
Durham E-Theses

A Weighted Grid for Measuring Program Robustness

ABDALLAH, MOHAMMAD,MAHMOUD,AREF

How to cite:

ABDALLAH, MOHAMMAD,MAHMOUD,AREF (2012) A Weighted Grid for Measuring Program

Robustness, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4454/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4454/
 http://etheses.dur.ac.uk/4454/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


 

 

 

 

A Weighted Grid for Measuring 

Program Robustness 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Mohammad Mahmoud Aref 

ABDALLAH 

 
School of Engineering and Computing Sciences 

Durham University 

 

 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

 

2012 



 

 

i 

Abstract 

Robustness is a key issue for all the programs, especially safety critical ones. In the 

literature, Program Robustness is defined as “the degree to which a system or 

component can function correctly in the presence of invalid input or stressful 

environment” (IEEE 1990). Robustness measurement is the value that reflects the 

Robustness Degree of the program. 

In this thesis, a new Robustness measurement technique; the Robustness Grid, is 

introduced. The Robustness Grid measures the Robustness Degree for programs, C 

programs in this instance, using a relative scale. It allows programmers to find the 

program’s vulnerable points, repair them, and avoid similar mistakes in the future. 

The Robustness Grid is a table that contains Language rules, which is classified into 

categories with respect to the program’s function names, and calculates the 

robustness degree. The Motor Industry Software Reliability Association (MISRA) C 

language rules with the Clause Program Slicing technique will be the basis for the 

robustness measurement mechanism. 

In the Robustness Grid, for every MISRA rule, a score will be given to a function 

every time it satisfies or violates a rule.  Furthermore, Clause program slicing will be 

used to weight every MISRA rule to illustrate its importance in the program. The 

Robustness Grid shows how much each part of the program is robust and effective, 

and assists developers to measure and evaluate the robustness degree for each part 

of a program. 

Overall, the Robustness Grid is a new technique that measures the robustness of C 

programs using MISRA C rules and Clause program slicing. The Robustness Grid 

shows the program robustness degree and the importance of each part of the 

program. An evaluation of the Robustness Grid is performed to show that it offers 

new measurements that were not provided before. 
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Chapter One 

 

Introduction 

 

 

1.1 Research Overview 

Software Engineering may be defined as: “The application of a systematic, 

disciplined, quantifiable approach to the development, operation, and maintenance of 

software; that is, the application of engineering to software” (IEEE 1990). The 

definition shows the process of the software lifecycle. 

The software developer’s target is to write a program that meets all the specifications 

and never fails. Software Testing and Verification checks whether the software was 

correctly built and developed, and meets the specifications. There are different 

aspects that are tested and verified depending on the Software and its specifications.  

The general terms that developers target form Software Dependability. It means “the 

ability to deliver service that can justifiably be trusted” (Avizienis, Laprie et al. 2004). 
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The primary aspects of Dependability include: availability, reliability, safety, 

maintainability and integrity. Besides these primary aspects, there is a secondary 

level of Dependability attributes and one of these attributes is Software Robustness 

(Avizienis, Laprie et al. 2004). Software Robustness means that the software is able 

to operate under stress or tolerate unpredictable or invalid input. It is strongly related 

to the Software Correctness term, where robust software can function correctly even 

in unusual situations. 

Different techniques were used to enhance and measure Software Robustness. Fault 

detection and prevention are two ideas that have been used in Fault tolerance, 

Redundancy, and Agents systems. These techniques are applied to develop fault-

free programs.  

A program robustness measurement is the assessment of how a program can face 

different problems. In this research, a new technique is introduced to measure the 

Program Robustness for C language programs. The new technique is called the 

Robustness Grid. In the Robustness Grid, C language programs robustness is 

measured using the MISRA C2 language rules. The Robustness Grid is a table that 

shows the Robustness measurement results for a C program from different points of 

view. 

The Clause Slicing technique was introduced to weight the rules and the code 

showing different levels of importance. Clause Slicing is a Static Slicing technique, 

but the Slicing criteria use a piece of code; the Clause.   

The Robustness Grid aims to facilitate the program maintenance process. It shows 

the weak points and their importance in the program, so the maintainer will have 

enough details to make improvements. Both MISRA C2 rules and Clause Slicing are 

used to build the Robustness Grid. 
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The Robustness Grid is compared with other techniques that use MISRA C2 rules. 

The evaluation of the Robustness Grid will show that it offers new measurements 

that were not provided before. 

The motivation for this research is that all programs should be robust to execute their 

tasks without any trouble. However, most of the programs are not fully robust, and 

still have some weak points that could cause some errors. Though, there are many 

techniques that test the program robustness still there are very few that measure it, 

and help developer to increase the robustness of a program. In this research, a 

robustness measurement is introduced that shows the developers exactly where are 

the weak robustness points and to which level they are important and need to be 

fixed. The measurement results are shown in a numerical table called Robustness 

Grid which is a new way of presenting measurement results.  

The Robustness Grid can be applied in the real life, where it gives the developers 

and maintainers an indication to the parts of the program that need to be repaired to 

improve the Robustness Degree of a C program. 

In the Robustness Grid, the program robustness measurement results can be 

presented in different levels of details, and that make it suitable to be presented and 

explained to all levels of developers team hierarchy. 

The main contributions in this thesis are: 

1- A new program slicing technique called Clause Slicing is introduced and 

defined. It enables the program code lines and statements to be analysed 

fully and show their influence on the program. 

2- Using program Clause Slicing to measure the robustness of a program is 

a new technique. The Clause Slicing is used to give different weights for 

the program clauses and rules that measure the Robustness. 
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3- The Robustness Grid is the main contribution and is a table that shows 

the robustness measurement results in a numerical presentation form. 

1.2 Criteria for Success 

In this thesis, the criteria for success are the development, implementation, analysis 

and evaluation of the new robustness measurement Grid. The criteria for success are 

set as follows: 

1- Develop a measurement for assessing the Robustness of C programs. 

C Program Robustness will be measured against a set of rules from a 

language standard. Slicing is also used in weighting these language rules. All 

measurements will be presented in the Robustness Grid. 

2- Develop a Grid that incorporates the robustness measurement. 

The Robustness Grid is a table that shows the Robustness measurement. 

The Robustness will be measured for each function, and for the entire 

program. The measurement will be presented in relative and absolute 

numbers. These numbers give an indication of the Robustness state of the 

program and its functions and an indication of the effect that each piece of 

code has in the program. 

3- Empirically evaluate the Grid. 

Robustness will be evaluated by assessing robustness will be evaluated and 

assessed with a major case study. 

4- Compare the results against other related studies.  

The Robustness Grid will be compared with other robustness measurement 

techniques. The evaluation will show the contributions of the Robustness Grid 

and will enable the evaluation of its limitations. It will also show whether the 

Robustness Grid provides an accurate Robustness measurement. 
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5- Develop a proof of concept of implementation. 

A prototype proof of concept will be presented in order to demonstrate that 

the new approach is implemented and viable. 

1.3 Thesis Outline 

The thesis is divided into three main parts; the background, the proposed Grid, and 

the evaluation. The background consists of Chapter 1 and the Literature Review of 

Program Robustness and Program Slicing in Chapter 2. The proposed Grid is 

described in Chapter 3. Implementation of the Robustness Grid is described in 

Chapter 4. The description involves a major case study in Chapter 5, and the 

analysis of the Grid will be discussed in Chapter 6. A conclusion and future research 

directions are presented in Chapter 7.   

Chapter 2 reviews basic knowledge about Program Robustness and Program Slicing.  

The chapter provides the definitions of Robustness, techniques, and tools that have 

been used in previous studies to measure program robustness. It also explores 

different program slicing techniques, applications, and tools that provide program 

analysis. 

In Chapter 3, the new robustness measurement Grid, called the Robustness Grid, is 

introduced. The Robustness Grid uses a new static slicing technique called Clause 

Slicing and C language rules called MISRA C2 rules to measure C programs 

robustness.  

Chapter 4 shows the implementation road map of the Robustness Grid. It shows the 

existing tools used to apply the Robustness Grid. 

Chapter 5 will present a case study that shows how the Robustness Grid works, and 

what information can be extracted from it. The case study is a C program with four 

functions, to show how the Robustness Grid deals with different possibilities of 
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Language rules application. This chapter will explain how the Robustness Grid shows 

the robustness measurement results. 

Chapter 6 will analyse and evaluate the Robustness Grid in further details. The 

analysis and part of the evaluation is based on the case study presented in Chapter 

5. The evaluation is based on a comparison between the Robustness Grid and 

previous frameworks that use the same language rules. 

Chapter 7 concludes the work that was described in this thesis and reviews the 

criteria of success that were made in Chapter 1. It will also include some suggestions 

that could be made for the Robustness Grid in future work. 
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Chapter Two 

 

Background 

 

 

 

2.1 Introduction 

In this research, the Robustness of a C program will be measured using language 

features and a Program Slicing technique. In this literature review, Robustness and 

Robustness Measurement techniques are defined. Also, the C language features and 

standards are investigated. 
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Figure 2.1 Literature Hierarchy 

 

2.2 Program Robustness 

Robust: This word is used in many contexts. One instance is that it describes 

computer software, and at another time it expresses a machine attribute, a 

mathematical equation, a medicine or a patient. The question is: What is 

Robustness? In this study, the answer to this question comes from a software 

engineering point of view. Thus, the thesis will concentrate on Software Robustness. 

Before defining the meaning of software Robustness, some terms need to be defined 

to help develop a better understanding of Software Robustness. Correctness, 

Language 

Features 
Program 

Analysis 

Robustness 

Grid 

Program 

Slicing 

MISRA C2 

rules 

Robustness 

Measurement 



 

 

9 

Dependability, and Reliability will be clarified to differentiate between them and 

Robustness. They can be understood in many different ways, which makes the 

definition of Robustness ambiguous, and this thesis gives an unambiguous definition.  

2.2.1 Software Dependability 

There is a relation between Software Robustness and Software Correctness, 

Software Dependability, and Software Reliability. Software Correctness may be 

considered one of the Robustness characteristics. Software Correctness is defined in 

the IEEE standard (IEEE 1990) as “The degree to which software, documents, or 

other items meet user needs and expectations, whether specified or not.” 

This definition discussed the software correctness via input and output validity. Here, 

the only criteria for the evaluation of software correctness are requirements 

satisfaction, whether they are user requirements or other program specifications.  

The opposite side of correctness is the failure situation, where the program has some 

faults. A fault (IEEE 1990) is: “a defect in hardware device or component”. In 

computer programs, a fault means: “an incorrect step, process, or data definition. 

‘Bug’ and ‘error’ are common use to express program fault” (IEEE 1990). Device 

faults or program faults could cause a program failure (IEEE 1990), which is “the 

inability of a system or component to perform its required functions within specified 

performance requirements”. 

There are different classifications for faults. Laprie (Laprie, Arlat et al. 1990) has 

classified faults depending on the perspective of the: phenomenological cause, 

nature, phase of creation or occurrence, situation with respect to program 

boundaries, and persistence.  

Software Dependability in general is “the ability to deliver service that can justifiably 

be trusted” (Avizienis, Laprie et al. 2004). This means that the program can avoid 

failures and it is less likely to be broken or stopped. Furthermore, if Program A 
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depends on Program B, the dependability of A is affected by the dependability of B 

(Avizienis, Laprie et al. 2004). 

Software Dependability is discussed in the literature and it has been integrated into 6 

main attributes (Avizienis, Laprie et al. 2004; Jawadekar 2004; Sommerville 2008; 

Pressman 2009): 

1- Availability. 

2- Reliability. 

3- Safety. 

4- Confidentiality. 

5- Integrity. 

6- Maintainability. 

As shown in Figure 2.2, Security is related to the Dependability attributes. Security 

and Dependability specifications should include the requirements to produce a robust 

program.  

 
Figure 2.2 Dependability and Security attributes (Avizienis, Laprie et al. 2004) 

 

Avizientis et al. (Avizienis, Laprie et al. 2004) stated Robustness is “specialised 

secondary attributes” for Dependability. It characterises the program reactions 

towards some faults. 
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The IEEE definition of Robustness (IEEE 1990) is: “The degree to which a system or 

component can function correctly in the presence of invalid inputs or stressful 

environment conditions”. 

In this definition, there are three main aspects; the correct program response, the 

input data, and the program environment. Program response means that the program 

should respond rationally (Musa, Iannino et al. 1987), but not necessarily correctly. It 

should not fail to reply or react illogically. The input data is one of the factors that 

affect the Robustness of the program. A robust program can continue to operate 

correctly despite the introduction of invalid input (Pullum 2001).  

The environment where the program is run consists of hardware, other software 

programs, and the humans that interact with the program. These factors also affect 

program Robustness.  

Gribble (Gribble 2001) states that Robustness is “the ability of a system to continue 

to operate correctly across the wide range of operational conditions, and fails 

gracefully outside the range”. Robustness is required in safety critical programs, 

where program failure could cause massive extreme problems (Weinberg 1983). In 

the previous definitions, Gribble did not disallow program faults, but the required 

condition is that the program fails gracefully (Gribble 2001), which means that the 

failure of the program will not cause it to crash or hang. Gribble’s definition covers 

hardware faults (i.e., shortage in power supply). Hardware defects can be considered 

as stressful environment conditions. 

2.2.2 Robustness Techniques 

Researchers who deal with software Robustness try to develop techniques to build a 

robust program. On the other hand, others try to find techniques that certify programs 

and determine whether they are robust. 
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Robustness can be internal or external (DeVale and Koopman 2002), where internal 

Robustness is the code of the program (functions, classes, threads, etc), and 

external Robustness is the surrounding environment (Dabek, Zeldovich et al. 2002). 

Arup and Daniel (Arup and Daniel 1997) presented features, such as portability, to 

evaluate some existing benchmarks of Unix programs. As a result, they built a 

hierarchy structured benchmark to identify Robustness issues that had not been 

detected before. Eslamnour and Ali (Eslamnour and Ali 2009) introduced a 

theoretical foundation for robust matrices that reduce the uncertainty in distributed 

program. 

Different techniques were developed to satisfy Software Robustness. These 

techniques also utilized different theories and methods to measure Software 

Robustness. 

2.2.2.1 Fault Tolerance 

Fault Tolerance and Robustness have the same objective; to make sure program 

faults do not cause program failure. Both Fault Tolerance and Robustness are 

needed in all programs, especially in safety critical ones where program failure can 

cause massive problems. 

Fault Tolerance, which provides a program that complies with its specifications in 

spite of faults, is less costly than other redundancy techniques, but it has the same 

problem of increased code size and reduced performance (Rebaudengo, Sonza 

Reorda et al. 1999). 

Fault Tolerance can be Hardware Fault Tolerance or Software Fault Tolerance. 

Hardware Fault Tolerance considers the correctness of the hardware (physical) parts 

of the program. Software Fault Tolerance discusses the correctness of the code. 

Therefore, one of the advantages of the Fault Tolerance technique is that it can be 

used to validate any kind of programs (Lyu, Zubin et al. 2003). 
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Fault tolerant programs can continue in operation after some program faults have 

occurred. Fault tolerance has four aspects (Sommerville 2008): 

1. Fault detection: faults that could cause program failure will be detected. 

2. Damage assessment: the affected program parts will be identified. 

3. Fault recovery: can be done in two ways. “Backward error recovery” 

where the program will return to the last constant state (safe state), and 

“Forward error recovery” where the program repairs the faults and keeps 

running. 

4. Fault repair: includes the faults that are not cured in the fault recovery 

aspect. 

Implementation of fault tolerance is possible by including checks and recovery action 

in the software. This is called defensive programming. Defensive programming 

cannot effectively manage program faults, which occur due to the interaction 

between software and hardware. Software Fault Tolerance has two approaches 

(Sommerville 2008): 

1. N-version programming: using at least three versions of software, this should be 

consistent in the event of a single failure. In this approach, a different version of 

the software is run in parallel on different computers. Using a voting program, the 

program compares the output and the invalid output, which has the least votes or 

is the latest output, will be rejected. 

2. Recovery blocks (RcB): Recovery blocks are dynamic techniques. The program 

adjusts the output during program execution depending on the Acceptance Test 

(AT) and backward recovery, where the program returns to the last acceptance 

stage before the fault happened. 
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Pullum (Pullum 2001) states that the relationship between software Robustness and 

Fault Tolerance are mainly those techniques which can handle the following: 

 Out of range input. 

 Input of the wrong type 

 Input in the wrong format. 

Pullum also added that robust programs put a mark on the faults, to make it easier 

for other programs to fix them. Also, software Robustness may have some features 

shared with fault tolerance techniques, such as testing input type, testing the control 

sequence, and testing the functions of the process. 

2.2.2.2 Redundancy 

Redundancy is one of the ideas applied to build component robust software (Huhns 

and Holderfield 2002). The idea of redundancy is to add a different component, but 

one that will be equivalent in functionality to old ones. Then, if one part fails to 

perform correctly, it will be replaced with another that can provide the same services. 

Redundancy was used in hardware programs such as NASA satellites, by duplicating 

important hardware subprograms. In software programs, however, redundancy 

cannot be applied in the same way because identical software subprograms fail in 

the same identical ways. Thus, redundancy must be applied to software in a different 

way (Dix and Hofmann 2002; Huhns and Holderfield 2002). 

The challenge in software programs is to design subprograms that can perform and 

behave in equivalent functionality, but do not fail in the same situations (Huhns and 

Holderfield 2002; Huhns, Holderfield et al. 2003). 

2.2.2.3 Self-adaptive systems 

Another method applied to get Robustness software is self-adaptive software: where 

the program has the ability to fix itself. The mechanism is easy to understand, but 
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difficult to apply. The self-adaptive program can evaluate its work and change 

behaviour when the evaluation indicates that the program has not done what was 

supposed to be done.  Moreover, a self-adaptive program can fix itself, by doing an 

alternate behaviour (Laddaga 1999; Mazeiar and Ladan 2009). 

Self-adaptive programs do struggle, however, in evaluating functionality and 

performance at run time, where the evaluation of the outcomes and expectations 

determination takes time. In addition, self-adaptive programs may manage to get 

close to the solution of a problem because the program chose the preselected design 

– time compromise instead of running the optimal or near optimal algorithm for the 

input and state context at the run time (Laddaga 1999). 

Another adaptive program called the “Self-controlling software model” was 

developed. This program contains three loops. The feedback loop adjusts program 

variables to meet the quality of service. The adaption loop evaluates the behaviour 

and performance of the model, and, if necessary, triggers change. The 

reconfiguration loop runs the adaption loop request. Since the reconfiguration loop 

could include structural changes, it relatively costs more compared with feedback 

and adaption loops (Mieczyslaw, Kenneth et al. 1999). 

2.2.2.4 Event-driven Programming 

Event-driven programming is applied in many applications: user interfaces, discrete 

programs and business module simulations (Dabek, Zeldovich et al. 2002). “An 

important characteristic of event-driven computation is that control is relinquished to 

a library that waits for events to occur. Each event is then dispatched to the 

application by invoking a handler function or a handler object for appropriate action” 

(Petitpierre and Eliëns 2002). 

Event-driven programming can be done in three ways (Petitpierre and Eliëns 2002): 
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 Event loops: explicitly dispatching on an event, e.g., completion of a disk transfer, 

to raise the appropriate applications code. 

 Callback functions: implicitly dispatching based on an association between a 

callback function and the type of event. Callback is registered when a program 

cannot complete an operation because it has to wait for an event. A callback 

executes indivisibly until it hits a blocking operation, and then, it registers a new 

callback and returns (Dabek, Zeldovich et al. 2002). 

 Listener objects: callback on objects with hook methods that are invoked on the 

occurrence of an event. Listener objects are more powerful than callback 

functions since they must rely on ad-hoc mechanisms to take the history of event 

occurrences into account. 

Event-driven programming is a technique that the user can use to trigger a program 

in arbitrary order (Philip 1998). The characteristics of event-driven programming 

encouraged software engineers to use it to obtain a robust program. 

Event-based programming can provide a convenient programming model, which may 

also be extended to take advantage of multi-processors. Debek et al. (Dabek, 

Zeldovich et al. 2002) concluded that Events are better for managing I/O concurrency 

in server software than threads because Evens have less complexity and produce 

more robust software. Also, event-driven programming has an advantage over 

threads in that event-driven programming provides a convenient programming model 

which is naturally robust. Debek et al. (Dabek, Zeldovich et al. 2002) added that the 

event-driven model can be extended to exploit multi-processors with minor changes 

of the code. However, event-driven program structure has a series of small callback 

functions, which rely heavily on dynamic memory. 

Shahroni and Feldt (Shahrokni and Feldt 2010) introduced a framework, ROAST, to 

specify the Robustness requirements of a software by categorising requirements into 
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patterns in different levels. There are three main ideas behind their method; the 

software specification levels, requirements patterns, and alignment from 

requirements to testing. Their evaluation showed that the requirements carried out by 

ROAST are more likely to be verified. 

In further work, Shahroni and Feldt (Shahrokni and Feldt 2011) presented a frame 

work called RobusTest. This framework tests the Robustness properties of a 

program focusing on timing issues. RobusTest uses the requirements patterns 

categories, which were introduced in their previous work, to set some test cases to 

identify the errors in the requirements. 

In the above methods, the techniques were used to build a recovery system that can 

keep the program running and producing an accurate output despite failure. 

Therefore, the techniques focused on the input/output relations. The program syntax 

code was almost ignored, and the developers were supposed to use the 

programming language standards to write their programs. Still, the standards can be 

applied differently by different developers. 

If the program is written following a standard or some rules, the errors and failures 

will be minimised and the program complexity will be reduced. Therefore, program 

robustness should start by writing a robust code. 

2.2.3 Robustness Testing 

Robustness testing checks whether the robust programming techniques have 

succeeded in satisfying the Robustness conditions certified for the program. The 

main term used in robustness testing is that the program should continue the normal 

function despite the invalid input, or it should fail gracefully. 

Testing can only reveal Robustness errors in successful test cases. In addition to 

robustness testing, there are other important definitions: A robust error is defined as 

an inrobust reaction to a test case produced during its execution. Inrobust reactions 
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are observed when a test objects crash or hang.  A test object in this context is a 

software component tested for its robustness (IEEE 1990; Dix and Hofmann 2002). 

The importance of software Robustness drives researchers to develop different 

techniques and tools to test software Robustness. Some testing software 

Robustness tools and techniques are discussed below. 

2.2.3.1 Interface Robustness testing tools 

Interface Robustness testing is where the success criteria in most of the cases is “if it 

does not crash or hang, then it’s robust” (Koopman, Devale et al. 2008).  

 Fuzz (Miller, Koski et al. 1995): is an automatic and simple method where a 

random input stream is used as a Robustness testing method. Nine versions of 

the UNIX operating program and X-Window applications were tested using this 

method. The failures were identified and categorized: crash (with core dump) or 

hang (infinite loop). 

The results show that over 40% (in the worst case) of the basic programs and 

over 25% of the X-Window applications crashed or hung. They were not able to 

crash any of the network services that they tested or any of the X-Window 

servers. 

 The Riddle tool (Schmid and Hill 1999):  is a tool used to test the Robustness of 

Windows NT. Two different approaches were examined in this paper to generate 

data (generic data generation, and intelligent data generation) to be used for 

automated Robustness testing. They concluded that this tool is useful for 

constructing both generic data and intelligent data, where they discovered new 

kinds of failures. 

 Ballista (DeVale, Koopman et al. 1999; Koopman 2002): is an automated 

Robustness testing tool designed to exercise commercial off-the-shelf (COTS) 



 

 

19 

software components. Ballista is a methodology and web server that remotely 

tests software modules in linkable object code form. Ballista’s purpose is to 

identify sets of input parameters that cause Robustness failure in the software 

components being tested.  Ballista testing begins with identifying the data types 

used by an API (Application Programming Interface) under test. Application-

specific data types can inherit base test cases from predefined data types in the 

Ballista testing tool set. Then, the Ballista test harness generator is given the 

signature of a function to be tested in terms of those data types, and it generates 

a customised testing harness. The test harness composes combinations of test 

values for each parameter and reports Robustness testing results. 

2.2.3.2 Dependability benchmark Robustness testing tools: 

A Dependability Benchmark defines benchmarks to characterise the program 

behaviour under normal loads and faults. The goal of benchmarking the 

dependability of computer programs is to provide generic ways for characterising 

their behaviour in the presence of faults (Kanoun, Madeira et al. 2002). There are 

some tools that used this technology to develop a Robustness tester tool: 

 DBench: The DBench project aims at defining a conceptual framework and an 

experimental environment for dependability benchmarking (Kanoun, Madeira et 

al. 2002).  

 Autonomic Computing benchmark: evaluate a computing system along the four 

core autonomic dimensions of self-healing, self-configuration, self-optimization, 

and self-protection  (Brown, Hellerstein et al. 2004; Brown and Redlin 2005). 

In the DBench and Autonomic Computing benchmark robustness testing techniques, 

the program is tested using different or random test cases. The test cases depend on 

the program execution and whether it succeeds or fails to deliver a robust output or 

fails nicely. The program has to be tested before execution to reduce the errors that 
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can be made by imprecise programming syntax format or defective program data 

flow. 

2.2.4 Robustness Measurement 

Measurement as an activity is used in everyday life; in the supermarkets, clothing 

stores, and driving journeys, where the prices, sizes, distances and other aspects are 

measured to help in decision making. In Software measurement, many things can be 

measured, but the question is: how to measure Software? 

In the UK, the term Software Measurement is also known as Software Metrics, 

Software Engineering measurement, or Software Metrication (Zuse 1998).  

In general, Measurement means “the process by which numbers or symbols are 

assigned to attributes of entities in the real world in such a way as to describe them 

according to clearly defined rules” (Fenton and Pfleeger 1997). The entities are the 

object to be measured, and the attributes are the object features or properties. 

By applying this definition to Software, it will lead to Software Measurement, which is 

“a quantified attribute of a characteristic of a software product or the software 

process” (ISO/IEC 2007). Software measurement could mean estimating the cost, 

determining the quality, or predicting the maintainability (Fenton and Pfleeger 1997). 

Robustness can be also measured. By using the Measurement definition, the 

Robustness Measurement can be defined as the process by which relative numbers 

are assigned to Robustness Degree of a program in such a way to describe them 

according to standard rules. 

There are different Measurement classifications, depending on the features or the 

programs that are measured. There are measurement techniques for Software 

Quality, Software Complexity, Software Validity, and for Object Oriented programs, 
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which can be also classified into Static and Dynamic Measurements (Kaur, Minhas et 

al. 2009). In this research, only Robustness Measurement is discussed further.   

Safety critical programs must be robust to avoid the problems that could be caused 

by failures (Jones 2009). Several techniques have been tried to measure program 

Robustness.  

In order to obtain a measure of programs, they have to be analysed. The analysis 

can be either static or dynamic. Static analysis looks at the programs without using 

any input or executing the code (Ayewah, Hovemeyer et al. 2008). On the other 

hand, dynamic analysis looks at the program execution behaviour and input/output 

relation. Measuring the application of a language standard to a program is a static 

analysis technique. 

Extended Propagation Analysis (EPA) (Voas, Charron et al. 1997) is an example of a 

robustness measurement using the Fault Injection technique. EPA predicts how 

software will behave when a component fails due to the effect of an external 

component failure, an invalid input or an unlikely operational environment. 

EPA is only concerned with the software behaviour and output. In one of the case 

studies mentioned in (Voas, Charron et al. 1997),  a module called Yaw, which is part 

of the 737 aircraft controller system, was measured. In Yaw, the input values were 

taken from NASA. The Yaw module was run twice; the first time with normal data and 

the second time with data with faults injected into it. The fault tolerance measurement 

using EPA showed that the total failure tolerance of the Yaw program estimated that 

43.5% of the input data can cause a failure. 

Voes et al. concluded that the EPA technique does not test the correct behaviour of a 

program. However, it identifies the code locations that reduce the robustness. It also 

measures an acceptable level of robustness in a program. EPA does not guarantee a 
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robust behaviour of a program in the future, but it gives an indication for such 

behaviour. 

Hamann et al. (Hamann, Racu et al. 2007) used some Robustness criteria, such as 

input data rate and CPU clock rate, to create multi-dimensional Robustness matrices 

and use them to measure the Robustness of a program. 

Hamman et al. introduced two-dimensional robustness metrics; static and dynamic. 

The static robustness metric is done in the design phase of the program and cannot 

be changed later. The dynamic dimension is made in the execution phase and can 

be used to modify the program to increase its robustness. 

The above robustness measurement techniques do not give the developer a fully 

detailed measurement. Also, they do not specify the part of programs that need to be 

modified to raise the quality of the program. 

2.2.5 Summary 

Program Robustness can be measured from different perspective and viewpoints. In 

the literature reviewed in this section, different Robustness definitions were explored 

to find one definition to be used further in this research. Robustness measurement is 

a scale that shows how the program is robust according to some standard. In this 

research; however, a new method will be introduced to measure the Robustness that 

was defined earlier. 

2.3 C Language Standard 

The C Language standards were introduced to avoid the code misinterpretation, 

misuse, or misunderstanding. The IEEE has the ISO/IEC 9899:1999 standard 

(ISO/IEC 1999) for the C language, which was used later by MISRA to produce 

MISRA C1 and C2. This in turn led to Jones producing “The New C Standard: An 
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Economic and Cultural Commentary” (Jones 2009). Other C standards such as “C 

programming language Coding guideline” (Laroche 1998) are less frequently used. 

2.3.1 ISO standard 

International Organization for Standardisation (ISO) has published international 

standard for Business, Government, and Society (ISO/IEC 1999). Some of these 

standards are for Software Engineering and for Programming languages. 

In this research, the ISO/IEC 9899:1999 C standard (ISO/IEC 1999) has been used 

to develop a new Robustness Measurement technique. This standard was published 

in 1999 followed by three “Technical Corrigenda” in 2001, 2004, and 2007. This 

international standard was designed to promote the portability of C programs. It is 

intended for use by implementers of compilers and programmers (American National 

Standards Institute (ANSI) 1999). 

The ISO/IEC 9899 standards specify the representation, syntax, and constraints of 

the C language. Also, they specify the semantic rules for interpreting C programs. In 

the standard syntax, a set of rules was introduced to show the recommended way of 

writing the C language notations, and the methods of identifying the language 

concepts such as identifiers scope, linkage, name space, and types. The standard 

also shows the allowed and prohibited type conversion in the C language. The C 

lexical elements are listed, such as keywords, and other C language syntax 

constructions, such as external definitions, and the proper way to write and use them 

is clarified with examples. 

The semantic part of the standard stated the proper use and interpretation of each 

construction in the C language syntax. 

ISO/IEC gives recommendations for the representation of processed input data and 

produced output data of the C program. In addition, it describes the limitations of the 

C program implementations. On the other side, the standards do not specify how the 
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input/output data is going to be used in the program, or indicate the complexity level 

of the program code (ISO 2012). 

2.3.2 MISRA C Language Rules 

The Motor Industry Software Reliability Association (MISRA) has published a 

standard set of rules for C and C++ “to provide assistance to the automotive industry 

in the application and creation within vehicle programs of safe and reliable software” 

(MISRA 2012). MISRA C 1998 rules (“MISRA C1”) where published in 1998 and 

were followed by a technical clarification document in 2000. In 2004, MISRA 

published a second version of MISRA C rules (MISRA C2) to address some technical 

and logical problems, and for further technical clarification. In MISRA C2, the rules 

are rephrased to be more sensible, accurate and comprehensive.  

MISRA C2 rules are classified into two types: Required (122 rules) and Advisory (20 

rules). Required rules are obligatory and must be followed by developers to create 

safe programs, and in general, the violation of these required rules leads to a system 

failure. Advisory rules are necessary but not as important as the Required rules. 

However a developer should follow the advisories in order to build a safe program. 

In MISRA C2, the rules are categorised in 21 categories. The MISRA categories 

cover all the C language common programming issues such as programming 

processes, coding styles, and programming syntax. The MISRA categories start with 

the Environment category, which describes the optimum environment for C 

programs. Then, there is the Language extensions category, which has guidelines on 

how the comments should be written in the program code. The Documentation 

category contains general rules for the documentation process. 

The rest of the MISRA C2 categories cover the language syntax format. The 

categories cover data structures, such as arrays and pointers, format and use. Also, 

flow control and type definition and conversion rules are listed, in addition to the 
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function and initializing format. Each of these categories has a set of rules that give 

instructions on the way the code syntax should be written. 

An example of a MISRA C2 rule is Rule 8.1:  

Rule 8.1 (required) Functions shall have prototype declarations and the prototype 

shall be visible at both the function definition and call. (MISRA 2004) 

“X.y” is the MISRA rule numbering method and means this is Rule 1 (“y”) in Category 

8 (“X”) (Declarations and definitions). “required” means the rule is an obligatory rule. 

There are 3 tools that use MISRA C2 rules to test the program robustness; these 

tools are explored to find out how they work. The tools are: TBmisra, FlexeLint, and 

Klocwork Truepath. 

The Liverpool Data Research Associates (LDRA) Company has several tools to 

evaluate the robustness of C programs. These tools evaluate the C program against 

MISRA C2, ISO 1990, and LDRA rules. LDRA has produced LDRA TBmisra, which is 

test C program against the MISRA C and C2 rules.  

The LDRA TBmisra evaluation classifies errors into three types depending on their 

importance level. These rules are displayed in the evaluation results as symbols (M, 

C, and O) are: 

1- Mandatory Rules (M): if a rule of the mandatory type is violated, the 

evaluation will report a fault. 

2- Checking Rules (C): the violation of these rules may cause different 

implementation of the program using different compilers or platforms. The 

Checking rules will give the developer a chance to make sure that the 

program has consistency over all different platforms. 

3- Optional Rules (O): the developer has the option of fixing the violation of 
these rules. 
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In addition to the above error types, the LDRA analyses C program using Static and 

Dynamic analysis. The Static analysis in LDRA is classified depending on code type. 

These types are (LDRA 2012): 

1- Programming Standards Verification:  Assesses whether the source 

code conforms to a set of user-configurable programming standards. 

2- Structured Programming Verification:  Reports on whether the source 

code is properly structured. 

3- Complexity Metric Production:  Reports on a number of complexity 

metrics. 

4- Full Variable Cross Reference:  Examines and reports global and local 

variable usage within and across procedures and file boundaries. 

5- Unreachable Code Reporting:  Reports on areas of redundant code. 

6- Static Data Flow Analysis:  Follows variables through the source code 

and reports any anomalous use. 

7- Information Flow Analysis:  Analyses inter-dependencies of variables for 

all paths through the code. 

8- Loop Analysis:  Reports the looping structure and depth of nesting 

within the code. 

9- Analysis of Recursive Procedures:  All the static analyses in LDRA are 

performed individually and on sets of mutually recursive procedures. 

10- Procedure Interface Analysis:  The interface for each procedure is 

analysed for defects and deficiencies. The interfaces are then projected 

through the call graph of a system to highlight integration defects. 

The Dynamic analysis covers other areas such as (LDRA 2012): 
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1- Statement Coverage: covers all the statement that related to the 

selected statement. 

2- Branch/Decision Coverage: covers all the control that related to the 

selected statement. 

In addition to TBmisra, LDRA has a tool called TBvision. The TBvision tool is a 

graphical presentation of an error report. The graphical screen shows a summary of 

the rules that were violated in the program.  In TBvision, the developer can access 

the code and the TBmisra report that uses it.  

FlexeLint, developed by Gimple Software, is a tool that does a static analysis for 

C/C++ programs, and uses their own rules in addition to the MISRA C2 rules (Gimple 

Software 2012). FlexeLint do not use a compiler, so in the test result there are some 

rules violated that can cause a run time error in the compiler. 

In addition to the FlexeLint violated types and numbers, these types are: 

1- Syntax Error (Error). 

2- Internal Error (Intern). 

3- Fatal Error (Fatal). 

4- Warning (Warning). 

5- Informational (Info). 

6- Elective Note (Note). 

The Klocwork Truepath (Klocwork 2012) is a tool that uses static analysis to assess 

C programs. It uses the MISRA C2 rules in addition to other rules such as C CERT. 

There are 21 of the MISRA C2 rules that are not supported by Klocwork Truepath, 15 

of them are not verified, and the rest are not supported even though they are verified. 
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2.3.3 Other C Language Rules 

Straker (Straker 1992) introduced general guidelines to develop a robust C program. 

He left the choice for the programmers to create their own standards using these 

guidelines. However, he introduced his own interpretation of the guidelines. In his 

standards, Maguire (Maguire 1993) covered main issues, such as dealing with files, 

commenting in the program, and naming. The guidelines give the developer advice of 

how to write bug-free code, and how to avoid the common mistakes that cause 

program faults. For example,  in this advice: “As you step through code, focus on 

data flow” (Maguire 1993), he gave the developer an advice about the data flow. This 

advice is a conclusion of an example he showed that illustrated the importance of 

data flow.  The main aim was to help the developer write bug-free programs before 

the testing phase. However, the Maguire guidelines were written in an abstract way 

and each programming issue was discussed with examples to make sure that 

developers will understand how and when to use these standards. 

The Software Engineering Institute has introduced C, C++, and Java language 

standards. CERT C is the C programming Language standard, and “rules and 

recommendations for secure coding in the C programming language” (Seacord 

2012). The goal of these rules and recommendations is similar to other rules and 

standards, which is “to eliminate insecure coding practices and undefined behaviours 

that can lead to exploitable vulnerabilities. The application of the secure coding 

standard will lead to higher-quality systems that are robust and more resistant to 

attack” (Seacord 2012). 

In CERT C, the program rules are given a value of priority and level. The priorities 

are “assigned using a metric based on Failure Mode, Effects, and Criticality 

Analysis”. The priorities have a scale for Severity, Likelihood, and Remediation Cost. 

Each scale is from 1 (low) to 3 (high). The three scales together will produce a 
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multiplicative scale from 1 to 27, and the levels depend on this scale where Level 1; 

the highest, contains the values of (12, 18, 27) for the multiplicative scale of Severity, 

Likelihood, and Remediation Cost, where Level 2 has (6, 8, 9), and Level 3, the 

lowest, has values of (1, 2, 3, 4). For example, if a rule scores: 2 in Severity, 3 in 

Likelihood, and 1 in Remediation cost, then the priority will be 2X3X1 = 6, which 

means it is in Level 2. (Thompson 2010). 

In C CERT, the rule is described first. Then, a non-compliant example about this rule 

is given, followed by a compliant example for the same rule. After that, the exception, 

if there is any, is shown and the risk assessment regarding to the calculations 

mentioned before are given. Below is an example that shows one of the rules: 

“Do not use the same variable name in two scopes where one scope is contained in 

another” (Software Engineering Institute 2011). 

Laroche  (Laroche 1998)  aims in the “C programming language Coding guideline” to 

make the code less defective, more robust (against changes in code architecture), 

and more readable (for easier maintenance). “The variable scope should be as small 

as possible” is an example of the guidelines. 

2.3.4 Summary 

C standards in general aim to produce robust programs with fewer errors. Also, the 

standards try to make the code readable and clear to all different developers to avoid 

code misinterpretation or misuse. 

The MISRA rules were chosen in this research because the MISRA C2 rules 

implicitly include the ISO and ANSI standard. They are also simple to be apply and 

understand since they are only 142 rules written in English by people who use C 

language in their work. Since there are different companies and tools that use and 

apply the MISRA C2 rules, the application of the rules can be evaluated. 
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Other rules such as C CERT are not as simple to apply since they contain many 

rules and this is the case for ISO as well. In the guidelines, the rules are very abstract 

and unsuitable to measure the Robustness. 

2.4 Program Slicing 

Weiser (Weiser 1979) introduced Program Slicing as “a method used for abstracting 

from computer programs”. The slice of program P with respect of the slicing criteria 

Slice S <L, V>, where L is a statement line number in P and V a variable (Binkley 

and Gallagher 1996). 

Different types of program slicing have been developed and these can be classified 

into various types depending on different criteria. Some program slicing techniques 

will be addressed in details below. 

2.4.1 Static program slicing  

Program slicing was introduced first as a Static Slice. Static means that only statically 

available information is used for computing slices (i.e., all possible executions of the 

program are taken into account) (Baowen, Ju et al. 2005). A Static slice is 

constructed by assigning a point of interest and deleting  all  irrelevant statements to 

this point (Weiser 1981). 

 A point of interest is the variable in a specific place in the program that is going to be 

sliced. It is signed by the variable V and the line number L. This called the slicing 

criteria and is expressed as S <L, V>, where S is the slice we are interested in (Tip 

1995; Harman and Hierons 2001). Static slicing is considered as code preserving 

analysis, where it only retrieves the code lines without any change on their syntax 

(Gallagher and Binkley 2008). 
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A Static slice can be executable or non-executable (Tip 1995). An executable slice 

means the code that was produced after the slicing operation (the slice) can be 

compiled and run as a program.  

Static slicing has many types. In this literature review, the most frequently static 

slicing types used are: Backward, Forward, Conditioned, Decomposition, 

Amorphous, and Quasi Slicing. 

 
Figure 2.3 Original program P1 (Kim and Fong 2007) 

 

2.4.1.1 Backward Slicing 

Weiser (Weiser 1979) introduced the program slicing which was later known as 

Executable Backward Static Slicing. It is Executable because the slice produced is 

an executable program (i.e., without considering the program input) (Binkley and 

Gallagher 1996). 

Backward Slicing uses the same slicing criteria as the Static Slicing, where Slice S is 

retrieved using slicing criteria <L, V>, where L is the statement line number and V is 

the variable name. A Backward slice is computed by gathering statements and 

control predicts by a backward traversal of the program starting at the slicing criteria 

(Tip 1995). Backward slicing contains the statements of the program which have 

effect on the criteria slice and answer the question “what program components might 

effect a selected computation?” (Gallagher and Binkley 2008) 

As an example, Figure 2.3 shows a program P1 that is going to be sliced. 

1 int x = a; 

2 int y = 25; 

3 int z = 0; 

4 for (int i = 0; i < x; i++){ 

5     z = z + y; 

6     y = y + 2*i;       } 

7 printf (‚Y is: %d‛, y); 
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Figure 2.4 Backward slicing on (y,7) in P1 (Kim and Fong 2007) 

 

As shown in Figure 2.4, applying backward slicing on (7, y) in program P1, will delete 

all statements that have no effect on Statement 7. So, Statements 3 and 5 are 

deleted. 

A static backward slice preserves the meaning of the variable(s) in the slicing 

criterion for all possible inputs to the program (Gallagher and Binkley 2008). 

2.4.1.2 Forward Slicing 

Forward Slicing uses the same slicing criteria <L, V> as the static slicing technique. 

However, the Forward Slice answers the question “what program components might 

be effected by a selected computation?” (Gallagher and Binkley 2008) 

A Forward slice captures the impact of its slicing criteria and it is considered a kind of 

wave effect analysis (Black 2001; Baowen, Ju et al. 2005). It contains the set of 

statements and control that were affected by the computation of the slicing criterion 

that was computed by the variable V at the program point or line number L  (Horwitz, 

Reps et al. 1990; Tip 1995; DeLucia 2001; Harman and Hierons 2001).  

 
Figure 2.5 Forward slicing on (y,2) in P1 (Kim and Fong 2007) 

 

1 int x = a; 

2 int y = 25; 

3 int z = 0; 

4 for (int i = 0; i < x; i++){ 

5     z = z + y; 

6     y = y + 2*i;          } 

7 printf (‚Y is: %d‛, y); 

 

1  int x = a; 

2  int y = 25; 

4  for (int i = 0; i < x; i++){ 

6     y = y + 2*i;            } 

7  printf (‚Y is: %d‛, y); 
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Forward Slicing of Program P1 in Figure 2.3 is shown in Figure 2.5. It produces the 

same statements of the P1 program because Statement s2 affects all program 

statements. Therefore, the produced slice will contain all statements. The challenge 

that faces Forward slicing is to produce an executable slice, where it is difficult for 

forward slicing to preserve the semantic of a executable code (Binkley, Danicic et al. 

2006; Kim and Fong 2007). 

In Forward Slicing a statement is computed depending on the values computed in the 

Slicing Criteria (Tip 1995). Forward and Backward slicing is computed in the same 

way, where they use the same slicing criteria. However, the direction of code 

analysis is the difference between them. 

In addition, Binkley and Harman (Binkley and Harman 2005) proved that “For a large 

class of programs, the distribution of forward slices will contain a significantly larger 

proportion of small slices when compared to the distribution of backward slices.” 

2.4.1.3 Conditioned slicing 

Conditioned slicing “consists of a subset of program statements which preserves the 

behaviour of the original program with respect to a slicing criterion for a given set of 

execution paths”(Canfora, Cimitile et al. 1998). The Slicing Criteria of the conditioned 

slice is <L, V, C>, where L is the line number, V is the variable name, and C is the 

condition. The conditioned slice isolates the code that semantically satisfies the 

slicing criteria condition (Baowen, Ju et al. 2005; Gallagher and Binkley 2008).  

The condition in the slicing criteria, which could be an input value of a variable, 

allows the user to fragment a program from different angles or using different input 

data (Canfora, Cimitile et al. 1998; DeLucia 2001).  

Danicic et al. (Danicic, Fox et al. 2000) implemented a conditioned slicer (ConSIT) 

based on conventional static slicing, symbolic execution and theorem proving. 



 

 

34 

2.4.1.4 Decomposition Slicing 

Decomposition slicing is a slice used to decompose a program into different 

components. Decomposition slicing is a union of certain slices taken at certain line 

numbers on a given variable (Gallagher and Lyle 1991). Decomposition slicing does 

not use a line number in the Slicing criteria, so the Slicing criterion of it is only the 

variable name <V>.  

 

 
Figure 2.6 Original Program P2 (Gallagher and Lyle 1991) 

 

Decomposition slicing has two parts: The slice and the complement. The slice 

“captures all relevant computations involving a given variable” (Gallagher and Lyle 

1991), where a decomposition slice depends only on the variable name, and does 

not depend on statement number. The complement is the rest of the program code 

that is not included in the slice (Gallagher and Lyle 1991). 

1 #define Yes 1 
2 #define No 0 
3 main() 
4 { 
5  int c, nl, nw, nc, inword; 
6   inword = NO; 
7   nl = 0; 
8   nw = 0; 
9   nc = 0; 
10 c = getchar (); 
11 while(c != EOF) { 
12   nc = nc + 1; 
13   if (c == ‘\n’) 
14     nl = nl +1; 
15 if (c == ‘ ’|| c == ‘\n’|| c == ‘\t’) 
16  inword = NO; 
17 else if (inword == NO) { 
18  inword = YES; 
19  nw = nw + 1; 
20 } 
21  c = getchar (); 
22 } 
23   printf(‚%d \n‛, nl); 
24   printf(‚%d \n‛, nw); 
25   printf(‚%d \n‛, nc); 
26 } 
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Figure 2.7 shows a decomposition slice of Program P2 (shown in Figure 2.6) with the 

slicing criteria (nc). In this slice, all statements that affect variable nc are included in 

the slice, and also all statements that are affected by variable nc. 

The complement (Figure 2.8) contains all statements that affect other variables, and 

not related to variable nc. 

 
Figure 2.7 Decomposition slicing on (nc,26) in P2 (Gallagher and Lyle 1991) 

 

Decomposition slicing can categorise program variables into three categories 

(Gallagher and Lyle 1991): independent, strongly dependant, and maximal. A 

variable is called an Independent variable if its Decomposition slice does not 

intersect with any other variable’s decomposition slice. In other words, they would 

share neither control flow nor data flow. 

Strongly dependant variable is the variable that its decomposition slice is a part of 

another variable slice. The maximal is if the variable decomposition slice shares 

some statements with another variable decomposition slice. 

 

3 main() 

4 { 

5  int c, nc; 

9  nc = 0  

10  c = getchar (); 

11  while (c != EOF) { 

12   nc = nc + 1; 

21   c = getchar (); 

22  } 

25  printf (‚%d \n‛, nc); 

26 } 
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Figure 2.8 The complement of decomposition slicing on (nc,26) in P2 (Gallagher and Lyle 1991) 

 

2.4.1.5 Amorphous Slicing 

Amorphous Slicing uses the same Slicing criteria as in static slicing <L, V>. However, 

while the other types of program slicing are syntax-preserving, Amorphous Slicing 

alters the syntax of the slice with respect to preserved semantics (Harman and 

Danicic 1997). Amorphous slicing may perform any syntax transformation to simplify 

the slice for preserving program behaviour (Fatiregun, Harman et al. 2005; Gallagher 

and Binkley 2008). Amorphous slicing has two types: Amorphous static slicing where 

1 #define Yes 1 

 2 #define No 0 

 3 main() 

 4 { 

 5 int c, nl, nw, nc, inword; 

 6  inword = NO; 

 7  nl = 0; 

 8  nw = 0; 

  

 11  while(c != EOF) { 

  

 13   if (c == ‘\n’) 

 14    nl = nl +1; 

 15  if (c == ‘ ’|| c == ‘\n’|| c == ‘\t’) 

 16   inword = NO; 

 17  else if (inword == NO) { 

 18   inword = YES; 

 19   nw = nw + 1; 

 20  } 

 21  c = getchar (); 

 22  } 

 23  printf(‚%d \n‛, nl); 

 24  printf(‚%d \n‛, nw); 

 26  } 
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it uses the slicing criteria <L, V>, and Amorphous conditioned slicing where it uses 

the conditioned slicing criteria <L, V, C> (Harman, Binkley et al. 2003). 

2.4.1.6 Quasi Static Slicing 

Quasi static slicing was introduced to mix the slicing methods that range between 

static and dynamic slicing (Venkatesh 1991). Quasi slicing is used in applications 

where the values of some input variables are fixed while the behaviour of the original 

program must be analysed when other input values vary (DeLucia 2001). Therefore, 

the Slicing Criteria is <L, V, P>, where the L is the line number of variable V, and P is 

the list of inputs that can be fixed or vary (Chung, Lee et al. 2001). When all variables 

are unconstrained, quasi slicing becomes the same as static slicing. When all 

variables are fixed, quasi slicing is considered the same as dynamic slicing (Baowen, 

Ju et al. 2005). 

Static Slicing techniques mainly use a variable on a certain place in the program as 

point of interest, and analyse the program to determine which other code lines are 

affected by the variable. The variable can have some conditions, or assigned to 

group of input data. 

2.4.2 Dynamic Slicing 

A Dynamic slice contains all the statements that “affect the value of a variable at a 

program point for a particular execution of the program” (Agrawal and Horgan 1990). 

In dynamic slicing, a point of interest is the statement to be sliced. It is marked by the 

line number L, the variable V, and the input P <L, V, P>. The input, P, is assigned to 

some values which produce a slice regarding  these input values, where in the static 

slice, the program at the selected variable is sliced under all these variable inputs 

(Korel and Laski 1990). 
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Compared with static slicing, dynamic slicing can significantly reduce the size of the 

slice, because the run-time information is collected during program execution and 

used to compute program slices (Korel and Rilling 1998). The example shown in 

Figure 2.10 demonstrates how a dynamic slice produces a slice which is smaller than 

the slice produced by static slicing.  

 
Figure 2.9 Original Program P3 (Kim and Fong 2007) 

 

The P3 program (Figure 2.9) has a bug, where p in Line 3 should not be zero 

because it is used later in Line 6 in a multiplication computation. 

Two types of slicing were applied on P3; Static and Dynamic. Both slicing techniques 

generated slices different in size, where dynamic slicing is significantly smaller. Static 

slicing was applied on (p, 6), and it reduced the number of codes lines, but it failed to 

find the bug. When Dynamic slicing, was applied on (p, 6) and p=0 as the assigned 

value, it returned only the statement that contains the bug. 

1 scanf (‚%d‛, &n); 

3 int p = 0; 

4 for (int i = 1; i <= n; i++){ 

6      p*= i; 

 

Static slicing 

 3 int p = 0; 

 

 

 

 

Dynamic slicing 

Figure 2.10 Difference between Dynamic slice and Static slice on P3 (Kim and Fong 2007) 

1 scanf (‚%d‛, &n); 

2 int s = 0; 

3 int p = 0; 

4 for (int i = 1; i <= n; i++){ 

5 s += i; 

6 p *= i;  } 
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2.4.2.1 Simultaneous Dynamic Slicing 

Simultaneous dynamic slicing is an extension of dynamic program slicing and was 

introduced by Hall (Hall 1995). Simultaneous dynamic slicing is applied to more than 

one test case simultaneously which lead to the Slicing Criteria being <L, V, {P1, 

P2…Pm}> where Pm is a list of input values (Sasirekh, EdwinRober et al. 2011). The 

final slice is constructed using dynamic slicing in regard to each behaviour of the 

program execution input values set (Baowen, Ju et al. 2005). Simultaneous dynamic 

slicing is used to locate functionality in code, where the set of test cases can be 

employed to give a specification of the functionality to be identified (DeLucia 2001). 

Dynamic Slicing focuses on the execution of the point of interest in a program, and 

returns the statements that were affected by that particular execution. The dynamic 

slicing criteria include a variable and its line number with a value assigned to it.   

2.4.3 Other Slicing techniques 

There are other slicing techniques which are produced by extending other types of 

slicing or mixing them. Relevant slicing is a technique considered as an extension of 

dynamic slicing. All statements that make the program executable will take parts of 

the slice even if they have no effect on the output. This slice is used in incremental 

regression testing (Agrawal, Horgan et al. 1993).  

Chopping and dicing are two themes which are strongly related to program slicing. A  

program dice (Weiser and Lyle 1986) only shows code that contributed to bad 

behaviour and did not contribute to good behaviour. Program dicing is used in 

program debugging to reduce the time of debugging examination. Chopping 

(Jackson and Rollins 1994; Krinke 2004) solves the problem of how variables affect 

each other. Chopping shows only code that contributes to bad behaviour and was 

affected by some given piece of code. 
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Object oriented and aspect oriented slicing (Larsen and Harrold 1996; Zhao 2002), 

distributed programs slicing (Gramoli, Vigfusson et al. 1999), web-based application 

slicing (Junhua, Baowen et al. 2004; Tonella and Ricca 2005), and slicing under UML 

scenario models (Qian and Xu 2008) are slicing techniques that have been tried and 

used to analyse the program code in different ways. However, all of these slicing 

techniques focused on the program variables and their values and none of them has 

considered the rest of program code syntax. 

2.4.4 Program slicing applications 

2.4.4.1 Debugging 

Program slicing was introduced the first time by Mark Weiserto make program 

debugging easier (Weiser 1982; Weiser 1984). Slicing helps the developer by 

reducing the search space if the output of a program is wrong (Weiser and Lyle 1986; 

Shinji, Akira et al. 2002). This use of slicing in debugging was the motivation to 

introduce Dynamic slicing (Harman and Hierons 2001). 

There are some models and tools that are based on program slicing to aid in 

program debugging. SPYDER (Agrawal, Demillo et al. 1993) was developed as a 

debugger based on dynamic slicing and execution backtracking techniques. 

2.4.4.2 Regression Testing 

Regression testing is “selective retesting of a system or component to verify that 

modifications have not caused unintended effects and that the system or component 

still complies with its specified requirements” (IEEE 1990). 

Program slicing is used in testing to simplify the testing process (Harman and Danicic 

1995; Binkley 1998). Regression testing is a testing process used during the 

maintenance phase, to make sure that the changes only happened to the target code 

and did not cause any problems in any other program (Binkley 1998). 
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Dynamic slicing (Binkley 1998; Lalchandani and Mall 2008), and decomposition 

slicing (Gallagher, Hall et al. 2007), are both used in regression testing to determine 

whether two components have the same behaviour. Decomposition slicing is also 

applied to find an approximate solution to idetify a set of affected components by 

maintenance (Ngah and Gallagher 2009), and to specity a set of tests to examine 

these components (Binkley 1998; Lalchandani and Mall 2008). 

2.4.4.3 Software Maintenance 

Most programs spend 70% or more of their life time in the maintenance phase 

(Gallagher and Binkley 2008). Program slicing can be used to reduce the time and 

effort spent on program maintenance. Gallagher and Lyle (Gallagher and Lyle 1991) 

used Decomposition slicing to define the dependability of a variable in a program. If 

there is any change to the variable, decomposition slicing will define which 

statements will be affected by this change, by defending the dependability 

statements of this variable. 

Gallagher et al. (Gallagher and Lyle 1998) developed a tool for software maintenance 

based on decomposition slicing. The Surgeon’s Assistant helps maintainers and 

developers of ANSI C programs isolate program components for change or 

adaptation. Also, it helps in finding the changes in program design and code, and 

helps in regression testing where it makes sure that the changes do not affect other 

components. 

Another maintenance phase is called Program comprehension and is the process in 

which a programmer understands the program (Gallagher and Binkley 2008). 

Conditioned slicing (DeLucia, Fasolino et al. 1996) and decomposition slicing 

(Gallagher and O'Brien 2001; Tonella 2003) can be used to help the programmer 

identify a set of statements that preserve the program behaviour with respect to a set 

of program executions. 
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2.4.4.4 Other program slicing applications 

Program slicing is employed in other applications. Clustering equivalent computation, 

program slicing was used to find the dependant cluster and dependant pollution 

(Binkley and Harman 2005; Gallagher and Binkley 2008). 

In model reduction (Hatcliff, Dwyer et al. 2000), program slicing was applied to 

remove irrelevant code and reduce the size of the corresponding model. While in 

database schemas (Maule, Emmerich et al. 2008),  program slicing can be used to 

reduce the size of the program that needs to be analysed to identify the impact of 

relational database schema changes upon object-oriented applications. 

In software robustness (Gallagher and Fulton 1999), Decomposition slices are used 

to determine a unique fault injection point for any given variable of interest at a point 

where the variable has the highest impact on program output.  

2.4.5 Program slicing tools 

Researchers apply program slicing by introducing new tools or modifying existing 

tools.  

2.4.5.1 CodeSurfer (CSurf) 

GemmaTech company introduced the Code Surfer (CSurf) as a “automated source-

code analysis tool” (GrammaTech 2012) used to call the program graphs and help in 

finding the bugs in C language programs. 

Code Surfer calculates the representation of the program constructs such as 

preprocessor directives, and enables them to be explored through graphical user 

interface or accessed through optional Application Programming Interface (API). 

Code Surfer can do different kinds of code analysis, such as impact analysis, 

dataflow analysis, pointer analysis, and whole program analysis where it shows the 

interaction between the program files. 
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2.4.5.2 Indus/Kaveri 

Indus is a framework for analysing and slicing concurrent Java programs. Indus 

presents a collection of advanced features useful for effective slicing of Java 

programs including: calling-context sensitive slicing, scoped slicing, control slicing, 

and chopping. Kaveri is an eclipse plug-in front-end for the Indus Java slicer. It 

utilizes the Indus program slicer to calculate slices of Java programs and then 

displays the results visually in the editor. The purpose of this project is to create an 

effective tool for simplifying program understanding, program analysis, program 

debugging and testing (Ranganath and Hatcliff 2007). 

2.4.5.3 JSlice 

Another Java Slicing tool is JSlice, which is a “dynamic slicing tool for Java 

programs. It collects and analyzes an execution trace (for slicing) in a compressed 

form” (Wang and Roychoudhury 2004). 

2.4.6 Summary  

Program Slicing is a code analysis technique. There are two different Program 

Slicing techniques that were investigated in this literature reviewed in this section. 

Static Program Slicing and Dynamic Program Slicing, which have different 

applications, are summarised in Table 2.1. Different tools were used to slice 

programs in both languages; C and JAVA. 

 

 

 

 



 

 

44 

Slicing Type Slicing sub-type Slicing Criteria Applications 

Static Slice 

Forward <L, V> 
Program Debugging 

Database Schemas Analysis 

Backward <L, V> 
Program Debugging 

Database Schemas Analysis 

Conditioned <L, V, C> 
Program Comprehension 

Program  Maintenance  

Decomposition <V> 

Program  Maintenance 

Program  Robustness 

Program Comprehension 

Regression Testing  

Amorphous <L, V> Program Comprehension  

Quasi Static <L, V, P> Program Comprehension  

Dynamic 

Slice 

 <L, V, P> Program Debugging 

Program Comprehension  Simultaneous <L, V, P1…Pm> 

Table 2.1 Program Slicing techniques and their applications 

 

2.5 Summary 

In this literature review, the Robustness of a program was defined as “the degree to 

which a system or component can function correctly in the presence of invalid input 

or stressful environment”. This means that Robustness can be a relative value and 

can be measured. There are many techniques that have been used to satisfy or 

define Robustness. These techniques introduce some solutions to create a robust 

program, such as avoiding the faults by redundancy. However, they are still facing 

some challenges like the complexity of redundancy. 

 

The MISRA C2 language rules cover most of the C language issues, and by following 

the MISRA rules most of the common development mistakes can be prevented.  
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Program Slicing is a code analysis technique that investigates program code. In 

Static Slicing, the code syntax can be analysed regardless of the code execution, 

which helps in isolating a piece of the code and investigating it further.  

 

The measurement of robustness is still in the early stages of research. Program 

robustness has been reviewed and shows that the robustness measurement mostly 

discussed were regarding input/output validity. 

 

In this research, program robustness is going to be measured using the program 

code syntax. Therefore, there should be some rules that measure the code syntax 

robustness. The MISRA C2 has been chosen to be these rules because they are 

suitable for the purpose. 

 

The code syntax needs to be analysed to see the effect of each piece of code on the 

rest of the program, and the best program analysis for this research is Program 

Slicing. Figure 2.1 shows the top to bottom story of this research. 
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Chapter Three 

 

Robustness Grid 

 

3.1 Introduction 

This chapter introduces the Robustness Grid for programs written in the C language. 

Measuring software Robustness needs to examine the features of programming 

languages in order to produce a relative scale for functions, methods, and the entire 

program. The Robustness Grid will show the Robustness Degree in details for a 

selected program. 

The Robustness Grid Measurement is the process by which relative numbers are 

assigned to Robustness Degree of a C program in such a way to describe them 

according to MISRA C2 rules and their Weights. 

Figure 3.1 shows the Robustness Grid building process. The Language Features and 

Category are the start point of the Robustness Degree measurement process. The 
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Language Features are the language characteristics that must be included in a 

program categorised process. The MISRA rules are used to assign the Language 

Features into categories. 

 
 

Figure 3.1 Robustness Grid Construction process 

 

The Clause Slicing technique is used to weight the MISRA rules in order to 

differentiate between them in terms of rule importance and effective use throughout 

the program. The Robustness Degree consists of the calculations that show each 

Rule Robustness Degree and Function Robustness Degree using the values and 

weight take from the MISRA rules and Clause Slicing. 

The Robustness Grid is the table by which relative numbers are assigned to 

Robustness Degree of a C program in a table to describe them according to MISRA 

C2 rules and their Weights from Clause Slicing. 

Values Weight 

Language 

Features/ 

Category 

Robustness 

Grid 

Robustness 

Degree 

Clause 

Slicing 
MISRA 

Rules/ 

Category 
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The Robustness Grid shows the Robustness Degree details for each rule, function, 

and category, and for the whole program. It also shows the relation between 

functions and categories.  

The program to be assessed through the Robustness Grid must fulfil the Program 

Selection Criteria which means that the program should go through the gcc 

compiler without any reported errors. All warnings are ignored. The Warnings are 

ignored because the Robustness Grid reinforces the message of the warnings. 

3.2 Language Features 

Language Features look at program code using different points of view; the style of 

the program code the use of C language standards library of the variables in the 

program. 

Language Features are used to measure the program Robustness. Language 

Features are language characteristics that affect software Robustness such as 

arithmetic conversion, data type definition, and code control flow.  

3.2.1 Language Features Categorisation 

Language Features analysis checks every statement in the program and sees 

whether it satisfies these Features. Language Features are divided into categories 

depending on their shared characteristics. 
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Table 3.1 shows a set of Language Features as categories in MISRA C2 (MISRA 

2004): 

 Language Features 

Character Set, and Identifiers 

Data types, Declarations, and Definitions 

Constants 

Initialisation 

Arithmetic type conversions, and Pointer type conversion 

Expressions 

Control statements expressions, Control flow, and switch statements 

Function structure 

Pointers, arrays, structures, and unions 

Pre-processing directives, and standards libraries. 

Table 3.1 MISRA rules topics 

 

3.2.2 MISRA Rules 

3.2.2.1 MISRA rule selection 

The Language Features selection mechanism from the MISRA C2 rules depended 

on certain conditions, and only rules that satisfy all these conditions will be part of the 

Robustness Grid. 

The selection process for the Robustness Language Features Conditions from the 

MISRA C2 rules are as follows: 

1- A rule that causes a compile time error when it is violated will be eliminated 

because any program that breaks such a rule does not satisfy the Program 

Selection Criteria condition and will not be measured in the Robustness Grid. 

2- A rule must relate to the program code, and not to the environment or the 

documentation, because the Robustness Grid is only concerned with the 

program code. By this condition, the MISRA Environment and Documentation 
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rules categories are not selected to be a part of the language Features of the 

Robustness Grid. 

3- The Language extensions rules, such as comments are not selected to be in 

the Robustness Grid. Only the executable code is going to be measured. 

4- A rule should be easily measured. For example, rule 14.1 in MISRA C2: 

“there shall be no unreachable code” cannot be easily identified in general. 

The Clause Slicing technique has to slice all the program statements so the 

all the program should be executable. 

In the Robustness Grid, There is no need to address the MISRA C2 rules that cause 

compile-time error if they breached, since these errors are caught by the compiler. 

After analysis, 100 out of 142 MISRA C2 rules were approved by the Robustness 

Features criteria and selected to be the Language Features. Not all rules will be 

applicable to each program. 

The MISRA C2 rules are copy right protected and are thus not allowed to be 

published this thesis. Thus no details of the rules are given.  

3.2.2.2 Robustness Features Categorisation 

In this research, the Language Features are divided into 6 different categories. Each 

Category has a set of rules that share the same characteristics. The categories are 

numbered for convenience and are not intended to show a hierarchy. 

These numbers indicate the order in which the categories are shown in the 

Robustness Grid. The Categories in the Robustness Grid must have the following 

characteristics: 

1. Each rule in each category must be one of the MISRA C2 rules. 

2. All rules in each category must satisfy the “Robustness Language Features 

Conditions”. 
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3. Each rule must be in one and only one category. 

The Language Features are divided into the Categories listed in Table 3.2. 

 

Category Constructs 

Number of 

MISRA C2 

rules 

1 
The rules that consider mainly type definition, and 

arithmetic statements. 
20 

2 
Rules that consider control statements, for example: if, 

for, and while statements. 
27 

3 Rules that consider function’s structure. 16 

4 
The rules that consider arrays, pointers, and data 

structure such as union, struct, and enum. 
4 

5 
The rule that consider header files and the pre-

processor. 
22 

6 
All MISRA C2 rules that were highlighted as advisory 

rules. 
11 

Table 3.2 Categories Construction 

 

Figure 3.2 shows the MISRA rules distribution percentage for the categories. 

Category 2 has the largest number of rules, since it is dealing with frequent issues in 

the C programming language.  
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Category 1

20%

Category 2

27%

Category 3

16%

Category 4

4%

Category 5

22%

Category 6

11%

 
Figure 3.2 Robustness Grid Categories distributed scale 

The table of all categories with their rules from MISRA C2 is shown in Appendix A. 

Because the categories are independent then each Category has its own rules and 

these rules have no effect on each other. For example, if a program scored a low 

Robustness Degree in a Category, it does not necessarily means it is going to score 

a low Robustness Degree in other Categories. However, the Categories are still 

connected with each other in some Language Features Calculations to measure the 

final Robustness Degrees for the function or the program. 

Rules in a category are not in a numeric sequence, since they are grouped 

depending on rule characteristics. However, rules in the same category are in 

numeric order according to their MISRA C2 number. The rules in a category are in 

X.y numbering format, where X is group number in MISRA C2 grouping program, and 

y is the group internal number of the rule. Thus, rule order is meaningless and does 

not affect the rule role in the Robustness Grid. Table 3.3 shows an example of the 

rules distribution into categories. 
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Categories Rule Number 

Category 1 

4.1 + 7.1 

4.2 

5.1 

5.2 

6.1 

Category 2 

12.2 

12.3 

13.4 

13.5 

13.6 

14.7 

17.1 

17.5 
Table 3.3 Example of rule categorisation 

3.3 Clause Slicing 

Slicing is a program analysis technique that allows the focus to be on the program 

code that is related to certain Slicing Criteria. Chapter Two (section 2.4) has 

reviewed a number of slicing techniques. In this research, the Clause Slicing 

technique is introduced. 

Clause Slicing is a new slicing technique that is introduced and defined in this thesis 

for the first time. Clause Slicing is introduced to facilitate the Robustness 

Measurement of a C program. 

A Clause is the minimum piece of code that can be sliced. Not every Clause is 

sliceable and there are some Clauses such as #include that cannot be sliced and this 

type is called the Un-sliceable Clauses. The Slicing Criteria for the Clause Slicing is 

<C, n>, where C is the clause, and n is the clause number. The Clause Slicing (Cn) is 

all clauses in the program that depends on Cn. 

Each one of the program Clauses will be measured by the Language Features. The 

Clause in the programs can be defined as follows: 

<break-statement>, <continue-statement>, <goto-statement> are not Clauses. 

<Type-variable name> has one Clause. 
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<expression> '=' <expression> has the sum of the number of clauses in the both 

<expression> 

<compound-statement> 

::= '{' <declaration-list> <statement-list> '}' has one clause. 

<return-statement> 

::= 'return' <expression> ';' has one clause. 

<do-statement> 

::= 'do' <statement> 'while' '('<expression> ')' ';' has the number of clauses 

in the <statement> plus the number of clauses in the <expression> 

<for-statement> 

::= 'for' '('<initialization-expression> ';'<control-expression> ';' <iteration-

expression>')' <statement> has the number of clauses in the <initialization-

expression>, <control-expression>, and <iteration-expression> plus the 

number of clauses in the <statement> 

<if-statement> 

::= 'if' '(' <expression> ')' <statement> has the number of clauses in the 

<statement> plus the number of clauses in the <expression>. 

<if-else-statement> 

::= 'if' '(' <expression> ')' <statement> 'else' <statement> has the number 

of clauses in the both <statement> plus the number of clauses in the 

<expression>. 

<while-statement> 

::= 'while' '(' <expression> ')' <statement> has the number of clauses in the 

<statement> plus the number of clauses in the <expression>. 

<switch-statement> 

::= 'switch' '('<expression> ')' '{'<declaration-list><statement-list> <case-

list> '}' has the number of clauses in the <expression> plus the number of 
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clauses in the <declaration-list> plus the number of clauses in the 

<statement-list>. 

<Type-function name> '('<parameters-set>')' '{'<statements>'}' has one clause 

<Type-function name>, added to the number of clauses in '('<parameters-set>')' 

which is equal to number of parameters, plus the number of clauses in the 

<statement> 

Introducing the Clause term to Static Slicing has brought a new type of Static Slicing: 

namely Clause Slicing. Clause Slice can be a Forward Clause Slicing, Backward 

Clause Slicing or Decomposition Clause Slicing. In this research, the interested 

focuses on Forward Clause Slicing, and from now on, the Clause Slicing will mean 

Forward Clause Slicing.  

Clause Slicing is using the Clause (C) and Clause number (n) as the Slicing Criteria. 

A line of Code may have more than one Clause. A Clause Slice (Cn) contains all the 

Clauses that depend on (Cn). Figures 3.3, 3.4, and 3.5 show the differences between 

the Forward Slicing and Forward Clause Slicing. 

Figure 3.3 shows a program with two type of numbering: the line numbers, which is 

the number for each line of code and used in Forward Slicing, the Clause number, 

which is written superscript format and used for Clause Slicing. 

Clause Slicing will be used to weight the robustness Degree for program Clauses, 

functions, and the whole program. Each Clause in the program will be the Slicing 

Criteria for the Clause Slice. Thus, each Clause is going to be sliced using the 

Clause Slicing technique. The number of Clauses in the produced slice will be the 

Clause’s Slice Size. 
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1. #include <stdio.h>1 
2. static add (int,int);2  
3. int  n3; 
4. void main()4{ 
5.    int i = 15; 
6.    int sum = 06;  
7.    while (i<11) {7  
8.        sum8 = add9(sum10, i11); 
9.        i12 = add13(i14, 115);} 
10.  printf16("sum = %d\n"17, sum18); 
11.  printf19("i = %d\n"2o, i21);} 
12. static int add22(int a23, int b24){ 
13.     return(a+b)25; }    
 
The Program has 13 lines and 25 Clauses 

Figure 3.3 Gemma.c program (GrammaTech 2012) 

 

6.   int sum = 0;  
  
8.     sum = add(sum, i); 
 
10. printf("sum = %d\n", sum); 
  
12. static int add(int a, int b){ 
13. return(a+b); }    
 
Forward Slicing on (sum,6) has produced 5 lines. 

Figure 3.4 Forward Slice on (sum,6) 

 

   int sum = 06;  
  
     sum8 = add9(sum10, ); 
 
  (, sum18); 
  
 static int add22(int a23, ){ 
     return(a+b)25; }    
 
Clause Slicing on (C6{int sum=0}) has produced 8 Clauses. 

Figure 3.5 Clause Slice on C
6
=(sum=0, 6) 

 

The use of Clause Slicing is a new idea applied to measure the importance of each 

clause individually. This will affect the Robustness Degree measurement for the 

program clauses. A clause with high influence in the program will be more important, 

and will have more credit in the program Robustness Degree measurement.  
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Other Slicing techniques such as Backward Slicing and forward are looking at what 

the variable is depends on, which show only the effect of the variable in the program. 

In Clause Slice each piece of code has been considered with its effect in the 

program, which makes it easier to see and measure the effect of each part in the 

code syntax. 

3.4 Robustness Degree Calculations 

The IEEE definition of Robustness is “The Degree to which a system or component 

can function correctly in the presence of invalid inputs or stressful environmental 

conditions” (IEEE 1990). The emphasis in the thesis is on the latter, to measure the 

Robustness aspect of stressful environment conditions. Therefore, any Robustness 

measurement technique must generate a scale value after any Robustness 

measurement process. 

The Robustness Degree is a relative value that shows how a clauses, functions, or 

the entire program is satisfy the Language Features.  

The Robustness Grid calculates the Robustness Degrees for each part of the 

program. For each program, several Robustness Degrees are formed, as well as for 

each function. The Robustness Degree shows the weak and the robust points of the 

program, and it illustrates the changes that can be made to the program to improve 

its Robustness Degree. 

3.4.1 Language Features Weighting 

The Language Features Weight considers the role of a Clause in a program. A 

Clause here means the smallest piece of code that can have a slice. The un-

sliceable Clauses are the pre-processor, function prototype, typedef and any other 

code that cannot be sliced. In that case, the Clause itself is considered as the 

Clause’s slice. 
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The Slice Size shows the Clause and Language Features influence on the program. 

When the Slice Size is larger, the influence is greater. 

The weighted Language Features show the Clause and rule importance in the 

program by the size of slice for each of them. 

The Language Features are related to the Robustness Degree of code syntax and 

coding style. On the other hand, the Language Features Weights are related to the 

program Clauses and are used as a addition to the Language Features in the 

Robustness measurement process. 

3.4.2 Data for Program Analysis 

The Robustness Grid measures a program with respect to Language Features and 

their Weights, and shows the program robustness measurement results as numbers 

and percentages. 

In this section, the data for program analysis in the Robustness Grid will be described 

in detail. 

3.4.2.1 Clause Table 

The Clause Table, as Table 3.4 presents, contains six columns, where each column 

deals with one set of program analysis data. 

Clause 

Number 

Slice 

Size 

Clause 

Frequency 

Clause 

Weight 

Function 

Name 

Applicable Rules 

Satisfied Violated 

Table 3.4 Clause Table 

The Data that is used in the Robustness Grid is produced there after the following 

steps: 

1- All sliceable Clauses in the program will be sliced. The un-sliceable Clauses 

will have the Clause itself as the slice. 
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2- Clause Number shows the Clause sequence number in the program. Each 

Clause Number represents one Clause in the program. They are the basis of 

all other columns since Language Features and Language Features Weight 

are based on the Clauses.  

3- From the Clause Slice the following can be determined: 

a. Slice Size: the number of Clauses in the slice. Un-sliceable Clauses 

will have Slice Size = 1. 

b. Clause Frequency: the number of times a Clause has been part of a 

Clause slice. The Clause frequency for un-sliceable Clauses will be 

one, since it only occurs once in its own slice. 

c. Clause Weight: The multiplication of the Clause Frequency by the 

Slice Size, which reflects the importance of the Clause in the 

program, where it shows the influence of the clause and how it affects 

the robustness of the program. 

4- Each Clause will be compared against the MISRA C2 rules, to find out which 

Clause is assigned to which rule, and this will be used to create the Data 

Table. 

5- Applicable Rules show whether the Language Features are Satisfied or 

Violated for each Clause in the program. The Applicable rules are the MISRA 

C2 rules that apply to each Clause of a program. Any number of rules can be 

applicable to a Clause. The two sub-columns that form the Applicable Rules 

column are: Satisfied, which shows the rules that have been satisfied, and 

Violated, which shows the rules that have been violated by the Clause. 

6- For each MISRA C2 rule, the number of times the applicable rule is 

 Satisfied, and 
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 Violated 

 will be counted. 

7- Function Name is the name of each function in a program. Function Name 

declares in which function the Clause belongs.  Clauses that are not included 

in any function will be added to the main function. 

Function prototype and function declaration are function components in a 

program. These Clauses are counted as part of the function even if they are 

written inside another function. 

The Clause Slice Size and Clause Frequency are independent, so a Clause could 

occur frequently in many slices while it may have a small Slice Size. This Clause can 

have the same weight as a Clause in the opposite position. For example, suppose 

Clause 5 occurred in 3 slices, which make the Clause Frequency value equal to 3, 

and suppose it has 8 Clauses in its slice, so the Slice Size is equal to 8. Thus, 

Clause 5 Clause Weight will be 38 = 24. Suppose another Clause, Clause 9, has 

the opposite situation where its Clause Frequency equals eight and Slice Size equals 

three. Clause 9 Weight will be equal to the Clause Weight of Clause 5 which is 24. 

Consider a third Clause, Clause 12. With 6 as Clause Frequency value and 4 as 

Slice Size, the Clause Weight will also be the same, which is 24. 

This means that the Clause Weight is a factor that measures the effect and the 

usage of a Clause in a program. In other words, it measures the role a Clause plays 

throughout a program, which reflects how important this Clause is in the program. 

The Clause with the biggest Weight will be the most important Clause in a program, 

and the level of importance for a Clause is reduced when the Clause Weight value 

decreases. 
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Table 3.5 shows a small part of the Clause Table for the SwapoAdd.c program. 

Appendix C is an example of how the Clause table is going to be presented. 

Clause 
number 

Slice 
Size 

Clause 
Frequency 

Clause 
weight 

Function 
name 

Applicable rules 

Satisfied Violated 

1* 1 1 1 main 
19.1, 19.2,20.9, 

20.2,20.1 
0 

2* 1 1 1 main 19.6 0 

3* 1 1 1 main 19.6 0 

4* 1 1 1 main 0 6.3 

5 4 2 8 main 
5.1, 6.1, 8.12, 

13.1, 9.2 
0 

6* 1 1 1 incr 16.3, 16.4, 16.1 19.7 

7* 1 1 1 swap 16.3, 16.4, 16.1 19.7 

8* 1 1 1 one 16.3, 16.4, 16.1 19.7 

9 35 2 70 main 14.7, 16.1, 8.2, 8.6 16.5, 19.7, 8.1 

Table 3.5 Example of Clause Table 

3.4.2.2 Data Table 

The Data Table columns, as shown in Table 3.6, are all about the rule data that apply 

to a program. The Data Table is strongly linked with the Clause Table since all values 

are taken from the Clause Table. 

Rule Number 
Number of 

Satisfied 
∑Satisfied Slices  

Number of 

Violated 
∑Violated Slices 

Table 3.6 Data Table 

1- Rule Number is the rule index number in the MISRA C2 documents. This rule 

number is used to refer to the rule that was applied in a program for a Clause. 

2- The Applicable Rule is either Satisfied or Violated. The Applicable Rule 

column is divided into two sub-columns: Number of Satisfied and Number 

of Violated. The Number of Satisfied sub-column shows how many times a 

rule has been applicable and satisfied throughout the whole program where 

the rule was counted. It presented by the sign (+) followed by a number (n) 

that indicate how many times a rule has been satisfied. Number of Violated 
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sub-column shows how many times a rule has been applicable and violated 

throughout the whole program. It presented by the sign (-) followed by a 

number (n) that indicate how many times a rule has been violated. If a rule is 

not applicable in the program, the Applicable Rule cell in the table will be filled 

with (0). The values for these sub-columns are drawn from Satisfied and 

Violated sub-column in the Clause Table (Table 3.4). 

3- The ∑Satisfied Slices is a combination of two columns in the Clause Table. 

These columns are the Satisfied Rule and the Slice Size of a Clause. 

Satisfied Rule will be counted, and each time a rule is satisfied, the total of all 

slice sizes of the Clauses that satisfy a rule will be the ∑Satisfied Slice. This 

column reflects the effect of a rule throughout a program. Simply, each time a 

rule is satisfied, the Clause Slice Size will be added to the ∑Satisfied Slice 

rule value and the final value will be the ∑Satisfied Slice in the Data Table. 

4- ∑Violated Slices column follows the same procedure as ∑ Satisfied Slices 

Size. The number of times a rule was violated will be counted, registered and 

used to calculate the Violated Slices. 

Table 3.7 shows a small part of a Data Table that was created for the SwapoAdd.c 

program. See Appendix D as an example of how the Data Table is going to be 

presented. 

Rule Number 
Number of 
Satisfied 

∑ Satisfied Slices Number of Violated ∑Violated Slices 

4.1 + 7.1 5 9 3 15 

4.2 5 9 0 0 

5.1 13 70 0 0 

5.2 0 0 3 13 

6.1 1 4 0 0 

6.3 0 0 1 1 

8.1 3 22 1 35 

8.2 4 57 0 0 

8.3 5 19 0 0 
Table 3.7 Data Table Example 
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3.4.3 Rule Weighting 

The Language Feature Weight aims to measure the Language Features importance 

level by giving each Language Feature a value that expresses its importance level. 

The Rule Weight Calculations is shown in Table 3.8. 

Function Name 

Satisfied 

Weight 

Violated 

Weight 

Rule Function 

Frequency 

Rule ∑ Function 

Slice Size 

Rule Function 

Weight 

Table 3.8 Rule Weight Calculations 

1- Function Name is the name of each function in the program. The sub-

columns that come under the Function Name are the calculations that are 

related to every function in the program. Some of these sub-columns take 

their data directly from Data Table (Table 3.6) in Section 3.4.2.2, or indirectly 

from the Clause Table (Table 3.4) in Section 3.4.2.1.  

2- Satisfied Weight is the Number of Satisfied in the Data Table multiplied by 

the ∑ Satisfied Slices from the same Table. The Satisfied Weight illustrates 

relatively the rule satisfaction Degree between other rules.  

The Satisfied Weight is one of the main factors that reflect the function 

Robustness Degree. The Satisfied Weight is the Frequency of the applicable 

rule that was satisfied in a program multiplied by the effect of this rule in the 

program. 

3- Violated Weight column is the Number of Violated rules in the Data Table 

multiplied by the ∑ Violated Slices from the Data Table.  

Comparing the Satisfied Weight and the Violated Weight will give an 

indication of the Robustness Degree of a program, and whether it has a major 

robustness defect or not. In addition, it will reflect the defect side of each rule 

in each function. 
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4- Function Frequency column is the result of adding the Numbers of Satisfied 

and Number of Violated columns from the Data Table. Rule Function 

Frequency is the number of times a rule was applicable throughout a function. 

It is equal to the number of satisfied rules plus the number of violated rules in 

the Applicable Rule column of the Data Table. This value shows which 

function has applied a rule the most, or least, to help the developer identify 

the biggest or smallest effect of a rule in the function. 

5- Rule ∑ Function Slice Size is the total number of Satisfied and Violated 

Slices Size in Data Table. The value indicates the behaviour of the Applicable 

Rule in a function and throughout the whole program. Rule ∑Function Slice 

Size shows the function and Clauses that have a large effect in the program. 

6- Rule Function Weight is the accumulative weight of the rule for the function. 

The Rule Function Weight is one of the main Features that are powerfully 

related to the Language Features where it is used to measure the 

Robustness Degree. The Rule Function Weight shows the influence of the 

rule and how it affects the program robustness as overall. 

This value is a result of multiplying the Rule Function Frequency in the Rule 

Weight Calculations Table, which is also as accumulative value of the number 

of times a rule was applied, by the Rule ∑Function Slice Size, which is the 

accumulative Slice Size of all the times a rule was applied. Rule Function 

Weight represents the Rule Weight for the whole function. 

Note that the Rule Function Weight is not equal to the addition of Rule 

Satisfied Weight to Rule Violated Weight. 

Table 3.9 shows a small part of Rule Weight Calculations that was created for the 

SwapoAdd.c program as an example of how the data is going to be presented. 
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incr 

Satisfied 
Weight  

Violated 
Weight  

Function 
Frequency 

Rule ∑Function 
Slice Size 

Rule Function 
Weight 

45 45 8 24 192 

45 0 5 9 45 

910 0 13 70 910 

0 39 3 13 39 

4 0 1 4 4 

0 1 1 1 1 

66 35 4 57 228 

228 0 4 57 228 

95 0 5 19 95 
Table 3.9 Rule Weight Calculations Table Example 

The Rule Weight Calculations Table shows the calculations that are related to the 

Language Features. This Table will be repeated for each function in the program, as 

part of the Robustness Degree measurement process. The Rule Weight Calculations 

Table is used to compare between functions to find the function with the largest 

Applicable Rules, and the function with the largest Rule Weight value. The Rule 

Weight Calculation Table gives a hint about the most used function and rule in the 

program.  

3.4.4 Function Category Degree 

Function Category Degree (FCD) is the Robustness Degree that a function scores in 

a Category. The Function Category Degree has two values depending on rule 

satisfaction status: Function Category Satisfy Degree (FCSD), and Function 

Category Violate Degree (FCVD).  

FCSD reflects the satisfaction of the Function Language Features in a Category. The 

value is calculated by the sum of all the times all the rules in a Category were 

satisfied (the Total of Satisfied Rules Frequency) divided by the sum of all times all 

rules in a Category were applicable, presented as percentage. On the other hand, 

FCVD reflects the Violation of the Function Language Features in a Category. The 

value is calculated by the sum of all the times all the rules in a Category that were 
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violated (the Total of Violated Rules Frequency) divided by all times all rules in a 

Category have been applicable presented as percentage. FCSD and FCVD values 

together represent the FCD of a function for the Category in the Robustness Grid and 

show the function performance in terms of Robustness Language Features. 

The FCSD and FCVD values are the Robustness Degree measurement of the 

function. They also help decide whether the function needs to be re-engineered to 

improve its Robustness Degree, by highlighting the defective part of the function. The 

Rule Weight Table with FCSD and FCVD together make the Function Robustness 

Grid, which is the main block of the Robustness Grid. 
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Table 3.10 Function Robustness Grid with sketch equations 
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Table 3.10 shows the equations used to create each column in the Function 

Robustness Grid Table, which assess the Function Robustness Degree. Table 3.11 

shows a small part of Function Robustness Grid Table that was created for function 

incr in the SwapoAdd.c program as an example of how the data is going to be 

presented. 
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 1
 

4.1 + 
7.1 

0 0 0 0 0 0 0 0 

2/2 = 
100% 

0/2=0% 
4.2 0 0 0 0 0 0 0 0 

5.1 +2 6 12 0 0 2 6 12 

5.2 0 0 0 0 0 0 0 0 

6.1 0 0 0 0 0 0 0 0 

C
a

te
g

o
ry

 2
 

12.2 +1 2 2 0 0 1 3 3 

1/3 = 
33.3% 

2/3 = 
66.7 

12.3 0 0 0 0 0 0 0 0 

13.4 0 0 0 0 0 0 0 0 

13.5 0 0 0 0 0 0 0 0 

13.6 0 0 0 0 0 0 0 0 

14.7 -1 0 0 5 5 1 5 5 

17.1 -1 0 0 2 2 1 2 2 

17.5 0 0 0 0 0 0 0 0 

Table 3.11 Example of Function Robustness Grid 

 

3.5 Robustness Grid 

The Function Category Degree (FCD) is the part of the Robustness Grid that 

measures the program function. FCD will have the same structure for every function 

in the program but with new values related to each function. 

All functions in the program have calculations to measure the program as one piece, 

including all function calculations in the Function Category Degree. 
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3.5.1 Program Category Degree 

The Program Category Degree (PCD) is a part of the Robustness Grid that 

measures the whole program using all the calculations in the functions that the 

program has, all Language Features and all Language Features Weight that have 

been applicable and calculated.  

3.5.1.1 Program Category Degree (PCD) 

The Program Category Degree (PCD), Table 3.12, is the accumulative column for all 

Functions for each Category Degree in the program (∑FCD). The PCD is the 

Robustness Degrees in terms of Language Features for all rules that were applied in 

the program. Since PCD is the total of Robustness Degrees of all functions, it also 

has two values: Program Category Satisfaction Degree (PCSD), and Program 

Category Violation Degree (PCVD). 

Table 3.12 Program Category Degree Table 

The PCSD is the whole program Satisfaction Degree for each category. It is the sum 

of the number of times a rule was satisfied in all functions in a Category, divided by 

the sum of the number of times a rule was applicable in all functions for the same 

Category, presented as a percentage. The PCVD is the whole program Violation 

Degree for each category.  It is the sum of the number of times a rule was violated for 

all functions in a Category divided by the sum of all times a rule was applied for all 

functions for the same Category, presented as percentage. 

PCD% 

PCSD % for satisfied rules PCVD % for violated rules 

∑PCD for previous categories for 

satisfied rules 

∑PCD for previous categories for 

violated rules 
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3.5.1.2 Accumulative Categories values (AC) 

In the Robustness Grid, the rows show a different measurement from the columns. In 

the Robustness Grid rows are the Language Features and Language Features 

Weight measurement. Part of the Robustness Grid rows is the Accumulative 

Category (AC), which shows an accumulative value for the number of rules that 

have been applicable in Categories, Functions, and the whole program, and presents 

the accumulative rules calculations of the previous Categories. The AC value is 

calculated for all Language Features and Language Features Weights in the 

Robustness Grid which is presented in the Function Robustness Grid (Table 3.10), 

as well as the Robustness Degree for the entire program. 

The FAC is the Function Accumulative Category value, which is the accumulative 

value of all categories of a function or the entire program. The AC and FAC are used 

to compare functions’ Robustness Degrees, which help determine which function is 

the least or the most robust in term of Language Features and/or Language Features 

Weight. They also help specify which function with the most effect (Slice Size) in the 

program and determine its Robustness Degree. 

As in all columns, PCD columns have the AC row.  The AC row of PCD calculates 

the accumulative values of both parts of PCD through categories showing the 

Robustness Language Features Degrees for all functions through the Categories, 

and how the Robustness Degree is affected in each category. 

In the Robustness Grid, the intersection of FAC row with Function Category Degree 

(FCD) column is the Whole Category Function Degree (WCFD). WCFD shows the 

Robustness Degree for a Function in all Categories. WCFD will also have two 

Degree values: Satisfaction and Violation.  

Furthermore, the intersection of FAC row with PCD column is the Whole Program 

Degree (WPD). WPD presents the Language Features Satisfaction and Violation 
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Degree for the whole program in all Categories. The WPD illustrates the final 

Robustness Degree that a program scores for all Language Features that were 

applied in all Categories. This Degree is presented as percentage to show the 

relative measurement to the whole program Robustness Degree. The Whole 

Satisfied Program Degree (WPSD) and Whole Violated Program Degree (WPVD) 

are detailed the WPD of the program. The columns in Table 3.13 show the AC and 

FCD equations that are part of the Function Robustness Degree measurement. 
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Table 3.13 AC and FAC equations 

3.5.2 Category Calculations 

The Category Calculations part of the Robustness Grid is related to Rules 

Categories, where each Rule and Category will be analysed and measured using 

Language Features characteristics: Rule Slice Size, Frequency, and Weight. 
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Category Calculations measure the Language Features individually and in the 

Categories as well. The Language Features characteristics measure the Language 

Features and the Categories show how a Rule or a Category is effective in the 

program. 
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Table 3.14 Category Calculations 

1- Category Satisfied Frequency is the total number of times a rule was satisfied 

in all functions in the program, which is equal to number of satisfied times for a 

rule in all program functions. 
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2- Category Satisfied Slice Sizes is the total number of all Slice Sizes for all 

Clauses that are applicable and satisfy a rule through all functions in the 

program. 

3- The multiplication result of Category Satisfied Slice Sizes by Category Satisfied 

Frequency is the Category Satisfied Weight.  The Category Satisfied Weight 

presents the Rule Weight in the whole program, which measures the rule 

effectiveness in the program. The rule with the highest weight value will be the 

most effective rule in the program. The rule with the highest Satisfied Weight 

value will be the most successfully effective rule in a program. 

4- Category Violated Frequency is the number of times a rule was violated 

through all functions. It is the same value of number of violated times for a rule 

in all functions. 

5- As with the Satisfied Rules, the Violated Rules will have the same measurement 

equations. Category Violated Slice Sizes is the total number of all slices for all 

rules where the slice was applicable and violated a rule through all functions. 

This is the same as the total number of all function Violation Slice Sizes. 

6- Category Violated Weight is the result of multiplying Category Violated Slice 

Sizes by Category Violated Frequency.  The Violated Weight reflects the 

rational value that specifies the defective part of the program that needs to be 

improved to increase the Robustness Degree. The violated rules will give a clue 

about things that should be changed to get a higher Robustness Degree. 

The general category attitude is shown by the Category ∑ Slice Sizes, 

Category Frequency, and Rule Category Weight. These three columns show 

the general performance of the Language Features Categories in all program 

functions. They also show which Category is the one with the largest Weight, 
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the one with the highest frequency used, and the one with the most important 

rules. These features identify the importance of each category. 

7- Category Frequency expresses the number of times a rule was applicable in all 

functions. It is equal to Total number of times of satisfied and violated for a rule 

in all functions. This value shows the number of times a rule was used in the 

program Clauses. 

8- Category ∑ Slice Sizes are the total number of slices of a Clause that apply a 

rule in all functions. This column describes the influence of the rule inside the 

program by showing the size of a slice(s) that will be affected by this rule. 

9- Rule Category Weight is the result of Category ∑ Slice Sizes multiplied by 

Category Frequency in Category Calculation Table, which reveals the rule 

importance compared with other rules regardless the Rule Satisfaction Weight 

or Degree. 

The importance of a rule will help in maintaining the important rules to get a 

significant improvement of the general Robustness Degree. The rule with 

largest Category Weight is the rule that has the largest impact on the program 

Robustness Degree. 

10- Whole Program Weight (WPW) is used in the measurement of the defect of 

each Rule, or Category. WPW is another way to measure the rules, the 

Categories, and the Functions importance and effectiveness. 

11- AC and FAC are mentioned before in the Section 3.5.1.2. 

Table 3.15 shows an example of how the Category Calculations are presented in the 

Robustness Grid. 
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CATEGORY CALCULATIONS 
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5 9 45 3 15 45 8 12 96 

5 9 45 0 0 0 5 9 45 

13 70 910 0 0 0 13 70 910 

0 0 0 3 13 39 3 13 39 

1 4 4 0 0 0 1 4 4 

AC 24 92 1004 6 28 84 30 108 1094 

          

FAC 104 634 3609 25 197 350 128 823 4610 

Table 3.15 Category Calculations example 

Function Calculations mentioned in section 3.4.3 look at the program functions 

individually. All Function Calculations depend on the function and Language Features 

applicable in that function. In Robustness Grid, Function Calculations measure the 

Rules vertically, starting from the first rule in the first Category, moving down till the 

last rule in the sixth category. 

In Program and Category Calculations, the Calculations are more about the 

Language Features behaviour through the program in general, and these 

calculations measure the Language Features Categories. In the Robustness Grid, 

Program and Category Calculations measure the rules horizontally. For each rule, 

the measurement starts from first rule in first function in the Robustness Grid moving 

right till the last function. 

3.6 Summary 

The Robustness Grid measures the Robustness Degree of the functions and the 

program written in C language. The Robustness Degree is a relative value that 
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shows the Robustness Features satisfaction status of the function and the program. 

Robustness Features are characteristics that affect the program Robustness Degree. 

These Features are: Language Features and Language Features Weight.  

Language Features are code independent, where a set of Language Features are 

selected, categorised, and used to measure the Robustness Degree. 

The Language Feature Weights are produced by the Clause Slice technique and 

some mathematical equations. The Language Feature Weights depend on the 

program code. 

The Clause Table is a table created by the Clause Slice technique, and used to 

calculate the Language Features Weights and the Robustness Degree. The Clause 

Table shows the importance of the program Clauses based on the Clauses Slice 

Size, Clause Frequency, and Clause Weight, where the Clause with highest weight is 

the most important Clause in the program. 

The Robustness Grid is a table that combines both the Data Table and the Clause 

Table. The Robustness Gird indicates a relative scale that illustrates the weak points 

of the program that reduce the Robustness Degree of the Program. Pointing out the 

rules that have a problem helps the developers and maintainers to raise the 

Robustness Degree by fixing the defective Clauses that score low Robustness 

Degrees. The equations of the Clause Table and the Robustness Grid are shown in 

Appendices K and L, respectively. 
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Chapter Four 

 

Implementation 

 

 

4.1 Introduction 

The implementation chapter shows the process steps that have been followed to 

produce the Robustness Grid in terms of tools; the process is not fully automated. 

However, some of process steps were done by tools already available in the market. 

The language features identified in Chapter Three are encapsulated by the use of 

MISRA C2 rules (reviewed in Chapter Two). 

The implementation process starts with a C program, going through manual 

measurement using the MISRA C rules. Furthermore, the program is sliced using the 

CSurf tool. The Slices and MISRA C rules measurements will be weighted through 

calculations done and presented using an Excel sheet. 
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4.2 Implementation Models 

The implementation process described the robustness measurement of C program to 

produce the Robustness Grid. The model, Figure 4.1, describe the implementation 

process in high level. 

 

 
Figure 4.1 Implementation High Level model 

 

 

In the Implementation High Level model, Figure 4.1, a C program is the start point of 

the implementation process. The C program will enter the Robustness checker to 

produce the Robustness Grid. 

In the Implementation Intermediate Level, Figure 4.2, expands the Robustness 

Checker in the High Level model and is divided into two main pieces: Slicer and 

Robustness Features Checker. The Slicer is a tool that does the Clause Slicing 

with some related computation such as Clause Slice Size in the Clause Table (see 

3.4.2.1). The Robustness Features checker takes the slicer output as an input, and 

generates the Robustness Grid as an output. 

 

 
Figure 4.2 Implementation Intermediate Level model 
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The Implementation Low Level model, Figure 4.3, has more details of the robustness 

measurement procedure. A legal C program is a C program that meets the program 

selection criteria mentioned in Section 3.1 and is qualified to be certified by the 

Robustness checker. 

 

Figure 4.3 Implementation Low Level model, where Auto means that the part is automatically 

computed and Manual means it is manually computed. 



 

 

79 

The following table describes each entity of the low level model: 
 

Entity Description 

Legal C Program A C program that satisfies “program selection” conditions. 

Slicer A slicing tool. 

Clause Frequency 

Calculator 
Counting the number of times a Clause has been in a slice.  

Slice Size Calculator Counting the number of Clauses in a slice.  

Language Rules MISRA C2 guidelines. 

Selected Rules 
Set of MISRA C2 guidelines that satisfy the “rule selection” 

conditions 

Rule Clause Checker 
A tool that certifies a program’s Clauses using MISRA C2 

guidelines. 

Rule Slice Size 

Calculator 

A calculation that counts the slice size of all Clauses that 

satisfy a rule. 

Rule’s Frequency Number of times a rule was applied. 

Rule Weight 
The importance Rule measurement which is equal to the 

multiplication of Rule Frequency by Rule Slice Size. 

Robustness Grid 
The final table containing all details, calculations, and 

robustness degrees.  

Table 4.1 Low Level Terms 

The in the Implementation process Low Level starts with a Legal C program, where 

it is used as an input for both the Slicer and the Rule Clause Checker. In the Slicer, 

each Clause in the program will be in the slicing criteria. The Slices enter the Clause 

Frequency Calculator and the Slice Size Calculator to produce the Clause Weight. 

Back to the start point, the legal C program will be certified by a selected group of 

Language Rules. The certified Clauses will be combined together in the Rule 

Clauses Checker where it will produce a set of rules that were applied in each 

Clause with their satisfaction status. The outcome of the Rule Clause Checker and 

the output of the Slice Size Calculator will be joined together in the Rule Slice Size 

Calculator to produce the Slice Size for each rule. 
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The Rule Clause Checker will be used in the Rule’s Frequency to find out the times 

a rule is being applied. By multiplying the Rule Slice Size by the Rule’s Frequency, 

the result will be the Rule Weight. All of the previous entities together will construct 

the Robustness Grid. 

4.3 Implementation Tools 

The tools used to implement the Robustness Grid are: 

1. CSurf®: a slicing tool used to produce the Clause Slice for each Clause in a 

program, which helps find a robustness measurement. 

2. MS Excel®: a tool used to do the Function calculations, Program Category 

Degree, and Category Calculations. Also, it is a tool that organises the 

Robustness Grid to show each Function Calculations, and highlight the main 

calculations such as FAC, WPAC, and WPW. 

 4.4 Summary 

The Robustness Grid contains MISRA C2 rules with their Categories, in addition to 

the Function Calculations, the Program Calculations, and the Category Calculations. 

Each one of these parts is created or measured by some tool or technique. 

MISRA C2 rules are provided by the MISRA Organisation that provided these rules 

as C language standards. The Function Calculations are the MISRA C2 rules manual 

measurements for the function and with some help from CSurf for Slices and Weight, 

and MSExcel for doing the calculations. These tools are used to do the Program and 

Category Calculations as well. 

The Implementation process can simply be described as follows: 

1. Each Clause in the program is assessed against all the selected MISRA C2 

rules. 
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2. All selected rules will be put in their categories depending on the Robustness 

Featuring Categorisation method defined in Section 3.2.2.2. 

3. Each rule has the applied status next to it, showing whether it is satisfied, 

violated, or not applicable. 

4. Program Clauses will be sliced to create the Clause Table in Section 3.4.2.1 

(Table 3.4). 

5. MISRA C2 Rules will be applied depending on the Program Clauses. 

6. The Rules will be measured using the Clause Table to Create the Data Table 

in Section 3.4.2.2. 

7. Program Clauses will be grouped by their function. 

8. For each function, the satisfaction status, Slice Size, Frequency, and Weight 

of all rules is listed. 

9. The Robustness Grid calculations are made for each Function (FCD) and 

Category (ACD) in Section 3.5.1.2 (Table 3.12), and for the entire program 

(PCD) Section 3.5.1.1 (Table 3.12). 

10. The Category Calculations are calculated for all rules are made, detailed in 

Section 3.5.2 (Table 3.14). 

11. The Function Calculations, Program Calculations, and Category Calculations 

all together create the Robustness Grid. 
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Chapter Five 

 

Results 

 

5.1 Introduction 

The Robustness Grid measures the Robustness Features for programs written in the 

C language. This chapter will present the result of a case study of the Robustness 

Grid using an example program. The example is a small C program and will be used 

to follow each step of Robustness Grid constructing process. 

5.2 SwapoAdd.c - The C program 

In this case study, the SwapoAdd.c program has been written according to the 

Program Selection Criteria discussed in Section 3.1. 

SwapoAdd.c, see Appendix B, has four functions: main, swap, incr, and one. 

Function one has one parameter and prints it every time a condition is satisfied. 
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Function swap exchanges two pointers. Function incr increments its first parameter 

by the value in its second parameter, and the function main is the main program. 

5.3 SwapoAdd.c Clause Table 

The Clause Table, in Appendix C, shows the program Clause characteristics: Clause 

Number, Slice Size, Clause Frequency, Clause Weight, Function Name, and 

Applicable Rules. In this Table, the first column has the Clause Number. If the Clause 

Number is followed by a star (*), it means this Clause is considered an un-sliceable 

Clause. The SwapoAdd.c program has 60 Clauses, 7 of which are un-sliceable. 

The Slice Size is the number of Clauses in a slice. The Slice Size is produced by 

slicing on the Clause that is listed in the Clause Number column. 

In the SwapoAdd.c program, Clause number 9 has the largest effect as shown in 

Figure 5.1, because it has the largest Slice Size. In the SwapoAdd.c program, Clause 

9 is the definition of the function main (int main ()). The main function has the 

most effect in the program, which is always true because the main function call all 

function in the program, directly and indirectly.  

The second most effective Clause is Clause number 27 (int index) with Slice Size 

value = 17. It is used by different Clauses, and the for loop depends on it because it 

uses it as a variable index, and thus it has more effect than other Clauses. 
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Figure 5.1 SwapoAdd.c Clause Slice Size 

 

Another factor that measures the Clause is Clause Frequency. Clause Frequency is 

the number of times a Clause has been in a slice, including the Clause itself as a 

slice. Clause Frequency measures the use of the Clauses in the program, where the 

Clause with highest frequency is the one most used. Un-sliceable Clauses have a 

Clause Frequency equal to 1, since un-sliceable Clauses are only contained in their 

own slice. 

In Figure 5.2, Clause number 23 has the highest Clause Frequency (15). Clause 23 

is the definition of the variable sum, and this variable is the most used variable in the 

program. Clause 54 has the second largest Clause Frequency with 13, and then 
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each of the Clauses 42, 51, and 59 occur 12 times in a slice. However, Clause 

Frequency always depends on the Frequency of the Clause used. 
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Figure 5.2 SwapoAdd.c Clause Frequency 

 

Clause Frequency and Slice Size are independent. A Clause could have a high value 

for Clause Frequency but a small value for Slice Size, and vice versa. 
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Clause Frequency and Slice Size both generate the Clause Weight. The Clause 

Weight measures the Clause’s importance in the program since it includes the Slice 

Size that measures the Clause effect and Clause Frequency which measures 

number of times the Clause has been used in slices. 

 
Figure 5.3 SwapoAdd.c Clause Weight 

 

If two Clauses are equal in weight, it means that they have the same importance 

level. However, it does not necessarily mean that they are in the same function, 

Clause Frequency, or Slice Size. For example, Clauses 10, 26, 32 and 42 have the 
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same Weight, where Clause 10 is in main, Clause 26 in swap, Clause 32 in one, and 

Clause 42 in incr. Also, Clause 10 has Slice Size = 12 and Clause Frequency = 2, 

and by calculation, the Clause Weight is 122= 24. For Clause 26, the Slice Size = 6, 

Clause Frequency = 4, and thus the Clause Weight is 64= 24. In Clause 32 the 

Slice Size = 3, Clause Frequency = 8, which means the Clause Weight is equal to 

3X8 = 24. Same as in Clause 48 which has Slice Size = 2 and Clause Frequency = 

12 which means the Clause Weight is 212=24. This case is also repeated in other 

Clauses, such as 20 and 25, and in Clauses 18 and 28. 

The Clause Table also shows the rules that were satisfied or violated by each Clause 

in the SwapoAdd.c program. The Clause Table will help the developers and 

maintainers by showing them which Clauses need to be maintained to improve the 

Robustness Degree of the Program. 

5.4 SwapoAdd.c Data Table 

The Data Table, in Appendix D, is the table that shows the rule characteristics: Rule 

Number, Number of Satisfied,  Satisfied Slice, Number of Violated, and  Violated 

Slice. The Data Table is based on the rules, whereas the Clause Table is based on 

the Clauses. In the Data Table, the rule status is measured through the whole 

program, depending on how many times the rule was satisfied or violated and how 

that affected the program. 

The Rule Number column contains the rules that are in the Applicable Rules column 

in the Clause Table. Rules in the Rule Number column are sorted in numerical order 

using their number in the MISRA C2 definition. 

The columns Number of Satisfied and Number of Violated show the number of times 

a rule has been satisfied or violated in the program. 
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Figure 5.4 Rule Frequency 

 

Figure 5.4 shows the Rule Frequency which is equal to the number of times a rule 

been applied and shown as the Category Frequency in the Category Calculation 

table (see Appendix J). Rule 5.1 is the most frequent rule because it considers the 

number of characters in identifiers. Therefore, every time an identifier is mentioned, 

the 5.1 rule is applied. 12 rules have the lowest number frequency with a value of 1.  

The Applied Rules on the SwapoAdd.c program (see Appendix J), the rule may have 

one of these three scenarios: First, the rule is always satisfied in all the times it has 

been applicable, Rule 5.1 as an example. These rules have 0 values in the Number 
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of Violated and  Violated Slice, and the Rule Slice Size and Frequency in the 

Robustness Grid is equal to the Number of Satisfied and  Satisfied Slice. 

Second, Rules that are always violated every time they have been applied in the 

program, such as Rule 19.7. These rules score 0 values in the Number of Satisfied 

and  Satisfied Slice, and the Rule Slice Size and Frequency in the Robustness Grid 

is equal to the Violated Slice Size and Frequency. 

Third, rules that have been satisfied in some Clauses and violated in others such as 

Rule 16.1. The Rule Frequency for these rules will be equal to Number of times a 

rule has been applied (both Satisfied and Violated). Rule Slice Size is the sum of the 

Total Satisfied Slices and the Total Violated Slices. 

Figure 5.5 shows the satisfaction and violation relative relation of all Applicable Rules 

in the SwapoAdd.c Program. 

There are 25 out of 37 rules are satisfied every time they were applied, and 7 out of 

37 rules that are violated all the times they were applied. The remaining 5 rules are 

satisfied and violated in different places in the program. 
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Figure 5.5 Rule Satisfaction/Violation Frequency Comparisons 

 

5.5 SwapoAdd.c Robustness Grid  

5.5.1 Functions Category Degree 

In the Function Calculations, the 37 rules that are applicable will be used to measure 

the four functions in the SwapoAdd.c program.  
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Figure 5.6 Number of Clauses and Applied Rules in each function 

 

Figure 5.6 shows that in the SwapoAdd.c program there is a positive relationship 

between the number of Clauses and the number of rules have been applicable in the 

function. The positive relation may not be the case in another program. The function 

main has the highest number of Clauses and the highest number of Applicable 

Rules. Function incr has the lowest number of Clauses and Applicable rules in the 

program. 

9 rules out of the 37 rules are applied in all the program functions. These rules can 

be used to give a general idea of how the functions have different or similar styles, 

and whether the developer took care of these rules during the program writing or not. 

 5.5.1.1 incr Function 

Function incr has 8 Clauses that make it the function with the smallest number of 

Clauses in the program. 15 out of 37 rules are applicable in the incr function. These 

rules were applied 17 times; 13 times were satisfied and 4 times were violated. 

Therefore, the Function Satisfied Accumulative Categories (FSAC) for the incr 

function = (13/17) %= 76.5%. 
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In Categories 1 and 3, the incr function has 100% Function Category Satisfaction 

Degree (FCSD), which means that the incr function satisfied all Applicable Rules in 

these two categories. However, the incr function fails to satisfy any Applicable Rules 

in Category 6 where the function scores 100% in Function Category Violated Degree 

(FCVD). In Category 2, the incr function satisfies 1 out of 3 Applicable Rules, which 

means the values of FCSD and FCVD are 33.3% and 66.7%, respectively. 

In Categories 4 and 5, the function has no Applicable Rules, which leave the 

Robustness Degree values not applicable or equal to 0 for both of FCSD and FCVD. 

Figure 5.7 shows the number of Applicable Rules in the incr function. It also shows 

the number of times the Applicable Rules have been satisfied and/or violated. Some 

of the Applicable Rules are applied on the program more than once, and this is why 

in some cases the satisfied times are more than the number of Applicable Rules. The 

function incr will be discussed in details in section 5.6.1 as a part of the result 

evaluation. 
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Figure 5.7 Applicable rules for function incr 
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5.5.1.2 swap Function 

Function swap, as shown in Appendix E, has 16 Clauses, 16 rules out of 37 applied 

29 times and they are satisfied 21 times, and violated 8 times, which means that 

FSAC = (21/29) % = 72.41%. 

The swap function fails to have 100% FCSD in any of the 6 Categories. Moreover, 

the swap function has 100% FCVD in Categories 2 and 6. This does not affect the 

satisfaction degree since the most applicable rules are applied in the remaining 

Categories. In Category 1, the swap function satisfies 7 out of 9 applicable rules, 

which means that the values of FCSD and FCVD are 77.78% and 22.22%, 

respectively. The satisfaction percentage rises in Category 3 to 87.50% where the 

rules are satisfied 14 times out of the 16 times they were applied. 

For Categories 4 and 5, the function has no Applicable Rules, and this leaves the 

Robustness Degree values equal to 0 for both of FCSD and FCVD. 
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Figure 5.8 Applicable rules for function swap 

 

Figure 5.8 shows the Applicable Rules in the swap function. 

The full Function Calculation Table of function swap is shown in Appendix E. 
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5.5.1.3 one Function 

Function one, as shown in Appendix F, has 9 Clauses, 16 rules out of 37 have 

measured the Robustness Degree and these rules have been applied 19 times; 16 

times they have been satisfied and 3 times they have been violated, which mean the 

FSAC = (16/19) % = 84.21%. 

In Category 2, the one function has 100% Function Category Satisfaction Degree 

(FCSD), and in Categories 1 and 3, the function score a high robustness degree; 

75% and 92.3%, respectively. However, the one function fails to satisfy any 

Applicable Rules in Category 6 where the function scores 100% in Function Category 

Violated Degree (FCVD). 

In Categories 4 and 5, the function has no Applicable Rules and this leaves the 

Degree values equal to 0 for both FCSD and FCVD. 
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Figure 5.9 Applicable rule for function one 

 

Figure 5.9 shows the Applicable Rules in the one function. In function one, Category 

3 has the most number of Applicable Rules, which makes Category 3 have a 
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significant effect on the final FAC value of the function.  The full Function Calculation 

Table of the one function is shown in Appendix F. 

5.5.1.4 main Function  

The function main is the function that is the entry point of the program calls all other 

functions in the program. With 27 Clauses, as shown in Appendix G, function main 

has the largest number of Clauses. 31 out of 37 rules have been identified as 

contributing to the Robustness Degree of the function main. These rules have been 

applied 63 times; 50 times they have been satisfied and 12 times they have been 

violated, which mean the FSAC = (50/63) % = 79.37%. 

For Categories 4 and 5, function main has 100% Function Category Satisfaction 

Degree (FCSD). Since the rules only apply once in these categories and they have 

all been satisfied, the number of Applicable Rules is equal to the number of times a 

rule is satisfied. Figure 5.10 shows the Applicable Rules in function main. It shows 

that the Category 2 has the most number of Applicable Rules in function main, which 

makes it the most effective category in the final FAC of function main. 
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Figure 5.10 Applicable rule for function main 
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Function main has a high degree in Category 2 with 95%, where Categories 1, 3, and 

6 score 80%, 78.57%, and 75%, respectively. The full Function Calculation Table of 

function main is shown in Appendix G. 

5.5.2 Program Category Degree 

Accumulative Category (AC) shows the function and the program behaviour through 

the Language Features Categories. It also gives the Robustness Degree of each 

function in all categories for the Function Accumulative Category (FAC). Figure 5.11 

shows the FSAC for each function of the program, and the Whole Program Degree 

(WPD). 
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Figure 5.11 Function Satisfaction Accumolative Degree 

 

Figure 5.11, shows that the swap function has the lowest Robustness Degree with 

FSAC = 72.41%, and it is the function that least satisfies the Language Features. 

The one function has the highest value with FSAC = 84.21%. As noticed, all 

functions’ FSAC values are close to each other. This reflects on the Whole Program 
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Satisfied Degree (WPSD) value, which is equal to 81.25% and is almost in the middle 

between the highest and lowest Robustness Degrees scored by each function. 

Program Category Degree (PCD) is the part of Robustness Grid that shows the 

Robustness measurement for all functions in the program. In Figure 5.12, the graph 

compares the Program Satisfied Category Degree (PSCD) with the Program Violated 

Category Degree (PVCD). It shows that all rules in Categories 4 and 5 are satisfied. 

In Categories 1, 2, and 3, the PSCD has a larger Robustness Degrees over the 

PVCD for the same categories. However, in Category 6, the PVCD has a slightly 

larger value over the PSCD, since there are more rules that have been violated than 

satisfied. 

Since all functions have a good Robustness Degree, the whole program has 81.25% 

as a Robustness Degree value. 
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Figure 5.12 Comparison between PSCD and PVCD 

 

5.5.3 Category Calculations 

In Category Calculations, the Language Features characteristics: Category  Slice 

Size, Category Frequency, and Rule Category Weight are used to identify the 
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Language Feature importance and the effect in the program. Figure 5.13 shows the 

Rule Category Weight that has been used to measure the SwapoAdd.c program and 

its functions. 
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Figure 5.13 Rule Category Weight 

 

It is noticeable that there are several rules that have small Weight values. Therefore, 

the change in these rules satisfaction status will not significantly affect the 

Robustness Degree. On the other hand, the rules with high Rule Category Weight 

values are the ones that affect the overall Robustness Degree. For example, Rule 

5.1 will significantly affect the Robustness Degree if it is changed from being satisfied 

all the time to become violated. In such a case, the Robustness Degree will be 
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dropped to 71.09%. The Category Calculations give an indication as to which parts of 

the codes should be maintained first to raise the Robustness. 
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Figure 5.14 Satisfied/ Violated rules Weights 

 

In Figure 5.14, the rules Satisfied and Violated Weight are shown. This Figure can 

help the maintainer to determine which rules should have the highest priority in the 

maintenance process. In the SwapoAdd.c program, Rule 19.7 (Category 6) comes 

first, since it has the largest Violated Weight, and then Rules 16.5, 16.1, and 8.1. 
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5.6 Results Analysis 

In this section, an example of a function in the SwapoAdd.c program is shown to 

clarify how calculations are made. The critical issues will be pointed out, and the 

SwapoAdd.c program results will be explained.  

5.6.1 Function incr as an example 

In this section, the Robustness Grid will be built, step by step, for the incr function. 

The incr function has been chosen because it is the function with the smallest 

number of Clauses which make it an easy function to be used to explain the 

Robustness Grid construction steps. 

Function incr has 8 Clauses, the Clauses and their numbers are as follows: 

 

void incr(int *num, int i);6 

incr18(&sum19, i20); }  

void incr39(int *num40, int i41) { 

*num = *num + i;}42 

 

Each one of the Clauses and its number were used as the Slicing Criteria of the 

Clause Slice. The following Table 5.1 shows each one of these Clauses with its slice, 

where the Clauses and its slices are underlined. 

In Table 5.1, Clause 6 is an un-sliceable Clause, so its slice is the clause itself. In the 

Clause Table for the function incr, the Clauses are measured against the MISRA C2 

rules, and weighted using their Slice Sizes and Clause Frequency. Table 5.2 shows 

the Clause Table for Function incr. 
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The Clause The Slice 

void incr(int *num, int i);6 void incr(int *num, int i);6 

incr18(&sum19, i20);}  

 

incr18(&sum19, i20); }  

printf("sum = %d\n", sum23); 

void incr39(int *num40, int i41) 
{ 

*num = *num + i;}42 

incr18(&sum19, i20); }  

 

incr18(&sum19, i20); }  

printf("sum = %d\n", sum23); 

void incr39(int *num40, int i41) 
{ 

*num = *num + i;}42 

incr18(&sum19, i20); }  

 

incr18(&sum19, i20); }  

printf("sum = %d\n", sum23); 

void incr39(int *num40, int i41) 
{ 

*num = *num + i;}42 

void incr39(int *num40, int i41) 
{ 

 

printf("sum = %d\n", sum23); 

void incr39(int *num40, int i41) 
{ 

*num = *num + i;}42 

void incr39(int *num40, int i41) 
{ 

 

printf("sum = %d\n", sum23); 

void incr39(int *num40, int i41) 
{ 

*num = *num + i;}42 

void incr39(int *num40, int i41) 
{ 

 

printf("sum = %d\n", sum23); 

void incr39(int *num40, int i41) 
{ 

*num = *num + i;}42 

*num = *num + i;}42 printf("sum = %d\n", sum23); 

*num = *num + i;}42 

Table 5.1 incr Clauses slices 

The Clauses Weight range in the incr function is between 16 and 48, except for 

Clause 6, which has the lowest weight value equal to 1 and that because it is an un-

sliceable Clause. 
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Clause 
Number 

Slice 
Size 

Clause 
Frequency 

Clause 
Weight 

Function 
Name 

Applicable Rules 

Satisfied Violated 

6* 1 1 1 incr 16.3, 16.4, 16.1 19.7 

18 8 6 48 incr 16.2, 16.9 13.6 

19 4 5 20 incr 0 0 

20 4 4 16 incr 0 0 

39 5 7 35 incr 8.1, 8.2, 8.6 14.7 

40 3 10 30 incr 5.1, 8.3 0 

41 3 10 30 incr 5.1, 8.3 0 

42 2 12 24 incr 12.2 17.1, 17.4 

* Un-sliceable Clause 
Table 5.2 Clause Table for incr 

 

The Data Table of the incr function is constructed using all the functions’ Clause 

Tables, since the Data Table is related to the MISRA C rules which have been 

applicable in other program functions and their values are affected by them. Table 

5.3 shows the Data Table of the Rules that have been applicable in the incr function. 

The Data Table of all the rules applicable in the program is given in Appendix D. 

Rule Number Number of Satisfied ∑Satisfied Slices Number of Violated ∑Violated Slices 

5.1 13 79 0 0 

8.1 3 23 1 53 

8.2 4 76 0 0 

8.3 5 19 0 0 

8.6 4 75 0 0 

12.2 3 3 0 0 

14.7 2 59 2 17 

16.1 4 56 4 10 

16.2 9 63 0 0 

16.3 3 3 0 0 

16.4 3 3 0 0 

16.9 8 48 0 0 

17.1 0 0 1 2 

17.4 2 2 1 2 

19.7 0 0 4 56 
Table 5.3 Data Table of Applicable Rules in the incr Function  

The incr Function Calculations, Table 5.4, use the Data Table, which provides the 

Satisfied and Violated Frequency and the Slice Size. The rest of the calculations are 
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derived from the Slice Size and the Clause Frequency. However, the Function 

Category Degree (FCD) is calculated using the Applied Rules column. 

The Category Calculations depend on the Applicable Rules in the program and it can 

measure the Applicable Rules in a function. However, the Category Calculations do 

not measure the number of times the rules have been applicable in the function. This 

kind of measurement is made in the Function Calculations. 

The overall FAC value of the function incr is 76.47% of applied rules have been 

satisfied and 23.53% have been violated. 

In the incr Function, Rules 5.1 and 8.3 have the largest values in the Applied Rules, 

Satisfied, and Satisfied Slice Sizes in Table 5.4 columns. On the other hand, the 

function has some rules with low values such as rules 16.3, 16.4, and 17.1. Rule 14.7 

has the largest value in Violated Slice Sizes and Violated Weight columns for incr 

function.  
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Categories 
Rule 
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FCSD 
% 

FCVD 
% 

Category 1 

4.1 + 7.1 0 0 0 0 0 0 0 0 

2/2 = 
100% 

0/2=0% 

4.2 0 0 0 0 0 0 0 0 

5.1 +2 6 12 0 0 2 6 12 

5.2 0 0 0 0 0 0 0 0 

6.1 0 0 0 0 0 0 0 0 

AC 5 1 6 12 0 0 2 6 12 
2/2 = 
100% 

0/2=0% 

Category 2 

12.2 +1 1 1 0 0 1 1 1 

1/3 = 
33.3% 

2/3 = 
66.7 

12.3 0 0 0 0 0 0 0 0 

13.4 0 0 0 0 0 0 0 0 

13.5 0 0 0 0 0 0 0 0 

13.6 0 0 0 0 0 0 0 0 

14.7 -1 0 0 5 5 1 5 5 

17.1 -1 0 0 2 2 1 2 2 

17.5 0 0 0 0 0 0 0 0 

AC 1-2 13 4 8 14 7 7 5 14 20 
3/5 = 
60% 

3/5 = 
60% 

Category 3 

8.1 +1 5 5 0 0 5 5 5 

10/10 = 
100% 

0/10 = 
0% 

8.2 +1 5 5 0 0 5 5 5 

8.3 +2 6 12 0 0 6 6 12 

8.6 +1 5 5 0 0 5 5 5 

14.8 0 0 0 0 0 0 0 0 

16.1 +1 1 1 0 0 1 1 1 

16.2 +1 8 8 0 0 8 8 8 

16.3 +1 1 1 0 0 1 1 1 

16.4 +1 1 1 0 0 1 1 1 

16.5 0 0 0 0 0 0 0 0 

16.8 0 0 0 0 0 0 0 0 

16.9 +1 8 8 0 0 8 8 8 

AC 1-3 25 13 40 60 7 7 45 54 66 
13/15 = 
86.7% 

2/15 = 
13.3% 

Category 4 
8.12 0 0 0 0 0 0 0 0 

0 0 
9.2 0 0 0 0 0 0 0 0 

AC 1-4 27 13 40 60 7 7 45 54 66 
13/15 = 
86.7% 

2/15 = 
13.3% 

Category 5 

19.6 0 0 0 0 0 0 0 0 

0 0 20.2 0 0 0 0 0 0 0 0 

20.9 0 0 0 0 0 0 0 0 

AC 1-5 30 13 40 60 7 7 45 54 66 
13/15 = 
86.7% 

2/15 = 
13.3% 

Category 6 

6.3 0 0 0 0 0 0 0 0 

0/2 = 
0% 

2/2 = 
100% 

11.3 0 0 0 0 0 0 0 0 

12.1 0 0 0 0 0 0 0 0 

17.4 -1 0 0 2 2 1 2 2 

19.1 0 0 0 0 0 0 0 0 

19.2 0 0 0 0 0 0 0 0 

19.7 -1 0 0 1 1 1 1 1 

FAC 37 15 40 60 10 10 47 57 69 
13/17 = 
76.47% 

4/17 = 
23.53% 

Table 5.4 incr Function Calculations 
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Table 5.5 shows the rules applicable in the incr function and their overall Category 

Calculations. Table 5.5 also shows that the incr Function has applied the most 

important applicable rule in the program, which has the biggest Weight Value among 

all other rules; Rule 5.1. 

For the Function Calculations, Rule 5.1 has been applied and satisfied twice in the 

function. Moreover, almost half of the incr function applied rules are in mid-level 

weight values compare with all other rules, which lead to the conclusion that the incr 

function has a medium level of importance. 
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5.1 13 79 1027 0 0 0 13 79 1027 

12.2 3 3 9 0 0 0 3 3 9 

14.7 2 59 118 2 17 34 4 76 304 

17.1 0 0 0 1 2 2 1 2 2 

8.1 3 23 69 1 53 35 4 76 304 

8.2 4 76 304 0 0 0 4 76 304 

8.3 5 19 95 0 0 0 5 19 95 

8.6 4 75 300 0 0 0 4 75 300 

16.1 4 56 224 4 10 40 8 66 528 

16.2 9 63 567 0 0 0 9 63 567 

16.3 3 3 9 0 0 0 3 3 9 

16.4 3 3 9 0 0 0 3 3 9 

16.9 8 48 384 0 0 0 8 48 384 

17.4 2 2 4 1 2 2 3 4 12 

19.7 0 0 0 4 56 224 4 56 224 

SUM 73 509 3119 13 138 337 76 649 4078 

Table 5.5 incr function Category Calculations 
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5.6.2 SwapoAdd.c Functions’ behaviour 

Robustness Grid presents the different functions evaluations. Table 5.6 shows a 

comparison between the SwapoAdd.c functions. 

Table 5.6 Comparison between SwapoAdd.c functions 

 

Furthermore, it shows that the function main is the most important function in the 

program, since it has the biggest values mainly in the Function Weight. 

Furthermore, the comparison shows that the Number for Clauses of a function has 

no relation with the Number Applied Rules for the same function. For example, the 

functions one and swap have 16 and 9 Clauses, respectively. However, they are 

equal in the number of Applied Rules. In addition, the number of Applied Rules has a 

minor effect on the Rule Function Weight. For the same functions, swap and one, the 

Rule Function Weight is significantly different although they have the same number 

of Applied Rules. On the other hand, Slice Size and Total Rule Frequency for a 

function are both the direct factors that produce the total Rules Function Weight, 

where the Function in the Category Calculation uses them for all Functions. It is for 

this reason which explains the difference between Function Weight in the Rule 

Function Factors           Function Name incr swap one main 

Number of Clauses 8 16 9 27 

Applied Rules 15 16 16 31 

Total Rule Frequency 17 29 19 63 

FAC 76.5% 72.41% 84.21% 79.37% 

Total Rules Function Weight using 

Function Calculations 
69 414 88 2040 

Function Weight using Category 

Calculations 
4078 4193 4191 5202 
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Function Weight using Function Calculations or using the Category Calculations. The 

main function scores the highest weight, where as the incr function scores the lowest. 

As a conclusion, it is not how many rules have been applied in the function, but 

indeed it is which rules have been applied on the function that indicates the function 

effect and importance. 

5.7 Summary 

This chapter has presented the Robustness Grid measurement of the SwapoAdd.c 

program, where the program has 81.25% as the Robustness Degree scored in 

Program Satisfied Category Degree (PSCD), and the Whole Program Weight (WPW) 

is 5366. 

The Clause Table measures each clause in the program. It shows that Clause 

number 9 has the highest Weight value. The un-sliceable clauses have scored the 

lowest Weight and this is as expected since they have no slice but themselves, and 

they have not been in any other slice. 

The Data Table measures the satisfaction status, and the number of times a rule has 

been applicable in the program. Rule number 5.1 has the highest number of times it 

has being applicable and satisfied. It also has the highest Satisfied Slice Size. On the 

other hand, there are some rules that measure only un-sliceable one clause. They 

scored low numbers of satisfaction times and Slice Size. Rule 5.1 is the Applicable 

Rule that has been satisfied the most, where 16.1 and 19.7 are the most violated 

rules. 

The Robustness Grid is built step by step, where the Clauses are measured first, 

then the rules, then the Functions’ Calculations is constructed. These steps only 

measure individual pieces of the program. Therefore, to produce the full Robustness 

Grid, these small measurements are accumulated by other Calculations: AC, FAC, 
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PCD, and Category Calculations. These calculations measure the program as one 

piece and from different points of view. 

Table 5.7 shows a Managerial-View of the Robustness Grid, where only a summary 

of the main Robustness Degrees are presented. The Managerial-View Table is very 

useful to help the developer where it shows the function with its weight and 

Robustness Degrees which indicates the functions priority to be maintained to get a 

higher Robustness Degree. The function with high weight and lowest Robustness 

Degree is the Function that must be maintained first because it will have a significant 

effect on the rest of the program. The developer has the chose to either give the 

priority to the Function Rules Weight or to the Category Weight to put the 

maintenance plan. In Table 5.7 the function swap has been chosen to be maintained 

since it has the lowest Robustness Degree, with quite high Function Weight value. 

Category 6 has a low Robustness Degree but a low Category Weight Value, which 

has a lower effect than the swap function.  

Rule 
Categories 

incr swap one main PCD Category 
Weight FCSD FCSD FCSD FCSD PCSD 

Category 1 
2/2 = 
100% 

7/9 = 
77.78% 

3/4 = 75% 
12/15 = 

80% 
24/30 = 

80% 
1154 

Category 2 
1/3 = 

33.3% 
0/1 = 0% 

1/1 = 
100% 

19/20 = 
95% 

21/25 = 
84% 

1332 

Category 3 
10/10 = 
100% 

14/16 = 
87.5% 

12/13 = 
92.3% 

11/14 = 
78.57% 

47/53 = 
88.68% 

2613 

Category 4 N/A N/A N/A 
2/2 = 
100% 

2/2 = 
100% 

8 

Category 5 N/A N/A N/A 
4/4 = 
100% 

4/4 = 
100% 

6 

Category 6 0/2 = 0% 0/3 = 0% 0/1 = 0% 6/8 = 75% 
6/14 = 
43% 

253 

FAC 
13/17 = 
76.47% 

21/29 = 
72.41% 

16/19 = 
84.21% 

50/63 = 
79.37% 

104/128 
= 

81.25% 

WPW = 
5366 

Function 
Rules 

Weight / 
All Rules 
Weight 

4078/5366 
= 76% 

4193/5366 
= 78.14% 

4191/5366 
= 78.10% 

5202/5366 
= 96.94% 

Table 5.7 Managerial-View for SwapoAdd.c Robustness Grid 
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Chapter Six 

 

Evaluation 

 

6.1 Introduction 

The Robustness Grid uses static analysis techniques to measure the Robustness 

Degree for C programs using MISRA C2 language rules. In this section, the 

Robustness Grid will be evaluated and compared with other techniques using the 

SwapoAdd.c measurement results. 

6.2 Evaluation of the Robustness Grid 

The Robustness Grid, as a program robustness measurement technique, succeeds 

by introducing the defect and dangerous code clauses that may cause a problem 

during program execution. The Robustness Grid consists of two tables: Clause Table 

and Data Table. The Clause Table highlights each clause with its characteristics 

such as: the clause effect, importance, and the rules that were violated or satisfied. 
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The Clause Table identifies the most effective clause by addressing the size of the 

Clause Slice.  

In the Clause Table, which is one of Robustness Grid components, the Clauses of 

the program code are measured with their characteristics: the Slice Size, Clause 

Frequency, and Clause Weight. The clause information will make it easier to identify 

the most effective clause, and also the most important clause with the most effect in 

the program. The Clause Table also shows the MISRA C2 rules that were satisfied or 

violated by each clause of the program, which make it quite simple to see how each 

clause needs to be modified to make it more robust. Clause Slice is used to weight 

each code clause and MISRA C2 rule individually. It gives the developers and 

maintainers an indication of what they need to look at to increase the program 

robustness. 

Furthermore, the Data Table, another part of Robustness Grid components, shows 

the measurement of each MISRA C2 rule. Each rule is measured depending on the 

number of times of satisfaction and violation, and the rules are weighted depending 

on the clause that applied the rules, where the rule that measures many clauses or 

important ones will be an important rule. The Data Table shows the rule importance 

for the program robustness and shows the rules with high effect on the Robustness 

Degree of the program, which make it easy to identify the defective rules that need to 

be maintained. 

The Clauses are grouped together in the Robustness Grid to show the rules applied, 

the clauses’ importance, and Robustness Degree of each function in the program 

presented as percentage. The function presentation, in the Function Calculation 

Table, shows the function with the most/least Robustness Degree, and the functions 

with large weights and the one with the most effect on the whole program 

Robustness Degree. 
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The Applied Rules make the developer check whether all the code lines were 

checked using the rules that the developer really wants, and see whether the code 

satisfied the rules or violated them. Because all rules categorised and rules in a 

category share the same theme. The category which highly violated shows the weak 

areas of programming. For example if Category 3 has the least satisfied Robustness 

Degree, then the developer should take care of the function’s structure programming. 

The Robustness Grid only uses 100 out of the 142 MISRA C2 rules, which is only 

around 70% of all rules. In addition, Robustness Grid interprets the MISRA C2 rules 

in different way that is used in other techniques, for example; in the Robustness Grid 

the library functions such as printf is considered as any other function. In such as 

case, the printf, and scanf functions are not robust. Still in the Robustness Grid, all C 

code standard libraries are entirely robust. 

The Robustness Grid cannot be used to compare the Robustness Degrees of two 

functions or two programs. Each program applies different rules and has different 

code, which leads to incomparable slices and weights.  

The Robustness Grid ignores the compiler warnings. The compiler warnings may be 

caused because of the violation of other MISRA C2 rules that are not included in the 

Robustness Grid measurement. However, the compiler warnings may be different for 

different compilers. Initially, the Robustness Grid only uses the gcc compiler, and that 

makes it more necessary to find a way to measure these warnings and identify the 

list of active and inactive warnings for the program for gcc or any other compiler 

used. 

The robustness measurement results in the Robustness Grid give all levels of details, 

starting with the clauses or rules, leading to an abstract results report called 

Managerial-View. This report can give different types of results’ presentation 

regarding the scope of focus; Functions, Categories, or Rules point of view. 
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6.3 SwapoAdd.c Evaluation 

The Robustness Grid Managerial-View, Table 5.7 as an example, shows different 

numbers and scales that have different meanings. The Managerial-View shows, for 

each function in SwapoAdd.c, the number of rules that were applied and satisfied, 

and the percentage relations between them. 

In the Managerial-View, the percentages show that the most important function in the 

SwapoAdd.c is the function main, as it has the largest weight and its slices contain 

96.94% of all program clauses. Then, functions swap and one came in the second 

and third positions with very close percentages; 78.14% and 78.10%, respectively. 

Even though function one has 5 clauses less than swap, the importance of both 

function is almost similar. The reason is that the Clauses’ Slice Sizes of function one 

is larger than the swap function clauses, and also function one has applied the same 

number of rules as the function swap, with slightly different types of rules, but almost 

have the same importance. 

Even though incr is the least important function in the program, it is still important 

since its slices contain 76.47% of the program clauses. 

Not all categories have rules applied in all functions. Categories 4 and 5 have only 

rules applied on function main since the function main is the only function that has 

code that is measured by all categories. 

The categories of the Robustness Grid are shown in the Managerial-View with a 

percentage for the satisfaction degree of each function in each one of them. 

Furthermore, the Managerial-View shows the weight of each category. The Function 

Weight and the Category Weight is the scale used to rank the importance of each 

category in the program. Category 3 is the most important category in the program 

since it applied the largest number of rules and has the largest weight. Category 3 
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contains the rules that consider the function’s structure, and the functions are taking 

a big share of the program, so the Robustness Grid is a quite reflective scale. 

Regarding to the Managerial-View, the Category 2 is more important than Category 

1; even though it has a smaller number of Applied Rules. This is because Category 2 

has applied more important rules and has more effect in the program than Category 

1. In SwapoAdd.c, Category 2 has the rules that consider the control statements, 

which has effect on the program more than the type definition and arithmetic 

statements that measured by Category 1. Categories 4 and 5 are only applied in the 

function main 2 and 4 times respectively, which lead to make them the least effective 

and importance in the Robustness Grid Calculations. 

6.4 Robustness Measurement using other techniques 

The SwapoAdd.c Robustness Degree was measured by two different techniques that 

use MISRA C2 rules: LDRA TBmisra and FlexeLint in addition to the Robustness 

Grid. The Robustness measurement results by LDRA TBmisra and FlexeLint were 

different from the Robustness Grid. However, Klocwork Truepath is a tool that uses 

MISRA C2 as well but it was not accessible to measure the SwapoAdd.c. Klocwork 

Truepath is compared with other tools: Robustness Grid, LDRA TBmisra, and 

FlexeLint regarding to the measurement principles and procedure. 

Moreover, Gallagher and Fulton (Gallagher and Fulton 1999) tried to estimate the 

program robustness using a fault injection technique employing program slicing. 

Their measurement was also compared to the Robustness Grid. 

In this section, the different techniques and their results will be presented and used to 

evaluate the Robustness Grid. 
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6.4.1 LDRA TBmisra 

In the LDRA evaluation, TBmisra (LDRA 2012) was used to evaluate the program 

against MISRA C2 rules. TBmisra uses all the 147 MISRA C2 rules to measure the 

Robustness Degree. Even TBmisra shows which rules have been violated; it does 

not show which of the 147 rules were applied and which were not. Furthermore, the 

results from TBmisra did not show the effect of these violations on the rest of the 

program. Therefore, all rules in the LDRA evaluation have the same weight, and the 

results do not identify the rule that has a major or minor bad effect on program 

robustness. 

In the LDRA TBmisra evaluation results of the SwapoAdd.c program; see Appendix 

M, 9 MISRA C2 rules were violated at least once, which is less than what was 

violated in Robustness Grid, where 12 rules were violated. However in the LDRA 

evaluation, the number of times the rules were violated is 33 times, which is larger 

than what is in the Robustness Grid with 24 times. 

In the Robustness Grid Clause Table and LDRA TBvision, the developer can access 

to the code and see for each clause or line in TBvision which rules were violated. The 

satisfied rules can also be seen in the Clause Table. 

A high level of MISRA C2 evaluation results are displayed differently by both of 

LDRA TBvisoin and the Robustness Grid. LDRA TBvisoin shows the rules that were 

violated and how many times they were violated. In the Managerial-View, see page 

111, which is a summary of the Robustness Grid, the number of violated and 

satisfied rules are shown with the percentage of the Robustness Degree of each 

Function and Category in the program. 

The LDRA TBmisra evaluation results show that Rule 6.3 is the most violated rule, 

with 17 times, which means that the most violated rule in the SwapoAdd.c program 

was the advisory rule number 6.3. On the other hand, this was the only rule that the 
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Robustness Grid and LDRA TBmisra agreed that it was violated, but it was violated 

only once according to the Robustness Grid. Since the LDRA evaluation has 

included all the MISRA C2 rules, unlike the Robustness Grid, which has Rule 21.1 

that was violated but it is outside the scope of the Robustness Grid. 

The LDRA TBmisra evaluation and the Robustness Grid have a disagreement on the 

violation of three rules, where they have been addressed as violated rules by LDRA, 

and satisfied by Robustness Grid. These rules are: 9.2, 20.9, and 4.2. Furthermore, 

the Robustness Grid has identified 11 rules that were violated where LDRA did not. 

This disagreement is understandable since the rules are written in plain English 

language, which leads to different interpretations and different results. However, this 

misunderstanding could be harmful, and the MISRA C2 rules could lose their value 

as standard rules, since the aim of standards is to identify one possible way to write 

and understand the code. 

In SwapoAdd.c, the LDRA TBmisra evaluation results show that 8 Mandatory Rules 

and 25 Optional Rules were violated and no Checking Rules were reported.  

The Static and Dynamic analyses are not fully covered by the Robustness Grid or 

MISRA C2, so the LDRA created their own set of rules (800 rules) that examine 

MISRA C2 rules in details in addition to Static and Dynamic analysis. In SwapoAdd.c, 

an evaluation report made by LDRA TBmisra indicates that the program has 22 

Static violation, 3 Static Dataflows, and 8 Full Variable Cross Reference violations. 

These violations were not fully discovered by the MISRA C2 rules. The LDRA rules 

reported 2 Static Mandatory violations that were not caught by MISRA C2. These 

violations are about the use of pointer arithmetic. In the Robustness Grid, the static 

analysis is done by the MISRA C2 rules for the program code producing Rule 

Satisfaction Status, where the Dynamic analysis is made by the Clause Slicing 

technique producing the Clauses and Rule Slice Size and Weight.  
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LDRA TBmisra presents the results in a file where each line of code is followed by a 

line of the type of violation, where the violation line as follows: 

(M, C, or O) <Analysis violation>: #LDRA rule (symbol of analysis 

violation): <MISRA C2 violated rule> <error details>  

One of the assumptions that the program should have, before being measured by the 

Robustness Grid, is that the program was programmed following the ISO 1990 C 

standards. The LDRA Testbed evaluated the SwapoAdd.c against ISO 1990 C 

language standards. The measurement returned some errors and warnings 

addressed in Appendix O. However, the gcc compiler compiled the program with only 

warnings. Since the compiler warnings are ignored, the SwapoAdd.c program was 

accepted to be measured by the Robustness Grid.  

In addition to LDRA TBmisra and TBvision, LDRA introduced a compiler called 

TenDRA. TenDRA compiled the SwapoAdd.c program using ISO: C90 standards 

and reported 5 errors and 9 warnings, though it was compiled by gcc and reported 

only 5 warnings. ISO: C90 is used to produce MISRA C2 rules and the program is 

supposed to be written according to them. 

6.4.2 FlexeLint 

The FlexeLint measured the SwapoAdd.c program using MISRA C2 rules according 

to their interpretation. FlexeLint is similar to LDRA TBmisra, where both of them did 

not show which rules were applied or satisfied and only showed the ones that were 

violated. FlexeLint only applies static analysis on the assessment, since they applied 

only a static rule to evaluate the program robustness. 

According to the FlexeLint measurement, shown in Appendix N, SwapoAdd.c 

violated 8 MISRA C2 rules a total of 44 times which is higher than LDRA and 33 

times and Robustness Grid with 28. This is predictable because FlexeLint does not 

use any compiler and have any rule violated defined by gcc in the Robustness Grid 
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are also include. Only one of these 8 violated rules was an advisory rule: 6.3. The 

rest, the required rules, belong to a different set of MISRA C2 rules (1.2, 4.2, 8.4, 

10.2, 12.13, 14.13, and 16.10). The 6.3 rule was violated 16 times, which make it the 

most violated rule in the FlexeLint analysis. Although it is also the most violated rule 

from LDRA TBmisra, the Robustness Grid reported that it was violated once. 

Rule 1.2 was violated 11 times, which make it the most violated rule among the 

required rules. However, the Robustness Grid did not include this rule. Furthermore, 

the LDRA evaluation did not mention this rule as one of the violated rules. As 

mentioned before, it is not shown in the LDRA evaluation whether Rule 1.2 was used 

to evaluate SwapoAdd.c or not, because if it was applied then it must be satisfied. 

The FlexeLint, LDRA TBmisra and the Robustness Grid agreed on two MISRA C2 

rules: 6.3 and 4.2. However, they disagreed on the number of times 6.3 was violated 

and the satisfaction status of 4.2. In the Robustness Grid, rule 6.3 was violated once, 

where in FlexeLint and LDRA TBmisra it was violated 16 and 17 times respectively. 

Rule 4.2 was satisfied 5 times in the Robustness Grid and was violated once in 

FlexeLint and LDRA TBmisra. 

Moreover, FlexeLint reported 2 rules: 10.2 and 12.13 that were violated in 

SwapoAdd.c but not included in the Robustness Grid. On the other hand, 12 rules 

were violated in the SwapoAdd.c according to the Robustness Grid but not included 

in the FlexeLint results. 

Since the FlexeLint was using all 142 MISRA C2 rules and did not use a compiler, 4 

rules were violated that are out of the Robustness Grid rules scope (see Robustness 

Language Features Conditions in Section 3.2.2.1). The FlexeLint measurement 

report showed the MISRA C2 violated rules’ number and type, not as the results as in 

LDRA TBmisra report. 
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In the SwapoAdd.c results, only Syntax Errors, Warnings, Informational, and Elective 

Notes are shown. The FlexeLint also showed a Wrap-up which is a summary for 

each module (any .c file) in the program and it shows the errors in that module. In 

addition, FlexeLint shows a Global Warp-up that contains the main rules that were 

violated by the program, and the completion status; whether successful or failed and 

the number of messages produced for all modules. In SwapoAdd.c, the completion 

was successful and 57 messages were produced.  

In the FlexeLint results, it reported that the violation of some rules that cause 

compiler time errors since it does not use a compiler in the assessment process. For 

the same reason, it can assess a part of the program code, the same as LDRA 

TBmisra, where as the Robustness Grid cannot. It also provides a summary at the 

end of the results report, but FlexeLint only gives a summary for each file of the 

program, not for each function as in LDRA TBvision or each Function and Rule as in 

the Robustness Grid. However, neither LDRA TBmisra nor FlexeLint produced a 

numerical measurement for the program Robustness Degree, nor presented the 

program Robustness Degree as a scale or a percentage as in the Robustness Grid. 

The FlexeLint results report presents the line of code and then the violated FlexeLint 

rules followed by each equivalent MISRA C2 rule and its type; whether it is required 

or advisory. The line is as follows: 

The code line 

Module name:  code line number: column number: FlexeLint rule type and 

number: error text [MISRA C2 rule number, required/advisory] 

Here is an example: 

void swap(int *a, int *b); 

SwapoAdd.c:7:14: Note 970: Use of modifier or type 'int' outside of 

a typedef [MISRA 2004 Rule 6.3, advisory] 

The difference in the results for the SwapoAdd.c robustness measurement for the 

Robustness Grid and other tools is due to the different interpretation and application 
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of the MISRA C2 rules. Table 6.1 shows a comparison between the robustness 

measurement results of the Robustness Grid, LDRA TBmisra, and FlexeLint for the 

SwapoAdd.c robustness measurement. 

In SwapoAdd.c measurement 

 
Robustness 

Grid 
LDRA 

TBmisra 
FlexeLint 

MISRA C2 rules used to evaluate the 
program 

100 rules All (142) All (142) 

MISRA C2 rules applied in the program 37 Not given Not given 

Number of rules Satisfied in the entire 
program 

25 Not given Not given 

Number of rules violated at least once 12  9  8  

Number of times the rules were violated 24 33  44  

The most satisfied rule(s) 
5.1,  

(13 times) 
Not given Not given 

The most violated rule(s) 
16.1, 19.7 
(4 times) 

6.3  
(17 times) 

6.3  
(16 times) 

Rules applied and outside Robustness 
Grid Scope 

None 21.1 
1.2, 8.4, 

16.10, 14.3 

Rules in the tool measurement but not in 
Robustness Grid 

None 
8.7, 20.8, 
20.12, 5.7 

10.2, 12.13 

Rules violated in the tool measurement 
but not in Robustness Grid 

None 
9.2, 20.9, 

4.2 
10.2, 12.13 

Table 6.1 Comparison between the Robustness Grid, LDRA TBmisra, and FlexeLint 

 

Table 6.2 shows the rules that SwapoAdd.c has violated using the Robustness Grid, 

LDRA TBmisra, and FlexeLint. In the Robustness Grid, has applied some rules but 

they were not violated, and given (0) value. In Table 6.2, the rules that not included in 

the Robustness Grid are pointed as (N/I), and the not applied as (NA) and the 

satisfied with (0). The numbers mean the number of time a rule been violated. In 

LDRA and FlexeLint the applied or satisfied rules can not be distinguished, but they 

for sure were included, so the rules with such case have been pointed out as (0/NA). 
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MISRA C2 Rule Robustness Grid LDRA TBmisra FlexeLint 

1.2 N/I 0/NA 13 

4.1+7.1 3 0/NA NA 

4.2 0 1 1 

5.1 0 0/NA 0/NA 

5.2 3 0/NA 0/NA 

5.3 NA 0/NA 0/NA 

5.7 NA 8 0/NA 

6.3 1 17 16 

8.1 1 0/NA 0/NA 

8.4 N/I 0/NA 4 

8.7 NA 1 0/NA 

9.2 0 1 0/NA 

10.2 NA 0/NA 2 

11.3 2 0/NA 0/NA 

12.13 NA 0/NA 1 

13.6 1 0/NA 0/NA 

14.3 N/I 0/NA 1 

14.7 2 0/NA 0/NA 

16.1 4 0/NA 0/NA 

16.5 1 0/NA 0/NA 

16.10 N/I 0/NA 6 

17.1 1 0/NA 0/NA 

17.4 1 0/NA 0/NA 

19.7 4 0/NA 0/NA 

20.8 NA 1 0/NA 

20.9 0 1 0/NA 

20.12 NA 1 0/NA 

21.1 N/I 2 0/NA 
Table 6.2 Number of MISRA rules that violated in SwapoAdd.c 

 

6.4.3 Klocwork Truepath 

As for the Robustness Grid, LDRA TBmisra, and FlexeLint, Klocwork Truepath uses 

its own interpretation of the MISRA C2 rules (Klocwork 2012). Klocwork has a 

managerial report, similar to the Robustness Grid, LDRA TBmisra, and FlexeLint 

where it shows a summary of the rules that were violated by the program. 

There are 21 of the MISRA C2 rules that are not supported by Klocwork Truepath, 15 

of them are not verified, and the rest are not supported even though they are verified. 
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Robustness 

Grid 
LDRA FlexeLint 

Klocwork 
Truepath 

Standards used MISRA C2 
MISRA C2, ISO 

1990, LDRA 
standards 

MISRA C2, 
FlexeLint/PC-

Lint 
MISRA C2 

Using Compiler 
before the 

measurement 
Yes Yes No Yes 

Rule Weighing 

Clause slice 
used to 

Weight the 
rules. 

Mandatory Rules 
Optional Rules 
Checking Rules 

Syntax errors 
Internal errors 
Fatal errors 

Warning 
messages 

Informational 
messages 

Elective notes 

Not given 

Management 
View 

Yes Yes Yes No 

Map the 
Violated Rules 
with code line 

Yes, using 
Clause 
Table. 

Yes Yes Yes 

Level of Faults 
One level – 

Violated 

Level 1: Advisory 
Level 2: Defect 
Level 3: Fault 

Error 
Warning 

Informational 
Note 

One level 

Number of 
MISRA C2 
supported 

100 142 (all) 142 (all) 121 

Table 6.3 Comparison between 4 robustness measurement techniques that use MISRA C2 

 

16 MISRA C2 rules are not supported by The Robustness Grid or Klocwork 

Truepath. The Robustness Grid supports 5 rules that Klocwork Truepath does not 

support. On the other hand, Klocwork Truepath supports 26 rules that Robustness 

Grid does not support. 

Table 6.3 shows a comparison between the different ways of the MISRA C2 use of 

the techniques and tools mentioned earlier. 

6.5 Other case studies 

6.5.1 Variance.c program 

Gallagher and Fulton (Gallagher and Fulton 1999) used program slicing to estimate 

Software Robustness. They measured the Robustness of a C program by 
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determining the location of high-impact points and the exact nature of the error that 

could have a high impact. 

In their work, they used the Forward Slicing technique to identify the high-impact 

point, where the most effective statement is the variable which has the biggest 

Forward Slice. Then, they applied a Decomposition Slice on that variable and 

injected an error in the last definition of it to identify the nature of the errors that could 

occur at this point. 

The effect of the fault injection point was determined using the Forward Slicing 

techniques. Then, a random input was entered to the fault injection point, and the 

values of outputs determined how robust the program was. For each variable, which 

produces an output and is affected by the fault injection point, the Robustness is the 

percentage of invalid input that still produced an acceptable output. 

The same program was measured by the Robustness Grid, where each clause was 

tested individually and its impact was measured using the Clause Slicing technique. 

A Clause Slice is used to determine the impact of each clause, where the clause with 

the largest slice is considered as the high-impact point in the program. Since Clause 

Slicing is used in the Robustness Grid, the clause may or may not have an effect on 

the output clauses. Furthermore, the Robustness Grid measures the robustness of a 

program depending on the MISRA C2 rules and their satisfaction through the 

program without looking as the output. 

In the Variance.c program, see Appendix P, Gallagher and Fulton chose avg at 

statement 18 as the fault injection point to measure the robustness of var1, var2, 

var3, var4, and var5. Since Forward Slice of that statement did not include var2, the 

change of input of the avg value did not affect it, and the Robustness of var2 was 1, 

which means 100%. 
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Since other variables; var1, var3, var4, and var5, are affected by avg, the 

Robustness was calculated by running the program with random values of avg. var1, 

var3, and var4 have a robustness value = 0 because they always return an 

unacceptable output for the invalid input. 

However, var5 had a different value of robustness, where it succeeded to compute 

the correct value for 4.3% of values that were randomly perturbed. 

In the Robustness Grid, the Robustness Degree for these variables (var1, var2, var3, 

var4, and var5) where measured differently. Each of these variables was sliced using 

Backward Clause Slicing (the union of all clauses that have effect on these variables) 

in their last use in the program. Then, the Robustness Degree for the slices of each 

one of these variable is given by: 

Number of times the rules were satisfied divided by number of times the rules were 

applicable, presented as a percentage.  

In the Robustness Grid, the Variance.c variables in general have high Robustness 

Degree. Furthermore, it pointed out the variable that has the priority to be maintained 

among the five variables (var1, var2, var3, var4, and var5) is var3 because it has the 

smallest Robustness Degree. The variables; var1, var2, var3, var4, and var5, have a 

Robustness Degree of 90.91%, 91.17%, 87.88%, 90.63%, and 89.8% respectively. In 

addition, the avg has scored 80% as Robustness Degree, which make it the variable 

with the lowest Robustness Degree and it is the variable that should be maintained 

firstly. In the Robustness Grid the whole program scores 87.23%, while in Keith and 

Fulton technique has no overall robustness measurement for the program. 

Gallagher and Fulton concluded that the Robustness needs a manual inspection for 

a specific variable within a scope of influence to compute the Robustness 

measurement. On the other hand, The Robustness Grid computes the Robustness 

Degree and gives a measurement to any variable in different scopes. 
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Gallagher and Fulton are more concerned about the input/output relation in the 

program; where the Robustness Grid is focused on the syntax code style of the 

program. 

6.5.2 n_char.c program 

The n_char.c (Drexel University 2012), see Appendix Q, was chosen to measure the 

accuracy of the Robustness Grid measurement. The n_char.c program has two 

functions: n_char and main. The program reads a string and prints its length. 

As shown in Table 6.4, the overall program Robustness Degree is 77.78%. The 

functions’ Robustness Degrees for functions n_char and main are 74.04% and 

81.48%, respectively. The Functions Robustness Degrees are acceptable for a small 

and simple program such as n_char.c. Considering the Function Satisfaction Degree 

the Robustness Grid gives an advice that the function that need to be maintained is 

n_char because it is the function with the smallest Robustness Degree. 

Rule Categories 
n_char main PCD 

Category Weight 
FCSD FCSD PCSD 

Category 1 83.33% 100% 90% 96 

Category 2 66.67% 0% 57.14% 109 

Category 3 75% 62.5% 70% 747 

Category 4 N/A 100% 100% 13 

Category 5 100% 100% 100% 170 

Category 6 0% 80% 66.67% 37 

FAC 74.04% 81.48% 77.78% WPW = 1172 

Table 6.4 n_char Robustness Grid, Managerial-View 

 

However, the Robustness Degree in different categories for the individual functions 

varied significantly. The Robustness Grid shows that Category 3 is the most 

important category for this program because it has the largest weight and 70% 

Robustness Degree. Category 3 measures 63.74% of all programs clauses, which 

means that 63.74% of program clauses have 70% Robustness Degree. 



 

 

125 

Category 5, which is in the second place in terms of category importance, is 100% 

robust according to the Robustness Grid. Consequently, the functions and important 

categories have a high Robustness Degree, which is acceptable for such a small 

program with simple functionality. The Category Calculations indicates that the need 

to be maintained is category 2 because it is the category with the lowest Program 

Category Degree (PCD), and its weight makes the change effective.   

6.5.3 Robost.c program 

The Robost.c, Figure 6.1, is the smallest robust C program, according to the 

Robustness Grid measurement. Robost.c has 2 clauses, but it applied and satisfied 7 

rules in 3 categories. 

 
 Figure 6.1 Robost.c program 

Categories 1, 4 and 5 have no applied rules. Category 1 focuses on the variable 

characteristics, and because there are no variables or parameters, there is no need 

for rules to measure them. Category 4 measures the arrays, pointers and other data 

structures and Robost.c does not have these, so there are no applied rules in 

Category 4. There are no header files or pre-processor clauses so the Category 5 

has no applicable rules in the program. 

Table 6.5 shows the Managerial-View Robustness Grid report for Robost.c. Category 

2 measures the control Clauses and Robost.c has no control Clauses. However, 

there is one rule that was applied; 14.7. This rule is for any function that should have 

one single point of exit, and because the program has a return Clause, it satisfied this 

rule. Other categories focus on function structure, and advisory rules which contain 

different points of views. Since the program is artificial, small, and ideal, the values 

are relatively small. 

void main (void){1 

return;}2 
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Rule Categories 

main PCD 
Cat. Weight 

FCSD  PCSD 

Category 1 N/A N/A N/A 

Category 2 1/1 = 100% 1/1 = 100% 1 

Category 3 5/5 = 100% 5/5 = 100% 5 

Category 4 N/A N/A N/A 

Category 5 N/A N/A N/A 

Category 6 1/1 = 100% 1/1 = 100% 1 

FAC 7/7 = 100% 7/7 = 100% WPW = 7 

Table 6.5 Robost.c Robustness Grid Managerial-View 

 Robost.c shows that MISRA C2 covers even the smallest and basic program with a 

number of rules even more than the number of program clauses. MISRA C2 rules 

cover C programs regardless of their number of clauses. However, large programs 

are quite difficult to measure and take a considerably long time, in addition to the fact 

that Robustness Grid is produced manually. Also, in all programs, the most important 

clause is the main function call, since it calls all other functions and affects all of 

them. 

6.6 Summary 

The Robustness Grid, as a program robustness measurement technique, has some 

positives points and drawbacks. The contribution to research that have made in the 

Robustness Grid can be summarised as: 

1- Using program analysis technique, clause slicing, to give a different level 

of importance for code and rules. 

2- The numerical details of program Robustness Degrees are the main 

contribution that the Robustness Grid has introduced. 

3- The Robustness Grid presentation is accessible and easy to understand 

for all level of developer teams. The program is analysed and the 

robustness degree is shown for each part of it. 
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However, there are still some weaknesses that need to be fixed in future work, such 

as: 

1- The MISRA C2 rules misinterpretations  

2- The number of rules that the Robustness Grid covers are only 100 out of 

142 rules. 

3- The Robustness Grid not fully automated. 

The program measurement results show some agreement and disagreement 

between the tools that use MISRA C2 and the technique the use Slicing to measure 

the program robustness; even though they use the same standard. 

LDRA TBmisra, FlexeLint, and Klocwork Truepath have introduced their own rules 

beside the MISRA C2 rules to avoid the misinterpretation of the MISRA C2 rules by 

the different programs evaluations. However, the interpretations by these three tools: 

are different. This was seen in SwapoAdd.c example, where the three techniques 

Robustness Grid, LDRA TBmisra, and FlexeLint had some differences in the rules 

that were violated, the number of times violated, and the code that caused the 

violation. 

The different interpretation between different tools is dangerous and makes the 

standards less effective. However, LDRA and FlexeLint both introduced their own 

rules that interpret MISRA C2 in a certain way and make their measurement fixed in 

all the evaluations made. In the Robustness Grid, the MISRA C2 rules were 

interpreted in English without introducing new rules or setting fixed definitions and 

mainly depend on the MISRA C2 rules text and explanation for them which caused 

some differences between the Robustness Grid measurements and the 

measurements by other tools. 
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Chapter Seven 

 

Conclusions and Future Work 

 

 

7.1 Introduction 

In this chapter, a summary of the research contributions will be shown. It also 

reviews the criteria for success defined in Chapter 1 as they related to the research. 

The future directions for the research are suggested in this chapter, showing the 

possibilities for more contribution in this research area. 

7.2 Thesis Summary 

Robustness is defined as “the degree to which a system or component can function 

correctly in the presence of invalid inputs or stressful environment conditions” (IEEE 

1990). The Robustness Degree of a program is a value and can be measured in 

different ways using different techniques. Robustness is important in all programs, 

specially the safety critical ones. Therefore, it has become essential to measure the 
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Robustness Degree for programs and discover any weak points that the program 

has. There are many techniques, discussed in Chapter 2, that are used to satisfy or 

measure the Robustness Degree. Each one of those techniques has its advantages 

and drawbacks. 

In this research, a group of the MISRA C2 language rules were selected with 

categories confirming to certain criteria (Section 3.2.2), to be the set of standards 

used to measure program robustness. The program satisfaction and violation status 

of the MISRA C2 rules are shown using numbers, called the Robustness Degree. 

The Robustness Degree was introduced in Section 3.4 as a “scale of a program 

robustness features satisfaction, expressed as a percentage” (Abdallah, Munro et al. 

2011). The Robustness Degree of a program is presented in the Robustness Grid. 

A Program Slicing technique is used to analyse the program syntax code to 

distinguish the important level of the language standards. Clause Slicing is a new 

slicing technique that was introduced in Section 3.3 to weight the importance of the 

MISRA C2 rules. 

Clause Slice is a Static slicing technique that uses clause and clause number as the 

slicing criteria. A clause is a small piece of program code that has an effect in the 

program. It can be sliceable or un-sliceable, depending on what it contains. 

MISRA C2 and Clause Slice were both used to formulate the Robustness Grid 

measurement technique. The measurement process in completing the Robustness 

Grid for functions was discussed through Section 3.4. 

The Robustness Grid was extended in Section 3.5 to measure the Robustness 

Degree of the whole program. A Robustness Grid is a “table that contains rules 

classified into categories, with respect to a program’s function names and calculates 

robustness degree” (Abdallah, Munro et al. 2011). It also shows the different levels of 

importance between the rules by weighting them using Clause Slice. The different 
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levels of rule satisfaction and weights are presented in numbers and percentages 

called the Robustness Degree, and that is one of the main contributions of this 

research. 

The Robustness Grid contains the rules that were applied to measure a program and 

the state of the rules, whether satisfied or violated, for each function in the program. 

It also has percentage values that show the Robustness Degree for the program and 

each function in it in detail. 

The Robustness Grid construction process starts with the Clause Table, which was 

shown in Section 3.4.2.1. The Clause Table contains the program clauses with their 

measurement information, such as Slice Size, Clause Frequency, and Applicable 

Rules. The Second Table in the Robustness Grid construction is the Data Table, 

which was addressed in Section 3.4.2.2. 

The Data Table shows the MISRA C2 rules that were applied on the program. The 

rules are measured with respect to their Number of Satisfied and Violated, the  

Satisfied and Violated Slices. 

The Clause Table was imported in the Robustness Grid to identify the rules that were 

used to measure every function in the program. The Function Calculations show the 

rules that were applied on each function and their degree of satisfaction. They also 

show the Function Satisfy Degree (FSD) and Program Satisfy Degree (PSD). 

The Data Table was also imported in the Robustness Grid is used to measure the 

functions, and also used to produce the Category Calculations in the Robustness 

Grid, which measures the MISRA C2 rules. 

The Category Calculations in Section 3.5.2 show the importance of each function, 

category, and rule in the program assessment. The Category Calculations are based 

on Clause Slicing. 



 

 

132 

The numbers and percentages in the Robustness Grid show the satisfaction state of 

each rule, and Robustness Degrees for functions, categories, and the whole 

program.  

The Robustness Grid is not fully automated. However, some tools are used to 

execute some parts of the Robustness Grid process. The Clause Slice is run using 

the CSurf tool. The program clauses are measured manually against the MISRA C2 

rules. The MS Excel is used to display the Clause Table, the Data Table, and the 

Robustness Grid and calculate the numbers and the percentages. 

The validity of the Robustness Grid is explored through the application of different 

case studies that were discussed in details through Chapter 6. In this thesis, three 

case studies were discussed to validate and evaluate the Robustness Grid. The 

SwapoAdd.c program is the case study that was studied in detail through Chapters 3 

and 5, and used to explain the Robustness Grid process in details. Other case 

studies were used to evaluate the Robustness Grid and addressed in Section 6.4. 

The case studies show that the Robustness Grid can give a robustness 

measurement for C programs using the MISRA C2 rules. They also show that the 

Robustness Grid process is applicable for C programs. However, the case studies 

show there are still some drawbacks that can be used to evaluate and improve the 

Robustness Grid measurement process. 

Furthermore, the case studies show that the robustness measurement results fairly 

reflect the accuracy of the program syntax writing, where the Robustness Grid 

highlights the problems that are expected to be caught, in addition to some other 

problems. 

The evaluation of the Robustness Grid is divided into three parts and described in 

Chapter 6.  The first part is the general Robustness Grid critique, depending on the 

SwapoAdd.c case study results. The results show that the Robustness Grid is a 
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measurement technique that presents the satisfied rules as well as the violated ones, 

which gives a clue to the maintainer on what needs to be fixed. It also has a flexible 

way of presenting results and from different points of views. The Clause Slicing 

technique helps discover the importance and the Clause of the different piece of 

code in the program. 

In Section 6.4, the second part of the evaluation process is based on the comparison 

between the Robustness Grid and other Robustness measurement techniques. The 

comparison is made with tools that use MISRA C2 rules such as: LDRA TBmisra, 

FlexeLint, and Klocwork Truepath. The comparison shows that the Robustness Grid 

provides services that none of the previous tools provide. On the other hand, the 

previous tools support more rules than the Robustness Grid. The comparison shows 

that MISRA C2 were interpreted and applied differently in the tools including 

Robustness Grid, therefore, the results of each tool measurement is different from 

the other. 

Besides the previous tools, the Robustness Grid is compared with the fault injection 

technique using program slicing that was introduced in the Gallagher and Fulton 

paper (Gallagher and Fulton 1999). Even though both of the Robustness Grid and 

fault injection used slicing to analyse the program code, they measured the 

Robustness Degree from a different perspective. The Robustness Grid measures the 

program by assessing the code syntax. The fault injection technique measures the 

robustness using the input/output relation. 

The third part of the evaluation described in Section 6.5, shows a case study, The 

Robost.c, which gives an idea of how many rules are needed to build the smallest 

robust program from scratch. The Robost.c is introduced as a base program that can 

be used to build a robust program. The code lines can be added to Robost.c after 

they are tested and satisfied the MISRA C2 rules. Subsequently, a 100% robust 

program can be created. 
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The results of the analysis and evaluation show that Robustness Grid model is 

capable of producing a sufficient Robustness Degree measurement for the programs 

written in the C language. 

The Robustness Grid helps the developer team to understand the program 

robustness measurement results. The Managerial-View helps the managers to 

understand the measurement results in the big picture. The different tables that build 

the Robustness Grid give a detailed analysis for the measurement results. 

For example, the Managerial-View gives the manager an indication about which 

function and category are the most important in the program, in addition to which 

function and category have the least Robustness Degree value. 

The Clause Table, shows the importance level of the program clauses and which 

rules that has been applied and whether satisfied or violated in the program. The 

Data Table shows the importance of the Rules that has been applied in the program 

and their satisfaction status. 

7.3 Criteria for Success 

The criteria for success of the research in this thesis were presented in Chapter 1. 

This section discusses the achievement of these criteria. These achievements are as 

follows: 

1- Develop a measurement for assessing the Robustness of C programs 

In this thesis, the developed measurement is made using the MISRA C2 rules 

with Clause Slicing. This was achieved by analysing the C program and then 

assessing the program clauses using the MISRA C2 rules and weighting 

them using the Clause Slicing technique in the new Robustness 

measurement technique introduced in this research. In Chapter 3, the 
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proposed model was introduced, where in Chapter 5; the main case study 

was discussed in detail. 

2- Develop a Grid that incorporates the robustness measurement 

The Robustness Grid is the proposed model introduced in this research and 

discussed through this thesis. It is a robustness measurement framework that 

uses the MISRA C2 rules and the Clause Slicing technique. 

The Robustness Grid is a table that presents function and rule robustness 

measurements. The Robustness Grid is built depending on two tables; the 

Clause Table which was discussed in Section 3.4.2.1 and Data Table in 

Section 3.4.2.2. The Robustness Grid is the combined of the Clause and Data 

Tables with some changes in one big table containing the Function Category 

robustness Degree described in Section 3.4.5 and the Category Calculations 

described in Section 3.5.2. 

3- Empirically evaluate the Grid 

The evaluation of the Robustness Grid was made in three phases; the first is 

the evaluation of the Robustness Grid depending on the results of the main 

case study introduced in Chapter 5. The second part of the evaluation is a 

comparison with existing tools and techniques that measure or assess the 

program robustness, which was described in Chapter 6 Section 6.4 and 

Subsection 6.5.1.  

The third part is an evaluation of the ability and consistency of the 

Robustness Grid measurement for random C programs, by introducing two 

more case studies in Subsections 6.5.1 and 6.5.2, and building a robust 

program from scratch. 

4- Compare the results against other related studies 
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The Robustness Grid was compared with three different techniques that use 

MISRA C2 language rules to measure the program robustness, and one case 

study taken from the Gallagher and Fulton paper (Gallagher and Fulton 

1999), that use program slicing to measure the program robustness. 

Comparison discussions and tables were described in Sections 6.4 and 6.5.1.  

5- Develop a proof of concept of implementation 

This study has produced parts of the Robustness Grid in prototype mode. As 

described in Chapter 4, the Robustness Grid is not a fully automated model. 

However, some phases of the model used suitable existing tools. The 

program slicing technique was executed by CodeSurfer (CSurf) and the 

Robustness Grid Calculations and display were done using Microsoft Excel 

sheets (MS Excel).  

7.4 Future Directions 

Although the proposed model in this thesis has considerably achieved the intended 

goals, there are still some possible additions that can be done to enhance it. These 

additions are as follows: 

1- Fully automated and repeatable 

The Robustness Grid uses existing tools to implement part of the program 

analysis and robustness measurements. Therefore, in future research, all 

phases of the Robustness Grid will be fully implemented. Then, it can become 

fully integrated and accomplished tool.   

2- Cover all MISRA C2 rules 

The Robustness Grid only uses 100 out of 142 MISRA C2 rules in the 

robustness measurement. The future direction is to make the Robustness 

Grid able to measure all aspects addressed by all the MISRA C2 rules.  
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3- Improving generality of the model 

The Robustness Grid only measures selected C programs executable 

through a C compiler. Thus, in the future, the Robustness Grid needs to be 

able to measure any C programs, or any part of it. 

4- Evaluating the Robustness Grid using large programs 

Since the Robustness Grid is not fully automated, only small programs are 

used to analyse and evaluate the Robustness Grid. In future research, 

bearing in mind the previous suggestions, the Robustness Grid can be 

evaluated using large C programs. 

5- Evaluate the Robustness Grid using different language standard 

The current Robustness Grid uses the MISRA C2 rules to measure the C 

programs. In the future, different standards could be used to measure C 

programs or programs of a different programming language. 

6- Build a 100% robust program 

The evaluation section, 6.5.3, introduced a 100% robust program, the 

Robost.c program. This program is the smallest robust program, but it does 

nothing. In the future, Robost.c can be used as a base to build different robust 

programs. This issue was raised in a paper published in 2010 (Abdallah, 

Munro et al. 2010). 

7- Implement the Robustness Grid in real life applications 

The Robustness Grid can help the developer and maintainer because it gives 

them an indication of the weak robustness instances in a piece of code, 

functions, and category that need to be maintained to improve the robustness 

degree. 
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7.5 Summary 

This thesis has discussed the research into program robustness measurement. In 

this research, a new robustness measurement technique was introduced, called the 

Robustness Grid. The Robustness Grid uses the language standards rules and the 

program slicing technique to produce a detailed robustness measurement for a 

program and its functions. 

This research shows evidence that the Robustness Grid can produce a precise 

measurement for C programs using the MISRA C2 rules and the Clause Slicing 

technique.
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Appendices 

Appendix A: Rule Distribution in the Robustness Grid 

Rules distribution on their Categories 

 

Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 

4.1+7.1 12.2 8.1 8.12 8.4 5.7 

4.2 12.3 8.2 9.2 19.4 6.3 

5.1 12.4 8.3 11.5 19.5 11.3 

5.2 12.5 8.6 16.7 19.6 11.4 

6.1 12.7 8.7  19.9 12.1 

6.2 12.8 8.8  19.10 12.6 

6.4 13.1 8.11  19.11 12.11 

6.5 13.3 14.8  19.(12+13) 13.2 

10.1 13.4 16.1  19.15 19.1 

10.2 13.5 16.2  19.16 19.2 

10.3 13.6 16.3  20.1 19.7 

10.4 13.7 16.4  20.2  

10.5 14.4 16.5 
 

20.3 
 

10.6 14.5 16.8 20.4 

12.9 14.7 16.9  20.6  

12.10 14.9   20.7  

12.12 14.10   20.8  

12.13 15.1   20.9  

14.3 15.2   20.10  

 15.3   20.11  

 15.4   20.12  

 15.5     

 17.1     

 17.2     

 17.3     

 17.4     

 17.5     

 17.6     
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Appendix B: SwapoAdd.c program 

 
SwapoAdd.c Program with the Clauses Numbers 

#include <stdio.h>
1
 

#define LAST 10
2
 

#define ARRAY_SIZE 10
3
 

typedef unsigned char x1;
4
 

char array[ARRAY_SIZE] = "0123456789";
5
 

void incr(int *num, int i);
6
 

void swap(int *a, int *b);
7
 

int one (int x);
8
 

int main()
9
 

{int i;
10

 

int sum = 0;
11

 

int  *a = 12; 
12

 

int *b = 13;
13

 

int  x = 3;
14

 

for ( i = 1
15

; i <= LAST
16

; i++ 
17

) { 

incr
18

(&sum
19

, i
20

); }  

printf
21

("sum = %d\n"
22

, sum
23

); 

swap
24

 (&a
25

,&b
26

); 

int index
27

;   

for (index = 0
28

; index < ARRAY_SIZE
29

; ++index
30

)  

{one
31

 (x
32

); 

printf
33

("&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n"
34

, 

&array[index],
35

 

 (array+index),
36

  

array[index])
37

;} 

return 0;}
38

 

void incr
39

(int *num
40

, int i
41

) { 

*num= *num + i;}
42

 

void swap
43

(int *a
44

, int *b
45

){ 

int temp
 
= *a

46
; 

*a
 
= *b

47
; 

*b = temp
48

; 

printf
49

 ("pointer a is: %d\n"
50

,*a
51

); 

printf 
52

("pointer b is: %d\n"
53

,*b
54

);} 

int one
55

 (int x
56

) 

{printf
57

 ("%d\n"
58

, x
59

); 

return 1;
60

} 



 

 

150 

Appendix C: Clause Table of SwapoAdd.c program 

Clause 
Number 

Slice 
Size 

Clause 
Frequency 

Clause 
Weight 

Function 
Name 

Applicable Rules 

Satisfied Violated 

1* 1 1 1 main 
19.1, 19.2,20.9, 

20.2,20.1  
0 

2* 1 1 1 main 19.6 0 

3* 1 1 1 main 19.6 0 

4* 1 1 1 main 0 6.3 

5 4 2 8 main 
5.1, 6.1, 8.12, 

13.1, 9.2 
0 

6* 1 1 1 incr 16.3, 16.4, 16.1 19.7 

7* 1 1 1 swap 16.3, 16.4, 16.1 19.7 

8* 1 1 1 one 16.3, 16.4, 16.1 19.7 

9 53 2 106 main 
14.7, 16.1, 8.2, 

8.6 
16.5, 

19.7, 8.1 

10 12 2 24 main 5.1 0 

11 5 2 10 main 5.1 0 

12 8 2 16 main 5.1, 17.5 0 

13 7 2 14 main 5.1, 17.5 0 

14 4 2 8 main 5.1 0 

15 11 3 33 main 13.4, 13.5, 14.8 0 

16 10 5 50 main 13.5, 13.4 0 

17 10 5 50 main 12.3, 13.5, 13.4 0 

18 8 6 48 incr 16.2, 16.9 13.6 

19 4 7 28 incr 0 0 

20 4 7 28 incr 0 0 

21 3 2 6 main 16.2, 16.9 16.1 

22 1 3 3 main 4.1, 4.2 0 

23 1 15 15 main 0 0 

24 15 2 30 swap 16.2,16.9 0 

25 7 4 28 swap 0 0 

26 6 4 24 swap 0 0 

27 17 2 34 main 5.1 0 

28 16 3 48 main 13.5, 14.8,13.4 0 

29 15 5 75 main 13.5, 16.2, 13.4 0 

30 15 5 75 main 12.3, 13.5, 13.4 0 

31 8 6 48 one 16.2, 16.9 0 

32 3 8 24 one 0 0 

33 5 6 30 main 16.9, 16.2 0 

34 1 7 7 main 
4.1, 4.2, 

12.1,12.2, 17.4, 
17.4 

7.1, 7.1, 
7.1 

35 1 8 8 main 0 0 

36 1 8 8 main 12.1, 12.2 0 



 

 

151 

Clause 
Number 

Slice 
Size 

Clause 
Frequency 

Clause 
Weight 

Function 
Name 

Applicable Rules 

Satisfied Violated 

37 1 8 8 main 0 0 

38 2 2 4 main 16.8 0 

39 5 7 35 incr 8.1, 8.2, 8.6 14.7 

40 3 10 30 incr 5.1, 8.3 0 

41 3 10 30 incr 5.1, 8.3 0 

42 2 12 24 incr 12.2 
17.1, 
17.4 

43 12 3 36 swap 8.1, 8.2, 8.6 14.7 

44 6 7 42 swap 5.1, 8.3 5.2 

45 5 7 35 swap 5.1, 8.3 5.2 

46 3 7 21 swap 5.1 11.3 

47 2 10 20 swap 0 0 

48 2 11 22 swap 0 11.3 

49 3 4 12 swap 16.2, 16.9 16.1 

50 1 5 5 swap 4.1, 4.2 0 

51 1 12 12 swap 0 0 

52 3 4 12 swap 16.2, 16.9 16.1 

53 1 5 5 swap 4.1, 4.2 0 

54 1 13 13 swap   0 

55 6 8 48 one 8.1, 8.2, 8.6, 14.7 0 

56 2 10 20 one 5.1, 8.3 5.2 

57 3 8 24 one 16.2, 16.9 16.1 

58 1 9 9 one 4.1, 4.2 0 

59 1 12 12 one 0 0 

60 2 8 16 one 16.8 0 

* Un-sliceable Clauses 
Clause Table of SwapoAdd.c program 
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Appendix D: Data Table of SwapoAdd.c program 
 

Rule Number Number of Satisfied ∑Satisfied Slices Number of Violated ∑Violated Slices 

4.1 + 7.1 5 5 3 3 

4.2 5 5 0 0 

5.1 13 79 0 0 

5.2 0 0 3 13 

6.1 1 4 0 0 

6.3 0 0 1 1 

8.1 3 23 1 53 

8.2 4 76 0 0 

8.3 5 19 0 0 

8.6 4 75 0 0 

8.12 1 4 0 0 

9.2 1 4 0 0 

11.3 0 0 2 5 

12.1 2 2 0 0 

12.2 3 3 0 0 

12.3 2 25 0 0 

13.4 6 77 0 0 

13.5 6 77 0 0 

13.6 0 0 1 8 

14.7 2 59 2 17 

14.8 2 27 0 0 

16.1 4 56 4 10 

16.2 9 63 0 0 

16.3 3 3 0 0 

16.4 3 3 0 0 

16.5 0 0 1 53 

16.8 2 4 0 0 

16.9 8 48 0 0 

17.1 0 0 1 2 

17.4 2 2 1 2 

17.5 2 15 0 0 

19.1 1 1 0 0 

19.2 1 1 0 0 

19.6 2 2 0 0 

19.7 0 0 4 56 

20.2 1 1 0 0 

20.9 1 1 0 0 

Data Table of SwapoAdd.c program 
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Appendix E: swap Function Calculation Table 
 

Categories 

R
u

le
 N

u
m

b
e

r swap FCD % 

A
p

p
lie

d
 

R
u

le
s
 

∑
S

a
ti
s
fi
e

d
 

S
lic

e
 S

iz
e

s
 

S
a

ti
s
fi
e

d
 

W
e

ig
h
t 

∑
V

io
la

te
d
 

S
lic

e
 S

iz
e

s
 

V
io

la
te

d
 

W
e

ig
h
t 

F
u

n
c
ti
o

n
 

F
re

q
u

e
n

c
y
 

R
u

le
 ∑

 

F
u

n
c
ti
o

n
 

S
lic

e
 S

iz
e
 

R
u

le
 

F
u

n
c
ti
o

n
 

W
e

ig
h
t 

FCSD 
% 

FCVD 
% 

Category 1 

4.1 + 
7.1 +2 2 4 0 0 2 2 4 

7/9 = 
77.78% 

2/9= 
22.22% 

4.2 +2 2 4 0 0 2 2 4 

5.1 +3 14 42 0 0 3 14 42 

5.2 -2 0 0 11 22 2 11 22 

6.1 0 0 0 0 0 0 0 0 

AC 5 4 18 50 11 22 9 29 72 
7/9 = 

77.78% 
2/9= 

22.22% 

Category 2 

12.2 0 0 0 0 0 0 0 0 

0/1 = 
0% 

1/1 = 
100% 

12.3 0 0 0 0 0 0 0 0 

13.4 0 0 0 0 0 0 0 0 

13.5 0 0 0 0 0 0 0 0 

13.6 0 0 0 0 0 0 0 0 

14.7 -1 0 0 12 12 1 12 12 

17.1 0 0 0 0 0 0 0 0 

17.5 0 0 0 0 0 0 0 0 

AC 0-1 13 5 18 100 23 56 10 41 84 
7/10= 
70% 

3/10= 
30% 

Category 3 

8.1 +1 12 12 0 0 1 12 12 

14/16 = 
87.5% 

2/16 = 
12.5% 

8.2 +1 12 12 0 0 1 12 12 

8.3 +2 11 22 0 0 2 22 44 

8.6 +1 12 12 0 0 1 12 12 

14.8 0 0 0 0 0 0 0 0 

16.1 +1/-2 1 1 6 12 3 7 21 

16.2 +3 21 63 0 0 3 21 63 

16.3 +1 1 1 0 0 1 1 1 

16.4 +1 1 1 0 0 1 1 1 

16.5 0 0 0 0 0 0 0 0 

16.8 0 0 0 0 0 0 0 0 

16.9 +3 21 51 0 0 3 51 153 

AC 0-2 25 14 92 275 6 68 26 180 403 
21/26= 
80.76% 

5/26= 
19.24% 

Category 4 
8.12 0 0 0 0 0 0 0 0 

0 0 
9.2 0 0 0 0 0 0 0 0 

AC 0-3 27 14 92 275 0 68 26 180 403 
21/26= 
80.76% 

5/26= 
19.24% 

Category 5 

19.6 0 0 0 0 0 0 0 0 

0 0 20.2 0 0 0 0 0 0 0 0 

20.9 0 0 0 0 0 0 0 0 

AC 0-4 30 14 92 275 0 68 26 180 403 
21/26= 
80.76% 

5/26= 
19.24% 
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Categories 

R
u

le
 N

u
m

b
e

r swap FCD % 

A
p

p
lie

d
 

R
u

le
s
 

∑
S

a
ti
s
fi
e

d
 

S
lic

e
 S

iz
e

s
 

S
a

ti
s
fi
e

d
 

W
e

ig
h
t 

∑
V

io
la

te
d
 

S
lic

e
 S

iz
e

s
 

V
io

la
te

d
 

W
e

ig
h
t 

F
u

n
c
ti
o

n
 

F
re

q
u

e
n

c
y
 

R
u

le
 ∑

 

F
u

n
c
ti
o

n
 

S
lic

e
 S

iz
e
 

R
u

le
 

F
u

n
c
ti
o

n
 

W
e

ig
h
t 

FCSD% FCVD% 

Category 6 

6.3 0 0 0 0 0 0 0 0 

0/3 = 
0% 

3/3 = 
100% 

11.3 -2 0 0 5 10 2 5 10 

12.1 0 0 0 0 0 0 0 0 

17.4 0 0 0 0 0 0 0 0 
19.1 0 0 0 0 0 0 0 0 
19.2 0 0 0 0 0 0 0 0 
19.7 -1 0 0 1 1 1 1 1 

FAC 37 16 92 275 6 79 29 186 414 
21/29 = 
72.41% 

8/29= 
27.59% 

swap Function Calculation 
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Appendix F: one Function Calculation Table 
 

Categories 

R
u

le
 N

u
m

b
e

r one FCD % 

A
p

p
lie

d
 

R
u

le
s
 

∑
S

a
ti
s
fi
e

d
 

S
lic

e
 S

iz
e

s
 

S
a

ti
s
fi
e

d
 

W
e

ig
h
t 

∑
V

io
la

te
d
 

S
lic

e
 S

iz
e

s
 

V
io

la
te

d
 

W
e

ig
h
t 

F
u

n
c
ti
o

n
 

F
re

q
u

e
n

c
y
 

R
u

le
 ∑

 

F
u

n
c
ti
o

n
 

S
lic

e
 S

iz
e
 

R
u

le
 

F
u

n
c
ti
o

n
 

W
e

ig
h
t 

FCSD 
% 

FCVD % 

Category 1 

4.1 
+ 

7.1 
+1 1 1 0 0 1 1 1 

3/4 = 
75% 

1/4 = 25% 
4.2 +1 1 1 0 0 1 1 1 

5.1 +1 2 2 0 0 1 2 2 

5.2 -1 0 0 2 2 1 2 2 

6.1 0 0 0 0 0 0 0 0 

AC 5 4 4 4 2 2 4 6 6 
3/4 = 
75% 

1/4 = 25% 

Category 2 

12.2 0 0 0 0 0 0 0 0 

1/1 = 
100% 

0/1 = 100% 

12.3 0 0 0 0 0 0 0 0 

13.4 0 0 0 0 0 0 0 0 

13.5 0 0 0 0 0 0 0 0 

13.6 0 0 0 0 0 0 0 0 

14.7 +1 6 6 0 0 1 6 6 

17.1 0 0 0 0 0 0 0 0 

17.5 0 0 0 0 0 0 0 0 

AC 1-2 13 5 10 14 2 2 5 12 12 
4/5 = 
80% 

1/5 = 20% 

Category 3 

8.1 +1 6 6 0 0 1 6 6 

12/13 = 
92.3%  

1/13 = 7.7% 

8.2 +1 5 5 0 0 1 5 5 

8.3 +1 2 2 0 0 1 2 2 

8.6 +1 6 6 0 0 1 6 6 

14.8 0 0 0 0 0 0 0 0 

16.1 
+1/-

1 
1 1 3 3 2 4 8 

16.2 +2 11 22 0 0 2 11 22 

16.3 +1 1 1 0 0 1 1 1 

16.4 +1 1 1 0 0 1 1 1 

16.5 0 0 0 0 0 0 0 0 

16.8 +1 2 2 0 0 1 2 2 

16.9 +2 11 22 0 0 2 11 22 

AC 1-3 25 15 46 82 5 5 18 61 87 
16/18 = 
88.88% 

2/18 
=11.12% 

Category 4 
8.12 0 0 0 0 0 0 0 0 

0 0 
9.2 0 0 0 0 0 0 0 0 

AC 1-4 27 15 46 82 5 5 18 61 87 
16/18 = 
88.88% 

2/18 
=11.12% 

Category 5 

19.6 0 0 0 0 0 0 0 0 

0 0 20.2 0 0 0 0 0 0 0 0 

20.9 0 0 0 0 0 0 0 0 

AC 1-5 30 15 46 82 5 5 18 61 87 
16/18 = 
88.88% 

2/18 
=11.12% 



 

 

156 

Categories 

R
u

le
 N

u
m

b
e

r 

one FCD % 

A
p

p
lie

d
 R

u
le

s
 

∑
S

a
ti
s
fi
e

d
 

S
lic

e
 S

iz
e

s
 

S
a

ti
s
fi
e

d
 

W
e

ig
h
t 

∑
V

io
la

te
d
 

S
lic

e
 S

iz
e

s
 

V
io

la
te

d
 

W
e

ig
h
t 

F
u

n
c
ti
o

n
 

F
re

q
u

e
n

c
y
 

R
u

le
 ∑

 

F
u

n
c
ti
o

n
 S

lic
e

 

S
iz

e
 

R
u

le
 F

u
n

c
ti
o

n
 

W
e

ig
h
t 

FCSD% FCVD% 

Category 6 

6.3 0 0 0 0 0 0 0 0 

0/1 = 
0% 

1/1 = 100% 

11.3 0 0 0 0 0 0 0 0 

12.1 0 0 0 0 0 0 0 0 

17.4 0 0 0 0 0 0 0 0 

19.1 0 0 0 0 0 0 0 0 

19.2 0 0 0 0 0 0 0 0 

19.7 -1 0 1 1 1 1 1 1 

FAC 37 16 46 83 6 6 19 62 88 
16/19 = 
84.21% 

3/19 = 
15.79% 

one Function Calculation 
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Appendix G: main Function Calculation Table 
 

Categories 

R
u

le
 N

u
m

b
e

r main FCD % 

A
p

p
lie

d
 

R
u

le
s
 

∑
S

a
ti
s
fi
e

d
 

S
lic

e
 

S
iz

e
s
 

S
a

ti
s
fi
e

d
 

W
e

ig
h
t 

∑
V

io
la

te
d
 

S
lic

e
S

iz
e

s
 

V
io

la
te

d
 

W
e

ig
h
t 

F
u

n
c
ti
o

n
 

F
re

q
u

e
n

c
y
 

R
u

le
 ∑

 

F
u

n
c
ti
o

n
 

S
lic

e
 S

iz
e
 

R
u

le
 

F
u

n
c
ti
o

n
 

W
e

ig
h
t 

FCSD 
% 

FCVD % 

Category 1 

4.1 + 
7.1 

+2/-3 2 4 3 9 5 5 25 

12/15 = 
80% 

3/15 = 
20% 

4.2 +2 2 4 0 0 2 2 4 

5.1 +7 57 399 0 0 7 57 399 

5.2 0 0 0 0 0 0 0 0 

6.1 +1 4 4 0 0 1 4 4 

AC 5 4 64 364 15 45 15 68 432 
12/15 = 

80% 
3/15 = 
20% 

Category 2 

12.2 +2 2 4 0 0 2 2 4 

19/20 = 
95% 

1/20 = 5% 

12.3 +2 25 50 0 0 2 25 50 

13.4 +6 77 462 0 0 6 77 462 

13.5 +6 77 462 0 0 6 77 462 

13.6 -1 0 0 8 8 1 8 8 

14.7 +1 53 53 0 0 1 53 53 

17.1 0 0 0 0 0 0 0 0 

17.5 +2 15 30 0 0 2 15 30 

AC 1-2 13 11 378 
183
6 

23 62 35 325 1501 
27/35 = 
77.1% 

8/35 
=22.9% 

Category 3 

8.1 -1 0 0 53 53 1 53 53 

11/14 = 
78.57%  

3/14 = 
21.43% 

8.2 +1 53 53 0 0 1 53 53 

8.3 0 0 0 0 0 0 0 0 

8.6 +1 53 53 0 0 1 53 53 

14.8 +2 27 54 0 0 2 27 54 

16.1 +1/-1 53 53 1 1 2 54 108 

16.2 +3 23 69 0 0 3 23 69 

16.3 0 0 0 0 0 0 0 0 

16.4 0 0 0 0 0 0 0 0 

16.5 -1 0 0 53 53 1 53 53 

16.8 +1 2 2 0 0 1 2 2 

16.9 +2 8 16 0 0 2 8 16 

AC 1-3 25 20 219 
213
6 

107 
16
9 

49 651 1962 
38/49 = 
77.55% 

11/49= 
22.45% 

Category 4 
8.12 +1 4 4 0 0 1 4 4 2/2 = 

100% 
0/2 = 0% 

9.2 +1 4 4 0 0 1 4 4 

AC 1-4 27 22 227 
214
4 

107 
16
9 

51 659 1970 
40/51 = 
78.43% 

11/51= 
21.57% 

Category 5 

19.6 +2 2 4 0 0 2 2 4 
4/4 = 
100% 

0/4 = 0% 20.2 +1 1 1 0 0 1 1 1 

20.9 +1 1 1 0 0 1 1 1 

AC 1-5 30 25 231 
215
0 

107 
16
9 

55 663 1976 
44/55 = 

80% 
11/55 = 

20% 
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Categories 

R
u

le
 N

u
m

b
e

r main FCD% 

A
p

p
lie

d
 

R
u

le
s
 

∑
S

a
ti
s
fi
e

d
 

S
lic

e
 S

iz
e

s
 

S
a

ti
s
fi
e

d
 

W
e

ig
h
t 

∑
V

io
la

te
d
 

S
lic

e
S

iz
e

s
 

V
io

la
te

d
 

W
e

ig
h
t 

F
u

n
c
ti
o

n
 

F
re

q
u

e
n

c
y
 

R
u

le
 ∑

 

F
u

n
c
ti
o

n
 

S
lic

e
 S

iz
e
 

R
u

le
 

F
u

n
c
ti
o

n
 

W
e

ig
h
t 

FCSD
% 

FCVD% 

Category 6 

6.3 -1 0 0 1 1 1 1 1 

6/8 = 
75%  

2/8 = 25% 

11.3 0 0 0 0 0 0 0 0 

12.1 +2 2 4 0 0 2 2 4 

17.4 +2 2 4 0 0 2 2 4 

19.1 +1 1 1 0 0 1 1 1 

19.2 +1 1 1 0 0 1 1 1 

19.7 -1 0 0 53 53 1 53 53 

FAC 37 31 237 2160 
16
1 

22
3 

63 723 2040 
50/63 = 
79.37% 

14/63= 
20.63% 

main Function Calculation 
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Appendix I: SwapoAdd.c PCD Table 
 

Category PCD% 

PCSD% PCVD% 

Category 1 24/30 = 80% 6/30 =20% 

AC 24/30 = 80% 6/30 =20% 

Category 2 21/25 = 84% 4/25 = 16% 

AC 45/55 = 81.82% 10/55= 18.18% 

Category 3 47/53 = 88.68% 6/53 = 11.32% 

AC 92/108= 85.19% 16/108= 14.81% 

Category 4 2/2 = 100% 0/2 = 0% 

AC 94/110= 85.45% 16/110= 14.55% 

Category 5 4/4 = 100% 0/4 = 0% 

AC 98/114= 85.96% 17/114= 14.04% 

Category 6 6/14 = 43% 8/14 = 57% 

FAC 104/128= 81.25% 25/128 = 18.75% 

SwapoAdd.c PCD Table 
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Appendix J: SwapoAdd.c Category Calculations Table 
 

Categories 
Rule 

Number 

CATEGORY CALCULATIONS 

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

 

F
re

q
u
e

n
c
y
 

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

 

∑
S

lic
e

 S
iz

e
s
 

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

 

W
e

ig
h
t 

C
a

te
g

o
ry

 V
io

la
te

d
 

F
re

q
u
e

n
c
y
 

C
a

te
g

o
ry

 V
io

la
te

d
 

S
lic

e
 S

iz
e

s
 

C
a

te
g

o
ry

 V
io

la
te

d
 

W
e

ig
h
t 

C
a

te
g

o
ry

 

F
re

q
u
e

n
c
y
 

C
a

te
g

o
ry

  
∑

S
lic

e
 

S
iz

e
s
 

R
u

le
 C

a
te

g
o

ry
 

W
e

ig
h
t 

Category 1 

4.1 + 7.1 5 5 25 3 3 9 8 8 64 

4.2 5 5 25 0 0 0 5 5 25 

5.1 13 79 1027 0 0 0 13 79 1027 

5.2 0 0 0 3 13 39 3 13 39 

6.1 1 4 4 0 0 0 1 4 4 

AC 5 24 93 1081 6 16 48 30 109 1159 

Category 2 

12.2 3 3 9 0 0 0 3 3 9 

12.3 2 25 50 0 0 0 2 25 50 

13.4 6 77 462 0 0 0 6 77 462 

13.5 6 77 462 0 0 0 6 77 462 

13.6 0 0 0 1 8 8 1 8 8 

14.7 2 59 118 2 17 34 4 76 304 

17.1 0 0 0 1 2 2 1 2 2 

17.5 2 15 30 0 0 0 2 15 30 

AC 0-1 13 45 349 2212 10 41 44 55 392 2486 

Category 3 

8.1 3 23 69 1 53 35 4 76 304 

8.2 4 76 304 0 0 0 4 76 304 

8.3 5 19 95 0 0 0 5 19 95 

8.6 4 75 300 0 0 0 4 75 300 

14.8 2 27 54 0 0 0 2 27 52 

16.1 4 56 224 4 10 40 8 66 528 

16.2 9 63 567 0 0 0 9 63 567 

16.3 3 3 9 0 0 0 3 3 9 

16.4 3 3 9 0 0 0 3 3 9 

16.5 0 0 0 1 53 53 1 53 53 

16.8 2 4 8 0 0 0 2 4 8 

16.9 8 48 384 0 0 0 8 48 384 

AC 0-2 25 92 746 4235 16 157 172 108 905 5099 

Category 4 
8.12 1 4 4 0 0 0 1 4 4 

9.2 1 4 4 0 0 0 1 4 4 

AC 0-3 27 94 754 4243 16 157 172 110 913 5107 
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Categories 
Rule 

Number 

CATEGORY CALCULATIONS 

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

 

F
re

q
u

e
n

c
y
 

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

 

∑
S

lic
e

 S
iz

e
 

C
a

te
g

o
ry

 S
a

ti
s
fi
e
d

 

W
e

ig
h
t 

C
a

te
g

o
ry

 V
io

la
te

d
 

F
re

q
u

e
n

c
y
 

C
a

te
g

o
ry

 V
io

la
te

d
 

∑
S

lic
e

 S
iz

e
 

C
a

te
g

o
ry

 V
io

la
te

d
 

W
e

ig
h
t 

C
a

te
g

o
ry

 

F
re

q
u

e
n

c
y
 

C
a

te
g

o
ry

  
∑

S
lic

e
 

S
iz

e
 

R
u

le
 C

a
te

g
o

ry
 

W
e

ig
h
t 

Category 5 

19.6 2 2 4 0 0 0 1 4 4 

20.2 1 1 1 0 0 0 1 1 1 

20.9 1 1 1 0 0 0 1 1 1 

AC 0-4 30 98 758 4249 16 157 172 113 919 5113 

Category 6 

6.3 0 0 0 1 1 1 1 1 1 

11.3 0 0 0 2 5 10 2 5 10 

12.1 2 2 4 0 0 0 2 2 4 

17.4 2 2 4 1 2 2 3 4 12 

19.1 1 1 1 0 0 0 1 1 1 

19.2 1 1 1 0 0 0 1 1 1 

19.7 0 0 0 4 56 224 4 56 224 

FAC 37 104 764 4259 24 221 409 127 989 5366 

SwapoAdd.c Category Calculations 
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Appendix K: Clause Table Equations 

Clause 

Number 

Slice 

Size 

Clause 

Frequency 

Clause 

Weight 

Function 

Name 

Applicable Rules 

Satisfied Violated 

1 2.a 3 4 5 
6 

6.a 6.b 

 

1. Clause Number: the Clause line number in the program code.  

2. Slice Size: number of Clauses in a slice. 

a. Clause ∑Slice Size: is the total Slice Size for each program Clause 

that applied a MISRA rule which is equal to number of Clauses in a 

slice by slicing a Clause. 

3. Clause Frequency: number of time a Clause is in a slice. 

4. Clause Weight: is equal to Clause frequency multiply by Clause ∑Slice Size. 

5. Function Name: is the function that the Clause belongs to. 

6. Applicable rules: rules that applied in a program, function or category. 

a. Satisfied Rules: rules that applied and satisfied in a program, 

function or category. 

b. Violated Rules: rules that applied and violated in a program, function 

or category. 
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Appendix L: Robustness Grid Equations 

In the following table, each number in the cell will be calculated by the equation that 

has the same number. 

1 2 

3 4 5 6 

3
.a

 

3
.b

 

3
.c

 

3
.d

 

3
.e

 

3
.f
 

3
.g

 

3
.h

 

4
.a

 

4
.b

 

5
.a

 

5
.b

 

6
.a

 

6
.b

 

6
.c

 

6
.d

 

6
.e

 

6
.f
 

6
.g

 

6
.h

 

6
.i
 

3
.a

 (
i,
 i
i,
 i
ii,

 i
v
) 

       

7 

8 9
.a

 

9
.b

 

1
0
.a

 

1
0
.b

 

8 11 

 
1. Categories (Category 1 – Category 6): set of rules share same 

characteristics, and ordered regarding to “category selection conditions” in 

Section 3.1. 

2. Rule Number: MISRA C2 rule number, as shown in MISRA C2 document. 

3. Function Name: each function and has these values: 

a. Applied Rules: MISRA C2 rules that are applied in one or more 

functions. 

i. +n: times of a rule been satisfied through a function = Function 

Satisfied Frequency. 

ii. -n: times of a rule been violated through a function = Function 

Violate Frequency 

iii. 0: rule is not applicable in a function. 
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iv. Number of rules applied through a program in a category, 

which is equal to number of non-zero applied rules for a 

function. (NOT the sum of +n and –n, but how many times a 

rule whether +, –, or both been applied). 

b. ∑Satisfied Slice Size: total size of all Clause slices that satisfy a rule 

in a function. 

c. Rule Satisfied Weight: weight of satisfied rule which is equal to a 

function satisfied frequency for a rule multiply by ∑satisfied Slice Size 

for the same rule in a function for a category. 

d. ∑Violated Slice Size: total size of all Clauses slices that violate a rule 

in a function. 

e. Rule Violated Weight: weight of violated rule which is equal to a 

function satisfied frequency for a rule multiply by ∑violated Slice Size 

for the same rule in a function for a category. 

f. Rule Function Frequency: times a rule been applied (+n +|-n|) in a 

function. 

g. Rule ∑ Function Slice Size: ∑satisfied Slice Size + ∑violated Slice 

Size for a function. 

h. Rule Function Weight: rule function weight multiply by rule ∑function 

Slice Sizes of a rule (which is equal to ∑satisfied Slice Size + 

∑violated Slice Size). 

4. FCD (Function Category Degree): has two values:  

a. FCSD (Function Category Satisfied Degree): Robustness Degree 

for satisfied rules in a category for a function is equal to times of rules 

has been satisfied (∑+n) in same category for the same function 
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divided by all times a rule has been applied in the same category for 

the same function presented as a percentage. 

b. FCVD (Function Category Violated Degree): Robustness Degree 

for violated rules in a category for a function is equal to times of rules 

has been violated (∑|-n|) in same category for the same function 

divided by all times a rule has been applied in the same category for 

the same function presented as a percentage. 

5. PCD (Program Category Degree): Has two values:  

a. PCSD (Program Category Satisfied Degree): Robustness Degree 

for satisfied rules in a category for all functions is equal to times of 

rules has been satisfied (∑+n for all functions) in same category for all 

functions divided by all times a rule has been applied in the same 

category for all functions presented as a percentage. 

b. PCVD (Program Category Violated Degree): Robustness Degree for 

violated rules in a category for all functions is equal to times of rules 

has been violated (∑|-n| for all functions) in same category for all 

functions divided by all times a rule has been applied in the same 

category for all functions presented as a percentage. 

6. Category Calculations:  

Frequency: times of a rule being applied through a program. 

a. Category Satisfied Slice Size: ∑Slice Size of a rule being satisfied 

through a category for all functions. 

b. Category Satisfied Frequency: times of a rule being satisfied 

through a category for all functions. 
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c. Category Satisfied Weight: sum of all satisfied rules weight in a 

category which is equal to sum of rules category satisfied frequency 

multiply by all rules ∑satisfied Slice Size in a category. 

d. Category Violated Slice Size: ∑Slice Size of a rule being violated 

through a category for all functions. 

e. Category Violate Frequency: times of a rule being violated through a 

category for all functions. 

f. Category Violated Weight: sum of all violated rules weight in a 

category which is equal to sum of rules category violated frequency 

multiply by all rules ∑violated Slice Size in a category. 

g. Category ∑Slice Size: total size of all Clauses slices that apply a rule 

in all functions. 

h. Category Frequency: times of a rule being applied through a 

category for all functions. This means the rule frequency. 

i. Category Weight: sum of all applicable rules weight in a category 

which is equal to sum of rules category frequency multiply by all rules 

∑Slice Sizes (∑satisfied Slice Size +∑violated Slice Size) in a 

category. 

7. AC (Accumulative Categories): Accumulative value for each column for all 

previous categories for a function. 

8. FAC (Function Accumulative Categories): Accumulative value for each 

column for all categories for a function. The FAC, as with all other 

Robustness Degrees, has two values: FSAC is the Function Satisfaction 

Accumulative Degree and FVSC is the Function Violation Accumulative 

Degree.  
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9. WCFD (Whole Categories Function Degree): has two values: 

a. WCFSD (Whole Categories Function Satisfied Degree):  ∑ all 

satisfied rules of all categories of a function divided by ∑ all applied 

rules in all categories of a function presented as a percentage. (In 

other words: crossing of FCSD column with FAC row).   

b. WCFVD (Whole Categories Function Violated Degree): ∑ all 

violated rules of all categories of a function divided by ∑ all applied 

rules of all categories of a function presented as a percentage. (In 

other words: crossing of FCVD column with FAC row). 

10. WPD (Whole Program Degree) has two values: 

a. WPSD (Whole Program Satisfied Degree): ∑ all satisfied rules of a 

whole program divided by ∑ all applied rules of same whole program 

presented as a percentage. (In other words: crossing of PCSD column 

with FAC row). 

b. WPVD Whole Program Violated Degree): ∑ all violated rules of a 

whole program divided by ∑ all applied rules of same whole program 

presented as a percentage. (In other words: crossing of PCVD column 

with FAC row). 

11. WPW (Whole Program Weight):  ∑ all applied rules weight of whole 

program, which is equal to ∑ all applied rules frequency of whole program 

multiply by ∑ size of all applied rules slices of the whole program presented 

as a percentage. (In other words: crossing of Category Weight column with 

FAC row). 
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Appendix M: LDRA TBmisra test results (against MISRA C2) 

 #include <stdio.h> 

/* (M) STATIC VIOLATION     : 130 S : MISRA-C:2004 20.8,20.9,20.12: Included file 

is not permitted. :      7F#include <stdio.h> */ 

    #define LAST 10  

    #define ARRAY_SIZE 10 

 typedef unsigned char x1; 

 char array[ARRAY_SIZE] = "0123456789"; 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     15Fchar */ 

/* (M) STATIC VIOLATION     : 404 S : MISRA-C:2004 9.2: Array initialisation has too 

many items. :     16F  array [ 10 ] = "0123456789" ; */ 

/* (M) DATAFLOW VIOLATION   : 25 D : MISRA-C:2004 8.7: Scope of variable could 

be reduced : array : 16 */ 

    void Incr(int *num, int i); 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     20F  int * num , */ 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     21F  int i ) ; */ 

    void swap(int *a, int *b); 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     25F  int * a , */ 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     26F  int * b ) ; */ 

    int one (int x); 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     28Fint */ 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     30F  int x ) ; */ 

    int main() 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     32Fint */ 

    { 

        int i, sum = 0, *a = 12,*b = 13, x = 3; 
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/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     35F    int */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : i :     36F      i , */ 

/*    See also line 6 SwapoAdd.c(SWAPOADD) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : a :     38F      * a = 12 , */ 

/*    See also line 7 SwapoAdd.c(SWAPOADD) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : b :     39F      * b = 13 , */ 

/*    See also line 7 SwapoAdd.c(SWAPOADD) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : x :     40F      x = 3 ; */ 

/*    See also line 8 SwapoAdd.c(SWAPOADD) */ 

 

        for ( i = 1; i <= LAST; i++ ) { 

            Incr(&sum, i); 

        }  

        printf("sum = %d??/n", sum); 

/* (M) STATIC VIOLATION     : 81 S : MISRA-C:2004 4.2: Use of trigraphs. :     54T    

printf ( "sum = %d??/n" , sum ) ; */ 

        swap (&a,&b); 

        int index;  

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     59F      index ; */ 

           for (index = 0; index < ARRAY_SIZE; ++index)  

           { 

            one (x); 

               printf("&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n", 

/* (M) STATIC VIOLATION     : 87 S : Use of pointer arithmetic. :     72T        printf ( 

"&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n" , & array [ index ] , ( 

array + index ) , array [ index ] ) ; */ 

/* (M) STATIC VIOLATION     : 87 S : Use of pointer arithmetic. : 72 */ 

               &array[index], (array+index), array[index]); 

                

           } 
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        return 0; 

    } 

 

    void Incr(int *num, int i) { 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     80F  int * num , */ 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     81F  int i ) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : i : 81 */ 

/*    See also line 11 SwapoAdd.c(SWAPOADD) */ 

        *num = *num + i; 

    } 

 

    void swap(int *a, int *b) 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     88F  int * a , */ 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     89F  int * b ) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : a : 88 */ 

/*    See also line 11 SwapoAdd.c(SWAPOADD) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : b : 89 */ 

/*    See also line 11 SwapoAdd.c(SWAPOADD) */ 

    { 

        int temp= *a; 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     91F    int */ 

        *a= *b; 

        *b= temp; 

        printf ("pointer a is: %d\n",*a); 

/* (M) DATAFLOW VIOLATION   : 45 D : MISRA-C:2004 21.1: Pointer not checked 

for null before use : a :     95T    printf ( "pointer a is: %d\n" , * a ) ; */ 

/*    See also line 36 SwapoAdd.c(SWAPOADD) */ 

        printf ("pointer b is: %d\n",*b); 
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/* (M) DATAFLOW VIOLATION   : 45 D : MISRA-C:2004 21.1: Pointer not checked 

for null before use : b :     96T    printf ( "pointer b is: %d\n" , * b ) ; */ 

/*    See also line 37 SwapoAdd.c(SWAPOADD) */ 

    } 

     

    int one (int x) 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :     99Fint */ 

/* (O) STATIC VIOLATION     : 90 S : MISRA-C:2004 6.3: Basic type declaration 

used. :    101F  int x ) */ 

/* (O) XREF VIOLATION       : 49 X : MISRA-C:2004 5.7: Identifier reuse: var vs proc 

param. : x : 101 */ 

/*    See also line 11 SwapoAdd.c(SWAPOADD) */ 

    { 

     printf ("%d\n", x); 

     return 1; 

    } 
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Appendix N: FlexeLint test results (against MISRA C2) 

FlexeLint for C/C++ (Unix/386) Vers. 9.00i, Copyright Gimpel Software 1985-2012 

--- Module:   SwapoAdd.c (C) 

 char array[ARRAY_SIZE] = "0123456789"; 

        ^ 

SwapoAdd.c:5:8: Note 970: Use of modifier or type 'char' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

                                             ^ 

SwapoAdd.c:5:45: Info 784: Nul character truncated from string 

    void Incr(int *num, int i); 

              ^ 

SwapoAdd.c:6:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

                        ^ 

SwapoAdd.c:6:24: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

    void swap(int *a, int *b); 

              ^ 

SwapoAdd.c:7:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

                      ^ 

SwapoAdd.c:7:22: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

    int one (int x); 

    ^ 

SwapoAdd.c:8:4: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

             ^ 

SwapoAdd.c:8:13: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

    int main()    { 

    ^ 

SwapoAdd.c:9:4: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

        int i, sum = 0, *a = 12,*b = 13, x = 0; 
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        ^ 

SwapoAdd.c:10:8: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

                               ^ 

SwapoAdd.c:10:31: Error 64: Type mismatch (initialization) (int * = int) [MISRA 2004 Rule 

1.2, required], [MISRA 2004 Rule 8.4, required] 

                                       ^ 

SwapoAdd.c:10:39: Error 64: Type mismatch (initialization) (int * = int) [MISRA 2004 Rule 

1.2, required], [MISRA 2004 Rule 8.4, required] 

            Incr(&sum, i);        } 

                     ^ 

SwapoAdd.c:13:21: Note 934: Taking address of near auto variable 'sum' of type 'int' (arg. 

no. 1) [MISRA 2004 Rule 1.2, required] 

        printf("sum = %d ??/n", sum); 

               ^ 

SwapoAdd.c:14:15: Warning 584: Trigraph sequence (??/) detected [MISRA 2004 Rule 4.2, 

required] 

                                    ^ 

SwapoAdd.c:14:36: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of 

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10, 

required] 

SwapoAdd.c:1:0: Info 830: Location cited in prior message 

        swap (&a,&b); 

                ^ 

SwapoAdd.c:15:16: Note 918: Prototype coercion (arg. no. 1) of pointers [MISRA 2004 Rule 

10.2, required] 

SwapoAdd.c:15:16: Error 64: Type mismatch (arg. no. 1) (int * = int **) [MISRA 2004 Rule 

1.2, required], [MISRA 2004 Rule 8.4, required] 

SwapoAdd.c:15:16: Note 934: Taking address of near auto variable 'a' of type 'int *' (arg. no. 

1) [MISRA 2004 Rule 1.2, required] 

                   ^ 

SwapoAdd.c:15:19: Note 918: Prototype coercion (arg. no. 2) of pointers [MISRA 2004 Rule 

10.2, required] 

SwapoAdd.c:15:19: Error 64: Type mismatch (arg. no. 2) (int * = int **) [MISRA 2004 Rule 

1.2, required], [MISRA 2004 Rule 8.4, required] 

SwapoAdd.c:15:19: Note 934: Taking address of near auto variable 'b' of type 'int *' (arg. no. 



 

 

174 

2) [MISRA 2004 Rule 1.2, required] 

        int index; 

        ^ 

SwapoAdd.c:16:8: Error 42: Expected a statement 

                 ^ 

SwapoAdd.c:16:17: Note 960: Violates MISRA 2004 Required Rule 14.3, null statement not 

in line by itself 

           for (index = 0; index < ARRAY_SIZE; ++index)         { 

                ^ 

SwapoAdd.c:17:16: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required] 

                         ^ 

SwapoAdd.c:17:25: Error 63: Expected an lvalue 

                           ^ 

SwapoAdd.c:17:27: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required] 

                                                 ^ 

SwapoAdd.c:17:49: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required] 

SwapoAdd.c:17:49: Error 52: Expected an lvalue 

SwapoAdd.c:17:49: Note 961: Violates MISRA 2004 Advisory Rule 12.13, increment or 

decrement combined with another operator 

            one (x); 

                          ^ 

SwapoAdd.c:18:26: Warning 534: Ignoring return value of function 'one(int)' of type 'int (int)' 

(compare with line 8) [Encompasses MISRA 2004 Rule 16.10, required] 

SwapoAdd.c:8:0: Info 830: Location cited in prior message 

               &array[index], (array+index), array[index]);     } 

                      ^ 

SwapoAdd.c:20:22: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required] 

                                     ^ 

SwapoAdd.c:20:37: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required] 

                                           ^ 

SwapoAdd.c:20:43: Warning 626: argument no. 3 inconsistent with format 

                                                   ^ 

SwapoAdd.c:20:51: Error 40: Undeclared identifier 'index' [MISRA 2004 Rule 1.2, required] 

                                                          ^ 

SwapoAdd.c:20:58: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of 

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10, 
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required] 

SwapoAdd.c:1:0: Info 830: Location cited in prior message 

    void Incr(int *num, int i) { 

              ^ 

SwapoAdd.c:23:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

                        ^ 

SwapoAdd.c:23:24: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

    void swap(int *a, int *b)    { 

              ^ 

SwapoAdd.c:26:14: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

                      ^ 

SwapoAdd.c:26:22: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

        int temp= *a; 

        ^ 

SwapoAdd.c:27:8: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

        printf ("pointer a is: %d\n",*a); 

                                        ^ 

SwapoAdd.c:30:40: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of 

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10, 

required] 

SwapoAdd.c:1:0: Info 830: Location cited in prior message 

        printf ("pointer b is: %d\n",*b);    } 

                                        ^ 

SwapoAdd.c:31:40: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of 

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10, 

required] 

SwapoAdd.c:1:0: Info 830: Location cited in prior message 

    int one (int x)    { 

    ^ 

SwapoAdd.c:33:4: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 
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             ^ 

SwapoAdd.c:33:13: Note 970: Use of modifier or type 'int' outside of a typedef [MISRA 2004 

Rule 6.3, advisory] 

     printf ("%d\n", x); 

                          ^ 

SwapoAdd.c:34:26: Warning 534: Ignoring return value of function 'printf(const char *, ...)' of 

type 'int (const char *, ...)' (compare with line 1) [Encompasses MISRA 2004 Rule 16.10, 

required] 

SwapoAdd.c:1:0: Info 830: Location cited in prior message 

    --- Wrap-up for Module: SwapoAdd.c 

SwapoAdd.c:4:0: Info 751: local typedef 'x1' of type 'unsigned char' (line 4, file SwapoAdd.c) 

not referenced 

:0:0: Note 960: Violates MISRA 2004 Required Rule 8.7, could define variable at block 

scope: array 

--- Global Wrap-up 

SwapoAdd.c:5:0: Warning 552: Symbol 'array' of type 'char [10]' (line 5, file SwapoAdd.c) not 

accessed 

SwapoAdd.c:5:0: Info 843: Variable 'array' of type 'char [10]' (line 5, file SwapoAdd.c) could 

be declared as const 

SwapoAdd.c:1:0: Warning 526: Symbol 'printf(const char *, ...)' of type 'int (const char *, ...)' 

(line 1, file SwapoAdd.c) not defined 

:0:0: Note 974: Worst case function for stack usage: 'main' is finite, requires 80 bytes total 

stack in calling 'swap'. See +stack for a full report. [MISRA 2004 Rule 16.2, required] 

:0:0: Note 900: Successful completion, 57 messages produced 
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Appendix O: LDRA TenDRA test results (against ISO 1990) 

 

"SwapoAdd.c", line 1 column 2: Warning: 

  [ISO 6.8]: Indented preprocessing directive. 

 

"SwapoAdd.c", line 2 column 5: Warning: 

  [ISO 6.8]: Indented preprocessing directive. 

 

"SwapoAdd.c", line 3 column 5: Warning: 

  [ISO 6.8]: Indented preprocessing directive. 

 

"SwapoAdd.c", line 11 column 32: Error: 

  [ISO 6.5.7]: In initialization of 'a'. 

  [ISO 6.3.4]: Conversion of nonzero value of type 'int' to type 'int *'. 

  [ISO 6.3.16]: Can't perform this conversion by assignment. 

  [ISO 6.5.7]: Initializers are converted as if by assignment. 

 

"SwapoAdd.c", line 11 column 40: Error: 

  [ISO 6.5.7]: In initialization of 'b'. 

  [ISO 6.3.4]: Conversion of nonzero value of type 'int' to type 'int *'. 

  [ISO 6.3.16]: Can't perform this conversion by assignment. 

  [ISO 6.5.7]: Initializers are converted as if by assignment. 

 

"SwapoAdd.c", line 16 column 36: Warning: 

  [ISO 6.3.2.2]: In call of function 'printf'. 

  [ISO 6.6.3]: Discarded function return. 

 

"SwapoAdd.c", line 17 column 20: Error: 

  [ISO 6.3.2.2]: In call of function 'swap'. 

  [ISO 6.1.2.6]: The types 'int *' and 'int' are incompatible. 

  [ISO 6.3.4]: Types in pointer conversion should be compatible. 

  [ISO 6.3.16]: Can't perform this conversion by assignment. 

  [ISO 6.3.2.2]: Argument 1 is converted to parameter type. 
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"SwapoAdd.c", line 17 column 20: Error: 

  [ISO 6.3.2.2]: In call of function 'swap'. 

  [ISO 6.1.2.6]: The types 'int *' and 'int' are incompatible. 

  [ISO 6.3.4]: Types in pointer conversion should be compatible. 

  [ISO 6.3.16]: Can't perform this conversion by assignment. 

  [ISO 6.3.2.2]: Argument 2 is converted to parameter type. 

 

"SwapoAdd.c", line 18 column 17: Error: 

  [ISO 6.6.2]: Declaration statement should be at start of block. 

 

"SwapoAdd.c", line 21 column 21: Warning: 

  [ISO 6.3.2.2]: In call of function 'one'. 

  [ISO 6.6.3]: Discarded function return. 

 

"SwapoAdd.c", line 23 column 59: Warning: 

  [ISO 6.3.2.2]: In call of function 'printf'. 

  [ISO 6.6.3]: Discarded function return. 

 

"SwapoAdd.c", line 38 column 41: Warning: 

  [ISO 6.3.2.2]: In call of function 'printf'. 

  [ISO 6.6.3]: Discarded function return. 

 

"SwapoAdd.c", line 39 column 41: Warning: 

  [ISO 6.3.2.2]: In call of function 'printf'. 

  [ISO 6.6.3]: Discarded function return. 

 

"SwapoAdd.c", line 44 column 25: Warning: 

  [ISO 6.3.2.2]: In call of function 'printf'. 

  [ISO 6.6.3]: Discarded function return. 
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Appendix P: Variance.c program 
 

1- #include<stdio.h>1 

2- #define MAX 10242 

3- main()3 

4- { float x[MAX];4 

5- float var15,var26,var37,var48,var59; 

6- float ssq10, avg11, dev12; 

7- float t113,t214,t315; 

8- int ii16,jj17,n18; 

9- t1=0.0;19 

10- t2=0.0;20 

11- t3=0.0;21 

12- ssq=0.0;22 

13- scanf23("%d"24, &n25); 

14- for (ii=026; ii<n27; ii=ii +128) 

15- {    scanf29("%f"30, &x[ii]31); 

16- t1 = t1+x[ii]32; 

17- ssq =ssq +x[ii]*x[ii]33;} 

18- avg =t1/n;34 

19- var3=(ssq - n*avg*avg)/ (n-1);35 

20- var4=(ssq - t1*avg)/ (n-1);36 

21- t1=t1*t1/n;37 

22- var2=(ssq-t1)/(n-1);38 

23- for (jj=039; jj<n40; jj=jj+141) 

24- {     dev = x[jj]-avg;42 

25- t2=t2+dev;43 

26- t3=t3+dev*dev;}44 

27- var1=t3/(n-1);45 

28- var5= (t3-t2*t2/n)/(n-1);46 

29- printf47("variance 1 (two pass):%f\n"48, var1)49; 

30- printf50("variance 2 (one pass, using square of sum):%f\n"51,var252); 

31- printf53("variance 3 (one pass, using average):%f\n"54,var355); 

32- printf56("variance 4 (one pass, using average, sum):%f\n"57,var458); 

33- printf59("variance 5 (two pass, corrected):%f\n"60,var261);} 
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Appendix Q: n_char program 
 
#include <stdio.h>1 

#include <string.h>2 
void main()3 
{ 
    int  n;4 
    char string[50];5 
    strcpy6(string7, "Hello World"8); 
    n = n_char9(string10);  
    printf11("Length of string = %d\n"12, n13);  
} 
 
int n_char14(char string[]15) 
{ 
    int n;16 
    n = strlen17(string18); 
    if (n > 50) 19 
 printf20("String is longer than 50 characters\n"21); 
    return n;22 
} 

 
 


