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Abstract

We present the techniques for the calculation of one- and two-loop integrals con-
tributing to the virtual corrections to 2—2 scattering of massless particles. First,
tensor integrals are related to scalar integrals with extra powers of propagators and
higher dimension using the Schwinger representation. Integration By Parts and
Lorentz Invariance recurrence relations reduce the number of independent scalar
integrals to a set of master integrals for which their expansion in € = 2 — D/2 is
calculated using a combination of Feynman parameters, the Negative Dimension
Integration Method, the Differential Equations Method, and Mellin-Barnes inte-
gral representations. The two-loop matrix-elements for light-quark scattering are
calculated in Conventional Dimensional Regularisation by direct evaluation of the
Feynman diagrams. The ultraviolet divergences are removed by renormalising with
the MS scheme. Finally, the infrared singular behavior is shown to be in agreement
with the one anticipated by the application of Catani’s formalism for the infrared

divergences of generic QCD two-loop amplitudes.
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Preface

Since the beginning of history, mankind has been involved in a continuous explo-
ration of everything that can be observed or apprehended. The pursuit for finding
the “real” nature of the world is not only a means to satisfy instinctive curiosity but
also a principal tool for the advancement and progress of civilization.

The initial approach was rather spiritual and Gods were called upon to explain
the diversity of nature. As time passed our perception of the world has matured
into theories which aim to interpret observations in a more fundamental way by
unifying the underlying mechanisms governing the complex variety of phenomena.
The concurrent development of Mathematics has crystallized the content of physical
laws and disclosed their simplicity.

Theories not only serve as an explanation of existing observations but also have
predictive powers for new phenomena which may be probed by experiment. The
interplay between theory and experiment is the cornerstone for the development of
Physics, filtering the ideas and consolidating our knowledge.

Nowadays, we have reached a very compact conception of nature. The world
consists of elementary particles communicating with each other via the electromag-
netic force, the weak and the strong nuclear forces and gravity. With the Standard
Model we have a very good description of the unified electroweak and strong forces.
Gravity is still a puzzle at small scales, but since it is much weaker than the other
forces, it plays a minor role at the energies we are probing with Particle Physics
experiments and is usually ignored.

The electroweak sector of the Standard model is a field theory based on the in-
variance under the local transformations of the U(1) ® SU(2) group. This symmetry
is not observed at low energies, since it gets broken with the Higgs mechanism, pro-

viding masses to the particles and leaving a residual U(1) symmetry characteristic
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of the electromagnetic interactions.

In this thesis we deal with the part of the Standard Model known as Quantum
Chromodynamics (QCD) describing the strong interaction that glues together the
constituents of the nuclei. It is a field theory invariant under local transformations
of the SU(3) group. We shall give an overview of the basic aspects of QCD in
Chapter 1.

The theory at high energies is characterized by a small coupling making possible
the calculation of physical observables by means of a perturbative expansion. Feyn-
man diagrams provide the natural framework for such expansion in Quantum Field
Theories with small coupling. The calculations are getting more and more cumber-
some as we proceed with higher order terms. One is faced with multiple integrations
in momentum space that exhibit ultraviolet (UV) and infrared divergences (IR) in
the high and the low energy limits respectively.

We can quantify the divergences with the adoption of a suitable regularisation
scheme. The UV divergences are then removed with a procedure called renormali-
sation where one has to redefine the fields of the QCD Lagrangian. The renormali-
sation procedure will be explained in Chapter 1.

The IR divergences are of different nature and can be treated separately. They
are the result of situations were two massless particles cannot be distinguished from
each other in phase space, either because one has very small energy relatively to
the other (soft limit) or their relative angle is very small (collinear limit). The IR
divergences cancel out for carefully defined observables as we will see in Chapter 2.

In Chapters 3, 4 and 5 we will study methods for the calculation of multi-loop
integrals. We will use these techniques to compute one and two-loop integrals with
up to four light-like external legs which are relevant for the scattering of two initial
state massless particles to two final state massless particles. In particular, they can
be used for the calculation of the hadron-hadron—2 jets cross-sections at Next-to-
Next-to-Leading-Order (NNLO) accuracy in perturbation series.

Knowledge of the cross-section at NNLO accuracy is important for many rea-
sons. First, one would improve the state-of-the-art theoretical prediction truncated
at next-to-leading order (NLO) which, although it gives a good description of ex-
perimental data, suffers from a big dependence on unphysical scales. Such scales are

present whenever we terminate the perturbation series in a truncation point. In an
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all-orders calculation the dependence on unphysical scales of the higher order terms
counteracts the dependence of the lower-order terms. Therefore it is important to
calculate as many higher order terms as possible in order to allow this cancellation to
happen. A calculation of the NNLO term is thus important since we expect the sen-
sitivity of physical observables on the variation of such scales to be reduced resulting
in a more accurate theoretical prediction. In addition, one can start discussing the
validity of the perturbative expansions, since a comparison of the relative size of the
NNLO result to the NLO result will be possible. Finally, the forthcoming experi-
ments at Tevatron and LHC are expected to yield experimental data of very high
quality at a very broad range of energies superseding the accuracy of the current
NLO theoretical prediction.

In Chapter 6 we compute the matrix elements at NNLO for the quark scattering
processes q7—+qq, and ¢§—QQ, using Conventional Dimensional Regularisation and
renormalising with the MS scheme. This consists the main result of the thesis.
Similar results have been recently produced for the whole set of virtual corrections

for the processes contributing to hadron-hadron—2 jets (see [1, 2, 3, 4, 5]).




Chapter 1

Basic aspects of QCD

In this Chapter we give a brief introduction to QCD emphasizing only the aspects
needed for the rest of this thesis. For a detailed introduction to Particle Theory,
Quantum Field Theory and QCD the references [6, 7, 8, 9, 10, 11, 12] may be

consulted.

1.1 The quark model

Hadrons are the particles which undergo strong interactions. They are observed
either in fermionic (baryons) or bosonic (mesons) states. The big number of observed
hadrons was an indication that they were not elementary entities but composite
objects of other elementary constituents. According to the quark model, the baryons
are bound states of three quarks (ggq) while the mesons are bound states of a quark
and an anti-quark (¢g). There have been observed six species (flavors) of quarks:
up(u), down(d), strange(s), charm(c), bottom(b) and top(t), all carrying spin 1/2.
The electric charge of u, ¢, and t is +2/3 while the charge of d, s and b is —1/3.
Problems with the spin statistics of baryon bound states, suggested that quarks
must be allowed an additional degree of freedom to the electric charge and the flavor,
which is named color charge. To distinguish between three otherwise identical quarks
making for example the uuu baryon state, one has to introduce at least three different
color indices (e.g red, blue, green). Another experimental fact is that all observed
hadrons are confined to colorless states (red+blue+green, red+anti-red, etc). No

single quark or bound colorful states of two quarks gq, etc have ever been observed.
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Confinement, is an additional theoretical hypothesis but it is believed that it may
be a consequence of the dynamical properties of the quarks.

The dynamics of the elementary particles in hadrons is described by Quantum
Chromodynamics (QCD). Quarks are considered to be point-like entities, as demon-
strated from the scaling behavior observed in deep inelastic experiments, carrying
color charge. In analogy with QED where charged particles interact via the media-
tion of the photon, in QCD the carriers of the strong interaction are bosons called
gluons.

The theory postulates invariance under local transformations of the SU(3) group.
The quarks transform according to the fundamental representation and the anti-
quarks according to the complex conjugate representation. The gluons transform in
the adjoint representation. As a consequence, the basic color singlet states ¢;7* and
the totally antisymmetric €7¥g;q;q; correspond to the observed meson and baryon

states.

1.2 The QCD Lagrangian

The full QCD Lagrangian density consists of
‘CQC’D = Eclassical + Lgauge—fia:ing + ‘Cghost (11)

Lciassicar describes the dynamics of the quarks as relativistic spin-1/2 particles,
carrying color charge. Invariance under local SU(N) transformations, with N = 3
color degrees of freedom, demands the existence of N? — 1 vector boson gluons

mediating the interactions between quarks. Specifically, we write
o 1
Lotassicat = Y V1i (1P — msbi5) ¥r5 — 2 Em ™" (1.2)
f

where the quark fields ¢y, carry a flavor index f and a color index . We adopt the

notation A= vy,A* where the Dirac gamma matrices satisfy the Clifford algebra
{7} =9+ = 20" (1.3)
The covariant derivative is

DZ = 3“(5,-1- — igA#tq (14)

a'ji
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where the gluon fields A# carry color indices o running from 1,...,N%? — 1. The
matrices t§; are the generators of the fundamental representation of SU(N), and

their commutator defines the group structure constants
[t%,8°] = i fapet® (1.5)

The coupling strength of the quarks to the gluons is g. The kinetic energy term
of the gluon fields is built in terms of the field strength tensor constructed by the

commutator of two covariant derivatives

(D, Du] = igt°F,, (16)
where
F:u = 8#‘43 - aVAZ + gfabcAZA,c,- (17)

In QCD, gluons carry color charge themselves and due to the last term of Eq. 1.7
we can have gluon self-interactions. In QED this non-abelian term is missing and
we do not observe interactions between the neutral photons.

The classical part of the Lagrangian respects the basic principle of gauge invari-

ance, where the fields transform as:

¥; = Uy, (1.8)
a a a a 7’ —_ -
AL =T (t At = U IBMU) U (1.9)

with U a local transformation of the fundamental representation of SU(N)
U = exp (—it*6%(z)) (1.10)

where 0(z) is an arbitrary function.

One gets quickly into problems trying to quantize Lgssicat- The first difficulty
arises from the freedom of the gluon fields (the same problem is apparent in QED for
photons) to change by a total derivative and leave the Lagrangian invariant (gauge
transformation). In the canonical quantization method this problem appears as
a vanishing conjugate momentum for the time-like components of the gluon field,
thereby invalidating the canonical commutation relations. In the path integral for-

malism, the contribution of each gluon field to the path integral over the exponential
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of the action is overestimated by an infinite amount since one can perform an infi-
nite number of gauge transformations to the field without changing the action. It
is necessary to impose a constraint on the gluon fields by forcing them to choose
only one of the possible gauges. This is the role of the gauge-fixing term in the total
QCD Lagrangian

1

‘Cgauge—fiming = _2€ (apAg)z (111)

which specifies the gauge in a covariant manner. The parameter £ is arbitrary. The
total Lagrangian is no longer gauge invariant, but the physical predictions stemming
from it should be gauge invariant and independent of the parameter £. In the rest of
this thesis we shall choose the value £ = 1 corresponding to the so called Feynman
gauge.

Even with the addition of the gauge-fixing term we still have not restricted the
gluon fields to only two physical polarisations !. To account for this we need to
introduce a new fictitious field which is called the Fadeev-Popov ghost. Although it
is a scalar field with a boson-like propagator it exhibits fermionic behavior since it

satisfies anticommutation relations. The ghost term in the Lagrangian has the form
Eghost = (a,ux;) (a#5ab - gfabcAg) Xb (112)

In QED (fu = 0) there is no need to introduce a ghost, since it does not interact
with any other physical field, and can be integrated out from the path integral of

the exponential of the action.

1.3 Feynman rules

The QCD Lagrangian is the basis for theoretical calculations of physical observables
which can ultimately be compared with experiment. Experimental information usu-
ally consists of measurements of cross-sections for the scattering of particles, or their
decay rates. In general, we start from a very well prepared initial state with a given
particle content and after interactions take place we measure the production rates

of particles in the final state.

L Alternatively, we could have chosen the so called axial gauges restricting the gluons to two

physical polarisations right from the beginning.
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From the theoretical point of view, the initial and final states are related to each
other through the S—matrix, which describes the evolution of the system during
the interactions. Unfortunately, it is very hard to attempt a complete evaluation
of the S—matrix, and we usually restrict ourselves to finding approximate solutions
using perturbation theory. The success of the approximation relies on the size of the
perturbation parameter, which in QCD is the coupling constant a and is related to
the strength which the fields interact (couple) with each other g via

2

g
==, 1.1
a4 4 ( 3)

As we will see later, a becomes small at high energies and the perturbative expansion
is valid.

There is a pictorial method to find the terms of the perturbative expansion with
the use of Feynman diagrams. One has to draw all the possible configurations of
propagating particles and interactions connecting the initial and final states which
are allowed from the Lagrangian. Each diagram, belongs to a specific order in the
perturbation series and we consider only those which contribute to the order of the
approximation. From the Lagrangian we can read off the Feynman rules that assign
a meaningful mathematical expression to the various parts of the diagrams. Finally,
we have to compute each of the diagrams and take their sum.

Here, we present the Feynman rules for QCD. Gluons are denoted with curly-
lines, quarks with solid-lines and ghosts with dashed-lines. The color indices of
gluons and ghosts are denoted with o, 3,7,6 and for the quarks with 7,5. The
Lorentz indices are denoted with u, v, ... while spinor and flavor indices for quarks
are implicit.

The gluon quark and ghost propagators are respectively,

a’ ll' ﬁ) v .
TIOEORY  Gap | g + (1 - O] 55

i
I — 0ij p-m+i0
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b
—_—— - 6abp2+i0

At the denominator of each propagator we assign a small positive imaginary part
(Feynman prescription) originating from causality arguments and its role is to ensure
that the propagation of particles is from earlier to later moments in time.

The interaction vertices are:

e The triple-gluon vertex

éég%% —g fapy [(P1 — D2)P* + (P2 — P3)*9*" + (P3s — p1)" "]

All particles are incoming, p} + ph + p§ = 0.

e The four-gluon vertex

,3, v 82 p o v
=9 faay Frgs (097 — g*°g**]
—3° fras Frgy [9"97° — 9#°9"°]
—” Frap Frvs (977977 — g7 g**]
a; ,U 6, g

e The quark-gluon vertex

a, i
/% R
i J
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e The ghost-gluon vertex

In addition,

the fields of the diagram.

ultraviolet (UV) and infrared (IR).

Lagrangian are rendered finite by an infinite shift.

e IR divergences occur when one of the propagators in the loop becomes zero
for a specific value of the loop momentum. For massive propagators this
never happens, but in QCD the presence of gluons and light-quarks gives rise
to IR divergences. As we shall see in Chapter 2, IR divergences cancel for

carefully defined quantities, and can be largely predicted for one and two-loop

amplitudes

g faﬁ'y p*

e for each loop with momentum k we perform the integration with measure

[ dPk/(2m)P, where D is the dimension,
e multiply with —1 for each quark or ghost loop,

e multiply with a symmetry factor, accounting for equivalent permutations of

Given the Feynman rules we can write a mathematical expression for any physical
amplitude at any order in perturbation theory. The difficulty lies in evaluating these
expressions and especially in performing the integrations over the loop-momenta.

Loop integrals in D = 4 dimensions often diverge. We separate the divergences in

e UV are the divergences due to the singular behavior of Feynman integrals
at large loop momenta. They can be systematically removed order by order

in QCD by a procedure called renormalisation, where the parameters of the
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In order to apply the renormalisation procedure or to make manifest the cancel-
lation of the IR divergences, it is necessary to quantify the infinities and separate
them from the finite part of the integrals. This procedure is called regularisation.
There are quite a few regularisation schemes treating the problem of quantifying
the infinities of the integral. The most commonly used is dimensional regularisa-
tion (Ref. [13, 14, 15]), where we treat the number of dimensions as a non-integer
number. Dimensional regularisation respects all the symmetries of the original La-
grangian and the resulting Green’s functions, and it will be used throughout this

thesis.

1.4 Dimensional Regularisation

With dimensional regularisation we assume that the Feynman integrals are analytic
functions of the number of dimensions D. UV or IR divergent integrals in D=4
dimensions are well behaved when D is not integer. We can calculate them in
D = 4 — 2e dimensions where ¢ is a parameter continuing the integral to non-integer
values of the dimension. The divergences are then quantified in the form of poles
1/, n=1,2,....

As we shall see in Chapter 3 in order to integrate out the loop-momenta from a
Feynman integral, it is sufficient to know the integral

dPk 1
= 1.14
d / iwD/2 (k2 — A +i0)n’ (1.14)

where the integration is typically in D = 4 dimensions and n is a positive integer.
The 70 term is the result of the Feynman prescription for the propagators and
makes the integral convergent for all values of A. In the calculation of this integral
we will assume that the values of the parameters of the integral are such that all
convergence criteria are satisfied. This sets stringent criteria for the values of n
and D. Nevertheless, at the end of our calculation we will be able to extend the
applicability of our results, via an analytic continuation of the Gamma function to
complex values, to a larger domain of the space of n and D.

We assume one time and D — 1 space dimensions. The integral is in Minkowski
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space, and we perform a Wick rotation
ko = —)iko, k; = —)ki, 1= 1, 2, 3 (115)
to bring it in Euclidean space where it is written as

dPk 1 dQp [ EP-1
_ - S — 1
R e L o) A D

We can perform the integration over the solid angle dQ2p in D dimensions with the

following trick
e (£
~ [anp [aserre = ( / dﬂp)% /0 wd(xQ) (2951 (=)
(fomo)3r(3)

or%

r'(z)
The second factor in Eq. 1.16, with the change of variables

B A
k24 A

yielding

becomes

00 kD_l 1 D/2—n ! n—D/2-1 D/2-1
dh— 14 dee (1-2)
o 2 0

2+ A
D D
['(n)
where we used the definition of the Beta function
' I'(a)T'(b)
b) = 1 — )t = L 1.1
B(a,b) /d (-2 = Feh s (1.19)

Finally, substituting Eq. 1.17 and Eq. 1.18 into Eq. 1.16 we obtain the basic formula

for integration in Dimensional Regularisation (in Minkowski space)

Pk 1 T(-8) g
e TR o)
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For the derivation of the above equation it was important to assume that the
dimension was a positive integer, and in order to safeguard convergence in all steps,
it was necessary to satisfy the constraint n > %. We can relax these conditions by

considering a generalized definition of the Gamma function
['(z) = / T ety (1.21)
0
which is valid for complex numbers z with positive real parts. Using the property
I'(z+1) = zl(z),

we can obtain an analytic continuation to all complex numbers except negative inte-
gers. This is very important, since it is now possible to calculate integrals, otherwise
divergent, by shifting the parameters involved (dimension, powers of propagators)
by a small amount away from their integer values.

In this point we should examine the behavior of the integral in terms of the
variable A. When A > 0, the integral of Eq. 1.16 is well defined. For A < 0, the
denominator might vanish, producing singularities. A is typically a linear combi-
nation of masses with positive coefficients and momentum invariants (Mandelstam
variables) with negative coefficients. Inevitably singularities arise when the Man-
delstam variables become time-like. These singularities, by their nature, cannot be
regulated with dimensional regularisation. However, the small positive imaginary
part assigned to the denominators of the propagators with the Feynman rules, pro-
vides appropriate analytic continuations of the integral to otherwise non-accessible
kinematic regions. Whenever a crossing of a discontinuity occurs, then the integral
gains an imaginary part. A thorough investigation of the analyticity properties of
Feynman integrals can be found in Ref. [16].

Returning to dimensional regularisation, shifting the dimension has to be fol-
lowed by some modifications in the Lagrangian of QCD in order to ensure dimen-

sional consistency. Since the action
S = /d%g (1.22)

is a dimensionless quantity, it is easy to deduce the mass dimensionalities of the

quark and gluon fields

— D
Wel= 2o, A=2 -1, (1.23)
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by inspection of their kinetic energy terms. From the interaction part of the La-

grangian it is then easy to deduce that the coupling constant has dimension

g =2 — g. (1.24)

In D = 4, the coupling constant has no dimension. Since we decided to use the
number of dimensions as a regulator, our theory acquires one more scale. We choose
to write explicitly this new scale dependence introducing an arbitrary mass x4 and

replacing the coupling strength with

g — gus, (1.25)

4-D
5
Having made the analytic continuation of loop momenta to D = 4 — 2¢, and

where € =

postulated dimensionless action in arbitrary D dimensions to fix the dimensionality
of the fields, we are still left with some freedom for the number of polarisations
of the internal and external quark and gluon fields. This freedom defines different
dimensional regularisation schemes. Throughout this thesis we choose to work in
Conventional Dimensional Regularisation (CDR), where no distinction is made be-
tween particles in loops or external states, and we consider two helicity states for

massless quarks and D — 2 helicity states for gluons.

1.5 Renormalisation

As we have already mentioned, QCD suffers from ultraviolet infinities in the Feyn-
man integrals at each order of the perturbation series. Fortunately, it turns out that

QCD is a renormalisable theory.
Starting from the Lagrangian given in Section 1.2, we can redefine all the fields

and parameters by a multiplicative factor. For example we can set

Ae = 742, (1.26)
Vi = Z;ﬂwfr,i; (1.27)

g = Zggs (1.28)
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So far we have done nothing apart of a simple renaming of the terms of the La-
grangian, and we would therefore expect the path integral over the action (which
generates the Green’s functions of the theory and the S-matrix elements) to remain
the same.

The Green’s functions in terms of the original fields have divergences in the
ultraviolet limit. With the above redefinition we can express the same divergent
quantities in terms of the new renormalised fields A,,%,,... and the multiplicative
factors Zs, Z,, Zg,... . In other words, one could write a Green’s function of the
original fields as the product of a Green'’s function of the renormalised fields times the
multiplicative factors Z. We can successfully renormalise our theory if we can absorb
all the UV divergences in the multiplicative factors, leaving the renormalised Green’s
functions UV-divergence free.?2 We can then re-interpret the Green’s functions of
the renormalised fields as the ones that have physical meaning [15].

Renormalisability is a desirable property for every serious candidate for a physical
theory since predictions for observables, such as cross-sections, decay rates, etc,
should be finite. QCD enjoys this property and one can prove by induction that
the cancellation of the UV divergences works at all orders for all Green’s functions
by readjusting the multiplicative factors Z at each order. The proof is a difficult
one but it is simplified by exploiting the symmetries of the Lagrangian (e.g. gauge
invariance) which yield relations among the Z factors (Slavnov - Taylor identities).

The renormalisation procedure has a certain degree of arbitrariness. Practically,
there are two choices that one has to make. In subtracting the divergences from
the Green’s functions, together with the singular parts, we have the freedom to
absorb different amounts of finite parts into the infinite multiplicative factors Z.
The prescription one uses to subtract the divergences defines the renormalisation
scheme. We shall use the MS (modified minimal subtraction) scheme, where the

prescription used is to remove only the UV poles in €, where we have defined

_ %e—% (am)". (1.29)

N =

and v is the Euler-Marchesini constant.

The second choice concerns the mass scale u (renormalisation scale) introduced

2They can still have infrared (IR) divergences due to vanishing propagators, but these diver-

gences will safely cancel out for physically meaningful quantities.




Chapter 1. Basic aspects of QCD 13

with dimensional regularisation in order to preserve a dimensionless action. The
renormalisation scale remains in the finite part of the Green’s functions leaving an

arbitrariness for the renormalised Green’s functions after the subtraction of diver-

gences.

According to the choices for the renormalisation scheme and scale we end up
with different expressions for the same physical quantity. Self-consistency requires
that those expressions are all equivalent with each other. This imposes very strict
limits on the behavior of physical (renormalised) quantities when varying renor-
malisation scale or changing the renormalisation scheme and they need to satisfy
appropriate differential equations known as renormalisation group equations. They
can be derived by demanding that the original unrenormalised (“bare”) parameters

of the Lagrangian or measurable physical quantities are independent of p.

1.6 Running a; and perturbative expansions in

QCD
In the basic relation between the bare and the renormalised coupling strength
9= Zggsp°
or, equivalently for the coupling constant,
a= Zgas (,u2)E (1.30)

the multiplicative factor Z, can be calculated in a perturbative expansion, yielding

(in MS),
aS. = a, (43¢ [1 _b (22) + (ﬁ—g - @) (%)2 + O(ag)} , (1.31)

e \2r € 2 2

where

Se = (4m)°e™ =, v =0.5772... = Euler constant. (1.32)

The coefficients fy and f; for Np (massless) quark flavours are

_ 17C% — 10CATx Ny — 6C¢Tg Nr

_ 11C4 — 4Tg Np 8 - ' (1.33)

6 )

Bo
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where N is the number of colours, and

N2 -1 1
= =N = -, 1.34
Cr SN Ca , Tr=3 (1.34)
for SU(N).
The bare coupling o does not depend on the renormalisation scale p,
Oa
P— = 1.35
o 0 (1.35)
which, by inserting Eq. 1.30 and defining the beta function
Oa
— ,29%
:3 (as) =N a_uga (136)
yields the result,
—€ea,
Blas) = A (1.37)
g £

From Eq. (1.31) it is easy to infer Z, order by order in a,, and substituting into

Eq. (1.37), after an expansion in a, we obtain

5 0arg
H 92
w

= B(as) = —Bocis — frol — ... (1.38)

The solution of the above differential equation, which takes the integral form

as(p?) d 2
/ o _ log (,u_2> ) (1.39)
as(pd) ,B(Ol) Ho

determines the behavior of the strong coupling with the energy scale u?, given a
known value of it at an energy scale u3.
When both a;(u?) and a,(p2) are small, one can attempt a perturbative solution.

For example, keeping only the two first terms from the r.h.s of Eq. (1.38), we obtain

the solution

11 B as(u2)>_ | (;ﬁ):
a(®) " mid) B (as(u%) folog { 2 ) =0 (1-40)

For up to sixteen active light quark flavors the coefficient 3 is positive. This has
very important consequences for the validity of perturbative expansions in QCD
since with increasing energy scale u?, the strong coupling becomes smaller. Let us

justify this statement further.
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A dimensionless physical observable R should be independent of the renormali-
sation scale u. If R depends on the squared energy scale s, it will be a function of
the dimensionless ratio s/u? and the strong coupling as(1?). We can then write the

renormalisation group equation

5—; =0, (1.41)
which takes the form
oo 6 (@) | R(eulu),5/0) = 0 (142)
og(u?) da,
or, by defining t = log (s/u?),
5+ 80 e | Rl ) =0 (143)

It is easy to prove that R (a;(s),1) is a solution of the last equation. Indeed,

OR(as(s),1)  Oas OR(ay(s),1)

ot ot Oag
= flan 2D

which completes the proof.

So we can conclude that the dimensionless physical quantity R measured at the
energy scale s, is a function of the strong coupling at the same energy a,(s). From
Eq. (1.40) we found that for big energy scales a, becomes small. This is the very
property of QCD ( “asymptotic freedom”) which allows a perturbative expansion of

R in terms of a, for large energies.

R = R(a,(s),1) = ria,(s) + roas(s)? + raas(s)® + . .. (1.44)

1.7 Higher order corrections in QCD |

There are a few challenges in the perturbative expansion of the last section. The first
challenge comes from the fact that o, is a free parameter of the QCD Lagrangian.
Therefore we can only extract its value comparing with experimental data for the
physical observable R. For a reliable comparison, we need to know as many of the

r; coefficients as possible. In practice we truncate the perturbation series just after
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a few first terms, inducing a systematic error in calculating the physical observable
R due to the ignorance of the higher order corrections. This error is then reflected
as an uncertainty in the determination of a.

Another problem due to the truncation of the series is that the theoretical pre-
dictions become sensitive to the variation of unphysical scales, such as the renor-
malisation scale. In Eq. 1.44 we choose to resum all the logarithms depending on

1?2 in terms of the “physical” scale s. An equivalent perturbative series would be

R = R(as(s), 4 /s) = ri(s/u)as(4?) + ra(s/u®)as(u®)? + ra(s/u?)as(W®)’ + ...,
(1.45)

where u? can take an arbitrary value (as long as o, (u?) is small). Inserting the last
expansion in Eq. (1.43), it is easy to see that the first term r; does not depend on
T

ory

As a consequence, the leading order of the series term depends on u? only through

as(u?). From the expansion of the 8 function,

O«
2 s _ 2 3
H 8/1,2 __ﬂoas-_ﬂlas_"'1

we see that the variation (derivative) of a, with p? is of higher order than O(a;),
since the leading term of the r.h.s is of order O(a?). Therefore, the variation due
to a, of the LO term in Eq. 1.45 is compensated by the higher order terms in the
series. Working upwards for the general r,a} term, we find that the variation of r,
serves to cancel the dependence on p of lower order terms, while the variation of
af gets canceled from higher orders. Inevitably, if we truncate the series we do not
allow the cancellation of the scale dependence between different orders, and we are
therefore left with a residual dependence on 12 of one order higher of the truncation
point.

It is natural to expect that the sensitivity of the truncated series on u? decreases
as we increase the number of calculated terms. For example, figure 1.1 shows the
predicted differential cross section for producing jets with transverse energy of 100
GeV in the CDF detector at the Tevatron. The renormalisation scale dependence

is shown for the LO, NLO and NNLO order predictions (this is known from the
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of tensor and scalar two-loop integrals. It is the aim of this thesis to present some
of the methods used for multi-loop matrix-elements calculations.

We are primarily interested in the one- and two-loop integrals for the scattering
of two initial-state to two final-state massless particles where the virtual particles
produced during the interaction have massless propagators. The techniques tackling
these integrals are presented in Chapters 3, 4 and 5. We will finally use the computed
integrals in an explicit calculation of the matrix elements for the scattering of light-
quarks (Chapter 6), which is part of the set of processes contributing to the two-jet
production from hadron-hadron scattering. The calculation of matrix-elements of
other contributing sub-processes can be performed with a similar approach. Before
that, in Chapter 2 we shall look at general features of cross sections for hadron-
hadron interactions. The requirement that the total cross-section is free of infrared
singularities provides the tools to largely predict the poles in € of the NNLO matrix
elements of Chapter 6, and serves as a very stringent check of our results. The
formalism for the prediction of the poles at NNLO matrix elements is almost process

independent and was developed by Catani (Ref.[17, 18])




Chapter 2

Infrared Divergences

In subsequent chapters we will study integrals for 2—2 scattering of massless par-
ticles, and we will use them to calculate matrix-elements at NNLO for physical
processes such as the scattering of two initial-state to two final-state quarks. Us-
ing the same techniques we can calculate matrix elements for other QCD processes
such as gg—gg [1], gg—gg [5] or the processes ete™—uTu~ [19], ete"—ete™ [19),
Y=Y, qG—77Y, etc. where we can consider that external particles are light-like
and the internal propagators are massless.

The processes involving quarks and gluons at initial states are very important for
the study of the hadron-hadron scattering at the Tevatron and LHC. The computa-
tion of the hadronic cross-section at NNLO accuracy is anticipated to improve the
state of the art NLO approximation and match better the experimental precision.

There is a direct connection of the cross-section with hadronic initial states to the
cross-section of the quark and gluon constituents (partons). For inclusive quantities

one can write the following factorization formula

o(P, P) = Z/dxldxzfi(wl,M%)fj(mz,#%)Uz’j(phpz,as(MZ)a5/#2,3/1&%) (2.1)
]
The initial hadrons have momenta P; and P, where the partons which participate in
the hard scattering carry a fraction of the initial momenta p; = 1P and p; = 22 Ps.
The scale s = (P, + P2)? may serve as a reference (“physical”) scale of the hard
scattering.
The functions f; ;(z, u%) are parton distribution functions (pdf) which describe

the initial state of the hadrons in terms of their constituents. The effects binding

19
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together the partons in the hadrons are not calculable with perturbation theory.
Nevertheless, they are independent of the particular process, and may be extracted

from other scattering experiments such as Deep Inelastic Scattering (DIS).

J - /

Hard Scattering

T

In order to distinguish between the non-perturbative effects in the hadrons from the
perturbative interactions of the partons we have to introduce an unphysical scale
p%. We can think of u% as a cutoff discriminating between soft and hard radiation
from the initial partonic states. For example, when a gluon with small transverse
momentum is emitted from a parton in one of the hadrons it is not able to probe
the other hadron, and its effect is only to alter the initial state of the partonic
cross-sections. Therefore its contribution should be included in the evolution of
the pdf’s. On the contrary, emitted gluons with high transverse momentum resolve
the second hadron and are included in the hard scattering matrix-elements of the
partonic cross-sections.

The total hadronic cross-section is independent of u2, but the pdf’s and the

partonic cross-sections depend on it separately. Similar to the renormalisation scale
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u?, fixed order perturbation theory introduces a sensitivity with the variation of p2.
We expect that the more terms in perturbation series we calculate the less sensitive
the cross-section will be.

From calculating the matrix-elements for the partonic cross-sections to the total
hadronic cross-section there are many technical issues to be resolved, concerning the
phase-space integrations and the determination of the pdf’s and their evolution at
NNLO accuracy. In this thesis we deal only with the matrix-elements. Neverthe-
less, the requirement of a finite cross-section puts very strict limitations on their
singularity structure.

Catani and Seymour [18] found a general (process-independent) algorithm to
predict the infrared singular behavior of one-loop amplitudes. Later, Catani [17]
generalized the method at two-loops. Unlike the one-loop case where all poles are
predicted, at two-loops we can predict precisely the 1/¢*,1/€® and 1/€? poles, and the
part of the 1/¢ pole which depends on logarithms and generalized polylogarithms.
There is a residual 1/¢ piece depending on constants (72, (3, Cr, Ca,...) which is
particular for the process and depends on the renormalisation scheme.

After an explicit calculation of the two-loop matrix elements, it is very important
to be able to check that their pole structure is correct so that we can guarantee the
cancellation of the poles in the total cross-section. The fact that we agree with
the predictions stemming from Catani’s formalism, is a very strong check for the
correctness of the calculation because typically all Feynman diagrams of the massless
QCD amplitudes are infrared divergent. In the rest of this chapter we will explain
the origin of the infrared singularities, and motivate Catani’s formalism. We will

finally apply it for the case of the unlike-quark scattering at two-loops.

2.1 Virtual infrared divergences
We consider the process of a Z boson splitting into a quark and anti-quark
Z(p)—q(p1) +(p2), (2.2)

where the momentum assignments are in parenthesis, and p = p; +p,, with p* = M2

and p? = p2 = 0.
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We shall use this process in order to demonstrate the origin of the infrared
divergences and define physical observables which are finite after renormalisation.
We shall also explain how to apply Catani’s formalism for general one and two-loop
QCD amplitudes and give some motivation for it from the process of Eq. 2.2.

The differential decay rate for the Z-decay to a quark-antiquark pair takes the
form

_ 1 S
do¥l = 3 di M| (2.3)

where the two particle phase-space is

dD—lp1 dD—lp2

G2, EnpE, ) @ n-p) (24)

dll, =

and the matrix-element M can be expanded perturbatively as

MY = MT + MP + O(a?) (2.5)

with 7 q
M =

q

and Z q
qq __
-

q

In Eq. 2.3 we sum over all helicities and colors.
At leading order (LO) it is straightforward to calculate |./\/10|2 and perform the

phase-space integrations yielding the finite result in D = 4

_ - 1 — 1
od? = /dagq = EJ\TZ dll, |/\/10|2 = gNCYQ;MZ (2.6)

where N is the number of colors, ()¢ is the charge of the produced quark flavor, and

« is the electromagnetic coupling constant.
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We now want to include the next order in perturbation series. M, is harder to
evaluate, since we face a one-loop integral computation. Such computations can be

performed by the tools developed in subsequent chapters, and we find that

My = 2 M0, 2.7)
2m
where
2\ € ve 2
_ b e T(l+e)l(1-¢e°[ 1 3
=Cr ( M%) I'(1— 2¢) € 2 4+ 0() (28)

This result is very worrying since it diverges in D = 4 (e = 0), and the decay rate

is unavoidably singular

. 1 —2 ; Q
aq _ 1 _ 94 s
ot = / 5, dlIl, (IMOI + 2ReM0M1> =0 {1 + 2W2ReQ} (2.9)

It is easy to trace the origin of the singularities in this calculation. From the
renormalisation group equation we know that there are no ultraviolet singularities
in this order, so this is not the place to look at. For the derivation of  we had to
calculate integrals of the type

JECe 2.10)
in D2 k2 (ky + p1)2(k1 + p2)?

where f is a second degree polynomial. The above integral becomes divergent for the

loop-momentum configurations where one of the terms in the denominator vanishes.
The divergences of this kind are called infrared because they occur for small values
of the loop-momentum. It should also be noted, that this is a consequence of the
existence of massless particles (light-quarks, gluons) in the theory. If all propagators
had a mass term the infrared singularities would have been regulated by the mass,

producing a finite result.

2.2 Real infrared divergences

Before trying to make sense of Eq. (2.9) we turn our attention to the process of the

quark-antiquark pair creation together with the emission of a gluon

Z(p)—4(p1)a(p2)g(k), (2.11)

where the momenta of the particles are shown in parenthesis, and p = p; + py + k.

At order O(a;) we have the contribution of the following two diagrams
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.z 7 A 1
Mt = g + g
q q
and the total decay rate is
_ 1 7
0% = o, / dIls | ME®| (2.12)
Defining
2F 2E; 2F,
T, = qu, Tg = VZ‘]’ Ty = "ﬁ, (213)
for the quark, antiquark and gluon energies respectively, we can write
. e e p2\ ¢ (T, +z5—1)°
g9 — QQ<_3)02 )/d.’l?d— q q
0 70 \or) =T INCREND (M% ate (1 — zg)etiagt!
T2 + 2
X [(l—e) q2 q+€($q+$q—1):l (2.14)

where the integration region is 0 < z4,2; < 1, 4 + 7 > 1. From momentum
conservation we obtain the constraint z, + z4 -+ z, = 2 and we can also show that

E
-z, = xqﬁgz (1 — cosby)

wqﬁgz (1 — cosfy,) (2.15)
where 0,, (05,) is the angle between the quark (antiquark) and the gluon.

In four dimensions (e = 0) the integral becomes divergent when z,;—1. From
Eqgs. 2.15 we see that the singularities originate from regions of phase-space where
the gluon is either “soft” 5—2—)0) or it is collinear to the quark (6,,—0) or the

antiquark (6;,—0). In D = 4 — 2¢ these singularities are manifest as poles in € = 0

and after performing the integrations over the phase space we obtain the total decay

rate

: - 2\“er(1—¢? (1 3 19
qqg _ g7 [ GDs H eT'(1—e +,9 9 9
%" =% (27r) Cr (M§> T (1- 3 2{62 ot +0(6)} (2.16)
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2.3 Cancellation of infrared divergences

Comparing Eq. 2.9 with Eq. 2.16 we see that the poles in € have opposite signs, i.e.
the divergences due to the emission of a real soft or a collinear gluon cancel against
the divergences due to the emission and re-absorption of a virtual gluon. In the
final-state phase-space the configuration of a soft or collinear gluon emitted after
the creation of the quark-antiquark pair is very similar to the configuration where
only the pair is created. Actually, after the fragmentation of the final-state partons
into hadrons producing jets the two configurations are indistinguishable.

In general, if one considers physical observables summing together all radiative
processes (of the same order in «;) which degenerate into the same final-state when
some of the external particles become soft or collinear, then the result is finite.
This is guaranteed by the Kinoshita-Lee-Nauenberg theorem which states that any
transition probability in a theory involving massless particles is finite, provided
summation over degenerate states is performed.

Returning to our example, we can write that the total rate for the Z decay into
jets (partons) at order O(ay)

3

ZCF%) +0(a?) (2.17)

— 499 999 _ 99
o=0y, +05° =0 <1+

The result is finite since the sum of the two decay rates together satisfies the condi-
tion of the previous theorem in this order of the perturbation series. Obviously, if we
consider only the decay rate for the production of three-jets this is not an “infrared
safe” quantity. To obtain a meaningful result we need to impose an arbitrary cutoff
in the integrations of Eq. 2.14 excluding the soft and collinear regions of the phase-
space. The cutoff serves to distinguish between a three and a two jet configuration
and the divergences in € are replaced by the logarithms of the cutoff.

The situation is more complicated if we consider cross-sections where the initial
state particles can radiate. This is for example the case of the partonic cross-sections
contributing to the cross-section of the hadron-hadron scattering. The initial state
radiation can lead again to degenerate states producing infrared singularities. The
Kinoshita-Lee-Nauenberg theorem, modified to account for the sum of all degener-
ate external states, is still working guaranteeing the cancellation of the divergences.

In this case, the sum over the initial degenerate states, involves all partonic processes
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contributing to the hadronic cross-section. The infrared divergences associated with
the initial states are then factorized and absorbed in the parton distribution func-
tions, yielding a finite result.

Based on the fact that the singular parts of the sum of all degenerate states
cancel against each other order by order in perturbation theory, we can predict the
infrared singularities of the one and two-loop amplitudes in QCD with light-quark
flavors. The amplitudes are computed in conventional dimensional regularisation
and all UV singularities have been removed with renormalisation in the MS scheme.
In addition, they depend on the color indices of the initial and final state particles
so we can consider them to be vectors of a color space. In the following section we
shall define more precisely the color space and examine the operations we can apply

to it.

2.4 Matrix elements in color space

A general QCD amplitude with m external legs M,,, depends on the colors c;,

helicities s; and momenta p; carried by the external particles,
My = Marsmssisioessm(py po . pr). (2.18)

If the particle 4 is a gluon (quark), it can take ¢; = 1,... ,N> =1 (¢ = 1,...,N)
color values and s; = 1,...,D — 2 (s; = 1,2) helicities. Therefore, we can consider

the amplitude as existing in a color + helicity space such that

MGErsemiStedmp, o pp) = (< ety Cn|® < 81y, Sml) 1,2, ,m >,
(2.19)
where < ¢1,...,cm|® < $1,...,8m| is a basis of the space. We then define the

matrix-element square, summed over colors and spins, as
M2 =<1,...,m[l,... , m>. (2.20)

We now concentrate on the color components of the amplitude. We are interested
in the case where an external parton of the amplitude radiates a gluon with color c.
Then the color space increases by one particle, in order to accommodate the emitted

gluon. In addition, the emitter of the gluon changes its color index according to the
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SU(N) color algebra, while the rest of the particles retain their original color. Thus
we can define a “color charge” operator T (acting on the color component of the
amplitude only) which represents the emission of a gluon with color ¢ from the

parton 1,
< Cpyenee yChyen ,Cm,CIT?’bl, . ,bi, cie s by >= 561171 .. 'Tclzb,- . 5Cmbm’ (221)
The matrix T3 depends on the emitter and we have the following cases

o T4 =ifeq for a gluon,

o T% =12 for a final-state quark or an initial-state antiquark,

o T9 = —tp. for a final-state antiquark or an initial-state quark.

It is useful to consider the amplitudes with m+1 external legs, produced from an-
other amplitude with m partons by insertion in different places of a gluon radiation.
Taking squares we produce terms of the form

|]\4:,’7‘k|2 = <1,... ,mlTi . Tkl]-, ,m >

_ [Mfri"'bi"'bk"'am]TT;,-binckakMgi'"ai'"ak"'am (2_22)
where
T Ty =Tk Ti =T/T}.
for ¢ # k. For ¢ = k we have

|ME? = <1,...,m|T;-TiL,... ,m>
— [M;l,:"'bi"'am]T c c iM?’%...ai...am

a;ar = apb.

= [Mobian )T O, ME-sam = 0 < 1, mlL,. L m X(2.23)
or, otherwise,
T? = C; 1,
with

Cocr= 21 iy k (2.24)
Y if 7 is a quar )

C;i=Cs=N, ifiisa gluon (2.25)




Chapter 2. Infrared Divergences 28

The last two identities can be easily proved using the decomposition

Jabe = —tr ([e=, 7] t°) (2.26)
and the Fierz identity
tiitim = % (5z‘m5jl - %@j&m) (2.27)
Finally, from color conservation, we have
Em:Tﬂl, ceo,m>=0. (2.28)
i=1

2.5 Singular behavior of one-loop amplitudes

We consider the QCD amplitude | M) (in color space) with m external legs. As usual
we work in CDR and renormalise with the MS scheme. Performing a perturbative
expansion we can write

M) = (2)" {(MO) + MY + (3_;)2W2> +0(cf) (2.29)

27
with n depending on the process.
We separate the singularities of the one-loop amplitude |M?!) from the finite part

with the formula

M) = 1(€)| MO) + | MEFm) (2.30)
where | MY/} is a finite function when eé—0. All one-loop divergences are factorized
with respect to the tree-level amplitude |M°). The operator I is meant to act on
the color vector | M®) and encapsulates all the singular dependence. Specifically,

1 eve e AT €
I(e) =~ Virs(e) ST - Ty 2.31
@ =309 S C)> (o) e

where the indices 4, j run over the external legs. The momenta of the external
particles 7, are denoted by p; and A;; = 1 if both particles are incoming or outgoing,

otherwise \;; = 0. The singularities appear in the form of 1/€* and 1/e poles in the

function
1 €)= 1 62 ’Y’LE .
where
3 11 2
V¢ == §CF, Yg = ?CA — ‘3‘TRNF- (2.33)
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2.5.1 Application: Z—gq one-loop singularities

Let us first check the above formalism against our earlier results for the Z-decay
to a quark-antiquark pair. Defining the T;, (¢ = g, @) operators in color space as in

Section 2.4, from color conservation
Tq+Tq =0,
we obtain
Tq-Tq=Tg Tq=-T3=-T=-Crl. (2.34)
Therefore the color-charge operator takes the simple factorized form
I(e) = w(e)l, (2.35)
with

Acting on the tree-level amplitude we obtain the singular part of the virtual one-loop

amplitude which is

sin, s O,
MEE = ;—wI(eHMo) = Sru(eMo. (2.37)

It is easy to verify, after an e-expansion of the r.h.s of Eq. 2.37 and Eq. 2.7, that

their difference is indeed finite.

2.6 Singular behavior of two-loop amplitudes

The singular behavior of two-loop amplitudes is more complicated and the singular-
ities appear as 1/€*,1/e3,1 /€% and 1/e poles. Catani gave the following factorization

formula in terms of the one-loop and tree-level amplitudes
(M?) = T(e)| M) + I (e)| M) + | M>F7) (2.38)

Again, |[M%f") is a finite function when e—0. The divergences of the amplitude
receive contributions from two sources. First the double and single poles of our

known operator I multiply the singularities (1/€2,1/¢) of the one-loop amplitude
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|M?1). Second, a new divergent operator I?) acts on the tree-level amplitude |M?),

producing poles as deep as 1/€*. In fact,

1) = —%1(6) (1(6) + 47%%) + %1(—:)—26) <27rﬁ0% + K) 1(2¢)
+H(e), (2.39)
with
67 n2 10
K= (E - %) Ca ~ 5 TaNr. (2.40)

The function H® is of order 1/¢, and it depends both on the specific process and
the renormalisation scheme and consists of constants such as (s, Cr, C, 7%. There-
fore, with Eq. 2.38 we can completely predict the singular behavior of the two-loop
amplitudes through to order O(1/€?), together with a large part of the 1/¢ poles
depending on logarithms and generalized polylogarithms. The remaining part due
to H® has to be found with the explicit calculation of the two-loop amplitude from
the Feynman diagrams.

In Chapter 6 we perform an explicit computation of the two-loop amplitudes for
quark scattering. Using the above formalism we verify that the pole structure is
the one anticipated and we compute the H® function for the relevant processes. In
the next section, we construct the I operator for the scattering of unlike-quarks, in

terms of which we develop our analysis of the infrared behavior in Chapter 6.

2.7 Color charge operator I for unlike-quark scat-
tering

We now consider the amplitude for the process

a(p1) + @(p2) = Q(ps) + Q(p4), (2.41)

where a quark and an anti-quark in the initial state interact to produce an quark
and anti-quark pair in the final-state with different flavor. The momenta assigned to
the external particles are shown in parenthesis and the total momentum is conserved

(pf + ph + ps + vy =0). The Mandelstam variables are

s=(p1+p2)’ t=(p2+ps)?, u=(p+ps)’ =—s—1t,
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and all particles are light-like.
To obtain the singular parts of the renormalised one and two-loop amplitudes it
is essential to construct the color-charge operator I of Eq. 2.31 in color space. The

amplitude at tree-level consists of the diagram

q>m<@
q Q

with color factor
a a 1 1 1 1
qﬁtQQ = 9 <5qQ517Q - N‘Sq«i(SQQ) = 2 (lh> - Nl”)) )

where we have defined the color-vectors

9 Q
by = Guabia = (2.42)
and (7/\6?
7 Q
|v) = 4200 => ( (2.43)

It turns out that the one and two-loop amplitudes for the unlike quark scattering can
be written in color-space as linear combinations of the above two-vectors. Therefore,
they are a color basis for this process. It is then enough to find the action of the
color charge operator on the vectors of the basis only. From the definition it is easy

to verify the normalization relations
(v]v) = (h|h) = N*
(v|h) = (hlv) = N. (2.44)
We now define the color charge operators Tq, Tq, Tq, Tgq, corresponding to the
color emission of a gluon from the external particles ¢, §, Q and @ accordingly. For

the construction of the I operator of Eq. 2.31, we need to find the vectors T; - T;|h)
and T; - T;|v), with 4, j = ¢,7, @, Q. For example,

S 1 1
= — (05t50,0) % (Sqrtibio) = -3 (|h) - —va)) : (2.45)
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Writing the general element |M) of the color space in the form

M) = My|h) + MyJv) = M (2.46)

v

the above products of operators can be written as matrices.

—Cr 0
Tq -Tg=Tq Tg= R (2.47)
~2 3N
1 1
Ty - Tq=Tyq Tq=| ?* °?2 (2.48)
0 —Cr
and
1 1
Tq - Tg=Ts Tq= fN 21 (2.49)
3 TN

Substituting into Eq. 2.31, we obtain the color charge matrix
e [ 1 3} 1 [ [N*=-1)S+U-T N[T -U]
N N[S - U] [N2 1T +U -8
(2.50)

with

2\ €
= (-~
=5

U = (—ﬁz->6. (2.51)

u
The operator matrix of Eq. 2.50 together with the normalization equations 2.44 for
the contraction of the vectors of the color-space basis, make up the ingredients for
the application of the formalism of Catani for the infrared divergences of the one
and two-loop quark scattering amplitudes. The pole structure will be evaluated in
Chapter 6 by a direct computation of the Feynman diagrams and agrees with the
one anticipated. We now concentrate on the problem of calculating Feynman one

and two-loop integrals.



Chapter 3

Representations of Feynman

Integrals

One of the most formidable task for the evaluation of matrix elements at NNLO
accuracy, is the calculation of the tensor and scalar one and two-loop integrals that
naturally arise. Here we consider the problem in its most general form and we will
try to establish general methods that simplify it.

We denote the generic m-loop integral in D dimensions with n propagators 1/4;

raised to arbitrary powers v; as

JP ({v;}{Q2}) [L; kY K KUKY; KKy, ...] =

dPk, dPk,, [1; ks kE; kiKY, kiKY .. 31
D | ebn AT Ao , (31)

where the external momentum scales are indicated by {Q?}. For scalar integrals the
numerator in Eq. (3.1) is unity, J? ({#}; {Q?})[1] = J? ({v:};{@?}). The tensor
integrals J? ({v;}; {Q2?}) [K{; ...], bear products of loop-momentum vectors k! in
the numerator and they are harder to evaluate. The propagators for particles of

mass M; have typically the form
1 1

— 3.2
A (X, &5k; + @) — MP+i0 (32)

where §; = 0,1,—1 for j = 1...m, and ¢; is linear combination of the external
momenta. Feynman integrals have generally complex values, and branch-cuts in the

space of the kinematic variables {Q?} define distinct regions in which they have to

33
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be computed. Expressions for the same integral in different kinematic regions are
connected through analytic continuations. The +i0 Feynman prescription in the
propagators defines the analyticity properties of the integral and serves to correctly
find the analytic continuations between the various regions.

In this thesis, we are interested in QCD physical processes that involve light-
quarks and we always assume M? = 0. We also restrict ourselves to the cases
where the number of loops m is either one or two. What is more, we apply the
techniques developed here for integrals with at most four external legs, the main
physics goal in mind being the matrix elements evaluation of 2—2 scattering of light-
like particles. Nevertheless, the same techniques can be in principle generalized to
calculate integrals with massive propagators and/or more loops and external legs.

It is generally very hard to perform a brute force integration of the loop momenta
kn in Eq. 3.1. Instead we rewrite the product of the propagators as a multiple
integral over new real parameters squeezing the k,,’s in a single quadratic form, so
that they can be integrated out trivially. What is left are the integrations over the
new parameters which are often more convenient. The prescription used for the
representation of the product of the propagators defines the representation of the
Feynman integral. Integral representations in real parameters are more promising
than the original integrals over the loop-momenta and they show explicitly the
dependence on scales such as propagator masses, Mandelstam variables, etc. They
also serve to find relations among the integrals of the same topology!. The most
commonly used representations are the ones in Schwinger and Feynman parameters.

The Schwinger parametric form is based on writing each of the propagators as an
exponential integral over a positive real variable ranging up to infinity. Traditionally
this representation is not very popular for a direct evaluation. Instead, it is very

convenient to find relations between tensor and scalar integrals. Theories with par-

1For the rest of this thesis we will say that two integrals belong in the same topology, if their sets
of propagators are related to each other by a linear transformation of the loop-momenta and/or a
rearrangement of the external momenta. The powers of the propagators or the dimension of the
integrals can be still different, or they can possibly carry different scalar products or tensors in the
numerator of the integrand. An integral belongs to a subtopology of another integral, if by shifting
its loop momenta or interchanging the position of the external particles, we produce a subset of

the propagators of the integral of the topology
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ticles that carry spin, give rise to tensor integrals whose evaluation demands some
extra effort. With the Schwinger representation we can easily displace the problem
of evaluating tensor integrals to evaluating scalar integrals of the topology with ex-
tra powers of propagators and higher dimension. Making no distinction between
scalar and tensor integrals is often very useful when a large number of tensors has
to be calculated, allowing for a uniform approach that can be easily automated.

The Feynman representation is more popular. The integrations are often viable,
especially because the parameters are not completely free and obey the constraint
to sum up to unity. This has been proven very convenient in order to find nice
transformations that simplify the original representation. Unfortunately, there does
not exist a systematic method to directly evaluate the integrals over the Feynman
parameters and success very much depends on specialized clever tricks that can be
applied mainly within the integrals of the same topology. One can very quickly run
out of such tricks as the complexity of the integral rises with the introduction of
additional propagators or kinematic scales.

We bypass the difficulties of evaluating the Feynman representation with the
introduction of Mellin-Barnes integrals. Their main advantage is that the new inte-
gration variables are complex and the integration is across straight lines parallel to
the imaginary axis. The integrands typically vanish at infinity, so one can close the
contour and attempt a brute force summation of all the residues enclosed leading to
a hypergeometric series representations. Hypergeometric representations are natu-
rally derived within the framework of the Negative Dimension Integration Method
(NDIM) as well, and we discuss it in the next chapter.

Unfortunately, the hypergeometric structure of many Feynman integrals of in-
terest is still very complicated and cumbersome for practical purposes. Feynman
integrals, as explained earlier, are singular objects and we have chosen the dimension
as a regulator of their singularities. Divergences arise either because of vanishing
propagators (infrared) or due to exploding loop-momenta in the numerator at infin-
ity (ultraviolet). It is a great challenge to isolate them since they sit in nested inte-
grals or sums in the Feynman or hypergeometric series representations. A method
to extract the singularities of the Feynman parametric form has been proposed by
Binoth and Heinrich [20], but the aim of an analytic solution is sacrificed due to a

rapid proliferation of the resulting divergence-free integrals which must be evaluated
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numerically.

Mellin-Barnes integral representations are very well equipped for an analytic iso-
lation of the poles. The divergences are due to a small number of residues which
cross the contours of integration when we continue the value of € = 2 — g to zero.
They can be easily spotted and isolated. The remaining series of residues are finite
and with some effort they can be expressed in terms of generalized polylogarithms.
Major breakthroughs occurred using this method during the last two years which
opened wide the road for matrix elements calculation of 2—2 light-like particles.
Smirnov [21] first calculated the double-box integral with unit powers of propaga-
tors followed by Tausk [22] on an analogous calculation for the cross box topology.
Recently, Smirnov [23, 24] calculated the same integrals considering one of the ex-
ternal legs to be massive.

In this chapter, we explain how to derive the Schwinger and Feynman repre-
sentations of Feynman integrals. Starting from the Schwinger parametric form we
propose an algorithm to relate tensor integrals to scalar integrals of the same topol-
ogy with extra powers of propagators and higher dimension. We also evaluate some
one and two-loop integrals from their Feynman representation. Furthermore, we
derive Mellin-Barnes representations of various one and two-loop integrals and show
how we can use simple one-loop integrals as building block for the derivation of
Mellin-Barnes representation of multi-loop diagrams. Finally, we explain how we
can isolate the e poles of an integral, choosing to work with the Mellin-Barnes rep-
resentation of the cross-triangle diagram.

We should also mention that very recently methods have been proposed for
calculating Feynman integrals without a direct evaluation of their integral or series
representations. These methods are based on the construction and the solution
of differential or difference equations. Gehrmann and Remiddi [25, 26, 27, 28, 29|
derive differential equations with respect to the kinematic scales of the integrals by
using recursive Integration By Parts (IBP) and Lorentz Invariance (LI) identities.
Then they solve the differential equations order by order in an e-expansion. Using
again recursive identities from IBP, Tarasov [30, 31] and Laporta [32, 33| derive
difference equations with respect to parameters such as the dimension and the powers
of propagators which they can systematically solve. The above methods are very

promising for an automatized calculation of integrals with many loops giving hope
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for very accurate theoretical predictions for physical observables.

In Chapter 5, we shall explain how IBP and LI work in order to reduce the
number of basic integrals needed from a topology (master integrals), and we shall
find differential equations satisfied by them. We shall use the differential equations
to calculate some of the master integrals in terms of other master integrals which
have previously calculated from their integral or series representations. Finally,
we shall use the differential equations to verify our reduction algorithms to master
integrals and the analytic expansions in € of the master integrals. We now return to

the study of the representations of tensor and scalar integrals.

3.1 Generic tensor integrals using Schwinger pa-

rameters

In this section, we deal with the generic tensor integral, J® ({v;}; {Q?*})[k}; ...],
and develop an algorithm to reduce it to a set of scalar integrals. '

A method to reduce tensor integrals constructing differential operators that
change the powers of the propagators as well as the dimension of the integral was
presented in Ref. [34]. However, it is in our view simpler to obtain the tensor inte-
grals directly from the Schwinger parameterized form of the integral expressing the

product of the propagators as

1 n
m = /Da: exp (; miAi) , (3.3)

where

(_1)W oo vi—1
. /0 d; 2571, (3.4)

Vi)

/Dx:ilj

For a two-loop integral,

D mAi=aki+bk}+2ck ky+2d ki +2e -k +f, (3.5)
i=1
where a, b, ¢, d*, e* and f are linear in the z; and characterize the topology of the
integral. With the change of variables
Kl—‘
K s KP - CT"’ + A, (3.6)

ko KP4 3.7
2 2
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where
A= ———— VW= ———— (3.8)
and
P =ab—c? (3.9)

we can diagonalize Eq. 3.5, so that

iZ::ziAi =aK? + 51{3 + %, (3.10)
with
Q=—-ae’—bd*+2ce-d+ fP. (3.11)
The scalar two-loop integral can be cast in the form
JP ({wh {3 1) = / Dz / f:lf; / j:gj exp [aKf + 51{3 + %J , (3.12)

and the Gaussian integrals over the shifted loop momenta are evaluated (using sim-

ilar tricks as for the proof of Eq. 1.20) to produce

P (@ = [ o1, (313)

the integrand 7 being given by

1 Q
Similarly, the tensor integrals can be easily obtained by using identities such as
dP K,
/ D) KY exp (aK?) = 0, (3.15)
d°K, Y 1, 1
/—mm K{KY exp (aK7) = —o5- 9" 57 (3.16)

dDKl v o 1 v _po vo o v 1
/ier/?Kf-’QKle exp (aK}) = @{gﬂ 97 +g*g +g“g”}m.
(3.17)

To give a concrete example, we consider the tensor integral associated with &}

ARG / Dz

X

inD/2 a

= /D:c XHT.

srD/2

D D "
d Kl/d K3 {K{‘—CK2 +X“} exp <aK12+§K§+g)

P
(3.18)
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Recalling the definition (3.8), we see that X'* consists of the ratio of a set of
bilinears in z; divided by P. We can therefore absorb the factors of z; into Dz (see

Eq. 3.4) by increasing the power to which the i-th propagator is raised

-1 Vix::’i—l 1)1/,—{-1 :’:
Q_F)(IT_ T, — _Vigl—‘(l/—-—}—l‘)— = I/ll+, (319)

while the factor P can be absorbed into Z (see Eq. (3.14))

1 1 1
PR P . PO’ (3.20)
increasing the dimension
L (3.21)
~ .

In this way, each z; in the numerator increases by one the power of the associ-
ated propagator, and each power of P in the denominator increases the space-time

dimension D by two. Schematically we have

JP ({ui}; {Q}) ZV,V] P IPP({. v, Vi1 {Q7 ) [1]
(3.22)

where the summation runs over the elements of (ce* — bd*) which fix the values of
1, j and pg.

For generic four-point integrals, we need tensor integrals with up to four free
indices, each associated with a Lorentz index of an external leg. Integrals with higher
powers of the loop-momenta are of course possible, but must yield dot products with
other momenta when the available free Lorentz indices are saturated. In many cases,
these dot products can be immediately expressed in terms of the propagators and
canceled through.

The procedure previously described can be iterated ad libitum and we can express

every tensor integral in terms of scalar ones with increased powers of the propagators
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and dimension D. For example, we have

/Dm YE T,

/Dw X”X”———b—g’“’ Z,
2P

Dy — wyw v

TPk /m (x Y +2Pg ) T,

Drpppv] — m u_i by

J " (k5 k5] /Da? ()’ Yy 2Pg ) Z,

TPIRRE]) = / Do

P (k5]

TP (ki)

I

(Xu(yv;(p _ 2 {g;u/;(p + g XY + gvp_;\gu}>
JD[k:fk’l’kg] = /Dm (X“X”y” — —g" Y + —{g“pX” —I—g”pé\f'”})

TP RyRE) = / Dz Xﬂy"yp g"”X”—i— 273{

JD[kg‘kgkg] = /’Dm yuyvyp — —{g"™VP + gH*Y” _,_gvpyu}) T

2P 7l
Pl = [ Do (X“X"W” b0 g0 4 g0}
_ ip{g‘“’X”X” F gHPXY X 4 ghOXYXP + g PP X
+ XX+ g””X“X”}) T
JOIRERYRPRS] = / Dz (chwf’ya - —2%{9‘“’2\?"’ + X+ P Y

+ _c_{g/w;(v‘;gp + g XPXP 4 g XX}

4732 2 {g" g + g + g“"g””}> I

grYr + gupyr/}> T
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TPk kY SRS = /Daz <x#x"y"y" 559 pUX“XV—%gIWyPyU

(g XVT + gPHEYT + XY + g XEYP)

ab
+ 5399 + 75

4P?

4732 {9“”9 +g‘“’g””}> T

Uk = [ s (X“y"y*’;v" — {97V + gV + g )
+ %{g#l/ypya +gupyuy0' _*_guayuyp}

47:2 {079 + 99" + g’“’g””}) I
2

4_’P_2{g,ul/gpa + gp,pgua + gp.agup}

TPy ks kiks] = / Dz (y“y”)/”y"+
- %{gl—“’yl’ya +g#pyl/ya +guayuyp _i_gllpyy.ya
+g oYY + g””)’”)’”}) I

Note that these expressions are valid for arbitrary two-loop integrals and to use
them we just need to identify a, b, ¢, d*, e* and f and construct X* and Y*. The
powers of z; and P can then be exchanged for scalar integrals with higher v; and
higher D. This procedure is straightforward to implement in an algebraic program.

It is very easy to obtain similar expressions for one-loop tensor integrals. We can
view the generic one-loop diagram as a limiting case of the generic two-loop diagram
where we first take the limit ¢ = 0 (corresponding to the common propagators of
the two loops) and then the limits b = 0, e# = 0 eliminating the propagators of
the second loop. Finally, we advance a—P of the final one-loop diagram. Thus we

have:
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and

Q —d®+ P
P P

Finally, for the one-loop tensors up to fourth-rank we obtain
JPEY = / Dz X* T,
JPkERY]) = / Dz <X"X" - igﬂ") T,
2P
JPIRLRE]) = / Dz (X“X”X” -~ % {gXP + ¢ X" + g"PX“}> T,

1

7Pz 1997 + 9% + 979"}

JP[k Y RPES] = / Dz (xw"xpxa +
- %{g“")l’pk'” + gAY X + gH XX + g XX
+ g XX + g”"X“X”}) T.

linking them to integrals with extra powers of propagators and higher dimension.
There is no problem at all to repeat the same steps for a general n-rank tensor

m-loop integral. With this tool at hand we can now concentrate on the evaluation

of scalar integrals only.

3.2 Feynman Parameters

In this section we describe the representation of Feynman integrals in Feynman
parameters. The goal is again to squeeze the denominators of the propagators
into a single quadratic form in the loop-momenta so that, after completing perfect
squares, we can integrate them out. The main advantage in using Feynman instead
of Schwinger parameters is that due to an additional constraint, one has one less
integration to perform. Feynman parameters yield expressions which either can
be directly computed or they can be used as a benchmark to derive Mellin-Barnes
representations, which are suitable for expansion in € =2 — D/2.

We consider the generic scalar two-loop integral in D dimensions with n propa-

gators 1/A; raised to arbitrary powers v;

Pk [ dPky 1
TP ({mh{@ W= | 55 / 57 yrTt (3.23)
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Figure 3.1: The one-loop triangle topology (left) and the one-loop bubble (right)

topology with arbitrary powers of propagators

Feynman’s trick is to write the product of propagators as

1 F(V1+---+Vn) /1 xllll “lo gl
_ e edznd(l — Tz it T S .24
AT Ay T ) D) Jo I g (820

With the same change of variables (Eq. 3.6 and Eq 3.7) as in the Schwinger para-
metric form we can complete the squares. Integrating out the shifted loop-momenta

is now easy, using the identity (Eq. 1.20)

/ Lj:(mi Ay (—1)§—F(7;(;)7)A§‘" (3.25)

yielding
(k@ == [ (Hd:vz - ) 51— TP QO
(3.26)

where P and @ are given in Eqs. 3.9 and 3.11, respectively. Similarly, for a one-loop

scalar integral we obtain

72 (s ety i = (=22 [ (del .- ) (1 - DmyPh-DQEY

Note that since P = ). z;, for one-loop integrals P = 1.

These forms can be straightforwardly generalized to multi-loop integrals.

3.2.1 The one-loop triangle

With the Feynman representations in hand, we can now try to evaluate Feynman

integrals, starting from the one-loop triangle with one massive external leg (Fig. 3.1).

P = [Lh 1 3.28
3 (1/1,1/2,’/37 ) - ?:7I'D/2 A1{1A12/2A13/3 ( . )
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with
A = K410,
Ay = (ki +p1)?+10,
A3 = (kl—p2)2+i0,
and

pf =0, pg =0, and p§ = (p +p2)2 = M2 (3.29)

We write down the Feynman representation of the integral

= (F rlg(y)r?(_)l;/(zZ) /0 diydydsast ™ o 2y (1 — igg) P TP QT
(3.30)
where
P=z+zy+z3=1 (3.31)
and
Q = zymsM*. (3.32)

Throughout this thesis we shall make extensive use of the shorthand notation
Vij =V + l/j, Vijk = Vi + Vj + Vg, Vijj =y + 2I/j, etc.
Because of the presence of the ¢ function we can change variables:

1 = X
z2 = (L=x)p
z3 = (1-x)(1-p)

so that

ISP(Vl,Vz,Va;Mz) = (—1)
1

< [t @
0

1
< [ dppFi - pet (3.33)
0
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Using the identity

/0 daaR_l(l - CI,)M_I = m (334)

we find

%—-Vns F(V123 - %)F(g - V12)P(§ - V13)
F(l/z)F(l/3)F(D — 1/123)

With the above analytic expression we can evaluate any graph of the triangle topol-

(3.35)

Is,D(V1,V2,V3;M2) = (_1)!22 (MZ)

ogy. We can also evaluate the graphs belonging to the bubble topology which is a
subtopology. Indeed, if we pinch the first propagator by setting v; = 0 in Eq. 3.35,
we get an expression for the bubble graph (Fig. 3.1)

D_,,
Iy (vo, v3; M?) = 190, v, vs; M?) = 1P (vy, v5) (MZ) 2 (3.36)

where for future reference we define
%F(Vgg — %)P(% — VQ)F(g — V3)
F(Z/Q)F(l/g,)F(D — IJ23)

We will later see that it is convenient to write the integrals of a topology and its

12 (vy, v3) = (—1) (3.37)

subtopologies as a linear combination of as few as possible integrals that we call mas-
ters. The practical benefit is not very important for topologies with “easy” analytic
expressions such as the triangle topology, but it becomes considerable when ana-
lytic expressions, or more specifically, € expansions for every integral of the topology
are very hard to obtain individually. In such cases we try to find algorithms that
produce the linear combinations of the master integrals equivalent to the different
integrals of the topology and deal with the € expansions of the master integrals only.

The triangle topology possesses one master integral; the one-loop Bubble integral

with unit powers of propagators in d = 4 — 2¢ dimensions (BUB).

—Q— (M?) = I4%(1,1; M?) (3.38)

Indeed, starting from a general tensor one-loop triangle graph in d = 4 — 2¢ dimen-

sions, our tensor reduction algorithm produces scalar integrals with extra powers of
propagators in D = d+ 2n dimensions, where n is an integer. We can trivially relate
all these scalar integrals to the Bubble master integral

I4—2€+2’n. v ,V ,I/ ’MZ
Ig—2€+2n(yla U, Vs; M2) = 2 I4—2¢(5(i 12M32) ) _O_ (M2) (339)
. 2 ¥
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where, introducing the definition of the Pochhammer symbol,

I'(z+n)
[(z)

the ratios of I' functions combine together yielding

I§_2E+2n(V1, vy, 3, M2) = (]\4-2)24_"‘”123 ctr(na V1, V2, V3) _O_ (M2) (34’1)

(z,n) = =z(z+1)---(z+n-1), (3.40)

with

(]_—6,1+n—V12)(1—6,1+7’L—V13)(6,1/123—2—n)

3.42
(1,1/2—1) (1,1/3—1) (2—26,2+2n—2V123) ( )

Cer(Ny 11, V2, 13) =

In the limit v, = 0 or v3 = 0, the function c¢;. becomes zero, since the Pochhammer

term 1/ (1, v — 1) (similarly for 1/ (1,3 — 1)) becomes

1 _ F(l) ve=0 1 . 1 .
Gum—1 T T o (3.43)

We now turn to the calculation of two-loop diagrams. It is possible to start
from Eq. 3.26 and attempt to evaluate the integrals over the Feynman parameters.
Nevertheless, it is often easier to adopt a different approach and view the two-loop
graph as the composition of two one-loop diagrams. In this way we can perform the

integrations over each one of the loops separately.

3.2.2 The Bow-tie topology

Y4l s Us D4
U1 Uy
P2 2 VsNL_ps

Figure 3.2: The bow-tie topology

A very trivial example is the bow-tie topology of Fig 3.2. The four external legs

carry light-like momenta,

[y
Il
=3
o
Il
3
2oy e
Il
=3
My ¥
fl
o

and the only scale present is

s=(m +P2)2 = (ps +p4)2
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In fact, due to the absence of a common propagator between the two loops, we just

have the multiplication of two disentangled one-loop triangle integrals.
IR eV, Vo v, v, vs, 065 8) = TP (1, g, v;8)IP (va, 13, v5;8)  (3.44)

At D = 4 4 2n — 2¢ we see that the integrals of the topology are related to the
GLASS master integral, by '

Ilf)w—-tie(yh Vy,V3, V4, Vs, Vg, 3) =
Cor(m, 1, 02, o) (m, v, v, )29 (Y ) () (3.45)

where

-OO0-6= (O~ x O~ (3.46)

Once more, Eq. 3.45 can be used to reduce the integrals of the subtopologies to the

GLASS master integral by setting the appropriate powers of the propagators to

Zero.

3.2.3 The TrianA topology

n
Vs Vy

D Va

Ve "
D2
Figure 3.3: The TrianA topology

Unlike the bow-tie topology that we performed the two one-loop integrations
independently for the TrianA topology of Fig. 3.3 we must perform the two inte-

grations one after the other. Specifically, the integrals of the topology can be written

in the form

TrianAD(l/l V9, V3, V4, Vs V6'M2) = / del / deZ L (347)
) ) ) 9 ) ) ’i7TD/2 i?TD/2 A1111+V4A;2A§3A25Age
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with
A = k410,
Ay = (k1 — k) 410,
A3 - k;-i—zO,

As = (k1 +p1)? +10,
As = (k1 —p2)® +10,

where p% :pg =0 and p2 = (pl _|_p2)2 = M?2.
We can first perform the integration over k,, where we get our known one-loop

bubble result:

dPk 1 1
: 1P (v, vs) —— (3.48)

: D CAM2) —
TrianA”~ (11, ve, Vs, V4, U5, Vg; M*) _/i7rD/2 A A 5
1 5 Ag AT

Finally we are left with the integral over k; which belongs to the one-loop Triangle

topology yielding

. D
T&'lanAD(Vl, Vg, V3, V4, Vs, Vg, M2) = HD(Vz, 1/3).[:?(1/1234 — *'2—, Vs, Vg, M2) (349)

The TrianA topology can be reduced to the TRI master integral defined by

—CI (M?) = II*2(1, 1) I 2%(e, 1, 1; M?) (3.50)

Indeed, the general integral of the topology in D = 4 — 2e+ 2n dimensions is written

TrianA* 220 ({1, }; M?) = Cuyiana (0, {1;})(M?)2n+4- 7123650 —CI (M?) (3.51)

where we use the shorthand notation {v;} = v1, va, v3, 14, U5, Vg and

Crviana (7, {ti}) = (—1)"ci(n,0,v2,v3)
1-— 26, 34+ 2n — V12346) (]. - 26, 3+ 2n— 1/12345) (26, /193456 — 4 — 277,)
(1, Vg — 1) (1, Vg — 1) (2 - 36, 4 + 3n — 2’/123456)

.

(3.52)

3.2.4 The TrianB topology

We now study the two-loop triangle topology with a bubble insertion in the propa-

gator next to the massive external leg, which we name TrianB. The general integral
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— P1

14
p > Us 1
3

Vy Vg—D2
Figure 3.4: The TrianB topology

of the topology is defined by

TrianBD(Vl’V2’V3,V4aV5,V6;M2)=/-dDDIjIZ/-dDDk/22 vl 7Y i s v
i imD/2 AT AL AT A% AV
with

A = k}+i0,

Ay = (k1 +p1)® 4140,

Ay = (kl—P2)2+z'0,

Ay = (ky— ke —p2)* +10,

As = (k2 —p2)* +10,

(3.53)

where p} = p; = 0 and p* = (p; + p2)® = M? As before, we can successively

integrate out the two-loop momenta
TrianB® ({v;}; M?) = T (vy, vs) I (11, 12, V3456 D M?).

Finally, the topology is reduced to the SUNSET master integral

(M%) = I, D1, 6 M)

via the relation
TrianB*22"({1;}; M%) = Crxians (n, 1) (M350 (5 (a1?)
with

CryianB (1, Vi) = —(—1)"ctr(n,0,v4,v5)

(3.54)

(3.55)

(3.56)

x (1 — €, 14+4n— 1/12) (1 — 26, 3+ 2n — I/13456) (26, V123456 — 4— 27’L)

(6, V3456 — 2 — ’I'L) (1, Vg — 1) (3 — 36, 3 -+ 3n — 1/123456)

(3.57)
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3.3 Mellin-Barnes representations

With Feynman parameters we solved certain one and two-loop integrals. It turns
out, that as we increase the number of external legs or the number of loops or
the number of off-shell external particles the same task becomes more and more
complicated. We can improve the situation with the introduction of Mellin-Barnes
integrals. In this way, the integrations over the Feynman parameters become trivial.
Instead we now need to calculate integrals over parameters lying on straight lines
parallel to the imaginary axis of the complex plane. Cauchy’s residue theorem is then
employed and it can be used to solve the problem in two different directions; either
to provide hypergeometric representations of the Feynman integral or to separate
(by shifting the contours of integrations) the poles in € from the finite part of the

integral.

3.3.1 Representation of one-loop integrals

The generic n-point one-loop integral with massless propagators in D-dimensional

Minkowski space with loop momentum £ is given by

d°k 1
T2 Q) = [ f (3.58)

where, as indicated in Fig. 3.5, the external momenta p; are all incoming so that

> or,pt =0 and the propagators have the form
4 = (k+@)?+i0 (3.59)
with
¢f =0 and ¢ =g, +pi ;.

The external momentum scales are indicated with {@?}. Due to momentum con-

servation we have
n
o
E p; =0.
=1

Let us now detail the terms of the Feynman representation of the generic one-loop
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ol

P2 P3

P1

Figure 3.5: The generic one-loop graph

diagram (Eq. 3.27). P is now the sum of all Feynman parameters,

=1

which, due to the constraint of the § function, is equal to one and

Q=fP-d
where
f= i &g
i=1
and

i=1
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Thus,
n n n i
i=1 j=1 =1 =1
= > zzi (-0 q)
ij=1
1 n
= 5 Z T,T; (qf —2¢; - g5 +q12')
ij=1
1< 2
= 2 Z z:7; (g — q;)
ij=1
Y Y sy (3.60)
J=2 i<j
with
i1 \?
sy = (g — ¢;)° = ( p‘,@) '

The maximum numbers of terms in Q is
1
Ng = 5" (n—1)

and increases rapidly with the number of propagators n. It is in general hard
to find the appropriate change of variables (if such exists) that disentangles the
integrations over the Feynman parameters. Mellin-Barnes (MB) integrals serve in
order to decompose the dangerous term QP~2% into a product. The main tool will

be the MB representation of a power of a sum as a contour integral,

v 1 e N DTN + )
(Ay + Ay~ = 2—7”/_00 d¢ A5 A V) : (3.61)

where the integration contour (see Fig. 3.6) separates the poles of I'(—¢) from the
poles of I'(V +¢&), and Aj 5 are complex numbers such that |arg(A:) — arg(A2) < 7.

By iteration of the same formula we generally find

| 1 o0
(A +...+ A4, = W/—ioo dé; - '-dfm_lA? .,.Afrrln_-llA;lN—fl-...—gm_l
(LE8) T IV A G+ bnt) g

T(N)
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‘rIm(’U)

Figure 3.6: The contour of integration for Mellin-Barnes integrals separates the poles
coming from I'(... — v) from the poles due to I'(... + v). We can close the contour

either to the right or to the left picking one of the two series of residues.

It is easy to verify the correctness of the above MB representations. Starting from

the r.h.s of Eq. 3.61, we notice that the integrand exhibits poles at
E=n
(due to I'(—¢)) and at
E=—-N-n

(due to T'(N + &)), where n = 0,1,2,... We can decide to close the contour of
integration to the right. In this case, we sum only the first series of residues. We

are now in position to employ Cauchy’s residue theorem
$ dufy) = 2mi Y Res{ )} (3.63)

The only thing we need to know is the residue of the I" functionat —n = 0,-1,-2,....
L(1+y) (-1

(y=1)--(y—n) nl

where we used the basic property of the I' function zI' (z) = I' (1 + z). Summing

Res{T'(z)}z=—n = Res{l (y — n)}y=0 = Res{y }y=0 =

up all the residues we obtain:

N ) o
ﬁ/w @4, V)

n!

_ A-N ZI(N +n)(—A1/A)"
=42 T

(V,n)

= A-"
2 pl

(—A1/A42)", (3.64)
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L1
Y4 P4

Vy Uy

D2 D3
3

Figure 3.7: The one-loop box topology

which is the Taylor expansion of the 1.h.s of Eq. 3.61 around A; = 0. Closing the
contour to the left produces an analogous result equivalent to the Taylor expansion
of the Lh.s of Eq. 3.61 around A, = 0.

We can now use Eq. 3.62 to facilitate the integrations over the Feynman pa-
rameters in Eq 3.27. We shall demonstrate how this works only for the case of the
one-loop box with two adjacent massive external legs‘ (Fig. 3.7) which is difficult to
evaluate from the Feynman parameters representation. The same procedure can be

repeated for any one-loop diagram.

3.3.2 The adjacent-mass box

The generic massless one-loop box integral in D-dimensional Minkowski space with
loop momentum £ is given by

” ow [ dPk 1 65
4(V1)V27V37V47{SZ]})— 7:7TD/2AV1 AZ47 (3 )
1 s

where the propagators are defined in Eq. (3.58) and the external momenta p; are all
incoming so that Z?:l p!' = 0. The external momentum scales are indicated with

{s;;}. Following the terminology of the last section, we have

S12 = P% =0,

si3 = (p1+m)’=s,

su = (p+p+ps) =p; =M,
s3 = p3=0,

s = (p2+ps)’ =t,

2 2
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The Feynman representation of the integral is

I ({w}; {ss}) =

(1% (N — D/2) /1 (ITdziz* ") 6(1 — Bay)
[1T(w:) 0 (21738 + Toxyat + T3 ME + :v4x1M22)N_%
(3.66)
with
{Vi} = {V17V21U37V4}a
{Sij} = {sv i M12’ M22}
and
N=vi+vy+v3+ 1y
Performing the MB decomposition of the denominator, we get
I ({v}; {s}) =
(—]‘)g— /1 v—1
Ty Jo (H dziz, ) 6(1 — Xxy) x
1 +1i00 D
X(z—m.)—g - d§id&dsT(—&)T(—&)I'(=&)I(N - 5 T €123) X
X (5611338)%_1\[—6123 ($2$4t)£3 (.’13311)4M12)El ($4CC1M22)£2 (367)

and interchanging the order of the MB integrals with the integrals over the Feynman

parameters,

ol

IP({vi}i {s4)) = (_11[)r(;,~)_ (2711‘%')3

+ic0 9N &1 N &
/ d61d€ad€aT (6D (~E)D (€N — 2+ £u) (MT> (%) (g) y

—100

1 D D
D_ppys—t15—1 1 D ving—tas-1 _
x/ do1dzadzsdrad(l — Day)g? T T ghpttemlp g a Tl ttinml (3 6g)
0

It is easy to prove the general formula

NE _ T{a) - T(an)
/0 (};Il dz;z; > o(1 - Za:,) = Tt o) (3.69)

i
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by performing the transformation on the integrals of the Lh.s,

. = p,
2 = p(l—p1),
zz3 = p3(1—p2)(1—p1),
Tno1 = Poo1(l=paz) - (1-p1),
Tn = (L=pn-1)(1=pn2)---(1—p1),

The Jacobian is
J=(1=p)" (1= p2)" 2 (1= pn_y).

and we end up with the expression

/ (Hd:c, i 1) 1—23;1 = (/ dp1p®1(1 = py )a2+...a,,_1>
(/ dpap3”( )"”"'“"‘1) < /0 dpap}” 1(1—pn)"‘"‘1> (3.70)

where all integrations can be done using

1
/ dpp~'(1 - p)~t =
0

and yielding the r.h.s of Eq. (3.69). Inserting Eq. 3.69 in Eq. 3.68 we finally obtain

I'(w)T(v)
P(p+v)’

the Mellin-Barnes representation

(~)¥(=5)8" (rr 1
Ii)(l/l;l/%V3aV4;37t7M12aM22) = ; paie} F(Uz)

(2mi)3T(D — N)
+ioco D
< [ derdades T (-€)D (-GN - 5 + m)

XT(vy + &) (vg + 5123)F(§ — Vagq — §13)F(§ — V124 — €23)

M2 & M2 &2 ¢ &3
(%) (%) 6) 61)
s s s
This is a result that we will use in two different ways. First we will explore various
kinematic limits and we will obtain MB representations for some of the subtopolo-

gies. Second, and more important, we will use it as a building block to obtain MB

representations for more complicated two-loop diagrams.
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3.3.3 The box with one leg off-shell and the on-shell box

We wish to set one of the masses (for example M?) to zero in the representation of
Eq. 3.71. We notice that the mass is raised to the integration variable &, therefore
it is necessary to integrate this variable out. The first decision we have to make is
how to close the contour. It turns out that we have to close it to the right, otherwise
we would yield a series representation of the form

S n
IP({n)is,t, M2, ME) ~ 3 a (M) ,
1

n

where the mass is in the denominator and the limit cannot be taken in a straight-
forward manner. Now we should find which of the residues have non-vanishing
contributions at the zero mass limit. We observe that the only way for a residue to
survive is to result in raising the mass to the zero power so that it gets eliminated

before we take the limit.
o] n 0 00 n
M} M? M?
j{:an <——L> 1=(h)<——k) +{§:%LI<——L> — Qg
s s s
n=0 n=1
It is now obvious how to take the vanishing limit of a kinematic variable.

e We first look at the power of the variable and check for which value of the

integration variables it vanishes.
e The limit is the contribution of the residue of the representation at this value.
For example, we can symbolically write,

IP{u};s,t, M2) = 2miRes{IP({vi};s,t, M, M2)}e—o (3.72)

yielding

R o VA G il £ O
I (v, va,va,va 8,1, M7) - = (27i)2T(D — N) <i=1 F(W))

+i00
< [ deadgaD (- (V - 5 + )
D

xT(vy + &) vy + fza)P(g — V934 — fs)“; — V194 — €a3)

() () oy
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In the same manner we can derive the MB representation of the on-shell one-loop

box

> g o CDME9EN (0
Iy (n,va,v3,v458,8) = 2mil'(D — N) <gm>

+i00
x [ L(-9P = T+ 9L+ T4+ V(G — v = §

200

xI‘(g ~ viga— &) (E)E (3.74)

3.3.4 The one-loop triangle with MB

We are now interested in taking the limit where one propagator of the adjacent
two-mass box is missing. For example we can pinch the second propagator, and
set v, = 0. A problem arises from the existence of the factor #/2) which becomes
infinite. This is because one should take the limit of the power of the propagator to
zero together with the appropriate kinematic limit. In our case we have the transition
from the box topology depending on both s and ¢, to the triangle topology with only
s dependence. Therefore, one should take both t—0 and v5—0 in Eq. 3.71, in order

to derive a valid expression for the one-loop triangle with massive external legs,
I£3m(y4,1/1,1/3;3,M12,M22) = TP (11,0, v3,v4; 5,0, M2, M2) (3.75)

with
(DN ()% 1
(27TZ)2F(D - l/134) F(VI)F(I/3)P(V4)
+200 D
< [ deder (6T (€D — 3 + o)
D

xI'(vg + 512)F(§ —V3g — 51)1_‘(5 — 14— &)

()" () o

We can continue and set s—0. Now we have to close the contour to the left, and

If(y1,07y3,1/4;3,0,M12,M22)

the only contributing residue comes from &; = % — 1134 — &o.

(Z1)s(=M)E e T(F - )
2mil(D — vi3q)  T(n)D(v3)T(vy)

D ) 2 ar2
I3 3m(va, v1,v3; 0, M7, M3)

+ico 2\ ¢
< [ aer e~ Z + 90+ 90D — -9 () 370

100
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We should emphasize that from the MB representations it is straightforward to
obtain representations in terms of hypergeometric functions. If we close the contour

to the right in Eq. 3.77, we have to sum up the residues at

§=mn,
§= 5 V3q + 1,
with n = 0,1,2,.... After we form Pochhammer symbols from the ratios of T’

functions and make use of the inversion formula

)= U
(2,—n) a2 (3.78)

so that the summation index in the Pochhammers occurs always with a positive

sign, we obtain the sum of two series

(_1)1/134 (_M;)g_’/134 F(% - 1/13)
F(D — V134)F(I/4)

o I'(5 — 13)l (134 — 2 i v3,n) (1134 — 2,n) M3 "
(1) rd 1+V34—Q,n) nl \ Mj
(

D . 2 2
I3,3m(1/4, I/]_, V3, O, M]. ) M2)

(% — va)T(vas — 2) (M{")——mi (v1,7) (g_u4,n) (_%z>}

F(l/g) M? (1 — v+ 2 n) n! M?

+

which can be identified as hypergeometric functions (see Appendix A), yielding

( )1/134 ( M2)——V134 F(— _ I/13) y
I'(D — v134)T (vs)

D . 2 ar2y
I3,3m(y4)V1aV3;O,M1,M2) =

( — v3g) (1134 — ) D M?
X{ () 2, Fy(v3, 1134 — 3,1“'1/34— E;ﬁ;")
[(§ —va)l(vaa — 3) (M} B D D M}
_ Zq1_ 2.
+ 1"(1/3) M2 o F1(v1, —va + 5 V34 + 2’M22)
(3.79)

For unit powers of propagators at D = 4 — 2¢ the hypergeometric functions simplify,
giving
P1—e)’T(1+e) (—M7)" — (-M3)""

3.80
€2T'(1 — 2¢) M2 — M2 (3.80)

T5326(1,1, 1;0, M2, M2) =
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V1 Vg
b1 D4
Uy
Vg
Vg
D2 D3
%

Figure 3.8: The penta-box topology

Finally, we can set one more scale to zero M? = 0 eliminating the only remaining

MB integral in Eq. 3.77, and retrieve our result of Eq. 3.35,
I£3m(l/4a V1, Vs, 0) 0) M2) = I3D(V3’ Vg, 11, M2) (381)

We now turn our attention to the derivation of MB representations for two-loop

Feynman integrals.

3.3.5 The Penta-box topology

We start from the penta-box topology of Fig. 3.8 which is defined as

PentaBD({V‘}' s,1) :/ dPk, / dPksy 1 (3.82)
| il S inDI? | inDI? AT AV AV AV AL A% AV

with {Vi} =W, V2, Vs, Uy, Vs, Vg, V7, and

A = kP +10,

Ay = (ki +p1)®+10,

A = (ky+p+p2)?+10,

Ay = (k1 +p1+p2+p3)? +10,

As = (ky+p1+p2+ps)®+i0,

Ag = k2410,

A = (ky—k1)* +10. (3.83)

The external momenta are incoming with > p! = 0 and they form the scales

P=ps=pi=p;=0,
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(1 —|—p2)2 =S, (p2 +P3)2 =t, u = (p +;l73)2 = —g—1.

We want to find a MB representation of the r.h.s of Eq 3.82. In general, it is hard
to make a MB decomposition of the P and Q terms in the Feynman representation
of the two-loop integral (see Eq. 3.26). Instead we view the graph as a composition
of one-loop diagrams and use their MB representations as building blocks for the
representation of the total graph. For the pentabox, the integration over k, yields

the triangle function

dPk 1
PentaB”({1;}; 5,t) = / Z-WD/lz AVT AT AT A [£3m(y7aV6aV5§0;A1,A4) (3.84)

which, inserting Eq. 3.77, becomes

(—1)7 F(% — I/56)
27T’i F(D — 1/567) ) ( )F(l/7)

X0
< [ (- — 2+ T+ OT(F v~ )

dPk 1
8 / ) D/12 vaser—2+€ (3'85)
(X Allll—EAng;sALl 2

PentaB”({1;};s,1)

The integral over k; is the one-loop box function with light-like legs, and its MB
representation is given by Eq. 3.74. Substituting in Eq. 3.85 we finally obtain a

double Mellin-Barnes integral representation of the pentabox topology,

PentaB(4):5:0) = (538~ (D =) TGl T TR
X /::o dédal’(—a)T (v, + a)F( f)F(Vsr‘é'Vf)— (g)sliz;lsi 1’ i) _’_(‘122) vsr — )
xF(N—D+a)F(1/4567—§+§+a)F(D+ul —N—-¢—a)
«T(D +v5 — N —a) (g)a (3.86)

with N = vy234567 the sum of the powers of the propagators.

We want to emphasize that by inserting one graph into another we can write down
MB representations for any multi-loop integral. The insertion method economizes in
the number of Mellin-Barnes integrals needed for the decomposition of the Feynman
representations since, using one-loop graphs as building blocks, P is always equal

to unity and the number of terms in the Q’s are typically less than the ones of the
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Figure 3.9: The TrianC topology

D12

total multi-loop graph. The method is easily automatized and it guarantees a fairly
small number of final integrals.

If we had started from Eq. 3.26 a brute force MB decomposition of the two-loop P
and Q terms would produce a big number of MB integrals. To minimize the number
of the final integrals one has to find transformations of the Feynman parameters
that simplify the Feynman representation by practically eliminating the P term,
before the MB decomposition. This is not always easy to do and we have found
cases (e.g. the double-box topology) that the number of final MB integrals obtained
with this method, is bigger than the ones obtained with the insertion method. We
shall later show how to derive a MB representation for a two-loop diagram starting

from the Feynman representation of the total graph, for the case of the cross-triangle

topology.

3.3.6 The TrianC topology

If we set v, = 0,14 = 0 together with ¢ = 0 in Eq. (3.86) then we obtain what we
call the TrianC subtopology of the pentabox graph (see Fig. 3.9). At a first step we
are left with an one-dimensional Mellin-Barnes integral

(—1)PsP=3457D( D + vise7) T(vaaser — D)T(F — vse)
2mi T(32 — N)I(D — vsg7) T'(v3)T(vs)T'(v6)T(vr)

TrianCP”({1;}; s)

~+i00
< [ dePws + )T (ser — 5 + (G ~ w1 — LD + v =€) (387)

—100
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with {v;} = vs, vy, U5, 16, 7. This integral is an application of Barnes’ first lemma,

which states

1 e _ D(a+7)T(a+ 8B +7)T(B +4)
omi ) d€T(a+ LB+ T (v - T - ¢) = NCEYVEEEY)

(3.88)

with the contour of integration separating the residues of the I'(... + £) from the

residues of the I'(... — £). So we finally have

TrlanCD({z/l} s) = (=1)PsPN
T'(N — D)T(& — vs6)T(§ — v30)T'(3 — v7)T(D + v3 — N)['(D + v5 — N)
I(

(3
TD — N)T(D — v347)T(D — vse7)T(v3)T'(v5)L'(vr),

X

(3.89)

with N being the sum of the powers of the propagators. The TrianC topology has
only the SUNSET master integral, according to the relation

TrianC*22%({1;}; 5) = s ¥ epianc(n, {1i}) —@—(s) (3.90)
with

c’I&‘ianC(na{Vi}) =
(1—el4+n—uvs)(l—€1+n—vy) (2, N—4—2n)(—€,2+n—1y) o
(2—3¢,4+3n—N)(vs—1,1)(vs — 1,1) (1 — 1,1)
y (2-2¢,2+2n—N+v3)(1—2¢,3+2n— N + v5) (3.91)
(2—2¢,242n — N + vsg7) (2 — 26,24+ 2n — N + v347)

3.3.7 The Cross-triangle topology

We finally discuss the Mellin-Barnes representation of the cross-triangle topology of

Fig. 3.10 which is defined through

TrianX? ({1;};5,t) = ! / d°k, = (3.92)
s iwD/Z | iwD/2 A A% A AT AL Al
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with {v;} = vy, vs, v3, 14, U5, U, and

A = (ki + ko +py +p2)? + 10,
Ay = (ky+ ko)? +10,

Az = ki +40,
Ay = (ky +p)? +140,
As = k2410,

As = (k2 +p2)? +10,
(3.93)

The external momenta are incoming with . p!" = 0 and they form the scales

ps=ps=0,

P = (o1 +p2)’ =s.
We start from the Feynman representation of the integral (Eq. 3.26). We have
a = T+ Ty + T3+ T4
b = T+ ZTo+Z5+ Tg

c = I1+ T

d* = (z1+ za)pi + z10h

e = zpy + (21 + T6)1)
[ = ms. (3.94)
and
P =ab—c = (21 + 1) (3 + T4 + T5 + T6) + (T3 + 4)(T5 + T6), (3.95)
Q = —ae®—bd®*+2ce-d+ fP
= s [:L’1:I}2(£L’3 + 24+ 25 + IL'G) + Zox4Te + $1$3£B5] . (396)

We instantly get discouraged from attempting a MB decomposition of P (12 terms)

and Q (6 terms) as they stand, since we would end up with 16 integrals in total.




Chapter 3. Representations of Feynman Integrals 65

121 Ve

V9 Vs

Figure 3.10: The cross-triangle topology

Instead we try out some transformation to exploit the existence of the constraint
due to the  function, with the hope of simplifying the Feynman representation of
the graph before the decomposition.

We notice that the sum x3+ z4 + 25 + 26 appears in both P and @ and it would
be nice to eliminate it, if possible. Let us try the transformation

N 1+0:1’

z;

Now a; runs from 0 to oo while the rest of the a; run from 0 to 1. What is more,

the ¢ function becomes

(5(1—;371‘):5(1_50,1 [1—a2—...—a6]> =(1+a)f(l—az—...—ap)

Applying the transformation, various factors and the Jacobian conspire together and
practically recast the representation in the same form, apart from the § function

missing a; in its argument and q; itself running from 0 to co. So we have

I(N - D) [* _
; Dif,1.¢) — (_1\PD-N2 Y — V) -1
TrianX” ({v;}; s) (—1)"s e J, daia]

3D

1 6
8 / <H dwiwiﬁ_l> [(a1 + z2) (23 + T4 + 5 + 76) + (23 + za) (w5 + 76)]" 2
0 \i=2

6
X [alxg(azg + T4+ T5+ CE(;) + XoZ4Zg + 0,1$31L'5]D_N (5(1 — Z IE,’) (397)
1=2

where, for convenience, we relabeled with z; the variables that range from 0 to 1. Of

course, we can repeat the same transformation as many times as we wish, changing

the boundaries of some variables and the form of the constraint. An obvious choice
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is now the variable x4, giving

; NN -D) [ v1-1 _va—
TrianX?({;};s) = (-1)Ps? NW/O daydagay akr !

1 6
X / (H dmi:c;’i_1> [a1 + ag + (x5 + z4)(z5 + xs)]N_%
0 \i=3

6

X [a1ag + agszs + ayzszs]® N (1 — Z ;) (3.98)
i=3

We can now decompose the QP term introducing a two-fold Mellin-Barnes inte-

gral. Then, the integrations over a; 2 can be done easily using

= 4t T(A)I(B)
/0 W+ w)* s~ T(4+B) (3.99)

and, furthermore, we can integrate out the remaining Feynman parameters with the

change of variables

T3 = Ay
Ty = (1 — )\)’y
s = u(l-y)

ze = (1-p)(1-y)
At the end we obtain the two dimensional MB representation

ianX”({n;};5) = (=)M(=8)P"I(§ - vsg)T(3 —vss) (77 L 1
TrianX"({v;};s) = T'(32 — N)T(D — vsa5) (I:II P(VJ) (2mi)?

2

+i00
X / dudvl(—v)I'(—u)[(vs + v)[(vs + v)T(vg + w)T'(ve + u)

100

I'(D+vy— N —v)[(D+vy =N —uI'(N — D+ u+v)[(vsass — 2+ u+v)

X
F(vsq +u+v)l(vs6 + u + v)

(3.100)

3.4 Laurent expansion in ¢ of MB representations

It is interesting to obtain an analytic expansion in € for the Feynman integrals from
their MB representations. This method has been very successful in calculating very

complicated integrals, like the double-box [21] and the cross-box [22] with light-like
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legs. We will work on the MB representation of the cross-triangle (see Eq. 3.100)
with unit powers of propagators at D = 4 — 2¢ dimensions. The integral in question,

symbolically represented as

%g) = TrianX*7%(1,1,1,1,1,1;s) (3.101)

turns out to be a master integral of the cross-triangle topology. It has also been

calculated from an expansion of its Feynman representation in Ref. [35, 36], but we
recalculate it here as it is a very good example to illustrate the strength of Mellin-
Barnes representations in isolating the divergences. From Eq. (3.100), we obtain the

following MB representation

B(—s)2ED(1 — €)?
‘<<‘>‘) = T =T —3) (3.102)

where, isolating a trivial factor, we can concentrate on the two-fold MB integral

Ale) = ﬁ /::o dvduFngFgF;Ig‘sFngFg, (3.103)
with
N, = I'(-v)
Iy = I(—w)
I'; = I(—1-2¢—v)
'y = T(-1-2e—u)
I's = I'24+2+u+v)
I'e = I'2+e+u+v)
'y = I'(1+v)
Iy = [(1+u)
Iy = T'2+u+v). (3.104)

We intend to calculate this integral using Cauchy’s theorem of residues. It is
useful to distinguish between the poles produced by T" functions of the type I'(.. . —v)
and the ones by I'(... + v). The first series of poles spreads up to +oo in the
positive axis and, following Smirnov’s convention, we call them Infra-Red poles

(IR). Equivalently we shall refer to the second type of poles as Ultra-Violet (UV).
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It is important that the contour of integration should be such that it separates
the IR from the UV poles and, in addition, there should be no pole sitting on it.
For the construction of the MB representations of Feynman integrals with arbitrary
powers of propagators and dimension (see Eq. 3.61), we require that all I" functions
have positive real parts and therefore the integral has a finite value. It is easy to
satisfy the above condition by tuning the values of the arbitrary parameters (powers
of propagators and dimension), since we can practically regulate all the I functions
with them. At least for the integrals we have studied this was always possible. We
would like to retain well defined integrals when taking the limits of the powers of
propagators being integers, or the dimension equal to four.

Let us now focus on the double MB integral of Eq. 3.103. This is well defined
if, for example, we choose the contours to be straight lines parallel to the imaginary
axis with Re(u) = Re(v) = —0.04 and a value for € = —0.7, then the integrals are
well defined. It is also important to notice that there is no contour choice that makes
the integral finite at ¢ = 0. Looking, for example at the arguments of I'; and I';

with € = 0, we get the conflicting constraints —1 —v > 0 and 1+ v > 0.

3.4.1 Isolation of the poles

Our purpose is to obtain an analytic expression for .A(e) that can be expanded
around ¢ = 0, after we have isolated the singularities. We perform the two inte-
grations one at a time, starting with v, and we choose to close the contour to the
right. It is necessary to analytically continue the value of € from our initial choice
e = —0.7 to e = 0. We slowly increase € taking it to zero, and at the same time we
observe the behavior of the poles of the I' functions. The position of the poles of
the I" functions which do not depend on e does not change so we don’t worry about

them. The remaining I" functions have residues at

Iy : v=—1—2€¢, —2¢ 1—2,... (3.105)
[s: v = —2—2¢ — Re(u), —3 — 2¢ — Re(u), ... (3.106)
Te: v=—2—¢€—Re(u), -3—€—Re(u),... (3.107)

As we increase € the poles of I'; ¢ move away from the contour of integration,

remaining in the UV region. On the contrary, the poles of I's move towards the
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Figure 3.11: When a pole crosses the contour ¢; (left) it produces a singular residue

which is isolated by deforming to the contour ¢, (center). The contour can be

restored after the dangerous residue moves further away with increasing e (right)

contour. Actually, when € = —%‘3(") = —0.48 the first residue sits on the contour
of integration making the integral infinite and producing a discontinuity in passing
to larger values of €.

The residue theorem will help us to do this transition by deforming the contour
of integration so that the singular term is excluded and expressed in terms of a single
residue. Indeed, just before the pole crosses the contour we can rewrite the original
integral as

/ dv f(v) = 2miRes(vg(€)) +/ dv f(v) (3.108)
a ez
where c¢; is the original contour and c; is the deformed contour which now excludes
the residue at v = vp(€) (see Fig. 3.11). The pole is now UV with respect to the
new deformed contour, which can be finally restored to its original shape as the
pole moves away by continuing to increase e. Of course, we need to repeat the same
procedure for every pole crossing the contour until we arrive at ¢ = 0. When we
finish isolating the residues that give rise to singularities for all integration variables,
we can make a series expansion around € = 0 at the integrands of the produced
integrals. It has to be noted that when a crossing happens from the left, we should
subtract the residue contribution instead of adding it in Eq. 3.108.
Returning to A(e), as we said the first residue to cross the contour for the v

integration is the first IR residue of I's. According to Eq. 3.108,

A(e) = As(e) + Ao(e) (3.109)
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where on the r.h.s Ajz is the residue term

Ag(e) = 2= 2225 (142 g (3.110)

with

(3.111)

I(e) = L /+i°° D(—u)T(=1 -2 —w)T(1 — e+ w)T'(1 + u)®
278 J —ico I'(1—2e+u)?

and Ay is the original integral free of the dangerous singularity in the v integration.

The subscript 3 denotes that the first residue of I'; is taken and the subscript 0

denotes that the integrand for the first integration is unchanged but now € can take

the value O (for this integration only). There is no other pole crossing the contour for

€ up to zero, so we can continue by resolving the singularities for the v integration.

Once again the pole crossing the contour is at u = —1 — 2e. We therefore get,
A(e) = Ass(€) + Aso(€) + Aos(€) + Aoo(€) (3.112)
where because, the starting integral is symmetric in v and v,

Aso(€) = Ags(e) = A3(6),e—)0

where the integral in Eq. 3.111 is now meant to be defined for values of € close to

zero. Similarly,

Aoo(€) = A(€)|—s0

is now the original integral free of the dangerous residues in both integration vari-
ables and we can make an expansion around € = 0. The difference between A(e) of
Eq. 3.103 and Ag(e) is that while for the first we have insisted that the UV residues
should be separated by the contour from the IR (forcing € to be away from zero),
in the latter this condition is not valid. Therefore the ¢ = 0 limit is allowed and
the initially UV residues at v = —1 — 2¢ and u = —1 — 2¢ lie on the left half-planes
defined by the complex u and v integration contours. Inevitably, some I' functions
take arguments with negative real parts when € = 0, but since the real parts of the
complex integration variables u,v are fixed to non-integer values, the I' functions
are well defined yielding a finite result.

Finally, the deepest divergence is given by the double residue term
D(1 — 2€)°T(1 + 2€)°T'(1 — 3¢)

6e4l(1 — 4e)?

Ass(€) = (3.113)
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3.4.2 Evaluating the finite integrals

As we already said, the integrals I(e) and Agg(e) are well defined at € = 0, so we can
make an expansion around this point. I is multiplied by 1/e? therefore it needs to
be expanded through to O(e?) and for Agp we just need the first term of the series.
In simplifying the I'" functions and its derivatives (¢ functions) after the expansion

of the integrands it is very convenient to use the formula

I'(l-2z)(z)=g(z) = Y (3.114)
The v function is defined through
_ dlogI'(z)
Ylz) = ——— (3.115)
and it is straightforward to prove that
n—1 1
Y(z + n) :w(a:)-l—iz:: o (3.116)
and
Y(1 —z) — Y(z) = 7cot(nz). (3.117)

With the above identities we can write the terms of the expansion of the integrals
in € at each order in the form
+ico
J(m, f) = /_ dufu)gu)” (3.118)
where m is a positive integer and g is defined through Eq. 3.114. f is an analytic
function with no poles lying on the half-plane of the positive real axis. For the
separation of the poles we decided to close both contours to the right, and we stick

to that choice until the end of the evaluation of the integrals. It is then easy to
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prove the identities

J(1,f) = > (-1)"f(n)

J2,f) = > 0f(n)

16.0) = 53[0 oy

J@4,f) = %io [6° + 41%0] f(n)

J6, f) = %2[@4“%23%9774] £(n)(=1)"

J(6,f) = %i [0° + 207°8% + 64n0)] f(n) (3.119)

where 9™ is the m-th derivative operator acting on the function f and evaluated at
the point n. The produced sums are typically harmonic sums and there are several
related studies in the literature [37, 38, 39, 40, 41]. They are often expressed in

terms of generalized harmonic polylogarithms,

(=)=t 1 Jog(z)" tlog(l — z2)P
_ < .
Snp(z) (= Dip] /0 dz . z<1, (3.120)

where n, p are positive integers. We retrieve the definition of the common polylog-

arithms in the special case
Li,(z) = Sp-11(2). (3.121)

z is typically a ratio of kinematic variables. In one scale problems, as in our case,

x = 1 gives rise to the generation of the Riemann zeta functions
o0
1
= — Re(p) > 1. 3.122
6=2 5 (») (3.122)

Finally, we quote the result of our evaluation, which agrees with the known result

of Ref. [36],

%49) =ck x {;4 — i—gz — %{3 — 20644} + O(e) (3.123)

where we have factorized the commonly found combination of I" functions in loop-

integral calculations

T(1—¢€)?T(1+e¢)
I'(1 — 2¢)

(3.124)

Cr =
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3.5 Summary

In this chapter we discussed the Schwinger and Feynman representations of Feynman
integrals. The first provided an algorithm to express tensor integrals in terms of
scalar integrals in higher dimension and extra powers of propagators. With the
second we managed to solve simple one and two-loop integrals, limiting ourselves in
the cases with a single scale dependence and the results were analytic expressions
in terms of Gamma functions.

In order to obtain information on more difficult integrals we used the Mellin-
Barnes representation. We obtained representations of one-loop diagrams in a gen-
eral manner, and we showed how to find similar representations for multi-loop dia-
grams using the insertion method. We were able to express the integrals as a sum
of residues making manifest their hypergeometric structure. In addition, we were
able to isolate the infrared and ultraviolet singularities by identifying the poles that
would cross the contours of integration when an analytic continuation of € to zero
was performed.

We can now see a strategy to be formed for the calculation of the one and two-

loop integrals of our interest.

e Rewrite the tensor integrals in terms of scalar integrals from their Schwinger

parametric representation.

e Reduce the number of scalar integrals to a set of linearly independent “master”
integrals. This can be done trivially for some topologies (TrianA, TrianB,
TrianC...), that can be expressed in terms of I' functions. For the rest we
resort to more sophisticated methods based on Integration By Parts and they

will be described in Chapter 5.

e Find the analytic expansions in € of the master integrals. This will be done
either by direct evaluation of the Feynman representation in terms of I' func-
tions or by their hypergeometric series representation or, for the most difficult

cases, by an e expansion of the Mellin-Barnes representation.

Before we continue to the reduction of the scalar integrals to master integrals we shall
explore the Negative Dimension Integration Method which provides useful insight

for the representation of Feynman integrals in terms of hypergeometric functions.



Chapter 4

Negative Dimensions Integration

Method

In Chapter 3, we found an algorithm to relate tensor integrals to scalar integrals with
extra-powers of propagators and higher dimension. Therefore we can concentrate
on the problem of evaluating the scalar integrals only.

It is possible to represent Feynman integrals in terms of hypergeometric func-
tions. This has several advantages. First, these hypergeometric functions often have
integral representations themselves, in which an expansion in € can be made, yielding
expressions in logarithms, dilogarithms etc.. Second, because the series is conver-
gent and well behaved in a particular region of phase space, it can be numerically
evaluated [42, 43]. In fact, each hypergeometric representation immediately allows
an asymptotic expansion of the integral in terms of ratios of momentum and mass
scales. Third, through analytic continuation formulae, the hypergeometric functions
valid in one kinematic domain can be re-expressed in a different kinematic region.

In the previous chapter we showed how to obtain hypergeometric series rep-
resentations from the MB representations. An alternative technique which makes
immediate connection to the hypergeometric structure of Feynman integrals is the
Negative Dimension Integration Method (NDIM). It was originally developed by
Halliday and Ricotta [44, 45] in 1987 who suggested that it would be useful to calcu-
late the loop integral considering D as a negative number. Because loop integrals are

analytic in the number of dimensions D (and also in the powers of the propagators)

74
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they proposed to calculate the integral in negative dimensions and return to positive
dimensions, and specifically D = 4 — 2¢, after the integrations have been performed.
As we will discuss more fully later on, integration over the loop momentum and/or
the parameters introduced to do the loop integration is replaced with infinite series,
which again can be identified as generalised hypergeometric functions. Recently this
idea has been picked up again by Suzuki and Schmidt who have evaluated a number
of one-loop, two-loop and three-loop integrals [46, 47, 48, 49, 50, 51, 52, 53, 54].

In this chapter we wish to explore the negative-dimension approach (NDIM)
further. In particular we focus on one-loop integrals with general powers of the
propagators and arbitrary dimension D. There are several reasons for doing this.
First, it allows connection with the general tensor-reduction program of the previous
chapter. Second, we can imagine inserting the one-loop results into a two-loop
integral by closing up external legs. This is trivial for most bubble integrals, but
more complicated for vertex and box graphs. Broadhurst [55] has shown that this is
possible for the non-trivial two-loop self-energy graph. Third, it actually simplifies
the calculation. As we will show, by keeping the parameters general, it is easier to
identify the regions of convergence of the hypergeometric series and therefore which
hypergeometric functions to group together. For specific values of the parameters,
the hypergeometric functions often collapse to simpler functions.

We demonstrate the method using as example the one-loop box with massless
propagators and at most one external leg off-shell. With NDIM we derive the ex-
pressions for the integrals in different kinematic regions in terms of hypergeometric
functions of one or two variables for the on-shell and off-shell case respectively. In
both cases, D is arbitrary and the propagators are raised to arbitrary powers. As
an application of the general formulae, in Sec. 4.2 we consider a particular class of
two-loop box integrals which are one-loop box graphs with bubble insertions on one
of the legs.

We give general formulae for the general scalar integral of the topology with
light-like legs in terms of hypergeometric functions. Finally, we calculate the e-
expansion of the master integral of the topology in two kinematic regions, the one

where both independent Mandelstam variables are negative and the one where they

have opposite sign.
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4.1 The general massless one-loop box integral

The generic massless one-loop box (Fig. 3.7) integral in D-dimensional Minkowski
space with loop-momentum & is given by Eq. 3.65. In Section 3.3.2 we considered

the integral with two light-like and two adjacent massive external legs
p% :pg =0, pg :Mlz’ pi:Mg'

To avoid complications which obscure the explanation of the basic principles of the

method due to the presence of many scales, we study the limit
M; =0, M;=M.

Therefore the set of scales present in our problem are

{QF} = {s,t, M*} (4.1)
where s = (p; + 102)2 and t = (ps + pg)2 are the usual Mandelstam variables. In the
physical region t < 0 and s > 0. For standard integrals, the powers v; to which
each propagator is raised are usually unity. However, we wish to leave the powers
as general as possible. Later on we will use these general expressions to derive some

results for two-loop box integrals with one-loop insertions on the propagators.

We can rewrite Eq. (3.65) in the Schwinger parameters (z;) representation

IP (V1,1/2,V3,I/4,{Q } /Da:/T/z exp (le ) (4.2)

with
N ! vi—1
/Dw = (-1) (]1 = Ty ) , (4.3)
and
N=uv;+vy+ 13+ vy (4.4)
After integrating out the loop-momentum k, we obtain our known result
12 (1,0, {Q2Y) = [ Dy exp(@/P), (45)
with
P =z +z2+ 23+ T4, (4.6)
and

Q = 1123 8 + Toxat + 124 M. (4.7)
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4.1.1 The negative-dimension approach

To evaluate the integral further, we treat the number of dimensions D as a negative
integer. This is valid because the loop integral is an analytic function of D. Let
us start from Egs. (4.2) and (4.5) and make a series expansion of the exponentials.

Eq. (4.2) becomes

had de ! .’II,;A,; i
I4D (1/1,1/2,1/3,1/4;{Q?}) = /Dw Z /i?TD/2H( Tl') (48)

n1,... ,Ng=0 =1

where the n; are positive integers. Likewise, we expand the exponential in Eq. (4.5)

ot 'n/P—n—%
I (1, v2, v3,v4,{Q7}) :/sz Q—n!——, (4.9)

n=0
We are again in the familiar situation that we need to decompose the P and Q
terms. In the last chapter we introduced Mellin-Barnes integrals to achieve the
decomposition. Here, we do a multinomial expansion. In general, if we have a sum

of terms raised to a power we can write

00

(1 +To+ ...+ zpn)" = Z

n1,Mn2,...nm=0

n!

n1 ~.N2 Nm
— 225 Ty Ot 4.10
ming!...n,! L2 m vhonm (410)

where the presence of the Kronecker delta fixes the sum of the summation indices
to the power n. To make the multinomial expansions of @ and P we introduce the

integers Iy, ls, I3, and m1, ma, m3, my, so that

2 (z1238)" (mozat)?? (T1TaMP)R
Q" = (h+ 1+ 13)!
l1,.§=0 ;! N I5!
S T ,
P = > m1!"'m4!(m1+"'+m4)'

my,... ,mg=0

with the constraints

- D
Zli =n, Zmi =-n-. (4.11)
' i=1

By adding together the two equations in (4.11), we obtain an additional constraint,

that is

D
ll+lg+l3+m1+m2+m3+m4=—§, (4.12)



Chapter 4. Negative Dimensions Integration Method 78

which ensures that the powers of @ and P match up correctly. The name of the
method as integration in Negative Dimensions is now justified, since for Eq. 4.12 to
be valid, the dimension D must be a negative even number.

Equating Eqgs: (4.8) and (4.9), we have

D
I; (1/1,1/2,1/3,1/4,3 t, M

N iL'lAl (:L'2A2)n2 ($3A3)n3 (.’II4A4)n4
N /D:c Z /’L7TD/2 ny ngy! ns! ng!

M1y 7"4—0
I 23 nis m m
t M R
= /Dm (21239) " (2224t)” (2124 M7) " 23 T4 X (my + mg + m3 + my)!,
m =0 ll'lg'l,g' my! m4'
1:--~ 1343
(4.13)

If more than one leg is off shell, then there will be additional terms in Q leading to
more summation variables. Similarly, if we take the M2 — 0 limit, this is the same
as fixing 3 = 0 in Eq. (4.13).

The z; are independent variables so that for the equality (4.13) to hold, the
integrands themselves must be equal. Therefore, by selecting the coefficient of the

powers of z;"*, where v; = —n;, on both sides of the equality we find

D . 2
I, (v1,v0,v3, 145 8,8, M)

> P(1+m1+m2+m3+m4 lll 2\ I3
= 2 (M=)~
" m F(1+11)F(1+l2 1+l3 HF 1‘*")77,Z ( )
e
(4.14)
subject to the system of constraints
l1 + l3 +m; = —U,
la+my = —up,
ll +msg = —Us, (415)
lot+lz+my = —uy,
l1+l2+l3+m1+m2+m3+m4 = —D/2

There are seven summation variables and five constraints so that two variables will

be unconstrained. There are fifteen solutions of the system of constraints. Each one
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is inserted into the template solution (4.14). For example, solving with respect to

the indices {l,l;}, we find

my = ve+vst+uvs+ly,—D/2,
my = —vy —ly,
mg = —v3—l,
my = n+uv+uvs+l—D/2

l3 = —ll—l2+D/2—I/1—l/2—l/3—‘l/4,

which is then applied to (4.14). T functions that depend on the unconstrained
variables I; and [, are converted into Pochhammer symbols

I'(z+n)

(z,n) = Ol (4.16)

because they are the most suitable way to write generalized hypergeometric func-

tions. Denoting this solution as I¥+#2} and using the shorthand notation
Vij = Vi + U, Vijkk = Vi + Vj + U, (4.17)

we have
I{llyl2} _ (Mz) %—N T (]. - l/l) P (1 — 1/4) T (]. + N — D)
F(1+2-N)T(l4+vas—2)T (1 + 23— 2)
y i (N =2l +b) (vs,h) (2, 1) (s/M?)" (t/M*)"
0 (1 + V23 — %ll) (1+ vo3q — 2 L) ! LI

bl ’l2=

(4.18)

Each solution of the system of constraints, once inserted into the template of

Eq. (4.14), has the same generic form

PRE x SUM, (4.19)

where we have introduced the following notation:

- SUM is the sum over the terms that contain unconstrained indices of summa-
tion. As in the example solution (4.18), instead of dealing with I' functions,
we form Pochhammer symbols. In most cases, SUM can be directly identified

as a generalized hypergeometric function, in the region of convergence of the
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series. In general, these hypergeometric functions are analytic and may be
evaluated at positive values of D and v;. In our example, the SUM term, can

be immediately identified as Appell’s F; function (see Eq. (A.4))

- The prefactor PRE contains all the rest of the terms that are not included in
SUM. More precisely, it is a product of external scales raised to fixed powers,
and I' functions that do not depend on the summation variables. These may
be produced either directly from the particular solution of the system, or in
the generation of the Pochhammer symbols. For physical loop integrals with
positive powers of propagators, we need to evaluate PRE at positive values of
the v; and positive D. A problem is immediately obvious: the numerator of
PRE contains I'(1 — 1), so that, for positive integer values v;, it appears that
we need to evaluate the I' functions for negative arguments, where they are
singular. However, PRE is an analytic function and these singularities cancel

between the numerator and denominator.

In fact, it can be easily shown that, starting from the identity
F(z+1)=2T(2), (4.20)

we have

T (2) ZTn+l1-2)

e-m N T (421)

where z is a real (or complex) number, and n is a positive integer.

In the product of " functions in the numerator and denominator of the PRE
term, we can make an iterated use of the identity (4.21), provided we treat
D/2 as an integer, as we have already done in the multinomial expansion. We
can then rewrite the I’-function prefactor in a more amenable way by flipping
all of the I" functions from numerator to denominator and vice versa

n+1

HFEZ; (—1) T a)HM—a; (4.22)

where the index 7 runs over all I" functions in the numerator and denominator

of PRE.
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Applying (4.22) to (4.18) we find that

o_NT(N—2)T (2 —v123) T (T — vasa)
(1)) (vg) T(D - N)

D D D s t
X F2 (N — E, V3, Vg, 1+ V193 — E, 1+ Vo34 — '5, W’ W) . (423)

iz} — (_1)% (M2)

Similarly, the other fourteen solutions are given by:

D D
2 §2

Iim1,m4} — (_1) —u123t%—l/234 (Mz)ws—%

T (v12s — B) T (vesa— ) T(F —v12) T (3 — v34) T (3 — v25)
T ()T ()T (1) T (va) T (D — N)

S

« B(2 D D 142 14 2 g, S L
2\ 3 V23,2 1/12,2 V34, 9 1235 2 BH 72 12 )0

o T (V23— 3) T (5 — v139) T (F — v34)
T ()T (va) T (D = N)

I = ()T g ()

D D D s t
X P V1,V3,5—V34,1+1/123—5,1‘*‘5—1/234,@,@ )
[ (vi2s = 2) T (5 —112) T (3 — vane)

Iim,lz} = (-1) T'(v))T (1) T (D - N)

D D D s t
x Fy V4’E_V12’V2’1+5—V123’1+V234_5’W’M5 ,

va—ve D (V123 — 2) T (va —12) T (2 — 113) T (2 — v4)

I{m27m4} — _ D 2—V123t—l/2 M2
4 (=1)% s (27) T ()T (v3) L () T (D - N)
I D D 1+ D , s M?
X 2 | Vg — Vo, 5 12, V2, 2 34, 9 123 3m )0

D_yge I (risa — 2)T (2 —vras) T (2 - V34)

{m2,a} _ 3 4w 2
Lt = (-1)7 e (M) T ()T (va) T (D - N)

< H D 14 D s M?
- 5 Vo, = —V 1% VI B
2 | Y134 B V3, V2, 5 34, 1237 50 312 :
D D D
Iim“’l:’} _ (_l)g .s%_”m‘t""*r (1/123 - -5) Fvg—uy)T (7 — 1/12) r (7 — l/23)

I'(t)T(v2) T (v3) T (D — N)

D D D s M?
x S V4,E—V23,——V12,1—V2+V4,1+——V123,——,— )

2 2 t ¢
Lo — (2 D T ) T(2 )
P(I/Q)F(V4)P(D—N)
D D D s M?
x S (N"E,Vl,V3,1+V134—5,1+V123—3,—2,7);
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L (= F)T(F —vi2) T (5 — vaa)
()T (vy) T(D - N)

D D D M? M?
X Fyl|lvo,vs, — —vas,— —vig, 1 + — —vig, —, — |,

D
2

D
Iimz,ms} = (=1)7 st (Mz)y—m

2 2 2 t s

P(V134_§)F(V4_V2)F(§_V34)F(€—1/14)

I{mg,l3} — _1 % S%"V134t—ll2
4 (-1) ') T (13) T (vy) (D —N)
s D V y D - D M? s
— — — — Vg4, U Ma——7,—>7
2 134 2,4 2)2 34, V2, 14 27 ¢ ¢ )’
Iiml,m:%} _ ]}mz’m“} (s t, 11 & vy, 12 & 13),
Iime"h} = Iimz’ll} (s t, vy &g, 1y & 13),
]imhh} = [}”“‘”3} (s t, 11 v, 1y & 13),
B = [ (st o, vy o 1),
Iims,ls} _ Iimz,la} (S Gtov U, vy o V3). (424)

The definitions of the functions F3, Hy, Sy and S are given in Sec. A.1 together

with a table of their regions of convergence.

4.1.2 Classification of the groups of solutions from their re-
gion of convergence

We now have to classify the zoo of the solutions of the system of constraints, and
more important, we need to answer the practical question of which of them together
consist a valid representation of the integral. Within NDIM the answer to this is very
simple. One has to add together the solutions that converge in the same kinematic
region. For the one-loop box with one leg off-shell, we divide the kinematic regions

up as shown in Fig. 4.1:
region I : M? > |s| + ¢,
region II(a) :  [t| > M? + |s| and M? > |s],
region ITI(b) :  |¢t| > M2+ [s| and |s]| > M?,
region III(a) : |s| > M? + |t| and M? > |¢],
(

region ITI(b) : |s| > M?+ |t| and |t] > M?,
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11i(b)

Figure 4.1: The kinematic regions for the one-loop box with one off-shell leg. The
solid line shows the phase-space boundary |s|+|t| = M?, together with the reflections
|s| = |t| + M? and |t| = |s| + M?. The reflections are relevant for the convergence
properties of the hypergeometric functions which only involve the absolute values of

ratios of the scales. The dashed lines show the boundaries |s| = M? and [t| = M.
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and, applying the convergence criteria of Table A.1 to each of the fifteen solutions,

we find that they are distributed as follows:

in region I

IP (v, v, vs, va; 8,8, M?) = Ifh g pmomad y pfmatal y pfmitid (g 95)

in region II(a)

IP vy, vayvs, vy s, 6, MP) = 1) g ) g pfmeh o pb), (4.96)

in region II(b)
IP (v, v, vs,vai 5,1, M2) = ey pimated oy pimets y pfuisd (4 97)

in region II1(a)

IP (w1, va,vs, vay s, M2) = Iy gfmeta g pfmuish y pfieisd (4 08)

in region III(b)
IP (v, v0, s, va; 8,8, M2) = Ifmme) g pfmeteh g plmalsl 4 pllefed (g 9g)

. . . 1
Some solutions are convergent in more than one region. For example, I}m“ s} and

1%} are convergent in both regions II(a) and II(b) while I{™*™ is convergent in

both II(b) and I1I(b). We also see that in region II(a), two of the solutions (I}mz’m“}

and I}m“’la}) contain dangerous I' functions when v, = v4. These divergences in-
dicate the region of a logarithmic analytic continuation and can be regulated by
letting vy = v4 + §, canceling the divergence, and then setting § — 0. Similarly, the
two divergent contributions in region II(b) (I imz’lS} and I, im“’h} ) must be combined
in this way.

The above results agree with these obtained starting from the Mellin-Barnes
representation (3.73). Closing the contours either to the left or to the right and
summing up the enclosed residues, we obtain the same hypergeometric series repre-

sentations as with NDIM.

4.1.3 Analytic Continuations-Limiting cases

We can perform several checks of these results.
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- Analytic continuation
The solutions in the different regions are related by analytic continuations of
the hypergeometric functions. We can verify that starting from one region and
applying the analytic continuations of the hypergeometric functions we find

the solutions in the other kinematic regions

- The v; = 0 limit
By pinching out one or more of the propagators (which corresponds to setting
v; = 0) we obtain results for triangle or bubble integrals. For example, if we
set v, = v3 = 0, then any term containing 1/I'(v5) or 1/T'(v3) is eliminated.
In fact, only five solutions survive, one in each group. In each case, the hy-
pergeometric function collapses to unity and we obtain the expected result for
the massless-bubble integral with off-shellness M? in each of the five kinematic

regions thereby spanning the whole of phase space
L v
.[2D (V1,1/4;M2) = (]\4'2)7 ! 4l-.[D(I/l,l/4), (430)
where the IT? functon was defined in Eq. 3.37

- The massless box: If (V1 V2, V3, 145 8, t)

The limit M2 — 0 can be taken whenever the kinematic region allows it, that
is to say, in regions II(b) and III(b), where M? < |s|, M? < |t|. These two

regions are related by the symmetry (s <> t, v; ¢ vy, 12 <> v3), so we focus
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only on region II(b). Only three of the solutions survive, and we have:

if |s| < |¢]

+ I}m4)l3}

+ Iimz,la}
M?2=0

M2=0
I(N-3)T (5~ 3 T (5 — viz)

D ) {l1,l5
14 (VlaV2;V3aV4aS)t) = I4 }

M?2=0

D D
= (=1)z tz N
=) )T (o) T (D= V)
D D D s
X 3k (Vl,V3,N -5 1 +- 134 = o 1+ w193 — o5 —¥>
+ (—1)% 3%‘"123t—V4F (V123 — %) r (V2 B V4) r (% B V23) r (% — V12)

L) ()T (vs) T (D — N)

D D D s
x 3k 1/4,5—1/12,—2——1/23,1—}—1/4—1/2,1—{—5—1/123,—2

r (V134 — %) r (1/4 — 1/2) r (% — 1/14) r (% — 1/34)
F (1/1) P (1/3) F (1/4) F (D — N)

D D
2 §2

_V134t_‘/2

+ (-1)= s

D D D
X 3F2 (Vg, 5 — V14, —2— - V34, 1-— V4 + Vo, 1+ —2— — V134, —%) (431)

Similarly, taking the same M? — 0 limit for solution (4.29) in region III(b),
we find the result valid when |s| > |¢|, which is also obtained by applying the
exchanges (s < t, 1) ¢ vy, 1y < v3) to Eq. (4.31). Note that we could have
obtained the same result by returning to the template solution (4.14) with
the system of constraints (4.15) and, after setting I3 = 0, solved the on-shell
box directly. In this case, there are two external scales, s and ¢, so that there
will be six summation variables (m;,... ,m4 and Iy, l) and five constraints
yielding six solutions, three of which converge when |s| < ||, again yielding
Eq. (4.31).

As before, there are apparent divergences in the I' functions when v, = v, that
must be regulated. This is straightforwardly achieved for particular values of

the parameters by setting v, = v4 + ¢ and making a Taylor expansion.

- The v; = 1 limit: IP(1,1,1,1; s,t, M?)

If we set the propagator power equal to one, then all the groups (4.25)-(4.29)
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%]
D1 D4
Vy
1) Vg <> Vs
Vy
D2 D3
U3

Figure 4.2: A one-loop insertion into a one-loop box diagram.

give the correct answer

2T2(1-€e)T(1+¢) 1 u
IP(1,1,1,1;s,¢, M?) = = (=) F (1, —€,1—¢,—=
+ (L1118 M) €2 ['(1-2¢) st(t) 21(’ &l-e s)
M2

+(_S)—E2F1 (1,_6a 1- 6,—%) - (_Mz)—€2F1 (17_6;1 —€ — Stu>:|,

(4.32)

where u is defined by s+t+u = M? and € = (4—D)/2. To obtain this result we
have returned to the series representation of the hypergeometric function and
manipulated the series by repeatedly summing with respect to one summation
index to obtain an 9 F; function, applied identities to change the arguments
of the oF; and rewritten the oF; as a series. Then we sum with respect to
the other index, and repeat if necessary. Eventually all of the hypergeometric

functions of two variables can be reduced to o F; functions.

4.2 Application to two-loop box graphs: The Abox

topology

The general results for one-loop box graphs presented in the previous section may
be applied to give analytic results for two-loop box integrals with one-loop bubble
insertions in one of the propagators. As is well known, the effect of such insertions

is to modify the power to which that propagator is raised. For example, we consider
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the two-loop Abox topology shown in Fig. 4.2, with massless external legs

Abox”( ﬂ‘/ﬁh/d%z 1
X v 7V 71/ 71/ )V )V )V 78’ = . . 3
1,%72,¥3,Y4, VY5, Y6, V7 imD/2 imD/2 A;luAnggsAZ:;BitsBétsAT

(4.33)

where the A; are independent of the second loop momentum k; and are given by

Ay = kP +140,
Ay = (ki +p1)?+10,
As = (ki+p1+p2)° +10,
Ay = (ky+p1+p2+ps)? +1i0. (4.34)
while
By = ki+10
By = (ka+ki+p1+p2-+ps)?+i0. (4.35)

The kinematic variables present are
s=@m+p)? t=(p+ps), u=(@Pi+ps)’=—-s—t

while

o
I
3
N
Il
3
o
I
3
Ny
Il
[an]

and
Ps = —P1— P2 — P3-
The momentum flowing through the bubble is k; + p; + p2 + p3 so that the result of

the integration over k; is

_de2 _ 1 D D Lovs—ve
imD/2 BHs Qe = Iy (vs, ve; Ag) = 117 (vs, v5) Af , (4.36)
1 2

where IIP is defined in Eq. (3.37). In this way, the overall power to which A, is
raised to, in the two-loop diagram (4.33), is v4 +v5+vs+v7 — 2. Inserting Eq. (4.36)
into (4.33) we find

D . _ 11D D .
Abox (VI)V2aV3)V4)V5’V6)V7asat) =1I (V57V6) 14 (V17V21V3)V4567 - Easat> .

(4.37)
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We can immediately obtain a hypergeometric series representation of the Abox
topology using the representation (4.31).

In Chapter 5 we will see that the every integral of the topology can be written in
terms of integrals belonging to subtopologies and the ABOX master integral which

is defined as

_H(s, £) = Abox*2(1,1,1,0,1,1,0; s, ) (4.38)

By direct substitution in Eq. 4.37 and trivial manipulations of the hypergeometric

functions we obtain

= 2 K s+t
— _ 2e 1 _— —
T e = o fan (1)
_9e K s+t
2¢e 2
+ (_’S) 25e3 2 F1 (]-;6;1_6’ s )) (439)

where the constants K; and K, are given by

I'(1+2)T(1—¢)?

(1—26)T (1 — 3¢)

F(14+2)0(1-2)T(1+€)(1—¢)
(1—-2¢)T (1 - 3e)

K, (4.40)

Ky, = (4.41)

Note that by starting off with the NDIM approach, we have not actually had to
perform any integrations to reach this result or make any assumptions about the
smallness of e. The hypergeometric functions have one-dimensional integral repre-
sentations (see Eq. (A.10)) and can be expanded around e = 0 in terms of polylog-

arithms. The necessary integrals are easily done
oFy (1, —€6,1—€,7) = 1+elog(l—z)—€®Lis(z) — € Liz (z) — €* Lia (z) + O (€°)
(4.42)

oF1(1,6,1—¢€,2) = (1— :z:)_26{1 +1log(1 — z)e + [Li; (z) + log?(1 — z)] €
+ [ Liz (z) — 25,2 (z) + —glog3(1 - x)} €

|
+ [Li4 (2) +4Sy 3 (2) — 2S5 5 (z) + %1og4(1 - w)J e+ 0 (65)}.
(4.43)
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where z < 1 so that the polylogarithms are real. For z > 1 we have to use the
inversion formulae of Appendix B.2 producing imaginary parts.
We finally obtain

T 60 =5y st ogg (97 Ao+ (™ Aa(50]
(4.44)

where A; (s,t) and A (s,t) are given respectively by:

1) in the physical region s > 0, t < 0:
—e .

o = () -e i (2) oo () 0059

t

2] et () = (S“)”w(s?)

+ 262 Liy (S+t) —%” O (e (4.45)
Ay (s,t) = 1+elog (__> e le( L <s+t) i, (s:—t)
+0(<), (4.46)

2) while in the region s < 0, ¢t < 0:

AN 2. [ 8 1. o (s+t) n? s [t

= (- —— )+ 1 ——| —€|2Lig { —

A (s,1) (3) {1+6 {Lb (s+t)+2 o8 ( t ) 2 ‘ B\s+t
o 5

+0 (), (4.47)
o) = wrovn () 21 (139) o (5) 3]
2
3 s s+t 1. 3 (s+t
- —1 — ) —=1
e[L13<8 t)+3og<s> 6og<s
4 2
4]y $ _7r__7r_1 g[8+t 1 1oet s+t
e [Ll4<s+t) B 6 8 ( s )+24 8\
(4.48)
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4.3 Discussion

In this chapter we have evaluated one-loop massless box integrals with arbitrary
powers of the propagators and with up to one off-shell leg as combinations of hy-
pergeometric functions. The method we used (NDIM), first suggested by Halliday
and Ricotta, has its roots in the analytic properties of loop integrals and, in partic-
ular, the possibility of treating the space-time dimensions D as a negative integer
in intermediate steps.

One can trivially apply NDIM and derive representations in terms of hypergeo-
metric functions for other one-loop diagrams. In general it should be expected that
one-loop diagrams with ¢ mass or momentum scales and arbitrary powers of prop-
agators can be expressed, in a straightforward manner, in terms of hypergeometric
functions with ¢ — 1 summation variables. This makes NDIM an extremely efficient
method at one-loop level. Nevertheless, for practical purposes, we are interested
in calculating the analytic expansions in € of the integrals in terms of logarithms
and generalised polylogarithms. As shown for the one-loop massless on-shell box, it
may be done through the integral representations of the hypergeometric functions.
Unfortunately, although many results have been obtained in this way, it turns out
that in various cases expanding the hypergeometric integral representation is very
hard if not impossible. Furthermore hypergeometric functions of many variables do
not always have known integral representations.

At two-loop level, NDIM has a very limited success where practical difficulties
arise from many sources. The terms P and Q have in general a much bigger number
of terms. Therefore, for their multinomial expansion more indices are required, and
due to the small number of constraints, one is left with a big number of indices that
should be summed over. Typically, the summations are not easy to perform and
very few mathematical tools have been developed in this direction. What is more,
the number of solutions is large (typically a few thousands), and it seems impractical
at present to identify the region of convérgence of all individual solutions.

One could try to avoid having a big number of solutions and many sums to
perform by viewing a two-loop integral as the insertion of one-loop into the other,
where the second integration is meant to be performed over a one-loop function.

With the insertion approach we are always dealing with one loop diagrams and hope
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to gain better control over the number of solutions and the number of summations.
As shown in this chapter, this approach is straightforward when the inserted one-
loop graph is a bubble. However this approach becomes very demanding when we
have to insert a triangle or a box graph into a second loop using the representations
in terms of hypergeometric functions which converge in a specific kinematic domain.
A problem arises, since the second integration has to be performed over all kinematic
domains, and a systematic way of doing this, unlike the Mellin-Barnes method, is
not yet understood for a completely analytic approach.

To summarise, NDIM is very efficient for one-loop integrals with many scales,
at least for the cases that we know the integral representations of the hypergeomet-
ric functions involved. We could also expect to work in two-loop integrals of the
bubble-insertion type, or with dependence on only one mass or momentum scale
(propagator-type graphs or triangle graphs with two on-shell external legs). For
other integrals appearing in QCD 2—2 scattering we will have to employ more pow-
erful and specialized methods, like Integration By Parts (IBP) and Mellin-Barnes

representations.



Chapter 5

Integration by Parts

So far we have been able to relate tensor integrals to scalar integrals with higher
powers of propagators and higher dimension. Our attempt to deal with the scalar
integrals using the Negative Dimensions Integration Method, provided useful results
for one-loop topologies but had problems at two-loops. .

In this chapter we shall attack the problem of the multitude of the scalar integrals
that we produce from the tensor reduction program of Chapter 3 in a more efficient
way. Our aim is to find relations that their recursive application connects scalar
integrals with arbitrary powers of propagators and dimension to a minimal set of
“master” integrals which are independent of each other i.e they consist a basis in
the space of scalar integrals.

It is practical to separate this task into two steps. First we find an algorithm
which systematically decreases the power of the propagators achieving the reduction
to the scalar integrals of the basis but still in higher dimensions. The algorithm is
based on identities derived from Integration by Parts (IBP) or exploiting the invari-
ance of the scalar integrals under Lorentz transformations of the loop momenta. IBP
was first introduced by Tkachov and Chetyrkin in 1980 (Ref. [56, 57]). Recently,
Gehrmann and Remiddi [25] used the property of Lorentz invariance of scalar inte-
grals to extend the set of identities among the different integrals of a topology. The
identities are specific to each topology, though there are many common relations
between parent topologies and their sub-topologies.

As a second step, we must find relations reducing the dimension of the scalar

integrals of the basis in D = 4 — 2¢ dimensions. We start from the Schwinger

93
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representation of the master integrals in D, rewrite them as scalar integrals in D + 2
and extra powers of propagators, and use the algorithm of step one to reduce the
extra powers. We therefore end up with a system of equations between the integrals
of the basis in D and D + 2 dimensions. Inverting the system, we obtain relations
for the dimensional shift from the basis-integrals in higher dimensions to the master
integrals in D =4 — 2e.

The reduction of tensor integrals to master integrals is a great simplification of
the initial problem since the only ingredient missing is to find the analytic expansions
in € of the few master integrals only. For the simple ones, Feynman parameters
are sufficient and two-loop box integrals with bubble insertions can be calculated
with NDIM. For more complicated integrals the ¢ expansion of their Mellin-Barnes
representation has provided some remarkable breakthroughs. Finally, there are some
remaining master integrals that can be related to the rest with the aid of differential
equations that we obtain from the application of the same algorithm as for the tensor
reduction. They are calculated by differentiation of other known master integrals.

In this chapter we will describe how IBP and Lorentz-Invariance (LI) identities
can be derived. We will then use them to find the algorithms of reduction to master
integrals for all one and two-loop integrals which appear at 2—2 massless QCD
scattering which do not have a simple analytic form in terms of I'-functions. The
rest have already been studied in Chapter 3, and they were related to master integrals

by exploiting the basic property of I'-functions
I'(1+z) = zI'(z).

We will finally define the basis of master integrals and we will provide their analytic
expansions in the different kinematic regions completing the program for a general

evaluation of integrals for NNLO matrix elements in 2—2 massless scattering.




Chapter 5. Integration by Parts 95

5.1 Integration by Parts and Lorentz Invariance
identities

We consider the general scalar m-loop diagram in D dimensions with n propagators

1/A; raised to arbitrary powers v; and py, ..., external momenta

dPk dPk 1
D __ 1 m
J= / imD/2 / imD/2 AT Ave (5.1)

Our immediate goal is to find relations between the scalar integrals with different

v;’s. We can start from

D Dk
/dlc1 /dma b _g (5.2)

inD/2 77 [ 4w/ 9a, AT - - Aln ’

where we integrate a total derivative with respect to one of the loop momenta

ot =k kR (5.3)

m

In the numerator we can contract with either one of the m loop momenta or one of

the » — 1 independent momenta (due to momentum conservation) of the r external

legs

V=K, kR YDy (5.4)
The total number of independent IBP identities is therefore

Nipp=m x (m+7r—1). (5.5)

The total derivative will be acting on each of the terms of the integrand yielding

two types of terms:

A

ob* 1

Bar Ay A, (56)

bt d (1
— 0.7
Ay A1 Ay -+ Ay Oa# (Ai) (5:)
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The Type A terms are zero unless a = b where, in this case only, 9b*/0a* = D.
The Type B terms are more interesting because the derivative acts on one of the
propagators. Assuming the general form of the propagator (see Eq. 3.2) in the

massless limit

1 1
- = 5.8
A (X&ki+9)?+1i0 (58)
we find that
0 1 Y&iki-b+q-b
(S — J v
b 5 (AV) v Y , (5.9)

where we have increased the power v by one in the denominator and, at the same,
we have produced scalar products in the numerator.

The scalar products can be formed either exclusively between external momenta
pi-p; and are then trivially associated with the external kinematic scales, or with at
least one loop-momentum k;-p;. We divide the latter into reducible numerators, if
they can be re-written in terms of inverse propagators of the integral, or irreducible
otherwise.

The creation of reducible numerators leads to cancellations between numerator
and denominator decreasing the powers of some propagators and linking the original
integral with simpler integrals. The presence of irreducible numerators is a problem,
because the resulting integrals are more complicated. In this case one can take linear

combinations of two or more IBP identities in order to eliminate them. In general,

we have
1
Mrr=§mx(m+1)+mX(r—1)—n (5.10)

irreducible numerators.

After the elimination of the irreducible numerators we are left with identities
which in principle relate integrals with increased powers of propagators to integrals
with decreased powers of propagators or integrals with one of the powers increased
while another is decreased at the same time. For convenience, we shall denote with
it (i™) an integral with the power of the i-th propagator increased(decreased) by

one. For example

vs(vs +1)5113~
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represents an integral with the power of the fifth propagator increased by two and
the power of the third propagator decreased by one. The multiplicative factor
(=1)*v;...(v; + k — 1) is always present whenever the power of the i-th propagator
has been increased by kK =1,2,....

For an algorithm which reduces a topology to master integrals is often sufficient to
use appropriate linear combinations of a subset of the IBP identities. Nevertheless,
we have found topologies, e.g. the massless two-loop cross-box topology with light-
like legs, for which it is necessary to complement the IBP identities with more
identities originating from the Lorentz Invariance of the scalar integrals [25].

In fact, since the Feynman integral is a function only of scalar products of the

external momenta, it is invariant under the (infinitesimal) rotation

= A" pY, Ay =g + €y, € = —€up. (5.11)

v

where ¢ is a very small parameter. We can then write

Pk, Pk, Pk, Pk, , |
/WT/Z . /Z’]TT/2 f(k])pz) = / iﬂ'D/Z . '/’iﬂ'D/2 f(k_ﬂpz) (512)

where f is the function of the product of propagators and depends on the loop-

momenta k;, j =1,...,m and the external momenta p,, a = 1..r —1. Expand-

ing in a Taylor series around § = 0 the right-hand side of Eq. (5.12), we obtain

dPk [ dPl = 0f(kip) L
/iWD/2/i7TD/2 Zl opt: e, p, =0. (5.13)

With the r — 1 independent external momenta, we can build

Niy = %(r D) x(r—2) (5.14)

independent second rank antisymmetric tensors that, once inserted into Eq. (5.13),

give rise to equal number of LI identities. For graphs with four legs we can choose
& = pipy—pppl,
& = pips—papl,

wyo ", v w, v
€3 = PaDP3 — P3Ps-
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5.2 Dimensional shift

IBP and LI identities suffice to reduce the extra powers of propagators of the scalar
integrals generated from the tensor decomposition of Section 3.1. Therefore we
obtain a minimal basis of integrals required which cannot be reduced any further.
The integrals of the basis appear in many different dimensions D = 4 — 2¢ + 2n and
it is rather hard to attempt a direct evaluation for all possible n. Instead we can
find recurrence relations, similar to the ones reducing the powers of propagators,
which reduce the dimension of the basis-integrals as well.

Let as assume that we have an IBP and LI algorithm G for the power reduction

of a topology 7 with powers of propagators {v;}. Schematically,

TP({n}) 3 Y cPBP (5.15)

where each of the integrals of the topology characterized by the {v;} powers in D
dimensions can be written in terms of the integrals of the basis B]D in the same di-

mension. We pick one of the integrals of the basis and we express it in the Schwinger

representation
1 Q
D _
where ), P, and [ Dz are defined in Section 3.1. We rewrite the above equation as
P Q
D _ =
B = DmP(D+2)/2 exp (P) . (5.17)

multiplying and dividing the integrand with P. We remember that for an m — loop

integral P is an m-degree polynomial in the Schwinger parameters z;,

P = E iy 1T T,

lodm
where d;; ; depends on the topology. As usual, we absorb the z;’s of P in the
numerator into [ Dz, increasing the powers of the propagators, while the extra P in
the denominator increases the dimension of the integral. Therefore, we can express
the integral of the basis in D dimensions in terms of integrals of the topology in

D + 2 dimensions with the cost of increasing the powers of the propagators.

BP = ZdjTD+2({Vj})
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With the algorithm G each of the D + 2 dimensional integrals of the r.h.s. reduces

to the integrals of the basis in the same dimension. So the last equation now reads

BP =" APBP* (5.18)
J

where the coefficients Ag is an n X n matrix, where n is the number of master

integrals, and depends on the topology and the dimension.

The system of Eqs. 5.18 expresses integrals of the basis in lower dimension in
terms of integrals of the basis in higher dimensions with step two. In practice, we
are interested in shifting the dimension in the opposite direction since our tensor
reduction program produces integrals in higher dimensions. Therefore we need to

invert the system (5.18), yielding

_1\D

BPt? =% " (A", BP. (5.19)
J

We can now have a rough picture of the basic steps that are needed for the

calculation of the tensor integrals in terms of master integrals.

e Rewrite tensors to scalar integrals with extra powers of propagators and higher

dimension

e Apply IBP and LI identities in order to reduce the extra powers of the prop-

agators

e Apply dimensional-shift (Eqgs. 5.19) arriving to master integrals in D = 4 — 2¢

dimensions.

e Evaluate the analytic expansions in € of the master integrals (with Feynman

parameters, NDIM, MB representations, etc.)

5.3 The one-loop box topology

In Chapters 3, 4 we studied the one-loop box topology, shown in Fig. 5.1. We now
concentrate on the limit where all external legs are massless. With NDIM we found
an analytic expression for the one-loop box with arbitrary powers of propagators

in this limit (Eq. 4.31) in terms of hypergeometric functions. In principle, it is
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h y22

Va Yy

D2 D3
U3

Figure 5.1: The one-loop box topology

possible to calculate analytic expansions in € for all integrals with different powers
of propagators and dimensions through their hypergeometric representation but it
is very tedious and we would rather reduce the general scalar integral to master
integrals with the application of IBP.

The number of independent IBP identities for the one-loop box topology is
Nigp = 4, and the number of irreducible numerators N, = 0. The IBP iden-

tities can be cast in the form

snl1TIP = — (D ~ vig33q) IP + (1/11+ + 1,21 + 1/44+) 3-IP, (5.20)
t1e2IP = — (D —vigsaa) IP + (n1F + 1927 +153%) 47170, (5.21)
svs3TIP = — (D — va1gs) IP + (12 + 153T + 14a1) 1712, (5.22)
tvdtIP = — (D —vigse) IP + (1T + 0337 +vgat) 2717, (5.23)

where we have used the shorthand notation I = IP(v1,vs, v, v4; 8,t) and v =
v; + 2v; + 14, etc. Starting from integrals in D dimensions with extra powers of
propagators, repeated application of these identities reduces 14, v, v3 and vy to
unity, resulting in the simplest integral of the topology which we call BOX. It is
a basic integral, in the sense that any other integral of the topology is linearly

dependent on this one. We introduce the following notation to describe it

(D,s,t) =BOXP(s,t) = IP(1,1,1,1,s,t) | (5.24)

At the same time, in the right hand side of Egs. (5.20)- (5.23) we observe that
the i~ operators can pinch one of the legs of the topology yielding integrals of the
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one-loop triangle topology (see Eq. 3.35)

IP (11, 12,0,v4;5,t) = I (v, va, v43t), (5.25)
IP (11,0,u3,v4;5,t) = I (v4, 11, 135 8) (5.26)
IP (0,vy,v3,v4;8,8) = I (vs,va, 123 1), (56.27)
ID (1, v2,03,0;5,t) = IP (1, 13,115 8) . (5.28)

which, in their own turn, can be written in terms of the BUB master integral defined

in Eq. (3.38).
Finally, we derive the dimensional shift formula
—u (D+2,s,t) = __st (D, s,1)
2(D - 3)
r= { O+ -0y } (5.20)
where u = —s — t. This completes the tensor reduction program for the one-loop

box topology reducing it to the following set of master integrals in D = 4 — 2¢

8, O, e . (5.30)

We can easily obtain an analytic expression which can be expanded in ¢, for the

BUB master integral from Eq. 3.35 with the substitution 1 = 0, 1, = 1, v3 =
1, D =4 — 2, yielding

I(1+e)l(1-¢?, _
= —s5)7". 31
—O—(s) I'(2—2¢)e (=) (5-31)
The BOX master integral can be calculated from Eq. 4.32 with M = 0 and

expanding the hypergeometric functions according to Eq. 4.42. We can see that the
leading term in the series expansion is 1/e? divergent. Another observation we can
make with simple substitutions in Eq. 5.29, is that the one-loop box function is finite
in D = 6—2¢ dimensions. It is useful to change our basis of master integrals replacing
the divergent box in 4 — 2¢ dimensions with the finite box in 6 — 2¢ dimensions so
that we will be able to isolate the singular parts of the one-loop amplitudes in terms
of BUB functions only. Therefore our favorite basis of Master integrals for the

one-loop box topology and the sub-topologies becomes

6] 0 (O

(5.32)
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For s > 0,t < 0and u = —s —t < 0 we need to know the analytic expansion in €
of the BOX in D = 4 — 2¢ dimensions for arguments (u,t), (s,t) and (s,u). When
both arguments are negative we have no imaginary parts and the expansion can be

cast in the form

5 (,t) = F(1+6)F(1—e)2 (E)e{l [(Lz—Ly)2+7r2]

25T (1 —2€) (1 —2¢) \ s 2
. . 1, =2
+2¢ |Lig(z) — L,Lis(x) — ng - ?LZ
—2¢? |Lig(z) + L,Liz(z) — L (z) — Tpa _Lpsp 4 lpep
4 y 13 9 412 8 T 6 oY 4 -y
2 2 4
—%Li - %LzLy - Z—5J +(u e t)} + O(ed), (5.33)

while when one argument is positive we find,

_ TQ+el(1-e)? p?\° 9 o
6] (8 = 2ul'(1 — 2¢)(1 — 2¢) <_Z> {(Lm + 2imLe)

2
+e| | —2Lig(x) + 2L, Lig(x) — =L + 2L, L2 — 2L, + 2(3
3 z Y-z

2
+im (2Li2(x) +4L,L, — L2 — %)}

+é?

3 2
-I—%Li — §L3Ly + L2124 =

1
5Lz SLaLy 37r2LZ—27r2LmLy-I-2LyC3+67T4>

1
+im (—2L13(:1c) — 2Li3(y) + 2L, Lis(z) + gLi —2L2L, + 3L, L}

2
—%Ly + 2@,)} } + O(e%), (5.34)
where
p=—" (5.35)
S
and

L, = log (?) . L,=log <_T“> , (5.36)

Finally, 6 (s,u) is obtained from Eq. (5.34) by exchanging u and ¢.
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Figure 5.2: The Abox topology .

5.4 IBP algorithm for the bubble-box (Abox) topol-

ogy

We now want to extend the results of the previous section to the case where we have
a one-loop bubble insertion in one of the legs of the one-loop box topology. This is
the Abox topology (see Fig 5.2) defined in Eq. (4.33) This integral is related by a

factor to the ordinary one-loop box integral

D , _ D D .
Abox” (vy, vy, V3, V4, Vs, Vs, V7; 8, 1) = I17 (vs, v6) I <V1,V2,V3,V4567 - —2—,5,15) )

(5.37)

where TP (us, 1%) is given in Eq. 3.37. For arbitrary D we have the relation
1P (v5, 6) = 1 (0,0, v5, v6)TI(1, 1) (5.38)

where the function ¢, (n, v, ve, v3) is defined in Eq. (3.41). The propagators of the
associated one-loop box, according to Eq. 5.37, have powers
D
B =V, HMHo2=1V2, U3 =V, 4 = V4567 — 5 (5.39)
Expressions for the one-loop box integral with general powers of the propagators
were obtained with NDIM in the previous chapter. Again, we will first try to reduce
the extra powers of the propagators finding the minimum set of integrals required
for the calculation of the one-loop box in Eq. (537)
A vital difference between the power reduction of the ordinary one-loop box with
integer powers of propagators and the one-loop box function in Eq. (5.37) is that the

power of the fourth propagator is regulated by the dimension which is not an integer
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in dimensional regularisation. Therefore it is impossible to pinch this propagator
out since its power can never take the integer value zero. Instead, we need to modify
the IBP identity of Eq. (5.21) eliminating the 4~ terms. If we act with ps4™ on
Eq. (5.21) and with p,2% on Eq. (5.23), and subtract the two equations we obtain
the identity

(D =2 — pagas) 122V IP = (D — 2 — pasas) pad ™ I9 + (po — pa) (a1t + ps3%) I,
(5.40)

which reduces p2 to one while at the same time increases p;, us and pg. On their

own turn, y; and p3 are decreased to unity with the known identities,
spdTIP = — (D — passa) I + (mlT + pa2% + pgdat) 3717, (5.41)
sus3TIP = — (D — parosa) I + (1227 + pa3t + padt) 1717 (5.42)

We should note that with the repeated application of the above identities we produce
integrals with the first or the third propagator pinched out, belonging to the one-loop
triangle topology (see Eq. 3.35)

I (1, pio, 0, s 8, t) = I3 (pa, pio, i t) (5.43)
I4D (O,M,M&M;Sat) = IE}D (/,Lg,/l,z,/.l,4;t). (544)

The above triangles reinserted in Eq. 5.37 correspond to integrals of the two-loop

TrianB topology which in turn reduces to the SUNSET master integral
O
according to the formulae of Section 3.2.4. Subsequent application of
tud 1P = — (D — pigosa) I + (il + 133" + padt) 2710, (5.45)
can be used to control the power of p4 and form the pinched triangle integral
I (11,0, 3, pha; 8, 1) = I3 (a, o, pi3; ). (5.46)

which (inserted in Eq. 5.37) corresponds to the TrianA topology that can be reduced
to the TRI master integral

D &
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Figure 5.3: The propagators are labelled according and are each raised to the v;

power.

through application of the algorithm of Section 3.2.3.
Equation (5.45) should be used until u4 = 2—D/2, corresponding to vy = 0, v5 =
vg = 1, v7 = 0. This last integral cannot be reduced any further and is defined as

the ABOX master integral

H(D,s,t) = Abox”(1,1,1,0,1,1,0;5,t) (5.47)

Finally, we find the dimensional shift identity

-] _ (D — 4)st? =
II(D 281 = 3(D—1)(3D — 10)(3D — 8)(¢ + s) _KZ (D:s:1)

s[(D—4)t+ (2D —6)s]
T 3D-2)(D-1)3D-8)(t+5) "(I (D)

g )
t3poaponets P 68

which allows the reduction of the dimension to D = 4—2¢. The analytic expansion of

the ABOX master integral is given in Section 4.2 for the various kinematic regions.

5.5 The diagonal-box (Cbox) topology

The diagonal-box topology is shown in Fig. 5.5 and it is a sub-topology of the
Penta-box topology (see Section 3.3.5) with vy = vy = 0.
Starting from the MB representation of the Penta-box of Eq. (3.86) and setting

v1 = vy = 0 the two-fold integral is reduced, with the aid of Barnes first lemma
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(Eq. 3.88 ), to the single MB integral representation for the Cbox topology
_1)D gD—vesse7
Cbox?({v;};s,t) = (

kst = T ) T TR T ()

r (% — 1/7) r (% — 1/56) (% — st) /ioo do
—TI'(—a) T (D - —
I'(D = va57) T (D — veer) T (gD - V23567) —ico 271 (=) I'( Vaser — @)

r
r

t 24
XI'(D — va3er — @) T (vasser — D + ) T' (13 + @) T (v + ) (g) ; (5.49)

where the path of integration over o must be chosen so that to separate the poles
coming fromI' (... — @) from those coming from I' (... + a) and {v;} = vy, v3, vs, Vg, V7.
In the kinematic region |t| < |s| the contour at infinity must be closed to the
right and we then obtain an expression in terms of hypergeometric functions
(3 =) T (3 —ve) T (3 — 1)
' (v7) T (2D — vosser)
[F (vasser — D) T' (D — v3367) T' (D — v3se7)

CbOXD({Vi};s,t) = (_l)D gD—v23s67

T (I/z) T (1/5) r (D - 1/567) T (D — 1/237)

t
x 3Fy (V3, Vg, Vasser — D, 1 — D + 9367, 1 — D + 3567, —;>

r (V2 - Vs) r (D - 1/267) r (V2367 - D)
F (1/2) P (1/3) F (Vﬁ) F (D — 1/567)

D—v3367 ¢
X (;) 3 (Vs, D —vog7, D — vag7, 1 + D — 1367, 1 + 5 — 1y, —g)

F (1/5 - 1/2) F (D - 1/357) F (l/3567 —_ D)
I'(vs) T (ws) I (v6) T' (D — vaar)

¢ D—-v3s567 ¢
X (;) 3l (Vz,D — v357, D — vser, 1 + D — v3567, 1 + 15 — v, —;> :

(5.50)
The solution valid when |s| < |¢| can be obtained from Eq. (5.50) by the exchanges
s < t, Vs & U3, Us > Ug. (5.51)

The expression for the diagonal box (5.50) has an apparent singularity when v5 — v
is an integer which cancels in the actual evaluation of the diagram.

Following our operational recipe, we first try to simplify the evaluation of the
integrals of the topology using IBP and then we calculate the ¢ expansions of the

master integrals. We can write down N;gp = 10 identities which have N;,., = 4
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irreducible numerators. Taking appropriate linear combinations of the identities, we

eliminate the irreducible numerators. We finally produce the following relations
(D—2—2u) 12t = (D—2-2u) 1Tt — (D — 2= 2up3) 133", (5.52)
(D—2—2us6) 1667 = (D—2—2u) 17T — (D — 2 - 2us6) 1557, (5.53)

so that we can reduce both v, and vg to unity at the expense of increasing v3 and vs
together with v7. Eqs. 5.52 and 5.53, are meant to act on the general integral of the
topology Cbox?” (v2,v3, U5, Vg, VT; 8, t). Similarly, for ease of notation, all IBP and
LI identities presented in the rest of this Chapter will implicitly refer to the general
integral of the topology in question.

We now reduce v3 and v5 to unity using the relations

S (D —-2- 21/23) V33+ = - (D —-1- 1/237) (3D - 21/235667) (554)
+2(D—1—v37) 55767 + (D — 2 —2v) 1,716,
t(D —2— 21/56) 1/55+ = - (D —-1- 1/567) (3D - 21/223567) (555)

+2(D—1— vsgr) 38727 + (D — 2 — 2u7) 1y 727,
which, because v, and vg are already unity, produces simpler pinched integrals of
the form

Cbox® (0, vs, vs, vs, v7; 5, t) = TrianAL (vs, g, 0, vs, 17, 0; 5)

Cbox® (v, vs, 15,0, v7; 5,t) = TrianAP (vs, 13, 0, s, v7, 0; t) (5.56)

which collapse to the

pONCENEER O

When the outer propagators have unit powers, we can reduce v; using

master integrals.

st(D—2-2v)y7t = —(s+t)(D—-3—v;)(3D—-10—21;)  (5.57)
+2(D—-3-v;)(t576" +56757)
+ (D —2—2u;) (ty7T6™ + s17,7157) .

This equation is only valid when v, = v3 = v5 = vg = 1. The integral with unit

powers of propagators cannot be reduced any further and it is a master integral

(D,s,t) =Cbox”(1,1,1,1,1;s,t) (5.58)
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We can shift its dimension down to D = 4 — 2¢ with the identity

(D+2,s,t) =

(D — 4)%s%?
3(D —3)(D — 2)(3D — 10)(3D — 8)(t + 3)2

s[(2D = 5)t + (D — 3)s]
T 3D 3) (D= 2% + 9)? —O— (D, s)
t[(D —3)t + (2D — 5)s]

With the propagator powers equal to unity, all of the 3 F3 functions of Eq. (5.50)

(D, s,1)

reduce to oF;. To deal with the pole in (v — v5) we set 1o = v5 + 6, and, after

performing an appropriate analytical continuation, we take the limit §—0. The

final expression is given by

(D,s,t) = - ~2)

x [(—t)D“” o (1, 1,D-2,° ;“ t)

t
+ (=s)P7% ,F (l,l,D -2, s': )} (5.60)

we obtain

If we make a series expansion in € =2 — %,

3 (1—€)(1+2€)
2(s4+ )T (1 — 3¢) €

(s,t) = [(=5)7*C (s,t) + (-t) " *C (¢, 5)],

(5.61)
where C (s, t) is given respectively by:
1) in the physical region s > 0, ¢t < 0:

t t
C(s,t) = log (—g) + 2€Li (S:t) 44 Lig (%) + 88 L, (%)

+0 (€Y, (5.62)
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Figure 5.4: The penta-box topology. It is reducible to simpler topologies due to the
presence of the triangle sub-graph.
2) while in the region s < 0, ¢t < 0:
C(s,t) = log (2) — 2¢ [Lig (;_t*_—t> + %log2 (S :_ t) - ?J
+ 4€ [Lig (s_—ti-—t) - %l g (STH) + 7%2log <STH)}
1

O
gt iy () 4 Lrogt () m e () T
\sxt) 20 %\ 6 & \ ¢ 45

+ 0 (e4). (5.63)

Note that the prefactor of Eq. (5.60) indicates that the integral diverges as 1/€>.
However, the hypergeometric functions conspire to remove the leading divergence

and we reproduce the result quoted in Ref.[58].

5.6 IBP algorithm for topologies with a triangle
subgraph

Topologies with massless external legs and a triangle subgraph reduce trivially to
simpler sub-topologies with IBP. For integrals of this kind, one of the external legs
of the triangle is always an external leg of the total graph. This is defined for our
purposes as a “good” external leg of the triangle subgraph. Another possibility
is that an external leg of the triangle is a propagator of the total graph and it
is a “good” external leg as well. Finally, if an external leg of the subgraph is

neither an external leg of the total graph nor a propagator it is a “bad” external
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leg. Accordingly, if a propagator of the trianglé is connected to two “good” external
legs, then it is a “good” propagator otherwise a “bad” one. For example, all the
propagators of the triangle in the pentabox graph (Figure 5.6) are good ones while
all of them in the diagonal-box graph (Figure 5.5) are “bad” ones.

It is easy to find IBP identities that reduce the graph to simpler integrals when
the triangle subgraph has at least one “good” propagator. We pick a “good” propa-
gator and define b* to be its momentum and a* the loop-momentum flowing through
it. We then write down the corresponding identity of Eq. 5.2 with the a* and b
that we have just chosen. The produced terms will either “pinch” the propagators
of the triangle or the propagators of the rest of the graph.

As an example we consider the penta-box topology of Section 3.3.5. shown
in Figure 5.6. The momenta carried by each of the propagators are defined in
Eq. (3.82). We start from

/ dPk, / dPky 0 [(ky+p1+p2+p3)*; k5 _ 0 (5.64)
inD/2 | irD/2 9kl AT ARAPAPAZAPAT '

yielding the identities

(D—-2wus—vs—v7) = (166157 + 1, TH5™ — 1,747, (5.65)

D—vs—2vs—v7) = (55167 + 1,776 — 1, 7T17), (5.66)
By repeated application of Eq. (5.65), we can reduce either of v4 or v to zero.
Similarly, by applying Eq. (5.66) we can lower (and eventually eliminate) the power
of either vy or vg. The pinched integrals belong to the Abox or Cbox topologies
which we already know how to evaluate. Using the same identities we can reduce
the subtopology TrianD of the pentabox topology with v, = 0 (see Figure 5.6),
to triangles that they belong to the known TrianA, TrianB and TrianC topolo-
gies. With the same method Kramer and Lampe [36] evaluated the integrals of the
TrianE topology (see Figure 5.6).

5.7 Reduction algorithm for the Cross-Triangle

topology

The cross-triangle topology (TrianX) (Figure 3.10) is defined in Section 3.3.7. In

this section we want to find an algorithm for the reduction of the topology to master
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Figure 5.5: The TrianD (left) and TrianE (right) topologies. They can be reduced
to simpler topologies with the IBP triangle rule

integrals. For this particular topology, though IBP identities are sufficient on their
own for the reduction, we find it easier to complement them with the one LI identity
one can write for a graph with three external legs. For an alternative solution to
this reduction problem, exploiting a connection with massless three-loop propagator
integrals, see Ref. [59]

Some of the eight IBP identities and the single Lorentz-invariance identity de-

pend on one irreducible scalar product in the numerator, that we choose to be (I-ps):

Sl/11+ + (2D - 21/235 - 1/146) - I/44+3_ - V11+2_ — 1/66+5_ 0
SI/22+ -+ (2D — 21/146 - 1/235) - l/33+4_ - V22+1_ - I/55+6_ =0
2 (l p2) V11+ — (D — Vgg — 21/3) + V11+ (2_ +4" — 5_)

+ 1527 (37 —57) + 14,4137 =0 (5.69)
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2(1- p2) 12t — (D — v1g5 — 206) + 127 (6_ — 3_)

— 1t (67 —47) 15767 =0 (5.70)
2(1-p2) 33T + (D — vags — v6) + 1337 (2— — 5—) T4t (1— _ 6_)

—vs5767 =0 (5.71)
2(1-p2) vad™ + sv44% — (D — vggs — 2v5) + 1337 (57 — 27)

et (67— 17) +16*5™ =0 657
2(1-p2) vsB™ + 5551 — (D — vgg — 2v4) + 1557 (4=+6-—-17)

+156T (47 —17) + 153747 =0 (5.73)
21+ p2) 66T — (D — vas — 2u3) ~ 16" (37 + 5~ — 27)

ST (27— 87) +dtE =0 574

2(l - p2) 11T — (D — vogse) + 1111 (27 + 67 — 57) + 14473~ = 0. (5.75)
The identity
$V11+ = — (2D — 21/235 - 1/146) + 1/44+3_ + I/11+2_ + V66+5_, (576)

together with the symmetric one for 1,21, can reduce v; and v, to unity. By

eliminating the irreducible scalar product in the numerator, we obtain

1

D — 2 — 3456
]
D—2—21/34

1/33+ = (V44+V66+1_ — l/33+1/55+2—)

+ (D —2 — 2v46) 6™ + 2 (v3 — vg) 55|, (5.77)

and the symmetric one for 1441, which reduce v3 and v4 to one. To complete the

reduction, we use
(V56 — 1/34) = I/22+ (3-‘ - 5—) + 1/11+ (4_ - 6_) 5 (578)

that can be re-iterated until (v56 — v34) = 0. Since we are applying this identity to
scalar integrals where v3 and vy have already been reduced to one, the reduction
procedure will stop when vs = 15 = 1. This integral cannot be reduced any further,

and we choose the crossed master triangle (XTRI) to be

——<<D,s) = TrianX”(1,1,1,1,1,1;s). (5.79)
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During the application of the above algorithm, we produce pinched integrals belong-

ing to the TrianC and TrianD topologies, which in their own turn are reduced to

the
-6 (5)

Finally, the dimensional-shift formula for the cross-triangle master integral reads

(D — 4)s?
_<<D+2’3) =~ 4D -2)2D-7)(2D—5) <D’3)

37D? — 313D? + 858D — 752
~ 2(D~4)(D-2)(2D - 7)(2D - 5)(3D - 8) {I (D,s)

N 43D* — 478D% +1963D% — 3530D + 2352~
2(D—-4)2(D-3)(D-2)(2D-T7)(2D-5)s

The expression of the master integral of Eq. (5.79) in D = 4 — 2¢ has been computed

master integrals.

(D,s). (5.80)

in Refs. [35, 36], and we recalculated it by expanding the MB representation of the
integral in Eq. 3.123.

5.8 The Cross-Box topology

In this section we deal with the reduction of the Cross-Box (Xbox) topology to
master integrals. We denote the generic two-loop scalar crossed (or non-planar)
four-point function in D dimensions of Fig. 5.8 with seven propagators A; raised to

arbitrary powers v; as

XbOXD({I/i};S,t)I/del/de2 1 (5.81)

D /2 srD/2 AVL AV2 AV3 AVa AV5 AV6 AVT)
inD/2 | imDI2 AT A AP AL AY AP A

where {v;} = v1, 1o, 13, 14, s, Vg, V7 and the propagators are
Ay = (k1+ky+ps +p4)2+i0,

(
Ay = (k1 + ko + p1 + p3 +p4)2+i0,
(

As = (ky +ko)® 410,

Ay = k3 +10, (5.82)
As = (k2 +ps)®+10,

Ag = kP +10,

A; = (ky+ pg)? +10.



Chapter 5. Integration by Parts 114

141
Y4l
Uy
9] D3 Da
Vg
D2
V3

Figure 5.6: The two-loop cross-box graph with arbitrary powers of propagators

The external momenta p; are in-going and light-like, p? = 0,5 =1...4, so that
the only momentum scales are the usual Mandelstam variables s = (p; + p2)? and

t = (p2 + p3)?, together with u = (p; + p3)? = —s — t.

5.8.1 IBP and LI identities

As usual, we aim to find an algorithm to reduce the powers of the propagators. So far,
IBP identities were sufficient for the reduction of the topologies we have encountered.
In the cross-triangle topology, we used a LI identity in order to simplify the reduction
algorithm, but one could still achieve the reduction without it. It turns out, that
for the cross-box topology LI identities are indispensable. We can write 10 IBP and
3 LI identities and we expect the presence of N, = 2 irreducible numerators. The

identities can be cast in the form

s1t — 1 7t6™ — 15 T4™ — (V22+ + I/11+) 37 — v1o57 — 21346 + 2D =0 (5.83)
533" — g6 T — 1 a5 T — (1337 4+ 1521) 17 — viges — 2u157 + 2D = 0 (5.84)
2(1- ps)vad™ — (v66F +155T) 7™ + 155717 + 14T (37— 67)

— 56 — 207 + D =0 (5.85)
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2(1- pa)vs5T + 17 TT6™ + 1557 (77— 17 +5) + 1447 (67 —37)

+vasr + 205 — D =0 (5.86)
2(1-pa) v + 17Tt (57 —17) + 16T (77 +57 — 17 +5) + 14475~

+ vy + 25— D=0 (5.87)
2( - pa) Tt + 66T (37 —47) — 07T (67 +47 —37) — 15574

—vss— 204+ D=0 (5.88)

25 (1 - pa) 1o2% +4s(L-pa) vs3T + 1927 [(t+5) (s +17) —t37]

+ 5 (20661 + 2033 +1521) 7T — 5 (20531 + 1527) 67

— (2D — 2v13457 — 1) s =0 (5.89)
25 (1-pa) 33T — 25 (- pa) 11T + (t+ 8)1n2% (17 —87) + 5 (11T — 133%) 6~

+ s (V66+ + 1331 — I/11+) 7 —sus5T4™ —sin113”

—(vg —115) =0 (5.90)
2(1-pg)vs3t —2(1-p1) o2 + (¢t + 5) p2T + (1/66+ + 138t + 12T + 1/11+) 7

— (2T +117) 57 — 133747 +vigg + 2, = D =0 (5.91)
25 (1-pa) 33T — 25 (1-p) vy T + 1,7 [(E+5) (s—17) + 157 +527]

+ 166 (147 =37 + 877 ) + 5033t (T7—67) + (£ +5)e2t 1™ +spy1727

+ 5 (126 + 2v3457 — 2D) — ¢ (D — vgr + 1o — 2v45) =0 (5.92)

25 (1-pa)vs8t — 25 (L p1) wsBt + (E+8) w55t (77— 17 +5) + (¢ + s)rp2t1™
+(t+ s)vadt (67 —37) +5 (6T +1537) T — 515376~ — syy172"
+ (Vs —v2+ 207 — D)+t (2ugr +vgs —v2 — D) =0 (5.93)
25 (1-pa) v381 +2s (1 p1) 66T + 156 [t (47 —37) —s (27— 17 + )] — svdT5™
+ 533t (77— 67 —27) +tn7H (57 —17) + (¢ + s)m2t1~
+5s(vgg—vo)+t(Ver+2u4s — 12— D) =0 (5.94)
25 (1-pa)vs8t + 25 (L p1) vadt + 14dT [(t+5) (67 —37) + 557 ] + 2516677~
+(t+s)wsbt (T —17) + (t+5)12T1™ + 51531 (T7 -6~ +27)
+ 5 (vo3 + 2v146 + 35 + 4y — 3D) + t (145 — v2 + 2067 — D) = 0, (5.95)

where we use the shorthand v;; = v; + v, vk = vi + v + 1y, etc.

Equations (5.83) and (5.84) of the system, being independent of the two irre-
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ducible scalar products, need no further manipulation, and can be rewritten in the

form

sl = »TT67 + 15747 + (1L2% +1111) 37 4 vigsr + 2us46 — 2D,
(5.96)

sv3T = 16T +14aT57 + (1531 +1427%) 17 + 1a3gs + 20157 — 2D.
(5.97)

By repeated application of these two identities, we can reduce v; and v to one.
During this process, the generic scalar box is expressed as a linear combination of
crossed-box diagrams with 14 = v3 = 1 and diagrams belonging to simpler topolo-
gies, that originate when powers of propagators are reduced (pinched) to zero by the
decreasing operators. We will deal with the pinched diagrams later, concentrating
now on the reduction of the remaining propagators.

In order to use the other equations of the system, we have to eliminate the
irreducible scalar products in the numerator.

For example, applying the operator 1,7t to Eq. (5.85) and 1441 to Eq. (5.88),

and taking the difference, we get

(D —2v7 — vsg — 2) 7T — (D — vse — 2vg — 2) vgd™ — (v7 — vy) (1/55+ + 1/66"')
+ vsbtrTT1™ — 1T 613~ = 0. (5.98)

In the same way, we can apply v667 to Eq. (5.86) and 1551 to Eq. (5.87) and take

the difference, to obtain

(D — V47 — 21/5 - 2) V55+ — (D — y7 — 2V6 — 2) 1/66+ + (1/6 — 1/5) (1/44+ + 1/77+)
+ 5T, 717 — 14T 61737 = 0. (5.99)

Combining Eq. (5.98) and (5.99) to eliminate v55T, we have

D — 2v57 — 2) (v7 — vy)
4t = ( 7t -2 6t
. (D — 2uy5 — 2) v (D — 21/45 — 2) Ve
1
i (D — vaser — 2) (557717 ~ 144 Tre6737),  (5.100)

that can be used to reduce v4 to one, at the expense of increasing vg and v;. If,

on the other hand, we eliminate 14471, we obtain the symmetric equation that can
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reduce v5 to one. At this point, all the powers of the propagators except vs, vg and
v7 have been reduced to one.

In the same spirit we can derive

ste2t 6t = (Quiser +1n+2 — 2D) svs6™ + (v4e7 + 2v5 — D) svy2F
= 2(D — vagr — 2v5) (V68T 7™ + 144757 + 133117 +1,2117)
+5 (2033% + 1527 [(1rTT + 16T +14at) 57 — 1 7H17]
+1,2F 061 (37 —17) + 2514415615~
+ 2 (D ~ v467 — 2u5) (2D — 2v157 — Voagg) (5.101)

that, together with the symmetric one for v,2%1,7% and with

51/66+I/77+ = (D — Usg7 — 21/4 - 1) 1/66+ + (D — Vg7 — 21/5 - 1) I/77+
+ 16670 7T (37 +17 — 57 —47) — w7t — g5t 6ta
+ur(or + )77 (17 —57) + 16(15 + 1)61F (37 —47), (5.102)

reduces all powers except one (v, or vg or v7) to unity.

We can decrease v, at the expense of increasing vg and v, using

[(va — ve+ 2023+ 2 — D) s + (vgs — vgr) t] 102 = (w5 — v3) svad™t + (v7 — 13) 5156
— (D =27 —v16 — 2) svyTt — (D — 2u5 — 1y — 2) susbt
+ (E+ 82" [T (17— 57) + 1,47 (67 - 37)]
+ 127 [1s5T (77 —17) + 1467 (37 - 47)]
— syt (V77+5_ + l/55+7_)
+ sv337T [(21/77+ + 1/44"') 6~ + (21/55+ + 1/66+) 4_]
— (2D — 2v57 — 3ugg) [V66+7_ + 4757 + (1/33+ + 1/22+) 1_]
+ (V57 — 2u) [V77+6" +usbT4™ + (1/22+ + 1/11“‘) 3_]
+4D? — 2 (5ug7 + dvgg + V3 — va + 201) D + vy (5ua7 + 100456 + 4vs + 1)
+ v (30 + 1005 + 6114 + 3us — 1) + 15 (5u5 + 1004 + 4 + 1o + 5v1)
+ vy (vg + 33 — va + 614) — 2u5 (213 + 1yy) . (5.103)
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The power of the seventh propagator can be reduced with

(D —6)t+ (5D —2v7 — 26)s

s(t+ 8)vr(vr + DT = g0 Tt — (1, — 1)

D—2I/7—6
92D — vy — 11)t + (3D — 207 — 1
-l-p( vq D)-i;( : vy 5)85+1/77+1‘
e
D—2vy—4)t+(5-D
4 p P2 O DS gy oot 5){ —anln + 1)7H 6"
ey

+5T Tt (37 —47 —67) +4t 7T [2(37-67) +17]

— 2% (7t +4%) 17 4+ 5¥6+37 - 25747}

ot (4t rts £ 5tETAT) £ (t+ ) 264+ (4~ -37)
+ur(vr + 17T (57 = 17) + 6107t (57 +47 - 37— 17)]
+ps[3¥5T (17— 47 = 77) = 3¥6* (47 +77) = 3ty TH (47 +27)
—4F (T2 + 677 £ 1%27 4 347)

+ (2D — 3vy — 7)p[6+7_ +4757 + (3Y +2%) 17 - 2(D— vy - 4)} ,(5.104)

where we have introduced the shorthands

_ D-6

p = D—21/7—6
(6D% — 8u7,D — 50D + 2v2 + 42v7 + 124) s + (2D? — 3v7D — 21D + 18v; + 54)t
D—2v,—6 .

Equation (5.104) is not as general as the previous ones since we have set all the
powers of the other propagators to unity. In addition, since this equation contains
7+, we cannot always reduce v; to one, and are left with integrals where v; =
2. A similar identity can be obtained by symmetry for 671, so that we are left
with three integrals: Xbox”(1,1,1,1,1,1,1;s,t), Xbox”(1,1,1,1,1,1,2;s,t) and
Xbox?(1,1,1,1,1,2,1; s, ).

The last step is to write the integral with v = 2 as a combination of the other
two. This can be done with the identity that links 6% with 7+. We can derive such

an identity, equating the expressions obtained by acting with ;71 on 1,2% 4%
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and by acting with 1,21 on v 470,71

D —-5)3
b g+ (D—6)(D— 57+ — a2
t+s t+s

o CAEA S WL b R 1+4+)6” - (3+7+ + 476 + 376+ 1 374% )5

(D —6)(D-5)

i (3+4+ 1 4t6F £ 516" + 3+6+)1_ _ (D —7T)at7H1-

— %(2+7+6" ot5t6~ + 475 £ 2165 — 1+4+3—)

- t—;f [2+4+7+ (6 +57) +2 (277 — 27417t 4 2114t 1‘]

_ %{2+ (3% (67 +5% +4%) 77 +476+ 7" + 3% (TF + 67 + 5%) 47]

9
+8*5F (27 —27) 1—} —(D- 6)g_i_sl[yr (74~ + 477" +5+47)
2(t+s)
D _
n 2(1+7+ + 5Tt £ 1t6t + 1+5+)4— ) 1+6+3—] — 2(—;it—“L—s-er#s—
S

— (D= 6)[4*7¥37 + (3*4* + 476" + 3%6¥ +375) 77|

2D — 13
+(D - 6)t—i— (73 47 4 (TH8Y 4 Tr et L 1tat )2 | 4 4+7r6™
S
(D = 5)t + (2D ~ 11)s _ _
D-5 [(2++1%) 3™ +7%6"]
+ ) s(t+s) (27 +17)37 +
+ (D - 5)t4tr [2 3t7t6~ +3t4t6~ — 17757 — 1+5+7—] + 212+5+3—
S \ S
D—5)t— oD —
_(p-5P=Bt=s [4+5* +2t1m + 677 + 3+1—] _ 2D =154 04q-
v

t
+(D—5)[17 (875F +227F +278%) | 1+ 2 [2* (57771 + 47637

_ _ _ 2 _ _ . 2
5= 2D —T)s tpy - (D9 —(D-5)st—2AD-5)5,, |
2(t + s) - 2s(t + s)
9, _ 2 _ _ 2
—(D—6)t+282+7+3_—2(D 5)t* + (D — 6)st + 2(D — 6)s o+g+a—
2 ‘ 2s(t + s)
- D — " -
L BD 16+ 2D =5)s )y (D=4 2s, oy
28 2(t+s)
2(D — 5)82 — (D — 6)st — 2(D — 6)s2
LAD=8 = (D=6)st=AD = 6)s 4 ihg— _(4p_ 1)t _gtets-
| 25(t + s) 2(t+s)
— D — —4)t — -
(D—8)t+(D—=6)sy oy, (D=4)t—2AD—6)s,, 4o
t+s 2s
_ 2 - —6)s? 2
L (@D 11)t2 4+ (D — 7)st 4+ 2(D — 6)s oteta— 4 LT 2 ptgt -
2s(t+ s) . 2s
2D -5)t+ (D - D —-5)t+ (2D —11
L UDZIF D =O)3gigym | (5P H( )S 54
t+s s(t +s)
— D—6)¢— —5)—
+ 2D 112+4+5——~—( 6)¢ 232+4+1—+———2(D S)t Sotate—, (5.105)

2s 28




Chapter 5. Integration by Parts . 120

where we have set all the powers of the propagators to unity.

At the end of this reduction program, we are left with the following two crossed-
box integrals: Xbox?”(1,1,1,1,1,1,1;s,t) and Xbox”(1,1,1,1,1,1,2;s,t), plus
simpler diagrams that can always be expressed as a combination of master inte-

grals:

- the master crossed triangle of

~<<D, s) = Xbox”(1,0,1,1,1,1,1;s,t) = XTRI(s),

(5.106)
- the master diagonal box produced by
(D,s,t) = Xbox”(0,1,1,0,1,1,1;s,t) = Xbox” (1,1,0,1,1,1,0;s,1)
= CBOXP"(s,t), (5.107)
together with
(D,s,u) = Xbox”(1,1,0,1,0,1,1;s,t) = Xbox” (0,1,1,1,1,0,1;s,t)
= CBOXP(s,u), (5.108)

and

(D,t,u) =Xbox”(0,1,0,1,1,1,1;s,t) = CBOXP(t,u),
(5.109)

- the master box with a bubble insertion produced by

H(D,s,t) = Xbox?(1,1,1,0,1,1,0;s,%), (5.110)

together with

II(D,s,u) = Xbox” (1,1,1,1,0,0,1; 5,t) = ABOXP(s,u),

(5.111)
- the master triangle with a bubble insertion produced by
(D, s) = Xbox”(1,0,1,0,1,1,0;s,t) = Xbox” (1,0,1,1,0,0,1; 5, 1)
= TRIP(s), (5.112)
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- the master sunset diagram produced by

—@—(D,s) = Xbox?(0,0,1,0,1,0,1;s,t) = Xbox? (1,0,0,1,0,1,0;s,t)

= SUNSP(s),
together with

—@— (D,t)  =Xbox?(0,1,0,0,1,1,0;s,¢) = SUNSD(t),
(5.114)

and finally
- (Dw)  =Xbox"(0,1,0,1,0,0,1;5,) = SUNSP(u).(5.115)

In this point we have derived a basis of master integrals for the cross-box topol-
ogy. It is of our freedom to choose a different but equivalent more symmetric basis.
Instead of keeping Xbox? (1,1,1,1,1,1,2; s,t) as one of the two cross-box integrals
members of the basis, we prefer to switch to Xbox”(1,2,1,1,1,1,1; s,t). The ex-
pression for this one, in terms of the master integrals of the old basis, can be easily
obtained through the application of the reduction algorithm outlined above. This

allows us to define the two cross-box master integrals as

] Z (D,s,t) = XboxP(1,1,1,1,1,1,1;5,1) (5.116)

{ Z (D,s,t) =Xbox”(1,2,1,1,1,1,1;s,t)}, (5.117)

—

which are symmetric under the exchange t <> u.

Finally, given the reduction algorithm for the extra powers of propagators de-
veloped here, it is straightforward to apply the procedure of Section 5.2 in order to
relate the cross-box master integrals in higher dimensions to the master integrals in
D = 4 — 2¢ dimensions. The relative expressions are rather lengthy and we do not
present them here.

With the dimensional-shift at hand we have completed the tensor reduction of
the cross-box topologies to master integrals in 4 —2e dimensions. All master integrals
belonging in subtopologies were calculated earlier. The calculation of the cross-box

master integrals is a hard and laborious problem. Tausk [22] calculated the

XBOX: % (5,1) = : Z (5,1)

(5.113)
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master integral by performing an e-expansion of the MB-representation of the inte-

gral. Fortunately, we can avoid a direct evaluation of the second cross-box master

integral

XBOX; % (s,t) = :» g (s,1)

since the two integrals are related by a simple differential equation. Differential

equations for scalar integrals can be obtained in a straightforward manner starting
from the Schwinger parametric form of the integrals, and this will be the subject of

the following paragraph.

5.8.2 Differential equations for the master integrals of the
cross-box topology

We consider the Schwinger representation of the general scalar two-loop box with

arbitrary powers of propagators,

D(f, 1. 1 Q
Xbox~ ({v};s,t) = /Dm P2 OXP (5 , (5.118)
where
D [
Dz = / dz; z07 1, 5.119
[Py ), et (119
P = (ZB7 +z6 + 25 + .’134) (CL‘3 + T2+ 121) + (3?5 + 1124) (2137 + IEG) y (5120)
and

Q= 1'2(585:66 - 1124.'1,‘7)t + [IE1$3(£7 + T + T5 + .’134) + T3T5T7 — ToX4Ty + .’131.'1J41L‘6] S.

(5.121)

It is straightforward to differentiate both sides of Eq. 5.118 with respect to the
kinematic variables s and ¢. The only dependence on these variables comes from @),
we therefore have

0 D . _ To(TsTg — T4x7) 1 2
ggXbox ({v:};s,t) = /Dw 7 pDj2 P ('P) , (5.122)
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which we rewrite in terms of integrals in D + 2 dimensions and extra powers of

propagators

%XbOXD({Vi}; s5,t) = =121 (155 16T — v d T TH)XboxP 2 ({1;}; 5, 1)
(5.123)

The integrals of the r.h.s can be reduced to the master integrals in D dimensions

with the algorithm of Section 5.8.1.
In the special case of differentiating the cross-box master integrals with respect
to ¢, we obtain the following two equations

O T X st = ——lHEw+HwY,  (5124)

t—u

% :X(D’S’t) = KW + K(u,1)], (5.125)

t—u

where

H(t,u) = h ] g (D,s,t) +hg zv g (D, s,t)

+ h3 <D,S) +h4 (D,S,t)
+ hs (D,t,u) + hg _IZ(D, 5,)

+ by —(I(D,s) + hg —O—(D,s)
+ hg —O—(D,t), (5.126)
Kttu) = ki | X (D,s,t) + ks z X (D, ,1)

+ k3 ~<<D, s)  +kg (D, s,t)
+ ks (D,t,u) + kg _H(D,s,t)

+ &y —CI(D,S) + ke —O—(D,s)
+ kg —O—(D,t). (5.127)
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The coefficients are given by

h _ (D=9 -4t (D-6)s , _(D-4)(2D-9)s
v 4ty 2T T4D-5 T 4D-5)u
h . 3(D-4@ED-14u , _3(D-4@ED-14s  _ (D-3)(3D-19)
* T 27 (D-5)st 572 (D-6)u? 6= (D = 5)¢2
ho o 3 (D - 3)(3D - 10) [(3D — 14) (u? + t?) + 2(D — 4)tu]
T T g (D —5)(D — 4)st?u?
he - 3 (D -3)(3D — 10)(3D — 8) [(D — 5)(3D — 14) (u® +t2) — (D — 6)(D — 4)tu]
8 = 7 (D - 5)%(D — 4)25242u?
_ 3(D-3)(3D-14)(3D - 10)(3D - 8)
ho = 3 (D — 6)(D — 5)2(D — 4)2st3u? [(w - 9)(3D - 16)u’
+ (7D? — 68D + 164) tu + 2(D — 5)2t2], (5.128)
and by
— (D ;us)% by — — (D — 6%;1:2 + %) ks = (D - 4)t(uzD -9)
b = ¢2-9BD-14u[(6-Du+(@D-11) , _3(D-5)(D-4)@3D-14)s°
‘T (D —6)s2t3 T2 (D — 6)t3u3
ke = 3 L (_032 (2)11 t;uM) [(5D — 28)tu + (D — 6)t* — 2(D — 5)u?]
kr = g ( D(lz E)?L(?’_D‘l)}ifs)us [2(D — 6)(3D — 14)tu (u® + t?)
— (D = 5)(3D ~ 14) (u* + ¢4) +2 (5D — 49D + 118) %
ks = 3 ( D(lz ;):3;(3? 5)_(;))_(?:1]))2;3:;)u3 [3(1) —5)%(3D - 14)tu (u® + ¢?)

— (D —5)%(3D — 14) (u* + %) — (D — 4) (7D? — 70D + 176) tzuz]

_ (D=3)(3D —14)(3D —10)(3D —8) ) )
oo =3 (D —6)2(D — 5)(D — 4)2s2t4u? [(D—5) (D -2)u

+ (D - 6) (13D? — 129D + 318) tu® + 2 (5D° — 80D? + 422D — 734) t*u®

+(D - 6)(D - 5)(5D — 24)t3u + (D — 6)(D — 5)2t4]. (5.129)

Differential equations with respect to s can be obtained with the same method.
The differential equations for the master integrals are a very useful tool. Finding
an appropriate boundary condition we could try to solve them and calculate the
master integrals. For example, Gehrmann and Remiddi [28, 27, 25] have developed
a technique to solve the differential equations order by order in €, and they have
evaluated integrals even more complicated than the ones involved in the above sys-
tem. In our case, given the original calculation of Tausk for XBOX{™% (s,t) from
its Mellin-Barnes representation, we will use the differential equations to verify it

and guess the solution for XBOX3 % (s, t).
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5.8.3 Analytic expansion of the second master integral

Taking a closer look in Eq. 5.124 we see that in order to evaluate the master integral
XBOX3 % (s,t) one needs the e-expansion of the master integral XBOX] % (s, t)
(which has already been calculated in Ref [22]) together with its derivative and the
€ expansions of the master integrals of the sub-topologies which we calculated in
previous sections.

Solving the equation with respect to XBOXj 2 (s, t), we obtain, in the physical

region s > 0, t,u < 0,

T e {242 Sl S0 0)
(5.130)

where

o[ 6 1
Gi(t,u) =s 26{ 6—3+6—2(32—6Lz—6Ly)

(1-12n —24L, + L2 — 24 Ly + 16 Ly Ly + L2) — 43 — 18Lz+13L§+§L2

| =

+
2 2 2,83, 2 112
~18Ly +16Lo Ly + 11 L2 Ly + 18 L3 — 20 L L3 + 2 L +7% (17 Lo +17 Ly — =
. t . t t
—122¢(3) + 62 L, Lis (—;) — 62 Lis (——) + 625, (—->
S S

1
+im [2(16+6Lz +6Ly)—34—97% —6L, —10L2 — 6Ly, +14L, L, — 10L§]},
(5.131)
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2 1 5 7
— o2 ) _ _ Z —
Ga(t,u) =s { 64+€3( 8+2Lm+2Ly)

1/ 20 5 , , )
6—2<—?—E7r +7L$—Lz+20Ly—4LzLy—Ly)
]. 1 2 Lg 71'2 2
+ 2|5+ 1T L+ 2L - 22+ T (14450, ~29L,) +13L, — 8L, Ly 4L}
€
1 t ¢ t
F3La L2 I3+ 2 ¢(8) —2LoLin (-1 ) +2Lis (=) — 281, (£
Y voo2 s s ' s
37 37 s 22 .4 2., 8
?+E7r4+7Lw—5Lz—?Lz+ng+5Ly—20LzLy+§LiLy—2LZ
4 4
2 2 r2 3 3 4
+24L, L}~ L2L} ~ 8L} - - Lo L+ < L
2
+%(79—22L,,—5L§—200Ly+76LzLy+25L§)+(68-13Lz—33Ly)((3)

t
+(107% —82L, +17L2 + 12 L, L,) Lip <‘g> +(32—-60L, — 12 L,) Lis <—§

t t t t
+ (28 Lm - 6Ly - 32) 81,2 <—;> - 26 81,3 (-;) - 36 S2’2 (-;) + 86 L14 (_E>

2 1 1 31 , 0 0
tim |G+ (1= Lo+ L)+ 2 (1= 5" —10L; —2L; + 4Ly — 2L, Ly — 2L

)

€ 6
2 10 4 w2 2
+11+4Lz—2Lz+?Lz-i—?(—65+28Lz—Ly)+2Ly—8LzLy—8Ly
t t t
+2L2 —89((3) + (14 L, + 18 Ly) Liy (—g) — 32Lis (—;) + 448512 (—;) ]},

(5.132)

and L, = log(—t/s), L, = log(—u/s).
The three kinematically accessible regions of the phase-space are depicted in

Fig. 5.8.3.

(i) s > 0, t,u < 0. All logarithms and polylogarithms occurring in Egs. (5.131)
and (5.132) are real in this region.
Formulae for the other two regions, (ii) and (iii), can be derived by analytic
continuation, starting from region (i) and following the paths indicated in the
figure.
The analytic continuation can be performed through a few simple steps. re-

calling the +i0 prescription associated with the external kinematic scales.

(ii) t > 0, s,u < 0. Going from region (i) to region (ii), we have to pass through
two branches: ¢t = 0 and s = 0. We can then split the analytic continuation

into two steps:
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(i)

(111) ) S

Figure 5.7: The physical regions (i), (ii) and (iii) in the (s, ¢, u)-plane.

- we first split the logarithm T = log(—t) — log(s). At t = 0, nothing

happens to the polylogarithms S,, , (—t/s), but log(—t) gets an imaginary
part: log(—t)— log(t) — im.
We are now in an unphysical region, where both s and ¢ are positive
and u is negative. Using the transformation formulae for z — 1/z (see,
Appendix B.2), we can express S, ,(—t/s) in terms of S, ,(—s/t) and
log(t/s).

- To enter region (ii), we have to pass now the branch point at s = 0.
We split log(t/s) = log(t) — log(s) and U = log(s + t) — log(s) and we

analytically continue log(s)— log(—s) + .

In this way, for example, the logarithms in Egs. (5.131) and (5.132) undergo

log <—£> — log (—é) —2im, (5.133)
s

log (—g) — log (%) — 7. (5.134)

the transformation

(iii) v > 0, s,t < 0. The procedure to go from region (i) to region (iii) is similar

to the previous one, but it requires an additional step.

- We rewrite S,, , (—t/s) in terms of S, , ((s +t)/s), log(—t/s) and log((s+

t)/s), using the transformation £ — 1 — z, and we split the logarithms as
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before. In passing the first branch point at 4 = 0, the polylogarithms are
well defined while log(s + t)— log(—s — t) — im.

- We invert now the argument of the polylogarithms, expressing S,, , ((s + t)/s)
in terms of S, , (s/(s +t)) and log((—s — t)/s) = log(—s — t) — log(s).
Finally, log(s)— log(—s) + i, as we pass the branch point at s = 0 and

enter region (iii).
The logarithms in Eqgs. (5.131) and (5.132) undergo the transformation

log (—é) — log (é) -1, (5.135)

log <—%) — log (—g) —2qm. (5.136)

The expression for G;(¢,u) and Go(t,u) in this region can also be obtained

directly from the expressions in region (ii), using the symmetry t < w.

A non-trivial check of the correctness of the expressions of XBOX? (s,t) and
XBOX? (s,t) comes from Eq. (5.125), that must be identically satisfied, once the

respective € expansions are used.

5.9 The planar double-box topology

We denote the generic two-loop scalar planar double-box function in D dimensions

of Fig. 5.9 with seven propagators A; raised to arbitrary powers v; as

Phox?(hist) = [ [ e, (5181)
i imD/2 AT AP AP AP AT AL AT

where {v;} = vy, v, 13, V4, Vs, U, V7 and the propagators are
Ay = k2440,
Az = (ki +p1)*+10,
Az = (ky+p1+p2)®+10,
Ay = (ka+p1+p2)®+10, (5.138)
As = (k2 +p1+p2+ps)’+i0,
As = k410,

Ar = (ky — k3)? +40.
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141 Vg
y41 Da

Yy 144 Us

D2 D3
V3 Vy

Figure 5.8: The planar double-box topology.

The external momenta p; are in-going and light-like, p;‘? =0,75 =1...4, so that
the only momentum scales are the usual Mandelstam variables s = (p; + p;)? and

t = (pa +p3)2, together with u = (p; +p3)2 = —g—t.

5.9.1 IBP algorithm for the planar double-box

Smirnov and Veretin [58] found an algorithm based on IBP for the reduction of the
double-box to master integrals. Here we give a synopsis of their algorithm.

We first decrease the power of the first propagator v; to unity with the identity
81/11+ = (1/11+ + 1/22+ + l/77+) 37— 1/77+4- - (D — l/12337) (5139)

Three similar relations obtained by symmetry reduce the powers of v3, v4 and vg.

We can now reduce the power of v, to one with the identity

(D — 2 — t1993)122% = (D — 2 — vigrr)vaTT + (v2 — vr) (11T + 1337F)
+rTT (111767 + 133747) (5.140)

and with its symmetric we reduce v5 to unity as well. Now all powers of propagators

have been reduced to one except v;. The identity for the reduction of this last power
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reads
t(D - 6 - 21/7)1/7(1/7 + 1)7++ =
t 2
—(D —5—vy) [3D — 14 —2v, + 21/7;} v Tt + ;(D —4— )} (D -5—1y)

2 t
(D—4—uv)(D—-5—u7)+ 2;1/?7+J

S

+{(5+ +6%) [
— [2twr (w7 + 1)THT + 2(D — 4 — 7)1, 7T 3+}4—
+(D — 6){V77+(1+ +2t+3t+47 +61)

+@t +6T)1T + 21 + 3+)}5— (5.141)

which is valid only when all the powers are equal to unit. The reduction will stop

when 17 becomes one or two, leading to the two master double planar box integrals

(D,s,t) =PBOX;”(s,t) = Pbox”(1,1,1,1,1,1,1;s,t)},

(5.142)

$ | (D,s,t) =PBOX,”(s,t) =Pbox”(1,1,1,1,1,1,2;s,1) |

(5.143)

During the application of the above algorithm integrals with pinched propagators
are produced and they belong to the topologies that we have already studied earlier
in this thesis.

It is again possible to obtain the dimensional shift identities for the reduction
of the dimension of the master integrals in Eq. 5.142 by direct application of the
method described in Section 5.2.

The first master integral was calculated by Smirnov[21] from its MB represen-
tation. The second master integral was calculated by Smirnov and Veretin [58],
through a differential equation which expressed it in terms of the first master in-
tegral its derivative with respect to the one of the kinematic variables and simpler
master integrals of the subtopologies.

It appeared that the algorithm described in ref. [58] completely solved the prob-

lem of calculating on-shell double box diagrams. However, as was reported by Glover
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and Tejeda-Yeomans [60], it often happens that in the reduction of a given tensor
integral, the coefficients in front of the master integrals are of order O(1/¢). This
is a consequence of the fact that in the reduction of these integrals it is necessary
to reduce the dimension down to D = 4 — 2¢ from at least D = 6 — 2¢, and in the
system of equations for the dimensional shift, there are factors of 1/(D — 6) sitting
in front of the two master integrals. Thus, in order to calculate such tensor integrals
to O(e), one would need to know them to one order higher in € than they are given
in Refs. [21, 58].

A typical example is the following integral with an irreducible numerator:

dPiy dPk, Ag
D,s,t) =PBOX;3 =
@ (D, s,1) 3= / i D2 / iwDI2 A AT AP A AT AT AT
(5.144)
where we have an irreducible numerator
Ag = (k1 + p1 + p2 + p3)? + 0. (5.145)
The reduction to master integrals reads:
13D -14)s
® (D,S,t) _—iﬂ (D,S,t)
1 (D—6)st (D-3) —
—_— [ ] D t 24— D
2(D - 4)(D-5) (Dys,t) + 247555 1O @9
(s+1) 9
— — 68D + 164
3( 5(D —6)5% [(TD® — 68D + 164)s
+(3D — 14)(3D — 16)¢] (D, s,t)
_ 2)2 _ —_ _
4 (D — 3)*(2D —9) (D,s) + 3 (D —3)(3D — 10)
(D —4)%(D —5)s? 2(D —4)2(D —-5)*D —6)s%

x [8(D — 4)(D — 5)2s +(—11D% + 158D% —754D + 1196)¢] —CI (D, )

(D — 3)(3D — 8)(3D — 10)
(D~ 4)3(D — 5)%(D — 6)s%

+(23D% — 337D? +1640D — 2652)t] —@— (D, )

(D - 3)(3D — 8)(3D — 10)
(D — 4)3(D — 5)2(D — 6)s2¢2

+(D — 5)(3D — 14)(3D — 16)¢] —@— (D,1) | (5.146)

+3 (D —5)(7TD* — 68D + 164)s

+3 [(16D° — 229D* + 1088D — 1716)s
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The factors of (D — 4) in the denominators of the first two terms on the right hand
side of eq. (5.146) are the ones which cause the problem.

To circumvent the problem we calculate the integral with the irreducible numer-
ator directly from a Mellin-Barnes representation. It then can be used instead of
the second master integral PBOX, as a new master integral. We check our result
in two different ways: firstly, by verifying that the new basis of master integrals
satisfy a system of differential equations, and secondly, by using them to compute
the integrals of the old basis in D = 6 dimensions, both of which are finite, and

comparing the result with a numerical integration.

5.9.2 Calculation by Mellin-Barnes contour integrals of a
master integral

The analytic structure of the on-shell double box is rather simple, since it only
depends on two scales, and its only thresholds are at s = 0 and ¢ = 0. The main
difficulty in calculating this diagram is to find a way to isolate its infrared and
collinear divergences. For the analytical calculation it is convenient to use a Mellin-
Barnes representation, which enables us to isolate the poles in € in a very natural
way.
We shall consider the following class of Feynman integrals
ID(V1,V2,I/3,V4,V5,V6>V7,V8;) = / -dek/lz / -dDD]jz v ul )
s inDI2 AP A AP AP AT AP AT A

(5.147)

where we have kept the powers of the propagators arbitrary. At the end we will
specialize at the values 1y = ... =17 = 1 and vg = —1 corresponding to the tensor
integral of Eq. (5.144).

We derive our Mellin-Barnes representation for the two-loop integrals (5.147)
by doing the loop integrations one by one. In terms of Feynman parameters, the
ko-loop can be written as

/ dPk, 1 I'(vas67 —

D
— (_1)1’4567 5)
D2 A AL AL AT T(va)(v5)T (v6)I'(vr)

X
X /I_Ida?.7 :c;j_lé(l — Ty — Ty — Tg — $7) Q%“V4567’ (5148)
0 J=4
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where v4567 = V4 + Vs + Vg + 17 (similar abbreviations will be used below), and
Q = —A1:136£E7 - A3SL‘4£L’7 - Agl‘5$7 — S8Ty4Tg. (5149)

By introducing three Mellin-Barnes parameters, ¢, 5 and 7, we split the polynomial

Q into factors:
i dadgdr
T(vaser — D/2) Q¥2 757 = / E%;;_(_A1376377)a(_A3-T4337)ﬂ(_A81'5x7)T

X (_31;431;6)%_V4567_°‘—ﬂ_TP(—a)F(—,B)F(—T)F(V4567 — d/2 +a+ ,B + 7').
(5.150)

After inserting Eq. (5.150) into Eq. (5.148), we evaluate the Feynman parameter
integrals in terms of I" functions, which gives us the following Mellin-Barnes repre-

sentation for the k-loop:

/ dPk, 1 B (—1)vaser

inP2 APAFAP AT T(vg)T(vs)D(v6)T(vr)

100

1 dadfdr, e P isoramfor
“TD- u4567>_/ rip A AV AT ) ﬂ
XF(—CM)F(—IB)F(—T)F(V4567 - g +a+ ,B + '7')
XF(%—V567~C¥—T)F(§ —1/457—IB—T)F(V5+T)F(I/7+C¥+,B+T).

(5.151)

When this result is inserted into (5.147), the remaining k;-integral has the form of
an on-shell massless one-loop box diagram with indices v; —a, v, 13—, vs—7. We
repeat the above steps for this k-integral, using a further Mellin-Barnes parameter,

o, and finally obtain
(=D~ 1
F(I/Q)F(V4)F(V5)P(V6)F(V7)F(D - 1/4567) (2’/TZ)4

T(—a)T(=B)T(—7)T(vaser — 2 + o+ B+ 7)
I(v — a)l(vs — B)T (v — 7)

I(v1, v, V3, 14, Vs, Vg, V7, V3; d)

X / dadfdrdo(—t) =7 (—s)P~N*e

—i00

F(O’)F(l/n;;g—%—a—ﬂ—T—O') D D
(= — — — =~ _ _ B
TD —vmstaifir g wer—a- (G v =F-7)

D
xD(vs +1)I(vr +a+ B+ T)F(E —vggt+a+1+0)(vs—7-0)

D
XF(E—V238+,B+T+O')F(V2—O'). (5152)
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In deriving this formula, we have assumed that the various parameters are such,
that all the manipulations we performed are justified. This is certainly true if we are
able to find a set of straight lines, parallel to the imaginary axis, for the integration
variables «, §, o, and 7, such that the arguments of all the I" functions in it have
positive real parts. We then define the integrals (5.147) for values of the parameters
where such contours do not exist by analytic continuation.

Let us now consider the case with the irreducible numerator,

D (s,t) = I*72¢(1,1,1,1,1,1,1,-1).

On the one hand, from the definition (5.144), vs + vrs = 1 — 1 = 0. On the other
hand, if the real parts of the arguments of all gamma functions are positive, then
in particular Re(vs + 7), Re(o) and Re(vs — 7 — o) are positive, and therefore
Re(vs+wvg) > 0. Since this does not depend on D, it means that in order to calculate
the integral using the Mellin-Barnes representation (5.152), we must perform an
analytic continuation not only in D, but also in vs or vg. We choose vg. Setting

vg = —1 + 7 and all other v’s equal to one, we get

D (s,t) = 1115114—26(1,1,1,1,1,1,—1+n) =
7

Z / dadBdrdo(—t)~7(—s) 212+ (g)T(1 - o)

—100

1 lim !
['(—2€) nlo (273)

F("OI)F("ﬂ)F(—’r)F(l+7-)F(_1+n_7__0_)
Il —a)T(1 =BT (~1+n—1)
'l+a+8+7)I'2+e+a+B+T)

X re2—n—2+a+p+r7) I(-1—€e—B—-71)

xIn+e—a—pB~-17—0)T(1l—n—€+B+7+0)

xI'(-1—e—a-—-r7) (5.153)

X 'l—-n—e+a+7+0)

We can make the real parts of the arguments of all Gamma functions in Eq. 5.153
positive by picking, for example, n = 12y and ¢ = —12y, where y is some posi-
tive number much smaller than one, and choosing contours for the Mellin-Barnes
variables defined by: Re(a) = Re(f) = —y, Re(r) = —1 + 4y and Re(o) = 4y.
Starting from these values, we first perform an analytic continuation in 7 to
n = 0, keeping ¢ fixed, and then another one in € to the vicinity of ¢ = 0. The

procedure for both continuations is straightforward: keeping the integration contours
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fixed, we simply have to keep track of the poles of the I functions, and whenever
one of them crosses an integration contour, add its residue to a list of terms that
will contribute to the final answer. For exémple, with the above choice of contours,
the first crossing happens at 7 = 8y, when the pole at 7 = —1 +  — o crosses the
T-contour. After taking a residue in one integration variable, we continue to follow
the poles in the remaining variables, building up a tree of single and multiple residue
terms. By this procedure, poles in € are automatically expressed through singular I"
functions multiplying integrals that can safely be expanded under the integral sign.

To O(€%), it turns out that, along with terms where there is no integral left,
only single and two-fold integrals contribute, because terms with more integrals are
killed by the factor 1/T'(—2¢) in Eq. (5.153). In the two-fold integrals, one integration
can be done by Barnes’s first lemma. The single integrals that are left can all be
calculated by closing the contour and summing harmonic series. In the kinematic

region s,t < 0 the integral has no imaginary part and we find the following result:

5 (S’t)zl;g_z_%{g 2, 7

1
+2 [éﬁ + %47% —4(£ +12) L +8Lig (—t/s) — 8¢Liy (~t/s) — 16 g(3)]
_é4_1_322 1_63 262 _ 2 2y 72

38 37r€+<3€+37r€L 5(€+7T)L

+ (6 02— 20¢L — §7r2> Li, (—t/s) + (8¢ + 20L) Liz (—t/s)

2085 (—t/s) — 2005, 5 (—t/5) — 28 Lis (—t/s) + (286 — 20L) ((3) - 147;_4} |

(5.154)

with £ = log(t/s) and L = log(1+1t/s) . Expressions in other kinematic regions can

be obtained with the analytic continuations described in Section 5.8.3.
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5.9.3 Differential equations for double-box master integrals

It is possible to construct a system of differential equations satisfied by the double

box master integrals. In terms of the new basis, these differential equations are :

9  ((D-5)s—t
% (D,s,t) = W (D,s,t)
+((—f+;t‘)1?) ol | (D,s,1) —6(DS;4) (D, s,1)

(D—-3) — (D — 3)2
e T os +4 EyET 2000

(D — 3)(3D — 10)(2s + )
B D e + 1) ~D_®)

(D=3)3D—=8)(3D—-10)(s—t) ,~ D
(D —4)2s3¢%(s + t) o D:9)
(D-3)(3D-8)(3D—10)  ,~

+6

D s 11 - .1 (5.155)
0 _ 1(D-4)s
a @ (D’S’t) - _Em @ (D> S, t)
1(D —4)s (D—4)
iT—f—t— (D,S,t) - 9 st (D,S,t)

“2((?;?2 TO) Dsy +2 (<D s,f; :jtt OO,
15 (D — 3)(3D — 10)

D s+ D) (@)

(D-3)(3D—8)(3D—10)  ,~

D — a1 o) o (D)
e R o100

Expanding egs. (5.155,5.156) in €, and inserting the expansion of PBOX; from
ref. [21], of the pinched diagrams from previous sections, and the result of Eq. (5.154)
for PBOX3 we find that they are indeed satisfied.

Inspecting the right hand sides of the differential equations, one notices that in
Eq. (5.155), the coefficient of PBOX3, and in Eq. (5.156), those of PBOX,; and
PBOXj, are all proportional to D — 4. This means that, if PBOX; is known to
O(e%), the O(e°) part of PBOXj is, a priori, only determined by the system of

equations up to a t-independent constant.
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One also observes that the system of differential equations has a singular point at
s+t = 0. This corresponds to the special kinematic configuration where p; +p3 = 0.

At this point, the numerator of PBOX3 becomes reducible:

As = (k+p1+p2+ps)
= (k+p)?=P—-P+P—s, (5.157)

SO

Q) | (s1)

collapses to a linear combination of PBOX; and pinched diagrams. This singular
point can be used for the calculation of the ¢t-independent constant. In this way
Gehrmann and Remiddi [26] calculated an equivalent combination to PBOX3 of
the PBOX; and PBOX, master integrals, which is in agreement with the result
of Eq. (5.154).

5.9.4 Master integrals in D=6 dimensions

The master integrals PBOX; and PBOX; are both finite in D = 6 dimensions.
This can be deduced from power counting considerations in momentum space; it
is also easy to see by examining the arguments of the I' functions in the Mellin-
Barnes representation (5.152). With the dimensional shift equations that can be
derived from the Schwinger parametric form of the integrals and the IBP algorithm
to reduce the extra powers of propagators, we relate these master integrals in D =
6 — 2¢ dimensions to master integrals of the new basis in D = 4 — 2¢ dimensions.
Substituting e-expansions for the latter, we find that all pole terms indeed cancel,

and the finite parts are

b
PBOX,P=6 = {- % _,° 5.15
PBOX,P= = {2 % (5.159)
2 s(s+t) stf’ '
where
o = 92 _6¢3), (5.160)
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while

t2 = T+ 6Lis (<t/8) + (¢ + 7%) Lig (—t/5) +4£(C(3) — Lig (~4/5)) + %g

10
(5.161)
and
b = (2 ¢(3) — 2Liz (—t/s) — %212) L+ %(ﬁ + 7% L% + <2eL - %2> Lis (—t/s)
+ 24815 (—t/s) — 2859 (—t/s). (5.162)

The Feynman representations of the PBOX,; and PBOX, master integrals in six
dimensions are finite and can be calculated numerically. We have tested that the
numerical results are in agreement with the expressions of this section.

We note that this set of master integrals has been used by Bern, Dixon and

Ghinculov for the calculation of the two-loop corrections to Bhabha scattering [19].

5.10 Synopsis: The Master Integrals

Here we summarize the operational procedure for the calculation of the scalar and
tensor one and two-loop Feynman integrals appearing in 2—2 massless QCD scat-

tering.

e Tensor Reduction: From their Schwinger representation, tensor integrals
are related to scalar integrals of the same topology with extra powers of prop-

agators and higher dimension.

¢ Reduction Algorithm: IBP and LI recursive identities reduce all one and
two-loop topologies encountered in 2—2 massless QCD scattering to master
integrals.

e Master integrals:

We find the following master integrals

- The box in six dimensions and the bubble master integrals for the one

loop topologies

BOX®(s,t) = 6| (s,t), BUB(s)= —O—(s) ,




Chapter 5. Integration by Parts 139

- The two master cross-box integrals

XBOXy(s,t) = | Z'(s,t), XBOXy(s,t) = { Z (s,%)

The two master double-box integrals

PBOX,(s,t) = (s,t), PBOXjs(s,t) = o) (s,1)

The cross-triangle master integral

XTRI(s) = ~<<s)

The diagonal-box and the bubble-box master integrals

CBOX(s,t) = (s,£), ABOX(s,t) = _D(s,t)

The sunset and Tri master integrals

SUNSET(s) = —@—(s) . TRI(s) = —(I(s)

The analytic expansions in € of the master integrals are all calculated, therefore

we can continue with the main task of evaluating matrix elements at NNLO.



Chapter 6

NNLO virtual corrections for

quark scattering

In hadron-hadron collisions, the most basic hard process is parton-parton scattering
to form a large transverse momentum jet. The single jet inclusive transverse energy
distribution observed at the TEVATRON and CERN SppS shows good agreement
with theoretical next-to-leading order O(a3) perturbative predictions over a wide
range of jet transverse energies and tests the point-like nature of the partons down
to distance scales of 10717 m. However, data collected in Run I by the CDF col-
laboration at the TEVATRON indicated possible new physics at large transverse
energy [61). Data obtained by the DO collaboration [62] was more consistent with
next-to-leading order expectations. However, because of both theoretical and ex-
perimental uncertainties no definite conclusion could be drawn. The experimental
situation may be clarified in the forthcoming Run II starting in 2001 where increased
statistics and improved detectors may lead to a reduction in both the statistical and
systematic errors.

The theoretical prediction may be improved by including the next-to-next-to-
leading order perturbative predictions. This has the effect of (a) reducing the renor-
malisation scale dependence and (b) improving the matching of the parton level
theoretical jet algorithm with the hadron level experimental jet algorithm because
the jet structure can be modeled by the presence of a third parton. Varying the

renormalisation scale up and down by a factor of two about the jet transverse energy

140
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leads to a 20% (10%) renormalisation scale uncertainty at leading order (next-to-
leading order) for jets with E7 ~ 100 GeV. The improvement in accuracy expected
at next-to-next-to-leading order can be estimated using the renormalisation group
equations together with the known leading and next-to-leading order coeflicients
and is at the 1-2% level.

The full next-to-next-to-leading order prediction requires a knowledge of the
two-loop 2—2 matrix elements as well as the contributions from the one-loop 2—3
and tree-level 2—4 processes. Helicity amplitudes for the one-loop 2—3 parton sub-
processes gg—999, Gg—999, §q—7q'g, and processes related to these by crossing
symmetry, have been computed in [63, 64, 65] respectively. The amplitudes for the
six gluon gg—gggg, four gluon-two quark gg—gggg, two gluon-four quark gg—q'q’gg
and six quark §g—q'q'q"q” 2—4 processes and the associated crossed processes com-
puted at tree-level are also known and are available in [66, 67, 68, 69, 70, 71, 72, 73].

The calculation of the two-loop amplitudes for the 2—2 scattering processes

g+q — ¢d+¢ (6.1)
q+q — g+4q, (6.2)
q+q — g+g, (6.3)
g+g9g — g+g, (6.4)

has proved more intractable due mainly to the difficulty of evaluating the planar
and non-planar two-loop graphs. This issue has been completely resolved with
the techniques described in previous chapters and generic two-loop massless 2—2
processes can in principle be expressed in terms of the two-loop master integrals of
Section 5.10.

The first to address such a calculation were Bern, Dixon and Kosower [74] with
the maximal helicity violating two loop amplitude for gg—gg*. The whole set of
NNLO virtual corrections for the processes (6.1)- (6.4) were presented in references
[4, 3, 2, 1, 5]. Bern, Dixon and Ghinculov [19] have recently completed the first
full two-loop calculation of physical 2—2 scattering amplitudes, the QED processes

ete"—utp~ and ete—e e,

1This amplitude vanishes at tree level and does therefore not contribute to 2—2 scattering at

next-to-next-to-leading order O(a?).
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In this chapter we present dimensionally regularized and renormalized analytic
expressions for the NNLO matrix elements of the quark scattering processes (6.1)-
(6.2). As is common in QCD calculations, we use the MS renormalisation scheme
and conventional dimensional regularisation where all external particles are treated
in D dimensions. There is an overlap between the QED calculation of [19] and the
QCD results presented here and we expect that the analytic expressions presented
here will therefore provide a useful check of some of their results.

Catani has described the pole structure of generic renormalised two-loop ampli-
tudes [17] and we use his techniques to isolate the poles in the MS scheme. We find
that the pole structure expected in the MS scheme on general grounds is indeed
reproduced by direct evaluation of the Feynman diagrams. Ultimately these poles

must be canceled by infrared singularities from tree level 2—4 and one-loop 2—3

processes.

6.1 Notation

We consider the unlike-quark scattering process

a(p1) + @(p2) + ¢'(p3) + 7' (ps) 0, (6.5)
and the like-quark scattering process

a(p1) + 4(p2) + a(ps) + a(pa)—0, (6.6)

where particles are incoming and carry light-like momenta (shown in parentheses).

Their total momentum is conserved, satisfying
P +ph + 5 +pf =0,
and the associated Mandelstam variables are given by
s=(m+p)?  t=(+p)?  u=(p+p) (6.7)

We use conventional dimensional regularisation and treat the external quark states

in D space-time dimensions and renormalise the ultraviolet divergences in the MS
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scheme. The bare coupling «y is related to the running coupling o, = a,(u?), at

renormalisation scale p, by

a0 S. = a, [1 _b (O‘—) + (ﬁ—g - &> (&)2 + O(ai’)} , (6.8)

€ \27 e 2 27

where

Se = (4m)e™, v =0.5772... = Euler constant, (6.9)

is the typical phase-space volume factor in D = 4 — 2¢ dimensions. As usual, the
first two coefficients of the QCD beta function, Sy and $; for Np (massless) quark

flavours are

11C4 — 4Tg N. 17C% — 10C4Tr Ng — 6CpTg N,
By = A R F’ B, = A Alr Np FIRNF (6.10)
6 6
where N is the number of colours, and
N2 -1 1
Cr= SN Ca=N, Tr = 5 (6.11)

The renormalised amplitude for the unlike-quark process is given by
= Oy 4 (%) MmOy 4 (22} @ 3
|M>unhke 47'['053 l:,M > + (27_[_) |M ) + (271’) |M ) +0 (as)J y (612)

with |M®) representing the i-loop amplitude in colour-space. For the like-quark

scattering we have the related expression
- 0y _ (A© Qs y _
M 47ras[(lM )= M%) + (52) (IM®) - M)

+(22)" (M) - 1) + o). (613)

Here Iﬂ(i)) describes the ¢-channel graphs which can be obtained from the s-channel

diagrams by exchanging the roles of particles 2 and 4
My = ]MOY (2 & 4). (6.14)

Both |[M®®) and |ﬂ(i)) are renormalisation scale and renormalisation scheme de-

pendent.

In squaring the amplitudes and summing over colours and spins we find two

types of terms,
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e the self-interference of the graphs in a single channel, described by the function

A(s,t,u) for the s-channel and .A(%, s, u) for the ¢-channel, and

e the interference of the s-channel graphs with the ¢-channel graphs, described

by the function B(s,t,u).
Thus, for distinct quark scattering we have
(MIMumiske = 3" IM(q + -7 + ) = Als, ), (6.15)
while for identical quarks

(MMge = D IM(g+7—G+q)l?
= A(s,t,u) + A(t,s,u) + B(s, t,u). (6.16)

Similarly, for the crossed and time-reversed processes we obtain

D IMg+d—=q+d) = Alut,s) (6.17)
D IMg+a—=g+ )P = Alt,su) (6.18)
DIM@G+T—=T+ 7 = Au,t,s) (6.19)
Y Mg+ g=a+ Q) = Alw,t,s)+ Alt,u,s) + Blu,t,s).  (6.20)

The function .4 can be expanded perturbatively to yield

A(s, t,u) = 167%a> [A4(s,t, u) + (%) Ab(s,t,u) + (2%3;)2,48(3,@ u) + O(ag)J :

(6.21)

where
As,tu) = (MOJMO)y = 2(N? — 1) (t2:2“2_6), (6.22)
A, t,u) = ((MOIMD) + (MOMO), (6.23)

AB(s,tu) = (MOIMD) + (MOIMDY + (MOIMO)) . (6.24)
In the same manner

2
B(s,t,u) = 16n%a? [34(s,t,u)+(;‘—;) Bﬁ(s,t,u)+(;‘—;) BS(S,t,u)+0(a3)J,
(6.25)
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where, in terms of the amplitudes, we have

Bi(s,t,u) = — ((ﬂ(O)IM(O)) (M(O)IM(O)))
N? -1 u?
= 4 )(1—6)<S—t+6>, (6.26)
Bs(s,t, u) = ( 1)'M(0) (M(O)Im(l)> + <m(0)|M(1)> n (M(I)IH(O)))
(6.27)
B3(s,t,u) = ( MO |MDY 4 (MO

+MOIMD) + (MO[D) + (MOAP) + W”)W(O))) .
(6.28)

Expressions for A® and B, valid in dimensional regularisation, are given in Ref. [75].
The main goal of this thesis is to give analytic expressions for the functions .42
and B®. We first concentrate on the contributions to both .48 and B® due to the

interference of one-loop amplitudes with one-loop amplitudes, namely
ABD (5 ¢ ) = (MD|MDY, (6.29)
and
BEAX(g ¢ ) = — (W‘”W(U) + <M<1>W‘”>) . (6.30)

Even though they are simpler to evaluate than the two loop graphs, they form a
vital part of the NNLO virtual corrections. One-loop helicity amplitudes for the
2 — 2 quark scattering processes were given in Ref. [76] as truncated expansions
in € including their finite part. However, this is only sufficient to obtain the pole
structure of A1) and B8(1*V yp to 1/€2. To determine the 1/¢ and finite parts
requires knowledge of the one-loop amplitude through to O(e?).

Next, we give the analytical formulae for the two-loop contribution to .42
AB@O (5 ¢ 0) = (MO|MDY (MDA O)
and B8 |
B5®9(s, t,u) = (MV|M®) + (MOI) + (MOTMP) + (M)

which they consistute the core of our calculations.
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6.2 Method

As shown in Chapter 5, massless two-loop integrals for 2—2 scattering can be de-
scribed in terms of a basis set of scalar master integrals. The simpler massless
master integrals comprise the trivial topologies of single scale integrals which can

be written as products of Gamma functions:

Sunset(s) = —@— (s)
Glass(s) = —-CD— (s)
Tits) = ) )

the less trivial non-planar triangle graph [35, 36],

i) = —< ()

and two scale integrals that are related to the one-loop box graphs [77, 78],

Abox(s,t) = e*¢ :E(s,t)

Cbox(s,t) = (s,1).

The planar double box and non-planar double box

Pbox;(s,t) = (s,t)

Xboxi(s,t) = : X (,2)

involve multiple Mellin-Barnes integrals and are much more complicated to evaluate

as series expansions in €. Expressions for these integrals valid through to O(e%) are
given in [21] and [22] respectively.

It turns out that for the two latter topologies, integrals involving loop momenta in
the numerator cannot be entirely reduced in terms of the simpler integrals mentioned
above and an additional master integral is required in each case. Reference [58]
describes the procedure for reducing the tensor integrals down to a basis involving

the planar box integral

Pboxa(s,t) = t (s,t),
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where the blob on the middle propagator represents an additional power of that
propagator, and provides a series expansion for Pbox, to O(e®). However, as was
pointed out in [60], knowledge of Pbox; and Pbox, to O(€?) is not sufficient to

determine all tensor loop integrals to the same order. A better basis involves the

tensor integral,

PbOX3(S,t) = (D (S,t):

where (@ represents the planar box integral with one irreducible numerator asso-

ciated with the left loop. Symmetry of the integral ensures that,

Q | 8= Q| (1)

Series expansions for Pboxs are relatively compact and straightforward to obtain
and are detailed in [79, 26]. Pbox; can therefore be eliminated in favor of Pboxs.
We note that this choice is not unique. Bern et al. [19] choose to use the Pbox; and
Pbox, basis, but with the integrals evaluated in D = 6 — 2¢ dimensions where they
are both infrared and ultraviolet finite.

Similarly, the tensor reduction of the non-planar box integrals [78] also requires

a second master integral,

Xboxs(s,t) = j[ X (5,1),

where the blob again denotes an additional power of the propagator. For the non-

planar graphs there are no complications as in the planar case and all tensors to O(¢°)
may be described in terms of the series expansions of Xbox; and Xbox, through to
O(€%) [79, 78].

In general tensor integrals are associated with scalar integrals in higher dimen-
sion and with higher powers of propagators. This connection can straightforwardly
be achieved using the Schwinger parameter form of the integral [80] and the ex-
plicit expressions for generic two-loop integrals with up to four powers of loop mo-
menta in the numerator are presented in Chapter 32. Systematic application of the
integration-by-parts (IBP) identities [57, 56] and Lorentz invariance (LI) identities

[25] is sufficient to reduce these higher-dimension, higher-power integrals to master

2 A method to reduce tensor integrals constructing differential operators that change the powers

of the propagators as well as the dimension of the integral was presented in Ref. [34].
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integrals in D = 4 — 2¢. Some topologies that occur in Feynman diagrams such as
the pentabox [80] are immediately simplified using the IBP identities and collapse to
combinations of master integrals. However, the tensor integrals directly associated
with the master integrals usually require more care. Explicit identities relevant for
the tensor integrals of the Abox and Cbox topologies [80], for Pbox; and Pbox;
integrals [58] and for the Xtri, Xbox; and Xbox, integrals [78] needed to be worked
out. Using these identities, we have constructed MAPLE and FORM programs to
rewrite two-loop tensor integrals for massless 2—2 scattering directly in terms of
the basis set of master integrals.

The one-loop integrals are much easier to solve. There are only two master

integrals, the scalar bubble graph,

Bub(s) = €™ —O—(s) :

and the one-loop scalar box graph,

Box(s,t) = €€ (s,1).

where we redefined the one-loop master integrals of Chapter 5 with a multiplicative
factor e for convenience in renormalising with the MS scheme. We treat the tensor
integrals in the same way as the two-loop integrals: shifting both dimension and
powers of propagators and then using IBP to rewrite the integrals as combinations
of Bub and Box. We note that this is not a unique choice for the master integrals.
The one-loop bubble graph is proportional to the one-loop triangle graph with one
off-shell leg. Another common choice is to replace the one-loop box in D = 4 — 2¢
by the finite one-loop box in D = 6 — 2¢, Box®.

The general procedure for computing the two-loop amplitudes is therefore as
follows. First the two-loop Feynman diagrams are generated using QGRAF [81]. We
then project by tree level, perform the summation over colours and spins and trace
over the Dirac matrices in D dimensions using conventional dimensional regularisa-
tion. It is then straightforward to identify the scalar and tensor integrals present
and replace them with combinations of master integrals using the tensor reduction of
two-loop integrals. The final result is a combination of master integrals in D = 4 —2¢
which can be substituted for the expansions in €. For the interference of one-loop

amplitudes with one-loop amplitudes we have a slightly different approach since we
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first calculate the tensor and scalar integrals of the amplitudes in terms of the one-

loop master integrals and then we contract with each other performing the spin and

color traces.

6.3 One-loop contributions for unlike-quark scat-

tering

We first present the one-loop contributions to the NNLO virtual corrections. In the
unlike-quark case we obtain,
ABON (st u) = [|[TR, + Fr + FoP + (N? — 1) |TR|?] (Mo Mo)
+ 2Re [(m + Fo+ F) P+ (N2 = 1) IREF)]

N*—3N2+3 N?+3
+ (N2 — 1) I:Tf3(5,t,u) + N2 Fs(s,u,t)
N?2_-3
+ N2 [f4(8,t,U) + *7:4($au)t)]:| ) (631)

where the infrared poles present in the one-loop amplitude proportional to the tree-

level matrix elements are given by

TR, = T;@ [%Bub(s)— %Bub(u)_umb(t)}, (6.32)
2 1 1

which diverge as 1/€* and 1/e respectively. Both

. 1 3(1—¢)
fr_ﬂo(_e+ 3 — 2

Bub(s)) , (6.34)

and

_ €[N2(11+ 2¢) + 9 — 4€7]

et oB 2N ) (6.35)

Fq

are finite terms multiplying the tree-level matrix elements. The functions

NZ -1
2N

Fi= [(N2 —2)f(s,t,u) + 2f(s,u,t)] ) (6.36)
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and
N?—1
= - 37
]:2 oN l:f(‘S?tau) f(s,u,t)] (6 )
are finite and multiplied by the infrared poles of the conjugated one-loop amplitude,
with
3s% + Tu? + 9¢? u? + 12 + 252 Su+ Tt
f(s,t,u) = [ 2 RN CEy +e€ . [Bub(t) — Bub(s)]
6t° + 2u® — 3es”
+u(1 — 2e) i u2 3¢s Box®(s, t). (6.38)
S

Finally the square of the finite part of the one-loop amplitude is fixed by the finite

functions F3 and Fy,

t4 2,,2 4
Fs(s,t,u) = IBoxG(s,t)|2{ + 6tu +u]

252
+ 2Re { [Bub(t) - Bub(S)]T Box®(s, t)} [ZUS — tuz;&z“ i
+ [Bub(t) — Bub(s)[? [5t2 - 2;? + WJ L0, (6.30)
and
Fa(s,t,u) = 2Re {Boxﬁf(s, t)Box®(s, u)} [%’125_“2)}
+2Re { [Bub(w) — Bub(s)]" Box®(s,) } [“(”2 - 22? + 3u2)]

3(t? — tu + u?)
2s2

] + O(e).
(6.40)

+2Re { [Bub(u) — Bub(s)]' [Bub(t) — Bub(s)]} [

In the latter expressions, we have discarded contributions of O(e).
After explicit series expansion in €, the infrared singular terms ZR; and TR,

reproduce the pole structure obtained by expanding

me = g (e [V (5) 5 () -2 ()]
(6.41)
e = g (3+2) |3 (_ﬁg)f_%(_ﬂ;)f], 6.2

which is the singular structure obtained by straightforward application of the for-

malism of [17, 18]. To rewrite Eq. (6.31) directly in terms of ZR; ¢ and IR c
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rather than ZR,; and ZR,,; requires the finite difference to be evaluated through to
O(e?).

Equation (6.31) is valid in all kinematic regions. Series expansions in € in a
particular region can be easily obtained by inserting the appropriate expansions of
the master integrals. In this equation, the finite functions are multiplied by poles in

€, so they must be expanded through to O(e?).

6.4 One-loop contributions for like-quark scatter-
ing
For the like-quark contribution we find a similar expression,

BV (s ¢ 4) =
—2Re { TR+ Fr + Fy) (TR + F, + Fy) (Mol Mo)
+(N? = 1) (TRt — Fr — Fg) TRt (Mo| Mo)

+ @R+ T+ F) F 4 (N = ) (TR~ F, = F,) ' Fot (5 62 1)

+ f;(s,t,u)fg(t,s,u)

N2-1 N*—N2-1
N 2N?

4 opnr2
e [AG bt s,u) + (s 4 1)
2
3]\2[ - L ts 8, 0) fult, s,u)} } (6.43)

The infrared singular functions are given by

R, = - (2‘1 - %Bub(s) + %Bub(t) - (N—N“_)Bub(u)J, (6.44)
TR = 6(23_ J -NN_ 1Bub(s) — %Bub(t) + %Bub(u)], (6.45)

which diverge as 1/€%. The finite renormalisation term is

Fr. =8 (—% + 3351__22) Bub(t)> , (6.46)
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while the remaining finite contribution multiplying tree-level is given by

= _ €(N?(11+2¢) +9 — 4¢?)
97 22+€)(3-2¢)N

Once again, the finite part of the crossed one loop amplitude multiplying the infrared

Bub(t). (6.47)

divergent terms of the one loop amplitude generates finite functions

, N?-1
A= = [(V? = 2) fuls,t,w) + 2a(s,t,0)] (6.48)
and
, N?2-1
“7:2 = W[fl(sat)u) _f2(3at’u)]a (649)
where
2
fi(s,t,u) = 8—1;(1 — 2€) [t + u® — 2¢(¢® + %) + €°5%] Box®(s, 1)
_2 _ 2 a2 4 (e a2
+st(2+e) [2u(2u — t) + e(u® — tu — 4¢) + €%(ts — 4u?)
+€%us + e*ts] [Bub(¢) — Bub(s)], (6.50)
and

2
fa(s, t,u) = ;(1 — 2€) [2u® — €(t® + s* + u®) + 3s%€* + 5%€®] Box®(s, u)
2

LS(T—{—E—)— [6U2 - 2t2€ - 62(2t2 + 5U2 + 3tU) - 6382

+¢€*ts] [Bub(u) — Bub(s)]. (6.51)

Finally the square of the finite part of the one-loop amplitude is controlled by the

finite functions f3; and f;
Fals,t,u) = % [( +u2)Box®(s, 1) + (2u — 5) [Bub(s) — Bub(t)] } + O(e), (6:52)
and

Fals, tu) = % {23Box6(t, ) +3 [Bub(u) - Bub(t)] } +O(e). (6.53)

Again, the infrared singular structure obtained by explicit expansion of TR, and

TR, as series in ¢, agrees with that obtained using the formalism of [17, 18]

o= i (e 2) 3 (45) 5 () 252 ()}

(6.54)
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and

— ec” 1 3 N2—1/( u*\° 1 2\ 1 p2\ ¢

TR = 42 Y LAY L)
Rurc I'(1—¢) (62 i 26) { N ( s ) N ( t) TN\ 4

As before, we can rewrite Eq. (6.43) directly in terms of f’ﬁt,c and I_’R,nt,c rather
than ZR; and ZR; ¢ provided the finite difference is evaluated through to O(e?).

6.5 Unlike-quark scattering two-loop contributions

In this section, we give explicit formulae for the e-expansion of the two-loop contri-
bution to the next-to-next-to-leading order term A%(s, ¢, u). We divide the two-loop
contributions into two classes: those that multiply poles in the dimensional regular-

isation parameter € and those that are finite as e—~0
A8 X0 (5t ) = Poles, + Finite,. (6.56)

Poles, contains both infrared singularities and ultraviolet divergences. The latter
are removed by renormalisation, while the former must be analytically canceled by
the infrared singularities occurring in radiative processes of the same order. The
structure of these infrared divergences has been widely studied and, as has been
demonstrated by Catani [17] and detailed in Chapter 2, can be largely predicted.
For the application of the formalism we choose to decompose the tree-level and one-
loop amplitudes in terms of the |h) and |v) color vectors in color space of Section 2.7
and in order to isolate the singular part of the two-loop amplitude we make use of
the expression of Eq. 2.38, where the color charge matrix is given by Eq. 2.50. The
Poles, are then determined up to a process and renormalisation scheme dependent

function which contains only single poles and is controlled by the term H(® of

Eq. 2.39.
For the case of the quark form factor (in the MS scheme) it is given by
1 ey /1,26—1')\12# 2e
HP() = — H® 6.57
(€) 4eI’(1 —¢) ( 2p1.D2 ) (6.57)
with

16

1 ) 28
H® = [Z’Y(l) +3CrK + §C2BOCF - 350017 - (3 - 7(3) CFCA} (6.58)
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where
17 88 4 32
Ya) = (_'3 + 24C2 - 48(3) C%‘ + <_? - ?C2 + 24C3) CFCA + (g + E‘CZ) CFTR NF.
(6.59)
and the constant K is
67 72 10
=|—=-—= - — . .6
K (18 6>C’A 9TRNF (6.60)

We expect that in the four-quark two loop amplitude, we might obtain contributions

from H®@ for each of the six colour antennae.

6.5.1 Infrared pole structure

Applying the formalism to the case at hand, we find that the pole structure of the
two-loop amplitude interfered with tree level has the following structure

Bo

Poles, = QRGI: %(M(O)II(I)(G)I(I)(G)|M(0)> -= <M(0)|I(1)(6)|M(O)>

<M(0)|I(1)(6),M(1)ﬁn>
_ (1 —2¢) (fo
ey ) (1) (0)
+e —F(l J (—6 +K> (MO (2€)|M )

+ (M(O)IH(z)(e)|M(°))} . (6.61)
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The colour algebra is straightforward and we find

(MOID ()| MOy = (MO | MO

s (e 2) [ (5 5 (8 -5 ()]

(6.62)

(M(O)II(I)(E)I(I)(G)IM(O)> -
(T (1 3\ INT-3NP 43 2\ NP3 i\
Nl—e)2\e 2 N? t N2 u
N2_2 “2 € u2 € N2_3 /1'2 € N2 €
- (5) (F) 5 () ()
2\ € 2\ 2¢
_® 1o
( u) +N2( ) J (6.63)

) 7(» Wfny _ _ €7 (1 3
(MO0 = = (L4 7

(B () 35 ()] e

4 [% <J§) - %[_ <—”72)J (N? = 1) @y (s, 8, u)} (6.64)

and

(MO|H® ()| M@y = (MO A )
<Y 2\ 2¢ 2\ 2€ 2\ 2¢
¢ go|(_& _E) (K
A= [( o)+ (5) () | e

where the square bracket in Eq. (6.65) is a guess simply motivated by summing
over the antennae present in the quark-quark scattering process and on dimensional
grounds. Different choices only affect the finite remainder.

The functions ®; and ®, appearing in Eq. (6.64) are finite functions and are
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obtained from projection of I (1) onto the one-loop amplitude. We find

By (s,t,u) = N;; L [(N? - 2) ¢(s,t,u) + 2¢(s,u, 1)]
26(3 %) [N2N_ = (6 — 7e — 2¢6%) — % (1062—463)} Bub(s) (M@ MO
) () ) ) e
o [1 ot Bub(s)| (MOMO) (6.66)
(s, t,0) = =L 16,,0) — (5,0,

(D) ()5 (e e

where the function ¢(s,t,u) is written in terms of the one-loop box graph in D =

6 — 2¢ and the one-loop bubble graph in D =4 — 2¢

4(u? + %) — 2¢(3ut + 6t + 5u?) — €25(7t + 5u) [Bub(s) — Bub(t)
¢(87 t? u) = 2
s €
2 4 9y — 3¢
fu(l—26%F s 3¢5 Box®(s, 1), (6.68)

Our explicit Feynman diagram reproduces the anticipated pole structure exactly
and provides a very stringent check on the calculation. We therefore construct the

finite remainder by subtracting Eq. (6.61) from the full result.

6.5.2 Finite contributions
In this subsection, we give explicit expressions for the finite two-loop contribution
to A%, Finite,, which is given by

Finite, = 2Re(MO| M P fny, (6.69)
For high energy hadron-hadron collisions, we probe all parton-parton scattering

processes simultaneously. We therefore need to be able to evaluate the finite parts

in the s-, t- and u-channels corresponding to the processes
g+q - J+¢
g+qd — 7 +g
g+q — g+d,
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respectively. In principle, the analytic expressions for different channels are related
by crossing symmetry. However, the cross-box diagram has cuts in all three channels
yielding complex parts in all physical regions. The analytic continuation is therefore
rather involved and prone to error. We therefore choose to give expressions describ-
ing A%(s,t,u), A%(t,s,u) and A%(u,t,s) which are directly valid in the physical
region, s > 0 and u,t < 0, and are given in terms of logarithms and polylogarithms
that have no imaginary parts.

In general the expansions of the two-loop master integrals contain the generalised
polylogarithms of Nielsen

Spp() = ————Egl_)y;;:; /O gl ) kt’gp(l —zt). np>1 z<1 (6.70)

where the level is n + p. Keeping terms up to O(e) corresponds to probing level

4 so that only polylogarithms with n + p < 4 occur. For p = 1 we find the usual
polylogarithms

Sn—l,l(z) = L1n(z) (671)

A basis set of 6 polylogarithms (one with n 4+ p = 2, two with n + p = 3 and
three with n + p = 4 is sufficient to describe a function of level 4. At level 4, we
choose to eliminate the S»2, Si3 and S functions using the standard polylogarithm
identities [82] and retain the polylogarithms with arguments z, 1 — z and (z — 1)/,

where

Uu
__t R Y , 72
T . Yy . z, : = (6.72)

For convenience, we also introduce the following logarithms

L, = log (%t) . L,=log (%“) . Ly=log (%) (6.73)

where p is the renormalisation scale. The common choice u? = s corresponds to
setting L, = 0.

For each channel, we choose to present our results by grouping terms according
to the power of the number of colours /V and the number of light quarks Ng so that

in channel ¢
. 9 2 1 Np 2
Finiteg. =2 N* —1 NAC+BC+N3CC+NNFDC+WEC+ NiF. ).

(6.74)
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The s-channel process ¢Gg—q'q’

We first give expressions for the s-channel annihilation process, ¢g—7¢'. We find

that
As:[umm+(zL—%>m@)<g+%g_%amm)

121 11 296 4
+—Lf+<—?Lﬁ+11Lz— >L3+ L+ (3L——9>L§

18 27 6 18
11 5 o 197\ , 2 47 95
-, —-= L -z _ = -
+ g Lv 67r+18> z+< 3L7r 187r +6¢3 24>L
1 409 13 4 7 5 197 23213 | [t2 +u?
-7 =< Z =
lag™ TG 216) 20" 6" T3St 2592} [ 52
. . ~1 7
+| — 3Lig(y) + 6 Lig(z) — 3 Li4 + —2L; — - | Liz(z)

. 7 11
+3Lle3(y)+(2L2+ L+ = w) 12()+( 6L2+§Lz>Ls

L
1 13 3 44
+<5Lyﬂ'2——ﬂ'2—<‘3——) < Z -Q_)Li
49 7 47 t2 —u? t3
Ly— = L8 — — "4+ — n? L2 —
+< 36) 120" " 36" +2<3“ 52 J+[3 = 52y

-1

+3 Li4(y) - 3Li4($) +3 Li4 (:E ) - 3Lx Li3(y) - g Li3($)

1 11 1
+<§Lz——7r2) Li2(a:)—€LmLs+§L§+ <—%Ly+§> L3

2 2
5 1o 1) 1 7 32
Z —~L,m -
+<4L +4 +6>Lw+< 7’ 67r+3C3+9>L
1 11
+—at— a4 4¢ (6.75)

40 36
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| 22 22 22
B, = [~6Li4(:c) ~ 3 Lis(y) + (—3L§. -5 L= Ly +27r2> Liz(z)
22 .. 22 22 88
+<6Lz + ?> Lig(z) + <?L§ — 2L - S Ly +22Ly — ) L

1 125 1 31 743
—§L§+< Ly +——) L3+ <§LZ——Ly+37r2——) L?

18 6 36
31 4 9 307 49
L2 =2 e _

+( 5 ( 37r +2>L +727r+C3 27>Lz

1., 71 4 2 5 689 73 275
ity gt ( 3" +§)L+<‘W ‘43“ﬁ)L

9 4 55 , 443 30659 | [t2 + u?
T T T 36 % T e ] [ 52
[ rz—1
+| — 12 Lig(y) + 3 Lig(z) —8Li4< ) + <2Ly +8) Liz(y)
3 11 4
+| - §L§ + (_—SLy - 7) Ly+8L, - §7r2) Liy(z) — 12 Ly L, Lis(y)
1y . 1, 11 11
+ 4Lz—12Ly+"2_>L13(SL‘)+<?Lz 3L + = 3 L? —?Ly>L3
17 s, 131\ - 25,5 15, 13 , 289) ,
g Lot | Ly L S LT Ly —
( + 36) ”( T 36 ) L
5 89 37 17
L3+5L2+ 2L, LA Y —
(3 Pl gLy b g | Le— gLyt g

7 2 361 2 59 2 64 1 4 44 2 tz —u2

+
t3 ud z-—1
2 2 . . .
,:— 7L$:' o + [5LyJ porie 12 Li4(y) + 12 Lig(z) — 12L14< . )
+

. 91 .. .
6L, — 6) Lis(y) + (— 6Ly, + 5) Lis(z) — 6 Ly Ly Lia(y)

1
—I—<<—6Ly—g)Lz—6Ly+27r2)L12(z)+(31Lm—13—1Ly>Ls
1 5 15 , s 17V
—5L2+<2Ly—6>Li+< < Ly 2Ly—7r+ﬁ>Lz
7

1, ) 25 37 3
- = L 60— — L
+H - L+ (3 )L + 5™ =60 Q)L +4 3

5 64 17 2
+EL§+(—Z7T +6¢+ ) v~ 5 4—§7r2+5C3 (6.76)



Chapter 6. NNLO virtual corrections for quark scattering 160

Cs = [16 Lis(y) + 8 Lig(z) — 16 L, Liz(y) — 8 L, Lis(z) + (4 L2+ §7r2) Lig(z)
+8L§Li2(y)+%Li+(gLy—g)Lz+(—%Li-{-gLy—%yﬂ_l_%)Li
+(§L2+2L2+(?W2—2§7>Ly+%ﬂ2—6§3+lgﬁ>&c
+%L3—§L2+(—§7r2+15)L§+<~%W2+6C3—?)Ly
_%W‘l*’%”z_%gﬁ-%} [t2:_2u2J

: . fz—-1
+ (12_L14(y) — 24 Lig(z) + 24 Lig (m ) + (— 18L, +10L, — 2) Lis(y)

8

+| -2L, + 18Ly+4) Liz(z) + (2Lg+ <6Ly —4) L. —2Ly+4ﬂ2) Liz(z)

+ 18L,,.Ly-4L§> Liz(y)+§L§+ <—3Ly— g) L3

1 15 11
+ 15L32,+Ly+1—27r2—z>L2+(—L2—4L§—2Ly7r2+Ew2+8C3+6>Lz
Loa 703 7 2 9,2 (3 o
6Ly+3Ly+<127r ) Ly + 2" —16(3+6 | Ly

gtz 4 - il
tag ™ g C3“ 7| T35 o+ 3L
7 15

. . . 3
+4Lis(y) + 2 Liz(x) + (— 2L, +4Ly) Lig(z) + 5 LS + (— 1l - Z) L2

4 2 12 47y g 12
+7% — 12 (3 (6'77)

5 3 5
+< Lg——Ly+—7r2,—6> Lz+zL3+9L2+ <—1—97r2+6> Ly
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N 2 22 5 ;| 389
D, = [ngg(.’L‘)—ngng(CL‘) 9L ( 2L, + L 54 L,

2 4 29 1 s (10 , 11
2 -Z L = =L
-+ Lm'f‘( 18 3 ) an‘|‘<97T-|‘6) T

9
1 25 455 41 49 t2 4 2
+(——7r2+—> Ly——+—w2—ﬁ§3} [—UJ

12 54 54 ' 36 32
1., 1 Lys 18,5 (4, 8 2 5| [t2—u?
12—z L,—=
+[<3L2 3LZ)LS gle—glat|g™ *3 9" 52
1 1 8 2
+3 Lo Ls EL gLetgm 2 - (6.78)
4. 4. 4 4 4 29 2
4 29 4 223 2 77
4 4L, 2 S Sk B
+< Le—dly+3ly+ 5 3L’”)L3+< 50 T3lv " | Le
4 29 223 23 35 685 7 2 + u?
_L3__L asY a2 L. — 2= o EoY 02
t9 T +<54+ ) v 189 8T 36" 52
B
2 5 2 2 2 2 5, 13 ,
-z Z L -2\ L. -2 =
+ ( 3Lz+3Lz+3Ly 3 y> s ng-i—ng
8 , 16 2 5 13 , 8 , 16 8 o [t2—u?
+ ‘5“‘3>L“° Lt gLt 575 ) ™| |
2 2 16 1 16 1
-z = Ly——1L Ly — -2 6.7
+ 3Lx+3Ly> 5 v 3 y+9Lz+3Lz (6.79)
B 20L 50 2 4 2\ [t2+u? 6.8
Fs = ot Tg” +9L T2 (6.80)

We can check some of these results by comparing with the analytic expressions
presented in Ref. [19] for the QED process ete”—pup~. Taking the QED limit
corresponds to setting C'y = 0, Cr = 1, Tg = 1 as well as setting the cubic Casimir
C3 = (N? — 1)(N% — 2)/N? = 0. This means that we can directly compare E;(cc
CrTr Nr) and Fy(ox T3 N2) but not Cs which receives contributions from both Cj
and C%. We see that (6.79) and (6.80) agree with Eqgs. (2.38) and (2.39) of [19]
respectively.

The other coefficients, A, B,, C; and D, are new results.
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The t-channel process g+ §—q+ ¢

The t-channel process, ¢ + §—q + @ is fixed by A3(¢,s,u). We find that the finite
two-loop contribution in the ¢-channel is given by Eq. (6.74) with

A = [—2Li4(:z:)+ <2L —1?> Lis(z) + (%ILE—L3+§W2> Lis ()

121 5, (22 11 296 iy 14 1 3
- = Liv| -=-21L,
+18L+<9Lz 3L$ 27)L+ ( 5 3Ly Lz
7 , 20 11 0 46 2, 373 ,
- — 4+ L)L -— 4= -zt L,
+ 67r+3+6 y) z+({ 9+3Ly7r 7 7
409 11 , 23213 49 , 197 1 5% +u?
"ot 743) it e 9™ T3 " H 2
[ . fz-1 . . 7
+| —3Lig . — 3Lis(y) — 6 Lia(z) + | 5 L, — = | Liz(z)

1 1 7 11 11
L. Li - 2__L2 ° s - =L, - = 2 s
+3L, 13(y)+< 5T 3 z+2Lz) ng(z)+( s L 5 LZ)L

1 19 1 55 7
_— P - — 4L, | L} = 4+-L, | L2
6 z+< 18+ y) -’”+< 2 +18+4 )Lm

1 20 32 19 29 2_ 42
+<__Ly7r2__772+—— Cs) e +2C3} {s t2u}

36 120"

_1) +3Li4(y)+3Li4(fv)+( 3L, —5) Liz(z)

1
—3LmLi3(y)+<§7r2+ng)L12(m)+ Lo Ls+ L4 ( L, —§>L3

5 1 32 7 5 55
SLy+2| 24 (ZLyn? -4 -7 | L, — — — 4 :
+(4 y+> “‘+<2 L A" TggT t4G (68D)
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B, = [6Li4(a:) + (—GLx + %) Lis(z) + (23—2 Ly - t—‘le — 27 +3Lg> Lis(z)
+23—2Li3(y)+(—%—%L§+22Ly—%H-i—t—‘leLy)Ls—LyLz
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5 1 , 3 3 5\ .2 16 s 29 ,
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1 7 64 5 13
+ZL2+1—2~L§+(—2w2+6§3+§)Ly+ﬁ7r2+%7r4—43 (6.82)
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C, = [16 Lis (“’ ; 1) + <l6Ly - 8LE) Lis(z) + (- 16 Lg -+ 16Ly) Lis(y)

2
3

4

—8Liy(z) + <4L§c +8L2+ 1?673 - 16 L, Ly) Lig(z) + = L2 — 3 L,L3

+(3—5L§— §7r2> L+ (5L§+9L§+ (gw2—19> Ly+16C3—97r2> L,
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+ 12Li4(mx ) + 24Liy(y) + 24 Lig(z) + (—24Lz+8Ly+6> Lis(z)

+[6L2+ (—6—4Ly> Lz—4LZ+47r2+2Ly) Liy(z)

5 7
+ —10Ly—8Lx+2> Liz(y) + = L4 + <2Ly—2L§——7r2—6> L2

6 3

+ —;Ly+§)Li+(—§L2—3LZ+(g+%7r2)Ly+16C3—?7r2—12>Lz

—%L3+§Lz+(iwz—g)L§+<%ﬂ2+6—6Qg)Ly
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—2Li3(z) — 4Liz(y) + (2 Ly — 4Ly> Liy(z) + (- 3+ 2Ly> L2

+<w2—3Ly—§L§)LI+£L3+§L§+<6+;7r2)1:y+£7r2—8g3 (6.83)
D, = ligLig(x)—ngLiz(w)—%Lf+(—?Lx+§Lg+%>Ls

+ng+(—?—;—%Ly>Lg+<%+%ﬂ2>Lm+<§—Z—1—127r2)Ly

+ (%Li+%Lz>Ls+§Lg_l_’78Lg+<—§+§7T2)La:+éﬂ'2] [sz;uz]

—leLs—leng—lLﬁ (6.84)

3 9 9 2
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8 . 4_, 4 8 . 2
Et = [— §L13(ZE) — §L13(y) + (_ gLy + §La:> le(.’L‘) - ngz Ly

+<_4Ly+§7r +§Ly+€_§LxLy> L+ (—G——I-gLy—gLy-i-gﬂ' L,
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+ —%—ng) Ly+'7r2} [32;“2]
+;@Ly+§Ld@—%L2—§WLm§Ly (6.85)
Fy = [§L§+(ng—z—g>Ls+gLﬁ—§—ng+g} {#] (6.86)

The u-channel process q + ¢ —q+ ¢

The u-channel process, ¢ + ¢'—q + ¢’ is determined by A8(u,t,s). We find that the
finite two-loop contribution in the u-channel is given by Eq. (6.74) with

—1 11
Ay = [—2Li4(mx )+<2Lz+?—2Ly)Li3(m)+(2Lz+%—2Ly>Li3(y)

11 1 11 . 121
+<—L§+ (——+2Ly> Lz—§7r2+—Ly—L§> Lig(x) + — L2

3 3 18
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C, = [— sLi4<“’ . 1) — 16 Lig(y) + <8Lz - 8Ly) Lis(z) + (ngc +8Ly) Lis(y)
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11 9 289 15 511 | [t2+ 2
+(3-5 7r2>L§+<—97r2+843>Ly+57r4 o 2-—( H—u2 }

1
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2 5 20 61 21 2 — g2
L3 v 2 L2 2 e 4

+3 y+<37r 6) v T 371' 8(3 — L, 127!' +20 +8¢s 2z

3
+[—6LzLy+3L§+37r2+3Lf,J tT

ucs

o i i : 3
+3 L} — 2Lig(z) + 2 Lis(y) + (2 Ly + 2Lz) Lia(z) + 5 L3

1 15 7
+<——L ——)L2+<9Ly+67r2—6>L +§L T —1?7 2-3L2-10¢
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. 2. 2 . 22
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4 _. 8 _. 4 8 )
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6.6 Like-quark scattering two-loop contributions

In this section, we give explicit formulae for the e-expansion of the two-loop contri-
bution to the next-to-next-to-leading order term B%(s, t,u).

As in Section 6.5, we divide the two-loop contributions as in
B8 3X0(s t u) = Poles, + Finites. (6.93)

Poles, contains infrared singularities that will be analytically canceled by the in-
frared singularities occurring in radiative processes of the same order (ultraviolet

divergences are removed by renormalisation).

6.6.1 Infrared Pole Structure

We find that the pole structure in the MS scheme can be written as
1 — —
Poles, = —2 Re[ 5(M(O)II(I)(G)I(l)(f)IM(O)> — % (M(°)|I(1)(6)IM(°))

R—— 0 n
+ (MO 1D () MDsiny

+e‘€7%((11—__276)) (% + K> PO 1O (26)| M)

+ (A HO () MO) 1 (s ¢ t)J : (6.94)

In Eq. (6.94), the symmetrisation under s and ¢ exchange represents the additional
effect of the s-channel tree graph interfering with the ¢-channel two-loop graphs.
The colour algebra is straightforward and we find that the s-t symmetric contri-

butions proportional to

MOIMO) = 2 (N2_1) (1—e) (“—2+e), (6.95)

N
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are given by

OO M) = (7| MO

i (803) v

FOUO (10 (€)| M) = (T4 | M)

)=
g2 1 3\ [Nt=3N2—2 /[ p2\°
NE— Rl -~ (-=
['(1—¢€)2\€e 2 N? u

+ % (—%) “y % (—“72) 26} (6.97)

FOH? ()| MO) = (T4 | M©)
ey 2\ 2€ 2\ 2¢ 9\ 2¢
_ ¢ g {_~ I T
X26F(1—6)H [( s) +< t) ( u) , (6.98)

where H(?) is defined in Eq. 6.58 and the constant X is given by Eq. 6.60. The square

)
5 o () 5 () Jew

and

bracket in Eq. (6.98) is a guess simply motivated by summing over the antennae
present in the quark-quark scattering process and on dimensional grounds. Different
choices affect only the finite remainder.

The bracket of I™) between the t-channel tree graph and the finite part of the
s-channel one-loop graphs is not symmetric under the exchange of s and ¢ and is

given by
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The functions Z; and Z, appearing in Eq. (6.99) are finite and are given by

2 _
El(sata U’) = al ! [(N2 - 2) {1(8 t;“’) + 252(8,25,’1.0]

2N2
N2 -1
2¢ 3 2€) N

(6 — 7e — 2¢%) — % (10€* — 463)J Bub(s)(ﬂ(o)lM(O))

r(1 p 512 * 26)
(D) H) ) e

3—2
(6.100)
and
Za(s, t,u) ]—V;N;zl [fl(s, t,u) — &(s, t, u)]
€ 2\ € 2
mima (o vw) (7 (5) v () [t
(6.101)
with
&(s,t,u) = i—?(l —2€) [u® +1* — 2 (2 + &%) + e?s?] Box%(s, 1)
+32_t [2u® — € (55® + 6% + 9st) + (25% + 4> + st) €
+ (8% + 3st) € — ste'] [ Bub(s) ; Bub(?) J , (6.102)
Es, t,u) = %(1 — 2¢) [2u® — € (2 + s* + u?) + 3€%s* + 5%€*] Box®(s, u)
+§ [2u® — € (6s% + 6t° + 10st) + (3% + 4t® + 3st) €
+ (5% + 2st) € — ste'] [Bub(s) > Bub(v) ] . (6.103)

The leading infrared singularity is O(1/€*) and it is a very stringent check on
the reliability of our calculation that the pole structure obtained by computing the
Feynman diagrams agrees with that anticipated by Catani through to O(1/¢). We
therefore construct the finite remainder by subtracting Eq. (6.94) from the full result.
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6.6.2 Finite contributions

In this subsection, we give explicit expressions for the finite two-loop contribution

to B®, Finitey, which is given by

The identical-quark processes probed in high-energy hadron-hadron collisions are

the mixed s- and t-channel process
qg+3q—q+gq,

controlled by B(s,t,u) (as well as the distinct quark matrix elements A(s, ¢, u) and

A(t,s,u) as indicated in Section 6.1)), and the mixed ¢- and u-channel processes

q+q — q+gq,
g+q — ¢+4q,
which are determined by the B(¢, s,u). The analytic expressions for different chan-
nels are related by crossing symmetry. Once again, because of the complexity of ana-
lytic continuations we choose to give expressions describing B%(s,t,u) and B3(¢, s, u)
which are directly valid in the physical region s > 0 and «,t < 0, and are given in
terms of logarithms and polylogarithms that have no imaginary parts.
Using the standard polylogarithm identities [82] we retain the polylogarithms

with arguments z, 1 — z and (z — 1)/z, where

(6.105)

t U z—-1 U
.’L‘:——) y:———:l—x’ = —_——,
s S T t

For convenience, we also introduce the following logarithms

-t —u S
L,=1 — ], L,=1 — 1, s =1 — ), .10
og( 3) Y og( 5) L o8 (#2> (6 6)

where u is the renormalisation scale. The common choice y? = s corresponds to
setting L, = 0.

For each channel, we choose to present our results by grouping terms according
to the power of the number of colours N and the number of light quarks Np, so

that in channel ¢

Np

NZ-1 1
) (N"’Ac + B. + ﬁ(}c + N NpD. + WEc + N§Fc> .

Finite,, = 2 (
(6.107)
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Here ¢ = st (ut) to denote the mixed s- and ¢-channel (u- and ¢-channel) processes

respectively.

The process ¢Gg—qq

We first give expressions for the mixed s-channel and ¢-channel annihilation process,

gg—q@q. We find that

z—1

Ay = [2 Lis(y) — 2Lis(z) + 2Li4< ) + (— 2L, + 12) Lis(y) + 4 Ly L Liz(y)

23 . 23 5 :
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4
12 L

+| —212 + (— 2 24Ly> Lo — 271'2) Liy(z) — 28 Ly L Lis(y)

7 14 1 1
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20 3
+ <6+ ?H) L, — 57# —~ 18§3) Ly —2¢3—3m* —6L2+28L, {3+ %7r4(6.108)
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~1
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+— G- - — 71— /| =
18 360 9 324
. . X 22 1 5 47
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11 5 4
+(4L3c +47% - 2Lm) Liy(z) + 8Ly Ly Lio(y) + — L2 Lo+ = L4 + (2 - —Ly> L3
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2. 2 44
Dy = [§L13(m)—§LxL12(m)+?Lf
2 4 26 4 389 2
__L2 L _ 712 _ _ 2.2
+( 3 z+< + )L +4Ly - Ly - o 3n)Ls
5 5 (2 37\ ., 13 , 11 40 4 5 29 ,
9L1+<3L +18>L +(*E” *ﬂy‘?)Lz‘ﬁLv*?Lv
11 , 149 2 , 43 455 | u?
——n?- —|L,-= — — | = :
+< 9 " 27) yTgm Ty et 27}31:’ (6.111)
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Ey = [2Li3(x)—2LmLig(m)+<%Lﬁ+(gLy 3>L —g 2—§L2+4L —?)Ls
PPy (gLs_;z)L AP, ( B L
3(3 1370+%7T2}Z_z
[t (32
—%Li 196L2 §Lm7r2—§LiLs, (6.112)
F, = {—%Lg—i-(g—ng>Ls+§w2—%+§—ng—gLiJ1:—:. (6.113)

Some of these results overlap with the analytic expressions presented in Ref. [19)
for the QED process ete~—eTe™. To obtain the QED limit from a QCD calculation
corresponds to setting C4 =0, Cp =1, Tg = 1 as well as setting the cubic Casimir
Cs = (N? — 1)(N?% — 2)/N? to 0. This means that we can directly compare E,;(cx
CrTg Nr) and Fy (o< T3 N2) but not Cy; which receives contributions from both Cs
and C%. We see that (6.112) and (6.113) agree with Eqgs. (2.50) and (2.51) of [19)
respectively.

The other coefficients, A,;, By, Cst and Dg; are new results.
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The process ¢+ g—q¢+g¢q

The mixed ¢- and u-channel process, ¢ + g—¢ + g is fixed by B3(t, s,u). We find
that the finite two-loop contribution is given by Eq. (6.107) with

-1 2
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(6.114)
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3Lu(x

13 1 . 11 .
+(?L§+ <—6—Ly> Lm+6Ly+§7r2) L12(.'L')+?LZL12(y)

But =

— 1) + 8 Lig(z) + 8 Lis(y) + (- 12L, + 6) Lis(z) + (6 — 8Ly — 4L$) Lis(y)

+(—%L +(11L +232)L —%L§+~1§+%Ly—l—;w2)Ls+éLg
+<—g+§Ly>L2—|—< 3Ly +47° —;%—%Lz)LZerL;‘,
+(Lg+1—§'L§+(—?’2—g—%w2)Ly+%—l+%§ 2)Lz—%Lg
(o) e (50 70) - - 200 2 28]

+ [6Li4 (m ; 1) + <4Ly - 4Lm> Liz(z) + (4Ly —~ 4Lw) Liz(y)

2
+(L§+7r2+2LwLy> Lig(z) + (—L§+4LzLy) Lia(y) + (3213 -2—32-13 )L

5 5 5 47 5 1 15
iy 22 3 _= 2 21 r2
+o7 a,+( 3 6Ly)L$+< 3 +6L y g -|-4L L2
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- I3 2z 2 _ 4 3 a2 12
+<9 ] 1871' 2Ly'n' 6L)L +24Ly+18Ly+ 3+4 Ly
128 11 1 4 2| 2
- = — =7 = L
+< 5 ts” )L 40”] + 14 ]

~16Lig(z) — 16 Lig(y) + (12L —4L, — 2) Liz(z) + ( 4L, —2+12L ) Lis(y)

+| —4r2+ (2 —4Ly) Ly — 2Ly) Lig(z) + (— 4L2 —4LwLy) Lia(y)

1,5 11, 11 , 22 1, 7 5
L2 _z _ !
HgLrg Lty 3LL>L3 gt Ly+2| L}

2
u
4L—2

6
5 , 163 17 _, 4 ) Ty 10,5 (1 , 254 7,
He™ -5 754 gLy)Lm+( sl 3L+ |57+ | Lt g | Le

9
5 163 8 421 127
—-——L4 9273 2_ 29 r2 =L, 2 at_ 2 .
2 g T +(12 9 Ly+3 ™ +360 5 (6.115)
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Cut = [5Li4 (‘” — 1) +2Lig(z) + 2 Lig(y) + <2Ly —6L, — 1) Lis(z) + (— 4L, - 1) Lis(y)

5 5 . 3 .
+<5 L2+ (1 + Ly> Ly—Ly+ 6”2> Lig(z) + (2 Ly Ly + 5Lf,) Lig(y)

+= L4+—L3 (7 2——L +5+5L2)L2——L4+3L3

6 4 4 127 _
19 5 31 41 45 7 15
L3__ 2 _ Y2 2 =2 _ v Lz .2 L
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141 13 , 511 109 , 49 , 32
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+( 8 +6<3+3”> v e TG T g7

1
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+<
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TR ) ( 1 +12+6Ly Tl ) Le

13 5 5 3 1 s, t2

L4 =23 2 _ o 9 L alS 2
24 12 y+<2+12 )L Ryam =g 5t | 52| o2
2 .
5 —8Lis(z) —8Lis(y) + (6L, —2L, —4 | Lig(z) + | —4-21L, +6Ly) Lis(y)

+<—2L2 (4 2L)Lx—4Ly>Li2(a:)+<—2LxLy—2L§>Li2(y)
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2 4 A S I _ 972 9 2
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+< S+ (16—6 )L yHgm )Lz+24Ly—ELy =9+ | L}

%Lyﬂ'2+%ﬂ'4—8ﬂ'2, (6.116)
Dy = [—%Lia(x)—gms(yn(—gLerng) Lia(e) + o I

+<2—6Lz—§Lg+§Ly—%—§L)Ls—gL (fg+;L>Lg

o O L

25 455 | §2
24 ——} = (6.117)
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1 19
E, = [—2Li3($)“2Li3(y)+(_2Ly+2L‘”)Li2($)+§L2_ELg

1 4 29 1 8
+<§Lg+(—2Ly—§>Lm—?+§L§+w2—§Ly)Ls
5, 2 , 43 31, (8, 11
S DY AR Sl I Sty 5 SR (gt Rl I 4
+( glyT2ly+3m = By lg™ ~g |

+1370 §2+4_7< s
81 2" T 98w

4 4 1, 1 2\ , (1., 1 , 32
+[(§Lz—§Ly>Ls+§Lz+<_§Ly+§> Lm+<§Ly+§T( —5 Lz

9"V 37 9 9
2 2 2 1 1 16
+<—§Lz—§Lg—§7r2+3LzLy>Ls Lz+<3Ly+§)Lg
32 1 1 16 1 16 1
+(—5—Ly+§L§—§7r2>Lm+?LZ—§L2+37rz—§Ly7r2, (6.118)
4 4 40 4 20 2 20 2 100 | s?
Fy = |—=1I2 ——Ly+——-Ly | L+ —L,—=L:+—L,—-L2-—|=.
¢ [ 9 3+< 9 vt am g ) =t o7 gletor g " 31 | m
(6.119)

As in Section 6.6.2, we can compare some of these results with the analytic ex-
pressions presented in Ref. [19] for the QED process ete”—ete™, and we see that
(6.118) and (6.119) agree with Egs. (2.55) and (2.56) of [19] respectively.

The other coefficients, Ay:, By, Cut and D,; represent new results.

6.7 Summary

In this chapter we presented the O(a?) QCD corrections to the 2—2 scattering
processes qq—q/q!/, gg—qqd and the associated crossed processes in the high energy
limit, where the quark masses can be ignored. We computed renormalised analytic
expressions for the interference of the tree-level diagrams with the two-loop ones
and for the self-interference of one-loop graphs in the MS scheme. Throughout we
employed conventional dimensional regularisation.

The renormalised matrix elements are infrared divergent and contain poles down
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to O(1/€*). The singularity structure of one- and two-loop diagrams has been thor-
oughly studied by Catani [17] who provided a procedure for predicting the infrared
behaviour of renormalised amplitudes. The anticipated pole structure agrees exactly
with that obtained by direct Feynman diagram evaluation. In fact Catani’s method
does not determine the 1/e poles exactly, but expects that the remaining unpre-
dicted 1/e poles are non-logarithmic and proportional to constants (colour factors,
72 and (3). We find that this is indeed the case, and the constant H(® is given in
Eq. 6.58. This provides a very strong check on the reliability of our results. Sim-
ilarly, the infrared divergent structure of the squared one-loop diagrams we found
by direct evaluation agrees with the expected pole structure.

The results presented here, together with those computed for quark-gluon and
gluon-gluon scattering [1, 5] complete the set of matrix-elements required for the
next-to-next-to-leading order predictions for jet cross sections in hadron-hadron col-
lisions. On their own, they are insufficient to make physical predictions and much
work remains to be done. First, a systematic procedure for analytically canceling
the infrared divergences between the tree-level 2—4, the one-loop 2—3 and the 2—2
processes needs to be established for semi-inclusive jet cross sections. Second, there
are additional problems due to initial state radiation. Third, a numerical implemen-
tation of the various contributions must be developed, enabling the construction of
numerical programs to provide next-to-next-to-leading order QCD estimates of jet

production in hadron collisions.




Chapter 7

Conclusions

The purpose of this thesis has been the calculation of matrix elements for massless
2—2 QCD scattering processes. This is a very important step in the construc-
tion of numerical programs for the cross-section of hadron-hadron jet production at
NNLO. It is expected that knowledge of the cross-section at this order will increase
the precision of the theoretical predictions and will match better the anticipated
experimental accuracy at the Tevatron and LHC.

The matrix-elements involve Feynman diagrams which are divergent in D = 4
dimensions. In Chapter 1 we described the Conventional Dimensional Regularisation
(CDR) ‘method which serves to quantify the divergences by shifting the number of
dimensions to D = 4 —2¢, where € may be considered as a small non-integer number.
The Feynman integrals manifest their singular behavior as poles in € = 0.

Singularities arise from two different limits. The first is related to the ultra-violet
behavior of the integrals where the loop Iﬁomenta become infinite. The singularities
of this type can be consistently absorbed at each order in perturbation series, by a
multiplicative renormalisation of the fields and parameters of the QCD Lagrangian.
Renormalisation is not a uniquely defined procedure, and fixed order perturbation
theory results depend on the prescription used for the subtraction of the divergences.
We have chosen to renormalise with the MS scheme.

The second type of divergences is associated with the existence of massless par-
ticles in the theory. The denominators of the gluon and light-quark propagators
in loop integrals often vanish for some loop-momentum configurations, leading to

the generation of (infrared) singularities. In Chapter 2 we saw that the IR diver-
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gences cancel for appropriately defined physical quantities, where we sum over all
degenerate external states. Based on that, Catani worked out a process-independent
algorithm to predict the singular behavior of two-loop renormalised amplitudes. We
made an extensive use of his formalism in order to verify our results for the quark
scattering NNLO virtual corrections.

The calculation of one and two loop Feynman integrals is a very challenging task.
In Chapter 3 we detailed a general algorithm, based on the Schwinger parametrisa-
tion, which relates tensor multi-loop integrals to scalar integrals of the same topology
with extra powers of propagators and in higher dimension. Then we concentrated
on the evaluation of scalar one and two-loop integrals through their representations
in Feynman parameters providing analytic expressions for several of them in terms
of I' functions.

In order to obtain expressions for more difficult integrals with a richer structure
in terms of hypergeometric functions, we employed a Mellin-Barnes (MB) decom-
position of the sums raised to a power in the Feynman representation. After an
explicit integration of the Feynman parameters we were able to derive representa-
tions of one-loop Feynman integrals in a quite general way. For multi-loop integrals
we used the insertion method using one-loop MB representations as building blocks
to construct the MB representation of the total graph.

The MB representations were used in two different ways. Closing the contours
of integration either to the left or to the right and summing up all residue contri-
butions, we obtain representations in terms of hypergeometric series. Quite often
hypergeometric functions have integral representations which can be expanded in .
However, this is not always possible and we extract the singularities directly from
the MB representation. First, we isolate the poles in € by adding the contribution
of the residues which cross the contour of integration when we perform an analytic
continuation of € to zero. The remaining integrals are well defined at ¢ = 0 and may
be expanded in a Taylor series. Finally, we evaluate the finite integrals by summing
up all residues enclosed in the contour of integration, yielding harmonic sums which
can be identified in terms of logarithms and generalized polylogarithms.

In Chapter 4 we examined the method of integration in Negative Dimensions
(NDIM) which is based on the property of Feynman integrals to be analytic func-

tions in D. From the Schwinger representation of the scalar integrals, we obtain
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a template solution and a system of constraints. Inserting the constraints into the
template solution we derive hypergeometric. representations of the integral in the
various kinematic regions. The method is very powerful for one-loop calculations
or for the evaluation of two-loop integrals with a bubble subgraph. However, lim-
ited progress has been achieved for general two-loop integrals where the method is
disfavored in comparison with the MB integral representation technique.

Due to the large number of Feynman scalar and tensor integrals involved in
two-loop matrix elements calculations, it is crucial to develop computer programs
which reduce the number of the independent (master) integrals which are ultimately
needed. In Chapter 5 we used Integration By Parts (IBP) and Lorentz Invariance
(LI) identities to find relations between the general Feynman integrals appearing in
one and two-loop massless 2— 2 scattering matrix elements and the master integrals.
We also constructed differential equations relating many of the master integrals with
each other completing the computation of the analytic expansions in € of all master
integrals relevant to the physical processes we examined.

Our approach for the building of the reduction algorithm was to find a symbolic
solution of the IBP and LI identities decreasing the extra powers of the propagators
and the dimension of the integrals produced from the tensor decomposition method
of Chapter 3. However, this approach becomes cumbersome for complex topologies
(for example the crossed-box) and it cannot be generalized for integrals with more
mass scales and loops. A different approach is to generate all identities involving
extra powers of propagators and dimensions (or equivalently irreducible numerators)
and solve their system of equations by means of a computer program. This method
has been used by Tarasov [31], Gehrmann and Remiddi [25], and Laporta [32, 33].
Their method is in principle suitable for any multi-loop integral calculation. The
only limitation is due to computer resources (CPU time and memory) and it has been
proven a very serious obstacle for a completely automatic solution of the IBP and
LI recursive relations for practical calculations. However, there is hope that these
problems will be resolved by means of increasing computing power or programming
on platforms specialized to the needs of multi-loop calculations.

The prospect of an automated numerical or analytic calculation of the master
integrals is also strong. Binoth and Heinrich [20] have suggested an algorithm for the

isolation of the poles from Feynman representations and the numerical evaluation
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of the finite integrals. Unfortunately, their results are limited to the kinematic
regions below all branch cuts where the Feynman representation has a real value. In
addition, Gehrmann and Remiddi have proposed a largely automated method for the
analytic solution of the differential equations satisfied by the master integrals [28,
29, 26, 27|, in terms of generalized harmonic polylogarithms, order by order in .
Recently, Tarasov [30] and Laporta [32, 33] have proposed the evaluation of master
integrals through difference equations produced from IBP identities. Their approach
is also promising and it can be directed to both numerical or analytic evaluations.
The differential or difference equations methods can be applied given the existence
of an IBP algorithm for the reduction of multi-loop topologies to master integrals.
Mellin-Barnes representations are independent of such an algorithm and a numerical
or analytic expansion in € through MB integrals can be further established as a very
important tool for the calculation of master integrals and verification of the IBP
algorithms. Further development of the above techniques is expected to revolutionize
multi-loop integral evaluations and facilitate high precision calculations.

In Chapter 6 we computed the virtual corrections for quark scattering at NNLO
accuracy. Similar results were produced for the QCD processes of quark-gluon [1]
and gluon-gluon [5], and the QED Bhabha scattering [19]. Given the recent progress
on multi-loop calculations more matrix-elements at NNLO accuracy will be known
soon. Yet the above results are insufficient to make physical predictions on their own
and much work remains to be done. A major challenge is a systematic procedure
for the analytic cancellation of infrared divergences between the tree level 2—4,
the one-loop 2—3 and the 2—-2 processes. We should note recent progress in this
direction with the determination of singular limits of tree-level matrix elements when
two particles are unresolved [83, 84, 85, 86, 87] and the soft and collinear limits of
one-loop amplitudes [88, 89, 90, 91, 92], together with the analytic cancellation of
the infrared singularities in the somewhat simpler case of e*e~—photon + jet at
next to leading order [93] A further complication is due to initial state radiation.
Factorization of the collinear singularities from the incoming partons requires the
evolution of the pdf’s to be known to an accuracy matching the hard scattering
matrix element. This entails knowledge of the three-loop splitting functions. We
should here note the contribution of References [94, 95, 96, 97, 98, 99, 100, 101].

We hope that the problem of the numerical cancellation of infrared divergences
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will be soon addressed thereby enabling the construction of numerical programs to

provide NNLO QCD estimates of jet production in hadron collision.



Appendix A

Hypergeometric definitions and

identities

In Appendix A.1 we give the definitions of the hypergeometric functions as a series
together with their regions of convergence. Integral representations for the o F;, F;
and F; functions are given in Appendix A.2 while identities for reducing the F; and

F, functions to simpler functions are given in Appendix A.4.

A.1 Series representations

The hypergeometric functions of one variable are sums of Pochhammer symbols over

a single summation parameter m

2F1 (aaﬁ)’)la .’E) = Z a m IB, W (Al)
m=0
3F2 (aaﬂ’ﬁl’va ’7/71") = Z a Z IB’ 7 (,'i)’ m) %T’;: (A2)

m=0

which are convergent when |z| < 1.
The hypergeometric functions of two variables can be written as sums over the

integers m and n: F;,¢=1,...,4 are the Appell functions, H, a Horn function and
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51 and S; generalised Kampé de Fériet functions:

Fl .(a;ﬁwgla’%m’y)

F2 (aaﬂ)ﬁ,)’Ya Vl,m,y)

F3 (a,a’,ﬁ,ﬂ',fy,:c,y)

F4 (CY);B)/Y)fyI:m)y)

H2 (a,IB’ ’7)7,7 6; z, y)

Sl (a7a,7/877a 5Jm7y)

S2 (aaa,)ﬁaﬁla7,x,y)

(@, m)(,n) (B, m)(8',n) & y"

m,n=0 (77 m+ 'fl) m! n!
f: (xm +n)(B,m +n) z™ y*
m,n=0 (7) m) (’Y’an) m! n!

(a,m = n)(B,m) (v, )(7',n) ™ y"
(6,m) m! n!

(7’m+n)(5;m) W g

(o, m = n)(&/,m = n)(B,n) (8',m) =™ y"
m! n!

2
=2 (a,m+n)(a,m+n)(B,m) z™ y*
Z_( )( )(B,m) ™ y
>

(v,m —n)

m,n=0

(A.3)

(A4)

(A.5)

(A.6)

(A7)

(A.8)

. (A9)

These series converge according to the criteria collected in Table A.1. The do-

Function
Fi, F3
Fy, S

Fy

HZ,S2

Convergence criteria
2] <1, Jyl <1
|z + lyl < 1

Ve +

—lel+1/lyl > 1,]z] < 1,]y| <1

ly| <1

Table A.1: Convergence regions for some hypergeometric functions of two variables.

main of convergence of the Appell and Horn functions are well known. That one for

S1 and S; may be worked out using Horns general theory of convergence [102].
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A.2 AIntegral representations

Euler integral representations of o Fy, F; and F, are well known [103, 102, 104, 105]

and we list the relevant formulae here.

2F1 (e, B,7,2) = F(ﬁ)l;%)_ﬁ) X /Olduuﬂ_l(l —u)" P (1 — uz)™®
Re(6) >0, Re(y—§)>0. | (A.10)
Fi(e, 8,6 7,2,9) = ¢ (Q)FF%)_ ) /0 1 duu®(1—uw)" % (1 —uz) P (1 —uy)
Re(a) >0, Re(y—a)>0. (A.11)
INGIINGD

F2 (a,ﬁ,ﬁ',’y,’y',:c,y) = F(IB)F(B/)F(,Y_ﬁ)F(,Y/ _,BI)
1 1
X/o du/0 dv PP Y (1—u) 7P (1—v)" P (1—uz—vy) @

Re(8) >0, Re(8')>0, Re(y—p8)>0, Re(y-p)>0. (A.12)

A.3 Example of explicit evaluation of an integral

representation

In working out the integral representation for hypergeometric functions in D = 4—2¢

dimensions, we have often to deal with the ¢ expansion of integrals of the form

I(z) = /Odud(u)f(u), (A.13)
dlu) = u (1 — u) it (A.14)

where a and f are real numbers and f(u) is a smooth function in the domain
0 < u < 1: in particular, it is finite at the boundary points.
The procedure to deal with this kind of integrals is quite standard. The integral

has a pole in € when the integration variable u approaches either of the end points.
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We concentrate first on the point u = 0, and we rewrite the integral in such a way

to expose the pole in €

/ dud(u / dud(w) [fw) ~ FO)] = fy+ T (A15)

The integral Ij;) can be easily done

I(ae)T(Be) _ f(0)a+BT(1+ae)T(1+fe)
I'((a+B)e) e af T(l+(a+p)e ’

and the integrand of Ipy is now finite in the limit « —0. In fact, we can make a

(A.16)

Iy = f(0)

Taylor expansion
2
F(u) — £(0) = uf'(0) + % F10) + ... = ug(u), (A.17)

and write Ijy as

Ijg =/0 dud(u)ug(u):/o duu®(1 — u) "1 HPeg(u). (A.18)

We repeat now the same steps done for Eq. (A.15) with respect to the point u = 1,

to obtain

1 1
Iy = / duu®(1 —u)" 1P g(1) +/ duu®(1 —u) P [Q(U) - 9(1)] = Iz + Ijg.
0 0

(A.19)

The integral Ij3 gives

_ I'(1+a€e)l'(Be)  f(1)=f(0) T(1+ae)T'(1+Be)
la=s0) FaTasme ~ A Fit@tfe @ A0

while I}y is finite at v — 1

Iy = /0 duu®(1 — u)P¢ h(u), g(u) — g(1) = (1 — u) h(u), (A.21)

and can be solved with an € expansion of the integrand. Adding all the contributions

together we have

1 F'(1+ae)l'(1+Be) 1 ae(q _ . \fe
10) = - (670 +a ) EAEITULAD [ oa - )

(A.22)
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where

) = e (70 - -0 70 - ) (A.23

In the case where we have two integration variables, the procedure outlined

above can be re-iterated in a straightforward manner. To illustrate the procedure,
we evaluate explicitly the following F functions to O (€2).

The integral representation for F, (see Eq. (A.12)) is given by
el (1 —¢)

T(1+e)l (120 I(z,y), (A.24)

Fr(1,1e,e+1,1—¢z,y) =
where
1
I(z,y) =/ du dv d(u,v) f(u,v), (A.25)
0
and

d(u, U) = ,U—1+e(1 _ u)—1+e(1 _ ’U)_Qe

fluv) = (1—-uz—vy)™,

and I(z,y) must be computed to O (°). In order to expose the poles (see Eq. (A.15)),
we add and subtract the value of the finite function f(u,v), computed at the bound-

ary points, in the following way:

I(w,y) = /1 dudv d(u, 0) {[£(1,0)] + [£(2,0) = £(1,0)] + [£(1,9) - £(1,0)]

0
[ Fw,0) = £(2,0) = £(1,0) + £(1,0)]}

We are now in a position to evaluate the single contributions in the square brackets.

In fact

T(1+€)T(1—2)

1 1
— _ -1 _ —1+e —14e — )2 _ 1— -1
Iy = (1-a) /Odu(l ) /Od'uv (=) = (-2

—z D(1+gT(1-2) (1, (1-v)
T = 12 ra-9 /od“(l—ux>

1— -1 1 €(1 — )2
P LE Ry D
€ 0 l—-z—wy

(vy +uz +z —2)
(1—-uz)(1—z—vy)(l —vy —uz)

1
Iy = lw——yw/o dudv (1 —u)* v (1 —v)™%
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The remaining integrals are finite in the limit € — 0, so that we can make a Taylor
expansion to O () for the integrands of Ijy; and I3, and we can put directly ¢ = 0

in Ij4. Recalling the definition of the dilogarithm function
¢ log(l—
Li, (z) = —/ dz M <1, (A.28)
0

it is straightforward to carry on the last integrations and express the result in terms

of Li, functions.

A.4 Identities amongst the hypergeometric func-

tions

The F) and F;, functions have the following reduction formulae which leave a single

remaining Euler integral at most [103, 102, 104, 105]:

Fl (aaIB,/B,)/B +/Bljx7y) = (1 - y)_a2Fl (aaﬁ)ﬁ +IBI; T:z) (A29)
Fy(e,8,8, 1, a,3,9) = (1-y) PR (’B’a —ABme l—f_i) (A.30)

F2 (Oé, ﬂaﬂlaaa7,)m,y) = (1 - x)_ﬂFl (B/7Baa —IBa7I7 %ay) (A31)

1
F2 (a)ﬁ’ﬁ/>ﬁa71)x,y) = (1 - x)_a2F1 <a7/8I$7,7 %) (A32)
Fy (0, 8,8 @,0,2,9) = (1 - 2) (1 - ) 2 (ﬂ’ﬂ e ﬁl‘——yQ
(A.33)
Fy (e, 3,808 2,9) = (1-y)’ (1 -z —y)~” (A.34)
F2 (CM,,B,,Bl,,B,,B/,iB,y) = (l_m—y)—a' (A35)

A.5 Analytic continuation formulae

Here we give only those analytic continuation properties that relate the argument

and inverse argument. Gauss’ hypergeometric function has the following analytic
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continuation properties (see for example [103])

2F1(a,ﬁ,7,z)=(—Z)_Q£Eg))1;g:zgzﬂ(a,l-{-a—’y,l-i-a—ﬂ,%)
eI (@=5) g1
TR (P i),

|arg(—2)| <, (A.36)

L(yT(y—a-p)

L(y—a)I'(y-B)

()T (a+B-7)
I'(e) T (B)

1
2F1(aa:3a7az)=z—a 2F1(a,].+01—’)’,1+a+ﬂ—’)’,1—;>

—a— 1
+2°77(1— 2)7 P 2F1<7—a,1—a,1+’y—a—ﬂ,1——)

z

larg(z)| < 7, |arg(l — 2)| < 7. (A.37)

There are many possible analytic continuations; however, we list only those that are
relevant to link the groups of solutions for the one-loop box discussed in Sec. 4.1.2,

that is the connections between the Appell and Horn functions.
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L(Y)T (8 — , 1
F4(a)ﬂ77)7,7xay):ng,)_(i)r(zi( y—aF4(aaa+1—777)a+1_ﬂa§>§>
I'(+)T ) ; z 1
Ty - ﬁ)F a) (ﬂ,ﬁﬂ ”/,%ﬁ+1—a,y,y> (A.38)
F3(aaa/a:3aﬂ/a7’m>y):?Ef:z))gg ; aH2<a+1 7, &, OL IB a+1-— B;%;—y)
F(a_:@)r(')') —ﬁ _ It _ l_)
+F(7—[3)I‘(a)( 117 HQ(IB+1 Vaﬁaaaﬂvﬁ'l_l a’ZE’ Y
(A.39)
Ly -yr@a- 1
HQ(a)ﬁ77’7l’5axay)=I-\E’Z_(;Y)_ry()F(ji(y)_’yFZ(a_f_’YaBa’Y)é”y_*'1_7Iama_§>
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Appendix B

Polylogarithms

The purpose of this appendix is to define the generalised polylogarithms that occur in
the expansion in € of the pentabox scalar and tensor loop integrals and to give useful
identities amongst the polylogarithms. In Appendixv B.1 we give the definitions of
the polylogarithm functions S,, , (z). These functions are real when z < 1 but they
develop an imaginary part for £ > 1. Analytic continuation formulae are given
in Appendix B.2. Finally, useful identities between polylogarithms are listed in

Appendix B.3.

B.1 Definition
The generalised polylogarithms of Nielsen are defined by

—1)rte=b b 16g™ () logP(1 — it
Sn,p(x):%n—_)mfo dt =& ()tg( ), np>1 z<1 (B.1)

For p = 1 we find the usual polylogarithms

Sn—l,l (JJ) = Lln(.’E) (B2)
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The S,,,’s with argument z, 1 — z and 1/z can be related to each other via [82]

Spi—o) = S ECZD s ) W gy, @)
+ (n';)' log"(1 — z) log?(z), (B.3)
1 s L (=1) n+s—r—1)!
Sn,p (5) = (—1)"’ sZ:;(_l)s 2 ( T|) lOgT(—x) ((3 fr)'(n — 1))' Sn+s—r,p—s (117)
+ ( 1)T+P log ) Cn—r,p n (7(1—-’_1)1)) 10gn+p( ), (B.4)
with
Crp = nHZ ) T%__l)l)snﬂ,p—r (=1)
+ (=1)7 (1—(—1)") Sn,p(—1). (B.5)

We also need the definition of the Riemann Zeta functions

and in particular

= 1
C’IL - _n) (B.6)
s=1 §

2
G = % (5 = 1.20206 ... b= —. (B.7)
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B.2 Analytic continuation formulae

For z > 1, the following analytic continuations should be used

1 2
Lis (z +140) = —Li, <5> - —;—logQ(x) + % + 17 log(z) (B.8)
: : . (1 1, s 7 S
Liz (z +1:0) = Lis ol B log®(z) + 5 log(z) + 0 log*(z) (B.9)
Lig (z 4+i0) = —Li D1y 4(z)+”—21 2(:c)+”—4+i—”10 3(z) (B.10)
aNET) = my) T2 8 6 5\ T 8 '
Sia(@+i0) = —Sia (L) + Lig (1) +log(@) Lia (1) + 2 log?(z) — ™ tog(z) +
1,2(x+1 = L2 2 i3 " og(z) Lig " 5 og°(z) — 5 og(z) + (3
7 (1) 1
+im [? — Lig (3—3> - ilogz(:v)J (B.11) .
. 1 1 1 . [1 (1
8173 (IC + ZO) = —S1,3 (;) + 82,2 (;) + ].Og(x)Sl’Q <E> — Ll4 <E) — log(:z:) L13 (;)
1. , . (1 a2 (1 1. 4 2., 1974
5 log®(z) Lip <;> + ?ng (m) - ﬁlog (z) + zlog (z) — 260
. (1 1 (1 1 2
+ i [L13 (;) — 512 (;) + log(z) Liy (E) + 610g3(:c) - %log(w)]
(B.12)
o 1 (1 AT DRV
Se,2 (z+1i0) = S (;) — 2Liy <x> — log(z) Lis (E) + 2—410g (z) — Zlog (z)

+ (3 log(z) + Z—; +im I:Lig (%) — —élog‘q’(x) + T log(z) — Cg] . (B.13)
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B.3 Useful identities

We often need the following transformations

Lis (m:) - —Liz(:v)~%log2(1—w), (B.14)
Lis (xfl) = —Liz(z)+ S12(z) +log(1 - z) Liz(:v)+%log3(1—a:), (B.15)
Li, (wfl) = —Lis(2) + S5,2(2) — Su,5(2) +log (1 — z) Lis (z) — log (1 — z) 1,2 ()

—% log? (1 — ) Liy (z) — %log‘l (1—2), (B.16)
sl,g(xfl) = () - S log'(1-2), (B.17)
sl,g(sz - —Sl,g(:c)—ilog‘l(l—x), (B.18)
S (xfl) = Sus(z) — 2815 (x) — log (1 — ) Sy (z) + %log‘l(l _z).  (B.19)
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