
Durham E-Theses

A method for re-modularising legacy code

Burd, Elizab eth L.

How t o cite:

Burd, Elizab eth L. (1999) A method for re-modularising legacy code , Durham the ses, Durham University.
Available at Durham E-Theses On line : http://etheses.dur.ac.uk/447 8/

Use p olicy

The full-text may b e used and/or repro duced, and given to third parties in any format or medium, without prior p ermission or
charge, for p ersonal research or study, ed ucational, or not-for -pro�t purp os es provided that:

� a full bibliographic reference is made to the original source

� a link is made to the metadat a record in Durham E-Theses

� the full-text is not changed in any way

The full-text must not b e sold in any for mat or medium without the formal p ermission of the copyright holders.

Please consult the full Durham E-Theses p olicy for further details.

Academic Supp ort O�ce, Dur ham University, Univer sity O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http ://eth es es.d ur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4478/
 http://etheses.dur.ac.uk/4478/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


A Method for Re-modularising Legacy Code 

Elizabeth L. Burd 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published 
widiout the writteu consent of die 
author and information derived 
from it should be acknowledged. 

The Research Institute in Software Evolution 

Department of Computer Science 

University of Durham 

Ph.D. Thesis 

ON r. 

June 1999 

1 8 OCT 2000 



Abstract 

This thesis proposes a method for the re-modularisation of legacy COBOL. Legacy code often 

performs a number of functions that if split, would improve software maintainability. For instance, 

program comprehension would benefit from a reduction in the size of the code modules. The method 

aims to identify potential reuse candidates from the functions re-modularised, and to ensure clear 

interfaces are present between the new modules. Furthermore, functionality is often replicated across 

applications and so the re-modularisation process can also seek to reduce commonality and hence the 

overall amount of a company's code requiring maintenance. 

A 10 step method is devised which assembles a number of new and existing techniques into an 

approach suitable for use by staff not having significant reengineering experience. Three main 

approaches are used throughout the method; that is the analysis of the PERFORM structure, the 

analysis of the data, and the use of graphical representations. Both top-down and bottom-up strategies 

to program comprehension are incorporated within the method as are automatable, and user controlled 

processes to reuse candidate selection. 

Three industrial case studies are used to demonstrate and evaluate the method. The case studies range 

in size to gain an indication of the scalability of the method. The case studies are used to evaluate the 

method on a step by step basis; both strong points and deficiencies are identified, as well as potential 

solutions to the deficiencies. 

A review is also presented to assesses the three main approaches of the methods; the analysis of the 

PERFORM and data structures, and the use of graphical representations. The review uses the process 

of software evolution for its evaluation using successive versions of COBOL software. The method is 

retrospectively applied to the earliest version and the known changes identified from the following 

versions are used to evaluate the re-modularisations. Within the evaluation chapters a new link within 

the dominance tree is proposed as is an approach for dealing with multiple dominance trees. The 

results show that «ach approach provides an im portant contribution to the method as well as gLving„a 

useful insight (in the form of graphical representations) of the process of software evolution. 



Acknowledgements 

This work has been carried out at the University of Durham, Department of Computer Science, 

Research Institute in Software Evolution (RISE). The work described was conducted within the BT 

funded TDENT and Futures projects and the EPSRC funded Release project. 

My thanks go to Dr Vernon Armitage and Professor Michael Prestwich for their help with my 

registration. To my fellow colleagues of RISE for their helpful comments and encouragement and to 

my forever patient supervisor Professor Malcolm Munro. Last but not least to Sarah, Claire and Debs 

for without their support I would not have got this far. 

i i i 



Copyright 

The copyright of this thesis rests with the author. No quotation from it should be published without 

prior written consent and information derived from it should be acknowledged. 

iv 



Declaration 

The material presented on this thesis is the product of my own independent research carried out at the 

University of Durham under the supervision of Professor Malcolm Munro. It was undertaken within 

the BT funded IDENT and Futures project and the EPSRC funded Release Project. The work described 

in this thesis has also been reported, in part, in the following: 

• Aylett M. , Burd E.L., Munro M . , Identification and Encapsulation of Reusable Functions', 

Durham Technical Report, 1/96,1996. 

• Burd E.L., Munro M . , Wezeman C , 'Analysing Large COBOL Programs: the extraction of 

reusable modules', published in Proceedings of the International Conference on Software 

Maintenance, California, IEEE Press, 1996. 

• Burd E.L., Munro M . , Identification of Reusable Modules', published in the proceedings of 

the 2nd UK Program Comprehension Workshop, Durham, 1996 

• Burd E.L., Munro M . , Wezeman C , Extracting Reusable Modules from Legacy Code: 

Considering issues of module granularity', published in Proceedings of the 3rd Working 

Conference on Reverse Engineering, California, IEEE Press, 1996. 

• Burd E.L., Munro M. , Enriching Program Comprehension for Software Reuse', published in 

the Proceedings of the International Workshop on Program Comprehension: IWPC97, IEEE 

Press 1997. 

• Burd E.L., Munro M . , Investigating the Maintenance Implications of the Replication of 

Code', to be published in the Proceeedings of the International Conference on Software 

Maintenance; ICSM'97, IEEE Press 1997. 

• Burd E.L., Munro M. , The Implication of Non-functional Requirements for the Reengineering 

of Legacy Code', published in Proceedings of the 4th Working Conference on Reverse 

Engineering, Amsterdam, IEEE Press, 1997. 

V 



Burd E.L., Munro M . , Examining Software Evolution to Support Reengineering of Legacy 

Code', published in the Proceedings of the International Workshop on the Principle of 

Software Evolution, 1998 

Burd E.L., Munro M . , 'A Method for the Identification of Reusable Units Through the 

Reengineering of Legacy Code', published in the Journal of Software and Systems, December, 

1998 

Burd E.L., Munro M. , Tleengineering Support for Software Evolution: an evaluation through 

case study', published in the Proceedings of the Computer Software and Application 

Conference, COMPSAC98, EEEE Press, 1998 

Burd E.L., Munro M . , Investigating Component Based Maintenance and the Effect of 

Software Evolution: a reengineering approach using data clustering', published in the 

International Conference on Software Maintenance: ICSM'98, IEEE Press, 1998 

Burd E.L., Munro M . , 'Assisting Human Understanding to Aid the Targeting of Necessary 

Reengineering Work', published in the proceedings of the International Workshop on Reverse 

Engineering, IEEE Press, 1998 

Burd E.L., "Reuse Reengineering', published in the proceedings of the Ingenierfa de Software 

y Reutilizacidn: Aspectos Dindmicos y Generacion Automdtica, ISBN 84-8408-0237-7 

Burd E.L., Munro M. , 'Transforming Legacy Code', published in the proceedings of the 

International Workshop on Transformation Systems: STS'99, ICSE'99 Workshop, 1999 

Burd E.L., Munro M. , 'Characterising the Process of Software Change' published in the 

proceedings of the Workshop on Principles of Software Change and Evolution: SCE'99, 

ICSE'99 Workshop, 1999 

Burd E.L., Munro M. , 'Evolution as an Instrument of Software Change', Durham Technical 

Report, tr_02-99, 1999 

Burd E.L., Munro M. , 'Using Evolution to Evaluate Reverse Engineering Technologies', 

published in the proceedings of Empirical Studies on Software Development and Evolution: 

ESSDE'99, ICSE'99 Workshop, 1999 

Burd E.L., Munro M. , 'Visualising Software Evolution to Support Reengineering of Legacy 

Code', to be published in Software Engineering Notes, ACM Press, 1999 

Burd E.L., Munro M. , 'Object Identification', Durham Technical Report, tr_04-99, 1999 

Burd E.L., Munro M. , 'Evaluating the Use of Dominance Trees for C and COBOL', to be 

published in the Proceedings of the International Conference on Software Maintenance; 

ICSW99, IEEE Press, 1999 

Burd E.L., Munro M. , 'Evaluating the Evolution of a C Application', to be published within 

the Proceedings of the International Workshop on the Process of Software Evolution, 1999 

vi 



Contents 

Chapter 1. Introduction 1 

1.1. The Software Maintenance Problem 2 

1.2. Research Problems 3 

1.3. Criteria for Success 5 

1.4. Thesis Outline 6 

Chapter 2. The Related Literature 9 

2.1. Program Comprehension 9 

2.1.1 Why Program Comprehension is Necessary 9 

2.1.2 Types of Program Comprehension Support 10 

2.1.3 The State of the Art for Program Comprehension 12 

2.2. Visualisation 14 

2.2.1 Why Visualisation is Necessary 14 

2.2.2 Types of Visualisation Support 15 

2.2.3 The State of the Art for Software Visualisation 16 

2.3. Reverse Engineering 17 

2.3.1. The Benefits of Performing Reverse Engineering 18 

2.3.2 Reverse Engineering Methods 21 

2.4. Software Reuse 24 

2.4.1 The Promises of Reuse 25 

2.4.2 The Problems Associated with Reuse 26 

2.4.3 Implementing Reuse 28 

2.5. Summary 29 

vi i 



Chapter 3. Object Recovery 30 

3.1 Global Based Approaches 31 

3.1.1 The Lui and Wilde Method 1 - Global Based Object Finder 31 

3.1.2. The Achee and Carver Approach 32 

3.1.3 Overview of Global Based Approaches 33 

3.2 Type Based Approaches 33 

3.2.1 The Lui and Wilde Method 2 - Types based object Finder 33 

3.2.2 Direct Slicing 35 

3.2.3 Formal Methods 35 

3.2.4 Overview of Type Based Approaches 36 

3.3 Receiver Based Approaches 37 

3.3.1 OBAD's Recovery of Abstract Data Types 37 

3.3.2 Specification Driven Criteria 38 

3.3.3 Overview of Receiver Based Approaches 39 

3.4 Data Persistence Approaches 39 

3.4.1 The Gall and Klosch Approach 39 

3.4.2 Overview of Data Persistence Approaches 40 

3.5 Existing Structure Approaches 40 

3.5.1 CARE 41 

3.5.2 ObjectOry 42 

3.5.3 The R 3 A Approach 43 

3.5.4 Overview of Existing Structure Approaches 44 

3.6 General Approaches 44 

3.6.1 Sneed's Extraction of Object-oriented Specifications 44 

3.6.2 RE^ Reuse Reengineering Process 46 

3.6.3 SRE Approach to identify and Extract Components 48 

3.6.4 Overview of General Approaches 50 

3.7 Summary 50 

Chapter 4. The Method 51 

4.1. Step 1. Generate a PERFORM Graph from the Source Code 52 

4.1.1 Step Objective 52 

4.1.2. Approach 52 

4.2. Step 2. Generate a Dominance Tree from the PERFORM Graph 54 

4.2.1 Step Objective 54 

4.2.2. Approach 54 

vi i i 



4.3. Step 3. Identify Candidate Reuse Units from the Dominance Tree 57 

4.3.1 Step Objective 57 

4.3.2. Approach 58 

4.4. Step 4. Identify Data Dependencies within the Source Code 59 

4.4.1 Step Objective 59 

4.4.2. Approach 60 

4.5. Step 5. Identify Data Inter-relationships Between Subtrees 64 

4.5.1 Step Objective 64 

4.5.2. Approach 64 

4.6. Step 6. Identify Potential Reuse Candidates from Users / Designers of the Code 68 

4.6.1 Step Objective 68 

4.6.2. Approach 68 

4.7. Step 7. Identify Potential Simplification Procedures to Assist Encapsulation 70 

4.7.1 Step Objective 70 

4.7.2. Approach 71 

4.8. Step 8. Isolate Subtree(s) to Form Reuse Candidates using Graph Slicing 74 

4.8.1 Step Objective 74 

4.8.2. Approach 75 

4.9. Step 9. Identify Data Items in Reuse Candidates that would Reduce Data .. 77 

4.9.1 Step Objective 77 

4.9.2. Approach 77 

4.10. Step 10. Identify SECTIONS where Slicing could Assist Separation 79 

4.10.1 Step Objective 79 

4.10.2. Approach 79 

4.11. Summary 84 

Chapter 5. Tool Support 85 

5.1. General Support Tools 85 

5.2. Tool Support for Method Steps 86 

5.2.1. Tool Support for Step 1 86 

5.2.2. Tool Support for Step 2 87 

5.2.3. Tool Support for Step 3 87 

5.2.4. Tool Support for Step 4 88 

5.2.5. Tool Support for Step5 88 

5.2.6. Tool Support for Step 6 89 

5.2.7. Tool Support for Step 7 89 

5.2.8. Tool Support for Step 8 90 

5.2.9. Tool Support for Step 9 90 

5.2.10. Tool Support for Step 10 91 

ix 



5.3. Summary 91 

Chapter 6. The Case Studies 92 

6.1. Step 1. Generate a PERFORM Graph from the Source Code 93 

6.2. Step 2. Generate a Dominance Tree from the PERFORM Graph 95 

6.3. Step 3. Identify Candidate Reuse Units from the Dominance Tree 102 

6.4. Step 4. Identify Data Dependencies within the Source Code 105 

6.5. Step 5. Identify Data Inter-relationships Between Subtrees 109 

6.6. Step 6. Identify Potential Reuse Candidates from Users / Designers of the Code 115 

6.7. Step 7. Identify Potential Simplification Procedures to Assist Encapsulation 117 

6.8. Step 8. Isolate Subtree(s) to Form Reuse Candidates using Graph Slicing 121 

6.9. Step 9. Identify Data Items in Reuse Candidates that would Reduce Data ... 121 

6.10. Step 10. Identify SECTIONS where Slicing could Assist Separation 124 

6.11. Summary 129 

Chapter 7. Evaluation of the Steps 138 

7.1. Step 1. Generate a PERFORM Graph from the Source Code 138 

7.2. Step 2. Generate a Dominance Tree from the PERFORM Graph 140 

7.3. Step 3. Identify Candidate Reuse Units from the Dominance Tree 145 

7.4. Step 4. Identify Data Dependencies within the Source Code 146 

7.5. Step 5. Identify Data Inter-relationships Between Subtrees 148 

7.6. Step 6. Identify Potential Reuse Candidates from Users / Designers of the Code 149 

7.7. Step 7. Identify Potential Simplification Procedures to Assist Encapsulation 150 

7.3. Step 8. Isolate Subtree(s) to Form Reuse Candidates using Graph Slicing 152 

7.9. Step 9. Identify Data Items in Reuse Candidates that would Reduce Data ... 152 

7.10. Step 10. Identify SECTIONS where Slicing could Assist Separation 153 

7.11. Summary 153 

Chapter 8. Evaluation of Approaches 155 

8.1. The Use of the Dominance Relation 156 

8.1.1. The Evaluation Approach 157 

8.1.2. The Results 159 

8.2. The Use of Clustering Approaches 165 

8.2.1. The Evaluation Approach 166 

8.2.2. The Results of the Analysis of Data Changes 167 

8.2.3. Summary 173 

X 



8.3. The Use of Graphical Representations 173 

8.3.1. The Evaluation Approach 174 

8.3.2. Results of the Analysis of Graphical Representations 174 

8.4. Analysis of Results 176 

Chapter 9. Conclusions & Further Work 179 

9.1. Objective of this Work 179 

9.2. Review of Criteria for Success 179 

9.3. Recommendations on Using the Method 182 

9.3.1. Business Decisions 182 

9.3.2. Features of the PERFORM Graph 183 

9.3.3. Features of the Dominance Tree 183 

9.4. The Thesis Contribution 184 

9.5 Directions for Further Research 184 

References 185 

xi 



Figures 

Chapter 1. The Introduction 

Figure 1.1: The reuse reengineering process 

Chapter 2. The Related Literature 

Figure 2.1: Building a mental model for program comprehension 

Figure 2.2: Relationships between concepts, algorithms and programs 

Figure 2.3: Types of visualisation support 

Figure 2.4: The dependencies between the RECAST stages 

Chapter 3. Object Recovery 

Figure 3.1: The sequential phases of RE^ 

Chapter 4. The Method 

Figure 4.1: Generating a PERFORM graph from the source code 

Figure 4.2: A PERFORM graph 

Figure 4.3: A dominance tree 

Figure 4.4: Candidate reuse units (subtrees) 

Figure 4.5: The hierarchical consists relation 

Figure 4.6: An example of the consists relationship from COBOL data typing 

Figure 4.7: An example of overlapping values within the consists graph 

Figure 4.8: Values used outside of the reuse candidate 

xi i 



Figure 4.9: An example of the redefines relationship 64 

Figure 4.10: The interface between C I and C2 66 

Figure 4.11: Expert reuse candidate mappings 70 

Figure 4.12: Example of a temporary removal of NFRs 72 

Figure 4.13: Showing only strongly dominant graphs selected 76 

Figure 4.14: Input and output of each data item to the reuse candidates 79 

Figure 4.15: Partitioning SECTIONS 80 

Figure 4.16: COBOL statements and their graphical representations 81 

Figure 4.17: The data dependency graph 81 

Figure 4.18: The process of splitting a SECTION 83 

Chapter 6. The Case Studies 92 

Figure 6.1: The PERFORM graph for case study A 93 

Figure 6.2: The PERFORM graph for case study B 94 

Figure 6.3: The PERFORM graph for case study C 95 

Figure 6.4: The PERFORM graph for case study A (nodes in cycle are shaded) 96 

Figure 6.5: The PERFORM graph for case study A with grouped node 96 

Figure 6.6: The PERFORM graph for case study C (nodes in cycle are shaded) 97 

Figure 6.7: New PERFORM graph for case study C with grouped node 98 

Figure 6.8: The dominance tree for case study A 99 

Figure 6.9: The dominance tree for case study B 100 

Figure 6.10: The dominance tree for case study C 101 

Figure 6.11: Reuse candidates from case study A 102 

Figure 6.12: Reuse candidates from case study B 103 

Figure 6.12: Reuse candidates from case study C 104 

Figure 6.14: Subsets of potential reuse candidates 105 

Figure 6.15: The selected subgraph from case study B dominance tree 106 

Figure 6.16: H900 reuse candidate from case study B 106 

Figure 6.17: The consists data grouping hierarchy 108 

Figure 6.18: EO00 subtree of case study B including data items 110 

Figure 6.19: P000 subtree of case study B including data items 111 

Figure 6.20: Identifying data inter-relationships between reuse candidates 111 

Figure 6.21: The interface between the P000 and E000 reuse candidates 113 

Figure 6.22: Hierarchy of components identified 116 

Figure 6.23a: Initial call graph 119 

Figure 6.23b: Call graph upon removal of error routines 119 

Figure 6.24; Reuse candidates identified in case study B 122 

Figure 6.25: Reuse candidates identified in case study C 123 

Figure 6.26: Example reuse candidate sliced from the code of case study B 124 

xi i i 



Figure 6.27: Interface of POOO and E000 with {R, R} relationships removed 126 

Figure 6.28: Interface with (R, R] and (U, U} relationships removed 127 

Figure 6.29: Showing input and output of the candidate's data items 128 

Figure 6.30: The nodes within a cycle of case study C 130 

Figure 6.31: V100 a fully connected data dependency graph 131 

Figure 6.32: T l 10 a data dependency graph with three main subgraphs 132 

Figure 6.33: Resulting interface of EOOO and POOO 136 

Chapter 7. Evaluation of the Steps 138 

Figure 7.1: Multiple dominance trees sharing common SECTIONS 142 

Figure 7.2: Reuse candidate PERFORMS of direct dominance nodes ... 143 

Chapter 8. Evaluation of Approaches 155 

Figure 8.1 a: A PERFORM graph 157 

Figure 8.1b: The dominance tree 157 

Figure 8.2: Modifications to PERFORM graph and the resulting dominance tree 158 

Figure 8.3: Modifications to PERFORM graph and the resulting dominance tree 159 

Figure 8.4: A single reuse candidate showing other possible levels of granularity 160 

Figure 8.5: The result of the evolution process on the reuse candidate from Fig 8.4 161 

Figure 8.6: An entire dominance tree of code sample 17 162 

Figure 8.7: The new reuse candidates from Figure 8.6's dominance tree 163 

Figure 8.8: Potential portions of dominance tree where splitting is possible 165 

Figure 8.9: Overlap of data usage between candidate reuse units 168 

Figure 8.10: An attempt to reform the object clusters 169 

Figure 8.11: Non-assisted clustering approach 170 

Figure 8.12: Changes in the SECTIONS' use of data items through time 172 

Figure 8.13: Changes in data usage over time 173 

Figure 8.14a: Examples of low yield PERFORM graphs 175 

Figure 8.14b: Examples of medium yield PERFORM graphs 175 

Figure 8.13c: Examples of high yield PERFORM graphs 176 

xiv 



Tables 

Chapter 4. The Method 51 

Table 4.1 Data items used within the candidate reuse units 66 

Table 4.2: Usage translation to parameterisation of the interface 68 

Table 4.3: An example interface 78 

Chapter 6. The Case Studies 92 

Table 6.1: H900 reuse candidate unit 107 

Table 6.2: Data usage for D000 candidate reuse unit 112 

Table 6.3: Data item usages within the P000 and E000 reuse candidate units 114 

Table 6.4: Usage translation to parameterisation of the interface 115 

Table 6.5: Data usage per data item 125 

Table 6.6: The results of the ranking procedure 133 

Table 6.7: The number of usages of the data item which require moving 134 

Table 6.8: Data items considered for re-location and their usage 135 

Chapter 8. Evaluation of Approaches 155 

Table 8.1: Types of evolutionary change 164 

XV 



Chapter 1. Introduction 

Blum [Blum96] states in his book regarding the future issues of software development that, in the 

future, reuse will have a different character. He states that: 

There already is enormous investment in software, and there is little likelihood that 

the software can ever be replaced. It would be too costly to reprogram, and few 

understand exactly what the current systems do. Thus, despite their imperfections, we 

must learn to reuse key portions of the available (legacy) systems. 

Thus, Blum's predictions define the objective of this work: to define an approach for the identification, 

extraction and encapsulation of potential reuse candidates from legacy systems. 

The availability of such candidates reduces the overall costs for initiating a reuse program by acquiring 

candidates that are already developed. Furthermore, this process also assists maintenance in allowing 

selective improvements to be made to the interface of frequently used functionality. Thus, the approach 

adopted is one of reuse reengineering. 

The basic reuse reengineering process is as follows: 

1. Large Ynulti-functionar legacy systems are identified for their provision of functions used 

frequently within a company's applications. 

2. These legacy systems are broken down into smaller units with a single functionality. 

3. Well defined and, preferably, simplified interfaces are formed from the original complex 

interactions. 

4. The new units are used to replace the legacy systems, thus assisting future maintenance. 

5. The new units are also available to use within developing systems. Thus they are 

available for reuse. 

This process is represented graphically in figure 1.1. 

\ 



Legacy Systems New Single Function Units 

Application I More maintainable applications Reuse 

Application! New Application Application! 

v Reuse nepiiginftenne 

Application! 

n n 5 
v V 

Figure 1.1 The reuse reengineering process 

In Figure 1.1 Application 1 is split into two reuse candidates. One of the reuse candidates has the same 

functionality as a reuse candidate identified within Application2. This reuse candidate is then reused 

within new versions of Application 1 and Application2 and a new application. 

1.1. The Software Maintenance Problem 

Software maintenance has been defined within the ANSI standard [ANSI83] as: 

"the modification of software products after delivery to correct faults, to improve 

performance or other attributes, or to adapt the product to a changed 

environment." 

Maintenance is a costly activity. Parikh and Zvegintzov [Parikh83] indicate that software maintenance 
consumes 50% of all computer resources and research by Boehm [Boehm75] has shown that 
maintenance costs can be up to ten times those of an initial development. 

The definition of software maintenance implies that there are a number of reasons why the 

maintenance process should be initiated. These differing reasons result in four categories of 

maintenance activities. These are: 

• Perfective maintenance - this involves improving functionality of software in response to 

a user's defined changes. 

• Corrective maintenance - this process involves the correction of errors that have been 

identified within the software. 

2 



• Adaptive maintenance - this process involves the alteration of the software which is due 

to changes within the software environment. 

• Preventative maintenance - this involves updating the software in order to improve upon 

its future maintainability without changing its current functionality. 

The costs of the maintenance processes are not distributed evenly across all categories. Studies by 

Leintz and Swanson [Lientz80] show that 50% of the total maintenance costs can be attributed to 

perfective maintenance, 25% for adaptive maintenance, whereas only 21% of the total costs are 

attributed to corrective maintenance and 4% for preventive maintenance. 

Despite the cost implications, software maintenance it is generally perceived as having a low profile 

within the software community. Management teams have often in the past placed little emphasis on 

maintenance related activities. Small advances have been made in combating these problems, and high 

profile maintenance projects such as the year 2000 problem have been successful at highlighting the 

issues. 

Software maintenance is made difficult by the age of the software requiring maintenance. The age of 

the software means that documentation has often been lost or is out of date. Furthermore, issues of staff 

turnover and constant demands for changes due to user enhancements or environmental changes 

exacerbate the problems. In addition, constant perfective and corrective maintenance, which is not 

supported by preventative maintenance, has a tendency to make the software more difficult to maintain 

in the future. 

Software maintenance is difficult to perform on highly maintained software due to the ripple effects on 

the other parts of the system. Ripple effects are the changes that become necessary due to maintenance 

on another part of the code. Ripple effects can occur at the design and specification levels and may 

additionally involve changes in the documentation. The task of assessing these ripple effects is called 

impact analysis. 

The availability of well defined interfaces between separate areas of functionality within the code can 

go a long way towards reducing ripple effects and therefore reducing the overall costs of changes. 

Thus, the reuse reengineering process is in fact a form of preventative maintenance. 

1.2. Research Problems 

This thesis concerns the generation of reuse candidates from legacy systems. In particular, it considers 

the identification of the candidates from any available information (such as manuals) but specifically 

relies upon the source code. A number of existing projects have contributed to this work. However, no 

existing approach has managed to completely solve the problems associated with the identification 

3 



process. This section deals with the problems that must be addressed for the formation of a successful 

reuse reengineering process. 

A candidate's reusability can be assessed in a two staged approach. Firsdy, it should be considered i f 

the candidate has reuse potential i.e. whether the functionality of the candidate is likely to be required 

for future development or maintenance. The process of identification and naming of functionality 

provided by the reuse candidate, is termed the concept assignment process [Biggerst94]. Secondly, the 

cost of making a candidate reusable should not exceed the overall cost of redeveloping the candidate. 

Most approaches towards obtaining reusable software components involve the generation of 

completely new components and the placement of these components within the library [Lenz87, 

Cramer91]. There are a number of disadvantages to this approach. Firstly, there is the obvious high 

cost of the initiation of the reuse library. Secondly, one of the stated advantages of reusing software is 

said to be its proven quality. It is assumed that reuse candidates will have been well used and therefore 

the majority of their errors eliminated. With an approach that involves the formation of a completely 

new reuse library, new component quality is yet to be proven. 

The reuse reengineering approach towards obtaining reuse candidates involves the use of legacy 

systems. The approach broadly involves a search for potential reuse candidates within the legacy code 

and aims to evaluate the feasibility of separating them from the remainder of the code. Such an 

'approach is much nearer to supporting the quality assumptions than approaches that simply involve the 

development of new code. Furthermore, the costs of reengineering the reuse candidates to separate 

them from their original code must fall short of the 'development from scratch'costs i f they are to 

satisfy the reusability criteria. 

The reuse reengineering approach also has potential advantages for the maintenance process. I f 

sufficient reuse candidates can be obtained, at reasonable cost, from the existing legacy system, then a 

code reduction approach can be adopted within the maintenance process. This is the gradual movement 

to an 'object based'approach. In this approach, the objects are represented by the new reuse candidates 

that support the old functionality of the legacy system as well as potential new developments. 

Furthermore, for the new reuse candidates, the reengineering process has improved their interfaces. 

The availability of well defined interfaces serves to aid the maintenance process by localising changes. 

This in turn reduces the proportion of the system that will have been updated, by reducing ripple 

effects, and thus reduces the amount of code that will require, for instance, detailed comprehension. 

There are, however, a number of problems with existing reuse reengineering approaches that, i f solved, 

would greatly improve opportunities to identify reuse candidates and to evaluate their reusability. 

These are as follows: 

4 



1. Existing approaches are simply a collection of techniques. Thus, at present, there is no 

consistent approach for practitioners to follow without previous experience of using a 

reuse reengineering approach. 

2. Many of the essential existing techniques are under-developed, are only usable under 

certain condition, or are difficult for practitioners to follow and apply. 

3. The existing techniques have been developed for many languages. However, no one 

language has been fully supported and catered for. In some cases, it is unclear for which 

language the techniques are suited. 

4. The results of the techniques are often difficult to interpret and therefore are inaccessible 

to non-specialist staff. 

5. Most of the existing approaches are bottom-up, but the concept assignment process is 

inherently top-down. This makes giving reuse candidates meaningful descriptions 

difficult. 

6. Individual approaches have only been tested on small sets of code. Typically code 

modules of 100-1000 lines of code have been used. Thus, it is not possible to assess the 

suitability of the techniques for industrial applications. 

Finding potential solutions to these problems will form the basis of the research described within this 

thesis. 

1.3. Criteria for Success 

The criteria for success on which this thesis will be evaluated are the following. The thesis wil l : 

• Describe a method which will effectively collate existing techniques into a number of 

easy to follow steps. 

• Add to, or improve upon, the existing techniques where it proves necessary to support the 

reuse candidate identification process. 

• Provide support for both top-down and bottom-up comprehension processes. 

• Provide consistent and complete support for a single language that has been frequently 

used to implement today's legacy systems. 

• Use graphical display of information to support the decision making process necessary 

for the use of the method. 

• Evaluate the results of the use of the method against a number of industrial sized 

applications. 

• Test the method to see if it is supportive of the process of software evolution. 

• Indicate the type of tools which should be available to support the use of the method. 

5 



The success of the work described in this thesis in meeting these criteria will be examined in Chapters 

5 onwards and will be reviewed in Chapter 9. 

1.4. Thesis Outline 

The remainder of this thesis is organised as follows. Chapter 2 describes the literature that is related to 

reengineering for reuse. This includes a review of the literature describing the problems of performing 

maintenance on legacy systems and, in particular, addresses the problems involved with the program 

comprehension process and reverse engineering. A range of problems are addressed including the lack 

of, or outdated documentation, information overload when maintaining large systems and the need for 

information abstraction. A general approach to program comprehension, that of software visualisation, 

is then described. The ways in which the visualisation of software can aid the program comprehension 

process is indicated. Finally, Chapter 2 investigates software reuse and proposes the use of a reuse and 

reengineering approach as a means of gaining acceptance for preventative maintenance. 

Chapter 3 reviews existing object identification processes. A number of approaches are described and 

their benefits discussed. The approaches are grouped into six categories. These include global, type and 

receiver data persistence approaches. Two additional categories are also defined which include 

approaches that retain the existing structure of the code as well as more general ones. A review of the 

general problems that are evident with the use of each approach is presented at the end of each 

category. 

Chapter 4 describes the reuse reengineering approach adopted within this thesis. A ten step method is 

described. For each step of the method, its objective is indicated together with the tasks to be adopted 

in order to carry out the step. Small examples to assist the reader are also included. 

Chapter 5 defines the requirements for tool support. Some general tools are defined which are required 

throughout the method. In addition, the needs of some specific tools are defined that are necessary to 

support specific steps within the method. Current levels of tool support are indicated and problems with 

their use are described. 

Chapter 6 describes a number of case studies that have been carried out in order to test the method. The 

case studies are from industrial applications, and range considerably in size, age and the extent to 

which they have been maintained. Examples are selected throughout in order to indicate the usability of 

the approach. Wherever possible graphical representations are included in order to provide the reader 

with an indication of the benefits of information abstraction. 

6 



Chapter 7 evaluates the method defined within Chapter 4 and tested as documented in Chapter 6. It 

performs a step-by-step review of the reuse reengineering method. It also identifies deficiencies where 

further work is required. 

Chapter 8 reviews three of the basic approaches of the method. Namely, the use of the dominance tree, 

data clustering and graphical representations. The review is performed on the use of the dominance tree 

and clustering by investigating how well they support the evolution process. This provides an 

indication of the benefits to software maintenance over time. 

Within Chapter 9, some conclusions are drawn. The criteria for success are reconsidered and the 

achievements are discussed. At the end of Chapter 9, several other areas of further work are identified. 

7 



Chapter 2. The Related Literature 

In Chapter 1 it was indicated how, as software becomes older, and hence has undergone a lot of 

maintenance, the costs of the maintenance process increases. One approach proposed for dealing with 

such a problem is the re-development of the software. There are however, a number of problems that 

are associated with such a re-implementation strategy. These issues are now described. 

The strategy of just replacing legacy applications by completely new systems runs the risk of the new 

system providing differing functionality. The provision of new applications providing similar 

functionality is not as simple as it may sound. Over their lifetime systems are prone to enhancements 

and such enhancements are frequently undocumented. Thus, the original application's source code 

provides the only true definition of the programs functionality. As a means of avoiding the re-

implementation of different functionality companies often resort to reverse engineering technologies as 

a solution to their problems. 

In order to implement a successful reverse engineering process, the procedure of understanding 

selected areas of the code needs to be performed. This process of gaining an understanding of the 

functionality of the code is called program comprehension. Program comprehension takes place at 

many levels; initially a broad understanding of how the program operates may be achieved but this is 

later followed by a more in-depth understanding of how the system performs specific tasks. The 

comprehension process assists the reverse engineering process by indicating important aspects of the 

code such as side effects or anomalies, often by using a number of abstraction techniques such as 

software visualisation. The availability of information gained from the comprehension process is 

essential i f any software migration techniques are to be applied. 

As indicated above, performing maintenance is an expensive process. Furthermore, there is a tendency, 

as maintenance is repeatedly performed, for the maintainability of the systems to degrade [Lehman97]. 

As a direct consequence, further resources are required to perform successful maintenance on future 

occasions. One identified approach to improve this situation has been to move towards an object based 

approach [Canfora94j. The object based approach assumes that individual areas of functionality are 

grouped into a single object which has a well defined interface. Thus, the communication between 

objects (hence areas of functionality) is clear and well defined. Maintenance is therefore assumed to be 

easier to perform as changes are restricted to small numbers of objects. 

% 



The necessity to move towards objects leads back to the problems of having to re-implement existing 

legacy systems. Therefore, excluding the major cost implication of such a large scale re-

implementation, there are still the problems of having to re-identify the actual undocumented 

functionality of the existing systems. I f a means can be sought to take the legacy systems and form 

them into objects, this presents at least a partial solution to the problem. In addition, as ful l scale re-

implementation will not be attempted, costs should be reduced. Furthermore, the objects devised have 

the potential to be reused within the future. 

The process of migrating legacy systems into an objected based approach is termed the reuse 

reengineering process, and is the field of study within this thesis. More ad hoc processes are also 

sometimes termed software scavenging. This overview has indicated a number of related fields that 

feed into the reuse reengineering process. These include program comprehension, software 

visualisation, reverse engineering and software reuse. These are now described in greater detail 

throughout the remainder of this chapter. 

2.1. Program Comprehension 

Program comprehension in a software maintenance sense involves acquisition of knowledge about 

programs, as well as accompanying documentation and operating procedures. Program understanding 

is the task of building mental models of the underlying software at various abstraction levels, ranging 

from models of the code itself to ones of the underlying application domain, for maintenance, evolution 

and reengineering purposes. 

The process of understanding software products involves abstracting information about certain aspects 

of the software system. During comprehension of a system, the understander tends to form an internal 

representation, which serves as a working model of the system. At the outset, the model may be 

incomplete but becomes more complete and accurate as additional information about the system is 

obtained. 

2.1.1 Why Program Comprehension is Necessary 

The costs of performing program comprehension have been widely cited as being between 50 and 90 

percent of the overall cost of performing maintenance [Standish84}. Furthermore, the-costs of 

performing maintenance has been estimated to be 70 to 90 percent of the total life cycle cost 

[Standish84]. Assuming these figures are accurate, we can estimate that the costs of performing 

comprehension for maintenance over the life-time of software could account for approximately 35 to 

80 percent of the software life-cycle costs (i.e. development and maintenance costs). Clearly, this is an 

9 



important activity so any approach towards assisting the comprehension process can considerably 

reduce software costs. 

Software comprehension activities do not start at a point of a maintainer having no knowledge of a 

system. Experienced maintainers always bring information to a maintenance project, even if they have 

no previous knowledge of the software they are maintaining. This knowledge is provided through their 

previous experiences whether this is experience with the software development language, general 

software engineering principles or the domain. This previous experience is important for successful 

maintenance. Thus, it is necessary to support the gaining of further experience to assist program 

comprehension. 

Knowledge base 

Maintainer's 
existing 
knowledge 

Mental 
model 

Maintenance 
task task 

Figure 2.1: Building a Mental Model for Program Comprehension 

The maintainers' existing knowledge is referred to as the knowledge base (Figure 2.1). This constitutes 

all the information to which the maintainer will have access through performing past maintenance 

activities. Driving the understanding process is the maintenance task. As the maintainer gradually 

learns about the task in hand, he will begin to devise what is termed a mental model of the system and 

the maintenance task. However, developing an accurate mental model is both difficult and time 

consuming. Thus, it is the information assimilation process that program comprehension research is 

trying to support. 

2.1.2 Types of Program Comprehension Support 

Researchers have defined a number of different types of knowledge that are essential for successful 

maintenance. The types of knowledge proposed are [Shneider79]: 

• syntactic knowledge: this represents the type of knowledge which comes from the use 

of, for instance, programming languages. For example, the key words within a language 

or the use of a language terminator. 

• semantic knowledge of software engineering: this knowledge is at a higher level than 

syntactic knowledge, for instance, it may be a solution to debugging a program or an 

algorithm to a solve a particular problem. 

• semantic knowledge of task related knowledge: this may be domain knowledge about 

how the domain procedures are implemented or how a program operates. 

10 



A combination of all types of knowledge is required for successful maintenance. 

When gaining information to build up a mental model, a number of different strategies can be applied 

to the accumulation of information. Types of strategies applied [Littman86] are: 

• systematic strategy: using this strategy, the entire program is examined to establish the 

interactions between components. Maintenance begins only once the understanding 

process is complete i.e. when the maintainer considers the mental model to be accurate. 

• as-needed strategy: using this strategy the maintainer only attempts to gain an 

understanding of part of the program. In this case, only a partial model of the software is 

devised before the modifications process begins. 

These strategies can be viewed more simply when related to top-down/bottom-up strategies; top-down 

being systematic and bottom-up being as-needed. For large software system it is not possible to apply 

the systematic strategy and, therefore, the as-needed strategy is a more realistic approach for larger 

applications. 

Much discussion by researchers in the field of program comprehension has concentrated on program 

plans [Letovsky86, Soloway84, Soloway86]. Two levels of program plans are discussed. At the lowest 

level we have what are termed "rules of programming discourse'. These rules are said to be composed 

of the conventions of programming such as the use of meaningful variable names. Thus, the rules of 

programming discourse are similar to the semantic knowledge of software engineering described above 

and will be part of the knowledge base of the maintainer. The other types of plans are "program plans'. 

These are said to be stereotypic action sequences such as a high level functional description of a loop. 

Programs are said to consist of a number of plans to fit a specific problem. I f plans are well 

implemented, they can provide the maintainer with a high level of understanding of the program under 

maintenance. 

Unfortunately, over time, plans become de-localised, interleaved, merged or nested with other plans 

and thus their benefits for maintenance can be reduced. Furthermore, the problem with the information 

plans provide is that the use of a as-needed strategy with de-localised plans can lead to incorrect 

assumptions being made about the way a program functions. For this reason, while the as-needed 

strategy is a more realistic approach to tackling maintenance, it is also a risky process. Both systematic 

and as-needed strategies need to be applied but at different levels of detail. These would relate more 

closely to a middle-out approach [Ward94a]. 

Brooks [Brooks83] investigates a more problematic driven approach to the maintenance task. In his 

model, the comprehension process is an iterative process of hypothesis verification and modification. 

In figure 2.1, this process is represented by the arrow pointed from the application task to the 

11 



maintainer's knowledge base. He believes that this existing knowledge base provides a set of 

expectations that are used to derive the initial hypothesis. He calls these hypothesis forming 

expectations 'beacons'. A plan may be an example of a beacon. The process of hypothesis testing is the 

way in which the mental model is derived. Further work in this area has also been done [Wiedenbe86, 

Wiedenbe91] where beacons are viewed as tangible aspects of the program which offer the maintainer 

distinctive points of recognition and, therefore, support the maintainers orientation through the 

program. Work in this area has indicated the importance of such beacons but also stresses that 

carelessly constructed beacons can serve to confuse rather than assist. 

2.1.3 The State of the Art for Program Comprehension 

There are a number of areas in which the field of program comprehension is progressing. One of these 

areas is concerned with providing visual representations to assist the comprehension process. However, 

this area is treated separately in the following section (Section 2.2). Of these areas which do not 

include visualisation techniques, we consider four to be of greatest importance. These are: 

• program slicing 

• message sequencing 

• plan recognition 

• concept assignment 

An overview of each of these areas will be presented in the following subsections. 

Program Slicing 

Slicing algorithms enable programmers to extract the parts of the program that affect a chosen set of 

variables at some chosen point forming a slice. Slices can be useful in understanding code [Korel98] 

since they comprise only those parts of the program related to a specific sub-computation (defined by a 

slicing criterion), while retaining the effect of the original code. Slices can be either static or dynamic. 

Static slicing contains no information about the execution of the program, and so the slice preserves the 

effect of the code for every possible execution path. Dynamic slicing is constructed with respect to the 

traditional slicing criterion together with information on a particular execution pattern such as the input 

values passed to the program. Dynamic slices yield smaller slices, whereas static slices yield a slice for 

all possible executions of the program. A combination of both approaches is termed quasi static slicing 

[Venkates91]. All of these are useful techniques for program comprehension as they serve to reduce the 

amount of code necessary for comprehension and visualisation. 

12 



Work in this area includes understanding function behaviour [DeLucia96], dynamic slicing to 

understand program execution [Korel97] and amorphous slicing [Harman97] which include a number 

of simplification procedures to reduce the size of the slice. In addition some research has been carried 

out on the way the slices of large programs are represented. This includes the representation of slices as 

pictures [Jackson94]. 

Message Sequencing 

A key problem in building large software systems is understanding the interactions between 

components. Message sequence charts are a method for understanding interactions between 

components within complex systems. A message sequence chart displays sequences of messages 

exchanged between system components within their environment. One implementation of a visual 

representation of a message sequencing chart is SeeSeq [Eick96]. This system provides three views: an 

overview, a zoom view and a dictionary view. A number of different display techniques are used which 

include the use of colour, mouse sensitive selection of detail and variable columns to encode the 

number of messages sent. 

Other approaches include Binder [Binder96] who uses message sequencing as an approach to testing 

object oriented systems. 

Plan Recognition 

The recognition of plans can be performed from either a top-down or bottom-up approach or a 

combination of both. A language independent program representation is used together a translator to 

transform the source text. A plan recogniser is then used to parse programs by using recognised plans 

from the cliches held at various levels of abstraction within the library. The recogniser works on the 

basis of: 

• structural information only; 

• graph structures; 

• similar programs; 

• graph grammars and graph recognition algorithms deployed. 

The result is a tree or lattice of program components at the leaves and program plans and the goals of 

the program at the root. An example of the plan recognition approach is Whorf [Steckel92], but more 

general approaches are based on slicing, including Harman [Harman97] and Ball [Ball94]. 

13 



Concept Assignment 

Concept assignment is the process of discovering human oriented concepts and assigning them to their 

implementation instances within the software system. For the identification of concepts, simple parsing 

oriented recognition is insufficient. The human oriented recognition process depends heavily on a 

priori contextual knowledge of the domain, domain entities and their relationships. Examples of work 

in the area of concept assignment include Biggerstaff [Biggerst89b, Biggerst94], DeBaud [DeBaud97], 

Siff [Siff97] and Ning [Ning89]. 

2.2. Visualisation 

Software visualisation is the use of the crafts of typography, graphic design, animation and 

cinematography with modern human-computer interaction technology to facilitate both the human 

understanding and effective use of computer software [Price93]. 

2.2.1 Why Visualisation is Necessary 

As indicated above, the various theories of program comprehension put emphasis on the construction 

of a mental model within the mind of the maintainer. Theories on the construction of mental models 

hypothesise various techniques employed by maintainers in extracting information from the program 

source code. Software visualisation attempts to provide tool support for aiding mental model 

generation. The mental models proposed by various program comprehension researchers are all 

composed from semantic constructs. These constructs are typically abstractions, at various levels, of 

program features. The interrelationships identified from these constructs represent the maintainer's 

understanding of the program. 

Software visualisation attempts to provide a mapping from the program code to a visual representation 

that matches the maintainer's mental model as closely as possible. Highlighting and automatically 

creating these semantic constructs would reduce the burden from the maintainer, as they would require 

less time to be spent on scanning the source code. Thus, software visualisation attempts to aid the 

comprehension process by providing abstractions in a visual form and thereby reducing the information 

interpretation load. By presenting a pictorial model of complex lower level information, maintainers 

can rapidly generate an initial mental model of the software and use this as the basis for further 

investigation. The field of visualisation is therefore considered an important area of research within the 

field of program comprehension. 

14 



2.2.2 Types of Visualisation Support 

As visualisation support covers a wide variety of program comprehension tasks, there are a large 

number of different ways in which to visualise software systems. In particular, we generalise three 

kinds of display material; program, algorithm and concept visualisations. The concept visualisations 

represent generic constructs whereas program visualisations represent concrete implementations of 

code. Algorithms fall midway between concepts and program visualisations. Algorithms are not as 

concrete as program, since they are generic in that they can be used to implement many programs. 

However, the term concept refers to a higher level of abstraction than an algorithm as it contains no 

implementation details. 

concept 
Implemented by ^ algorithm • ^ 

Implemented by 
program 

Figure 2.2: Relationships between concepts, algorithms and programs 

We are able to derive the relationships shown in Figure 2.2 between concepts, algorithms and 

programs. Thus, a concept and a program may also be implemented by many different algorithms. 

A further difference in the type of information presented is whether static, symbolic or dynamic 

analysis is used to form the visualisation. These terms represent the way in which the data for 

visualisation is collected; dynamic analysis involves the execution of the source code that is not 

required for static analysis but symbolic analysis is a combination of both approaches. It is possible to 

investigate the static, symbolic and dynamic nature of algorithms [Brown88] and programs, but not for 

concepts due to their lack of implementation details. 

A graph showing the relationships between the visualisation approaches is shown in Figure 2.3. 

15 



Software Visualisation 

concept 

represented by 

patterns frameworks 

based on 

algorithms 

representee by 

program 

represented by 

data flow analysis 

static 

represented by 

symbolic dynamic 

Figure 2.3: Types of visualisation support 

The visualisation of concepts usually forms a central part of the design of object oriented systems. In 

this case generic patterns and frameworks and used to represent general concepts within software 

development such as abstract and reusable object groupings. The visual representation of these 

concepts is usually a set of object represented in an object design notation. Examples include Pree 

[Pree95], Gamma [Gamma95], Bassett [Bassett97] and Fowler [Fowler97]. 

2.2.3 The State of the Art for Software Visualisation 

Over the past couple of years software visualisation research has been directed towards structural or 

macroscopic visualisation of code. Concentrating, in particular, on a structural view of code typically 

producing call graphs, control flow graphs and file dependencies. In these examples variables, classes, 

functions methods, files and modules are displayed to produce the stereotypical views. The key factor 

within these views is their inherent graph structure. The disadvantage with these graphs is that they are 

often very large, especially for industrial sized applications, and so they are difficult to display easily. 

Examples of these systems include Logiscope [Meekel88], Rigi [Storey95], Narcissus [Hendley95], 

GraphLog [Consens92], SemNet [Fairchil88] and GraphTool [Bodhuin94]. 

Algorithm visualisation research is geared towards understanding the way in which the algorithm 

operates. Generally, these are not produced automatically and require a new representation for each 

algorithm. Furthermore, many algorithm animation frameworks rely on the instrumentation to place 

additional calls to the animation environment or to a log file generator to drive the animation. Further 

details of these systems are described within [Price93, Myers90, Roman93]. 

16 



There are a large number of systems that use visualisation as the primary aid to debugging. The 

majority of these systems are concerned with visual representation of traces of execution paths. These 

systems are mainly automatic and operate either through an interpreter base, where the target program 

is executed, or the visualiser augment the target source code with calls to the visualiser. 

Several programming environments have been developed which include visualisation capabilities. 

PECAN [Reiss85] and PROVIDE [Moher88] are early development systems that utilise graphical 

views for the display of data structures, call-graphs and call stacks. FT£LD[Reiss90] contains an 

extensive set of tools for developing and maintaining C++ programs which include class browsers 

[Lejter92] and flow graphs and more recently 3D display of views [Reiss93]. The BEE++ [Bruegge93] 

object oriented application framework supports dynamic analysis of distributed programs. 

Much of the research investigating the presentation of object oriented programs has focused on the 

graphics used to aid the design process. The work of Booch [Booch91], Rumbaugh [Rumbaugh91], 

Beck and Cunningham [Beck89] and Coleman et al [Coleman92] all are notable leaders within this 

area. 

The majority of the visualisations systems to date have concentrated on producing 2D representations. 

A growing area of research is investigating the application of 3D graphics for software visualisation. 

There is an increasing need for more expressive powers to represent the inherently multi-dimensional 

[Brooks87] data, facts and relationships that constitute a software system. Researchers in the 3D field 

have attempted to address the representation and navigation issues. As with 2D representation the 

problems with increasing complexity for representing large applications are still prevalent. While 3D 

technology cannot immediately solve this problem, it does offer a number of advantages such as 

greater working volume for information presentation. These arguments do not in themselves justify 3D 

as superior to 2D representation, however they do highlight possibilities for advances in software 

visualisation using 3D graphics. Examples of these systems include Zeus [Brown93], PVMTrace 

[PVMTrace95], VisualLinda [Koike95], SemNet [Fairchil88], GraphVisualizer3D [Ware93, GV3D95] 

and Narcissus [Hendley95]. 

2.3. Reverse Engineering 

Although there are a great number of definitions for reverse engineering the definition by Chikofsky 

and Cross [Chikofsk90] is the commonly accepted one. Their definition of reverse engineering is: 

the process of analysis of a subject system to: 

• identify the system's components and their interrelationships and 

• create representation of the system in another form or at higher level of abstraction. 

17 



The term system's components refers to the products from different phases of the software life-cycle, 

for example, the specification, design or the source code. Although the reverse engineering process can 

start from any of these components, the most common starting point is the source code. This is because 

it is often the only available or accurate description of the systems functionality. 

2.3.1 The Benefits of Performing Reverse Engineering 

The goal of reverse engineering is to facilitate change by allowing a software system to be understood 

in terms of its functionality as well as its current implementation approach. Furthermore, an effort is 

made to recover lost information to assist maintenance, aid migration, reduce side effects and / or 

extract reusable components. 

There are a number of different approaches to reverse engineering software projects. These are: 

• redocumentation 

• design / specification recovery 

These are now described in further detail. 

Redocumentation 

Redocumentation is the recreation of an equivalent representation within the same level of abstraction 

[Chikofsk90]. There are three main goals in performing this process. These are to: 

• create alternative views of the system, usually from the source code, so as to enhance 

understanding of how the system works. 

• improve current documentation by either updating the present documentation or replacing 

absent documentation. 

• generate documentation for a newly modified program in order to facilitate future 

maintenance. 

Examples of redocumentation projects include Wong [Wong95] and Ahrens [Ahrens95]. 

Design / Specification Recovery 

Design recovery entails identifying and extracting meaningful higher level abstractions beyond those 

obtained directly from examination of the source code [Chikofsk90]. Unlike redocumentation, which is 

18 



usually formed from the source code design recovery also requires far more personnel experience and 

knowledge of the application domain. 

A number of different approaches have been used for the recovery of design information. One 

approach by Rugaber et al [Rugaber90] relies heavily upon programming language constructs and is 

based on the belief that design recovery is being able to recognise, understand and represent design 

decisions present in the source code. Montes de Oca supports a similar approach with data mining 

techniques [Montes98]. Other approaches rely on the knowledge about the problem and application 

domains in general. For instance, the Programmer's Apprentice [Rich90] offers support for 'automatic 

clichd' recognition. A cliche is a commonly used combination of elements [Wiedenbe91] and assumes 

that once the cliche has been identified an experienced programmer will be able to reconstruct the 

appropriate designs. 

Specification recovery involves identifying, abstracting and representing meaningful higher level 

abstractions beyond those obtained by inspecting the design or source code. The approach generally 

adopted involves the derivation of the specification through backwards transformations. Ideally the 

resulting specification should be represented in a form that can be easily re-implemented within 

another programming language. Thus reducing the potential 'mistakes' that can be made in the 

specification to code translation process. Usually it is aimed to retain the precise semantics of the code. 

Examples include Lano and Haughton [Lano94], and Ward[Ward94b, Waid95]. 

The specifications recovered can also be in the form of 'object classes'. This approach is particularly 

useful i f the final destination of the reverse engineering process is to be an object based approach. 

The benefits of the recovery of specification and design information are: 

• they can be used to support software maintenance without the necessity to constantly 

refer to the low level source code. 

• they assist maintainers to more quickJy acquire the appropriate level of understanding 

required to effect changes to a system. 

• they can be used in the future implementation of similar systems. 

There are a number of techniques used within reverse engineering which help to recover the lost 

information. These include: 

• re-structuring 

• reengineering 

These will now be described in more detail. 

19 



Re-structuring 

Restructuring is the process of transforming a system from one representational form to another but 

without altering the level of abstraction. The aim of the transformation process is to produce a more 

desirable format. Therefore, restructuring can be seen as a form of preventative maintenance. 

There are various types of restructuring that differ in the part of the system affected and the way in 

which the restructuring is performed. These include: 

• Control flow driven restructuring - This process involves the imposition of a clear control 

structure on the source code. 

• Efficiency-driven restructuring - This process involves restructuring a function or 

algorithm to improve its operating speeds. 

• Adaptation driven restructuring - This process involves changing the coding style in order 

to adapt the program for a new language or operating environment. 

In addition to source code, other representations can also be restructured. These include requirement 

specification, data models and designs. Although it is difficult to completely automate the restructuring 

process, due to the need for human intervention, there are a number of semi-automated tools 

{Griswold93]. 

Reengineering 

Reengineei ing is the process of examining and altering a target system to implement a desired 

modification. The overall reengineering process consists of two steps. Firstly, reverse engineering is 

applied to the target system to understand and represent it in a new form. Secondly, forward 

engineering is applied to implement and integrate the new aspects of the system. 

The Colbrook et al [Colbrook90] Source Code Reengineering Model breaks this two staged process 

into further stages. Those that represent the reverse engineering process are encapsulation, 

transformation, normalisation, interpretation and abstraction. Those that represent the forward 

engineering process are causation, regeneration and certification. 

2.3.2 Reverse Engineering Methods 

In the subsections above the approaches to reverse engineering are discussed. In the following 

subsections some of the methods for reverse engineering are described. 

2 0 



R E C A S T 

The RECAST method [Edwards93, Edwards96] provides a route for reverse engineering legacy 

systems into SSADM logical specifications. It considers all the code relevant to the system as well as 

the user interface. Furthermore, the logical specification is derived from the data, processing and on­

line aspects of the system. It is assumed by RECAST that it is possible to identify all the relevant 

components of the source system that is to be reverse engineered. Therefore the following elements 

must be available: 

• the Job Control Language (JCL) of the run units 

• the original COBOL source code (before any pre-processing is carried out) 

• the form of any copy code extracted from copy libraries 

• the form of any code held in the data dictionary 

RECAST extracts a no-loss representation of the current software system and documents the resulting 

system specification in the form of SSADM diagrams and notations. 

The RECAST method is outlined by a structural model. This model defines the inputs and outputs of 

each of the stages within the method._The structural model has four stages: 

• Identification of business users' views (BUV) 

• Identification of the logical data model (LDM) 

• Identification of the system processing (SP) 

• Identification of the menus and dialogues (MD) 

The dependencies between the stages and the structural model are shown in Figure 2.4. 

21 



INPUTS STAGES END PRODUCT 

Users 

Screens 

Source code 

Stage BUY 

Stage MD Stage MD command structures 
dialogue control table 
dialogue elements descriptions 
dialogue level help 
dialogue structures 
menu structures 

command structures 
dialogue control table 
dialogue elements descriptions 
dialogue level help 
dialogue structures 
menu structures 

Stage L D M 

command structures 
dialogue control table 
dialogue elements descriptions 
dialogue level help 
dialogue structures 
menu structures 

Stage L D M 
attribute descriptions 
entity descriptions 
logical data structure 
relationship descriptions 

attribute descriptions 
entity descriptions 
logical data structure 
relationship descriptions 

enquiry process models 
Stage SP function definitions Stage SP 

requirements catalogue 
update process models 

SSADM 
physical 
design 

Figure 2.4: The Dependencies between the RECAST stages 

The identification of business users' views is based on information gained from the business user 

domain whereas all other details are based on information gained from the existing source code. The 

stages are now described in detail. 

Identification of Business Users'Views 

This stage acquires information from the business users of the system. It considers the inputs and 

outputs of the system and identifies what the users' perceive as the function of the system. It does not 

consider the system's source code. 

Identification of the Logical Data Model 

This stage has six steps. The first three steps define the rules for analysing the data. Steps four and five 

then define the rules for dealing with the schemas and subschemas if an IDMSX database is accessed. 

The final step draws together the two strands into one full outline data model. 

22 



Identification of the System Processing 

This stage of RECAST identifies a set of system processes, collectively termed a function, which the 

users wish to schedule together along with their component event / enquiry level processing. This stage 

also restructures the functions into logical subsystems. 

Identification of the Menus and Dialogues 

This stage is only carried out for those systems that have some element of on line processing. In 

addition, its rules are specific to the ICL TPMS transaction processor. 

R E D O 

The REDO project [vanZuyle93, Lano94] is a combination of techniques into prescriptive methods 

which can be applied to any existing application whatever its state. The results of its application will 

produce a reengineered, renovated, reconstructed or reverse engineered application. The new 

application will have the same or very similar functionality, but improved maintainability. The method 

is believed to be very generic and can be customised to specific circumstances. The objectives of the 

REDO method are that the method should be up-to-date, practical to use, comprehensive but simple to 

follow, based on systematic, incremental and established techniques producing reliable results. 

Furthermore, it should be independent of any maintenance environment and supportable by automatic 

tools. 

The generic method is as follows: 

Stage 1: Assess existing state 

This stage covers the gathering, recording, classification and assessment of existing sources of 

information, including design documents, sources files and configuration management records. The 

result of performing this step is an archive of all the relevant items identified and an analysis of the 

current state of the application. 

Stage 2: Install application in Reengineering Environment 

A suitable reengineering environment must be designed, acquired and set-up. This will include a 

variety of facilities, including editing facilities, for generation of documentation and configuration 

management. The baseline chosen in stage 1 must be imported and upgraded to be maintainable during 

the reengineering process in the new environment. The environment and its contents constitute the 

IRSE (Integrated Reengineering Support Environment). 

23 



Stage 3: Reverse Engineer 

Stage 3 takes the existing information recorded in the IRSE during stage 2, analyses it and merges in a 

range of other information, in order to complete the documentation package. The package may include 

not only traditional documents but also on-line query and hypertext facilities. Thus, stage 3 produces 

whatever documentation package is required within the constraints of the data, knowledge and 

resources available. The information is returned to the IRSE for possible further refinement in later 

stages. 

Stage 4: Establish Test Procedures 

Stage 4 establishes an appropriate test procedure for the application, incorporating any suitable existing 

material. It follows Stage 3, since most forms of testing presuppose a specification of expected 

behaviour. I f reengineering or re-implementation is to be attempted, the creation of any required 

implementation-specific tests should be included as part of those activities. 

Stage S: Reengineering / Re-implement 

Stage 5 is concerned with improving the implementation. Thus any change to an application's source 

code will be performed in this step to improve its comprehensibility. Reengineering and re-

implementation are treated as one process because they are extremes and thus require no precise 

distinction in practice. This stage includes the preparation of any required implementation-specific 

tests. Previous implementation specific tests may well be helpful. Ideally, these would be upgraded 

automatically as the implementation is changed / replaced. 

Stage 6: Handover 

This is the final stage of the REDO method which installs the definitive version of the application in 

operational use through whatever release control mechanisms are applied by the organisation and 

transfers responsibility for it back to the maintainers. 

2.4. Software Reuse 

There are many differing definitions of software reuse. These vary with the approach to reuse taken 

and the types of products that are considered. Recently, the definition used within the REBOOT project 

has begun to be accepted as the industry standard. This definition originates from Krueger 

[Krueger92]: 

'Software reuse is a process of creating software systems from existing software assets, 

rather than building software systems from scratch'. 

This section will consider the benefits that software reuse can provide, as well as some of the 

difficulties putting reuse into practice. 

24 



2.4.1. The Promises of Reuse 

The goal of a software development organisation is to build useful working software systems in time 

and within given economic constraints [Krueger92]. Reuse has the potential to assist the process of 

achieving this goal. The essence of software reuse is to use any information, artefact or product held in 

the software company's inventory. The reusable element can be code, requirement or design 

specifications, or knowledge of the domain. It can also include processes, methods and templates that 

are known to be effective in specific cases. 

Many varying sets of statistics are available on the potential degrees of reuse that can be achieved. 

Langergan [Langerga84] has indicated that as much as 60% of the code in data processing applications 

is redeveloped unnecessarily. Jones goes further than this and states that less than 15% of new code 

serves an original purpose [Jones84]. While figures may vary as to what levels of reuse should, or 

could, potentially be achieved, what does not vary is the view that reuse is viable. Indeed, in Japan, 

such principles have long been accepted. 

Myers tMyers85] investigating differences between the US and Japanese software industries found 

that: 

The US industry standard for productivity is approximately 3,600 source code lines per 

year. In Japan, where the reuse of reusable software is more widely practised, the industry 

standard is approximately 24,000' 

Other studies have indicated similarly high results and, in some studies, Japanese software factories 

have been shown to have reuse factors of 85% [McNamara84]. Therefore it is believed that reuse is 

critical i f we are to deliver efficient, reliable and maintainable software on time [Frakes88]. I f Western 

software production is to be able to compete with the Japanese then it seems that the inclusion of reuse 

in the software development process is necessary but this will require a major change in attitude from 

the software industry [Lubars88]. 

Increased productivity is not the only benefit that reuse offers. Agresti [Agrest88] believes that, apart 

from the productivity gains, the benefits of reuse are: 

• Reliability - this is achieved by the use of proven components 

• Consistency - this is achieved by using the same components in many places therefore 

reducing the need for fresh and possibly idiosyncratic design 

25 



• Manageability - achieved through the use of well-understood components as reuse 

reduces the likelihood of cost and schedule overruns by providing already developed 

components whose behaviour is understood 

• Standardisation - through the use of standard components 

For software to be reusable it must exhibit a number of features that directly encourage its use in 

similar situations. The following findings by Wood [Wood89] are considered to be the important 

qualities of reusable software. 

• Environmental independence - components should be reusable irrespective of the environment 

in which they were originally created 

• High cohesion - components should implement a single operation or a set of related operations 

• Loose coupling - components should have minimal links to other components 

• Adaptability - components should be able to be customised so that they wil l work in a range of 

similar situations 

• Understandability - components should be easily understandable so that users can interpret 

their functionality 

• Reliability - components should be error free 

• Portability - components should not be restricted in terms of the hardware or software 

environments in which they operate 

It should be noted that the above are not prerequisites for reuse and that many may conflict, but, the 

more points that are satisfied, the more feasible the practice of reuse becomes. Many of these points 

relate to the 'packaging' that surrounds a reuse component and therefore, indirectly, the operations that 

the unit performs and its links to other components. It is possible to additionally use this above list to 

begin to identify a number of problems associated with the reuse of software components. These 

problems are investigated in more detail in the proceeding section. 

2.4.2 The Problems Associated with Reuse 

The difficulties that are concerned with the implementation of reuse involve both managerial and 

technical issues as well as a number of other aspects of development such as legal issues. Meyer 

[Meyer87], investigating why reuse is not more common, concentrated particularly on the managerial 

aspects of the problem. He considered these to include: 

• the fact that economic incentives tend to work against reuse 

• the 'not invented here' syndrome 

• the problem that designing for reuse is hard 

2 6 






















































































































































































































































































































































