
Durham E-Theses

Semiclassical monopole calculations in

supersymmetric gauge theories

Davies, N Michael

How to cite:

Davies, N Michael (2000) Semiclassical monopole calculations in supersymmetric gauge theories,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4360/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4360/
 http://etheses.dur.ac.uk/4360/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Semiclassical monopole calculations 

in supersymmetric gauge theories 

The copyright of this thesis rests with 
the author. No quotation from it should 
be published in any form, including 
Electronic and the Internet, without the 
author's prior written consent. All 
information derived from this thesis 
must be acknowledged appropriately. 

N. Michael Davies 

A thesis submitted for the degree of Doctor of Philosophy 

University of Durham 

Department of Physics 

2000 

f ? SEP 2 



Abstract 

We investigate semiclassical contributions to correlation functions in AT = 1 supersym-

metric gauge theories. Our principal example is the gluino condensate, which signals 

the breaking of chiral symmetry, and should be exactly calculable, according to a su-

persymmetric non-renormalisation theorem. However, the two calculational approaches 

previously employed, SCI and W C I methods, yield different values of the gluino con­

densate. 

We describe work undertaken to resolve this discrepancy, involving a new type of 

calculation in which the space is changed f r o m to the cylinder x 5^. This brings 

control over the coupling, and supersymmetry ensures that we are able to continue to 

large radi i and extract answers relevant to M^. The dominant semiclassical configu­

rations on the cylinder are all possible combinations of various types of fundamental 

monopoles. One specific combination is a periodic instanton, so monopoles are the ana­

logue of the instanton partons that have been conjectured to be important at strong 

coupling. Other combinations provide significant contributions that are neglected in 

the SCI approach. 

Monopoles are shown to generate a superpotential that determines the quantum 

vacuum, where the theory is confining. The gluino condensate is calculated by summing 

the direct contributions f r o m all fundamental monopoles. I t is found to be in agreement 

w i t h the W C I result for any classical gauge group, whereas the values for the exceptional 

groups have not been calculated before. The ADS superpotential, which describes the 

low energy dynamics of matter in a supersymmetric gauge theory, is derived using 

monopoles for a l l cases where instantons do not contribute. We report on progress made 

towards a two monopole calculation, i n an attempt to quantify the missed contributions 

of the SCI method. Unfortunately, this eventually proved too comphcated to be feasible. 
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Chapter 1 

Introduction 

The mathematical foundations of particle physics are quantum field theories w i t h local 

gauge invariance. The standard first step towards calculations in these theories is to 

make a perturbative expansion in powers of the dimensionless couphng constant, g, 

which must be small for this approach to be valid. Perturbative calculations have been 

used to make predictions that have not significantly disagreed w i t h experiment for over 

twenty years. Nevertheless, there are many non-perturbative phenomena, chiefly those 

associated w i t h low energy hadronic physics where the coupling is large, for which we 

have a much poorer understanding. 

I n all four dimensional non-abelian gauge theories, i t is known that, even for small 

values of the coupling constant, there are contributions that do not appear in the per­

turbat ive expansion. They arise because of the existence of non-tr ivial solutions of the 

classical equations of motion, known as instantons. We can make a perturbative expan­

sion around these solutions, instead of the t r iv ia l version, i n a semiclassical calculation 

tha t leads to results of the f o r m 

e -^s" ' (ao + ai5' + a25^+ . . . ) , (1.1) 

w i t h constants C and { a „ } . The exponential factor has an essential singularity at 5 = 0 

and so cannot be wr i t t en as a Taylor series in g. For this reason, these contributions 

are called non-perturbative, although just as for conventional perturbative calculations, 

we have no way of estimating their effects when the coupling constant is large. 

I n principle, instantons can be used to provide analytical information about various 
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aspects of the low energy behaviour of theories, but due to the uncontrollably large 

coupling i n that situation, semiclassical calculations normally give infrared divergent 

answers that are di f f icul t to interpret. I n the last few years, however, well-defined 

results have been obtained using instantons in supersymmetric theories, that is, theories 

possessing invariance under transformations that mix bosonic and fermionic degrees of 

freedom. Supersymmetry has attracted a great deal of interest, because i t appears 

ubiquitously in viable generalisations of the standard model, the set of gauge theories 

tha t describe well our current knowledge of particle physics, and because i t leads to the 

simplif icat ion of many issues through the use of powerful analytical tools. For example, 

symmetry allows the proof of a non-renormalisation theorem, which states that exact 

results for certain quantities may be found using semiclassical calculations. This was 

first achieved for the larger, extended supersymmetries, w i t h Af = 2 or — 4, where 

the power of extra symmetry also gives greater control over the size of the coupling. 

I n contrast, for theories w i t h the minimal M = I supersymmetry, there are incon­

sistencies between different instanton calculations of a fundamentally important corre­

la t ion funct ion, the gluino condensate, that have not been explained in nearly fifteen 

years! The two types of approach are SCI (strong couphng instanton) calculations, 

which are direct but contain no attempt to ensure that the coupling is small, and W -

C I (weak coupling instanton) calculations where quantities are found indirectly, via a 

modif ied theory in which the size of the coupling is controlled. We believe that the SCI 

calculations are incorrect, because while instantons are the only non-tr ivial solutions 

tha t may contribute for small values of the coupling, there may be other important 

configurations at large coupling that are missed in the SCI approach. 

I n this thesis, we w i l l describe a new type of calculation, w i t h the aim of resolving 

this dispute. The strategy is to mod i fy space f r o m M'̂  to x 5"̂ ; supersymmetry w i l l 

enable the large radius l i m i t to be taken for all results, so that answers relevant to 

may be obtained. This modificat ion also has the effect of providing control over the 

size of the coupling, and regulating the undesirable properties of candidates for the 

neglected configurations in the SCI method. I t therefore combines the reliability of 

the W C I calculations w i t h a mechanism for understanding the shortcomings of the SCI 

approach. We find that on the four dimensional cylinder x 5^, the relevant semi-
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classical configurations are monopoles, and together w i t h instantons, these solutions are 

i n principle sufficient to exactly determine any calculable quantity in supersymmetric 

gauge theories on M'*. 

We resume in chapter 2 w i t h a general introduction to semiclassical calculation-

s, and a description of the most widely used semiclassical configurations, Yang-Mills 

instantons. More required knowledge is presented in chapter 3, where we discuss the rel­

evant implications of supersymmetry. We also define the gluino condensate and review 

previous methods used to calculate i t . 

I n chapter 4, we describe the essence of the calculations on x 5^ presented in 

this thesis, and explore the properties of the dominant semiclassical configurations, 

monopoles, on that space. The calculational method is investigated in detail in chap­

ter 5, where we apply i t to the determination of the gluino condensate w i t h gauge group 

SU{2), and to the calculation of the superpotential i n the low energy effective action 

of the theory on x 5^ [1]. 

Chapters 6 and 7 contain various attempts to generalise the one monopole calcula­

tions of chapter 5. First we present one monopole calculations of the gluino condensate 

for any gauge group [3], and of the ADS superpotential that describes the low energy 

dynamics of matter included in a supersymmetric gauge theory [2]. I n the later chapter 

we report on the progress made towards a two monopole calculation designed to check 

the monopole hypothesis, by exphcitly evaluating the contributions missed by the SCI 

method, i n the case of gauge group SU{2). The Nahm construction of multi-monopole 

solutions is discussed, and investigated in detail in the one monopole sector. A n iden­

t i t y fu l f i l l ed by a Green's funct ion that appears in this formalism is obtained, and this 

enables the identification of two previously unknown adjoint fermion zero modes. They 

are possessed by every monopole configuration w i t h winding number greater than one, 

and are associated w i t h a natural symmetry of the Nahm construction. These results 

are only a small part of the technology necessary to attempt this calculation, however, 

and unfortunately i t proved to be impossible. 

Finally, we w i l l draw our conclusions in chapter 8. 



Chapter 2 

Semiclassical physics and instantons 

We shall begin by describing the methods and introducing the necessary terminology 

for the calculations presented in this thesis. We do this par t ly by using the example of 

Yang-Mills instantons, i n the second section of this chapter. Good references for this 

background material can be found in textbooks and reviews [4, 5, 6] and in the seminal 

paper by ' t Ho o f t [7]. 

2.1 The formalism of semiclassical calculations 

2.1,1 I n s t a n t o n s 

For now we shall consider a general bosonic field (p, which may be thought of as a real 

scalar field, i n order to reduce complications such as having to follow index structures, 

and so as to show most clearly the general features of a semiclassical calculation. Then 

we w i l l add details and improvements un t i l the formalism is sophisticated enough to 

cover all cases, including gauge fields and fermionic fields. 

I n the Euclidean version of the theory, which is the case w i t h the greatest security 

i n issues of convergence, the par t i t ion funct ion has the fo rm 

Z = j d(^e-^[^J, (2.1) 

and quantities of interest to calculate are the correlation functions, or mult i-point func-
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tions. 

0 ^ = I # e-^[^] n ^(xn). (2.2) 

The action 5 is the integral over the inf ini te volume of Euclidean space of a funct ion of 

(j), and so unless the field is i n a special configuration the action w i l l not be finite. The 

funct ional integrals above both contain e~'̂  i n the integrand, so we may expect that 

they only have non-zero contributions f r o m regions in field space where (j) obeys the 

appropriate conditions to ensure S < oo. More precisely, the heavy suppression of large 

values of the action by the factor means that we can reliably approximate such an 

integral by using expansions around every finite min imum of the action to approximate 

all the significant contributions to the integral. This is the essence of semiclassical 

calculations. 

Let ^class be a field configuration that locally minimises the action (which implies i t 

is a solution of the classical Euler-Lagrange equations of motion) , and where the value 

of the min imum is finite; 

6S_ 
6(f) 0, S[(f)class] < oo. (2.3) 

Pclass 

Solutions of this type are called instantons, and i t is the neighbourhoods of these points 

i n field space that dominate the par t i t ion funct ion and correlation functions. 

2.1 .2 T h e s e m i c l a s s i c a l a p p r o x i m a t i o n 

I n order to approximate contributions to the functional integrals due to the instanton 

0class, we first define 50 as the fluctuation of the quantum field (p from the classical 

solution, 

^ = (t>c\ass + ' (2.4) 

and then expand the action about < ĉiass) 

J 0(p[X) 

H{x)54>{y) 
(2.5) 
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From the defini t ion of i^classj i t is obvious that the term linear i n 6(l> vanishes. Further­
more, we shall not retain terms in the expansion past quadratic order in this thesis, a 
t runcat ion we w i l l call the semiclassical approximation, and which we discuss in more 
detail below. I n this case, the funct ional integrals have Gaussian form and can be 
evaluated. 

To see this, consider 

525 
(2.6) 

5(f){x)5(j){y) 

which is a real symmetric operator and therefore has a complete set of eigenfunctions 

w i t h real eigenvalues, Oi G M, 

/ dS Sciass(a;, y ) f i { y ) = (TiMx), (2.7) 

(no imphci t summation over i is intended), where we can choose the functions { / J to 

be orthonormal, 

d''xfi{x)fj{x) = 6ij. (2.8) 

Expressing S(f) i n terms of these eigenfunctions, 

dcj> = ^ C i f i , (2.9) 

i 

we find, to quadratic order i n 6(p, 

g - 5 M ^ g-5[^e ,a3s]e-^Ei^.-?, (2.10) 

which is an exponentially decaying Gaussian factor because we know crj ^ 0 as (pciass 

minimises the action, so ^ciassi^iy) is a positive semi-definite operator. 

Up to this point we have not explicit ly defined the measure in the functional inte­

grals, but we have now introduced the convenient variables to use in the neighbourhood 

of < ĉiass- First , we can work w i t h the quantum fluctuation 6(f) rather than the f u l l field 

<p, and then we may parametrise the degrees of freedom of 64> as the coefficients { q } in 

equation (2.9), so 

/.*=/.*,=«/n^. ( 2 . 1 ) 
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including a constant N to account for our ignorance of the overall normalisation. Then, 
for example, we can find the contribution to the partition function due to ^ciass, in the 
semiclassical approximation, 

Zi = ATe-̂ t̂ ciass] j (2.12) 
j J v27r 

^^e-5[0cia=s] JJ^-i (2.13) 
i 

= jVe-^f'^^'-^ldet-^Eciass, (2.14) 

where we have assumed that all of the eigenvalues are non-zero, Ui > 0. How to deal with 

the case that some of the eigenvalues vanish, as occurs in any interesting physical model, 

will be discussed in section 2.1.3. Even if the eigenvalues are all positive, however, the 

determinant above still needs careful definition. The spectrum of Sciass is generally 

continuous, and the product cannot be taken over an uncountable set of numbers. This 

situation may be avoided by imposing periodic boundary conditions, which makes the 

spectrum discrete. Still, though, the spectrum is unbounded from above and so the 

product is formally divergent. This requires the constant N to be specifically chosen 

to normalise the determinant in an appropriate way, as we shall discuss at the end of 

this section. Finally, in quantum field theories the normalised determinant contains 

divergences that must be removed by regularisation and renormalisation, which will be 

considered in section 2.1.6. 

To calculate the contribution due to the instanton to the correlation functions to the 

same order in 6(j), we need only include the zeroth order values of the field insertions, 

namely <t)c\sss{xn), hence 

Z = e-̂ [̂ <='-̂ ^ jdS4> exp (^-^1 ^<?iEciass5<^) H<?^ciass(xn). (2.15) 

Before we start refining this method to improve its range of applicabihty, let us 

discuss in greater depth the nature of the semiclassical approximation. We shall be 

concerned below with gauge theories involving a coupling g, and in which the fields 

may be scaled such that the couphng appears in the action only as a prefactor g~'^; to 

make this explicit we could send 5 —> ^"^5 above. The corrections to a semiclassical 

approximation result may be arranged in powers of g, leading to generic answers of the 
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form 

e-9-^s[^„ass] ^ + aig^ + + • • • ) ' (2-16) 

with constants {a„} and where ao gives the level of the semiclassical approximation. 

This includes a series reminiscent of a perturbation theory result, and indeed our ex­

pansion corresponds to considering perturbations around the instanton. The classi­

cal solution may take a trivial form, <f) being equal to a constant, with vanishing ac­

tion, and this case is in fact conventional perturbation theory. However, i f there are 

non-trivial minima of the action, we can be sure that their contributions are not re­

produced by conventional perturbation theory, because the function ^̂ [̂ ciass] -^jth 

5[(;6ciass] 7̂  0 cannot be written as a Taylor series in g about zero, i t is non-analytic at 

that point. Therefore, semiclassical calculations about non-trivial solutions represent 

non-perturbative information. Nevertheless, for these calculations to be well defined, 

the series in equation (2.16) must converge, and a necessary condition is that the cou-

phng g be less than one, just as in conventional perturbation theory^. Note that if we 

retained ^ as a dimensionful constant instead of setting i t to one, the functional inte­

grals would contain and so h would shadow 5^ in the above discussion. Then the 

convergence requirement would be that g^h should be small, which is where the name 

semiclassical originates from. Also, counting g^h factors shows that each subsequent 

term in equation (2.16) represents perturbative contributions including one more loop, 

and the semiclassical approximation is equivalent to restricting the perturbation theory 

around the instanton to one loop. 

We can use the recognition that conventional perturbation theory is a special case 

of a semiclassical calculation, about a trivial classical solution, to remove the unknown 

factor N from equation (2.14). I f the perturbation theory contribution to the partition 

function is 

^0 =-^det-5So, (2.17) 

then we can consider the ratio of Zi to ZQ and find 

Z , = Zoe-^!^^ '-]^^^^^^?^. (2.18) 
det-2Eo 

'In fact the series will be asymptotic, and should be approximated by truncating it after the smallest 

term; but we still require the coupling to be small in order that the terms initially decrease. 
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2.1.3 Bosonic zero modes 

The expression (2.13) is divergent if any of the eigenvalues vanishes, which is not surpris­

ing as in that case the relevant exponential factors are unity instead of being decaying 

functions that help the integrals converge. Furthermore, any symmetry of the system 

implies a zero eigenvalue, because there must be a corresponding direction in field space 

along which the action remains the same. Al l theories of interest here possess at least 

Lorentz symmetry and local gauge invariance, if not supersymmetry, so we must have 

a prescription for coping with the zero eigenvalue eigenmodes of the bosonic operator 

Sciass) or the bosonic zero modes. 

We cannot help the divergence of instanton contributions to the partition function 

in purely bosonic theories, but this situation will be drastically modified upon adding 

fermions to the theory so that need not be of concern presently. What we might hope 

to achieve is to rewrite the functional integral measure so that we have a convenient 

expression for use in calculating correlation functions; the inclusion of various fields in 

the integrand may improve the convergence properties of the integral. This is just what 

we shall aim for here. 

A useful concept is that of collective coordinates [8]. Every symmetry has an associ­

ated physical parameter in the classical solution, for example the position of localisation 

of the solution corresponding to translational symmetry, or a measure of the size of the 

solution for the case of symmetry under scale changes. The action of any symmetry on 

the classical solution can in fact be taken to be changing the value of the appropriate 

parameter, or collective coordinate, giving another solution with the same action. 

Continuing to work up from the simplest possible case, let us investigate the case 

of just one symmetry, with a coUective coordinate T . Then there is a one-parameter 

family of classical solutions with different values of T , {(pciassi^', T)}- I f we consider (j){x) 

equal to a solution infinitesimally displaced from one with the particular value T , 

cl>{x) = cP^iUx; r + 6r) = 0cla.s(^; r) + ^ h ^ d ^ 5 r + . . . , (2.19) 

then considering the expansion of the action as in equation (2.5), the term of order dr'^ 

shows that ^ ^ ^ ^ is an unnormahsed zero mode of Sclass- By a suitable choice of labels 
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for the eigenfunctions and their eigenvalues, we can write ao = 0 and 

^ = ( ^ | A ( ^ y y / o . (2.20) 

This appears multipHed by 6T in the fluctuation S^, which indicates that a simplification 

may be to change variables in the functional integrals from the coefficient of the zero 

mode, Co, to the collective coordinate r , a more natural and convenient choice. 

In order to realise this change of variables and determine the relevant Jacobian 

factor, we shall insert into the functional integrals a Fadeev-Popov unity operator, 

1 = JdrS (((^0, 4 i a , s ) ) A (</icla.s) , (2.21) 

with ( / , g) = J d'^x f{x)g{x) an obvious scalar product for functions, and ĉlass = 

The normalisation A must be arranged to make the above relation hold. The rules of 

calculus show that i t should take the form 

A (^class) = ' ^ ^^\H,4>dass) (2.22) 

4'clasa (2.23) 

where the second term in the final expression can be neglected in the semiclassical 

approximation. The delta function is only non-zero for fluctuations orthogonal to the 

zero mode. 

The instanton contribution to the partition function becomes 

Zj = Are-5[0ciass] I ^ j I d r e'^'^^^ (^eia.s, kisss) S [{64>, <^cia.s)) • (2.24) 

Recall that Sep = Cifi, and ĉlass = (< ĉlass, ^class)' /o, so we have 

S (^(^6(f>, ^class)) = S (j^4>c\ass, ^class)' CÔ  (2.25) 

= ^^class, 0class) ^ <̂  (co) • (2.26) 

This allows us to perform the cq integration and flnd 

= ^ , - * , » . i n | | L . 4 . » ? / ^ ( 4 , a . . , 4 , » ) ^ (2.27) 

= iVe-^t'^^'-]det'-2s^i^^ j ^ ^ ^ 1 ^ ^ , , (2.28) 
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where det' is the determinant of the operator restricted to the non-zero eigenvalue 
subspace, that is not including the zero eigenvalues. The instanton contribution to the 
partition function is still divergent because it contains an integral over an unrestricted 
variable, but it gives us the correctly normalised instanton measure. Once we have 
cured the divergence of the partition function by including fermions, this will be an 
essential element in the calculation of correlation functions. 

This result can be easily generalised to find the instanton meaisure with UB bosonic 

zero modes, 

Zi = JVe-^ [^ - - ]de t ' - ^Ee ia . s /n ^ d e t ( ^ ' ^ c l a . s , ^ ^ c l a s s ) ' • (2-29) 

which includes the Jacobian factor 

f 1 / d d \^ 

2.1.4 Gauge fields 

Field theories with local gauge symmetry are the most interesting and important cases 

in particle physics. A l l of the theories that together form the phenomenally success­

fu l standard model of particle physics are gauge theories. In this thesis we shall be 

concerned with semiclassical calculations in such theories, and here we will discuss the 

necessary modifications to the formalism, given above only for one scalar field, to extend 

it to apply to theories with a gauge field. 

The solutions to the equations of motion with finite action in pure Yang-Mills theory 

in four dimensional Euclidean space are the archetypal configurations for semiclassical 

calculations. They are known as Yang-Mills instantons and their properties are dis­

cussed in section 2.2 

A gauge field Vm can be viewed as four scalar fields, Unked together as a vector with 

regard to Lorentz transformations, and with some physical redundancy due to many 

diff"erent values of the field falling into the same gauge equivalence class. The first point 

here doesn't lead to significant changes in the semiclassical method; the generalisation 

from one to many scalar fields is trivial, and the fact that they are labelled by a vector 

index is never important as the indices arrange into a covariant expression at every 

stage. The last property, however, requires some attention. Gauge transformations of 
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the classical solution do not change the action and this suggests the existence of an 
infinite number of bosonic zero modes, since the group corresponding to local gauge 
symmetry has infinite dimension. To prevent this, we should fix the gauge. Making an 
expansion around the instanton, we have 

Vm - 4 " " ' + ^^m, - (2.31) 

and the gauge of is irrelevant to the calculation of any physical quantity, so we 

may pick a useful gauge condition for Svm since this is the fundamental variable of the 

semiclassical calculation. A convenient choice of gauge is given by 

j^d3SS (^^m-) ^ (2.32) 

where D^^ is the covariant derivative with the instanton gauge field v^^. This is 

known as the covariant background gauge, and it forces the quantum fluctuations 6vm 

to be along directions in field space orthogonal to those given by gauge transformations, 

as shown by the following argument. I f equation (2.32) holds everywhere then 

/ d'^xTr A D ^ ^ ^ (^t;'") = 0 , (2.33) 

for any function A(a;) valued in the Lie algebra (or adjoint representation space) of the 

gauge group. We can integrate this by parts, giving 

d'^xTr Idv'^D^'^^A I' = 0, (2.34) 

and then, recognising that an infinitesimal gauge transformation of the classical solution 

is v'^^^^ i-> v'^^'^^ + D^^^A, we can see that equation (2.34) is the required orthogonality 

condition. 

Once the gauge has been fixed in this way, the semiclassical calculations proceed 

essentially as before^ allowing us to find, for example, the Jacobian factor for the bosonic 

measure. Investigations of exactly this kind, for a case of interest, will be described in 

appendix C. However, the partition function will stifl be infinite due to the bosonic 

zero modes of the instanton, and this causes a significant and fundamental barrier to 

any semiclassical calculations. The situation is aided by the inclusion of fermions in 

the theory, so we move to consider these next. 

^We are neglecting here the influence of the ghosts arising from the gauge fixing procedure, but 
since they are described by an anticommuting field, we shall consider this after discussing the similar 
but more relevant case of fermionic fields. 
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2.1.5 Fermions and fermionic zero modes 

We shall now consider a field theory containing a fermion ip, which transforms under 

a spinor representation of the Lorentz group and is composed of Grassmannian or 

anticommuting numbers. This latter, defining characteristic of fermions is of crucial 

importance to their properties in semiclassical calculations, so we shall briefly review 

some useful formulae relevant to such variables. 

Let ( and rj be Grassmannian numbers, obeying 

Cr/ + 7?C = 0, C' = r?2 = 0. (2.35) 

The rules of integration for these numbers, given by Berezin [9], are that 

j d r j l = 0, Jdrir] = l. (2.36) 

Therefore, because exp {(Ari) = 1-1- C^VJ we have 

drjdC exp{(AT]) = A. (2.37) 

The measure dr] of a Grassmannian number behaves in almost the opposite manner 

to an integration measure from real calculus. This is most clearly demonstrated by 

noting from the rules above that / drj acts in the same way as the derivative operator 

In fact dr) should be considered as a Grassmannian number independent of ij, but 

defined by the requirements in equations (2.36). The order of integration is therefore 

important, since 

dCdrj =-drjdC. (2.38) 

Also, under a change of scale, say rj ̂  C = arj, preservation of the rules (2.36) leads to 

the measure transforming in the reciprocal manner, 

dr]^dC = —. (2.39) 
a 

We will assume that the action takes the form 

S [0, V, ip^] = SB[(I)] + J d'^x i^^V{(f>)iP, (2.40) 
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with some Hermitian operator V. This is quadratic in fermionic fields without the need 
for any approximation. Here </> can stand for many bosonic fields, for example a gauge 
field Vm after gauge fixing. The partition function is 

Z = J del) dip # t e-^^t"^] exp J d'^x •>p^V{(f>)iP^ . (2.41) 

We shall treat the factor e~'^^['^l as before, expanding around a non-trivial classical 

solution and neglecting all terms of cubic or higher order in the quantum fluctuations. 

To the level of the semiclassical approximation, we can replace I>(^) with •E'(^ciass) = 

^class. 

We can deal with the fermions using a similar method to the bosonic case. First, we 

expand ip in terms of the eigenfunctions of X>class! including Grassmannian coefficients 

iP = Y,mm- (2.42) 
i 

The functions {gi} obey 

^^ciassffi = kgu (2.43) 

(with no summation over i), and an orthonormahty condition 

d''xg\g^ = 5i^, (2.44) 

Then, defining the measure as dip dip'^ = Yii drji drj], equation (2.37) shows that we have 

Zi= f # e - ^ « [ ^ ] n ^ i (2.45) 

>e-^«[*ldetPclass. (2.46) 

Now we can notice that if any of the eigenvalues of the operator Pciass are zero, 

the instanton contribution to the partition function does not diverge, but vanishes! A 

normalisable solution of the equation 

^cla^s? = 0, (2.47) 

is called a fermionic zero mode. I f such an eigenfunction exists, the bosonic zero modes 

no longer harmfully lead to an infinite partition function, but rather, 

Zi = 0. (2.48) 
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Then, the partition function is contributed to solely by conventional perturbation the­
ory, which at one loop level gives 

Z = Zo = Nder^TiQ • detVo. (2.49) 

Note that So and VQ are positive definite operators that do not possess zero modes, so 

their determinants need not be truncated to give a non-zero, finite result. 

Although the semiclassical calculation of the partition function yields the value zero, 

there are still correlation functions to which an instanton may contribute. We shall take 

the case of just one normahsed fermionic zero mode, g, with the associated parameter 

r] in the expansion of ip. Then, we can draw together the results given in equations 

(2.14), (2.15), (2.18), (2.29), and (2.46), and find that the semiclassical approximation 

value for a generic correlation function takes the form 

( l[ cl>iXnmx,)i^Hx,)) =e-^B[^c.ass]det' \^cla.s /" J] dr, I ] ^class(x„) 
\n,p,q IJ det 2E0 ^ i= l 

det'Pclass 
j dndn'^WngixpWg^ix,). (2.50) 

detPo 

We have left undone the integrations over 77, which is a fermionic collective coordinate, 

and over its complex conjugate r?t. As before, det'I^ciass represents the determinant 

of the operator Pclass with zero eigenvalues excluded. This formula shows that the 

instanton contributions to most correlation functions are also zero. For example, any 

purely bosonic correlator, without insertions of •0 or is proportional to J drjl, which 

is zero under the rules (2.36). Furthermore, if there are too many fermionic fields in 

the correlation function, then the anticommuting nature of rj gives rj'^ = 0, and this 

again ensures that the result vanishes. Therefore, generally, it is only in the situation 

that the correlation function contains exactly the same number of fermionic fields as 

the instanton has fermionic zero modes, that there is a non-zero value for the instanton 

contribution to the correlation function. This special circumstance is called saturation 

of the fermionic zero modes. 

The expression above for the instanton contribution to a correlation function in a 

theory with a single fermion, and where the instanton has just one normalised fermionic 

zero mode, is easily generalised to having several fermions (all still represented by ip, 
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with identity labels suppressed) and np unnormalised fermionic zero modes, giving 

ass I 
det-tS, 

llcP{xn)iP{xp)ipHxg)) =e-^B[^c.a3s]det ^Scla.s [^dnJeUcPdsssixn) 
, „ „ / _ det 2 So y -^^ „ 

J n H n '^d^{^p)i>ix^^{xq). 

(2.51) 

\n,p,q IJ aei -̂ 2.0 i=l 

detPo . . , 

Here '̂ ciass is a linear combination of zero modes, including the fermionic collective 

coordinates {T/J} as coefficients, 

i^c\ass = Y^Vj9j, (2.52) 

and J'F is a Jacobian factor, 

JF = det-''I d'^xg]gk (2.53) 

= d e t - i y " d'̂ o; y" dr/, dr?J^J,̂ ^Velars. (2.54) 

When we come to do semiclassical calculations in gauge theories, the relevant opera­

tor will be ia^Dn, and we shall make great use of the Atiyah-Singer index theorem that 

allows us to find the number of fermionic zero modes of id^D^^, as will be discussed 

in section 2.2.5. However, we should already state here that if the fermions have a mass 

M, included in the operator as io^Dn + M , then there are no zero modes, so i t is only 

in the presence of massless fermions that the problem of a divergent partition function 

is solved in the manner given above. 

2.1.6 Regular isat ion and renormalisation 

So far we have only considered the immediately apparent divergence of the partition 

function due to bosonic zero modes, which is alleviated by the inclusion of fermions in 

the theory. However, more subtle problems can arise because the amputated determi­

nant det'Sciass) and its fermionic analogue det'Pciass, are infinite due to the existence 

of many large eigenvalues. The solution to this is to regularise and renormalise the 

theory, just as one would in conventional perturbative calculations; these are after all 

ultraviolet divergences. When working with instantons it is most convenient to use the 
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Pauli-Villars regularisation scheme, which is motivated by imagining that, for every 
field in the theory, a similar field is added, but with the opposite, unphysical statistics 
and a large mass fi that sets the renormalisation scale. Practically, it involves replacing 
the determinant of any operator A with the ratio 

' ^ ' ^ (2.55) 
d e t ^ H ' 

where A^f^^ is A plus the appropriate power of fx. At low energies, the approximate 

effect is to scale the small eigenvalues by a constant; at high energies, is insignificant 

and the ratio tends to one, controlling the divergence. 

We will be concerned with supersymmetric field theories in this thesis, and fortu­

nately the Pauli-Villars scheme doesn't break supersymmetry; the extra particles would 

follow the physical ones and match up in supersymmetric multiplets. The dimensional 

reduction scheme is widely used in supersymmetric theories, indeed it is a variant of 

dimensional regularisation designed to preserve supersymmetry, but i t is not apphcable 

to semiclassical calculations as the instanton solution is specific to a given number of 

dimensions. 

In the Pauli-Villars regularisation scheme, our previous expression for the instanton 

contribution to a correlation function, equation (2.51), becomes 

\n,p,q 

, n . - s . . e . . ] d e t H s ^ . d e t 4 s S f - ) ff^,,^^n,^.^^(,„) 
d e t ' - ^ S ^ l det-2Eo J t \ 

det e?class det^S''^ det'2?class detpj''^ /" T T ^ ^ t ^ T T / / N / t / ^ 

We have included the effects of ghosts, which have a quadratic operator G in the action 

{Q is positive definite, so ghosts do not possess zero modes and their determinants do not 

have to be modified). Also, we have exphcitly written the lowest UB and np eigenvalues 

from det S^f^g and det '̂cfMs respectively, in order to compare reduced determinants 

det', and this has given the power of /j, at the front. When combined with the instanton 

action, this is crucial for the renormalisation group invariance (that is, fj, independence) 
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of the result. For the theories we will be discussing in this thesis, 

The contribution from the bosonic operators is /x"-^, which is easily understood. To 

explain why the fermionic factor is / i " ^ " ^ ' , we first state that we will always be deahng 

with Weyl or chiral fermions, which couple to the quadratic operator io^Dn in the 

action. This is not Hermitian, and so not immediately suitable for semiclassical analysis. 

Instead, we must rearrange the Weyl fermion and anti-fermion into a real Majorana 

fermion, then because this has half the degrees of freedom of a complex Dirac fermion, 

the determinant of the relevant operator appears to the power ^, which leads directly 

to the fermionic contribution of fi'^^''. 

2.2 Yang-Mills instantons 

We give here a quick overview of the features of instantons in Yang-Mills theory in four 

dimensional Euclidean space. These provide a good demonstration of the ideas that 

we have been discussing so far, as well as introducing the concept of topological charge, 

all of which will be important for the calculations presented in this thesis. When we 

refer to instantons in later chapters, we shall normally mean such Yang-Mills instanton 

configurations, as should hopefully be obvious from the context. 

2.2.1 T h e instanton number 

The action of Yang-Mills theory in the absence of matter is 

Jd'x^Tvivmnv"'^). (2.58) 

In order to have a finite action, it is clear that the field strength must tend to zero as 

|a;| —)• oo. This does not imply that the gauge field has to vanish at spatial infinity, but 

it must have the form of a pure gauge, 

lim Vm = iUdmU-\ (2.59) 
|i|-^oo 

Therefore every finite action gauge configuration is associated with a mapping U from 

the three sphere at infinity, 5^ , to the gauge group. Let us start with the simplest 



CHAPTER 2. SEMICLASSICAL PHYSICS AND INSTANTONS 24 

possible case and take the gauge group to be SU{2), which is also isomorphic to S^. 
Therefore U maps S^ to itself, and such mappings are topologically characterised by 
elements of the homotopy group 

7r3(5^) = Z, (2.60) 

so we can assign to any Yang-Mills instanton an integer, known as the instanton number 

or Pontryagin index. This is an example of a topological charge, or winding number 

(referring to the winding of the hyperspheres around each other). The instanton number 

can be calculated using the formula 

k = j d^x (?;^„*u™"), (2.61) 

where *Vmn = l^mnpqV^'^-

To prove this, first note that Tr {vmn*v'^^) is equal to the divergence of the Chern-

Simons current, 

j^m ^ ^^mnpqn^ (v^d^V^ - \iVnV^V^ , (2.62) 

therefore, 

y d^xT^{v^n^v'^'^) - y"d^xdmK"^ = J^ id^xUK"^. (2.63) 

The condition of finite action, which requires Vmn = 0 on the hypersphere at infinity, 

imphes e'""̂ ^ {dpVg - ivpVg) = 0 and Vm = iUdmU'^ on S^. Using these results, the 

integral becomes 

f d^xTrivmn^v""^) = f {d^x)m ^ e ^ T Y {U ( 5 „ [ / - ^ ) U {dpU-') U {dgU-')) . 
J Js^^ 3 

(2.64) 

We can parametrise the above integral in terms of any three independent variables on 

the hypersphere, call them { ^ i } for i = 1,2,3. They are functions of the three coordi­

nates {Oi} of the SU{2) manifold, and if we change to these as integration vciriables, 

the trace over U matrices and derivatives becomes exactly the weighting required to 

make the invariant measure of SU{2). Therefore, 

/ d'^x Tr (urnn*?;"*") oc Vol {SU{2)). (2.65) 
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However the {^j} may map to the {di} many times, though still continuously, so we 
can further write 

/ d'^xTr {vmn*v"''') oc k Vol (5^7(2)), (2.66) 

with k an integer giving the number of times S^ is wrapped around SU{2), which we 

recognise as the instanton number. I t remains only to find the constant of proportion­

ality between / d'^x TT {vmn*v'^^) and k, and this is most easily achieved by explicitly 

evaluating the integral in the case where the mapping is Ui = ^Xmcr'^. This is a 

manifestly one-to-one mapping and so should have unit topological chajge. I t yields 

/ (d'xU f e ^ T r {U, {dnU,~') U, (SpC/f') Ui {dqU-')) = IQw^, (2.67) 

which verifies the factor shown in equation (2.61). 

The situation is no more complicated for any other gauge group G, due to the result 

[10] that any mapping from an S^ to G is topologically equivalent to a mapping from 

the to some SU{2) C G, so 7r3(G) = Z and instantons are still labelled by the 

instanton number, given by equation (2.61). 

The fact that Tr {vmn*v'^"') is a total derivative means that i t can be added to the 

action without afl^ecting the equations of motion. The extra contribution, known as the 

theta term, takes the form 

= j d'xTT{vmn*v"'''), (2.68) 

and in the partition function i t leads to the factor e"'̂ "' = e^^'^, so •& is an angular 

variable with period 27r. 

2.2.2 T h e action 

As we have just seen, any gauge configuration with finite action is associated with 

a topological charge, the instanton number. However, we are not just interested in 

finite action configurations, but ones that are also local minima of the action. There 

is no smooth deformation of a finite action gauge field that can change the topological 

charge^, so we may expect to find minimal action configurations in each topological 

sector. 

The topological charge is therefore a non-dynamically conserved charge. 
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We seek solutions of the classical equations of motion, 

= 0. (2.69) 

However, we shall not attempt to solve these equations directly, but instead note that 

self-dual or anti-self-dual gauge fields, which obey *Vmn = i^mn and 

respectively, automatically fu l f i l the equations of motion. This is because of the Bianchi 

identity, 

L>^*^"i» = 0, (2.70) 

which always holds, so any gauge field for which *Vmn is proportional to Vmn is a 

solution of equation (2.69). In Euchdean space, ** = 1, so the only possible eigenvalues 

of the Hodge star operator are ± 1 , and therefore it is the (anti-)self-duality conditions 

*Vmn = ±Vmn, (2-71) 

that are of great interest and utility. They are first order partial differential equations, 

simpler than the second order equations (2.69). Of course, the (anti-)self-duality e-

quations are a sufficient but not necessary condition for the equations of motion to be 

obeyed, so not all classical solutions must be self-dual or anti-self-dual, but there are 

no interesting finite action solutions known that are not. 

We can also see more directly that (anti-)self-dual configurations minimise the ac­

tion, by writing^ 

S = l d^x^Tr {vmn T *«mn)(w'"" T *v'^n 

I d'x^Ti {vmn*v"''') (2.72) 

I d'x^Trivmn*v"^''). (2.73) 

± 

The action is also bounded by 5 ^ 0, so only one choice of the sign above gives a 

non-trivial restriction. Using the expression for the topological charge, equation (2.61), 

we can evaluate the bound, 

5 S (2.74) 

It is useful to note that *Vmn*v"^"' = Vmv.v'^'^ in Euclidean space. 
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Therefore we see that for positive k, the positive lower bound on the action is attained 
by taking the field to be self-dual. For negative k the gauge field must be anti-self-dual 
to minimise the action, and such solutions are often known as anti-instantons. In all 
cases the value of the action at the minimum is 

S = (2.75) 

The method we have used here to find the instanton action is an example of the appli­

cation of a Bogomol'nyi bound. 

2.2.3 T h e B P S T instanton 

Yang-Mills instantons are known to exist for all values of the instanton number. The 

solution for A; = 1 with gauge group SU(2) was found by Belavin, Polyakov, Schwartz 

and Tyupkin in [11] and is known as the BPST instanton. I t is 

,CJmn {X^-X^). 
p2 + |x - X\ 

(See appendix A for the definition of a™".) This solution has eight parameters, which 

are the bosonic collective coordinates of the BPST instanton. They are: 

• The four coordinates of the spatial centre of the instanton, corresponding to 

translational symmetry; 

• The three angles in the constant SU{2) matrix F , which is a global gauge trans­

formation that does not affect the covariant background gauge condition and so is 

a symmetry of the gauge fixed Lagrangian. Spatial rotations can be absorbed into 

V as shown in [12], and should not be considered to be an independent symmetry; 

• The size p of the instanton, from dilatations or scale changes, the remaining part^ 

of the conformal symmetry of pure Yang-Mills theory. 

For simplicity we shall put X at the origin and set the gauge orientation V to the 

identity in what follows. This will not restrict the generality of the discussion, and 

both factors can be easily restored at all stages. 

^Translations and rotations have already been considered. Inversions ^ are not a continuous 
symmetry and in fact map instantons to anti-instantons, and any special conformed transformation is 
equivalent to a combination of a translation and a gauge transformation, in a similar way to rotations. 
These issues are discussed fully in [12]. 
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Our example of a mapping with unit winding was Ui = j^Xm<y"^, and for this matrix 
we have 

iUrdmUl = - 2 i ^ ^ . (2.77) 

Therefore, the BPST instanton gauge field (with X = 0 and V = I) can be written 

= J f ^ niUidmUl (2.78) 

and as tends to infinity, Vm -> iUidmUl, so this solution is clearly associated with 

instanton number one. Also, the field strength is 

2 
Vmn = ^ij~——o^rnn, (2-79) 

(p2 + |a;|2) 

which is self-dual by virtue of the self-duality of Omn-

Equation (2.76) is the BPST instanton written in what is known as a regular gauge, 

where the gauge field is non-singular everywhere. We can use the improper gauge 

transformation ul, which is not continuous at the origin, to move to a singular gauge. 

Then the gauge field has the form 

which has a pole at a; = X = 0, the centre of the instanton configuration, but that 

point should be excluded since the gauge transformation was not well defined there. I t 

also dies away much more quickly at large distances, compared to the regular gauge 

expression. This means that the boundary integral of K'^ vanishes, but the instanton 

number is still unity, because on excluding the point X an additional boundary is 

introduced, and the contribution to k from this surface is one. The topological charge 

density is concentrated at the instanton centre in singular gauge. This type of situation 

is important to consider because for higher instanton numbers it may not be possible 

to find a gauge where the solution is continuous across the whole space. 

The anti-instanton solution with A; = — 1 can be found from equation (2.76) by 

changing Gmn to the anti-self-dual amn-

The solutions with = 1 and k — —\ m any other gauge group are simply em-

beddings of the relevant SU{2) instanton into an 5f7(2) subgroup of the gauge group. 

They have 4c2 bosonic zero modes, where C2 is the dual Coxeter number of the group. 
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as defined in appendix B. Five of these parameters are the instanton centre and size, as 
above, and the remainder are angles in a constant gauge transformation that alters the 
embedding subgroup. This procedure gives the most general (anti-)self-dual solution 
with k — ± 1 , as shown in [13]. 

2.2.4 Multi-instantons 

When k = I the configuration is frequently referred to as a one instanton solution, 

whereas for higher values of the instanton number they can be called A;-instantons 

or multi-instantons. Self-dual multi-instantons have 4c2A; bosonic zero modes [13], as 

might be expected since a particular case of a A;-instanton could be constructed starting 

from the approximate solution that is k well separated one instantons, each with 4c2 

parameters, and calculating the perturbations required to make it an exact solution. 

The most general self-dual multi-instanton solution was given imphcitly by Atiyah, 

Drinfeld, Hitchin and Manin, in [14], via what is now known as the ADHM construction. 

We will discuss this in section 7.2. 

2.2.5 Fermionic zero modes 

I f we include a Dirac fermion I/J in the gauge theory, then to proceed with semiclassical 

calculations we need to know about the eigenfunctions of the fermionic operator, and 

especially the zero modes, in the background of a Yang-Mills instanton. As we men­

tioned in section 2.1.5, only if the fermion is massless do fermionic zero modes exist. 

Wi th massless fermions it is convenient to work in the Weyl representation, where ip 

has the form 

• (2.81) 

and the gamma matrices are partitioned as 

0 a™ 
7"^ = . (2.82) 

0 

The action written using these variables is 

J d ' x (^^Tr {VmnV"^^) + # L " ^ " i ^ m V - L + # R ' a^Djfi^^ . (2.83) 
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We are therefore interested in the zero modes of ia^Dm and ia'^Dm- An appHcation 
of the Atiyah-Singer index theorem [15] shows that the number of fermionic zero modes 
of ia^Dm minus the number for ia'^Dm is proportional to the instanton number. The 
constant of proportionality depends on the representation of the gauge group appropri­
ate to tp. For the fundamental representation, it is 1, but in this thesis we shall be more 
often concerned with the adjoint representation, for which the constant is 2c2. This 
result is more powerful than i t may seem, because we can show that there are no zero 
modes for ia'^Dm i f the gauge field is self-dual, so the Atiyah-Singer index theorem 
allows us to predict the numbers of fermionic zero modes of both operators when the 
gauge field is a Yang-Mills instanton. 

The required proof is by contradiction. Suppose there is a normalisable solution to 

ia^'DnX = 0, (2.84) 

then we can act on this equation with the operator —ia^Dm and find 

G^a^'DrnDnX = (<5"'" + 2^^") L>^i?„x = 0, (2.85) 

using results from appendix A. The antisymmetry of CT^" = -a""* implies 

2a^^DmDn = a"^" [Dm, Dr,] = (2.86) 

However, o^" is also anti-self-dual, so if Vmn is self-dual then their contraction vanishes. 

Therefore our initial assumption leads to the conclusion 

D'^DmX = 0, (2.87) 

but D^Dm is a positive definite operator and cannot have a zero eigenvalue (in the 

space of normalisable, non-singular functions). An exactly similar proof shows that 

there are no zero modes for ia^Dm i f the gauge field is anti-self-dual. 

The above discussion shows, for example, that a one instanton in any gauge theory 

has one zero mode for each fundamental left-handed Weyl fermion in the theory [7], 

and 2c2 zero modes for each left-handed Weyl fermion that transforms according to the 

adjoint representation [16]; for gauge group SU{2) this means four adjoint fermion zero 

modes. In supersymmetric pure SU(2) Yang-Mills theory, the fermionic superpartner 

of the gauge particle transforms under the adjoint representation, and just as for the 
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bosonic zero modes of the gauge field, we can relate its fermionic zero modes to obvious 
symmetries of the theory. There are two zero modes associated with supersymmetry, 

^ - ^y = a - " , % « ^ „ , (2.88) 

and two for superconformal symmetry, 

^suconf ^ ^mnJ^P^^^P^^^^^^ (2.89) 

with fermionic collective coordinates ^ and rj [17]. Al l (multi-)instantons, in any gauge 

group, have these adjoint fermion zero modes, but the origin of their additional zero 

modes will not be so easy to interpret. 



Chapter 3 

Supersymmetry 

3.1 Introduction 

The field theories of interest in this thesis are not just gauge theories, but specifically 

supersymmetric gauge theories. Supersymmetry is invariance under the exchange of 

bosonic and fermionic degrees of freedom. Why should we consider i t to be of signifi­

cance? 

In particle physics, supersymmetry has been suggested as an explanation for why 

the Higgs mass is so small compared to the highest known fundamental scale, the Planck 

mass. Every particle that interacts with the Higgs boson contributes to radiative loop 

corrections to its mass, which are quadratic in whatever cut-off scale one chooses to 

represent new physics superceding the standard model (the Planck mass applies, even 

if there is nothing lower). Using counter-terms to remove such large corrections would 

require unfeasible fine tuning. Without i t , the Higgs would be expected to have a mass 

of the same order as the Planck mass, and then the mystery is in the relative smallness 

of the electroweak scale. The same problem does not occur with fermions and gauge 

particles because their masses are protected by chiral and gauge symmetry respectively. 

In analogy, supersymmetry protects the masses of scalar particles. The corrections to 

the Higgs mass from bosons and fermions cancel due to the balance between them in a 

supersymmetric theory^. Furthermore, every currently viable extension to the standard 

'At the one loop level the cancellation occurs because fermion loops have an extra minus sign 
compared to loops with bosons. More generally, in a supersymmetric theory, any scalar such as a 
Higgs boson is paired with a fermion of the same mass. The mass of the fermion is protected by chiral 

32 
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model incorporates supersymmetry, so it is important to be aware of its consequences. 

I t is also of interest from a more abstract viewpoint. Knowing that both local gauge 

symmetry and local Poincare symmetry (gravity) are of central importance in modern 

physics, Coleman and Mandula [18] looked for the most general Lie algebra of the sym­

metries of an S-matrix of a four dimensional relativistic quantum field theory obeying 

some sensible conditions. Unfortunately, the answer is a direct sum of the Poincare 

algebra and the algebra of a compact Lie group. There is no way of intertwining gauge 

symmetry and gravity in a larger symmetry group from which both naturally occur 

together, perhaps even with new physics. However, there is a generalisation that does 

lead to a novel situation. Haag, Lopuszahski and Sohnius [19] considered graded Lie 

algebras, which include anticommuting generators, and found the supersymmetry alge­

bra as the most general such object that leaves an S-matrix unchanged. The core of the 

supersymmetry algebra is illustrated by the anticommutator of the new supersymmetry 

generators Qa and Q^^, which is proportional to the generator of translations, 

{Qa,Qa}=^^\aPm- (3-1) 

I f Qa and act on a bosonic field they give a fermionic field and vice versa, so i t is 

only when the two types are matched that these operators leave the theory invariant. 

This is not what has been experimentally observed to date, so why should the theory 

of fundamental physics not include every possible feature? Perhaps by studying all the 

alternatives we might find a reason, or discover how supersymmetry can relate to the 

structure we know of already. 

The ful l supersymmetry algebra is given in the textbook by Wess and Bagger [20], 

including a discussion of extended supersymmetries where there are many copies of 

the pair of anticommuting generators introduced above. The extension, or number of 

supersymmetries, A/", is the number of such pairs, and in four dimensions the interesting 

cases are A/" = 1, 2 and 4. We will mostly be concerned with the unextended M = I 

case in this thesis. The same reference [20] also contains an excellent introduction to 

supersymmetric multiplets, superspace, superfields and Lagrangians for supersymmetric 

field theories. Given such a treatment it is entirely unnecessary to discuss that material 

at length here, and instead we shall just give a brief summary and orientation in the next 

symmetry, and supersymmetry then extends this protection to the scalar mass. 
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section. After that, we will describe the relevance of supersymmetry to semiclassical 
calculations, introduce some of the interesting quantities to consider in supersymmetric 
theories, and look at some of the methods used in attempts to determine them. 

3.2 Supersymmetry in field theories 

3.2.1 Superspace and superfields 

The supersymmetry algebra can be used to show that the operator Qa increases the 

spin by one half, therefore at a simplistic level a scalar is connected to a fermion, a 

fermion to a vector, and so on. The M = 1 supermultiplets of interest in this thesis 

work in exactly this way. 

A chiral or scalar multiplet contains a scalar field A{x) and a fermion tp{x). Under 

an infinitesimal supersymmetry transformation, A changes by 

6A = V2^i>, (3.2) 

where ^ is the Grassmannian parameter of the transformation. Note that the dimensions 

are correct; equation (3.1) shows that Qa has mass dimension ^, so we would expect ( to 

have the opposite dimension, in order that they form a dimensionless combination. 

In four dimensions the mass dimensions of scalars and fermions are 1 and | respectively, 

so the assignment [^] = - i is in accord with equation (3.2). More generally, this type 

of argument shows that under super symmetry, any field gains contributions from fields 

with mass dimension higher by ^, or r i r t h derivatives of fields with dimension n - ^ 

lower. An example of the latter is shown by the infinitesimal transformation of tp, 

dtp = V2ia^ldmA + V2^T. (3.3) 

The field T cannot be a dynamical scalar as it has mass dimension 2, which is too high 

to allow a kinetic term involving .7̂  in a dimensionless action. I t is instead an auxiliary 

field, which can be eliminated by substituting the solution to its equation of motion^. 

The infinitesimal transformation of !F is 

5T = V2ila'^dmi', (3.4) 

Including the auxiliary field .7̂  is a way of linearising the supersymmetry transformations. 
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which shows that the transformations relating A, ip and !F are closed. Chiral multiplets 
are used to describe matter fields in supersymmetric theories; i f V' is a quark then its 
superpartner A is a scalar quark or squark. 

A vector multiplet contains a fermion A and a gauge field Vm, and also an auxil­

iary field V. We shall refer to Vm as the gluon field and call A the gluino. In order 

for supersymmetry to be valid in any gauge, the gluino must transform in the same 

representation of the gauge group as the gluon, namely the adjoint representation. The 

same holds for the matter fields; the squarks must behave in the same way as the quarks 

under gauge transformations. 

A natural language for discussing supersymmetric theories is found in the superspace 

formalism. The familiar bosonic coordinates x'^ are augmented by four Grassmannian 

coordinates, 9" and da- Supersymmetry transformations are then essentially transla­

tions in this extended space, for example 9 t-^ 9 + ( , as can be seen from the superspace 

representation of the supersymmetry generators, 

Qa = -^-i<^"'aj''dm, (3.5) 

Qa = —-Za+'^"''"c.adm- (3.6) 

These can be used to act on superfields, or fields on superspace. The dependence of 

these functions on 9 and 9 can be expressed as a Taylor series that terminates after only 

a few terms, due to the Grassmannian character of the extra coordinates. The coeffi­

cients are conventional fields depending on x, which are bosonic or fermionic according 

to whether they multiply an even or odd number of Grassmannian coordinates. A su­

persymmetry transformation has the effect of mixing these component fields amongst 

each other. However, the most general superfield does not correspond to an irreducible 

representation of supersymmetry, and to construct more fundamental objects we must 

impose suitable conditions. 

The following derivative operators are covariant with respect to supersymmetry, 

= + i^^^a^dm, (3.7) 

Da = -^-i9''a^aadm, (3-8) 
89 

and can therefore appear in supersymmetrically invariant conditions. For example, 

we can require that the superfield $(2;, 0,0) vanishes when acted on by one of these 
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operators, 

Da^ = 0. (3.9) 

This equation is easily solved by noticing that 6°^ and y'^ = + iOa'^O are annihilated 

by Da, so any function of these two variables^ will fulf i l equation (3.9). The most 

general possibifity is 

$(y, e ) = A{y) + V^eV(y) + 0d:Fiy). (3.10) 

The fields A, ip and are exactly the same as those of the chiral multiplet discussed 

above. Any superfield obeying equation (3.9) is known as a chiral superfield. Note that 

any product of chiral superfields is also a chiral superfield. 

Similarly, Da^^ = 0 imphes that is a function of 9 and y"^^ = x"^ - i0a^9, and 

this gives anti-chiral superfields. 

Another condition is reality, V = V"^, and this leads to a superfield containing the 

fields A, Vjn and V that we introduced in the context of the vector supermultiplet earlier, 

as well as some additional fields. We can generalise gauge transformations, in a man­

ner consistent with the superspace approach, by promoting the gauge transformation 

parameters to being chiral superfields. These transformations can then be used to set 

all the fields except the gluon, gluino and auxiliary fields to zero. This choice is called 

the Wess-Zumino gauge, and it is disturbed by supersymmetry but does not affect the 

usual gauge redundancy, so conventional gauge transformations can still be performed. 

An interesting superfield associated with the vector superfield V is defined by 

Wa = -^DDe-^Dae^. (3.11) 

I t is chiral, 

DaWa = 0, (3.12) 

*It is also straightforward to see that $ does not depend on 9 by writing the derivative operators 
in the {y, 6,6) coordinate system, 
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and obeys the following identity, 

D^Wa^DaW". (3.13) 

The component fields of Wa, in the Wess-Zumino gauge or otherwise, are A, "D and Vmn, 

so i t is the supersymmetric generalisation of the gauge field strength. For completeness 

we hst the infinitesimal supersymmetry transformations of these fields, 

5X = i^V + a"'''^Vmn, (3 .14) 

SVmn = i( (o"n^mA - cr^i^nA) -|- «^ (CT„D,„A - CTm-DnA) , (3 .15) 

6V = la'^DmX - ^a'^DrnX. (3 .16) 

The form of equation (3 .14) shows that the adjoint fermion zero modes (2 .88) are indeed 

associated with supersymmetry. 

3,2,2 Supersymmetric Lagrangians 

In order to construct Lagrangians for superfields, we can use the reasoning given in 

the last section, that any component field incorporates fields of higher mass dimension 

or derivatives of fields of lower mass dimension, under the influence of supersymme­

try. This means that the highest dimension component of any superfield changes by 

the derivative of some set of fields, as illustrated by equations (3 .4) and (3.16)'*. The 

integral over space of the highest dimension component must therefore be a supersym­

metric invariant, and is a candidate for a term in a supersymmetric Lagrangian. These 

contributions are classified as F-terms or D-terms, if they are the highest dimension 

components of chiral or vector superfields respectively. 

We can apply the rules of Grassmannian integration, equation (2 .36) , and define 

Grassmannian measures on superspace with the following properties^, 

J d^91 = J d'^ee''= 0, Jd^999 = l, (3.17) 

J d^91^ j d^9 9a = 0, Jd^9 99^1. (3.18) 

^Equation (3.16) involves a covariant derivative, but a gauge invariant object suitable for inclusion 
in a Lagrangian would change by a simple coordinate derivative. 

'The product 69 = 9°'9a is equal to -29^9'', so the conditions (3.17) imply ( f 9 = -\d9^d6\ 
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Then the F-terms and D-terms can be extracted from their superfields by integration. 
For example, the kinetic terms in the action for a chiral superfield come from a D-term, 

<f9(f9^^^. (3.19) 

Chiral superfields do not depend on 9, so to get an F-term, such as the one that gives 

the kinetic terms for a vector superfield, we only have to integrate over half of the 

Grassmannian coordinates, 

j d^x^Re (^J (feTvWWa^ . (3.20) 

Note that W t V ^ is a chiral superfield because it is a product of chiral superfields. 

3.2.3 Supersymmetric Hamiltonians 

The supersymmetry algebra, equation (3.1), allows us to find a general, formal expres­

sion for the Hamiltonian in a supersymmetric field theory, 

H = P' = la'-^a^^Pm = {Q.,Qa} 

= \{QiQi + Q2Q2 + QiQi + Q2Q2)- (3-21) 

The expectation value of the energy in any state |0) is therefore positive semi-definite, 

{n\H\Q) = ^ + Q2l̂ )f + l^il^^)!^ + |Q2|0)p^ > 0, (3.22) 

and zero only in a supersymmetric state, 

{n\H\^l) = 0 ^ Qa\^) = Qa\n) = 0. (3.23) 

In any physical Hamiltonian there will be both kinetic and potential terms. The kinetic 

energy being equal to zero is obviously a necessary condition for the total energy to 

vanish. The cases where the contributions to the potential due to F-terms or D-terms 

become zero are called F-flatness and D-flatness respectively. 

3.3 Supersymmetry in semiclassical calculations 

There are some results and theorems due to supersymmetry which are particularly 

helpful in semiclassical calculations. To see how and why, we must first consider some 

of the problems that can arise in a generic semiclassical calculation. 
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After removing the divergences due to the existence of bosonic zero modes (by 
including massless fermions in the theory), and regulating and renormalising the ultra­
violet divergences of the determinants, the main obstacle to performing semiclassical 
calculations is that in most situations there is no control available on the convergence 
of the perturbative expansion. 

In perturbative QCD, for comparison, the expansion parameter is the renormalised 

couphng g^{n), where fj, is set by an appropriate physical scale. The only way of ensuring 

that g^ifi) < 1 is to restrict attention to scattering processes at high energies, where 

the negative /3 function drives the coupling to a small value. Quantities of interest in 

the low energy regime where g^{n) is of order unity or greater, such as the properties 

of bound states, are incalculable by perturbative means. 

Wi th instantons, the natural scale is the reciprocal of the instanton size, p~^. How­

ever, i t is necessary to integrate over all values of p, and therefore to include the infrared 

effects from large instantons, associated with a large coupling. The problems this brings 

show up in the one instanton measure [7, 21], the p component of which is proportional 

to 

roo 
/ dppP, (3.24) 

Jo 

with p a positive constant. This is divergent at large sizes, unless there is a factor in 

the integrand which renders i t finite. 

Another problem with instanton calculations is that even if one can find a regime 

where the coupling is small so the procedure is well defined, the instanton effects are 

still linked to the tiny factor exp ^ — a n d are therefore insignificant compared to 

conventional perturbative effects in their common region of validity. 

Supersymmetry provides the solution to both of these problems, and also leads to 

simplifications and improves the semiclassical approximation so that exact results may 

be found. The powerful tool used to achieve this is a non-renormalisation theorem [22], 

which states that the perturbative corrections to any F-term must vanish. To see why, 

let us write the result of a generic field theory calculation at small coupling as 

ao + aig^ + 023^ - t - . . . , (3.25) 

where if, for example, this is the (multi-)instanton contribution to a correlation function. 
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all of the coefficients {a„} would be proportional to exp Every coefficient 

with n ^ 1 derives from loop corrections that, in a supersymmetric theory, naturally 

contain an integration over a supersymmetric version of momentum space, / df^k d^9 d^9. 

The integration must be over the whole of this superspace, not just / d'^k S9 alone, be­

cause perturbation theory respects chiral symmetry (rotations of the phase of fermions). 

However, chiral superfields do not depend on 9, and so the integration over / d'^9 will 

give zero. Therefore every a„ identically vanishes for n ^ 1. 

This theorem does not extend to non-supersymmetric theories; without superspace 

there is no concept of an F-term. However, in the supersymmetric case it means that 

restricting the instanton calculation to one loop level still gives the full answer for 

certain quantities. 

A further consequence of the non-renormalisation theorem is that the conventional 

perturbative corrections to such a quantity vanish, so in the case that the F-term is clas­

sically zero, its quantum value is determined entirely by instantons with no competition 

from conventional perturbation theory! 

Even though the perturbative series is trivial for F-terms, it is still not possible to 

calculate them unless the coupling constant is small. However, we expect all correlation 

functions in a supersymmetric theory to be holomorphic in the coupling constant, so 

i f there is a method of calculating them with small coupling ensured, then their large 

coupling forms can be recovered by analytic continuation. Extended supersymmetries 

allow control over the size of the coupling; the higher the extension the greater the 

control. Exact calculations of the type discussed above have been performed in theories 

with both possible versions of extended supersymmetry. 

In A/" = 4 supersymmetric theories, the /? function vanishes so the theory is in fact 

superconformal. The coupling is then just a constant which can be set to any value. 

Instanton calculations [23, 24] in this type of theory have provided evidence for the 

AdS/CFT duahty conjectured by Maldacena [25]. 

lnj\f = 2 theories, the /3 function is negative, but the field content includes a scalar, 

which can gain a VEV that spontaneously breaks the gauge group to its maximal abelian 

subgroup. In this Coulomb phase, the theory becomes weakly coupled if the VEV is 

chosen sufficiently large. Another way of seeing that this is of help is that the scalar 



CHAPTERS. SUPERSYMMETRY 41 

field contributes a quantity proportional to p"^ to the action, and when exponentiated 
this leads to a damping factor that improves the convergence of the instanton measure. 
The low energy dynamics of A/" = 2 theories were analysed by Seiberg and Witten 
[26, 27], using the assumption of symmetry under electric-magnetic duality in the low 
energy theory. Their exact results were checked by explicit instanton calculations in 
[28, 29] and references therein. 

For the case of A/" = 1 supersymmetry, under consideration in this thesis, there is 

no automatic means to keep the coupling constant small, but we shall discuss various 

applicable methods in the remaining sections of this chapter, and in chapter 4. 

In addition to the features above that make semiclassical calculations possible, su-

pe'rsymmetry provides theorems that can vastly simplify the computations. The most 

important is that in a theory in four dimensions, the determinants of non-zero eigen­

values exactly cancel between fermionic and bosonic degrees of freedom^ [30], so only 

the zero modes have to be considered. Another theorem that will be relevant in this 

thesis is that any correlation function involving only the lowest components of chiral 

superfields is a constant, and so does not depend on the positions of the fields in the 

multi-point function [31]. 

3,4 Supersymmetric Yang-JVIills theory and the gluino con­

densate 

To begin the study of supersymmetric gauge theories, we can start with the simplest 

possible example. This is a theory without matter fields (a pure gauge theory), and 

with the smallest interesting gauge group. This must be a compact Lie group, but there 

are are no instantons in a U{1) theory, so we also require a non-abelian gauge group, 

of which the lowest dimension example is SU (2). 

The field content of A/" = 1 supersymmetric pure SU(2) Yang-Mills theory is the 

three gauge or gluon fields, v^, and their superpartners the gluinos, A^. These together 

^This is analogous to the cancellation of scalar mass corrections in a supersymmetric theory. 
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form a vector superfield, and the action for this superfield is 

S = Jd'^x^Tr (^jd^9W'^Wa + jd^9WaW^^- (3-26) 

Written out using the component fields, this is 

5 = j d^x ^Tr Qv^^v"^" + 2iXa'^DmX + P ' ) • (3.27) 

Recall that A necessarily transforms in the adjoint representation of the gauge group, 

so the covariant derivative acts on i t as JO^A S^A - i[vm., A]. We can see from the 

action that this theory may be viewed in non-supersymmetric terms as a gauge theory 

with one adjoint fermion. A theta term can be included by modifying the action to 

S = Jd^xlm (^-^ Jd^9TTW''Wa^ , (3.28) 

where r , defined by 

is known as the complexified coupling constant. This action contains the previous terms 

plus 

5^ = Id'xTv{vmn*v"^n- (3-30) 

The formulae above are in fact applicable to supersymmetric pure Yang-Mills theory 

with any simple gauge group. 

The first correlation function to consider in these theories is the gluino condensate, 

' ^ ' ' ^ ( 3 . 3 1 ) 
167r2 

This is of interest for the following reasons. 

• I t is Lorentz and gauge invariant, so its value is not arbitrary. 

• I t is proportional to the lowest component of the chiral superfield (Tr W^Wa), and 

therefore, by the theorem stated in the last section, will be a constant, which would 

be expected to be easier to calculate than a quantity with spatial dependence. 

Actually, since the condensate only depends on one point in space, the fact that it 

The factor IQn is a conventional normalisation. 
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is constant also follows from translational invariance. By dimensional analysis, i t 
must have the form cA^, where A is the dynamically generated scale in whatever 
regularisation scheme is being used, so all that remains to be determined is the 
dimensionless constant c. 

• Gauge theories with A/" = 1 supersymmetry are the closest amongst supersym­

metric theories to gauge theories of relevance to present experiments, for example 

QCD, so they have the most similar behaviour. We can attempt to gain un­

derstanding of aspects of non-supersymmetric theories, such as confinement, by 

working with the supersymmetric theories and using supersymmetry to allow an­

alytic computations that are not possible in the non-supersymmetric cases. In 

particular, the gluino condensate is not an invariant under chiral symmetry, so a 

non-zero value is a signal of spontaneous chiral symmetry breaking, a phenomenon 

also thought to occur in QCD at low energies. We will show later how the gluino 

condensate is also linked to confinement in M — 1 supersymmetric theories (see 

chapter 5). 

The condensate of the superpotential Wa additionally contains (Tru^n?;'""), mul­

tiplied by 99. This gluon condensate might be thought to have greater relevance, 

since i t also appears in non-supersymmetric gauge theories. However, invariance 

under translations in superspace shows that it must be zero in a theory with unbro­

ken supersymmetry, so we cannot gain any more insight into non-supersymmetric 

gluodynamics this way. 

• The gluino condensate is part of a correlation function of a chiral superfield, so the 

non-renormahsation theorem discussed in section 3.3 can be appHed to it , and it 

may be possible to calculate it exactly. Furthermore, the gluino condensate is zero 

to all orders in conventional perturbation theory, which respects chiral symmetry, 

so its value is determined entirely by semiclassical contributions. 

As a quantity of obvious interest, for all the reasons above, i t was calculated early 

on in the study of supersymmetric gauge theories [32, 33, 34, 31, 35, 36, 37], but 

without consistent results. The controversy over the value of the gluino condensate 

[35, 33, 31, 38, 39] has lasted nearly 15 years! The work we will present in this thesis 
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should finally resolve the dispute, but first we must examine the original methods used 
to calculate the gluino condensate. 

3.4.1 T h e S C I approach 

The very first method used to calculate the gluino condensate was as direct as possible. 

Let us consider first the SU{2) theory, in which case the one instanton has four adjoint 

fermion zero modes, the super symmetric and superconformal modes introduced in sec­

tion 2.2.5. Clearly, in a straightforward instanton calculation of the gluino condensate, 

the fermion zero modes will not be saturated and the result will be zero. However, in 

517(2) gauge theory one can consider the correlation function 

TrAA(a:)TrAA(0)\ 

This is also a candidate for the use of the non-renormalisation theorem, and it may 

have a non-zero value in a one instanton calculation, because it contains four fermionic 

insertions. I t is again a correlation function made of the lowest components of chiral 

superfields, so i t must be a constant, not even dependent on We can then invoke 

cluster decomposition, which is an axiom of field theory that states that in the limit 

of large \x\, any correlation function of the form {F{x)G{0)) should tend to {F){G) 

plus exponentially small corrections, to find the gluino condensate as the square root of 

the one instanton answer. Using the Pauli-Villars regularisation scheme, this procedure 

yields [32, 33] 

' T - A A \ . / 1 . 3 

This method can be generalised to any gauge group. In order to saturate the 2c2 

adjoint fermion zero modes, one must calculate 

and then take the C2 - th root. For gauge group SU{N), which has C2 = A'̂ , the result is 

[34, 31] 

1 6 7 r 2 / - l , ( i V - l ) ! ( 3 i V - l ) y ' ^^-^^^ 



CHAPTERS. SUPERSYMMETRY 45 

The value of the gluino condensate always contains a C2 - th root of unity, which 
shows that there must be C2 vacua with distinct but physically equivalent versions of 
the gluino condensate. This agrees with predictions made by Witten [40], and will be 
seen in more detail in chapters 5 and 6. 

This approach to calculating the gluino condensate is called SCI, or strong coupling 

instanton, as there is no attempt made to control the effects of the large couphng 

constant from the unbroken non-abelian gauge group. Whilst the non-renormalisation 

theorem might seem to suggest that a small coupling is not necessary, since there is no 

perturbative expansion to be convergent or divergent, there is possible cause for concern. 

We are only guaranteed that instantons are the sole relevant semiclassical configurations 

in the weak coupling regime. Cluster decomposition applies to full correlation functions, 

not partial contributions to them, so if we are neglecting some unknown configurations 

that are important at large coupling, the value of the gluino condensate derived by the 

SCI method will be in error. This is in fact exactly the case, as we shall discuss at the 

start of chapter 4. 

3,4.2 T h e W C I approach 

In the SCI approach, the gluino condensate is calculated from a somewhat circuitous 

route, via a more comphcated correlation function and cluster decomposition. There 

are several other methods available, which also do not lead to the gluino condensate 

directly, but have the advantage of ensuring that the coupling constant remains small. 

This is achieved by considering a family of theories, labelled by some physical parameter 

that influences the coupling constant. One value of the parameter will give the = 1 

supersymmetric gauge theory under investigation, all the others will represent modified 

versions of this theory, including, in one limit, some where the coupling is forced to be 

small. This gives rise to the name WCI, or weak coupling instanton, for this type of ap­

proach. We can reliably calculate the gluino condensate in the small coupling constant 

limit, and then rely on supersymmetry, which implies that the result is holomorphic in 

the coupling, and therefore also in the related parameter. This enables us to return to 

the case of interest. 

The original example of a WCI calculation of the gluino condensate was to modify 
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the SU{2) theory by adding matter in the fundamental representation of the gauge 
group [35]. To maintain supersymmetry we must add a chiral multiplet with a sccilar 
as well as a fermionic field. The scalar cj) can have a VEV, which has two effects. 
The first is to spontaneously break the gauge group completely and, for large values 
of the VEV, keep the coupling small. Therefore, the VEV is the parameter which 
continuously modifies the theory in this case. The second consequence of a non-zero 
VEV is that most of the symmetries leading to fermionic zero modes are destroyed. For 
instance, the superconformal zero modes for the gluino will not exist because the VEV 
breaks the scale invariance component of conformal symmetry. For a one instanton, 
only the two supersymmetric modes remain, since they are protected by the unbroken 
supersymmetry. This configuration can contribute directly to the gluino condensate in 
this situation, and is furthermore the only configuration that may do so. 

However, we still do not calculate the gluino condensate directly, as we wish to be 

able to relate it easily to the gluino condensate in the pure theory. Instead we consider 

- j ^ 0 ( O ) ^ . (3.36) 

This correlation function is, once more, made from the lowest components of chiral 

superfields, and so is equal to a constant, namely 

^ * ^ ( 0 ) ) = A 5 , (3.37) 

where A i is the dynamically generated scale in the theory with one flavour of matter in 

the fundamental representation. We can again use cluster decomposition to infer that 

( ^ > ( * ^ ) = A?. (3.38) 

In order to extract the gluino condensate in the SU{2) theory without matter, we 

must give the matter superfleld a large mass m and decouple i t from the theory using 

the renormahsation group. Correlation functions in supersymmetric theories should be 

holomorphic in the masses of the fields, which implies that the above result is unchanged 

by making cj) massive. Wi th the use of the Konishi anomaly relation [41], 

' ^ ^ ) = m ( ^ ^ > , (3.39) 
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and the renormahsation group decoupling equation, 

= mAf, (3.40) 

we can find the WCI value for the gluino condensate in Af = 1 supersymmetric pure 

SU(2) gauge theory, 

'^>-^' 
Other examples of WCI calculations involve deriving the gluino condensate from 

a hmit of the ADS superpotential, which is discussed in section 6.2, or using Seiberg 

and Witten's solution for the low energy effective action of ^ = 2 supersymmetric 

gauge theories, as reviewed in [42]. Mass terms are added to break the extended super-

symmetry, so that the mass acts as the controlling parameter in this case. The same 

result is found from all WCI calculations, which is a good consistency check, as all WCI 

approaches have similar strategies but are completely independent in the details of the 

calculations. 

WCI methods have also given the gluino condensate for all classical gauge groups^ 

[36, 37, 43], 

TrXX\ 

SU{N) 

USp{N) 

J ^ ) = A ^ (3.42) 

"IVAA\^ 1 ^ 
SO{N) 

= 2 . 2 - ^ A ^ (3.44) 

Note that the SCI and WCI predictions for the gluino condensate in an SU{N) theory 

disagree more as N increases. 

An imaginative proposal was made by Kovner and Shifman [38], in an attempt to 

resolve this discrepancy. They postulated the existence of an extra vacuum state, with 

vanishing gluino condensate, motivated by the intuitive reasoning that an instanton 

does not contribute directly to the gluino condensate because it averages over all the 

vacua, and the sum over roots of unity vanishes. I f the chirally symmetric Kovner-

Shifman vacuum exists, then for SU{2), the two point function in equation (3.36) 

*See also table 6.2 and appendix B. The C2-tli roots of unity are considered implicit in these 
formulae. 
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would be averaged over the two conventional vacua where i t should have value A^, 
and the extra vacuum where i t is zero. I f the probabilities of finding the theory in 
each vacuum are arranged correctly, the result | A ^ can be obtained. Unfortunately, 
this is not a very efficient mechanism, since i t requires the existence of a new vacuum, 
plus a highly specific organisation of the probabilities assigned to each vacuum, which 
is assumed rather than derived, and also elaborate explanations for why the Kovner-
Shifman vacuum does not contribute to Witten's index. More definitely, however, it 
has been shown to be unviable, in [42]. 

In this thesis we shall describe a more robust explanation for the difference between 

the SCI and WCI results. I t involves another type of WCI calculation, where the 

modification is to consider the theory on the cyHnder x 5 \ instead of on M^. The 

new parameter is the radius of the circle; the coupling constant is small when the 

radius is small, and as the radius tends to infinity the theory becomes indistinguishable 

from the version without a compactified coordinate. This alteration requires us to 

consider configurations other than Yang-Mills instantons, but brings the advantages 

of allowing direct evaluation of the gluino condensate and providing a way of viewing 

the configurations neglected in the SCI approach. We shall consider first the simplest 

theory, with gauge group SU{2), in chapter 5. The generalisation to any other gauge 

group is relatively straightforward in this formalism, so in chapter 6 we confirm the 

classical gauge group results above and also predict the values of the gluino condensate 

in all exceptional groups. 



Chapter 4 

The cylinder and monopoles 

4.1 Introduction 

In this chapter we shall describe the idea behind the work presented here with the cdm 

of resolving the discrepancy between the SCI and WCI values of the gluino conden­

sate. The clue we already have is suspicion of the SCI calculation because there is the 

possibility of neglected configurations in the strong coupling regime, as explained in 

section 3.4.1. This doubt is justified, because expHcit calculations [42] have shown that 

instanton contributions violate cluster decomposition, which impHes that they alone do 

not give the fu l l correlation functions. However, in order to confirm this hypothesis, 

we must identify the missing configurations, understand how they relate to instantons, 

and show that they generate the required contributions to correlation functions. 

We can take inspiration for what the extra configurations may be from the early 

literature containing investigations of semiclassical effects in field theories [44, 45]. In­

stantons were conjectured to behave as composite objects when the coupling constant 

is large, and break up into instanton partons^. This was of interest because, in three 

dimensional theories, the relevant instanton solutions had been shown to cause confine­

ment [47], and it was hoped to extend this analysis and prove that confinement also 

occurs in four dimensions. However, in the three dimensional case the instantons are 

the same configurations that are monopoles in a four dimensional theory (finite action 

in three dimensions corresponds to finite energy or mass in four; more details about 

^Ionization of this kind had been seen to occur in a two dimensional theory [46]. 

49 



CHAPTER 4. THE CYLINDER AND MONOPOLES 50 

this connection may be found in [4, 48] and section 4.3). The strong Coulomb inter­
actions between monopoles and anti-monopoles are an integral part of the confinement 
mechanism in [47]; see the Discussion in [1]. Four dimensional instantons and anti-
instantons in SU{2) can be shown to have dipole interactions^ [44], which are too weak 
to generate a similar effect. However, if instantons were to dissociate into component 
poles, then those might be suitable objects to bring about confinement. In an attempt 
to find candidates for instanton partons, solutions to the Yang-Mills equations with ap­
propriate properties were constructed [44]. They are called merons, and have fractional 
topological charge, and correspondingly infinite action. Unfortunately, they are also 
non-continuous, and so altogether are very challenging configurations to manipulate or 
apply in meaningful calculations. We employ a different strategy here; by modifying 
space from ^ to the four-dimensional cylinder x 5^ (imposing periodicity along 
one direction), we can identify the instanton partons with well-behaved, well-known 
solutions, and gain control over both the infinite action of the partons and the size of 
the coupling constant. This therefore leads to a WCI method that demonstrates the 
shortcomings of the SCI approach. Furthermore, this scheme is of particular interest 
to us because of the fractional topological charge of the partons, which means they 
have two adjoint fermion zero modes apiece and so can contribute directly to the gluino 
condensate. 

We devote most of this chapter to an investigation of the finite action classical 

solutions on x 5^. They were classified by Gross, Pisarski and Yaffe [49] in the 

context of non-zero temperature field theory, which is formulated on the same space. 

However, i t also involves anti-periodic boundary conditions for fermions, compared to 

periodic ones for bosons, which would break supersymmetry. Instead, we are interested 

in the theory on the cylinder, which has periodic boundary conditions for both bosons 

and fermions, 

Vm{x°,xi') = vmix'^+ 27rR,x''), Xaix^,x'') = Xa{x° + 2nR,x^'), (4.1) 

where R is the radius of the circle. Nevertheless, the classification refers to the bosonic 

fields and so applies to this case as well. I t divides solutions into monopoles and 

calorons, which we shall describe in turn, first for gauge group SU{2) and then for any 

^In general, these are C2-pole interactions, where C2 is the dual Coxeter number of the gauge group. 
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gauge group. Note that although these are all instantons on x S^, in the sense of 
being finite minima of the action, we shall reserve the term for Yang-Mills instantons 
on M''. Monopoles, calorons and instantons may aU be referred to as semiclassical 
configurations. 

4.2 Monopoles in Yang-Mills-Higgs theory 

We shall begin by discussing monopole solutions in the context in which they were 

first found; Yang-Mills-Higgs theory, an SU{2) gauge theory in Minkowski spacetime 

with a scalar matter field </> transforming in the adjoint representation. The original 

motivation for choosing this particular field content was that the scalar acts as a Higgs 

field, gaining a VEV, spontaneously breaking the gauge group to U{1), and enabHng the 

study of a QED-like theory where the abeUan gauge group is embedded in a compact 

group. This can be seen from the action of the theory, 

S= f d ' x f - ^ T r (vmnv'^^) ~^Tr {Dm<i>D^cl>) -V{(I>)Y (4.2) 

where F (^ ) may be considered to be the usual quartic potential, 

V{4>)-\W-u^)\ (4.3) 

with |<^p = 2Tr (f?. However, the form of the potential is irrelevant except that it must 

be gauge invariant, positive semi-definite, and have a single minimum of zero, at which 

point we say 

\4>\^ = u\ (4.4) 

Any value of 4> that solves this is a possible VEV, {(j>), but whereas u is gauge invariant, 

{cj)) is not, and may for example be rotated by a gauge transformation into the form 

{4>) = - u | . (4.5) 

In this case the unbroken U{1) subgroup is { e ' " ' ? } . 

Monopoles appear as sohtons in this theory, that is stable configurations associated 

with an energy density that is localised in space, which therefore have some of the 

properties of particles. In this case they also carry magnetic charge, despite the fact 
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that the particles associated with quantum excitations of the same gauge fields are only 
electrically charged. 

We therefore seek time independent solutions, and so instead of attempting to solve 

the equations of motion directly, we can minimise the static energy, or mass, of the 

monopole. Wi th the gauge choice vo = 0, this can be written as 

£ = [d'x (^Tr [{D^ct>f + (5^)2] + V{4>)) (4.6) 

where = ^e^i.pv'^f. We are only interested in minima where the value of the energy 

is finite, which implies that the potential V must tend to zero at spatial infinity, so the 

scalar field of the monopole solution must tend to the VEV in that limit. I f we write 

(j) = (f)"-^, the condition for the potential to vanish, equation (4.4), becomes 

+ + = u\ (4.7) 

which is the equation of a sphere, 5^. Therefore the scalar field of a finite mass monopole 

provides a mapping from the sphere at infinity of to the sphere of Higgs vacua. 

Analogously to the topological classification derived from the boundary conditions of 

finite action Yang-Mills instantons, the equivalence classes of these mappings are in 

one-to-one correspondence with the elements of a homotopy group. In this case it is 

MS^) = Z, (4.8) 

so every monopole solution may also be labelled with an integer. 

The quantity ^ T r {(j)B'^) is the magnetic field of the unbroken f7( l ) , so the mag­

netic charge of a solution is given by the integral 

[ {d^x)^-TT{,f>Bn (4.9) 

Also, a more detailed analysis of the asymptotic form of any monopole solution shows 

that this integral gives the winding number k from the homotopy group above, multi-

phed by Therefore, the possible magnetic charges of the solutions are quantized, in 

accordance with Dirac quantisation [50]. 

We can minimise the energy within each topological sector, leading to what are 

known as 't Hooft-Polyakov monopoles [51, 52]. There is no analytic expression for 

the monopole fields, their form is only known numerically, but we may find a bound 
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for their masses. Using a Bogomol'nyi argument similar to that in section 2.2.2, but 
applied to the energy in this case, we find 

£ = j d \ (^^TT [D^<f> T B^f ± ^ T r {D^cf>)B^' + V{<t>)^ (4.10) 

^± f(fx^Tr{D^(l>)B^. (4.11) 
J 9 

(Equation (4.6) shows that 5 > 0, so the sign above should be chosen to give a non-

trivial bound.) We can evaluate this further through integration by parts, which leads 

to 

£ ^ ± f {cfx)^\Tvi<f>B>') (4.12) 

The mass of a monopole is therefore bounded by a combination of the magnetic charge 

and the VEV, 

0 ± ^ = ^ . (4.13) 

The bound is attained if the Bogomol'nyi equations, 

B^ = ±Df,ct>, (4.14) 

hold, and the potential is set to zero. The latter condition is called the BPS limit 

after Bogomol'nyi [53], and Prasad and Sommerfield [54] who first considered i t . It 

corresponds to setting A to zero in the example of the quartic potential above, and 

leaving the vacuum condition |0p = as the only remaining effect of the potential. 

In this situation, we can find an analytic expression for the monopole fields with k = I, 

partly because the first order equations (4.14) are much easier to solve than the fuU 

second order equations of motion. This solution is called the BPS one monopole, and 

we present it in the next section. 

4.2.1 T h e B P S one monopole 

A monopole solution in the BPS hmit with winding number unity, and magnetic charge 

^ , is given by 

(l)'' = ---^{u\x\coth{u\x\)-l), (4.15) 
\x 

x" u\x\ 
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where |x| = {xf + X2 + ^ 3 ) ^ and (p = (p'^^,v^ = v ^ ^ . In order to show that this is a 
solution, let us define 

7 = u\x\, a{j) = 6(7) = 7C0th7, (4.17) smh7 

so that 

'^" = - r ^ ( f ' - l ) ' < = e a M . ^ ( l - a ) . (4.18) \x\ \x\ 

For any function of 7, /(7), we have 

and in particular, for the functions a and b, 

db , n da , / , „„s 
y— = b-a\ j— = a-ab. (4.20) 07 07 

Now we can find that 

(L»^<^)" = + ^"''vMc (4-21) 
6'^. . XjX 

\x\ 
- ^^{a- ab) + -J^(a' + ab-a- 1), (4.22) 

and 

= 6, . , (^d^vP'^ + \e'^'XvP^ (4.23) 

^-^{a-ab) + ^ { a ^ + ab-a-l), (4.24) 

so indeed = Df^cj). Also, using the asymptotic behaviour a —)• 0, 6 —>• 7 as |x| ^ 00, 

i t is easy to check that 

f {d^x)^—Tr{^Bn = — (4.25) 

for this monopole. 

The expressions given above are not the fields of the most general BPS one mono-

pole. However, all the other A; = 1 solutions can be found by translating the monopole 

(replacing 3; by a; — X ) , or performing global transformations from the unbroken U{1), 

which wil l not disturb the VEV. These latter modifications can be displayed most 

easily by acting on the solution above with a singular gauge transformation so that 
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{((>) = - u ^ ^ is mapped to (0) = -u^, then the relevant global transformations are 
{e* 2 } . The original solution, with a VEV that foflows the direction of the radial 
vector, is said to be written in a hedgehog or regular gauge, when the VEV is aligned 
in a single direction the monopole is in a singular gauge. 

4.2.2 Mult i -monopoles 

The BPS solution is a one monopole, but solutions to the Bogomol'nyi equations with 

all values of the winding number exist, and are known in general as multi-monopoles. 

The sign in equation (4.14) must match the sign of the winding number; solutions 

with negative magnetic charge are called anti-monopoles and are easily obtained from 

solutions with positive magnetic charge by sending 0 i-)- -</>. A monopole with winding 

number k depends in general on 4|A;| parameters [55]. 

4.3 IVEonopoles as semiclassical configurations 

In order to find minimal action configurations on x 5^, we might begin our search by 

considering fields that are independent of the periodic coordinate, x". The topological 

arguments of section 2.2.1 do not apply to the modified space, but the Bogomol'nyi 

bound from section 2.2.2 is still relevant and shows that we should investigate (anti-

)self-dual configurations. The conditions *Vmn = i w ^ n can be rewritten as 

V23 = TVOI, V31 = TV02, Vi2 = TVQ3, (4.26) 

and if none of the fields depends on x'^, then these are equivalent to 

V23 = ±Divo, V31 = ±D2Vo, V12 = ±D3Vo. (4-27) 

We can also rewrite the Bogomol'nyi equations in the form 

V23 = ±Di4>, vzi = ±D20, vi2 = ±D3(j), (4.28) 

so if we identify^ VQ = (f), then any (anti-)monopole in the BPS limit is an (anti-)self-

dual gauge configuration. Their action is equal to / dx'^ £, so on i t is infinite, but 

^Recall that the Bogomol'nyi equations for a monopole solution refer to the gauge vo = 0. 
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on # X 5^ the finite energy of the monopoles means they have action ^uR\k\, where 
R is the radius of the circle. 

The parameters X and fl which appear in the one monopole solution are the bosonic 

coflective coordinates of this configuration, relating to symmetry under translations and 

unbroken U{1) gauge rotations, respectively. In general any monopole has 4|A;| bosonic 

zero modes and, as shown by the Calhas index theorem [56], 2\k\ fermionic zero modes. 

The VEV parameter u breaks conformal invariance, but supersymmetry is still valid 

and two of the fermionic zero modes always correspond to that symmetry, 

XT'=C7^V(pVran. (4.29) 

Note that this is all of the fermionic zero modes for a one monopole configuration. 

4.3.1 T h e extra monopole on the cylinder 

The BPS solution is the only one monopole configuration on the cyhnder that is inde­

pendent of the periodic coordinate. There is another monopole on x S^, however, 

which exists because of the 5^ part of the cylinder, and cannot be inherited from an 

(infinite action) solution. In order to find i t , we must consider the implications of 

modifying the space to x S^ on the gauge group. 

Recall that, in order to move to the cylinder, we imposed periodic boundary condi­

tions on the gluon and gluino fields, 

Vmix", x^") = vmix'' + 2'KR, X ^ ) , K { X \ X'') = X^ix^^ + 2ITR, X ' ' ) . (4.30) 

A gauge transformation U acts on Vm and A as 

Vm ^ UVmU-^ + iUdmU-\ (4.31) 

\a ^ UXaU-\ (4.32) 

so clearly any periodic gauge transformation, obeying U{x'^,x^) = U{x° + 2nR,x'^), 

will preserve the boundary conditions. However, we can more generally allow transfor­

mations with the property 

Uix\x'')^V-U{x^ + 2TTR,x^'), (4.33) 
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where V is an element of the centre of the gauge group, without disturbing equation 
(4.30). The centre is the subgroup of transformations that commute with all other 
elements of the group; for SU{N) i t is the Z^r group of A^'-th roots of unity {e^\n = 
1 , . . . , N} multiplying the unit matrix. With gauge group SU{2) the centre is therefore 
composed of the unit matrix and minus the unit matrix, and an example of a non-
periodic gauge transformation, which nevertheless leaves the fields periodic, is [57] 

fix°T3\ 
Uspecial = exp — — . (4.34) 

\ 2K J 

I f we apply this transformation to a BPS one monopole in the singular gauge, then 

the VEV is changed to 

M = - [ ^ - ^ ) ^ - (4-35) 

The VEV parameter u doesn't appear in the action in the BPS hmit, so we can choose 

to define the theory with any particular value, but this argument shows that the value 

u is gauge equivalent to u — . Therefore the set of theories on x 5^ possible at the 

classical level, or the classical moduh space, is isomorphic to a circle. 

Once we have specified a value for u, all semiclassical configurations must obey the 

appropriate boundary condition, say, choosing a singular gauge, 

vo ^ (̂ ô) = - n y , (4.36) 

as —>• oo. The configuration above, a BPS one monopole acted on by C/gpeciai) 

is not suitable, but if our starting point was a BPS one monopole with a modified 

VEV parameter^ of —u + ^, we would get a configuration with the right boundary 

condition. This can be used as the basis of a semiclassical calculation, and is the 

additional monopole that exists due to the cylinder. In [3] i t is referred to as the aifine 

monopole, but for now we shall follow [1] and call it the KK monopole. We already 

know the action of this monopole, because the action is gauge invariant and so will 

be equal to that of a BPS one monopole with the modified VEV parameter, namely 

^ ( 1 - uR). The zero mode structure of the KK monopole also follows straight from 

that of the BPS monopole, in particular it has two supersymmetric adjoint fermion zero 

modes. 

^If u is in the range [0, 2nR) then so is -u+ The transformation t/speciai maps this to - u , but 
the sign of the V E V parameter is irrelevant. 
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This is an unusual method for identifying a new semiclassical configuration, as 
normally a gauge transformation of a known solution would give an equivalent solu­
tion, rather than a distinct one. The independence of the K K monopole from the BPS 
monopole comes from the fact that when we change the space to x we must define 
the path integral on the cyHnder. The main part of this is to define the measure, includ­
ing which values of the gauge fields should be integrated over and which are equivalent; 
we only wish to integrate over gauge equivalence classes. The only straightforward way 
to do this is to sum over configurations that are inequivalent under the group of periodic 
gauge transformations, which is simply connected. Then the KK monopole must be 
considered to be from a different topological sector, and its contributions included by 
counting it as an entirely unrelated configuration. 

4.3.2 Calorons 

Caloron solutions were first found by Harrington and Shepard [58] (see also [49]), who 

sought solutions in non-zero temperature field theory analogous to Yang-Mills instan­

tons. They are (anti-)self-dual and have integral Pontryagin index, despite the fact that 

it need not be quantised on x 5^. Furthermore, as the radius of the circle tends 

to infinity, any caloron solution approaches the form of a four dimensional instanton. 

However, these are solutions in which all components of the gauge field, including the 

zeroth, UQ, fall to zero at infinity. As we saw in section 4.3.1, though, we can define the 

theory on x with any value of (VQ), or equivalently any asymptotic value of the 

Wilson loop, 

r2nR 

Hm i I 
This is not relevant to non-zero temperature field theory because, in that case, effects 

from configurations with a non-zero Wilson loop are suppressed [49]. Caloron solutions 

with non-trivial Wilson loop were constructed and studied only recently. Intriguingly, 

the caloron with Pontryagin index unity can be shown to be made up of one BPS 

monopole and one KK monopole [57, 59, 60]. Note that the actions of those monopoles 

show that they have Pontryagin indices of uR and 1 - uR respectively, where u lies 

between 0 and so the sum is one as required. Also, the gauge transformation 

lim ( [ dx'^vo) =2TrR{vo). (4.37) 
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t^peciai reverses the sign of the magnetic charge, so the KK monopole has q = -1 and 
the caloron has zero net magnetic charge, as it should. Note, however, that the KK 
monopole is not an anti-monopole, crucially because it has zero modes for A but not 
for A. 

Therefore, monopoles act as the partons of calorons in the case of a non-trivial 

Wilson loop^. This does not help us to interpret the meron configurations on M^, but 

the circle acts as a regulator to remove the pathological nature of those solutions and 

replace i t with the smooth behaviour of the monopoles. 

4.3.3 Monopoles and calorons in any gauge group 

The entire picture of monopoles and calorons, and the relationships between them, 

which we have described above for SU{2) theories, can be generalised to the case of 

any other gauge group. We shall discuss the necessary changes here; useful definitions 

and terminology can be found in appendix B. 

In general, for any gauge group, we may use gauge transformations to rotate the 

VEV so that i t lies in the Cartan subalgebra, 

{vo) = -V^H\ (4.38) 

This shows that the gauge group is spontaneously broken to its maximal abelian sub­

group^, [ / ' ( I )" , where n is the rank. Classical solutions can then possess magnetic 

charges associated with each of the U{1) groups, as well as the Pontryagin index. 

A l l one monopole solutions in an arbitrary gauge group are embeddings of SU{2) so­

lutions in appropriate subgroups, analogously to one instantons in . In contrast, how­

ever, because of the distinct magnetic charges, monopoles embedded in different SU{2) 

subgroups are examples of different types of monopoles. Therefore, one monopoles in 

any gauge group have the same numbers of zero modes as one monopoles in 5^7(2), 

that is four bosonic zero modes (three translational and one from the relevant unbroken 

U{1) subgroup) and two (supersymmetric) adjoint fermion zero modes. 

^If the Wilson loop or V E V vanishes, the monopoles become trivial and cannot be semiclassical 
configurations or constituents of other configurations. , 

®It is possible to arrange for there to be an unbroken non-abelian subgroup, in the special cir­
cumstance that a • V = a'Vi = Q ioi some root a, but we shall always assume that this is not the 
case. 
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Each SU(2) subgroup of a simple Lie group is associated with a root a, and the 
corresponding generators are 

Ji = ^ { E a + E-a), J2 = ^ ( ^ a - ^ - a ) , J3 = y * - H , (4.39) 

which obey 

[Ja, Jb] = ieabcJc- (4.40) 

An SU(2) BPS monopole solution can then be embedded as 

= < Jc, (4.41) 

1 

. L 

where 

g x" (^ u\x\ 

wo = * V c - f F - y ( a - F ) a * ) -fT, (4.42) 

= - T - | 2 (u|a;| cothu|a;| - 1) , (4.44) 

for a monopole located at the origin and without a [ / (I) rotation, and u = a-V. 

Note that for gauge group 5f7(2) itself, which has rank n = 1, the Cartan subalgebra 

generator can be taken to be*" H — and the positive root is a = \ /2 , ?,o a-V 

coincides with the parameter u in the previous sections of this chapter. 

Analysis of the zero modes of these solutions [61], using the Calhas index theorem, 

shows that only some of these embeddings are true one monopole solutions, with four 

bosonic zero modes and two adjoint fermion zero modes. The rest are configurations 

that are particular combinations of these fundamental monopoles. In order to state 

what the fundamental BPS monopoles are, we first note that any choice of the VEV 

in the form given in equation (4.38) provides a natural ordering^ for the roots, in that 

a root may be considered positive or negative according to the sign of d^Vi. The BPS 

one monopoles of any gauge group are then the ones where the 5C/'(2) BPS monopole 

'̂ Note the normalisation convention in equation (B.5). 
*Any root ordering method of the type discussed in appendix B is arbitrary but easily related to 

the other consistent choices by gauge transformations. Similarly, starting from a VEV like that in 
equation (4.38), one can gauge transform to other possibilities without taking the VEV out of the 
Cartan subalgebra. In fact, permutations of the elements {Vi}, achievable via gauge transformations, 
axe in one-to-one correspondence with the Weyl reflections on the roots that relate different orderings. 
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is embedded in the SU{2) subgroup of a root that is simple according to this ordering. 
There are always n simple roots, so there are n types of fundamental BPS monopoles, 
which agrees with the n types of magnetic charge coming from the unbroken subgroup 
J7(l)". The BPS one monopole associated with the simple root a(j) has action ^^^a^^^ • 
V. 

For gauge groups other than SU{2), we have non-periodic gauge transformations of 

the form = exp ^ ^ w * • j , where is a coweight. These map Vi to Vi - ^oj^i 

(hence a^Vi is shifted by a multiple of -^), so the classical moduh space is isomorphic 

to Aj^^vK' where A i ^ is the lattice of linear combinations of coweights with integer 

coefficients, and W is the Weyl group. 

We can use the non-periodic transformations C/Q. = exp (^^Jsioifj, apphed to a 

monopole associated with root a, but with modified VEV parameter of -a-V + ^, to 

obtain the various extra monopoles on the cylinder. However, while all configurations 

constructed in this way are solutions, only the one starting from the lowest root, Q:(O) — 

-6, in the natural ordering defined above, is a fundamental K K or afiine monopole [59]. 

I t has action ^ ( l - -^"(0) • . 

I t has also been shown [59] that the caloron solution in any gauge group is a combi­

nation of a BPS monopole solution with winding number for each simple root a(j) 

(where the {m*} are the comarks) and a single K K monopole. The number of bosonic 

zero modes, for example, is then 

/ n \ 
4 1 + =4c2, (4.45) 

V i=i J 

in agreement with our expectations for a caloron or one instanton. In addition, with 

this combination of monopoles all the magnetic charges cancel to give a neutral config­

uration. 

4.4 ]V[ethodology 

To summarize, the idea behind the calculations in this thesis is to work in a theory 

defined on x 5 \ with a non-trivial VEV. Clcissically the VEV can take any value, 

but quantum corrections can l i f t this degeneracy, as will be seen in chapter 5, and the 

quantum moduli space is a single point with a particular value of u, rather than, say. 
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a circle for SU{2). In such a theory, the semiclassical configurations are all possible 
combinations of n -I - 1 types of fundamental monopoles, which are the partons of the 
configurations analogous to instantons in M'*. The fundamental monopoles all have 
two adjoint fermion zero modes, and so the gluino condensate in this theory can be 
calculated as the sum of their direct contributions. 

The quantum value of the VEV parameter u is proportional to ^ (and classically 

it is gauge equivalent to a value bounded by this amount, by periodicity), so if R is 

chosen to be small, then u will be large. In this limit, the couphng is small, as can be 

seen from equation (5.53) with chosen to be equal to the scale u 3> A, so semiclassical 

calculations are justified and of the WCI type. On the other hand, the answer for any 

Green's function should be holomorphic in u, by supersymmetry, and will therefore also 

be holomorphic in R, allowing us to analytically continue the result to i? oo and 

four large dimensions. 

A similar strategy, employed previously in [62], is to consider the theory defined 

on T'* = {S^Y, so that all the directions are periodic. In this case the fundamental 

configurations are solutions called torons [63], which also have two adjoint fermion zero 

modes meaning that the gluino condensate can be calculated directly. However, the 

four periods have to be fine-tuned in order to maintain the existence of the finite action 

torons, and because there is more than one period i t is no longer possible to rely on the 

holomorphy of Green's functions on those parcimeters. This makes attempting to find 

an unambiguous ^ limit severely difficult, and consequently it is perhaps not surprising 

that the value of the gluino condensate on the four torus calculated via torons does not 

coincide with either the SCI or WCI results in . 

In the next chapter we shall apply the monopole method to the calculation of the 

gluino condensate in super symmetric pure Yang-Mills theory will gauge group 5(7(2), 

in chapter 6 we will extend the analysis to any gauge group, and also consider the 

inclusion of matter fields. 



Chapter 5 

One monopole calculations 

In this chapter we shall calculate the gluino condensate inM = I supersymmetric pure 

Yang-Mills theory, using monopoles on x 5^, in order to demonstrate how to find 

one monopole contributions to correlation functions, and to compare with the SCI and 

WCI results. The actual evaluation is not too arduous, but before we can proceed 

with i t we need to establish that our one monopole configurations correspond to a true 

quantum vacuum. 

The classical moduli space of supersymmetric pure SU{2) gauge theory on x 5^ 

is given by the set of distinct values that the VEV, or equivalently the Wilson loop at 

spatial infinity, may take. This is a circle, as was discussed in the section 4.3.1. However, 

quantum effects can, and indeed do, l i f t the classical degeneracy; not all classical vacua 

remain ground states of the ful l quantum theory. 

The search for the quantum vacuum will occupy the majority of this chapter, as i t 

also requires a one monopole calculation, in order to find the low energy effective action 

on the cyhnder. 

5.1 Determination of the quantum vacuum 

To discover how quantum effects may alter a classical vacuum state, i t is useful to 

consider the low energy dynamics. In particular, we can attempt to calculate the 

Wilsonian effective action [64, 65], which is the action of the remaining degrees of 

freedom after massive fields and fields with virtuality greater than some scale M have 

63 
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been integrated out. Since it is an effective action, vahd only below the scale M, i t need 
not be renormalisable, and so will in general be more complicated than the microscopic 
description of the theory. Nevertheless, the lowest energy state of the Wilsonian effective 
action will be the same as the vacuum of the ful l theory, and it may be easier to identify. 

The integration is not carried out directly. Instead, having defined the Wilsonian 

effective action in this way, the normal procedure is to find the most general form it 

can take subject to the symmetries i t must respect, and then determine as much of it 

as possible by finding all parts that are susceptible to direct calculation. 

5,1.1 Clas s i ca l low energy dynamics 

The appropriate variables for the Wilsonian effective action are the classically massless 

degrees of freedom. Here we shall identify these variables, and consider their low energy 

dynamics before quantum corrections are taken into account. 

The non-vanishing VEV, 

K ) = - u ^ , (5.1) 

spontaneously breaks the gauge group SU{2) to U{1). For any field (j) that transforms 

in the adjoint representation, we can write 

ct> = r y . (5.2) 

The components and (fP gain mass u under the Higgs mechanism, but (j)^, which 

describes the part of (j) parallel to the VEV, remains massless at the classical level. 

In addition, all fields must be periodic in the compact direction, so they can be 

expressed as a Fourier series, 

n=+oo 
<P= < ^ „ e - l . (5.3) 

n=-oo 

Then, the kinetic term in the action for a bosonic field contains 

/•27riJ n=+oo „ 

so all Fourier components have a Kaluza-Klein mass, except for the one with n = 0. 

The part of (f) which has no dependence on 2;o is classically massless. 
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Therefore when constructing the Wilsonian effective action, we must only keep the 
xo-independent parts of fields parallel to the VEV. When we write Vm or A in the 
remainder of this section (5.1), we shall mean exactly those components, with a = 3 
and n = 0. 

The classical low energy dynamics is an abelian^ gauge theory in three dimensions, 

with action 

27ri? 
Sn = 

9' I ^'"^ ( 2 ^ ^ ^ ^ ^ ^ ^ ^ + W""'^ + iXa^d.X^ , (5.5) 

where v^j, = d^v,y - d^v^ and we use the Wilson loop (f = f dxovo = 2TTRVO. The 

descendant of a theta term from the ful l microscopic theory is 

5^ = - j ^ y d'xe^'"'v,,d,<p. (5.6) 

Before we calculate the quantum corrections to this action, we shall transform it to a 

more convenient but equivalent (dual) form. 

5.1.2 T h e dual theory 

In the low energy regime under consideration, our theory is effectively three dimen­

sional, and we have the possibility of including a three dimensional analogue of a four 

dimensional theta term. This contribution would take the form 

5 . = g | d'xe^'^fd.v^p. (5.7) 

As in the four dimensional case, this is a topological term, which means that i t is 

the integral of a total derivative. Also similarly, it may be evaluated in terms of a 

topological charge - in this case, the magnetic charge, as is easily seen from equation 

(5.7). Therefore, just as in Yang-Mills-Higgs theory, we have 

^ J d \ e>"'Pdf,Vup = n e Z, (5.8) 

which is consistent with Dirac quantisation of magnetic charge [50]. Note that in the 

path integral, this sigma term will give 

^This corresponds to the unbroken [/(I) subgroup. 
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dimensional theta term. This contribution would take the form 

5a = ^ I d^e^^'^Pd^v^p. (5.7) 

As in the four dimensional case, this is a topological term, which means that i t is 

the integral of a total derivative. Also similarly, it may be evaluated in terms of a 

topological charge - in this case, the magnetic charge, as is easily seen from equation 

(5.7). Therefore, just as in Yang-Mills-Higgs theory, we have 
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which is consistent with Dirac quantisation of magnetic charge [50]. Note that in the 

path integral, this sigma term will give 

^This corresponds to the unbroken t/(l) subgroup. 
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so a is an angular variable, because adding multiples of 27r to i t does not affect the 
path integral. 

I t is useful to change variables using a modification of the sigma term. This will 

correspond to finding a dual description of the same effective theory which is simpler 

to work with. Initially we make a into an auxiliary field, depending on the spatial 

coordinates and integrated over in the path integral, but without a kinetic term in the 

action. I t then acts as a Lagrange multiplier field, imposing the Bianchi identity at 

every point in space, through 

^constraint ^ ^ J d^'x Oe^^'P d^,V,p, (5.10) 

and (incorporating multiplicative factors into the measure), 

j dip dv^ dX da e-^o-^^-^con^t--' = j d<p dVf, dX e'^^-^H (e'^'Pdf.v^p). (5.11) 

The advantage of using the gauge potential as the fundamental variable is that the 

Bianchi identity follows automatically from the definition of the field strength. However, 

with the Bianchi identity artificially enforced, we are free to use the field strength itself 

as the variable^. We shall therefore formally change variables in the path integral, 

J dip dv^ dX da e-5['^''^M.A,<^] = j dip dB^ dX da C-^IV'-SM.A. 'T]^ (5 12) 

where 5 = - I - 5^ -I - ^constraint and we use 5^ = ê̂ ^p?;̂ .̂ I f we integrate ^constraint by 

parts, 

^constraint = - ~ j d \ v^pd^a + in{a), (5.13) 

with in{a) = inlim\x\_yaocr a constant we can neglect, then the action S depends 

quadratically on Bp,, 

S = j d^x iaBpB^" + bpB^" + c), (5.14) 

. ^Note that this is true only in a [/(I) theory; in the non-abelian case not all the information about 
the gauge field is contained in the field strength. 
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where 

a = ^ , (5.15) 

6, = - i a „ ( a + ^ „ ) , (5.16) 

Therefore we can completely integrate out using Gaussian integration. First we 

complete the square, 

aB^B'' + bf,Bt' + c = a(^Bf, + ^bp^ - ^6^6^ + c, (5.18) 

then shift Bfj,\-^ B'^ = Bp, + ^b^,, and finally integrate, 

j dip dBp dX da e-5[^.fi/^.A,<7] = Jdcp dB'^ dX da g-^t '̂-B .̂A.a] (5 

= J d(pdAdae-^duai[¥',A,<7]^ (5 2o) 

where 5dual = /d^x + c), or 

'2kI{^^'^^^^^ [^JiX^S^X^ 

We have now completed the change of variables, and arrived at the dual description 

of the classical low energy theory. We have eliminated Vp, and in favour of it a has 

become a dynamical field, with a kinetic term in 5dual- When a was first introduced, 

it was coupled to the magnetic charge, so we may think of it as a magnetic photon 

field, dual to the electric photon u^. However, cr is a scalar, due to the fact that the 

Bianchi identity is a scalar equation in three dimensions. Our theory now contains 

only scalar fields and fermions, which is a great simplification compared to the original 

vector theory^. 

5.1.3 T h e general form of the effective action 

The classical effective action we have been considering has N = 2 three dimensional 

supersymmetry inherited from the A/" = 1 four dimensional supersymmetry. This is 

^This technique would not be of benefit in four dimensions, as in that case the Bianchi identity has 
four components, and in moving to the dual theory we would replace one vector field with another. 
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most easily seen from the dual form of the action. I f we combine the real scalais ip and 
a into a complex field'', 

z = -i{T(p + a), (5.22) 

where 

is the complexified coupling, and define a fermionic field with a different normalisation, 

i > = ' ^ X , (5.24) 

then the classical effective action becomes 

5duai = / d'^ Y ~ [dpz^d^'z + • (5-25) 

This is invariant under the supersymmetry transformations 

5z = V2^iP, (5.26) 

Sij = V2ia^''^dpz, (5.27) 

with an infinitesimal transformation parameter ^. The fields z and ip, and an auxil­

iary field T with classical equation of motion = 0, together form a complex chiral 

superfield, 

X = z + V2e^ + eeT, (5.28) 

that represents two interlinked real chiral superfields, and in terms of which the classical 

effective action can be written 

'S'dual = f d'G dH - ^ X ^ X . (5.29) 
16TT^RJ I m r 

Now we consider the quantum version of this action. There is nothing in the theory 

that explicitly or spontaneously breaks supersymmetry, so the action must respect this 

symmetry in all regimes including low energy. The most general supersymmetric action 

of a complex chiral superfield, containing no more than two derivatives [65, 39] is 

5susy = jd^x (^jd^9d^eic{x,x^) + jd^ew{x) + jd^ewHx^)^, (5.30) 

Notice that both ip and a are 2IT periodic. 
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where W and are required to be holomorphic and anti-holomorphic respectively. 
The Wilsonian effective action must therefore have this form. 

The function W is called the superpotential, and it appears in an F-term in the 

action, which implies that i t will be zero to all orders in perturbation theory, but 

can have non-vanishing, exactly calculable, monopole contributions, as discussed in 

section 3.3. In contrast, the D-term involving JC will be dominated by incalculable 

perturbative effects. Fortunately, i t is the superpotential that holds information about 

the vacuum, as we shall now show. 

I f the bosonic part of the action is expanded in the bosonic components of X, the 

auxiliary field ^ and its conjugate are present only in the following terms, 

with G = ^-§^§^- The Euler-Lagrange equation for T then gives 

and substituting this and its conjugate back into the action, we find the potential 

This is positive semi-definite, as we should expect since there is a general result in su­

persymmetric theories that the Hamiltonian must be positive semi-definite (see section 

3.2.3, and [20]). I t also follows from the same general arguments that only states which 

have an expectation value of zero for the energy are supersymmetric. So, if we can solve 

what is called the F-flatness condition, 

( - ) 

to find a supersymmetric state, this will also give an absolute minimum of the energy and 

hence a quantum vacuum state^. Therefore, our aim is to determine the superpotential. 

^We took G 0 above, which was an assumption as we do not know the form of K.. However, if 

G = 0 then the F-flatness condition follows directly from the Euler-Lagrange equations. 
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5.1.4 Ca lcu la t ion of the superpotential 

The strategy we shall employ to find the superpotential is to calculate a term in its 

expansion and then use holomorphy to reconstruct the whole. The F-term in the 

effective action can be written as 

fs.j,Hmx)=fs. ( ^ ^ 4 2 ^ , , ) . (6.35) 

When z has a VEV, the second term includes 

f,^.\{?^)n, (5.36) 

which is an effective mass term for the fermion •0, or after rescaling, for A. Recall 

however, that A is the part of the gluino field that is classically massless. Therefore 

i t is quantum effects, via the superpotential, that generate a mass for this component. 

This is the mass term that we shall evaluate, using semiclassical techniques, and from 

which we can infer the superpotential. 

We shall approach this by investigating the correlator 

(Aa(x)A^(O)). (5.37) 

We can use an LSZ reduction formula to relate this function to a scattering amplitude, 

and then, in the hmit of large |a;|, it can be shown that the asymptotic form is two mass-

less propagators multiplied by a constant including the mass of A, or in configuration 

space language, 

( 2 \2 p 
m, J d\' {SF{X - x')Sp{-x'))^^ . (5.38) 

Note that we use mx to mean the coefficient multiplying ^AA in the action, which is 

not the physical mass because A is not a canonically normalised field (see the kinetic 

term in equation (5.5)). Similarly, we are attempting to find the coefficient in front 

of ^tpip and will not be concerned with the actual value of the mass. Another effect 

of this normalisation is that the constant in front of the integral above is not simply 

the mass. We have also defined SF{X) = the massless fermion propagator in 

three dimensional configuration space, or equivalently the Green's function of the Dirac 

operator ia^'dp. 
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Clearly only (multi-)monopole solutions with two fermionic zero modes will affect 
the value of the correlator, which implies that just the two fundamental monopoles 
will contribute. In order to perform the semiclassical calculations around these con­
figurations, we need to know the one monopole measure and the adjoint fermion zero 
modes. 

The latter are given by the supersymmetric zero modes (see section 4.3), which all 

multimonopole solutions have by virtue of supersymmetry. In the case of the funda­

mental monopoles they are the only two zero modes, with two Grassmannian collective 

coordinates and ^2- In fact, although we know the field strength and hence the zero 

modes completely for the one monopole solution, at this point we shall only require 

knowledge of the asymptotic form of the zero modes, 

l im Xc,{x) = X^^ix) = S-iriSpix - X)Oa- (5.39) 

The measure is shown in appendix C to be 

I rfMi-mono = ^ e - ^ I d'X j^^ dn I d^i, (5.40) 

with S the monopole action, /x the Pauli-Villars renormahsation scale, X the centre of 

the monopole, and 0 the U{1) gauge orientation. 

Now we can bring everything together and, integrating over the gauge and fermionic 

collective coordinates, find an expression for the contribution of either monopole to the 

correlator in the hmit of large |a;|, 

,3 
(A.(x)A^(0))3p3/j,^ ^''^f^e-'ld'Xdnd'^X^^{x)X^^{0) (5.41) 

• I d'X {SF{X - X)SFi-X))^^ . (5.42) 
2SrV^^_5 

We can amputate the propagators to isolate the coefficient in front of the integral, then 

find the mass term for A, and (after applying the conversion factor, equation (5.24)) 

also for ip, given by either monopole. 

2^Tr^fj,^R f2irR\^ _ 5 

9' [9' )" 
XX = f d^x I 

'2TTIJ.^R _g 

J 2 [ 9' 1 
ipi^. (5.43) 

The BPS monopole has action -{z) and the KK monopole has action -2mT + (z), 

using the results given in chapter 4, and including the effect of the field a. Summing 



CHAPTER 5. ONE MONOPOLE CALCULATIONS 72 

over both contributions we find the total quantum generated mass term for ip, from 
which, using equation (5.36), we can identify the VEV of the second derivative of the 
superpotential, 

= (5.44) 

This represents only one term of the superpotential, given by single monopole contribu­

tions, and all other terms in the expansion are generated by analogous multimonopole 

effects. However, rather than calculate all these terms individually, we can realise that 

the holomorphic property of W constrains them, and that we must be able to recon­

struct the ful l superpotential by promoting (z) to z, and then in turn z to X. Therefore 

we have found 

W ( X ) = (e^ + e ^ - - ^ ) . (5.45) 

We can now use this result to discover the quantum vacuum state, since 

^ = 0 e (̂̂ ) = e^- , (5.46) 

{z) = Tri{T + u), (5.47) 

with v £ Z, and the VEV of z contains the VEV of the Wilson loop, {ip) = -vr, which 

parametrises the vacuum. The quantum corrections have lifted the degeneracy of the 

classical moduli space, leaving just one point of i t as a true vacuum state. 

The parameter v can in principle take any integral value, but since (z) is 2-K periodic, 

only the values 0 and 1 (say) are distinct. Shifting •& t-^ •& + 2Tr sends u v + I, so 

the vacua corresponding to these two values have the same physical properties. This 

is in accordance with Witten's index [40], which predicts two distinct but physically 

equivalent vacua in supersymmetric pure SU{2) gauge theory. 

5.1.5 Confinement 

We can take (a) to be zero, but due to the non-zero VEV of the Wilson loop we 

find a term like ^mo-cr̂  on expanding the superpotential about the vacuum, so cr is a 

massive field. This implies confinement of the electric degrees of freedom, through a 

dual Meissner eff'ect. In superconductors the electric photon gains an effective mass 
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and the magnetic fields are confined to the exterior of the superconductor or flux tubes. 
In the present case the words electric and magnetic should be exchanged, and all the 
remaining electric fields should be removed from the low energy spectrum. This effect 
was first noticed by Polyakov in the context of a genuinely three dimensional gauge 
theory, in [47]. 

5.2 Calculation of the gluino condensate in SU{2) 

In section 5.1 we examined a reduced, low energy form of the theory in order to deter­

mine the quantum vacuum state. With this knowledge we can now return to the full 

theory and calculate the gluino condensate in the correct vacuum. 

5.2.1 T h e semiclassical method 

We can find (Tr A A ) using a direct semiclassical calculation. By design we have modified 

the theory such that we can identify and manipulate the configurations contributing 

to the gluino condensate with mathematical rigour. These are gauge configurations 

with two adjoint fermion zero modes, and are the one monopole solutions. Using the 

one monopole measure derived in appendix C, we can find the contribution of either 

monopole to the gluino condensate, 

(lY A A ( X ) ) B P S / K K = ^ e - ^ J d^X dQ j d^i lY [X''X'\x - X)]. (5.48) 

The classical values of the gluino fields are given by the supersymmetric zero modes, 

Xt = o"^\^£,pv'iT. (5.49) 

with v'^^ the field strength of the monopole configuration. Applying equation (A. 14) 

and v'^^ = *v^^, and integrating over ^ and fi, we find 

(1^ A A ( X ) ) B P S / K K = ^ ^ e - ^ j d'X Tr [̂ ^̂^̂ r̂ - X)] . (5.50) 

We can change variables from X to x- X, and then the integral is clearly just propor­

tional to the real part of the monopole action^, so we can immediately evaluate i t to 

®That is, not including the contribution of the theta term 
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give 

( 1 V A A ) B P S / K K = '^^^''^MS) = 2fi'Re{S)e-'. (5.51) 

Recall from section 5.1 that the action of the BPS monopole is -{z) and the KK 

monopole action is —2mT + {z), and also that in the quantum vacuum {z) =-Ki{T + 

so we can sum the contributions of both monopoles to find the gluino condensate. 

This result is independent of i?, so analytic continuation to all values including the 

limit i? —>• oo is trivial. 

We can rewrite the expression (5.52) to make its renormahsation group invariance 

manifest. The solution of the exact Callan-Symanzik equation [22] in this pure SU{2) 

gauge theory with 6o = 6 is 

j ; l ^ e > . p ( - i ^ + « ( , ) ) = A = . (5.53) 

with A the dynamically generated scale in the Pauli-Villars regularisation scheme. 

Therefore, 

' T r A A ' 
167r2 

- A3e '̂̂ ^ (5.54) 

which agrees with the WCI result for the gluino condensate. 

Sending "d + 27r implies v h->- i/ + 1. This is also the way to relate the two 

physically equivalent vacua, so we see that they can be labelled according to the phase 

of the gluino condensate. 

5.2.2 T h e functional method 

Our knowledge of the superpotential allows us to find the gluino condensate by an al­

ternative niethod that uses a formal identity but does not require a further semiclassical 

calculation. The original action, written in terms of the vector superfield Wa, is 

5micro[W ]̂ = j d^xlm (^j d^e ^ l Y [WWa]^ . (5.55) 
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We can upgrade from r to a chiral superfield T which includes the complexified coupling 

constant as the VEV of the scalar component, 

T = Ar + V2eijr + 09Tr, (5.56) 

(^^> = " $ ^ + ^ - ( « 7 ) 

The action and partition function then become functionals of T, 

5micro[T, W] = J Im <fe £ l V {WwS^ , (5.58) 

and 

Z[T] = JdW exp {iSrr^icrolT, W]). (5.59) 

The lowest dimensional component of Tr (W^Wa) is - T r (A"AQ), so the action contains 

- J d'x^TriX'^X,), (5.60) 

and Hermitian conjugate (with J^j)- Therefore, 

1 6Z[T] ^ _ y (^a^^) ^iS^.^^^[W]) ^ - • (5.61) 
T=T 

Z[T] STr 

Now, supposing that we were able to integrate out the vector superfield, we would 

be left with an effective action involving T, 

Z[T] = exp (^i jd^x2Re(^jd^9Weff(r)^^ . (5.62) 

(This is in the general form of equation (5.30), but with no D term because there is 

no connection between the chiral and anti-chiral sectors in equation (5.58).) We can 

expand this in the same manner as equation (5.35), 

j^. l^HW^T) = { ^ ^ ^ r + I ' ^ ^ ^ r f . ) , (5.63) 

which leads to 

1 SZ[T] 
Z[T] dJ'r 
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so we have a useful identity that relates the gluino condensate to the derivative of the 

effective action, 

IGTT^ / 2ir dr ' 

However, i t is not possible to do the integration over Wa directly. Instead, we may 

identify'' 

WMr) = ^ , (5.66) 

where W is the superpotential from section 5.1. Evaluating (W) by substituting equa­

tion (5.47) into (5.45), we have 

Now we can draw all of these results together and find 

which agrees with the directly calculated value. 

''The factor 2nR is present because W is only integrated over three spatial dimensions in the 
Wilsonian effective action. 



Chapter 6 

The generalisation to any gauge 

group, and the inclusion of matter 

The one monopole calculation of the gluino condensate in A/" = 1 supersymmetric pure 

Yang-Mills theory with gauge group SU{2), presented in chapter 5, can be generalised 

in two directions, as we shall describe in this chapter. Firstly, we may find the gluino 

condensate with any gauge group, and then we can consider the addition of matter to 

the theory. Note that the generalisation to gauge group 517[N), including the properties 

of monopoles on the cyhnder, is alternatively presented in [1], using results motivated 

by string theory. 

For the second issue, addressed in section 6.2, we will introduce the ADS super-

potential that describes the low energy dynamics of theories including matter, and 

show that in all cases it can be directly evaluated using either a one instanton or one 

monopole calculation. 

6.1 The gluino condensate in any gauge group 

In this section we shall generalise the calculation of the gluino condensate, found in 

chapter 5 for gauge group SU(2), to any gauge group. The only possibilities are compact 

Lie groups, whose algebras are known to be direct sums of C/(l) algebras and simple Lie 

algebras. The simple Lie algebras were classified by Cartan and Killing into types A, 
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B, C, D, E, F and G, as summarised in appendix B. We shall restrict our attention to 
the corresponding simple Lie groups, because there are no complications arising from 
trivial combinations of these groups. 

The strategy of this calculation is exactly the same as for SU (2), so we rely on the 

ful l explanations in chapter 5, and just give a summary with the relevant formulae here. 

We will discuss the interesting aspects of the results in more detail. 

6.1.1 Clas s i ca l low energy dynamics 

Recall from section 4.3.3 that the VEV may be chosen to be in the Cartan subalgebra, 

(^o) = -ViH\ (6.1) 

Then, the classically massless degrees of freedom are the components of fields that 

correspond to Cartan subalgebra generators, and furthermore the parts of those fields 

that are independent of the periodic coordinate, XQ. We shall write, for example, 

X{xm) = \i{Xfj)W + massive fields. (6.2) 

Using the following normalisation, as outlined in appendix B, 

T V ( M ^ ) = 5^^ (6.3) 

the action for the classically massless fields is 

2TTR 
So = 

9' j "^^^ ( ( 2 ^ ^ ' ' ^ ^ ^ ' ' ' ^ ' + 2«Aia^a^Ai^ , (6.4) 

where f is the Wilson loop as before, (fi — f dxo VQ. Also, the part of a theta term that 

depends on these fields is 

= -{~2 I d ^ ^ e ^ ^ ' ^ P v . p i d ^ i p i . (6.5) 

We have the freedom to add n three dimensional topological terms, with n param­

eters, {cTj}, 

S, = ^ j d^Gie^^'Pd^Vupi. (6.6) 
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The quantisation of magnetic charge in general shows that the vector of magnetic 
charges in each of the unbroken U{1) groups should He in the coroot lattice [61] 

^ I Sxe'^'"'d,v,p,&K\, (6.7) 

which implies that Ci must be valued in 2TX-KW'AW' because a shift by a weight vector 

u) contributes a power of the factor ê '̂ * = 1 to the partition function. This space is 

slightly different, for non-simply laced groups, to the set of inequivalent values of ^pi, 

2^-^^y,w (see section 4.3.3). 

We can promote each CTJ to be an auxiliary field, ensuring the Bianchi identity 

everywhere, then integrate by parts to make the action quadratic in the field strength, 

S = J d ^ x (aBf.iB''. + b^iB". + c) , (6.8) 

with 

a = ? ^ . (6.9) 

i f 'd \ 
b^,i = ~—^^,\a, + —ipiy (6.10) 

1 / 1 /27r7?\^ _ \ 
c = -^d^^id^^>, + — ^ 1i\a^d^\i , (6.11) 

ZTTit \ g \ 9 / J 

Now we can use Gaussian integration to eliminate in favour of crj as a dynamical 

scalar field, in a dual theory with action 

We again switch our attention to a complex scalar fields and unconventionally nor-

mahsed fermionic fields, 

Zi = -i{T(pi + cTi), ipi = '^^\^Xi, (6.13) 

in terms of which the action is 

5duai = ^ I d ? x ^ (d^.zld'^Zi + ii^ia'^d^iPi) . (6.14) 
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This is invariant under the supersymmetry transformations, 

6zi = V2(ij;i, SiPi = V2ia''ld^Zi, (6.15) 

so i t is more convenient to work with the complex chiral superfields, X j = Zj + \/26ipi + 

66Ti, which have the classical action 

'S'dual 

6.1.2 Q u a n t u m low energy dynamics 

The most general supersymmetric action of n complex chiral superfields is 

5susy = jd^x ( ^ j d ^ e d ^ d i c { x , x ^ ) + J d ^ d v v i x ) + J d ' ^ d w H x ^ ) ^ . (6.17) 

The bosonic potential arises from the terms 

J \ •> dZi dzl J 

where G^^ = ^ ^ ^ f ^ , and we also define = the matrix inverse of G'^. 
dzidz] 

The Euler-Lagrange equation for any Ti gives 

t ^ dW{z) 

and substituting these relations, and their complex conjugates, back into the action 

shows that the potential is 

I S.V = I a ^ J ^ G , , ' ^ , (6.20) 
J J dz] <JZj 

which is zero if and only if the F-flatness conditions, 

dW{z) 
dzi 

are fulfilled. 

Expanding the F-term as 

= 0, (6.21) 
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we can see the fermionic effective mass term. 

In order to evaluate the effective mass matrix, we need to consider the correlation 

function 

(Aai(x)A^,(0)), (6.24) 

which in the limit of large \x\ has the form 

^ hm^ {\ai{x)\p,m = (^) < I d ' x ' {SFix - X')SF{-X'))^^ . (6.25) 

The definition of rn^ is that i t appears in the term J x ^rn^ XiXj in the effective 

action. 

When calculating the contribution from the monopole associated with the root^ a, 

we need to know the large hmit of the adjoint fermion zero modes of that monopole, 

\'^f{x) = A-,T{Srix-X)Opa*\ (6.26) 

and the correct measure, taken from appendix C, 

/ '^M^-mono = ^ ( i ^ ) I d'X dn I d% (6.27) 

Combining these elements, we can find the effect of the monopole associated with the 

root a on the large \x\ Hmit of the correlation function, 

Mx)\pm\a] ( i ^ ) e-' j d'X JdnJ d'(X^f{x)X^fiO) (6.28) 

2 W i l / i> \ -^aV ld^x{Srix-X)SH-X))^^. 

(6.29) 

52 \^|a|2 

We may read off the contribution to from 

{a*-xy^ 27r/AR/ L \ _g 

9' V H ^ 

(a* -ih)^ , , 
^ — ^ . (6.30) 

^Recall from section 4.3.3 that the BPS monopoles correspond to the simple roots, the KK or affine 
monopole to the lowest root, a(o) = —0. 
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The action of the BPS monopole associated with the simple root on is 5[a(j)] = 
—a*̂^ • {z), and the action of the KK or affine monopole is ^[^(o)] = ~* (̂o) ' "̂̂ ^ ~ 27r2r, 
as given in section 4.3.3, so we can sum all n + 1 monopole contributions into 

( ^ )=^ | : ( ^ )« ;H^- (< ' ; . , -<^>- - . . ) . <-> 
and use this to reconstruct the ful l superpotential, 

W ( X ) = f r n 2 ) (4) • ^ + 2^^^< îo) . (6.32) 

The form of this superpotential is that of a twisted affine Toda potential, as was 

predicted for A/" = 1 gauge theories on x 5^ by Katz and Vafa in [66], on the basis 

of string theory calculations (see also [67]). However, this result does not include the 

field theory interpretation of the variables of the superpotential, which is supplied by 

the expression above. The following linear shift in the chiral superfield, 

" ( L \ \ ( " ( T \ \ 
Xv^X-Y\oz a ;« + - 27riT + y m M o g — ^ p, (6.33) 

renders the superpotential into the standard form for a twisted affine Toda potential, as 

written by Katz and Vafa. I t is based on the twisted affine algebra, which coincides with 

the affine algebra for the simply laced algebras, and can be found for the non-simply 

laced algebras either by changing the roots into coroots [68], or by the imposition of 

an outer automorphism on a simply laced algebra before affinization [69]. In the first 

method, the twisted affine algebra of X„ is denoted x i ^ ^ * , as the dual of the untwisted 

version Xn^. In the latter case, the outer automorphism corresponds to a symmetry of 

the Dynkin diagram of the simply laced algebra, 1^, with order 2 except for Z?4 where 

i t is 3. Then, following the notation of Kac [70], the resultant twisted affine algebra is 

written Yn^ or Y^^ respectively, as summarised in table 6.1. 

A related superpotential on x S^ was calculated by Dorey [71], in an A/" = 1 

supersymmetric theory with a specific matter content, obtained by adding masses to 

A/" = 4 supersymmetric pure gauge theory in order to break all but one supersym­

metry. This superpotential is also generated by monopoles, and takes the form of a 

Calogero-Moser potential. Renormalisation group decoupling to make the matter fields 

irrelevant corresponds exactly to the well known limit of the Calogero-Moser potential 

that produces the affine Toda potential [68 . 
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Simple Lie algebra Twisted affine algebra 

Bn 

Cn 

FA 

G2 

0(1)* _ 4(2) 

F^:> = EP 

Table 6.1: The twisted affine algebras. 

6.1.3 Ca lcu la t ion of the gluino condensate 

Before finding the gluino condensate, we must first determine the true quantum vacuum 

by solving the F-flatness condition, 

dW{z) 
dz 

= 0. (6.34) 

I t is most convenient to work with the n variables Q = â ^̂  • z, which are independent 

because the simple coroots {a^^} form a basis. Using â Q̂  = -0 = - Y^^=i 

1*̂ (0) P = I^P = ^1 the superpotential can be written 

^i^) = ^ f -p (2mr - ± m x ] + ± ( ^ ) eMCi) 

Differentiating with respect to Ci gives 

( L \ ( " . \ . 
I 12 exp(Ci) = m ' exp 27riT - > m*(Ci) = m'S, 

so we can immediately see that, in the quantum vacuum, 

m 
9^ 

_ 27r/i^i? „ 

(6.35) 

(6.36) 

(6.37) 
1=1 

The exponential factor S may be found by repeatedly applying equation (6.36), so 

/ n \ 
5 = exp 2mT ~^m'{Ci) (6.38) 

\ i=i J 

= exp(27^^r)^(exp(0))- '" ' 
1=1 

= exp(27riT) n 
i=l 

(6.39) 

(6.40) 
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Therefore, 

= exp(2. i r) J] ( ) , (6.41) 

with u e Z. This integer labels the C2 vacua, related to each other by ?91-> i9 - j - 27r, and 

predicted by Witten's index [40]. 

The functional method of section 5.2.2 is group independent and therefore trivial 

to generalise, so we may immediately find the gluino condensate in any gauge group, 

This is independent of R, and so may be automatically continued and taken to be the 

result for any value, in particular the R ^ oo limit. Using the solution to the exact 

Callan-Symanzik equation. 

2fco exp 

9 3 (m) 
where bo = 3c2, for any pure gauge theory, we can write the gluino condensate in terms 

of the dynamically generated scale. A, in the Pauli-Villars regularisation scheme, 

^ ' 1=1 \ / 

The Lie algebra data given in tables B . l and B.2 is sufficient to evaluate this formula 

for all the simple Lie groups, and the results are shown in table 6.2 (ignoring the phase 

factor that distinguishes the vacua). Note that although the algebras of S0{2n) and 

S0{2n + 1) are very different, the expression for the gluino condensate in SO{N) is a 

single formula in terms of A'̂ , irrespective of whether N is even or odd. 

The values for the classical groups are in ful l agreement with those calculated by 

Finnell and Pouliot [37] in a WCI approach, and such consistency over a range of non-

trivial numbers, from independent methods, is good evidence that WCI methods are 

sound. 
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Gauge group 

SU{N) 1 

SO{N) 

USp{N) 
1 2 2 N+l 

G2 2 - h i 

FA 2"^3~5 

EQ 2 " 5 3 " 5 

2 ~ i 3 ~ ^ 

Eg, 
13 2 1 

2 153 55 6 

Table 6.2: The gluino condensate for ah simple Lie groups. 

The results for the exceptional groups are new predictions; the monopole method 

is at present the only known way to determine these numbers. 

In the direct semiclassical evaluation of the gluino condensate, using the correct 

quantum vacuum determined by the F-flatness condition, the monopole associated with 

the root a contributes 

(TVAA)[,] = 2^i' (^—^ Re (5 [a ] ) e -^N. (6.46) 

Using e "̂ ["(o)] = S, and e '^["(')] = (j^ j E, we can sum over the contributions of 

all of the monopoles and find 

TrAA 
167r2 / 

which is exactly the same as the result found by the functional method. 

(6.47) 

6.2 The ADS superpotential 

Another highly important result in the context of A/" = 1 supersymmetric gauge theories 

is the superpotential found by Affleck, Dine and Seiberg [72]. They considered an 

SU{N) gauge theory with Nf flavours of matter, where Nf < N. Each flavour consists 

of a chiral superfield Q that transforms according to the fundamental representation of 
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the gauge group, and a chiral superfield Q that transforms in the conjugate fundamental. 
This prescription is used so that the fermion from Q, tpi, and the fermion from Q\ ipn, 
combine to form a single Dirac fermion, such as would be implied by the term flavour 
in non-supersymmetric gauge theories. 

The classical global symmetry group of the theory is 

SU{Nf)L X SU{Nf)R X U{l)v X U{1)A X Uil)R, (6.48) 

which is equivalent to the non-supersymmetric version, except for the addition of the 

U{1)R factor. This is related to the U{1) group of R-symmetry transformations, which 

are induced by changing the phase of the supersymmetry generators. Just as in a 

non-supersymmetric theory, the quantum global symmetry group does not contain the 

C / (1)A; this symmetry has an anomaly, produced by the semiclassical configurations 

of the theory. R-symmetry is similarly anamolous, and we choose ?7(l)ij to be the 

anomaly-free combination of the U{1)A and R-symmetry. 

The superpartners of the matter fermions are 2NNf complex scalars, which may 

develop VEVs that generically break the gauge group to SU{N — N f ) . In addition, 

they break the global symmetry group to 

SUiNf)D X U{l)v, (6.49) 

where SU(Nj)D is the diagonal subgroup of SU{Nf)L X SU{Nf)R. Therefore, Nf{2N-

N f ) of the real scalar degrees of freedom are absorbed under the Higgs mechanism, to 

allow for the right number of massive gauge bosons, and N^ + 1 further real scalars will 

be Goldstone bosons that will be classically massless, associated with massless fermionic 

Goldstinos by supersymmetry. This last set must be gauge invariant fields, and indeed 

they are contained in the chiral superfields Q-^^Qig {i is a gauge index, / and g label 

flavours). Note, however, that one set of these Goldstone fields, the one associated with 

the anomalous U{1)A. symmetry, will gain a semiclassically generated mass, while the 

others must remain massless. 

Affleck, Dine and Seiberg determined the low energy effective action of these clas­

sically massless fields, encoded in the superpotential that is obtained after all massive 

and high virtuaHty fields, and also the massless gauge fields, have been integrated out. 

This is known as the ADS superpotential, and hke the superpotential we considered 
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here for supersymmetric pure gauge theory on x 5 \ it is not calculated by direct 
integration. Instead, requiring invariance under the remaining symmetries shows that 
i t must be of the form 

^ N % = C M , N , , (6.50) 

where A^r^Ar^ is the dynamicaUy generated scale, and 3N-Nf = bo is the first coefficient 

of the beta function, in the theory with gauge group SU{N) and Nf flavours. The 

dimensionless constant C^^N^ is to be determined. The strategy is to isolate a part 

that is accessible to direct evaluation, and use this to reconstruct the full superpotential. 

Using instantons in , this may only be achieved in the case Nf = N — 1, where the 

gauge group is completely broken and the couphng is controhable. This is sufficient, 

however, because starting from that result, renormaHsation group decoupling can be 

applied to flow to theories with lower numbers of flavours, and determine the ADS 

superpotential for all Nf < N. The part of the superpotential that is calculated is in 

fact the semiclassically generated mass of the U{1)A Goldstino, using the asymptotic 

behaviour of a two point function, as in the method employed in section 5.1.4. The only 

contribution is from one instanton configurations, and it is found that CN,N; = N - N f . 

For Nf < N — 1, calculations using instantons are not rehable, because there is 

an unbroken non-abelian subgroup of the gauge group, which leads to strong coupling 

effects. However, i f we modify the space to x 5^, we find that monopoles can be 

used to generate the ADS superpotential, as we shaH now discuss. 

Suppose that the massive and high virtuality fields have been integrated out, leaving 

the SU (N—Nf) gauge fields, and the chiral superfields Q-^ Qg. I t is convenient to change 

variables from the latter to the following matrix of superfields^, 

$ = - | l o g ^ . (6.51) 

The effective action at this level may be expanded in inverse powers of the VEV pa­

rameter of the scalars, v, and, as observed in [72], there is only one dimension five 

operator that is invariant under the unbroken gauge and global symmetries (its form is 

^Affleck, Dine and Seiberg used a linearised version of the superfield matrix 
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completely specified by these), so we can say 

5eff = j d ^ x l m j d ' e (^Tr{W''W^) + (W^"t^„) + 0 j . (6.52) 

Here 5eff is the effective action of the classically massless fields, which include Wa, 

the SU{N — A^^) field strength superfield. Integrating this out is equivalent to finding 

the effective action for the auxiliary chiral superfield T in a theory hke that given in 

equation (5.58), but where T has the value 

r = .+ ^ * V (6.53) 

We know, from comparing equation (6.37), with C2 = N - Nf for the unbroken gauge 

group SU{N - N f ) , to equation (5.66), that monopoles in SU{N - N f ) will generate 

W . , = ( J V - J V , ) ^ e x p ( J ^ ! ^ ) (6.54) 

= ( i V - A r ; ) ^ e x p ( - f ^ ) ( ^ ^ ) ' (6.55) 
•̂ ^̂ 2 ^ V ^ - ^ / y VdetQQy 

and using the renormalisation group decoupling equation 1^^^^^ = f^'^'^^ ^^M-^^fi > we 

find 

Weff = (AT - AT;) ^W^%. (6.57) 
\^detQQ J 

This shows that the ADS superpotential is closely linked to gluino condensation, 

and indeed its derivation in [72] is also a WCI calculation of the gluino condensate 

with gauge group SU{N). Analogous results have also been determined for the other 

classical groups [43], and these are all part of an extended family of superpotentials, 

in A/" = 1 supersymmetric theories with different gauge groups and various types of 

matter. They can be connected in many ways through renormalisation group flows, 

and are all mutually consistent. See the reviews [37] and [73] for discussions and an 

introduction to the hterature. 



Chapter 7 

Two monopole calculations 

7.1 Introduction 

We have introduced a strategy that in principle allows particular correlation functions in 

supersymmetric theories to be calculated exactly; modify space from to the cyHnder 

X 5^, and choose the radius of the circle to be smaH so that the couphng is also smaU. 

Then any correlation function is equal to a sum of contributions, from conventional 

perturbation theory and semiclassical configurations. For correlation functions of F-

terms, there is no conventional perturbation theory part, and the one loop semiclassical 

approximation gives the fuH result. The connection between the coupHng and the radius 

means that the answer can then be analytically continued back to the case of a large 

radius. Furthermore, the relevant semiclassical configurations that may contribute are 

known; for gauge group SU{2) they are all combinations of the two types of (multi-

)monopoles on the cylinder^. In chapter 5 we employed this formalism to calculate 

the gluino condensate in SU{2), and found agreement with the WCI value. On the 

other hand, the SCI value of the gluino condensate, calculated via the one instanton 

contribution to 

/ I V A A ( x ) T V A A ( 0 ) \ 
\ 167r2 167r2 / ' 

is beHeved to be incorrect because the contributions of some other configurations are 

neglected, and then cluster decomposition is applied to a part of the correlation function 

'̂ In general there are n + 1 types of monopoles where n is the rank of the gauge group. 
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rather than the fuH result. 

On the cylinder, the analogue of the one instanton is the caloron, which is a com­

bination of a BPS monopole and a KK monopole. However, there are two more con-

flgurations on x 5^ that have four adjoint fermion zero modes, and so are relevant 

for calculating this correlation function. They are combinations of two of the same 

type of monopole, either BPS or K K . These two monopole configurations do not have 

useful limiting forms in K^; they would both have infinite action for example, just 

Hke the one monopoles. Similarly to the way that one monopoles aid our understand­

ing of the contributions of the badly behaved instanton partons, though, the two 

monopole solutions help us to understand what the missed configurations are in the 

SCI approach. Ideally, we want a quantitative explanation, so we should attempt to 

calculate the two monopole contributions to the correlation function above, and show 

that they make up the deficit. This chapter describes work undertaken in preparation 

for such a calculation. Unfortunately, however, although some progress was made, two 

monopole calculations eventually proved to be technically impossible, which brought 

the monopole programme to a disappointingly early end. 

Most of this chapter is concerned with an investigation of various aspects of the 

Nahm construction of multi-monopole solutions [74]. The one monopole fields are 

simple enough to be found by conventional analytic means and expressed in terms 

of elementary functions, but for higher winding numbers such a direct approach is 

unproductive. A l l multi-monopole solutions can, at least in principle, be constructed 

by a method given by Nahm. In practice, only the form of the two monopole fields have 

been worked out, they are much more complicated than the one monopole expressions, 

and they involve Jacobi eUiptic functions. 

This situation is analogous to that of the present knowledge of multi-instanton 

solutions, which is perhaps not surprising as the Nahm construction is a generalisation 

of the instanton construction by Atiyah, Drinfeld, Hitchin and Manin [14]. Both the 

Nahm and A D H M constructions originated from twistor theory, where the self-duality 

condition obeyed by instantons and monopoles is reformulated as a powerful statement 

of vanishing curvature. 

In the case of the ADHM construction, the problem of finding finite action self-
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dual Yang-Mills solutions (or solving a set of coupled, non-linear, first-order partial 
differential equations) is reduced to one of solving non-linear algebraic equations. This 
is achieved by expressing the gauge field and field strength in terms of vectors and 
matrices with dimensions related to the instanton number. The ADHM equations have 
only been solved for A; ^ 3, but all multi-instanton solutions are implicitly determined 
by the A D H M construction. 

In a similar construction giving finite energy monopole solutions in IK*, the infinite 

action of the monopoles suggests that linear algebra with an infinite dimensional vector 

space must be used. Nahm generahsed the ADHM construction in exactly this way, and 

as we shall see, the equivalent of the algebraic equations of ADHM is a set of non-hnear 

ordinary differential equations collectively known as the Nahm equation. 

The A D H M construction has been described in [16, 75, 28, 29], using language suited 

to theoretical physicists. We attempt to do the same for the Nahm construction here, so 

we shall not prove that every monopole can be built in this way (this was done in [76]), 

instead we will use a strong assumption to demonstrate how the construction works. 

First, we give a brief summary of the ADHM construction, because analogy with it 

motivates our approach to the Nahm construction, but for more detailed explanations 

we recommend the references above. 

Throughout this chapter we will consider only gauge group SU{2). Following the 

tradition of the original work on the ADHM and Nahm constructions, we shall work 

with an anti-Hermitian gauge field. A Hermitian gauge field may be recovered through 
„,Herm _ „• ,ant i -Herm 

7.2 The A D H M construction 

7.2.1 Overview 

The gauge field of a multi-instanton is written in the ADHM formalism as a generali­

sation of the pure gauge form of a trivial {k = 0) solution, 

vJ^^U^'^^dmUxp^, (7.2) 
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where A is implicitly summed over 0 , 1 , . . . , ̂  for a A;-instaiiton solution, and 

(7.3) 

In the following, we shall often drop the two-valued indices for brevity. The field 

strength is 

(7.4) 

where for now -Ajj^jj] — ~ -^nm- Substituting the gauge field and making use of the 

orthonormality condition above, we have 

(7.5) 

(7.6) 

(7.7) 

Note that UxU"' and S^'^ - UxU'^ are orthogonal projection operators, which obey 

{UxV) [UJJ'-) = UxU\ (7.8) 

Sx^ - UxU" = 0, [ 5 / - C/AC/"] C / « f / ' = 0. 

These conditions are preserved if we identify 

where A annihilates U, 

5^'^-UxU^\=^^F,%\ 

(7.9) 

(7.10) 

(7.11) 

and F is the inverse of A A (which must exist as A A is Hermitian and positive definite). 

A / A , ' = ( F - ) / . (7.12) 

There should be k independent vectors orthogonal to the ADHM vector U, so the Latin 

indices j, I run over 1 , . . . , A;. The ful l index structures of the operators A and A are 

^Aa4 '^^d A , (7.13) 



CHAPTER 7. TWO MONOPOLE CALCULATIONS 93 

while the matrix F has indices Fj^-'^^. 

We assume the following properties of A, A and F, 

a^A oc am, drrA cc a^, [F, Um] = 0. (7.14) 

The first two imply that A and A depend linearly on the space point x, 

A A ' = «A' + ^A'^ '^^m, (7.15) 

A / = « / + ^ " ^ m V - (7-16) 

The matrix a follows the index structure of A, while b is b^^^^ in ful l . Both are obviously 

independent of a;. To ensure the third property we require that F factorises as 

The features of linearity and factorisation are crucial to the A D H M construction, and 

also to the Nahm construction. 

Using the relations above, we can develop the field strength into 

Vmn - { d l J j ' ) Ax^f^%^[d^^U,) (7.18) 

= C 7 ' ( 9 [ ^ A , ' ) / / ( a „ ] A / ) c / . (7.19) 

^U\'a[mfi'a^]b;u, (7.20) 

= Au\fi^amnb"U,, (7.21) 

which is self-dual by virtue of the self-duality of Umn-

The necessity that F, and therefore also F~^, is proportional to the 2 x 2 identity 

matrix leads to the following conditions on the matrices a and 6, 

(7.22) 

bal^ OC 6^^, (7.23) 

(7.24) 

These are the A D H M equations. They can be simpHfied by using the symmetries of 

the A D H M construction to bring b into canonical form, 

^ A ? = K'^a^ (7.25) 
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where the Kronecker delta is understood to be zero when A = 0. The transformations 
under which the A D H M formalism is invariant are 

U^AU, U^UA^, (7.26) 

A h ^ A A , A ^ A A t , (7.27) 

with A e U{2k + 2) (unitary to preserve the orthonormality of U), and 

A ^ A B I A ^ B A , f ^ B f B \ (7.28) 

where B € U{k) (A;-dimensional not 2A;-dimensional to maintain the factorisation of 

F , and unitary to keep / Hermitian, as i t must be because A A is Hermitian). Gauge 

transformations Vm ^ Ou^fi^ -|- Q,dm^'^ act just on ?7 as J7 >-)• C/fit. 

7.2.2 Adjoint fermion zero modes in ADHM 

The A D H M construction also provides us with the form of the zero modes of any 

multi-instanton. This includes, of obvious interest in this thesis, the adjoint fermion 

zero modes that solve 

a'^^^'DrnK = 0. (7.29) 

The covariant derivative acts in the appropriate way given that AQ transforms under 

the adjoint representation, 

DmK = dmK + [VmAa\- (7.30) 

I f we use the A D H M expression for the gauge field then we find 

DmK = dmK + [Ud^U, Xa ] (7.31) 

= U[dm[UXaU])U. (7.32) 

Note that we are now suppressing all non-essential indices. 

In the A D H M formahsm, the adjoint fermion zero modes are written in terms of 

the A D H M data we have already encountered, plus a constant Grassmannian matrix 

{X^f. = U^MfhaU^ - uhafMU^. (7.33) 
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In order to proceed with the calculation of DmXa, we apply the following useful rela­
tions. First, 

Udm {UU) = -Udm ( A / A ) (7.34) 

= -U{dmA)fA ' (7.35) 

= -UbamfA, (7.36) 

and its conjugate, 

dm {UU) U = -AfambU, (7.37) 

then the orthonormality condition U^'Up = 6°'^. Finally, we need to know the derivative 

of the matrix / , but rather than attempt to differentiate i t directly, we rearrange the 

identity dm = 0, to find 

dmf^-f{dmf-')f (7.38) 

= -f(^dmlTr [ A A ] ) / (7.39) 

= - ^ / T r {ambA + Abam) f (7.40) 

= - / I V {ambA) / (7.41) 

= - / T r (Abam) /• (7.42) 

The last two equalities follow from the ADHM equations. After employing all of these 

results, we have 

DmXa = - UbamfAMfbaU - UMfTi {ambA) fbaU - UMfbaAfbamU 

+ UbafMAfambU + UbafTr {Abam) fMU + UbamfAbJMU. (7.43) 

Under contraction with a™"", the second and third terms cancel against each other, as 

do the fifth and sixth. Using equation (A. 13), the remainder gives 

a'^'^'DmXa = -2C/6"/ [ A " M + A " I fbaU. (7.44) 

This leads us to the A D H M equation for 

A " M + MA^ = 0. (7.45) 
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The constraints on a and b show that this equation is automatically satisfied if M and 
M take the values 

M^x - -^h'p'^a, M^i' = - 4 r 6 , V , (7.46) 

or 

M^x' = ^^XPat, A ^ V = -^^a^i'"^ (7.47) 

which give the supersymmetric and superconformal modes respectively. 

We include here two related results. First, there is a reasonably compact expression 

for Tr AA, using the A D H M data, similar to the corresponding identity for bosonic zero 

modes due to Corrigan (see appendix B of [28]), 

TrXX = -^d"'dm (7.48) 

Secondly, manipulations like those above can be used to show that the fundamental 

fermion zero modes, which solve 

a'^^'^Dmi^a = a"^"" [dm'^a + v M = 0, (7.49) 

are given by 

i r f = u'^^x'p'fi'X^j^ (7-50) 

for any of values of the k Grassmannian parameters ICj. These are the collective coor­

dinates for the k zero modes we expect, from the Atiyah-Singer index theorem. 

We shall now turn our attention to the Nahm construction, which will be seen to 

be closely analogous to the A D H M construction. 

7.3 The formalism of the Nahm construction 

7.3.1 The gauge field 

Monopole configurations do not depend on a;", and instead the Nahm data involved in 

the construction of such solutions depend on a reciprocal parameter, s. The foundation 
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of the Nahm construction is therefore the following differential operator, linear in the 
space variable X ^ C T ' ' , 

^Lai^) = ( ^ ^ V + (^o) / (^) ) + {x,S/ + ( T ^ ) / ( . ) ) a'^,^, (7.51) 

where i,j are indices running from 1 to k, the winding number of the monopole. The 

parameter s is defined on the interval [ — f , + f ] , where u can be identified with the 

VEV parameter of the same name introduced previously. Note that this operator 

already has similar features to the canonical form of the corresponding operator in the 

A D H M construction; the matrix Tmcr"^ is the analogue of a in that case. The Hermitian 

conjugate of A is 

A / ^ " ( 5 ) = V + ( T t ) / ( . ) ) a'-- + [x,S/ + ( T j ) / ( s ) ) a^--. (7.52) 

We let be a vector annihilated by A, that is 

Ar''{s)l(ja{s) = 0. (7.53) 

There will be two linearly independent vectors that obey this and can be normalised, 

/ •+! _ • 
/ dsU^'^{s)Uja{s) < oo, (7.54) 

where U is the Hermitian conjugate of U. We can construct out of these vectors a 2A; x 2 

matrix and its Hermitian conjugate, 

which have the following properties; 

• jaa Ar {s)U^,^{s) = 0, (7.57) 

' - i ^ + UTo^a^ + U{x^ + T^)a^' = 0, (7.58) 

and 

n dsU'''''U.^^ = 6-^. (7.59) 
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The gauge field is given in terms of U and U through 

Vo = [ dsU{s)isU{s), (7.60) 

-
v.= / dsU{s)df,U{s). (7.61) 

(From now on, all integrals over s will be over the range [ — f , + f ] unless otherwise 

specified.) 

I t will be shown in section 7.3.2 that the Hermitian operator A A can be made to 

factorise so that i t is proportional to the 2 x 2 identity matrix, S^^, by imposing certain 

conditions on the T matrices, in particular they must obey the Nahm equation. This 

implies that the Green's function for A A , f{s,s'), is also proportional to the 2 x 2 

identity matrix, 

( A A ) / ^ . {s)f/is,s') = 5{s - s')d/6^., (7.62) 

and it will therefore commute with the sigma matrices a"* and a^. 

Now, U{s)U{s') and A(s) / (s , s')A(s') are both projection operators in the sense 

that 

J ds' V{s, s')V{s', s") = V{s, s"). (7.63) 

We assume that they obey a completeness relation, 

U{s)Uis') = 6{s - s') - A ( s ) / ( 5 , s')A{s'). (7.64) 

This equation should be interpreted as a functional equation, so i t applies when multi­

plied by a suitable function and integrated over s and s'. We now have all the knowledge 

we need to show that the field strength is self-dual. Using square brackets to denote 
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anti-symmetrisation of indices, we have 

Viiv = d[^v^] + v^f^v^] (7.65) 

= +lds {d[,U{s)) {d,}U{s)) 

- j ds ds' {d^^U{s)) U{s)U{s') {d^^U{s')) (7.66) 

= j dsds' {d^JJ{s)) A{s)f{s,s')A{s') {d,^U{s')) (7.67) 

- j dsds'U{s)a^^f{s,s')a^f{s') (7.68) 

= A j dsds'U{s)a^^f{s,s')U{s'), (7.69) 

where contributions from the end-points after integration by parts will vanish if we 

impose the boundary conditions f{s,s') = 0 for s = ± | on the Green's function. 

Noting that A{s)[isU{s)] = -a^U{s), we can also find 

U0 | i = - Df^VQ = -dfj,vo - [v^, Vo] (7.70) 

= - j dsds' {dJlis))A{s)f{s,s')A{s')is'U{s') 

- j ds ds' U{s)isA{s)f{s, s')A{s') {d^,U{s')) (7.71) 

= - Jdsds'U{s)a[^f{s,s')ao]U{s') (7.72) 

= 4 j dsds'U{s)ao^,f{s,s')U{s'). (7.73) 

Therefore, 

Vmn = ^ j ds ds' U{s)amnf{s, s')U{s'), (7.74) 

which is obviously self-dual by the self-duality of amn-

7.3.2 Factorisation and the Nahm equation 

We require that A A factorises so that it is proportional to the 2 x 2 identity matrix, 

6^^. Suppressing indices, we have 

A A = f i j - + 4 ] ( i ^ + To) a«(r° + ( i ^ + ( X ^ + T^) ^a^ 
\ ds J \ ds J \ ds " y f -

+ ( x , + r t ) + To) + ( x , + t J ) ( X ^ + T^) (7.75) 
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We can use the identity (A. 10), and the definition and self-duahty of cr"*", to rearrange 

this into 

A A = 
ds 

d 

+ 

+ 

ds • To) + {x, + Ti)ix>^ + Tn 

(TO - t J ) X^ + (T^ - T ; ) ^ £ + x^Tp - Tj)6 

.dT, 
ds 

l^+TlT^-Tln+TlTpe^P^" (7.76) 

A l l the terms proportional to a^cr̂  must vanish, and we can consider separately three 

independent sets. 

^ ^ s • ^^-^'^^ 

.dT, 
^~di ^ ^^^''^"^ ^ ^nupTuTp = 0. 

(7.77) 

(7.78) 

(7.79) 

The last condition is the Nahm equation. 

7.3.3 Canonical form 

Even though the operator A ( s ) already excludes the (redundant) degrees of freedom 

represented by the matrix b in the A D H M construction, there are still some symmetries 

of the Nahm construction remaining that can be used to simplify its form. The gauge 

field produced by the Nahm construction is invariant under local U{k) transformations. 

U{s) ^ h{s)U{s), 

U{s)^U{s)h\s), 

(7.80) 

(7.81) 

with h{s) e U{k). A l l the equations of the Nahm construction are invariant under 

changes of this form if / i-> h f h \ and A is a covariant operator, such that for any 

(Pj°'{s) that transforms as <p i-> hip, 

A A ' ' , and Atp i-> A^{hip) = hA(p. (7.82) 

I f we write 

A^ = 
ds 

TA a'+[x, + T;:) (7.83) 
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then we can deduce the transformation laws for the T matrices; 

T̂ ^ = hT^h^, (7.84) 

To'̂  = hToh^ - (7.85) 
as 

We may choose 

h{s) = l im exp \—iTo f — ^ ) Ss \ exp • —iTo f - ^ + Ss^ 5s \ ... 

. . . exp I - iTo (s - ^s) j exp | - iTo (s) (7.86) 

= Pexp ^ - i ^ ^ ds'To{s')^ , (7.87) 

where P signifies s ordering, and then 

To'̂  = 0, (7.88) 

so we can always make Tq equal to zero through these s-dependent U(k) transforma­

tions. This puts A and A into the canonical form, where 

A = i ^ a O + (x^ + r ^ ) a ^ (7.89) ,0 
c 

d 

ds^ 

The Nahm equation becomes 

.dT 

A = i—a^ + {x^ + n)a'', (7.90) 
as 

^ ^ ^ - ^ + {^^^ + T,)'• (7.91) 

or 

i ^ + le^.p[n,T,] = 0. (7.93) 

We shall always use this convenient choice. Global (s-independent) U{k) transforma­

tions can still be performed without disturbing the canonical form. 

For completeness, we shall briefly discuss here the other transformations relevant 

to the Nahm construction. I t might be thought that local U{2) transformations acting 

on the Weyl indices, similar to the U{k) group discussed above, would be of interest. 

However, i f such transformations were s-dependent, the factorisation of A A would 
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be affected. Global C/(2) elements can be used to manipulate A , but the C/(l) part 
could be absorbed into a global U{k) transformation, and the remaining 5C/(2) part 
is equivalent to a spatial rotation. A more interesting set of alterations is making 
different choices of the orthonormal basis vectors Uja{i,2)- Since orthonormality, or the 
condition / dsU'^U^ = S"^, must be preserved, these changes are equivalent to U{2) 
transformations acting like 

U ^ UQ\ (7.94) 

with n e U{2), where Cl is allowed to depend on the spatial position but not on s. The 

effect on the gauge field is a local gauge transformation 

vo ^ ^von^, (7.95) 

v^^Qv^n^ + n{dp,ft^). (7.96) 

The fact that the group is U{2) shows that the Vm we have constructed here is a 

U{2) gauge potential. I f we are interested in an SU{2) gauge field, we must impose 

tracelessness on the field through an appropriate {7(2) gauge transformation^. 

7.4 One monopole solution 

In order to show how monopole configurations are found using the Nahm construction, 

we shall work through the complete one monopole solution. The first step towards 

finding a monopole gauge field is to solve the Nahm equation. In the case A; = 1, the 

are simply real functions of s with no matrix structure, so [Ti,,Tp] = 0, and the Nahm 

equation reduces to 

dT 
^ = 0 , or T^ = -X^, (7.97) 

where the are constants. Since everything depends on the combination x + T = 

a; — X , all positions are naturally measured relative to X, which we can identify as the 

centre of the monopole configuration and set to be the origin, X = 0, by a translation. 

Wi th all the T^ equal to zero, the equation A"°Wa = 0 becomes 

= 0, (7.98) 

^In fact, the ADHM construction works in this way as well [29]. 
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where x± = xi± 1x2- This pair of ordinary differential equations are easily solved; 

= Aix_el^l^ + Sla;_e-I^l^ (7.99) 

^2(1) = Ai{\x\ - x^)e\^\' - Bi{\x\ + X 3 ) e - I - I ^ (7.100) 

where |3;| = {x\ + X2 + x1)^, and similarly for U{2)-, with Ai, A2, B\ and B2 deter­

mined by the condition of orthonormality. For convenience, we will use a U{2) gauge 

transformation to rotate U into the simple form, 

U= , (7.101) 
\ A{\x\ - x^)e\^\' -B{\x\ + X 3 ) e - N ^ j 

with A and 5 real. Then the normalisation condition J ds U^Up = (5"̂  imphes 

A = {2{\x\ - 2:3) sinhu|a;|)-5 = (2|3;|(|a;| - X3))-^a, (7.102) 

B = (2(|a;| + X3) sinhu|a;|)~5 = (2|a;|(|a;| + X3))~^a, (7.103) 

with = 512|^^ For the remainder of this section, the symbol U will refer to this 

matrix. 

7.4.1 The gauge field component VQ 

We can now calculate the gauge field using the Nahm construction expressions, and we 

shall consider first the zeroth component. 

Vo f ^ dsUisU (7.104) 

= ia^ \ (7.105) 
\̂  0 /dsse-2N* J 

= - - ^ u c o t h u l x l - ^ . (7.106) 
2i V |a;iy 

Obviously, we have chosen a singular gauge, where the asymptotic value of ?;o as |a;| ^ 00 

is in the T3 direction. In order to move to a regular gauge where tends to something 

proportional to X ^ T Q , we can apply an 5C/(2) transformation, 1-̂  VQ = fiuo^^^ or 

U ^U' = U^^, where 

0 = _ , (7.107) 
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with aa + bb = 1, and 

2aa - M ± ^ ^ (7.108) 

2bb = ^ r ^ , (7.109) 

- 2 a 6 = ^ i f / ^ . (7.110) 

Note that the absolute phase of a or 6 is not determined, only the phase of ab. This 

corresponds to the fact that there is a U{1) subgroup of the SU{2) gauge group that 

leaves the asymptotic value of VQ unaltered, 

vo = e-^^^voe^^^. (7.111) 

We shall make the definite choice, 

4 ? ^ ) ' , b= (7.112) 
2 N J {2\x\{\x\+xs))-2 

then we can find the new matrix U' — Ufl^, 

{U')n = a;_(^ael^l* + Bbe-^'^^'), (7.113) 

(C/')i2 = 2;_(-A6el^l^ + Sae-I^l^), (7.114) 

(C/')2i = Aa{\x\ - X 3 ) e l ^ l ^ - Bb{\x\ + a;3)e-l^l^ (7.115) 

(C/')22 = -Abi\x\ - X3)el^l* - Bai\x\ + a;3)e-l^l^ (7.116) 

and use it in the Nahm construction to find the transformed gauge potential. I t does 

indeed give 

v'. = i—^a^ dsssinh2|2;|s (7.117) 

^[ucoi\vu\x\- , (7.118) \x\2i \ ' ' Ix,, 

which we recognise as the standard form of for the BPS monopole, from section 4.2.1. 

7.4.2 The gauge field components 

The fields wi, V2, and vz are treated differently to VQ in the Nahm construction. We 

shall begin by calculating the first component of the gauge field. 

vi= j dsUdiU. (7.119) 
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Wi th U as above, we have 

diU = 
PAx-e^'^^' 

RA{\x\ - X3)e \x\s 

where 

R = 

This leads to 

diA 
+ 

A X-

Xl 
+ 

\x\ 
XiS 

QBx-e-^'^^' 

-SB{\x\+X3)e-

n - ^ 1 xis 
^ ' B ^ x . I d ' 

(7.120) 

| x | ( | x | - a ; 3 ) ' 
Xl 

Vl = 

1X2 
2\x\l\x\-Xi) 

r r i a AB (ix2 - ^ ) n 

r 

where we note that AB = 

B \x\{\x\+X2) 

AB [ix2 + ^ ) 

XlS 

(7.121) 

(7.122) 

(7.123) 

2 | X | ( | X | + X 3 ) 

2(|rz;p - 2:3)^ sinhw|2;| . Clearly vi is not traceless, so 

our simple choice of U does not lead to an acceptable SU(2) potential. We must use 

the U{2) gauge freedom to remove the trace, but without affecting the vo component 

since i t gave the correct monopole field. Any w € U{2) of the form u) = exp[i(x + ^7-3)] 

sends VQ -̂>• u)VooJ^ = vo, but transforms vi to v'( = wviuj'^ + tjdiuj^ 

v'i = 
( u i ) \ -idix-idi( {vi)'2e''^ 

(7.124) 
(wi)2,e-2'? {vi)\-idix + idi( 

Let us take x = ^, so we leave (vi)^2 unchanged and must arrange {v'{)^i = — (t^i)^2-

Therefore, we require 2di^ = i. Integrating gives ^ = 4arg(a;_) -I - C, with a 

constant (or function of X2 and 0:3), C, which can be chosen such that 

.2ie _ _ . 
{\x\^-xl)2 V 0 

Then, the SU{2) gauge field component becomes 

/ -1X2 

(7.125) 

v': = 2 X {x + X3) 

— {iX2 x\ — X1X3) UX-^ 

V 2|2;|(|2;|''^ - 2:3) sinhu|a;| 

- {ix2\x\ - I - a:ia:3) ux- \ 
2\x\{\x^^ - xl) sinhnjx 

+iX2 
(7.126) 

2x\{x +X3) 

We can make a comparison to the known expression, from section 4.2.1, 

2x 
1 - u\x\ 

sinhula;! 
(7.127) 
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vi = -
2x 

1 - u\x\ 
sinhu a; 

%X2 —x^ 

X^ -1X2 
(7.128) 

by using the transformation Ct^ to bring this into a singular gauge with VQ proportional 

to T3 . So, if we transform to Vp, = fi'^v^O -t- fl^d^ft, we expect vi to be comparable to 

v'^. Writing 

a b 

—b a 
= {2\x\i\x\+xs)y 

\x\+X3 - X l + i X 2 

xi + ix2 \x\ + xz 

we have 

1 - u\x\ 
2\x\'^{\x\+x^) \ sinhn|a;| 

0 -Xz{\x\+X2,) -iX2X. 

X2,{\x\ + xz) - ix2X+ 0 

and i f we set (p = (2|a;|(|a;| -|- 3:3)) 2 , then 

^ _ 1 
di^l = ip-\diip)Q + ip l^^l 

1 R 

with diip = -ip^^{2\x\ + X3), so 

-1X2 
X\X-

\X\ - Xz 

- 2 |a; |( |a; |+X3) \̂  + + 3.3 

Finally, therefore, we arrive at 

1X2 

( -1x2 
2\x\{\x\+xz) 

{iX2\x — XlXz) ux.^ 

V 2|a;|(|a;|^ - xj) sinhw|a;| 

— {ix2 x\ + 3:1X3) UX-

2|2;|(|2;p - xl)smh.u\x 

+iX2 

(7.129) 

(7.130) 

(7.131) 

(7.132) 

(7.133) 

2|x|(|a;|+a;3) / 

which is exactly v". The various gauges used here, and the connections between them, 

are summarised in Table 7.1. 

The same procedure has been applied in order to determine and check the remaining 

two components, and the results are shown in appendix D. 
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Singular gauges Regular gauges 

^0 •-> 

U{2) V v' 

SU{2) v" = v V 

(7.134) 

Table 7.1: Properties of the different gauges used in the calculation of the one monopole 

gauge field. 

7.4.3 The field strength 

The field strength Vmn would normally be obtained from the potential Vm with the 

defining equation, 

Vmn = dmVn - dnVm + [^m, ^n], (7.135) 

but in the case of a self-dual monopole solution, the Nahm construction allows the field 

strength to be found directly using 

vmn=4.jds ds' U{s)amnf{s, s')U{s'). (7.136) 

However, the derivation of this formula used the completeness relation, which was 

postulated rather then proved. Reproducing the one monopole field strength from this 

equation will therefore be a check of our assumption. 

We know the matrices U and U in the one monopole case, and in order to apply 

this formula we must also find / , the Green's function for the operator 

which has the boundary conditions f{s,s') = 0 for s = ± | . I t is 

sinh|a:| (a + f ) sinh {s'- ^) ^ ^ ^, 
r, /X _ I |2;|sinh(u|x|) 

^ ^ ^ ' ^ ^ - ^ s i n h N [s-^)smh\x\{s' + ^) ^ ^ ^, 
|x| sinh(u|a;|) 

sinh|a:| (s + |)sinh|a; | ( « ' - f ) 

(7.137) 

(7.138) 

= - e{s' - s) 
\x\ sinh(u|a;|) 

_ ,^sinh|a:| ( . - f ) s i n h N {s'-\-f) 
^ I i i • 1 / i TN 

|a;| smh(?i|a;|) 
(7.139) 
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The same function, written slightly differently, was given by Nahm in [77]. I t has the 
correct behaviour at the end-points of the interval [ - f ,+ f ] , and using ^^(s — s') = 
S{s - s') and S{s - s')F{s) = 6{s - s')F{s'), for any function F, we can also see that 

ds sinh(u|a;|) 
„, cosh Ixl fs — I ) sinh|a;| f s ' + ^ ) 

- Ois - s') x ' ' \ , , ^ , 7.140 
|a;| smh(u|2;|) 

and similarly, 

^ / = _ 0U' - , ) |^ |2sinhN(. + f ) s i n h N (.̂  - f ) 
ds^ |a;| sinh(u|a;|) 

|a;| sinh(u|a;|) 
, cosh b l (s + f ) sinh b l (s - f ) 

+ s{s - s')—' ' ^ . ' ; . . ' ^ ^ 
smh(u|2;|j 

- < J ( . - . 0 ^ ^ ^ ^ ^ ^ ^ ^ M ^ T ! ^ ^ ^ ( 7 . 141 ) smh(u|a;|) 

= -6{s-s') + \x\'^f{s,s'). (7 .142) 

Note that / has the following properties: / (s , s') — f{s', s), as expected for the Green's 

function of a Hermitian operator; and /(—s,-s') = f{s,s'), which occurs because 

A A ( - 5 ) = AA(s ) and 5{s - s') = S{s' - s). 

We are now able to calculate the one monopole field strength, and we will consider 

the vi2 component. The Green's function is a real function with no indices, therefore 

it commutes with all matrices. Using cti2 = | t 3 , we have 

vi2 = 2iJ dsds'U{s)T3U{s')f{s,s'). (7 .143) 

The combination U{S)T3U{S') is easily found. 

We can see that the field strength will be traceless by changing variables to z = - 5 and 
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z' = —s' and using the identity f{s,s') = f{z,z'), 

ivu)\=^2i f 'ds [ 'ds'a2^el^l(''+^')/(5,s') (7.145) 
y _ l y_2 \x\ 

- 2i /"^' dzV^e-l^l(^+^')/(z,z') (7.146) 

= -{vuA- (7.147) 

The Green's function / has a different form for s > s' and s < s', so the integral 

naturally splits into two parts, 

v^2=2i I ds Js'U{s)TzU{s')[f{s,s%ys'] 

/•+t n' _ 
+ 2i ds' dsU{s)T^U{s')[f{s,s%<s']- (7.148) 

If we exchange the dummy variable labels s and s' in the second integral and use 

/(s ,s ' ) = f{s',s), then this becomes 

r+2 /•« _ _ 

vu = 2i I ds I ds' {Uis)T3U{s') + U{S')T3U{S)} [f{s,s')\s>s'] . (7.149) 

Now, 

U{S)TSU{S') + Uis')nUis) = 
c? ( 2x3el= l̂(*+ '̂) 2(|xp - xl)\cosh |a;|(s - s') \ 
TT 1 ' (7.150) 
1̂ 1 \ 2(|a;p - a;i)2 cosh |a;|(s' - s) -2a;3e-W(^+*') / 

and the equality of the off'-diagonal elements in this formula imphes that (̂ 12)̂ 2 ~ 

(''̂ 12)̂ 1) which is consistent with the field strength being anti-Hermitian as all the com­

ponents of v\2 are imaginary in this gauge. I t is now sufficient to calculate just two 

of the components of W12, one diagonal and one off-diagonal, and use tracelessness and 

anti-Hermitianality to find the remaining two. Using hyperbolic trigonometric function 

identities, we can find 

(^12)^2 = - I • ,2 I I / <^5smh 

I d s ' cosh(|x|(s' - s)) sinh (^x\ [s' + |)) 1 (7.151) 

2 

2 | i p s i n f f i i r i ('^^^^""l^l) ~ "" l^ l cosh(u|a;|)), (7.152) 
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{VL2)\ = J_Jdssmh{\x\ (.-^)) 
|a;| sinh'^(u|a;|) 

| '^d5 'eN(^+^')sinh( |x | (5' +I)) 

1x3 
, . , D / r ,\ ^ I l9 sinh^(u|a;|) - I 

2|a;|sinh2(u|x|) i |x|2 J 

• (7.153) 

(7.154) 

The gauge transformation LU sends Vmn '̂ mn = ^""mn^^^, where is the field 

strength associated with the traceless gauge potential w^; 

lUX-

2|a;psinh u \ x \ 
(sinh(u|3;|) - u\x\cosh(u|x|)), (7.156) 

IUXJ^ 

(sinh(u|2;|) - u\x\cosh(u|a;|)). (7.157) 
2|xp sinh^ u \ x \ 

We can check this by taking the field strength calculated in section 4.2.1, which has the 

form 

^12 = o . i „ i 9 ( 1 - u\A coth(u|a;|)) 
2i\x\'^ sinh(u|a;|) 

+ 
2i\x\ u\x\ u\x\ sinh(u|a;|) \sinh(u|a;|) 

+ coth(w|2;|) - 1 - 1 xs X -

a;+ -res 

(7.158) 

and transforming it to V12 = Q)VI20,.i which should be the same as VI2- By design, 

i I X-i X -
(7.159) 

and matrix multiplication gives 

= 

Therefore, 

-(•"12)̂ 2 = 
IXz 

2|a;| sinh'^(u|a;|) 

1 / a;3 -x^ 
- X + -Xz 

| | ^ s inh^(u | a ; | ) -

(7.160) 

} = {<2)\, (7.161) 
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(ui2)^2 = 2\x\^ sinh^ u\x\ (^^"^^"1^1) ~ "1^1 cosh(u|a;|)) = (ui2)^2> (7-162) 

(^i2) ' i = ^, '''.''X I I (sinh(ii|a;|) - u\x\cosh(n|a;|)) = {v'l^fv (7.163) 
2|a;|^smh t/lxl 

The calculation of the remaining field strength components, V23 and V31, proceeds anal­

ogously to the case of vu- The results are summarised in appendix D, and there is ful l 

agreement between the field strength calculated from the Nahm construction and the 

known expressions for the BPS field strength. 

7.5 Properties of the Green's function 

We shall now prove two identities that are necessary for the determination of the adjoint 

fermion zero modes of a monopole in the Nahm formalism. They are also useful in 

showing that the equations of motion D'^Vmn = 0 are indeed satisfied by the Ngihm 

construction gauge field (and field strength). This is guaranteed by self-duality, but is 

another successful test of the field strength formula, equation (7.74), which rests on the 

assumed completeness relation. 

The identities are relevant to the Green's function of the operator A A , / . One is a 

formula for its spatial derivative, 5^/, similar to the expression for dmf in the ADHM 

construction. The other is an identity that substitutes for the missing component d o f , 

with an intuitive form if s is viewed as the reciprocal variable of x". It has been checked 

that the one monopole version of / , equation (7.139), obeys both identities. 

Recall that the Green's function we are interested in is the solution of the equation 

( A A ) / ^ . {s)f}{s, s') ^ 6{s - s')5i5\, (7.164) 

with the boundary conditions that / (s , s') = 0 for 5 = ± | , and also, that any equation 

of the form 

AA(s),/>(s,s') = v7(5,5'), (7.165) 

where cj) has the same boundary conditions as / , has the solution 

cj>{s,s') = I ds"fis,s")J{s",s'). (7.166) 
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In order to find the gradient of / , we can differentiate the equation 

lTr{AA{s))f{s,s') = Sis-s'), 

with respect to a;'̂ , and we find 

^ I V {AA{s)) {d,fis,s')) = - \ [d,Tr {AA{s))] f{s,s'). 

Therefore, 

d,f{s,s') = - \ j ds" f{s,s")Tv[d, ( A A ) {s")] f{s",s') 

= - j ds" f{s,s")Tx[a^A{s")] f{s",s'). 

(7.167) 

(7.168) 

(7.169) 

(7.170) 

To reach the second identity, we act on the function i{s - s')f{s, s') with A A , which 

gives 

[AAis)]iis-s')f{s,s')=-~ if{s,s')+iis-s')f{s,s') 
ds 

+ iis-s')[x + T f f { s , s ' ) 

= -2if{s,s')+iis-s')6{s-s') 
ds 

(7.171) 

(7.172) 

(7.173) 

(7.174) 

(7.175) 

Therefore we have the identity 

i{s-s')f{s,s') = -21 ds"f{s,s")i£j{s",s') 

= - j ds" f{s,s")TT[^,A{s")]f{s",s'). 

7.6 Adjoint fermion zero modes 

A fermion zero mode in the adjoint representation is a solution of the Dirac equation, 

o^^'^'DmK = a""''' (dmXa + K , Aa]) = 0. (7.176) 

Following the analogy with the ADHM construction, we shall assume the following 

expression for a zero mode, 

iXaf^=+ I dsds'Tf^\s)Mj{s)f}{s,s')Ula^{s') 

- j dsds'ir^,{s)f^^s,s')W-{s')Ui^^{s'), (7.177) 
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where M j and are Grassmannian matrices. A similar procedure to that used in 
the A D H M case, including the apphcation of equation (7.175), shows that in order 
for the form above to be a solution, M-y and AV must obey the following constraint, 
reminiscent of equation (7.45), 

A / " ^ A ^ ^ / + A T , / a / / = 0. (7.178) 

The part of this proportional to should vanish independently, which implies 

M ^ / ^ M J . (7.179) 

The remainder leads to 

^ a J i ^ M j + a^'^^lT^, M^]i' = 0. (7.180) 

We shall discuss here two interesting solutions to this equation, and therefore two types 

of adjoint fermion zero modes. The first gives the supersymmetric zero modes, which 

are already well known. Every monopole solution has these two zero modes, and for 

the one monopole they are the only adjoint fermion zero modes. The second type is 

two further zero modes that are possessed by every monopole solution with A; > 1, and 

that also have an easy interpretation. Altogether, these four zero modes give us cdl 

of the two monopole zero modes, which would be sufficient for the calculation of the 

four-fermion correlation function, equation (7.1), that we were hoping to achieve. 

We might also mention here that an attempt was made to find a formula for the 

square of the most general monopole zero mode, Tr AA, similar to equation (7.48). How­

ever, the presence of the extra parameter, s, meant that progress was much harder, and 

also that any eventual result was unlikely to be a total derivative, or therefore as useful 

as the corresponding A D H M version. Consequently, this approach was abandoned. 

7.6.1 The supersymmetric mode 

I f we look for s-independent solutions to equation (7.180), obeying 

a'''^''[T^,Mj] = 0, (7.181) 

then because the T^ do vary with s, M-y must commute with each of them individually, 

[T^,M^] = 0. (7.182) 
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This will certainly be true if 

MJ = -4(^S/, (7.183) 

which is the value that gives the supersymmetric zero mode. Furthermore, at s = ± | , 

the appropriate boundary conditions [76] for the T matrices are that they have simple 

poles, with residues that form a set of generators of the k dimensional irreducible 

representation of SU{2). Therefore, any constant M-y has to commute with all of 

these, and so by Schur's lemma, having M^y proportional to the k x k identity matrix 

is the only s-independent solution. 

7.6.2 The dual supersymmetric mode 

In order to find a new solution (with M-y depending on s), we shall now discuss a 

different interpretation of the Nahm equation. Consider a Hermitian U{k) gauge po­

tential, Tm, which is only dependent on one coordinate^, s, and in the gauge where the 

corresponding field component, say TQ, is zero. Then the field strength, 

reduces to 

and 

Tmn = dmTn - dnTm - i^Tm, ?"„], (7.184) 

T^ = -i[T^,T,], (7.186) 

and requiring this to be self-dual leads directly to the Nahm equation. Also, the Dirac 

equation for the adjoint representation {oiU{k)) is exactly the constraint on above, 

and we can immediately write down one solution, the supersymmetric zero mode in this 

U{k) theory; 

= -\a^%%{Tmn\\ (7.187) 

or 

A ^ 7 = \r}^o^\'(Tmn)i. (7.188) 

^In comparison, the monopole gauge field Vm. depends on three out of four space coordinates. 
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By the self-duahty of Tmn, this can also be written 

(7.189) 

or 

A ^ 7 = 2 A V ^ ( W -

To check that this is a solution to the constraint, note that 

as a ds 

= -2{a^a'"'rif 
dT, 

and 

a''" [̂rp,A1 ]̂ = -2(a''a%)" 

ds 

dT„ 
ds 

so 

Now, using identities from appendix A, we have 

and by the Nahm equation and the Jacobi identity, 

'dT, 

ds ' 

ds '^^ = 2 w r - r , ] , r ^ ] = o. 

(7.190) 

(7 .191 ) 

(7 .192) 

(7.193) 

(7.194) 

(7.195) 

(7.196) 

Therefore, the constraint is satisfied. 

Note that this solution reduces to the trivial one {M^ = 0, AQ = 0 ) in the one 

monopole case where the are constant and commute with each other. This is as 

expected, because the supersymmetric modes should account for all of the one monopole 

zero modes. 

We call the adjoint fermion zero modes given by this solution the dual supersym­

metric modes, because they arise due to supersymmetry in the U{k) gauge theory with 

fields Tm and Mry, which can be considered dual to our original SU{2) theory containing 

fields Vjn and AQ. 
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This type of hnk, between solutions in different theories, was first introduced by 
Corrigan and Goddard^ [75], in the context of both the ADHM and Nahm constructions. 
These ideas were reinterpreted and extended recently by Dorey and collaborators [23, 
24], who showed that the ADHM data may be viewed as arising from the dimensional 
reduction of a ten dimensional gauge theory to six dimensions. Given the analogies 
between the Nahm data and a gauge field, seen in this section and also particularly in 
section 7.3.3, it seems probable that this hnk could also be made more precise for the 
Nahm construction. 

7.6.3 Fundamental fermion zero modes 

For completeness, we note that the solutions of the Dirac equation, 

a™""Z)^Va = a-"" {dmip^ + = 0, (7.197) 

for fermions in the fundamental representation of the gauge group, are given by 

{ r f = I dsTf^''{s)f^Hs,0)ICj, (7.198) 

for any values of the Grassmannian parameters JCj. 

7.7 Two monopole solution 

The two monopole solution was found using the Nahm construction by Panagopoulos 

[78]. We discuss some aspects of i t here. 

The first task, when finding a monopole configuration with any winding number A;, 

is to solve for the Nahm data, {T^}. We notice that the Nahm equation imphes that 

the trace of any of the T matrices is constant, 

i^TrT^ = -e^upTr {T^Tp) = 0. (7.199) 

Therefore, as in the one monopole case, we can identify the centre of the monopole 

configuration as 

X ^ = - i T r T ^ , (7.200) 

*They used the term reciprocity "to avoid overworking the term duality". 
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and set this to zero for now; it can easily be restored by a translation. Also, differenti­
ating the tensor 

e^. = IV (T^n) - y^^Tv (TpTp), (7.201) 

with respect to 5, the Nahm equation shows that this is constant as well, for example, 

- ^Tr (TiTs) = m {T2T3T2 - T3T2T2 + TsTiTi - TiTiTs) = 0, (7.202) 
as 

^Tr {TpTp) = QiTv {T1T2T3 - T3T2T1), (7.203) 

and 

£ t : (TiTi) = 2iTT {T1T2T, - T1T3T2) = (TpTp). (7.204) 

This tensor is real and symmetric, and we can use a spatial rotation to transform it 

into a diagonal form. Then, Tr (T^T^) = 0 iov fi ^ u. 

This last condition, as well as tracelessness, will always be fulfilled in the two 

monopole case if 

T i = / i ^ , T2 = f2^, T3 = / 3 ^ . (7.205) 

Substituting these matrices into the Nahm equation, we find the following equations 

for the functions {fp.}, 

dfi r f df2 dfz /'7onfî  

The required solution is 

_ 2K{l-rn)l 

2 X d n ( g f ^ ) 
u c n ( M . ) h = (7.208) 

2Kil-m)-2sn{^) 
= c n ( M . ) ^ (^-209) 

where K is the elliptic integral of the first kind, and sn, cn and dn are Jacobi elhptic 

functions, and all of these depend on the parameter m e [0,1]. The definitions and 

some properties of these functions are given in appendix E. Using the information 
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contained there, i t is easy to show that this is a solution, and that the behaviour of 
all of the {fn} near s = ± | is Therefore, the residues of the T matrices 

at the endpoints of the s interval are indeed the generators of the two dimensional 

(fundamental) irreducible representation of SU{2). 

The k = 2 solution for { T ^ } above contains a new parameter, m, or equivalently 

K, which is a bosonic collective coordinate. However, we would expect eight bosonic 

collective coordinates for the most general two monopole solution, so what are the other 

seven? Three are the coordinates of the centre, X^ , and a further one is the angle of an 

unbroken U{1) gauge transformation, Jl; these are just hke the one monopole collective 

coordinates. The remaining three parameters are the Euler angles of the rotation used 

to make diagonal, (p, ip. Brown, Panagopoulos and Prasad [79] showed that 

the solution above corresponds to having both poles on the a;2-axis. The collective 

coordinate m (or K) gives an indication of the separation of the individual monopoles; 

m = 0 and K = ^ when they are overlapping, m —)• 1 or X —>• oo is the far-separated 

limit . 

We know the bosonic part of the measure in terms of these bosonic collective coor­

dinates, because, in a seminal work of mathematical physics [80], Atiyah and Hitchin 

determined the two monopole moduh space, or space of all two monopole solutions, 

2^2 = X ^ ^ ^ M . (7.210) 
Z 2 

The factor x is the contribution of the centre and {/(I) gauge orientation, and 

the Z 2 factor appears because of the symmetry under exchange of the monopoles. The 

four dimensional relative moduli space OT^ known as the Atiyah-Hitchin manifold, 

and the metric on this space is, using the notation of [81] (the relations in appendix E 

can be used to show that this is the same metric as written in [82]), 

ds'^ = pdK^ + a'^{-smiljdd +cos ip sin's dipf 

+ (cos tpd'd + sinip s'm'd d(p)'^ 

+ c^{di} + cos-ddipf, (7.211) 
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where 

^,_2KEiK-Ef (̂ ^2^3^ 
E-{l-m)K' 
2KE{E - (1 - m)K) 

K-E 
(7.214) 

2 _ 2E( i^ - £;) 
- i ^ ( £ ^ - ( l - m ) i ^ ) - ^^-^^^^ 

The bosonic measure is given by the square root of the determinant of this metric (as 

well as the fiat measure of x 5^), so up to factors, 

dl^Lmono = J dK d'& dtp dip AKE{K - E) sin ?9. (7.216) 

Panagopoulos [78] indicated the method for finding the vector U in the Nahm con­

struction, and also the gauge field, with the Nahm data as above. He did not write 

either out explicitly, but they are both complicated expressions involving Jacobi el-

hptic functions and depending partially imphcitly on the spatial position through the 

solution, ( , of the quartic equation. 

4 ^ 
^ I 4 + 4^2 +{ix^x^)+e - ^ 3 + - 2)) 

+ C (̂ ^^ -̂̂ 3) +[-f + = 0- (7-217) 

Such intricacy makes any attempt to directly calculate a correlation function, like that 

in equation (7.1), prohibitively difficult. Furthermore, there is no way to approximately 

calculate such a quantity, for example taking the dilute monopole gas limit, without ne­

glecting important contributions. Therefore, i t is not feasible to perform two monopole 

calculations to determine correlation functions. 



Chapter 8 

Conclusions 

We have been investigating semiclassical calculations in A/" = 1 supersymmetric gauge 

theories. Supersymmetry is of both phenomenological and fundamental interest, and it 

also implies a powerful renormalisation theorem, which allows us to calculate F-terms 

exactly. 

The primary example that we have discussed is the evaluation of the gluino con­

densate in pure Yang-Mills theory. This is the order parameter for chiral symmetry 

breaking, and while every calculation shows that i t is non-zero, its absolute magnitude 

has been the subject of controversy for many years. Using Yang-Mills instantons in 

, the most direct method to determine the gluino condensate is to calculate a high­

er multi-point function and invoke cluster decomposition. This is known as the SCI 

(strong couphng instanton) approach, because there is no control available over the 

coupling associated with the non-abelian gauge group. In contrast, there are several 

methods where the gluino condensate is calculated in a related theory, modified to en­

sure that the coupling is small, and then the appropriate hmit is taken to return to the 

original theory. Every example of this WCI (weak coupling instanton) approach yields 

the same value of the gluino condensate, but there is a discrepancy between this value 

and the SCI result. Kovner and Shifman attempted to explain this disagreement using 

the drastic assumption of the existence of an extra vacuum state, with vanishing gluino 

condensate and unbroken chiral symmetry. Further instanton calculations have shown 

that this mechanism does not account for the difference. 

The approach presented in this thesis provides a much more elegant understanding 

120 
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of the situation. I t is motivated by the fact that there is no proof that instantons are the 

only relevant semiclassical configurations when the coupling is large, and by the long­

standing idea that in this regime, instantons should be treated as composite objects, 

made of instanton par tons. I f there are neglected configurations and instantons do not 

give the ful l correlation function, then cluster decomposition is misapphed and the SCI 

result is invalid. The candidates for instanton partons on are merons, which are 

not useful configurations for semiclassical calculations; for example, they have infinite 

action. 

Instead of considering merons, the strategy is to modify space to x 5^, by im­

posing periodicity along one direction, on all the fields (both bosonic and fermionic, to 

preserve supersymmetry). Then, the partons become well-behaved, finite action con- . 

figurations. Additionally, we gain control over the size of the coupling, because the 

component of the gauge field around the periodic direction can gain a non-zero VEV, 

and act as a Higgs field to spontaneously break the gauge group to its maximal abelian 

subgroup. The theory is then in a Coulomb phase, and the coupling will be small i f the 

VEV parameter is arranged to be much larger than the dynamically generated scale. 

A semiclassical calculation of the low energy effective action of the theory on x 5^, 

discussed in chapter 5, shows that in the true quantum vacuum the VEV parameter is 

inversely proportional to the radius of the circle. We may therefore choose the radius 

to be small to guarantee weak coupling, but according to supersymmetry all results 

should be holomorphic in the VEV, and therefore also in the radius, so we can analyti­

cally continue to large values of the radius and recover the IK* answer. Working on the 

cyhnder therefore has similarities to the WCI methods, but it also allows us to visualise 

the configurations that are missed in the SCI approach. The connection between the 

VEV and the radius is only found for x 5^, so other compact spaces such as are 

not appropriate for attempts to calculate quantities in E*. 

The semiclassical configurations on x can be classified as the combinations of 

n+1 types of monopoles (where n is the rank of the gauge group), distinguished by mag­

netic charges as well as the instanton number. The different fundamental monopoles 

are the n conventional BPS monopoles, and one K K or affine monopole, which is only 

present because the space is a four dimensional cylinder. More precisely, i t appears due 
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to the existence of non-periodic gauge transformations, which nevertheless leave the 

fields periodic, but that are not included in the group of periodic gauge transformation-

s under which the functional integral measure is invariant. One specific combination 

of these monopoles is a caloron (with non-trivial VEV or Wilson loop), the analogous 

configuration to an instanton, so the fundamental monopoles correspond to instan-

ton partons. Any other combination of the same number of monopoles represents a 

configuration that is ignored by the SCI calculation. 

As we mentioned above, we have determined the low energy dynamics of the theory 

on X 5^, in the form of the superpotential for a chiral superfield containing the 

Wilson loop and a scalar magnetic photon. The superpotential is a twisted affine Toda 

potential, as shown in chapter 6, and as predicted by Katz and Vafa. Expanding the 

superpotential we can see that the magnetic photon is massive, which by the dual 

Meissner effect shows that the original electric charges will be confined. Instanton 

partons were first studied because it was thought that they might be responsible for 

confinement, and here we find that this is exactly the case for Af = 1 supersymmetric 

theories. 

Each of the fundamental monopoles has two adjoint fermion zero modes, so the 

gluino condensate may be calculated by summing their direct contributions. I t was 

determined for gauge group SU{2) in chapter 5, and for any gauge group in chapter 6 

(see also [1] and [3]), with the results summarised in table 6.2. The magnitude agrees 

with those given by previous WCI calculations for all classical groups, whereas the 

values for the exceptional groups have not been predicted before. The phase labels the 

C2 physically equivalent vacua of the theory (where C2 is the dual Coxeter number of 

the gauge group), a total that is fully consistent with Witten's index. 

In chapter 6 we also discussed a useful description of a supersymmetric gauge theory 

including matter, namely the ADS superpotential that describes the low energy dynam­

ics of the classically massless matter fields, in a theory with gauge group SU{N) and 

Nf < N fiavours of matter. I t was originally calculated in the case Nf = N - 1 using 

instantons, and then inferred for all other values by renormalisation group matching. 

However, because of its connection with gluino condensation, for Nf < N - 1 the ADS 

superpotential has been shown to be generated directly by monopoles [2]. 
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For gauge group SU{2), the configurations that are not included in the SCI ap­

proach are the analogues of the combinations of two BPS monopoles, or two KK 

monopoles. In chapter 7 we reported on the progress made in an attempt to perform a 

semiclassical calculation with these configurations, to confirm that they contribute the 

difference between the WCI and SCI results for the gluino condensate. The approach 

involved attempting to understand the two monopole solution through the Nahm con­

struction, which we reviewed, using the one monopole case as an example. Some new 

results were obtained, in the form of an identity for the Green's function that appears in 

the Nahm construction, and two adjoint fermion zero modes possessed by all monopoles 

with winding number greater than one. Unfortunately, however, two monopole calcu­

lations eventually proved too complicated to be workable. In principle, instantons and 

monopoles are the only semiclassical configurations necessary to find any F-term in four 

dimensional super symmetric gauge theories, but because of technical limitations there 

are only a few results that can be explicitly derived using monopoles. 



Appendix A 

Conventions 

We work in four dimensional space with a Euclidean metric (+ + ++), unless otherwise 

specified. Latin letters m,n,... run over 0,1,2,3; Greek fi,!/,... over 1,2,3. In addition 

there are undotted and dotted Weyl indices a,P,a,^,... which take the values 1 and 

2. Writing the Pauli matrices as 

0 1 \ ( 0 -i 
, r2 = 

1 0 / \ i 0 
we can define Dirac-Weyl matrices 

n T3 = 
1 0 

0 - 1 
(A.l) 

(A.2) 

-maa ^ ^aP^a^^ 

a = — ( C T C T — ( 7 ( 7 j , 

= < 
— \TV m = 0,n = I^, 

_ ^ mnpq 
— 2 PI' 

a = -[a a — a a ), 

= < 

| T , / m = 0,n = V, 

2^ ^P1' 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 
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where ê ^ = = gi23 ^ ^^^3 = -1-1 and e°i23 _ ^^^^^3 = - 1 . With these 

conventions, the Clifford algebra is 

-mda^n^^ + ^"""a"^^^ = +2<5"̂ "<5"̂ , (A. 10) 

and both {a"*''} and { o ^ " } obey the 50(4) algebra, 

[a"*", CT*'"] = 5"Pa^9 + + + (JP'^O ^ " . (A.12) 

In fact, the {a'^'^} and {o™"} are the generators of the (2,1) and (1,2) representations 

of 50(4) w SU{2)L X SU{2)R/Z2, respectively. The following relations are also useful, 

C^'^aa^J^ = +2S\6^„ (A.13) 

CT"^"^^C7'='^" = (̂ (jmfc^n/ _ ^ml^nk^ _ ^^mnkl^ (^.14) 

^m-n^p _ ^P^n^m ^ _2e^npq^^^ (A.15) 

^m^«^P _ ^ ^ n ^ ^ + 2 e ™ a „ (A. 16) 

^rn^n^P ^ a '̂a^cr"' - +2 (^ ' ""CTP + - (J^^^a"), (A.17) 

^"i^n-p ^ ^P^«-m ^ ^2 (̂ '""aP + SP'^a'^ - S^^G'^) . (A. 18) 



Appendix B 

Simple Lie algebras 

In this section we shall briefly review some of the theory of simple Lie algebras in 

order to state our choices of conventions and normalisations, and to define important 

terms. There are more comprehensive introductions in many books, see for example 

[83]. Some other useful information is given in [84] and the appendix of [68], and 

informal descriptions of some rarely covered topics can be found in weeks 64 and 90 

(amongst others) of [85]. 

Let {H"^} be a maximal set of simultaneously diagonalisable, mutually commuting 

generators, [W,H^] = 0. The indices i,j run from 1 to n, the rank of the Lie algebra. 

The span of {H^} is h, the Cartan subalgebra. For the remainder of the generators, we 

choose such combinations that they are eigenvectors Ea of the operators ad{H^), 

ad{W)Ea = [H\ Ea] = a'Ea. (B.l) 

Now we shift focus and consider the eigenvalue a* to be the value of a linear functional 

a acting on the basis vector W, 

[H\Ea] = a{W)Ea. (B.2) 

These functional are called roots and are elements of h*, the root space. Obviously 

dim{h*) — dim(/i) = n, and there is one root a for every generator Ea- It turns out to 

be easier to consider the structure of Lie algebras by using the roots and the Cartan 

subalgebra generators, rather than the set of all the generators. 
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We can define an ordering on the roots by expanding them in any given basis 

a = f^6%), (B.3) 
1=1 

then a is a positive root if the first non-zero component 6* is positive, and similarly for 

negative roots. Clearly which roots are positive and negative depends on our arbitrary 

choice of basis, but the alternatives can be easily related via group transformations, 

they are not substantially different. We can then arrive at a more convenient and 

natural basis for h* by finding the simple roots. A root is simple if it is a positive root 

which cannot be written as the sum of two other positive roots. We shall denote the 

simple roots as {a(^i),i = 1 . . . n}, and then we can write any root as 

n 

a - 5 ; ] a ^ , ) , (B.4) 

where the coefficients a* are positive integers or zero for positive roots, and negative 

integers or zero for negative roots. Another distinguished root is the highest root 6, 

which has the maximum value of ^ ^ j ^ o*. 

The overall length scale of the roots is clearly linked to the normalisation of the 

Cartan subalgebra generators, and we shall follow the stcindard algebraists' choice that 

Tv{H'W)^5'^. (B.5) 

In some simple Lie algebras (the simply laced ones), all roots have the same length 

squared, L. For non-simply laced algebras there are two classes of roots, long roots and 

short roots. We define the length squared of the long roots to be L, for example the 

highest root is always a long root, so 
n 

\e\^ = ^e'e'^ L. (B.S) 
i=l 

The short roots may have length squared ^ or ^. To complete our discussion of 

normalisations, the eigenvectors are scaled such that the convenient relation 

a r ^—' a r 
' ' i=l ' ' 

holds. 
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We can form duals of the roots, or coroots by inverting their lengths, so 

a* ^ j^a. (B.8) 
lap 

Note that the coroots are still elements of h*, and that for long roots (or all roots of 

simply laced algebras), a* = a. The simple coroots and highest coroot are defined to 

be the duals of the simple roots and highest root respectively^. The highest coroot can 

be expanded in terms of the simple coroots, 

r = f ; m ^ ) , (B.9) 
i=l 

where the coefficients are called comarks and 
n 

C2 = l + ^ m ^ (B.IO) 

i=l 

is the dual Coxeter number (the marks and Coxeter number are similarly defined but 

will not be needed here). The fundamental weights and coweights are defined through 

J^-al^^=S'j, (B. l l ) 

and 

a;i^^-aO) = 5V (^.12) 

respectively, and the Weyl vector is 

p = f^u;« . (B.13) 

The simple Lie algebras are classified as shown in tables B. l and B.2. The simply 

laced algebras are An, Dn and -56,7,8- Some relevant data are listed for all the simple Lie 

algebras, including the comarks. A bar over the comark indicates that it is associated 

with a short root. In C„ and F 4 , the short roots have length squared ^, in G2 

they have length squared ^. Remember that there are always n comarks, where n is 

the rank. 

'Thus, for example, if we write a* = o*'Q(i) then the highest coroot is not necessarily the 
coroot with the greatest value of a"-
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Algebra Compact group Rank Dimension Dual Coxeter no. Comarks 

An SU{n + 1) 

Bn S0{2n + 1) 

Cn USp{n) 

D„ S0{2n) 

n ^ 1 n(n + 2) n + 1 1, • • • , 1 

n > 2 n(2n + l ) 2n - 1 1,2,...,2,T 

n ^ 3 n(2n + l ) n + l T,... ,T, 1 

n ^ 4 n ( 2 n - l ) 2n - 2 1,2,... , 2,1,1 

Notes: 

• We use the notation USp{n) to refer to the compact group associated with the 

algebra 0„, that is, USp{n) is the group of 2n x 2n special unitary matrices 

which preserve the symplectic form. This is often alternatively referred to as 

USp{2n), Sp{n) or Sp{2n). We prefer to keep Sp{n) for the group of real 2n x 2n 

matrices which preserve the symplectic form. 

• 50(2) « C/(l) and S0(4) ^ SU{2) x SU{2)/Z2 are not simple. The remaining 

restrictions on the rank come from wanting to consider only distinct cases, for 

example 50(3) « 5C/(2)/Z2 hence n > 2 for B2. Also recall USp{l) « SU{2), 

50(5) « USp{2)/Z2, 50(6) « 5C/(4)/Z2. 

Table B. l : The classical simple Lie algebras of rank n. 

Algebra Rank Dimension Dual Coxeter no. Comarks 

EQ 6 78 12 1,2,3,2,1,2 

Ej 7 133 18 2,3,4,3,2,1,2 

Eg 8 248 30 2,3,4,5,6,4,2,3 

FA 4 52 9 2,3,2,T 

G2 2 14 4 2,1 

Table B.2: The exceptional simple Lie algebras. 



Appendix C 

Monopole measures 

C . l The SU(2) one monopole measure 

This section follows the appendix C of [48] closely, in order to find the one monopole 

measure with gauge group 5(7(2). In the next section we shall generalise the results to 

monopoles in any simple Lie group. 

To determine the measure, we need to know the collective coordinates and calcu­

late the Jacobian factors, Hke that given in equation (2.30), which we repeat here for 

convenience, 

JB ~ —r== det ( -^(t>class, ^(t>c\aaB ) , (C.l) 

\V2TrJ \dTj dTk I 

Considering the bosonic part first, the collective coordinates are X^, the position of 

the monopole, and the J7(l) angle, as discussed in chapter 4. The bosonic Jacobian 

factor given above is written for a scalar field, in which case the unnormalised zero modes 

are the derivatives of the classical solution with respect to the collective coordinates. 

We can write similar expressions for a gauge field, 
/ 1 \"s , , i 

J B = U _ d e t ( z W - ^ W y , (C.2) 

with 

(/,5) = 4 / d ' x T , { ! [ x ) g { T ) ) , (C.3) 
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and 

However, this is not the only possible way of writing the zero modes {Zm}, as they 

inherit some gauge dependence from Vm- If ^ e'^^VmS''^^+ie^^dme~'^^, then because 

Zm is a first order shift away from v^^, the correct transformation law for the zero 

modes is the infinitesimal version, Zm*-^ Zm + D^^^A. Therefore, the general form of 

the bosonic zero modes is 

zli^ = -^^v'Jr' + D^^^^A\^\ (C.5) 

As discussed in section 2.1.4, it is necessary to fix the gauge, which means the functions 

{At-'l} should be chosen to ensure that the gauge fixing condition is satisfied. In this 

thesis we work in the covariant background gauge where 

i ) ^ ^ ^ {dv"") = 0, (C.6) 

which implies the zero modes must also obey 

In the case of the translational zero modes, 

Zl,]m = ^V^r!r^+Dt-^A[,^, (C.8) 

the classical solution is a function oi x - X, so we can also write 

Then if we set A[^] = v^^^, = v^^, which obviously fulfils equation (C.7) as 

is a solution of the classical equations of motion. This leads to 

•^M' -^M"!/ ^ ^^1^"' (C.IO) 

where 5 is the action of the monopole configuration. 

We can follow a similar calculation for the gauge orientation zero mode, 

% m = | ^ « ^ " ^ + ^^"^A[4]. (C.ll) 
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If we work with the BPS monopole in the singular gauge, where 

so that the zero mode corresponds to the global gauge transformations {e'^'^ '}, then 

where is an 0-independent reference configuration. Furthermore, we should choose 

A[4] = i { ^ - f ) , then Z[4]^ = iv-^r, and 

( ^ M ' % ] - ) = 0> = (C.14) 

We can now put these results together to find 

In order to find the fermionic part we simply need the normalisation of the super-

symmetric zero modes, A*̂ '̂ ^ = (j"^"'(,v^^. Using equation (A.14) we can evaluate^ 

,2^rj^^clsSS^claSS ^2S, (C.16) 

therefore, JF = 

The action of the BPS monopole is ^^^^, so bringing everything together we find 

the one monopole measure^ in SU{2), 

I dMi-mono = ^ e - ' jd'X j j d n j d \ (C.17) 

The KK monopole is gauge equivalent to a BPS monopole with a modified VEV, so 

the above equation is valid for either monopole as long as the correct action is used. 

C.2 The one monopole measure for a general gauge group 

Recall that a regular gauge monopole solution, in any gauge group, is given by 

< - ^ = <Je , (C.18) 

^class^^cj^_ y_ i^.y^^* . jj^ (C.19) 
\ L J 

^Note the obvious definition / = 1. 
^Note that the range of the Q integration is 0 to 27r not 0 to 47r, as might be expected for an St/(2) 

transformation, since Vm is in the adjoint representation and so a transformation by 27r is equivalent 
to the identity. 
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J,^-^iEa + E.a), J2 = ^.{Ea-E^a), Js = ^a* • H, (C.20) 

where 

and if the monopole is located at the origin and no unbroken U{1) transformation is 

appHed, then 

|a;|"̂  \ smtiu\x\/ 

$'̂  = - ^ ( u | a ; | c o t h u | 2 ; | - l ) , (C.22) 

with u = a-V. 

One monopoles in any gauge group have the same zero mode structure as those in 

SU{2). The bosonic zero modes are associated with the position and gauge orientation 

of the monopole, and the fermionic zero modes are the supersymmetric modes. The 

Jacobian factors for the translational bosonic zero modes and the fermionic zero modes 
3 

are the same as in SU{2), {~^)^ and ^ respectively. This follows since the methods 

used to calculate these constants in the previous section did not refer to any special 

features of SU(2) and can be seen to generahse immediately. 

Calculating the Jacobian factor for the gauge orientation mode requires more at­

tention. If the monopole is transformed into singular gauge, then the global gauge 

transformations corresponding to this zero mode are {e*^"^^}, therefore 
class _ g i f i J s ^ c l a s S g - i n J s ^ (C.23) 

and the zero mode is 

on 
In this case the correct choice of A[4] is 

Z[A]m=^vt^^ + D^^^^A^,y (C.24) 

(note that 

^'Jc^-Yia-V)a*-H, (C.26) 
L 

in singular gauge, as |a;| oo). Then 

^~ a-V 
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It follows that the remaining Jacobian factor is ^ ( ^ ) ^ - Gathering all factors to­

gether, we find that the measure is 

/ c/Mi-mono = ^ e - ^ I d'X j d n j d% (C.28) 

where 5 = ^^^a* • V is the action of the monopole configuration. 



Appendix D 

One monopole solution from the 

Nahm construction 

See chapter 7 for the methods by which these results were calculated. 

D.l The gauge field components V2 and vs 

-IXl 

V2 = 
2 |x | ( | i | - i 3 ) 

AB [-ix^ - ^ ) u 

AB (-ix, + ^ ) 

2|X|(|X|-H3) 

(D.l) 

V2 = 2\x\ 
u\x\ 

sinhulrcl 
—xi xz 
Xz Xi 

(D.2) 

V2 = V2 

IXi 

2|a;|(|a;|+2;3) 
{ixi X + X2X3) ux-^ 

V 2|a;|(|2;p — 2:3) sinhu|a;| 

(ta:i|a;| - X2X3) ux- ^ 
2|a;|(|a;p - x'^) sinhu|2;| 

— IXl 
2x{x +X3) I 

(D.3) 

U3 
0 

\x\ 

- A B ^ ^ . 
(D.4) 

2\x\ 
u\x\ 

sinhubl 
0 - X . 

a;+ 0 
(D.5) 
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u 0 X -

2|a;| sinhu|a;| I Q 
(D.6) 

D.2 The field strength component 

IXl 

2|rc|sinh^(u|a;|) {\x 
sinh^(u|a;|) (D.7) 

("23)^2 = .o '"^ 2 , (sinh(t.|x|) - u\x\ cosHu\x\)). (D.8) 
2\x\^sinh^u\x\ ( | ^ | 2 - x 2 ) 5 

^^^ = 2 W 
Xi \ Xz X . 

a;+ -xz 

u\x\ 
sinh(ti|2;|) 

(1 — u\x\ coth(u|a;|)) 

+ 
Xi / Xz X -

2^l^l' I x^ -xz I \smh\u\x\) 

- 1 . (D.9) 

= fe)\ = - ( . 3 3 ) ^ 2 = ^ ^ - ^ { ^ s i n h ^ ( . N ) - . ^ } . (D.IO) 

K3)'2 = ( « 2 3 ) ' 2 
iux- (i|a;|3;2+a;3a;i) , , , , . , 

I 2 . ; . u 2 . . u i n . l 2 _ . 2 , (smh(n|x|) - u\x\ cosh{u\x\)). 2\x\^siiih^u\x\ {\x\^-xl) 

(D.l l) 

iux+ {i\x\x2 - xzxi) 
2\x\^sinh^u\x\ {\x\'^-xl) 

(sinh(u|a;|) — u\x\ cosh(u|a;|)). 

(D.12) 

D.3 The field strength component v^i 

M \ = 1X2 

2|a;|sinh^(u|a;|) 
| | ^ s i n h 2 ( n | x | ) - u 2 | (D.13) 

(^3i )^2 = 01 12 ' ' ' , .2 I / ^ ! ; f ^ ^ s i n h ( u k l ) - ^ k | c o s h ( n | x | ) ) . (D.14) 
2|a;|2smh^u|a;| - ^1)2 
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V31 2i\x\ T2 -
X2 / X3 X-

x+ -X3 

u\x\ 
sinh(u|2;|) 

(1 - u\x\ coth(u|a;|)) 

.2U|2 
X2 I X3 X - \ / U-\X\ 

+ 2i\^ I I Umh2(n|:.|) 
- 1 (D.15) 

1X2 

2\x\smh^{u\x\) I k P 
smh^{u\x\) -u^}. (D.16) 

(̂ '̂1)̂ 2 = (^31)^2 = ,o""r . , (sinh(n|.|) - «|:.| cosh(u|^|)). 2|a;|2sinh2u|a;| (|a;|2 - xf) 
(D.17) 

( « 3 i ) ^ = ( ^ 3 i ) ^ = -
iux+ {i\x\xi + X2X3) , / I |N I I , / I |NN 

(smh(u|a;|) - cosh(n|2;|)). 2\x\'^ sinh^ u\x\ {\x\'^-xl) 
(0.18) 



Appendix E 

Jacobi elliptic functions and elliptic 

integrals 

In this appendix we give the definitions and some properties of the Jacobi elhptic 

functions and the related elhptic integrals, which appear in two monopole solutions. 

Further details can be found in [86]. 

The elliptic integrals of the first and second kinds are defined using the parameter 

or modulus, m, a real number in the interval [0,1], as 

F{^,m)= / r, (E.l) 

r<fi 1 
E{(p,m)= d9 {l-msm^e)'. (E.2) 

Jo 
The parameter is also commonly denoted as A;̂  or sin^ a. 

The Jacobi elliptic functions are defined with the argument, u, and the amplitude, 

( f , which are related to each other through 

u{ip) = F{ip,m), (E.3) 

and the inverse of this function, which is written as </> = am(u). Then, the Jacobi 

eUiptic functions sn, cn and dn are defined as 

sn{u,m) = simp, (E.4) 

cn{u,m) = cosip, (E.5) 

dn(u,m) = (1-msin^^)^ . (E.6) 
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We shall normally let the dependence on the parameter m be implicit. We can already 
tell from the definitions that 

sn^ u + cn^ u = 1, (E.7) 

msn^u + dn^u^l. (E.8) 

The complete elliptic integral of the first kind is 

We may easily evaluate the Jacobi elliptic functions at the points u = 0 and u — K, 

snO = 0, snK^l, (E.IO) 

cnO = 1, c n i i : = 0, ( E . l l ) 

dnO = l , d n K = ( l - m ) 5 . (E.12) 

I f we note that ^ = , so that ^ = dn u, we can differentiate the Jacobi elliptic 

functions, 

sn u = cn u dn u, (E.13) 
du 
— cnu =—dnu snu, (E.14) 
du 

— dnu =—m snu cnu. (E.15) 
au 

Near m = 0 and m = 1 we have the following approximations for the Jacobi elliptic 

functions, 

sn w = sinu + C>(m), sn u = tanhu + 0 ( 1 — m), (E.16) 

cnu = cosu + 0 (m) , cnu = sechu + 0 ( 1 - m), (E.17) 

dnu = l + 0{m), dnu = sechu + 0{1 - m). (E.18) 

The complete elliptic integral of the second kind is simply written as E, 

I de [l-k^sm^ey . (E.19) 
0̂ 

Differentiating with respect to k gives 
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Similarly, i f we differentiate K we find 

dK K , I dd 
~1 2 

+ - (E.21) 
dk k kJo ( i _ P s i n 2 ^ ) ' 

but, 

• f d k'^smOcose „ ,^ .0. de /"a d A;'^sin6'cos0 ^ ,̂  ,2^ /"̂  

Jo ^^{l-k^sm^eY ( l - P s i n ^ e ) 

so we have 

dK I f E 

= 0, (E.22) 
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