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Abstrac t 

Cyclic Factorizability Theories 
P a u l G l y n Jones 

Thes i s submitted for degree of P h . D . , October 1999. 

Let r denote a f ini te group and R a commutative ring. Factorizability the

ories seek to describe similarities between the local structure of i^F-modules 

M and N, where M and A'' are related by, for example, being isomorphic 

when tensored up wi th Q. 

I n the first three chapters of this thesis, we define two famihes of factoriz

abili ty theories, the invariance and coinvariance factorizability theories. We 

w i l l consider three members of these families. We demonstrate that mono

mial invariance factorizability is equivalent to monomial factorizability as 

defined in [19]. We go on to consider the two cyclic cases. We demonstrate 

that the weak cyclic invariance factorizability theory is strict and is identical 

to the weak cyclic coinvariance factorizability theory. We also demonstrate 

that the strong cyclic invariance factorizability theory and the strong cyclic 

coinvariance factorizability theory are not identical but are equivalent. 

I n chapters 4 and 5, we discuss C . M . M . F-functors over R. Thus we find 

relations which can simplify the calculation of the invariance and coinvariance 

factorizability theories. 

A n index of the less well known definitions used in this thesis is included 

as an appendix. 
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Introduction 

FOR A given finite group F and some commutative ring 

R, take M to be a finitely generated, right i?F-

module. We would like to be able to completely describe the local structure 

of M , however this is not in general possible. In specific cases the structure 

of M is known: for example suppose R is the ring of algebraic integers of 

some algebraic number field K, and take K' to be a Galois extension of K 

w i t h r ing of integers R', and take F to be the Galois group of K' over K. 

Results are then known regarding the structure of R' as an i?F-module in 

certain cases, for example, i f the algebraic number field is tame, its ring of 

integers is locally free. However, when we are in the situation of determining 

the structure of an arbitrary /2F-module M there are few results, especially 

as in general there may be infinitely many different genera of i?F-modules. 

Rather than t ry ing to describe the local structure of an i?F-module M, 

factorizability theories look at how the local structure of a module M differs 

f rom the local structure of another module N, where M and iV are related 

by, for example, being isomorphic when tensored up w i t h Q. Amongst the 

first examples of a factorizability theory was Frolich's strict factorizability 



of [6], which dealt only w i t h ZF-lattices. Other examples include monomial 

factorizability, detailed in [19], and theories introduced in [12]. In fact, in 

12] i t is shown that factorizability theories can yield results on the global 

structure of modules, and not just the local structure. 

The first three chapters of this thesis are directly concerned wi th fac

torizabil i ty theories. We begin in the first chapter by providing a detailed 

definition of a factorizability theory. This definition w i l l closely follow the 

definition given in [19]. In brief, a factorizability theory is a homomorphism 

ip f r om some relative group, most commonly 3C®(mod(Zpr), ®Q) , to some 

abelian group ^f. The relative group 3C®(mod(ZpF), (giQ) consists of classes 

of triples [ M , / , A^] w i t h / : M ® Q N iS>Q, and relations f rom composi

t ion of isomorphisms / , and the direct sum. However, in order to keep the 

definit ion sufficiently general to include each of the cases we wi l l be inter

ested in , we allow more general relative groups. Our definition of a relative 

group wi l l be based upon the work of Heller, [9], which we reproduce in less 

generality here in order to make the proofs more transparent. 

The work of [9] puts the relative group into an exact sequence made 

up of more familiar groups f rom 3C-theory. This sequence wi l l provide the 

definition of strictness—we go on to see that strictness is a useful minimum 

condition for a factorizability theory to satisfy. The homomorphism aspect 

of factorizability theories also provides a way of comparing factorizability 

theories, giving a concept of relative strength and equivalence of theories. 

In chapter 1 we also present a detailed description of the monomial factor-



izabili ty theory defined in [19]. In part this is done as an illustrative example 

of a factorizability theory; however more significantly this example wi l l be 

shown to be equivalent to one of the invariance factorizabihty theories defined 

in chapter 2, and thus we wi l l provide an alternative proof of the strictness 

of the monomial factorizability theory. 

I n chapters 2 and 3 we define two closely related families of factorizability 

theories, the invariance and coinvariance factorizability theories. These are 

defined by looking at Vp\T^e^\ in the invariance case, and Vp\T^e-)^\ in the 

coinvariance case, for various collections of characters x of subgroups F' C F 

w i t h kernel A . We look at three particular collections of characters in detail. 

W i t h the monomial case, we deal w i th all characters x where p \ |F' : A | 

and go on to show that the monomial invariance factorizability theory is 

equivalent to monomial factorizability theory. W i t h the weak cyclic case, we 

allow only those characters where F' is cyclic and p f |F' : A | ; wi th the strong 

cyclic case, we allow only those characters where F' is of the form C >] G for 

C a cyclic p-group, and p f | r ' : A | . I t is f rom the consideration of these two 

cases that we obtain the t i t le of this thesis. 

In chapter 2 we deal exclusively w i t h the invariance factorizability theo

ries, demonstrating that the weak cyclic factorizability theory is strict, and 

monomial invariance factorizability theory is equivalent to monomial factor

izability theory. We go on to examine the strong cyclic factorizability theory 

f o r F = Gq^p = Cp XI Cg, where p and q are prime numbers w i th q\p — 1. In 

chapter 3 we compare these results w i t h corresponding results for the coin-



variance factorizability theories, showing that they are identical in the weak 

cyclic case, and nonidentical but st i l l equivalent in the strong cyclic case. 

We move on in chapters 4 and 5 to consider cohomological monomial 

Mackey F-functors ( C . M . M . F-functors for short) over some ring R. In short, 

a C . M . M . F-functor A assigns an i?-module A{x) to each of some family of 

characters x of subgroups F' C F, together wi th a collection of i?-module 

homomorphisms similar to induction, restriction and conjugation satisfying 

certain axioms. Our interest in C . M . M . F-functors over R stems from the 

fact that M^iy. and M^e^, encountered in the invariance and coinvariance 

factorizability theories, are both C . M . M . F-functors over Zp. 

In chapter 4 the main result is that, given a direct sum relation of the 

form 

0 Z p [ F / A , ] e , , - 0 Z p [ F / A ; . ] e , ^ . 

we necessarily have a direct sum relation 

i i 

Thus via C . M . M . F-functors we have the possibility of simpUfying calcula

tions of the invariance and coinvariance factorizability theories by obtaining 

relations between the values of WplT'^e^^-l in the invariance case, and Vp\T^e-^\ 

in the coinvariance case, for various characters X- I i i chapter 5 we discuss 

how to identify all the relations of the fo rm 

0 Z p [ F / A , ] e , , = 0Zp[F /A; ]e , ^ . , 

i i 

and look again at the metacyclic group Gq^p as an example. 



A t the end of chapters 1 and 3 we include a section considering possible 

future developments of a number of results f rom this work. These sections 

include the more speculative and conjectural results. A t the end of chapter 

1, we look at "real" factorizability theories, that is, factorizability theories 

which are homomorphisms f rom (mod(ZF), (8)M). Our approach is to 

derive such factorizability theories as a pushout of a factorizability theory 

f rom 3 C ^ ( m o d ( Z F ) , ® Q ) . 

In chapter three we demonstrated that the weak cyclic invariance and 

coinvariance factorizability theories were identical, and the strong cyclic in

variance and coinvariance factorizability theories were equivalent but non-

identical. We conclude chapter 3 by examining whether the invariance and 

coinvariance factorizability theories are equivalent for any stronger case. 

A n index to the less well known definitions used in this thesis is included 

as an appendix. 

We begin w i t h a number of definitions which wi l l hold throughout this 

thesis. 

0.1 Preliminaries 

Throughout this thesis, we w i l l use the following conventions. 

F w i l l always denote a finite group. 

A l l modules w i l l be right modules, unless otherwise stated. We denote 

the category of (right) modules over a ring R by mod(i?). We denote the 

10 



category of lattices over a ring i?, i.e. finitely generated, freely generated 

(right) i?-modules, by lat(/?). 

We denote the Grothendieck group (with respect to the direct sum) of 

permutation projective modules over a r ing i?, i.e. modules which are a direct 

summand of a permutation module over R, by PP(i?). 

For a prime number p, Zp denotes the usual p-adic completion of Z; 

likewise Qp denotes the j9-adic completion of Q. Qp denotes the algebraic 

closure of Qp. For F an algebraic field extension of Qp, fi^r denotes the 

Galois group Gal (Qp/F) . 

11 



Chapter 1 

Definition of a Factorizability 

Theory 

I G E N E R A L , the structure of modules over a group ring may 

I be very intricate. Results on the structure of modules tend 

to be confined to very specific questions, such as studying the structure of 

rings of algebraic integers as a module over the corresponding Galois group. 

For example, in this case i t can be shown that i f the algebraic number field 

is tame, its ring of integers is locally free. Another situation when we can 

look at the structure of modules is i f there is only one (or at least, very 

few) different genera, for example wi th modules in mod(/?) i f R is of finite 

representation type. 

Factorizability theories provide an alternative approach when we have 

no knowledge of the local structure of the modules. Rather than asking 

questions about the structure of a specific module, factorizability theories 

12 



seek to describe aspects of the relationship between two modules, providing 

an equivalence relation called factor equivalence between modules. Usually 

we are considering aspects of the local structure of the modules concerned. 

I n this chapter we w i l l define what we mean by a factorizability theory. In 

brief, a factorizability theory ip assigns certain invariants to triples ( M , / , A''), 

where M and A'' are finitely generated A-modules (A = ZF or ZpF for a 

finite group F), and / is a QA-isomorphism / : M (g) Q ^ N ^ Q. By 

invariants, we mean that the value of ip depends only on the isomorphism 

class [M, / , N] of ( M , / , N) in the fibre category, defined in the next section. 

The isomorphism classes [M, / , N] form a group called the relative group; 

we consider some of the !K!-theoretic properties of the relative group in this 

chapter. A factorizabihty theory ^ must also respect both the direct sum 

and (where defined) composition of triples, again, to be made precise later. 

Thus in essence a factorizability theory is a homomorphism from the relative 

group, and the techniques used to compare factorizability theories developed 

in the later sections stem f rom this fact. 

We go on to give an example of a factorizability theory, namely the Mono

mial factorizability defined in [19]. Many of the other factorizability theories 

used to date (such as that used in [6], and the one alluded to in [12]) are 

shown in [19] to be equivalent to monomial factorizability; in the next chap

ter we w i l l show that monomial factorizability is equivalent to one of the 

invariance factorizability theories there defined. 

Much of the definition of a factorizability theory is based on [19]; the 

13 



sequences f rom DC-theory rely on work f rom [9 . 

Let us begin by establishing some notation. 

Definit ion 1.0.1. We w i l l be deahng wi th two cases. They are the global 

case, where the group ring is ZF , and the local case, where the group ring is 

ZpF for a fixed prime p. I f a part of the theory is true in both cases, we wi l l 

use A to denote the group ring. We w i l l use A to denote the algebra QA, 

that is, either QF or QpF. 

1.1 Some results from IK-theory 

The results of this section are based upon on the work of Heller [9]. In [9], 

however, the results are proven in far greater generality. We reproduce them 

here in a more specialised case in order to make the working more transparent, 

whilst s t i l l maintaining sufficient generality to cover a wide variety of module 

categories. 

We begin by defining extensional module categories, and functors between 

extensional module categories. This wi l l allow us to define the fibre category 

of such a functor, and hence the relative group. This relative group fits in 

to a (not necessarily exact) sequence, the Heller sequence, connecting the 

relative group to other well known DC-groups. We finally establish conditions 

on when the Heller sequence is exact, which wi l l be satisfied by the cases we 

w i l l mainly be interested in for the later chapters. 

14 



We want to be able to deal w i t h mod (A) and la t (A) , in both the local 

and global cases, w i t h either all exact sequences or only those arising from 

the direct sum. Therefore we define: 

Definit ion 1.1.1. A n extensional module category G = (C, £) consists of a 

category G which is a subcategory of mod(i?) for some ring R, closed under 

direct sum, together w i t h a category £ whose objects are (some) short exact 

sequences of modules f rom |C|, including at least those due to the direct sum. 

Note that this is a special case of Heller's "extensional category". 

Note that both mod(A) and la t (A) , in both the local and global cases, 

w i t h either all exact sequences or only those arising f rom the direct sum, fit 

the above definition. 

Definit ion 1.1.2. A functor J between two extensional module categories 

(e, £ ) and (C, £') (where G' is a subcategory of mod(i?')) consists of a functor 

3^: G ^ G' which preserves the exact sequences of £. (Heller [9] allows a 

more arbitrary functor 3^^ on the extensional structure, but our special case 

of extensional module categories allows us to fix this functor.) 

We may now define 

Definit ion 1.1.3. Let J : C ^ C be a functor between two extensional 

module categories, where G' is a subcategory of mod(i?'). The fibre category 

$(e,J) is a category whose objects are triples {M,f,N), where M and A^ 

are objects in C and / : 5 ( M ) ^ J(A^) is a /^'-isomorphism. (The reader 

following [9] should note that Heller writes the triples in a different order.) 

15 



The morphisms of the fibre category are pairs (a, 6) of i?-homomorphisms 

a: M —>• M ' , b: N ^ N\ such that the following square commutes: 

/ 

J(A^) 

r 

1.1.4- Remarks. We may sensibly construct exact sequences in $(6,5"): a 

sequence 

0 ^ ( M ' , / ' , A^') ( M , / , A^) ^ ( M " , / " , AT") ^ 0 

is thought of as exact i f 

and 

0 ^ M ' ^ M ^ M " 0 

0 ^ A^' A A^ A^" ^ 0 

are exact, since necessarily the sequences 

and 

0 ^ J{N)' ^ J{N) ^ 5-(A^)" 0 

are also exact. 

When J is an unconditionally exact functor, as is the case when J = 

16 



the diagram 

J(ker(a))^ 

3^(ker(6))^ 

/ I 

3^(iV') 

IJ'(coker(a)) 

3^(coker(6)) 

necessarily commutes, where g is the restriction of / and g' is the map induced 

from / ' , and therefore we can sensibly talk of the kernel and cokernel of a 

morphism {a,b). 

Definition 1.1.5. The relative group Xo{G,J) = 30^(6, J ) (written addi-

tively) is the abelian group generated by isomorphism classes [M, / , A'̂ ] of 

triples {M,f,N) from the fibre category $(6,3"), with relations from exact 

sequences in the fibre category, and relations from composition of triples, 

that is, 

M , / , iV] + [ M ' , / ' , iV'] = [M, / ' o / , A '̂] whenever = M'. 

Note that where £ consists only of sequences due to the direct sum, the 

relations from exact sequences are precisely 

[M, / , N] + [ M ' , / ' , iV'] = [ M © M ' , / ® / ' , N®N']. 

We have the following useful facts about the identity element in the rel

ative group: 

Lemma 1.1.6. 1. In (C, J ) , [M, 1, M] = 0. 

2. In %Q{G,J'), if f : M ^ N is an R-isomorphism, then 

[M,5( / ) ,A^] = 0. 

17 



Proof. 1. [M, 1, M] + [M, f , N] = [M, / , N] by composition rule. 

2. The square 
J ( M ) ^ J ( M ) 

1 

commutes, therefore (1 , / ) is an isomorphism in $(6,5"), and therefore 

M , J ( / ) , i V ] = [ M , 1 , M ] = 0 

as required. • 

Lemma 1.1.7. All elements of the relative group XQ{C,J) are expressible 

in the form [M, / , A^], where ( M , / , A )̂ is a triple in $(6, 7). 

Proof. Clearly all elements of 3CQ(C,?') are expressible as finite sums and 

differences of elements of the form [M, / , A'']. However, 

-[MJ,N] = [NJ-\M] 

since [M, f , N] + [N, M] = [M, 1, M] = 0 by composition rule, and 

M , / , A ]̂ + [ M ' , / ' , A '̂] = [ M ® M ' , / © / ' , Â  © A^'], 

so all elements of 3Co (C, J ) are of the required form. • 

Now that we have established our definitions, we state without proof a 

key result due to Heller: 

18 



Proposition 1.1.8. The Heller Sequence (see Heller, [9], 4.I, 4.4, 5.1, 5.2, 

or Bass [1]). For 3^: (C, £) -> (C, £') a cofinal functor between two exten-

sional module categories, consider the sequence 

Xi{Q) ^ Xi(e') A 3Co(e, J) A aco(e) ^ Xo(e') 

where d: [M,a] M- [M, a, M ] (with M chosen so that there exists N with 

5": M 1-^ M®iV, and necessarily [M, a] = [M®N,a®l]) and 8: [MJ,N] ^ 

'N] - [ M ; . 

1. This sequence is a chain complex. 

2. If 3^ is a fibration then the sequence is exact at Xo{G). 

3. If 7 is a fibration and the sequences of £' split then the sequence is 

exact at and 3Co(e, J ) . 

4- If "J is a fibration and the sequences of 8, split then the sequence is exact 

everywhere. 

1.1.9. Remark. For a definition of fibration see [9], section 4. For now, we 

observe without proof: 

Lemma 1.1.10. Let J: (C, £) —>• (C, £') be a functor between two exten-

sional module categories. 

1. If the exact sequences in £' split and 3^ is cofinal, then 3 is a fibration. 

2. If for every B e 8-', B = 3^{A) for some A e 8. then 3 is a fibration. 

In addition to the exact sequence results, there are several other homo-

morphisms between the 3C-groups which we shall need. 

19 



We will then introduce the concept of "strictness"—a useful condition for a 

factorizabihty theory to satisfy. 

In order to motivate the definitions of factorizability and strictness, we 

will manipulate the Heller sequence of proposition 1.1.8. This manipulation 

can be found clearly set out in [19], and therefore we will present without 

proof an overview of the relevant points. We begin by truncating the five-

term Heller sequence on the right to a four term exact sequence, with the final 

map surjective. We go on to replace the Xi(mod(Qpr)) by an alternative, 

isomorphic group which will prove more convenient for later proofs. We have 

a map from Xi(mod(Qpr)) to namely tpod. The definition of "strictness" 

is that the kernel of this map lies in the "units" of 3Ci(mod(Qpr)), and we 

go on to discuss what elements are units in each of the groups isomorphic to 

aCi(mod(Qpr)). 

We start by establishing some notation. 

Notation 1.2.1. Throughout this section, A will denote the Q-algebra QF 

(the global case) or the Qp-algebra QpF (the local case), and A will denote 

the order ZF or ZpF, as appropriate. We will denote Z(QF) (the centre of 

QF) by C, and Z(QpF) by Cp. The maximal order in C (respectively Cp) we 

will denote by Oc (respectively Ccp)-

Definition 1.2.2. Let J : (C, £) (C, £') be a functor between two exten-

sional module categories. A factorizability theory is a homomorphism 

V ; : a C o ^ ( e , j ) ^ * 

21 



where ^ is some abelian group. 

1.2.3. Remark. In most cases, we will have in mind a specific functor between 

extensional module categories 3': (C, £) —>• (C',£'), for example, we could 

consider ®Q: mod(A) —)• mod{A) with relations only from direct sums (when 

the relative group would be denoted !K®(mod(A), OQ)) or with relations 

from all short exact sequences (when the relative group would be denoted 

3Co(mod(A), (8)Q)), or possibly (8)Q: lat(A) -> inod{A) giving the groups 

3C^(lat(A), ®Q) or Xo(lat(A), ®Q). Note that by lemma 1.1.10 these are all 

fibrations. 

The first step of our manipulation of the Heller sequence of proposi

tion 1.1.8 is to truncate the sequence on the right. 

Definition 1.2.4. Let J : C C be a functor between extensional module 

categories. We define 3Co(e)j to be the kernel of [J]: OCo(e) ^ XoiQ'). In 

most situations it will be clear which particular 3^ we have in mind, and we 

win denote Xo{e)s by aCo(e). 

Lemma 1.2.5. Keeping the above notation, if 3^ is a fibration then %o{Q) is 

the image o/3Co(C,IF) in 3Co(C). Then we have a new sequence 

x,{e) aci(e') A Xo(e, j ) Xo{e), 

not necessarily exact at %i{G') or 3Co(C, J ) , with d and 6 as before. 

Proof. By proposition 1.1.8, if 5" is a fibration then the Heller sequence is 

exact at 3Co(e). The result then follows from proposition 1.1.8. Note that 

22 



this new sequence is exact at OCi{G') or DCo(C,5') precisely when the Heller 

sequence is exact at Xi{G') or Xo{C, J ) . • 

We now focus our attention on a specific choice of 3". Throughout what 

follows, we will work with [(giQ]: mod (A) —> mod{A), with only those exact 

sequences due to the direct sum. However, much of what follows works 

equally well for the other choices of 3^ mentioned in remark 1.2.3. 

1.2.6. Remark. For a given group F, for almost all primes p (in particu

lar whenever p \ | r | ) , ZpF is a maximal order in QpT. When this hap

pens, [<S)Q]: Xo(mod(Zpr)) -> 3Co(mod(Qpr)) is injective, and therefore 

X^(mod(Zpr)) = {0} . See [17], theorem 7.6 for details. 

We define what we mean by the ideles and unit ideles of an arbitrary 

Z-order A' contained in a semisimple Q-algebra A'. 

Definition 1.2.7. The finite unit ideles of A', denoted Wz(A') are defined 

to be ripC-^p)^! where A^ is the localisation at p, the product running over 

all finite primes p. 

The finite ideles of A', denoted Jz{A') are defined to be LJp(^p)'' -^zlA')-

They are thus in effect those elements of HpC-^p)^ where all but finitely many 

components lie in the appropriate A^. 

In the local case, Xi(mod(Qpr)) is isomorphic by the reduced norm to 

= Z(QpF)^, as we will discuss further at 1.2.17. Thus we have a new 

exact sequence 

aC®(mod(ZpF)) ^ 3C®(mod(ZpF),®Q) ^ 3C®(mod(Zpr)) 

23 



where d®: av-^ [ZpF, /3, ZpF], /3 chosen so that Nrd(/3) = a. 

In the global case it can similarly be shown that 3Ci(mod(QF)) is isomor

phic by the reduced norm to = Nrd(QF^) C C^, giving us the exact 

sequence 

Xf(mod(ZF)) """^^^ ^ Xo®(mod(ZF),®Q) A X®(mod(Zr)). 

However, we wish to derive a different sequence in the global case. We begin 

by taking the coproduct over all primes p of the previous sequence to obtain 

the exact sequence 

p 

Il3<:f(mod(ZpF)) "^^^^^ UCpX " - 4 U^Ko^mod(ZpF),, 

; j jC®(mod(ZpF)). 

As has already been observed, for almost all p, ZpF is a maximal order 

in QpF and in this case Nrd: JCf (mod(ZpF)) O^^. Therefore, we may 

change the first term of the above exact sequence from a coproduct to a prod

uct provided we change the second term from JJ^ to [J^ Cp • Hp = 

Jz{C) and in turn replace the map Up 5® by JIp^® order to maintain 

exactness. 

Lemma 1.2.8. We have by [11], theorem 3.1, an isomorphism 

A: X®(mod(ZF),®Q) ]j3C®(mod(ZpF), ®Q) 
p 

[ M , / , A r ] ^ { [ M p , / ® l , A f p ] } . 

Adjusting the maps accordingly, we have a new exact sequence 
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Theorem 1.2.9. The sequence 

l[xf{mod{z,T)) MO ^ a c ® ( m o d ( z r ) , ^ 
p 

A ] J X ® ( m o d ( Z p r ) ) 
p 

is exact, where Nrdo[®Q] sends Xf(mod(Zpr)) to via Xi{%T), and 8® 

maps [MJ,N] to {[Np] - [Mp]}. 

Definition 1.2.10. Another consequence of lemma 1.2.8 is that, by choosing 

a local theory -i/jp: DC®(mod(Zpr), ®Q) ->• *p for each p, we may construct a 

global theory •0 = Up '̂ p o A with invariant group JJ^ '^p. Such a -0 is said to 

be locally defined. 

Let us now bring in the factorizability theory -0. The definitions of when 

an element of ^ , or a triple [M, / , A''] is factorizable, are connected to the 

map from Jz{C) in the global case, and the map from in the local case. 

Denoting either of these groups by J , and denoting by U the group Uz{Oc) 

in the global case and OQ^ in the local case, we have the following situation: 

W C J X®(mod(A), ®Q) 

Definition 1.2.11. For a factorizability theory ijj, x is said to be fac

torizable, with factorization a, \i x = {ijj o 9®)(a), for some a € J". 

Definition 1.2.12. For a factorizability theory ^ , a triple [M, / , N] lying in 

3C^(mod(A), ®Q) is said to be factorizable if il){[M,f, N\) is factorizable. 
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Definition 1.2.13. For a factorizability theory ip, two modules M and Â  

are said to be factor equivalent (written M A'') if there exists a triple 

'M,f,N] e 3C^(mod(A),<8)Q) which is factorizable. 

I t is worth noting that, although the definition of factor equivalence ap

pears to rely upon a choice of isomorphism / , it is in fact independant of this 

choice, since 

Lemma 1.2.14. If[M, / , Â "] has ip-factorization a and / ' : M ® Q N^Q 

is any other A-isomorphism then [M,f,N] is factorizable with factorization 

a - m d i f - ^ o f ) . 

Proof In 3C^(mod(A),®Q), we have 

[M, / ' , A ]̂ - [M, / , N] - [M, / ' , A ]̂ + [A ,̂ f - \ M] 

= [M,f-'of',M] 

= a ® ( N r d ( / - i o / ' ) ) 

therefore [M, / ' , A''] has -^-factorization a • Nrd(/~^ ° / ' ) • 

Definition 1.2.15. A factorizabihty theory tp is said to be strict if the kernel 

oi ijj o d® is contained in U. 

1.2.16. Remark. I t is worth noting that if ip is locally defined, and each of 

the •0P are strict, then ij) is also strict. 

Lemma 1.2.17. The following diagram commutes, with the bottom three 
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groups isomorphic: 

Xi(mod(Qpr)) - ^ ^ Z(Qpr ) x = — Homn,^(Rr,Q^,Q;) 

where the maps are as follows. An element /? in QpT^ is mapped to the 

class [/SXjQpT] in Xi{QpT) where 13x means multiplication on the left by 

p. The isomorphism from 3Ci(Qpr) to sends the class [;5x,Qpr] to 

the reduced norm of P, a = Nrd(/?). The isomorphism from 3Ci(Qpr) to 

HomnQ^(RrQ^,Qp) sends the class [Px^QpF] in XiiQpT) to a = Det(^), 

that is, a where a{x) = detQp(^x: ->• V^) with is a QpT-module 

with character x- For the isomorphism Cp to Homn^jp(RpQ^,Qp), we do 

the following. An element x e maps to fx G Homn^^ (Rp Q^, Qp ), where 

fxix) = P{^) (^''T'd p is a representation ofQpT of character x-

Proof. For the right-hand triangle, see [7] section I I , particularly lemma 1.6. 

For the left-hand triangle, see [1] chapter 5, §9. In particular the isomorphism 

follows from the exact sequence 

0 ^ SX.iQpT) -> aCi(mod(Qpr)) ̂  ZiQpVr 

and the fact that SDCi(Qpr) = 0 by [1], chapter 5, theorem 9.7. • 

Of these three groups, Z{Qpr)^ is the easiest group to define what is 

meant by a unit, but it is the third group Homn^^(RpQ^,Qp) in which we 

will do most of the work. 
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Definition 1.2.18. Z(QpF)^ = ^ ^-Ki for some fields Ki, and so we 

define the units of Xi{QpT) to be those [^x,QpF] where the corresponding 

Proposition 1.2.19. The following three are equivalent: 

1. [^x,QpF] is a unit in Xi{%V), 

2. a{x) e O^^ for all x G Rp.Q,, 

3. Vp{a{x)) = OforallxeRr:Q^. 

Proof. 1 ^ 2 is clear from the description of the isomorphism. 2 <^ 3 is clear 

from xeO^ ^ Vp{x) = 0. • 

Proposition 1.2.20. For a local theory tpp, tpp is strict if and only if 

{iPpod®){[px,Qpr]) = 0 implies Vp{a{x)) = 0 Vx G Rr,Q^. 

Proof ipp is strict if and only if the kernel of tpp o d® is contained in OQ^, 

which is true if and only if 

{iPp o (9®)([^x,QpF]) = 0 implies [;5x,QpF] is a unit in DCi(QpF) 

which is true if and only if 

(^poa®)([/3x,QpF]) = 0 implies Vp{a{x)) = 0 Vx G Rr,Q^ 

by proposition 1.2.19. • 
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1.3 Comparing factorizability theories 

In this section we will consider ways of comparing and combining factoriz

ability theories for the same relative group. We will consider two diflFerent 

ways of comparing factorizability theories. The first approach is due to the 

homomorphism aspect of factorizability theories—one theory is said to be 

stronger than another if the kernel in the relative group is smaller. This will 

be the approach we will use in the following chapters. The second approach is 

to consider which elements of the relative group are factorizable—one theory 

is stronger than another if, for triples in the relative group, factorizability by 

the first theory implies factorizability by the second theory. 

Finally we will look at ways of combining factorizability theories, and look 

at the relative strength of the combined theory and the original theories. 

Definitions 1.3.1. Consider two factorizability theories ip, (j) from the same 

relative group to groups of invariants ^ , $ respectively. If ker(V') = ker(^) 

then we say that ip is equivalent to (f), written •0 ~ 

If ker('0) C ker((/)) then we say that ip is stronger than or equivalent to (p, 

written " 0 ^ 0 -

If ker{ip) C ker(0) then we say that ip is stronger than 0, written ip y (j). 

=<; and -< are similarly defined. 

We consider now whether or not M being V'-factor equivalent to A'' implies 

M is 0-factor equivalent to A''. We have 
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Proposition 1.3.2. I f i p ~ (p, then [M,f,N] is tp-factorizable if and only if 

M, f , N] is (p-factorizable. 

If ijj )p (j), then [M, / , A ]̂ being ip-factorizable implies [M, / , A''] is (p-

factorizable. 

A similar statement is true for y; for =4 and -< we get similar statements 

by using the fact that ip ̂  (p ^ (p ip. 

Proof The first statement is a simple consequence of the second statement, 

by using ip cj) if and only \i ip )p (p and (p )p ip-

For the second statement we do the following, ip )p (p implies that 

ker('!/') C ker(0) . Suppose [ M , / , A ]̂ is •i/'-factorizable, with factorization 

a. Then [ M , / , A''] — d®{a) is an element of ker('0), and therefore an el

ement of ker(0) . Therefore (p{[M,f,N]) = (pod®{a) and [ M , / , A''] is (p-

factorizable. • 

1.3.3. Remark. The concept of a theory being stronger than another imposes 

a partial ordering on factorizability theories. There are two extreme theories: 

tpid which is the identity map, and ipo the zero map. For any factorizability 

theory -0, i t is clear that we have ipid ip )p ipo- Also, for any two theories ip 

and (p, we can find a weakest theory which is stronger than or equivalent to 

both tp and (p, namely, 

ip®(p: 3C^(mod(A), (8)Q) © $ 

X ^ {ip{x),(p{x)). 

Clearly kei{'ip © 0 ) = ker('0) f l ker(0) , and therefore ip ® (p is stronger than 
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both •0 and 0 , but no weaker theory can be stronger than both ip and 0 . 

Where $ = we could also consider factorizability theories of the form 

V' + 0 : aC^(mod(A),®Q) ^ ^ 

X I-)- •0(a;) -I- (j){x). 

Necessarily ip -\- 4> =4 ip ® (j), since if a: 6 ker('0) n ker(0), then {ip -F (f)){x) = 0. 

However in general we cannot say any more than this, for example in the case 

when 0(x) = -ip{x) for all x 6 3C®(mod(A), (8)Q) we have ^ - f 0 ~ V'o, and 

in the case when ip{x) = 0 for all x G C(C®(mod(A), (8)Q) we have ip -\- (p ̂  ip. 

1.4 An example of a factorizability theory 

The following example of a factorizability theory. Monomial factorizability, 

is taken from [19]. In [19] it is shown to be equivalent to the factorizabil

ity theories hinted at in [12], and when restricted to lat(Zr) , equivalent to 

Frohlich's "strict factorizability" of [6 . 

We choose this as an example because we will show it to be equivalent to 

one of the invariance factorizability theories described in chapter 2. In [19 

it is also shown that the monomial factorizability theory as defined below is 

in fact strict. However, the approach taken there is fairly technical. Instead, 

we will use the equivalence to one of the invariance factorizability theories to 

prove strictness. 

We begin by defining //-monomial representations. In what follows, F will 
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denote a field of characteristic 0, B a. subring of F, and n a torsion subgroup 

of 5^. 

Definitions 1.4.1. A ii-monomial representation of F is a right ^ x F-set S 

such that // X {1} acts freely on S and S consists of only finitely many orbits. 

We define Mon(F, ^ ) to be the Grothendieck group with respect to disjoint 

union of ^-monomial representations. 

If T is a //-monomial representation of a subgroup F' of F, we define the 

induced representation r'~p, = r̂ X p F. 

For F' a subgroup of F, and %: F' ^ /x, we define the /i-monomial rep

resentation of F' afforded by x (denoted by ^i-^) to be a copy of //, with F' 

acting via x-

It can be shown (see [19], 7.3 and preceding) that any indecomposable ji-

monomial representation is isomorphic to one of the form yLî  p , Mon(F,/x) 

is free on the classes of indecomposable /x-monomial representations, and 

therefore Mon(F,/x) is generated by the classes [/txTr'.-

Definitions 1.4.2. Let 5 be a //-monomial representation. Then we define 

the B-linearization of S (denoted B^j[S]) to be the BF-module 'LS B. 

We denote 5^[MX] by B-^^. 

For any SF-module M , and any homomorphism F' -> //, we define 

= {meM : m j = m x ( 7 ) , V 7 G F'}. 
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An alternative description of is from the natural isomorphism 

UomBr{B^]r,M) ^ M"^ 

/ ( ( 1 , 1 ) 0 1). 

Definitions 1.4.3. Let p be a prime number. We define F{p} to be the 

maximal unramified extension of Q p . We define 0{p} to be the ring of 

integers in F{p}. We define //̂ ^̂  to be the roots of unity of 0{p} of order 

prime to p. We define G{p} = G a l ( F { p } / Q p ) . 

We are now in a position to define the locally unramified monomial factor

izability ipmon- 3C®(mod(Zr), (8)Q) -)• M . It is a locally defined theory (see 

definition 1.2.10), with local theories •0mon,p and local groups of invariants 

Mp for each p. ip^^n = UpV'mon.p o A by lemma 1.2.8, and M = [ J ^ M p . 

We define Mp = HomG{p}(Mon(r,/i(p)),X(C{p})). 

We define the local theory as 

V'mon.p: 3Co®(mod(Zpr),(8)Q) -> Mp 

[T] ^ IpmonAiT]) 

where 

{[T]): [S] H-> |HomoMr(C{pU)[5] , [T®z,OM])U{pj e2:(0{p}). 

1.4.4- Remark. Since Mon(r, fi^^^) is generated by the classes [/x^ p ] , ^mon.p 

is determined by its action on these representations: 
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1.5 Real factorization 

In the previous section, and in the following chapters, we discuss local and 

global factorizability theories where the functor J is the tensor product ®Q. 

However, there are occasions when it is more "sensible" to use a different 

functor, for example (8)1R. By "sensible", we mean there is a single sensible 

choice of isomorphism between modules M (g) M and TV (g) M, but no single 

choice for an isomorphism between M 0 Q and N 0 Q. In this section 

we will briefly investigate this case. We begin with an illustrative example 

of a situation where the "sensible" choice of isomorphism is between M 0 

R and N ® R, not M 0 Q and N <^ Q. We then move on to discuss a 

possible approach towards defining a "real" factorizability theory rather than 

a "rational" factorizability theory. Our approach will be to construct the 

pushout of a "rational" factorizability theory, and determine some of its 

properties. In order to do this, we will introduce a series of lemmas to 

manipulate pushouts and pullbacks. We will also make further use of the 

Heller sequence, this time with the functor 

We begin with our example. Our isomorphism will arise from the proof 

of the Dirichlet unit theorem, [8] theorem 37. For details of this theorem and 

the derivation of the isomorphism in question, see for example [8], IV.4. We 

will present here an overview of the construction. 

Notation 1.5.1. Throughout this section, F denotes an algebraic number 

field. F has s distinct real embeddings, and 2t distinct complex embeddings 
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(i.e. embeddings in C which do not he whohy in K) . RecaU that the complex 

embeddings must occur in complex conjugate pairs, hence the even integer 

2t. We define r = s + t — 1—the Dirichlet rank. Up denotes the group of 

units in F. fip denotes the torsion subgroup of Up, which is therefore the 

group of roots of unity lying in F. 

We state without proof 

Theorem 1.5.2. The Dirichlet Unit Theorem (see for example [8] theorem 

37). Keeping the above notation, 

UF = fipx 'SI. 

Although we will not prove this theorem ourselves, we will provide an 

outline of the proof in order to derive our desired isomorphism. 

Definition 1.5.3. Let W = ]R*+*. For i = 1,..., s, let cTj denote the distinct 

real embeddings of F. For i = s + 1 , . . . ,s + ,̂ let a, denote one from 

each distinct conjugate pair of complex embeddings of F. We define the 

logarithmic map to be the group homomorphism 

I: U F ^ W 

s s+t 

u '^\og\ai{u)\ei + ^ 21og|(7i(w)|ei 

where {c j} is the usual canonical basis of W. "K will denote the hyperplane 
s+t s s+t 

{aiCi : a, + 2 ^ fli = 0} C VF. 
i=l i=l i=s+l 
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Note that necessarily Iml C J{. In fact, we also have that Iml is a 

discrete subgroup ofW: to see this, we would demonstrate that only a finite 

number of points of Im I lie in a ball of radius x about the origin, for any 

a; e R. So Im / is a lattice in IK and therefore of rank at most s + t - I = r. 

Also, we can see that kerl = fip-

The final stage of the proof would be to define a set of fundamental units 

{ui : i = 1,..., s + t}, with log|crj('Ui)| > Oifi = j and log|(Tj('Ui)| <0\fi ^ j. 

Then by looking at the matrix with entries \og\aj{ui)\ and determining that 

this matrix has rank at least r, the Dirichlet Unit Theorem is proven. 

The individual maps log|cri(-)| can be thought of as the valuations at the 

infinite primes. For any element x € Op, necessarily 

s s+t 

^log |a , (a ; ) | + 2 ^ log|(7i(x)| = 0. 
1=1 i=s+l 

We define to be the set of these valuations at the infinite primes, and 

consider ZSoo- Define 

a': ZSoo Z 
s+t s s+t 

ajO-j 1-^ ^ ai + 2 ^ a,, 
i=l 1=1 i=s+l 

and ASoo = kercr'. Clearly AS'oo is a full lattice in !K. Then, as a corollary 

to the Dirichlet Unit Theorem, we have 

Corollary 1.5.4. 

1^1: U F ^ R ^ ASOO ® M. 
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From now on, suppose that F is Galois. Putting F = Gal(F/Q), it is well 

known that Up is a ZF-module. Also, the action of F permutes the infinite 

primes, so A5oo is also a ZF-module. 

Thus 

Proposition 1.5.5. 

UF, I ® 1, A5oo] e X®(mod(ZF), ®M). 

This fact is a key motivation for looking at real factorizability theories. 

UF = ^ •, aiid AS'oo is a full lattice in and is hence isomorphic to 

U, and therefore f/^ Q = A5oo 0 Q as Q-modules; further, since there 

is an isomorphism Up ®R = AS'oo ® R which respects the F action, there 

is necessarily an isomorphism [/p 0 Q = AS'oo ® Q as QF-modules. How

ever, there is no single obvious candidate for this isomorphism. We know by 

lemma 1.2.14 that our choice of isomorphism would not alter the factoriz

ability of our triple; however, it would be preferable to use our obvious choice 

of isomorphism. 

We now turn our attention to considering one particular approach to 

constructing real factorizability theories. Our approach will be to take a 

rational factorizabihty theory and construct the pushout. 

Definition 1.5.6. Suppose '0: 3C^(mod(ZF),<g)Q) * is a factorizability 

theory. We define a real factorizability theory •0K, and its target group ^'R 
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by the pushout diagram 

aC^(mod(ZF), ®Q) ^ — - * 

3C®(mod(ZF), m ) ^ ' *K 

To simplify calculations, we include here a series of lemmas concerning 

pushouts. 

Definition 1.5.7. For the commutative square 

/ 

we label the kernels and cokernels of each map, and maps induced from / , 

g, h and k, as in the diagram 

which is commutative with all horizontal and vertical four term sequences 
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exact. We also consider the (not necessarily exact) three-term sequence 

A-^ B e e ^ D 

where 9: {f{a),g{a)) and (j): (6, c) i - ^ k{b) — h{c). Note that the square 

being commutative ensures that im(^) C ker(^). 

Lemma 1.5.8. Consider the situation of definition 1.5.7. Then u\ is injec-

tive and Hi is surjective if and only ifim.{9) = ker{(p). 

Proof Suppose {b,c) e B®C is such that (p{b, c) = 0. Then k{b) = h{c), 

but since 7r/i(/i(c)) = 0 by exactness of our commutative diagram, and vi is 

injective, •Kf{b) = 0. Therefore, by exactness of our commutative diagram, 

there must exist a e A such that /(a) = b. So h{g{a)) = h{c), and so g{a) = 

c + ih{ki), some ki E Kh. But then, by the surjectivity of / / i , there must 

exist ko e Kf such that /Ui(fco) = ki. Consider = a — if{ko). By exactness, 

/(^o) = fia) = b, and by commutivity, g{aQ) = c + ih{ki) - ih{ki) = c, so 

e{ao) = {b,c). 

<=: First we shall show that ui is injective, i.e. if a; G C/ is such that if 

i'i{x) = 0 then a; = 0. Choose b E B such that 7r/(6) = x, and let d = k{b). 

Then 7rh{d) = 0 so there exists c £ C with h{c) = d. But now we have 

(f){b,c) — 0, so there exists an a G ^ such that /(a) = b. So, by exactness, 

7r/( /(a)) = = 0. 

Now we show that / / i is surjective. Let x e K^. Then h{ih{x)) = 

(p{0,ih{x)) = 0, and so there exists a E A with /(a) = 0, and hence there 

exists ao G Kf with i/(ao) = a. i/i(/xi(ao)) = ih{x), and therefore /^i(ao) = x 

by the injectivity of ih- • 
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Lemma 1.5.9. Consider the situation of definition 1.5.7. Then i^i is injec-

tive if and only if 6 is injective. 

Proof. Consider a E A such that /(a) = 0 and ^(a) = 0. Then there 

exists X e Kf with if{x) = a, whose image in Kh is zero, by the injectivity 

of ih- So, since /xi is injective, a: = 0 and hence a = 0. 

Suppose we have x E Kf such that f^i{x) = 0. Then f{if{x)) = 0 by 

exactness, and g{if{x)) = ihifJ'ii^)) = 0 by commutivity. So 6{if{x)) = (0,0) 

and therefore if{x) = Ohy the injectivity of 6. Therefore x = 0. • 

Lemma 1.5.10. Consider the situation of definition 1.5.7. Then ui is sur-

jective if and only if (j) is surjective. 

Proof. Let d e D. Consider b e B such that ui{7rf{b)) = iThid). Then 

•Kh{d) = •Kh{k{b)), so d-k{b) = h{c), for some c G C. But now d = k{b)-h{c), 

so d = (j){b, c). 

<̂ =: Let x e Ch, and choose d E D such that Trh{d) = x. Then there 

exists (6, c) e B ® C such that (f>{b,c) = d, that is, d = k{b) - h{c). But 

-Khihic)) = 0. Therefore Tih{k{b)) = yi{TTf{b)) = 7rh{d) = x. • 

Proposition 1.5.11. Consider the situation of definition 1.5.7. Then 

1. the commutative square is a pushout i f f Kf Kh and C / = Ch, i f f 

Kg ^ Kk and Cg ^ Ck, 

2. the commutative square is a pullhack i f f Kf = Kh and Of ^ Ch, i f f 

Kg ^ Kk and Cg Ck, 
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3. the commutative square is a cartesian square i f f Kf = Kh. and Cf = Ch, 

i f f K g ^ K k andCg^Ck. 

Proof. The first "iff'" of the first one is a consequence of lemmas 1.5.8 and 

1.5.10. The first "iff" of the second one is a consequence of lemmas 1.5.8 and 

1.5.9. In both cases, the second "iff" follows from the fact that the sequence 

A B®C 

is exact, or has injective or surjective maps, exactly when the sequence 

A -^C®B D 

is exact, or has injective or surjective maps, and thus we can swap rows for 

columns in each of lemmas 1.5.8, 1.5.9 and 1.5.10. The third one is now 

clear. • 

Corollary 1.5.12. Consider the three squares 

SI: 

then 

1. if SI and S2 are pushouts, so is S3, 

2. if Si and S2 are pullbacks, so is S3, 

3. if SI and S2 are cartesian squares, so is S3. 

f'o f 
A •' ' B' 

k' 

C D' h oh 
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Proof. By repeated applications of proposition 1.5.11, using the fact that the 

composition of two injective maps is injective, and so on. • 

We now turn back to our consideration of factorizability theories for 

Our next step will be to consider the Heller sequences for (8)Q and <S>R. We 

start by looking at the right-hand end of the sequences. 

Lemma 1.5.13. The homomorphisms 

[®zQ]: 3C®(mod(ZF)) 3Co(QF) 

and 

Dzl^]: X^(mod(ZF)) ^ Xo(MF) 

have the same kernel, 3C®(mod(ZF)). 

Proof. These homomorphisms can be linked by the following diagram, which 

is clearly commutative: 

3C®(mod(ZF)) 

X^(mod(ZF)) 

3Co(QF) 

Therefore, since the map 3Co(QF) -> CICo(MF) is injective, the horizontal maps 

must both have the same kernel, namely 3C®(mod(ZF)). • 

We can similarly look at the left-hand end of the sequences. 
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Lemma 1.5.14. The homomorphisms 

[®zQ]:aC®(mod(ZF))->Xi(QF) 

and 

DzM]: 3<:®(mod(ZF)) ^ 3Ci(RF) 

have the same kernel. 

Proof. These homomorphisms can be linked by the following diagram, again 

clearly commutative: 

3C®(mod(ZF)) 

aC®(mod(ZF)) 

3Ci(QF) 

3Ci(lRF) 

Again, since the map DCi(QF) -)• 3Ci(EF) is injective, the horizontal maps 

must both have the same kernel. • 

We denote the kernel of either of these homomorphisms by 3Cf (mod(ZF)). 

Putting these two lemmas together, and looking at the Heller sequences 

for (g)Q and (8)E, we obtain the commutative diagram 

a C f ( m o d ( Z F ) ) ' ! ^ 3Cf(QF) 3C®(mod(ZF), OQ) — 3C®(mod(ZF)) 

3 C f ( m o d ( Z F ) ) S - ^ XfiRF) DCo®(mod(ZF), ®R) ^ %®(mod(ZF)) 
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Lemma 1.5.15. The square of definition 1.5.6 is cartesian, with the two 

vertical maps injective, i.e., 

X®(mod(Zr) ,®Q) 

ac^(mod(zr),®R) 

Proof. By proposition 1.5.11, part 3, we see that the commutative square 

3C®(Qr) 3c®(mod(zr), m) 

3 C f ( E r ) - ^ X ® ( m o d ( Z r ) , 

is cartesian, and therefore the homomorphism 

: X®(mod(Zr) ,®Q) ^ aC®(mod(Zr), ®IR) 

is injective. Therefore, since 

3C®(mod(Zr),(8)Q) 

3C®(mod(Zr),0M) 'fit 

is a pushout, and one of the vertical maps is injective, both the vertical maps 

must be injective. Finally, by proposition 1.5.11, since the kernels of the 

vertical maps are isomorphic (since they are trivial), and the cokernels are 

isomorphic (since the square is a pushout), the square is in fact cartesian. • 
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Proposition 1.5.16. The homomorphisms 

: X ® ( Q F ) 3Cf(RF) 

[(8)QR]: aC®(mod(ZF),(8)Q) ^ X ® ( m o d ( Z F ) , 

all have trivial kernels, and cokernels isomorphic to X®(mod(QF), (8)QR). 

Proof. The three homomorphisms are all injective and therefore have trivial 

kernels. Consider the commutative diagram (with non-exact rows): 

3Ci(QF) X®(mod(ZF), ®Q) ^ 

3Ci(RF) a C ® ( m o d ( Z F ) , ® R ) ^ - * 

Both the squares are cartesian, and therefore the three vertical maps all have 

isomorphic cokernels by proposition 1.5.11. We can say precisely what this 

cokernel is (up to isomorphism) from the Heller sequence for 

X i ( Q F ) ^ %i{RV) ^ 3Co(mod(QF),(8)QR) ^ 3Co(QF) 3Co(RF) 

which, since the final map is injective, yields a short exact sequence 

aCi(QF) a<:i(RF) ^ %o(mod(QF),®QM). 

Hence the three homomorphisms in question each have cokernel isomorphic 

to Xo(mod(QF),(8)QR). • 

The final comment we make on real factorizability theories relates to 

strictness. 
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Proposition 1.5.17. If tjj is strict, then 4>R is also strict. 

Proof. From the commutative diagram (with non-exact rows) 

3C®(mod(Zr),®Q) 

aCi(]Rr) ac®(mod(zr),®R) 

as both squares are cartesian, by corollary 1.5.12 the following square is also 

cartesian: 

OCiiQT) ^—^ 

aCi(Rr) 

Therefore ipod® and tpM.°d® both have the same kernel, by proposition 1.5.11. 

Clearly the units in % f (QF) map into the units in DCf (RF). Therefore if ip is 

strict then ker{ijjod®) is contained in the units of 3Cf (QF) hence ker ( '0Mo9®) 

is contained in the units of 3Cf (RF) and V'M is strict. • 
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Chapter 2 

The Invariance Factorizability 

Theories 

• I T H I S chapter we will define a large family of factorizability 

B I theories, namely the invariance factorizability theories. We 

will also show how one particular invariance factorizability theory is equiva

lent to the monomial factorizability theory, described in chapter 1. 

In brief, the invariance factorizability theories involve calculating the 

value of various generalised indices corresponding to each of some collec

tion of triples (F', x, A ) , where x is a character of F' C F with kernel A. The 

different invariance factorizability theories originate from looking at differ

ent collections of triples (F',x, ^ ) - The generalised indices calculated are as 

follows. For the class of a triple [T] G 3C^(mod(ZpF), OQ), we firstly find 

the elements invariant under A, [T^] (hence the name "invariance"), and 

then these fixed elements hit by various idempotents [T^e-)^]. We take the 
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generalised index of this triple \T^e-^\, and then the p-adic valuation of this 

number. 

These invariance factorizability theories "nest" inside each other in terms 

of strength. We go on to prove that the weakest of the cases considered, the 

weak cyclic case, is strict. Consequently all the stronger invariance factoriz

ability theories will also be strict. We establish that the monomial factoriz

ability theory of section 1.4 is equivalent to one of these stronger invariance 

factorizability theories, and hence demonstrate its strictness. 

Although IK®(lat(ZpF), ®Q) is infinitely generated in general, for certain 

choices of F (such as those for which ZpF has finite representation type) 

X®(lat(ZpF), (8)Q) is of finite dimension. In this case, we can explicitly work 

out the kernel of an invariance factorizability theory. We go on to do this 

for the case of the metacyclic group Gg^p, and will build on this example 

in the next chapter when we will show that the invariance and coinvariance 

factorizability theories (to be defined in the next chapter) are different in 

general, but are identical in the weak cyclic case and equivalent in the strong 

cyclic case. 

2.1 Invariance factorizability theories 

In this section we define the invariance factorizabihty theories. As we men

tioned before, the invariance factorizability theories involve calculating the 

p-adic valuation of various generalised indices, Vp\T^ey\, corresponding to 

each of some collection of triples (F', x, A) , where x is a character of F' C F 
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with kernel A. 

We begin this section by establishing suitability conditions and notation 

for the triples ( F ' , X ; ^ ) ; a-nd defining the idempotents ê .̂ We go on to 

consider some functorial aspects of the invariance factorizability theories. In 

particular we show how the invariance factorizability theories can be thought 

of as "factoring through" functors of the form M i-> M^e^ (or more prop

erly, homomorphisms between 3C-groups induced from such functors). We 

also consider using Homn^p (Rr^Q^, Qp) in place of 3Ci(mod(QpF)). These 

ideas will considerably simplify calculations involving invariance factorizabil

ity theories. We conclude this section by considering aspects of the relative 

strength of invariance factorizability theories. 

We begin by establishing some notation. 

Definitions 2.1.1. Consider a triple (F',x, A) where F' is a subgroup of F 

and X- F' —>• Qp is a homomorphism with kernel A such that p \ |F' : A| . 

We define uRepp to be the set of all such triples. We define Qp[x] to be the 

smallest subfield of Qp into which x maps, that is, Qp with the values of 

X(F') added. 

S.1.2. Remarks. The triple (F',x, A ) is completely determined by x alone. 

However, keeping the F' and A avoids confusion, especially when there are 

a number of different x's in play. Also, note that the requirement that 

p I |F' : A | ensures that Qp[x] is an unramified extension of Qp and x is thus 

an unramified representation of F', hence the name uRepp. 
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Definit ions 2.1.3. For a triple (r',x, A ) G uRep^, we define two idempo-

tents in Qp[r'/A]: 

r ' / A 

and 

E 
x'eorb(x) 

where orb(x) is the orbit of x under the action of Ga\{Qp[x]/Qp). We also 

define 

X'Gorb(x) 

Note that necessarily e-^ — e^. 

For a triple (r',x, A ) e uRep^ and a right ZpF-module M e mod(Zpr) 

we have that is a Zpfr '/AJ-module, and therefore M^e^ is a Zp[T'/A-

module. For [M, f , N] € X® [modiZpT], ®Q), we may therefore compute the 

generalised index M^e^, f , N^e-^ € < p > , where in this triple / denotes 

the restriction of / to the module M^e^ ®z Q. We are now in a position to 

define: 

Definit ion 2.1.4. Let S C uRep^. The S-invariance factorizability theory 

ipp is a local factorizability theory 

tP^: aC®(mod(Zpr), (8)Q) ^ Map(5, Z) 

[MJ,N]^: {T',x,^)^Vp{\M%J,N%\). 

I f we choose a collection S = {Sp : Sp C uRepp} of local theories, then we 

may define a global theory ip-, a locally defined factorizability theory wi th 

local theories ipp^. 
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2.1.5. Remark. For ( r ' , X ) ^ ) ^ consider the functor 

3^(r',x,A): mod(Zpr) -4 mod(Zp) 

This induces a functor 

5"(r',x,A): mod(Qpr) mod(Qp) 

By proposition 1.1.11, these functors in t u rn induce a homomorphism 

[%',x ,A)]: 3C®(mod(Zpr),(8)Q) ^ aCo(mod(Zp), (8)Q). 

The map ipp can be viewed as this homomorphism composed wi th the gen-

eraHsed index and the p-adic valuation: 

V p ^ ( [ M , / , i V ] ) : ( r ' , x , A ) ^ ^ p i [ J ( P , x , A ) ] ( [ M , / , 7 V ] ) | . 

In preparation for our discussion on the strictness of these theories, we 

observe 

L e m m a 2.1.6. For a G Homn^p (Rr,Qp, Qp ); and a triple {r',x,^) lying in 

S C uRepp, we have 

(^p^oa®)(a ) : ( r ' , x ,A )^^p(a (xT[ ;0 ) -

Proof. Under the isomorphism 
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let a correspond to [^x,Qpr], where P G QpF^. Let 3^ = 3^{r',xA) ^ 

remark 2.1.5. We shall compute (^/'^ o 5®)([/?x, Qpr])((r',x, A ) ) . 

(V'p^o^p®)([^x,Qpr])((r',x,A)) = ^,^([Zpr,^x,Zpr]) 

= 7;p|[j]([Zpr,^x,Zpr]). 

Now, 

where 

[j]([Zpr,/3x,Zpr]) = [Zpr^e;„/3x ,Zpr^e, 

= dp{[px,Q,T''e^]) 

= dpo['J]{[px,Q^r]) 

Bp-. 3Ci(Qp) ^aCo(mod(Zp), 

is the usual map and, in the last equation, 

[J ] :Xi(Qpr)->3Ci(Qp) 

is the homomorphism induced f rom J . Therefore the square 

3Ci (Qpr ) -^3Co®(mod (Zpr) , 

[ ^ ] 

3 C i ( Q p ) — — aCo(mod(Zp), 

commutes. 
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Next consider the diagram 

^ 3 C o ( m o d ( Z p ) , 0 Q ) 

det 

z 

and consider [(3'x,Qp] e %i{Qp). Its image under dp is [Zp,P'x,Zp\ which 

maps to Vp\Zp,P'x,Zp\. But this equals ?;p(det(^'x)), so this square com

mutes. From these diagrams, we see 

i^'p od^){[/3x,Qpr]){{r',x,^)) = Vpmod^{[i3x,Qpr])\ 

= Vp\detQ^{[px,qpr^e^])\. 

Now, 

IpT^e^ = QpT/Ae^ = QpT ^Q^T' QpT'/Ae, 

QpT'/Ae-^ has character x, since 

hr'/Ai X v:p — ŝ p F ' /Ae^ as F ' / A is abelian 

= 0 Q , F 7 A e , , 
X'€orb(x) 

and QpF'/Ae^' has character x'- So QpF^e^^ has character Indp/(x)- X and 

X are abelian characters and since the induced character of an abelian char

acter can be wri t ten independently of the handedness of the module (see for 

example the formula in [14], page 686), Indp,(x) equals x f r / . So 

{r,od^){a){{r',x,^)) = Vpdet{[Px,V^,rJ), 
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where V^^r is a left module w i t h character x T ' - So 

(V 'p'°5®)(a)((r ' ,x ,A)) = ^ p D e t , , r (^) =^p(a(xT[:0) 

as required. • 

Coro l lary 2.1.7. For [^x ,Qpr] G XiiQpT), and a triple (r ' ,x, A) lying in 

S C uRepp, we have 

{i^l o a®)([^x, QpL]): ((r', X, A)) ^ Vpdet^^([^x, QpL^eJ). 

One particularly useful aspect of these theories is how they relate to each 

other in terms of strength: 

Propos i t ion 2.1.8. If S' C S C uRepp then ^ - ^ f . 

Proof I f 

^^{[M, f , N]): (r', X, A) 0 V(r', X, A) G 5, 

then clearly 

^ f ( [ M , / , i V ] ) : ( r ' , x , A ) ^ 0 V ( r ' , x , A ) G 5 ' . 

Therefore k e r ( ' 0 | ) C ker ( '0^ ' ) , and tp^ ipp • • 

We define a few useful subsets of uRep^. 

Definit ions 2.1.9. We define 

Co = Cop - {(r', X, A) G uRepj, : V is cyclic}. 

We w i l l refer to the factorizability theories obtained using this subset of 

uRepp as the weak cyclic case. 
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We define 

C = Cp = {(F', X, A) e uRepp : F' = Cpk x G, where > 0 and p f IGI}. 

We will refer to the factorizability theories obtained using this subset of 

uRepp as the strong cyclic case. 

We define 

M = Mp = uRepp. 

We will refer to the factorizability theories obtained using this subset of 

uRepp as the monomial case. 

2.1.10. Remark. Since Co C C C X , we have that 4 xp^ ^ i/;^ and 

hence 4-ip-4 ip—-

2.2 Strictness of the weak cyclic case 

In this section we shall prove that the weak cyclic factorizability theory is 

strict. We will use the Hom-version of the group 3Ci(QpF), that is, the group 

HomnQp(RrQp,Qp). Our approach will be as follows. By proposition 1.2.20 

we know that 7pp° is strict if and only if 

(V;?oap®)(a) = 0 implies Vp{aix)) = 0 Vx € Rp.Q ,̂ 

where a € HomnQ^ (RpQ ,̂ Qp ). Suppose such an a is in the kernel of ipp^od®. 

Then obviously (V'p" o d®){a) = 0. By using lemma 2.1.6, this will allow us 

to establish that Vp{a{x\]^,)) = 0 for the x's in the (F',x. A) e CQ. We go on 
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to demonstrate that i f Vp{a{x^^,)) = 0 for these x, then ?;p(Q;(x)) = 0 for all 

X G Rr.Qp, hence Vp{a{x)) = 0 for all x G Rr,^^) and hence tpp° is strict. 

L e m m a 2.2.1. Suppose ( r ' ,x , A) G CQ, and a G Homn^p (Rp^Q ,̂ Qp) lies in 

the kernel of tpp° ° d f . Then Vp{a{x\\'>)) = 0. 

Proof. Consider ( r ' ,x , A) G CQ. By lemma 2.1.6, we know that 

( # o a ® ) ( a ) : ( r ' , x , A ) ^ t ; p ( a ( x T ^ ^ , ) ) -

So i f a is in the kernel of ip'^° o df then fp(Q!(xf p ) ) = 0. • 

We introduce the following definition in order to simplify the notation of 

the following lemma. 

Definit ion 2.2.2. Let e be an idempotent in Qp[r/A]. We define ^(e) to be 

the character of QpF^e. In particular, for a triple (r ' ,x, A), (j){e^ — xTr" 

L e m m a 2.2.3. Let V he a cyclic group, and x an irreducible character in 

Rr.Qp. Then there exist integers rui such that 

X= rn4{e^;). 
(r^,Xi,Ai)eCo 

Proof. Let |r | = p^n, where p, n G Z, p f n . So 

r = CpTji = CpT x Cji-

Then 

QpL = QpCp. QpC„, 

56 



and we can write ê ^ = e p e „ w i t h Cp, e „ indecomposable idempotents in QpCpr, 

QpCn respectively. 

I n fact, since p \ n, i t follows that 6 ZpC„. I t also has image 6^1 m 

Zp[F/F'] for all subgroups F' of F. Also, we have a character Xn- Cn ^ Zp 

such that e„ = e-^^ = ê ^̂ . 

Now, there are r + 1 possibilities for ep. Either Cp = ec^s — ^c^s+i 

s — 0, l , . . . , r — 1, or ep = ec^r- Since x is the character of QpFepe„, 

X = 0(epe„) . Hence x equals either (/'(ecp.e„) - 0(eCp,+ie„) or (/)(ecp.e„). 

I n conclusion we note that 4>{ec^^e^ = (f}{enCps) where e„Cps is an idem-

potent in Zp[F/Cpa], and so (/>(ecp.e„) = ^(e^^^) where XN = xAc"^''^" and 

{Cps X Cn, XN, Cps X ker(xn)) G CQ. • 

Coro l lary 2.2.4. Let x be an irreducible character in Rr.Qp, with F not 

necessarily cyclic. Then there exist integers m j , n with n 7̂  0 such that 

nx= E ^ i X i t r ; -
(r;,xi,AOeCo 

Proof. By the A r t i n induction theorem, x is a rational sum of characters 

induced f rom cyclic subgroups of F, and hence 

nx = E^J'̂ ^Tr;. 
3 

where is an irreducible character of F^ and aj € Z. Now 

(r-,,-,xi,j,Ai,j)eCo 

and (j){e^i^^) = X i j T r J .• 

t t r ~ •t'^'i t r ~ t r 

(r^,,,Xi,j,Ai,,)6Co ' (r;^^.,Xi,j,Ai,j)eCo 
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and the result follows. • 

L e m m a 2.2.5. Let x be an irreducible character in Rr.Qp) and let a lie in 

the kernel of i/jp° ° d®. Then Vp{a{x)) = 0. 

Proof. We have that 

nx^ X] '^iXiYrr 

and therefore 

nvp{a{x)) = ^ miVp{a{xiYr'))-
{V'^,xiAi)eCo 

But we know that i f a G ker( '0p° o d®) then Wp(Q!(xif rO) = 0- Therefore 

Vp{a{x)) = 0. • 

L e m m a 2.2.6. Let a G HomnQp(Rr,Qp, Qp) and let x S Rr.Q^- Suppose 

X i , . . . , X n are the distinct characters in the orbit of x under the action of 

Q Q P , and let (j) = YJ'i^i Xi- Then nVp{a{x)) = Vp{a{(p)). 

Proof. 

n n 

i= l 2=1 

Now, Xi = X'^' for some Ui G Q Q ^ , and a{xi) = (^{x'^') = a{xT'- Therefore, 

as a is invariant under the action of flq^, Vp{a{xi)) = t'p(Q!(x)) for all i and 

nvp{a{x)) =Vp{a{(f))). • 

2.2.7. Remark, (p above is clearly a Qp-valued character, since its values are 

invariant under flq^. Therefore some non-zero rational multiple of ^ must 

be a Qp-character. 
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T h e o r e m 2.2.8. Let x be an irreducible character m RpQ , and let a lie in 

the kernel ofip^° o d®. Then Vp{a{x)) = 0. 

Proof. By lemma 2.2.6 we know Vp{a{x)) = nvp{a{4>)) for n E Z and (p 

some Qp-valued character of F. Hence using the above remark, we know 

Vp{a{x)) = nvp{a{(p)) for n G Q and (p some Qp-character of F. But we 

have (p = J2i'Pi for (pi irreducible Qp-characters of F, w i th Vp{(pi) = 0 by 

lemma 2.2.5. Hence Vp{a{x)) = f^Yli'^pi.^i4>i)) = 0. • 

Thus we have proved 

T h e o r e m 2.2.9. is strict. 

Proof. We have shown that i f a lies in the kernel of ipp°od® then Vp{a{x)) = 0 

for all X G R-rQ ' ^^^^ by proposition 1.2.20 the theorem is proved. • 

2.3 Equivalence of monomial factorizability 

to Vp̂  

I n this section we w i l l establish the equivalence between the monomial fac

torizabili ty theory V'mon.p of section 1.4 and the monomial invariance factor

izability theory ip^. I n [19], iprnon,p was shown to be a strict theory. We 

include here an alternative proof as a corollary to the equivalence between 

ipmon,p and 1p^. 

We w i l l use the notation of section 1.4, and the construction of monomial 
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factorizability as set out in that section. 

As noted in section 1.4, Mon (r , /X^P^) is generated by the classes [ / i x ^ f p 

and ipmon,p is determined by its action on these representations, namely 

L e m m a 2.3.1. Let [T] G 3C^(mod(Zpr), (8)Q). We have a 1 to 1 corre

spondence between the [^J'x^]^'] generating Mon{T, II^'P^) and (r ' ,X) A ) G M. 

Under this correspondence, 

\iT^z,0{p}r\^^^^ = l <^ Vp\{T0O{p})\^\„^^^ = O. 

Proof Consider the tr iple {T', x, A ) G M. This x is clearly a homomorphism 

X: r' n^P^ and thus there exists a [/J^^ f p ] corresponding to each (r', x, A ) 

in M. Conversely, for each [/x^^^ff'] (^he classes of which we know generate 

Mon (r , ^̂ ^̂ )) there exists ( F , Xi A ) in A^ , since the order of x must be prime 

to p. 

Under the equivalence above, clearly 

| (T®Zp 0{p}r\o{^^ = \{T®0{p})\x\o{py 

I t is also clear that 

| ( T ® 0 M ) % | ^ ^ ^ j = l ^ Vp\{T<^O{p})\^\^^^^ = 0. 

Thus the lemma is proved. • 

L e m m a 2.3.2. Consider (r',x, A ) G M. Suppose x' lies in the orbit of x 

under the action o/Gal(Qp[x]/Qp)- Then 

\{T®0{p}te'^\^\{T®0{p]te^\. 

60 



Proof. Suppose for concreteness that x' = X^i where UJ G Gal(Qp[x]/Qp)-

Thus uj acts on 0{p}. Write T' for {T®0{p})^, and write ( M ' , / ' , A^') = T ' . 

Thus M' and A'"' are 0{p}T'/A-mod\x\QS and u acts via the Clearly 

M' ^ {M'Y and A^' ̂  (A ' ) " ' , hence [T'] = [(T') '"] . Now, 

Therefore 

Therefore 

F'/AI 
' ' 7 e r ' / A 

as required. • 

L e m m a 2.3.3. Consider (F ' ,x ,^ ) ^ A^- ^^en 

t ; p | ( T ® O M ) % | ^ ^ ^ j = 0 ^ t ;p | r^e^ |=0 . 

Proo/. 

^p | ( r®z,OW)^e^lo{p}= E ^ p | ( ^ ® ^ . ^ M ) ' ' e x ' l o { p } 
X'eorb(x) 

= |orb(x)bp|(r®z,CM)^e;,|^^^j 

by lemma 2.3.2, where orb(x) is the orbit of x under Gal(Qp[x]/Qp)- There

fore 

Vp\{T^ = 0 

^ |orb(x)|^;p|(T(? = 0 

^ Vp\{T^ = 0 
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The lemma then follows f rom the fact that the functor 

0O{p}: mod(Zpr) ^ mod(C»{j5}r) 

is flat. • 

Therefore we have proved 

T h e o r e m 2.3.4. 

2.3.5. Remark. As we remarked before, ipmon,p is known to be strict; for a 

direct proof of this, see [19], sections 7 and 8. However, the strictness of 

•0mon,p also follows as a corollary to this theorem. 

Coro l lary 2.3.6. tpmon,p is strict. 

Proof tp^ )p ipp° by proposition 2.1.8, and ipp° is strict. The corollary 

follows. • 

2.4 The metacyclic group Cgp 

We know that ip^ is strict by proposition 2.1.8 and theorem 2.2.9. In this 

section we wi l l explicitly calculate the values of ipp for 3C®(lat(ZpGq^p), ®Q), 

and thus explicitly identify the kernel. Here, Gg^p denotes the metacyclic 

group Cp X Cg, w i t h p, q prime numbers and q \ p - l . In the next chapter we 

wi l l define the coinvariance factorizability theories. In that chapter, we wi l l 

calculate the values of the corresponding coinvariance factorizabihty theory, 
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and thus explicitly identify its kernel. Using the results of this section we 

w i l l then be able to prove that the invariance and coinvariance factorizabil

i ty theories take different values, but are st i l l equivalent when restricted to 

X®(lat(ZpG,,p),®Q). 

Our approach in this section w i l l be to begin by identifying a base for 

3C®(lat(ZpGg_p), (8)Q), by identifying a fuH set of nonisomorphic irreducible 

ZpGg^p-lattices and using the exactness at 3C®(lat(ZpGg,p), ®<Q) of the Heller 

sequence of proposition 1.1.8. We w i l l then identify the triples in C. Thus by 

calculating Wp( |T^e;^|) for each (r ' ,X) A ) G C and each [T] in our generating 

set for 3C®(lat(ZpGg,p), ® Q ) , we w i l l have expressed ipp as a linear map. 

Ident ifying the kernel of this map is then a matter of row reducing the matrix 

of this linear transformation. 

We begin by establishing some notation. 

Notat ion 2.4.1. p and q w i l l denote fixed rational primes, w i th q \ p - I. 

Consider the cyclic groups Cp = <a> and = < r > , of orders p and q 

respectively. 6 w i l l denote a primitive qth root of 1 in Zp. r wi l l denote a 

qth root of 1 in (Zp/pZp)^, w i t h 6 = r (mod p). We define the metacyclic 

group Gg^p = Cp Xi Cg, where Cq acts on Cp as cr"̂  = a'". 

Zp^ w i l l denote a copy of Zp on which r acts as multiplication by 6\ 

In general, we w i l l denote M zj,'^ by M *̂) for any ZpGg,p-module M. 

C = Cp w i l l denote a primitive p th root of 1. Vp w i l l denote the usual p-

adic valuation. R w i l l denote the ring Zp[C], w i th field of fractions K. P 
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w i l l denote the unique maximal ideal (1 — ()R. e w i l l denote the usual 

augmentation map f rom ZpCp to Zp; the corresponding maps f rom Zp^Cp to 

Zp^ we w i l l denote by ê ^̂ . TT w i l l denote the usual projection map from ZpCp 

to R, where 7r(cr) = C; the corresponding maps from Zp^Cp to i?̂ *̂  we wi l l 

denote by T T ^ ^ ^ 

Note that G2,p = Dp, the usual dihedral group of order 2p. 

Gg^p is known to be of finite representation type, since we may write down 

a list of the distinct irreducible ZpG^^p-lattices (upon which UC® (lat(ZpG'5,p)) 

is freely generated). For one method of obtaining these lattices, see [4], p.750. 

L e m m a 2.4.2. There are 3g distinct irreducible ZpGg^p-lattices. They are: 

Z « , z = 0 , . . . , g - l 

which have character Xi, with Xi{(^) = 1 '̂̂ c? Xii^) — 

P\ i = 0,...,q-l 

which all have the same q dimensional character x where 

1 0 

x(<7) = diag(C,C,--.,C), X{r)= 0 ••• 

^0 ••• 0 

0 1 

0 

0 0 

1 0 / 

and 

with character x + Xi 

K = Z « C p , z = 0 , . . . , g - l 
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Proof See [4], p.750 and [3], p.335. • 

We observe at this point that 

L e m m a 2.4.3. R^^'> = P^ as ZpGg^p-modules, the isomorphism being given 

byx^{z%io-K'-'y^-

Proof I t is sufficient to show that R^^^ = P; the result wi l l then follow from 

the fact that (R^^Y^^ = R^'+^l Consider 

a: ^ P 

q-l 

We shall demonstrate that a is a Zp-isomorphism of modules, and that i t 

respects the actions of a and r . 

a is clearly a homomorphism. For the first part, i t wi l l therefore suflSce 

to show that (Yl^Zo /iC - 1) is a unit in R, since then we wil l have 

{EUo-xnR={C-m-P- But 

c - i c - i 
9-1 >r< -1 

^ C - 1 
1=0 ^ 
9-1 r ' - l 

i=0 j=0 

Now, this is a unit in Zp[C] i f and only i f its image is a unit in Zp[C]/(l — C)-

So, reducing our expression modulo 1 — ( , we obtain 

q - l g-1 

E(^~'EOE^''^'==9 ( m o d l - C ) 
i=0 j=0 1=0 
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which is invertible as g | p — 1. 

For the action of a, take x = aC^ £ R''^\ a G Z^p \ We need to show that 

aix") = a{xy. Now x" = aC^+\ thus 

9-1 g-l 

i=0 i=0 

Now 

1=0 i=0 

SO 
g-l 

i=0 
as required. 

For the action of r , again take x = aC,ae Z^^K Then x^ = adC^, thus 

1=0 i=0 

Now 

i=0 1=0 

SO 

g-l 
+rj 

2=0 

i=i 

g-l 

1=0 

as required. • 
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^oiQpGq^p) is isomorphic to the Qp-character ring of Gg^p, with the iso

morphism sending the class of a QpGg^p-module to its character. Thus it is 

clear that the image of 3C®(lat(Zp(S'g,p)) in %o{QpGg^p) is generated by Xi, 

i = 0,... ,q — 1, and x, that is, g + 1 distinct characters. 

Lemma 2.4.4. X®(Iat(ZpGg,p)) has rank 2q - 1 and is freely generated by 

[P^] + [Z«] - [y,], i = 0,...,q-l 

and 

[P^]-[P'+'], z = l,...,q-l. 

Proof. X®{\at{ZpGg^p)) has rank 3q, and its image in 'KoiQpGg,p) has rank 

q + 1, therefore IK®(lat(Zp(S'g,p)) has rank Sg—(g + l ) = 2q — l. By comparing 

characters we see that [P'] + [z{ , 'V[ '^ i ] , ? = 0 , . . . , g - 1 lie in aC^(lat(ZpG<,,p)), 

as do [P'] - [P'+i], i = l , . . . , g - 1. 

By including [P], and [Zp^], i = 0, — 1 we can expand this set 

to get a base for 3C®(lat(ZpG,^p))—to verify this, we observe that each of 

the usual generators is an integer combination of these elements: we have 

p2] = [p] _ ([p] _ [p2])^ and thus [P*+i] = [P^] - ([P^] - [P^+^]); [R] = [P"]; 

and [Vi] = [P^] + [Z?] - ([P^] + [Zj^] - [Vi\). 

Therefore the 2q — I elements listed are linearly independent and hence 

freely generate a subgroup of finite index in IK®(lat(ZpG,,p)). However, 

since we can extend this set of 2g — 1 elements to a base for the whole 

of IK®(lat(ZpGg_p)), the subgroup they generate must be of index 1. • 
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We have an exact sequence, the Heller sequence 

A aCo®(lat(ZpG,,p),®Q) ^ 3C®(lat(ZpG,,p)). 

Since dC® (lat(ZpGg,p)) is free, this sequence splits at 3C®(lat(ZpGg_p), 

that is, 

Xo®(lat(ZpG,,p), m ) = Im(Xi(QpG<,,,)) 0 3Co®(lat(ZpG',,p)). 

In order to identify a base for 3C®(lat(ZpG'q,p), (8)Q), our approach will be as 

follows. We will identify a generating set for each of IK®(lat(ZpGg,p)) and 

Im(3Ci(QpGg,p)). We will then identify the image of our generating set for 

'X®{\sit{ZpGg^p)) under some splitting map, and adding our generating set for 

Im(a<:i(QpGg,p)) will give us a generating set for aC^(lat(ZpG'q,p), (8)Q). By 

computing the image under tp^ of each element of this generating set we may 

identify the kernel of ipp. 

X^(lat(ZpGg,p)) is easy: 

Lemma 2.4.5. Our desired subgroup 0/3C®(lat(ZpGg,p), (8)Q) which is iso

morphic to 3C®(lat(ZpG'g,p)) is generated by the triples 

[P'+\1,P% z = l , . . . , g - l , 

and 

[ y „ ( 7 r « , e « ) , i ? « e Z « ] , 2 = 0 , . . . , g - l . 

Proof. We observe that [P'+\1,P'] is a preimage of [P'] - simi

larly [K,(7r(^),e«),i?« © Z^^] is a preimage of [R^^] + [Z?] - [K], and by 

lemma 2.4.3, = [P^]. • 
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Note that our choice of elements of X®{\at{ZpGg^p),0Q) is not unique— 

our choice here is motivated by convenience since this set of elements sim

plifies the following calculations. In particular we could have avoided mixing 

P '̂s and pW's, for example by using [Vi, ( ( E j U ^"^C' ) ' ° r̂, e« ) , P' ® Z ? 

in place of [Vi, (7rW,eW),pW © Zp^]; again, this choice is based upon con

venience. To simplify the calculations of ip^, we observe the following two 

lemmas: 

Lemma 2.4.6. The sequence 

0 ^ P'+' ^ P ' ^ F « 0 

is exact. 

Proof. 

O ^ P ^ P - > F p ^ O 

is clearly exact, and ^zJLp^ is flat. Therefore 

0 ^ P(') R^^ ¥ f 0 

is exact, and the result follows from lemma 2.4.3. • 

Lemma 2.4.7. 
K Z « 

•K2 
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is a cartesian square, where TTI is the projection 

TTi: Z « -> Z « / p Z « ^ F « 

x i-> a; (mod p) 

anc? 7r2 «5 ^/ie projection 

TTa: P(̂ ) ^ p « / p « 

xC'' i-> X (mod p). 

Proo/. Since Oz^Zp^ is flat, it is sufficient to show that 

Vo ^ Z „ 

is a cartesian square. This will follow from considering whether 

0 ^ K, ^ Zp ® P ^ Fp ^ 0 

is exact, where a = (—7ri,7r2), that is, 

p - i p - i 
a{~ao,^aiC) = ^ a i (mod p). 

1=1 1=0 

Clearly (e, TT) is injective, a is surjective and a o (e, TT) = 0. It therefore 

only remains to show that ker a C Im(e, vr). But if a;(ao, YA=I ^iC) = 0 then 

ao = J2i=i (n^od p), that is, 

v-i 
ao = ai + pc for some c G Zp. 
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Consider Yli=o ^i^^ ^ K); where 60 = c and 6̂  = + c, z = 1 , . . . , p - 1. Then 
p- i p- i p- i p-i 

{e,'K)C^hia') = {c + Y^{ai + c),c + Y^{ai + c)C) = {ao,J2aiC) 
i=Q i=l i=l i=l 

as required. • 

We now turn our attention to Im(3Ci(QpG'g,p)). It will help to think of 

Xi{QpGg,p) as the isomorphic group HomnQ^CRc^^^Q^.Qp). We begin by 

identifying a generating set for the representation ring R^^ ̂  . 

Definition 2.4.8. We define the following representations of Gq,p. For i — 

0,1,... ,q — 1, we define 

k • Gq^p Zp 

(7 1-̂ 1 

and for i = 1,2,. . , g — 1, we define 

/ C 0 

0 C''' 

0 ••• 

0 ••• 

1 •-. 

0 ••• 

. . . 0 ^ 

0 

0 C ' ' " 7 

• • 0 1 

0 

0 1 oj 
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Lemma 2.4.9. Let pi have character Xi- Then 

Xi: T^cr^ i-> 0 i f q \ k , 

k=0 

Also, Gal(P/Qp) acts transitively on the set {xi- i = 'i-, • • • ,q - 1}• 

Proof. Clearly if q \ k 

X^{r'a^) = Tr(p,(rV^)) = 0, 

and 

k=0 k=0 

For p \ i j , is a primitive pth root of 1. Gal(P/Qp) acts transitively on the 

set {C'̂  : = 1, 2 , . . . ,p - 1}. Suppose then that u e Gal(P/Qp) is such that 

[QY = Q'. Then 

9-1 q-l 

fc=0 fc=0 

and 
x r : ^ T V ^ x z ( ^ v ^ r = o i f g | f c , 

therefore x'i = Xi' and as required Gal(P/Qp) acts transitively on the set 

{Xi:i = l , . . . , q - l } . • 

We know by [3], corollary 47.14 that each of the irreducible matrix rep

resentations of Gq^p is either one of the i = 0 , 1 , . . . , g - 1, or one of the 

Pi, z = l , . . . , g - l . Hence each of the irreducible characters of Gg,p is either 

one of the 0j , i = 0 , 1 , . . . , g - 1, or one of the Xi, ^ = 1, • • •, 9 - 1- We now 

determine when Xi ^'^^ Xi' {^'^^ hence pi and pi') are equivalent. 
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Lemma 2.4.10. Xi Xi' o-'^^ equivalent if and only if i ^i' E<r> . 

Proof. Xi and Xi' are equivalent if and only if there exists g G Gg^p such 

that Xii'T'''^^) = Xi'{9^^'^'^<^^9) for all j and k. Suppose g = cr'r'". Then 

g-^ = T- '^d- ' and g-W'a^g = rV-''-''^'"+(^+')^'". Therefore 

Xi(r^(T^) = Xi'ig'^T'^'^^g) = 0 whenever k ^ 0. 

Supposing k = 0, g'^a^g = a-''''", therefore Xi and Xi' are equivalent if and 

only if there exists an integer m such that 

Xi{(^) 
g- l . 

n=0 n=0 

g+m—1 g—1 

E (cT = E(cr 
n=ni n=0 

< ^ c for some n = 0 , 1 , . . . , g — 1 

< ^ = zV" (mod p) for some n = 0 , 1 , . . . , g — 1 

< ^ e < r > 

as required, the last implication holding since 1 <i,i' <p-l and hence are 

both invertible (mod p). • 

2.4.11. Remark. By the above lemma, we see that for each Xi there are 

exactly | < r > | = g of the Xi' in the same equivalence class. The 4>i are 

clearly all distinct; alternatively we note that we have {p - l)/q distinct 

absolutely irreducible g-dimensional representations of Gq^p, we know that 

all the others are 1 dimensional, and the number of distinct 1 dimensional 

characters must be 

p — 1 
Gq,v\ — X ĝ  = gp - q{p - 1) = g. 
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Thus we have a set of generators for R^̂ p̂ Q , namely 0i (i = 0 , 1 , . . . , g — 1), 

and (p — l ) / g of the Xi, one chosen from each equivalence class. Note that it 

will not matter which character we choose from each equivalence class, since 

we know that Ga\{K/Qp) acts transitively on { x i } - However we shall for 

convenience assume Xi is chosen as the representative of its class. 

We may now characterise elements of HomnQ^(R(5^^ Q ,̂Qp ). 

Lemma 2.4.12. Let K' = Q p E ^ C l - ^' ^ suhfield of K of 

index q. Suppose a € Homn^^ (Rg_̂  ^ Q jQp)- Then a is completely defined 

by the values Hi = a{4>i) e Qp, i = 0,1, . . . , g - 1, and X = a{xi) G K'. 

Conversely, any such collection of p-i and X define such an a. 

Proof Firstly, Gal(K/Qp) is isomorphic to Cp_i. We choose a generator to' 

for Gal{K/Qp) as follows. Let r ' be a generator of F^ = Cp_i, chosen so that 

^/(p-i)/g ^ J. Then cu' is chosen so that UJ'{C) = C'. We also define u so that 

a;(C) = C-

Since K/Qp is a Galois extension, we will show that K' — , and 

thus \K : K'\ = \< u >\ = q. This amounts to determining when w'* fixes 

K', that is, when to'' fixes E U C - Now co'^ZUlC') = Efc^oC''"" which 

equals J2Vo C' if and only if C° = C = C'"" for some k and i, that is, if 

and only if r'* € < r > . Therefore fixes K' precisely when w'* £ < a; > . 

Suppose a e }lomn^^{Ra^^^^Q^,Qp), = a(</'i), i = 0 , 1 , . . . , g - 1, and 

a{xi) = X. We begin by demonstrating that A G K'. 

Clearly Xi is fixed by ^K- NOW, x f (<̂ ) = EUlC'''", so x f = X^r'i• 

Hence xt" is equivalent to Xi if and only if G < w > and hence the largest 
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subgroup of which fixes Xi is ^K'- Therefore X e K'. I t is necessary to 

consider only the image of Xi, since Gal{K/Qp) acts transitively on the Xi's. 

Since (pi is fixed by Q,Q^, Hi is fixed by flq^, that is, fj,i G Qp"̂ '' = Qp. Also, 

since for any given i the orbit of is just (pi itself, there is no relation between 

the fii's. Thus a is completely determined by the values Hi = a{(j)i) G Qp, 

i = 0 , 1 , . . . , g - 1, and A = Q ; ( X I ) G K'. 

For the converse, suppose G Qp, i = 0, l , . . . , g — 1, and A G K'. 

We define a homomorphism a G Hom(R(3^ p ^^, Qp) as follows: «((?!),) = /Uj, 

i = 0 , 1 , . . . , g - 1 , and a{xi) = A'̂ S z = 0 , 1 , . . . , g - 1 , where coi G Gal(ir/Qp) 

is chosen so that xT — Xi- Note that iUi must exist since Gal(i<'/Qp) acts 

transitively on the Xi's- We extend linearly to R^p.^p- To demonstrate that 

a G HomnQ^(RQ^p Q^,Qp) we observe that fj,i and (pi are fixed by ^Qp, A and 

Xi are fixed by QK and if oj' G Gal(K/Qp) then a(xr ' ) = "(Xi)" ' - • 

Lemma 2.4.13. The image o/Xi(QpG<,,p) m aC^(lat(ZpGg,p), (8)Q) is freely 

generated by the triples [Zp\ xp,Zp^], i = 0,1,... ,q - 1, and [R, xX',R], 

where X' is a generator of P', the unique maximal ideal in R! = Zp[^^~Q Cj'' . 

Proof. Suppose a G Homn^^ (R^^p Q^, Qp), with pti = a{(j)i) G Qp for i = 

0 , 1 , . . . , g - 1, and a{xi) = X e K'. Then its image in aC^(lat(ZpG,,p), ( 

IS 
g-l 
Y y z f , x p i , Z f ] + [R,xX,R]. 
i=0 

Zf,xpi,zi'^] = [Zf ,xpiiU,zf] where u G Z^. Similarly, [R,xX,R = 

R,xXu,R] where u G R!"". Thus we see that Im(3Ci(QpGg,p)) is freely 
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generated by triples [ Z p \ x p , Zp^], i = 0, l , . . . , g — 1, and [P, xA',P] as 

required. • 

Thus combining lemmas 2.4.5 and 2.4.13, we have 

Theorem 2.4.14. 3C®(lat(ZpGg_p), (8)Q) is freely generated by the 3g triples 

[z^;\xp,z^^], 

R, xX',R], 

[P'+\1,P% 

i = 0,l,...,q- 1, 

z = l , 2 , . . . , g - 1, 

and 

[ y , , ( 7 r « , 6 « ) , P « ® Z « ] , z = 0 , l , . . . , g - l . 

In order to compute tpp, we must determine exactly what triples (F', x, A) 

he in C. 

Lemma 2.4.15. The following table is an exhaustive list of those triples in 

C, together with the value of e-^: 

T' X A ex 

{1} <P'o {1} 1 

Gp X'o Gp 1 

G, (j)o: T\-^ 1 Gq 1 

c, (j)i:T^e\i = l,...,q-l {1} 

Gq^p XQ- T ^ l,a ^ I Gq,p 1 

Gq,p X i : T ^ e \ a ^ l , i ^ l , . . . , q - \ Gp E%1 O-'^r^ 

76 



Proof The distinct subgroups of Gq^p up to conjugacy are {1} the trivial 

subgroup, Cp, Cq and Gq^p itself. We have listed all the characters of {1} and 

Cq-, for Cp and Gq^p, recall that we also need p \ \Y' : A| . For x any of the 

characters listed in the table, since x- F' Zp , we have C;̂  = e-^. • 

I t now only remains to calculate Vp{\T^ey.\) for each (F', x. A) listed above 

and [T] running through the 3g generators of 3C®(lat(ZpG9,p), ®Q) listed in 

theorem 2.4.14. To aid this process, we introduce the following two lemmas: 

Lemma 2.4.16. Suppose [T] G aC^(lat(ZpGQ,p),(8)Q). 

For {Cq,(l)o,Cq), 
1 "-^ 

that is, we may substitute e^^ = ^ J2'jZo '^^ "'^^ ^ = {^] for the old definition 

of e^g and A = Cq without altering the value of \T^e^g . 

For {Gq,p,Xo,Gq^p), 

that is, we may substitute e^^ = ^ ^ ^ I Q o,nd A = Cp for the old definition 

of e^g and A = Gq^p without altering the value of \T^e 
g '^J= 

Xol-

Proof Since g is invertible in Zp, fixing by Cq is the same as hitting by the 

idempotent i ^ ] : J r ^ . • 

Definition 2.4.17. Whenever we use this alternative version of e^^ (re

spectively e^f^) and A, we will refer to the corresponding triples in C as 

{Cq, 00, { ! } ) (respectively (Gg,p, Xo, Cp)). 
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Lemma 2.4.18. Suppose [T] G X^(lat(ZpGg,p), (8)Q). Then 

9-1 

i=0 

and 

Proof Note that 

i=0 

q-l q-l q-l 

1=0 i=0 i=0 

and 

i=0 i=0 1=0 

The lemma now follows from observing that 

q-l q-l q-l q-l q-l q-l 

i=0 i=0 ^ j=Q ^ j=0 i=0 ^ 1=0 

since is a primitive gth root of 1 for j = 1, 2 , . . . , g - 1. • 

2.4-19. Remark. These last two lemmas allow us to calculate ipp by consid

ering only {Gg, (t)i, {I}) and (Gg,p, Xi, Gp), z = 0 , 1 , . . . , g - 1. 

We now turn to the actual calculations of Vp\T^e-^\. 

. [T] = [ 4 \ x p , Z « ] , with (C„<^„{1}). 

Let X G Z f . Then 

^ fc=0 ^ fc=0 ^ /c=0 

where % is the Kronecker 5. Therefore in K® {rs\od{Zp), (g)Q), we have 

P ] % = (^ij[Zp, xp,Zp] and hence Vp\Te^. \ = 
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• [T] = [Z? , x p , z f ] , with (G,,p,Xj,Gp). 

Since a acts trivially on Zp\ we again have Vp\Te-)^.\ = 5ij. 

• [T] = [R, xX',R], with ( C g , 0 j , { l } ) . 

Note that 

R, xA', R] = [P\ 1, R] + [R, xX', R] + [R, 1, P\ 

= [P\xX',P'] 

= [R^'\xX',R^% 

Therefore we shah consider instead [T] = [R^^\ xX', R'-^^. Consider 

x = C e R^^l (We recall that in R^^\ C = ^K"•) Then 

^ fc=0 ^ k=0 ^ k=0 

Therefore R^^^e^. is isomorphic as a Zp-module to R' = ^p[Zlfc=oC'̂ * • 

Since the multiplying factor A' was chosen to be the generator of P'R, 

we have that [Te^.] = [R',xX',R'] = [R',xX',P'] 4- [P'A^R'l We 

know that [R', xX', P'] = 0 by lemma 1.1.6, and R'/P' ^ Fp. Therefore 

Vp\Te^.\ = 1 for each j. 

• [T] = [R, xX',R], with {Gq,p,Xj,Cp). 

Since i?^" = {0} , Vp\T^pe^. \ = 0 for each 

. [T] = [ P + ^ l , P ^ ] , w i t h ( C „ 0 , • , { l } ) . 

Since 0 -)• P'+^ P* ^ Fp^ -> 0 is exact, and hitting by e^. is exact, 

Vp|Te^J = VplW^p^e^,. . 
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Let X G ¥ f . Then 
9-1 9-1 

^ fc=0 " " 
I], 

k=0 k=0 

therefore Vp\¥p^e^.\ = 6ij. 

[T] = [P'+^ 1,P^], with (G',,p,x,-,Cp). 

Since (P^)^^ = {0} , VplT^^e^^l = 0 for each 

[T] = [ \ / „ ( 7 r « , e « ) , P « ® Z ? ] , with (C„ <̂ ,-, {1}) . 

From the cartesian square 

V,. Z « 

7r2 

we get the commutative square 

Vie^. Z?e^. 

P « e ^ . — F ? e ^ , 

This is in fact also a cartesian square, since hitting by e^j is exact. 

Thus Vp\Te^^\ = Vp\¥^;h4,.\ = 

[r] = [y,,(7rW,e«),P«®Z?^], with (G,,p,x„Cp). 

Since Vi is a free ZpCp-module, H^{Gp, Vi) is trivial, so the square 

V?' {%f)^^ 
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is cartesian. Hence we get the cartesian square 

thus VplT^^ej^. 

Thus we have established 

Theorem 2.4.20. is completely determined by the following table of val

ues o/z;p|T^e;^|.-

Triples \\ ( r ' ,x ,A) {C,A,,{1}) {Gq,p, Xji Gp) 

[Zi\xp,zf\, 

i = 0,l,...,q-l 

Sij 5ij 

[R, xX',R] 1 0 

[P'+\1,P% 

i = l , 2 , . . . , g - 1 

6ij 0 

[ l / , , (7rW,e«) ,P^®Z«] , 

z = 0 , l , . . . , g - 1 

5ij Sij 

This tabular form is ideal for computing the kernel of 'ipp- Since these 

3g triples freely generate 3C®(lat(ZpGg^p), ®Q), any element [T] contained in 

3C®(lat(ZpG5,p), (8)Q) is a Zp-linear sum of these generators. If [T] lies in the 

kernel of ip^ then Vp{\T^e^\) = 0 for each {r',x,A) G C. Thus to compute 

the kernel of ipp we need to row reduce the table of theorem 2.4.20. By our 

careful choice of generators this is easy. We clearly have: 
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Theorem 2.4.21. The kernel of ijjp is of rank q and is freely generated by 

triples 

[ \ / „ ( 7 r « , 6 « ) , P ^ e Z « ] - [ Z « , x p , Z « ] , 

where i = 0 , 1 , . . . , g — 1. 
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Chapter 3 

The Coinvariance 

Factorizabihty Theories 

^ M W I L L define in this chapter a second large family of 

H l ^ M factorizability theories, namely the coinvariance factor-

izability theories. This family is closely related to the invariance factorizabil

ity theories of the previous chapter. In fact, we will show that in the weak 

cyclic case the two theories give identical values, and in the strong cyclic case 

that they are equivalent but not identical. 

The Coinvariance Factorizability Theories are locally defined theories 

based upon the co-fixing functor for various subgroups A of F instead 

of the fixing functor again hit by the idempotents e-^ corresponding to 

characters of subgroups of F. The reason behind the name "co-fixing" func

tor is that, whereas is the largest submodule of M upon which A acts 

trivially, M A is the largest quotient module of M upon which A acts trivially. 
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3.1 Coinvariance factorizability theories 

In this section we define the coinvariance factorizability theories, and exam

ine the connection between the invariance and coinvariance factorizability 

theories. 

Just as the invariance factorizabilities could be considered as factoring 

through a homomorphism between relative groups induced from the func

tor 5'(r',x,A) where 3'(r',x,A)(^^) = ^^^x^ we will show that the coinvariance 

factorizabilities can be considered as factoring through a homomorphism in

duced this time from the functor S^'^pxA) where 3^[r'xA)(^) ~ M^e^. The 

modules 3^(M) and ^{M) are related by a four term exact sequence 

where Tr̂ ^̂  is the trace map; this will be used to compare the invariance and 

coinvariance factorizability theories. 

Definition 3.1.1. Let S C uRep^. The S-coinvariance factorizability theory 

ips,p is a local factorizability theory 

^l^s,v- aC®(mod(Zpr),®Q) -> Map(5,Z) 

If we choose a collection S_ = {Sp : Sp C uRepp} of local theories, then we 

may define a global theory -05, a locally defined factorizability theory with 

local theories i)Sp,p-
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We again have 

Proposition 3.1.2. If S' C S C uRep^ then tps.p ^ i's',p-

Proof. C.f. proposition 2.1.8. • 

3.1.3. Remark. Since Co C C C A^, we have that V'Co.p =̂  ̂ c,p ^ V'TW.P and 

hence Ĉo ^ V'c ^ ^PM-

3.1.4- Remark. Following on from our discussion on the invariant factoriz

ability theories (see remark 2.1.5), we observe that the coinvariance factor

izability theories may be thought of as a homomorphism induced from a 

functor, composed with the generalised index and the jo-adic valuation; this 

time the functor is 

9"(r',x,A) • mod(ZpF) ^ mod(Zp) 

M (-> M A C ^ 

and the corresponding induced functor on raod(QpF). 

Lemma 3.1.5. For any S C uRep^, ip^ and ips,p agree on the image of 

3Ci(QpF) in the relative group 3C^(mod(ZpF), i 

Proof For [^x,QpF] G 3Ci(QpF), and a triple (r',x, A) in 5 C uRep^, we 

have 

(V'p ° ^ J ) ( [ ^ x , Q p F ] ) : (F',x,A)K^^;pdetQ^([/3x,QprAe;,]); 

c.f. corollary 2.1.7, but using our new J ' defined above in place of 5". Note 

that the order of x, being coprime to p, is necessarily invertible in Qp. There-
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fore QpT^e^ = QpFcAe^ = Qp^Aex, and agrees with tps,p on the image 

ofX,{Qpr). • 

In preparation for our examination of the four term exact sequence 

H - \ A , M ) M A ^ ^ # ° ( A , M ) 

we present the following lemma. 

Lemma 3.1.6. For M,N e mod(ZpG'), G any finite group, suppose a ho

momorphism f : M ^ N induces an isomorphism ( /®1) : M0Q N<S>Q-

Then we have in Xo(mod(ZpG), ®Q) that 

[M,f<^l,N] = [ker(/), 0, coker(/)]. 

Proof We have a commutative diagram with exact rows 

ker/^ coker / 

hence from the corresponding exact sequence relation in 3Co(mod(ZpG), 

we have 

M,f ®l,N] = [N,l,N]-{- [ker / , 0, 0] - [coker / , 0,0] = [ker / , 0, coker / 

as required. • 

Definition 3.1.7. For a finite group G and M € mod(ZpG), we define the 
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trace map trM'-

try: MG^ 

m ^ ^ mg. 
geo 

Lemma 3.1.8. In Xo(mod(Zp),(g)Q), for a triple [M,f,N], and a triple 

(F', X, ^ ) G S, the following equality holds: 

[M^e^, / A , A ^ A G X ] + [NAex, tr^®!, N^e^ 

= MAB^, trM ® 1, M^e^] + [M^e^, f ^ , N^e^ 

where / A , are the maps induced from f , and trM, tr^ are the trace maps 

restricted to M/\e.^ and N^e^ respectively. 

Proof We have a commutative diagram 

trM (8> 1 trN ® 1 

M^^x ® Q — 7 A ^ N^^X ® Q 
J 

Hence 

LHS = [MAS^^, , {trpf (8) 1) o / A , A^̂ ê̂ ]̂ by composition rule 

= M A 6;^, o (irM ® 1), -^^exl t)y commutivity of the diagram 

= RHS by composition rule 

concluding the proof. • 

In view of lemma 3.1.6, the four-term exact sequence of ZpF'-modules 

H - \ A , M ) M A M ^ ^ ^ ° ( A , M ) , 
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where H''{A, M),i = - 1 , 0 are the usual Tate cohomology groups, motivates 

the following definition. 

Definition 3.1,9. Let (r',x, A) e CQ. We define the Herbrandt quotient to 

be 

| ^ ° ( A , M ) e , | 
= \H-^{A,M)e,\-

Lemma 3.1.10. Let (r',x, A) e S, for S C uRep^. Then 

^'^{[M, / , iV])((r', X, A)) + t;p( V , x , A ) ( M ) ) 

= t;p(V',x,A)(A^)) + ^5,p([M,/,iV])((r',x, A)) . 

Proof. We have the four-term exact sequence 

H - \ A , M) ^ MA ^ H \ A , M ) , 

giving the exact sequence 

Therefore by lemma 3.L6, in aCo(mod(Zp), (8)Q) 

[MAex,trM,M^ex] = [ ^ - ^ ( A , M)e;„ 0, ^ ° ( A , M)e^]. 

Now, 

/ ' X, A)) = Vp{\M%, r , iV^e;,!) 

and 

^s , , ( [M, / , iV])((r', X, A)) = ^p(|MAe;„ / A , iVAex|). 

The lemma follows by applying Vp{\-\) to the equation of lemma 3.L8. • 
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Any ZpF-module M is a ZpF'-module by restriction. We then know that 

W(A,M) is a ZpF'/A-module, or a ZpF' module on which A acts trivially; 

see for example [15], XI.9. We may therefore view the Tate cohomology 

groups as functors 

^ ^ ( A , •) : mod(ZpF') ^ mod(ZpF') 

which induce functors 

H'{A, •): $(mod(ZpF'), ®Q) $(mod(ZpF'), 

and hence, composed with restriction, homomorphisms 

^ ^ ( A , •): aC®(mod(ZpF), ®Q) ^ aC®(mod(ZpF'), 

Via this approach, an alternative description of this lemma is 

Lemma 3.1.11. Let (F',x, A) e S andT E *(mod(ZpF'), <8)Q) (and there

fore [T] € aC^(mod(ZpF),®Q);. Then 

i^'p-^sMT]): {r\x,^)^Vp\[H'iA,T)e^]\-v,\[H~\A,T)e^]\. 

Proof Let T = (M, / , A^). By lemma 3.1.10, 

ii^' - ^sMT])-- ( r ' ,X , A) ^ t;p(V',x,A)(AA)) - ^p(V',x,A)(M)). 

But 

H'{A,N)e, 
H-^{A,N)e, 

- V, 
^ 0 ( A , M ) e , 

H-^{A,M)e, 

= ^;p|^'^(A, N)e^\ - Vp\H-\A, N)e^\ - Vp\H%A, M)e^\ + Vp\H~'{A, M)e^\ 

89 



and 

Vp H\A, iV)eJ - Vp H\A, M)eJ = Vp H\A, [ r ] ) e j 

for z = 0, — 1. The result then follows. • 

3.2 Equivalence of the weak cychc cases 

In this section we show that t/'p" and ipcQ,p are not only equivalent factoriz

ability theories, but yield identical values. Hence any corresponding pair of 

weaker theories must also not only be equivalent but in fact yield identical val

ues. This result will rely upon work on the Herbrandt quotient /i(r',x,A)- By 

lemma 3.1.10 we see that if /i(r',x,A)(M) = h^r',xA)W (r',X) A) € Co 

then ipp^iiM, f,N]) = '0Co,P([^, /> ^ ] ) - I * is this approach we will take. 

We begin by presenting three well-known results. 

Lemma 3.2.1. 1. Suppose A is a ZpA-module, where A is a cyclic group. 

Then A has periodic Tate cohomology with period 2, that is, W{A,A) = 

H^+^{A,A). 

2. Suppose 

0-^ A ^ B -^0 

is a short exact sequence of ZpA-modules, and A is a cyclic group. Then the 

Tate cohomology long exact sequence 

W+\A,C) ^ W{A,A) ^ H\A,B) A H\A,C) A 
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is periodic, with period 6. 

3. Suppose 

is a short exact sequence of ZpT'-modules, where (F',x, A) 6 Co (and hence 

F' and A are cyclic groups). Then the Tate cohomology long exact sequence 

^ ^ '+^ (A , C)e^ H\A, A)e^ ^ W{A, B)e^ A H\A, C)e^ A • • • 

is again periodic, with period 6. 

Lemma 3.2.2. Suppose 

0^ B -^0 

is a short exact sequence of ZpT-modules, and (F ' ,x ,A) G CQ. Then the 

hexagon 

X 

H-\A,C)e^ H%A,C)e^ 

H-\A,B)~e^ — - J — H-\A,A)~e^ 

is exact, where ai, /3i, i = —1,0 and 70 are the usual maps from the Tate 

cohomology long exact sequence, and is the usual 7_i composed with the 

isomorphism from H~'^{A, A)e^ to H^{A, A)e^. 

Proof Clear from long exact sequence from Tate cohomology in the previous 

lemma. • 
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Lemma 3.2.3. Suppose 

o->yi^sAc->o 

is a short exact sequence of ZpT-modules, and {T',x, A) G Co- Then 

V ' , x , A ) ( ^ ) = ^ ( r ' , x , A ) ( ^ ) • V ' ,x,A)(C). 

Proof. Construct the hexagon of lemma 3.2.2. Let 

ao = |Im(ao)|, = |Im(/3o)|, Q) = |Im(7o)|, 

a_i = |Im(a_i) | , = | Im(^_i ) | , c_i = |Im(7_i)|. 

Then 

\H\A, A)ex\ = c_iao, | ^ ° ( A , 5 ) e J = ao^o, | ^ " ( A , C)eJ = boCo, 

\H-\A, A)ex\ = Coa_i, | ^ ~ ^ ( A , B)e^\ = a_i6_i, l ^ ' ^ A , Qe^l -= 6-ic_i. 

Hence 

\H\A,A)ex H-\A,B)ex H^A^Qe^l 

= \H-\A, A)ex\\H\A, B)ex\\H'\A, C)e^|. 

The result follows by rearranging this equation. • 

Lemma 3.2.4. If A is a finite ZpT-module then / i ( r ' , x , A ) ( ^ ) = 1-

Proof We have short exact sequences 

0 A^ A ^ {1 - a)A 0 
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and 

0 ^ {1 - a)A ^ A ^ AA ^ 0, 

where A = < cr > . Hence we have short exact sequences 

0 A^e-x Ae^ ^ (1 - ^)Aex 0 

and 

Hence 

0 - ^ ( 1 - o)Aex Ae^ AAC^ 0. 

AACX - A BX -

We have the four-term exact sequence 

H-\A,A)ex ^ AACX ^ A% ^ H\A,A)ex. 

Therefore 
| ^ ° ( A , A ) e , | _ i ^ A e x i 

- \H-KA,A)ex\ ~ \ A ^ y 

that is, /i(r',x,A)(-^) = 1-

Lemma 3.2.5. ^ ( r ' , x , A ) ( ^ ) depends only on A^Q, that is, if A^Q = B®Q 

then V',x,A)(>l) = h^r',xA)iB)-

Proof Denote the image of A in A ® Q by A. Then we have a short exact 

sequence 

0 -> T{A) ^ A - ^ A - ^ 0 , 

where T{A) is the torsion part of A. But since A is finitely generated, T{A) 

is a finite ZpF-module. Hence h^r',xA)i'^i'^)) = 1' 

V ' , x , A ) ( ^ ) = V',x,A)(r(A))/i(r',x,A)(^) = V ' , x , A ) ( ^ ) -
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Now, since A and B are ZpF-lattices which span the same QpF-vector space, 

they are isomorphic as modules and hence /i{r',x,A)(-S) = ^ ( r ' ,x ,A)(^)- There

fore / i ( r ' , x , A ) ( ^ ) = ^(r',x,A)(-S) as required. • 

Therefore we have 

Theorem 3.2.6. ipi°{[T]) = ipCoAlT]) for all [T] e DC®(mod(ZpF),®Q). 

Proof Let [T] = [ M , / , A ]̂ G 3C®(mod(ZpF), ®Q). Then by lemma 3.2.5, we 

have / i ( r ' , x , A ) ( - ^ ) = ^(r ' ,x ,A)(-^)- Therefore by lemma 3.1.10, 

(V ' J ° (m) ) ( ( r ' ,X , A)) = (V'Co,p([T]))((F',x, A)) 

for all (F ' , x ,A) eCo. • 

3.3 Differences in the strong cyclic cases 

The proof that •0 "̂ and ipCo,p give identical values does not, unfortunately, 

generalise to and Vc.p- This is because the Tate cohomology groups 

^ ' ( A , ^ ) , with F' acting, are not necessarily periodic of period 2 if F' is 

not cyclic. 

In fact, Tpp and tjjc,p do not yield identical values but are equivalent. In this 

section we will demonstrate that the invariance and coinvariance factorizabil

ity theories do not in general yield identical values by investigating the meta-

cyclic group Gq^p which we first looked at in section 2.4. As in that section, 

we will produce a table completely determining the values of ipc,p. We will 

then be in a position to demonstrate that, at least for DC®(lat(ZpG5,p), ®Q), 
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•̂ p and ipc^p are equivalent. In the next section we will prove this equivalence 

in general, but this specific case will help motivate some of the steps of the 

general proof. 

Our approach in this section will be similar to section 2.4. We will 

keep the notation of that section. We will use the same generating set for 

3C^(lat(ZpGg,p),®Q) that we obtained in theorem 2.4.14. The proofs of the 

lemmas corresponding to lemmas 2.4.16 and 2.4.18 go through with only min

imal changes, so we will not reproduce them here. We draw from these results 

the same conclusion as we did in section 2.4—that to completely determine 

the values taken by ipc,p we need only consider the elements (Cg, (f)j,{l}) and 

{Gq,p, Xji Cp) of C, J = 0 , 1 , . . . , g — 1. We have already established that ip^° 

and '4>CQ,P take the same values, and therefore Vp\T^ex\ — WplTAe^^l for all 

( r ' , x , A ) e Co, that is, for (r ' ,x, A) = {Cq,(j)j,{l}) (alternatively, observe 

that T^^} = T{i} = T.) Furthermore, by lemma 3.1.5, we know that ijj^ and 

'^c,p agree on those generators of DC®(mod(Zpr), (8)Q) arising from the image 

of 3Ci(QpF). Therefore in order to determine the values taken by •̂ c.p all that 

remains is to calculate Vp\Tc^ex^\, j = 0 , 1 , . . . , g - 1 for each of the 2q - I 

specified generators of 3C^(lat(ZpGg,p), ®Q) arising from jC®(mod(Zpr)). 

. [T] = [K, ( 7 r « , e« ) , © Z f l i = 0 , 1 , . . . , g - 1. 
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Consider the cartesian square 

Since K is a free ZpCp-module, Hi{Cp, K) is trivial, so the square 

{Vi)c, — (Z?)c , 

is cartesian. Hence we get the cartesian square 

(^^^^)c,ex, — (F?)c,e,, 

thus 'yp|Tcpe;̂ J = Vp\{¥i^)cpe^j \ = <5ij. 

. [T] = [P'+\l,P%i^l,2,...,q-l. 

pi.^ = F ? , so [TcJ = [IFJ\0,FJ, '" ' '^]. Therefore ?;p|Tc,e;,J = 5ij-5i+ij, 

i — 1,2,... ,q - 2, and equals - Si+i-gj when ? = g - 1. 

Therefore we find 

Theorem 3.3.1. Restricting to X^(lat(Zp(S'g,p), OQ), ^c,p is completely de

termined by the following table of values of Vp\TAe;)^\: 
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Triples \\ (F ' , x ,A) {Gq,p, Xjj Cp) 

[ Z ? , x p , Z « ] , 

2 = 0 , 1 , . . . , g - l 

Sij 

[R, xX',R] 1 0 

[P^+\1,P% 

i = l,2,...,q-2 

Sij Sij - Si+ij 

[P^+\l,P%i = q - l Sij Sij 

[ y , , ( 7 r « , e W ) , i ? « ® Z « ] , 

z = 0, l , . . . , g - l 

Sij Sij 

Theorem 3.3.2. 

i^p ^c,p 

Proof The tables of theorems 2.4.20 and 3.3.1 are different. In particular, 

Vp\Tc,e^,\ = Si, ^ VplT^'^e^.l for [T] = [P'+\ 1, P% z = 1,2,... ,q - I. • 

However, if we compute the kernel of ipc^p by row reducing the table, we 

find 

Theorem 3.3.3. Restricting to X^(lat(ZpGg,p), (g)Q), the kernel of ipc,p is 

of rank q and is freely generated by triples 

[K, ( 7 r « , e « ) , ® Z « ] - [Z», xp, Z « ] , 

where i = 0,1,... ,q — 1. 

Hence, 
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Corollary 3.3.4. Restricting to 3C^(lat(ZpGg,p), 

3.4 Equivalence of the strong cyclic cases 

In this section we will prove that ipp and ipc,p are equivalent factorizability 

theories. Our approach will be to prove that for each y E C and each T € 

<J>(mod(Zpr), (S)Q), we can write 

(V'J([r]))(y) = X^m,(V'c,p(m))(a;) 
xeC 

and 

(V'c.p(m))(y) = 5 ] n . « ( [ T ] ) ) ( a : ) 
xec 

where rrix, are integers independent of [T], since then if •0p([T])(x) = 0 

for all a; G C then xpc,pi[T]){y) = 0, and vice-versa. 

We recall that by theorem 3.2.6, for {r',x, A) € Co, 

« ( m ) ) ( ( r ' , x , A)) = (^c,p([T]))((r',x, A)). 

In general we know by lemma 3.1.11 that 

(^p - ^c ,p)(m): ( r ' ,X, A) ^ v,\[H%A,T)e^] - [H-\A,T)e^]\. 

Our first goal, therefore, is to exphcitly calculate F ° ( A , r ) and F"^(A,T) 

together with the action of F' upon these groups. 

We begin with some notation. 
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Notation 3.4.1. Suppose (F', x, A) £ C. Then T' = Cpk^G with the action 

of G on Cpk given by some homomorphism a: G ^ Aut(Cpfc). Through

out this section, the following definitions hold: C denotes the group Cpk, 

a denotes a chosen, fixed generator of C. (f) = X\G, D = ker(0) C G. 

GQ = keT{a) CG,q= \G/Go\, and r denotes a chosen, fixed Go-coset repre

sentative such that rCo generates G/GQ (which is necessarily cyclic). Note 

that TGQ has order q in G/GQ, SO r^, although not necessarily equal to the 

identity in G, certainly lies in Go-

3.4.2. Remarks. Note that 

{a\g) ^ (t){g), 

so A = ker(x) = C xs D. 

Note that G/GQ is necessarily cyclic and of order q dividing both |G| and 

Aut(C) | = p''~^{p-l) if fc > 0, or equals 1 if A; = 0. Since I G I , necessarily 

q \ p - l . 

Note that if (T', x, A) G C, then (G, 0, D) G C also. 

Note that the action of G on C may be thought of as factoring through 

the quotient group G / G Q = < r G o > . 

It is this last remark which prompts us to extend the notation of 2.4.1. 

Notation 3.4.3. Let ^ be a primitive gth root of 1 in Zp. Let r be a 5th 

root of 1 in (Zp / /Zp)^ with 9 = r (mod p''). 
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We may view Zp as a ZpF'-module in several ways: we define Zp^ to be 

a copy of Zp where the C x G action is that (a-' , r^^o) acts as multiplication 

by 9^'^, where go E GQ. That is, the T' action may be thought of as factoring 

through G/Go, with rGo acting as multiplication by 6'^. 

For any ZpF'-module M we again define M^'^ = M ^ z ^ Z ? . Define ( = Cp̂  

a primitive p'^th root of 1. i? denotes the ring Zp[C], and P denotes the unique 

maximal ideal {l — QR. e denotes the usual augmentation map from ZpC to 

Zp. TT denotes the usual projection map from ZpC to where T^{G) — C,. 

We introduce here a technical lemma: 

Lemma 3.4.4. The homomorphism 

(1 - a)ZpC ^ R 

is injective. 

Proof. Suppose a G (1 - a)ZpC lies in the kernel of this map. Then, writing 

i=l 

we have 

7r(a) = o,(l - C ) = J 2 a , - J 2 ^iC - 0. 

t=i i=i i=i 
For this to be so, we need oi = 02 = • • • = apfc_i. But then 

p''-i 

7r(a) = - l ) a i - ai J]] C = p'^ai-
i=l 

So ai = 0, and hence a = 0. • 
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3.4-5. Remarks. T'/C = G, and thus we may view both [T*^] and [Tc] as 

lying in aC®(mod(ZpG), ®Q). We can think of both V'p([r])((r', x, A)) and 

7/;c,p([T])((r', X, A)) as being calculated in 3C^(mod(ZpG), ®Q) since we know 

that = ( T ^ ) ^ and = {TC)D. 

In fact, we can do more than this. Since p f |G|, the order of D is invertible 

in Zp. Therefore for any [T] G X^(mod(ZpG), OQ), [T^] = [To] = [Ten, 

where e/j is the idempotent ^deo ^ ^ ZpG. 

This leads us to consider another interpretation of e^. Call 

e x = ex'> where = ^ 7"'x(7) 
x'Gorb(x) ' 7er'/A 

the "old" interpretation of ê ,̂, and call 

= ^x'^ where ex = I] 7 

the "new" interpretation of e^. Then the "old" interpretation of ê^ lies in 

ZpF'/A and the "new" interpretation of e^ lies in ZpG. However, 

1 1 
I 
7er'/Ade£) 

coe^ ("old" interpretation) = Y ^ ' ^ l E Z l ^ ^ 

1 
T V G ' 

7 G r ' / c 

= ("new" interpretation). 

and thus for [T] G 3C®(mod(ZpG), i 

T^g;^ ("old" interpretation) = TeDe^ ("old" interpretation) 

= Te^ ("new" interpretation) 

= TeDex ("new" interpretation). 
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Therefore we can use the "new" interpretation in place of the "old" interpre

tation without needing to make any other changes to our formulae. 

Lemma 3.4.6. For [T] G %^{mod{ZpT), > 

V;J([r])((G, 0, D)) = ^PcAimiG, 4>, D)). 

Proof. When (F',x, A) = ( G , x , D ) , T ^ = Tc = T and therefore 

mm{GA,D)) = 'ilJcATmG,4>.D))=v,\T~e^\. 

• 

Since A = C >q D, and p f W{A,T) = W{C,T)eD and hence 

H'-{A,T)ey^ = H\C,T)e-^. Therefore we may restrict our attention to calcu

lating W{C,T). In order to compute the Tate cohomology groups, we shall 

construct a complete, projective resolution of ZpC, exact as a sequence of 

ZpF'-modules. 

Proposition 3.4.7. We have a ZpC-free complete resolution, exact as a se

quence of ZpF'-modules, which is periodic with period 2q 

^ z ^ c ^ z^^c ^ z f c ^ z f c ^ z(-^)c 

e 
>« 

z . 

where [if. "L^pC ll-pC is multiplication by J2f=.i''^^ '̂̂ '̂  ^ j - ^p^^ 

Zp^'^^C is multiplication by Yl'jZi ^'^(^^^ • 
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Proof. To prove this proposition, we must show that the sequence above is 

exact as a sequence of ZpG-modules, and that it respects the action of r. 

The periodicity of 2q is clear. 

For exactness, first note that 

i=0 j=0 i=0 j=0 

In fact, it is well known that the resolution 

• • • ^ Z p G ^ Z p G ^ Z p G ^ - - -

is exact. Therefore to establish the exactness, we will show that 
9-1 

Im(J] ;^ -V '" ' ) = I m ( l - a) = (1 - a)ZpC 

and 
9-1 

k e r ( ^ r V * ) = k e r ( l - a ) . 
1=0 

We deal with Im(^^ro ^-V""') = I m ( l - a) first. Since (1 - a)ZpC is 

mapped injectively into i? by TT by lemma 3.4.4, it will suffice to show that 

( E i = i ^" 'C')/(C - 1) is a unit in R. But 

~ ^ ~ ^ 1=0 ~ ^ i=0 j=0 

Now, this is a unit in Zp[C] if and only if its image is a unit in Zp[C]/(l - ()• 

So, reducing our expression modulo 1 — we obtain 

q-l r ' - l g-1 

Y^{e-'Y^(^) = '£r-¥ = q ( m o d l - C ) 
i=0 j=0 i=Q 

which is invertible. 
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To show ker(^^^J ^ V ' ) = ker(l — a) we proceed as follows. Clearly 

both ker(^^ro ^"V' '") and ker(l - a) are submodules of ZpC, and we have 

just established that Im(^^~Q ^ " V " ) = I m ( l — a), so they are both torsion 

free and of the same rank. Furthermore, 

p^-l g-l 

ker(l - a ) = I m ( ^ a') C kerC^e-'a''). 
1=0 i=Q 

Now, ker(^^~Q ^~V" ' ) /ke r ( l — a) is a torsion module, and 

Therefore since ZpC is torsion free, ker(^^~Q ^ ~ V ' ) / k e r ( l - a) is the triv

ial module and ker(^^~Q = ker(l — a). Thus we have estabhshed 

exactness. 

For the F'-action, we perform the following checks. Firstly we show for 

fii that (Or • E j l o ' = (•) E i o ' • ^- Consider a' in zJ^C. 
pfc_l pfc_l 

pfc_i pfc_i pfc_i 

j=0 j=0 j=0 

Similarly, we show for Ui that (Or • J^JlJ e^a"-' = (•) X ] - i j ^^(T'"' • r . Consider 

again a' in Zp^C. 

9-1 9-1 

^ V ' • l^r^a'-' = | ] r ( ^ - i ) ( 7 ' - ( ^ ' " + ' ) = ( ^ r ^ a ' - ' + O • r, 

thus verifying the F' action. • 
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Definition 3.4.8. For triples T G $(mod(Zpr'), ®Q), consider the maps 

1 (8) : T^^ T^^ 

and 

We define Wi = ker(l ® jii) and Xi — I m ( l ® fii), and Yi = ker(l ® i/j) and 

= I m ( l (g) i/i). 

Thus Wi, Xi, Yi and are all contained in T^*\ and we have the following 

exact sequences: 

Wi ^ T^^ ^XiC T^^ 

and 

Yi ^ r « ^ Zi_i c T^^-i). 

Lemma 3.4.9. W^'^ = Wi+j, X^/^ = X.+j, Y^'^ = Yi+^ and z\'^ = Zi+j. 

Proof. I f we tensor the short exact sequence 

Wi ^ T^^ -»XiC T^'^ 

over Zp by Zp^, we get the new sequence 

y[rU) ^ rp{i+j) _^ -^{j) ^ rp{i+j)_ 

The result follows by comparing this sequence with the sequence 

105 



and performing the same manipulations for the sequence 

• 
Lemma 3.4.10. 

Yo = T^. 

Proof. As we observed in the proof of proposition 3.4.7, 

uo: Z p C ^ Z j - ^ ) C 

and 

{I-a): ZpC -> ZpC 

have the same kernel. Therefore 

and 

( l - ( 7 ) : T - ^ r 

also have the same kernel. But from this second map, the kernel is seen to 

be T^ . • 

We are now able to work out the Tate cohomology triples W{C,T) as 

triples of ZpG-modules. 

Proposition 3.4.11. For any integer i G Z, and T G $(mod(ZpF'), < 

H-^'-\C,T) = Wi/Zi. 
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Proof. Let F denote the complete resolution of proposition 3.4.7. We can 

compute the Tate cohomology via the homology of the complex T ®ZpC F. 

H-^''\C, T) = H•2^{C, T) = ker(l ® Mi ) / Im( l ® Ui+,) = WijZ,, 

and 

E-''\C, T) = H2^-l{C, T) = ker(l ® v,)l Im( l ® fx,) = Y,/Xi, 

As required. For a description of the Tate homology groups Hi{C,T), and a 

proof that W{C, T) = H-i-i{C, T), see [2], page 135 and following. • 

3-4-12- Remark- An alternative approach avoiding the Tate homology groups 

would be to observe that the Tate cohomology groups are periodic with period 

2q, as are the Wj, Xi, Yi and Zi. Therefore taking n G Z large enough that 

2i + 2nq-l> 0, 

H-^\C,T) = H-^'-^'''^{C,T) = i^2.+2n,-i(C,T) = YilXi, 

and 

H-2^~l^C,T) = H-^'-^^^-\C,T) = H2i+2nq{C,T) = Wi/Zi-

3.4-13. Remark. Before we continue, it is helpful to recall that if ( r ' , X ! A) G 

C, then iG,<p,D) G C. Just as we restrict [T] to X^(mod(Zpr ' ) ,®Q) when 

dealing with (F',x, A) , we restrict [T] to aC^(mod(ZpG), OQ) when dealing 

with (G, (j), D). Thus we are allowed to work with [T] G 3C^(mod(ZpG), i 

as well as [T^] and [Tc . 
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Proposition 3.4.14. Let T G $(mod(ZpF'), In 3Co(mod(ZpG), ®Q) 

we have 

[ F ° ( C , T ) ] - [ ^ - ' ( C , T ) ] = [T^] - [T\ + [T(^)] - [(r^)^'^]. 

Proof. In $(mod(ZpG), (giQ) we have the following short exact sequences: 

O ^ X o - > F o ^ ^ ° ( C ' , r ) - > 0 , 

0 Zo ^ VKo -> H-\C,T) ^ 0, 

Q-^Wo^T^Xo^Q 

0 Y^^^ -^T^ Zo^O. 

Using the relations in 3Co(mod(ZpG), (gQ) due to these exact sequences, we 

get 

[H%C,T)] - [H-\C,T)] = [Yo] - [Xo] - [Wo] + [Zo] 

= [Yo] - [T] [Zo] 

= [Yo] - [T] -f [r(^^] - [FJ '^ ] 

as required. CH 

Corollary 3.4.15. /n aCo(mod(ZpG), ®Q), 

Tc] = [ (T^)^^^] + [T] - [T^^^' 

and 

rpC _ j"^^^ - l - p — J'C"!) 
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Proof Recall that [^°(G,T)] - [H-'{C,T)] = [T^] - [Tc]. The corollary 

follows from rearranging the equation of proposition 3.4.14. • 

Thus if we can show that for T G $(mod(ZpG), (giQ), T^'^e^ ^ Te^' as 

Zp-modules, for some other character x' of order not divisible by p, we're 

done. We shall in fact do more than this, explicitly identifying x'-

Definitions 3.4.16. For (f) a 1-dimensional character of G we define (j)(i) to 

be a 1 dimensional character of G as follows. We write p G G as T^QO, where 

^0 G Go. Then 

(l^ii){T'9o) = 9-''<l>ir'go). 

Note that, since 6 G Zp, Zp[(j)] = Zp[0(j)] for each i G Z, and if we take 

Lo G Gal(Qp[0]/Qp), 

Therefore 

and 

(^"eorb((^) 

the summation over the same choice of elements of the Galois group. 

For X a 1-dimensional character of F', we define X{i) to be a 1-dimensional 

character of F' as follows. If (f) = XIQ, 

X(^)(^^^£') = </'(i)(^)-
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We now calculate T^̂ ê̂ . 

Lemma 3.4.17. ForT e $(mod(ZpG), 

as Zp-modules. 

Proof. 

= E E E5o~V-^ '^ - ' ^ ' r ( r^ 'po )®z ,Z« 

' 0"eorb(0) poeGo k=0 

(/)"6orb{0) geG 

<t>'^ eorh{(t>) 

and thus as Zp-modules T^^e^ = Te^ .̂̂ . • 

Thus we have 

Proposition 3.4.18. For [T] G aC^(mod(ZpF), i 

^c,p(m)((F', X, A)) = ^p'([r])((r ' , X( i) , ker x(i))) + V'p'(m)((G, 0, D)) 

- V ' f ( m ) ( ( G , 0 ( i ) , k e r 0 ( i ) ) ) 
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and 

i ^ i m W , X, A)) = V'c,p(m)((F', x(-i), kerX(-i))) + ^c,p([T])((G, 0, D)) 

-V'c,p(m)((G,(/.(_i),ker,?^(_i))). 

Proof. For the first equation, in !X!o(mod(ZpG), ®Q), we have 

[Tc] = [{T^f^] + [T] - [T^% 

by corollary 3.4.15, and therefore 

Vp\TAeJ = Vp\{T^Y^^e^\ + Vp\TeJ - Vp\T^'hj. 

Now, |(r^)^^)e^| = \T^e^^,^ \ by lemma 3.4.17. Similarly \Te^\ = |T^e^| and 

The second equation follows from corollary 3.4.15 

2̂ c _ 'j^^^y _l_ y _ 2^(-i) 

in a similar way. • 

Hence 

Theorem 3.4.19. 

Proof Suppose [T] G ker(^^). Then ^^{[T]){{T',x, A)) = 0 for ah (F',x, A) 

in C, and thus by proposition 3.4.18, ?/)c,p([T])((F', X) A)) = 0. Conversely, 

suppose [T] G ker(V'c,p). Then V^c,p([T])((r',x, A)) = 0 for all (F ' ,x ,A) in 

C, and thus by proposition 3.4.18, '0p([r])((F',x, A)) = 0. Thus V'J and ipc,p 

have the same kernel and are therefore equivalent factorizability theories. • 
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3.5 Stronger cases 

We have demonstrated that the weak cyclic invariance and coinvariance fac

torizability theories were identical, and the strong cyclic invariance and coin-

variance factorizability theories were equivalent but nonidentical. We turn 

our attention now to stronger theories and some of the barriers to showing 

them to be equivalent. In the strong cyclic case, we allowed F' = C xi G where 

C is a cychc p-group and p\ |G|. Our approach here will be to consider weak

ening the assumptions on F'. Throughout this section we will continue to use 

the notation developed in the previous section for use with the strong cyclic 

case. 

Conjecture 3.5.1. Recall that, if (F',x, A) G uRepp, then the order of x 

is prime to p. As a possible first step, therefore, we could consider triples 

where F' = C xi (G x P), where P is some other p-group whose action on 

C is trivial. Since the order of x is prime to p, necessarily P C A. In fact, 

we have the case that A = C x {D x P). For [T] G aC^(mod(ZpF),(2)Q) we 

have that = (TC^DXP ^ {{T^Y)^, and similarly T A = {{TC)P)D. The 

only difficulty lies in computing the Tate cohomology groups W{C x P,T), 

however I conjecture that these problems are not insurmountable, and the 

invariance and coinvariance factorizability theories are still equivalent in this 

case. 

Conjecture 3.5.2. A second possibility would be to take F' = P x G, where 
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P is any abelian p-group. The idea here would be to express 

P = Pi X P2 X • • • X 

as a product of cyclic groups. Using 

my aim would be to express T^"" in terms of triples of the form Tp> for some 

other p-groups P'. Thus by applying an inductive argument, I conjecture that 

the invariance and coinvariance factorizability theories are still equivalent in 

this case. 

3.5.3. Remark. In the stronger case where F' = P x G for an arbitrary p-

group P, the problem is going to be in computing the Tate cohomology 

groups, since the current approach relies on the well known complex when P 

is cyclic. 
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Chapter 4 

Monomial Mackey F-functors 

THE F A C T O R I Z A B I L I T Y theories discussed so far 

in this thesis are all based upon collections of 

closely related functors, either -^e-^ or -/^e-^ for some collection of triples 

(r', X, A ) . We were able to connect these two theories via the Tate cohomol-

ogy groups, and thus prove the equivalence of a number of cases. 

In this chapter we turn our attention to a different kind of relation be

tween the theories—this time seeking relations between the values of -^^^xi 

for various triples (F-, Xi, A j ) , and thus find relations within the values taken 

by V'p ([r])((r^, Xi, Ai)) which are independent of the triple T in question. 

Our approach will be to define monomial Mackey F-functors, ^ ( (F ' ,x , A)) , 

of which both M^e-^ and M/^e^ are examples for any M G mod(ZpF) (as, 

in fact, are jfl''{A, M)e^). Our definition will be related to the definition of 

G-functors of [20]. However we will expand this definition to cover triples 

(F',x, A) rather than subgroups of F alone. We go on to demonstrate that 
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a direct sum relation of the form 

® Z , [ r / A , ] e , , = 0Z,[r/A;.]e,^. 
i j 

for triples (F-, Xi, \ ) , i^'j, 4>j, ^'j) ^ S yields a direct sum relation of the form 

0 ^ ( ( r a . , A,)) = 0^((r;,^6,, A;.)). 
i j 

We conclude this chapter by considering a number of examples of monomial 

Mackey F-functors, paying particular attention to the classgroup. 

4.1 Monomial Mackey P-functors 

As we said in the introduction, the factorizability theories discussed in this 

thesis are all based on a collection of closely related functors. In this section 

we will provide an axiomatic definition of a monomial Mackey T-functor, 

or M.M. F-functor for short. We will draw on the functors used in the 

factorizability theories as examples of M.M. F-functors. We will go on to 

look at two general construction tools for M.M. F-functors—essentially we 

will define the concept of a "quotient" M.M. F-functor by a "subfunctor", 

and a mechanism for extending the base-ring. We will go on to use these 

tools to look at some further examples of M.M. F-functors. 

This axiomatic approach was inspired by Yoshida's paper, On G-functors 

(II): Hecke operators and G-functors, [20]. The definition of a F-functor 

over a ring R found in [20] and elsewhere is a functor A from the cate

gory of subgroups of F to mod(i?) together with homomorphisms in mod(i?) 
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corresponding to restriction, induction and conjugation of subgroups of F. 

Following the work on factorizability theories, it seemed useful to expand the 

definition to be a functor from the category of triples (F', x, A) (with F' a 

subgroup of F) to mod(i?), or from a suitable subcategory of the category of 

triples ( F ' , x , A ) . 

As a working definition, we will consider a MM. F-functor A = {A, r, p, a) 

over a ring R to he a. functor A from a collection of triples (F',X!A) to 

mod{R), together with maps r , p, a between the modules A{V', x, A) corre

sponding to induction, restriction and conjugation respectively. The maps r , 

p and cr must obey certain axioms. In order to make this definition precise we 

must state the axioms, but first we must define what we mean by induction, 

restriction and conjugation for triples (F',x, A ) . 

Throughout the following definitions, we take 5' to be a collection of 

triples (F', X, A) with F' a subgroup of F. We will impose conditions on the 

triples (F', x, A) e 5 later. 

Definition 4.1.1. For ( i f , x,-f^o) and {K,(j),KQ) triples in S, we say that 

(H,x,Ho) < {K,(j),Ko) whenever H C K and x = (p\jj- We say that 

{H,x,Ho) < {K,(f),Ko) whenever H C K and x = (f>\ff] or equivalently, 

if {H, X, Ho) < {K, 4>, KQ) but H ^ K. Similar definitions exist for > and 

> . Note that if {H,X,HQ) < {K,(}),KQ) and ( / / ,x ,^o) > {K,(p,Ko) then 

necessarily {H, x, -f^o) = {K, (j), KQ) in the usual sense. 

Definition 4.1.2. Let 7 e F. We define the conjugate of a triple {H,x, HQ) 
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in S to be {H, x, Hof = {H\ X(7), ) where X{'y){h'') = x{h) for all / i e i f . 

Note that {{H,x,Hoyy = (F , x, i^o)^"'''^. 

Definition 4.1.3. For {H, x, HQ), {K, ^, KQ) < {L, 6, LQ), define L to be the 

largest subgroup of HOK upon which x and (p agree, and define LQ to be the 

kernel of x|^- We define the intersection of the triples {H,x, Ho), (K, (f), KQ) 

to be 

Note that this definition is symmetric since necessarily x\i = <?̂ li,- Also 

note that necessarily LQ = HoD KQ, since x and (j) necessarily agree on the 

intersection of their kernels. 

Definitions 4.1.4. Suppose A: S ^ mod(i?) is a functor, and x,y e S 

with X <y. Then r will denote a homomorphism 

ry:Aix)^A{y). 

Where the choice of x is clear, we will denote the image of a € A{x) by a^. 

We may also denote by or even r , where this will not cause confusion. 

In a similar way, p will denote a homomorphism 

pl: A{y) ^ A{x). 

Where the choice of y is clear, we will denote the image of P E A{y) by Px-

We may also denote by Px or even p, where this will not cause confusion. 

Suppose also that 7 € F. cr will denote a homomorphism 

a2: Aix)-^Aix^). 
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Where the choice of x is clear, we will denote the image of S E A{x) by S''. 

We may also denote a2 by a'' or even cr, where this will not cause confusion. 

Definition 4.1.5. Throughout what follows, S will denote a set of triples 

(F', X , A) , closed under conjugation and intersection of triples, with the order 

of X invertible in the ring R; that is, if x,y e S and 7 G F, then xHy E S 

and x'^ e S. 

4.1.6. Remark. Note that one possible way of ensuring that the order of x 

invertible in the ring R is to take R = Zp and requiring the order of x 

to be coprime to p. This will automatically ensure that, if x = {H, x, HQ) 

and y = {K, 0, KQ) with the orders of x and (j) both coprime to p, then the 

character involved in both and x Dy will be of order coprime to p. For 

example, the sets CQ, C and M of chapter 2 satisfy this condition. 

We now state our axioms. 

Definitions 4.1.7. In the axioms that follow, x,y,z are triples in S with 

X = {H, X , Ho),y = [K, 0, ifo) and z = ( L , 6, LQ), and 7 , 7 ' G F. 

( M F . l ) I f a e A{x) sxidx<y<z, then 

a' = a and (a^)^ = a^. 

(MF.2) If e > (̂2;) and a: < ?/ < ^, then 

/5, = /3 and (/3^), = 

(MF.3) If a G A{x) and / i G / / , then 

a^ = a and (a^)^ '= a^ '̂. 
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(MF.4) I f x < y , a e A{x) and /3 G A{y), then 

{ayy = (a^)^^ and {PxV = W).^. 

(MF.5) (Mackey axiom) If x,y < z and a G A{x), then 

where T is a complete set of double coset representatives HQ\LQ/KQ. 

( M F . C ) (cohomologicality axiom) li x <y and P € A{y), then 

{Pxy = \Ko:Ho\-p. 

Definition 4.1.8. A monomial Mackey F-functor (called an M.M. F-functor 

for short), over a ring R, A = {A, r, p, a) is a functor 

A: S ^ mod{R) 

from some collection of triples S = {{H,x, HQ)}, together with maps r , p, 

a as defined above, which satisfies axioms M F . l to MF.5. If in addition it 

satisfies axiom MF.C, we call it a cohomological monomial Mackey F-functor 

(or C.M.M. F-functor for short), over R. 

4-1.9. Remark. Note that the definition of G-functor given in [20] coincides 

with this definition when S is taken to be 5 = {{H, XQ,H)}, where H ranges 

over all subgroups of F and xo is the trivial character on H. 

We are now in a position to introduce a number of tools which will simplify 

our attempts to demonstrate examples of (C.)M.M. F-functors. Note that 
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we will use this notation from now on—for (C.)M.M. F-functor over R, read 

"M.M. F-functor over R, respectively C.M.M. F-functor over R". 

Lemma 4.1.10. Let A — {A,T,p,a) be a (C.)M.M. T-functor over R, and 

suppose for each x E S there exist submodules A'{x) C A(x). Suppose also 

that, for each x,y E S with x <y, and 7 G F, the following three statements 

are true: 

Ty{A'{x))cA{y), 

pliA'iy)) C A{x), 

a2iA'{x)) C Aix-^). 

Then A' = {A',T,p,a) is also a (C.)M.M. V-functor. 

Proof. To prove this lemma we need to check the axioms. But due to the 

containment requirements, they are clearly satisfied. • 

Lemma 4.1.11. Suppose A and A! are as in the previous lemma. Then 

{A",T",p",a") is a (C.)M.M. V-functor, where, for x,y E S with x < y, 

A!'{x) — A{x)/A!{x) (quotient of modules), and 

T"l:A{x)/A!{x)^A{y)/A!{y) 

is induced from T (similarly p" and a"). 

Proof. We begin by showing that r" is well defined. Suppose for x < y and 

a, a' E A{x) that a + A!{x) = a' + A'{x). Then a - a' = /? G A'{x). But 
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then 

T"{a' + A{x)) = r ( a ' ) + A[y) 

= T{a) + r ( ^ ) + A!{y) 

= r ( a ) + A!{y) 

= T"{a + A!{x)) 

so T" is well defined. Similarly p", a" are well defined. The lemma is then 

clear as the axioms follow from A. • 

Lemma 4.1.12. Suppose that A = {A,T,p,a) is a (C.)M.M. T-functor over 

a ring R. Suppose also that R' is an extension of R in the sense that the ring 

R' may be viewed as a left R-module. Then 

A®RR! = {A ®R i?', r ® 1, p O 1, cr 0 1), 

defined below, is a (C.)M.M. V-functor over R!. Here, 

A®R R': X ^ A(x) 0R R' 

and the homomorphisms r ® 1, p 0 1 and a (g) 1 are induced from r, p and a 

respectively. 

In particular, if R = Z then R! can be any ring. 

Proof. The result is clear—the axioms are still satisfied after the modules 

concerned are tensored up with R'. • 

Definition 4.1.13. A morphism between M.M. F-functors over i? is a family 

of i?-homomorphisms 9{x): A{x) B{x), for each x e S, which commute 

with T, p and a. 
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We denote the category of M.M. F-functors over R by MR{S,T). The 

ful l subcategory of C.M.M. F-functors over R we denote by M%(S, F). 

4.2 Equivalence to the Hecke category 

In this section we will define the Hecke category HRV^S of the group F, 

and demonstrate that the category of cohomological monomial F-functors 

M%{S, F) is equivalent to the category of additive functors from the Hecke 

category to mod(i?). In the next chapter we will use this to find direct sum 

relations between the modules A{H,x, HQ) for any A G ^1^(5, F). Our 

definition of the Hecke category closely follows that of Yoshida [20] in its 

approach, with modifications to incorporate unramified monomial modules 

in addition to permutation modules. The objects of our category will be the 

monomial i?-modules R[r/Ho]e^ for each {H,x,Ho) G S. The morphisms 

will be the i?F-homomorphisms between these modules. 

We begin by giving an alternative description of the homomorphisms 

between the modules R[r/Ho]e-^ and R[r/Ko]e^. 

Lemma 4.2.1. Let {H, x, HQ) and {K, 0, A'o) be triples in S. Then we have 

isomorphisms 

e^R[Ho\r/Ko]e4, ^ EomRr{R[r/Ho]e^, R[r/Ko]e^) 

and 

e^R[Ho\r/KQ]e^ -> UomRr{R[Ko\T%, R[Ho\r]e^) 
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where 

^{e^HoxKoe^): ^HQC^ ^ ^uxK^e^ = ^ ^U'KQE^ 

ueHo/{HonK§~^) u'eHoxKo/Ko 

and 

veH§nKo\KQ v'eHo\HoxKo 

Note that u, u', v and v' are coset representatives. 

Proof From [20], lemma 3.1 we have isomorphisms 

$: R[Ho\r/Ko] -> EomRr{R[T/Ho],R[T/Ko]) 

R[Ho\r/Ko] -> HomHr(fl:[i^o\r],i2[/fo\r]). 

Our result follows from hitting these isomorphisms with the idempotents e-^ 

and e .̂ This preserves the isomorphisms. • 

The isomorphism of lemma 4.2.1 will provide a useful description of the 

homomorphisms between the modules R[r/Holey- and R[r/Ko]e^. From this 

isomorphism, and composition of homomorphisms 

a-p: R[r/Ho]ex R{r/Ko]e^ A R[r/Lo]ee 

we have an i?-bilinear map 

exR[Ho\r/Ko]e^ x e^R[Ko\T/Lo]ee e^RiHoXT/Lo]ee 

Our next step will be to find a better description of a - /J G exR[Ho\r/Lo\eg. 
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Lemma 4.2.2. 

(HQXKO) • (KoyLo) = ^ ' ^)(-^o2^o) 
2eHo\r/Lo 

where m{x,y; z) = {{HQXKO f l zLoy'^KQ)/KQ . 

Proof. Direct verification—or see [20], lemma 3.2. • 

Definition 4.2.3. The Hecke category T-LRV^S is the category whose objects 

are the monomial modules R\r/HQ]e-^ for each {H, x, HQ) G 5, where the mor

phisms from i?[F/i?o]ex to R\r/KQ\e^ are given by the set e-^R[HQ\T/KQ\e^. 

As we said in the introduction to this section, we introduced the Hecke 

category with the aim of showing the equivalence between C.M.M. F-functors 

over R and the Hecke category H.Rr,s- Towards this end, we will define some 

raorphisms of the Hecke category. These will have properties similar to the 

homomorphisms r, p and a which will parallel the axioms of the C.M.M. 

F-functors. 

Definition 4.2.4. Suppose that x = {H,X,HQ), y = {K,(f),KQ) are triples 

in S, and suppose that x < y and 7 G F. We define the following morphisms 

of 'HRr,s' 

tl = e^{HolKo)e^: R[T/HQ]e^ ^ R[r/Ko]e^ 

rl = ~e^{KQ\HQye^: /?[F//ro]e0 -R[F/ifo]ex 

si = e J i f o 7 ^ J ) e > : R[r/HQ]e^ ^ R[r/H^Q]e^. 

ix = e^iHQlHo)e^: R[r/HQ]e^ R[r/HQ]e^. 

124 



Where it is unambiguous and aids the clarity of the notation, we may write 

t^ for tl, r^ for r^, for s j , and i for i^. 

These morphisms are sufficient to define each of the morphisms of'HRr,s, 

since we have 

Lemma 4.2.5. Suppose x = {H,x,Ho) and y = {K,(p,Ko) are elements 

of S, 'J E T and z — ( L , 9, LQ) = x'^ Hy. Then the following equality of 

morphisms ofTinr.s holds: 

exiHo7Ko)e4, = sl-rf -tl. 

Proof Direct verification, using the formula of lemma 4.2.2. 

• "^f = exHo^H^e^-y • ex-yH^lLoeg 

= ^ m{^,l;w)ex{HowLo)ee 
weHo\r/Lo 

where 

But 

and 

m{j,l;w) = \{Ho^H^o(^wLolH^o)/H'o\. 

Ho'yH^ = Hojj-'Ho-f = i fo7 = 7̂ ô 

and therefore 

wLolH^ - w{H^ n Ko)lH^ = wH^ 

m{^A-w) = \{^H2nwHl)IH2\ 

1 ifwE^H^ = Ho7 

0 otherwise. 
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Therefore, 

Therefore 

where 

and hence 

as required. 

si • rf = ex{Ho^Lo)eg. 

si • rf • tl ex{HojLQ)eg • eg{LolKo)e^ 

= m{j,l;v)ex{HovKo)e^ 
veHo\r/Ko 

m(7, l;v) = \{HojLor\vKolLo)/Lo\ 

= \{^H^LonvKo)/Lo\ 

= \{H^nj-'vKo)/{H^nKo) 

1 if 7 G vKo 

0 otherwise 

sl-rf •tl^exiHo^Ko)e^ 

• 
Lemma 4.2.6. In the equations that follow, x,y,z E S with x = {H, x, HQ), 

y = {K, (j), KQ) and z = {L, 6, LQ), and 7 , 7 ' G F. 

( H . l ) I f x < y < z , then 

tl = and tltl = tl 

(H.2) I f x < y < z , then 

and 
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(H.3) I f h e H , then 

and slslf = ŝ ^ 

(H.4) I f x < y , then 

tls1 = sltt. and rlsl^slrf,. 

(H.5) (Mackey decomposition) If x,y < z, then 

where T is a complete set of double coset representatives HQ\LQIKQ. 

( H . C ) (cohomologicality) If x <y, then 

rltl = \KQ : HQ\i. 

Proof. These are all proved by direct verification, using the formula of lemma 

4.2.2. • 

We are now in a position to begin to prove the main result of this chapter, 

namely, that A^^(5', F) is equivalent to the category of /^-additive functors 

from HRr,s to mod(i?). Our approach will be as follows. For any coho

mological monomial F-functor over R, A E M%{S,r), we define a map 

A: HRV^S mod(R). We go on to show that this A is an /?-additive func

tor. To show this, we must show that, for suitable morphisms of the Hecke 

category, 

Aie^Ho^Koe^,) • A{e^Hoj'Loee) = A{e^HQ^Koe^ • e^Hoj'Loeg). 
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Since 

ex{Ho^Ko)e^ = s^ • rf • i^ , 

we need only consider certain combinations of morphisms of the type r^, ty 

and s'^. 

At this point we will have shown that MR{S, F ) is equivalent to some 

subcategory of the category of i?-additive functors from HRT^S to mod(i?). 

To complete the proof, we will identify a map in the opposite direction, and 

show that they are inverses of one another. 

Definition 4.2.7. Let A — {A,p,T,a) be a C.M.M. F-functor over R, and 

x = {H,x,Ho) and y = {K,(f),Ko). We define a map A: %Rr,s mod(i?) 

by 

A{R[T/Ho]ex) = A{x) 

and for ixHo'yKoe^ E exR[Ho\T/Ko]e^, 

AiexHo^Koe^) = a > f r j : A{x) ^ A{y) 

where z = x'' f l y . 

Lemma 4.2.8. Let x = [H, x, Ho), y = {K, 0, KQ) and 7 , 7 ' G F . Then 

A{exHoiKoe^ • s],') = A{exHo^Koe^) • A(s^'). 

Proof By lemma 4.2.2, 

exHojKoe^ • s^' = e^^ifoTV^o'e^V, 

and thus 

A{exHo^Koe^ • s '̂) = a^'"'pf^ r^^ 
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where w = x'^'^' f l y'^'. Let z = x'' Oy, and hence w = z'''. Therefore, by the 

axioms for C.M.M. F-functors, 

Aie^Ho^KQe,) • A{s;') = a > f r] ' • < P ^ v ^ 

77' x^ '̂ j/V 

as required. • 

Lemma 4.2.9. Let x = {H,X,HQ), y = ( K , 0, A'o) and z = {L,d,Lo), with 

z >y, and 7 G F . Then 

A{e^HQjKoe^ • t^ = Aie^Ho^Koe^) • A{tl). 

Proof Let v = {V, 6', VQ) = n t/ and W = {W, 6", WQ) =x^nz. By lemma 

4.2.2, 

e^HQ'jKQe^ • t^ = m (7 ,1 ; 'y)ey^Ho'yLoee 

= \{HQ^KQ n ^LoKQ)/KQ\e^Ho-fLoee 

= \{HojKo n -fLo)/KQ\e^HQ-fLQee 

= \WQ : VQle^Ho^LQee 

and therefore 

Aie^HQ-fKoe^ • t^) = \WQ : VolaXV^. 
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Now, 

A{e^HoiKoe^) • A{tl) = a^pfr^ • 

^Xrw rv V w 

as required. • 

Lemma 4.2.10. Let x = {H, x, Ho), y = {K, (p, KQ) and 7,7' G V. Then 

Proof. Let z = x'' Hy. By lemma 4.2.2, 

and therefore 

Also, 

as required. CD 

Lemma 4.2.11. Let x = {H, x, Ho), y = {K, 0, KQ) and z = (L, 6, LQ), with 

z > X, and 7 G F. Then 

A(r^ • e^Ho^Koe^) = A(r^) • A{e^HoiKo~e^). 
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Proof. Let v = {V, 4>\ VQ) = x"̂  n y and w = {W, <j)\ WQ) = z'^ny. By lemma 

4.2.2, 

• e^Ho-fKae^ = m ( l , 7; 'y)eeLo'yKoe^ 

= (LQIHO n -fHo^~'^Ko)/HQ\egHojLoe^ 

= |(Lo n H^Ko)/Ho\e0Ho'yLoe^ 

= WQ : K)|eeî o7-f'oe</, 

and therefore 

Now, using the cohomologicaUty axiom, 

^zHxiPv 'v 'w 

as required. • 

Lemma 4.2.12. Le^ x = x, ^^o), V — {K, (j), KQ) and z = (L, 6, LQ), with 

x,y < z, and 7 G F. Then 

A{tl-r^y) = A{tl).A{r;). 

Proof. We use the Mackey axiom (MF.5) of C.M.M. F-functors, and the 
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Mackey decomposition formula (H.5) of lemma 4.2.6: 

yeHo\Lo/Ko 

and therefore 

jeHo\Lo/Ko 

However, 

ieHo\LQ/Ko 

as required. • 

Lemma 4.2.13. Let x = {H, x, HQ), y = {K, (f), Ko) and z = ( L , 9, LQ), with 

y > z, and 7,7' G F . Then 

A{e^HojKoe^ • r^) = A{e^Ho^Koe^) • ^ ( r ^ ) . 

Proof. Let v = x'^ Ciy. Then 

e^{Ho^Ko)e^ = 5 > f 

so 

by lemmas 4.2.10, 4.2.11, and 4.2.12, 

= A{sZ) • A{rftl) • Airl) 
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by lemma 4.2.11, 

= Mslrftl) • A{rl) 

by lemma 4.2.10, as required. • 

Lemma 4.2.14. Let x = {H, x, HQ), y = {K, </>, i^o) and z = ( L , 9, LQ), then 

A{e^Ho-fKoe^ • e^KoiLoee) = Aie^Ho^Koe^,) • A{e^Ko^'LQCe). 

Proof. Let w = y'^' f ) z. Then 

, '̂ 

and therefore 

Aie^Ho^Koe^ • e^Ko-f'Loeg) = A(e^/fo7^oe^) • A(s^') • A ( r f ) • A{t'J 

by lemmas 4.2.9, 4.2.13 and 4.2.8, 

= Aie^HojKoe^) • • ' • t^) 

by lemmas 4.2.13 and 4.2.9, 

= Aie^HojKoe^) • A{e^Ko-f'LQCQ) 

as required. • 

Proposition 4.2.15. Let A = {A,p,T,a) he a C.M.M. T-functor over R. 

Then A of definition 4-2.7 is an R-additive functor A: HRr,s mod(J?). 
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Proof. This is clear: all we need to check is that A respects composition of 

the morphisms, and by lemma 4.2.14 this is clear. • 

Proposition 4.2.16, Let A be a R-additive functor 

A: nRr,s -^^od{R). 

For X = {H, X, -f^o), y = {K, 0, Ko) and 7 G F, define 

A{x) = AiR[T/Ho]e^), 

= m ) . 

Pl = A{rl\ 

ol^A{sl). 

Then {A,r,p,a) is a C.M.M. F-functor over R. 

Proof. By lemma 4.2.6, (A, r, p, cr) satisfies the axioms for C.M.M. F-functors 

over R. • 

We are now in a position to prove the main theorem. 

Theorem 4.2.17. The category of C.M.M. T-functors over R, M%{S,r), 

is equivalent to the category of R-additive functors from 1-LRT,S io mod{R). 

Proof. By proposition 4.2.15 we know that for each C.M.M. F-functor over 

R, A, we have an i?-additive functor A: Unr^s mod{R). By proposi

tion 4.2.16 we know that for each i?-additive functor A: URT^S mod(/?), 

we have C.M.M. F-functor over R, A. Clearly these two processes are 
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inverses of one another. We need to show that this approach takes mor-

phisms between C.M.M. F-functors to morphisms between i?-additive func

tors 'HRT,S —> mod(i?), and vice-versa. But this is clear from the definition 

of a morphism between C.M.M. F-functors over R. • 

This theorem is important in its own right. However, of greater impor

tance to us is the following corollary. 

Corollary 4.2.18. Suppose A is a C.M.M. V-functors over R, and we have 

triples (F-,Xi, A j ) € 5 /or z = 1,2,. . . ,n and i — n + \,n-\-2,... ,n +m. If 

n n+m 

0i?[F/A,]e;,,- 0 R[T/A,]e^^ 
i=l i=n+l 

then 
n n + m 

0^((n,x.,A,))= 0 ^ ( ( F U . A , ) ) . 
1=1 i = n + l 

In the next chapter we will find all relations in the Hecke category of this 

form. 

4.3 Examples of C . M . M . F-functors 

In this section we give two examples of C.M.M. F-functors. We also mention 

without proof a number of other examples. 

Proposition 4.3.1. Lei M 6 mod(ZpF). Then 

A: {T\xA)^M% 
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with p, T, a the usual restriction, induction and conjugation maps, is a 

C.M.M. T-functor over Zp. 

Proof This result can be proved directly, by showing that p, r and a obey the 

necessary axioms. Alternatively, this can be proved via proposition 4.2.16: 

we have a Zp-additive functor 

A: ^ z p r , 5 m o d ( Z p ) 

Zp[r/A]e^ ^ M^e^ 

and hence the corresponding .4 is a C . M . M . F-functor over Zp, with p, r , a 

the usual restriction, induction and conjugation maps. • 

4.3.2. Remark. In a similar way, it can be shown that 

A: {r',x,A)^H%A,M)e^ 

with p, r , a the usual restriction, induction and conjugation maps, is a 

C . M . M . F-functor over Zp, as is 

A: i r ' , x , ^ ) ^ M^e^ 

with p, r , a the usual restriction, induction and conjugation maps. 

Let F be an algebraic number field, a Galois extension of Q with Galois 

group F = G a l ( F / Q ) . For our second example, we will show that 

^ : ( F ' , X , A ) K ^ C 1 ( F V ~ X 

with p, r , a defined below, is a C . M . M . F-functor over Zp. 

136 



Definition 4.3.3. In what follows, for F an algebraic number field we denote 

the ring of algebraic integers in F by O^. T{OF) denotes the ideals of 

OF, and V{OF) denotes the principle ideals of Op- F = G a l ( F / Q ) , and 

F acts on F in the obvious way. Thus C l ( F ^ ) = X{OF'^)IV{OF^) and 

C\{F% = X{OF^)r,/V{OF^),. 

Lemma 4.3.4. 

B: ( F ' , x , A ) ^ J ( O f . ) , e ^ 

is a C.M.M. T-functor over Z, where (for A C A ' j , p, T, a are induced 

from the norm map N: F^ —)• F^', inclusion F^' F^ and conjugation by 

elements of the galois group, respectively. 

Lemma 4.3.5. The inclusion 

V{OFA)pe^CI{OF^)pe^ 

satisfies the requirements of lemma 4-1-10. 

Thus we have 

Proposition 4.3.6. Let F be an algebraic number field, a Galois extension 

ofQ with Galois group F = G a I ( F / Q ) . Then by lemma 4.1.11, 

A: ( F ' , X , A ) K ^ C 1 ( F V ~ X 

with p, T, a defined below, is a C.M.M. T-functor over Zp. 

An interesting question which may be considered is, how Cl(F'^)pe;^ and 

Cl(F)p relate to one another, bearing in mind that they are both C.M.M. 

F-functors over Zp. We do not deal with this question here. 
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Chapter 5 

Relations in C .M.M. F-functors 

I N T H E previous chapter we demonstrated that, for a C.M.M. 

F-functor over Zp, A, a direct sum relation of the form 

0 Z p [ F / A , ] e ; , , = 0Zp[F/A;]e^^. 

for triples (F^, Xi, A j ) , (F", A^) G uRepp yielded a direct sum relation of 

the form 

0 A m , A , ) ) = 0 Aur;, 0 „ A ; . ) ) . 

In the first section of this chapter we discuss how we can go about finding such 

relations. We go on to actually find all such relations in the case F = Gq^p in 

the second section. 
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5.1 General considerations 

In this section we consider a general approach to finding the direct sum 

relations of the form 

0 Z p [ F / A , ] e , , = 0Zp[F /A; ]e ,^ . 
i j 

for triples (F^, Xi, A j ) , (F", ^ j , A^) G uRepp. Our approach is to look at the 

direct sum Grothendieck group of monomial modules of this form, PP'(ZpF), 

which is contained within PP(ZpF). We introduce species SH,C (where H is 

a p-hypoelementary subgroup of F) because these species separate elements 

of PP(ZpF)—that is, two permutation projective modules M and are iso

morphic if and only if SH,C{M) = SH^C{N) for every species. In fact, we use 

a subset of the set of all species which is still big enough to separate per

mutation projective modules. Therefore by looking at the values of SH,C{M) 

as M ranges over a generating set for PP'(ZpF) we can determine when the 

direct sums of two different sets of generators are in fact isomorphic, that is, 

we have a relation in PP'(ZpF). 

We begin by establishing some notation. 

Notation 5.1.1. Throughout what follows, p, will be a finite group, large 

enough to include all the roots of unity taken by the characters x for (F', x, ^ ) 

lying in uRepp with Qp[/x] a Galois extension of Qp. For example, we could 

take all the fcth roots of unity, where | r | = p'^k, and p\ k. 

We denote the ring Zp[^] by R. Our choice of p, ensures that R is of finite 
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degree over Zp. 

5.1.2. Remark. Inclusion is an injective map 

i: PP(ZpF) ^ PF{RT). 

To see this, note that inclusion map PP(ZpF) PP(i?F) composed with the 

restriction PP(i?F) -> PP(ZpF) is the same as multiplication by the degree 

of R over Zp (which is finite), and PP(ZpF) is torsion free. 

We are interested in finding direct sum relations between modules of the 

form ZpF/Ae^ for triples (F',x, A) G uRepp. These modules are clearly 

permutation projective modules, since 

ZpT/Ae^ ® ZpF/A( l - e^) = ZpF/A. 

Therefore we define 

Definition 5.1.3. We denote the subgroup of PP(ZpF) generated by the 

classes [ZpT/Ae^] for {T',x,A) G uRepp by PP'(ZpF). We denote its image 

in PP(i?F) by PP'(RT). 

We present now a series of results taken from [5] which will allow us to 

tell when two elements of PP(i?F) are distinct. 

Definition 5.1.4. Let C F be a p-hypoelementary group, that is, H = 

P XI C for a p-group P, and C a cychc group of order coprime to p. Let 

C = <c> . We define the species SH,C to be a map from the permutation 

projective i?F-modules as follows. For a permutation projective i?F-module 
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M, we define M' to be the sum of the indecomposable summands of M ^ 

with vertex P. (The vertex of a module is the maximal p-group which acts 

trivially. Note that necessarily the indecomposable summands of M ^ have 

vertex a subgroup of P.) s^^d^) is then computed by considering the value 

at c of the Brauer character afforded by M'. For further details, see [5], pages 

880 and following. SH,C induces a homomorphism (also denoted SH,C) 

SH,C- PP(i?F) ^ R. 

We define s'̂ ^ to be a map from the permutation projective ZpF-modules 

where = SH,c°i- s'^^^ induces a horaomorphism (also denoted s'jj^^) 

S'H,C- PP (ZpF)^ i ? . 

These species separate the elements of PP(i?F) in the sense that M = N 

if and only if SH,C{M) = SH,ciN) for all species SH,C- However we can say 

more than this. We will define a minimal set of species § which together still 

separate elements of PP(i?F). See [5], remark 81.23. 

Definition 5.1.5. We define § = {SH,C} to be a collection of species as 

follows. Let P range over a full set of nonconjugate j9-subgroups of F. Denote 

the normaliser of P in F by Nr{P). For each P, let C = < c > where c ranges 

over a full set of nonconjugate elements of order coprime to p of Nr{P)/P. 

For each P and c above, we include SH,C in S where H = P x C. 

Thus in effect we take P to range over a full set of nonconjugate p-

subgroups of F and for each P take one H from each conjugacy class of 

subgroups P >] C C F. 
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We define n = |S . 

We will label the distinct species SH,C in § as Sj, i = I j . . . , n. 

Theorem 5.1.6. 

s: Q 0 z PP(i?F) (Q®z Rf 

M\ ^ {si{M)) 

is an isomorphism. 

Proof. See [5], theorem 81.24 and corollary 81.26. To provide an outline of 

the proof, we establish idempotents in the ring Q ®z PP(EF) such that 

Sj{ei) = 5ij and YH^I ei = l. • 

We can now determine when two elements of PP(i?F) are equal, and 

hence identify the relations in PP'(ZpF). Our approach will be as follows. We 

will calculate s'^^^(ZpF/Ae;^) for each ( F ' , x . ^ ) ^ uRepp with [ZpT/Ae^] G 

PP'(ZpF) distinct and each SH,C £ §• It is then simple linear algebra to work 

out those linear combinations of elements [ZpV/Ae^] G PP'(ZpF) which map 

to zero; these linear combinations provide all the relations. 

We conclude this section with some preUminary calculations towards com

puting s'^^^iZpF/Ae^). 

Lemma 5.1.7. Consider a triple (F',x,A) G uRepp, and let R^ denote a 

copy of R where F' acts via x- Let SH,C ̂  § with H = P >i C and C = < c > . 

Then 

'rer'\r/H: 
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Proof. Firstly, 

'yer'\r/H 

using the Mackey formula. The sum of the indecomposable summands of 

M I f f with vertex equal to P is 

M ' = 0 {Rxn?nnH]?" riH-
fer'\r/H: 
pcr'TiH 

SH,C{M) equals the trace of c acting on M'. Now, the trace of c acting on 

(-^x)'^ir'-^nHTr-^ni/ is zero whenever F ' ^ n / f 7̂  H. Therefore SH,C{M) equals 

the trace of c acting on M" where 

M 
7er'\r//i': 7er' \r/H: 

For c E H, therefore, we consider how c acts on the RH-modn\e 

For r e Ry denote the corresponding element of [R^l^^^iY by (r)'''. Then 

{ry • c = (r • c'^'^y = {rx{c''~')y 

and the value of the Brauer character at c is seen to be x{c'''^)- Therefore 

S H A M ) = x i C " ) 

as required. • 

Lemma 5.1.8. Let SH,C £ § with H — P y\ C and C = < c > . Consider a 

triple (F', x, A) G uRepp, and let M = ZpFjAe^. Then 

7er'\r//f: 
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Proof For (F', x, A ) , let R^ denote a copy of R where F' acts via x- Then 

SHAM)= Y1 ^f^A^x') 
x'eoThix) 

x'eorb(x) fer'\r/H: 

= E «'̂ "̂') 
jer'\r/H: 

as required. • 

5.2 Example—the group Gq^p 

To conclude this chapter, we will find all relations of the desired form for F = 

Gq^p, the metacyclic group we considered in section 2.4. We will consequently 

prove the relations used in lemma 2.4.18 to simplify the calculations in section 

2.4. In fact, we will prove that these are (up to linear combination) the only 

relations for Gq^p. 

We use the notation developed in section 2.4. 

Lemma 5.2.1. For F = Gq^p, the triples contained in uRepp are precisely 

({1}, (f>'o, {1}), {Cq, ct>o, Cq), {Cq, 0„ {1}) fori = l,...,q-l, whcrc 0,: r ^ e\ 

{CP,X!Q,CP), {Gq,p,xo,Gq,p), and {Gg ,pi Xii Cp) foT i — 1,... ,q — 1, where 

Proof See lemma 2.4.15. • 
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5.2.2. Remark. Note that each of the characters involved maps into Zp, and 

therefore we can take R = Zp and s'u^ = SH,C-

Lemma 5.2.3. For F = Gq^p, 

S = { S { 1 } , 1 ' ' 5 C „ T , S C P , 1 , S G , , P , T } -

Proof. Recalling the notation of definition 5.1.5, we see that either P = {1} 

or P = Cp, and in either case, C = {1} or C = Cq. The lemma follows. • 

We now calculate su^d^pF/Ae^^) for each SH,C £ § and each (F ' ,x ,A) 

in uRepp. We will work the values out in two stages, using the formula of 

lemma 5.1.7. 

Lemma 5.2.4. The entries in the following table are those double coset rep

resentatives 7 e T'\T/H such that H C F'''', as SH,C ranges over S and 

(F', X, A) ranges over uRepp. 

^ { 1 } , 1 

F 0 0 0 

{Cq,(t)o,Cq) Cp {1} 0 0 

{Cq,4>i,{l}) Cp {1} 0 0 

{Cp, Xo) Cp) c. 0 c. 0 

{Gq,p, XO) Gq^p) {1} {1} {1} {1} 

{Gq^p, Xii Cp) {1} {1} {1} {1} 

Proof Instead of the requirement that H CT'^, we will use the equivalent 

requirement that H'' ^ C F'. 
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The empty sets arise since Hf~' ^ T' if > |r'|. 

For the bottom two rows, we observe that F' = F and so necessarily 

H^~' C F', and also r \ F = {1}. 

For the first column, we observe that H = {1}, and therefore H'''^ C F' 

for any 7 , and F ' \ F / i f = F'\F. 

This leaves three entries requiring further calculations. 

Cq\Gq,p = {Cq, CqG, CgCT^"^}. 

Now, C^trV = C,r(7'•^ so Cqa^Cg = Cqa^^'^Cq for all i G Z. Therefore 

C,\G,JCq = {a'':ke¥;/ < r > } , 

that is, {p — l)/q different double coset representatives. Now, ara^^ = ra'''^, 

and thus 

Therefore C^'' — Cq if and only if;? | (r ' - for every I, that is, if and only 

if p I (r - 1)A;, which only happens if CqO^Cq = CqlCq. 

Finally, Cp\Gg^p/Cp = Cq, and C;' = Cp for any /c e Z. • • 

Lemma 5.2.5. The following table contains the values o/s//,c(ZpF/Aej^), os 

SH,C ranges over § and (F',;^, A) ranges ower uRep^. 
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( { 1 } , C { 1 } ) pq 0 0 0 

{Cg,(j)0,Cq) P 1 0 0 

(Q,</.^,{1}) P 0 0 

q 0 Q 0 

{Gq,p,XO,Gq,p) 1 1 1 1 

{Gg,p, Xil Gp) 1 1 6' 

Proof. Repeated use of the formula of lemma 5.1.7. The calculations are 

simplified for four of the six rows since the character involved is the trivial 

character, and therefore the value in the table is equal to the number of 

double coset representatives in the corresponding entry of the previous table. 

For the remaining two rows, two of the columns have c = 1 and so in each 

case x{c^'^) = = !> in the other two columns there is at most one 

double coset representative to consider. • 

We are now in a position to identify all relations in PP'(ZpGg,p). 

Theorem 5.2.6. All direct sum relations occuring between modules of the 

form ZpF/Aey., where {r',x,A) G uRepp, are integer combinations of the 

relations 
9 - 1 

ZpG,,p^ZpCp©0ZpG,,pe^, 
i = l • 

and 
9 - 1 

Z p C , ^ Z p © 0 Z p C g e ^ , . 

i=l 
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Proof. Direct sum relations between modules of the form ZpGq^p/Ae^., where 

(F',x, A) e uRepp are in one to one correspondence with linear relations in 

PP'{ZpGq^p). Suppose for some u, v,Wi,x,y,Zi E Z for z = l,...,q - I we 

have a relation in PP'{ZpGq^p): 

9 - 1 

u[ZpGqJ{l}e^'J + v[ZpGqJCqe^,] + ^Wi[ZpGqJ{l}e^, 

9 - 1 

+ x[ZpGq,p/Cpe^rJ + y[ZpGqJGq,pe^,] + ^Zi[ZpGqJCpe^] = 0, 

that is, a relation 

9 - 1 9 - 1 

u[ZpGq,p]+v[ZpCp] + ^ Wi[ZpGq^pe4,^]+x[ZpCq\+y[Zp\ + ^ Zi[ZpCqh^;\ = 0. 
1=1 t = i 

Denote the left hand side of this relation by LHS. We know that, for each 

SH,C G §, SH,C{LHS) = 0. We now use this to obtain relations between the 

SG,,,ALHS) = y + J2'i^' = ^ 
i 

which implies that y — Zi for each i = 1,... ,q — 1. 

scALHS) = v+Y. + y + E -̂ ẑ ' = 0 
i i 

which imphes that v = Wi for each i = l , . . . , g - l . 

Sc„iiJ-HS)=qx + y + J2^i = ^ 
i 

which implies that x = -y. 

S { i } , i ( L i f 5 ) = pqu + pv + p'^Wi + qx + y + ^ Zi = 0 
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which implies that u = —v. Thus all relations are of the form 

9 - 1 9 - 1 

u[ZpGq^p\ - u[ZpCp] - u ^[ZpGg,pe^J + a;[ZpCg] - a;[Zp] - x Ĵ fZpC ê̂ -̂J = 0 
i = i 1=1 

as required. • 

5.2.7. Remark. These two relations are precisely the relations used in lemma 

2.4.18 to simplify the calculations. 
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Appendix A 

Index of Definitions 

-c— 

C.M.M. r-functor 119 

Cohomological monomial Mackey functor see C.M.M. T-functor 

Coinvariance factorizability theory 84 

-E— 

Equivalence, of factorizability theories 29 

Extensional module category 15 

-F— 

Factor equivalence, of modules 26 

Factorizability, of invariants 25 

Factorizability theory 21 

Fibre category $(6,3^) 15 
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- H — 

Hecke category 124 

Heller sequence 19 

- I — 

Invariance factorizability theory 50 

- L — 

Locally defined 25 

- M — 

Monomial Mackey functor see C.M.M. T-functor 

-R— 

Real factorizability theory 38 

Relative group XoiQ,?) 17 

-S— 

Species 140 

Strength, of factorizability theories 29 

Strictness 26 

Strong cyclic case, of a factorizabiUty theory 55 

Weak cyclic case, of a factorizability theory 54 
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