
Durham E-Theses

A Weighted Grid for Measuring Program Robustness

ABDALLAH, MOHAMMAD,MAHMOUD,AREF

How to cite:

ABDALLAH, MOHAMMAD,MAHMOUD,AREF (2012) A Weighted Grid for Measuring Program

Robustness, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4454/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4454/
 http://etheses.dur.ac.uk/4454/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Weighted Grid for Measuring

Program Robustness

Mohammad Mahmoud Aref

ABDALLAH

School of Engineering and Computing Sciences

Durham University

A thesis submitted for the degree of

Doctor of Philosophy

2012

i

Abstract

Robustness is a key issue for all the programs, especially safety critical ones. In the

literature, Program Robustness is defined as “the degree to which a system or

component can function correctly in the presence of invalid input or stressful

environment” (IEEE 1990). Robustness measurement is the value that reflects the

Robustness Degree of the program.

In this thesis, a new Robustness measurement technique; the Robustness Grid, is

introduced. The Robustness Grid measures the Robustness Degree for programs, C

programs in this instance, using a relative scale. It allows programmers to find the

program’s vulnerable points, repair them, and avoid similar mistakes in the future.

The Robustness Grid is a table that contains Language rules, which is classified into

categories with respect to the program’s function names, and calculates the

robustness degree. The Motor Industry Software Reliability Association (MISRA) C

language rules with the Clause Program Slicing technique will be the basis for the

robustness measurement mechanism.

In the Robustness Grid, for every MISRA rule, a score will be given to a function

every time it satisfies or violates a rule. Furthermore, Clause program slicing will be

used to weight every MISRA rule to illustrate its importance in the program. The

Robustness Grid shows how much each part of the program is robust and effective,

and assists developers to measure and evaluate the robustness degree for each part

of a program.

Overall, the Robustness Grid is a new technique that measures the robustness of C

programs using MISRA C rules and Clause program slicing. The Robustness Grid

shows the program robustness degree and the importance of each part of the

program. An evaluation of the Robustness Grid is performed to show that it offers

new measurements that were not provided before.

ii

Dedication

I dedicate this thesis to

my late father who had a dream that one day I will finish my PhD, and I did it for him.

My mum who without her prayers and care I will not be able to finish this research.

Nuha, who support me all through the research journey.

and my brothers, sisters, nephews, nieces, and friends...

iii

Acknowledgement

First of all, all praise and thanks to Allah for the success in this thesis in particular

and in my life in general.

My deep thanks to my supervisors Professor Malcolm Munro and Dr. Keith Gallagher

for their invaluable advices and guidance. Professor Malcolm and Dr. Keith gave me

all benefits from their wide experience. My thesis would not be completed and

success without their great supervision.

My great thanks to Dr. Ayman and Dr. Aref who gave me the full financial support

and their support gave me the ability to do this research.

My sincere thanks to Mr Chris Tapp, LDRA Company, Mr James Widman, and

Gimple Software Company for their help evaluate the proposed technique in this

research.

I would like to thank all my friends and colleagues, specially Ahmad, Amir, Maria,

Khalid, Rushdie, Wei, and all my colleagues.

iv

Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without the author's prior written consent and information derived from it

should be acknowledged.

v

Declaration

The material contained within this thesis has not previously been submitted for a

degree at Durham University or any other university. The Following publications were

produced during the course of this thesis:

 Abdallah, M., M. Munro, and K. Gallagher. “Certifying Software

Robustness Using Program Slicing”, In Proceeding of the IEEE

International Conference on Software Maintenance (ICSM).

Timisoara, Romania. 2010, pp.1-2.

 Abdallah, M., M. Munro, and K. Gallagher. “A Static Robustness

Grid Using MISRA C2 Language Rules”, In Proceeding of the Sixth

International Conference on Software Engineering Advances (ICSEA

2011). Barcelona, Spain. 2011, pp.65-69.

vi

Contents

Abstract………………………………………………………………………………. i

Dedication…...………………………………………………………………………. ii

Acknowledgement...………………………………………………………………... iii

Copyright...……………………………………………………………………....…. iv

Declaration…………………………………………………………………….….…. v

Contents…………………………………………………………………...….….…. vi

List of Tables……………………………………………………………………….. ix

List of Figures…………………………………………………………………...….. xi

Acronyms…...……………………………………………………………...…........ xiii

Chapter One: Introduction

1.1 RESEARCH OVERVIEW .. 1
1.2 CRITERIA FOR SUCCESS .. 4
1.3 THESIS OUTLINE ... 5

Chapter Two: Background

2.1 INTRODUCTION ... 7
2.2 PROGRAM ROBUSTNESS .. 8

2.2.1 Software Dependability .. 9
2.2.2 Robustness Techniques .. 11
2.2.3 Robustness Testing ... 17
2.2.4 Robustness Measurement ... 20
2.2.5 Summary .. 22

2.3 C LANGUAGE STANDARD ... 22
2.3.1 ISO standard .. 23
2.3.2 MISRA C Language Rules ... 24
2.3.3 Other C Language Rules .. 28
2.3.4 Summary .. 29

2.4 PROGRAM SLICING .. 30
2.4.1 Static program slicing .. 30
2.4.2 Dynamic Slicing ... 37
2.4.3 Other Slicing techniques .. 39
2.4.4 Program slicing applications ... 40
2.4.5 Program slicing tools ... 42

vii

2.4.6 Summary .. 43
2.5 SUMMARY ... 44

Chapter Three: Robustness Grid

3.1 INTRODUCTION ... 46
3.2 LANGUAGE FEATURES .. 48

3.2.1 Language Features Categorisation ... 48
3.2.2 MISRA Rules .. 49
3.2.2.1 MISRA rule selection ... 49
3.2.2.2 Robustness Features Categorisation ... 50

3.3 CLAUSE SLICING ... 53
3.4 ROBUSTNESS DEGREE CALCULATIONS ... 57

3.4.1 Language Features Weighting ... 57
3.4.2 Data for Program Analysis .. 58
3.4.3 Rule Weighting ... 63
3.4.4 Function Category Degree .. 65

3.5 ROBUSTNESS GRID .. 67
3.5.1 Program Category Degree .. 68
3.5.2 Category Calculations ... 70

3.6 SUMMARY ... 74

Chapter Four: Implementation

4.1 INTRODUCTION ... 76
4.2 IMPLEMENTATION MODELS .. 77
4.3 IMPLEMENTATION TOOLS ... 80
4.4 SUMMARY ... 80

Chapter Five: Results

5.1 INTRODUCTION ... 82
5.2 SWAPOADD.C - THE C PROGRAM .. 82
5.3 SWAPOADD.C CLAUSE TABLE .. 83
5.4 SWAPOADD.C DATA TABLE .. 87
5.5 SWAPOADD.C ROBUSTNESS GRID ... 90

5.5.1 Functions Category Degree ... 90
5.5.2 Program Category Degree .. 96
5.5.3 Category Calculations ... 97

5.6 RESULTS ANALYSIS .. 100
5.6.1 Function incr as an example .. 100
5.6.2 SwapoAdd.c Functions’ behaviour .. 106

5.7 SUMMARY ... 107

Chapter Six: Evaluation

6.1 INTRODUCTION ... 109
6.2 EVALUATION OF THE ROBUSTNESS GRID .. 109
6.3 SWAPOADD.C EVALUATION.. 112
6.4 ROBUSTNESS MEASUREMENT USING OTHER TECHNIQUES 113

viii

6.4.1 LDRA TBmisra ... 114
6.4.2 FlexeLint .. 116
6.4.3 Klocwork Truepath .. 120

6.5 OTHER CASE STUDIES .. 121
6.5.1 Variance.c program ... 121
6.5.2 n_char.c program .. 124
6.5.3 Robost.c program ... 125

6.6 SUMMARY ... 126

Chapter Seven: Conlusions and Future Work

7.1 INTRODUCTION ... 129
7.2 THESIS SUMMARY ... 129
7.3 CRITERIA FOR SUCCESS .. 134
7.4 FUTURE DIRECTIONS... 136
7.5 SUMMARY ... 138

Reference……………………………………………………………………..….…139

Appendices…………………………………………………………….……….…. 148

ix

List of Tables

Chapter Two

Table 2.1 Program Slicing techniques and their applications... 44

Chapter Three

Table 3.1 MISRA rules topics... 49

Table 3.2 Categories Construction..51

Table 3.3 Example of rule categorisation...53

Table 3.4 Clauses' Table...58

Table 3.5 Example of Clause Table...61

Table 3.6 Data Table...61

Table 3.7 Data Table Example...62

Table 3.8 Rule Weight Calculations..63

Table 3.9 Rule Weight Calculation Table Example..65

Table 3.10 Function Robustness Grid with sketch equations...66

Table 3.11 Example of Function Robustness Grid..67

Table 3.12 Program Category Degree Table..68

Table 3.13 AC and FAC equations..70

Table 3.14 Category calculation ...71

Table 3.15 Category Calculation example..74

Chapter Four

Table 4.1 Low Level Terms..79

Chapter Five

Table 5.1 incr Clauses slices...101

Table 5.2 Clause Table for incr..102

Table 5.3 Data Table of Applicable Rules in incr Function..102

Table 5.4 incr Function Calculations..104

Table 5.5 incr function Category Calculations...105

Table 5.6 Comparison between SwapoAdd.c functions..106

Table 5.7 Managerial-View for SwapoAdd.c Robustness Grid..108

Chapter Six

Table 6.1 Comparison between Robustness Grid, LDRA TBmisra, and FlexeLint.......119

Table 6.2 Number of MISRA rules that violated in SwapoAdd.c..120

x

Table 6.3 Comparison between four robustness measurement techniques that use

MISRA C2...121

Table 6.4 n_char Robustness Grid, Managerial-View..124

Table 6.5 Robost.c Robustness Grid Managerial-View...126

xi

List of Figures

Chapter Two

Figure 2.1 Literature Hierarchy .. 8

Figure 2.2 Dependability and Security attributes .. 10

Figure 2.3 Original Program P1... 31

Figure 2.4 Backward slicing in (y,7) on P1.. 32

Figure 2.5 Forward slicing in (y,2) on P1... 32

Figure 2.6 Original Program P2... 34

Figure 2.7 Decomposition slicing on (nc,26) in P2.. 35

Figure 2.8 The complement of decomposition slicing on (nc,26) in P2............................. 36

Figure 2.9 Original Program P3... 38

Figure 2.10 Difference between Dynamic slice and static slice on P3............................... 38

Chapter Three

Figure 3.1 Robustness Grid Construction process.. 47

Figure 3.2 Robustness Grid Categories distributed scale.. 52

Figure 3.3 Gemma.c program... 56

Figure 3.4 Forward Slicing on (sum,6) .. 56

Figure 3.5 Clause Slicing on C
6
=(sum=0, 6).. 56

Chapter Four

Figure 4.1 Implementation High Level model... 77

Figure 4.2 Implementation Intermediate Level model... 77

Figure 4.3 Implementation Low Level model.. 78

Chapter Five

Figure 5.1 SwapoAdd.c Clause Slice Size.. 84

Figure 5.2 SwapoAdd.c Clause Frequency.. 85

Figure 5.3 SwapoAdd.c Clause Weight.. 86

Figure 5.4 Rule Frequency.. 88

Figure 5.5 Rule Satisfaction/Violation Frequency Comparisons...................................... 90

Figure 5.6 Number of Clauses and Applied Rules in each function................................. 91

Figure 5.7 Applicable rule for function incr... 92

Figure 5.8 Applicable rule for function swap ... 93

Figure 5.9 Applicable rule for function one .. 94

Figure 5.10 Applicable rule for function main.. 95

xii

Figure 5.6 Function Satisfaction Accumolative Degree.. 96

Figure 5.7 Comparison between PSCD and PVCD.. 97

Figure 5.8 Rule Category Weight... 98

Figure 5.9 Satisfied/ Violated rules Weights.. 99

Chapter Six

Figure 6.1 Robost.c program... 125

xiii

Acronyms

FCD: Function Category Degree.

FCSD: Function Category Satisfied Degree.

FCVD: Function Category Violated Degree.

PCD: Program Category Degree.

PCSD: Program Category Satisfied Degree.

PCVD: Program Category Violated Degree.

AC: Accumulative Categories.

FAC: Function Accumulative Categories.

 FSAC: Function Satisfied Accumulative Categories.

 FVAC: Function Violated Accumulative Categories

WCFD: Whole Category Function Degree.

WCFSD: Whole Category Function Satisfied Degree.

WCFVD: Whole Category Function Violated Degree.

WPD: Whole Program Degree.

WPSD: Whole Program Satisfied Degree.

WPVD: Whole Program Violated Degree.

WPW: Whole Program Weight.

1

Chapter One

Introduction

1.1 Research Overview

Software Engineering may be defined as: “The application of a systematic,

disciplined, quantifiable approach to the development, operation, and maintenance of

software; that is, the application of engineering to software” (IEEE 1990). The

definition shows the process of the software lifecycle.

The software developer’s target is to write a program that meets all the specifications

and never fails. Software Testing and Verification checks whether the software was

correctly built and developed, and meets the specifications. There are different

aspects that are tested and verified depending on the Software and its specifications.

The general terms that developers target form Software Dependability. It means “the

ability to deliver service that can justifiably be trusted” (Avizienis, Laprie et al. 2004).

2

The primary aspects of Dependability include: availability, reliability, safety,

maintainability and integrity. Besides these primary aspects, there is a secondary

level of Dependability attributes and one of these attributes is Software Robustness

(Avizienis, Laprie et al. 2004). Software Robustness means that the software is able

to operate under stress or tolerate unpredictable or invalid input. It is strongly related

to the Software Correctness term, where robust software can function correctly even

in unusual situations.

Different techniques were used to enhance and measure Software Robustness. Fault

detection and prevention are two ideas that have been used in Fault tolerance,

Redundancy, and Agents systems. These techniques are applied to develop fault-

free programs.

A program robustness measurement is the assessment of how a program can face

different problems. In this research, a new technique is introduced to measure the

Program Robustness for C language programs. The new technique is called the

Robustness Grid. In the Robustness Grid, C language programs robustness is

measured using the MISRA C2 language rules. The Robustness Grid is a table that

shows the Robustness measurement results for a C program from different points of

view.

The Clause Slicing technique was introduced to weight the rules and the code

showing different levels of importance. Clause Slicing is a Static Slicing technique,

but the Slicing criteria use a piece of code; the Clause.

The Robustness Grid aims to facilitate the program maintenance process. It shows

the weak points and their importance in the program, so the maintainer will have

enough details to make improvements. Both MISRA C2 rules and Clause Slicing are

used to build the Robustness Grid.

3

The Robustness Grid is compared with other techniques that use MISRA C2 rules.

The evaluation of the Robustness Grid will show that it offers new measurements

that were not provided before.

The motivation for this research is that all programs should be robust to execute their

tasks without any trouble. However, most of the programs are not fully robust, and

still have some weak points that could cause some errors. Though, there are many

techniques that test the program robustness still there are very few that measure it,

and help developer to increase the robustness of a program. In this research, a

robustness measurement is introduced that shows the developers exactly where are

the weak robustness points and to which level they are important and need to be

fixed. The measurement results are shown in a numerical table called Robustness

Grid which is a new way of presenting measurement results.

The Robustness Grid can be applied in the real life, where it gives the developers

and maintainers an indication to the parts of the program that need to be repaired to

improve the Robustness Degree of a C program.

In the Robustness Grid, the program robustness measurement results can be

presented in different levels of details, and that make it suitable to be presented and

explained to all levels of developers team hierarchy.

The main contributions in this thesis are:

1- A new program slicing technique called Clause Slicing is introduced and

defined. It enables the program code lines and statements to be analysed

fully and show their influence on the program.

2- Using program Clause Slicing to measure the robustness of a program is

a new technique. The Clause Slicing is used to give different weights for

the program clauses and rules that measure the Robustness.

4

3- The Robustness Grid is the main contribution and is a table that shows

the robustness measurement results in a numerical presentation form.

1.2 Criteria for Success

In this thesis, the criteria for success are the development, implementation, analysis

and evaluation of the new robustness measurement Grid. The criteria for success are

set as follows:

1- Develop a measurement for assessing the Robustness of C programs.

C Program Robustness will be measured against a set of rules from a

language standard. Slicing is also used in weighting these language rules. All

measurements will be presented in the Robustness Grid.

2- Develop a Grid that incorporates the robustness measurement.

The Robustness Grid is a table that shows the Robustness measurement.

The Robustness will be measured for each function, and for the entire

program. The measurement will be presented in relative and absolute

numbers. These numbers give an indication of the Robustness state of the

program and its functions and an indication of the effect that each piece of

code has in the program.

3- Empirically evaluate the Grid.

Robustness will be evaluated by assessing robustness will be evaluated and

assessed with a major case study.

4- Compare the results against other related studies.

The Robustness Grid will be compared with other robustness measurement

techniques. The evaluation will show the contributions of the Robustness Grid

and will enable the evaluation of its limitations. It will also show whether the

Robustness Grid provides an accurate Robustness measurement.

5

5- Develop a proof of concept of implementation.

A prototype proof of concept will be presented in order to demonstrate that

the new approach is implemented and viable.

1.3 Thesis Outline

The thesis is divided into three main parts; the background, the proposed Grid, and

the evaluation. The background consists of Chapter 1 and the Literature Review of

Program Robustness and Program Slicing in Chapter 2. The proposed Grid is

described in Chapter 3. Implementation of the Robustness Grid is described in

Chapter 4. The description involves a major case study in Chapter 5, and the

analysis of the Grid will be discussed in Chapter 6. A conclusion and future research

directions are presented in Chapter 7.

Chapter 2 reviews basic knowledge about Program Robustness and Program Slicing.

The chapter provides the definitions of Robustness, techniques, and tools that have

been used in previous studies to measure program robustness. It also explores

different program slicing techniques, applications, and tools that provide program

analysis.

In Chapter 3, the new robustness measurement Grid, called the Robustness Grid, is

introduced. The Robustness Grid uses a new static slicing technique called Clause

Slicing and C language rules called MISRA C2 rules to measure C programs

robustness.

Chapter 4 shows the implementation road map of the Robustness Grid. It shows the

existing tools used to apply the Robustness Grid.

Chapter 5 will present a case study that shows how the Robustness Grid works, and

what information can be extracted from it. The case study is a C program with four

functions, to show how the Robustness Grid deals with different possibilities of

6

Language rules application. This chapter will explain how the Robustness Grid shows

the robustness measurement results.

Chapter 6 will analyse and evaluate the Robustness Grid in further details. The

analysis and part of the evaluation is based on the case study presented in Chapter

5. The evaluation is based on a comparison between the Robustness Grid and

previous frameworks that use the same language rules.

Chapter 7 concludes the work that was described in this thesis and reviews the

criteria of success that were made in Chapter 1. It will also include some suggestions

that could be made for the Robustness Grid in future work.

7

Chapter Two

Background

2.1 Introduction

In this research, the Robustness of a C program will be measured using language

features and a Program Slicing technique. In this literature review, Robustness and

Robustness Measurement techniques are defined. Also, the C language features and

standards are investigated.

8

Figure 2.1 Literature Hierarchy

2.2 Program Robustness

Robust: This word is used in many contexts. One instance is that it describes

computer software, and at another time it expresses a machine attribute, a

mathematical equation, a medicine or a patient. The question is: What is

Robustness? In this study, the answer to this question comes from a software

engineering point of view. Thus, the thesis will concentrate on Software Robustness.

Before defining the meaning of software Robustness, some terms need to be defined

to help develop a better understanding of Software Robustness. Correctness,

Language

Features
Program

Analysis

Robustness

Grid

Program

Slicing

MISRA C2

rules

Robustness

Measurement

9

Dependability, and Reliability will be clarified to differentiate between them and

Robustness. They can be understood in many different ways, which makes the

definition of Robustness ambiguous, and this thesis gives an unambiguous definition.

2.2.1 Software Dependability

There is a relation between Software Robustness and Software Correctness,

Software Dependability, and Software Reliability. Software Correctness may be

considered one of the Robustness characteristics. Software Correctness is defined in

the IEEE standard (IEEE 1990) as “The degree to which software, documents, or

other items meet user needs and expectations, whether specified or not.”

This definition discussed the software correctness via input and output validity. Here,

the only criteria for the evaluation of software correctness are requirements

satisfaction, whether they are user requirements or other program specifications.

The opposite side of correctness is the failure situation, where the program has some

faults. A fault (IEEE 1990) is: “a defect in hardware device or component”. In

computer programs, a fault means: “an incorrect step, process, or data definition.

‘Bug’ and ‘error’ are common use to express program fault” (IEEE 1990). Device

faults or program faults could cause a program failure (IEEE 1990), which is “the

inability of a system or component to perform its required functions within specified

performance requirements”.

There are different classifications for faults. Laprie (Laprie, Arlat et al. 1990) has

classified faults depending on the perspective of the: phenomenological cause,

nature, phase of creation or occurrence, situation with respect to program

boundaries, and persistence.

Software Dependability in general is “the ability to deliver service that can justifiably

be trusted” (Avizienis, Laprie et al. 2004). This means that the program can avoid

failures and it is less likely to be broken or stopped. Furthermore, if Program A

10

depends on Program B, the dependability of A is affected by the dependability of B

(Avizienis, Laprie et al. 2004).

Software Dependability is discussed in the literature and it has been integrated into 6

main attributes (Avizienis, Laprie et al. 2004; Jawadekar 2004; Sommerville 2008;

Pressman 2009):

1- Availability.

2- Reliability.

3- Safety.

4- Confidentiality.

5- Integrity.

6- Maintainability.

As shown in Figure 2.2, Security is related to the Dependability attributes. Security

and Dependability specifications should include the requirements to produce a robust

program.

Figure 2.2 Dependability and Security attributes (Avizienis, Laprie et al. 2004)

Avizientis et al. (Avizienis, Laprie et al. 2004) stated Robustness is “specialised

secondary attributes” for Dependability. It characterises the program reactions

towards some faults.

11

The IEEE definition of Robustness (IEEE 1990) is: “The degree to which a system or

component can function correctly in the presence of invalid inputs or stressful

environment conditions”.

In this definition, there are three main aspects; the correct program response, the

input data, and the program environment. Program response means that the program

should respond rationally (Musa, Iannino et al. 1987), but not necessarily correctly. It

should not fail to reply or react illogically. The input data is one of the factors that

affect the Robustness of the program. A robust program can continue to operate

correctly despite the introduction of invalid input (Pullum 2001).

The environment where the program is run consists of hardware, other software

programs, and the humans that interact with the program. These factors also affect

program Robustness.

Gribble (Gribble 2001) states that Robustness is “the ability of a system to continue

to operate correctly across the wide range of operational conditions, and fails

gracefully outside the range”. Robustness is required in safety critical programs,

where program failure could cause massive extreme problems (Weinberg 1983). In

the previous definitions, Gribble did not disallow program faults, but the required

condition is that the program fails gracefully (Gribble 2001), which means that the

failure of the program will not cause it to crash or hang. Gribble’s definition covers

hardware faults (i.e., shortage in power supply). Hardware defects can be considered

as stressful environment conditions.

2.2.2 Robustness Techniques

Researchers who deal with software Robustness try to develop techniques to build a

robust program. On the other hand, others try to find techniques that certify programs

and determine whether they are robust.

12

Robustness can be internal or external (DeVale and Koopman 2002), where internal

Robustness is the code of the program (functions, classes, threads, etc), and

external Robustness is the surrounding environment (Dabek, Zeldovich et al. 2002).

Arup and Daniel (Arup and Daniel 1997) presented features, such as portability, to

evaluate some existing benchmarks of Unix programs. As a result, they built a

hierarchy structured benchmark to identify Robustness issues that had not been

detected before. Eslamnour and Ali (Eslamnour and Ali 2009) introduced a

theoretical foundation for robust matrices that reduce the uncertainty in distributed

program.

Different techniques were developed to satisfy Software Robustness. These

techniques also utilized different theories and methods to measure Software

Robustness.

2.2.2.1 Fault Tolerance

Fault Tolerance and Robustness have the same objective; to make sure program

faults do not cause program failure. Both Fault Tolerance and Robustness are

needed in all programs, especially in safety critical ones where program failure can

cause massive problems.

Fault Tolerance, which provides a program that complies with its specifications in

spite of faults, is less costly than other redundancy techniques, but it has the same

problem of increased code size and reduced performance (Rebaudengo, Sonza

Reorda et al. 1999).

Fault Tolerance can be Hardware Fault Tolerance or Software Fault Tolerance.

Hardware Fault Tolerance considers the correctness of the hardware (physical) parts

of the program. Software Fault Tolerance discusses the correctness of the code.

Therefore, one of the advantages of the Fault Tolerance technique is that it can be

used to validate any kind of programs (Lyu, Zubin et al. 2003).

13

Fault tolerant programs can continue in operation after some program faults have

occurred. Fault tolerance has four aspects (Sommerville 2008):

1. Fault detection: faults that could cause program failure will be detected.

2. Damage assessment: the affected program parts will be identified.

3. Fault recovery: can be done in two ways. “Backward error recovery”

where the program will return to the last constant state (safe state), and

“Forward error recovery” where the program repairs the faults and keeps

running.

4. Fault repair: includes the faults that are not cured in the fault recovery

aspect.

Implementation of fault tolerance is possible by including checks and recovery action

in the software. This is called defensive programming. Defensive programming

cannot effectively manage program faults, which occur due to the interaction

between software and hardware. Software Fault Tolerance has two approaches

(Sommerville 2008):

1. N-version programming: using at least three versions of software, this should be

consistent in the event of a single failure. In this approach, a different version of

the software is run in parallel on different computers. Using a voting program, the

program compares the output and the invalid output, which has the least votes or

is the latest output, will be rejected.

2. Recovery blocks (RcB): Recovery blocks are dynamic techniques. The program

adjusts the output during program execution depending on the Acceptance Test

(AT) and backward recovery, where the program returns to the last acceptance

stage before the fault happened.

14

Pullum (Pullum 2001) states that the relationship between software Robustness and

Fault Tolerance are mainly those techniques which can handle the following:

 Out of range input.

 Input of the wrong type

 Input in the wrong format.

Pullum also added that robust programs put a mark on the faults, to make it easier

for other programs to fix them. Also, software Robustness may have some features

shared with fault tolerance techniques, such as testing input type, testing the control

sequence, and testing the functions of the process.

2.2.2.2 Redundancy

Redundancy is one of the ideas applied to build component robust software (Huhns

and Holderfield 2002). The idea of redundancy is to add a different component, but

one that will be equivalent in functionality to old ones. Then, if one part fails to

perform correctly, it will be replaced with another that can provide the same services.

Redundancy was used in hardware programs such as NASA satellites, by duplicating

important hardware subprograms. In software programs, however, redundancy

cannot be applied in the same way because identical software subprograms fail in

the same identical ways. Thus, redundancy must be applied to software in a different

way (Dix and Hofmann 2002; Huhns and Holderfield 2002).

The challenge in software programs is to design subprograms that can perform and

behave in equivalent functionality, but do not fail in the same situations (Huhns and

Holderfield 2002; Huhns, Holderfield et al. 2003).

2.2.2.3 Self-adaptive systems

Another method applied to get Robustness software is self-adaptive software: where

the program has the ability to fix itself. The mechanism is easy to understand, but

15

difficult to apply. The self-adaptive program can evaluate its work and change

behaviour when the evaluation indicates that the program has not done what was

supposed to be done. Moreover, a self-adaptive program can fix itself, by doing an

alternate behaviour (Laddaga 1999; Mazeiar and Ladan 2009).

Self-adaptive programs do struggle, however, in evaluating functionality and

performance at run time, where the evaluation of the outcomes and expectations

determination takes time. In addition, self-adaptive programs may manage to get

close to the solution of a problem because the program chose the preselected design

– time compromise instead of running the optimal or near optimal algorithm for the

input and state context at the run time (Laddaga 1999).

Another adaptive program called the “Self-controlling software model” was

developed. This program contains three loops. The feedback loop adjusts program

variables to meet the quality of service. The adaption loop evaluates the behaviour

and performance of the model, and, if necessary, triggers change. The

reconfiguration loop runs the adaption loop request. Since the reconfiguration loop

could include structural changes, it relatively costs more compared with feedback

and adaption loops (Mieczyslaw, Kenneth et al. 1999).

2.2.2.4 Event-driven Programming

Event-driven programming is applied in many applications: user interfaces, discrete

programs and business module simulations (Dabek, Zeldovich et al. 2002). “An

important characteristic of event-driven computation is that control is relinquished to

a library that waits for events to occur. Each event is then dispatched to the

application by invoking a handler function or a handler object for appropriate action”

(Petitpierre and Eliëns 2002).

Event-driven programming can be done in three ways (Petitpierre and Eliëns 2002):

16

 Event loops: explicitly dispatching on an event, e.g., completion of a disk transfer,

to raise the appropriate applications code.

 Callback functions: implicitly dispatching based on an association between a

callback function and the type of event. Callback is registered when a program

cannot complete an operation because it has to wait for an event. A callback

executes indivisibly until it hits a blocking operation, and then, it registers a new

callback and returns (Dabek, Zeldovich et al. 2002).

 Listener objects: callback on objects with hook methods that are invoked on the

occurrence of an event. Listener objects are more powerful than callback

functions since they must rely on ad-hoc mechanisms to take the history of event

occurrences into account.

Event-driven programming is a technique that the user can use to trigger a program

in arbitrary order (Philip 1998). The characteristics of event-driven programming

encouraged software engineers to use it to obtain a robust program.

Event-based programming can provide a convenient programming model, which may

also be extended to take advantage of multi-processors. Debek et al. (Dabek,

Zeldovich et al. 2002) concluded that Events are better for managing I/O concurrency

in server software than threads because Evens have less complexity and produce

more robust software. Also, event-driven programming has an advantage over

threads in that event-driven programming provides a convenient programming model

which is naturally robust. Debek et al. (Dabek, Zeldovich et al. 2002) added that the

event-driven model can be extended to exploit multi-processors with minor changes

of the code. However, event-driven program structure has a series of small callback

functions, which rely heavily on dynamic memory.

Shahroni and Feldt (Shahrokni and Feldt 2010) introduced a framework, ROAST, to

specify the Robustness requirements of a software by categorising requirements into

17

patterns in different levels. There are three main ideas behind their method; the

software specification levels, requirements patterns, and alignment from

requirements to testing. Their evaluation showed that the requirements carried out by

ROAST are more likely to be verified.

In further work, Shahroni and Feldt (Shahrokni and Feldt 2011) presented a frame

work called RobusTest. This framework tests the Robustness properties of a

program focusing on timing issues. RobusTest uses the requirements patterns

categories, which were introduced in their previous work, to set some test cases to

identify the errors in the requirements.

In the above methods, the techniques were used to build a recovery system that can

keep the program running and producing an accurate output despite failure.

Therefore, the techniques focused on the input/output relations. The program syntax

code was almost ignored, and the developers were supposed to use the

programming language standards to write their programs. Still, the standards can be

applied differently by different developers.

If the program is written following a standard or some rules, the errors and failures

will be minimised and the program complexity will be reduced. Therefore, program

robustness should start by writing a robust code.

2.2.3 Robustness Testing

Robustness testing checks whether the robust programming techniques have

succeeded in satisfying the Robustness conditions certified for the program. The

main term used in robustness testing is that the program should continue the normal

function despite the invalid input, or it should fail gracefully.

Testing can only reveal Robustness errors in successful test cases. In addition to

robustness testing, there are other important definitions: A robust error is defined as

an inrobust reaction to a test case produced during its execution. Inrobust reactions

18

are observed when a test objects crash or hang. A test object in this context is a

software component tested for its robustness (IEEE 1990; Dix and Hofmann 2002).

The importance of software Robustness drives researchers to develop different

techniques and tools to test software Robustness. Some testing software

Robustness tools and techniques are discussed below.

2.2.3.1 Interface Robustness testing tools

Interface Robustness testing is where the success criteria in most of the cases is “if it

does not crash or hang, then it’s robust” (Koopman, Devale et al. 2008).

 Fuzz (Miller, Koski et al. 1995): is an automatic and simple method where a

random input stream is used as a Robustness testing method. Nine versions of

the UNIX operating program and X-Window applications were tested using this

method. The failures were identified and categorized: crash (with core dump) or

hang (infinite loop).

The results show that over 40% (in the worst case) of the basic programs and

over 25% of the X-Window applications crashed or hung. They were not able to

crash any of the network services that they tested or any of the X-Window

servers.

 The Riddle tool (Schmid and Hill 1999): is a tool used to test the Robustness of

Windows NT. Two different approaches were examined in this paper to generate

data (generic data generation, and intelligent data generation) to be used for

automated Robustness testing. They concluded that this tool is useful for

constructing both generic data and intelligent data, where they discovered new

kinds of failures.

 Ballista (DeVale, Koopman et al. 1999; Koopman 2002): is an automated

Robustness testing tool designed to exercise commercial off-the-shelf (COTS)

19

software components. Ballista is a methodology and web server that remotely

tests software modules in linkable object code form. Ballista’s purpose is to

identify sets of input parameters that cause Robustness failure in the software

components being tested. Ballista testing begins with identifying the data types

used by an API (Application Programming Interface) under test. Application-

specific data types can inherit base test cases from predefined data types in the

Ballista testing tool set. Then, the Ballista test harness generator is given the

signature of a function to be tested in terms of those data types, and it generates

a customised testing harness. The test harness composes combinations of test

values for each parameter and reports Robustness testing results.

2.2.3.2 Dependability benchmark Robustness testing tools:

A Dependability Benchmark defines benchmarks to characterise the program

behaviour under normal loads and faults. The goal of benchmarking the

dependability of computer programs is to provide generic ways for characterising

their behaviour in the presence of faults (Kanoun, Madeira et al. 2002). There are

some tools that used this technology to develop a Robustness tester tool:

 DBench: The DBench project aims at defining a conceptual framework and an

experimental environment for dependability benchmarking (Kanoun, Madeira et

al. 2002).

 Autonomic Computing benchmark: evaluate a computing system along the four

core autonomic dimensions of self-healing, self-configuration, self-optimization,

and self-protection (Brown, Hellerstein et al. 2004; Brown and Redlin 2005).

In the DBench and Autonomic Computing benchmark robustness testing techniques,

the program is tested using different or random test cases. The test cases depend on

the program execution and whether it succeeds or fails to deliver a robust output or

fails nicely. The program has to be tested before execution to reduce the errors that

20

can be made by imprecise programming syntax format or defective program data

flow.

2.2.4 Robustness Measurement

Measurement as an activity is used in everyday life; in the supermarkets, clothing

stores, and driving journeys, where the prices, sizes, distances and other aspects are

measured to help in decision making. In Software measurement, many things can be

measured, but the question is: how to measure Software?

In the UK, the term Software Measurement is also known as Software Metrics,

Software Engineering measurement, or Software Metrication (Zuse 1998).

In general, Measurement means “the process by which numbers or symbols are

assigned to attributes of entities in the real world in such a way as to describe them

according to clearly defined rules” (Fenton and Pfleeger 1997). The entities are the

object to be measured, and the attributes are the object features or properties.

By applying this definition to Software, it will lead to Software Measurement, which is

“a quantified attribute of a characteristic of a software product or the software

process” (ISO/IEC 2007). Software measurement could mean estimating the cost,

determining the quality, or predicting the maintainability (Fenton and Pfleeger 1997).

Robustness can be also measured. By using the Measurement definition, the

Robustness Measurement can be defined as the process by which relative numbers

are assigned to Robustness Degree of a program in such a way to describe them

according to standard rules.

There are different Measurement classifications, depending on the features or the

programs that are measured. There are measurement techniques for Software

Quality, Software Complexity, Software Validity, and for Object Oriented programs,

21

which can be also classified into Static and Dynamic Measurements (Kaur, Minhas et

al. 2009). In this research, only Robustness Measurement is discussed further.

Safety critical programs must be robust to avoid the problems that could be caused

by failures (Jones 2009). Several techniques have been tried to measure program

Robustness.

In order to obtain a measure of programs, they have to be analysed. The analysis

can be either static or dynamic. Static analysis looks at the programs without using

any input or executing the code (Ayewah, Hovemeyer et al. 2008). On the other

hand, dynamic analysis looks at the program execution behaviour and input/output

relation. Measuring the application of a language standard to a program is a static

analysis technique.

Extended Propagation Analysis (EPA) (Voas, Charron et al. 1997) is an example of a

robustness measurement using the Fault Injection technique. EPA predicts how

software will behave when a component fails due to the effect of an external

component failure, an invalid input or an unlikely operational environment.

EPA is only concerned with the software behaviour and output. In one of the case

studies mentioned in (Voas, Charron et al. 1997), a module called Yaw, which is part

of the 737 aircraft controller system, was measured. In Yaw, the input values were

taken from NASA. The Yaw module was run twice; the first time with normal data and

the second time with data with faults injected into it. The fault tolerance measurement

using EPA showed that the total failure tolerance of the Yaw program estimated that

43.5% of the input data can cause a failure.

Voes et al. concluded that the EPA technique does not test the correct behaviour of a

program. However, it identifies the code locations that reduce the robustness. It also

measures an acceptable level of robustness in a program. EPA does not guarantee a

22

robust behaviour of a program in the future, but it gives an indication for such

behaviour.

Hamann et al. (Hamann, Racu et al. 2007) used some Robustness criteria, such as

input data rate and CPU clock rate, to create multi-dimensional Robustness matrices

and use them to measure the Robustness of a program.

Hamman et al. introduced two-dimensional robustness metrics; static and dynamic.

The static robustness metric is done in the design phase of the program and cannot

be changed later. The dynamic dimension is made in the execution phase and can

be used to modify the program to increase its robustness.

The above robustness measurement techniques do not give the developer a fully

detailed measurement. Also, they do not specify the part of programs that need to be

modified to raise the quality of the program.

2.2.5 Summary

Program Robustness can be measured from different perspective and viewpoints. In

the literature reviewed in this section, different Robustness definitions were explored

to find one definition to be used further in this research. Robustness measurement is

a scale that shows how the program is robust according to some standard. In this

research; however, a new method will be introduced to measure the Robustness that

was defined earlier.

2.3 C Language Standard

The C Language standards were introduced to avoid the code misinterpretation,

misuse, or misunderstanding. The IEEE has the ISO/IEC 9899:1999 standard

(ISO/IEC 1999) for the C language, which was used later by MISRA to produce

MISRA C1 and C2. This in turn led to Jones producing “The New C Standard: An

23

Economic and Cultural Commentary” (Jones 2009). Other C standards such as “C

programming language Coding guideline” (Laroche 1998) are less frequently used.

2.3.1 ISO standard

International Organization for Standardisation (ISO) has published international

standard for Business, Government, and Society (ISO/IEC 1999). Some of these

standards are for Software Engineering and for Programming languages.

In this research, the ISO/IEC 9899:1999 C standard (ISO/IEC 1999) has been used

to develop a new Robustness Measurement technique. This standard was published

in 1999 followed by three “Technical Corrigenda” in 2001, 2004, and 2007. This

international standard was designed to promote the portability of C programs. It is

intended for use by implementers of compilers and programmers (American National

Standards Institute (ANSI) 1999).

The ISO/IEC 9899 standards specify the representation, syntax, and constraints of

the C language. Also, they specify the semantic rules for interpreting C programs. In

the standard syntax, a set of rules was introduced to show the recommended way of

writing the C language notations, and the methods of identifying the language

concepts such as identifiers scope, linkage, name space, and types. The standard

also shows the allowed and prohibited type conversion in the C language. The C

lexical elements are listed, such as keywords, and other C language syntax

constructions, such as external definitions, and the proper way to write and use them

is clarified with examples.

The semantic part of the standard stated the proper use and interpretation of each

construction in the C language syntax.

ISO/IEC gives recommendations for the representation of processed input data and

produced output data of the C program. In addition, it describes the limitations of the

C program implementations. On the other side, the standards do not specify how the

24

input/output data is going to be used in the program, or indicate the complexity level

of the program code (ISO 2012).

2.3.2 MISRA C Language Rules

The Motor Industry Software Reliability Association (MISRA) has published a

standard set of rules for C and C++ “to provide assistance to the automotive industry

in the application and creation within vehicle programs of safe and reliable software”

(MISRA 2012). MISRA C 1998 rules (“MISRA C1”) where published in 1998 and

were followed by a technical clarification document in 2000. In 2004, MISRA

published a second version of MISRA C rules (MISRA C2) to address some technical

and logical problems, and for further technical clarification. In MISRA C2, the rules

are rephrased to be more sensible, accurate and comprehensive.

MISRA C2 rules are classified into two types: Required (122 rules) and Advisory (20

rules). Required rules are obligatory and must be followed by developers to create

safe programs, and in general, the violation of these required rules leads to a system

failure. Advisory rules are necessary but not as important as the Required rules.

However a developer should follow the advisories in order to build a safe program.

In MISRA C2, the rules are categorised in 21 categories. The MISRA categories

cover all the C language common programming issues such as programming

processes, coding styles, and programming syntax. The MISRA categories start with

the Environment category, which describes the optimum environment for C

programs. Then, there is the Language extensions category, which has guidelines on

how the comments should be written in the program code. The Documentation

category contains general rules for the documentation process.

The rest of the MISRA C2 categories cover the language syntax format. The

categories cover data structures, such as arrays and pointers, format and use. Also,

flow control and type definition and conversion rules are listed, in addition to the

25

function and initializing format. Each of these categories has a set of rules that give

instructions on the way the code syntax should be written.

An example of a MISRA C2 rule is Rule 8.1:

Rule 8.1 (required) Functions shall have prototype declarations and the prototype

shall be visible at both the function definition and call. (MISRA 2004)

“X.y” is the MISRA rule numbering method and means this is Rule 1 (“y”) in Category

8 (“X”) (Declarations and definitions). “required” means the rule is an obligatory rule.

There are 3 tools that use MISRA C2 rules to test the program robustness; these

tools are explored to find out how they work. The tools are: TBmisra, FlexeLint, and

Klocwork Truepath.

The Liverpool Data Research Associates (LDRA) Company has several tools to

evaluate the robustness of C programs. These tools evaluate the C program against

MISRA C2, ISO 1990, and LDRA rules. LDRA has produced LDRA TBmisra, which is

test C program against the MISRA C and C2 rules.

The LDRA TBmisra evaluation classifies errors into three types depending on their

importance level. These rules are displayed in the evaluation results as symbols (M,

C, and O) are:

1- Mandatory Rules (M): if a rule of the mandatory type is violated, the

evaluation will report a fault.

2- Checking Rules (C): the violation of these rules may cause different

implementation of the program using different compilers or platforms. The

Checking rules will give the developer a chance to make sure that the

program has consistency over all different platforms.

3- Optional Rules (O): the developer has the option of fixing the violation of
these rules.

26

In addition to the above error types, the LDRA analyses C program using Static and

Dynamic analysis. The Static analysis in LDRA is classified depending on code type.

These types are (LDRA 2012):

1- Programming Standards Verification: Assesses whether the source

code conforms to a set of user-configurable programming standards.

2- Structured Programming Verification: Reports on whether the source

code is properly structured.

3- Complexity Metric Production: Reports on a number of complexity

metrics.

4- Full Variable Cross Reference: Examines and reports global and local

variable usage within and across procedures and file boundaries.

5- Unreachable Code Reporting: Reports on areas of redundant code.

6- Static Data Flow Analysis: Follows variables through the source code

and reports any anomalous use.

7- Information Flow Analysis: Analyses inter-dependencies of variables for

all paths through the code.

8- Loop Analysis: Reports the looping structure and depth of nesting

within the code.

9- Analysis of Recursive Procedures: All the static analyses in LDRA are

performed individually and on sets of mutually recursive procedures.

10- Procedure Interface Analysis: The interface for each procedure is

analysed for defects and deficiencies. The interfaces are then projected

through the call graph of a system to highlight integration defects.

The Dynamic analysis covers other areas such as (LDRA 2012):

27

1- Statement Coverage: covers all the statement that related to the

selected statement.

2- Branch/Decision Coverage: covers all the control that related to the

selected statement.

In addition to TBmisra, LDRA has a tool called TBvision. The TBvision tool is a

graphical presentation of an error report. The graphical screen shows a summary of

the rules that were violated in the program. In TBvision, the developer can access

the code and the TBmisra report that uses it.

FlexeLint, developed by Gimple Software, is a tool that does a static analysis for

C/C++ programs, and uses their own rules in addition to the MISRA C2 rules (Gimple

Software 2012). FlexeLint do not use a compiler, so in the test result there are some

rules violated that can cause a run time error in the compiler.

In addition to the FlexeLint violated types and numbers, these types are:

1- Syntax Error (Error).

2- Internal Error (Intern).

3- Fatal Error (Fatal).

4- Warning (Warning).

5- Informational (Info).

6- Elective Note (Note).

The Klocwork Truepath (Klocwork 2012) is a tool that uses static analysis to assess

C programs. It uses the MISRA C2 rules in addition to other rules such as C CERT.

There are 21 of the MISRA C2 rules that are not supported by Klocwork Truepath, 15

of them are not verified, and the rest are not supported even though they are verified.

28

2.3.3 Other C Language Rules

Straker (Straker 1992) introduced general guidelines to develop a robust C program.

He left the choice for the programmers to create their own standards using these

guidelines. However, he introduced his own interpretation of the guidelines. In his

standards, Maguire (Maguire 1993) covered main issues, such as dealing with files,

commenting in the program, and naming. The guidelines give the developer advice of

how to write bug-free code, and how to avoid the common mistakes that cause

program faults. For example, in this advice: “As you step through code, focus on

data flow” (Maguire 1993), he gave the developer an advice about the data flow. This

advice is a conclusion of an example he showed that illustrated the importance of

data flow. The main aim was to help the developer write bug-free programs before

the testing phase. However, the Maguire guidelines were written in an abstract way

and each programming issue was discussed with examples to make sure that

developers will understand how and when to use these standards.

The Software Engineering Institute has introduced C, C++, and Java language

standards. CERT C is the C programming Language standard, and “rules and

recommendations for secure coding in the C programming language” (Seacord

2012). The goal of these rules and recommendations is similar to other rules and

standards, which is “to eliminate insecure coding practices and undefined behaviours

that can lead to exploitable vulnerabilities. The application of the secure coding

standard will lead to higher-quality systems that are robust and more resistant to

attack” (Seacord 2012).

In CERT C, the program rules are given a value of priority and level. The priorities

are “assigned using a metric based on Failure Mode, Effects, and Criticality

Analysis”. The priorities have a scale for Severity, Likelihood, and Remediation Cost.

Each scale is from 1 (low) to 3 (high). The three scales together will produce a

29

multiplicative scale from 1 to 27, and the levels depend on this scale where Level 1;

the highest, contains the values of (12, 18, 27) for the multiplicative scale of Severity,

Likelihood, and Remediation Cost, where Level 2 has (6, 8, 9), and Level 3, the

lowest, has values of (1, 2, 3, 4). For example, if a rule scores: 2 in Severity, 3 in

Likelihood, and 1 in Remediation cost, then the priority will be 2X3X1 = 6, which

means it is in Level 2. (Thompson 2010).

In C CERT, the rule is described first. Then, a non-compliant example about this rule

is given, followed by a compliant example for the same rule. After that, the exception,

if there is any, is shown and the risk assessment regarding to the calculations

mentioned before are given. Below is an example that shows one of the rules:

“Do not use the same variable name in two scopes where one scope is contained in

another” (Software Engineering Institute 2011).

Laroche (Laroche 1998) aims in the “C programming language Coding guideline” to

make the code less defective, more robust (against changes in code architecture),

and more readable (for easier maintenance). “The variable scope should be as small

as possible” is an example of the guidelines.

2.3.4 Summary

C standards in general aim to produce robust programs with fewer errors. Also, the

standards try to make the code readable and clear to all different developers to avoid

code misinterpretation or misuse.

The MISRA rules were chosen in this research because the MISRA C2 rules

implicitly include the ISO and ANSI standard. They are also simple to be apply and

understand since they are only 142 rules written in English by people who use C

language in their work. Since there are different companies and tools that use and

apply the MISRA C2 rules, the application of the rules can be evaluated.

30

Other rules such as C CERT are not as simple to apply since they contain many

rules and this is the case for ISO as well. In the guidelines, the rules are very abstract

and unsuitable to measure the Robustness.

2.4 Program Slicing

Weiser (Weiser 1979) introduced Program Slicing as “a method used for abstracting

from computer programs”. The slice of program P with respect of the slicing criteria

Slice S <L, V>, where L is a statement line number in P and V a variable (Binkley

and Gallagher 1996).

Different types of program slicing have been developed and these can be classified

into various types depending on different criteria. Some program slicing techniques

will be addressed in details below.

2.4.1 Static program slicing

Program slicing was introduced first as a Static Slice. Static means that only statically

available information is used for computing slices (i.e., all possible executions of the

program are taken into account) (Baowen, Ju et al. 2005). A Static slice is

constructed by assigning a point of interest and deleting all irrelevant statements to

this point (Weiser 1981).

 A point of interest is the variable in a specific place in the program that is going to be

sliced. It is signed by the variable V and the line number L. This called the slicing

criteria and is expressed as S <L, V>, where S is the slice we are interested in (Tip

1995; Harman and Hierons 2001). Static slicing is considered as code preserving

analysis, where it only retrieves the code lines without any change on their syntax

(Gallagher and Binkley 2008).

31

A Static slice can be executable or non-executable (Tip 1995). An executable slice

means the code that was produced after the slicing operation (the slice) can be

compiled and run as a program.

Static slicing has many types. In this literature review, the most frequently static

slicing types used are: Backward, Forward, Conditioned, Decomposition,

Amorphous, and Quasi Slicing.

Figure 2.3 Original program P1 (Kim and Fong 2007)

2.4.1.1 Backward Slicing

Weiser (Weiser 1979) introduced the program slicing which was later known as

Executable Backward Static Slicing. It is Executable because the slice produced is

an executable program (i.e., without considering the program input) (Binkley and

Gallagher 1996).

Backward Slicing uses the same slicing criteria as the Static Slicing, where Slice S is

retrieved using slicing criteria <L, V>, where L is the statement line number and V is

the variable name. A Backward slice is computed by gathering statements and

control predicts by a backward traversal of the program starting at the slicing criteria

(Tip 1995). Backward slicing contains the statements of the program which have

effect on the criteria slice and answer the question “what program components might

effect a selected computation?” (Gallagher and Binkley 2008)

As an example, Figure 2.3 shows a program P1 that is going to be sliced.

1 int x = a;

2 int y = 25;

3 int z = 0;

4 for (int i = 0; i < x; i++){

5 z = z + y;

6 y = y + 2*i; }

7 printf (‚Y is: %d‛, y);

32

Figure 2.4 Backward slicing on (y,7) in P1 (Kim and Fong 2007)

As shown in Figure 2.4, applying backward slicing on (7, y) in program P1, will delete

all statements that have no effect on Statement 7. So, Statements 3 and 5 are

deleted.

A static backward slice preserves the meaning of the variable(s) in the slicing

criterion for all possible inputs to the program (Gallagher and Binkley 2008).

2.4.1.2 Forward Slicing

Forward Slicing uses the same slicing criteria <L, V> as the static slicing technique.

However, the Forward Slice answers the question “what program components might

be effected by a selected computation?” (Gallagher and Binkley 2008)

A Forward slice captures the impact of its slicing criteria and it is considered a kind of

wave effect analysis (Black 2001; Baowen, Ju et al. 2005). It contains the set of

statements and control that were affected by the computation of the slicing criterion

that was computed by the variable V at the program point or line number L (Horwitz,

Reps et al. 1990; Tip 1995; DeLucia 2001; Harman and Hierons 2001).

Figure 2.5 Forward slicing on (y,2) in P1 (Kim and Fong 2007)

1 int x = a;

2 int y = 25;

3 int z = 0;

4 for (int i = 0; i < x; i++){

5 z = z + y;

6 y = y + 2*i; }

7 printf (‚Y is: %d‛, y);

1 int x = a;

2 int y = 25;

4 for (int i = 0; i < x; i++){

6 y = y + 2*i; }

7 printf (‚Y is: %d‛, y);

33

Forward Slicing of Program P1 in Figure 2.3 is shown in Figure 2.5. It produces the

same statements of the P1 program because Statement s2 affects all program

statements. Therefore, the produced slice will contain all statements. The challenge

that faces Forward slicing is to produce an executable slice, where it is difficult for

forward slicing to preserve the semantic of a executable code (Binkley, Danicic et al.

2006; Kim and Fong 2007).

In Forward Slicing a statement is computed depending on the values computed in the

Slicing Criteria (Tip 1995). Forward and Backward slicing is computed in the same

way, where they use the same slicing criteria. However, the direction of code

analysis is the difference between them.

In addition, Binkley and Harman (Binkley and Harman 2005) proved that “For a large

class of programs, the distribution of forward slices will contain a significantly larger

proportion of small slices when compared to the distribution of backward slices.”

2.4.1.3 Conditioned slicing

Conditioned slicing “consists of a subset of program statements which preserves the

behaviour of the original program with respect to a slicing criterion for a given set of

execution paths”(Canfora, Cimitile et al. 1998). The Slicing Criteria of the conditioned

slice is <L, V, C>, where L is the line number, V is the variable name, and C is the

condition. The conditioned slice isolates the code that semantically satisfies the

slicing criteria condition (Baowen, Ju et al. 2005; Gallagher and Binkley 2008).

The condition in the slicing criteria, which could be an input value of a variable,

allows the user to fragment a program from different angles or using different input

data (Canfora, Cimitile et al. 1998; DeLucia 2001).

Danicic et al. (Danicic, Fox et al. 2000) implemented a conditioned slicer (ConSIT)

based on conventional static slicing, symbolic execution and theorem proving.

34

2.4.1.4 Decomposition Slicing

Decomposition slicing is a slice used to decompose a program into different

components. Decomposition slicing is a union of certain slices taken at certain line

numbers on a given variable (Gallagher and Lyle 1991). Decomposition slicing does

not use a line number in the Slicing criteria, so the Slicing criterion of it is only the

variable name <V>.

Figure 2.6 Original Program P2 (Gallagher and Lyle 1991)

Decomposition slicing has two parts: The slice and the complement. The slice

“captures all relevant computations involving a given variable” (Gallagher and Lyle

1991), where a decomposition slice depends only on the variable name, and does

not depend on statement number. The complement is the rest of the program code

that is not included in the slice (Gallagher and Lyle 1991).

1 #define Yes 1
2 #define No 0
3 main()
4 {
5 int c, nl, nw, nc, inword;
6 inword = NO;
7 nl = 0;
8 nw = 0;
9 nc = 0;
10 c = getchar ();
11 while(c != EOF) {
12 nc = nc + 1;
13 if (c == ‘\n’)
14 nl = nl +1;
15 if (c == ‘ ’|| c == ‘\n’|| c == ‘\t’)
16 inword = NO;
17 else if (inword == NO) {
18 inword = YES;
19 nw = nw + 1;
20 }
21 c = getchar ();
22 }
23 printf(‚%d \n‛, nl);
24 printf(‚%d \n‛, nw);
25 printf(‚%d \n‛, nc);
26 }

35

Figure 2.7 shows a decomposition slice of Program P2 (shown in Figure 2.6) with the

slicing criteria (nc). In this slice, all statements that affect variable nc are included in

the slice, and also all statements that are affected by variable nc.

The complement (Figure 2.8) contains all statements that affect other variables, and

not related to variable nc.

Figure 2.7 Decomposition slicing on (nc,26) in P2 (Gallagher and Lyle 1991)

Decomposition slicing can categorise program variables into three categories

(Gallagher and Lyle 1991): independent, strongly dependant, and maximal. A

variable is called an Independent variable if its Decomposition slice does not

intersect with any other variable’s decomposition slice. In other words, they would

share neither control flow nor data flow.

Strongly dependant variable is the variable that its decomposition slice is a part of

another variable slice. The maximal is if the variable decomposition slice shares

some statements with another variable decomposition slice.

3 main()

4 {

5 int c, nc;

9 nc = 0

10 c = getchar ();

11 while (c != EOF) {

12 nc = nc + 1;

21 c = getchar ();

22 }

25 printf (‚%d \n‛, nc);

26 }

36

Figure 2.8 The complement of decomposition slicing on (nc,26) in P2 (Gallagher and Lyle 1991)

2.4.1.5 Amorphous Slicing

Amorphous Slicing uses the same Slicing criteria as in static slicing <L, V>. However,

while the other types of program slicing are syntax-preserving, Amorphous Slicing

alters the syntax of the slice with respect to preserved semantics (Harman and

Danicic 1997). Amorphous slicing may perform any syntax transformation to simplify

the slice for preserving program behaviour (Fatiregun, Harman et al. 2005; Gallagher

and Binkley 2008). Amorphous slicing has two types: Amorphous static slicing where

1 #define Yes 1

 2 #define No 0

 3 main()

 4 {

 5 int c, nl, nw, nc, inword;

 6 inword = NO;

 7 nl = 0;

 8 nw = 0;

 11 while(c != EOF) {

 13 if (c == ‘\n’)

 14 nl = nl +1;

 15 if (c == ‘ ’|| c == ‘\n’|| c == ‘\t’)

 16 inword = NO;

 17 else if (inword == NO) {

 18 inword = YES;

 19 nw = nw + 1;

 20 }

 21 c = getchar ();

 22 }

 23 printf(‚%d \n‛, nl);

 24 printf(‚%d \n‛, nw);

 26 }

37

it uses the slicing criteria <L, V>, and Amorphous conditioned slicing where it uses

the conditioned slicing criteria <L, V, C> (Harman, Binkley et al. 2003).

2.4.1.6 Quasi Static Slicing

Quasi static slicing was introduced to mix the slicing methods that range between

static and dynamic slicing (Venkatesh 1991). Quasi slicing is used in applications

where the values of some input variables are fixed while the behaviour of the original

program must be analysed when other input values vary (DeLucia 2001). Therefore,

the Slicing Criteria is <L, V, P>, where the L is the line number of variable V, and P is

the list of inputs that can be fixed or vary (Chung, Lee et al. 2001). When all variables

are unconstrained, quasi slicing becomes the same as static slicing. When all

variables are fixed, quasi slicing is considered the same as dynamic slicing (Baowen,

Ju et al. 2005).

Static Slicing techniques mainly use a variable on a certain place in the program as

point of interest, and analyse the program to determine which other code lines are

affected by the variable. The variable can have some conditions, or assigned to

group of input data.

2.4.2 Dynamic Slicing

A Dynamic slice contains all the statements that “affect the value of a variable at a

program point for a particular execution of the program” (Agrawal and Horgan 1990).

In dynamic slicing, a point of interest is the statement to be sliced. It is marked by the

line number L, the variable V, and the input P <L, V, P>. The input, P, is assigned to

some values which produce a slice regarding these input values, where in the static

slice, the program at the selected variable is sliced under all these variable inputs

(Korel and Laski 1990).

38

Compared with static slicing, dynamic slicing can significantly reduce the size of the

slice, because the run-time information is collected during program execution and

used to compute program slices (Korel and Rilling 1998). The example shown in

Figure 2.10 demonstrates how a dynamic slice produces a slice which is smaller than

the slice produced by static slicing.

Figure 2.9 Original Program P3 (Kim and Fong 2007)

The P3 program (Figure 2.9) has a bug, where p in Line 3 should not be zero

because it is used later in Line 6 in a multiplication computation.

Two types of slicing were applied on P3; Static and Dynamic. Both slicing techniques

generated slices different in size, where dynamic slicing is significantly smaller. Static

slicing was applied on (p, 6), and it reduced the number of codes lines, but it failed to

find the bug. When Dynamic slicing, was applied on (p, 6) and p=0 as the assigned

value, it returned only the statement that contains the bug.

1 scanf (‚%d‛, &n);

3 int p = 0;

4 for (int i = 1; i <= n; i++){

6 p*= i;

Static slicing

 3 int p = 0;

Dynamic slicing

Figure 2.10 Difference between Dynamic slice and Static slice on P3 (Kim and Fong 2007)

1 scanf (‚%d‛, &n);

2 int s = 0;

3 int p = 0;

4 for (int i = 1; i <= n; i++){

5 s += i;

6 p *= i; }

39

2.4.2.1 Simultaneous Dynamic Slicing

Simultaneous dynamic slicing is an extension of dynamic program slicing and was

introduced by Hall (Hall 1995). Simultaneous dynamic slicing is applied to more than

one test case simultaneously which lead to the Slicing Criteria being <L, V, {P1,

P2…Pm}> where Pm is a list of input values (Sasirekh, EdwinRober et al. 2011). The

final slice is constructed using dynamic slicing in regard to each behaviour of the

program execution input values set (Baowen, Ju et al. 2005). Simultaneous dynamic

slicing is used to locate functionality in code, where the set of test cases can be

employed to give a specification of the functionality to be identified (DeLucia 2001).

Dynamic Slicing focuses on the execution of the point of interest in a program, and

returns the statements that were affected by that particular execution. The dynamic

slicing criteria include a variable and its line number with a value assigned to it.

2.4.3 Other Slicing techniques

There are other slicing techniques which are produced by extending other types of

slicing or mixing them. Relevant slicing is a technique considered as an extension of

dynamic slicing. All statements that make the program executable will take parts of

the slice even if they have no effect on the output. This slice is used in incremental

regression testing (Agrawal, Horgan et al. 1993).

Chopping and dicing are two themes which are strongly related to program slicing. A

program dice (Weiser and Lyle 1986) only shows code that contributed to bad

behaviour and did not contribute to good behaviour. Program dicing is used in

program debugging to reduce the time of debugging examination. Chopping

(Jackson and Rollins 1994; Krinke 2004) solves the problem of how variables affect

each other. Chopping shows only code that contributes to bad behaviour and was

affected by some given piece of code.

40

Object oriented and aspect oriented slicing (Larsen and Harrold 1996; Zhao 2002),

distributed programs slicing (Gramoli, Vigfusson et al. 1999), web-based application

slicing (Junhua, Baowen et al. 2004; Tonella and Ricca 2005), and slicing under UML

scenario models (Qian and Xu 2008) are slicing techniques that have been tried and

used to analyse the program code in different ways. However, all of these slicing

techniques focused on the program variables and their values and none of them has

considered the rest of program code syntax.

2.4.4 Program slicing applications

2.4.4.1 Debugging

Program slicing was introduced the first time by Mark Weiserto make program

debugging easier (Weiser 1982; Weiser 1984). Slicing helps the developer by

reducing the search space if the output of a program is wrong (Weiser and Lyle 1986;

Shinji, Akira et al. 2002). This use of slicing in debugging was the motivation to

introduce Dynamic slicing (Harman and Hierons 2001).

There are some models and tools that are based on program slicing to aid in

program debugging. SPYDER (Agrawal, Demillo et al. 1993) was developed as a

debugger based on dynamic slicing and execution backtracking techniques.

2.4.4.2 Regression Testing

Regression testing is “selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component

still complies with its specified requirements” (IEEE 1990).

Program slicing is used in testing to simplify the testing process (Harman and Danicic

1995; Binkley 1998). Regression testing is a testing process used during the

maintenance phase, to make sure that the changes only happened to the target code

and did not cause any problems in any other program (Binkley 1998).

41

Dynamic slicing (Binkley 1998; Lalchandani and Mall 2008), and decomposition

slicing (Gallagher, Hall et al. 2007), are both used in regression testing to determine

whether two components have the same behaviour. Decomposition slicing is also

applied to find an approximate solution to idetify a set of affected components by

maintenance (Ngah and Gallagher 2009), and to specity a set of tests to examine

these components (Binkley 1998; Lalchandani and Mall 2008).

2.4.4.3 Software Maintenance

Most programs spend 70% or more of their life time in the maintenance phase

(Gallagher and Binkley 2008). Program slicing can be used to reduce the time and

effort spent on program maintenance. Gallagher and Lyle (Gallagher and Lyle 1991)

used Decomposition slicing to define the dependability of a variable in a program. If

there is any change to the variable, decomposition slicing will define which

statements will be affected by this change, by defending the dependability

statements of this variable.

Gallagher et al. (Gallagher and Lyle 1998) developed a tool for software maintenance

based on decomposition slicing. The Surgeon’s Assistant helps maintainers and

developers of ANSI C programs isolate program components for change or

adaptation. Also, it helps in finding the changes in program design and code, and

helps in regression testing where it makes sure that the changes do not affect other

components.

Another maintenance phase is called Program comprehension and is the process in

which a programmer understands the program (Gallagher and Binkley 2008).

Conditioned slicing (DeLucia, Fasolino et al. 1996) and decomposition slicing

(Gallagher and O'Brien 2001; Tonella 2003) can be used to help the programmer

identify a set of statements that preserve the program behaviour with respect to a set

of program executions.

42

2.4.4.4 Other program slicing applications

Program slicing is employed in other applications. Clustering equivalent computation,

program slicing was used to find the dependant cluster and dependant pollution

(Binkley and Harman 2005; Gallagher and Binkley 2008).

In model reduction (Hatcliff, Dwyer et al. 2000), program slicing was applied to

remove irrelevant code and reduce the size of the corresponding model. While in

database schemas (Maule, Emmerich et al. 2008), program slicing can be used to

reduce the size of the program that needs to be analysed to identify the impact of

relational database schema changes upon object-oriented applications.

In software robustness (Gallagher and Fulton 1999), Decomposition slices are used

to determine a unique fault injection point for any given variable of interest at a point

where the variable has the highest impact on program output.

2.4.5 Program slicing tools

Researchers apply program slicing by introducing new tools or modifying existing

tools.

2.4.5.1 CodeSurfer (CSurf)

GemmaTech company introduced the Code Surfer (CSurf) as a “automated source-

code analysis tool” (GrammaTech 2012) used to call the program graphs and help in

finding the bugs in C language programs.

Code Surfer calculates the representation of the program constructs such as

preprocessor directives, and enables them to be explored through graphical user

interface or accessed through optional Application Programming Interface (API).

Code Surfer can do different kinds of code analysis, such as impact analysis,

dataflow analysis, pointer analysis, and whole program analysis where it shows the

interaction between the program files.

43

2.4.5.2 Indus/Kaveri

Indus is a framework for analysing and slicing concurrent Java programs. Indus

presents a collection of advanced features useful for effective slicing of Java

programs including: calling-context sensitive slicing, scoped slicing, control slicing,

and chopping. Kaveri is an eclipse plug-in front-end for the Indus Java slicer. It

utilizes the Indus program slicer to calculate slices of Java programs and then

displays the results visually in the editor. The purpose of this project is to create an

effective tool for simplifying program understanding, program analysis, program

debugging and testing (Ranganath and Hatcliff 2007).

2.4.5.3 JSlice

Another Java Slicing tool is JSlice, which is a “dynamic slicing tool for Java

programs. It collects and analyzes an execution trace (for slicing) in a compressed

form” (Wang and Roychoudhury 2004).

2.4.6 Summary

Program Slicing is a code analysis technique. There are two different Program

Slicing techniques that were investigated in this literature reviewed in this section.

Static Program Slicing and Dynamic Program Slicing, which have different

applications, are summarised in Table 2.1. Different tools were used to slice

programs in both languages; C and JAVA.

44

Slicing Type Slicing sub-type Slicing Criteria Applications

Static Slice

Forward <L, V>
Program Debugging

Database Schemas Analysis

Backward <L, V>
Program Debugging

Database Schemas Analysis

Conditioned <L, V, C>
Program Comprehension

Program Maintenance

Decomposition <V>

Program Maintenance

Program Robustness

Program Comprehension

Regression Testing

Amorphous <L, V> Program Comprehension

Quasi Static <L, V, P> Program Comprehension

Dynamic

Slice

 <L, V, P> Program Debugging

Program Comprehension Simultaneous <L, V, P1…Pm>

Table 2.1 Program Slicing techniques and their applications

2.5 Summary

In this literature review, the Robustness of a program was defined as “the degree to

which a system or component can function correctly in the presence of invalid input

or stressful environment”. This means that Robustness can be a relative value and

can be measured. There are many techniques that have been used to satisfy or

define Robustness. These techniques introduce some solutions to create a robust

program, such as avoiding the faults by redundancy. However, they are still facing

some challenges like the complexity of redundancy.

The MISRA C2 language rules cover most of the C language issues, and by following

the MISRA rules most of the common development mistakes can be prevented.

45

Program Slicing is a code analysis technique that investigates program code. In

Static Slicing, the code syntax can be analysed regardless of the code execution,

which helps in isolating a piece of the code and investigating it further.

The measurement of robustness is still in the early stages of research. Program

robustness has been reviewed and shows that the robustness measurement mostly

discussed were regarding input/output validity.

In this research, program robustness is going to be measured using the program

code syntax. Therefore, there should be some rules that measure the code syntax

robustness. The MISRA C2 has been chosen to be these rules because they are

suitable for the purpose.

The code syntax needs to be analysed to see the effect of each piece of code on the

rest of the program, and the best program analysis for this research is Program

Slicing. Figure 2.1 shows the top to bottom story of this research.

46

Chapter Three

Robustness Grid

3.1 Introduction

This chapter introduces the Robustness Grid for programs written in the C language.

Measuring software Robustness needs to examine the features of programming

languages in order to produce a relative scale for functions, methods, and the entire

program. The Robustness Grid will show the Robustness Degree in details for a

selected program.

The Robustness Grid Measurement is the process by which relative numbers are

assigned to Robustness Degree of a C program in such a way to describe them

according to MISRA C2 rules and their Weights.

Figure 3.1 shows the Robustness Grid building process. The Language Features and

Category are the start point of the Robustness Degree measurement process. The

47

Language Features are the language characteristics that must be included in a

program categorised process. The MISRA rules are used to assign the Language

Features into categories.

Figure 3.1 Robustness Grid Construction process

The Clause Slicing technique is used to weight the MISRA rules in order to

differentiate between them in terms of rule importance and effective use throughout

the program. The Robustness Degree consists of the calculations that show each

Rule Robustness Degree and Function Robustness Degree using the values and

weight take from the MISRA rules and Clause Slicing.

The Robustness Grid is the table by which relative numbers are assigned to

Robustness Degree of a C program in a table to describe them according to MISRA

C2 rules and their Weights from Clause Slicing.

Values Weight

Language

Features/

Category

Robustness

Grid

Robustness

Degree

Clause

Slicing
MISRA

Rules/

Category

48

The Robustness Grid shows the Robustness Degree details for each rule, function,

and category, and for the whole program. It also shows the relation between

functions and categories.

The program to be assessed through the Robustness Grid must fulfil the Program

Selection Criteria which means that the program should go through the gcc

compiler without any reported errors. All warnings are ignored. The Warnings are

ignored because the Robustness Grid reinforces the message of the warnings.

3.2 Language Features

Language Features look at program code using different points of view; the style of

the program code the use of C language standards library of the variables in the

program.

Language Features are used to measure the program Robustness. Language

Features are language characteristics that affect software Robustness such as

arithmetic conversion, data type definition, and code control flow.

3.2.1 Language Features Categorisation

Language Features analysis checks every statement in the program and sees

whether it satisfies these Features. Language Features are divided into categories

depending on their shared characteristics.

49

Table 3.1 shows a set of Language Features as categories in MISRA C2 (MISRA

2004):

 Language Features

Character Set, and Identifiers

Data types, Declarations, and Definitions

Constants

Initialisation

Arithmetic type conversions, and Pointer type conversion

Expressions

Control statements expressions, Control flow, and switch statements

Function structure

Pointers, arrays, structures, and unions

Pre-processing directives, and standards libraries.

Table 3.1 MISRA rules topics

3.2.2 MISRA Rules

3.2.2.1 MISRA rule selection

The Language Features selection mechanism from the MISRA C2 rules depended

on certain conditions, and only rules that satisfy all these conditions will be part of the

Robustness Grid.

The selection process for the Robustness Language Features Conditions from the

MISRA C2 rules are as follows:

1- A rule that causes a compile time error when it is violated will be eliminated

because any program that breaks such a rule does not satisfy the Program

Selection Criteria condition and will not be measured in the Robustness Grid.

2- A rule must relate to the program code, and not to the environment or the

documentation, because the Robustness Grid is only concerned with the

program code. By this condition, the MISRA Environment and Documentation

50

rules categories are not selected to be a part of the language Features of the

Robustness Grid.

3- The Language extensions rules, such as comments are not selected to be in

the Robustness Grid. Only the executable code is going to be measured.

4- A rule should be easily measured. For example, rule 14.1 in MISRA C2:

“there shall be no unreachable code” cannot be easily identified in general.

The Clause Slicing technique has to slice all the program statements so the

all the program should be executable.

In the Robustness Grid, There is no need to address the MISRA C2 rules that cause

compile-time error if they breached, since these errors are caught by the compiler.

After analysis, 100 out of 142 MISRA C2 rules were approved by the Robustness

Features criteria and selected to be the Language Features. Not all rules will be

applicable to each program.

The MISRA C2 rules are copy right protected and are thus not allowed to be

published this thesis. Thus no details of the rules are given.

3.2.2.2 Robustness Features Categorisation

In this research, the Language Features are divided into 6 different categories. Each

Category has a set of rules that share the same characteristics. The categories are

numbered for convenience and are not intended to show a hierarchy.

These numbers indicate the order in which the categories are shown in the

Robustness Grid. The Categories in the Robustness Grid must have the following

characteristics:

1. Each rule in each category must be one of the MISRA C2 rules.

2. All rules in each category must satisfy the “Robustness Language Features

Conditions”.

51

3. Each rule must be in one and only one category.

The Language Features are divided into the Categories listed in Table 3.2.

Category Constructs

Number of

MISRA C2

rules

1
The rules that consider mainly type definition, and

arithmetic statements.
20

2
Rules that consider control statements, for example: if,

for, and while statements.
27

3 Rules that consider function’s structure. 16

4
The rules that consider arrays, pointers, and data

structure such as union, struct, and enum.
4

5
The rule that consider header files and the pre-

processor.
22

6
All MISRA C2 rules that were highlighted as advisory

rules.
11

Table 3.2 Categories Construction

Figure 3.2 shows the MISRA rules distribution percentage for the categories.

Category 2 has the largest number of rules, since it is dealing with frequent issues in

the C programming language.

52

Category 1

20%

Category 2

27%

Category 3

16%

Category 4

4%

Category 5

22%

Category 6

11%

Figure 3.2 Robustness Grid Categories distributed scale

The table of all categories with their rules from MISRA C2 is shown in Appendix A.

Because the categories are independent then each Category has its own rules and

these rules have no effect on each other. For example, if a program scored a low

Robustness Degree in a Category, it does not necessarily means it is going to score

a low Robustness Degree in other Categories. However, the Categories are still

connected with each other in some Language Features Calculations to measure the

final Robustness Degrees for the function or the program.

Rules in a category are not in a numeric sequence, since they are grouped

depending on rule characteristics. However, rules in the same category are in

numeric order according to their MISRA C2 number. The rules in a category are in

X.y numbering format, where X is group number in MISRA C2 grouping program, and

y is the group internal number of the rule. Thus, rule order is meaningless and does

not affect the rule role in the Robustness Grid. Table 3.3 shows an example of the

rules distribution into categories.

53

Categories Rule Number

Category 1

4.1 + 7.1

4.2

5.1

5.2

6.1

Category 2

12.2

12.3

13.4

13.5

13.6

14.7

17.1

17.5
Table 3.3 Example of rule categorisation

3.3 Clause Slicing

Slicing is a program analysis technique that allows the focus to be on the program

code that is related to certain Slicing Criteria. Chapter Two (section 2.4) has

reviewed a number of slicing techniques. In this research, the Clause Slicing

technique is introduced.

Clause Slicing is a new slicing technique that is introduced and defined in this thesis

for the first time. Clause Slicing is introduced to facilitate the Robustness

Measurement of a C program.

A Clause is the minimum piece of code that can be sliced. Not every Clause is

sliceable and there are some Clauses such as #include that cannot be sliced and this

type is called the Un-sliceable Clauses. The Slicing Criteria for the Clause Slicing is

<C, n>, where C is the clause, and n is the clause number. The Clause Slicing (Cn) is

all clauses in the program that depends on Cn.

Each one of the program Clauses will be measured by the Language Features. The

Clause in the programs can be defined as follows:

<break-statement>, <continue-statement>, <goto-statement> are not Clauses.

<Type-variable name> has one Clause.

54

<expression> '=' <expression> has the sum of the number of clauses in the both

<expression>

<compound-statement>

::= '{' <declaration-list> <statement-list> '}' has one clause.

<return-statement>

::= 'return' <expression> ';' has one clause.

<do-statement>

::= 'do' <statement> 'while' '('<expression> ')' ';' has the number of clauses

in the <statement> plus the number of clauses in the <expression>

<for-statement>

::= 'for' '('<initialization-expression> ';'<control-expression> ';' <iteration-

expression>')' <statement> has the number of clauses in the <initialization-

expression>, <control-expression>, and <iteration-expression> plus the

number of clauses in the <statement>

<if-statement>

::= 'if' '(' <expression> ')' <statement> has the number of clauses in the

<statement> plus the number of clauses in the <expression>.

<if-else-statement>

::= 'if' '(' <expression> ')' <statement> 'else' <statement> has the number

of clauses in the both <statement> plus the number of clauses in the

<expression>.

<while-statement>

::= 'while' '(' <expression> ')' <statement> has the number of clauses in the

<statement> plus the number of clauses in the <expression>.

<switch-statement>

::= 'switch' '('<expression> ')' '{'<declaration-list><statement-list> <case-

list> '}' has the number of clauses in the <expression> plus the number of

55

clauses in the <declaration-list> plus the number of clauses in the

<statement-list>.

<Type-function name> '('<parameters-set>')' '{'<statements>'}' has one clause

<Type-function name>, added to the number of clauses in '('<parameters-set>')'

which is equal to number of parameters, plus the number of clauses in the

<statement>

Introducing the Clause term to Static Slicing has brought a new type of Static Slicing:

namely Clause Slicing. Clause Slice can be a Forward Clause Slicing, Backward

Clause Slicing or Decomposition Clause Slicing. In this research, the interested

focuses on Forward Clause Slicing, and from now on, the Clause Slicing will mean

Forward Clause Slicing.

Clause Slicing is using the Clause (C) and Clause number (n) as the Slicing Criteria.

A line of Code may have more than one Clause. A Clause Slice (Cn) contains all the

Clauses that depend on (Cn). Figures 3.3, 3.4, and 3.5 show the differences between

the Forward Slicing and Forward Clause Slicing.

Figure 3.3 shows a program with two type of numbering: the line numbers, which is

the number for each line of code and used in Forward Slicing, the Clause number,

which is written superscript format and used for Clause Slicing.

Clause Slicing will be used to weight the robustness Degree for program Clauses,

functions, and the whole program. Each Clause in the program will be the Slicing

Criteria for the Clause Slice. Thus, each Clause is going to be sliced using the

Clause Slicing technique. The number of Clauses in the produced slice will be the

Clause’s Slice Size.

56

1. #include <stdio.h>1
2. static add (int,int);2
3. int n3;
4. void main()4{
5. int i = 15;
6. int sum = 06;
7. while (i<11) {7
8. sum8 = add9(sum10, i11);
9. i12 = add13(i14, 115);}
10. printf16("sum = %d\n"17, sum18);
11. printf19("i = %d\n"2o, i21);}
12. static int add22(int a23, int b24){
13. return(a+b)25; }

The Program has 13 lines and 25 Clauses

Figure 3.3 Gemma.c program (GrammaTech 2012)

6. int sum = 0;

8. sum = add(sum, i);

10. printf("sum = %d\n", sum);

12. static int add(int a, int b){
13. return(a+b); }

Forward Slicing on (sum,6) has produced 5 lines.

Figure 3.4 Forward Slice on (sum,6)

 int sum = 06;

 sum8 = add9(sum10,);

 (, sum18);

 static int add22(int a23,){
 return(a+b)25; }

Clause Slicing on (C6{int sum=0}) has produced 8 Clauses.

Figure 3.5 Clause Slice on C
6
=(sum=0, 6)

The use of Clause Slicing is a new idea applied to measure the importance of each

clause individually. This will affect the Robustness Degree measurement for the

program clauses. A clause with high influence in the program will be more important,

and will have more credit in the program Robustness Degree measurement.

57

Other Slicing techniques such as Backward Slicing and forward are looking at what

the variable is depends on, which show only the effect of the variable in the program.

In Clause Slice each piece of code has been considered with its effect in the

program, which makes it easier to see and measure the effect of each part in the

code syntax.

3.4 Robustness Degree Calculations

The IEEE definition of Robustness is “The Degree to which a system or component

can function correctly in the presence of invalid inputs or stressful environmental

conditions” (IEEE 1990). The emphasis in the thesis is on the latter, to measure the

Robustness aspect of stressful environment conditions. Therefore, any Robustness

measurement technique must generate a scale value after any Robustness

measurement process.

The Robustness Degree is a relative value that shows how a clauses, functions, or

the entire program is satisfy the Language Features.

The Robustness Grid calculates the Robustness Degrees for each part of the

program. For each program, several Robustness Degrees are formed, as well as for

each function. The Robustness Degree shows the weak and the robust points of the

program, and it illustrates the changes that can be made to the program to improve

its Robustness Degree.

3.4.1 Language Features Weighting

The Language Features Weight considers the role of a Clause in a program. A

Clause here means the smallest piece of code that can have a slice. The un-

sliceable Clauses are the pre-processor, function prototype, typedef and any other

code that cannot be sliced. In that case, the Clause itself is considered as the

Clause’s slice.

58

The Slice Size shows the Clause and Language Features influence on the program.

When the Slice Size is larger, the influence is greater.

The weighted Language Features show the Clause and rule importance in the

program by the size of slice for each of them.

The Language Features are related to the Robustness Degree of code syntax and

coding style. On the other hand, the Language Features Weights are related to the

program Clauses and are used as a addition to the Language Features in the

Robustness measurement process.

3.4.2 Data for Program Analysis

The Robustness Grid measures a program with respect to Language Features and

their Weights, and shows the program robustness measurement results as numbers

and percentages.

In this section, the data for program analysis in the Robustness Grid will be described

in detail.

3.4.2.1 Clause Table

The Clause Table, as Table 3.4 presents, contains six columns, where each column

deals with one set of program analysis data.

Clause

Number

Slice

Size

Clause

Frequency

Clause

Weight

Function

Name

Applicable Rules

Satisfied Violated

Table 3.4 Clause Table

The Data that is used in the Robustness Grid is produced there after the following

steps:

1- All sliceable Clauses in the program will be sliced. The un-sliceable Clauses

will have the Clause itself as the slice.

59

2- Clause Number shows the Clause sequence number in the program. Each

Clause Number represents one Clause in the program. They are the basis of

all other columns since Language Features and Language Features Weight

are based on the Clauses.

3- From the Clause Slice the following can be determined:

a. Slice Size: the number of Clauses in the slice. Un-sliceable Clauses

will have Slice Size = 1.

b. Clause Frequency: the number of times a Clause has been part of a

Clause slice. The Clause frequency for un-sliceable Clauses will be

one, since it only occurs once in its own slice.

c. Clause Weight: The multiplication of the Clause Frequency by the

Slice Size, which reflects the importance of the Clause in the

program, where it shows the influence of the clause and how it affects

the robustness of the program.

4- Each Clause will be compared against the MISRA C2 rules, to find out which

Clause is assigned to which rule, and this will be used to create the Data

Table.

5- Applicable Rules show whether the Language Features are Satisfied or

Violated for each Clause in the program. The Applicable rules are the MISRA

C2 rules that apply to each Clause of a program. Any number of rules can be

applicable to a Clause. The two sub-columns that form the Applicable Rules

column are: Satisfied, which shows the rules that have been satisfied, and

Violated, which shows the rules that have been violated by the Clause.

6- For each MISRA C2 rule, the number of times the applicable rule is

 Satisfied, and

60

 Violated

 will be counted.

7- Function Name is the name of each function in a program. Function Name

declares in which function the Clause belongs. Clauses that are not included

in any function will be added to the main function.

Function prototype and function declaration are function components in a

program. These Clauses are counted as part of the function even if they are

written inside another function.

The Clause Slice Size and Clause Frequency are independent, so a Clause could

occur frequently in many slices while it may have a small Slice Size. This Clause can

have the same weight as a Clause in the opposite position. For example, suppose

Clause 5 occurred in 3 slices, which make the Clause Frequency value equal to 3,

and suppose it has 8 Clauses in its slice, so the Slice Size is equal to 8. Thus,

Clause 5 Clause Weight will be 38 = 24. Suppose another Clause, Clause 9, has

the opposite situation where its Clause Frequency equals eight and Slice Size equals

three. Clause 9 Weight will be equal to the Clause Weight of Clause 5 which is 24.

Consider a third Clause, Clause 12. With 6 as Clause Frequency value and 4 as

Slice Size, the Clause Weight will also be the same, which is 24.

This means that the Clause Weight is a factor that measures the effect and the

usage of a Clause in a program. In other words, it measures the role a Clause plays

throughout a program, which reflects how important this Clause is in the program.

The Clause with the biggest Weight will be the most important Clause in a program,

and the level of importance for a Clause is reduced when the Clause Weight value

decreases.

61

Table 3.5 shows a small part of the Clause Table for the SwapoAdd.c program.

Appendix C is an example of how the Clause table is going to be presented.

Clause
number

Slice
Size

Clause
Frequency

Clause
weight

Function
name

Applicable rules

Satisfied Violated

1* 1 1 1 main
19.1, 19.2,20.9,

20.2,20.1
0

2* 1 1 1 main 19.6 0

3* 1 1 1 main 19.6 0

4* 1 1 1 main 0 6.3

5 4 2 8 main
5.1, 6.1, 8.12,

13.1, 9.2
0

6* 1 1 1 incr 16.3, 16.4, 16.1 19.7

7* 1 1 1 swap 16.3, 16.4, 16.1 19.7

8* 1 1 1 one 16.3, 16.4, 16.1 19.7

9 35 2 70 main 14.7, 16.1, 8.2, 8.6 16.5, 19.7, 8.1

Table 3.5 Example of Clause Table

3.4.2.2 Data Table

The Data Table columns, as shown in Table 3.6, are all about the rule data that apply

to a program. The Data Table is strongly linked with the Clause Table since all values

are taken from the Clause Table.

Rule Number
Number of

Satisfied
∑Satisfied Slices

Number of

Violated
∑Violated Slices

Table 3.6 Data Table

1- Rule Number is the rule index number in the MISRA C2 documents. This rule

number is used to refer to the rule that was applied in a program for a Clause.

2- The Applicable Rule is either Satisfied or Violated. The Applicable Rule

column is divided into two sub-columns: Number of Satisfied and Number

of Violated. The Number of Satisfied sub-column shows how many times a

rule has been applicable and satisfied throughout the whole program where

the rule was counted. It presented by the sign (+) followed by a number (n)

that indicate how many times a rule has been satisfied. Number of Violated

62

sub-column shows how many times a rule has been applicable and violated

throughout the whole program. It presented by the sign (-) followed by a

number (n) that indicate how many times a rule has been violated. If a rule is

not applicable in the program, the Applicable Rule cell in the table will be filled

with (0). The values for these sub-columns are drawn from Satisfied and

Violated sub-column in the Clause Table (Table 3.4).

3- The ∑Satisfied Slices is a combination of two columns in the Clause Table.

These columns are the Satisfied Rule and the Slice Size of a Clause.

Satisfied Rule will be counted, and each time a rule is satisfied, the total of all

slice sizes of the Clauses that satisfy a rule will be the ∑Satisfied Slice. This

column reflects the effect of a rule throughout a program. Simply, each time a

rule is satisfied, the Clause Slice Size will be added to the ∑Satisfied Slice

rule value and the final value will be the ∑Satisfied Slice in the Data Table.

4- ∑Violated Slices column follows the same procedure as ∑ Satisfied Slices

Size. The number of times a rule was violated will be counted, registered and

used to calculate the Violated Slices.

Table 3.7 shows a small part of a Data Table that was created for the SwapoAdd.c

program. See Appendix D as an example of how the Data Table is going to be

presented.

Rule Number
Number of
Satisfied

∑ Satisfied Slices Number of Violated ∑Violated Slices

4.1 + 7.1 5 9 3 15

4.2 5 9 0 0

5.1 13 70 0 0

5.2 0 0 3 13

6.1 1 4 0 0

6.3 0 0 1 1

8.1 3 22 1 35

8.2 4 57 0 0

8.3 5 19 0 0
Table 3.7 Data Table Example

63

3.4.3 Rule Weighting

The Language Feature Weight aims to measure the Language Features importance

level by giving each Language Feature a value that expresses its importance level.

The Rule Weight Calculations is shown in Table 3.8.

Function Name

Satisfied

Weight

Violated

Weight

Rule Function

Frequency

Rule ∑ Function

Slice Size

Rule Function

Weight

Table 3.8 Rule Weight Calculations

1- Function Name is the name of each function in the program. The sub-

columns that come under the Function Name are the calculations that are

related to every function in the program. Some of these sub-columns take

their data directly from Data Table (Table 3.6) in Section 3.4.2.2, or indirectly

from the Clause Table (Table 3.4) in Section 3.4.2.1.

2- Satisfied Weight is the Number of Satisfied in the Data Table multiplied by

the ∑ Satisfied Slices from the same Table. The Satisfied Weight illustrates

relatively the rule satisfaction Degree between other rules.

The Satisfied Weight is one of the main factors that reflect the function

Robustness Degree. The Satisfied Weight is the Frequency of the applicable

rule that was satisfied in a program multiplied by the effect of this rule in the

program.

3- Violated Weight column is the Number of Violated rules in the Data Table

multiplied by the ∑ Violated Slices from the Data Table.

Comparing the Satisfied Weight and the Violated Weight will give an

indication of the Robustness Degree of a program, and whether it has a major

robustness defect or not. In addition, it will reflect the defect side of each rule

in each function.

64

4- Function Frequency column is the result of adding the Numbers of Satisfied

and Number of Violated columns from the Data Table. Rule Function

Frequency is the number of times a rule was applicable throughout a function.

It is equal to the number of satisfied rules plus the number of violated rules in

the Applicable Rule column of the Data Table. This value shows which

function has applied a rule the most, or least, to help the developer identify

the biggest or smallest effect of a rule in the function.

5- Rule ∑ Function Slice Size is the total number of Satisfied and Violated

Slices Size in Data Table. The value indicates the behaviour of the Applicable

Rule in a function and throughout the whole program. Rule ∑Function Slice

Size shows the function and Clauses that have a large effect in the program.

6- Rule Function Weight is the accumulative weight of the rule for the function.

The Rule Function Weight is one of the main Features that are powerfully

related to the Language Features where it is used to measure the

Robustness Degree. The Rule Function Weight shows the influence of the

rule and how it affects the program robustness as overall.

This value is a result of multiplying the Rule Function Frequency in the Rule

Weight Calculations Table, which is also as accumulative value of the number

of times a rule was applied, by the Rule ∑Function Slice Size, which is the

accumulative Slice Size of all the times a rule was applied. Rule Function

Weight represents the Rule Weight for the whole function.

Note that the Rule Function Weight is not equal to the addition of Rule

Satisfied Weight to Rule Violated Weight.

Table 3.9 shows a small part of Rule Weight Calculations that was created for the

SwapoAdd.c program as an example of how the data is going to be presented.

65

incr

Satisfied
Weight

Violated
Weight

Function
Frequency

Rule ∑Function
Slice Size

Rule Function
Weight

45 45 8 24 192

45 0 5 9 45

910 0 13 70 910

0 39 3 13 39

4 0 1 4 4

0 1 1 1 1

66 35 4 57 228

228 0 4 57 228

95 0 5 19 95
Table 3.9 Rule Weight Calculations Table Example

The Rule Weight Calculations Table shows the calculations that are related to the

Language Features. This Table will be repeated for each function in the program, as

part of the Robustness Degree measurement process. The Rule Weight Calculations

Table is used to compare between functions to find the function with the largest

Applicable Rules, and the function with the largest Rule Weight value. The Rule

Weight Calculation Table gives a hint about the most used function and rule in the

program.

3.4.4 Function Category Degree

Function Category Degree (FCD) is the Robustness Degree that a function scores in

a Category. The Function Category Degree has two values depending on rule

satisfaction status: Function Category Satisfy Degree (FCSD), and Function

Category Violate Degree (FCVD).

FCSD reflects the satisfaction of the Function Language Features in a Category. The

value is calculated by the sum of all the times all the rules in a Category were

satisfied (the Total of Satisfied Rules Frequency) divided by the sum of all times all

rules in a Category were applicable, presented as percentage. On the other hand,

FCVD reflects the Violation of the Function Language Features in a Category. The

value is calculated by the sum of all the times all the rules in a Category that were

66

violated (the Total of Violated Rules Frequency) divided by all times all rules in a

Category have been applicable presented as percentage. FCSD and FCVD values

together represent the FCD of a function for the Category in the Robustness Grid and

show the function performance in terms of Robustness Language Features.

The FCSD and FCVD values are the Robustness Degree measurement of the

function. They also help decide whether the function needs to be re-engineered to

improve its Robustness Degree, by highlighting the defective part of the function. The

Rule Weight Table with FCSD and FCVD together make the Function Robustness

Grid, which is the main block of the Robustness Grid.

C
a

te
g

o
ri
e
s

R
u

le
 N

u
m

b
e
r

Function name FCD %

A
p

p
lie

d

ru
le

s

∑
S

a
ti
s
fi
e
d

S
lic

e
 S

iz
e

s

 R
u

le

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
 S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u
n

c
ti
o
n

F
re

q
u
e

n
c
y

R
u

le

∑
F

u
n
c
ti
o

n

S
lic

e
 S

iz
e

s

R
u

le

F
u
n

c
ti
o

n

W
e

ig
h
t

F
C

S
D

 %
 f

o
r

s
a

ti
s
fi
e

d
 r

u
le

s

F
C

V
D

 %
 f

o
r

v
io

la
te

d
 r

u
le

s

+
n

,
-n

,
o
r

0
 f

o
r

e
a
c
h
 r

u
le

∑
a

ll
S

lic
e

 S
iz

e
s
 o

f
a

ll
ti
m

e
s
 a

 r
u

le
 b

e
e

n
 s

a
ti
s
fi
e

d

=
∑

+
n

 m
u

lt
ip

ly
 b

y
 ∑

s
a
ti
s
fi
e

d
 S

lic
e

 S
iz

e
s

∑
a

ll
S

lic
e

 S
iz

e
s
 o

f
a

ll
ti
m

e
s
 a

 r
u

le
 b

e
e

n
 v

io
la

te
d

=
∑

|-
n

|
m

u
lt
ip

ly
 b

y
 ∑

v
io

la
te

d
 S

lic
e

 S
iz

e
s

|a
p

p
lie

d
 r

u
le

 v
a

lu
e
|

∑
s
a

ti
s
fi
e

d
 S

lic
e

 S
iz

e
s
 +

 ∑
v
io

la
te

d
 S

lic
e

 S
iz

e
s

a
p
p

lie
d
 r

u
le

 ∑
S

lic
e

 S
iz

e
 (

∑
s
a

ti
s
fi
e

d
 +

∑
v
io

la
te

d
)m

u
lt
ip

ly
 b

y
 r

u
le

 f
u

n
c
ti
o

n
 f
re

q
u
e

n
c
y

Table 3.10 Function Robustness Grid with sketch equations

67

Table 3.10 shows the equations used to create each column in the Function

Robustness Grid Table, which assess the Function Robustness Degree. Table 3.11

shows a small part of Function Robustness Grid Table that was created for function

incr in the SwapoAdd.c program as an example of how the data is going to be

presented.

C
a
te

g
o

ri
e
s

R
u

le
 N

u
m

b
e
r Incr FCD %

A
p

p
lie

d
 r

u
le

s

∑
S

a
ti
s
fi
e
d
 S

lic
e

S
iz

e
s

R
u

le
 S

a
ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

 S
lic

e

S
iz

e
s

R
u

le
 V

io
la

te
d

W
e

ig
h
t

R
u

le
 F

u
n

c
ti
o
n

F
re

q
u
e

n
c
y

R
u

le
 ∑

F
u

n
c
ti
o

n

S
lic

e
 S

iz
e

s

R
u

le
 F

u
n
c
ti
o

n

W
e

ig
h
t

F
C

S
D

 %

F
C

V
D

 %

C
a

te
g

o
ry

 1

4.1 +
7.1

0 0 0 0 0 0 0 0

2/2 =
100%

0/2=0%
4.2 0 0 0 0 0 0 0 0

5.1 +2 6 12 0 0 2 6 12

5.2 0 0 0 0 0 0 0 0

6.1 0 0 0 0 0 0 0 0

C
a

te
g

o
ry

 2

12.2 +1 2 2 0 0 1 3 3

1/3 =
33.3%

2/3 =
66.7

12.3 0 0 0 0 0 0 0 0

13.4 0 0 0 0 0 0 0 0

13.5 0 0 0 0 0 0 0 0

13.6 0 0 0 0 0 0 0 0

14.7 -1 0 0 5 5 1 5 5

17.1 -1 0 0 2 2 1 2 2

17.5 0 0 0 0 0 0 0 0

Table 3.11 Example of Function Robustness Grid

3.5 Robustness Grid

The Function Category Degree (FCD) is the part of the Robustness Grid that

measures the program function. FCD will have the same structure for every function

in the program but with new values related to each function.

All functions in the program have calculations to measure the program as one piece,

including all function calculations in the Function Category Degree.

68

3.5.1 Program Category Degree

The Program Category Degree (PCD) is a part of the Robustness Grid that

measures the whole program using all the calculations in the functions that the

program has, all Language Features and all Language Features Weight that have

been applicable and calculated.

3.5.1.1 Program Category Degree (PCD)

The Program Category Degree (PCD), Table 3.12, is the accumulative column for all

Functions for each Category Degree in the program (∑FCD). The PCD is the

Robustness Degrees in terms of Language Features for all rules that were applied in

the program. Since PCD is the total of Robustness Degrees of all functions, it also

has two values: Program Category Satisfaction Degree (PCSD), and Program

Category Violation Degree (PCVD).

Table 3.12 Program Category Degree Table

The PCSD is the whole program Satisfaction Degree for each category. It is the sum

of the number of times a rule was satisfied in all functions in a Category, divided by

the sum of the number of times a rule was applicable in all functions for the same

Category, presented as a percentage. The PCVD is the whole program Violation

Degree for each category. It is the sum of the number of times a rule was violated for

all functions in a Category divided by the sum of all times a rule was applied for all

functions for the same Category, presented as percentage.

PCD%

PCSD % for satisfied rules PCVD % for violated rules

∑PCD for previous categories for

satisfied rules

∑PCD for previous categories for

violated rules

69

3.5.1.2 Accumulative Categories values (AC)

In the Robustness Grid, the rows show a different measurement from the columns. In

the Robustness Grid rows are the Language Features and Language Features

Weight measurement. Part of the Robustness Grid rows is the Accumulative

Category (AC), which shows an accumulative value for the number of rules that

have been applicable in Categories, Functions, and the whole program, and presents

the accumulative rules calculations of the previous Categories. The AC value is

calculated for all Language Features and Language Features Weights in the

Robustness Grid which is presented in the Function Robustness Grid (Table 3.10),

as well as the Robustness Degree for the entire program.

The FAC is the Function Accumulative Category value, which is the accumulative

value of all categories of a function or the entire program. The AC and FAC are used

to compare functions’ Robustness Degrees, which help determine which function is

the least or the most robust in term of Language Features and/or Language Features

Weight. They also help specify which function with the most effect (Slice Size) in the

program and determine its Robustness Degree.

As in all columns, PCD columns have the AC row. The AC row of PCD calculates

the accumulative values of both parts of PCD through categories showing the

Robustness Language Features Degrees for all functions through the Categories,

and how the Robustness Degree is affected in each category.

In the Robustness Grid, the intersection of FAC row with Function Category Degree

(FCD) column is the Whole Category Function Degree (WCFD). WCFD shows the

Robustness Degree for a Function in all Categories. WCFD will also have two

Degree values: Satisfaction and Violation.

Furthermore, the intersection of FAC row with PCD column is the Whole Program

Degree (WPD). WPD presents the Language Features Satisfaction and Violation

70

Degree for the whole program in all Categories. The WPD illustrates the final

Robustness Degree that a program scores for all Language Features that were

applied in all Categories. This Degree is presented as percentage to show the

relative measurement to the whole program Robustness Degree. The Whole

Satisfied Program Degree (WPSD) and Whole Violated Program Degree (WPVD)

are detailed the WPD of the program. The columns in Table 3.13 show the AC and

FCD equations that are part of the Function Robustness Degree measurement.

 Function name
FCD

%
PCD

%

A
C

n
u
m

b
e
r

o
f
ru

le
s
 t

h
a
t

h
a
v
e

 b
e
e
n

a
p
p

lic
a
b

le
 i
n
 p

re
v
io

u
s

c
a

te
g

o
ri
e
s

fu
n
c
ti
o

n
 ∑

s
a
ti
s
fi
e

d
 S

lic
e

 S
iz

e
s

fu
n
c
ti
o

n
 s

a
ti
s
fi
e
d
 w

e
ig

h
t

fu
n
c
ti
o

n
 ∑

v
io

la
te

d
 S

lic
e

 S
iz

e
s

∑
v
io

la
te

d
 w

e
ig

h
t
in

 a
 f
u

n
c
ti
o

n

fr
e

q
u

e
n

c
y
 f

o
r

a
ll

ru
le

s
 i
n
 a

F
u
n

c
ti
o
n

∑
a

ll
ru

le
s

S

lic
e

 S
iz

e
 i
n
 a

F
u
n
c
ti
o

n

∑
a

ll
ru

le
s

w

e
ig

h
t

in
 a

 F
u
n

c
ti
o
n

∑
F

C
S

 f
o
r

p
re

v
io

u
s
 c

a
te

g
o

ri
e
s

fo
r

b
o
th

 s
a

ti
s
fi
e

d
 a

n
d

 v
io

la
te

d

ru
le

s

∑
P

C
D

 f
o
r

p
re

v
io

u
s
 c

a
te

g
o

ri
e
s

fo
r

b
o
th

 s
a

ti
s
fi
e

d
 a

n
d

 v
io

la
te

d

ru
le

s

F
A

C

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

A
C

 o
f

a
ll

c
a
te

g
o

ri
e
s

W
C

F
D

 W
P

D

W
P

S
D

W
P

V
D

Table 3.13 AC and FAC equations

3.5.2 Category Calculations

The Category Calculations part of the Robustness Grid is related to Rules

Categories, where each Rule and Category will be analysed and measured using

Language Features characteristics: Rule Slice Size, Frequency, and Weight.

71

Category Calculations measure the Language Features individually and in the

Categories as well. The Language Features characteristics measure the Language

Features and the Categories show how a Rule or a Category is effective in the

program.

CATEGORY CALCULATIONS

C
a

te
g

o
ri
e
s

a

n
d

 r
u

le
s
 n

u
m

b
e
r

C
a

te
g

o
ry

S
a

ti
s
fi
e
d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

S
a

ti
s
fi
e
d

∑
S

lic
e

 S
iz

e
s

C
a

te
g

o
ry

S
a

ti
s
fi
e
d

W
e

ig
h
t

C
a

te
g

o
ry

V
io

la
te

d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

V
io

la
te

d
 S

lic
e

S
iz

e
s

C
a

te
g

o
ry

V
io

la
te

d

W
e

ig
h
t

C
a

te
g

o
ry

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

∑
S

lic
e

 S
iz

e
s

R
u

le

C
a

te
g

o
ry

W
e

ig
h
t

∑
fu

n
c
ti
o

n
s
 s

a
ti
s
fi
e

d

fr
e
q

u
e

n
c
y

∑
fu

n
c
ti
o

n
s
 ∑

s
a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

∑
fu

n
c
ti
o

n
s
 f
re

q
u

e
n

c
y

∑
fu

n
c
ti
o

n
's

 s
a

ti
s
fi
e

d

fr
e
q

u
e

n
c
y

∑
fu

n
c
ti
o

n
s
 v

io
la

te
d

fr
e
q

u
e

n
c
y

∑
fu

n
c
ti
o

n
s
 ∑

v
io

la
te

d

S
lic

e
 S

iz
e

s

∑
fu

n
c
ti
o

n
s
 f
re

q
u

e
n

c
y

∑
fu

n
c
ti
o

n
's

 v
io

la
te

d

fr
e
q

u
e

n
c
y

∑
a

ll
fu

n
c
ti
o

n
s

fr
e

q
u

e
n

c
y
 i
n

 a

c
a

te
g

o
ry

∑
fu

n
c
ti
o

n
s
 ∑

 S
lic

e

S
iz

e
s

∑
c
a

te
g

o
ry

 f
re

q
u

e
n

c
y

∑
fu

n
c
ti
o

n
s
 v

io
la

te
d

fr
e

q
u

e
n

c
y

AC

∑
C

a
te

g
o
ry

 s
a
ti
s
fi
e

d

fr
e

q
u

e
n

c
y

fo

r
p

re
v
io

u
s

c
a

te
g

o
ri
e
s

∑
C

a
te

g
o
ry

 s
a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

fo
r

p
re

v
io

u
s
 c

a
te

g
o

ri
e
s

∑
C

a
te

g
o
ry

 s
a
ti
s
fi
e

d

w
e

ig
h
t

 f
o

r
p

re
v
io

u
s

c
a

te
g

o
ri
e
s

∑
C

a
te

g
o
ry

 v
io

la
te

d

fr
e
q

u
e

n
c
y

fo

r
p

re
v
io

u
s

c
a

te
g

o
ri
e
s

∑
C

a
te

g
o
ry

 s
a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

fo
r

p
re

v
io

u
s
 c

a
te

g
o

ri
e
s

∑
C

a
te

g
o
ry

 v
io

la
te

d

w
e

ig
h
t

 f
o

r
p

re
v
io

u
s

c
a

te
g

o
ri
e
s

∑
C

a
te

g
o
ry

 f
re

q
u

e
n

c
y

fo
r

p
re

v
io

u
s
 c

a
te

g
o
ri
e

s

∑
C

a
te

g
o
ry

∑

S
lic

e

S
iz

e
s

fo
r

p
re

v
io

u
s

c
a

te
g

o
ri
e
s

∑
C

a
te

g
o
ry

 W
e

ig
h
t
 f

o
r

p
re

v
io

u
s
 c

a
te

g
o

ri
e
s

FAC

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

A
C

 f
o

r
a

ll

c
a

te
g

o
ri
e
s

WPW

Table 3.14 Category Calculations

1- Category Satisfied Frequency is the total number of times a rule was satisfied

in all functions in the program, which is equal to number of satisfied times for a

rule in all program functions.

72

2- Category Satisfied Slice Sizes is the total number of all Slice Sizes for all

Clauses that are applicable and satisfy a rule through all functions in the

program.

3- The multiplication result of Category Satisfied Slice Sizes by Category Satisfied

Frequency is the Category Satisfied Weight. The Category Satisfied Weight

presents the Rule Weight in the whole program, which measures the rule

effectiveness in the program. The rule with the highest weight value will be the

most effective rule in the program. The rule with the highest Satisfied Weight

value will be the most successfully effective rule in a program.

4- Category Violated Frequency is the number of times a rule was violated

through all functions. It is the same value of number of violated times for a rule

in all functions.

5- As with the Satisfied Rules, the Violated Rules will have the same measurement

equations. Category Violated Slice Sizes is the total number of all slices for all

rules where the slice was applicable and violated a rule through all functions.

This is the same as the total number of all function Violation Slice Sizes.

6- Category Violated Weight is the result of multiplying Category Violated Slice

Sizes by Category Violated Frequency. The Violated Weight reflects the

rational value that specifies the defective part of the program that needs to be

improved to increase the Robustness Degree. The violated rules will give a clue

about things that should be changed to get a higher Robustness Degree.

The general category attitude is shown by the Category ∑ Slice Sizes,

Category Frequency, and Rule Category Weight. These three columns show

the general performance of the Language Features Categories in all program

functions. They also show which Category is the one with the largest Weight,

73

the one with the highest frequency used, and the one with the most important

rules. These features identify the importance of each category.

7- Category Frequency expresses the number of times a rule was applicable in all

functions. It is equal to Total number of times of satisfied and violated for a rule

in all functions. This value shows the number of times a rule was used in the

program Clauses.

8- Category ∑ Slice Sizes are the total number of slices of a Clause that apply a

rule in all functions. This column describes the influence of the rule inside the

program by showing the size of a slice(s) that will be affected by this rule.

9- Rule Category Weight is the result of Category ∑ Slice Sizes multiplied by

Category Frequency in Category Calculation Table, which reveals the rule

importance compared with other rules regardless the Rule Satisfaction Weight

or Degree.

The importance of a rule will help in maintaining the important rules to get a

significant improvement of the general Robustness Degree. The rule with

largest Category Weight is the rule that has the largest impact on the program

Robustness Degree.

10- Whole Program Weight (WPW) is used in the measurement of the defect of

each Rule, or Category. WPW is another way to measure the rules, the

Categories, and the Functions importance and effectiveness.

11- AC and FAC are mentioned before in the Section 3.5.1.2.

Table 3.15 shows an example of how the Category Calculations are presented in the

Robustness Grid.

74

CATEGORY CALCULATIONS

C
a

te
g

o
ry

 a
n
d

 r
u

le
 n

u
m

b
e

rs

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

∑
S

lic
e

 S
iz

e

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

W
e

ig
h
t

C
a

te
g

o
ry

 V
io

la
te

d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

 V
io

la
te

d

∑
S

lic
e

 S
iz

e

C
a

te
g

o
ry

 V
io

la
te

d

W
e

ig
h
t

C
a

te
g

o
ry

 F
re

q
u

e
n

c
y

C
a

te
g

o
ry

∑

S
lic

e
 S

iz
e

R
u

le
 C

a
te

g
o

ry
 W

e
ig

h
t

5 9 45 3 15 45 8 12 96

5 9 45 0 0 0 5 9 45

13 70 910 0 0 0 13 70 910

0 0 0 3 13 39 3 13 39

1 4 4 0 0 0 1 4 4

AC 24 92 1004 6 28 84 30 108 1094

FAC 104 634 3609 25 197 350 128 823 4610

Table 3.15 Category Calculations example

Function Calculations mentioned in section 3.4.3 look at the program functions

individually. All Function Calculations depend on the function and Language Features

applicable in that function. In Robustness Grid, Function Calculations measure the

Rules vertically, starting from the first rule in the first Category, moving down till the

last rule in the sixth category.

In Program and Category Calculations, the Calculations are more about the

Language Features behaviour through the program in general, and these

calculations measure the Language Features Categories. In the Robustness Grid,

Program and Category Calculations measure the rules horizontally. For each rule,

the measurement starts from first rule in first function in the Robustness Grid moving

right till the last function.

3.6 Summary

The Robustness Grid measures the Robustness Degree of the functions and the

program written in C language. The Robustness Degree is a relative value that

75

shows the Robustness Features satisfaction status of the function and the program.

Robustness Features are characteristics that affect the program Robustness Degree.

These Features are: Language Features and Language Features Weight.

Language Features are code independent, where a set of Language Features are

selected, categorised, and used to measure the Robustness Degree.

The Language Feature Weights are produced by the Clause Slice technique and

some mathematical equations. The Language Feature Weights depend on the

program code.

The Clause Table is a table created by the Clause Slice technique, and used to

calculate the Language Features Weights and the Robustness Degree. The Clause

Table shows the importance of the program Clauses based on the Clauses Slice

Size, Clause Frequency, and Clause Weight, where the Clause with highest weight is

the most important Clause in the program.

The Robustness Grid is a table that combines both the Data Table and the Clause

Table. The Robustness Gird indicates a relative scale that illustrates the weak points

of the program that reduce the Robustness Degree of the Program. Pointing out the

rules that have a problem helps the developers and maintainers to raise the

Robustness Degree by fixing the defective Clauses that score low Robustness

Degrees. The equations of the Clause Table and the Robustness Grid are shown in

Appendices K and L, respectively.

76

Chapter Four

Implementation

4.1 Introduction

The implementation chapter shows the process steps that have been followed to

produce the Robustness Grid in terms of tools; the process is not fully automated.

However, some of process steps were done by tools already available in the market.

The language features identified in Chapter Three are encapsulated by the use of

MISRA C2 rules (reviewed in Chapter Two).

The implementation process starts with a C program, going through manual

measurement using the MISRA C rules. Furthermore, the program is sliced using the

CSurf tool. The Slices and MISRA C rules measurements will be weighted through

calculations done and presented using an Excel sheet.

77

4.2 Implementation Models

The implementation process described the robustness measurement of C program to

produce the Robustness Grid. The model, Figure 4.1, describe the implementation

process in high level.

Figure 4.1 Implementation High Level model

In the Implementation High Level model, Figure 4.1, a C program is the start point of

the implementation process. The C program will enter the Robustness checker to

produce the Robustness Grid.

In the Implementation Intermediate Level, Figure 4.2, expands the Robustness

Checker in the High Level model and is divided into two main pieces: Slicer and

Robustness Features Checker. The Slicer is a tool that does the Clause Slicing

with some related computation such as Clause Slice Size in the Clause Table (see

3.4.2.1). The Robustness Features checker takes the slicer output as an input, and

generates the Robustness Grid as an output.

Figure 4.2 Implementation Intermediate Level model

C program
Robustness

checker
Robustness

Grid

C program
Robustness
Features
Checker

Robustness
Grid Slicer

78

Rule Weight

Robustness

Grid

Rule Slice

Size

Calculator

Rule's

Frequency

Language

Rules

Rule

Clause

Checker

Selected

Rules

Clause

Frequency

Calculator

Slice Size

Calculator

Slicer
Legal C

Program

Auto
Auto

Manual

Manual

Manual

Manual

Auto

Auto

Auto

Auto

The Implementation Low Level model, Figure 4.3, has more details of the robustness

measurement procedure. A legal C program is a C program that meets the program

selection criteria mentioned in Section 3.1 and is qualified to be certified by the

Robustness checker.

Figure 4.3 Implementation Low Level model, where Auto means that the part is automatically

computed and Manual means it is manually computed.

79

The following table describes each entity of the low level model:

Entity Description

Legal C Program A C program that satisfies “program selection” conditions.

Slicer A slicing tool.

Clause Frequency

Calculator
Counting the number of times a Clause has been in a slice.

Slice Size Calculator Counting the number of Clauses in a slice.

Language Rules MISRA C2 guidelines.

Selected Rules
Set of MISRA C2 guidelines that satisfy the “rule selection”

conditions

Rule Clause Checker
A tool that certifies a program’s Clauses using MISRA C2

guidelines.

Rule Slice Size

Calculator

A calculation that counts the slice size of all Clauses that

satisfy a rule.

Rule’s Frequency Number of times a rule was applied.

Rule Weight
The importance Rule measurement which is equal to the

multiplication of Rule Frequency by Rule Slice Size.

Robustness Grid
The final table containing all details, calculations, and

robustness degrees.

Table 4.1 Low Level Terms

The in the Implementation process Low Level starts with a Legal C program, where

it is used as an input for both the Slicer and the Rule Clause Checker. In the Slicer,

each Clause in the program will be in the slicing criteria. The Slices enter the Clause

Frequency Calculator and the Slice Size Calculator to produce the Clause Weight.

Back to the start point, the legal C program will be certified by a selected group of

Language Rules. The certified Clauses will be combined together in the Rule

Clauses Checker where it will produce a set of rules that were applied in each

Clause with their satisfaction status. The outcome of the Rule Clause Checker and

the output of the Slice Size Calculator will be joined together in the Rule Slice Size

Calculator to produce the Slice Size for each rule.

80

The Rule Clause Checker will be used in the Rule’s Frequency to find out the times

a rule is being applied. By multiplying the Rule Slice Size by the Rule’s Frequency,

the result will be the Rule Weight. All of the previous entities together will construct

the Robustness Grid.

4.3 Implementation Tools

The tools used to implement the Robustness Grid are:

1. CSurf®: a slicing tool used to produce the Clause Slice for each Clause in a

program, which helps find a robustness measurement.

2. MS Excel®: a tool used to do the Function calculations, Program Category

Degree, and Category Calculations. Also, it is a tool that organises the

Robustness Grid to show each Function Calculations, and highlight the main

calculations such as FAC, WPAC, and WPW.

 4.4 Summary

The Robustness Grid contains MISRA C2 rules with their Categories, in addition to

the Function Calculations, the Program Calculations, and the Category Calculations.

Each one of these parts is created or measured by some tool or technique.

MISRA C2 rules are provided by the MISRA Organisation that provided these rules

as C language standards. The Function Calculations are the MISRA C2 rules manual

measurements for the function and with some help from CSurf for Slices and Weight,

and MSExcel for doing the calculations. These tools are used to do the Program and

Category Calculations as well.

The Implementation process can simply be described as follows:

1. Each Clause in the program is assessed against all the selected MISRA C2

rules.

81

2. All selected rules will be put in their categories depending on the Robustness

Featuring Categorisation method defined in Section 3.2.2.2.

3. Each rule has the applied status next to it, showing whether it is satisfied,

violated, or not applicable.

4. Program Clauses will be sliced to create the Clause Table in Section 3.4.2.1

(Table 3.4).

5. MISRA C2 Rules will be applied depending on the Program Clauses.

6. The Rules will be measured using the Clause Table to Create the Data Table

in Section 3.4.2.2.

7. Program Clauses will be grouped by their function.

8. For each function, the satisfaction status, Slice Size, Frequency, and Weight

of all rules is listed.

9. The Robustness Grid calculations are made for each Function (FCD) and

Category (ACD) in Section 3.5.1.2 (Table 3.12), and for the entire program

(PCD) Section 3.5.1.1 (Table 3.12).

10. The Category Calculations are calculated for all rules are made, detailed in

Section 3.5.2 (Table 3.14).

11. The Function Calculations, Program Calculations, and Category Calculations

all together create the Robustness Grid.

82

Chapter Five

Results

5.1 Introduction

The Robustness Grid measures the Robustness Features for programs written in the

C language. This chapter will present the result of a case study of the Robustness

Grid using an example program. The example is a small C program and will be used

to follow each step of Robustness Grid constructing process.

5.2 SwapoAdd.c - The C program

In this case study, the SwapoAdd.c program has been written according to the

Program Selection Criteria discussed in Section 3.1.

SwapoAdd.c, see Appendix B, has four functions: main, swap, incr, and one.

Function one has one parameter and prints it every time a condition is satisfied.

83

Function swap exchanges two pointers. Function incr increments its first parameter

by the value in its second parameter, and the function main is the main program.

5.3 SwapoAdd.c Clause Table

The Clause Table, in Appendix C, shows the program Clause characteristics: Clause

Number, Slice Size, Clause Frequency, Clause Weight, Function Name, and

Applicable Rules. In this Table, the first column has the Clause Number. If the Clause

Number is followed by a star (*), it means this Clause is considered an un-sliceable

Clause. The SwapoAdd.c program has 60 Clauses, 7 of which are un-sliceable.

The Slice Size is the number of Clauses in a slice. The Slice Size is produced by

slicing on the Clause that is listed in the Clause Number column.

In the SwapoAdd.c program, Clause number 9 has the largest effect as shown in

Figure 5.1, because it has the largest Slice Size. In the SwapoAdd.c program, Clause

9 is the definition of the function main (int main ()). The main function has the

most effect in the program, which is always true because the main function call all

function in the program, directly and indirectly.

The second most effective Clause is Clause number 27 (int index) with Slice Size

value = 17. It is used by different Clauses, and the for loop depends on it because it

uses it as a variable index, and thus it has more effect than other Clauses.

84

1
1
1
1

4
1
1
1

53
12

5
8

7
4

11
10
10

8
4
4

3
1
1

15
7

6
17

16
15
15

8
3

5
1
1
1
1

2
5

3
3

2
12

6
5

3
2
2

3
1
1

3
1
1

6
2

3
1
1

2

0 10 20 30 40 50 60

1*
2*
3*
4*
5

6*
7*
8*
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C
la

u
s
e
 N

u
m

b
e
r

Slice Size

Figure 5.1 SwapoAdd.c Clause Slice Size

Another factor that measures the Clause is Clause Frequency. Clause Frequency is

the number of times a Clause has been in a slice, including the Clause itself as a

slice. Clause Frequency measures the use of the Clauses in the program, where the

Clause with highest frequency is the one most used. Un-sliceable Clauses have a

Clause Frequency equal to 1, since un-sliceable Clauses are only contained in their

own slice.

In Figure 5.2, Clause number 23 has the highest Clause Frequency (15). Clause 23

is the definition of the variable sum, and this variable is the most used variable in the

program. Clause 54 has the second largest Clause Frequency with 13, and then

85

each of the Clauses 42, 51, and 59 occur 12 times in a slice. However, Clause

Frequency always depends on the Frequency of the Clause used.

1
1
1
1

2
1
1
1

2
2
2
2
2
2

3
5
5

6
7
7

2
3

15
2

4
4

2
3

5
5

6
8

6
7

8
8
8

2
7

10
10

12
3

7
7
7

10
11

4
5

12
4

5
13

8
10

8
9

12
8

0 2 4 6 8 10 12 14 16

1*
2*
3*
4*
5

6*
7*
8*
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C
l
a
u

s
e

N

u
m

b
e
r

Clause Frequency

Figure 5.2 SwapoAdd.c Clause Frequency

Clause Frequency and Slice Size are independent. A Clause could have a high value

for Clause Frequency but a small value for Slice Size, and vice versa.

86

Clause Frequency and Slice Size both generate the Clause Weight. The Clause

Weight measures the Clause’s importance in the program since it includes the Slice

Size that measures the Clause effect and Clause Frequency which measures

number of times the Clause has been used in slices.

Figure 5.3 SwapoAdd.c Clause Weight

If two Clauses are equal in weight, it means that they have the same importance

level. However, it does not necessarily mean that they are in the same function,

Clause Frequency, or Slice Size. For example, Clauses 10, 26, 32 and 42 have the

87

same Weight, where Clause 10 is in main, Clause 26 in swap, Clause 32 in one, and

Clause 42 in incr. Also, Clause 10 has Slice Size = 12 and Clause Frequency = 2,

and by calculation, the Clause Weight is 122= 24. For Clause 26, the Slice Size = 6,

Clause Frequency = 4, and thus the Clause Weight is 64= 24. In Clause 32 the

Slice Size = 3, Clause Frequency = 8, which means the Clause Weight is equal to

3X8 = 24. Same as in Clause 48 which has Slice Size = 2 and Clause Frequency =

12 which means the Clause Weight is 212=24. This case is also repeated in other

Clauses, such as 20 and 25, and in Clauses 18 and 28.

The Clause Table also shows the rules that were satisfied or violated by each Clause

in the SwapoAdd.c program. The Clause Table will help the developers and

maintainers by showing them which Clauses need to be maintained to improve the

Robustness Degree of the Program.

5.4 SwapoAdd.c Data Table

The Data Table, in Appendix D, is the table that shows the rule characteristics: Rule

Number, Number of Satisfied, Satisfied Slice, Number of Violated, and Violated

Slice. The Data Table is based on the rules, whereas the Clause Table is based on

the Clauses. In the Data Table, the rule status is measured through the whole

program, depending on how many times the rule was satisfied or violated and how

that affected the program.

The Rule Number column contains the rules that are in the Applicable Rules column

in the Clause Table. Rules in the Rule Number column are sorted in numerical order

using their number in the MISRA C2 definition.

The columns Number of Satisfied and Number of Violated show the number of times

a rule has been satisfied or violated in the program.

88

8
5

13
3

1
3

2
6
6

1
4

1
2

4
4

5
4

2
8

9
3
3

1
2

8
1
1
1
1
1
1

2
2

3
1
1

4

0 2 4 6 8 10 12 14

4.1 + 7.1
4.2
5.1
5.2
6.1

12.2
12.3
13.4
13.5
13.6
14.7
17.1
17.5
8.1
8.2
8.3
8.6

14.8
16.1
16.2
16.3
16.4
16.5
16.8
16.9
8.12
9.2

19.6
20.2
20.9
6.3

11.3
12.1
17.4
19.1
19.2
19.7

C
a
t
.
 1

C
a
t
.
 2

C
a
t
.
 3

C
a
t
.

4
C

a
t
.
5

C
a
t
.
 6

R
u

l
e
s

i
n

t
h

e
i
r

C

a
t
e
g

o
r
i
e
s

Rule Frequency

Figure 5.4 Rule Frequency

Figure 5.4 shows the Rule Frequency which is equal to the number of times a rule

been applied and shown as the Category Frequency in the Category Calculation

table (see Appendix J). Rule 5.1 is the most frequent rule because it considers the

number of characters in identifiers. Therefore, every time an identifier is mentioned,

the 5.1 rule is applied. 12 rules have the lowest number frequency with a value of 1.

The Applied Rules on the SwapoAdd.c program (see Appendix J), the rule may have

one of these three scenarios: First, the rule is always satisfied in all the times it has

been applicable, Rule 5.1 as an example. These rules have 0 values in the Number

89

of Violated and Violated Slice, and the Rule Slice Size and Frequency in the

Robustness Grid is equal to the Number of Satisfied and Satisfied Slice.

Second, Rules that are always violated every time they have been applied in the

program, such as Rule 19.7. These rules score 0 values in the Number of Satisfied

and Satisfied Slice, and the Rule Slice Size and Frequency in the Robustness Grid

is equal to the Violated Slice Size and Frequency.

Third, rules that have been satisfied in some Clauses and violated in others such as

Rule 16.1. The Rule Frequency for these rules will be equal to Number of times a

rule has been applied (both Satisfied and Violated). Rule Slice Size is the sum of the

Total Satisfied Slices and the Total Violated Slices.

Figure 5.5 shows the satisfaction and violation relative relation of all Applicable Rules

in the SwapoAdd.c Program.

There are 25 out of 37 rules are satisfied every time they were applied, and 7 out of

37 rules that are violated all the times they were applied. The remaining 5 rules are

satisfied and violated in different places in the program.

90

5
5

13
0

1
3

2
6
6

0
2

0
2

3
4

5
4

2
4

9
3
3

0
2

8
1
1

2
1
1

0
0

2
2

1
1

0

3
0

0
3

0
0

0
0
0

1
2

1
0

1
0

0
0

0
4

0
0
0

1
0

0
0
0

0
0
0
1

2
0

1
0
0

4

0 2 4 6 8 10 12 14

4.1 + 7.1
4.2
5.1
5.2
6.1

12.2
12.3
13.4
13.5
13.6
14.7
17.1
17.5
8.1
8.2
8.3
8.6

14.8
16.1
16.2
16.3
16.4
16.5
16.8
16.9
8.12
9.2

19.6
20.2
20.9
6.3

11.3
12.1
17.4
19.1
19.2
19.7

C
a
t
.

1

C
a
t
.

2

C
a
t
.

3

C
a
t
.

4
C

a
t
.
5

C
a
t
.

6

R
u

l
e
s

i
n

t
h

e
i
r

C

a
t
e
g

o
r
i
e
s

Frequency Satisfied Violated

Figure 5.5 Rule Satisfaction/Violation Frequency Comparisons

5.5 SwapoAdd.c Robustness Grid

5.5.1 Functions Category Degree

In the Function Calculations, the 37 rules that are applicable will be used to measure

the four functions in the SwapoAdd.c program.

91

27

16

9
8

31

16 16
15

0

5

10

15

20

25

30

35

main swap one incrFunction name

Number of Clauses

Number of Applied Rules

Figure 5.6 Number of Clauses and Applied Rules in each function

Figure 5.6 shows that in the SwapoAdd.c program there is a positive relationship

between the number of Clauses and the number of rules have been applicable in the

function. The positive relation may not be the case in another program. The function

main has the highest number of Clauses and the highest number of Applicable

Rules. Function incr has the lowest number of Clauses and Applicable rules in the

program.

9 rules out of the 37 rules are applied in all the program functions. These rules can

be used to give a general idea of how the functions have different or similar styles,

and whether the developer took care of these rules during the program writing or not.

 5.5.1.1 incr Function

Function incr has 8 Clauses that make it the function with the smallest number of

Clauses in the program. 15 out of 37 rules are applicable in the incr function. These

rules were applied 17 times; 13 times were satisfied and 4 times were violated.

Therefore, the Function Satisfied Accumulative Categories (FSAC) for the incr

function = (13/17) %= 76.5%.

92

In Categories 1 and 3, the incr function has 100% Function Category Satisfaction

Degree (FCSD), which means that the incr function satisfied all Applicable Rules in

these two categories. However, the incr function fails to satisfy any Applicable Rules

in Category 6 where the function scores 100% in Function Category Violated Degree

(FCVD). In Category 2, the incr function satisfies 1 out of 3 Applicable Rules, which

means the values of FCSD and FCVD are 33.3% and 66.7%, respectively.

In Categories 4 and 5, the function has no Applicable Rules, which leave the

Robustness Degree values not applicable or equal to 0 for both of FCSD and FCVD.

Figure 5.7 shows the number of Applicable Rules in the incr function. It also shows

the number of times the Applicable Rules have been satisfied and/or violated. Some

of the Applicable Rules are applied on the program more than once, and this is why

in some cases the satisfied times are more than the number of Applicable Rules. The

function incr will be discussed in details in section 5.6.1 as a part of the result

evaluation.

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Category

Applied Rules Number of Satisfied Number of Violated

Figure 5.7 Applicable rules for function incr

93

5.5.1.2 swap Function

Function swap, as shown in Appendix E, has 16 Clauses, 16 rules out of 37 applied

29 times and they are satisfied 21 times, and violated 8 times, which means that

FSAC = (21/29) % = 72.41%.

The swap function fails to have 100% FCSD in any of the 6 Categories. Moreover,

the swap function has 100% FCVD in Categories 2 and 6. This does not affect the

satisfaction degree since the most applicable rules are applied in the remaining

Categories. In Category 1, the swap function satisfies 7 out of 9 applicable rules,

which means that the values of FCSD and FCVD are 77.78% and 22.22%,

respectively. The satisfaction percentage rises in Category 3 to 87.50% where the

rules are satisfied 14 times out of the 16 times they were applied.

For Categories 4 and 5, the function has no Applicable Rules, and this leaves the

Robustness Degree values equal to 0 for both of FCSD and FCVD.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

Category
Applied Rules Number of Satisfied Number of Violated

Figure 5.8 Applicable rules for function swap

Figure 5.8 shows the Applicable Rules in the swap function.

The full Function Calculation Table of function swap is shown in Appendix E.

94

5.5.1.3 one Function

Function one, as shown in Appendix F, has 9 Clauses, 16 rules out of 37 have

measured the Robustness Degree and these rules have been applied 19 times; 16

times they have been satisfied and 3 times they have been violated, which mean the

FSAC = (16/19) % = 84.21%.

In Category 2, the one function has 100% Function Category Satisfaction Degree

(FCSD), and in Categories 1 and 3, the function score a high robustness degree;

75% and 92.3%, respectively. However, the one function fails to satisfy any

Applicable Rules in Category 6 where the function scores 100% in Function Category

Violated Degree (FCVD).

In Categories 4 and 5, the function has no Applicable Rules and this leaves the

Degree values equal to 0 for both FCSD and FCVD.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

Category

Applied Rules Number of Satisfied Number of Violated

Figure 5.9 Applicable rule for function one

Figure 5.9 shows the Applicable Rules in the one function. In function one, Category

3 has the most number of Applicable Rules, which makes Category 3 have a

95

significant effect on the final FAC value of the function. The full Function Calculation

Table of the one function is shown in Appendix F.

5.5.1.4 main Function

The function main is the function that is the entry point of the program calls all other

functions in the program. With 27 Clauses, as shown in Appendix G, function main

has the largest number of Clauses. 31 out of 37 rules have been identified as

contributing to the Robustness Degree of the function main. These rules have been

applied 63 times; 50 times they have been satisfied and 12 times they have been

violated, which mean the FSAC = (50/63) % = 79.37%.

For Categories 4 and 5, function main has 100% Function Category Satisfaction

Degree (FCSD). Since the rules only apply once in these categories and they have

all been satisfied, the number of Applicable Rules is equal to the number of times a

rule is satisfied. Figure 5.10 shows the Applicable Rules in function main. It shows

that the Category 2 has the most number of Applicable Rules in function main, which

makes it the most effective category in the final FAC of function main.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

Category

Times of Applicable Number of Satisfied Number of Violated

Figure 5.10 Applicable rule for function main

96

Function main has a high degree in Category 2 with 95%, where Categories 1, 3, and

6 score 80%, 78.57%, and 75%, respectively. The full Function Calculation Table of

function main is shown in Appendix G.

5.5.2 Program Category Degree

Accumulative Category (AC) shows the function and the program behaviour through

the Language Features Categories. It also gives the Robustness Degree of each

function in all categories for the Function Accumulative Category (FAC). Figure 5.11

shows the FSAC for each function of the program, and the Whole Program Degree

(WPD).

76.50%

72.41%

84.21%

79.37%

81.25%

70.00%

75.00%

80.00%

85.00%

incr swap one main all

Function

F
S

A
C

Figure 5.11 Function Satisfaction Accumolative Degree

Figure 5.11, shows that the swap function has the lowest Robustness Degree with

FSAC = 72.41%, and it is the function that least satisfies the Language Features.

The one function has the highest value with FSAC = 84.21%. As noticed, all

functions’ FSAC values are close to each other. This reflects on the Whole Program

97

Satisfied Degree (WPSD) value, which is equal to 81.25% and is almost in the middle

between the highest and lowest Robustness Degrees scored by each function.

Program Category Degree (PCD) is the part of Robustness Grid that shows the

Robustness measurement for all functions in the program. In Figure 5.12, the graph

compares the Program Satisfied Category Degree (PSCD) with the Program Violated

Category Degree (PVCD). It shows that all rules in Categories 4 and 5 are satisfied.

In Categories 1, 2, and 3, the PSCD has a larger Robustness Degrees over the

PVCD for the same categories. However, in Category 6, the PVCD has a slightly

larger value over the PSCD, since there are more rules that have been violated than

satisfied.

Since all functions have a good Robustness Degree, the whole program has 81.25%

as a Robustness Degree value.

80.0%

84.0%

88.7%

100.0%

100.0%

43.0%

20.0%

16.0%

11.3%

0.0%

0.0%

57.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Category 1

Category 2

Category 3

Category 4

Category 5

Category 6

C
a
te

g
o

ri
e
s

PCD

PSCD PVCD

Figure 5.12 Comparison between PSCD and PVCD

5.5.3 Category Calculations

In Category Calculations, the Language Features characteristics: Category Slice

Size, Category Frequency, and Rule Category Weight are used to identify the

98

Language Feature importance and the effect in the program. Figure 5.13 shows the

Rule Category Weight that has been used to measure the SwapoAdd.c program and

its functions.

64
25

1027
39

4
9

50
462
462

8
304

2
30

304
304

95
300

52
528

567
9
9

53
8

384
4
4
4
1
1
1
10

4
12

1
1

224

0 200 400 600 800 1000 1200

4.1 + 7.1
4.2
5.1
5.2
6.1

12.2
12.3
13.4
13.5
13.6
14.7
17.1
17.5
8.1
8.2
8.3
8.6

14.8
16.1
16.2
16.3
16.4
16.5
16.8
16.9
8.12
9.2

19.6
20.2
20.9
6.3

11.3
12.1
17.4
19.1
19.2
19.7

C
a
t.
 1

C
a
t.
 2

C
a
t.
 3

C
a
t.

4
C

a
t.
5

C
a
t.
 6

R
u

le
s
 i
n

 t
h

e
ir

 c
a
t
e
g

o
r
ie

s

Rule Weight

Figure 5.13 Rule Category Weight

It is noticeable that there are several rules that have small Weight values. Therefore,

the change in these rules satisfaction status will not significantly affect the

Robustness Degree. On the other hand, the rules with high Rule Category Weight

values are the ones that affect the overall Robustness Degree. For example, Rule

5.1 will significantly affect the Robustness Degree if it is changed from being satisfied

all the time to become violated. In such a case, the Robustness Degree will be

99

dropped to 71.09%. The Category Calculations give an indication as to which parts of

the codes should be maintained first to raise the Robustness.

0

200

400

600

800

1000

1200

Rules in their Categories

Weight

Satisfied Violated

Violated 9 0 0 39 0 0 0 0 0 8 34 2 0 35 0 0 0 0 40 0 0 0 53 0 0 0 0 0 0 0 1 10 0 2 0 0 224

Satisfied 25 25 102 0 4 9 50 462 462 0 118 0 30 69 304 95 300 54 224 567 9 9 0 8 384 4 4 4 1 1 0 0 4 4 1 1 0

4.1 + 7.14.2 5.1 5.2 6.1 12.2 12.3 13.4 13.5 13.6 14.7 17.1 17.5 8.1 8.2 8.3 8.6 14.8 16.1 16.2 16.3 16.4 16.5 16.8 16.9 8.12 9.2 19.6 20.2 20.9 6.3 11.3 12.1 17.4 19.1 19.2 19.7

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat.5 Cat. 6

Figure 5.14 Satisfied/ Violated rules Weights

In Figure 5.14, the rules Satisfied and Violated Weight are shown. This Figure can

help the maintainer to determine which rules should have the highest priority in the

maintenance process. In the SwapoAdd.c program, Rule 19.7 (Category 6) comes

first, since it has the largest Violated Weight, and then Rules 16.5, 16.1, and 8.1.

100

5.6 Results Analysis

In this section, an example of a function in the SwapoAdd.c program is shown to

clarify how calculations are made. The critical issues will be pointed out, and the

SwapoAdd.c program results will be explained.

5.6.1 Function incr as an example

In this section, the Robustness Grid will be built, step by step, for the incr function.

The incr function has been chosen because it is the function with the smallest

number of Clauses which make it an easy function to be used to explain the

Robustness Grid construction steps.

Function incr has 8 Clauses, the Clauses and their numbers are as follows:

void incr(int *num, int i);6

incr18(&sum19, i20); }

void incr39(int *num40, int i41) {

*num = *num + i;}42

Each one of the Clauses and its number were used as the Slicing Criteria of the

Clause Slice. The following Table 5.1 shows each one of these Clauses with its slice,

where the Clauses and its slices are underlined.

In Table 5.1, Clause 6 is an un-sliceable Clause, so its slice is the clause itself. In the

Clause Table for the function incr, the Clauses are measured against the MISRA C2

rules, and weighted using their Slice Sizes and Clause Frequency. Table 5.2 shows

the Clause Table for Function incr.

101

The Clause The Slice

void incr(int *num, int i);6 void incr(int *num, int i);6

incr18(&sum19, i20);}

incr18(&sum19, i20); }

printf("sum = %d\n", sum23);

void incr39(int *num40, int i41)
{

*num = *num + i;}42

incr18(&sum19, i20); }

incr18(&sum19, i20); }

printf("sum = %d\n", sum23);

void incr39(int *num40, int i41)
{

*num = *num + i;}42

incr18(&sum19, i20); }

incr18(&sum19, i20); }

printf("sum = %d\n", sum23);

void incr39(int *num40, int i41)
{

*num = *num + i;}42

void incr39(int *num40, int i41)
{

printf("sum = %d\n", sum23);

void incr39(int *num40, int i41)
{

*num = *num + i;}42

void incr39(int *num40, int i41)
{

printf("sum = %d\n", sum23);

void incr39(int *num40, int i41)
{

*num = *num + i;}42

void incr39(int *num40, int i41)
{

printf("sum = %d\n", sum23);

void incr39(int *num40, int i41)
{

*num = *num + i;}42

*num = *num + i;}42 printf("sum = %d\n", sum23);

*num = *num + i;}42

Table 5.1 incr Clauses slices

The Clauses Weight range in the incr function is between 16 and 48, except for

Clause 6, which has the lowest weight value equal to 1 and that because it is an un-

sliceable Clause.

102

Clause
Number

Slice
Size

Clause
Frequency

Clause
Weight

Function
Name

Applicable Rules

Satisfied Violated

6* 1 1 1 incr 16.3, 16.4, 16.1 19.7

18 8 6 48 incr 16.2, 16.9 13.6

19 4 5 20 incr 0 0

20 4 4 16 incr 0 0

39 5 7 35 incr 8.1, 8.2, 8.6 14.7

40 3 10 30 incr 5.1, 8.3 0

41 3 10 30 incr 5.1, 8.3 0

42 2 12 24 incr 12.2 17.1, 17.4

* Un-sliceable Clause
Table 5.2 Clause Table for incr

The Data Table of the incr function is constructed using all the functions’ Clause

Tables, since the Data Table is related to the MISRA C rules which have been

applicable in other program functions and their values are affected by them. Table

5.3 shows the Data Table of the Rules that have been applicable in the incr function.

The Data Table of all the rules applicable in the program is given in Appendix D.

Rule Number Number of Satisfied ∑Satisfied Slices Number of Violated ∑Violated Slices

5.1 13 79 0 0

8.1 3 23 1 53

8.2 4 76 0 0

8.3 5 19 0 0

8.6 4 75 0 0

12.2 3 3 0 0

14.7 2 59 2 17

16.1 4 56 4 10

16.2 9 63 0 0

16.3 3 3 0 0

16.4 3 3 0 0

16.9 8 48 0 0

17.1 0 0 1 2

17.4 2 2 1 2

19.7 0 0 4 56
Table 5.3 Data Table of Applicable Rules in the incr Function

The incr Function Calculations, Table 5.4, use the Data Table, which provides the

Satisfied and Violated Frequency and the Slice Size. The rest of the calculations are

103

derived from the Slice Size and the Clause Frequency. However, the Function

Category Degree (FCD) is calculated using the Applied Rules column.

The Category Calculations depend on the Applicable Rules in the program and it can

measure the Applicable Rules in a function. However, the Category Calculations do

not measure the number of times the rules have been applicable in the function. This

kind of measurement is made in the Function Calculations.

The overall FAC value of the function incr is 76.47% of applied rules have been

satisfied and 23.53% have been violated.

In the incr Function, Rules 5.1 and 8.3 have the largest values in the Applied Rules,

Satisfied, and Satisfied Slice Sizes in Table 5.4 columns. On the other hand, the

function has some rules with low values such as rules 16.3, 16.4, and 17.1. Rule 14.7

has the largest value in Violated Slice Sizes and Violated Weight columns for incr

function.

104

Categories
Rule

Number

Incr FCD %

A
p
p
lie

d

R
u
le

s

∑
S

a
ti
s
fi
e

d

S
lic

e
 S

iz
e
s

S
a
ti
s
fi
e

d

W
e
ig

h
t

∑
V

io
la

te
d

S
lic

e
 S

iz
e
s

V
io

la
te

d

W
e
ig

h
t

F
u

n
c
ti
o

n

F
re

q
u
e
n
c
y

R
u
le

 ∑

F
u
n
c
ti
o

n

S
lic

e
 S

iz
e

R
u
le

F
u
n
c
ti
o

n

W
e
ig

h
t

FCSD
%

FCVD
%

Category 1

4.1 + 7.1 0 0 0 0 0 0 0 0

2/2 =
100%

0/2=0%

4.2 0 0 0 0 0 0 0 0

5.1 +2 6 12 0 0 2 6 12

5.2 0 0 0 0 0 0 0 0

6.1 0 0 0 0 0 0 0 0

AC 5 1 6 12 0 0 2 6 12
2/2 =
100%

0/2=0%

Category 2

12.2 +1 1 1 0 0 1 1 1

1/3 =
33.3%

2/3 =
66.7

12.3 0 0 0 0 0 0 0 0

13.4 0 0 0 0 0 0 0 0

13.5 0 0 0 0 0 0 0 0

13.6 0 0 0 0 0 0 0 0

14.7 -1 0 0 5 5 1 5 5

17.1 -1 0 0 2 2 1 2 2

17.5 0 0 0 0 0 0 0 0

AC 1-2 13 4 8 14 7 7 5 14 20
3/5 =
60%

3/5 =
60%

Category 3

8.1 +1 5 5 0 0 5 5 5

10/10 =
100%

0/10 =
0%

8.2 +1 5 5 0 0 5 5 5

8.3 +2 6 12 0 0 6 6 12

8.6 +1 5 5 0 0 5 5 5

14.8 0 0 0 0 0 0 0 0

16.1 +1 1 1 0 0 1 1 1

16.2 +1 8 8 0 0 8 8 8

16.3 +1 1 1 0 0 1 1 1

16.4 +1 1 1 0 0 1 1 1

16.5 0 0 0 0 0 0 0 0

16.8 0 0 0 0 0 0 0 0

16.9 +1 8 8 0 0 8 8 8

AC 1-3 25 13 40 60 7 7 45 54 66
13/15 =
86.7%

2/15 =
13.3%

Category 4
8.12 0 0 0 0 0 0 0 0

0 0
9.2 0 0 0 0 0 0 0 0

AC 1-4 27 13 40 60 7 7 45 54 66
13/15 =
86.7%

2/15 =
13.3%

Category 5

19.6 0 0 0 0 0 0 0 0

0 0 20.2 0 0 0 0 0 0 0 0

20.9 0 0 0 0 0 0 0 0

AC 1-5 30 13 40 60 7 7 45 54 66
13/15 =
86.7%

2/15 =
13.3%

Category 6

6.3 0 0 0 0 0 0 0 0

0/2 =
0%

2/2 =
100%

11.3 0 0 0 0 0 0 0 0

12.1 0 0 0 0 0 0 0 0

17.4 -1 0 0 2 2 1 2 2

19.1 0 0 0 0 0 0 0 0

19.2 0 0 0 0 0 0 0 0

19.7 -1 0 0 1 1 1 1 1

FAC 37 15 40 60 10 10 47 57 69
13/17 =
76.47%

4/17 =
23.53%

Table 5.4 incr Function Calculations

105

Table 5.5 shows the rules applicable in the incr function and their overall Category

Calculations. Table 5.5 also shows that the incr Function has applied the most

important applicable rule in the program, which has the biggest Weight Value among

all other rules; Rule 5.1.

For the Function Calculations, Rule 5.1 has been applied and satisfied twice in the

function. Moreover, almost half of the incr function applied rules are in mid-level

weight values compare with all other rules, which lead to the conclusion that the incr

function has a medium level of importance.

Rule
Number

CATEGORY CALCULATIONS

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

∑
S

lic
e

 S
iz

e
s

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

W
e

ig
h
t

C
a

te
g

o
ry

 V
io

la
te

d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

 V
io

la
te

d

S
lic

e
 S

iz
e

s

C
a

te
g

o
ry

 V
io

la
te

d

W
e

ig
h
t

C
a

te
g

o
ry

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

∑

S
lic

e

S
iz

e
s

R
u

le
 C

a
te

g
o

ry

W
e

ig
h
t

5.1 13 79 1027 0 0 0 13 79 1027

12.2 3 3 9 0 0 0 3 3 9

14.7 2 59 118 2 17 34 4 76 304

17.1 0 0 0 1 2 2 1 2 2

8.1 3 23 69 1 53 35 4 76 304

8.2 4 76 304 0 0 0 4 76 304

8.3 5 19 95 0 0 0 5 19 95

8.6 4 75 300 0 0 0 4 75 300

16.1 4 56 224 4 10 40 8 66 528

16.2 9 63 567 0 0 0 9 63 567

16.3 3 3 9 0 0 0 3 3 9

16.4 3 3 9 0 0 0 3 3 9

16.9 8 48 384 0 0 0 8 48 384

17.4 2 2 4 1 2 2 3 4 12

19.7 0 0 0 4 56 224 4 56 224

SUM 73 509 3119 13 138 337 76 649 4078

Table 5.5 incr function Category Calculations

106

5.6.2 SwapoAdd.c Functions’ behaviour

Robustness Grid presents the different functions evaluations. Table 5.6 shows a

comparison between the SwapoAdd.c functions.

Table 5.6 Comparison between SwapoAdd.c functions

Furthermore, it shows that the function main is the most important function in the

program, since it has the biggest values mainly in the Function Weight.

Furthermore, the comparison shows that the Number for Clauses of a function has

no relation with the Number Applied Rules for the same function. For example, the

functions one and swap have 16 and 9 Clauses, respectively. However, they are

equal in the number of Applied Rules. In addition, the number of Applied Rules has a

minor effect on the Rule Function Weight. For the same functions, swap and one, the

Rule Function Weight is significantly different although they have the same number

of Applied Rules. On the other hand, Slice Size and Total Rule Frequency for a

function are both the direct factors that produce the total Rules Function Weight,

where the Function in the Category Calculation uses them for all Functions. It is for

this reason which explains the difference between Function Weight in the Rule

Function Factors Function Name incr swap one main

Number of Clauses 8 16 9 27

Applied Rules 15 16 16 31

Total Rule Frequency 17 29 19 63

FAC 76.5% 72.41% 84.21% 79.37%

Total Rules Function Weight using

Function Calculations
69 414 88 2040

Function Weight using Category

Calculations
4078 4193 4191 5202

107

Function Weight using Function Calculations or using the Category Calculations. The

main function scores the highest weight, where as the incr function scores the lowest.

As a conclusion, it is not how many rules have been applied in the function, but

indeed it is which rules have been applied on the function that indicates the function

effect and importance.

5.7 Summary

This chapter has presented the Robustness Grid measurement of the SwapoAdd.c

program, where the program has 81.25% as the Robustness Degree scored in

Program Satisfied Category Degree (PSCD), and the Whole Program Weight (WPW)

is 5366.

The Clause Table measures each clause in the program. It shows that Clause

number 9 has the highest Weight value. The un-sliceable clauses have scored the

lowest Weight and this is as expected since they have no slice but themselves, and

they have not been in any other slice.

The Data Table measures the satisfaction status, and the number of times a rule has

been applicable in the program. Rule number 5.1 has the highest number of times it

has being applicable and satisfied. It also has the highest Satisfied Slice Size. On the

other hand, there are some rules that measure only un-sliceable one clause. They

scored low numbers of satisfaction times and Slice Size. Rule 5.1 is the Applicable

Rule that has been satisfied the most, where 16.1 and 19.7 are the most violated

rules.

The Robustness Grid is built step by step, where the Clauses are measured first,

then the rules, then the Functions’ Calculations is constructed. These steps only

measure individual pieces of the program. Therefore, to produce the full Robustness

Grid, these small measurements are accumulated by other Calculations: AC, FAC,

108

PCD, and Category Calculations. These calculations measure the program as one

piece and from different points of view.

Table 5.7 shows a Managerial-View of the Robustness Grid, where only a summary

of the main Robustness Degrees are presented. The Managerial-View Table is very

useful to help the developer where it shows the function with its weight and

Robustness Degrees which indicates the functions priority to be maintained to get a

higher Robustness Degree. The function with high weight and lowest Robustness

Degree is the Function that must be maintained first because it will have a significant

effect on the rest of the program. The developer has the chose to either give the

priority to the Function Rules Weight or to the Category Weight to put the

maintenance plan. In Table 5.7 the function swap has been chosen to be maintained

since it has the lowest Robustness Degree, with quite high Function Weight value.

Category 6 has a low Robustness Degree but a low Category Weight Value, which

has a lower effect than the swap function.

Rule
Categories

incr swap one main PCD Category
Weight FCSD FCSD FCSD FCSD PCSD

Category 1
2/2 =
100%

7/9 =
77.78%

3/4 = 75%
12/15 =

80%
24/30 =

80%
1154

Category 2
1/3 =

33.3%
0/1 = 0%

1/1 =
100%

19/20 =
95%

21/25 =
84%

1332

Category 3
10/10 =
100%

14/16 =
87.5%

12/13 =
92.3%

11/14 =
78.57%

47/53 =
88.68%

2613

Category 4 N/A N/A N/A
2/2 =
100%

2/2 =
100%

8

Category 5 N/A N/A N/A
4/4 =
100%

4/4 =
100%

6

Category 6 0/2 = 0% 0/3 = 0% 0/1 = 0% 6/8 = 75%
6/14 =
43%

253

FAC
13/17 =
76.47%

21/29 =
72.41%

16/19 =
84.21%

50/63 =
79.37%

104/128
=

81.25%

WPW =
5366

Function
Rules

Weight /
All Rules
Weight

4078/5366
= 76%

4193/5366
= 78.14%

4191/5366
= 78.10%

5202/5366
= 96.94%

Table 5.7 Managerial-View for SwapoAdd.c Robustness Grid

109

Chapter Six

Evaluation

6.1 Introduction

The Robustness Grid uses static analysis techniques to measure the Robustness

Degree for C programs using MISRA C2 language rules. In this section, the

Robustness Grid will be evaluated and compared with other techniques using the

SwapoAdd.c measurement results.

6.2 Evaluation of the Robustness Grid

The Robustness Grid, as a program robustness measurement technique, succeeds

by introducing the defect and dangerous code clauses that may cause a problem

during program execution. The Robustness Grid consists of two tables: Clause Table

and Data Table. The Clause Table highlights each clause with its characteristics

such as: the clause effect, importance, and the rules that were violated or satisfied.

110

The Clause Table identifies the most effective clause by addressing the size of the

Clause Slice.

In the Clause Table, which is one of Robustness Grid components, the Clauses of

the program code are measured with their characteristics: the Slice Size, Clause

Frequency, and Clause Weight. The clause information will make it easier to identify

the most effective clause, and also the most important clause with the most effect in

the program. The Clause Table also shows the MISRA C2 rules that were satisfied or

violated by each clause of the program, which make it quite simple to see how each

clause needs to be modified to make it more robust. Clause Slice is used to weight

each code clause and MISRA C2 rule individually. It gives the developers and

maintainers an indication of what they need to look at to increase the program

robustness.

Furthermore, the Data Table, another part of Robustness Grid components, shows

the measurement of each MISRA C2 rule. Each rule is measured depending on the

number of times of satisfaction and violation, and the rules are weighted depending

on the clause that applied the rules, where the rule that measures many clauses or

important ones will be an important rule. The Data Table shows the rule importance

for the program robustness and shows the rules with high effect on the Robustness

Degree of the program, which make it easy to identify the defective rules that need to

be maintained.

The Clauses are grouped together in the Robustness Grid to show the rules applied,

the clauses’ importance, and Robustness Degree of each function in the program

presented as percentage. The function presentation, in the Function Calculation

Table, shows the function with the most/least Robustness Degree, and the functions

with large weights and the one with the most effect on the whole program

Robustness Degree.

111

The Applied Rules make the developer check whether all the code lines were

checked using the rules that the developer really wants, and see whether the code

satisfied the rules or violated them. Because all rules categorised and rules in a

category share the same theme. The category which highly violated shows the weak

areas of programming. For example if Category 3 has the least satisfied Robustness

Degree, then the developer should take care of the function’s structure programming.

The Robustness Grid only uses 100 out of the 142 MISRA C2 rules, which is only

around 70% of all rules. In addition, Robustness Grid interprets the MISRA C2 rules

in different way that is used in other techniques, for example; in the Robustness Grid

the library functions such as printf is considered as any other function. In such as

case, the printf, and scanf functions are not robust. Still in the Robustness Grid, all C

code standard libraries are entirely robust.

The Robustness Grid cannot be used to compare the Robustness Degrees of two

functions or two programs. Each program applies different rules and has different

code, which leads to incomparable slices and weights.

The Robustness Grid ignores the compiler warnings. The compiler warnings may be

caused because of the violation of other MISRA C2 rules that are not included in the

Robustness Grid measurement. However, the compiler warnings may be different for

different compilers. Initially, the Robustness Grid only uses the gcc compiler, and that

makes it more necessary to find a way to measure these warnings and identify the

list of active and inactive warnings for the program for gcc or any other compiler

used.

The robustness measurement results in the Robustness Grid give all levels of details,

starting with the clauses or rules, leading to an abstract results report called

Managerial-View. This report can give different types of results’ presentation

regarding the scope of focus; Functions, Categories, or Rules point of view.

112

6.3 SwapoAdd.c Evaluation

The Robustness Grid Managerial-View, Table 5.7 as an example, shows different

numbers and scales that have different meanings. The Managerial-View shows, for

each function in SwapoAdd.c, the number of rules that were applied and satisfied,

and the percentage relations between them.

In the Managerial-View, the percentages show that the most important function in the

SwapoAdd.c is the function main, as it has the largest weight and its slices contain

96.94% of all program clauses. Then, functions swap and one came in the second

and third positions with very close percentages; 78.14% and 78.10%, respectively.

Even though function one has 5 clauses less than swap, the importance of both

function is almost similar. The reason is that the Clauses’ Slice Sizes of function one

is larger than the swap function clauses, and also function one has applied the same

number of rules as the function swap, with slightly different types of rules, but almost

have the same importance.

Even though incr is the least important function in the program, it is still important

since its slices contain 76.47% of the program clauses.

Not all categories have rules applied in all functions. Categories 4 and 5 have only

rules applied on function main since the function main is the only function that has

code that is measured by all categories.

The categories of the Robustness Grid are shown in the Managerial-View with a

percentage for the satisfaction degree of each function in each one of them.

Furthermore, the Managerial-View shows the weight of each category. The Function

Weight and the Category Weight is the scale used to rank the importance of each

category in the program. Category 3 is the most important category in the program

since it applied the largest number of rules and has the largest weight. Category 3

113

contains the rules that consider the function’s structure, and the functions are taking

a big share of the program, so the Robustness Grid is a quite reflective scale.

Regarding to the Managerial-View, the Category 2 is more important than Category

1; even though it has a smaller number of Applied Rules. This is because Category 2

has applied more important rules and has more effect in the program than Category

1. In SwapoAdd.c, Category 2 has the rules that consider the control statements,

which has effect on the program more than the type definition and arithmetic

statements that measured by Category 1. Categories 4 and 5 are only applied in the

function main 2 and 4 times respectively, which lead to make them the least effective

and importance in the Robustness Grid Calculations.

6.4 Robustness Measurement using other techniques

The SwapoAdd.c Robustness Degree was measured by two different techniques that

use MISRA C2 rules: LDRA TBmisra and FlexeLint in addition to the Robustness

Grid. The Robustness measurement results by LDRA TBmisra and FlexeLint were

different from the Robustness Grid. However, Klocwork Truepath is a tool that uses

MISRA C2 as well but it was not accessible to measure the SwapoAdd.c. Klocwork

Truepath is compared with other tools: Robustness Grid, LDRA TBmisra, and

FlexeLint regarding to the measurement principles and procedure.

Moreover, Gallagher and Fulton (Gallagher and Fulton 1999) tried to estimate the

program robustness using a fault injection technique employing program slicing.

Their measurement was also compared to the Robustness Grid.

In this section, the different techniques and their results will be presented and used to

evaluate the Robustness Grid.

114

6.4.1 LDRA TBmisra

In the LDRA evaluation, TBmisra (LDRA 2012) was used to evaluate the program

against MISRA C2 rules. TBmisra uses all the 147 MISRA C2 rules to measure the

Robustness Degree. Even TBmisra shows which rules have been violated; it does

not show which of the 147 rules were applied and which were not. Furthermore, the

results from TBmisra did not show the effect of these violations on the rest of the

program. Therefore, all rules in the LDRA evaluation have the same weight, and the

results do not identify the rule that has a major or minor bad effect on program

robustness.

In the LDRA TBmisra evaluation results of the SwapoAdd.c program; see Appendix

M, 9 MISRA C2 rules were violated at least once, which is less than what was

violated in Robustness Grid, where 12 rules were violated. However in the LDRA

evaluation, the number of times the rules were violated is 33 times, which is larger

than what is in the Robustness Grid with 24 times.

In the Robustness Grid Clause Table and LDRA TBvision, the developer can access

to the code and see for each clause or line in TBvision which rules were violated. The

satisfied rules can also be seen in the Clause Table.

A high level of MISRA C2 evaluation results are displayed differently by both of

LDRA TBvisoin and the Robustness Grid. LDRA TBvisoin shows the rules that were

violated and how many times they were violated. In the Managerial-View, see page

111, which is a summary of the Robustness Grid, the number of violated and

satisfied rules are shown with the percentage of the Robustness Degree of each

Function and Category in the program.

The LDRA TBmisra evaluation results show that Rule 6.3 is the most violated rule,

with 17 times, which means that the most violated rule in the SwapoAdd.c program

was the advisory rule number 6.3. On the other hand, this was the only rule that the

115

Robustness Grid and LDRA TBmisra agreed that it was violated, but it was violated

only once according to the Robustness Grid. Since the LDRA evaluation has

included all the MISRA C2 rules, unlike the Robustness Grid, which has Rule 21.1

that was violated but it is outside the scope of the Robustness Grid.

The LDRA TBmisra evaluation and the Robustness Grid have a disagreement on the

violation of three rules, where they have been addressed as violated rules by LDRA,

and satisfied by Robustness Grid. These rules are: 9.2, 20.9, and 4.2. Furthermore,

the Robustness Grid has identified 11 rules that were violated where LDRA did not.

This disagreement is understandable since the rules are written in plain English

language, which leads to different interpretations and different results. However, this

misunderstanding could be harmful, and the MISRA C2 rules could lose their value

as standard rules, since the aim of standards is to identify one possible way to write

and understand the code.

In SwapoAdd.c, the LDRA TBmisra evaluation results show that 8 Mandatory Rules

and 25 Optional Rules were violated and no Checking Rules were reported.

The Static and Dynamic analyses are not fully covered by the Robustness Grid or

MISRA C2, so the LDRA created their own set of rules (800 rules) that examine

MISRA C2 rules in details in addition to Static and Dynamic analysis. In SwapoAdd.c,

an evaluation report made by LDRA TBmisra indicates that the program has 22

Static violation, 3 Static Dataflows, and 8 Full Variable Cross Reference violations.

These violations were not fully discovered by the MISRA C2 rules. The LDRA rules

reported 2 Static Mandatory violations that were not caught by MISRA C2. These

violations are about the use of pointer arithmetic. In the Robustness Grid, the static

analysis is done by the MISRA C2 rules for the program code producing Rule

Satisfaction Status, where the Dynamic analysis is made by the Clause Slicing

technique producing the Clauses and Rule Slice Size and Weight.

116

LDRA TBmisra presents the results in a file where each line of code is followed by a

line of the type of violation, where the violation line as follows:

(M, C, or O) <Analysis violation>: #LDRA rule (symbol of analysis

violation): <MISRA C2 violated rule> <error details>

One of the assumptions that the program should have, before being measured by the

Robustness Grid, is that the program was programmed following the ISO 1990 C

standards. The LDRA Testbed evaluated the SwapoAdd.c against ISO 1990 C

language standards. The measurement returned some errors and warnings

addressed in Appendix O. However, the gcc compiler compiled the program with only

warnings. Since the compiler warnings are ignored, the SwapoAdd.c program was

accepted to be measured by the Robustness Grid.

In addition to LDRA TBmisra and TBvision, LDRA introduced a compiler called

TenDRA. TenDRA compiled the SwapoAdd.c program using ISO: C90 standards

and reported 5 errors and 9 warnings, though it was compiled by gcc and reported

only 5 warnings. ISO: C90 is used to produce MISRA C2 rules and the program is

supposed to be written according to them.

6.4.2 FlexeLint

The FlexeLint measured the SwapoAdd.c program using MISRA C2 rules according

to their interpretation. FlexeLint is similar to LDRA TBmisra, where both of them did

not show which rules were applied or satisfied and only showed the ones that were

violated. FlexeLint only applies static analysis on the assessment, since they applied

only a static rule to evaluate the program robustness.

According to the FlexeLint measurement, shown in Appendix N, SwapoAdd.c

violated 8 MISRA C2 rules a total of 44 times which is higher than LDRA and 33

times and Robustness Grid with 28. This is predictable because FlexeLint does not

use any compiler and have any rule violated defined by gcc in the Robustness Grid

117

are also include. Only one of these 8 violated rules was an advisory rule: 6.3. The

rest, the required rules, belong to a different set of MISRA C2 rules (1.2, 4.2, 8.4,

10.2, 12.13, 14.13, and 16.10). The 6.3 rule was violated 16 times, which make it the

most violated rule in the FlexeLint analysis. Although it is also the most violated rule

from LDRA TBmisra, the Robustness Grid reported that it was violated once.

Rule 1.2 was violated 11 times, which make it the most violated rule among the

required rules. However, the Robustness Grid did not include this rule. Furthermore,

the LDRA evaluation did not mention this rule as one of the violated rules. As

mentioned before, it is not shown in the LDRA evaluation whether Rule 1.2 was used

to evaluate SwapoAdd.c or not, because if it was applied then it must be satisfied.

The FlexeLint, LDRA TBmisra and the Robustness Grid agreed on two MISRA C2

rules: 6.3 and 4.2. However, they disagreed on the number of times 6.3 was violated

and the satisfaction status of 4.2. In the Robustness Grid, rule 6.3 was violated once,

where in FlexeLint and LDRA TBmisra it was violated 16 and 17 times respectively.

Rule 4.2 was satisfied 5 times in the Robustness Grid and was violated once in

FlexeLint and LDRA TBmisra.

Moreover, FlexeLint reported 2 rules: 10.2 and 12.13 that were violated in

SwapoAdd.c but not included in the Robustness Grid. On the other hand, 12 rules

were violated in the SwapoAdd.c according to the Robustness Grid but not included

in the FlexeLint results.

Since the FlexeLint was using all 142 MISRA C2 rules and did not use a compiler, 4

rules were violated that are out of the Robustness Grid rules scope (see Robustness

Language Features Conditions in Section 3.2.2.1). The FlexeLint measurement

report showed the MISRA C2 violated rules’ number and type, not as the results as in

LDRA TBmisra report.

118

In the SwapoAdd.c results, only Syntax Errors, Warnings, Informational, and Elective

Notes are shown. The FlexeLint also showed a Wrap-up which is a summary for

each module (any .c file) in the program and it shows the errors in that module. In

addition, FlexeLint shows a Global Warp-up that contains the main rules that were

violated by the program, and the completion status; whether successful or failed and

the number of messages produced for all modules. In SwapoAdd.c, the completion

was successful and 57 messages were produced.

In the FlexeLint results, it reported that the violation of some rules that cause

compiler time errors since it does not use a compiler in the assessment process. For

the same reason, it can assess a part of the program code, the same as LDRA

TBmisra, where as the Robustness Grid cannot. It also provides a summary at the

end of the results report, but FlexeLint only gives a summary for each file of the

program, not for each function as in LDRA TBvision or each Function and Rule as in

the Robustness Grid. However, neither LDRA TBmisra nor FlexeLint produced a

numerical measurement for the program Robustness Degree, nor presented the

program Robustness Degree as a scale or a percentage as in the Robustness Grid.

The FlexeLint results report presents the line of code and then the violated FlexeLint

rules followed by each equivalent MISRA C2 rule and its type; whether it is required

or advisory. The line is as follows:

The code line

Module name: code line number: column number: FlexeLint rule type and

number: error text [MISRA C2 rule number, required/advisory]

Here is an example:

void swap(int *a, int *b);

SwapoAdd.c:7:14: Note 970: Use of modifier or type 'int' outside of

a typedef [MISRA 2004 Rule 6.3, advisory]

The difference in the results for the SwapoAdd.c robustness measurement for the

Robustness Grid and other tools is due to the different interpretation and application

119

of the MISRA C2 rules. Table 6.1 shows a comparison between the robustness

measurement results of the Robustness Grid, LDRA TBmisra, and FlexeLint for the

SwapoAdd.c robustness measurement.

In SwapoAdd.c measurement

Robustness

Grid
LDRA

TBmisra
FlexeLint

MISRA C2 rules used to evaluate the
program

100 rules All (142) All (142)

MISRA C2 rules applied in the program 37 Not given Not given

Number of rules Satisfied in the entire
program

25 Not given Not given

Number of rules violated at least once 12 9 8

Number of times the rules were violated 24 33 44

The most satisfied rule(s)
5.1,

(13 times)
Not given Not given

The most violated rule(s)
16.1, 19.7
(4 times)

6.3
(17 times)

6.3
(16 times)

Rules applied and outside Robustness
Grid Scope

None 21.1
1.2, 8.4,

16.10, 14.3

Rules in the tool measurement but not in
Robustness Grid

None
8.7, 20.8,
20.12, 5.7

10.2, 12.13

Rules violated in the tool measurement
but not in Robustness Grid

None
9.2, 20.9,

4.2
10.2, 12.13

Table 6.1 Comparison between the Robustness Grid, LDRA TBmisra, and FlexeLint

Table 6.2 shows the rules that SwapoAdd.c has violated using the Robustness Grid,

LDRA TBmisra, and FlexeLint. In the Robustness Grid, has applied some rules but

they were not violated, and given (0) value. In Table 6.2, the rules that not included in

the Robustness Grid are pointed as (N/I), and the not applied as (NA) and the

satisfied with (0). The numbers mean the number of time a rule been violated. In

LDRA and FlexeLint the applied or satisfied rules can not be distinguished, but they

for sure were included, so the rules with such case have been pointed out as (0/NA).

120

MISRA C2 Rule Robustness Grid LDRA TBmisra FlexeLint

1.2 N/I 0/NA 13

4.1+7.1 3 0/NA NA

4.2 0 1 1

5.1 0 0/NA 0/NA

5.2 3 0/NA 0/NA

5.3 NA 0/NA 0/NA

5.7 NA 8 0/NA

6.3 1 17 16

8.1 1 0/NA 0/NA

8.4 N/I 0/NA 4

8.7 NA 1 0/NA

9.2 0 1 0/NA

10.2 NA 0/NA 2

11.3 2 0/NA 0/NA

12.13 NA 0/NA 1

13.6 1 0/NA 0/NA

14.3 N/I 0/NA 1

14.7 2 0/NA 0/NA

16.1 4 0/NA 0/NA

16.5 1 0/NA 0/NA

16.10 N/I 0/NA 6

17.1 1 0/NA 0/NA

17.4 1 0/NA 0/NA

19.7 4 0/NA 0/NA

20.8 NA 1 0/NA

20.9 0 1 0/NA

20.12 NA 1 0/NA

21.1 N/I 2 0/NA
Table 6.2 Number of MISRA rules that violated in SwapoAdd.c

6.4.3 Klocwork Truepath

As for the Robustness Grid, LDRA TBmisra, and FlexeLint, Klocwork Truepath uses

its own interpretation of the MISRA C2 rules (Klocwork 2012). Klocwork has a

managerial report, similar to the Robustness Grid, LDRA TBmisra, and FlexeLint

where it shows a summary of the rules that were violated by the program.

There are 21 of the MISRA C2 rules that are not supported by Klocwork Truepath, 15

of them are not verified, and the rest are not supported even though they are verified.

121

Robustness

Grid
LDRA FlexeLint

Klocwork
Truepath

Standards used MISRA C2
MISRA C2, ISO

1990, LDRA
standards

MISRA C2,
FlexeLint/PC-

Lint
MISRA C2

Using Compiler
before the

measurement
Yes Yes No Yes

Rule Weighing

Clause slice
used to

Weight the
rules.

Mandatory Rules
Optional Rules
Checking Rules

Syntax errors
Internal errors
Fatal errors

Warning
messages

Informational
messages

Elective notes

Not given

Management
View

Yes Yes Yes No

Map the
Violated Rules
with code line

Yes, using
Clause
Table.

Yes Yes Yes

Level of Faults
One level –

Violated

Level 1: Advisory
Level 2: Defect
Level 3: Fault

Error
Warning

Informational
Note

One level

Number of
MISRA C2
supported

100 142 (all) 142 (all) 121

Table 6.3 Comparison between 4 robustness measurement techniques that use MISRA C2

16 MISRA C2 rules are not supported by The Robustness Grid or Klocwork

Truepath. The Robustness Grid supports 5 rules that Klocwork Truepath does not

support. On the other hand, Klocwork Truepath supports 26 rules that Robustness

Grid does not support.

Table 6.3 shows a comparison between the different ways of the MISRA C2 use of

the techniques and tools mentioned earlier.

6.5 Other case studies

6.5.1 Variance.c program

Gallagher and Fulton (Gallagher and Fulton 1999) used program slicing to estimate

Software Robustness. They measured the Robustness of a C program by

122

determining the location of high-impact points and the exact nature of the error that

could have a high impact.

In their work, they used the Forward Slicing technique to identify the high-impact

point, where the most effective statement is the variable which has the biggest

Forward Slice. Then, they applied a Decomposition Slice on that variable and

injected an error in the last definition of it to identify the nature of the errors that could

occur at this point.

The effect of the fault injection point was determined using the Forward Slicing

techniques. Then, a random input was entered to the fault injection point, and the

values of outputs determined how robust the program was. For each variable, which

produces an output and is affected by the fault injection point, the Robustness is the

percentage of invalid input that still produced an acceptable output.

The same program was measured by the Robustness Grid, where each clause was

tested individually and its impact was measured using the Clause Slicing technique.

A Clause Slice is used to determine the impact of each clause, where the clause with

the largest slice is considered as the high-impact point in the program. Since Clause

Slicing is used in the Robustness Grid, the clause may or may not have an effect on

the output clauses. Furthermore, the Robustness Grid measures the robustness of a

program depending on the MISRA C2 rules and their satisfaction through the

program without looking as the output.

In the Variance.c program, see Appendix P, Gallagher and Fulton chose avg at

statement 18 as the fault injection point to measure the robustness of var1, var2,

var3, var4, and var5. Since Forward Slice of that statement did not include var2, the

change of input of the avg value did not affect it, and the Robustness of var2 was 1,

which means 100%.

123

Since other variables; var1, var3, var4, and var5, are affected by avg, the

Robustness was calculated by running the program with random values of avg. var1,

var3, and var4 have a robustness value = 0 because they always return an

unacceptable output for the invalid input.

However, var5 had a different value of robustness, where it succeeded to compute

the correct value for 4.3% of values that were randomly perturbed.

In the Robustness Grid, the Robustness Degree for these variables (var1, var2, var3,

var4, and var5) where measured differently. Each of these variables was sliced using

Backward Clause Slicing (the union of all clauses that have effect on these variables)

in their last use in the program. Then, the Robustness Degree for the slices of each

one of these variable is given by:

Number of times the rules were satisfied divided by number of times the rules were

applicable, presented as a percentage.

In the Robustness Grid, the Variance.c variables in general have high Robustness

Degree. Furthermore, it pointed out the variable that has the priority to be maintained

among the five variables (var1, var2, var3, var4, and var5) is var3 because it has the

smallest Robustness Degree. The variables; var1, var2, var3, var4, and var5, have a

Robustness Degree of 90.91%, 91.17%, 87.88%, 90.63%, and 89.8% respectively. In

addition, the avg has scored 80% as Robustness Degree, which make it the variable

with the lowest Robustness Degree and it is the variable that should be maintained

firstly. In the Robustness Grid the whole program scores 87.23%, while in Keith and

Fulton technique has no overall robustness measurement for the program.

Gallagher and Fulton concluded that the Robustness needs a manual inspection for

a specific variable within a scope of influence to compute the Robustness

measurement. On the other hand, The Robustness Grid computes the Robustness

Degree and gives a measurement to any variable in different scopes.

124

Gallagher and Fulton are more concerned about the input/output relation in the

program; where the Robustness Grid is focused on the syntax code style of the

program.

6.5.2 n_char.c program

The n_char.c (Drexel University 2012), see Appendix Q, was chosen to measure the

accuracy of the Robustness Grid measurement. The n_char.c program has two

functions: n_char and main. The program reads a string and prints its length.

As shown in Table 6.4, the overall program Robustness Degree is 77.78%. The

functions’ Robustness Degrees for functions n_char and main are 74.04% and

81.48%, respectively. The Functions Robustness Degrees are acceptable for a small

and simple program such as n_char.c. Considering the Function Satisfaction Degree

the Robustness Grid gives an advice that the function that need to be maintained is

n_char because it is the function with the smallest Robustness Degree.

Rule Categories
n_char main PCD

Category Weight
FCSD FCSD PCSD

Category 1 83.33% 100% 90% 96

Category 2 66.67% 0% 57.14% 109

Category 3 75% 62.5% 70% 747

Category 4 N/A 100% 100% 13

Category 5 100% 100% 100% 170

Category 6 0% 80% 66.67% 37

FAC 74.04% 81.48% 77.78% WPW = 1172

Table 6.4 n_char Robustness Grid, Managerial-View

However, the Robustness Degree in different categories for the individual functions

varied significantly. The Robustness Grid shows that Category 3 is the most

important category for this program because it has the largest weight and 70%

Robustness Degree. Category 3 measures 63.74% of all programs clauses, which

means that 63.74% of program clauses have 70% Robustness Degree.

125

Category 5, which is in the second place in terms of category importance, is 100%

robust according to the Robustness Grid. Consequently, the functions and important

categories have a high Robustness Degree, which is acceptable for such a small

program with simple functionality. The Category Calculations indicates that the need

to be maintained is category 2 because it is the category with the lowest Program

Category Degree (PCD), and its weight makes the change effective.

6.5.3 Robost.c program

The Robost.c, Figure 6.1, is the smallest robust C program, according to the

Robustness Grid measurement. Robost.c has 2 clauses, but it applied and satisfied 7

rules in 3 categories.

 Figure 6.1 Robost.c program

Categories 1, 4 and 5 have no applied rules. Category 1 focuses on the variable

characteristics, and because there are no variables or parameters, there is no need

for rules to measure them. Category 4 measures the arrays, pointers and other data

structures and Robost.c does not have these, so there are no applied rules in

Category 4. There are no header files or pre-processor clauses so the Category 5

has no applicable rules in the program.

Table 6.5 shows the Managerial-View Robustness Grid report for Robost.c. Category

2 measures the control Clauses and Robost.c has no control Clauses. However,

there is one rule that was applied; 14.7. This rule is for any function that should have

one single point of exit, and because the program has a return Clause, it satisfied this

rule. Other categories focus on function structure, and advisory rules which contain

different points of views. Since the program is artificial, small, and ideal, the values

are relatively small.

void main (void){1

return;}2

126

Rule Categories

main PCD
Cat. Weight

FCSD PCSD

Category 1 N/A N/A N/A

Category 2 1/1 = 100% 1/1 = 100% 1

Category 3 5/5 = 100% 5/5 = 100% 5

Category 4 N/A N/A N/A

Category 5 N/A N/A N/A

Category 6 1/1 = 100% 1/1 = 100% 1

FAC 7/7 = 100% 7/7 = 100% WPW = 7

Table 6.5 Robost.c Robustness Grid Managerial-View

 Robost.c shows that MISRA C2 covers even the smallest and basic program with a

number of rules even more than the number of program clauses. MISRA C2 rules

cover C programs regardless of their number of clauses. However, large programs

are quite difficult to measure and take a considerably long time, in addition to the fact

that Robustness Grid is produced manually. Also, in all programs, the most important

clause is the main function call, since it calls all other functions and affects all of

them.

6.6 Summary

The Robustness Grid, as a program robustness measurement technique, has some

positives points and drawbacks. The contribution to research that have made in the

Robustness Grid can be summarised as:

1- Using program analysis technique, clause slicing, to give a different level

of importance for code and rules.

2- The numerical details of program Robustness Degrees are the main

contribution that the Robustness Grid has introduced.

3- The Robustness Grid presentation is accessible and easy to understand

for all level of developer teams. The program is analysed and the

robustness degree is shown for each part of it.

127

However, there are still some weaknesses that need to be fixed in future work, such

as:

1- The MISRA C2 rules misinterpretations

2- The number of rules that the Robustness Grid covers are only 100 out of

142 rules.

3- The Robustness Grid not fully automated.

The program measurement results show some agreement and disagreement

between the tools that use MISRA C2 and the technique the use Slicing to measure

the program robustness; even though they use the same standard.

LDRA TBmisra, FlexeLint, and Klocwork Truepath have introduced their own rules

beside the MISRA C2 rules to avoid the misinterpretation of the MISRA C2 rules by

the different programs evaluations. However, the interpretations by these three tools:

are different. This was seen in SwapoAdd.c example, where the three techniques

Robustness Grid, LDRA TBmisra, and FlexeLint had some differences in the rules

that were violated, the number of times violated, and the code that caused the

violation.

The different interpretation between different tools is dangerous and makes the

standards less effective. However, LDRA and FlexeLint both introduced their own

rules that interpret MISRA C2 in a certain way and make their measurement fixed in

all the evaluations made. In the Robustness Grid, the MISRA C2 rules were

interpreted in English without introducing new rules or setting fixed definitions and

mainly depend on the MISRA C2 rules text and explanation for them which caused

some differences between the Robustness Grid measurements and the

measurements by other tools.

128

129

Chapter Seven

Conclusions and Future Work

7.1 Introduction

In this chapter, a summary of the research contributions will be shown. It also

reviews the criteria for success defined in Chapter 1 as they related to the research.

The future directions for the research are suggested in this chapter, showing the

possibilities for more contribution in this research area.

7.2 Thesis Summary

Robustness is defined as “the degree to which a system or component can function

correctly in the presence of invalid inputs or stressful environment conditions” (IEEE

1990). The Robustness Degree of a program is a value and can be measured in

different ways using different techniques. Robustness is important in all programs,

specially the safety critical ones. Therefore, it has become essential to measure the

130

Robustness Degree for programs and discover any weak points that the program

has. There are many techniques, discussed in Chapter 2, that are used to satisfy or

measure the Robustness Degree. Each one of those techniques has its advantages

and drawbacks.

In this research, a group of the MISRA C2 language rules were selected with

categories confirming to certain criteria (Section 3.2.2), to be the set of standards

used to measure program robustness. The program satisfaction and violation status

of the MISRA C2 rules are shown using numbers, called the Robustness Degree.

The Robustness Degree was introduced in Section 3.4 as a “scale of a program

robustness features satisfaction, expressed as a percentage” (Abdallah, Munro et al.

2011). The Robustness Degree of a program is presented in the Robustness Grid.

A Program Slicing technique is used to analyse the program syntax code to

distinguish the important level of the language standards. Clause Slicing is a new

slicing technique that was introduced in Section 3.3 to weight the importance of the

MISRA C2 rules.

Clause Slice is a Static slicing technique that uses clause and clause number as the

slicing criteria. A clause is a small piece of program code that has an effect in the

program. It can be sliceable or un-sliceable, depending on what it contains.

MISRA C2 and Clause Slice were both used to formulate the Robustness Grid

measurement technique. The measurement process in completing the Robustness

Grid for functions was discussed through Section 3.4.

The Robustness Grid was extended in Section 3.5 to measure the Robustness

Degree of the whole program. A Robustness Grid is a “table that contains rules

classified into categories, with respect to a program’s function names and calculates

robustness degree” (Abdallah, Munro et al. 2011). It also shows the different levels of

importance between the rules by weighting them using Clause Slice. The different

131

levels of rule satisfaction and weights are presented in numbers and percentages

called the Robustness Degree, and that is one of the main contributions of this

research.

The Robustness Grid contains the rules that were applied to measure a program and

the state of the rules, whether satisfied or violated, for each function in the program.

It also has percentage values that show the Robustness Degree for the program and

each function in it in detail.

The Robustness Grid construction process starts with the Clause Table, which was

shown in Section 3.4.2.1. The Clause Table contains the program clauses with their

measurement information, such as Slice Size, Clause Frequency, and Applicable

Rules. The Second Table in the Robustness Grid construction is the Data Table,

which was addressed in Section 3.4.2.2.

The Data Table shows the MISRA C2 rules that were applied on the program. The

rules are measured with respect to their Number of Satisfied and Violated, the

Satisfied and Violated Slices.

The Clause Table was imported in the Robustness Grid to identify the rules that were

used to measure every function in the program. The Function Calculations show the

rules that were applied on each function and their degree of satisfaction. They also

show the Function Satisfy Degree (FSD) and Program Satisfy Degree (PSD).

The Data Table was also imported in the Robustness Grid is used to measure the

functions, and also used to produce the Category Calculations in the Robustness

Grid, which measures the MISRA C2 rules.

The Category Calculations in Section 3.5.2 show the importance of each function,

category, and rule in the program assessment. The Category Calculations are based

on Clause Slicing.

132

The numbers and percentages in the Robustness Grid show the satisfaction state of

each rule, and Robustness Degrees for functions, categories, and the whole

program.

The Robustness Grid is not fully automated. However, some tools are used to

execute some parts of the Robustness Grid process. The Clause Slice is run using

the CSurf tool. The program clauses are measured manually against the MISRA C2

rules. The MS Excel is used to display the Clause Table, the Data Table, and the

Robustness Grid and calculate the numbers and the percentages.

The validity of the Robustness Grid is explored through the application of different

case studies that were discussed in details through Chapter 6. In this thesis, three

case studies were discussed to validate and evaluate the Robustness Grid. The

SwapoAdd.c program is the case study that was studied in detail through Chapters 3

and 5, and used to explain the Robustness Grid process in details. Other case

studies were used to evaluate the Robustness Grid and addressed in Section 6.4.

The case studies show that the Robustness Grid can give a robustness

measurement for C programs using the MISRA C2 rules. They also show that the

Robustness Grid process is applicable for C programs. However, the case studies

show there are still some drawbacks that can be used to evaluate and improve the

Robustness Grid measurement process.

Furthermore, the case studies show that the robustness measurement results fairly

reflect the accuracy of the program syntax writing, where the Robustness Grid

highlights the problems that are expected to be caught, in addition to some other

problems.

The evaluation of the Robustness Grid is divided into three parts and described in

Chapter 6. The first part is the general Robustness Grid critique, depending on the

SwapoAdd.c case study results. The results show that the Robustness Grid is a

133

measurement technique that presents the satisfied rules as well as the violated ones,

which gives a clue to the maintainer on what needs to be fixed. It also has a flexible

way of presenting results and from different points of views. The Clause Slicing

technique helps discover the importance and the Clause of the different piece of

code in the program.

In Section 6.4, the second part of the evaluation process is based on the comparison

between the Robustness Grid and other Robustness measurement techniques. The

comparison is made with tools that use MISRA C2 rules such as: LDRA TBmisra,

FlexeLint, and Klocwork Truepath. The comparison shows that the Robustness Grid

provides services that none of the previous tools provide. On the other hand, the

previous tools support more rules than the Robustness Grid. The comparison shows

that MISRA C2 were interpreted and applied differently in the tools including

Robustness Grid, therefore, the results of each tool measurement is different from

the other.

Besides the previous tools, the Robustness Grid is compared with the fault injection

technique using program slicing that was introduced in the Gallagher and Fulton

paper (Gallagher and Fulton 1999). Even though both of the Robustness Grid and

fault injection used slicing to analyse the program code, they measured the

Robustness Degree from a different perspective. The Robustness Grid measures the

program by assessing the code syntax. The fault injection technique measures the

robustness using the input/output relation.

The third part of the evaluation described in Section 6.5, shows a case study, The

Robost.c, which gives an idea of how many rules are needed to build the smallest

robust program from scratch. The Robost.c is introduced as a base program that can

be used to build a robust program. The code lines can be added to Robost.c after

they are tested and satisfied the MISRA C2 rules. Subsequently, a 100% robust

program can be created.

134

The results of the analysis and evaluation show that Robustness Grid model is

capable of producing a sufficient Robustness Degree measurement for the programs

written in the C language.

The Robustness Grid helps the developer team to understand the program

robustness measurement results. The Managerial-View helps the managers to

understand the measurement results in the big picture. The different tables that build

the Robustness Grid give a detailed analysis for the measurement results.

For example, the Managerial-View gives the manager an indication about which

function and category are the most important in the program, in addition to which

function and category have the least Robustness Degree value.

The Clause Table, shows the importance level of the program clauses and which

rules that has been applied and whether satisfied or violated in the program. The

Data Table shows the importance of the Rules that has been applied in the program

and their satisfaction status.

7.3 Criteria for Success

The criteria for success of the research in this thesis were presented in Chapter 1.

This section discusses the achievement of these criteria. These achievements are as

follows:

1- Develop a measurement for assessing the Robustness of C programs

In this thesis, the developed measurement is made using the MISRA C2 rules

with Clause Slicing. This was achieved by analysing the C program and then

assessing the program clauses using the MISRA C2 rules and weighting

them using the Clause Slicing technique in the new Robustness

measurement technique introduced in this research. In Chapter 3, the

135

proposed model was introduced, where in Chapter 5; the main case study

was discussed in detail.

2- Develop a Grid that incorporates the robustness measurement

The Robustness Grid is the proposed model introduced in this research and

discussed through this thesis. It is a robustness measurement framework that

uses the MISRA C2 rules and the Clause Slicing technique.

The Robustness Grid is a table that presents function and rule robustness

measurements. The Robustness Grid is built depending on two tables; the

Clause Table which was discussed in Section 3.4.2.1 and Data Table in

Section 3.4.2.2. The Robustness Grid is the combined of the Clause and Data

Tables with some changes in one big table containing the Function Category

robustness Degree described in Section 3.4.5 and the Category Calculations

described in Section 3.5.2.

3- Empirically evaluate the Grid

The evaluation of the Robustness Grid was made in three phases; the first is

the evaluation of the Robustness Grid depending on the results of the main

case study introduced in Chapter 5. The second part of the evaluation is a

comparison with existing tools and techniques that measure or assess the

program robustness, which was described in Chapter 6 Section 6.4 and

Subsection 6.5.1.

The third part is an evaluation of the ability and consistency of the

Robustness Grid measurement for random C programs, by introducing two

more case studies in Subsections 6.5.1 and 6.5.2, and building a robust

program from scratch.

4- Compare the results against other related studies

136

The Robustness Grid was compared with three different techniques that use

MISRA C2 language rules to measure the program robustness, and one case

study taken from the Gallagher and Fulton paper (Gallagher and Fulton

1999), that use program slicing to measure the program robustness.

Comparison discussions and tables were described in Sections 6.4 and 6.5.1.

5- Develop a proof of concept of implementation

This study has produced parts of the Robustness Grid in prototype mode. As

described in Chapter 4, the Robustness Grid is not a fully automated model.

However, some phases of the model used suitable existing tools. The

program slicing technique was executed by CodeSurfer (CSurf) and the

Robustness Grid Calculations and display were done using Microsoft Excel

sheets (MS Excel).

7.4 Future Directions

Although the proposed model in this thesis has considerably achieved the intended

goals, there are still some possible additions that can be done to enhance it. These

additions are as follows:

1- Fully automated and repeatable

The Robustness Grid uses existing tools to implement part of the program

analysis and robustness measurements. Therefore, in future research, all

phases of the Robustness Grid will be fully implemented. Then, it can become

fully integrated and accomplished tool.

2- Cover all MISRA C2 rules

The Robustness Grid only uses 100 out of 142 MISRA C2 rules in the

robustness measurement. The future direction is to make the Robustness

Grid able to measure all aspects addressed by all the MISRA C2 rules.

137

3- Improving generality of the model

The Robustness Grid only measures selected C programs executable

through a C compiler. Thus, in the future, the Robustness Grid needs to be

able to measure any C programs, or any part of it.

4- Evaluating the Robustness Grid using large programs

Since the Robustness Grid is not fully automated, only small programs are

used to analyse and evaluate the Robustness Grid. In future research,

bearing in mind the previous suggestions, the Robustness Grid can be

evaluated using large C programs.

5- Evaluate the Robustness Grid using different language standard

The current Robustness Grid uses the MISRA C2 rules to measure the C

programs. In the future, different standards could be used to measure C

programs or programs of a different programming language.

6- Build a 100% robust program

The evaluation section, 6.5.3, introduced a 100% robust program, the

Robost.c program. This program is the smallest robust program, but it does

nothing. In the future, Robost.c can be used as a base to build different robust

programs. This issue was raised in a paper published in 2010 (Abdallah,

Munro et al. 2010).

7- Implement the Robustness Grid in real life applications

The Robustness Grid can help the developer and maintainer because it gives

them an indication of the weak robustness instances in a piece of code,

functions, and category that need to be maintained to improve the robustness

degree.

138

7.5 Summary

This thesis has discussed the research into program robustness measurement. In

this research, a new robustness measurement technique was introduced, called the

Robustness Grid. The Robustness Grid uses the language standards rules and the

program slicing technique to produce a detailed robustness measurement for a

program and its functions.

This research shows evidence that the Robustness Grid can produce a precise

measurement for C programs using the MISRA C2 rules and the Clause Slicing

technique.

139

References

Abdallah, M., M. Munro and K. Gallagher (2010). Certifying software robustness
using program slicing. IEEE International Conference on Software
Maintenance. Timisoara, Romania: 1-2.

Abdallah, M., M. Munro and K. Gallagher (2011). A Static Robustness Grid Using
MISRA C2 Language Rules. The Sixth International Conference on Software
Engineering Advances, ICSEA 2011. Barcelona, Spain: 65-69.

Agrawal, H., R. A. Demillo and E. H. Spafford (1993). Debugging with dynamic slicing
and backtracking, John Wiley and Sons, Inc. 23: 589-616.

Agrawal, H. and J. R. Horgan (1990). Dynamic program slicing. Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design and
implementation. New York, United States, ACM. 25: 246-256.

Agrawal, H., J. R. Horgan, E. W. Krauser and S. London (1993). Incremental
Regression Testing. Proceedings of the Conference on Software
Maintenance, IEEE Computer Society: 348-357.

American National Standards Institute (ANSI). (1999).
"http://webstore.ansi.org/RecordDetail.aspx?sku=ISO/IEC+9899:1999."
Retrieved 20/3/2012, 2012.

Arup, M. and P. S. Daniel (1997). Measuring Software Dependability by Robustness
Benchmarking, IEEE Press. 23: 366-378.

http://webstore.ansi.org/RecordDetail.aspx?sku=ISO/IEC+9899:1999.

140

Avizienis, A., J. C. Laprie, B. Randell and C. Landwehr (2004). "Basic Concepts and
Taxonomy of Dependable and Secure Computing." IEEE Transactions on
Dependable and Secure Computing 1(1): 11-33.

Ayewah, N., D. Hovemeyer, J. D. Morgenthaler, J. Penix and W. Pugh (2008). "Using
Static Analysis to Find Bugs." IEEE Transactions on Software Engineering
25(5): 22-29.

Baowen, X., Q. Ju, Z. Xiaofang, W. Zhongqiang and C. Lin (2005). "A Brief Survey of
Program Slicing." ACM SIGSOFT Software Engineering Notices 30(2): 1-36.

Binkley, D. (1998). "The application of program slicing to regression testing."
Information and Software Technology 40(11-12): 583-594.

Binkley, D., S. Danicic, G. Tibor, thy, M. Harman, K. kos and K. Bogdan (2006). A
Formalisation of the Relationship Between Forms of Program Slicing, Elsevier
North-Holland, Inc. 62: 228-252.

Binkley, D. and K. Gallagher (1996). Program Slicing. Advances in Computers. V. Z.
Marvin, Elsevier. 43: 1-50.

Binkley, D. and M. Harman (2005). Locating Dependence Clusters and Dependence
Pollution. Proceedings of the 21st IEEE International Conference on Software
Maintenance, IEEE Computer Society: 177-186.

Black, S. (2001). "Computing Ripple Effect for Software Maintenance." Journal of
Software Maintenance 13(4): 263.

Brown, A. B., J. Hellerstein, M. Hogstrom, T. Lau, S. Lightstone, P. Shum and M. P.
Yost (2004). Benchmarking Autonomic Capabilities: Promises and Pitfalls.
International Conference on Autonomic Computing (ICAC'04). Los Alamitos,
CA, USA, IEEE Computer Society: 266-267.

Brown, A. B. and C. Redlin (2005). Measuring the Effectiveness of Self-Healing
Autonomic Systems. Proceedings of the Second International Conference on
Autonomic Computing, 2005. ICAC 2005.: 328-329.

Canfora, G., A. Cimitile and A. DeLucia (1998). "Conditioned program slicing."
Information and Software Technology 40(11-12): 595-607.

Chung, I. S., W. K. Lee, G. S. Yoon and Y. R. Kwon (2001). Program slicing based
on specification. Proceedings of the 2001 ACM symposium on Applied
computing. Las Vegas, Nevada, United States, ACM: 605-609.

Dabek, F., N. Zeldovich, F. Kaashoek, D. Mazi and R. Morris (2002). Event-driven
programming for robust software. Proceedings of the 10th workshop on ACM
SIGOPS European workshop. Saint-Emilion, France, ACM: 186-189.

141

Danicic, S., C. Fox, M. Harman and R. Hierons (2000). ConSIT: A Conditioned
Program Slicer. IEEE International Conference on Software Maintenance
(ICSM'00), IEEE Computer Society Press: 216-226.

DeLucia, A. (2001). "Program slicing: methods and applications." Proceedings of the
First IEEE International Workshop on Source Code Analysis and
Manipulation, 2001. : 144-151.

DeLucia, A. (2001). Program Slicing: Methods and Applications. IEEE International
Workshop on Source Code Analysis and Manipulation.

DeLucia, A., A. R. Fasolino and M. Munro (1996). Understanding Function Behaviors
through Program Slicing. 4th International Workshop on Program
Comprehension. Berlin, Germany, IEEE Computer Society: 9 -18.

DeVale, J. and P. J. Koopman (2002). Robust Software - No More Excuses.
Proceedings of the 2002 International Conference on Dependable Systems
and Networks, IEEE Computer Society: 145-154.

DeVale, J. P., P. J. Koopman and D. J. Guttendorf (1999). The Ballista Software
Robustness Testing Service. Tesing Computer Software Coference.

Dix, M. and H. D. Hofmann (2002). Automated software robustness testing - static
and adaptive test case design methods. Proceedings of 28th Euromicro
Conference: 62-66.

Drexel University. (2012). "C Language Tutorial." Retrieved 31/3/2012, from
http://einstein.drexel.edu/courses/Comp_Phys/General/C_basics/#arrays.

Eslamnour, B. and S. Ali (2009). "Measuring Robustness of Computing Systems."
Simulation Modelling Practice and Theory 17(9): 1457-1467.

Fatiregun, D., M. Harman and R. M. Hierons (2005). Search-Based Amorphous
Slicing. Proceedings of the 12th Working Conference on Reverse
Engineering, IEEE Computer Society: 3-12.

Fenton, N. E. and S. L. Pfleeger (1997). Software Metrics, A Rigorous and Practical
Approach, PWS Publishing Company.

Gallagher, K. and D. Binkley (2008). Program slicing. Frontiers of Software
Maintenance, FoSM 2008.: 58-67.

Gallagher, K. and N. Fulton (1999). Using Program Slicing to Estimate Software
Robustness. Proceedings of the International Systems Software Assurance
Conference, ISSAC.

http://einstein.drexel.edu/courses/Comp_Phys/General/C_basics/#arrays

142

Gallagher, K., T. Hall and S. Black (2007). Reducing Regression Test Size by
Exclusion. IEEE International Conference on Software Maintenance, 2007.
ICSM: 154-163.

Gallagher, K. and J. R. Lyle (1991). "Using Program Slicing in Software
Maintenance." IEEE Transactions on Software Engineering 17(8): 751-761.

Gallagher, K. and L. O'Brien (2001). Analyzing Programs via Decomposition Slicing
Initial Data and Observation. Proceeding of 7th workshop on Empirical
Studies of Software Maintenance, Florence, Italy.

Gallagher, K. B. and J. R. Lyle. (1998). "The Surrgeon's Assistant." Retrieved
30/3/2012, from http://www.cs.loyola.edu/~kbg/Surgeon/.

Gimple Software. (2012). "FlexeLint." Retrieved 30/3/2012, from
http://www.gimpel.com/html/index.htm.

GrammaTech. (2012). "CodeSurfer." Retrieved 25/3/2012, 2012, from
http://www.grammatech.com/products/codesurfer/overview.html.

Gramoli, V., Y. Vigfusson, K. Birman, A.-M. Kermarrec and R. v. Renesse (1999).
"Slicing Distributed Systems." IEEE Transactions on Computers 99(1).

Gribble, S. D. (2001). Robustness in Complex Systems. Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems, IEEE Computer Society: 21-
26.

Hall, R. J. (1995). "Automatic extraction of executable program subsets by
simultaneous dynamic program slicing." Automated Software Engineering
2(1): 33-53.

Hamann, A., R. Racu and R. Ernst (2007). Methods for multi-dimensional robustness
optimization in complex embedded systems. Proceedings of the 7th ACM &
IEEE international conference on Embedded software. Salzburg, Austria,
ACM: 104-113.

Harman, M., D. Binkley and S. Danicic (2003). "Amorphous program slicing." Journal
of Systems and Software 68(1): 45-64.

Harman, M. and S. Danicic (1995). "Using Program Slicing to Simplify Testing."
Journal of Software Testing, Verification and Reliability 5(3): 143-162.

Harman, M. and S. Danicic (1997). Amorphous Program Slicing. International
Workshop on Program Comprehension, WPC. Dearborn, MI, USA, IEEE
Computer Society: 70-79.

Harman, M. and R. Hierons (2001). "An Overview of program slicing." software focus
2(3): 85-92.

http://www.cs.loyola.edu/~kbg/Surgeon/
http://www.gimpel.com/html/index.htm
http://www.grammatech.com/products/codesurfer/overview.html

143

Hatcliff, J., M. B. Dwyer and H. Zheng (2000). Slicing Software for Model
Construction, Kluwer Academic Publishers. 13: 315-353.

Horwitz, S., T. Reps and D. Binkley (1990). "Interprocedural slicing using
dependence graphs." ACM Transaction of Program Language Systms 12(1):
26–60.

Huhns, M., V. Holderfield and R. Gutierrez (2003). Robust Software via Agent-based
Redundancy. Proceedings of the second international joint conference on
Autonomous agents and multiagent systems. Melbourne, Australia, ACM:
1018-1019.

Huhns, M. N. and V. T. Holderfield (2002). "Robust Software." IEEE Internet
Computing 6(2): 80-82.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std 610.12-1990, IEEE Computer Society.

ISO. (2012). "International Organization for Standardisation." Retrieved 20/3/2012,
2012, from http://www.iso.org/iso/home.html.

ISO/IEC (1999). International Standard ISO/IEC 9899, International Organaization for
Standardization.

ISO/IEC (2007). ISO/IEC 15939: Systems and software engineering -- Measurement
process. ISO/IEC.

Jackson, D. and E. J. Rollins (1994). Chopping: A Generalization of Slicing, Carnegie
Mellon University.

Jawadekar, W. S. (2004). Software Engineering: Principles and Practice, Mcgraw Hill
Higher Education.

Jones, D. M. (2009). The New C Standard: A Cultural and Economic Commentary,
Addison-Wesley Professional.

Junhua, W., X. Baowen and J. Jixiang (2004). Slicing Web Application Based on
Hyper Graph. Proceedings of the 2004 International Conference on
Cyberworlds, IEEE Computer Society: 177-181.

Kanoun, K., H. Madeira and J. Arlat (2002). A Framework for Dependability
Benchmarking. The International Conference on Dependable Systems and
Networks. Washington, D.C., USA: 7-8.

Kaur, K., K. Minhas, N. Mehan and N. Kakkar (2009). "Static and Dynamic
Complexity Analysis of Software Metrics." Empirical Software Engineering
56(V): 159-161.

http://www.iso.org/iso/home.html

144

Kim, D. and M. Fong (2007). Research Report: Program Slicing.

Klocwork. (2012). "Detected MISRA Issues." Retrieved 29/3/2012, from
http://www.klocwork.com/products/documentation/current/current:Books/Dete
cted_MISRA_Issues.

Klocwork. (2012). "Klocwork Insight." Retrieved 20/3/2012, from
http://www.klocwork.com/products/insight/.

Koopman, P. (2002). "The Ballista Project: COTS Software Robustness Testing."
Retrieved 30/3/2012, 2012, from
http://www.ece.cmu.edu/~koopman/ballista/index.html.

Koopman, P., K. Devale and J. Devale (2008). Interface Robustness Testing:
Experience and Lessons Learned from the Ballista Project. Dependability
Benchmarking for Computer Systems, John Wiley & Sons, Inc.: 201-226.

Korel, B. and J. Laski (1990). "Dynamic slicing of computer programs." Journal of
Systems and Software 13(3): 187-195.

Korel, B. and J. Rilling (1998). "Dynamic program slicing methods." Information and
Software Technology 40(11-12): 647-659.

Krinke, J. (2004). Slicing, Chopping, and Path Conditions with Barriers, Kluwer
Academic Publishers. 12: 339-360.

Laddaga, R. (1999). Guest Editor's Introduction: Creating Robust Software through
Self-Adaptation. 14: 26-29.

Lalchandani, J. T. and R. Mall (2008). Regression testing based-on slicing of
component-based software architectures. Proceedings of the 1st conference
on India software engineering conference. Hyderabad, India, ACM: 67-76.

Laprie, J. C., J. Arlat, C. Beounes and K. Kanoun (1990). "Definition and analysis of
hardware- and software-fault-tolerant architectures." Computer 23(7): 39-51.

Laroche, E. (1998). "C programming language coding guidelines." Retrieved
30/3/2012, from http://www.lrdev.com/lr/c/ccgl.html.

Larsen, L. and M. J. Harrold (1996). Slicing object-oriented software. Proceedings of
the 18th international conference on Software engineering. Berlin, Germany,
IEEE Computer Society: 495-505.

LDRA. (2012). "Dynamic Analysis with LDRA Testbed®." Retrieved 30/3/2012, from
http://www.ldra.com/dynamicanalysis.asp.

LDRA. (2012). "LDRA products and services." Retrieved 20/3/2012, 2012, from
http://www.ldra.com/products.asp.

http://www.klocwork.com/products/documentation/current/current:Books/Detected_MISRA_Issues
http://www.klocwork.com/products/documentation/current/current:Books/Detected_MISRA_Issues
http://www.klocwork.com/products/insight/
http://www.ece.cmu.edu/~koopman/ballista/index.html
http://www.lrdev.com/lr/c/ccgl.html
http://www.ldra.com/dynamicanalysis.asp
http://www.ldra.com/products.asp

145

LDRA. (2012). "Static Analysis with LDRA Testbed®." Retrieved 30/3/2012, from
http://www.ldra.com/staticanalysis.asp.

Lyu, M. R., H. Zubin, S. K. S. Sze and C. Xia (2003). An empirical study on testing
and fault tolerance for software reliability engineering. 14th International
Symposium on Software Reliability Engineering, ISSRE 119-130.

Maguire, S. (1993). Writing Solid Code. Washington, Microsoft Press.

Maule, A., W. Emmerich and D. S. Rosenblum (2008). Impact analysis of database
schema changes. Proceedings of the 30th international conference on
Software engineering. Leipzig, Germany, ACM: 451-460.

Mazeiar, S. and T. Ladan (2009). "Self-adaptive software: Landscape and research
challenges." ACM Trans. Auton. Adapt. Syst. 4(2): 1-42.

Mieczyslaw, M. K., B. Kenneth and A. E. Yonet (1999). Control Theory-Based
Foundations of Self-Controlling Software, IEEE Educational Activities
Department. 14: 37-45.

Miller, B. P., D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan and J. Steidl
(1995). Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities
and Services, University of Wisconsin-Madison, Computer Sciences Dept.
1525: 1-23.

MISRA (2004). MISRA-C: 2004 Guidlines for the use of the C Language in Critical
Systems. The Motor Industry Software Reliability Association, MIRA limited.

MISRA. (2012). "MISRA's Mission Statement." Retrieved 20/3/2012, from
http://www.misra.org.uk/MISRAHome/WhatisMISRA/tabid/66/Default.aspx.

Musa, J. D., A. Iannino and K. Okumoto (1987). Software Reliability: measurement,
prediction, application, McGraw-Hill, Inc.

Ngah, A. and K. Gallagher (2009). Regression test selection by exclusion using
decomposition slicing. Proceedings of the doctoral symposium for ESEC/FSE
on Doctoral symposium. Amsterdam, The Netherlands, ACM: 23-24.

Petitpierre, C. and A. Eliëns (2002). Active Objects Provide Robust Event-Driven
Applications. SERP’02. H. R. A. a. Y. Mun. Las Vegas: 253-259.

Philip, G. C. (1998). "Software design guidelines for event-driven programming."
41(2): 79-91.

Pressman, R. S. (2009). Software Engineering: A Practitioner's Approach, McGraw
Hill Higher Education.

http://www.ldra.com/staticanalysis.asp
http://www.misra.org.uk/MISRAHome/WhatisMISRA/tabid/66/Default.aspx

146

Pullum, L. L. (2001). Software Fault Tolerance Techniques and Implementation,
Artech House, Inc.

Qian, J. and B. Xu (2008). "Program slicing under UML scenario models." ACM
SIGPLAN Notices 43(2): 21-24.

Ranganath, V. P. and J. Hatcliff (2007). Slicing concurrent Java programs using
Indus and Kaveri, Springer-Verlag. 9: 489-504.

Rebaudengo, M., M. Sonza Reorda, M. Torchiano and M. Violante (1999). Soft-error
detection through software fault-tolerance techniques. International
Symposium on Defect and Fault Tolerance in VLSI Systems, DFT '99: 210-
218.

Sasirekh, N., A. EdwinRober and M. Hemalth (2011). "Program slicing techniques
and its applications." International Journal of Software Engineering &
Applications (IJSEA) 2(3): 50-64.

Schmid, M. and F. Hill (1999). Data generation techniques for automated software
robustness testing. Proceedings of the International Conference on Testing
Computer Software: 14-18.

Seacord, R. (2012). "CERT C Secure Coding Standard." Retrieved 30/3/2012,
30/3/2012, from
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Sec
ure+Coding+Standard.

Shahrokni, A. and R. Feldt (2010). Towards a Framework for Specifying Software
Robustness Requirements Based on Patterns, Requirements engineering:
Foundation for software quality: 79-84.

Shahrokni, A. and R. Feldt (2011). RobusTest: Towards a Framework for Automated
Testing of Robustness in Software. VALID 2011: The Third International
Conference on Advances in System Testing and Validation Lifecycle.
Barcelona, Spain: 78-83.

Shinji, K., N. Akira, N. Keisuke and I. Katsuro (2002). Experimental Evaluation of
Program Slicing for Fault Localization, Kluwer Academic Publishers. 7: 49-76.

Software Engineering Institute. (2011). "CERT C Secure Coding Standard."
Retrieved 30/3/2012, 30/3/2012, from
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Sec
ure+Coding+Standard.

Sommerville, I. (2008). Software Engineering, Addison-Wesley.

Straker, D. (1992). C Style: Standards and Guidlines, Defining Programming
Standards for Professional C programmers, Prentice Hall International.

http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard

147

Thompson, M. (2010). "CERT C - Risk Assessment." Retrieved 29/3/2012, from
https://www.securecoding.cert.org/confluence/display/seccode/Risk+Assessm
ent.

Tip, F. (1995). "A survey of Program Slicing Techniques." Journal of Programming
Languages 3: 121-189.

Tonella, P. (2003). "Using a concept lattice of decomposition slices for program
understanding and impact analysis." IEEE Transactions on Software
Engineering 29(6): 495-509.

Tonella, P. and F. Ricca (2005). "Web Application Slicing in Presence of Dynamic
Code Generation." Automated Software Engineering 12(2): 259-288.

Venkatesh, G. A. (1991). The semantic approach to program slicing, ACM. 26: 107-
119.

Voas, E., F. Charron, G. McGraw, K. Miller and M. Friedman (1997). "Predicting how
badly "good" software can behave." Software, IEEE 14(4): 73-83.

Wang, T. and A. Roychoudhury (2004). Using compressed bytecode traces for
slicing Java programs. ACM/IEEE International Conference on Software
Engineering (ICSE): 512-521.

Weinberg, G. M. (1983). Kill That Code! Infosystems. 8: 48-49.

Weiser, M. (1979). Program slices: formal, psychological, and practical investigations
of an automatic program abstraction method. Michigan, The University of
Michigan. PhD: 270.

Weiser, M. (1981). Program Slicing. Proceedings of the 5th international conference
on Software Engineering. California, United States, IEEE Press: 439-449.

Weiser, M. (1982). "Programmers use slices when debugging." Communications of
the ACM 25(7): 446-452.

Weiser, M. (1984). "Program Slicing." IEEE Transactions on Software Engineering
10: 352-357.

Weiser, M. and J. Lyle (1986). Experiments on slicing-based debugging aids. Papers
presented at the first workshop on Empirical studies of programmers.
Washington, D.C., United States, Ablex Publishing Corp: 187-197.

Zhao, J. (2002). Slicing aspect-oriented software. Program Comprehension, 2002.
Proceedings. 10th International Workshop on: 251-260.

Zuse, H. (1998). A Framework of Software Measurement, Walter de Gruyter.

http://www.securecoding.cert.org/confluence/display/seccode/Risk+Assessment
http://www.securecoding.cert.org/confluence/display/seccode/Risk+Assessment
http://www.securecoding.cert.org/confluence/display/seccode/Risk+Assessment

148

Appendices

Appendix A: Rule Distribution in the Robustness Grid

Rules distribution on their Categories

Category 1 Category 2 Category 3 Category 4 Category 5 Category 6

4.1+7.1 12.2 8.1 8.12 8.4 5.7

4.2 12.3 8.2 9.2 19.4 6.3

5.1 12.4 8.3 11.5 19.5 11.3

5.2 12.5 8.6 16.7 19.6 11.4

6.1 12.7 8.7 19.9 12.1

6.2 12.8 8.8 19.10 12.6

6.4 13.1 8.11 19.11 12.11

6.5 13.3 14.8 19.(12+13) 13.2

10.1 13.4 16.1 19.15 19.1

10.2 13.5 16.2 19.16 19.2

10.3 13.6 16.3 20.1 19.7

10.4 13.7 16.4 20.2

10.5 14.4 16.5

20.3

10.6 14.5 16.8 20.4

12.9 14.7 16.9 20.6

12.10 14.9 20.7

12.12 14.10 20.8

12.13 15.1 20.9

14.3 15.2 20.10

 15.3 20.11

 15.4 20.12

 15.5

 17.1

 17.2

 17.3

 17.4

 17.5

 17.6

149

Appendix B: SwapoAdd.c program

SwapoAdd.c Program with the Clauses Numbers

#include <stdio.h>
1

#define LAST 10
2

#define ARRAY_SIZE 10
3

typedef unsigned char x1;
4

char array[ARRAY_SIZE] = "0123456789";
5

void incr(int *num, int i);
6

void swap(int *a, int *b);
7

int one (int x);
8

int main()
9

{int i;
10

int sum = 0;
11

int *a = 12;
12

int *b = 13;
13

int x = 3;
14

for (i = 1
15

; i <= LAST
16

; i++
17

) {

incr
18

(&sum
19

, i
20

); }

printf
21

("sum = %d\n"
22

, sum
23

);

swap
24

 (&a
25

,&b
26

);

int index
27

;

for (index = 0
28

; index < ARRAY_SIZE
29

; ++index
30

)

{one
31

 (x
32

);

printf
33

("&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n"
34

,

&array[index],
35

 (array+index),
36

array[index])
37

;}

return 0;}
38

void incr
39

(int *num
40

, int i
41

) {

*num= *num + i;}
42

void swap
43

(int *a
44

, int *b
45

){

int temp

= *a

46
;

*a

= *b

47
;

*b = temp
48

;

printf
49

 ("pointer a is: %d\n"
50

,*a
51

);

printf
52

("pointer b is: %d\n"
53

,*b
54

);}

int one
55

 (int x
56

)

{printf
57

 ("%d\n"
58

, x
59

);

return 1;
60

}

150

Appendix C: Clause Table of SwapoAdd.c program

Clause
Number

Slice
Size

Clause
Frequency

Clause
Weight

Function
Name

Applicable Rules

Satisfied Violated

1* 1 1 1 main
19.1, 19.2,20.9,

20.2,20.1
0

2* 1 1 1 main 19.6 0

3* 1 1 1 main 19.6 0

4* 1 1 1 main 0 6.3

5 4 2 8 main
5.1, 6.1, 8.12,

13.1, 9.2
0

6* 1 1 1 incr 16.3, 16.4, 16.1 19.7

7* 1 1 1 swap 16.3, 16.4, 16.1 19.7

8* 1 1 1 one 16.3, 16.4, 16.1 19.7

9 53 2 106 main
14.7, 16.1, 8.2,

8.6
16.5,

19.7, 8.1

10 12 2 24 main 5.1 0

11 5 2 10 main 5.1 0

12 8 2 16 main 5.1, 17.5 0

13 7 2 14 main 5.1, 17.5 0

14 4 2 8 main 5.1 0

15 11 3 33 main 13.4, 13.5, 14.8 0

16 10 5 50 main 13.5, 13.4 0

17 10 5 50 main 12.3, 13.5, 13.4 0

18 8 6 48 incr 16.2, 16.9 13.6

19 4 7 28 incr 0 0

20 4 7 28 incr 0 0

21 3 2 6 main 16.2, 16.9 16.1

22 1 3 3 main 4.1, 4.2 0

23 1 15 15 main 0 0

24 15 2 30 swap 16.2,16.9 0

25 7 4 28 swap 0 0

26 6 4 24 swap 0 0

27 17 2 34 main 5.1 0

28 16 3 48 main 13.5, 14.8,13.4 0

29 15 5 75 main 13.5, 16.2, 13.4 0

30 15 5 75 main 12.3, 13.5, 13.4 0

31 8 6 48 one 16.2, 16.9 0

32 3 8 24 one 0 0

33 5 6 30 main 16.9, 16.2 0

34 1 7 7 main
4.1, 4.2,

12.1,12.2, 17.4,
17.4

7.1, 7.1,
7.1

35 1 8 8 main 0 0

36 1 8 8 main 12.1, 12.2 0

151

Clause
Number

Slice
Size

Clause
Frequency

Clause
Weight

Function
Name

Applicable Rules

Satisfied Violated

37 1 8 8 main 0 0

38 2 2 4 main 16.8 0

39 5 7 35 incr 8.1, 8.2, 8.6 14.7

40 3 10 30 incr 5.1, 8.3 0

41 3 10 30 incr 5.1, 8.3 0

42 2 12 24 incr 12.2
17.1,
17.4

43 12 3 36 swap 8.1, 8.2, 8.6 14.7

44 6 7 42 swap 5.1, 8.3 5.2

45 5 7 35 swap 5.1, 8.3 5.2

46 3 7 21 swap 5.1 11.3

47 2 10 20 swap 0 0

48 2 11 22 swap 0 11.3

49 3 4 12 swap 16.2, 16.9 16.1

50 1 5 5 swap 4.1, 4.2 0

51 1 12 12 swap 0 0

52 3 4 12 swap 16.2, 16.9 16.1

53 1 5 5 swap 4.1, 4.2 0

54 1 13 13 swap 0

55 6 8 48 one 8.1, 8.2, 8.6, 14.7 0

56 2 10 20 one 5.1, 8.3 5.2

57 3 8 24 one 16.2, 16.9 16.1

58 1 9 9 one 4.1, 4.2 0

59 1 12 12 one 0 0

60 2 8 16 one 16.8 0

* Un-sliceable Clauses
Clause Table of SwapoAdd.c program

152

Appendix D: Data Table of SwapoAdd.c program

Rule Number Number of Satisfied ∑Satisfied Slices Number of Violated ∑Violated Slices

4.1 + 7.1 5 5 3 3

4.2 5 5 0 0

5.1 13 79 0 0

5.2 0 0 3 13

6.1 1 4 0 0

6.3 0 0 1 1

8.1 3 23 1 53

8.2 4 76 0 0

8.3 5 19 0 0

8.6 4 75 0 0

8.12 1 4 0 0

9.2 1 4 0 0

11.3 0 0 2 5

12.1 2 2 0 0

12.2 3 3 0 0

12.3 2 25 0 0

13.4 6 77 0 0

13.5 6 77 0 0

13.6 0 0 1 8

14.7 2 59 2 17

14.8 2 27 0 0

16.1 4 56 4 10

16.2 9 63 0 0

16.3 3 3 0 0

16.4 3 3 0 0

16.5 0 0 1 53

16.8 2 4 0 0

16.9 8 48 0 0

17.1 0 0 1 2

17.4 2 2 1 2

17.5 2 15 0 0

19.1 1 1 0 0

19.2 1 1 0 0

19.6 2 2 0 0

19.7 0 0 4 56

20.2 1 1 0 0

20.9 1 1 0 0

Data Table of SwapoAdd.c program

153

Appendix E: swap Function Calculation Table

Categories

R
u

le
 N

u
m

b
e

r swap FCD %

A
p

p
lie

d

R
u

le
s

∑
S

a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
 S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u

n
c
ti
o

n

F
re

q
u

e
n

c
y

R
u

le
 ∑

F
u

n
c
ti
o

n

S
lic

e
 S

iz
e

R
u

le

F
u

n
c
ti
o

n

W
e

ig
h
t

FCSD
%

FCVD
%

Category 1

4.1 +
7.1 +2 2 4 0 0 2 2 4

7/9 =
77.78%

2/9=
22.22%

4.2 +2 2 4 0 0 2 2 4

5.1 +3 14 42 0 0 3 14 42

5.2 -2 0 0 11 22 2 11 22

6.1 0 0 0 0 0 0 0 0

AC 5 4 18 50 11 22 9 29 72
7/9 =

77.78%
2/9=

22.22%

Category 2

12.2 0 0 0 0 0 0 0 0

0/1 =
0%

1/1 =
100%

12.3 0 0 0 0 0 0 0 0

13.4 0 0 0 0 0 0 0 0

13.5 0 0 0 0 0 0 0 0

13.6 0 0 0 0 0 0 0 0

14.7 -1 0 0 12 12 1 12 12

17.1 0 0 0 0 0 0 0 0

17.5 0 0 0 0 0 0 0 0

AC 0-1 13 5 18 100 23 56 10 41 84
7/10=
70%

3/10=
30%

Category 3

8.1 +1 12 12 0 0 1 12 12

14/16 =
87.5%

2/16 =
12.5%

8.2 +1 12 12 0 0 1 12 12

8.3 +2 11 22 0 0 2 22 44

8.6 +1 12 12 0 0 1 12 12

14.8 0 0 0 0 0 0 0 0

16.1 +1/-2 1 1 6 12 3 7 21

16.2 +3 21 63 0 0 3 21 63

16.3 +1 1 1 0 0 1 1 1

16.4 +1 1 1 0 0 1 1 1

16.5 0 0 0 0 0 0 0 0

16.8 0 0 0 0 0 0 0 0

16.9 +3 21 51 0 0 3 51 153

AC 0-2 25 14 92 275 6 68 26 180 403
21/26=
80.76%

5/26=
19.24%

Category 4
8.12 0 0 0 0 0 0 0 0

0 0
9.2 0 0 0 0 0 0 0 0

AC 0-3 27 14 92 275 0 68 26 180 403
21/26=
80.76%

5/26=
19.24%

Category 5

19.6 0 0 0 0 0 0 0 0

0 0 20.2 0 0 0 0 0 0 0 0

20.9 0 0 0 0 0 0 0 0

AC 0-4 30 14 92 275 0 68 26 180 403
21/26=
80.76%

5/26=
19.24%

154

Categories

R
u

le
 N

u
m

b
e

r swap FCD %

A
p

p
lie

d

R
u

le
s

∑
S

a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
 S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u

n
c
ti
o

n

F
re

q
u

e
n

c
y

R
u

le
 ∑

F
u

n
c
ti
o

n

S
lic

e
 S

iz
e

R
u

le

F
u

n
c
ti
o

n

W
e

ig
h
t

FCSD% FCVD%

Category 6

6.3 0 0 0 0 0 0 0 0

0/3 =
0%

3/3 =
100%

11.3 -2 0 0 5 10 2 5 10

12.1 0 0 0 0 0 0 0 0

17.4 0 0 0 0 0 0 0 0
19.1 0 0 0 0 0 0 0 0
19.2 0 0 0 0 0 0 0 0
19.7 -1 0 0 1 1 1 1 1

FAC 37 16 92 275 6 79 29 186 414
21/29 =
72.41%

8/29=
27.59%

swap Function Calculation

155

Appendix F: one Function Calculation Table

Categories

R
u

le
 N

u
m

b
e

r one FCD %

A
p

p
lie

d

R
u

le
s

∑
S

a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
 S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u

n
c
ti
o

n

F
re

q
u

e
n

c
y

R
u

le
 ∑

F
u

n
c
ti
o

n

S
lic

e
 S

iz
e

R
u

le

F
u

n
c
ti
o

n

W
e

ig
h
t

FCSD
%

FCVD %

Category 1

4.1
+

7.1
+1 1 1 0 0 1 1 1

3/4 =
75%

1/4 = 25%
4.2 +1 1 1 0 0 1 1 1

5.1 +1 2 2 0 0 1 2 2

5.2 -1 0 0 2 2 1 2 2

6.1 0 0 0 0 0 0 0 0

AC 5 4 4 4 2 2 4 6 6
3/4 =
75%

1/4 = 25%

Category 2

12.2 0 0 0 0 0 0 0 0

1/1 =
100%

0/1 = 100%

12.3 0 0 0 0 0 0 0 0

13.4 0 0 0 0 0 0 0 0

13.5 0 0 0 0 0 0 0 0

13.6 0 0 0 0 0 0 0 0

14.7 +1 6 6 0 0 1 6 6

17.1 0 0 0 0 0 0 0 0

17.5 0 0 0 0 0 0 0 0

AC 1-2 13 5 10 14 2 2 5 12 12
4/5 =
80%

1/5 = 20%

Category 3

8.1 +1 6 6 0 0 1 6 6

12/13 =
92.3%

1/13 = 7.7%

8.2 +1 5 5 0 0 1 5 5

8.3 +1 2 2 0 0 1 2 2

8.6 +1 6 6 0 0 1 6 6

14.8 0 0 0 0 0 0 0 0

16.1
+1/-

1
1 1 3 3 2 4 8

16.2 +2 11 22 0 0 2 11 22

16.3 +1 1 1 0 0 1 1 1

16.4 +1 1 1 0 0 1 1 1

16.5 0 0 0 0 0 0 0 0

16.8 +1 2 2 0 0 1 2 2

16.9 +2 11 22 0 0 2 11 22

AC 1-3 25 15 46 82 5 5 18 61 87
16/18 =
88.88%

2/18
=11.12%

Category 4
8.12 0 0 0 0 0 0 0 0

0 0
9.2 0 0 0 0 0 0 0 0

AC 1-4 27 15 46 82 5 5 18 61 87
16/18 =
88.88%

2/18
=11.12%

Category 5

19.6 0 0 0 0 0 0 0 0

0 0 20.2 0 0 0 0 0 0 0 0

20.9 0 0 0 0 0 0 0 0

AC 1-5 30 15 46 82 5 5 18 61 87
16/18 =
88.88%

2/18
=11.12%

156

Categories

R
u

le
 N

u
m

b
e

r

one FCD %

A
p

p
lie

d
 R

u
le

s

∑
S

a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
 S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u

n
c
ti
o

n

F
re

q
u

e
n

c
y

R
u

le
 ∑

F
u

n
c
ti
o

n
 S

lic
e

S
iz

e

R
u

le
 F

u
n

c
ti
o

n

W
e

ig
h
t

FCSD% FCVD%

Category 6

6.3 0 0 0 0 0 0 0 0

0/1 =
0%

1/1 = 100%

11.3 0 0 0 0 0 0 0 0

12.1 0 0 0 0 0 0 0 0

17.4 0 0 0 0 0 0 0 0

19.1 0 0 0 0 0 0 0 0

19.2 0 0 0 0 0 0 0 0

19.7 -1 0 1 1 1 1 1 1

FAC 37 16 46 83 6 6 19 62 88
16/19 =
84.21%

3/19 =
15.79%

one Function Calculation

157

Appendix G: main Function Calculation Table

Categories

R
u

le
 N

u
m

b
e

r main FCD %

A
p

p
lie

d

R
u

le
s

∑
S

a
ti
s
fi
e

d

S
lic

e

S
iz

e
s

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u

n
c
ti
o

n

F
re

q
u

e
n

c
y

R
u

le
 ∑

F
u

n
c
ti
o

n

S
lic

e
 S

iz
e

R
u

le

F
u

n
c
ti
o

n

W
e

ig
h
t

FCSD
%

FCVD %

Category 1

4.1 +
7.1

+2/-3 2 4 3 9 5 5 25

12/15 =
80%

3/15 =
20%

4.2 +2 2 4 0 0 2 2 4

5.1 +7 57 399 0 0 7 57 399

5.2 0 0 0 0 0 0 0 0

6.1 +1 4 4 0 0 1 4 4

AC 5 4 64 364 15 45 15 68 432
12/15 =

80%
3/15 =
20%

Category 2

12.2 +2 2 4 0 0 2 2 4

19/20 =
95%

1/20 = 5%

12.3 +2 25 50 0 0 2 25 50

13.4 +6 77 462 0 0 6 77 462

13.5 +6 77 462 0 0 6 77 462

13.6 -1 0 0 8 8 1 8 8

14.7 +1 53 53 0 0 1 53 53

17.1 0 0 0 0 0 0 0 0

17.5 +2 15 30 0 0 2 15 30

AC 1-2 13 11 378
183
6

23 62 35 325 1501
27/35 =
77.1%

8/35
=22.9%

Category 3

8.1 -1 0 0 53 53 1 53 53

11/14 =
78.57%

3/14 =
21.43%

8.2 +1 53 53 0 0 1 53 53

8.3 0 0 0 0 0 0 0 0

8.6 +1 53 53 0 0 1 53 53

14.8 +2 27 54 0 0 2 27 54

16.1 +1/-1 53 53 1 1 2 54 108

16.2 +3 23 69 0 0 3 23 69

16.3 0 0 0 0 0 0 0 0

16.4 0 0 0 0 0 0 0 0

16.5 -1 0 0 53 53 1 53 53

16.8 +1 2 2 0 0 1 2 2

16.9 +2 8 16 0 0 2 8 16

AC 1-3 25 20 219
213
6

107
16
9

49 651 1962
38/49 =
77.55%

11/49=
22.45%

Category 4
8.12 +1 4 4 0 0 1 4 4 2/2 =

100%
0/2 = 0%

9.2 +1 4 4 0 0 1 4 4

AC 1-4 27 22 227
214
4

107
16
9

51 659 1970
40/51 =
78.43%

11/51=
21.57%

Category 5

19.6 +2 2 4 0 0 2 2 4
4/4 =
100%

0/4 = 0% 20.2 +1 1 1 0 0 1 1 1

20.9 +1 1 1 0 0 1 1 1

AC 1-5 30 25 231
215
0

107
16
9

55 663 1976
44/55 =

80%
11/55 =

20%

158

Categories

R
u

le
 N

u
m

b
e

r main FCD%

A
p

p
lie

d

R
u

le
s

∑
S

a
ti
s
fi
e

d

S
lic

e
 S

iz
e

s

S
a

ti
s
fi
e

d

W
e

ig
h
t

∑
V

io
la

te
d

S
lic

e
S

iz
e

s

V
io

la
te

d

W
e

ig
h
t

F
u

n
c
ti
o

n

F
re

q
u

e
n

c
y

R
u

le
 ∑

F
u

n
c
ti
o

n

S
lic

e
 S

iz
e

R
u

le

F
u

n
c
ti
o

n

W
e

ig
h
t

FCSD
%

FCVD%

Category 6

6.3 -1 0 0 1 1 1 1 1

6/8 =
75%

2/8 = 25%

11.3 0 0 0 0 0 0 0 0

12.1 +2 2 4 0 0 2 2 4

17.4 +2 2 4 0 0 2 2 4

19.1 +1 1 1 0 0 1 1 1

19.2 +1 1 1 0 0 1 1 1

19.7 -1 0 0 53 53 1 53 53

FAC 37 31 237 2160
16
1

22
3

63 723 2040
50/63 =
79.37%

14/63=
20.63%

main Function Calculation

159

Appendix I: SwapoAdd.c PCD Table

Category PCD%

PCSD% PCVD%

Category 1 24/30 = 80% 6/30 =20%

AC 24/30 = 80% 6/30 =20%

Category 2 21/25 = 84% 4/25 = 16%

AC 45/55 = 81.82% 10/55= 18.18%

Category 3 47/53 = 88.68% 6/53 = 11.32%

AC 92/108= 85.19% 16/108= 14.81%

Category 4 2/2 = 100% 0/2 = 0%

AC 94/110= 85.45% 16/110= 14.55%

Category 5 4/4 = 100% 0/4 = 0%

AC 98/114= 85.96% 17/114= 14.04%

Category 6 6/14 = 43% 8/14 = 57%

FAC 104/128= 81.25% 25/128 = 18.75%

SwapoAdd.c PCD Table

160

Appendix J: SwapoAdd.c Category Calculations Table

Categories
Rule

Number

CATEGORY CALCULATIONS

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

∑
S

lic
e

 S
iz

e
s

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

W
e

ig
h
t

C
a

te
g

o
ry

 V
io

la
te

d

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

 V
io

la
te

d

S
lic

e
 S

iz
e

s

C
a

te
g

o
ry

 V
io

la
te

d

W
e

ig
h
t

C
a

te
g

o
ry

F
re

q
u
e

n
c
y

C
a

te
g

o
ry

∑

S
lic

e

S
iz

e
s

R
u

le
 C

a
te

g
o

ry

W
e

ig
h
t

Category 1

4.1 + 7.1 5 5 25 3 3 9 8 8 64

4.2 5 5 25 0 0 0 5 5 25

5.1 13 79 1027 0 0 0 13 79 1027

5.2 0 0 0 3 13 39 3 13 39

6.1 1 4 4 0 0 0 1 4 4

AC 5 24 93 1081 6 16 48 30 109 1159

Category 2

12.2 3 3 9 0 0 0 3 3 9

12.3 2 25 50 0 0 0 2 25 50

13.4 6 77 462 0 0 0 6 77 462

13.5 6 77 462 0 0 0 6 77 462

13.6 0 0 0 1 8 8 1 8 8

14.7 2 59 118 2 17 34 4 76 304

17.1 0 0 0 1 2 2 1 2 2

17.5 2 15 30 0 0 0 2 15 30

AC 0-1 13 45 349 2212 10 41 44 55 392 2486

Category 3

8.1 3 23 69 1 53 35 4 76 304

8.2 4 76 304 0 0 0 4 76 304

8.3 5 19 95 0 0 0 5 19 95

8.6 4 75 300 0 0 0 4 75 300

14.8 2 27 54 0 0 0 2 27 52

16.1 4 56 224 4 10 40 8 66 528

16.2 9 63 567 0 0 0 9 63 567

16.3 3 3 9 0 0 0 3 3 9

16.4 3 3 9 0 0 0 3 3 9

16.5 0 0 0 1 53 53 1 53 53

16.8 2 4 8 0 0 0 2 4 8

16.9 8 48 384 0 0 0 8 48 384

AC 0-2 25 92 746 4235 16 157 172 108 905 5099

Category 4
8.12 1 4 4 0 0 0 1 4 4

9.2 1 4 4 0 0 0 1 4 4

AC 0-3 27 94 754 4243 16 157 172 110 913 5107

161

Categories
Rule

Number

CATEGORY CALCULATIONS

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

F
re

q
u

e
n

c
y

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

∑
S

lic
e

 S
iz

e

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

W
e

ig
h
t

C
a

te
g

o
ry

 V
io

la
te

d

F
re

q
u

e
n

c
y

C
a

te
g

o
ry

 V
io

la
te

d

∑
S

lic
e

 S
iz

e

C
a

te
g

o
ry

 V
io

la
te

d

W
e

ig
h
t

C
a

te
g

o
ry

F
re

q
u

e
n

c
y

C
a

te
g

o
ry

∑

S
lic

e

S
iz

e

R
u

le
 C

a
te

g
o

ry

W
e

ig
h
t

Category 5

19.6 2 2 4 0 0 0 1 4 4

20.2 1 1 1 0 0 0 1 1 1

20.9 1 1 1 0 0 0 1 1 1

AC 0-4 30 98 758 4249 16 157 172 113 919 5113

Category 6

6.3 0 0 0 1 1 1 1 1 1

11.3 0 0 0 2 5 10 2 5 10

12.1 2 2 4 0 0 0 2 2 4

17.4 2 2 4 1 2 2 3 4 12

19.1 1 1 1 0 0 0 1 1 1

19.2 1 1 1 0 0 0 1 1 1

19.7 0 0 0 4 56 224 4 56 224

FAC 37 104 764 4259 24 221 409 127 989 5366

SwapoAdd.c Category Calculations

162

Appendix K: Clause Table Equations

Clause

Number

Slice

Size

Clause

Frequency

Clause

Weight

Function

Name

Applicable Rules

Satisfied Violated

1 2.a 3 4 5
6

6.a 6.b

1. Clause Number: the Clause line number in the program code.

2. Slice Size: number of Clauses in a slice.

a. Clause ∑Slice Size: is the total Slice Size for each program Clause

that applied a MISRA rule which is equal to number of Clauses in a

slice by slicing a Clause.

3. Clause Frequency: number of time a Clause is in a slice.

4. Clause Weight: is equal to Clause frequency multiply by Clause ∑Slice Size.

5. Function Name: is the function that the Clause belongs to.

6. Applicable rules: rules that applied in a program, function or category.

a. Satisfied Rules: rules that applied and satisfied in a program,

function or category.

b. Violated Rules: rules that applied and violated in a program, function

or category.

163

Appendix L: Robustness Grid Equations

In the following table, each number in the cell will be calculated by the equation that

has the same number.

1 2

3 4 5 6

3
.a

3
.b

3
.c

3
.d

3
.e

3
.f

3
.g

3
.h

4
.a

4
.b

5
.a

5
.b

6
.a

6
.b

6
.c

6
.d

6
.e

6
.f

6
.g

6
.h

6
.i

3
.a

 (
i,
 i
i,
 i
ii,

 i
v
)

7

8 9
.a

9
.b

1
0
.a

1
0
.b

8 11

1. Categories (Category 1 – Category 6): set of rules share same

characteristics, and ordered regarding to “category selection conditions” in

Section 3.1.

2. Rule Number: MISRA C2 rule number, as shown in MISRA C2 document.

3. Function Name: each function and has these values:

a. Applied Rules: MISRA C2 rules that are applied in one or more

functions.

i. +n: times of a rule been satisfied through a function = Function

Satisfied Frequency.

ii. -n: times of a rule been violated through a function = Function

Violate Frequency

iii. 0: rule is not applicable in a function.

164

iv. Number of rules applied through a program in a category,

which is equal to number of non-zero applied rules for a

function. (NOT the sum of +n and –n, but how many times a

rule whether +, –, or both been applied).

b. ∑Satisfied Slice Size: total size of all Clause slices that satisfy a rule

in a function.

c. Rule Satisfied Weight: weight of satisfied rule which is equal to a

function satisfied frequency for a rule multiply by ∑satisfied Slice Size

for the same rule in a function for a category.

d. ∑Violated Slice Size: total size of all Clauses slices that violate a rule

in a function.

e. Rule Violated Weight: weight of violated rule which is equal to a

function satisfied frequency for a rule multiply by ∑violated Slice Size

for the same rule in a function for a category.

f. Rule Function Frequency: times a rule been applied (+n +|-n|) in a

function.

g. Rule ∑ Function Slice Size: ∑satisfied Slice Size + ∑violated Slice

Size for a function.

h. Rule Function Weight: rule function weight multiply by rule ∑function

Slice Sizes of a rule (which is equal to ∑satisfied Slice Size +

∑violated Slice Size).

4. FCD (Function Category Degree): has two values:

a. FCSD (Function Category Satisfied Degree): Robustness Degree

for satisfied rules in a category for a function is equal to times of rules

has been satisfied (∑+n) in same category for the same function

165

divided by all times a rule has been applied in the same category for

the same function presented as a percentage.

b. FCVD (Function Category Violated Degree): Robustness Degree

for violated rules in a category for a function is equal to times of rules

has been violated (∑|-n|) in same category for the same function

divided by all times a rule has been applied in the same category for

the same function presented as a percentage.

5. PCD (Program Category Degree): Has two values:

a. PCSD (Program Category Satisfied Degree): Robustness Degree

for satisfied rules in a category for all functions is equal to times of

rules has been satisfied (∑+n for all functions) in same category for all

functions divided by all times a rule has been applied in the same

category for all functions presented as a percentage.

b. PCVD (Program Category Violated Degree): Robustness Degree for

violated rules in a category for all functions is equal to times of rules

has been violated (∑|-n| for all functions) in same category for all

functions divided by all times a rule has been applied in the same

category for all functions presented as a percentage.

6. Category Calculations:

Frequency: times of a rule being applied through a program.

a. Category Satisfied Slice Size: ∑Slice Size of a rule being satisfied

through a category for all functions.

b. Category Satisfied Frequency: times of a rule being satisfied

through a category for all functions.

166

c. Category Satisfied Weight: sum of all satisfied rules weight in a

category which is equal to sum of rules category satisfied frequency

multiply by all rules ∑satisfied Slice Size in a category.

d. Category Violated Slice Size: ∑Slice Size of a rule being violated

through a category for all functions.

e. Category Violate Frequency: times of a rule being violated through a

category for all functions.

f. Category Violated Weight: sum of all violated rules weight in a

category which is equal to sum of rules category violated frequency

multiply by all rules ∑violated Slice Size in a category.

g. Category ∑Slice Size: total size of all Clauses slices that apply a rule

in all functions.

h. Category Frequency: times of a rule being applied through a

category for all functions. This means the rule frequency.

i. Category Weight: sum of all applicable rules weight in a category

which is equal to sum of rules category frequency multiply by all rules

∑Slice Sizes (∑satisfied Slice Size +∑violated Slice Size) in a

category.

7. AC (Accumulative Categories): Accumulative value for each column for all

previous categories for a function.

8. FAC (Function Accumulative Categories): Accumulative value for each

column for all categories for a function. The FAC, as with all other

Robustness Degrees, has two values: FSAC is the Function Satisfaction

Accumulative Degree and FVSC is the Function Violation Accumulative

Degree.

167

9. WCFD (Whole Categories Function Degree): has two values:

a. WCFSD (Whole Categories Function Satisfied Degree): ∑ all

satisfied rules of all categories of a function divided by ∑ all applied

rules in all categories of a function presented as a percentage. (In

other words: crossing of FCSD column with FAC row).

b. WCFVD (Whole Categories Function Violated Degree): ∑ all

violated rules of all categories of a function divided by ∑ all applied

rules of all categories of a function presented as a percentage. (In

other words: crossing of FCVD column with FAC row).

10. WPD (Whole Program Degree) has two values:

a. WPSD (Whole Program Satisfied Degree): ∑ all satisfied rules of a

whole program divided by ∑ all applied rules of same whole program

presented as a percentage. (In other words: crossing of PCSD column

with FAC row).

b. WPVD Whole Program Violated Degree): ∑ all violated rules of a

whole program divided by ∑ all applied rules of same whole program

presented as a percentage. (In other words: crossing of PCVD column

with FAC row).

11. WPW (Whole Program Weight): ∑ all applied rules weight of whole

program, which is equal to ∑ all applied rules frequency of whole program

multiply by ∑ size of all applied rules slices of the whole program presented

as a percentage. (In other words: crossing of Category Weight column with

FAC row).

168

Appendix M: LDRA TBmisra test results (against MISRA C2)

 #include <stdio.h>

/* (M) STATIC VIOLATION : 130 S : MISRA-C:2004 20.8,20.9,20.12: Included file

is not permitted. : 7F#include <stdio.h> */

 #define LAST 10

 #define ARRAY_SIZE 10

 typedef unsigned char x1;

 char array[ARRAY_SIZE] = "0123456789";

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 15Fchar */

/* (M) STATIC VIOLATION : 404 S : MISRA-C:2004 9.2: Array initialisation has too

many items. : 16F array [10] = "0123456789" ; */

/* (M) DATAFLOW VIOLATION : 25 D : MISRA-C:2004 8.7: Scope of variable could

be reduced : array : 16 */

 void Incr(int *num, int i);

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 20F int * num , */

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 21F int i) ; */

 void swap(int *a, int *b);

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 25F int * a , */

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 26F int * b) ; */

 int one (int x);

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 28Fint */

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 30F int x) ; */

 int main()

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 32Fint */

 {

 int i, sum = 0, *a = 12,*b = 13, x = 3;

169

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 35F int */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : i : 36F i , */

/* See also line 6 SwapoAdd.c(SWAPOADD) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : a : 38F * a = 12 , */

/* See also line 7 SwapoAdd.c(SWAPOADD) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : b : 39F * b = 13 , */

/* See also line 7 SwapoAdd.c(SWAPOADD) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : x : 40F x = 3 ; */

/* See also line 8 SwapoAdd.c(SWAPOADD) */

 for (i = 1; i <= LAST; i++) {

 Incr(&sum, i);

 }

 printf("sum = %d??/n", sum);

/* (M) STATIC VIOLATION : 81 S : MISRA-C:2004 4.2: Use of trigraphs. : 54T

printf ("sum = %d??/n" , sum) ; */

 swap (&a,&b);

 int index;

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 59F index ; */

 for (index = 0; index < ARRAY_SIZE; ++index)

 {

 one (x);

 printf("&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n",

/* (M) STATIC VIOLATION : 87 S : Use of pointer arithmetic. : 72T printf (

"&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n" , & array [index] , (

array + index) , array [index]) ; */

/* (M) STATIC VIOLATION : 87 S : Use of pointer arithmetic. : 72 */

 &array[index], (array+index), array[index]);

 }

170

 return 0;

 }

 void Incr(int *num, int i) {

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 80F int * num , */

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 81F int i) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : i : 81 */

/* See also line 11 SwapoAdd.c(SWAPOADD) */

 *num = *num + i;

 }

 void swap(int *a, int *b)

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 88F int * a , */

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 89F int * b) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : a : 88 */

/* See also line 11 SwapoAdd.c(SWAPOADD) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : b : 89 */

/* See also line 11 SwapoAdd.c(SWAPOADD) */

 {

 int temp= *a;

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 91F int */

 *a= *b;

 *b= temp;

 printf ("pointer a is: %d\n",*a);

/* (M) DATAFLOW VIOLATION : 45 D : MISRA-C:2004 21.1: Pointer not checked

for null before use : a : 95T printf ("pointer a is: %d\n" , * a) ; */

/* See also line 36 SwapoAdd.c(SWAPOADD) */

 printf ("pointer b is: %d\n",*b);

171

/* (M) DATAFLOW VIOLATION : 45 D : MISRA-C:2004 21.1: Pointer not checked

for null before use : b : 96T printf ("pointer b is: %d\n" , * b) ; */

/* See also line 37 SwapoAdd.c(SWAPOADD) */

 }

 int one (int x)

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 99Fint */

/* (O) STATIC VIOLATION : 90 S : MISRA-C:2004 6.3: Basic type declaration

used. : 101F int x) */

/* (O) XREF VIOLATION : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc

param. : x : 101 */

/* See also line 11 SwapoAdd.c(SWAPOADD) */

 {

 printf ("%d\n", x);

 return 1;

 }

172

Appendix N: FlexeLint test results (against MISRA C2)

FlexeLint for C/C++ (Unix/386) Vers. 9.00i, Copyright Gimpel Software 1985-2012

--- Module: SwapoAdd.c (C)

 char array[ARRAY_SIZE] = "0123456789";

 ^

SwapoAdd.c:5:8: Note 970: Use of modifier or type 'char' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:5:45: Info 784: Nul character truncated from string

 void Incr(int *num, int i);

 ^

SwapoAdd.c:6:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:6:24: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 void swap(int *a, int *b);

 ^

SwapoAdd.c:7:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:7:22: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 int one (int x);

 ^

SwapoAdd.c:8:4: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:8:13: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 int main() {

 ^

SwapoAdd.c:9:4: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 int i, sum = 0, *a = 12,*b = 13, x = 0;

173

 ^

SwapoAdd.c:10:8: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:10:31: Error 64: Type mismatch (initialization) (int * = int) [MISRA 2004 Rule

1.2, required], [MISRA 2004 Rule 8.4, required]

 ^

SwapoAdd.c:10:39: Error 64: Type mismatch (initialization) (int * = int) [MISRA 2004 Rule

1.2, required], [MISRA 2004 Rule 8.4, required]

 Incr(&sum, i); }

 ^

SwapoAdd.c:13:21: Note 934: Taking address of near auto variable 'sum' of type 'int' (arg.

no. 1) [MISRA 2004 Rule 1.2, required]

 printf("sum = %d ??/n", sum);

 ^

SwapoAdd.c:14:15: Warning 584: Trigraph sequence (??/) detected [MISRA 2004 Rule 4.2,

required]

 ^

SwapoAdd.c:14:36: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10,

required]

SwapoAdd.c:1:0: Info 830: Location cited in prior message

 swap (&a,&b);

 ^

SwapoAdd.c:15:16: Note 918: Prototype coercion (arg. no. 1) of pointers [MISRA 2004 Rule

10.2, required]

SwapoAdd.c:15:16: Error 64: Type mismatch (arg. no. 1) (int * = int **) [MISRA 2004 Rule

1.2, required], [MISRA 2004 Rule 8.4, required]

SwapoAdd.c:15:16: Note 934: Taking address of near auto variable 'a' of type 'int *' (arg. no.

1) [MISRA 2004 Rule 1.2, required]

 ^

SwapoAdd.c:15:19: Note 918: Prototype coercion (arg. no. 2) of pointers [MISRA 2004 Rule

10.2, required]

SwapoAdd.c:15:19: Error 64: Type mismatch (arg. no. 2) (int * = int **) [MISRA 2004 Rule

1.2, required], [MISRA 2004 Rule 8.4, required]

SwapoAdd.c:15:19: Note 934: Taking address of near auto variable 'b' of type 'int *' (arg. no.

174

2) [MISRA 2004 Rule 1.2, required]

 int index;

 ^

SwapoAdd.c:16:8: Error 42: Expected a statement

 ^

SwapoAdd.c:16:17: Note 960: Violates MISRA 2004 Required Rule 14.3, null statement not

in line by itself

 for (index = 0; index < ARRAY_SIZE; ++index) {

 ^

SwapoAdd.c:17:16: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required]

 ^

SwapoAdd.c:17:25: Error 63: Expected an lvalue

 ^

SwapoAdd.c:17:27: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required]

 ^

SwapoAdd.c:17:49: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required]

SwapoAdd.c:17:49: Error 52: Expected an lvalue

SwapoAdd.c:17:49: Note 961: Violates MISRA 2004 Advisory Rule 12.13, increment or

decrement combined with another operator

 one (x);

 ^

SwapoAdd.c:18:26: Warning 534: Ignoring return value of function 'one(int)' of type 'int (int)'

(compare with line 8) [Encompasses MISRA 2004 Rule 16.10, required]

SwapoAdd.c:8:0: Info 830: Location cited in prior message

 &array[index], (array+index), array[index]); }

 ^

SwapoAdd.c:20:22: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required]

 ^

SwapoAdd.c:20:37: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required]

 ^

SwapoAdd.c:20:43: Warning 626: argument no. 3 inconsistent with format

 ^

SwapoAdd.c:20:51: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required]

 ^

SwapoAdd.c:20:58: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10,

175

required]

SwapoAdd.c:1:0: Info 830: Location cited in prior message

 void Incr(int *num, int i) {

 ^

SwapoAdd.c:23:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:23:24: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 void swap(int *a, int *b) {

 ^

SwapoAdd.c:26:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 ^

SwapoAdd.c:26:22: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 int temp= *a;

 ^

SwapoAdd.c:27:8: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 printf ("pointer a is: %d\n",*a);

 ^

SwapoAdd.c:30:40: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10,

required]

SwapoAdd.c:1:0: Info 830: Location cited in prior message

 printf ("pointer b is: %d\n",*b); }

 ^

SwapoAdd.c:31:40: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10,

required]

SwapoAdd.c:1:0: Info 830: Location cited in prior message

 int one (int x) {

 ^

SwapoAdd.c:33:4: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

176

 ^

SwapoAdd.c:33:13: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004

Rule 6.3, advisory]

 printf ("%d\n", x);

 ^

SwapoAdd.c:34:26: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10,

required]

SwapoAdd.c:1:0: Info 830: Location cited in prior message

 --- Wrap-up for Module: SwapoAdd.c

SwapoAdd.c:4:0: Info 751: local typedef 'x1' of type 'unsigned char' (line 4, file SwapoAdd.c)

not referenced

:0:0: Note 960: Violates MISRA 2004 Required Rule 8.7, could define variable at block

scope: array

--- Global Wrap-up

SwapoAdd.c:5:0: Warning 552: Symbol 'array' of type 'char [10]' (line 5, file SwapoAdd.c) not

accessed

SwapoAdd.c:5:0: Info 843: Variable 'array' of type 'char [10]' (line 5, file SwapoAdd.c) could

be declared as const

SwapoAdd.c:1:0: Warning 526: Symbol 'printf(const char *, ...)' of type 'int (const char *, ...)'

(line 1, file SwapoAdd.c) not defined

:0:0: Note 974: Worst case function for stack usage: 'main' is finite, requires 80 bytes total

stack in calling 'swap'. See +stack for a full report. [MISRA 2004 Rule 16.2, required]

:0:0: Note 900: Successful completion, 57 messages produced

177

Appendix O: LDRA TenDRA test results (against ISO 1990)

"SwapoAdd.c", line 1 column 2: Warning:

 [ISO 6.8]: Indented preprocessing directive.

"SwapoAdd.c", line 2 column 5: Warning:

 [ISO 6.8]: Indented preprocessing directive.

"SwapoAdd.c", line 3 column 5: Warning:

 [ISO 6.8]: Indented preprocessing directive.

"SwapoAdd.c", line 11 column 32: Error:

 [ISO 6.5.7]: In initialization of 'a'.

 [ISO 6.3.4]: Conversion of nonzero value of type 'int' to type 'int *'.

 [ISO 6.3.16]: Can't perform this conversion by assignment.

 [ISO 6.5.7]: Initializers are converted as if by assignment.

"SwapoAdd.c", line 11 column 40: Error:

 [ISO 6.5.7]: In initialization of 'b'.

 [ISO 6.3.4]: Conversion of nonzero value of type 'int' to type 'int *'.

 [ISO 6.3.16]: Can't perform this conversion by assignment.

 [ISO 6.5.7]: Initializers are converted as if by assignment.

"SwapoAdd.c", line 16 column 36: Warning:

 [ISO 6.3.2.2]: In call of function 'printf'.

 [ISO 6.6.3]: Discarded function return.

"SwapoAdd.c", line 17 column 20: Error:

 [ISO 6.3.2.2]: In call of function 'swap'.

 [ISO 6.1.2.6]: The types 'int *' and 'int' are incompatible.

 [ISO 6.3.4]: Types in pointer conversion should be compatible.

 [ISO 6.3.16]: Can't perform this conversion by assignment.

 [ISO 6.3.2.2]: Argument 1 is converted to parameter type.

178

"SwapoAdd.c", line 17 column 20: Error:

 [ISO 6.3.2.2]: In call of function 'swap'.

 [ISO 6.1.2.6]: The types 'int *' and 'int' are incompatible.

 [ISO 6.3.4]: Types in pointer conversion should be compatible.

 [ISO 6.3.16]: Can't perform this conversion by assignment.

 [ISO 6.3.2.2]: Argument 2 is converted to parameter type.

"SwapoAdd.c", line 18 column 17: Error:

 [ISO 6.6.2]: Declaration statement should be at start of block.

"SwapoAdd.c", line 21 column 21: Warning:

 [ISO 6.3.2.2]: In call of function 'one'.

 [ISO 6.6.3]: Discarded function return.

"SwapoAdd.c", line 23 column 59: Warning:

 [ISO 6.3.2.2]: In call of function 'printf'.

 [ISO 6.6.3]: Discarded function return.

"SwapoAdd.c", line 38 column 41: Warning:

 [ISO 6.3.2.2]: In call of function 'printf'.

 [ISO 6.6.3]: Discarded function return.

"SwapoAdd.c", line 39 column 41: Warning:

 [ISO 6.3.2.2]: In call of function 'printf'.

 [ISO 6.6.3]: Discarded function return.

"SwapoAdd.c", line 44 column 25: Warning:

 [ISO 6.3.2.2]: In call of function 'printf'.

 [ISO 6.6.3]: Discarded function return.

179

Appendix P: Variance.c program

1- #include<stdio.h>1

2- #define MAX 10242

3- main()3

4- { float x[MAX];4

5- float var15,var26,var37,var48,var59;

6- float ssq10, avg11, dev12;

7- float t113,t214,t315;

8- int ii16,jj17,n18;

9- t1=0.0;19

10- t2=0.0;20

11- t3=0.0;21

12- ssq=0.0;22

13- scanf23("%d"24, &n25);

14- for (ii=026; ii<n27; ii=ii +128)

15- { scanf29("%f"30, &x[ii]31);

16- t1 = t1+x[ii]32;

17- ssq =ssq +x[ii]*x[ii]33;}

18- avg =t1/n;34

19- var3=(ssq - n*avg*avg)/ (n-1);35

20- var4=(ssq - t1*avg)/ (n-1);36

21- t1=t1*t1/n;37

22- var2=(ssq-t1)/(n-1);38

23- for (jj=039; jj<n40; jj=jj+141)

24- { dev = x[jj]-avg;42

25- t2=t2+dev;43

26- t3=t3+dev*dev;}44

27- var1=t3/(n-1);45

28- var5= (t3-t2*t2/n)/(n-1);46

29- printf47("variance 1 (two pass):%f\n"48, var1)49;

30- printf50("variance 2 (one pass, using square of sum):%f\n"51,var252);

31- printf53("variance 3 (one pass, using average):%f\n"54,var355);

32- printf56("variance 4 (one pass, using average, sum):%f\n"57,var458);

33- printf59("variance 5 (two pass, corrected):%f\n"60,var261);}

180

Appendix Q: n_char program

#include <stdio.h>1

#include <string.h>2
void main()3
{
 int n;4
 char string[50];5
 strcpy6(string7, "Hello World"8);
 n = n_char9(string10);
 printf11("Length of string = %d\n"12, n13);
}

int n_char14(char string[]15)
{
 int n;16
 n = strlen17(string18);
 if (n > 50) 19
 printf20("String is longer than 50 characters\n"21);
 return n;22
}

