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Abstract 

We present the techniques for the calculation of one- and two-loop integrals con­

tributing to the virtual corrections to 2--+2 scattering of massless particles. First, 

tensor integrals are related to scalar integrals with extra powers of propagators and 

higher dimension using the Schwinger representation. Integration By Parts and 

Lorentz Invariance recurrence relations reduce the number of independent scalar 

integrals to a set of master integrals for which their expansion in E = 2 - D /2 is 

calculated using a combination of Feynman parameters, the Negative Dimension 

Integration Method, the Differential Equations Method, and Mellin-Barnes inte­

gral representations. The two-loop matrix-elements for light-quark scattering are 

calculated in Conventional Dimensional Regularisation by direct evaluation of the 

Feynman diagrams. The ultraviolet divergences are removed by renormalising with 

the MS scheme. Finally, the infrared singular behavior is shown to be in agreement 

with the one anticipated by the application of Catani's formalism for the infrared 

divergences of generic QCD two-loop amplitudes. 
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Preface 

Since the beginning of history, mankind has been involved in a continuous explo­

ration of everything that can be observed or apprehended. The pursuit for finding 

the "real" nature of the world is not only a means to satisfy instinctive curiosity but 

also a principal tool for the advancement and progress of civilization. 

The initial approach was rather spiritual and Gods were called upon to explain 

the diversity of nature. As time passed our perception of the world has matured 

into theories which aim to interpret observations in a more fundamental way by 

unifying the underlying mechanisms governing the complex variety of phenomena. 

The concurrent development of Mathematics has crystallized the content of physical 

laws and disclosed their simplicity. 

Theories not only serve as an explanation of existing observations but also have 

predictive powers for new phenomena which may be probed by experiment. The 

interplay between theory and experiment is the cornerstone for the development of 

Physics, filtering the ideas and consolidating our knowledge. 

Nowadays, we have reached a very compact conception of nature. The world 

consists of elementary particles communicating with each other via the electromag­

netic force, the weak and the strong nuclear forces and gravity. With the Standard 

Model we have a very good description of the unified electroweak and strong forces. 

Gravity is still a puzzle at small scales, but since it is much weaker than the other 

forces, it plays a minor role at the energies we are probing with Particle Physics 

experiments and is usually ignored. 

The electroweak sector of the Standard model is a field theory based on the in­

variance under the local transformations of the U ( 1) 0 SU ( 2) group. This symmetry 

is not observed at low energies, since it gets broken with the Higgs mechanism, pro­

viding masses to the particles and leaving a residual U(l) symmetry characteristic 
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of the electromagnetic interactions. 

In this thesis we deal with the part of the Standard Model known as Quantum 

Chromodynamics (QCD) describing the strong interaction that glues together the 

constituents of the nuclei. It is a field theory invariant under local transformations 

of the SU(3) group. We shall give an overview of the basic aspects of QCD in 

Chapter 1. 

The theory at high energies is characterized by a small coupling making possible 

the calculation of physical observables by means of a perturbative expansion. Feyn­

man diagrams provide the natural framework for such expansion in Quantum Field 

Theories with small coupling. The calculations are getting more and more cumber­

some as we proceed with higher order terms. One is faced with multiple integrations 

in momentum space that exhibit ultraviolet (UV) and infrared divergences (IR) in 

the high and the low energy limits respectively. 

We can quantify the divergences with the adoption of a suitable regularisation 

scheme. The UV divergences are then removed with a procedure called renormali­

sation where one has to redefine the fields of the QCD Lagrangian. The renormali­

sation procedure will be explained in Chapter 1. 

TheIR divergences are of different nature and can be treated separately. They 

are the result of situations were two massless particles cannot be distinguished from 

each other in phase space, either because one has very small energy relatively to 

the other (soft limit) or their relative angle is very small (collinear limit). TheIR 

divergences cancel out for carefully defined observables as we will see in Chapter 2. 

In Chapters 3, 4 and 5 we will study methods for the calculation of multi-loop 

integrals. We will use these techniques to compute one and two-loop integrals with 

up to four light-like external legs which are relevant for the scattering of two initial 

state massless particles to two final state massless particles. In particular, they can 

be used for the calculation of the hadron-hadron-t2 jets cross-sections at Next-to­

Next-to-Leading-Order (NNLO) accuracy in perturbation series. 

Knowledge of the cross-section at NNLO accuracy is important for many rea­

sons. First, one would improve the state-of-the-art theoretical prediction truncated 

at next-to-leading order (NLO) which, although it gives a good description of ex­

perimental data, suffers from a big dependence on unphysical scales. Such scales are 

present whenever we terminate the perturbation series in a truncation point. In an 
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all-orders calculation the dependence on unphysical scales of the higher order terms 

counteracts the dependence of the lower-order terms. Therefore it is important to 

calculate as many higher order terms as possible in order to allow this cancellation to 

happen. A calculation of the NNLO term is thus important since we expect the sen­

sitivity of physical observables on the variation of such scales to be reduced resulting 

in a more accurate theoretical prediction. In addition, one can start discussing the 

validity of the perturbative expansions, since a comparison of the relative size of the 

NNLO result to the NLO result will be possible. Finally, the forthcoming experi­

ments at Tevatron and LHC are expected to yield experimental data of very high 

quality at a very broad range of energies superseding the accuracy of the current 

NLO theoretical prediction. 

In Chapter 6 we compute the matrix elements at NNLO for the quark scattering 

processes qij-tqij, and qij-tQQ, using Conventional Dimensional Regularisation and 

renormalising with the MS scheme. This consists the main result of the thesis. 

Similar results have been recently produced for the whole set of virtual corrections 

for the processes contributing to hadron-hadron-t2 jets (see [1, 2, 3, 4, 5]). 
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Chapter 1 

Basic aspects of QCD 

In this Chapter we give a brief introduction to QCD emphasizing only the aspects 

needed for the rest of this thesis. For a detailed introduction to Particle Theory, 

Quantum Field Theory and QCD the references [6, 7, 8, 9, 10, 11, 12] may be 

consulted. 

1.1 The quark model 

Hadrons are the particles which undergo strong interactions. They are observed 

either in fermionic (baryons) or bosonic (mesons) states. The big number of observed 

hadrons was an indication that they were not elementary entities but composite 

objects of other elementary constituents. According to the quark model, the baryons 

are bound states of three quarks (qqq) while the mesons are bound states of a quark 

and an anti-quark (qij). There have been observed six species (flavors) of quarks: 

up(u), down(d), strange(s), charm(c), bottom(b) and top(t), all carrying spin 1/2. 

The electric charge of u, c, and t is +2/3 while the charge of d, s and b is -1/3. 

Problems with the spin statistics of baryon bound states, suggested that quarks 

must be allowed an additional degree of freedom to the electric charge and the flavor, 

which is named color charge. To distinguish between three otherwise identical quarks 

making for example the uuu baryon state, one has to introduce at least three different 

color indices (e.g red, blue, green). Another experimental fact is that all observed 

hadrons are confined to colorless states (red+blue+green, red+anti-red, etc). No 

single quark or bound colorful states of two quarks qq, etc have ever been observed. 

1 



Chapter 1. Basic aspects of QCD 2 

Confinement, is an additional theoretical hypothesis but it is believed that it may 

be a consequence of the dynamical properties of the quarks. 

The dynamics of the elementary particles in hadrons is described by Quantum 

Chromodynamics (QCD). Quarks are considered to be point-like entities, as demon­

strated from the scaling behavior observed in deep inelastic experiments, carrying 

color charge. In analogy with QED where charged particles interact via the media­

tion of the photon, in QCD the carriers of the strong interaction are bosons called 

gluons. 

The theory postulates invariance under local transformations of the SU(3) group. 

The quarks transform according to the fundamental representation and the anti­

quarks according to the complex conjugate representation. The gluons transform in 

the adjoint representation. As a consequence, the basic color singlet states qicf and 

the totally antisymmetric Eijkqiqjqk correspond to the observed meson and baryon 

states. 

1.2 The QCD Lagrangian 

The full QCD Lagrangian density consists of 

LQCD = Lclassical + Lgauge- fixing + Lghost (1.1) 

Lclassical describes the dynamics of the quarks as relativistic spin-1/2 particles, 

carrying color charge. lnvariance under local SU(N) transformations, with N = 3 

color degrees of freedom, demands the existence of N 2 - 1 vector boson gluons 

mediating the interactions between quarks. Specifically, we write 

Lclassical = L if; J,i ( iJAj - m JOij) '1/J J,j - ~ F:vFJJ-V,a 
f 

(1.2) 

where the quark fields '1/Jt,i carry a flavor index f and a color index i. We adopt the 

notation/!.= IJJ-AJJ- where the Dirac gamma matrices satisfy the Clifford algebra 

The covariant derivative is 

D/1- - [)11-S: • AJJ-ta ij - Uij - zg a ji 

(1.3) 

(1.4) 
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where the gluon fields A~ carry color indices a running from 1, ... , N 2 - 1. The 

matrices ti] are the generators of the fundamental representation of SU(N), and 

their commutator defines the group structure constants 

(1.5) 

The coupling strength of the quarks to the gluons is g. The kinetic energy term 

of the gluon fields is built in terms of the field strength tensor constructed by the 

commutator of two covariant derivatives 

(1.6) 

where 

(1.7) 

In QCD, gluons carry color charge themselves and due to the last term of Eq. 1.7 

we can have gluon self-interactions. In QED this non-abelian term is missing and 

we do not observe interactions between the neutral photons. 

The classical part of the Lagrangian respects the basic principle of gauge invari­

ance, where the fields transform as: 

with U a local transformation of the fundamental representation of SU(N) 

where ea(x) is an arbitrary function. 

(1.8) 

(1.9) 

(1.10) 

One gets quickly into problems trying to quantize £classical· The first difficulty 

arises from the freedom of the gluon fields (the same problem is apparent in QED for 

photons) to change by a total derivative and leave the Lagrangian invariant (gauge 

transformation). In the canonical quantization method this problem appears as 

a vanishing conjugate momentum for the time-like components of the gluon field, 

thereby invalidating the canonical commutation relations. In the path integral for­

malism, the contribution of each gluon field to the path integral over the exponential 
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of the action is overestimated by an infinite amount since one can perform an infi­

nite number of gauge transformations to the field without changing the action. It 

is necessary to impose a constraint on the gluon fields by forcing them to choose 

only one of the possible gauges. This is the role of the gauge-fixing term in the total 

QCD Lagrangian 

Lgauge-fixing =-
2

1e (8J.LA~) 2 (1.11) 

which specifies the gauge in a covariant manner. The parameter e is arbitrary. The 

total Lagrangian is no longer gauge invariant, but the physical predictions stemming 

from it should be gauge invariant and independent of the parameter e. In the rest of 

this thesis we shall choose the value e = 1 corresponding to the so called Feynman 

gauge. 

Even with the addition of the gauge-fixing term we still have not restricted the 

gluon fields to only two physical polarisations 1 . To account for this we need to 

introduce a new fictitious field which is called the Fadeev-Popov ghost. Although it 

is a scalar field with a boson-like propagator it exhibits fermionic behavior since it 

satisfies anticommutation relations. The ghost term in the Lagrangian has the form 

(1.12) 

In QED Uabc = 0) there is no need to introduce a ghost, since it does not interact 

with any other physical field, and can be integrated out from the path integral of 

the exponential of the action. 

1.3 Feynman rules 

The QCD Lagrangian is the basis for theoretical calculations of physical observables 

which can ultimately be compared with experiment. Experimental information usu­

ally consists of measurements of cross-sections for the scattering of particles, or their 

decay rates. In general, we start from a very well prepared initial state with a given 

particle content and after interactions take place we measure the production rates 

of particles in the final state. 
1 Alternatively, we could have chosen the so called axial gauges restricting the gluons to two 

physical polarisations right from the beginning. 
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From the theoretical point of view, the initial and final states are related to each 

other through the S -matrix, which describes the evolution of the system during 

the interactions. Unfortunately, it is very hard to attempt a complete evaluation 

of the S -matrix, and we usually restrict ourselves to finding approximate solutions 

using perturbation theory. The success of the approximation relies on the size of the 

perturbation parameter, which in QCD is the coupling constant a and is related to 

the strength which the fields interact (couple) with each other g via 

g2 
a-­- 47!". (1.13) 

As we will see later, a becomes small at high energies and the perturbative expansion 

is valid. 

There is a pictorial method to find the terms of the perturbative expansion with 

the use of Feynman diagrams. One has to draw all the possible configurations of 

propagating particles and interactions connecting the initial and final states which 

are allowed from the Lagrangian. Each diagram, belongs to a specific order in the 

perturbation series and we consider only those which contribute to the order of the 

approximation. From the Lagrangian we can read off the Feynman rules that assign 

a meaningful mathematical expression to the various parts of the diagrams. Finally, 

we have to compute each of the diagrams and take their sum. 

Here, we present the Feynman rules for QCD. Gluons are denoted with curly­

lines, quarks with solid-lines and ghosts with dashed-lines. The color indices of 

gluons and ghosts are denoted with a,/3,/,0 and for the quarks with i,j. The 

Lorentz indices are denoted with J.L, v, . . . while spinor and flavor indices for quarks 

are implicit. 

The gluon quark and ghost propagators are respectively, 

a,J.L j3,v 
~ 

'l J 
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a (3 

At the denominator of each propagator we assign a small positive imaginary part 

(Feynman prescription) originating from causality arguments and its role is to ensure 

that the propagation of particles is from earlier to later moments in time. 

The interaction vertices are: 

• The triple-gluon vertex 

(3, v 

lP2 
,~ -g fop, [{pl _ p,)'g"" + (p, _ p3)"g"P + {p, _ p1)"gP"] 

a,f-l /,P 

All particles are incoming, Pi+ p~ + p~ = 0. 

• The four-gluon vertex 

(3,v /,P 

X 
a, f-l o, rJ 

• The quark-gluon vertex 

a,J-l 

A 
z J 

-g2 f>.a:-y f>.f3o [gi-LII gpa _ gi-LO' giiP] 
_ g2 f>,a:o f>.f3-y [gi-LII gPO' _ gi-LP gva] 
_ g2 i>.af3 I>. -yo [gi-LP gva _ gi-La gv P] 

-i gt}i 1/-L 
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• The ghost-gluon vertex 

In addition, 

a,t-t 

I 
/ ' p 

/ ' 
,~/ ', 

(3 

7 

• for each loop with momentum k we perform the integration with measure 

J dDkj(21T)D, where Dis the dimension, 

• multiply with -1 for each quark or ghost loop, 

• multiply with a symmetry factor, accounting for equivalent permutations of 

the fields of the diagram. 

Given the Feynman rules we can write a mathematical expression for any physical 

amplitude at any order in perturbation theory. The difficulty lies in evaluating these 

expressions and especially in performing the integrations over the loop-momenta. 

Loop integrals in D = 4 dimensions often diverge. We separate the divergences in 

ultraviolet (UV) and infrared (IR). 

• UV are the divergences due to the singular behavior of Feynman integrals 

at large loop momenta. They can be systematically removed order by order 

in QCD by a procedure called renormalisation, where the parameters of the 

Lagrangian are rendered finite by an infinite shift. 

• IR divergences occur when one of the propagators in the loop becomes zero 

for a specific value of the loop momentum. For massive propagators this 

never happens, but in QCD the presence of gluons and light-quarks gives rise 

to IR divergences. As we shall see in Chapter 2, IR divergences cancel for 

carefully defined quantities, and can be largely predicted for one and two-loop 

amplitudes 
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In order to apply the renormalisation procedure or to make manifest the cancel­

lation of the IR divergences, it is necessary to quantify the infinities and separate 

them from the finite part of the integrals. This procedure is called regularisation. 

There are quite a few regularisation schemes treating the problem of quantifying 

the infinities of the integral. The most commonly used is dimensional regularisa­

tion (Ref. [13, 14, 15]), where we treat the number of dimensions as a non-integer 

number. Dimensional regularisation respects all the symmetries of the original La­

grangian and the resulting Green's functions, and it will be used throughout this 

thesis. 

1.4 Dimensional Regularisation 

With dimensional regularisation we assume that the Feynman integrals are analytic 

functions of the number of dimensions D. UV or IR divergent integrals in D=4 

dimensions are well behaved when D is not integer. We can calculate them in 

D = 4- 2E dimensions where Eisa parameter continuing the integral to non-integer 

values of the dimension. The divergences are then quantified in the form of poles 

1 I En' n = 1' 2' .... 

As we shall see in Chapter 3 in order to integrate out the loop-momenta from a 

Feynman integral, it is sufficient to know the integral 

(1.14) 

where the integration is typically in D = 4 dimensions and n is a positive integer. 

The iO term is the result of the Feynman prescription for the propagators and 

makes the integral convergent for all values of A. In the calculation of this integral 

we will assume that the values of the parameters of the integral are such that all 

convergence criteria are satisfied. This sets stringent criteria for the values of n 

and D. Nevertheless, at the end of our calculation we will be able to extend the 

applicability of our results, via an analytic continuation of the Gamma function to 

complex values, to a larger domain of the space of n and D. 

We assume one time and D - 1 space dimensions. The integral is in Minkowski 
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space, and we perform a Wick rotation 

(1.15) 

to bring it in Euclidean space where it is written as 

(1.16) 

We can perform the integration over the solid angle drlD in D dimensions with the 

following trick 

~D/2 = (l:oo dxc•') n = 1:00 dnxexp ( ~ tx;) 
I drlD I dxxD- 1e-x

2 

= (I drlD) ~ 100 

d (x2
) (x2

) ~-1 
e-(x

2
) 

(I dnD) ~r ( ~), 
yielding 

The second factor in Eq. 1.16, with the change of variables 

becomes 

A 
X= k2 +A' 

dk = -AD/2-n d n-D/2-1 ( 1 _ )D/2-1 l oo kD-1 1 11 
0 (k2 +At 2 0 XX X 

= ~AD/2-nf (n- ~) f (~) 
2 r(n) ' 

where we used the definition of the Beta function 

B(a, b)= t dx xa-1(1- x)b-1 = f(a)f(b). 
lo r(a +b) 

(1.17) 

(1.18) 

(1.19) 

Finally, substituting Eq. 1.17 and Eq. 1.18 into Eq. 1.16 we obtain the basic formula 

for integration in Dimensional Regularisation (in Minkowski space) 

(1.20) 
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For the derivation of the above equation it was important to assume that the 

dimension was a positive integer, and in order to safeguard convergence in all steps, 

it was necessary to satisfy the constraint n > ~- We can relax these conditions by 

considering a generalized definition of the Gamma function 

r(z) = 100 e-ttz-1 (1.21) 

which is valid for complex numbers z with positive real parts. Using the property 

r(x + 1) = xr(x), 

we can obtain an analytic continuation to all complex numbers except negative inte­

gers. This is very important, since it is now possible to calculate integrals, otherwise 

divergent, by shifting the parameters involved (dimension, powers of propagators) 

by a small amount away from their integer values. 

In this point we should examine the behavior of the integral in terms of the 

variable A. When A > 0, the integral of Eq. 1.16 is well defined. For A < 0, the 

denominator might vanish, producing singularities. A is typically a linear combi­

nation of masses with positive coefficients and momentum invariants (Mandelstam 

variables) with negative coefficients. Inevitably singularities arise when the Man­

delstam variables become time-like. These singularities, by their nature, cannot be 

regulated with dimensional regularisation. However, the small positive imaginary 

part assigned to the denominators of the propagators with the Feynman rules, pro­

vides appropriate analytic continuations of the integral to otherwise non-accessible 

kinematic regions. Whenever a crossing of a discontinuity occurs, then the integral 

gains an imaginary part. A thorough investigation of the analyticity properties of 

Feynman integrals can be found in Ref. [16]. 

Returning to dimensional regularisation, shifting the dimension has to be fol­

lowed by some modifications in the Lagrangian of QCD in order to ensure dimen­

sional consistency. Since the action 

S= J dDx£ (1.22) 

is a dimensionless quantity, it is easy to deduce the mass dimensionalities of the 

quark and gluon fields 

D-1 
[¢J,i] = -2-, (1.23) 
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by inspection of their kinetic energy terms. From the interaction part of the La­

grangian it is then easy to deduce that the coupling constant has dimension 

D 
[g] = 2--. 

2 
(1.24) 

In D = 4, the coupling constant has no dimension. Since we decided to use the 

number of dimensions as a regulator, our theory acquires one more scale. We choose 

to write explicitly this new scale dependence introducing an arbitrary mass Jl and 

replacing the coupling strength with 

(1.25) 

where E = 4
--./. 

Having made the analytic continuation of loop momenta to D = 4 - 2E, and 

postulated dimensionless action in arbitrary D dimensions to fix the dimensionality 

of the fields, we are still left with some freedom for the number of polarisations 

of the internal and external quark and gluon fields. This freedom defines different 

dimensional regularisation schemes. Throughout this thesis we choose to work in 

Conventional Dimensional Regularisation (CDR), where no distinction is made be­

tween particles in loops or external states, and we consider two helicity states for 

massless quarks and D - 2 helicity states for gluons. 

1.5 Renormalisation 

As we have already mentioned, QCD suffers from ultraviolet infinities in the Feyn­

man integrals at each order of the perturbation series. Fortunately, it turns out that 

QCD is a renormalisable theory. 

Starting from the Lagrangian given in Section 1.2, we can redefine all the fields 

and parameters by a multiplicative factor. For example we can set 

A a 
J.L 

zl/2 A a 
3 r,J.L' (1.26) 

'l/Jt,i 
1/2 z2 '¢Jr,i, (1.27) 

g Zggs, (1.28) 
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So far we have done nothing apart of a simple renaming of the terms of the La­

grangian, and we would therefore expect the path integral over the action (which 

generates the Green's functions of the theory and the S-matrix elements) to remain 

the same. 

The Green's functions in terms of the original fields have divergences in the 

ultraviolet limit. With the above redefinition we can express the same divergent 

quantities in terms of the new renormalised fields Ar, '¢n ... and the multiplicative 

factors Z3 , Z2 , Z9 , ... . In other words, one could write a Green's function of the 

original fields as the product of a Green's function of the renormalised fields times the 

multiplicative factors Z. We can successfully renormalise our theory if we can absorb 

all the UV divergences in the multiplicative factors, leaving the renormalised Green's 

functions UV-divergence free. 2 We can then re-interpret the Green's functions of 

the renormalised fields as the ones that have physical meaning [15). 

Renormalisability is a desirable property for every serious candidate for a physical 

theory since predictions for observables, such as cross-sections, decay rates, etc, 

should be finite. QCD enjoys this property and one can prove by induction that 

the cancellation of the UV divergences works at all orders for all Green's functions 

by readjusting the multiplicative factors Z at each order. The proof is a difficult 

one but it is simplified by exploiting the symmetries of the Lagrangian (e.g. gauge 

invariance) which yield relations among the Z factors (Slavnov- Taylor identities). 

The renormalisation procedure has a certain degree of arbitrariness. Practically, 

there are two choices that one has to make. In subtracting the divergences from 

the Green's functions, together with the singular parts, we have the freedom to 

absorb different amounts of finite parts into the infinite multiplicative factors Z. 

The prescription one uses to subtract the divergences defines the renormalisation 

scheme. We shall use the MS (modified minimal subtraction) scheme, where the 

prescription used is to remove only the UV poles in t, where we have defined 

1 1 -"(€ ( )€ :: = - e 41f . 
E E 

(1.29) 

and 1 is the Euler-Marchesini constant. 

The second choice concerns the mass scale J-l (renormalisation scale) introduced 
2They can still have infrared (IR) divergences due to vanishing propagators, but these diver­

gences will safely cancel out for physically meaningful quantities. 
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with dimensional regularisation in order to preserve a dimensionless action. The 

renormalisation scale remains in the finite part of the Green's functions leaving an 

arbitrariness for the renormalised Green's functions after the subtraction of diver-

gences. 

According to the choices for the renormalisation scheme and scale we end up 

with different expressions for the same physical quantity. Self-consistency requires 

that those expressions are all equivalent with each other. This imposes very strict 

limits on the behavior of physical (renormalised) quantities when varying renor­

malisation scale or changing the renormalisation scheme and they need to satisfy 

appropriate differential equations known as renormalisation group equations. They 

can be derived by demanding that the original unrenormalised ("bare") parameters 

of the Lagrangian or measurable physical quantities are independent of f.L· 

1.6 Running as and perturbative expansions in 

QCD 

In the basic relation between the bare and the renormalised coupling strength 

or, equivalently for the coupling constant, 

(1.30) 

the multiplicative factor Z9 can be calculated in a perturbative expansion, yielding 

(in MS), 

aS€ =as (J.L2)E [1- ,Bo (as)+ (,85- ,81) (as)2 + O(a~)J' 
c 2n c2 2E 2n 

where 

1 = 0.5772 ... = Euler constant. 

The coefficients ,80 and ,81 for Np (massless) quark flavours are 

,8
1 

= 17C1-10CATRNF- 6CFTRNF 
6 

(1.31) 

(1.32) 

(1.33) 



Chapter 1. Basic aspects of QCD 

where N is the number of colours, and 

for SU(N). 

N 2 -1 
Cp = 2N ' 

The bare coupling a does not depend on the renormalisation scale Jl, 

which, by inserting Eq. 1.30 and defining the beta function 

yields the result, 

14 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

From Eq. (1.31) it is easy to infer Z9 order by order in as, and substituting into 

Eq. (1.37), after an expansion in as we obtain 

(1.38) 

The solution of the above differential equation, which takes the integral form 

(1.39) 

determines the behavior of the strong coupling with the energy scale Jl2 , given a 

known value of it at an energy scale J-L5. 

When both as(J-L2 ) and as(J-L5) are small, one can attempt a perturbative solution. 

For example, keeping only the two first terms from the r.h.s of Eq. (1.38), we obtain 

the solution 

(1.40) 

For up to sixteen active light quark flavors the coefficient (30 is positive. This has 

very important consequences for the validity of perturbative expansions in QCD 

since with increasing energy scale Jl2
, the strong coupling becomes smaller. Let us 

justify this statement further. 
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A dimensionless physical observable R should be independent of the renormali­

sation scale f-L· If R depends on the squared energy scale s, it will be a function of 

the dimensionless ratios/ J-£2 and the strong coupling as(J-£2
). We can then write the 

renormalisation group equation 

dR 
dj-£2 = 0, 

which takes the form 

or, by defining t = log ( s / J-£2
), 

It is easy to prove that R ( a5 ( s), 1) is a solution of the 1<1st equation. Indeed, 

8R(a5 (s), 1) 
at 

which completes the proof. 

(1.41) 

(1.42) 

(1.43) 

So we can conclude that the dimensionless physical quantity R measured at the 

energy scales, is a function of the strong coupling at the same energy a8 (s). From 

Eq. (1.40) we found that for big energy scales a 5 becomes small. This is the very 

property of QCD ("asymptotic freedom") which allows a perturbative expansion of 

R in terms of a 8 for large energies. 

(1.44) 

1.7 Higher order corrections in QCD 

There are a few challenges in the perturbative expansion of the last section. The first 

challenge comes from the fact that a 5 is a free parameter of the QCD Lagrangian. 

Therefore we can only extract its value comparing with experimental data for the 

physical observable R. For a reliable comparison, we need to know as many of the 

ri coefficients as possible. In practice we truncate the perturbation series just after 
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a few first terms, inducing a systematic error in calculating the physical observable 

R due to the ignorance of the higher order corrections. This error is then reflected 

as an uncertainty in the determination of as. 

Another problem due to the truncation of the series is that the theoretical pre­

dictions become sensitive to the variation of unphysical scales, such as the renor­

malisation scale. In Eq. 1.44 we choose to resum all the logarithms depending on 

J-L2 in terms of the "physical" scale s. An equivalent perturbative series would be 

R = R(as(s), J-L2 
/ s) = r1(sj J-L2)as(J-L2

) + r2(sj J-L2)as(J-L2
)

2 + r3(sj J-L2)as(J-L2
)

3 + ... , 

(1.45) 

where J-L2 can take an arbitrary value (as long as as(J-L2) is small). Inserting the last 

expansion in Eq. (1.43), it is easy to see that the first term r 1 does not depend on 

/-L2' 

fJr1 = 0 at · 
As a consequence, the leading order of the series term depends on J-L2 only through 

as(J-L2). From the expansion of the f3 function, 

2aas 2 3 
1-L fJJ-L2 = -f3oas - f3Ias - · · · , 

we see that the variation (derivative) of as with J-L2 is of higher order than O(as), 

since the leading term of the r.h.s is of order O(a;). Therefore, the variation due 

to as of the 10 term in Eq. 1.45 is compensated by the higher order terms in the 

series. Working upwards for the general rna~ term, we find that the variation of r n 

serves to cancel the dependence on 1-L of lower order terms, while the variation of 

a~ gets canceled from higher orders. Inevitably, if we truncate the series we do not 

allow the cancellation of the scale dependence between different orders, and we are 

therefore left with a residual dependence on J-L2 of one order higher of the truncation 

point. 

It is natural to expect that the sensitivity of the truncated series on J-L2 decreases 

as we increase the number of calculated terms. For example, figure 1.1 shows the 

predicted differential cross section for producing jets with transverse energy of 100 

GeV in the CDF detector at the Tevatron. The renormalisation scale dependence 

is shown for the 10, N10 and NN10 order predictions (this is known from the 
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renormalisation group equation up to a renormalisation scale independent constant ). 

Note that the factorization scale is kept constant . We see that for renormalisation 

scales within a factor of two of the jet energy, the renormalisation scale uncertainty 

is reduced from 20% to 9% to 1%. Interestingly, the experimental statistical error 

from CDF with Run 1 data for this data point is currently about 2%. "·hilc the 

systematic error is about 10%. 
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Figure 1.1: The scale dependence decreases at higher orders. The 10 is in red. -:\10 

in green and N~LO in blue. 

The majority of theoretical predictions for physical observables in QCD include 

Next to Leading Order (~LO) terms in perturbation series and in general they 

show very good agreement with experimental data. ~evertheless. the dependence 

on unphysical scales is still significant. What is more. forthcoming experiments 

in the new generation accelerators (Tevatron, LHC) are expected to obtain high 

quality data for a much larger range of energies. The experimental uncertainties 

are believed to drop far below the accuracy of the theoretical predictions. It is then 

important to improve the theoretical calculations to a comparable precision. 

The calculation of the )Jext-to--:\ext-to-Leading-Order (-:\::'\10) terms is a \'ery 

challenging work at both mathematical and computational level. The first major 

task is the calculation of matrix-elements at two-loop level. The number of Feynman 

diagrams ranges up to thousands, and their calculation involves a ver~· hig number 
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of tensor and scalar two-loop integrals. It is the aim of this thesis to present some 

of the methods used for multi-loop matrix-elements calculations. 

We are primarily interested in the one- and two-loop integrals for the scattering 

of two initial-state to two final-state massless particles where the virtual particles 

produced during the interaction have massless propagators. The techniques tackling 

these integrals are presented in Chapters 3, 4 and 5. We will finally use the computed 

integrals in an explicit calculation of the matrix elements for the scattering of light­

quarks (Chapter 6), which is part of the set of processes contributing to the two-jet 

production from hadron-hadron scattering. The calculation of matrix-elements of 

other contributing sub-processes can be performed with a similar approach. Before 

that, in Chapter 2 we shall look at general features of cross sections for hadron­

hadron interactions. The requirement that the total cross-section is free of infrared 

singularities provides the tools to largely predict the poles in E of the NNLO matrix 

elements of Chapter 6, and serves as a very stringent check of our results. The 

formalism for the prediction of the poles at NNLO matrix elements is almost process 

independent and was developed by Catani (Ref.[17, 18]) 



Chapter 2 

Infrared Divergences 

In subsequent chapters we will study integrals for 2-+2 scattering of massless par­

ticles, and we will use them to calculate matrix-elements at NNLO for physical 

processes such as the scattering of two initial-state to two final-state quarks. Us­

ing the same techniques we can calculate matrix elements for other QCD processes 

such as qij-+gg [1], gg-+gg [5] or the processes e+e- -+f.l+ f.l- [19], e+e- ---te+e- [19], 

!!-+''('(, qij-+{/, etc. where we can consider that external particles are light-like 

and the internal propagators are massless. 

The processes involving quarks and gluons at initial states are very important for 

the study of the hadron-hadron scattering at the Tevatron and LHC. The computa­

tion of the hadronic cross-section at NNLO accuracy is anticipated to improve the 

state of the art NLO approximation and match better the experimental precision. 

There is a direct connection of the cross-section with hadronic initial states to the 

cross-section of the quark and gluon constituents (partons). For inclusive quantities 

one can write the following factorization formula 

o-(g, P2) = ~ J dxidx2fi(xb f.l~)IJ(x2, f.l~)o-ii(PI,P2, as(f-£2), sj f-£2, sj f.l~) (2.1) 
t,J 

The initial hadrons have momenta PI and P2 where the partons which participate in 

the hard scattering carry a fraction of the initial momenta PI =xi PI and p2 = x2P2. 

The scale s = (PI+ P2)2 may serve as a reference ("physical") scale of the hard 

scattering. 

The functions Ai(x, f.l}) are parton distribution functions (pdf) which describe 

the initial state of the hadrons in terms of their constituents. The effects binding 

19 
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together the partons in the hadrons are not calculable with perturbation theory. 

Nevertheless, they are independent of the particular process, and may be extracted 

from other scattering experiments such as Deep Inelastic Scattering (DIS). 

J 

Hard Scattering 

'l 

In order to distinguish between the non-perturbative effects in the hadrons from the 

perturbative interactions of the partons we have to introduce an unphysical scale 

ft}. We can think of ft} as a cutoff discriminating between soft and hard radiation 

from the initial partonic states. For example, when a gluon with small transverse 

momentum is emitted from a parton in one of the hadrons it is not able to probe 

the other hadron, and its effect is only to alter the initial state of the partonic 

cross-sections. Therefore its contribution should be included in the evolution of 

the pdf's. On the contrary, emitted gluons with high transverse momentum resolve 

the second hadron and are included in the hard scattering matrix-elements of the 

partonic cross-sections. 

The total hadronic cross-section is independent of ft}, but the pdf's and the 

partonic cross-sections depend on it separately. Similar to the renormalisation scale 
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J.L2 , fixed order perturbation theory introduces a sensitivity with the variation of f.L~· 

We expect that the more terms in perturbation series we calculate the less sensitive 

the cross-section will be. 

From calculating the matrix-elements for the partonic cross-sections to the total 

hadronic cross-section there are many technical issues to be resolved, concerning the 

phase-space integrations and the determination of the pdf's and their evolution at 

NNLO accuracy. In this thesis we deal only with the matrix-elements. Neverthe­

less, the requirement of a finite cross-section puts very strict limitations on their 

singularity structure. 

Catani and Seymour [18] found a general (process-independent) algorithm to 

predict the infrared singular behavior of one-loop amplitudes. Later, Catani [17] 

generalized the method at two~loops. Unlike the one-loop case where all poles are 

predicted, at two-loops we can predict precisely the 1/c4
, 1/c3 and 1/c2 poles, and the 

part of the 1/c pole which depends on logarithms and generalized polylogarithms. 

There is a residual 1/c piece depending on constants (1r2
, ( 3 , Cp, CA, ... ) which is 

particular for the process and depends on the renormalisation scheme. 

After an explicit calculation of the two-loop matrix elements, it is very important 

to be able to check that their pole structure is correct so that we can guarantee the 

cancellation of the poles in the total cross-section. The fact that we agree with 

the predictions stemming from Catani's formalism, is a very strong check for the 

correctness of the calculation because typically all Feynman diagrams of the massless 

QCD amplitudes are infrared divergent. In the rest of this chapter we will explain 

the origin of the infrared singularities, and motivate Catani's formalism. We will 

finally apply it for the case of the unlike-quark scattering at two-loops. 

2.1 Virtual infrared divergences 

We consider the process of a Z boson splitting into a quark and anti-quark 

(2.2) 

where the momentum assignments are in parenthesis, and p = p1 +p2 , with p2 = M~ 

and Pi = p~ = 0. 
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We shall use this process in order to demonstrate the origin of the infrared 

divergences and define physical observables which are finite after renormalisation. 

We shall also explain how to apply Catani's formalism for general one and two-loop 

QCD amplitudes and give some motivation for it from the process of Eq. 2.2. 

The differential decay rate for the Z-decay to a quark-antiquark pair takes the 

form 

1 --2 
d~qij=-M dihiMI 

2 z 

where the two particle phase-space is 

and the matrix-element M can be expanded perturbatively as 

with 

and 

In Eq. 2.3 we sum over all helicities and colors. 

(2.3) 

(2.4) 

(2.5) 

--2 
At leading order (LO) it is straightforward to calculate IMol and perform the 

phase-space integrations yielding the finite result in D = 4 

(2.6) 

where N is the number of colors, Q1 is the charge of the produced quark flavor, and 

a is the electromagnetic coupling constant. 
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We now want to include the next order in perturbation series. M 1 is harder to 

evaluate, since we face a one-loop integral computation. Such computations can be 

performed by the tools developed in subsequent chapters, and we find that 

(2.7) 

where 

D = CF (- J.-L2 )€ e"€f (1 +c) r (1- c)2 [-!__- ~- 4 + O(c)] (2.8) 
M1 r ( 1 - 2c) c2 2c 

This result is very worrying since it diverges in D = 4 (c = 0), and the decay rate 

is unavoidably singular 

(2.9) 

It is easy to trace the origin of the singularities in this calculation. From the 

renormalisation group equation we know that there are no ultraviolet singularities 

in this order, so this is not the place to look at. For the derivation of D we had to 

calculate integrals of the type 

I dDk1 f(ki,p'{,p~) 

iJrD/2 kHkl + PI)2(kl + P2)2 (2.10) 

where f is a second degree polynomial. The above integral becomes divergent for the 

loop-momentum configurations where one of the terms in the denominator vanishes. 

The divergences of this kind are called infrared because they occur for small values 

of the loop-momentum. It should also be noted, that this is a consequence of the 

existence of massless particles (light-quarks, gluons) in the theory. If all propagators 

had a mass term the infrared singularities would have been regulated by the mass, 

producing a finite result. 

2.2 Real infrared divergences 

Before trying to make sense of Eq. (2.9) we turn our attention to the process of the 

quark-antiquark pair creation together with the emission of a gluon 

(2.11) 

where the momenta of the particles are shown in parenthesis, and p = p1 + p2 + k. 

At order O(as) we have the contribution of the following two diagrams 
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and the total decay rate is 

Defining 

(Jqijg = _1_ I diT 1Mqijg'2 
o 2Mz 3 o 

_ 2Eii 
Xq- Mz' 

for the quark, antiquark and gluon energies respectively, we can write 

(2.12) 

(2.13) 

(2.14) 

where the integration region is 0 ::; Xq, xii ::; 1, Xq + xii ~ 1. From momentum 

conservation we obtain the constraint Xq + xii + x9 = 2 and we can also show that 

1 - Xq x- Eg (1- cosO-) q Mz qg 

1- Xq = Xq ~ (1 - cos Bqg) (2.15) 

where Bq9 (Bq9 ) is the angle between the quark (antiquark) and the gluon. 

In four dimensions ( c = 0) the integral becomes divergent when Xq,q-+ 1. From 

Eqs. 2.15 we see that the singularities originate from regions of phase-space where 

the gluon is either "soft" (!~ -+0) or it is collinear to the quark (Bq9 -+0) or the 

antiquark (Bq9 -+0). In D = 4- 2c these singularities are manifest as poles inc= 0 

and after performing the integrations over the phase space we obtain the total decay 

rate 

aqifg= qif(as)c (f-l2)Ee~'Er(1-c)22{~ ~ 19 0(~:)} 
0 ao 27r F M~ r (1- 3c) c2 + 2c + 4 + (2.16) 
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2.3 Cancellation of infrared divergences 

Comparing Eq. 2.9 with Eq. 2.16 we see that the poles inc have opposite signs, i.e. 

the divergences due to the emission of a real soft or a collinear gluon cancel against 

the divergences due to the emission and re-absorption of a virtual gluon. In the 

final-state phase-space the configuration of a soft or collinear gluon emitted after 

the creation of the quark-antiquark pair is very similar to the configuration where 

only the pair is created. Actually, after the fragmentation of the final-state partons 

into hadrons producing jets the two configurations are indistinguishable. 

In general, if one considers physical observables summing together all radiative 

processes (of the same order in a 8 ) which degenerate into the same final-state when 

some of the external particles become soft or collinear, then the result is finite. 

This is guaranteed by the Kinoshita-Lee-Nauenberg theorem which states that any 

transition probability in a theory involving massless particles is finite, provided 

summation over degenerate states is performed. 

Returning to our example, we can write that the total rate for the Z decay into 

jets (partons) at order O(as) 

(2.17) 

The result is finite since the sum of the two decay rates together satisfies the condi­

tion of the previous theorem in this order of the perturbation series. Obviously, if we 

consider only the decay rate for the production of three-jets this is not an "infrared 

safe" quantity. To obtain a meaningful result we need to impose an arbitrary cutoff 

in the integrations of Eq. 2.14 excluding the soft and collinear regions of the phase­

space. The cutoff serves to distinguish between a three and a two jet configuration 

and the divergences in c are replaced by the logarithms of the cutoff. 

The situation is more complicated if we consider cross-sections where the initial 

state particles can radiate. This is for example the case of the partonic cross-sections 

contributing to the cross-section of the hadron-hadron scattering. The initial state 

radiation can lead again to degenerate states producing infrared singularities. The 

Kinoshita-Lee-Nauenberg theorem, modified to account for the sum of all degener­

ate external states, is still working guaranteeing the cancellation of the divergences. 

In this case, the sum over the initial degenerate states, involves all partonic processes 
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contributing to the hadronic cross-section. The infrared divergences associated with 

the initial states are then factorized and absorbed in the parton distribution func­

tions, yielding a finite result. 

Based on the fact that the singular parts of the sum of all degenerate states 

cancel against each other order by order in perturbation theory, we can predict the 

infrared singularities of the one and two-loop amplitudes in QCD with light-quark 

flavors. The amplitudes are computed in conventional dimensional regularisation 

and all UV singularities have been removed with renormalisation in the MS scheme. 

In addition, they depend on the color indices of the initial and final state particles 

so we can consider them to be vectors of a color space. In the following section we 

shall define more precisely the color space and examine the operations we can apply 

to it. 

2.4 Matrix elements in color space 

A general QCD amplitude with m external legs Mm, depends on the colors c;, 

helicities si and momenta Pi carried by the external particles, 

(2.18) 

If the particle i is a gluon (quark), it can take ci = 1, ... , N 2
- 1 (c; = 1, ... , N) 

color values and Si = 1, ... , D- 2 (si = 1, 2) helicities. Therefore, we can consider 

the amplitude as existing in a color + helicity space such that 

M q, ... ,CmjSl,•••>Sm(p p )-(<c C 119.< 8 1)/12 m> 
m 1, · · · ' m = 1, · · · ' m ICI 81, · · · 1 m 1 1 • • • ' ' 

(2.19) 

where < c1 , ... , em/® < s1 , ... , sml is a basis of the space. We then define the 

matrix-element square, summed over colors and spins, as 

/Mm/ 2 =< 1, ... ,mj1, ... ,m >. (2.20) 

We now concentrate on the color components of the amplitude. We are interested 

in the case where an external parton of the amplitude radiates a gluon with color c. 

Then the color space increases by one particle, in order to accommodate the emitted 

gluon. In addition, the emitter of the gluon changes its color index according to the 



Chapter 2. Infrared Divergences 27 

SU(N) color algebra, while the rest of the particles retain their original color. Thus 

we can define a "color charge" operator Tf (acting on the color component of the 

amplitude only) which represents the emission of a gluon with color c from the 

parton i, 

(2.21) 

The matrix T~ depends on the emitter and we have the following cases 

• T~ = ifcab for a gluon, 

• Tcb = t~b for a final-state quark or an initial-state antiquark, 

• Tcb = -tbc for a final-state antiquark or an initial-state quark. 

It is useful to consider the amplitudes with m+ 1 external legs, produced from an­

other amplitude with m partons by insertion in different places of a gluon radiation. 

Taking squares we produce terms of the form 

< 1, ... ,m/Ti · Tk/1, ... ,m > 

[
Mal ... b; ... bk ... am] t rc r,c Ma1 ... a; ... ak ... am 

m a;b; bkak m (2.22) 

where 

fori =j:. k. Fori= k we have 

or, otherwise, 

with 

< 1, ... , m/Ti · Td1, ... , m > 

[
Mal ... b; ... am] t rc rc Ma1 ... a; ... am 

m a;ak akbi m 

[M al ... b; ... am] t C·J< Ma1 ... a; ... am = C· < 1 m/1 m '-'2 23) 
m zUa;b; m z ' • · • ' ' · · · ' --\ · 

N 2 -1 
ci = CF = 2N ' if i is a quark 

ci = c A = N, if i is a gluon 

(2.24) 

(2.25) 
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The last two identities can be easily proved using the decomposition 

/abc = ~tr ( [ ta, tb] tc) 
z 

and the Fierz identity 

tfjtfm = ~ ( oimOjz- ~oijOzm) 
Finally, from color conservation, we have 

m 

LTi\1, ... ,m >= 0. 
i=l 

2.5 Singular behavior of one-loop amplitudes 

28 

(2.26) 

(2.27) 

(2.28) 

We consider the QCD amplitude \M) (in color space) with m external legs. As usual 

we work in CDR and renormalise with the MS scheme. Performing a perturbative 

expansion we can write 

IM) = (~;r [IM0
) + ~;IM1 ) +(~;) 21M')+ O(a;)] (2.29) 

with n depending on the process. 

We separate the singularities of the one-loop amplitude \M1) from the finite part 

with the formula 

(2.30) 

where \M 1,/in) is a finite function when t--+0. All one-loop divergences are factorized 

with respect to the tree-level amplitude \M0). The operator I is meant to act on 

the color vector \M0 ) and encapsulates all the singular dependence. Specifically, 

I(t) =! e"f€ L ~vtng(t) LTi · Tj ( 112e-i>.;rrr)c (2.31) 
2 r (1 - t) i Ti #i 2pi · Pj 

where the indices i, j run over the external legs. The momenta of the external 

particles i, are denoted by Pi and Aij = 1 if both particles are incoming or outgoing, 

otherwise Aij = 0. The singularities appear in the form of 1/t2 and 1/t poles in the 

function 

sing( ) 2 1 1 v. E = Ti - + "'i-
t E2 E 

(2.32) 

where 

(2.33) 
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2.5.1 Application: Z-+qq one-loop singularities 

Let us first check the above formalism against our earlier results for the Z-decay 

to a quark-antiquark pair. Defining the Tb (i = q, q) operators in color space as in 

Section 2.4, from color conservation 

Tq +Tq_ = 0, 

we obtain 

Tq · Tq_ = Tq_ · Tq = -T~ = -T~ =-Cpl. 

Therefore the color-charge operator takes the simple factorized form 

with 

l(c) = w(c)l, 

[-~- ~] (-L)€ 
E2 2E M 2 

z 

(2.34) 

(2.35) 

(2.36) 

Acting on the tree-level amplitude we obtain the singular part of the virtual one-loop 

amplitude which is 

M~ing = as l(c)\Mo) = as w(c)Mo. 
27r 27r 

(2.37) 

It is easy to verify, after an E-expansion of the r.h.s of Eq. 2.37 and Eq. 2. 7, that 

their difference is indeed finite. 

2.6 Singular behavior of two-loop amplitudes 

The singular behavior of two-loop amplitudes is more complicated and the singular­

ities appear as 1 I E4 , 1 I E3
, 1 I E2 and 1 IE poles. Cat ani gave the following factorization 

formula in terms of the one-loop and tree-level amplitudes 

(2.38) 

Again, \M 2,/in) is a finite function when E--+0. The divergences of the amplitude 

receive contributions from two sources. First the double and single poles of our 

known operator I multiply the singularities (1lc2
, 1lc) of the one-loop amplitude 
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IM 1). Second, a new divergent operator J(2) acts on the tree-level amplitude IM0), 

producing poles as deep as 1/E4 . In fact, 

1 ( 1) e-~'cr (1- 2E) ( 1 ) --I( E) I( E)+ 4nj30 - + ( ) 2n/3o- + K 1(2E) 
2 E r 1-E E 

+H(2)(E), (2.39) 

with 

(2.40) 

The function H(2) is of order 1/E, and it depends both on the specific process and 

the renormalisation scheme and consists of constants such as (3 , Cp, CN, n2
. There­

fore, with Eq. 2.38 we can completely predict the singular behavior of the two-loop 

amplitudes through to order 0(1/E2
), together with a large part of the 1/E poles 

depending on logarithms and generalized polylogarithms. The remaining part due 

to H(2) has to be found with the explicit calculation of the two-loop amplitude from 

the Feynman diagrams. 

In Chapter 6 we perform an explicit computation of the two-loop amplitudes for 

quark scattering. Using the above formalism we verify that the pole structure is 

the one anticipated and we compute the H(2) function for the relevant processes. In 

the next section, we construct the I operator for the scattering of unlike-quarks, in 

terms of which we develop our analysis of the infrared behavior in Chapter 6. 

2. 7 Color charge operator I for unlike-quark scat-

tering 

We now consider the amplitude for the process 

(2.41) 

where a quark and an anti-quark in the initial state interact to produce an quark 

and anti-quark pair in the final-state with different flavor. The momenta assigned to 

the external particles are shown in parenthesis and the total momentum is conserved 

(Pi + p~ + p~ + p~ = 0). The Mandelstam variables are 



Chapter 2. Infrared Divergences 31 

and all particles are light-like. 

To obtain the singular parts of the renormalised one and two-loop amplitudes it 

is essential to construct the color-charge operator I of Eq. 2.31 in color space. The 

amplitude at tree-level consists of the diagram 

with color factor 

q~(J 
ij /vvvv~Q 

t~?it~Q = ~ (oqQoqQ- ~OqqOQQ) = ~ (ih)- ~jv)), 
where we have defined the color-vectors 

and 

q Q 
~ 

jh) = OqQOqQ = 
......----..... 
ij Q 
q Q 

jv) = OqqOQQ =) ( _ 
ij Q 

(2.42) 

(2.43) 

It turns out that the one and two-loop amplitudes for the unlike quark scattering can 

be written in color-space as linear combinations of the above two-vectors. Therefore, 

they are a color basis for this process. It is then enough to find the action of the 

color charge operator on the vectors of the basis only. From the definition it is easy 

to verify the normalization relations 

(vjv) = (hjh) = N2 

(vjh) = (hjv) = N. (2.44) 

We now define the color charge operators Tq, Tq_, TQ, TQ, corresponding to the 

color emission of a gluon from the external particles q, ij, Q and Q accordingly. For 

the construction of the I operator of Eq. 2.31, we need to find the vectors Ti · Tjjh) 

and Ti · Tjjv), with i,j = q,ij,Q,Q. For example, 

(2.45) 
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Writing the general element IM) of the color space in the form 

IM) = Mhlh) +M"Iv) = ( ~:) (2.46) 

the above products of operators can be written as matrices. 

(2.47) 

(2.48) 

and 

( -.!2~ _!1 ) Tq · TQ = Tq · TQ = 

2 2N 

(2.49) 

Substituting into Eq. 2.31, we obtain the color charge matrix 

I(c) = ---- -e7
'- [ 1 3]1 ( [ N

2 
- 1]S + U - T 

r (1- c) E
2 

2E N N[S- U] 
N[T-U] ) 

[ N 2 
- 1 )T + U - S 

(2.50) 

with 

s (-~2) £ 

T ( -~2) £ 

u = ( -:2) t (2.51) 

The operator matrix of Eq. 2.50 together with the normalization equations 2.44 for 

the contraction of the vectors of the color-space basis, make up the ingredients for 

the application of the formalism of Catani for the infrared divergences of the one 

and two-loop quark scattering amplitudes. The pole structure will be evaluated in 

Chapter 6 by a direct computation of the Feynman diagrams and agrees with the 

one anticipated. We now concentrate on the problem of calculating Feynman one 

and two-loop integrals. 



Chapter 3 

Representations of Feynman 

Integrals 

One of the most formidable task for the evaluation of matrix elements at NNLO 

accuracy, is the calculation of the tensor and scalar one and two-loop integrals that 

naturally arise. Here we consider the problem in its most general form and we will 

try to establish general methods that simplify it. 

We denote the generic m-loop integral in D dimensions with n propagators 1/A 

raised to arbitrary powers vi as 

where the external momentum scales are indicated by { Ql}. For scalar integrals the 

numerator in Eq. (3.1) is unity, JD ({vi}; {Ql}) [1] - JD ({vi}; {Ql}). The tensor 

integrals JD ({vi}; { Ql}) [ki; ... ], bear products of loop-momentum vectors kf in 

the numerator and they are harder to evaluate. The propagators for particles of 

mass Mi have typically the form 

1 1 

Ai (l:j ~ijkj + qi) 2 
- Ml + iO 

(3.2) 

where ~ij = 0, 1,-1 for j = 1 ... m, and qi is linear combination of the external 

momenta. Feynman integrals have generally complex values, and branch-cuts in the 

space of the kinematic variables { Qn define distinct regions in which they have to 

33 
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be computed. Expressions for the same integral in different kinematic regions are 

connected through analytic continuations. The +iO Feynman prescription in the 

propagators defines the analyticity properties of the integral and serves to correctly 

find the analytic continuations between the various regions. 

In this thesis, we are interested in QCD physical processes that involve light­

quarks and we always assume Ml = 0. We also restrict ourselves to the cases 

where the number of loops m is either one or two. What is more, we apply the 

techniques developed here for integrals with at most four external legs, the main 

physics goal in mind being the matrix elements evaluation of 2-+ 2 scattering of light­

like particles. Nevertheless, the same techniques can be in principle generalized to 

calculate integrals with massive propagators and/or more loops and external legs. 

It is generally very hard to perform a brute force integration of the loop momenta 

km in Eq. 3.1. Instead we rewrite the product of the propagators as a multiple 

integral over new real parameters squeezing the km 's in a single quadratic form, so 

that they can be integrated out trivially. What is left are the integrations over the 

new parameters which are often more convenient. The prescription used for the 

representation of the product of the propagators defines the representation of the 

Feynman integral. Integral representations in real parameters are more promising 

than the original integrals over the loop-momenta and they show explicitly the 

dependence on scales such as propagator masses, Mandelstam variables, etc. They 

also serve to find relations among the integrals of the same topology1. The most 

commonly used representations are the ones in Schwinger and Feynman parameters. 

The Schwinger parametric form is based on writing each of the propagators as an 

exponential integral over a positive real variable ranging up to infinity. Traditionally 

this representation is not very popular for a direct evaluation. Instead, it is very 

convenient to find relations between tensor and scalar integrals. Theories with par-

1 For the rest of this thesis we will say that two integrals belong in the same topology, if their sets 

of propagators are related to each other by a linear transformation of the loop-momenta and/or a 

rearrangement of the external momenta. The powers of the propagators or the dimension of the 

integrals can be still different, or they can possibly carry different scalar products or tensors in the 

numerator of the integrand. An integral belongs to a subtopology of another integral, if by shifting 

its loop momenta or interchanging the position of the external particles, we produce a subset of 

the propagators of the integral of the topology 
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tides that carry spin, give rise to tensor integrals whose evaluation demands some 

extra effort. With the Schwinger representation we can easily displace the problem 

of evaluating tensor integrals to evaluating scalar integrals of the topology with ex­

tra powers of propagators and higher dimension. Making no distinction between 

scalar and tensor integrals is often very useful when a large number of tensors has 

to be calculated, allowing for a uniform approach that can be easily automated. 

The Feynman representation is more popular. The integrations are often viable, 

especially because the parameters are not completely free and obey the constraint 

to sum up to unity. This has been proven very convenient in order to find nice 

transformations that simplify the original representation. Unfortunately, there does 

not exist a systematic method to directly evaluate the integrals over the Feynman 

parameters and success very much depends on specialized clever tricks that can be 

applied mainly within the integrals of the same topology. One can very quickly run 

out of such tricks as the complexity of the integral rises with the introduction of 

additional propagators or kinematic scales. 

We bypass the difficulties of evaluating the Feynman representation with the 

introduction of Mellin-Barnes integrals. Their main advantage is that the new inte­

gration variables are complex and the integration is across straight lines parallel to 

the imaginary axis. The integrands typically vanish at infinity, so one can close the 

contour and attempt a brute force summation of all the residues enclosed leading to 

a hypergeometric series representations. Hypergeometric representations are natu­

rally derived within the framework of the Negative Dimension Integration Method 

(NDIM) as well, and we discuss it in the next chapter. 

Unfortunately, the hypergeometric structure of many Feynman integrals of in­

terest is still very complicated and cumbersome for practical purposes. Feynman 

integrals, as explained earlier, are singular objects and we have chosen the dimension 

as a regulator of their singularities. Divergences arise either because of vanishing 

propagators (infrared) or due to exploding loop-momenta in the numerator at infin­

ity (ultraviolet). It is a great challenge to isolate them since they sit in nested inte­

grals or sums in the Feynman or hypergeometric series representations. A method 

to extract the singularities of the Feynman parametric form has been proposed by 

Binoth and Heinrich [20], but the aim of an analytic solution is sacrificed due to a 

rapid proliferation of the resulting divergence-free integrals which must be evaluated 
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numerically. 

Mellin-Barnes integral representations are very well equipped for an analytic iso­

lation of the poles. The divergences are due to a small number of residues which 

cross the contours of integration when we continue the value of E = 2 - ~ to zero. 

They can be easily spotted and isolated. The remaining series of residues are finite 

and with some effort they can be expressed in terms of generalized polylogarithms. 

Major breakthroughs occurred using this method during the last two years which 

opened wide the road for matrix elements calculation of 2--+2 light-like particles. 

Smirnov [21] first calculated the double-box integral with unit powers of propaga­

tors followed by Tausk [22] on an analogous calculation for the cross box topology. 

Recently, Smirnov [23, 24] calculated the same integrals considering one of the ex­

ternal legs to be massive. 

In this chapter, we explain how to derive the Schwinger and Feynman repre­

sentations of Feynman integrals. Starting from the Schwinger parametric form we 

propose an algorithm to relate tensor integrals to scalar integrals of the same topol­

ogy with extra powers of propagators and higher dimension. We also evaluate some 

one and two-loop integrals from their Feynman representation. Furthermore, we 

derive Mellin-Barnes representations of various one and two-loop integrals and show 

how we can use simple one-loop integrals as building block for the derivation of 

Mellin-Barnes representation of multi-loop diagrams. Finally, we explain how we 

can isolate the E poles of an integral, choosing to work with the Mellin-Barnes rep­

resentation of the cross-triangle diagram. 

We should also mention that very recently methods have been proposed for 

calculating Feynman integrals without a direct evaluation of their integral or series 

representations. These methods are based on the construction and the solution 

of differential or difference equations. Gehrmann and Remiddi [25, 26, 27, 28, 29] 

derive differential equations with respect to the kinematic scales of the integrals by 

using recursive Integration By Parts (IBP) and Lorentz Invariance (LI) identities. 

Then they solve the differential equations order by order in an E-expansion. Using 

again recursive identities from IBP, Tarasov [30, 31] and Laporta [32, 33] derive 

difference equations with respect to parameters such as the dimension and the powers 

of propagators which they can systematically solve. The above methods are very 

promising for an automatized calculation of integrals with many loops giving hope 
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for very accurate theoretical predictions for physical observables. 

In Chapter 5, we shall explain how IBP and LI work in order to reduce the 

number of basic integrals needed from a topology (master integrals), and we shall 

find differential equations satisfied by them. We shall use the differential equations 

to calculate some of the master integrals in terms of other master integrals which 

have previously calculated from their integral or series representations. Finally, 

we shall use the differential equations to verify our reduction algorithms to master 

integrals and the analytic expansions in E of the master integrals. We now return to 

the study of the representations of tensor and scalar integrals. 

3.1 Generic tensor integrals using Schwinger pa-

rameters 

In this section, we deal with the generic tensor integral, JD ({vi}; { QD) [ki; ... ], 

and develop an algorithm to reduce it to a set of scalar integrals. 

A method to reduce tensor integrals constructing differential operators that 

change the powers of the propagators as well as the dimension of the integral was 

presented in Ref. [34]. However, it is in our view simpler to obtain the tensor inte­

grals directly from the Schwinger parameterized form of the integral expressing the 

product of the propagators as 

-Ar-~ .-~.-A-~· = j Vx exp ( t x,~) , (3.3) 

where 

(3.4) 

For a two-loop integral, 
n 

L xiAi = a ki + b k~ + 2 c k1 • k2 + 2 d · k1 + 2 e · k2 + j, (3.5) 
i=l 

where a, b, c, dJ.L, eJ.L and f are linear in the Xi and characterize the topology of the 

integral. With the change of variables 

(3.6) 

(3.7) 
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where 

cef.l-- bdf.l-Xf.l-- __ _ 
- p ' (3.8) 

and 

(3.9) 

we can diagonalize Eq. 3.5, so that 

~ 2 p 2 Q 
L..,. xiAi = aK1 + -;;K2 + p, 
i=1 

(3.10) 

with 

Q = -a e2 
- b d2 + 2 c e · d + f P. (3.11) 

The scalar two-loop integral can be cast in the form 

D ( { 2 ) [ ] I I dD K1 I dD K2 [ 2 p 2 Ql J {vi}; Qi} 1 = 'Dx inD/2 inD/2 exp aK1 + -;;K2 + p , (3.12) 

and the Gaussian integrals over the shifted loop momenta are evaluated (using sim­

ilar tricks as for the proof of Eq. 1.20) to produce 

JD ({vi};{Q;}) [1] =I Vxi, 

the integrand I being given by 

I= p;/2 exp (;). 

(3.13) 

(3.14) 

Similarly, the tensor integrals can be easily obtained by using identities such as 

I dD K1 f.1- ( 2) ( ) inD/2 K 1 exp aK1 0, 3.15 

I dD K 1 f.1- ll ( 2) 1 f.J-ll 1 ( ) 
inD/2 K1 K1 exp aK1 - 2a g aD/2' 3.16 

I dD K1 K" "KP - ( 2) 1 { "" p- "P v- ,_ "P} 1 r-Kv Kv exp aK - gr-Vg v + gr- g v + gr-vgv --. ,;"'"D/2 1 1 1 1 1 I "" 4a2 aD 2 

(3.17) 

To give a concrete example, we consider the tensor integral associated with ki 

{K1f.l-- cKa~ + vf.l-} ( K2 PK2 Q) 
1'\. exp a 1 +-;; 2 +p 

(3.18) 
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Recalling the definition (3.8), we see that ;t'tt consists of the ratio of a set of 

bilinears in Xi divided by P. We can therefore absorb the factors of Xi into Dx (see 

Eq. 3.4) by increasing the power to which the i-th propagator is raised 

( -1Yixr;-1 ( -1yi+~xri - ·+ 
r(vi) Xi ===} -Vi r(vi + 1) = -Vii ' 

while the factor P can be absorbed into I (see Eq. (3.14)) 

increasing the dimension 

1 1 1 
pD/2 p ===} p(D+2)/2' 

1 d+ - ===} 
p 

(3.19) 

(3.20) 

(3.21) 

In this way, each Xi in the numerator increases by one the power of the associ­

ated propagator, and each power of P in the denominator increases the space-time 

dimension D by two. Schematically we have 

JD ({vi}; {Q?}) [krJ = :Lvivj p~ JD+
2 

({ ... ,vi+l,· .. ,vj+I,· . . } ; {Qn) [1), 

(3.22) 

where the summation runs over the elements of (cett- bdtt) which fix the values of 

i, j and Pk· 

For generic four-point integrals, we need tensor integrals with up to four free 

indices, each associated with a Lorentz index of an external leg. Integrals with higher 

powers of the loop-momenta are of course possible, but must yield dot products with 

other momenta when the available free Lorentz indices are saturated. In many cases, 

these dot products can be immediately expressed in terms of the propagators and 

canceled through. 

The procedure previously described can be iterated ad libitum and we can express 

every tensor integral in terms of scalar ones with increased powers of the propagators 
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and dimension D. For example, we have 

JD[k~j 

JD[kfkrJ 

JD[kfk~j 

JD[k~k~j 

JD[kikrkfl 

JD[kikrk~J 

I Vx Yll- 'I, 

I Vx c~Jl-xv - 2~gJJ-V) 'I, 

I Vx ( XJJ-yv + 2~gJJ-v) I, 

I Vx (yJJ-yv- 2~gJJ-v) I, 

I Vx ( Xll-xv XP- 2~ {gll-v XP + gll-P xv + gvp Xll-}) 'I, 

- I Vx (xll-xvyp - .l_gll-vyp + ~{gll-P xv + gVP Xll-}) 'I 
2P 2P ' 

- I Vx 

I Vx 

( xJJ-yvyp- _!!_gvp Xll- + ~{gll-vyp + gll-PYV}) 'I 
2P 2P ' 

(yJJ-yvyp _ 2~ {gll-vyp + gll-PYV + gVPYil-}) 'I, 

JD[k\krkfkrJ I Vx (X" xv XP X"+ 4~2 {g"" g'" + g"Prf" + rr gVP} 

b - -{gJJ-V XP xu + gll-P xv xu + gll-0" xv XP + gVP Xll- xu 
2P 

+ g~X"XP +g'"X"Xv}) I, 

Jn [kr kr kfk~] - I Vx (X" xv XPY" - 2~ {.g'w XP + g"P xv + g"P X"} Y" 

c + -{gJJ-U xv XP + gvu Xll- XP +gPO" Xll- xv} 
2P 

_ 4~2 {g"v gl'" + gPP 9va + g"" 9vp}) I, 

40 
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I Dx (xJ.£ xvypya- _!!_gpa XJ.£ xv- _!!_gJ.tvypya 
2P 2P 

c + -{giLP xvya + gVP XJ.tya + gJ.£0" xvyp + gva XJLYP} 
2P 

ab c
2 

) + 4P2gJ.£V gPO"+ 4P2 {giLPgVO" + gJ.£0" gVP} I, 

I Vx ( X"Y"YPY"-
2
; {g"PY" + g""YP + g""Y"}X" 

c + -{gJ.tvypya + gJ.tpyvya + gJ.tayvyp} 
2P 

ac ) _ 
4
p

2 
{gJLV gpa + giLP gva + giLa gvp} I, 

I Vx ( Y"Y"YPY" + 
4
;, {g"" g"" + gPP 9~ + g'"' g"P} 

a _ -{gJ.tvypya + gJ.tpyvya + gJ.tayvyp + gvpyJ.tya 
2P 

+ g""Y"YP + g""Y"Y"}) I. 

41 

Note that these expressions are valid for arbitrary two-loop integrals and to use 

them we just need to identify a, b, c, dJ.£, eJL and f and construct XJ.£ and YJ.£. The 

powers of Xi and P can then be exchanged for scalar integrals with higher vi and 

higher D. This procedure is straightforward to implement in an algebraic program. 

It is very easy to obtain similar expressions for one-loop tensor integrals. We can 

view the generic one-loop diagram as a limiting case of the generic two-loop diagram 

where we first take the limit c = 0 (corresponding to the common propagators of 

the two loops) and then the limits b = 0, eJL = 0 eliminating the propagators of 

the second loop. Finally, we advance a-+P of the final one-loop diagram. Thus we 

have: 

c 
p-+0, 

b 1 1 
- ----+ - ----+ -
P a P' 

dJ.£ 
XJ.£ ----+ -- YJ.£ ----+ 0. 

P' 
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and 

Finally, for the one-loop tensors up to fourth-rank we obtain 

I Vx XJ.L I, 

I Vx ( XJ.LXv- 2~gJ.Lv) I, 

I Vx ( XJ.LXV XP- 2~ {gJ.Lv XP + gi-LP xv + gvp XJ.L}) I, 

J Vx (X" X" .:t" X"+ 4~2 {g"" g"" + g"Pg"" + g'"' g"P} 

1 - -{gJ.LV XP xcr + gi-LP xv xcr + gJ.LCT xv XP + gVP XJ.L xcr 
2P 

+ g"" X"XP + g"" X" X"}) I. 

linking them to integrals with extra powers of propagators and higher dimension. 

There is no problem at all to repeat the same steps for a general n-rank tensor 

m-loop integral. With this tool at hand we can now concentrate on the evaluation 

of scalar integrals only. 

3.2 Feynman Parameters 

In this section we describe the representation of Feynman integrals in Feynman 

parameters. The goal is again to squeeze the denominators of the propagators 

into a single quadratic form in the loop-momenta so that, after completing perfect 

squares, we can integrate them out. The main advantage in using Feynman instead 

of Schwinger parameters is that due to an additional constraint, one has one less 

integration to perform. Feynman parameters yield expressions which either can 

be directly computed or they can be used as a benchmark to derive Mellin-Barnes 

representations, which are suitable for expansion in E = 2- D /2. 

We consider the generic scalar two-loop integral in D dimensions with n propa­

gators 1/ A raised to arbitrary powers vi 

(3.23) 
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Figure 3.1: The one-loop triangle topology (left) and the one-loop bubble (right) 

topology with arbitrary powers of propagators 

Feynman's trick is to write the product of propagators as 

(3.24) 

With the same change of variables (Eq. 3.6 and Eq 3.7) as in the Schwinger para­

metric form we can complete the squares. Integrating out the shifted loop-momenta 

is now easy, using the identity (Eq. 1.20) 

I dD K 1 Q r(n- ~) Q_n 

i7rl?.- (K2 + ~)n = ( -1) 2 r(n) ~ 2 
(3.25) 

yielding 

JD ({v;}; {Qi}) [I]= {-l)vrrir(v~) [ ( IJ dx,x~·-1) 0(1- Ex,)PN-'f QD-N 

(3.26) 

where P and Q are given in Eqs. 3.9 and 3.11, respectively. Similarly, for a one-loop 

scalar integral we obtain 

JD ( { v;}; { QD) [I J = {-1) ¥ r( ~ ~(~iZ) [ ( IJ dx;x~·- 1) 0( I - Ex,)PN -D Q¥-N 

(3.27) 

Note that since P = Li xi, for one-loop integrals P = 1. 

These forms can be straightforwardly generalized to multi-loop integrals. 

3.2.1 The one-loop triangle 

With the Feynman representations in hand, we can now try to evaluate Feynman 

integrals, starting from the one-loop triangle with one massive external leg (Fig. 3.1). 

D( 2 I dDkl 1 
13 v1, v2, v3; M ) = . D/2 Av1 Av2 A113 

~7r 1 2 3 
(3.28) 
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with 

and 

2_0 
PI- ' 

A1 k~ + iO, 

A2 (k1 + P1)2 + iO, 

A3 (k1 - P2) 2 + iO, 

p~ = 0, and 

We write down the Feynman representation of the integral 

44 

(3.29) 

ID = (-1)~ r(v123- D/2) t dx dx dx xl/1-lxv2-lxv3-lc)"(1- X )PI/123-DQ~-1/123 
3 r(vl)r(v2)r(v3) lo 1 2 3 1 2 3 123 

(3.30) 

where 

(3.31) 

and 

(3.32) 

Throughout this thesis we shall make extensive use of the shorthand notation 

Because of the presence of the c5 function we can change variables: 

x2 (1- x)P 

x3 (1-x)(1-p) 

so that 

(3.33) 
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Using the identity 

we find 

t daaR-I(1- a)M-I = f(R)f(M) 
Jo f(R+ M) 

I D( ·M2) _ ( 1)!2 (M2)~-v123 f(vi23- ~)f(~- VI2)f(~- VI3) 
3 vi, v2, v3 , - - 2 

f(v2)f(v3)f(D- vi23) 

45 

(3.34) 

(3.35) 

With the above analytic expression we can evaluate any graph of the triangle topol­

ogy. We can also evaluate the graphs belonging to the bubble topology which is a 

subtopology. Indeed, if we pinch the first propagator by setting vi = 0 in Eq. 3.35, 

we get an expression for the bubble graph (Fig. 3.1) 

(3.36) 

where for future reference we define 

D( ) ( )Q f(v23- ~)f( ~- V2)f( ~- V3) II v2 v3 = -1 2 ---....:::....:.--"-----'--__:_:::.....__~ 
' r(v2)f(v3)f(D- v23) 

(3.37) 

We will later see that it is convenient to write the integrals of a topology and its 

subtopologies as a linear combination of as few as possible integrals that we call mas­

ters. The practical benefit is not very important for topologies with "easy" analytic 

expressions such as the triangle topology, but it becomes considerable when ana­

lytic expressions, or more specifically, E expansions for every integral of the topology 

are very hard to obtain individually. In such cases we try to find algorithms that 

produce the linear combinations of the master integrals equivalent to the different 

integrals of the topology and deal with the E expansions of the master integrals only. 

The triangle topology possesses one master integral; the one-loop Bubble integral 

with unit powers of propagators in d = 4- 2t: dimensions (BUB). 

-o- (M2
) = I;'-2'(1, 1; M2

) I (3.38) 

Indeed, starting from a general tensor one-loop triangle graph in d = 4- 2t: dimen­

sions, our tensor reduction algorithm produces scalar integrals with extra powers of 

propagators in D = d + 2n dimensions, where n is an integer. We can trivially relate 

all these scalar integrals to the Bubble master integral 

(3.39) 
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where, introducing the definition of the Pochhammer symbol, 

r(z + n) 
(z, n) r(z) = z(z + 1) ... (z + n- 1), (3.40) 

the ratios of r functions combine together yielding 

(3.41) 

with 

( ) 
(1 - E, 1 + n - vi2) (1 - E, 1 + n - vi3) ( E, VI23 - 2 - n) 

Ctr n, VI, l/2, l/3 = ( ( 1, v2 -1) 1, l/3 -1) (2- 2E, 2 + 2n- 2vi23 ) 
(3.42) 

In the limit v2 = 0 or v3 = 0, the function Ctr becomes zero, since the Pochhammer 

term 1/ (1, v2 - 1) (similarly for 1/ (1, v3 - 1)) becomes 

1 r ( 1) v2=o 1 1 
-------:::::::::::}-----0 
( 1, v2 - 1) - r ( v2) r ( o) - oo - · 

(3.43) 

We now turn to the calculation of two-loop diagrams. It is possible to start 

from Eq. 3.26 and attempt to evaluate the integrals over the Feynman parameters. 

Nevertheless, it is often easier to adopt a different approach and view the two-loop 

graph as the composition of two one-loop diagrams. In this way we can perform the 

integrations over each one of the loops separately. 

3.2.2 The Bow-tie topology 

Figure 3.2: The bow-tie topology 

A very trivial example is the bow-tie topology of Fig 3.2. The four external legs 

carry light-like momenta, 

2 2 2 2 0 PI= P2 = P3 = P4 = 

and the only scale present is 
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In fact, due to the absence of a common propagator between the two loops, we just 

have the multiplication of two disentangled one-loop triangle integrals. 

(3.44) 

At D = 4 + 2n - 2E we see that the integrals of the topology are related to the 

GLASS master integral, by 

where 

--cD-(s)= -0-(s) (3.46) 

Once more, Eq. 3.45 can be used to reduce the integrals of the subtopologies to the 

GLASS master integral by setting the appropriate powers of the propagators to 

zero. 

3.2.3 The TrianA topology 

P1 

p 

P2 
Figure 3.3: The TrianA topology 

Unlike the bow-tie topology that we performed the two one-loop integrations 

independently for the TrianA topology of Fig. 3.3 we must perform the two inte­

grations one after the other. Specifically, the integrals of the topology can be written 

in the form 

(3.47) 
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with 

AI k~ + iO, 

A2 (ki - k2)2 + iO, 

A3 k~ + iO, 

As (ki + PI)2 + iO, 

A6 (ki - P2)2 + iO, 

where Pi= p~ = 0 and p2 =(PI+ P2? = M 2. 

We can first perform the integration over k2 , where we get our known one-loop 

bubble result: 

• D ( 2 I dD ki 1 D 1 TrianA VI, v2, v3, V4, Vs, v6; M ) = . D/2 Av Av Av II (v2, v3) n 
~7f 14 5 6 V23--

I 5 6 AI 2 

(3.48) 

Finally we are left with the integral over ki which belongs to the one-loop Triangle 

topology yielding 

TrianAD(vi, v2, v3, v4, Vs, v6; M 2) = rrD(v2, v3)Jf(vi234- ~' Vs, v6; M 2). (3.49) 

The TrianA topology can be reduced to the TRI master integral defined by 

(3.50) 

Indeed, the general integral of the topology in D = 4- 2E + 2n dimensions is written 

where we use the shorthand notation {vi}= vi, v2, v3, v4, v5 , v6 and 

C.rrianA ( n, {vi}) = ( -1 tctr( n, 0, v2, v3) 
(1- 2E, 3 + 2n- vi2346) (1- 2E, 3 + 2n- vi2345) (2E, vi23456- 4- 2n) 

x~------~----~~~--~~--------~~~--~------~ 

(1, v5- 1) (1, v6- 1) (2- 3E, 4 + 3n- 2vi23456) 

(3.52) 

3.2.4 The TrianB topology 

We now study the two-loop triangle topology with a bubble insertion in the propa­

gator next to the massive external leg, which we name TrianB. The general integral 
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p 

l/4 v6 P2 

Figure 3.4: The TrianB topology 

(3.53) 

with 

A1 ki + iO, 

A2 (k1 + PI)
2 + iO, 

A3 (k1 - P2)
2 + iO, 

A4 (k1 - k2 - P2)
2 + iO, 

A5 (k2 - P2)
2 + iO, 

where Pi = p§ = 0 and p2 = (p1 + p2) 2 = M 2. As before, we can successively 

integrate out the two-loop momenta 

Finally, the topology is reduced to the SUNSET master integral 

(3.55) 

via the relation 

with 

CTrianB(n, vi) = -( -1tCtr(n, 0, l/4, v5) 

(1- E, 1 + n- l/12) (1- 2E, 3 + 2n- l/13455) (2E, l/123456- 4- 2n) 
x~--~------~~~----~~--~~--------~----

(E, l/3455- 2- n) (1, v2- 1) (3- 3E, 3 + 3n- l/123455) 

(3.57) 
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3.3 Mellin-Barnes representations 

With Feynman parameters we solved certain one and two-loop integrals. It turns 

out, that as we increase the number of external legs or the number of loops or 

the number of off-shell external particles the same task becomes more and more 

complicated. We can improve the situation with the introduction of Mellin-Barnes 

integrals. In this way, the integrations over the Feynman parameters become trivial. 

Instead we now need to calculate integrals over parameters lying on straight lines 

parallel to the imaginary axis of the complex plane. Cauchy's residue theorem is then 

employed and it can be used to solve the problem in two different directions; either 

to provide hypergeometric representations of the Feynman integral or to separate 

(by shifting the contours of integrations) the poles in E from the finite part of the 

integral. 

3.3.1 Representation of one-loop integrals 

The generic n-point one-loop integral with massless propagators in D-dimensional 

Minkowski space with loop momentum k is given by 

(3.58) 

where, as indicated in Fig. 3.5, the external momenta Pi are all incoming so that 

L:::~=l pr = 0 and the propagators have the form 

(3.59) 

with 

qi = 0 and qf = qf_l + Pr-1· 

The external momentum scales are indicated with { Q;}. Due to momentum con­

servation we have 

n 

Let us now detail the terms of the Feynman representation of the generic one-loop 
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P2 P3 

PI P4 

Pn 

Figure 3.5: The generic one-loop graph 

diagram (Eq. 3.27). Pis now the sum of all Feynman parameters, 

n 

which, due to the constraint of the 8 function, is equal to one and 

where 

n 

f = :Lxiqf 
i=l 

and 

n 

dll- = :Lxiqf. 
i=l 
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Thus, 

with 

n 

i,j=l 

~ t XiXj (qf- 2qi · Qj + qJ) 
i,j=1 

1 n 

2 L XiXj (qi- qj)
2 

i,j=1 

n 

LLXiXjSij 

j=2 i<j 

(

. 1 ) 2 

Sij = (q; -1];) 2 = ~J/,;, 

(3.60) 

The maximum numbers of terms in Q is 

1 
NQ = -n(n-1) 

2 

and increases rapidly with the number of propagators n. It is in general hard 

to find the appropriate change of variables (if such exists) that disentangles the 

integrations over the Feynman parameters. Mellin-Barnes (MB) integrals serve in 

order to decompose the dangerous term QD-l:v; into a product. The main tool will 

be the MB representation of a power of a sum as a contour integral, 

(A +A )-N = _1 /_ioo de A€ A-N-€r(-t)r(N + t) (3.61) 
1 2 27ri -ioo "' 1 2 r(N) . 

where the integration contour (see Fig. 3.6) separates the poles of r( -t) from the 

poles of r(N +t), and A1,2 are complex numbers such that iarg(At) - arg(A2) < 1rl. 
By iteration of the same formula we generally find 

1 ~ioo dC ···dC A6 ···A€m-1A-N-6-... -€m-1 
(2 ")m-1 . '>1 '>m-1 1 m-1 m 

7r~ -too 

r( -6) · · · r( -tm-1)r(N + 6 + ... tm-1) ( ) 
X r(N) . 3.62 
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Im(v) 

0 0 0 0 0 

Re(v) 

Figure 3.6: The contour of integration for Mellin-Barnes integrals separates the poles 

coming from f( ... - v) from the poles due to f( ... + v). We can close the contour 

either to the right or to the left picking one of the two series of residues. 

It is easy to verify the correctness of the above MB representations. Starting from 

the r.h.s of Eq. 3.61, we notice that the integrand exhibits poles at 

(due to r( -~)) and at 

~ = -N- n 

(due to f(N + ~)), where n = 0, 1, 2, ... We can decide to close the contour of 

integration to the right. In this case, we sum only the first series of residues. We 

are now in position to employ Cauchy's residue theorem 

f dyf(y) = 27ri ~ Res{f(yi)}· 
t 

(3.63) 

The only thing we need to know is the residue of the r function at -n = 0, -1, -2, .... 

f(1+y) (-1)n 
Res{f(x)}x=-n = Res{f (y- n)}y=O =Res{ ( 

1
) ( ) }y=O = - 1-, 

y y- · · · y- n n. 

where we used the basic property of the r function xr (x) = r (1 + x). Summing 

up all the residues we obtain: 

(3.64) 
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PI P4 

P2 P3 

Figure 3.7: The one-loop box topology 

which is the Taylor expansion of the l.h.s of Eq. 3.61 around AI = 0. Closing the 

contour to the left produces an analogous result equivalent to the Taylor expansion 

of the l.h.s of Eq. 3.61 around A2 = 0. 

We can now use Eq. 3.62 to facilitate the integrations over the Feynman pa­

rameters in Eq 3.27. We shall demonstrate how this works only for the case of the 

one-loop box with two adjacent massive external legs (Fig. 3. 7) which is difficult to 

evaluate from the Feynman parameters representation. The same procedure can be 

repeated for any one-loop diagram. 

3.3.2 The adjacent-mass box 

The generic massless one-loop box integral in D-dimensional Minkowski space with 

loop momentum k is given by 

(3.65) 

where the propagators are defined in Eq. (3.58) and the external momenta Pi are all 

incoming so that ~;=I pr = 0. The external momentum scales are indicated with 

{ 8ij}. Following the terminology of the last section, we have 

8I2 Pi= 0, 

813 (PI + P2)
2 

= 8, 

8I4 (PI + P2 + P3 )
2 

= P~ = Mi, 
823 p~ = 0, 

824 (P2 + P3) 2 
= t, 

834 2 M2 P3 = I· 
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The Feynman representation of the integral is 

(3.66) 

with 

and 

Performing the MB decomposition of the denominator, we get 

and interchanging the order of the MB integrals with the integrals over the Feynman 

parameters, 

If ( {vi}; { Sij}) 

(3.68) 

It is easy to prove the general formula 

(3.69) 
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by performing the transformation on the integrals of the l.h.s, 

X2 P2(1- pi), 

X3 P3(1- P2)(1- pi), 

Xn-I Pn-I(1- Pn-2) · · · (1- PI), 

Xn (1- Pn-I)(1- Pn-2) · · · (1- PI), 

The Jacobian is 

and we end up with the expression 

where all integrations can be done using 

t dppJJ--I(1- py-I = r(J.L)r(v), 
Jo f(J.L+v) 

and yielding the r.h.s of Eq. (3.69). Inserting Eq. 3.69 in Eq. 3.68 we finally obtain 

the Mellin-Barnes representation 

This is a result that we will use in two different ways. First we will explore various 

kinematic limits and we will obtain MB representations for some of the subtopolo­

gies. Second, and more important, we will use it as a building block to obtain MB 

representations for more complicated two-loop diagrams. 
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3.3.3 The box with one leg off-shell and the on-shell box 

We wish to set one of the masses (for example Mf) to zero in the representation of 

Eq. 3.71. We notice that the mass is raised to the integration variable 6, therefore 

it is necessary to integrate this variable out. The first decision we have to make is 

how to close the contour. It turns out that we have to close it to the right, otherwise 

we would yield a series representation of the form 

where the mass is in the denominator and the limit cannot be taken in a straight­

forward manner. Now we should find which of the residues have non-vanishing 

contributions at the zero mass limit. We observe that the only way for a residue to 

survive is to result in raising the mass to the zero power so that it gets eliminated 

before we take the limit. 

It is now obvious how to take the vanishing limit of a kinematic variable. 

• We first look at the power of the variable and check for which value of the 

integration variables it vanishes. 

• The limit is the contribution of the residue of the representation at this value. 

For example, we can symbolically write, 

(3. 72) 

yielding 
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In the same manner we can derive the MB representation of the on-shell one-loop 

box 

(3.74) 

3.3.4 The one-loop triangle with MB 

We are now interested in taking the limit where one propagator of the adjacent 

two-mass box is missing. For example we can pinch the second propagator, and 

set v2 = 0. A problem arises from the existence of the factor r(~2 ) which becomes 

infinite. This is because one should take the limit of the power of the propagator to 

zero together with the appropriate kinematic limit. In our case we have the transition 

from the box topology depending on both s and t, to the triangle topology with only 

s dependence. Therefore, one should take both t--+0 and v2-+0 in Eq. 3.71, in order 

to derive a valid expression for the one-loop triangle with massive external legs, 

with 

(-l)N(-s)~-v134 1 
I,f(v1, 0, v3, v4; s, 0, M;, Mi) = ( )2 ( ) ( ) ( )r( ) 21ri r n - v134 r v1 r v3 v4 

/_
~oo D 

x -ioo d6d6r( -6)r( -6)r(v134- 2 + 62) 

D D 
xr(v4 + 62)r( 2- Z/34- 6)r( 2- Z/14- 6) 

X (~f)'' ( ~?) 6 
{3.76) 

We can continue and set s--+0. Now we have to close the contour to the left, and 

the only contributing residue comes from 6 = ~- Z/134- 6. 

v . 2 2 _ (-1Y134 (-Mi)~-Vl34 r(~-v13) 
I3,3m(v4, VI, l/3, 0, M1 'M2) - 21fir(D- Z/134) r(v1)r(v3)r(v4) 

X /_+ioo der( -e)r(v134- D + e)r(v3 + e)r(D- Z/34- e) (MM~)~ (3.77) 
-too 2 2 2 
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We should emphasize that from the MB representations it is straightforward to 

obtain representations in terms of hypergeometric functions. If we close the contour 

to the right in Eq. 3. 77, we have to sum up the residues at 

~ =n, 
D 

~ = 2 - l/34 + n, 

with n = 0, 1, 2,.... After we form Pochhammer symbols from the ratios of r 
functions and make use of the inversion formula 

( -1)n 
( z' -n) = ( 1 - z, n) (3.78) 

so that the summation index in the Pochhammers occurs always with a positive 

sign, we obtain the sum of two series 

which can be identified as hypergeometric functions (see Appendix A), yielding 

For unit powers of propagators at D = 4 - 2E the hypergeometric functions simplify, 

giving 

z.4-2f(1 1 1· 0 M2 M2) = r(1- c)2r(1 +c) ( -Ml)-f- ( -M?)-f (3.80) 
3,3m ' ' ' ' I' 2 c2r(1- 2E) M£- Mi, 
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P1 

P2 

Figure 3.8: The penta-box topology 

Finally, we can set one more scale to zero M[ = 0 eliminating the only remaining 

MB integral in Eq. 3.77, and retrieve our result of Eq. 3.35, 

(3.81) 

We now turn our attention to the derivation of MB representations for two-loop 

Feynman integrals. 

3.3.5 The Penta-box topology 

We start from the penta-box topology of Fig. 3.8 which is defined as 

D I dD kl I dD k2 1 
PentaB ({vi}; s, t) = . v;2 . v;2 Av1 A112 A113 A114 Avs Ava All7 

'l7r 'l7r 1 2 3 4 5 6 7 
(3.82) 

A1 k~ + iO, 

A2 (k1 + P1)2 + iO, 

A3 (k1 + P1 + P2)2 + iO, 

A4 (kl + P1 + P2 + P3)
2 + iO, 

As (k2 + P1 + P2 + P3)
2 + iO, 

A6 k~ + iO, 

A7 (k2- k1)2 + iO. (3.83) 

The external momenta are incoming with L.::i pf = 0 and they form the scales 

2 2 2 2 0 P1 = P2 = P3 = P4 = , 
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We want to find a MB representation of the r.h.s of Eq 3.82. In general, it is hard 

to make a MB decomposition of the P and Q terms in the Feynman representation 

of the two-loop integral (see Eq. 3.26). Instead we view the graph as a composition 

of one-loop diagrams and use their MB representations as building blocks for the 

representation of the total graph. For the pentabox, the integration over k2 yields 

the triangle function 

(3.84) 

which, inserting Eq. 3.77, becomes 

(3.85) 

The integral over k1 is the one-loop box function with light-like legs, and its MB 

representation is given by Eq. 3.74. Substituting in Eq. 3.85 we finally obtain a 

double Mellin-Barnes integral representation of the pentabox topology, 

PentaBD({v}·s t) = (-l)N(-s)D-N r(~ -l/56) 
~ ' ' (27ri)2ref - N)f(D- v567) f(v2)f(vs)f(v5)f(v6)f(v7) 

X ~+ioo d~daf( -a)f(v2 +a) f( -~)f(v5 + ~)f(v567- ~ + ~f( ~- l/57- ~) 
-ioo r(v1 - ~)f(v4567 - 2 + ~) 

D 
xr(N- D + a)f(v4567- 2 + ~ + a)f(D + v1- N- ~-a) 

xr(D + Vs- N- a) (l) a (3.86) 

with N = v1234567 the sum of the powers of the propagators. 

We want to emphasize that by inserting one graph into another we can write down 

MB representations for any multi-loop integral. The insertion method economizes in 

the number of Mellin-Barnes integrals needed for the decomposition of the Feynman 

representations since, using one-loop graphs as building blocks, P is always equal 

to unity and the number of terms in the Q's are typically less than the ones of the 
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P4 

P3 

Figure 3.9: The TrianC topology 

total multi-loop graph. The method is easily automatized and it guarantees a fairly 

small number of final integrals. 

If we had started from Eq. 3.26 a brute force MB decomposition of the two-loop P 

and Q terms would produce a big number of MB integrals. To minimize the number 

of the final integrals one has to find transformations of the Feynman parameters 

that simplify the Feynman representation by practically eliminating the P term, 

before the MB decomposition. This is not always easy to do and we have found 

cases (e.g. the double-box topology) that the number of final MB integrals obtained 

with this method, is bigger than the ones obtained with the insertion method. We 

shall later show how to derive a MB representation for a two-loop diagram starting 

from the Feynman representation of the total graph, for the case of the cross-triangle 

topology. 

3.3.6 The TrianC topology 

If we set v2 = 0, v1 = 0 together with t = 0 in Eq. (3.86) then we obtain what we 

call the TrianC subtopology of the pentabox graph (see Fig. 3.9). At a first step we 

are left with an one-dimensional Mellin-Barnes integral 
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with {vi} = v3 , v4 , Vs, v6 , v7 . This integral is an application of Barnes' first lemma, 

which states 

~ r+ioo d~r(a + ~)r(j3 + ~)r(J- ~)r(o- ~) = r(a + l)r(a + o)r(j3 + l)r(j3 + o) 
27rz } -ioo r (a + j3 + I + o) 

(3.88) 

with the contour of integration separating the residues of the r( ... + ~) from the 

residues of the r( ... - ~). So we finally have 

TrianCD( {vi}; s) = ( -1)D SD-N 

r(N- D)r( ~- vs6)r( ~- v34)r( ~- v7 )r(D + v3- N)r(D + vs- N) 
X 3D r( 2 - N)r(D- v347 )r(D- vs67 )r(v3)r(vs)r(v7 ), 

(3.89) 

with N being the sum of the powers of the propagators. The TrianC topology has 

only the SUNSET master integral, according to the relation 

TrianC4+2
n-

2€( {vi}; s) = s2
n-N CTrianc(n, {vi}) -e- (s) (3.90) 

with 

CTrianc(n, {vi}) 
(1 - E, 1 + n- Vs6) (1 - E, 1 + n- v34) (2E, N- 4- 2n) ( -E, 2 + n- ll7) 
~----~----~------~--~~~----~~~~----~x 

(2- 3E, 4 + 3n- N)(v3- 1, 1)(vs- 1, 1)(v7 - 1, 1) 
x (2- 2E, 2 + 2n- N + v3 ) (1- 2E, 3 + 2n- N + vs) (

3
.
91

) 
(2 - 2E, 2 + 2n - N + vs67) (2 - 2E, 2 + 2n - N + l/347) 

3.3. 7 The Cross-triangle topology 

We finally discuss the Mellin-Barnes representation of the cross-triangle topology of 

Fig. 3.10 which is defined through 

• D I dD kl I dD k2 1 
Tr~anX ({vi}; s, t) = . D/2 . D/2 A~-'1 A~-'2 A~-'3 A~-'4 A~-'s A~-'6 Z7r Z7r 1 2 3 4 S 6 

(3.92) 
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AI (ki + k2 +PI+ P2? + iO, 

A2 (ki + k2)2 + iO, 

A3 ki + iO, 

A4 (ki + pi)2 + iO, 

As k~ + iO, 

A6 (k2 + P2)2 + iO, 

(3.93) 

The external momenta are incoming with l:i pr = 0 and they form the scales 

2 2 0 PI= P2 = ' 

We start from the Feynman representation of the integral (Eq. 3.26). We have 

a XI + X2 + X3 + X4 

b XI + X2 + X5 + X6 

c XI+ X2 

di-L (xi+ X4)Pi + XIP~ 

el-L XIPi +(xi+ X6)P~ 

f XIS· (3.94) 

and 

Q -a e2 
- b d2 + 2 c e · d + f P 

S [XIX2(X3 + X4 + X5 + X6) + X2X4X6 + XIX3X5]. (3.96) 

We instantly get discouraged from attempting a MB decomposition of P (12 terms) 

and Q (6 terms) as they stand, since we would end up with 16 integrals in total. 
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p P2 

Figure 3.10: The cross-triangle topology 

Instead we try out some transformation to exploit the existence of the constraint 

due to the fJ function, with the hope of simplifying the Feynman representation of 

the graph before the decomposition. 

We notice that the sum x 3 + x 4 + x 5 + x 6 appears in both P and Q and it would 

be nice to eliminate it, if possible. Let us try the transformation 

i = 1 ... 6 

Now a 1 runs from 0 to oo while the rest of the ai run from 0 to 1. What is more, 

the fJ function becomes 

Applying the transformation, various factors and the Jacobian conspire together and 

practically recast the representation in the same form, apart from the fJ function 

missing a 1 in its argument and a 1 itself running from 0 to oo. So we have 

6 

x [a1x2(x3 + X4 + X5 + x6) + X2X4X6 + a1x3x5f-N fJ(l- L xi) 

i=2 

(3.97) 

where, for convenience, we relabeled with xi the variables that range from 0 to 1. Of 

course, we can repeat the same transformation as many times as we wish, changing 

the boundaries of some variables and the form of the constraint. An obvious choice 
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is now the variable x2 , giving 

TrianXD({v;},·s) = (-1)DsD-Nr(N- D) 100 

dada a"1 - 1a"2 - 1 
. nr(vi) 0 1 2 1 2 

x 11 ([! dx;x~·-•) [a1 + a2 + (x3 + x4)(x5 + x6)t-'f 

6 

X [a1a2 + a2X4X6 + a1x3x5f-N o(1- L Xi) 

i=3 
(3.98) 

We can now decompose the QD-N term introducing a two-fold Mellin-Barnes inte­

gral. Then, the integrations over a1,2 can be done easily using 

1
00 uA-1 f(A)f(B) 

o du (1 + u)A+B = f(A +B) (3.99) 

and, furthermore, we can integrate out the remaining Feynman parameters with the 

change of variables 

X3 )..y 

X4 (1- >..)y 

x5 ~t(1- y) 

X6 (1- ft)(1- y). 

At the end we obtain the two dimensional MB representation 

Tr. xD({ ·}· ) = (-1)N(-s)D-Nr(~ -v34)r(~ -v56) (rr6 
_1_) _1_ 

Ian vt , s 3D ( ) ( ) 2 r( 2 - N)f(D- v3456) i=1 r vi 2ni 

r+ioo 
x J -ioo dudvf( -v )r( -u)f(v3 + v )f(v5 + v )r(v4 + u)r(v6 + u) 

r ( D + v2 - N - v )f( D + v1 - N - u) r ( N - D + u + v )r ( v3456 - ~ + u + v) 

x r ( v 34 + u + v) r ( v56 + u + v) · 

(3.100) 

3.4 Laurent expansion in E of MB representations 

It is interesting to obtain an analytic expansion in E for the Feynman integrals from 

their MB representations. This method has been very successful in calculating very 

complicated integrals, like the double-box [21] and the cross-box [22] with light-like 
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legs. We will work on the MB representation of the cross-triangle (see Eq. 3.100) 

with unit powers of propagators at D = 4- 2c dimensions. The integral in question, 

symbolically represented as 

~) ~ TrianX4~2'(1, 1, 1, 1, 1, 1; s) I (3.101) 

turns out to be a master integral of the cross-triangle topology. It has also been 

calculated from an expansion of its Feynman representation in Ref. [35, 36], but we 

recalculate it here as it is a very good example to illustrate the strength of Mellin­

Barnes representations in isolating the divergences. From Eq. (3.100), we obtain the 

following MB representation 

~) 
6( -s)_2_2€f(1- c)2 

= f(1- 2c)f(1- 3c) A( c), (3.102) 

where, isolating a trivial factor, we can concentrate on the two-fold MB integral 

A( ) = _1_j+ioo d d rlr2r3r4rsr6nr~ (3.103) 
E (2 ·)2 . V U f2 ' 

7r~ -too 9 

with 

r1 r(-v) 

r2 r(-u) 

r3 r(-1-2c-v) 

r4 r(-1-2c-u) 

rs f(2 + 2c + u + v) 

r6 f(2 + E + u + v) 

r7 r(1 + v) 

rs r(1 + u) 

fg r(2 + u + v). (3.104) 

We intend to calculate this integral using Cauchy's theorem of residues. It is 

useful to distinguish between the poles produced by r functions of the type r( .. . -v) 

and the ones by r( ... + v). The first series of poles spreads up to +oo in the 

positive axis and, following Smirnov's convention, we call them Infra-Red poles 

(IR). Equivalently we shall refer to the second type of poles as Ultra-Violet (UV). 
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It is important that the contour of integration should be such that it separates 

the IR from the UV poles and, in addition, there should be no pole sitting on it. 

For the construction of the MB representations of Feynman integrals with arbitrary 

powers of propagators and dimension (see Eq. 3.61), we require that all r functions 

have positive real parts and therefore the integral has a finite value. It is easy to 

satisfy the above condition by tuning the values of the arbitrary parameters (powers 

of propagators and dimension), since we can practically regulate all the r functions 

with them. At least for the integrals we have studied this was always possible. We 

would like to retain well defined integrals when taking the limits of the powers of 

propagators being integers, or the dimension equal to four. 

Let us now focus on the double MB integral of Eq. 3.103. This is well defined 

if, for example, we choose the contours to be straight lines parallel to the imaginary 

axis with Re(u) = Re(v) = -0.04 and a value forE= -0.7, then the integrals are 

well defined. It is also important to notice that there is no contour choice that makes 

the integral finite at E = 0. Looking, for example at the arguments of f 3 and f 7 

with E = 0, we get the conflicting constraints -1 - v > 0 and 1 + v > 0. 

3.4.1 Isolation of the poles 

Our purpose is to obtain an analytic expression for A(E) that can be expanded 

around E = 0, after we have isolated the singularities. We perform the two inte­

grations one at a time, starting with v, and we choose to close the contour to the 

right. It is necessary to analytically continue the value of E from our initial choice 

E = -0.7 to E = 0. We slowly increase E taking it to zero, and at the same time we 

observe the behavior of the poles of the r functions. The position of the poles of 

the r functions which do not depend onE does not change so we don't worry about 

them. The remaining r functions have residues at 

v=-1-2E, -2E, 1-2€, ... 

v = -2- 2E- Re(u), -3- 2E- Re(u), ... 

v = -2- E- Re(u), -3- E- Re(u), ... 

(3.105) 

(3.106) 

(3.107) 

As we increase E the poles of r 5,6 move away from the contour of integration, 

remaining in the UV region. On the contrary, the poles of r 3 move towards the 
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Im(v) Im(v) Im(v) 

_x x 
e(v) e(v) 

Figure 3.11: When a pole crosses the contour c1 (left) it produces a singular residue 

which is isolated by deforming to the contour c2 (center). ·The contour can be 

restored after the dangerous residue moves further away with increasing E (right) 

contour. Actually, when E = _l+~e(u) = -0.48 the first residue sits on the contour 

of integration making the integral infinite and producing a discontinuity in passing 

to larger values of E. 

The residue theorem will help us to do this transition by deforming the contour 

of integration so that the singular term is excluded and expressed in terms of a single 

residue. Indeed, just before the pole crosses the contour we can rewrite the original 

integral as 

1
1 

dvf(v) = 27riRes(v0 (t:)) + 1
2 

dvf(v) (3.108) 

where c1 is the original contour and c2 is the deformed contour which now excludes 

the residue at v = v0 (t:) (see Fig. 3.11). The pole is now UV with respect to the 

new deformed contour, which can be finally restored to its original shape as the 

pole moves away by continuing to increase E. Of course, we need to repeat the same 

procedure for every pole crossing the contour until we arrive at E = 0. When we 

finish isolating the residues that give rise to singularities for all integration variables, 

we can make a series expansion around E = 0 at the integrands of the produced 

integrals. It has to be noted that when a crossing happens from the left, we should 

subtract the residue contribution instead of adding it in Eq. 3.108. 

Returning to A( E), as we said the first residue to cross the contour for the v 

integration is the first IR residue of r 3 . According to Eq. 3.108, 

(3.109) 
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where on the r.h.s A3 is the residue term 

with 

A3(c) = r(1- 2c)
2
r(1 + 2E) I(c) 

4€2 

I(c) = _1 j+ioo r( -u)r( -1- 2E- u)r(1- E + u)r(1 + u)3 
2ni -ioo r(1 - 2E + u) 2 
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(3.110) 

(3.111) 

and A0 is the original integral free of the dangerous singularity in the v integration. 

The subscript 3 denotes that the first residue of r 3 is taken and the subscript 0 

denotes that the integrand for the first integration is unchanged but now E can take 

the value 0 (for this integration only). There is no other pole crossing the contour for 

E up to zero, so we can continue by resolving the singularities for the u integration. 

Once again the pole crossing the contour is at u = -1 - 2E. We therefore get, 

A( c)= A35(E) + A3o(E) + Ao5(E) + Aoo(E) (3.112) 

where because, the starting integral is symmetric in u and v, 

where the integral in Eq. 3.111 is now meant to be defined for values of E close to 

zero. Similarly, 

Aoo(E) = A(c)l€-to 

is now the original integral free of the dangerous residues in both integration vari­

ables and we can make an expansion around E = 0. The difference between A( E) of 

Eq. 3.103 and Aoo(E) is that while for the first we have insisted that the UV residues 

should be separated by the contour from the IR (forcing E to be away from zero), 

in the latter this condition is not valid. Therefore the E = 0 limit is allowed and 

the initially UV residues at v = -1 - 2E and u = -1 - 2E lie on the left half-planes 

defined by the complex u and v integration contours. Inevitably, some r functions 

take arguments with negative real parts when E = 0, but since the real parts of the 

complex integration variables u, v are fixed to non-integer values, the r functions 

are well defined yielding a finite result. 

Finally, the deepest divergence is given by the double residue term 

A ( ) 
_ r(1- 2c)5r(1 + 2c) 2r(1- 3€) 

35 € -
6c4r(1 - 4c)2 

(3.113) 
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3.4.2 Evaluating the finite integrals 

As we already said, the integrals I(t:) and Aoo(t:) are well defined atE= 0, so we can 

make an expansion around this point. I is multiplied by 1/t:2 therefore it needs to 

be expanded through to 0( t:2
) and for Aoo we just need the first term of the series. 

In simplifying the r functions and its derivatives ( 'ljJ functions) after the expansion 

of the integrands it is very convenient to use the formula 

1f 

f(l- x)r(x) = g(x)- . ( ). 
sm 1rx 

The 'ljJ function is defined through 

'lj;(x) = dlogf(x) 
dx 

and it is straightforward to prove that 

n-1 l 
'lj;(x+n) ='l/J(x)+ I:-. 

i=O X+ z 

and 

'lj;(l- x)- 'lj;(x) = 7rcot(7rx). 

(3.114) 

(3.115) 

(3.116) 

(3.117) 

With the above identities we can write the terms of the expansion of the integrals 

in E at each order in the form 

J(m, f)= [~~
00 

duf(u)g(u)m (3.118) 

where m is a positive integer and g is defined through Eq. 3.114. f is an analytic 

function with no poles lying on the half-plane of the positive real axis. For the 

separation of the poles we decided to close both contours to the right, and we stick 

to that choice until the end of the evaluation of the integrals. It is then easy to 
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prove the identities 
<X> 

J(1, f) L(-1tf(n) 
n=O 

<X> 

J(2, !) 2:of(n) 
n=O 

1 <X> 

J(3, f) 2! L [82 + n2] f(n)( -1)n 
n=O 

1 <X> 

J(4, f) I L [83 + 4n28] f(n) 
3. 

n=O 

J(5, f) 
1 <X> 

4
! L [84 + 10n282 + 9n4

] f(n)( -1t 
n=O 

1 <X> 

J(6,f) - 1 L [85 + 20n283 + 64n48] f(n) (3.119) 
5. 

n=O 

where am is the m-th derivative operator acting on the function f and evaluated at 

the point n. The produced sums are typically harmonic sums and there are several 

related studies in the literature [37, 38, 39, 40, 41]. They are often expressed in 

terms of generalized harmonic polylogarithms, 

_ (-1)n+p-1l 1 log(z)n-1 log(1-xz)P 
Sn,p(x)- ( )! 1 dz n -1 .p. 0 z 

X :S 1, (3.120) 

where n,p are positive integers. We retrieve the definition of the common polylog­

arithms in the special case 

Lin(x) = Sn-1,1(x). (3.121) 

x is typically a ratio of kinematic variables. In one scale problems, as in our case, 

x = 1 gives rise to the generation of the Riemann zeta functions 

Re(p) > 1. (3.122) 

Finally, we quote the result of our evaluation, which agrees with the known result 

of Ref. [36], 

~) = C X - - - - - - 206(4 + 0( E) 2 { 1 5(2 23(3 } 
r €4 E2 E 

(3.123) 

where we have factorized the commonly found combination of r functions in loop­

integral calculations 

cr = 
r(1 - c) 2r(1 +c) 

r(1- 2€) · 
(3.124) 
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3.5 Summary 

In this chapter we discussed the Schwinger and Feynman representations of Feynman 

integrals. The first provided an algorithm to express tensor integrals in terms of 

scalar integrals in higher dimension and extra powers of propagators. With the 

second we managed to solve simple one and two-loop integrals, limiting ourselves in 

the cases with a single scale dependence and the results were analytic expressions 

in terms of Gamma functions. 

In order to obtain information on more difficult integrals we used the Mellin­

Barnes representation. We obtained representations of one-loop diagrams in a gen­

eral manner, and we showed how to find similar representations for multi-loop dia­

grams using the insertion method. We were able to express the integrals as a sum 

of residues making manifest their hypergeometric structure. In addition, we were 

able to isolate the infrared and ultraviolet singularities by identifying the poles that 

would cross the contours of integration when an analytic continuation of E to zero 

was performed. 

We can now see a strategy to be formed for the calculation of the one and two­

loop integrals of our interest. 

• Rewrite the tensor integrals in terms of scalar integrals from their Schwinger 

parametric representation. 

• Reduce the number of scalar integrals to a set of linearly independent "master" 

integrals. This can be done trivially for some topologies (TrianA, TrianB, 

TrianC ... ), that can be expressed in terms of r functions. For the rest we 

resort to more sophisticated methods based on Integration By Parts and they 

will be described in Chapter 5. 

• Find the analytic expansions in E of the master integrals. This will be done 

either by direct evaluation of the Feynman representation in terms of r func­

tions or by their hypergeometric series representation or, for the most difficult 

cases, by an E expansion of the Mellin-Barnes representation. 

Before we continue to the reduction of the scalar integrals to master integrals we shall 

explore the Negative Dimension Integration Method which provides useful insight 

for the representation of Feynman integrals in terms of hypergeometric functions. 



Chapter 4 

Negative Dimensions Integration 

Method 

In Chapter 3, we found an algorithm to relate tensor integrals to scalar integrals with 

extra-powers of propagators and higher dimension. Therefore we can concentrate 

on the problem of evaluating the scalar integrals only. 

It is possible to represent Feynman integrals in terms of hypergeometric func­

tions. This has several advantages. First, these hypergeometric functions often have 

integral representations themselves, in which an expansion in E can be made, yielding 

expressions in logarithms, dilogarithms etc.. Second, because the series is conver­

gent and well behaved in a particular region of phase space, it can be numerically 

evaluated [42, 43]. In fact, each hypergeometric representation immediately allows 

an asymptotic expansion of the integral in terms of ratios of momentum and mass 

scales. Third, through analytic continuation formulae, the hypergeometric functions 

valid in one kinematic domain can be re-expressed in a different kinematic region. 

In the previous chapter we showed how to obtain hypergeometric series rep­

resentations from the MB representations. An alternative technique which makes 

immediate connection to the hypergeometric structure of Feynman integrals is the 

Negative Dimension Integration Method (NDIM). It was originally developed by 

Halliday and Ricotta [44, 45] in 1987 who suggested that it would be useful to calcu­

late the loop integral considering D as a negative number. Because loop integrals are 

analytic in the number of dimensions D (and also in the powers of the propagators) 

74 
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they proposed to calculate the integral in negative dimensions and return to positive 

dimensions, and specifically D = 4- 2E, after the integrations have been performed. 

As we will discuss more fully later on, integration over the loop momentum and/or 

the parameters introduced to do the loop integration is replaced with infinite series, 

which again can be identified as generalised hypergeometric functions. Recently this 

idea has been picked up again by Suzuki and Schmidt who have evaluated a number 

of one-loop, two-loop and three-loop integrals [46, 47, 48, 49, 50, 51, 52, 53, 54]. 

In this chapter we wish to explore the negative-dimension approach (NDIM) 

further. In particular we focus on one-loop integrals with general powers of the 

propagators and arbitrary dimension D. There are several reasons for doing this. 

First, it allows connection with the general tensor-reduction program of the previous 

chapter. Second, we can imagine inserting the one-loop results into a two-loop 

integral by closing up external legs. This is trivial for most bubble integrals, but 

more complicated for vertex and box graphs. Broadhurst [55] has shown that this is 

possible for the non-trivial two-loop self-energy graph. Third, it actually simplifies 

the calculation. As we will show, by keeping the parameters general, it is easier to 

identify the regions of convergence of the hypergeometric series and therefore which 

hypergeometric functions to group together. For specific values of the parameters, 

the hypergeometric functions often collapse to simpler functions. 

We demonstrate the method using as example the one-loop box with massless 

propagators and at most one external leg off-shell. With NDIM we derive the ex­

pressions for the integrals in different kinematic regions in terms of hypergeometric 

functions of one or two variables for the on-shell and off-shell case respectively. In 

both cases, D is arbitrary and the propagators are raised to arbitrary powers. As 

an application of the general formulae, in Sec. 4.2 we consider a particular class of 

two-loop box integrals which are one-loop box graphs with bubble insertions on one 

of the legs. 

We give general formulae for the general scalar integral of the topology with 

light-like legs in terms of hypergeometric functions. Finally, we calculate the €­

expansion of the master integral of the topology in two kinematic regions, the one 

where both independent Mandelstam variables are negative and the one where they 

have opposite sign. 
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4.1 The general massless one-loop box integral 

The generic massless one-loop box (Fig. 3.7) integral in D-dimensional Minkowski 

space with loop-momentum k is given by Eq. 3.65. In Section 3.3.2 we considered 

the integral with two light-like and two adjacent massive external legs 

2 2 0 
PI= P2 = ' 

2 M2 P3 = I' 
2 M2 P4 = 2· 

To avoid complications which obscure the explanation of the basic principles of the 

method due to the presence of many scales, we study the limit 

Therefore the set of scales present in our problem are 

(4.1) 

where s = (PI+ P2)2 and t = (p2 + p3)
2 are the usual Mandelstam variables. In the 

physical region t < 0 and s > 0. For standard integrals, the powers vi to which 

each propagator is raised are usually unity. However, we wish to leave the powers 

as general as possible. Later on we will use these general expressions to derive some 

results for two-loop box integrals with one-loop insertions on the propagators. 

We can rewrite Eq. (3.65) in the Schwinger parameters (xi) representation 

If (vt, v,, v,, v4; { Qi}) = j Vx j i~:;, exp ( t x;A} ( 4.2) 

with 

(4.3) 

and 

After integrating out the loop-momentum k, we obtain our known result 

If (vi, v2, v3, v4; { Q;}) = J 'Dx p;/2 exp( QjP), ( 4.5) 

with 

(4.6) 

and 

(4.7) 
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4.1.1 The negative-dimension approach 

To evaluate tlie integral further, we treat the number of dimensions D as a negative 

integer. This is valid because the loop integral is an analytic function of D. Let 

us start from Eqs. ( 4.2) and ( 4.5) and make a series expansion of the exponentials. 

Eq. ( 4.2) becomes 

(4.8) 

where the ni are positive integers. Likewise, we expand the exponential in Eq. ( 4.5) 

(4.9) 

We are again in the familiar situation that we need to decompose the P and Q 

terms. In the last chapter we introduced Mellin-Barnes integrals to achieve the 

decomposition. Here, we do a multinomial expansion. In general, if we have a sum 

of terms raised to a power we can write 

(4.10) 

where the presence of the Kronecker delta fixes the sum of the summation indices 

to the power n. To make the multinomial expansions of Q and P we introduce the 

integers h, l2, l3, and m1, m2, m3, m4, so that 

00 

h, ... ,l3=0 

p-n-Jf 

with the constraints 

4 D 
""" mi = -n - -L 2. 
t=l 

(4.11) 

By adding together the two equations in (4.11), we obtain an additional constraint, 

that is 

(4.12) 
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which ensures that the powers of Q and P match up correctly. The name of the 

method as integration in Negative Dimensions is now justified, since for Eq. 4.12 to 

be valid, the dimension D must be a negative even number. 

Equating Eqs~ (4.8) and (4.9), we have 

(4.13) 

If more than one leg is off shell, then there will be additional terms in Q leading to 

more summation variables. Similarly, if we take the M 2 -t 0 limit, this is the same 

as fixing l3 = 0 in Eq. (4.13). 

The Xi are independent variables so that for the equality (4.13) to hold, the 

integrands themselves must be equal. Therefore, by selecting the coefficient of the 

powers of x;v;, where vi = -ni, on both sides of the equality we find 

subject to the system of constraints 

l2 + l3 + m4 

h + l2 + is + m1 + m2 + m3 + m4 -D/2. 

(4.14) 

(4.15) 

There are seven summation variables and five constraints so that two variables will 

be unconstrained. There are fifteen solutions of the system of constraints. Each one 
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is inserted into the template solution (4.14). For example, solving with respect to 

the indices { h, l2 }, we find 

m4 vi + v2 + v3 + h - D /2, 
l3 -h - l2 + D /2 - vi - v2 - v3 - v4, 

which is then applied to (4.14). r functions that depend on the unconstrained 

variables h and l2 are converted into Pochhammer symbols 

- r(z + n) 
(z, n) = r(z) ' ( 4.16) 

because they are the most suitable way to write generalized hypergeometric func­

tions. Denoting this solution as J{hh} and using the shorthand notation 

( 4.17) 

we have 

( 2) ~-N f (1 - vi) f (1 - v4) f (1 + N - D) 
M r (1 + ~- N) r (1 + vi23- ~) r (1 + v234- ~) 
f= (N- ~,h + l2) (v3,h) (v2,l2) (sjM2)h (tjM2)12 

X hh=O (1 + VI23- ~'h) (1 + V234- ~' l2) h! l2! 

(4.18) 

Each solution of the system of constraints, once inserted into the template of 

Eq. (4.14), has the same generic form 

PR£ xSUM, (4.19) 

where we have introduced the following notation: 

- SUM is the sum over the terms that contain unconstrained indices of summa­

tion. As in the example solution ( 4.18), instead of dealing with r functions, 

we form Pochhammer symbols. In most cases, SUM can be directly identified 

as a generalized hypergeometric function, in the region of convergence of the 
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series. In general, these hypergeometric functions are analytic and may be 

evaluated at positive values of D and vi. In our example, the SUM term, can 

be immediately identified as Appell's F2 function (see Eq. (A.4)) 

- The prefactor PRE contains all the rest of the terms that are not included in 

SUM. More precisely, it is a product of external scales raised to fixed powers, 

and r functions that do not depend on the summation variables. These may 

be produced either directly from the particular solution of the system, or in 

the generation of the Pochhammer symbols. For physical loop integrals with 

positive powers of propagators, we need to evaluate PRE at positive values of 

the vi and positive D. A problem is immediately obvious: the numerator of 

PRE contains r(1- vi), so that, for positive integer values vi, it appears that 

we need to evaluate the r functions for negative arguments, where they are 

singular. However, PRE is an analytic function and these singularities cancel 

between the numerator and denominator. 

In fact, it can be easily shown that, starting from the identity 

r(z+1)=zr(z), ( 4.20) 

we have 

r ( z) = ( -1) -n r ( n + 1 - z) 
r (z- n) r (1- z) ' 

( 4.21) 

where z is a real (or complex) number, and n is a positive integer. 

In the product of r functions in the numerator and denominator of the PRE 

term, we can make an iterated use of the identity ( 4.21), provided we treat 

D /2 as an integer, as we have already done in the multinomial expansion. We 

can then rewrite the r-function prefactor in a more amenable way by flipping 

all of the r functions from numerator to denominator and vice versa 

n+l ( ) n+l ( (3 ) 

II r ai _ ( _ 1)2::7: 11(.8;-a;) II r 1- i 

r((J·) - r(1 - a·)' 
i=l t i=l t 

(4.22) 

where the index i runs over all r functions in the numerator and denominator 

of PRE. 
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Applying (4.22) to (4.18) we find that 

J{hh} ( _ 1)~ (M2) ~-N r (N- ~) r ( ~- v123) r ( ~- v234) 

r (v1) r (v4 ) r (D- N) 

( 
D D D s t) 

X F2 N- 2' v3, v2, 1 + 1/123- 2' 1 + v234- 2' M 2 , M 2 . (4.23) 

Similarly, the other fourteen solutions are given by: 



Chapter 4. Negative Dimensions Integration Method 

J{mi.ms} 
4 

J{msh} 
4 

J{m1,ls} 
4 

J{l2,ls} 
4 

I {m2,m4} ( t ) 
4 S f-+ , VI f-+ V 4 , V2 f-+ v3 , 

Iim2
h} (sf-+ t, VI f-+ v4, V2 f-+ v3), 

82 

(4.24) 

The definitions of the functions F3 , H 2 , 51 and 52 are given in Sec. A.l together 

with a table of their regions of convergence. 

4.1.2 Classification of the groups of solutions from their re-

gion of convergence 

We now have to classify the zoo of the solutions of the system of constraints, and 

more important, we need to answer the practical question of which of them together 

consist a valid representation of the integral. Within NDIM the answer to this is very 

simple. One has to add together the solutions that converge in the same kinematic 

region. For the one-loop box with one leg off-shell, we divide the kinematic regions 

up as shown in Fig. 4.1: 

region I: M 2 > /s/ + /t/, 
region II(a) : /t/ > M 2 + /s/ and M 2 > /s/, 

region II(b) : /t/ > M 2 + /s/ and /s/ > M 2
, 

region III(a) : /s/ > M 2 + /t/ and M 2 > /t/, 

region III(b): /s/ > M 2 + /t/ and /t/ > M 2
, 
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4 

3 

N 

~ 2 

3 4 

Figure 4.1: The kinematic regions for the one-loop box with one off-shell leg. The 

solid line shows the phase-space boundary Is I+ it I = M 2
, together with the reflections 

lsi = iti + M 2 and jtj = lsi+ M 2
• The reflections are relevant for the convergence 

properties of the hypergeometric functions which only involve the absolute values of 

ratios of the scales. The dashed lines show the boundaries jsj = M 2 and jtj = M2
. 
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and, applying the convergence criteria of Table A.l to each of the fifteen solutions, 

we find that they are distributed as follows: 

in region I 

in region II(a) 

in region II (b) 

in region III (a) 

in region III(b) 

(4.29) 

Some solutions are convergent in more than one region. For example, I1m4
'
13

} and 

Ilh,ls} are convergent in both regions II(a) and II(b) while I1m2 ,m3
} is convergent in 

both II(b) and III(b). We also see that in region II(a), two of the solutions (I1m2 ,m4
} 

and I1m4
'
13

}) contain dangerous r functions when v2 = V4· These divergences in­

dicate the region of a logarithmic analytic continuation and can be regulated by 

letting v2 = v4 + &, canceling the divergence, and then setting f5 ----t 0. Similarly, the 

two divergent contributions in region II(b) ( I1m2
'
13

} and I1m4
'
13

}) must be combined 

in this way. 

The above results agree with these obtained starting from the Mellin-Barnes 

representation (3.73). Closing the contours either to the left or to the right and 

summing up the enclosed residues, we obtain the same hypergeometric series repre­

sentations as with NDIM. 

4.1.3 Analytic Continuations-Limiting cases 

We can perform several checks of these results. 
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- Analytic continuation 

The solutions in the different regions are related by analytic continuations of 

the hypergeometric functions. We can verify that starting from one region and 

applying the analytic continuations of the hypergeometric functions we find 

the solutions in the other kinematic regions 

- The vi = 0 limit 

By pinching out one or more of the propagators (which corresponds to setting 

vi = 0) we obtain results for triangle or bubble integrals. For example, if we 

set v2 = v3 = 0, then any term containing ljr(v2) or ljr(v3 ) is eliminated. 

In fact, only five solutions survive, one in each group. In each case, the hy­

pergeometric function collapses to unity and we obtain the expected result for 

the massless-bubble integral with off-shellness M 2 in each of the five kinematic 

regions thereby spanning the whole of phase space 

(4.30) 

where the II0 functon was defined in Eq. 3.37 

- The massless box: I.f (v1 , v 2 , v3 , v 4 ; s, t) 

The limit M 2 --+ 0 can be taken whenever the kinematic region allows it, that 

is to say, in regions II(b) and III(b), where M 2 < lsi, M 2 < jtj. These two 

regions are related by the symmetry (s f-7 t, v1 f-7 v4 , v2 f-7 v3 ), so we focus 
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only on region II(b). Only three of the solutions survive, and we have: 

Similarly, taking the same M 2 -t 0 limit for solution ( 4.29) in region III(b), 

we find the result valid when lsi > itl, which is also obtained by applying the 

exchanges (s +-+ t, v1 +-+ v4 , v2 +-+ v3 ) to Eq. (4.31). Note that we could have 

obtained the same result by returning to the template solution (4.14) with 

the system of constraints (4.15) and, after setting l3 = 0, solved the on-shell 

box directly. In this case, there are two external scales, s and t, so that there 

will be six summation variables (m1 , ... , m4 and h, l2 ) and five constraints 

yielding six solutions, three of which converge when lsi < iti, again yielding 

Eq. (4.31). 

As before, there are apparent divergences in the r functions when v2 = v4 that 

must be regulated. This is straightforwardly achieved for particular values of 

the parameters by setting v2 = v4 + b and making a Taylor expansion. 

- The vi = 1 limit: If {1, 1, 1, 1; s, t, M 2 ) 

If we set the propagator power equal to one, then all the groups ( 4.25)-( 4.29) 
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VI 
PI P4 

V7 

v60vs 

v4 

P2 P3 
v3 

Figure 4.2: A one-loop insertion into a one-loop box diagram. 

give the correct answer 

D 2 2 f 2 
(1 -c) f (1 +c) 1 [ _10 ( U) 

I 4 ( 1, 1, 1, 1; s, t, M ) = 2 r ( ) - (-t) 2 FI 1, - c, 1 - c, --
c 1- 2c st S 

+( -s)-'2F1 ( 1, -<, 1- <, -~) - ( -M't',F, ( 1, -<, 1- <,- ~;u) l 
(4.32) 

where u is defined by s+t+u = M 2 and c = (4-D)/2. To obtain this result we 

have returned to the series representation of the hypergeometric function and 

manipulated the series by repeatedly summing with respect to one summation 

index to obtain an 2FI function, applied identities to change the arguments 

of the 2FI and rewritten the 2FI as a series. Then we sum with respect to 

the other index, and repeat if necessary. Eventually all of the hypergeometric 

functions of two variables can be reduced to 2FI functions. 

4.2 Application to two-loop box graphs: The Abox 

topology 

The general results for one-loop box graphs presented in the previous section may 

be applied to give analytic results for two-loop box integrals with one-loop bubble 

insertions in one of the propagators. As is well known, the effect of such insertions 

is to modify the power to which that propagator is raised. For example, we consider 
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(4.33) 

where the Ai are independent of the second loop momentum k2 and are given by 

AI k~ + iO, 

A2 (ki + PI)
2 + iO, 

A3 (ki +PI+ P2)
2 

+ iO, 

(4.34) 

while 

BI k~ + iO 

( 4.35) 

The kinematic variables present are 

while 

2 2 2 2 0 PI= P2 = P3 = P4 = 

and 

P4 = -pi - P2 - P3· 

The momentum flowing through the bubble is ki +PI + p2 + P3 so that the result of 

the integration over k2 is 

I dD k2 1 D D Q-vs-v6 
. n;2 BJ.Ls BJ.L6 = 12 (vs, v6; A4) =II (v5, v6) Ai , 
't7r I 2 

(4.36) 

where rrn is defined in Eq. (3.37). In this way, the overall power to which A4 is 

raised to, in the two-loop diagram ( 4.33), is v4 + v5 + v6 + v7- ~. Inserting Eq. ( 4.36) 

into ( 4.33) we find 

(4.37) 
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We can immediately obtain a hypergeometric series representation of the Abox 

topology using the representation (4.31). 

In Chapter 5 we will see that the every integral of the topology can be written in 

terms of integrals belonging to subtopologies and the ABOX master integral which 

is defined as 

l ( ) (s, t) = Abox4
-

2E(1, 1, 1, 0, 1, 1, 0; s, t) (4.38) 

By direct substitution in Eq. 4.37 and trivial manipulations of the hypergeometric 

functions we obtain 

I C ) -2E K1 ( S + t) (s, t) ( -t) 
2 

S E3 2F1 1, -E, 1- E, -
8

-

-2E K2 ( s + t) + (-s) 
28

€3 2F1 1,E, 1- E, -
8

- , 

where the constants K1 and K 2 are given by 

f (1 + 2E) f (1 - c) 3 

(1- 2E) f (1- 3E) 

r (1 + 2c) r (1 - 2c) r (1 +c) r (1 - c) 2 

( 1 - 2E) f ( 1 - 3c) 

(4.39) 

(4.40) 

( 4.41) 

Note that by starting off with the NDIM approach, we have not actually had to 

perform any integrations to reach this result or make any assumptions about the 

smallness of E. The hypergeometric functions have one-dimensional integral repre­

sentations (see Eq. (A.10)) and can be expanded around E = 0 in terms of polylog­

arithms. The necessary integrals are easily done 

2F1 (1, -E, 1- E, x) = 1 + clog(1- x)- E2 Li2 (x)- c3 Li3 (x)- E4 Li4 (x) + 0 (c5
) 

( 4.42) 

2 F 1 (1, E, 1- E, x) = (1- x)-2E{ 1 + log(1- x)E + [Li2 (x) + log2(1- x)] E2 

+ [ Li3 (x)- 2 81,2 (x) + ~ log3(1- x)] c3 

+ [ Li4 (x) + 4 81, 3 (x) - 2 82, 2(x) + ~ log4 (1 - x)] E4 + 0 ( c5
)}. 

( 4.43) 
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where x < 1 so that the polylogarithms are real. For x > 1 we have to use the 

inversion formulae of Appendix B.2 producing imaginary parts. 

We finally obtain 

I C ) r 3 (1 -c) r (1 + 2c) [ -210 -210 ] (s,t) = 2s (1-2c) E3r(1-3c) (-s) AI(s,t)+(-t) A2(s,t) 
( 4.44) 

where A1 (s, t) and A2 (s, t) are given respectively by: 

1) in the physical region s > 0, t < 0: 

A1 (s,t) = (-1) -E {1-E2 [ Li2 (s;t) -2(2]-E3 [ Li3 (s;t) + 81, 2 (s;t) 
- 2(3]- E4 [ Li4 ( 

8 
; t) + 82, 2 ( 

8 
; t) + 81, 3 ( 

8 
; t) 

+ 2(2 Li2 ( 
8

; t) -9(4]} + 0 (c5
), (4.45) 

A2 (s, t) 1 + E log ( -1) -c2 Li2 ( 
8 

; t) - E3 Li3 ( 
8 

; t) _ E4 Li4 ( 
8 

; t) 
+ 0 (c5

), (4.46) 

2) while in the region s < 0, t < 0: 

A1 (s, t) = 

A2 (s, t) 

( 1) -c { 1 + E
2 

[ Li2 ( 
8 

: t) + ~ log
2 

( 
8 

; t) - ~
2

] - E
3 

[ 2 Li3 ( 
8 

: t) 
- 81,2 ( 

8 
: t) - (3 + log ( 

8 
; t) ( Li2 ( 

8 
: t) + ~n2)] 

+ E4 [ 81 3 (-t ) - 2 82 2 (-t ) + 4 Li4 (-t ) - E__n4 ' s + t ' s + t s + t 180 

+ 2

1

4 log4 ( 
8 

; t) + log ( 
8 

; t) ( 2 Li3 ( 
8 

: t) - 81, 2 ( 
8 

: t) - (3)] 

+ n
2 

Li2 (-t ) - n
2 

log2 (~) + ~ log2 (~) Li2 (-t ) } 
3 s+t 4 t 2 t s+t 

+ 0 (c5
), (4.47) 

( t) 2 [ ( s ) 1 2 ( s + t) n
2
] 1 +clog ~ +E Li2 s+t + 2log -

8
- -3 

- E3 [ Li3 ( 
8 

: t) + ~
2 

log ( 
8 

; t) _ ~ log3 ( 
8 

: t)] 
4 [ ( 8 

) n
4 

n
2 

2 ( s + t) 1 4 ( s + t) l +E Li4 -- ----log -- +-log --s + t 45 6 s 24 s 
+ 0 ( E5

) . ( 4.48) 
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4.3 Discussion 

In this chapter we have evaluated one-loop massless box integrals with arbitrary 

powers of the propagators and with up to one off-shell leg as combinations of hy­

pergeometric functions. The method we used (NDIM), first suggested by Halliday 

and Ricotta, has its roots in the analytic properties of loop integrals and, in partic­

ular, the possibility of treating the space-time dimensions D as a negative integer 

in intermediate steps. 

One can trivially apply NDIM and derive representations in terms of hypergeo­

metric functions for other one-loop diagrams. In general it should be expected that 

one-loop diagrams with q mass or momentum scales and arbitrary powers of prop­

agators can be expressed, in a straightforward manner, in terms of hypergeometric 

functions with q- 1 summation variables. This makes NDIM an extremely efficient 

method at one-loop level. Nevertheless, for practical purposes, we are interested 

in calculating the analytic expansions in f. of the integrals in terms of logarithms 

and generalised polylogarithms. As shown for the one-loop massless on-shell box, it 

may be done through the integral representations of the hypergeometric functions. 

Unfortunately, although many results have been obtained in this way, it turns out 

that in various cases expanding the hypergeometric integral representation is very 

hard if not impossible. Furthermore hypergeometric functions of many variables do 

not always have known integral representations. 

At two-loop level, NDIM has a very limited success where practical difficulties 

arise from many sources. The terms P and Q have in general a much bigger number 

of terms. Therefore, for their multinomial expansion more indices are required, and 

due to the small number of constraints, one is left with a big number of indices that 

should be summed over. Typically, the summations are not easy to perform and 

very few mathematical tools have been developed in this direction. What is more, 

the number of solutions is large (typically a few thousands), and it seems impractical 

at present to identify the region of convergence of all individual solutions. 

One could try to avoid having a big number of solutions and many sums to 

perform by viewing a two-loop integral as the insertion of one-loop into the other, 

where the second integration is meant to be performed over a one-loop function. 

With the insertion approach we are always dealing with one loop diagrams and hope 
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to gain better control over the number of solutions and the number of summations. 

As shown in this chapter, this approach is straightforward when the inserted one­

loop graph is a bubble. However this approach becomes very demanding when we 

have to insert a triangle or a box graph into a second loop using the representations 

in terms of hypergeometric functions which converge in a specific kinematic domain. 

A problem arises, since the second integration has to be performed over all kinematic 

domains, and a systematic way of doing this, unlike the Mellin-Barnes method, is 

not yet understood for a completely analytic approach. 

To summarise, NDIM is very efficient for one-loop integrals with many scales, 

at least for the cases that we know the integral representations of the hypergeomet­

ric functions involved. We could also expect to work in two-loop integrals of the 

bubble-insertion type, or with dependence on only one mass or momentum scale 

(propagator-type graphs or triangle graphs with two on-shell external legs). For 

other integrals appearing in QCD 2-+2 scattering we will have to employ more pow­

erful and specialized methods, like Integration By Parts (IBP) and Mellin-Barnes 

representations. 



Chapter 5 

Integration by Parts 

So far we have been able to relate tensor integrals to scalar integrals with higher 

powers of propagators and higher dimension. Our attempt to deal with the scalar 

integrals using the Negative Dimensions Integration Method, provided useful results 

for one-loop topologies but had problems at two-loops. 

In this chapter we shall attack the problem of the multitude of the scalar integrals 

that we produce from the tensor reduction program of Chapter 3 in a more efficient 

way. Our aim is to find relations that their recursive application connects scalar 

integrals with arbitrary powers of propagators and dimension to a minimal set of 

"master" integrals which are independent of each other i.e they consist a basis in 

the space of scalar integrals. 

It is practical to separate this task into two steps. First we find an algorithm 

which systematically decreases the power of the propagators achieving the reduction 

to the scalar integrals of the basis but still in higher dimensions. The algorithm is 

based on identities derived from Integration by Parts (IBP) or exploiting the invari­

ance of the scalar integrals under Lorentz transformations of the loop momenta. IBP 

was first introduced by Tkachov and Chetyrkin in 1980 (Ref. [56, 57]). Recently, 

Gehrmann and Remiddi [25] used the property of Lorentz invariance of scalar inte­

grals to extend the set of identities among the different integrals of a topology. The 

identities are specific to each topology, though there are many common relations 

between parent topologies and their sub-topologies. 

As a second step, we must find relations reducing the dimension of the scalar 

integrals of the basis in D = 4 - 2E dimensions. We start from the Schwinger 

93 
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representation of the master integrals in D, rewrite them as scalar integrals in D + 2 

and extra powers of propagators, and use the algorithm of step one to reduce the 

extra powers. We therefore end up with a system of equations between the integrals 

of the basis in D and D + 2 dimensions. Inverting the system, we obtain relations 

for the dimensional shift from the basis-integrals in higher dimensions to the master 

integrals in D = 4 - 2c. 

The reduction of tensor integrals to master integrals is a great simplification of 

the initial problem since the only ingredient missing is to find the analytic expansions 

in E of the few master integrals only. For the simple ones, Feynman parameters 

are sufficient and two-loop box integrals with bubble insertions can be calculated 

with NDIM. For more complicated integrals theE expansion of their Mellin-Barnes 

representation has provided some remarkable breakthroughs. Finally, there are some 

remaining master integrals that can be related to the rest with the aid of differential 

equations that we obtain from the application of the same algorithm as for the tensor 

reduction. They are calculated by differentiation of other known master integrals. 

In this chapter we will describe how IBP and Lorentz-Invariance (LI) identities 

can be derived. We will then use them to find the algorithms of reduction to master 

integrals for all one and two-loop integrals which appear at 2-t2 massless QCD 

scattering which do not have a simple analytic form in terms off-functions. The 

rest have already been studied in Chapter 3, and they were related to master integrals 

by exploiting the basic property off-functions 

f(l + x) = xr(x). 

We will finally define the basis of master integrals and we will provide their analytic 

expansions in the different kinematic regions completing the program for a general 

evaluation of integrals for NNLO matrix elements in 2-t2 massless scattering. 
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5.1 Integration by Parts and Lorentz lnvariance 

identities 

We consider the general scalar m-loop diagram in D dimensions with n propagators 

1/Ai raised to arbitrary powers vi and p1, .. ·Pr external momenta 

(5.1) 

Our immediate goal is to find relations between the scalar integrals with different 

vi's. We can start from 

(5.2) 

where we integrate a total derivative with respect to one of the loop momenta 

aJ-L- kJ-L kf-L - 1, ... ' m· (5.3) 

In the numerator we can contract with either one of the m loop momenta or one of 

the r - 1 independent momenta (due to momentum conservation) of the r external 

legs 

(5.4) 

The total number of independent IBP identities is therefore 

NIBP = m x (m + r- 1). (5.5) 

The total derivative will be acting on each of the terms of the integrand yielding 

two types of terms: 

A 

(5.6) 

B 

(5.7) 
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The Type A terms are zero unless a = b where, in this case only, 81i' / 8aJ.L = D. 

The Type B terms are more interesting because the derivative acts on one of the 

propagators. Assuming the general form of the propagator (see Eq. 3.2) in the 

massless limit 

1 1 

A CE~jkj+q)2 +i0 
(5.8) 

we find that 

(5.9) 

where we have increased the power v by one in the denominator and, at the same, 

we have produced scalar products in the numerator. 

The scalar products can be formed either exclusively between external momenta 

Pi· Pi and are then trivially associated with the external kinematic scales, or with at 

least one loop-momentum ki'Pi· We divide the latter into reducible numerators, if 

they can be re-written in terms of inverse propagators of the integral, or irreducible 

otherwise. 

The creation of reducible numerators leads to cancellations between numerator 

and denominator decreasing the powers of some propagators and linking the original 

integral with simpler integrals. The presence of irreducible numerators is a problem, 

because the resulting integrals are more complicated. In this case one can take linear 

combinations of two or more IBP identities in order to eliminate them. In general, 

we have 

1 Mrr = 2m X (m + 1) + m X (r- 1)- n (5.10) 

irreducible numerators. 

After the elimination of the irreducible numerators we are left with identities 

which in principle relate integrals with increased powers of propagators to integrals 

with decreased powers of propagators or integrals with one of the powers increased 

while another is decreased at the same time. For convenience, we shall denote with 

i+ (i-) an integral with the power of the i-th propagator increased(decreased) by 

one. For example 
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represents an integral with the power of the fifth propagator increased by two and 

the power of the third propagator decreased by one. The multiplicative factor 

( -1)kvi ... (vi+ k- 1) is always present whenever the power of the i-th propagator 

has been increased by k = 1, 2, .... 

For an algorithm which reduces a topology to master integrals is often sufficient to 

use appropriate linear combinations of a subset of the IBP identities. Nevertheless, 

we have found topologies, e.g. the massless two-loop cross-box topology with light­

like legs, for which it is necessary to complement the IBP identities with more 

identities originating from the Lorentz Invariance of the scalar integrals [25). 

In fact, since the Feynman integral is a function only of scalar products of the 

external momenta, it is invariant under the (infinitesimal) rotation 

(5.11) 

where 8 is a very small parameter. We can then write 

(5.12) 

where f is the function of the product of propagators and depends on the loop­

momenta kh j = 1, ... , m and the external momenta Pa, a= l..r- 1. Expand­

ing in a Taylor series around 8 = 0 the right-hand side of Eq. (5.12), we obtain 

(5.13) 

With the r - 1 independent external momenta, we can build 

1 
NLI = 2(r- 1) x (r- 2) (5.14) 

independent second rank antisymmetric tensors that, once inserted into Eq. (5.13), 

give rise to equal number of LI identities. For graphs with four legs we can choose 

J.W JlV JlV 
E2 - P1 P3 - P3 P1' 

E~v p~ p~- p~ p~. 
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5.2 Dimensional shift 

IBP and LI identities suffice to reduce the extra powers of propagators of the scalar 

integrals generated from the tensor decomposition of Section 3.1. Therefore we 

obtain a minimal basis of integrals required which cannot be reduced any further. 

The integrals of the basis appear in many different dimensions D = 4 - 2E + 2n and 

it is rather hard to attempt a direct evaluation for all possible n. Instead we can 

find recurrence relations, similar to the ones reducing the powers of propagators, 

which reduce the dimension of the basis-integrals as well. 

Let as assume that we have an IBP and LI algorithm G for the power reduction 

of a topology T with powers of propagators {vi}. Schematically, 

TD({vi}) ~ L:cSBf (5.15) 
j 

where each of the integrals of the topology characterized by the {vi} powers in D 

dimensions can be written in terms of the integrals of the basis Bf in the same di­

mension. We pick one of the integrals of the basis and we express it in the Schwinger 

representation 

Bf = J Vxp;/2 exp (;). (5.16) 

where Q, P, and J Vx are defined in Section 3.1. We rewrite the above equation as 

Bf = J Vx p(:;_2);2 exp (;) . (5.17) 

multiplying and dividing the integrand with P. We remember that for an m -loop 

integral P is an m-degree polynomial in the Schwinger parameters xi, 

p = "" dt l Xt ... Xt L-t 1··· m 1 m 

h ... lm 

where di1 ... im depends on the topology. As usual, we absorb the xi's of P in the 

numerator into J Vx, increasing the powers of the propagators, while the extra P in 

the denominator increases the dimension of the integral. Therefore, we can express 

the integral of the basis in D dimensions in terms of integrals of the topology in 

D + 2 dimensions with the cost of increasing the powers of the propagators. 

Bf = LdjrD+2({vj}) 
j 
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With the algorithm G each of the D + 2 dimensional integrals of the r.h.s. reduces 

to the integrals of the basis in the same dimension. So the last equation now reads 

BP = "'"""APBD+2 
t ~ tJ J (5.18) 

j 

where the coefficients A§ is an n x n matrix, where n is the number of master 

integrals, and depends on the topology and the dimension. 

The system of Eqs. 5.18 expresses integrals of the basis in lower dimension in 

terms of integrals of the basis in higher dimensions with step two. In practice, we 

are interested in shifting the dimension in the opposite direction since our tensor 

reduction program produces integrals in higher dimensions. Therefore we need to 

invert the system (5.18), yielding 

BP+2 = "'"""(A- 1)IJBI? 
t ~ tJ J 0 

(5.19) 
j 

We can now have a rough picture of the basic steps that are needed for the 

calculation of the tensor integrals in terms of master integrals. 

• Rewrite tensors to scalar integrals with extra powers of propagators and higher 

dimension 

• Apply IBP and LI identities in order to reduce the extra powers of the prop­

agators 

• Apply dimensional-shift (Eqs. 5.19) arriving to master integrals in D = 4- 2E 

dimensions. 

• Evaluate the analytic expansions in E of the master integrals (with Feynman 

parameters, NDIM, MB representations, etc.) 

5.3 The one-loop box topology 

In Chapters 3, 4 we studied the one-loop box topology, shown in Fig. 5.1. We now 

concentrate on the limit where all external legs are massless. With NDIM we found 

an analytic expression for the one-loop box with arbitrary powers of propagators 

in this limit (Eq. 4.31) in terms of hypergeometric functions. In principle, it is 
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Figure 5.1: The one-loop box topology 

possible to calculate analytic expansions in E for all integrals with different powers 

of propagators and dimensions through their hypergeometric representation but it 

is very tedious and we would rather reduce the general scalar integral to master 

integrals with the application of IBP. 

The number of independent IBP identities for the one-loop box topology is 

NIBP = 4, and the number of irreducible numerators Mrr = 0. The IBP iden­

tities can be cast in the form 

s vil + I.f - (D- vi2334) If+ (vil + + v22+ + v44+) 3-If, (5.20) 

t v22+ If - (D- vi2344) If+ (vil + + v22+ + v33+) 4- If, (5.21) 

s v33+ If - (D- vu234) If+ (v22+ + v33+ + v44+) 1-If, (5.22) 

tv44+ If - (D- VI2234) If+ (vil+ + v33+ + v44+) 2- If, (5.23) 

where we have used the shorthand notation If = If(vi, v2 , v3, v4; s, t) and vijjk = 

vi + 2vi + vk, etc. Starting from integrals in D dimensions with extra powers of 

propagators, repeated application of these identities reduces vi, v2, v3 and v4 to 

unity, resulting in the simplest integral of the topology which we call BOX. It is 

a basic integral, in the sense that any other integral of the topology is linearly 

dependent on this one. We introduce the following notation to describe it 

(D, s, t) = BOXD(s, t) = If(1, 1, 1, 1, s, t) . (5.24) 

At the same time, in the right hand side of Eqs. (5.20)- (5.23) we observe that 

the i- operators can pinch one of the legs of the topology yielding integrals of the 
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one-loop triangle topology (see Eq. 3.35) 

If (VI' 0' V3' v 4; s' t) = If ( v 4' VI' V3; s) ' 

If (0, v2, v3, v4; s, t) = If (v3, v4, v2; t), 

101 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

which, in their own turn, can be written in terms of the BUB master integral defined 

in Eq. (3.38). 

Finally, we derive the dimensional shift formula 

-u 
st 

___._-.~...._ (D + 2, s, t) 2(D _ 3) --~-.-----1.1_ ( D, s, t) 

+D~4 { -o-(D,s) + -o-(D,t)} (5.29) 

where u = -s-t. This completes the tensor reduction program for the one-loop 

box topology reducing it to the following set of master integrals in D = 4- 2E 

(s, t), -o- (s) , -o- (t) (5.30) 

We can easily obtain an analytic expression which can be expanded in E, for the 

BUB master integral from Eq. 3.35 with the substitution VI = 0, v2 = 1, v3 = 

1, D = 4- 2E, yielding 

= r(1+c)r(1-E)
2
(-s)-€. 

r (2- 2c) E 
(5.31) 

The BOX master integral can be calculated from Eq. 4.32 with M = 0 and 

expanding the hypergeometric functions according to Eq. 4.42. We can see that the 

leading term in the series expansion is 1/c2 divergent. Another observation we can 

make with simple substitutions in Eq. 5.29, is that the one-loop box function is finite 

in D = 6-2c dimensions. It is useful to change our basis of master integrals replacing 

the divergent box in 4- 2c dimensions with the finite box in 6- 2E dimensions so 

that we will be able to isolate the singular parts of the one-loop amplitudes in terms 

of BUB functions only. Therefore our favorite basis of Master integrals for the 

one-loop box topology and the sub-topologies becomes 

I 61 (s, t) (5.32) 
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For s > 0, t < 0 and u = -s- t < 0 we need to know the analytic expansion in E 

of the BOX in D = 4- 2E dimensions for arguments (u, t), (s, t) and (s, u). When 

both arguments are negative we have no imaginary parts and the expansion can be 

cast in the form 

161 (u,t) = f(1+E)f(1-E)2 (J.L2)€{~ [(Lx-L )2+7r2] 
. . 2sr (1- 2E) (1- 2E) s 2 Y 

+2E [Li3(x)- LxLi2(x)- ~L;- ~
2 

Lx] 

-2E2 [Li4 (x) + L Li3(x)- ~L2 Li2 (x)- ~L4 - ~L3 L + ~L2 L2 
Y 2x 8x 6xY 4xy 

-: L;- ~
2 

L,L,- ::] + (u ++ t)} + 0(<
3
), (5.33) 

while when one argument is positive we find, 

161 (s,t) = f(1+E)f(1-E)2 (-J.L2)€{(L;+2i1fLx) 
. . 2uf(1- 2E)(1- 2E) U 

+< [ ( -2Li3 (x) + 2L,Li2(x) - ~L! + 2L,L; - Jr
2 L, + 2(3) 

+i,. ( 2Li,(x) + 4L,Lx- L!- ~')] 

+<2 
[ ( 2L4 ( x: 1) + 2Li4 (y) - 2L,Li,(x)- 2L,Li3(y) + (2£,£,- L;- Jr

2)Li,(x) 

1 4 5 3 3 2 2 2 2 2 2 1 4) 
+3Lx- 3LxLY + 2,LxLy + 31f Lx- 2Jr LxLy + 2Ly(3 + 61f 

+i1r ( -2Li3(x)- 2Li3(Y) + 2LyLb(x) + ~L;- 2L;Ly + 3LxL~ 

- ~ L, + 2(3) ]}+ 0( <3
), (5.34) 

where 

t 
X=-- (5.35) 

S 

and 

(5.36) 

Finally, l 61 (s, u) is obtained from Eq. (5.34) by exchanging u and t. 
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Figure 5.2: The Abox topology. 

5.4 IBP algorithm for the bubble-box {Abox) topol-

ogy 

We now want to extend the results of the previous section to the case where we have 

a one-loop bubble insertion in one of the legs of the one-loop box topology. This is 

the Abox topology (see Fig 5.2) defined in Eq. (4.33) This integral is related by a 

factor to the ordinary one-loop box integral 

(5.37) 

where ITD(v5 , v6 ) is given in Eq. 3.37. For arbitrary D we have the relation 

(5.38) 

where the function Ctr(n, v1 , v2, v3) is defined in Eq. (3.41). The propagators of the 

associated one-loop box, according to Eq. 5.37, have powers 

D 
/LI = v1, /L2 = v2, /L3 = v2, /L4 = v4567 - 2 · (5.39) 

Expressions for the one-loop box integral with general powers of the propagators 

were obtained with NDIM in the previous chapter. Again, we will first try to reduce 

the extra powers of the propagators finding the minimum set of integrals required 

for the calculation of the one-loop box in Eq. (5.37). 

A vital difference between the power reduction of the ordinary one-loop box with 

integer powers of propagators and the one-loop box function in Eq. (5.37) is that the 

power of the fourth propagator is regulated by the dimension which is not an integer 
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in dimensional regularisation. Therefore it is impossible to pinch this propagator 

out since its power can never take the integer value zero. Instead, we need to modify 

the IBP identity of Eq. (5.21) eliminating the 4- terms. If we act with J.L44+ on 

Eq. (5.21) and with j.L22+ on Eq. (5.23), and subtract the two equations we obtain 

the identity 

(D- 2 -tLI344) /L44+ If+ (~tz -tL4) (J.Lll + + /L33+) If, 

(5.40) 

which reduces J.Lz to one while at the same time increases J11, J13 and J.L4. On their 

own turn, J.LI and J.L3 are decreased to unity with the known identities, 

s J11l +If 

s J133+ If 

- (D- J.L12334) If+ (J.Lll + + J.Lz2+ + J144+) 3- If, 

- (D- J.Ln234) If+ (J.Lz2+ + /L33+ + /L44+) 1-If. 

(5.41) 

(5.42) 

We should note that with the repeated application of the above identities we produce 

integrals with the first or the third propagator pinched out, belonging to the one-loop 

triangle topology (see Eq. 3.35) 

If (J.LI, J.Lz, 0, J14; s, t) =I!} (J.LI, /Lz, J14; t), 

If (0, J.Lz, /L3, J14; s, t) = I!} (J.L3, J.Lz, J14; t). 

(5.43) 

(5.44) 

The above triangles reinserted in Eq.' 5.37 correspond to integrals of the two-loop 

TrianB topology which in turn reduces to the SUNSET master integral 

--e-(t) 

according to the formulae of Section 3.2.4. Subsequent application of 

can be used to control the power of ~t4 and form the pinched triangle integral 

(5.46) 

which (inserted in Eq. 5.37) corresponds to the TrianA topology that can be reduced 

to the TRI master integral 

--<JI (s) 
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Figure 5.3: The propagators are labelled according and are each raised to the vi 

power. 

through application of the algorithm of Section 3.2.3. 

Equation (5.45) should be used until J.l-4 = 2- D /2, corresponding to v4 = 0, v5 = 

v6 = 1, v7 = 0. This last integral cannot be reduced any further and is defined as 

the ABOX master integral 

j ( ) (D, s, t) = AboxD(1, 1, 1, 0, 1, 1, 0; s, t) (5.47) 

Finally, we find the dimensional shift identity 

I C) (D + 2, s, t) = (D-4)st
2 I () D ) 

3(D- 1)(3D- 10)(3D- 8)(t + s) ( 's, t 

s [(D- 4)t + (2D- 6)s) ~ (D ) 
+ 3(D- 2)(D- 1)(3D- 8)(t + s) '-l...L__ '

8 

+ 3(D- 4)(~- 1)(t + s) -e- (D, s)' (5.48) 

which allows the reduction of the dimension to D = 4-2E. The analytic expansion of 

the ABOX master integral is given in Section 4.2 for the various kinematic regions. 

5.5 The diagonal-box {Cbox) topology 

The diagonal-box topology is shown in Fig. 5.5 and it is a sub-topology of the 

Penta-box topology (see Section 3.3.5) with v1 = v4 = 0. 

Starting from the MB representation of the Penta-box of Eq. (3.86) and setting 

v1 = v4 = 0 the two-fold integral is reduced, with the aid of Barnes first lemma 
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(Eq. 3.88 ), to the single MB integral representation for the Cbox topology 

D • _ ( -1 )D SD-v23567 

Cbox ({vi}, s, t) - r (v2) r (v3) r (v5) r (v6) r (v7) 

r ( ~ - V7) r ( ~ - v56) r ( ~ - V23) jioo da 
X -f (-a) f (D- v3567- a) r ( D - v231) r ( D - v567) r ( ~ D - v23567) -ioo 27ri 

xr (D- v2367- a) f (v23567- D +a) r (v3 +a) r (v6 +a) (~)a, (5.49) 

where the path of integration over a must be chosen so that to separate the poles 

COming from f ( ... -a) from those COming from f ( ... +a) and {vi}= V2, V3, V5, V6, V7. 

In the kinematic region iti < lsi the contour at infinity must be closed to the 

right and we then obtain an expression in terms of hypergeometric functions 

f (!2. - V23) f (f2 - V56) f (!2. - V7) 
CboxD({vi};s,t) = (-1)D sD-v23567 2 23 2 

r (v7) r (2D- v23567) 

x [r (v23567- D) r (D- v2367) r (D- v3567) 
r ( v2) r ( v5) r ( D - v567) r ( D - v237) 

X 3F2 (v3, v6, v23567- D, 1- D + v2367, 1- D + v3567, -~) 
f (v2- v5) f (D- v267) f (v2367- D) 
+~--~~~~~~~~--~~ r (v2) r (v3) f (v6) f (D- v567) 

( t) D-V2367 ( t) 
x ~ 3F2 v5, D- v267, D- v237, 1 + D- v2367, 1 + v5- v2, -~ 

f (v5- v2) f (D- v357) f (v3567- D) 
+~----~~------~~----~ r (v3) r (v5) r (v6) r (D - v231) 

X (~t) D-v3567 ( t) ] 
3F2 v2, D- V357, D- v567, 1 + D- v3567, 1 + v2- v5, -~ . 

(5.50) 

The solution valid when lsi < iti can be obtained from Eq. (5.50) by the exchanges 

s +-t t, (5.51) 

The expression for the diagonal box (5.50) has an apparent singularity when v2 - v5 

is an integer which cancels in the actual evaluation of the diagram. 

Following our operational recipe, we first try to simplify the evaluation of the 

integrals of the topology using IBP and then we calculate the c expansions of the 

master integrals. We can write down N1sp = 10 identities which have Nirr = 4 
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irreducible numerators. Taking appropriate linear combinations of the identities, we 

eliminate the irreducible numerators. We finally produce the following relations 

(D- 2- 2v23) v22+ 

(D- 2- 2v56) v66+ 

(D- 2- 2v7) v71+- (D- 2- 2v23) l/33+, (5.52) 

(D- 2- 2v7) v77+- (D- 2- 2v56) v55+, (5.53) 

so that we can reduce both v2 and v6 to unity at the expense of increasing v3 and v5 

together with v7 . Eqs. 5.52 and 5.53, are meant to act on the general integral of the 

topology CboxD(v2, v3, v5, v6, v7; s, t). Similarly, for ease of notation, all IBP and 

11 identities presented in the rest of this Chapter will implicitly refer to the general 

integral of the topology in question. 

We now reduce v3 and v5 to unity using the relations 

s (D - 2 - 2v23) v33+ = - (D - 1 - v237) (3D- 2v235667) (5.54) 

+ 2 (D- 1 - l/237) v55+6- + (D- 2- 2v7) v71+6-, 

t (D- 2- 2v56) v55+ - (D- 1 - v567) (3D- 2v223567) (5.55) 

+ 2 (D- 1 - v567) v33+2- + (D- 2- 2v7) v71+2-, 

which, because v2 and v6 are already unity, produces simpler pinched integrals of 

the form 

CboxD (0, v3, v5, v6, v7; s, t) = TrianA D (v5, v6, 0, v3, v7, 0; s) 

CboxD (v2, v3, v5, 0, v7; s, t) = TrianA D (v3, v2, 0, v5, v7, 0; t) (5.56) 

which collapse to the 

---(]I (s) ---(]I (t) 
master integrals. 

When the outer propagators have unit powers, we can reduce v7 using 

st (D- 2- 2v7) v77+ = -(s + t) (D- 3- v7) (3D- 10- 2v7) (5.57) 

+ 2 (D- 3 ~ v7) (t5+6- + s6+s-) 

+ (D- 2- 2v7) (tv77+6- + sv77+s-). 

This equation is only valid when v2 = v3 = v5 = v6 = 1. The integral with unit 

powers of propagators cannot be reduced any further and it is a master integral 

1/1 (D, s, t) = CboxD(1, 1, 1, 1, 1; s, t) (5.58) 
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We can shift its dimension down to D = 4- 2c with the identity 

1/1 (D+2,s,t)= 

3(D- 3)(D- 2)(3D- 10)(3D- 8)(t + s) 2 1/1 (D, s, t) 

s [(2D- 5)t + (D- 3)s] -o- (D s) 
+ 3(D- 3)(D- 2)2(t + s)2 ' 

t [(D- 3)t + (2D- 5)s] -o-
+ 3(D- 3)(D- 2) 2(t + s)2 (D, t) . (5.59) 

With the propagator powers equal to unity, all of the 3F2 functions of Eq. (5.50) 

reduce to 2F1. To deal with the pole in (v2 - v5 ) we set v2 = v5 + o, and, after 

performing an appropriate analytical continuation, we take the limit o----tO. The 

final expression is given by 

1/1 (D, s, t) 
r ( ~ - 1) r ( 3 - n) r 2 

( ~ - 2) 

r (~D- 5) 

[ 
D 5 ( S + t) X (-t) - 2Fl 1, 1,D- 2, -t-

D-5 ( S + t) l + (-s) 2F1 1, 1,D- 2,-
8

- . 

If we make a series expansion in E = 2- ~' we obtain 

(5.60) 

1/1 ( ) r
3

(1-c)r(1+2c) [( )-2€C( ) ( )-2€C( )] s, t = ( ) r ( ) 3 -s s, t + -t t, s ' 2 s + t 1- 3c E 

(5.61) 

where C (s, t) is given respectively by: 

1) in the physical region s > 0, t < 0: 

C(s,t) = log ( -~) +2cLi2 (s;t) +4c2 Li3 (s;t) +8c3 Li4 (s;t) 

+ 0 ( c4
) , (5.62) 
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Figure 5.4: The penta-box topology. It is reducible to simpler topologies due to the 

presence of the triangle sub-graph. 

2) while in the region s < 0, t < 0: 

C ( s, t) = log ( ~) - 2E [ Li2 ( 
8 

: t) + ~ log2 ( 
8 

; t) _ ~2

] 
2 [ • ( t ) 1 3 ( s + t) 7!"

2 
( s + t) l + 4E 113 

8 
+ t -B log -t- + 3 1og -t-

3 [ . ( t ) 1 4 (s + t) 1!"
2 

2 (s + t) 7r

4
] - 8E 114 s + t + 24 log -t- -6 log -t- -45 

+ () ( E4
) . (5.63) 

Note that the prefactor of Eq. (5.60) indicates that the integral diverges as 1/E3. 

However, the hypergeometric functions conspire to remove the leading divergence 

and we reproduce the result quoted in Ref.[58]. 

5.6 IBP algorithm for topologies with a triangle 

subgraph 

Topologies with massless external legs and a triangle subgraph reduce trivially to 

simpler sub-topologies with IBP. For integrals of this kind, one of the external legs 

of the triangle is always an external leg of the total graph. This is defined for our 

purposes as a "good" external leg of the triangle subgraph. Another possibility 

is that an external leg of the triangle is a propagator of the total graph and it 

is a "good" external leg as well. Finally, if an external leg of the subgraph is 

neither an external leg of the total graph nor a propagator it is a "bad" external 
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leg. Accordingly, if a propagator of the triangle is connected to two "good" external 

legs, then it is a "good" propagator otherwise a "bad" one. For example, all the 

propagators of the triangle in the pentabox graph (Figure 5.6) are good ones while 

all of them in the diagonal-box graph (Figure 5.5) are "bad" ones. 

It is easy to find IBP identities that reduce the graph to simpler integrals when 

the triangle subgraph has at least one "good" propagator. We pick a "good" propa­

gator and define bJ.L to be its momentum and aJ.L the loop-momentum flowing through 

it. We then write down the corresponding identity of Eq. 5.2 with the aJ.L and bJ.L 

that we have just chosen. The produced terms will either "pinch" the propagators 

of the triangle or the propagators of the rest of the graph. 

As an example we consider the penta-box topology of Section 3.3.5. shown 

in Figure 5.6. The momenta carried by each of the propagators are defined in 

Eq. (3.82). We start from 

yielding the identities 

( D - 2vs - l/6 - l/7) 

(D -v5 - 2v6 -v7) 

(v66+5- + v77+5-- v77+4-), 

(vs5+6- + v71+6- - v77+1-), 

(5.64) 

(5.65) 

(5.66) 

By repeated application of Eq. (5.65), we can reduce either of v4 or v5 to zero. 

Similarly, by applying Eq. (5.66) we can lower (and eventually eliminate) the power 

of either v1 or v6 . The pinched integrals belong to the Abox or Cbox topologies 

which we already know how to evaluate. Using the same identities we can reduce 

the subtopology 'IrianD of the pentabox topology with v2 = 0 (see Figure 5.6), 

to triangles that they belong to the known TrianA, TrianB and TrianC topolo­

gies. With the same method Kramer and Lampe [36] evaluated the integrals of the 

TrianE topology (see Figure 5.6). 

5. 7 Reduction algorithm for the Cross-Triangle 

topology 

The cross-triangle topology (TrianX) (Figure 3.10) is defined in Section 3.3.7. In 

this section we want to find an algorithm for the reduction of the topology to master 
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Figure 5.5: The TrianD (left) and TrianE (right) topologies. They can be reduced 

to simpler topologies with the IBP triangle rule 

integrals. For this particular topology, though IBP identities are sufficient on their 

own for the reduction, we find it easier to complement them with the one LI identity 

one can write for a graph with three external legs. For an alternative solution to 

this reduction problem, exploiting a connection with massless three-loop propagator 

integrals, see Ref. [59] 

Some of the eight IBP identities and the single Lorentz-invariance identity de­

pend on one irreducible scalar product in the numerator, that we choose to be (l·p2): 

SZ11l + + (2D- 2v235- Z/146)- Z/44+3- - Z11l +2- - Z166+5- = 0 (5.67) 

sv22+ + (2D- 2v146- Z123s)- Z133+ 4-- v22+1- - v55+6- = 0 (5.68) 

2 (l· P2) v1l+- (D -v24- 2v3) + v1l+ (2- + 4-- 5-) 

(5.69) 
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2 (l · P2) v22+- (D- v125- 2v6) + v22+ (6-- 3-) 
- v11 + ( 6- - 4-) - v5 5 + 6- = 0 ( 5. 70) 

2 (l · P2) v33+ + (D- v345 - v6) + v33+ (2-- s-) + v44+ (1-- 6-) 
- v55+6- = 0 (5.71) 

2 (l · P2) v44+ + sv44+- (D- v346- 2vs) + v33+ (s-- 2-) 

+ v44+ (6-- 1-) + v66+s- = 0 (5.72) 

2 (l· P2) vs5+ + svs5+- (D- v36- 2v4) + vs5+ (4- + 6-- 1-) 

+ v66+ (4- -1-) + v33+4- = 0 (5.73) 

2 (l· P2) v66+- (D- v45- 2v3) - v66+ (3- + s- - 2-) 

+ v55+ (2-- 3-) + v44+3- = 0 (5.74) 

2 (l · P2) v11 +- (D- v2356) + v11 + (2- + 6- - s-) + v44+3- = 0. (5.75) 

The identity 

together with the symmetric one for v22+, can reduce v1 and v2 to unity. By 

eliminating the irreducible scalar product in the numerator, we obtain 

1 
D (v44+v66+1-- v33+v55+2-) 

- 2- V3456 

+ D 
1 

[(D- 2- 2v46) v66+ + 2 (v3- v6) vss+J, 
-2- 2v34 

(5.77) 

and the symmetric one for v44+, which reduce v3 and v4 to one. To complete the 

reduction, we use 

that can be re-iterated until (v56 - v34 ) = 0. Since we are applying this identity to 

scalar integrals where v3 and v4 have already been reduced to one, the reduction 

procedure will stop when v5 = v6 = 1. This integral cannot be reduced any further, 

and we choose the crossed master triangle (XTRI) to be 

~,s) = TrianXD(l,l,l, 1, l,l;s).l (5.79) 
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During the application of the above algorithm, we produce pinched integrals belong­

ing to the TrianC and TrianD topologies, which in their own turn are reduced to 

the 

--e--(s) --(]I (s) 

master integrals. 

Finally, the dimensional-shift formula for the cross-triangle master integral reads 

---<D + 2' s) = - 4(D- 2)~~D-~);)
2

(2D- 5) ---<D, s) 

37 D3 
- 313D2 + 858D - 752 ~ (D ) 

2(D- 4)(D- 2)(2D- 7)(2D- 5)(3D- 8) '-LL ' 8 

43D4
- 478D3 + 1963D2

- 3530D + 2352 --e-
+ 2(D- 4)2(D- 3)(D- 2)(2D -7)(2D- 5)s (D,s) · (5·80) 

The expression of the master integral ofEq. (5.79) in D = 4-2E has been computed 

in Refs. [35, 36], and we recalculated it by expanding the MB representation of the 

integral in Eq. 3.123. 

5.8 The Cross-Box topology 

In this section we deal with the reduction of the Cross-Box (Xbox) topology to 

master integrals. We denote the generic two-loop scalar crossed (or non-planar) 

four-point function in D dimensions of Fig. 5.8 with seven propagators Ai raised to 

arbitrary powers vi as 

(5.81) 

AI (ki + k2 + P3 + P4)2 + iO, 

A2 (ki + k2 +PI+ P3 + P4)2 + iO, 

A3 (k1 + k2)2 + iO, 

A4 k~ + iO, (5.82) 

As (k2 + P3)2 + iO, 

A6 k~ + iO, 

A7 (ki + P4)2 + iO. 
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Figure 5.6: The two-loop cross-box graph with arbitrary powers of propagators 

The external momenta pj are in-going and light-like, PJ = 0, j = 1 ... 4, so that 

the only momentum scales are the usual Mandelstam variables s = (PI+ p2) 2 and 

t = (pz + p3)2, together with u = (PI + p3)2 = -s - t. 

5.8.1 IBP and LI identities 

As usual, we aim to find an algorithm to reduce the powers of the propagators. So far, 

IBP identities were sufficient for the reduction of the topologies we have encountered. 

In the cross-triangle topology, we used aLI identity in order to simplify the reduction 

algorithm, but one could still achieve the reduction without it. It turns out, that 

for the cross-box topology LI identities are indispensable. We can write 10 IBP and 

3 LI identities and we expect the presence of Nirr = 2 irreducible numerators. The 

identities can be cast in the form 

svil +- v71+6- - Vs5+ 4- - (v22+ + v11 +) 3-- VIzs7 - 2v34B + 2D = 0 (5.83) 

sv33+- v56+7-- v44+5-- (v33+ + v22+) 1-- Vz346- 2vis7 + 2D = 0 (5.84) 

2 (l · P4) v44+ - (v56+ + vs5+) 7- + vs5+1- + v44+ (3-- 6-) 

- V455- 2v7 + D = 0 (5.85) 
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2 (l· p4) v55+ + v77+6- + v55+ (7-- 1- + s) + v44+ (6-- 3-) 

+ V457 + 2v6- D = 0 (5.86) 

2 (l· P4) v66+ + v71+ (5--1-)+ v66+ (7- +5--1-+ s) + v44+5-

+ v47 + 2vs - D = 0 (5.87) 

2 (l· P4) v77+ + v66+ (3-- 4-)- v77+ (6- + 4-- 3-)- vs5+4-

- Vs6 - 2v4 + D = 0 (5.88) 

2s (l· p4) v22+ + 4s (l· p4) v33+ + v22+ [(t + s) (s + 1-)- t3-] 

+ s (2v66+ + 2v33+ + v22+) 7-- s (2v33+ + v22+) 6-

- (2D - 2vi3457 - v2) s = 0 (5.89) 

2s (l · P4) v33+- 2s (l · P4) vi1 + + (t + s)v22+ (1-- 3-) + s (vi1 +- v33+) 6-

+ s (v66+ + v33+- vi1+) 7-- svs5+4-- svi1+3-

- (v6 - VIs) s = 0 (5.90) 

2 (l· P4) v33+- 2 (l· PI) v22+ + (t + s) v22+ + (v66+ + v33+ + v22+ + vi1+) 7-

- (v22+ + vi1 +) 5-- v33+4- + VI236 + 2v7- D = 0 (5.91) 

2s (l · p4) v33+- 2s (l ·pi) v77+ + v77+ [(t + s) (s- 1-) + t5- + s2-] 

+ v66+ (t4-- t3- + s7-) + sv33+ (7-- 6-) + (t + s)v22+1- + svi1 +2-

+ s (vi26 + 2v3457- 2D)- t (D- v67 + v2- 2v4s) = 0 

2s (l· p4 ) v33+- 2s (l· PI) v55+ + (t + s) v55+ (7-- 1- + s) + (t + s)v22+1-

+ (t + s)v44+ (6-- 3-) + s (v66+ + v33+) 7-- sv33+6-- svi1 +2-

(5.92) 

+ s (vi456 - v2 + 2v7 - D) + t (2v67 + V45 - v2 - D) = 0 (5.93) 

2s (l· P4) v33+ + 2s (l· PI) v66+ + v66+ [t (4-- 3-)- s (2-- 1- + s)] - sv44+5-

+ sv33+ (7-- 6-- 2-) + tv77+ (5--1-)+ (t + s)v22+1-

+ s (v34- v2) + t (v67 + 2v45- v2- D) = 0 (5.94) 

2s (l · P4) v33+ + 2s (l ·PI) v44+ + v44+ [(t + s) (6-- 3-) + s5-J + 2sv66+7-

+ (t + s)v55+ (7-- 1-) + (t + s)v22+1- + sv33+ (7-- 6- + 2-) 

+ s (v23 + 2vi46 + 3vs + 4v7- 3D)+ t (v45- v2 + 2v67- D) = 0, (5.95) 

where we use the shorthand Vij =vi+ Vj, Vijk =vi+ Vj + vk, etc. 

Equations (5.83) and (5.84) of the system, being independent of the two irre-
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ducible scalar products, need no further manipulation, and can be rewritten in the 

form 

(5.96) 

(5.97) 

By repeated application of these two identities, we can reduce v1 and v3 to one. 

During this process, the generic scalar box is expressed as a linear combination of 

crossed-box diagrams with v1 = v3 = 1 and diagrams belonging to simpler topolo­

gies, that originate when powers of propagators are reduced (pinched) to zero by the 

decreasing operators. We will deal with the pinched diagrams later, concentrating 

now on the reduction of the remaining propagators. 

In order to use the other equations of the system, we have to eliminate the 

irreducible scalar products in the numerator. 

For example, applying the operator v77+ to Eq. (5.85) and v44+ to Eq. (5.88), 

and taking the difference, we get 

(5.98) 

In the same way, we can apply v66+ to Eq. (5.86) and v55+ to Eq. (5.87) and take 

the difference, to obtain 

(5.99) 

Combining Eq. (5.98) and (5.99) to eliminate v55+, we have 

(5.100) 

that can be used to reduce v4 to one, at the expense of increasing v6 and v7 . If, 

on the other hand, we eliminate v44+, we obtain the symmetric equation that can 
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reduce v5 to one. At this point, all the powers of the propagators except v2, v6 and 

v7 have been reduced to one. 

In the same spirit we can derive 

stv22+v66+ = (2vl567 + v2 + 2- 2D) sv66+ + (v467 + 2v5 - D) sv22+ 

- 2 (D- v467- 2v5) (v66+7- + v44+5- + vg3+1- + v22+1-) 

+ s (2vg3+ + v22+) [ (v77+ + v66+ + v44+) 5-- v77+1-J 

+ tv22+v66+ (3-- 1-) + 2sv44+v66+5-

+ 2 (D- v467- 2v5) (2D- 2vl57- v2346), (5.101) 

that, together with the symmetric one for v22+v77+ and with 

sv66+v77+ = (D- v567- 2v4- 1) v66+ + (D- v467- 2v5 - 1) v71+ 

+ v66+v77+ (3- + 1-- s-- 4-)- v44+v77+s-- v55+v66+4-

+ v7(v7 + 1)7++ (1-- s-) + v6(v6 + 1)6++ (3-- 4-)' (5.102) 

reduces all powers except one (v2 or v6 or v7 ) to unity. 

We can decrease v2 at the expense of increasing v6 and v7 using 

[(v4- v7 + 2v23 + 2- D) s + (v45- v67) t] v22+ = (v5- v3 ) sv44+ + (v7- vg) sv66+ 

- (D- 2v7- v16- 2) sv77+- (D- 2v5- V14- 2) sv55+ 

+ (t + s )v22+ [v77+ (1-- s-) + v44+ (6-- 3-) J 

+ tv22+ [v55+ (7- - 1-) + v66+ (3-- 4-) J 

- sv11+ (v77+5- + v55+7-) 

+ sv33+ [(2v77+ + v44+) 6- + (2v55+ + v66+) 4-J 

- (2D- 2v57- 3v46) [v66+7- + v44+5- + (v33+ + v22+) 1-J 

+ (v57- 2v2) [v77+6- + v55+4- + (v22+ + v11+) 3-J 

+ 4D
2

- 2 (5v57 + 4v46 + v3- v2 + 2vl) D + v7 (5vl7 + 10v456 + 4vg + v2) 

+ v6 (3v6 + 10v5 + 6v14 + 3vg - v2) + V5 (Sv5 + 10v4 + 4vg + v2 + Sv1) 

+ v4 (3v4 + 3vg- v2 + 6v1)- 2v2 (2vg + v12). (5.103) 
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The power of the seventh propagator can be reduced with 

(D- 6) t + (5D- 2v7 - 26) s 
s(t + s)v7(v7 + 1)7++ = av77+- (v7- 1) D 

6 
6+ 

- 2v7-
(2D- v7 - 11) t +(3D- 2v7- 15) s + 

7
+

1
-

+p D 5 v7 - v7- 5 
(D - 2v7 - 4) t + (5 - D) s { 

+ p 4+6+3- + p(t + s) -v7(v7 + 1)7++6-
D-v7-5 

+ 5 + V7 7+ ( 3- - 4- - 6-) + 4 + V7 7+ [ 2 ( 3- - 6-) + 1-] 

- 2+ (v77+ + 4+) 1- + 5+6+3- - 2 5++ 4-} 

- 2v7 t + 
8 

(4+v77+5- + 5+6+4-) + (t + s) [26++ (4-- 3-) 
D- 2v7- 6 

+ v7(v7 + 1)7++ (5--1-) + 6+v77+ (5- + 4-- 3-- 1-) J 

+ ps[3+5+ (1-- 4- -7-)- 3+6+ (4- + 7-)- 3+v77+ (4- + 2-) 

- 4+ (v71+2- + 6+7- + 1+2- + 3+7-) J 

+ (2D- 3v7 - 7)p [6+7- + 4+5- + (3+ + 2+) 1- - 2(D- v7 - 4) J ,(5.104) 

where we have introduced the shorthands 

p 

(J = 

D-6 

D- 2v7- 6 
(5D2 - 8v7D- 50D + 2vi + 42v7 + 124) s + (2D2

- 3v7D- 21D + 18v7 +54) t 
D- 2v7 - 6 

Equation (5.104) is not as general as the previous ones since we have set all the 

powers of the other propagators to unity. In addition, since this equation contains 

7++, we cannot always reduce v7 to one, and are left with integrals where v7 = 

2. A similar identity can be obtained by symmetry for 6++, so that we are left 

with three integrals: XboxD(1, 1, 1, 1, 1, 1, 1; s, t), XboxD(1, 1, 1, 1, 1, 1, 2; s, t) and 

XboxD(1, 1, 1, 1, 1, 2, 1; s, t). 

The last step is to write the integral with v6 = 2 as a combination of the other 

two. This can be done with the identity that links 6+ with 7+. We can derive such 

an identity, equating the expressions obtained by acting with v77+ on v22+v44+ 
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and by acting with v22+ on v44+v71+ 

(D- 6)(D- 5)-t-6+ = (D- 6)(D- 5)7+- 4 (D-
5
)

3 

t+8 t+8 

- ( 5+7+ + 1+7+ + 1+5+ + 1+4+ )6-- ( 3+7+ + 4+6+ + 3+6+ + 3+4+ )5-

+ ( 3+4+ + 4+6+ + 5+6+ + 3+6+) 1-- (D- 7)4+7+1-

- ~(2+7+6- +2+5+6- +4+7+5- +2+6+5- -1+4+3-) 

-t; 8 
[2+4+7+ (6- + 5-) + 2 (2++7+- 2+4+7+ + 2++4+) 1-] 

- ~{ 2+ (3+ (6+ + 5+ + 4+) 7- + 4+6+7- + 3+ (7+ + 6+ + 5+) 4-] 

+ 3+5+ (2 7+- 2+) 1-}- (D- 6) (t + 
28

) (2+ (7+4- + 4+7- + 5+4-) 
2(t + 8) 

+ 2 ( 1 +7+ + 5+7+ + 1 +6+ + 1 +5+ )4- - 21 +6+3-] - 2(D -
2
!)t + 8 2+7+5-

_ (D- 6) (4+7+3- + (3+4+ + 4+6+ + 3+6+ + 3+5+) 7-] 

+ (D- 6)t ~ 
8 

[1+3+4- + (1+3+ + 7+4+ + 1+4+ )2-] + 
2
D; 

13 
4+7+6-

(D - 5)t + (2D - 11)8 [ ] + (D- 5) (2+ + 1 +) 3- + 7+6-
. 8(t+8) 

+ (D- 5)-t- (2 3+7+6- + 3+4+6- -1+7+5-- 1+5+7-] + _!_2+5+3-
t + 8 . 28 
(D - 5)t - 8 [ ] 2D - 15 - (D- 5) 4+5~ + 2+1- + 6+7- + 3+1- - 3+7+1-

8(t+8) ' 2 

+ (D- 5) [ 1- (3+5+ + 2 2++ + 2+3+)] + ~ [2+ (5+7+1- + 4+6+3-)] 

+ 5t- 2(D- 7)8 
5

+
7

+
1

- _ (2D- 9)t2 - (D- 5)8t- 2(D- 5)82 

2
+

5
+

1
-

2(t+8) .· - 28(t+8) 

_ (D _ 
6

) t + 28 2+7+3- _ 2(D- 5)t2 + (D- 6)8t + 2(D- 6)82 

2+6+ 
4

_ 
28 · . 28(t + 8) 

(3D- 16)t + 2(D- 5)8
2

+ '+ _ (D- 4)t + 28 + + _ 
+ 2 7 1 + 2( ) 2 6 7 

,· 8 t + 8 

2(D- 5)t2
- (D- 6)8t- 2(D- 6)82 t + . . 2+5+7-- (4D- 21) 4+6+3-

. 28(t+8) . 2(t+8) 

+ (D- 5)t + (D- 6)8
3

+
6

+
4

- _ (D- 4)t- 2(D- 6)8
2

+
4

+
3

-
t + 8 28 

(2D- ll)t2 + (D- 7)8t + 2(D- 6)82 + + _ t + 28 + + _ 
+ 2 ( ) 2 6 3 + --2 6 1 

8 t + 8 . 28 

+ 2(D- 5)t+ (D- 6)8 3+5+
4

- + (D _ 
5
) (D- 5)t + (2D -11)8 5+4-

. t+8 8(t+8) 

+ 2D- 11 2+ 4+5- _ (D- 6)t- 28 2+ 4+1- + 2(D- 5)t- 8 2+ 4+6- (5_105) 
2 28 28 ' 
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where we have set all the powers of the propagators to unity. 

At the end of this reduction program, we are left with the following two crossed­

box integrals: XboxD(1, 1, 1, 1, 1, 1, 1; s, t) and XboxD(1, 1, 1, 1, 1, 1, 2; s, t), plus 

simpler diagrams that can always be expressed as a combination of master inte­

grals: 

- the master crossed triangle of 

XboxD (1, 0, 1, 1, 1, 1, 1; s, t) = XTRID(s), 

(5.106) 

- the master diagonal box produced by 

1/1 (D, s, t) 
D D . 

Xbox (0, 1, 1, 0, 1, 1, 1; s, t) = Xbox (1, 1, 0, 1, 1, 1, 0; s, t) 

(5.107) 

together with 

1/1 (D,s,u) XboxD (1, 1, 0, 1, 0, 1, 1; s, t) = XboxD (0, 1, 1, 1, 1, 0, 1; s, t) 

and 

1/1 (D, t, u) = XboxD (0, 1, 0, 1, 1, 1, 1; s, t) = CBOXD(t, u), 

(5.109) 

- the master box with a bubble insertion produced by 

I ( ) (D, s, t) = XboxD (1, 1, 1, 0, 1, 1, 0; s, t), (5.110) 

together with 

I ( ) (D, s, u) = XboxD (1, 1, 1, 1, 0, 0, 1; s, t) = ABOXD(s, u), 

(5.111) 

- the master triangle with a bubble insertion produced by 

(5.108) 

~(D,s) XboxD (1, 0, 1, 0, 1, 1, 0; s, t) = XboxD (1, 0, 1, 1, 0, 0, 1; s, t) 

(5.112) 
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- the master sunset diagram produced by 

-e-- (D,s) XboxD (0, 0, 1, 0, 1, 0, 1; s, t) = XboxD (1, 0, 0, 1, 0, 1, 0; s, t) 

together with 

-e--(D,t) = XboxD (0, 1, 0, 0, 1, 1, 0; s, t) = SUNSD(t), 

(5.114) 

and finally 

-e--(D,u) = XboxD (0, 1, 0, 1, 0, 0, 1; s, t) = SUNSD(u).(5.115) 

In this point we have derived a basis of master integrals for the cross-box topol­

ogy. It is of our freedom to choose a different but equivalent more symmetric basis. 

Instead of keeping XboxD(1, 1, 1, 1, 1, 1, 2; s, t) as one of the two cross-box integrals 

members of the basis, we prefer to switch to XboxD(1, 2, 1, 1, 1, 1, 1; s, t). The ex­

pression for this one, in terms of the master integrals of the old basis, can be easily 

obtained through the application of the reduction algorithm outlined above. This 

allows us to define the two cross-box master integrals as 

I X (D, s, t) = XboxD(1, 1, 1, 1, 1, 1, 1; s, t) (5.116) 

! X (D, s, t) = XboxD(1, 2, 1, 1, 1, 1, 1; s, t) , (5.117) 

which are symmetric under the exchange t ++ u. 

Finally, given the reduction algorithm for the extra powers of propagators de­

veloped here, it is straightforward to apply the procedure of Section 5.2 in order to 

relate the cross-box master integrals in higher dimensions to the master integrals in 

D = 4 - 2c dimensions. The relative expressions are rather lengthy and we do not 

present them here. 

With the dimensional-shift at hand we have completed the tensor reduction of 

the cross-box topologies to master integrals in 4-2E dimensions. All master integrals 

belonging in subtopologies were calculated earlier. The calculation of the cross-box 

master integrals is a hard and laborious problem. Tausk [22] calculated the 

XBOX{-2" (s, t) _ I X (s,t) 

(5.113) 
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master integral by performing an c-expansion of the ME-representation of the inte­

gral. Fortunately, we can avoid a direct evaluation of the second cross-box master 

integral 

XBOX~-2€ (s, t) f X (s,t) 

since the two integrals are related by a simple differential equation. Differential 

equations for scalar integrals can be obtained in a straightforward manner starting 

from the Schwinger parametric form of the integrals, and this will be the subject of 

the following paragraph. 

5.8.2 Differential equations for the master integrals of the 

cross-box topology 

We consider the Schwinger representation of the general scalar two-loop box with 

arbitrary powers of propagators, 

(5.118) 

where 

(5.119) 

(5.120) 

and 

(5.121) 

It is straightforward to differentiate both sides of Eq. 5.118 with respect to the 

kinematic variables s and t. The only dependence on these variables comes from Q, 

we therefore have 

8 D I x2(xsx6- X4X7) 1 ( Q) 
OtXbox ({vi};s,t) = 1Jx p pD/2 exp P , (5.122) 
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which we rewrite in terms of integrals in D + 2 dimensions and extra powers of 

propagators 

f) 
at XboxD ({vi}; s, t) = -v22+(vs5+v66+ - v44+v77+)XboxD+2( {vi}; s, t) 

(5.123) 

The integrals of the r.h.s can be reduced to the master integrals in D dimensions 

with the algorithm of Section 5.8.1. 

In the special case of differentiating the cross-box master integrals with respect 

tot, we obtain the following two equations 

where 

f) 

fJt 
f) 

at 

H(t, u) 

K(t, u) 

I X (D,s,t) 

f X (D,s,t) 

1 
t _ u [H(t, u) + H(u, t)], 

1 
t _ u [K(t, u) + K(u, t)], 

hl I X (D, s, t) + h2 f X (D, s, t) 

+h3 ~D,s) +h4 1/1 (D,s,t) 

+ h5 1/1 (D, t, u) + h6 I ( ) (D, s, t) 

+ h7 --(]I (D, s) + hs -D- (D,s) 

(5.124) 

(5.125) 

+ h9 -D- (D, t) , (5.126) 

kl I X ( D' s' t) + k2 f X (D's' t) 

+k3 ~D,s) +k4 1/1 (D,s,t) 

+ k5 1/1 (D, t, u) + k6 I ( ) (D, s, t) 

+ k7 --(]I (D, s) 

+ k9 -D- (D,t). 

+ ks -D- (D,s) 

(5.127) 
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The coefficients are given by 

(D- 4)s2 - 4tu h
2 

= _ (D- 6)s h
3 

= (D- 4)(2D- 9)s 
4tu 4(D- 5) 4(D- 5)tu 

h
4 

= ~ (D- 4)(3D- 14)u h = ~ (D- 4)(3D- 14)s2 h = 3 (D- 3)(3D- 14) 
2 (D- 5)st2 5 2 (D- 6)t2u2 6 (D- 5)t2 

3 (D- 3)(3D- 10) ((3D- 14) (u2 + t2) + 2(D- 4)tu] 
h7 = 4 (D- 5)(D- 4)st2u2 

hs 

hg 

3 (D- 3)(3D- 10)(3D- 8) [(D- 5)(3D- 14) (u2 + t2) - (D- 6)(D- 4)tu] 
4 (D- 5)2(D- 4)2s2t2u2 

~ (D- 3)(3D- 14)(3D- 10)(3D- 8) [(2D _ g)(3D _ 16)u2 
2 (D- 6)(D- 5)2(D- 4) 2st3u2 

124 

+ (7D2 - 68D + 164) tu + 2(D- 5)2t2], (5.128) 

and by 

kl 
(D-5) 2 s k

2
=_(D-6)(u2 +t2) k

3
= (D-4)(2D-9) 

tu 2tu tu 

k4 6 
(D- 4)(3D- 14)u [(5- D)u + (2D- ll)t] k

5 
= ~ (D- 5)(D- 4)(3D- 14)s3 

(D- 6)s2t3 2 (D- 6)t3u3 

k6 = 3(D(-~/2(!~t;u14) [(5D- 28)tu+ (D- 6)t2- 2(D- 5)u2) 

k7 = 
3 (D-3)(3D-10) [ 2 2 
2 (D- 6)(D- 4)s2t3u3 2(D- 6)(3D- 14)tu (u + t ) 

- (D- 5)(3D -14) (u4 + t4) + 2 (5D2 - 49D + 118) t2u2] 

(D-3)(3D-10)(3D-8) [ 2 2 2 
ks = 3 (D- 6)(D- 5)(D- 4)2s3t3u3 3(D- 5) (3D- 14)tu (u + t ) 

- (D- 5)2(3D -14) (u4 + t4)- (D- 4) (7D2 - 70D + 176) t2u2] 

kg = 3 (D- 3)(3D -14)(3D -10)(3D- 8) [(D _ 5)2(D _ 2) 4 
(D- 6)2(D- 5)(D- 4)2s2t4u3 u 

+ (D- 6) (13D2 - 129D + 318) tu3 + 2 (5D3
- 80D2 + 422D- 734) t2u2 

+ (D- 6)(D- 5)(5D- 24)t3u + (D- 6)(D- 5)2t4]. (5.129) 

Differential equations with respect to s can be obtained with the same method. 

The differential equations for the master integrals are a very useful tool. Finding 

an appropriate boundary condition we could try to solve them and calculate the 

master integrals. For example, Gehrmann and Remiddi [28, 27, 25] have developed 

a technique to solve the differential equations order by order in E, and they have 

evaluated integrals even more complicated than the ones involved in the above sys­

tem. In our case, given the original calculation of Tausk for XBOxf-2
< (s, t) from 

its Mellin-Barnes representation, we will use the differential equations to verify it 

and guess the solution for XBOX~-2€ (s, t). 
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5.8.3 Analytic expansion of the second master integral 

Taking a closer look in Eq. 5.124 we see that in order to evaluate the master integral 

XBOXi-2
€ (s, t) one needs the E-expansion of the master integral XBOX{-2

€ (s, t) 

(which has already been calculated in Ref [22]) together with its derivative and the 

E expansions of the master integrals of the sub-topologies which we calculated in 

previous sections. 

Solving the equation with respect to XBOXi-2
€ (s, t), we obtain, in the physical 

region s > 0, t, u < 0, 

fX ( ) = r2(1 ) {G1(t,u) G2(t,u) G1(u,t) G2(u,t)} 
S' t + E 3t + 2t2 + 3 + 2 2 ' s s su su 

(5.130) 

where 

G1(t,u) = s-2
€ { ~ + ~ (32- 6Lx- 6Ly) 

f. f. 

1 ( 2 2 2) 2 8 3 + - 1 - 12 7r - 24 Lx + Lx - 24 Ly + 16 Lx Ly + Ly - 43 - 18 Lx + 13 Lx + - Lx 
f. 3 

2 2 2 8 3 2 ( 112) -18 Ly + 16 Lx Ly + 11 Lx Ly + 13 Ly - 20 Lx Ly + 3 Ly + 7r 17 Lx + 17 Ly - 3 

- 122 ((3) + 62 Lx Li2 ( -~) - 62 Li3 ( -~) + 62 81,2 ( -~) 

+ i1r [~ (16 + 6Lx + 6Ly)- 34- 97r2
- 6Lx -10L;- 6Ly + 14Lx Ly -lOL~]}, 

(5.131) 
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-2€ { 2 1 ( 5 7 ) G2(t u) = s -- +- -8 +- L +- L 
l €4 €3 2 X 2 y 

+ - -- - - 1r + 7 L - L + 20 L - 4 L L - L 1 ( 29 5 2 2 2) 
€2 2 12 X X y X y y 

1 [ 1 2 L~ 1r
2 

2 + - -- + 17 Lx + 2 Lx - - + - (14 + 5 Lx- 29 Ly) + 13 Ly- 28 Lx Ly- 4 Ly 
E 2 3 6 

2 3 19 . ( t) . ( t) ( t)] +3LxLy-Ly+2((3)-2LxL12 -~ +2113 -~ -281,2 -~ 

37 37 4 2 22 3 2 4 8 3 2 
+ 2 + 

40 
7r + 7 Lx - 5 Lx - 3 Lx + 3 Lx + 5 Ly - 20 Lx Ly + 3 Lx Ly - 2 Ly 

2 22 3 4 3 44 + 24 Lx Ly - Lx Ly - 8 Ly - 3 Lx Ly + 3 Ly 

7r2 
+ 6 (79- 22Lx- 5L;- 200Ly + 76Lx Ly + 25L~) + (68 -13Lx- 33Ly) ((3) 

+ (101r2 - 32Lx + 17 L; + 12LxLy) Li2 ( -~) + (32- 60Lx -12Ly) Li3 ( -~) 

+ (28Lx- 6Ly- 32) 81,2 ( -~)- 2681,3 ( -~)- 3682,2 ( -~) + 86Li4 ( -~) 
. [ 2 1 1 ( 31 2 2 2) + m - + - (11 - L + L ) + - 1 - - 1r - 10 L - 2 L + 4 L - 2 L L - 2 L €3 €2 X y t 6 X X y X y y 

2 10 3 7r2 2 
+ 11 + 4 Lx - 2 Lx + 3 Lx + 3 ( -65 + 28 Lx - Ly) + 2 Ly - 8 Lx Ly - 8 Ly 

+ 2 L~- 89 ((3) + (14Lx + 18 Ly) Li2 ( -~) - 32 Li3 ( -~) + 4481,2 ( -~) ] } , 

(5.132) 

and Lx = log(-tjs), Ly = log(-ujs). 

The three kinematically accessible regions of the phase-space are depicted in 

Fig. 5.8.3. 

(i) s > 0, t, u < 0. All logarithms and polylogarithms occurring in Eqs. (5.131) 

and (5.132) are real in this region. 

Formulae for the other two regions, (ii) and (iii), can be derived by analytic 

continuation, starting from region (i) and following the paths indicated in the 

figure. 

The analytic continuation can be performed through a few simple steps. re­

calling the +iO prescription associated with the external kinematic scales. 

(ii) t > 0, s, u < 0. Going from region (i) to region (ii), we have to pass through 

two branches: t = 0 and s = 0. We can then split the analytic continuation 

into two steps: 



Chapter 5. Integration by Parts 127 

(ii) 

-(iii) s 

/u 

Figure 5.7: The physical regions (i), (ii) and (iii) in the (s, t, u)-plane. 

- we first split the logarithm T = log(-t)- log(s). At t = 0, nothing 

happens to the polylogarithms Sn,p (-tis), but log(-t) gets an imaginary 

part: log( -t)-+ log(t)- i1r. 

We are now in an unphysical region, where both s and t are positive 

and u is negative. Using the transformation formulae for x---+ 1lx (see, 

Appendix B. 2), we can express Sn,p (-tIs) in terms of Sn,p (-sIt) and 

log(tl s ). 

- To enter region (ii), we have to pass now the branch point at s = 0. 

We split log(tls) = log(t) -log(s) and U = log(s + t) -log(s) and we 

analytically continue log(s )---+log( -s) + i?T. 

In this way, for example, the logarithms in Eqs. (5.131) and (5.132) undergo 

the transformation 

log (- ~) ---+ log (- ~) - 2 i 1r, 

log (- ~) ---+ log ( ~) - i 1T. 

(5.133) 

(5.134) 

(iii) u > 0, s, t < 0. The procedure to go from region (i) to region (iii) is similar 

to the previous one, but it requires an additional step. 

- We rewrite Sn,p (-tis) in terms of Sn,p ((s + t)ls), log( -tis) and log((s+ 

t) Is), using the transformation x---+ 1 - x, and we split the logarithms as 
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before. In passing the first branch point at u = 0, the polylogarithms are 

well defined while log(s + t)---+ log( -s- t)- in. 

- We invert now the argument of the poly logarithms, expressing Sn,p ( ( s + t) / s) 

in terms of Sn,p(s/(s+t)) and log((-s- t)js) = log(-s- t) -log(s). 

Finally, log( s )---+log( -s) +in, as we pass the branch point at s = 0 and 

enter region (iii). 

The logarithms in Eqs. (5.131) and (5.132) undergo the transformation 

(5.135) 

(5.136) 

The expression for GI(t, u) and G2(t, u) in this region can also be obtained 

directly from the expressions in region (ii), using the symmetry t ++ u. 

A non-trivial check of the correctness of the expressions of XBOXf (s, t) and 

XBOXf (s, t) comes from Eq. (5.125), that must be identically satisfied, once the 

respective E expansions are used. 

5.9 The planar double-box topology 

We denote the generic two-loop scalar planar double-box function in D dimensions 

of Fig. 5.9 with seven propagators Ai raised to arbitrary powers vi as 

D I dD ki I dD k2 1 
Pbox ({vi}; s, t) = inD/2 inD/2 Avl Av2 Av3 Av4 Avs Av6 AV7' 

I 2 3 4 5 6 7 
(5.137) 

AI ki + iO, 

A2 (ki + PI)2 + iO, 

A3 (ki +PI+ P2)2 + iO, 

A4 (k2 +PI+ P2)2 + iO, (5.138) 

As (k2 +PI+ P2 + P3)2 + iO, 

A6 k~ + iO, 

A1 (ki - k2)2 + iO. 
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P1 

P2 P3 

Figure 5.8: The planar double-box topology. 

The external momenta Pi are in-going and light-like, PJ = 0, j = 1 ... 4, so that 

the only momentum scales are the usual Mandelstam variables s = (PI + p2)
2 and 

t = (P2 + P3?, together with u = (PI + P3)2 = -s - t. 

5.9.1 IBP algorithm for the planar double-box 

Smirnov and Veretin [58] found an algorithm based on IBP for the reduction of the 

double-box to master integrals. Here we give a synopsis of their algorithm. 

We first decrease the power of the first propagator v1 to unity with the identity 

(5.139) 

Three similar relations obtained by symmetry reduce the powers of v3 , v4 and v6 . 

We can now reduce the power of v2 to one with the identity 

(5.140) 

and with its symmetric we reduce v5 to unity as well. Now all powers of propagators 

have been reduced to one except v7 . The identity for the reduction of this last power 
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reads 

t(D- 6- 2v7)v7(v7 + 1)7++ 

-(D- 5- v7) [3D -14- 2v7 + 2v7~] v77+ + ~(D- 4- v7?(D- 5- v7) 

+{ (5+ + 6+) [ -~(D- 4- v7)(D- 5- v7 ) + 2~v?7+] 

- [2tv7(v, + 1)7++ + 2(D- 4- v7)v77+J a+ }4-

+(D- 6){v77+(1+ + 2+ +a++ 4+ + 5+) 

+(4+ + 6+)(1+ + 2+ +a+) }s- (5.141) 

which is valid only when all the powers are equal to unit. The reduction will stop 

when v7 becomes one or two, leading to the two master double planar box integrals 

I I I (D, s, t) = PBOX1 D(s, t) = PboxD(1, 1, 1, 1, 1, 1, 1; s, t) , 

(5.142) 
,--------------------------------------------------, 

I f I (D, s, t) = PBOX2D(s, t) = PboxD(1, 1, 1, 1, 1, 1, 2; s, t) . 

(5.143) 

During the application of the above algorithm integrals with pinched propagators 

are produced and they belong to the topologies that we have already studied earlier 

in this thesis. 

It is again possible to obtain the dimensional shift identities for the reduction 

of the dimension of the master integrals in Eq. 5.142 by direct application of the 

method described in Section 5.2. 

The first master integral was calculated by Smirnov[21] from its MB represen­

tation. The second master integral was calculated by Smirnov and Veretin [58], 

through a differential equation which expressed it in terms of the first master in­

tegral its derivative with respect to the one of the kinematic variables and simpler 

master integrals of the subtopologies. 

It appeared that the algorithm described in ref. [58] completely solved the prob­

lem of calculating on-shell double box diagrams. However, as was reported by Glover 
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and Tejeda-Yeomans [60), it often happens that in the reduction of a given tensor 

integral, the coefficients in front of the master integrals are of order 0(1/c). This 

is a consequence of the fact that in the reduction of these integrals it is necessary 

to reduce the dimension down to D = 4- 2E from at least D = 6- 2E, and in the 

system of equations for the dimensional shift, there are factors of 1/(D- 6) sitting 

in front of the two master integrals. Thus, in order to calculate such tensor integrals 

to V(c), one would need to know them to one order higher in Ethan they are given 

in Refs. [21, 58]. 

A typical example is the following integral with an irreducible numerator: 

(5.144) 

where we have an irreducible numerator 

(5.145) 

The reduction to master integrals reads: 

I<DI I (D, s, t) = -~ (3~-=- ~4)s I I I (D, s, t) 

~(D~4)(~
8~ 5) I f I (D,s,t) +24(~~:jt I () (D,s,t) 

(s + t) 2 
-3 (D _ 5)(D _ 6)s2t [(7D - 68D + 164)s 

+(3D- 14)(3D- 16)t] 171 (D, s, t) 

(D- 3)2(2D- 9) ____f"Y\_ (D ) 3 (D- 3)(3D- 10) 
-

4 
(D- 4) 2(D- 5)s2 ~ '

8 
+ 2 (D- 4) 2(D- 5)2(D- 6)s2t 

x [8(D- 4)(D- 5)2s +( -11D3 + 158D2 -754D + 1196)t] -co::= (D, s) 

(D- 3)(3D- 8)(3D- 10) 2 
+3 (D _ 4)3(D _ 5)2(D _ 6)s3t [(D- 5)(7D - 68D + 164)s 

+(23D3
- 337D2 +1640D- 2652)t] -e- (D,s) 

(D- 3)(3D- 8)(3D- 10) 3 2 
+3 (D _ 4)3(D _ 5)2(D _ 6)s2t2 [ (16D - 229D + 1088D- 1716)s 

+(D- 5)(3D- 14)(3D- 16)t] -e- (D, t) , (5.146) 
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The factors of ( D - 4) in the denominators of the first two terms on the right hand 

side of eq. (5.146) are the ones which cause the problem. 

To circumvent the problem we calculate the integral with the irreducible numer­

ator directly from a Mellin-Barnes representation. It then can be used instead of 

the second master integral PBOX2 as a new master integral. We check our result 

in two different ways: firstly, by verifying that the new basis of master integrals 

satisfy a system of differential equations, and secondly, by using them to compute 

the integrals of the old basis in D = 6 dimensions, both of which are finite, and 

comparing the result with a numerical integration. 

5.9.2 Calculation by Mellin-Barnes contour integrals of a 

master integral 

The analytic structure of the on-shell double box is rather simple, since it only 

depends on two scales, and its only thresholds are at s = 0 and t = 0. The main 

difficulty in calculating this diagram is to find a way to isolate its infrared and 

collinear divergences. For the an1:1lytical calculation it is convenient to use a Mellin­

Barnes representation, which enables us to isolate the poles in E in a very natural 

way. 

We shall consider the following class of Feynman integrals 

D I dD kl I dD k2 1 
I (vi,v2,v3,v4,vs,v6,v7,vs;) = . v;2 . v;2 A"'IA'-'2A'-'3A'-'4A'-'5A'-'6AV"TA'-'s' 

2~ 2~ 1 2 3 4 5 6 7 8 

(5.147) 

where we have kept the powers of the propagators arbitrary. At the end we will 

specialize at the values v1 = ... = v7 = 1 and v8 = -1 corresponding to the tensor 

integral of Eq. (5.144). 

We derive our Mellin-Barnes representation for the two-loop integrals (5.147) 

by doing the loop integrations one by one. In terms of Feynman parameters, the 

k2-loop can be written as 

(5.148) 
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where v4567 = v4 + v5 + v6 + v7 (similar abbreviations will be used below), and 

(5.149) 

By introducing three Mellin-Barnes parameters, a, /3 and T, we split the polynomial 

Q into factors: 
i= 

r(v4567- D/2) Qd/2-v4567 I d~2;:)~T ( -A1X6X7 )a( -A3X4X7 ).B( -A8x5x7 r 
-i= 

x ( -sx4x6)~-v4567 -a-.B-7T( -a)r( -/3)r( -T)r(v4567- d/2 +a+ /3 + T). 

(5.150) 

After inserting Eq. (5.150) into Eq. (5.148), we evaluate the Feynman parameter 

integrals in terms of r functions, which gives us the following Mellin-Barnes repre­

sentation for the k2-loop: 

I dDk2 1 ( -1)1/4567 

i1rD/2 A~4 A~5 A~6 Ai = r(v4)r(v5)r(v6)r(v7) 

D 
xr( -a)r( -j3)r( -T)r(v4567- 2 +a+ /3 + 7) 

D D 
xr( 2 - v567- a- T)r( 2 - v457- /3- T)r(v5 + T)r(v7 +a+ /3 + T). 

(5.151) 

When this result is inserted into (5.147), the remaining k1-integral has the form of 

an on-shell massless one-loop box diagram with indices v1 - a, v2 , v3 - /3, v8 - T. We 

repeat the above steps for this k-integral, using a further Mellin-Barnes parameter, 

a, and finally obtain 

( -1)N 1 

r(v2)r(v4)r(v5)r(v6)r(v7 )r(D- v4567) (27ri)4 

r(a)r(v1238-~-a-j3-T-a) D D 
X r(-- l/567- a- T)r(-- l/457- /3- 7) 

r(D- l/1238 +a+ /3 + T) 2 2 
D 

xr(v5 + T)r(v7 +a+ /3 + T)r( 2 - v128 +a+ T + a)r(v8 - T- a) 

D 
xr( 2- l/238 + j3 + T + a)r(v2- a). (5.152) 
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In deriving this formula, we have assumed that the various parameters are such, 

that all the manipulations we performed are justified. This is certainly true if we are 

able to find a set of straight lines, parallel to the imaginary axis, for the integration 

variables a, j3, a, and T, such that the arguments of all the r functions in it have 

positive real parts. We then define the integrals (5.147) for values ofthe parameters 

where such contours do not exist by analytic continuation. 

Let us now consider the case with the irreducible numerator, 

I<DI 1 (s, t) = / 4- 2€(1, 1, 1, 1, 1, 1, 1, -1). 

On the one hand, from the definition (5.144), v5 + v8 = 1 - 1 = 0. On the other 

hand, if the real parts of the arguments of all gamma functions are positive, then 

in particular Re(v5 + r), Re(a) and Re(v8 - T- a) are positive, and therefore 

Re(v5 +v8 ) > 0. Since this does not depend on D, it means that in order to calculate 

the integral using the Mellin-Barnes representation (5.152), we must perform an 

analytic continuation not only in D, but also in v5 or v8 • We choose v8 . Setting 

v8 = -1 + 'rJ and all other v's equal to one, we get 

l<DI I (s, t) lim / 4- 2€(1, 1, 1, 1, 1, 1, -1 + ry) = 
1)-).0 

ioo 

----,..---
1
------:--lim 

1
. j dadj3drda(-t)-(7(-s)_2_ 17_ 2€+(7r(a)f(1- a) 

r( -2E) 11-1-0 (2nz)4 
-ioo 

f( -a)f( -j3)f( -T)f(1 + r)f( -1 + 'rJ- T- a)f( ) 
x 1-ry-E+a+r+a 

f(1- a)f(1- j3)f( -1 + 'rJ- r) 

X f(1 +a + j3 + T )f(2 + E +a + j3 + T) f( _ 1 _ E _ j3 _ T) 
f(2- 'rJ- 2E +a+ j3 + r) 

xf(ry + E- a- j3- T- a).f(1- 'rJ- E + j3 + T +a) 

xf( -1- E-a-T) (5.153) 

We can make the real parts of the arguments of all Gamma functions in Eq. 5.153 

positive by picking, for example, 'rJ = 12y and E = -12y, where y is some posi­

tive number much smaller than one, and choosing contours for the Mellin-Barnes 

variables defined by: Re(a) = Re(/3) = -y, Re(r) = -1 + 4y and Re(a) = 4y. 

Starting from these values, we first perform an analytic continuation in 'rJ to 

'rJ = 0, keeping E fixed, and then another one in E to the vicinity of E = 0. The 

procedure for both continuations is straightforward: keeping the integration contours 
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fixed, we simply have to keep track of the poles of the r functions, and whenever 

one of them crosses an integration contour, add its residue to a list of terms that 

will contribute to the final answer. For example, with the above choice of contours, 

the first crossing happens at 'TJ = 8y, when the pole at T = -1 + rJ- a crosses the 

r-contour. After taking a residue in one integration variable, we continue to follow 

the poles in the remaining variables, building up a tree of single and multiple residue 

terms. By this procedure, poles in t: are automatically expressed through singular r 

functions multiplying integrals that can safely be expanded under the integral sign. 

To O(t:0), it turns out that, along with terms where there is no integral left, 

only single and two-fold integrals contribute, because terms with more integrals are 

killed by the factor 1/r( -2t:) in Eq. (5.153). In the two-fold integrals, one integration 

can be done by Barnes's first lemma. The single integrals that are left can all be 

calculated by closing the contour and summing harmonic series. In the kinematic 

region 8, t < 0 the integral has no imaginary part and we find the following result: 

I<DI I (8 t) = r(1 + t:? {~- :!:_g- 77r2 
--- ' 82(-8)2" 4t:4 €3 3t:2 

1 [4 3 14 2 ( 2 2) . . l + ~ 3f + 31r f- 4 f + 1r L +8L13 (-t/8)- 8fL12 (-t/8) -16((3) 

_ ~£4 _ 13 1r2f2 + (16 g3 + 26 1r2f) L _ 5 (£2 + 1r2) L2 
3 3 3 3 

+ (6£2 - 20fL- ~1r2) Li2 (-t/8) + (8£ + 20L)Li3 (-t/8) 

+ 2082,2 (-t/8)- 20£81,2 (-t/8)- 28Li4 (-t/8) + (28£- 20L) ((3)-
74~

4

}, 
(5.154) 

with f = log(t/ 8) and L = log(1 + tj 8) . Expressions in other kinematic regions can 

be obtained with the analytic continuations described in Section 5.8.3. 
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5.9.3 Differential equations for double-box master integrals 

It is possible to construct a system of differential equations satisfied by the double 

box master integrals. In terms of the new basis, these differential equations are : 

! I I I (D, s, t) [(~::~;t- t I I I (D, s, t) 

(D- 4) I I I (D- 4) l/1 + (s + t)t<D (D, s, t) - 6 st2 (D, s, t) 

+12((~+~)~~ I () (D,s,t) +4(D~~)~2:;:+t) --CfJ-(D,s) 

3 (D- 3)(3D- 10)(2s + t) ____fT\ (D s) 
+ (D- 4)s2t2 (s + t) '-l.L__ ' 

6 (D- 3)(3D- 8)(3D- lO)(s- t) -e- (D s) 
+ (D- 4) 2s3t2(s + t) ' 

(D- 3)(3D- 8)(3D- 10) -e-( ) 
+6 . (D- 4) 2st3(s + t) D, t 

! I<DI I (D, s, t) 
1 (D- 4)s 
2 (s+t)t I<DI I (D, s, t) 

+! (D- 4)s 
2 s+t 

(D s t) - 9 (D- 4) 
' ' st 1/1 (D,s,t) 

(5.155) 

+12(D-3) 
(s + t)t 

I I I 
I C) ( ) + 2 

( D - 3) 2 ( s + 2t) 
D,s,t ( ) 2 ( ) D-4sts+t 

--CfJ-(D,s) 

+ 15 (D- 3)(3D- 10) 

2 (D- 4)st(s + t) ---(]I (D, s) 

+
6 
(D- 3)(3D- 8)(3D- 10) 

(D- 4)2s2t(s + t) 
+

9 
(D- 3)(3D- 8)(3D- 10) 

(D- 4) 2st2 (s + t) 

-e-(D,s) 

-e-(D,t) (5.156) 

Expanding eqs. (5.155,5.156) in E, and inserting the expansion of PBOX1 from 

ref. [21], ofthe pinched diagrams from previous sections, and the result of Eq. (5.154) 

for PBOX3 we find that they are indeed satisfied. 

Inspecting the right hand sides of the differential equations, one notices that in 

Eq. (5.155), the coefficient of PBOX3 , and in Eq. (5.156), those of PBOX1 and 

PBOX3 , are all proportional to D- 4. This means that, if PBOX1 is known to 

0( E0
), the 0( E0

) part of PBOX3 is, a priori, only determined by the system of 

equations up to at-independent constant. 
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One also observes that the system of differential equations has a singular point at 

s+t = 0. This corresponds to the special kinematic configuration where PI +P3 = 0. 

At this point, the numerator of PBOX3 becomes reducible: 

As ( k + PI + P2 + P3? 

( k + P2? = PI - P2 + P3 - s, (5.157) 

so 

I<DI I (s, t) 

collapses to a linear combination of PBOX1 and pinched diagrams. This singular 

point can be used for the calculation of the t-independent constant. In this way 

Gehrmann and Remiddi [26] calculated an equivalent combination to PBOX3 of 

the PBOX1 and PBOX2 master integrals, which is in agreement with the result 

of Eq. (5.154). 

5.9.4 Master integrals in D=6 dimensions 

The master integrals PBOX1 and PBOX2 are both finite in D = 6 dimensions. 

This can be deduced from power counting considerations in momentum space; it 

is also easy to see by examining the arguments of the r functions in the Mellin­

Eames representation (5.152). With the dimensional shift equations that can be 

derived from the Schwinger parametric form of the integrals and the IBP algorithm 

to reduce the extra powers of propagators, we relate these master integrals in D = 

6 - 2E dimensions to master integrals of the new basis in D = 4 - 2E dimensions. 

Substituting E-expansions for the latter, we find that all pole terms indeed cancel, 

and the finite parts are 

PBOX1D=6 { ai b} 
(s + t) + t ' (5.158) 

PBOX2D=6 { a2 b } 
s(s+t) + st ' 

(5.159) 

where 

&a2 
(5.160) a I tat- 6((3), 
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while 

4 2 

a2 = ~ + 6 Li4 ( -t/ s) + (£2 + 1r
2) Li2 ( -tjs) + 4£ (((3)- Lis ( -tjs)) + ~£2 , 

10 6 
(5.161) 

and 

b = (2((3)- 2Li3 (-t/s)- ~
2 

£) L + ~(£2 + 1r
2)L2 + (2££- ~

2

) Li2(-t/s) 

+ 2£81,2 (-t/s)- 282,2 (-t/s). (5.162) 

The Feynman representations of the PBOX1 and PBOX2 master integrals in six 

dimensions are finite and can be calculated numerically. We have tested that the 

numerical results are in agreement with the expressions of this section. 

We note that this set of master integrals has been used by Bern, Dixon and 

Ghinculov for the calculation of the two-loop corrections to Bhabha scattering [19]. 

5.10 Synopsis: The Master Integrals 

Here we summarize the operational procedure for the calculation of the scalar and 

tensor one and two-loop Feynman integrals appearing in 2-+2 massless QCD scat­

tering. 

• Tensor Reduction: From their Schwinger representation, tensor integrals 

are related to scalar integrals of the same topology with extra powers of prop­

agators and higher dimension. 

• Reduction Algorithm: IBP and LI recursive identities reduce all one and 

two-loop topologies encountered in 2-+2 massless QCD scattering to master 

integrals. 

• Master integrals: 

We find the following master integrals 

- The box in six dimensions and the bubble master integrals for the one 

loop topologies 

I 61 (s, t), BUB(s) = -o- (s) 
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- The two master cross-box integrals 

XBOX1 (s, t) = I X (s, t), XBOX2 (s, t) = f X (s,t) 

- The two master double-box integrals 

PBOX1 (s, t) = I I I (s, t), PBOX3 (s, t) = I<DI I (s, t) 

- The cross-triangle master integral 

XTRI(s)= ~) 

- The diagonal-box and the bubble-box master integrals 

CBOX(s, t) = 1/1 (s, t), ABOX(s, t) = I ( ) (s, t) 

- The sunset and Tri master integrals 

SUNSET(s) = -e- (s) TRI(s) = --(II (s) 

The analytic expansions in E of the master integrals are all calculated, therefore 

we can continue with the main task of evaluating matrix elements at NNLO. 



Chapter 6 

NNLO virtual corrections for 

quark scattering 

In hadron-hadron collisions, the most basic hard process is parton-parton scattering 

to form a large transverse momentum jet. The single jet inclusive transverse energy 

distribution observed at the TEVATRON and CERN SppS shows good agreement 

with theoretical next-to-leading order O(an perturbative predictions over a wide 

range of jet transverse energies and tests the point-like nature of the partons down 

to distance scales of 10-17 m. However, data collected in Run I by the CDF col­

laboration at the TEVATRON indicated possible new physics at large transverse 

energy [61]. Data obtained by the DO collaboration [62] was more consistent with 

next-to-leading order expectations. However, because of both theoretical and ex­

perimental uncertainties no definite conclusion could be drawn. The experimental 

situation may be clarified in the forthcoming Run II starting in 2001 where increased 

statistics and improved detectors may lead to a reduction in both the statistical and 

systematic errors. 

The theoretical prediction may be improved by including the next-to-next-to­

leading order perturbative predictions. This has the effect of (a) reducing the renor­

malisation scale dependence and (b) improving the matching of the parton level 

theoretical jet algorithm with the hadron level experimental jet algorithm because 

the jet structure can be modeled by the presence of a third parton. Varying the 

renormalisation scale up and down by a factor of two about the jet transverse energy 

140 
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leads to a 20% (10%) renormalisation scale uncertainty at leading order (next-to­

leading order) for jets withEr,...., 100 GeV. The improvement in accuracy expected 

at next-to-next-to-leading order can be estimated using the renormalisation group 

equations together with the known leading and next-to-leading order coefficients 

and is at the 1-2% level. 

The full next-to-next-to-leading order prediction requires a knowledge of the 

two-loop 2----t2 matrix elements as well as the contributions from the one-loop 2----t3 

and tree-level 2----t4 processes. Helicity amplitudes for the one-loop 2----t3 parton sub­

processes gg----tggg, ijq----tggg, ijq----tq'q'g, and processes related to these by crossing 

symmetry, have been computed in [63, 64, 65] respectively. The amplitudes for the 

six gluon gg----tgggg, four gluon-two quark ijq----tgggg, two gluon-four quark ijq----tq'q'gg 

and six quark ijq----tq' q' q" q" 2----t4 processes and the associated crossed processes com­

puted at tree-level are also known and are available in [66, 67, 68, 69, 70, 71, 72, 73]. 

The calculation of the two-loop amplitudes for the 2----t2 scattering processes 

q + ij ----t q' + q 
q + ij ----t q + ij, 

q + ij ----t g + g, 

g + g ----t g + g, 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

has proved more intractable due mainly to the difficulty of evaluating the planar 

and non-planar two-loop graphs. This issue has been completely resolved with 

the techniques described in previous chapters and generic two-loop massless 2----t2 

processes can in principle be expressed in terms of the two-loop master integrals of 

Section 5.10. 

The first to address such a calculation were Bern, Dixon and Kosower [74] with 

the maximal helicity violating two loop amplitude for gg----tgg1
. The whole set of 

NNLO virtual corrections for the processes (6.1)- (6.4) were presented in references 

[4, 3, 2, 1, 5]. Bern, Dixon and Ghinculov [19] have recently completed the first 

full two-loop calculation of physical 2----t 2 scattering amplitudes, the QED processes 

e+ e- ----t p,+ p,- and e+ e- ----te-e+. 

1This amplitude vanishes at tree level and does therefore not contribute to 2--+2 scattering at 

next-to-next-to-leading order 0 (a!). 
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In this chapter we present dimensionally regularized and renormalized analytic 

expressions for the NNLO matrix elements of the quark scattering processes ( 6.1 )­

(6.2). As is common in QCD calculations, we use the MS renormalisation scheme 

and conventional dimensional regularisation where all external particles are treated 

in D dimensions. There is an overlap between the QED calculation of [19] and the 

QCD results presented here and we expect that the analytic expressions presented 

here will therefore provide a useful check of some of their results. 

Catani has described the pole structure of generic renormalised two-loop ampli­

tudes [17] and we use his techniques to isolate the poles in the MS scheme. We find 

that the pole structure expected in the MS scheme on general grounds is indeed 

reproduced by direct evaluation of the Feynman diagrams. Ultimately these poles 

must be canceled by infrared singularities from tree level 2-t4 and one-loop 2-t3 

processes. 

6.1 Notation 

We consider the unlike-quark scattering process 

(6.5) 

and the like-quark scattering process 

(6.6) 

where particles are incoming and carry light-like momenta (shown in parentheses). 

Their total momentum is conserved, satisfying 

Pi + P~ + P~ + P~ = 0, 

and the associated Mandelstam variables are given by 

(6.7) 

We use conventional dimensional regularisation and treat the external quark states 

in D space-time dimensions and renormalise the ultraviolet divergences in the MS 
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scheme. The bare coupling a 0 is related to the running coupling as = a 8 (J.L2
), at 

renormalisation scale J.L, by 

where 

"/ = 0.5772 ... = Euler constant, (6.9) 

is the typical phase-space volume factor in D = 4 - 2c dimensions. As usual, the 

first two coefficients of the QCD beta function, {30 and {31 for Np (massless) quark 

flavours are 

{3
1 

= 17C1-10CATRNF- 6CFTRNF 
6 

where N is the number of colours, and 

N 2 -1 
Cp = 2N ' 

1 
TR= -. 

2 

The renormalised amplitude for the unlike-quark process is given by 

(6.10) 

(6.11) 

IM)untike = 47ras [IM(o)) + (;;) IM(1
)) + (;;) 

2 

IM(2
)) + 0 (a;) l , (6.12) 

with jM(i)) representing the i-loop amplitude in colour-space. For the like-quark 

scattering we have the related expression 

IM)like = 41H>, [ (IM(O)) -IM(O))) + (;;) ( IM'1l) -IM(l))) 

+ (;;)' (IM('l)-IM('l>) + O(a;)]. (6.13) 

Here IM{i)) describes the t-channel graphs which can be obtained from the s-channel 

diagrams by exchanging the roles of particles 2 and 4 

(6.14) 

Both jM{i)) and IM{i)) are renormalisation scale and renormalisation scheme de­

pendent. 

In squaring the amplitudes and summing over colours and spins we find two 

types of terms, 
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• the self-interference of the graphs in a single channel, described by the function 

A(s, t, u) for the s-channel and A(t, s, u) for the t-channel, and 

• the interference of the s-channel graphs with the t-channel graphs, described 

by the function B(s, t, u). 

Thus, for distinct quark scattering we have 

(MIM)unlike = L IM(q + ij---+q + q')l2 = A(s, t, u), (6.15) 

while for identical quarks 

(MIM)tike L IM(q + ij---7ij + q)l2 

A(s, t, u) + A(t, s, u) + B(s, t, u). (6.16) 

Similarly, for the crossed and time-reversed processes we obtain 

L IM(q + q'---+q + q')l2 A(u, t, s) (6.17) 

L IM(q + q---+q + i/)1 2 A(t, s, u) (6.18) 

L IM(ij + q---+ij + i/)1 2 A(u, t, s) (6.19) 

L IM(q + q---+q + q)l2 A(u, t, s) + A(t, u, s) + B(u, t, s). (6.20) 

The function A can be expanded perturbatively to yield 

A(s, t, u) = 16n2o:; [A4 (s, t, u) + (;;) A6 (s, t, u) + (;;) 
2 

A8 (s, t, u) + O(o:~)] , 

(6.21) 

where 

A4 (s, t, u) 

A 6(s, t, u) 

A8 (s, t, u) 

In the same manner 

(M(o)IM(o))- 2(N2 -1) (t2; u2- c)' 
( (M(O) IM(l)) + (M(l) IM(O))) ' 

((M(l)IM(l)) + (M(o)IM(2)) + (M(2)1M(o))). 

(6.22) 

(6.23) 

(6.24) 

B(s, t, u) = 16n2o:; [ B4 (s, t, u) + (;;) B6 (s, t, u) + (;; r B8 (s, t, u) + O(o::) l , 
(6.25) 
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where, in terms of the amplitudes, we have 

- ((M(o)jM(0)) + (M(o)jM(0
))) 

(N2 1) (u2 ) -4 N (1- E) st + E , (6.26) 

- ( (M(1)jM(0)) + (M(o)IM(1
)) + (M(o)jM(1)) + (M(1)jM(o))) 

(6.27) 

- ( (M(l) IM(l)) + (M(l) IM(l)) 

+(M(o)jM(2)) + (M(2)jM(0
)) + (M(o)jM(2

)) + (M(2)jM(0))). 

(6.28) 

Expressions for A 6 and 8 6 , valid in dimensional regularisation, are given in Ref. [75]. 

The main goal of this thesis is to give analytic expressions for the functions As 

and Bs. We first concentrate on the contributions to both As and 8s due to the 

interference of one-loop amplitudes with one-loop amplitudes, namely 

(6.29) 

and 

Even though they are simpler to evaluate than the two loop graphs, they form a 

vital part of the NNLO virtual corrections. One-loop helicity amplitudes for the 

2 ---+ 2 quark scattering processes were given in Ref. [76] as truncated expansions 

in E including their finite part. However, this is only sufficient to obtain the pole 

structure of AS(Ixi) and 8 8 (Ixl) up to 1/E2. To determine the 1/E and finite parts 

requires knowledge of the one-loop amplitude through to O(c2). 

Next, we give the analytical formulae for the two-loop contribution to As 

and 8s 

which they consistute the core of our calculations. 
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6.2 Method 

As shown in Chapter 5, massless two-loop integrals for 2-+2 scattering can be de­

scribed in terms of a basis set of scalar master integrals. The simpler massless 

master integrals comprise the trivial topologies of single scale integrals which can 

be written as products of Gamma functions: 

Sunset(s) --9-(s) 

Glass(s) -CX)-(s) 

Tri(s) ---c:rr= ( s) 

the less trivial non-planar triangle graph [35, 36], 

JCtri(s) == ~) 
and two scale integrals that are related to the one-loop box graphs [77, 78], 

Abox(s, t) e2
1E I ( ) ( s, t) 

Cbox(s, t) VJ (s, t). 

The planar double box and non-planar double box 

Pbox1(s, t) I I I (s, t) 

I )( (s,t) 

involve multiple Mellin-Barnes integrals and are much more complicated to evaluate 

as series expansions in E. Expressions for these integrals valid through to O(c0
) are 

given in [21] and [22] respectively. 

It turns out that for the two latter topologies, integrals involving loop momenta in 

the numerator cannot be entirely reduced in terms of the simpler integrals mentioned 

above and an additional master integral is required in each case. Reference [58] 

describes the procedure for reducing the tensor integrals down to a basis involving 

the planar box integral 

Pbox2 (s, t) == I f I (s,t), 
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where the blob on the middle propagator represents an additional power of that 

propagator, and provides a series expansion for Pbox2 to O(c0 ). However, as was 

pointed out in [60], knowledge of Pbox1 and Pbox2 to 0( c0
) is not sufficient to 

determine all tensor loop integrals to the same order. A better basis involves the 

tensor integral, 

Pboxa(s, t) = I<DI I ( s, t) , 

where <D represents the planar box integral with one irreducible numerator asso­

ciated with the left loop. Symmetry of the integral ensures that, 

I<DI I (s, t) - I I<DI (s, t). 

Series expansions for Pbox3 are relatively compact and straightforward to obtain 

and are detailed in [79, 26]. Pbox2 can therefore be eliminated in favor of Pbox3 . 

We note that this choice is not unique. Bernet al. [19] choose to use the Pbox1 and 

Pbox2 basis, but with the integrals evaluated in D = 6 - 2c dimensions where they 

are both infrared and ultraviolet finite. 

Similarly, the tensor reduction of the non-planar box integrals [78] also requires 

a second master integral, 

f X (s,t), 

where the blob again denotes an additional power of the propagator. For the non­

planar graphs there are no complications as in the planar case and all tensors to 0( c0) 

may be described in terms of the series expansions of Xbox1 and Xbox2 through to 

O(c0
) [79, 78]. 

In general tensor integrals are associated with scalar integrals in higher dimen­

sion and with higher powers of propagators. This connection can straightforwardly 

be achieved using the Schwinger parameter form of the integral [80] and the ex­

plicit expressions for generic two-loop integrals with up to four powers of loop mo­

menta in the numerator are presented in Chapter 32 . Systematic application of the 

integration-by-parts (IBP) identities [57, 56] and Lorentz invariance (LI) identities 

[25] is sufficient to reduce these higher-dimension, higher-power integrals to master 
2 A method to reduce tensor integrals constructing differential operators that change the powers 

of the propagators as well as the dimension of the integral was presented in Ref. [34]. 
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integrals in D = 4 - 2c. Some topologies that occur in Feynman diagrams such as 

the pentabox [80] are immediately simplified using the IBP identities and collapse to 

combinations of master integrals. However, the tensor integrals directly associated 

with the master integrals usually require more care. Explicit identities relevant for 

the tensor integrals of the Abox and Cbox topologies [80], for Pbox1 and Pbox2 

integrals [58] and for the Xtri, Xbox1 and Xbox2 integrals [78] needed to be worked 

out. Using these identities, we have constructed MAPLE and FORM programs to 

rewrite two-loop tensor integrals for massless 2-t2 scattering directly in terms of 

the basis set of master integrals. 

The one-loop integrals are much easier to solve. There are only two master 

integrals, the scalar bubble graph, 

Bub(s) = e7
€ -Q- (s) 

and the one-loop scalar box graph, 

Box(s, t) = e7
€ (s, t). 

where we redefined the one-loop master integrals of Chapter 5 with a multiplicative 

factor e7 € for convenience in renormalising with the MS scheme. We treat the tensor 

integrals in the same way as the two-loop integrals: shifting both dimension and 

powers of propagators and then using IBP to rewrite the integrals as combinations 

of Bub and Box. We note that this is not a unique choice for the master integrals. 

The one-loop bubble graph is proportional to the one-loop triangle graph with one 

off-shell leg. Another common choice is to replace the one-loop box in D = 4- 2c 

by the finite one-loop box in D = 6 - 2c, Box6 . 

The general procedure for computing the two-loop amplitudes is therefore as 

follows. First the two-loop Feynman diagrams are generated using QGRAF [81]. We 

then project by tree level, perform the summation over colours and spins and trace 

over the Dirac matrices in D dimensions using conventional dimensional regularisa­

tion. It is then straightforward to identify the scalar and tensor integrals present 

and replace them with combinations of master integrals using the tensor reduction of 

two-loop integrals. The final result is a combination of master integrals in D = 4- 2c 

which can be substituted for the expansions in c. For the interference of one-loop 

amplitudes with one-loop amplitudes we have a slightly different approach since we 
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first calculate the tensor and scalar integrals of the amplitudes in terms of the one­

loop master integrals and then we contract with each other performing the spin and 

color traces. 

6.3 One-loop contributions for unlike-quark scat­

tering 

We first present the one-loop contributions to the NNLO virtual corrections. In the 

unlike-quark case we obtain, 

A8
(lxl)(s, t, u) [II'Rt + Fr + F9 l2 + (N2

- 1) IIRntl 2] (MoiMo) 

+ 2 Re [ (IRt + Fr + F9 ) t F1 + ( N2 
- 1) IR~t:F2] 

2 [N
4
-3N

2
+3 N 2 +3 + (N - 1) N 2 F3(s, t, u) + N 2 F3(s, u, t) 

+ N~~ 3 
[F4(s, t, u) + F4(s, u, t)]], (6.31) 

where the infrared poles present in the one-loop amplitude proportional to the tree­

level matrix elements are given by 

2 [ 1 2 ( N
2 

- 2) l 
E(2 +E) NBub(s)- NBub(u)- N Bub(t) , (6.32) 

2 [ 1 1 l E(2 +E) NBub(u)- NBub(t) , (6.33) 

which diverge as 1/E2 and 1/E respectively. Both 

(6.34) 

and 

F. = E [N2
(11 + 2E) + 9- 4E2

] B b( ) 
9 2(2 + E)(3- 2E)N U 

8 
' 

(6.35) 

are finite terms multiplying the tree-level matrix elements. The functions 

N 2 -1 
Ft= 

2
N [(N2 -2)j(s,t,u)+2f(s,u,t)], (6.36) 
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and 

N 2 -1 
F2 = 

2
N [f(s, t, u) - f(s, u, t) J (6.37) 

are finite and multiplied by the infrared poles of the conjugated one-loop amplitude, 

with 

j(s, t, u) [3s2 + :~2 + 9t2 - 4 u2(;: E~s;s2 + E 5u: 7tl [ Bub(t) - Bub(s) J 

6t2 + 2u2 - 3cs2 
+u(1- 2c) 2 Box6(s, t). (6.38) 

s 

Finally the square of the finite part of the one-loop amplitude is fixed by the finite 

functions F 3 and F 4 , 

F3(s, t, u) JBox6(s, t) 12 [ t4 + 6~2s~2 + u4] 

+ 2Re{[Bub(t)-Bub(s)f Box6(s,t)} [2u3-tu22:28t2u-t3] 

+ /Bub(t)- Bub(s)/2 [
5
t

2

-
2:~ + 

2
u

2
] + O(c), (6.39) 

and 

{ 
t } [tu(t

2 + u 2
)] F4(s, t, u) = 2 Re Box6 (s, t)Box6 (s, u) 82 

+2 Re {[Bub( u)- Bub(s)]t Box6(s, t)} [ u(
7
t

2

- ::~ + 
3
u

2
)] 

{ } [
3(t2 tu + u2)] +2 Re [Bub(u)- Bub(s)]t [Bub(t)- Bub(s)] -

282 
+ O(c). 

(6.40) 

In the latter expressions, we have discarded contributions of O(c). 

After explicit series expansion in E, the infrared singular terms IRt and IRnt 

reproduce the pole structure obtained by expanding 

IR,,c = r(:: E) c~ +:E) [! ( -~')'- ~ ( -~)'- (N'; 2) ( -~') ')' 

(6.41) 

IR.,,c = r(:'~ E)(> :E) [! ( -~)'-! ( -~')']. (6.42) 

which is the singular structure obtained by straightforward application of the for­

malism of [17, 18]. To rewrite Eq. (6.31) directly in terms of IRt,c and IRnt,C 
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rather than TRt and IRnt requires the finite difference to be evaluated through to 

0( E2
). 

Equation (6.31) is valid in all kinematic regions. Series expansions in E in a 

particular region can be easily obtained by inserting the appropriate expansions of 

the master integrals. In this equation, the finite functions are multiplied by poles in 

E, so they must be expanded through to 0(E2). 

6.4 One-loop contributions for like-quark scatter-
. 
Ing 

For the like-quark contribution we find a similar expression, 

B8{lxl)(s, t, u) = 

-2 Re { (IR, +F.+ F,) t (IR, +F. + F,) (MoiMo) 

+(N2 -1)(IRnt- Fr- F 9 )tiRnt (MoiMo) 

+ [ (IRt + Fr + F 9 ) t F~ + ( N 2 - 1) ( IRnt - F r - F 9 ) t ;::; + ( s B t)] 

N 2 
- 1 [ N 4 

- N 2 
- 1 t + N -

2
N 2 j3 (s, t, u)fs(t, s, u) 

N
4 

- 2N
2 

- 1 [ t ] + 
2
N 2 j3 (s, t, u)j4(t, s, u) + (s f-7 t) 

3N2 + 1 t l} + 
2

N 2 f4 (s, t, u)f4(t, s, u) . 

The infrared singular functions are given by 

2 [ 1 1 ( N
2 

+ 1) l E(2 +E) NBub(s) + NBub(t)- N Bub(u) , 

2 [N
2
-1 1 1 l E(2 +E) N Bub(s)- NBub(t) + NBub(u) , 

which diverge as 1/E2. The finite renormalisation term is 

Fr = f3o (-~ + 3
(
1

- E) Bub(t)) , 
E 3- 2E 

(6.43) 

(6.44) 

(6.45) 

(6.46) 
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while the remaining finite contribution multiplying tree-level is given by 

:F = c(N
2
(11 + 2E) + 9- 4c

2
)Bub(t). 

9 2(2 + c)(3- 2c)N 

152 

(6.47) 

Once again, the finite part of the crossed one loop amplitude multiplying the infrared 

divergent terms of the one loop amplitude generates finite functions 

and 

where 

f1(8,t,u) 

and 

/2(8, t, u) 

I N 2 -1 
F1 = 2N2 [(N2

- 2) !1(8,t,u) + 2f2(8,t,u)], 

I N 2 -1 
F 2 = 

2
N 2 [!1(8, t, u)- /2(8, t, u)J, 

2 
~(1- 2E) [2u2

- E(t2 + 82 + u2
) + 382E2 + 82c3

] Box6(8, u) 

2 
-----:----:- [6u2

- 2t2E- E2 (2t2 + 5u2 + 3tu)- E382 

t8(2 +E) 

(6.48) 

(6.49) 

+E4t8] [Bub(u)- Bub(8)]. (6.51) 

Finally the square of the finite part of the one-loop amplitude is controlled by the 

finite functions h and /4 

/3(8, t, u) = t { (82 + u2 )Box6 (8, t) + (2u- 8) [Bub(8)- Bub(t)J} + O(E), (6.52) 

and 

f 4 (8, t, u) = ~ { 28Box6 (t, u) + 3 [ Bub(u)- Bub(t) J} + O(c). (6.53) 

Again, the infrared singular structure obtained by explicit expansion of IR, and 

TRnt as series in E, agrees with that obtained using the formalism of [17, 18] 

(6.54) 
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and 

_ _ eer ( 1 3 ) { N2 - 1 ( f.1,
2
) € 1 ( f.1,2) € 1 ( f.1,2) € } IRntc- -+- -- -- -- +- -- . 

· r(1- E) E2 2E N s N t N u 

(6.55) 

As before, we can rewrite Eq. (6.43) directly in terms of IRt,c and IRnt,c rather 

than IRt and IRt,C provided the finite difference is evaluated through to 0(E2). 

6.5 Unlike-quark scattering two-loop contributions 

In this section, we give explicit formulae for the E-expansion of the two-loop contri­

bution to the next-to-next-to-leading order term A8 (s, t, u). We divide the two-loop 

contributions into two classes: those that multiply poles in the dimensional regular­

isation parameter E and those that are finite as E---70 

A 8 (
2 x0)(s t u) =Poles +Finite 

' ' a a· (6.56) 

Polesa contains both infrared singularities and ultraviolet divergences. The latter 

are removed by renormalisation, while the former must be analytically canceled by 

the infrared singularities occurring in radiative processes of the same order. The 

structure of these infrared divergences has been widely studied and, as has been 

demonstrated by Catani [17] and detailed in Chapter 2, can be largely predicted. 

For the application of the formalism we choose to decompose the tree-level and one­

loop amplitudes in terms of the Jh) and Jv) color vectors in color space of Section 2. 7 

and in order to isolate the singular part of the two-loop amplitude we make use of 

the expression of Eq. 2.38, where the color charge matrix is given by Eq. 2.50. The 

Polesa are then determined up to a process and renormalisation scheme dependent 

function which contains only single poles and is controlled by the term H(2) of 

Eq. 2.39. 

For the case of the quark form factor (in the MS scheme) it is given by 

H(2)(E) = _.!._ eer (f.1,2e-i>.127r)2€ H(2) (6.57) 
4E r(1- E) 2Pl·P2 ' 

with 

(6.58) 
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where 

2 ( 17 88 ) (4 32 ) 
/(1) = ( -3 + 24(2- 48(3) Cp + -3- 3(2 + 24(3 CFCA + 3 + 3(2 CFTR Np. 

(6.59) 

and the constant K is 

(6.60) 

We expect that in the four-quark two loop amplitude, we might obtain contributions 

from H(2
) for each of the six colour antennae. 

6.5.1 Infrared pole structure 

Applying the formalism to the case at hand, we find that the pole structure of the 

two-loop amplitude interfered with tree level has the following structure 

Poles. = 2 Re [ ~(M(o)IJ(l)(E)J(l)(E)jM(o))- /3o (M(o)jJ(l)(E)jM(o)) 
2 E 

+ (M(o)IJ(l)(E)jM(l)fin) 

+e-erf(1- 2E) (/3o + K) (M(o)jJ(1)(2E)jM(o)) 
f(l- E) E 

+ (M(o)IH(2>(e)IM'">>]. (6.61) 
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The colour algebra is straightforward and we find 

(6.62) 

(6.63) 

and 

(6.65) 

where the square bracket in Eq. (6.65) is a guess simply motivated by summing 

over the antennae present in the quark-quark scattering process and on dimensional 

grounds. Different choices only affect the finite remainder. 

The functions <I>1 and <I>2 appearing in Eq. (6.64) are finite functions and are 
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obtained from projection of J{l) onto the one-loop amplitude. We find 

N 2 -1 
<I>1(s,t,u)= 

2
N [(N2 -2)¢>(s,t,u)+2¢>(s,u,t)] 

- 1 [N 2

-
1 

(6- 7c- 2c2) - 2_ (10c2 - 4c3)] Bub(s)(M(o)IM(o)) 
2c(3- 2c) N N 

- - +- - -- -- -- - -- (M(o)IM(o)) eer ( 1 3) [ 1 ( f1,2)€ 2 ( f1,2)€ N2- 2 ( f1,2)€] 
f(1- c) c2 2c N s N u N t 

-(30 [!- 3
(
1

- c)Bub(s)] (M(0ljM(0)) (6.66) 
c (3- 2c) 

N 2 -1 
<I>2(s, t, u) = 

2
N [¢>(s, t, u) - ¢>(s, u, t)] 

- - +- - -- -- -- (M(o)IM(o)) eer ( 1 3 ) [ 1 ( f1,2 ) € 1 ( f1,2) €] 
r(1- c) c2 2c N u N t 

(6.67) 

where the function ¢>(s, t, u) is written in terms of the one-loop box graph in D = 

6- 2c and the one-loop bubble graph in D = 4- 2c 

4(u2 + t2)- 2c(3ut + 6t2 + 5u2)- c2s(7t + 5u) [Bub(s)- Bub(t)] ¢>(s,t,u) = 
s2 c 

6t2 + 2u2
- 3cs2 

+u (1- 2 c) 
2 

Box6(s, t). (6.68) 
s 

Our explicit Feynman diagram reproduces the anticipated pole structure exactly 

and provides a very stringent check on the calculation. We therefore construct the 

finite remainder by subtracting Eq. (6.61) from the full result. 

6.5.2 Finite contributions 

In this subsection, we give explicit expressions for the finite two-loop contribution 

to A8
, :Finitea, which is given by 

(6.69) 

For high energy hadron-hadron collisions, we probe all parton-parton scattering 

processes simultaneously. We therefore need to be able to evaluate the finite parts 

in the s-, t- and u-channels corresponding to the processes 

q+ij-+ if+q' 

q+q -+ if+q 

q+q'-+ q+q', 
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respectively. In principle, the analytic expressions for different channels are related 

by crossing symmetry. However, the cross-box diagram has cuts in all three channels 

yielding complex parts in all physical regions. The analytic continuation is therefore 

rather involved and prone to error. We therefore choose to give expressions describ­

ing A 8 (s, t, u), A 8 (t, s, u) and A 8(u, t, s) which are directly valid in the physical 

region, s > 0 and u, t < 0, and are given in terms of logarithms and polylogarithms 

that have no imaginary parts. 

In general the expansions of the two-loop master integrals contain the generalised 

polylogarithms of Nielsen 

_ (-1)n+p-111 logn-1 (t)logP(1- xt) 
Sn,p(x)- ( _ 

1
) 1 1 dt , n .p. 0 t 

n,p 2: 1, x:::; 1 (6.70) 

where the level is n + p. Keeping terms up to O(c) corresponds to probing level 

4 so that only polylogarithms with n + p :::; 4 occur. For p = 1 we find the usual 

poly logarithms 

(6.71) 

A basis set of 6 poly logarithms (one with n + p = 2, two with n + p = 3 and 

three with n + p = 4 is sufficient to describe a function of level 4. At level 4, we 

choose to eliminate the 822 , 8 13 and 8 12 functions using the standard polylogarithm 

identities [82] and retain the polylogarithms with arguments x, 1- x and (x -1)/x, 

where 

t 
X=--, 

s 
u 

y = -- = 1- x, 
s 

U X -1 

t X 

For convenience, we also introduce the following logarithms 

Lx =log ( ~t) , Ly =log ( ~u) , L8 =log (;2 ) 

(6.72) 

(6.73) 

where f-t is the renormalisation scale. The common choice J-t2 = s corresponds to 

setting Ls = 0. 

For each channel, we choose to present our results by grouping terms according 

to the power of the number of colours N and the number of light quarks N F so that 

in channel c 

· · ( 2 ) ( 2A 1 C Np 2 ) Fmztea,c = 2 N -1 N c +Be+ N 2 c + N NpDc + N Ec + NpFc . 

(6.74) 
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The s-channel process qq-+q' q' 

We first give expressions for the s-channel annihilation process, qq-+ij' q'. We find 

that 

A, [2LL,(x) + (- 2L,- ~I) Li3(x) + ( L; +~I L,- ~ ,-2
) Li2(x) 

+ 121 L2 + (- 11 L2 + 11 L - 296) L + ~ L4 + (~ L - 49) L3 
18 S 3 X X 27 S 6 X 3 y 18 X 

+(11L -~7r2+197)L2+(-~L 7r2_ 477r2+6(3_95)L 
6 y 6 18 X 3 y 18 24 X 

( 
117r2 _ 7 ( _ 409) L 113 7r4 _ ~ 7r2 197 ( 23213] [t2 

+ u
2

] 
+ 24 3 216 Y + 720 6 + 36 3 + 2592 s2 

+[ -3LL,(y)+6Li,(x)-3Li4 (x:l) + ( -2L,-~)Li3(x) 

+3L,Li,(y) + UL; + ~ L, + ~ ,-') Li2(x) + (-~I L; +~I L,) L, 

+ (~ L 1r2 _ 13 7r2 _ (3 _ 32) L + (~ L _ ~ 7r2 + 44) L 2 
2y 9 9 X 4Y 4 9 X 

(
1 49) 3 7 4 47 2 l [t2

- u
2

] [ 2] t
3 

+ 2 Ly - 36 Lx - 120 7r + 36 7r + 2 (3 s2 + 3 Lx s2u 

+3Li,(y) - 3 LL,(x) + 3 LL, ( x: I) - 3L, Li3(y)- ~ Li3(x) 

+U L,- ~,-') Li,(x)- ~I L,L, + ~L! + (- ~Ly + n L: 

+ 0 Ly + ~ h ~) L; + ( - ~ Ly ,-2 
- ~ ,-2 

+ 3 (3 + ~2) L, 

1 4 11 2 
+407f -367f +4(3 (6.75) 
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[ 
22 ( 2 22 22 2) . ( ) = -6Li4(x)-3Li3(y)+ -3Lx-3Lx-3Ly+27r L12X 

( 
22) . (22 2 22 2 88) + 6Lx+3 L13(x)+ 3Lx-22Lx-3Ly+22Ly-3 Ls 

--L + -L +- L + -L --L +371" -- L 1 4 ( 125) 3 (1 2 31 2 743) 2 
2 X y 18 X 2 y 6 y 36 X 

+ - - L + - - 1r + - L + - 1r + ~"3 - - L 
( 

31 2 ( 4 2 9) 307 2 49) 
6 y 3 2 y 72 ':, 27 X 

1 4 71 3 ( 2 2 689) 2 ( 73 2 275) +-L --L + --1r +- L + --1r -~"3-- L 4 y 18 y 3 36 y 24 ., 27 y 

79 71"4 _ 55 7f2 _ 443 ;- 30659] [t2 
+ u

2
] 

+ 720 72 36 "3 + 648 s2 

+ [ -12Li,(y) + 3LL,(x)- 8Li, ( x: 1) + ( 2Ly + 8) Li3 (y) 

( 3 2 ( 11) 4 2) . . + -2Lx+ -8Ly-2 Lx+8Ly-31r L12(x)-12LyLxL12(y) 

( 11) . ( 11 2 11 11 2 11 ) + 4 L - 12 L + - L13(x) + - L - - L + - L - - L L x y 2 3x 3x 3Y 3y s 

_ 17£4 (L 131) £ 3 · ( _ 25 £ 2 _ 15 L 13 71"2 _ 289) 2 
24 X + y + 36 X + 2 y 4 y + 12 36 LX 

+ -L +5L +-L 1r +-1r +- L --L +-L 
( 

1 3 2 5 2 89 2 37) 1 4 17 3 
3 y y 3 y 36 9 X 6 y 9 y 

+ - 1r - - L + - 1r + 6 (3 + - L - - 1r - - 1r - 9 (3 ( 
7 2 361) 2 (59 2 64) 1 4 44 2 l [t2

- u
2

] 
12 36 Y 36 9 Y 20 9 s2 

[- n; l 
8
;

3u + [5L; l :z: -12Li,(y) + 12Li,(x)- 12LL, ( x: I) 

+ ( 6L.- 6) Li,(y) + (- 6 Ly + ;) Li3(x)- 6 Ly L. Li2(y) 

(( 9) 2) . (11 11 ) + -6Ly-2 Lx-6Ly+21r L12(x)+ 3Lx-3Ly Ls 

-- L + 2 L - - L + - - L - 2 L - 1r +- L 1 4 ( 5) 3 ( 15 2 2 17) 2 
2 X y 6 X 2 y y 12 X 

+ - - L + 3 1r + - L + - 1r - 6 (3 - - L + - L ( 11 2 ( 2 1) 25 2 37) 1 3 
4 y 2 y 12 9 X 4 y 

7 2 ( 5 2 64) 17 4 2 2 +- L + - - 1r + 6 (3 + - L - - 1r - - 1r + 5 (3 
12 y 4 9 y 60 3 

(6.76) 
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C, [ 16Li,(y) + 8Li,(x)- 16 L, Li,(y)- 8 L. Li,(x) + ( 4 L~ + ~ n2) Li,(x) 

+8 L2 Li2(y) + ~ L4 + (~ L - ~) L3 + (- ~ L2 + ~ L - .!..!:_ 1r
2 + ~) L2 

y 12 X 3 y 2 X 2 y 2 y 3 4 X 

+ (~ L3 + ~ L2 + (22 7r2- 27) L + ~ 7r2- 6 (3 + 189) L 
3Y 2Y 3 2 y 2 8 x 

+_.!._ L4 _ ~ L3 + ( _ ~ 7r2 + 65) L2 + ( _ ~ 7r2 + 6 (3 _ 189) L 
12 y 2 y 3 4 y 2 8 y 

_ 49 7r4 + 29 7r2 _ 15 (
3 

+ 511] [t2 
+ u

2
] 

60 24 2 32 s2 

+ [12Li,(y)- 24Li,(x) + 24L4 ( x: 
1
) + (- 18£. + lOL,- 2) Li,(y) 

+ (- 2L. + 18£, + 4) Li3(x) + ( 2L~ + ( 6L,- 4) L,- 2L, + 4n2) Li2(x) 

+(18L,L,- 4L~) Li,(y) + ~ L! + (- 3L,-n L~ 
+ ( 15 L; + L, + 1~ n2 

- ~) L~ + ( - L! - 4 L; - 2 Ly n 2 + :~ n2 + 8 (3+ 6) L, 

- ~ L: + ~ L~ + (:2 n
2 

- ~) L; + ( ~ n2 
- 16 (3 + 6) L, 

+ 3~ n'- ~ n' +4(3] [t' ~ u'] + [3L~ l s;~ + [3L; l ~: 
+4Lis(y) + 2Li,(x) + (- 2L, + 4L,) Li2(x) + ~ L~ + (- ~ L,- ~) L: 

+ ( ~ L; - ~ L, + 1~ n 2 
- 6) L, + ~ L; + ~ L; + ( - :; n 2 + 6) L, 

+7r
2 -12(3 (6.77) 
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D = [~ Li3(x)- ~ L Li2(x)-
22 

L
2 + (- 2 L + ~ L 2 + 389

) L 
8 3 3 X 9 8 X 3 X 54 8 

+~ L3 + (- 29-! L) L2 + (10 7r2 +g) L 9 X 18 3 y X 9 6 X 

( 
_ _!__ 7r2 25) L _ 455 41 7r2 _ 49'" l [t2 + u 2

] 
+ 12 + 54 Y 54 + 36 18 "'3 

s2 

+ -L --L L +-L --L + -1r +- L --1r 
[(

1 2 1 ) 1 3 13 2 (4 2 8) 2 2] [t2- u
2

] 
3 X 3 X S 9 X 18 X 9 9 X 9 S2 

1 L L 1 L2 8 L 2 2 +3 X 8 - 6 X - 9 X + 9 1f (6.78) 

(6.80) 

We can check some of these results by comparing with the analytic expressions 

presented in Ref. [19] for the QED process e+e----+f-L+J.C. Taking the QED limit 

corresponds to setting C A = 0, CF = 1, TR = 1 as well as setting the cubic Casimir 

C3 = (N2 - 1)(N2 - 2)/N2 = 0. This means that we can directly compare E 8 (r:x 

CFTRNF) and F8 (r:x T~NM but not C8 which receives contributions from both C3 

and C~. We see that (6.79) and (6.80) agree with Eqs. (2.38) and (2.39) of [19) 

respectively. 

The other coefficients, As, B8 , Cs and Ds are new results. 



Chapter 6. NNLO virtual corrections for quark scattering 162 

The t-channel process q + q' -+q + q' 

The t-channel process, q + ij'-+q + q' is fixed by A8(t, s, u). We find that the finite 

two-loop contribution in the t-channel is given by Eq. (6.74) with 
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[ ( 
44) ( 22 44 2 2) . 6Li4(x) + - 6Lx + 3 Li3(x) + 3 Ly- 3 Lx- 27f + 3Lx L12(x) 

22 . ( 88 22 2 22 2 44 ) 3 +- L13(y) + - - - - L + 22 L - - 1r + - L L L - L L 3 3 3Y y 3 3xy s Yx 

+ -L +-L + ----1r L --+-1f L 
( 

3 29 2 ( 187 7 2) 52 25 2) 
y 3Y 9 3 y 3 3 X 

+ 47f +2L +3--L L +-L --L + -1r +- L 
( 

2 2 16 ) 2 1 4 71 3 (5 2 689) 2 
y 3 y X 4 y 18 y 6 36 y 

( 
_ 407 7f2 _ ~' _ 275) L 30659 _ 77 7f4 _ 707 ~' 183 2] [82 

+ u
2
] 

+ 72 "'3 27 y + 648 720 36 "'3 + 8 7f t2 

+ [- 12 Li, ( x: 1) - 8Li,(y)- 3Li,(x) + (- 14Ly + 10 L,-n Lis(x) 

+(- 8- 2Ly + 2£,) Li3(y) + (- ~L; + (4L, + ~) L,- SLy-~"') Li2(x) 

+ -L + --L +- L +-1r --L +-L L --L 
(

22 2 ( 22 22) 11 2 11 11 2) 5 4 
3 X 3 y 3 X 3 3 y 3 y S 12 X 

+ -+L L + --L --L --+-1f L (
73 ) 3 ( 41 3 2 193 11 2) 2 
18 y X 12 y 2 y 18 6 X 

+ - L - 7 L + - 1r +- L --- 8 ~"3 +- 1r L -- L +- L 
( 

1 3 2 ( 7 2 295) 101 92 2) 1 4 17 3 
3 y y 6 18 y 9 '> 9 X 6 y 9 y 

( 
5 2 361) 2 (64 167 2 ) 29 4 91 2] [82

- u
2
] + - - 1r - - L + - + - 1r + 8 (3 L - (3 + - 1r - - 7f 

12 36 y 9 36 y 90 12 t2 

2 8 2 2 2 U · X-[ l 3 [ l 3 ( 1) - 7Lx t2u + 5Ly-10LxLy+51f +5Lx t
28 

-12114 -X-

-12 Li,(y)- 12 Li,(x) + ( 12 L,- 6 L, + 2
2
1

) Lis(x) + ( 6 + 6L,) Li3(y) 

+ - - L - 2 1r + 6 L L12 (x) - - L L - - L + - - + 3 L L 
( 

21 2 ) . 11 1 4 ( 1 ) 3 
2x y 3sy 2x 6 y x 

(
5 1 2 3 3 2) 2 ( 16 2 29 2 ) + -+-7f --L --L L + --L -3+2L --1r -6~'3 L 2 2 4Y 2Y X 3Y y 6 '>X 

1 3 7 2 ( 2 64) 5 2 13 4 +- L +- L + - 27r + 6(3 +- L + -1r + -1r - ~"3 4 y 12 y 9 y 12 20 ., (6.82) 
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(6.83) 

(6.84) 
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(6.86) 

The u-channel process q + q' -+q + q' 

The u-channel process, q + q'-+q + q' is determined by A8 (u, t, s). We find that the 

finite two-loop contribution in the u-channel is given by Eq. (6.74) with 
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+ --L + 11+-L L --1r --+-L --L L +-L ( 
11 2 ( 22 ) 11 2 296 22 11 2) 1 4 
3 X 3 y X 3 27 9 y 3 y S 12 X 

+ ----L L + 2£ +-+-L L + --L ( 
49 2 ) 3 ( 2 197 8 ) 2 ( 5 3 
18 3 y X y 18 3 y X 3 y 

+- L + -- 1r -- L + 4~"3---- 1r L +- L 17 2 ( 2 2 98) 95 31 2) 1 4 
6 y 3 9 y <, 24 9 X 4 y 

--L + -1r +- L + ----1r +3~"3 L +-1r +-~"3 14 3 ( 1 2 20) 2 ( 46 25 2 ) 17 4 65 
9 y 2 3 y 9 8 ., y 144 36., 

11 2 23213) [t2 
+ 82] ( (X- 1) +2 1f + 2592 u2 + - 6Li4 -x- + 3Li4(x) + 3Li4(y) 

+ ( 2£,- 2Ly + ~) Li,(x) + (- 5£, + ~ +5L,) Li,(y) 

( 
1 2 ( 7 ) 2 7 1 2) + - - L + - - + L L - 1r + - L - - L Li2 (x) 2x 2 y X 2y 2Y 

+ --L + -+-L L --1r --L --L L --L ( 
11 2 ( 11 11 ) 11 2 11 11 2) 1 4 
6x 6 3Y x 6 6y 6y 8 8x 

+ -L -- L + --1r +-L +-L +- L + --L ( 
1 49) 3 ( 1 2 1 3 2 44) 2 ( 5 3 
2 y 36 X 4 2 y 4 y 9 X 6 y 

+-L + --1r -- L ---3~"3--1f L --L --L 37 2 ( 5 2 143) 32 67 2) 1 4 19 3 
12 y 6 18 y 9 <, 36 X 24 y 18 y 

+ - - 1r + - L + - - 1r + 3 (3 + - L - - (3 - - 1r + - 1r ( 
5 2 55) 2 ( 83 2 32) 3 7 4 157 2] [t2- 82] 
12 18 Y 36 9 Y 2 120 36 u2 

[ 
2 2 2] t

3 

+ -6LxLy+3Ly+31f +3Lx u
28 

+3 Li4 ( x: l) -3Li,(x)- 3Li,(y) + ~ Li,(x) + ( ~ - 3 L.+ 3 Ly) Li,(y) 

+ - L - - L + - 1r L12 (x) + - L - - L L + - L ( 
5 5 1 2) . ( 11 11 ) 1 4 
2y 2x 2 6y 6x 8 gx 

+ ---L L + -+-7f --L L + -L + --+-7f L ( 
1 1 ) 3 ( 1 1 2 9 ) 2 ( 7 2 ( 13 1 2) 
3 2y X 6 4 4Y X 2y 6 2 y 

+- + 3 (3 - - 1r L + - L - - L + 2 + - 1r L 32 1 2) 1 4 3 3 ( 1 2) 2 
9 6 X BY 4Y 2 y 

( 
32 3 2) 3 61 2 11 4 + - 3 (3 - - - - 1r L + - (3 + - 1r + - 1r 
9 2 y 2 36 120 

(6.87) 
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C, [- SLi4 ( x: 1) -16LL,(y) + ( SL,- SLy) Li3(x) + (sL, +SLy) Li,(y) 

+ (8 L L + 4 L 2 
- 4 L 2 

-
20 

1r
2

) Li2 (x) + ~ L 4 + ( - ~ L - ~) L 3 
X y y X 3 12 X 3 y 2 X 

+(9Ly+~+5L;- ~1 n')L;+ (~L~+ (13-3n
2
)Ly-h

2
+ 

1
:
9 

-14(3)L. 

( 
11 2) 2 ( 2 ) 9 4 289 2 15 511] [t2 + 82

] + 3 - 3 7r Ly + - 9 7r + 8 (3 Ly + 5 7r - 24 7r - 2 (3 + 32 u2 

+ [24LL, ( x: 1) - 24LL,(x)- 12LL,(y) + (- 4+ 16Ly + 2L,) Li,(x) 

+ ( - 6 - 16 L, + 24 Ly) Li,(y) + ( - 2L; + ( - SLy + 4) L, - 6 Ly 

+6 n
2 

+ 6 L;) Li, (x) + ~ L! + ( - ~ Ly - n L~ + ( 7Ly + 2L; - ~ 
+ 25 7r2) L2 + ( 10 L3 - 10 L2 + ( 15 - ~ 7r2) L - 13 7r2 + 6 (3 + 6) L + ~ L4 12 X 3 y y 2 2 y 12 X 3 y 

2 3 (5 2 ) 2 (20 2 ) 61 2 21 4 l [t2
- 8

2
] +3 Ly + 3 1r - 6 Ly + 3 1r - 8 (3 - 12 Ly -

12 
1r + 

20 
1r + 8 (3 u2 

[ 
2 2 2] t

3 

+ - 6 Lx Ly + 3 Ly + 3 7f + 3 Lx -
2
-

. u 8 

+3 ::t L;- 2 Li,(x) + 2 Li3(y) + ( 2 Ly + 2 L,) Li2(x) + ~ L~ 

+ ( - ~ Ly - ~) L; + ( 9 Ly + ~ n 2 
- 6) L, + ~ Ly n2 

- ~ n2 
- 3 L; - 10 (3 

(6.89) 
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6.6 Like-quark scattering two-loop contributions 

In this section, we give explicit formulae for the E-expansion of the two-loop contri­

bution to the next-to-next-to-leading order term B8(s, t, u). 

As in Section 6.5, we divide the two-loop contributions as in 

B8 
(
2

x
0)(s, t, u) = Polesb + :Finiteb. (6.93) 

Polesb contains infrared singularities that will be analytically canceled by the in­

frared singularities occurring in radiative processes of the same order (ultraviolet 

divergences are removed by renormalisation). 

6.6.1 Infrared Pole Structure 

We find that the pole structure in the MS scheme can be written as 

Poles,= -2Re [ !(M(o)IJ(l)(c)J(l)(c)jM(o))- f3o (M(o)IJ(l)(c)IM(o)) 
2 E 

+ (M(o)IJ(l)(c)IM(l)fin) 

+e-erf(l- 2E) (f3o + K) (M(o)l1(1)(2c)IM(o)) 
f(l -E) E 

+ (M(O) IH(') (') IM(O)) + ( s +-> t)] , ( 6.94) 

In Eq. (6.94), the symmetrisation under sand t exchange represents the additional 

effect of the s-channel tree graph interfering with the t-channel two-loop graphs. 

The colour algebra is straightforward and we find that the s-t symmetric contri­

butions proportional to 

(6.95) 
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are given by 

and 

(6.98) 

where H(2 ) is defined in Eq. 6.58 and the constant K is given by Eq. 6.60. The square 

bracket in Eq. (6.98) is a guess simply motivated by summing over the antennae 

present in the quark-quark scattering process and on dimensional grounds. Different 

choices affect only the finite remainder. 

The bracket of J(I) between the t-channel tree graph and the finite part of the 

s-channel one-loop graphs is not symmetric under the exchange of s and t and is 

given by 
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The functions 3 1 and 3 2 appearing in Eq. (6.99) are finite and are given by 

(6.100) 

and 

N 2 -1 

2
N 2 [6(s, t, u)- 6(s, t, u)] 

- +- - -- -- -- (M IM{O)) eE"f ( 1 3 ) [ 1 ( jj2) E 1 ( f1,2) El (Q) 

r ( 1 - c) c2 2c N u N t 

(6.101) 

with 

6(s,t,u) 

(6.102) 

6(s, t, u) 

(6.103) 

The leading infrared singularity is 0(1/c4 ) and it is a very stringent check on 

the reliability of our calculation that the pole structure obtained by computing the 

Feynman diagrams agrees with that anticipated by Catani through to 0(1/c). We 

therefore construct the finite remainder by subtracting Eq. (6.94) from the full result. 
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6.6.2 Finite contributions 

In this subsection, we give explicit expressions for the finite two-loop contribution 

to 88, :Finiteb, which is given by 

(6.104) 

The identical-quark processes probed in high-energy hadron-hadron collisions are 

the mixed s- and t-channel process 

q + ij-+ij + q, 

controlled by B(s, t, u) (as well as the distinct quark matrix elements A(s, t, u) and 

A(t, s, u) as indicated in Section 6.1)), and the mixed t- and u-channel processes 

q+q --+ q+q, 

ij + ij --+ ij + ij, 

which are determined by the B(t, s, u). The analytic expressions for different chan­

nels are related by crossing symmetry. Once again, because of the complexity of ana­

lytic continuations we choose to give expressions describing B8(s, t, u) and B8 (t, s, u) 

which are directly valid in the physical region s > 0 and u, t < 0, and are given in 

terms of logarithms and polylogarithms that have no imaginary parts. 

Using the standard polylogarithm identities [82] we retain the polylogarithms 

with arguments x, 1- x and (x- 1)/x, where 

t u 
X= -- y = -- = 1- X, 

s' s 
x-1 u 

(6.105) 
X t 

For convenience, we also introduce the following logarithms 

Lx = log ( ~t) , Ly = log ( ~u) , Ls = log ( : 2 ) , (6.106) 

where f.-l is the renormalisation scale. The common choice f.-l2 = s corresponds to 

setting Ls = 0. 

For each channel, we choose to present our results by grouping terms according 

to the power of the number of colours N and the number of light quarks N p, so 

that in channel c 

(N
2 -1) :Finiteb,c = 2 N ( 

2 1 Np 2 ) 
N Ac+Bc+ N 2 Cc+N NFDc+ N Ec+ NpFc . 

(6.107) 
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Here c = st ( ut) to denote the mixed s- and t-channel ( u- and t-channel) processes 

respectively. 

The process qij-+ijq 

We first give expressions for the mixed s-channel and t-channel annihilation process, 

qij-+ijq. We find that 

A,, = [ 2Li,(y)- 2 Li,(x) + 2 Li4 ( x: I) + (- 2 L, + 12) Li,(y) + 4Ly L, Li2(y) 

+(-
2
3
3

-2£, +4Ly) Li3(x) + ( ~ L, + 12Ly + 2£; + ~"') Li,(x) 

_ 121 L2 + ( 11 L2 + ( _ 22 _ 22 L ) L + ~ 7r2 + 22 L2 _ 22 L + 592) L 
9 S 3 X 9 3 y X 3 3 y y 27 S 

_! L4 + (14 + ~ L ) L3 + (- ~ 7r2 + L2- 31 + 13 L) L2 
6 X 9 3 y X 12 y 6 12 y X 

+ G L; + 6 L; + ( ~ "' + ~) Ly + !: "' -6 ,, + ~~!) L, 

_! L4 + 22 L3 + ( _ 169 +! 7r2) L2 + (617r2 + 12 (3 + 1673) L 
6 y 9 y 18 6 y 18 108 y 

_ 347 (
3 

_ 1217r4 _ 23213 _ ~ 7r2] u
2 

18 360 1296 3 st 

+ [- 4 Li,(x) + 24 Lis(y) + ( 2 L, + 12) Li3(x) + (- ~ 1r2 + 24Ly- 12 L,) Li2(x) 

+_!_ L4- 19 L3 + (- ~ +! 7r2) L2 + (- 2~'"3- 29 7r2 + 12 L2 + 5 L ) L 12 X 12 X 2 3 X .., 6 y y X 

+-7r --1r -12(3-4L 1r -+ 3L +31T +3L -6L L -+ 3L -7 4 5 2 2] u [ 2 2 2 l t2 
[ 2] s

2 

45 2 y 8 X y X y 82 y t2 

-32Li,(y)- 32Li4 ( x: I) + 8L,Li3(y) + ( 2- 28Ly + 18£,) Lis(x) 

+ (- 2L; + (- 2- 24Ly) L,- 21r2
) Li,(x)- 28LyLx Li,(y)- :~ L! 

+ (- 1
7
2 + ~4 Ly) L~ + ( - 32L; + ~ Ly + 2 + ~ 1r

2
) L; 

+ ( ( 6 + 
2
3° 1r2) Ly- ~ 1r2 - 18(s) L,- 2(s- 3?r2

- 6L; + 28Ly(3 + ~ 1r4(6.!08) 
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B., [- 8LL,(y)- 3LL,(x)- 8LL, ( x: 1) + 8L,Li3(y) + (- 6 -12Ly + 12£,) Li3(x) 

+ (- 6"2 + 6 L, - ~3 L;) Li,(x) - 12 Ly L, Li,(y) 

+ ( _ 11 L2 + ( _ 22 L + 22) L _ 22 L + g 7r2 + 22 L2 + 176) L 
6X 3Y 3 x y 3 3Y 3 8 

_!_L4- ~L3 + (- 17 L2 + ~L -19- ~7r2) L2 
24 X 9 X 2 y 2 y 36 6 X 

+(L3- 27 L2 + (- 37r2 + 251) L + 181- ~7r2 -12(3) L 
y 2Y 9 y 9 6 X 

-~ L4 + 103 L3 + ( _ 242 + ~ 7r2) L2 + ( 12 (3 + 98 + 127 7r2) L 
2 y 9 y 9 2 y 3 18 y 

+ 581 (
3 

_ 31 7T4 _ 124 7T2 _ 30659] u
2 

18 360 9 324 st 

+[-6Li4(x)+4LxLi3(x)-L;Li2(x)-
22 LxL8 -2_L!-~L~- 47 

L2 
3 24 18 3 X 

( 
2 2 128 ) 1 4 47 2] u + 24 Ly + g 1r + g:- - 4 (3 Lx + 

15 
1r - 3 1r -; 

+ [- 8L, Ly +4L; +4"
2 
+4L; l :: + [4£; l ;: 

+16Li,(y) + 16Li, ( x: 
1

) - 16 L, Li3(y) + (- 12£, + 8 Ly + 2) Li3(x) 

+(4£; + b
2

- 2£,) Li,(x) +8L,L,Li,(y) + ~1 L;L, + ~ L! + (2- ~Ly) L; 

+(- L, +4L;-
1
:
3

) L; + ( ( ~"' +8) Ly + ~1 "' + 12(3) L, 

2 4 2 2 -2(3-31r -47r -8Ly(3-8Ly, (6.109) 
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C,, [- 2Li4(y)- 5L4(x)- 2Li, ( x: 
1

) + 2L, Li,(y) + ( 1 + 6L,- 4L,) Li,(x) 

+(- ~"2 - ~L;- L,) Li2 (x) -4L,L,Li,(y)- ~ L! + c~- ~ L,) L; +3Li 

+ c~ "2 
+ ~ - ~ Ly - ~ L~) Li + ( - ~ L; + ( - ~ 1r

2 
+ 13) L, + ~ 1r

2 
- ~) L, 

( 
21 4 2) 2 (93 13 2 ) 31 2 511 1 4] u

2 

+ - 2 + 3 7r Ly + 4 + 6 7r - 8 (3 Ly + 19 (3 - 6 7r - 16 - 90 7r st 

+ [- 10 L4(x) +6 L, Li,(x) + (- L;- ~ 1r2) Li,(x) + 2~ L!- :~ L; 

+(- ~ + ~"') L; + (5£, + ~1r2 - 6(3+ 12) L.+ ~1r4 - ~"'] ~ 
+; -2 L, L, + 1r

2 
+ L; l :: + [ L~ l ;: 

+8Li,(y) + 8L4 ( x: 
1
) - BL, Lis(y) + (- 6Lx + 4Ly + 4) Li,(x) 

+ (- 4Lx + 2L; + 21r
2

) Li,(x) + 4L,Lx Li,(y) + ~! L! + (-
1
5
2

- ~ L,) L; 

+ ( - 9+ 2L~ - ~ 1r
2 

- ~ Ly) Li + ( ( 2 + ~ 1r
2
) Ly - ~ 1r

2 
+ 6 (3) L, 

1 4 2 2 
-4 (3- 3 1r - 2 Ly- 4 Ly (3- 1r , (6.110) 



Chapter 6. NNLO virtual corrections for quark scattering 177 

[ ( 
1 2 (4 4) 2 2 4 2 29) 2Lis(x)-2LxLi2(x)+ 3Lx+ 3Ly-3 Lx-31r -3Ly+4Ly-3 Ls 

1 3 19 2 ( 11 1 2 43) 4 3 29 2 ( 14 2 11) +- L - - L + - - L + - 1r - - L - - L + - L + - - 1r - - L 9 X 18 X 9 y 3 . 9 X 9 y 9 y 9 3 y 

29 r 1370 22 2] u
2 

+-..,3+--+-?f -
9 81 9 st 

+ -L L +-L +-L + --1r -- L +-1f -
[

4 1 3 2 2 ( 2 2 32) 2 2] u 
3XS 9X 3X 9 9 X 3 S 

_! L3 16 L2- ~ L 1f2- ~ L2 L 
3 X + 9 X 3 X 3 X Sl 

(6.112) 

Some of these results overlap with the analytic expressions presented in Ref. (19) 

for the QED process e+ e- --te+ e-. To obtain the QED limit from a QCD calculation 

corresponds to setting CA = 0, Cp = 1, TR = 1 as well as setting the cubic Casimir 

C3 = (N2
- 1)(N2 - 2)/N2 to 0. This means that we can directly compare Est(cx 

C F T R N F) and Fst (ex T~ Nj.) but not Cst which receives contributions from both C3 

and C~. We see that (6.112) and (6.113) agree with Eqs. (2.50) and (2.51) of (19) 

respectively. 

The other coefficients, Ast, Est, Cst and Dst are new results. 
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The process q + q-+q + q 

The mixed t- and u-channel process, q + q-+q + q is fixed by B8 (t, s, u). We find 

that the finite two-loop contribution is given by Eq. (6.107) with 
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As in Section 6.6.2, we can compare some of these results with the analytic ex­

pressions presented in Ref. [19] for the QED process e+e- ----te+e-, and we see that 

(6.118) and (6.119) agree with Eqs. (2.55) and (2.56) of [19] respectively. 

The other coefficients, Aut, But, Cut and Dut represent new results. 

6.7 Summary 

In this chapter we presented the O(a!) QCD corrections to the 2---+2 scattering 

processes qij---+qlijl, qq----tqij and the associated crossed processes in the high energy 

limit, where the quark masses can be ignored. We computed renormalised analytic 

expressions for the interference of the tree-level diagrams with the two-loop ones 

and for the self-interference of one-loop graphs in the MS scheme. Throughout we 

employed conventional dimensional regularisation. 

The renormalised matrix elements are infrared divergent and contain poles down 
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to 0(1/cA). The singularity structure of one- and two-loop diagrams has been thor­

oughly studied by Catani [17] who provided a procedure for predicting the infrared 

behaviour of renormalised amplitudes. The anticipated pole structure agrees exactly 

with that obtained by direct Feynman diagram evaluation. In fact Catani's method 

does not determine the 1/E poles exactly, but expects that the remaining unpre­

dicted 1/ E poles are non-logarithmic and proportional to constants (colour factors, 

71'
2 and (3). We find that this is indeed the case, and the constant H(2) is given in 

Eq. 6.58. This provides a very strong check on the reliability of our results. Sim­

ilarly, the infrared divergent structure of the squared one-loop diagrams we found 

by direct evaluation agrees with the expected pole structure. 

The results presented here, together with those computed for quark-gluon and 

gluon-gluon scattering [1, 5] complete the set of matrix-elements required for the 

next-to-next-to-leading order predictions for jet cross sections in hadron-hadron col­

lisions. On their own, they are insufficient to make physical predictions and much 

work remains to be done. First, a systematic procedure for analytically canceling 

the infrared divergences between the tree-level2----t4, the one-loop 2----t3 and the 2----t2 

processes needs to be established for semi-inclusive jet cross sections. Second, there 

are additional problems due to initial state radiation. Third, a numerical implemen­

tation of the various contributions must be developed, enabling the construction of 

numerical programs to provide next-to-next-to-leading order QCD estimates of jet 

production in hadron collisions. 
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Conclusions 

The purpose of this thesis has been the calculation of matrix elements for massless 

2-+2 QCD scattering processes. This is a very important step in the construc­

tion of numerical programs for the cross-section of hadron-hadron jet production at 

NNLO. It is expected that knowledge of the cross-section at this order will increase 

the precision of the theoretical predictions and will match better the anticipated 

experimental accuracy at the Tevatron and LHC. 

The matrix-elements involve Feynman diagrams which are divergent in D = 4 

dimensions. In Chapter 1 we described the Conventional Dimensional Regularisation 

(CDR) ·method which serves to quantify the divergences by shifting the number of 

dimensions to D = 4- 2E, where E may be considered as a small non-integer number. 

The Feynman integrals manifest their singular behavior as poles in E = 0. 

Singularities arise from two different limits. The first is related to the ultra-violet 

behavior of the integrals where the loop momenta become infinite. The singularities 

of this type can be consistently absorbed at each order in perturbation series, by a 

multiplicative renormalisation of the fields and parameters of the QCD Lagrangian. 

Renormalisation is not a uniquely defined procedure, and fixed order perturbation 

theory results depend on the prescription used for the subtraction of the divergences. 

We have chosen to renormalise with the MS scheme. 

The second type of divergences is associated with the existence of massless par­

ticles in the theory. The denominators of the gluon and light-quark propagators 

in loop integrals often vanish for some loop-momentum configurations, leading to 

the generation of (infrared) singularities. In Chapter 2 we saw that the IR diver-

183 
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gences cancel for appropriately defined physical quantities, where we sum over all 

degenerate external states. Based on that, Catani worked out a process-independent 

algorithm to predict the singular behavior of two-loop renormalised amplitudes. We 

made an extensive use of his formalism in order to verify our results for the quark 

scattering NNLO virtual corrections. 

The calculation of one and two loop Feynman integrals is a very challenging task. 

In Chapter 3 we detailed a general algorithm, based on the Schwinger parametrisa­

tion, which relates tensor multi-loop integrals to scalar integrals of the same topology 

with extra powers of propagators and in higher dimension. Then we concentrated 

on the evaluation of scalar one and two-loop integrals through their representations 

in Feynman parameters providing analytic expressions for several of them in terms 

of r functions. 

In order to obtain expressions for more difficult integrals with a richer structure 

in terms of hypergeometric functions, we employed a Mellin-Barnes (MB) decom­

position of the sums raised to a power in the Feynman representation. After an 

explicit integration of the Feynman parameters we were able to derive representa­

tions of one-loop Feynman integrals in a quite general way. For multi-loop integrals 

we used the insertion method using one-loop MB representations as building blocks 

to construct the MB representation of the total graph. 

The MB representations were used in two different ways. Closing the contours 

of integration either to the left or to the right and summing up all residue contri­

butions, we obtain representations in terms of hypergeometric series. Quite often 

hypergeometric functions have integral representations which can be expanded in E. 

However, this is not always possible and we extract the singularities directly from 

the MB representation. First, we isolate the poles in E by adding the contribution 

of the residues which cross the contour of integration when we perform an analytic 

continuation of E to zero. The remaining integrals are well defined atE= 0 and may 

be expanded in a Taylor series. Finally, we evaluate the finite integrals by summing 

up all residues enclosed in the contour of integration, yielding harmonic sums which 

can be identified in terms of logarithms and generalized polylogarithms. 

In Chapter 4 we examined the method of integration in Negative Dimensions 

(NDIM) which is based on the property of Feynman integrals to be analytic func­

tions in D. From the Schwinger representation of the scalar integrals, we obtain 



Chapter 7. Conclusions 185 

a template solution and a system of constraints. Inserting the constraints into the 

template solution we derive hypergeometric representations of the integral in the 

various kinematic regions. The method is very powerful for one-loop calculations 

or for the evaluation of two-loop integrals with a bubble subgraph. However, lim­

ited progress has been achieved for general two-loop integrals where the method is 

disfavored in comparison with the MB integral representation technique. 

Due to the large number of Feynman scalar and tensor integrals involved in 

two-loop matrix elements calculations, it is crucial to develop computer programs 

which reduce the number of the independent (master) integrals which are ultimately 

needed. In Chapter 5 we used Integration By Parts (IBP) and Lorentz Invariance 

(LI) identities to find relations between the general Feynman integrals appearing in 

one and two-loop massless 2-+2 scattering matrix elements and the master integrals. 

We also constructed differential equations relating many of the master integrals with 

each other completing the computation of the analytic expansions in c of all master 

integrals relevant to the physical processes we examined. 

Our approach for the building of the reduction algorithm was to find a symbolic 

solution of the IBP and LI identities decreasing the extra powers of the propagators 

and the dimension of the integrals produced from the tensor decomposition method 

of Chapter 3. However, this approach becomes cumbersome for complex topologies 

(for example the crossed-box) and it cannot be generalized for integrals with more 

mass scales and loops. A different approach is to generate all identities involving 

extra powers of propagators and dimensions (or equivalently irreducible numerators) 

and solve their system of equations by means of a computer program. This method 

has been used by Tarasov [31], Gehrmann and Remiddi [25], and Laporta [32, 33]. 

Their method is in principle suitable for any multi-loop integral calculation. The 

only limitation is due to computer resources (CPU time and memory) and it has been 

proven a very serious obstacle for a completely automatic solution of the IBP and 

LI recursive relations for practical calculations. However, there is hope that these 

problems will be resolved by means of increasing computing power or programming 

on platforms specialized to the needs of multi-loop calculations. 

The prospect of an automated numerical or analytic calculation of the master 

integrals is also strong. Binoth and Heinrich (20] have suggested an algorithm for the 

isolation of the poles from Feynman representations and the numerical evaluation 
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of the finite integrals. Unfortunately, their results are limited to the kinematic 

regions below all branch cuts where the Feynman representation has a real value. In 

addition, Gehrmann and Remiddi have proposed a largely automated method for the 

analytic solution of the differential equations satisfied by the master integrals [28, 

29, 26, 27), in terms of generalized harmonic polylogarithms, order by order in c. 

Recently, Tarasov [30] and Laporta [32, 33] have proposed the evaluation of master 

integrals through difference equations produced from IBP identities. Their approach 

is also promising and it can be directed to both numerical or analytic evaluations. 

The differential or difference equations methods can be applied given the existence 

of an IBP algorithm for the reduction of multi-loop topologies to master integrals. 

Mellin-Barnes representations are independent of such an algorithm and a numerical 

or analytic expansion in c through MB integrals can be further established as a very 

important tool for the calculation of master integrals and verification of the IBP 

algorithms. Further development of the above techniques is expected to revolutionize 

multi-loop integral evaluations and facilitate high precision calculations. 

In Chapter 6 we computed the virtual corrections for quark scattering at NNLO 

accuracy. Similar results were produced for the QCD processes of quark-gluon [1] 

and gluon-gluon [5], and the QED Bhabha scattering [19]. Given the recent progress 

on multi-loop calculations more matrix-elements at NNLO accuracy will be known 

soon. Yet the above results are insufficient to make physical predictions on their own 

and much work remains to be done. A major challenge is a systematic procedure 

for the analytic cancellation of infrared divergences between the tree level 2-+4, 

the one-loop 2-+3 and the 2-+2 processes. We should note recent progress in this 

direction with the determination of singular limits of tree-level matrix elements when 

two particles are unresolved [83, 84, 85, 86, 87] and the soft and collinear limits of 

one-loop amplitudes [88, 89, 90, 91, 92), together with the analytic cancellation of 

the infrared singularities in the somewhat simpler case of e+e- -+photon+ jet at 

next to leading order [93] A further complication is due to initial state radiation. 

Factorization of the collinear singularities from the incoming partons requires the 

evolution of the pdf's to be known to an accuracy matching the hard scattering 

matrix element. This entails knowledge of the three-loop splitting functions. We 

should here note the contribution of References [94, 95, 96, 97, 98, 99, 100, 101]. 

We hope that the problem of the numerical cancellation of infrared divergences 
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will be soon addressed thereby enabling the construction of numerical programs to 

provide NNLO QCD estimates of jet production in hadron collision. 



Appendix A 

Hypergeometric definitions and 

identities 

In Appendix A.1 we give the definitions of the hypergeometric functions as a series 

together with their regions of convergence. Integral representations for the 2F1 , F1 

and F2 functions are given in Appendix A.2 while identities for reducing the F1 and 

F2 functions to simpler functions are given in Appendix A.4. 

A.l Series representations 

The hypergeometric functions of one variable are sums of Pochhammer symbols over 

a single summation parameter m 

which are convergent when lxl < 1. 

f (a, m)((J, m) xm 

m=O (!, m) m! 

f (a, m)((J, m)((J', m) xm 

m=O ( /, m)(/', m) m!' 

(A.1) 

(A.2) 

The hypergeometric functions of two variables can be written as sums over the 

integers m and n: Fi, i = 1, ... , 4 are the Appell functions, H 2 a Horn function and 
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8 1 and 8 2 generalised Kampe de Feriet functions: 

F1 (a, f3, /3', 1, x, y) 
f= (a, m + n)(/3, m)(/3', n) xm yn 

(1,m+n) m! n! m,n=O 
(A.3) 

F2 (a' f3' !3'' I' 1
1

' X' y) 
f= (a, m + n)(/3, m)(/3', n) xm yn 

_ (r, m)(l', n) m! n! m,n-0 
(A.4) 

F3 (a, a', f3, /3', 1, x, y) 
f= (a, m)(a', n)(/3, m)(/3', n) xm yn 

(1,m + n) m! n! m,n=O 
(A.5) 

F4 (a' f3' I' 1
1

' X' y) 
f= (a, m + n)(/3, m + n) xm yn 

m,n=O (I, m)(l', n) m! n! 
(A.6) 

H2 (a,f3,1,1',8,x,y) 
f= (a, m- n)(/3, m)(r, n)(l', n) xm yn 

m,n=O (8, m) m! n! 
(A.7) 

81 (a,a',/3,1,8,x,y) 
f= (a,m+n)(a',m+n)(f3,m) xm yn 

m,n=O (I, m + n)(8, m) m! n! 
(A.8) 

82 (a, a', f3, /3', 1, x, y) = 
~ (a, m- n)(a', m- n)(/3, n)(/3', n) xm yn (A ) 
~ ( ) I ,. .9 

_
0 

1, m - n m. n. 
m,n-

These series converge according to the criteria collected in Table A.l. The do-

Function Convergence criteria 

lxl < 1, IYI < 1 

lxl + IYI < 1 

M"+/fYI<1 
-lxl + 1/IYI > 1, lxl < 1, IYI < 1 

Table A.1: Convergence regions for some hypergeometric functions of two variables. 

main of convergence of the Appell and Horn functions are well known. That one for 

8 1 and 8 2 may be worked out using Horns general theory of convergence [102]. 
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A.2 Integral representations 

Euler integral representations of 2F1, F1 and F2 are well known [103, 102, 104, 105] 

and we list the relevant formulae here. 

F ( (3 ) - r (I) t d /3-1(1 )'Y-/3-1(1 )-a 
2 1 a, ,I,X - r((J)r(/-(3) X lo UU -U -UX 

Re((J) > 0, Re( 1 - (3) > 0. (A.10) 

F ( (3 (31 ) - r (I) t d a-1(1 )"(-a-1(1 )-/3(1 )-!3' 
1 a' ' ' I' X' y - r (a) r (I - a) J 0 u u - u - ux - uy 

Re(a) > 0, Re(l- a) > 0. (A.ll) 

Re((J) > 0, Re((J') > 0, Re( 1 - (3) > 0, Re( 1' - (3') > 0. (A.12) 

A.3 Example of explicit evaluation of an integral 

representation 

In working out the integral representation for hypergeometric functions in D = 4-2E 

dimensions, we have often to deal with theE expansion of integrals of the form 

I(x) 

d(u) 

11 

dud(u) j(u), 

u-l+a€(1 - u)-l+f3e 

(A.13) 

(A.14) 

where a and (3 are real numbers and f( u) is a smooth function in the domain 

0 ::; u ::; 1: in particular, it is finite at the boundary points. 

The procedure to deal with this kind of integrals is quite standard. The integral 

has a pole in E when the integration variable u approaches either of the end points. 
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We concentrate first on the point u = 0, and we rewrite the integral in such a way 

to expose the pole in E 

I(x) = 11 

dud(u) f(O) + 11 

dud(u) [!(u)- j(o)] = I[1J + I[2J· (A.15) 

The integral I[1J can be easily done 

I 
1 

= j ( O) r ( CH) r (,8 E) = j ( 0) 0: + ,8 r ( 1 + cu) r ( 1 + ,8 E) 
[] r((a+,B)E) E a,B r(1+(a+,8)E) ' (A.

16
) 

and the integrand of I[2J is now finite in the limit u---+ 0. In fact, we can make a 

Taylor expansion 

u2 
f(u)- f(O) = uj'(O) + 2! /"(0) + ... = ug(u), (A.17) 

and write I[2J as 

We repeat now the same steps done for Eq. (A.15) with respect to the point u = 1, 

to obtain 

I[2J = 11 

duua€(1- u)-1+,8€ g(1) + 11 

duum(1- utl+,B€ [g(u)- g(1)] = I[3J + I[4]· 

(A.19) 

The integral I[3J gives 

I _ (
1
)r(1+aE)r(,BE) _ /(1)-f(O) r(1+aE)r(1+,BE) 

[3]-g r(1+(a+,8)E)- ,BE r(1+(a+,8)E) ' (A.20) 

while I[4] is finite at u---+ 1 

g(u)- g(1)- (1- u) h(u), (A.21) 

and can be solved with an E expansion of the integrand. Adding all the contributions 

together we have 

I(x) = a~ E [,8 j(O) +a j(l)] r ~ ~: Ei: l1
,8r ~E) + 11 

duum(1- u),B€ h(u), 

(A.22) 
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where 

h(u) = u(1 ~ u) (t(u)- (1- u) f(O)- u f(1)). (A.23) 

In the case where we have two integration variables, the procedure outlined 

above can be re-iterated in a straightforward manner. To illustrate the procedure, 

we evaluate explicitly the following H functions to 0 ( E2
). 

The integral representation for F2 (see Eq. (A.12)) is given by 

where 

and 

E2 r (1- E) 
F2 (1, 1, E, E + 1, 1- E, x, y) = r (1 +E) r (1 _ 2E) I(x, y), 

I(x,y) = 11 

dudvd(u,v)f(u,v), 

d(u,v) 

f(u,v) 

v-l+€(1- utl+€(1- v)-2€ 

(1- ux- vy)-I, 

(A.24) 

(A.25) 

and I(x, y) must be computed to 0 (E0 ). In order to expose the poles (see Eq. (A.15)), 

we add and subtract the value of the finite function f( u, v ), computed at the bound­

ary points, in the following way: 

I(x,y) = 11 

dudvd(u,v) { [!(1,0)] + [!(u,O)- f(1,o)J + [!(1,v)- /(1,0)] 

+[f(u,v)- f(u,O)- f(1,v) + /(1,0)]} 

= I[IJ + /(2] + I[3J + I[4J· (A.26) 

We are now in a position to evaluate the single contributions in the square brackets. 

In fact 

(1- x)-1 {I du (1- u)-l+E t dv V-1+€ (1- v)-2€ = (1- x)-1 f (1 ~E) f (1- 2t:) 
lo lo E f (1- E) 

----=!____ f (1 +E) f (1- 2E) [ 1 du (1- u)E 
1 - X E f ( 1 - E) } o ( 1 - UX) 

(1- x)-I 11 v€ (1- v)-2€ 
dv ----''-------'--

E O 1- X- vy 

_!5L11

dudv(1-urv€(1-v)-2€ (vy+ux+x- 2) . (A.27) 
1 - x 0 ( 1 - ux) ( 1 - x - vy) ( 1 - vy - ux) 
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The remaining integrals are finite in the limit E ---t 0, so that we can make a Taylor 

expansion to 0 (c) for the integrands of 1[2] and 1[3], and we can put directly E = 0 

in 1[4]. Recalling the definition of the dilogarithm function 

L. ( ) 1xd log(1- z) 12 X = - Z --=....:....__..:... 

0 z 
x:S1, (A.28) 

it is straightforward to carry on the last integrations and express the result in terms 

of Li2 functions. 

A.4 Identities amongst the hypergeometric func-

tions 

The F1 and F2 functions have the following reduction formulae which leave a single 

remaining Euler integral at most [103, 102, 104, 105]: 

F1 (a, {3, {3', {3 + {3', x, y) = (1- y)-a2F1 (a, {3, {3 + {3', ~ = ~) (A.29) 

F2 (a, {3, {3', "(,a, x, y) = (1- y)-!3' F1 ({3, a- {3', (3', "(, x, 
1

: y) (A.30) 

F2 (a, {3, {3', a, "(1
, x, y) = (1- x)-!3 F1 ({3', (3, a- {3, "(1

, 

1 
~ x, y) (A.31) 

F2 (a,{3,{3',{3,"(1 ,x,y) = (1- x)-a2F1 ( a,{31
,"(

1
, 

1 
~ x) (A.32) 

( {3 {3, ) _ ( )-!3( · )-!3' ( , xy ) F2 a, , , a, a, x, y - 1 - x 1 - y 2 F1 f3, f3 , a, ( 1 _ x) ( 1 _ y) 

F2 (a,{3,{3',a,{3',x,y) = (1- y)f3-a(l- x- y)-!3 

F2 (a, f3, {3', {3, {3', X, y) = ( 1 - x - y) -a. 

A.5 Analytic continuation formulae 

(A.33) 

(A.34) 

(A.35) 

Here we give only those analytic continuation properties that relate the argument 

and inverse argument. Gauss' hypergeometric function has the following analytic 
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continuation properties (see for example [103]) 

jarg( -z) I < n, (A.36) 

-a r (I) r (I - a - (3) ( 1) 
2F1 (a, (3, 1, z) = z r (!_a) r (! _ (3) 2F1 a, 1 +a -1,1 +a+ (3 -1,1- ~ 

a-"( ( )"(-a-f3 r (!) r (a+ (3 -1) F ( (3 1) 
+z 1- z r (a) r ((3) 2 1 ~-a, 1- a, 1 +~-a- '1- ~ 

jarg(z)l < n, jarg(1- z)i < n. (A.37) 

There are many possible analytic continuations; however, we list only those that are 

relevant to link the groups of solutions for the one-loop box discussed in Sec. 4.1.2, 

that is the connections between the Appell and Horn functions. 
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(A.38) 

F ( I f3 I ) r (/3 - a) r (J) ( ) -a ( I !3' f3 1 ) 
3 a,a, ,{3 ,"(,x,y =r(J-a)r({3) -x H2 a+1-"(,a,a, ,a+1- ,;,-y 

r(a-{3)r(J) _13 ( , , 1 ) 
+ r (J _ {3)r (a) (-x) H2 f3 + 1- "f,f3,a ,{3 ,{3 + 1- a,;' -y 

(A.39) 

( , 6 ) _ r (!'- 'Y) r (1- a) ( )-' ( , 1) 
H 2 a' f3' 'Y' 'Y ' ' X' y - r ( 1 - a - 'Y) r (!') y F2 a + 'Y' f3' 'Y' 6' 'Y + 1 - 'Y ' X' - y 

r(J-'Y')r(1-a)()_,, ( , , , 1) 
+ r (1 _a_ 'Y') r ("() y F2 a+ 'Y, {3, 'Y, 6, 'Y + 1- "f, x, -y 

(A.40) 

F ( f3 (3' I ) r (/3 - a) r (J) ( ) -a ( I I y 1 ) 
2 a, , , "(, "( , X, Y = r (J _ a) r ({3) -X S 1 a, a + 1 - "(, {3 , a + 1 - {3, "( , -;, ; 

r(a-{3)r(J)( _13 ( , , 1) 
+r('Y-(3)r(a) -x) H2 a-{3,{3,{3,{3+1-"f,"f,Y,-; (A.41) 

H( f3 , s: ) r({3-a)r(6)( )-as ( , 1 ) 
2 a, , "(, "( , U, X, Y = r ( 6 _ a) r ({3) -X 2 a, a + 1 - 6, "( , "(, a + 1 - {3, ; , - xy 

r (a- {3) r (6) _13 ( , 1 ) 
+ r (6 _ {3) r (a) ( -x) F3 {3, 'Y, f3 + 1- 6, "f, f3 + 1- a,;' -y 

(A.42) 

( 
1 s: ) r (a' - a) r (J) ( ) -a ( s: 1 X 1) S1 a, a, {3, "f, u, x, y = r ("(_a) r (a') -y F2 a, {3, a+ 1- "f, u, a+ 1- a, -y' y . 

r(a-a')r(J)( )-a' ( 1 1 s: 1 X 1) 
+r(J-a')r(a) -y F2 a,f3,a +1-"(,u,a +1-a,-y'y 

(A.43) 

( 
1 1 ) r (a' - a) r (J) ( ) -a ( 1 1 1 ) 

S2a,a,{3,{3,"(,x,y =r('Y-a)r(a') -x H2 a,a+1-"(,{3,{3,a+1-a,;,-xy 

r (a- a') r (!) ( )-a' ( 1 1 (3' f3 1 1 ) 
+r(J-a')r(a) -x H2 a,a +1-"(, , ,a +1-a,;,-xy 

(A.44) 



Appendix B 

Poly logarithms 

The purpose of this appendix is to define the generalised poly logarithms that occur in 

the expansion in E of the pentabox scalar and tensor loop integrals and to give useful 

identities amongst the polylogarithms. In Appendix B.1 we give the definitions of 

the polylogarithm functions Sn,p (x). These functions are real when x :S 1 but they 

develop an imaginary part for x > 1. Analytic continuation formulae are given 

in Appendix B.2. Finally, useful identities between polylogarithms are listed in 

Appendix B.3. 

B.l Definition 

The generalised polylogarithms of Nielsen are defined by 

_ ( -1)n+p-1 11 logn-1(t) logP(1- xt) 
Sn, p (X) - ( _ 1) 1 1 dt t ' n .p. o 

n,p ~ 1, x :S 1. (B.1) 

For p = 1 we find the usual polylogarithms 

Sn-1,1 (x) Lin(x). (B.2) 
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The Sn,p's with argument x, 1- x and 1/x can be related to each other via [82) 

Sn,p (1- x) 
n-

1 
log8 (1- x) [ p-

1 
( -1Y r ] 

~ s! Sn-s,p (1)- ~~log (x) Sp-r,n-s (x) 

+ 
( -1)P 
-

1 
-
1 

logn(l- x) logP(x), (B.3) 
n.p. 

Sn,p (~) n~ 8 ~(-1Y r (n+s-r-1)! 
( -1) ~ ( -1) ~ ~ log (-X) ( 8 _ r)! ( n _ 1)! Sn+s-r, p-s (X) 

+ 
n-1 ( -1Y+P r ( -1)n n+p L 1 log ( -x) Cn-r,p + ( )I log ( -x), (B.4) 
r=O r. n + p. 

with 

p-1 
(-1)n+l"'(-1)p-r(n+r-1)!S (-1) 

~ I( _ 1)! n+r,p-r 
r=1 r. n 0 

+ ( -1 )P ( 1 - ( -1 t) Sn, p ( -1) . (B.5) 

We also need the definition of the Riemann Zeta functions 

(B.6) 

and in particular 

(3 = 1.20206 0 0 0 (B.7) 
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B.2 Analytic continuation formulae 

For x > 1, the following analytic continuations should be used 

. ( 1) 1 2 ?T2 . -112 -;;; - 21og (x) + 3 +·mlog(x) (B.8) 

1i3 (x + iO) 1i3 (~) - ~ log3(x) + ?T
2 

log(x) + i?T log2(x) 
X 6 3 2 

(B.9) 

- - 1i4 (~) - _2_ log4(x) + ?T
2 

log2(x) + ?T
4 

+ i?T log3(x) 
X 24 6 45 6 

(B.10) 
- -81,2 (~) + 1i3 (~) + log(x) 1i2 (~) + ~ 1og

3
(x)- ~

2 

Iog(x) + (3 

. [?T
2 

. ( 1) 1 2 )] + Z?T 6 - 112 -;;; - 2Iog (x (B.ll) 

- -81,3 (~) +82,2 (~) +log(x)81,2 (~)- 1i4 (~) -1og(x)1i3 (~) 
- ~ log2(x) 1i2 (~) + ?T

2 
1i2 (~) - _2_ log4 (x) + ?T

2 
log2(x)-

19
7r

4 

2 X 2 X 24 4 360 

+ i1r [ Li3 (~) -81,2 (~) + log(x) 1i2 (~) + ~ log
3
(x)- ~

2 

log(x)] 

(B.12) 

(1) ·(1) ·(1) 1 4 ?T
2 

2 822--2114 - -log(x)113- +-log(x)--log(x) 
' X X X 24 4 

+ (3log(x) + ;; + i?T [ 1i3 (~) - ~ log3(x) + ~
2 

log(x)- (3]. (B.13) 
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B.3 Useful identities 

We often need the following transformations 

Li2 (-x ) 
x-1 

- Li2 ( x) - ~ log2 ( 1 - x) , (B.14) 

Li3 (-x ) 
1 

- - Li3 (x) + 81,2 (x) +log (1- x) Li2 (x) + 
6

1og3 (1- x), (B.15) 
x-1 

Li4 (-x ) - - Li4 (x) + 82,2 (x)- 81,3 (x) +log (1- x) Li3 (x) -log (1- x) 81,2 (x) 
x-1 

1 2( . () 1 4 - 2 log 1 - X) L12 X -
24 

log ( 1 - X) , (B.16) 

81,2 (x ~ 1) 
1 3 

(B.17) - 81,2(x)-6log (1-x), 

813 (-X ) 
1 4 

(B.18) -81,3(x)-
24

log (1-x), 
' x-1 

82,2 (x ~ 1) - 82,2 (x)- 2 81,3 (x) -log (1- x) 81,2 (x) + 
2

1

4 
log4 (1- x). (B.19) 
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