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Abstract

With the advent of the Large Hadron Collider, we are in a new era in Particle

Physics, in which unprecedented energy scales can be probed. Although it is a

discovery machine, it has already been shown to be able to produce experimental

precisions at the percent level, and so our theoretical calculations must match that,

which requires (at least) calculations to next-to-leading order (NLO). In this thesis,

we explain and develop new techniques for the evaluation of one-loop integrals,

which have historically been the bottleneck in NLO calculations. After introducing

Quantum Field Theory and NLO calculations, we explain the process of tensor

reduction and the golem95 method for avoiding its numerical instabilities. We follow

this by discussing the techniques used to improve the stability of a library of scalar

integrals (for two- and three-point integrals), and then we discuss the extension

of the golem95 library to include complex internal masses, along with the reasons

for doing so. We then bring together the GoSam project with the event generator

Sherpa, in order to calculate the process pp→ e+e−µ+µ− by diboson production to

NLO, including the (formally higher order) loop-induced process with gluons in the

initial state.
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Signer and Daniel Mâıtre. My officemates, particularly Jon Carter, made the pro-

cess much more enjoyable. And of course I’d like to thank my family and Clare,

who’ve managed both to put up with me over the course of this time and to keep

me sane.

This work was funded by an STFC fellowship.

iv



Contents

Abstract ii

Declaration iii

Acknowledgements iv

1 Introduction 1

1.1 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Particle Physics and The Standard Model 4

2.1 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Cross-section σ . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 The Langrangian and Perturbative Calculations . . . . . . . . 6

2.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Dimensions in the Lagrangian . . . . . . . . . . . . . . . . . . 10

2.2.2 Gauge-fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 QED Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Example: e+e− → µ+µ− at Leading Order . . . . . . . . . . . 12

2.3 Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Ultraviolet Divergences . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Infrared Divergences . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Dimensional Regularisation . . . . . . . . . . . . . . . . . . . 17

2.3.5 Revisiting Dimensions . . . . . . . . . . . . . . . . . . . . . . 18

2.3.6 Renormalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



Contents vi

2.3.7 Running of Parameters . . . . . . . . . . . . . . . . . . . . . . 21

2.3.8 Renormalisation Schemes . . . . . . . . . . . . . . . . . . . . . 22

2.4 Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Feynman Rules for QCD . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Colour Confinement and Hadronisation . . . . . . . . . . . . . 27

2.6 Hadron Colliders and the LHC . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Next to Leading Order Calculations 30

3.1 Structure of the NLO Calculation . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Loop Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Loop Calculation Methods . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Integrand-level Reduction . . . . . . . . . . . . . . . . . . . . 35

4 Tensor Integrals 37

4.1 Tensor Reduction and golem95 . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Feynman Parameters . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 The Set S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.3 Shift Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.4 The Modified Cayley Matrix S . . . . . . . . . . . . . . . . . 40

4.1.5 Gram Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.6 The Scalar N -Point Integral . . . . . . . . . . . . . . . . . . . 42

4.2 Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Separation of Divergences by Subtraction . . . . . . . . . . . . . . . . 47

4.3.1 Tensor Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Reduction to Scalar Integrals and Numerical Rescue System . 53

4.4 Landau Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Limits in Integration Libraries 57

5.1 Scalar Three-point Function . . . . . . . . . . . . . . . . . . . . . . . 58



Contents vii

5.1.1 Gram Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 The Second Integration . . . . . . . . . . . . . . . . . . . . . . 60

5.1.3 The Third Integration . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 detG → 0 only . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 detS → 0 only . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 detG, detS → 0 simultaneously . . . . . . . . . . . . . . . . . 67

5.2.4 Leading Coefficient αi → 0 only . . . . . . . . . . . . . . . . . 72

5.2.5 Subleading Coefficient βi → 0 only . . . . . . . . . . . . . . . 75

5.2.6 Coefficients αi, βi → 0 simultaneously . . . . . . . . . . . . . 76

5.3 Scalar Two-point Function . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Case 1a: s≪ m2
1 and (m2

1 −m2
2) > 0 . . . . . . . . . . . . . . 79

5.3.2 Case 1b: s≪ m2
2 and (m2

1 −m2
2) < 0 . . . . . . . . . . . . . . 80

5.3.3 Case 2: s, (m2
1 −m2

2) ≪ m2
1, m

2
2 . . . . . . . . . . . . . . . . . 81

6 Complex masses 83

6.1 The Optical Theorem and Particle Widths . . . . . . . . . . . . . . . 83

6.2 Landau Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 The Complex-mass Library golem95C . . . . . . . . . . . . . . . . . . 91

7 GoSam, Sherpa and pp→ e+e−µ+µ− by diboson production 93

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 GoSam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Monte Carlo Event Generators and Sherpa . . . . . . . . . . . . . . . 97

7.3.1 Initial State Partons . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.2 Parton Showering . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.3 Hadronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.4 Les Houches Interface . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Four Charged Lepton production pp→ e+e−µ+µ− . . . . . . . . . . . 101

7.4.1 Quark-initiated Process . . . . . . . . . . . . . . . . . . . . . 102

7.4.2 Gluon-initiated Process . . . . . . . . . . . . . . . . . . . . . . 103

7.4.3 Comparison with gg2VV . . . . . . . . . . . . . . . . . . . . . 104



Contents viii

7.4.4 Results and Comparison with MCFM . . . . . . . . . . . . . . . 106

7.4.5 Higgs Interference . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Conclusions 124

Appendix 145

A Notation and Conventions 145

A.1 Units and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 LHC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B Useful Mathematical Objects 147

B.1 The Dirac Matrices γµ . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 The Dirac δ-functional . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.3 The Γ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.4 The Euler Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . 150

C Additional Derivations 152

C.1 Feynman Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.2 Reduction Steps and Loop-momentum Shifts . . . . . . . . . . . . . . 154

C.3 Splitting and Combining Logarithms . . . . . . . . . . . . . . . . . . 155

C.4 n-dimensional Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.5 Relating detS and detG with αi, βi and γi . . . . . . . . . . . . . . 158

C.6 Small Imaginary Parts of S . . . . . . . . . . . . . . . . . . . . . . . 159



List of Figures

2.1 Leading order diagram for e+e− → µ+µ−. . . . . . . . . . . . . . . . . 13

2.2 A loop correction to the fermion propagator. . . . . . . . . . . . . . . 15

2.3 Simplified diagram showing IR divergence. . . . . . . . . . . . . . . . 16

2.4 A loop correction to the photon propagator. . . . . . . . . . . . . . . 20

2.5 A loop correction to the QED vertex. . . . . . . . . . . . . . . . . . . 20

3.1 Two leading order diagrams. . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Two one-loop diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Two real emission diagrams. . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 An example of a loop diagram for e+e− → µ+µ−. . . . . . . . . . . . 34

4.1 General N -point one-loop graph. . . . . . . . . . . . . . . . . . . . . 37

4.2 A four-point (box) diagram. . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 A four-point diagram with two legs pinched, making a bubble. . . . 41

4.4 Wick rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Rescue system plot for I
(d+2)
4 (z1, z2, z2). . . . . . . . . . . . . . . . . . 54

6.1 A diagram with a potential Landau singularity. . . . . . . . . . . . . 89

6.2 Landau singularity plot of A4,0 with real masses. . . . . . . . . . . . . 91

6.3 Landau singularity plot of A4,0 with complex masses. . . . . . . . . . 92

7.1 PDFs of quarks and the gluon from MSTW. . . . . . . . . . . . . . . 99

7.2 The Binoth Les Houches Accord’s interaction. . . . . . . . . . . . . . 101

7.3 Two leading order diagrams. . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Two one-loop diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Two real emission diagrams. . . . . . . . . . . . . . . . . . . . . . . . 103

ix



List of Figures x

7.6 Two gluon-initiated one-loop diagrams. . . . . . . . . . . . . . . . . . 103

7.7 A diagram which is suppressed due to the Landau-Yang theorem. . . 104

7.8 Ml−l+, GoSam+Sherpa against MCFM. . . . . . . . . . . . . . . . . . . . 109

7.9 pT,l−l+ , GoSam+Sherpa against MCFM. . . . . . . . . . . . . . . . . . . . 110

7.10 pT,l−, GoSam+Sherpa against MCFM. . . . . . . . . . . . . . . . . . . . . 111

7.11 ηl− , GoSam+Sherpa against MCFM. . . . . . . . . . . . . . . . . . . . . 112

7.12 ∆Rl−l′+ , GoSam+Sherpa against MCFM. . . . . . . . . . . . . . . . . . . 113

7.13 Ml−l+ in GoSam+Sherpa, both channels, with and without Higgs. . . . 114

7.14 Ml−l+ in GoSam+Sherpa, gg-initiated only, with and without Higgs. . 115

7.15 pT,l−l+ in GoSam+Sherpa, both channels, with and without Higgs. . . . 116

7.16 pT,l−l+ in GoSam+Sherpa, gg-initiated only, with and without Higgs. . 117

7.17 pT,l− in GoSam+Sherpa, both channels, with and without Higgs. . . . . 118

7.18 pT,l− in GoSam+Sherpa, gg-initiated only, with and without Higgs. . . 119

7.19 ηl− in GoSam+Sherpa, both channels, with and without Higgs. . . . . 120

7.20 ηl− in GoSam+Sherpa, gg-initiated only, with and without Higgs. . . . 121

7.21 ∆Rl−l′+ in GoSam+Sherpa, both channels, with and without Higgs. . . 122

7.22 ∆Rl−l′+ in GoSam+Sherpa, gg-initiated only, with and without Higgs. 123



List of Tables

7.1 List of GoSam processes performed and checked. . . . . . . . . . . . . 96

7.2 Comparison of a phase-space points with gg2VV. . . . . . . . . . . . . 105

7.3 Comparison of gg-initiated process with gg2VV. . . . . . . . . . . . . 105

7.4 Comparison of cross-section results with MCFM. . . . . . . . . . . . . . 107

A.1 Standard Model parameters. . . . . . . . . . . . . . . . . . . . . . . . 146

xi



Chapter 1

Introduction

Particle Physics has its roots in a long tradition of probing the types of matter of

which the universe is made and the interactions between them. From its study, we

gain insights not only into very fundamental, small scale phenomena, but also into

the very early history of the universe, and with theories that are applicable at ever

higher energy, we probe ever closer to the Big Bang. All modern Particle Physics

is built on Quantum Field Theories (QFTs), which trace their origins back to the

1920s, to descriptions of the quantised interaction between light and the electron by

Dirac [1], which Fermi later reformulated into Quantum Electrodynamics (QED) [2].

The concept of a non-abelian local gauge theory was introduced in 1954 by Yang

andMills [3], and a mechanism to introduce masses to such theories was postulated in

1964 by three independent teams: Higgs [4,5]; Englert and Brout [6]; and Guralnik,

Hagen and Kibble [7]. In the 1960s, Glashow [8], Weinberg [9] and Salam [10] used

these theories to expand QED, including it and the weak force in a single framework.

As regards nuclear matter, the quark description was developed in 1964, indepen-

dently by Gell-Mann [11] and Zweig [12]. It held that the hadrons were composed

of a more fundamental set of particles, the quarks, with each meson composed of a

quark pair and each baryon a quark triplet. At the time, only the u, d and s quarks

were needed to explain the system of particles: the J/ψ meson, the first charmed

hadron, was discovered in 1974 [13, 14].

It soon became clear in studies of the baryons known at the time that there was

a need for an additional interaction: for example, the ∆++-baryon had spin 3
2
and

1



Chapter 1. Introduction 2

isospin 3
2
[15], and so according to the model it should have been composed of three

up-quarks with aligned spins. However, it was a fermion, and therefore required

an additional antisymmetric degree of freedom for consistency. Greenberg [16], and

Han and Nambu [17] postulated an SU(3) charge, later to be termed colour, and the

latter also noted that there could be 8 vector bosons, which would later be termed

the gluons.

This completed the components required to build the Standard Model (SM),

in which all of the calculations of this thesis are given. The SM is a neat model

which, using only 19 free parameters1, gives a very good description of all particle

physics phenomena observed to date2: specifically, it is a QFT which describes all

known particles and their three lower-scale interactions (i.e. not gravity). These

fundamental forces are written in the combined gauge group U(1)Y × SU(2)L ×
SU(3)C , and the first two groups are spontaneously broken to U(1)QED by the Higgs

mechanism, allowing the W and Z bosons to be massive, and the photon massless.

However, although it seems pleasantly self-contained, we should not imagine

that the Standard Model is a complete theory, as there are still aspects, from both

experimental and theoretical points of view, which are not yet satisfactory.

Experimental Status of the SM

At the time of writing, it may well be that all components of the SM have been

observed experimentally: it was announced this month [18, 19] that a particle con-

sistent with the Higgs boson, the final part of the SM, has been observed by the two

largest detectors at the Large Hadron Collider (LHC), at around 125 GeV.

From experiments previous to the LHC, most notably from SM fits from the

precision studies at the Large Electron-Positron Collider (LEP) [20], there have

been hints of tensions, which could be an indication of physics beyond the Standard

1The masses of the Higgs and Z, 9 fermion masses, 3 mixing angles, 1 mixing phase, 3 coupling

strengths, and the CP-violating topological term θQCD.
2An exception being that the SM in its standard form does not include neutrino masses, which

have been observed and can be added in (with the addition of another 3 masses, 3 mixing angles

and a phase).
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Model (BSM) within the reach of direct searches at the LHC. Although the LHC

has been performing such searches, there have not so far been any such observations.

Theoretical Status of the SM

The SM is an extremely successful theory, but it is clear that it cannot be valid in all

cases at all scales: the most obvious example being that it does not include gravity,

which only becomes relevant at scales far larger than we can probe in currently-

conceivable collider experiments.

There is also a problem of apparent arbitrariness: there is no clear reason why

Nature would choose U(1)Y ×SU(2)L×SU(3)C , nor why there are three generations,

nor why there should be such a large range of scales, such as between the electron

and Z-boson masses.

The SM also suffers from the hierarchy problem, that it is not clear what protects

the Higgs boson from radiative corrections which would act to raise its mass. Many

BSM theories have been proposed which would solve this problem, for example

supersymmetry and extra dimensions, and the work of the LHC, to observe or

constrain these models, continues.

1.1 Outline of Thesis

In Chapter 2, we discuss the theoretical background to particle physics and the

Standard Model, and in Chapter 3 we discuss next-to-leading order calculations

in general. In Chapter 4, we discuss the treatment of tensor integrals by tensor

reduction. In Chapter 5, we detail the specific work on a library for scalar integrals,

particularly in terms of certain difficult limits, and in Chapter 6 we discuss the

implementation of such a library with complex masses, in order to be able to include

the effects of unstable particles. In Chapter 7 we describe a particular calculation,

pp→ e+e−µ+µ− by diboson production, which was performed by linking the GoSam

and Sherpa programmes, before concluding in Chapter 8.



Chapter 2

Particle Physics and The Standard

Model

The fundamental machinery of the Standard Model is Quantum Field Theory (QFT):

a set of techniques in which we begin with a Lagrangian L representing our fields

and their interactions, and calculate from it physical quantities such as the cross

section, in a way briefly reviewed in this chapter.

2.1 Scattering

In particle physics, we are interested in scattering processes, that is we wish to

describe processes at colliders where there are (usually) two incident particles and

a number of resultant particles1. To do this, we need to consider the momentum

states of the incoming particles at large negative time, denoted |i〉in, and those of

the outgoing states at large positive time, denoted |f〉out, so that we are far from

the scattering interaction. We can then describe the amplitude for the transition

between them, as we would in quantum mechanics, by calculating their overlap:

〈f |out |i〉in , (2.1.1)

1Much of the detail for this section and throughout the thesis draws on the excellent literature

around the subject, including [21–26].

4



2.1. Scattering 5

but the evolution of states in time can be described by the Hamiltonian, so we can

evolve them to a common time (say, t = 0):

〈f |out |i〉in = lim
T→∞

〈f(T )| |i(−T )〉 (2.1.2)

= lim
T→∞

〈f |eiH(2T )|i〉 . (2.1.3)

We rewrite this double time translation matrix between the states as a Scattering

matrix S:

〈f | S |i〉 (2.1.4)

and so the probability of a scattering from |i〉 to |f〉, remembering the normalisation,

will be

P =
|〈f | S |i〉|2
〈i|i〉 〈f |f〉 . (2.1.5)

In scattering, we have the uninteresting case where nothing happens and |i〉 = |f〉.
To exclude this, we often work with the matrix (S − 1). We will also always have

overall four-momentum conservation, so we can remove it in the definition of a

process-specific quantity, the invariant matrix element M:

〈f | (S− 1) |i〉 = (2π)4δ(4)

(
∑

i

pi

)

Mi→f , (2.1.6)

where factors of 2π are included for convenience.

2.1.1 Cross-section σ

Let us consider two collinear colliding beams of particles a and b, with a number

of particles per unit beam area ρa(x, y) and ρb(x, y). We define the integrated

luminosity2 L , which is similar to the flux of a fixed-target experiment, by

L =

∫

dAρa(x, y)ρb(x, y) (2.1.7)

with dA the element of the beam collision area.

Now we can express the number of the scattering interactions that we are inter-

ested in N using a more general quantity, the cross-section σ:

N = Lσ. (2.1.8)

2Its time-derivative being called the instantaneous luminosity.
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It is this σ which we can treat as the fundamental quantity to measure and calculate.

By dimensional analysis, it is an area, which gives rise to its name.

We can examine the relationship between σ and M by considering the infinites-

imal probability for a known initial state3, with beams along the z-direction, scat-

tering into n particles with three-momenta in the small region d3p1d
3p2 . . . d

3pn. As

shown in Chapter 4 of [21], we arrive at:

dσ =
1

2EaEb

∣
∣
∣
∣

pa,z
Ea

− pb,z
Eb

∣
∣
∣
∣

−1
(

n∏

j=1

d3pj
2Epj

)

|M(pa, pb → p1, p2, . . . , pn)|2

× (2π)4δ(4)

(

pa + pb −
n∑

j=1

pj

)

(2.1.9)

and this can be used in differential form as a differential cross-section, or integrated

over all outgoing momenta to obtain the total cross-section.

2.1.2 The Langrangian and Perturbative Calculations

Now that we have related physical observables to the matrix element, we would like

to be able to calculate it. Rather than using the Hamiltonian to evolve our states

in time, we will use a formulation based on a related quantity called the Lagrangian

L, or rather its density L,4 with L =
∫
d3xL. We will develop the very intuitive

method used to perform this perturbative expansion, introduced by Feynman [27],

which we come to in Section 2.2.3. As in classical field theory, we will apply the

principle of least action S :

S =

∫

dtL =

∫

d4xL, (2.1.10)

henceforth we will only consider L, so we will drop the word “density” from its

description. From the minimisation of S , we gain an Euler-Lagrange equation for

3i.e. one with a specific number of particles, usually two, which have known particle type

(flavour) and known momenta and polarisation.

4We can connect this to the Hamiltonian density using H = φ̇i

∂L
∂φ̇i

− L, with the dot denoting

differentiation with respect to time. There is an implied sum over i, as we use the Einstein

summation convention (except where we note otherwise) in this thesis.
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each field φi in the Lagrangian:

∂µ
∂L

∂(∂µφi)
=
∂L
∂φi

. (2.1.11)

We will split this Lagrangian:

L = Lfree + λLint (2.1.12)

such that Lfree is that part of the theory whose solutions are plane-waves, and

Lint, the interaction Lagrangian, contains the interactions between the fields of the

model. We will expand our matrix elements in this small parameter5 λ. This will

be done using the method of Feynman diagrams, a pictorial representation which

relies on rules derived from L. In particular, this thesis is devoted to techniques for

the calculation of the second term in this expansion.

Spinors

Before we go any further, we must first introduce the concept of a spinor, which

is an object representing a spin-1
2
particle, coming from solving the Euler-Lagrange

equation (2.1.11) for ψ̄, defined by ψ̄ = ψ†γ0, in the free Dirac particle Lagrangian6

Lfree,Dirac = ψ̄(i��∂ −m)ψ (2.1.13)

so i��∂ψ −mψ = 0 (2.1.14)

(�p−m)ψ = 0, (2.1.15)

where we have used the momentum operator pµ = i∂µ, and introduced Feynman

slash notation �p = γµpµ. We solve this for plane-waves and spin s with ψ(x) =

us(p)e−ip·x. We call this four-component object us(p) a spinor, and choose the

normalisation:

ūs(p)ur(p) = 2mδsr (2.1.16)

5In this thesis, we will restrict ourselves to the perturbative regime: the case in which the

coefficient λ is a small parameter, so that it will make sense to expand in it.
6The Dirac matrices γµ are introduced in Appendix B.1.
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and we also have the useful property:

∑

s

us(p)ūs(p) = �p+m. (2.1.17)

We have a similar (orthogonal) object for the antifermion:

ψ̄(x) = vs(p)e+ip·x (2.1.18)

v̄s(p)vr(p) = −2mδsr (2.1.19)
∑

s

vs(p)v̄s(p) = �p−m (2.1.20)

ūs(p)vr(p) = 0 (2.1.21)

v̄s(p)ur(p) = 0. (2.1.22)

2.2 Quantum Electrodynamics

Now that we have set up the framework, let us consider Quantum Electrodynamics,

historically the first component of the Standard Model to be formulated. We start

by writing down a free Lagrangian for a massive electron field ψ

Le = iψ̄γµ∂µψ −mψ̄ψ. (2.2.23)

This Lagrangian is invariant under a global U(1) transformation, defined here as:

ψ → eiθψ, (2.2.24)

with θ being a constant:

Le → ie−iθψ̄γµeiθ∂µψ −me−iθψ̄eiθψ = Le. (2.2.25)

Now let us consider instead a local U(1) transformation, under which we allow θ to

be a function of position:

ψ → eiθ(x)ψ (2.2.26)

so ∂µψ → eiθ(x)∂µψ + i (∂µθ(x)) e
iθ(x)ψ (2.2.27)

and the Lagrangian (2.2.23) is not invariant under this transformation

Le → ie−iθ(x)ψ̄γµ
(
eiθ(x)∂µψ + i (∂µθ(x)) e

iθ(x)ψ
)
−me−iθ(x)ψ̄eiθ(x)ψ (2.2.28)

→ Le − ψ̄γµ (∂µθ(x))ψ. (2.2.29)
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If we wish to make the Lagrangian invariant under this transformation, we must

introduce a new field, a U(1) gauge field Aµ, in a term −eψ̄γµAµψ, and require that

it transform according to:

Aµ → Aµ −
1

e
∂µθ, (2.2.30)

so Le − eψ̄γµAµψ → Le − ψ̄γµ (∂µθ(x))ψ − eψ̄γµAµψ − eψ̄γµ
(

−1

e
∂µθ

)

ψ

→ Le − eψ̄γµAµψ (2.2.31)

and we have a Lagrangian invariant under our transformation. It will turn out that

this new field, which we introduced merely to keep our invariance, is the photon,

and that this extra term is nothing other than the interaction between the electron

and the photon. If we are to promote the Aµ-field to be a true particle, however,

we will need one more term to describe its propagation7, involving the field-strength

tensor F µν :

LF = −1

4
F µνFµν (2.2.32)

with F µν = ∂µAν − ∂νAµ. (2.2.33)

We can check the gauge invariance of this term easily: indeed the field-strength

tensor is individually gauge invariant:

F µν → ∂µ
(

Aν − 1

e
∂νθ

)

− ∂ν
(

Aµ − 1

e
∂µθ

)

(2.2.34)

→ ∂µAν − 1

e
∂µ∂νθ − ∂νAµ +

1

e
∂ν∂µθ (2.2.35)

→ F µν . (2.2.36)

So we have a Lagrangian describing the propagation and interaction of the electron

and the photon:

LQED = iψ̄γµ∂µψ −mψ̄ψ − eψ̄γµAµψ − 1

4
F µνFµν . (2.2.37)

7Note that without this kinetic term, its Euler-Lagrange equation (2.1.11) is ∂L
∂A

= 0.
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It is convenient to combine the first and third terms by writing a covariant derivative

Dµ = ∂µ + ieAµ (2.2.38)

which has the property that Dµψ transforms in the same way as ψ

Dµψ = ∂µψ + ieAµψ → ∂µe
iθ(x)ψ + ie

(

Aµ −
1

e
∂µθ(x)

)

eiθ(x)ψ

→ eiθ(x)∂µψ + eiθ(x)i (∂µθ(x))ψ + ieAµe
iθ(x)ψ − ieiθ(x)ψ∂µθ(x)

→ eiθ(x)Dµψ (2.2.39)

so that LQED = iψ̄γµDµψ −mψ̄ψ − 1

4
F µνFµν . (2.2.40)

Incidentally, it is worth noting at this point that a photon mass term 1
2
m2
AA

µAµ

cannot be trivially included as it is not gauge invariant under this U(1):

m2
AAµA

µ → m2
A

(

Aµ −
1

e
∂µθ

)(

Aµ − 1

e
∂µθ

)

(2.2.41)

→ m2
AAµA

µ − 2

e
Aµ∂µθ +

1

e2
∂µθ∂

µθ. (2.2.42)

2.2.1 Dimensions in the Lagrangian

Given that the action S =
∫
d4xL is dimensionless, the Lagrangian must have mass

dimension8 4. We then have:

[∂µ] = 1 [m0] = 1 [ψ] =
3

2
[Aµ] = 1 [e] = 0. (2.2.43)

We will revisit these dimensions in Section 2.3.5.

2.2.2 Gauge-fixing

So far, we have a gauge-invariant theory, which means that there are different con-

formations of our fields possible which are not physically distinguishable. We wish

to remove this degeneracy, and in the process make our propagators well defined,

by making the kinetic terms uniquely invertible. In order to do this, we can add a

8We work in natural units, ~ = c = 1 throughout, see Appendix A.1.
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gauge-fixing term to our Langrangian. The most common choice restricts the theory

to the Rξ gauges, which are Lorentz invariant:

LGF = −(∂µA
µ)2

2ξ
. (2.2.44)

We can either leave ξ in our calculation, and check that the final result does not

depend on it, or we can fix it before we start to a value we choose for our convenience,

simplifying the calculation. The three main choices are: ξ → 0 (Landau gauge);

ξ = 1 (Feynman gauge); ξ → ∞ (Unitary gauge). Different gauge choices can

simplify different calculations, and we will choose the Feynman gauge throughout

this thesis, for reasons that will become apparent in the following section.

2.2.3 QED Feynman Rules

We can take QED as our first example of a set of Feynman rules. There are four

types of such rule:

External Particle Objects: Incoming and outgoing particles give an object, which

might be a spinor, a polarisation vector, or unity9.

Outgoing fermion
α

p
ūα(s, p)

Incoming fermion
α

p
uα(s, p)

Outgoing antifermion
α

p
vα(s, p)

Incoming antifermion
α

p
v̄α(s, p)

Outgoing photon
µ

p
ǫ∗µ(λ, p)

Incoming photon
µ

p
ǫµ(λ, p)

9For a scalar particle, none of which appear in QED.
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Internal Particle Propagators: For lines on which particles propagate entirely

within the diagram, the diagram receives a factor of the inverse of its momentum-

space free particle operators.

Internal photon line
µ ν −i

p2 + iλ

(

gµν − (1− ξ)
pµpν

p2

)

Internal fermion line
α β

p
i(6p +m)βα
p2 −m2 + iλ

where iλ is an infintesimal displacement from the real axis. We can now see

the virtue of the Feynman gauge: the second term in the photon propagator

is set to zero, simplifying the calculation.

Vertex Factors: The interaction Lagrangian will give a certain set of permitted

vertices and the prefactors associated with them. In QED, the expansion is in

the small parameter e, with the fermion carrying a charge qe.

Vertex

α β

µ
−iqeγµβα

Overall Factors: Certain features of a diagram can lead to overall factors: hav-

ing n indistinguishable particles in the final state gives a factor of 1
n!
; closed

fermion loops give factor of (−1); diagrams involving Majorana fermions must

be treated with care due to an overall sign10.

2.2.4 Example: e+e− → µ+µ− at Leading Order

We can now investigate a specific example: e+e− → µ+µ−, with massless (and on-

shell) electrons and muons, to leading order (LO) in QED (drawing on [21]). There

is only one possible diagram at this order, shown in Figure 2.111.

10This is laid out carefully in [28, 29].
11The diagrams in this thesis are drawn with axodraw [30]. The jaxodraw [31] interface was

used for the larger diagrams such as this one.
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e−
p2 p4

µ+

µ−

p3p1
e+

γ

q

Figure 2.1: Leading order diagram for e+e− → µ+µ−.

Using the Feynman rules in Section 2.2.3, we write down:

iMLO = v̄2(−i(−1)eγµ)u1
−igµν
q2

ū3(−i(−1)eγν)v4, (2.2.45)

where spinors are marked with the subscript of their momentum, and the +iλ can

be neglected. We can square this:

|MLO|2 =
e4

q4
(v̄2γ

µu1ū3γµv4) (ū1γ
ρv2v̄4γρu3) , (2.2.46)

and after averaging over initial spins and summing over final ones, remembering

that we are working with massless electrons and muons, we have

|MLO|2 =
e4

4q4
Tr (γµ��p4γρ��p3)Tr (γ

µ
��p1γ

ρ
��p2) . (2.2.47)

Now we use the identity12

Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) (2.2.48)

to find

|MLO|2 =
e4

4q4
pσ4p

ρ
34 (gµσgνρ − gµνgσρ + gµρgσν) p1αp2β4

(
gµαgνβ − gµνgαβ + gµβgαν

)
,

(2.2.49)

which we can simplify to

|MLO|2 =
8e4

q4
pσ4p

ρ
3p1αp2β

(
δασ δ

β
ρ − δβσδ

α
ρ

)
(2.2.50)

|MLO|2 =
8e4

q4
((p4 · p1) (p3 · p2)− (p4 · p2) (p3 · p1)) , (2.2.51)

12For an LO calculation, we can work in four dimensions, rather than the d of Section 2.3.5.
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and given that we are in the massless case, so, e.g.

s13 = (p1 + p3)
2 = p21 + 2p1 · p3 + p23 = 2p1 · p3, (2.2.52)

we have

|MLO|2 =
2e4

q4
(
s223 + s213

)
. (2.2.53)

We introduce a parameter α = e2

4π
, which will be our way of referring to the coupling

constants in the results of calculations, and so we write:

|MLO|2 =
32π2α2

q4
(
s223 + s213

)
(2.2.54)

and we talk of the the LO squared matrix element as being O(α2). The next-to-

leading order (NLO) calculation of this process is explored in Section 3.2.

2.3 Divergences

We can use QED to highlight a more general aspect of QFTs which becomes clear

when we start trying to calculate loop diagrams13, namely that the results are di-

vergent and we need to deal with these divergences in a consistent manner. The

divergences are of two types:

Ultraviolet (UV) divergences: These occur in the short-distance or high-energy

behaviour of a loop integral, and result from our attempt to apply our theory

to an energy scale beyond its applicability.

Infrared (IR) divergences: These occur in the long-distance or low-energy be-

haviour of a loop integral, or else from a soft or collinear divergence in a real

emission process. They are only present if we are using a theory which includes

massless particles.

We will need first to regularise both of these divergences, that is to develop a

scheme in which they can be described mathematically. The UV divergences will

13Or real emission diagrams, as we will see in Section 2.3.2.
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also need a redefinition of the theory, renormalisation, to allow us to find physical

results, but the IR divergences will cancel within the model, leaving finite measurable

quantities.

2.3.1 Ultraviolet Divergences

To illustrate the appearance of a UV divergence, let us consider the two-point

function for a fermion of mass m0: at leading order, this is just the propagator

PLO = i

�p−m0+iλ
, and at next-to-leading order there is a correction from the loop

diagram:

Figure 2.2: A loop correction to the fermion propagator.

Näıvely, the loop diagram would give a contribution:

i

�p−m0 + iλ
iqeγµ

(∫

d4k
−igµν

(p− k)2 + iλ

i(��k +m0)

k2 −m2
0 + iλ

)

iqeγν
i

�p−m0 + iλ
(2.3.55)

at large k, the integral14 will be of the form
∫
d4k 1

k4
. But this integral is ill-defined:

it will have logarithmic-type behaviour, that is it will diverge at the infinite upper

limit. We can think of this divergence as due to our hubris in assuming that QED

will be valid up to infinite energy, when physics at that scale is not known (and it

would be very surprising if it were similar to QED!).

2.3.2 Infrared Divergences

We can demonstrate the appearance of an infrared divergence in a real emission using

the simplified diagram in Figure 2.3, where the fermion is taken to be massless and

the dark blob is understood to be all other components of the full diagram:

We will have in our expression some terms from the blob, which we will denote

14The �k in the numerator gives an odd term which vanishes on symmetric integration.
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p+ q
p

q

Figure 2.3: Simplified diagram used to illustrate the appearance of an IR divergence.

with B 15:

iM = ū(p) �p+ �q

(p+ q)2
(ieγµ)Bǫ∗µ(q) (2.3.56)

now the denominator of the propagator will be

(p+ q)2 = 2p · q = 2(p0q0 − |p||q| cos θ) = 2|p||q|(1− cos θ) (2.3.57)

where we have used the fact that for massless particles, E2 = |p|2, and where θ is

the angle between the external particles’ 3-momenta. We can see that there are

two circumstances in which the denominator will become small: when |p| → 0 or

|q| → 0, which we can call a soft divergence; and when cos θ → 1, that is when the

particles’ paths become parallel, which we will call a collinear divergence. These are

the two possibilities for an IR divergence.

2.3.3 Regularisation

In order to treat the IR and UV divergences in our theory, we need to find a way

of writing them such that they appear not merely as infinities, but as the limit of

some finite expression.

Let us start with our integral (2.3.55):

i

�p−m0 + iλ
iqeγµ

(∫

d4k
−igµν

(k + p)2 + iλ

i(��k +m0)

k2 −m2
0 + iλ

)

iqeγν
i

�p−m0 + iλ
. (2.3.58)

An immediate way of regularising the UV divergence would be simply to assert

that we do not know the physics above some scale Λ, and so to decide to cut off our

integral at that point16. This will leave us with a log(Λ)-term in our result. Although

15Notably, B will have to carry a suppressed fermion index.
16A related, but more sophisticated, method is Pauli-Villars regularisation [32].
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simple, this method is not desirable as it preserves neither Lorentz invariance nor

gauge invariance.

Other schemes exist, including the introduction of a small photon mass into

QED17 (which covers IR divergences only), which will not be discussed here. The

method used throughout this thesis is Dimensional Regularisation.

2.3.4 Dimensional Regularisation

In Dimensional Regularisation [34, 35], we consider integrations that would näıvely

be 4-dimensional in d = 4− 2ǫ dimensions. The advantages of this scheme are that

it can be used to regularise both IR and UV divergences, and that it respects the

Lorentz and gauge invariance that were broken by the simple cutoff regulator.

Consider a simplified form of a UV-divergent loop integral18:

∫ ∞

−∞
d4k

1

(k2 −m2
0)

2
= Ω4

∫ ∞

0

k3dk

m4
0

((
k
m0

)2

+ 1

)2 (2.3.59)

=
Ω4

2

∫ ∞

0

κdκ

(κ+ 1)2
(2.3.60)

=
Ω4

2

Γ(2)Γ(0)

Γ(2)
→ ∞, (2.3.61)

where the Γ-functions arise from the results in Appendix B.4, which are explored in

more detail in Section 4.1.6. We have used κ =
(

k
m0

)2

, and the constant factor Ω4

comes from the angular integrations and is not crucial to the argument.

But in d dimensions,

∫ ∞

0

dd k
1

(k2 −m2
0)

2
= Ωd

∫ ∞

0

kd−1dk

m4
0

((
k
m0

)2

+ 1

)2 (2.3.62)

=
Ωd

2

∫ ∞

0

md−4
0

κ
d−2
2 dκ

(κ+ 1)2
(2.3.63)

17This is used in some modern electroweak calculations, for example in [33].
18In the first line, we move to Euclidean space without giving the detail, for simplicity of illus-

tration. This is the cause of the sign change in the denominator. This process is explained in

Section 4.1.6.
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=
Ωd

2
md−4

0

Γ( d
2
)Γ(1− d

2
)

Γ(2)
(2.3.64)

=
Ωd

2
md−4

0

Γ(2− ǫ)Γ(ǫ)

Γ(2)
, (2.3.65)

so the divergence appears as a pole in the Γ-function (see Appendix B.3):

Γ(ǫ) =
1

ǫ
− γE +O(ǫ). (2.3.66)

2.3.5 Revisiting Dimensions

At this point, we must revisit Section 2.2.1: S must still be dimensionless, but now

S =
∫
dd xL, so that

[∂µ] = 1 [m0] = 1 [ψ] =
d − 1

2
[Aµ] =

d − 2

2
. (2.3.67)

The coupling e would have dimension 4−d
2

= ǫ, but we do not wish our coupling

to be dimensionful, so we introduce a regularisation scale µReg, and redefine e →
µǫRege

19. A further choice that comes at this point, the dimensionality of vector

bosons, is explored in detail in [36] but need not concern us here.

2.3.6 Renormalisation

The concept of renormalisation is a remedy to the fact that our first attempt at

writing down a Lagrangian gives an insufficient description. In the bubble diagram

in Figure 2.2, we have a correction to the fermion two-point function. Let us continue

this example to illustrate the functioning of renormalisation, by the absorption of

divergent quantities into parameters of the Lagrangian (although a full discussion

of the mass renormalisation is beyond the scope of this work).

We can imagine continuing the correction to ever higher order, with a more

general sum (a Dyson sum [37]) of all loops20, represented by a grey circle, whose

19As we will see in Section 2.3.7, this dimensionless quantity will be µReg-dependent
20Technically the loops have to be one particle irreducible to avoid double-counting.



2.3. Divergences 19

value we represent as −iδm, a notation that will become clearer later21:

PN∞LO = + + + . . . (2.3.68)

=
i

�p−m0 + iλ
+

i

�p−m0 + iλ
(−iδm)

i

�p−m0 + iλ

+
i

�p−m0 + iλ
(−iδm)

i

�p−m0 + iλ
(−iδm)

i

�p−m0 + iλ
+ . . . (2.3.69)

but this is a simple geometrical series:

PN∞LO =
i

�p−m0 + iλ

∞∑

j=0

(
δm

�p−m0 + iλ

)j

(2.3.70)

=
i

�p−m0 + iλ

1

1−
(

δm

�p−m0+iλ

) (2.3.71)

=
i

�p− (m0 + δm) + iλ
, (2.3.72)

that is to say that we can absorb this infinite string of divergent integrals if we

perform a redefinition of the mass22 to mr = m0 + δm. This will make sense

because, although m0, which we call the bare mass, is the parameter entered in our

Lagrangian, the measured value of the mass – the pole in the propagator23 – will be

at mr.

The Renormalised Lagrangian

We now wish to incorporate this renormalised parameter into our QED Lagrangian,

which we will do by adding and subtracting a counter term, which involves δm and

is formally of higher order in the coupling, and writing

m0 = Zmmr = mr − δm. (2.3.73)

We will also need to renormalise the other components: in order to remove the

divergence from the diagram in Figure 2.4 we will need to renormalise the fields

21For the purposes of this illustration, we will treat this quantity as if it were a simple number.

In fact it will be a function of �p (and p2, but we remember that p2 = (�p)
2).

22r for renormalised.
23We will revisit this for unstable particles in Section 6.1.
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Figure 2.4: A loop correction to the photon propagator.

ψ0 = Z
1
2
ψψr = ψr − δψ (2.3.74)

Aµ0 = Z
1
2
AA

µ
r = Aµr − δAµ (2.3.75)

and the diagram in Figure 2.5 has a divergence we must remove by renormalising

the charge

Figure 2.5: A loop correction to the QED vertex.

e0 = Zeer =
Z1

Zψ
√
ZA

er = er − δe, (2.3.76)

where the form of this is chosen to minimise the clutter in the next step.

Our Lagrangian (2.2.37) becomes

LQED = Zψiψ̄rγ
µ∂µψr − Z1erψ̄rγ

µAr,µψr − ZψZmmrψ̄rψr − ZA
1

4
F µν
r Fr,µν . (2.3.77)

In this new Lagrangian, we still wish to respect gauge invariance. The fermion

mass term and field-strength tensor terms do so automatically, but as in Section 2.2,

the first two terms must do so in combination. We see that we need Z1 = Zψ for this

to hold. This is the simplest case of the Slavnov-Taylor identities [38,39], which use

gauge invariance to impose conditions on the counterterms. Now let us substitute

the Zs out of the Lagrangian:

LQED = iψ̄rγ
µ∂µψr − erψ̄rγ

µAr,µψ −mrψ̄rψr −
1

4
F µν
r Fr,µν + (δ-containing terms).

(2.3.78)

So we have recovered a form that resembles the original Lagrangian but contains

the renormalised quantities and some additional counter terms, which act to cancel

the UV divergences of the theory.
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2.3.7 Running of Parameters

Let us consider a QED cross-section σ, which will be described by a perturbation

series in α, dependent upon the set of input momenta P , and after renormalisation

also on µReg:

σ(P, µReg) =
N∑

j

aj(P, µReg)α
(j+l), (2.3.79)

where l is the power of α in the LO for this process, andN will be infinite for a perfect

calculation, but any practical calculation will be performing an approximation with

N a small integer. This equation seems to imply that the (physically measurable)

cross-section σ depends upon an unphysical scale that we introduced by hand, which

cannot be the case.

Instead, if we can measure σ, taking µReg to have any value we choose, we can

see this as a measurement of α at this scale – and α will vary with this scale, or run.

Because in principle the scale we introduced to keep α dimensionless and this scale

at which we are measuring α are different, we will call the latter the renormalisation

scale µR, but we will take them to be equal throughout this thesis.

The fact that σ must be independent of µR gives us a further relation:

dσ(P, α(µ2
R), µR)

dµ2
R

= 0. (2.3.80)

Now let us simplify the problem, by saying the cross-section only depends on a single

physical scale Q2. Because cross sections are of mass dimension −2, and because

before renormalisation we only had the scale Q2, we know that

σ =
1

Q2
σ̄, (2.3.81)

where σ̄ is dimensionless. This means that in the higher order corrections, which

will involve µR, it will only appear as t ≡ log
(
Q2

µ2
R

)

, and so from (2.3.80):

∂σ

∂t
− β(α)

∂σ

∂α
= 0 (2.3.82)

where β(α) ≡ µ2
R

∂α(µ2
R)

∂µ2
R

=
∂α(t)

∂t
. (2.3.83)
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This β-function can in principle be calculated to any order24 and written:

β(α) = −α
(

β0

( α

4π

)

+ β1

( α

4π

)2

+ ...

)

, (2.3.84)

so to first order, the running of α is:

µ2
R

∂α(µ2
R)

∂µ2
R

= −β0
(
α2

4π

)

(2.3.85)

∫ α(Q2)

α(µ2
R
)

α−2dα = − β0
4π

∫ Q2

µ2
R

(d log(µ2)) (2.3.86)

α(Q2) =
α(µ2

R)

1 + α(µ2
R)

β0
4π

log Q2

µ2
R

, (2.3.87)

so we can evolve any one measurement of α to any other scale at which it is well-

defined.

In QED, β0 = −4
3
, so the coupling strength increases with increasing energy.

This increase is sufficiently slow not to cause concern at LHC energies. In QCD (see

Section 2.5), the analogous αs runs with

β0 =
11NC − 2nf

3
, (2.3.88)

where NC = 3 is the number of colours and nf is the number of active quarks: those

with mass well below the scale in question. β0 is positive, and so the QCD β-function

is negative, at all energies in the SM, so the coupling strength of QCD decreases with

increasing energy. The corollary is that it will increase with decreasing energy until

it hits the Landau pole, where αs(µ
2
R)

β0
4π

log Q2

µ2
R

= −1, at Qpole ≡ ΛQCD ∼ 0.2GeV.

This fact, asymptotic freedom, is what allows us to take perturbative QCD results

seriously at high energies.

We can also expand this analysis to cover other model parameters, and (within

the MS-scheme, see Section 2.3.8) they will also run with the renormalisation scale.

2.3.8 Renormalisation Schemes

When performing our renormalisation, we have to remove the UV poles exactly.

However, we have an additional choice regarding the finite subtraction that we

24For QCD, it has been calculated up to fourth order [40, 41].
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include as part of our scheme. In this thesis, we work in the MS scheme, which

means that we subtract the object:

1

ǭ
≡ 1

ǫ
− γE + log(4π). (2.3.89)

Another option is the MS scheme, in which only the 1
ǫ
is subtracted.

For theories in which there are asymptotic fundamental particles, such as QED,

it is possible to measure masses in the low-energy limit, giving them single, defined

values, and not to have them run. The scheme in which this is performed is called

the on-shell scheme (see for example, Chapters 26-27 of [25]).

2.4 Gauge Fields

In the rest of this chapter, we will extend the theory by expanding to a different

type of gauge interaction. In order to do this, we must develop the machinery of

the group SU(N).

Where in Section 2.2 we had one electron field, we now have an N -plet of fermion

fields, with a gauge transformation

ψi → Uij(x)ψj , (2.4.90)

with Uij being an N × N unitary matrix with unit determinant. We restrict the

discussion to the SU(N), in which we are interested, by excluding U(1) factors, which

are phase factors eiθ. For small transformations, can write this matrix in terms of the

group generators25 ta (we adopt the convention that the generator index is raised,

and the component indices of a generator lowered):

Uij = δij + θataij +O(θ2). (2.4.91)

The generators are hermitian and traceless and satisfy

[ta, tb] = ifabctc, (2.4.92)

25We will see that the mathematics works in a very similar way to U(1), and that the “generators”

in Section 2.2 were hidden as there was only one and it was the identity.
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with fabc called the structure constants of the group. Unless all these constants are

zero, we have a non-Abelian group, which in particle physics terms means that the

force-carrying particles have a self-interaction. Notably, in the U(1) case we have an

Abelian group, and indeed there is no photon-photon interaction. We have a choice

of normalisation:

Tr(ta, tb) = TRδ
ab (2.4.93)

and we take TR = 1
2
.

The gauge field Aaµ is in the adjoint representation, and similarly to (2.2.30):

Aµ → UAµU
−1 +

i

g
(∂µU)U

−1, (2.4.94)

where we have introduced the shorthand Aµ = Aaµt
a, g is the coupling constant, and

component indices are suppressed where they are clear from context.

Then the covariant derivative will be:

Dµ = (∂µ + igAaµt
a) (2.4.95)

and we can check the transformation property analogous to (2.2.39):

Dµψ = (∂µ + igAµ)ψ (2.4.96)

→ ∂µ (Uψ) + ig(UAµU
−1 +

i

g
(∂µU)U

−1)Uψ (2.4.97)

→ U∂µψ + (∂µU)ψ + igUAµψ − (∂µU)ψ (2.4.98)

→ UDµψ, (2.4.99)

so indeed Dµψ does transform as ψ does.

We now define the field-strength tensor:

F µν = F a,µνta =
−i
g

[Dµ, Dν ] (2.4.100)

so F a,µνta = ∂µAa,νta − ∂νAa,µta + igAb,µAc,ν
[
tb, tc

]
(2.4.101)

F a,µν = ∂µAa,ν − ∂νAa,µ − gfabcAb,µAc,ν (2.4.102)

and we can see that, unlike for the U(1) case, F µν is not gauge-invariant alone26,

but the combination Tr(F µνFµν) = F a,µνF a
µν , which we will use in the Lagrangian,

is.

26Rather, Fµν → UFµνU−1
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Examples

We will need two examples for the Standard Model. The first is the SU(2) of the

weak interaction, for which the three generators τ j = i
2
σj , where

σ1 =




0 1

1 0



 σ2 =




0 −i
i 0



 σ3 =




1 0

0 −1



 (2.4.103)

are the Pauli matrices, and the structure constants are the Levi-Civita tensor ǫijk.

The second is the SU(3) of the strong interaction, for which the generators ta = λa

2
,

where λa are the eight Gell-Mann matrices :

λ1 =








0 1 0

1 0 0

0 0 0








λ2 =








0 −i 0

i 0 0

0 0 0








λ3 =








1 0 0

0 −1 0

0 0 0








λ4 =








0 0 1

0 0 0

1 0 0








λ5 =








0 0 −i
0 0 0

i 0 0








λ6 =








0 0 0

0 0 1

0 1 0








λ7 =








0 0 0

0 0 −i
0 i 0








λ8 =








1√
3

0 0

0 1√
3

0

0 0 −2√
3








(2.4.104)

and the structure constants are fabc, with:

f 123 = 1, f 147 = f 165 = f 246 = f 257 = f 345 = f 378 =
1

2
, f 458 = f 678 =

√
3

2
,

(2.4.105)

and all other entries being either deduced from the antisymmetry, or zero.

2.5 Quantum Chromodynamics

We can now describe Quantum Chromodynamics (QCD)27, as a theory of six flavours

of quark, each of which is in a colour triplet (index i), interacting with eight gluons.

27An excellent introduction is given in [22].
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The Lagrangian (in an Rξ gauge) is
28:

LQCD =
∑

q

(
iψ̄q,iγ

µDµψq,i −mqψ̄q,iψq,i
)
− 1

4
F µνFµν −

(∂µA
µ)2

2ξ
. (2.5.106)

Normalisations

In QCD, we have a normalisation choice for:

Tr{tatb} = TRδ
ab (2.5.107)

taijt
a
jk = CF δik (2.5.108)

facdf bcd = CAδ
ab (2.5.109)

and we take TR = 1
2
, which gives CF = 4

3
and CA = NC = 3.

2.5.1 Feynman Rules for QCD

Let us list Feynman rules29 for QCD:

Outgoing fermion
i,α

p
ūi,α(s, p)

Incoming fermion
i,α

p
ui,α(s, p)

Outgoing antifermion
i,α

p
vi,α(s, p)

Incoming antifermion
i,α

p
v̄i,α(s, p)

Outgoing gluon
µ,a

p
ǫ∗µ,a(λ, p)

Incoming gluon
µ,a

p
ǫµ,a(λ, p)

28In this thesis, we do not consider ghost fields [42], which are unphysical fields arising from

gauge fixing. A full explanation of the mechanism is given in, for example, Chapter 16 of [21], but

need not concern us here.
29The quarks will also, similarly to the leptons, interact with the photon. The charges are

fractional, and there is a multiplicative δij of colour at the vertex.
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Internal gluon line
µ,a ν,b

p
−iδab
p2 + iλ

(

gµν − (1− ξ)
pµpν

p2

)

Internal fermion line
i,α j,β

p
i(6p +m)βα
p2 −m2 + iλ

δij

Quark-gluon Vertex

i,α j,β

µ,a
igγµβαt

a
ij

Three-gluon Vertex
p1 p2

p3

µ,a ν,b

ρ,c

gfabc(gµν(p1 − p2)
ρ

+ gνρ(p2 − p3)
µ

+ gρµ(p3 − p1)
ν)

Four-gluon Vertex

ρ,c

µ,a

σ,d

ν,b
−ig2

(
fabef cde(gµρgνσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ)

+ fadef bce(gµνgρσ − gµρgνσ)
)

and we define αs =
g2

4π
, similarly to the QED case.

2.5.2 Colour Confinement and Hadronisation

In Section 2.3.7, we noted that the QCD coupling rises as we decrease the energy

scale, diverging at ΛQCD. That is to say that at low energy scales, the strong force

is non-perturbative, and indeed we have colour-singlet bound states – hadrons – in

that regime. We must also consider, however, that long distance scales are equivalent

to low energies, so the strong force must grow with distance r: if we consider it as

a potential, there will be both the 1
r
Coulomb-like term, and a linear r-term. This

second term grows without limit, and so it would take an infinite amount of energy

to separate two colour-connected objects entirely (colour confinement). Instead, as

two such particles separate, the energy contained in the field between them rises

until there is enough to create two or more coloured particles and break the colour-

connection. This proliferation of new hadrons is called hadronisation, and due to it,

any hard coloured particles produced in a collider are seen as jets of hadrons.
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2.6 Hadron Colliders and the LHC

The LHC, like its predecessor as the world’s highest-energy particle collider the

Tevatron, is a hadron collider. It collides not pointlike particles with well-defined

single-particle asymptotic states, but protons, which are extended clusters of quarks

and gluons.

Because the proton is a complicated object, one might expect that all aspects of

the modelling of their collisions would have to be very phenomenological, and that

QFT calculations, like the ones laid out in this chapter, would be of too small a

(length) scale to have any bearing on experimental results. Fortunately, it is exactly

this scale which saves us, through the concept of factorisation.

2.6.1 Factorisation

We model a hadron as an extended object containing pointlike particles (“partons”),

with a range of momenta. In a collision, an incident particle (usually another hadron)

strikes one of these partons, and scattering takes place. We have two different scales:

the low-energy behaviour of the hadron, and the high-energy collision. Factorisa-

tion [43] states that we can separate these processes, with the dividing line being

the factorisation scale µF , and so we have:

Parton Distribution Functions f
(a)
i (xi, µF ), specific to each hadron a but other-

wise process-independent, which give the distribution of momentum fractions

xi for different possible partons i; and

A Partonic Cross Section σ̂(xi, xj, µR, µF ), constructed from the above QFT,

which is specific for that process, and takes the parton momenta as inputs,

but does not depend directly on the identity of the hadrons.

In addition, if we have final-state coloured particles, they will hadronise (see Sec-

tion 2.5.2).

Now that the situation is well-defined, we can construct a total cross-section σ

(or any other observable) from our partonic cross section σ̂ by summing over possible
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partons i and j and integrating over the momentum fractions30:

σ(µ2
R, µ

2
F ) =

∑

i,j

∫

dxidxjf
(a)
i (xi, µ

2
F )f

(b)
j (xj , µ

2
F )σ̂(xi, xj, µ

2
R, µ

2
F ). (2.6.110)

We can use this new scale, along with the renormalisation scale of Section 2.3.7,

to provide an estimate of the uncertainty in a calculation: because (as we also

stated there) they are arbitrarily introduced, an exact physical result (i.e. not one

calculated in perturbation theory) cannot depend on them. However, because any

calculation that we can currently do is a truncated approximation31, we do have

a residual dependence on these scales. The strength of that dependence gives an

indication of the size of the terms which are missing. Because the µF,R-dependence

of these terms will arise in the form of logarithms of the ratio of µF,R and the scales

of the problem, we take a typical scale of our process to be our central scale choice

for µF,R, in order that these logarithms will not be large, with the conventional limits

on the uncertainty estimate being the values of the observable using twice and half

the central scale.

A typical scale for the LHC might be the mass of the Z-boson MZ . Values for

the fine structure constants vary according to definitions and methodology, but as a

guide, αs(MZ) ∼ 0.12 whereas α(MZ) ∼ 1
130

= 0.008, and so unless there is a reason

for the electroweak corrections to be enhanced, for example, by large logarithms

log2(s/m2
W ) for s ≫ m2

W , the QCD corrections are usually much more important

for a given order.

30The programmes performing this function, event generators, are described in Section 7.3.
31Usually, a truncated series in α, αs or both, but sometimes truncated in one of these parameters

multiplied by a logarithm of two scales.



Chapter 3

Next to Leading Order

Calculations

Although designed as a discovery machine, rather than a precision machine (Lepton

colliders are better suited to high precision), the LHC, which is the most important

particle collider for this generation, can measure differential and integrated cross

sections to accuracies of a few percent. However, a leading order (LO) result can

often have an uncertainty (estimated using the scale variation: see Section 2.6.1.) on

the ten-percent level, requiring next-to-leading order (NLO) calculations to match

the experimental accuracy.

In particular, early studies at the LHC have had to do with rediscovery of the

Standard Model, but if we wish to discover New Physics, then we must often isolate

a small New Physics interaction rate on a large Standard Model background: there-

fore, in order for the New Physics signal to be visible, the Standard Model result

must have errors which are as small as possible.

3.1 Structure of the NLO Calculation

In the rest of the chapter, we lay out a sketch of the structure of an NLO calculation.

To find the NLO matrix element MNLO for (a given phase space point of) a given

process, we start with the leading order piece, i.e. the piece with the lowest possible

order in the coupling (which might be QED, QCD or a combination), which usually

30
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consists of the “tree-level”, or “Born” piece 1 – in this part of the calculation, there

are no loops or additional final- or initial-state particles. Two examples of tree-level

Feynman diagrams are given in Figure 3.1. To increase to NLO accuracy, we need

Figure 3.1: Two leading order diagrams.

two pieces, which are the two possible ways of increasing the order in the coupling:

• adding a loop (“virtual correction”), such as in Figure 3.2, which gives us an

undertermined momentum running around the loop.

Figure 3.2: Two one-loop diagrams.

• adding a real emission, i.e. a new particle which appears in the final state,

such as in Figure 3.3. Note that if we have a programme producing generic

Born-level calculations, it will automatically be able to calculate the real part

(apart from the subtraction, see Section 3.1.1).

Figure 3.3: Two real emission diagrams.

So näıvely we then have:

“MNLO = MBorn +M1loop +MReal”, (3.1.1)

1In some cases (e.g. the gg → ZZ of Section 7.4.2), there are no tree-level diagrams, and the

lowest-order matrix element has one loop.
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although illustrative, this is not strictly meaningful, as MReal has a different phase

space, having an extra particle in the final state.

Now if we wish to find the NLO cross section we must interfere the matrix

element with itself and integrate it over phase space. On squaring, we have the

LO cross-section, the real cross-section, and then the loop contribution comes from

the Born-loop cross term. The square of the virtual contribution is another order

higher, and is therefore neglected in a strict NLO calculation2. Schematically, the

NLO cross-section can be written:

σNLO =

∫

N

|MBorn|2 +
∫

N

2Re
(
MBornM∗

1loop

)
+

∫

N+1

|MReal|2 , (3.1.2)

where the subscript on the integral indicates the number of particles in the phase

space. We saw in Section 2.3 that both the second and third terms are (usually)

formally infinite, having divergences that must be cancelled against each other. In

addition, the real matrix element is too complicated to be integrated analytically, so

we cannot simply write it as a Laurent expansion in ǫ. We deal with these problems

using subtraction, explained in the next section.

3.1.1 Subtraction

We have in (3.1.2) two terms which are separately divergent, but whose diver-

gences cancel for a sufficiently inclusive physical observable (by the Kinoshita-Lee-

Nauenberg theorem [44, 45]). The complication comes about because the loop and

real contributions have different phase spaces, so this cancellation of divergences is

not trivial. To solve this, we use a subtraction method (of which there are several

versions, such as dipole [46, 47], antenna [48, 49] and FKS [50, 51]) in which we add

and subtract a well-chosen function F . The function is used to subtract out the

divergences from the real emission part in the (N + 1)-particle phase space, and

is added to the loop part, integrated over the one particle phase space. Our NLO

2But see Section 7.4.2 for a case in which it is necessary to include it.
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cross-section

σNLO =

∫

N

|MBorn|2

+

∫

N

(

2Re
(
MBornM∗

1loop

)
+

∫

1

F

)

+

∫

N+1

(
|MReal|2 − F

)
(3.1.3)

now has three lines, each of which is individually finite, and so they can be calculated

separately by Monte Carlo integration (see Section 7.3).

3.2 Loop Diagram Example

An example of the calculation of the first term of (3.1.3) was given for e+e− → µ+µ−

in Section 2.2.4. Now let us pick one contribution to the second term, coming from

the loop diagram in Figure 3.4, to illustrate the appearance of tensor integrals. We

have

iM1loop =v̄2(−i(−1)eγµ)u1
−igνµ
q2 + iλ

× ū3

∫
dd k

(2π)d
(ieγσ)

i��k

k2 + iλ
(ieγν)

i(��k +��p3 +��p4)

(k + p3 + p4)2 + iλ

−igσρ
(k + p3)2 + iλ

(ieγρ)v4

(3.2.4)

and so (for one phase-space point), the contributing term after spin summation and

averaging will be

(
MBornM∗

1loop

)
=− ie6

4q4�
�p2γ

ν
��p1γ

µ
��p3γν��p4

×
∫

dd k

(2π)d
��k +��p3 +��p4

(k + p3 + p4)2 + iλ
γρ

1

(k + p3)2 + iλ
γρ

��k

k2 + iλ
γµ

(3.2.5)

For this type of integral, we will separate out the terms in the numerator, and

then refer to those components with r instances of the loop momenta in the nu-

merators as rank-r tensor integrals, and those without a loop momentum in the

numerator as scalar integrals. The higher the rank of a tensor integral, the more

difficult is its computation, so of the integrals which we will have to perform here,



3.3. Loop Calculation Methods 34

e− µ−

µ+
e+

γ

γ
p1

p2

q
k + p3

k

k + p3 + p4

p4

p3

Figure 3.4: An example of a loop diagram for e+e− → µ+µ− (using a convention of

all momenta incoming).

the hardest is the rank-2 tensor integral

I =

∫
dd k

(2π)d
kλkτ

(k2 + iλ)((k + p3)2 + iλ)((k + p3 + p4)2 + iλ)
(3.2.6)

the evaluation of terms of this type will be the theme of Chapter 4.

3.3 Loop Calculation Methods

So far we have demonstrated the flow of a one-loop calculation, and shown that

tensor integrals appear in loop calculations. The evaluation of these tensor integrals

is a major thrust of this thesis, and has historically been a major bottleneck in this

class of NLO calculations. We would prefer to do simpler, scalar, integrals, which

are much less time consuming, even at the cost of evaluating more terms.

The conventional method for achieving this, tensor reduction [52–54], consists of

forming the squared matrix element, as in the previous section, and then passing the

tensor integrals through an algorithm which reduces the rank, often to a standard

scalar integral, as described in Chapter 4. This is the method used in golem95 [55]3.

It is explained in Section 4.3.1 that this method can suffer numerical instabilities

for exceptional kinematic conditions, due to the choice of the scalar integrals as a

basis, and that golem95 has an alternative method to avoid these instabilities.

3Although now it also includes tensorial reconstruction, explained in the following section.
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In 2006, an alternative method was introduced by Ossola, Papadopoulos and

Pittau (OPP) [56, 57], in which the reduction is performed at the integrand level.

This is explained in the following section.

3.3.1 Integrand-level Reduction

In this technique, the integrand I of an expression for an N -point amplitude is

written with its maximal denominator [58]:

I =
N (k)

D1...D(N−1)
(3.3.7)

with Di = (k + ri)
2 −m2

i (3.3.8)

and the numerator N (k) is seen as a polynomial in the loop momentum k, and

expanded in terms of the possible Di in the numerator:

N (k) =

(N−1)
∑

i<j<l<m

(dijlm + d̃ijlm(k))

(N−1)
∏

λ6=i,j,l,m
Dλ

+

(N−1)
∑

i<j<l

(cijl + c̃ijl(k))

(N−1)
∏

λ6=i,j,l
Dλ

+

(N−1)
∑

i<j

(bij + b̃ij(k))

(N−1)
∏

λ6=i,j
Dλ

+

(N−1)
∑

i

(ai + ãi(k))

(N−1)
∏

λ6=i
Dλ

+ P̃ (k)

(N−1)
∏

λ

Dλ (3.3.9)

where the tilded terms are defined by the fact that they disappear when the n-

dimensional k-integration is performed, and all depend on k. They are referred to

as the spurious terms. If we are dealing in a renormalisable theory and gauge, then

P̃ = 0.

Before the important untilded terms can be calculated, the k-dependence of

the vanishing part of the amplitude must be constructed, and this is performed

sequentially from d̃ to ã by working in terms of an explicit decomposition of k in a

basis of massless four-momenta, and proving that certain combinations of momenta

vanish upon integration. Explicit forms are given in [56].
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Once the spurious terms have been extracted, this polynomial can be then sam-

pled for different values of k, in order to fit for the coefficients.

The (loop) expressions on which this method operates can be obtained from

Feynman diagrams, as is performed by Samurai [59], or by the technique of unitarity

cuts [60], in which factorisation properties of the amplitude, including the optical

theorem (see Section 6.1), are used to build up an expression for the one-loop matrix

element from tree-level diagrams. This method has the general implementations

BlackHat [61] and Rocket [62].

Tensorial Reconstruction at the Integrand Level

Because the basis choice of scalar integrals is also made in the OPP method, it

suffers from the same numerical instabilities for exceptional kinematic conditions

as the conventional method. In [63], an approach avoiding these instabilities is

presented. In this case the expression is written out as a sum of tensor integrals,

and the system of equations at the integrand level is solved. This different choice of

basis avoids the numerical instability.



Chapter 4

Tensor Integrals

In this chapter we describe the process for the calculation of tensor integrals followed

by golem95 [55,64–68]. This is based on Passarino-Veltman reduction [53], but with

modifications for the avoidance of numerical instabilities.

4.1 Tensor Reduction and golem95

In the golem95 method, we start with a general one-loop N-point graph.

pN−2

pN−1 pN

p1

p2

p3
p4

N

1

2
3

Figure 4.1: General N -point one-loop graph with momenta labelled pi and propa-

gators labelled with their numbers.

The momenta pi are all defined as incoming, and so

N∑

i=1

pi = 0. (4.1.1)

37
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We will consider the tensor integrals that may occur. We allow the numerator to

contain not only the loop momentum k but any combination of the loop momentum

and the external momenta qa = k + ra where1 ra =
∑a

i=1 pi. For this reason, the

golem95 method has an additional set of labels on its integrals, the ai, which other

formalisms all effectively set to N :

Id ,µ1µ2...µr
N (a1, a2, . . . , ar) =

∫
dd k

iπd /2

qµ1a1 q
µ2
a2 . . . q

µr
ar

(q21 −m2
1 + iλ)(q22 −m2

2 + iλ) . . . (q2N −m2
N + iλ)

,

(4.1.2)

where r is the rank of the tensor integral.

4.1.1 Feynman Parameters

To aid in the solving of these integrals, we use the technique of Feynman parameters.

The aim is to change the form of the denominator so that, rather than a product of

several terms, we have a sum of such terms, raised to a power.

In order to understand the method, let us first consider the integral (for constants

A and B)

J =

∫ 1

0

dxdyδ(1− x− y)
1

(xA+ yB)2

=

∫ 1

0

dx
1

(xA+ (1− x)B)2

substitute X = x(A−B) +B

=

∫ A

B

dX
1

A− B

1

X2

=
1

AB
, (4.1.3)

i.e. we can write the reciprocal of a product of terms as the reciprocal of their

sum, at the expense of including new parameters that must be integrated over. In

1Because of (4.1.1), we could take rN = 0, but we do not so that we have a shift invariant

formulation, see Section 4.1.3.
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Appendix C.1, we show how this can be extended to

1

A1A2 . . . An
=

∫ 1

0

dx1dx2 . . . dxnδ

(
n∑

i=1

xi − 1

)

(n− 1)!

[x1A1 + x2A2 + · · ·+ xnAn]
n .

(4.1.4)

4.1.2 The Set S

Later in this thesis, we will need to consider integrals in which some of the propaga-

tors have been removed, or pinched. In order to do this efficiently, we introduce the

set S, which is the set giving the numerical labels of the propagators in an integral.

We term the maximal such set S0.

For example, we can write the scalar box integral, using the set S0 = {1, 2, 3, 4}

Id
4 (S0) =

∫
dd k

iπd /2

1

(q21 −m2
1 + iλ)(q22 −m2

2 + iλ)(q23 −m2
3 + iλ)(q24 −m2

4 + iλ)
,

(4.1.5)

and it will be useful to be able to denote the integrals which are obtained by pinching

certain propagators. Let us pinch the first and third propagators, obtaining a bubble,

with the set becoming S0\{1, 3} = {2, 4}, where the backslash represents the removal

of the set that follows it:

Id
2 (S0\{1, 3}) =

∫
dd k

iπd /2

1

(q22 −m2
2 + iλ)(q24 −m2

4 + iλ)
. (4.1.6)

4.1.3 Shift Invariance

At the start of Section 4.1, we discussed integrals of the form (4.1.2), in which

not only the loop momentum k but also combinations of external momenta with it,

qa = k+ra, were permitted to be in the numerator of our tensor integrals. Although

adding the complication of requiring additional momentum labels ai, this system is

beneficial as it makes the formulation invariant under shifts of the loop momentum

k → k + ra.

During reduction, it is very common to move between integrals with different

momenta in the numerator, requiring a loop momentum shift to return to the original

form (an example is given in Appendix C.2). This creates additional terms (2r for
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a rank-r integral). If instead a shift-invariant formulation is used, these additional

terms are avoided, improving the speed of calculation.

We can therefore think about our integrals in terms of vectors

∆µ
ij = rµi − rµj = qµi − qµj (4.1.7)

which are invariant under shifts of the loop momentum.

4.1.4 The Modified Cayley Matrix S

The kinematic information is entered into the calculation using the modified Cayley

matrix [52], which we represent with a calligraphic S:

Sij = (qi − qj)
2 −m2

i −m2
j (4.1.8)

= (ri − rj)
2 −m2

i −m2
j . (4.1.9)

The range of i and j will be the maximum set S0, and for any pinched propaga-

tors, the entries for that row and column will be set to zero, so for the example of

Section 4.1.2, we have:

p1 p4

m1

m4

m3

m2

p3p2

Figure 4.2: A four-point (box) diagram.

S(S0) =









−2m2
1 (r1 − r2)

2 −m2
1 −m2

2 (r1 − r3)
2 −m2

1 −m2
3 (r1 − r4)

2 −m2
1 −m2

3

(r1 − r2)
2 −m2

1 −m2
2 −2m2

2 (r2 − r3)
2 −m2

2 −m2
3 (r2 − r4)

2 −m2
2 −m2

4

(r1 − r3)
2 −m2

1 −m2
3 (r2 − r3)

2 −m2
2 −m2

3 −2m2
3 (r3 − r4)

2 −m2
3 −m2

4

(r1 − r4)
2 −m2

1 −m2
4 (r2 − r4)

2 −m2
2 −m2

4 (r3 − r4)
2 −m2

3 −m2
4 −2m2

4









(4.1.10)

and
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p1 p4m2

m4 p3p2

Figure 4.3: A four-point diagram with two legs pinched, making a bubble.

S(S0\{1, 3}) =











0 0 0 0

0 −2m2
2 0 (r2 − r4)

2 −m2
2 −m2

4

0 0 0 0

0 (r2 − r4)
2 −m2

2 −m2
4 0 −2m2

4











. (4.1.11)

In this calculation, the inverse of S is also needed. However, if there are any pinches,

this is not defined, so we use instead the Moore-Penrose pseudo-inverse2, and refer

to it simply as S−1. This is formed by taking the inverse of the smaller matrix with

the zero rows and columns omitted, and then replacing the zero entries.

S−1(S0\{1, 3}) =
1

κ((r2 − r4)2, m2
2, m

2
4)









0 0 0 0

0 2m2
4 0 (r2 − r4)

2 −m2
2 −m2

4

0 0 0 0

0 (r2 − r4)
2 −m2

2 −m2
4 0 2m2

2









,

(4.1.12)

where κ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz− 2zx is called the Källén function [71].

We will see in Section 6.2 that det S → 0 can lead to Landau singularities [72], and

there we discuss how to deal with them.

4.1.5 Gram Matrix

A second, related matrix carrying kinematic information is the Gram matrix, defined

as a matrix of dimension one lower than the S-matrix, with a particular row and

column with index A having been removed. If the shift invariance (see Section 4.1.3)

2A matrix P defined by [69, 70]: PSP = P ,SPS = S,PS = SP .
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is broken by setting a particular ri = 0, this i = A should be taken. If the shift

invariance is unbroken, it is not important which A is chosen.

G(A)
ij = 2∆iA ·∆jA (4.1.13)

As shown in Section 4.3.1, the inverse of the Gram matrix, and therefore the

reciprocal of its determinant, can appear in the tensor reduction process. This

determinant approaches zero as the rj become linearly dependent, and so numerical

instabilities can occur around this limit. In tensor reduction, these singularities can

be non-integrable (inverse power greater than 1
2
): in this case, the singularity is

certainly spurious, and is dependent on our choice of reduction basis.

4.1.6 The Scalar N-Point Integral

Let us consider a scalar N -point integral3:

Id
N (S) =

∫
dd k

iπd /2

1
∏N

i=1(q
2
i −m2

i + iλ)
(4.1.14)

in which the integration measure is chosen for convenience: we will see that the

iπd /2 cancels later. Let us substitute (4.1.4):

Id
N(S) =

∫
dd k

iπd /2

∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

(N − 1)!

[
∑
xi(q2i −m2

i + iλ)]
N
, (4.1.15)

and examine the sum in the denominator:

D =
∑

xi(q
2
i −m2

i + iλ) (4.1.16)

= k2
∑

xi +
∑

xi(2k · ri) +
∑

xir
2
i −

∑

xim
2
i +

∑

xiiλ, (4.1.17)

then perform a shift

k → k′ = k +
∑

xiri (4.1.18)

so that

D = k′2 −
(∑

xiri

)2

+
∑

xir
2
i −

∑

xim
2
i + iλ (4.1.19)

3In this derivation, and in the rest of this chapter, the Einstein convention is not used, and

sums are shown explicitly.



4.1. Tensor Reduction and golem95 43

where in the first term, we have used the δ-functional in (4.1.15) to set
∑
xi = 1,

and for the last term, as all the xi are positive, we have rescaled
∑

(xiλ) → λ

Now we can investigate the terms with neither a λ nor a k′-dependence

J = −
(∑

xiri

)2

+
∑

xir
2
i −

∑

xim
2
i (4.1.20)

and insert
∑
xi = 1

J = −
N∑

i,j=1

xirixjrj +
N∑

i=1

xi(r
2
i −m2

i )
N∑

j=1

xj , (4.1.21)

then split the second term into two equal parts

J = −
N∑

i,j=1

xixjri · rj +
1

2

N∑

i=1

xi(r
2
i −m2

i )

N∑

j=1

xj +
1

2

N∑

j=1

xj(r
2
j −m2

j)

N∑

i=1

xi

(4.1.22)

J =
1

2

N∑

i,j=1

xixj(r
2
i + r2j − 2ri · rj −m2

i −m2
j ) (4.1.23)

J =
1

2

N∑

i,j=1

xixjSij , (4.1.24)

and we see we are now dealing with the modified Cayley matrix

Sij = (ri − rj)
2 −m2

i −m2
j of Section 4.1.4.

We have now arrived at (dropping the primes on k, and writing (N − 1)! as

Γ(N)):

Id
N (S) =

∫ ∞

−∞

dd k

iπd /2

∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

Γ(N)
[
k2 + 1

2
x · S · x+ iλ

]N
, (4.1.25)

and we want to do the momentum integration. Let us first examine the poles in the

denominator, remembering that k2 = k20 − |k|2. Poles will occur at:

k20 − |k|2 + 1

2
x · S · x+ iλ = 0 (4.1.26)

k0 = ±
√

|k|2 − 1

2
x · S · x∓ iλ, (4.1.27)

where again we have rescaled λ.

We must first deal with the fact that we have one temporal component, which

is not treated like the spatial components: k2 = k20 − |k|2. To do this, we use
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√

|k|2 − 1

2
x · S · x − iλ

−
√

|k|2 − 1

2
x · S · x + iλ

Re(k0)

Im(k0)

Figure 4.4: Wick rotation: the poles are shown as crossed circles, and the integration

contour is given as a dashed line. The contour is shown displaced from the axes for

clarity, but would in reality be along them.

Wick rotation to move (from Minkowski) to a Euclidean space. Let us write our

integral
∫∞
−∞ dk0f(k0, |k|), with the integration contour along the real axis. Then

let us consider the dashed integration contour in Figure 4.4. The path encloses no

poles, so the integral along it must be zero by the residue theorem. We also assume

that f(k0, |k|) falls off sufficiently quickly at infinity for the integrals along the two

quarter-circle paths to be zero. Then:

∫ ∞

−∞
dk0f(k0, |k|) +

∫ −i∞

i∞
dk0f(k0, |k|) = 0 (4.1.28)

so

∫ ∞

−∞
dk0f(k0, |k|) =

∫ k0=i∞

k0=−i∞
dk0f(k0, |k|)) (4.1.29)

= i

∫ k4=+∞

k4=−∞
dk4f(kE), (4.1.30)

where we have taken k0 = ik4 and kE = (ik4, |k|), so

k2E = −k24 − |k|2 = −
d∑

i=1

k2i (4.1.31)

and we have a four-dimensional Euclidean integration:

Id
N(S) = i

∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

Γ(N)

∫ ∞

−∞

dd kE
iπd /2

(−1)N
[
k2E − 1

2
x · S · x− iλ

]N
.

(4.1.32)
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We can evaluate the momentum integral using a d -dimensional sphere:

∫ ∞

−∞
dd kE =

∫ ∞

0

dkrk
d−1
r

∫

dΩd−1, (4.1.33)

where kr =
√

k2E is the radius of the d -dimensional sphere, and dΩd−1 is its surface

element:
∫

dΩd−1 =
2πd /2

Γ( d
2
)

(4.1.34)

which is demonstrated in Appendix C.4.

So then

Id
N(S) = i

∫ 1

0

N∏

i=1

(dxi)δ

(
n∑

i=1

xi − 1

)

Γ(N)
2πd /2

Γ( d
2
)

(−1)N

iπd /2

∫ ∞

0

dkr
kd−1
r

[
k2r − 1

2
x · S · x− iλ

]N
,

(4.1.35)

and we can substitute K = k2r
− 1

2
x·S·x−iλ, remembering that S only contains external

momenta, and so has no dependence on the loop momentum:

Id
N (S) =

∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

Γ(N)
2

Γ( d
2
)
(−1)N

1

2

×
(

−1

2
x · S · x− iλ

) d

2
−N ∫ ∞

0

dK
K

d

2
−1

[K + 1]N
. (4.1.36)

We can identify our remainingK-integral with the Euler Beta function, discussed

in Appendix B.4, with s = d

2
and t = N − d

2
, as long as (N − d

2
) is neither zero nor

a negative integer.

B(s, t) =

∫ ∞

0

dz
zs−1

[z + 1](s+t)
=

∫ 1

0

dyys−1(1− y)t−1 =
Γ(s)Γ(t)

Γ(s+ t)
. (4.1.37)

Finally our momentum integration is complete and we have

Id
N(S) =

∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

Γ(N)
1

Γ( d
2
)
(−1)N

(

−1

2
x · S · x− iλ

) d

2
−N Γ( d

2
)Γ(N − d

2
)

Γ(N)

(4.1.38)

Id
N(S) = (−1)NΓ

(

N − d

2

)∫ 1

0

N∏

i=1

(dxi)δ

(
n∑

i=1

xi − 1

)(

−1

2
x · S · x− iλ

) d

2
−N

.

(4.1.39)
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4.2 Form Factors

Starting with a tensor integral of the form (4.1.2), we wish to separate the Lorentz

structure from the integrals. The only quantities carrying Lorentz structure are

external momenta, in this case in the form of the shift-invariant vectors ∆µ
ij , and the

metric tensor gµν , so for N ≤ 5, we can define Form Factors AN,rj1...jr
(S), BN,r

j1...jr−2
(S)

and CN,r
j1...jr−4

(S) by:

Id ,µ1µ2...µr
N (a1, a2, . . . , ar;S) =

∑

j1...jr∈S

[
∆·
j1·∆

·
j2· · · ·∆·

jr ·
]{µ1µ2...µr}
{a1a2...ar}

AN,rj1...jr
(S)

+
∑

j1...jr−2∈S

[
g··∆·

j1·∆
·
j2· · · ·∆·

jr−2·
]{µ1µ2...µr}
{a1a2...ar}

BN,r
j1...jr−2

(S)

+
∑

j1...jr−4∈S

[
g··g··∆·

j1·∆
·
j2· · · ·∆·

jr−4·
]{µ1µ2...µr}
{a1a2...ar}

CN,r
j1...jr−4

(S),

(4.2.40)

where []
{µ1µ2...µr}
{a1a2...ar} signifies the distribution of the Lorentz indices µ1 to µr and the

momentum labels a1 to ar into the positions indicated by the dots: Lorentz indices

going onto metric tensors gµiµj and onto vectors ∆µi
jai

, and momentum labels going

only onto the vectors. This means that for the BN,r
j1...jr−2

(S) and CN,r
j1...jr−4

(S), each

term of the sum will carry only a subset of the momentum labels.

Now let us write equation (4.2.40) specifically for each case with r ≤ 4:

Id
N (S) =A

N,0(S) (4.2.41)

Id ,µ
N (a;S) =

∑

j∈S
∆µ
jaA

N,1
j (S) (4.2.42)

Id ,µν
N (a, b;S) =

∑

i,j∈S
∆µ
ia∆

ν
jbA

N,2
ij (S) + gµνBN,2(S) (4.2.43)

Id ,µνρ
N (a, b, c;S) =

∑

i,j,k∈S
∆µ
ia∆

ν
jb∆

ρ
kcA

N,3
ijk (S)

+
∑

j∈S

(
gµν∆ρ

jc + gµρ∆ν
jb + gνρ∆µ

ja

)
BN,3
j (S) (4.2.44)
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Id ,µνρσ
N (a, b, c, d;S) =

∑

i,j,k,l∈S
∆µ
ia∆

ν
jb∆

ρ
kc∆

σ
ldA

N,4
ijkl(S)

+
∑

i,j∈S
(gµν∆ρ

ic∆
σ
jd + gµρ∆ν

ib∆
σ
jd + gµσ∆ν

ib∆
ρ
jc

+ gνρ∆µ
ia∆

σ
jd + gνσ∆µ

ia∆
ρ
jc + gρσ∆µ

ia∆
ν
jb)B

N,2
ij (S)

+ (gµνgρσ + gµρgνσ + gµσgνρ)CN,4(S). (4.2.45)

There is a general relation between tensor integrals and parameter integrals with

Feynman parameters in the numerator [64, 73, 74]:

Id , µ1...µr
N (a1, . . . , ar ;S) =(−1)r

⌊ r
2
⌋

∑

m=0

(

−1

2

)m

×
N∑

j1,...jr−2m=1

[
(g..)⊗m∆·

j1· · · ·∆·
jr·
]{µ1···µr}
{a1···ar}

Id+2m
N (j1 . . . , jr−2m ;S) ,

(4.2.46)

where I with ai as arguments is understood to have momenta qai in the numerator,

and with ji as arguments it is understood to have Feynman parameters zji in the

numerator; ⌊ r
2
⌋ stands for the nearest integer less or equal to r

2
; and the symbol ⊗m

indicates that m instances of the metric tensor are present in the square bracket.

From this relation, we can see very clearly that the presence of the metric tensor

in (4.2.43) to (4.2.45), and the form factors B and C that accompany it, is related

to integrals in higher numbers of dimensions.

4.3 Separation of Divergences by Subtraction

In our reduction procedure, we wish to separate the infrared divergent and finite

parts of our expressions, and to do so in a way that avoids spurious Gram determi-

nants, following the procedure of [65]. Let us take a scalar N -point integral

Id
N(S) =

∫
dd k

iπd /2

1
∏N

i=1(q
2
i −m2

i + iλ)
, (4.3.47)

and make an ansatz that the IR divergence, if present, can be split off into a simpler

integral Idiv, which has one propagator pinched, and leaving an IR finite part of the
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original rank:

Id
N(S) = Idiv(S) + Ifin(S) (4.3.48)

=
∑

i∈S
bi(S)

∫
dd k

iπd /2

(q2i −m2
i + iλ)

∏

j∈S(q
2
j −m2

j + iλ)
+

∫
dd k

iπd /2

1−∑i∈S bi(S)(q
2
i −m2

i + iλ)
∏

j∈S(q
2
j −m2

j + iλ)
,

(4.3.49)

where the bi are at this stage not fixed. Clearly Idiv(S) =
∑

i biId
N−1(S\{i}). Let us

examine the second integral (which we will show is finite), and introduce N Feynman

parameters xi as explained in Section 4.1.1. As in (4.1.18), we shift

k = k′ −
∑

i∈S
xiri (4.3.50)

to gain a quadratic form in the denominator

∏

j∈S
(q2j −m2

j + iλ) = k′2 +
1

2
x · S · x (4.3.51)

Now let us write out the numerator of the finite integral in two steps. First, using
(
∑

i∈S
xi∆ji

)2

=− 1

2
x · S · x+

∑

i∈S
xiSij +m2

j , (4.3.52)

we perform the shift (4.3.50) on a single term in i:

q2i −m2
i =k

′2 − 1

2
x · S · x+

∑

j∈S
xj (Sij + 2k′∆ij) (4.3.53)

Now let us write out the full numerator N :

N = 1−
∑

i∈S
bi(S)(q

2
i −m2

i + iλ) (4.3.54)

=
∑

j∈S
xj −

∑

i∈S
bi(S)(q

2
i −m2

i + iλ) (4.3.55)

= −
(

k′2 − 1

2
x · S · x

)
∑

i∈S
bi(S) +

∑

j∈S
xj

(

1−
∑

i∈S
bi(S) (Sij + 2k′∆ij)

)

.

(4.3.56)

Here, the k′-dependent term is an odd function being integrated over a symmetric

region, and so will give zero, so the whole second term will give zero if the following

condition is satisfied for all j ∈ S:

∑

i∈S
bi(S)Sij = 1. (4.3.57)
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Let us take this to be true, and define

B(S) =
∑

i∈S
bi(S). (4.3.58)

The relation

B = (−1)N+1detG
detS (4.3.59)

is shown in [74], and will be important in Section 5.1.2.

Then we have (dropping the primes on k):

Ifin(S) = −B(S)Γ(N)

∫
dd k

iπd /2

∫ 1

0

∏

i∈S
(dxi)δ

(
∑

i∈S
xi − 1

)

k2 − 1
2
x · S · x

(
k2 + 1

2
x · S · x+ iλ

)N
.

(4.3.60)

We can now follow through the derivation from (4.1.25) to (4.1.35), with the addi-

tional powers of the loop momentum having had as yet no impact:

Ifin(S) = −B(S)
∫ 1

0

N∏

i=1

(dxi)δ

(
n∑

i=1

xi − 1

)

Γ(N)
2(−1)N

Γ( d
2
)

∫ ∞

0

dkr
−kd+1

r + (−1
2
x · S · x)kd−1

r
[
k2r − 1

2
x · S · x− iλ

]N
,

(4.3.61)

and on doing the same substitution K = k2r
− 1

2
x·S·x−iλ , we have:

Ifin(S) =− B(S)
∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

Γ(N)
2(−1)N

Γ( d
2
)

1

2

(

−1

2
x · S · x− iλ

)−N+1

×
∫ ∞

0

dK
−(−1

2
x · S · x) d

2K
d

2 + (−1
2
x · S · x)(−1

2
x · S · x) d−2

2 K
d−2
2

[K + 1]N

(4.3.62)

=− B(S)
∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

Γ(N)
2(−1)N

Γ( d
2
)

1

2

(

−1

2
x · S · x− iλ

) d

2
−N+1

×
(

−Γ
(
d

2
+ 1
)
Γ
(
N − d

2
− 1
)

Γ (N)
+

Γ
(
d

2

)
Γ
(
N − d

2

)

Γ (N)

)

(4.3.63)

=− B(S)
∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

(−1)N
(

−1

2
x · S · x− iλ

) d

2
−N+1

× Γ

(

N − d

2
− 1

)

(N − d − 1) , (4.3.64)

where we have used the property of the Γ function (B.3.15). Now let us compare

this equation with our expression for the general case after momentum integra-
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tion (4.1.39), written in d + 2 dimensions

Id+2
N (S) = (−1)NΓ

(

N − d

2
− 1

)∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)(

−1

2
x · S · x− iλ

) d

2
+1−N

.

(4.3.65)

We see that the part we want to be finite can be expressed as a higher dimensional

integral, and so does not have an IR divergence4:

Ifin(S) =− B(S)(N − d − 1)Id+2
N (S). (4.3.66)

This means we have indeed separated the divergent part off into a set of (N−1)-point

integrals, leaving a (d + 2)-dimensional N -point integral:

Id
N (S) =

∑

i

biI
d
N−1(S\{i})− B(S)(N − d − 1)Id+2

N (S). (4.3.67)

This process can of course be iterated from high N , and indeed there is an

additional convenience that for N ≥ 6, B = 0 (as there can only be four independent

momenta in 4 dimensions, so detG = 0). For N = 5, we also have Ifin → 0, because

(N − d − 1) = 2ǫ, and Id+2
5 (S) is finite, so the whole term is O(ǫ) and can be

neglected for our purposes.

4.3.1 Tensor Reduction

Reduction of tensor integrals proceeds in a similar way, shown in [65], with N -leg

tensor integrals of rank r being reduced to possibly-divergent (N − 1)-leg tensor

integrals of rank (r − 1), and an IR finite part. Although our formalism avoids

inverse Gram determinants where possible, they are inevitable in relations which

reduce from tensor integrals with N ≤ 4. It is for this reason that golem95 does not

automatically reduce all integrals as far as scalars.

Example: Rank 1 Triangle Integral

To illustrate the appearance of Gram determinants in reduction from tensor inte-

grals, let us take the example of the rank 1 triangle integral. Let us break the shift

4This can be shown by IR power counting: see for example Chapter 2 of [75].
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invariance by taking r3 = 0, and so express the two independent external momenta

as r1 = p1 and r2 = p1 + p2. We only have two form factors A3,1
1 and A3,1

2 (see

Section 4.2):

Id ,µ
3 (a = 3) =

∫
dd k

iπ
d

2

kµ

((k + r1)2 −m2
1)((k + r2)2 −m2

2)(k
2 −m2

3)
≡ A3,1

1 rµ1 + A3,1
2 rµ2 .

(4.3.68)

Now we can multiply in r1,µ and use r1·k = 1
2
([(k − r1)

2 −m2
1]− [k2 −m2

3]− r21 +m2
1 −m2

3):

A3,1
1 r1 · r1 + A3,1

2 r1 · r2 =
∫
dd k

iπ
d

2

kµ

((k + r1)2 −m2
1)((k + r2)2 −m2

2)(k
2 −m2

3)

(4.3.69)

=
1

2

∫
dd k

iπ
d

2

1

((k + r2)2 −m2
2)(k

2 −m2
3)

− 1

2

∫
dd k

iπ
d

2

1

((k + r1)2 −m2
1)((k + r2)2 −m2

2)

− 1

2

∫
dd k

iπ
d

2

r21 −m2
1 +m2

3

((k + r1)2 −m2
1)((k + r2)2 −m2

2)(k
2 −m2

3)

(4.3.70)

=
1

2
Id
2 (S\{1})−

1

2
Id
2 (S\{3})−

1

2
(r21 −m2

1 +m2
3)Id

3 .

(4.3.71)

When we do the same for r2, we have:



r1 · r1 r1 · r2
r2 · r1 r2 · r2








A3,1

1

A3,1
2



 =





1
2
Id
2 (S\{1})− 1

2
Id
2 (S\{3})− 1

2
(r21 −m2

1 +m2
3)Id

3

1
2
Id
2 (S\{2})− 1

2
Id
2 (S\{3})− 1

2
(r22 −m2

2 +m2
3)Id

3



 ,

(4.3.72)

we see that the Gram matrix G(3) has appeared on the left-hand side, and so to find

A3,1
1 and A3,1

2 , we will have to invert it, which involves multiplication by 1
det G(3) .

Tensor Integral Basis

In golem95, we take as our primary basis5 the set of integrals to which all relevant

integrals can be reduced without introducing inverse Gram determinants, which is

5The endpoints of the first set of reductions, rather than a mathematical basis.
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the scalar integrals Id
1 , Id

2 , Id+2
2 , Id

3 , Id+2
3 , Id+2

4 , Id+4
4 , and

Id
2 (j1, . . . , jr) =Γ

(

2− d

2

) ∫ 1

0

3∏

i=1

dzi δ(1−
2∑

l=1

zl)
zj1 . . . zjr

(−1
2
z · S · z − iλ)2−d /2

(4.3.73)

Id
3 (j1, . . . , jr) =− Γ

(

3− d

2

) ∫ 1

0

3∏

i=1

dzi δ(1−
3∑

l=1

zl)
zj1 . . . zjr

(−1
2
z · S · z − iλ)3−d /2

(4.3.74)

Id+2
3 (j1) =− Γ

(

2− d

2

) ∫ 1

0

3∏

i=1

dzi δ(1−
3∑

l=1

zl)
zj1

(−1
2
z · S · z − iλ)2−d /2

(4.3.75)

Id+2
4 (j1, . . . , jr) =Γ

(

3− d

2

) ∫ 1

0

4∏

i=1

dzi δ(1−
4∑

l=1

zl)
zj1 . . . zjr

(−1
2
z · S · z − iλ)3−d /2

(4.3.76)

Id+4
4 (j1) =Γ

(

2− d

2

) ∫ 1

0

4∏

i=1

dzi δ(1−
4∑

l=1

zl)
zj1

(−1
2
z · S · z − iλ)2−d /2

,

(4.3.77)

where the bubbles can be up to rank 2 and the triangles and boxes up to rank 3. Of

this set of integrals, the n-dimensional triangles can be IR divergent6 (see Section 4.4

for the IR divergence conditions), and the one- and two-point functions, Id+2
3 , Id+2

3 ,

Id+4
4 and Id+4

4 (j1) are UV divergent7, but otherwise the integrals are finite. This

gives a convenient separation of the divergences. It is shown in Section 5 of [65]

that, in the Feynman gauge8 only this set of basis functions is required for all the

form factors ((4.2.41) to (4.2.45), and also N ≥ 5).

For the case with massive internal lines, we additionally use analytic expressions

for the scalar integral Id
4 , for the pragmatic reason that the expressions were already

present in the literature: we have our own implementation of the divergent boxes

from [78], and call the finite boxes from an external programme (OneLOop [79] by

6Two similar methods, [76] and [77], exist to separate the IR divergences into the triangles.
7These UV divergences are, in practical calculations, cancelled by each other or by the coun-

terterms.
8The restriction is that the maximum r is equal to N , so any cases in which the Feynman rules

allow r > N , such as models with particles of spin 2, are also excluded.
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default, also LoopTools [80] is possible).

4.3.2 Reduction to Scalar Integrals and Numerical Rescue

System

Once we have our integrals written out in terms of the primary basis (4.3.73)-

(4.3.77), we can consider the additional reduction steps of Section 5 of [65], for

example:

In3 (l;S) =
bl
B

[

In3 (S)−
∑

j∈S
bjIn2 (S\{j})

]

+
∑

j∈S
S−1
lj In2 (S\{j}), (4.3.78)

which can reduce our integrals further to a set of scalars, at the cost of introducing

inverse Gram determinants. Where possible, the integral terms are grouped in such

a way that those sums of integrals which go to zero for small Gram determinant are

performed before the Gram determinant is divided out, which reduces the numerical

instability for moderately small Gram determinant. It is for this reason that the

square bracket of (4.3.78) is important.

The crucial aspect of the golem95 method is that we test before each step of these

secondary reductions whether it would result in a small inverse Gram determinant

as a prefactor, and if it would, do not perform that step. Because B is a dimensionful

parameter, we use the parameter B′ ≡ BSmax, where Smax is the largest entry of the

S-matrix, to define the boundary value. We use B′ = 0.005 as a default.

At the end of our reduction we will have a set of scalar integrals which are

calculated using analytic expressions (using expressions from [78, 81], or from the

programmes [79,80]9, although using the methods of Chapter 5 for difficult limits),

and possibly some tensor integrals, which we will calculate numerically10.

9The user may choose at the compilation stage.
10There is an alternative technique to deal with the case of small Gram determinant [33,77,82,83],

which is to use as an approximation the expansion around detG = 0. This can be a very efficient

method in that region. In golem95, we prefer exact methods to approximate ones, as the formulae

concerned remain valid on both sides of the value at which the switch is made, making the system

more robust for different choices of this value.
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An efficient formulation11 in one dimension, with the other integrations being

performed analytically, has been developed for the numerical evaluations of tensor

integrals. It is described in Appendix A.2 of [55].

We can illustrate the utility of this rescue system with an example. In Figure 4.5,

a plot is given showing a limit with B′ → 0 for the modulus of the (d +2)-dimensional

four-point integral with three Feynman parameters in the numerator (z1, z2, z2),

for the case with two external masses and no internal masses. It demonstrates

that without the rescue system, the integral becomes unstable at approximately

B′ = 0.003. We also note that there is no discontinuity visible at the switch point.

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045
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+
2)

(z
1,

z 2
,z
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|B|

Rescue 0.005
No Rescue

′

Figure 4.5: The behaviour of the tensor integral I
(d+2)
4 (z1, z2, z2) as |B′| → 0, with

the numerical rescue system for |B′| < 0.005 (red, solid line), and without it (green,

dashed line).

At the time of writing, this method has been implemented for all three- and

four-point tensor integrals without internal masses, with the exception of the four-

11A deterministic, adaptive Gauss-Kronrod [84] method is used.
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point integral with four external masses, and also for the triangle with two external

masses and one internal mass (including the complex-mass case).

4.4 Landau Conditions

In [72, 78, 85] the Landau conditions are defined and explored (see Section 6.2 for

more details). These are the necessary conditions for a divergence to occur in the

one-loop integral. They are:

x · S · x = 0, (4.4.79)

and for each xi, either xi = 0 (4.4.80)

or
∂ (x · S · x)

∂xi
= 0. (4.4.81)

There are two classes of solution to these equations:

Infrared divergences

The equations can be solved with fixed (relative) values for some or all internal

massesmi (at least one zero) and external virtualities si, with any unfixed quantities,

including both sij in the case of boxes, varying freely. These are the configurations

which give the soft and collinear IR divergences12 for loop integrals, which cancel

against the IR divergences in the real radiation part to give a finite physical answer.

In [44], it is shown that we can extract necessary conditions for (4.4.81) to be

satisfied, remembering that the conditions can wrap around the top, bottom and

sides of the matrix:

Soft Divergence13: Si+1,i+1 = Si+1,i+2 = Si+1,i = 0

e.g. S =









. . . 0 . . . . . .

0 0 0 . . .

. . . 0 . . . . . .

. . . . . . . . . . . .









12Some authors use infrared divergences to refer only to what we call soft divergences, and refer

to (our) collinear divergences as mass singularities.
13Kinoshita’s λ singularity
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Collinear Divergence14: Si+1,i+1 = Si+1,i+2 = Si+1,i = 0

e.g. S =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









.

Threshold divergences

These are solutions of the Landau conditions which occur for specific values of the

invariants of the problem, and so arise only at individual points in phase space.

They are explored in Section 6.2.

14Kinoshita’s m singularity



Chapter 5

Limits in Integration Libraries

The latest public version of golem95 [86] had all the divergent cases and all massless

cases for the three- and four-point scalar integrals implemented, but called the finite

massive cases from an external program (OneLOop [79] by default, or LoopTools [80]

if the user wishes).

An important advantage of golem95 over its competitors is its numerical rescue

system, which greatly reduces the numerical instability of its integrals. In the pre-

vious chapter, we described the rescue system which replaces tensor reduction, in

cases where it would be unstable, by numerical integration of the tensor integrals.

The computational cost of these numerical integrations is justified by the gain in sta-

bility, which can reduce the number of points that a phase-space integrator requires

to produce a given accuracy.

We would also like to have a rescue system available for the scalar integrals

because, as we demonstrate in this chapter, there are cases in which the analytic

result is not stable. For this reason, we decided to implement our own finite three-

point function1 in golem95, and to examine the unstable limits that occur2. The

discussion of one such limit, the Landau singularity, is postponed until Chapter 6,

as the technique used (implementation of complex masses) is separate from those of

this chapter.

In this chapter, we begin by giving the derivation of the analytic formula for the

1And also the four-point integrals, which will be performed for a future version.
2Either clearly from the form of the expressions, or those which arise during testing.

57



5.1. Scalar Three-point Function 58

scalar three-point function [65, 81, 87], and continue by giving the limits which are

examined. All of these limits of scalar integrals have been implemented in golem95,

although that of Section 5.2.3, as explained in that section, has not been optimised.

We follow this with a discussion of the scalar two-point function, and those limits

for which it requires a reexpression.

5.1 Scalar Three-point Function

Let us first study the finite scalar three-point function: the function where the IR

divergence is not present, as none of the IR conditions in Section 4.4 apply. We can

take ǫ→ 0, so the integral is I4
3 , and the power of the integrand d

2
−N → −1:

I4
3 = −

∫ 1

0

3∏

i=1

dziδ

(

1−
3∑

i

zi

)(

−1

2
zT · S · z − iλ

)−1

(5.1.1)

and let us eliminate one z, say z3, using z3 = 1 −∑i 6=3 zi, and break the shift-

invariance by taking r3 = 0:

zT · S · z =
∑

i,j 6=3

ziSijzj +
∑

i 6=3

ziSi3
(

1−
∑

j 6=3

zj

)

+
∑

j 6=3

(

1−
∑

i 6=3

zi

)

S3jzj

+

(

1−
∑

i 6=3

zi

)

S33

(

1−
∑

j 6=3

zj

)

(5.1.2)

=
∑

i,j 6=3

zizj (Sij − Si3 − S3j + S33) + 2
∑

i 6=3

zi (Si3 − S33) + S33. (5.1.3)

Now if we multiply out the sums and substitute z1 = 1− x and z2 = y we have

zT · S · z =x2(S11 − 2S13 + S33) + y2(S22 − 2S23 + S33)

+ xy(−2)(S12 − S13 − S32 + S33)

+ x(−2)(S11 − S13) + y(−2)(S13 − S12) + S11. (5.1.4)

So, remembering the factor of −1
2
, we can write our integral as:

I4
3 = −

∫ 1

0

dx

∫ x

0

dy
(
ax2 + by2 + cxy + dx+ ey + f − iλ

)−1
, (5.1.5)
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with (remembering that S is symmetric)

a =− 1

2
(S11 − 2S13 + S33) = s1 b =− 1

2
(S22 − 2S23 + S33) = s3

c =S12 − S13 − S23 + S33 = s2 − s1 − s3 d =S11 − S13 = −s1 −m2
1 +m2

3

e =S13 − S12 = s1 − s2 −m2
3 +m2

2 f =− 1

2
S11 = m2

1. (5.1.6)

We can write out detS as:

detS = S11(S22S33 − S2
23) + S12(S23S13 − S12S33) + S13(S12S23 − S22S13) (5.1.7)

= 2bd2 − 2cde+ 2ae2 − 8abf + 2c2f. (5.1.8)

There is also a very instructive form in terms of the kinematic parameters, which

shows clearly the invariance under cyclic permutations:

detS =2[s1s2s3 + s21m
2
2 + s22m

2
3 + s23m

2
1

− s1s2(m
2
2 +m2

3)− s1s3(m
2
1 +m2

2)− s2s3(m
2
1 +m2

3)

+ s1(m
2
1 −m2

2)(m
2
3 −m2

2) + s2(m
2
2 −m2

3)(m
2
1 −m2

3) + s3(m
2
3 −m2

1)(m
2
2 −m2

1)].

(5.1.9)

5.1.1 Gram Matrix

Because we have broken the shift invariance by singling out the third row and

column, the Gram matrix (see Section 4.1.5) here is G(3)
ij = 2ri ·rj, so its determinant

in this case is

detG(3) = 4((r1 · r1)(r2 · r2)− (r1 · r2)2) (5.1.10)

= (S11 − 2S13 + S33)(S22 − 2S23 + S33)− (S12 − S13 − S23 + S33)
2

(5.1.11)

= −(c2 − 4ab), (5.1.12)

and in terms of kinematic parameters:

detG(3)
ij = −(s21 + s22 + s23 − 2s1s2 − 2s1s3 − 2s2s3) (5.1.13)

= −κ(s1, s2, s3), (5.1.14)

with κ(x, y, z) again the Källén function [71]. From this form, we can see that the

condition for detG to be zero is that one si = 0 and the other two are equal (this of

course includes the trivial case where all three si are zero).
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5.1.2 The Second Integration

Now we wish to simplify and perform the x-integration, so we aim to make the

integrand the reciprocal of a linear expression in x. We start by shifting y → y−ζx,
and choosing ζ such that3:

bζ2 + cζ + a = 0, (5.1.15)

so that

I4
3 = −

∫ 1

0

dx

∫ x(1−ζ)

−ζx
dy
(
x2(bζ2 + cζ + a) + by2 + xy(2bζ + c) + x(d+ eζ) + ey + f − iλ

)−1
.

(5.1.16)

Now we split the y-integral at zero:

∫ 1

0

dx

∫ x(1−ζ)

−ζx
dy =

∫ 1

0

dx

∫ x(1−ζ)

0

dy −
∫ 1

0

dx

∫ −ζx

0

dy, (5.1.17)

and reverse the order of the integrations:

∫ 1

0

dx

∫ x(1−ζ)

−ζx
dy =

∫ 1−ζ

0

dy

∫ 1

y

1−ζ

dx−
∫ −ζ

0

dy

∫ 1

y

−ζ

dx, (5.1.18)

giving

I4
3 =−

∫ 1−ζ

0

dy

∫ 1

y

1−ζ

dx
(
x(y(2bζ + c) + d+ eζ) + by2 + ey + f − iλ

)−1

+

∫ −ζ

0

dy

∫ 1

y
−ζ

dx
(
x(y(2bζ + c) + d+ eζ) + by2 + ey + f − iλ

)−1
, (5.1.19)

and as required the x-integral is standard, as the overall bracket is linear in x, and

so introducing a new symbol for the coefficient of x in the above integrals,

N = y(2bζ + c) + d+ eζ, (5.1.20)

we can use

∫ x1

x0

dx
1

Ax+B
=

1

A
(log (Ax1 +B)− log (Ax0 +B)) (5.1.21)

3This equation will in general have two solutions, and we will use the freedom to choose later.
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and combine the two terms with logarithms of the same argument:

I =−
∫ 1−ζ

−ζ
dy

1

N log
(
N + by2 + ey + f − iλ

)

+

∫ 1−ζ

0

dy
1

N log

( N y

1− ζ
+ by2 + ey + f − iλ

)

−
∫ −ζ

0

dy
1

N log

(N y

−ζ + by2 + ey + f − iλ

)

. (5.1.22)

For N = 0, we have a pole. Let us call the value of y at which this occurs

y0 = − d+ eζ

2bζ + c
, (5.1.23)

and let us then use the (trivial) fact that

−
∫ 1−ζ

−ζ
dy

−1

N log
(
by20 + ey0 + f − iλ

)
+

∫ 1−ζ

0

dy
−1

N log
(
by20 + ey0 + f − iλ

)

−
∫ −ζ

0

dy
−1

N log
(
by20 + ey0 + f − iλ

)
= 0

(5.1.24)

to subtract the pole. For convenience, we name the constant C = by20 + ey0 + f − iλ

I =−
∫ 1−ζ

−ζ
dy

1

N
(
log
(
N + by2 + ey + f − iλ

)
− log (C)

)

+

∫ 1−ζ

0

dy
1

N

(

log

( N y

1− ζ
+ by2 + ey + f − iλ

)

− log (C)
)

−
∫ −ζ

0

dy
1

N

(

log

(N y

−ζ + by2 + ey + f − iλ

)

− log (C)
)

(5.1.25)

Note that the arguments of the y-dependent logarithms differ from the quadratic

by2 + ey + f − iλ only by multiples of N , and so C will be equivalent to the value

of the arguments of all of the y-dependent logarithms taken at y0.

Let us investigate C = by20 + ey0 + f − iλ, remembering the value of y0 (5.1.23),

and the quadratic in ζ (5.1.15). First let us use the definition of ζ to write the

denominator as:

(2bζ + c)(2bζ + c) = 4b(bζ2 + cζ) + c2 = −4ba + c2 = − det G, (5.1.26)
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then4

C =− b(d + eζ)(d+ eζ)− e(d+ eζ)(2bζ + c) + f(c2 − 4ab)

detG − iλ (5.1.27)

=− bd2 − cde+ e2a + c2f − 4abf

det G − iλ (5.1.28)

=− 1

2

detS
detG (5.1.29)

=− 1

2B (5.1.30)

where B is as defined in Section 4.3. It is important to note that the ζ-dependence

has cancelled, as later we will use both possible ζ values (i.e. two distinct values for

which N ) is zero, and this will not affect C.

Now let us perform three different transformations on the three integrals, so as

to have each one being an integral between 0 and 1. Specifically, we write y = z− ζ

for the first integral, y = (1− ζ)z for the second, and y = −ζz for the third. Many

terms cancel, particularly if we remember bζ2 + cζ + a = 0:

I =−
∫ 1

0

dz
1

(2bζ + c)z + (c+ e)ζ + 2a + d

(
log(bz2 + (c+ e)z + a + d+ f − iλ)− log (C)

)

+

∫ 1

0

dz
(1− ζ)

(1− ζ)(2bζ + c)z + d+ eζ

(
log((a+ b+ c)z2 + (d+ e)z + f − iλ)− log (C)

)

+

∫ 1

0

dz
ζ

(cζ + 2a)z + d+ eζ

(
log(az2 + dz + f − iλ)− log (C)

)
. (5.1.31)

Now all the ζ-dependence has dropped out of the arguments of the logarithms. We

recall from Section 4.3 that bi =
∑

k S−1
ki , so in this case

b1 =
4ab+ 2bd− c2 − ce

2bd2 − 2cde+ 2ae2 − 8abf + 2c2f
=

4ab+ 2bd− c2 − ce

detS

=
2s3(s1 −m2

1 +m2
3) + (−s3 +m2

2 −m2
3)(s1 − s3 + s2)

detS (5.1.32)

b2 =
cd− 2ae

2bd2 − 2cde+ 2ae2 − 8abf + 2c2f
=
cd− 2ae

detS

=
2s1(s2 − s1 +m2

3 −m2
2) + (−s1 +m2

3 −m2
1)(s2 − s1 − s3)

detS (5.1.33)

b3 =
−2bd− cd+ 2ae+ ce

2bd2 − 2cde+ 2ae2 − 8abf + 2c2f
=

−2bd− cd+ 2ae+ ce

detS

=
2s2(s1 −m2

3 +m2
1) + (−s2 +m2

2 −m2
1)(s1 + s2 − s3)

detS (5.1.34)

4 The absorption of the iλ into detS is explained in Appendix C.6.
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and as we expect, their sum is equal to B. The significance of the formulation in

terms of kinematic parameters will become apparent in Section 5.2.6.

We wish to eliminate the remaining ζ-dependence, and to do so we will use

the freedom that we have to use either root and we will use both, i.e. writing

our functions F (ζ) = 1
2
(F (ζ+) + F (ζ−)) , and also ζ± = 1

2

(
−c±

√
c2 − 4ab

)
, so

ζ+ζ− = a
b
and ζ+ + ζ− = − c

b

Let us consider only the first integral, using L as a shorthand for the logarithms:

I1 = −1

2

∫ 1

0

dz

(
1

(2bζ+ + c)z + (c+ e)ζ+ + 2a+ d
+

1

(2bζ− + c)z + (c+ e)ζ− + 2a+ d

)

L

I1 = −1

2

∫ 1

0

dz

( −ce− c2 + 2bd + 4ab

bz2(4ab− c2) + z(4ab− c2)(e+ c) + ae2 − ced+ d2b+ (4ab− c2)(a + d)

)

L

I1 = −1

2

∫ 1

0

dz

(

b1 det S
detG(bz2 + (e+ c)z + a+ d+ f) + detS

2

)

L, (5.1.35)

so we have all the z-dependence of this first term, both in the denominator and the

logarithm, being contained within a function g1(z) = bz2 +(c+ e)z+ a+ d+ f − iλ.

The other two terms also reduce in this way, so that we have the neat result

I =−
(

b1

∫ 1

0

dz
log(g1(z))− log

(−1
2B
)

2Bg1 + 1

+ b2

∫ 1

0

dz
log(g2(z))− log

(−1
2B
)

2Bg2 + 1

+ b3

∫ 1

0

dz
log(g3(z))− log

(−1
2B
)

2Bg3 + 1

)

(5.1.36)

with g1(z) =bz
2 + (c+ e)z + a+ d+ f − iλ (5.1.37)

g2(z) =az
2 + dz + f − iλ (5.1.38)

g3(z) =(a+ b+ c)z2 + (d+ e)z + f − iλ (5.1.39)

or g1(z) =s3z
2 + (−s3 +m2

2 −m2
3)z +m2

3 − iλ (5.1.40)

g2(z) =s1z
2 + (−s1 +m2

3 −m2
1)z +m2

1 − iλ (5.1.41)

g3(z) =s2z
2 + (−s2 +m2

2 −m2
1)z +m2

1 − iλ. (5.1.42)

For the rest of this chapter, we will consider a generic one of the three terms in

the bracket of (5.1.36), Ii, with the argument of its z-dependent logarithm written

gi = αiz
2 + βiz + γi.
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5.1.3 The Third Integration

We can now perform the remaining integration of the three integrands, writing the

solution in terms of dilogarithms (or Spence functions). First, we require an identity

which we will use to simplify the roots, which can be shown by looking at the three

cases (5.1.33)–(5.1.34)5 individually:

(bi detS)2 = 2αi detS − detG
(
β2
i − 4αiγi

)
. (5.1.43)

We can then start with an integral from (5.1.36), slightly modified:

Ii =
b1
2B

∫ 1

0

dz
log(g1(z))− log

(−1
2B
)

αiz2 + βiz + γi +
1
2B

(5.1.44)

and rewrite the denominator in terms of its roots di,±

di,± = − βi
2αi

± 1

2αi

√

β2
i − 4αiγi −

2αi
B (5.1.45)

= − βi
2αi

± 1

2αi

√

−(bi detS)2
1

detG (5.1.46)

= − βi
2αi

± |bi detS|
2αi

1√
− detG , (5.1.47)

So as detG → 0, the poles move ever further from zero, one positive and one

negative. The difference of the values will be

di,+ − di,− =
|bi detS|

αi

1√
− detG . (5.1.48)

We will also write the z-dependent logarithm in terms of its own roots

li,± = − βi
2αi

± 1

2αi

√

β2
i − 4αiγi (5.1.49)

= − βi
2αi

± 1

2αi

√

2αi detS
detG − (bi detS)2

detG (5.1.50)

= − βi
2αi

± |bi detS|
2αi

1√
− detG

√

1− 2αi
b2i detS

(5.1.51)

5This is performed in more detail in Appendix C.5.



5.1. Scalar Three-point Function 65

Let us take partial fractions to split the denominator of the integral:

Ii =
bi

2Bαi

( |bi detS|
αi

1√
− det G

)−1

×
∫ 1

0

dz

(

log(αi(z − li,+)(z − li,−))− log

(−1

2B

))(
1

z − di,+
− 1

z − di,−

)

(5.1.52)

=
σ(bi detS)√

− detG

∫ 1

0

dz

(

log(αi(z − li,+)(z − li,−))− log

(

− 1

2B

))(
1

z − di,+
− 1

z − di,−

)

(5.1.53)

where σ(x) denotes the sign of a variable x.

Let us examine the term with the first denominator, rewriting6 −1
2B as

αid
2
i,+ + βidi,+ + γi = αi(di,+ − li,+)(di,+ − li,−), (5.1.54)

so that

Ii,1 =
σ(bi detS)√

− det G

∫ 1

0

dz

(
1

z − di,+

)

× [log(αi(z − li,+)(z − li,−))− log (αi(di,+ − li,+)(di,+ − li,−))]

(5.1.55)

We now wish to split and recombine the logarithms, remembering the η-functions

(see Appendix C.3):

Ii,1 =
σ(bi detS)√

− det G

(
∫ 1

0

dz

[

log

(
z − li,+
di,+ − li,+

)

+ log

(
z − li,−
di,+ − li,−

)

− η

(

z − li,+,
1

di,+ − li,+

)

− η

(

z − li,−,
1

di,+ − li,−

)

− η

(

αi − iǫl,
1

αi − iǫd

)

+ η (z − li,+, z − li,−)− η(di,+ − li,+, di,+ − li,−)

](
1

z − di,+

))

, (5.1.56)

where ǫl and ǫd are small quantities with sign opposite to that of the imaginary part

of the arguments of the first and second logarithm respectively7.

6We know from the end of section 5.1.2 that we can choose to use the ith polynomial, and from

section 5.1.2 that we can choose which root of the denominator to use.
7The origin of these terms is given in Appendix C.3.
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For the integrals of logarithms, we can obtain the standard form of the diloga-

rithm

Li2(x) = −
∫ x

0

log(1− t)

t
(5.1.57)

by substituting t = − z−di,+
di,+−li,+ in the first case and t = − z−di,−

di,+−li,− in the second.

So finally, we have, as in Appendix B of [81] or Section 3 of [87]:

Ii =
σ(bi detS)√

− detG

(

Li2

(
di,+

di,+ − li,+

)

︸ ︷︷ ︸

W

−Li2

(
di,+ − 1

di,+ − li,+

)

︸ ︷︷ ︸

X

− log

(
di,+ − 1

di,+ − li,+

)

η

(

1− li,+,
1

di,+ − li,+

)

+ log

(
di,+

di,+ − li,+

)

η

(

−li,+,
1

di,+ − li,+

)

+ Li2

(
di,+

di,+ − li,−

)

︸ ︷︷ ︸

Y

−Li2

(
di,+ − 1

di,+ − li,−

)

︸ ︷︷ ︸

Z

− log

(
di,+ − 1

di,+ − li,−

)

η

(

1− li,−,
1

di,+ − li,−

)

+ log

(
di,+

di,+ − li,−

)

η

(

−li,−,
1

di,+ − li,−

)

+ log

(
di,+ − 1

di,+

)[

η (−li,+,−li,−)− η(di,+ − li,+, di,+ − li,−)− η

(

αi − iǫl,
1

αi − iǫd

)]

− (di,+ → di,−)

)

, (5.1.58)

and the complete result comes from a sum of three such terms.

We can see, using (5.1.47) and (5.1.51), that there are problematic limits with

this formula:

• For small B, we know that |di,±|, |li,±| ≫ 1, and so we have a large cancellation

between the terms W and X , and another between Y and Z.

• For small αi we have di,± → li,±, so we have similar large cancellations.

• detS → 0 is also a problematic limit, but is dealt with separately, with the

methods of Section 6.3 (except in the case where also detG → 0).

The resultant loss of precision is not acceptable for the quality of results we need,

and so we need an alternative approach, which is explored in the next section.
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5.2 Limits

We can now explore some limits of this equation. Where the formulation in terms of

dilogarithms is not numerically acceptable, we can choose instead to do the integral

numerically.

5.2.1 detG → 0 only

We have stated that for small det G, the formula (5.1.58) is not well-behaved numer-

ically. However, we can alternatively integrate (5.1.36) numerically, and in doing

so, avoid the differences between roots that cause the problems. We know for this

case that the di,± and li,± lie far from zero: i.e. for small enough detG they will

always lie outside the range [0, 1]. Now we remember that we introduced the term

that became − log
(
− 1

2B
)
into the three integrals in such a way that their sum was

zero, in order to cope with the behaviour at z → di,±. So if this limit never arises

in any of the integrals, as it will not, we can leave this term out from all three.

5.2.2 detS → 0 only

In contrast to detG → 0, the case detS → 0 can be a true anomalous threshold:

this situation, and the method for avoiding it, is discussed in Section 6.2. It is also

possible that, for the cases away from the Landau singularity, there are numerically

difficult cases. In our testing, we have found only one, which is detailed in the

following section.

5.2.3 detG, detS → 0 simultaneously

As we saw in Section 5.1.1, detG → 0 requires one of the si → 0 and the other

two to be close in value. For concreteness, let us take the example s2 = s1 + δ and

imagine small s3. Then (5.1.14) becomes:

detG(3)
ij = −(δ2 + s3(s3 − 4s1 − 2δ)), (5.2.59)
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and (5.1.9) becomes

detS =2
(

s3
[
s21 + s1δ +m2

1 − s1(m
2
1 +m2

2)− s1(m
2
1 +m2

3)

− δ(m2
1 +m2

3) + (m2
3 −m2

1)(m
2
2 −m2

1)
]

+ s1[δ(m
2
3 −m2

2) + (m2
3 −m2

2)
2] + δ(m2

2 −m2
3)(m

2
1 −m2

3) + δ2m2
3

)

,

(5.2.60)

so, ignoring the O(δ2) term, for detS → 0, we require also m2
2 → m2

3 (unless we have

s1 = s2 = s3 → 0, which we discount: this is a different case, and is kinematically

forbidden.).

In the Standard Model, there are no pairs of particles whose masses8 are very

close, say within 10−3, but not equal. For this reason, in the following we consider

only the case where the two relevant masses are equal.

Under these conditions, there is a different class of numerical problems which

arises. It is more explicit in the unintegrated form (5.1.36), which we repeat below

for ease of reference, and indeed we will do a numerical integration in this case,

rather than use (5.1.58), due to the low detG. Note that in this case, we do not

know whether the roots of the denominator will be within [0,1] or not, so we leave

the second logarithms in each of the integrals.

I =−
(

b1

∫ 1

0

dz
log(g1(z))− log

(−1
2B
)

2Bg1 + 1

+ b2

∫ 1

0

dz
log(g2(z))− log

(−1
2B
)

2Bg2 + 1

+ b3

∫ 1

0

dz
log(g3(z))− log

(−1
2B
)

2Bg3 + 1

)

. (5.2.61)

8In modern collider experiments, we consider everything lighter than a b-quark to be massless

unless stated.



5.2. Limits 69

In our case, with s2 = s1 + δ, small s3 and m2
2 = m2

3:

g2(z) = s1z
2 + (−s1 +m2

2 −m2
1)z +m2

1 (5.2.62)

g3(z) = (s1 + δ)z2 + (−s1 − δ +m2
2 −m2

1)z +m2
1 → g2(z) (5.2.63)

b2 detS = (m2
1 −m2

2)(s3 − δ) + s1(s3 + δ) (5.2.64)

b3 detS = (m2
1 −m2

2)(s3 + δ) + s1(s3 − δ) + δ(s3 − δ) (5.2.65)

detS = 2
[

s3(s
2
1 + s1δ +m2

1 − 2s1(m
2
1 +m2

2)− δ(m2
1 +m2

2) + (m2
2 −m2

1)
2) + δ2m2

3

]

.

(5.2.66)

We can see that b2 and b3 are small numbers divided by detS, which is also small,

and so we would like to reformulate the integrals in a careful way to improve the

numerical stability. We also have the potential, in the limit s3 ≪ δ, for large

cancellations between the second and third terms, with the integrals having similar

values and the prefactors becoming equal and opposite.

To solve the numerical problem in the bad limit, let us explore the effect of

reexpressing the two cancelling terms. Let us define:

I2 = b2J2 and I3 = b3J3, (5.2.67)

and we will wish to use the formula

b2J2 + b3J3 =
1

2
(b2 + b3)(J2 + J3) +

1

2
(b2 − b3)(J2 − J3) (5.2.68)

to separate the terms in such a way that the large cancellations do not occur.

We have

(b2 + b3) detS = 2(m2
1 −m2

2)s3 + 2s1s3 + δ(δ + s3) (5.2.69)

(b2 − b3) detS = −2(m2
1 −m2

2)δ + 2s1δ − δ(δ + s3), (5.2.70)

and we can then calculate the difference between the integrals, for which we will

need a formula similar to (5.2.68)

A

α
− B

β
=

1

2

(
1

α
− 1

β

)

(A +B) +
1

2

(
1

α
+

1

β

)

(A−B), (5.2.71)
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to give

J2 −J3 =

∫ 1

0

dz
log(g2)− log

(−1
2B
)

2Bg2 + 1
− log(g3)− log

(−1
2B
)

2Bg3 + 1
(5.2.72)

=
1

2

∫ 1

0

dz

((

− 2B
(2Bg2 + 1)(2Bg3 + 1)

)

(g2 − g3)

(

log(g2) + log(g3)− 2 log

(−1

2B

))

−
(

1

2Bg2 + 1
+

1

2Bg3 + 1

)

(log(g2)− log(g3))

)

. (5.2.73)

In this formulation, both of the terms in the integral carry a small quantity, the first

(g2 − g3) and the second (log(g2)− log(g3)), and therefore J2 − J3 → 0.

The case with b2 and b3 of the same order

The most difficult case in this problem has b2 and b3 of the same order9, in which

case their difference might go to zero or might still diverge. For this case, we start

by introducing the variable u = |δ|√
|s3|

, giving δ = σ(δ)u
√

|s3|. Note that as of yet,

we do not know anything about the size of u. In terms of u:

(b2 + b3) detS =s3

(

2(m2
1 −m2

2) + 2s1 + σ(s3)u
2 + σ(δ)u

√

|s3|
)

(5.2.74)

(b2 − b3) detS =u
√

|s3|
(

−2(m2
1 −m2

2)σ(δ) + 2s1σ(δ)− u
√

|s3| − σ(δ)s3

)

(5.2.75)

detS =2s3

[

s21 + s1σ(δ)u
√

|s3|+m2
1 − 2s1(m

2
1 +m2

2)

− σ(δ)u
√

|s3|(m2
1 +m2

2) + (m2
2 −m2

1)
2 + σ(s3)u

2m2
3

]

. (5.2.76)

In this formulation, the limits u → 0 and u → ∞ are unproblematic. In the limit

s3 → 0, (b2 + b3) will be well-behaved, but (b2 − b3) will diverge as s
− 1

2
3 . However,

we note that

g2 − g3 = −δz(z − 1) = σ(δ)u
√

|s3|z(z − 1) (5.2.77)

log(g2)− log(g3) = log

(

1− δz(z − 1)

g3

)

(5.2.78)

9In golem95, this is taken to be 0.1 < b2
b3

< 10.
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and so the term (b2 − b3)(J2 −J3) can be made to converge numerically:

(b2 − b3)(J2 − J3) =σ(δ)u
√

|s3|(b2 − b3)
1

2

∫ 1

0

dz

[(
2Bz(z − 1)

(2Bg2 + 1)(2Bg3 + 1)

)

×
(

log(g2) + log(g3)− 2 log

(−1

2B

))

−
(

1

2Bg2 + 1
+

1

2Bg3 + 1

)
1

δ

(
log(g2)− log(g3)

)

]

, (5.2.79)

where we have made use of the fact that the final term is of the form log(1−x)
x

(implemented as q(1, x) in golem95), which is numerically well-behaved as x→ 0.10

Now we have only well-behaved terms inside the integral. The prefactor, taken as a

single unit, behaves as:

u
√

|s3|(b2 − b3) ∼ u2s03 (5.2.80)

and so we have removed the divergent behaviour. Neither the first integral of (5.2.61),

nor the term (b2 + b3)(J2 + J3) is numerically difficult in this limit, so they remain

as they are, and the formula used is:

I =−
(

b1

∫ 1

0

dz
log(g1(z))− log

(−1
2B
)

2Bg1 + 1

+
1

2
(b2 + b3)

∫ 1

0

dz

(

log(g2(z))− log
(−1
2B
)

2Bg2 + 1
+

log(g3(z))− log
(−1
2B
)

2Bg3 + 1

)

+
1

4
σ(δ)u

√

|s3|(b2 − b3)

×
∫ 1

0

dz

[(
2Bz(z − 1)

(2Bg2 + 1)(2Bg3 + 1)

)(

log(g2) + log(g3)− 2 log

(−1

2B

))

−
(

1

2Bg2 + 1
+

1

2Bg3 + 1

)
1

δ
(log(g2)− log(g3))

])

. (5.2.81)

where the last term is implemented as

1

δ
(log(g2)− log(g3)) =

z(z − 1)

g3

1

ξ
log (1− ξ) (5.2.82)

with ξ =
δz(z − 1)

g3
(5.2.83)

10For small z, it is implemented as q(1, z) =
(

1 +
∑∞

j=2
xj−1

j

)

, with terms evaluated up to the

desired accuracy (2× 10−16).
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The case with b2 and b3 not of the same order

If b2 and b3 are not of the same order, we will not have the problem that causes us

to have to recombine the logarithms. In order to obtain convenient expressions, in

which cancellations between small quantities can be made explicit, we use v = |δ|
|s3| ,

giving:

(b2 + b3) detS =s3
[
2m2

1 − 2m2
2 + 2s1 + vs3(v + σ(δ)σ(s3))

]
(5.2.84)

(b2 − b3) detS =s3σ(δ)σ(s3)v
[
−2m2

1 + 2m2
3 + s1 + s3(σ(δ)σ(s3)v + 1)

]
(5.2.85)

detS =2s3
(
s21 +m2

1 − 2s1(m
2
1 +m2

2) + (m2
2 −m2

1)
2 (5.2.86)

+ s3vσ(δ)σ(s3)(s1 −m2
1 −m2

2) + s23v
2m2

3

)
(5.2.87)

Now we see that all the quantities are stable for all limits with one exception:

(b2 − b3) diverges as s
−1
3 where v is large and s3 is small. However, this is the limit

addressed in the previous section. This means that for all other regions, this is a

stable formulation, and it does not require a reexpression of the logarithms, so this

formulation is used as the default case.

Entry into this limit

The values of detG and det S for which this limb should be entered have not yet

been optimised: this will be done before this limit forms part of the public version.

Currently, we are using the restrictions that two masses must be equal, B < 0.5 and

| detG − detS| < 10.

Other cases of cancellation

It is of course in principle possible that there are other circumstances, completely

separate from this limit, in which pairs of the Ii cancel against each other, however

no such situations have been revealed by our testing.

5.2.4 Leading Coefficient αi → 0 only

We now consider the limits when parameters in the arguments of the logarithms

in (5.1.40)–(5.1.42), gi = αiz
2 + βiz+ γi, become small. As αi → 0, the character of
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the calculation changes. The li,± roots become

li,± = − βi
2αi

[

1∓ |βi|
βi

√

1− 4α2
i

β2
i

γi
αi

]

(5.2.88)

= − βi
2αi

[

1∓ σ(βi)(1−
2αiγi
β2
i

+O(α2
i ))

]

, (5.2.89)

so up to O(α0
i ), we have:

σ(βi) = 1







li,+ = − γi
βi

li,− = − βi
αi

+ γi
βi

→ −σ(αi)∞
(5.2.90)

σ(βi) = −1







li,+ = − βi
αi

+ γi
βi

→ +σ(αi)∞

li,− = − γi
βi
.

(5.2.91)

Similarly, the di,± roots become

di,± = − βi
2αi

[

1∓ σ(βi)(1−
2αiγi
β2
i

− αi
Bβ2

i

+O(α2
i ))

]

, (5.2.92)

so up to O(α0
i ), we have:

σ(βi) = 1







di,+ = − γi
βi
− 1

2Bβi

di,− = − βi
αi

+ γi
βi
+ 1

2Bβi → −σ(αi)∞
(5.2.93)

σ(βi) = −1







di,+ = − βi
αi

+ γi
βi
+ 1

2Bβi → +σ(αi)∞

di,− = − γi
βi
− 1

2Bβi .

(5.2.94)

Let us now take σ(βi) = 1 for concreteness (the other case will be similar),

for which the +-labelled roots are stable, and examine the behaviour of the in-

dividual parts of the full expression in terms of logarithms, dilogarithms and η-

functions (5.1.58).



5.2. Limits 74

First let us examine the logarithms. Their arguments:

di,+ − 1

di,+
→ 1 (5.2.95)

di,+
di,+ − li,+

→ 2Bγ + 1 (5.2.96)

di,+
di,+ − li,−

→ 0 (5.2.97)

di,−
di,− − li,+

→ 1 (5.2.98)

di,−
di,− − li,−

→ ∞ (5.2.99)

and the corresponding cases with an additional (−1) in the numerator act similarly.

This means that, in order to avoid unstable numerical behaviour, we will have to

find reexpressions of the four terms involving the logarithms

di,+
di,+ − li,−

di,+ − 1

di,+ − li,−

di,−
di,− − li,−

di,− − 1

di,− − li,−
(5.2.100)

Let us examine the terms involving the first pair of logarithms, and use the fact that

in this limit, li,− ≫ 1, to find a numerically stable formulation:

Pl =− log

(
di,+ − 1

di,+ − li,−

)

η

(

1− li,−,
1

di,+ − li,−

)

+ log

(
di,+

di,+ − li,−

)

η

(

−li,−,
1

di,+ − li,−

)

(5.2.101)

∼ η

(

−li,−,
1

di,+ − li,−

)[

log

(
di,+

di,+ − 1

)

+ η

(

di,+,
1

di,+ − li,−

)

− η

(

di,+ − 1,
1

di,+ − li,−

)]

.

(5.2.102)

The same reexpression can be applied to the other pair of terms, and so we have a

stable formulation for the logarithms.

The dilogarithms have the same set of arguments, excluding (5.2.95). Of the

four cases, only the last causes numerical difficulty. To solve this problem, we first

notice that di,− − li,− is algebraically finite for all small αi

di,− − li,− = −βi
αi

+
γi
βi

+
1

2Bβi
+
βi
αi

− γi
βi

+O(αi) →
1

2Bβi
(5.2.103)

and so if a case of small αi arises, we must calculate this difference algebraically.

We can then use the identity:

Li2

(
1

z

)

= −Li2(z)−
1

2
log2(−z)− π2

6
(5.2.104)
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on the pair of dilogarithms

Pd =Li2

(
di,−

di,− − li,−

)

− Li2

(
di,− − 1

di,− − li,−

)

=− Li2

(
di,− − li,−
di,−

)

+ Li2

(
di,− − li,−
di,− − 1

)

− 1

2
log2

(

−di,− − li,−
di,−

)

+
1

2
log2

(

−di,− − li,−
di,− − 1

)

=− Li2

(
di,− − li,−
di,−

)

+ Li2

(
di,− − li,−
di,− − 1

)

+
1

2

(

log

(
di,−

li,− − di,−

)

+ log

(
di,− − 1

li,− − di,−

))[

log

(
di,− − 1

di,−

)

− η

(

(di,− − 1) ,
1

di,−

)

+ η

(

(li,− − di,−) ,
1

di,−

)

− η

(

(li,− − di,−) ,
1

di,− − 1

)]

, (5.2.105)

where we have expanded out the difference of two squares, and expanded and re-

combined the logarithms in the difference term.

In fact, the first η-function is zero, because the imaginary parts of its arguments

are of opposite sign, and the other two cancel in the limit of large di,−. Let us

multiply and divide the last term by 1
di,−

:

Pd =− Li2

(
di,− − li,−
di,−

)

+ Li2

(
di,− − li,−
di,− − 1

)

+
1

2

1

di,−

(

log

(
di,−

li,− − di,−

)

+ log

(
di,− − 1

li,− − di,−

))



log
(
di,−−1

di,−

)

1
di,−



 , (5.2.106)

so now we have two terms of the form
log(di,−)

di,−
, and a term q(1, 1

di,−
) (as in Sec-

tion 5.2.3, below (5.2.79)), so all terms are now unproblematic as di,− → ∞.

In golem95, the default value for which the programme switches to this regime

is αi

Smax
= 10−10, where Smax is the largest entry of the S-matrix.

5.2.5 Subleading Coefficient βi → 0 only

As βi → 0, the roots

li,± → ±σ(αi)
√

− γi
αi

(5.2.107)

and

di,± → ±σ(αi)
√

− γi
αi

− 1

2Bαi
(5.2.108)

and there are no numerical problems.
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5.2.6 Coefficients αi, βi → 0 simultaneously

From (5.1.40)–(5.1.42), we recall that

gi = saz
2 + (−sa +m2

b −m2
c)z +m2

d − iλ for some a, b, c, d ∈ {1, 2, 3}.

We also recall the argument of Section 5.2.3, that in the Standard Model there is no

possibility for masses to be very close to each other, and yet not equal. Therefore,

if we have sa = αi → 0, in order also to have βi → 0, we need to have mb = mc, and

sa = αi = −βi.
So we have:

di,± → 1

2
±
√

1

4
− γi
αi

− 1

2Bαi
(5.2.109)

and

li,± → 1

2
±
√

1

4
− γi
αi

(5.2.110)

and so all the roots are divergent as αi, βi → 0.

However, if we look at an example dilogarithm argument, and expand the square

roots just to zeroth order in αi:

di,+
di,+ − li,+

≃
1
2
+

√
γi+

1
2B

−αi
√

γi+
1
2B

−αi
−
√

γi
−αi

(5.2.111)

≃

√

γi +
1
2B

√

γi +
1
2B −√

γi

. (5.2.112)

We can now see that this combination of roots is finite, as indeed are all the oth-

ers. This suggests that we can continue to use (5.1.58), as long as we find a more

numerically stable representation of the combinations of the roots.

Let us define

d̃i,± = |αi|di,± = −σ(αi)
βi
2
± σ(αi)

√

β2
i

4
− αiγi −

αi
2B (5.2.113)

and

l̃i,± = |αi|li,± = −σ(αi)
βi
2
± σ(αi)

√

β2
i

4
− αiγi. (5.2.114)
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Now the roots will converge (indeed they will go to zero as
√
αi), and we will have

to rewrite (5.1.58) for the tilded quantities:

Ii =
σ(bi detS)√

− detG

(

Li2

(

d̃i,+

d̃i,+ − l̃i,+

)

− Li2

(

d̃i,+ − |αi|
d̃i,+ − l̃i,+

)

− log

(

d̃i,+ − |αi|
d̃i,+ − l̃i,+

)

η

(

|αi| − l̃i,+,
1

d̃i,+ − l̃i,+

)

+ log

(

d̃i,+

d̃i,+ − l̃i,+

)

η

(

−l̃i,+,
1

d̃i,+ − l̃i,+

)

+ Li2

(

d̃i,+

d̃i,+ − l̃i,−

)

− Li2

(

d̃i,+ − |αi|
d̃i,+ − l̃i,−

)

− log

(

d̃i,+ − |αi|
d̃i,+ − l̃i,−

)

η

(

|αi| − l̃i,−,
1

d̃i,+ − l̃i,−

)

+ log

(

d̃i,+

d̃i,+ − l̃i,−

)

η

(

−l̃i,−,
1

d̃i,+ − l̃i,−

)

+ log

(

d̃i,+ − |αi|
d̃i,+

)[

η
(

−l̃i,+,−l̃i,−
)

− η(d̃i,+ − l̃i,+, d̃i,+ − l̃i,−)− η

(

αi − iǫl,
1

αi − iǫd

)]

− (d̃i,+ → d̃i,−)

)

, (5.2.115)

In golem95, the default value for which the programme switches to this regime

is11 αi

Smax
, βi
Smax

= 10−10.

Because the modified roots go to zero for very small αi, we could in principle

have further numerical problems if we are very close to this limit. However, when

αi, βi → 0, the corresponding bi also goes to zero12: this can be seen in the equations

(5.1.33)–(5.1.34), in which numerator of each bi is given as a sum of a term with

a factor αi and a term with a factor βi. In this limit, the integrand loses all z-

dependence, as gi(z) → γi. So we can see that if this constant integrand

log γi − log
(−1
2B
)

2Bγi + 1
(5.2.116)

remains finite, then Ii → 0, and we need not do any calculation for it. Fortunately

the integrand does remain finite, by the same argument as in Section 5.2.1: if B
is not small, all the terms are well-behaved, and if it is small, the poles will not

be in the integration region and we can cancel the second logarithm it from the

11As before, Smax is the largest entry of the S-matrix.
12This relies on detS not also going to zero.
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three integrals. In our implementation, we take the integral Ii to be zero below

|αi|, |βi| = 2× 10−15.

5.3 Scalar Two-point Function

The scalar two-point function is a much simpler case, but it also has limits for which

the first implementation breaks down, and another formulation must be found. Let

us start with the integral Id
2 , for which

d

2
−N = ǫ (we will treat only the case with

s, m1 and m2 neither equal nor zero):

Id
2 =Γ(ǫ)

∫ 1

0

2∏

i=1

dxiδ

(

1−
2∑

i

xi

)(

−1

2
xT · S · x− iλ

)ǫ

=
1

ǫ
− γE +

∫ 1

0

2∏

i=1

dxiδ

(

1−
2∑

i

xi

)(

log(−1

2
xT · S · x− iλ)

)

+O(ǫ),

(5.3.117)

where we have used (B.3.21): Γ(ǫ) = 1
ǫ
− γE +O(ǫ). We can then integrate over x2

using the δ-functional:

Id
2 =

1

ǫ
− γE −

∫ 1

0

dx

(

log(−1

2

(
x2S11 + 2x(1 − x)S12 + (1− x)2S22

)
− iλ)

)

+O(ǫ)

(5.3.118)

and substitute in S11 = −2m2
1, S12 = s−m2

1 −m2
2 and S22 = −2m2

2:

Id
2 =

1

ǫ
− γE −

∫ 1

0

dx
(
log(sx2 + (−s+m2

1 −m2
2)x+m2

2 − iλ)
)
. (5.3.119)

Let us now name the final, integral, term I2,I and proceed to solve it. We have

I2,I =

∫ 1

0

dx log(sx2 + (−s+m2
1 −m2

2)x+m2
2 − iλ) (5.3.120)

and we wish to find a solution by factorising the quadratic form and splitting the

logarithm. To do this, we need to remember that s is a real of either sign and that

m2
1 and m2

2 have positive real part. Then as demonstrated in Appendix C.3, the

appropriate way to split for real masses is:

log(sx2 + (−s +m2
1 −m2

2)x+m2
2 − iλ) = log (s(x− x1)(x− x2)) (5.3.121)

= log(s− iλ) + log(x− x1) + log(x− x2),

(5.3.122)
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and if the masses are complex, we gain one additional η-function. The roots of the

quadratic form are

x1,2 =
−(−s +m2

1 −m2
2)±

√

s2 +m4
1 +m4

2 − 2sm2
1 − 2sm2

2 − 2m2
1m

2
2 + iλs

2s
,

(5.3.123)

where whenever λ has been multiplied by an internal mass, the mass can be omitted

as it is the sign of the term which is important.

We can solve the integral directly using
∫
dx log(x) = x log(x) + x+ C:

I2,I =− 2 + log(s− iλ) + (1− x1) log(1− x1) + (1− x2) log(1− x2)

+ x1 log(−x1) + x2 log(−x2). (5.3.124)

To consider the s→ 0 case, let us expand in small s, and keep only terms up to zero

order13:

x1,2 =
1

2s

[
−(m2

1 −m2
2)± |m2

1 −m2
2|
]
± m2

1 +m2
2

2|m2
1 −m2

2|
+

1

2
. (5.3.125)

We see that not only log(s − iλ), but also exactly one of the roots x1,2 will cause

numerical difficulties for small14 s. These can be solved by reexpressing the function.

The method of rexpression depends whether we are in:

Case 1a s≪ m2
1 and (m2

1 −m2
2) > 0; (5.3.126)

Case 1b s≪ m2
2 and (m2

1 −m2
2) < 0; or (5.3.127)

Case 2 s, (m2
1 −m2

2) ≪ m2
1, m

2
2. (5.3.128)

5.3.1 Case 1a: s≪ m2
1 and (m2

1 −m2
2) > 0

When s → 0, one of the roots will be badly behaved, and, as we see in (5.3.125),

which one that is will depend on the sign of (m2
1 −m2

2). In the case (m2
1 −m2

2) > 0,

x2 becomes very large, so we would like to have a reexpression without log(s− iλ),

log(−x2) or log(1− x2).

13We do not make this approximation in the golem95 programme.
14In golem95, we use a ratio of 10−4 as our dividing line.
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First let us multiply out the prefactors (1 − x1,2) in Equation (5.3.124) and

combine the logarithms15 with coefficients x1,2:

I2,I =− 2 + log(s− iλ) + log(1− x1) + log(1− x2)− x1 log

(
1− x1
−x1

)

− x2 log

(
1− x2
−x2

)

.

(5.3.129)

Now let us rewrite terms 2, 3 and 4 as follows:

T+ = log(s− iλ) + log(1− x1) + log(1− x2) (5.3.130)

= log(s− iλ) + log

(
m2

1 − iλ

s

)

− η(1− x1, 1− x2) (5.3.131)

= log(σ(s)− iλ) + log
(
m2

1σ(s)− iλσ(s)
)
− η(1− x1, 1− x2), (5.3.132)

where σ(s) represents the sign of s. We consider the two cases:

σ(s) = 1 T+ = log(1− iλ) + log
(
m2

1 − iλ
)
− η(1− x1, 1− x2) (5.3.133)

= log
(
m2

1 − iλ
)
− η(1− x1, 1− x2) (5.3.134)

σ(s) = −1 T+ = log(−1− iλ) + log
(
−m2

1 + iλ
)
− η(1− x1, 1− x2) (5.3.135)

= −iπ + log
(
−m2

1 + iλ
)
− η(1− x1, 1− x2) (5.3.136)

= −iπ + log
(
m2

1 − iλ
)
+ iπ − η(1− x1, 1− x2) (5.3.137)

= log
(
m2

1 − iλ
)
− η(1− x1, 1− x2), (5.3.138)

so we have for (m2
1 −m2

2) > 0 a better formulation:

I2,I =− 2 + log
(
m2

1 − iλ
)
− η(1− x1, 1− x2)− x1 log

(
1− x1
−x1

)

− x2 log

(

1− 1

x2

)

,

(5.3.139)

the last term of which is well-behaved for all values of m2
2: it goes to unity as

x2 → ∞, being q(1, 1
x2
) (as in Section 5.2.3).

5.3.2 Case 1b: s≪ m2
2 and (m2

1 −m2
2) < 0

For (m2
1 − m2

2) < 0, we are instead seeking a form with no log(s − iλ), log(−x1)
or log(1 − x1) terms. We start by adding and subtracting two terms in (5.3.124):

15There are no η-functions here as (1− x1,2) and −x1,2 have imaginary parts of the same sign.
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(1− x1) log(−x1) and (1− x2) log(−x2):

I2,I =− 2 + log(s− iλ) + (1− x1) log

(
1− x1
−x1

)

+ log(−x1)

+ (1− x2) log

(
1− x2
−x2

)

+ log(−x2). (5.3.140)

Now we take a subset of terms and rearrange, using the same pattern of argu-

mentation:

T− = log(s− iλ) + log(−x1) + log(−x2) (5.3.141)

= log(s− iλ) + log

(
m2

2 − iλ

s

)

+ η(−x1,−x2) (5.3.142)

= log
(
m2

2 − iλ
)
+ η(−x1,−x2), (5.3.143)

and also we see that

(1− x1) log

(
1− x1
−x1

)

= −(1 − x1) log

( −x1
1− x1

)

= −(1− x1) log

(

1− 1

1− x1

)

,

(5.3.144)

so we have a convenient form

I2,I =− 2 + log
(
m2

2 − iλ
)
+ η(−x1,−x2)

− (1− x1) log

(

1− 1

1− x1

)

+ (1− x2) log

(
1− x2
−x2

)

. (5.3.145)

This equation is unproblematic for all m2
1.

5.3.3 Case 2: s, (m2
1 −m2

2) ≪ m2
1, m

2
2

In this case, a further variable is instructive: r =
m2

1−m2
2

s
. We we can write out the

roots as

x1,2 =
1

2s

[

s(r − 1)±
√

s2(r − 1)2 − 4sm2
2

]

(5.3.146)

=
r − 1

2
±
(
r − 1

2

)
√

1− 4m2
2

s(r − 1)
. (5.3.147)

Without subdividing this case, we do not know which root will go to ∞: indeed,

both roots will diverge if s → 0 more quickly than m2
1 − m2

2. Fortunately, with a
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slight reexpression, we have two formulae that are well-behaved as both x1,2 → ∞:

we can use (5.3.139)

I2,I =− 2 + log
(
m2

1 − iλ
)
− η(1− x1, 1− x2)

− x1 log

(

1− 1

−x1

)

− x2 log

(

1− 1

x2

)

(5.3.148)

or (5.3.145)

I2,I =− 2 + log
(
m2

2 − iλ
)
+ η(−x1,−x2)

− (1− x1) log

(

1− 1

1− x1

)

− (1− x2) log

(

1− 1

1− x2

)

(5.3.149)

and we take the former when r is positive and the latter when r is negative, so that

the logarithm of the mass is unlikely to be problematic.



Chapter 6

Complex masses

In 1963, Veltman proved [88] for a specific example that the scattering matrix S of

a theory with an unstable particle could be unitary, renormalisable and causal1. In

the Standard Model, all of the heavier particles2 can be treated as unstable.

In this chapter, we first introduce, with reference to the optical theorem, the

existence of particle widths, and discuss the different schemes for treating unstable

particles. We then move onto the seemingly unrelated topic of Landau singularities.

From both sections, we will conclude that it would be best to have a library including

complex masses, and we describe our implementation, golem95C, in Section 6.3.

6.1 The Optical Theorem and Particle Widths

The optical theorem (see, for example, Chapter 6 of [89] or Chapter 7 of [21]) is a

useful way of finding scattering amplitudes, based on the unitarity of the scattering

matrix S. Writing S = 1 + iT, S†S = 1 becomes

−i(T− T†) = T†T. (6.1.1)

1Because he was not considering a theory with gauge bosons, only two scalars, the problem of

retaining gauge invariance, discussed in Section 6.1, did not arise.
2Heavier than the b-quark: the b-quark’s width is usually too small to usefully include.
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Now let us have the initial state |i〉 and the final state |f〉, and a complete set of

states, with the sum running over all possible sets of states s:

1 =
∑

s

∫
∏

j

(
d3qj

(2π)22Eqj

)

|s(qj)〉 〈s(qj)| , (6.1.2)

so

−i
(
〈f |T|i〉 − 〈f |T†|i〉

)
=
∑

s

∫
∏

j

(
d3q

(2π)22Eq

)

〈f |T|s(qj)〉 〈s(qj)|T†|i〉 (6.1.3)

Now let us consider a specific example. We take the initial and final state to be

a single particle, for which the initial and final momenta will of course be the same

p, and consider the two-point function:

−i
(
〈p|T|p〉 − 〈p|T†|p〉

)
=
∑

s

∫
∏

j

(
d3q

(2π)22Eq

)

〈p|T|s(qj)〉 〈s(qj)|T†|p〉 (6.1.4)

−2iIm (〈p|T|p〉) =
∑

s

∫
∏

j

(
d3q

(2π)22Eq

)

|〈p|T|s(qj)〉|2 , (6.1.5)

which is to say that the two-point function will gain an imaginary part if there exist

ways in which the initial particle could decay into real particles. In the specific case

of a Z-boson, there is sufficient energy in the propagator for decay into a pair of

light fermions for p2 > 2mfl, where fl is the lightest fermion (which physically will

be one of the neutrinos3), which will lead to there being an imaginary part in the

Z-propagator. However, in t-channel diagrams, the Z-boson has p2 < 0, and so has

no opportunities for decay into real particles.

This imaginary part will enter our calculations as a particle width4, which will

only be present in the s-channel, and will give the propagator

1

p2 −m2 + imΓ
, (6.1.6)

that is to say that, when we have an unstable particle, the pole of the propagator

will move off the real axis when we do the renormalising Dyson sum (Section 2.3.6).

3The neutrinos are so light that for modern collider experiments, we can treat this bound as

effectively zero.
4A simpler quantum mechanical argument can also be made, using φ(t) = φ(0) exp(−iE0t− Γ

2 t)

for an unstable particle, which in energy space is φ(E) ∼ φ(0) 1
(E−E0)−iΓ

2

.
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The mass of the heavy particle, if defined to be on the real axis, will be scheme

dependent. There is, however, one scheme-independent way to define the (real)

mass and the width together, and that is as the real and imaginary parts at the

position of the pole [90–96].

When performing a practical one-loop calculation, the first approximation we

might make would be the narrow width approximation (NWA). In this scheme, the

squared propagator P2 for a resonant particle of mass M is approximated:

P2 ≡ 1

(q2 −M2)2 + (MΓ)2
(6.1.7)

∼ π

MΓ
δ(q2 −M2). (6.1.8)

The standard error estimate for this approximation is O( Γ
M
), and therefore we

would like to include the width in practical calculations, particularly at NLO, as

O
(

Γ
M

)
= O(α) (with α the relevant coupling for the decay: usually EW). Moreover,

it is shown in [97–100] that the effects of finite widths can be enhanced5, further

limiting the applicability of the narrow-width approximation.

It is not trivial to include a width because, as we will see, the most näıve methods

violate gauge invariance: the inclusion of the width is a partial inclusion of terms

of higher order, which will in general cause a violation of Ward identities. This is

no trivial formality: in the absence of gauge invariance, calculations can gain very

large theoretical errors [101]. Several schemes have been developed in the literature:

Fixed width

In perhaps the simplest scheme, all propagators have a fixed width added into them

at the start of the calculation. It is shown in [102] that this scheme retains U(1) gauge

invariance for a specific example. However, this technique has the disadvantage that

it breaks SU(2) [103], due to the inconsistency of having complex masses in the

propagators and a real θW (because cos θW = MW

MZ
), and also it retains an unphysical

width for t-channel bosons, introducing a bias.

5The conditions for the NWA’s applicability are laid out in [98] as: Γ ≪ M ; m ≪ M , with m the

daughter particle mass;
√
s ≫ M ; little interference from non-resonant processes; and separability

of the resonant propagator from the rest of the matrix element.
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Step width and Running width

Both of these schemes take the imaginary part of the denominator of the propagator

to be zero for spacelike momenta, and therefore avoid giving t-channel bosons an

unphysical width. Then for timelike momenta, the step width turns on a constant

imaginary part MΓ, and the running width takes p2 Γ
M
.

These schemes not only violate SU(2), but also U(1) [102], so a further scheme

is required to render its results gauge invariant.

Fermion loop

In the fermion loop scheme [102–108], the width of a boson propagator is treated

by calculating the contribution of a fermion loop to it in its unrenormalised state,

and then renormalising. This has the effect of undoing the gauge breaking from the

step width or running width schemes, and so they are used in combination.

This is then consistent in terms of orders, as it includes all of the one-loop effects

on the propagator, and so preserves gauge invariance. However, it requires the

computation of effects one order higher than the rest of the calculation, and so is

difficult for higher-order processes. Also, it cannot currently be implemented for

unstable fermions with bosonic corrections.

Overall Factor Scheme

In [101, 109], the Overall Factor scheme6 is developed, in which the calculation is

performed without a width, and then all diagrams are multiplied by p2−m2

p2−m2+imΓ
(with

fixed Γ). This preserves gauge invariance at the cost of adding an O( Γ
m
) = O(α)

contribution to the non-resonant terms.

In [101], it is compared to a scheme in which the gauge violation is accepted,

but terms are chosen so as to minimise its impact, and both are found to be much

more stable than the fixed-width scheme.

As stated in [110], this is the scheme used in MCFM, with which we will compare

our results in Section 7.4.4.

6This is also called the preserved gauge scheme or factorisation scheme.
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Pole expansion

In this scheme [90,92,111,112], an expansion is made around the complex resonance.

The position of the resonance is gauge invariant, and therefore so are the results

of this scheme. However, the method breaks down near to the threshold for the

production of multiple unstable particles (the example of HZ production is given

in [113]).

Unstable particle effective theory

In this method [114–118] the unstable heavy particles are integrated out, in order

to organise the calculation as a series in both α and Γ
M
. For example, for W -pair

production [118], the W s can be taken as non-relativistic near their threshold, and

the parameters of the effective theory can be determined by matching to a full

calculation. This strategy can describe the peak region well, but has more limited

applicability away from it.

Complex mass scheme

In the complex mass scheme [119–121]7, the mass is defined throughout the calcula-

tion, not only in the propagators, as complex – as in other schemes, the values are

taken from the position of the pole in the complex plane – so we have a real bare

mass and complex counterterms. We therefore have a consistent treatment which

respects gauge invariance. The costs of this scheme are that, like the fixed width

scheme, it retains an unphysical width for non-resonant diagrams; and that one must

rewrite any algorithms to include complex renormalisation, complex couplings and

complex-mass integral libraries. We discuss our implementation of such a library in

Section 6.3.

In principle, the widths should still be considered as energy-dependent, and in

order to integrate this into the scheme, the complex-pole scheme [123–125] has been

developed.

7This has also been extended to higher loops in [122, 123].
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Comparisons

A comparison of several of these schemes is performed in [126]. The programmes

WTO [107], RacoonWW [127] and LUCIFER [128] can also perform such compar-

isons.

6.2 Landau Singularity

Landau [72] showed that there are certain specific kinematic configurations in which

an anomalous threshold will occur. If we look at equation (4.1.15), neglecting the

λ-prescription:

Id
N(S) =

∫
dd k

iπd /2

∫ 1

0

N∏

i=1

(dxi)δ

(
N∑

i=1

xi − 1

)

(N − 1)!

[
∑
xi(q2i −m2

i )]
N

(6.2.9)

(where the qi and the xi are real) we can see that there will be a potential singularity

if:

xi(q
2
i −m2

i ) = 0 ∀i (6.2.10)

An additional condition arises from topological considerations, as shown in Chapter

2 of [85], or Chapter 18 of [129]:

∂

∂k

[∑

xi(q
2
i −m2

i )
]

= 0 (6.2.11)

or
∑

xiqi = 0, (6.2.12)

where we are only considering the one-loop case, and it will be important to remem-

ber that the xi are non-negative.

The anomalous threshold, or leading Landau singularity, will occur when these

conditions apply and none of the xi = 0: we can see from (6.2.10) that this means

that all the propagators go on-shell. Sub-leading Landau singularities, occur when

some of the xi = 0, which is when all the propagators go on-shell in a pinched

diagram. Thresholds involving only a 2× 2 S-matrix are termed normal thresholds,

and arise at the point at which the incident momentum can first produce the two

adjoining particles (in the loop) on-shell.
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In [130], it is shown that we can recast (6.2.12) into the language of our modified

Cayley matrix S: the condition simply becomes

detS = 0 (6.2.13)

and similarly for the subleading case, the determinant which is zero will be that of

the sub-matrix S(S0\{sx0}) formed when the rows and columns {sx0} corresponding

to the zero xi have been removed.

In [72, 85], it is shown that with N legs at l loops, where a Landau singularity

occurs it will behave as:

(detS)2l− 1
2
(N+1) log(detS) (6.2.14)

in the vicinity of the singularity. Later in this section, we will see the leading Landau

singularity behaving as (detS)− 1
2 , the subleading singularity from the triangle as

log(detS), and the normal threshold from the bubbles, for which only the derivative

is discontinuous.

Let us now take a specific example8 from a supersymmetric context, namely the

production of a heavy neutral Higgs and a pair of massless b-quarks by gluon fusion,

via a loop containing two squarks (sbottoms) and two neutralinos.

H
q̃

b̄

b

q̃

χ

χ

r1 r2

r3r4

p5

p4

p3

Figure 6.1: A diagram in which all propagators can go simultaneously on-shell to

develop a leading Landau singularity which can be regulated by introducing complex

masses.

8Similar specific examples can be found in [130, 131].
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The maximal set S0 = {1, 2, 3, 4}. For the box, we will have:

S(S0) =











−2m2
q̃ −m2

χ −m2
q̃ s45 −m2

χ −m2
q̃ s− 2m2

q̃

−m2
χ −m2

q̃ −2m2
χ m2

H − 2m2
χ s35 −m2

χ −m2
q̃

s45 −m2
χ −m2

q̃ m2
H − 2m2

χ −2m2
χ −m2

χ −m2
q̃

s− 2m2
q̃ s35 −m2

χ −m2
q̃ −m2

χ −m2
q̃ −2m2

q̃











.

(6.2.15)

We now use the constraint on the physical phase space9, detG(1) ≥ 0, where:

G(1) =








0 s35 −m2
H s− s35 − s45

s35 −m2
H 2m2

H s45 −m2
H

s− s35 − s45 s45 −m2
H 0








(6.2.16)

detG(1) = 2(s12 − s35 − s45 −m2
H)
(
s35s45 −m2

Hs12
)
≥ 0, (6.2.17)

So m2
H

s12
s35

≤ s45 ≤ m2
H + s12 − s35 (6.2.18)

m2
H ≤ s35 ≤ s12, (6.2.19)

where the first pair of constraints comes from requiring both brackets in (6.2.17) to

be non-negative for general (positive) s35, and the second pair comes from inserting

s45’s minimum value into the first bracket. Following [130], we can write:

detS(S0) = κ(s35, m
2
q̃ , m

2
χ)(s45 − s

(0)
45 )

2 + detS(S0\{2}) detS(S0\{4}), (6.2.20)

where s
(0)
45 is the solution of

detS(S0)− detS(S0\{2}) detS(S0\{4}) = 0. (6.2.21)

Now let us choose some values and investigate the behaviour with varying s45.

Take:

mH = 450GeV mq̃ = 800GeV mχ = 200GeV
√
s = 1700GeV (6.2.22)

and also fix s35 = 2(mq̃ +mχ). The discontinuities, as shown in Figure 6.2 are:

9This is shown, for example, in the appendix of [132], with the difference that they take incoming

and outgoing momenta, and ours are all defined as incoming, so there is a minus sign difference.
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• A normal threshold at
√
s45 = (mq̃ +mχ) = 1000GeV, where a squark and a

neutralino can first be produced on-shell.

• A subleading Landau singularity at
√
s45 ≃ 1012.7GeV, corresponding to

detS(S0\{2}) = 0

• A subleading Landau singularity at
√
s45 ≃ 1038.1GeV, corresponding to

detS(S0\{4}) = 0

• A leading Landau singularity at
√
s45 ≃ 1078.4GeV, where det S(S0) = 0

-2e-09

-1.5e-09

-1e-09

-5e-10

 0

 5e-10

 1e-09

 900  950  1000  1050  1100  1150  1200

sqrt(s45)

Re A40
Im A40

Figure 6.2: Singularity structure of the scalar four-point function A4,0 (real masses)

contained in the diagram of Figure 6.1 for 900GeV ≤ s45 ≤ 1200GeV.

6.3 The Complex-mass Library golem95C

In the latest version of our library, golem95C [86], complex masses have been im-

plemented, similarly to [79, 80]. This makes it possible to deal with the schemes

of Section 6.1 which require complex propagators, as well as regulating the Landau

singularities explained in Section 6.2.
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The regulation of the Landau singularities works by moving the poles of the

propagators away from the real axis, which is our integration contour. This can be

demonstrated in the case of the previous example by sending m2
q̃ → m2

q̃− imq̃Γq̃ and

m2
χ → m2

χ − imχΓχ, where we take Γq̃ = 3.5GeV and Γχ = 1.5GeV. We show the

smoothing of the thresholds in Figure 6.3.

-2e-09

-1.5e-09

-1e-09

-5e-10
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 900  950  1000  1050  1100  1150  1200

sqrt(s45)

Re A40
Im A40

Figure 6.3: Singularity structure of the scalar four-point function A4,0 (complex

masses) contained in the diagram of Figure 6.1.

We have implemented the analytic forms of all the integrals with complex internal

masses which are required, and now have a full library for both scalar integrals and

tensor form factors which enter one-loop integrals, up to rank six 6-point functions.

It is available at http://projects.hepforge.org/golem/95.



Chapter 7

GoSam, Sherpa and pp→ e+e−µ+µ−

by diboson production

In this chapter, we will discuss the calculation of pp → e+e−µ+µ− via two gauge

bosons. We include the off-shell photon contribution, as well as the Z-boson, in this

NLO calculation. The (formally higher-order) loop-induced gluon-initiated process

is also added, as explained in Section 7.4.2.

The matrix elements were calculated using the GoSam project, which is allied to

the golem95 project, and Sherpa was linked via the Binoth Les Houches Accord in

order to perform all other parts of the calculation. These programmes are described

in Sections 7.2 and 7.3.

7.1 Background

The production and decay of a pair of neutral vector bosons is a process which is in-

teresting in its own right, but it also has an important part to play in Higgs searches:

the process H → ZZ has been a major discovery channel for the Higgs, but it is

important to see this intermediate Higgs state as part of a full calculation of neutral

vector boson pair production, because the interference between it and the process

without the Higgs is significant (this was shown in [100], see also Section 7.4.5).

In addition, this final state will also be influenced by certain Beyond the Stan-

dard Model scenarios, such as models containing a gZZ or ZZZ-vertex. In order to
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observe these processes, we will need to have small uncertainties on the SM back-

ground prediction, so that the small signal is visible on top of it.

There has been interest in this process since at least the late 1970s, and the

different components of the calculation have been built up over time. Work started

with the production of real vector boson pairs at LO [133], and later NLO [110,134–

136], with the gluon-initiated case added in [137–139]. The gluon-initiated case was

explored further in [140], and also in the context of Higgs production in [141].

In order to predict results which can be seen in a detector, the decays of the vector

bosons must be considered. This work was started, for polarised real Z-bosons, to

leading order but including the gluon-initiated channel, in [142, 143].

Full calculations of this process, including the virtual photon and the leptonic

decays, have recently been performed to NLO, plus the gluon-initiated channel, by

the MCFM group [144], Campbell et al. [145], the aMC@NLO group [146], and gg2VV [100,

147, 148]. However, of these, only the gg2VV results include the gg → H → ZZ

corrections, and only the aMC@NLO results include parton shower contributions.

At the LHC, both the ATLAS [149] and CMS [150] collaborations realise the

importance of this process as a Higgs search channel and its background, and the

ZZ-channel, with one Z far off-shell, formed a major part of the discovery of a new

particle consistent with the Higgs boson this month [18, 19].

7.2 GoSam

GoSam [151] is an automated programme for the calculation of one-loop amplitudes

for processes with up to six external legs. A major strength is its ability to use

a variety of methods for the processing of the amplitude, allowing it to combine

the best features of different methods for optimum speed and stability. A brief

description of the programme follows.

After the user has produced an input file for a specific process, GoSam uses

QGRAF [152] to produce FORM [153, 154] code for each diagram. QGRAF provides a

number of commands for excluding diagrams from the output1, and GoSam provides

1For example “onshell”, a command to produce only amputated diagrams, which is usually
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additional such options. The built-in Standard Model model file can be used, or a

user-supplied LanHEP [155] or UFO [156] model file. Because currently only tensor

integrals with rank equal to or lower than the number of legs are implemented, only

the Feynman gauge and particles up to spin 1 are currently supported, although in

a forthcoming version tensor integrals with higher ranks will also be available.

At the next stage, Python code is used to set to zero those diagrams with zero

colour factor or which have a loop which is zero in dimensional regularisation (be-

cause it is scaleless), and also to flag the loop size and maximum rank of any inte-

grals2.

The diagrams produced are grouped according to the set S of denominators they

contain, such that there is a maximal element in each group from which all others

are obtained by reduction. In this way, the reduction is made more efficient as in

the reduction of the maximal element, much of the computational effort of reducing

the other integrals is performed, and need not be repeated.

In GoSam, wavefunctions are represented as sums of massless spinors in the spinor-

helicity formalism [157–164]: specifically the implementation in spinney [165] is

used. The numerators are then processed using haggies [166], producing optimised

Fortran 90 code, in order to prepare the expression for numerical evaluation.

At this point, there is a freedom of choice of the methods used for the evaluation.

The variable reduction interoperation is used to control which method is used,

and its value is given in brackets as the options are explained.

The simplest choice (0) is to use Samurai to reduce the integrals directly to

scalars, and to call these integrals from QCDLoop [78] or OneLOop [79]. An alter-

native is also provided, which is to project out the tensor integrals using tensorial

reconstruction [63], and then either use golem95 (1) to calculate the tensor integrals

or Samurai (3) to find the coefficients of the scalar integrals, and then call them as

above. A common method of usage, and that which is used in this thesis, is to use

the former option by default, and switch to tensorial reconstruction and golem95 for

desired.
2At this stage the overall sign of diagrams containing Majorana fermions [28, 29] is also deter-

mined, as QGRAF’s implementation is not reliable.
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phase-space points at which Samurai’s reduction fails (2)3. A further option uses

tensorial reconstruction throughout, but after that Samurai by default and golem95

(4) as a rescue system.

The result is given as a four-component object: the Born part (squared), and

the finite, ǫ−1 and ǫ−2 parts of the one-loop part after interference with the Born

part. GoSam is also capable of performing loop-induced processes, i.e. those with no

tree level, as is used in Section 7.4.2. The results provided have certain prefactors

assumed as detailed in Section 2.5 of [151].

A table of processes for which GoSam has been run and checked on a phase-space

point level against external programmes (which are cited) is given as Figure 7.1.

This is taken from [151]4.

Finally, it is worth noting that GoSam is fully compatible with the Binoth Les

Houches Interface (see Section 7.3.4), and the later parts of this chapter concern

such an interfacing.

Process Checked with Ref.

e+e− → uu [167]

e+e− → tt [47, 168]

uu→ dd [169, 170]

gg → gg [171]

gg → gZ [172]

dd → tt [170], MCFM [110, 173]

gg → tt [170], MCFM [110, 173]

bg → H b [170, 174]

γγ → γγ [175]

ud→ e−νe [170]

Process Checked with Ref.

ud→ e−νe g [170]

e+e− → e+e−γ (QED) [176]

pp→ H tt [170]

pp→W+W+jj [177]v3

pp→W± j (QCD corr.) MCFM [110, 173]

pp→ bbbb [178, 179]

pp→W+W−bb [170, 180]

uu→ ttbb [170, 180]

gg → ttbb [170, 180]

ud→W+ggg [180]

Table 7.1: List of processes performed by GoSam and checked against the literature,

from [151].

3For example, approximately 1 point in 4000 fails for the gg → 4l process of Section 7.4.2
4The process pp → W± j (EW corr.) was removed from the table, as only the IR poles had

been checked. The process e+e− → tt was also checked against a private analytic calculation.
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Complex masses

GoSam can work with propagators with complex masses, either within5 or outside

the loops: complex numerators are implemented. However, the complex coupling

constants and mixing angles, required for the use of the complex-mass scheme, are

not currently implemented in the case where they cannot be pulled out as an overall

factor. Only QCD corrections are included in the calculation later in this chapter,

i.e. as an EW calculation it is only leading order, and so a fixed-width scheme (see

Section 6.1) is used for the boson propagators.

7.3 Monte Carlo Event Generators and Sherpa

In this thesis so far, we have considered partonic matrix elements for a given phase

space point: we have had a fixed number of quarks and gluons in the initial and

final states, which had fixed momenta. However, as discussed in Section 2.6, states

of this kind are not observable:

• for a physical observable, we will have to take account of the existence of

additional, unresolved particles;

• due to colour confinement, we do not see the partons, but only hadrons in

initial and final states;

• because at the LHC we have composite initial states, we do not know the

incoming partons’ momenta when observing a particular event’s final state.

In addition, if we want to gain any statistical reach, we must integrate over

ranges of final momenta.

We therefore need to do a great deal of work before our partonic matrix element

can give an observable, and for this we use a Monte Carlo Event generator, specif-

ically Sherpa [181–183]. Because of asymptotic freedom, the important quantity

is the scale at which we are operating: we have a non-perturbative regime within

5For this, either Samurai with OneLOop, or the golem95 limb can be used, but Samurai with

QCDLoop cannot be used as the latter does not support complex masses.
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the proton (low scale), then a hard partonic interaction, described by perturbative

QCD, and any partons in the final state will evolve down in energy by radiation of

coloured particles until they reach a scale at which they hadronise again.

7.3.1 Initial State Partons

At the LHC, partons from within each proton will collide, and after this point, the

partonic cross section is relevant. However, neither the identities, nor the momenta

of the incident partons are known a priori, nor are they directly measurable from

the final state. Instead, we describe the probability of a particular parton i having

a particular fraction of the momentum of the proton x using a Parton Distribution

Function (PDF) fi(x, µ
2
F ), where µ

2
F is a factorisation scale6. The PDFs are non-

perturbative quantities, whose values must be fitted from data. Several groups,

including CTEQ [184], NNPDF [185] and MSTW [186] produce PDF sets, each

using different fitting methods and different input data. An example is given from

the last group in Figure 7.3.1.

If we have a set of PDFs at one scale, we can evolve it to any other scale using

DGLAP equations7 [187–189]. The DGLAP method rests on the concept that in

moving between scales, all flavours of parton will radiate. This changes all the PDFs

in an interdependent way. For any parton i at a scale µ2
F we have, to first order

(Equations 27 and 28 of [189])8:

2µ2
F

dfi(x, µ
2
F )

dµ2
F

=
αs(µR)

2π

∫ 1

x

dy

y

∑

j

κij(y)fj(
x
y
, µ2

F ), (7.3.1)

where we have introduced the splitting kernel κij which, schematically, is the likeli-

hood of a parent parton j splitting and producing a parton i which carries a fraction

y of its momentum. The kernels are obtained by calculating any process, and re-

peating the calculation with one extra emission, then taking a ratio in the collinear

6The place and relevance of factorisation scales is explained in Section 2.6.1.
7So-called as they were found independently by Dokshitzer, Gribov and Lipatov, and Altarelli

and Parisi.
8The µR-dependence of the right-hand side is usually ignored in the literature. Clearly, if the

two scales are set to be equal, it need not be made explicit.
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Figure 7.1: PDFs of quarks and the gluon, evaluated at two factorisation scales,

taken from [186]

limit. They are now available to three-loop level [190, 191].

Once we have a set of PDFs for our colliding hadrons a and b, we then require

a partonic cross section σ̂(x1, x2, µ
2
R, µ

2
F ) for all possible initial states, in principle

valid for all possible parton momenta. We integrate over the momenta, with PDFs

folded in, and sum over the possible initial states. We will then have a total cross

section σ(µ2
R, µ

2
F )

σ(µ2
R, µ

2
F ) =

∑

i,j

∫

dxidxjf
(a)
i (xi, µ

2
F )f

(b)
j (xj , µ

2
F )σ̂(xi, xj , µ

2
R, µ

2
F ). (7.3.2)

7.3.2 Parton Showering

If we have any final-state partons, they will have been produced by hard-scale QCD,

in a regime with a small strong coupling constant. Then, moving away from the

event, they will radiate near-collinear partons and the scale will reduce [192–194].

In order to implement this evolution, we form a probability [195] that there will be
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no branching in the evolution of a parton p from a scale9 t to t′ by integrating and

exponentiating Equation (7.3.1):

P (p)(x, t, t′) = exp

{

−
∫ t′

t

dτ

τ

∫ ymax

x

αs(y, τ)

2π

dy

y

∑

j

κij(y, τ)
fj(

x
y
, τ)

fj(x, τ)

}

, (7.3.3)

where we recognise that there is a scale at which the parton will hadronise (see

the following section), which gives the maximum energy fraction ymax. Using this

technique, one hard parton produced in the event will be evolved down to several

partons with hadronisation-scale energies.

7.3.3 Hadronisation

In Section 7.3.1, we moved from hadrons to initial state partons. Now that, after

showering, we have final state partons, we must hadronise to model the particles

which will be seen in the detector: as it is non-perturbative, this process is per-

formed by phenomenological models, for example the Lund string model [196] and

the cluster model [197].

7.3.4 Les Houches Interface

In order to interface a one-loop matrix element programme (OLP), with a Monte

Carlo event generator (MC), which will perform the tree-level parts of the calcula-

tion, the subtraction terms and the phase-space integration, the Binoth Les Houches

Accord has been developed [198]10

In this accord, there are two phases: initialisation and runtime. In the initial-

isation phase, the MC produces an order file in a standard format, containing a

list of subprocesses (such as different quark initial states in a proton collider) and a

number of commands describing the desired characteristics of the calculation, such

9Different techniques use different definitions of this scale quantity: the angle between the

partons and their relative transverse momentum pT are two popular choices. Sherpa takes the

latter.
10This follows on from accords dealing firstly with the interface between matrix element

event generators on the one hand and parton shower and hadronisation event generators on the

other [199], and secondly with standard event files [200].
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as the model and the type of correction (QCD or EW). This file is read by the OLP,

which returns a contract file with statements on which of the options are acceptable,

and error messages if any are not. After these errors have been addressed by the

user and the contract file shows no errors, it is passed to the MC. The OLP provides

functions that can be called by the MC: GoSam does this by generating the code

required for the process, and supplying a library to be linked by the MC.

At the runtime phase, the MC will call an initialisation routine for the OLP and

then a routine to calculate each point desired by the MC. This process is shown in

Figure 7.2, taken from [151].

Code Generation and Linking

read contract file

call OLPInit

call OLP_Eval−
Subprocess

return result

initialise OLP

compute result

write order file read order file

write contract file

MC OLP

configuration
phase

runtime
phase

Figure 7.2: The interaction between Monte Carlo event generator and One Loop

Programme using the Binoth Les Houches Accord, from [151].

7.4 Four Charged Lepton production pp→ e+e−µ+µ−

In this section, we describe the NLO calculation of the production of four charged

leptons at the LHC, using GoSam coupled to Sherpa. In the work of this thesis, two

components of the calculation, quark-initiated and gluon-initiated, were performed
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separately and summed, as in [145]. This gives the best estimate of the cross section

that can be obtained without a full NNLO calculation.

Throughout, we used the parameters in Appendix A of [201], which are given in

Appendix A.2 for ease of reference. In this section, two distinct pairs of values for

Higgs mass and width are used in different comparisons, as explained in the text.

7.4.1 Quark-initiated Process

This part of the calculation is of the classic type detailed in Chapter 3. There is a

tree-level cross-section at O(α4), with diagrams like those in Figure 7.3. Then we

also calculate the one-loop diagrams involving a gluon, such as in Figure 7.4, and also

strong real emission diagrams, as in Figure 7.5, which only come from initial state

radiation. This is then an O(αsα
4) cross-section calculation. The neutral vector

boson can be Z or γ, and we have both resonant and non-resonant diagrams11 (as

in Figure 7.3, left and right respectively). For this process, it was possible to use

Figure 7.3: Two leading order diagrams.

Figure 7.4: Two one-loop diagrams.

11The terms resonant and non-resonant are used in this thesis to refer to the left and right-hand

diagrams of Figure 7.3 respectively: some authors would use the terms doubly-resonant and singly-

resonant respectively, but this distinction is not needed here as we have no diagrams which have

no resonance at all. We then refer to the contribution from each diagram in the same way, and so,

for example, the contribution from the left-hand diagram of Figure 7.3 when we have one off-shell

photon and one off-shell Z-boson is part of our resonant contribution.
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Figure 7.5: Two real emission diagrams.

the Binoth Les Houches Interface (see Section 7.3.4) to combine GoSam and Sherpa.

The tree-level and real emission contributions, and the phase space integration (using

Amegic [202]), were performed by Sherpa, which called GoSam for the one-loop part12.

7.4.2 Gluon-initiated Process

This calculation includes all the channels for the gg → e+e−µ+µ− cross-section

at O(α2
sα

4
QED). The charged leptons originate from neutral vector bosons (Z or

γ): either these are produced via a quark box, or a Higgs boson is produced via

a b- or t-quark triangle and decays into two Z-bosons (Figure 7.6, left and right

respectively). No effective vertices are included. No approximation is made in the

decays of the neutral vector bosons into the leptons, so spin correlations are fully

included.

Figure 7.6: Two gluon-initiated one-loop diagrams.

Those diagrams with a triangle with one external electroweak vector boson, of

the type of Figure 7.7, are suppressed by the Landau-Yang theorem [203, 204], and

we do not include them.

12GoSam calculates the one-loop interference term with its own implementation of the Born matrix

element, so Sherpa takes the GoSam one-loop value, divides by GoSam’s Born result and multiplies

by Sherpa’s Born result.
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Figure 7.7: A diagram which is suppressed due to the Landau-Yang theorem.

This process, having no tree level and so contributing as |M1loop|2, is formally

NNLO13 in αs. However, for high proton energy environments, such as in the LHC,

the gluon PDF (see Section 7.3.1) is very large, giving a sufficient enhancement for

this component to be significant. We find it to give a 7% contribution to the overall

cross-section for our cuts (see Table 7.4).

For this process, because Sherpa cannot process a loop-induced amplitude, it

was necessary to write a process-specific interface for Sherpa, using the Les Houches

library files of GoSam, and the Sherpa phase-space integrator Comix [205].

7.4.3 Comparison with gg2VV

The programme gg2VV [148] is both a one-loop integrator and an event generator for

the processes gg → V V , with V =W,Z, including the Higgs boson channel. Before

we performed the comparison detailed below, of the GoSam+Sherpa cross-section

(integrated over phase space) with the published result, one of the authors kindly

provided results for a few phase space points that we were able to use for checking

our implementation. One such point is given in Table 7.2: the agreement is very

good, with deviations on the 10−7 level.

In [148] the calculation gg → e+e−µ+µ− is performed, with a Higgs boson of

mass 400GeV and width 29.16GeV, for
√
s = 7 TeV and µF = µR = 200GeV. Two

sets of cuts are used:

13When seen as a contribution to pp → e+e−µ+µ−: if instead we were considering the calculation

purely of gg → e+e−µ+µ−, then this would be an LO calculation.
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ZZ standard: pT,l > 20GeV; |ηl| < 2.5; 76GeV < Me+e−,Mµ+µ− < 106GeV

ZZ Higgs search: The above, plus |Me+e−µ+µ− −MH | < ΓH

where η = − log
(
tan
(
θ
2

))
is the pseudorapidity, with θ the angle from the beam-

line. The PDF set used is MSTW2008LO with 1-loop running of αs, which has

αs(MZ) = 0.13939. We performed the same calculation in GoSam+Sherpa, and in

Table 7.3, the cross-section results are compared. We see that the results are con-

sistent, and that our integration errors are much larger.

Particle Energy px py pz

g1 1699.6232364577 0.0000000000000 0.0000000000000 1699.6232364577

g2 16.394675394750 0.0000000000000 0.0000000000000 -16.394675394750

e+ 801.30664127984 -115.74320293321 86.268438448558 788.19642276630

e− 34.234962490356 -17.086266666690 -9.4233544743312 28.129922476999

µ+ 47.037479680574 4.6603922623004 -2.5256841121306 46.737845034058

µ− 833.43882840158 128.16907733758 -74.319399862087 820.16437078550

without Higgs mH = 400GeV

gg2VV 7.6430935× 10−13 1.4272669× 10−13

GoSam 7.6430963× 10−13 1.4272667× 10−13

Table 7.2: Comparison of a phase-space point from gg2VV with our own calculation.

gg2VV σ/fb GoSam+Sherpa σ/fb

Standard 0.7012(8) 0.691(14)

Higgs search 0.2867(3) 0.291(5)

Table 7.3: Comparison of cross-sections from [148] with our own, for cuts given in

the text.
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7.4.4 Results and Comparison with MCFM

In this section, the results for this process are presented for the 7 TeV LHC. We

continue to use the ZZ standard cuts from [148] (see Section 7.4.3), and the PDF

detailed there is used for the gluon-initiated process. For the quark-initiated compo-

nent, the MSTW2008NLO set14 is used with two-loop running and

αs(MZ) = 0.12018.

The results produced by MCFM [173] do not include the Higgs, and so the results

in this section refer to a Higgsless calculation. The bottom quark is taken to be

massless, and a five-flavour scheme for the proton is used.

The programme MCFM includes a process which it refers to as ZZ production [110,

144], but which includes decays to charged leptons, non-resonant contributions, and

the contribution of off-shell photons, which renders it the same process as we are

calculating.

For the quark-initiated process, the programmes were of comparable speed, with

GoSam+Sherpa taking 5ms per phase space point (averaged over Born, virtual15 and

real phase spaces), and MCFM requiring 20ms per point in the Born+virtual phase

space and 6ms in the real phase space. However for the gluon-initiated process, due

both to the bespoke and unoptimised way in which GoSam’s calculation was interfaced

to Sherpa, and to the comparison of a numerical double one-loop calculation with

the evaluation of an analytic expression, GoSam+Sherpa’s evaluation was more than

two orders of magnitude slower than that of MCFM (900ms and 3ms per phase-space

point respectively). However, in order to reduce the error estimates for the values

in the histograms to a comparable level, much larger runs were required in MCFM, so

the total running times of the two programmes were comparable16.

In MCFM, the leptons are not marked with their flavour, so it is not known which

14Interfaced using LHAPDF [206].
15In this section we include the calculation of Catani-Seymour subtraction terms [46] within the

virtual and real components (we use a Nagy α-parameter 0.01 [207]).
16Here, we have excluded the time for generation of GoSam’s one-loop amplitude code, which of

course only has to be performed once. It was highly parallelised, but required approximately 250

hours of computing time in total.
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MCFM GoSam+Sherpa

qq gg qq gg

σ/fb 5.2059(7) 0.35573(15) 5.226(11) 0.358(4)

Points 8× 107 107 107 106

Table 7.4: Comparison of cross-sections from MCFM with our own, for cuts given in

the text. The MCFM qq-initiated points are approximately 10% Born+virtual calls,

the rest being real.

lepton flavour pair is which. Instead, we talk of the same-flavour opposite-sign pairs

as first and second leptons and third and fourth leptons. Due to the symmetry of

the problem, a comparison of any MCFM lepton with any GoSam+Sherpa one is fair,

and so we compare the electron with the first lepton and the electron-positron pair

with the first-second pair. It should be noted that this implied ordering is merely

bookkeeping: it does not, for example, imply that the first lepton is the one with

the highest pT .

At the end of this chapter, Figures 7.8–7.12 are given, comparing the results of

GoSam+Sherpa and MCFM. In these, a “Ratio” is also given, which is the difference of

the GoSam+Sherpa and MCFM values in that bin, normalised to the MCFM value. We

find very good agreement between the results of the programmes, providing a solid

confirmation of the GoSam+Sherpa implementation.

The scale variation is also shown on these plots, with the central value being

µR = µF = µ = HT and the range being 1
2
HT < µ < 2HT , where HT is the scalar

sum of the transverse momenta of event’s final state particles.

One difference between the implementations is that MCFM uses an overall factor

scheme for its complex masses, whereas we use a fixed width (see Section 6.1).

Given the closeness of the results, it can be seen that this scheme difference does

not produce a significant deviation.
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7.4.5 Higgs Interference

When considering a specific signal process, experimentalists often consider it and

and any background process to be separate. However, in taking pp→ H → ZZ as a

signal and pp → ZZ excluding the Higgs as background, an artificial split is made,

and it is important to consider not only these two processes in isolation, but also

the interference between them, as in [148].

In order to investigate this, we performed a calculation with a Higgs of mass

mH = 125GeV and width ΓH = 4.03 MeV (taken from [100]). Because the proton

was taken to contain a massless b-quark, the only impact was on the gluon-initiated

case (although there, the coupling of the b-quark to the Higgs was included).

In order to assess the interference, the full calculation is compared with the sum

of the calculations pp → ZZ without Higgs and pp → H → ZZ, including a plot

of the full calculation minus the sum, normalised to the full cross-section. This is a

measure of the interference effect. For comparison, the size of the signal divided by

the full calculation result is also given. The results are plotted in Figures 7.13–7.22.

We can see that, for the variables shown, interference effect is not clearly dis-

cernible in the calculation including both quark and gluon initial states. In the

purely gluon-initiated case, however, there is a negative interference effect on the

percent level, particularly clear on the ratio plots (Figures 7.14, 7.16, 7.18, 7.20

and 7.22). This is consistent with the negative interference on the percent level

found in [148], although better precision will be required to prove and quantify this

effect: this will form part of future work.
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Figure 7.8: For the process pp→ e+e−µ+µ−, a comparison plot of the distribution of

the invariant mass of the electron pair calculated with MCFM (blue dotted line), and

with GoSam+Sherpa (red solid line), including the latter’s scale uncertainty (green

fill). The factorisation and renormalisation scales are taken to be equal and to vary

in the range 1
2
HT < µ < 2HT . The qq-initiated subprocess is calculated to NLO,

and the one-loop-induced gg-initiated process is included. Integration error bars are

shown, but are too small to be visible on many points. The lower plot shows the

“Ratio”, defined as ((GoSam+Sherpa value) - (MCFM value))/MCFM value, along with

its scale variation.
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Figure 7.9: The pT of the electron pair, in the process pp → e+e−µ+µ−, comparing

MCFM (blue dotted line) with GoSam+Sherpa (red solid line), including scale uncer-

tainty (green fill). The details are the same as for Figure 7.8. This plot is constructed

using a larger MCFM run, 3.8× 108 points, in order to reduce its errors.
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Figure 7.10: The pT of the electron, in the process pp→ e+e−µ+µ−, comparing MCFM

(blue dotted line) with GoSam+Sherpa (red solid line), including scale uncertainty

(green fill). The details are the same as for Figure 7.8. The negative value in the

bins below the electron cut value are due to a numerical issue: pT values calculated

at the event-generation level, which determine which events pass these cuts, can be

different from the analysis-level calculations by a small amount, allowing “leakage”

to below 20GeV.



7.4. Four Charged Lepton production pp→ e+e−µ+µ− 112

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-2 -1  0  1  2

dσ
/d

η l
-  [

fb
]

GoSam+Sherpa
 Scale

GoSam+Sherpa
MCFM

-0.2

-0.1

 0

 0.1

 0.2

-2 -1  0  1  2

R
at

io

ηl-

Figure 7.11: The pseudorapidity η of the electron, in the process pp → e+e−µ+µ−,

comparing MCFM (blue dotted line) with GoSam+Sherpa (red solid line), including

scale uncertainty (green fill). The details are the same as for Figure 7.8.
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Figure 7.12: The ∆R =
√

(∆φ)2 + (∆η)2, with φ the azimuthal angle between the

electron and the antimuon, in the process pp → e+e−µ+µ−, comparing MCFM (blue

dotted line) with GoSam+Sherpa (red solid line), including scale uncertainty (green

fill). The details are the same as for Figure 7.8.
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Figure 7.13: The invariant mass of the electron pair with GoSam+Sherpa, for the

process pp → e+e−µ+µ−. Both the qq-initiated subprocess (calculated to NLO),

and the one-loop-induced gg-initiated process are included. The plot shows the sum

of the results without the Higgs and the Higgs contribution (“Signal+Background”

blue dotted line), and a full calculation (red solid line). Integration error bars

are shown. The lower plot shows the normalised difference between the two lines,

Ratio ≡ ((Signal+Background)-(Full calculation))/(Full calculation), in order to

show the size of the negative interference.
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Figure 7.14: For the gluon-initiated channel only in e+e−µ+µ− production: the

invariant mass of the electron pair with GoSam+Sherpa. Without the Higgs (“Back-

ground” grey, dot-dash line), only the Higgs contribution (“Signal” green, dashed

line), their sum (blue dotted line), and a full calculation (red solid line). Integration

error bars are shown only for the latter two cases. On the lower plot, as well as

Ratio ≡ ((Signal+Background)-(Full calculation))/(Full calculation), which shows

the size of the negative interference, the ratio of signal to full cross-section is shown

(green dashed line).
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Figure 7.15: The pT of the electron pair from GoSam+Sherpa, for the process

pp → e+e−µ+µ−. The sum of the results without the Higgs and the Higgs con-

tribution (“Signal+Background” blue dotted line), and a full calculation (red solid

line), as in Figure 7.13.
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Figure 7.16: For the gluon-initiated channel only in e+e−µ+µ− production: the pT

of the electron pair from GoSam+Sherpa. Without the Higgs (“Background” grey,

dot-dash line), only the Higgs contribution (“Signal” green, dashed line), their sum

(blue dotted line), and a full calculation (red solid line), as in Figure 7.14.
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Figure 7.17: The pT of the electron from GoSam+Sherpa, for the process

pp → e+e−µ+µ−. The sum of the results without the Higgs and the Higgs con-

tribution (“Signal+Background” blue dotted line), and a full calculation (red solid

line), as in Figure 7.13. The negative bin issue occurs, as in Figure 7.10
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Figure 7.18: For the gluon-initiated channel only in e+e−µ+µ− production: the pT of

the electron from GoSam+Sherpa. Without the Higgs (“Background” grey, dot-dash

line), only the Higgs contribution (“Signal” green, dashed line), their sum (blue

dotted line), and a full calculation (red solid line), as in Figure 7.14.
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Figure 7.19: The pseudorapidity η of the electron from GoSam+Sherpa, for the pro-

cess pp → e+e−µ+µ−. The sum of the results without the Higgs and the Higgs

contribution (“Signal+Background” blue dotted line), and a full calculation (red

solid line), as in Figure 7.13.
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Figure 7.20: For the gluon-initiated channel only in e+e−µ+µ− production: the pseu-

dorapidity η of the electron from GoSam+Sherpa. Without the Higgs (“Background”

grey, dot-dash line), only the Higgs contribution (“Signal” green, dashed line), their

sum (blue dotted line), and a full calculation (red solid line), as in Figure 7.14.
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Figure 7.21: The ∆R =
√

(∆φ)2 + (∆η)2 between the electron and the antimuon

from GoSam+Sherpa, for the process pp → e+e−µ+µ−. The sum of the results

without the Higgs and the Higgs contribution (“Signal+Background” blue dotted

line), and a full calculation (red solid line), as in Figure 7.13.



7.4. Four Charged Lepton production pp→ e+e−µ+µ− 123

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6

dσ
/d

∆R
l- l’+

 [f
b]

Full calculation
Signal+Background

Background
Signal

-0.3
-0.2
-0.1

 0
 0.1
 0.2

 0  1  2  3  4  5  6

R
at

io

∆Rl-l’+

Figure 7.22: For the gluon-initiated channel only in e+e−µ+µ− production: the

∆R =
√

(∆φ)2 + (∆η)2 between the electron and the antimuon from GoSam+Sherpa.

Without the Higgs (“Background” grey, dot-dash line), only the Higgs contribution

(“Signal” green, dashed line), their sum (blue dotted line), and a full calculation

(red solid line), as in Figure 7.14.



Chapter 8

Conclusions

In this thesis we have laid out the process of tensor reduction and the construction

of a library of integrals for the automated calculation of multiparticle processes at

particle colliders. The methods in Chapters 4, 5 and 6 of this thesis are used to

construct a numerically stable one-loop matrix element for a general process.

The methods increasing the numerical stability have come in three forms:

• using numerical integration as an alternative to the production of inverse Gram

determinants, at both tensor-integral and scalar-integral level;

• using reexpressions of the functions which have better numerical behaviour in

the required region; and

• using complex masses to avoid Landau singularities in cases with unstable

particles.

Once we have constructed a one-loop matrix element, we can combine it with

the tree-level, subtraction and real parts, provided externally, and then in order to

obtain a physical observable we must integrate over phase-space. Because we are

dealing with hadron colliders, the phase-space integration must be performed with

the structure of the colliding protons folded in.

We were able to demonstrate the functioning of this full chain of tools by cal-

culating the process pp → e+e−µ+µ−, proceeding via neutral vector bosons, to

NLO, with the additional inclusion of the (formally NNLO) loop-induced compo-

nent gg → e+e−µ+µ−. We used the Binoth Les Houches Accord to connect GoSam
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with Sherpa: for the quark-initiated case it was possible to use the standard inter-

face, but for the gluon-initiated process, a bespoke interfacing of the Les Houches

library files was developed. Our calculation showed good agreement with another

programme, MCFM, and the literature (specifically the numbers from gg2VV). We

showed that this method can lead to a study of the interference effects of the Higgs

to ZZ decay signal with the diboson background.

There are some excellent possibilities to expand this work in future. In terms of

the production of two neutral vector bosons, it will be possible to expand this work

to include other final states, particularly τ -lepton decays, which are not found in

the literature. In addition, the interface gives us access to Sherpa’s parton shower

machinery, allowing a specific study including both showering and the Higgs correc-

tions, which is not yet available in the literature.

In addition, the general and powerful set of linked programmes that have been

developed will permit us to explore further processes with a range of mass scales

and up to six external legs: this is particularly relevant in the era of the LHC, which

creates many processes with multiple mass scales.
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Appendix A

Notation and Conventions

In this thesis, we use the mostly-minus metric tensor gµν

g =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











. (A.0.1)

We use Feynman slash notation: for a lorentz four-vector aµ:

�a ≡ γµa
µ, (A.0.2)

and except where stated otherwise, we use the Einstein summation convention

aibi ≡
∑

i

aibi. (A.0.3)

A.1 Units and Dimensions

Throughout this thesis, natural units ~ = c = 1 are used. This leaves us with only

one dimensionful quantity, which is taken to be mass. We can count the dimension

(denoted with square brackets) of all quantities in terms of this mass dimension:

[Mass] = [Energy] = [Momentum] = 1 (A.1.4)

[Distance] = [Time] = −1. (A.1.5)
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A.2 LHC parameters

The list of parameters used in the calculation of Chapter 7, taken from Appendix

A of [201], is given below.

Parameter Value

GF 1.16637× 105GeV2

b mass 4.16 GeV

t mass 172.5 GeV

W mass 80.398 GeV

W width 2.141 GeV

Z mass 91.1876 GeV

Z width 2.4952 GeV

Table A.1: Standard Model parameters.

Our parameters deviate from [201] in that everything lighter than a b-quark (and

in some cases also the b-quark itself, as explained in the text) is taken to be massless.



Appendix B

Useful Mathematical Objects

B.1 The Dirac Matrices γµ

This is a set of four matrices, which together can be treated as a relativistic four-

vector. In this section, we will treat each matrix as four-dimensional, and so each

matrix carries two spinorial indices running from 1 to 4. They obey, as a defining

equation:

{γµ, γν} = 2ηµνI (B.1.1)

with ηµν the Minkowski metric and I the 4× 4 identity in spinor space.

Although often for practical calculations we do not need to write the matrices

explicity, merely calculate a trace of a chain of them, we sometimes wish to write

an explicit form. There are two common representations, the Dirac representation:

γ0 =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











γ1 =











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











γ2 =











0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0











γ3 =











0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0











, (B.1.2)
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and the Weyl representation, with the same γ1, γ2 and γ3, but different γ0:

γ0 =











0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0











. (B.1.3)

B.2 The Dirac δ-functional

The Dirac δ-functional, δ(x), can be thought of physically as an infinite spike posi-

tioned at x = 0, with zero value elsewhere, such that its integral is unity. A more

rigorous definition uses, with a slight abuse of notation, δ(x)dx as a measure:

∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0). (B.2.4)

This definition can be used to prove several interesting properties, of which we

will show the shifting property and the behaviour on composition with a function.

We will then briefly consider the dimensions of δ(x).

Shifting property: δ(ax)

For a real constant a, we can examine δ(ax) under an integral. First we note that

the δ-functional is symmetric, so:
∫

δ(ax)dx =

∫

δ(|a|x)dx =

∫

δ(−|a|x)dx. (B.2.5)

Now with a simple change of variables
∫

δ(ax)dx =

∫

δ(y)
dy

|a| (B.2.6)

and a relabelling y → x, we see that

δ(ax) =
1

|a|δ(x). (B.2.7)

Composition with a Function: δ (f(x))

Consider a real function f(x) which has exactly one root, at x = x0, and whose

derivative is f ′(x). Let us use it in the following integral:

If =

∫

δ (f(x)) |f ′(x)| dx. (B.2.8)
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The δ-functional will be zero except at x = x0, so we could equally write this as

If =
∫

δ (f(x)) |f ′(x0)| dx. (B.2.9)

Now let us again change variables in (B.2.8) to y = f(x) so that dy = f ′(x)dx

If =
∫

δ (y) dy, (B.2.10)

so we have

δ (f(x)) =
1

|f ′(x0)|
δ(x) (B.2.11)

and this expands in functions with more than one root to a sum of such terms on

the right-hand side. Note that this function agrees with (B.2.7).

Dimensions

When considering physical situations, it is often useful to consider the dimensions

of our objects. If we start from

∫

δ(x)dx = 1, (B.2.12)

we see immediately that

[δ(x)] = [x]−1. (B.2.13)

B.3 The Γ function

The Γ function is defined by

Γ(z) =

∫ ∞

0

e−ttz−1dt (B.3.14)

and by integration by parts, one can show it has the property

Γ(z) = (z − 1)Γ(z − 1). (B.3.15)

If z is a positive integer, by iterating this formula we can obtain

Γ(z) = (z − 1)!. (B.3.16)
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The derivative of the function can be taken by using the property

d
dx
tx = d

dx
exp(x log(t)) = log(t)tx:

d

dz
Γ(z) =

∫ ∞

0

e−t log(t)tz−1dt, (B.3.17)

so that

Γ′(1) =

∫ ∞

0

e−t log(t)dt ≡ −γE, (B.3.18)

where γE = 0.577215664901... is the Euler-Mascheroni constant.

From (B.3.16), we know that Γ(1) = 1, and we can now find Γ(1 + ǫ) by Taylor

expansion:

Γ(1 + ǫ) = Γ(1) + ǫΓ′(1) +
1

2
ǫ2Γ′′(1) + . . . (B.3.19)

= 1− ǫγE +O(ǫ2), (B.3.20)

and by (B.3.15) we can also find

Γ(ǫ) =
Γ(1 + ǫ)

ǫ
=

1

ǫ
− γE +O(ǫ). (B.3.21)

B.4 The Euler Beta Function

We wish to prove

B(s, t) =

∫ 1

0

dyys−1(1− y)t−1 (B.4.22)

=
Γ(s)Γ(t)

Γ(s + t)
(B.4.23)

=

∫ ∞

0

dz
zs−1

[z + 1](s+t)
. (B.4.24)

We may choose either (B.4.22) or (B.4.23) to be the definition of the function.

To prove

B(s, t) =

∫ 1

0

dyys−1(1− y)t−1 =
Γ(s)Γ(t)

Γ(s+ t)
, (B.4.25)

we start with the definition of the Γ-function (see Appendix B.3) to make the product

Γ(s)Γ(t):

Γ(s)Γ(t) =

∫ ∞

p=0

ps−1e−pdp

∫ ∞

q=0

qt−1e−qdq =

∫ ∞

p=0

∫ ∞

q=0

dpdqps−1qt−1e−p−q (B.4.26)



B.4. The Euler Beta Function 151

and make the substitution p = xy, q = y(1− x) such that




p

q



 =




y x

−y 1− x








x

y



 , (B.4.27)

and so dpdq = ydxdy

Γ(s)Γ(t) =

∫ ∞

y=0

∫ 1

x=0

ydxdy(xy)s−1 (y(1− x))t−1 e−y (B.4.28)

=

∫ ∞

y=0

dyy(s+t)−1e−y
∫ 1

x=0

dxxs−1(1− x)t−1 (B.4.29)

= Γ(s+ t)B(s, t) (B.4.30)

and the equation is proven.

Now to show

B(s, t) =

∫ 1

0

dyys−1(1− y)t−1 =

∫ ∞

0

dz
zs−1

[z + 1](s+t)
(B.4.31)

We use on the first integral the substitution

z =
y

(1− y)
(B.4.32)

so that

y =
z

1 + z
, (1− y) =

1

1 + z
, dz =

dy

(1− y)2
, dy =

dz

(1 + z)2
, (B.4.33)

and therefore

B(s, t) =

∫ 1

y=0

dyys−1(1− y)t−1 (B.4.34)

=

∫ ∞

z=0

dz

(1 + z)2

(
z

1 + z

)s−1(
1

1 + z

)t−1

(B.4.35)

=

∫ ∞

z=0

dz
zs−1

(1 + z)s+t
. (B.4.36)



Appendix C

Additional Derivations

C.1 Feynman Parameters

We start from (4.1.3):

1

AB
=

∫ 1

0

dxdyδ(1− x− y)
1

(xA+ yB)2
, (C.1.1)

and differentiate with respect to B:

d

dB

(
1

AB

)

=

∫ 1

0

dxdyδ(1− x− y)
d

dB

(
1

(xA + yB)2

)

1

AB2
=

∫ 1

0

dxdyδ(1− x− y)

(
2y

(xA + yB)3

)

. (C.1.2)

Now we can repeat this:

(−1)n−1(n− 1)!
1

ABn
=

∫ 1

0

dxdyδ(1− x− y)
dn−1

dBn−1

(
1

(xA + yB)2

)

1

ABn
=

(−1)n−1

(n− 1)!

∫ 1

0

dxdyδ(1− x− y)(−1)n−1n!yn−1 1

(xA + yB)n+1

1

ABn
=

∫ 1

0

dxdyδ(1− x− y)
nyn−1

(xA+ yB)n+1
. (C.1.3)

We wish to show (not using the summation convention):

1

A1A2 . . . An
=

∫ 1

0

dx1dx2 . . . dxnδ

(
n∑

i=1

xi − 1

)

(n− 1)!

[x1A1 + x2A2 + · · ·+ xnAn]
n .

(C.1.4)
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This can be proven by starting with

1

A
=

∫ ∞

0

dte−At, and (C.1.5)

1 =

∫ ∞

0

dsδ

(

s−
n∑

i=1

ti

)

, (C.1.6)

and taking several copies of (C.1.5), left-multiplied by (C.1.6)

1

A1A2 . . . An
=

∫ ∞

s=0

dsδ

(

s−
n∑

i=1

ti

)
∫ ∞

t1=0

dt1e
−A1t1

∫ ∞

t2=0

dt2e
−A2t2 . . .

∫ ∞

tn=0

dtne
−Antn ,

(C.1.7)

then setting xi = sti

1

A1A2 . . . An
=

∫ ∞

s=0

dsδ

(

s−
n∑

i=1

sxi

)
∫ ∞

x1=0

sdx1e
−A1sx1 . . .

∫ ∞

xn=0

sdxne
−Ansxn

(C.1.8)

=

∫ ∞

s=0

dssn−1δ

(

1−
n∑

i=1

xi

)
∫ ∞

x1=0

dx1e
−A1sx1 . . .

∫ ∞

xn=0

dxne
−Ansxn,

(C.1.9)

where in moving to (C.1.9), we have moved a factor of s out of the δ-functional and

multiplied by s−1, using the shifting property1

The integral over s can then be done. For illustration, we perform this for n = 2,

to return our original result 4.1.3:

1

A1A2
=

∫ ∞

x1=0

dx1

∫ ∞

x2=0

dx2δ (1− x1 − x2)

∫ ∞

s=0

dsse−A1sx1e−A2sx2 (C.1.10)

=

∫ ∞

x1=0

dx1

∫ ∞

x2=0

dx2δ (1− x1 − x2)

×
([

s
es(−A1x1−A2x2)

(−A1x1 − A2x2)

]∞

0

−
∫ ∞

s=0

ds
es(−A1x1−A2x2)

(−A1x1 −A2x2)

)

(C.1.11)

=

∫ ∞

x1=0

dx1

∫ ∞

x2=0

dx2δ (1− x1 − x2)

(

0−
[
es(−A1x1−A2x2)

]∞
0

(−A1x1 −A2x2)2

)

(C.1.12)

=

∫ 1

x1=0

dx1

∫ 1

x2=0

dx2δ (1− x1 − x2)
1

(A1x1 + A2x2)2
, (C.1.13)

1 δ(ax) = 1
a
δ(x): the Dirac δ-functional is explored in Appendix B.2.
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where in the last step, the upper integration limits for x1 and x2 were set to 1, which

is the effect from the δ-functional, as they must both be positive.

Now for higher values of n, the integration by parts will be repeated. An (n−1)!

will result after for the repeated differentiation of the ss in each step, and each step

will also give a minus, which will cancel that from the argument of the exponential

which is brought down. Therefore the result of the integration of (C.1.9) is:

1

A1A2 . . . An
=

∫ 1

0

dx1dx2 . . . dxnδ

(
n∑

i=1

xi − 1

)

(n− 1)!

[x1A1 + x2A2 + · · ·+ xnAn]
n ,

(C.1.14)

which is what we wished to find.

If we wish to have repeated Ai in the denominator, then as before we can differ-

entiate (C.1.14) repeatedly, giving the result

1

Aν11 A
ν2
2 . . . Aνnn

=

∫ 1

0

dx1dx2 . . . dxnδ

(
n∑

i=1

xi − 1

) ∏n
i=1 x

νi−1
i

[
∑n

i=1 xiAi]
∑
νi

Γ (ν1 + ν2 + · · ·+ νn)

Γ (ν1) Γ (ν2) . . .Γ (νn)
.

(C.1.15)

C.2 Reduction Steps and Loop-momentum Shifts

In order to show the shift in loop momentum which is required by methods that

have a “standard” form for their loop integrals, let us start with such an integral,

and write the qi as k + ri, setting rN = 0.

Id ,µ1µ2...µr
N (N,N, . . . ,N) =

∫
dd k

iπd /2

kµ1kµ2 . . . kµr

((k + r1)2 −m2
1 + iλ)((k + r2)22 −m2

2 + iλ) . . . (k2 −m2
N + iλ)

.

(C.2.16)

Now let us work with a specific example: the rank two massless triangle, dropping

the λs, with its kµs contracted with r1 and r2.

r1µr2νId ,µν
3 (N,N, . . . , N) =

∫
dd k

iπd /2

(r1 · k)(r2 · k)
((k + r1)2)((k + r2)2)(k2)

. (C.2.17)

Now we wish to cancel denominators, so we use the identity

r1 · k =
1

2

[
2ri · k + k2 − k2 + r1 − r1

]
=

1

2

[
(k + ri)

2 − k2 − r1
]
, (C.2.18)
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and so we can write

r1µr2νId ,µν
3 (N,N, . . . , N) =

∫
dd k

iπd /2

1
2
[(k + ri)

2 − k2 − r1] r2 · k
((k + r1)2)((k + r2)2)(k2)

(C.2.19)

=
1

2

∫
dd k

iπd /2

r2 · k
(((k + r2)2)(k2)

− 1

2

∫
dd k

iπd /2

r2 · k
((k + r1)2)((k + r2)2)

− r21
2

∫
dd k

iπd /2

r2 · k
((k + r1)2)((k + r2)2)(k2)

(C.2.20)

and in order to recover the standard form for the second term, we must shift the

loop momentum k → k − r2, so we have

∫
dd k

iπd /2

r2 · k
((k + r1)2)((k + r2)2)

=

∫
dd k

iπd /2

r2 · k
((k + (r1 − r2))2)(k2)

(C.2.21)

− r22

∫
dd k

iπd /2

1

((k + (r1 − r2))2)(k2)
(C.2.22)

so returning to the standard form has the cost of adding an extra term.

C.3 Splitting and Combining Logarithms

For positive, real arguments, it is trivial to split and combine logarithms, using the

well-known rules:

log(ab) = log(a) + log(b) (C.3.23)

log
(a

b

)

= log(a)− log(b). (C.3.24)

However, because for complex argument, the logarithm has a branch cut, chosen

to be along the negative real axis, this situation becomes more complicated (with

thanks to [208])2. We must either be careful to remain on the same branch or return

to it by adding ±2πi. This is expressed in an η function which, with complex z1

and z2 is simply defined:

η(z1, z2) = log(z1z2)− log(z1)− log(z1) (C.3.25)

and has values −2πi, 0 and 2πi, and notably is always zero if a and b have imaginary

parts of opposite sign, or if either is a positive real.

2Although (C.3.23) still applies if a and b have imaginary parts of opposite signs, and (C.3.24)

if the same sign.
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Now in the context of our position on a branch, let us consider the case of the

splitting of a logarithm of z1 = az0, with a real and z0 complex

log(z1) = log(az0) =







log(a) + log(z0) a > 0

log(−a) + log(−z0) a < 0.

(C.3.26)

In each case the first term is the logarithm of a positive real number, so no η functions

enter.

Now consider moving from a general complex number Z to −Z. If Im(Z) < 0,

then to get to −Z avoiding the branch cut, we must add π to the argument, and

similarly we must subtract for Im(Z) > 0. So

log(−Z) = log(Z)− iπσIm(Z), (C.3.27)

where σx represents the sign of a variable x

Now let us examine again the case where a < 0. We apply (C.3.27) to log(−z0)
and note that σIm(z0) = σaσIm(z1)

log(z1) = log(−a) + log(z0)− iπσIm(z0)

= log(−a) + log(z0) + iπσIm(z1)






a < 0, (C.3.28)

but

(a− iλ) = |a|e−iπ

(a + iλ) = |a|e+iπ






a < 0, (C.3.29)

so

log(a+ iλσIm(z1)) = log(|a|) + iπσIm(z1)

log(z1) = log(a+ iλσIm(z1)) + log(z0)






a < 0, (C.3.30)

but if a > 0, we can add a small imaginary part to log(a) without having any effect,

so we have

log(z1) = log(a + iλσIm(z1)) + log(z0) ∀a 6= 0. (C.3.31)

We will wish to apply this in Section 5.3 in the specific circumstance of splitting

a logarithm with a real factor s:

log(z) = log(sx2 + (−s+m2
1 −m2

2)x+m2
2 − iλ) (C.3.32)

= log (s(x− x1)(x− x2)) (C.3.33)
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= log(s+ iλσIm(z)) + log(x− x1)(x− x2) (C.3.34)

= log(s− iλ) + log(x− x1)(x− x2), (C.3.35)

because we have σIm(z) = −1 for real or complex mi: in the real case the only

imaginary part is −iλ; and in the complex case, the imaginary part is Im(m2) at

x = 0 and Im(m1) at x = 1, and interpolates between the two.

Now for real mi, either x1 and x2 are real or they are complex with imaginary

parts of opposite sign, so their logarithm can also be split with zero η function:

log(z) = log(s− iλ) + log(x− x1) + log(x− x2), (C.3.36)

and for complex masses,

log(z) = log(s− iλ) + log(x− x1) + log(x− x2) + η(x− x1, x− x2) (C.3.37)

= log(s− iλ) + log(x− x1) + log(x− x2) + η(−x1,−x2), (C.3.38)

as we know that (x − x1)(x − x2) has a fixed sign imaginary part for all relevant

values of x, namely −σs. Therefore the η function has throughout the same value

as when x = 0.

C.4 n-dimensional Gaussian

Consider the integration of a gaussian in n-dimensional space. We can choose either

to integrate the entire function in cartesians, or we can do only the radial integration

and multiply by the “surface area” A.

∫ ∞

−∞
dx1 . . . dxne

−(x21+···+x2n) = A

∫ ∞

0

dre−r
2

rn−1, (C.4.39)

now use Γ(n) = 2
∫∞
0
e−r

2
r2m−1dr (found by simply substituting t = r2 into the

definition Γ(n) =
∫∞
0
e−ttn−1dt) to get

[√
π
]n

= A
1

2
Γ
(n

2

)

(C.4.40)

so A =
2π

n
2

Γ
(
n
2

) (C.4.41)

and we have an equation for the surface area of an n-sphere.
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C.5 Relating detS and detG with αi, βi and γi

In Section 5.1.3 we asserted

(bi detS)2 = 2αi detS − detG
(
β2
i − 4αiγi

)
. (C.5.42)

We have (5.1.33)-(5.1.34)

b1 =
4ab+ 2bd− c2 − ce

2bd2 − 2cde+ 2ae2 − 8abf + 2c2f
=

4ab+ 2bd− c2 − ce

detS
b2 =

cd− 2ae

2bd2 − 2cde+ 2ae2 − 8abf + 2c2f
=
cd− 2ae

detS
b3 =

−2bd − cd+ 2ae+ ce

2bd2 − 2cde+ 2ae2 − 8abf + 2c2f
=

−2bd − cd+ 2ae + ce

detS (C.5.43)

and (5.1.39)

g1(z) =bz
2 + (c+ e)z + a+ d+ f (C.5.44)

g2(z) =az
2 + dz + f (C.5.45)

g3(z) =(a+ b+ c)z2 + (d+ e)z + f, (C.5.46)

and can demonstrate this for the three cases:

(b1 det S)2 + detG
(
β2
1 − 4α1γ1

)
=(4ab+ 2bd− c2 − ce)2

+ (4ab− c2)((c+ e)2 − 4b(a+ d+ f)) (C.5.47)

=2b(2bd2 − 2cde+ 2ae2 − 8abf + 2fc2) (C.5.48)

=2α1(detS) (C.5.49)

(b2 det S)2 + detG
(
β2
2 − 4α2γ2

)
=(cd− 2ae)2 + (4ab− c2)(d2 − 4af) (C.5.50)

=2a(−2ecd+ 2ae2 + 2fc2 + 2bd2 − 8abf)

(C.5.51)

=2α2(detS) (C.5.52)

(b3 det S)2 + detG
(
β2
3 − 4α3γ3

)
=(−2bd− cd+ 2ae+ ce)2

+ (4ab− c2)((d+ e)2 − 4(a+ b+ c)f) (C.5.53)

=2α3(detS). (C.5.54)
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C.6 Small Imaginary Parts of S

For S, we can consider what the appropriate sign of the small imaginary parts should

be. We find (see, e.g. Section 2.2 of [78]):

si → si + iλ (C.6.55)

sij → sij + iλ (C.6.56)

m2
i → m2

i − iλ (C.6.57)

which implies Sij → Sij + iλ. (C.6.58)

Let us define the matrix H to have the same dimension as S, and all of its entries

unity. Then we can find the imaginary part of the determinant of S:

detS → det (S + iλH) (C.6.59)

=det S + iλ
∑

ijk

ǫijk(S1iS2j + S1iS3k + S2jS3k) +O(λ2) (C.6.60)

=det S + iλ
∑

ijk

ǫijk(S1iS2j − S1iS3j + S2iS3j) +O(λ2) (C.6.61)

=det S + iλ
(
S12S23 − S12S33 + S22S33 − S13S22 + S13S32 − S23S32

− S13S21 − S13S31 + S23S31 − S11S23 + S11S33 − S21S33

− S11S22 − S11S32 + S21S32 − S12S21 + S12S31 − S22S31

)
+O(λ2)

(C.6.62)

=det S + iλ
(
(S11 − 2S13 + S33)(S22 − 2S23 + S33)

− (S12 − S13 − S23 + S33)
2
)
+O(λ2) (C.6.63)

=det S + iλ detG +O(λ2), (C.6.64)

which means that it is appropriate to equate:

2(bd2 − cde+ e2a+ c2f − 4abf + iλ detG)
detG =

detS
det G =

1

B . (C.6.65)
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