there are absorptive effects in the Higgs self-energies.

10.2.2 On-shell (Z matrix) approximation to Higgs propagator

matrix calculation

We follow the method shown in Figure 9.2 and Equation (9.12). Recall that the on-
shell approximation with 7 matrices is an approximation which keeps only the momen-
tum dependence of the Breit-Wigner propagator, while any other momentum dependent
quantities are evaluated with the Higgs boson on-shell. Here there are three particles
to consider, hy, he and hsz, each with a Breit-Wigner propagator, given by Equation
(9.11), and vertices determined by the tree-level vertices given in the previous subsec-

tion, weighted by Z matrix elements as in Equation (9.10).

bb — h; — )ng(g

For the bb — h; — ff process in the limit of H-A mixing, with the A terms ignored, we

obtain,

IMppl? — [Mpr|*=—24/s(s — 4m})Re(G 154G )
[miw PIin(Zay Zi) (4% — )Gy Zl? — Gy 2]

+ | ARV PIm(Ziso Zsg ) [(4m, — 8) G| Zisal” — 5G| Zss|*]
+ Im [ ARV (AR (Zs 2y — Zios Z3p) (4} — )Gy Zin 2

- sGibe%Z:’gg]ﬂ . (10.18)
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WHtW~= — h; — x9x9

2

For the WFW~ — h; — ff process in the limit of H-A mixing, with the h terms

ignored, we obtain,
IMppl? = [Mggl? = — 4y/s(s — 4m3) |12/ Gl i |Re(G G p1r)
AR Pl (23 ) B+ |AFY P25, ) e

+ I [ARY (AP (Zo3 Zy — Z99Z535) 20535 ] | - (10.19)

99 — h; — x3x9

For the gg — h; — ff process in the limit of H-A mixing, with the h terms ignored,

we obtain,
IMpp]? — IMgr|*? = —s*y/s(s — 4m?)Re(foAG;fH)
AR Pl (2 1) 2 + 542l + PR
AR PI(Z3y 2i55) (1S5 232 + 5% Zsa|” + | P4 Ziss )
+Im <AE:V(AE:V)*(Z2BZ§2 — ZinZ3) (% 2oz + 4 Z3)
(S B + S 2) + PP B2 )| (10.20)

For reference in a later example we also write down the spin summed matrix element,

|IMpr|? + [Mgg|? in the limit where the fermion masses are only kept in the Yukawa
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couplings;

s3 N N N N .
IMpr|>+| Mgg|? == DAEQWPUS?{Z% + S9203* + |P{2s ) (|G s 2| + |G ag s Lias]

+ 2Re(Zan Zyy) I (G a g Gy ) ) HARY (1S4 Zis + S Zss |
+ |P§Zss)?) (|Grrp Lo +|Gap s Zss >+ 2Re(Zi32 Ziy ) I (G a s Gy 1))

4 2ilm @g}%@ﬁ* (89, Zoas-+ 852225 (S8 2o+ 54, 25)
+ | P 203 2| [| G L 25y + |G s 2as 2y + (Zos Z

+ ZQQZgg)Im(GAfngff)])}. (10.21)

10.2.3 Importance of interference effects

In the Z matrix approach, the interference terms can have a large effect if there is
significant overlap of the two Breit-Wigner functions and significant C’P-violating mixing
so that the Z matrix elements are all non-zero. In order to see the importance of
interference to obtain the correct value for oy, we consider the process bb — ho, hy —
7T77. We assume degenerate masses, M, ~ My, and widths, I'y, ~ I'y,, and ¢, /cs =
ts. We then use Equation (9.16) to write the Z matrix elements in Equation (10.18) in

terms of a complex mixing angle, 6, to obtain

Ml — Mpr]* o« té|AE;N|2 [(0939022 + sgc;s; — 8909822 - cgsgc;)
+(cososy” — spspch — secoch” + cicpsy) ]

— 0 (10.22)

The first bracket comes from [APW[* and |APW[?, while the second bracket is the inter-
ference term from APV (APW)* and APW(APWY)*. One can see that they exactly cancel
in this limit. If we had not included the interference term in the second bracket we would
have wrongly predicted a non-zero asymmetry between the squared matrix elements for
the left and right-handed tau polarisations. Of course, this cancellation only occurs un-
der the exact conditions given above. We shall see in the next section that asymmetries
are possible with masses that are nearly but not exactly degenerate. The point made
here is that interference can have a very large effect on asymmetries and must be taken

into account for accurate predictions.
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A similar cancellation occurs for gg — hg, hs — ff in this limit. Assuming degenerate
masses and widths, M, ~ M, and T'y,, ~ T'j, and ignoring S, we use Equation (9.16)
to write the Z matrix elements in Equation (10.20) in terms of a complex mixing angle,
0, to obtain
(Mirl* = IMrrl* oc [AR [ Im(cos;) [ (|col* — [so]*) (|1SH]* — [P4]7)
+(|sol* + lco*) (1S5 1* — 1P41*)]
— AR P (cosileaf2) 1S 12 — P4 (10.23)

where the term in the second line is the interference term from APV (APW)*. The scalar
coupling, S%, is often of a similar size to the pseudoscalar coupling, P4. Hence, in
the limit of exactly degenerate masses and widths, we expect the asymmetry to be
suppressed. On the other hand, resonant enhancement of the CP-violating mixing self-
energies, and hence V/ AH ~ Cg, also occurs in the limit of degenerate masses. So there

are two effects in play which may enhance or suppress the asymmetry in this case.

10.3 Numerical results for asymmetry at the parton

level

We report on numerical results for A,,/(y/s) in the modified SPS1a scenario with CP-
violating phases. In Figures 10.2(a) and 10.2(b) we show o1(y/s) and o2(+/s) respec-
tively for bb — h; — Y9%9 in the modified SPS1a scenario with A, = 510e~7""/10 GeV.
In the previous chapter we showed examples where interference could have a large effect
on the value of o;. As seen previously, the full 3x3 propagator matrix result (black
curve) and the on-shell approximation using Breit-Wigner propagators and 7. matrices
(green curve) agree very well (the latter is not visible in the plot because it is directly
underneath the black curve). As discussed in the previous chapter, this is expected
because the Breit-Wigner propagator captures the leading momentum dependence of
the diagonal propagator matrix elements, while the remaining non-resonant momentum
dependence of the self-energies is not as important. In addition, the on-shell approxi-
mation in the 2 x 2 case with no interference term (blue curve) also agrees quite well,
only slightly overestimating the peak value of o1 by a few percent. Based on this re-
sult, one might be tempted to use the narrow width approximation to calculate the

asymmetry, A,;. However, as the blue curve in Figure 10.2(b) for o9 shows, leaving out
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Figure 10.2: Partonic cross sections for bb — h; — X3%9 in the modified SPSla scenario with
¢4, = —77/10; (a) o1 as a function of 1/s; (b) o2 as a function of y/s. The black curve
is obtained from the full 3x3 propagator matrix calculation, while the green and blue
curves are obtained using the on-shell approximation with Z factors and Breit-Wigner
propagators. The green curve contains 3x3 mixing with interference, while the blue
curve contains only 2 X 2 mixing and no interference. Note that the green curve is
directly underneath the black curve.

the important interference terms overestimates the size of o5 in the full 3x3 propagator
matrix method (black curve) by around 400%. The on-shell approximation including
interference between the Breit-Wigner propagators (green) does give a good estimation
of oy if interference is included (the green curve is directly underneath the black curve).
It is interesting to note that, despite the large values for Ay ~ 40% and Az ~ 9% found
for the individual decays hy — X5x5 in Figure 8.8(b), the asymmetry for the full pro-
duction and decay process is small. ¢; has a peak value of nearly 500 pb, while o5 has
a peak value of only ~ 10 pb, leading to an asymmetry of only around 2%. The same
observation was also made in Ref. [132] for the process bb — hy, ho, hy — 7777, Tt turns
out to be particular to asymmetries with down-type fermions in the initial state, for
scenarios where the main contribution to the absorptive parts of the Higgs self-energies
also comes from down-type SM fermions. We will explain this in more detail in the next

section.

In Figures 10.3(a) and 10.3(b) we show oy(+/s) and o9(y/s) respectively for W~ —
h; — X9X3 in the SPSla scenario again modified so that A, = 510 e~/ GeV. We see
that again, for this process, the full 3x3 propagator matrix method (black) and on-shell
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Figure 10.3: Partonic cross sections for WW — h; — ¥9%3 in the SPSla scenario with ¢4, =
—7m/10; (a) o1 as a function of \/s; (b) o2 as a function of /s. The black curve is
obtained from the full 3x3 propagator matrix calculation, while the green, red and blue
curves are obtained using the on-shell approximation with Z factors and Breit-Wigner
propagators. The green curve contains 3x3 mixing with interference, while the red
(blue) curve contains 2 x 2 mixing with (without) interference. Note that the green
curve is directly underneath the black curve.

apporximation with Breit-Wigner propagators and Z factors with 3x3 mixing (green)
give results in almost perfect agreement for o; (the green curve is directly underneath
the black curve). The latter approach using only 2 x 2 mixing (red curve) does not do so
well, resulting in a different line-shape. For WW fusion, the h; continuum production
continues to have an effect at larger \/s ~ M, ,, since it has a much larger coupling
to gauge bosons than the heavy Higgs bosons. This distorts the combined line-shape
of the hy and hg resonances. The on-shell Breit-Wigner approximation in the 2 x 2
case underestimates the cross section for /s < Mj,, and for /s < 400 GeV where the
continuum hy production dominates. The 2 x 2 method also overestimates the total cross
section for M, , S Vs S 400 GeV, where hy and hs exhibit destructive interference with
the hy. Thus, for the WW initial state, it is important to include 3x3 mixing to get the
correct line-shape. The effect of not including the interference between hs and hs in the
2 x 2 case (blue curve) is to overestimate the peak value of oy compared with the 2 x 2
calculation with interference (red curve). For the asymmetric cross section, oq, shown
in Figure 10.3(b), the line-shape effects from the h; interference are less prominent.

The full 3x3 propagator matrix method and on-shell Breit-Wigner approximation in the
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Figure 10.4: Partonic cross sections for gg — h; — X9%5 in the modified SPSla scenario with
ba, = —7T1/10; (a) oy as a function of v/3; (b) o as a function of v/3. The black (cyan)
curve is obtained from the full 3x3 (2 x 2) propagator matrix calculation, while the
green, red and blue curves are obtained using the on-shell approximation with 7 factors
and Breit-Wigner propagators. The green curve contains 3x3 mixing with interference,
while the red (blue) curve contains 2 x 2 mixing with (without) interference. The pink
curve, denoted “no sf” indicates that the sfermion couplings are set to zero in the gluon
fusion form factors. Note that curves not visible in the plot are directly underneath
other curves.

3x3 case give results in perfect agreement (the green curve is directly underneath the
black curve). The peak value of oy is around 0.12pb, while the peak value of oy is
around 0.27 pb. The resulting asymmetry is ~ 45%, a much more promising result than
that seen for the bb initial state. The results obtained using the on-shell Breit-Wigner
approximation in the 2 x 2 case (red) slightly underestimate the peak value of o5, and
result in a slightly different line-shape compared to the full 3x3 result, but this is not
nearly as noticeable as for g;. The effect of not including the interference between ho
and hg (blue) is to underestimate o, and hence the asymmetry, by nearly a factor of 2.

The interference term can therefore enhance, as well as suppress, the asymmetry.

In Figures 10.4(a) and 10.4(b) we show o1(y/s) and o3(v/s) for gg — h; — X3x9 in
the SPSla scenario again modified so that A, = 510e~7"/1°GeV. The black and green
curves, which use the full 3x3 propagator matrix method and the 3x3 on-shell approxi-
mation with Breit-Wigner propagators and Z matrices respectively to calculate oy, are
indistinguishable, with a peak value of o7 ~ 0.6 pb. Similarly, the cyan and red curves,

which use the 2 X 2 propagator matrix method and the 2 x 2 on-shell Breit-Wigner
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Figure 10.5: Asymmetry, A,,, for z2’ = bb, WW and gg (black, green and blue respectively) with
Vs =393 GeV; (a) as a function of ¢4, in the modified SPS1a scenario (with ¢, = 0);
(b) as a function of ¢, in the modified SPSla scenario (with ¢4, = 7 as in the usual
SPSla scenario).

approximation with interference respectively, are in good numerical agreement with the
full 3x3 results. On the other hand, the 2 x 2 on-shell Breit-Wigner approximation with-
out the interference between hy and hy (dark blue) underestimates the full result by a
few percent. We also show in pink the 3x3 on-shell Breit-Wigner approximation, where
we only include top and bottom quark contributions in the gluon fusion form factors.
This underestimates the full result by even more than the BW without interference,
emphasising the importance of including the squark contributions to the gluon fusion
form factors. For the asymmetric cross section, oo, shown in Figure 10.4(b), again the
black and green curves for the full 3x3 propagator matrix result and the 3x3 on-shell
Breit-Wigner approximation respectively, are indistinguishable, with a peak value of
~ 0.06 pb, resulting in an asymmetry of ~ 9%. The 2 x 2 propagator matrix result
(light blue) and the 2 x 2 on-shell Breit-Wigner approximation (red) are also very close
to this value. The 2 x 2 on-shell Breit-Wigner approximation with no interference (dark
blue) is well below these curves, with a peak value of ~ 0.045 pb, underestimating the
asymmetry by ~ 20%. Finally, in pink we also show the 3x3 on-shell Breit-Wigner
approximation, where we only include top and bottom quark contributions in the gluon
fusion form factors, omitting the sfermion contributions. This results in the wrong sign
and magnitude for oy, highlighting the importance of including the additional scalar

contributions to the gluon fusion form factors from squarks in this scenario.
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In Figure 10.5(a) we show the asymmetry, A/, for zz’ = bb, WW and gg (black, green
and blue respectively), as a function of ¢4, in the SPSla scenario, with /s = 393 GeV.
As already discussed, the asymmetry for the bb fusion process is much less than for
the other processes. We see that WW fusion has the largest asymmetry of the three
processes, with a peak value of more than 50% for ¢4, ~ 4m /4. This is much larger than
the peak values of the asymmetry for gg of around 9%. We can explain the asymmetry
values by looking at the values of Ay and Aj in Figure 8.8(b). Aj exhibits a much larger
peak asymmetry of ~ 38%, compared to As, which has a peak value of ~ 9%. The Z
matrix elements shown in Figure 8.6(c) for this scenario indicate that hy is mostly A and
hs is mostly H. (Note also that the peaks in the asymmetry correspond roughly to the
peaks for the Z matrix elements in Figure 8.6(c).) Since gauge bosons do not couple to A,
the effect of the larger asymmetry, A3, will dominate for WW. For gg on the other hand,
the couplings to H and A are similar so that both contribute significantly. However, as
shown in Figure 8.6(a), the decay width (and, correspondingly, the branching ratio) for
hy — X9X9 is about 7 times larger that that of hs — x99 for the range of ¢4, shown.

This explains why the Ay, asymmetry is much closer to Ay ~ 9% than the larger As;.

This suppression of A, relative to Ay is not, however, universal. In Figure 10.5(b) we
show the asymmetry, A, for zz’ = bb, WW and gg (black, green and blue respectively),
as a function of ¢, in the SPSla scenario, again with /s = 393 GeV. Here we find that
A,y has peak values of ~ £18%, while Ay has peak values of ~ £17%. Once again,
we find that A4,; is much less than Ay, and Ay w. In the next section we explore the

reason behind this observation.

10.4 A closer look at the asymmetry using the

propagator matrix approach

In this section we take a closer look at the expressions derived for |[Mpp|*> — | Mgg|?
in Section 10.2.1 using the 2 x 2 propagator matrix approach in order to show why
the asymmetry between the production of left and right fermions in Higgs decays is

suppressed for bb in the initial state, but not for WW and gg.
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For bb — H, A — ff, in the limit of massless bottom quarks (retaining their mass in

the Yukawa couplings), we have,

|-MLL‘2 - |-MBR‘2 = _QSQRG(foAG}fH)[ngAIm<AAAA*AH) - ngHIm(AEHAEA)]
(10.24)

In the 2 x 2 mixing case, the propagators A;; and A;; are given by Equations (3.79) and

(3.81) respectively. Using these expressions we obtain

—Im[(p* — mi)i?{A + 2AféjlkﬁrA]

Im(AHHA*HA) = = = =
|(p? — M + Xpm) (p? — m3 +Xaa) — X34

(10.25)

and

—Im[(p* — m3 )2;“ + ZADHHZEEA]

Im(AAAAZ ): = ~ ~
102 = 2+ S) (02 — mA + Saa) — S22

(10.26)

For the scenarios studied, Im(i]HA) < Im(i]HH, 2,4,4), so we will assume that the only

significant contribution to the imaginary part comes from the latter. Then
IMpL|? = IMgrl? < G (ImSaa)(ReSpa) — Gia(ImSyp)(ReSya).  (10.27)

This so far confirms what we have already claimed; in order to have an asymmetry, there
must be an absorptive part, i.e. non-zero Im S and/or Im Sa A, and there must be
C’P-violation, i.e non-zero Re 4. The reason that, even with these conditions satisfied,
the asymmetry for bb is suppressed, is that the main contribution to the imaginary part

of the Higgs self-energies comes from the b-quark loop. In each case this contribution is

given by
~ 3
m(3%,) = _PngAIm[pQ Bi(p*, mi, my)] = Gy 1Y,
- 3
() = — o Gl By md) + 2mE By 42, m )] ~ Gy

(10.28)

where the mZIm[By(p?, m?, m?)] term is small. Thus, the imaginary parts of the H and
A self-energies can each be written in terms of the same expression, Y, weighted by the

coupling factors, Gg,;; and G3, 4 respectively. This leads to

IMpLl? = IMgrl? < =Gy (GpaY) + Gioa (G Y) = 0. (10.29)
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Thus, the main contribution to the asymmetry vanishes. Of course there are other,
smaller contributions to the imaginary parts of Ayy A% 4 and AgaA% 4 which do not
cancel, so the asymmetry is not exactly zero. However, the asymmetry is significantly
suppressed due to the fact that the fermions in the initial state have the same couplings
as the b-quarks contributing to the absorptive parts of the Higgs self-energies. The
authors of Ref. [132] made a similar observation for the tau polarisation asymmetry in
bb — h,H,A — 77 and gave an explanation using the optical theorem. We also note

that the same cancellation will occur if the initial state fermions are muons or any other

2 2

. . 2 o o
down-type fermions, since m;G},,; = A =

2 2 2 2 2
mubeH and m;G mHbeA.

In their study of asymmetries in the polarisation of neutralinos in the process p*pu~ —
H, A — X5x9 at a muon collider, the authors of Ref. [144] assume polarised muon beams,
which enhances the effect of the asymmetry. At the LHC we do not have the option of
polarised beams, so we will need to consider processes which do not involve down-type

fermions in the initial state.!

Applying the same argument as above for WW — H, A — ff, we obtain,

4y /s(s — 47"30)|€1-62‘QG%/VWHRdefAG}fH)[szAYRe(EHA)]

|-MLL\2 - |MRR|2 ~ = = =
|(p? —m3; + Xum)(p? —m3 + Xaa) — X412

(10.30)

Here there can be no cancellation; there is only one term since gauge bosons do not couple
to the CP-odd Higgs boson and in any case there is no down-type fermion-fermion-Higgs

coupling in the initial state. For gg — H, A — ff, we obtain,

IMrpl? — IMgr|? =~ —s%y/s(s — 4m§)Re(foAG}fH) Y Re(Xga) X
(IP31> = [S411) Gipn + 1SHI*Giya
|(p? —miy + Bpu)(p* —m% + Xaa) — X3 4[2

(10.31)

Again there is no cancellation. Even in the case where the gluon fusion form factors are

dominated by a bottom quark loop, so that the Higgs is effectively coupling to bb, with

Note, however, that, while the asymmetry between left and right fermion polarisations is proportional
to |OF|2 — |O%)?, where OF and OF are defined in Equation (10.4), triple product asymmetries
in the momenta of the decay products arise from non-zero Im(OrO7%). We have checked that
Im(OgO}) for za’ = bb does not suffer from the same cancellation as |Or|> — |Og|?. Thus, triple
product asymmetries may offer a method complementary to the neutralino polarisation asymmetries,
especially for large tan 3, where bb fusion is the dominant production process for heavy Higgs bosons
[150], and neutralino decays may be one of the only decay channels in which they are visible [35].
This is, however, beyond the scope of this work.
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|PY1? o< G%yps |S%]? oc G%,, and |SY|? & 0, there is no cancellation due to the plus sign

between the two terms.

Note that in both Equations 10.30 and 10.31, the asymmetry is proportional to the
absorptive loop integral, Y, and the CP-violating self-energy, Re(Xy4). Also note that
the denominator becomes small when the masses are nearly degenerate; i.e. for p? ~

M ,32 ~ M,fg ~ m?2; ~ m?%, causing the resonant enhancement of the asymmetry.

10.5 Factorisation of asymmetry into production

and decay including interference effects

10.5.1 Asymmetry factor method

In the previous sections we have shown that studying the asymmetry between the
production of left- and right-handed neutralinos in heavy Higgs decays is a promis-
ing method of determining the existence of CP-violation in the Higgs sector. We have
shown that, in order to predict the values of these asymmetries for a particular set of
parameters, interference effects between the two heavy Higgs bosons must be taken into
account. We have also shown that the on-shell approximation using Breit-Wigner prop-
agators and 7 factors gives good numerical agreement with the full Higgs propagator
matrix calculation. The only reason that the narrow width approximation breaks down
is that the mass splitting between the two heavy Higgs bosons is of the order of their
widths, M; — M; ST, T';. All other assumptions of the narrow width approximation are
satisfied. Thus our goal in the following is to find a method for calculating the asymme-
try using a generalised narrow width approximation, similar to the method developed

for calculating the full cross section in Section 9.5.1.

To agree with Section 9.5.1 and Appendix C, we consider the general process, ab — cef,
shown in Figure C.1, this time with intermediate hy and hz. In order to compute the
asymmetry, we are interested in o9, which is obtained from the difference between the

squared matrix elements for left-handed e and f and for right-handed e and f in the
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final state (the polarisation states of ¢ (a and b) are summed (averaged) over);

|Mab~>ceLfL|2_|Mab~>ceRfR|2:|Mab—>ch2|2|AE;N|2(|Mh2HeLfL|2_|Mh2HeRfR|2)
+ |Mab—>ch3|2|AESW|2(|MFL3H6L}”L|2_|Mh3HeRfR|2)
+ 2 Re [Mab—whg :b—wthEzvv(AE:V)*x

(MhQHGLfLM;:S*)eLfL _Mh2—>eRfRM23HeRfR)} . (1032>

Inserting this expression into the integral over phase space, as in Equation (9.19), and
making the same assumption that in the limit of narrow width we can evaluate all
matrix elements on-shell outside the dg? integral, we can write down the following on-

shell approximation for os;

r —e -T —e I —e - T —e
oo(ab — cef) ~oap—ch, ha—el 7 ha—eltfR Oab—schs hy—et ¥ hy el f%
Iy, Iy,
+2QRe [MabﬁcthZbﬂchg (Mpyser s Mo er e _MhQHeRfRM;km_,eRfR)
< [ de AR AR ()] (10.33)

where the integral in the last line is the same universal integral over interfering Breit-
Wigner propagators that appears in Equation (9.20), and €2 is the phase space factor
also in this equation. We can conveniently express the on-shell matrix elements for the
interference term at leading order in terms of the on-shell matrix elements for the hs

and hg production and decay processes respectively;

MabHChQMZb—)Ch?, (th—mLfLM;km—mLfL - MhQﬁeRfRM;kzgﬁeRfR)
~ Ya |Mab~>cha‘2(‘MhaﬂeLfL|2 - |Mha~>eRfR|2) (1034)

where y, (a = 2 or 3) is a numerical scaling factor and M}, ~ M,,. For example, for
H-A mixing in gg — ff, we use Equation (10.20) to obtain the scaling factor,
(23255 — T ) (S Bz + 54 203) (S5 Ly + 54 Zi3) + | P4 223 23]

Yo = ~2n . i . (10.35)
20m(Za2255) (S5 Zar + ShZas]® + | PiZas|?)

This simple scaling factor allows us to write the spin-dependent cross section as

oo(ab — cef) & apchy BRuyof Ao (1 +75) + Oapcns BRigep Az(L+15)  (10.36)
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where
M,,T Gab—echn, BR nax
A hat ha ab—chq DVhe—ef 2 ABW/ 2 BW  2)\*
A = 2Reya/ dq"Ay," (q7) (A" (g
T Uab—»cthRhg—»ef+Uab—>ch3BRh3—>ef [ q?nin ho ( )( h3 ( ))}
(10.37)
are the asymmetry interference weight factors and A, = (I'np — Trg)/(Urr + Crr)

is the decay asymmetry defined in Equation (8.1), with I'y;, = I'(h, — eXf%) and
Lrr = [(hy — ef'fR). Equation (10.36) is a convenient way of converting the decay
width asymmetries, A,, into an estimate of the asymmetry for the full production and de-
cay process, using only cross sections, branching ratios, and the asymmetry interference
weight factors, r4. One could, in particular, use cross sections at the hadron level, incor-
porating higher order corrections. One could also incorporate higher-order corrections
into the branching ratios and A,, as studied in Chapter 8. This could be important
when CP-violating and absorptive effects in the loop-corrected Higgs-fermion-fermion
vertex give a large enhancement to the asymmetry. In scenarios where the dominant
contribution to the asymmetries comes from Higgs propagator corrections contained in
the Z matrix elements, it can be convenient to make a further approximation relating

the on-shell matrix elements in terms of a scaling factor wy;
|Mab—>cha|2(|Mha—>eLfL|2 - |Mha—>eRfR|2) ~ W, |Mab—>cha|2|Mha—>ef|2 (10’38)

where, like y,, w, consists of couplings and 7 matrix elements. For example, for H-A
mixing in gg — ff in the limit where the fermion masses are only kept in the couplings,

we can compare Equations (10.20) and (10.21) to obtain the scaling factor

—2Re(GpaGpp)m(ZaoZss)
(IG 11 2oz +|G 4y Zas |+ 2Re(Zan Zig ) Im(Gar s Gy )

(10.39)

Wy R

Using such a scaling factor, we can make the approximation

Uz(ab — cef) =~ UabﬂchQBRhQHerJQ(l -+ 7’5‘) -+ UabﬂchsBRhSHefw‘g(l + T?) (1040)

10.5.2 Numerical testing of asymmetry factor method

In Figure 10.6(a), we show the hadronic level asymmetry for gluon fusion, Ay, = o5(pp —

gg — ha, hs — XX /o1(pp — gg — ha, hs — X9X9), in the SPSla scenario modified
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to have A, = 510e~"""/19GeV. For simplicity we do not include higher order vertex
corrections to the neutralino-neutralino Higgs vertex. We calculated the squared matrix
element for the partonic process using the on-shell approximation with 7 matrix elements
and Breit-Wigner propagators for case of the 2 x 2 H—A mixing (for simplicity we
ignore the contributions from h and other non-Higgs intermediate particles). We then
use the built-in option in FormCalc to convert our squared matrix calculation into the
integrated LHC cross sections, o; and o9, using the default pdf set, CTEQS5L [125].
We use FeynHiggs 2.6.5 to obtain the Higgs masses, Z matrix elements and widths,
the latter from the imaginary part of the complex pole. The black points include the
interference between the hy and hz propagators. We see that the asymmetry becomes
more resonantly enhanced as tan 3 increases, with a value of around 2% at tanf =
5 increasing to around 23% at tan(3 = 20. For larger tan values the asymmetry
decreases. The blue points are obtained by summing the separate contributions o s,
Oin, = 0i(pp — g9 — hgonly — X5x3) (i = 1,2, a = 2, 3), i.e. without the interference
between ho and hs. This results in an underestimation of the asymmetry by several
percent for tan 3 S 25. Above this value, the asymmetry obtained in this way continues
to increase with tan (3, resulting in an overestimation compared to the full result. For
the green curve, we compute oy from the sum oy p,(1 + Rs) + 01,4,(1 + Rs), where the
interference weight factors, Ry and Rj, are obtained from Equation (9.24), while for oy
we compute the sum oy p,wa (1 +74) + 09 p,w3(1 +14) using the asymmetry interference
weight factors r5' and r4 from Equation (10.37) and ws 3 from Equation (10.38). This
approximation is in good numerical agreement with the full squared matrix element
result, predicting the asymmetry to within a couple of percent for the range of tanj
shown, including the decrease for large tan 3. These results confirm that we can use

Equation 10.36 to construct the asymmetry from the hy and hy asymmetries.

In order to help explain the general trends as tan 3 increases, in Figure 10.6(b) we show
the mass differences, widths and Z matrices as a function of tan3 for the modified
SPSla scenario. We see an enhancement of Re(Zs3) = Re(Zy4) as tan § increases. This
causes a resonant enhancement of the asymmetry. For larger tan § values, however, we
showed that the asymmetry decreases, despite the fact that Figure 10.6(b) shows the
masses and widths becoming more degenerate and Re(233) becoming large. This is due
to cancellations between the interference term and the hy and hz terms for degenerate
masses, widths and couplings, as discussed in Section 10.2.3 (see in particular Equation
(10.23)). If one does not include interference effects then the asymmetry will continue

to increase as Re(Z33) increases with tan 3.
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Figure 10.6: (a) A,y = o2(pp — g9 — ha,hs — X5X3)/o1(pp — g9 — ha,hs — X3%3), in the
modified SPS1a scenario with 4, = 510e~*""/10 GeV, computed using several different
methods with Breit-Wigner propagators and Z matrices; in black is the 2 x 2 result
with interference, in blue is the 2 X 2 result without interference, in green is result
using the generalised narrow width approximation, i.e. o7 is calculated from o7 p2(1 +
Rs) + 01,1, (1 + R3) and o9 is calculated from o j, w2 (1 +15") + 02 5, w3(1 +74') where
Oihy 5 are the cross sections for hy only and hs only, respectively. (b) The difference
between the masses (black) and widths (green) as a function of tan in the SPSla
with A; = 510e~%77/10 GeV with fixed My+. Also shown are the absolute widths from
the imaginary part of the mass solution 'y, (blue) and T'p, (red). In pink is shown
R6233 ~ RGZQQ.

10.6 Asymmetries at the LHC

We now use the on-shell generalised narrow width approximation of Equations (9.23)

and (10.40) to compute the total asymmetry in terms of LHC cross sections,

o(pp — ha,hs — X5"X5") — a(pp — ha, hs — X9FX5F)
A= 0L-O0L 0R-O0R (10.41)

o(pp — ha, hs — X3 X3") + o(pp — ha, hs — X37°X3 ")

in the My+—tan 3 plane for the SPSla scenario with A4, = 510e~1%7/20 GeV. We use the
cross sections, masses, total widths and branching ratios from FeynHiggs 2.7.1% and
the interference weight factors and asymmetry interference weight factors computed from
Equations (9.24) and (10.37) respectively. We include both the gg fusion and bb fusion

processes, which are the main production methods for the Higgs masses considered.

2This recently released version of FeynHiggs contains improvements to the gluon fusion production
cross section.
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Figure 10.7: LHC cross sections in fb from FeynHiggs 2.7.1 for the SPSla scenario with A; =
510e~137/20 GeV for (a) o(pp — bb — haX); (b) o(pp — gg — haX).

Figure 10.7(a) shows the LHC cross section, o(pp — bb — hyX), in the Mpy+—tan 3
plane for the SPSla scenario with 4, = 510e~137/20 GeV, obtained as output from
FeynHiggs 2.7.1. Figure 10.7(b) shows the corresponding gluon fusion cross section,
o(pp — gg — hoX). We see that bb fusion has the largest cross section for large tan 3,

while gluon fusion process can dominate for tan 3 < 8.

We showed in Section 10.4 that bb fusion does not exhibit a large asymmetry between the
production of neutralinos with left- and right-handed polarisation, due to a cancellation
between the couplings to down-type fermions in the initial state and in the imaginary
parts of Higgs self-energies. Gluon fusion is much more promising in this respect. It
would therefore seem that we have the most chance of seeing this asymmetry at low tan 3.
At large tan 3, the signal will be washed out by events with bb in the initial state, which
are experimentally indistinguishable from gg, and have a much smaller asymmetry. For
these low tan § values it will be difficult to detect such heavy Higgs bosons using their
decays into SM particles. According to the study in Ref. [35], however, there may be
a significant discovery potential for heavy Higgs bosons from utilising their decay into
neutralinos, h, — X! Xj — 41X . For the 4L1 scenario, given in Table 2.3 and studied in
Chapter 8, the authors claimed a 50 discovery potential for tan 3 > 5, while for the other
parameter point analysed, where the decays into heavier neutralinos are open and can
be utilised for the four lepton signal, they claim that the discovery potential extends to
values of tan 3 below 5. In scenarios with low tan (3, there will also be less stau mixing,

so that more neutralinos will decay via on-shell selectron and smuon decay, to produce
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Figure 10.8: Asymmetry, A = (o(pp — ha,hs — X3°X3%) — o(pp — ha,hs — X37x3 %))/ (0 (pp —
ha,hs — XSEXSL) + a(pp — ha,hs — X3FXOF)) as a percentage in the My=—tan 3

plane for the SPSla scenario with A; = 510e~"37/20GeV; (a) with only the gluon
fusion production process included; (b) with both gluon fusion and bb fusion included.

a clean lepton signature. It may be that we can utilise decays of Higgs bosons into
the heavier neutralinos for the asymmetry signal. Low tan (3, however, does mean less
resonant enhancement of the asymmetry, since the mass splitting of the Higgs bosons
will be larger. The interplay between these effects should be fully considered in further

studies.

In Figure 10.8(a), we show the asymmetry as a percentage in the My+—tan 3 plane for the
SPS1a scenario with A; = 510e~37/29 GeV when only the gg fusion production process
is included. We see it can be particularly large for large tan 3 2 8, and also in the region
of small tan 8 and My+ 2 750 GeV. For much of the My=—tan 3 plane, the asymmetry
is sizeable, with values above 40%. However, this is not including the bb fusion process,
which will be experimentally indistinguishable from the gluon fusion process. We include
both processes in Figure 10.8(b). We see that the region with large tan 5 no longer has
a large asymmetry, since the bb fusion process has a much higher cross section, but
only a suppressed asymmetry. For these parts of the Mpy+-tan 3 plane, where the bb
fusion process dominates, it may be interesting to study other CP-asymmetries, such
as triple product asymmetries in the momenta of the decay products, which appear to
be more promising for the bb fusion process. The region with low tan 3 < 8 and large
Mpy+ Z 500 GeV looks the most promising for measuring the asymmetry between the
production of left- and right-handed neutralinos. In this region, the asymmetry can be

10 —20%. Such asymmetries are certainly worth further investigation. A full assessment
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of the capability of the LHC to measure such an asymmetry will require a realistic

detector simulation, which is beyond the scope of this work.

Our study indicates that there is certainly scope for utilising the decays of Higgs bosons
into neutralinos, not only for Higgs discovery at the LHC, but also for probing CP-
violation in the MSSM. The methods developed in this chapter can be used to calculate
the asymmetry in various approximations that include important interference effects,

and they will also have applications in studies of other CP-asymmetries.



Chapter 11

Conclusion

We are entering an exciting era for particle physics. The LHC is expected to finally shed
light on the mechanism of electroweak symmetry breaking, for which many popular
models predict the existence of one or more Higgs boson(s) within the discovery reach of
the LHC. There are also compelling motivations for discovering supersymmetric particles
at the TeV energy scale explored by the LHC. Supersymmetry may help to explain
the Hierarchy Problem, dark matter, the unification of the fundamental forces and, in

supersymmetric models with CP-violation, the baryon asymmetry of the Universe.

In this thesis we have investigated the effects of higher order corrections and CP-violation
in the Higgs and neutralino sectors of the MSSM. We have focused in particular on
cases where the searches for Higgs bosons and supersymmetry can go hand-in-hand.
In particular, the decays of neutralinos into Higgs bosons may offer good prospects for
detecting a very light Higgs boson in the CPX scenario, where standard search channels
may fail. Conversely, studies of the polarisation of neutralinos produced in Higgs decays

may offer good prospects for determining the existence of CP-violation in the MSSM.

0
J

in the MSSM with complex parameters. The renormalisation scheme used for the Higgs

he and h, — )2?)2?

Complete one-loop results were obtained for the processes YV — Y
sector was described in some detail, paying particular attention to the incorporation of
important Higgs propagator corrections. In this scheme, finite wavefunction normali-
sation factors (Z matrix elements) are used to ensure the correct on-shell properties of
Higgs bosons appearing as external particles in a process. For a complete treatment of
Higgs bosons appearing in internal parts of diagrams, the full 3 x 3 Higgs propagator
matrix should be used to include all C’P-violating and momentum dependent self-energy

contributions.

180
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An on-shell renormalisation scheme was developed for the first time in this thesis for
the chargino—neutralino sector of the MSSM with CP-violating parameters. The field
renormalisation prescription takes into account the imaginary parts arising from complex
parameters and absorptive parts of loop integrals. Unlike in CP-conserving theories,
the latter can enter the squared matrix element at the one-loop level in the complex
MSSM and can have a large impact on decay widths and cross sections of charginos and
polarised neutralinos. In order to ensure the correct on-shell conditions, we developed a
scheme in which the renormalisation constants introduced for the outgoing fermions and
incoming antifermions, §Z;;, are different to those introduced for the incoming fermions
and outgoing antifermions, 6Z;;. The hermiticity relation, §7;; = 5ZZ~Tj, can be restored
in the CP-conserving case where absorptive parts of loop integrals do not contribute to

physical quantities at the one-loop level.

For the renormalisation of the parameters of the chargino—neutralino sector, | M|, | M,
and |u|, we compared three different on-shell schemes, where the masses of either three
neutralinos, two neutralinos and one chargino, or two charginos and one neutralino were
fixed on-shell. From these options, no one single scheme was found to be suitable for
the whole MSSM parameter space, with the most appropriate choice depending on the
gauge parameter hierarchy of the scenario. For most of the scenarios studied in this
thesis, the scheme with the masses of 9, ¥J and Y3 on-shell was found to be the most
appropriate. We found that the phases entering the chargino—neutralino sector at tree-
level, ¢, and ¢, should be considered as mixing parameters and therefore do not need
to be renormalised. The renormalisation scheme we have developed, which we have
implemented into FeynArts, will have numerous applications for loop calculations in
the MSSM with CP-violating parameters.

0
J

were combined with dominant two-loop Higgs propagator-type corrections to obtain the

For both X9 — x%h, and h, — )Z?f(?, the complete one-loop genuine vertex contributions
most precise prediction currently available for this class of processes. Previous work for
this process using the Feynman-diagrammatic approach included only a subset of the

one-loop contributions and did not allow for CP-violation.

The numerical impact of the genuine vertex corrections on the decay y? — )Z?ha was
studied for several examples of CP-conserving and CP-violating scenarios. We found that
significant effects on the decay widths and branching ratios were possible even in the CP-
conserving MSSM. In the CP-violating CPX benchmark scenario, the corrections to the
decay width, X3 — ¥Vh;, were found to be particularly large — of order 45% for a Higgs
mass of 40 GeV. This parameter region of the CPX scenario, where a very light Higgs
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boson is not excluded by present data, was analysed in detail. We found that in this
parameter region, which will be difficult to cover with standard Higgs search channels
at the LHC, the branching ratio for the decay x5 — x%h; is large. This may offer good
prospects of detecting such a light Higgs boson in cascade decays of supersymmetric

particles.

The numerical impact of the genuine vertex corrections was also studied for the decay
0

ha = X; )2? in scenarios where the resulting signature of four leptons plus missing energy
may be phenomenologically important at the LHC. For these scenarios, it was shown
that the inclusion of the full MSSM corrections is crucial for obtaining the correct sign
and magnitude of the vertex corrections, since cancellations between the various UV-
finite subsets of diagrams can occur. Thus, our result is a significant improvement over
previous calculations in the literature for this process. For the 411 and SPS1a scenarios
we found modest corrections to the partial decay widths of order 5 — 10%, resulting
in an effect on the branching ratios of less than a percent. We also showed that in
these scenarios, the introduction of CP-violating phases can have a significant effect on
the decay widths and relative size of the vertex corrections. They can also have a large
impact on the decay widths for Higgs bosons into polarised neutralinos. The ratio, A, =
(Trr —Trr)/(Crr + Trg), where Tz, = T'(h, — X9EX5E) and Trp = (ke — X375 5)
(a = 2,3), was found to be a CP-odd quantity, which could help identify the existence
of C’P-violation in the MSSM. It was noted, however, that in the scenarios of interest,
the two heavy Higgs bosons, ho and hg, are nearly mass degenerate and can interfere,
so one needs to calculate the full production and decay process in order to assess the

viability of such an observable.

Interference effects for nearly mass degenerate Higgs bosons were then studied in some
detail, both analytically and numerically. Several methods were developed for calculating
the full production and decay process in the case where the splitting between the masses
of the intermediate Higgs bosons, |M,, — My,|, is of the order of their widths, T,
and I'p,. The full 3 x 3 propagator matrix calculation was employed to include the
full momentum dependence of the self-energies and all possible mixing and interference
terms between the three neutral Higgs bosons. An on-shell approximation, using Breit-
Wigner propagators for the Higgs bosons and the Z matrix formalism to describe the
mixing, was found to give results in good numerical agreement with the full propagator
matrix calculation. As an example, interference effects were studied in the process
bb — h; — 7777, both in the case of small M, where h and H (and A) can be mass

degenerate and in the case of large M, where hy and hs can be mass degenerate and
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interfere in the presence of CP-violating parameters. When there was significant overlap
between the propagators and the mixing self-energy contributions were large, it was
found that omitting the interference term could lead to an overestimation of the cross
section by up to 400%. Thus the usual narrow width approximation for factorising the

process into separate parts for production and decay is not applicable in such a case.

Given that the full squared matrix calculation is not practicable in all situations, we
developed a generalised narrow width approximation for the process ab — ch, — cde
(a = 1,2), to be applied in situations where the individual masses of the intermedi-
ate Higgs bosons satisfy M}, > I';,, and we are sufficiently far from thresholds, but the
masses are nearly degenerate, with | M, — M| ~ ', I'y,. In our approximation, we add
the usual cross section times branching ratio for each of the Higgs bosons to an interfer-
ence term. This interference term is expressed as a universal integral over the interfering
Breit-Wigner propagators with a process-dependent coefficient made up of on-shell ma-
trix elements. These on-shell matrix elements can be estimated at leading order from
the individual h; and hs cross sections and branching ratios multiplied by an appropriate
scaling factor. Combining this process-specific scaling factor with the universal integral
over interfering Breit-Wigner propagators, we obtained an interference weight factor,
R,. This can be conveniently combined with the state-of-the-art Higgs branching ratios
and hadronic cross sections to obtain an effective cross section times branching ratio
which includes interference effects; o4p—cn, BRp, —de(1 + R1) + Tap—cny BRuy—ae(1 + Ra).
We have tested this method for several processes and found that it gives results in nu-
merical agreement with the full squared matrix calculation. As an example, we used the
generalised narrow width approximation to investigate the effect of interference between
h and H on the interpretation of Higgs exclusion limits by Tevatron analyses in the
M scenario. Although we found that the interference did not affect the most recent
exclusion bounds in this scenario which reach to tan 3 ~ 35, we showed examples where
we interpreted previous exclusion limits at larger tan § without including the full set of
available higher-order corrections to the Higgs masses. For these particular masses and
widths, the interference effects resulted in a significant shift in our interpretation of the
exclusion limits. Such interference effects could also be important for Higgs discovery

at the LHC, in both CP-conserving and CP-violating scenarios.

Asymmetries between the production of left- and right-handed neutralinos were studied
analytically and numerically for the production and decay processes bb, gg, WW — h; —
Xoxs at the LHC. A non-zero asymmetry results from the existence of both CP-violation

and absorptive effects in the Higgs self-energies. Large asymmetries were found to be
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possible for the gg and W+W ™ fusion production processes, while for the bb fusion the
asymmetry was found to be suppressed due to a cancellation between the couplings of
down-type fermions in the initial state and in the dominant absorptive contributions to
the Higgs self-energies. The on-shell approximation using Breit-Wigner propagators and
the Z factor formalism was again found to be in good numerical agreement with the full
3 x 3 Higgs propagator matrix calculation. We also used the generalised narrow width
approximation to calculate the asymmetry, leading to results in numerical agreement
with the full squared matrix calculations. Using this method, the asymmetry, A =
(T pp—shs— QLR — Opphi—i0 507 ) [ (Opp 8 L9 L + Oppn, 59 B9 R), Was studied in the
Mp+—tan (8 plane for a modified SPS1a scenario with CP-violating phases. It was found
that the asymmetry for gluon fusion alone was resonantly enhanced to values of more
than 40% for large tan (3, but this effect was suppressed in the total asymmetry due to
the large bb cross section. The most promising parameter region for this scenario was for
Mpy= 2 500 GeV and tan 3 S 10, where gluon fusion dominates and a total asymmetry

of order 10 — 20% is possible.

The processes x) — X?ha and h, — )Z?)Z? are potentially interesting for the LHC as
Higgs discovery channels. We have shown in this thesis that higher order effects, such
as vertex corrections and interference between Higgs propagators, can be important in
both the CP-conserving and CP-violating MSSM. We have also explored the possibility
of utilising decays of Higgs bosons into neutralinos for discovering CP-violation in the
MSSM. The LHC has been built both as a Higgs discovery machine and as a discovery
machine for new physics beyond the Standard Model. The crucial links between these

two searches, such as those presented in this thesis, should be fully utilised in the years
ahead.



Appendix A

Loop integrals

A.1 Definitions for loop integrals

Using the conventions of Ref. [75], the generalised one-loop integral in D = 4 — e dimen-

sions can be written

T,L]L\f...pp (klu "'kah myo, ml"'mel)
)4—D

@L D q#l"'qP«P
i’ /d q[qz —m3|[(qg+ k1)2 —m3]...[(g+ ky_1)2 —m3_,]’ (A.1)

where 1 is a renormalisation scale on which the resulting loop integrals will depend.!
T, 7%, 73, ... are denoted as A, B, C..., and the scalar integrals with P = 0 are denoted
as Ao, BQ,

For example, the scalar two-point function, By, reads

s (4—D\ [* 4
Bulpromame) = ()T (152 ) [ ettt = ot - md o) 40

1 2.2 .2 9o 2 2
_ A—/ dzlog {x pi— 2y :;ﬁmO)*mo +O(D - 4), (A.2)
0

where the UV-divergence is contained in

2

!The dependence of the one-loop integrals on y in the constrained differential renormalisation scheme
is the same as for dimensional regularization, although it arises in a conceptually different way (see
Ref. [75]).
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FormCalc writes the tensor loop integrals in terms of tensor coefficients and Lorentz-

covariant tensors as follows;

B,u - kl,u,Bl
B;w = g,ul/BOO + kl,ukluBll
C“ = kluCl + k2HCQ

2
Cow = 9uwCoo+ Z ik Cij

1,j=1
2

2
Cup = Z(guukip + Gupkin + Gupkiv)Cooi + Z Kipk i ki,Ciji (A4)

i=1 irj,l=1
Of the A, B and C integrals, only Ag, By, B1, Booy, B11, Coo and Cy; are UV-divergent.
We use LoopTools to evaluate the tensor coefficients of the loop integrals numerically.
The UV-finiteness of a resulting expression can then be tested by varying A and seeing

whether the numerical result changes.

A.2 The absorptive parts of loop integrals

Consider the scalar two point function, By(p1,mg, m1), in equation (A.2). This function
often arises in particle self-energies. If p? — (m; + my)? is positive, then the term in the
square brackets is negative, resulting in a factor of iw from the logarithm. Thus the loop
integral will have an imaginary part. This is an absorptive effect arising from the fact
that the particles in the loop integral can be on-shell, since the squared four-momentum
of the incoming particle is greater than the squared sum of the masses of the particles

inside the loop.

Any loop-level quantity, L, can be separated into its dispersive (Pf{ve) and absorptive (ffI/l)

parts as follows;
L=ReL+ilmL (A.5)

where Re takes the real part of loop integrals occuring in L, but not of any parameters
occuring as coefficients to those loop integrals. Thus Re does not simply take the real
part of a quantity; it can still contain imaginary parts resulting from complex param-

eters and mixing matrix elements (CP-violating parameters in the theory) multiplied
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by dispersive loop integrals. Conversely, ilm L can contain real parts resulting from

imaginary parameters multiplied by absorptive loop integrals. We can write
L = Re(ReL) +im (Re L) + i(Re (Im L) + ilm (Im L)). (A.6)
Thus, separating L = Re L + ¢Im L into its real and imaginary parts gives
ReL =Re(ReL) —Im(ImL),  ImL=Im(ReL)+ Re(ImL). (A7)

In CP-conserving theories, Im (fn L) and Im (ﬁé L) vanish since there are no imaginary
mixing matrix elements occuring as coefficients to multiply the loop integrals. Hence
Re = Re and Im = Im. However, in CP-violating theories, the definitions with and

without the tilde remain distinct.

A.3 Self-energy relations for fermions

Fermion self-energies can be decomposed into Lorentz invariants as
S (0%) = pwiSl (%) + YwrSi(p®) + wi S (0) + wi S (p?). (A.8)

The Lorentz invariant pieces of the self-energies then satisfy certain relations if the
Lagrangian is invariant under various combinations of charge conjugation (C), parity

reversal (P) and time reversal (7') (see Ref. [94] for derivation).

If the theory is CPT -invariant, then

Rex/"(p*) = (ReZl/"(p?))
ReEij(p2) = (Rezfﬁ(ﬁ))*. (A.9)

Hence, we always have the following relations if the CP7 theorem holds,

m(Re 23 (p?)) = 0

mm(Re 2% (p%) = —Im(ReXif(p?))

Re(Re X" (p?)) = Re(ReX5"(p?)
(*)

= SRe(S3H0) - B0, (A.10)
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If the theory is CP-invariant, then

st = 200

i 71

SL(, 2y _ sSR(, 2
Zij (p°) = Zji (p7). (A.11)
In most of this thesis we consider the CP-violating MSSM, so we do not use these
CP-invariance relations unless otherwise stated.
If the theory is C-invariant then
ZH%) = R0
SL;, 2y _ sSL{, 2
Zz’j (p°) = 57 (p7)
SR(, 2\ _ SR 2
Zij (p°) = X5°(p7). (A.12)
The charge conjugation invariance relations are obeyed by Majorana fermions, such as
neutralinos.

We use the above relations in Chapter 4 to simplify the renormalisation constants of

charginos and neutralinos.



Appendix B

Renormalised vertices

In this appendix we write down the counterterms for all the three-point vertices that
involve a single Higgs or gauge boson and two charginos or neutralinos, using the defi-
nitions for the field and parameter renormalisation constants given in Chapters 3 and 4.
These are implemented into our counterterm model file to supplement the MSSM model

file in FeynHiggs. They have all been tested for UV-finiteness.

B.1 SFF vertices

The three-point vertex for a scalar and two fermions, along with its counterterm, has

the following Lorentz structure;

T — %((CL +6C )wy, + (CF 4+ 6CTYwp), (B.1)

where the coupling constants C and C* depend on the vertex in question. Incoming

fermions (F;) and outgoing fermions (F}) are renormalised as

1
wL/RF2 — wL/R(l + §5ZL/R)F2 (BQ)

_ _ 1 -
Fle/R—>F1wL/R(1+§5ZR/L). (BS)
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The chargino-chargino-neutral Higgs vertex:

For h{ = {h, H, A, G};

e

C (X51’ XCQ’ hk) = (C (Xch XcQ’ hk)) o \/_Tmcia)zz%hg
R/L(c— _ o+ 1,0y _ € (%) (%) _
PCT Ker, ~Xaz: ) \f 251y [50221%2*12 R Py g (02
R/L (*) L/R
(52 261 ”i— o+ hO + C~c—1 ~jh052_ cot
1
—|—§< X }Zhézh ht C~c,1 ~c+2H52hH + C
o xhne = (arsaUcy2Ver1 + brcalUcy1 Vey2)
ar = {Sa, —Ca,i83, —ics}
by = {—ca,—Sa,icB, —isg}
woxnne = 0

The neutralino-chargino-charged Higgs vertex:

(5SW

)

Sw

)

i

0Zpa + c~, o G5th)}

Xep Xeg

L/R(=~0 _ € L/R
C (an’XcZ’H ) - SWCXQI)ZSLQH7
L/R _ C 5 L/R _ Osw
SCH (X0, X, HT) = S [56221%21‘1‘ + C~01>~<;F2H (0Ze S )
1, /R L/R L/R SR/L
_'_5(52071/”1 )_64)22, H- + C,,él ~TH752_{CQZ>
1, /R
+§<C>Z9/L1Xc2 0L + C~0:1 ~;ZG_5ZH+G+>:|
L(R) (~— <0 _ ¢ LR
C ( )<Xc27Xn17H+) - g )ZC—QX%IH-F
L(R W € s LR L(R) _ Osw
OO (oo X, ) = Sw [5C>zzg>zalH+ + g, (02 - )
1, 5r/L L(R) L(R) L/R
1, /R /
*5(%;2221 O+ e o0 irer)]
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and similarly for G* where

chy i = () = —ea(Vinlsw N few + Nio) V2 + Vi Not)
RH = (kg e)" = =55(~Usa(sw Nyt /ew + Nup2)/V2) + Uyt Nuyo)
o = (0 q)" = =sa(Vaalsw i few + Ni) V24 VNG W)
0%1232(;7 = <C>%<;2>zglc+)* = 5(—Uep2(sw N1 few + Niy2) /V2) + Uey1 Niyz)

5C>2n1chH— = —caswVioNi 1 (Osw/sw — dew [ew)/(V2ew)

5c>~<n1X62H_ = 555w UeyaNoy1 (0w /sw — dew Jew) ] (V2ew)

5C>"<n1chG* = —sgsw VN, 1 (dsw/sw — Sew Jew)](V2ew)

5C>”<nlchG* = —cgSwUep2Npyj1(0sw/sw — 5CW/Cw)/<\/§Cw).

The neutralino-neutralino-Higgs vertex:

For h{ = {h, H, A, G};

e

CR(X%%)%%M hg) = = (CL(SngJZSm ho)) 5. o Cx9. X9 K9
2cw Sw 27n
oc 0s

50L/R ~0 0 hO — € Se () (~ } 5Z _ W w
(Xn2s Xn1> Pip) QCWSW[ X9, X0, hY +c %9, 911’10( cw Sy )

L/R (x R/L

(520 z/n1 () X9hY + XX %lho(sZOz/ng)

1 *)
+2( ;M -0 h5Zhh+C( o H5ZhH+C( @ A5ZhA+C( . 5ZhG)}

CRO, X0, ) = [(arNiz + bpNia) (swNj1 — ewNj2) + (axNjz + b Nja) (sw Nix — cw Nia)|
ar = {—SasCa,isg,,—icg, }
bk = {_CCH —Sa, _icﬁn7 —ZSgn}

50Xn2Xn1hO = [(a,kNig + kam)((SSWle — 5CWNj2) + ((lkNjg + kaj4)(5SWNi1 — 5CWN22)]



Renormalised vertices 192

B.2 VFF vertices

The three-point vertex for a vector boson and two fermions, along with its counterterm,

has the following Lorentz structure;
TG = i((C* 4 5CT)ywp, 4 (CF + §CF)yrwp). (B4)

where the coupling constants C* and CF depend on the vertex in question. Using the

relation wr,/gpy" = YHwr/r, we find

1
YwrrFs — Ywrr(1 + §5ZL/R)F2 (B.5)

_ _ 1 -
Flfyqu/R — Flfyqu/R<1 + §5ZL/R) <B6)

The chargino-chargino-gauge boson vertex:

CL/R(XC27 Xch 7) = 650102
1

1 1
2 %iR_ 5274+ = (5ZL/R5162+5W52L/R )]

2 SwCw XegXey Z 1 e

L/R ~— _ € L/R
C (Xc27 Xc17 Z) — o Sw C)Z;FQXEIZ
__ e L/R L/R dew sy 1
SOL/R(v+ ¥= 7) = SR L MR 5y W DOW —5Z
(Xegs Xeys Z) chW{ izt ngxq L i 7)
L /R L/R L/R L/R L/R
_§ij2)2c_1 5ZAZ + (5Z Jicy >2+ +Z + ij ‘_:FIZ(;Z_ CQZ)}
L o R o
“Shxar T Shtanr T CW5W50102
C?@xaz = $iy0erer — UsiiUent — Ul pUc2/2
R * *
C)ZCQXC_IZ = 812/1/50102 - V ‘/cll - (V ‘/012)/2
L _
o XHXar 5CX2FQ>~(§1“/ <5CWSW + 5SWCW)50102
5C &xe = 5C~+ Y o - 258WSW50102

XégXey 2 XcgXey Z
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The chargino-neutralino-W vertex:

CL/R(Xng? Xcl’ W= )

€ L/R
Sw X%QerlW_

€ L/R L/R 5
(52525 i{’i ot c)%(({fﬁw,azﬁf)}
L/R o _ e LR
C (XclenQvW ) - SWCX;XnQWJr
e /R L/R dsw 1
5CL/R(X017 Xn27 WJr) = 5 d }2;1222 + C~£1 ~%2w+ (5Z ; + édeW)
1 _r/Ly . LR L/R SR/L
+§(5Z— , 101 Cf(,_ X9, Wt + C)Zc_li?w+5 O,ngi)}
0)2912 ”;FIW* = c*lanQQ - c*12Nn24/\/§7 6522 ~ZEW* = N;22U011 + n23U012/\/_
Caspaws = NasaVerr = NopaVe/V2, e g e = Uit Nogz + Uy Nos / V2
L/R L/R
0 XX, W =0=oc e xo, W
The neutralino-neutralino-Z vertex:
L/R _ ie /R
C (an? Xn27 Z) QCWsW 2212222
e L/R L/R dew sy | 1
SO/ Z) = —[6c) 6z, — — — L 4+ 257
<anjxn2’ ) QCWsW[ CXn1X”22 T Xn1 n22< Cw Sw 2 ZZ)
1 /R L/R L/R —L/R
+§<5ZO,{11iC>2§>29QZ + C~/ ~025 01/712”
where
05212222 =Ny Nows + NiyuNosas C;IjnlanZ Ny 3Nngs = Ny 4 Nnga
5CL/R = 0.

X X002



Appendix C

The narrow width approximation

e = + ...
b / h d f

Figure C.1: Process ab — cef where the main contribution is the resonant diagram mediated by
intermediate particle, d, where d can go on-shell. The ellipses represent other non-
resonant diagrams which we will ignore here.

The narrow width approximation is often used to calculate a process which contains an
internal propagator with a pole at ¢> = M? —iMT by splitting the production and decay
into two separate processes. To see how this is done, we consider the process, ab — cef,
shown in Figure C.1, where the main contribution to the amplitude is the resonant

diagram mediated by the intermediate scalar particle d, with a Breit-Wigner propagator,

1
@—M2+iMT "

valid are as follows.

The conditions that are required for the narrow width approximation to be

e The resonant propagator should be separable from the matrix element.

e The scattering energy, /s, should be sufficiently larger than the masses, m.+ M,

involved in the production process.

e The mass of the resonant particle, M, should be well above the sum of the masses

of its decay products, m. + my.
e The width should be small, i.e “narrow-width”, compared to the mass, I' < M.

e There should be no interference of the resonant diagram with other diagrams that

have the same initial and final state.
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For simplicity here, we further assume that other (resonant or non-resonant) diagrams
do not give a large contribution to the process and can be ignored completely. Then the

matrix element for the process can be written as

Mab—>cef = M‘lb_’quz_ Md—>ef (Cl)

so that the spin-averaged squared matrix element is given by

1
Mapoce]” = [Mapeal? Maer|?. C.2
| Map—ces] | Mab—cdl (qg_M2)2+M2F2| d—ef] (C.2)
The cross section for the process is defined as
rmces = s [ ApS(557s o) Mt (€3)
2\E(s, m2, 2

where s = (pa+ps)?, 2)\%(5, mi, mg) = 4\/(pa.pb)2 — mgmg is the flux and dlips(s; pe, pe, pr)

is the Lorentz invariant phase space element,

dgpc d3pe dgpf
2m)32E, (2m)32E, (2m)32E;

dlips(s; pe, pe, py) = (2m)"6% (s — pe — pe — P)] (C.4)
Like the squared matrix element, the phase space element can be factorised into separate
elements for production and decay, by inserting the phase space of the intermediate
decaying particle, d, with momentum ¢, and using the property that

d3q dq2

1= [daa-p-p0) = [nP 5t U (©5)

to give

) dq dq¢?
dlps(si e peop) = (27 2= = e = pp) 265 —pe = . =)

dspc d3pe dspf
(2n)32E, (21 )32E, (21)°2E;

1. .
= 5~ dlips(s; pe, q) dg” dlips(g; pe, py) (C.6)

where in the last line we are able to separate the terms belonging to the phase space for

the production and decay as dlips(s; p., ¢) and dlips(g; pe, py) respectively. This means
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that our cross section can be written as

1 1
Oab—cef — — d 2[ 1 /dh S\S; Des Ma—»c 2:|
bcef 7T/ T oA s ?) PS(8; Pes @) Mab—cal )

e

1
dli : De erl?
(2 — M?)% + M?T? {2 qg/ ips(q; Pe; Pf) [ Ma—er| ]

1 Ve

= = | di?ou (@ Tyor(q
ﬂ-/ q Oab d(q)(q2—M2)2+M2F2 d f(Q)

1 q?nax \/?
— Adq*0ap—ea(q’ Taser(q? C.7
Al @) ()

9min

Q

where o4;_cq(q?) is the off-shell cross section for the process which produces the resonant
particle, d, with momentum ¢* and I'y_.;(¢?) is the off-shell decay width for the resonant
particle, d, decaying at momentum ¢2. The last line is an approximation for the full
integral, where ¢ and g, are defined to be M plus or minus a few times the decay

width respectively. The limit,

: 1 _ 2 _ 2
A}%‘EO (2 — M?)? + M2I2 o(M* —q)

T
MT’

(C.8)

allows us to evaluate the integral in the limit of “narrow-width”. The delta function
means we can compute the cross-section and decay width as on-shell quantities, at

¢*> = M?, leaving us with

Lyer(M?)

olab — cef) = Oapca(M?) T ;

(C.9)

i.e. in the narrow width approximation, the cross-section for the full production and
decay process can be simply computed by multiplying the cross section for the production
part of the process with the branching ratio for the decay part of the process. The
Breit-Wigner dependence of the propagator has been integrated out and replaced with
the constant 7/MT" and only the on-shell production and decay contribute.
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