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Executive Summary 

 

The impact of house design on the entry and exit of insect vectors of disease 

in The Gambia 

 

House design may affect the exposure of the residents to vector-borne diseases in rural areas 

in Africa. Improving a house by simply closing the eaves gap or by installing a ceiling could 

go a long way to preventing diseases such as malaria, which is killing millions of people 

every year. These two structural adjustments were the main focus of this thesis, which 

addresses three major questions:  

1. What effect does eave closure have on mosquito house entry in houses that have 

screened doors and no other route of entry? 

2.  Are torn ceilings treated with insecticide as good as intact untreated ceilings at 

preventing mosquito house entry?  

3. Is full screening and/or screened ceilings efficacious at preventing house entry by 

houseflies?  

To determine the importance of eaves to mosquito house entry, a crossover study was 

conducted using 12 single-roomed houses with screened doors, in which the eaves were 

either open or closed for half of the study. Closing the eave gaps reduced the house entry of 

the malaria vector Anopheles gambiae s.l. by 65%, but no significant reduction was observed 

for culicine mosquitoes. To test the efficacy of insecticide-treated torn ceilings against 

mosquito house entry, three different insecticide treatments were compared with an intact 

untreated ceiling, an untreated torn ceiling, and a no ceiling control, using six experimental 

huts, with a man sleeping under an untreated bednet in each hut. Here treatments were rotated 

between different huts on different nights. The insecticide-treated ceilings failed to reduce the 

number of vectors entering the hut compared with the untreated torn ceilings. Finally, the 

number of houseflies, pests of public health importance, entering fully screened and 

screened-ceiling houses was estimated by sticky trap catches.  

The findings indicate that anopheline mosquitoes largely enter houses through open 

eaves, whilst culicine mosquitoes enter through the doors. Failure to demonstrate enhanced 

protection with the insecticide-treated torn ceilings may have resulted from a failure of the 

insecticides to adhere well to the treated fabric. Fully screened houses reduced housefly entry 

by 24% whereas ceilings increased the houseflies by 440% compared to unscreened houses. 
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It is likely that the increase in houseflies in houses with screened ceilings was an artefact 

caused by sticky traps over-estimating the number of flies in a room. Whilst ceilings failed to 

reduce flies entering houses, fully screened doors and windows were protective. 

These results demonstrate that simple changes in house design can reduce the risk of 

exposure to malaria and flies. However, further work is required to determine whether 

different insecticide formulations on screening can increase the efficacy of this intervention. 

These studies demonstrate that house screening can play an important role in the control of 

malaria, and perhaps other diseases as well.  

 

 

Study Rationale 

Mosquito-proofing homes was a fundamental technique of malaria control in the early 1900s 

(Takken et al., 1990, Lindsay et al., 2003) and it should protect against malaria in Africa 

since most people get the disease when they are bitten in their homes at night. House 

screening provides protection against malaria by reducing the exposure to malaria parasites, 

and has the added benefit of protecting everyone in the room, avoiding issues of inequity 

within the household (Lindsay et al., 2002). The research presented in this thesis was 

conducted with the support of The Screening Homes to Prevent Malaria (STOPMAL) 

project. STOPMAL was a randomized control trial of house screening in The Gambia (Kirby 

et al., 2008c). The rationale for this trial was to examine an alternative method to 

antimalarials and insecticides for controlling malaria, because these are unsustainable in the 

long term because of the rise of resistant parasite strains and vectors. The trial measured the 

number of An. gambiae s.l caught in light traps from unprotected control houses, houses with 

full screening and houses with screened ceilings. Full screening was where houses had 

untreated screening on the doors and windows, with the eaves, the gap between the top of the 

wall and the roof, closed with a mixture of mud and mortar. Screened ceilings allowed 

mosquitoes to enter the roof space through the open eaves, but they could not feed on people 

in the room. Children sleeping in these houses during the trial were screened for haemoglobin 

density and parasite prevalence and treatment provided at the end of each year‟s intervention. 

Closing eaves has been suggested to reduce density of anophelines (Lindsay and 

Snow, 1988) and culicines (White, 1969) entering houses, but it is unclear how important 

blocking the eaves is at reducing mosquito entry for houses with no other route of entry. It 
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was important to find out whether blocking the eaves, in addition to screening the doors and 

windows, is essential when constructing mosquito-proof homes in this West African setting. 

During the life of an untreated ceiling it is likely to get torn. For this reason I wanted to find 

out whether treating badly torn ceilings with insecticide could reduce entry by mosquitoes. 

Since screening protects against mosquitoes I also wanted to find out whether it was effective 

against house flies which are active during the day, instead of at night like mosquitoes. Since 

these issues have a potential impact on the operational efficacy of house screening they 

formed the basis of my research.  The specific objectives of my thesis are detailed overleaf. 
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Study Objectives 

 

 To determine the percentage reduction in mosquito house entry (anophelines and 

culicines) that can be achieved by closing the eave gap in houses with screened 

doors and no other routes of entry; 

 

 To determine whether impregnating torn screened ceilings with insecticide 

provides a greater protection against mosquito house entry than untreated torn 

screened ceilings; 

 

 To compare the protective efficacy of three insecticides on torn screened ceilings 

i.e. (1) Deltamethrin impregnated synthetic-netting ceiling (2) Chlorpyrifos 

impregnated synthetic-netting ceiling (3) Permethrin impregnated synthetic-

netting ceiling; 

 

 To find the optimal position of sticky traps in the house for sampling houseflies. 

 

 To compare the efficacy of sticky traps (placed optimally) against knock down 

(insecticide spray) catches for sampling housefly populations; 

 

 To establish the diel flight activity of houseflies; 

 

 To re-evaluate the efficacy of full screening and screened ceilings against house 

fly entry using the most appropriate sampling technique. 
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CHAPTER 1 

Malaria Control in Africa and in The Gambia 

 

1.1 The global malaria burden  

Despite the preventive and control methods available today, malaria still remains a major 

public health problem worldwide, especially in the world‟s poorest countries. Between 350-

500 million clinical episodes of malaria and over 1 million deaths occur each year (Roll Back 

Malaria, 2005).  Over 107 countries are affected by malaria worldwide, and the disease is 

endemic in 24 of these. Around 60% of cases and 80% of deaths occur in Africa, south of the 

Sahara. The parasite Plasmodium falciparum causes the vast majority of infections in this 

region and about 18% of deaths in children <5 years of age. The estimated P. falciparum 

annual parasite incidence is ≥ 0.1 per 1000 people in stable risk areas south of the Sahara 

(Guerra et al., 2008a). Malaria is also a major cause of anaemia in children (Menendez et al., 

2000) and pregnant women (Huddle et al., 1999), low birth weight (Brabin and Piper, 1997), 

premature birth and infant mortality (Luxemburger et al., 2001). In endemic African 

countries, malaria accounts for 25–35% of all outpatient visits, 20–45% of hospital 

admissions and 15–35% of hospital deaths, imposing a great burden on already fragile health-

care systems (GBC-CAMA, www.gbcimpact.org).  

The cost of malaria prevention and treatment is huge, and there are great economic 

losses caused by malaria as a result of a decline in productivity. These losses are suffered by 

both people afflicted with the disease and those caring for them, and the loss is even higher as 

result of deaths due to malaria. Malaria will inevitably affect trade and movement of people 

and foreign investment, for example tourists will not travel to regions or countries with high 

malaria risk (Gallop and Sachs, 2001).   

Parasite-resistance to anti-malarials and mosquito-resistance to insecticides have 

complicated the control of malaria worldwide, especially in Africa. One of the reasons for 

resurgence and increased burden of malaria is the development of resistance to traditional 

first line anti-malarial drugs for treatments such as Chloroquine (CQ) and Sulfadoxine-

pyrimethamine (SP) by P. falciparum, the parasite that causes the severe form of malaria, and 

as such, this spread of drug resistance has raised the cost of treatment for the disease (White, 

1998). Resistance to anti-malarials has been responsible for increases in morbidity and 

mortality in many sub-Saharan countries (Snow et al., 2001).  A range of 17-30% resistance 

to CQ, has been reported (Wellems and Plowe, 2001), and a recent study reported 60% 

http://www.gbcimpact.org/
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resistance to CQ in Mali, West Africa (Sangho et al., 2004). The quality of anti-malarial 

products and patient adherence to dosage regimens are also important determinants of drug 

effectiveness (Amin et al., 2004). The use of substandard drugs could have serious clinical 

consequences for patients, prompting the need for continuous monitoring of the quality of 

marketed drugs, to ensure safety and efficacy of these products in the treatment of malaria in 

endemic areas (Minzi et al., 2003). 

 

1.2 An. gambiae complex in Africa 

There are about 400 species of Anopheles, but only about 60 are vectors of malaria under 

natural conditions, some 30 of which are of major public health importance (Wernsdorfer & 

McGregor, 1988). Not all species of anophelines are vectors of malaria and, even among 

those that are vectors; there are great differences in their ability to transmit the disease. 

Almost all P. falciparum parasite rates above 50% are reported in Africa, in a latitude band 

consistent with the distribution of Anopheles gambiae s.l. (Guerra et al., 2008b). This species 

complex include some of the most efficient vectors of malaria known from anywhere in the 

world. Formerly regarded as a single species with ecological salt-water variants, it has been 

shown to comprise of five fresh water and two salt-water species (Gillies, 1968, Bryan, 1983, 

Lindsay et al., 1993b). 

Members of the complex are distinguished from other anophelines by the palps, 

which have three bands, one wide ring at the tip and two narrow towards the head, and by the 

wings which have a pale interruption at the third black band on vein one. No satisfactory 

morphological characters have been discovered to separate the adults of the species within 

the complex, and although meristic characters for separating the species at the population 

level have been demonstrated (Coluzzi, 1964), the identification of individual specimens by 

this technique is unreliable. More recently a PCR technique has been developed that can 

achieve this (Scott et al., 1993). 

Among the complex members (Gillies and Coetzee, 1987, Hunt et al., 1998)1998), 

An. gambiae s.s and An. arabiensis are the most efficient malaria vectors because of their 

ability to feed readily on people. In the dry savannas of Africa, vector populations typically 

display strong seasonal fluctuations in abundance, being present in large numbers during the 

rainy season and dropping to very low levels when breeding sites dry up (Taylor et al., 1993, 

Charlwood et al., 1995, Lemasson et al., 1997). The main reason why Africa is severely 

affected by this deadly disease is because the continent is a tropical region and provides 

abundant breeding grounds and ambient temperatures that favour mosquitoes, especially An. 
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gambiae s.l. It is also the place where the most dangerous parasite, P. falciparum, is found, 

which causes the severe form of the disease.  

 

1.3 Malaria control and prevention in Africa 

Recognition of the unacceptable mortality and morbidity rates from malaria and malaria-

related illness in World Health Organisation (WHO) Africa region, and of the availability of 

a number of evidence-based and cost-effective interventions, led to the formation of the Roll 

Back Malaria (RBM) Initiative (www.rbm.who.int/wmr 1998). Launched in 1998 by the 

WHO, the World Bank, the United Nations Children‟s Fund, the United Nations 

Development Program, and other partners, RBM aims to cut the malaria burden in half by 

2010 by advocating and promoting treatment and preventive strategies. Insecticide-treated 

nets (ITNs) are one of the core vector interventions of the Global Malaria Action Plan of the 

RBM partnership, which aims to reach a universal coverage of one long-lasting insecticidal 

bednet for every two people in a household (Partnership, 2006).  The RBM is not a financing 

mechanism; it works by encouraging others to dedicate resources to malaria control, to 

strengthen health systems, and to use a variety of tools through existing networks and 

partnerships. Progress is slow but substantial, particularly in surveillance, promotion of 

insecticide-treated bed nets (ITNs) and closer linkage of research to strategy.  

The Initiative sets out clear goals and objectives to reduce the toll of malaria through 

public-private and sustainable actions towards strengthening the country health system 

through the following interventions and service delivery areas: 

 Supporting, promoting and ensuring access to correct, affordable and appropriate 

malaria treatments, especially for young children within 24 hours of the onset of 

the disease; 

 Prevention and control of malaria in pregnancy for pregnant women through the 

support and promotion of preventive measures such as intermittent preventive 

treatment (IPT), especially those in their first pregnancies; 

 Supporting and promoting access to a suitable combination of personal and 

community protective measures such as ITNs;  

 Prediction and containment of malaria epidemic. 

 

This initiative was further strengthened by the Bill and Melinda Gates Foundation and the 

Global Fund. The purpose of the Global Fund is to attract, manage and disburse additional 

http://www.rbm.who.int/wmr%201998
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resources through a new public-private partnership that will make a sustainable and 

significant contribution to the reduction of infections, illness and death, thereby mitigating 

the impact caused by HIV/AIDS, tuberculosis and malaria in countries in need, and 

contributing to poverty reduction as part of the Millennium Development Goals (MDGs). 

Malaria control in the tropics is largely based on case management and personal 

protection against malarial mosquitoes using ITNs or indoor residual spraying (IRS) 

(www.rbm.who.int). ITNs are currently the most efficacious tool against malaria (Lengeler, 

2004). However with such an increase in usage of pyrethroid treatment, the selection for 

development of pyrethroid resistance in malaria vectors is inevitable (Hargreaves et al., 

2000). There is already widespread pyrethroid resistance in many countries of  West  

(Martinez-Torres et al., 1998), East (Greenwood and Mutabingwa, 2002, Ranson et al., 2000) 

and southern Africa (Hargreaves et al., 2000, Chandre et al., 1999). The deterioration of IRS 

programmes in some countries has also contributed to the resurgence of malaria and was 

responsible for the abandonment of the global campaign for eradication in the 1950s and 

1960s. Eventually this failure sparked renewed interest in larval source management and 

personal protective measures for the reduction of malaria transmission (WHO, 2006). The 

current malaria control strategy calls for the selection of those control measures which are 

most appropriate to local circumstances.  

 

1.4. Integrated Vector Management (IVM), Environmental Management & House 

Screening 

This is a process for managing vector populations in such a way to reduce or interrupt 

transmission of disease (WHO, 2004). Characteristic features of Integrated Vector 

Management (IVM) include: 

 Methods based on knowledge of factors influencing local vector biology, disease 

transmission and morbidity; 

 Use of a range of interventions, in combination and synergistically; 

 Collaboration within the health sector and with other public and private sectors that 

impact on health; 

 Engagement with local communities and other stakeholders; 

 A public health regulatory and legislative framework. 

 

http://www.rbm.who.int/
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The most effective vector management and control strategy is an organized programme under 

the direction of an entomologist or other qualified expert. These programmes are based on 

sound biological, physical and chemical data and the integration of the best techniques and 

materials. The goal is the control of mosquitoes while preventing adverse effects on humans, 

wildlife or the environment by reducing the dependency on insecticides. 

Of the many methods available for malaria control environmental management is 

considered the bedrock on which to launch other interventions. Environmental management 

is where the environment is modified or manipulated to reduce malaria transmission by 

attacking local vector mosquitoes, and requires an understanding of the ecology of these 

species. One of the oldest methods of environmental management was house screening, 

protecting people from mosquitoes that fed on people indoors.  

Mosquito-proofing homes was common in the early 1900s (Celli, 1901, Takken et al., 

1990, Lindsay et al., 2003). In the summer and autumn of 1899, Angelo Celli carried out the 

first intervention trial against malaria by protecting people against mosquito bites in their 

homes. He recorded the number of malaria cases in the workers and their families living near 

two malarious railway lines near Rome. Some of the families were left unprotected, whereas 

in the homes of others, the windows were covered with thin muslin and the doors were 

screened with a metal net to prevent mosquitoes getting indoors. Those employees who 

worked outdoors at night were also provided with hats with a veil of netting, similar to a bee-

keeper‟s, and large leather gloves to prevent mosquito bites. The results were spectacular: 

nearly all those who were unprotected contracted malaria, compared with only four out of 24 

people in the protected houses. 

During the second year of Celli‟s studies, Patrick Manson  also published a seminal 

paper proving that mosquitoes transmitted human malaria (Manson, 1900). Manson described 

how Sambon, Low, Terzi and their helpers spent the summer of 1900 living in a screened hut 

under untreated bednets in a malarious area near Rome. Not one of them contracted malaria, 

unlike most of their neighbours, who fell sick with the disease. Here was a demonstration that 

the simple practice of reducing exposure to mosquitoes by house-screening and sleeping 

under nets could protect people against malaria. 

So it seems likely that house design affects an individual‟s exposure to malaria 

parasites and hence to the disease. Many of the main mosquito disease vectors bite man in his 

home, therefore improving the traditional dwelling may reduce the risk of disease 

transmission (Schofield and White, 1984).  Open eaves have been shown to be important 

portals of entry into houses (Snow, 1987), consequently closed eaves significantly reduce the 
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densities of culicines in houses (White, 1969). Houses with open eaves, or which lack 

ceilings, are associated with increased numbers of mosquitoes and higher levels of malaria 

compared with neighbouring houses with closed eaves or ceilings (Lindsay et al., 2003). 

Mosquito-proofing dwellings by covering windows, eaves, and doors with screening and 

repairing cracks and holes by which mosquitoes enter may reduce transmission both by 

protecting people from bites and by preventing the spread of the disease from infected human 

reservoirs (Walker, 2002). Screening and general housing improvements may reduce malaria 

transmission while raising overall living conditions. Improved house construction played a 

role in controlling malaria in the United States in the early 20th century (Boyd, 1926, 

Fullerton and Bishop, 1933a). Some researchers indicated that residents of poorly constructed 

houses were as much as 2.5 times more likely to contract malaria than neighbours in houses 

of good construction (Gamage-Mendis et al., 1991, Gunawardena et al., 1998). 

 

1.5 The Gambia  

The Gambia is a country in West Africa with an area of approximately 11,000 km
2

, of which 

almost 10% is covered by the Gambia River and another 20% by swampy land and flood 

plains. It is bordered by Senegal on all sides except the west coast bordering the Atlantic 

Ocean. The river stretches about 400 km eastwards and a narrow strip of land extends 15-30 

km north and south of its banks.  

The climate consists of two seasons; a rainy season which lasts for about five months 

(June-October) and peaks in August, and a seven month long dry season. The average annual 

rainfall varies between 963-1202mm throughout the country. During the dry season, 

maximum temperatures are frequently as high as 37-40°C and relative humidity falls as low 

as 40-55%. 

The country has five rural administrative regions headed by Governors and two urban 

councils headed by Mayors. Under the Regions are the Districts and Villages headed by 

Chiefs and Alkalos respectively. Each of the Regions has a Local Government Area Council 

that looks after the development of the area. These Councils are headed by Chairpersons 

supported by counsellors from Wards within their Districts. The Districts also have elected 

representatives at the National Assembly were legislative issues are addressed.  

The projected population was over 1.4 million inhabitants in 2003 (CSD 2003 census) 

of which 15% were women of child bearing age and 20% children under five years of age. 

These two age groups are the most vulnerable to infection and most malaria interventions 

should be targeted at them. 
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1.6 Malaria in The Gambia 

In The Gambia, malaria is one of the leading causes of morbidity and mortality, especially 

among children under 5 years. Twenty percent of antenatal consultations and 40% of under-

five visits in Maternal and Child Health services are due to malaria (DOSH 2006desktop 

2000). Accurate figures for admission are not available but the trend may be the same as 

elsewhere in West Africa.  Each year, over 800 children are admitted in the Royal Victoria 

Teaching Hospital with severe malaria (DOSH, 2006). The situation is worst in the rural 

areas where a child experiences at least one to two episodes of malaria each year making 

malaria one of the most frequent cause of presentation at outpatients‟ clinics (Brewster and 

Greenwood, 1993). Although the economic burden of malaria has not been fully determined 

in The Gambia, there is no doubt that the disease accounts for considerable lost days of 

productivity among the adult population, absenteeism from schools and workplaces and 

increased household expenditure on health. Malaria is therefore not only a health problem but 

also a developmental one.  

Malaria in The Gambia is transmitted by the An. gambiae complex, which includes 

An. gambiae s.s., An. arabiensis and An. melas (Bryan, 1983).  An. gambiae s.s. and An. 

arabiensis, the major vectors, are distributed throughout the country with the former 

comprising the majority. Anopheles melas is however restricted to the western half of the 

country and probably contributes less to the disease burden because of its habit of frequently 

feeding on animals. Anopheles gambiae s.s. which breeds in fresh water, is very efficient in 

transmitting malaria and is widely distributed throughout the country during the rainy season 

(June-October). This vector prefers to feed on man, feeds indoors and rest indoors 

(anthropophilic, endophagic and endophilic respectively). Anopheles arabiensis, a freshwater 

breeder, is found mainly in northern regions near Senegal and may not contribute 

significantly to malaria transmission in the country apart from in the dry season, though in 

some years An. arabiensis can also make up a large percentage of the complex caught in the 

rainy season (M. Kirby, pers. com.). Anopheles melas breeds in salt water and is less efficient 

at transmitting malaria, restricted mainly to the western half of the country and is found for 

several months after the rainy season. The annual entomological inoculation rate is in the 

range of 1–80 infective bites per person per year, and the average gonotrophic cycle of 

mosquitoes in The Gambia is two days (Quiñones et al., 1997).  

Malaria occurs in The Gambia throughout the year but the majority of cases occur 

between September and December. Transmission of malaria during this period is very intense 
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and the number of cases can be 20 times that of the dry season. Although the whole 

population is at risk of contracting malaria throughout the year, the prevalence also varies 

from area to area. The highest rates are recorded in rural areas where large numbers of people 

sleep in houses made of mud blocks, and where the eaves are open (Kirby et al., 2008b). 

There are differences between rural areas, with more intense transmission and more severe 

disease in the Upper River Division than in any other area. Gambian villages situated furthest 

from mosquito breeding sites suffer greatest morbidity (Clarke et al., 2002). Part of the 

explanation for this finding might be that, here, people are less willing to use bed nets 

because nuisance biting by mosquitoes is reduced (Lindsay et al., 2002). 

 

1.7 Malaria control in The Gambia 

To eliminate malaria in many areas of intense transmission is beyond the scope of methods 

which developing nations can currently afford. New cost-effective, practical tools are needed 

if malaria is ever to be eliminated from highly endemic areas (Killeen et al., 2000). In the 

Gambia, the Department of State for Health (DOSH) is in charge of all health delivery 

systems. It consists of deferent Directorates, Units and Programmes that look into specific 

health issues. The National Malaria Control Programme (NMCP) is responsible for all 

malaria interventions in the country under the Directorate of Disease Control and Prevention. 

The activities of the NMCP are integrated into the health care system of DOSH.  

The NMCP in 2002 developed a five-year strategic Plan of Action for the control of 

malaria in the country. The main strategic approaches include Case Management, Malaria in 

Pregnancy, Vector Control and Personal Protection, Management and Partnership, 

Information, Education and Communication (IEC) and Advocacy, Surveillance and Research. 

 

1.7.1 Case management 

The aim of case management in malaria control in The Gambia is to ensure early diagnosis 

and prompt treatment through improved access to effective anti-malarial drugs. Although 

resistance has been recorded in some parts of the country, CQ remained the first line drug for 

treatment of uncomplicated malaria and Sulphadoxine pyrimethamine as the second line drug 

with quinine reserved for the treatment of severe and complicated malaria. The Department 

of State for Health is anticipating to change first line management from CQ to artemisinin 

based combination therapy to incorporate Artemether-Lumefantrine (COARTEM®) as the 

first line treatment for uncomplicated malaria (DOSH., 2005). An effectiveness study testing 

artesunate/lumefantrine combined, started in Dec 2007 at the Armed Forces Provisional 



20 

 

Ruling Council (AFPRC) General Hospital in Farafenni with the technical support of Medical 

Research Council (MRC) in the Gambia. The quality of care in public and private health 

facilities needs to be improved and the capacity of health facilities and community based 

malaria control activities should also be strengthened in order to reduce the malaria burden of 

The Gambia.  

 

1.7.2 Malaria in pregnancy 

In pregnancy there is an immune suppression response that leads to an increase susceptibility 

to malaria. The effects of malaria on pregnancy are dependent on malaria epidemiology and 

the immunity of women. In The Gambia pregnant women are protected by the increased 

access and use of Insecticide Treated Nets (ITNs) and Long Lasting Insecticide Nets 

(LLINs), provision of the regular supply of anti-malaria drugs and other essential supplies at 

all levels, provision of prompt diagnosis and treatment for acute cases of malaria at all levels 

and provision and promotion of effective malaria chemoprophylaxis for all pregnant women 

through Intermittent Preventive Therapy (IPT). 

 

1.7.3 Vector control and personal protection 

The Vector Control Unit was established in the early 1950s and activities of the unit were 

confined only to Banjul, the capital city. These activities include larviciding, residual 

spraying, fogging and rodent control. At the inception of the unit, organochlorines such as 

DDT, BHC in combination with organophosphates such as Pynerzone EC25, Malathion, 

Dursban, Abate emulsion 500E, and carbamates such as Baygon, were used in The Gambia. 

Synthetic pyrethroids using permethrin and deltamethrin for mosquito treatment were piloted 

in The Gambia in 1985 by Ministry of Health and MRC.  

In 1992, the National Impregnated Bed net Program (NIBP) was established jointly 

by Ministry of Health and MRC with support from WHO and UNICEF. During the first year 

of implementation when insecticides were supplied free of charge to communities, coverage 

was 85%. However, the introduction of user fees reduced coverage to 16%. The net user rate 

is around 60% as revealed from studies done in The Gambia (ITN evaluation 2001, Malaria 

Situational analysis 2002). The operational approaches of this component include: promoting 

the use of mosquito nets and ITNs, improving access to ITNs, strengthening partnership and 

collaboration with relevant institutions, establishing a functional entomological laboratory, 

piloting indoor residual spraying in selected areas and supporting research in biological 

control of larvae in rice fields and flood plains. 
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1.7.4 Programme Management, Coordination and Partnership 

Effective malaria control requires the participation of multiple partners at various levels with 

varying responsibilities and interests. In the light of this, it is important that an effective 

framework for management, co-ordination and partnership is put in place at all levels. An 

effective system for management and co-ordination minimizes duplication of efforts and 

waste of resources. The importance of community participation in malaria control 

programmes cannot be over-emphasized. There are many types of structures and organized 

informal groups, with considerable potentials in Gambian communities, but NMCP does not 

seem to be taking full advantage of this great opportunity. Initiatives to involve communities 

are often ad hoc and sporadic. It is therefore important for the NMCP to involve and use the 

expertise of these local structures and individuals in the fight against malaria. 
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CHAPTER 2 

Importance of eaves for house entry by mosquitoes 
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M. Njie, E .Dilger, S.W. Lindsay & M.J. Kirby. 2009. The importance of eaves to house-

entry by Anopheline, but not Culicine, mosquitoes. Journal of Medical Entomology, 46, 505-

510. 
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2.1 Summary 

 

Background: Screening homes is an effective way of reducing house entry by mosquitoes, 

and closing eaves in particular has been suggested to reduce density of anophelines and 

culicines entering houses. It is uncertain how important blocking the eaves is at reducing 

mosquito entry in houses for which there are no other routes of entry. This study was 

designed to find out whether blocking the eaves, in addition to screening the doors, windows, 

and sealing cracks in the walls, is essential when constructing mosquito-proof homes in a 

West African setting.  

Methods: Twelve traditional windowless houses in a rural Gambian village were selected, in 

which a single male adult slept. The doors of these houses were screened and any gaps in the 

walls were sealed. Six of the houses chosen randomly had their eaves blocked for four weeks 

then opened for another four weeks. The other six underwent the opposite treatment (a simple 

crossover design). Mosquitoes were sampled using CDC light traps from each house twice a 

week during the study period. Mosquito control activities and the number and type of 

domestic animals within the compound was recorded on each sampling occasion.  

Findings: A total 2029 mosquitoes were caught from 187 light traps. Anopheles gambiae s.s. 

was the major vector caught (70.7%). With eaves closed a three-fold reduction in An. 

gambiae s.l. indoors was observed (geometric mean number An. gambiae s.l, /trap/night with 

opened eaves= 6.1, 95% Confidence Intervals, CIs 3.5-10.0; eaves closed = 2.1, 95% CIs 1.3-

3.1, t11=3.6, p = 0.004). However, there was no equivalent reduction in total culicine numbers 

observed (eaves open, geometric mean no. total culicines /trap/night = 2.1, 95% CIs 1.4-3.2; 

eaves closed = 2.1, 95% CIs 1.4-3.2, t11= -0.07, p = 0.95). No significant difference between 

median room temperatures of open eave houses (28.8
o
C, Inter Quartile Range, IQR, 27.7-

29.5
o
C) and that of closed eaves houses (28.7

o
C, IQR 27.5-29.4

o
C, t178= -0.4, p = n.s.) was 

observed. Mean percentage relative humidity was also similar in open- (74.0%) and closed-

eave houses (74.2%). 

Interpretation: Eaves are a major route by which An. gambiae enters houses but in contrast 

culicine mosquitoes must enter largely through other routes. Sealing the eave gap is an 

important method for reducing malaria transmission in homes where all other routes of entry 

are screened or closed. 
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2.2 Background 

Any disease control measure that aims to reduce human-vector contact must first identify, 

and then modify, the precise locations where this contact occurs. Household factors can 

account for about 28% of the total variability in malaria incidence (Mackinnon et al., 2005) 

and from this it can be inferred that the house is clearly a principal point of human-vector 

contact. This is reflected in the high degree of endophily and endophagy exhibited by the 

dominant malaria vectors worldwide: Anopheles gambiae sensu stricto and An. funestus in 

Africa (Gillies and DeMeillon, 1968), An. minimus in much of Asia (Van Bortel et al., 1999, 

Jana-Kara et al., 1995, Nutsathapana et al., 1986), An. stephensi in urban India (Sharma et al., 

1993) and An. darlingi in parts of South America (Roberts et al., 1987). The ability to enter 

houses has evolved in some mosquito species and, more specifically, within some species 

populations but not others (Trpis and Hausermann, 1978). The African malaria vectors An. 

gambiae s.s. and An. funestus have evolved with humans and feed late at night indoors when 

hosts are asleep and less able to protect themselves from blood-feeding mosquitoes (Gillies 

and DeMeillon, 1968). The attractiveness and ease of entry into a house is affected by 

structural factors and social practices; a recent study in a semi-rural area of The Gambia 

showed that An. gambiae s.l. are more likely to enter houses with open eaves, mud brick 

walls and many occupants, whilst burning churai, a local incense, reduced house entry (Kirby 

et al., 2008a).  

The main malaria vectors in The Gambia are members of the An. gambiae s.l. species 

complex, namely An. gambiae s.s., An. arabiensis and An. melas (Bryan, 1979, Lindsay et al., 

1993a). These vectors are predominantly nocturnal and endophagic in their feeding behaviour 

(Lindsay et al., 1993a, Costantini et al., 1999) and, therefore, seek entry to dwellings 

occupied by humans at night. Much of the malaria transmission in this setting takes place at 

home, with around 80% occurring indoors (Lindsay et al., 1995) and so mosquito-proofing 

homes should be effective against malaria transmission here by reducing exposure to 

parasites. There are three major routes of entry into a typical West African house, that is, 

through the doors, windows or the eave gap, that is, the gap between the top of the wall and 

the roof. Closing eave gaps alone has been shown previously to reduce the density of 

anophelines (Lindsay and Snow, 1988) and culicines (White, 1969) entering houses, however 

the relative importance of closing eaves compared to closing the other routes of entry has not 

been fully explored. This study was designed to determine whether blocking the eaves, in 

addition to screening the doors, is essential to the design and construction of mosquito-proof 

homes in West Africa. It was carried out alongside a larger, randomized controlled trial 
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(ISRCTN51184253) assessing whether house screening can substantially reduce exposure to 

malaria vectors, and so reduce parasitaemia and anaemia in children sleeping in those houses. 

 

2.3 Materials and Methods 

2.3.1 Study area 

The study village, Dibba Kunda Wollof, is situated approximately 170 km from the mouth of 

the River Gambia and 15km East of Farafenni town (UTM coordinates: 1500200N, 435500E) 

in the North Bank Division in The Gambia. The area is dominated by open Sudan savanna 

vegetation, and the climate consists of a single rainy season from June to October followed 

by a long dry season. Dibba Kunda Wollof comprises 1,226 people, predominantly farmers 

by trade.  98% belong to the Wollof ethnic group and there are roughly equal numbers of men 

(47%) and women.  

 

2.3.2 Study houses and treatments 

Houses in the village are typically arranged in familial compounds demarcated by a fence or 

wall, containing usually four to six houses, but sometimes as many as 20. Twelve similarly-

sized, single-roomed houses with two doors, unplastered mud-brick walls, a thatched roof 

and open eaves, in which a single adult male slept, were selected for inclusion in the study. A 

full written consent agreement was obtained from the occupants of the houses, and each 

occupant provided with an untreated bed net. 

All 12 houses had their doors screened (fig.2.1a and b). Doors were made of 15 x 

30mm softwood, strengthened at the corners, with PVC-coated fibreglass netting 

(Vestergaard Frandsen group, Kolding, Denmark) stapled to the frame. A handle was fixed to 

both sides of the door and a catch on the inside helped to hold the door tight in the frame 

when shut. Elastic cord was attached to the outside of the door to keep the door closed when 

not in use. 
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Fig. 2.1a) screened door, b) eaves closed with rubble and mortar 

 

For the first four weeks of the study six of the houses had their eaves completely closed with 

a mixture of sand, rubble and cement (fig 2.1b), whilst the eaves of the other six houses 

remained open. The list of houses and of possible treatments were randomised and then 

paired up using the list randomiser function available at www.random.org. These treatments 

were then crossed over; the eave filling was broken up and removed from the first group and 

the second group had the eaves closed in the same manner. The houses were then observed 

for another four weeks. Eaves were closed completely, rather than screened in the manner of 

the doors, for two reasons. Firstly the irregular surfaces of the thatched roof and the mud 

brick wall made it difficult to achieve a tight closure using the netting; secondly our design 

replicated the local method of closing eaves.  

 

A B 

http://www.random.org/


27 

 

 

Fig. 2.2 Door design used during the study to screen doors (adapted from WHO Offset 

Publication no.66 Environmental Management for Mosquito Control). 

 

2.3.3 Mosquito collections 

The 12 houses were each sampled twice weekly between 3 September and 6 November 2007. 

A CDC miniature light trap (Model 512, John W. Hock Co., Gainesville, FL, fig. 2.3) was 

External view                                          Internal View 
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positioned 1m above the ground within 1-2m of the foot end of a bed. A village assistant was 

appointed to distribute the traps to the houses, put on the light trap at 19:00h and help the 

investigator to collect them the following morning at 07:00h. A screening questionnaire form 

was filled for each trapping house to record house data, risk factors and the environmental 

data (see appendix 3). Mosquitoes were killed by freezing at -25
o
C for two hours and 

identified using morphological criteria. Where possible, 30 An. gambiae s.l from each house 

were identified to species by polymerase chain reaction (PCR) analysis (Scott et al., 1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 CDC light trap (photo source: www.johnwhock.com) 

 

 

2.3.4 Putative risk factors and environmental factors. 

The number of cows and horses in the compound between 19.00h and 07.00h on each night 

of trapping was recorded. Despite the request that only a single sleeper resided in each house, 

the number of occupants was recorded in case this changed during the course of the study. 

The use of mosquito coils, local incense (churai), and insecticide spray within the house on 

the night of trapping was also recorded, as participants were not discouraged from using anti-

mosquito measures. In each house a single data logger (Model HOBO
®
 U12 Temp/RH/Light 

External Data Logger, Onset Computer Corporation, Bourne, MA) was suspended next to the 

light trap to record temperature (
o
C) and percentage relative humidity (%RH) every 30 

minutes. The loggers were pre-set to turn on automatically at 19.00h. Loggers were collected 

each morning at 07.00h, switched off, and the data downloaded to Onset HOBOware™ 

version 2.0 software (Onset Computer Corporation, Bourne, MA).  

 

http://www.johnwhock.com/
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2.3.5 Statistical analysis 

Mosquito data within houses was described by arithmetic mean An. gambiae s.l. per trap per 

night. Variation between houses was positively skewed and therefore described by geometric 

mean. A paired-samples t test was used to compare the differences in mosquito catch between 

treatments. Room temperature within treatment group was negatively skewed and therefore 

this variable was reflected by subtracting every score from a constant that was one greater 

than the highest score, and then square-root transformed. A comparison of room temperature 

and relative humidity between the treatments was performed on normalized data using an 

independent-samples t test. A generalized estimating equation (GEE) was used to estimate 

treatment effects, allowing for repeated measures in the same houses, and including an 

adjustment for the covariates, week of trapping and crossover group. Mosquito data (counts) 

were fitted to a negative binomial distribution with a log link function. House ID was used as 

subject unit for repeated measure assuming an exchangeable correlation matrix. All analyses 

were done using SPSS version 15.0 (SPSS Inc, Chicago, IL). 

 

2.3.6 Ethical approval 

Approval for this study was given by the Gambia Government/Medical Research Council 

Joint Ethics Committee and Durham University Ethics Advisory Committee. Verbal and 

written consent was obtained from home owners prior to the start of the study. 

 

2.4 Findings 

2.4.1 Data exclusions 

Four light traps failed during the trapping period. On one night only a house was occupied by 

more than one inhabitant. These data were excluded from the analysis.  

 

2.4.2 Mosquito numbers. 

2,029 mosquitoes were caught from 187 light trappings, of which 914 (45%) were An. 

gambiae s.l., <1% were other anophelines and 54% were culicines. The other Anopheline 

species caught were An. ziemanni (11 specimens), An. pharoensis (4) and An. squamosus (1). 

The common culicines were Culex thalassius (906), Cx. quinquefasciatus (126), Aedes 

aegypti  and Ae. vittatus (all Aedes spp combined = 43). A total of 499 An. gambiae s.l. 

specimens were identified to species by PCR; 70.7% were An. gambiae sensu stricto, 25.3% 

An. melas and 3.6% An. arabiensis. 0.4% failed repeat amplification. 
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2.4.3 Treatment effect. 

Fig. 2.4 summarizes the variation in catch size between treatments during the study for An. 

gambiae s.l. and for all culicines. When houses had their eaves closed there was a 65% 

reduction in An. gambiae s.l. caught indoors (eaves open, geometric mean no. An. gambiae 

s.l. per trap per night = 6.1, 95% CIs 3.5-10.0; eaves closed = 2.1, 95% CIs 1.3-3.1, t11=3.6, p 

= 0.004). However, there was no equivalent reduction in total culicine numbers observed 

(eaves open, geometric mean no. total culicines per trap per night = 2.1, 95% CIs 1.4-3.2; 

eaves closed = 2.1, 95% CIs 1.4-3.2, t11= -0.07, p = 0.95).  

No mosquito coils, local incense (churai), insecticide spray or insecticide-treated nets 

were used in any house during the study. These factors were therefore not incorporated in the 

GEE model. Incorporating the effects of trapping week and cross-over group, and adjusting 

for the numbers of horses and cows in the compound, An. gambiae s.l. were three times less 

likely to be found in houses with closed eaves compared to houses with open eaves (OR = 

0.34; 95% CI = 0.20-0.56; P < 0.001). However the treatment had no impact on total culicine 

house entry (OR = 1.05; 95% CI = 0.65-1.70; P = n.s.). The presence of horses in the 

compound reduced the number of total culicines caught (OR = 0.46; 95% CI = 0.32-0.64; P < 

0.001, fig 2.5) but not the number of An. gambiae s.l. (OR = 0.27; 95% CI = 0.01-6.21; p = 

n.s.). The presence of cows in the compound had no effect on culicine (p = 0.28) or An. 

gambiae s.l. numbers (p = 0.42). 
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Fig. 2.4 Mean number of An. gambiae s.l. and all culicines caught/trap/night caught from two 

crossover groups of six houses with eaves open or closed. 
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Fig. 2.5 Relationship of mean number of mosquitoes caught/trap/night with the number of 

horses in the compound 

 

 

There was no difference in the median room temperatures of open eave houses (28.8
o
C, Inter 

Quartile Range, IQR, 27.7-29.5
o
C) and that of closed eaves houses (28.7

o
C, IQR 27.5-

29.4
o
C, t178= -0.4, p = n.s.). However it was significantly hotter during the second part of the 

study (29.3
o
C, IQR 28.7-29.7

o
C, t178= 6.7

o
C, p = <0.001) than the first (27.9

o
C, IQR 27.1-

28.9
o
C). Similarly, though there was no difference in the mean percentage relative humidity 

between open eave houses (74.0%, 95% CIs 73.0-75.1%) and closed eave houses (74.2%, 

95% CIs 73.2-75.3%, t178= -0.3, p = n.s.), it was 8% more humid during the first period of the 

study (78.4%, 95%  CIs 77.8-79.0%) than the second  (70.4%, 95% CIs 69.6-71.1%, t178= 

17.0, p = <0.001). 

 

2.5 Discussion 

It has been demonstrated here that closing the eaves results in a 66% reduction in the number 

of An. gambiae s.l. entering houses in which the eave gap is the major route of entry for 

mosquitoes. This is a greater reduction than the 43% seen between open- and closed-eave 



33 

 

houses in a previous study in The Gambia (Lindsay and Snow, 1988). Similarly closing the 

eaves, whilst leaving the windows and door slightly ajar, resulted in only a 39% reduction in 

An. gambiae s.l. house entry in an experimental hut study, again conducted in The Gambia 

(Lindsay et al., 2003). In both of these earlier studies the results probably reflect the fact that 

many mosquitoes will have entered through the doors and windows.  

Installing a well-fitted ceiling has a similar effect to that of closing eaves on reducing 

mosquito house entry, acting as a barrier to mosquitoes attempting to enter the room space. 

Netting ceilings reduced exposure to An. gambiae s.l. by 80% and Mansonia spp by 

approximately 70%  in experimental huts, even when the windows and door were left ajar 

(Lindsay et al., 2003). Comparable reductions in An. gambiae s.l. and Mansonia uniformis 

entrance were achieved by fitting Louvre traps to openings created one foot below the roof 

(Smith et al., 1972). These results all suggest An. gambiae s.l. seek initially to enter huts and 

houses predominantly through the open eaves. Routes of entry into houses are recognized by 

olfactory cues i.e. the carbon dioxide and body odours emanating from the hosts inside 

(Bertram and McGregor, 1956). Anopheles gambiae s.l. flies typically at a low (<1m) (Snow, 

1979) or intermediate height (Gillies and Wilkes, 1976), and so it seems that it must fly 

upwards when encountering a vertical wall surface, following the cues emanating from the 

eaves and becoming channelled indoors through the open eaves by the overhanging roof. This 

concept is supported by the evidence that increasing wall height results in only a slight 

decrease in house entry for An. gambiae s.l., despite their typical vertical distribution (Snow, 

1987). This upward flight behaviour is probably a common trait of endophagic mosquitoes 

only. Anopheles vestitipennis lands low down on exterior walls before moving along walls in 

short flights either vertically or horizontally (Grieco et al., 2000). Thus doors (44%) are the 

primary route of entry for this species, though windows and eaves are also important (both 

26%) and cracks in the walls are less so (4%) (Grieco et al., 2000). Similarly An. pharoensis 

will enter houses if presented only with a ground level opening but not if presented with an 

opening only at eave level (Snow, 1987). In the present study only 16 individuals of other 

anopheline species were caught, 6 from open eave houses and 10 from closed eave houses. 

Among these were the low-flying An. pharoensis (Snow, 1979). Though these numbers are 

too low to be statistically useful, they do hint at the possibility that this upward flight 

behaviour is unique to An. gambiae s.l. amongst the anophelines in this setting. 

While the focus of this research was An. gambiae s.l., the most important vectors of 

malaria in Africa, some of the culicines trapped are also important vectors of disease, and 

thus the effect of control measures against these should also be considered. Approximately 
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10% of the culicines caught were Cx. quinquefasciatus, vectors of lymphatic filariasis in East 

Africa, approximately 2% were Ae. aegypti, vectors of Yellow Fever and dengue, and 2% 

were Mansonia africana or Mn. uniformis, also vectors of lymphatic filariasis and of Rift 

Valley Fever and West Nile Virus in nearby Senegal (Diallo et al., 2005). The observation 

that closing the eaves has a much greater impact on An. gambiae s.l. house entry than on most 

culicines merits an explanation. Mosquito species with opportunistic feeding behavior may 

readily take human bloodmeals outdoors but fail to feed once humans retreat indoors. There 

are three potential explanations for this restriction. Firstly, repeated failure to enter through 

the narrow apertures of doors, windows or small holes in walls; secondly the inaccessibility 

of eaves to low-flying mosquitoes and the absence of the upward flight behaviour seen in An. 

gambiae s.l., and lastly the inability to locate a host in a darkened or micro climatically 

altered environment (Gillies, 1988).  As very few bloodfed mosquitoes were caught, probably 

because indoor light trap catches are biased towards catching unfed females (Service, 1976), 

it is not appropriate to comment on the last possibility here. We have at least in part 

controlled for the first explanation by choosing houses with no windows, screening their 

doors and filling small holes in the walls. Of course the eaves also represent a narrow 

aperture and as such may be impenetrable to the culicines rather than unencountered due to 

vertical distribution. If this were true it might be expected that culicine house entry success 

would vary with eave gap size. This has been shown for several culicine species (White, 

1969). However in the present study the size of the eave gap was very similar for all houses, 

and in another study in the same location, eave gap size did not show a relationship with 

culicine house entry (M.J.K., unpublished data). That leaves the possibility that these culicine 

species are flying at a different height to An. gambiae s.l. and/or do not change their flight 

behaviour when coming into contact with house walls. Mansonia uniformis, M. africana and 

several Aedes species are consistently reported as a low flying species with a high percentage 

of the total catch taken in traps below 1m from the ground (Snow, 1979, Gillies and Wilkes, 

1976, Snow, 1975). This might in part explain the unimportance of eave closure to the 

numbers of these species caught in the present study, where it was seen that similar 

proportions of Aedes spp and Mansonia spp were caught from houses with eaves closed and 

eaves open (1.5:1 and 0.7:1 respectively). However the evidence of other research suggests 

Mansonia spp do favour eaves as routes of entry (Snow, 1987, Lindsay et al., 2003), so the 

fact that this was not witnessed here may be an artefact of the small numbers (17) caught 

rather than their vertical distribution. 
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The vertical distribution of Cx. thalassius, the most common culicine caught in the 

present study, cannot explain why closing the eaves does not reduce house entry by this 

species. It has no obvious vertical flight limitation, being abundant at all sampling heights 

(Snow, 1979). Nevertheless, Cx. thalassius has been shown to be prevented from entering 

houses by increasing wall height; a 62% decrease in Cx. thalassius house entry was observed 

between a hut with a 60cm wall compared to one with a 172cm wall (Snow, 1987). This 

suggests that vertical distribution is only one of several factors that could explain the 

ineffectiveness of eave closure on culicine house entry. An alternative possibility is that the 

culicines are better adapted to enter through the doors than An. gambiae s.l. Despite the fact 

that the doors were screened, it was observed that often these doors were propped open 

during daylight hours, only being closed at 19:00-20:00h. Most of the culicines caught in this 

study are active during diurnal or crepuscular hours and are thus better placed to take 

advantage of the open doors than An. gambiae s.l., which is active at night after the doors 

have been closed. In summary it can be said that the importance of entry route treatments on 

the indoor abundance of culicines is unclear in this study; other studies have found few or 

contradictory relationships between entry route sizes or treatments and culicine indoor catch 

(Howell and Chadee, 2007, Charlwood et al., 2003, Kohn, 1991) 

Here we have shown that the presence of horses, but not cows, in the compound 

reduces house entry by culicine mosquitoes. Many culicines are opportunistic feeders and it is 

likely that horses, abundant in this area, are an important bloodmeal host. It has previously 

been demonstrated that the presence of horses in the compound also reduces house entry by 

An. gambiae s.l. (Kirby et al. 2008). That we failed to demonstrate that here is probably a 

result of the small sample size. 

Most people in rural Gambia do not appreciate the significance of closing eaves in 

relation to mosquito house entry. They usually relate it to a reduction of house ventilation and 

an increase in indoor temperatures. However in this study no significant difference in 

temperature was observed between open and closed eave houses, contrary to a previous 

survey in The Gambia of open and closed eave houses, which found that closing the eaves 

increased indoor temperatures by 1
o
C (Lindsay and Snow, 1988). It is suggested that in the 

present study the external environment contributed more to temperature within the houses 

than the eave treatment. The rains stopped close to the crossover date and it is probable that 

the external temperature after the crossover was higher compared with before; unfortunately 

no outdoor temperatures were recorded in the study village.  

 



36 

 

2.6 Conclusion 

There is compelling evidence that house screening is associated with protection against 

malaria transmission, infection and morbidity (Lindsay et al., 2002). Our studies illustrate 

that blocking the eaves in houses with well-screened doors and windows is essential for 

reducing house entry by anophelines, although it is of no benefit against culicines. It has been 

shown here that if house screening against malaria is to be effective in The Gambia then 

blocking the route of entry through the eave gap to the room space, by closing eaves or 

installing ceilings, must be of primary importance. 
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CHAPTER 3 

Experimental hut evaluation of insecticide treatment of damaged screened 

ceilings against house entry by malaria mosquitoes 
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3.1 Summary 

Background: House design may affect the exposure of the house occupants to disease 

vectors. The installation of netting ceilings has been shown to be very effective at reducing 

mosquito house entry.  However, these ceilings have a limited life-span and holes and tears 

will appear over time, compromising their effectiveness. It is therefore important to 

determine whether insecticide-treated torn netting ceilings are as efficacious as intact 

ceilings.   

Methods: Six experimental huts were used in which a single adult male slept. A 12-night 

pilot study determined whether there were any residual insecticidal effects of the use of 

treated ceilings within the huts. In the main study three insecticide-treated damaged ceilings 

were tested against three controls. All damaged ceilings had 5 x 10cm
2
 holes, one at each 

corner and one at the centre. The insecticides were deltamethrin (55mg/m
2
), permethrin 

(500mg/m
2
) and chlorpyrifos (500mg/m

2
). The controls were an intact untreated ceiling, a 

water-treated damaged ceiling, and a hut with no ceiling. The door and window of each hut 

was left ajar. 

Results: The pilot study did not show any significant residual effect of treated ceilings on 

either the number of mosquitoes caught alive inside the huts or on the number of dead 

mosquitoes recovered (P=0.08 and 0.29 respectively), therefore the six treatments were 

rotated nightly between the huts for 48 consecutive nights. A total of 18,760 mosquitoes were 

caught in the main study of which 9,132 (48.7%) were Anopheles gambiae s.l. In comparison 

with the „no ceiling‟ control (mean no. An. gambiae s.l./hut/night = 45.7, 95% CI 34.8-56.7), 

the intact untreated ceiling reduced An. gambiae s.l. house entry by 55%, the water-treated 

damaged ceiling by 29% (32.4; 23.4-41.3, p=0.06) and the insecticide-treated damaged 

ceilings by 29-36% (deltamethrin = 29.1, 21.8-36.5, p = 0.03; permethrin = 30.0, 23.3-36.8, p 

= 0.05; chlorpyrifos = 32.4, 22.4-42.4, p = 0.045). The highest number of dead mosquitoes 

was recovered from huts with chlorpyrifos-treated ceilings (4/hut/night) and huts with 

permethrin-treated ceilings had the least blood-fed mosquitoes (1.8/hut/night). 

Interpretation: Intact ceilings reduced the number of mosquitoes entering houses by more 

than a half. However, with torn ceilings, treating them with insecticide did not result in a 

significant reduction in entry of malaria mosquitoes when compared to water-treated torn 

ceiling huts. Dipping PVC-coated nylon netting was an ineffective method of applying the 

insecticide, and alternative application techniques for this type of netting must be developed. 
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3.2 Background  

Modifications to the house environment can take many forms. Reducing proximity to 

neighbours and mosquito breeding sites by careful site selection will reduce exposure to 

malaria vectors, but is not usually an option for most rural African house-owners restricted by 

the cost of available building plots. Such inhabitants will also find it hard to afford to 

construct their houses from quality long-lasting materials and to build houses large enough to 

avoid over-crowding, yet by these improvements malaria incidence was reduced in the USA 

(Hackett and Missirolli, 1932, Fullerton and Bishop, 1933b, Reiter et al., 2003). 

But there is another option: house screening is a low-cost option that can be made 

from locally-available materials and quickly installed in existing house structures. Several 

studies (reviewed in (Lindsay et al., 2002)) have provided compelling evidence that house 

screening is associated with protection against malaria transmission, infection and morbidity. 

House screening was used to great effect to protect against malaria in Italy, Greece, Panama 

and the USA in the early 20
th

 century.  

A recent study in The Gambia using experimental huts demonstrated that netting 

ceilings reduced exposure to malaria vectors by 80% (Lindsay et al., 2003). Sleepers in the 

huts attracted mosquitoes emerging from the nearby irrigated rice fields, which then entered 

the huts through the open eaves but were prevented from entering the room space by a netting 

ceiling (fig. 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Path taken by house-entering mosquitoes, attracted by host odour (dots). The netting ceiling 

keeps mosquitoes in the roof and prevents access to the room space (Source: Lindsay et al 2003).  
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In practice these screened ceilings will develop holes and tears. The Screening Homes to 

Prevent Malaria trial (STOPMAL) of house screening was run concurrently with this study in 

The Gambia, using the same netting to screen doors, windows and ceilings of houses. A 

STOPMAL durability study showed that some damage occurs to the netting within six 

months of installation. It was found that 26% of ceilings were intact i.e. no holes, 72% had 

some damage and 2% were badly damaged or removed altogether. The number and size of 

holes varied considerably between houses. There were on average 0.6 holes of 3-10cm 

diameter (max. 8 holes), 2.5 holes of 1.5-3cm diameter (max. 10 holes) and 1.7 holes of 

<1.5cm (max. 10 holes) (Kirby, unpublished).  

 Insecticides have been used in the past for the control of disease vectors and 

agricultural pests. Some have been proven to be effective in malaria control and have since 

been used in district and national malaria control programs. The use of bednets,  highly 

accepted and widely used by local people, was  proven to be significantly effective in malaria 

prevention when impregnated with insecticides (Lindsay et al., 1991, Miller et al., 1991). 

They found that impregnating bednets with pyrethroids like permethrin reduced number of 

human bloodfed mosquitoes by 90% and lambda-cyhalothrin killed a significant proportion 

of endophilic mosquitoes (91%) when compared to the untreated nets. Some researchers also 

considered impregnation of curtains draped inside the walls of houses, across doorways, 

windows and even under open eaves as appropriate mosquito control in small houses (Majori 

et al., 1987, Mutinga et al., 1992). To test these findings, this study was design to determine 

whether insecticide impregnation of netted ceilings will protect against mosquito house entry 

when the screens have holes and also test the efficacy of three different insecticides on torn 

ceilings.  

 

3.3 Materials and Methods  

3.3.1 Study Area 

The study was carried out at MRC Wali Kunda (13° 34′N, 14° 55′W), a small field station in 

rural Gambia from 27
th

 June to 7
th

 August 2007. The area as described by Miller et al (1991) 

is situated in an area of Sudan savannah on the south bank of the River Gambia, 

approximately 290km from the coast. The station is mainly used for entomological research 

as it is perfectly located close to a large area of irrigated rice fields in the south which serve 

as the main mosquito breeding sites. The station is situated in the western part of the village 

of less than 100 inhabitants, who are mainly fishermen.  
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3.3.2. Huts 

The six identical experimental huts (fig 3.2a), approximately 2m x 2m,were made with mud 

walls, thatched roof, open eaves, a veranda and window on each side and a door to the south 

and arranged in a straight line, 12m apart. The huts were raised 50cm off the ground on 

concrete legs surrounded by water-filled moats to prevent infestation of ants that might 

forage on dead mosquitoes. The east and west sides of the huts were fitted with screened 

verandas to capture mosquitoes exiting through the eaves and 30cm
3
 exit traps to capture 

mosquitoes leaving through the windows (fig 3.2b).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 a) Experimental huts at Walikunda, b) Veranda trap with exit trap fixed over window 

 

Mosquitoes could enter each hut through the eaves and windows on the north and south sides 

and the door. The door and windows were held ajar to simulate village conditions (30mm gap 

on the windows; 20mm gap between the edge of the door and frame). Mosquitoes could leave 

the room via the eaves, where open, or through the windows and door.  Mosquitoes that left 

via the north and south sides were lost, but those leaving on the east and west sides were 

captured in the exit traps or enclosed verandas.   

 

3.3.3 Ceilings 

PVC-coated fibreglass netting (Vestergaard Frandsen group, Denmark) was used for the 

ceilings. The „damaged‟ ceilings had 5 (10cm×10cm) holes cut into them (1 at each corner 

and 1 in the centre). Investigators and sleepers were blinded to the identity of the four 

ceilings with holes. An independent scientist was assigned to treat and number of the ceilings 

a) b) 
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and only released their identity after the analysis. Each treatment was randomly allocated a 

number using the list randomiser function available at www.random.org. 

Five different treatments were tested against a control of no ceiling: intact ceiling, 

water-impregnated torn ceiling, deltamethrin-impregnated torn ceiling 55mg/m
2
, permethrin-

impregnated torn ceiling 500mg/m
2 

and chlorpyrifos-impregnated torn ceiling 500mg/m
2
. 

Ceilings were installed below the open eaves and following an imperfect Latin square design 

(Design-Expert
®
 Software) of six by six, ceilings were rotated every day between 16:00h-

18:00h. During the pilot study, battens were attached to the ceilings and screwed to the hut 

walls. It was difficult and time consuming to release the battens from the walls when rotating 

ceilings. So, in the main study, a strip of Velcro was sewn to the ceilings leaving a gap of 

10cm from the edges, and the second strip was stapled to battens permanently fixed to the 

walls. This made the rotation of the ceilings easier and quicker. 

 

3.3.4 Human Subjects 

Six Gambian adults aged between 18-60yrs were recruited as „sleepers‟. One sleeper was 

from Wali Kunda itself and the rest from Wellingara village, approximately 3km south of the 

study site. They were randomly allocated to one hut each for the duration of the trial. Every 

night they slept under an untreated bed net between 21:00-06:00h. The sleepers gave their 

consent to participate in the trial (see appendix 1) and each was paid 50 dalasis (USD2.5) per 

night, and provided with a bicycle and rain coat to facilitate their travel from the villages to 

the study site each day. 

 

3.3.5 Temperature and Humidity  

Room temperatures were recorded with a maximum-minimum thermometer (ALLA®, 

France) and evaporation measured (fig. 3.3) between 21:00hrs and 06:00hrs with a Piche 

evaporimeter (Casella CEL, Kempston, Bedfordshire, UK). 
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Fig. 3.3 Maximum and minimum thermometer and evaporimeter 

 

3.3.6 Mosquito Collection and Identification 

At 05:00h both the door and the north and south windows of each hut were closed to prevent 

mosquitoes leaving. At 06.00h sleepers left the huts and the window traps were plugged with 

a piece of cloth to ensure captured mosquitoes did not escape. All huts and the enclosed 

verandas were searched for mosquitoes between 06.45h and 10.30h for a total of 30 man-

minutes per hut (15mins in the room and 7.5mins in each veranda).  Exit traps from each hut 

were emptied after the 30min searching (fig. 3.4). Mosquitoes were held in paper cups, 

labelled with hut number, source, state (alive or dead), and taken to the laboratory for 

identification using a dissecting microscope. Live mosquitoes were killed by freezing at -

25
o
C for two hours and identified using morphological criteria. 

All blood-fed anophelines and culicines were stored for bloodmeal ELISA described 

by (Burkot et al., 1981). Bloodfed An. gambiae s.l were also tested for sporozoites (Burkot et 

al., 1984). One unfed An. gambiae s.l. was collected from each hut everyday for Polymerase 

Chain Reaction (PCR) identification (Scott et al., 1993). Mosquitoes were stored singly in 

eppendorf tubes half filled with drierite (W.A. Hammond Drierite Co. Ltd, Xenia, USA); 

cotton wool and filter paper were used as stoppers to prevent direct contact with the chemical. 

All stored samples were transported to Farafenni Field Station for analysis. 
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Figure 3.4 Exit trap being emptied by the investigator 

 

3.3.7 Statistical analysis 

In order to determine whether insecticide-treated ceilings had a residual effect the pilot study, 

I compared the ratio of (1) number of mosquitoes and (2) number of dead mosquitoes caught 

the following day if a hut had a treated ceiling followed by an untreated ceiling the previous 

day and after. Total number of mosquitoes entering huts was obtained by doubling the 

catches from the veranda traps and adding it to the catches from the room and exit traps. 

Mosquito numbers per hut/intervention were described by an arithmetic mean. Comparison of 

the mosquito numbers between treatments was carried out using a multivariate analysis 

(general linear model). The dependent variable was log transformed and fitted to a negative 

binomial model. Maximum and minimum temperatures, plus evaporation over night were 

included as covariates. An independent samples t-test was used for the pilot study analysis. 

All statistical analysis was performed using SPSS version 15.0 (SPSS Inc. Chicago, USA). 

 

3.4 Findings 

3.4.1 Mosquito house entry 

During the pilot study, a total of 2,210 mosquitoes were caught. To test the assumption that 

there was no residual effect of insecticide, I compared the geometric mean no. of An. 

gambiae from two groups of huts with an untreated ceiling; those that had an untreated 

ceiling the preceding day and those that had an insecticide-treated ceiling the preceding day. 

There was no significant effect on An. gambiae s.l. (Alive P =0.08 and Dead P=0.29). Most 

of the dead mosquitoes were found in the exit traps and one would assume that in any 

residual effects of insecticides, high numbers of dead mosquitoes would have been found in 

the room which was not the case here. 
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During a 48 night trial, a total number of 18,760 mosquitoes entered the six 

experimental huts. Out of this, 9,132 (48.7%) were An. gambiae s.l., 6,224 (33.2%) were 

Mansonia spp, 2,665 (14.2%) were other culicines mostly Cx. thalassius and Cx. 

quinquefasciatus, and 739 (3.9%) were other anophelines including An. pharoensis, An. 

zeimanni and An. rufipes.  

A total of 18,760 mosquitoes were caught in the main study of which 9,132 (48.7%) 

were An. gambiae s.l., 6,224 (33.2%) were Mansonia spp, 739 (3.9%) were other anophelines 

and 2,665 (14.2%) were other culicines. 

Of the An. gambiae s.l, 625 were caught dead and 540 were caught bloodfed. As 

shown is table 3.1, most mosquitoes entered the hut without a ceiling and as expected, less 

entered the hut with an intact ceiling. All insecticide-treated ceilings had similar reduction to 

the water-treated torn ceiling in malaria mosquito entry. 

 

Table 3.1 Means & odds ratios of An. gambiae s.l. caught/hut/night by treatment 

Intervention 

Williams mean 

(95% CI) p Odds Ratio (95% CI) 

No ceiling 34.2 (27.2-42.8) - 1.00 

Intact ceiling 20.6 (15.7-25.6) <0.001 0.46 (0.31-0.70) 

Water-treated ceiling 32.4 (23.4-41.3) 0.062 0.67 (0.45-1.02) 

Deltamethrin-treated ceiling 29.1 (21.8-36.5) 0.026 0.63 (0.41-0.94) 

Permethrin-treated ceiling 30.0 (23.3-36.8) 0.05 0.66 (0.44-1.00) 

Chlorpyrifos-treated ceiling 32.4 (22.4-42.4) 0.045 0.65 (0.43-0.99) 

 

 

3.4.2 Blood feeding 

Of all mosquitoes caught 652 (3.5%) were bloodfed, of which 553 were An. gambiae s.l and 

99 were  Culex spp. Out of the An. gambiae s.l, 139 (25%) were found to have fed on 

humans, and the rest fed on equines. 132 were caught alive and 7 dead. It was also found that 

only the intact ceiling (P=0.002, OR=0.45) and the permethrin treated ceiling (P=0.016, 

OR=0.55) showed significant reduction in blood feeding over the no-ceiling hut. The 

bloodfed An. gambiae s.l were also tested for presence of sporozoites. Out of the 553 tested, 7 

(1.3%) were found to be positive. 
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 Most bloodfed mosquitoes were collected in the room and were alive irrespective of 

treatment (fig. 3.5). The intact and permethrin-treated ceilings provided the best protection 

against bloodfeeding. 

 

 

Fig. 3.5 Proportion of alive (unhatched bars) and dead (hatched bars) bloodfed An. gambiae 

s.l. females collected in different parts of the huts between treatment groups. 

 

3.4.3 Mosquito mortality 

Of mosquitoes caught in the experimental huts 7.5% (625/8307) were dead. Fewer culicines 

died than anophelines (fig. 3.7), but there was no difference in mortality rates between 

treatments. 

Ceiling treatment

P
ro

p
o

rt
io

n
 o

f 
to

ta
l 
b

lo
o

d
fe

d
 A

n
. 
g
a

m
b

ia
e

 s
.l
. 

c
a

u
g

h
t 
fr

o
m

 a
ll 

tr
e

a
tm

e
n

ts

0.00

0.05

0.10

0.15

0.20

Room searches

Window traps

Veranda traps

No ceiling            Intact                Water           Deltamethrin    Chlorpyrifos       Permethrin



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 Number of dead An. gambiae s.l. females (open bars) and Culex mosquitoes (closed 

bars) collected in different treatment groups. 

 

3.4.5 PCR analysis 

During the study period, one An. gambiae s.l was collected from each hut every day for PCR. 

A total of 289 samples were collected and out of which, 253 (87.5%) were An. gambiae s.s, 
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34 (11.8%) were An. arabiensis, 1 (0.3%) were An. melas and 1(0.3%) failed repeated 

amplification.  

 

3.4.6 Environmental factors 

Maximum and minimum temperatures between 21:00h-06:00h and evaporation rates were 

fitted as covariates in the GLM. The mean maximum and minimum temperatures showed no 

significant effect on mosquito entry, 30.7°C (IQR=25°C-30°C, P= 0.21) and 27°C 

(IQR=23.5°C-30°C, P=0.15) respectively. However evaporation was shown to be significant 

with a mean of 1.04cm (IQR=0.1cm-3.9cm, P<0.001). Slight differences in minimum and 

maximum temperatures about a degree varied between huts but this was not observed on 

evaporation over night. 

 

3.5 Discussion 

It has been demonstrated that intact ceilings significantly reduced An. gambiae entry by 55% 

compared to the control. Though with a smaller proportion, this concurs with previous 

findings by Lindsay (2003) where synthetic-netting ceilings reduced An. gambiae by 79%.  

The insecticide-treated damaged ceilings also reduced house entry by An. gambiae between 

29%-36% but this was similar to water-treated torn ceiling with 29%. This means that 

treating netting with insecticide provided no additional protection when torn.  This was a 

surprising finding since permethrin was shown to have a significant personal protection 

against malaria due to its repellent effect (Lindsay et al., 1991) as it reduced mosquito blood 

feeding by 91%.  Even unwashed treated nets significantly reduced blood feeding (Pleass et 

al., 1993). This study also found a significant reduction of blood fed An. gambiae s.l. in huts 

with intact untreated ceiling and permethrin treated torn ceilings over the no-ceiling hut, but 

not over the water-treated torn ceiling. It was also found that 25% of blood fed An. gambiae 

s.l. and 29% of blood fed Culex spp fed on humans. It is likely that some mosquitoes inside 

the rooms fed on sleepers by probing through the untreated bednets during the night, or 

sleepers did not properly tuck their bednets under the mattress as some engorged mosquitoes 

were found resting inside the bednets, or mosquitoes might have fed somewhere else and 

sought for shelter in the huts as described by (Boreham and Port, 1982). The blood fed An. 

gambiae were tested for sporozoite rates and results showed a rate of 1.3%. This is similar to 

the findings of (Bogh et al., 2007) where they found sporozoite rate of 1.5% in their study 

area in The Gambia. The dominant species of An. gambiae s.l as confirmed by the PCR result 

was An. gambiae s.s which comprised of 87.5% of mosquitoes tested. This is the most 
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common and efficient vector in The Gambia and most parts of Africa (Lindsay and Bayoh, 

2004). This is simply because An. gambiae s.s. prefers more humid habitats and this area is 

highly suitable for their survival. 

Higher numbers of An. gambiae s.l were found dead than Culex spp during this study. 

Chlorpyrifos, an organophosphate, was found to have the highest mortality rate of 23.5% 

compared to the deltamethrin (13.6%) and permethrin (17.8%), but these differences were not 

statistically significant. Miller (1991) found that pirimiphos-methyl and other pyrethroids 

(except permethrin) killed higher proportion of endophilic mosquitoes and concluded that this 

would give community protection when these insecticides are used on a large scale, whereas 

permethrin only enhances personal protection as it deters mosquitoes from house entry.   

My findings show that the insecticide-treated torn ceilings neither deterred nor killed 

significant numbers of An. gambiae to enhance protection. This surprising finding might be 

an artefact since no chemical analysis was done to measure how much of the insecticides 

were absorbed by the netting ceilings. The netting used in the ceilings is poorly absorptive, 

thus it is possible that the ceilings were under-dosed. It is therefore important in future studies 

to make sure that the insecticide treatment adheres to the fibre. 

Maximum and minimum temperatures measured during the study period did not show 

any significant effect on mosquito entry. Presumably this is because the study was conducted 

between June and August, and this period is part of the rainy season where temperatures are 

uniformly very high. However, increased humidity was seen to be significant in mosquito 

house entry. It has been demonstrated by some researchers that temperature and humidity 

plus carbon-dioxide are important olfactory cues that influence mosquito behaviour (Takken 

and Knols, 1999, Takken et al., 1997). It may be that high humidity resulted in more sweating 

by the human subjects sleeping in the huts, with greater concentrations of host odours being 

produced attracting more mosquitoes into the huts. 

 

3.6 Conclusion 

Although intact ceilings are effective against reducing mosquito house entry, no significant 

reduction was not observed when torn ceilings were treated with insecticides. Further studies 

are required to test other types of netting materials using long lasting insecticide treated 

nettings. 
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CHAPTER 4 

Fly sampling using sticky traps and knockdown catches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photograph courtesy of Paul Emerson
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4.1 Summary  

Background: During the 2006 rainy season the STOPMAL project found that 21% fewer 

houseflies were caught on sticky traps in fully-screened homes, but 72% more in houses with 

screened ceilings, compared to unscreened houses. However it was possible that the housefly 

numbers in screened ceiling houses were overestimated, because by preventing access to the 

roof space to flies that entered through doors and windows may have increased their activity 

in the room near the trap. The position of the sticky traps may also affect catching efficiency 

as they were positioned in one corner of the house. It was not known whether the sticky traps 

were placed in the optimal position to maximise the number of flies caught. It was also 

unknown at what time of day to set up the traps in order to maximise the number of flies 

caught. Ultimately the efficacy of screening to reduce house fly entry may have been 

significantly underestimated and therefore here I tried to determine the optimum position of 

sticky traps, the diel flight activity of houseflies and compare methods of estimating fly 

numbers indoors, in order to re-assess the efficacy of house screening against house flies. 

Materials and methods: In 30 houses sticky traps were hung for 24h in three different 

locations (centre of room, an area of light:dark and the furthest corner from the door) to 

determine the optimal sticky trap position. House fly diel flight activity study was recorded 

using sticky traps positioned in the centre of 30 houses and replaced every hour from 07:00h-

20:00h. A comparison of sticky trap efficacy versus non-residual insecticide knock-down 

catch was made in fully screened, screened ceiling and unscreened houses. Sticky traps were 

positioned in the centre of 71 houses and left for 24hrs. The following week, the same houses 

were sprayed using a non-residual insecticide.  

Results: Some 235 flies were caught during the optimisation study, of which 74.9% were 

from the centre, 17.9% from light:dark area and 7.2% from the furthest corner. Of the 261 

flies caught in the flight activity study, 59% were caught between 12:00h to 15:00h. Ceiling 

houses had more flies caught than other houses using both sampling methods. Sticky traps; 

ceilings 1.67/trap, 95% Confidence Interval, CI= 0-4.44/trap, fully screened 0.29, 95% CI= 0-

0.61, controls 0.38, 95% CI= 0-0.78 and knock down catches; ceilings 2.38, 95% CI= 1.24-

3.52, fully screened 1.29, 95% CI= 0-2.57, and controls 0.93, 95% CI= 0.40-1.46).  

Interpretation: Maximum fly catches were obtained by positioning traps at the centre of 

houses and focus trapping activity in the early afternoon. Ceilings were not effective in 

preventing housefly entry as they entered through doors and windows, but fully screened 

houses prevented housefly entry provided the screened doors are not propped opened. Spray 

catches are 100% more effective at catching flies than sticky traps.  
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4.2 Background  

House screening has been shown to be effective at reducing house entry by mosquitoes 

(Lindsay 2003), but to date no one has investigated whether screening reduces house entry by 

other flies. This is surprising since many Muscids, particularly Musca domestica, the 

housefly, are commonly found indoors. Preventing these flies from entering houses may be of 

major public health importance since they are vectors of diarrhoeal pathogens (Levine and 

Levine, 1991) and, in the case of Musca sorbens, trachoma (Emerson et al., 2004).  

Houseflies are diurnal insects and their activity is favoured by high temperature, low 

humidity and shade. As the name implies, they are highly adapted to humans and usually 

complete their life cycle within human habitats (eusynanthrophic) and are endophagic. Their 

breeding sites are heaps of accumulated animal faeces, garbage and waste from food 

processing, heavily manured fields with organic manure, sewage sludge and solid organic 

wastes in open drains and accumulated plant materials. Flies will disperse from these 

breeding sites if it is less attractive than houses (Boase, 2007) and migrate to other areas 

which lead them to entering houses where they constitute potential disease vectors and 

household pests. 

Musca domestica feeds on human foodstuff and waste products where they pick up 

and transport disease agents. Musca sorbens, a close relative of M. domestica, is also 

important and considered in the spread of eye infections because they are eye-seeking flies 

(Emerson et al., 2004). This species has been shown to breed preferentially in exposed human 

faeces (Hafez and Attia, 1958, Emerson et al., 2001). Houseflies are regarded as potential 

vectors of diarrhoeal diseases because they spend most of their life with humans, visiting and 

landing on faeces and faces of people. 

It is thought that house screening to prevent mosquito entry could also prevent 

housefly entry. The STOPMAL project sampled flies in fully screened, screened ceiling and 

unscreened houses in 2006 using yellow sticky traps. The traps were suspended from the 

ceiling and positioned in one of the corners of houses. House flies house entry was reduced 

by 21% in fully screened homes but increased by 72% in houses with screened ceilings 

compared to unscreened houses. This prompted consideration of the catching efficiency of 

the sticky traps. This study was therefore designed to firstly determine the best positioning of 

sticky traps in a house when sampling flies, secondly to determine the flight activity of flies 

in houses, thirdly to estimate fly numbers indoors in three different types of houses and 

finally to compare the efficacy of sticky traps with knock down catches for sampling 

houseflies. 
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4.3 Materials and Methods 

4.3.1 Study area 

The studies were carried out in four villages: Duta Bulu (13° 34' 0N, 15° 37' 0W) 2km west 

of Farafenni, and Kunjo (13 34 0N, 15 34 60W), Yallal Ba (13 34 60N, 15 34 0W) and Dibba 

Kunda Fula (13 33 0N, 15 28 0W), 2km, 5km and 16km east of Farafenni respectively, in the 

North Bank Region of The Gambia. The area is dominated by Sudan savanna vegetation and 

the climate consists of one single rainy season from June to October followed by a long dry 

season. The villages have a population of 394, 393, 441 and 336 respectively with over 95% 

belonging to the Fulani tribe, with the exception of Kunjo, which is a mixture of Mandinka 

and Wollof with few Fulani. All the villages have roughly equal numbers of men and women, 

and the majority are farmers and herdsmen.  

 

4.3.2 Study houses 

Thirty unscreened houses were selected in Duta Bulu for the sticky trap positioning 

experiment. In each house three sticky traps were hung; one in the centre of the room, one at 

a light:dark intersection and one in the furthest corner from the door. Each trap was hung 

about 1.5m high and left for 24hrs. The experiment was repeated over three days in all 

houses. The diel flight activity experiment was conducted in Duta Bulu and Kunjo. Sticky 

traps were hung at the centre of 30 selected houses (15 from each village) and changed every 

hour over the period 07:00 to 20:00h. Validation of indoor fly sampling was conducted in 30 

randomly selected houses from each arm of the STOPMAL trial of 2007 in Yallal Ba and 

Dibba Kunda Fula. All the studies were conducted between November 2007 and January 

2008. 

 

4.3.3 Fly Trapping 

Flies were sampled using sticky traps and a non-residual spray. The sticky traps were yellow 

polythene targets 20 x 24.5cm coated on both sides with adhesive (AgriSense-BCS ltd, 

Pontypridd, UK) hung 1.5-2m above ground level and left for 24hrs except for the diel flight 

activity study where they were removed hourly. During the diel flight activity study, exit 

traps were also positioned in windows of houses between 17:00hrs and 20:00hrs to determine 

the time flies exit houses. 

The non-residual insecticide “BOP” (McBride International, UK) used during the 

spray catches was bought locally and sprayed between 11:00hrs to 16:00hrs. The active 

ingredients were tetramethrin 0.3%w/w, d-allethrin 0.12% w/w and cypermethrin 0.07%w/w. 
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The doors and windows of the houses were closed, white cloth sheets were spread on the 

floors, and the aerosol sprayed for 30sec starting at the eaves. Doors and windows were 

opened after 10mins.  Knocked-down flies were collected and taken to the laboratory for 

identification. Flies were identified to species and sexed using a dissecting microscope and 

relevant taxonomic keys described by Crosskey and Lane (1993) and Pont (1991). 

 

4.3.4 Statistical Analysis 

Fly numbers were described by arithmetic mean, a proportional description of the sum of 

Musca species per trap was calculated for the optimisation of sticky traps and an hourly sum 

of Musca species was  calculated for the diel flight activity. A proportional description of fly 

numbers/house/trapping method was conducted for the validation of indoor fly sampling. 

Variation between house designs was described by arithmetic mean. A paired-samples t test 

was used to compare the differences in fly catches between methods of sampling. A 

Wilcoxon matched pairs test was used to analyze variables which were not normally 

distributed.  All calculations were done using SPSS version 15.0. 

 

4.3.5 Ethics 

This study was approved by The Gambia Government/MRC Joint Ethics Committee and 

verbal consent was obtained from village alkalos and compound heads prior to the start of the 

study. 

 

4.4 Findings 

4.4.1 Optimising sticky traps 

A total of 266 flies were caught from 30 houses during three 24h trapping periods. Traps 

hung in the centre of the room caught 71% of all Musca spp trapped (table 4.1), 90% more 

than the total caught from the corner of the room and 69% more than the total caught from 

the area of light:dark intersect (Friedman = 36.2, df = 2, P<0.001). Centrally hung traps also 

caught 67% (12/18) of all other Muscoidea, although this was not different from the trapping 

efficacy of the other locations (Friedman = 5.7, df = 2, P<0.06). Subsequently all sticky traps 

were hung centrally.     
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Table 4.1 The effect of sticky trap location on the total number of Musca spp caught in 30 houses.  

 

 

4.4.2 Diel flight activity 

A total of 261 houseflies were caught from 16 houses, of which 70% (183/261) were caught 

between 11:00-15:00hrs (fig. 4.1). No flies were caught at any time from the other 14 houses, 

or from the window exit traps. Fly activity followed a normal distribution with maximum 

number of flies collected at 14:00hrs. 

 

 

 

Fig. 4.1 Number of Musca spp caught hourly between 07:00-20:00h from 30 houses on three 

consecutive trapping days. 

 

 
Trap location indoors 

 

Day Centre Light:Dark Intersection Furthest Corner 
 

1 33 (67%) 14 (29%) 
2 (4%) 

  

2 73 (69%) 27 (26%) 5 (5%) 
 

3 70 (74%) 14 (15%) 10 (11) 
 

TOTAL 176 (71%) 55 (22%) 17 (7%) 
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4.4.3 Validation of indoor fly sampling 

A total of 156 Musca spp. were caught from both methods in 71 houses, 52 (33%) from 

sticky traps and 104 (67%) from spray catches. This represents an average of two flies per 

house but with a range of 0-28. When comparing the two collection methods, the mean 

number of Musca spp caught was 0.73 from sticky traps and 1.46 from non-residual spray 

catch. Thus twice as many flies were caught from the spray catch compared to the sticky 

traps (Z=-4.66 and P<0.001).  Of those from sticky traps (table 4.2), 38% were males and 

62% females; and from the spray catches, 45% were males and 55% females. Musca 

domestica dominated the catches from sticky traps and spray catches, 83% and 65% 

respectively.  

 

Table 4.2 Sex distribution of Musca spp caught during the study 

 

Collection 

method 

M. domestica M. sorbens 

Male Female Male Female 

sticky traps 17 26 3 6 

spray 

catches 33 35 14 22 

Total 50 61 17 28  

 

 

The mean number of Musca spp caught using sticky traps from fully screened rooms was 

0.29 (95% CI= 0-0.61), ceiling rooms was 1.67 (95% CI= 0-4.44) and control house was 0.38 

(95% CI= 0-0.78). This shows that more flies were caught from houses with ceilings 

compared with other houses and more flies caught from control houses than fully screened 

houses (P <0.001).  When using a non-residual spray to sample flies, the mean number of 

flies caught from fully screened houses was 1.29 (95% CI= 0-2.57), ceiling houses was 2.38 

(95% CI= 1.24-3.52) and control houses 0.93 (95% CI= 0.40-1.46).   

 

4.5 Discussion 

This series of studies demonstrates the dynamic nature of Muscid behavior. I found that the 

centre of houses is the best position to place sticky traps for sampling house flies, compared 

to light:dark areas and furthest corner from the door. The reason for this could be that the 

centre has more space in the house and when flies are agitated by movement of people in the 
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house, they tend to fly upwards to the roof space and had the possibility of being caught by 

the sticky traps.  

Sticky traps hung from the centre of houses was used to determine hourly flight 

activity of houseflies from 07:00h to 20:00h. The findings of the diel flight activity study 

showed that the flies were most active in the early afternoon with an average peak activity at 

14:00h. This could be due to the fact that sampling was done in December and January which 

are the coldest months in The Gambia. During the morning and evening, the outdoor 

temperatures are as low as 20
o
C which favours outdoor flight and they then enter houses in 

the afternoon when the temperatures start to increase. They are more active in shade than in 

sunlight and during this period, the sun is usually covered by patches of clouds which allows 

them to stay outdoors in the open air (Rozendaal, 1997). People in The Gambia usually have 

their lunch between 13:00-15:00hrs and the aroma from the food may attract more flies into 

the house. This is the time when they make contact with food if it is not properly covered and 

can act as vectors of food borne diseases.  

Exit traps positioned in windows to record the time flies exited houses (17:00-20:00h) 

did not catch any houseflies, despite efforts to ensure all other routes of exit were blocked. 

Unfortunately the doors of houses could not be kept closed because women were busy going 

in and out to complete their domestic work, cook supper, bathe children and fetch water into 

houses and so the flies probably exited through the doors instead of the windows. The flies 

could have also preferred to rest indoors on hanging clothes, ceilings and roofing material as 

the outdoor evening temperature was very low during the sampling period.  

Using three different types of houses, full screening, ceilings and control houses, flies 

were sampled to compare the efficiency of these interventions to housefly entry prevention. 

From the sticky traps, houses with ceilings had 440% more Musca spp than homes without 

ceilings, whilst fully screened houses had 24% fewer flies than control houses. These 

findings concurs with results in 2006 which showed 72% more flies in ceiling houses and 

21% less in fully screened houses compared with control houses (Kirby, unpublished). This 

could simply be explained by the fact that flies usually get into houses through the doors and 

some exit through the eaves. In ceiling houses, they will not be able to exit through the eaves 

and would increase their activity in the centre or rest on ceilings which are their favourite 

resting places, increasing the likelihood of being caught by the suspended sticky traps. For 

the fully screened houses, the number of flies that get into the houses is limited because of the 

screened doors and closed eaves. The few flies that get in is  a result of people propping the 
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screened doors open during the day for quick access to the room and to prevent children 

damaging the screening material.  

My findings were not the same when flies were sampled using non-residual sprays. 

Houses with ceilings again had the highest number of flies caught compared to homes 

without ceilings. However, surprisingly, fully screened houses had more flies than the control 

houses. This could be that during the spraying process, most of the flies escaped through the 

eaves in control houses, whereas in the other two groups of houses, they are trapped inside 

the rooms when the doors were closed and had the greater chances of being exposed to a 

lethal dose of the  insecticide and knocked down. Thus spray catch collections are a biased 

method for collecting flies entering houses with different types of screening.  

Musca domestica were more common than M. sorbens on both sticky traps and in 

knock-down catches. One possible explanation for this finding is that breeding sites for M. 

domestica were more abundant than those for M. sorbens. Refuse and organic waste are 

poorly managed and this provides ideal breeding ground for M. domestica within close range 

which can disperse into houses as adults. Musca sorbens prefers to lay its eggs on human 

faeces, yet only if these are situated in the open (Emerson et al. 2001). In the study area many 

people have pit latrines close to their houses, limiting the breeding media available for 

oviposition.  

Spray catches were approximately twice as good at catching houseflies compared 

with sticky traps. More flies were recovered from houses with ceilings despite the likelihood 

that those in the roof space would have fallen on to the ceiling and not been collected. 

Spraying was tolerated because most people would like their houses to be sprayed. It 

provided a greater chance of all flies within the house being caught where as the sticky traps 

only caught flies that landed on them.  

 

4.6 Conclusion 

This study clearly demonstrates that the centre of houses provides the best position of sticky 

traps for sampling flies indoors and most flies are active between 12:00-15:00hrs. Ceilings 

are not effective in preventing houseflies into houses as they get in through the doors. Fully 

screened houses provide some prevention of housefly entry provided that the screened doors 

are not propped opened during periods of peak fly activity.  
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CHAPTER 5 

Conclusions 

 

5.1 General Conclusions 

This series of studies were designed to investigate the impact of house design on the entry 

and exit of disease vectors in The Gambia. This study supported a randomised control trial of 

screening homes to prevent malaria (STOPMAL) in The Gambia. STOPMAL is a three-arm 

trial measuring the efficacy of screened ceilings and fully screened houses against malaria 

transmission and morbidity. This trial was designed to investigate in a „real life‟ setting 

whether two different types of house-screening can halve the number of malaria mosquitoes 

entering houses. 

During the running of the STOPMAL trial three questions about house screening 

arose that needed to be addressed:  

 

1. Is it necessary to close eaves in houses with no other mosquito entry points? 

There is strong evidence that closing eaves reduces the number of anophelines entering 

houses (Lindsay and Snow 1988), but it was uncertain whether screening doors and windows 

would affect entry of mosquitoes through the eaves. This was important since in the 

STOPMAL trial, houses in one arm of the trial had their doors and windows screened and the 

eaves sealed with mud. I wanted to know whether closing the eaves was really necessary. A 

cross-over study was designed using 12 single-roomed houses with mud brick walls and a 

thatch roof where a single man slept, to determine the importance of eaves to mosquito entry 

into houses with no other entry points. All houses had their doors screened. Six houses had 

their eaves closed for four weeks, and then this treatment was crossed over, so that the houses 

with closed eaves were opened and those which were opened were closed for the second half 

of the trial.  When houses had their eaves closed there was a 65% reduction in An. gambiae 

s.l. caught indoors, but no significant reduction in total culicine numbers. This was because 

An. gambiae, the main malaria vector in Africa, is well adapted for entering houses through 

the eaves because it flies upwards when encountering a vertical surface (Snow 1987). 

Attracted to human odours pouring out of a house, many An. gambiae s.l. reach an 

outside wall and fly up, funneled indoors by the over-hanging roof, through the open eaves, 

whereas some culicines will fly sideways when they encounter a wall. The culicines were 

able to enter through the doors because people used to prop open their screened doors during 
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the day and close them between 19:00-20:00h (Kirby unpublished). This study demonstrated 

that anophelines enter houses through the open eaves, whilst culicines largely enter through 

the doors and windows. It also emphasised the importance of sealing the eave gap if house 

screening is adopted as a method of reducing malaria vector-human contact in homes in The 

Gambia. 

 

2. Are damaged ceilings protective? 

Netting ceilings have a limited life-span - they may wear out and get torn or holed, increasing 

accessibility for mosquitoes. This begs the question “do mosquitoes enter rooms in greater 

numbers when ceilings are torn? If so, could this be prevented by treating ceilings with 

insecticides as is the case with insecticide treated bed nets (Miller et al. 1991)? The field trial 

of insecticide-treated torn ceilings addressed this issue using six identical experimental huts 

in which five different ceilings were tested against a control with no ceiling. It was 

demonstrated that when torn, treating ceilings with insecticide does not prevent mosquito 

house entry when compared to untreated torn ceilings. However, one should be cautious since 

in the trial I do not know how much insecticide was on the netting.  

  

3. Does screening stop houseflies entering houses? 

As house screening has been shown to be effective at reducing house entry by mosquitoes 

(Emerson et al. 2004). During the rainy season in 2006 the STOPMAL project sampled flies 

entering houses using sticky traps suspended from ceilings and positioned at one of the 

internal corners of a house. This study detected 24% fewer house flies in fully screened 

homes but 440% more in those with screened ceilings compared to unscreened houses. Thus 

implying that, house flies largely enter homes through open doors and windows.  

There were also some uncertainties about fly sampling methods. We did not know 

whether the sticky traps were placed in the right position to maximise the number of flies 

caught. It was also unknown at what time of day to set up the catches in order to maximise 

the number of flies caught. Moreover there was concern that sticky traps in homes with 

ceilings were more efficient at catching flies than those in other homes. The hypothesis was 

that where there were ceilings flies had less room to move in and would contact the traps at a 

higher frequency than in other houses. I therefore carried out three separate studies to 

investigate these concerns:    

a) Determining the optimum position for sticky traps in a house to sample flies;  

b) Determining the daytime flight activity of flies in houses;  
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c) Estimating fly numbers indoors in 3 different types of houses (fully screened, 

screened ceiling, and control (no intervention) houses) using and comparing the efficacy of 

two techniques - sticky traps and knock down catches.  

The first experiment found that the centre of a house is the best position for hanging 

sticky traps to sample house flies since these collected 90% more flies than those positioned 

in the furthest corner from the door and 76% more from light/dark intersection areas. 

Secondly I discovered that most houseflies are active between 12:00-15:00hrs; 57.8% of flies 

were caught between these times. Thirdly I confirmed that ceilings are not effective in 

preventing houseflies getting into houses as they probably still get in through the doors but 

then fail to find their way out again. Houses with ceilings caught 440% and 61% more flies 

than the control using sticky traps and knockdown catches respectively. Fully screened 

houses provide effective prevention of housefly entry provided that the screened doors are 

not left propped opened. Fully screened houses caught 31% less flies than the control houses 

using sticky traps but, surprisingly, 28% more in the knockdown catches. This could be 

because during the spraying process most of the flies escaped through the eaves in control 

houses, whereas in the other two groups of houses, they were trapped inside the rooms when 

the doors were closed and had the greater chances of being exposed to a lethal dose of the  

insecticide and knocked down. In comparing the two methods, knockdown catches were 

shown to be 100% more effective at catching flies than sticky traps, mean numbers caught 

were 1.46 and 0.73 respectively. 

 

5.2 Further considerations 

House design has been proven to be effective against disease vectors and today it is almost 

forgotten and rarely used in malaria prevention programs. Studies in the early 1900s by 

prominent scientists like Angelo Celli and Patrick Manson and of present century scientists 

like Professor Steven W. Lindsay and others show compelling evidence that a structural 

adjustment when constructing a house in a rural area, where malaria is endemic, could have a 

significant impact on its prevention. Lots of programmes, partnerships and initiatives like the 

World Malaria Eradication Programme in the 1960s, the RBM Initiative in 1998 and recently 

the GFATM by the Gates Foundation have called for or are calling for malaria 

eradication/elimination or control and yet still a solution has not been achieved. I think the 

necessary tools exist, but people neglect them. Integrated vector management (IVM) which 

includes use of LLINs, source reduction, IRS together with the use of effective chemotherapy 

like artemisinin-based combination therapy (ACT), are important weapons that need to be 
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used. And where appropriate, coupled with a vigorous Information, Education and 

Communication (IEC) package based on achievements in malaria research and how they 

could be applied to the community for behavioural change and to have sound knowledge of 

mosquito behaviour and disease transmission. House screening could play an important role 

in this endeavour. 

Many tropical countries report that malaria is a major killer and all efforts are being 

made to fight this disease. It is important for governments of these countries to unite and give 

strong political, social and most important, financial commitments to this disease and initiate 

intra-continental programmes to fight the disease. These are long term goals that require 

proper planning and organisation and when properly implemented could give significant 

results. Maintaining such programmes to achieve all their objectives has been a problem, for 

instance the campaign for polio eradication has stalled in a few especially tough countries 

where refusals are high and accessibility difficult and raising funds to complete the job is 

proving difficult. Real commitment and exceptional leadership are required when such 

programmes are near to the end. 

 

5.3 Study Limitations  

Despite the proper design and implementation of the studies described in this thesis, there is 

always room for improvement, as lessons are learnt in any activity. Lessons learnt in the past 

do not only help to improve implementation but also help during the planning stages of 

subsequent programmes.  

The following are some observations made during the study and at least include some 

recommendations that I think could have helped in one way or other. The netting used in the 

field trial of insecticide-treated torn ceilings was PVC-coated fibreglass. The netting used for 

screening has excellent strength and flexibility, heat- and corrosion-resistance, but might 

have not been able to absorb the required concentration of the insecticides. A chemical 

bioassay from the treated nets would have helped to determine the amount of insecticide on 

the fibres. I would also recommend that in future, insecticides be incorporated into the fibres 

of the netting during the manufacturing process and then tested, as has been done with LLINs 

(Graham et al. 2005). If the required concentration of insecticides were absorbed by the 

netting to knock down or kill mosquitoes, I would have been tempted to spread a white sheet 

of cloth on the floor of the rooms and verandas to make sure that no dead mosquitoes were 

lost and also test the efficiency of the collectors by spraying rooms with a non-residual 

insecticide on the last day of the study after collection. 
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 The fly sampling study was conducted after the rains had stopped and the most 

frequent remark from people in the villages was that „more flies could have been trapped if it 

were in the rainy season‟. Unfortunately this was not possible as some of the houses were 

being used by the STOPMAL project and hanging a sticky trap or spraying an insecticide into 

these rooms could affect their study by catching mosquitoes in the sticky traps or deterring 

them by the insecticide sprayed. I would suggest that if one is to conduct a similar study it 

should be during the rainy season where fly populations are greatest and to use separate 

houses from any other study.  

 

5.4 Major Conclusions 

The findings of this thesis concur with those of several previous studies of house design. 

Namely; 

 Netting ceilings reduce mosquito house entry even if torn.  

 Closing eave gaps of fully screened houses reduces An. gambiae entry by 65% and 

thus the risk of being bitten by mosquitoes indoors. 

 Anopheline mosquitoes enter houses through the eaves, unlike most culicines which 

enter through the doors and windows 

 Ceilings are not effective in prevention of housefly entry as they pass through the 

doors.  

 Therefore, full screening of houses gives the advantage of both preventing mosquito 

and housefly entry provided that the screened doors are not propped opened during 

the day. 
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Appendix 

 

1.INFORMED CONSENT FORM FOR FIELD TRIAL OF INSECTICIDE-

TREATED SCREENED CEILINGS 

 

I, ……………………………………………………….(name) do hereby consent to 

participate in the research study entitled: Field trial of Insecticide-treated Screened 

Ceilings.  

This study is part of a larger research project entitled Screening Homes to Prevent Malaria 

(STOPMAL). 

 

I have been given the opportunity to ask questions concerning this project. Any such 

questions have been answered to my full satisfaction. Should any further questions arise 

concerning this study I may contact Mbye Njie/Dr Matthew Kirby, MRC Farafenni. 

 

I also understand that I may revoke this consent at any time without penalty or loss of 

benefits, if any. 

 

Signature/thumb print of study subject……………………………. 

 

Date…………………….. 

 

Sleeper No……………………… 

 

Address……………………………………………………………. 

 

Compound Head…………………………………………………… 

 

Investigator‟s name, signature and date……………………………………………………. 
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2.INFORMED CONSENT FORM FOR THE IMPORTANCE OF EAVES FOR 

HOUSE ENTRY BY MOSQUITOES  

 

 

I ………………………………………………………., (name) do hereby consent to 

participate in the research study entitled: 

 

The impact of house design on the entry and exit of insect vectors. This study is part of a 

larger research project entitled Screening Homes to Prevent Malaria (STOPMAL). 

 

I have been given the opportunity to ask questions concerning this project. Any such 

questions have been answered to my full satisfaction. Should any further questions arise 

concerning this study I may contact Mbye Njie/Dr Matthew Kirby, MRC Farafenni. 

 

I also understand that I may revoke this consent at any time without penalty or loss of 

benefits, if any. 

 

 

Signature/thumb print of study subject……………………………. 

 

Date…………………….. 

 

Address      |__|__|__|   |__|__|__|   |__|__| 

 

Compound Head…………………………………………………… 

 

Investigator‟s name, signature and date……………………………………………………. 
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        3.   SCREENING QUESTIONNAIRE (4) 

 

 

 

Before setting traps: 

 

HOUSE 

 

Q1. Date of Trapping               |__|__|  |__|__|  |_2_|_0_|_0_|_7_|        

 

Q2. Week No.                          |__|__| 

 

Q3. House Address                  |__|__|__|     |__|__|__|      |__|__|  

                                                       block            compound          house   

 

Q4. Compound Head …………………………………………………………… 

 

Q5. House Status Opened Eaves= 1,Closed Eaves = 2        

         
         
         
EQUIPMENT         

         

Q6. Data Logger Number (between 01-18, Not Used = 99)        

        Q7. Thermometer Number (between 40-60, Not Used = 99)        

        Q8. Light Trap Number (between 01-40)        

        Q9. Pot Number (between 01-42)        

        Q10. Battery Number (between 01-60)        

 

Q11.  Time light trap turned on (24h clock): ………..…….....….………....|__|__| : |__|__| 

 

Q12.  Time thermometer reset (24h clock, Not Used = 99:99): ...………....|__|__| : |__|__| 

 

SECTION 1 – TO BE COMPLETED IN THE FIELD BY MN 
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After turning off the trap the following morning: 

 

Q13. Time light trap turned off (24h clock):………………….………….........|__|__| : |__|__| 

 

Q14. Was light trap working before you turned it off?  (Yes = 1, No = 2)     

Q15. Was the light weak i.e had it deemed since trap turned on? (Yes = 1, No =2)     

     Q16. Light Trap Number (between 01-40)     

     Q17. Pot Number (between 01-42)     

     Q18. Battery Number (between 01-60)     

     Q19. Data Logger Number (between 01-18, Not Used = 99)     

     Q20. Thermometer Number (between 40-60, Not Used = 99)     

     

 

After removing trap  These questions relate specifically to the trapping night only: 

 

COMPOUND 

     

Q21. No. of horses in the compound between 19.00 and 07.00h      

      Q22. No. of cows in the compound between 19.00 and 07.00h      

      
 

TRAPPING ROOM 

     

 

 

   

 Q23. Number of children (6 months – 10 years old) that slept in the trapping room?   

          

Q24. Total no. of people that slept in the trapping room? 

 

   

          

Q25. Was Churai (local incense) burnt between 19.00 and 07.00h: (Yes = 1, No = 2)   

   i

)

 

i

n

 

t

h

e

 

t

r

a

       

Q26. Was a mosquito coil burnt between 19.00 and 07.00h: (Yes =1, No = 2)  

   i

)

 

i

n

 

t

h

e

 

t

     

Q27. Was insecticide spray used between 19.00 and 07.00h: (Yes = 1, No = 2)     

   i) in the 

trapping 

room? 

   

Q28. Were any insecticide-treated nets used between 19.00 and 07.00h: (Yes = 1, No = 2)     
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Initials & date………………………………………………………………….. 

 

 

 

 

 

 

 

SECTION 2 – TO BE COMPLETED IN THE FIELD BY MN 
 
      Q29. Maximum thermometer reading     

o
C 

      Q30. Minimum thermometer reading     
o
C 

            
Initials & date………………………………………………………………… 

      
SECTION 3 – TO BE COMPLETED IN THE OFFICE BY MN 

 

      Q31. Date of data logging       |__|__|  |__|__|  |_2_|_0_|_0_|_7_| 

     Q32. Data logger no.                

     .   Q33. Maximum room temperature             .  
o
C 

    
 

   Q34. Minimum room temperature              .  
o
C 

    
 

 .  Q35. Mean room temperature              .  
o
C 

    
 

   Q36. Maximum room relative humidity       %RH 

       Q37. Minimum room relative humidity       %RH 

       Q38. Mean room relative humidity       %RH 
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4.    LIGHT TRAPPING DATA ENTRY FORM    Form: LTEF2 

 

 Date Trap Collected:   |___|___|  |___|___|  |_2_|_0_|_0_|___|    Lab Worker Initials:|__|__|  
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