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Abstract 

Q u a n t u m F i e l d Theories wi th Fermions 

in the Schrodinger Representat ion 

David John Nolland 

This thesis is concerned wi th the Schrodinger representation of quantum field theory. 
We describe techniques for solving the Schrodinger equation which supplement the 
standard techniques of field theory. Our aim is to develop these to the point where 
they can readily be used to address problems of current interest. To this end, we 
study realistic models such as gauge theories coupled to dynamical fermions. For 
maximal generality we consider particles of all physical spins, in various dimensions, 
and eventually, curved spacetimes. 

We begin by considering Gaussian fields, and proceed to a detailed study of 
the Schwinger model, which is, amongst other things, a useful model for (3+1) 
dimensional gauge theory. 

One of the most important developments of recent years is a conjecture by Mal-
dacena which relates supergravity and string/M-theory on anti-de-Sitter spacetimes 
to conformal field theories on their boundaries. This correspondence has a natu­
ral interpretation in the Schrodinger representation, so we solve the Schrodinger 
equation for fields of arbitrary spin in anti-de-Sitter spacetimes, and use this to in­
vestigate the conjectured correspondence. Our main result is to calculate the Weyl 
anomalies arising f rom supergravity fields, which, summed over the supermultiplets 
of type I I B supergravity compactified on AdS^ x 5^ correctly matches the anomaly 
calculated in the conjecturally dual A/" = 4 SU(N) super-Yang-Mills theory. This is 
one of the few existing pieces of evidence for Maldacena's conjecture beyond leading 
order in A'̂ . 
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Chapter 1 

Introduction 

Since its inception, quantum theory has been fraught w i th difficulties of interpre­

tat ion. Unlike relativity, which is buil t up f rom fundamental physical concepts, 

quantum mechanics is diff icul t to motivate at a physical level except by reference to 

its phenomenal experimental success. 

In quantum field theory (QFT) the situation is aggravated by the technical de­

mands of the subject. In addition, perturbation theory, which underlies the standard 

approach to QFT, is unable to provide reliable information in the infra-red sector, 

which governs many important phenomena such as confinement and chiral symmetry 

breaking, as well as probably being crucial to the interpretation of realistic theories 

as the low-energy l im i t of some more complete theory such as string theory. Re­

cently, many techniques have been developed to probe non-perturbative behaviour, 

but the underlying physics is not always transparent. I t is all too easy to get lost in 

a conceptual maze. I t is important to retain as much conceptual unity as possible 

between diverse approaches. 

The Schrodinger representation (SR) is a familiar concept in quantum mechanics, 

where i t underlies many standard techniques, and forms the basis for our conceptual 

understanding of quantum physics. In this approach, physical states are thought 

of as wave-functions which satisfy the Schrodinger equation. These wave-functions 



are ordinary functions of space-time whose modulus squared gives the probability 

density of finding a particle at some space-time point. Their physical status is on 

a par w i th the classical particle concept, giving rise to the celebrated wave/particle 

duality. 

Quantum field theory generalizes quantum mechanics to an infinite number of 

degrees of freedom. Particles become fields, and these fields are similarly subject 

to a probability distribution. Hence physical states may be thought of as wave-

functionals, whose arguments are physical field configurations, and whose modulus 

squared gives the probability density of finding the fields in those configurations. By 

analogy wi th quantum mechanics, one might expect the wave-functionals, as physical 

concepts, to be of as much interest as the fields themselves. But this expectation is 

not supported by the historical development of field theory, where the existence of 

the Schrodinger equation was demonstrated less than 20 years ago by Symanzik [3]. 

The reasons for this relative lack of interest are not diflRcult to perceive. Sym­

metries such as Lorentz invariance were of paramount importance in the early days 

of Q F T , and i t is doubtful i f renormalization theory, for example, could have been 

developed without Lorentz invariance—which is not manifest in the Schrodinger 

representation—as a guide. Experiments also played a more significant leading role 

at that time, and thus the standard approach to Q F T was based on calculating 

cross-sections wi th in a perturbation expansion, a framework ideally suited to com­

parison wi th experiment. Finally, in the absence of a developed formalism for the 

Schrodinger representation in QFT, many of the standard techniques of quantum 

mechanics were no longer available, and new ones were invented. 

These factors no longer have the same relevance. Breaking the manifest symme­

tries of the theory is less of a disadvantage than i t at first appears. Symmetries such 

as Lorentz invariance and gauge invariance are encoded in the wave-functionals in a 

perfectly satisfactory way. For example, in what follows we wi l l invariably integrate 

out all gauge degrees of freedom, but gauge invariance wi l l remain an important 
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guide. Indeed, provided we identify suitable gauge invariant variables right from the 

start, thereafter everything is guaranteed to be gauge invariant. 

Many recent developments in Q F T have forsaken experiment completely for a 

more theoretical frame of reference. Whether one looks to theoretical or experi­

mental technology for paving the way to new experimental success, i t is clear that 

there is an enormous gap between theory and experiment. But the SR has some 

important advantages in this situation. 

Because its wave-functional solutions have a well-defined physical interpretation, 

the functional Schrodinger equation has long been known for generating some useful 

physical insights. But to perceive the extent of its ut i l i ty , one must appreciate the 

following: 

1. The standard techniques of quantum mechanics have analogues which 

provide a whole new set of calculational tools for QFT. 

2. Many existing results in Q F T can be derived in novel and extremely 

elegant ways in the SR. 

3. The formalism is flexible enough to describe both perturbative and 

non-perturbative results in the same framework, and crucially, allows 

both numerical and analytical tools to be implemented. 

For these reasons, we believe that the further development of the SR for QFT 

holds great promise of narrowing the gap between theory and experiment, and of 

furthering the cause of conceptual unity in physics. 

This thesis w i l l be an attempt to develop the SR to the point where i t can be 

used to address problems of particular current interest, such as testing the Maldacena 

conjecture. This w i l l involve incorporating various new ideas; fields of arbitrary spin, 

gauge symmetries, supersymmetry and curved spacetime. The claims made above 

w i l l be well-illustrated by our results; we wi l l describe new techniques for QFT which 
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solve problems which have proved intractable using conventional methods, we wi l l 

rederive some well-known results, and go on to indicate how our methods may be 

used to provide new information about QFT. 

To begin wi th , in Chapter 2 we set up the SR for fields of arbitrary spin. As 

w i l l eventually become clear, the representations of scalar and spin 1/2 fields form 

a basis for representing all others, even superfields. Thus the most crucial step is a 

better understanding of the representations of fermionic fields. 

In Chapter 3 we describe how perturbation theory and renormalization may be 

performed in the Schrodinger representation, and discuss a large-distance derivative 

expansion which provides a general non-perturbative approach to the solution of the 

Schrodinger equation. Here is a brief description of this expansion: 

In quantum mechanics wavefunctions are often studied by expanding them in 

a basis of functions. A similar expansion exists for QFT. Consider the vacuum 

functional. Provided the masses of all particles are bounded away from zero, and 

we restrict our attention to the infra-red, its logarithm has an expansion in local 

derivatives. By this we mean that i t may be expressed as an integral over an 

infini te sum of terms, each of which is a finite product of fields and their derivatives, 

evaluated at the same space-time point. 

I f the spectrum includes massless particles, we can re-express the vacuum as the 

large time l im i t of the Schrodinger functional, which describes the propagation of 

fields over a finite t ime interval. This interval acts as a natural infra-red regulator, 

and at distances which are large on this scale, the Schrodinger functional again 

admits a derivative expansion. Since excited states can be constructed either by 

applying creation operators to the vacuum wave-functional, or by studying the large 

time asymptotics of the Schrodinger functional, these two wave-functionals are the 

central objects of study in a Schrodinger representation approach to QFT. 

This approach has been shown to be useful in studying the analytical properties 

of Q F T at large distances; for example in [4] i t was shown that the leading order 
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term in a strong coupling expansion of the Yang-Mills vacuum functional leads to 

confinement, via a kind of dimensional reduction. This has been generalized to the 

study of the Wheeler-de-Witt equation in quantum gravity [15 . 

But the use of the local expansion as an analytical tool is not l imited to the study 

of large distance phenomena. By exploiting analyticity in a complex scale parameter 

5], small distance behaviour can be reconstructed f rom the large distance expansion. 

Thus a knowledge of this expansion is sufficient to understand physics at all scales. 

From the point of view of the Schrodinger equation, obtaining wave functionals 

in the form of a local expansion is equivalent to solving an infinite set of coupled 

algebraic equations. I f we truncate the local expansion at some large but finite 

order, the resulting equations are well-suited to numerical treatment. Thus this 

approach provides a useful source of numerical information, even when exact results 

are unavailable [5, 6, 7]. Most of this thesis is concerned wi th analytical results, but 

we w i l l indicate along the way how numerical techniques can be used to solve more 

general problems. 

Chapter 4 is a detailed study of the Schwinger model, which is the simplest exam­

ple of a theory involving fermions coupled to gauge fields. This model can be solved 

exactly, but i t illustrates many issues which are relevant to the study of more compli­

cated gauge theories. In particular, although the physical spectrum exhibits a (dy­

namically generated) mass gap, the local expansion property of the wave-functionals 

breaks down as a result of gauge invariance. However, i t is st i l l possible to recon­

struct the wave-functionals f rom a local expansion of the Schrodinger functional, 

which we obtain explicitly. This illustrates a technique which may be applied in a 

similar fashion to QCD in (3-1-1) dimensions. Also, the Schrodinger functional may 

be interpreted as the density matr ix of the finite temperature model. 

Many well-known features of the Schwinger model (vacuum angle, bosonization, 

confinement, etc.) are exhibited by the wave-functional solutions. Most of this 

applies to other (1+1) dimensional gauge theories as well. We discuss a straight-
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forward method for extracting VEV's . Using similar methods, we show how the 

massive Schwinger model can be solved up to n-point interactions by expanding the 

kernels of the wave-functional in a suitable basis of functions. 

One of the most important recent developments in theoretical high energy physics 

is a conjecture by Maldacena that string theory propagating in an anti-de-Sitter 

spacetime (AdS) is equivalent to supersymmetric Yang-Mills propagating in the 

Minkowski spacetime at the anti-de-Sitter boundary. This conjecture is extremely 

useful since i t allows the strong coupling behaviour of either theory to be calculated 

f rom the weak coupling l im i t of the other. But i t is extremely difficult to test, espe­

cially beyond tree level in AdS—indeed there are vir tual ly no existing calculations 

of quantum corrections in this context. Yet testing the conjecture at this level is 

essential to its application to the real world. 

In Chapters 5 and 6 we develop the technology for understanding quantum fields 

in AdS. The boundary par t i t ion functions which are the main objects of study in 

the A d S / C F T correspondence have a natural interpretation in terms of the wave-

functionals of the AdS theory. We show how these wave-functionals may be obtained 

f rom the Schrodinger equation, and use them to calculate the two-point functions 

and scaling dimensions of the corresponding boundary fields. We also discuss the 

numerical evaluation of higher n-point functions in this formalism. 

Now because the conjectured correpondence relates strong and weak coupling, 

the perturbation expansions in the two theories are valid in different domains. So in 

order to test the conjecture we must find quantities whose exact coupling constant 

dependence can be calculated. In practise this restricts us to quantities such as 

global anomalies. We w i l l consider the Weyl anomaly, which measures the eflFect of 

a rescaling of the boundary metric. This involves generalizing the correpondence to 

incorporate a curved boundary. 

We calculate the Weyl anomalies arising f rom particles of arbitrary spin in AdS 

space-time, finding that the result is discontinuous in the particle mass, and non-
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zero for precisely the mass values appearing in the Kaluza-Klein compactifications 

of supergravity. 

Maldacena's conjecture relates type I I B string theory compactified on 5^ to 

A/" = 4 SU{N) super-Yang-Mills theory. From the point of view of the string 

theory, the Weyl anomaly should arise f rom the sum of the contributions from the 

supergravity fields. On the other hand, the anomaly can be calculated for free 

fields in super-Yang-Mills, and the result is protected by supersymmetry f rom loop 

corrections. We find that the contribution to the anomaly f rom tree level gravity 

coincides w i t h the S Y M result for large A'̂ , whereas (for a Ricci-flat boundary metric) 

the one-loop anomalies cancel in each supergravity multiplet to give a vanishing 

result. This is also in accordance wi th the result obtained f rom SYM. In the same 

way, the contributions to the renormalization of the cosmological and Newton's 

constants cancel wi th in multiplets, as is required for the finiteness of the boundary 

theory. We outline how these results can be extended to a general Einstein metric 

on the boundary. 

In conclusion, our results provide substantial new evidence for Maldacena's con­

jecture at finite A''. I n the future we hope to apply our methods to other instances 

of the A d S / C F T correspondence, for instance M-theory on AdSr x 5^ and the many 

compactifications of string theory on AdSz-
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Chapter 2 

The Schrodinger representation 

for fields of arbitrary spin 

2.1 Scalar fields 

For scalar fields, the Lagrangian density is 

C='^{d,cpd,(t>-m^'-V {(!>)). (2.1) 

In the usual way, we define a field canonically conjugate to (j) 

dcf) 

and impose equal-time commutation relations 

^{x,t),Tr{x',t)] = zM'^(x-x ' ) 

[4>{x,t),7r{x',t)] = [4>{x,t),Tr{x',t)] = 0. 

Now in analogy w i t h quantum mechanics, we define a Hilbert space on which the 

operators (/>(x, t) and 7r(x, t) act. In order to satisfy the commutation relations, we 
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choose to diagonalize (f) 

{ip\^{^,t) = ipix){<p\, (2.3) 

and TT is represented by functional differentiation 

{ipmx,t) = - i h j ^ i i f l (2.4) 

The eigenstates {(p\ fo rm a complete orthonormal set: 

{(p\(p) = 5[(p-0 

jv^\^){^\ = 1, 

and by virtue of the commutation relations we can extract their explicit if depen­

dence 

{(p\ = {D\exp{i J dxfcip), (2.5) 

where {D\ is annihilated by (j). 

Wave-functionals (WF's) are inner-products of these states wi th the physical 

states of the theory 

*[¥'] = {^\^), (2.6) 

and themselves have an inner-product defined by 

(^r^|^2) = J r>(^^tM*2[^]- (2.7) 

They satisfy the Schrodinger equation 

H-^i^] = i h - ^ ^ l (2.8) 
ot 

15 



where the Hamiltonian is given by 

H = I d^xi-n^ - C ) = \ ! d'^xi-ir^ + (V0)2 + m V ' + V{<j>)). (2.9) 

WF's also have a path-integral representation. For example, according to the 

standard correspondence between expectation values and path-integrals, the Schro-

dinger functional ((^|e~^*|(^) may be wri t ten as 

{<f\e-"'\>f) = I V(j>e-'''^1'\ (2.10) 

where SE is the Euclidean action on a space-time volume bounded by surfaces 

t ime t apart, and the functional integration is subject to the boundary conditions 

,^(x, 0) = <^(x), <?i(x,t) = ^ ( x ) . 

We can enforce the boundary conditions by adding boundary terms to SE in 

(2.10). On a space-time wi th boundaries, i t is necessary to choose a definite direc­

t ion of propagation for all physical fields. Changing this direction is equivalent to 

performing an integration by parts in the bulk action and leads to boundary terms. 

Appropriate boundary conditions are ones which do not allow currents to leak across 

the boundary. To begin wi th we wi l l propagate everything forward in time, which 

correponds to selecting the advanced Green's function for the propagator. Then we 

can express SE as 

SE = i j d'^+^x{{\T-4){d^ + m?)(t)} , (2.11) 

where Tie implements a small negative time shift. We can get back to the form (2.1) 

which is appropriate for passing to the Hamiltonian formulation by integrating by 

parts: 

SE = ijd''+'x{{\T-Md^ + m^)<i> - iH^o - t ) - S{xo)) (r_e</')0} . (2.12) 
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Now on the in i t ia l boundary there is nowhere for fluctuations to propagate from, 

so we have a Neumann boundary condition ^|xo=o — 0. On the final boundary 

fluctuations can propagate f rom the bulk, but they cannot cross the boundary, so 

we have a Dirichlet boundary condition (i)\xo=t = 0. Of course there is nothing to stop 

us f rom making other choices of boundary condition. From a physical point of view 

we might like to take a Feynman prescription for the propagator, so that negative 

energy states are propagated backwards in time in accordance wi th our usual notions 

of causality. This complicates the quantization procedure considerably when things 

like gauge invariance are taken into account. But i t doesn't really matter what 

choice we make, because we can always change i t later by integrating over the 

boundary values of the fields (which is analogous to changing f rom the position 

to the momentum representation in quantum mechanics). So we wi l l do whatever 

seems simplest. In (2.10) we chose Dirichlet conditions on both boundaries, which 

is perfectly consistent. 

So introducing the source terms arising f rom (2.5) and suppressing the e depen­

dence, we have 

SE = ijd''+'x{\(l>{d'' + m^)^ - 5{x, ~t){4>- ^)4> + 5{xo){^ - <p)<i>} , (2.13) 

and the boundary conditions in (2.10) are now automatically satisfied. 

From the Schrodinger functional we can construct eigenstates of the Hamiltonian. 

Inserting a complete set of such eigenstates we find 

(<^|e-^^|^) = Y:{^\E^)e-'''-{Enm- (2.14) 
n 

Normalizing the vacuum energy to zero, we have, as t -> oo 

{v\e-"'\<p) ~ ^o[<f]%[<f], (2.15) 

17 



where is the vacuum W F . Excited states can be extracted in a similar way. 

To illustrate the solution of the Schrodinger equation consider free scalar fields, 

ie. V{(f)) = 0 in 2.1. The Schrodinger functional satisfies 

I f 6^ \ 
^b>^] = o + ^V,'p]> (2.16) 

w i t h the in i t i a l condition ^[<^, 0\\t=o = 6[(p-<f], and cj^ = - V ^ + m ^ . I t also satisfies 

a similar equation w i t h (p and (p interchanged. On general grounds we expect ^' to 

be Gaussian, so we make the ansatz 

<f] = f { t ) exp J d^x [ipV^p + ipEi^ + ipTip), (2.17) 

which leads to the following differential equations 

2/ = - t r r / = - t r T / 

2r = u^-r^ = -E' 

2E = - r S = - T E 

2 t = -E^ = tu^-r\ (2.18) 

These have the unique solution (wi th the overall sign chosen so that the W F is 

normalizable) 

/ = | t rwcosech( |wi) 

r = -Lucothilcut) 

E = —ucosech{^ujt) 

T = -tocothiltot). (2.19) 

As i -> 0, ig-/d'^x(vp-<^)V2i _^ _ gQ {̂̂ g j j j j^ j j^ l condition is satisfied. As 
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^ ^ oo we have 

^ ^ e - 2 / ^ ' ' ^ ( ^ ^ ' ^ + < '̂̂ <^), (2.20) 

f rom which we identify the vacuum functional as = e~^''''^^2^^^. 

We can construct excited states by the action of creation operators on the vacuum 

W F ; for free fields the annihilation and creation operators are respectively (^6(p) is 

the Fourier transform of (/>(x), etc.) 

a(p) = -^(a; i /^(p)^(p )-fza;-V2(p)^(p)) 

at(p) = -^(a;l/2(p)<^(p)-^a;-V2(p)^(p)). (2.21) 

Using (2.3) and (2.4) we can easily verify that a(p)^'o = 0, while an n-particle 

excited state is given (up to normalization) by ( p ( p i ) . . . (^(p„)^'o[v'], and has energy 

For interacting fields, i t is sometimes easier to construct the n-particle states by 

solving the time-independent Schrodinger equation H'^n = -E'n^n using the ansatz 

^n['A = ' ^ ' M ^ o M , (2.22) 

and taking $[99] to be of order n in ip. 

Now for fields which vary slowly on the scale of the mass m, we can expand u) as 

CO = V - V 2 + m2 =m- —-—- + ••• (2.23) 

This allows us to express the logarithm of a physical W F as an integral over a 

sum of local terms, each involving cp and its derivatives evaluated at a single point. 

Similarly, for small t, we can expand (2.19) in powers of t, which leads to a local 

expansion for the logarithm of the Schrodinger functional, even when m = 0. The 

terms of this expansion can be obtained f rom the Schrodinger equation. 
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I n later chapters we w i l l see that similar expansions exist for all theories, includ­

ing interacting ones. 

2.2 Yang-Mills fields 

The Lagrangian density for SU{N) Yang-Mills theory is 

C = ^trF'^'F,,, (2.24) 

where F^^ = df,A^-duAf,+[Af„ A^] and = QA'^TA, w i th TA the iV^ - 1 generators 

of SU{N). In the Weyl gauge AQ = 0 we can write 

H = - ^ fd'xtriE' + B''), (2.25) 

E = - A , B = V A A - f A A A . (2.26) 

The fields conjugate to A are - ^ ^ E , and are represented as 

E = (2.27) 

The Euler-Lagrange equations of motion are obtained by varying A^ in (2.24) 

a^F'^'^ + [ / l ^ , F n = 0, (2.28) 

and the u = Q component of this equation is a constraint (Gauss' law). Substituting 

(2.27) into i t gives an operator which annihilates physical WF's 

G * [ A ] = 0, G = ( 5 ^ ^ a « + / ^ ^ ^ / l f ) ^ . (2.29) 
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This is simply the statement that WF's are invariant under the time-independent 

gauge transformations generated by G. 

On the other hand, gauge transformations in other homotopy classes do not leave 

WF's invariant in general, but produce a phase; for a transformation Qn in the n th 

homotopy class 

Qn^A] = e - ^ "^^ [A] . (2.30) 

This is the origin of the so-called ^-angle. We can implement this property by writ ing 

^ [ A ] = e-^^"'[^]$[A], (2.31) 

where $ is invariant under all gauge transformations and in four dimensions^ ti; is a 

Chern-Simons term 

w [A] = I d'xe'^hi{F,,Ak - ^AAjAk), (2.32) 

which takes integer values for monopole-like configurations of the fields. So "instan-

ton number" can effectively be interpreted as monopole number in this context. The 

Chern-Simons term may be cancelled by adding a total derivative to the Lagrangian 

C^C + e ^ , (2.33) 

and i t is easily verified that 

dw 1 
r t r*F^"F^, , *F^'' = ie^'^'^^F^p. (2.34) 

dt WTT^ 

For the Abelian theory we can easily solve the Schrodinger equation for the vac-

^the corresponding expression in two dimensions is given in Chapter 4. 
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uum functional. I t takes the following form 

Since the Hamiltonian is quadratic, we expect a Gaussian ground state, so we write 

^ o [ A ] = e - ^ [ ^ ] , W = \ l dVyA^{x)r,,{x,y)A^{y). (2.36) 

Substituting into the Schrodinger equation (2.35) we find 

I c i V r , , ( x , y ) r , f c ( y , z ) = {-W'5,k + didk)5'{x - z), (2.37) 

which in momentum space has the solution 

rij = -\p\6,j+p,pj/\p\. (2.38) 

Transforming back to position space, we have 

* o [ A ] = exp ( / d'xd'y^^^^^^^^^^] . (2.39) 

For non-Abelian fields, which are self-interacting, the Schrodinger equation is 

of course much harder to solve. Nevertheless, Feynman conjectured [39] that the 

vacuum W F in (2+1) dimensions has the following form 

* o [ A ] = exp | - / ? t r J F , , ( x ) 5 ( x , y ) F , , ( x ) 5 ( y , x ) / ( x , y ) d x d y } , (2.40) 

5 ( x , y ) = P e x p | z ^ ' ' A ( x ' ) - d x ' l (2.41) 

and this has been conjectured to hold in (3+1) dimensions as well [40, 60]. I t is 

diff icul t to verify this directly because of the intractability of calculations involving 
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functional derivatives of the Wilson line S'(x,y). Nevertheless, at short distances 

(2.40) reduces to (2.39) in accordance wi th asymptotic freedom. 

A t large distances one might hope to expand the bilocal integrand in (2.40) about 

a single point 

^ o [ A ] = exp (^-Ao J dxtr{F^jf - j dx(Ai^ij)^ + . . . ) . (2.42) 

The leading order term in this expansion dominates in the large distance l imi t , 

as suggested by Greensite [41], and leads to confinement via a kind of dimensional 

reduction [4]. However, Schrodinger representation calculations [42] in (2-1-1) dimen­

sional Yang-Mills suggest that (2.42) is not quite right; there are non-local terms 

arising f rom the non-local nature of the weight function /(x, y). This is very simi­

lar to the situation in (1+1) dimensional QED, which we wi l l study in detail later. 

There the non-local terms are associated wi th the existence of massless non-physical 

modes which are necessary to preserve gauge-invariance. Thus in spite of the exis­

tence of a dynamically generated mass gap, the anticipated existence of a derivative 

expansion of the WF's fails to materialize. This appears to be a general feature of 

gauge theories. 

I t is s t i l l possible to obtain the vacuum functional in an expansion of the form 

(2.42) by expressing i t as a large-time l imi t of the Schrodinger functional, as we did 

for scalar fields. Alternatively, the form of the non-local terms may be investigated 

in more detail to generalize the large-distance expansion (2.42) in an appropriate 

way. In either case, using the techniques described in Chapter 3 the small distance 

behaviour of (2.40) can be reconstructed f rom the large-distance expansion, whose 

coefficients may be determined f rom the Schrodinger equation. 
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2.3 Fermions 

The functional representation of fermions is complicated by the self-conjugate nature 

of fermion fields; for a free Majorana fermion wi th Lagrangian density 

C = \ii>^ • dip, (2.43) 

we can reproduce the canonical anti-commutation relation 

{ M ^ ) , M ^ ' ) } = ^abSHx - x') (2.44) 

by using the Floreanini-Jackiw representation [15 

The diflBculty is that (2.45) is reducible. But this reducibility may be removed by 

interpreting the representation in a different way. Consider the arbitrary projection 

operators Q± = ^{1 ± Q). Suppose we diagonahze Q+ip and represent Q^ip by 

functional differentiation: 

(«1Q+V'(x) = -^QM^)H {u\Qj{x) = i = Q _ ^ ( n | . (2.46) 

As before, we can solve for the •u-dependence explicitly^ 

{u\ = {Q\ exp{V2uQ^i>), (2.47) 

where {Q\ is defined by the property {Q\Q^i) = 0. This shows that WF's depend 

only on Q^u and we can take Q+u = 0. The expression corresponding to (2.47) for 

•̂ We adopt the convention that when bilinears such as uQu or ui^ are written down 
without arguments, the spatial argument is integrated over: uQu = / dxUa(x)(5a6U6(x), 
etc. 
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the representation (2.45) is 

{u\ = (any| exp{V2ui}), (2.48) 

and i f we choose (any| = {Q\ then this coincides wi th (2.47) up to a t r ivial factor 

gwQu -^yj^ich vanishes when the constraint Q^u = 0 is imposed. 

As pointed out in [15], the choice of Q is a choice of Dirac sea. But as in the 

bosonic case, i t is neither necessary nor desirable to make i t a physical Dirac sea, 

which would make the reference state {u\ an excitation of the physical vacuum. 

We wish to make a choice which is independent of the dynamics or the specific 

theory under consideration. I t is convenient to take Q to he a local operator. One 

particularly useful choice is Q = 7o, which is the unique choice preserving gauge 

invariance in odd dimensional spacetimes, and corresponds to a vanishing vacuum 

angle in even dimensional ones. 

To define an inner-product we construct dual states \v) defined by 

or equivalently 

Q^i>\v) = -^Q+v\v), QJ\V) = -^Q^j^lv), (2.50) 

w i t h (2.47) becoming 

\v) = exp{V2vQ+^)\Q), (2.51) 

where Q-iplQ) = 0. We have {u\v) = {Q\Q) = 1 and the completeness relation is 

1 = j DuDv\v){u\. (2.52) 
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As before, WF's are overlaps ^[w] = {u\'^) and have the inner-product 

(^^1^2) = j DuDv^l[v]^2[u]. (2.53) 

I t is easy to see that w i t h repect to this inner-product the Hermitian conjugate of 

u is ^ , so that ip is Hermitian, as i t should be. 

Now charged fermions can be represented in a similar way^ 

((u,ut|V't ^ - L ( u t + A)((zx,nt|. (2.54) 

The notation of (2.54) indicates that u and are treated as unconstrained 

fields, eg. for the purpose of taking functional derivatives. However, as before, the 

reducibility of (2.54) may be removed by imposing the constraints Q_u = u^Q+ - 0. 

In the presence of these constraints (2.54) corresponds to diagonalizing Q+ip and 

{u,u^\Q-i-ip = \/2Q+u{u,u^ 

{u,u^xP^Q- = V2u^Q-{u,u^, (2.55) 

and representing the other projections by functional differentiation 

{u,u^\Q^ip = -^Q^-^{u,u^ 

(n,ut|^tQ^ = _ L i _ Q ^ ( „ ^ ^ t | . (2.56) 

^The notation is a little misleading, since ^ (and not u^) is the Hermitian conjugate 
of u. 
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Again, physical WF's w i l l always depend only on the constrained fields. The 

two representations are exactly equivalent, but {{u, and {u, differ by a relative 

factor of e~"^'5w^ which guarantees that the functional derivatives acting in ( 2 . 5 4 ) 

do not take the state out of the subspace defined by Q. 

The explicit dependence on u, is given by 

{u,u^\ = {Q\exp[V2{u'^'4) - ip^u) 

= (Q|exp[\ /2(nt(5_Vi-V'^Q+u)], ( 2 . 5 7 ) 

where {Q\ satisfies 

{Q\Q+i^ = {Qli^^Q- = 0. ( 2 . 5 8 ) 

Similarly, defining \u,u t) = e x p [ v ^ ( u t ^ - i;^u)]\Q) w i th Q-i^\Q) = i^^Q+\Q) = 

0, we have 

i>\u,u^) = -^{u- -^)\u,u^) 

i>^u,u^) = -^{u^ - -^)\u,u^). ( 2 . 5 9 ) 
V 2 ou 

The inner-product is a l i t t le more difficult to define in this case. The above 

definitions give rise to the following equations: 

0 = - V2u^)Q+{{u,u^\v,v^)) 

= Q+{iP + V2v){{u,u^v,v^)) 

= ii;^ + V2v'<)Q_{{u,u^v,v^)) 

,u^\v,v^)}, ( 2 . 6 0 ) 

where we have used the canonical commutation relations. The field operators in 

( 2 . 6 0 ) may be represented by either pair of fields, and the equations solved to give 

2 7 



{{u, u^v, v^)) = exp(w^(5u - uhQ^v + v^2Q+u + v^Qv). (2.61) 

Hence 

{u, u^\v, v^) = exp{2v^u - 2u^v), (2.62) 

which diflPers slightly f rom the version given by other authors [37]. 

To calculate inner-products of WF's we use the part i t ion of unity 

1 = J DuDu^DvDv^e^^''^''-^''^''^\v,v^){u,u^. (2.63) 

2.4 Fermions coupled to gauge fields 

We can combine the representations described in the previous two sections to give 

a representation of QED or QCD. We start wi th the Lagrangian 

JC = | # ( 7 • D - m)V' + ^trFf^'F^,, (2.64) 

w i t h D the covariant derivative — 5^ — e^l^. This is invariant under the gauge 

transformations 

iP^g-'iP, A^^ g-'A^g + g-'d^g. (2.65) 

For many purposes i t is convenient to require physical WF's to be gauge invariant 

also. We wish to choose Q so that this is possible. In general, we could consider Q 

to have some gauge field dependence. However, any field dependence or non-locality 

of Q w i l l cause the representation to transform non-trivially under (2.65) (this can 

be seen f rom (2.57) and (2.58)). The only gauge invariant representations are when 

we take Q to be a local, field independent operator. In particular, i f we take Q± 

to be the (non-local) projections P± onto +ve/-ve energy eigenstates, the resulting 

WF's are invariant under time-independent gauge transformations of the fields, but 
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in general they do not satisfy Gauss' law [15, 16]. However, provided we take Q to 

satisfy the conditions above. Gauss' law is automatically satisfied, and the W F is a 

genuinely gauge invariant object. 

Since \u,u\A) is not a physical state we need to check that its overlap with 

physical states is well-defined and non-vanishing . Consider the vacuum of the 

theory defined by (2.64). W i t h P± defined as above, i t satisfies 

V-^P+IO) = P_^|0) = 0. (2.66) 

The conditions (2.58) and (2.66) and the representation (2.54) lead to the following 

equations: 

p_(u+~){{u,u\A\{i) = 0 

( u t - i - | - ) p + ( ( « , u t , ^ | 0 ) = 0 

Q^{u-~){{u,u\A\Q) = Q 

( ^ ^ ^ - ^ ) Q - ( ( u , ^ ^ ^ y l | 0 ) = 0. (2.67) 

These have the solution 

{{u,u\A\G) = ( ( ^ | P e " ' ^ " e x p ( ^ ^ • ^ ) | 0 ) , (2.68) 

where M = A'^C = C'^A, and we define A = {P_,Q+}, C = [P-,Q+]. The 

constant of integration B corresponds to the determinant of the Dirac operator, and 

solving (2.67) is equivalent to performing the fermion integration, since (2.68) no 

longer involves fermion field operators. For the moment we assume that A~^ exists; 

the non-invertibility of A would signal the presence of zero modes of the Dirac 

operator, which would have to be treated separately. But we can always choose Q± 

so that A is invertible. 
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We can reproduce the result in a path integral representation. The vacuum is 

represented as limt_^oo where S is any physical state not orthogonal to the 

vacuum. This leads, via the usual correspondence of matrix elements wi th path 

integrals, to the expression 

^'[m, U*, 

+ [V2{u^Q_iP - iP^Q+u) + u^Qu + iA-A]\. (2.69) 

Here SB and SF are the bosonic and fermionic parts of the Euclidean action, and 

the integral is evaluated wi th the following boundary conditions implied by (2.58): 

Ai\t=o = Q+^\t=o = i^^Q-\t=o = 0. (2.70) 

These boundary conditions may be implemented by boundary terms as before. 

For fermions we choose ip^Q+ and Q-ip to be propagated forward in time, and ip^Q-, 

Q+ip backwards; this is effected by adding the boundary term 

{ZiP^)Q+i; (2.71) 

to the action, while the gauge field boundary condition is implemented by the bound­

ary term 

i{TeA) • A. (2.72) 

The fermion integration is now easily done by standard methods; we obtain the 

path integral version of (2.68) 

^u,u\A] = J DAidetD expi^-Se+ TT:[U^A-^CU + I{A-A) • (2.73) 

D is the Dirac operator. Similarly, the vacuum functional for free fermions or 
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fermions in a classical background field is given by 

*['fx,ut] = e x p T r L U - ^ C w l . (2.74) 

Now consider the possible choices of Q. The solution we found above depended 

on the existence of the operator A'^C, which is equivalent to the invertibility of 

Q + P for all momenta. Q satisfying this condition are given in Appendix E of [15]; 

in even spacetime dimensions they take the form 

Q = a7° + i67%^ + C7^ (2.75) 

where -t- 6̂  - f = 1, w i th the additional conditions 

{l-c^)-\-a±ibc) ^[l,oo), (2.76) 

for m > 0, and 7̂  1 for m = 0. In odd spacetime dimensions 7̂  =7", so the only 

possibility is Q = 70. 

So what happens i f we choose a Q which does not satisfy these conditions? The 

invert ibi l i ty o{Q + P implies the absence of zero modes of the Dirac operator. This 

completely pins down the topological properties of the wave-functional, which wi l l 

be useful when we consider subtleties like the vacuum angle. But other choices lead 

to equally well-defined wave-functionals provided we take account of zero modes. 

And i t is always possible to alter Q by means of a functional Fourier transform. 

So assume for the moment that we impose (2.75), which we can rewrite as 

Q+ = (07° + ^fe7%')^(l + + ib'l'l'), (2.77) 

Q_ = \{l - a'j° - ?6'7°7^)(a7° + ^67^'), (2.78) 

where a' = and h' = f rom (2.55) and (2.56) we see that this is equivalent 
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to choosing Q± = | ( 1 ± a '7° ± ih'^^'y^). Since a'̂  + b''^ = 1, this means that we can 

set c = 0 in (2.75) without loss of generality. Thus the possible choices for Q are 

parametrized by the single, arbitrary complex number z = a — ib (which could in 

principle be taken to have local variations in space). 

Since the Dirac operator has no zero modes when these boundary conditions are 

imposed, what happens to topological objects like instantons? 

We w i l l see that the phase of z corresponds to the vacuum angle. In two dimen­

sions our choice of boundary conditions mean the instanton number is not quantized, 

but corresponds to the non-integrable phase. In four dimensions we observed a sim­

ilar phenomenon, and argued that the corresponding phase was related to monopole 

number. Our representation seems to furnish a useful new perspective on these 

non-perturbative structures. 

2.5 Superfields 

In order to work wi th supersymmetric theories i t is useful to set up the Schrodinger rep­

resentation in the superfield formalism. The representation we give here extends to 

all superfields. I t would be extremely interesting to study Super-Yang-Mills in this 

way, both because issues of regularization are much easier to deal wi th than in 

ordinary QCD, and because, as we saw in the last section non-perturbative and 

topological properties have very nice interpretations in the Schrodinger formalism. 

In particular, z must parametrize the 51/(2, Z) duality of A/" = 4 SYM. 

Just to illustrate the use of the superfield formalism in the Schrodinger represen­

tation, we w i l l describe the vacuum solution of the Wess-Zumino model. The action 

is wri t ten in terms of anti-commuting coordinates 9 as 

5 = 1 d^x(f9(fe l^{x, 9,9)(i){x, 9,9), (2.79) 
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where ^ ( x , 6, 6) and ^(a;, 9, 9) are chiral superfields 

^{x,9re) = e-^'^'ip{x,9) 

Hx,9,9) = e'^>(p(x,^). (2.80) 

We can expand (p{x, 9) and <^(x, 9) in powers of ^ 

ip{x,9) = A + 29ip-9^F 

<fix,9) = B + 29i>-9^G (2.81) 

and choosing projection operators Q± as in the fermionic case, we can take as a 

complete set of conjugate variables (p{x,Q+9), (p{x,Q_9), and their conjugates 

7r (x ,Q+^)= . = \!<P9i99e'^''^'^{x,Q-9) 

5S 
^M-0) = J^~QY^ = \!(P9i99e-^^'^\{x,Q^9). (2.82) 

Defining (j)^ = e-'~^f\{x,Q^9), ^ = e'^'^^(f{x,Qj), and similarly for TT̂ , TT̂ , we 

find that the Hamiltonian is given by 

H = I d^x(f9n<fi + I d?xd^9TT(p - C 

= I d^xd'^9 (ITTCTTC + ^^c(l>c) • (2.83) 

As before we represent TT and n by functional differentiation: 

7r{x, Q+e) = - I . . 7f(x, QJ) = -% ^ - (2.84) 

and the Schrodinger equation H'i — E^'^ is easily solved for the vacuum W F : 

^^[^PM = exp d^xd^9(p9Q_^^Q^9\^ . (2.85) 
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Note that the vacuum energy vanishes 

Eo = t r ^ j d'9e'^'^' eQ.^Q^9 = 0, (2.86) 

and therefore H is a regular operator, unlike previous cases where the divergent 

vacuum energy had to be subtracted. 

2.6 Gravity 

Quantum gravity is of course non-renormalizable, but i t can be studied in the semi-

classical expansion using Schrodinger representation methods. The Lagrangian is 

j d?x^{R{g) + K), (2.87) 

where A is the cosmological constant. 

I t is useful to expand the metric about a classical solution of the Einstein equa­

tions 

^Classical ^ ( 2 . 8 8 ) 

To quadratic order in the perturbation hij, the Lagrangian becomes 

C = \ {-h,,,xh^^'' + h):''hl, - 2hl,h>;;: + 2 / i v , . / i i r ) . (2.89) 

The theory is invariant under the gauge transformations / i ^ ^ /^^j^+ + and 

a convenient choice of gauge is given by 

hij,j = Q, hii = 0, V = 0, (2.90) 
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so that (2.89) reduces to 

1 r 

C = -jd^x (/i,,,o/i^,,o - K^kK^k) • (2.91) 

The conjugate momenta are 
5C 

= 7 7 — = lh^,,o, (2.92) 

and the Hamiltonian is 

I d'xiiv'^n'^ + \h,J^kh^j,k). (2.93) 

This has precisely the same form as the Hamiltonian of free electrodynamics (2.35), 

allowing us to obtain the ground state of linearized gravity by direct analogy: 

Mh,] = ( - 1 , / d ' x d = , ^ ? M W M | M ) . (2.94) 

The analogy between particles whose spin differs by one is extremely useful; even 

in the case of loop effects and interacting theories i t allows us to generalize many 

results to arbitrary spin without repeating the calculations explicitly. We wil l make 

extensive use of this in Chapter 6. 
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Chapter 3 

Perturbative and non-perturbative 

approaches to the Schrodinger 

equation 

3.1 Loop expansion and renormalization 

Our main incentive for studying the Schrodinger representation is as a non-perturbative 

approach to field theory, but there are some issues, such as renormalization, which 

are best dealt w i t h in perturbation theory. Also, i t is useful to be able to make 

contact w i t h standard perturbative results. 

For a generic quantum field theory, the vacuum W F can be writ ten as = 

exp{W/h) where W generates connected Feynman diagrams. So, for example, the 

Schrodinger equation for the scalar field vacuum becomes 

fi, = ; / d^. I ^(x)(™^ - V V ( x ) - ( ^ ) - + V M . (3.1) 

We can expand W in powers of h 

W = W^°^ + hW^^^ + h^W^^^ + ... (3.2) 
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and W^^^ in powers of (p 

VF« = Y: / d'x,... d ^ x „ / » ( x x , . . . , x „ ) y p ( x i ) . . . ^ ( x „ ) . (3.3) 
n=2-

For the vacuum W F we can assume that the functions are translation invariant; 

this ensures that the vacuum is a zero eigenstate of the momentum operator. We 

can also assume without loss of generality that they are symmetric. Substituting the 

expansions into (3.1) gives us simple equations which we can solve order by order in 

h and ifi. The order or tree-level contribution gives the Hamilton-J acobi equation 

for Wo, which corresponds to the classical action. A t 0{(p'^) this is 

/ A / f (x, y)/f (y, z) = {m' - V')6{^ - z), (3.4) 

so that /2°^(x, y) = - l ^ m ^ - W^6{x-y), ie. the tree-level contribution to the two-

point funct ion reproduces the result we found earlier for free fields. Now suppose 

we include a interaction term 

V[^] = I / d^x^i^r = f / ^ • • • ̂ 5 ( P i + • • • + P 4 ) ^ ( P i ) . . . ^(P4). (3.5) 

Then according to (3.1) the tree-level four-point function (in momentum space) 

satisfies 

2 E / f (p.)/r ( P i , . . . , P4) = f 5 ( p i , . . . , p4), (3.6) 

w i t h the solution 

/ f ( P i , . . . , P4) = - f ^ ^ ' ^ ( P i ' • • •' P'')- (3-7) 

Similarly the tree-level six-point function is obtained as 

/ i ° H p i , - . . , P 6 ) = ^ ^ ^ / ^ / r ( p , P l , P 2 , P 3 ) / f (3.8) 
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The one-loop or 0(h) n-point functions are obtained in a similar fashion from (3.1). 

A t 0(v?^) we have 

SO that 

^'^-sJ ( 2^ )^ (a ; (p )+c . ( , ) ) a ; ( , ) - ^^"^^^ 

I f we regulate the p-integral by introducing a momentum cutoff < A^, then for 

d = 3 we find 

f^'\Q) - ^ , + Bu^iQ) In A + CA + Aeg(g), (3.11) 

where /reg is regular as A ^ oo. The first two divergences can be absorbed by 

performing the usual mass and wavefunction renormalizations, and the third may 

be removed by subtracting a counterterm CA / d'^xip{yif f rom the Lagrangian. In [3 

i t was shown that this is a general feature of Q F T in the Schrodinger representation; 

wave-functionals are finite as the cutoff is removed, provided that in addition to 

the usual renormalization we subtract suitable local counterterms from the action. 

These additional counterterms are necessitated by the boundary terms which define 

the quantization surface. Their form is constrained on dimensional grounds and 

must respect all the symmetries of the theory; for this reason i t is easy to show that 

they are finite in number. 

3 . 1 . 1 R e n o r m a l i z a t i o n o f Y a n g - M i l l s 

In gauge theory, gauge invariance is thought to preclude such additional countert­

erms [48, 50], so that physical WF's should be finite provided we renormalize masses, 

coupling constants, etc. in the usual way. For example, in Yang-Mills theory, we can 

make the coupling constant g an appropriate function of a momentum cutoff, and 

subtract the vacuum energy f rom the Hamiltonian. Thus the Schrodinger equation 
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for the vacuum becomes 

( - ^ ! ^ A , + - ^ B - E{s)\ *o = 0 (3.12) 
5\o \̂  2 25̂ -̂ (5) ) 

where 
5 . 5 

^^ = / ' ' ^ ' ' ^ ^ ^ ( ^ ' ^ ^ ^ ' ^ = j^'^'^^'- (3.13) 

A is a kernel regularizing the coincident functional derivatives in the functional 

Laplacian A (which represents in the Hamiltonian). The regularization must be 

done in a gauge invariant fashion, so we choose 

A(x,y) = S ( x , y ) / ^ ^ ^ _ ^ ^ | ^ e - < - > (3.14) 

where as before 5 is a Wilson line. Again, we can expand everything in powers of h 

-1 oo oo oo 
W[A]='-Y.^^W^[M. / = E ^ " 5 ^ ' E{s) = Y.K'E^{s). (3.15) 

n=0 n=0 n = l 

Substituting into the Schrodinger equation, we have at tree-level the Hamilton-

Jacobi equation 

and at one-loop 

Now AgWo diverges as s \ 0, but we can choose in such a way as to cancel 

this divergence. Consider the O ( A ^ ) part of A^VKq- Because of gauge invariance, 

this contains a term of the form 
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clns / ^,A^M^t{-v){p''p'' -P'^'") (3.18) 

for some constant c. We can compute c = llA^/(247r^) by evaluating WQ up to 

0 ( A ' ' ) f rom the Hamilton-Jacobi equation [9]. Similarly, to O(A^) B has the form 

/ ( | ^ ^ ^ ( P ) ^ ^ ( - P ) ( ^ ' > ' ^ (3.19) 

and we conclude that to cancel the divergent term (3.18) we must take 2gl/gl = 

cln(s/Li^) for some mass scale ^ . So to one loop, the coupling is 

9 = 9o + ^9i= 9o+^ > (3.20) 

allowing us to calculate the one-loop beta-function 

In perturbation theory we can use similar methods to determine higher loop cor­

rections to g{s) and E{s). In principle these could be computed non-perturbatively 

as well, but in four dimensions an analytical treatment is probably beyond current 

technology. When fermions are included there are of course additional renormaliza-

tions of the wavefunction and the fermion mass to be dealt wi th . 

3.2 Large-distance expansion 

If , at least w i th current knowledge, renormalization is most easily dealt with in 

perturbation theory, there are nevertheless many results which may be obtained 

non-perturbatively in the Schrodinger representation. Also, the formalism is flexible 

enough to allow the simultaneous use of perturbative and non-perturbative strategies 

in any concrete calculation. The non-perturbative techniques which we are about 
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to describe w i l l be of considerable use even wi th in perturbation theory. 

In the last chapter we saw various examples of WF's which can be expanded in lo­

cal terms for slowly varying fields. For example, we expect that the Schrodinger func­

tional of any Q F T can be expanded in this way for fields which vary slowly on the 

scale of the time parameter. For theories wi th a mass gap, we expect the vacuum 

W F to have such an expansion for fields which vary slowly on the scale of the lightest 

mass. Of course, as we discussed earlier and wi l l see explicitly in the next chapter, 

gauge invariance can spoil the local nature of this expansion by introducing massless 

modes which connect gauge equivalent configurations. 

Although expansions of this type are valid only for slowly varying fields, we can 

use the analyticity properties of the WF's under complex rescalings to reconstruct 

their behaviour for large momentum. Thus f rom a local expansion of the WF's, we 

can in principle calculate all physically interesting information, including that which 

is sensitive to U V modes, such as the computation of the particle spectrum, or the 

beta function. 

From the point of view of the Schrodinger equation, solving for the local expan­

sion of a W F is equivalent to solving an infinite set of coupled algebraic equations 

for the coefficients of the local terms. However, in solving the Schrodinger equation, 

care must be taken w i t h the regularization procedure, since i t wi l l not in general 

commute wi th the expansion in local terms. 

I f a W F admits a local expansion, i t can also be expanded locally order by order 

in the loop expansion. Thus this approach to the Schrodinger equation may be 

implemented wi th in a perturbation theory approach as well. 

To illustrate the general strategy we are outlining, we wi l l first show that the 

analyticity properties of WF's allow them to be reconstructed from their local ex­

pansions, and then show how the coefficients of these expansions may be obtained 

f rom the Schrodinger equation. 
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3.2.1 Analyticity of Wave-Functionals 

To begin wi th we w i l l show how the small distance cutoff dependence of the free 

scalar vacuum energy can be reconstructed f rom its large distance behaviour. Con­

sider the Hamiltonian (2.9). The vacuum energy is given by the action of TT̂ , which 

is represented by a functional Laplacian A , on the vacuum functional = e"^^'^^. 

This clearly diverges, so as before we introduce a momentum cutoff which regulates 

the Laplacian 

A - / ^1 (3 22) 

and leads to the well-defined vacuum energy density 

AcW 1 f d'^p rz ~ const. „ ,„ „„. 

Now suppose we insert the local expansion (2.23) of a; into (3.23). This does not 

give the correct behaviour as s ^ 0, because the expansion is only valid for <w?. 

But we can remedy this by resumming the series expansion to obtain the correct 

small distance behaviour. I f we rewrite (3.23) as 

then i t is easy to see that i t extends to an analytic function of s on the complex 

plane wi th the negative real axis removed. We can expand the square root provided 

that |s|7n^ > 1. Consider the integral 

where C is a keyhole contour which runs under the negative real axis up to s = - i ? , 

where R > l/m?, around the circle of radius R about the origin, and back to s = —oo 
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above the negative real axis. We can evaluate this integral using the local expansion 

I(X) = f ^ " ( ± 
n+d/2 

(3.26) 

where Q;„ = 2{2TTy{d+2n}n^(i/2-ny. ̂ ^^^ volume of the unit sphere in d dimen­

sions. Alternatively, we can evaluate (3.25) by collapsing the contour unti l i t just 

surrounds the negative real axis. As A ̂  oo the contribution f rom the negative real 

axis is exponentially suppressed, and we are left w i th £{0). 

I n practise we w i l l want to truncate the series to a finite number of terms. Since 

(3.26) is an alternating series, truncating i t at n A'', say, gives an error less than 

OlN+l X 
N+d/2+l 

{N + d/2 + l)\ 

\ N+d/2+l 

(3.27) 

I f we take A = Nfi^ w i t h fi^ < then the truncation error goes to zero for large N. 

We can choose /j, so that the error due to approximating £{0) by (3.25) is comparable 

in magnitude to (3.27). 

Now we w i l l describe how a similar technique allows WF's to be reconstructed 

f rom their large distance expansions. I f we write WF's as functionals of a scaled 

field </?*(x) = 99(x / \ / i ) we wish to show that they form analytic functions of s in the 

cut plane. This w i l l allow us to express their behaviour for small s in terms of their 

behaviour for large s, via Cauchy's theorem, just as we did for the vacuum energy. 

Consider the path integral representation (2.10) for the Schrodinger functional, 

wr i t ten in terms of the scaled fields 

J V(j) exp -i j d'^^^x {(/)(a^ + m^)(t> - 26{XQ - T){(j) - ip')^ + 26{xo){(j) - <p')^ . 

(3.28) 

Suppose we have only one spatial dimension. Since we have chosen the space-time 

to be Euclidean, we can interchange the role of the time coordinate wi th that of 
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the spatial coordinate to obtain an integral over the space-time —oo < t < oo, 

0 < X < T. The time derivatives in (3.28) become space derivatives, and we can 

reinterpret the path integral as a time-ordered vacuum expectation value in the 

rotated space-time 

^r[v^',<f'] = T{Or\expIdt (2<̂ >'U=. - 2ip'(t>'\,=o)\0r). (3.29) 

Here |0r) is the vacuum of the theory wi th Euclidean action 

SE = i l d'^x {(f){d^ + m^)(P + 2{5{xo) - 6{x - r ) ) # } (3.30) 

defined on the rotated space-time. We can expand the exponential in (3.29) and 

use the time-evolution operator e"̂ ""* of the rotated theory to generate the time-

dependence. We obtain 

* r b ' , = E / dtn / dtr^-l ... d t j ~ dp, . . . dp^ 6^^'*' 

x^^ip,)... <^^(p^)(^^(p^+i). . . (^^(p„)(0 . |^ ' (0)e-(*"-*"-)^^,^ ' (0) . . . 

...e-(*^-*^)^^(^'(0)|0,), (3.31) 

where the first m occurrences of (/»'(0) are evaluated at rr = r , and the remaining 

ones at x = 0. The time integrals may be performed to give 

x s " / 2 ( 0 . | ^ ' ( 0 ) - - ^ - ^ - — - 0 ' ( o ) . . . ^'{Q) I . 4 > ' { m P ) 

^/sH'^ + 2 ( E Pi) VsH^ + ipi 

Inserting a complete set of energy eigenstates between occurrences of the Hamilto­

nian in (3.32) allows us to write this as a sum of terms in which the s-dependence 

is contained in fractions of the form lj{E — iJ2i^iPi)] since the eigenvalues of the 
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Hamiltonian are real, this shows that is analytic in s apart f rom singularities 

occuring on the negative real axis. 

To extend this result to fields in more than one spatial dimension, we can con­

sider scaling each dimension seperately, and applying the same argument as above. 

Similarly, this result extends straightforwardly to fields of higher spin, including 

fermions and gauge fields. 

Now consider Wr, the logarithm of To any finite order in the sources (p and 

(p this may be wr i t ten as a sum of terms which are products of the terms appearing 

in (3.32), and i t is thus also analytic in the complex s-plane wi th the negative real 

axis removed. Because particles are restricted to the range 0 < x < r the theory 

has a mass-gap of value 1/r, even i f m = 0. Thus all the fractions \/{E — i Pi) 

have either E = 0 or E > 1/T. In the latter case, provided the sources have compact 

support in momentum space, and we take 5 to be sufficiently large, we can expand 

the fractions in positive powers of the momenta, leading to a local expansion of 

the wave-functional. The fractions wi th E — 0 cannot be expanded, but these 

denominators must cancel against powers of momentum in the numerator to avoid 

violating the cluster decomposition property of Wr- This cancellation is highly 

non-trivial , but i t can be verified explicitly at each order by laborious calculations. 

So in conclusion, for sufficiently large s, Wr[(p^,<p^] can be expanded in terms 

which are local functionals of the sources. Using the fact that (p^] is analytic 

in s allows us to reconstruct the behaviour for small s f rom from this expansion, 

wr i t ing 

Wr[^,g^] = l i m 7(A) = l i m / -^e'^^-'^V~sWr[^^,<p% (3.33) 
' A-*-oo X-^ca 2Tn JC S — 1 

wi th C the same contour as before. We can improve the convergence of the series 
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by applying an additional resummation: 

dr 
l i m / ( A ) = l i m / ' ~e''^I{l/V^). (3.34) 

A->oo A->oo Zm Jc r 

3.2.2 The Schrodinger equation for the local expansion 

I n principle, by substituting the local expansion of a W F into the Schrodinger equation, 

we can reduce i t to a set of algebraic equations for the coefficients of the local terms. 

But as mentioned earlier, the need for regularization complicates this procedure. 

Consider the simple case of cp'^ theory in (1+1) dimensions. This theory is super-

renormalizable, and the Hamiltonian can be regularized by normal-ordering wi th 

respect to an arbitrary mass scale. Alternatively, the regularization may be per­

formed by subtracting mass and vacuum energy counterterms. I t is a relatively 

straightforward procedure to obtain the mass and energy counterterms as explicit 

functions of a momentum cutoff; we require functions m(s) and £{s) wi th the prop­

erty that 

: H := l i m = l i m J dx (̂TT̂  + m^{s)ci)l + |</.^ - £ ( s ) ) (3.35) 

for the cut-off fields 

^s= [ d y [ ^e^'^'-^mvl I d y l ^e^Pi--y)%[y). (3.36) 

J Jp^<l/s 27r J Jp2<l/s ZTT 

These are given by 

m'is) =m'-h^-^ f ^ (3.37) 
4 V < i A 27r y/p^ + 

and 

^/ X h f dp f rz m'^(s)-m?\ gti^ ( f 

Is 2TX y / f + J 

(3.38) 
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We chose to normal order wi th respect to the classical mass m, but we could have 

normal-ordered w i t h respect to any other mass, reflecting the freedom in our choice 

of subtraction point which lends the usual arbitrariness to the counterterms. 

Now the Schrodinger equation may be wri t ten as 

l i m f | - ^ r b ^ + W A v ' , <p']] = 0. (3.39) 

Using the argument already described, we can show that the LHS of this equation 

extends to an analytic function on the s plane wi th the negative real axis removed. 

This allows us to express (3.39) as 

lim— -e'^ —^r[^^,<p']+H,^r[v'','P'] = 0 . (3.40) 
A->oo 27rz Jc S KOT I 

where in this expression we can assume that "ifr = e^'", where Wr is a sum of local 

functionals 

= E / ^ • • • ^ ^ ( P ^ ) • • • ^iP2n)HPl + - • •+P2n)<:;n''^P^ • ••Ptr"'- (3.41) 
n,m,i 

Substituting this into (3.40) gives an infinite set of algebraic equations for the co­

efficients â '̂ ^̂ i ''^". In the following chapters we w i l l encounter many more examples 

of equations like this; in many of the cases we wi l l consider they can be solved 

analytically, but in general they are well suited to numerical treatment. 

I t is worth noting that the renormalization counterterms can also be obtained 

non-perturbatively f rom these equations, provided suitable renormalization condi­

tions are imposed. 
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Chapter 4 

The Schwinger model 

We now wish to illustrate the non-perturbative solution of the Schrodinger equation 

by studying a simple interacting theory, QED in (1+1) dimensions wi th massless 

fermions, known as the Schwinger model since i t was shown by Schwinger to be 

exactly solvable [36]. This model exhibits many of the features of QCD in higher 

dimensions, such as the vacuum angle, chiral symmetry breaking, and confinement, 

but since i t can be solved exactly, i t is a useful model for studying these phenomena 

analytically. 

Another motivation for studying this model is to shed some light on the appar­

ent breakdown of the local expansion property which seems to result f rom gauge 

invariance. In the Schwinger model we w i l l see that this is related to charge screen­

ing. This supports the idea that gauge invariant WF's do not in general admit local 

expansions, even in the presence of a mass gap. However the Schrodinger functional 

does always have an expansion, as we w i l l verify for the Schwinger model by con­

structing the Schrodinger functional explicitly. 

Many of the phenomena which we describe for the Schwinger model, such as the 

vacuum angle, bosonization, and much of the detailed structure of the Schrodinger 

equation, carries over directly to more general gauge theories in (1+1) dimensions. 

Though exact W F solutions have not yet been found for non-abelian gauge groups. 
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our approach may be applied to this problem without further development. We wi l l 

also investigate what happens when we give the fermions a non-zero mass; we wi l l 

show how to solve the Schrodinger equation for the exact n-point functions. 

In two dimensions, the general form of a physical W F is 

(4.1) 

where the Wilson lines e^-'yn guarantee gauge invariance and are arbitrary 

functions. I t is useful to note that i n the presence of the constraints on u and u^, 

two dimensional gamma matrices have only one effective degree of freedom; ie. in 

(4.1) we could have wri t ten 7*̂  or 7^ in place of 7^. 

Using this and (2.63) we can calculate (dropping a divergent constant) 

°° 1 f 
i ^ g l ^ f ) = g ' f + E - / d''xd''yei,...,^g'{xuyn,. • • ,Xa,yiS nx,,yr,.. .,Xa,ya). 

a=l •' 

(4.2) 

A specific representation of the two dimensional Euclidean gamma matrices is 

given 7° = a^, 7^ = a^, 7^ = (T .̂ We w i l l use the fermion representation described 

in chapter 2, w i t h the gauge invariant representations having 
1 / 1 ±z\ 

Q± = l, , • (4.3) 

4.1 T h e Schwinger model vacuum 

4.1.1 Path integral solution 

To begin wi th , we w i l l solve the path integral expression (2.73) for the vacuum W F . 

Since the effective theory is gaussian, the calculation is particularly simple. Later 

we wi l l show how the same result may be obtained from the Schrodinger equation. 
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The Schwinger model has the Euclidean action 

(4.4) 

For massless fermions we can obtain the fermion determinant by integrating the 

anomaly [32]; w i th a U ( l ) gauge group the result is 

det i? = exp -—(a^</.)2 , (4.5) 

where = 5̂ ?7 + e^^d^cf). P± are obtained as equal time limits of the Dirac propa­

gator 

and 

P± = l i m D-\ (4.6) 

(4.7) 

A t i = 0 we want Ai = A, which implies that T] = J^{A + 4i). For (/> we can without 

loss of generality choose the boundary condition (j)\t=o = 0. Thus we have 

P± = Us{x - y ) ± ^ V ^ ] expUe r { A + ^)}. (4.8) 
2\ IT x - y j ^ Jy J 

Here V denotes the principal part. The operator A~^C is easily found; (2.73) be­

comes 

^u,u\A] = I D0exp | - ^< / . ( a^ + M2a')(/) 

H— / dxdy u\x)^^u{y)V expjze / {A + (j))\ 
•n J L X — y ^ Jy '. 

(4.9) 

where = ^ . We can integrate this to give 
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Mu, u\A]= E n - / dXr.dynuHx^)'y'uiyr,)V—^e''Jy 

X exp E (̂̂ ^ - 2/') - E [̂ (̂ ^ - ^3) + - Vi) \ ,4.10) 

where 

y 27r V p | J 

I t may be explicitly verified that (4.10) satisfies both Gauss' law and the Schrodinger 

equation. Note that this expression is both U V and IR convergent. 

Since the Dirac operator is flavour neutral, all of this is perfectly valid for the 

Schwinger model wi th Nj flavours, provided we put a flavour index on the fermions 

and set = A ^ / f . 

4.1.2 VEV's, chiral condensate and vacuum angle 

Define 

so that ^{x) = C(0) - C{x). 

From the analysis of [43] i t is clear that the two-point function {i}{x)L/hi^iy)L/R) 

is given by 

( ^ ( x ) « V ( y ) « ) = ^ e " " ^ ' " ' ' ' (4-13) 

where C{x — y) = J | ^ ( p — ^ 2̂ _)_jv/2 )^ '^^ propagator of (f){x) (whereas $ ( x - t / ) 

is the propagator of 
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In particular, since lim3;_^o C{x) = In ^ + 7, we have for the chiral condensate 

{i^^)e = —cos9, (4.14) 
Z T T 

which corresponds wi th the well-known result [38 . 

Since the effective theory has only two-point interactions, the other n-point func­

tions are obtained f rom C{x) by a t r iv ia l extension of this analysis. When we con­

sider the massive model, we w i l l have to include n-point interactions in this analysis. 

We have identified the theta angle as a parameter in our choice of boundary 

conditions. We now demonstrate that this is the same parameter appearing in the 

instanton physics of the pure gauge theory. From this point of view the vacuum 

angle is obtained by inserting a term 

ie9 

2 ^ 
I dxe^'F^, (4.15) 

into the path-integral expression (2.69). This term is proportional to the "instanton 

number", which is not quantized, as a result of the boundary conditions. We have 

et'^F^^ = - 2 5 V , but on the other hand A = - j l ^ dtd'^cj), so that 

j d^xe^'^F^^ = 2 j dxA. (4.16) 

Hence 

<i!e[u,u\A] = ^u,u\A]e^!'^''^ (4.17) 

so that under a large gauge transformation / dxA -)• / dxA + we have '^e -> 

^5ie^'"^. This phase is twice what we might expect; because of the relation (4.16) 

large gauge transformations change the instanton number by multiples of two. To 

change the instanton number by one unit , we must perform a large gauge trans­

formation of winding-number one half f dxA —> / dxA + | . These "half-integer" 

transformations were first discussed in [33], but should not be thought of as con-
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t r ibu t ing to the vacuum degeneracy [34]. The periodicity of 9 is explained by the fact 

that i t is energetically favourable to create an electron-positron pair when 9 > 2IT 

35 . 

Because of the chiral anomaly, by performing a chiral rotation 

^ _> e^^-^'/V, ^ V-^e"' '^'/ ' , (4.18) 

in (2.69) the term (4.15) is cancelled. This returns us to the original expression, but 

w i t h Q replaced by Q' = Qe^^"'^ and u, v) chirally rotated so that they satisfy the 

constraints w i t h Q' instead of Q. In other words, the term (4.15) just modifies the 

boundary conditions in the expected way. Incidentally, this implies that 

( ^ J | 6 ( ^ , ^ t ) | ^ 2 ^ = ( ^ J | d ( e ^ ^ ^ = / 2 ^ , ^ t e - W ) | ^ 2 ^ , (4^9) 

which is useful for calculating expectation values. 

This discussion is unaffected i f the fermions have a non-zero mass, except that the 

mass term is also altered by the chiral rotation (4.18); m —>• me* '̂̂ .̂ This indicates 

that the vacuum angle has a true physical significance in this case, whereas for 

massless fermions i t can be altered by a suitable redefinition of the fields. 

4.1.3 Bosonization 

The confining nature of the theory is easily seen from (4.10); since the potential 

(4.36) goes like |x| at large distances, configurations in which a field source goes off" to 

inf in i ty without an accompanying anti-source, are exponentially damped. Infrared 

slavery and asymptotic freedom are similarly seen by scaling the momentum in 

(4.36); the effect of such scaling is to make the couphng constant large for small 

momenta and vice-versa. 

Bosonization may be understood by transferring the sources to currents instead 
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of fields. By a gauge transformation, we can always set >^ = 0. Now consider the 

following object: 

= [ Du^DueI'^"'=''^^'''^u, ^ i u \ 0 ] . ( 4 . 2 0 ) 

Inserting the path-integral expression ( 4 . 9 ) and performing the u,u^ integrations 

gives (wi th boundary conditions as before) 

^[^] = j D(f)D^^Dtpe-^''-^^+^^^^'^^'^''''\ ( 4 . 2 1 ) 

This is a functional whose argument couples to a local fermion current. Using 

( 4 . 5 ) the fermion integration yields 

* [ ^ ] = | D 0 e - ^ B - ^ / d M a ^ ) = 

= I /)0e-^-/''^'^(^'^)'-5^/'^'^(^'*^'^-2^^^+^F^^), ( 4 . 2 2 ) 

where (p = ecj) - and ^ = ca^^a J^ wi th JQ = 0, J i = i^^5{t). Hence ^ = 

i^^^{^5{t)) and performing the remaining integration, we find 

^ [ ^ ] = e - ^ / ' ' ^ « V = ^ ^ ? , ( 4 . 2 3 ) 

which is the vacuum W F of a free boson field of mass M. 

From this we can easily reproduce the standard correspondence between bosonic 

and fermionic operators. ( 4 . 2 1 ) implies that 

= | W D M e / ' ^ ' = ^ " ' T ° > V ^ ^ [ u , ^ e « ^ 0 ] . ( 4 . 2 4 ) 
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