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Martin David Brader

Lateglacial to Holocene relative sea-level changes in the Stykkisholmur
area, Sneaefellsnes peninsula, Iceland

Until recently, relatively little scientific research has been undertaken to
increase our understanding of relative sea-level (RSL) change in NW Iceland.
This study presents the results of diatom, tephra and radiocarbon analyses on
five isolation basin and two coastal lowland sediment cores from the
Stykkishélmur area, northern Sneaefellsnes. The analyses provide an accurate
reconstruction of the postglacial RSL changes for the Sneaefellsnes peninsula,
through the generation of a RSL curve. In addition, the marine limit elevations
established for northern Snaefellsnes allow the determination of areas of similar
ice thickness within NW. Tephrochronological analyses from sediment cores
have allowed the establishment of a potential signature for samples from the
Snaefellsnes Volcanic Belt (SVB), as well as the determination of the extent of
the Saksunarvatn tephra in Snaefellsnes and internal tephrostratigraphical
correlations. In Sneefellsnes, the marine limit is measured at approximately 69
m above sea level, with its formation being estimated at ~ 14000 cal. yrs BP.
Following the formation of the marine limit, the rate of RSL change was — 37
mm cal. yr'* until the isolation of site Saurar 3 at 16.20 m asl in 12558 - 12646
cal. yrs BP, relating to a rate of crustal rebound of + 55 mm cal yr* over the
same period. Following the isolation of Saurar 3, the rate of RSL fall reduced.
During the mid- to late Holocene, RSL fell below present in northern
Sneefellsnes, although poor chronological control means that this event can only
be tentatively dated to~ 4800 cal. yrs BP. The results highlight the potential of
isolation basin, coastal lowland and marine limit data in determining the RSL

history for NW Iceland.
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CHAPTER 1
Introduction

1.1 Introduction

In comparison to the UK and Fennoscandia, there has been relatively little
scientific investigation into postglacial relative sea-level (RSL) change in Iceland.
Where research has been undertaken, records of RSL changes have generally
been developed on the basis of the geomorphological mapping of raised marine
features (e.g. Einarsson, 1968; Hansom and Briggs, 1991; Norddahl and
Pétursson, 2005; Principato, 2008). Recently, microfossil analyses of isolation
basin sediments have also been undertaken in Iceland, leading to more accurate
reconstructions of RSL changes (e.g. Rundgren et al., 1997; Caseldine et al.,
2003; Lloyd et al., 2009).

An accurate reconstruction of RSL change in Iceland is important in order to
inform the debate surrounding the deglaciation of Iceland after the Last Glacial
Maximum (LGM). An understanding of the pattern and style of deglaciation of the
Icelandic Ice Sheet (1IS) is essential, as different patterns of meltwater flux to the
North Atlantic would have various potential impacts and influences on global
thermohaline circulation (Hubbard et al., 2006) and hence global climate. The
sensitivity of Iceland to oceanographic and atmospheric changes (Ingélfsson et al.,
1997; Eiriksson et al., 2000; Norddahl and Pétursson, 2005) means that ice sheet
response would have been relatively rapid, with RSL study also providing an
accurate constraint for such responses. Microfossil based studies of isolation
basin sediments are particularly advantageous in this regard, as they provide an
opportunity to quantify rates of rebound and record changes in RSL over time
(Rundgren et al., 1997).

At present, our understanding of the scale and volume of the IIS is also relatively
limited. Modelling studies have calculated various volumes and area

measurements for the IIS (e.g. Hubbard et al., 2006) often with relatively little



ground truthing. RSL study provides an opportunity to generate data to test such
geophysical models, thus leading to a check on the model predictions of ice sheet
volume and scale (e.g. Hubbard et al., 2006).

1.2 Study Aims and Objectives

The principal aim of this research is to provide an accurate reconstruction of the
postglacial RSL changes from the Stykkishélmur area, northern Sneefellsnes,
western Iceland. It is also hoped that the secondary aim of providing information
about the deglaciation of the Snaefellsnes peninsula can also be achieved in this

study.
In order to achieve the principal research aim, several objectives are to be met:

1. The identification of sedimentary sequences within the isolation basins of

the Stykkishdlmur area, northern Sneefellsnes.

2. Palaeoenvironmental reconstruction of isolation basins to identify

freshwater, brackish and marine influences in each basin.

3. The establishment of a chronological framework for the Sneefellsnes

peninsula, through the analysis of tephra and organic sediment deposits.

4. The production of a RSL curve for the area, using isolation basin data,

marine limit measurements and the chronological controls.

5. The comparison of the RSL history of the Stykkisholmur area with regional
datasets to investigate regional patterns of RSL change and the possible
links to deglaciation.

The research will provide valuable evidence from an area of Iceland currently
lacking in research, both in terms of RSL and deglaciation histories. The location
of the research, as further discussed in Chapter 3, is a key area of debate within
the discussion of the differing hypotheses of the Icelandic LGM glaciations, which

are outlined in full in Chapter 2.

The research will provide a RSL record from an area close to the present

coastline, which when coupled with data from other similar sites, such as
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Bjarkarlundur, Vestfirdir (Lloyd et al., 2009) and northernmost Skagi (Rundgren
et al., 1997), will allow a regional overview of the changes within the LGM IIS to

be established.

1.3 Research Questions

This research project aims to address three principal research questions:

1.3.1 What is the pattern of RSL change during the Holocene at Stykkisholmur,
northern Snaefellsnes and what are the associated drivers?

The identification of the pattern of RSL changes during the Holocene at
Stykkishélmur is of importance, as this data is currently lacking for the
Snaefellsnes peninsula. As outlined, this area is however key in terms of the
glacial and deglacial histories of Iceland. Previous research in Vestfirdir has
highlighted the possibility of a secondary ice mass over the peninsula, as outlined
by the differing RSL histories generated there (e.g. Hansom and Briggs, 1991).
Sneefellsnes, lying South of Vestfirdir, provides an opportunity to determine
whether a secondary ice mass over Vestfirdir is likely, as a signature of the ice
mass would be present in the RSL record generated from the peninsula. In
addition, Sneefellsnes would allow the differing effects of the ice masses on the
RSL record to be determined, sitting at a hinge point between the two potential ice

centres.

The RSL history of the peninsula will be determined through the establishment of
the sedimentary, hydrological and microfossil isolation contacts within each of the
sediment core samples. Tephrochronological and radiocarbon data are employed
to provide accurate timings for the environmental changes determined from each
of the analysed core samples. As a result, sufficient environmental and
chronological data will be generated in this study to address this initial research

guestion, allowing the establishment of a RSL record for the region.

1.3.2 Is this RSL history consistent with regional trends from NW Iceland?

Previous study on the Vestfirdir and Skagi peninsulas has provided information
regarding the postglacial relative sea-level changes of NW Iceland, showing a

trend of generally falling RSL with a mid-Holocene high stand (Rundgren et al.,
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1997; Lloyd et al., 2009). Differences in the RSL records from NW Iceland,
particularly Vestfirdir, have been demonstrated in several studies focussing both
on microfossil (e.g. Lloyd et al., 2009) and geomorphological (e.g. Hansom and

Briggs, 1991) records of RSL change when compared to the rest of Iceland.

This research question therefore aims to determine whether Sneefellsnes follows
the regional trends of NW Iceland, which are notably different, or whether it follows
the RSL trends found elsewhere within Iceland. In addition, it aims to investigate
the RSL changes at a potential hinge point between assumed recent fall in NW
and noted recent rise in western Iceland (Gehrels et al., 2006). As such, a record
from Sneefellsnes could be valuable in providing limits on the effects of a potential

secondary ice cap in NW Iceland.

The microfossil and chronological analyses briefly outlined above allow the
comparison of the Sneefellsnes data with sites elsewhere in NW Iceland, such as
Bjarkarlundur (Lloyd et al., 2009), Skagi (Rungren et al., 1997) and Vidarholmi
(Gehrels et al., 2006), and further afield. The comparisons made between the
various records will allow regional trends to be evaluated and thus determine
whether the Snaefellsnes record is consistent with previous study or whether local

factors are having a great effect on the RSL record.

1.3.3 Are isolation basin studies suitable for the determination of RSL and
deglacial histories from Iceland?

Although the isolation basin technique has previously been used with great effect
in Iceland (e.g. Rundgren et al., 1997; Lloyd et al., 2009) and has been used
extensively elsewhere (e.g. Shennan et al., 1993; Long et al., 1999; Corner et al.,
2001), there are differences between the Icelandic isolation basin records and
those generated by studies that employ different techniques or focus on other
features (e.g. Hansom and Briggs, 1991; Gehrels et al., 2006) such as the timing
of RSL fall below present during the mid Holocene or recent RSL changes. As a
result, the use of isolation basins in Iceland is investigated, principally on the
grounds of whether the resolution of such studies provides sufficient accuracy of

RSL reconstruction in Iceland, particularly over late Holocene timescales.



1.4 Thesis Outline

This thesis is divided into seven distinct chapters. Chapter 1 provides an outline of
the key research aim, objectives and questions associated with this research,
alongside providing a justification for the need to undertake research of this kind.
Chapter 2 provides an overview of the key research previously undertaken in NW
Iceland, alongside a synthesis of the gaps in our current understanding. In
addition, Chapter 2 demonstrates the role that RSL research can play in the
determination of the pattern and style of deglaciation within NW Iceland. Chapter
3 provides an overview of the location of the research, alongside discussion of the
individual site locations within the Snaefellsnes peninsula. The coring pattern and
isolation basin sill determination strategies are also discussed in Chapter 3.
Chapter 4 provides an outline of the key laboratory, analytical and chronological
methods used in this study. The chapter also provides an overview of the
techniques of diatom, tephra and radiocarbon analyses. Chapter 5 presents the
results of the research and is divided into two key sections: environmental results,
where sedimentological and diatom assemblages are presented, and
chronological results, where the results of the tephra and radiocarbon analyses
are outlined. In addition to this, Chapter 5 provides an initial interpretation of the
results. Chapter 6 provides a discussion of these results and aims to place them
within a regional perspective through comparison with data from other locations in
NW Iceland. The chapter also attempts to provide an insight into the deglaciation
of the region by using the RSL data generated. Chapter 7 then aims to draw a
series of conclusions from the data produced and analyses undertaken in this
research. An overview of areas for future research is then provided in this final

chapter.

1.5 Summary

This chapter has outlined the aims and objectives of this research, alongside the
associated justifications. The principal aim of the research is to provide an
accurate reconstruction of the postglacial relative sea-level changes of the
Sneefellsnes peninsula. In turn, it is hoped that information regarding the
deglaciation of the peninsula may be generated. The importance of the research
has also been discussed, with the four key reasons behind the requirement for an
accurate reconstruction being outlined. As outlined above, the next chapter
5



outlines the background to this research including information on the glaciation
and deglaciation of Iceland, as well as the variation in previous RSL records. In
addition to this, gaps in the present knowledge will be outlined thus confirming the

approaches adopted in this research.



CHAPTER 2
Background and Literature Review

2.1 Introduction

This chapter aims to outline the background literature associated with the glacial,
deglacial and relative sea level (RSL) histories of Iceland. Issues with and
discrepancies between the reconstructions of the Icelandic Ice Sheet (1I1S) will be
discussed, alongside the key methods employed to determine its scale and
volume. In addition, the rate and timing of deglaciation will be outlined, providing
an overview of the level and gaps in our current knowledge and the links to the
RSL history of Iceland. The reliability and limitations of previous RSL studies will
then be highlighted, alongside a discussion of the key methods employed in
previous studies. This discussion will highlight the transition from
geomorphological studies of marine limit and raised shoreline features to the
microfossil based approach using both saltmarsh and isolation basin deposits. A
review of the variations in RSL histories from NW Iceland is then undertaken
through the examination of existing marine limit, isolation basin and saltmarsh
data. Through the analysis of the glacial, deglacial and RSL histories of western

Iceland, the aim and objectives of this research will be justified.

2.2 The Icelandic Ice Sheet and the glaciation of Iceland

At the LGM, between 20 and 17 cal. ka BP (Van Vliet Lanoé et al., 2006), it is
estimated that the Icelandic Ice Sheet (1IS) covered 330000 km?, was made up of
300000 km?® of ice (Hubbard et al., 2006) and had a substantial marine based
component (Hubbard, 2006; Hubbard et al., 2006). It is estimated that the ice
thickness reached a maximum of 1500 + 500 m at the LGM (Ingdlfsson et al.,
2010). Research has been conducted throughout Iceland to establish the extent
of this ice sheet, through geomorphological investigations (e.g. Olafsdottir, 1975;
Norddahl and Pétursson, 2005) and glacial striation mapping (e.g. Thorodssen,
1905-1906; Keith and Jones, 1935; Einarsson, 1967; Hoppe, 1968; 1982). In

addition to this, lake sediment studies have revealed detailed records of the timing
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of deglaciation following the LGM (e.g. Rundgren, 1995). Several questions
remain over the extent and thickness of the 1IS however, with estimates of ice
thickness varying between studies (e.g. Rundgren and Ingélfsson, 1999; Hubbard
et al., 2006) thus making it the subject of considerable, continuing debate. It is
however clear that Iceland was covered by a considerable ice mass during the
LGM (Ingolfsson et al., 2010).

Initial scientific investigation into the extent of the 1IS was conducted in Eyjafjérour
(Figure 2.1), northern Iceland, where glacial striations were found running
alongside the fjord, which led to the initial proposition of a single Icelandic ice
mass (Thorodssen, 1905-1906). Following this, research in Grimsey highlighted
glacial striations on both boulders and bedrock (Einarsson, 1967), alongside the
identification of additional features that may have resulted from glacial action, such
as smoothed bedrock surfaces (Keith and Jones, 1935). The aforementioned
bedrock striations were noted running in a SSE to SE direction (Einarsson, 1967;
Hoppe, 1968; 1982) and as such are treated as evidence that the IS extended as
far North as Grimsey during the LGM, some 40 km from the present coastline.
Additional later discussed studies, including sedimentary and seismic resonance

studies, have supposed this assertion (e.g. Andrews et al., 2000).

In western Iceland, the extent of the LGM IIS has been constrained through the
investigation of submerged marine features (e.g. Olafsdottir, 1975) alongside
associated sedimentological analyses (e.g. Syvitski et al., 1999; Andrews et al.,
2000). The Breioarfjorour moraine, for example, has been dated to between 15.7
and 19.7 *C ka BP (~ 18.8 and ~ 23.5 cal. ka BP) (Andrews et al., 2000).
However a maximum age of 36 *C ka BP (~ 41.2 cal. ka BP) has also been
generated (Norddahl and Pétursson, 2005). Additional submerged moraine
features have been dated throughout Iceland and as such have helped to
constrain LGM ice extent (e.g. Egloff and Johnson, 1979). The investigations of
the Latra or Breidarfjorour moraine have demonstrated the maximum extent of the
IS at the LGM, with the feature being widely defined as an end moraine
(Olafsdéttir, 1975; Ingdlfsson, 1991; Syvitski et al., 1999).
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Figure 2.1 Locations in Iceland mentioned in the text, with the exception of the locations of volcanic systems, which are found in Fig. 2.9.
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In addition to such end moraine investigation, the study of seismic profiles has
also been extensively employed (e.g. Egloff and Johnson, 1979; Syvitski et al.,
1999) to delimit the LGM [IS. This has led to the constraint of the LGM IIS at
both the shelf edge and at intermediate locations between the shelf edge and
the present coastline in some locations in SW Iceland (Egloff and Johnson,
1979). As a result, such studies have provided evidence for LGM IIS ice well
beyond the present coastline, reaching tens of kilometres beyond the present
coast location (Egloff and Johnson, 1979). The positions of such features and

studies are summarised in Figure 2.2.
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Figure 2.2: Summary of previous research into the extent of the IIS in western Iceland, including

marine core data (black dots), highest elevation of the marine limit (shaded grey) and the
location of moraine (thick black line). The location of present glaciers is also recorded (white

areas) alongside sea floor contours. Source: Jennings et al. (2000).

The mapping, coring and seismic profiling of submarine features has also been
used extensively in North Iceland to delimit the LGM IIS (e.g. Helgaddttir and
Thors, 1998; Andrews et al., 2000). Helgadéttir and Thors (1998) identified end

moraines North of Vestfirdir providing a possible limit to the LGM IIS. In
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addition to this, a series of cores were retrieved by Andrews et al. (2000) which
led to the generation of 32 AMS radiocarbon dates between 64 and 67°N and
18 and 29°W. These basal peat radiocarbon dates from Reykjafjardarall,
Hunafl6adjup, Hunafléi and Eyjafjardarall allow the extent of the IS on the north
Iceland shelf to be determined, with five radiocarbon dates older than 16 ka BP
also providing information on the deglaciation of the Iceland shelf (Andrews et
al., 2000). The basal dates from the Andrews et al. (2000) study demonstrate a
peak in frequency at around 10 ka BP, with seven sites providing ages over 15
ka BP. The results generated for North Iceland highlight that glacial sediment
reached the inner and mid shelf during the Bglling-Allergd period (Andrews et
al., 2000).

The major issue regarding the use of seismic profiing and marine feature
mapping is the lack of sufficient dating analyses in some studies. In several
studies, features have simply been identified and ascribed a period in which
they are likely to have formed whilst bearing in mind dates generated for other
features during previous studies. The results of such studies are therefore less
certain than those studies which make use of Accelerator Mass Spectrometer
(AMS) radiocarbon dating and other chronological techniques (e.g. Andrews et
al., 2000).

Although there is a considerable and growing body of evidence to suggest that
ice extended beyond the present coastline, the possibility of ice free areas
during and shortly after the LGM has also been explored, such as mid- to outer
Djupéll by 15 ka BP, alongside the possibility of nunataks (e.g. Andrews et al.,
2000). Additional studies have attempted to provide evidence for ice free
coastal areas during the period (e.g. Steindorsson, 1962; 1963), yet geologically
there is no evidence to support the assertion that these ice free areas existed
during the LGM (Ingodlfsson, 2009). Ingdlfsson (2009) highlights several key
errors associated with biological studies, which suggest the possibility of coastal
ice free areas during the LGM in Iceland, and in doing so hypothesised the lack
of such locations. Despite this, some geomorphological evidence does exist for
ice free mountainous areas (e.g. Hjort et al., 1985) however the likelihood of
plant survival in these locations is limited (Rundgren and Ingolfsson, 1999). Itis
therefore likely that the whole of Iceland was covered by the LGM ice sheet,
with occasional nunataks protruding thorough the ice cover (Andrews et al.,
11



2000; Norddahl and Pétursson, 2005), although the extent of these nunataks is
unknown at present (Agisdottir and Porhallsdéttir, 2005).

2.2.1 The hypotheses of the Icelandic glaciation

Investigation into the Icelandic glaciation has led to the proposition of two
contrasting theories of glaciation: extensive (e.g. Buckland and Dugmore, 1991;
Hubbard et al., 2006) and restricted (e.g. Hjort et al., 1985). In this study, the
two theories will be referred to as the maximum and minimum IIS hypotheses,
representing the differences in ice sheet scale and volume presented by the two
hypotheses. The hypotheses of the Icelandic glaciation were once hotly-
debated (Hjort et al., 1985; Hubbard et al., 2006; Roberts et al., 2007) with
some uncertainty regarding the Icelandic glaciation and IIS extent still existing
to this day (Andrews and Helgadéttir, 2003). That said, the minimum IS
hypothesis has lost some credibility following several recent studies, which have
employed more accurate technigues to determine ice sheet extent than initial

studies.

The minimum and maximum [IS hypotheses are associated with considerably
different ice volumes, styles of glaciation and patterns of deglaciation (Figure
2.3). The maximum IIS hypothesis suggests that ice extended to the shelf
edge, between 50 and 120 km from the present coastline (Andrews et al., 2000;
Norddahl and Pétursson, 2005; Hubbard et al., 2006). This hypothesis also
suggests that the glaciation of Iceland was mono-domed, with a single ice mass
covering the entire island (Hubbard et al., 2006). The hypothesis is supported
by the ice extent studies outlined previously, particularly the coring and seismic
profiling studies carried out in western and northern Iceland (e.g. Andrews et al.,
2000). The minimum IIS hypothesis suggests that the ice extended to within 15
km of the present coastline (Hjort et al., 1985) with the possibility of separate ice
centres, with particular emphasis put on a separate ice mass over Vestfirdir
(e.g. Hansom and Briggs, 1991). The separate Vestfirdir ice mass hypothesis
has received particular support from RSL studies, which have highlighted the
possibility of differing histories from the rest of Iceland (e.g. Hansom and Briggs,
1991).
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Figure 2.3: The maximum (red) vs. minimum (blue) glaciations showing ice extent estimations

under the two contrasting hypotheses. Source: Hubbard et al. (2006).

The maximum hypothesis has received support from studies of submerged
marine features (e.g. Olafsdottir, 1975), raised marine features (e.g. Einarsson
and Albertsson, 1988), sediment analyses (e.g. Andrews et al., 2000) and
modelling studies (e.g. Hubbard et al., 2006). However, some studies have
continued to provide support for the minimum IS hypothesis despite such a
body of contradictory evidence, mainly a result of low marine limit elevations,
such as in northern Vestfirdir (e.g. Hjort et al., 1985) and tephra layers in lake
sediments (e.g. Sigurvinsson, 1983) which, if ice covered, should not be
present. In addition, the production of differing RSL records from the Vestfirdir

peninsula contradicts the mono-domed maximum glaciation hypothesis.

Some of the most compelling evidence in support of the maximum IIS
hypothesis has resulted from mapping studies of moraines (e.g. Andrews et al.,
2000) and raised shorelines (e.g. Einarsson and Albertsson, 1988). In their
1988 study, Einarsson and Albertsson noted a northerly and westerly tilt to the
raised shorelines investigated resulting from the differential isostatic adjustment
following the loss of the IIS. Regional tilting of raised shorelines and marine
limits provide an insight into the glacial history of a locality, with marine limit

elevations increasing with proximity to the centre of ice loading (Benn and
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Evans, 2010). However, depending on the persistence of ice cover at the
loading centre, marine limit elevations can also decrease towards the ice centre
(Benn and Evans, 2010), as postglacial rebound has had a lesser opportunity to
occur. As such, the pattern of marine limit elevations depends on the rapidity of

deglaciation.

More recent modelling studies have also provided evidence to support the
maximum IS hypothesis (e.g. Bingham et al., 2003; Hubbard et al., 2006)
through the modelling of the scale and volume of the IIS. Hubbard et al. (2006)
suggest that the mean ice thickness was 940 m with a plateau elevation of 2000
m. The optimum LGM ice sheet model developed by Hubbard et al. (2006)
produces an ice sheet which extends far beyond the present Icelandic coastline
(Figure 2.3), with an area of 3.29 x 10> km? made up of 3.09 x 10° km® of ice.
As a result, a large proportion of the base of the Hubbard et al. (2006) IIS is
modelled below sea-level, leading to a highly dynamic ice sheet, which may

have had several accumulation centres.

As a result of this dynamismand large marine component, there would have
been potential for the ice sheet to influence global thermohaline circulation
(Hubbard et al., 2006) and hence global climate (Figure 2.4). This influence
would have been greatest during deglaciation, which would have been driven by
increased volcanism, RSL change, climatic adjustments or a combination
thereof, when large amounts of freshwater would have entered the North
Atlantic (Hubbard et al., 2006). This freshwater input would have had a
significant influence on the salinity of the surrounding ocean (Hubbard et al.,
2006) having a consequent effect on deepwater formation (Dickson et al.,
2002).

The model generated further demonstrates the apparent implausibility of the
minimum IS hypothesis, as the authors find little evidence to support an ice
sheet within the present coastline (Hubbard et al., 2006). That said, although
the study provides support for the maximum [IS hypothesis, the dynamism of
the modelled ice sheet is far greater than expected (Hubbard et al., 2006). The
Hubbard et al. (2006) model follows the notion that there were ice free areas

and nunataks, which had the potential to act as refugia, thus supporting the
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Rundgren and Ingélfsson (1999) hypothesis of limited plant survival during the
LGM.

Figure 2.4: Thermohaline circulation and the major currents affecting Iceland, with red denoting
warm currents and blue denoting cool currents. Meltwater input into Area A could have affected

global thermohaline circulation and therefore global climate.

2.3 The deglaciation of Iceland

Following the LGM, the deglaciation of Iceland occurred relatively rapidly due to
calving and subglacial heating of the 1IS (Hubbard, 2006). The deglaciation of
Iceland would have had a profound effect on RSL and so is discussed here
using the Scandinavian glacial terminology to avoid confusion. Over recent
decades, the dating of several samples has led to the reclassification of several
features by age (Hjartarson, 1991) and as such the initial Icelandic
stadial/interstadial terminology has been incorrectly associated with samples of

different ages.

During the deglaciation, two stadials and two interstadials have been noted
(Einarsson, 1973; 1979) with a third stadial also evident. Initial deglaciation
occurred during the Bglling Interstadial (13 — 12 ka BP) (Ingodlfsson and
Norddahl, 2001). It is thought that 81% of the IIS base was below LGM sea-
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level (Hubbard, 2006) thus rising eustatic sea-level during the Bglling period
(Fairbanks, 1989) led to rapid ice sheet collapse (Ingdlfsson and Norddahl,
2001; Figure 2.5).

Following the Bglling Interstadial, a brief Older Dryas stadial then led to
renewed glacial advance in Iceland (Einarsson and Albertsson, 1988;
Ingdlfsson, 1985; 1987; 1988; Ingdlfsson et al., 1997; Le Breton et al., 2010)
following a worsening of climatic conditions at the end of the Bglling Period
(Ingolfsson, 1991). Ingodlfsson (1987; 1988) demonstrated such an Older Dryas
readvance southwest of Borgarfjérour, western Iceland, where the ice sheet
readvanced beyond the present coastline. The mapping of moraine features
(e.g. Ingdlfsson, 1984; 1988) has assisted in the establishment of the extent of
the Older Dryas readvance however such studies and features are relatively
scarce elsewhere in Iceland (Principato, 2008), with Snaefellsnes being

particularly poorly constrained (Norddahl and Pétursson, 2005).

The second glacial retreat occurred during the Allergd period (11.8 — 11 ka BP).
It is thought that coastal areas were free of ice during this interstadial
(Ingdlfsson, 1991) and that environmental conditions were improved, as
demonstrated by an increase in grass and shrubland species on Skagi
(Rundgren, 1995; 1999). Other studies of Allerad sediments have revealed
cooler coastal waters during this period, deposited as a result of a marine
transgression during the interstadial (Asbjérnsdéttir and Norddahl, 1995) which
resulted from eustatic sea-level change and crustal subsidence during the
period (Norddahl and Pétursson, 2005).

Following this cooling, glacial readvance led to an extensive Younger Dryas
glaciation of Iceland (Norddahl and Hjort, 1987; Hjartarson, 1991; Ingélfsson,
1991; Ingolfsson et al., 2010; Figure 2.5) which was relatively rapid in its onset
(Hjartarson, 1991). Investigations have revealed that the extent of the Younger
Dryas glaciation has probably been previously underestimated in Iceland
(Hjartarson, 1991) with glaciers expanding beyond the present coastline in
some locations (Ingolfsson, 1987; Ingolfsson and Norddahl, 2001). It is
however evident that glaciers terminated onshore or close to the present

coastline in western Iceland (Vikingsson, 1978; Eiriksson et al., 1997,
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Figure 2.5: Ice extent during the LGM, Bglling Interstadial, Younger Dryas and Preboreal
Readvances, highlighting the changing structure of the IS during deglaciation. The extent of
the 1IS during the Allerad and Older Dryas is currently poorly constrained and so has not been

included here. Adapted from Ingolfsson et al (2010).
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Geirsdéttir et al., 1997; Norddahl and Pétursson, 2005) and indeed that other

areas of Iceland were completely ice free (Ingolfsson et al., 1997).

The extent of the Younger Dryas glaciation has been mapped through the
identification of the Skégar-Vedde tephra, which was deposited c. 10600 **C yrs
BP (12.4 cal. ka BP) (Mangerud et al., 1984; Gronvold et al., 1995) and through
the mapping of raised marine features (Norddahl and Pétursson, 2005). The
truncated nature of several such features has led to the proposition of glaciers
terminating onshore in several locations (Norddahl and Pétursson, 2005).

One final readvance has been noted in Iceland during the Preboreal (Ingolfsson
et al., 2010; Figure 2.5). This was patrticularly short-lived and the extent of the
readvance is poorly constrained in western Iceland (Ingdlfsson et al., 2010).
However, several studies have been delimited ice extent in the southwest (e.qg.
Hjartarson and Ingolfsson, 1988; Ingdlfsson et al., 1995). Previous study has
also highlighted that glaciers may have occurred more extensively on
Sneefellsnes than at present (Norddahl and Pétursson, 2005) yet the actual
extent is still a relative unknown. Following the short-lived Preboreal
readvance, the final disintegration of the IIS and retreat to present glaciers,

such as Drangajokull and Vatnajokull, occurred rapidly (Ingélfsson et al., 2010).

Previous study has highlighted the many issues and complexity surrounding the
Icelandic glaciation. It is clear that further research is required in order to
establish an accurate record of glacial extent in Iceland. The mapping of raised
features, submerged features and moraines, as well as modelling attempts, has
provided valuable evidence for the glaciation and deglaciation of Iceland, with
RSL research providing key data to test models of glaciation, as well as

assumptions regarding the extent and size of the IIS.

In addition to the aforementioned processes associated with the deglaciation of
Iceland, links between volcanism and deglaciation has also been investigated
(MacLennan et al.,, 2002), with particular attention being placed on the
Reykjanes peninsula, southern Iceland (Jakobsson et al., 1978). This has led
to the proposition of links between increased eruption rates and glacial
unloading and meltwater discharge (e.g. Gudmundsson, 1986; Jull and
McKenzie, 1996). This increased volcanism would therefore have had an effect
on the RSL record for the region, thus making it relevant for discussion here.
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The meltwater from areas of increased volcanic activity could also have had an

effect on global thermohaline circulation and hence global climate.

In addition to testing the extent of the various glaciations of Iceland, a key area
for future research is both the pattern and style of the Icelandic deglaciation.
The marine limit has been used extensively in North America and Scandinavia
to determine such patterns and styles of deglaciation alongside the rates of
rebound associated with them (e.g. Evans et al., 2002). In order to establish
this effectively, the density of marine limit measurements needs to be
sufficiently high, thus allowing isobase maps to be generated. Furthermore,
when coupled with the exploration of glacial geomorphology, principally
moraines, the marine limit and raised shorelines can provide an insight into the
pattern of deglaciation and glacial cover (Evans et al.,, 2002). The use of the
marine limit to determine RSL change is discussed more fully later in this

chapter.

2.4 Relative Sea-Level Change in Iceland

The deglaciation of Iceland had a profound effect on the associated RSL
history. The rapid withdrawal of glacial load associated with the Icelandic
deglaciation led to a rapid crustal response (Le Breton et al., 2010). This was
due to the sensitivity of the Icelandic crust to loading (Sigmundsson, 1991,
Ingolfsson et al., 1995; Rundgren et al., 1997; Ingélfsson et al., 2010) as a
result of low asthenospheric viscocity (Ingélfsson et al., 1995). Recently,
modelling has been used to quantify response variability; however several

inaccuracies have been introduced, particularly regarding feature dating.

The amount of postglacial rebound associated with the deglaciation has been
constrained through the identification and dating of raised marine features, such
as the marine limit and raised shorelines (e.g. Principato, 2008; Ingolfsson et
al., 1995; Le Breton et al., 2010), allowing the subsequent calculation of vertical
displacement. The marine limit is defined as the highest elevation reached by
the sea at a particular location (Andrews, 1970). Le Bretonet al. (2010)
identified two main periods of isostatic uplift: an initial period between 10 ka **C
(~ 11.4 cal. ka) BP and 8150 (~9100 cal.) BP, with an average uplift rate of 5.5
+ 2.2 cm a™and a second period between 8150 BP and present day, with uplift
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rates of 0 — 1.5 cm a. The study also allows the spatial variability of crustal
rebound to be established, highlighting the differential effects on the RSL record
in Iceland (Le Breton et al., 2010).

However, the study assumes that the high marine limits in western Iceland are
synchronous and were formed 10 k + 300 a (11155 — 12100 cal.) BP (Le Breton
et al., 2010), which is extremely unlikely. Despite this and the differences in the
calculation results produced by Le Breton et al. (2010) and other studies (e.qg.
Norddahl and Einarsson, 2001), the authors validate their results by stating that
those of previous studies are skewed by the rapid initial rebound found

immediately after the deglaciation of Iceland.

In addition, the authors note the possibility of deviation at the local scale from
the values that they have calculated, stating that the method employed is not
applicable in all locations around Iceland (Le Breton et al., 2010). The authors
defend its use in western Iceland due to the availability of features against
which the modelled rebound can be compared. Although this is the case, the
notion of synchroneity of the high marine limit in western Iceland is very
improbable, with the variability in dates of such features being evidence in
support of this. In fact, several papers have suggested that this high marine
limit is likely to have formed in the Bglling Period, some two to three thousand
years before the Le Breton et al. (2010) date. However, such studies of
postglacial rebound are important, providing an insight into a major effect on the
RSL record.

Until relatively recently, RSL change in Iceland was principally investigated
through the geomorphological mapping of raised marine features (e.g. Hansom
and Briggs,1991; Asbjornsdottir and Norddahl, 1995: Ingdlfsson and Norddahl,
2001; Norddahl and Pétursson, 2005; Principato, 2008). Such studies are
susceptible to issues surrounding dating techniques (Fleming and Lambeck,
2004; Lloyd et al., 2009), interpretation and spatial coverage (Lloyd et al.,
2009). A lack of dateable material can also be problematic in some locations
(Fleming and Lambeck, 2004), such as eastern Vestfirdir (Principato, 2008).
Although this is not a problem in North America (e.g. Andrews, 1970), sites with
dateable material in Iceland have proven elusive on occasion. Furthermore, the

technique tends to provide data for a single point such as a marine limit and is
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often unable to provide an accurate RSL curve for a particular location (Lloyd et
al., 2009).

Despite these issues, such research has provided valuable information
concerning the marine limits and other raised shorelines in western Iceland (e.g.
Ingdlfsson, 1991; Ingdlfsson and Norddahl, 2001). In some locations, raised
marine features have been mapped over a long temporal and spatial scale,
meaning that several areas are extensively mapped. Vestfirdir, for example,
has been a focus for geomorphological surveying for over a century (e.g.
Bardarson, 1906, 1910; John, 1975; Hansom and Briggs, 1991; Norddahl and
Pétursson, 2005; Principato, 2008; Lloyd et al., 2009), with raised shorelines
being mapped throughout the peninsula. However, areas such as Sneefellsnes
remain relatively unsurveyed. As such, the mapping of such features as part of

this research could prove useful in constraining the RSL record.

2.4.1 Marine Limits in Iceland

In addition to determining patterns of deglaciation and quantifying rates of
rebound, marine limits have been used extensively in a variety of locations to
determine the highpoint reached by postglacial sea-level (e.g. Lloyd et al.,
2009). The marine limit can often be difficult to constrain, with unequivocal
evidence coming from sites with marine shells present within deltaic sediments
(Andrews, 1970). The effectiveness of marine limit investigation has been
brought into question in previous studies, due to the difficulties in determining
marine limit surface elevation, relevance and chronological constraints
(Andrews, 1970).

Many raised marine features have been dated through the radiocarbon dating of
driftwood and marine shells, thus providing both a timing and elevation for RSL
changes. Previous studies in the Arctic and North America have had sufficient
marine shell deposits to provide detailed chronologies for RSL change using
marine limits (e.g. Bell, 1996). However, such deposits are less extensive in

Iceland.

The marine limit in Iceland occurs at various elevations, as a result of the

differences in glacial load and timing (Jennings et al., 2000). The marine limit is

highest in southern Iceland, occurring at c. 110 m above sea level (asl.)
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(Ingolfsson, 1991; Ingodlfsson et al., 1995). The marine limit heights for Iceland
are summarised in Figure 2.6, which demonstrates the considerable variation in
local marine limit height over relatively short distances. The closest determined
marine limit heights to Snaefellsnes are found at c. 80 m in Bjarkarlundur,
southern Vestfirdir (Lloyd et al., 2009) and in the Dalir region, at between 65 m
and 70 m (Norddahl and Asbjornsdéttir, 1995). Hansom and Briggs (1991) also
noted a marine limit of 70 m for southeastern Vestfirdir, which will also prove

beneficial for comparison in this study.

The age of the marine limit in Iceland is also varied (Hjartarson and Ingolfsson,
1988) due to the differential downwarping and divergences in deglaciation
processes, patterns and styles around Iceland (Ingélfsson, 1991). Several
studies have suggested a similar age for the Icelandic marine limit at c. 10000 a
BP (e.g. Ingdlfsson, 1988; Ingolfsson and Norddahl, 1994; Le Breton et al.,
2010). However, other studies have stated that the marine limit formed during
the Bglling Interstadial when RSL was at its highest (e.g. Einarssonl, 1968;
Rundgren et al., 1997; Ingo6lfsson and Norddahl, 2001; Norddahl and Pétursson,
2005). It is however important to recognise that the dating of such features is
not always accurate. The differing deglacial styles and patterns operating in
Iceland are also likely to mean that this is unlikely. In fact, there is evidence to
suggest that this is not the case, with a marine terrace found between 60 m and
70 m asl at Skorradalur dated to 10.3 ka **C (12 ka cal.) BP (Ingélfsson and
Norddahl, 2001).

Lower raised shorelines have also proven beneficial in the determination of the
RSL history of Iceland, particularly where several occur at various elevations at
the same location. Hansom and Briggs (1991) identified several raised
shorelines at Hunafléi (Figure 2.1) with the marine limit identified at 70 m asl.
More recently, Principato (2008) investigated 16 raised shorelines in eastern
Vestfirdir, however a lack of dateable material limited the scope of this research.
The use of raised shorelines and marine limits, when in conjunction with
isolation basin data, can provide accurate chronological data (Rundgren et al.,
1997; Lloyd et al., 2009), which are particularly beneficial for determining

patterns of deglaciation.
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Figure 2.6: Marine limit elevations in Iceland. Elevations are given in metres asl and the data sources are shown to the right. Contours (black dashed line) denote

areas of similar ice thickness and potential similar timing of deglaciation, with the arrows highlighting potential paths of glacial retreat from marine limit evidence.
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It is clear that raised shorelines and marine limits can play an important role in
the constraint of RSL change; however, issues regarding accuracy should not
be overlooked when interpreting such data. In Canada and Fennoscandia,
marine limit data has been used to great effect to determine RSL change, as
well as the pattern and style of deglaciation. Evans (1990) used raised
shorelines to provide a reconstruction of the deglacial and RSL history of the
Canadian High Arctic, where the importance of chronological control is reported
as paramount. Evans (1990) highlights the need for features to be assigned an
accurate age and elevation in order to provide the most realistic reconstruction
of paleo-RSL. In this research, rather than reconstructing paleo-RSL using
raised shorelines, such raised marine features will be used to provide a high
point for RSL in northern Snaefellsnes overcoming the issue of finding suitable

material to date.

2.4.2 Low postglacial RSL in Iceland

A fall of RSL below present levels has long been proposed in Iceland (e.g.
Bardarson, 1923; Thorarinsson, 1956). Since the early proposition of this low
period in Icelandic RSL, studies of submerged features and deposits have
provided valuable evidence and supportive dates of such a change (e.g. Thors
and Boulton, 1990; Moriwaki, 1990; Ingdlfsson et al., 1995). An extensive study
was undertaken at Faxafloi, Kollafjorour and Hvalfjéréur in western Iceland
(Figure 2.1) by Thors and Helgadottir (1991), finding RSL fall of ~ 90 m over a
700 year period at approximately 9.9 cal. ka BP. Additional studies have
provided similar dates for a fall of RSL below present levels, with Thorarinsson
(1956), Kjartansson et al. (1964) and Ingolfsson et al. (1995) all proposing that
RSL fell below present between 10.7 cal. ka and 9.9 cal. ka BP.

Such studies are however severely limited, due to the use of radiocarbon dating
from dredged peat samples, with Thors and Helgadéttir (1991) admitting that he
results are circumstantial. Although these dates have provided sensible timings
for such periods of low RSL, the dates should be treated with caution due to the

possibility of mixing during extraction.

The uncertainty regarding this period of low RSL in SW Iceland is compounded
by the results of an isolation basin investigation at Lake Hestvatn undertaken by
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Geirsdéttir et al. (1997), demonstrating that the Southern Lowlands were
submerged until 9.9 cal. ka BP. This correlates with the date of the low point in
RSL from the Thors and Helgadottir (1991) dredged peat study of between 10.3
and 9.0 ka BP. The proximity of these two study locations means that if both
are correct, sea-level varied considerably over short distances in SW Iceland. It
would appear that the likelihood of this occurring is however slim, particularly
when the methodological limitations of the Thors and Helgadottir (1991) study

are taken into consideration.

Peat studies elsewhere in Iceland have also highlight