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Abstract

We investigate in this thesis the generic properties of curves in the Minkowski plane

R2
1 and of smooth Lorentzian surfaces. The generic properties of curves in R2

1 are ob-

tained by studying the contacts of curves in R2
1 with lines and pseudo-circles. These

contacts are captured by the singularities of the families of height and distance-

squared functions on the curves. On the other hand, the generic properties of smooth

Lorentzian surfaces are obtained by studying certain Binary Differential Equations

defined on the surfaces.
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Chapter 1

Introduction

We investigate in this thesis the generic properties of curves in the Minkowski plane

R2
1 and of smooth Lorentzian surfaces. The generic properties of curves in R2

1 are ob-

tained by studying the contacts of curves in R2
1 with lines and pseudo-circles. These

contacts are captured by the singularities of the families of height and distance-

squared functions on the curves. On the other hand, the generic properties of smooth

Lorentzian surfaces are obtained by studying certain Binary Differential Equations

defined on the surfaces.

Chapter 2 contains some preliminary results about the Minkowski plane R2
1 and

curves in R2
1 which we use in Chapters 3, 4 and 5. We also recall some basic

concepts about transversality to clarify the meaning of the word “generic” which is

used extensively in the thesis.

In Chapter 3 we study the caustics of curves in R2
1. The caustic is the bifurcation

set of the family of distance-squared functions on the curve. It coincides with the

evolute of the curve away from the curve’s lightlike points. We observe that the

caustic is well defined at all points of the curve while the evolute is not well defined

at lightlike points. We show that the caustic of the oval lies in the complement of

the interior of the oval. We also prove that any simple and closed curve in R2
1 has

at least four lightlike points.

In Chapter 4 we consider the parallels of curves in R2
1. We prove that the parallels

at an ordinary vertex of a curve in R2
1 have a distinct configuration to that of the

parallels at an ordinary vertex of a curve in the Euclidean plane. The parallels at

1



Chapter 1. Introduction 2

an ordinary vertex of a curve in the Euclidean plane are as Figure 4.3(left) while

they are as Figure 4.3(right) at an ordinary vertex of a curve in R2
1.

In Chapter 5 we define the Minkowski symmetry set (MSS) in an analogous

way to the symmetry set (SS) of a curve in the Euclidean plane [25, 43]. We

consider the geometry of MSS and deal in some details with the MSS of an ellipse

in R2
1. The remaining chapters are about certain Binary Differential Equations

(BDEs) on smooth Lorentzian surfaces. In Chapter 6 we gather all the results about

the local singularities of codimension ≤ 1 of BDEs and the way they bifurcate in

generic 1-parameter families of BDEs. We present them in a way that makes their

identification more apparent.

In Chapter 7 we recall some basic notions of differential geometry of surfaces

in the Euclidean and Lorentzian 3-space which can be found in books on elemen-

tary differential geometry, see for example [21]. These notions are generalised to

Lorentzian surfaces [31] as shown in section 7.2.

In Chapter 8 we study natural 1-parameter families of BDEs associated to a

self-adjoint operator A on a Lorentzian surface M . The A-principal, A-asymptotic

and A-characteristic curves on M , which are defined by BDEs, are associated to

A. These three pairs of foliations determine the natural 1-parameter families of

A-conjugate curve congruences denoted by LCiα, i = 1, 2 and reflected A-conjugate

curve congruences denoted by LRi
α, i = 1, 2 [35]. The curves LCiα and LRi

α are the

solution curves of their BDEs and the parameter α is the oriented hyperbolic angle

between certain directions. We start the chapter by recalling some basic properties

of oriented hyperbolic angles and then proceeding to study the families LCiα and

LRi
α, i = 1, 2.

In Chapter 9 we determine the local topological configurations of LCiα and

LRi
α, i = 1, 2, for α fixed, and the way they bifurcate locally as α varies. The

BDEs LCiα and LRi
α, i = 1, 2 determine either pairs of transverse foliations or none

away from their discriminant curves. We study the local configurations of LCiα
and LRi

α, i = 1, 2 at points on their discriminant curves. We examine the related

conditions given in Chapter 6 for each singularity to occur.

In the Appendix we give examples of calculations carried out to prove some of
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the results in Chapters 8 and 9.



Chapter 2

Curves in the Minkowski plane and

transversality

In this chapter we give some preliminary results about the Minkowski plane R2
1 and

curves γ in R2
1. Away from lightlike points, we can define the curvature of γ in a

similar way to the case of curves in the Euclidean plane. Despite the concept of

curvature cannot be defined at lightlike points, the four-vertex theorem is proved

for smooth closed curves in R2
1 [46]. In section 2.4 we recall the basic concepts

about transversality and explain what is meant by the word “generic” which is used

extensively in the thesis.

2.1 The Minkowski plane

The Minkowski plane R2
1 is the vector space R2 endowed with the pseudo-scalar

product ⟨u, v⟩ = −u0v0 + u1v1, for any u = (u0, u1) and v = (v0, v1) in R2. We say

that a non-zero vector u ∈ R2
1 is spacelike if ⟨u, u⟩ > 0, lightlike if ⟨u, u⟩ = 0 and

timelike if ⟨u, u⟩ < 0. The norm of a vector u ∈ R2
1 is defined by ∥u∥ =

√
|⟨u, u⟩|.

We have the following pseudo-circles in R2
1 with centre p ∈ R2

1 and radius r > 0,

H1(p,−r) = {u ∈ R2
1 | ⟨u− p, u− p⟩ = −r2},

S1
1(p, r) = {u ∈ R2

1 | ⟨u− p, u− p⟩ = r2},

LC∗(p) = {u ∈ R2
1 | ⟨u− p, u− p⟩ = 0}.

4
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We denote by H1(−r), S1
1(r) and LC∗ the pseudo-circles centred at the origin in

R2
1.

Definition 2.1.1 Two vectors u, v in R2
1 are orthogonal if and only if ⟨u, v⟩ = 0.

Theorem 2.1.1 [41] Let u and v be non-zero orthogonal vectors in R2
1. Then, either

(i) u is timelike and v is spacelike or vice-versa; or

(ii) u is lightlike and v = λu, λ ∈ R− {0}.

We denote by u⊥ the vector given by u⊥ = (u1, u0). Thus, u⊥ is orthogonal to u.

We have u⊥ = ±u if and only if u is lightlike.

2.2 Properties of parametrised curves in R2
1

In this section we provide the preliminary material to study curves in R2
1. Some of

the material is similar to the case of curves in the Euclidean plane.

Definition 2.2.1 A curve in the Minkowski plane is a C∞-map γ : I → R2
1 of an

open interval I of the real line R into R2
1. The trace of γ is the set of points γ(I),

and we still refer to it as the curve γ.

The variable t is called the parameter of the curve γ. If we write γ(t) =

(X(t), Y (t)), then the vector (X ′(t), Y ′(t)) = γ′(t) ∈ R2
1 is called the tangent vector

to the curve γ at t.

Definition 2.2.2 A curve γ : I → R2
1 is said to be regular if γ′(t) ̸= 0 for all t ∈ I.

The point γ(t) is called spacelike, timelike or lightlike if the tangent vector γ′(t)

is spacelike, timelike or lightlike respectively. At lightlike points of γ, the lightlike

tangent vector γ′(t) is orthogonal to itself.

Let γ be a spacelike or a timelike curve (i.e., γ′(t) is spacelike or timelike for all

t ∈ I). The arc length from a point t0 is, by the definition,

s = l(t) =

∫ t

t0

∥γ′(t)∥dt.
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Since γ′(t) ̸= 0, the arc length s = l(t) is a differentiable function of t and
dl
dt
= ∥γ′(t)∥. The function s = l(t) has an inverse t = l−1(s), s ∈ l(I) = J ⊂ R.

Away from lightlike points, the curve γ can always be parametrised locally by

arc length s by taking γ(l−1(s)) as a new parametrisation of the curve. If γ is

parametrised by arc length, then ∥γ′(s)∥ = 1.

Let γ(s) = (X(s), Y (s)) be parametrised by arc length. Then the unit tangent

vector is γ′(s) = t(s) = (X ′(s), Y ′(s)), and we have ⟨t(s), t(s)⟩ = (−1)β, where

β = 1 if γ(s) is timelike and β = 2 if γ(s) is spacelike.

We define the unit normal vector n(s) as the vector obtained from the Euclidean

reflection of t(s) anticlockwise with respect to one of the lightlike lines of LC∗ as

follows. If t(s) is spacelike, then the timelike vector n(s) = (Y ′(s), X ′(s)) is the

Euclidean reflection of t(s) with respect to u1 = u2. If t(s) is timelike, then the

spacelike vector n(s) = (−Y ′(s),−X ′(s)) is the Euclidean reflection with respect to

u1 = −u2. In short,

n(s) = (−1)β(Y ′(s), X ′(s)),

with β is as above. The unit normal vector n(s) satisfies ⟨n(s),n(s)⟩ = (−1)β+1

and ⟨t(s),n(s)⟩ = 0. Thus we can associate an orthonormal frame {t(s),n(s)} of

R2
1 along the spacelike or timelike curve γ.

Away from lightlike points, the orthonormal basis {t(s),n(s)} associated to each

point of the curve γ(s) varies when we move along the curve. This change can be

described in terms of the derivatives t′(s) and n′(s). Differentiating the following

equations

⟨t(s), t(s)⟩ = (−1)β, ⟨n(s),n(s)⟩ = (−1)β+1, and ⟨t(s),n(s)⟩ = 0, (2.1)

with respect to s gives

⟨t′(s), t(s)⟩ = ⟨n′(s),n(s)⟩ = 0 and ⟨t′(s),n(s)⟩+ ⟨t(s),n′(s)⟩ = 0. (2.2)

The first two equations in (2.2) gives that t′(s) is parallel to n(s) and n′(s) is

parallel to t(s), so there exist real numbers κ(s) and ω(s) such that

t′(s) = κ(s)n(s) and n′(s) = ω(s)t(s). (2.3)
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Substituting equations (2.3) in the last equation in (2.2) gives

(−1)β+1κ(s) + (−1)βω(s) = 0,

which implies that ω(s) = κ(s). Therefore,

t′(s) = κ(s)n(s), (2.4)

and

n′(s) = κ(s)t(s), (2.5)

which are the Frenet equations of the spacelike or timelike curve γ in R2
1. We also

have

κ(s) = (−1)β+1⟨t′(s),n(s)⟩. (2.6)

The function κ : J → R is differentiable. The real number κ(s) is called the

curvature of the curve γ at s. We have κ(s) = ±∥t′(s)∥, and from equation (2.6) we

get

κ(s) = X ′(s)Y ′′(s)−X ′′(s)Y ′(s). (2.7)

Let t be an arbitrary parameter of a spacelike or timelike regular curve γ(t) =

(X(t), Y (t)). Then, we have

γ′(t) =
dγ

dt
=
dγ

ds

ds

dt
= t(s)∥dγ

dt
∥ = t(s)∥γ′(t)∥,

which implies

t(s) =
γ′(t)

∥γ′(t)∥
.

Then t(t) = γ′(t)
∥γ′(t)∥ is the unit tangent vector to γ at t. Since ∥γ′(t)∥ > 0, t(t) has

the same direction of t(s). The unit normal vector of γ at t is given by

n(t) = (−1)β (Y
′(t), X ′(t))

∥γ′(t)∥
.

We also have

γ′′(t) =
d2γ

dt2
=
d2γ

ds2
ds2

dt2
= γ′′(s)∥γ′(t)∥2. (2.8)

Since γ(s) is parametrised by arc length, so t′(s) = γ′′(s) is the curvature times

the unit normal. Taking the pseudo-scalar product for the both sides of equation

(2.8) with n(t) gives

⟨γ′′(t),n(t)⟩ = (−1)β+1κ(t)∥γ′(t)∥2.
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Therefore,

κ =
X ′Y ′′ −X ′′Y ′

(|X ′2 − Y ′2|) 3
2

.

Definition 2.2.3 A non-lightlike point γ(t0) is a vertex of γ if κ(t0) ̸= 0 and κ′(t0) =

0. It is an ordinary vertex if κ′(t0) = 0 and κ′′(t0) ̸= 0. It is called an inflection

point if κ(t0) = 0.

Remark 2.2.1 The curvature of a curve γ in R2
1 is undefined at the lightlike points

of γ. For instance, if γ(t0) is an isolated lightlike point and γ′′(t0) is not parallel to

γ′(t0), then ⟨γ′′(t0), γ′(t0)⊥⟩ ̸= 0 and the curvature at points on the spacelike and

timelike components of γ tends to infinity as t tends to t0.

Definition 2.2.4 A curve γ : [a, b]→ R2
1 is closed if γ(a) = γ(b) and all its deriva-

tives agree at a and b. The curve γ is simple if it has no self-intersection; that is, if

t1, t2 ∈ (a, b), t1 ̸= t2, then γ(t1) ̸= γ(t2).

If γ is a simple closed curve in R2
1, then by Jordan curve theorem, R2

1 − γ

has exactly two connected components with common boundary γ. One of them is

bounded by γ and called the interior of γ, and the other is non-bounded and called

the exterior of γ. Away from lightlike points, we call n(s) the inward-pointing unit

normal at γ(s) if it points to the interior of γ, and outward- pointing if it points to

the exterior of γ. The curve γ is positively oriented if n(s) is an inward-pointing for

all s ∈ [a, b], and negatively oriented if n(s) is an outward-pointing for all s ∈ [a, b].

2.3 The four-vertex theorem in R2
1

Tabachinkov in [46] generalized the classical four-vertex theorem which states that

a simple, closed, and convex plane curve has at least four vertices. Tabachinkov

considered a smooth closed strictly convex parametrised curve γ(t) in the oriented

affine plane. The acceleration vectors γ′′(t) generate a smooth line field l(t) along

the curve. Assume that these lines rotate in the same sense along γ; which means

that γ is strictly convex. We have
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Theorem 2.3.1 [46] For a generic curve γ(t), the envelope of the 1-parameter fam-

ily of the lines l(t) has at least four cusp singularities.

Away from lightlike points, if γ(t) is a strictly convex curve in the arc length

parametrisation, then the lines l(t) are perpendicular to γ and their envelope is

the caustic of the curve. The singularities of the caustic correspond to the ver-

tices of the curve. Tabachinkov showed that the statement of Theorem 2.3.1 holds

without considering the convexity assumption.

2.4 Transversality

For references for this section see [11, 27, 32].

Definition 2.4.1 Let X and Y be smooth manifolds and f : X → Y be a smooth

(C∞) mapping. Let W be a submanifold of Y and x a point in X. Then f intersects

W transversally at x (denoted by f t W at x) if either

(i) f(x) /∈ W , or

(ii) f(x) ∈ W and Tf(x)Y = Tf(x)W + (df)x(TxX).

In addition, f intersects W transversally if f t W for every x ∈ X.

Proposition 2.4.1 Let X and Y be smooth manifolds, W ⊂ Y a submanifold.

Suppose dim X < codim W . Let f : X → Y be smooth and suppose that f t W .

Then f(X) ∩W = ϕ.

Theorem 2.4.1 Let X and Y be smooth manifolds, W ⊂ Y a submanifold. Let

f : X → Y be smooth and suppose that f t W . Then f−1(W ) is a submanifold

of X, and codim f−1(W ) = codim W . In particular, if dim X = codim W , then

f−1(W ) consists only of isolated points.

Denote by Jk(m,n) (k ≥ 1) the vector space of polynomial mappings of degree

≤ k from Rm to Rn, without a constant term. Let f : Rm → Rn be a smooth

mapping. For every integer k ≥ 1, there is a smooth mapping

jkf : Rm → Jk(m,n),
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defined by jkf(x)= the degree k Taylor polynomial of f − f(x).

This polynomial is called the k-jet of f at x, and Jk(m,n) is called the space of

k-jets from Rm to Rn.

Definition 2.4.2 Let F be a topological space. Then

(i) A subset G of F is residual if it is the countable intersection of open and dense

subsets of F .

(ii) F is a Baire space if every residual subset is dense.

Theorem 2.4.2 (Thom’s Transversality Theorem) Let X and Y be smooth mani-

folds and W be a submanifold of Jk(X, Y ). Let

TW = {f ∈ C∞(X,Y ) : jkf t W}.

Then TW is a residual subset of C∞(X,Y ) endowed with the Whitney C∞-topology.

Since C∞(X,Y ) is a Baire space, then TW is a dense subset of C∞(X, Y ). If W

is closed, then TW is an open and dense subset of C∞(X,Y ), see [27].

Definition 2.4.3 The property P in C∞(X,Y ) is said to be generic if it holds in

a residual subset of C∞(X,Y ).

The property jkf t W (i.e., f ∈ TW ) is generic for C∞(X,Y ) for any submanifold

W of Jk(X, Y ).

Theorem 2.4.3 Let X ⊂ Rm and Y ⊂ Rn be smooth manifolds and U an open

set in Rt with G : X ×U → Rn a smooth map transverse to Y . Then for almost all

a ∈ U the maps Ga : X → Rn given by Ga(x) = G(x, a) are transverse to Y .



Chapter 3

Caustics and evolutes of curves in

the Minkowski plane

We study in this chapter properties of curves γ in the Minkowski plane R2
1 captured

by contact with lines and pseudo-circles. These contacts are measured by the singu-

larity of the families of height and distance-squared functions. The case of curves in

R2
1 is slightly different from the case of curves in the Euclidean plane: firstly, there

are three types of pseudo-circles in R2
1 and secondly there are the lightlike points on

γ where, for instance, the curvature is not defined. The results of this chapter are

part of the paper [42].

3.1 Lightlike points and contact with lines

We consider embeddings γ : S1 → R2
1. The set Emb(S1,R2

1) of such embeddings

is endowed with the Whitney C∞-topology. We say that a property is generic if it

is satisfied by curves in an open and dense subset of Emb(S1,R2
1). If we consider

γ : I → R2
1, where I is an open interval in R, then a property is said to be generic

if it is satisfied by curves in a residual subset of Emb(I,R2
1). A curve that satisfies

a generic property is called a generic curve.

Let γ ∈ Emb(I,R2
1). We recall that γ is spacelike (resp. timelike) if γ′(t) is a

spacelike (resp. timelike) vector for all t ∈ I. A point γ(t) is called a lightlike if

γ′(t) is a lightlike vector.

11
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Figure 3.1: Examples of closed curves with lightlike points (dots and thick lines).

The ellipse on the left has exactly four lightlike points and the curve on the right

has two line segments of lightlike points and other isolated lightlike points.

Proposition 3.1.1 The set of lightlike points of a curve γ ∈ Emb(S1,R2
1) is the

union of at least four disjoint non-empty and closed subsets of γ (see Figure 3.1).

Proof : The lightlike points are those where the tangent line to γ is parallel to

(±1, 1). We change the metric in R2 and consider γ as a curve γ̃ in the Euclidean

plane R2. Since γ̃ is closed, the image of its Gauss map N : γ̃ → S1 is the whole

unit circle S1. The pre-images of the points
√
2
2
(±1,±1) by N have tangent lines

parallel to (±1, 1), i.e., they are lightlike points on γ. It follows by the fact that N

is a continuous map that the set of lightlike points of γ is the union of at least four

disjoint non-empty and closed subsets of γ. 2

Remark 3.1.1 If γ : I → R2
1, then γ either have lightlike points or not. For

example, the pseudo-circles H1(p,−r) and S1
1(p, r) where r > 0 are open curves

with no lightlike points. On the other hand, the parabola (t, t2), t ∈ R2 has two

lightlike points.

We apply tools from singularity theory to obtain geometric information about

curves in R2
1. Given a smooth (i.e., C∞) function f : J → R (J = I or S1), we say

that f is singular at t0 ∈ J if f ′(t0) = 0. We consider the R-singularities of f at

t0 ∈ J , where R is the group of local changes of parameters in the source that fix

t0. The models for the local R-singularities of functions are ±(t − t0)
k+1, k ≥ 1,

and these are labelled Ak-singularities. The necessary and sufficient conditions for

a function f to have an Ak-singularity at t0 are

f ′(t0) = f ′′(t0) = . . . = f (k)(t0) = 0, f (k+1)(t0) ̸= 0.
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The only stable singularity (ignoring the constant terms) is ±(t − t0)2, i.e., the

A1-singularity. (See [11] for more on singularities of functions and their applications

to the geometry of curves in the Euclidean plane.)

The contact of a curve γ ∈ Emb(J,R2
1) (J = I or S1) with lines is captured by

the singularities of the family of height functions on γ. Let v be a non-zero vector

in R2
1 and consider the parallel lines

Lv
c = {p ∈ R2

1 | ⟨p, v⟩ = c},

with c ∈ R, which are (pseudo)-orthogonal to v. The contact of γ with the lines Lv
c

is measured by the singularities of the height function hv : J → R, given by

hv(t) = ⟨γ(t), v⟩.

An important observation is that the function hv is defined for all non-zero

vectors v including lightlike vectors, and at all points on γ including its lightlike

points.

We say that the curve γ has an Ak-contact (resp. A≥k-contact) with Lv
c at

γ(t0) ∈ Lv
c if hv has an Ak (resp. Al, l ≥ k)-singularity at t0. Thus, the contact of

the curve γ with Lv
c at γ(t0) ∈ Lv

c is of type

A1 if and only if v = λγ′(t0)
⊥ and ⟨γ′′(t0), γ′(t0)⊥⟩ ≠ 0;

A2 if and only if v = λγ′(t0)
⊥, ⟨γ′′(t0), γ′(t0)⊥⟩ = 0 and ⟨γ′′′(t0), γ′(t0)⊥⟩ ̸= 0;

A≥2 if v = λγ′(t0)
⊥ and ⟨γ′′(t0), γ′(t0)⊥⟩ = 0.

It follows that γ has an A≥1-contact with Lv
c at γ(t0) ∈ Lv

c if and only if Lv
c is

the tangent line to γ at γ(t0).

We call a point γ(t0) where γ has anA2-contact with its tangent line an (ordinary)

inflection point if γ(t0) is not a lightlike point and a lightlike inflection point if γ(t0)

is a lightlike point. At such points the curve γ lies on both sides of its tangent line.

3.2 The evolutes of spacelike and timelike curves

Let γ : I → R2
1 be a spacelike or a timelike curve and suppose that it is parametrised

by arc length (i.e., ∥γ′(s)∥ = 1 for all s ∈ I). Recall that t(s) is the unit tangent
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vector to γ and n(s) is the unit normal vector to γ such that {t(s),n(s)} is oriented

anticlockwise. The vector n(s) is timelike (resp. spacelike) if γ is spacelike (resp.

timelike).

The evolute of γ, with its inflection points removed, is defined as the curve in R2
1

given by

e(t) = γ(t)− 1

κ(t)
n(t).

We have the following elementary result.

Proposition 3.2.1 (i) The evolute of a spacelike (resp. timelike) curve is a timelike

(resp. spacelike) curve.

(ii) The evolute of γ is singular at precisely the vertices of γ.

Proof : We suppose that γ is parametrised by arc length. Then,

e′(s) =
κ′(s)

κ2(s)
n(s)

and the proof follows from the fact that the vectors t(s) and n(s) are of different

types (one is spacelike while the other is timelike or vice-versa). 2

Proposition 3.2.2 Let γ : I → R2
1 be a connected spacelike or timelike curve.

Then γ does not intersect its evolute e.

Proof : Suppose that γ intersects its evolute e. Then, there exist t1, t2 ∈ I, with

t1 ̸= t2 (and assume for simplicity that t1 < t2), such that

γ(t1)−
1

κ(t1)
n(t1) = γ(t2).

It follows that

γ(t1)− γ(t2) =
1

κ(t1)
n(t1).

But there exists t3 ∈ (t1, t2) such that γ(t1) − γ(t2) is parallel to t(t3). This is a

contradiction as t(t3) and n(t1) are of different types. Therefore, γ cannot intersect

its evolute. 2
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3.3 Caustics of curves in R2
1

We consider a curve γ ∈ Emb(S1,R2
1). To study the local properties of γ at γ(t0),

we consider the germ γ : R, t0 → R2
1 of γ at t0.

The family of distance-squared functions f : S1 × R2
1 → R on γ is given by

f(t, v) = ⟨γ(t)− v, γ(t)− v⟩.

We denote by fv : S1 → R2
1 the function given by fv(t) = f(t, v). The R-

singularity type of fv at t0 measures the contact of γ at γ(t0) with the pseudo-circle

of centre v and radius ||γ(t0)− v||. The type of the pseudo-circle is determined by

the sign of ⟨γ(t0)− v, γ(t0)− v⟩.

The catastrophe set of f is defined by

Σ(f) = {(t, v) ∈ S1 × R2
1 | f ′

v(t) = 0}.

We also define

Bif(f) = {v ∈ R2
1 | ∃(t, v) ∈ Σ(f) such that f ′′

v (t) = 0}.

The set Bif(f) is the local stratum of the bifurcation set of the family f , i.e., it

is the set of points v ∈ R2
1 for which there exists t ∈ S1 such that fv has a degenerate

(non-stable) singularity at t, i.e., a singularity of type A≥2.

The function g(t, v) = f ′
v(t) = 2⟨γ(t) − v, γ′(t)⟩ is not singular at any point in

Σ(f). Indeed, if we write γ(t) = (x(t), y(t)), then the gradient of g is a multiple of

(⟨γ(t)− v, γ′′(t)⟩+ ⟨γ′(t), γ′(t)⟩, x′(t),−y′(t))

and is never a zero vector as γ is a regular curve. Therefore, Σ(f) is a smooth

and regular 2-dimensional submanifold of S1 × R2
1 and the family f is a generating

family (see [4] for terminology). We write v = (v0, v1) and denote by T ∗R2
1 the

cotangent bundle of R2
1 endowed with the canonical symplectic structure (which is

metric independent). We denote by π : T ∗R2
1 → R2

1 the canonical projection. Then,

the map L(f) : Σ(f)→ T ∗R2
1, given by

L(f)(t, v) = (v, (
∂f

∂v0
(t, v),

∂f

∂v1
(t, v))),
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is a Lagrangian immersion, so the map π ◦ L(f) : Σ(f)→ R2
1 given by (t, v)→ v is

a Lagrangian map.

The caustic C(γ) of γ is the set of critical values of the Lagrangian map π ◦L(f),

and is precisely Bif(f) (see [4] for details). It follows that for a generic curve γ,

the caustic C(γ) is locally either a regular curve or has a cusp singularity. The local

models of the caustic at v corresponding to t ∈ S1 depend on the R-singularity

type of fv at t. For a generic γ, fv has local singularities of type A1, A2 or A3.

The caustic is the empty set at an A1-singularity of fv. It is a regular curve at an

A2-singularity of fv and has a cusp singularity at an A3-singularity of fv.

We can obtain a parametrisation of the caustic as follows. We have fv(t) =

⟨γ(t)− v, γ(t)− v⟩, so
1

2
f ′
v(t) = ⟨γ(t)− v, γ′(t)⟩.

It follows that fv is singular at t if and only if ⟨γ(t)− v, γ′(t)⟩ = 0, equivalently,

if and only if γ(t) − v = µγ′(t)⊥ for some scalar µ. (This condition includes the

lightlike points of γ where γ′(t)⊥ is parallel to γ′(t).)

Differentiating again we get

1
2
f ′′
v (t) = ⟨γ(t)− v, γ′′(t)⟩+ ⟨γ′(t), γ′(t)⟩

= µ⟨γ′(t)⊥, γ′′(t)⟩+ ⟨γ′(t), γ′(t)⟩.

The singularity of fv at γ(t) is degenerate if and only if f ′
v(t) = f ′′

v (t) = 0,

equivalently, if and only if γ(t)− v = µγ′(t) and

µ⟨γ′(t)⊥, γ′′(t)⟩+ ⟨γ′(t), γ′(t)⟩ = 0. (3.1)

It follows that the caustic of γ is given by

C(γ) = {γ(t)− µγ′(t)⊥ | t ∈ S1 and µ is a solution of equation (3.1)}.

Away from the lightlike points of γ, we can write γ(t) − v = λn(t), where

λ = µ||γ′(t)|| and n(t) = (−1)βγ′(t)⊥/||γ′(t)|| is the unit normal vector (β = 1 if

γ(t) is timelike and β = 2 if it is spacelike). Then a singularity of fv is degenerate

if and only if

v = γ(t)− 1

κ(t)
n(t). (3.2)
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This is precisely the evolute of the spacelike and timelike components of γ. As

in the case of curves in the Euclidean plane, the evolute of γ (minus its lightlike

points) is the locus of its centres of curvature. It is a subset of the caustic, which is

the locus of centres of “osculating” pseudo-circles (i.e., pseudo-circles that have an

A≥2-contact with γ).

We define the subset Ω of Emb(S1,R2
1) such that a curve γ is in Ω if and only

if ⟨γ′′(t), γ′(t)⟩ ̸= 0 whenever ⟨γ′(t), γ′(t)⟩ = 0 (i.e., the lightlike points of γ ∈ Ω are

not lightlike inflection points). One can show, using Thom’s transversality results

(see for example Chapter 9 in [11] for an analogous proof), that Ω is an open dense

subset of Emb(S1,R2
1).

Proposition 3.3.1 Let γ ∈ Ω. Then,

(i) the lightlike points of γ are isolated points;

(ii) the caustic of γ is a regular curve at a lightlike point of γ and has ordinary

tangency with γ at such point. Furthermore, γ and its caustic lie locally on opposite

sides of their common tangent line at the lightlike point.

Proof : (i) Since the curve γ is in Ω, we have g′(t) = 2⟨γ′′(t), γ′(t)⟩ ̸= 0 whenever

g(t) = ⟨γ′(t), γ′(t)⟩ = 0. This implies that the lightlike points, given by g(t) = 0,

are isolated points.

(ii) For γ ∈ Ω, we can solve equation (3.1) at a lightlike point γ(t0) to get

µ(t) = − ⟨γ
′(t), γ′(t)⟩

⟨γ′(t)⊥, γ′′(t)⟩

for t near t0. Then, µ(t0) = 0 and the caustic C(γ) is parametrised locally at t0 by

c(t) = γ(t)− µ(t)γ′(t)⊥.

We have

µ′(t) = − 2⟨γ′(t), γ′′(t)⟩
⟨γ′(t)⊥, γ′′(t)⟩

− (
1

⟨γ′(t)⊥, γ′′(t)⟩
)′⟨γ′(t), γ′(t)⟩

and

µ′′(t) = −2⟨γ′(t), γ′′′(t)⟩
⟨γ′(t)⊥, γ′′(t)⟩

− 2⟨γ′′(t), γ′′(t)⟩
⟨γ′(t)⊥, γ′′(t)⟩

− 4(
1

⟨γ′(t)⊥, γ′′(t)⟩
)′⟨γ′(t), γ′′(t)⟩

−( 1

⟨γ′(t)⊥, γ′′(t)⟩
)′′⟨γ′(t), γ′(t)⟩.
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At the lightlike point γ(t0) we have γ′(t0)⊥ = (−1)ϵγ′(t0), where ϵ = 2 if γ′(t0) =

(λ, λ) and ϵ = 1 if γ′(t0) = (−λ, λ). Thus,

µ′(t0) = −
2(−1)ϵ⟨γ′(t0), γ′′(t0)⟩
⟨γ′(t0), γ′′(t0)⟩

= −2(−1)ϵ

and
µ′′(t0) = −2(−1)ϵ⟨γ′(t0), γ′′′(t0)⟩

⟨γ′(t0), γ′′(t0)⟩
− 2(−1)ϵ⟨γ′′(t0), γ′′(t0)⟩

⟨γ′(t0), γ′′(t0)⟩
−4( 1

⟨γ′(t)⊥, γ′′(t)⟩
)′|t=t0⟨γ′(t0), γ′′(t0)⟩

=
2(−1)ϵ⟨γ′(t0), γ′′′(t0)⟩
⟨γ′(t0), γ′′(t0)⟩

− 2(−1)ϵ⟨γ′′(t0), γ′′(t0)⟩
⟨γ′(t0), γ′′(t0)⟩

.

It follows now that

c′(t0) = γ′(t0)− µ′(t0)γ
′(t0)

⊥ − µ(t0)γ′′(t0)⊥

= γ′(t0) + 2(−1)ϵ(−1)ϵγ′(t0)

= 3γ′(t0).

Therefore, γ and C(γ) are tangential at γ(t0). Differentiating again, we get

c′′(t0) = γ′′(t0)− 2µ′(t0)γ
′′(t0)

⊥ − µ′′(t0)γ
′(t0)

⊥ − µ(t0)γ′′′(t0)⊥

= γ′′(t0) + 4(−1)ϵγ′′(t0)⊥ − 2(
⟨γ′(t0), γ′′′(t0)⟩
⟨γ′(t0), γ′′(t0)⟩

− ⟨γ
′′(t0), γ

′′(t0)⟩
⟨γ′(t0), γ′′(t0)⟩

)γ′(t0).

We can take {γ′(t0), γ′′(t0)} as a system of coordinate of R2
1 at γ(t0). Then, we

can write c′′(t0) = αγ′(t0) + wγ′′(t0) with

w =
⟨c′′(t0), γ′(t0)⟩
⟨γ′(t0), γ′′(t0)⟩

=
⟨γ′′(t0) + 4(−1)ϵγ′′(t0)⊥, γ′(t0)⟩

⟨γ′(t0), γ′′(t0)⟩

= 1− 4(−1)ϵ ⟨γ
′′(t0), γ

′(t0)
⊥⟩

⟨γ′(t0), γ′′(t0)⟩
= 1− 4(−1)ϵ(−1)ϵ ⟨γ

′′(t0), γ
′(t0)⟩

⟨γ′(t0), γ′′(t0)⟩
= −3.

We have then

γ(t)− γ(t0) = ((t− t0) + h.o.t)γ′(t0) + (
1

2
(t− t0)2 + h.o.t)γ′′(t0)

and

c(t)− c(t0) = c(t)− γ(t0) = (3(t− t0) + h.o.t)γ′(t0) + (−3

2
(t− t0)2 + h.o.t)γ′′(t0).

This shows that γ and its caustic have an ordinary tangency at γ(t0) and that

the two curves lie on opposite sides of their common tangent line at γ(t0). 2
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Remark 3.3.1 At a lightlike inflection point γ(t0) of a curve γ /∈ Ω, the tangent

line to γ is always a component of the caustic C(γ) (any µ ∈ R is a solution of

equation (3.1) at a lightlike inflection point). The caustic has another component

if and only if ord(⟨γ′(t), γ′(t)⟩) ≥ ord(⟨γ′(t)⊥, γ′′(t)⟩) at t = t0. Then equation (3.1)

can be solved for µ and we obtain a parametrisation of this other component of

C(γ). This component, which could be singular, passes through γ(t0) if and only if

µ(t0) = 0.

We consider now some special curves in R2
1. An oval in the Euclidean plane

is defined as a closed and simple curve with everywhere non-vanishing curvature.

The curvature of a curve in R2
1 is not defined at the lightlike points of the curve.

However, we can still define the concept of an oval in R2
1 using the contact of the

curve with lines. We say that a closed and simple curve in R2
1 is an oval if it has an

A1-contact with all its tangent lines. (This definition includes the lightlike points.

An example of an oval is the “circle” S1 = {(u0, u1) ∈ R2
1 |u20 + u21 = 1}.)

Because the oval is a simple closed curve, by Jordan curve theorem, its com-

plement consists of two open and connected subsets of R2. These subsets are the

interior and the exterior of the oval, see Chapter 2.

Theorem 3.3.1 Let γ be an oval in the Minkowski plane. Then,

(i) γ has exactly four lightlike points;

(ii) the caustic of γ is a closed curve which lies in the complement of the interior

of γ;

(iii) the evolute of each spacelike and timelike component of γ has at least one

singular point.

Proof : (i) We use the arguments in the proof of Proposition 3.1.1. The curve γ̃

has nowhere vanishing (Euclidean) curvature as its contact with its tangent lines is

of type A1 (the contact of γ with lines is an affine property and is independent of

the metric in R2). Therefore, the Gauss map N is a diffeomorphism and the result

follows.

(ii) The curve γ is an oval, so it has neither inflection points nor lightlike inflection

points. Therefore, its caustic is defined everywhere and is a closed curve. It follows
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Figure 3.2: The caustic (thick curve) of a circle (left) and of an ellipse (centre and

right) drawn using Maple.

from Proposition 3.3.1(ii) and from the fact that γ is an oval that the caustic of

γ, minus the lightlike points, lies in the exterior of γ near the lightlike points. By

Proposition 3.2.2, the evolute of a spacelike or a timelike component of γ does not

intersect that component. Thus, the evolute of γ remains in the exterior of γ.

(iii) Let I = (a, b) be an interval parametrising a spacelike or timelike component

of γ, with γ(a) and γ(b) lightlike points. As ⟨γ′′(t), γ′(t)⊥⟩ ̸= 0, the curvature goes

to infinity as t tends a or b. The curve γ is an oval, so its curvature has constant

sign in I. Therefore, limt→a κ(t) = limt→b κ(t) = ±∞ (with t ∈ I). It follows that

there exists t ∈ I such that κ′(t) = 0, so γ has a vertex at t, and this corresponds

to a singular point on the evolute (Proposition 3.2.1(ii)). 2

Example 3.3.1 An ellipse γ(t) = (a cos(t), b sin(t)), t ∈ R is an oval in R2
1. Figure

3.2 shows Maple plots of the caustics of some ellipses. The caustic of a “circle”

(a = b = 1) is shown in Figure 3.2(left). (Recall that the caustic/evolute of a circle

in the Euclidean plane is the centre of the circle.) We take a = 2 and b = 1 in Figure

3.2(centre). In Figure 3.2(right), we apply an Euclidean rotation to the ellipse and

draw its caustic.



Chapter 4

Parallels of curves in the Minkowski

plane

The family of distance-squared functions gives information about the parallels of γ.

They are defined away from lightlike points of γ. We prove in this chapter that the

parallels undergo swallowtail transitions at a vertex of γ, which when considered

together in R2
1, give a distinct configuration to that of the parallels of a curve in the

Euclidean plane. We also prove that the parallels of curves in the Euclidean plane

at an ordinary vertex of γ are as Figure 4.3(left) while they are as Figure 4.3(right)

at an ordinary vertex of γ in the Minkowski plane. (To our knowledge it is not

proved before that the configuration of parallels at an ordinary vertex of a curve in

the Euclidean plane are always as Figure 4.3(left).) The results of this chapter are

part of the paper [42].

4.1 Parallels as wave fronts

Definition 4.1.1 A parallel of a curve γ in the Minkowski plane, with its lightlike

points removed, is the curve obtained by moving each point on γ by a fixed distance

r along the unit normal n to γ. Thus, a parametrisation of a parallel is given by

ηr(t) = γ(t) + rn(t).

It is worth observing that the parallels are not defined at lightlike points (as we

require a unit normal vector). Parallels are wave fronts and can be studied following
21
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the same approach for curves in the Euclidean plane using the family of distance-

squared functions (see for example [8]).

Consider the map F : (S1 \ L) × R2
1 → R × R2

1, given by F (t, v) = (f(t, v), v),

where L denotes the set of the lightlike points of γ and f is the family of distance-

squared functions.

The set of critical points Σ(F ) of F coincides with Σ(f) ∩ ((S1 \ L)× R2
1), and

thus is a smooth surface (section 3.3). The wave fronts (parallels) associated to γ

are the sets

ηr = F (Σ(F )) ∩ ({r} × R2
1).

Wave fronts have generic Legendrian singularities [2, 8] apart from a discrete set of

distances r. There are three possible transitions at these values of r [2]. However,

it is shown in [8] that only the A3-transition occurs (i.e., the swallowtail transitions

in Figure 4.1(right), and this happens at an ordinary vertex of γ.)

4.2 Parallels at vertices of curves

The A3-transition in wave fronts is studied by considering (locally) the big front

F (Σ(F )). This big front is a swallowtail surface, that is, F (Σ(F )) is diffeomorphic

to the discriminant of the polynomial t4+λ1t2+λ2t+λ3 which is the surface (Figure

4.1(left))

S = {(λ1,−4t3 − 2λ1t, 3t
4 + λ1t

2), t, λ1 ∈ R, 0}.

To recover the individual wave fronts, one has to consider generic sections of the

surface S. This is done by Arnold [2], where he considered functions f : R3, 0→ R, 0

and allowed changes of coordinates in R3, 0 that preserve S. Then a generic function

is equivalent, under these changes of coordinates, to f(λ1, λ2, λ3) = λ1. Therefore,

the individual wave fronts undergo the transitions in Figure 4.1(right).

Our concern here is how the individual fronts are stacked together in R2
1. For

this, one needs to project the sections of S by f to a plane. Then, the problem

becomes that of considering the divergent diagram (f, g)

R2, 0
g←− R3, 0

f−→ R, 0.
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Figure 4.1: The swallowtail surface (left) and its generic sections (right).

Bruce proved in [9] that there are no stable pairs (f, g). (As a consequence, he

showed that there are no discrete smooth models for an implicit differential equation

(IDE) of cusp type. Davydov [20] showed that there is in fact a functional modulus

for an IDE of cusp type even for the topological equivalence. Dara [18] pointed out

that there are two possible configurations of the solutions of the IDE of cusp type

and these are as in Figure 4.3.)

Theorem 4.2.1 [42] There are two generic configurations for the family of curves

g(f−1(c) ∩ S), c ∈ R, 0. The two configurations are distinguished by g(f−1(0) ∩ S)

and the image of the singular set of S by g, which is a cusp. These are as in Figure

4.3(left) if the cusp and g(f−1(0) ∩ S) are in the same semi-plane delimited by the

limiting tangent line to g(f−1(0) ∩ S) and as in Figure 4.3(right) if they are in

different semi-planes.

Proof : By Arnold’s result [2], we can take f(λ1, λ2, λ3) = λ1. Then the zero section

of f in S is a curve with a singularity of type (t3, t4).

We assume that the kernel of dg0 is transverse to the plane λ1 = 0. This ensures

that the restriction of g to the planes f−1(c) is a local diffeomorphism, so it preserves

the structure of the curves f−1(c)∩ S. We also assume that the kernel of dg0 is not

parallel to the direction (1, 0, 0). This ensures that the image by g of the singular

set of S is cusp curve. A map g that satisfy both of the above conditions is a generic

map.

Suppose that f−1(c) ∩ S has a self-intersection and denote by ∆c the triangular

region whose vertices are the origin and the two cusps of g((f−1(c)∩S)), and whose

edges are formed by the image of the singular set of S by g and the segment of

g((f−1(c) ∩ S)) delimited by its singular points (shaded regions in Figure 4.2).
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Figure 4.2: The two generic positions of the intersection point of g(f−1(c) ∩ S),

outside the shaded region (left) and inside it (right).

Then the two configurations of g(f−1(c) ∩ S), c ∈ R, 0, are distinguished by the

fact that the self-intersection point of g(f−1(c)∩ S) is inside or outside the triangle

∆c (Figures 4.3 and 4.2). This property depends only on dg0. To show this, write

g = dg(0) + h where h is a smooth map with no linear terms. Let gs = dg(0) + sh,

s ∈ [0, 1]. Then dgs(0) = dg(0) for all s ∈ [0, 1], so the map gs|f−1(c) is a local

diffeomorphism and maps the singular set of S to a cusp curve. For g0 and g1 to

give two different configurations, there must exist s ∈ [0, 1] such that gs|f−1(c) is not

a diffeomorphism (as gs maps the curve f−1(c)∩S to one which is not diffeomorphic

to it), which is not the case.

We can therefore assume that g is a linear projection along a direction u =

(u1, u2, u3) ∈ R3, with u21 + u22 + u23 = 1, to a transverse plane. As we assume that

the kernel of g is not parallel to (1, 0, 0) we can take, for simplicity, u3 ̸= 0 and

project to the (u1, u2)-plane.

The projection of f−1(0) ∩ S is the curve

l0(t) = (4u1u2t
3 − 3u1u3t

4, 4(u22 − 1)t3 − 3u2u3t
4)

and the projection of the singular set of S is the cusp curve

c0(t) = (6(u21 − 1)t2 − 8u1u2t
3 + 3u1u3t

4, 6u1u2t
2 − 8(u22 − 1)t3 + 3u2u3t

4).

The limiting tangent directions of the two curves are transverse as u21+u22−1 ̸= 0.

Then the position of the two curves with respect to the limiting tangent line L0 to

l0 at t = 0 is determined by the sign of u1u3 (positive for the two curves to be in the

same semi-plane determined by L0 and negative if they lie in different semi-planes).
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Figure 4.3: Parallels of a plane curve at a swallowtail transition: (left) in the Eu-

clidean plane and (right) in the Minkowski plane.

The fibre f−1(c) ∩ S is singular if c < 0. The singular points are given by

6t2 + c = 0 and the self-intersection point is given by 2t2 + c = 0. We project these

points along u to the (u1, u2)-plane. It is not difficult to show that the projection

of the self-intersection point is inside the triangle ∆c if and only if u1u3 < 0 and

outside if and only if u1u3 > 0. Thus, the configuration of the curves g(f−1(c)∩S) is

determined by the positions of the curves l0(t) and c0(t) with respect to the limiting

tangent line L0 to l0 at t = 0. 2

Theorem 4.2.2 [42] (a) The parallels of a curve γ in the Euclidean plane are as in

Figure 4.3(left) at an ordinary vertex of γ.

(b) The parallels of a curve γ in the Minkowski plane are as in Figure 4.3(right)

at an ordinary vertex of γ.

Proof : We suppose that γ is parametrised by arc length and apply Theorem 4.2.1.

The projection of the singular set of the big front is the evolute of γ.

(a) The evolute of a curve γ in the Euclidean plane is given by e(t) = γ(t) +

1/κ(t)n(t). Suppose that t = 0 is an ordinary vertex of γ, that is κ′(0) = 0 and

κ′′(0) ̸= 0. Then e′(0) = 0 and e′′(0) = −κ′′(0)/κ2(0)n(0).

We take {t(0),n(0)} as a coordinate system at e(0). Then the evolute is above

the axis parallel to t(0) if κ′′(0) < 0 and below it if κ′′(0) > 0.

The parallel of interest is ηr0(t) = γ(t) + r0n(t), with r0 = 1/κ(0). We have

η′r0(0) = η′′r0(0) = 0 and

η′′′r0(0) = −κ′′(0)
κ(0)

t(0),

η
(4)
r0 (0) = −κ′′′(0)

κ(0)
t(0)− 3κ′′(0)n(0).
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Figure 4.4: The parallels to an ellipse with its lightlike points removed. (The dashed

curve is the caustic of the ellipse.)

Then

ηr0(t) = (− κ′′(0)

3!κ(0)
t3 + h.o.t)t(0) + (− 3

4!
κ′′(0)t4 + h.o.t)n(0),

so the parallel ηr0 is above the axis parallel to t(0) if κ′′(0) < 0 and below it if

κ′′(0) > 0. That is, the parallel ηr0 and the evolute are always on the same side of

the limiting tangent direction to the parallel. It follows by Theorem 4.2.1 that the

parallels of γ have the configuration in Figure 4.3(left).

(b) The evolute of a curve γ in the Minkowski plane is given by e(t) = γ(t) −
1

κ(t)
n(t). At an ordinary vertex t = 0, we have e′(0) = 0 and e′′(0) = κ′′(0)/κ2(0)n(0).

The parallel of interest is ηr0(t) = γ(t) + r0n(t), with r0 = −1/κ(0). Here we

have η′r0(0) = η′′r0(0) = 0 and

η′′′r0(0) = −κ′′(0)
κ(0)

t(0),

η
(4)
r0 (0) = −κ′′′(0)

κ(0)
t(0)− 3κ′′(0)n(0).

Following the same argument above, we conclude that the parallel ηr0 and the

evolute are always on opposite sides of the limiting tangent direction to the parallel.

It follows by Theorem 4.2.1 that the parallels of γ have the configuration in Figure
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4.3(right). 2

Figure 4.4 shows a Maple plot of the parallels of an ellipse with its lightlike

points removed. Observe that the tangent lines to the ellipse at the lightlike points

are asymptotes of its parallels (this is also the case at an isolated lightlike point of

any curve in the Minkowski plane). Indeed, away from the lightlike point γ(t0), a

parallel is given by γ(t) + r γ′(t)⊥

∥γ′(t)∥ . As t→ t0 we have r
∥γ′(t)∥ → ±∞.



Chapter 5

Symmetry set of curves in the

Minkowski plane

The symmetry set (SS) of a curve in the Euclidean plane is defined as the closure

of the locus of centres of bi-tangent circles to the curve [25, 43]. In this chapter we

define its analogue for a curve in the Minkowski plane and call it the Minkowski

symmetry set (MSS). We consider the geometry of MSS and deal in some details

with the MSS of an ellipse. The results of this chapter are part of the paper [42].

5.1 Contact of curves with pseudo-circles

Definition 5.1.1 The Minkowski symmetry set (MSS) of a curve γ in the Minkowski

plane is the closure of the locus of centres of bi-tangent pseudo-circles to γ.

The pseudo-circles H1(p,−r) and S1
1(p, r) have two connected components and

γ can be tangent to either a single component at two distinct points or to each

component of these pseudo-circles. If γ is bi-tangent to LC∗(p), then generically it

is tangent to each line of LC∗(p) at a single point. (One can show using Thom’s

transversality theorem that bi-tangency with a single line of LC∗(p) is not a generic

property of curves in R2
1.)

The contact of γ with pseudo-circles is measured by the family of distance-

squared functions f (section 3.3). The multi-local stratum of the bifurcation set of

f is the set of points v such that fv has singularities at two distinct points t1 and t2
28
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with fv(t1) = fv(t2).

The MSS has the following properties, some of which are similar to those of the

SS.

Theorem 5.1.1 (i) The MSS of γ is the closure of the multi-local stratum of the

bifurcation set of the family of distance-squared functions on γ.

(ii) If γ is spacelike or timelike and is parametrised by arc length, then there is

a bi-tangent pseudo-circle to γ at γ(t1) and γ(t2) if and only if

⟨γ(t1)− γ(t2), t(t1)± t(t2)⟩ = 0,

where + or − is determined by the orientation of γ at γ(t1) and γ(t2).

(iii) The MSS is a regular curve at p if and only if the bi-tangent pseudo-circle

to γ at γ(t1) and γ(t2) is not osculating at γ(t1) or at γ(t2). If this is the case, the

tangent line to the MSS at p is the perpendicular bisector to the chord joining γ(t1)

and γ(t2).

(iv) The MSS is a spacelike curve at a point p in the following cases: (1) the

curve γ is tangent to each component of a pseudo-circle H1(p,−r); (2) the curve

γ is bi-tangent to a single component of a pseudo-circle S1
1(p, r); (3) the curve γ is

tangent to one line of LC∗(p) at γ(t1) and to the other line at γ(t2), and γ(t2)−γ(t1)

is timelike.

(v) The MSS is a timelike curve at a point p in the following cases: (1) the

curve γ is tangent to each component of a pseudo-circle S1
1(p, r); (2) the curve γ

is bi-tangent to a single component of a pseudo-circle H1(p,−r); (3) the curve γ is

tangent to one line of LC∗(p) at γ(t1) and to the other line at γ(t2), and γ(t2)−γ(t1)

is spacelike.

(vi) The MSS has generically no lightlike points.

Proof : The proof of (i) follows from the definition of the MSS and the proof of (ii)

is identical to that for the symmetry set of a curve in the Euclidean plane (see [25]).

For (iii), we consider the case where the bi-tangent pseudo-circles are of type

H1(p,−r) and suppose that γ is tangent to both components of these pseudo-circles

(the other cases follow similarly). We give the pieces of γ at γ(t1) (resp. γ(t2)) the

orientation of p+(r cosh(t), r sinh(t)) (resp. p+(−r cosh(t), r sinh(t))). To simplify
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Figure 5.1: The caustic (thick curve) of a circle (left) and of an ellipse (centre and

right) drawn using Maple. The dashed curves are the Minkowski symmetry sets.

notation, we write γ1 for γ(t1) and γ2 for γ(t2) and similarly for all information at

γ(t1) and γ(t2). The condition for bi-tangency is then given by g(t1, t2) = ⟨γ1 −

γ2, t1 + t2⟩ = 0. As ⟨t2 + t1,n2 + n1⟩ = 0, g(t1, t2) = 0 if and only if γ1 − γ2 =

r(n1+n2). The radius r of the bi-tangent pseudo-circle can then be given explicitly

in the form

r(t1, t2) =
⟨γ1 − γ2,n1 + n2⟩
2(⟨n1,n2⟩ − 1)

.

(We observe that ⟨n1,n2⟩ − 1 ̸= 0.) We have

gt1(t1, t2) = −(⟨n1,n2⟩ − 1)(1− rκ1),

gt2(t1, t2) = (⟨n1,n2⟩ − 1)(1 + rκ2).

So the MSS is a regular curve at p if and only if 1 − rκ1 ̸= 0 or 1 + rκ2 ̸= 0,

equivalently, if and only if H1(p,−r) is not osculating at both γ(t1) and γ(t2).

Suppose that H1(p,−r) is not osculating at γ(t1). Then we can parametrise

locally g−1(0) by (t1, t2(t1)) for some smooth function t2(t1). The MSS is then

parametrised by

c(t1) = γ(t1)− r(t1, t2(t1))n(t1).

We have

c′ = (1− rκ1)t1 − (rt1 + t′2rt2)n1

and
rt1 =

(1− rκ1)t1n2

2(⟨n1,n2⟩ − 1)
,

rt2 = −
(1 + rκ2)t2n1

2(⟨n1,n2⟩ − 1)
,

t′2 =
1− rκ1
1 + rκ2

.
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Therefore ⟨c′,n1 + n2⟩ = 0, that is c′(t1) is orthogonal to γ(t1)− γ(t2). To show

that the tangent line to the MSS is the perpendicular bisector to the chord joining

γ(t1) and γ(t2), it is enough to consider these points on the pseudo-circle H1(p,−r)

and observe the said perpendicular bisector passes through p.

For (iv) and (v), the results are immediate using (iii) for bi-tangency with LC∗(p).

For the other cases, also using (iii), it is enough to choose any two distinct points

q1 and q2 on H1(p,−r) (resp. S1
1(p, r)) and consider the vector −−→q1q2. We can take,

without loss of generality, r = 1 and p to be the origin. Then, a parametrisation of

the components of H1(−1) are given by (cosh(s), sinh(s)) and (− cosh(s),− sinh(s)),

and those of S1
1(1) by (sinh(s), cosh(s)) and (− sinh(s),− cosh(s)). The result now

follows by straightforward calculations.

For (vi), the vector −−→q1q2 (with q1 and q2 as above) is never a lightlike vector, so

the only possible case for a point p ∈ MSS to be lightlike is when one of the lines

of LC∗ is bi-tangent to the curve γ. However, this does not occur for generic curves

in the Minkowski plane. 2

We consider now the example of an ellipse in the Minkowski plane.

Proposition 5.1.1 The MSS of an ellipse consists of the two segments of lines

joining opposite cusps of the caustic of the ellipse (the dashed lines in Figure 5.1).

These segments contain the diagonals of the parallelogram formed by the four tan-

gent lines to the ellipse at its lightlike points (Figure 5.2(left)).

Proof : We make an affine transformation A and work with a circle (C) tangent

to the four sides of a parallelogram (P ) (Figure 5.2(right)). The images by A of

the families of hyperbolas H1(p,−r) and S1
1(p, r) are families of hyperbolas l1l2 = c

(c ∈ R) with asymptotes l1 = 0 and l2 = 0 parallel to the sides of the parallelogram

(P ). The MSS of the ellipse is the pre-image by A of the locus of bi-tangency of

the circle (C) with the hyperbolas l1l2 = c.

Given a bi-tangent hyperbola l1l2 = c to the circle (C), the centre of (C) belongs

to the Euclidean symmetry set of l1l2 = c. Now, the symmetry set of a hyperbola

l1l2 = c consists of the pair of lines which bisect the lines l1 = 0 and l2 = 0. It

follows that the point of intersection of l1 = 0 and l2 = 0 is on a diagonal of the
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Figure 5.2: Constructing the MSS of an ellipse (dashed line).

parallelogram (P ) (Figure 5.2(right)). As the diagonals of the parallelogram are

preserved under affine transformations, it follows that the MSS of the ellipse is a

subset of the lines containing the diagonals of the parallelogram formed by the four

tangent lines to the ellipse at its lightlike points. The result follows now using the

fact that the MSS has endpoints at the cusps of the evolute of the ellipse. (See

Figure 5.1 for the MSS of various ellipses in the Minkowski plane. Observe that, in

general, the MSS of an ellipse is not along the axes of the ellipse; Figure 5.1(right).)

2

Remark 5.1.1 (1) The concepts of evolute, caustic and MSS can be associated

to a curve in any Lorentzian plane (R2, g). We can find a g-orthonormal basis

{u1, u2} of R2 so that the expression for g is given, with respect to this basis, by

g(u, v) = −u0v0 + u1v1, for any u = (u0, u1) and =(v0, v1) in R2 (so we are back to

the Minkowski plane).

(2) If we write the g-lightlike lines as li = aix + biy = 0, i = 1, 2, where (x, y)

are the coordinates with respect to the standard basis in R2, then the g-pseudo-

circles centred at the origin are the family of hyperbolas (including their asymptotes)

l1l2 = c, c ∈ R. Therefore, the results can be interpreted in the affine setting. They

provide information about the contact of a curve in the affine plane R2 with a given

family of hyperbolas l1l2 = c, translated by any vector in R2.



Chapter 6

Binary differential equations

In this chapter we gather all the results about singularities of codimension ≤ 1

of Binary Differential Equations (BDEs) and the way they bifurcate in generic 1-

parameter families of BDEs. We present them in a way that makes their identifica-

tions more apparent. Binary and implicit differential equations are studied by many

authors. We refer to the survey article [55] for references and also to the books

[3, 19].

A binary differential equation is an equation in the form

a(x, y)dy2 + 2b(x, y)dydx+ c(x, y)dx2 = 0, (6.1)

where a,b,c are called the coefficients of the BDE (6.1). These coefficients are smooth

functions defined in an open set U in R2.

Since our study is local, we shall consider the origin, without loss of generality,

as the point of interest in the entire study. The discriminant of the BDE (6.1) is

the set ∆ = {(x, y) ∈ U : δ(x, y) = (b2 − ac)(x, y) = 0}. A BDE determines two

directions at each point (x, y) in U where δ(x, y) > 0, a unique direction at points

on the discriminant and no directions at points where δ(x, y) < 0. Consequently,

a BDE determines a pair of transverse foliations (solution curves) or no foliations

away from its discriminant. Therefore, the important local geometric features of

the foliations of a BDE arise on its discriminant. The configuration of a BDE is its

discriminant together with the pair of foliations it determines.

We denote by ω the quadratic form associated to the BDE (6.1) and also use ω

33
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to refer to the equation ω = 0. Since our study is local, the coefficients a, b, c are

taken as germs of functions R2, 0→ R.

Definition 6.0.2 Two germs of BDEs ω1 and ω2 are said to be smoothly equivalent

if there exists a germ of a diffeomorphism H : R2, 0→ R2, 0 and a non-zero function

r : R2, 0→ R, 0 such that

ω2 = r(H∗ω1).

Two germs of BDEs are said to be topologically equivalent if there exists a germ of

a homeomorphism that takes the configuration of one to the configuration of the

other.

We associate to a germ of a BDE ω(x, y) = (a, b, c) the jet-extension map

jkω :R2, 0→ Jk(2, 3)

(x, y) 7→ jkω,

where Jk(2, 3) denotes the vector space of polynomials maps of degree ≤ k from R2

to R3 and jkω = (jka, jkb, jkc) is the k-jet of (a, b, c) at (x, y).

Although the solution curves are singular at all points of the discriminant, we

define a singularity of a BDE to be a point of the discriminant at which the unique

solution is tangent to the discriminant or a point at which the discriminant itself is

singular.

Definition 6.0.3 A singularity of a BDE is said to be of codimension m if the

conditions that define it determine a submanifold W in Jk(2, 3) of codimension

m+ 2, for any k ≥ k0 for a given fixed k0.

BDEs are divided to two types. The first type is when the coefficients of the

BDE do not all vanish at the origin; the BDE in this case is labelled Type 1. The

second one is when all the coefficients of the BDE vanish at the origin; the BDE in

this case is labelled Type 2.
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6.1 BDEs of Type 1

The study of the BDEs of Type 1 follows from the general study of Implicit Dif-

ferential Equations (IDEs). Suppose, without loss of generality, that a(0, 0) ̸= 0

so dx = 0 is not a solution of the BDE (6.1) at the origin. Then, we can divide

equation (6.1) by dx2 and consider the BDE (6.1) as an IDE

a(x, y)p2 + 2b(x, y)p+ c(x, y) = 0, p =
dy

dx
. (6.2)

In general an IDE is an equation in the form

F (x, y, p) = 0, p =
dy

dx
, (6.3)

where F is a differentiable function of (x, y, p) ∈ R3. The IDE (6.3) defines a surface

M = {(x, y, p) ∈ R3 : F (x, y, p) = 0}.

in the 3-dimensional space of 1-jets of functions endowed with the contact structure

α = dy − pdx. Consider the projection π : M → R2, π(x, y, p) = (x, y). In general,

M is smooth surface and π|M is either a local diffeomorphism, a fold or a cusp map.

The projection π is a double cover of the set {(x, y) : δ(x, y) > 0}. The set of critical

points of the projection given by F = Fp = 0 is called the criminant of the IDE

and the set of critical values of the projection is called the discriminant of the IDE

which is obtained by eliminating p from the equations F = Fp = 0.

The bi-valued direction field defined by the BDE in the plane lifts to a single-

valued direction field ξ on M . The direction field ξ is given by

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
. (6.4)

The direction field ξ is tangent to M at (x, y, p) and projects to a line through (x, y)

with slope p. If π|M is a local diffeomorphism at (x, y, p), then the integral curves

of ξ around (x, y, p) projects to a family of smooth curves around (x, y).

Suppose that π|M has a fold singularity at (x, y, p), i.e., we can choose local

coordinates in M and R2 for which π has the form (u, v2). This means F = Fp = 0

but Fpp ̸= 0 at (x, y, p). Then, by using the Division Theorem, the IDE is locally a
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Figure 6.1: The lifted field ξ and the involution σ on M .

BDE at (x, y, p) and the discriminant is a smooth curve. (The discriminant of the

IDE is precisely that of the BDE.)

Every point in the plane near (x, y) which is not on the discriminant has two

pre-images on M under π or none. This defines an involution σ on M near (x, y, p),

which interchanges pairs of points with the same image under σ (Figure 6.1). The

criminant is the set of fixed points of σ. Thus, locally at (x, y, p), we have a pair (ξ, σ)

of a vector field and an involution on M . The classification (smooth or topological)

of IDEs is the same as the classification (smooth or topological) of the pairs (ξ, σ).

The singularity of ξ occurs on the criminant. Observe that for BDEs of Type 1,

Fpp ̸= 0, so π|M cannot have a cusp singularity.

We summarise below the classification of BDEs of Type 1.

Theorem 6.1.1 A germ of BDE of Type 1 with a local singularity of codimension

≤ 1 is topologically equivalent to dy2 + f0(x, y)dx
2 = 0 with f0(x, y) as in Table

6.1, second column. The configurations of the solution curves of the BDE are as in

Table 6.1, fourth column.

Remark 6.1.1 The models dy2 ± dx2 = 0 and dy2 − xdx2 = 0 of the first two

cases in Table 6.1 are up to smooth equivalence [18]. The folded singularities of
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Table 6.1: The stable and codimension ≤ 1 configurations of BDEs of Type 1.

Name f0 in topological normal forms Codim Figures

Transverse foliations or empty set ±1 0

ϕ

Family of cusps −x 0

Folded saddle −y + λx2, λ < 0 0

Folded node −y + λx2, 0 < λ < 1/16 0

Folded focus −y + λx2, 1/16 < λ 0

Folded saddle-node −y + x3 1

Folded node-focus −y + 1
16x

2 1

Morse Type 1 ±x2 ± y2 1

A−
1 (top) and A+

1 (bottom).
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types (saddle/node/focus) are part of a family dy2 + (−y + λx2)dx2 = 0 where

λ ̸= 0, 1/16, and this model is up to smooth equivalence provides that the vector

field ξ is linearisable at its singular point [19, 20]. For the topological models, we

take any fixed λ in the given intervals.

6.1.1 Recognition of codimension ≤ 1 singularities

We apply the classification in Theorem 6.1.1 to 1-parameter families of BDEs on a

smooth surface. Our task is to determine the type of the singularities and to check

if the family is generic. In order to do so and to carry out the calculation in Chapter

9 we need to identify algebraically the singularities of codimension ≤ 1. The BDE

(6.2) is of Type 1, we can suppose, without loss of generality, that a(0, 0) ̸= 0 and

divide equation (6.2) by a(x, y). Then the BDE (6.2) could be written in the form

p2 + r1(x, y)p+ r2(x, y) = 0. (6.5)

We write the 3-jets of ri(x, y), i = 1, 2 as follows

j3r1(x, y) = b0 + b10x+ b11y +
2∑

i=0

b2ix
2−iyi +

3∑
i=0

b3ix
3−iyi, (6.6)

j3r2(x, y) = c0 + c10x+ c11y +
2∑

i=0

c2ix
2−iyi +

3∑
i=0

c3ix
3−iyi. (6.7)

The 2-jet of the discriminant (δ(x, y) = r21(x, y)− 4r2(x, y)) is given by

j2δ(x, y) = b20 − 4c0 + 2(b10b0 − 2c10)x+ 2(b11b0 − 2c11)y + (b210 + 2b0b20 − 4c20)x
2

+ 2(b0b21 − 2c21 + b11b10)xy + (b211 + 2b0b22 − 4c22)y
2.

We summarise the geometric characterisations of the singularities of codimension ≤

1 of BDEs of Type 1 shown in Table 6.1. We give also the algebraic conditions for

them to occur.

Theorem 6.1.2 The geometric characterisations and the algebraic conditions of

the local codimension ≤ 1 singularities of BDEs of Type 1 to occur are as shown in

Table 6.2, where the expressions for Cis, i = 1, ..., 10 are:
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Table 6.2: The geometric characterisations and the algebraic conditions of the local

codimension ≤ 1 singularities of BDEs of Type 1.

Name On the surface M In R2 The algebraic conditions

Transverse folia-

tions or empty

set

M is smooth,

π|M is a local diffeomor-

phism,

ξ is regular.

The discriminant ∆ is

empty.

C1 ̸= 0.

Family of cusps M is smooth,

π|M has a fold singularity,

ξ is regular.

∆ is a smooth curve,

the unique direction de-

termined by the BDE is

transverse to ∆,

ξ is regular.

C1 = 0,

Cj ̸= 0, j = 2, 5.

Folded (sad-

dle/node/focus)

M is smooth,

π|M has a fold singularity,

ξ has an elementary singu-

larity of type saddle, node

or focus.

∆ is smooth,

the unique direction is

tangent to ∆,

ξ has an elementary singu-

larity of type folded sad-

dle, node or focus.

C1 = 0,

C2 = 0,

Cj ̸= 0, j = 3, 4, 5.

Folded saddle-

node

M is smooth,

π|M has a fold singularity,

and ξ has a saddle-node

singularity.

∆ is smooth,

the unique direction is

tangent to ∆,

ξ has a folded saddle-node

singularity.

C1 = 0,

C2 = 0,

C3 = 0,

Cj ̸= 0, j = 5, 6.

Folded node-

focus

M is smooth,

π|M has a fold singularity,

ξ has a node-focus singu-

larity.

∆ is smooth,

the unique direction is

tangent to ∆,

ξ has a folded node-focus

singularity.

C1 = 0,

C2 = 0,

C4 = 0,

Cj ̸= 0, j = 3, 5.

Morse Type 1 M has an A±
1 -singularity. ∆ has a Morse singularity,

the unique direction is

transverse to the branches

of ∆ in case it has an A−
1 -

singularity.

C1 = 0,

C7 = 0,

C8 = 0,

Cj ̸= 0, j = 9, 10.
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C1 = b20 − 4c0,

C2 =4c10 − 2b0c11 − 2b0b10 + b20b11,

C3 =8c20 − 4b0c21 + 2b20c22 + (b11b0 − 2b10)c11 − 4b0b20 + 2b20b21 − b30b22 − 2b210 + 3b11b10b0

− b211b20,

C4 =64c20 − 32b0c21 + 16b20c22 − 4c211 + (12b11b0 − 16b10)c11 − 32b0b20 + 16b20b21 − 8b30b22

− 9b20b
2
11 + 24b0b10b11 − 16b210,

C5 =(2c11 − b11b0)2 + (2c10 − b10b0)2,

C6 =48c30 − 24b0c31 + 12b20c32 − 6b30c33 + 6(b11b0 − 2b10)c21 − 6b0(b11b0 − 2b10)c22

+ (4b0b21 + 2b11b10 − 8b20 − b211b0 − 2b20b22)c11 − 3b0(8b30 − 4b0b31 + 2b20b32

− b30b33) + 8(2b11b0 − 3b10)b20 + (18b10b0 − 11b11b
2
0)b21 + (7b11b

3
0 − 12b10b

2
0)b22

+ (6b210 − 7b10b11b0 + 2b20b
2
11)b11,

C7 =2c11 − b11b0,

C8 =2c10 − b10b0,

C9 =(b0b21 − 2c21 + b11b10)
2 − (b210 + 2b0b20 − 4c20)(b

2
11 + 2b0b22 − 4c22),

C10 =16c20 − 4b210 + b0(4b0c22 − 8c21 − 8b20 + 4b0b21 + 4b11b10 − b211b0 − 2b20b22),

and

λ =
C3

2(b11b0 − 2c11)2
.

6.1.2 Generic families of BDEs of Type 1

Suppose that we have a 1-parameter family of BDEs of Type 1. We can write the

equation of the family, without loss of generality, in the form

F (x, y, p, t) = p2 + r1(x, y, t)p+ r2(x, y, t) = 0, (6.8)

and suppose that j3(rt1(x, y), rt2(x, y)) are as in the expressions (6.6) and (6.7) re-

spectively, with the coefficients bij and cij, i, j = 1, 2, 3 are functions of t. We denote

by F0 the BDE F (x, y, p, 0) = 0.
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We associate to the family of BDEs in F (x, y, p, t) = 0 the jet-extension map

φ : R2 × R, 0→ Jk(2, 2)

(x, y, t) 7→ jk(r1(x, y), r2(x, y))|t.

Let W be a submanifold of codimension m + 2 in Jk(2, 2) defining the singularity

of F0. The family F is said to be a generic family if the map φ is transverse to W

in Jk(2, 2) at jkF0, see [50].

Theorem 6.1.3 [50] A 1-parameter family F of BDEs of Type 1 is a generic family

of the codimension 1 singularity of F0 of the given type if and only if the following

condition is satisfied:

(1) F0 has a folded saddle-node singularity:

(1 + b10)
∂r1
∂t

+ (2c21 − (b10 + 1)b11)
∂r2
∂t
− 2

∂2r2
∂t∂x

̸= 0. (6.9)

(2) F0 has a folded node-focus singularity:

λ1
∂r1
∂t

+ λ2
∂2r1
∂t∂x

+ λ3
∂r2
∂t

+
λ4
2

∂2r2
∂t∂y

− 1

8

∂3r2
∂t∂x2

̸= 0, (6.10)

where the partial derivatives are evaluated at the origin and

λ1 = −
3

2
(b10 + 1)C6 +

1

16
(b10 + 2)c21 +

1

16
b20 −

1

128
b11(4b

2
10 + 10b10 + 3),

λ2 =
1

32
(1 + 2b10),

λ3 = 3(
1

2
b11(b10 + 1)− c21)c30 +

1

8
c31 +

1

8
(1 + 6b10)c

2
21 −

1

8
(3b10 + 1)(2b11b10 + b11 − 4b20)c21

− 1

32
(1 + 2b10)c22 −

1

16
b11(6b10 + 5)(1 + 2b10)b20 −

1

32
(1 + 2b10)b21 +

3

128
b211(1 + 2b10)

3,

λ4 = 3C6 +
1

16
b11b10 −

1

8
c21.

(3) F0 has a Morse Type 1 singularity:

b0
∂r1
∂t
− 2

∂r2
∂t
̸= 0. (6.11)

Bifurcations of codimension 1 singularities in generic 1-parameter families of BDEs

are studied in [52, 49, 50].

Theorem 6.1.4 A generic family of codimension 1 singularity of BDEs of Type

1 is fibre topologically equivalent to one of the normal forms in Table 6.3, second

column. See also Table 6.3, third column, for the bifurcations in the families.
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Table 6.3: Generic bifurcations of codimension 1 singularities of BDEs of Type 1.

Name Generic family Figures

Folded saddle-

node

−y + x3 + tx
t < 0

t = 0 t > 0

Folded node-

focus

−y + ( 1
16 + t)x2 t < 0 t = 0 t > 0

Morse Type 1 ±x2 ± y2 + t

A−
1 (top) and A+

1 (bottom).
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6.2 BDEs of Type 2

The lifted field method is one of the methods for seeking topological models for

BDEs of Type 2, see [10, 12]. When all of the coefficients of the BDE (6.1) vanish at

an isolated point (origin), all the directions at the origin are solutions of the BDE.

The associated surface to the BDE in this case is

N = {(x, y, [α : β]) ∈ R2, 0× RP 1 : aβ2 + 2bαβ + cα2 = 0}.

When ∆ has a Morse singularity the surface N is smooth [12] and the BDE has a

singularity of type Morse Type 2 at the origin. The set π−1(0) = {0}×RP 1 ⊂ π−1(∆)

is called the exceptional fibre. The criminant is the closure of the set π−1(∆)−({0}×

RP 1). Consider the affine chart p = β/α (we also consider the chart q = α/β) and

set

F (x, y, p) = a(x, y)p2 + 2b(x, y)p+ c(x, y).

The bi-valued field in the plane determined by the BDE lifts to a single-valued

direction field ξ (6.4) on the surface N . The vector field ξ extends smoothly to

π−1(0) which is an integral curve of ξ.

The singularities of ξ on π−1(0) (F (0, 0, p) = Fp(0, 0, p) = 0) are given by the

roots of the cubic

ϕ(p) = (Fx + pFy)(0, 0, p) = a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p+ c1,

where j1(a, b, c) = (a1x + a2y, b1x + b2y, c1x + c2y). The eigenvalues of the linear

part of ξ at a singularity are −ϕ′(p) and α1(p), where

α1(p) = 2(a2p
2 + (b2 + a1)p+ b1).

The cubic ϕ(p) and α1(p) determine the number and the type of the singularities

of ξ, see [10, 12].

Remark 6.2.1 It is shown in [12] that if ϕ(p) and α1(p) have no common roots and

ϕ(p) has no repeated roots, then one can reduce the 1-jet of a BDE of Type 2 to the

following

j1(a, b, c) = (y, b1x+ b2y, ϵy), ϵ = ±1.
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The codimension 1 singularities of BDEs of Type 2 are classified by the number

and the type of the singularities of ξ when (b1, b2) is away from some special curves

in the (b1, b2)-plane where the singularities of codimension ≥ 2 occur. These curves

are:

1. The non-Morse curve: b1 = 0.

2. The double root curve of ϕ: 2b1 + ϵ=0 or b1 = 1
2
(b22 − ϵ).

3. The α1 and ϕ have common root curve: b1 = ±b2 − 1 for the case ϵ = 1.

The three curves partition the (b1, b2)-plane into regions where the topological type

of the BDE is constant and is one of the cases in Theorem 6.2.1.

Theorem 6.2.1 [12] Suppose that the discriminant has a Morse singularity, the

lifted field ξ has no repeated root and ϕ and α1 have no common root. Then, there

is a germ of homeomorphism h : R2, 0→ R2, 0 taking the integral curves of the BDE

(6.1) to the integral curves of one of the normal forms:

(I) The discriminant has an A+
1 -singularity (Figure 6.2): (Theorem 0.1, [10])

(a) 1 saddle: ydy2 + 2xdxdy − ydx2 = 0,

(b) 3 saddles: ydy2 − 2xdxdy − ydx2 = 0,

(c) 2 saddles + 1 node: ydy2 + 1
2
xdxdy − ydx2 = 0.

(II) The discriminant has an A−
1 -singularity (Figure 6.3):

(a) 1 saddle: ydy2 + 2xdxdy + ydx2 = 0,

(b) 1 node: ydy2 − 1
2
xdxdy + ydx2 = 0,

(c) 3 saddles: ydy2 − 4xdxdy + ydx2 = 0,

(d) 2 saddles + 1 node: ydy2 + 2(y − x)xdxdy + ydx2 = 0,

(e) 1 saddle + 2 nodes: ydy2 − 4
3
xdxdy + ydx2 = 0.

The type is determined by the 1-jet of the functions a, b, c.
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It is shown in [13] that a 1-parameter family of BDEs, depending on the parameter

t, of Morse Type 2 at t = 0 is generic if and only if∣∣∣∣∣∣∣∣∣
ax ay at

bx by bt

cx cy ct

∣∣∣∣∣∣∣∣∣ ̸= 0, (6.12)

where the partial derivatives are evaluated at the origin.

Theorem 6.2.2 [13] Suppose that the family of BDEs is of Morse Type 2 at t = 0,

the lifted field ξ has no repeated roots, ϕ and α1 have no common root and the

family satisfies the versality condition (6.12). Then, the family is fibre topologically

equivalent to one of the following normal forms.

(I) The discriminant has an A+
1 -singularity (Figure 6.4):

(a) 1 saddle: (y + t)dy2 + 2xdxdy − ydx2 = 0,

(b) 3 saddles: (y + t)dy2 − 2xdxdy − ydx2 = 0,

(c) 2 saddles + 1 node: (y + t)dy2 + 1
2
xdxdy − ydx2 = 0.

(II) The discriminant has an A−
1 -singularity (Figure 6.5):

(a) 1 saddle: (y + t)dy2 + 2xdxdy + ydx2 = 0,

(b) 1 node: (y + t)dy2 − 1
2
xdxdy + ydx2 = 0,

(c) 3 saddles: (y + t)dy2 − 4xdxdy + ydx2 = 0,

(d) 2 saddles + 1 node: (y + t)dy2 + 2(y − x)xdxdy + ydx2 = 0,

(e) 1 saddle + 2 nodes: (y + t)dy2 − 4
3
xdxdy + ydx2 = 0.

The figures on both sides of the bifurcations are equivalent, so only one side of the

bifurcations is drawn in Figures 6.4 and 6.5.
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(a) 1S (b) 2S+1N (c) 3S

Figure 6.2: Morse Type 2 singularities of type A+
1 .

(a) 1N (b) 1S (c) 1S+2N

(d) 2S+1N (e) 3S

Figure 6.3: Morse Type 2 singularities of type A−
1 .
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(a) 1S (b) 2S+1N (c) 3S

Figure 6.4: Bifurcations at Morse Type 2 singularities of type A+
1 .
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(a) 1N (b) 1S (c) 1S+2N

(d) 3S (e) 2S+1N (case 1) (f) 2S+1N (case 2)

Figure 6.5: Bifurcations at Morse Type 2 singularities of type A−
1 .



Chapter 7

Pairs of foliations associated to

self-adjoint operators

Lines of principal curvature and asymptotic curves are classical pairs of foliations

on a smooth surface M in R3. More recently another pair of foliations called the

characteristic curves, first introduced in [22], is studied in [16, 17, 24, 39]. The above

three pairs of foliations are defined by the shape-operator −dN(p) on M which is a

self-adjoint operator on TpM for p ∈M . It is shown in [53] that one can associate the

concept of those three pairs of foliations to any self-adjoint operator on a Riemannian

surface and their behaviours are the same as the behaviours of those three pairs of

foliations on M . The work in [53] is generalised in [31] to the case of self-adjoint

operators on Lorentzian surfaces. The concepts of the three pairs of foliations are

defined, however, the behaviours of these pairs are quite different than those of pairs

on Riemannian surfaces. We recall some basic notions of differential geometry in

section 7.1 which can be found in books on elementary differential geometry, see for

example [21]. These notions are generalised to Lorentzian surfaces [31] as shown in

section 7.2.

49
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7.1 Pairs of foliations on surfaces in R3

Let M be a smooth and orientable surface in R3 and let S2 be the unit sphere. The

Gauss map

N :M → S2

associates a unit normal vector N(p) to each p ∈ M . The Weingarton map (or

shape-operator) is given by

Wp = −dN(p) : TpM → TpM,

where TpM in the target is equivalent to TN(p)S
2. The Weingarten map Wp provides

information about the local shape of M in R3. It is a self-adjoint operator that is

a linear operator satisfies that Wp(u) · v = u ·Wp(v), for any u, v ∈ TpM , where “·”

denotes the scalar product in R3.

The first and second fundamental forms of M are the quadratic forms on TpM

given by Ip(u, u) = u ·u and IIp(u, u) = Wp(u) ·u respectively. If M is parametrised

by r(x, y) with (x, y) ∈ U and U is an open set in R2, then for u = arx+ bry ∈ TpM ,

we have

Ip(u) = Ea2 + 2Fab+Gb2,

where

E = rx · rx, F = rx · ry, G = ry · ry

are called the coefficients of Ip with respect to the parametrisation r, and

IIp(u) = la2 + 2mab+ nb2,

where

l = Wp(rx) · rx = N · rxx, m = Wp(rx) · ry = N · rxy, n =Wp(ry) · ry = N · ryy

are the coefficients of IIp. The Gaussian curvature is given by

K = det(Wp) =
ln−m2

EG− F 2
,

and the mean curvature is given by

H =
1

2
tr(Wp) =

lG− 2mF + nE

2(EG− F 2)
.
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There are three pairs of foliations given by BDEs on the surface M determined

by the shape-operator Wp.

We start with a pair of foliations called the lines of principal curvatures. The

shape-operator Wp has always real eigenvalues ki(p), i = 1, 2 called the principal

curvatures (K(p) = (k1k2)(p)). When k1(p) ̸= k2(p), we have two orthogonal eigen-

vectors called the principal directions. The integral curves of the principal directions

on M are called the lines of principal curvature. Points where k1(p) = k2(p) are

called umbilic points. At such points every direction is a principal direction. They

are isolated points on generic surfaces in R3.

The lines of principal curvature are given by the following BDE

(Fn−Gm)dy2 + (En−Gl)dydx+ (Em− Fl)dx2 = 0. (7.1)

The discriminant of the principal BDE (7.1) given by (En−Gl)2−4(Fn−Gm)(Em−

Fl), which is equivalent to H2 − K = 0, consists of the umbilic points. The con-

figurations of the lines of principal curvature at umbilic points were first drawn by

Darboux and rigorous studies were carried out in [10, 44]. There are three distinct

generic topological configurations of the lines of principal curvature at umbilic points

and these are illustrated in Figure 6.2.

Two directions u, v ∈ TpM are conjugate if Wp(u) · v = 0. A direction in TpM is

an asymptotic direction if it is a self-conjugate direction, i.e., Wp(u) · u = 0. There

are two asymptotic directions (resp. none) at hyperbolic (resp. elliptic) points. The

integral curves of the asymptotic directions are called the asymptotic curves. The

equation of the asymptotic curves is given by the BDE

ndy2 + 2mdydx+ ldx2 = 0. (7.2)

The discriminant of the asymptotic BDE (7.2) is give by K = 0, equivalently, by

ln−m2 = 0 which is precisely the parabolic set of M . For a generic surface, at points

on the parabolic set, the asymptotic direction is repeated and the asymptotic curves

form a family of cusps with cusps tracing the parabolic set except at some isolated

points. These isolated points are the cusps of Gauss where the repeated asymptotic

direction is tangent to the parabolic set. The stable topological configurations of

the integral curves at points on the parabolic set are shown in Table 6.1.
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At a non-umbilic elliptic point, there is a unique pair of conjugate directions

which the included angle is extremal. These directions are called the characteristic

directions. The integral curves of the characteristic directions are the characteristic

curves. Characteristic directions on surfaces in R3 are defined in [22] and studied

more recently in [16, 17, 24, 39]. The equation of the characteristic curves is given

by the BDE

(2m(Gm− Fn)− n(Gl − En))dy2 + 2(l(Gm− Fn)− n(Fl − Em))dydx

+ (l(Gl − En)− 2m(Fl − Em))dx2 = 0. (7.3)

The discriminant of the characteristic BDE (7.3) is the parabolic set union the

umbilic points [16]. At a parabolic point, the characteristic direction is repeated.

At umbilic points, every direction is a characteristic direction.

There are several properties of the characteristic curves analogous to those of the

asymptotic curves. The characteristic curves foliate the elliptic region of the surface

M while the asymptotic curves foliate the hyperbolic region. At parabolic points,

the repeated asymptotic and the repeated characteristic directions coincide and are

principal directions. At cusps of Gauss, the values of λ (Table 6.1) for the two BDEs

have opposite signs but equal absolute values. This means if the asymptotic BDE

has a folded saddle, the characteristic BDE has a folded node or focus and vice-versa

[16].

It is shown in [16] that the BDEs of the principal, asymptotic and characteristic

curves are related. A BDE (6.1) can be viewed as a quadratic form and represented

at each point in U by the point (a(x, y) : 2b(x, y) : c(x, y)) in the projective plane.

Let Γ denote the conic of degenerate quadratic forms. To each point in the projective

plane is associated a unique polar line with respect to Γ and vice-versa. A triple

of points is called self-polar triangle if the polar line of any point of the triple

contains the remaining two points. If (x, y) is neither parabolic nor umbilic point,

the triple principal, asymptotic and characteristic curves BDEs form a self-polar

triangle. That means any two of them determine the third one, see [16] for more

details.

Remark 7.1.1 It is observed in [53] that the concepts of principal, asymptotic and



7.2. Pairs of foliations on Lorentzian surfaces 53

characteristic curves depend on the self-adjoint operator and the induced metric on

a smooth surface M . This leads to the definitions of such concepts for any given

self-adjoint operator on a smooth surface endowed with a Riemannian metric. This

is generalised in [31] to the case of Lorentzian surfaces as we can see in the below

section.

7.2 Pairs of foliations on Lorentzian surfaces

A Lorentzian surface M is a smooth and orientable surface endowed with metric

g of signature 1. A non zero tangent direction u ∈ TpM is spacelike if g(u, u) > 0,

timelike if g(u, u) < 0 and lightlike if g(u, u) = 0. The norm of the direction u ∈ TpM

is defined by ∥u∥ =
√
|g(u, u)|. Two directions u and v in TpM are orthogonal if

g(u, v) = 0.

Let r : U → M be a local parametrisation of M , where U is an open subset of

R2. The first fundamental form of M at p is the quadratic form Ip : TpM → R given

by Ip(v) = g(v, v) for any v ∈ TpM . If v = arx+ bry, then Ip(v) = Ea2+2Fab+Gb2

where

E = g(rx, rx), F = g(rx, ry), G = g(ry, ry)

are the coefficients of Ip with respect to the parametrisation r.

Since g is of signature 1, EG− F 2 < 0 on M . This means the lightlike BDE

Gdy2 + 2Fdydx+ Edx2 = 0 (7.4)

determines two distinct lightlike directions in TpM at each point p ∈ r(U). Their

integral curves are called the lightlike curves.

We can take a local chart at any point on M in such a way that the coordinate

curves are the lightlike curves. In fact, this local parametrisation facilitates our

study remarkably.

Theorem 7.2.1 [31] Let M be a Lorentzian surface. For every p ∈ M , there is a

local parametrisation of a neighbourhood V of p, such that for any p′ ∈ V , the co-

ordinate curves through p′ are the tangents to the lightlike directions. Equivalently,

there exists a local parametrisation r : U → V ⊂M with E = G = 0 in U .
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Let A : TM −→ TM be a self-adjoint operator, i.e., A is a linear map satisfies

that g(A(u), v) = g(u,A(v)) for any u, v ∈ TpM ; and Ap denotes the restriction

of A to TpM . If u = arx + bry, the A-second fundamental form is defined as

IIp = g(Ap(u), u) = la2 + 2mab+ nb2 where

l = g(Ap(rx), rx), m = g(Ap(rx), ry), n = g(Ap(ry), ry)

are referred to as the coefficients of IIp. In the basis {rx, ry}, Ap is given by the

following matrix

Ap =
1

EG− F 2

 G −F

−F E

 l m

m n

 .

The A-Gaussian curvature of M at p is defined as det(Ap) and it is given by

K(p) =
ln−m2

EG− F 2
.

The A-mean curvature of M at p is defined as 1/2tr(Ap) and is given by

H(p) =
lG− 2mF + nE

2(EG− F 2)
.

There are three pairs of foliations on M corresponding to A represented by BDEs

[31].

7.2.1 The lines of A-principal curvature

As the metric g is of signature 1, the self-adjoint operator Ap does not always have

real eigenvalues. When it does they are denoted by ki(p), i = 1, 2 and called the A-

principal curvatures; and K(p) = k1(p)k2(p). The eigenvectors of Ap are called the

A-principal directions and the integral curves of their associated line fields are called

the lines of A-principal curvature. The BDE of the lines of A-principal curvature is

analogous to equation (7.1) and is given by

(Fn−Gm)dy2 + (En−Gl)dydx+ (Em− Fl)dx2 = 0. (7.5)

If we consider the local parametrisation of the surface in Theorem 7.2.1, the BDE

(7.5) becomes

ndy2 − ldx2 = 0. (7.6)
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The discriminant of the BDE (7.5) is given by H2 − K = 0 (ln = 0 for equation

(7.6)). This is, when not empty, a curve labelled A-Lightlike Principal Locus (LPL).

It is a locus of points where the two A-principal directions coincide and become

lightlike. The A-principal directions, when distinct, are orthogonal and one of them

is spacelike and the other is timelike [31].

Proposition 7.2.1 [31]

1. The LPL divides the surface into two regions. In one region, there is no A-

principal direction and in the other region there are two distinct A-principal

directions at each point.

2. For generic A, the LPL is a smooth curve except possibly at some isolated

points where the LPL has Morse singularities of type A−
1 . Those points are

where the matrix of Ap is a multiple of the identity and are labelled timelike

umbilic points.

The local topological configurations of the lines of the A-principal curvature are

given in [31]. The A-principal BDE (7.5) determines a pair of transverse foliations

or none away from the LPL. On the LPL, the lines of A-principal curvature are

a family of cusps with cusps tracing the LPL except at some isolated points where

the A-principal BDE has, for generic A, folded singularities of type saddle, node or

focus (Table 6.1). At a timelike umbilic point, the A-principal BDE has generically

a Morse Type 2 singularity of type A−
1 . On the contrary, the principal BDE has a

Morse Type 2 singularity of type A+
1 at the umbilic point on Riemannian surfaces.

7.2.2 The A-asymptotic curves

Two directions u, v ∈ TpM are A-conjugate if g(Ap(u), v) = 0 for u, v ∈ TpM . A

direction u is called A-asymptotic if it is A-conjugate to itself, i.e., g(Ap(u), u) = 0.

The A-asymptotic curves are the integral curves of the A-asymptotic directions and

are determined by the BDE

ndy2 + 2mdydx+ ldx2 = 0. (7.7)
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The discriminant of the A-asymptotic BDE (7.7) is given by K = 0. For generic A,

it is a regular curve when not empty. The set of points where K = 0 is called the

A-parabolic set. Since EG−F 2 < 0, there are two distinct A-asymptotic directions

in the region where K > 0 and none in the region where K < 0. At a point on the

A-parabolic set, the A-asymptotic direction is repeated.

Proposition 7.2.2 [31]

1. An A-asymptotic direction at p ∈ M is also an A-principal direction if and

only if p is a point on the A-parabolic set or on the LPL. On the LPL, the

A-asymptotic direction is lightlike.

2. The A-parabolic set and the LPL are tangential at their intersection points.

On the A parabolic set, the unique A-asymptotic direction is spacelike on one

side of the point of tangency with the LPL and is timelike in the other side

of that point.

Away from the A-parabolic set, the A-asymptotic curves form a pair of transverse

foliations or none. On the A-parabolic set, the A-asymptotic curves form a family

of cusps with cusps tracing the A-parabolic set except possibly at some isolated

points where the A-asymptotic BDE has folded singularities of type saddle, node

or focus (Table 6.1). For generic A, the integral curves of the A-principal and the

A-asymptotic BDEs form a family of cusps in the neighbourhood of the point of

tangency of the LPL and the A-parabolic set (Table 6.1).

7.2.3 The A-characteristic curves

For given self-adjoint operator A, the BDE of the A-characteristics curves is the

BDE which forms a self-polar triangle with the A-principal and the A-asymptotic

BDEs [31]. It is given as the Jacobian of the A-principal and A-asymptotic BDEs.

The A-characteristics BDE is given by

(2m(Gm− Fn)− n(Gl − En))dy2 + 2(l(Gm− Fn)− n(Fl − Em))dydx

+(l(Gl − En)− 2m(Fl − Em))dx2 = 0. (7.8)
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(a) (b)

Figure 7.1: The local topological configurations of a BDE when its discriminant

curve has an A−
3 -singularity [31].

When considering the local parametrisation where E = G = 0, equation (7.8)

becomes

mndy2 + 2lndydx+mldx2 = 0. (7.9)

The discriminant of the A-characteristic BDE (7.8) is given by the equation (H2 −

K)K = 0 (ln(ln −m2) = 0 for equation (7.9)). It is the union of the A-parabolic

set and of the LPL. The A-characteristic curves form a pair of transverse foliations

in the region where K > 0 and H2 − K < 0 as well as the region where K < 0

and H2 − K > 0, and none elsewhere. Observe that the A-characteristic and the

A-asymptotic curves foliate a common region where K > 0 and H2 −K < 0.

The local configurations of the A-characteristic BDE at points on the discrimi-

nant ({K = 0}∪ {H2−K = 0}) are obtained in [31]. On the A-parabolic set, away

from the point of tangency with the LPL, the A-characteristic curves form a family

of cusps with cusps tracing the A- parabolic set except at some isolated points. At

these isolated points, the A-characteristics BDE has, for generic A, a folded sin-

gularity of type saddle, node or focus (Table 6.1). The folded singularities of the

A-characteristic and A-asymptotic BDEs are common and have opposite indices.

At timelike umbilic points, the A-characteristic BDE has generically a Morse

Type 2 singularity of type A−
1 . All the five generic topological models of such

singularities may occur (Figure 6.3). Moreover, it is shown in [31] that at the point

of tangency of the LPL and the A-parabolic set the A-characteristic BDE has an A−
3 -

singularity for generic A. At that point, the A-characteristic BDE is topologically
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equivalent to

ydy2 + xdydx+ y3dx2 = 0, Figure 7.1(a) or to

ydy2 − xdydx+ y3dx2 = 0. Figure 7.1(b).

The results above can be applied to timelike surfaces in the de Sitter space S3
1 ⊂ R4

1

and to timelike surfaces in the Minkowski space R3
1. The pairs of foliations on

M in S3
1 ⊂ R4

1 are determined by the shape-operator Ap(u) = −dEp(u) where

E : U ⊂ R2 → S3
1 is the de Sitter Gauss map of M [30, 31]. On the other hand, the

pairs of foliations on timelike surfaces in R3
1 are determined by the shape-operator

Ap(u) = −dNp(u) where N : U ⊂ R2 → H2 is the hyperbolic Gauss map of the

timelike surface M [31].



Chapter 8

Families of curve congruences on

Lorentzian surfaces

We recalled in Chapter 7 the three pairs of foliations on smooth surfaces in R3 namely

the principal, asymptotic and characteristic curves. These curves were treated in-

dependently until Fletcher [23] discovered a natural 1-parameter family of BDEs

linking the principal BDE to the asymptotic BDE. Fletcher called the family conju-

gate curve congruences and denoted it by Cα. Basically, for each point α ∈ [0,±π
2
]

the BDE Cα determines two directions that have an oriented angle α between the

directions and their conjugate directions. Then C0 is the asymptotic BDE (7.2) and

C±π
2

is the principal BDE (7.1).

The result of Fletcher is interpreted in [16] using pencils of quadratic forms. As

a result, another natural 1-parameter family was introduced. This family is called

the reflected conjugate curve congruences and denoted by Rα. This family links the

principal BDE (7.1) to the characteristic BDE (7.3).

In this chapter we study the natural 1-parameter family of A-conjugate curve

congruences denoted by LCiα, i = 1, 2 (resp. reflected A-conjugate curve congruences

denoted by LRi
α, i = 1, 2) which is defined in [35]. In this case, α is the oriented

hyperbolic angle. We start with recalling some basic propositions of oriented hyper-

bolic angles and then proceeding to study the families LCiα and LRi
α, i = 1, 2.

59
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8.1 Oriented hyperbolic angles

Let g(u, v) = u1v1 − u2v2 denote the pseudo-scalar product for u = (u1, u2) and

v = (v1, v2) in R2
1. A timelike vector u is said to be future-pointing if u2 > 0, and

past-pointing otherwise. The norm or length of u is ∥u∥ =
√
|g(u, u)|.

Let G be the proper Lorentz group of R2
1, i.e., the group consisting of all

orientation-preserving linear transformation of R2 which preserve the pseudo-scalar

product and the time-orientation. It consists all matrices of the form

R(α) =

cosh(α) sinh(α)

sinh(α) cosh(α)


where α ∈ R. The oriented hyperbolic angle α = ∠(u, v) between two non-lightlike

vectors u, v in R2
1 is defined in [6, 7, 36, 37] as follows, and has similar properties to

the oriented Euclidean angle.

If u, v are both future or past pointing unit timelike vectors, then α is defined

by the relation R(α)u = v and satisfies

cosh(α) = −g(u, v), sinh(α) = −g(u, Sv) (8.1)

where Sv is the spacelike vector obtained from v by the Euclidean reflection

S =

0 1

1 0


with respect to the lightlike line u1 = u2. If u, v are both unit timelike vectors but

one is a future-pointing and the other is a past-pointing, then ∠(u, v) := ∠(u,−v),
where −v is the unit timelike vector with time-orientation similar to u relevant to

the vector v. Therefore, α = ∠(u, v) is defined by the relation R(α)u = −v and

satisfies

cosh(α) = g(u, v), sinh(α) = g(u, Sv).

If u, v are unit spacelike vectors with u1 and v1 are of the same sign, then Su and

Sv are unit timelike vectors with the same time-orientation relevant to u and v. By

substituting Su and Sv in (8.1), we get ∠(u, v) := −∠(Su, Sv). On the other hand,

if u1 and v1 are of different sign, then the vectors Su and Sv are unit timelike vectors

of different time-orientations relevant to u and v, and then ∠(u, v) := ∠(Su, Sv).
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If u, v are unit vectors of different types, and supposing that u is timelike, then

∠(u, v) := −∠(u, Sv).
For non-lightlike vectors u, v of arbitrary lengths, the above formulas are divided

by the product of the lengths of u and v. For example, if u, v are future-pointing

timelike vectors, then

cosh(α) =
−g(u, v)
∥u∥∥v∥

, sinh(α) =
−g(u, Sv)
∥u∥∥v∥

.

The notation of oriented hyperbolic angles can be defined in any Lorentzian

plane with a metric g of signature 1. Let l1 and l2 be two lightlike independent

vectors which are basis of such a Lorentzian plane. Then, e1 = 2(l1+l2)
g(l1+l2,l1+l2)

and

e2 =
2(l1−l2)

g(l1−l2,l1−l2)
form an orthonormal basis of this plane. Suppose, without loss of

generality, that e1 is spacelike, then e2 is timelike. Then, the plane with the basis

{e1, e2} can be identified as the Minkowski plane R2
1.

Remarks 8.1.1 [35]

1. The oriented hyperbolic angle between a lightlike vector and any other vector

is not well defined. If u is fixed as a non-lightlike vector and v tends to a

lightlike vector, then ∠(u, v) tends to ±∞.

2. For a Lorentzian surfaceM , the oriented hyperbolic angle between two tangent

directions at p ∈ M is the oriented hyperbolic angle between any of their

respective directional vectors. The oriented hyperbolic angle does not depend

on the choice of the vectors as ∠(u, v) = ∠(−u, v) = ∠(u,−v) = ∠(−u,−v).

8.2 The Lorentzian A-conjugate curve congruences

In [35], a natural 1-parameter family of BDEs linking the A-asymptotic curves to the

A-principal curves BDEs on a Lorentzian surface M is constructed. The approach

of the construction follows that in [23] for Riemannian surfaces with considering

oriented hyperbolic angles instead. The directions u ∈ TpM that make a fixed

oriented hyperbolic angle with their A-conjugate directions ū are considered. There

are two cases depending on whether u and ū are of the same type (both spacelike or
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timelike) or are of different types (one is spacelike and the other is timelike). Each

case produces a distinct family of curve congruences on M .

Definition 8.2.1 [35] Let M be a smooth oriented Lorentzian surface. Given a self-

adjoint operator A on M , define Θi : TM −→ R, i = 1, 2, by Θi(p, u) = α = ∠(u, ū),
with i = 1 when u and its A-conjugate direction ū are of the same type, and i = 2

when they are of different types. The Lorentzian A-conjugate curve congruences,

for a fixed α, is defined to be Θ−1
i (α), i = 1, 2, and is denoted by LCiα.

Remark 8.2.1 In Definition 8.2.1, note that Θ1 is not well defined at points cor-

responding to A-asymptotic directions on the A-parabolic set. Moreover, Θ2 is not

well defined at points on the LPL where the unique A-principal is a self A-conjugate

lightlike direction. In addition, Θ2 is not well defined at timelike umbilic points on

the LPL where any direction is an A-principal direction.

It is shown in [35] that LCiα, i = 1, 2 are given by BDEs. In the following theorem,

(P ) and (A) are respectively the BDEs (7.5) and (7.7) given in Chapter 7.

Theorem 8.2.1 [35] The Lorentzian A-conjugate curve congruences are given by

BDEs and are as follows.

If u and ū are both spacelike or both timelike:

(LC1α) : sinh(α) P +
√
F 2 − EG cosh(α) A = 0. (8.2)

If u is spacelike and ū is timelike or vice-versa:

(LC2α) : cosh(α) P +
√
F 2 − EG sinh(α) A = 0. (8.3)

Remark 8.2.2 [35]

1. According to Theorem 8.2.1, there are at most two directions in TpM which

make a fixed oriented hyperbolic angle α with their A-conjugate directions.

2. For shape-operators on smooth surfaces in R3 (and for self-adjoint operators

on Riemannian surfaces in general) the BDE of the family of conjugate curve

congruences is given by

(Cα) : sin(α)P −
√
EG− F 2 cos(α)A = 0,
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where α ∈ [0,±π/2], P is the principal BDE (7.1) and A is the asymptotic

BDE (7.2), see [23]. The family (Cα) contains the asymptotic BDE (C0) and

the principal BDE (C±π/2). However, from Theorem 8.2.1, the family (LC1α)

contains the A-asymptotic BDE (LC10), but not the A-principal BDE. On the

other hand, the family (LC2α) contains the A-principal BDE (LC20), but not the

A-asymptotic BDE. In fact, the families (LC1α) and (LC2α) are best understood

by considering pencils of forms in the projective plane. At each point on M ,

for α ∈ R, the families (LC1α) and (LC2α) are two disjoint open intervals of

the pencil joining the A-asymptotic BDE and the lines of A-principal curva-

ture BDE. The union of the closure of these intervals is the full pencil. The

boundary BDEs LC1−∞ = LC2−∞ = LC−∞ and LC1+∞ = LC2+∞ = LC+∞ have

the property that one of the solution curves of one BDE is a lightlike foliation

and one of the solution curves of the other is the other lightlike foliations of

M . The A-asymptotic BDE is a member of (LC1α) and the A-principal BDE

is a member of (LC2α). Therefore, the BDEs LC±∞ form an obstruction for

linking the A-asymptotic and the A-principal curves BDEs via the families of

A-conjugate curve congruences. This phenomenon is explained in more details

in [35].

We shall find the equations of the discriminants of LCiα, i = 1, 2 and denote them

by ∆α
LCi , i = 1, 2.

Proposition 8.2.1 The equation of the discriminant of LC1α is given by

∆α
LC1 : H2 sinh2(α) +K = 0, (8.4)

while the equation of the discriminant of LC2α is given by

∆α
LC2 : H2 cosh2(α)−K = 0, (8.5)

where K and H are the A-Gaussian curvature and the A-mean curvature respec-

tively.

Proof : From equation (8.2), the coefficients of LC1α are given by

a = (Fn−Gm) sinhα + n
√
F 2 − EG coshα,
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b =
1

2
((En−Gl) sinhα + 2m

√
F 2 − EG coshα),

c = (Em− Fl) sinhα + l
√
F 2 − EG coshα.

By substituting a, b and c in the equation of the discriminant b2 − ac = 0 and

expanding, we get

(
1

4
E2n2 − 1

2
nlEG+

1

4
G2l2 +m2EG−GmFl − FnEm+ nlF 2) sinh2(α)

+ (nlEG+m2F 2 −m2EG− nlF 2) cosh2(α) = 0.

Replacing cosh2(α) by 1+sinh2(α) in the above equation and dividing by (EG−

F 2)2 yields

(
lG− 2mF + nE

2(EG− F 2)
)2 sinh2(α) +

ln−m2

EG− F 2
= 0,

which is equation (8.4) in the proposition. Similar steps lead to the discriminant

equation (8.5) of LC2α. 2

The local geometric properties of the BDEs are clearly brought up when we con-

sider the special local parametrisation in Theorem 7.2.1 that is when the coordinate

curves are lightlike (E = G = 0). For this purpose, we express the equations of the

BDEs LCiα, i = 1, 2 and their discriminants in that local coordinate and suppose,

without loss of generality, that F > 0. In this case, the set where the A-mean

curvature vanishes is given by m(x, y) = 0.

Remark 8.2.3 Consider the local parametrisation where E = G = 0. Then equa-

tions (8.2) and (8.3) of LCiα, i = 1, 2 and equations (8.4) and (8.5) of their discrimi-

nants are given by

LC1α : n(1 + tanh(α))dy2 + 2mdxdy + l(1− tanh(α))dx2 = 0, (8.6)

∆α
LC1 : m2 cosh2(α)− ln = 0, (8.7)

and

LC2α : n(1 + tanh(α))dy2 + 2m tanh(α)dxdy + l(tanh(α)− 1)dx2 = 0, (8.8)

∆α
LC2 : m2 sinh2(α) + ln = 0 (8.9)
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Proposition 8.2.2 Away from the discriminants ∆α
LCi , i = 1, 2, we have the follow-

ing.

1. In the region where H2 − K > 0, the directions determined by LC1α (resp.

LC2α) are of the same type spacelike or timelike (resp. of different types). In

the region where H2 −K < 0, the directions determined by LC1α (resp. LC2α
for α ̸= 0) are of different types (resp. of the same type).

2. The BDEs LCiα and LCi−α are A-conjugate BDEs for fixed i.

Proof : We consider the local parametrisation where E = G = 0. The directions

determined by LC1α are along

uj = n(1 + tanh(α)) rx −m(−1)j
√
m2 − ln(1− tanh2(α)) ry, (8.10)

in TpM where j = 1, 2. Since we have

g(u1, u1)g(u2, u2) = 4F 2n2(ln)(1 + tanh(α))2(1− tanh2(α)),

we conclude that u1, u2 are of the same type when ln > 0 and of different types

when ln < 0. (Observe that with the local parametrisation given in Theorem 7.2.1

ln has the same sign as H2 −K.) Similar calculations for the case of LC2α lead to

the result in the first assertion.

Suppose that α is positive in the expression of uj (8.10), then uj, j = 1, 2 are the

directions determined by the BDE LC1α. Without loss of generality, the direction u2

and its A-conjugate ū2 can be written as u2 = rx + ξry, where

ξ =
−m+

√
m2 − ln(1− tanh2(α))

n(1 + tanh(α))
,

and ū2 = rx + ηry. Since the directions u2 and ū2 satisfy g(Ap(u2), ū2) = 0, we get

η = −(ξm+ l)/ξn+m, see [35]. That implies

η =
−m+

√
m2 − ln(1− tanh2(α))

n(1− tanh(α))
.

Therefore, the direction ū2 is one of the directions determine by LC1−α. Similar

calculations show that the A-conjugate of u1 is the other direction determined by

LC1−α. The proof for LC2±α follows similarly. 2

Remark 8.2.4 Fix α ̸= 0, despite LCi+α ̸= LCi−α, we have ∆+α
LCi = ∆−α

LCi , i = 1, 2.
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8.3 The Lorentzian reflected A-conjugate curve con-

gruences

The family of curve congruences on M given by replacing the involution C(u) with

(R ◦ C)(u) is also investigated in [35]. The aim is to construct a family of BDEs

which links the A-characteristic BDE to the A-principal BDE. It is proved in [35]

that there are at most two directions in TpM that make an oriented hyperbolic

angle α with the reflection of their A-conjugate directions with respect to either

of the A-principal directions when the A-principal directions exist at p. This gives

two families of BDEs called the Lorentzian reflected A-conjugate curve congruences

denoted by LRi
α, i = 1, 2.

Definition 8.3.1 [35] Let M be a smooth oriented Lorentzian surface. Given a

self-adjoint operator A on M , define Φi : TM −→ R, i = 1, 2 by Φi(p, u) = α =

∠(u,R(ū)), with i = 1 when u and R(ū) are of the same type, and i = 2 when u and

R(ū) are of different types. The Lorentzian reflected A-conjugate curve congruences,

for a fixed α, is defined as Φ−1
i (α), i = 1, 2, and is denoted by LRi

α, i = 1, 2.

Remark 8.3.1 In Definition 8.3.1, note that Φi are not well defined at points (p, u)

with δ(p) ≤ 0 where δ(p) = 0 is the LPL. In addition, Φ1 is not well defined at

points corresponding to the unique A-characteristic direction on the A-parabolic set.

It is noted in [35] that if the oriented hyperbolic angle α between u and R(ū)

is well defined, it can be considered as the sum of the oriented hyperbolic angles

between u and an A-principal direction e and ū and e. This does not depend on

the choice of the A-principal direction. The following theorem expresses the BDEs

LRi
α, i = 1, 2, where (P ) and (C) are respectively the BDEs (7.5) and (7.8) in

Chapter 7.

Theorem 8.3.1 [35] The Lorentzian reflected A-conjugate curve congruences are

given by BDEs and are as follows.

If u and ū are both spacelike or both timelike:

(LR1
α) : cosh(α) C +

2Fm−Gl − En√
F 2 − EG

sinh(α) P = 0. (8.11)
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If u is spacelike and ū is timelike or vice-versa:

(LR2
α) : sinh(α) C +

2Fm−Gl − En√
F 2 − EG

cosh(α) P = 0. (8.12)

Remarks 8.3.1 1. When there is no A-principal directions or when there is a

unique A-principal direction at p ∈ M , the directions defined by the BDEs

LRi
α, i = 1, 2 given in Theorem 8.3.1 at p do not have the geometric char-

acterisation in terms of the oriented hyperbolic angle provided in Definition

8.3.1. The directions, however, have a characterisation in terms of pencils of

quadratic forms, see [35] for details.

2. For the shape-operators on smooth surfaces in R3 (and for self-adjoint oper-

ators on Riemannian surfaces in general), the reflected curve congruences Rα

is given by

cos(α)C +
2Fm−Gl − En√

EG− F 2
sin(α)P = 0.

where α ∈ [0,±π/2], see [16]. The family Rα contains the characteristic

curves BDE (R0) and the principal curves BDE (R±π/2). However, according

to Theorem 8.3.1, the family LR1
α contains the A-characteristic curves BDE

(LR1
0) but not the A-principal curve BDE. On the other hand, the family

LR2
α contains the A-principal curve BDE (LR2

0) but not the A-characteristic

curves BDE, the phenomenon is justified in similar way to that of LCiα but

with considering LR±∞ as the obstructions, see [35].

3. The BDE LR2
0 gives HP = 0, where H is the A-mean curvature and P is

the A-principal BDE. Observe that multiplying the A-principal BDE with the

function H results nothing but changing the direction of the vector field of the

A-principal BDE according to the sign of H. Moreover, the set of points on

M satisfy that H = 0 constitutes a curve of singular points of the vector field.

The existence of such a singular curve does not influence the configurations of

the integral curves determined by the A-principal BDE.

We shall find the equations of the discriminants of LRi
α, i = 1, 2.

Proposition 8.3.1 The equation of the discriminant of the BDE LR1
α is given by

∆α
LR1 : (H2 sinh2(α)−K cosh2(α))(H2 −K) = 0, (8.13)
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while the equation of the discriminant of LR2
α is given by

∆α
LR2 : (H2 cosh2(α)−K sinh2(α))(H2 −K) = 0. (8.14)

where K and H are the A-Gaussian curvature and the A-mean curvature respec-

tively.

Proof : To simplify the calculation, we rewrite the BDE LR1
α (8.11) in the form

cosh(α)

2
√
F 2 − EG

C +H sinh(α)P = 0, (8.15)

The coefficients of the BDE (8.15) are

a =
cosh(α)

2
√
F 2 − EG

(2m2G− 2mnF − nlG+ n2E) +H sinh(α)(Fn−Gm),

b =
1

2
(

cosh(α)√
F 2 − EG

(mlG+mnE − 2nlF ) +H sinh(α)(En−Gl)),

c =
cosh(α)

2
√
F 2 − EG

(l2G− nlE − 2mlF + 2m2E) +H sinh(α)(Em− Fl),

By expanding the equation of the discriminants b2 − ac = 0 with the values

above, and rearranging terms, the equation of ∆α
LR1 is as given in the proposition.

Similarly, if we rewrite the BDE LR2
α (8.12) in the form

sinh(α)

2
√
F 2 − EG

C +H cosh(α)P = 0, (8.16)

then the coefficients of LR2
α (8.16) are given by

a =
sinh(α)

2
√
F 2 − EG

(2m2G− 2mnF − nlG+ n2E) +H cosh(α)(Fn−Gm),

b =
1

2
(

sinh(α)√
F 2 − EG

(mlG+mnE − 2nlF ) +H cosh(α)(En−Gl)),

c =
sinh(α)

2
√
F 2 − EG

(l2G− nlE − 2mlF + 2m2E) +H cosh(α)(Em− Fl).

Similar steps to those of finding the discriminant of LR1
α lead to the equation of the

discriminant of LR2
α as shown in the proposition. 2

We denote by D1
α (resp. D2

α) the sets given by H2 cosh2(α) − K sinh2(α) = 0

(resp. H2 cosh2(α) −K sinh2(α) = 0). We derive from equations (8.13) and (8.14)

that ∆α
LRi = LPL ∪ Di

α, i = 1, 2. The discriminant ∆0
LR1 is the union of the A-

parabolic set and the LPL while ∆0
LR2 is the union of the singular curve H = 0 and

the LPL.
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Remark 8.3.2 The equation of the Lorentzian reflected A-conjugate curve congru-

ences and their discriminants are as the following in the local parametrisation where

the coordinate curves are lightlike:

(LR1
α) : mn(tanh(α)− 1)dy2 − 2lndxdy +ml(− tanh(α)− 1)dx2 = 0, (8.17)

(∆α
LR1) : (ln cosh2(α)−m2) ln = 0, (8.18)

and

(LR2
α) : mn(1−tanh(α))dy2−2ln tanh(α)dxdy+ml(− tanh(α)−1)dx2 = 0, (8.19)

(∆α
LR2) : (ln sinh2(α) +m2) ln = 0. (8.20)

Proposition 8.3.2 Away from the discriminants ∆α
LRi , i = 1, 2, the directions de-

termined by the BDEs LRi
α, i = 1, 2 are A-conjugate to each other. In the region

where H2 −K > 0, the type (spacelike/timelike) of the A-conjugate directions de-

termined by LRi
α, i = 1, 2 follows Theorem 8.3.1. Nevertheless, in the region where

H2 −K < 0, the A-conjugate directions defined by LR1
α are of different types and

those determined by LR2
α are of the same type.

Proof : The technique of the proof is similar to that of Proposition 8.2.2. 2

Remark 8.3.3 1. Let u1, u2 be the A-conjugate directions determined by LRi
α, i =

1, 2, for fixed i. Then, the oriented hyperbolic angle α = ∠(u1, R(u2)) =

∠(u1, e) + ∠(e, u2) in the region where H2 −K > 0.

2. On the discriminants of LRi
α, i = 1, 2, the unique direction u determined by

LRi
α, i = 1, 2, for fixed i, is a self A-conjugate direction. On D1

α, for α ̸= 0,

the oriented hyperbolic angle α satisfies ∠(u,R(ū)) = 2∠(u, e).

3. Fix α ̸= 0, despite LRi
+α ̸= LRi

−α, we have ∆+α
LRi = ∆−α

LRi , i = 1, 2.

8.4 Properties of ∆α
LCi and ∆α

LRi, i = 1, 2

In this section we analyse the properties of the discriminants for both families LCiα
and LRi

α, i = 1, 2. We use Thom’s transversality Theorem 2.4.2 and Theorem 2.4.3

to study the generic properties of the discriminants.
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Proposition 8.4.1 Let A be a generic self-adjoint operator on a Lorentzian surface

M . There is a discrete set Ii ⊂ R \ {0} such that if α /∈ Ii the discriminants

∆α
LCi , i = 1, 2 are regular curves. For α ∈ Ii, the discriminants ∆α

LCi , i = 1, 2 have

a Morse singularity of type A±
1 . Furthermore, ∆0

LC2 has only a Morse singularity of

type A−
1 .

Proof : We consider the submesion jet-extension map

j1ϕ : R2, 0× R× C∞(M,R3)→ J1(2, 3)

(q, α),A 7→ j1(aα(q), bα(q), cα(q)),

where aα(q), bα(q), cα(q) are the coefficients of LC1α depend on l(q),m(q), n(q) and α.

Let δ(q, α) = 0 be the equation of the family of discriminants of the BDEs LC1α given

by (8.7). For each fixed α(α /∈ I1), the equation δα(q) = (m2 cosh2(α)− ln)(q) = 0

defines a submanifold W of codimension 1 in j1(2, 3). Since j1ϕ t W , by Theorem

2.4.3, we have j1ϕA t W and that implies (j1ϕA)
−1(W ) is a germ of a curve in R2

for generic A and a dense set J of values α. The transversality is an open property,

so the set J is also open, which implies that I1 is a discrete set.

Assume that q is the origin and write j1l = l0 + l10x+ l11y, j1m = m0 +m10x+

m11y, and j1n = n0 + n10x+ n11y. Let α ∈ I1, we consider the map

j1ϕ : R2, 0× I1 × C∞(M,R3)→ J1(2, 3)

(q, α) 7→ j1(aα(q), bα(q), cα(q))

Equation δα(0) = 0 gives cosh2(α0) =
m2

0

l0n0
(0). Substituting that condition in

∂δα
∂x

(0) = 0 and ∂δα
∂y

(0) = 0 gives respectively

−2l0n0m10 + n0m0l10 + l0m0n10 = 0,

−2l0n0m11 + n0m0l11 + l0m0n11 = 0.

The above equations define a submanifold W of codimension 3 in J1(2, 3). By

Theorem 2.4.1, j1ϕA t W means that (j1ϕA)
−1(W ) is an isolated point in the family

LC1α. Therefore, for α ∈ I1, the discriminants ∆α
LC1 could have singularities, which

are generically of type Morse A±
1 , for some isolated values of α. The proof for the

discriminants ∆α
LC2 , for α ̸= 0, follows similarly.
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If α = 0, then LC10 is the A-asymptotic BDE, and δ(q) = 0 is the A-parabolic

set. The A-parabolic set has a singularity of type Morse at the origin if and only if

the following conditions satisfied; (m2
0 − l0n0)(q) = 0 and the other two conditions

∂
∂x
δ(q) = 0 and ∂

∂y
δ(q) = 0 mean n2

0l11+m
2
0n11−2m0n0m11 = 0 and n2

0l10+m
2
0n10−

2m0n0m10 = 0. These conditions define a submanifold W of codimension 3 in

J1(2, 3). In this case, ϕ0 t W means that ϕ0 avoids W . Therefore, the A-parabolic

set is a regular curve.

The BDE LC20 is the A-principal BDE, and δ(q) = (ln)(q) = 0 is the LPL. It

is proved in [31] that for generic A, the LPL is a regular curve except at timelike

umbilic points (where l(q) = n(q) = 0). Generically, the singularity in this case is

Morse of type A−
1 . 2

The discriminants ∆α
LRi , i = 1, 2 are curves. These curves can have singularities

at some isolated points.

Proposition 8.4.2 For a generic A, the discriminants ∆α
LRi , i = 1, 2 are curves

which possibly are singular at isolated points. To be more precise, we have the

following.

1. There is a discrete set Ii ⊂ R \ {0} such that if α /∈ Ii the discriminants

∆α
LRi , i = 1, 2 are regular curves. For α ∈ Ii, the discriminants ∆α

LRi , i = 1, 2

have Morse singularity of type A±
1 at some isolated points on Di

α. On the

LPL, the discriminants ∆α
LRi , i = 1, 2 can have only a Morse singularity of

type A−
1 .

2. At the intersection point of the LPL andDi
α, the discriminant curves ∆α

LRi , i =

1, 2 have a singularity of type A−
3 for any α if i = 1, and for α ̸= 0 if i = 2.

Proof : The proof of the first assertion is similar to that of Proposition 8.4.1 and is

omitted. To prove the second assertion, assume that the origin is the intersection

point of the LPL and Di
α. At that point we have two conditions m0 = l0 = 0 (if

the LPL is given by l(q) = 0) which means that this occurs at isolated points for

generic A. Except ∆0
LR2 , by change of coordinates (detailed calculation is given

in the Appendix, section A.1), the discriminant functions of ∆α
LRi , i = 1, 2 are R-
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equivalent to ±(x2 − kiy4), i = 1, 2 with

k1 =
((2l211n0l20 − 2l10l11n0l21 + 2l210n0l22) cosh(α)

2 − l210m2
11 − l211m2

10 + 2l10l11m11m10)
2

4l410 cosh(α)
2

,

and

k2 =
((−2l10l11n0l21 + 2l210n0l22 + 2l211n0l20) sinh(α)

2 + l210m
2
11 + l211m

2
10 − 2l10l11m11m10)

2

4l410 sinh(α)
2

.

Therefore, the discriminants curves ∆α
LRi , i = 1, 2 have an A−

3 -singularity at the

origin. For the case of LR2
0 = mP the discriminant curve ∆0

LR2 is regular and the

behaviour of the BDE (mP ) is as same as that of the BDE (P ). 2

Proposition 8.4.3 Let A be a generic self-adjoint operator on a Lorentzian surface

M . The discriminant curves ∆α
LCi and ∆α

LRi , i = 1, 2 intersect tangentially at their

point of intersection. They intersect the curve H = 0 transversally at such a point

(Figure 8.1).

Proof : We consider the local parametrisation where E = G = 0, and assume that

the point of intersection is the origin. The discriminant curves ∆α
LCi , ∆α

LRi , and the

curve H = 0 given by m = 0 intersect at the origin if and only if m0 = l0 = 0 and

n0 ̸= 0. In fact, the gradient of ∆0
LC1 is (−nl10,−nl11) is parallel to the gradient

of the ∆0
LC2 , and therefore, the two curves intersect tangentially. The proof follows

similarly for the discriminant curves ∆α
LCi , i = 1, 2 for α ̸= 0. The gradients of ∆α

LCi

is (−1)i(nl10, nl11). It is parallel to the gradients of ∆0
LCi , i = 1, 2 at the origin. On

the other hand, we know that the discriminant curves ∆α
LRi are LPL ∪ Di

α. From

Proposition 8.4.2(2), except ∆0
mathcalLR2 , the discriminant curves ∆α

LRi have an A−
3 -

singularity at the origin. Therefore, the LPL and Di
α intersect tangentially at that

point. The discriminant curves ∆α
LCi , i = 1, 2 and the sets Di

α intersect the LPL

tangentially at the origin, which implies that, they are tangential to each other. By

contrast, suppose that the curve H = 0 and the LPL intersect tangentially at the

origin. That implies m0 = 0, l0 = 0 and m10l11−m11l10 = 0. These conditions define

a submanifold W of codimension 3 in J1(2, 3). Since codim W > 2, the genericity of

A implies that j1A(0, 0) misses W . Hence these curves are generically transversal,

that is H = 0 and the discriminant curves ∆α
LCi and ∆α

LRi , i = 1, 2 are generically

transversal at the origin. 2
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(a) (b)

Figure 8.1: The distribution of the discriminant curves ∆α
LCi (a) and ∆α

LRi (b).

Remarks 8.4.1 1. The discriminant curves ∆α
LC1 foliate the region where K ≤

0, with ∆0
LC1 is the A-parabolic set. The discriminant curves ∆α

LC2 foliate the

region where H2−K ≤ 0 where ∆0
LC2 is the LPL. Neither of the discriminant

curves ∆α
LC1 nor ∆α

LC2 occur in the region where K > 0 and H2 − K > 0

(Figure 8.1(a)).

2. The sets D1
α occur in the region where K ≥ 0 and H2 − K > 0, with ∆0

LR1

is the A-parabolic set union the LPL. The sets D2
α occur in the region where

H2 −K < 0 with ∆0
LR2 is the singular curve H = 0 union the LPL. Neither

of the discriminant curves ∆α
LR1 nor ∆α

LR2 occur in the region where K < 0

(Figure 8.1(b)).

3. The discriminant curves ∆α
LR2 and ∆α

LC2 foliate the same region where H2 −

K < 0. Then there are two discriminant curves for these families at each point

in this region, one for each family.

Proposition 8.4.4 On the discriminant curves ∆±α
LCi , i = 1, 2, for fixed α ̸= 0,

the unique directions determined by LCiα and by LCi−α, for fixed i, are the A-

characteristic directions. The A-characteristic directions on ∆±α
LC1 are of the same

type (spacelike/timelike) while they are of different types on ∆±α
LC2 .
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Proof : Consider the local parametrisation where E = G = 0. For fixed α ̸= 0,

the unique directions determined by LCiα and by LCi−α on the discriminant curve

∆±α
LCi , for fixed i, are (mn,−ln ±

√
(ln)2 −m2ln) (+ for α and − for −α) on the

plane. These directions are the A-characteristic directions. From Proposition 8.3.2,

the A-characteristic directions are A-conjugate. They are of the same type in the

region foliated by the discriminant curves ∆α
LC1 (ln > 0) and of different types in

the region foliated by the discriminant curves ∆α
LC2 (ln < 0). 2

Remark 8.4.1 On the discriminant curve ∆0
LC1 the unique A-characteristic direc-

tion determined by LC10 is a non-lightlike coincides with the unique A-asymptotic di-

rection. On the discriminant curve ∆0
LC2 , which is the LPL, away from timelike um-

bilic points, the unique A-characteristic direction determined by LC20 is lightlike co-

incides with the unique lightlike A-principal direction (which is also A-asymptotic).

At timelike umbilic points, every direction is an A-characteristic direction.

We have the following for LRi
α, i = 1, 2.

Proposition 8.4.5 On the discriminant curves ∆±α
LRi , i = 1, 2, for fixed α ̸= 0,

the unique directions determined by LRi
α and by LRi

−α, for fixed i, are the A-

asymptotic directions. On D1
±α (resp. D2

±α), the A-asymptotic directions are of

the same type (spacelike/timelike) (resp. different types). On the LPL, away from

timelike umbilic points, one of the A-asymptotic directions is lightlike.

Proof : Consider the local parametrisation where E = G = 0. For fixed α ̸= 0,

the unique directions determined by LRi
α and by LRi

−α, for fixed i, are (n,−m ±
√
m2 − ln) (+ for α and − for −α) on the plane. These directions are the A-

asymptotic directions. Since the A-asymptotic directions are determined by LC10,

their types on Di
±α follows from Proposition 8.3.2. On the LPL, away from time-

like umbilic points, one of the A-asymptotic directions coincides with the unique

lightlike A-principal direction. At timelike umbilic points, both of the A-asymptotic

directions are lightlike. 2
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8.5 The limits of LCiα and LRi
α, i = 1, 2 as α→ ±∞

The analysis of the limit of LCiα and LRi
α, i = 1, 2 when α → ±∞ is started in

[35]. Equations (8.2) and (8.3) of LCiα and (8.11) and (8.12) of LRi
α are divided by

cosh(α) to get

lim
α→±∞

LC1α = lim
α→±∞

LC2α = LC±∞,

and

lim
α→±∞

LR1
α = lim

α→±∞
LR2

α = LR±∞,

where

(LC±∞) : ±P +
√
F 2 − EGA = 0, (8.21)

(LR±∞) : C ± 2Fm−Gl − En√
F 2 − EG

P = 0. (8.22)

In order to find the discriminants ∆±∞
LC and ∆±∞

LR , we divide equations (8.4)

and (8.5) of the discriminant curves ∆α
LCi and equations (8.13) and (8.14) of the

discriminant curves ∆α
LRi by cosh2(α). As α→ ±∞ we have tanh2(α)→ 1 and that

implies

lim
α→±∞

∆α
LC1 = lim

α→±∞
∆α

LC2 = ∆±∞
LC ,

which is H2 = 0. Furthermore, we have

lim
α→±∞

∆α
LR1 = lim

α→±∞
∆α

LR2 = ∆±∞
LR ,

which is (H2 −K)2 = 0.

Remarks 8.5.1 1. Consider the local parametrisation where E = G = 0. Then

equation (8.21) becomes

(LC+∞) : dy (mdx+ ndy) = 0, (8.23)

(LC−∞) : dx (ldx+mdy) = 0, (8.24)

and ∆±∞
LC is the curve m2 = 0.
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2. The pairs of 1-forms LC±∞ given by equations (8.23) and (8.24) determine two

distinct directions at each point p ∈ M except at points on ∆±∞
LC . One of the

directions is lightlike and the A-conjugate of the other direction is the other

lightlike direction at p. Therefore, in this case, the hyperbolic angle between

the directions and their A-conjugates is not well defined.

3. On ∆±∞
LC , the unique directions defined by LC+∞ and by LC−∞ are lightlike

A-conjugate to each other. They are the lightlike A-characteristic directions.

4. Consider the local parametrisation where E = G = 0, equation (8.22) becomes

(LR+∞) : ldx (ndy +mdx) = 0, (8.25)

(LR−∞) : ndy (ldx+mdy) = 0. (8.26)

The local configurations of LR+∞ is that of the pair of 1-forms (dx, ndy +

mdx) and that of LR−∞ is that of the pair of 1-forms (dy, ldx +mdy). The

discriminant curve ∆+∞
LR (resp. ∆−∞

LR ) is the LPL given by n = 0 (resp. l = 0)

union the singular curve l = 0 (resp. n = 0).

5. The pairs of 1-forms LR±∞ determine two directions at each point p ∈ M

except at points on the discriminant curves ∆±∞
LR . One of the directions is

lightlike and the other direction is its A-conjugate. Therefore, in this case,

the hyperbolic angle between the directions and their A-conjugates is not well

defined.

6. On ∆+∞
LR and ∆−∞

LR , the unique directions defined by LR+∞ and by LR−∞

coincide with the lightlike A-asymptotic direction.

We are interested in studying the local topological configurations of LC±∞ and

LR±∞. We study the case of LC+∞ in details; the study of the cases LC−∞ and

LR±∞ follows in the same way. We consider equation (8.23), and set β1 = dy and

β2 = m(x, y)dx + n(x, y)dy. We assume that the point of interest to be the origin.

The 1-form β1 is regular, and β2 is regular if and only if either m(0, 0) ̸= 0 or

n(0, 0) ̸= 0; and is singular if m(0, 0) = n(0, 0) = 0. This is the case when the origin

is the intersection point of the LPL and H = 0.
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(a) (dx, dy) (b) (dy, d(y − x2)) (c) (dy, d(y + xy + x3))

Figure 8.2: Regular pairs of 1-forms. The discriminant curve is in red.

The discriminant of (β1,β2) consists of points (x, y) where β1 is a multiple of β2.

This is the case if and only if m(x, y) = 0. The local topological configurations of

the pairs of regular 1-forms in the plane are given in [38].

Theorem 8.5.1 [38] Let β1 and β2 be two germs of regular 1-forms. Then the

stable pairs (β1,β2) are topologically equivalent to one of the following:

1. (dx, dy): if the two 1-forms are transverse. Figure 8.2(a).

2. (dy, d(y − x2)): if the two 1-forms have 2-point contact at the origin, equiv-

alently, if the discriminant and the two 1-forms have 1-point contact at the

origin. Figure 8.2(b).

3. (dy, d(y + xy + x3)): if the two 1-forms have 3-point contact at the origin,

equivalently, if the discriminant and the two 1-forms have 2-point contact at

the origin. Figure 8.2(c).

Proposition 8.5.1 The generic local configuration of the foliations of LC±∞ and

LR±∞ away from their discriminant curves is as in Figure 8.2(a). On their discrim-

inant curves, away from the intersection point of the LPL and H = 0, the generic

local configurations of LC±∞ and LR±∞ are as in Figure 8.2(b) and (c).

Proof : We consider LC+∞ at the origin, and set β1 = dy and β2 = mdx+ndy with

j2m = m0 +m10x +m11y +m20x
2 +m21xy +m22y

2 and j1n = n0 + n10x + n11y.

The discriminant curve ∆+∞
LC , given by m = 0, is regular at the origin unless m0 =
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m10 = m11 = 0. These 3 conditions define a submanifold W of codimension 3 in

J1(2, 3). Since A is generic, the genericity implies that j1(Ap) misses W , i.e., m = 0

is a regular curve. The 1-form β2 is regular if and only if either n0 ̸= 0 or m0 ̸= 0.

Away from the discriminant curve m = 0, LC+∞ determines two directions which

are (1, 0) and (n0,−m0). Therefore, the pair of foliations determined by LC+∞ are

transverse (Figure 8.2(a)) as m0 ̸= 0. Suppose that the origin is on the discriminant

curve m = 0 and is not the point of intersection with the LPL (n0 ̸= 0). The

discriminant curve m = 0 is tangent to the line m10x+m11y = 0 at the origin. The

leaf of β1 and the discriminant curve have 1-point contact at the origin if and only

if m10 ̸= 0 (Figure 8.2(b)). If m10 = 0 and m20 ̸= 0, then the leaf of β1 and the

discriminant curve have 2-point contact at the origin (Figure 8.2(c)). 2

We turn to the case when the 1-form β2 = mdx + ndy is singular and the

singularity is of type saddle, node, or focus. This case occurs precisely when the

origin is the intersection point of H = 0 and the LPL. The topological normal

forms in this case follow from Theorem 8.5.2.

Theorem 8.5.2 [38] Let β1 be a germ at the origin of a regular 1-form and β2 a germ

of a 1-form with a saddle/node/focus singularity at the origin. The discriminant is

then a smooth curve. If the leaf of β1 at the origin is transverse to the separatrices

of β2, then there exists a homeomorphism taking the foliations of (β1, β2) to those

of

1. (dy, (x− y)dy + xdx): if β2 is a saddle. Figure 8.3(a).

2. (dy, (x+ 1
8
y)dy + xdx): if β2 is a node. Figure 8.3(b).

3. (dy, (x+ y)dy + xdx): if β2 is a focus. Figure 8.3(c).

We observe that LC+∞ and LR+∞ (resp. LC−∞ and LR−∞) have a common direc-

tion mdx+ ndy (resp. ldx+mdy).

Proposition 8.5.2 For generic A, at the point of intersection of the LPL and the

curve H = 0, the configuration of the foliations of LC+∞ and LR+∞ (resp. LC−∞

and LR−∞) are locally topologically equivalent to those in Theorem 8.5.2.
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(a) (R,S) (b) (R,N) (c) (R,F)

Figure 8.3: (regular, singular) pairs of 1-forms. The discriminant curve is in red.

The abbreviations R/S/N/F are for regular/saddle/node/focus.

Proof : Consider the local parametrisation where E = G = 0 and the origin to be

the point of intersection of the regular curves m(x, y) = 0 and the LPL (n = 0). We

investigate the case of LC+∞. At the origin we have m0 = n0 = 0, and therefore,

the 1-form β2 = mdx + ndy is singular. Given that j1m = m10x + m11y and

j1n = n10x+ n11y, we consider the matrix

A =

 n10 n11

−m10 −m11

 .

From Proposition 8.4.3, for generic A, the discriminant curve m(x, y) = 0 and the

LPL are regular curves which intersect transversally at the origin. Therefore, the

matrix A is non-singular, i.e., A has non-zero eigenvalues. The eigenvalues of A are

the values of λ for which

λ2 − tr(A)λ+ det(A) = 0.

Here tr(A)=n10 −m11 and det(A)=m10 n11 −m11 n10. Hence, the eigenvalues of

A are λ1 = 1
2
(tr(A) +

√
∆) and λ2 = 1

2
(tr(A)−

√
∆), with

∆ = (tr(A))2 − 4det(A).

If ∆ > 0, then λ1 and λ2 are real distinct eigenvalues. Besides if det(A)> 0,

then λ1 and λ2 have the same sign, and the singularity of β2 is node. If det(A)< 0,

λ1 and λ2 have opposite signs, and the singularity of β2 is saddle. If ∆ < 0, then
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λ1 and λ2 are complex eigenvalues and the singularity of β2 is focus. The proof is

analogous for LC−∞ and LR±∞. 2



Chapter 9

The local configurations of the

Lorentzian curve congruences

We determine in this chapter the local topological configurations of LCiα and LRi
α, i =

1, 2, for α fixed, and the way they bifurcate locally as α varies in a neighbourhood

of a given fixed α. We recall that away from the discriminant curves, the BDEs LCiα
and LRi

α, i = 1, 2 determine either a pair of transverse foliations or none. We study

the local configurations of LCiα and LRi
α, i = 1, 2 at points on their discriminant

curves. We examine the related conditions given in Chapter 6 for each singularity

to occur for generic self-adjoint operators A.

9.1 The local configurations of LCiα, i = 1, 2 at their

codimension ≤ 1 singularities

Since our study is local, we assume that the point of interest is the origin. We deal

first with the case when the coefficients of LCiα, i = 1, 2 do not vanish simultaneously

at the origin. The BDEs in this case are of Type 1. We can assume, without loss of

generality, that n(0, 0) ̸= 0, set p = dy/dx and write the BDEs LCiα, i = 1, 2 given

by equations (8.6) and (8.8) in the forms

(LC1α) : p2 +
2m(x, y)

n(x, y)(tanh(α) + 1)
p+

l(x, y)(1− tanh(α))

n(x, y)(tanh(α) + 1)
= 0, (9.1)

81
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(LC2α) : p2 +
2m(x, y) tanh(α)

n(x, y)(tanh(α) + 1)
p+

l(x, y)(tanh(α)− 1)

n(x, y)(tanh(α) + 1)
= 0, (9.2)

where rα1 (x, y) are the coefficients of p and rα2 (x, y) are the coefficients of p0 in

equations (9.1) and (9.2). Now, the equations of LCiα are adapted to compute

the conditions for codimension ≤ 1 singularities to occur at the origin using the

calculations in Chapter 6. (When the coefficients of LCiα all vanish at the origin,

then the BDEs are of Type 2. In this case, equations (8.6) and (8.8) are considered.

See for example the proof of Theorem 9.1.2(2).)

The coefficients of the 3-jets of rα1 (x, y) and rα2 (x, y) shown in Chapter 6 are

differentiable functions of α. In fact, solving the condition C1 = 0 for α specifies the

discriminant curve ∆α0

LCi that passes through the origin. Substituting the value of

α0 in the remaining conditions provides equations that depend purely on j3(l,m, n)

at the origin.

Theorem 9.1.1 Let A be a generic self-adjoint operator on a Lorentzian surface

M . Away from timelike umbilic points, the BDEs LCiα, i = 1, 2 have the codimension

0 singularities shown in Table 6.1 and their conditions to occur are as in Table 6.2.

Proof : We consider the local parametrisation where E = G = 0. A direct calcula-

tion for the discriminant equation of LC1α (9.1) gives

(m2 − ln(1− tanh2(α))(q) = 0. (9.3)

So for each fixed α ∈ R, we have a family of discriminant curves ∆α
LC1 given

by equation (9.3), see Proposition 8.4.1. In fact, equation (9.3) presents the condi-

tion C1 = 0. Supposing that q is the origin and solving equation (9.3) for α give

tanh(±α0) = ±
√

l0n0−m2
0

l0n0
(+ for α0 and − for −α0). We substitute the value of

tanh(α0) in the conditions Cj, j = 2, 3, 4, 5. If Cj ̸= 0, j = 2, 5, then the local

configuration of LC1α0
is a family of cusps with cusps tracing the discriminant curve

∆α0

LC1 in a neighbourhood of the origin. If the origin is the point of intersection of

the LPL and K = 0 (where m0 = l0 = 0), the integral curves of the BDE LC1α0
is

generically a family of cusps.

If Ci = 0, i = 1, 2 and Cj ̸= 0, j = 3, 4, 5, then LC1α0
has a folded singularity

of type saddle, node or focus at the origin. In fact, the condition C2 = 0 depends
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purely on j1(l,m, n). For each fixed α0, the conditions Ci = 0, i = 1, 2 define a

submanifold W of codimension 2 in J1(2, 2). For generic A and each fixed α0, we

have (j1(ϕA))
−1(W ) (where j1ϕA is the jet-extension map in the proof of Proposition

8.4.1) is an isolated folded singularitiy on the discriminant curve ∆α0

LC1 ; the technique

used here is similar to that of the proof of Proposition 8.4.1. Any type of the folded

singularity can occur, refer to the Appendix (section A.2) for detailed calculations.

The study of LC1−α0
and LC2±α0

follows similarly. 2

We turn to the case when LCiα, i = 1, 2 can have codimension 1 singularities.

Theorem 9.1.2 Let A be a generic self-adjoint operator on a Lorentzian surface

M . There is a discrete set Ii ⊂ R \ {0}, i = 1, 2 such that:

1. For α0 ∈ Ii, the BDEs LCiα0
, i = 1, 2 have codimension 1 singularity of type

folded saddle-node, folded node-focus or Morse Type 1 at some isolated points

on ∆α0

LCi (Table 6.1 and 6.2). Furthermore, the families LCiα, i = 1, 2 are

generic for α near α0 in sense of Theorem 6.1.3. The bifurcations in the

families LCiα, i = 1, 2 of each type of codimension 1 singularity are shown in

Table 6.3.

2. At timelike umbilic points, the BDE LC20 can have only a Morse Type 2 sin-

gularity of type A−
1 . All the five generic cases of such a singularity can occur

(Figure 6.3). Moreover, the family LC2α is generic for α near α0 = 0 in the

sense of Theorem 6.2.2. The bifurcations in the family LC2α of each case of

Morse Type 2 of type A−
1 singularity are as shown in Figure 6.5.

Proof : Let α0 ∈ I1. The BDE LC1α0
has a codimension 1 singularity of type folded

saddle-node at the origin if and only if Ci = 0, i = 1, 2, 3 and Cj ̸= 0, j = 5, 6. These

conditions define a submanifold W of codimension 3 in J2(2, 2). For generic A and

fixed α0, we have (j1(ϕA))
−1(W ) is an isolated point on the discriminant curve ∆α0

LC1

in the family LC1α; the technique is similar to that of the proof of Proposition 8.4.1.

Similarly, the BDE LC1α0
has a codimension 1 singularity of type folded node-focus

at the origin in the family LC1α if and only if Ci = 0, i = 1, 2, 4 and Cj ̸= 0, j = 3, 5.

Furthermore, the BDE LC1α0
has an isolated singularity of type Morse Type 1 of

type A±
1 if and only if Ci = 0, i = 1, 7, 8 and Cj ̸= 0, j = 9, 10.
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A 1-parameter family of BDEs LC1α with LC1α0
having a folded saddle-node singu-

larity at the origin is generic if and only if the genericity condition (6.9) is satisfied.

In order to simplify the calculation, we make a linear change of coordinates and

compute the right hand side of the genericity condition (6.9). We find that the

genericity condition (6.9) is satisfied, refer to the Appendix (section A.2) for calcu-

lations. The studies of the genericity of the 1-parameter family of the BDEs LC1α
with LC1α0

having the other types of codimension 1 singularities at the origin follow

similarly using the genericity conditions in Theorem 6.1.3. The results for LC1−α0

and LC2±α0
are proved in similar manners.

The LPL (∆0
LC2) has generically a Morse singularity of type A−

1 at the origin

if and only if n0 = l0 = 0. These two conditions define a submanifold W of codi-

mension 2 in J0(2, 3). By Thom’s transversality theorem 2.4.2, for generic A, such

a singularity can occur at isolated points on the LPL. As a result, the A-principal

BDE (LC02) has a Morse Type 2 singularity of type A−
1 and the five generic cases

can occur [31]. We examine the genericity condition (6.12) in Chapter 6 and that

gives m0(n10l11 − n11l10) ̸= 0. Therefore, the family LC2α is generic in this case. 2

Proposition 9.1.1 Away from the intersection point of the LPL and the A-parabolic

set, we have the following for fixed α0 ̸= 0 and q ∈ ∆α0

LCi , i = 1, 2 for fixed i.

1. If LCiα0
has a folded singularity (saddle/node/focus), a folded saddle-node or a

folded node-focus at q, then LCi−α0
form a family of cusps in a neighbourhood

of q and vice-versa.

2. The local configurations of LCiα0
and LCi−α0

are equivalent in case that one of

them has a Morse Type 1 singularity at q.

Proof : Suppose that q is the origin. From Proposition 8.4.4, the unique directions

determined by LCiα0
and LCi−α0

at q ∈ ∆±α0

LCi are the A-characteristic directions.

Therefore, if the A-characteristic direction determined by LCiα0
, for fixed i, is tangent

to the discriminant curve ∆α0

LCi at the origin, then the other one determined by LCi−α0

is transverse.

Calculations, done by using Maple, show that the conditions Ci = 0, i = 1, 7, 8

and Cj ̸= 0, j = 9, 10 for LCiα0 and LCi−α0 , for fixed i, to have a Morse Type 1
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singularity at the origin are equivalent. Furthermore, their Morse Type 1 singularity

has the same bifurcation, and the two possible bifurcations can occur (two saddles

or two foci). 2

9.2 The local configurations of LRi
α, i = 1, 2 at their

codimension ≤ 1 singularities

The study of the local configurations of LRi
α, i = 1, 2 at their codimension ≤1

singularities follows similarly to that of LCiα, i = 1, 2. Note that the discriminant

curves ∆α
LRi , i = 1, 2 are the union of the LPL and the sets Di

α. When q ∈ Di
α,

the results are similar to those in Theorem 9.1.1 and Theorem 9.1.2. There is extra

information when q ∈ LPL.

We deal firstly with the case when the coefficients of the BDEs LRi
α, i = 1, 2 do

not vanish simultaneously at the origin. The BDEs in this case are of Type 1. We

can assume, without loss of generality, that mn(0, 0) ̸= 0, set p = dy/dx and write

the BDEs LRi
α, i = 1, 2 given by equations (8.17) and (8.19) in the forms

(LR1
α) : p

2 − 2l(x, y)

m(x, y)(tanh(α)− 1)
p− l(x, y)(tanh(α) + 1)

n(x, y)(tanh(α)− 1)
= 0, (9.4)

and

(LR2
α) : p

2 − 2l(x, y) tanh(α)

m(x, y)(1− tanh(α))
p− l(x, y)(tanh(α) + 1)

n(x, y)(1− tanh(α))
= 0, (9.5)

where rα1 (x, y) are the coefficients of p and rα2 (x, y) are the coefficients of p0 in

equations (9.1) and (9.2). Now, the equations of LRi
α are adapted to compute

the conditions for codimension ≤ 1 singularities to occur at the origin using the

calculations in Chapter 6. (When all the coefficients of LRi
α vanish at the origin,

then the BDEs are of Type 2. In this case, equations (8.17) and (8.19) are considered.

See for example the proof of Theorem 9.2.3.)

Theorem 9.2.1 Let A be a generic self-adjoint operator on a Lorentzian surface

M . Away from timelike umbilic points, and from the intersection points of the LPL

and the A-parabolic set, we have the following.
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1. For q ∈ Di

α, the BDEs LRi
α, i = 1, 2 have codimension 0 singularities (Table

6.1 and 6.2).

2. For q ∈ LPL, the BDEs LRi
α, i = 1, 2 have codimension 0 singularity (Ta-

ble 6.1 and 6.2). Moreover, for each fixed α0, the folded singularities (sad-

dle/node/focus) of LR1
α0

and LR2
α0

occur at the same points and have opposite

indices.

Proof : We consider the local parametrisation where E = G = 0, and suppose

that q is the origin. If the origin belongs to Di
α, the proof is similar to that of

Theorem 9.1.1 and is omitted. If the origin belongs to the LPL, for each fixed

α0, the unique directions determined by LR1
α0

and LR2
α0

coincide with the unique

lightlike A-principal direction. The integral curves of the BDEs LRi
α0
, i = 1, 2 form

families of cusps with cusps tracing the LPL given by l(x, y) = 0 if and only if l0 = 0

and l10 ̸= 0. They have folded singularity of type saddle, node or focus at the origin

if and only if l0 = l10 = 0 and l11 ̸= 0 in addition to

λ1 =
−2n0l20(−1 + tanh(α0))

(tanh(α0) + 1)l211
̸= 0,

1

16
, (9.6)

in the case of LR1
α0

, and in the case of LR2
α0

λ2 =
2n0l20(−1 + tanh(α0))

(tanh(α0) + 1)l211
̸= 0,

1

16
. (9.7)

It follows from the expressions of λ1 and λ2 that the three types of the folded

singularity can occur. For each fixed α0, we have λ2 = −λ1, therefore, the folded

singularities of LR1
α0

and LR2
α0

have opposite indices. 2

Corollary 9.2.1 For a generic self-adjoint operator A, the folded singularities of

the A-characteristic and the A-principal curves BDEs coincide and have opposite

indices.

Proof : The result follows from the fact that the A-characteristic and the A-principal

curves BDEs are the BDEs LR1
0 and LR2

0 respectively. 2

We turn to the case when LRi
α, i = 1, 2 have codimension 1 singularities.
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Theorem 9.2.2 Let A be a generic self-adjoint operator on a Lorentzian surface

M . Away from timelike umbilic points and from the intersection point of the LPL

and the A-parabolic set, we have the following.

1. There is a discrete set Ii ⊂ R \ {0}, i = 1, 2 such that for α0 ∈ Ii and q ∈ Di
α0

,

the BDEs LRi
α0
, i = 1, 2 have a codimension 1 singularity of type folded saddle-

node, folded node-focus or Morse type 1 (Table 6.1 and 6.2). Moreover, the

families LRi
α, i = 1, 2 are generic for α near α0 in sense of Theorem 6.1.3. The

bifurcations in the families LRi
α, i = 1, 2 as α varies near α0 for each type of

codimension 1 singularity are shown in Table 6.3.

2. For q ∈ LPL, the BDEs LRi
α0
, i = 1, 2 can have only a codimension 1 singu-

larity of type folded node-focus for some values of α0.

Proof : We consider the local parametrisation where E = G = 0 and assume that q

is the origin. When the origin belongs to Di
α, the technique of the proof is similar

to that of Theorem 9.1.2(1) and is omitted.

When the origin belongs to the LPL, for any fixed α0, the BDEs LRi
α0
, i = 1, 2

have a folded saddle-node (resp. a Morse Type 1) singularity if and only if l0 =

l10 = l20 = 0 (resp. l0 = l10 = l11 = 0) at the origin. These conditions define a

submanifold W of codimension 3 in J2(2, 3). Since A is generic, then j2(Ap) t W

implies that j2(Ap) misses W , and therefore, the BDEs LRi
α0
, i = 1, 2 do not have

such a singularity on the LPL.

The BDE LR1
α0

(resp. LR2
α0

) have an isolated singularity of type folded node-focus

at the origin on the LPL if and only if l0 = l10 = 0 and tanh(α0) =
−l211+16n0l20
16n0l20+l211

(resp. tanh(α0) =
16l20n0+l211
16l20n0−l211

). The technique of the proof follows that of Theorem

9.1.2(1) and is omitted. 2

Proposition 9.2.1 Let A be a generic self-adjoint operator on a Lorentzian surface

M . Away from timelike umbilic points and from the intersection point of the LPL

and the A-parabolic set, we have the following for fixed α0 ̸= 0.

1. For q ∈ Di
α0
, i = 1, 2, if LRi

α0
, for fixed i, has a folded singularity, a folded

saddle-node or a folded node-focus at q, then LRi
−α0

form a family of cusps in
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a neighbourhood of q and vice-versa. Nevertheless, the local configurations of

LRi
α0

is equivalent to LRi
−α0

, for fixed i, in case that one of them has a Morse

Type 1 singularity at q.

2. For q ∈ LPL, if LRi
α0

, for fixed i, has a folded singularity or a folded node-

focus at q, then LRi
−α0

form a family of cusps in a neighbourhood of q and

vice-versa.

Proof : Suppose that q is the origin. From Proposition 8.4.5, the unique directions

determined by LRi
α0

and LRi
−α0

, for fixed i, at the origin are the A-asymptotic

directions. If the origin is on Di
α0

, then the proof of this case is similar to that of

Proposition 9.1.1(1) and (2). If the origin is on the LPL, one of the A-asymptotic

directions is lightlike. Therefore, if the BDE which determines the lightlike A-

asymptotic direction has a folded singularity or folded node-focus, then the other

BDE forms a family of cusps in a neighbourhood of the origin. 2

Theorem 9.2.3 Let A be a generic self-adjoint operator on a Lorentzian surface

M . At timelike umbilic points, the BDEs LRi
α, i = 1, 2 have a Morse Type 2

singularity of type A−
1 for any α ∈ R. For each fixed α, the five generic cases can

occur (Figure 6.3). Moreover, the families LRi
α, i = 1, 2 are not generic of a Morse

Type 2 singularity of LRi
α0
, i = 1, 2 in sense of Theorem 6.2.2.

Proof : We know that the LPL is part of the discriminant curves ∆α
LRi . Suppose

that the origin is a timelike umbilic point (i.e., l0 = n0 = 0). Then all the coefficients

of LRi
α, i = 1, 2 vanish at this point. From Proposition 8.4.2(1), the LPL has a

Morse singularity of type A−
1 at that point. Subsequently, the BDEs LRi

α, i = 1, 2

have generically an isolated singularity of type Morse Type 2 of type A−
1 for any

α ∈ R. The 1-jet of LR1
α is

(tanh(α)− 1)j1n(x, y)dy2 − (tanh(α) + 1)j1l(x, y)dx2. (9.8)

As highlighted in Chapter 6, the local configuration of LR1
α are determined by the

number and type of the singularities of the vector field ξ. The singularities of ξ are

the roots of the cubic

ϕ(p) = (tanh(α)−1)n11p
3+(tanh(α)−1)n10p

2−(tanh(α)+1)l11p−(tanh(α)+1)l10.
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(a) (b)

(c)

Figure 9.1: (a) Maple plots of the partition of the (n10, l11)-plane for LR1
0. The

dotted curve is the double roots of ϕ. (b) The variation of the double root curve

of the cubic ϕ in the case of LR1
α as α varies. (c) The double root curves of ϕ in

the cases of LRi
α, i = 1, 2. The branches of the dashed hyperbola n10l11 = 9 are the

locus of the cusps of the double root curves of ϕ of LRi
α, i = 1, 2. The double root

curves of ϕ of LR2
α are in red.
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The eigenvalues of the linear part of ξ at a singularity are −ϕ′(p) and

α1(p) = 2p(tanh(α)− 1)(n11p+ n10).

The cubic ϕ(p) has repeated roots if and only if

(−18n11l10n10l11 − 4n3
10l10 − n2

10l
2
11 + 27n2

11l
2
10 − 4l311n11) tanh(α)

2

+ (8n3
10l10 − 8l311n11) tanh(α) + 18n11l10n10l11 + n2

10l
2
11 − 4n3

10l10 − 27n2
11l

2
10 − 4l311n11 = 0.

Moreover, α1(p) and ϕ(p) have a common root if and only if

n11l10(n11l10 − l11n10) = 0.

The singularity of the LPL at the origin is worse than Morse if and only if

n11l10 − l11n10 = 0.

The above conditions can be avoided at the origin if we take the genericity of A

in consideration. (This means generically ϕ(p) has simple roots, ϕ(p) and α1(p) has

no common roots and the LPL has no singularity worse than Morse at the origin.)

We need to simplify the above conditions in order to visualise the exceptional curves

in R2 following the concept in Chapter 6. By considering that n11l10 ̸= 0 and by

making a linear change of coordinates in the source, we obtain an equivalent BDE

to that of LR1
α with 1-jet given by

(a1x+ y)dy2 + (x+ c2y)dx
2 (9.9)

with

a1 =
−n10(tanh(α) + 1)2/3(tanh(α)− 1)4/3

(l10)1/3(n11)2/3(tanh(α)2 − 1)

and

c2 =
−l11(tanh(α) + 1)1/3

(l10)2/3(n11)1/3(tanh(α)− 1)1/3
,

where n10, l11 ∈ R and n11, l10 ∈ R− {0}. Then the cubic ϕ(p) is given by

ϕ(p) = p3 + a1p
2 + c2p+ 1,

and

α1(p) = 2p(p+ a1).

Therefore, LR1
α has a codimension 1 singularity of type Morse Type 2 of type A−

1

away from the following curves in the (n10, l11)-plane:
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1. The non-Morse curve: 1− l11n10 = 0.

2. The double root curve of ϕ: (18l11n10 + 4l311 + l211n
2
10 + 4n3

10 − 27) tanh(α)2 +

8(l311 − n3
10) tanh(α)− 18l11n10 + 4n3

10 − l211n2
10 + 4l311 + 27 = 0.

Note that both of the non-Morse and the α1,ϕ common root curves are given by

the same equation. These curves divide the (n10, l11)-plane into five regions. The

calculation to determine the number and type of the singularity of ξ in each region

is given in the Appendix (section A.2).

We conclude that for each fixed α, the five generic cases shown in Figure 6.3 can

occur and their distribution on the (n10, l11)-plane is as in Figure 9.1(a).

For each fixed α, the double root curve of ϕ has a cusp at the point(
3(1 + tanh(α))

−(−1 + tanh(α))1/3(1 + tanh(α))2/3
,
−3(−1 + tanh(α))1/3(1 + tanh(α))2/3

1 + tanh(α)

)
.

As α varies, the locus of these cusps trace a branch of the hyperbola n10l11 = 9.

(The other branch of the hyperbola is traced by the cusps of the double root curves

of ϕ of LR2
α.)

For each fixed α ∈ R, the double root curve of ϕ(p) and the non-Morse curve are

tangential at the point(
1 + tanh(α)

(−1 + tanh(α))1/3(1 + tanh(α))2/3
,
(−1 + tanh(α))1/3(1 + tanh(α))2/3

1 + tanh(α)

)
.

The double root curve of ϕ(p) varies with α (Figure 9.1(b)).

Finally, the genericity condition (6.12) for the family LR1
α with LR1

α0
has a

Morse Type 2 of type A−
1 is violated in this case since the right hand side of the

condition vanish. The case of LR2
α follows in similar way. 2

Remark 9.2.1 1. As α varies, the case 3S remains the same, the case 2S + 1N

changes to 1S and vice-versa while the case 2N + 1S changes to 1N and

vice-versa (Figure 9.1(b)).

2. For any fixed α, the change of coordinate (n10, l11, α) → (−l11,−n10,−α)

applied to the equation of the double root of ϕ(p) of LR1
α gives the equation

of the double roots of ϕ of LR2
α and vice-versa (Figure 9.1(c)).
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We aim to figure out the local configurations of LRi

α, i = 1, 2 at the point of

tangency of the LPL and the sets Di
α. It is the point where the discriminant curves

of LRi
α, i = 1, 2 (except the discriminant curve of LR2

0) have an A−
3 -singularity, see

Proposition 8.4.2.

Proposition 9.2.2 [14] Suppose a BDE has 1-jet (a1x+ y, ϵx, 0), ϵ = ±1. Then for

almost all values of a1 the BDE can be reduced by a formal diffeomorphism to the

form

(a1x+ y)dy2 + ϵxdydx+ c(y)dx2 = 0, (9.10)

where c(y) is a formal power series in y with zero 1-jet.

Remark 9.2.2 The result in Proposition 9.2.2 was proved in [14] for a BDE with

1-jet (y, 2(ϵx+ b2y), 0). One can show that the 1-jets (y, 2(ϵx+ b2y), 0) and (a1x+

y, ϵx, 0) are equivalent, so the results in [14] also hold for BDEs with 1-jet (a1x +

y, ϵx, 0) as stated in Proposition 9.2.2.

It is shown in [31] that the BDE with 1-jet (a1x+ y, ϵx, c(y)) is topologically deter-

mined by j3(a1x+ y, ϵx, c(y)) where j3c(y) ̸= 0.

Theorem 9.2.4 [31] A BDE with 1-jet equivalent to (a1x+y, ϵx, 0), where ϵ = ±1,

and with a discriminant has an A±
3 -singularity is generically topologically equivalent

to one of the following cases.

(i) Discriminant has an A−
3 -singularity:

(A) : ydy2 + xdydx+ y3dx2 = 0, or to

(B) : ydy2 − xdydx+ y3dx2 = 0.

(ii) Discriminant has an A+
3 -singularity:

(C) : ydy2 + xdydx− y3dx2 = 0, or to

(D) : ydy2 − xdydx− y3dx2 = 0.
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(a) (b)

Figure 9.2: Topological models of the BDE when its discriminant curve has an

A−
3 -singularity [31].

Theorem 9.2.5 At the point of tangency of the sets Di
α, i = 1, 2 and the LPL, the

BDEs LRi
α, i = 1, 2, except the BDE LR2

0, are topologically equivalent to

(A) : ydy2 + xdydx+ y3dx2 = 0, Figure 9.2(a) or to

(B) : ydy2 − xdydx+ y3dx2 = 0. Figure 9.2(b).

Since the 1-jets of LRi
α, i = 1, 2 are equivalent to (a1x + y,ϵx,0), the local con-

figurations of LRi
α, i = 1, 2 are as Figure 9.2(b) when ϵ = −1. When ϵ = 1, their

local configurations can be either as Figure 9.2(a) or (b).

Proof : We consider equations (8.17) and (8.19) for the BDEs LR1
α and LR2

α and

equations (8.18) and (8.20) for their discriminants respectively, and take the origin

to be the point of concern. The origin is on the LPL and on Di
α if and only if

m0 = l0 = 0 or m0 = n0 = 0. We assume that m0 = l0 = 0 and n0 ̸= 0 (otherwise

the origin is a timelike umbilic point and this case does not occur for generic A). We

proved in Proposition 8.4.2 that the discriminants of LRi
α, i = 1, 2 have generically

an A−
3 -singularity at the origin. We study the case of LR1

α and similar procedure

will be carried out for LR2
α. From equation (8.17), the 1-jet of LR1

α is

j1(a, b, c) = (m10n0(−1+tanh(α))x+m11n0(−1+tanh(α))y,−2l10n0x−2l11n0y, 0).

(Since we consider m0 = l0 = 0 and n0 ̸= 0, the 1-jet of mathcalLR1
α depends on

the 1-jet of l and m, however, if we consider m0 = n0 = 0 and l0 ̸= 0, then the

1-jet of LR1
α will depend on the 1-jet of n and m.) The 1-jet of LR1

α is in the form
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(a1x + a2y, b1x + b2y, 0). Since the LPL is regular at the origin for generic A, that

implies l10 ̸= 0. Then by a linear change of coordinates in the form

(x, y) 7→ (x+
m10(−1 + tanh(α))

2l10
y, y),

and change of scale, we can reduce the 1-jet of LR1
α to (y, ϵx+ b2y, 0) where

b2 =
(−m10n0(−1 + tanh(α))− 2l11n0)

√
−2l410n2

0(l10 tanh(α)m11 −m11l10 − tanh(α)m10l11 +m10l11)

2(l210n
2
0(−1 + tanh(α))(m11l10 −m10l11)

.

(9.11)

Further linear change of coordinate in the form (x, y) 7→ (x+ qy, y) where

q =
(−m10 +m10 tanh(α) + 2l11)

√
−2l410n2

0(l10 tanh(α)m11 −m11l10 − tanh(α)m10l11 +m10l11)

2l210n0(l10 tanh(α)m11 −m11l10 − tanh(α)m10l11 +m10l11)
,

(9.12)

transforms the 1-jet of LR1
α in the form (y, ϵx + b2y, 0) to the form (a1x + y, ϵx, 0)

where

a1 =
(−m10 +m10 tanh(α) + 2l11)

√
2
√

l410n
2
0(m11l10 −m10l11)(−1 + tanh(α))

2(−1 + tanh(α))(m11l10 −m10l11)l210n0
. (9.13)

We aim to distinguish the cases that the BDEs LR1
α have the topological configura-

tions (A) or (B) in Theorem 9.2.4 shown in Figure 9.2(a) or (b). In order do so, we

need to reduce the 3-jet of LR1
α with 1-jet (a1x+y, ϵx, 0) to the normal forms in The-

orem 9.2.4. Proposition 9.2.2 assures that the 3-jet of the BDEs LR1
α can be reduced

to the normal form (a1x+ y, ϵx, λy3) (c(y) in this case is with zero 2-jet). We con-

sider, firstly, a change of coordinate of the form (x, y) 7−→ (x+P2(x, y), y+Q2(x, y))

and multiply the new BDE by a non zero function of the form 1+ r1(x, y), the sub-

scripts 2 and 1 refer to homogeneous polynomials in (x, y) of degrees 2 and 1. We

aim to eliminate the homogeneous parts of degree 2 in the 2-jet of the coefficients

of the new BDE (a1x+ y+A2(x, y), ϵx+B2(x, y), C2(x, y)). Solving a linear system

of 2 equations which are the coefficients of C2(x, y) eliminates this homogeneous

part. After that, we solve a linear system of 6 equations which are the coefficients of

A2(x, y) and B2(x, y) and that eliminates them. Likewise, a change of coordinates

in the form (x, y) 7−→ (x+P3(x, y), y+Q3(x, y)), multiplication of the new BDE by

a non zero function of the form 1 + r2(x, y), and then solving linear systems of the

coefficients of C3(x, y), A3(x, y) and B3(x, y) give the normal form (a1x+ y, ϵx, λy3)

with
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λ =
−(m11l10 −m10l11)

3(−1 + tanh(α))(tanh(α) + 1)2

4n2
0l

4
10

.

Since m11l10 −m10l11 ̸= 0 at the origin, then λ ̸= 0.

The required conditions to determine the topological models of the BDEs LR1
α

given in Theorem 9.2.4 are obtained by using the blowing-up technique of the proof

of Theorem 9.2.4 in [31] (see the Appendix, section A.3). The BDE LR1
α is topolog-

ically equivalent to (A) (resp. (B)) if a21 − 8ϵ > 0 (resp. a21 − 8ϵ < 0). When ϵ = 1,

it is clear from a1 (9.13) that we can choose j1(l,m) in such a way that we can have

either a21− 8 > 0 or a21− 8 < 0, i.e., both cases can occur. On the other hand, when

ϵ = −1, then we have a21 + 8 > 0, i.e., we have always case (B). Similar study for

the case of LR2
α, where α ̸= 0, gives similar results. 2



Appendix A

Calculations of some results in

Chapters 8 and 9

A.1 The A−3 -singularity of ∆α
LRi

We present below the calculation carried out to show that the discriminant curves

∆α
LR1 have an A−

3 -singularity at the intersection point of the LPL and D1
α (Propo-

sition 8.4.2). The calculation for the case of ∆α
LR2 , where α ̸= 0, follows similarly.

96
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> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

(2)(2)
> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(3)(3)

> > 

#The equation of the discriminant curve of LR^1_\alpha when 
considering the local parametrisation where E=G=0 at the origin
when it is the intersection  point of the $LPL$ and D^1_\alpha

0

#We have the j^1 dis(0)=0 and the origin is degenerate point 
for the discriminants. By a change of coordinates we can write 
the j^2 dis(0) in the form (a_0 x^2)
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> > 

> > 

(9)(9)

> > 

> > 

> > 

(6)(6)

(5)(5)

> > 

(4)(4)

> > 

> > 

> > 

> > 

> > 

(7)(7)

(10)(10)

(8)(8)

> > 

> > 

> > 

#Since the coefficiant (simplify(coeff(coeff(dis, X, 0), Y, 3))
)) of y^3 vanishes, by completeing squares, we can kill off the
terms beyond x^2 which involves x and arrive at a 4-jet as 
follows

0

0

0

0

0
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(11)(11)

> > 

(13)(13)

(12)(12)

> > 

> > 

#The step above shows that the coefficiant of y^4 (-k_1) is not
equal to zero at the origin (m_10 l_11- m_11 l_10 is not equal 
to zero).
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A.2 The local configurations of LCiα and LRi
α, i = 1, 2

We show below an example of the calculations carried out to determine the topolog-

ical configurations of LCiα and LRi
α, i = 1, 2 for fixed α and the way they bifurcate

locally as α varies in a neighbourhood of a given fixed α.

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

> > 

> > 

> > 

> > 

> > 

#LC^1_alpha:=p^2+r_1^alpha(x,y) p+r_2^alpha=0, p=dy/dx, 
r_1^alpha(x,y)=B, r_2^alpha(x,y)=C. 
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(2)(2)

> > 

> > 

> > 

> > 

> > 

(3)(3)

> > 

> > 

> > 

(4)(4)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 

(1)(1)

> > 

> > 

> > 

> > 

#Codimension 0 singularity of LC^1_alpha

#The condition C_1=0 

#tanh(+\alpha_0)=

#tanh(-\alpha_0)=

#The conditions C_1=0, C_2=0 to have a folded singularity at 
the origin in the case of tanh(+\alpha_0)

  (lambda 0,1/16)
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(6)(6)

(8)(8)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(7)(7)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

#Less than zero (saddle) = -1.83502721

#greater than  (1/16) (focus) = .26578585

#Between 0 and 1/16 (node)
0.03638120325

#The conditions C1 =0, C2=0, C3 = 0 (folded saddle-node) 
singularity

#The conditions C1=0, C2=0, C4=0 (folded node-focus) 
singularity
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

#The conditions C1=0, C5=0, C6=0 (Morse Type 1) singularity

#The test of the genericity condition of the family LC^1_alpha 
with F_0=LC^1_alpha_0 having a folded saddle-node singularity 
at the origin. To simplify the calculations, we make a linear 
change of coordiantes to get b_0=c_0=c_10=0 and c_11=1.

#Firstly, we want to get b_0=0.
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

#To get c_11=1.
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(9)(9)

> > 

> > 

> > 

> > 

> > 

> > 

#The genericity condition:
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The calculations below are carried out to determine the local configuration of

LR1
0 at its Morse Type 2 singularity of type A−

1 on the LPL. It is determined by

the number and type of the singularity of ξ in each region of the (n10, l11)-plane

(Theorem 9.2.3).

> > 

(4)(4)

> > 

> > 

> > 

(6)(6)

> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(7)(7)

> > 

(3)(3)

(1)(1)

> > 

> > 

(8)(8)

(9)(9)

> > 

(2)(2)

> > 

> > 

#The 1-jet of the A-characteristic BDE. 

#The 2-jet of the discriminant.

#The discriminant has zero 1-jet and it has a singularity worse
than Morse if the following expresion equal to zero.
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> > 

> > 

(13)(13)

> > 

> > 

> > 

> > 

(14)(14)

> > 

(10)(10)

> > 

> > 

> > 

> > 

> > 

> > 

(12)(12)

> > 

> > 

(11)(11)

> > 

> > 

> > 

> > 

#The singularity of \xi is given by the roots of the cubic \phi
(p) which is given by

# The cubic \ phi(p) has repeated roots if and only if its 
discriminant is equal to zero.

# The eigenvalues of \xi are -\phi(p)' and \alpha_1(p) where 
\alpha_1(p) is given by

# The cubic \phi(p) and \alpha_1(p) have common roots if and 
only if the following is equal to zero.

#Form the above, for generic A, n[11]*l[10] is not equal to 
zero. To visualise the special curves and to show the 
distribution of the five generic cases in R^2, we can make the 
following change of coordinate

# The 1-jet of the equivalent BDE to the A-characteristic one.
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(15)(15)

(17)(17)

(18)(18)

> > 

> > 

> > 

> > 

> > 

(20)(20)

> > 

> > 

> > 

(19)(19)

(16)(16)

> > 

(21)(21)

> > 

> > 

> > 

# The cubic associated to the 1-jet of the equivalent BDE. 

# The repeated roots of the cubic curve is the locus of the 
zeros of the discriminant of the cubic.

# The common root of the cubic and \alpha_1 curve is the zeros 
of the following function. (It is also the non-Morse curve.)



A.2. The local configurations of LCiα and LRi
α, i = 1, 2 109

> > 

> > 

(25)(25)

> > 

(26)(26)

> > 

(23)(23)

> > 

(24)(24)

(22)(22)

(34)(34)

(32)(32)

(33)(33)

> > 

> > 

> > 

(29)(29)

> > 

(35)(35)

> > 

(30)(30)

> > 

(28)(28)

> > 

(31)(31)

(27)(27)

> > 

> > 

> > 

> > 

# The calculation to determine the number and type of the 
singularity of \xi in the (n_10,l_11)-plane. 

1664.831708
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2S+1N

3S

1S 1N

2S+1N

1S

1N

2N+1S
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A.3 The proof of Theorem 9.2.4

The calculations below are from the first version of [31]. We reproduce them here to

make the conditions required for determining the local configuration of LRi
α, i = 1, 2,

except LR2
0, at the intersection point of the LPL and Di

α apparent (Theorem 9.2.5).

Theorem A.3.1 A BDE with 1-jet equivalent to (αu + v,±u, 0) and with a dis-

criminant with an A±
3 -singularity is topologically equivalent to one of the following

cases.

(i) Discriminant has an A−
3 -singularity:

vdv2 + udvdu+ v3du2 = 0 Figure A.1 A, or to

vdv2 − udvdu+ v3du2 = 0 Figure A.1 B

(ii) Discriminant has an A+
3 -singularity

vdv2 + udvdu− v3du2 = 0 Figure A.1 C, or to

vdv2 − udvdu− v3du2 = 0 Figure A.1 D

Proof : We take the coefficients of the BDE ω = (a, b, c) in the form

a = αu+ v +M1(u, v)

b = ϵu+M2(u, v)

a = λv3 +M3(u, v)

where Mi are germs, at the origin, of smooth functions with j1M1 = j1M2 = 0,

j3M3 = 0, ϵ = ±1 and λ = ±1.

We consider a blowing up of the BDE following the method introduced in [44, 28]

for BDEs whose discriminants are isolated points, and extended in [49, 51] for general

BDEs.

Following the notation in [28], let fi(w), i = 1, 2 denote the foliation associ-

ated to the BDE ω = (a, b, c), which is tangent to the vector field a ∂
∂u

+ (−b +

(−1)i
√
b2 − ac ) ∂

∂v
. If ψ is a diffeomorphism and µ(u, v) is a non-vanishing real val-

ued function, then ([28]) for k = 1, 2

1. ψ(fk(w)) = fk(ψ
∗(ω)), if ψ is orientation preserving;
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2. ψ(fk(w)) = f3−k(ψ
∗(ω)), if ψ is orientation reversing;

3. fk(λw) = fk(ω), if µ(u, v) is positive;

4. fk(λw) = f3−k(ω), if µ(u, v) is negative.

We consider the directional blowing-up

(1) :

 u = y2

v = xy
(2) :

 u = −y2

v = xy
(3) :

 u = xy2

v = y

The blowing up (1) (resp. (2)) is a diffeomorphism from the region y > 0 (resp.

y < 0) in the (x, y)-plane to the region u > 0 (resp. u < 0) in the (u, v)-plane and is

orientation reversing (resp. preserving) in this region. Applying the blowing up (2)

gives similar results to applying (1). So we deal in more details with blowing up (1).

We also consider the blowing up (3) but this does not reveal any extra information.

Consider the blowing-up (1). Then the new BDE ω0 = (x, y)∗ω has coefficients

ā = y(x(x2 + axy + 4ϵy2) +N1(x, y)),

b̄ = y2((x2 + axy + 2ϵy2) +N2(x, y)),

c̄ = y3(x+ av +N3(x, y)),

where Ni, i = 1, 2, 3, are smooth functions with j3N1 = 0, j2N2 = 0 and j1N3 = 0.

We can write (ā, b̄, c̄) = y(A1, yB1, y
2C1) with

A1 = x(x2 + axy + 4ϵy2) +N1(x, y),

B1 = x2 + axy + 2ϵy2 +N2(x, y),

C1 = x+ ay +N3(x, y).

and consider the quadratic form ω1 = (A1, yB1, y
2C1).

The discriminant of ω1, which is the blowing up of the discriminant of ω, is the

exceptional fibre v = 0 when λ = −1 and the union of the exceptional fibre with

two smooth curves Ci, i = 1, 2, meeting transversaly the exceptional fibre at (xi, 0),

where xi are solutions of (b222 − 1)x4 + 2ϵb22x
2 + 1 = 0.

We decompose ω1 into two 1-forms, and to these 1-forms are associated the vector

fields

Xi = A1
∂

∂x
+ (−yB1 + (−1)i

√
y2(B2

1 − A1C1) )
∂

∂y
, i = 1, 2.
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These vector fields are tangent to the foliations defined by ω1 and have the excep-

tional fibre v = 0 (or part of it in the case λ = +1) as an integral curve. We deal

now with the cases A+
3 and A−

3 separately.

The case A−
3 (λ = +1)

We have A1(x, 0) = x3, so A(xi, 0) ̸= 0, i = 1, 2 with xi as above. This means

that near (xi, 0), i = 1, 2, the integral curves of Xi form segments of smooth curves

ending transeversaly on Ci, i = 1, 2. It also means that both vector fields X1 and

X2 are smooth away from (0, 0) and the points (xi, 0), i = 1, 2. So we need to

analyse the configurations of these vector fields at (0, 0), with y ≥ 0 (we are dealing

with the blowing up (1) which is a diffeomorphism from the region y > 0 delimited

by the exceptional fibre and the curves C1 and C2 to the region in the (u, v)-plane

delimited by the discriminant and with u > 0). We have, at the origin,

X1 = (x(x2 + axy + 4ϵy2) + h.o.t.)
∂

∂x
+ (−xy(x+ ay) + h.o.t.)

∂

∂y
.

The first component A1 of X1 has a D4-singularity provided a2 − 16ϵ ̸= 0 (i.e.,

equivalent to x(x2 ± y2)). So A1 = (x − g1(x, y))(x
2 + axy + 4ϵy2 + g2(x, y)) for

some germ of smooth functions g1 and g2 with j1g1 = j2g2 = 0. We observe

that when x − g1(x, y) = 0 the second component of X1 also vanishes. Therefore

X1 = (x− g1(x, y))X̄1 with

X̄1 = (x2 + axy + 4ϵy2 + h.o.t.)
∂

∂x
+ (−y(x+ ay) + h.o.t.)

∂

∂y
.

The 2-jet of the vector field X̄1 satisfies the general position condition in Proposition

3.5 in [47]. Therefore, by Takens’ result, X̄1 is topologically equivalent to (x2 +

axy + 4ϵy2) ∂
∂x
− y(x + ay) ∂

∂y
near the origin. Using a polar blowing up, we find

that the configuration of X̄1 at the origin and hence of X1 is as in Figure A.1. (The

singularities of the blown up field are either saddles or nodes and are as shown in

Figure A.1.)

We now consider the vector field X2. We have, at the origin,

X2 = (x(x2 + axy + 4ϵy2) + h.o.t.)
∂

∂x
+ (−y(x2 + axy + 4ϵy2) + h.o.t.)

∂

∂y
.

If a2 − 16ϵ > 0, we can proceed as for X1 above. We can factor out a term x2 +

axy + 4ϵy2 + h.o.t from both component of X2 and consider the vector field X̄2 =



A.3. The proof of Theorem 9.2.4 115

(x+ h.o.t.) ∂
∂x

+ (−y + h.o.t.) ∂
∂y

which has a saddle-singularity at the origin. So X2

has a saddle singularity at the origin.

If a2− 16ϵ < 0, we consider a blowing up of the singularity of X2 and find again

that it has a saddle singularity at the origin.

Applying the blowing up (2) gives similar result, with the position of the nodes

and saddles of X1 inverted when a2 − 8ϵ > 0. So we have the configuration of the

solution curves of ω in region (u, v)-plane delimited by the discriminant and with

u < 0 as shown in Figure A.1. We also need to invert the colours of the foliations

as we factored out a term y in ω (see comments at the beginning of the proof).

Therefore the configurations of the solutions of the BDE ω are as in shown in

Figure A.1.

The case A+
3 (λ = −1)

The situation here is similar to the case A−
3 (the 3-jets of X1 and X2 do not

depend on λ). The difference is that the whole exceptional fibre is an integral curve

of both X1 and X2. The configurations are as in Figure A.1. 2
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Figure A.1: Topological models of BDEs with 1-jet equivalent to (αu + v, ϵu, 0),

ϵ = ±1, and with discriminant with an A3-singularity (bottom two rows). The

figures in the top row give the configurations of the vector fields X1 and X2 at the

origin and those of their blowing up.
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