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Abstract 

This thesis studies the quantum reflection factor of the sinh-Gordon model under 

boundary conditions consistent w i t h integrability. First, we review the affine Toda 

field theory in Chapter One. In particular, the classical and quantum integrability 

of the theory are reviewed on the whole line and on the half-line as well, that is, in 

the presence of a boundary. 

We next consider the sinh-Gordon model which is restricted to a half-line by 

boundary conditions maintaining integrability in Chapter Two. A perturbative cal­

culation of the reflection factor is given to one loop order in the bulk coupling and 

to first order in the difference of the two parameters introduced at the boundary. 

The result provides a further verification of Ghoshal's formula. The calculation is 

consistent w i t h a conjecture for the general dependence of the reflection factor on 

the boundary parameters and the bulk coupling. 

In Chapter Three, quantum corrections to the classical reflection factor of the 

sinh-Gordon model are studied up to second order in the difference of boundary 

data and to one loop order in the bulk coupling. 

Chapter Four deals w i t h the quantum reflection factor for the sinh-Gordon model 

w i t h general boundary conditions. The model is studied under boundary conditions 

which are compatible w i t h integrability and in the framework of the conventional 

perturbation theory generalised to the affine Toda field theory. I t is found that 

the general form of a subset of the related quantum corrections are hypergeometric 

functions. 

Finally, we sum up this thesis in Chapter Five along w i t h some conclusions and 

suggestions for further future studies. 
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Chapter 1 

Introduction 

1.1 Affine Toda field theory 

Affine Toda field theory [1,2] is an integrable quantum field theory in two-dimensional 

Minkowski space-time. In this theory r scalar fields take values in an r-dimensional 

Euclidean space which is spanned by the simple roots of a compact semi-simple Lie 

algebra g wi th rank r. The candidates for the Lie algebra of the theory are: 

dn, E6, E7, E8, F4, G2 

the above algebras are the classical Lie algebras that were, historically for the first 

time, classified by Cartan [3]. 

The Lagrangian density for the classical field theory is defined as 

£ = ^ W " V ( < / > ) , a = l , . . . , r , (1.1) 

in which 

V(<f>) = % ± n i e ^ * . (1.2) 

In the potential funct ion m and (3 are a mass scale and a coupling constant of the 

theory, respectively. The vectors c*j, i = l , . . . , r are the simple roots of the Lie algebra 

g and ao is a linear combination of the simple roots, i.e.: 

r 
ao = - 5 Z n i a i . (1.3) 

i=l 

9 



1.2. Conformal invariance of Toda field theory 10 

Here n 0 = 1 conventionally, however, the other integers are not arbitrary, in fact, 

they depend on the algebraic structure of the Lie algebra g [4]. From the point of 

view of integrability, there are infini tely many independent conserved quantities in 

involution which are called charges. 

I n terms of the Dynkin diagrams for untwisted and twisted affine Kac-Moody 

algebra [5], a 0 is the extra spot on Dynkin-Kac diagrams. Moreover for the untwisted 

algebra, the special root ao, which is called the affine root, is equal to the minus of 

highest root, that is, 

<*o = -i>- (1.4) 

In fact, in the adjoint representation a 0 corresponds to the lowest weight because 

the weights of the adjoint representation are the roots. Meanwhile i t is evident that 

in r dimensional Euclidean space ao is not a simple root of the affine Kac-Moody 

algebra g. However in (r+1,1) Minkowski space-time, the simple roots of g are 6^, 

i=0,. . . , r , which are defined by 

&i = ( a j , 0 , 0 ) , 1 < i < r, 

a 0 = ( - V , 0 , l ) . (1.5) 

Then a 0 and 6.{ are independent and span the root lattice of g. I t is necessary to 

mention that in the (r+1,1) space for two vectors A — (a,fi,u), B = (a', p! ,v') the 

scalar product is defined by : 

A-B = a-a'+ fii/'+ ufjt'. (1.6) 

I f the first term (the affine term) is excluded f rom the bulk potential (1.2), then 

the theory (in both classical and quantum versions) is conformally invariant and 

is called conformal Toda field theory or, briefly, Toda field theory. On the other 

hand, i f the first term is kept, then the theory breaks conformal symmetry but its 

integrability is preserved. 

1.2 Conformal invariance of Toda field theory 

In this section i t is shown that Toda field theory is invariant under a conformal trans­

formation [6-8]. A conformal transformation is a general coordinate transformation 

followed by a Weyl transformation so that the metric tensor is unchanged. 
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Let us now illustrate the above definition in detail [9]. A general coordinate 

transformation 

— > (1.7) 

changes the metric tensor of the curved space-time as follows (as a result of invariance 

of the geometrical quantity ds2 which is equal to g^dx^dx") : 

dxa dx13 

9 A*) — • 9nu{x) = 9ap{x) — -^;. (1.8) 

On the other hand, under a Weyl transformation the space-time is changed through 

a local rescaling of the metric tensor, that is: 

9Ax) — • e * ( l V 0 * 0 - (1-9) 

In certain space-times i t may be possible to f ind a coordinate transformation 

whose effect on the metric is equivalent to a Weyl transformation i.e. 

dxa dx13 

9 A*) —> M £ ) = 9ap(x(x)) g-p d - v 

I f this can be done then define a conformal transformation to be the above coordinate 

transformation followed by a compensating Weyl transformation, so that the metric 

is unchanged 

9»AX) —> 9w = e^gtwfa) — y z~*9iu> = 9iiv{x). 

I f we study the effect of the conformal transformation on the scalar product of two 

vectors, for example U and V, then 

U-V = 9Ax)U»{?)Vv{x) -> g ^ W { x ) V u { x ) = U-V -> e ^ g ^ V " = e~+U-V 

(1.10) 

Therefore, the lengths of the vectors are scaled as 

\U\ = VU-U-> Ve-W • U = e - * / 2 | £ / | . (1.11) 

However, the angle between the two vectors is unchanged i.e. 

U • V e'^U • V 
C ° S d = W W \ ^ e-W\U\e-*"\V\ = C 0 S 9 - ( L 1 2 ) 

Now consider an infinitesimal conformal transformation 

= 3 " + €"(£") (1.13) 
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then the vector eM is called a conformal K i l l i n g vector i f i t satisfies the conformal 

K i l l i n g equation for the metric i.e. 

deu dea d(P 

9^9^ = 9 ^ + 9 ^ - (1-14) 

In terms of light-cone coordinates, that is, 

x± = {x°±xl)/2 

and by means of expanding components of the conformal K i l l i ng equation we obtain 

— = 0 and — = 0 

OX+ OX-

OX equivalently 
dx+ ~ , dx~ ^ - t = 0 and — = 0. 

OX- ox+ 

Therefore, a conformal transformation in two-dimensional Minkowski space-time in 

terms of light-cone coordinates is 

x± = (x° ± x l ) / 2 ^ x±{x±). (1.15) 

Moreover, the metric is equal to: 

ds2 = g^dx^dx" = dx°2 - dxl2 = 4dx+dx-. (1-16) 

Now we can get the transformation of the derivatives which are given by 
^+ dx+dx+ (1-17) 

" - : • — 

Therefore, the second derivative of the scalar field transforms as 

d24> d24> dx+ dx_ d2<j> 
dx+dx- dx+dx- dx+ dx- dx+dx-

Supposing that the field changes according to 

(1.19) 

<f>(x+, X-) > 4>{X+, X-) = <f>{x+, X_) + - In t 1 " 2 0 ) 

then the bulk potential w i l l transform as: 

± n i a i e ^ — • (1-21) £i dx+ dx- fr{ 
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provided the vector p has the following property 

p-at = l, i = l , . . . , r . (1.22) 

Given that the fundamental weights / i , satisfy 

2^ • aj/\aj\2 = 5ij, (1-23) 

p takes the form 

P = t A ^ (1-24) 

Finally, the equation of motion for the Toda field theory which is equal to 

m2 r 

d+d.ct>^—Yjn%aieM = 0, (1.25) 
P i=l 

would be invariant under conformal transformation. 

1.3 Integrability of affine Toda field theory 

Behind the integrability of affine Toda field theory there is a zero curvature condition 

or Lax pair [10-12]. In fact, the Lax pair can be expressed in terms of a two-

dimensional zero curvature gauge potential A^ where 

AQ = H • dl(j>/2 + Y,mi{\Eai - j E „ a , ) e a ^ 2 , (1.26) 
i=0 

AX=H- doH2 + E mi(XEai + \ E . a i ) e a ^ l 2 . (1.27) 

Here, H is the Cartan subalgebra of g, Eai and E_ai are the the step operators 

associated w i t h the root and A is a spectral parameter. The coefficients are 

not arbitrary and actually they are 

m2 = 7iiai2/8. (1.28) 

Meanwhile the conjugation properties of the potentials are chosen so that 

A^(x,\)=A1(x,j), (1.29) 

A0\x,\) = Ao(x,-\). (1-30) 
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Now applying the Lie algebra relations 

[H,Eai] = a i E a i , (1.31) 

r _ _ , 2a, H 

[Eai,Ea.\ = 2 if ai = - a j 

= N a i t a j E a i + a . i f ftj + ctj is a root 

= 0 otherwise (1.32) 

so that 

Nat,Qj = - N - a i t - Q j and Na.tCli = -Na 

and after using the equation of motion for the affine Toda field theory which is given 

by 
r 

d ^ + ^ n ^ e " ' - 0 = 0, (1.33) 
t=0 

we can obtain 

d0A, - dxAQ + [A0, Al} = H- 8%<f>/2 - H • d2<j>/2 

+ j2mi{\Eai + | £ U > , • 5 o 0 / 2 e Q ^ / 2 

i=o A 

- X > , ( A £ Q i - ^ E . a i ) a i • d ^ / 2 e a ' ^ 2 

1=0 A 

+[H • £ mi{\Eai + \E„ai)ea'^2} 
i=o A 

+ E > 1 ( A £ Q , - ^ _ a i ) e ° - * / 2 , i / • d0«/>/2] 
i=o A 

+Em i (AE Q i - ^ _ Q i ) e

Q ' * / 2 , ^ m , ( A E a j . + \ E . a . ) e a ^ 2 ] . (1.34) 
t=0 A j=0 A 

After s implifying 

1 i=0 

+ 2 £ £ , J S U j e ^ V ' - " 2 (1.35) 

and provided in the right-hand side of (1.35) the roots are the a 0 or the simple roots 

then the Lax pair can be derived 

dQA1 -d,A0 + [4>,J4I] = 0 . (1.36) 
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Note the m and (3 have been removed f rom the equation of motion (1.33) via a 

rescaling of the fields and space-time coordinates. Furthermore, i t is important to 

mention that the affine Toda equations (1.33) can be obtained f rom the Lax pair 

(1.36) provided the two components of the two-dimensional vector potential are 

given by (1.26) and (1.27). 

Speaking more precisely the Lax pair plays a substantial role in the generation 

of conserved quantities. To see this in detail, i t is a good idea to begin w i t h the 

path ordered integral. Consider the path ordered integral of A\ i.e. 

T{a,b,X) = Pexp / dxAx. (1.37) 
J a 

I n fact, the right hand side of the above relation means 

i=N 

L i m JJ (1 + hiAi(xi,t)), 

hi -)> 0 (1.38) 

where 

h i = x 2 - xi, h2 = x3 - x2, h N = Xjv+i - x N 

and 

X\ = a, XN+I = b. 

I n order to find the time derivative of T(a , b, A), we calculate the following quantity 

N N 

n ( i + M i (xi,t+st)) - n ( i + M i {x» t)) 
i=l i=l 

N N 
= J] (1 + kiA^Xi, t) + StdoA^Xi, t))) - I ] (1 + KAx{xut)) + 0(5t2) 

j=l i=l 
N N 

= J] (1 + W A ^ , t) + St&Aoixi, t) - [A>, A,}))) - [J (1 + M i f c , <)) + 0(St2) 
i=i t=i 

f N 

= 6t I {hidiMxi ,t)-hi [AQ (xi tt),A1(xi,t)])'[[(l + M i fa, t)) 
I t=2 

N 

+ (l + h1A1{x1,t)) (fodiAofa,*) - h2[A0{x2,t),A1(x2,t)))]l{l + hiA1fa,t)) 
i=3 

N-l -\ 

+...+ J] {1 + hiAifa,t)){hNdxAo(xN,t) - hNlAoixN^)^^;?^)})^ 
i=l ) 

+0(5t2) + ... (1.39) 
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or 
N N 

n ( i + M i t e , t+st)) - n ( i + M i t e , <)) 
i=l i=i 

f " 

I i=2 
+ (1 + ( A 0 ( x 3 , t ) - A 0 ( x 2 , t ) - h2[A0{x2,t),Al{x2,t)}) 

N 

n(l + M i ( i i , i ) ) 
i=3 

+... + n (1 + hiA1(xi,t)) ( A 0 ( x N + 1 , t ) - A0(xN,t) - /iN[A>(zjv,*),^i(:r/v,*)]) \ 
i=l ) 

+0(8t)2 + ... (1.40) 

Therefore, regarding the relation (1.40), the path ordered integral of A\ has the time 

derivative 

^ = TA0(b)-A0(a)T. (1.41) 

Now introduce an additional quanti ty Q(X) defined as 

Q(X) = t r T ( - o o , oo, A). (1.42) 

Q(X) is t ime independent i f A0(oo,t) = A0(-oo,t). This w i l l be true i f dx4> —>• 0 

and i f the exponential terms are also equal. Note 

(j)(oo) = <p(—oo) + 2k, where k • ai G iriZ (1-43) 

can be interpreted as a periodic boundary condition. 

One of the magnificent aspects of the Lax pair is the existence of a gauge trans­

formation such that the potentials lie in a fixed Cartan subalgebra of g(hi). Af ter 

doing this gauge transformation, the potential A\ w i l l be 

Al — • ai = XEi + £ X - s h s I 0

( s \ (1.44) 
S>1 

where two members of the Cartan subalgebra are 

r 
E±i = E m <^±a < - (1-45) 

i=0 

Note the sum in (1.44) extends over the exponents of the algebra g which are the 

integers in (1.3). Meanwhile is a functional of the fields. For the new gauge 

potential, the zero curvature condition reduces to 

dQax =diao, (1.46) 
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f rom which i t is concluded that the integral of a i over the whole line is conserved. 

Since A is arbitrary, i t is understood that there are infini tely conserved quantities 

given by 

Q3= [+C°dxI0^. (1.47) 
J—oo 

In order to show that 

{ Q ( A ) , Q ( / i ) } = 0, (1.48) 

i t is shown that there is a classical r -matr ix so that(for further details see [10,12,13]) 

{ T ( A ) , ® T ( / i ) } = [ r ( A / / i ) , T (A) <g> T(/x)], (1.49) 

where 

T(A) = T ( - o o , oo, A). (1.50) 

This is a consequence of the canonical equal-time Poisson bracket between the fields 

and their conjugate momenta. In fact, Olive and Turok [10] provide the fo rm of r: 

£ ^ ( x l { a ) ^ a ) E a ® E.a + A* - 'W/ i 'W£?_ a ® Ea) ,(1.51) 

where the sum runs over all positive roots of g and 1(a) is the length of the root a, 

which is the sum of the integers in its expansion in terms of the simple roots and h 

is the Coxeter number corresponding to the Lie algebra g, equal to Y,Vi=oni-

In fact the classically conserved charges are two dimensional Lorentz tensors 

which are characterized by their spin in light-cone coordinates. This means the con­

served charges may be described as Qs+kh so that the possible of spins are exponents 

of the algebra and A; is an integer. The quantities Q±i correspond to the light-cone 

components of the energy-momentum tensor. Af te r quantizing the classical field 

theory, the quantum operators associated w i t h conserved quantities s t i l l commute 

mutually provided the integrability property is conserved. Meanwhile multi-particle 

states of particles of definite rapidities are eigenstates of the conserved quantities. 

In other words, for single-particle states 

Qp\a>=qy0a\a>, p = s + kh, (1.52) 

where 9a is the rapidity of the particle a (for further discussions see [14]). 
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1.4 Quantum Toda field theory 

In this section the two-dimensional exact S-matrix theory [15,16] is studied. By in­

troducing particle creation operators Aa(p) which create particle a w i t h momentum 

p, the asymptotic n-particle states can be wri t ten as 

\Aax{pl)Aa2{p2)...Aan{pn) >= Aai(Pl)Aa2(p2)...Aan(pn)\0 > . (1.53) 

As usual, i t is appropriate to express the momentum of a particle in two-dimensional 

Minkowski space-time in terms of a useful quantity, namely the rapidity of the 

particle: 

Pa = m o ( cosh0 a , s inh0 a ) . (1.54) 

So in what follows i t is convenient to deal wi th n-particle states described by the 

rapidities of the particles i.e. 

\Aa,{9x)Aa2{92)...Aan{9n) >= Aai(9l)Aa.2(92)...Aan(9n)\0 > . (1.55) 

The above state can be interpreted as an in or out state if the rapidities are arranged 

as 9\ > 92 > ... > 0n or 9\ < 92 < ... < 9n respectively. The S-matrix is defined as: 

\Aai{9,)Aa2{92)...Aan{9n) > i n = 5 ^ 2 ; v . t ( ^ i I 5 2 ) . . . , 5 J | ^ 1 ( 0 1 ) / l 6 2 ( ( 9 2 ) . . . ^ n ( 0 n ) > o u t . 

(1.56) 

In fact the n-particle scattering amplitude is determined by the matr ix element of 

the S-matrix i . e . ^ ' j ^ 6

a " n ( ^ i , ^2, —On) for the following process where time runs f rom 

left to right: 

a. 

12 

bn 

Figure 1.1: N-particle S-matrix. 
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One of the outstanding and interesting features of an integrable quantum field 

theory is the fact that the corresponding S-matrix is factorizable and this has been 

discussed by many people. For example, Zamolodchikov and Zamolodchikov [15] 

studied the factorisation via a wave function approach whereas Shankar and W i t t e n 

[17] used a wave packet method. 

In fact the existence of a couple of higher-spin conserved charges {Qs, Q-s} s > 1 

for scattering process of two-dimensional integrable quantum field theory gives rise 

to three properties: 

I) particle production does not occur 

I I ) the set of in i t i a l momenta is the same as the final one 

I I I ) in the scattering of n-particles, the S-matrix factorizes. 

More precisely factorization means the S-matrix corresponding to n-particle scat­

tering factorizes into a product of two particles S-matrices. I f the scattering of three 

particles is examined then the factorization wi l l have a sensible pictorial meaning. 

So, consider 3-particle process. Regarding the relative position of the incident par­

ticles, there are three completely separate scattering processes I , I I and I I I where 

time runs f rom bot tom to top: 

Ab2(62) Ab2{62) 

A M A M ) 

AbM Abl(0i) 

AaM) 
AaA^l) 

AaA9x) Aa2(02) AaJ62) 

I I I I I I 

Figure 1.2: The Yang-Baxter equation. 

But the middle scattering can be converted into either of the other ones by taking 

a suitable l imi t . In several papers [16-18] the action of the conserved charges on lo-
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calized wave packets is studied, the emerging result is the equality of the amplitudes 

of processes I and I I I . In other words, in the S-matrix language 

( M O M = ^ M ^ M ^ M (1.57) 

The cubic equation (1.57) is called the Yang-Baxter or factorization equation where 

Qij = @i — 9j because of Lorentz invariance. The equation (1.57) does not determine 

the S-matrix completely. Moreover i f the particles are completely distinguishable 

by charges of non-zero spin as for real affine Toda theory, then the above equation 

is an identity. The general solution of the Yang-Baxter equation is not known, 

nevertheless general classes of solution have been found [19]. 

Regarding the factorization equation, studying the two-particle scattering be­

comes substantial and crucial. Therefore in what follows we mention some high­

lights of the properties of the two particle S-matrix which is defined according to: 

\Aai(9x)Aa2(e2) >in= 5 ^ ( # i - 0 2 ) M 6 l ( 0 i ) ^ ( 0 2 ) >out (1.58) 

or pictorially 

S(9l 

ai 02 

Figure 1.3: Two-particle S-matrix. 

where Q\ > 92 to distinguish the in and out states and time runs f rom bottom to 

top. Assuming invariance of S-matrix under charge conjugation lead to the following 

relation: 

Sb

a\a2(Qn) = Sl'XiOu). (1.59) 

Note also that under the charge conjugation operator, Aai corresponding to particle 

a\ transforms to A&1 which is associated to the antiparticle di. 

In order to study some analytic properties of the S-matrix i t is convenient to 

deal wi th the Mandelstam variables s and t which are equal to 

s = (pi + p 2 ) 2 = m2

ai + m\2 + 2maima2 cosh 0 1 2 , (1.60) 

t = (Pi - P 2 ) 2 = 2m2

ai + 2m2

a2 - s. (1.61) 
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For the S-matrix to describe a physical process 9 must be real and positive. This 

corresponds to taking the S-matrix on the upper edge of the branch cut in the 

s-plane. Moreover 9\2 w i l l be equal to 

9U = cosh-* ( ' - < - < ' 
2maim, "2 

l n / s - m 2

a i - ml2 + y/{s - {mai + m Q 2 ) 2 ) ( s - ( m Q , - m ^ f ) \ 
y 2maima2 ) 

So, the rapidity difference maps the s-plane into the strip 0 < I m 9\2 < n which is 

called the physical strip. 

Analytic continuation of the S-matrix into the complex s-plane results in a func­

t ion 5 that is meromorphic wi th two branch cuts on the parts of the real axis where 

s > (mai + ma2)2 and s < (mai - ma2)2. 

Moreover, the S-matrix has poles and physical processes associate w i t h those poles 

which are inside the physical strip. 

Here we note some properties of the S-matrix [16,20]: 

I) Hermit ian analyticity: that is 

Sb

a\i\(9n)=[s^(-9l2)J (1.63) 

I I ) R-matr ix unitar i ty: i.e. running the whole th ing backward 

I I I ) Crossing symmetry: as a result of invariance of the S-matrix under the 

transformation which interchange s-channel to t-channel i.e. s —> t that corresponds 

to 9 —>• m — 9 so, 

Silken) = Sb

af2(in - 9l2) (1.65) 

Boots trap equation 

Now assume the scattering of two-particles is purely elastic. For real affine Toda 

field theory the S-matrix is diagonal and i t has just two indices i.e. the S-matrix 

element may be wri t ten as 5 a i a 2 ( ^ i 2 ) . In this case the Yang-Baxter equation is 

satisfied identically. Now, in this special case the uni tar i ty and crossing relations 

w i l l be simple, that is, 
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I) Uni ta r i ty 

Saia2{Bi2)Saia2(-9l2) = 1, (1.66) 

I I ) Crossing 

S « i a j ( 0 i 2 ) = S a i a 2 { m - 9 l 2 ) . (1.67) 

By combining these two relations, one obtains 

S a i a 2 ( M = S a i a 2 ( 0 1 2 + 2TTI). (1.68) 

Therefore, the S-matrix elements are periodic in terms of 16 and this is the origin 

of the fact that S-matrix can be writ ten down as a product of hyperbolic building 

blocks which are defined as: 

, x s inh(^ + ^ f ) , x 

* = • w l h

x • (1-69) s i n h ( | - f f ) 

Assuming 5 a i a , ( # i 2 ) has a simple pole at 0 1 2 = iU£fa2 which is caused by forma­

tion of a bound state (time runs f rom left to right): 

A ^ ^ A M ) / A a A d 2 

Aa,(02) 

Figure 1.4: Bound state. 

At the point where particles a\, a 2 and a.3 are all on shell, the three point coupling 

Qaia2a3 joes not vanish, meanwhile the energy of the incident particles is equal to 

the mass of the th i rd particle, so 

™«, = < + K + 2 m a i m a 2 cos C/°f a j (1.70) 

02 

m 0 3 

£/Q3 

Figure 1.5: The mass triangle. 
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The real number U is called the fusing angle. By operation of Qs on \ Aai (8i)Aa2 (92) > 

and \Aa3(03) > then one can get a conserved charge after the fusing of a±, a2 into 

a 3 i.e. 

Q.lAaMA^fa) >= (qMe* + q<$e**)\Aai(91)Aa2(92 > , (1.71) 

Qs\A-a3(93) >= qSes93\A,3(93) > . (1.72) 

Note s = p + kh ,k G Z i.e. the spin is given by the exponents of the Lie algebra. 

Now 

q^e^+q^e^=q\£ese\ (1.73) 

or using the fusing angle and after some manipulation 

q(j>) + g(s)eisUafa2 + q{s)eis(u^a2+Uai_a3) - o. (1.74) 

To get the relation (1.74) note that U = ir - U and = ( - l ) a + 1 g £ \ the last 

relation shows particles and antiparticles are distinguished when spin charges are 

even. 

Now consider another particle a 4 which presumed to interact wi th particles ax 

and a 2. There are two cases because particle a 4 may scatter either before or af­

ter the two-particle ax and a 2 constitute a bound state to form antiparticle a 3. In 

general quantum field theory the above two cases may be different but in an inte­

g r a t e quantum field theory, they are not so much different and in fact because of 

factorization property of S-matrix [21] 

W ? ) = Saia,{9 - iU:iJSa,a2{8 + iU£J, (1.75) 

in which 9 = #4 — 9&3 i.e. the relative rapidity of d3 and a 4 . The equation (1.75) is 

called the bootstrap equation and can be shown diagramatically 

a 3 a3 

a* 

A a 4 

a. a 2 a. "2 

Figure 1.6: The bootstrap equation. 
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By means of uni tar i ty and crossing properties of S-matrix, the bootstrap equation 

can be converted to: 

5 ^ , ( 0 + ^ 3 + ^ a 3 ) S a 4 a 3 ( 0 + l U : 2 \ 3 ) S a 4 a 2 ( 9 ) = 1, (1.76) 

which is a product counterpart of the relation (1.74). The bootstrap equation is 

very important but i t does not determine the S-matrix element uniquely. A l l i t may 

do is to provide a set of consistency equations which must be supplemented by other 

data. 

In the real affine Toda theories whose corresponding untwisted affine Kac-Moody 

algebras are an, dn or e„, the S-matrices have poles of both even and odd order. What 

distinguishes the odd poles is that these correspond to bound states in the direct or 

crossed channel [22,23]. A t the same time, the couplings obey Dorey's rule [24,25] 

which is closely related to the properties of root systems and the Coxeter element of 

the Weyl group. For the other Toda field theories corresponding to the non simply-

laced algebras an appropriate generalization of Dorey's rule is known now [26 28]. 

E x a c t S — m a t r i c e s 

Toda field theory is one of the most successful examples of two-dimensional 

quantum field theory since i t can be solved exactly. On the other hand, quantum 

field theory in four dimensional Minkowski space-time is not exactly solvable due to 

several kind of difficulties such as infinite degrees of freedom. 

A l l the Toda field theories whose associated Lie algebras are simply laced or 

non-simply laced algebras have known exact quantum S-matrices [1,22,29-35]. S-

matrices corresponding to simply laced algebra have a much higher singularity struc­

ture than the other ones. 

In previous arguments i t is mentioned that the Yang-Baxter equation is the 

necessary condition for the factorization property of the S-matrix. However in purely 

elastic scattering of two-particle followed by forming a bound state, the S-matrix is 

diagonal and in this case the Yang-Baxter equation becomes t r iv ia l . But i t has been 

shown in the previous discussions that there is another powerful equation called 

the bootstrap equation. In according to the statements of this section, the building 

blocks of the S-matrix are of the form: 

_ s i n h ( | + 
K ' s i n h ( § - ^ ) ' 
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I n order to include the coupling constant dependence i t is better to define the 

generalized building blocks as 

{ i (x + l - B ) ( x - l + B)' 

where 

B - l + P/4n> ( L 7 8 ) 

and (3 is the coupling constant of the theory. 

Now the S-matrix of an Toda field theory is: 

a+b-l 

an : Sab = {a + b - l } { a + b-3}...{\a-b\ + l } = M > (1-79) 

| a - 6 | + l 

in which a,b — 1, . . . , r are the labels of two incoming particles. For the S-matrices 

of en, dn and non-simply laced theories see [1,22,29-35]. 

1.5 Affine Toda field theory on a half-line 

In the recent decade much work has been done in relation to integrable field theory 

wi th a boundary [36-50]. In particular, boundary conditions which are compati­

ble w i th classical or quantum integrability have been studied for affine Toda field 

theories corresponding to simply-laced Lie algebra, as well as non-simply laced Lie 

algebras. 

In this section affine Toda field theory on a half-line is studied. I n fact the theory 

on a half-line is determined by the Lagrangian density 

t = 0{-x)£ - 8(x)B, (1.80) 

in which C is the Lagrangian density of the theory on the whole line and B, which 

is called the boundary term, is a functional of the fields but not their derivatives. 

Meanwhile at the boundary x = 0 

i = - f -

Actual ly the above relation is the boundary condition. Moreover due to some evi­

dence [36,37], the generic form of the boundary term is given by 

r 
m * = - £ E ^ w V ( L 8 2) 
P i=Q 
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where the set of coefficients Ai : i = l , . . . , r are real numbers and there is a constraint 

on the Ai for all simply-laced affine Toda theories i.e. 

| A | = 2 v ^ or Ai = 0. (1.83) 

To sum up, for the half-line theory the equation of motion along w i t h the boundary 

equation is given by 

r 
d2(j) = - $3 a,-7iiea-* when x < 0, (1.84) 

i=0 

d4> 
n = - Y - a i A i e a i - * 1 2 at x = 0. (1.85) 

Note the mass scale and the coupling constant have been eliminated f rom the equa­

tions (1.84) and (1.85) via a rescaling of the fields and the space-time coordinates. 

I n th i rd section of this chapter, i t was shown that the foundation of the integrability 

property of the affine Toda field theory on the whole line is based on the existence of 

the Lax pair. In connection w i t h the half-line theory Bowcock et.al [40] developed 

a generalization of the Lax pair idea and we review their work. In what follows the 

boundary of the affine Toda field theory is chosen at x = a in order to follow their 

studying. Meanwhile for the purpose of construction of a modified Lax pair con­

taining the boundary condition, i t is convenient to introduce an another particular 

point x — b which is greater than a and two overlapping regions 

R_ : x < (a + b + e)/2 and i ? + : x > {a + b - e)/2. (1.86) 

The second region may be considered as a reflection of the first one, having the 

meaning that i f x G R+ then 

<f>(x) = <j>(a + b-x). (1.87) 

The two regions overlap each other in a small interval around the midpoint of [a,b]. 

Now in the two regions, the modified two dimensional zero curvature gauge potential 

for the theory on a half-line may be defined as: 

i t L : A0 = A0 - l-9{x - a) (dx(/> + ^ j ' H ^ A i = 9 ( a ~ X ) A ^ C 1 - 8 8 ) 

R+ : i 0 = A0 - l-d(b - x) (dx<t> - ^ \ • H, A1 = 0(x - b)A,. (1.89) 
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I t is evident that in the region x < a the generalized Lax pair is the same as the 

primary one but clearly at x = a the derivative of the step funct ion 6 in the zero 

curvature condition impose the boundary condition 

dx = ~W X = a- ( 1 9 0 ) 

For the region x > b, the same situation holds apart f rom this distinction that the 

boundary condition at x = b has an opposite sign in order to be consistent w i th the 

reflection condition (1.87). 

On the other hand, i f x £ and x > a then, A\ w i l l be zero and in this 

case the zero curvature condition just means A0 has no dependence on x. I n other 

words, this fact implies that <f> is independent of x. The same statements can be 

obtained in the region x £ R+ and x < b. Therefore by considering the reflection 

relation, cf> is independent of x in every part of the interval [a, b], and equal to its 

value at a or b. By regarding the modified gauge potentials (1.88) and (1.89), i t 

is clear that the gauge potential A0 is different in the two regions R± for general 

boundary conditions. Nevertheless to preserve the zero curvature condition over the 

whole line a gauge transformation must relate the values of A0 on the overlapping 

region. Due to the fact that A0 is independent of a; £ [a, b] on both parts, although i t 

has different value on each part, the zero curvature condition requires the existence 

of a gauge transformation. Moreover, such a gauge transformation which may be 

denoted by K, has to satisfy the following relation 

— = lCAo(t,b)-A0(t,a)K;, (1.91) 

in which /C is a group element of the group G whose corresponding Lie algebra is 

associated to the affine Toda field theory. 

I t is understood that the next step is to determine the analogue of Q(X) in the 

presence of the boundary which may be defined by the expression 

Q(X) = tr ( T ( - o o , a, A) /CT f (^oo , a, 1/A)) . (1.92) 

Indeed, Q(X) provides a generating funct ion for the conserved quantities of the half-

line theory. 

For the purpose of understanding the structure of /C, i t is useful to make a 

couple of additional assumptions. Now assuming the gauge transformation K, to be 
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independent of t ime and the fields or their derivatives as well, then (1.91) simplifies 

to 

)CA0{t,b) - A0{t,a))C = 0 (1.93) 

or considering the exact expressions for A0 

+ 
JC(X),j2rru(XEai-\E.ai)eai^2 

i=o A 

(1.94) 

in which the quantities which depend on the field, are evaluated at the boundary 

i.e. x = a. 

Note the boundary term B does not depend on the spectral parameter A. The 

equation (1.94) is strong enough because i t can not only determine boundary term 

B, but can also determine the gauge transformation K. The several solutions of the 

equation (1.94) along w i t h a list of constraints on boundary term can be found in 

detail in [40]. For example, two examples of /C f rom those given in [40] are 

/ 
ax : /C(A) = (A 2 1_ 

A2 

a>0 i 

0 XAx - A0/X 

y XA0 - Ai/X 0 

l + CXh 1 + c / x - h 

(1.95) 

(1.96) 

Note in the relation (1.96), Cj = Ai/2, C = YiiCi and each positive root can be 

wri t ten down as a sum of simple roots and U(a) represent the number of times that 

ai appears in the sum and 1(a) = ^ l{(a). 

As far as the boundary potential is concerned, the mentioned conjecture seems to 

be correct for the ade series of models and in turn , this implies the strongly restricted 

boundary parameters. For al l the others, the form of the boundary potential is the 

same but the restrictions on the parameters are less strict. 

A l l that remains is to show consistency of /C(A) w i t h the classical r matr ix which 

specifies the Poisson brackets between the generating functions for the conserved 

charges associated to the whole line theory [10,12]. In fact [10,12,13] 

{T(A)<?>7V)} = [ r ( A / / / ) , T(A) ® T( /z ) ] , (1.97) 

where T(A) represents the path-ordered exponential defined in (1.37). Meanwhile 

the classical r -matr ix has the general form 

r(s) = J2ri(s)9i®9l- (1-98) 
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The quantities represent the generators of the Lie algebra whose root system 

correspond to a particular Toda model. I f the Poisson bracket between two charges 

of the form given by ( 1 . 9 2 ) is calculated then i t w i l l require a compatibil i ty condition 

to be satisfied containing r and K. 

The consistency condition involving K, and r has been verified [ 4 0 ] and in fact, 

i t satisfies the following relation 

[ r ( A / / i ) , / C ( 1 > ( A ) / C ( 2 V ) ] = / C ( 1 ) ( A ) f ( A ^ ) / C ( 2 H / i ) - /C< 2 >( / / ) f (A/ i ) /C ( 1 ) (A) , ( 1 . 9 9 ) 

where 

/ C ( 1 ) ( A ) = / C ( A ) ® 1 , / C ( 2 ) ( M ) = l®/C(/z) ( 1 . 1 0 0 ) 

and 

f{s) = Y,ri{s)gi®gi. ( 1 . 1 0 1 ) 
i 

A t a first glance fC is a fundamental quantity and due to the relationship between 

/C and r ( 1 . 9 9 ) , i t may be expected that the classical r matr ix should be chosen to 

be consistent w i th /C . However, i t is a remarkable fact that even though K. and r 

have been determined independently, ( 1 . 9 9 ) is satisfied especially since apparently 

powerful assumptions were made to derive the expressions for JC in the various cases. 

Even in the quantum case, as w i l l be discussed later, there is a set of reflection 

bootstrap equations whose solutions provide a calculation of the complete set of 

S-matrix factors. 

1.6 Quantum Toda field theory on a half-line 

In sections ( 1 . 3 ) and ( 1 . 4 ) classical and quantum integrability of the Affine Toda 

field theory defined over the whole-line, were studied respectively. I t is mentioned 

that due to the classical integrability of the theory, in fact for every integrable field 

theory, there is an infini te set of conserved charges. I n connection wi th quantum 

integrability an important and remarkable characteristic of an integrable field theory 

including affine Toda field theory, is a fundamental property of the S-matrix: the so 

called factorization equation. 

On the other hand, in section (1.5) classical integrability for affine Toda field 

theory on a half-line is studied. In fact, in the presence of a boundary, the existence of 
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the conserved charges depend on choosing a particular boundary condition. In other 

words, in that section boundary conditions consistent w i t h classical integrability 

were reviewed. 

Now in this section quantum integrability of the half-line theory is studied. For 

the first time Cherednik [51] generalized the factorization property of S-matrix to 

the case where a reflecting boundary is present. In fact the basic ideas of factorizable 

scattering were set out by Cherednik and supplemented by Ghoshal and Zamolod-

chikov [39] in relation to the sine-Gordon theory, and by Fring and Koberle [52,53] 

as well, and by Sasaki [54] in connection wi th the affine Toda theories. 

When a particle is moving towards the boundary located for example at x = 0, 

then i t is expected that the particle reverses its direction however, in general, the 

particle may lose its identity as well. So in terms of one-particle state i t might be 

expected that the final state or out state is proportional to the in i t ia l state or in 

state i.e.: 

| .4 a(0) > i n = R»a(0)\M-9) > o u t , (1.102) 

or pictorially 

/ 
/ 

\ ^ / 

\ v / 

\ / — Rb

a(9) 

/ 
/ 

/ 
e 

Figure 1.7: Reflection matrix. 

where Rb

a{9) can be interpreted as the amplitude of one particle reflection f rom the 

boundary and time runs f rom bot tom to top. 

I t is possible to extend the above process to the n-particle scattering in presence 

of a boundary and define the related S-matrix as: 

\Aai(di)Aa2(92)...Aan(9n) >in= Rb

a\b^X(9u ...,9J\Abx{-9l)Ab2{-92)...Abn{-9n) >out 

(1.103) 
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First of a l l , the rapidities of the particles are arranged as 9\ > #2 > ... > 9n or 

9\ < 92 < ... < 9n fom particle in or out states respectively. Secondly, the n-particle 

S-matrix can be expressed in terms of the fundamental amplitudes S*J*2

2(#) and 

Rb

a, that is, two-particle scattering amplitude and one-particle reflection amplitude 

respectively. Moreover, both amplitudes have to satisfy several general conditions 

analogous to the conditions of the whole-line theory [39] as: 

1. Boundary Yang-Baxter equation 

(1.104) 

The equation (1.104) can be represented diagramatically as 

a2 

a-. 

/ a. 

/ 9l / 

6 9 

/ / 

/ / 6 

Figure 1.8: The boundary Yang-Baxter equation. 

As i t may be seen in the figure, i t is clear that the two particles not only scatter 

f rom the boundary but also f rom each other. However, the order of the individ­

ual scatterings and reflections have no importance since they depend on the in i t ia l 

condition establishing the two-particle state. Finally, the factorization property of 

the scattering process in the presence of the boundary leads to the boundary Yang-

Baxter equation. For affine Toda field theory which has distinguishable particles, R 

and S matrices are both diagonal and the boundary Yang-Baxter equation is sat­

isfied identically. So, i t is necessary to have an alternative equation i.e. boundary 
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bootstrap equation. The boundary Yang-Baxter equation has been introduced first 

by Cherednik [51]. 

2. Boundary group-theoretic uni tar i ty condition 

RCa(9)Rbc(-8)=6ba (1-105) 

or pictorially 

a 

/ 
e 

e / 

b 

Figure 1.9: The boundary unitari ty. 

3. Boundary crossing-symmetry condition 

Kab(9) = S%(29)Kb'a' (-9), (1.106) 

where 

Kab(9) = R b

a ( Y - 9 ) . (1.107) 

Now assuming : 

I) The scattering process of the two particles to be purely elastic, in the sense that 

there is no particle production i.e. there is no process other than elastic two particle 

scattering of the fo rm ab —> ab. Then, the S-matrix corresponding to two-particle 

scattering is diagonal and i t has just two indices 

K b >in= Sab(9ab)\a, b > ( m t 
(1.108) 
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I I )The reflection of a particle f rom the boundary is purely elastic. This means 

when a particle moves toward x = 0 then, the effect of the boundary is an inversion 

of the momentum. So in this case, the particle maintains its identity but just reverses 

its direction. Moreover, the out state is proportional to the in state 

\Aa{6) >in= Ka(9)\Aa(-0) >ouU (1.109) 

where Ka{9) is called the reflection factor. In fact, in an integrable theory w i t h 

distinguishable scalar particles the relation (1.109) may be used. I t is necessary to 

mention that multiplets of particles are distinguishable only by spin-zero charges. 

For real affine Toda field theory the particles are distinguishable and hence, both 

assumptions I and I I are valid. Moreover, there must be a set of reflection factors, 

one for each particle, corresponding to every boundary condition consistent w i t h 

integrability. 

For the affine Toda field theory on the whole-line there is a consistent bootstrap 

principle which in turn , has the meaning that there is a consistent set of couplings 

between the particles due to the appearance of poles in the S-matrix at fixed imagi­

nary relative rapidities corresponding to a bound state. Now by supposing this fact 

that the whole line couplings s t i l l remain relevant in the presence of a boundary, the 

bootstrap provides relations between the various reflection factors. Algebraically, 

the reflection bootstrap equation is 

KC(9C) = Ka(9a)Sab{9b + 9a)Kb(9b), (1.110) 

in which 

ea = e c - i u b

a c , eb = dc + iuzc. (l.ni) 

Moreover, U = 7r — U and the coupling angles are the angles of the triangle whose 

side-lengths are equal to the masses of particles a, b and c. The reflection bootstrap 

equation may be shown pictorially as 
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a / 
a / / 

/ / 
b / / 

/ / 

/ 
/ / 
/ / 
/ / 
/ / 

a a 

Figure 1.10: The boundary bootstrap equation. 

Looking at the above figure one may think of either the two particles a, b indi­

vidually reflecting f rom the boundary before (after) the bound state forms, or the 

particle c reflects f rom the boundary. There is also the possibility of bound states 

involving a particle and the boundary, w i th their own coupling angles and bootstrap 

property (see [36,39,55]). 

Moreover, there are the crossing relations 

Sab(iir-9) = Sai(e) = S-ab(9), (1.112) 

in which 6 = 9a — 6b and 

Ka{9 - m/2)K-a{9 + n r /2 )S a a (20 ) = 1. (1.113) 

The uni tar i ty relations are 

Sab(9) = S-b

l(-6) (1.114) 

and 

Ka{9) = K : \ - 9 ) . ( 1 . 1 1 5 ) 

Although for the reflection bootstrap equation (1.110), there are many known 

solutions for some theories such as affine Toda field theory [54] however, their relation 

w i t h the different choices of boundary condition has not been found clearly. For this 

file://K:/-9


1.6. Quantum Toda field theory on a half-line 35 

reason applying a semi-classical approximation or perturbation theory would be a 

substantial option. For example K i m has done some work on this basis [56-58] only 

for the Neumann boundary condition. Meanwhile quantum versions of the conserved 

quantities have been studied by Penati and Zanon [43,49] whose calculations lead 

to the renormalization of the boundary parameters. 



Chapter 2 

First order quantum corrections to 

the classical reflection factor of the 

sinh-Gordon model 

2.1 Introduction 

Over the last few years after a series of papers wr i t ten by Ghoshal and Zamolod-

chikov [39,41], and others [52-54], much work has been done to study integrable 

quantum field theory w i t h a boundary. In particular, the affine Toda field theo­

ries have offered a rich algebraic structure and remarkable properties. The classical 

affine Toda field theories remain integrable in the presence of certain boundary con­

ditions restricting them to a half-line, or to an interval [36,37,40,42,43,45-48,59]. 

Indeed, Corrigan et.al [36,37,40] have investigated thoroughly the boundary condi­

tions arising f rom boundary potentials of a particular fo rm which preserves classical 

integrability. Then, Delius [60] found new boundary conditions. However, the corre­

sponding quantum field theories on the half-line have not been studied completely. 

In fact, there st i l l remains much to be studied in relation to quantum integrability on 

the half-line. For the models based on much is now known [36,61-63]. The sim­

plest affine Toda field theory, the sinh-Gordon model has been studied much more 

than other models in the context of integrable boundaries. This model is the only 

theory in the ade series of affine Toda field theories for which continuous boundary 

parameters are possible. I n contrast, for most of the Toda theories corresponding 

36 
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to the affine simply-laced algebras, the boundary conditions are str ict ly l imited to a 

finite number in order to preserve integrability. Integrable boundary conditions in 

the sinh-Gordon model depend on a pair of parameters which are called boundary 

parameters. But , even in this case, i t remains to be seen precisely how the two 

boundary parameters influence quantities of interest such as the reflection factors. 

Firstly, Ghoshal and Zamolodchikov [39] obtained the soliton reflection factors 

in the sine-Gordon model w i t h a boundary consistent w i t h integrability. Then, 

Ghoshal [41] using these results calculated the reflection factors of the soliton-anti-

soliton bound states (the breathers) of the model. However, apart f r o m two special 

cases (Neumann and Dirichlet boundary conditions) Ghoshal and Zamolodchikov's 

formulae fa i l to provide a relationship between the reflection factors and the bound­

ary parameters themselves. One of the interesting and diff icul t problems in the 

boundary sine(sinh)-Gordon model is to find the relation between the free param­

eters appearing in Ghoshal's formula and the boundary data appearing in the La-

grangian formulat ion of the model. Corrigan [64] was the first to notice that the 

lightest breather reflection factor of the sine-Gordon model is identical to the reflec­

t ion factor of the sinh-Gordon model after an analytic continuation in the coupling 

constant. 

In a recent paper Corrigan and Delius [65] studied the boundary breather states 

of the sinh-Gordon model on a half-line. They noticed that for certain ranges of 

the boundary parameters in the sinh-Gordon model there are real periodic classical 

finite-energy solutions called boundary breathers. The sinh-Gordon model has no 

such constant solutions on the whole line. They calculated the energy spectrum of 

the boundary states in two ways, by using the bootstrap equations then by using a 

W K B approximation. By comparing the results obtained by the two methods, they 

provided strong evidence for a conjectured relationship between the boundary pa­

rameters, the bulk coupling constant and the parameters appearing in the quantum 

reflection factor calculated by Ghoshal. They carried out the calculations in the 

special case when the boundary parameters are equal and the boundary condition 

preserve the 0 —»• — 0 symmetry of the bulk theory. 

In [64] the quantum corrections up to 0(/32) to the classical reflection factor of 

the sinh-Gordon model were found when the boundary parameters are equal. In this 
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case, the static background configuration is <f> = 0. I f the boundary data is different 

and the <f> —> —0 symmetry is broken then, the lowest energy solution w i l l not be 

a t r iv ia l background. The corresponding perturbation theory involves complicated 

coupling constants and two-point Green funct ion as well. Nevertheless, as w i l l be 

shown in this chapter, provided calculations are restricted to first order in the differ­

ence of the two boundary parameters, some of the complications disappear and we 

are able to calculate the correction to the reflection factor at one loop order. The re­

sult provide a further verification of Ghoshal's formula. I n this chapter sinh-Gordon 

model is studied under boundary conditions which are compatible w i t h integrability 

and in the framework of the conventional perturbation theory generalised to the 

affine Toda field theory. 

2.2 sinh-Gordon model 

The sinh-Gordon theory corresponds to the affine Toda field theory whose associated 

untwisted affine Kac-Moody algebra is The physical difference between sinh-

Gordon theory and sine-Gordon theory is the fact that in the former the coupling 

constant is real but in the latter the coupling constant is imaginary. In what follows 

we deal w i t h sinh-Gordon model whose bulk Lagrangian density is defined as: 

£ = ^ < / > c ^ - V m (2.1) 

where 

"<*> = w ( 
/3ad> 2.2) 

The real constants m and (3 provide a mass scale and a coupling constant respec­

tively. For this model the affine root a0 is equal to —a where a is the simple root of 

SU(2) Lie algebra. Meanwhile by considering the normalization condition a2 = 2, 

which is customary in the affine Toda field theory, we find C takes the form 

C = \d^4> - ^ ( e ^ + e-™+) . (2.3) 

Hence, the equation of motion of the theory becomes 

d^4> + ( f f i t o - e - ^ ) = 0. (2.4) 
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The sinh-Gordon model is integrable classically which means there are infinitely 

many independent conserved quantities. On the other hand, the model is integrable 

after quantizing which implies the S-matrix describing the n-particles scattering 

factorises into a product of two-particles scattering amplitudes. The S-matrix de­

scribing the elastic scattering of two sinh-Gordon particles of relative rapidity 9 is 

conjectured to have the form [1,15,66] 

s w = -whey <2 5) 

where the hyperbolic building blocks have been used 

sinh(0/2 + i f ) 

sinh(0/2 - v f ) ' 

and the quantity B is related to the coupling constant f3 by B = 4 ^ g 2 • I t is evident 

that the S-matrix is invariant under the following transformation 

P ->• 4TTIP (2.7) 

and this property is known as the weak-strong coupling duality. 

On the other hand, the sinh-Gordon theory on the half-line [36,37] is described 

by the following Lagrangian density 

L = 6(-x)C - 6(x)B. (2.8) 

Here, B is a functional of the field but i t does not depend on its derivative and the 

generic form of B or the boundary term is given by 

B = ^ a 0 e - & * + < 7 i e & * ) . (2.9) 

In the above relation, the two real coefficients OQ and 0\ are arbitrary and are 

called [37,47] the boundary parameters. In fact, Bowcock et.al [40] obtained some 

results about the form of the boundary term via a generalised Lax pair when there 

is a boundary. 

Now we show that the boundary potential satisfies the boundary condition 

To show this, the starting point is the action of the model which may be wr i t ten 

down as 

S = f+°°dt(J° dxC-B^j (2.11) 
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and under an arbitrary change in the field, 5$, the variation of S becomes 

iS=Ldt\Lix w*+w^)UH)) - *** > (2-12) 

or by using the equation of motion 

r+oo ( fo dB \ 
SS= dti dxd^d^Sc/)) - ^-5(j) . (2.13) 

. / - o o y'~oo 0(f> J 

Finally, i f Stoke's theorem is applied then the relation (2.10) w i l l be obtained. There­

fore, for the boundary sinh-Gordon model the equation of motion and the boundary 

condition after rescaling the mass become, respectively : 

d 2 0 = - ^ ( e ^ - e - ^ ) when x < 0, (2.14) 

^ = (aieMV2 _ aoe-WV2\ a t X = Q ( 2 1 5 ) 

ox p v ' 

The constraints on the boundary parameters i.e. cr0

 a n d 0\ have been discussed 

by Corrigan et.al [37] and by Fu j i i and Sasaki [47]. Meanwhile as a result of pre­

serving integrability on the half-line, the boundary condition is desired to have the 

provided fo rm. 

For the boundary sinh-Gordon model, besides the two-particle S-matrix i t is 

necessary to know the boundary S-matrix or reflection factor describing one particle 

reflection off the boundary. 

2.3 Reflection Factor 

In this section the reflection factors for the sinh-Gordon model on the half-line 

associated w i t h boundary conditions which are consistent w i t h the integrability, are 

discussed. 

For the first t ime Cherednik [51] studied f rom an algebraic point of view the 

exact boundary reflection matrices corresponding to the bn, c n , dn root systems 

by introducing the boundary Yang-Baxter equation. In fact, he generalised the 

factorisation property of the S-matrix to the case where a reflecting boundary is 

present. Then, Ghoshal and Zamolodchikov [39] did more studies on the subject in 

relation to the sine-Gordon theory via establishing the boundary crossing symmetry 

and boundary uni tar i ty conditions. Afterwards, Fring and Koberle [52, 53] and 
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Sasaki [54] carried out further research on the topic in connection w i t h the affine 

Toda field theory by considering the boundary bootstrap equation. 

Assuming there is a boundary at x — 0 then, when the sinh-Gordon particle 

approaches to the boundary i t may elastically reflect f rom that so, in according to 

the arguments of section six in chapter 1, we may wri te down the following relation 

\Aa(6) >IN= Ka(6)\Aa(-9) > o u t . (2.16) 

In other words, the equation (2.16) might be regarded as a definit ion relation for the 

reflection factor i.e. Ka(9). In fact, Ghoshal and Zamolodchikov [39] calculated the 

soliton reflection factors for the sine-Gordon model by solving the boundary Yang-

Baxter equation, and using general constraints implementing uni tar i ty and a form 

of crossing symmetry. Then, Ghoshal [41] calculated the reflection factors of the 

soliton-anti-soliton bound states (the breathers). He used the boundary bootstrap 

equations along w i t h the result of reference [39]. A t the same time, the reflection 

factors of the sinh-Gordon model can be checked by means of perturbation theory 

and therefore, Ghoshal's formula may be checked perturbatively. Ghoshal's formula 

[41] for the bound state boundary scattering amplitude R^{9) can be wri t ten as 

(wi th u = -i9, X = 8TT//?2 - 1) 

R{B\U) = R^R(C\U), (2.17) 

where 

(»>,..x _ , . ^ c o s d + ^ c o s d - f - ^ s i n d + f ) 
c o s ( | - ^ ) c o s ( | + f + f f ) s i n ( f - f ) 

i

i

=

L

1 s i n ( u - g ) c o s 2 ( | + | + ^ ) ' 

n = l , 2 , . . . < A . (2.18) 

Ghoshal found that i?[ n ^(u), which contains the boundary parameters 77 and fl, is 

different depending on whether n is even or odd: 

R?n)(u) = S{2n\r),u)S(2n\iti,u), (2.19) 

where 

» sin(u) - cos(f - ( I - 1)5) sin(«) - cos(f + (/ - ± ) f ) 

^ sin(u) + cos(f - (/ - ± ) f ) sin(tt) + cos(f + (/ - ± ) f ) 

n = l , 2 , . . . < ^ (2.20) 
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and 

R{2n~l\u) = S^2n-1\V,u)S^n-1\id,u) (2.21) 

w i t h 

cos ( f ) — sin(u) 

cos( | ) + sin(w) 

sin(u) - cos(f - lf) sin(u) - cos(f 4- lf) 
% \ / „ , \ i „ ^ , „ / X I lit \ ' 

x TT 

fJl sin(u) + cos(f - lf) sin(u) + cos(f + lf) 

n = l , 2 , . . . < ^ y i . (2.22) 

Now looking at the Ghoshal's formula, considering the lightest breather and doing 

the required analytic continuation (5 —> \/2 i j3 to obtain 

RIB)(e) = R^(9)R[1)(9), (2.23) 

where 
n ( D ^ _ _ s i n ( - f + f ) c o s ( f + f ) c o s ( f + f + f ) 
* ° W s i n ( - f - f ) cos ( f - i f ) cos ( f - f - f ) l ' ' ' 4 j 

and 

w i n = z " ) n B [ . : : ; z i - a * : , : : , v a:-
Win _ c o s ( f ) - s i n ( - f ) c o s ( ^ ) - s i n ( - f ) 

c o s ( f ) + s i n ( - f ) c o s ( ^ P ) + s i n ( - f ) 

In Ghoshal's notation E = ^ and F = The lightest breather R ^ f i ) , which 

f rom now on is called the quantum reflection factor Kq(9), is given in terms of the 

hyperbolic building blocks (2.6) by: 

K ( 9 ) = ( l)(2-B/2)(l + B/2) 
q { } (1 - E(a0, auP))(l + E(a0, auP))(l - F(a0, auP))(l + F(a0, au(3))' 

(2.26) 

For the Neumann boundary condition which is defined as 

^ = 0 when x = 0, (2.27) 
ox 

Ghoshal's formula reduces to 

because the Neumann condition (2.27) demands the following restrictions on the 

functions E and F 

F = 0, E = l - B/2. (2.29) 
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In fact, K i m [56,57,67,68] in an attempt to generalize the idea of conventional 

perturbation theory [70-72] for affine Toda field theory compatible w i t h the Neu­

mann boundary condition, confirmed (2.29) perturbatively and verified this up to 

0(P2). K i m [56,57,67,68] has obtained one loop amplitudes of the boundary re­

flection matr ix corresponding to the Neumann boundary condition by means of a 

perturbative study of the exact boundary reflection matrices for simply-laced and 

some non simply-laced affine Toda field theories under the assumption of weak-

strong coupling duality. He used two-point propagators in coordinate space instead 

of momentum space. 

However, the exact fo rm of the E and F functions i n the general case other 

than Neumann boundary condition is a hard problem. Corrigan and Delius [65] 

investigated the boundary breather states of the sinh-Gordon model in the presence 

of a boundary. They calculated the energy spectrum of the states in two ways. 

First, by using the bootstrap equations, and then by finding a set of periodic finite-

energy solutions which could be quantized by means of a W K B approximation. The 

marriage of the two methods yields strong evidence for a relationship between the 

quantum reflection factor and the boundary data. For technical reasons they found 

expressions for E and F in the special case where cr0 = 0\ = cos ci7r and a is restricted 

to the range 1/2 < a < 1 as 

Note in the l im i t a —>• 1/2, the above relation reduces to (2.29). 

Regarding the important role of the propagator in this chapter and the calcula­

tions in the next chapters, i t is necessary to derive the two-point Green function for 

the sinh-Gordon model. Corrigan found [64] this propagator. We shall review his 

derivation below where the classical reflection factor of the model w i l l be one of the 

emerging results. Studying the perturbation expansion near the static background 

solution to the equation of the model is the starting point. 

First of al l , i t is necessary to find the lowest energy static solution for the sinh-

Gordon model w i t h a given boundary condition. Using the equation of motion (2.14) 

and the boundary condition (2.15), the static background solution has to satisfy 

E = 2a{\- B/2), F = 0. (2.30) 

d2<f>0 V2 V20<t>o _ p-V2(3<t>o when x < 0, (2.31) 
dx2 0 
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^ = ( a i e P M ^ - a o e - ^ / ^ ) at x = 0. ( 2 . 3 2 ) 
dx p v ' 

Integrating the first equation then comparing the result w i th the boundary equation 

yields: 

^ _ ^ ^ M V - 2 _ e - W o / v / 2 ) w h e n ^ < Q ) ( 2 3 3 ) 

1 + <Ti 

Therefore, the static solution has the form 

dx 0 

at x = 0. ( 2 . 3 4 ) 

e0<Po/V2 =

 1 + e 

\ _ g 2 ( x - x 0 ) ' 

Meanwhile the boundary condition imposes a relation on the parameter x 0 

( 2 . 3 5 ) 

c o t h x 0 = J ^ 1 ^ . ( 2 . 3 6 ) 
V 1 + ° \ 

Note that i f cr0 > o\ then x0 > 0 . Otherwise, i t is necessary to adjust the solution 

( 2 . 3 5 ) by shift ing x 0 through m/2 in order to guarantee that x0 > 0 . The singularity 

in the equation ( 2 . 3 5 ) is unimportant as long as x0 is positive. So f rom now on we 

assume <7o > o\. 

For the other models of an, Bowcock [48] found classical solutions which satisfy 

integrable boundary conditions using solitons which are analytically continued f rom 

imaginary coupling theories. 

Af ter determining the static background solution, the next step is to linearize 

the field equation and the boundary condition in this background. So, linear per­

turbat ion near the static background 

4> = (j)0 + 4>i, 

yields: 

d2^ + 2(j>x ( e ^ ° + e - ^ 0 ) = 0 when x < 0 , ( 2 . 3 7 ) 

^ + (aieP*>/^ + a 0 e - ^ ° / ^ ) = 0 at x = 0 . ( 2 . 3 8 ) 

Now by means of substituting the relation ( 2 . 3 5 ) in the above equations and after 

some manipulation, one obtains the following equations : 

d V i + 4 ( 1 + . I 2

 2 ] 0! = 0 when x < 0 , ( 2 . 3 9 ) 
\ smh 2{x — x0)J 

d<j> 

dx 
- + (CTI coth xq + (JQ tanh x0) <j>\ = 0 at x = 0, ( 2 . 4 0 ) 
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in which (j>\ denotes the first order correction to (f>. 

In fact, the equations (2.39) and (2.40) have been solved [37] precisely. I f the 

eigenfunctions of the second order differential operator in (2.39) are denoted by <f>kiW 

which corresponds to the eigenvalue of u)2 — k2 — 4, then the eigenfunction is given 

by 

^ = ie-llJtr{k) (F(k, x Y k x - F(-k, x)e~lkx) , (2.41) 

in which r (k) is an even, real funct ion and F(k,x) is equal to 

F(k, x) = P(Jfc) (ik - 2 coth 2(x - x0)), (2.42) 

where 

P{k) = (ik)2 - 2ikVl + W l + (J\ + 2(cr0 + 0 i ) . (2.43) 

I t is necessary to mention that r(k) can be specified via normalization of the prop­

agator. Meanwhile after some calculation, the two-point Green funct ion associated 

w i t h the eigenfunction (2.41) can be derived 

/

+oo r+oo A,,, Ah p-iui(t-t') , 

.„ L SsCT3T^;(/(^)/(-*.->"<-' , 

+KJ(-k, x ) f ( - k , x ' ) e - " ( l + ' ' ' ) , (2.44) 

in which 

f ( k , x ) = ' k - 2 c ° l \ 2 l * - X ° ) . (2.45) 

The classical reflection factor of the model is given by 

= jik)2 + 2iky/l + a0y/l + ox + 2(a0 + ax) ik - 2 
c ~ {ik)2 - 2iky/l + <T0y/l + (Ti + 2(a0 + a{) ik + 2 ^' ' 

or, i f the momentum of the particle is expressed in terms of its rapidity i.e. k = 

2sinh#, then 

( l ) 2 

Kc = : — (2.47) 
(1 - a0 - a i ) ( l + a0 + a i ) ( l - o 0 + a i ) ( l - I - a 0 - o i ) 

where ( ) denotes the hyperbolic building blocks and 

(To = COSOo7r, 0\ = cosai7r. 

The above classical reflection factor, which has been calculated by Corrigan 

et.al [37] through solving the linearized wave equations (2.39) and (2.40) around the 

static background solution, is similar to the quantum reflection factor suggested by 
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Ghoshal [41]. In other words, the classical reflection factor (2.47) can be derived 

f rom the quantum reflection factor (2.26) by considering the classical l im i t i.e. when 

/? —»• 0. In this l im i t [37] E = a0 + a\ and F = a 0 — a\. Meanwhile Classical 

reflection matrices of the other models of Affine Toda field theory corresponding 

to different choices of boundary conditions compatible w i t h integrability have been 

found [36,37,45,48]. 

So, f rom the above arguments the classical reflection factor, in general, may be 

defined as the coefficient of the reflected term of the free field two-point propagator 

calculated w i th in the classical static background solution. 

On the other hand, after calculating perturbatively the exact two-point Green 

funct ion, the quantum reflection factor can be defined as the coefficient of the re­

flected term of the two-point correlation funct ion i.e. e - t k ( x + x > ) i n the residue of the 

on-shell pole in the asymptotic region far away f rom the boundary, i.e. x, x' -> —oo. 

2.4 First order quantum corrections of the reflec­

tion factor 

Corrigan calculated [64] the 0((32) correction to the classical reflection factor of the 

sinh-Gordon model. A t the same time, he checked Ghoshal's formula for the lightest 

breather perturbatively in the special case when the boundary parameters a0 and 

Oi are equal. 

Now in this chapter, we calculate the O{02) quantum corrections to the reflection 

factor of the model corresponding to those boundary conditions which are compati­

ble w i t h integrability. However, in this case the boundary parameters are not equal 

and we shall assume that their difference e = a0 — o\ is small. Therefore, the prob­

lem is solved in the first order of e. In order to find the quantum corrections of 

the reflection factor for the sinh-Gordon model f r o m the boundary and the bulk 

potential, the model is considered in low order perturbation theory. In general for a 

model of affine Toda field theory the perturbative calculations are performed around 

the static background field configuration. So, the problem reduces to the standard 

Feynman diagrams. 
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Perturbation theory 

First of all we need to expand the bulk potential and the boundary term and by 

this way three point and four point couplings may be provided and so, various 

types of Feynman diagrams w i l l be clearly determined. The free parameters <7o 

and <7i appearing in the boundary potential and the bulk coupling constant (3 can 

be considered as expansion parameters. Looking at the Lagrangian density of the 

sinh-Gordon model on the half-line, i t is evident that the bulk potential is given by 

^ ) = - | c o s h ( v / 2 ^ ) . (2.48) 

Now by the expansion of the bulk potential around the background solution to 

the equation of motion, we can derive the three point and four point couplings 

corresponding to the bulk potential as : 

< & = ^ ' " t o ) = ^ s i n M v ^ o ) (2.49) 

and 

C£L = \Wv\<t>z) = ^ 2 c o s h ( v / 2 ^ 0 ) . (2.50) 

On the other hand, the static background solution satisfies the relation (2.35). 

So, for example, the four point coupling constant of the bulk theory converts to 

(4) 1 2 ( f 1 +e2{x-x°)\2 / 1 _ e 2(x-xo) \ 2 > 

Cbulk=lP U ! _ e 2 ( x - x o ) J +
 ^ 1 + e 2 ( x - z o ) I I ( 2 - 5 1 ) 

or after some simplification 

Cfilfc = \ ? ( 2 ™ t h 2 2(x - x 0 ) - l ) . (2.52) 

Similarly the three point coupling constant of the bulk theory is simplified as 

C{MK = c o s h 2(z - x 0 ) (co th 2 2(x - x 0 ) - l ) . (2.53) 

In a similar way we can derive the three point and four point couplings associated 

w i t h the boundary term which are given by 

cSUr, = 3 V " to) = _ ^ - W o / V S ) { 2 M ) 
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From now on we assume that the boundary parameters have only a small differ­

ence i.e. OQ — a\ = e. So, i t is necessary to expand all the formulas and to keep all 

terms of them up to first order in e. Let us f irst start w i t h the static background 

solution which has an expansion at the boundary 

e0MV2 = C Q t h X o = i + + 0 ( e 2 ) when x = 0. (2.56) 
2(1 + CTj) 

We then f ind the boundary three point and four point couplings as 

Clllndary = ^ ( - 7 ^ ) + 0(e2), (2.57) 

CltLary = ^(2a1+e)+0(e2). (2.58) 

The bulk three point and four point couplings may be derived as 

c S L ^ P j ^ ^ + O^), (2.59) 
O 1 + 0\ 

Cll = l(32 + 0(e2). (2.60) 

In connection w i t h the expansion of the related functions up to first order in 

e, all that remains is to f ind the expansion of the funct ion f(k,x) i.e. the relation 

(2.45) and the classical reflection factor K (2.46) as well, both of which are involved 

in the two-point Green function (2.44) . In fact, 

f(k,x) = l + 0(e2) (2.61) 

as a result of the following expansion 

c o t h 2 ( z - 2 ; o ) = - l + 0 ( e 2 ) . (2.62) 

Moreover, the classical reflection factor (2.46) converts to 

or 
ik + 2a 2ik . . , n „ , s 

K° = ik^To + W^W^0(t)- (2'64) 

I t is convenient for future objectives to denote K as 

KC = K0 + tKx (2.65) 
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here, KQ is the classical reflection factor when the boundary parameters cr0

 a n d o\ 

are equal so that the calculation of reference [64] is based on this special case. We 

may call K\ the first order correction to classical reflection factor when OQ ^ o\. 

To calculate quantum corrections to the classical reflection factor at one loop 

order (i.e. 0((32)) we use perturbative methods generalised to the affine Toda field 

theory on a half-line [56,57,64,69]. (For earlier references on boundary perturbation 

theory in general see [70-72], for affine Toda perturbation theory see [22] or the 

review [14].) The 0 ( f i 2 ) correction to K0 has been calculated before and the purpose 

of this chapter is to calculate the corrections to K\ to the same order. In general, 

at one loop order there are three basic types of Feynman diagrams contributing to 

the two-point Green function [57,58]. These diagrams can be shown as 

9 Q O 
I I I I I I 

Figure 2.1: Three basic Feynman diagrams in one loop order. 

However, due to doing the calculations up to first order in e throughout this 

chapter, only the type I Feynman diagram is involved in the following computations. 

The reason for the above claim may be realised by looking at the three point and 

four point couplings. There are two contributions for the reflection factor. The first 

one is related to the boundary, when the interaction vertex lies on the boundary, 

and it can be written down as 

id2 r+oo 
- ^ - ( 2 ^ + e) dt"G(x, t; 0, t")G(0, <"; 0, t")G(0, t"; x', t'), (2.66) 

4 J—OO 

in which the combinatorial factor of the related Feynman diagram are included. 

The second contribution corresponds to the bulk potential which means the 

interaction vertex lying in the bulk region x < 0 and is given by 

/

+oo rO 
dt" / dx"G(x, t; x", t")G(x", t"; x", t")G(x", t"; x', t'), (2.67) 

-OO J—oo 

where, once more the combinatorial factor has been inserted in this formula. 
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On the other hand, in according to the previous discussions, in our problem the 

two-point Green function is equal to 

where 
+ 2crx 2ike / n „ _ 

K< = K ° + K ' = + ( s r r ^ - <2-«» 
Let us first calculate the boundary contribution i.e. the expression (2.66) and i t 

is convenient to start with deriving the middle propagator which may be written as 

r r n /" n t"} = , - / / " ^ " d k " 1 f i + + 2 ° l + 2 ^ " e ^ 
^ ' ' ' ; i i 2TT 2TT w" 2 - A;"2 - 4 + *p V ik" - 2ol ^ (ik" - 2a,)2) ' 

(2.70) 

Note the above integral is clearly divergent but the divergence is removed by the 

infinite renormalization of the boundary term. In other words, considering the 

following relation 
ik" + 2a1 4a , 

1 + * ^ 7 = 2 + * ^ ' ' 

it is seen that a minimal subtraction of the divergent portion can be made by adding 

an appropriate counter term to the boundary, converting the integral to a finite one. 

Meanwhile that part of the integral which corresponds to the zeroth order of the 

classical reflection factor has been solved in reference [64] and therefore 

nic\ a n "\ _ cosai7r . r r du" dk" 1 2ik"e 

G(0,t ;0,t ) = - f l l — — + . y J - ^ ^ u > l 2 _ k r , 2 _ 4 + i p { i k l , _ 2 a i r (2-72) 

Looking at the above integral, focusing on the energy variable and choosing the 

integration contour in the upper half-plane, we encounter a simple pole at Vk" 2 + 4 

and therefore, we are led to solve the following integral 

1 fdk" 1 2ik"e / (2.73) 
2n JW+l{ik" - 2f7!) 2 ' 

Clearly, the k" integration can be performed by closing the contour into the upper 

half-plane however, because of the branch cut which runs from +2i to infinity along 

the imaginary axis, actually the contour has to encircle the +2i point. Note, i f 

o\ > 0 there is no pole inside the contour. I f <TI < 0 then the effect of taking a, 

negative will be to pick up a term corresponding to the discrete boundary bound 

state that exists for o\ negative [66]. In what follows we assume that ox > 0 and 
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integrals along the branch cut are remained to be evaluated. Hence, the integral 

(2.73) converts to 

i h 2TT V y ^ 4 (y + 2ax)2 

or after a change of variables 

e r°° . coshii 

+°° dy 1 2ye . . 
y y (2.74) 

f°° , coshii 
/ 7—v,—Z—V2 2 - 7 5 

JO (COShw + <7i r 
2n Jo (coshu + Oi)2 

and finally doing another change of variables i.e. eu = v and some manipulation we 

obtain (if ax > 0) 

du" dk" 1 2ik"e e ax e cos axir 1 
+ 2TT 2TT a;"2 - k"2 - 4 -Hp (ik" - 2ax)2 2 sin 3 ' 2TT sin 2 ' 

(2.76) 

So until now, the boundary contribution takes the following form (Note in the 

beginning term of the first propagator, the transformation k —> —k is needed) 

.(32 ( e ai ecosa^ 1 \ 
-i—(2ox + e) - - ^ - 5 + — r-2 

4 V 2 81^01^ 2ir sin a\irJ 

2?r 2TT - A;2 - 4 + ip \ik - 2ax {%k-2al)2

i 

duo'dk' e-M(*'-*) _ik,x, / 2ik' 2ik'e \ 
2?r 2TT UJ'2 - k'2 - 4 +ip6 \ik' - 2ox

 + (ik' - 2ax)2 J 

The integration over t" ensures energy conservation at the interaction vertex and 

creates a Dirac delta function which immediately removes one of the energy variables, 

for example a;'. Al l that remains is to integrate over the momenta k and k' which 

can be performed by completing the contours in the upper half-plane and taking 

into account the poles at k = k = k' = y/u2 — 4. However, i f ax > 0 it is evident 

that the expressions for K0 and Kx have no pole inside the contour. I f ox < 0 there 

is an additional pole but its contribution turns out to be exponentially decreasing 

in the asymptotic region x, x' —> —00. 

Finally, we obtain the boundary contribution (2.66) in the form (if ax > 0) 

_ .fP J dwe_ilj{t_t,)p_ik{x+xl) (2a 1 cos 2 a17r 1 
4 J 2TT { sinaiTr (ik - 2ox)2 

'ax cosai7r ax cosaXTT cos 2ai7rN\ e 
sinai7r sin3ai7r 7rsin2 axir J (ik — 2ax)2 

4ai cos2 axn e } . . 
+ —~ 1 = } , (2.78) 

sinaiTr (ik-2aiy\ 



2.4. First order quantum corrections of the reflection factor 52 

where A; = 2sinh#. 

Let us bring our attention to the bulk potential contribution (2.67), which by 

means of the preceding discussions, can be written in the expanded form: 

H J J-oo J J 2TT 2TT UJ2 - k2 - 4 + ip 2ir 2TT to2
 — k2 — 4 + ip 

( -ik(x-x") , i k + 2 ( 7 1 -ik(x+x") , -ik(x+x") 
\ %k-2ax (ik-2ax)2 , 

r r du" dk^ i / ik" + 2el _2ik"x" 2 i k " e -2ik"x"^ 
7 7 "2TT 2TT co"2 - k"2 - 4 + i p \ + ik" - 2ax

 6 + (ik" - 2 ^ ) ^ 

SI 
duy_dk^_ i _ia/(t»-f) 
2TT 2TT U'2 -k'2 -4 + ip 

( ik'{x"-x>) , %k' + 2 g l -tk'(x"+x') , 2 i k ' e -ik'(x"+x')\ ( 9 7 q ) 

{ + i k ' - 2 a 1

£ + (ik'-2a1)2e ) ^ ' ^ 

The integral over t" yields a Dirac delta function which allows us to substitute 

u/ by u . Furthermore, to calculate the integration over x", it is convenient to use 

the following device 

f° dx"etkx"+TX" = — — , (2.80) 
J-oo k — ir 

where the small positive quantity r will be taken to zero at the final stage of the 

calculations. 

The loop integral which corresponds to the middle propagator of (2.79), is ob­

viously logarithmically divergent. Nevertheless, this divergence can be removed by 

the infinite renormalization of the mass parameter in the bulk potential. So, after 

making the minimal subtraction and integrating over x" and u>" we obtain (Note as 

we mentioned earlier, our job is to solve those parts of the contribution which are 

proportional to e) 

- i f f f ^ M d k >

 c-Mt-t<)c-i(kx+k'x>) i i 
2 J J J 2TT 2TT 2TT UJ2 - k2 - 4 + ip UJ2 - k'2 - 4 + ip 

r dk" 1 ( 2ike ik" + 2ax / 1 
J ~2TT yjk"2 + 4 \ {ik - 2ax)2 ik" - 2ax \-k + k' - 2k" - ir 

1 ik' + 2ai \ 
k + k' + 2k" + ir ik' - 2a! / 

2ik'e ik" + 2ox ( 1 1 ik + 2ax\ 
(ik' -2ox)2 ik" -2ax \-k' + k - 2k" - ir k' + k + 2k" + ir ik - 2ax 

2ik"e ( 1 1 ik' + 2ax 

(ik" - 2ax)2 \k + k' - 2k" - ir k - k'- 2k" - ir ik' - 2ax 
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1 ik + 2ox 1 ik + 2ox ik' + 2ox \ \ 
.(2.81) k-k' + 2k" + ir ik- 2ox k + k' + 2k" + ir ik - 2ox ik' - 2ax 

In order to evaluate the integral over k", we encounter the following two types of 

integrals 
f 1 (ik" + 2*A 1 

and 

/ 
V ^ " 2 + 4 \iA;" - 2<7i/ (A; + k' - 2k" - IT) 

dk" 1 2ik"e 1 
2TT V / F + 4 (ifc" - 2a!) 2 (k + k' - 2k" - ir)' 

Both of them may be performed by an appropriate contour in the upper half-plane 

and ensuring that it runs around the branch cut located from k" = 2i to infinity 

along the imaginary axis. Note i f ax > 0 then there is no pole inside the contour 

however, i f <j\ > 0 there is an extra pole but its residue integrated over k and k' will 

give vanishing contribution in the limit x, x' —> —oo. So, the integral (2.82 ) has the 

solution: 

dk" 1 fik" + 2aA 1 / 2?r y/k"2 + 4 \ik" - 2ffi / (k + k' - 2k" - I T ) 
Aiox r dk" 1 1 

(ik + ik' - 4<TI) J ~2TT v

/F 2T^ {ik" - 2ax) 
fik + ik' + Aax \ r dk" 1 1 

+ \ik + ik' - \ o x ) ) 2ix y/k"2 + 4 (k + k' - 2k" - ir) 
2ia\(j\ 

€m.a\-K{ik + ik' — 4o\) 

2TT + ifc' - 4a xy ^TpT^ \ l | '<*+*'> l

2\/{k+p2 I- 1 j ' 

The integral (2.83 ) can be shown to be equal to 

2 r° ^/ 1 2 ^ 1

 ( 2 8 M 

A 2TT y/A^y* {y + 2ax)2 (k + k'- 2iy - ir) { ' ' 

and after changing the variable y = 2 cosh u then, again another change like eu = v, 

we obtain the following result 

dk" 1 2ik"e 1 _e k + k' axn 
2TT y/k"2 + i {ik" - 2al)2 (k + k' - 2k" - ir) ~ n(ik + ik' - 4ax)2 sinajTr 

e iu i 1 e zer2 ai7r 
/ 

7r (4<T! — ik — ik') sin ai7r 7r (4cri — ik — ik') sin ai7r 
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Let us divide the bulk contribution (2.81 ) in two parts, that is, one part involving 

the integrals (2.82) and the other part containing the integrals (2.83), we call the 

former B, and the latter B2 . For both parts i t is necessary, after performing the 

integration over u>", to do the k and k' integrals via closing the contours in the upper 

half-plane to pick up poles k = k = k' = yfu2 — 4. Al l other pole contributions lead 

to exponentially damped terms in the limit x,x' —> -co . 

After some manipulation, B, is found to be equal to 

dui _i,.,u_ti\ 1 2ikt B, = -2(52 [ _ e - M t - O e - « ' * ( * + * ' ) 
J 2TT {2k)2 {ik - 2a,)2 

i ia, ik 1 1 ,m „. , 
+ — = + j = { — - 9 ) y 2.87 

4 sma1irik-2al

 n J f e + 4 2 

Notice that the last term inside the braces of B, depends on 9 and therefore, is 

very inconvenient for Ghoshal's formula. Fortunately, this term will be cancelled by 

a counterpart term in B2. Note throughout the calculation process we used the fact 

that k = 2 sinh 9 in which 9 is the rapidity of the particle. 

After somewhat lengthier calculations, B2 is given by 

B2 = 2B2 f du

c-^(t-t')c-ik(x+x') 1 [ ~ 2 u °\ 
J 2TT {2k)2 \ (ik - 2a,)2 7T sin 2 a,ir 

2ie a,a^ 2iek 1 I x j- | Q 

{ik - 2<7i) 2sin 3ai7r (ik - 2a,)2 ^ ^ k 2 + 4 

ik + 2a, I ie iea,a, 
- ) } . (2.88) 

ik — 2a, \ 27rsin a,n 2 sin 

First of all, as we mentioned before, in B2 the term which depends explicitly on the 

rapidity of the particle is eliminated by the corresponding term in B,. Secondly, we 

may still do further simplification to obtain the following result (after the removal 

of the 9 term) 

B< = -2P2 [ % - M t - t ' ) e ^ ( ^ ) ^ J ^ / 1 ^ \ ( 2 g 9 ) 

J 2TT 8(ik - 2a,)2 Xirsm'a^ sin dai7r/ 

Now if we add the boundary (2.78) and the bulk ((2.87) and (2.88)) contributions 

together, we obtain 

2 J 2?r \(ik -2a,)2 \2n 2sinai7r/ 

1 (-2a 1 sina 1 7r) + - ^ ( - 7 + — 1 \ (2.90) 
(ik-2a,f (ik - 2a,)2 k 
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from which we can deduce the correction to the quantity K\ in (2.65). Explicitly, 

we have, 

6Ki = -iP2ek\^^ ( ^ + , a . X a i ) + - ^ ( -2a 1 s ina l 7 r ) 

1 2 / i i \] 
- 7 + r . - (2-91) (ik-2a1yk\ 4 2 ^ 2 + 4 

The correction to K0 which was calculated before in [64] is, 

SK. = - £ t f . < i ) ^ , { ( - ^ - - J ^ ) 
+2ax ( — — — ) } . (2.92) 

Vcosh 9 — sin a\-K cosh 9 + sin a\"K/ J 

This completes the collection of ingredients we need. 

2.5 Comparison with Ghoshal's formula 

In this section, the corrections to the classical reflection factor calculated above will 

be compared with the formula of Ghoshal quoted in (2.26). 

Using (2.65), the relative correction to the classical reflection factor Kc is given 

in terms of the corrections 5K0 and 5K\ by 

8KF 

K, c 
= K^SKo + e (K^SKi - KXK^5K0) . (2.93) 

Hence, using (2.91) and (2.92) we have, 

Kc 8 [Vcosh^ + 1 coshfl, 
1 1 

+ 2d! 
.cosh 9 — sin ain cosh 9 + sin a\Tr, 

z/?2esinh0 [ 1 / 1 19 J 1 / 1 1 \ 
7r I 7r Vcosh^ — sinai7r cosh 0 + sin ai7r/ 8sinai7r [n \cosh6 — sinaiir cosh9 + sinai 

+ax cos axTT ( -— 1 . + 7— 1 , ) 1. (2.94) 
\(cosh 0 — sin a ^ ) 2 (cosh 9 + sin a i7r) 2 J J 

On the other hand, Ghoshal's formula (2.26) for the reflection factor up to one 

loop order is given by: 

Kq(0) ~ Kc{9) ( l - ^ s i n h f l T{9)\ , (2.95) 
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where 

T(9) = 1 1 

k ' cosh 9 + 1 cosh 9 
ei ei 

cosh 0 4- sin(e07r/2) cosh 0 — sin(e07r/2) 

f l f l (2.96) 
cosh0 + sin(/07r/2) coshfl — sin(/07r/2) 

In calculating (2.96) we have made use of the expansions of E and F to 0(/3 2): 

32 B2 

E~e0 + e i ^ - F ~ f 0 + f1%-, (2.97) 

47T 47T 

with 

eo = o-o + ai and f0 = a0 - ax. (2.98) 
Since K 9 = Kc + 5 i^ c , we deduce that 

SK i82 

°-p = - l J L s i n h e (2.99) 
A c 8 

Hence, expanding to 0(e), we find, 

v / i „—u a i i u a cosh$ + l coshfl cosh 9 + sin ai7r cosh 0 — sin Oi7r 
eiecosai7r f 1 1 \ 
2sina17r \ (cosh 9 + sin ai7r)2 (cosh 9 — sin ain)2

1 

(2.100) 
sin ai7r cosh2 # J 

Comparing (2.94) with (2.100) we see a pleasing similarity. In fact the two 

formulae are identical, to 0(e), provided we choose ex and fi suitably. In other 

words, we may deduce that 

e1 = - 2a 1 + — A = - ( a 0 + a j ) + 0(e 2 ) (2.101) 

7rsinai7r 

and that f\ is proportional to e. Unfortunately, the calculation does not allow 

anything more detailed to be learned about f\. To do better needs a correction to 

the reflection factor to 0(e 2 ) . 

2.6 Discussion 

In this chapter we tested a little more deeply the expression for the sinh-Gordon 

particle reflection factor, that is, Ghoshal's formula and we learned additional in­

formation in connection with its dependence on the boundary parameters a0 and 
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<y\. The result of our calculations is satisfying because it agrees with alternative 

derivations of the reflection factor and it also agrees with the following conjecture. 

Everything we have learned so far is consistent with quite simple expressions for E 

and F: 

E= (a 0 + a j ) ( l - B / 2 ) F = (a0 - ax)(l - B/2), (2.102) 

where the coupling constant dependence comes into the formulae by means of the 

expression for B. We will discuss the conjecture (2.102) much more in the final 

chapter. 

In order to learn more about the quantum reflection factor's parameters, for 

example ex and especially fx via perturbation calculations, second order quantum 

corrections to the classical reflection factor of the sinh-Gordon model should be 

carried out. In fact, we deal with this problem in the next chapter. 



Chapter 3 

Second order quantum corrections 

to the classical reflection factor of 

the sinh-Gordon model 

3.1 Introduction 

In chapter 2 we found the quantum corrections to the classical reflection factor of 

the sinh-Gordon model at one loop order i.e. 0(/3 2) and up to the first order in the 

difference of the boundary parameters. The calculations provided a further verifica­

tion of Ghoshal's formula. Meanwhile we derived the relation between parameters 

of the quantum reflection factor and the boundary parameters up to the first order 

difference in cr0 and a,. In order to know the relation up to the higher order, it is 

necessary to carry out the second order quantum corrections to the classical reflec­

tion factor of the model. So, in this chapter it is intended to follow the calculations 

up to the second order in e in which e = GQ — O,. Hence, it is necessary to expand the 

bulk and the boundary couplings. Let us first of all expand the static background 

solution (2.35) at the boundary up to the second order in e: 

^ = ^ = 1 + _ i _ _ l _ ^ _ + .... p . ! ) 

Therefore, by looking at the boundary three point (2.54) and four point (2.55) 

couplings, we derive the following formulae 

Cbllndary = ( _ T ^ ) + - ( 3 " 2 ) 

58 
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and 

Cboundary = ^ ( ^ l + C - ^ ^ ^ y ^ j + ~~ (3-3) 

The reason for expanding the boundary three point coupling up to the first order 

in e rather than up to the second order is the fact that in type I I and I I I Feynman 

diagrams corresponding to one loop order, there are two interaction vertices. By 

regarding the bulk three point (2.53) and four point (2.52) couplings, the expansions 

of them can be obtained as 

Cll = ^ T i - r P + - (3-4) 
O 1 + CTi 

and 

c - = ^ ( l + \ ( T ^ r 4 1 + • • • ) • <3-5> 

Now let us find the expansions of the function f(k,x) and the classical reflection 

factor Kc up to the second order, both of them appear in the two-point Green 

function (2.44) associated with the sinh-Gordon model. In order to do the first job, 

it is sufficient to use the following expansion 

1 e2 

coth2(a; - x0) = - 1 - - n ^ ,2eix + (3.6) 

SO 

In addition, after some manipulation the classical reflection factor (2.46) expands 

as 
ik + 2<7i + e — ike2 

_4(l+a1)(ik+2) 

ik — 2oi — e + K = _ _ , (3-8) 
4(l+<n)(ifc-2) 

or 

ik + 2cri 2ik 
K = —- + 

ik - 2ox (ik - 2ai) 2 

1 ik(ik3 - 4k2 - 6k2ax - Ukax + 8a2 - 16 - 16a{) 2 

+ 2 (1 + ax)(ik - 2)(ik + 2)(ik - 2oxf C ( > 

or in a compact form 

K = K0 + Kle + K2€2 + .... (3.10) 

Here, KQ is the classical reflection factor when the boundary parameters a0 and 

01 are equal, K\ and K2 are the first and second order correction to the classical 

reflection factor when cr0 ^ crx, respectively. 
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As mentioned in the previous chapter there are three basic types of Feynman 

diagrams [52,53] which contribute to the two-point Green function at one loop order 

(see figure 1 in chapter 2 ) . However, only the type I diagram is involved in the 

calculations up to the first order in e . On the other hand, all types of the Feynman 

diagrams must be considered up to the second order in e. In fact, each interaction 

vertex can either be located in the bulk region or at the boundary so, there are ten 

contributions to the classical reflection factor of the theory. I t is better to begin 

with the type I I I diagram. 

3.2 Type III Feynman diagram 

Type III (boundary-boundary) 

I t is clear that the type I I I Feynman diagram includes four distinct cases depending 

on the fact that the vertices to be settled in the bulk region or at the boundary. This 

section deals with the calculations corresponding to the contribution of these four 

diagram to the reflection factor. The simplest one is type I I I (boundary-boundary), 

that is, when both the vertices are located at the boundary. The associated contri­

bution may be given by 

here, the related three point couplings and the combinatorial factor have been con­

sidered. I t is evident that in this case the two-point Green function has the simplest 

form as 

P 
4 1 + 

dtdt'G{xu t i ; 0 , t)G(0, t; 0, t')G{0.t'; 0, t')G(0, t; x2, t2) (3 .11) 

•)-< G(x, t;x ,t 
dwdk e ' ^ - ^ 
2 7 T 2 7 T UJ2 - k 2 - 4 

^ifc(a-x') + K0(k)e-ik{x+x,)) , ( 3 .12 ) 

where 

K0(k) = 
ik + 2o\ 

(3 .13 ) 
ik — 2o\ 

In this case as we saw in chapter 2 

G{0,t';0,t') = - o i " cos ai7T 
(3 .14) 

sin ai7r 

We need to find an expression for the integral: 

J dt'G(0, t; 0, t') (3 .15 ) 
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which is equal to 

. r f fcko"dk" e-*""(t-0 / ik" + 2al\ , . 
V d t J I ^ W » - f c " - 4 i 1 + J ^ 

or after doing integration over t', the above relation reduces to 

. f dk" ( 1 \ / 2ik" \ , N 

• y ^ ( q ^ ) ( i i b ^ - J - ( 3 - 1 7 ) 

Hence, 

J dt'G(o,t\0,t') = ( 3 ' 1 8 ) 

Therefore, up to now the contribution (3.11) has the form 
id2 aiCosaiTx e2 r , r r dw dk e~iu;(tl"^ / , , \ 

~ 1 T 7TT / d * / / T"o 2 , 2 , (e + .Ko(A;)e ') 
8 sinai7r (1 + cosai7r)J J J J 2ir 2n u2 — k2 — 4 v ' 

X ' / / ^ ^ ^ ^ + W * - ) • (3.19) 

First of all, i t is understood to do the change k —> — k in the first term of the 

first propagator. Secondly, after integration over t, the result will be a Dirac delta 

function which immediately gives rise to the substitution LO = u'. Finally, the 

momenta of the two propagator can be integrated out by taking the contours to be 

closed in the upper half-plane and regarding the pole at k = k = k' = \luP- — 4 and 

ignoring the other pole i.e. —2iox (when o\ < 0) due to the fact that its residue 

will vanish in the limit X\,x2 —>• — oo. Thus the type I I I (boundary-boundary) 

contribution becomes 

2/ J

2a 1cosa l 7r e2 r ^ - M t . - t ^ - t t ^ + s , ) 1

 ( 3 2 Q ) 

8 sinai7r (1 4- cosai7r)3 J 2ir (ik - 2ax)2' 

Type III (boundary-bulk) 

Now let us focus our attention on the type I I I (boundary-bulk) when the vertex 

corresponding to the loop is placed inside the bulk region and the other vertex at 

the boundary. The contribution is 

2B2 r° r r 
- e 2 / dx' dtdt'G(x1,t1;0,t)G(0,t;x',t') 

(1 + cosai7r)2 J-oo J J 

G(x', t'\x', t')G(0, t; x2, t2)e2x'. (3.21) 

As before, 

/dtG(xl,tuO,t)G(0,t]x2,t2) = - f ^e-Mti-Ve-tto**) \ (3.22) 
J J 27T (%k - 2<Ji)2 

file:///luP-
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Meanwhile, it is convenient to compute one of the middle propagator as 

or after some calculations (3.23) reduces to 

. rdk' ( e-ik'x' \ ( 2ik' \ l n n t . 

So, we obtain 

/dt'G(0,t;x',t') = - ' e2x'. (3.25) 
J Z[l + <7i) 

Now let us calculate the loop propagator which has the form 

G(x',t';x',t') = « / / ^ M W _ U - 4 + W ' " " ) • (3 -26) 

Clearly, the above divergent integral after a minimal subtraction, changes to a finite 

one and if we integrate over UJ" then, we will find 

G(x' t'-x' t ' ) - - f — 1 i k " + 2a±-2ik"x> ,o 2 7 ) U{x,t,x,t)- 2J ^ ^ _ _ . A | f _ 2 ^ c . [6M) 

Hence, the remaining part of the relation (3.21) is simplified as (apart from the 

coefficients) 

J J dt'dx'G{<d,t-x',t')G{x',t';x',t')e2x' 

f dx' [ ^ 1 *k" + 2 a l e { A _ 2 i n x , 
J-oo' J 2TT Jk"2 + 4 ik" - 2a, v ' ' 4(1 + < T I ) y-oo ' 7 2TT VA;"2 + 4 ifc" - 2ai 

or after performing the required integrations 

J J dt'dx'G(0,t-x',t')G(x',t';x',t')e2x' 

i ( 27raiCOsa 17r l+cosaxTr' 
(3.29) 

167r(l + cos a\ix) \ (1 — cos a^) sin a\Ti 1 — cos a\n J 

Therefore, the contribution of the type I I I (boundary-bulk) diagram to the reflection 

factor is 

i(32e2 ( 27raiCOsa 17r l + cosai7r\ 
87r(l + cosai7r) 3 y(1 — cosa!7r)sinai7r 1 —cosai7ry 

t dlO t s -f/_ i \ 1 . 
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Type III (bulk-boundary) 

Let us consider the type I I I (bulk-boundary) diagram when the loop vertex is at the 

boundary and the other vertex is inside the bulk region. So, the contribution this 

time is 

282 r° f f 
- - e 2 / dx dtd1/G(xi,tl;x,t)G(x,t;0,lf) 
(1 + cosai7r)2 J-oo J J 

x G(0, t'; 0, t')G(x, t\ x2, t2)e2x. (3.31) 

In fact, we have obtained the two middle propagators in the previous diagram. 

Hence, 

G(0,t';0,t') = - a i ^ ^ (3.32) 
sin aiir 

and 

/ dt'G(x,t;0,t') = - 1 e2x. (3.33) 

So, the contribution (3.31) can be shown in detail as (after doing the integration 

over t) 

i f } e aiCosa\-K 

(1 + cos ai7r)3 sin a\ix 

^ 9 ' A (eik'(*-^ + K0(k')e-^x+x^) e4x. (3.34) 
2TT LO2 - k12 - 4 v I I 

The integration over x is simply performed and therefore, the above expression 

becomes 

if}2e2 aicosaiir 
(1 -I - cos ai7r)3 sin a^n 

dw dk dk' 
I I I 27r27r27T u 2 - k2 - 4w 2 - k'2 - 4 

i iK0(k') iK0(k) iK0(k)K0{k') 
(3.35) 

[ k + k' - Ai k - k' - Ai -k + k' - Ai -k - k' - Ai t 

Clearly, the final job is to integrate over the momenta k, k'. This can be performed by 

completing the contours in the upper half-plane and picking up the pole at k = k = 

k' = \Ju)2 — A and regarding the fact that all the other poles have no contributions 
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because their residues yield exponentially damped terms in the asymptotic region 

i.e. x\,x2 —> —oo. Hence, the contribution of the type I I I (bulk-boundary) Feynman 

diagram to the reflection factor is 

/?V ^ c o s t u T T rduJc_lw(ti_t2)c_fk{xi+X2) 1 
(1 + cosa!7r)3 sina!7r J 2n (2k)2 

1 + l K 0 ( k ) - ^ — K 2

0 ( k ) \ . (3.36) 
[2k-4i 2 2k + Ai 

Type I I I (bulk-bulk) 

The last part of this section is devoted to the calculation in connection with the 

type I I I (bulk-bulk) Feynman diagram whose computations are much more lengthy 

than the previous ones. In fact, in this case the contribution is 

B2 r° r° r r 
1 6 - r-e 2 / dx dx' dtdt'G(x1,t1; x,t)G(x,t; x' ,t') 

(1 + cosaiir)2 J-oo J-oo J J 

G(x', t'; x\ t')G(x, t; x2, t2)e2xe2x' .(3.37) 

As was shown in the type I I I (boundary-bulk) case, the loop propagator can be 

simplified to obtain 

W . t t f . O = l [ ^ ' ( * ± ± p ) e - ™ > ' ' . (3.38) 

Moreover, for the other middle propagator, i t is appropriate to deal with 

J dt'G(x,t;x',t') = t J J J d t ^ ± J ^ - 4 

(3.39) 

or after doing integration over t' 

J dt'G(x, i ; x', t ) = J ^ ( - ^ ^ ) e-*"x' (eik"x + K0(k")e^"x) . (3.40) 

Let us rewrite the contribution (3.37) in the expanded form to see how we can 

find the order of the integrations in order to solve this contribution 

16 P2 

(1 + cosa^) 2 
f° dx f° dx' fdt ( I 

J—oo J—oo J J J 

dudk ie-^-V 
2TT 2-KUJ2 - k 2 - 4 

+K0(k)e-ik^+x)) 

—ik(x\ —x) 
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I J d k l 1 i k l + 2 ( 7 1 --Mfcix* X -
2 J 2 n sjk\ + 4 i k i ~ 2 c T i 

Looking at the above relation after mul t ip ly ing two (the first and the fourth) prop­

agators then, one gets four pole pieces. I f the calculations corresponding to one 

of them, for example the one which involves el(k+k')x term, can be done then the 

remaining three pole pieces may be performed in the same manner, except that 

k + k' is replaced by one of k — k', —k + k', —k — k'. So, i t is sufficient to follow the 

discussion just for one pole piece. Now as far as the integration over x' is concerned, 

we encounter the following integral which is solved to obtain 

[° d x ' e ^ k " + 2 k ^ ' = — — \ . (3.42) 
7-oo k" + 2kx + 2i v ; 

On the other hand, the same story for the variable x gives rise to 

f° d x ' e ^ k + k ' ^ x (eik"x + K0(k")e-ik"x) 

-K0(k"). (3.43) k + k' + k" -2i k + k' - k" - 2i 

Up to now, the expression which must be solved has the following form 

1 6 P2*? f f f d " d k d k ' c - i u > ( t 1 - t , ) c - i ( k x l + k > X 2 ) 1 i 

(1 + cosaiTr) 2 J J J 2ir 2TT 2TT U2 - k2 - 4 u 2 - k'2 - 4 

I f f dk" dkx 1 (iki + 2CTI \ / % \ f 1 \ 
X 2 J J 2TT 2TT J k j T l \ i k i ~

 2 c 7J U"2 + 4 / \-k" - 2kx - 2i) 

x + * + + t + v - ' f - M ^ ) ' ( 3 ' 4 4 ) 

I t is better, first of a l l , to integrate over k" and then k\ and the former job is actually 

the following integral 

J 2n k"2+ 4 - k " - 2 k 1 - 2 i \ k + k'+ k"-2i + k + k ' - k"-2i ^ ' ) ' 

(3.45) 

The above integral may be solved after doing part ial fractions and afterwards closing 

the contours in the upper or lower half-plane in order to get r id of all extra poles 

other than ±2i. Therefore, after some manipulation 

f d k ^ _ j , 1 / 1 1 „ \ 
J 2TT k"2 + 4 -k" - 2ki - 2i \k + k' + k" - 2i + k + k' - k" - 2% °^ V 
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_ 1 f l - f f ! 1 1 1 1 
~~ Ai 11 + CTI 2kx + Ai k + k' - Ai 2kx + Ai k + k' - 2kx - Ai 

1 1 \ ( \ 
~ k + k' - Ai k + k' - 2kx - Ai)' 

Now i t is the time to do the integration over kx. In order to perform this task, 

we have different kinds of integrals and we prefer to f ind only the one which is more 

lengthy than the others i.e. 

dkx 1 / ( 3 . 4 7 ) 
^/kj + Ak + k' ~2kx-Ai' 

Let us close the contour in the upper half-plane and due to the branch cut which 

extends f rom 2i to inf in i ty along the imaginary axis, the contour has to turn around 

the cut line so that the above integral reduces to 

2 r°° dy 1 
h y / y ^ A k + k' - 2iy - Ai ^3'48^ 

or after doing change of variable y = 2 cosh x 

2 f°° — ( 3 . 4 9 ) 
Jo k + k' — Ai cosh x — Ai 

and another change; ex = u 

• f°° ^ u 

V i u* + ±(k + k>-Ai)u + l ( } 

So, the following formula may be derived 

dkx 1 / yjk\ + 4 k + k' - 2*i Ai 

1 J ' + + + j ) / g g ^ . ( 3 . 5 1 ) 

Now we can write down the solution of the kx integration as 

1 r dki 1 / iki + 2ax \ (1 - ax 1 1 

8i J 2n ^ 2 + 4 \ikx - 2 a x ) 11 + ax 2kx + Ai k + k' - Ai 

1 1 1 
2kx + Ai k + k' - 2kx - Ai k + k' -Aik + k 

k + k' — 2i — 2i cos axn 
' - 2 k x - A i ) 

167r(l - cosa!7r)(A; + k')(k + k' - Ai) 
axcosaxir 2k + 2k'+ Ai cos ax-K — 12i 

16sin 3 axir (k + k' — Ai)(k + A;' + 4zcoso!7r - Ai) 
1 k + k' — Ai cos axn — Ai 

An{k + k')(k + k' - Ai) k + k' + Ai cos aXTr - Ai ^(k+k'-W 

1 + x ( , + y _ 4 i ) + , N / a ± ^ + 4 ; 



3.2. T y p e I I I F e y n m a n d iagram 67 

Finally, regarding the type I I I (bulk-bulk) contribution, all that remains is to inte­

grate over the momenta k,k'. These can be done by means of the contours in the 

upper half-plane and considering the pole at k = k = k' = \Jio2 — 4 and ignoring all 

the other extra poles because their residues w i l l vanish when Xi,x2 —> — oo. Hence, 

the relation ( 3 . 3 7 ) has the solution 

A e2 f ^ - t w ( t i - t 2 ) e - i * ( x i + s 2 ) _ L 
' J 2ir ( l + cosai7r) 2 J 2ir (2k) 2 

k — i — i cos a\TT ^aiCOsai7r k + icosai7r — 3i 

7r(l - cosa1vr)A;(2A; - 4i) sin 3ai7r (k - 2i)(k + 2i cos - 2i) 

1 k — 2i cosajTr — 2i 1 

nk(k — 2i) k 4- 2% cos a\ir — 2% (J~ _ 2i)2 + 4 

x l n , i + j ( k - 2 i ) + y ( k - 2 i ) * + 4 

1 + - 2i) - y { k - 2 i ) 2 + 4i 

/ i i a i cos ai7r(cos ai7r — 3 ) ?(1 + cos ai7r) 
+ A 0 ( A ; ) [ - ^ 3 7 ; ^, o • 3 / 1 — T T T T ^ r + 27r(l — cos ai7r) 2 2 sin ai7r(l — cos a\n) 127r(l — cos a 17r) / 

k + i + i cos aiix a\COSdiix k — i cos a\it + 3i 

,7r(l - cosai7r)fc(2fc + 4?) s i n 3 ^ (fc + 2i)(fc - 2i cos ax-K + 2i) 

1 k + 2icosai7r + 2i 1 

7rA;(A; + 2Z) — 2i cos ai7r + 2z ^(fc + 2i)2 + 4 

U - i(fe + 2i) - fV(fc + 2z) 2 + 4 . 
One of the interesting results which we f ind in this chapter is the fact that 

the In terms in the above relation w i l l be cancelled w i t h the counter terms in the 

type I (bulk) Feynman diagram in the next section. So, the type I I I (bulk-bulk) 

contribution takes the simple form 

(3 2 f d u ! c _ i w ( t l _ t 2 ) c _ i ' k ( x i + X 2 ) 1 
|7T V J ( l + cosoi7r)2 J 2TT (2k) 2 

k — i — i cos a\TT ^a iC0sa i7 r k + i cos aiir — 3i 

7r(l - cosai7r)A;(2A; - 4i) s i n 3 ^ (k - 2i)(k + 2% cos axix - 2i)) 

,~. / i iai cosai7r(cosa\ir — 3 ) z(l + cosa!7r) 
-\-I\o(k) I — — — o h -

\ 27r(l — cosaiiry 2sin ai7r(l — cosai7r) 127r(l — cos aj7r) 
r^2/T\ ( k + i + icosai-K aiCOsai7r k — i cos a\ir + 3i 

+ K o ( k ) \ — N f / ^ r . ,.x - TTTs 7r(l - cosa!7r)A;(2A; + 4i) shraiTr (k + 2z)(A; - 2i c o s a ^ + 2i) J J 
( 3 . 5 4 ) 
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3 . 3 T y p e I F e y n m a n d i a g r a m 

T y p e I ( b o u n d a r y ) 

In fact the type I diagram constitutes two cases depending on whether the inter­

action vertex is located at the boundary or inside the bulk region. From now on 

we call the former type I (boundary) and the latter, type I (bulk) . Considering the 

boundary four point coupling (3.3) and the associated combinatorial factor as well, 

the contribution corresponding to the type I (boundary) diagram is described by 

^ 1 + 6 - 4 ( ^ +

+ ^ ) 2 6 ^ £ ^ G ( x , i ; 0 , t " ) G ( 0 , f ; O , f ) G ( 0 ) t " ; i ' , t ' ) . 

(3.55) 

Let us find the appropriate fo rm of the two-point Green funct ion which w i l l be 

used many times throughout this section. Now by looking at the general form of the 

propagator (2.44) and considering the expansions of the classical reflection factor 

(3.9) and the funct ion f ( k , x ) i.e. (3.7) as well, the required form of the two-point 

Green funct ion w i l l be 

G ( x , t ; x , t ) - i J J — — 1 + 4 ( 1 ) 2 Trj—Yf 
4(1 + a x ) 2 (ik + 2) 

2 1 
e4x' \ eik(x-x') 

4(1 + C T I ) 2 ( i k - 2 ) 

e2 1 e2 1 
+ { K ° 4(1 + a 1 ) 2 ( i k - 2 / X K o 4(1 +a,)2 W ^ l / * ' K { 

+eK, + e 2 ^ 2 ) e - ' f c ( l + I ' ) | . (3.56) 

So, in our problem the middle propagator has the following fo rm 

G ( 0 , ( » ; 0 , 0 = / / ( l + K 0 + , K l + ^ 

e2 1 e2 1 \ 
" 4 ( 1 + a,)2 (ik» - 2) " 2(1 + ax)2 (ik» - 2)K° + " ( 3 > 5 7 ) 

First of all i t is necessary to do a minimal subtraction in order to remove the 

divergence of the above integral. Secondly, we have solved the integral in chapter 

2 up to first order in e . Hence, what we need to do is to solve that part which is 

proportional to e2 which includes four terms. Actual ly three of them can be simply 
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manipulated and because of this reason we solve in detail the last one i.e. 

duo" dk" 1 r f dw dk I Q /1 a \ / x 

/ / l 7 w - t « - 4 e j ^ > < 3 ' 5 8 > 

or 

1 [ dk" 
I 

-:<? I w o „ . + 
2 7 2TT V A ; " 2 + 4 \ 4 ( c r i ~ 2 c r i + + 2«) 4(1 + ax)2(k" - 2i) 

iax(a2 - 2(7! - 1) 1 a2-2 1 
(1 + ax)(af - o\ - ox + 1) (*" + 2 2 ^ ) (1 + ax){ax - 1) (&" + 2%ax)2 

Fortunately, we have already found these kinds of integrals in chapter 2 except 

the last one which apart f r o m the coefficients is 

r dk" 1 
J Vkij2~T4(ik"-2aiy ( 3 ' 6 0 ) 

The above integral can be converted to a complex one and regarding the branch cut, 

i t reduces to 

~2L W=%{y + 2a1y ( 3 ' 6 1 ) 

or after the substitution y = 2 cosh x 

1 r°° dx , 
4 Jo (cosh x + f i ) 

and another change ex — u 

roo 
-2 / du—-.— — . (3.63) 

Ji (u2 + 2axu + 1 ) 3 v ' 

The roots of the denominator are — e

± i a i 7 r and so, after using part ial fraction and 

some manipulation 

r dk" 1 3cosai7r l + 2cos 2 ai7r 

J Tk^TZ W ^ ^ i f ' = 8 sin 4 axn 8 s i n 5 a l 7 r ^ ( 3 ' 6 4 ) 

Now using the above formula and the required formulas in chapter 2, we may 

obtain the following result 

dw" dk" 1 
/ I ^ ^ u " - k " 2 - / K 2 { k " ) 

e2 ( \ + cosaxir + cos 2 a x i r cosai7r(2 + c o s a ^ ) 
47r \ s in 4 axn s in 5 axix 

aX7r) . (3.65) 
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Finally after doing the necessary simplifications in connection wi th (3.57), we derive 

the middle propagator as 

c o s a ^ / cosai7r ax // „ //s C0Sai7T / 
G 0 , t " ; 0 , f = - a ! - — + e 

sinai7r V sinai7r \27rsin axir 2 sin axix 

2 ( 2 + cos 2 axir 3cosai7r 
47r s in 4 ax7r 47r s in 5 axTV 

2 A - r w o 1*1/1 o^uou-i/i i . . 
+ e I , • 4 7 1 3 7 7 ° ^ I • ( 3 - 6 6 ) 

Let us rewrite the boundary contribution (3.55) and first of all the t" integration 

means to' = to i.e. the energy variables of the first and the th i rd propagators are 

equal. Secondly, the integration over the momenta of the two Green function can 

be done as before, just by substituting k, k' w i th k = y/co2 — 4. So, the type I 

(boundary) contribution is 

i /? 2 / ax + 2 2" 

cosai7r / cosai7r ax 

—ax — 1- e 

/ 

sinajTr \27Tsin ai7r 2 sin axir 

2 (2 + cos2 axir 3 cos ax-n N 

+ C ~A ~i ~A a l 7 f 

\ 47rsin axn 47rsin aXTr } 

d u )

 c-iu>(t-t')c-i'k(x+x') 1 

2TT (2k) 

2ik 2ik 
+ 

2 

[ik-2ax (ik-2al)2 

ik(-ik3 + 2k2 - \ikox + 6k2ax + 16 + 16cri) J . 
H 1 — = - — -<? \ . (3.67) 

2 ( l + cr1)(zA;-2)(zA; + 2)(-zA; + 2cr 1) 3 J 

Type I (bulk) 

Now let us examine the type I (bulk) Feynman diagram in which the interaction 

vertex is placed inside the bulk region. This t ime we have to take into account the 

bulk four point coupling (3.5), however, the related combinatorial factor is the same 

as the boundary case. The corresponding contribution may be formulated as 

/

oo r0 
dt" / dx"G(x, t; x", t")G(x", f - x", t") 

-00 J—oo 

G(x", t"; x', t') (l + 2{1

€*ai)2e4x"^J • (3-68) 

By means of looking at the formula (3.56), the loop propagator for the two-point 

Green function is 

file:///27rsin
file:///27Tsin
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duo"dk" 1 f t2 1 4 , 
-e 

e2 1 

2?r 2TT a/' 2 - k"2 - 4 [ 4(1 + a x ) 2 (ik" + 2) 

4x" 
-e 4(1 + a 1 ) 2 (iJfc" - 2) 

As before, after performing a minimal subtraction, the divergence of the loop 

integral w i l l be removed. Moreover doing integration over to", we then obtain 

II ,11, // . / / \ C \x" G(x",t";x",t") = 
87r(l + ( 7 I ) 2 

1 fdk" 1 ( K e2 1 4 x „ 
+ 2 7 2 7 r v

/ P 2 _ T 4 V ° 2 ( l + a 1 ) 2 ^ " - 2 ) e 0 

+ e K 1 + e 2 K 2 ) e - 2 i ' : " x " . (3.70) 

Therefore, un t i l now, the bulk contribution (3.68) takes the form ( after doing 

the t" integration and setting k —> — k in the first term of the first propagator ) 

r° , „ r rdu dk ? e - M * - t ' ) ( / E 2 X „•> r , ii f f die le ^ —' / 
4(1 + a,)2 (ik + 2) 

e 4x 

i ! l _ e 4 x " \ e - t fc(x-x") 
4(1 + a x ) 2 (ifc - 2) 

e2 1 e2 1 _ „ 
o 

\ 
4 I „ 1 frfA;" 1 / 1 

+ 2 7 2TT ^ / A ^ T 4 l ° 2 f l + C r 1 ) 2 W - 2 ) 0 

+eK1+e2K2^e-ik^x+x'^ 

e2

 A , , 1 f c ta" 1 / e2 1 

87r(l + a ! ) 2 2 J 2TT V * " 2 + 4 V 2(1 + <7i)2 (ifc" - 2) 

+ e K 1 + e 2

J f t r 2 ) e - 2 i f e " 1 " 

2TT w 2 - A;'2 - 4 [ V 4(1 + ax)2 (ik' + 2) 

e2 1 

4(1 +ax)2 (ik' -2) 
e4x' \ eik>(x"-x>) 

+eKt +e 2 t f 2 ) <.-*<«"+•'> J 

1 + 5 ( T ^ F e 4 i <3'71' 
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or after integration over x" 

du dk dk'c-iu,(t-t')c-i(kx+k'x') 

2ir 2TT 2TT U 2 - k2 - 4 to2 - k'2 - 4 
dk" e2 L , , . „ , / 1 1 1 

J 2TT ^ f k ^ T J ] y ' 2TT y/k"2 + 4 i V 4 ( 1 + ( T i ) 2 ^ + 2 A ; + A ; ' - 2 A ; " - 4 i 

1 1 1 
4(1 + CTI) 2 iifc' + 2 Jfc + fc' - 2k" - 4i 

1 1 Ko(k') 1 1 #„(*;) 
4(1 + a\)2 ik + 2 k — k' — 2k" - 4i 4(1 + ax)2 ik' + 2 k ' - k - 2k" - 4% 

1 1 K0{k') 1 1 K0(k) 
4(1 + a{)2 ik' - 2 k - k' - 2k" - 4i 4(1 + a^2 ik - 2 k' - k - 2k" - 4i 

1 1 K0(k)K0(k') 1 1 K0(k)K0(k') 
4(1 + crO2 ik' - 2 k + k' + 2k" + 4i 4(1 + o^) 2 ik - 2 k'+ k + 2k" + 4z 

-K2(k') + p r-K2(k) 
k-k'-2k" v ' k'-k-2k" 

1 -Ko( fc )^ 2 (^ ' ) - K ^ ' ) ^ ) k + k' + 2k" v 7 v ' k' + k + 2k 

- k ^ V T W > K ^ K ^ 

+ 1 — r , — T ^ J , — j i M k ) 2(1 + crO2 ik" -2 \k + k' - 2k" - 4i k - k' - 2k" - 4% 

1 „ 1 
k' - k - 2k" - 4i 

1 „ 1 
k' - k - 2 k 

M k " ) [ L , * + T - r A ^ - r : K 0 ( k ' ) 
2(1 + <T!) 2 u v ' \k + k' - 2k" -4i k — k' - 2k" - 4i 

1 M k ) - T — i r A r ^ ^ ) M k ' ) ) ) . (3.72) k' - k - 2k" - 4z u v 7 A; + it' + 2k" + 4i 

Meanwhile, there is another term which should be considered 

-e y 'e 2?r(l + fT i ) 2 J J J 2?r 2TT 2TT U; 2 - A;2 - 4 UJ2 - k'2 - 4 

{k + k'-4i + k - k' - 4 i K ° { k , ) 

+ ¥ ^ i

K ^ + - k - l - ^ K ^ ) - ^ 
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After this stage the calculations, especially integration over k", are too lengthy 

to perform. Note all the terms involving the following kind of integral 

dk" 1 / ̂ k"2 + 4 k + k'- 2k" 

which is proportional to 6 (after integrations over k and k'), w i l l be cancelled and 

this is one of the interesting facts that may be found. On the other hand, there are 

some other terms which contain this type of integral 

dk" 1 / y/k"2 + 4 k + k' - 2k" - 4i 

and apart f rom one of them, all the others cancel w i t h the counterpart terms in 

the type I I I (bulk-bulk) Feynman diagram as we mentioned in the previous section. 

Meanwhile further simplification can be made by using the values of k and k' given 

by their poles and simplifying the integrand. So the type I (bulk) Feynman diagram 

has the following contribution 

i(32e2 f du) i L J ( t - t ' ) „-ihx+x') 1 e r r r 
7T J 

-iuj(t-t') g-ik(x+x') 

2-n (2k) 2 

cosai7r axn 1 1 1 1 / r \ 
+ —2—T2 ~K0(k) [ (1 + cos aivr) 2 sin axir ik + 2 ik - 2 cos aXTT + 2 sin ax-n k2 + 4 

2cosa!7r axn 1 cosai7r aXTi 1 K^(k) 
o ' ~ ^0\k) — T « ~ 

sin'2 axn sin axn k2 + 4 (1 + cos ax-n)z sin axn ik-2ik + 2 cos ai7r - 2 

( 1 ai7r 2iA; 7r \ r^ ? 

- - 4- + , K2(k) 
4 s m o i 7 r i f e - 2cosai7r J k 2 + 4/ 

( 1 ai7rcosai7r\ 2ik r , ai7r zA: 
- 7r^r~2 ^ - T - i — — K x ( k ) + - r 1 = K 2 ( k ) 

V2sin^ai7r 2 sin ax-n J ik - 2 cos axn sin OITT ifc + 2 cos ai7r 
ai7rcosa 17r(2cosai7r — 3) 1 i 1 

2(14-cos ai7r) s in J ai7r ife - 2cosa!7r + 2 4 s i n a 1 7 r A ; 

/ai7rcosai7r(2cosa 17r — 3) 7 cosai7r \ -
+ I c 1 o 1" 7^ I •'^OV"') 

\ 2 sin axn 12sin axir 2sm axnJ 

( ai7rcosai7r(3 - 2cosa!7r) 1 1^2d\ , i 1 

+ 

2 ( 1 + cosa 17r)sin 3a 17r ik + 2 cos ax-ir - 2"VV"J ' 4s in a oi7r fc ' 

i / ax-n \ (1 + cos2 ai7r)A; — 4zcosai7r 1 

4 \sinai7r / ° ; ~ 4 axn J sin axir k2 + 4 
1 / axn \ cosai7r r 

T 1 — K0(k) 
4 \sinai7T / sin axir 

axir \ (I + cos2 axir)k + 4icosaxir 1 

4 Vsinai^ / sin 4ai7r k2 + 4 

(K2(k) + K0(k)K2(0) + K2(k)K2(-k)) 
2sinai7r v ' 

K2(k) 

file:///sinai7r
file:///sinai7T
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cos 2ai7r — 2 / 1 ai7rcosai7r 
+i 

s h ^ a j f l - \ 2 s i n ajTT 2 sin aiii 

( — ~ " 77—^ M k ) = K*{k) 
\2{k + 2icosa1iv) 2cosa!7r 2(A - 2zcosai7r) , 

( 1 ai7TCOSai7T 
—4cosai7r I 2 5 

\ 2 s i n a\TT 2sm ai7r 

( —~ " i \ K0&) + —~ 1 KoCk) 
\2{k + 2i cos a^ir)2 4cos^ai7r 2(k - 2% COSai7Tjz , 

( 3C0S<2i7T d i 7 r ( l + 2 COS 2 Ol7r) \ 
— T " i r - 5 
8 sin 8 sin / 

' 1 ' Ko(k) — —j T~ - K 2

0 ( k ) ) 
\2(k + 2icosa1Tr) 2cosai7r 2(k - 2i cosa^) 

+ir/2K0(k)K2(0) 

i I ik + 2 cosai7r + 2 1 

2(1 + cos ai7r) 2 y^fc - 2 cos ai7r + 2 _ 2z) 2 + 4 

x l n / l + i ( f c - 2 ^ ) + | y / ( f c - 2 z ) 2 + 4 

V l + \{k - 2i) - i ^ / ( f c - 2 i ) 2 + 4 

r2 /T\ — ^ + 2 COS ai7T + 2 1 

!fc - 2 cos ai7r + 2 ^/(jfc + 2z) 2 + 4 

x l n f ^ M ± ^ ^ ^ ) U . (3.74) 
V l - i ( ^ + 2 z ) - | v / ( f c + 2z) 2 + 4 / / J 

3.4 Type I I Feynman diagram 

Type I I (boundary-boundary) 

This section deals wi th the type I I diagrams and in this case we encounter three 

distinguishable contributions as a result of the fact that the interaction vertices can 

be placed at the boundary or inside the bulk region. I t is instructive to start w i t h 

the simplest one i.e. the type I I (boundary-boundary) contribution which may be 

expressed in terms of the following integral 

~4(/+C x ) 2
 / / M , G ( I ' - f ' i 0 ' 4 ) G ( 0 ' t i f l ' t ' ) G ( 0 > t i 0 ' ^ ( 0 , ^ 2 , t 2 ) , (3.75) 

where, as for the type I I I diagram, the propagator is given by 

(3.76) 

file:///2sin
file:///2sin
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Therefore, ( 3 . 7 5 ) w i l l be equal to 

4(1 + CTi)2 J J J J 2 T T 2 T T UJ\ - k\ 

dudk t e - M t - 0 , 1 

1 + K0(k) 1 1 2 T T 2 T T CJ2 - k2 - 4 

Let us rewrite the £ and t ' integrations along w i t h their results i.e. 

/
di 

ZTT 
and 

r di' 
/ ^ L e - ^ ( - + - ' - o ; 2 ) = ^ + U J > _ ( 3 7 9 ) 

J 2ix 

In other words, the above Dirac delta functions implies u)2 = uj\ and, at the same 

time, LU' = u)\ — u. So considering these two substitutions in ( 3 . 7 7 ) , we obtain 

Integrations over k\ and A:2 can be simply done in the final stage just by substituting 

k\ = & 2 = ki = k2 = \]UJ2 — 4. So the crucial part of the calculations is 

r r r dudkdk' i i 2ik 2ik! 
J J J 2^2^2nu2 - k2 - 4 fa - to)2 - k'2 - 4 ik - 2ax ik' - 2ax ' 3 " 8 1 ' 

First of al l i t is better to perform the u) integration. Otherwise, we w i l l encounter 

more diff icul t integrals. Meanwhile, integration over u may be achieved by closing 

the contour in the upper half-plane and collecting two poles at y/k2 + 4 and u\ + 

y/k'2 + 4. Hence, ( 3 . 8 1 ) reduces to 

dkdk' -Akk' ( 1 i 

2^2^(ik-2a1)(ik'-2a1) V 2 V F T 4 fa - x / F T I ) 2 - k'2 - 4 

+ 2 A A ' 2 + 4 ( W l + ^ P T 4 ) 2 - k 2 - 4 ) ^ 3 ' 8 2 ^ 
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Now this time in order to integrate over k', as before, the required contour would 

be in the upper or lower half-plane depending on whether a\ is greater or less than 

zero respectively and considering the pole at k = y j f a - \ / F T 4 ) 2 - 4. So, (3.82) 

becomes 
r dk -k 1 , 

. „ = + U i - > - U i . (3.83) 

Therefore, up to now the type I I (boundary-boundary) contribution takes the form 

(32e2 [dun l u ) l ( t l _ t 2 ) ^ ~ k l ( x i + X 2 ) 1 (2ikx)2 

J 2TT 

dk —k 
4(1 +en)2 J 2ix ( 2 ^ ) 2 (ikx - 2ax)2 

/
dk —k 1 
2 ^ w r t ^ - 2 ^ ) ^ - 2 ^ ) + W L _ A ; I ( 3 - 8 4 ) 

Type I I (boundary-bulk) 

Now let us consider the type I I (boundary-bulk) Feynman diagram and i t is clear 

that this diagram has the same contribution as the type I I (bulk-boundary) one, 

due to the symmetry which is involved in the diagrams. This t ime the contribution 

may be formulated as 

2B2e2 r r r° 
— - / / dtdt' / dxG(xx,tx;x, t)G(x, t; 0, t')G(x, t\0, t')G(0, t'; x2, t2)e2x 

(1 + G\)1 J J J-oo 

(3.85) 

or using (3.76) for the propagators 

{1+a^'JJ J -oo J J 27T 2TT - k\ - 4 V n ' I 

As i t was shown in the previous diagram, integrations over t and t' means iv2 = UJX, 

u>' = u)\ — u). Moreover the integration over x can be done to obtain 

2i(32e2 i rdux dkx t e - * " (*'-*») _ i J t i I i 

(l+ax)2 J 1 2ir 2TT UJ2

x - k2

x - 4& 

ki - k - k' - 2i 
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- k i - k - k ' - 2% 

Afte r this stage i t is sufficient to use the same procedure that we followed in 

the previous diagram and after some manipulation the type I I (boundary-bulk) 

contribution w i l l be 

2i(32e2 , ^ i e _ J W l ( t l _ t 2 ) e ^ l ( x i + : C 2 ) 1 {2ihY I (l + a^J 2TT (2fcj)2 {ikx - 2cn)2 

dk -k 1 I \ r dk 
J 2n y/W+4 {ik - 2ax)(ik' - 2ax) \ k x - k - k ' - 2% 

- k i - k - k ' -2%) 
+UJX -> -cox. (3.88) 

Type I I (bulk-bulk) 

In the last part of this section, the type I I (bulk-bulk) Feynman diagram is studied 

whose calculation is much more lengthy than the previous ones. In order to find the 

contribution of this diagram to the reflection factor we have to find this integral 

l682e2 r r r° r° 
„ >9 / / dtdt' / / dxdx'G(xx,tx;x,t)G(x,t;x',t')G(x,t;x',t') 
(1 + 0\Y J J J-ooJ-oo 

G(x',t';x2,t2)e2xe2x' (3.89) 

or in its expanded form 

f [ d t d t > [° [° d x d x , f f * " ^ ^ ( t l " t ) f c » , f a - « ) 

(1 + a x f I J i - o o 7-oc d J J 2TT 2TT UJ2 - k 2 - A \ e 

+ K 0 { k 1 ) e - i k l { x i + x ) ) 
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Now, as before, the integrations over t and i! generate two Dirac delta function 

which allows these substitutions; U\ = u2 and u' = u)\ — u. Besides, integrations 

over x and x' can be done easily but they w i l l give rise to lots of terms and i t is 

convenient to adopt a shorthand notation via defining a funct ion which w i l l be clear 

later. Hence, (3.90) reduces to 

16/?V III^1 ^ dk2--iuJl(ti-t2)^(klX'+k2X2) 

(1 + a i ) 2 J J J 2TT 2TT 2TT U)\ - k\ - 4u2 - k\ - 4 

/ / / 2 ^ 2^ 2 ^ u ; 2 - k2 - 4 (ux - co)2 - k'2 - A 1 ^ 1 ' *2' *' k > ) 

+K0{k1)f{-k1,k2, k, k') + K 0 ( k 2 ) f ( k u - k 2 , k, k') 

+ K 0 ( k l ) K 0 ( k 2 ) f ( - k u - k 2 , k, * ' ) } , (3.91) 

where 

f ( k u k 2 , k , k ' ) 
1 i 

i 

+ k + k' -
i 

-2ik2- - k - k ' -
iK0{k) 

2i 

' * i 

i 

- k + k' 
i 

- 2% k2 - k - k ' -
iKo(k') 

-2i 

'*! 
1 

+ k - k ' 
iK0(k) 

- 2i k2 - k - k ' -
iK0{k') 

- 2% 

- k - k ' - 2i k2 - k - k ' -- 2i 
(3.92) 

Integration over u may be performed as before, i.e. exactly what we have done in 

the type I I (boundary-boundary) case. However, i f we then integrate over k', this 

time, in addition to a pole at k' = k' = \J(u)\ — \Jk2 + 4 ) 2 — 4 in the upper half-

plane, we w i l l have extra poles due to the functions f(±ki,±k2,k,k'). So, we have 

to make sure that the residues of these poles are considered as well. Hence, after 

some calculations, (3.91) is converted to 

(1 + COSai7T Y2J J J 2TT 2TT 2TT u \ - k \ - A u j l - k l - A 

/
dk 1 1 f 
— 4 ^ / _ _ _ ^ | / ( f c 1 , k2, k, k') + ffo(*i)/(-*i, k2, k, k') 

+K0(k2)f{kl, - k 2 , k, k') + KoikJKofam-ku-kt, k, k') 

+g(h, k2, k,ux) + K0(ki)g(-ki, k2, k, ui) 

+K0(k2)g(kl, - k 2 , k,u>i) + Ko(ki)K0(k2)g(-ki, - k 2 , k, wi) 
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+h(kx,k2,k,ux) + K0{kx)h(-kx,k2,k,ujx) 

+K0{k2)h(kx,-k2,k,ujx) + K0(kx)K0(k2)h(-kx,-k2,k,^(3.93) 

where 

2 1 
g(kx,k2, k, UJX) = . (3.94) 
y K ' ' ' { u j l - s / W T l ) 2 - { 2 i - k l - k y - A k l ^ k 2 - A i K ' 

and 

2 1 
h(kx, k2, k.ui) = ? = = ~, ; • (3.95) V ' ' ' (ux- v / F T I ) 2 - (2i - kx + k)2 - 4 kx + k2 - 2k - Ai K ' 

Note i f we substitute the functions / , g and h inside the bracket in (3.93), doing 

the ki and k2 integrations and after some simplification, the type I I (bulk-bulk) 

contribution w i l l have the form 

4/? e f dui _ i u ) l { h _ t 2 ) f k i { x i + X 2 ) 1 / (1 + c o s a i 7 r ) 2 J 2TT {2kx) 

/ dk 1 1 / 1 K0(k) 

2TT v/fc 2 + 4 fc' i (ki - 2i)(k' + k - k x + 2i) (kx - k - 2i)(k' + k - kx + 2i) 

KQ(k') K0(k)K0(k') 

( k ' - k - k i + 2i)(k' + k - kx + 2i) (k' + k - k x + 2i)(k' + k - kx + 2i) 

iK0Ckx){k'+ 2i) 

(k' - k + kx + 2i)(k' + k - k x + 2i) 

2K0{k1)K0{k){k + k' + 2i) 

(k' + k + kx + 2i)(k' + k - kx + 2i)(k + 2i) 
2K0(ki)K0(k') 2K0(kx)K0(k)K0(k') 

(k' - k + kx+ 2i)(k' + k-kx+2i) (k1 + k - kx + 2i)(k' + k + kx + 2i) 

K0(kx)KoCk2) K0(kx)K0(k2)K0(k) 
(kx + 2i){k' + k + kx + 2i) (kx + k + 2i)(k' + k + kx + 2i) 

K0Ckx)K0{k2)K0Ck') K0Ckx)K0(k2)K0(k)K0(k') 

(k' - k + kx + 2i)(k' + k + kx + 2i) (k' + k + kx + 2i){k' + k + kx + 2i)) 
+cox -> -ux. (3.96) 

3.5 Discussion 

In this chapter we tried to find second order quantum corrections to the classical 

reflection factor of the sinh-Gordon model at one loop order. I n fact, we evaluated 
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ten contributions including two for the type I , four for the type I I and four for 

the type I I I diagram. We completely did the calculations relating to the types 

I and I I I Feynman diagrams. However, in connection w i t h type I I diagram the 

calculations s t i l l are in progress. In this case the two middle Green functions are 

exactly identical. Then the middle momenta are not related to each other in a 

simple way and the computations become more intricate. Note the contribution of 

the type I I (boundary-bulk) is the same as the type I I (bulk-boundary) because of 

the symmetry involved in these diagrams. 

I t is understood that i f the second order calculations are finished then, the 

Ghoshal's formula w i l l be checked much more deeply than the first order calcula­

tions. Meanwhile the conjecture (2.102) in chapter 2 could be verified perturbatively 

at higher order. 



Chapter 4 

On the quantum reflection factor 

for the sinh-Gordon model wi th 

general boundary conditions 

4.1 Introduction 

In recent years there has been considerable interest [22,56,57,63,64,69] in perturba-

tive affine Toda field theory. The motivation behind this fact is that the boundary 

S-matrices of the models are largely unknown. The most progress has been made 

for affine Toda field theory for which the general form of the boundary S-matrix 

has been found by Ghoshal [41]. In fact, the boundary bootstrap equations yield the 

boundary S-matrices up to some unknown parameters. The perturbation method 

not only provides an additional check of the results which come from the bootstrap 

technique, but also it could make a connection between the unknown parameters of 

the boundary S-matrices and the boundary parameters which are involved in the 

Lagrangian formulation of the theories. 

In chapter 2 we obtained the quantum correction to the classical reflection factor 

of the sinh-Gordon model at one loop order when the boundary parameters are not 

equal. However, the calculations were restricted to first order in the difference of 

the two-boundary parameters. Then, by comparison of our result with Ghoshal's 

formula we conjectured a relation between the parameters of Ghoshal's formula and 

the boundary data up to the first order. This chapter extends the results of chapter 

81 
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2, by calculating the quantum reflection factor for any value of the boundary param­

eters. It is found that most parts of the one loop quantum corrections to the classical 

reflection factor of the sinh-Gordon model which are calculated partially, may be 

expressed in terms of the hypergeometric functions. This result and how it could 

relate to Ghoshal's formula is discussed in the conclusions. The model is considered 

at low order perturbation theory and under integrable boundary conditions. 

4.2 Low order perturbation theory 

As we mentioned in chapter 2 in general, for a model of affine Toda field theory, the 

perturbation theory is studied around the static background solution to the equation 

of motion of the model. Therefore, the standard Feynman Rules may be used. In 

connection with the sinh-Gordon model, i t was shown in chapter 2 that the classical 

static solution is given by 

r- 1 -L- z>2(l-Xo) 
eP4>o/V2 =

 1 + e 

]_ g2(i—xo) ' 

Meanwhile, it was seen that after linear perturbation of the field equation and the 

boundary condition in this background, the two-point Green function corresponding 

to the model has the following form 

+ K(k)S(-k, x)f(-k, x ' )er"* + " '>) , (4.1) 

where 
... , ik - 2coth2(a; - x0) ., _ 

} ( k ' x ) = S*?2 ( 4 ' 2 ) 

and the classical reflection factor is 

/ (ik)2 + 2ikVTT^VlT^ + 2(aQ + g l ) \ / i f e - 2 \ 
{(ik)2 - 2ikJTT^vrLlr^ + 2(a0 + ax)) \ik + 2j' { ' ' 

In the expression (4.1) for the propagator, the classical reflection factor appears as 

the coefficient of the reflection part of the free field two-point function calculated 

within the classical static background. Now following the idea introduced by Kim 

[56] and developed by Corrigan [64] to calculate perturbative corrections to the two-

point function and then to identify corrections to the classical reflection factor by 

picking out the coefficient of e -* k ( x + x ' ) a s x,x' —> —oo. 
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In order to calculate the one loop quantum correction to the classical reflection 

factor, we use the standard perturbation theory which is generalised [56,57,64,69] 

to the affine Toda field theory on the half-line. In general, at (0((32)) there are three 

basic kinds of Feynman diagrams which contribute to the two point propagator of 

affine Toda field theory. These are shown in figure 1 in chapter 2. These will be 

computed in configuration space noting that each vertex may either be situated 

at the boundary or within the bulk. In effect, there are ten contributions to be 

calculated. 

I t is evident that four point couplings are involved in type I diagram and they 

may be formulated by means of expanding the bulk and the boundary potential (see 

chapter 2). So, 

^ l = ^ 2 c o s h ( v / W o ) (4.4) 

and 

CltLdary = g {o,W* + a 0 e ~ ^ ) . (4.5) 

Clearly, the three point couplings corresponding to the bulk potential and the bound­

ary are included in types I I and I I I diagrams and actually they are 

C < i = ^ / ? s i n h ( v ^ > o ) (4.6) 

and 

ClLdary = - ooe-»»«*) • (4.7) 

By inspection of the forms of the three point and four point couplings which we 

have found in chapter 2, it is clear that all types of these diagrams are involved in 

our problem. 

In fact, when the boundary parameters are not equal then, the calculations 

corresponding to the one loop order in the sinh-Gordon model are lengthy and 

intricate. In the following sections we try to compute the contributions of types I 

and I I I diagrams to the reflection factor. The remaining diagrams will be treated 

elsewhere. Meanwhile, it is instructive to start with type I I I . 
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4.3 Type I I I diagram (boundary-boundary) 

In this section we shall calculate the contribution of the type I I I diagram to the 

reflection factor when both vertices are located at the boundary x = 0. So, we are 

led to the following integral 

ft1 

— — {p\ coth^o — CTotanhxo)2 

x J J dtdt'G{x1,t1;0,t)G{0,t;0,t')G(0,t'-0,t')G(0,t;x2,t2) (4.8) 

in which the combinatorial factor has been taken into account. 

Let us start by looking at the loop propagator (7(0, t'; 0,t'), which is equal to 

+K'(k')f(-k',0)f{-k',0)), (4.9) 

where 
/ ( / t , 0 ) = * ± 2 c o t h 2 £ . 

IK + 2 

and K'(k') is the classical reflection factor (4.3). After some manipulation, we obtain 

dco' dk' 

2ik! (ik' - 2 coth 2x0) 
x (ik')2 - 2ik,

y/T+^~QS/T+~j{ + 2(a 0 + <7i)' ( , U ) 

The above integral is clearly divergent however, the divergence can be removed 

by the infinite renormalization of the boundary term. In other words, considering 

the following relation 

2ik' (ik' - 2 coth 2x0) 
(ik')2 - 2ik,s/TTaQ^/T+~a~l + 2(a0 + ^) 

ik' (VI + 0o \ / l + °\ ~ c°th 2a:0) - (OQ + cri) 
= 2 + 4 ^ ' - - (4 12) 

(ik')2 -2ik'y/T+^y/T+^ + 2(<r0 + a1) ' { ' ' 

it is seen that a minimal subtraction of the divergent part can be made by adding 

an appropriate counter term to the boundary, replace the logarithmically divergent 

integral by the finite part. Hence, 

cko' dk' 1 G(0, t'; 0, t') = 4i J j 2TT 2TT U'2 - k ' 2 - 4 + ip 

ik' (y/1 + a0y/l + cri - coth 2rr0) - (a0 + <Ji) 
X (ik')2 - 2ik'JTT^VTT^l + 2(a0 + ^4'13^ 
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The integration over ui' may be performed by closing the contour into the upper 

half-plane and collecting a pole at ui' — \Jk'2 + 4 so that 

fdk' 1 ik' + (To\A + ffi - coth 2x 0 ) - (cr0 + ffi) 
(7(0 i ' 0 i ) = 2 / - -

K ' ' ' V 2TT VA:'2 + 4 ( 2 / c 0 2 - 2 ^ ' v / r T ^ v ^ r T ^ + 2(a 0 + ( J 1 ) 

(4.14) 

In order to integrate over k', as before, one chooses a contour in the upper half-plane, 

however due to the branch cut the contour has to turn around the cut line. Moreover 

we assume that the roots of the denominator of the integrand i.e. 2 cos (a°*a»)* a r e 

positive, otherwise we may close the contour in the lower half-plane. Therefore 

(4.14) is converted to 

r°° dy 1 V ( V l + < W 1 + 0i - coth 2x0) + (a0 + <?i) 
4 / — , —^ L (a i M 

h 2TT ^ f y ^ l y2 + 2yy/T+^JlT^{ + 2(oQ + ox) V ' ; 

or after changing of variable 

roo du 2 cosh u + + o\ - coth 2x0) + (cr0 + <7X) 
2 i ' - - (4 16) 

Jo 2ir 2 cosh2 u + 2 cosh uy/1 + aQ^l + ox + (a0 + ax) 

or 

1 4 cos sin 2 roo du 
2TT C O S 2 issz£ih. - cos2 Jo 2 cosh u + 2 cos 

1 4 c o s ^ ^ s i n 2 ^ i l Z L ,oo ^ 
+ 2TT C O S 2 ^ a o +

2

Q 1 ^ - cos2 Jo 2cosh^ + 2 c o s ^ ^ ' 

Finally the above integrals can be solved to get the following result 

(7(0,*'; 0 , 0 = - ^ c o t a 0 7 T - ^co ta iTr . (4.18) 

Now it is convenient to calculate the time integral of the other middle propagator 

in (4.8) which is equal to 

/ W ; o , 0 = / / / * • £ g e - M ~ > 

lt.h 0T„\ 
(4.19) 

u2 — k2 — 4 -f- ip 
2ik (ik — 2 coth 2x0) 

(ik)2 - 2iky/\ + aoy/l + ol + 2(a0 + ox)' 

Clearly, in the boundary-boundary contribution (4.8), i t is seen that the t' depen­

dence is involved only in the above propagator i.e. (7(0, f;0,£'), so the integration 
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over t' produces a Dirac delta function which give rise to substitute zero for to and 

hence 

dk f % \ ( 2ik (ik — 2 coth 2XQ) \ 
j dt'G(0,t;0,t') = J 2?r \-k2-4J \(ik)2 - 2iky/l + a0^l + ox + 2(cr0 + ax) J ' 

(4.20) 

As we mentioned before, throughout this chapter we assume that the roots of P(k) = 

(ik)2 — Hkyfl + a 0 \ / l + Q\ + 2(<7o + c i ) which are equal to 2 cos i a o ± ^ n

 a r e positive, 

so the P(k) has no pole in the upper half-plane. Obviously if the roots are negative 

then we can choose the contour in the lower half-plane in which no pole is inserted. 

Therefore, (4.20) after integrating over k yields 

[ dt'G(0, t; 0, t') = , ' a + ^ ^ o ) (4.21) 
J V ; 2 + 2 v / r + W r T ^ + ( c J o + a 1) 

and by substituting cr0 = cosao7r and o\ = cosai7r, we obtain 

[ dt'G(0, t- 0, t') = -4 T - T . (4.22) 
J v ' ' ' ; 4 cos ef- cos Y v ' 

Up to now, the boundary-boundary contribution has the form 

i(32 (<7i coth x0 — a0 tanh x0)2(a0 cot a07r + a\ cot ai7r) 
_ 32" cos *f- cos ^ 

+Kl(k1)f(-kuxl)f(-kl,0)e-lk^ 

r fdto2dk2 i e -^(*-*») / 

+K2(k2)f(-k2, x2)f(-k2,0)e~ik^. (4.23) 

First of all, i t is necessary to perform the transformation &i —>• — k\ in the first term 

of the first propagator. Secondly, integration over t ensures energy conservation at 

the interaction vertex and generates a Dirac delta function because of which we can 

set Ui = LJ2. Moreover, it is better to define a new function as 

A{k, x) = f ( - k , x)f(k, 0) + K(k)f(-k, x ) f ( - k , 0) (4.24) 

or, in an expanded form, 

.., . ik + 2coth2a;o ik + 2coth2(a: — x0) A(k,x) — 
v 1 ik + 2 ik-2 

(ik + 2cos (ao\ai>)(ik + 2cos ^ Q 0 ~ Q 1 ^ ) 

(ik - 2 cos ^ ^ ) ( i k - 2 cos i^i^L) 
ik — 2 coth 2xn ik + 2 coth 2(x — x0) 

X ik^2 <jfcT2 ' ( 4 " 2 5 ) 
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then the expression (4.23) reduces to 

i/32 (<7i cothxo — CTQ tanha;0)2(ao cot a07r + ax cot ai7r) 
32 cos sal cos ^ 

/ / / 2ir 2n 2ir u>2 — k2 - 4 + ip UJ2 - k2 - 4 + ip 

x ^ A a , ^ ) ^ , ^ ) . (4-26) 

Obviously, what we need to do next is to integrate over the momenta k\ and k2 

and this task may be achieved by closing the contours in the upper half-plane and 

considering the poles at kx = kx = k2 = -\Jooj — 4. Note, the additional poles due to 

functions A(ki,xx) and A(k2,x2) are not important because their contributions will 

be exponentially damped as xx, x2 go to —oo. Therefore, the boundary-boundary 

contribution is 

i(32 (oi coth Xo — do tanh a; 0) 2(a 0 cot a07r + ax cot a\ir) 
~~32~ cos *f- cos ^f-

X J ^ e - * * t o - V e - * ^ + ^ - j ^ A i k u x J A f a x t ) . (4.27) 

Now recall the definition of the quantum reflection factor as the coefficient of 

e-tk(x+x') j n t n e two-point Green function in the residue of the on-shell pole in the 

asymptotic region x,x' —>• —oo. Thus, the correction to the reflection factor from 

the type I I I (boundary-boundary) piece is 

iP2 (<j\ coth XQ — cr0 tanh x0)2(a0 cot a0ir + ax cot axn) 
~ 32 cos 2flicos *f 

1 / (iki + 2 coth 2x0)2

 ( i Aih + 2coth2x 0)(tfci - 2coth2x 0) x v 1 \ ^ + 2K(k1) 
2kx \ (iki + 2) 2 (iki + 2) 2 

— 2coth2xo) 2 ' 
+ K { k l ) Hk + 2Y )• ( 4 2 8 ) 

4.4 Type I I I (boundary-bulk) 

This section deals with the determination of the contribution of the type I I I Feyn-

man diagram to the classical reflection factor when one of the vertices corresponding 

to the loop is situated at the boundary and the other vertex is inside the bulk re­

gion. It is evident that in this case we have to take into account the bulk three 

file://-/Jooj
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point coupling C^\k in the corresponding vertex as well as the boundary three point 

coupling Cl^ndary in the other vertex. Meanwhile, the combinatorial factor associ­

ated with the related Feynman diagram must be considered as a coefficient factor. 

Therefore, the contribution of the type I I I (boundary-bulk) to the reflection factor 

may be written as 

—2(32(<j\ coth XQ — (To tanh x0) J J J dtdt'dxG(x\,ti;x,t)G(x,t;0,t') 

x G(0, t'; 0, t')G(x, t; x2,t2) sinh(v /2/?^0). (4.29) 

The propagator G(0, t'; 0, t') corresponding to the loop has been found in the previous 

section and is given by 

G(0,t'; 0, t') = - ^ cot a07r - ^ cot O J T T . (4.30) 

The calculation of the other middle propagator i.e. G(x, t; 0, t') is the next step 

and clearly, the t' dependence in (4.29) is included only in this propagator. Hence 

it is convenient to compute the following relation 

J d f G ( X , f M = ^ „ 4 + t p ( / ( * , « ) / ( - * • 0 ) e -

+K(k)f(-k,x)U-k, 0)e-**). (4.31) 

Integrating over t' gives us a Dirac delta function which simplifies the integral (4.31) 

to 

f i ( G { x , t M = / ^ _ t 2 _ ' 4 + i p ( / ( ^ ) / ( - M ) e * ' 

+K(k)f(-k, x)f(-k, 0 ) e - " ) . (4.32) 

Now if we split the above integral in two parts, the first part after setting k —¥ — k 

is equal to 

r dk ik + 2coth2(x — x0) ik + 2coth2x 0 / 1 \ _,- t T . . 
V 5 l k V ^ \ - ^ r r i ) e ( 4 ' 3 3 ) 

and the residue theorem gives 

e-lkx \k=2i (4.34) 
d ((ik + 2coth2(x — x0))(ik — 2coth2a;o) _ i k x 

dk \ (ik - 2) 2 

or after simplification, the first part has such a form 

ie2x 

{ —1 + coth 2XQ coth 2(x — x0) — 2x + 2x coth 2x0 + 2x coth 2(x — x0) 
8 

- 2 x coth 2^0 coth 2(x - x0)} . (4.35) 
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In (4.32) the second part is given by 

dk (ik+ 2 cos ^ ^ ) ( i k + 2 cos (M^ilZL) 

/ ' 2 T T ( l k - 2 c o s ^ ^ ) ( i k - 2 c o s ^ ^ ) 

^ (ik +2 coth2(x-x0))(ik-2 coth 2x0) f e~ikx \ 
(ik + 2)(ik-2) \ - k 2 - A ) 

Assuming cos i a o ± ^ 7 ' [s greater than zero, then the above integral can be evaluated 

to obtain first 

d_ f(ik + 2 cos ( i f c + 2 cos i ^ ) j L ) 

dk - 2 cos ^ ^ ) ( i k - 2 cos 

(ik + 2 coth 2(x - xQ)){ik - 2 coth 2x0) _ikx 

(ik - 2) 2 

or after simplifying 

e~lkx \k=2i (4.37) 

ie2x f / tan 2 tan 2 \ 
— < ,„ 4 „ w + , 1 > (1 + c o t h 2 x 0 ) ( - l +coth2(x-a ;o) ) 

8 [ ^ 2 cos2 ( Q °- a 0^ 2 cos2 ( a °+ a ' )*y v U A v ° " 

+ tan 2 ( Q o +

4

Q l ) 7 r tan 2 ( q ° ~ Q l ) 7 r ( - 2 + coth 2(s - x 0 ) - coth 2x0) 

+ 2x tan 2 ( ^ J _ ^ Z [ t a n 2 (QQ ~ a i ) * ^ + ^ 2 a ! ; o ) ( _ i + Coth2(:r - xQ)) 
( 2 (op + ai)7r 2 (a 0 - a^Tr tan 2

 t a n 2 K : 
4 I tan ~ tan — \ 4 4 2 cos2 ( a ° - a 0 * 

^ a n 2 (ao+ai)7r (a0-ai)7r \ "| 

2co^ { a o + a ^ 4 ~) ( 1 + C ° t h 2 X ° ) ( _ 1 + C ° t h 2 { X " S o ) ) | • ( 4 ' 3 8 ) 

Now adding the first part (4.35) and the second part (4.38), then rearranging the 

terms we find the following result 

/
ie2x 

dt'G(x, t; 0, t') = — (c0 4- cx coth 2(x - x0) 4 d0x 4 dxx coth 2(x - x0)), (4.39) 

where 

tan 2 W ± ^ L tan 2 isszsiii 
Co = - c i = - 1 

Ljii-iiL tan12 \ 
^ + CoUw ( l + coth2x 0) 2 cos2 (°°- a 0* 2 cos2 (°°+ t t0* j 

i 4 4 / 
9 ( a 0 + ai)7r o (ao — Gi)7r. ^ , „ x 

+ tan 2 " ; tan 2 v " LJ (-2 - coth 2x0) 4 4 

+ I tan 2 ^ + a ^ > tan 2 ( ° ° " a i ) * + t a n 2 ^ 
4 4 2 cos2 ( a ° - ^ > 

tan 2 H + a ' ^ t a n 2 ^ ^ ' , , 
+

 2 c o ^ o + ; i ) * 1(1 +coth 2a;o) (4.40) 
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and 

2 (a 0 + ai)7r 2 (a 0 - aiW 
d 0 = - d j = - 2 t a n - —— tan 2 v 7 (1+coth2a; 0 )-2+2coth2z 0 . (4.41) 

However, the above coefficients may be simplified much more to obtain first 

d0 = di = 0 (4.42) 

and 

c0 = -Ci - ( l + tan 2 (*L±ph)j ( i + tan 2 . ( 4.43) 

In order to check the result (4.39), if we set x — 0 in this equation then it 

becomes 

/ dt'G(0, t; 0, t') = Uco- ci coth 2xQ) (4.44) 
J 8 

or using (4.43), we obtain 

/ r f ( - G ( o , t ; 0 , 0 = - 4 c o s ^ c o s ¥ (4.45) 

which is equal to (4.22) in the previous section. 

Up to now the type I I I (boundary-bulk) contribution has the following form, of 

course, after integrating over t: 

P2c0(<Ti coth x0 — cr0 tanh xo)(ao c ° t a07r + a\ cot a\Tx) 

+ATi(fci)/(-A: l l ^ / ( - A * , x ) e " i f c l ^ ) ) 

x | ^ - ( 1 - co th2 (x -z 0 ) ) s i nh (V2 / tyo ) 

+K2(k2)/(-k2, x)f(-k2, z 2 ) e - f c < * + » > ) , (4.46) 

where 

sinh(\/2/?0) = 2 cosh 2(z - z 0 ) (coth 2 2(x - x 0 ) - l ) . (4.47) 

By multiplying the two propagator in (4.46) by each other, it is clear that one 

obtains four pole pieces and, as far as the integration over x is concerned, if we can 

do the integration over x on one of them then obviously the other three pole pieces 
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could be done in the same manner. Hence in what follows it is sufficient to treat 

only one of them and, meanwhile, keeping those terms which are functions of x, we 

are led to the following complicated integral 

j dxf(—kx,x)f(k2,x)(l — coth2(a; — x0)j sinh(\/2/?</>o) exp {2 + i(k2 — kx)x}. 

(4.48) 

After some substitutions and collecting together powers of coth 2(x — x0) we obtain 

(iki - 2)(ik2 + 2) / oo d X 6 X P ^ 2 + l " ^ 2 ~ s i n h ( > / W o ) ( _ A ; i f c 2 

+ (2ik2 - 2ikx + kxk2) coth 2(x - x0)(2iki - 2ik2 - 4) coth 2 2(x - x0) 

+4co th 3 2(a ; -xo) ) . (4.49) 

It is clear that to solve the above integral, it is necessary to manipulate the following 

integrals 

f dx exp{2 + z(/c2 - kx)x} smh(\/2(i(t)Q) cotW1 2(x - x0), (4.50) 

J — oo 

where, n = 0,1, 2, 3. 

In fact in Appendix A, we have found the integrals (4.50) and the solutions of 

them are expressed in terms of hypergeometric functions. So using the formulae in 

Appendix A and simplifying, we find that J in (4.49) can be rewritten 

F(ki,k2) 

+ 

+ 

3kxk2 + 4ik2 - Aikx + 8 1 3kxk2 + 6ik2 — 6ikx + 13 cosh2x0 

3 sinh2x 0 6 sinh2 2x0 

ik2 — ikx + 2 cosh2 2x0 + 1 1 cosh3 2x 0 + 5 cosh 2xo 
3 sinh 3 2XQ 6 sinh4 2x0 

I2ikxk2 - 16k2 + 16kx + 40i - (k2 - kx)(9kik2 + 16ik2 - 16iki + 34) 
3(&2 - h - 4i) 

x e ~2x° F(l,l-(k2- ki) + 1, l-(k2 - h) + 2, e" 4* 0) 

12ikik2 - 48k2 + 48fci + 13Qi - (k2 - kx)(6kik2 + 28ik2 - 28ikx + 84) 
3(k2 - h - 8i) 

x F (2, %-(k2 - h) + 2, %-(k2 - ki) + 3, e- 4 *°) 

32k2 - 32ki - 192i + (k2 - ki)(16ik2 - 16iki + 104) 

x e 
16k2 - 16ki - 32i 

(k2 — ki — 16z) 

3 ( k 2 - ki - 12i) 
1 0 x 0 F ( 3 , %-(k2 - ki) + 3, l-(k2 - ki) + 4, e"4*") 



4.4. Type I I I (boundary-bulk) 92 

x e - U x o F (4,l-(k2 - h) + 4,l-{k2 - h) + 5,e~4x°y (4.51) 

Now regarding (4.46), after doing the transformation k\ —>• — k\ in the first term of 

the first propagator, all that remains is to integrate over the momenta ki and k2 and 

this can be achieved by closing the contours in the upper half-plane and considering 

poles at k\ = k\ = k2 = \JUJ2 — 4. The extra poles in the four functions T(±k\, ±k2) 

are not important because their contributions will be discounted when xx and x2 go 

to — oo. 

Let us write down the type I I I (boundary-bulk) contribution to the reflection 

factor 

(32 tan ^ i l z i tan i^p^L 
i — ( ao cot o07r + ax cot ai-K) 

2 cos ^ cos ^ 
f ^ 1 e -*o i ( t i - t2 ) e-tk(x1+X2) 1 i k i + 2coth2(xi - x 0 ) ikx + 2coth2(x 2 - x0) 

J 2TT (2^)2 - 2 -2 

x ( — ^ Tt-kxM)-—, Kiik^Tikuh) 
l(zJfci + 2) 2 k ' (iki + 2){ikx - 2) y ' K ' 

-—— 1 K ^ H - K - k ) + r ?

 1 Kl(h)Hh, - f c i ) } • (4.52) 

(iki + 2)(iki - 2) (iki-2)2 J 

Now looking at the function J-(ki,k2) given by (4.51), let us show the detailed 

forms of the T{ —k\, k\), F(ki, k\),T(—ki, —k\) and ^(ki, —ki). In fact, 
T(k k 3fc2 + 8 1 3k2 + 13 cosh 2x0 

^ l ' ~ 3 sinh 2x 0

 + 6 sinh 2 2x 0 

2 cosh2 2x 0 + 1 1 cosh3 2x 0 + 5 cosh 2x0 

3 sinh 3 2x 0 6 sinh 4 2x 0 

+ 3 ^ + 1 Q

e - ^ F ( l , l , 2 , e - f a ' ) 

+

 3 ^ l + 3 4

e - 6 » o F ( 2 | 2 ) 3 > e - 4 x o ) 
6 

+—e-Wxo F{3,3,4,e-4xo) 
3 

+2e~Ux° F ( 4 , 4 , 5 , e - 4 l ° ) . (4.53) 

Note the above expression can be simplified using Mathematica: 

T(k k ) - 3fe2 + 16 1 3kj + 15 cosh2x0 

1 , 1 6 sinh 2xo 6 sinh 2 2xo 
1 2 cosh2 2x 0 — 5 1 cosh3 2x 0 + 5 cosh 2x 0 

H 5 4 —• (4.54) 
3 sinh 2x 0 6 sinh 2x 0 
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It can be easily verified that 

F(-ku-h) =?{h,h) (4-55) 

and 

, r ? . 3fc? — 8ifei — 8 1 2>k2 - Uiki - 13 cosh2rc0 

3 smh 2x0 6 sinh 2xQ 

2ik\ + 2 cosh2 2rr0 1 cosh3 2x0 + 5 cosh 2x 0 

3 sinh 3 2x0 6 sinh4 2x0 

+ " 9 * ; + ? ^ f ' " 2 0 ' e _ 2 * ° 5 * 1 + 5 * 1 + 2 ' e" ,*° ) 

+ -6t} + «at; + i 32 t , -6g i e ^, ^ + 2 i ^ + 

3(/ci - 4?) 2 2 

+ 32zfe2 + 1 3 6 f c 1 - 9 ^ e _ 1 0 l 0 F ( 3 ) i ^ + 3 j ^ + ^ e _ 4 l 0 ) 

3(^i — 6i) 2 2 

+ 1 6 ^ - j e z e _ 1 4 l o F ( 4 j ^ + 4 j ^ + 5 j e _ 4 l o ) ( 4 5 6 ) 

(fei — Si) * £ 

As before, the above formula can be simplified using Mathematical 

— _ Zk\-Ukx - 8 1 6ifc i+ 11 cosh2x0 

1 , 1 3 sinh2x 0 6 sinh 2 2x0 

3k2 (cosh2 2x0 — 1) — ik\ (5 cosh2 2x 0 — 6) — (2 cosh2 2x 0 — 3) 
3 sinh 3 2xo 

1 cosh3 2x 0 + 5 cosh 2x0 

6 sinh 4 2x'0 

Finally ^"(Aii, —hi) can be obtained from T(—k\, ki) after setting &i —> —ki. 

(4.57) 

4.5 Type I I I (bulk-boundary) 

In this section we study the quantum correction to the classical reflection factor due 

to the contribution of the type I I I Feynman diagram, when the vertex associated 

with the loop is located in the bulk region and the other vertex coincides with the 

boundary. The associated contribution is given by 

C = - 2 / ? 2 ( C T I cothxo - a0tmhx0) J j j dtdt'dx'G(xl,ti]Q,t)G(<d,t\x',t') 

xG(x', t'; x', t')G(0, t; x2, t 2 ) s i n h ( \ / W o ) (4.58) 

in which, as before, sinh(\/2/?</>o) is, apart from the related coefficient, the three 

point coupling. 
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The following relation which is some part of the contribution (4.58), can be 

derived independently from the remaining part 

J dtG(xuU;0, t)G{0, t; x2, t2) (4.59) 

or 

/ r f i / / £ f - k { ^ + ^ ^ ^ " 

+ K 1 ( k l ) f ( - k l , x 1 ) f ( - k l , 0 ) e - l k ^ 

x [ f p p e - * * ™ 2 , 2 \ M . ( f ( k 2 , 0 ) f ( - k 2 , x 2 ) e - ^ 
J J 2ix 2ix u2 — k2 — 4 + ip\ 

+K2(k2)f(-k2,0)/(-fc2, x2)e~lk^. (4.60) 

First of all, it is necessary to set k\ —> —hi in the first term of the first propagator. 

Secondly, integration over t leads to the substitution of to2 — u)\ and finally integra­

tion over the momenta k\ and k2 , as before, may be done immediately by closing the 

contour in the upper half-plane and looking at the poles at ki = ki = k2 = \Jto\ — 4 

and ignoring all the other poles as their contributions vanish rapidly as x\, x2 —> — oo. 

So we obtain (after taking the limit Xi,x2 —> —oo) 

d = J dtG(xuU; 0,t)G{0, t;x2,t2) 

= I ^ e - ^ - ^ e - ^ ^ - ^ A f a x J A i k u X t ) , (4.61) 

where 

A(ku x i) = f ( - k u x x ) f { k u 0) + K f o f i - k u x i ) / ( - f c i , 0). (4.62) 

So, our next job is to calculate the integral which is the remaining part of the 

contribution 

dt'dx'G(0, t\ x\ t')G{x', t'; x't') sinh(>/2/tyo)- (4-63) 

Obviously, this part will be appeared as a constant and i t must be multiplied 

by (4.61). Clearly, the time variable t' appears only in one of the propagator i.e. in 

G(0,t; x',t'). On the other hand, this propagator along with integration over t' has 

been obtained in previous section. Hence, 

f dt'G(0, t; x', t') = \ e 2 1 ' c0 (1 - coth 2{x - x0)), (4.64) 
J 8 
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where 

co = - ( l + tan 2 ( i + tan 2 ( * L Z _ ^ . ( 4 . 6 5 ) 

Therefore, (4.63) reduces to 

^ f dx' e2x' s i n h ( > / W o ) ( l - coth 2{x' - x0)G(x', t'; x', t'), (4.66) 
8 J 

where 

G { x ; * 0 = / / £ £ , , 2 _ t ; _ 4 + i p (/(*•, *')/(-*>') 

+X( fc ' ) ( / ( - * : ' , x ' ) ( / ( - * : ' , x ' ) e - 2 t t ' « ' ) (4.67) 

or after integration over a;' which can be performed by completing the contour into 

the upper half-plane and picking up the pole <J = \/ka + 4 and therefore 

1 r dk' 1 / 

+K(k')(f(-k',X')(f(-k', I ' J e - 2 " ' 1 ' ) . (4.68) 

In fact, the above integrand has two parts, the first part can be easily manipulated 

but the other part which includes the exponential term is hard to calculate and we 

prefer to leave the computation of that part for later. Let us rewrite the first part 

of the loop propagator 

1 r dk' 1 ik' - 2coth2(x' - x0) ik' + 2coth2(:r' - x0) 

2 J ~2^^JWT% ik' + 2 ik' - 2 ' ^4'69^ 

The above integral is logarithmically divergent. Nevertheless, this divergence can be 

removed by an infinite renormalisation of the mass parameter in the bulk potential. 

Then, doing the integration over k' we obtain 

dk' 1 1 ( l - coth 2 2{x - jp) ) 

2TT y/k12 + 4 (ik' + 2)(ik' - 2) ~ 2TT ' 
(4.70) 

2 ( l - coth 2 2(x - x0)) j 

To sum up, (4.63) reduces to 

lC° j° dx' e2x' (l - coth 2 2(x - x0)j (l - coth 2(x - x0)j sinh(v/2/?0o) 
16TT 

+ l Ldx' 11 TPTi (x - c o t h 2 ( x - *•>) s i n h ( ^ > e 2 " 2n yjk'2 + 4 

(ik')2 + 2tA?yi + gpy^ToT + 2(CT0 + ox) (ik' + 2 coth 2(x - x0))2 _2ik>xA, , 
(ik')2 -2ik'y/TT^oVl^re~i + 2(ao + al) (ik' + 2)(ik' - 2) 6 J 
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The above relation has two parts and the first part which is a single integral can 

be performed by means of the formulae in Appendix A and we write down only the 

solution of this part which is expressed in terms of hypergeometric functions, that 

is, 

ic0 ro 
16TT 

/ dx' e2x' ( l - coth 2 2(x' - x0)) (1 - coth 2(x' - x0)) s inh( \ /2>4) 

% ^1 + tan 2 ^ + a ^ ) ( 1 + t an 2 (oo-a.y 
167T V 4 / V 4 / 

1 1 1 cosh 2x0 1 cosh2 2x0 + 1 1 cosh3 2x0 + 5 cosh 2x0 

x 3sinh2x 0 24 sinh2 2x0 6 sinh 3 2x0 24 sinh 4 2x0 

- i e - 2 l o F ( l , l , 2 , e - 4 x o ) 

+ ^ e - 6 l 0 F ( 2 , 2 , 3 , e - 4 l ° ) 

+ i e - i o x o F ( 3 ) 3 ) 4 ) e - 4 x o ) 

+ i e - 1 4 l 0 F ( 4 , 4 , 5 , e - 4 1 0 ) } . (4.72) 

By means of Mathematica the above expression can be simplified to 

C2 = - 4 - (1 + tan 2 I**!*)!) (1 + tan 2 (q° " Q lH 
16TT \ 4 J \ 4 / 

J1 1 1 cosh 2x0 1 4 cosh2 2x0 - 1 
3sinh2x 0 ' 24 sinh2 2x0 12 sinh 3 2x> o 

3 , 1 cosh 2x0 + 5 cosh 2x0 (4.73) 
24 sinh 4 2x0 

So, in connection with the type I I I (bulk-boundary) contribution, the remaining 

integral is 

ICQ 
C " - 16 

^dx' J — ^ - T - _ [l - coth 2 (x' - x0)J s inh(V^^o) e2x' 

2 
(ik' + 2 c o s ^ ^ ) (ik' + 2 c o s ^ ^ ) [ik' + 2 coth 2(x' - x0) 

X A I I S I 7 \ J _ e-2ik'x' u 74) 

( i A ; ' - 2 c o s ^ i ] z L ) ( ^ ' - 2 c o s ^ ^ ) (ik> + 2)(ik'- 2) K ' J 

As we mentioned before it is more convenient to integrate over x' then afterwards 

over k' since to integrate over k' first is a difficult problem. Let us do partial 

fraction decomposition for the rational function in (4.74). Obviously we will have 

four elementary partial fraction including 

{ik' -2cos^^y ( i A ; ' - 2 c o s ^ f i ^ ) ' ^ ' + 2' ik'- 2' 
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Now in what follows we perform the calculations in detail for one of them, for 

example, -, -, —v due to the fact that for all the others the computations are 
fife'-2 cos < " 0 +

2

a l M 

similar except that cos ( Q °+ a i ) 7 r j s replaced by one of cos ( a ° ~ Q l ) 7 r

] - 1 , 1 , respectively. 

Wha t we need to do is to calculate the following: 

/ f n n 2 (ao+ai)7T + 2 (ao+ai)7r\ 
i i a n 4 — cox ^ i C J Q T T A I 7 R 

C 0 S 2 (ao+ai )^ C Q S 2 («„-»,)* 2 2 

x — / ° oV / — , 1 ( 1 - coth 2(x' - r r 0 ) ) sinh( > / W o ) ^ ~ 2 i k ' > ' 

x ^4 coth 2 2{x' - x0) + 8 cos ( Q ° +

2

Q l ) ? r coth 2(x' - x0) + 4 cos2 + ^ 

X ( t fc ' - 2 cos i ^ ^ ) ' ( 4 ' ? 5 ) 

The integration over x' may be done by using the formulae in Appendix A and gives 

j° dx' e

{ 2 - 2 i k ' ) x ' (l - coth 2(x' - x 0 ) ) smh(V2/3<f>0) (4 co th 2 2{x' - x0) 

(an + a i W , . . . d 9 ( a o + a i ) 7 r \ 
+ 8 cos ^ coth 2(x' - x0) + 4 cos2 v 

2 2 y 
r 9 ( a 0 + ai)7r 16 (a 0 + ai)7r 8 \ 1 
4 cos^ cos — I - - — — — 

3 / sinh 2x 0 

9 ( a 0 + ai)7r , (a0 + ai)n 13 \ cosh 2x0 

s ^ — 4 cos — h — 5 

2 2 6 / s inh 2 2x 0 

+ 

/ 4 (a 0 + ai)7r 2 \ cosh 2 2x 0 + 1 
— cos + - 5 

\ 3 2 3 / s i n h 3 2 x 0 

1 cosh3 2xQ + 5 cosh 2x0 

6 s inh 4 2x 0 

+ 1 F T 8 ^ e " ' 4 " F ( 4 '" b' + 4'~ ¥ + 5' <r'"°)' (4'76) 

where the coefficients An, Bn, n = 1, 2,3,4 are constants which in fact only depend 

on cos ( a ° + a i ) 7 r ] \ j o w the final calculation is to integrate over k' and i t is evident 

that in order to do that, we have to convert the hypergeometric functions to infini te 

series. Note that i t was not possible to f ind a simplification of (4.76) as in previous 
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cases. Considering the equation (A.10) in Appendix A, we conclude that 

F ( l , - j f c ' + l , - j f c ' + 2 , e - t o ° ) = - e- 4 "*° 
k' + 2i ^ 0 k' + i(2 + 2n)' 1 ' ' 

I f we differentiate both sides of the above relation w i t h respect to x0, then the 

following identity may be derived 

F ( 2 , - | f c ' + 2 , - | f c ' + 3 , e - 4 l ° ) _ ~ ne-4{n-i)x0 

k' + 4i ~ i ; f c ' + *(2 + 2n)" ( ' ^ 

In the same way, one obtains 

F ( 3 , - § * ; ' + 3 , - ^ ' + 4 , e ~ 4 l ° ) _ 1 ^ n ( ra - i ) e - 4 ( " - 2 ) * ° 

fc' + 6z 2! ^ 2 k' + i(2 + 2n) v ' ' 

and 

F ( 4 , - f f i + 4, - f f e ' + 5, e" 4 *°) _ 1 * n ( n - l ) ( n - 2 ) e - 4 ( n - 3 > * ° 

A;' + 8z ~ 3! ^ 3 + * ( 2 + 2 « ) ~ ' 

Now i f we substitute (4.77), (4.78), (4.79) and (4.80) in (4.76), all that remains 

in connection w i t h the contribution (4.75) is the integration over k'. Obviously we 

encounter these kind of integrals 

y°° dk' I 1 \ f Ak' + B \ 

V - o o T P T l \ i k ' - 2 cos {k' + i(2 + 2n)J ( 4 8 1 ) 

and the k' integration may be performed by closing the contour into the upper 

half-plane and onto the branch cut which stretches f r o m k' = 2i to inf ini ty along 

the imaginary axis (y-axis). In fact, integrals along the branch cut remain to be 

evaluated and after changing of variable y = 2 cosh u, then another change as eu = v 

and doing some manipulation, we obtain the required formula 

dk' I 1 \ ( Ak' + B \ 
i: oo \ik' - 2 c o s ^ ^ / \V+~i(2 + 2 n j ) 

(2A cos &±^L + iB) ("Q+'O* 

~ (2 + 2n - 2cos Wd^ilZL) s i n ( £ O ^ I ] Z L 

{{2 + 2n)A+^B) 1 f n + l - ^ / g T g ) 

(2 + 2 n - 2 cos ( a » + a 0 7 r ) 2 ^ n 2 + 2n \ n + 1 + V n 2 + 2n J 7 

Note (4.82) is valid when n ^ 0, on the other hand i f n — 0 then one may find 

dk' f 1 \ /yiJfc' + J3\ 
«/ —( y/WTl \ ik' - 2cos iss^ih. J \k' + 2i 
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(2A cos ( a ° + a ' ) 7 r + %B) ( a°+ 2°0^ 

( 2 - 2 C O S ^ L ) ! L ) s i n ^ ^ 

(4.83) 
( 2 - 2 cos ( °°+ a 0*) ' 

Now we are in a position to write down (4.75) or, in fact, the integral (4.74) 

f T N N 2 (ao+ai)7r , 2 (a 0+ai)7r\ 
i ^tan 4 cot 4 j a o ? r a i 7 r 

t-3 — T T ^ T - , , s ; s COt — — COt — — 
128TT cos2 { a ° \ a i ) n cos 2 ^ Q 0 ~ a i ^ 2 2 

4 4 
f / Y , < 2 ( a o + ° i ) 7 r 16 (a0 + ai)ir 8 \ 1 x M 4 cos — — cos — 1- - 1 

+ ( 2 c o s 2 (ao + tt>-4 

3 2 3 J sinh 2x0 

(an + ai)7r 13 \ cosh2a;o 
cos 1 5 

2 6 i sinh 2 2z 0 

/ 4 (a 0 + ai)7r 2 \cosh2a;o + l 
+ — cos h - = 

V 3 2 3 J s i n h 3 2 x 0 

| l c o s h 3 2 x 0 + 5cosh23;o^ ( a o +

2

Q l ) 7 r 

6 sinh 4 2x0 J sin W ^ i k 

1 _ - 2 x 0 / 2 cos ( a ° + B 1 > M i + i £ i 
+ — e 

12 \ 2 - 2 c o s ^ ^ 2 - 2 c o s ^ ^ sin 
oo {a0+ai)ir - ( 2 + 4 n ) x 0 

- £ - — 2 - ^ 2 c o s ( Q o + a i ) 7 r ^ + z i ? / 
n=i sin ^ ^ ^ ^ ^ ( 2 + 2 n - 2 c o s ^ ^ ) 

+ n J2 (ao + a O . ^ + j + n ( r r - l ) J2 ^ (oo + a ^ ^ + ^ 

+ n ( n - l ) ( n - 2 ) ^ ( * H ^ ^ + i B ^ 

~ e - ( 2 + 4 n ) * o 1 f n + 1 - V n 2 + 2n 

f = i (2 + 2n - 2 cos ( Q ° + a 0 ^ 2 ^ n 2 + 2n ( n + l + v ^ T 2n 

( ((2 + 2n)Al + iBx) + ^ ((2 + 2n).4 2 + iB2) 

+ other pole pieces. (4.84) 

Note, in the above expression all the series are convergent. As we mentioned before, 

(4.84) must be considered (after adding to (4.73))as a coefficient factor of (4.61) in 

order to constitute the type I I I (bulk-boundary) contribution i.e.: 

C = d ( C 2 + C3). (4.85) 
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4.6 Type I diagram 

In this section we calculate the contribution of the type I Feynman diagram to the 

classical reflection factor when the vertex is placed inside the bulk region. In fact, 

when the vertex is located at the boundary then, the corresponding contribution 

has been found [73] and is given by 

i(32 

— — (<Ti coth x0 + cr0 tanh x0)(ao cot a0ix + a\ c o t a i 7 r ) 
8 

f ^c-iwih-t2)c-ik(xl+x,)lk + 2 C O t t l 2 f o l ~ X ° ) l k + 2 C O t h 2 ( X 2 ~ X ° ) ( 1 m ) 

J 2TT P(k) P ( £ ) 

Clearly, in this case the bulk four point coupling should be considered in the 

interaction vertex. Moreover, as before, the combinatorial factor associated wi th 

this diagram w i l l appear as a coefficient. Hence the contribution has the form 

/

oo r0 
dt dxG(xut1;x,t)G(x)t;x,t)G(x,t]x2,t2)cosh{V2p(j)o), (4.87) 

-oo J—oo 

where 

c o s h ( \ / W o ) = ( 2 co th 2 2(x - x0) - l ) . (4.88) 

In the previous section, we simplified the middle propagator to obtain 

( l - c o t h 2 2 ( x - x0)) 
G(x,t;x,t) = — 

2TT 
1 r rile" 1 

+ 2 / - ^ 7 F m K { k " w - k " ' x ) H - k " ' x ) e " 2 " " 1 ' ( 4 - 8 9 ) 

Also the integral part of the loop Green function is hard to evaluate and we found 

out that i t is better to do this integration during the f inal stage. Now let us rewrite 

the contribution (4.87) in the expanded form 

-4i32 [ d t [ ° dxf [ ^ ^ e - M t . - t ) [ 
4 ^ 1 L J J 27r27r e u*-k*-4 + ip 

f ( k , X l ) f ( - k , x ) e i k ^ + K ( k ) f ( - k , X l ) f ( - k , x)e-*k^+xA c o s h ( ^ 0 ) 

(l - co th 2 2(x - XQ)) 1 f dk" 1 

5T 1 + t 7WTIK(k )f(-k"' xm~k"'x) e 

+K'(k')f(-k', x ) f { - k ' , x2) e ~ i k ' ^ x ^ , (4.90) 
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where, as before 

f ( k , x ) = l k - 2 c ° ! h 2 { x - X o ) (4.91) 
I K ~\~ 2 

and 

= ^ + 2 c o s ^ ) ^ + 2 c o s ^ ^ ) % k - 2 
K ) ( i k - 2 c o s ^ f ^ ) { i k - 2 c o s ^ ^ ) ik + 2' { ' ' 

Looking at (4.90), one can predict that the calculations w i l l be lengthy and in ­

tricate. The starting point is to do the t integration which allows the substitution 

to = UJ' . Secondly, i t is necessary to perform a transformation A; — k in the first 

term of the first propagator. Moreover, i f we mul t ip ly the first and the t h i r d propa­

gator w i th each other, then definitely we w i l l have four pole pieces and fortunately 

i f we do the calculation for one of them (for example the first one), then the calcula­

tions corresponding to the other three pole pieces may be treated similarly obtaining 

the same contributions, except that k + k' is replaced by one of k — k', —k + k' and 

—k — k'. Because of this in what follows we follow the problem only for one pole 

piece. Hence our job is, in fact, the following integral 

H J-oo J J 2TT 2TT OJ2 - k2 - 4 + ip 

Cosh(V2P4>o) f ( - k , X l ) f ( k , x) e - ^ - ) 

(1 - co th 2 2(x - x0)) I r dk" 1 

In fact, the above contribution has two parts. The first part, in which the integral 

of the middle momentum (A;") is not involved, can be calculated by means of the 

formulae in Appendix B and we call this part T>i. Let us write down the solution of 

this part. This contribution is expressed in terms of hypergeometric functions as: 

X>! = ^ / ^ e - i ^ - ^ e - ^ + - ) / ( - f c , a ; 1 ) / ( - ^ a : 2 ) l 
7 T J Z7T k2 

48? - 40k - 8ik2 

k - 4i 
e -*X0 

F(3,Z-k + 2,l-k + 3,e-4x^ 
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_ 1 7 6 » - 9 6 f c - 8 i f r _ 1 2 l o / ^_i^,r,^A ^ 0 

— 6« 

256i — 64A; „ / i f i 

F ( 4 , ^ + 3 , | f c + 4,e-

k -8i 
128i 

e - i 6 x 0 F ^ * £ + 4, ^ + 5, e" 4 1 0^) 

-20xo F ^ %_k + 5 ) I fc + 6 , e - 4 x o ) | (4.94) 
A: - lOi 

Note that i t was not possible to find a further simplification of (4.94). 

Now i t is better for the second part, which we call V 2 , to integrate first over x 

then over k". Meanwhile, before starting the integration, i t is useful to note that 

i f we do the part ial fraction decomposition for K"(k")f(—k",x)f(—k",x), then we 

w i l l have four elementary part ial fractions as 

1 1 1 1 

(ik" - 2 c o s i s s ^ i h . y ( ^ " _ 2 c o s ^ ^ ) ' *&" + 2 ' ik" - 2' 

As before in the remaining section we continue the computations in detail for one 

of them (for example, —, - ^ - ) because the calculations corresponding to 

the other three elementary part ial fractions can be done in the same manner just 

by the substitution of cos ^ 0 +

2 ° ' ^ by one of cos ( Q ° ~ a i ) 7 r

) _ i ; \^ respectively. So, our 

problem reduces to this integral 

2 a07r aiTr / 2 ( a 0 + a1)ir 2 (a0 + ai)ir\ 
iBl cot —— cot —— tan — cot — — 

y 2 2 \ 4 4 J 

XfjXIf-^ e~tU)itr " 2TT 2-K to2 — k2 — 4 + ip 

x cosh(V2f34>0) f ( - k , X ! ) f { k , x) e

i h { x i ~ x ) 

x - / . n — , ^ , 2co th2 x - x 0 ) + 2 c o s v

 n

 1 

2 J 2TT y/k"2 + 4 ik" - 2 COS ^ I ) 2 L \ V 0 J 2 

x / T - 2 J A _u • x ) f ( ~ k ' > x * ) e i k ' ( X ~ X 2 ) - ( 4 - 9 5 ) J 2ir UJ1 — k u - 4 + ip 

Now as far as integration over x is concerned, we are led to 

| ° d x e l { k + h ' - 2 k " ) x cosh{V2(3(f>o) f ( k , x ) f ( k ' , x ) (2 coth 2(x - x0) + 2 cos ( q ° 

(4.96) 

or 
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f° d x c l ( h + k ' - 2 k " ) x i k ~ 2 c o t h 2 ( x ~ x » ) ^ ' - 2 c o t h 2 ( x - 3 ; o ) 
7-oo X B ik + 2 ik' + 2 

(2 coth 2 2(x - x0) - l ) ^2 coth 2(x - xQ) + 2 cos (Qo + Q l ) 7 r j (4 9 ?) 

and the above integral can be evaluated by means of the formulae given in Appendix 

B as 

f° dx c

i { k + k ' - 2 k " ) x i k ~ 2 ° 0 t h 2("X ~ X°) i k > ~ 2 C ° t h 2 ^ ~ 
i - o o X 6 ik + 2 ik' + 2 

(2 co th 2 2(x - x0) - l ) ^2 coth 2(x - x0) + 2 cos 
(a0 + ai)n\2 

((A'Qkk' + B'0(k + k') + C0) 

(ik + 2) {ik' + 2)\ (k + k' — 2k") 

(A\kk' + B[{k + k') + C[) 
+ (k + k ' - 2k") 

l,l-(k + k' -2k 

(A'2kk' + B'2{k + k') + C2) 

x F(l,-(k + k' - 2k"), ~(k + k' - 2k") + 1, e~4x°) 

(k + k' - 2k" - 4t) 

x e~4x° F(2, ^(k + k' - 2k") + 1, %-(k + k' - 2k") + 2, e " 4 1 0 ) 

(A'3kk' + B'3(k + k') + C'z) 
(k + k ' - 2k" - 81) 

x e~8xo F(3, %-(k + k' - 2k") + 2, l-(k + k' - 2k") + 3, e~4x°) 

(A'4kk' + B'4(k + k') + C'A) 
(k + k' - 2k" - I2i) 

x e-12xo F (4 , l-(k + k' - 2k") + 3, l-(k + k' - 2k") + 4, e~4x°) 

(B'b(k + k') + C5) 

(k + k' - 2k" - 16i) 

x e - 1 6 x o F(5, l-(k + k' - 2k") +A,l-(k + k' - 2k") + 5, e~Axo) 

(k + k ' - 2k" - 20i) 

x e - 2 0 1 0 F (6 , %-(k + k' - 2k") + 5, %-(k + k' - 2k") + 6, e ~ 4 l ° ) J, (4.98) 

where the coefficients A'n, B'n, C'n; n = 0 , 1 , . . , 6 are constants and depend only on 

cos ( a ° + a i ) 7 r . New the subsequent calculation is to integrate over k" and i t is clear 

that to do this, i t is necessary to convert the hypergeometric funct ion to an infinite 
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series. Looking at (B.10) in Appendix B, we may write down 

F ( l , \ ( k + k' - 2k"),\(k + k ' - 2k") + 1, e - 4 *°) = ~ e ' 4 "*° 

k + k'-2k" ^ 0 k + k' - 2k" - 4m ^ ' j 

and by differentiating both sides of the above relation w i t h respect to x0, then we 

obtain 

F ( 2 , \ ( k + k' - 2k") + l , i ( j fc + jfe' - 2k") + 2, e'4x°) n e - 4 ( n - i ) * 0 

k + k' - 2k" - Ai n^ik + k' -2k" - 4 m ' 

(4.100) 

Similarly one can derive the infini te series forms of the other hypergeometric func­

tions as 

F (3 , |(fc + k' - 2k") + 2, \{k + k ' - 2k") + 3, e~ 4*°) _ 1 ~ n ( n - l ) e - 4 ( n - 2 ) s „ 

A; + A;' - 2/c" - 8i ~ 2\ ^ 2 k + k ' - 2k" - 4ni' 
(4.101) 

F (4 , | ( k + k! - 2k") + 3, \(k + k' - 2k") + 4, e~4x°) 
k + k' - 2k" - 12i 
j _ ^ n ( n - l ) ( n - 2 ) e " 4 ( n - 3 > x ° 
3! ^ 3 k + k ' - 2k" - 4m ' ( 4 - 1 0 2 ) 

F ( 5 , \ ( k + k' - 2k") + 4,\(k + k ' - 2k") + 5, e~4x°) 
k + k' - 2k" - 16i 

_ 1 ^ n ( n - l ) ( n - 2 ) ( n - 3 ) e - 4 ( " - 4 ^ 
4 ! ^ 4 k + k'-2k"-4ni { ' ' 

and 

F(6 , + A:' - 2k") + 5,{(k + k ' - 2k") + 6, e~4x°) 
k + k' - 2k" - 20i 

_ 1 " n(n - l ) ( n - 2)(n - 3)(n - 4 ) e - 4 ( " - 5 ) * ° 

5! ^ fc + Jfc' - 2A;" - 4 m • \ • ) 

Let us substitute (4.99), (4.100), (4.101), (4.102), (4.103) and (4.104) in (4.98) 

and obviously what remains in connection w i t h the contribution (4.95) are the inte­

grations over k", k' and A;. As before in the previous sections, in order to integrate 

over the momenta A; and A;', i t is sufficient to close the contours in the upper half-
plane and pick up poles at k = k = k' = \Ju2 — 4 as all the other poles' contributions 

w i l l be exponentially damped when x, x' —> - c o . Meanwhile the integration over k" 

is of the form: 

f dk" 1 1 

' Vk"2 + 4 {ik" - 2 cos fo^"')*) (k + k' - 2k" - 4m) ( 4 " 1 0 5 ) 
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which is immediately split into two integrals 

1 f r dk" 

{/ (k + k' + 4i cos ^ 0 +

2

Q 1 ^ - 4m) [J Vk"2 + 4 (ik" - 2 cos ( a o +

2

a ' h ) 

7 (ib + fc' - 2A" - 4m) f ( ° 6 ) 

or 

(oo+ai)7r 
2 

(jfc + Jfe' + 4*cos - 4m) \ sin iss^L 

r dk" 1 1 
1 J Vl^Ti (k + k'~ 2k" - 4m) J ' ( ' 

Now to manipulate the remaining integral, let us choose the contour in the upper 

half-plane, taking care of the branch cut which runs f rom k" = 2i to inf in i ty along 

the imaginary axis. Clearly this integral reduces to the integral along the branch 

cut i.e. 

r dk" 1

 = 2 r _j^y 1 u 1 0 t f 

J Vk"2 + 4 (k + k'~ 2k" - 4m) h Vl^y2 (k + k' - 2iy - 4m) K ' } 

or after changing the variable y = 2 cosh x , the above integral becomes 

and another change ex = u yields 

. f°° du , 

V , u 2 + ( 2 n + ^ ) M + 1

 ( 4 1 1 0 ) 

and finally after finding the solution of the above integral, we obtain 

dk" 1 1 / Vk"2 + 4 (ik" - 2 cos ( Q 0 +

2

a i ^ ) (k + k' - 2k" - 4m) 

1 / (ao+ai)7r 
1 ' 2 

(fc + fc' + 42cos ( a °+ 2

a i ) 7 r - 4 m ) \ s i n ^ i i l 

2i 

Jikkpl + 4 _ 4 n 2 _ 2 m - ( j f e + k') 

J l + ^ + n + y ^ + 4 - 4 n 2 - 2 n J j ^ j } \ 

\ l + ^ + n - y ^ + 4 - 4 n 2 - 2 n i ( k + k>)j) * 

When n = 0, (4.111) is simplified much more, especially after doing the integration 

over A; and k' and using the fact that k = k = k' = 2 sinh 9 . So the following 
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formula can be obtained 

dk" I Vk"2 + A (ih" - 2 cos (*>+°')*) (2k - 2k") 
1 / ( a 0 + a i ) 7 r r, 

1 2 + - 7 = = ( ~ ^ ) | - (4-112) 
(2A; + 4 z c o s ^ 2 ^ ) \ sin J¥+~A2 

Now, let us write down the solution of (4.95) or more generally the contribution T>2-

i/32 a 0 7r a i 7 r / 2 (a 0 + ax)iv 2 (a 0 + a ^ T r ' 
P 2 = T ^ 0 0 ^ 0 0 ^ ^ 1 1 4 C O t 4 , 

/ ^ e - ^ ^ e - ^ + - ) ( i ) 2 / ( - f c , a ; 1 ) / ( - ^ , ^ ) 

2^ (cos ^ a o +

2

a i ^ - i f ( iss^ih. 2 _ 

jfc + 2 i c o s f c * ^ \ s i n ^ ^ 7 ^ + 4 2 

E 
e -4nx 0 / ( " O + a i V 

2 

(ifc + 2 ) 2 ̂  2ife + 4? cos i^±^L - Ani I sin l?°±p^ 

2i J l + p + n + f ^ 2 + 4 - 4 n 2 - 4 m j f c 

\Jk2 + A- An2 - Anik \ l + ~k + n - ^\Jk2 + A - An2 - Anik 

[(A\k2 + B[k + C[) + n(A'2k2 + B'2k + C 2 ) 

+ ^ V 3 * 2 + b ; * + C.) + " ( " - ' K " ^ ) K p + B ; * + c ; ) 

^ ( n - l K n ^ K n - a ) ^ + ^ + n ( n - l ) ( n - 2)(n - 3)(n - 4 ) c , \ j 

+ other pole pieces. (4.113) 

Firstly, in order to check the above solution, i f we set a 0 = ai and consider the other 

pole pieces then, we can derive the formula (3.10) in reference [64]. As we mentioned 

before, the calculation of this reference is based on the case when the boundary 

parameters are equal. Secondly, in this solution, we verified that the term which 

depends explicit ly on the rapidity of the particle (9) is cancelled by counterpart 

terms in the other pole pieces. I t is evident that i f we add the expressions (4.94) 

and (4.113) then, the contribution (4.93) w i l l be obtained i.e. V = V x + V 2 . 

4.7 Discussion 

Affine Toda field theory on the whole line is an exactly solvable theory for which 

the S-matrices have been formulated. However, when a boundary is present then 
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the boundary S-matrices of the theory i.e. the reflection factors, have not been 

clearly found. The bootstrap technique does not uniquely determine the reflection 

factors. Fortunately perturbation theory provides the l ink between the expressions 

for the reflection factors which come f rom the bootstrap equations and the boundary 

parameters. Nevertheless, this method normally involves complicated calculations. 

In this chapter the quantum reflection factor for the affine Toda field theory 

or sinh-Gordon model w i t h integrable boundary conditions has been studied in low 

order perturbation theory when a0 ^ o\. I t is found that at one loop order the 

quantum corrections to the classical reflection factor of the model can be expressed 

in terms of hypergeometric functions for most of the related Feynman diagrams. 

Although there is s t i l l some work to do to calculate the contributions of the re­

maining diagrams, i t is however understood that the provided procedure and some 

formalisms may be followed for them. 

The calculations corresponding to the type I I Feynman diagram which are not 

carried out in this chapter, are more dif f icul t than the others. In this case the two 

middle propagators are exactly the same and this fact influences the diff icul ty of 

the computations. However some formulae that have been presented here, could be 

helpful for the remaining diagram. For example, consider the contribution of the 

type I I (boundary-bulk) diagram: 

—2/?2(cr1 coth^o — (?o tanha; 0) J J J dtdt'dxG(xi, ti\x, t)G(x, t; 0, t') 

xG(x, t; 0, t')G(0, t'-x2, t 2 ) sinh(\/2>/>o). (4.114) 

Now as far as the integration over x is concerned we should obtain the following 

integrals 

f° dxei{-k+k'~k^x sinh(v /2/?0 o) coth" 2(x - x0), (4.115) 
J-OO 

where n=0, l ,2 ,3 . I t is better to solve: 

f dx exp{r+ i(k +k'- k1)x}sinh(V2l34>o)cothn2(x - x0), (4.116) 
J—oo 

in which r is a small positive quantity and w i l l be taken to zero later. In fact, the 

relation (4.116) is very similar to the formula ( A . l ) in Appendix A. So, following the 

same procedure that have been followed in Appendix A, one can f ind the solution 
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of (4.115) when n = 0 as: 

[° dx el{k+k'-kl)xsmh(V2p4>0) 
J—oo 

1 
sinh 2xn 

2{k + k' - f c i ) 

k -\- k1 — k\ — 2% 

x e-2x°F(l, %-{k + k' - h ) + \ , %-{k + k' - AO + | , e - 4 ^ ) . ( 4 . 1 1 7 ) 

Then, the solutions of (4.115) for n = 1, 2, 3 can be derived exactly in according to 

the Appendix A terms. But , this is not the whole of the story. As we mentioned 

before, in type I I diagram double Green functions cause the middle momenta to 

be linked to each other in a complicated way and the calculations become more 

intricate. Actual ly this diagram must be studied in three cases depending on the 

interaction vertices being located in the bulk region or at the boundary. Moreover 

because of the symmetry, the contribution of the type I I (boundary-bulk) diagram 

is the same as the type I I (bulk-boundary) one. 

When the boundary parameters are equal only the type I diagram is involved in 

the theory. As we mentioned before, in this special case [64] the quantum corrections 

to the classical reflection of the model have been found and Ghoshal's formula for the 

lightest breather is checked perturbatively to 0((32). I n our case, we realised that the 

contribution of the type I (bulk) reduces to the special case. Taking the expressions 

(4.94) and (4.113), i f we put an = a\ then, we obtain the same result as reference [64] 

and this is a check on our calculations. Moreover, when a0 ^ 0\ the following 

expressions for E and F in Ghoshal's formula (2.26) have been conjectured [74] to 

be: 

E = {aQ + a l ) { l - B / 2 ) F = (a0 - o i ) ( l - B/2). (4.118) 

So, i t w i l l be interesting to check the above conjecture after f inding the contributions 

of the remaining diagrams and adding the results all together. This w i l l lead to a 

deeper understanding of the quantum integrability of the theory. However, i t is nec­

essary to f ind simplifications of the contributions when they add among themselves 

in order to get Ghoshal's formula. 



Chapter 5 

Conclusions and future work 

In this thesis we studied the boundary sinh-Gordon model w i t h integrable bound­

ary conditions. First we calculated first order quantum corrections to the classical 

reflection factor of the sinh-Gordon model in chapter Two. I n fact, Ghoshal found 

the general form of the quantum reflection factor of the sinh-Gordon model. How­

ever, apart f rom two special cases (Neumann and Dirichlet boundary conditions) 

Ghoshal's formula fails to provide a complete relationship between the reflection 

factor and the boundary data. Up to first order in the difference of the boundary 

parameters a0 and CTI, we perturbatively verified Ghoshal's formula. Meanwhile, we 

conjectured expressions for the unknown functions E and F in Ghoshal's formula 

(2.26): 

E = (00 + 0 0 ( 1 - B/2) F = {a0 - fll)(l - B/2), (5.1) 

where the coupling constant dependence comes into the formulae by means of the 

expression for B. Similar expressions for these parameters have been arrived at via 

other arguments by Zamolodchikov [75]. 

I f (5.1) is correct then the reflection factor is invariant under the interchange 

a 0 a,\. So, this invariance reconstructs the Z 2 bulk symmetry which apparently 

was broken by the boundary condition and replaced by a symmetry under the si­

multaneous interchange of 0 wi th —cj> and a0 w i t h a\. The reflection factor is also 

invariant i f a0 and/or a\ is replaced by its negative which provide the definitions 

of cr0 and o\. I t is consistent w i t h what is known at the special value of the cou­

pling constant, known as the 'free-fermion' point in the sine-Gordon model, where 

109 
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B — — 2 and the S-matrix is unity. There, the restrictions on the parameters in the 

reflection factor can be solved exactly and are in agreement w i t h (5.1) [64]. 

Note that w i th the expressions (5.1) the quantum reflection factor (2.26) has a 

weak-strong coupling symmetry which matches the symmetry of the S-matrix under 

/? —v ATT/0. In other words, considering 

4TV 

{a*0,al,P*) = —(a0,auP) (5.2) 

defines a new triple of coupling constants w i th the property that 

Kq(9, oo, auP) = Kq{6, a*0, a\,F). (5.3) 

I f (5.1) is correct, which implies the duality symmetry (5.2), then we are faced 

wi th other puzzles. For example, i t is known that the supersymmetric version of the 

sinh-Gordon model is only integrable when restricted to a half-line w i t h some very 

special boundary conditions (either a 0 = a\ = 0,7r) (see [76]), and this restriction 

would appear to be incompatible w i t h a weak-strong coupling symmetry without 

modifying (5.1). 

I t is also known [36,40] that the other affine Toda field theories constructed f rom 

data in the ade series, when restricted to a half-line, allow only a finite number of 

possible boundary conditions. In fact, the or sinh-Gordon model is apparently 

the only example wi th in this series which allows continuous boundary parameters. 

Expressions for the associated reflection factors for the other models are largely 

unknown but i t w i l l be interesting to discover i f they too can permit a duality 

symmetry in the presence of a boundary to match the symmetry of their bulk S-

matrices. 

I n order to find the unknown parameters in Ghoshal's formula up to higher order 

(second order), we tr ied to calculate the second order quantum corrections to the 

classical reflection factor of the sinh-Gordon model in chapter 3. Actual ly in this 

case there are ten contributions. We calculated six of them precisely. However, 

in connection w i t h the type I I contributions the calculations are s t i l l in progress. 

I f the remaining contributions are found then, the conjecture (5.1) w i l l be verified 

perturbatively at higher order. 

I n chapter 4 we studied the quantum reflection factor for the sinh-Gordon model 

w i t h general boundary conditions. For general boundary conditions the lowest en-
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ergy solution to the equation of the field no longer w i l l be a t r iv ia l background <f> = 0. 

The calculations become more lengthy and intricate since the perturbation theory 

involves complicated coupling constants and a complicated propagator as well. We 

found that at one loop order the quantum correction for the reflection factor of the 

theory can be expressed in terms of hypergeometric functions for most of the related 

Feynman diagrams. 

The boundary conditions which preserve classical integrabili ty have been clas­

sified before by Corrigan et.al [36,37,40] for affine Toda field theories. However, 

quantum integrability is hardly explored although there has been some progress in 

the class of models. So, there s t i l l remains much to be studied in this area. 

Meanwhile, i t w i l l be interesting to investigate the weak-strong coupling duality in 

the quantum reflection factors of the models of affine Toda field theories. 

I t is better to discuss the models in more details as much is now known 

about them. By looking at (1.85) i t is evident that for the affine Toda field 

theory there are only nine possible boundary conditions which lead to a classi­

cally integrable theory. However, for the corresponding quantum field theory of the 

model, Gandenberger found [61] three different quantum reflection factors w i t h 

Neumann or ( + - 1 — 1 - ) boundary conditions. This fact shows that not all boundary 

conditions, which were found to be classically integrable, are also quantum inte­

grable. Gandenberger also noticed that the three quantum reflection factors of the 

a2^ theory are not self-dual under the weak-strong coupling duality. 

Delius and Gandenberger [62], by generalising the results in [61], determined 

the exact quantum reflection factors for affine Toda field theory on the half-

line w i th integrable boundary conditions. They also noticed that the Neumann 

boundary condition is dual to the ( + + . . . + + ) boundary condition. This duality had 

been observed earlier in the sinh-Gordon model [64] and the theory [61]. 

A n interesting problem is to carry out the next order calculations in the bulk 

coupling (0( /3 4 ) ) for the sinh-Gordon theory. I t is predicted that the two loop cal­

culations w i l l be more diff icul t than the one-loop one. I t is understood that at two 

loop order, one can make use of the following expansions of the E and F functions 

in the quantum reflection factor (2.26) as, 
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E = e0 + ^ e 1 + \ ^ j e 2 + 0(A (5.4) 

F = /o + ^ / 1 + g ) 2 / 2 + 0 ( /? 6 ) . (5.5) 

This problem has been solved in the Neumann boundary condition [77] in which 

ao = o,\ — 7r /2 however, even in this special case the obtained result does not match 

w i t h the physical properties expected. I n other words, the obtained result for the 

reflection factor fails to satisfy uni tar i ty and periodic properties. As the author 

in [77] mentions, i t is necessary to overview the renormalisations of the theory and 

in fact, their influence on the duality of the model. Meanwhile solving the problem 

to higher order for general boundary conditions w i l l be interesting. This w i l l lead 

to a deeper understanding of the quantum integrability of the theory. 



Appendix A 

In this Appendix we obtain such integrals 

Sn = f ° dx e{2+lk> s inh(>/Wo) coth" 2(x - x0), (A. l ) 
J — oo 

in which n = 0,1, 2, 3, (fro is the background solution to the equation of field so that 

sinh(\/2/3</»o) is proportional to the bulk three point coupling which is given by 

sinh(V/2i5(/>o) = 2 cosh 2(x - x0) (coth 2 2(x - xQ) - l ) . (A.2) 

Let us start with the simplest case when n = 0: 

So = [° dxe{2+lk)xsmh(V2(3<fr0). (A.3) 
J — oo 

Using (A.2), we have 

^° / -oo 6 ^ (sinh2(x — x0)) (^-4) 

or after integration by parts 

So = • * + 2(2 + ik) f° dx e ^ x — r i — r. (A.5) 
Sinh 2x0 J-oo e 2 ( x - x 0 ) _ e - 2 ( x - x 0 ) v ' 

Now, according to the arguments in section three of chapter 2, x0 is greater or equal 

to zero and, in contrast, x is less than zero so 0 < e 4 ( I - x ° ) < 1 and hence 

1 
p2(x—xo) p—2(x—xo 
° c ' n=0 

= _ e 2 ( x - x 0 ) g e 4 n ( x - x 0 ) 5 (A.6) 

substituting (A.6) in (A.5), we obtain 

S0 = — 2(2 + ik)e-2xo / dx e { 4 + i k ) x Y e

4"(*-*o). (A.7) 
sinh2xn J-oo „ Tl=0 
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Clearly, the series Y£?=o e 4 n ( I _ l 0 ) is uniformly convergent so the above relation may 

be written down as 

S0 = — 2(2 + ik)e-2xo y e~4nxo / dx e ( 4 + 4 " + ' f c K (A.8) 
sinhzxo ^ Q J-00 

After integration over x, we obtain 

1 0 0

 p-4nxo 

sinh 2x0 ^ k - (4 + 4n)z 

On the other hand, the above infinite series is a hypergeometric function. That is 

^0k~i{4 + 4n) k-Ai ' 1 J 

Therefore, we get the following relation 

1 
SQ sinh 2x0 

~2TZT- e~2x° F(l> ^ + 1 , ^ + 2, e"4*0). ( A . l l ) 

Note, the hypergeometric function is defined as [78] 

F(a,b,c,z) = f : { - ^ f ^ z n 0 , - 1 , -2 , . . . , (A.12) 
n=0 V C J n 

where 

(a)n = [^ n ; = o(a + l)...(o + n - 1) n = 1,2,3,..., (A.13) 
1 (a) 

in which F(a) is the gamma function defined by 

TOO 

T(a)= dte-H*-1 R e a > 0 . (A.14) 
Jo 

The above series defines a function which is analytic when \z\ < 1 and meanwhile 

the derivative of the hypergeometric function is given by 

^F(a, b, c, z) = —F(a + 1, b + 1, c + 1, z) (A.15) 

or in general 

^ F ( a , b, c, z) = ( Q ) " ( & ) " p(a + n,b + n,c + n, z). (A.16) 

Let us calculate (A . l ) when n = 1 i.e. 

5 i = / " ° da ;e ( 2 + i ( f c 2 - f c l ) ) x s inh(v / 2^o)coth2(a ; -xo) (A.17) 
J—00 
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or using (A.2) for the bulk three point coupling 

Si = 2 f ° dx e^**-* 1 ) )* cosh 2(x - x0) coth 2(x - x0) (coth 2 2(x - x0) - l ) • 

(A.18) 

On the other hand, if we differentiate the left hand side of (A. 11) with respect to 

x0, which is given by 

^ = - /° dx e { 2 + i k ) x Usinh 2(x - x0) (coth2 2(x - x0) - l ) 
OXQ J-OO ( V 1 

+8 cosh 2{x - x0) coth 2{x - x0) ( l - coth 2 2{x - x 0 f j } (A.19) 

and by comparing the above formula with (A.18) then, the following equation may 

be derived 

5* = \ IT1 + f d x e i 2 + t k ) X ~T~T~oT V ( A ' 2 ° ) 
A ox0 J-oo sinh2(x — x0) 

The second term in the above relation can be manipulated as before. Moreover, it 

is evident that we need to differentiate the right hand side of (A. 11) which is equal 

to 
dSo 2 cosh 2XQ 
dxo sinh 2 2x0 

+^7^- F(2. ~. h + 2> 7* + 3 . « ' 4 , ° ) - (A.21) k — oi 4 4 

Finally by substituting the above relation in (A.20), doing the computation of second 

term in (A.20) and after simplifying we obtain 

1 cosh 2x0 

Si 
2 sinh 2xo 

k e~2xo F(l^k + l,l-k + 2,e-4xo) 
k-4i v ' 4 ' 4 

+ 2 ^ ^ e~6xo F ( 2 , - k + 2, -k + 3, e~Ax°). (A.22) 
k - 8z 4 4 

In the same way, we may derive (A . l ) when n is equal to 2 or 3 however, gradually 

the calculations become lengthy and we only write down the results, that is, 

2 1 1 cosh2 2x0 + 1 
3 sinh 2x0 6 sinh 3 2x0 

I5k-8i e_2xo i + 1 i k + 2 j e - 4 I O ) 

3 k - 4i 
4 2k-- 3i 
3 k - 8i 
8 k - 2i 

e - 6 x 0 F < 2

 l_k + 2 i k + 3 e - 4 x o ) 

4 4 

3 k _ 1 2 • e-Wx° F(3, %-k + 3, X-k + 4, e"4*°) (A.23) 
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and 

S* = 
13 cosh2xo 1 cosh3 2x0 + 5 cosh 2x 0 

~24 sinh 2 2x0 ~ 24 sinh 4 2rr0 

+ 4 ^ J I ^ e _ 1 4 l ° l k + 4 , ^ + 5> e _ 4 l ° ) - (A-24) 
K — l02 4 4 
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In this Appendix we find the following integrals 

Cn = f ° dx eikx cosh(\/2/^o) coth n 2(x - x0). (B.l) 
J—oo 

Here, cosh(\/2/30o) is proportional to the bulk four point coupling and is given by 

cosh(>/Wo) = (2 coth 2 2(x - x0) - l ) . (B.2) 

So, we are led to calculate such integrals 

In= f ° dxelkxcothn2(x-x0), (B.3) 
J—00 

where n = 1,2,..., 6. It is better to find the solution of the above integrals when 

n = 1. Considering the following inequality (see Appendix A) 

0 < e 4 ( l _ X o ) < 1 

and therefore, in what follows we will use the expanded form of coth 2(x — x0) as 

coth 2(x-x0) = 1-2^2 e 4 n { x - X o ) . (B.4) 

It turns out to be simple if we consider this integral 

f ° dxe{T+ik)xcoth2{x-x0), (B.5) 
J—00 

where r is a positive constant quantity which will be taken to zero at the end of the 

calculation. Moreover by using (B.4) then, (B.5) becomes 

/

0 rO 0 0 

dx e

{ T + i k ) x -2 dx^2 e 4 n ( x - I o )

 e

{ T + t k ) x . (B.6) 
-OO J — OO n 
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Regarding the uniform convergence of the series £ £ l 0 e 4 n ( l - x o ) , we may write the 

above relation as 

dx e { T + l k ) x - 2 e - 4 " 1 0 / dx e ^ + i n + i k ^ x (B.7) 
-OO N J— OO n=0 

or after integrating over x 

+ 2 E , _ * ^ - 4 n * ° - (B.8) k — ir ^ 0 k — (r + 4n)i 

Now we are in a position to write down the desired result, that is, 
A 00 _ - 4 n x 0 

/ . - r ^ E — • (B.9) 

On the other hand, the above series is equal to a hypergeometric function 
0 0 -4nxo 1 

T - r = TF{l,-k,-k + l j e - 4 x o ) (B.10) 
£f 0 k - 4 m k v ' 4 ' 4 ' ' v ; 

and finally we find this formula 

/ l = - ^ + f F ( 1 ' ^ ' i f c + 1 ' e " I O ) - ( R U ) 

Now let us compute (B. l) when n = 2 

I2= [° dxe*kxcoth22{x-x0). (B.12) 

In order to solve the above integral, it is sufficient to differentiate both sides of 

( B . l l ) with respect to XQ to obtain 

h = ~\ - ^ e" 4 - F(2, life + 1, \k + 2, e " 4 - ) . (B.13) 

We can follow a similar method to get higher order forms of (B. l) which we need 

in chapter 4, so i t is appropriate to write down all of them i.e. 

A l _ e - 4 x 0 F ( 2 > ijfc + 1, + 2, e - 4 l ° ) 
& - 4 i v ' 4 ' 4 

8 * e - 8 * 0 F ( 3 , ^ + 2 A + 3 ,e- 4 1 0 ) , (B.14) 
k-8i v ' 4 ' 4 

- F(3, i * + 2, + 3, e - 4 » ) 
A; — 8z 4 4 

- ] ^ 2 i e _ 1 2 l ° F ( 4 ' i * + 3 ' i * + 4 ' e ~ 4 x o ) ' ( B 1 5 ) 
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and 

32i „ i 
J—]^ e F(3, -k + 2, -k + 3, e~4x°) 

32i (B.16) 

h = - T -
I2i -4io 

k k - 4i 
48i 

F(2^k + l,-k + 2,e-4*°) 

e- 8 x o F(3, ^fc + 2, ^fc + 3, e" 4 1 0 ) 
A; — 8i 4 4 

e - ^ o j p ( 4 + 3 , ^ + 4, e- 4 1 0 ) 
Jfc — 12i 4 4 

112i 
- 12 

e" 1 6 1 0 F(5, ^fc + A,l-k + 5, e- 4 1 0 ) 
A; — 16* 4 4 

• e- 2 t o 0 F(6, -k + b,~k + 6, e - 4 1 0 ) . 
A;-20z V 4 4 

(B.17) 
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