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Abstract 

ROMP-processing of imidonorbornene derivatives 

Thanawadee Leejarkpai Ph D Thesis October 1999 

The work described in the thesis is concerned with making new polymeric materials 

via ring opening metathesis polymerisation (ROMP) using a well-defined ruthenium 

carbene as an initiator. The object of the study was to provide a process for producing 

shaped articles by introducing a reactive liquid mixture into a mould in which the 

reacting liquid mixture undergoes ROMP in the bulk to produce the moulded article. 

Mono- and difunctional imidonorbomene derivatives were used as monomer and 

crosslinker respectively. The properties of the cured samples were determined by sol­

gel analysis, DSC, TGA, nmr and IR spectrometry. Gel fraction, Tg and content of 

unreacted monomer were used to characterise the cured samples. The results indicated 

a strong dependence of the polymers appearance and properties on the polymerisation 

formulation and protocol, i.e. the monomer, the crosslinker and the polymerisation 

conditions. 

The relative reactivity of the exo- and endo-monomers was investigated using the 1H 

nmr technique since the initiation and propagation steps of the polymerisations can be 

followed in detail by this technique. The results showed that the polymerisations are 

living and the exo-isomer is more reactive than endo-isomer. A wider range of 

polymers can be prepared from solution polymerisation as compared to bulk 

polymerisation. The polymers derived from solid monomers, the monofunctional 

monomer with short N-alkyl pendant groups and all the difunctional monomers, could 

be prepared more easily in solution than in bulk polymerisation. The endo-monomer 

and the monofunctional monomer with long N-alkyl pendant group showed very low 

reactivity and were not suitable for ROMP in bulk but underwent solution 

polymerisation. It was found that the thermal properties of the linear polymers depend 

upon the amount of each monomer isomer incorporated into the polymer chain and the 

length of the N-alkyl pendant groups. All linear polymers are soluble in chlorinated 

solvents from which clear films can be cast. The work described establishes conditions 

for production of fully crosslinked solids with only traces of the sol fraction. 
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General introduction and background 



Chapter 1 

1.1 Aims and objectives 

The aim of the work described in this thesis was to synthesise new polymeric materials 

via ring opening metathesis polymerisation (ROMP) and to develop a process for 

producing shaped articles by polymerisation in a mould. The process might lend itself 

to reaction injection moulding (RIM) and/or resin transfer moulding (RTM) depending 

on the details of the system; for example, rate of reaction, viscosity profile, mixing, 

cure time, exothermicity and so on. For this work, we proposed to use a combination 

of monomers and an initiator for ROMP which had not been examined for these 

processes previously. Two types of polymer are considered. The first is made by ring 

opening metathesis polymerisation of monofunctional imidonorbomene derivatives 

using a well-defined ruthenium carbene initiator; this approach gives linear polymers. 

The second type involves copolymerisation of mono- and difunctional monomers so as 

to produce crosslinked polymers. Since the application of this polymerisation system 

to in-mould processing is new, the goals of the work were to find the guide lines and 

basic parameters for simulation of RIM and RTM. This kind of in-mould processing 

requires as high a conversion of monomer as possible, since incomplete reaction, and 

particularly residual monomer, will affect the physical and thermal properties of the 

product. The main purpose of this chapter is to present the necessary background 

information for the work described in this thesis. Thus, this chapter is divided into 

three parts; namely, descriptions of ring-opening metathesis polymerisation, polymer 

processing (RIM and RTM) and the application of ROMP-RIM and RTM. In general 

only information relevant to the work described in this thesis is discussed in detail, 

information on related topics can be found in the literature cited. 

1.2 Ring Opening Metathesis Polymerisation (ROMP) 

Definition and Historical Background 

Olefin metathesis is a catalytically induced bond reorganisation process and involves 

exchange of carbon-carbon double bonds. For an acyclic olefin, this leads to exchange 

of alkylidene units. The reaction was first reported by Banks and Bailey in 1964 and 

termed 'olefin disproportionation' .1 The process is summarised in Figure 1.1. 
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R1CH=CHR1 

+ 
R2CH=CHR2 

Figurel.l General reaction scheme for the metathesis of acyclic olefins. 

For a cyclic olefin, the metathesis reaction leads to ring scission and the formation of 

an unsaturated linear polymer. 

Figure 1.2 General reaction scheme for the metathesis of a cyclic olefin. 

The first example of an olefin metathesis involving a cyclic olefin (in fact only 

recognised as such some years later) was reported by Anderson and Merkling in a 

Dupont patent in 1955.2 They successfully polymerised norbornene using a mixture of 

titanium tetrachloride and ethylmagnesium bromide to initiate the process, see Figure 

1.3. Calderon et al. recognised that disproportionation of acyclic olefins and ring 

opening polymerisations of cyclic olefins are examples of one and the same chemical 

reaction. They gave these types of reactions the name 'Olefin Metathesis' .3-
6 

ROMP ... n 

Figure 1.3 ROMP of norbornene. 

Metathesis Initiators 

In general the catalysts for olefin metathesis and ring-opening metathesis 

polymerisation are based on transition metals of groups IV to IX of the Periodic Table. 

However, Mo, W, Re and Ru compounds have been shown to be the most generally 

effective catalysts. Metathesis catalysts can be divided into two major categories; 

3 
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namely, the ill-defined dual component systems, known as 'classical initiators', and 

single component 'well-defined initiators'. The well-defined initiators include 

transition metal carbenes and metallocyclobutanes, both were predicted by Chauvin 

when he proposed the mechanism for metathesis which is now established and 

accepted (see below). Various aspects of metathesis have been reviewed, most 

comprehensively in a recent book 'Olefin Metathesis and Metathesis Polymerisation' 

by Ivin and Mol.7 Therefore, apart from a brief description of classical initiators, the 

remainder of this section is devoted to well-defined initiators, and particularly to the 

ruthenium carbene initiators, since they are of specific interest to the work discussed in 

this thesis. 

Classical Initiators 

Catalysts for a classical initiating system can either be homogeneous or heterogeneous 

and always contain a transition metal compound. Many of the commonly used catalyst 

systems are based on the chlorides, oxides or oxychlorides of Mo, W or Re. Although 

these compounds are sometimes effective by themselves, more commonly they 

require activation by a co-catalyst usually an organometallic compound or 

a Lewis acid. In some cases a third component called a promoter, is used as well. 

These promoters often contain oxygen; examples include 0 2, EtOH and PhOH. Some 

typical homogeneous catalyst systems are WClJEtAlCh/EtOH, WOCLJMe4Sn, and 

ReC15/Et3Al/02. Examples of heterogeneous supported catalyst systems include 

Mo03/A}z03, W03/Si02, and Re207/Ah03. 

However these classical initiators suffer from many disadvantages:-

• the precise nature of the active site at the metal centre is not known, 

thus the system is ill-defined, 

• the metal carbene must be generated before initiation and subsequent 

propagation can commence and this process usually proceeds m a 

very low yield, 

• the activity of a given initiating system IS dependent upon its 

chemical, thermal and mechanical history, and upon the order and 

the rate of mixing of the catalyst, co-catalyst and monomer, 

4 
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• they have limited tolerance towards functional groups m the 

monomer or solvent, 

• there is a lack of control of molecular weight and molecular weight 

distribution due to intra- or intermolecular reactions with the double 

bonds, and 

• they display an element of irreproducibility. 

Well-Defined Initiators 

Greater control over the reactivity of ROMP initiators became possible with the use of 

well-defined alkylidene complexes. These well-defined initiators allow, in favourable 

cases, the synthesis of polymers with narrow molecular weight distributions (Mwl Mn 

<1.01) and control over tacticity. The first isolated metal carbene species, the Fischer 

carbene, was described in 1964.8 It was a heteroatom stabilised complex and was 

shown to be reactive in olefin metathesis. It was found to react with highly strained 

olefins such as cyclobutene and norbomene derivatives. The diphenyl complex, first 

synthesised by Casey and Burkhardt in 1973, was not stabilised by a heteroatom and 

was much more reactive, initiating the polymerisation of less strained olefins.9 These 

molecules are shown in Figure 1.4. 

Fischer carbene Casey carbene 

Figure 1.4 Metal carbenes used to initiate metathesis. 

Grubbs and co-workers isolated the first well defined metallacyclobutane complexes 

which were active as metathesis catalysts. 10 The reaction of Tebbe reagent with various 

olefins in the presence of nitrogen bases resulted in the formation of titanacyclobutane 

complexes. It has been shown that these titanacycles readily exchange with olefins via 

a rate determining loss of olefin from the titanacyclobutane ring to generate the 

transition metal methylidene species Cp2Ti=CH2 which is active in metathesis, see 

Figure 1.5. This type of catalyst is able to polymerise norbomene. 11 

5 
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Tebbe reagent 

Cplio--R 

R = H, Me, 1Bu, 'Pr 

Titanacyclobutane 

Figure 1.5 Formation of metallacyclobutane and methylidene species. 

The first example of the living polymerisation of a cycloolefin was the polymerisation 

of norbomene by the titanacyclobutane complexes12 shown in Figure 1.6. 

(a) (b) 

Figure 1.6 Grubbs' well-defined titanacyclobutane initiators. 

In this case the polymerisation proceeds without termination or chain transfer to give 

polynorbomene with a narrow molecular weight distribution. The reaction is 

terminated by adding a ketone (typically benzophenone) or an aldehyde. However, 

there are some drawbacks associated with this initiator system. Titanacyclobutanes 

require a temperature of 50°C in order to ring-open even norbomene and they are very 

reactive towards functionalities owing to the highly electrophilic nature of the metal 

centre, this also makes them difficult to prepare and handle. 

Kress and Osborn prepared the first well characterised tungsten alkylidene complexes 

of the type W(CH-t-Bu)(OCH2-t-Bu)2X2, (X=halide). 13 Although these were inactive 

themselves, they formed highly active complexes on addition of a Lewis acid co­

catalyst such as GaBr3. 

6 
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Figure 1.7 Osborn's well-defined tungsten initiator/co-catalyst. 

Schrock and co-workers introduced well-defined tungsten and molybdenum initiators 

with bulky alkoxide and arylimido ligands of the type M(CHR)(NAr)(OR')2•
14 

M =WorMo 

II /R R = CMe3 or CMe2Ph 

,.M=C 
R'O'/ "'-H 

R' = CMe3 'CMe2CF3 or CMe(CF3h 

R'O 

Figure 1.8 Well-defined Schrock initiators. 

Four co-ordination allows small substrates to attack the metal centre and give five co­

ordinate intermediate metallacyclobutanes. The bulky alkoxide groups and the imido 

ligand prevent intermolecular reactions which could result in inactive complexes or 

decomposition of the catalyst. The bulky ligands also slow down bimolecular 

decomposition reactions. Substitution of the methyl groups on the alkoxides with the 

more electronegative trifluoromethyl groups makes the complex more active since the 

trifluoro groups draw electron density away from the metal centre. This makes the 

metal centre of the complex more electrophilic and a better acceptor for the incoming 

olefin which can be regarded as a 1t donor. 15 This effect is demonstrated by the 

observation that when OR is O(C(CH3)(CF3) 2) the tungsten complex will readily 

metathesis acyclic olefins, whereas when OR is 0Bu1 it does not react with acyclic 

olefins. As a consequence of the high reactivity of tungsten, alkylidenes of this metal 

do not polymerise many functionalised monomers. Molybdenum catalysts, by contrast, 

tolerate a larger number of functionalities, including esters, amides, imides and 

ketones. 

7 
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Ruthenium carbene initiators 

Although molybdenum catalysts work in the presence of several functionalities the 

search for catalysts that tolerate more functional groups continued. The aim of this 

work was to develop a catalyst that was selective enough to complex and react with the 

soft C=C 7t-bond in the presence of hard carbonyls like ester groups, ketones and 

imides. It was found that as the metal centres in these complexes were chosen from 

further to the right in the Periodic Table, the resulting alkylidenes reacted more 

selectively with olefins in the presence of other functional groups, see Table 1.1. 

Titanium Tungsten Molybdenum Ruthenium 

Alcohol, water Alcohol, water Alcohol, water Olefins 

Acids Acids Acids Alcohol, water 

Aldehydes Aldehydes Aldehydes Acids 

Ketones Ketones Aldehydes 

Esters, amides Ketones 

Esters, amides Esters, amides 

Table 1.1 As the central atom moves to the right in the Periodic Table of elements, it 

becomes softer and has more d-electrons. Complexation and reaction with 

the 7t-electrons of olefin is favoured over the complexation and reaction 

with the harder oxygen containing functionalities. 

The remarkable tolerance towards heteroatoms and protic functionalities displayed by 

ruthenium-based initiators makes them attractive candidates for ROMP processes 

which are typically intolerant of the above conditions. 16 The first generation of 

ruthenium-based initiators were simple ruthenium salts and coordination complexes, 

e.g. RuCb and Ru(H20)6(tos)2. 17 Although these compounds are highly active for the 

polymerisation of strained cyclic olefins, they constitute an ill-defined system. A 

propagating species, i.e. a rutheniumcarbene or rutheniumcyclobutane, has never been 

isolated from or detected during polymerisations with these initiators. 

8 
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Reaction of 3,3-diphenylcyclopropene with either RuC}z(PPh3)3 or RuC}z(PPh3)4 

produces the vinylcarbene complex Ru(=CHCH=CPh2)(Cl)2(PPh3)2 (compound la, 

Figure 1.9), which was described by Grubbs and co-worker in 1992. 18 Norbornene and 

other highly strained cyclic olefins such as cyclobutene and cyclooctene are readily 

polymerised by this initiator in a living fashion. However, it is inactive for the 

polymerisation of less-strained cyclic olefins and acyclic metathesis. 19
.
21 Modification 

of compound la by the exchange of the triphenylphosphine (PPh3) ligands with 

tricyclohexylphophines (PCy3) results in a much more active catalyst, compound 2a, as 

a result of increased a-donation from the phosphine ligands.23 It catalyses the ROMP 

of both high- and low-strained cyclic olefins as well as the metathesis of acyclic olefins 

at room temperature. Although these complexes exhibit both high metathesis activity 

and remarkable stability toward functional groups, the multistep synthesis of the 

carbene precursor (diphenyl cyclopropene) and the low initiation rate of compounds la 

and 2a limits their use. 

la 2a 

lb 2b 

Figure 1.9 Well-defined Ruthenium initiators. 

In 1995, Grubbs and co-workers reported the use of diazoalkanes as an alternative 

carbene source to provide air-stable alkylidene ruthenium complexes, compounds lb 

and 2b, in high yield. These complexes are very efficient catalysts for the ROMP of 

norbornene and substituted cyclobutenes.23
-
26 

9 



RuCI (PPh
3

) 
2 3 

N 
+ )\

2 CH 2Cl2 I -78°C 

- PPh 3 
Ph H 

hexane/toluene 

15% NaOH solution 

0 

~CH=N-NH-~~CH3 
0 

Benzaldehyde tosylhydrazone 

- N2 

PPh3 
Cl· ... ~ _/Ph 
Cl / I u-----..H 

PPh3 

1b 

PCy
3 

Ck,_ ~ _/Ph 
Cl / I u-----..H 

PCy
3 

2b 

Chapter 1 

Figure 1.10 The synthesis of air-stable alkylidene ruthenium complexes. 

An important advance in this work was the use of the alkylidene ruthenium complex, 

compound 2b, as an initiator for our ROMP-processing system. This system has three 

advantages: first, the initiator is selective enough to react with olefin in the presence of 

imide groups in the monomer structures; secondly, it is soluble in the monomers and so 

no solvent is required in the processing system. Thirdly, the polymerisation rate is 

slow enough to allow the two components to be thoroughly mixed before they are 

introduced into the mould and neither inhibitors nor accelerators are required. 

The Mechanism of Olefin Metathesis and Ring Opening Metathesis 

Polymerisation. 7 

According to the 'pair-wise' mechanism proposed by Bradshaw, it was thought that 

two double bonds came together in the vicinity of the transition metal site and that the 

orbitals of the transition metal overlapped with those of the double bonds in such a way 

as to allow exchange to occur via a weakly held cyclobutane type complex. 27 This 

pair-wise mechanism has now been abandoned in favour of one proposed by Herrison 

and Chauvin in which a metal-carbene complex is the propagating species.28 
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[M]=CHR 

+ 
R1HC=CHR2 

[M] CHR 
II + II 

R1HC CHR2 

Figure 1.11 Herrison and Chauvin's mechanism of olefin metathesis. 

Chapter 1 

The process involves reversible [2+2] cycloaddition of the olefinic carbon-carbon 

double bond to a metal carbene species to form a metallocyclobutane which then ring 

opens either non-productively (degeneratively) to regenerate the original reaction 

mixture or productively to form a new olefin and a new metal carbene. In ring opening 

metathesis polymerisation, since the carbon-carbon double bond is enclosed within a 

ring, repetition of this cycle of productive metathesis results in an unsaturated polymer 

chain. 

[M]=CHR 

+ 

0 

H 

[M]-G::.,....R 

o~ 
[M]CHR 

u 
1l 0 (n-1) 

Figure 1.12 Mechanistic pathway for ring opening metathesis polymerisation. 

All the above steps are reversible, so the outcome of the metathesis of acyclic alkenes 

and ring opening polymerisation depends on reaction conditions, such as temperature, 

concentration, reaction duration, the nature of the olefin and the nature of the 

propagating polymer chain end. Methathesis can be terminated by a reaction of the 

propagating metal carbene chain end with oxygen or oxygenated species (water, 

alcohol, etc.). Alternatively, well defined metathesis can be terminated by a 'Wittig 

type' reaction, typically with an oxygen containing molecule, usually a ketone or 
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aldehyde, which leads to the formation of unreactive organometallic compound (Figure 

1.13).15 

0 
)~ + - O=[M] 

+ 
'---­
~P. 

n 

Figure 1.13 Termination of metathesis by a 'Wittig type' reaction. 

Thermodynamic Aspects of Ring Opening Metathesis Polymerisation. 7 

For an addition polymerisation or any other reaction to occur the change in the Gibbs 

Free Energy (dG) must be ~0. This change is expressed as a function of the enthalpy 

change (dH), the entropy change (dS) and the absolute temperature (Kelvin scale). 

dG=dH-TdS 

For polymerisations the entropy (dS) is always negative since the monomers are 

combined with each other into macromolecules resulting in a reduction of their 

freedom. This makes the entropy term (-T dS) positive, and for a favourable reaction, 

the change in enthalpy has to be larger than the T dS component. The temperature 

where dG = 0, namely T= dH/dS, is called the ceiling temperature, and above this 

temperature, the polymerisation reaction does not take place. 

In general the most favourable conditions for ring opening metathesis polymerisation 

of cycloalkenes are high monomer concentration, low temperature and high pressure. 

The enthalpy change (dH), is dependent on the ring strain. Therefore for highly 

strained 3, 4, 8 and higher membered monocyclic rings and for bicyclic rings, the 

enthalpy change is high (i.e. negative) and polymerisations go to completion at normal 

temperatures and monomer concentrations. For monomers with low ring strain, that is 

5, 6 and 7 membered rings, the reaction entropy is a major determining factor, since the 

reaction enthalpy is low. The dG of polymerisation may also be sensitive to structural 

factors such as the nature of substituents and their position on the ring. Lower 
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temperatures and high monomer concentrations should favour polymerisation since this 

makes the entropy term -T L1S smaller. 

A significant advantage of norbomene, bicyclo[2,2,l]hept-2-ene, derivatives as 

monomers for ROMP is that they have a greatly reduced tendency to undergo 

secondary metathesis (back biting) with the vinylene units in the polymer backbone 

due to the steric hindrance of approach to the olefinic moiety resulting from the 

branching at the a-carbons. In general, polymerisations with 5-exo substituted and 5,6-

di-exo substituted-2-norbomene compounds have been more successful than with the 

corresponding endo isomers. This could be due to stabilising interaction between the 

endo substituent and the double bond or due to slightly larger ring strain of the exo 

ISOmer. 

Microstructure of Polymer Chains 

The way that the monomer unit is incorporated into the polymer chain determines the 

microstructure, that is the frequency and distribution of the isomeric repeat units, of the 

resulting polymer.7
•
29 The microstructure of a polymer can be controlled in favourable 

cases by changing the catalyst system and the reaction conditions, so that it may be 

possible to synthesise a polymer with the required microstructure and associated 

physical properties for a specific application. 

The three main factors which define the microstructure of polymers obtained by ring 

opening metathesis polymerisation are:-

1. cis/trans vinylene ratios and distribution, 

2. tacticity effects, and 

3. head/head, head/tail and tail/tail frequency and distribution. 

1. Cis/trans vinylene ratios and distribution. 

The backbone of polymers prepared by ROMP contains unsaturated bonds which can 

be either cis or trans, see Figure 1.14. The proportion of cis and trans in a particular 

polymer is primarily determined by the catalyst system, concentration, solvent and 

temperature. The nature of the monomer may also affect the outcome. In practice it 
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has proved possible to prepare polymers with cis/trans distributions varying from all 

cis to all trans. 

cis 

Figure 1.14 Cis/Trans double bonds in polynorbornene. 

2. Tacticity effects. 

Monomers such as symmetrically substituted bicyclo[2.2.l]hept-2-enes do not have 

chiral centres but give rise to polymer repeating units containing chiral centres. There 

is the possibility of two centres adjacent to the double bond having the same chiralities 

resulting in a racemic dyad or different chiralities, giving a meso dyad. Sequences of 

racemic dyads give syndiotactic polymers and sequences of meso dyads provide 

isotactic polymers. Polymers with a random distribution of meso and racemic dyads are 

known as atactic. As each C=C bond can have cis or trans geometry there are four 

possible regular microstructural arrangements as shown below. 

Cis-isotactic 
(cis vinylenes and repetition 
of meso dyads) 

Cis-syndiotactic 
(cis vinylenes and repetition 
of racemic dyads) 

Trans-isotactic 
(trans vinylenes and repetition 
of meso dyads) 

Trans-syndiotactic 
(trans vinylenes and repetition 
of racemic dyads) 

Figure 1.15 Tacticity effects in polynorbornene 
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3. Head/head, head/tail and tail/tail frequency and distribution 

In the case of unsymmetrically substituted monomers such as a 5-substituted 

bicyclo[2.2.1]hept-2-ene, polymers can form with head-head (HH), head-tail (HT) or 

tail-tail (TT) structures, see Figure 1.16. 

R R 

TT TT HH HH 

\Y 
/ 

R 
TH HT 

Figure 1.16 Head/Tail effects in the polymer of an unsymmetrically substituted 

monomer. 

Furthermore, each of these structures can have meso or racemic dyads and cis/trans 

isomerism, so a large number of configurations becomes possible. The polymers 

prepared in this thesis are made from symmetrically substituted monomers. 

Symmetrical monomers, such as exo- and enda-N-alkylnorbornene-5,6-dicarboxyimide 

(exo- and endo-CnM), cannot give rise to HH, HT or TT addition. 

1.3 Polymer processing 

Polymer processing is an engineering speciality concerned with the operations carried 

out on polymeric materials or systems to make useful items. These operations produce 

one or more of the following effects: chemical reaction, flow, or a permanent change in 

a physical property. Typical polymer processing operations coming within this 

definition include injection moulding, calendering, dispersion of pigment in polymers, 

and surface modification of plastic film. Injection moulding is one of the most 

important operations of polymer processing; it involves flow but neither chemical 

reaction nor a permanent change in a physical property. A thermoplastic is melted and 

injected, in the liquid state and under high pressure, into a closed mould where it cools 

and solidifies. The mould is then opened, the moulded item ejected, and the sequence 

repeated?0
•
31 The development of a number of very fast polymerisations to give 

urethane systems with a wide choice of final properties resulted in a new processing 
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method, reaction injection moulding, which has been said to have a high growth 

potential. 33 

1.3.1 Reaction Injection Moulding (RIM) 

Reaction injection moulding (RIM) was developed early in the 1960s. 30
-
39 It is a 

process for the high-speed production of polymer parts directly from low viscosity 

reactants injected into a mould. In this process two or more low viscosity liquid 

streams, which react with each other when brought together, are mixed prior to being 

injected into large cavities. Some of the polymerisation reaction occurs during the 

filling stage. The bulk of the reaction takes place after filling and during the curing 

stage. Part shape is determined by fast polymerisation in the mould and subsequent 

chemical crosslinking or physical change ·such as domain formation and 

recrystallisation, not by cooling as in thermoplastic injection moulding. A Schematic 

diagram for the process is shown in Figurel.17.33 The flow rate of the two highly 

reactive monomers or prepolymers must be accurately controlled to provide the correct 

stoichiometry. The two metered streams are forced to impinge at high velocity to 

achieve good mixing. From the mixhead they flow into the mould and react rapidly to 

produce a solid part. 

Line from 
component 
storage tank 

Dry air 
....._.Hydraulic 

cylinders....._. ....... 
Lance 
metering 
cylinders 

Figure 1.17 Schematic diagram of the reaction injection moulding process, after 

Kroschwitz.33 
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The advantages of the RIM process are clear. Polymer is formed after the reactants 

mix is in the desired shape and the low viscosity reactants can be mixed easily and the 

mould filled at low pressure. An important aspect of the RIM process as opposed to 

conventional thermoplastic injection moulding (TIM) is the big reduction in equipment 

costs resulting from the use of low viscosity monomer or prepolymer feeds. Injection 

pressures can be reduced from the 2000 atm typical in TIM to about 100 atm in the 

RIM mix head and less than 10 atm in the mould. Thus, very large and complex shaped 

items can be formed using rather small clamping pressures and inexpensive 

moulds. 36
•
37 The key to the success of the RIM process is fast rates of polymerisation 

to ensure the demands of short cycle time from closing the mould, through the injection 

of reactants and the cure, to the ejection of the items. It can be seen that potentially 

RIM is an energy-saving process in the fabrication of polymeric products. 

RIM Chemistry- Thermodynamic and Kinetic requirements 

The most important step which must take place in RIM is the rapid transformation of a 

liquid, or a mixture of liquids, into a solid with some desirable physical properties. In 

order to produce a solid from a liquid, some form of molecular aggregation has to 

occur and polymerisation is probably the most likely route for making materials with 

useful solid state properties by this technique. Whatever the chemical route to a 

polymer, it is an essential thermodynamic requirement that the free energy change 

(LlG), LlG = LlH-T LlS, for spontaneous reaction should be negative.40 As mentioned in 

the previous section, the entropy change (LlS) for the polymerisation is related to the 

molecular order in the system before and after reaction and LlS must be negative. For 

LlG to be negative, the enthalpy of reaction must also be negative and larger than TLlS, 

where T is the temperature of reaction on the Kelvin scale. Although this is a very 

simple summary of polymerisation thermodynamics, it does lead to the conclusion that 

heat should be evolved during polymerisation. The amount of heat evolved will depend 

on the type and the amount of bond rearrangements which take place in a particular 

reaction. It is possible to see that LlG = 0 when LlH = T LlS, i.e. a temperature sensitive 

thermodynamic equilibrium may exist between the forward and reverse reactions. 

These facts have important consequences in the overall RIM process. For example, 

since virtually all the heat of reaction is liberated within the mould, it is difficult to 
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regulate the sample temperature. A large temperature rise might take the system above 

the ceiling temperature and result in some depolymerisation. If this happened the 

product might contain undesirable residual low molecular weight material. 

The requirement for fast polymerisation in the mould is related to the need for fast 

production rates in the manufacturing situation. The reactions used in RIM may 

involve either a step growth polymerisation, such as polyurethane, polyurea, or epoxy 

formation, or a chain growth polymerisation, as in DCPD RIM (see later). Chain 

growth polymerisations41
'
42 involve initiation, propagation and termination steps. 

Polymerisation of vinyl and diene monomers usually conform to this scheme. The rate 

of conversion of monomer to polymer is generally governed by the propagation 

reaction rate which can be expressed by equation below. 

Rate of polymer formation = kp [M] [Mn *] (1) 

Where kp is the propagation rate constant, and [M] and [Mn *] are the instantaneous 

monomer and active centre concentrations respectively. For the rate to be large kp, [M] 

and [Mn*] should be as large as possible. Whereas the overall rate of step reactions41
•
43 

can be expressed as shown below. 

Rate of polymer formation= k [catalyst] [A] [B] (2) 

The reaction rate constant k is dependent on the reactivity of the functional groups [A] 

and [B] which are involved in the reaction. The overall rate is a function of k, the 

concentration of A and B and, where applicable, the catalyst. 

Apart from the thermodynamic and kinetic requirements outlined above the reagents 

used in the RIM system must: 

(a) be liquid at or near ambient temperature and have low viscosity, preferably in the 

range 0.01-1.0 Pa. s., 

(b) be as physically compatible as possible to assist the impingement mixing process 

when that is used, 

(c) have a reasonable self-life even when loaded with catalysts or filler, and 

(d) have low vapour pressure and low toxicity to minimise the handing problem in a 

production situation. 
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The reaction IS complicated by the rheological changes that happen during 

polymerisation.32
•
34 These changes include (1) domain formation, in which materials 

change from single phase to multiple phases because of the thermodynamic 

incompatibility of polymer segments or blocks; (2) gelation, in which materials change 

from a viscous fluid to a gelled network with chemical or physical crosslinking; and (3) 

phase separation or crystallisation, in which the reacting mixture changes from a 

rubbery material to a glassy polymer or from an amorphous material to a 

semicrystalline polymer with increasing degree of polymerisation and packing of the 

polymer segments. Generally, material and operational parameters determine the 

'mouldability' of a specific polymer system in a particular mould. The mouldability 
I 

diagrams established for thermoplastic injection moulding (TIM) can give a starting 

point for process optimisation and a rough guide for starting new materials in a RIM 

system. 

In TIM, mouldability is usually tested in an empirical way. The mouldability area in 

the temperature/pressure diagram is bounded by four curves. Above the top curve the 

polymer degrades thermally, whereas below the bottom curve it will not flow. To the 

left of the 'short shot' curve, the polymer is too viscous to fill the mould completely at 

the applied pressure. To the right of the 'moulding area', injection pressure is high and 

viscosity low enough that flash (i.e. leakage from the mould) might be encountered. 

Moulding area diagrams like Figure 1.18 are well known to TIM and this approach has 

been extended to RIM. In practice, RIM operators can more easily vary injection time 

and demould time than either the material or the mould temperature. 

Thermal 

T 

Melting 

p 

Figure 1.18 Schematic TIM 'moulding area' diagram. 
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RIM-process and system characterisation 

For convenience of analysis, the RIM process can be divided into mixing, filling, and 

curing as outline by Broyer and Macosko.44 In practise, mixing and filling can be 

treated together as the filling stage. Therefore, the basic steps of the process are filling 

and curing. In the RIM process, reaction can be activated by two different methods: 

mixing and heat transfer. For the mixing activated process, two highly reactive 

monomers or prepolymers are brought into intimate molecular contact by impingement 

mixing. From the mixing head they flow into the mould and react rapidly to form a 

solid part. The mould wall temperature (T w) is not much different from the starting 

material temperature (T0 ) since the monomers are highly reactive at T0 . For this 

system, the criterion of good impingement mixing has to be fulfilled. Urethanes are 

very reactive at 40-50 °C, the temperature at which they are mixed by impingement. 

Mould walls usually are controlled at 60-80 °C (close to the mixing temperature). In 

the thermally activated RIM process, the monomers do not react appreciably at To but 

are highly reactive at T w· Reaction usually starts after the material comes in contact 

with the hot walls. The mould wall temperature (T w) is much higher than the starting 

temperature (T0). Thermally activated RIM systems include epoxies and polyesters. 

Epoxy RIM formulations are mixed at 40-70 °C but do not react appreciably until they 

are brought in contact with the hot mould ( 100-150 °C). 

RIM-filling stage 

The important parameters during the filling stage are initial material temperature (T 0 ), 

and filling time (Tr). As mentioned before, for the mix activated system the reactive 

monomers have to be brought into intimate molecular contact by impingement mixing. 

During filling, the viscosity of the flowing mixture increases due to chemical reaction 

and filling must be over before this rise becomes too large. Thus, it is important to find 

the guidelines to avoid premature gelling. Another limiting criterion for the filling 

stage is related to flow instabilities, which can result in the generation of large bubbles 

in the final product. Finally the material temperature should not exceed a pre­

determined maximum, in order to prevent thermal degradation. 
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RIM -curing stage 

When the mould is full, injection is stopped. The material is left in the mould, reacting 

until it is dimensionally stable. This stage of the RIM process is called curing. During 

this stage, the chemical reactions go to near completion and the structure of the final 

product is determined through crosslinking, phase separation, or crystallisation. The 

most relevant parameters during this stage are mould wall temperature (T w) and 

demould time (T d). Mould temperature is also found to be an important parameter 

affecting product properties and surface quality. Very high mould temperatures result 

in a very thin, peeling and coarse skin, while low temperatures cause the skin turn to 

thick and brittle. The duration of the curing step depends on how long it takes for the 

material to reach a conversion level at which it is dimensionally stable and can be 

removed from the mould. On the other hand, the temperature throughout the mould 

should never rise above the material degradation point.45
·
46 For bulk polymerisation, in 

order to reach a high conversion, the reaction temperature should be higher than Tg and 

the product may need a postcure treatment after demoulding to reach ultimate 

conversion and physical properties. 

Reinforced reaction injection moulding (RRIM) is an extension of RIM. Materials for 

RIM and RRIM are very similar, but the machinery is substantially dissimilar because 

of the differences in viscosity and abrasiveness of the materials being processed. The 

reinforcing materials like milled glass and short glass fibres can, in principle, be added 

to one or both components but some important change must be made to the equipment 

for RRIM; for example, circulation pumps must be able to handle viscous materials and 

keep fibres in suspension, consequently wear resistant materials are needed. In practice 

fibres are added in both liquid steams to allow balancing of viscosities and to attain 

good mixing. However, several limitations have been found in RRIM technology: (1) 

the process is only successful for milled glass of 0.8- 6 mm. size and other short fillers, 

e.g. mica flake, (2) Chopped glass fibre is difficult to handle in the machines, (3) fibre 

breakage during circulation and impingement mixing is serious, and (4) leakage of 

material lines because of abrasion by the reinforcing agent. Prelocating a glass mat 

inside the mould has also been tried. This technology is named structure RIM (SRIM) 

or composite RIM, which is similar to an existing technology called resin transfer 

moulding (RTM). These RIM variants are summarised in Figure 1.19. 
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(a) 

Mixing head 

mould 

(b) 

Mixing head 

(c) 

Figure 1.19 Basic principle of (a) RIM, (b) RRIM and (C) SRIM. 

1.3.2 Resin Transfer Moulding (RTM) 

Liquid composite moulding (LCM) has been well documented in recent years.4749 

LCM is a term which includes RTM and SRIM.47 The common feature is the 

introduction of a liquid resin or resins (usually thermosets) under a forcing pressure 

gradient into a closed mould which contains a fibre perform. These materials 
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are generally composed of high strength fibres dispersed in a polymer matrix 

and offer several attractive features to manufacturers and end-users. The 

performance advantages over metal equivalents include weight reduction, design 

flexibility, corrosion resistance and reduced noise transmission. With respect to 

optimum property performance in composites, very high conversion and controllable 

gel times are required to allow resins to permeate the reinforced shape completely . 

.... 
Soften mat Place mat in tool 

....... 
Load preform 

Inject resin 

Eject preform 

.,~ ... -~ 
Trim preform Handle De flash 

Figure 1.20 Schematic diagram of the resin transfer moulding process, after ref.48 

Typically, SRIM will require higher pressure than RTM meamng more expensive 

moulds. However, highly reactive polyurethane and high flow rates will give faster 

production rates than RTM. Cycle times are of the order of seconds for SRIM and 

several minutes for RTM depending on part geometry. Currently, market development 

for RTM is inhibited by long moulding cycle times. The process can be considered as 

consisting of two essential phases which, depending upon process variables, may 

coincide to a greater or lesser degree:-
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• impregnation (comprising resm flow, mr displacement, fibre wetting, and heat 

transfer), and 

• polymerisation (including heat transfer). 

Several different processes are used in RTM. Some resins used in RTM (typically 

polyester and vinyl ester) are formed by free-radical polymerisation, in which the 

growing polystyrene chain reacts with the unsaturated polyester molecules to form a 

crosslinked structure. An advantage with this reaction is the versatility offered in 

processing and the wide range of material properties obtainable. Ambient temperature 

curing systems have been formulated but require prolonged periods for cure and can 

present processing difficulties owing to the high resin viscosity. Heat activated 

systems improve resin processability by reducing resin viscosity during impregnation 

and reducing mould cycle time. Epoxy resins are also used extensively in RTM and 

harden by addition polymerisation. A curing agent is mixed with the epoxy resin to 

crosslink the polymer and form a solid structure. As with polyester and vinyl ester 

resins, epoxy resins provide great versatility in both material and processing properties. 

Polyurethane resins, typically used in SRIM, form by addition polymerisation, 

followed by crosslinking. Resin viscosity remains low during urethane formation but 

builds rapidly during crosslinking. This is ideally suited to a high volume LCM 

process, in which low viscosity is desirable during mould filling to minimise 

impregnation pressure, while sufficient structure is required as early as possible to 

permit ejection of the moulded component. 

1.4 The application of RIM and RTM 

Polymerisation in the RIM process is more complicated than that in conventional 

polymerisation because, in order to combine polymerisation with the processing step, 

reaction has to occur in the bulk. Therefore the reaction should not give off any by­

products, such as water of condensation, unless they can be quickly absorbed in the 

system by a filler or used for foaming to compensate for the polymerisation shrinkage. 

To date, the major commercial RIM process materials are polyurethanes, being more 

than 95% of the total processed. The reason for this is that polyurethane chemistry is 

able to provide both a fast, complete reaction with no side products and a wide range of 
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property variability through the introduction of crosslinking, foaming and fibre 

reinforcement. Development of similar desirable characteristics in polyurea, nylon, 

epoxy, polyester, silicone rubber and other polymers is currently an active field of 

research. 32'50-53 

Dicyclopentadiene (DCPD), which until recently was a low value component of the C5 

stream of petroleum refining, is one of the newest monomers used in commercial RIM 

systems.7·54-61 It is cheap and can be polymerised by metathesis polymerisation, which 

yields a highly crosslinked olefinic polymer. The cyclic ring opening polymerisation 

results in an exothermic, fast reaction from the relief of ring strain energy. This 

polymerisation process can be tailored to have the characteristics which make it readily 

adaptable to either reaction injection moulding (RIM) or resin transfer moulding 

(RTM). Various polymers and copolymers with different structures such as linear and 

crosslinked homopolymers; random, graft and block copolymers; stereospecific 

polymers with all cis or trans double bonds on the main chains can be obtained by 

altering the catalytic systems.62 

Oshika63 and Dall' Asta64 showed that DCPD could be polymerised by metathesis 

catalysts. It could be polymerised by MoOCh to a gel at 35°C and then cured to a hard 

brown resin at 140°C, as described by Devlin.65 Copolymers of DCPD with 

norbornene and its derivatives are easier to process than the homopolymers, and can be 

compounded with filler etc. to form rigid articles, such as hub caps, by injection 

moulding. Cyclopentadiene itself can be used as co-monomer with norbornene 

derivatives and yields products of high impact strength.66 

An important advance in this area of technology was the use of organoammonium 

molybdates or tungstates of the type (R,4N)zy-6xMoxOy or (R,3NH)zy-6xMox0y as catalyst 

in conjunction with an aluminium compound such as Et2A1Cl or (RO)RAlCl as 

cocatalyst.67 These systems have two advantages: first, where R' is a long chain (e.g. 

C 12) the catalyst is soluble in the monomer and no solvent is required; secondly, the 

introduction of an alkoxy (or aryloxy) group in the co-catalyst reduces the reactivity to 

the point where the complete reaction mixture can be made up at room temperature, 

has a pot life of 1-8 hour, and can be injected into the mould at 60-200 °C under 

conditions such that reaction is complete in 2 minutes. Compounds of the type a and b 
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(see Figure 1.21), having two double bonds of essentially equal reactivity to ROMP are 

ideal as cross-linking agents to produce a thermosets product.7
•
67 

(a) (b) 

Figure 1.21 Crosslinking bifunctional metathesis monomer 

It should be note that in DCPD it is the norbornene-type double bond that undergoes 

ROMP, the opening of the other double bond by metathesis is thermodynamically less 

favourable. With some metathesis catalysts crosslinking may also occur through vinyl 

addition processes of the cyclopentenyl group during or after ring opening metathesis 

polymerisation, which causes the product to be insoluble in organic solvents, as shown 

in Figure 1.22.68 

metathesis rsr 
/Vinyl addition 

Figure 1.22 ROMP of DCPD : (unit A) polymerisation through the norbornene ring; 

(unit B) polymerisation through vinyl addition. 
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RIM of DCPD by ROMP using two streams rather than one has been extensively 

tested. A typical arrangement is to place the catalyst, e.g. WClJ ROH, in 

one monomer stream and the cocatalyst (activator) e.g. Et2A1Cl, in the other. The 

two streams pass first into a mixing chamber and then into the mould where 

the heat of reaction raises the temperature within a minute to about 150°C.69 The 

product is a tough, rigid, thermoset polymer of high modulus and excellent impact 

strength. An early example of a catalyst system for this process was developed at 

the Koninklijke/Shell Laboratorium in Amsterdam. It consists of WC1J2,6-

diisopropylphenol (1/2) with R3SnH as cocatalyst. Both components are soluble in 

DCPD and have long shelf-life.70 Since that time many other systems have been 

investigated and a vast patent literature exists. 

One of the chief problems of the two-stream method is the prevention of premature 

reaction leading to clogging in the region between the mixing chamber and the mould. 

This problem can be overcome either by the use of less active cocatalyst or by the 

inclusion of a Lewis base (moderator), such as benzonitrile, dibutyl ether, 

tetrahydrofuran, acetylacetone or an alkylacetonacetate, or by use of a comonomer 

having an ester substituent. In all cases the initial reaction is slowed down to the extent 

that there may be a short induction period allowing the reaction mixture to reach the 

mould before the period of rapid reaction. The functional of the Lewis base is to co­

ordinate or chelate to the metal centre, so modifying the initiation and propagation 

rates. 

For objects produced by RIM, it is desirable to have as high a conversion of monomer 

as possible, since the residual monomer will affect both the mechanical properties of 

the product and the extent of residual odour. With many catalyst systems the 

conversion is often only 90-95%. Another minor problem is that DCPD has a melting 

point of 32 °C, which necessitates heating the input stream if the monomer is very pure. 

This can be avoid by using a mixture of cyclopentadiene oligomers, which can be 

produced by heating DCPD to 125-250°C in a closed system. The production of large 

moulded objects (up to 300 kg) from DCPD-based feeds using RIM technology was · 

developed mainly in the USA by BF Goodrich Co. under the trade name Telene.71 In 

1988 Hercules inaugurated a 13,600 ton capacity plant at Deer Park, Texas, to produce 

poly(dicyclopentadiene) under the trade name Metton. The catalyst used was a 
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combination of WCldWOC14 and nonylphenol with Et2AlC1.72 In the Telene process 

the preferred catalyst is a trialkylammonium molybdate. Up to 10% trimer of 

cyclopentadiene is added to the monomers, not only to decrease the melting point of 

DCPD, but also to increase crosslinking in the polymer. BF Goodrich have licensed 

their process to the Japanese company Nippon Zeon, which manufactures the product 

under the name Pentem. The development of this area is still in progress. 

An early RTM used in the early 1940s was known as the Macro method.47
-
49 There 

were few applications though the 1950s and 1960s with some interest during the 1970s 

for fabrication of marine and recreational parts. Significant development work began 

during the 1980s with the introduction of structural and semi-structural parts for 

aircraft, defence applications, automotive structures and high performance sport goods. 

This process provides a useful fabrication route for structural components which are 

difficult to produce using alternative composite manufacturing processes. Liquid 

moulding is now in use for a growing number of applications in the aerospace and 

automotive industries. As the market continues to grow, new developments in 

materials and processes have emerged to meet the demands of specific industries. 

However, the ROMP system had not been widely used in RTM. For this work, we 

proposed to synthesis new polymeric materials via ROMP and to develop a process 

which might lend itself to RIM and/or RTM. 
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2.1 Introduction 

2.1.1 General introduction 

The objective of the work discussed in this chapter is the synthesis and characterisation 

of two series of mono- and difunctional imidonorbornene derivatives. The use of these 

compounds as the feed monomers for trial bulk polymerisations, solution 

polymerisations and for producing shaped articles by polymerisation in a mould are 

described in Chapter 3, 4 and 5, respectively. The synthetic route involves the 

formation of a polycyclic structure via a Diels-Alder cycloaddition reaction of maleic 

anhydride with dicyclopentadiene to produce exo-norbornene-5,6-dicarboxyanhydride 

and the reaction of this product with amines and diamines to give imides and diimides, 

respectively. This same general route was also used to provide the endo-adduct, but 

the starting materials in this case were maleic anhydride and cyclopentadiene and the 

reaction conditions were milder. 

2.1.2 The Diels-Alder cycloaddition reaction 

The first step for the synthesis of the mono- and difunctional monomers used in this 

work involved the Diels-Alder cycloaddition reaction. In a typical Diels-Alder reaction 

a compound containing a double or triple bond, the dienophile, adds 1,4 to a 

conjugated diene (a 2+4 cycloaddition) to form a product containing a six-membered 

ring as shown in Figure 2.1. 1
-
4 

( + 

Figure 2.1 The Diels-Alder reaction between a conjugated diene and dienophile. 

Z = an electron withdrawing group. 

In this reaction, two new a-bonds are formed at the expense of two rr-bonds in the 

starting materials. The reaction take place most rapidly and in the highest yield if the 

dienophile is substituted by an electron withdrawing group (conventional Diels-Alder) 

33 



Chapter 2 

or with electron donating groups on the olefin and electron withdrawing groups on the 

diene (Diels-Alder with inverse electron demand). The diene can react only in the cis 

conformation and therefore cyclic dienes react faster than acyclic dienes; five 

membered ring dienes are particularly favoured due to the coplanarity of the diene 

double bonds and the ideal distance between termini. 

When the diene is cyclic, there are two possible ways in which addition can occur if the 

dienophile is not symmetrical. The larger side of the dienophile may be under the ring 

(endo addition), or it may be the smaller side (exo addition).5 

0····./H · .. ~c,H 
H-e 

-
I 

COOH 

endo addition exo addition 

£f:;COOH 
H 

In this work, the reaction of the substituted cyclic dienophile, maleic anhydride, and a 

cyclic diene, cyclopentadiene, produces either exo- or endo-addition depending upon 

the conditions. Under moderate temperature conditions the addition is predominantly 

endo, the kinetically favoured product. This is usually attributed to the fact that the 

dienophile is added so as to give a maximum of 'secondary overlap' of 7t-molecular 

orbitals in the transition state, as shown in Figure 2.2. The endo-adduct is invariably 

the kinetic product whether or not there is the possibility of 'secondary overlap' of 7t­

molecular orbitals, for example, cyclopentene gives the endo-adduct as the kinetic 

product in reactions with cyclopentadiene. In order to obtain the more 

thermodynamically stable exo-adduct, severe temperature conditions, longer reaction 

times and repeated recrystallisation are usually necessary.6 The pure 100% exo- or 

endo-isomer are not formed initially in the diene synthesis. 
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0 : 
_:· :o: } 

. . 
. : 

cf:do 
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< 1.5% 

exo addition 

> 98.5% 

endo addition 

Figure 2.2 A schematic representation of the orientation of the reactants in the 

approach to the transition state and the products of the Diels-Alder 

cycloaddition between cyclopentadiene and maleic anhydride. 

2.1.3 The formation of aliphatic carbon-nitrogen bonds 1
•
5 

In the second step of monomer synthesis, the mono- and difunctional monomers were 

prepared by forming bonds between carbons of norbornene dicarboxyanhydride and 

nitrogens of amines or diamines, respectively. With few exceptions the methods for 

forming bonds between nitrogen and carbon fall into two categories. In the first, 

nucleophilic nitrogen reacts with electrophilic carbon, and in the second, eletrophilic 

nitrogen reacts with nucleophilic carbon. Only the first category, which is by far the 

more important, will be discussed in this chapter since it is involved in the work to be 

described. 

The commonest nitrogen nucleophiles are ammonia and its derivatives. These may be 

alkyl- or aryl-derivatives and, primary, secondary or tertiary amines are possible. The 

nitrogen atom possesses an unshared pair of electrons and is therefore nucleophilic. 

The nitrogen can react both with saturated carbon from which a group can be replaced 

with the covalent bonding-pair (SN2 reaction), 

35 



\ / ..... \\ p 
N.f 41 e-x 

/1" /1 
-X - I+ I 

-N-C-
1 
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Intramolecular displacement can occur if a five- or six-membered ring is the product; 

e.g. succinimide can be obtained by heating the acyclic diamine of succinic acid: 

0 
II _...........c, 

CH2 ""-I NH 
CH 2 / 

"'--'~ 
0 

Succinimide 

In practice, it is easier to obtain cyclic imides directly from the corresponding 

anhydrides by treatment with ammonia at high temperature. For example, heating 

phthalic anhydride with aqueous ammonia gives phthalimide in over 95% yield: 

Phthalimide 

For the monomers used in this study imides were prepared via an analogous reaction 

between anhydrides and amines. 
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2.2 Results and discussion 

2.2.1 Synthesis and characterisation of exo-norbornene-5,6-dicarboxy 

anhydride: (exo-ANf"12 

0 
II 

Co 
II 
0 

Maleic anhydride 

+ 00 185-190't 

Dicyclopentadiene 

aria 
Mixture of exo-1 endo-norbornene 

dicarboxyanhydride 

l 
Recrystallisation 

(acetone) 

cf:4 
0 

Pure exo-norbornene 
dicarboxyanhydride 

(exo-AN) 

Figure 2.3 Outline of the synthesis route for exo-AN. 

The Diels-Alder reaction between maleic anhydride and dicyclopentadiene was carried 

out at high temperature and gave an exo-lendo-norbornene anhydride mixture (exo­

/endo-AN). A temperature above 180 °C was necessary for this reaction in order to 

obtain the more thermodynamically favoured exo-adduct. At elevated temperature, 

dicyclopentadiene was cracked in situ to yield the cyclopentadiene required. The 

amount of exo- and endo-adduct in the products obtained was determined by 1H nmr 

spectroscopy. Figure 2.4 shows the 1H nmr spectrum of the exo-/endo-AN mixture 

obtained from the Diels-Alder reaction, where both exo (6.37 ppm) and endo (6.29 

ppm) olefin signals are clearly seen. As expected, it was found that longer reaction 

time was beneficial for the synthesis of the thermodynamically preferred, exo-isomer. 

The pure 100 % exo-AN was obtained by recrystallisation from acetone at least four 

times. The product was a transparent, colourless, crystalline solid with a m.pt. of 143 
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°C and was recovered in 35-44% yield. Evidence that the exo-AN has been purified 

successfully can be seen on comparison of 1H nmr spectra of the exo-AN with the 

endo-AN, which was recovered from a reaction carried out under milder conditions, 

as shown in Figure 2.6 

• 
Olefinic proton 

~ 
Exo-isomer 

Endo-isomer 

* 

uu 
Figure 2.4 1H nmr spectrum of exo- and endo-AN mixture, product from 

Diels-Alder reaction, at 180 °C for lhour. 

• residual hydrogen in acetone-d6 

* water dissolved in acetone 

2.2.2 Synthesis and characterisation of endo-norbornene-5,6-dicarboxy 

anhydride: (endo-AN)7
·
9 

0 

6 
II 
0 

Maleic anhydride 

+ 0 
Cyclopentadiene 

diethyl ether 

0-5 °C 

endo-norbornene dicarboxyanhydride 

(endo-AN) 

Figure 2.5 Outline of the synthesis route for endo-AN. 
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The same general route as the synthesis of exo-AN was used to provide the endo­

adduct, but the starting materials in this case were maleic anhydride and 

cyclopentadiene and the reaction conditions, 0-5 °C, for the Diels-Alder cycloaddition 

were milder. As the reaction was carried out at low temperature, it was necessary to 

pre-crack dicyclopentadiene by pyrolysis (> 180 °C) to yield the cyclopentadiene 

required. The advantage of synthesising endo-AN by this method is that it is fast and 

the exo-adduct content is low. The major drawback of this method is that it requires 

freshly distilled cyclopentadiene. Under these conditions the Diels-Alder cycloaddition 

of cyclopentadiene with maleic anhydride gave predominantly endo ( -98% ), the 

kinetically favoured product. Pure 100% endo-AN was obtained by one 

recrystallisation from acetone. The product was a transparent, colourless, crystalline 

solid with a m.pt. of 165°C and was recovered in 89% yield. 

Comparison of the 1H nmr spectra of the exo-AN and endo-AN revealed differences in 

chemical shifts and fine structures of the resolved signals, see Figure 2.6. In the 

spectrum of exo-AN the triplet arising from the olefinic H2,3 hydrogens is found at 6.37 

ppm, 0.08 ppm from that in endo-AN which occurs at 6.29 ppm. The difference 

between chemical shifts for H5,6 in exo- and endo-AN is greater than the difference 

between H 1,4 of both structures. The peak corresponding to Hs,6 of exo-AN is found at 

3.13 ppm, 0.65 ppm from that in the endo-adduct which occurs at 3.78 ppm, whereas 

the peak corresponding to H 1,4 in both exo- and endo-AN are almost at the same 

position, 3.35 ppm and 3.43 ppm, respectively. This is expected as Hs,6 are next to the 

anhydride functionality and more influenced by the change in position of this group 

than are Hl,4· 

The difference between chemical shifts for H7 and H7' is greater in the exo-AN than in 

the corresponding endo-AN. This difference is expected as H7' is closer to the 

anhydride functionality. The peak corresponding to H7' of exo-AN is found at 1.38 

ppm, whereas the peak corresponding to H7 of exo-AN and H7,7' of endo-AN are 

almost at the same position, 1.58 ppm and 1.68 ppm, respectively. The 1H and 13C 

nrnr assignment, elemental analysis, mass spectrum and infrared spectrum of the 

monomers obtained are recorded in the experimental section of this chapter. 
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7 7' 
H H' ,&02,3 

6 0 

Exo-AN 

2,3 
7 7' 

2~ 
0 

Endo-AN 

5,6 

1,4 

• 
* 

7, 7' 

5,6 

* 1,4 

Figure 2.6 1H nmr spectra of pure exo-AN and endo-AN. 

• residual hydrogen in acetone-d6. 

* water dissolved in acetone. 

2.2.3 Synthesis and characterisation a series of exo-monofunctional 

monomers: exo-N-alkylnorbornene-5,6-dicarboxyimide (exo-CnM) 13 

ppm 

ppm 

A series of exo-N-alkylnorbomene-5,6-dicarboxyimide (exo-CnM) were synthesised 

according to the route shown in Figure 2.7. The reaction of exo-AN with n-alkylamine 

in refluxing glacial acetic acid for 2 hours at 120 °C gave the imide monomers. The 

monomers were recovered as colourless liquids in high yields (85-90%) with respect to 

exo-AN. For example, the reaction of exo-AN with n-hexylamine in glacial acetic acid 

gave exo-C6M monomer in 90% yield. The 1H nmr spectrum of this compound was 

recorded in CDCh solution and is consistent with the assigned structure, as shown in 
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Figure2.9a. The 1H and 13C nmr assignment, elemental analysis, mass spectrum and 

infrared spectrum of all monomers obtained are recorded in the experimental section of 

this chapter. 

M 
0 

Pure exo-norbomene 
dicarboxyanhydride 

AcOH 
120°C 

exo-N-alkyl norbomene 
dicarboxyimide; exo-CnM 

exo-C3M x = 2 (87% yield) 

exo-C4M x = 3 (89% yield) 

exo-C5M x = 4 (89% yield) 

exo-C6M x = 5 (90% yield) 

exo-C8M x = 7 (85% yield) 

Figure 2.7 Outline of the synthetic route for exo-monofunctional monomers: 

exo-CnM, where n = the number of carbon atoms in the alkyl group. 

2.2.4 Synthesis and characterisation of endo-N-hexylnorbornene-5,6-

dicarboxyimide: (endo-C6M) 

Endo-N-hexylnorbomene-5,6-dicarboxyimide (endo-C6M) was prepared as shown in 

Figure 2.8. 

f-kN(C~) Cf-b 
5 

118-120'C,Ac0H 

endo -norbornene dicarboxyanhydride endo-N-hexylnorbornene-5,6-dicarboxyimide 

endo-C6M (91 %yield) 

Figure 2.8 Outline of the synthetic route for endo-N-hexylnorbomene-5,6-

dicarboxyimide: (endo-C6M). 
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The reaction of endo-AN with n-hexylamine in refluxing glacial acetic for 2 hours at 

120°C gave endo-C6M. The monomer was recovered as a colourless liquid in 91% 

yield with respect to endo-AN. Comparison of the 1H nmr spectra of exo- and endo­

C6M revealed differences in chemical shifts and fine structures of the resolved signals 

as shown in Figure 2.9a and b. The detailed assignment of 1H and 13C nmr, elemental 

analysis, mass spectrum and infrared spectrum of all monofunctional monomers 

obtained are recorded in the experimental section of this chapter. 

(a) 

7 7' 
H H 10-12 

d» 5 
cHpH2cHpH2CH2CH3 

2 8 9 10 11 12 13 
6 0 

5,6 

2,3 
1,4 

8 9,7 7' 

* 

(b) 
10-12 

7 7 
1,4 

H H 

J:tr 2,3 
5,6 

8 2 

o 6Hpf-\P'"'P'!P'PH3 

8 9 10 11 12 13 

* 

Figure 2.9 1H nmr spectra of (a) exo-C6M and (b) endo-C6M. 

* residual hydrogen in CDCh 

13 

13 
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2.2.5 Synthesis and characterisation a series of exo,exo-difunctional monomers: 

exo, exo-N ,N' -alkylene-di -(norbornene-5,6-dicarboxyimides): ( exo-CnD) 

A senes of exo,exo-N,N' -alkylene-di-(norbornene-5,6-dicarboxyimides), difunctional 

monomers, were synthesised according to the route shown Figure 2.1 0. 

M 
0 

Exo-norbomene 
dicarboxyanhydride 

(exo-AN) 

AcOH, 120°C 

Difunctional monomer 
Exo-CnD 

exo-C3D (91 %yield) 

exo-C5D (90 %yield) 

exo-C6D (92 %yield) 

exo-C9D (83 %yield) 

exo-C 12D (80 %yield) 

Figure 2.10 Outline of the synthetic route for exo-difunctional monomer: 

(exo-CnD), where n =the number of methylene units separating 

the reactive imidonorbornene units. 

The exo-AN was reacted with diamines in refluxing glacial acetic for 2 hours at 120°C 

to give difunctional monomers, exo-CnD. The difunctional monomers were recovered 

as white solids in high yield ( -80-92%) with respect to exo-AN. For example, the 

reaction of exo-AN with 1 ,6-hexanediamine in glacial acetic acid gave exo-C6D as a 

white crystalline solid in 92% yield. The 1H and 13C nmr spectra of the this compound 

were recorded in solution in CDCh. Both spectra are consistent with the assigned 

structure as shown in Figure 2.11. The assignment of 1 H and 13C nmr, elemental 

analysis, mass spectrum and infrared spectrum of all difunctional monomers obtained 

are recorded in the experimental section of this chapter. 
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Figure 2.11 1H and 13C nmr spectra of exo-C6D. 
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2.3 Experimental 

Reagents 
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Maleic anhydride, dicyclopentadiene, I ,2-dichlorobenzene, n-alkylamine and 

dialkylamine were purchased from Aldrich Company Ltd, acetic acid, anhydrous 

diethyl ether, acetone were purchased from BDH Chemical Company Ltd. All reagents 

and solvents were used without further purification. 
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2.3.1 Synthesis and characterisation of exo- and endo-norbornene-5,6-dicarboxy 

anhydride: (exo- and endo-AN) 

Synthesis and characterisation of exo-norbornene-5,6-dicarboxy anhydride: (exo-

AN) 

Maleic anhydride (490.0 g, 5.0 mol) and 1 ,2-dichlorobenzene (500 ml) were place in a 

4-necked, round bottomed flange flask (3,000 ml) fitted with a condenser, 

thermometer, dropping funnel, and mechanical stirrer. The mixture was stirred and 

heated to 180- 185 °C. Dicyclopentadiene (335.0 rnl , 330.0 g, 2.5 mol) was added to 

the flask via the dropping funnel over a period of 2 hours to give a clear, yellow 

solution. The mixture was heated to reflux for further 6 hours, giving a brown solution, 

which was allowed to cool overnight. The resulting light yellow crystals, a mixture of 

71% exo- and 29% endo-isomer, were recovered by filtration from the brown solution 

and recrystallised several times from acetone to give 100% pure exo-isomer (exo-AN) 

as a transparent, colourless crystal (360.0 g, 2.2 mol, 44.0% yield). 

g I 
I 
I 

I 
\ 'I 
'--~ ' .... ___ ..... 

.... ...... __ ___.,. 

f 

a 

Figure 2.12 The apparatus for the synthesis of exo-AN. (a) flange flask bottom, 

(b) flange flask top, (c) dropping funnel, (d) mechanical stirrer, 

(e) condenser, (f) thermometer, (g) heating mantle. 
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• Mpt: 143 oc cLie 142.5-143.5 °C). 

• Elemental analysis- Found C, 65.65%, H,4.83%; calculated for C9H80 3: C, 65.85%, 

H4.91%. 

• 
1H nmr- (see Appendix 2.1), (d6-acetone, 400 MHz), 8 (ppm)): 6.37 (t, 2H, H2,3), 

3.35 (p, 2H, H1,4), 3.13 (d, 2H, H5,6), 1.58 (m, 1H, H7), 1.38 (m, 1H, HT). 

• 
13C nmr- (see Appendix 2.2), (d6-acetone, 100 MHz, 8 (ppm)): 173.00 (C8,9), 138.68 

(C2,3), 49.77 (Cs,6), 47.38 (C1,4), 44.59 (C7). 

• Mass spectrum- (see Appendix 2.3), (Et): 164 (C9Hs03, M+), 120 (M+-C02), 66 

(M+-C4H203). 

• IR- (see Appendix 2.4), (KBr disc, cm-1): 3090 (olefinic C-H stretching), 2997-2884 

(saturated C-H stretching), 1859, 1776 (Asymmetric and symmetric C=O stretching, 

respectively), 1040 (cyclic anhydride C-0-C stretching). 
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Synthesis and characterisation of endo-norbornene-5,6-dicarboxyanhydride: 

(endo-AN) 

Maleic anhydride (98.0 g, 1.0mole) and anhydrous diethyl ether (600 cm3) were place 

in a 1 litre 3-necked round bottom flask fitted with a condenser, thermometer, dropping 

funnel and magnetic bar. The mixture was stirred to dissolve the maleic anhydride at 

room temperature and then was cooled down in an ice/salt bath and maintained 

between 0-5°C. Cyclopentadiene (66 g, 1.0 mole) was added dropwise via a dropping 

funnel over a period of 2 hours. The temperature of the solution was not allowed to 

rise above 5 °C during the addition. The mixture was stirred with cooling for a further 

2 hours, after which the ice bath was removed and a white powder precipitated. 

Diethyl ether was decanted off and the product dried in vacuum to give a white 

crystalline solid, a mixture of 2% exo- and 98% endo-isomer. The mixture was 
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recrystallised once from acetone to gtve 100% pure endo-isomer (endo-AN) as 

transparent, colourless crystals (145.0 g, 0.9 mol, 89% yield) . 

• Mpt: 164 °C (Lit7 165 °C). 

• Elemental analysis- Found C, 65.65%, H,4.83%; calculated for C9H80 3: C, 65.85%, 

H4.91%. 

• 
1H nmr- (see Appendix 2.5), (d6-acetone, 400 MHz, 8 (ppm)): 6.29 (t, 2H, H2,3), 3.78 

(m, 2H, Hs,6), 3.43 (m, 2H, H 1,4), 1.69 (m, 2H, H7,7')· 

• 
13C nmr- (see Appendix 2.6), (d6-acetone, 100 MHz, 8 (ppm)): 172.54 (C8,9), 135.33 

(Cz,3), 53.03 (Cs,6), 47.79 (CI,4), 46.03 (C7). 

• Mass spectrum- (see Appendix 2.7), (EY): 164 (C9H80 3, M+), 120 (M+-C02), 66 

(M+ -C4H203). 

• IR- (see Appendix 2.8), (KBr disc, cm- 1
): 3070 (olefinic C-H stretching), 2997-2890 

(saturated C-H stretching), 1825, 1770 (Asymmetric and symmetric C=O stretching, 

respectively), 1044 (cyclic anhydride C-0-C stretching). 
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2.3.2 Synthesis and characterisation of monofunctional monomers 

General procedure for the synthesis of monofunctional monomers (exo- and 

endo-norbornene-5,6-dicarboxyimide): exo-CnM (n =3, 4, 5, 6 and 8) and endo-

C6M 

A known weight of endo- or exo-AN was dissolved in glacial acetic acid at 118-120°C 

in a round bottom flask equipped with a condenser, dropping funnel, thermometer and 

magnetic stirrer bar. The required amount of n-alkyl amine was added slowly. The 

reaction mixture was heated to reflux for 2 hours at 120°C using a silicone oil bath. 

The reaction mixture was poured into cold distilled water which was then extracted 
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with dichloromethane. The organic layer was washed twice with distilled water and 

dried over anhydrous magnesium sulphate. The solvent was then removed under 

reduce pressure to give the clear, pale yellow liquid. The crude products were distilled 

under vacuum to give the clear liquid products, exo-CnM if n = 5, 6, and 8, whereas 

n = 3 and 4 solidified at room temperature. 

Synthesis and characterisation of exo-N-hexylnorbornene-5,6-dicarboxyimide: 

(exo-C6M) 

Exo-AN (82.0 g, 0.5 mol) was dissolved in glacial acetic acid (500 ml) at 118-120°C in 

a 3-necked round bottom flask equipped with a condenser, dropping funnel, 

thermometer and magnetic stirrer bar. N-hexylamine (50.6 g, 66.0 ml, 0.5 mol) was 

added slowly via the dropping funnel over the period of 1.5- 2 hours. The reaction 

mixture was heat to reflux for 2 hrs at 120 °C, giving a clear, pale yellow solution. The 

reaction mixture was poured into cold distilled water which was then extracted with 

dichloromethane. The organic layer was washed twice with distilled water and dried 

over anhydrous magnesium sulphate. The solvent was then removed under reduce 

pressure to give a clear, pale yellow liquid. The crude product was distilled under 

vacuum to give the clear liquid, exo-C6M (111.1 g, 0.45 mol, 90% yield). 

• Bpt: 134°C@ 3mmbar. 

• Elemental analysis- Found C, 72.68%, H, 8.63%, N, 5.65%; calculated for 

C,sH21 N02: C, 72.84%, H, 8.56%, N, 5.66%. 

• 
1H nmr- (see Appendix 2.9), (CDCh, 400 MHz, 8 (ppm)): 6.19 (t, 2H, H2,3), 3.35 (t, 

2H, H8), 3.17 (p, 2H, H1,4), 2.58 (d, 2H, Hs,6), 1.43 (m, 3H, H9 and H7), 1.18 (m, 6H, 

H 10_12), 1.13 (m, 1H, HT), 0.76 (t, 3H, H13). 

• 
13C nmr- (see Appendix 2.10), (CDCh, 100 MHz, 8 (ppm)): 177.53 (C,4, 15), 137.44 

(C2,3), 47.40 (C5,6), 44.78 (C1,4), 42.34 (C7), 38.30 (Cs), 30.93 (C9), 27.44 (CJO), 26.23 

(C 11 ), 22.09 (C12), 13.69 (Cn). 

• Mass spectrum- (see Appendix 2.11), (EY): 247 (C,sH21N02, M+), 182 (MH+-CsH6), 

66 (M+ -CJOH1sN02). 

• IR- (see Appendix 2.12), (KBr disc, cm-1): 3080 (olefinic C-H stretching), 2980-2867 

(saturated C-H stretching), 1768, 1700 (Asymmetric and symmetric C=O stretching, 

respectively), 1395 (C-N stretching). 
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Synthesis and characterisation of exo-N-propylnorbornene-5,6-dicarboxyimide: 

(exo-C3M) 

The same procedure as for the synthesis of exo-C6M was used to synthesise exo-C3M, 

but the starting material in this case was n-propylamine (24.5 g, 34.0 ml, 0.5 mol). 

Exo-C3M (89.2 g, 0.41 mol, 87% yield) was obtained as a clear liquid which solidified 

at room temperature after the distillation of crude product under vacuum. 

• Bpt: 105 °C @2mmbar. 
• Mpt: 45.5-46 °C. 

• Elemental analysis- Found C, 70.12%, H, 7.54%, N, 6.91 %; calculated for 

C1zHisNOz: C, 70.22%, H, 7.37%, N, 6.83%. 

• 
1H nmr- (see Appendix 2.13), (CDCh, 400 MHz, ()(ppm)): 6.18 (t, 2H, H2,3), 3.30 (t, 

2H, Hs), 3.17 (p, 2H, H1,4), 2.56 (d, 2H, Hs,6), 1.44 (m, 2H, H9 ), 1.41 (m, 1H, H7), 1.12 

(d, 1H, HT), 0.81 (t, 3H, H 10). 

• 
13C nmr- (see Appendix 2.14), (CDCI3, 100 MHz, ()(ppm)): 178.24 (C 11 ,!2), 137.93 

(Cz,3), 47.40 (Cs,6), 45.24 (CI,4), 42.82 (C7), 40.37 (Cs), 21.23 (Cg), 11.55 (CJO). 

• Mass spectrum- (see Appendix 2.15), (EY): 205 (C 12H15N02, M+), 140 (MH+­

C5H6), 66 (M+-C7H9NOz). 

• IR-(see Appendix 2.16), (KBr disc, cm-1): 3055 (olefinic C-H stretching), 3000-2881 

(saturated C-H stretching), 1762, 1687 (Asymmetric and symmetric C=O stretching, 

respectively), 1384 (C-N stretching). 
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Synthesis and characterisation of exo-N-butylnorbornene-5,6-dicarboxyimide: 

(exo-C4M) 

The same procedure as for the synthesis of exo-C6M was used to synthesise exo-C4M, 

but the starting material in this case was n-butylamine (36.7 g, 49.4 ml, 0.5 mol). Exo­

C4M (97.5 g, 0.45 mol, 89% yield) was obtained as a clear liquid which solidified at 

room temperature after the distillation of crude product under vacuum. 

• Bpt: 113 °C @2mmbar. 

• Mpt: 32 °C. 

•Elemental analysis- Found C, 71.23%, H, 7.79%, N, 6.30%; calculated for 

C 13H 17N02: C, 71.21%, H, 7.81 %, N, 6.39%. 

• 
1H nmr- (see Appendix 2.17), (CDCh, 400 MHz, 8 (ppm)): 6.18 (t, 2H, H2,3), 3.32 (t, 

2H, H8), 3.13 (p, 2H, H1,4), 2.54 (d, 2H, H5,6), 1.39 (m, 3H, H9, and H7), 1.18 (m, 2H, 

H10), 1.09 (d, 1H, HT), 0.79 (t, 3H, H11 ). 

• 
13C nmr- (see Appendix 2.18), (CDC13, 100 MHz, 8 (ppm)): 177.98 (C 12,13), 137.71 

(C2,3), 47.68 (C5,6), 45.05 (C1,4), 42.60 (C7), 38.38 (C8), 29.72 (Cg), 20.12 (CJO), 13.54 

(CJJ). 

• Mass spectrum- (see Appendix 2.19), (EI+): 219 (C 13H17N02, M+), 154 (MH+-

CsH6), 66 (M+ -C7H9N02). 

• IR- (see Appendix 2.20), (KBr disc, cm-1
): 3050 (olefinic C-H stretching), 3000-2875 

(saturated C-H stretching), 1750, 1688 (Asymmetric and symmetric C=O stretching, 

respectively), 1380 (C-N stretching). 
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Synthesis and characterisation of exo-N-pentylnorbornene-5,6-dicarboxyimide: 

(exo-CSM) 

The same pro.cedure as for the synthesis of exo-C6M was used to synthesise exo-C5M, 

but the starting material in this case was n-amylamine (43.6 g, 56 ml, 0.5 mol). Exo­

C5M (103.7 g, 0.44 mol, 89% yield) was obtained as a clear liquid by the distillation 

the crude product under vacuum. 

• Bpt: 150 °C @ 1.2 mmbar. 

•Elemental analysis- Found C, 72.25%, H,8.16%, N, 6.07%; calculated for 

C14H1902N: C, 72.07%, H, 8.21, N, 6.00%. 

• 
1H nmr- (see Appendix 2.21), (CDC~), 400 MHz, o (ppm)): 6.20 (t, 2H, H2,3), 3.37 (t, 

2H, Hs), 3.19 (p, 2H, H1,4), 2.58 (d, 2H, Hs,6), 1.45 (m, 3H, H9, and H7), 1.22 (m, 4H, 

HIO,!!), 1.16 (d, lH, HT), 0.79 (t, 3H, H!2). 

• 
13C nmr- (see Appendix 2.22), (CDCh, 100 MHz, o (ppm)): 178.92 (C 13,14), 137.64 

(C2,3), 47.59 (Cs,6), 45.96 (C1,4), 42.51 (C7), 38.51 (C8), 28.87 (C9), 27.24 (CIO), 22.02 

(C 11 ), 13.84 (C 12). 

• Mass spectrum- (see Appendix 2.23), (EI+): 233 (C 13H 17N02, M+), 168 (MH+­

CsH6), 66 (M+ -C9H13N02). 

• IR- (see Appendix 2.24), (KBr disc, cm-1): 3062 (olefinic C-H stretching), 2995-2877 

(saturated C-H stretching), 1762, 1694 (Asymmetric and symmetric C=O stretching, 

respectively), 1394 (C-N stretching). 
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Synthesis and characterisation of exo-N-octylnorbornene-5,6-dicarboxyimide: 

(exo-CSM) 

The same procedure as for the synthesis of exo-C6M was used to synthesise exo-C8M, 

but the starting material in this case was n-octylamine (64.6 g, 83ml, 0.5 mol). Exo­

C8M (116.9 g, 0.43 mol, 85% yield) was obtained as a clear liquid by the distillation 

the crude product under vacuum. 

• Bpt: 144 °C @ 1 mmbar. 

• Elemental analysis- Found C, 74.13%, H, 9.02%, N, 5.23%; calculated for 

C 17H2sN02: C, 74.15%, H, 9.15%, N, 5.09%. 

• 
1H nmr- (see Appendix 2.25), (CDCh, 400 MHz, b (ppm)): 6.19 (t, 2H, H2,3), 3.34 (t, 

2H, Hs), 3.14 (p, 2H, H1,4), 2.55 (d, 2H, Hs,6), 1.42 (m, 3H, H9 and H7), 1.16 (m, IIH, 

H 10. 14 and HT), 0.75 (t, 3H, H15). 

• 
13C nmr- (see Appendix 2.26), (CDC13, 100 MHz, b (ppm)): 177.84 (C 16,17), 137.65 

(C2,3), 47.61 (Cs,6), 44.98 (C1,4), 42.54 (C7), 38.55 (C8), 31.56 (C9), 28.92 (CJ0, 11 ), 27.59 

(C 12), 26.78 (C13), 22.43 (C 14), 13.92 (C,s). 

• Mass spectrum- (see Appendix 2.27), (Er): 275 (C 17H25N02, M+), I 10 (MH+­

CsH6), 66 (M+-C7H9NOz). 

• IR- (see Appendix 2.28), (KBr disc, cm-1): 3062 (olefinic C-H stretching), 2998-2875 

(saturated C-H stretching), 1756, 1688 (Asymmetric and symmetric C=O stretching, 

respectively), 1400 (C-N stretching). 
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Synthesis and characterisation of endo-N-hexylnorbornene-5,6-dicarboxyimide: 

(endo-C6M) 

The same procedure as for the synthesis of exo-C6M was used to synthesise endo­

C6M, but the starting material in this case were endo-AN (82.0 g, 0.5 mol) and n­

amylamine (43.6 g, 56 ml, 0.5 mol). Endo-C6M (112.4 g, 0.46 mol, 91% yield) was 

obtained as a clear liquid by the distillation the crude product under vacuum. 

• Bpt: 137 °C @3 mmbar. 

• Elemental analysis- Found C, 72.69%, H, 8.53%, N, 5.61 %; calculated for 

C,5H21 N02: C, 72.84%, H, 8.56%, N, 5.66%. 

• 
1H nmr- (see Appendix 2.29), (CDCh, 400 MHz, 0 (ppm)): 6.05 (t, 2H, H2,3), 3.34 

(d, 2H, Hs,6), 3.28 (t, 2H, Hs), 3.20 (p, 2H, Ht,4), 1.69 (m, 1H, HT), 1.50 (m, 1H, H7), 

1.38 (m, 2H, H9 ), 1.22 (m, 6H, H 10.12 ), 0.83 (t, 3H, H13). 

• 
13C nmr- (see Appendix 2.30), (CDCh, 100 MHz, o (ppm)): 177.59 (C14,,5), 134.02 

(Cz,3), 52.06 (C7), 45.56 (Cs,6), 44.74 (Ct,4), 38.29 (Cs), 31.18 (C9), 27.61 (C10), 26.39 

(C 11 ), 22.35 (C!2), 13.87 (C 13). 

• Mass spectrum- (see Appendix 2.31), (Er): 247 (C 15H21 N02,M+), 182 (MH+-C5H6), 

66 (M+ -C toHtsNOz). 

• IR- (see Appendix 2.32), (KBr disc, cm-1): 3061 (olefinic C-H stretching), 2997-2868 

(saturated C-H stretching), 1769, 1688 (Asymmetric and symmetric C=O stretching, 

respectively), 1400 (C-N stretching). 
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2.3.3 Synthesis and characterisation of difunctional monomers 

General procedure for the synthesis of exo,exo-difunctional monomers: exo-CnD 

A known weight of exo-AN was dissolved in glacial acetic acid at 118-120°C in a 

round bottom flask equipped with a condenser, a solids addition tube (for solid 

diamines) or addition funnel (for liquid diamines), a thermometer and a magnetic 

stirrer bar. The required amount of n-alkyl diamine was added slowly. The reaction 

mixture was refluxed for 2 hours at 120 °C using a silicone oil bath. The reaction 

mixture was poured into cold distilled water which was then extracted with 

dichloromethane. The organic layer was washed twice with distilled water, dried over 

anhydrous magnesium sulphate, filtered and the solvent was removed under vacuum to 

give the difunctional monomers as white powders. Analytical samples were obtained 

by further recrystallisation from acetone. 

Synthesis and characterisation of exo,exo-N ,N' -propylene-di-(norbornene-5,6-

dicarboxyimides): (exo-C3D) 

exo-AN (20.0 g, 0.12 mol) was dissolved in glacial acetic acid (130 ml) at 118-120°C 

in a 3-necked round bottom flask equipped with a condenser, addition funnel, a 

thermometer and a magnetic stirrer bar. 1,3-Diaminopropane (4.4 g, 5 ml, 0.06 mol) 

was added to the flask via the dropping funnel over a period of 1 hour. The reaction 

mixture was heat to reflux for 2 hours, giving a pale yellow solution. The solution was 

poured into cold distilled water which was then extracted with dichloromethane. The 

organic layer was washed twice with distilled water, dried over anhydrous magnesium 

sulphate, filtered and the solvent was removed under vacuum. The final product was 

obtained by further recrystallisation from acetone to give the white powder, exo-C3D 

(40.0 g, 0.11 mol, 91% yield). 

• Mpt: 131.6 °C 

• Elemental analysis- Found C, 68.78%, H, 5.98%, N, 7.73%; calculated for 

C21H22N204: C, 68.84%, H, 6.05%, N, 7.64%. 

• 1H nmr- (see Appendix 2.33), (CDCb, 400 MHz), 8 (ppm)): 6.28 (t, 4H, H2,3), 3.46 

(t, 4H, H8), 3.25 (p, 4H, H 1,4), 2.66 (d, 4H, Hs,6), 1.86 (p, 2H, H9), 1.52 (m, 2H, H7), 

1.29 (m, 2H, HT). 
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• 
13C nmr- (see Appendix 2.34), (CDCh, 100 MHz), o (ppm)): 177.94 (C 10,11 ), 137.82 

(C2,3), 47.84 (Cs,6), 45.55 (C1,4), 43.20 (C7), 36.20 (C8), 26.32 ( C9). 

• Mass spectrum- (see Apendix 2.35), (EY): 366 (C21 H22N40 2, M+), 301 (MH+-C5H6), 

235 (MH+-CIOHJz), 66 (M+-CI6HI6N40z). 

• IR- (see Appendix 2.36), (KBr disc, cm-1): 3048 (olefinic C-H stretching), 2996-2881 

(saturated C-H stretching), 1859, 1776 (Asymmetric and symmetric C=O stretching, 

respectively), 1425 (C-N stretching). 
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Synthesis and characterisation of exo,exo-N,N'-pentylene-di-(norbornene-5,6-

dicarboxyimides): (exo-CSD) 

The same procedure as for the synthesis of exo-C3D was used to synthesise exo-C5D, 

but the starting material in this case was 1 ,5-diaminopentane (6.1 g, 0.06 mol) to yield 

exo-C5D as a white powder ( 42.5 g, 0.11 mol, 90% yield). 

• Mpt: 185.1 °C 

• Elemental analysis- Found C, 69.96%, H, 6.56%, N, 7.20%; calculated for 

C23Hz6Nz04: C, 70.03%, H, 6.64%, N, 7.10%. 

• 
1H nmr- (see Appendix 2.37), (CDCh, 400 MHz, o (ppm)): 6.28 (t, 4H, H23), 3.44 (t, 

4H, Hs), 3.26 (p, 4H, H1,4), 2.67 (d, 4H, Hs,6), 1.57 (m, 4H, H9), 1.51 (m, 2H, H7), 1.31 

(p, 2H, H 10), 1.21 (m, 2H, HT). 
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• 
13C nmr- (see Appendix 2.38), (CDCh, 100 MHz), 8 (ppm)): 178.05 (C 11 ,12), 137.80 

(Cz,J), 47.79 (Cs,6 ), 45.13 (Ct,4), 42.75 (C7), 38.35 (Cs), 27.26 (C9), 24.30 (C 10). 

• Mass spectrum- (see Appendix 2.39), (Et): 394 (C23H26N40 2, M+), 329 (MH+­

CsH6), 263 (MH+-CtoHtz), 66 (M+-CtsHzoN40z). 

• IR- (see Appendix 2.40), (KBr disc, cm.1): 3050 (olefinic C-H stretching), 2999-2847 

(saturated C-H stretching), 1858, 1777 (Asymmetric and symmetric C=O stretching, 

respectively), 1420 (C-N stretching). 
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Synthesis and characterisation of exo,exo-N ,N' -hexylene-di-(norbornene-5,6-

dicarboxyimides): (exo-C6D) 

The same procedure as for the synthesis of exo-C3D was used to synthesise exo-C6D, 

but the starting material in this case was 1 ,6-diaminohexane (7 .0 g, 0.06 mol) to yield 

exo-C6D as a white powder (45.3 g, 0.11 mol, 92% yield). 

• Mpt: 154 °C 

•Elemental analysis- Found C, 70.13%, H, 6.84%, N, 6.84%; calculated for 

Cz4HzsN204: C, 70.57%, H, 6.91 %, N, 6.86%. 

• 
1H nmr- (see Appendix 2.41), (CDCh, 400 MHz, ()(ppm)): 6.27 (t, 4H, H2,3), 3.43 (t, 

4H, H8), 3.26 (p, 4H, H1,4), 2.66 (d, 4H, Hs,6), 1.52 (m, 6H, H9, and H7), 1.31 (m, 4H, 

H 10), 1.20 (m, 2H, HT)· 

• 
13C nmr- (see Appendix 2.42), (CDCI3, 100 MHz, 8 (ppm)): 177.94 (Ctt,l2), 137.67 

(C2,3), 47.66 (C5,6), 45.01 (C1,4), 42.62 (C7), 38.40 (Cs), 27.45 (C9), 26.33 (Cto). 
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• Mass spectrum- (see Apendix 2.43), (EY): 408 (C24H28N402, M+), 343 (MH+-CsH6), 

277 (MH+-CIOHiz), 66 (M+-C19H22N40z). 

• IR- (see Appendix 2.44), (KBr disc, cm-1): 3050 (olefinic C-H stretching), 2999-2889 

(saturated C-H stretching), 1860, 1777 (Asymmetric and symmetric C=O stretching, 

respectively), 1420 (C-N stretching). 
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Synthesis and characterisation of exo,exo-N,N' -nonylene-di-(norbornene-5,6-

dicarboxyimides): (exo-C9D) 

The same procedure as for the synthesis of exo-C3D was used to synthesise exo-C9D, 

but the starting material in this case was 1,9-diaminononane (9.5 g, 0.06 mol) to yield 

exo-C9D as a white powder (44.7g, 0.10 mol, 83% yield). 

• Mpt: 68 °C 

•Elemental analysis- Found C, 71.82%, H, 7.99%, N, 6.23%; calculated for 

C27H34N204: C, 71.97%, H, 7.61 %, N, 6.22%. 

• 
1H nmr- (see Appendix 2.45), (CDCh, 400 MHz, 8 (ppm)): 6.28 (t, 4H, H2,3), 3.43 (t, 

4H, H8), 3.26 (p, 4H, H1,4), 2.66 (d, 4H, Hs,6), 1.52 (m, 6H, H9 and H7), 1.25 (m, 12H, 

HI0-12 and H7'). 

• 
13C nmr- (see Appendix 2.46), (CDCh, 100 MHz, 8 (ppm)): 178.07 (CI3,I4), 137.78 

(C2,3), 47.75 (Cs,6), 45.11 (C1,4), 42.68 (C7), 38.67 (Cs), 29.19 (Cg), 27.00 (CIO), 27.69 

(C 11 ), 26.84 (C12). 
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• Mass spectrum- (see Appendix 2.47), (EY): 450 (C27H34N40 2, M+), 385 (MH+­

CsH6), 319 (MH+-CwH12), 66 (M+-C22HzsN40z). 

• IR- (see Appendix 2.48), (KBr disc, cm-1): 3050 (olefinic C-H stretching), 2997-2880 

(saturated C-H stretching), 1860, 1779 (Asymmetric and symmetric C=O stretching, 

respectively), 1427 (C-N stretching). 
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Synthesis and characterisation of exo,exo-N,N' -dodecylene-di-(norbornene-5,6-

dicarboxyimides): (exo-C12D) 

The same procedure as for the synthesis of exo-C3D was used to synthesise exo-C12D, 

but the starting material in this case was 1, 12-diaminododecane (12.0 g, 0.06 mol) to 

yield exo-C12D as a white powder (47.1 g, 0.10 mol, 80% yield). 

• Mpt: 64 °C 

•Elemental analysis- Found C, 73.29%, H, 8.51 %, N, 5.79%; calculated for 

C3oH4oNz04: C, 73.14%, H, 8.18%, N, 5.69%. 

• 
1H nmr- (see Appendix 2.49), (CDCh, 400 MHz, 8 (ppm)): 6.28 (t, 4H, H2•3), 3.46 (t, 

4H, H8), 3.27 (p, 4H, H1,4), 2.66 (d, 4H, Hs,6), 1.44 (m, 6H, H9 and H7), 1.24 (m, 18H, 

Hw-13 and H7'). 

• 
13C nmr- (see Appendix 2.50), (CDCh, 100 MHz, 8 (ppm)): 178.35 (C 14,15), 138.06 

(C2,3), 48.02 (Cs,6), 45.39 C1,4), 42.94 (C7), 38.99 (Cs), 29.70 (C9), 29.66 (Cw), 29.37 

(C11), 28.01 (C1z), 27.19 (C13). 
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• Mass spectrum- (see Appendix 2.51 ), (EY): 492 (C30H40N402, M+), 427 (MH+­

CsH6), 361 (MH+-C10H!2), 66 (M+-C25H34N402). 

• IR- (see Appendix 2.52), (KBr disc, cm-1
): 3045 (olefinic C-H stretching), 2997-2879 

(saturated C-H stretching), 1860, 1779 (Asymmetric and symmetric C=O stretching, 

respectively), 1424 (C-N stretching). 
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3.1 Introduction 

3.1.1 General introduction 

Metathesis polymerisation is a very versatile reaction. Materials ranging in properties 

from soft elastomers, through tough thermoplastics to highly crosslinked hard 

thermosets can be prepared by this chemistry. 1
-
12 Metathesis polymerisation, 

depending on the ring strain of the cycloolefin monomer, is fast and can be carried out 

to high conversion in the bulk without any major by-products. These characteristics 

lead to the possibility of producing polymeric materials from monomers in one step 

without using solvents and without the requirement to remove unpolymerised 

monomers. Fast polymerisation of dicyclopentadiene, for example, has been used in 

the commercial manufacture of reaction injection moulded parts by B. F. Goodrich Co., 

Nippon Xeon, Hercules Inc., and others. 13
.
17 

The work described in this chapter is concerned with making new polymeric 

materials via ROMP using a well-defined ruthenium carbene initiator, 

C}z[(C6H 11 )3P]zRu=CHC6H5• The object of the work was to study the possibility of 

this system for the RIM and/or RTM-processes. Small scale bulk polymerisations in 

glass tubes were used to test the polymerisability of mono- and difunctional imido 

norbomene derivatives with the ruthenium carbene initiator. The synthesis of all 

monomers used in this work was described in the previous chapter. The ruthenium 

carbene initiator was synthesised as described in the literature. 18
-
20 The experiments 

were carried out using neat monomer mixed with the initiator. This set of experiments 

represented a first scan of reaction conditions and, as will be described, the conversions 

obtained are not ideal for transfer to a RIM or RTM process in which the reactive 

mixture is usually injected or poured into a mould. It was expected that these first 

trials would provide guidance as to appropriate conditions and an indication of the 

problem to be solved before larger scale in-mould polymerisation was attempted. 

This chapter is divided into three sections. The first section presents a brief 

introduction to crosslinked polymers. In general only information relevant to the work 

described in this thesis is discussed in detail, information on related topics can be found 

in the literature cited. The ROMP of exo- and enda-N-hexylnorbomene-5,6-
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dicarboxyimide (exo- and endo-C6M) initiated by a well-defined ruthenium carbene in 

bulk is discussed in section 3.2. Subsequently the synthesis of the crosslinked 

polymers using difunctional monomer, exo-C6D, as a crosslinking reagent is described 

along with the polymer characterisation in section 3.3. The relative reactivity of exo­

and endo-monomers via ROMP in solution was studied using the nmr technique and 

the results are discussed in Chapter 4. Optimised reaction conditions for RIM and/or 

RTM were developed subsequently to these preliminary studies and are discussed in 

Chapter 5. 

3.1.2 Crosslinked polymers21
-
24 

Crosslinking polymerisations lead to the formation of insoluble and infusible polymers 

in which chains are joined together to form a network structure. If a mixture mono­

and difunctional monomers are polymerised then the latter becomes a constituent of 

two polymer chains, effectively crosslinking the chains together. When all the polymer 

chains are mutually connected an 'infinite network' is formed as shown in Figure 3.1. 

n • + 

Monofunctional monomer Difunctional monomer 

Figure 3.1 Structure of crosslinked polymer. 
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The content of difunctional monomer in a crosslinked polymer can be quoted as a 

percentage of difunctional monomer in the feed stock or the content of actual 

difunctional monomer present in the polymer network. There are other complications 

which make determination of actual difunctional monomer active in the polymer 

network difficult. Firstly, although a defined level of crosslinker can be used to 

synthesise the crosslinked polymer it is not certain that both functional groups in every 

difunctional monomer will react. Secondly, it is possible to produce 'entanglement 

crosslinks' by spurious entanglements, as shown in Figure 3.2. Generally 

'entanglement crosslinks' increase when the rate of polymerisation is increased. It is 

also high in a non-agitated polymerisation systems, whereas vigorous agitation tends to 

minimise entanglements. There is no simple and rapid method for determining the 

effective difunctional monomer content in a polymer network. For convenience, the 

nominal figure based on the actual difunctional monomer feed was used in this work 

and is referred to the nominal crosslink ratio in Figure 3.1. 

Figure 3.2 Permanent entanglement crosslink. 

The usual way to characterise the degree of swelling of crosslinked polymers is 

through the volumetric swelling ratio, q = vr/vi where vr is the final volume, 

when the gel cannot absorb any more solvent and Vi is the initial volume before any 

solvent has been absorbed. Alternative measures of swelling are: (1) the polymer 

volume fraction <1> =llq = v/vr; and (2) mass swelling ratio, qm = mr /mi where mr and 

mi are the final (swollen) and initial (dry) mass. In this work, qm was used to determine 

the degree of swelling of the crosslinked polymers. 

A theoretical prediction for Me (the average molecular weight between crosslinks) can 

be determined from the ratio of mono- to difunctional monomers, assuming perfect 

incorporation of difunctional monomers. We can calculate a theoretical value for Me, 

the average molecular weight between crosslinks using the following expression: 
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Moles of monofunctional monomer 
Me( theory) = x Molecular weight of repeat unit. 

2 x Moles of difunctional monomer 

Thus for a 5% loading of difunctional monomer we expect a theoretical value for 

M f h . 100 1 . 10 . In I c o t e repeat umt mass x- x- , I.e. umts. genera we can express the 
5 2 

repeat unit mass x 50 . theoretical Me as ___ ....::;.._ _________ . An ex pen mental value for Me 
mole% of difunctional crosslinker 

can be determined from shear modulus measurments using rubber elasticity theory.25 

The equation used is :- Mc(expt.) = p R T; where G = shear modulus 50 °C above 
G 

Tg determined by Dynamic Mechanical Thermal Analysis using parallel plate 

geometry, p = density, determined using a density column, R = 8.31 JK1mor 1 and 

T = temperature (Kelvin). When Mc(theory) "" Mc(expt.) perfect crosslinking has 

occurred. 

In this work, the crosslinking was accomplished by polymerising a polyfunctional 

cycloolefin crosslinker containing two norbornene groups (exo-CnD) with cycloolefins 

containing a norbornene group (exo- and endo-CnM) in a manner where the crosslinker 

functions as a comonomer. If the polymerisation was carried out in the absence of the 

crosslinking agent, exo-CnD, a polymer which had a high degree of solubility in 

hydrocarbon solvents was obtained. In cases where the crosslinkers were used, the 

resulting polymers were solvent resistant and varied in properties from soft elastomers 

to brittle materials depending on their Tgs and crosslink density. 

3.2 Trial bulk polymerisations of exo- and endo-monofunctional monomer 

mixtures: (exo- and endo-C6M) 

In this section, exo- and endo-N-hexylnorbornene-5,6-dicarboxyimide (exo- and endo­

C6M) were used as feed monomers and ROMP was initiated by using the ruthenium 

carbene, see Figure 3.3. Linear polymeric materials with unsaturated backbones and 

imido pendant groups were obtained as shown in Figure 3.4. 
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Exo-C6M Endo-C6M 

PCy 
Cl'\. I 'Y

3 
(()\ 

Ru-~ 
c1/ 1 

PCy3 

Ruthenium carbene initiator 

Figure 3.3 Chemical structures of exo- and endo-C6M and the ruthenium 

carbene initiator. 

3.2.1 Results and discussion 

The polymer synthesis could be followed by the changes in colour and viscosity of the 

reaction mixture. The rate at which this occurred depending upon the amount of the 

exo- and endo-monomer used in the feed. The greater the amount of exo-monomer in 

the monomer feed the quicker the change in colour, from pink (initiator) to yellow 

(propagating species) and the increase in viscosity. Whereas using the endo-monomer 

at concentrations between 88 and 100% in the feed showed the colour change but did 

not show the change in viscosity under these conditions, indicating initiation but very 

slow propagation. Increased viscosity may be used as a qualitative indication of the 

polymerisation, but it can not be used for determining the conversion since the 

viscosity/molecular weight relationship is unknown for this system. The extent of the 

polymerisation can be studied by withdrawing and analysing small samples during the 

course of polymerisation or by terminating polymerisation at different stages in a series 

of reactions which have identical initial compositions. These methods had been used 

and will be discussed in Chapter 5. 

3.2.1.1 Synthesis of linear polymeric materials 

The exo-C6M (10 g) and the ruthenium carbene initiator (10 mg) were added to a test 

tube. The mixture was stirred at room temperature for 5 minutes before heating at 30-

350C for 10 minutes in an oil bath. After 10 minutes, the solution became highly 

viscous, and the temperature was raised to 110-120 °C for 30 minutes. After this time, 

the test tube was removed from the oil bath and the resl!lting polymer was isolated by 
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breaking away the glass. To study the effect of the endo-isomer in the polymerisation, 

endo-C6M and exo-C6M were mixed in different proportions and then polymerised 

under the same reaction conditions as above. 

0 

Exo- and endo-C6M Poly(C6M) 

Figure 3.4 A schematic representation of the linear polymer synthesis. 

3.2.1.2 Characterisation of polymeric materials obtained 

This section describes the characterisation of the linear polymeric materials whose 

synthesis was described in section 3.3.1.1. The characterisation was carried out using 
1H nmr, GPC, DSC and TGA. All polymeric materials obtained in this section 

dissolved in toluene, tetrahydrofuran, chloroform, and dichloromethane. The pure 

linear polymers were isolated by precipitation of the crude polymeric materials from 

chloroform into excess methanol and dried under vacuum at 40°C for 2 days. 

Polymer characterisation using 1H nmr spectroscopy 

The amount of unreacted monomer and the cis/trans content in the crude polymeric 

materials can be determined directly from the 1H nmr spectra, as the olefinic hydrogen 

signals of the unreacted monomers and the polymer obtained are clearly distinguished. 

The resonances attributable to the cis and trans vinylene hydrogens of the polymer are 

well separated and can be seen in the range o 5-6 ppm, whereas the resonances 

attributable to the olefinic hydrogen of exo- and endo-monomers are well separated and 

can be seen in the range o 6-7 ppm. The 1 H nmr spectra of a 80% exo/20% endo-C6M 

monomer mixture, the crude polymeric material and the pure polymer obtained are 

shown in figure 3.5a, b and c, as a typical example of this analysis. 
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* 

* 

Olefinic proton 

Exo-monomer 

Endo-monomer ~ ! \ Jl\ 

'--------------------------'~ L ~-~J\,, ~ '------

Unreacted 
exo-monomer 

! Unreacted 
j endo-monomer 

Trans vinylene 

j Cis vinylene 

ppm 

• 

ppm 

• 

ppm 

Figure 3.5 1H nmr spectra of (a) 80% exo-120% endo-monomer mixture, 

(b) crude polymeric material and (c) pure linear polymer. 

* residual hydrogens in CDCb, • water dissolved in CDC13. 
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Figure 3.6 1H nmr spectra of the monomer feeds and polymers obtained from ROMP in bulk of exo-/endo-monomer mixtures. 
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% monomers in feed Crude polymeric materails 

Experiment [M]/[1] Sample 
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4 
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6 

ratio Exo-C6M Endo-C6M %Exo-C6M % Endo-C6M %Polymer appearance 

unreacted consumed unreacted consumed Obtained Trans Cis 

A (B%)* c (0%)** 

4,600 100 0 II 89 (89%) 0 0 89 75 25 hard 

5,500 90 10 13 77 (86%) 5 5 (50%) 82 74 26 hard 

4,400 80 20 21 59 (74%) 12 8 (40%) 67 79 21 rubbery 

4,700 56 44 26 30 (54%) 41 3 (7%) 33 77 23 rubbery 

liquid 

4,200 12 88 12 0 88 0 0 0 0 mixture 
... 

liquid 

4,400 0 100 0 0 100 0 0 0 0 mixture 
... 

Table 3.1 1H nmr analysis of the crude polymeric materials obtained from ROMP in bulk of exo-/endo-monomer mixtures. 

* Consumed A = exo-monomer in feed- unreacted exo-monomer in crude product Consumed B = (A x I 00)/exo-monomer in feed 
**Consumed C = endo-monomer in feed- unreacted endo-monomer in crude product Consumed D = (C x 100)/endo-monomer in feed 

***No polymer was obtained under the condition studied, and unreacted monomers were observed after the reaction. 
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The 1 H nrnr spectra and the associated parameters for this set of experiments were 

determined and are recorded in Figures 3.6 and Table 3.1, respectively. The details of 

the 1H and 13C nmr assignment of the monomers and the polymers are described in 

section 2.3 and 4.3.1.2, respectively. 1H nmr analysis indicated that there were residual 

exo- and endo-monomers in all crude samples, as shown in Figure 3.6. Even in the 

case of pure exo-monomer, experiment 1, 1H nmr analysis revealed that there was 

residual exo-monomer present. It is apparent that the exo-isomer polymerised 

preferentially as the proportion of endo-monomer in the monomer mixture is increased 

the overall extent of polymerisation decreases until, at 88 and 100% endo-monomer 

content in the feed, experiment 5 and 6, polymerisation is entirely suppressed. 

However, the data also show that at 10% endo-monomer content in the feed, 

experiment 2, half is consumed in the polymerisation whereas when there is 44% endo­

monomer in the feed, experiment 4, only 7% of it is consumed. 

Polymer characterisation by GPC 

Experiment % monomer in feed GPC* 

-
Exo-C6M Endo-C6M Mn PDI No. of peaks 

1 100 0 1,413,000 1.3 1 

2 90 10 843,000 1.6 1 

3 80 20 454,000 1.7 I 

4 56 44 345,000 1.8 I 

Table 3.2 GPC analysis of the polymeric materials obtained from ROMP in bulk of 

exo- and endo-C6M. 

* Waters differential diffractometer detector, three Polymer 

Laboratories gel columns (exclusion limits 100, 103
, 105 A), 

chloroform eluent, polystyrene calibration. 
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The number average molecular weight (Mn) and polydispersity index, Mw!:M:n (PDI) 

of all polymeric materials obtained in this section are recorded in Table 3.2 and the 

original traces are shown in Appendix 3.1-3.4. It was found that the product 

'polystyrene equivalent' molecular weights decrease and the polydispersities increase 

as the proportion of endo-monomer in the feed increases. The highest molecular 

weight polymer, Mn = 1.4xl06
, was obtained from experiment 1 in a reaction 

proceeding to 89% conversion when there was no endo-monomer included in the feed. 

Polymer characterisation by DSC and TGA 

The crude polymeric materials obtained from experiments I to 4 were purified by 

precipitation from chloroform into excess methanol. The aim was to compare the Tg 

of the crude products and pure linear polymers. All the pure linear polymers were 

obtained as white solids. The glass transition temperature and the temperature for 2% 

weight loss of crude polymeric materials and pure polymers are recorded along with 

the conversion and the number average molecular weights in Table 3.3. All DSC 

traces are shown in Appendix 3.5-3.12. 

DSC TGA 

% Tg (OC) 2% weight lossCC) 
-

Experiment unreacted Mn Crude Pure Crude Pure 

* polymer monomers polymer Polymer polymer 

I 11 1,413,000 82 86 295 >300 

2 18 843,000 30 82 169 >300 

3 33 454,000 -41 81 157 >300 

4 67 345,000 -59 81 157 >300 

Table 3.3 Thermal analysis of the polymers obtained from ROMP in bulk of exo-1 

endo-C6M monomer mixtures. 

* % unreacted exo- and endo-monomers in the crude products. 

72 



Chapter 3 

It is clear that as the amount of unreacted monomers trapped in the polymer matrix 

increases the observed glass transition temperature (Tg) and temperature for 2% weight 

loss of the crude products decrease. The glass transition temperatures of crude 

polymers decrease dramatically from 82 to -59°C, as the amount of the unreacted 

monomers trapped in the polymer matrixes increase from 11 to 67%. 

The Tg values for pure linear polymers were in the range 81-86°C which are higher 

than those of the crude products. This clearly indicates that the glass transition of the 

products is related to the amount of the residual monomers which act as plasticisers. 

Thermogravimetric analysis (TGA) on all crude samples shows a substantial weight 

loss increased from 157 to 295 °C as the amount of the unreacted monomer decreases 

and the molecular weight of the polymer increases, whereas pure polymers show a 

substantial weight loss above 300 °C. 

3.3 Trial bulk polymerisations of mono- and difunctional monomer mixtures: 

(exo-and endo-C6M and exo-C6D) 

In this section exo,exo-N,N' -hexylene-di-(norbomene-5,6-dicarboxyimides), exo-C6D, 

was used as a crosslinking reagent. A relatively high mixing temperature, 50 °C, was 

necessary for these experiments because of the limited solubility of exo-C6D in exo­

C6M at room temperature. The trial bulk polymerisations were carried out in the test 

tubes which also served as moulds. The solid difunctional monomer was dissolved in 

liquid monofunctional monomer prior to addition of the initiator. The final products 

were isolated by breaking away the glass. 

3.3.1 Results and discussion 

ROMP in bulk of exo-C6M and exo-C6D initiated by the ruthenium carbene yielded 

crosslinked polymeric materials with unsaturated backbones and imido pendant group 

as shown in Figure 3.7. 
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Figure 3.7 A schematic representation of the crosslinked polymer synthesis. 
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3.3.1.1 Synthesis of crosslinked polymeric materials 

The same procedure as was used for the synthesis of linear polymeric materials was 

repeated except that in these experiments the difunctional monomer, exo-C6D, was 

dissolved completely, by heating and stirring at 50°C, in the monofunctional monomer, 

exo-C6M, prior to the addition of the initiator. A few minutes after the addition of the 

initiator at 50°C, the solution became highly viscous, and the temperature was raised to 

1 00-120°C for 30 minutes. The polymer was obtained as clear yellow hard material 

which was insoluble giving a gel in chloroform, dichloromethane and tetrahydrofuran 

which is consistent with the formation of crosslinked polymer. 

To study the effect of the endo-isomer in the polymerisation, an exo-/endo-monomer 

mixture was mixed with exo-C6D prior to the addition of the initiator. The monomer 

mixture was stirred at 50 °C until exo-C6D dissolved completely and then polymerised 

under the same reaction conditions as above. 

3.3.1.2 Characterisation of polymeric materials obtained 

This section describes the characterisation of the crosslinked polymeric materials 

whose synthesis was described in section 3.3.1.1. The characterisation of the crude 

polymeric materials was carried out using DSC and TGA. The crude products were 

subjected to sol/gel extraction using chloroform in a Soxhlet apparatus. The gel 

fractions were examined using DSC and TGA and the sol fractions were examined by 

GPC and 1H nmr spectroscopy. 

Characterisation of crude polymeric materials and gel fractions by DSC and TGA 

The thermal analysis data for these preliminary crosslinking experiments are recorded 

in Table 3.4, in comparison with data for analogous experiments in the absence of 

crosslinker. DSC traces are shown in Appendix 3.13 -3.16. The main interest in these 

crosslinked polymer properties lies in the values of the glass transition temperature 

(Tg) and the temperature for 2% weight loss (TGA). The crosslinked polymeric 

material which was obtained from pure exo-monomer crosslinked with a 3 mole% 

loading of the difunctional reagent, experiment 7, exhibited a lowering of Tg of about 

3 °C, in comparison with that of a sample prepared in an experiment carried out in the 

absence of crosslinking agent in the monomer feed, which is consistent with a slightly 
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lower monomer conversion. When 19% endo-monomer was included in the feed stock 

the raw product, experiment 8, exhibited a very low Tg at -38 °C, which is consistent 

with heavy plasticisation by unreacted monomer. When exo-C6D is incorporated in 

the monomer feed the gelation time of the polymerisation system was shorter than that 

without exo-C6D. This might be because the rate of the reaction increased and/or the 

crosslinked polymer formed was insoluble in the liquid monomer. If gelation occurred 

too early, the polymerisation reaction would not go to completion and the residual 

monomer would act as plasticiser. In practice the gelation appears quite suddenly in 

the reacting mass, the stirrer stops and at this point it may be that access to the active 

chain ends by monomer is inhibited. 

Experiment 7 3 8 

Exo-C6M (%by mole) 100 97 80 78 

Endo-C6M (%by mole) 0 0 20 19 

Exo-C6D (%by mole) 3 3 

Ratio of monomer/ initiator 4,600 3,700 4,400 3,800 

Mixing temperature CC) room 50 Room 50 

Gel fraction (W g• % by weight) 86 51 

Sol fraction (Ws,% by weight) 14 49 

Temp. for 2% weight loss for 295 281 157 157 
crude product CC) 

Tg of crude product (0C) 82 79 -41 -38 

Tg of gel fraction(0 C) 88 88 

Degree of swelling (q, by 4 7.5 
wei ht (g)) 

Polymer appearance hard hard rubbery rubbery 

Table 3.4 The characterisation of crosslinked polymeric materials compared with 

linear polymeric materials. 
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The sol/gel content of the crosslinked samples was determined by extraction of the sol 

fractions. About 4 g (Wi) of crude products were subject to sol/gel extraction using 

chloroform in a Soxhlet apparatus for 3 days. The gel fractions were dried under 

vacuum at 40 °C for 2 days and weighed (Wg). The weight difference between Wg and 

Wi was taken as the weight of sol (W5). The values of Wg, Ws and Tg of the gel 

fractions were determined and are recorded in Table 3.4. It was found that the gel 

fractions decrease, from 86 to 51% (by weight) when endo-monomer is included in the 

monomer feed, experiment 8, in comparison with experiment in the absence of endo­

monomer in the monomer feed, experiment 7. The Tg values for the pure crosslinked 

materials were about 88 °C which are higher than those of the crude products. The Tg 

of the gel fraction from experiment 7 was much higher than that of the crude product, 

from -38 to 88 °C. A substantial decrease in the temperature for 2% weight loss 

(TGA) for the crude samples, from 281 to 157 °C, is observed as the amount of sol 

increased from 14 to 49%. This indicates that Tg and temperature for 2% weight loss 

of the products are affected by the amount of residual monomer, sol fractions, which 

act as plasticisers. 

Characterisation of gel fractions by swelling 

Swelling measurement of the gel fractions were carried out in toluene at room 

temperature. Small pieces of gels, weighing about 1 g, were immersed in toluene for 2 

days, the swollen gels were removed from the solvent, quickly dried with filter paper 

and weighed. The values of the degrees of swelling (qm) were determined and the 

results are recorded in Table 3.4. It is apparent that the degree of swelling (qm) of the 

gel fraction increased when the endo-monomer was included in the monomer feed, 

experiment 8, in comparison with data for an analogous experiment in the absence of 

endo-monomer in the monomer feed, experiment 7. This indicates that the polymer 

which was obtained from experiment 8 has a high swelling capacity which is the 

property of a lightly crosslinked polymer, since the degree of swelling invariably 

decreases with increasing degree of crosslinking. Whereas in experiment 7, a highly 

crosslinked product with a lower extractable content showed a lower swelling capacity. 

It can be concluded that both the crosslink density and the content of unreacted 

monomer are effected by the endo-monomer in the monomer feed. 
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Characterisation of sol fraction by GPC 

In the first attempt to determine the amount of the unreacted crosslinking agent ( exo­

C6D), the sol fractions were submitted to GPC. The traces indicated a mixture 

consisting of low molecular weight linear and branch polymers, broad peak a, 

unreacted mono- and difunctional monomers, peaks c and b respectively. These were 

confirmed by the GPC elution times and by enrichment, see Figure 3.8. It is apparent 

that there was a very low amount of residual exo-C6D in the sol fractions, indeed too 

low to be calculated reliably from the area under peaks in the GPC traces. 

b 

(al) 

c u. 

a b 

(bl) 

ju_ 

~! 
a 

F~------~--~~~~ 

~ 

(a2) 

~~ 
~~~ 

c ;u.. 

b 

a 

(b2) 

Figure 3.8 GPC trace of (al) sol fraction from experiment 7, (a2) sol fraction from 

experiment 7 after the addition of exo-C6D, (bl) sol fraction from 

experiment 8, (b2) sol fraction from experiment 8 after the addition of 

exo-C6D. 
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Characterisation of sol fractions by 1 H nmr spectroscopy 

In practice, the amounts of the unreacted monofunctional monomers (exo- and endo­

C6M), unreacted difunctional monomer (exo-C6D) and polymers (linear and branch) 

in the sol fractions could be determined from the 1H nrnr spectra. The resonances 

attributable to the cis and trans vinylene hydrogens of the polymer are well separated 

and can be seen in the range 8 5-6 ppm. The peak corresponding to the olefinic 

hydrogens of the unreacted endo-monomer is found at 6.09 ppm, 0.19 ppm from those 

in exo-C6M and exo-C6D which overlap at 6.28 ppm. The methyl groups of alkyl 

pendant groups of the monomers (exo- and endo-isomer) and the polymers overlap at 

0.87 ppm. The 1H nmr spectra and associated parameters of the sol fractions from 

experiments 7 and 8 are shown in Figure 3.9 and Table 3.5, respectively. 
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Figure 3.9 1H nmr spectra of (a) the sol fraction from experiment 7 and 

(b) the sol fraction from experiment 8. 
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%sol 1Hnmr 
fraction % extractable 

experiment in crude polymer % unreacted exo-C6M % unreacted endo-C6M 
product obtained* 

in sol in crude in sol in crude in sol in crude 

7 14 7 1 93 13 - -

8 49 8 4 62 30 30 15 

Table 3.5 1H nmr analysis of the sol fractions obtained from sol/gel extraction of 

crosslinked polymeric materials. * linear and branch polymers. 

Analysis of the sol fractions by 1H nmr spectroscopy clearly indicated that there was 

only a small amount of the linear and branch polymers in the sol fractions. It is 

apparent that most of the product obtained in the crude polymeric materials was 

crosslinked polymer, indicating effectiveness of exo-C6D as a crosslinker. However, it 

was found that the amount of the unreacted difunctional monomer in the extracts was 

too low to be determined by 1H nmr spectroscopy, indicating relatively high reactivity 

of the difunctional monomer. The limited solubility of exo-C6D in exo-C6M prevented 

a detailed examination of mono:difunctional monomer ratios on the course of this 

polymerisation. This problem has been solved by using crosslinking agents, exo-CnD, 

with the different sequence lengths of methylene units between the reactive 

imidonorbomene functional groups which will be discussed in Chapter 5. 

It is apparent that the endo-isomer is much less reactive than the corresponding exo­

isomer in both linear and crosslinked polymerisations and largely fails to undergo ring­

opening polymerisation in bulk under the condition studied. In conjunction with the 

observation that pure endo-isomer is unpolymerisable, one may conclude that 

consecutive endo-units along the polymer chain are excluded. The data to hand are 

insufficient to conclude whether the barrier to endo-endo linking is in the carbene-to­

metallacycle transition state, or is due to steric restrictions in the polymer chain itself. 

An endo repeating unit in the chain has four carbons of the five-membered ring cis­

substituted, which may be sterically less favourable than an exo-derived unit where the 

two pairs of substituents are in a trans relationship. However, some of endo-monomer 
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was found to be consumed in these polymerisations. It may be that the endo-monomer 

terminates chain growth or that once an endo residue is incorporated at the chain end 

the new endo-derived chain end is less reactive than an exo-derived chain end and, 

indeed, can only initiate polymerisation of a more reactive exo-monomer. These 

possibilities have been investigated using 1H nrnr technique and are discussed in 

Chapter 4.2. 
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4.1 Introduction 

The aim of the work described in this chapter was the synthesis of both linear and 

highly crosslinked polymers via ROMP using a well-defined ruthenium carbene 

initiator, Ch[(C6H11)3P]2Ru=CHC6H5. The polymerisation reactions were carried out 

in, or in the presence of, a solvent which overcomes many of the disadvantages of the 

bulk polymerisations described in the previous Chapter. The solvent allows easier 

stirring, at least in the early stages of reaction, since the viscosity of the reaction 

mixture is decreased, and consequently good thermal control is achieved. Whereas, the 

highly exothermic nature and tendency towards gelling combined to make the bulk 

polymerisation reaction difficult to control. 1 Also for ROMP of this system in 

solution, initiation and propagation can be probed directly by 1H nmr spectroscopy. 

Consequently, the relative reactivity of the monomers with the ruthenium carbene 

initiator can be investigated. Polymers of controlled molecular weight can be obtained 

without unreacted monomer and initiator. A wide range of polymers can be prepared 

from solutipn polymerisation as compared to bulk polymerisation. The polymers 

derived from solid monomers, those are exo-C3M and all difunctional monomers, 

could be prepared more easily in solution than in bulk polymerisation. The monomers 

endo-C6M and exo-C8M show very low reactivity and were not suitable for ROMP in 

bulk but underwent solution polymerisation. 

The description of work in this chapter is divided into four parts. The study of the 

reactivity of exo- and endo-monomers is the first topic discussed. The investigation of 

the homo and copolymerisation of exo- and enda-N-hexylnorbornene-5,6-

dicarboxyimide (exo- and endo-C6M) initiated by a well-defined ruthenium carbene in 

a deuterated solvent using the nmr technique is discussed in section 4.2. Subsequently 

the synthesis of homo and copolymers of exo- and endo-isomers on a preparative 

scale was undertaken in order to understand more about the factors determining 

polymer structure and assembly mechanism in these polymerisation systems, this work 

is discussed in section 4.3. 

A study of the effect of the length of the pendant N-alkyl group on the physical and 

thermal properties was undertaken. Exo-monomers with different length N-alkyl 

groups, exo-C3M, C4M, C5M, C6M and C8M, were polymerised on the preparative 
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scale; these syntheses are described in section 4.4 along with the characterisation of the 

products. 

Finally, ROMP in solution of exo-difunctional monomers to produce the highly 

crossliked polymers with different numbers of methylene unit separating the reactive 

imidonorbornene units, exo-C3D, C5D, C6D, C9D, C12D, was investigated. The aim 

was to study the reactivity of these difunctional monomers. The effect of the 

methylene spacer sequences between the reactive imidonorbornene units on the thermal 

property of the polymers obtained is described in section 4.5. 

4.2 Nmr scale polymerisations of exo- and endo-monofunctional monomers: 

(exo- and endo-C6M) 

Introduction 

The nmr scale homo- and copolymerisations of the highly reactive exo-monomer and 

the less reactive endo-monomer were investigated using the well-defined ruthenium 

carbene initiator in a deuterated solvent. For ROMP in solution, initiation and 

propagation can be probed directly by 1H nrnr spectroscopy, as the carbene signals for 

the initiating and propagating species are clearly distinguished. The polymerisations 

were performed in a small sample vial with a micro magnetic stirrer. Reactions were 

carried out in the Glove Box at room temperature. In order to record 1H nmr spectra 

the reaction mixture was transferred into a screw capped nmr tube and taken out of the 

Glove Box. The extent of initiation can be judged by the appearance of the signal for 

the new propagating species which is shown as a multiplet peak in the nmr spectrum at 

19.48 ppm for the exo-propagating species and at 18.65 ppm for the endo-propagating 

species. The alkylidene hydrogen of the ruthenium carbene initiating species gives a 

singlet in the nmr spectrum at 20.68 ppm in d6-benzene or at 20.03 ppm in dr 

dichloromethane2
, as shown in Figure 4.1a. The initiator signal decreases in intensity 

simultaneously with the appearance of the propagating carbene signals. The reaction 

mixture was monitored by 1H nmr repeatedly until the reaction stopped as indicated by 

the complete disappearance of signal due to olefinic hydrogens of the monomers, 6.19 

ppm (exo) and 6.03 ppm (endo), as shown in Figure 4.1b and c, respectively. This 

indicated that the monomer had been consumed completely before the addition of the 

next aliquot of monomer. 
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(a) PCy, <A\Q 
Cl~~ 
Cl/ju~H 

P Cy, 

Alkylidene hydrogen 

" 

(b) 

Olefinic hydrogen 

* 

(c) 

Olefinic hydrogen 

* 

• 
I 

Figure 4.1 1H nmr spectra of (a) the ruthenium carbene initiator, (b) exo-C6M, 

(c) endo-C6M. 

• residual hydrogens in d2-dichloromethane 

* residual hydrogens in CDCl3 
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4.2.1 Results and discussion 

4.2.1.1 Polymerisation of exo-monomer 

The polymerisation of exo-monomer was investigated using the ruthenium carbene 

initiator in the Glove Box at room temperature. The initiator ( -10 mg) and exo­

monomer (30 mg, 10 equivalents) were dissolved in d2-dichloromethane in separate 

sample vials. The initiator solution was transferred into the monomer solution and 

stirred for 10 minutes. The reaction mixture was transferred into a screw capped nmr 

tube, removed from the Glove Box and cooled in ice for transport to the spectroscopy 

laboratory (5 minutes) where it was analysed by 1H nmr spectroscopy immediately. 

The reaction mixture was monitored by 1H nmr until the polymer growth stopped as 

indicated by the disappearance of the singlet signal of the olefinic hydrogen of exo­

monomer, at 6.19 ppm. The polymerisation reaction solution was returned to the 

Glove Box and allowed to stand for a few hours before a second aliquot of the exo­

monomer (10 equivalents) was added to the reaction mixture. The reactions which are 

expected to occur are shown below. 

Initiation 

+ 

Exo-monomer Ru initiator 

£.to-propagating species 

Propagation 

kpxx 

+ 

Exo-monomer 

Exo-propagating species Poly(exo) 

Figure 4.2 Reactions in the polymerisation of exo-monomer by the well-defined 

ruthenium carbene initiator. 
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The homopolymerisation of the exo-monomer was very fast, being complete in 10 

minutes at room temperature in both steps. The appearance of the multiplet peak at 

19.48 ppm due to the propagating alkylidene hydrogen of the exo-derived chain end is 

clearly distinguished from the singlet peak of the alkylidene hydrogen of the ruthenium 

carbene initiator at 20.03 ppm, as shown in Figure 4.3a and b. In both cases all the 

monomer was consumed rapidly as evidenced by the disappearance of the olefin signal 

at 6.19 ppm. The polymerisation of the exo-monomer was shown to be consistent with 

living polymerisation since the exo-propagating species was found to be stable over 

the lifetime of the polymerisation and addition of a second aliquot monomer resulted in 

continuation of the polymerisation. 
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Figure 4.3 1H nmr spectra from a sequential polymerisation of exo-monomer. 

(a) 10 min after the first 10 eq of exo-monomer was added 

(b) 10 min after the second 10 eq of exo-monomer was added. 

• residual hydrogens in CD2Ch 
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The observation of a singlet signal at 20.03 ppm due to unconsumed initiator is a 

common feature of all these reactions. Even in the case of high monomer 

concentration where two successive 30 equivalent aliquots of the exo-monomer were 

added, 1H nmr analysis revealed that there was still residual unconsumed initiator in the 

reaction mixture, as shown in Figure 4.4a and b. 
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Figure 4.4 1H nmr spectra from a sequential polymerisation of exo-monomer at higher 

concentration. 

(a) 10 min after the first 30 eq of exo-monomer was added. 

(b) 10 min after the second 30 eq of exo-monomer was added. 

• residual hydrogens in CD2Cb 
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This indicates that kpxx >> kix, where kpxx is the rate constant for the propagation of 

the exo-monomer by the exo-propagating species and kix is the rate constant for the 

initiation of exo-monomer by the ruthenium carbene initiator. It is clear that the exo­

propagating species derived from the initiator is more reactive than the original 

initiating carbene species for reaction with the exo-monomer, i.e. kixlkpxx<l. 

4.2.1.2 Polymerisation of endo-monomer 

Polymerisation of the endo-monomer was investigated using the ruthenium carbene 

initiator according to the above procedure. The reaction mixture was monitored by 1H 

nmr until the polymer growth stopped as indicated by the disappearance of the singlet 

signal of the olefinic hydrogen of endo-monomer, at 6.03 ppm. The polymerisation 

reaction solution was allowed to stand for a few days before a second amount of endo­

monomer (30 mg, 10 equivalents) was added to the reaction. The reactions which are 

expected to occur are shown below. 
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Figure 4.5 Reactions in the polymerisation of endo-monomer by the well-defined 

ruthenium carbene initiator. 

90 



Chapter4 

The homopolymerisation of the endo-monomer by the ruthenium carbene initiator is 

appreciably slower than the homopolymerisation of the exo-monomer under the same 

conditions. The appearance of a multiplet peak at 18.65 ppm due to the propagating 

alkylidene hydrogen of the endo-derived chain end is clearly distinguished from the 

singlet peak of the initiating alkylidene hydrogen of the initiator at 20.03 ppm. In this 

case, full initiation was observed since the singlet signal of the alkylidene hydrogen of 

the initiator had disappeared completely, after several days under the same conditions 

used for the exo-reaction, as shown in Figure 4.6a and b. 
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Figure 4.6 1H nmr spectra from a sequential polymerisation of endo-monomer. 

(a) lh after the first 10 eq of endo-monomer was added. 

(b) 10 days after the first 10 eq of endo-monomer was added. 

• residual hydrogens in CD2C}z 
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This indicates that kin and kpnn, where kin is the rate constant for the initiation of the 

endo-monomer and kpnn is the rate constant for the propagation of the endo-monomer, 

are much smaller than kix and kpxx for the exo-reaction, and that kinlkpnn is large, i.e. kin/ 

kpnn :::::: 1. However, the polymerisation was shown to proceed in a living fashion since 

the endo-propagating species was found to be stable over the lifetime of the 

polymerisation, i.e. several days, and the second addition of endo-monomer resulted in 

continuation of the polymerisation, as shown in Figure 4.7a and b. 
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Figure 4.7 1H nmr spectra from a sequential polymerisation of a second aliquot of 

endo-monomer, (a) 1 day after the second 10 eq of endo-monomer was 

added, (b) 4 days after the second 10 eq of endo-monomer was added. 

• residual hydrogens in CD2Ch 
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4.2.1.3 Synthesis of a triblock (exo-endo-exo) copolymer 

Having established the living polymerisation of exo- and endo-monomers, a multi-step 

block copolymerisation of the exo-monomer and the endo-monomer was carried out 

using the ruthenium carbene initiator according to the above procedure. The first two 

steps of the polymerisation were carried out using the same stepwise manner as before 

(see Figures 4.3 and 4.4). The polymerisation solution was allowed to stand for a 

few hours before endo-monomer (21 mg, 7 equivalents) was added to the reaction 

mixture. The mixture was monitored by 1H nmr until all the endo-monomer was 

consumed. The 1H nmr spectra obtained during this process are shown in Figure 4.8a, 

b and c. The reaction mixture was allowed to stand for a few hours before two 

successive aliquots of the exo-monomer (15 mg, 5 equivalent and 90 mg, 30 

equivalent, respectively) were added. The mixture was monitored by 1H nmr until all 

the exo-monomer was consumed. The 1H nmr spectra measured during this process are 

shown in Figure 4.1 Oa and b. The multi-step block copolymerisation of the exo- and 

endo-monomers was shown to proceed in a living fashion since the exo-propagating 

species was found to be stable over the lifetime of the polymerisation and the addition 

of the endo-monomer results in continuation of the polymerisation and vice versa. 
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Figure 4.8 1H nmr spectra from the addition of endo-monomer to a mixture of living 

exo-derived chain end with residual ruthenium initiator present. 

(a) 2h after added 7 eq of endo-monomer. 

(b) 3 days after added 7 eq of endo-monomer. 

(c) 10 days after added 7 eq of endo-monomer. 

• residual hydrogens in CD2Ch 

When 7 equivalents of endo-monomer was added to the reaction mixture, see Figure 

4.4b, the monomer was consumed slowly over several days, as shown in Figure 4.8a, 

b, and c. The appearance of the new enda-propagating species signal at 18.65 ppm is 

94 



Chapter4 

clearly seen and accompanies the reduction of the exo-propagating species signal at 

19.48 ppm, whereas no reduction of the original initiating ruthenium carbene signal at 

20.03 ppm was observed (see Figure 4.4b and 4.8a). This means the endo-monomer 

propagates slowly and initially only on the exo-propagating chain end, indicating that 

the exo-propagating species is more reactive than the initiating ruthenium carbene 

species with the endo-monomer, or kpxn >> kin, where kpxn is the rate constant for the 

propagation of the endo-monomer by the exo-propagating species and kin is the rate 

constant for the initiation of the endo-monomer. Also it is apparent that the endo­

monomer propagated slowly and reacted slowly with the original initiating carbene 

species after all the exo-propagating species was consumed, as shown in Figure 4.8b. 

It can be concluded that the original initiating carbene species is more reactive than 

the endo-propagating species or kin > kpnn, where kpnn is the rate constant for the 

propagation of the endo-monomer by the endo-propagating species. The reactions 

which are expected to occur in this sequence can be summarised as shown below. 
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Figure 4.9 Reactions occurring on addition of endo-monomer to a mixture of 

living exo-derived chain end with residual ruthenium initiator present. 

95 



Chapter4 

When 5 equivalents of the exo-monomer were added to the reaction mixture whose 

spectrum was given in figure 4.8c, the appearance of the exo-propagating signal at 

19.48 ppm simultaneously with the reduction of the endo-propagating signal at 

18.65 ppm would be expected if the propagation of exo-monomer on the endo­

propagating chain end occurred readily. However, the 1H nmr taken 10 minutes after 

the addition of exo-monomer shows no signals which can be attributed to either the 

exo-monomer or the exo-propagating species as shown in Figure 4.1 Oa. This can be 

explained only if the exo-derived chain end, formed when the exo-monomer reacts with 

the endo-propagating chain ends, are very highly reactive exo-propagating species and 

the remaining exo-monomer is incorporated at these chain ends which are present in 

very low, indeed undetectable, concentration. Meanwhile the majority of the 

propagating species, which are endo-units, remain essentially dormant. This indicates 

that the exo-propagating species is more highly reactive than the endo-propagating 

species for exo-monomer or kpxx>> kpnx, where kpxx is the rate constant for the 

propagation of exo-monomer by exo-propagating species and kpnx is the rate constant 

for the propagation of exo-monomer by endo-propagating species. Another 30 

equivalents of the exo-monomer was added to the reaction to ensure that the exo­

monomer propagated, indeed, on the exo-propagating chain end rather than on the 

endo-propagating chain end. Again the result from 1 H nmr taken 10 minutes after the 

addition of monomer shows the absence of the exo-monomer while no signal of exo­

propagating species was observed since they are in too low a concentration to be 

visible in the 1H nmr, as shown in Figure 4.10b. 

(a) 

---------------~ 
I cndo-propagating I I alkylidenc hydrogen 1 

I I 
I 
I 

!~~·~~~: 
L _ _:·:__~:_: _ _:·:__:::_::_~ __ ~ 

.-------"I 
I 
I 

120 11a 

1...------..! 

r------------, 

" 

trans vinylenc 11 
posilion of ~~r~ J ~ 

exo-monomer 
oletinich)iliogen is 

I 
I 

~ 
I It I PI I I I I I I I I 
e.e 5.6 e." e.2 e.o ,_e ~.6 :~.• ooa 

I 

____________ .J 

I 
I 
I 
I 
I 

96 



Chapter4 

(b) 
r-----------1 

trans vinylene 

r----------, 
I I 
I I 

I 
. I 

endo-propagatmg 
alkylidene hydrogen1 

I 

L-----------.J 

/ 
r-------, 
I 
I 

I 20 I 18 
L.------J 

I 
f-----~ 

I ------------· 
I 

I 6 I 

L------J 

Figure 4.10 1H nmr spectra from a sequential addition of exo-monomer to the 

mixture of living endo-derived chain end. 

(a) 10 min after 5 eq of exo-monomer was added. 

(b) 10 min after 30 eq of exo-monomer was added . 

• residual hydrogens in CD2Ch 

The conclusion of this study is therefore that the attempt to produce a triblock 

copolymer results mostly in a diblock copolymer with a small proportion of triblock 

material having one long exo sequence. 

4.2.1.4 Polymerisation of exo-and endo-monomer mixture 

The living polymerisation of exo- and endo-monomers was established in section 

4.2.1.1 and 4.2.1.2, respectively. Triblock (exo-endo-exo) copolymer was synthesised 

by sequential addition of the monomers and described in section 4.2.1.3, although this 

process was not well controlled and was only partially successful, the product being 

mostly diblock material. In this section the copolymerisation of a 72exo/28endo­

monomer mixture was investigated. The aim of the work was to understand the 

behaviour of these two isomers and calculate the composition of the copolymer being 

formed at any one time in the reaction. The initiator (10 mg) and the exo/endo­

monomer mixture (30 mg, 10 equivalents) were dissolved in d2-dichloromethane in 

separate vials. The initiator solution was transferred into the monomer solution and 
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stirred for 5 minutes. The reaction mixture was transferred into a screw capped nmr 

tube and analysed by 1H nmr spectroscopy. The reaction mixture was monitored by 1H 

nmr until all exo-and endo-monomer were consumed. The 1H nmr spectra during this 

process are shown below, Figure 4.11 a, b, c, d, e and f. The 1 H nmr parameters from 

this set of spectra were determined and recorded in Table 4.1. 
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Figure 4.11 1H nmr spectra from the polymerisation of exo-and endo-monomer 

mixture; (a) 72exo/28endo-monomer mixture, (b) 5 minutes, (c) 1 hour, (d) 2 days , 

(e) 8 days, and (f) 10 days after the polymerisation reaction started. 

• residual hydrogens in CD2C}z 
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% Alkylidene hydrogen % Olefinic hydrogen 

Reaction (8 18.5-20.5 ppm) (8 5.4-6.4 ppm) 

Time Exo-monomer Endo-monomer Polymer 

(hours) Ru Exo Endo (6.29 ppm) (6.03 ppm) (5.5- 5.8 ppm) 

(20.03 ppm.) (19.48 ppm) (18.65 ppm) unreacted consumed unreacted consumed Obtained Trans Cis 
A (B)• C (D)•• 

0 100 0 0 72 0 28 0 0 0 0 

1112 30 37 33 I 71 (99%) 26 2 (7%) 73 84 16 

I 30 23 47 < 0.05 72( >99.95%) 22 6 (21%) 78 83 17 

48 23 14 63 0 72 (100%) 21 7 (25%) 77 83 17 

192 15 0 85 0 72 (100%) 9 19 (68%) 91 80 20 

240 0 0 100 0 72(100%) 3 25 (89%) 97 81 19 

Table 4.1 1H nmr analysis of the nmr scale polymerisation of a 72exo/28endo-monomer mixture with the ruthenium carbene initiator. 

* consumed A= 72- unreacted exo-monomer consumed B = (consumed Ax I 00)/ 72 

**consumed C = 28- unreacted endo-monomer consumed D = (consumed C x 100)/ 28 
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It was found that 99% of exo-monomer was consumed, whereas only 7% of endo­

monomer was consumed within 5 minutes, as shown in Figure 4. I I b and Table 4. I. 

The multiplet peak at 19.48 ppm, due to the propagating alkylidene hydrogen of the 

exo-derived chain end, accounted for 37% of the total alkylidene hydrogen intensity; 

the multiplet at 18.65 ppm, due to the propagating alkylidene hydrogen of the endo­

derived chain end, accounted for 33% of the alkylidene signal, and both are clearly 

distinguished from the singlet peak, 30% in intensity, due to the original ruthenium 

carbene initiator at 20.03 ppm. This indicates that 70% of the ruthenium carbene 

initiator was used to initiate the polymerisation of 99% of exo-monomer and 7% of 

endo-monomer. However, it is interesting to note that the exo-derived chain end 

propagating species only exceeds the concentration of the endo chain end propagating 

species by 4% even at this early stage of reaction. This is consistent with the results 

from the previous section where it was established that the order of reactivity of chain 

end propagating and initiating alkylidene species was: exo derived alkylidene more 

reactive than initiator, which was more reactive than endo chain end species and that 

the exo-monomer was more reactive than the endo-monomer. Thus this observation is 

explained if the exo-monomer is rapidly consumed and then the reactive exo­

propagating chain ends are capped by endo-monomer. 

Within one hour, less than 0.05% of the exo-monomer was left in the mixture and 21% 

of endo-monomer was already consumed. It is apparent that at this stage the endo­

monomer propagated and reacted slowly with the exo-propagating chain end, as the 

increase in intensity of the endo-propagating signal at 18.65 ppm accompanies the 

reduction of exo-propagating species signal at 19.48, whereas no reduction of the 

original initiating ruthenium carbene signal at 20.03 ppm was observed, as shown in 

Figure 4.11c. After 2 days, 67% of endo-monomer was already consumed and none of 

the exo-monomer was left in the reaction mixture. At this stage, after the exo­

propagating chain ends are completed capped the initiator is consumed slowly by endo­

monomer as shown in Figure 4.11d and e. All endo-monomer was consumed 

completely and the full consumption of initiator was observed within I 0 days, as 

shown in Figure 4.11f. The propagation reactions which are expected to occur in this 

reaction can be summarised as shown below. 
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Figure 4.12 The propagation reactions m the polymerisation of exo- and endo­

monomer mixture by the well-defined ruthenium carbene initiator; 

P = polymer chain. 
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The results from this and the previous sections show that the ratio (r) of the reactivity3 

of the exa-propagating species with exo-monomer to the reactivity of the exa­

propagating species with endo-monomer >>1, or rx = kpxxlkpxn >>1 and the ratio of the 

reactivity of the enda-propagating species with endo-monomer to the reactivity of the 

enda-propagating species with exo-monomer <<1, or rn = kpnnlkpnx <<1. In this solution 

polymerisation all the monomers and initiating species are eventually consumed but as 

a consequence of the relative reactivities established in this work, it is clear that the 

products must be block or blocky copolymers rather than the statistical copolymers and 

it is highly probable that there will be some homopolymer of the endo-isomer present. 

4.3 Preparative scale polymerisations of exo- and endo-monofunctional 

monomers 

Introduction 

In section 4.2 the homo and copolymerisation of the highly reactive exa-monomer and 

less reactive enda-isomer were investigated using the well-defined ruthenium initiator. 

The polymerisation of the endo-monomer is appreciably slower than the exa-monomer 

under the same conditions. However, the polymerisation of both exo- and endo­

monomers were shown to proceed in a living fashion. In this section, homo and 

diblock copolymers of exo-and endo-monomers were obtained on a preparative scale. 

The aim of work described in this section was to understand more about the mechanism 

and the structure of the polymers obtained from these polymerisation systems. In order 

to get larger quantities of polymeric materials, the solution copolymerisation of exo­

and endo-C6M were carried out on a 1.5 g scale. All solution polymerisations were 

carried in the Glove Box at room temperature. The cis/trans vinylene content, the 

molecular weight (Mn), PDI and the glass transition temperature (Tg) of the polymers 

were obtained using nmr, GPC and DSC techniques. 

4.3.1 Results and discussion 

The ROMP of exo- and enda-monofunctional monomers yields linear polymers 

with unsaturated backbones and imido pendant groups. Polymer synthesis could be 
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followed by the colour change of the solution from purple-pink (initiator) to yellow 

or orange (propagating species). The polymerisations were terminated by addition of 

ethyl vinyl ether which cleaved the polymers from the metal centre leaving a chain end 

methylene and a methoxycarbene on the metal. 

4.3.1.1 Syntheses of homo and diblock copolymers 

The homo and block copolymerisations of exo- and endo-monomers were carried out 

on a 1.5 g scale in the Glove Box at room temperature. The initiator (I 0 mg) and exo­

C6M (1.5 g) were dissolved in dichloromethane (5 ml and 25 ml, respectively) in 

separate ampules. The initiator solution was transferred into the exo-monomer solution 

and stirred for 7 days. The solution of living polymer and residual initiator was divided 

to three portions using a measuring cylinder. The first portion (hereinafter called 

experiment 1) was terminated by adding ethyl vinyl ether and precipitated into excess 

methanol. Exo-C6M (0.7 g) and endo-C6M (0.7g) were added to the second and the 

third portions, hereinafter called experiment 2 and 3 respectively. The solutions were 

stirred for 7 days before being terminated by adding ethyl vinyl ether. The polymers 

were precipitated by pouring the solutions into an excess of methanol. 

The same procedure, as described above, was used to synthesise diblock (endo-exo­

C6M) copolymer, but the starting monomer in this case was endo-C6M (1.5 g). The 

initiator solution (10 mg) was transferred into the endo-monomer solution (1.5 g) and 

stirred for 7 days. The resulting solution was divided to three portions. The first 

portion (hereinafter called experiment 4) was terminated by adding ethyl vinyl ether 

and precipitated into excess methanol. Exo-C6M (0.7 g) and endo-C6M (0.7g) were 

added to the second and the third portions, hereinafter called experiment 5 and 6 

respectively. The solutions were stirred for 7 days before being terminated by adding 

ethyl vinyl ether and precipitating into excess methanol. 

All the polymers obtained in this section were further purified by reprecipitation 

from chloroform into methanol. The polymers were obtained as white solids and 

dried under vacuum at 30 °C for 2-3 days. All of the linear polymers made were 

soluble in toluene, tetrahydrofuran, dichloromethane and chloroform. 
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4.3.1.2 Characterisation of polymers obtained 

This section describes the characterisation of the polymers whose synthesis was 

described in section 4.3.1.1. The characterisation was carried out using 1H and 13C 

nmr, GPC, DSC and TGA. 

Polymer characterisation using 1 H and 13C nmr spectroscopy 

The most useful probes of polymer structure and mechanism for these polymerisations 

are 1H and 13C nmr spectroscopy. All nmr spectra of the polymers obtained in the 

section were recorded as solutions in CDC~]. Full assignment of the spectra was 

carried out with the aid of COSY and HETCOR spectra. All signals in the 1H nmr 

spectra are broad, this is a characteristic of many polymer spectra. The observed 

broading is due to the fact that a specific type of hydrogen atom in the basic repeat unit 

within the polymer chain is found in many slightly different chemical environments, 

this leads to a certain type of hydrogen atom resonating over a range of frequencies. 

ROMP of exo- and endo-monomers gives linear polymers containing unsaturated 

carbon-carbon double bonds and imido pendant groups. The double bonds along the 

polymer chain show cis/trans isomerism which affects the chemical shift of hydrogens 

and carbons in the backbone. The 1H and 13C nmr spectra of po1y(exo-C6M) obtained 

from experiment 1 were similar to those obtained from experiment 2. Po1y(exo-C6M) 

samples from both experiments were recovered as white solids in high conversion 

(>90%). The 1H and 13C nrnr spectra of diblock copolymer obtained from experiment 

3 were similar to those obtained from experiment 5. Diblock copolymers from both 

reactions 3 and 5 were recovered as white solids in moderate conversion ( -65-75% ). 

The 1H and 13C nmr spectra of po1y(endo-C6M) obtained from experiment 4 were 

similar to those obtained from experiment 6. Po1y(endo-C6M) samples from both 

reactions were recovered as white solids in low conversion ( <20% ). It seems 

reasonable to propose that the orientation of the imide group toward double bond in the 

case of endo-monomer results in poor reactivity and low conversion. There are a 

number of papers which have described a similar difference in the polymerisation 

behaviour of exo- and endo-isomers.4
-
8 
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The 13C nmr spectra of po1y(exo-C6M) [experiment 1], diblock (endo-exo-C6M) 

[experiment 5] and po1y(endo-C6M) [experiment 4] are shown in Figure 4.13a, b, and c 

respectively, as typical examples. The chemical shifts and assignments of 13C nmr for 

the homo and block copolymers of exo- and endo-monomers are recorded in Table 4.2. 

The allylic carbons adjacent to a cis double bond (a-cis carbons) always appear about 

5 ppm upfield from the analogous carbons adjacent to a trans unit (a-trans carbonsl 

this rule provides the starting point for making assignments in the spectra of all the 

polymers obtained in this work. In po1y(exo-C6M), the low frequency region showed 

signals at 46.05 ppm which originate from a-trans carbons, C 1 and C4, and at 50.85 

ppm which originate from ~-trans carbons, C5 and C6, see table 4.2 for notations. 

Whereas the a-cis carbons, C 1 and C4, showed a signal as a small peak at ca. 41.02 

ppm (about 5 ppm upfield from the a-trans carbons) and the ~-cis carbons, C5 and C6, 

showed a small peak at 52.80 ppm. These two small peaks at 41.02 ppm for the a-cis 

carbons and 52.80 ppm for the ~-cis carbon disappear in the spectrum of poly(endo­

C6M) which has all trans vinylenes. 

The relative intensities of the trans and cis olefinic resonances in the range 8 129-135 

ppm can be used to confirm the cis/trans content in these polymers. The multiplet 

peaks at 134.01 ppm and 132.00 ppm due respectively to cis and trans vinylene signals 

of poly(exo-C6M) are clearly distinguished from the multiplet peaks for the trans 

vinylene signal of poly(endo-C6M) at 129.33 ppm. These results shown that using the 

ruthenium carbene as an initiator, ROMP of either exo- or endo-monomer gives a high 

trans content and pure endo-monomer produces exclusively trans-polymer. This is 

consistent with literature reports which record that the ruthenium carbene initiator 

provides predominantly trans double bonds in the metathesis of other norbornenes. 10 

The 1H nmr spectra of poly(exo-C6M) [experiment 1], diblock (endo-exo-C6M) 

[experiment 5] and poly(endo-C6M) [experiment 4] are shown in Figure 4.14a, b, and 

c respectively, as typical examples. The chemical shifts and assignments of 1H nmr 

spectra for the homo and block copolymers of exo- and endo-monomers are recorded in 

Table 4.3. 
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Figure 4.13 13C nmr spectra of (a) poly(exo-C6M), (b) diblock(endo,exo-C6M) and 
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in CDC13. 
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Experimental No. 

I and 2 

o=f ~-~==o o::i~t4x.\==:o 
'\{ '·N· 15X 

I I 

(C~)sCI-1:3 sx lH2 
9X I~ 

!OX <fH2 

!IX <fH2 
12X CH 2 

13X ~H3 
Poly(exo-C6M) 

3 and 5 

7X 
IX 

cis "X 3x 
: , "X _- ,6x 

4N od, ,;,.>() o=<!4X }.-•o 
.... •'" '•, •''15X 

0 14N 0 
N 1s:-~ 

I 
RN CH 2 
9N lH 2 

I 
!ON <fH2 
liNCH 

I 2 
!2N TH2 
13NCHa 

~ ~ 
(CJ-ii RX CH2 1 5 I 
CH3 9X ~~ 

lOX <fH2 
!IX <fH 2 
12X TH 2 

13X CH 3 

Block( endo-exo-C6M) 

4 and 6 

I 0 !4N 0 

(C~) CHa N 15N 
5 I 

8N CjH 2 

9N ~H2 
ION <fH2 
liNCH 

I 2 
12N <fH 2 

llN CHa 

Poly( endo-C6M) 

Cnmr 

Carbon Position (ppm) and assignment 

C-14,15X 178.28 

C-2,3X 134.0l(cis), I32.00(trans) 

C-5,6X 52.80 (cis), 50.85 (trans) 

C-1,4X 46.05 (trans), 41.02(cis) 

C-7X 42.21 

C-8X/ C-9X 38.81/31.45 

C-IOX/ C-IIX 27.63/26.60 

C-12X/ C-13X 22.49/ 13.99 

C-14,15X 178.28 

C-14,15N 176.25 

C-2,3X 134.01 (cis), 132.00 (trans) 

C-2,3N 129.33 (trans) 

C-5,6X 52.80 (cis), 50.85(trans) 

C5,6N 48.76 (trans) 

C-1,4X 46.05 (trans), 41.02 (cis) 

Cl,4N 45.36 (trans) 

C-7X 42.21 

C-7N 36.43 

C-8X and N 38.81 

C-9X and N 31.45 

C-IOX and N 27.63 

C-IIXand N 26.60 

C-12X and N 22.49 

C-13X and N 13.99 

C-14,15N 176.68 

C-2,3N 129.33 (trans) 

C-5,6N 48.76 (trans) 

C-1,4N 45.36 (trans) 

C-7N 36.43 

C-8N/ C-9N 38.91/31.45 

C-ION/ C-llN 27.63/26.60 

C-12N/ C-13N 22.49/ 13.99 

Table 4.2 Summary of 13C nmr assignment of poiy(exo-C6M), biock(endo-exo­

C6M) and poiy(endo-C6M); X= exo-isomer and N = endo-isomer. 
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Figure 4.14 1H nmr spectra of (a) poly(exo-C6M), (b) diblock(endo,exo-C6M) and 

(c) poly(endo-C6M); *residual hydrogens in CDCh. • water dissolved 

in CDCh. 
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Experimental No. 

1 and2 

Pol(exo-C6M) 

I 
<fH 2 8N 

yH2 9N 

CH iON 
I 2 
CH liN 
I 2 

<j=H 2 12N 

CH3 IJN 

3 and 5 

7X 

Block( endo-exo-C6M) 

4 and 6 

I 
CjH 2 8N 

<fH2 9N 

<fH2 JON 

CH liN 
I 2 

<j=H2 m1 

CH3 UN 

Poly(endo-C6M) 

Chapter4 

Hnmr 

Proton Position (ppm) and assignment 

H-2,3X 5.75 (trans), 5.55 (cis) 

H-8X 3.44 

H-1,4X 3.25 (cis), 2.98 (trans) 

H-5,6X 2.74 (cis), 2.68 (trans) 

H-7X 2.12 

H-7X' 1.62 

H-9X 1.54 

H-10,11,12X 1.27 

H-13X 0.87 

H-2,3X 5.75 (trans), 5.55 (cis) 

H-2,3N 5.67 (trans) 

H-8X and N 3.43 

H-5,6N 3.17 

H-1,4X 2.97 

H-1,4N 2.91 

H-5,6X 2.65 

H-7X 2.12 

H-7'N 1.92 

H-7'X 1.62 

H-9X and N 1.54 

H-10,11,12X and N 

and H-7'N 1.27 

H-13X and N 0.87 

H-2,3N 5.67 (trans) 

H-8N 3.45 

H-5,6N 3.16 (trans) 

H-1,4N 2.91 (trans) 

H-7N 1.92 

H-9N 1.45 

H-10,11,12N 

and H-7'N 1.27 

H-13N 0.87 

Table 4.3 Summary of 1H nmr assignment of poly(exo-C6M), block(endo-exo-C6M) 

And poly(endo-C6M); X= exo-isomer and N = endo-isomer. 
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Comparison of 1H nmr spectra of poly(exo-C6M), diblock(endo-exo-C6M) and 

poly(endo-C6M) revealed differences in chemical shifts and cis/trans content of the 

polymers. The cis and trans contents of the polymers are readily determined from 1H 

nmr spectra, in which the resonances attributable to the cis and trans olefinic 

hydrogens are well separated and can be seen in the range 8 5-6ppm. The multiplet 

peaks at 5.75 ppm due to trans vinylene signal of poly(exo-C6M) and the multiplet 

peaks at 5.55 ppm due to cis vinylene signal of poly(exo-C6M) are clearly 

distinguished from the multiplet peaks of trans vinylene signal of poly(endo-C6M) at 

5.67 ppm. The percentage conversion and cis/trans content of the polymers obtained 

in this section were determined and the results are recorded in Table 4.4. 

% 1Hnmr 

Experiment conversion 

%trans %cis 

vinylene vinylene 

1 

(exo) 91.3%* 80 20 

2 

(exo+exo) 95.6%** 81 19 

3 

(exo+endo) 66.6%** 94 6 

4 

(endo) 18.7%* 100 0 

5 

(endo+exo) 75.6%** 90 10 

6 

(endo+endo) 23.7%** 100 0 

Table 4.4 1H nmr analysis of polymers produced in preparative scale polymerisation 

of exo- and endo-monomer with the ruthenium carbene initiator. 

* The calculations were with respect to M 1 (g)/3 

** The calculations were with respect to [(M 1 (g)/3) +M2 (g)] 

Where M 1 =mass of the first monomer and M2 =mass of the second monomer. 
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It is clear that the cis/trans content of the resulting polymers depends upon the amount 

of each monomer isomer incorporated into the polymer chain. ROMP of the exo­

isomer with the ruthenium carbene initiator, gives some double bonds having the cis 

configuration in the linear polymer generally about 20%. Block copolymers showed 

cis vinylene configurations of between 5-10%. Whereas, in the similar condition with 

endo-isomer only trans stereochemistry is observed. These results can be compared 

with earlier studies of closely related monomers were Mo(CH-t-Bu)(NAr)(OCMe3) 2 

initiation gave 98% and 93% trans vinylene content with exo- and endo-C8M 

respectively and the initiator Mo(CH-t-Bu)(NAr)(OCMe(CF3) 2) 2 gave 32% and 57% 

trans vinylene for the same monomers. 12
• 

13 

The possible propagation steps for exo- and endo-monomers are shown in Figure 4.15. 

The two possible propagation steps for the exo-monomer are shown as step 1 and 2, 

and for the endo-monomer are shown as step 3 and 4. Steps 1 and 3 would lead to cis­

polymer, while step 2 and 4 lead to trans-polymer. The endo-C6M is much less 

reactive than the corresponding exo-isomer and the polymer can be obtained only in 

very low conversion. The explanation for this may arise from differences in steric 

interactions of the substitutents on the monomer and the ligands on the metal (not 

shown). It may be that the carbonyl groups in the endo-position play a key role in 

retarding the polymerisation by interacting with the metal and slowing down the 

polymerisation. Steps 2 and 4, leading to trans vinylene, may be favoured if the 

intermediates have less steric hindrance than those in steps I and 3; however, it is 

difficult to visualise these interactions and at this stage in the development of our 

understanding of mechanism in these ROMP process it is not certain that all the ligands 

remain bonded to the metal centre though out the reaction. 

The possible structures for polymers from the ROMP of exo- and endo-monomers with 

the ruthenium carbene initiator are shown in Figures 4.16 and 4.17, respectively. An 

endo repeating unit in the polymer chain has four carbons of the five-member ring 

carrying cis-substitutents, as shown in Figure 4.17, which is sterically less favourable 

than the situation in the exo-derived units, where the two pairs of substituents are in a 

trans relationship, as shown in Figure 4.16. 
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Figure 4.16 Possible structure of polymer derived from exo-monomer. 
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Characterisation by GPC 

The number average molecular weight CMn) and polydispersity index, M:w/Mn (PDI), 

of all polymers obtained in this section are recorded along with the conversions in 

Table 4.5. 

Experiment % GPC* 

converswn 
Mn PDI No. Of peaks 

1 

(exo) 91.3% 125,000 1.2 2 

2 

(exo+exo) 95.6% 291,000 1.4 1 

3 

(exo+endo) 66.6% 132,000 1.2 1 

4 

(endo) 18.7% 50,000 1.4 1 

5 

(endo+exo) 75.6% 116,000 2.9 2 

6 

( endo+endo) 23.7% 32,000 1.9 1 

Table 4.5 GPC analysis of polymers produced in preparative scale polymerisations 

of exo- and endo-monomers with the ruthenium carbene initiator. 

* Waters differential diffractometer detector, three Polymer Laboratories 

gel columns (exclusion limits 100, 103
, 105 0 A), chloroform eluent, 

polystyrene calibration. 

The results from the GPC indicate that the homo and block copolymerisation of exo­

and endo-monomers occurs in a living fashion. The addition of the second monomer 

resulted in continuation of the polymerisation and the number average molecular 

weight (Mn) is increased, except for the experiment 6 which will be discussed later in 

this section. Both the conversion and Mn for the polymerisations of endo-monomer, 

experiment 4 and 6, were lower than those obtained from the polymerisation of exo­

monomer, experiment 1 and 2, under the similar conditions. Molecular weight 

116 



Chapter4 

distributions were bimodal in some cases. When exo-monomer was used in the 

polymerisation, the PDI was generally narrower than those obtained from the 

polymerisation of endo-monomer which is probably due to the inherent differences in 

ki and kp for these polymerisation system as discussed in section 4.2. The relatively 

narrow PDI of poly(exo-C6M) is due to slow initiation relative to the propagation, kix < 

kpxx· The molecular weight distribution was bimodal in the case of poly(exo-C6M), 

experiment 1, with a small higher molecular weight peak at about twice the mass of the 

main peak. This observation is consistent with a small amount of coupling between 

two growing carbenes. This kind of observation has been made before in relation to 

the Schrock molybdenum initiators when dioxygen impurity terminates one chain and 

the resulting chain end aldehyde couples with a living carbene chain. 15 However this 

seems unlikely in this case as ruthenium carbenes are inert to aldehydes, we are unable 

to offer a rationalisation for this occasional observation of bimodal product. 

l(exo) 

/ \.<\ .. 2(exo+exo) ./ ,. '.,._ _______ _ 
-------- ' . 

--------------- ----3(~~o+endo) /.' 
----···--- ------------------------------·····--------·· ·------------

Figure 4.18 GPC traces for the polymers obtained from monomer initiated by the 

ruthenium initiator. (1) polymer of exo-monomer for 7 days, 

(2) polymer 1 after continued polymerisation of additional exo­

monomer, (3) polymer 1 after continued polymerisation of additional 

endo-monomer. Molecular weights are reported versus polystyrene 

calibration. 
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As determined by GPC, the Mn increased from 125,000 for the first block of poly(exo­

C6M), experiment 1, to 291,000 for the polymer obtained from the second addition of 

exo-monomer and 132,000 for the diblock(exo-endo) copolymer, experiment 2 and 3 

respectively. The Mn shifted dramatically for polymer obtained from experiment 2 

relative to the initial block, experiment 1. This indicates the relative absence of chain 

transfer and termination reactions. The PDI is slightly increased from 1.2 to 1.4 which 

is probably due to a part of second aliquot of exo-monomer being initiated by the 

remaining unreacted initiator. As mentioned in the section 4.2.1.1, unconsumed 

initiator is a common feature for. the polymerisation of exo-monomer. The PDI 

remained the same and the Mn slightly increased for the diblock(exo-endo) copolymer, 

experiment 3, relative to the first block, experiment 1. This diblock copolymer was 

obtained in only moderate conversion. The results indicate that endo-monomer 

propagated slowly on the reactive chain end of exo-polymer. 

e 4 (,n<W) (\ 

;~------------------------------~,~~ r ~ 
I \ 

I \ 
5 (endo + exo) 1 '--1 - ....... _ 

--------------------------------- / -

6 (endo + endo) 

Figure 4.19 GPC traces for the polymers obtained from monomer initiated by the 

ruthenium initiator. (4) polymer of endo-monomer for 7 days, 

(5) polymer 4 after continued polymerisation of additional exo­

monomer, (6) polymer 4 after continued polymerisation of additional 

endo-monomer. Molecular weights are reported versus polystyrene 

calibration. 
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The molecular weight of the resulting diblock(endo-exo) copolymer, experiment 5, is 

clearly higher than the initial block, experiment 4. The Mn increased dramatically 

from 50,000 to 116,000 for the diblock copolymer obtained from second addition of 

exo-monomer to the initial block, endo-polymer. The molecular weight distribution 

was bimodal in this case and showed an additional peak in the higher molecular weight 

region compared to the peak observed for the first block. This results can be explained 

by using the information established in sections 4.2.1.2 and 4.2.1.3. Complete 

initiation was expected in the polymerisation of the first block, endo-polymer, since 

kinlkpnn >> 1. This means there was no initiator left in the reaction before adding the 

second monomer. After the addition of the second aliquot of exo-monomer, the exo­

monomer propagated on the reactive chain ends of the living endo-polymer and the 

first exo-propagating chain ends formed became very reactive and the remaining exo­

monomer was incorporated at these chain ends resulting in the increased molecular 

weight and bimodal distribution. The decrease in the Mn and the increase in DPI of the 

poly(endo-C6M) obtained from experiment 6 suggests that a slow back-biting reaction 

occurred in this case. This is reasonably consistent with the fact that the backbone of 

all trans endo-polymer is subject to high steric strain, although it might also be 

expected to be sterically hindered to attack. 

Characterisation by thermal analysis 

The thermal analysis of all polymers obtained in this section are recorded along with 

the % trans content and Mn in Table 4.6. All DSC traces are shown in Appendix 4.1-

4.6. The effect of the polymer structures upon their physical properties in highlighted 

by the glass transition temperatures (Tg) measured by differential scanning calorimetry 

(DSC). The exo-homopolymer and copolymers exhibit glass transitions in the range 

85-88 °C, reflecting their similar structures, namely predominantly polymers from exo­

monomer with similar cis/trans contents. The Tg increases slightly with increase in 

trans content. The endo-polymers, which are all trans at the vinylenes, exhibited 

the highest Tg at about 115-118 °C. A similar trend in Tg with cis/trans content 

has been observed for poly(bis(trifluoromethyl)norbornadiene) 15
•
16 and amino ester 

functionalised norbornenes 17
• 
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TGA 

Experiment %trans Mn DSC Temp. tC) for 

vinylene TgtC) 2% weight loss 

1 

(exo) 82 125,000 85 425 

2 

(exo+exo) 81 291,000 84 414 

3 

(exo+endo) 94 132,000 88 350 

4 

(endo) 100 50,000 118 330 

5 

(endo+exo) 90 116,000 86 300 

6 

( endo+endo) 100 32,000 116 350 

Table 4.6 Thermal analysis of polymers produced m preparative scale 

polymerisations of exo- and endo-monomer with the ruthenium carbene 

initiator. 

It is clear that the low molecular weight polymer of the endo-monomer exhibited a 

higher glass transition temperature than the high molecular weight polymer of exo­

monomer. It might be concluded that the cis substitution of the four carbon atoms of 

the cyclopentane ring in poly(trans-endo-C6M) gives rise to strong steric hindrance 

and make the chain stiffer and motion more difficult, which is evident in the high 

glass transition temperature of this relatively low molecular weight material. 

Thermogravimetric analysis (TGA) on all polymer samples shown a substantial weight 

loss in the temperature range 300-425°C. This might result from the elimination of the 

maleimide group but the chemistry of the thermal degradation process was not 

examined due to lack of time, clearly the polymers derived from the endo-monomer 

were less thermally stable which may be a consequence of the increased steric strain in 

these materials. 
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4.4 Preparative scale syntheses of linear polymers: Poly(exo-CnM) 

Introduction 

From the work described in sections 4.2 and 4.3 it can be concluded that the endo­

monomer (endo-C6M) has very low reactivity with the ruthenium carbene initiator. In 

this section, the ROMP of the exo-monofunctional monomers with different 

length N-alkyl groups, exo-C3M, C4M, C5M, C6M, C8M, was investigated. The aims 

of the work described in this section were to study the effect of the length of the 

pendant N-alkyl group and the molecular weight on the thermal properties of the 

polymers. With these monomers a wider range of polymers can be prepared via 

solution polymerisation than by bulk polymerisation. In order to obtain polymers 

without residual unreacted monomer in the sample, solution polymerisations of a 

series of exo-monomers with different length N-alkyl groups were carried out. 

Polymerisation of exo-C3M, mpt. 45.5 °C, can not be carried out easily in the melt due 

to the relatively high melting point of the monomer and the rapid reaction at higher 

temperature; whereas the exo-C8M, which is a liquid at room temperature, shows very 

low reactivity for ROMP using the ruthenium carbene as an initiator in bulk. The bulk 

polymerisation of all these exo-monofunctional monomers will be discussed in detail in 

Chapter 5. 

4.4.1 Results and discussion 

The ROMP of exo-monofunctional monomers, exo-C3M, C4M, C5M, C6M, C8M, 

yields linear polymers with unsaturated backbones and different length pendant N-alkyl 

groups, as shown in Figure 4.20. 

Ru initiator 

Exo-N-alkylnorbornene-5,6-dicarboxyimide; 

exo-C3M x = 2, 

I 
(CH2) 

I X 

CH3 

exo-C4M x = 3, Poly(exo-N-alkylnorbornene-5,6-dicarboxyimide) 

exo-C5M x = 4, x = 2, 3, 4, 5, and 7 

exo-C6M x = 5, 

and exo-CSM x = 7 

Figure 4.20 A schematic representation of the linear polymer syntheses. 
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4.4.1.1 Syntheses of linear polymers 

The polymerisations of exo-monofunctional monomers were carried out on a 10 g scale 

in the Glove Box at room temperature. The ruthenium carbene initiator (10 mg) and 

exo-monomer (1 0 g) were dissolved in dichloromethane (5 ml and 100 ml, 

respectively) in separated ampules. The initiator solution was transferred into the 

monomer solution and the mixture stirred for 2 days. The polymerisations were 

terminated by adding ethyl vinyl ether and the products recovered as white solids by 

precipitation into excess methanol. The polymers were further purified by 

reprecipitation from chloroform into methanol and dried under vacuum at 30 °C for 2-3 

days. The same procedure as above was also used to provide poly(exo-C4M) with 

different molecular weights by varying the [M]/[1] ratio. All of the linear polymers 

made were soluble in toluene, tetrahydrofuran, dichloromethane and chloroform. 

4.4.1.2 Characterisation of polymers obtained 

This section describes the characterisation of the polymers whose synthesis was 

described in section 4.4.1.1. The characterisation was carried out using 1H and 13C 

nmr, GPC, DSC and TGA. All linear polymer gave clear transparent films from 

solution. 

Polymer characterisation using 1H and 13C nmr spectroscopy 

The exo-monomers used to make the linear polymers described in this section, all give 

polymers showing cis/trans vinylene isomerism. The cis/trans contents were 

calculated directly from the 1H nmr spectra. All nmr spectra of the polymers were 

recorded for solutions in CDCh and are shown in Appendix 4.7- 4.16. The 1H and 13C 

nmr spectra of poly(exo-C3M) are shown in Figure 4.21a and b respectively, as typical 

examples. The chemical shifts, cis/trans vinylene contents and assignments of 1H and 

13C nmr spectra for all polymers obtained are recorded in Table 4.7. ROMP of all exo­

monomers in solution proceeded in high conversion ( -85-96%) and gave products 

with cis vinylene contents generally of about 15-19%. These results are consistent 
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with the results from section 4.3 where it was established that the cis/trans content 

depends upon the relative amount of exo- and endo-monomers incorporated into the 

polymer chain; ROMP of exo-monomers gave about 20% cis content, whereas only 

trans stereochemistry was observed for the endo-monomer. The cis/trans contents of 

the polymers show relatively little or no dependence upon the [M]/[I] ratio and length 

of theN-alkyl pendant groups. 

Polymer [M]/[1] % 1Hnmr 

conversion %trans %cis 

vinylene vinylene 

Poly(exo-C3M) 4,000 95.9 85 15 

Poly(exo-C4M)-H* 10,700 96.0 85 15 

Poly(exo-C4M)-M* 6,700 94.0 83 17 

Poly(exo-C4M)-L* 3,700 91.6 81 19 

Poly(exo-C5M) 3,600 90.6 83 17 

Poly(exo-C6M) 3,200 90.9 83 17 

Poly(exo-C8M) 3,700 85.0 83 17 

Table 4.7 1H nmr analysis of polymers produced in preparative scale 

polymerisations of exo-monomers with the ruthenium carbene initiator. 

* H, M and L =high, medium and low average molecular weight, respectively. 
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Figure 4.21 1H and 13C nmr spectra ofpoly(exo-C3M). 
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1Hnmr 13C nmr 

Polymer 

Hydrogen Chemical shift (ppm) Carbon Chemical shift (ppm) 

~ 
H-2,3 5.75 (trans), 5.56 (cis) C-11,12 178.29 

H-8 3.40 C-2,3 133.70 (cis), 131.79 (trans) 

o=<~~~- _,},===o H-1,4 
N 

3.25 (cis), 3.00 (trans) C-5,6 52.50 (cis),50.90 (trans) 
I 

H-5,6 2.75 (cis), 2.70 (trans) C-1,4 45.98 (trans),41.01 (cis) CH 2 s 
~H2 9 

CH3 10 H-7 2.10 C-7 42.03 

H-7' 1.69 C-8 40.00 

Poly(exo-C3M) H-9 1.57 C-9 20.97 

H-10 0.88 C-10 11.21 

~ 
H-2,3 5.76 (trans), 5.51 (cis) C-11,12 178.29 

H-8 3.43 C-2,3 133.60(cis), 131.77 (trans) 

!" ~}·-o H-1,4 3.22 (cis), 2.99 (trans) C-5,6 52.21 (cis), 50.90 (trans) o=::r .... ~ __ ;-'·-· 
N 
I 

tH2 8 H-5,6 2.74 (cis), 2.67 (trans) C-1,4 45.78 (trans), 40.82 (cis) 
H 2 9 

c~ 10 H-7 2.11 C-7 42.02 
CH3 II 

H-7' 1.62 C-8 38.01 

H-9 1.53 C-9 29.70 

Poly(exo-C4M) H-10 1.28 C-10 20.01 

H-11 0.92 C-11 13.61 

H-2,3 5.76 (trans), 5.52 (cis) C-13,14 178.29 

~ H-8 3.44 C-2,3 133.50 (cis), l32.00(trans) 

0 :::1~~: -~~\:::Q H-1,4 3.25 (cis), 3.00 (trans) C-5,6 52.45 (cis), 50.29 (trans) 

N H-5,6 2.75 (cis), 2.64 (trans) C-1,4 45.97 (trans), 40.78 (cis) 
~H2 s 

H2 9 H-7 2.10 C-7 42.04 
c~ 10 

CH2 II H-7' 1.64 C-8 38.50 
CH3 12 

H-9 1.51 C-9 28.97 

Poly(exo-C5M) H-10,11 1.28 C-10 27.34 

H-12 0.92 C-11 22.20 

C-12 13.95 

Table 4.8 Summary of 1H nmr assignment of poly(exo-CnM); where n = 3, 4, 5, 6, 

and 8. 
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1Hnmr 13C nmr 

Polymer 

Hydrogen Chemical shift (ppm) Carbon Chemical shift (ppm) 

+wt H-2,3 5.75 (trans), 5.55 (cis) C-14,15 178.28 

H-8 3.43 C-2,3 133.45 (cis), 131.97(trans) 
0 :::(~~~ .~i\:::Q 

N H-1,4 3.24 (cis), 3.00 (trans) C-5,6 52.56 (cis), 50.87 (trans) 
CH2 s 
CH29 H-5,6 2.75 (cis), 2.67 (trans) C-1,4 45.84 (trans), 41.02 (cis) 
t~ 10 

H-7 2.10 C-7 42.21 CH2 II 

CH2 12 
H-7' 1.64 C-8 38.61 CH3 13 

H-9 1.54 C-9 31.45 

Po1y(exo-C6M) H-10,11,12 1.27 C-10 27.61 

H-13 0.87 C-11 26.60 

C-12 22.49 

C-13 13.99 

H-2,3 5.75 (trans), 5.56 (cis) C-15,16 178.27 

+wt H-8 3.43 C-2,3 133.56 (cis), 131.85 (trans) 

: ; H-1,4 3.25 (cis), 3.00 (trans) C-5,6 52.20 (cis), 50.93 (trans) 
o:-::i~~~ .~J:'.:=:o 

N H-5,6 2.74 (cis), 2.67 (trans) C-1,4 46.00 (trans), 40.43 (cis) 
~H2 s 

H 9 H-7 2.15 C-7 42.04 
t~ 10 

CH2 11 H-7' 1.62 C-8 38.56 
CH2 12 

C-9 31.78 CH2 1) H-9 1.53 
I 

<j=H2 14 H-10,11, C-10,11 29.18 CH3 15 

Po1y(exo-C8M) 12,13,14 1.26 C-12 27.67 

H-15 0.86 C-13 26.78 

C-14 22.61 

C-15 14.10 

Table 4.8 (continued) Summary of 1H nmr assignment of poly(exo-CnM); 

where n = 3, 4, 5, 6 and 8. 
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Characterisation by GPC 

The number average molecular weight (Mn) and PDI of all linear polymers obtained in 

this section are recorded along with the [M]/[I] ratio in Table 4.9. The GPC traces and 

the full details of the molecular weight analysis for all polymers obtained are shown in 

Appendix 4.17-4.23. 

Polymer [M]/[I] 
GPc** 

-
Mn PDI No. of peaks 

Poly(exo-C3M) 4,000 453,000 1.9 I 

Poly(exo-C4M)-H* 10,700 1,033,000 1.6 I 

Poly(exo-C4M)-M* 6,400 736,000 1.8 I 

Poly(exo-C4M)-L * 3,700 462,000 1.8 1 

Poly( exo-C5M) 3,600 498,000 1.8 I 

Poly(exo-C6M) 3,200 820,000 1.7 I 

Poly( exo-C8M) 3,700 492,000 1.9 1 

Table 4.9 GPC analysis of polymers produced in preparative scale polymerisations 

of exo-monomers with the ruthenium carbene initiator. 

* H, M and L =high, medium and low average molecular weight, respectively. 

** Water differential diffractometer detector, three Polymer Laboratories gel 

columns (exclusion limits 100, 103
, 1050A), chloroform eluent, polystyrene 

calibration. 
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In the majority of cases, the exo-monomers were polymerised with [M]/[1] ratios about 

4,000 to yield linear polymers with Mn values of approximately 500,000 versus 

polystyrene calibration. Po1y(exo-C6M), which was prepared using the same [M]/[1] 

ratio, exhibited approximately twice the molecular weight of the other polymers; this 

observation is consistent with termination by coupling. All the polymers obtained in 

this s~ction show relatively broad and monomodal molecular weight distribution. As 

discussed previously propagation is much faster than initiation in all these exo-system. 

The relatively high value of the PDis are probably due to the fact that the solution 

became very viscous resulting in less efficient mixing during the course of the reaction. 

Poly(exo-C4M) samples with different molecular weights were successfully prepared 

by varying the [M]/[I] ratio. It was found that the molecular weight of the polymers 

obtained can be controlled and shown a very roughly linear relationship with the 

[M]/[1] ratio, as shown in Figure 4.22. 

12 ~--------------------------------------~ 

10 

8 

6 

4 ........... ······-

2 

0~-----,------.-----~------.-----~----~ 

0 2 4 6 

[M]/[I] X I 03 

8 10 12 

Figure 4.22 Plot of number average molecular weight (Mn) versus 

monomer/initiator ratio ([M]/[I]) of poly(exo-C4M). 

Polymer characterisation by thermal analysis 

The glass transition temperature (Tg) and temperature for 2% weight loss of all linear 

polymers obtained in this section are recorded along with their number average 

molecular weights in Table 4.1 0. The DSC traces of all polymers obtained are shown 

in Appendix 4.24-4.30. It was found that the glass transitions of these linear polymers 
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depended upon the length of the side groups. In a series of linear polymers with 

different length of N-alkyl pendant group, the Tg decreases as the side group gets 

longer. However, Tg did not depend much upon the number average molecular weight 

of the polymers in the range of Mn investigated; thus, poly(exo-C4M)s with the 

number average molecular weights in the range 462,000 to 1,033,000 showed only a 

slight increased in Tg from 126 to 129 °C. This is consistent with the results from 

section 3.2.1.2 where it was established that the products from bulk experiments 

showed Tg which related to the amount of the residual monomers which act as 

plasticiser rather than the molecular weight. Thermogravimetric analysis (TGA) on 

all linear polymer samples show a substantial weight loss in the temperature range 400-

421 °C. This might result from the elimination of the maleimide group although this 

has not been proved. 

Polymer Mn DSC TGA 

Tg (OC) Temp. (0C) for 

2% weight loss 

Poly(exo-C3M) 453,000 140 403 

Poly(exo-C4M)-H* 1,033,000 129 400 

Poly(exo-C4M)-M* 736,000 127 403 

Poly(exa-C4M)-L • 462,000 126 414 

Poly(exo-C5M) 500,000 100 400 

Poly( exo-C6M) 820,000 84 421 

Poly(exa-C8M) 492,000 59 403 

Table 4.10 Thermal analysis of polymers produced in preparative scale 

polymerisations of exo-monomers with the ruthenium carbene initiator. 

* H, M and L =high, medium and low average molecular weight, respectively. 
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4.5 Preparative scale syntheses of highly crosslinked polymers: Poly(exo-CnD) 

Introduction 

As the results from section 4.4 show the polymerisation exo-monofunctional monomers 
• 

with different length N-alkyl groups yields linear polymers in high conversion (85-

96%) and having cis vinylene contents generally in the range 15-20%. It was found 

that the molecular weight of the linear polymers obtained can be controlled to some 

extent and showed a roughly linear relationship with the [M]/[I] ratio. The glass 

transition temperatures of the polymers are affected by the length of the pendant N­

alkyl group but not by the number average molecular weight in the range studied. In 

this section, the solution polymerisation of exo-difunctional monomers with different 

numbers of methylene unit separating the reactive imidonorbornene units, exo-C3D, 

C5D, C6D, C9D and C 12D, was investigated on a 1.5 g scale. The aim of the work 

was to study the reactivity of these difunctional monomers. 

4.5.1 Results and discussion 

The ROMP of exo-difunctional monomers, exo-C3D, C5D, C6D, C9D and C 12D, 

yielded highly crosslinked polymers with different methylene spacer sequences 

between the polymer chains. The solid exo-difunctional monomers were dissolved in 

dichloromethane before the addition of initiator solution. The difunctional monomers 

show very different rates of dissolving. The monomers (1.5 g) with shorter methylene 

chain between the reactive imidonorbornene units dissolved completely in the solvent 

(20 ml, dichloromethane) quicker than the longer ones. The polymer synthesis could 

be followed by the colour change of the solution mixture from purple-pink (initiator) to 

yellow (propagating species). The reactions which are expected to occur are shown 

below, Figure 4.23. All crosslinked polymers were obtained as hard brown solids. The 

polymer samples were subjected to sol-gel extraction using chloroform in a Soxhlet 

apparatus to yield hard white solids. 
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Figure 4.23 The polymerisation of exo-difunctional monomers with the Ru carbene 

initiator; where n =number of methylene unit separating the reactivity 

imidonorbornene units ( n = 3, 5, 6, 9 and 12). 
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4.5.1.1 Syntheses of highly crosslinked polymers 

The polymerisations of exo-difunctional monomers were carried out on a 1.5 g scale at 

room temperature. The initiator (10 mg) and the exo-difunctional monomer (1.5 g) 

were dissolved in dichloromethane (5 ml and 20 ml, respectively) separately. The 

initiator solution was transferred into the monomer solution and stirred until the 

mixture gelled, as judged visually and by the fact that the stirrer stopped. The gel 

mixture was allowed to stand at room temperature for an hour before addition of a 

solution of ethyl vinyl ether (0.5 ml) in dichloromethane (25 ml) to terminate all 

propagation. The gels were stirred in dichloromethane for a few hours before being 

recovered by filtration and dried under vacuum at 30 °C for 2-3 days. All the highly 

crosslinked polymers obtained in this section were subjected to sol/gel extraction with 

chloroform for 2 days. The polymers were obtained as coarse white hard powders and 

dried under vacuum at 40°C for 3 days. All gels obtained were insoluble in toluene, 

chloroform, dichloromethane and tetrahydrofuran. 

4.5.1.2 Characterisation of polymers obtained 

Polymer Gel time * % conversion Degree of swelling 

(min) 
(by weight) 

Poly(exo-C3D) 1 96.5 3.0 

Poly(exo-C5D) 2 93.4 3.2 

Poly(exo-C6D) 5 94.4 3.0 

Poly(exo-C9D) 7 91.6 2.1 

Po!y(exo-Cl2D) 8 92.1 2.3 

Table 4.11 The analysis of highly crosslinked polymers. 

* determined when the stirrer had stopped 
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The solution ROMP of all exo-difunctional monomers proceeded very rapidly. The 

colour of the reaction solutions changed from purple-pink (initiator) to yellow 

(propagating species) in less than one minute. The solutions gelled within 8 minutes, 

the exact time depending upon the reactivity of the monomers used. The gel times 

which were determined when the stirrer had stopped and the polymerising mixture 

formed a gel-like product are recorded in Table 4.11. The reaction mixture using 

monomers with shorter methylene sequences between the reactive imidonorbornene 

units gelled much quicker than those with longer sequences. Comparison of the 

reaction times and conversions for reaction in the previous, 4.3 and 4.4, and this section 

showed that the exo-difunctional monomers are very reactive and highly crosslinked 

polymers were obtained in high conversion ( -91-96 %) in a few hours, whereas the 

linear polymers derived from exo-C6M were obtained in slightly lower conversion 

( -85-95%) within 2 days. It seems reasonable to suggest that the exo-CnD are 

somewhat more reactive than exo-CnM, which might result from the fact that there are 

more reactive sites on exo-CnD than on exo-CnM (2: 1 ). 

The crude crosslinked polymers were subjected to sol-gel extraction and the cross­

linked residues dried and then swollen in toluene for 2 days. The degrees of swelling 

were determined and the results are also given in Table 4.11. It is apparent that the 

degree of swelling (qm) of the gel fraction for the polymers with short methylene 

spacers between the polymer chains, poly(exo-CnD) where n = 3, 5 and 6, are higher 

than those of the polymers with longer spacers, poly(exo-CnD) where n = 9 and 12. 

This probably indicates that poly(exo-C9D) and poly(exo-C12D) have higher crosslink­

densities than the other polymers. It seems reasonable to suggest that both functional 

groups of the longer difunctional monomers, exo-C9D and exo-C 12D, reacted to a 

greater extent than those of exo-C3D, exo-C5D and exo-C6D probably as a result of 

reduced steric hindrance. However, the data to hand are insufficient to determine the 

amount of the exo-CnD which has both functional groups reacted. 
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1981. 
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5.1 Introduction 

Trial bulk and solution polymerisations of exo- and enda-monofunctional monomers 

and exa-difunctional monomers initiated by the Grubbs' ruthenium carbene have been 

described previously in Chapter 3 and 4 respectively. It was observed that endo­

monomer is much less reactive than the exo-monomers both in bulk and solution. For 

ROMP in solution, the exo-monomer is rapidly consumed and once an endo-monomer 

is incorporated at the chain end the new enda-derived chain end is less reactive than 

exa-derived chain end. It is apparent that this new enda-derived chain end prefers to 

initiate polymerisation of the more reactive exo-monomer rather than the less reactive 

endo-monomer. For ROMP in bulk, where shorter reaction times and efficient mixing 

are required, the endo-monomer was found to terminate the chain growth and therefore 

was unsuitable for use as a monomer feed for in-mould processing. 

The work described in this chapter is concerned with making linear and crosslinked 

polymeric materials via ROMP using exa-isomers as monomers in the feed. The aim 

of the work was to develop a process for producing shaped articles by introducing a 

reactive liquid mixture into a mould in which the reacting liquid mixture undergoes 

ROMP in the bulk to produce the moulded article. The experiments were carried out 

by mixing neat monomer with the initiator, varying the monomer/initiator ratio, initial 

mixing time, initial mixing temperature, the time and the temperature during which the 

filled mould was placed in an oven (hereinafter called curing time and curing 

temperature), the length of the pendant N-alkyl groups of the monofunctional 

monomers, and the spacer length between the reactive imidonorbornene units of 

difunctional monomers. The moulded articles were obtained by introducing the 

reaction mixture into a glass mould or a small sample vial depending on the amount of 

the monomer used and the size of the product required. In this work, a glass mould, 

which formed plaque samples, 50mm x 50 mm x 3 mm thick, was made from a silicone 

pattern sandwiched between two glass plates. A smooth surface finish was obtained by 

covering the glass plate walls with a fibre glass reinforced Teflon sheet. After the 

mould was filled, it was closed and polymerisation was completed by placing the 

mould in an oven. The final product was removed easily from the glass mould 

immediately while hot or after cooling. A short time after removal from the oven, heat 

removal was not complete and the product was hot and flexible. The plaque became a 
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rigid solid after cooling to room temperature. In the case where a small glass vial 

served as the mould, the final product was obtained as a disc of 20 mm diameter and 

approximately 5-7 mm thick by breaking away the glass. 

After demoulding, general observations of the sample were recorded. The general 

criteria used to judge a 'hard' part include the following; (I) the moulded part must 

come out of the mould as one piece and the part must be rigid not rubbery. (2) The 

surface quality on the both sides must be smooth. The unreacted monomer content, the 

glass transition temperature (Tg), and the gel fraction were used to characterise the 

crude products. The unreacted monomer content in the linear polymeric materials was 

determined using 1H nmr spectroscopy and selected samples were characterised using 

TGA, DSC and DMT A techniques. The glass transition temperature and the 

mechanical properties of the crosslinked polymeric materials were determined using 

the DMTA technique and selected samples were submitted to sol-gel analysis. 

5.2 ROMP-processing of exo-monofunctional monomers 

The exo-C6M was used as a standard monomer in the first attempt to find the optimum 

reaction conditions for providing polymeric materials which have as high a conversion 

of monomer as possible, since incomplete reaction and particularly residual monomer 

will affect the physical and thermal properties of the product. The effect of 

monomer/initiator ratio, initial mixing time, initial mixing temperature, and curing time 

and curing temperature on conversion and product properties were investigated. The 

details of the synthesis and characterisation of the moulded articles from these 

experiments are described in sections 5.2.1-5.2.4. Subsequently the effect of the 

length of the pendant N-alkyl groups of the exo-monomers on thermal and physical 

properties were investigated and are described in section 5.2.5. 

5.2.1 Effect of monomer/initiator ratio on conversion and product properties 

The exo-C6M (20 g, 0.08 mol) and variable amounts of the ruthenium carbene initiator 

were mixed in a small reaction vessel and stirred at room temperature for 15 minutes. 

The reacting mixture was transferred into a glass mould using a syringe. After the 

mould was filled it was closed and placed in an oven at I 00 °C for an hour. The mould 
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then was removed from the oven and the final product was removed from the mould 

and allowed to cool to room temperature. Small pieces of all moulded articles were cut 

from the plaque and characterised using 1H nmr spectroscopy, TGA, and DSC. The 

relevant parameters were determined and are recorded in Table 5.1. The 1H nmr 

spectrum and DSC trace for a sample prepared using a monomer/initiator ratio of 

3,70011, experiment 1, are shown in Figure 5.1 as a typical example. 

(a) 

Unreacted exo-C6M / 

! Polymer I 
CHCh v '\ I 

~ I !'\I I TMS __ __/_~ __ IL __ A_ll-__________ _1 d,__./lJ\ __ t,~~ JL u ·~ 

(b) 

HEAT FLOW (mW) 

.I 

.75 

.5 

.25 

0 

-20.00 

Tg f'roaa: S.1.3B 
to: 55.43 

Onsat- 47.0A 
.J/v•deg.- . 1.0 
Tg- 33.41. 

0.00 

··- · ·····T ---·1·- ··:····-··r ····1·· -- ·r······:·····-:----~-----,----··r··---, ----.,-r-··--:--·--·T-·-r-··1-...,-,---~----,---.---,-

5 ppm 

20.00 40.00 60.00 80.00 

Temperature (°C) 

Figure 5.1 (a) 1H nmr spectrum and (b) DSC trace of a sample prepared using a 

monomer/initiator ratio of 3,700/1. 
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Sample no. 2 3 4 

Exo-C6M (g) 20 20 20 20 
(mole) 0.08 0.08 0.08 0.08 

Ru initiator (mg) 18 14 11 6 
(mole X 1 0·5

) 2.1 1.7 1.5 0.7 

Ratio (by mole) 3,700 4,800 5,500 11,100 
Monomer/initiator 

1Hnmr 
(% unreacted monomer) 21 26 37 50 
(%polymer) 79 74 63 50 

% trans vinylene 
(in crude product) 59 55 48 40 
(in polymer matrix) 75 75 76 79 

%cis vinylene 
(in crude product) 20 19 15 10 
(in polymer matrix) 25 25 24 21 

DSC (Tg, 0 C) 33 31 -2 -43 

TGA (Temp. for 2% 181 181 169 151 
weight loss, 0 C) 

Sample appearance hard hard rubbery soft rubbery 

Table 5.1 The analysis of moulded articles produced by varying the 

monomer/initiator ratio. 

One-step in-mould processing of exo-C6M with varymg amount of the ruthenium 

carbene initiator yield moulded articles ranging in property from soft rubbery to hard 

materials. During stirring the monomer and the initiator for 15 minutes, the viscosity 

of the liquid mixtures increase slightly. This indicates that the chemical reaction had 

started. However, during this time the colour of the liquid mixtures changed slowly, 

which indicates slow initiation. The colour of the reacting mixtures changed from 
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purple-pink (initiator) to yellow (propagating species) during the period when the filled 

moulds were in the oven. 

1H Nmr analysis of the moulded articles obtained in this way clearly indicated that 

there was residual exo-C6M in all the materials. It is apparent that the overall extent of 

the polymerisation decreases as the ratio of monomer/initiator is increased. At low 

initiator concentrations, experiments 3 and 4, the products displayed low monomer 

conversion and were obtained as rubbery shaped articles. The glass transition 

temperatures of the moulded articles decrease from 33 to -43 °C, as the amount of the 

unreacted monomer trapped in the polymer matrix increased from 21 to 50%. All the 

crude products showed a cis vinylene contents generally of about 21-26%. 

Thermogravimetric analysis (TGA) on all products obtained showed a substantial 

weight loss in the temperature range 151-181 °C. This might result from the 

elimination of the unreacted monomer and/or low molecular weight species although 

this has not been proved. It is clear that the appearance and thermal properties of the 

final products related to the extent of monomer conversion. It can be concluded that 

the unreacted monomer is a very effective plasticiser and permanently plasticised the 

final products. 

5.2.2 Effect of initial mixing time on conversion and product properties 

The exo-C6M monomer (15 g, 0.06 mol) and the ruthenium carbene initiator (12 mg, 

1.5 x 1 o-5 mol, monomer/initiator ratio 4, I 00/1) were mixed in a small reaction vessel at 

room temperature. About 2-3 g of the reacting mixture was transferred into a small 

glass vial using a syringe after stirring for 5, 10, 20 and 30 minutes, respectively. The 

filled vials were placed immediately in an oven at 100 °C for an hour. After removal 

from the oven, the vials were allowed to cool to room temperature. The final products 

were removed as rigid clear yellow solids by breaking away the glass. The crude 

products were cut up and characterised using 1 H nmr spectroscopy and DSC. All the 

relevant parameters were determined and are recorded in Table 5.2. The 1H nmr 

spectrum and DSC trace of a sample produced in an experiment using an initial mixing 

time of 30 minutes, experiment 4, are shown in Figure 5.2 as a typical example. 
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It was found that the viscosity of the reaction mixture increases slowly during stirring 

at room temperature. A longer initial mixing time lead to an increase of the viscosity 

of the reaction mixture. After stirring the reaction mixture for 30 minutes, it became 

highly viscous and made the mould filling difficult. After stirring the mixture for 40 

minutes under the condition studied the viscosity became too large for the mixture to 

be transferred into a mould using a syringe . The colour of the mixture change slowly 

from purple to yellow during 40 minutes stirring, indicating slow initiation. 

(a) 

Unreacted exo-C6M 

(b) 

HEAT FLOW (mW) 

1.5 

1.125 

.75 

.375 

0 

Tg fro-= 18.!53 
to: 42.!59 

onset- 28.81 
.J/g•deg.- • ll 
Tg- 31.18 

-20.00 0.00 

ppm 

20.00 40.00 60.00 

Temperature (0 C) 

Figure 5.2 (a) 1H nmr spectrum and (b) DSC trace for a sample prepared using initial 

mixing time 30 minutes. 
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Sample no. 2 3 4 

Initial mixing time (min) 5 10 20 30 

1Hnmr 
(% unreacted monomer) 30 26 25 23 
(%polymer) 70 74 75 77 

% trans vinylene 
(in crude product) 52 55 54 58 
(in polymer matrix) 75 74 74 75 

% cis vinylene 
(in crude product) 17 19 19 19 
(in polymer matrix) 25 26 26 25 

DSC (Tg, 0 C) 28 30 31 31 

TGA (Temp. for 2% 
weight loss, 0 C) 169 177 177 181 

Sample appearance hard hard hard hard 

Table 5.2 The analysis of moulded articles produced by varying the initial mixing 

time. 

1H Nmr analysis of the final products obtained from the work described in this section 

indicated that there was residual exo-C6M in all the materials. It was found that the 

overall extent of the polymerisation did not depend much on the initial mixing time 

under the conditions studied, as the final products showed the same appearance and 

only slightly different conversions and Tgs. The conversion increases slightly from 74 

to 77%, as the initial mixing time is increased from 10 to 30 minutes, experiment 2, 3 

and 4 respectively. However, too short an initial mixing time, experiment 1, results in 

the lowest conversion in the final product. This might be because the mixture was not 

well mixed before it was introduced into a glass vial. All the final products showed cis 

vinylene contents of about 25%. Thermogravimetric analysis (TGA) on all products 

obtained show a substantial weight loss in the temperature range 169-181 °C. This 

might result from the elimination of the unreacted monomer and/or low molecular 

weight species although this has not been proved. 
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5.2.3 Effect of initial mixing temperature on conversion 

The exo-C6M monomer and the ruthenium carbene initiator were mixed and stirred at 

room temperature in a small reaction vessel. The reacting mixture was transferred into 

a glass mould using a syringe before the mixture became too viscous. After the mould 

was filled it was closed and placed in an oven at 100 °C for an hour. Then the mould 

was removed from the oven and the final product was removed from mould as a rigid 

solid after cooling to room temperature. In order to study the effect of the initial 

mixing temperature, the monomer and the initiator were mixed and stirred at 40, 60 and 

80 °C by placing the reaction vessel in an oil bath before introducing the reacting 

mixture to the glass mould. The final products were cut up and characterised using 1H 

nmr spectroscopy in CDCh solution. All the relevant parameters were determined and 

are recorded in Table 5.3. 

It was found that the reaction rate and the viscosity of the reaction mixture increased as 

the initial mixing temperature was increased. After stirring the reaction mixtures at 

room temperature, experiment 1, and at 40 °C in an oil bath, experiment 2, the 

mixtures became only slightly viscous due to the relatively slow polymerisation 

reaction. The moulded articles were obtained by introducing the liquid mixture into a 

glass mould. However, very rapid reaction took place when the mixtures were stirred 

at 60 and 80 °C, experiment 3 and 4 respectively and the mixtures were very viscous 

within 5 minutes. The attempt to transfer the mixtures from these reactions failed 

because the viscosities were too high. The final products were obtained, as low 

conversion rubbery materials, by placing the reactors directly in an oven at 100 °C for 

an hour. 

1H Nmr analysis of the crude products obtained indicated that when the initial mixing 

temperature is increased from room temperature to 40°C, the conversion remained 

constant at about 80%. At higher initial temperature the conversion dropped off quite 

rapidly, e.g. at 60 °C the conversion dropped to 60% and at 80 °C the conversion was 

only 52%. As the reactions were too rapid at high temperature, the mixtures were 

poorly mixed and in the resulting viscous mixture access of the monomer to the active 

chain end was restricted. It can be concluded that it is important to retard the 
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polymerisation long enough to mix together the initiator and monomer by using a low 

initial mixing temperature. 

Sample no. 2 3 4 

Exo-C6M (g) 20 15 15 15 
(mol) 0.08 0.06 0.06 0.06 

Ratio (by mole) 3,700 4,000 3,800 4,000 
Monomer/initiator 

Initial mixing room 40 60 80 
temperature (C) 

Initial mixing time (min) 15 15 5 2-3 

1Hnmr 
(% unreacted monomer) 21 20 40 48 
(%polymer) 79 80 60 52 

% trans vinylene 
(in crude product) 59 60 44 38 
(in polymer matrix) 75 75 73 74 

% cis vinylene 
(in crude product) 20 20 16 14 
(in polymer matrix) 25 25 27 26 

Sample appearance hard hard rubbery rubbery 

Table 5.3 The analysis of moulded articles produced by varying the initial mixing 

temperature. 

5.2.4 Effect of curing time and curing temperature on conversion and product 

properties 

Experiment 1 

The exo-C6M monomer and the ruthenium carbene initiator were mixed in a small 

reaction vessel and stirred at room temperature for 15 minutes. The reacting mixture 

was transferred into a glass mould using a syringe. The filled mould was placed in an 
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oven at 100 °C or 160°C for 30 or 60 minutes. The moulded articles were cut up and 

characterised using 1H nmr spectroscopy, TGA, DSC and GPC. All the parameters 

determined are recorded in Table 5.4. The 1H nmr spectrum and DSC trace of the 

product of the experiment using a curing temperature of 160 °C and curing time of 60 

minutes, experiment 2, are shown in Figure 5.3 as a typical example. 

(a) 

CHCh 

Unreacted monomer 

(b) 

HEAT FLOW(mW) 

.75 

.5 

.25 

0 

Tg f'rom: '90.39 
to: 83.63 

Onset- 54.85 
~/o•deg.- 9.29E-02 
Tg- 57.65 

40.00 

·····r ···········-----.--r---~--r--;--···;·-··-·-,---r--,--·r---;------:---y---. -. ~-·-:---r--.---~ 

5 ~ 

50.00 60.00 70.00 80.00 90.00 

Temperature (C) 

Figure 5.3 (a) 1H nmr spectrum and (b) DSC trace of the moulded article from 

an experiment using curing temperature 160 °C and curing time 60 

minutes. 
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Sample no. 2 3 4 

Exo-C6M (g) 20 20 15 20 
(mole) 0.08 0.08 0.06 0.08 

Ratio (by mole) 3,700 3,800 5,200 5,500 
Monomer/initiator 

Curing temperature CC) 100 160 160 100 

Curing time 60 60 60 60 

1Hnmr 
(% unreacted monomer) 21 9 26 37 
(%polymer) 79 91 74 63 

% trans vinylene 
(in crude product) 59 70 56 48 
(in polymer matrix) 75 77 76 76 

% cis vinylene 
(in crude product) 20 21 18 15 
(in polymer matrix) 25 23 24 24 

GPC (Mn) 1,387,000 38,200 136,000 402,000 

PDI (Mw/Mn) 1.2 2.7 5.8 2.1 

DSC (Tg, 0 C) 33 58 25 -2 

TGA (Temp. for 2% 181 207 169 169 
weight loss, 0 C) 

Sample appearance hard hard hard rubbery 

Table 5.4 The analysis of moulded articles produced at different curing temperatures. 

The experimental results showed that the higher curing temperature seemed to be 

beneficial. It is clearly seen that the conversion, the thermal properties and the 

appearance of the moulded articles were improved by using higher curing temperature. 
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The appearance and the thermal properties of the moulded articles seem more closely 

related to the conversion than to the molecular weight, which is consistent with the 

result from section 4.4. All the final products showed cis vinylene contents generally 

of about 23-25% and showed a substantial weight loss in the temperature range 169-

207 °C. 

Experiment 2 

The exo-C6M monomer (20 g, 0.08 mol) and the ruthenium carbene initiator (16 mg, 

1.9 xl0-5 mol, monomer/initiator ratio 4,10011) were mixed in a small reaction vessel 

and stirred at room temperature. A small amount of the reacting mixture was 

transferred into the nmr tubes after stirring the liquid mixture for 5 and 20 minutes. 

The initial reactions during 5 and 20 minutes were then analysed immediately by using 
1H nmr spectroscopy. After 20 minutes stirring, the reacting mixture was divided and 

introduced into 6 vials using a syringe. All the vials were placed in an oven at 160 °C 

and one was removed from the oven every 10 minutes. The moulded articles were 

obtained as clear yellow solids after cooling to room temperature by breaking away the 

glass. The final products were cut up and characterised using the 1H nmr spectroscopy. 

The experimental results are shown in Table 5.5 and Figure 5.4. 

1H Nmr analysis of the samples taken from the reaction mixture after stirring the liquid 

mixture for 5 and 20 minutes, sample number I and 2 respectively, showed that a slow 

reaction took place after the monomer was mixed with the initiator. Longer initial 

mixing times lead to higher conversion and the viscosity of the mixture increased as the 

conversion increased. However, only 11% conversion was observed after the neat 

monomer was mixed with the initiator for 20 minutes at room temperature. This 

indicates that the monomer did not react appreciably in bulk at room temperature. 

The conversion increased dramatically from 11% to 60% after the reactive mixture was 

introduced into a mould and the filled mould was kept in the oven at 160°C for 10 

minutes, sample number 3. This indicates that the rate of this polymerisation can be 

activated by higher temperatures. It was found that the overall extent of the 

polymerisation increased and showed a roughly linear relationship with the curing time 

at 160°C, as shown in Figure 5.4. 

147 



Chapter 5 

Sample no. Initial mixing time Curing time 1 Hnmr Sample 
at room temp. at 160°C (%polymer appearance 

(min) (min) in crude product) 

5 6 liquid 

2 20 ll viscous 
liquid 

3 20 10 62 rubbery 

4 20 20 68 hard 

5 20 30 75 hard 

6 20 40 80 hard 

7 20 50 87 hard 

8 20 60 90 hard 

Table 5.5 1H nmr analysis of moulded articles produced by varying the curing time. 

Experiment 3 

The exo-C6M monomer (20 g, 0.08 mol) and the ruthenium carbene initiator (17 mg, 

2.1x10-5 mol, monomer/initiator ratio 3,90011) were mixed in a small reaction vessel 

and stirred at room temperature for 20 minutes. After 20 minutes, reacting mixture was 

divided and introduced into 8 vials using a syringe. The vials were then placed in a hot 

oil bath at 60 °C. The first vial was removed from the hot oil bath after 10 minutes and 

was allowed to cool to room temperature. After 20 minutes, all remaining vials were 

moved from the oil bath. One of them was allowed to cool to room temperature and 

the other 6 vials were placed in an oven at 160 °C. At every 10 minutes, one vial was 

removed from the oven and was allowed to cool to room temperature. All moulded 

articles obtained were cut up and characterised using 1H nmr spectroscopy. The 

experimental results are shown in Table 5.6 and Figure 5.4. 

148 



Chapter 5 

1H Nmr analysis of the moulded articles showed that the rate of the polymerisation and 

the conversion are increased as the curing temperature increases. It was found that the 

improved process of experiment 3 provides the samples which contain a reduced 

amount of unreacted monomer in comparison with the data for the analogous 

experiment 2, see Figure 5.4. This might be because the reactive mixtures were 

allowed to polymerise at the moderated polymerisation rates, at 60 °C, before rapid 

reaction took place at 160°C. If the rapid reaction took place too early, the liquid 

mixture became highly viscous. At this stage, it may be that access to the active chain 

ends by the monomer is inhibited. 

Sample Initial mixing time Curing Curing time 1 H nrnr Sample 
no. at room temp. time at 160 °C (%polymer appearance 

(min) at 60 °C (min) in crude product) 
(min) 

20 10 25 highly viscous 
liquid 

2 20 20 32 soft rubbery 

3 20 20 10 79 hard 

4 20 20 20 83 hard 

5 20 20 30 86 hard 

6 20 20 40 94 hard 

7 20 20 50 96 hard 

8 20 20 60 96 hard 

Table 5.6 The analysis of crude samples produced by varying the curing time and 

temperature. 

149 



Chapter 5 

% conversion 
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Figure 5.4 The extent of polymerisation of exo-C6M as a function of curing time and 

temperature profile (see experiments 2 and 3 for details) . 

5.2.5 Effect of the length of the pendant N-alkyl groups on conversion and 

product properties 

lnjtiaJ Initial mixing Curing time Curing time 
Monomer [M]/[1] mixing time at 60 °C at 160 °C 

temperature (min) (min) (min) 
(oC) 

exo-C3M 3,900 50 3 - -

exo-C4M 3,800 35 20 20 60 

exo-C5M 4,000 20 20 20 60 

exo-C6M 3,700 20 20 20 60 

exo-C8M 3,900 20 20 20 60 

Table 5. 7 Reaction condition for producing moulded articles from exo-CnM, 

where n = 3, 4, 5, 6, and 8. 
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In this section, the preparation of moulded articles derived from exo-monofunctional 

monomers (exo-C3M, exo-C4M, exo-C5M, exo-C6M and exo-C8M) using the reaction 

conditions shown in Table 5.7 is described. Polymerisation of exo-C3M, mpt. 45.5 °C, 

could not be carried out in the melt due to the high melting point of the monomer and 

the rapid reaction at this mixing temperature. Very rapid reaction took place within a 

few minutes when the melted monomer and the initiator were mixed and stirred at 50 

°C. An attempt to transfer the reacting mixture from this reaction into the mould failed 

because the viscosity of the mixture was too high. The initial step of the 

polymerisation of exo-C4M, mpt. 32 °C, was carried out in the melt at an initial mixing 

temperature of 35 °C in an oil bath. The temperature of the oil bath was not allowed to 

rise above 40 °C in order to melt the monomer and slow the rate of the reaction down 

as much as possible. The mixture was well mixed for 20 minutes before being 

transferred to a glass mould. The moulded article was obtained as a clear yellow rigid 

solid. Polymerisation of exo-C5M, exo-C6M and exo-C8M, were carried out by 

stirring the monomer and initiator mixtures at room temperature for 20 minutes before 

being transferred to a glass mould. The moulded articles derived from exo-C5M and 

exo-C6M were obtained as clear yellow rigid solids. Whereas the moulded sample 

derived from exo-C8M was obtained as a very soft rubbery material, indicating low 

conversion. The conversion, the cis/trans content, the glass transition temperature of 

the moulded articles were determined by 1H nmr spectroscopy and DSC. The 1H nmr 

spectrum, and DSC trace of the moulded article derived from exo-C6M are shown in 

Figure 5.5, as a typical example. The conversion, cis/trans content, glass transition 

temperature of the moulded articles derived from exo-CnM, where n = 4, 5, 6 and 8, are 

recorded in Table 5.8. 

(a) 

U nreacted exo-C6M 
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120.00 

Figure 5.5 (a) 1H nmr spectrum and (b) DSC trace of crude poly(exo-C6M). 

1Hnmr Tg (OC) 

Sample no. 
Sample 

% % % appearance 

conversiOn Trans Cis DSC DMTA 

1 
exo-C4M 94 75 25 113 136 hard 

2 
exo-C5M 96 75 25 95 106 hard 

3 
exo-C6M 98 74 26 82 93 hard 

4 soft 
exo-C8M 52 76 24 -55 - rubbery 

Table 5.8 The analysis of moulded articles produced with varying length of pendant 

N-alkyl groups. 

1H Nmr analysis of the products obtained indicated that moulded samples with a high 

conversion (94 to 98%) can be obtained under the conditions studied except for the 

product derived from exo-CSM. The data to hand is insufficient to construct an 

unambiguous explanation. However, it may be that the long pendant N-alkyl group in 
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the exo-C8M structure retards the polymerisation by steric inhibition of the propagating 

chain end from the monomer. Alternatively, the monomer might form micelles since 

the molecule has a relatively long nonpolar hydrocarbon chain and a polar head group, 

the ruthenium carbene initiator might dissolve in the hydrocarbon interior of the 

micelles and become ineffective. All the crude samples showed cis vinylene contents 

generally of about 24 to 26%. This indicates that the cis/trans content of the polymers 

is not affected by the length of the N -alkyl pendant groups. 

Pieces of the plaques were cut for the DMTA analysis 1
·
3 (see Appendix I for the 

analysis details). The thermal and the mechanical properties of the materials derived 

from exo-CnM, where n = 4, 5, and 6, were determined, whereas the material derived 

from exo-C8M was too fluid to measure. The dynamic modulus curve and damping 

(tan 8) curve as a function of temperature for the material derived from exo-C6M are 

shown in Figure 5.6, as a typical example. 

Modulus (E') tan 8 
1010 .,...-----------------------. 1 .50 

E' 
a 

1.20 

108 0.90 

107 0.60 

108 0.30 

a tan8 
1 0 6 t:::::;::::::;::=:;:::r::::::;:::;:::;::::;:::r:::::L::::r=::::c:::i:::::L._.__I.......J..._.__..l.......J..__._..J........I_j 0. 0 0 

-100 -50 0 50 100 150 

Temperature (°C) 

Figure 5.6 Modulus and damping curves for a material derived from exo-C6M using a 

dual cantilever beam geometry (RSAll dynamic analyser), curve a and 

a parallel plate geometry (RDAll dynamic analyser), curve b. 
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The data in figure 5.6 were obtained on a Rheometries Dynamical Spectrometer. The 

behaviour of the materials at temperature below their glass transition temperature (Tg) 

was studied using a dual cantilever beam geometry (RSAII dynamic analyser) while 

near and above Tg a parallel plate geometry (RDAII dynamic analyser) was used. 

Curve a of figure 5.6 shows that at low temperature the modulus (E') of material 

derived from exo-C6M is high, about 3x 109 Pa (Nim\ indicating low molecular 

motion of the polymer chain.2 Whereas the damping or tan8 is low, which indicates 

that material has nearly perfect elastic behaviour at low temperature. The modulus 

decreases slowly as the temperature increases. At the glass transition region, curve b, 

the modulus decreases and the damping increases very rapidly. The damping peak or 

tan8max occurs when part of the frozen-in segments become free to move and part of the 

energy is dissipated as heat. The comparative dynamic mechanical and damping (tan8) 

curves as a function of temperature for moulded articles derived from exo-CnM, where 

n = 4, 5 and 6 are shown in Figure 5.7a and b. 

As can be seen clearly in Figure 5.7a, the temperature at which the drop in the dynamic 

modulus occurred for materials derived from exo-CnM, where n = 4, 5 and 6, increased 

when monomers with the shorter N-alkyl groups were used. The damping peak or tan 

<>max also shifts to higher temperature as the length of the pendant group gets shorter, as 

shown in Figure 5.7b. The increase in tan <>max was in the same direction as the 

increase in Tg measured by DSC, see Table 5.8. However, it was observed that Tg 

values obtained from the DSC technique were about 10 °C lower than the those 

obtained from the DMT A. The glass transition decreases as the flexibility of the side 

group of the polymer chains increases when monomers with longer N-alkyl groups 

were used. These results are consistent with the results from section 4.4 where the pure 

linear polymers were obtained from solution polymerisation. It is interesting to note 

that the pure linear polymers obtained from section 4.4 showed higher Tg than the 

linear materials obtained in this section since there was no residual monomer in those 

samples to act as plasticiser. 

154 



(a) 

,...._ 

"' 0.. 
'-..' 

Vl 
::I 
:; 
"0 
0 

::E 
1;3 
Q) 

..c: 
en 

1.00E+09 C4M 

1.00E+08 

1.00E+07 

1.00E+06 

1.00E+05 +----+---+-----+---+----+---+---+-----4 

40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 

Temperature (C) 

(b) 

2.50 

2.00 

5 1.50 
~ 
§ 1.00 

0.50 

C4M 

C5M 

0.00 +----+---+-----""1=:__-+------f---+---------,--------i 

40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 

Te~rature (C) 

Chapter 5 

Figure 5.7 (a) the modulus curves and (b) damping or tan8 curved as a function of 

temperature for mould articles derived from exo-CnM, where n = 4, 

5 and 6. 

The mechanical properties of the materials derived from exo-CnM, where n = 4, 5 and 

6, were determined using three point bending and parallel plate geometry (see 

Appendix I for the analysis details) and the relevant parameters are recorded in Table 

5.9. 
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Meachanical Analysis 

Three point bending Parallel plate 
Sample no. geometry 

Flexural Flexural Mode Shear 
modulus strength of failure Modulus 

(GPa) (MPa) at 20°C (MPa) 
at 20°C at 20°C at Tg + 50°C 

I 
exo-C4M 2.36 85.3 brittle 0.33 

2 
exo-C5M 1.53 84.2 yield 0.37 

3 
exo-C6M 1.46 60.4 Yield 0.19 

Table 5.9 Mechanical properties of moulded articles derived from exo-CnM, 

where n = 4, 5 and 6. 

It was found that the flexural modulus, flexural strength and shear modulus decreased 

as the length of the pendant group increased. It is apparent that the materials with the 

shorter pendant groups are more rigid than those with the longer pendant group as the 

materials derived from exo-C4M showed a brittle failure at 20 °C, whereas materials 

derived from exo-CSM and exo-C6M showed a yield failure mode. This indicates that 

the mechanical properties of the materials are affected by the length of the pendant N­

alkyl groups on the main chain of the linear polymers. 

5.3 ROMP-processing of exo-mono and difunctional monomers 

Trial bulk copolymerisation of exo-C6M and exo-C6D have been described previously 

in section 3.3. It was found that high initial mixing temperature at 50 °C was necessary 

in this reaction, since exo-C6D has a very limited solubility in exo-C6M. The rate of 

this reaction was very rapid and the mixture became highly viscous within a few 

minutes of addition of the initiator. This result suggests that exo-C6D is not suitable 

for using as a crosslinker for in-mould processing in which the reactive mixture is 

injected into a mould. In this section difunctional monomers with different sequences 

of methylene units separating the reactive imidonorbomene units, were used as 
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crosslinkers. It was expected that the difference in the spacer length between reactive 

norbomene units of the difunctional monomers would lead to different solubilities in 

the monomer and hence to different crosslinked materials and different properties. The 

determination of solubility of exo-C3D, C5D, C6D, C9D and C 12D in exo-C6M was 

carried out at room temperature in a small test tube. Exo-C6M (3 g) was placed in the 

test tube with a stirrer. Small portions of known weight (about 0.1-0.25 g each time) of 

a solid difunctional monomer was added into the test tube. The mixture was stirred 

vigorously after each addition until the solid appeared to be insoluble. The amount of 

the solid difunctional monomers which can be dissolved in exo-C6M was recorded and 

the data are summarised in Figure 5.8. 

% by mole 
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0 +------r--
exo-C3D exo-C5D exo-C6D exo-C9D exo-C12D 

Figure 5.8 The solubility of the difunctional monomers in exo-C6M. 

It was found that the solubility of the difunctional monomers increased as the spacer 

length between the reactive imidonorbomene units of the difunctional monomers 

increased, except when the exo-C6D was used. The data to hand are insufficient to 

explain this observation in detail. The effect of the spacer length between the reactive 

imidonorbomene units of difunctional monomers and the length of N-alkyl pendant 

groups of monofunctional monomers on the thermal and mechanical properties of the 

crosslinked materials were investigated and are discussed in section 5.3.1 and 5.3 .2 

respectively. Subsequently, the effect of the curing conditions were investigated and 

these experiments are discussed in section 5.3.3. 
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5.3.1 Effect of the spacer length between the reactive imidonorbornene units of 

difunctional monomers on gel content and product properties 

The monomer (exo-C6M, 5 g) and crosslinking agent (exo-CnD where n = 5, 9 and 12, 

5% by mole) were mixed and stirred at room temperature in a small reaction vessel 

until the crosslinking agent dissolved completely. The initiator ( 4-5 mg, 

monomer/initiator ratio - 4,00011) was added into the mixed monomers and stirred for 

15 minutes. The reacting mixture was transferred into a glass mould using a syringe. 

The filled mould was placed in an oven at 60 °C for 20 minutes and then at 160 °C for 

60 minutes (this procedure will be called 'fast curing conditions' in section 5.3.3). All 

the crosslinked samples were obtained as clear pale yellow hard materials. The 

crosslinked polymers which are expected to be obtained are shown in Figure 5.9. The 

moulded articles were characterised using sol-gel extraction and the DMTA technique. 

Exo-C6M 

! Exo-CnD, n = 5, 9, 12 

Crosslinked polymer 

Figure 5.9 A schematic representation of the crosslinked polymers produced by 

varying the spacer between the main chains. 
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The results from sol-gel extraction experiments showed that the gel fraction of the 

crosslinked product increases when crosslinkers with shorter spacers between the 

reactive imidonorbornene units were used. The 1H nmr spectrum of the sol fraction 

from sample number 3 is shown in Figure 5.10. It is apparent that there was linear and 

branched polymer, about 7.2%, in the sol fraction, which was about 3-4% of the crude 

material. The rest of the sol was unreacted monomer. This result is consistent with the 

results from section 3.3.1.2, where it was concluded that sol fractions consist mostly of 

unreacted monomer with a small proportion of linear and branch polymers. This 

indicates that monofunctional monomer gives material with a higher conversion than 

the crosslinked system under similar conditions. This might be because the gelation 

time was shorter in the latter system. Access of monomer to active chain ends might 

be inhibited and the polymerisation would not go to completion. 

Unreacted monomer 

CHCh 

Polymer 

pp 

Figure 5.10 1H Nmr spectra of the sol fraction of sample derived from exo-C6M 

crosslinked with 5% loading of exo-C9D. 

Pieces of the plaques derived from exo-C6M crosslinked with 5% loading of exo-CnD, 

where n = 5, 9 and 12, were cut for the DMTA analysis. The dynamic modulus and 

damping (tan8) curves as a function of temperature are shown in Figure 5.11a and b 

respectively and the determined parameters are recorded in Table 5.10. 
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Figure 5.11 (a) The modulus curves and (b) damping (tan8) curves as a function of 

temperature for moulded articles derived from exo-C6M crosslinked 

with 5 mole% loading of exo-CnD, where n = 5, 9, and 12. 
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DMTA Ratio 

Sample no. %gel Shear Me (kg/mol) Mc(Th.)/ 

feaction Tg(C) modulus at Tg + 50°C Mc(Expt.) 

(G, MPa) Theory Ex pt. 

at Tg + 50°C 

1 
exo-C6M 98* 87-93 0.19 - - -

2 
exo-C6M + 5% exo-C5D 71 78-94 0.56-0.69 2.47 6.62 0.37 

3 
exo-C6M + 5% exo- C9D 59 92 0.31 2.47 12.46 0.20 

4 
exo-C6M + 5% exo-C12D 42 89 0.15 2.47 26.45 0.09 

Table 5.10 The analysis of the moulded articles using exo-C6M as a monomer varying 

the crosslinking agent. * %conversion was determined from 1H nmr 

analysis. 

The mechanical analysis of crude materials which were obtained from exo-C6M, 

sample number 1, and exo-C6M crosslinked with a 5 mole% loading of exo-C5D, 

sample number 2, showed a broad transition with two peaks between 78 and 93 °C, 

indicating that inhomogeneous products were obtained. When 5 mole% loading of 

exo-C9D and exo-C 12D were included in the feed stocks, samples number 3 and 4 

respectively, the mechanical analysis of crude materials exhibited one relatively 

narrow peak which occurred within the same transition temperature range as samples 

number 1 and 2. These results indicate that the linear and crosslinked materials 

showed similar thermal property under the conditions studied. However, it is 

interesting to note that all the crosslinked products had an increase amount of unreacted 

monomer in comparison with the experiment in the absence of crosslinking agent in the 

monomer feed. As expected, the glass transition temperature of the crosslinked 

materials increases as the gel fraction increases. The shear modulus and the ratio 

Mc(theory)/Mc(expt.) (see page 65 chapter 3 for the details) increases as the spacer 

length between the functional groups in exo-CnD gets shorter. This indicates that a 

more crosslinked structure was obtained when the crosslinking agent with the shorter 
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spacer was used. This result is consistent with the result from section 4.5 where it was 

established that the difunctional monomer with shorter methylene spacer between the 

reactive imidonorbornene units reacted much more quickly than those with longer 

spacers. However, we were unable to determined the amount of the crosslinker which 

had reacted at both ends. 

5.3.2 Effect of the length of N-alkyl pendant group of monofunctional monomer 

on gel content and product properties 

The monomer (exo-CnM where n = 5, 6 and 8, 5 g) and crosslinking agent (exo-C5D, 

5% by mole) were mixed at room temperature in a small reaction vessel and stirred 

until the crosslinking agent dissolved completely. In the experiment using exo-C4M as 

monomer feed, exo-C5D was dissolved in exo-C4M at 35 °C by placing the reaction 

vessel in an oil bath. The initiator (4-5 mg, monomer/initiator ratio - 4,000/1) was 

added into the mixed monomers and stirred for 15 minutes. The reacting mixture was 

transferred into a glass mould using a syringe. The filled mould was placed in an oven 

at 60 °C for 20 minutes and then at 160 °C for 60 minutes. The crosslinked polymers 

which are expected to be obtained are shown in Figure 5.12, below. 

exo-C4M x = 3, 
exo-C5M x = 4, 
exo-C6M x= 5, 
and exo-C8M x = 7 J 

Crosslinked polymer 

Exo-C5D 

Figure 5.12 A schematic representation of the crosslinked polymers varying the 

length of the pendant groups on the main chain. 
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All the crosslinked samples were obtained as clear yellow hard solids, except for the 

sample using exo-C8M as monomer which was obtained as a rubbery solid, indicating 

low conversion. The crude samples were characterised using sol-gel extraction and the 

DMTA technique. All the parameters determined are recorded in Table 5.11 and the 

dynamic modulus and damping (tan8) curves as a function of temperature are shown in 

Figure 5.13. 

DMTA Ratio 

Sample no. %gel Shear Me (kg/mol) [Mc(th.)/ 

feaction Tg(C) modulus at Tg + 50°C Mc(expt.)] 

(G, MPa) Theory Ex pt. 

at Tg + 50°C 

I 
exo-C4M + 5% exo-C5D 91 130 0.32 2.19 13.20 0.17 

2 
exo-C5M + 5% exo-C5D 88 80-109 0.52 2.33 7.73 0.30 

3 
exo-C6M + 5% exo-C5D 71 77-94 0.56-0.69 2.47 6.62 0.37 

4 
exo-C8M + 5% exo-C5D 37 -14 - 2.75 - -

Table 5.11 The analysis of moulded articles produced using exo-C5D as the 

crosslinking agent and varying the monomer. 

The results from sol-gel extraction experiments showed that the gel fraction in the 

final products increased when monomers with shorter N-alkyl pendant groups were 

used. The material derived from exo-C8M, sample number 4, showed both very low 

conversion and Tg. This result is consistent with the results from section 5.2.5 where it 

was established that the exo-C8M showed a very low reactivity in this polymerisation 

system. The mechanical analysis of crude materials which were obtained from exo­

CnM, where n = 5 and 6, crosslinked with a 5 mole% loading of exo-C5D showed a 

broad transition with two peaks at approximately 80 &1 09 and 77 & 94°C respectively, 

indicating that inhomogeneous crosslinked products were obtained. It is apparent that 

the thermal property of the crosslinked materials is affected by the amount of the gel 
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fraction and the flexibility of the N-alkyl pendant group on the main chain. The glass 

transition of the material is increased when the material has a greater amount of gel 

fraction and a shorter N-alkyl pendant group on the main chain. This is because the sol 

fraction acts as a plasticiser and long pendant groups increase the flexibility of the 

polymer chain. 

Modulus (E') tan8 

109 ,--------------------------.,4.0 
C4M+5%C5D 

C5M+5%C5D 

C6M+5%C5D 

3.0 

2.0 

1.0 

103 L___ __ ...___ __ _.__ __ _.__ __ _L._ __ .....~....-__ ......~0.0 

60.0 80.0 100.0 120.0 140.0 160.0 180.0 

Temperature 

Figure 5.13 The modulus and damping curves as a function of temperature for mould 

articles derived from exo-CnM, where n = 4, 5, and 6, crosslinked with 5 

mole% loading of exo-C5D. 

The shear modulus and the ratio Mc(theory)/Mc(expt.) increased, whereas the 

molecular weight between the crosslink (Me) decreased, when monomer with a longer 

N-alkyl group was used, see experiments I, 2 and 3 respectively. We were unable to 

determined the shear modulus and the Me of the material derived from exo-C8M 

crosslinked with 5mole% loading of exo-C5D, sample number 4, since it was too fluid 

at the temperature of measurement. The increase in the molecular weight between the 

crosslink (Me) of the product derived from monomer with the shorter N-alkyl group 

crosslinked with a 5 mole% loading of the difunctional reagent, experiment I, indicates 

that this polymerisation results a crosslinked polymer with longer monomer sequence 
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between crosslinks than those obtained from the polymerisations of the monomer with 

longer N-alkyl groups, sample number 2 and 3 respectively. It seems reasonable to 

suggest that the monomer with the shorter N-alkyl group is more reactive than those 

with the longer N -alkyl groups although this has not been proved. 

5.3.3 Effect of curing condition and post cure on gel content and product 

properties 

The monomer (exo-C6M, 5 g) and the crosslinking agent (exo-C6D, 1% by mole) were 

mixed and stirred in a small reaction vessel at room temperature until the crosslinking 

agent dissolved completely. The initiator was added into the mixed monomers and 

stirred for 15 minutes. For the fast curing experiment 1, the reacting mixture was 

transferred into a glass mould using a syringe. The filled mould was placed in an oven 

at 60 °C for 20 minutes and then at 160 °C for 60 minutes. For the slow curing 

experiment 3, the same procedure as fast curing experiment was used but the filled 

mould was kept at room temperature for an hour before was placed in the oven at I 00 

°C for 60 minutes. The samples were cut up and characterised using DMT A technique. 

Two other samples were treated in the same way except that the samples were kept in 

the oven at I60°C for 2 hours, experiments 2 and 4, to examine the effect of post cure. 

The modulus and damping (tano) curves as a function for temperature for the materials 

produced under slow and fast curing condition are shown in Figure 5.I3a and b 

respectively and the parameters determined are recorded in Table 5.I2. 

The experimental results showed that slower curing and post curing conditions seem to 

be beneficial. The glass transition temperature of the material derived from exo-C6M 

with a I% loading of exo-C6D under fast curing experiment I exhibited a lowering of 

Tg of about I6°C, in comparison with experiment 3 conducted under slow curing 

conditions. The shear modulus and the ratio Mc(theory)/Mc(expt.) increased, whereas 

the molecular weight between the crosslink (Me) decreased, when the polymerisation 

was carried out under the slow curing condition, indicating a more crosslinked 

structure had been formed. The ratio of Mc(theory)/Mc(expt.) of the samples obtained 

under slow curing conditions, experiment 3, is close to unity, indicating near perfect 

crosslinking. This indicates that the amount of the crosslinker which has both ends 

reacted is increased in the materials obtained under slow curing condition as the 
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gelation was delayed during the period when the ftlled mould was kept at room 

temperature. 
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Figure 5.13 The modulus and damping (tanb) curves as a function of temperature for 

materials produced from exo-C6M crosslinked with a l mole% loading 

of exo-C6D under (a) fast curing and (b) slow curing conditions. 
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DMTA ratio 

experiment Gel Shear modulus Me (kg/mol) Me( theory)/ 

fraction Tg (G, MPa) At Tg + 50°C Me (Expt) 

(OC) at Tg+50 Theory Ex pt. 

I 

exo-C6M+ I %exo-C6D 35 76 0.09 12.35 41.06 0.30 

fast cure 

2 

exo-C6M+ 1 %exo-C6D 76 92 0.10 12.35 25.60 0.48 

fast cure + post cure 

3 

exo-C6M+ I %exo-C6D 97 92 0.31 12.35 12.62 0.98 

slow cure 

4 

exo-C6M+ 1 %exo-C6D 98 92 & 119 0.31 12.35 13.36 0.92 

slow cure + post cure 

Table 5.12 The analysis of the 'as-made' samples from in-mould processing 

under different curing conditions. 

The gel content and the Tg of the fast curing sample, experiment 1, are increased by a 

factor of two after the material was post cured at 160 °C for 2 hours, experiment 2. As 

expected, the shear modulus and the ratio Mc(theory)/Mc(expt.) increased as well, 

whereas the molecular weight between the crosslink (Me) decreased, indicating a more 

crosslinked structure was formed during the post curing. These results suggest that the 

unreacted monomer and the crosslinker which had one end unreacted may have reacted 

further during the post curing. It can be concluded that post curing is desirable to bring 

the sample to its final dimensionally stable state and to minimise the residual unreacted 

monomer, which is indicated by the increase in Tg. 

The analysis of the crude material, experiment 4, which was obtained after the post 

curing of the slow curing sample, experiment 3, at 160 °C for 2 hours was similar in 

amount of the gel fraction, mechanical properties, Me and ratio Mc(theory)/Mc(expt.) 

as the material obtained before post curing. These results suggest that the crosslinked 
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structure cannot be increased by post curing in the material which already has near 

perfect crosslinking. However, the post curing experiment did result in structural 

changes in the material as the glass transition temperature increased. The material, 

which was obtained after post curing the slow curing sample, exhibited two broad 

transition peaks after post curing for 2 hours at 160 °C. The second transition peak 

occurs at 119 °C, about 30°C higher temperature than the first transition temperature. 

The data to hand are insufficient to explain this observation satisfactorily; however, it 

may be that post curing at 160 °C for 2 hours was not long enough to bring the sample 

to the final stable state. It is clear that the cure protocol adopted in this last series of 

experiments gives a fully crosslinked product. This is indicated by the near 100% gel 

content, the approach of Mc(theory)/Mc(expt.) to unity and the constant plateau 

modulus above Tg. 

5.4 Reference for Chapter 5 

'Polymer Characterisation', B. J. Hunt and M. I. James, Blackie Academic & 

Professional, London, 1993. 
2 'Mechanical Properties of Polymers and Composites', L. E. Nielsen, Marcel 

Dekker, Inc., New York, 1974. 
3 'Encyclopedia of Polymer Science and Engineering', H. F. Mark, N. M. Bikales, 

C. G. Overberger, G. Menges, Volume 9, John Wiley & Son, New York, 1987. 
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6.1 Overall Conclusions 

The work described in this thesis indicates that new polymeric materials using N­

alkylnorbornene-5,6-dicarboxyimide as monomer and N,N' -alkylene-di(norbornene-

5,6-dicarboxyimides) as crosslinking agent can be prepared via ROMP-processing. 

ROMP in bulk of exo- and endo-N-hexylnorbornene-5,6-dicarboxyimide (exo- and 

endo-C6M) using a well-defined ruthenium carbene initiator has been investigated. It 

was found that the endo-isomer is much less reactive than the corresponding exo­

isomer in both linear and crosslinking polymerisations and largely fails to undergo 

ring-opening polymerisation in bulk under the condition studied. The relative 

reactivity of the exo- and endo-C6M was investigated using the 1H nmr technique since 

the initiation and propagation steps of the polymerisations can be followed by this 

technique. The results from the nmr scale polymerisations confirms that the 

polymerisations are living and the order of the reactivity of chain end propagation and 

initiating alkylidene species was: exo derived alkylidene more reactive than initiator, 

which was more reactive than endo chain end species and that the exo-isomer was more 

reactive than endo-isomer. The process of producing triblock (exo-endo-exo) 

copolymer by sequential addition of exo- and endo-C6M was not well controlled and 

resulted in mostly diblock(exo-endo) copolymer with a small proportion of triblock 

material having very few long exo-sequences. The copolymerisation using an exo­

/endo-C6M mixture produced block or blocky copolymers rather than statistical 

copolymers, which indicated that the ratio (r) of the reactivity of the exo-propagating 

species with exo-monomer to the reactivity of the exo-propagating species with endo­

monomer >>1, or rx = kpxxlkpxn >>1 and the ratio of the reactivity of the endo­

propagating species with endo-monomer to the reactivity of the endo-propagating 

species with exo-monomer <<1, or rn = kpnnlkpnx <<1. 

The results from the preparative scale homo and block copolymerisation of exo- and 

endo-C6M indicates that inclusion of the endo-monomer in the feed results in poor 

reactivity and low conversion. The cis/trans content and the thermal properties of the 

resulting polymers depends upon the amount of each monomer isomer incorporated 

into the polymer chain. Polymers derived from exo-isomer were recovered in high 

conversion (>90%) and showed the majority of double bonds having the trans 

configuration in the linear polymer generally about 80%. Block copolymers 
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were recovered in moderate conversion (65-75%) and showed trans vinylene 

configurations of between 90-95%. Whereas, under similar conditions with pure 

endo-isomer only trans stereochemistry was observed and conversion was low ( <20% ). 

The glass transition temperature of these pure linear polymers correlated with the trans 

content rather than the molecular weight. The endo-polymers, which are all trans at 

the vinylenes, exhibited the highest Tg at about 115-118 °C, where as the exo­

homopolymer and copolymers exhibit glass transitions at about 85-88 °C. 

Pure linear polymers, poly(exo-CnM) where n = the number of carbon atoms in the 

alkyl group, can be obtained without residual unreacted monomer from solution 

polymerisation. It was found that the thermal properties of the polymers are affected 

by the length of the N-alkyl pendant group but not by the number average molecular 

weight (Mn) in the range of Mn investigated. However, the Mn of the linear polymers 

can be controlled and showed a roughly linear relationship with the [M]/[1] ratio. 

Highly crosslinked polymers, poly(exo-CnD) where n = the number of methylene unit 

separating the reactive imidonorbornene units, were successfully prepared in high 

conversion (>90%) from solution polymerisation of the difunctional monomers. The 

degree of swelling and crosslink density are affected by the length of methylene spacer 

between the polymer chain. Polymers with shorter methylene spacer showed higher 

degrees of swelling than those with longer methylene spacer, indicating a lower 

crosslink density in such products. 

The optimal conditions for preparing the linear and crosslinked polymeric materials via 

ROMP-processing have been developed. Only exo-monomers were used as the 

monomers feed in these experiments, since in bulk polymerisation the endo-monomer 

was found to terminate the chain growth and the unreacted monomer was found to be a 

very effective plasticiser and permanently plasticised the final products. The 

conversions and the properties of the materials are affected by the polymerisation 

formulation, initial mixing time and temperature, curing conditions, the length of the 

pendant N-alkyl groups on the main chain and the spacer length between the functional 

groups in the crosslinker. A monomer/initiator ratio of about 4,000 was found to be 

optimal for in-mould processing. The monomer and the initiator should be mixed 

efficiently for about 20 minutes in order to dissolve the initiator at low temperature, it 

was established that, under these conditions, the monomer did not react appreciably 
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before being transferred to a mould. A cunng time of about 60 minutes at high 

temperature, 160 °C, seems to be beneficial for producing linear material. The overall 

extent of the polymerisation is increased at high curing temperature and showed a 

roughly linear relationship with the curing time. However, it was found that the 

materials with the highest conversions were obtained when the mixtures were allowed 

to polymerise at moderate polymerisation rates, at 60°C for 20 minutes, before rapid 

reaction took place at high temperature, 160 °C for an hour. By using these optimal 

conditions, the linear polymeric materials derived from the exa-monofunctional 

monomers, exo-C4M, C5M and C6M, were obtained in high conversion (94 to 98%), 

whereas low conversion material was obtained when exo-C8M was used as monomer 

feed. All the crude materials showed cis vinylene contents generally of about 24 to 

26% which are not affected by the length of theN-alkyl pendant groups. The thermal 

and mechanical properties, Tg, flexural modulus, flexural strength and shear modulus, 

of the linear materials decrease as theN-alkyl pendant group gets longer. 

Crosslinked materials can be obtained by polymerising a difunctional monomer with a 

monofunctional monomer in a manner where the difunctional monomer acts as a 

crosslinker. The solid difunctional monomer was dissolved in liquid monofunctional 

monomer prior to addition of the initiator. Shorter N-alkyl pendant groups on the main 

chain and shorter methylene spacer length between the reactive functionalities of the 

crosslinker lead to an increase in the glass transition temperature of the crosslinked 

materials. By contrast, the mechanical properties and the Mc(theory)/Mc(expt.) ratios 

were increased when materials were obtained using crosslinking agents with shorter 

spacers and monomers with longer N-pendant groups. It was found that the optimal 

conditions for producing linear materials were not appropriate for preparing good 

crosslinked materials. For well-cured crosslinked materials, the reacting mixture 

should be allowed to polymerise under slow curing conditions in a mould at room 

temperature for an hour before rapid reaction takes place at high temperature, I 00 °C. 

The crosslinked material which was obtained in this way showed improved thermal and 

physical properties. The post curing experiments have been shown to be desirable to 

bring the sample to its final dimensionally stable form and/or to minimise the amount 

of unreacted monomer in the product. 

172 



Chapter 6 

6.2 Proposals for future work 

The work described in this thesis involved preparing the linear and crossliked materials 

of imidonorbomene derivatives using Grubbs' ruthenium carbene as an initiator. This 

work illustrated that slow reaction rate at low temperature and rapid reaction at high 

temperature in these polymerisation systems allows the preparation of moulded 

materials with high conversion and good properties. The system has potential for the 

preparation of products ranging in properties from soft elastomers to brittle and 

highly crosslinked materials. This was achieved by changing the polymerisation 

formulation, i.e. the monomer, the crosslinker and the polymerisation conditions. The 

characteristics of this system lead to the possibility of producing materials by RTM 

(Resin Transfer Moulding)1
-
3 in which the low viscosity of the mixture at low 

temperature allows the reactive mixture to infuse the reinforced shape in the mould 

completely. 

In this thesis only 1 and 5 mole% loading of the crosslinking agent has been 

investigated in any detail. Thus it would be worth exploring the effect of different 

loadings of crosslinking agents in the feed, and further exploration of the cure protocol. 

ROMP in this work was initiated using a well-defined ruthenium carbene initiator 

namely, C}z[(C6H 11 ) 3P]zRu=CHC6Hs (a). However, it would be interesting to ROMP 

these imidonorbomene derivatives using monosubstitued imidazolinylidene as a ligand 

at the metal centre (b). The resulting initiator is less reactive at room temperature but 

displays greater reactivity at high temperature than (a).4 

PCy3 
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PCy

3 
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New derivatives of norbornene could be explored as monomers, e.g. ester, ketone and 

other functionalities, and this would extend the range of materials available via this 

relatively simple procedure. 

6.3 References for Chapter 6 
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• NMR 1H, 13C, COSY, HETCOR, and DEPT spectra were recorded either on a 

Varian VXR 400 nmr spectrometer at 399.953 MHz (1H) and 100.577 e3C) or Varian 

Gemini nmr spectrometer at 199.532 MHz (1H) and 50.289 MHz (13C); deuterated 

chloroform, deuterated dichloromethane, deuterated acetone were used as solvents. 

• INFRARED SPECTRA (IR) were recorded on a Perkin Elmer 1600 series FTIR. 

The spectra were recorded as solvent (chloroform) cast films (polymers) or KBr discs. 

• ELEMENTAL ANALYSIS were carried out on a Exeter Analytical, Inc. CE-440 

elemental analyser. 

• MASS SPECTRA (MS) were recorded on a VG analytical model 7070E mass 

spectrometer or VG TRIO 1000 mass spectrometer coupled to HP5890 SERIES II gas 

chromatrography. 

• GEL PERMEATION CHROMATOGRAPHY.(GPC) analyses were performed 

on chloroform solutions using a Knauer HPLC pump (Model 64), water Model R401 

differential refractometer detector and 3 PLgel columns with pore size of 102
, 103

, and 

105 0 A (column packing PL gel 5 ~m mixed styrene-divinyl benzene beads). The 

sample solutions (concentration 0.2%) were filtrated through a Whatman WTP type 0.2 

~m filter to remove any particulate before injection. The columns were calibrated 

using Polymer Laboratories polystyrene standards. 

• DIFFERENTIAL SCANNING CALORIMETRY (DSC) was carried out using a 

Perkin Elmer DSC 7 or a Pyris 1 differential scanning calorimeter over the temperature 

range of 25 to 200 °C (heating rate 10 °C min-1
). 

• THERMOGRAVIMETRIC ANALYSIS (TGA) was performed using a Stanton 

Redcroft TG 760 thermobalance. TGA traces were recorded by increasing the sample 

temperature from 20 °C to 650 °C by 10 °C per minute under a nitrogen atmosphere 

and the 2% weight loss temperature was taken as the decomposition temperature. 
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The following measurements were carried out by Drs. P. Hine and R. A. Duckett in the 

Physics Department, Leeds University. 

• DENSITY COLUMN was used to determine the density of the materials. 

• THREE POINT BENDING GEOMETRY was used to determine the flexural 

strength in accordance with ASTM D790. The span was 23.2 mm and the specimens 

were 35 to 50 mm long, 3 to 4 mm wide and 4 to 5 mm thick depending upon the 

plaque size available. The cross head speed was 0.5 mrnlminute which is equivalent to 

a strain rate of lxl0-5 s-1
. The following equation was used to calculate the flexural 

strength: 

cr = 6PL I 4WT2 where cr = Flexural stress, L= Span between loading points, W = 

sample width, T = Sample thickness and P = Load at the centre point. 

• DYNAMIC MECHANICAL THERMAL ANALYSIS (DMTA) 

Dynamic mechanical analysis measures the deformation of a material in response to a 

periodic force. The measurements are generally made to calculate an elastic modulus 

and a mechanical damping or dissipation of energy as heat. Viscous liquids can not 

store potential energy like elastic materials, for example a spring or rubber band, do 

when they are stretched. All the energy used in deforming them is dissipated into heat 

and the amount of energy dissipated as heat is called the mechanical damping. 

Polymers are viscoelastic materials which have both characteristics of elastic material 

and viscous liquid. Dynamic mechanical tests are useful for studying the mechanical 

properties of the polymers since the mechanical properties of the polymer are very 

sensitive to glass transition, crystallinity, crosslinking and phase separation. At low 

temperature, the molecular motion of the polymer chain is low, so the modulus is high. 

The material then shows nearly perfect elastic behaviour, like a stiff spring, thus it 

shows low damping. At temperatures above the glass transition temperature, the 

molecular segments are free to move, so the modulus is lower. The material is in a 

rubbery stage which stores energy without dissipating it to heat, thus the damping is 

also low. The damping peak occurs in the transition region where some of the frozen 

segments become free to move. The frozen segments store much more energy than the 

rubbery segments and the excess energy is dissipated as heat. At the glass transition 
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temperature the polymer has expanded to the extent that there is enough free volume 

available in the material to begin the molecular motion. In this work DMT A was 

measured using a Rheometries Dynamic Mechanical Spectrometer. The behaviour of 

the materials at temperatures below their glass transition temperature (Tg) was studied 

using a RSAII dynamic analyser using a dual cantilever beam geometry while near and 

above Tg a RDAII dynamic analyser using a parallel plate geometry was used. 

Dual Cantilever Beam Geometry 

The dual cantilever beam geometry was used to measure the flexural modulus, E, of the 

materials at 20 °C and any relaxations below the glass transition. The sample was 

clamped at both ends and in the centre from where a dynamic displacement is applied. 

The test frequency was 10 rads and the dynamic strain was 0.005. 

Parallel Plate Geometry 

The parallel plate geometry was used to determine the glass transition temperature and 

the shear modulus at and above the Tg of the materials. The plate diameter was 10 mm 

and the gap between the plates was approximately 3 mm. 
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Appendix 3.11 DSC trace of pure polymeric material obtained from ROMP 

in bulk of 80% exo/20% endo-C6M. 

~-] 
55.2 I 

I 
I 551 

§" 
g 
~55.0 

~ 
~ Ha1Cp~=80987'C 
0: 

1549 

54.8 

54.7 

54.82 
53.5 55 60 70 90 95 100 

Appendix 3.12 DSC trace of pure polymeric material obtained from ROMP 

in bulk of 56% exo/44% endo-C6M. 

225 



Appendix 3 

.711 Tg from: 65. 15 
to: 91.86 

Onset• 75.99 
J/gwdeg.- . 11 

i Tg• 78.88 ---

.5 

~ 
i 

.21 

t 
0 ... 
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